ML22299A191: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:Enclosure 1 to ED20220001 Page 1 of 4 Enclosure 1 List of SAR Changes No. 71-9356 for the MAGNATRAN Cask MAGNATRAN SAR, Revision 1 to ED20220001 Page 2 of 4 List of Changes for the MAGNATRAN SAR, Revision 1 Chapter/Page/          Source of Change                      Description of Change Figure/Table Note:      The List of Effective Pages and the Chapter Table of Contents, List of Figures and List of Tables have been revised accordingly to reflect the list of changes detailed below.
{{#Wiki_filter:}}
Chapter 1 Pages 1.3-8 thru 1.3-9    20C                    Added paragraph at the bottom of page 1.3-8 thru the top of page 1.3-9 where indicated.
Pages 1.3-8 thru 1.3-9    21A                    Added text to the paragraph at the bottom of page 1.3-8 thru the top of page 1.3-9 where indicated.
Pages 1.3-10 thru 1.3-12  20C, 21A              Text flow changes.
Page 1.3-21                20C                    Added text in the middle of the third paragraph in Section 1.3.2 where indicated.
Page 1.3-22                20C                    Modified text at the top of the page and near the end of the last paragraph on the page where indicated.
Page 1.3-23                20C                    Added paragraph at the top of the page.
Page 1.3-24                20C                    Added text near the middle of the second paragraph on the page; added new fourth paragraph where indicated.
Page 1.3-25                20C                    Text flow changes.
Page 1.3-26                20C                    Modified text in Items 11.b and 11.c where indicated.
Page 1.3-27                20A                    Revised Bullet 11.i where indicated.
Page 1.3-28                20A                    Revised Bullet 11.m where indicated.
Page 1.3-29                20C                    Added paragraph at the end of Item 11.p and modified text in Items 12.b, 12.c, 12.d and 12.i where indicated.
Page 1.3-30                20A                    Revised bullet 12.l where indicated.
Page 1.3-31                20A                    Revised bullet 12.p where indicated.
Page 1.3-32                20C                    Added text at the end of Item 12.s and at the end of Item 13.j where indicated.
Pages 1.3-33 thru 1.3-38  20A                    Text flow changes/
Page 1.3-39                20C                    Deleted last bullet following Table 1.3-6 where indicated.
Pages 1.3-40 thru 1.3-44  20A                    Text flow changes.
Page 1.3-45                20C                    Modified title of Table 1.3-12 where indicated.
Pages 1.3-46 thru 1.3-47  20A                    Text flow changes.
Page 1.3-48                20C                    Modified Table 1.3-19 where indicated.
Page 1.3-49                20A                    Text flow changes.
Page 1.3-50                20C                    Added Note below Table 1.3-21 where indicated.
Page 1.3-51                20C                    Added Note below Table 1.3-22 where indicated.
Pages 1.4-3 thru 1.4-4    19A                    Updated Section 1.4.3 with new License Drawing revision numbers to ED20220001 Page 3 of 4 Chapter/Page/        Source of Change                  Description of Change Figure/Table Chapter 2 Page 2.1.4-2            19A              Added a referenced code to the top of the page.
Page 2.1.4-3            19A              Added two paragraphs to the bottom of the page.
Page 2.1.4-4            19A              Modified Table 2.1.4-1 where indicated.
Page 2.1.4-5            19A              Modified the last row on the page where indicated in Table 2.1.4-1.
Page 2.1.4-6            19A,              Added two new entries in Table 2.1.4-1 on the top of the ED20200055        page and modified the last entry on the page.
Page 2.2.1-3            19A              Modified the imbedded table at the top of the page.
Page 2.3.1-1            19A              Added text to the last paragraph on the page text flow to next page.
Page 2.3.1-2            19A              Text flow changes.
Page 2.11-1              20C              Added text to the end of Section 2.11 where indicated.
Page 2.11.1-1            20C              Deleted text in the first paragraph of Section 2.11.1 where indicated.
Page 2.11.4-2            20C              Added text at the end of Section 2.11.4 where indicated.
Pages 2.11.6-1 thru      20C              Added new Section 2.11.6 where indicated.
2.11.6-2 Page 2.12.1-5            19A, 20C          Added Reference number 77, 78 and 79 where indicated.
Page 2.12.3-1 thru      19A              Added new section.
2.12.3-4 Chapter 3 No Changes Chapter 4 Page 4-1                20C, 21A          Added third and fourth paragraphs to Section 4 where indicated.
Chapter 5 Page 5-1                20C              Modified text in the first paragraph of Section 5 where indicated.
Page 5.1-6              20C              Replaced Figure 5.1-2 where indicated.
Page 5.1-10              20C              Modified Table 5.1-4 where indicated.
Page 5.3-4              20C              Replaced Figure 5.3-3 where indicated.
Page 5.6-26              20C              Modified Table 5.6-4 where indicated.
Page 5.8.2-3            20C              Modified text in the second paragraph of Section 5.8.2 where indicated.
Page 5.8.4-2            20C              Modified text at the end of the first paragraph on the page in Section 5.8.4.2 where indicated.
to ED20220001 Page 4 of 4 Chapter/Page/        Source of Change                  Description of Change Figure/Table Page 5.8.4-3            20C              Modified the embedded table and the paragraph following it at the end of Section 5.8.4.3 where indicated.
Page 5.8.4-10            20C              Replaced Figure 5.8-28 where indicated.
Page 5.8.4-15            20C              Replaced Figure 5.8-31 where indicated.
Page 5.8.4-17            20C              Replaced Figure 5.8-33 where indicated.
Page 5.8.4-20            20C              Modified headings in Table 5.8-23 where indicated.
Pages 5.8.4-21 thru      20C              Modified headings in Table 5.8-24a where indicated.
5.8.4-22 Pages 5.8.4-23 thru      20C              Added Table 5.8-24b where indicated.
5.8.4-24 Page 5.8.4-25            20C              Modified Tables 5.8-25 and 5.8-26 where indicated.
Chapter 6 Pages 6.1.1-1 thru      20C, 21A          Added text in the middle of Section 6.1.1 where indicated.
6.1.1-2 Pages 6.1.2-1 thru      20C              Modified text throughout Section 6.1.2 where indicated.
6.1.2-2 Pages 6.1.2-3 thru      20C              Text flow changes.
6.1.2-6 Pages 6.4.1-1 thru      20C              Added and modified text throughout Section 6.4.1 where 6.4.1-4                                    indicated.
Pages 6.10.4-1 thru      20C              Added new Section 6.10.4.
6.10.4-3 Chapter 7 Page 7.1-6              20C              Deleted fourth paragraph on the page Page 7.1-6              21B              Added Note text following Step 8 in Section 7.1-2 where indicated.
Page 7.1-7 thru 7.1-12  20C, 21B          Text flow changes.
Page 7.1-13              19A              Added caution statement to Step 7 where indicated.
Pages 7.1-14 thru 7.1-16 19A, 20C          Text flow changes.
Page 7.2-5              21A              Added Caution text following Item 21 in Section 7.2-2 where indicated.
Page 7.2-6              21A              Text flow changes.
Chapter 8 Page 8.1-3              19A              Modified the first paragraph on the page where indicated.
Page 8.1-7 thru 8.1-8    21B              Added new Section 8.1.4.3 where indicated.
Pages 8.1-9 thru 8.1-30  21B              Text flow changes to ED20220001 Page 1 of 4 Enclosure 2 List of Drawing Changes No. 71-9356 for the MAGNATRAN Cask MAGNATRAN SAR, Revision 1
 
NAC PROPRIETARY INFORMATION REMOVED  to ED20220001 Page 2 of 4 List of Drawing Changes, MAGNATRAN SAR, Revision 1 Drawing 71160-500, Rev. 6P Drawing 71160-585, Rev. 13 DCR(L) 71160-585-12A Sheet 1:
: 1. Revise Delta Note 12 as follows: "Port Covers (Item 8) shall be fabricated with a minimum thickness as governed by ASME SA240 specification for 3/8 plate. Thicker plate may be used with a maximum thickness of 0.52 inch. The outer port covers may be ground to a minimum thickness of 0.30 inch if necessary to ensure they do not extend beyond the top surface of the closure lid.",
was "Port Covers (Item 8) shall have a minimum thickness governed by ASME SA240 specification for 3/8 plate. Thicker plate may be used with a maximum thickness of 0.52 inch."
Drawing 71160-685, Rev. 7 DCR(L) 71160-685-6A Changes were made via the Amendment process for MAGNASTOR and were later removed via DCR(L) 71160-685-7A DCR(L) 71160-685-6B Sheet 1:
: 1. Add delta note 13 to read: Items 8 and 19 may be used for drain and vent ports. Items 11 and 12 only used for vent ports.
: 2. Sheet 1, zones E5 and D5, add delta note 13 symbol to Items 8 and 19 balloon callout and Items 11 and 12 balloon callout.
: 3. B.O.M., Revise Items 8, 11, 12 and 19 quantity to A/R was 1.
Sheet 2:
: 4. Zone D5, revise dimension to (Ø4.4) -8, -19/(Ø5.6) -11, -12, was (Ø4.4)/TYP.
Sheet 3:
: 5. Zones E5 and C5, add delta note 13 symbol to Items 8 and 19 balloon callout and Items 11 and 12 balloon callout.
to ED20220001 Page 3 of 4 Drawing 71160-685, Rev. 7 (continued)
DCR(L) 71160-685-6C Sheet 1, revise Note 12 as follows: "Inner Port Cover (Items 8, 11) and Outer Port Cover (Items 12,
: 19) shall be fabricated with a minimum thickness as governed by ASME SA240 specification for 3/8 plate. Thicker plate may be used with a maximum thickness of 0.52 inch. As necessary to aid fit-up, the outer port covers may be field ground/machined to a minimum thickness of 0.30 inch.", was "Inner Port Cover (Items 8, 11) and Outer Port Cover (Items 12, 19) shall have a minimum thickness governed by ASME SA240 specification for 3/8 plate. Thicker plate may be used with a maximum thickness of 0.52 in.
Drawing 71160-685, Rev. 8 DCR(L) 71160-685-7A Sheet 1:
: 1. BOM: Move quantities from column ASSY. 96 to currently blank column ASSY. 99.
: 2. BOM, Item 2: Change Drawing No. from 71160-675-96 to 71160-675-99.
: 3. BOM, Item 3: Change Drawing No. from 71160-681-97 to 71160-681-99.
: 4. BOM, Item 13: Change Drawing No. from 71160-601-97 to 71160-601-99.
: 5. BOM, Item 21: Change Drawing No. from 71160-601-99 to 71160-601-97.
: 6. Zone C6: Change ASSY-98 title balloon to ASSY-99 and ASSY-96 title balloon to ASSY-98.
: 7. Zone D3: Change existing overall length dimension from (173.3) ASSY -96 to (191.8) ASSY
        -99 and rearrange so the ASSY-99 dimension is on top.
DCR(L) 71160-685-7B Sheet 1:
: 1. BOM, Add Item 23 as follows: ASSY-99 QTY = A/R, Name = DFC ASSEMBLY, Drawing No. - 71160-603-99. Apply delta note 9to item 23.
: 2. Zone D5: Add item 23 balloon adjacent to item 21 balloon.
: 3. ZoneA5, Note 9: Change DFC ASSEMBLIES (ITEM 13) CAN  to DFC ASSEMBLIES (ITEM 13 or 23) CAN.
to ED20220001 Page 4 of 4 Drawing 71160-785, Rev. 4 DCR(L) 71160-785-3A Sheet 1:
: 1. Add delta note 10 to read: "At the option of the licensee, one or two slots may be machined into the Inner Port Cover (Item 4). Slot size and location shall permit slot to be sealed by the inner port cover weld.".
: 2. Add delta note 11 to read: "Items 7 (Closure Ring), 5 (Outer Port Cover) and corresponding welds shall not extend beyond the top surface of the closure lid assembly, as necessary to aid fit-up, the port covers (Items 4 & 5) may be field ground/machined to a minimum thickness of .48.".
: 3. Add sentence to delta note 8 that reads: A minimum weld size of 1/8" is permitted for the closure ring weld..
Sheet 2:
: 4. Zone C/D4, add a delta note 10 symbol with leader pointing to Item 4 (Inner Port Cover)
: 5. Zones C5/6 (Items 4 and 5 balloon) , E6 (1/8 groove weld), D8 (Item 7 balloon) and D8 (1/4 groove weld) add a delta note 11 symbol.
: 6. Zone D8 (1/4 groove weld) add a delta note 8 symbol.
to ED20220001 Page 1 of 1 Enclosure 3 LOEP and SAR Page Changes No. 71-9356 for the MAGNATRAN Cask MAGNATRAN SAR, Revision 1
 
THIS PAGE INTENTIONALLY LEFT BLANK January 2022 Revision 1 MAGNATRAN (Modular Advanced Generation Nuclear All-purpose TRANsport)
SAFETY ANALYSIS REPORT NON-PROPRIETARY VERSION Docket No. 71-9356 Atlanta Corporate Headquarters: 3930 East Jones Bridge Road, Norcross, Georgia 30092 USA Phone 770-447-1144, Fax 770-447-1797, www.nacintl.com
 
THIS PAGE INTENTIONALLY LEFT BLANK MAGNATRAN Transport Cask SAR                                                                                      January 2022 Docket No. 71-9356                                                                                                      Revision 1 List of Effective Pages Chapter 1                                                                Page 2.6.12-1 thru 2.6.12-2 ................ Revision 1 Page 1-i thru 1-iii ................................ Revision 1          Page 2.6.12.1-1 ................................... Revision 1 Page 1-1 .............................................. Revision 1      Page 2.6.12.2-1 thru 2.6.12.2-7 .......... Revision 1 Page 1.1-1 thru 1.1-8 ........................... Revision 1            Page 2.6.12-3-1 thru 2.6.12-3-4 .......... Revision 1 Page 1.2-1 thru 1.2-5 ........................... Revision 1            Page 2.6.12.4-1 thru 2.6.12.4-12 ........ Revision 1 Page 1.3-1 thru 1.3-52 ......................... Revision 1              Page 2.6.12.5-1 thru 2.6.12.5-6 .......... Revision 1 Page 1.4-1 thru 1.4-4 ........................... Revision 1            Page 2.6.12.6-1 thru 2.6.12.6-4 .......... Revision 1 Page 2.6.12-7-1 thru 2.6.12-7-3 .......... Revision 1 36 drawings (see Section 1.4.3)                                  Page 2.6.12.8-1 thru 2.6.12.8-10 ........ Revision 1 Page 2.6.12.9-1 thru 2.6.12.9-6 .......... Revision 1 Chapter 2                                                                Page 2.6.12.10-1 ................................. Revision 1 Page 2-i thru 2-xxiv ............................ Revision 1            Page 2.6.12.11-1 ................................. Revision 1 Page 2-1 .............................................. Revision 1      Page 2.6.12.12-1 thru Page 2.1-1 ........................................... Revision 1                2.6.12.12-2 ............................. Revision 1 Page 2.1.1-1 thru 2.1.1-6 ..................... Revision 1              Page 2.6.12.13-1 thru Page 2.1.2-1 thru 2.1.2-12 ................... Revision 1                        2.6.12.13-3 ............................. Revision 1 Page 2.1.3-1 thru 2.1.3-2 ..................... Revision 1              Page 2.6.12-14-1 thru Page 2.1.4-1 thru 2.1.4-6 ..................... Revision 1                      2.6.12.14-2 ............................. Revision 1 Page 2.2-1 ........................................... Revision 1        Page 2.6.13-1 thru 2.6.13-2 ................ Revision 1 Page 2.2.1-1 thru 2.2.1-17 ................... Revision 1                Page 2.6.13.1-1 thru 2.6.13.1-2 .......... Revision 1 Page 2.2.2-1 thru 2.2.2-9 ..................... Revision 1              Page 2.6.13.2-1 thru 2.6.13.2-13 ........ Revision 1 Page 2.2.3-1 ........................................ Revision 1        Page 2.6.13.3-1 thru 2.6.13.3-3 .......... Revision 1 Page 2.3-1 ........................................... Revision 1        Page 2.6.13.4-1 thru 2.6.13.4-14 ........ Revision 1 Page 2.3.1-1 thru 2.3.1-2 ..................... Revision 1              Page 2.6.13.5-1 thru 2.6.13.5-2 .......... Revision 1 Page 2.3.2-1 ........................................ Revision 1        Page 2.6.13.6-1 thru 2.6.13.6-5 .......... Revision 1 Page 2.4-1 thru 2.4-2 ........................... Revision 1            Page 2.6.13.7-1 thru 2.6.13.7-4 .......... Revision 1 Page 2.5-1 ........................................... Revision 1        Page 2.6.14-1 ...................................... Revision 1 Page 2.5.1-1 thru 2.5.1-12 ................... Revision 1                Page 2.6.14.1-1 thru 2.6.14.1-8 .......... Revision 1 Page 2.5.2-1 thru 2.5.2-18 ................... Revision 1                Page 2.6.14.2-1 thru 2.6.14.2-2 .......... Revision 1 Page 2.6-1 ........................................... Revision 1        Page 2.6.14.3-1 thru 2.6.14.3-14 ........ Revision 1 Page 2.6.1-1 thru 2.6.1-15 ................... Revision 1                Page 2.6.14.4-1 thru 2.6.14.4-3 .......... Revision 1 Page 2.6.2-1 thru 2.6.2-10 ................... Revision 1                Page 2.6.15-1 thru 2.6.15-2 ................ Revision 1 Page 2.6.3-1 ........................................ Revision 1        Page 2.6.15.1-1 thru 2.6.15.1-2 .......... Revision 1 Page 2.6.4-1 thru 2.6.4-2 ..................... Revision 1              Page 2.6.15.2-1 thru 2.6.15.2-13 ........ Revision 1 Page 2.6.5-1 thru 2.6.5-5 ..................... Revision 1              Page 2.6.15.3-1 thru 2.6.15.3-2 .......... Revision 1 Page 2.6.6-1 ........................................ Revision 1        Page 2.6.15.4-1 thru 2.6.15.4-15 ........ Revision 1 Page 2.6.7-1 ........................................ Revision 1        Page 2.6.15.5-1 ................................... Revision 1 Page 2.6.7.1-1 thru 2.6.7.1-9 ............... Revision 1                Page 2.6.15.6-1 thru 2.6.15.6-5 .......... Revision 1 Page 2.6.7.2-1 thru 2.6.7.2-5 ............... Revision 1                Page 2.6.15.7-1 thru 2.6.15.7-3 .......... Revision 1 Page 2.6.7.3-1 thru 2.6.7.3-9 ............... Revision 1                Page 2.6.16-1 ...................................... Revision 1 Page 2.6.7.4-1 ..................................... Revision 1          Page 2.6.16.1-1 ................................... Revision 1 Page 2.6.7.5-1 thru 2.6.7.5-34 ............. Revision 1                  Page 2.6.16.2-1 thru 2.6.16.2-6 .......... Revision 1 Page 2.6.7.6-1 thru 2.6.7.6-5 ............... Revision 1                Page 2.6.16.3-1 thru 2.6.16.3-3 .......... Revision 1 Page 2.6.7.7-1 thru 2.6.7.7-19 ............. Revision 1                  Page 2.6.16.4-1 thru 2.6.16.4-7 .......... Revision 1 Page 2.6.8-1 ........................................ Revision 1        Page 2.6.16.5-1 thru 2.6.16.5-4 .......... Revision 1 Page 2.6.9-1 ........................................ Revision 1        Page 2.6.16.6-1 thru 2.6.16.6-3 .......... Revision 1 Page 2.6.10-1 ...................................... Revision 1          Page 2.6.16.7-1 thru 2.6.16.7-4 .......... Revision 1 Page 2.6.11-1 thru 2.6.11-5 ................. Revision 1                Page 2.6.16.8-1 thru 2.6.16.8-6 .......... Revision 1 Page 1 of 3
 
MAGNATRAN Transport Cask SAR                                                                                        January 2022 Docket No. 71-9356                                                                                                        Revision 1 List of Effective Pages (contd)
Page 2.6.16.9-1 thru 2.6.16.9-6 ........... Revision 1                  Page 2.11.3-1 thru 2.11.3-6 ................ Revision 1 Page 2.6.16.10-1 ................................. Revision 1          Page 2.11.4-1 thru 2.11.4-3 ................ Revision 1 Page 2.6.16.11-1 ................................. Revision 1          Page 2.11.5-1 ...................................... Revision 1 Page 2.6.16.12-1 ................................. Revision 1          Page 2.11.6-1 thru 2.11.6-2 ................ Revision 1 Page 2.6.16.13-1 thru 2.6.16.13-3 ....... Revision 1                    Page 2.12-1 ......................................... Revision 1 Page 2.6.17-1 ...................................... Revision 1        Page 2.12.1-1 thru 2.12.1-5 ................ Revision 1 Page 2.6.17.1-1 ................................... Revision 1          Page 2.12.2-1 thru 2.12.2-82 .............. Revision 1 Page 2.6.17.2-1 thru 2.6.17.2-4 ........... Revision 1                  Page 2.12.3-1 thru 2.12.3-4 ................ Revision 1 Page 2.6.17.3-1 thru 2.6.17.3-7 ........... Revision 1 Page 2.7-1 ........................................... Revision 1      Chapter 3 Page 2.7.1-1 thru 2.7.1-3 ..................... Revision 1              Page 3-i thru 3-iii ................................ Revision 1 Page 2.7.1.1-1 thru 2.7.1.1-7 ............... Revision 1                Page 3-1 .............................................. Revision 1 Page 2.7.1.2-1 thru 2.7.1.2-4 ............... Revision 1                Page 3.1-1 thru 3.1-3 .......................... Revision 1 Page 2.7.1.3-1 thru 2.7.1.3-7 ............... Revision 1                Page 3.2-1 thru 3.2-8 .......................... Revision 1 Page 2.7.1.4-1 ..................................... Revision 1        Page 3.3-1 thru 3.3-2 .......................... Revision 1 Page 2.7.1.5-1 thru 2.7.1.5-3 ............... Revision 1                Page 3.4-1 thru 3.4-35 ........................ Revision 1 Page 2.7.1.6-1 ..................................... Revision 1        Page 3.5-1 thru 3.5-17 ........................ Revision 1 Page 2.7.1.7-1 thru 2.7.1.7-6 ............... Revision 1                Page 3.6-1 thru 3.6-2 .......................... Revision 1 Page 2.7.1.8-1 thru 2.7.1.8-6 ............... Revision 1 Page 2.7.2-1 ........................................ Revision 1        Chapter 4 Page 2.7.3-1 thru 2.7.3-11 ................... Revision 1              Page 4-i thru 4-ii ................................. Revision 1 Page 2.7.4-1 thru 2.7.4-6 ..................... Revision 1              Page 4-1 .............................................. Revision 1 Page 2.7.5-1 ........................................ Revision 1        Page 4.1-1 thru 4.1-6 .......................... Revision 1 Page 2.7.6-1 ........................................ Revision 1        Page 4.2-1 thru 4.2-2 .......................... Revision 1 Page 2.7.7-1 thru 2.7.7-3 ..................... Revision 1              Page 4.3-1 thru 4.3-2 .......................... Revision 1 Page 2.7.8-1 thru 2.7.8-32 ................... Revision 1              Page 4.4-1 thru 4.4-3 .......................... Revision 1 Page 2.7.9-1 thru 2.7.9-15 ................... Revision 1              Page 4.5-1 thru 4.5-19 ........................ Revision 1 Page 2.7.10-1 thru 2.7.10-12 ............... Revision 1 Page 2.7.11-1 thru 2.7.11-14 ............... Revision 1                Chapter 5 Page 2.7.12-1 thru 2.7.12-2 ................. Revision 1                Page 5-i thru 5-x ................................. Revision 1 Page 2.7.12.1-1 thru 2.7.12.1-2 ........... Revision 1                  Page 5-1 thru 5-3 ................................ Revision 1 Page 2.7.12.2-1 thru 2.7.12.2-6 ........... Revision 1                  Page 5.1-1 thru 5.1-12 ........................ Revision 1 Page 2.7.12.3-1 thru 2.7.12.3-4 ........... Revision 1                  Page 5.2-1 thru 5.2-13 ........................ Revision 1 Page 2.7.12.4-1 thru 2.7.12.4-6 ........... Revision 1                  Page 5.3-1 thru 5.3-6 .......................... Revision 1 Page 2.7.12.5-1 ................................... Revision 1          Page 5.4-1 thru 5.4-5 .......................... Revision 1 Page 2.7.12.6-1 thru 2.7.12.6-2 ........... Revision 1                  Page 5.5-1 thru 5.5-14 ........................ Revision 1 Page 2.7.13-1 ...................................... Revision 1        Page 5.6-1 thru 5.6-27 ........................ Revision 1 Page 2.7.13.1-1 thru 2.7.13.1-7 ........... Revision 1                  Page 5.7-1 thru 5.7-3 .......................... Revision 1 Page 2.7.13.2-1 thru 2.7.13.2-21 ......... Revision 1                  Page 5.8-1 ........................................... Revision 1 Page 2.7.14-1 thru 2.7.14-8 ................. Revision 1                Page 5.8.1-1 thru 5.8.1-4 .................... Revision 1 Page 2.7.15-1 ...................................... Revision 1        Page 5.8.2-1 thru 5.8.2-11 .................. Revision 1 Page 2.7.16-1 thru 2.7.16-4 ................. Revision 1                Page 5.8.3-1 thru 5.8.3-25 .................. Revision 1 Page 2.8-1 ........................................... Revision 1      Page 5.8.4-1 thru 5.8.4-25 .................. Revision 1 Page 2.9-1 ........................................... Revision 1      Page 5.8.5-1 thru 5.8.5-11 .................. Revision 1 Page 2.10-1 ......................................... Revision 1        Page 5.8.6-1 thru 5.8.6-7 .................... Revision 1 Page 2.11-1 ......................................... Revision 1        Page 5.8.7-1 thru 5.8.7-99 .................. Revision 1 Page 2.11.1-1 thru 2.11.1-12 ............... Revision 1                Page 5.8.8-1 ........................................ Revision 1 Page 2.11.2-1 thru 2.11.2-4 ................. Revision 1                Page 5.8.9-1 thru 5.8.9-5 .................... Revision 1 Page 2 of 3
 
MAGNATRAN Transport Cask SAR                                                                                          January 2022 Docket No. 71-9356                                                                                                          Revision 1 List of Effective Pages (contd)
Page 5.8.10-1 thru 5.8.10-75 ............... Revision 1                  Chapter 8 Page 5.8.11-1 thru 5.8.11-18 ............... Revision 1                  Page 8-i thru 8-ii ................................. Revision 1 Page 5.8.12-1 thru 5.8.12-20 ............... Revision 1                  Page 8-1 .............................................. Revision 1 Page 5.8.13-1 thru 5.8.13-5 ................. Revision 1                  Page 8.1-1 thru 8.1-30 ........................ Revision 1 Page 5.8.14-1 thru 5.8.14-5 ................. Revision 1                  Page 8.2-1 thru 8.2-8 .......................... Revision 1 Page 8.3-1 thru 8.3-2 .......................... Revision 1 Chapter 6 Page 6-i thru 6-ix ................................ Revision 1 Page 6-1 .............................................. Revision 1 Page 6.1.1-1 thru 6.1.1-5 ..................... Revision 1 Page 6.1.2-1 thru 6.1.2-6 ..................... Revision 1 Page 6.1.3-1 ........................................ Revision 1 Page 6.2.1-1 thru 6.2.1-5 ..................... Revision 1 Page 6.2.2-1 ........................................ Revision 1 Page 6.2.3-1 ........................................ Revision 1 Page 6.3.1-1 thru 6.3.1-7 ..................... Revision 1 Page 6.3.2-1 thru 6.3.2-3 ..................... Revision 1 Page 6.3.3-1 ........................................ Revision 1 Page 6.3.4-1 ........................................ Revision 1 Page 6.4-1 ........................................... Revision 1 Page 6.4.1-1 thru 6.4.1-4 ..................... Revision 1 Page 6.4.2-1 thru 6.4.2-2 ..................... Revision 1 Page 6.5.1-1 ........................................ Revision 1 Page 6.5.2-1 thru 6.5.2-2 ..................... Revision 1 Page 6.6.1-1 ........................................ Revision 1 Page 6.6.2-1 thru 6.6.2-2 ..................... Revision 1 Page 6.6.3-1 thru 6.6.3-4 ..................... Revision 1 Page 6.7-1 ........................................... Revision 1 Page 6.8.1-1 thru 6.8.1-70 ................... Revision 1 Page 6.8.2-1 thru 6.8.2-3 ..................... Revision 1 Page 6.9-1 thru 6.9-3 ........................... Revision 1 Page 6.10.1-1 thru 6.10.1-112 ............. Revision 1 Page 6.10.2-1 thru 6.10.2-18 ............... Revision 1 Page 6.10.3-1 thru 6.10.3-87 ............... Revision 1 Page 6.10.4-1 thru 6.10.4-3 ................. Revision 1 Chapter 7 Page 7-i ............................................... Revision 1 Page 7-1 thru 7-2 ................................. Revision 1 Page 7.1-1 thru 7.1-16 ......................... Revision 1 Page 7.2-1 thru 7.2-6 ........................... Revision 1 Page 7.3-1 ........................................... Revision 1 Page 7.4-1 ........................................... Revision 1 Page 3 of 3
 
THIS PAGE INTENTIONALLY LEFT BLANK MAGNATRAN Transport Cask SAR                                                                                    January 2022 Docket No. 71-9356                                                                                                    Revision 1 Chapter 1 General Description Table of Contents 1    GENERAL INFORMATION ......................................................................................... 1-1 1.1      Terminology ..................................................................................................... 1.1-1 1.2      Introduction ...................................................................................................... 1.2-1 1.2.1    Cask System ............................................................................................... 1.2-1 1.2.2    Transport Cask Components ...................................................................... 1.2-2 1.3      Package Description......................................................................................... 1.3-1 1.3.1    Packaging ................................................................................................... 1.3-1 1.3.2    Contents ................................................................................................... 1.3-21 1.3.3    Special Requirements for Plutonium ....................................................... 1.3-52 1.3.4    Operational Features ................................................................................ 1.3-52 1.4      Appendix .......................................................................................................... 1.4-1 1.4.1    References .................................................................................................. 1.4-1 1.4.2    Quality Assurance ...................................................................................... 1.4-2 1.4.3    License Drawings....................................................................................... 1.4-3 NAC International                                        1-i
 
MAGNATRAN Transport Cask SAR                                                                                      January 2022 Docket No. 71-9356                                                                                                      Revision 1 List of Figures Figure 1.2-1 MAGNATRAN Transport Cask - Nominal Assembly Dimensions (inches) .............................................................................................................. 1.2-4 Figure 1.2-2 Transport Configuration of the MAGNATRAN Transport Cask ..................... 1.2-5 Figure 1.3-1 MAGNASTOR TSC and Basket .................................................................... 1.3-13 Figure 1.3-2 MAGNATRAN Transport Cask Containment Boundary............................... 1.3-14 Figure 1.3-3 MAGNASTOR Damaged Fuel Can ............................................................... 1.3-15 Figure 1.3-4 Schematic of DF Basket Assembly Configuration for PWR Fuel with Damaged Fuel Can Locations ......................................................................... 1.3-34 Figure 1.3-5 Schematic of 82-Assembly BWR Basket Pattern ........................................... 1.3-35 Figure 1.3-6 Schematic of 37-Assembly PWR Basket (33-, 35 and 36-Assembly Configuration Included) .................................................................................. 1.3-36 Figure 1.3-7 Schematic of 87-Assembly BWR Basket ....................................................... 1.3-37 Figure 1.3-8 BWR Partial Length Fuel Rod Location Sketches ......................................... 1.3-38 NAC International                                          1-ii
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                                                    January 2022 Docket No. 71-9356                                                                                                    Revision 1 List of Tables Table 1.3-1  Design Characteristics of the MAGNATRAN Transport Cask and Components .................................................................................................... 1.3-16 Table 1.3-2  Design Characteristics of the Transportable Storage Canister ....................... 1.3-18 Table 1.3-3  Design Characteristics of the Fuel Basket Assemblies ................................... 1.3-19 Table 1.3-4  Design Characteristics of the DFC Damaged Fuel Can .......................................................................................... 1.3-20 Table 1.3-5  Design Characteristics of the GTCC Waste Basket Liner and TSC ............... 1.3-20 Table 1.3-6  PWR Fuel Assembly Characteristics .............................................................. 1.3-39 Table 1.3-7  Bounding PWR Fuel Assembly Geometry for Loading Criteria .................... 1.3-40 Table 1.3-8  Maximum Initial Enrichment Assembly Undamaged Fuel Configuration - 0.036 g/cm2 10B Absorber..................................................... 1.3-41 Table 1.3-9  Maximum Initial enrichment Assembly Undamaged Fuel Configuration - 0.030 g/cm2 10B Absorber..................................................... 1.3-42 Table 1.3-10 Maximum Initial Enrichment Assembly Undamaged Fuel Configuration - 0.027 g/cm2 10B Absorber..................................................... 1.3-43 Table 1.3-11 Maximum Initial Enrichment - Undamaged Fuel Configuration WE15 -
Optional Configurations.................................................................................. 1.3-44 Table 1.3-12 Maximum Initial Enrichment - PWR Damaged Fuel Configuration -
0.036 g/cm2 10B Absorber ............................................................................... 1.3-45 Table 1.3-13 Maximum Initial Enrichment - PWR Damaged Fuel Configuration -
0.030 g/cm2 10B Absorber ............................................................................... 1.3-45 Table 1.3-14 Maximum Initial Enrichment - PWR Damaged Fuel Configuration -
0.027 g/cm2 10B Absorber ............................................................................... 1.3-46 Table 1.3-15 Maximum Initial Enrichment - Damaged Fuel Configuration WE15 -
Optional Configurations.................................................................................. 1.3-46 Table 1.3-16 Additional Fuel Assembly Cool Time Required to Load Nonfuel Hardware ......................................................................................................... 1.3-47 Table 1.3-17 Allowed BPRA Burnup and Cool Time Combinations .................................. 1.3-47 Table 1.3-18 Allowed GTPD Burnup and Cool Time Combinations .................................. 1.3-47 Table 1.3-19 BWR Fuel Assembly Characteristics.............................................................. 1.3-48 Table 1.3-20 BWR Fuel Assembly Loading Criteria ........................................................... 1.3-49 Table 1.3-21 BWR Fuel Assembly Loading Criteria - Enrichment Limits for 87-Assembly and 82-Assembly Configurations with Axial Blanket ................... 1.3-50 Table 1.3-22 Undamaged BWR Fuel Assembly Loading Criteria (Enrichment Limits for Fuel Without Axial Blanket) ..................................................................... 1.3-51 NAC International                                        1-iii
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 1              GENERAL INFORMATION NAC International (NAC) has designed a canister-based, dual-purpose system for the storage and transportation of spent nuclear fuel. The storage system is designated the MAGNASTOR System. The transportation system for the MAGNASTOR Transportable Storage Canisters (TSCs) is designated with the model name MAGNATRAN. The MAGNATRAN packaging includes upper and lower impact limiters and may be loaded with a TSC containing spent nuclear fuel assemblies or Greater Than Class C (GTCC) waste.
This Safety Analysis Report (SAR) demonstrates that the MAGNATRAN transport cask (MAGNATRAN) satisfies the requirements of the Code of Federal Regulations (CFR), as implemented by U.S. Nuclear Regulatory Commission (NRC) for the transport of spent fuel and other radioactive material contents as defined in 10 CFR Part 71 as a Type B(U)F-96 package.
This SAR is formatted in accordance with NRC Regulatory Guide 7.9, Revision 2, and NUREG-1617.
The terminology used throughout this report is summarized in the following section. The term TSC refers to the PWR, PWR damaged fuel (PWR-DF), and BWR TSCs for spent nuclear fuel and the GTCC waste TSC where the discussion is common to all configurations. Discussion of features unique to one of the specific configurations of the TSC is addressed in subsections, as appropriate, within each chapter.
NAC International                              1-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 1.1            Terminology This section lists and defines the terms used in this SAR.
Adapter Plate A carbon steel plate assembly that is positioned on the top of the storage or transport cask and used to align the transfer cask. It supports the operating mechanism for opening and closing the transfer cask shield doors.
Assembly Average Fuel Enrichment Value calculated by averaging the 235U wt % enrichment over the entire fuel region (UO2) of an individual fuel assembly, including axial blankets, if present.
Assembly Defect Any change in the physical as-built condition of the fuel assembly, with the exception of normal in-reactor changes such as elongation from irradiation growth or assembly bow.
Example of assembly defects include: (a) missing rods, (b) broken or missing grids or grid straps (spacer), and (c) missing or broken grid springs, etc. An assembly with a defect is damaged only if it cannot meet its fuel-specific and system-related functions.
Breached Spent Fuel Rod Spent fuel with cladding defects that permit the release of gas from the interior of the fuel rod. A fuel rod breach may be a minor defect (i.e., hairline crack or pinhole), allowing the rod to be classified as undamaged, or be a gross breach requiring a damaged fuel classification.
Burnup Amount of energy generated during irradiation - measured in MWd/MTU.
Assembly Average Burnup Value calculated by averaging the burnup over the entire fuel region (UO2) of an individual fuel assembly, including axial blankets, if present. Assembly average burnup represents the reactor record, nominal, value. The assembly average burnup is equal to the reactor record, nominal, energy production (MWd) over the life of the fuel assembly divided by the fuel assembly pre-irradiation heavy metal (U) mass in metric tons.
Nonfuel Hardware Burnup Equivalent accumulated irradiation exposure for activation evaluation.
Cask Cavity Spacer Component used in the upper end of the cask cavity to locate and support the short length TSC in the longitudinal direction. The cask cavity spacer is bolted to the cask lid.
Confinement System The components of the TSC assembly that retain the canister contents.
Containment System The components of the packaging that retain the radioactive material and gases during transport.
NAC International                              1.1-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Contents The material transported in the MAGNATRAN transport cask.
Spent Fuel The cask is designed to transport up to 37 undamaged PWR fuel assemblies in the 37 PWR basket assembly, or up to 87 undamaged BWR fuel assemblies in the 87 BWR basket assembly. The system is also designed to transport up to four damaged fuel cans (DFCs) in the DF Basket Assembly in a short TSC. The DF Basket Assembly has a capacity of up to 37 undamaged PWR fuel assemblies, including four DFC locations.
DFCs may be placed in up to four of the DFC locations. Each DFC may contain an undamaged PWR fuel assembly, a damaged PWR fuel assembly, or PWR fuel debris equivalent to, or less than, one PWR fuel assembly. Undamaged PWR fuel assemblies may be placed directly in the DFC locations of a DF Basket Assembly.
GTCC Waste The cask is designed to transport a TSC containing up to 55,000 pounds of Greater Than Class C (GTCC) waste, e.g., reactor baffle plates and angles, baffle formers, and lower core plates, in a GTCC waste basket liner.
Damaged Fuel (DF)
Spent nuclear fuel (SNF) that cannot fulfill its fuel-specific or system-related function. Spent fuel is classified as damaged under the following conditions.
: 1) There is visible deformation of the rods in the SNF assembly.
Note: This is not referring to the uniform bowing that occurs in the reactor; this refers to bowing that significantly opens up the lattice spacing.
: 2) Individual fuel rods are missing from the assembly and the missing rods are not replaced by a solid stainless steel or zirconium dummy rod that displaces a volume equal to, or greater than, the original fuel rod.
: 3) The SNF assembly has missing, displaced or damaged structural components such that:
3.1) Radiological and/or criticality safety is adversely affected (e.g., significantly changed rod pitch); or 3.2) The assembly cannot be handled by normal means (i.e., crane and grapple); or 3.3) The SNF assembly contains fuel rods with damaged or missing grids, grid straps, and/or grid springs producing an unsupported length greater than 60 inches.
Note: SNF assemblies with the following structural defects meet MAGNASTOR system-related functional requirements and are, therefore, classified as undamaged: Assemblies with missing or damaged grids, grid straps and/or grid springs resulting in an unsupported fuel rod length not to exceed 60 inches.
: 4) Any SNF assembly that contains fuel rods for which reactor operating records (or other records or tests) cannot support the conclusion that they do not contain gross breaches.
Note: Breached fuel rods with minor cladding defects (i.e, pinhole leaks or hairline cracks that will not permit significant release of particulate matter from the NAC International                                1.1-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 spent fuel rod) meet MAGNASTOR system-related functional requirements and are, therefore, classified as undamaged.
: 5) Fuel debris such as ruptured fuel rods, severed rods, loose fuel pellets, containers or structures that are supporting loose PWR fuel assembly parts.
Fuel Assembly The mechanical arrangement of nuclear fuel rods that is typically based on a square lattice structure. For many tables that list fuel assemblies within the MAGNATRAN Safety Analysis Report (SAR), the following naming methodology is typically used. Note this is not an exhaustive list.
YxY Indicates the fuel assembly lattice size (square). For example, 14x14 indicates a square lattice fuel assembly containing a 14x14 array. The number of fuel rods and guide tubes within the array may vary and oversize tubes/rods may be present (e.g., BWR water rods or CE oversize guide tubes).
XY A subgroup below lattice size. Letter indicator (X) defines the base assembly/nuclear steam supply system/core vendor used to define the assembly type followed by the lattice size (Y). For example W14, WE14, or WE14x14 all indicate a Westinghouse type 14x14 fuel assembly type that is part of the 14x14 lattice size grouping. Provided a fuel assembly meets the fuel assembly characteristics required, no restriction on assembly vendor is applied. BWR uses the simple B designator.
XYZ A subgroup below the XY level of array and primary fuel/NSSS/core vendor. These subcategories are used to separate fuel assemblies within a group by key physical characteristics. For PWR assemblies, for example, the Westinghouse 17x17 standard (WE17H1) assembly is separated from 17x17 OFA fuel (WE17H2). GE fuel assemblies are separated by the number of fuel rods in the array followed by a hybrid indicator (e.g.,
A, B). BWR fuel types may also be addressed within the SAR by reactor containment type (i.e., BWR/2-3 for typical 171-inch fuel assembly length and BWR/4-6 for typical 176-inch fuel assembly length).
Damaged Fuel Can (DFC)
A specially designed stainless steel screened can sized to hold undamaged PWR fuel, damaged PWR fuel and/or fuel debris. The screens preclude the release of gross particulate from the DFC into the canister cavity. DFCs are only authorized for loading in specified locations of a DF Basket Assembly and may be configured with an integral welded bottom spacer.
Fuel Basket (Basket)
The structure inside the TSC that provides structural support, criticality control, and heat transfer paths for the fuel assemblies and DFCs.
NAC International                                1.1-3
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Developed Cell A basket opening formed by either four fuel tubes or fuel tubes and basket weldments.
Fuel assemblies are loaded into the developed cells.
Fuel Tube A carbon steel tube with a square cross-section. Fuel assemblies are loaded into the fuel tubes. A fuel tube may have neutron absorber material attached on its interior faces.
Neutron Absorber A borated aluminum metal matrix or composite with neutron absorption capability.
Fuel Debris Ruptured fuel rods, severed rods, loose fuel pellets, containers or structures that are supporting loose PWR fuel assembly parts.
Grossly Breached Spent Fuel Rod A breach in the spent fuel cladding that is larger than a pinhole or hairline crack. A gross cladding breach may be established by visual examination with the capability to determine if the fuel pellet can be seen through the cladding, or through a review of reactor operating records indicating the presence of heavy metal isotopes.
GTCC Waste Basket Liner A stainless steel liner that dimensionally fits in a GTCC waste TSC and is designed to lift, confine and provide additional gamma shielding to the GTCC waste placed within the basket liner. The GTCC waste basket liner can be separately loaded with GTCC waste and then placed into a GTCC waste TSC prior to final TSC closure operations.
MAGNASTOR (Modular Advanced Generation, Nuclear, All-purpose STORage)
SYSTEM The MAGNASTOR System consists of a concrete cask and a TSC that are certified for the storage of spent fuel assemblies at an ISFSI. The TSC is transported offsite in a MAGNATRAN transport cask.
MAGNATRAN Transport Cask (MAGNATRAN)
(Modular Advanced Generation, Nuclear, All-purpose TRANsport)
The transport packaging system for the high-capacity MAGNASTOR System TSCs that consists of a MAGNATRAN transport cask body, a bolted closure lid, and energy-absorbing upper and lower (front and rear) impact limiters. The MAGNATRAN packaging is used to transport a TSC containing spent fuel assemblies or Greater Than Class C (GTCC) waste.
The cask body assembly (i.e., closure lid, closure lid and port cover metallic O-ring seals) provides the primary containment boundary during transport.
NAC International                              1.1-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Cask Body/Multiwall Body Consists of concentric layers of the inner shell, gamma shielding, outer shell, and neutron shielding.
Bottom Inner Forging The cup-shaped component that is welded to the inner shell and the bottom outer forging to form the bottom of the MAGNATRAN cavity.
Bottom Outer Forging The welded annular ring-shaped component that connects the outer shell, the bottom inner forging and the bottom plate.
Bottom Plate The plate welded to the bottom outer forging to form the bottom of the cask.
Cooling Fin Channel-shaped and annular-shaped copper and aluminum components retained in contact with the outer shell between the neutron shield assemblies along the length of the outer shell to enhance heat transfer from the cask.
Gamma Shield Lead poured in place in the annulus between the inner and outer shells.
Impact Limiters (Upper and Lower)
Redwood and balsa wood enclosed in a cup-shaped stainless steel shell designed to fit over the front and rear of the cask body during transport, and designed to protect the cask by limiting impact loads during a 1-foot (normal condition of transport) or 30-foot (hypothetical accident condition) free drop, as defined in 10 CFR 71.
Lifting Trunnions Two high-strength stainless steel components located at the top forging that are used for lifting and handling the MAGNATRAN transport cask. The lifting trunnions are bolted to the top forging for in-plant handling operations only, and are removed prior to transport.
Neutron Shield NS-4-FR, a solid synthetic polymer; a borated hydrogenous material with neutron absorption capabilities similar to those of borated water.
Neutron Shield Assembly A series of stainless steel enclosures containing NS-4-FR that are bolted in place on the outside diameter of the outer shell along its length.
Rotation Trunnions Two stainless steel blocks, each provided with an extended pin to engage the rear cask support. The rotation trunnion supports are welded onto the outer shell and bottom outer forging near the bottom of the cask, and the removable rotation trunnion pins are inserted into the rotation trunnion supports.
NAC International                              1.1-5
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Top Forging The component that is welded to the inner shell and to the outer shell to form the top of the MAGNATRAN cavity and into which the cask lid is recessed and bolted.
Cask Lid A thick steel disk used to close the MAGNATRAN. The lid is attached to the top forging by 48 lid bolts.
Coverplate The sealed cover that protects the quick-disconnect located in the lid port.
Lid Bolt High-strength nickel alloy steel bolts that retain the cask lid.
Lid Port Penetration used to access and backfill the cask cavity with helium prior to transport.
The lid port is recessed in the cask lid.
Quick-Disconnect The valved nipple used to operate the lid port.
Seal Test Ports The ports used to test the lid and lid port containment seals. The test ports are closed by a threaded plug fitted with an O-ring. The seal test ports are recessed in the cask lid and lid port coverplate.
Nonfuel Hardware Nonfuel hardware is defined as reactor control components (RCCs), burnable poison absorber assemblies (BPAAs), guide tube plug devices (GTPDs), neutron sources/ neutron source assemblies (NSAs), hafnium absorber assemblies (HFRAs), instrument tube tie components, guide tube anchors or other similar devices, in-core instrument thimbles, and steel rod inserts (used to displace water from lower section of guide tube), and components of these devices such as individual rods. All nonfuel hardware, with the exception of instrument tube tie components, guide tube anchors or other similar devices, and steel rod inserts, may be activated during in-core operations.
RCCs are commonly referred to as rod cluster control assemblies (RCCAs), control rod assemblies (CRAs), or control element assemblies (CEAs). RCCs are primarily designed to provide reactor shutdown reactivity control, are inserted into the guide tubes of the assembly, and are typically employed for a significant number of operating cycles. Burnup poison absorber assemblies (BPAAs) are commonly referred to as burnup poison rod assemblies (BPRAs), but may have vendor specific nomenclature such as BPRA, Pyrex BPRA or WABA (wet annular burnable absorber). BPAAs are used to control reactivity of fresh fuel or high reactivity fuels and are commonly used for a single cycle, but may be used for multiple cycles. GTPDs are designed to block guide tube openings when no BPAA is employed and are commonly referred to as thimble plugs (TPs), thimble plug devices (TPDs), flow mixers (FMs), water displacement guide tube plugs, or vibration suppressor NAC International                              1.1-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 inserts. GTPDs may be employed for multiple cycles. NSAs are primary and secondary neutron sources used during reactor startup and may be used for multiple cycles.
Integral fuel burnable absorbers, either integral to a fuel rod or as a substitution for a fuel rod, and fuel replacement rods (fueled, stainless steel, or zirconium alloy) are considered components of spent nuclear fuel (SNF) assemblies and are not considered to be nonfuel hardware.
Package The packaging with its radioactive contents as presented for exclusive transport use (10 CFR 71.4). Within this SAR, the package is denoted as MAGNATRAN, the transport cask, or simply the cask.
Packaging The assembly of components required to ensure compliance with the packaging requirements of 10 CFR 71. Within this SAR, the packaging is denoted as the MAGNATRAN transport cask, including the upper and lower impact limiters.
Containment system The components and assemblies of the packaging that provide for the containment of the radioactive material and gas contents in the MAGNATRAN during transport.
Spent Nuclear Fuel (SNF), Spent Fuel Irradiated fuel assemblies consisting of end-fittings, grids, fuel rods and integral hardware.
Integral hardware for PWR assemblies primarily consists of guide/instrument tubes, but may contain integral fuel burnable absorbers, either integral to a fuel rod or as a fuel rod substitution, and fuel replacement rods (fueled, stainless steel, or zirconium alloy). For BWR fuel, integral hardware may consists of water rods in various shapes, inert rods, fuel rod cluster dividers, and/or fuel assembly channels (optional). PWR SNF may contain nonfuel hardware.
Transfer Cask A shielded device used to lift and handle the TSC during fuel loading and closure operations, as well as to transfer the TSC in/out of the concrete cask during storage or in/out of a transport cask. The transfer cask includes two lifting trunnions and two shield doors that can be opened to permit the vertical transfer of the TSC.
Transfer Cask Lifting Trunnions Two steel components used to lift the transfer cask in a vertical orientation via a lifting assembly.
TSC (Transportable Storage Canister)
The stainless steel cylindrical shell, bottom-end plate, closure lid, closure ring, and redundant port covers that confine the fuel basket structure and the spent fuel contents, or the GTCC waste basket liner and GTCC waste.
NAC International                              1.1-7
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 Closure Lid A thick, stainless steel disk or a composite closure lid consisting of stainless steel and carbon steel plates bolted together and installed directly above the fuel basket following fuel loading. The closure lid is welded to the TSC shell and provides the confinement boundary for storage and operational shielding during TSC closure.
Drain and Vent Ports Penetrations located in the closure lid to permit draining, drying, and helium backfilling of the TSC.
Port Cover The stainless steel plates covering the vent and drain ports that are welded in place following draining, drying, and backfilling operations.
Shield Plate An electroless nickel-plated carbon steel disk that is bolted to the bottom of the closure lid of the composite closure lid assembly. The shield plate is installed directly above the fuel basket following fuel loading. The shield plate provides operational shielding during TSC closure.
Closure Ring A stainless steel ring welded to the closure lid and TSC shell to provide a double weld redundant sealing closure of fuel TSCs to satisfy 10 CFR 72.236(e) requirements.
Undamaged Fuel SNF meeting all fuel-specific and system-related functions. Undamaged fuel is SNF that is not Damaged Fuel, as defined herein, and does not contain assembly structural defects that adversely affect radiological and/or criticality safety. As such, undamaged fuel may contain:
a) Breached spent fuel rods (i.e., rods with minor defects up to hairline cracks or pinholes),
but cannot contain grossly breached fuel rods; b) Grid, grid strap and/or grid spring damage, provided that the unsupported length of the fuel rod does not exceed 60 inches.
NAC International                            1.1-8
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 1.2              Introduction The MAGNATRAN transport cask is designed to safely transport a TSC containing up to 37 undamaged PWR fuel assemblies in the 37 PWR basket assembly or up to 87 undamaged BWR fuel assemblies in the 87 BWR basket assembly. The cask is also designed to transport a TSC containing up to four damaged fuel cans (DFCs) in the DF Basket Assembly in a short TSC. The DF Basket Assembly has a capacity of up to 37 undamaged PWR fuel assemblies, including four DFC locations. DFCs may be placed in up to four of the DFC locations. Each DFC may contain an undamaged PWR fuel assembly, a damaged PWR fuel assembly, or PWR fuel debris equivalent to one PWR fuel assembly. Undamaged PWR fuel assemblies may be placed directly in the DFC locations of a DF Basket Assembly. The cask is also designed to transport a GTCC TSC containing up to 55,000 pounds of GTCC waste in a GTCC waste basket liner.
Primarily on the basis of their lengths, two categories of PWR fuel assemblies and two categories of BWR fuel assemblies have been evaluated for transport. Two lengths of TSCs (long and short) are designed to transport the two categories of PWR and BWR fuel assemblies. The short TSC is also designed to transport damaged fuel in the DF Basket Assembly and GTCC wastes.
A cavity spacer shall be used in the transport cask cavity to axially position the short TSC and limit its potential movement under normal conditions of transport and accident conditions.
The dimensions and values included in the Chapter 1 discussions of the MAGNATRAN transport cask are for descriptive purposes only. The cask assembly and component dimensions are defined on the License Drawings presented in Section 1.4.3.
1.2.1            Cask System The principal components of the MAGNATRAN system are:
transportable storage canister (TSC) transport cask impact limiters The TSC is designed and fabricated to meet the requirements for transport in the transport cask.
The TSC contains the basket and spent fuel contents or the GTCC waste basket liner and GTCC waste. The TSCs containing spent fuel contents incorporate a redundant welded closure to preclude the loss of contents and to preserve the general health and safety of the public during long-term storage and transport of the spent fuel. A transfer cask is used to move the TSC between the workstations during TSC loading and preparation activities. The transfer cask is also used to transfer the TSC to or from the transport cask.
NAC International                              1.2-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 1.2.2          Transport Cask Components The MAGNATRAN is designed to meet 10 CFR 71 licensing requirements for spent nuclear fuel and radioactive material transport packages. Other applicable codes and standards, as well as specific alternatives to those codes and standards, are discussed in Section 2.1.4. The transport licensing requirements include provision for safe containment during the handling and transport of the cask containing spent nuclear fuel. The Criticality Safety Index (CSI) is 0 for undamaged fuel and GTCC waste baskets, and 100 for PWR-DF damaged fuel contents. The MAGNATRAN transport cask provides a radioactive material containment boundary to ensure maximum safety during the handling and transport operations required for shipment.
The design features of the transport cask include the lid, redundant seals at each containment boundary penetration, a cavity penetration located in the lid, a puncture-resistant outer shell, rotation trunnions, lifting trunnions, impact limiters, and a cavity spacer for short TSCs.
The body of the MAGNATRAN is a cylinder of multiwall construction that consists of stainless steel inner and outer shells separated by lead gamma radiation shielding, which is poured in place. Neutron shield material is positioned in stainless steel enclosures bolted to the outer shell along the length and around the circumference of the cask cavity about the active fuel region. A cross-section of the transport cask is illustrated in Figure 1.2-1 showing nominal cask dimensions.
Two diametrically opposite lifting trunnions are bolted to the outside of the top forging to lift the transport cask for in-plant handling. The lifting trunnions are removed and replaced with trunnion plugs. Two rotation trunnions are located on the outer shell near the bottom of the cask to permit the cask to be rotated between the horizontal and vertical positions and to provide longitudinal tiedown restraint in the aft direction. The rotation trunnions are located approximately 5 inches off the cask centerline to ensure that the cask rotates in the proper direction.
A cavity spacer is used for the short TSCs to locate and support the canister and to minimize excessive longitudinal movement in the transport cask cavity, which is sized to accommodate the long TSC.
Cup-shaped impact limiters, consisting of a combination of redwood and balsa wood encased in a stainless steel shell, are bolted over each end of the transport cask to limit the g-loads acting on the cask during a cask drop event.
The transport cask with its impact limiters is securely attached to the bed of a railcar or via a shipping frame, as illustrated in Figure 1.2-2. To restrict unauthorized personnel from gaining NAC International                                1.2-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 access to the top, sides and bottom of the transport cask, a locked personnel barrier is installed around the transport cask between the impact limiters. The personnel barrier, which consists of a metal frame structure covered with expanded metal, is securely attached to the bed of the railcar or to the shipping frame during transport. Therefore, the loaded cask with the personnel barrier on the railcar ready for transport meets the exclusive use definition of a closed conveyance.
NAC International                              1.2-3
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                Revision 1 Figure 1.2-1    MAGNATRAN Transport Cask - Nominal Assembly Dimensions (inches)
NAC International                  1.2-4
 
MAGNATRAN Transport Cask SAR                                                                                                                      January 2022 Docket No. 71-9356                                                                                                                                  Revision 1 Figure 1.2-2    Transport Configuration of the MAGNATRAN Transport Cask Personnel Barrier Transport Cask Impact Limiter IMPACT LIMITER CASK MODEL NAC-NTC NAC DWG NO. 71160-031 WEIGHT:
SER IAL NU MBER: NAC- ( )
TYPE:B Tie Downs CA SK WEI G HT: XXXXXL BS.
XXXXX KG.
USA/9 23 5/ B(U) F- 85    O PERATED BY:
XXXX XXXX Shipping Cradle NAC International                                  1.2-5
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 1.3            Package Description This section presents a detailed description of the MAGNATRAN and the contents that may be transported. License Drawings are provided in Section 1.4-3.
1.3.1          Packaging Weight The gross transport weight of the MAGNATRAN varies depending upon its contents. The calculated cask component weights for each of the two TSC lengths for PWR and for BWR spent fuel contents are provided in Table 2.1.3-1. The calculated weight of the cask body (without lid) is approximately 181,000 pounds. The total gross weight of the MAGNATRAN (including the transport cask body, basket, impact limiters, fuel or GTCC waste, TSC, cask lid, and canister spacer) containing the following categories of contents is:
When the cask is loaded on the railcar, the gross weight of the railcar (including cask, impact limiters, supports and personnel barrier) will meet the requirements of the railroad authority.
Materials of Construction, Dimensions and Fabrication The MAGNATRAN body is a cylindrical, multi-walled structure for the transport of a TSC containing contents as described in Section 1.3.2. The major structural components of the cask body are the inner and outer shells, upper and lower forgings and the bottom plate. Poured-in-place chemical-copper grade lead fills the annulus between the inner and outer shells and serves as the primary gamma radiation shield. The cask lid is recessed and bolted in the top forging.
The lid port is recessed into the cask lid and is protected by a coverplate. NS-4-FR neutron shield material is positioned in stainless steel enclosures bolted to the outer shell along the length and around the circumference of the cask cavity about the active fuel region. The design characteristics of the transport cask and components are summarized in Table 1.3-1.
In the event of a cask drop during transport, where impact forces are applied to the MAGNATRAN, the cask is protected by two energy-absorbing impact limiters. The impact limiters fit over each end of the cask and dissipate kinetic energy by crushing redwood and balsa wood.
NAC International                                1.3-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Two diametrically opposite lifting trunnions are bolted to the outside of the top forging to lift the cask for in-plant handling. The trunnions are removed and replaced with trunnion plugs during transport operations. Two rotation trunnions are located on the outer shell near the bottom of the cask for use in rotating the cask between the vertical and horizontal positions. The rotation trunnions are located approximately five inches off the cask centerline to ensure that the cask rotates in the proper direction.
The TSC is a cylindrical stainless steel shell with a welded bottom plate and closure lid that confines the fuel or GTCC waste basket structure and the contents. The closure lid provides shielding during TSC closure operations and includes drain and vent port penetrations to permit draining, drying, and helium backfilling of the TSC. In the TSCs containing PWR or BWR fuel, a basket structure located within the TSC provides structural support, criticality control and primary heat transfer paths for the fuel contents. The basket structure is composed of side weldments and corner weldments, which support carbon steel fuel tubes with attached neutron absorber material. The fuel basket has a capacity of up to 37 PWR fuel assemblies, up to 37 PWR fuel assemblies including up to four damaged PWR fuel assemblies in DFCs, or up to 87 BWR fuel assemblies. In the TSCs containing GTCC waste, a GTCC waste basket liner provides structural support and augmented gamma shielding for the GTCC waste contents.
The detailed listing of the packaging materials of construction and component and assembly dimensions are shown on the License Drawings presented in Section 1.4-3. The major cask components are described in the following sections.
Material Selection The structural components of the transport cask are selected for this use because of their strength, ductility, resistance to corrosion and brittle fracture, and metallurgical stability. The materials used in the fabrication of the transport cask are:
Top Forging                                      ASME SA336, Type 304, stainless steel Inner Shell                                      ASME SA240, Type 304, stainless steel Outer Shell                                      ASME SA240. Type XM-19, stainless steel Bottom Inner Forging                              ASME SA336, Type 304, stainless steel Bottom Outer Forging                              ASME SA336, Type 304, stainless steel Bottom Plate                                      ASME SA240/SA336, Type 304/F304, stainless steel Lifting Trunnion                                  ASME SA564/SA693, Type 630, 17-4 PH, stainless steel Trunnion Plug                                    ASTM A240, Type 304, stainless steel Trunnion Plug Bolts                              Type 304, stainless steel NAC International                                1.3-2
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Rotation Trunnion                                ASME SA240/SA276, Type XM-19, stainless steel w/17-4 PH stainless steel pin Neutron Shield Inner and Outer Plates            ASME SA240, Type 304, stainless steel Cooling Fins                                    ASTM B152 copper, and ASTM B209, 1100, copper Neutron Shield                                  NS-4-FR Gamma Shield                                    ASTM B29, lead, chemical copper grade Lid                                              ASME SA693/SA705, 17-4 PH, stainless steel Lid Bolt                                        ASME SB637, Grade N07718, nickel alloy steel Lifting Trunnion Bolt                            ASME SB637, Grade N07718, nickel alloy steel Coverplate                                      ASME SA240/SA479, Type 304, stainless steel Coverplate Bolt                                  ASME SA193, GR B6, Type 410 stainless steel A cask cavity spacer is used in the upper end of the cask cavity to axially locate and support the short TSCs. The ASME SA240, Type 304, stainless steel cask cavity spacer is bolted to the cask lid.
The transport cask shipping configuration includes impact limiters that fit over each end of the cask for protection against drop impact. The materials used in the fabrication of the impact limiters are:
Shell/Plate/Ring              ASTM A240, Type 304, stainless steel Gussets                        ASTM A240, Type 304, stainless steel Screw Tubes                    ASTM A269, Type 304, stainless steel Anti-Rotation Angles          ASTM A276, Type 304, stainless steel Corner Wedge                  Redwood Impact Body                    Balsa wood Retaining Rods                ASTM A193 Grade B8S, stainless steel The TSCs containing fuel are primarily ASME dual-certified Type 304/304L stainless steel, which was selected for this use because of its strength, ductility, resistance to corrosion and brittle fracture, and metallurgical stability for long-term storage. The materials used in the fabrication of the TSC are:
Shell                          ASME SA240, Type 304/304L, stainless steel Bottom                        ASME SA240, Type 304/304L, stainless steel Closure Lid                    ASME SA240/SA336, Type 304/304L, stainless steel Optional Inner Shield Plate ASTM A36, carbon steel Closure Ring                  ASME SA479/SA240, Type 304/304L, stainless steel Port Covers                    ASME SA240, Type 304/304L, stainless steel NAC International                                1.3-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Note: SA336 Type 304/304L stainless steel may be substituted for SA240 Type 304/304L stainless steel for the closure lid, provided that the SA336 material has yield and ultimate strengths greater than, or equal to, those of the SA240 material.
The fuel baskets are primarily carbon steels, which are selected based on their strength and thermal conductivity. After fabrication, the basket components are electroless nickel-coated to improve resistance to corrosion and to significantly reduce the potential for the formation of flammable gases during in-pool loading. The materials used in the fabrication of the fuel baskets are:
Support Weldments                    ASME SA537, Class 1, carbon steel Corner Support Bars                  ASME SA695, Type B, Grade 40 or SA696, Grade C, or ASME SA516, Grade 70, carbon steel Fuel Tubes                          ASME SA537, Class 1, carbon steel Pins                                ASME SA696, Grade C or ASME SA36, carbon steel Mounting Bolts                      ASME SA193, Gr B6, stainless steel Neutron Absorber                    Borated Metallic Composite DF Corner Weldment                  ASME SA537, Class 1, carbon steel Damaged Fuel Can                    ASME SA240/SA479, Type 304, stainless steel PWR Fuel Spacer                      ASME SA240, Type 304 and ASME SA312, Type 304, stainless steel The TSCs containing GTCC waste are primarily ASTM dual-certified Type 304/304L stainless steel. The materials used in the fabrication of the TSCs for GTCC waste are:
Shell                ASTM A240, Type 304/304L, stainless steel Bottom              ASTM A240, Type 304/304L, stainless steel Closure Lid          ASTM A240/A182, Type 304/304L, stainless steel Port Covers          ASTM A240, Type 304/304L, stainless steel Waste Basket Liner                ASTM A240, Type 304, stainless steel Cask Body The inner shell, top forging, bottom inner forging, bottom outer forging, bottom plate and the neutron shield enclosure shells of the MAGNATRAN transport cask are Type 304 stainless steel.
The outer shell is Type XM-19 stainless steel. These austenitic stainless steels have well-documented mechanical properties, are commonly welded, and have a long history of use in similar applications. They are commonly welded materials and are readily available throughout the world. The austenitic stainless steels possess good strength and adequate toughness in the operating temperature range of the cask.
The lower end of the cask body is comprised of the bottom inner forging, the bottom outer forging and the bottom plate. The bottom inner forging is cup-shaped to form the bottom of the cask cavity and is welded to the inner shell and to the bottom outer forging. The ring-shaped NAC International                                1.3-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 bottom outer forging is also welded to the outer shell and to the bottom plate. The inner shell forms the side of the cask cavity. The inner shell is welded to the top forging and to the bottom inner forging. Sixteen holes are tapped into the bottom plate for attachment of the lower impact limiter.
The outer shell is concentric with the inner shell and has a nominal outer diameter of 86.7 inches.
The outer shell is welded to the top forging and to the bottom outer forging. Primary radial gamma radiation shielding is provided by the chemical-copper grade lead that is poured into the annulus between the inner and outer shells. The upper ends of the inner shell and the outer shell are welded to the ring-shaped top forging. The inner diameter of the top forging includes a recess to accommodate the cask lid. The bottom end of the cask provides 13.65 inches of stainless steel gamma radiation shielding material.
Two 17-4 PH stainless steel lifting trunnions are bolted to the top forging at diametrically opposite locations. This configuration permits critical cask lifting and handling using a single pair of lifting trunnions in accordance with ANSI N14.6. The trunnions are replaced for transport operations by bolted trunnion plugs. Two Type XM-19 stainless steel rotation trunnions, located approximately 180 apart, are welded to the exterior of the outer shell near the bottom of the neutron shield and are off-set from cask centerline to ensure proper rotation. The rotation trunnion pins are 17-4 PH stainless steel. The rotation trunnion pins mate with the rear cask support to permit rotation of the cask between the horizontal and vertical orientations.
NS-4-FR, which is a solid synthetic polymer, provides radial neutron shielding for the cask. This material is selected to eliminate leakage and maintenance problems and to alleviate other concerns attendant with using a liquid neutron shield. The material is fire-retardant and stable at elevated temperatures. The NS-4-FR is enclosed in stainless steel assemblies that are bolted in place on the outside diameter of the outer shell along its length. The transport cask incorporates cooling fins, evenly distributed around the cask, which are retained by the bolted neutron shield assemblies against the outer shell to enhance heat transfer from the cask body.
The inner shell, top forging, bottom inner forging and cask lid define a cask cavity that is a nominal 192.5 inches long and 72.25 inches in diameter. The overall length of the cask body is approximately 214 inches. The outside diameter is approximately 99.6 inches across the neutron shield assembly enclosures and 110 inches across the tips of the cooling fins.
No outer protrusions exist on the cask other than the two external rotation trunnions attached near the lower end and the two removable lifting trunnions attached to the top forging near the upper end. During transport, the two lifting trunnions are removed and replaced with trunnion plugs which are flush with the cask outer surface. All of the port covers are recessed into the NAC International                              1.3-5
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 cask lid and none protrude above the cask surface. The cask lid surface is smooth. The cask lid bolts are recessed in the cask lid and do not project above the lid surface.
The heat dissipation features of the cask are entirely passive. No active or support cooling mechanisms are required during transport. No coolants are used within the MAGNATRAN transport cask. An inert helium gas atmosphere is used to backfill the cask cavity prior to transport. A more detailed discussion of the thermal characteristics of the MAGNATRAN transport cask is provided in Chapter 3.0.
The MAGNATRAN containment boundary components are designed, fabricated, tested and inspected to the requirements of the ASME Boiler and Pressure Vessel Code (ASME Code),
Section III, Division 1, Subsection NB, to the extent practical. The MAGNATRAN structures (other than lifting trunnions) assembled to, or surrounding, the containment boundary components are designed, fabricated and inspected to the requirements of the ASME Code, Section III, Division 1, Subsection NF, to the extent practical.
Cask Lid and Bolts The cask lid is completely recessed into the top forging of the cask body. Forty-eight lid bolts secure the lid to the top forging. Sixteen holes, equally spaced on a 70-inch diameter, are tapped into the top of the lid for attachment of the upper impact limiter. The cask lid, when bolted to the top forging, provides a sealed closure of the MAGNATRAN containment vessel. The lid is SA693/SA705, 17-4 PH stainless steel. The 48 lid bolts are 2-8 UN socket head cap screws fabricated from SB-637, Grade N07718 nickel alloy steel. The coefficient of thermal expansion for the bolt material is very similar to that of the 17-4 PH stainless steel lid and the Type 304 stainless steel top forging, minimizing differential thermal expansion effects.
The outer periphery of the lid is stepped down so that the bolt heads are below the top surface of the lid. The bottom surface of the lid is sealed to the top forging by two concentric O-rings, an inner metal O-ring and an outer EPDM O-ring. An interseal test port is provided between the O-rings to facilitate leak testing of the O-rings. After the leak test is completed, the interseal test port is closed by a threaded plug fitted with a boss seal. The top surface of the lid has threaded holes for the attachment of a lid-lifting device. The lid is lifted using four of the sixteen holes provided for attachment of the upper impact limiter. The calculated weight of the cask lid is approximately 10,500 pounds.
The cask lid provides a thickness of 7.75 inches of stainless steel on the top end of the cask to attenuate gamma radiation from the fuel assemblies, fuel assembly hardware, or GTCC waste contained within the cask cavity.
NAC International                                1.3-6
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Port and Coverplate The MAGNATRAN has a lid port that is closed by a bolted Type 304/304L stainless steel coverplate with dual O-rings. The four coverplate bolts are SA-193, Grade B6, Type 410 stainless steel, socket head cap screws. The bolts are countersunk flush with the top of the coverplate. The basic configuration of the lid port and coverplate includes a 5.32-inch-diameter opening to recess the coverplate and for access to the port opening and the quick-disconnect installed there. Two concentric O-rings are located on the bottom face of the coverplate, an inner metal O-ring and an outer EPDM O-ring. The inner O-ring provides the containment boundary seal for the lid port. The outer O-ring and a test port located between the two O-rings provide the means to leak test the containment boundary seal. After the leak test is completed, the seal test port is closed by a threaded plug fitted with a metal boss seal.
Lifting Trunnions and Rotation Trunnions The two lifting trunnions on the MAGNATRAN are Type 17-4 PH stainless steel, which are bolted into recesses in the top forging at diametrically opposite locations around the cask circumference. Each lifting trunnion is bolted to the top forging by nine SB637, GR N07718, nickel alloy bolts. The basic diameter of the lifting trunnions is 6.6 inches and the load-bearing width is 3.75 inches. A retainer, or flange, on the outer end of each lifting trunnion acts as a safety stop to ensure that proper engagement with the lift yoke is maintained. The MAGNATRAN lifting trunnions are designed and load tested in accordance with the requirements of ANSI N14.6 and 10 CFR 71.45(a).
Two rotation trunnions, located 17.65 inches above the bottom of the cask and circumferentially in line with the two lifting trunnions, are offset approximately 5 inches from the cask centerline to ensure that the cask rotates in the proper direction. The rotation trunnions also serve as the cask tiedown restraint in the aft longitudinal direction. Each rotation trunnion support is Type XM-19 stainless steel housing a 17-4 PH pin and is welded to the outer shell and bottom outer forging. The neutron shield assemblies are shaped to accommodate the location and operation of the rotation trunnions.
Transport Impact Limiters The MAGNATRAN transport cask is equipped with removable impact limiters that are bolted over each end of the cask to ensure that the design impact loads for the cask are not exceeded for any of the normal conditions of transport and hypothetical accident conditions defined in 10 CFR 71.
NAC International                                1.3-7
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 The lower impact limiter is bolted to the cask bottom plate by 16 equally spaced retaining rods and nuts. The upper impact limiter is similarly bolted to the cask lid.
Transportable Storage Canisters The transportable storage canister (TSC) and the closure lid are dual-certified Type 304/304L stainless steel. The canister holds the fuel basket or GTCC waste basket liner assembly and contains the contents. A schematic of a typical TSC with a fuel basket is shown in Figure 1.3-1.
There are two different length TSCs (short and long) to accommodate the various PWR and BWR fuel assembly lengths, damaged fuel (only short), and GTCC waste (only short). The TSC body (shell and bottom) and the closure lid provide confinement, shielding and lifting capability for the TSC. The loaded TSCs include a solid stainless steel closure lid or stainless steel/carbon steel closure lid assembly with a closure ring and dual port covers to provide a dual-welded closure system. The closure lid is positioned inside the TSC on the lifting lugs above the basket assembly following fuel loading, or on the top of the GTCC waste basket liner following GTCC waste loading. After the closure lid is placed on the TSC, the TSC is moved to a workstation and the closure lid is welded to the TSC. The vent and drain ports are penetrations through the lid, which provide access for auxiliary systems to drain, dry and helium backfill the TSC. Following completion of backfilling, the dual port covers are installed and welded in each port. Removable lifting fixtures installed in the closure lid are used to lift and lower the loaded TSC. The design characteristics of the TSCs are summarized in Table 1.3-2.
The fuel TSC is designed, fabricated, tested and inspected to the requirements of the ASME Boiler and Pressure Vessel Code (ASME Code), Section III, Division 1, Subsection NB, to the extent practical, except as noted in the Alternatives to the ASME Code provided in Table 2.1.4-1.
The GTCC waste TSCs are fabricated using ASTM materials and are fabricated in accordance with ASME Code, Section III, Division 1, Subsection NF.
Criticality evaluations were performed for conditions both crediting and not crediting the TSC sealed boundary for moderator exclusion from the fissile material region. In the context of moderator exclusion, the TSC is credited with serving the 10 CFR 71.55(c) function of being a special design feature that prevents a single packing error from permitting leakage into the fissile material region. Leakage testing of the cask containment seal, in conjunction with the post-NAC International                                  1.3-8
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 fabrication leakage testing of the entire containment boundary, assures that the containment does not leak. Regardless of credit applied to the TSC confinement boundary to prevent water in-leakage, the containment function is retained by the transport cask body.
Fuel Baskets Each TSC containing spent fuel includes a PWR, PWR-DF or BWR fuel basket that positions and supports the contents (fuel). Consistent with the TSC design, there are two different length fuel baskets (the two lengths are the same for both the PWR and the BWR fuel baskets). As described in the following sections, the design of the basket is similar for the PWR and BWR configurations. The fuel basket for each fuel type is designed, fabricated and inspected to the requirements of the ASME Code, Section III, Division 1, Subsection NG, to the extent practical, except as noted in the Alternatives to the ASME Code provided in Table 2.1.4-1.
The structural components of the PWR, PWR-DF and BWR baskets are fabricated from ASME SA537, Class 1, carbon steel. To minimize corrosion and preclude significant generation of combustible gases during fuel loading, the assembled basket is coated with electroless nickel plating using an immersion process. Following plating of the structural components, the neutron absorber panels and the stainless steel retainers are installed on the basket structure as shown on the License Drawings. The principal dimensions and materials of fabrication of the fuel basket and PWR damaged fuel cans are provided in Table 1.3-3 and Table 1.3-4, respectively.
The fuel basket designs minimize horizontal surfaces that could entrain water. Open paths for water flow to the drain tube and sump in the bottom of the TSC are provided. The fuel baskets are supported from the TSC bottom plate by 3-in high standoffs at the corner of the fuel tubes enabling the TSC to fill and drain evenly.
Fuel spacers may be used in the TSCs to reduce axial gaps for the spent fuel assemblies, non-fuel hardware or damaged fuel cans.
PWR Fuel Baskets The PWR fuel basket design is an arrangement of square fuel tubes held in a right-circular cylinder configuration by side and corner support weldments that are bolted to the outer fuel tubes. The fuel tubes support an enclosed neutron absorber sheet on up to four interior sides of the fuel tube. The neutron absorber sheets, in conjunction with minimum TSC cavity water boron levels, provide criticality control in the basket. Each neutron absorber sheet is covered by a thin stainless steel sheet to protect the neutron absorber during fuel loading and to keep it in position. The neutron absorber and stainless steel cover are secured to the fuel tube using weld NAC International                                1.3-9
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 posts distributed across the width and along the length of the fuel tube. The neutron absorber sheets may be replaced by commercial aluminum sheets on the two outside surfaces of the eight outermost fuel tubes of the PWR fuel basket (refer to sheet 3 of Drawing 71160-575). The design parameters for the two lengths of PWR fuel baskets are provided in Table 1.3-3.
Each PWR fuel basket has a capacity of up to 37 fuel assemblies in an aligned configuration.
Square tubes are assembled in an array where the tubes function as independent fuel positions and as sidewalls for the adjacent fuel positions in what is called a developed cell array.
Consequently, the 37 fuel positions are developed using only 21 tubes. The array is surrounded by side and corner weldments that serve both as sidewalls for some perimeter fuel positions and as the structural load path to the TSC shell. Each PWR basket fuel tube has a nominal 8.86-inch square opening. Each developed cell fuel position has a nominal 8.76-inch square opening.
The system is also designed to store up to four damaged fuel cans (DFCs) in the DF Basket Assembly in the short TSC. The DF Basket Assembly has a capacity of up to 37 undamaged PWR fuel assemblies, including four DFC locations. DFCs may be placed in up to four of the DFC locations. The arrangement of tubes and fuel positions is the same as in the standard fuel basket, but the design of each of the four corner support weldments is modified with additional structural support to provide an enlarged position for a damaged fuel can at the outermost corners of the fuel basket. Each DFC location has a nominal 9.80-in square opening. A DFC or an undamaged fuel assembly may be loaded in a DFC location.
BWR Fuel Basket The BWR fuel basket design is an arrangement of square fuel tubes held in a right-circular cylinder configuration by side and corner support weldments that are bolted to the outer fuel tubes. The fuel tubes support an enclosed neutron absorber sheet on up to four interior sides of the fuel tube for criticality control in the basket during fuel loading/unloading. Each neutron absorber sheet is covered by a sheet of stainless steel to protect the neutron absorber during fuel loading and to keep it in position. The neutron absorber and stainless steel cover are secured to the fuel tube using weld posts distributed across the width and along the length of the fuel tube.
The neutron absorber sheets may be replaced by commercial aluminum sheets on the three outer surfaces of the outermost fuel tubes of the BWR fuel basket (refer to sheet 3, Drawing 71160-599).
Each BWR fuel basket has a capacity of 87 fuel assemblies in an aligned configuration. Square tubes are assembled in an array where the tubes function as independent fuel positions and as sidewalls for the adjacent fuel positions in what is called a developed cell array. Consequently, the 87 fuel positions are developed using only 45 tubes. The array is surrounded by weldments NAC International                                1.3-10
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 that serve both as sidewalls for some perimeter fuel positions and as the structural load path to the TSC shell wall. Each BWR basket fuel tube has a nominal 5.86-in square opening. Each developed cell fuel position has a nominal 5.77-in square opening.
GTCC Waste Basket Liner An ASTM A240, Type 304, stainless steel GTCC waste basket liner is designed to hold GTCC waste and dimensionally fit in a TSC. The waste basket liner design includes a shell for structural and gamma shield functions, a welded bottom plate, and lifting lugs welded on the inside diameter of the shell so that the liner may be loaded with GTCC waste prior to being inserted into a TSC (Table 1.3-5). The liner design also includes an outer ring and a middle support under the bottom plate and drain holes in the bottom plate to facilitate free flow drainage from the liner. The GTCC TSC includes a sump location in the bottom plate and the closure lid includes a drain tube assembly to enable draining and drying of the loaded TSC.
The GTCC waste basket liner and TSC are designed, fabricated and inspected in accordance with ASME Code, Section III, Division 1, Subsection NF. The lifting features of the GTCC components are designed for noncritical lifting in accordance with NUREG-0612 and ANSI N14.6, with safety factors of 3 on material yield strength and 5 on material ultimate strength applied.
Damaged Fuel Can The MAGNASTOR Damaged Fuel Can (DFC), shown in Figure 1.3-3, is provided to accommodate damaged PWR fuel assemblies. The DFC may also contain PWR fuel assemblies in an undamaged condition or fuel debris equivalent to, or less than, one PWR fuel assembly.
The primary function of the DFC is to confine the fuel material within the can to minimize the potential for dispersal of the fuel material into the TSC cavity. In normal operation, the DFC is in a vertical orientation.
The DFC is fabricated from Type 304 stainless steel and has an 8.7-in square inside dimension (see Figure 1.3-3). The DFC is designed in two lengths: an overall length of 166.9 inches with a nominal cavity length of 164.0 inches; or an overall length of 171.8 inches with a nominal cavity length of 169.0 inches (shorter fuel assemblies may be accommodated with a fuel assembly spacer to limit axial movement). For the shorter DFC, a DFC spacer is used in the DF basket assembly or alternatively fixed to the DFC bottom plate to provide an overall height of DFC and spacer of 171.5 inches. The side plates that form the upper end of the DFC are 0.15-in thick and the tube body walls are 0.048-in thick (18-gage sheet). The DFC lid plate and bottom NAC International                              1.3-11
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 thicknesses total 11/16 (0.688) inch and the lid overall height is 2.32 inches. The DFC bottom plate thickness is 5/8 (0.625) inch. The DFC lid and bottom include screened drain holes. The DFC is designed, fabricated, tested and inspected to the requirements of the ASME Code, Section III, Division 1, Subsection NG, to the extent practical, except as noted in the Alternatives to the ASME Code provided in Table 2.1.4-1.
Cask Cavity Spacer An ASME SA240, Type 304, stainless steel cask cavity spacer is used in the upper end of the MAGNATRAN cavity to limit the axial movement of the short TSCs. The spacer consists of six concentric rings welded to a flat plate. The depth of the rings, i.e., the length of the spacer, is approximately seven inches, which represents the difference in length between the short and long TSCs. The spacer is bolted through the flat plate to the underside of the cask lid.
Containment System MAGNATRAN provides a containment system to retain the radioactive material and gas contents during transport operations. The cask design pressure is 120 psig. The MAGNATRAN containment system components include the bottom inner forging, inner shell, top forging, cask lid and lid bolts, metal inner O-ring (lid), coverplate and bolts, and metal inner O-ring (coverplate). The cask lid is sealed by two concentric O-rings, as is the coverplate for the lid port. In both cases, the metal inner O-ring is the containment boundary and the outer EPDM O-ring forms the annulus to facilitate leakage testing of the containment seal following installation of the lid and coverplate. A test port is provided in each annulus to enable the performance of the leakage tests. After the leakage tests are completed, each test port is closed by a stainless steel plug and boss seal. A sketch of the containment boundary is shown in Figure 1.3-2. All of the containment boundary components are defined on the License Drawings in Section 1.4-3.
NAC International                              1.3-12
 
MAGNATRAN Transport Cask SAR                                January 2022 Docket No. 71-9356                                            Revision 1 Figure 1.3-1 MAGNASTOR TSC and Basket Closure Ring Fuel Basket TSC NAC International                  1.3-13
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                              Revision 1 Figure 1.3-2    MAGNATRAN Transport Cask Containment Boundary NAC International                1.3-14
 
MAGNATRAN Transport Cask SAR                            January 2022 Docket No. 71-9356                                        Revision 1 Figure 1.3-3 MAGNASTOR Damaged Fuel Can NAC International              1.3-15
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Table 1.3-1          Design Characteristics of the MAGNATRAN Transport Cask and Components Design Characteristic                          Value1                Material Cask overall length without impact limiters                  214 in.                  --
Cask maximum cross-section diameter
: a. Outer shell                                            86.7 in.                  --
Across neutron shield                                99.5 in.                  --
Across cooling fins                                  110 in.                  --
Cask cavity length                                          192.5 in.                  --
Cask cavity diameter                                        72.25 in.                  --
Cask capacity (# of assemblies or GTCC weight)
PWR                                                  up to 37                  --
PWR-DF                                        up to 37, including.            --
up to 4 DFCs BWR                                                up to 87/82                  --
up to 55,000 lbs.              --
GTCC Waste Cask cavity atmosphere Backfill Gas                                            --                    Helium Backfill Pressure                                  1.0 atm abs                  --
Inner shell - thickness                                    1.75 in.        Type 304 Stainless Steel Gamma shield - thickness                                    3.2 in.      Chemical-Copper Grade Lead Outer shell - thickness                                    2.25 in.        Type XM-19 Stainless Steel Top forging - radial thickness at cavity diameter            7.2 in.        Type 304 Stainless Steel Bottom (total thickness)                                    13.65 in.                  --
Bottom inner forging - thickness, vertical            5 in.          Type 304 Stainless Steel Bottom Plate - thickness, vertical                  8.65 in.        Type 304 Stainless Steel Bottom outer forging - thickness, radial          3.8 in.        Type 304 Stainless Steel 1
Dimensions are reference only.
NAC International                                  1.3-16
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 Table 1.3-1    Design Characteristics of the MAGNATRAN Transport Cask and Components (contd)
Design Characteristic                  Value1            Material Neutron shield Neutron shielding                                                NS-4-FR, Solid Synthetic Assy A                                          6.3 in.            Polymer Assy B                                          5.8 in.
Shell                                                0.12 in. Type 304 Stainless Steel Cooling fin - A                                0.31 in.      ASTM B152 Copper Cooling fin - B                                0.25 in.  (ASTM B209 1100 Aluminum Lifting trunnion                                                Type 17-4 PH Stainless Steel Base                                          12x12 in.
Shaft diameter                                  6.6 in.
Bolts(9)                                      1-1/8-8UN  SB-637, GR N07718, Nickel Alloy Steel Rotation trunnion                                                Type XM-19 Stainless Steel Reference thickness                              7 in.        with 17-4 PH pin Diameter                                        6.0 in.
Cask lid Body thickness                                7.75 in. Type 17-4 PH Stainless Steel Bolts (48)                                    2 - 8 UN  SB-637, GR N07718, Nickel Alloy Steel Lid port coverplate Body thickness                                1.25 in. Type 304 Stainless Steel Bolts (4)                                  1/2 - 13 UNC      SA-193, GR B6 Type 410 Stainless Steel Cask cavity spacer                                                Type 304 Stainless Steel Diameter                                      70.7 in.
Depth                                            7 in.
Lifting trunnion plug                                            Type 304 Stainless Steel Thickness                                      1.75 in.
Bolts (3) 1 Dimensions are reference only.
NAC International                            1.3-17
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 1.3-2        Design Characteristics of the Transportable Storage Canister Design Characteristic            Value1              Material TSC capacity              (no. of assemblies)
PWR                          up to 37 PWR-DF                  up to 37, including up to 4 DFCs BWR                        up to 87/82 GTCC Waste              up to 55,000 lbs.
Length Long                    191.8 in.
Short                  184.8 in.
Shell                    0.5 in. x 72 in. dia. Stainless Steel Bottom                          2.75 in.          Stainless Steel Closure Lid Assembly          9.0-in. thick      Stainless Steel or 4.0-in. thick/5.0-in. thick Stainless Steel/
Carbon Steel Closure Ring                0.75 in. square      Stainless Steel or up to 1.5 in. x 0.75 in. Stainless Steel 1
Dimensions are reference only.
NAC International                          1.3-18
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 1.3-3        Design Characteristics of the Fuel Basket Assemblies Design Characteristic                    Value1                    Material
# of Fuel Loading Positions PWR                                                37 BWR                                                87 Assembly dia.                                      70.76 in.
Length                                      172.5 in. or 179.5 in.
PWR Fuel Tube Wall                                  0.31 in.                  Carbon Steel BWR Fuel Tube Wall                                  0.25 in.                  Carbon Steel Neutron Absorber                              0.125 in.(PWR),        Metallic Composite Matrix 0.1 in. (BWR)
Aluminum Plate                                0.125 in. (PWR),        Aluminum (commercial) 0.1 in. (BWR)
Neutron Absorber Retainer                          0.015 in.                Stainless Steel Support Plates & Gussets                      0.5 in. to 0.75 in.            Carbon Steel Support Bars (PWR)                                0.875 in.                  Carbon Steel Support Plate (BWR)                                0.75 in.                  Carbon Steel 1
Dimensions are reference only.
NAC International                          1.3-19
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 1.3-4          Design Characteristics of the Damaged Fuel Can Design Characteristic                    Value (in.)1                Material PWR Damaged Fuel Can Wall Tube Body                                      0.048                Stainless Steel Side Plate                                      0.15                Stainless Steel 1
Dimensions are reference only.
Table 1.3-5        Design Characteristics of the GTCC Waste Basket Liner and TSC Design Characteristic                        Value1                  Material Capacity                                        up to 55,000 lbs.
Liner                                                                      Stainless Steel OD                                                70.5 in.
ID                                                66.5 in.
Length                                            173.0 in.
Bottom Plate Thickness                              1 in.              Stainless Steel TSC Length                                            184.8 in.
Shell                                      0.5 in. x 72 in. dia.      Stainless Steel Bottom                                            2.75 in.              Stainless Steel Closure Lid Assembly                            9.0-in. thick          Stainless Steel or 4.0-in thick/5.0-in thick Stainless Steel /Carbon Steel Closure Ring (optional)                      0.75 in. square          Stainless Steel or up to 1.5 in. x 0.75 in.      Stainless Steel 1
Dimensions are reference only.
NAC International                            1.3-20
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 1.3.2          Contents The MAGNASTOR fuel TSC or Greater Than Class C (GTCC) TSC can be transported in the MAGNATRAN.
The MAGNASTOR fuel TSC design capacity is up to 37 undamaged uranium PWR fuel assemblies in the 37 PWR basket assembly, or up to 87 undamaged uranium BWR fuel assemblies in the 87 BWR basket assembly. The fuel TSC with the DF basket assembly has a capacity of up to 37 undamaged uranium PWR fuel assemblies, including four DFC locations. DFCs may be placed in up to four of the DFC locations as shown in Figure 1.3-4.
Fuel assemblies are assigned to two groups of PWR and two groups of BWR fuel assemblies on the basis of fuel assembly length. Fuel assemblies are restricted to those with zirconium alloy-clad fuel rods; no steel-clad assemblies are considered. PWR fuel assemblies containing nonfuel hardware may be loaded in the TSC. BWR fuel assemblies containing channels may be loaded in the TSC.
The initial enrichment limits are shown in Table 1.3-6 and Table 1.3-19 for PWR and BWR fuel, respectively, and exclude the loading of fuel assemblies enriched to less than 1.3 wt % 235U, including unenriched fuel assemblies. Upper enrichment limits in these tables are based on moderator intrusion into the TSC. Crediting the TSC with moderator exclusion allows 5 wt.%
235 U enriched fuel to be loaded up to maximum capacity regardless of fuel type or basket absorber content. The evaluated dry system reactivity is independent of fuel physical parameters with the exception of maximum fissile mass. Fuel assemblies containing low enriched, unenriched, and/or annular axial end-blankets may be loaded into the TSC. The end blankets are typically regions of low enriched or natural uranium oxide. Unenriched (natural uranium oxide) end blankets are limited to a nominal length no greater than 6 inches (dimension applicable to top and bottom of the fuel rod, not cumulative).
BWR/2,3 fuel assemblies with a fuel assembly length of approximately 171 inches will be loaded into the short TSC (nominal length of 184.75 inches). BWR/4-6 fuel assemblies with a fuel assembly length of approximately 176 inches will be loaded into the long TSC (nominal length 191.75 inches). PWR fuel assemblies, with the exception of fuel identified as type CE 16x16, in Table 1.3-6 must be loaded into a short TSC (i.e., be loaded into a transport configuration with a canister spacer). CE16 fuel may be loaded into a either short or long TSC.
An exception to the PWR CE16 guideline is the System 80 16x16 fuel with an active fuel length of 150 inches whose overall length exceeds the short TSC cavity length and, therefore, must be loaded into the long TSC.
Empty fuel rod positions are filled with a solid filler rod or a solid neutron absorber rod that displaces a volume not less than that of the original fuel rod.
NAC International                              1.3-21
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 A MAGNASTOR TSC waste consisting of solid, irradiated, contaminated hardware, nonfuel-bearing carbon and/or stainless steel material (e.g., loose nuts and bolts, etc.) provided that the bounding weight of the loaded TSC as shown in Table 2.1.3-1 is not exceeded.
Greater Than Class C (GTCC) waste is defined in 10 CFR 61.55(a)(3) and (4) by the concentration of long-lived radionuclides, i.e., 14C, 59Ni, and 94NB, and/or short-lived radionuclides, i.e., 3H, 60Co, and 63Ni. The disposal of GTCC waste is controlled by 10 CFR 61.
GTCC waste consists of radiation activated and surface contaminated steel, and/or plasma cutting debris (dross). Stainless steel core baffle structure - baffle plates and angles, baffle formers, and lower core plates, located adjacent to the reactor vessel in a high neutron flux field, is the major component of GTCC waste.
The GTCC waste to be transported in the MAGNATRAN is placed in a GTCC waste basket liner, which is loaded into a GTCC TSC. The GTCC TSC and welded closure lid are geometrically identical to that of the fuel TSC.
PWR Fuel The PWR fuel evaluations are based on bounding PWR fuel assembly parameters that maximize the source terms for the shielding evaluations, the reactivity for criticality evaluations, the decay heat load for the thermal evaluations, and the fuel weight for the structural evaluations. These bounding parameters are selected from the various spent fuel assemblies that are candidates for loading in the TSC. The bounding fuel assembly values are established based primarily on how the principal parameters are combined, and on the loading conditions (or restrictions) established for a group of fuel assemblies based on its parameters.
The limiting parameters of the PWR fuel assemblies authorized for loading in the TSC are shown in Table 1.3-6. The maximum initial enrichment authorized represents the peak fuel rod enrichment for variably enriched PWR fuel assemblies. The PWR fuel assembly characteristics are summarized by fuel assembly type in Chapter 6, with burnup credit loading curves correlating maximum initial enrichment for a given assembly average burnup at various absorber sheet loading, also listed in Chapter 6. Table 1.3-6 assembly physical information is limited to the analysis input of fuel mass, array configuration, and number of fuel rods. These analysis values are key inputs to the shielding and criticality (water moderated) evaluations in Chapters 5 and 6, respectively. Lattice parameters dictating system reactivity are detailed in Chapter 6.
Enrichment limits are set for each fuel type to produce reactivities at the upper subcritical limit (USL).
NAC International                              1.3-22
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 When crediting moderator exclusion lattice parameters are not significant to demonstrating subcriticality of the package. Critical parameters are limited to enrichment and fuel mass.
The maximum TSC decay heat load for the transport of PWR fuel assemblies is 23.0 kW. The uniform loading pattern permitted limits assemblies to a maximum heat load of 0.622 kW/assembly. Neutron absorber with Type 2 thermal conductivity (see Table 3.2-12) is required for PWR basket with a maximum heat load of 23kW. For the PWR basket with neutron absorbers with Type 1 thermal conductivity (see Table 3.2-12), the heat load is limited to 22 kW, with the individual assembly decay heat limited to 0.595 kW. The bounding thermal evaluations are based on the Westinghouse 1717 fuel assembly. The minimum cool times are determined based on the maximum decay heat load of the contents and meeting transport dose limits. The fuel assemblies and source terms that produce the maximum dose rates are summarized in Chapter 5.
The DF basket assembly configuration for PWR fuel with damaged fuel can locations is shown in Figure 1.3-4. Each DFC may contain an undamaged PWR fuel assembly, a damaged PWR fuel assembly, or PWR fuel debris equivalent to one PWR fuel assembly. Undamaged PWR fuel assemblies may be placed directly in the DFC locations of a DF Basket Assembly. PWR fuel assemblies loaded in a DFC shall not contain nonfuel hardware, with the exception of instrument tube tie components and steel inserts.
A PWR fuel assembly weight of 1,680 pounds based on a B&W 1515 fuel assembly with control components inserted, has been structurally evaluated in each location of the PWR fuel basket, equaling a total contents weight of 62,160 lbs. A bounding weight of 1,814 pounds is evaluated for each loaded damaged fuel can in the damaged fuel configuration of the PWR DF fuel basket. A total contents weight of 61,184 lbs is specified for the PWR DF basket to limit the maximum loaded TSC weight to 104,500 lbs. The analyzed contents weight provides the most significant measure of the basket performance. Accordingly, a 5% increase in the maximum weight per undamaged fuel location of 1,765 lbs is permitted while maintaining a maximum contents weight consistent with the basket evaluation.
As noted in Table 1.3-6, PWR fuel assemblies may include nonfuel hardware placed into the fuel assembly guide tubes and/or instrument tube. Nonfuel hardware that is located in the active fuel region is referred to as inserts in this SAR. Nonfuel components, such as thimble plugs, may not reach into the active fuel region and do not have a significant effect on system reactivity.
Westinghouse 15x15 PWR fuel assemblies that have been enhanced to address top nozzle stress corrosion cracking may use nonfuel hardware to prevent the separation of the top nozzle.
NAC International                              1.3-23
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 BWR Fuel The BWR fuel evaluations are based on bounding BWR fuel assembly parameters that maximize the source terms for the shielding evaluations, the reactivity for the criticality evaluations, the decay heat load for the thermal evaluations, and the fuel weight for the structural evaluations.
These bounding parameters are selected from the various spent fuel assemblies that are candidates for loading in the TSC. The bounding fuel assembly values are established based primarily on how the principal parameters are combined, and on the loading conditions or restrictions established for a group of fuel assemblies based on its parameters. Each TSC may contain up to 87 undamaged BWR fuel assemblies. To increase allowed assembly enrichments over those determined for the 87-assembly basket configuration, an optional 82-assembly loading pattern may be used. The required fuel assembly locations in the 82-assembly pattern are shown in Figure 1.3-5.
The limiting parameters of the BWR fuel assemblies authorized for loading in the TSC are shown in Table 1.3-19. The maximum initial enrichment represents the peak planar-average enrichment. The BWR fuel assembly characteristics are summarized by fuel type in Chapter 6.
Table 1.3-19 assembly physical information is limited to the critical analysis input of fuel mass, array configuration, and number of fuel rods. These analysis values are key inputs to the shielding and criticality (water moderated) evaluations in Chapters 5 and 6. Lattice parameters dictating system reactivity are detailed in Chapter 6. Enrichment limits are set for each fuel type to produce reactivities at the USL. The maximum decay heat load per TSC for the transport of BWR fuel assemblies is 22.0 kW (0.253 kW/assembly). Only uniform loading is permitted for BWR fuel assemblies. The bounding thermal evaluations are based on the GE 1010 fuel assembly. The minimum cooling times are determined based on the maximum decay heat load of the contents and meeting transport dose limits.
BWR fuel assemblies may contain partial-length fuel rods. Table 1.3-20 contains the type of BWR assemblies and the number of partial-length rods included in the analysis in this SAR.
Locations for the partial-length rods within the lattice are illustrated in Figure 1.3-8.
When crediting moderator exclusion lattice parameters, including presence or absence of partial length rods, are not significant to demonstrating subcriticality of the package. Critical parameters are limited to enrichment and fuel mass.
A bounding BWR fuel assembly weight of 704 pounds based on the maximum weight of GE 77 and 88 assemblies with channels has been structurally evaluated in each storage location of the BWR basket as well as the two additional locations coinciding with the drain and vent ports, equaling a total contents weight of 62,656 lbs. The analyzed contents weight provides the most significant measure of the basket performance. Accordingly, a 5% increase in the maximum NAC International                              1.3-24
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 weight per fuel location of 739 lbs is permitted while maintaining a maximum contents weight consistent with the basket evaluation.
As noted in Table 1.3-19, the evaluation of BWR fuel envelops unchanneled assemblies and assemblies with channels up to 120 mils thick.
GTCC Waste The GTCC waste to be transported in the MAGNATRAN transport cask consists of sections of core baffle plates and angles, baffle formers, lower core plates and miscellaneous related hardware associated with these components. The major components are cut into pieces of a size that are loaded into a GTCC waste basket liner. Small residual pieces of GTCC may be loaded into stainless steel strainer baskets for handling. The loaded strainer baskets are stacked in a stainless steel pipe cell that has been placed in the GTCC waste basket liner to retain spacing prior to GTCC initial loading. Any dross material (fines and debris) generated by the cutting operations will be disposed of as low-level radioactive or GTCC waste.
Each GTCC waste basket liner may contain up to 55,000 pounds of GTCC waste including the weight of strainer baskets and pipe spacers. The GTCC waste basket liner is transported in a GTCC TSC with a welded closure lid. The GTCC waste basket liners have twelve 1.0-inch diameter holes in the bottom plate, and outer ring and middle supports under the bottom plate to facilitate free flow drainage from the liner. The GTCC TSC has a sump in the bottom plate, and the closure lid includes a drain tube assembly to enable draining and vacuum drying of the loaded TSC. Consequently, no hydrogen generation occurs as a result of residual water.
The radionuclide composition of the waste was determined based on radiochemical assay of samples and dose rate measurements. The isotope that primarily contributes to the radiological source term is 60Co. The source terms applied in the evaluation of the GTCC waste are presented in Chapter 5 of this SAR.
Fuel and GTCC Content Limits Spent fuel and GTCC waste shipments in the MAGNATRAN shall be subject to the following limits:
: 1. The maximum contents weight for the MAGNATRAN transport cask shall not exceed 106,000 pounds.
: 2. The design basis fuel characteristics shall be in accordance with Table 1.3-6 and Table 1.3-19.
: 3. The total decay heat of the cask cavity contents shall not exceed:
: a. 23 kW for PWR fuel with a uniform loading pattern NAC International                              1.3-25
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                  Revision 1
: b. 22 kW for PWR fuel loaded in a basket with neutron absorbers having Type 1 thermal conductivity (see Table 3.2-12)
: c. 22 kW for BWR fuel
: d. GTCC waste content, the decay heat limit is 1.7 kW.
: 4. The total weight of the PWR fuel assemblies in the TSC, including standard nonfuel hardware and spacers (if used), shall not exceed 62,160 pounds.
: 5. The total weight of the PWR fuel assemblies in the DF PWR TSC, including standard nonfuel hardware and spacers (if used), shall not exceed 61,184 pounds.
: 6. The total weight of the BWR fuel assemblies in the TSC, including channels (if applicable),
shall not exceed 62,656 pounds.
: 7. GTCC waste consists of solid, irradiated, and contaminated hardware provided the quantity of fissile material does not exceed a Type A quantity and does not exceed the mass limits of 10 CFR 71.15.
The specific Curie content source of the GTCC shall be limited to:
: a. a maximum of 2.7 Ci 60Co/lb averaged over GTCC contents
: b. a localized peak 16.1 Ci 60Co/lb
: c. a total 60Co activity of 85,760 Ci at transport.
The maximum allowed weight of this waste is 55,000 lbs.
: 8. Any number of MAGNATRAN casks may be shipped at one time by rail, ship, barge or heavy-haul vehicle with the exception of a PWR-DF basket with DFC which requires only one cask to be shipped at one time.
: 9. Radiation levels shall not exceed the requirements of 10 CFR 71.47 and 10 CFR 71.51 for a closed transport vehicle.
: 10. Surface contamination levels shall not exceed the requirements of 10 CFR 71.87(i)(1).
: 11. Cask contents transported in a TSC with a PWR fuel basket shall be uranium undamaged PWR fuel assemblies in accordance with the limiting values shown in Table 1.3-6 and Table 1.3-7 and shall meet the following specifications:
: a. Zirconium-based alloy cladding.
: b. Enrichment, post-irradiation cooling time and burnup credit load curves in accordance with Tables 1.3-6, 1.3-8 through 1.3-11, and Figure 1.3-6 (burnup credit curves are only applicable to systems not crediting moderator exclusion) with moderator exclusion up to 5wt% fuel may be loaded for all fuel types.
: c. Maximum assembly average burnup shall be  60,000 MWd/MTU.
: d. Decay heat per fuel assembly: 622 watts (includes non-fuel hardware contribution). For the PWR basket with neutron absorbers with Type 1 thermal conductivity (see Table 3.2-12), the decay heat per fuel assembly is limited to 595 watts.
NAC International                              1.3-26
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1
: e. Nominal fresh fuel dimensions:        assembly length (in.)    178.3 assembly width (in.)    8.54
: f. Fuel assembly weight (lbs.):  1,765 (including nonfuel hardware and fuel spacers)
: g. Spent fuel contents shall be loaded in accordance with the loading tables in Chapter 5, Section 5.8.3, of this SAR.
: h. Quantity per TSC: up to 37 undamaged PWR fuel assemblies shown in Figure 1.3-6.
Figure 1.3-6 indicates the fuel storage locations that shall be empty, at a minimum, when implementing the 36, 35 and 33 loading patterns for burnup credit purposes.
: i. Undamaged PWR fuel assemblies may contain nonfuel hardware (NFHW). Fuel assembly lattices not containing the nominal number of fuel rods specified in Table 1.3-7 must contain solid filler rods that displace a volume equal to, or greater than, that of the fuel rod that the filler rod replaces. Fuel assemblies may have stainless steel rods inserted to displace guide tube dashpot water. The nonfuel hardware may be loaded as a complete assembly or as individual components, individual non-fuel rods may be full-length rods or partial-length rods/rodlets. Partial-length rods/rodlets are permitted to be loaded in guide tubes provided guide tube plug devices are installed. Nonfuel hardware cool times shall be in accordance with Tables 1.3-16 through 1.3-18. Alternatively, the 60 Co curie limits in Table 1.3-17 and Table 1.3-18 may be used to establish site-specific nonfuel hardware constraints. Note that fuel assemblies defined as CE14 and CE16 are not allowed to contain BPRA or TP type nonfuel hardware.
: j. Fuel spacers may be used in the TSCs to reduce axial gaps for the spent fuel assemblies and non-fuel hardware.
: k. Unenriched and unirradiated (i.e., not inserted in-core) fuel assemblies are not authorized for loading. Unenriched axial blankets are permitted, provided that the nominal length of the blanket is not greater than six inches. An unenriched rod may be used as a replacement rod to return a fuel assembly to an undamaged condition.
: l. Reactor control components (RCC) are restricted to fuel storage locations No. 11, 12, 13, 18, 19, 20, 25, 26 and 27 (Figure 1.3-6). Minimum RCC cool times are:
Minimum Cool Time                  Maximum Exposure (years)                        (GWd/MTU) 10                                180 14                                270 20                                360 Interpolation is not allowed between data points.
NAC International                            1.3-27
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                    Revision 1
: m. One Neutron Source or Neutron Source Assembly (NSA) is permitted to be loaded in a TSC in fuel storage locations No. 11, 12, 13, 18, 19, 20, 25, 26 or 27 (Figure 1.3-6).
Neutron source assemblies may contain source rods attached to hardware similar in configuration to guide tube plug devices (thimble plugs) and burnable absorbers, in addition to containing burnable poison rodlets and/or thimble plug rodlets. Partial-length rods/rodlets are permitted to be loaded in guide tubes provided guide tube plug devices are installed. For NSAs containing absorber rodlets, the BPRA cool time and burnup/exposure or hardware 60Co curie limit listed in Table 1.3-17 are applied to the neutron sources. NSAs having only thimble plug rodlets require the thimble plug restriction in Table 1.3-18 to be applied. Combination NSAs, containing both thimble plug and burnable absorber rodlets must apply the more limiting of the two minimum cool time/curie limit. Fuel assemblies loaded with the NSAs must apply the additional cool times listed in Table 1.3-16. Fuel types indicated as CE14 and CE16 are not permitted to be loaded with NSAs.
: n. Fuel assemblies may contain any number of unirradiated (i.e., not inserted in-core) nonfuel solid filler fuel replacement rods. Activated stainless steel rods are limited to five per assembly, one assembly per basket, at a maximum steel rod burnup/exposure of 32.5 GWd/MTU. Fuel assemblies with activated stainless steel rods must be cooled either a minimum of 21 years or the Section 5.3 loading table minimum cool time plus one year, whichever is greater.
: o. Westinghouse fuel assemblies may contain a hafnium absorber assembly (HFRA) at a maximum burnup/exposure of 4.0 GWd/MTU and a minimum cool time of 16 years.
Fuel assemblies loaded with an HFRA must apply the additional cool times listed in Table 1.3-16.
: p. Under-burned (assemblies with burnup less than that dictated by the burnup credit loading curve) Westinghouse 15x15 PWR fuel assemblies may be loaded provided that they include Ag-In-Cd full-length RCCAs and are loaded in the basket locations that RCCs are allowed (see item l for RCCA loading). Burnup must be greater than or equal to 12,000 MWd/MTU. Enrichment must be equal to or less than 4.05 wt. % 235U. The basket must include absorber sheets with an effective 10B areal density of 0.036 g/cm2.
For the loading of low burnup fuel, the RCCAs must be full length (i.e. spider component included). RCCA exposure must be equal to or less than 200,000 MWd/MTU. Any assemblies loaded without an RCCA inserted must meet the burnup credit loading curve for the applicable assembly loading profile.
NAC International                          1.3-28
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Burnup credit curves and the need to insert RCCAs for criticality control are only applicable to systems not crediting moderator exclusion. Initial enrichment up to 5 wt. %
235 U, with no burnup requirement, is permitted when crediting moderator exclusion.
: 12. Cask contents transported in a TSC with a DF Basket Assembly shall be uranium undamaged PWR fuel assemblies and damaged fuel (damaged PWR fuel assemblies or PWR fuel debris) in accordance with the limiting values shown in Table 1.3-6 and Table 1.3-7 and shall meet the following specifications:
: a. Zirconium-based alloy cladding.
: b. For the 33 non-DFC fuel locations in the DF Basket Assembly, enrichment, post-irradiation cooling time and burnup credit load curves in accordance with Tables 1.3-6, 1.3-12 through 1.3-15, and Figure 1.3-6 for a TSC with a DF Basket Assembly containing DFCs. For a TSC with a DF Basket Assembly that does not contain any DFCs, the enrichment, post-irradiation cooling time and burnup credit load curves in accordance with Tables 1.3-6, 1.3-8 through 1.3-11, and Figure 1.3-4 may be used for all fuel locations (burnup credit curves are only applicable to systems not crediting moderator exclusion).
: c. For the up to four DFC locations in a DF Basket Assembly containing damaged fuel, the damaged fuel shall have a minimum burnup of 5 GWd/MTU, a maximum enrichment of 4.05 wt % 235U, and a minimum cool time of 15 years. Application of moderator exclusion allows increasing the maximum initial enrichment to 5 wt. % 235U, with no burnup requirement.
: d. Maximum assembly average burnup shall be  60,000 MWd/MTU.
: e. Decay heat per fuel assembly: 622 watts (590.5 watts for burnup > 45,000 MWd/MTU, includes non-fuel hardware contribution). For the PWR basket with neutron absorbers with Type 1 thermal conductivity (see Table 3.2-12), the decay heat per fuel assembly is limited to 595 watts
: f. Nominal fresh fuel assembly: length (in.)  167.0
: g. Nominal fresh fuel assembly: width (in.)        8.54
: h. Fuel assembly weight (lbs.):  1,765 (including nonfuel hardware, DFCs and fuel spacers)
: i. Spent fuel contents shall be loaded in accordance with the loading tables in Section 5.8.3 with additional cool time for damaged fuel found in Table 5.8-49 of this SAR. The additional cool time from Table 5.8-49 applies to all assemblies loaded in a damaged fuel TSC with damaged fuel.
NAC International                              1.3-29
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1
: j. Quantity per TSC: Up to a total of 37 undamaged PWR fuel assemblies, including up to four DFCs containing undamaged PWR fuel assemblies, damaged PWR fuel assemblies, and/or PWR fuel debris loaded in DFC location Nos. 4, 8, 30 and 34, as shown on Figure 1.3-4, for the DF Basket Assembly. Figure 1.3-6 indicates the fuel storage locations that shall be empty, at a minimum, when implementing the 36, 35 and 33 loading patterns for burnup credit purposes.
: k. The contents of a DFC must be less than, or equivalent to, one undamaged PWR fuel assembly. PWR fuel assemblies loaded in a DFC shall not contain nonfuel hardware with the exception of instrument tube tie components, guide tube anchors or other similar devices, and steel inserts.
: l. Undamaged PWR fuel assemblies not loaded in a DFC may contain nonfuel hardware consistent with Table 1.3-16. Fuel assembly lattices not containing the nominal number of fuel rods specified in Table 1.3-7 must contain solid filler rods that displace a volume equal to, or greater than, that of the fuel rod that the filler rod replaces. Fuel assemblies may have stainless steel rods inserted to displace guide tube dashpot water. The nonfuel hardware may be loaded as a complete assembly or as individual components, individual non-fuel rods may be full-length rods or partial-length rods/rodlets. Partial-length rods/rodlets are permitted to be loaded in guide tubes provided guide tube plug devices are installed. Nonfuel hardware cool times shall be in accordance with Tables 1.3-16 through 1.3-18. Alternatively, the 60Co curie limits in Tables 1.3-17 and 1.3-18 may be used to establish site-specific nonfuel hardware constraints. Note that fuel assemblies defined as CE14 and CE16 are not allowed to contain BPRA or TP type nonfuel hardware.
: m. Fuel spacers may be used in the TSCs to reduce axial gaps for the spent fuel assemblies, non-fuel hardware or damaged fuel cans.
: n. Unenriched and unirradiated (i.e., not inserted in-core) fuel assemblies are not authorized for loading. Unenriched axial blankets are permitted, provided that the nominal length of the blanket is not greater than six inches. An unenriched rod may be used as a replacement rod to return a fuel assembly to an undamaged condition.
: o. Reactor control components (RCC) are restricted to fuel storage location Nos. 11, 12, 13, 18, 19, 20, 25, 26 and 27 (Figure 1.3-4). Minimum RCC cool times are:
Minimum Cool Time                    Maximum Exposure (years)                            (GWd/MTU) 10                                    180 14                                    270 20                                    360 NAC International                            1.3-30
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                    Revision 1 Interpolation is not allowed between data points.
: p. One Neutron Source or Neutron Source Assembly (NSA) is permitted to be loaded in a TSC in fuel storage location Nos. 11, 12, 13, 18, 19, 20, 25, 26 or 27 (Figure 1.3-4).
Neutron source assemblies may contain source rods attached to hardware similar in configuration to guide tube plug devices (thimble plugs) and burnable absorbers, in addition to containing burnable poison rodlets and/or thimble plug rodlets. Partial-length rods/rodlets are permitted to be loaded in guide tubes provided guide tube plug devices are installed. For NSAs containing absorber rodlets, the BPRA cool time and burnup/exposure or hardware 60Co curie limit listed in Table 1.3-17 are applied to the neutron sources. NSAs having only thimble plug rodlets require the thimble plug restriction in Table 1.3-18 to be applied. Combination NSAs, containing both thimble plug and burnable absorber rodlets must apply the more limiting of the two minimum cool time/curie limit. Fuel assemblies loaded with the NSAs must apply the additional cool times listed in Table 1.3-16. Fuel types indicated as CE14 and CE16 are not permitted to be loaded with NSAs.
: q. Fuel assemblies may contain any number of unirradiated (i.e., not inserted in-core) nonfuel solid filler fuel replacement rods. Activated stainless steel rods are limited to five per assembly, one assembly per basket, at a maximum steel rod burnup/exposure of 32.5 GWd/MTU. Fuel assemblies with activated stainless steel rods must be cooled either a minimum of 21 years or the item 12.i indicated minimum cool time plus one year, whichever is greater.
: r. Westinghouse fuel assemblies may contain a hafnium absorber assembly (HFRA) at a maximum burnup/exposure of 4.0 GWd/MTU and a minimum cool time of 16 years.
Fuel assemblies loaded with an HFRA must apply the additional cool times listed in Table 1.3-16.
: s. Under-burned (assemblies with burnup less than that dictated by the burnup credit loading curve) Westinghouse 15x15 PWR fuel assemblies may be loaded provided that they include Ag-In-Cd full-length RCCAs and are loaded in the basket locations that RCCs are allowed (see item o for RCCA loading). Burnup must be greater than or equal to 12,000 MWd/MTU. Enrichment must be equal to or less than 4.05 wt. % 235U. The basket must include absorber sheets with an effective 10B areal density of 0.036 g/cm2.
For the loading of low burnup fuel, the RCCAs must be full length (i.e. spider component included). RCCA exposure must be equal to or less than 200,000 MWd/MTU. Any assemblies loaded without an RCCA inserted must meet the burnup credit loading curve for the applicable assembly loading profile. Burnup credit curves and the need to insert RCCAs for criticality control are only applicable to systems not crediting moderator NAC International                          1.3-31
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                  Revision 1 exclusion. Initial enrichment up to 5 wt. % 235U, with no burnup requirement, is permitted when crediting moderator exclusion.
: t. Damaged CE 16x16 fuel assemblies are not to be loaded in the MAGNATRAN system.
: 13. Cask contents transported in a TSC with a BWR fuel basket shall be uranium undamaged BWR fuel assemblies in accordance with the limiting values shown in Table 1.3-19 and Table 1.3-20 and shall meet the following specifications:
: a. Zirconium-based alloy cladding.
: b. Enrichment, post-irradiation cooling time and average assembly burnup in accordance with Tables 1.3-19, 1.3-21, and 1.3.-22 and Figures 1.3-5, 1.3-7 and 1.3-8.
: c. Decay heat per fuel assembly: uniform loading      253 watts
: d. Nominal fresh fuel dimensions: assembly length (in.)  176.2
: e. Assembly width (in.)  5.52
: f. Fuel assembly weight (lbs.)  739 lbs (including channel and fuel spacers) with a maximum contents weight of 62,656 lbs.
: g. Spent fuel contents shall be loaded in accordance with the loading tables in Chapter 5, Section 5.8.4, of this SAR.
: h. Quantity per TSC: up to 87 undamaged BWR fuel assemblies as shown in Figure 1.3-7.
: i. Allowable fuel assembly locations for the 82-assembly BWR fuel basket configurations are shown in Figure 1.3-5 (location numbering for the 82-assembly basket is the same as that shown for the 87-assembly basket in Figure 1.3-7).
: j. Prior to use of the 82-assembly configuration, the center cell weldment and upper weldments with blocking strap must be in place to physically block the designated nonfuel locations (shown in Figure 1.3-5). Less than 82 assemblies may be loaded when implementing the 82-Assembly configuration provided the required fuel storage locations are empty, at a minimum.
The 82-Assembly configuration is the result of criticality constraints on maximum enrichment. When crediting moderator exclusion this configuration is not required as full capacity (87-Assembly) is permitted at an initial enrichment up to 5 wt. % 235U.
: k. BWR fuel assemblies may be unchanneled, or channeled with zirconium-based alloy channels.
: l. BWR fuel assemblies with stainless steel channels are not authorized.
NAC International                            1.3-32
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1
: m. Fuel assembly lattices not containing the assembly type-specific nominal number of fuel rods specified in Table 1.3-20 must contain solid, unirradiated, filler rods that displace a volume equal to, or greater than, that of the fuel rod that the filler rod replaces
: n. Spacers may be used in the TSCs to fill axial gaps and provide support for the spent fuel assemblies.
: o. Unenriched and unirradiated (i.e., not inserted in-core) fuel assemblies are not authorized for loading. Unenriched axial blankets are permitted, provided that the nominal length of the blanket is not greater than six inches.
NAC International                            1.3-33
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                      Revision 1 Figure 1.3-4    Schematic of DF Basket Assembly Configuration for PWR Fuel with Damaged Fuel Can Locations NAC International                    1.3-34
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 1.3-5 Schematic of 82-Assembly BWR Basket Pattern NAC International                  1.3-35
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 Figure 1.3-6    Schematic of 37-Assembly PWR Basket (33-, 35 and 36-Assembly Configuration Included) 36 assembly loading: remove 19 35 assembly loading: remove 19, 18 33 assembly loading: remove 19, 18, 20, 12 Note: The 33 and 36-Assembly patterns also apply to the DF basket.
NAC International                        1.3-36
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                        Revision 1 Figure 1.3-7      Schematic of 87-Assembly BWR Basket Note: Location numbering is identical for 82 and 87-Assembly Baskets.
NAC International                            1.3-37
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 Figure 1.3-8            BWR Partial Length Fuel Rod Location Sketches
                                                                = Fuel Rod Location
                  = Fuel Rod Location
                                                                = Partial Rod Location
                  = Partial Rod Location B9_74A 8 Partial Length Rods                B10_91A 8 Partial Length Rods
                    = Fuel Rod Location                        = Fuel Rod Location
                    = Partial Rod Location                    = Partial Rod Location B10_92A 14 Partial Length Rods              B10_96A 12 Partial Length Rods NAC International                          1.3-38
 
MAGNATRAN Transport Cask SAR                                                                                                      January 2022 Docket No. 71-9356                                                                                                                    Revision 1 Table 1.3-6          PWR Fuel Assembly Characteristics Characteristic                                                            Fuel Class 14x14        14x14          15x15        15x15          16x16          17x17 Base Fuel Type  a CE, SPC      W, SPC          W, SPC      BW, FCF            CE      BW, SPC, W, FCF Max Initial Enrichment (wt% 235U)                        5.0          5.0            5.0            5.0            5.0              5.0 Min Initial Enrichment (wt% U) 235                        1.3          1.3            1.3            1.3            1.3              1.3 Number of Fuel Rods                                      176          179            204          208            236              264 Max Assembly Average Burnup (MWd/MTU)                  60,000        60,000        60,000        60,000          60,000          60,000 Min Cool Time (years)                                    4            4              4              4              4              4 Max Weight (lb) per Storage Location                See Note 1 See Note 1 See Note 1 See Note 1 See Note 1                      See Note 1 Max Decay Heat (Watts) per Fuel Location            See Note 2 See Note 2 See Note 2 See Note 2 See Note 2                      See Note 2 Fuel cladding is a zirconium-based alloy.
All reported enrichment values are nominal preirradiation fabrication values.
Weight includes the weight of nonfuel-bearing components.
Assemblies may contain nonfuel hardware and/or fuel replacement rods (also referred to as filler rods). Filler rods are considered to be a component of spent nuclear fuel assemblies and not nonfuel hardware. Filler rods may be burnable absorber rods, stainless steel rods or zirconium alloy rods.
PWR fuel may be loaded using burnup credit. Maximum enrichment is as a function of minimum burnup as specified in Chapter 6. Maximum initial enrichment represents the peak fuel rod enrichment for variably-enriched fuel assemblies.
Spacers may be used to axially position fuel assemblies to facilitate handling.
Notes:
: 1. Maximum weight per storage location is 1,765 lbs (including nonfuel hardware, DFCs and fuel spacers) with a maximum contents weight of 62,160 lbs for the PWR basket and 61,184 lbs for the DF basket.
: 2. For PWR baskets with Type 2 thermal conductivity neutron absorbers, the maximum heat load is 622 watts per storage location and PWR baskets with Type 1 thermal conductivity neutron absorbers the maximum heat load is 595 watts per storage location.
a Indicates assembly and/or nuclear steam supply system (NSSS) vendor/type referenced for fuel input data. Fuel acceptability for loading is not restricted to the indicated vendor provided that the fuel assembly meets the load limits. Abbreviations are as follows: Westinghouse (W),
Combustion Engineering (CE), Siemens Power Corporation (SPC), Babcock and Wilcox (BW), and Framatome Cogema Fuels (FCF).
NAC International                                                      1.3-39
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 1.3-7        Bounding PWR Fuel Assembly Geometry for Loading Criteria Geometry2 Min        Min      Max      Max No. of    No. of      Max        Clad      Clad      Pellet  Active    Max Assembly        Fuel      Guide      Pitch        OD      Thick.      OD    Length    Load Type        Rods      Tubes1      (inch)      (inch)    (inch)    (inch)  (inch)  (MTU)
BW15H1        208          17      0.568        0.43      0.0265    0.3686    144.0  0.4807 BW15H2        208          17      0.568        0.43      0.025    0.3735    144.0  0.4807 BW15H3        208          17      0.568      0.428      0.023    0.3742    144.0  0.4807 BW15H4        208          17      0.568      0.414      0.022    0.3622    144.0  0.4690 BW17H1        264          25      0.502      0.377      0.022    0.3252    144.0  0.4681 CE14H1        176          5        0.58        0.44      0.026    0.3805    137.0  0.4115 CE16H1        236          5      0.5063      0.382      0.025      0.325    150.0  0.4463 WE14H1        179          17      0.556        0.40      0.0162    0.3674    145.2  0.4144 WE15H1        204          21      0.563      0.422      0.0242    0.3669    144.0  0.4671 WE15H2        204          21      0.563      0.417      0.0265      0.357    144.0  0.4469 WE17H1        264          25      0.496      0.372      0.0205    0.3232    144.0  0.4671 WE17H2        264          25      0.496        0.36      0.0225    0.3088    144.0  0.4327 1
Combined number of guide and instrument tubes.
2 Assembly characteristics represent cold, unirradiated, nominal configurations.
NAC International                              1.3-40
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 1.3-8      Maximum Initial Enrichment Assembly Undamaged Fuel Configuration - 0.036 g/cm2 10B Absorber Max Initial Enrichment (wt % 235U)
Zero (0)                    = C4 x Burnup (GWd/MTU) + C5 Assembly        Burnup            Burnup              18  Burnup            Burnup ID          Max. Enr.        (GWd/MTU)              (GWd/MTU)            (GWd/MTU)
(wt %)            < 18                    30                > 30 C4        C5          C4        C5        C4        C5 BW 15x15          1.9      0.0501      1.69      0.0693      1.65    0.0748      1.60 BW 17x17          1.9      0.0502      1.72      0.0687      1.70    0.0742      1.66 CE 14x14          2.1      0.0473      2.04      0.0675      2.03    0.0759      1.93 CE 16x16          2.1      0.0464      2.03      0.0657      2.06    0.0733      1.99 WE 14x14          2.2      0.0496      2.08      0.0672      2.21    0.0725      2.29 WE 15x15          1.9      0.0494      1.74      0.0683      1.72    0.0742      1.67 WE 17x17          1.9      0.0494      1.71      0.0685      1.68    0.0749      1.61 NAC International                        1.3-41
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 1.3-9      Maximum Initial enrichment Assembly Undamaged Fuel Configuration - 0.030 g/cm2 10B Absorber Max Initial Enrichment (wt % 235U)
Zero (0)                    = C4 x Burnup (GWd/MTU) + C5 Assembly        Burnup            Burnup              18  Burnup            Burnup ID          Max. Enr.        (GWd/MTU)              (GWd/MTU)            (GWd/MTU)
(wt %)            < 18                    30                > 30 C4        C5          C4        C5        C4        C5 BW 15x15          1.8      0.0507      1.61      0.0687      1.59    0.0745      1.48 BW 17x17          1.9      0.0503      1.66      0.0683      1.63    0.0733      1.59 CE 14x14          2.1      0.0468      1.95      0.0664      1.97    0.0738      1.90 CE 16x16          2.1      0.0470      1.95      0.0649      1.99    0.0727      1.90 WE 14x14          2.1      0.0492      2.03      0.0680      2.10    0.0728      2.19 WE 15x15          1.9      0.0503      1.67      0.0675      1.66    0.0747      1.54 WE 17x17          1.9      0.0494      1.64      0.0685      1.58    0.0737      1.53 NAC International                        1.3-42
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 1.3-10      Maximum Initial Enrichment Assembly Undamaged Fuel Configuration - 0.027 g/cm2 10B Absorber Max Initial Enrichment (wt % 235U)
Zero (0)                    = C4 x Burnup (GWd/MTU) + C5 Assembly        Burnup            Burnup              18  Burnup            Burnup ID          Max. Enr.        (GWd/MTU)              (GWd/MTU)            (GWd/MTU)
(wt %)            < 18                    30                > 30 C4        C5          C4        C5        C4        C5 BW 15x15          1.8      0.0508      1.58      0.0686      1.52    0.0754      1.41 BW 17x17          1.8      0.0503      1.62      0.0683      1.59    0.0748      1.47 CE 14x14          2.1      0.0471      1.92      0.0666      1.92    0.0729      1.87 CE 16x16          2.1      0.0462      1.93      0.0657      1.92    0.0747      1.75 WE 14x14          2.1      0.0499      1.98      0.0667      2.10    0.0743      2.07 WE 15x15          1.9      0.0503      1.63      0.0677      1.60    0.0749      1.46 WE 17x17          1.9      0.0497      1.60      0.0683      1.54    0.0749      1.41 NAC International                        1.3-43
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 1.3-11      Maximum Initial Enrichment - Undamaged Fuel Configuration WE15 - Optional Configurations Zero (0)                    Max Initial Enrichment (wt % 235U)
Burnup                        = C4 x Burnup (GWd/MTU) + C5
    #        Maximum.
Assemblies                  Burnup (GWd/MTU)            18  Burnup        Burnup (GWd/MTU)
Enrichment            < 18              (GWd/MTU)  30                > 30 (wt % 235U)      C4          C5          C4          C5          C4        C5 0.036 g/cm B Absorber 2 10 36            2.0        0.0497      1.93        0.0681      1.99      0.0747      2.00 35            2.1        0.0507      1.97        0.0673      2.08      0.0730      2.12 33            2.2        0.0504      2.12        0.0664      2.29      0.0745      2.32 0.030 g/cm B Absorber 2 10 36            2.0        0.0494      1.87        0.0687      1.90      0.0737      1.93 35            2.0        0.0499      1.92        0.0688      1.97      0.0740      1.99 33            2.1        0.0497      2.06        0.0686      2.15      0.0724      2.29 0.027 g/cm2 10B Absorber 36            2.0        0.0501      1.83        0.0677      1.87      0.0741      1.84 35            2.0        0.0494      1.89        0.0675      1.94      0.0735      1.96 33            2.1        0.0492      2.03        0.0674      2.12      0.0730      2.21 NAC International                          1.3-44
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 1.3-12  Maximum Initial Enrichment - PWR Damaged Fuel Configuration - 0.036 g/cm2 10B Absorber Max Initial Enrichment (wt % 235U)
Zero (0)                  = C4 x Burnup (GWd/MTU) + C5 Assembly    Burnup      Burnup        18  Burnup      30 < Burnup          50 <
ID      Max. Enr.  (GWd/MTU)      (GWd/MTU)        (GWd/MTU)          Burnup (wt %)      < 18            30              50          (GWd/MTU)
C4      C5    C4        C5      C4        C5    C4        C5 BW 15x15        1.6  0.0453    1.42  0.0681    1.29  0.0750    1.03  0.0750    0.736 BW 17x17        1.6  0.0476    1.45  0.0668    1.37  0.0712    1.17  0.0712    0.891 CE 14x14        1.9  0.0504    1.79  0.0696    1.75  0.0751    1.60  0.0751      1.60 CE 16x16        1.9  0.0484    1.79  0.0679    1.74  0.0758    1.52  0.0758      1.52 WE 14x14        1.9  0.0542    1.85  0.0729    1.85  0.0794    1.75  0.0794      1.75 WE 15x15        1.6  0.0482    1.43  0.0692    1.27  0.0738    1.08  0.0738    0.767 WE 17x17        1.6  0.0439    1.45  0.0657    1.35  0.0732    1.00  0.0732    0.700 Table 1.3-13  Maximum Initial Enrichment - PWR Damaged Fuel Configuration - 0.030 g/cm2 10B Absorber Max Initial Enrichment (wt % 235U)
Zero (0)                  = C4 x Burnup (GWd/MTU) + C5 Assembly    Burnup      Burnup        18  Burnup      30 < Burnup          50 <
ID      Max. Enr.  (GWd/MTU)      (GWd/MTU)        (GWd/MTU)          Burnup (wt %)      < 18            30              50          (GWd/MTU)
C4      C5    C4        C5      C4        C5    C4        C5 BW 15x15        1.5  0.0487    1.31  0.0660    1.26  0.0740    0.896  0.0740    0.614 BW 17x17        1.5  0.0470    1.37  0.0673    1.29  0.0745    0.937  0.0745    0.655 CE 14x14        1.8  0.0494    1.71  0.0705    1.64  0.0781    1.37  0.0781      1.37 CE 16x16        1.8  0.0489    1.71  0.0679    1.68  0.0724    1.52  0.0724      1.52 WE 14x14        1.9  0.0533    1.82  0.0725    1.76  0.0821    1.50  0.0821      1.50 WE 15x15        1.6  0.0475    1.35  0.0661    1.29  0.0746    0.859  0.0746    0.575 WE 17x17        1.6  0.0448    1.38  0.0646    1.26  0.0710    0.968  0.0710    0.691 NAC International                    1.3-45
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                  Revision 1 Table 1.3-14      Maximum Initial Enrichment - PWR Damaged Fuel Configuration - 0.027 g/cm2 10B Absorber Max Initial Enrichment (wt % 235U)
Zero (0)                        = C4 x Burnup (GWd/MTU) + C5 Assembly      Burnup        Burnup          18  Burnup      30 < Burnup            50 <
ID        Max. Enr.    (GWd/MTU)          (GWd/MTU)        (GWd/MTU)            Burnup (wt %)          < 18                30              50        (GWd/MTU)
C4      C5        C4      C5      C4        C5    C4          C5 BW 15x15        1.5    0.0471    1.30    0.0666    1.19  0.0725    0.857 0.0725      0.581 BW 17x17        1.5    0.0474    1.36    0.0652    1.27  0.0724    0.918 0.0724      0.639 CE 14x14        1.8    0.0486    1.68    0.0696    1.61  0.0778      1.32 0.0778      1.32 CE 16x16        1.8    0.0493    1.66    0.0660    1.64  0.0761      1.33 0.0761      1.33 WE 14x14        1.8    0.0535    1.71    0.0694    1.75  0.0805      1.52 0.0805      1.52 WE 15x15        1.5    0.0465    1.33    0.0664    1.24  0.0710    0.968 0.0710      0.685 WE 17x17        1.5    0.0447    1.31    0.0647    1.25  0.0714    0.846 0.0714      0.564 Table 1.3-15      Maximum Initial Enrichment - Damaged Fuel Configuration WE15 -
Optional Configurations Max Initial Enrichment (wt % 235U)
Zero (0)                      = C4 x Burnup (GWd/MTU) + C5
    # of        Burnup      Burnup          18  Burnup        30 < Burnup          50 <
Assemblies    Max. Enr.  (GWd/MTU)          (GWd/MTU)        (GWd/MTU)          Burnup (wt %)        < 18                30              50          (GWd/MTU)
C4      C5        C4      C5      C4        C5      C4        C5 0.036 g/cm B Absorber 2 10 36            1.6    0.0483 1.53 0.0721 1.35 0.0750 1.17                  0.0750    0.851 35            1.7    0.0532 1.51 0.0722 1.45 0.0778 1.14                  0.0778      1.14 33            1.7    0.0524 1.60 0.0734 1.52 0.0791 1.22                  0.0791      1.22 0.030 g/cm2 10B Absorber 36            1.6    0.0483 1.48 0.0707 1.32 0.0739 1.15                  0.0739    0.811 35            1.6    0.0499 1.48 0.0722 1.34 0.0733 1.20                  0.0733    0.847 33            1.7    0.0523 1.52 0.0728 1.40 0.0780 1.19                  0.0780      1.19 0.027 g/cm2 10B Absorber 36            1.6    0.0473 1.42 0.0668 1.33 0.0731 1.02                  0.0731    0.693 35            1.6    0.0477 1.46 0.0736 1.27 0.0738 1.13                  0.0738    0.775 33            1.7    0.0491 1.51 0.0718 1.41 0.0784 1.09                  0.0784      1.09 NAC International                          1.3-46
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 1.3-16          Additional Fuel Assembly Cool Time Required to Load Nonfuel Hardware Additional Cool Time (years)
Core (Assembly)          BPAA/HFRA              GTPD            RCC        NSA CE 14x14                    --                  --              0.4        --
WE 14x14                  1.1                  0.1              0.3        1.1 WE 15x15                  1.3                  0.1              6.9        1.3 B&W 15x15                  0.1                  0.2              0.3        0.2 CE 16x16                    --                  --              0.4        --
WE 17x17                  1.4                  0.2              6.7        1.4 B&W 17x17                  0.1                  0.2              0.3        0.2 Note: Additional fuel assembly cooling time to be added to the minimum fuel assembly cool time based on fuel assembly initial enrichment and fuel assembly average burnup listed in the loading tables in Chapter 5.
Table 1.3-17        Allowed BPRA Burnup and Cool Time Combinations Limiting                                      Fuel Assembly Basis            WE 1414      WE 1515      B&W 1515 WE 1717        B&W 1717 Min. Cool Time (yr)          8.0          8.0            8.0          8.0          8.0 for Exposure  70 GWd/MTU Max 60Co Activity (Ci)        704          901            26            894          27 Note: Specified minimum cool times for BPRAs are independent of the required minimum cool times for the fuel assembly containing the BPRA.
Table 1.3-18        Allowed GTPD Burnup and Cool Time Combinations Limiting                                      Fuel Assembly Basis            WE 1414      WE 1515      B&W 1515        WE 1717    B&W 1717 Min. Cool Time (yr)          8.0          8.0            8.0            8.0          8.0 for Exposure  180 GWd/MTU Max 60Co Activity (Ci)        60.5        73.1          99.2          93.3        107.8 Note: Specified minimum cool times for thimble plugs are independent of the required minimum cool times for the fuel assembly containing the thimble plug.
NAC International                                1.3-47
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                              Revision 1 Table 1.3-19        BWR Fuel Assembly Characteristics Fuel Class Characteristic                        7x7          8x8            9x9            10x10 Base Fuel Type  a SPC, GE        SPC, GE        SPC, GE        SPC, GE, ABB Max Initial Enrichment (wt% 235U)b                    4.5            4.5            4.5            4.5 Number of Fuel Rods                                    48            59            72              91d 49            60            74d              92d 61            76            96d,e 62            79            100e 63            80 64c Max Assembly Average Burnup (MWd/MTU)                60,000        60,000        60,000          60,000 Min Cool Time (years)                                  4              4              4              4 Min Average Enrichment (wt% 235U)                      1.3            1.3            1.3            1.3 Max Weight (lb) per Storage Location              See Note 1    See Note 1    See Note 1    See Note 1 Max Decay Heat (Watts) per Fuel Location              253          253            253            253 Each BWR fuel assembly may have a zirconium-based alloy channel  120 mil thick.
Assembly weight includes the weight of the channel.
Maximum initial enrichment is the peak planar-average enrichment.
Water rods may occupy more than one fuel lattice location. Fuel assembly to contain nominal number of water rods for the specific assembly design.
All enrichment values are nominal pre-irradiation fabrication values.
Spacers may be used to axially position fuel assemblies to facilitate handling.
Notes:
: 1. Maximum weight per storage location is 739 lbs (including fuel spacers) with a maximum contents weight of 62,656 lbs.
a Indicates assembly vendor/type referenced for fuel input data. Fuel acceptability for loading is not restricted to the indicated vendor/type provided that the fuel assembly meets the limits listed in Table 6..2.1-1. Table 6.2.1-2 contains vendor information by fuel rod array. Abbreviations are as follows:
General Electric/Global Nuclear Fuels (GE), Exxon/Advanced Nuclear Fuels/Siemens Power Corporation (SPC).
b Note: When crediting moderator exclusion, the maximum allowed initial enrichment is 5 wt% 235U for all basket/absorber combinations.
c May be composed of four subchannel clusters.
d Assemblies may contain partial-length fuel rods.
e Composed of four subchannel clusters.
NAC International                                  1.3-48
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Table 1.3-20          BWR Fuel Assembly Loading Criteria Geometry3,4 Min        Min      Max    Max Number        Number of        Max        Clad      Clad    Pellet Active    Max Assembly    of Fuel    Partial Length Pitch            OD      Thick.      OD  Length  Loading Type      Rods          Rods1          (inch)      (inch)    (inch)    (inch)  (inch)  (MTU)
B7_48A        48            N/A          0.7380 0.5700        0.03600    0.4900  144.0    0.1981 B7_49A        49            N/A          0.7380 0.5630        0.03200    0.4880  146.0    0.2034 B7_49B        49            N/A          0.7380 0.5630        0.03200    0.4910  150.0    0.2037 B8_59A        59            N/A          0.6400 0.4930        0.03400    0.4160  150.0    0.1828 B8_60A        60            N/A          0.6417 0.4840        0.03150    0.4110  150.0    0.1815 B8_60B        60            N/A          0.6400 0.4830        0.03000    0.4140  150.0    0.1841 B8_61B        61            N/A          0.6400 0.4830        0.03000    0.4140  150.0    0.1872 B8_62A        62            N/A          0.6417 0.4830        0.02900    0.4160  150.0    0.1921 B8_63A        63            N/A          0.6420 0.4840        0.02725    0.4195  150.0    0.1985 B8_64A        64            N/A          0.6420 0.4840        0.02725    0.4195  150.0    0.1996 B8_64B5        64            N/A          0.6090 0.4576        0.02900    0.3913  150.0    0.1755 B9_72A        72            N/A          0.5720 0.4330        0.02600    0.3740  150.0    0.1803 B9_74A      742              8          0.5720 0.4240        0.02390    0.3760  150.0    0.1873 B9_76A        76            N/A          0.5720 0.4170        0.02090    0.3750  150.0    0.1914 B9_79A        79            N/A          0.5720 0.4240        0.02390    0.3760  150.0    0.1979 B9_80A        80            N/A          0.5720 0.4230        0.02950    0.3565  150.0    0.1821 B10_91A      912              8          0.5100 0.3957        0.02385    0.3420  150.0    0.1906 B10_92A      922            14          0.5100 0.4040        0.02600    0.3455  150.0    0.1946 B10_96A5      962            12          0.4880 0.3780        0.02430    0.3224  150.0    0.1787 B10_100A5      100            N/A          0.4880 0.3780        0.02430    0.3224  150.0    0.1861 1
Location of the partial length rods is illustrated in Figure 1.3-8.
2 Assemblies may contain partial-length fuel rods.
3 Assembly characteristics represent cold, unirradiated, nominal configurations.
4 Maximum channel thickness allowed is 120 mils (nominal).
5 Composed of four subchannel clusters.
NAC International                              1.3-49
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 1.3-21      BWR Fuel Assembly Loading Criteria - Enrichment Limits for 87-Assembly and 82-Assembly Configurations with Axial Blanket Max. Initial Enrichmenta (wt % 235U)
Absorberb 0.027 10B Absorberb 0.0225 10B            Absorberb 0.02 10B g/cm2                    g/cm2                    g/cm2 87-Assy 82-Assy          87-Assy      82-Assy    87-Assy    82-Assy Basket      Basket        Basket        Basket      Basket      Basket B7_48A      4.0%        4.5%          3.7%          4.5%        3.6%        4.4%
B7_49A      3.8%        4.5%          3.6%          4.4%        3.5%        4.3%
B7_49B      3.8%        4.5%          3.6%          4.4%        3.5%        4.2%
B8_59A      3.9%        4.5%          3.7%          4.5%        3.6%        4.3%
B8_60A      3.8%        4.5%          3.7%          4.4%        3.5%        4.2%
B8_60B      3.8%        4.5%          3.6%          4.3%        3.5%        4.2%
B8_61B      3.8%        4.5%          3.6%          4.3%        3.5%        4.2%
B8_62A      3.8%        4.5%          3.6%          4.3%        3.5%        4.1%
B8_63A      3.8%        4.5%          3.6%          4.3%        3.4%        4.2%
B8_64A      3.8%        4.5%          3.6%          4.3%        3.5%        4.2%
B8_64B      3.6%        4.3%          3.4%          4.1%        3.3%        4.0%
B9_72A      3.8%        4.5%          3.6%          4.3%        3.4%        4.1%
B9_74A      3.7%        4.3%          3.4%          4.1%        3.4%        4.0%
B9_76A      3.5%        4.2%          3.4%          4.0%        3.3%        3.9%
B9_79A      3.7%        4.4%          3.4%          4.2%        3.3%        4.0%
B9_80A      3.8%        4.5%          3.6%          4.3%        3.5%        4.2%
B10_91A    3.7%        4.5%          3.6%          4.3%        3.5%        4.1%
B10_92A    3.8%        4.5%          3.6%          4.3%        3.5%        4.1%
B10_96A    3.7%        4.3%          3.5%          4.1%        3.4%        4.0%
B10_100A    3.6%        4.4%          3.5%          4.1%        3.4%        4.0%
Note: When crediting moderator exclusion, the maximum allowed initial enrichment is 5 wt% 235U for all basket/absorber combinations.
a Maximum planar average.
b Borated aluminum neutron absorber sheet effective areal 10B density.
NAC International                            1.3-50
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                              Revision 1 Table 1.3-22      Undamaged BWR Fuel Assembly Loading Criteria (Enrichment Limits for Fuel Without Axial Blanket)
Max. Initial Enrichmenta ( wt % 235U)
Absorberb 0.027 10B g/cm2 Absorberb 0.0225 10B g/cm2 Absorberb 0.02 10B g/cm2 Fuel    87-Assy      82-Assy      87-Assy      82-Assy    87-Assy      82-Assy Type      Basket      Basket        Basket      Basket      Basket        Basket B7_48A      3.9%          4.5%        3.7%        4.5%        3.6%          4.3%
B7_49A      3.7%          4.5%        3.6%        4.3%        3.4%          4.1%
B7_49B      3.7%          4.5%        3.6%        4.3%        3.5%          4.2%
B8_59A      3.8%          4.5%        3.7%        4.4%        3.5%          4.3%
B8_60A      3.7%          4.5%        3.6%        4.3%        3.5%          4.1%
B8_60B      3.7%          4.4%        3.5%        4.2%        3.4%          4.1%
B8_61B      3.7%          4.5%        3.6%        4.3%        3.5%          4.1%
B8_62A      3.6%          4.4%        3.5%        4.2%        3.4%          4.1%
B8_63A      3.7%          4.4%        3.5%        4.2%        3.4%          4.1%
B8_64A      3.7%          4.5%        3.5%        4.3%        3.4%          4.1%
B8_64B      3.6%          4.2%        3.4%        4.1%        3.3%          4.0%
B9_72A      3.7%          4.4%        3.5%        4.2%        3.4%          4.1%
B9_74A      3.6%          4.2%        3.4%        4.1%        3.3%          4.0%
B9_76A      3.5%          4.1%        3.3%        4.0%        3.2%          3.8%
B9_79A      3.5%          4.2%        3.4%        4.1%        3.2%          3.9%
B9_80A      3.7%          4.5%        3.6%        4.3%        3.5%          4.1%
B10_91A      3.7%          4.4%        3.5%        4.2%        3.4%          4.1%
B10_92A      3.7%          4.4%        3.6%        4.2%        3.4%          4.1%
B10_96A      3.6%          4.2%        3.4%        4.1%        3.4%          4.0%
B10_100A      3.6%          4.3%        3.4%        4.0%        3.3%          3.9%
Note: When crediting moderator exclusion, the maximum allowed initial enrichment is 5 wt% 235U for all basket/absorber combinations.
a Maximum planar average.
b Borated aluminum neutron absorber sheet effective areal 10B density.
NAC International                                1.3-51
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 1.3.3          Special Requirements for Plutonium All shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than 0.74 TBq (20 Ci) of plutonium.
1.3.4          Operational Features The MAGNATRAN is designed for easy loading, unloading and handling at a nuclear facility.
Cask loading and unloading operations are accomplished dry using a transfer cask to handle the TSC containing the fuel or GTCC waste. Detailed operating procedures are presented in Chapter 7.
The cask lid and the port cover are one-piece components designed to reduce handling times and to maintain personnel dose rates at levels that are as low as is reasonably achievable (ALARA).
For improved handling operations, a quick-disconnect fitting is used in the lid port. All operational features are shown on the License Drawings provided in Section 1.4-3.
NAC International                              1.3-52
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 1.4            Appendix This section contains the references, drawings and detail not presented in the previous sections.
1.4.1          References
: 1. 10 CFR 71, Packaging and Transportation of Radioactive Materials, Code of Federal Regulations, US Nuclear Regulatory Commission, Washington, DC.
: 2. Regulatory Guide 7.9, Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material, Revision 2, US Nuclear Regulatory Commission, Washington, DC, March 2005.
: 3. NUREG-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, US Nuclear Regulatory Commission, Washington, DC, March 2000.
: 4. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB, Class I Components, American Society of Mechanical Engineers, New York, NY, 2001 Edition with 2003 Addenda.
: 5. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NG, Core Support Structures, American Society of Mechanical Engineers, New York, NY, 2001 Edition with 2003 Addenda.
: 6. US NRC Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material, Revision 1, June 1986.
: 7. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF, Component Supports, American Society of Mechanical Engineers, New York, NY, 2001 Edition with 2003 Addenda.
NAC International                            1.4-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 1.4.2          Quality Assurance The NRC has assigned Approval Number 18 to the NAC International Inc. Quality Assurance program, which satisfies the provisions of Subpart H of 10 CFR 71 and Subpart G of 10 CFR 72.
The quality assurance program provides control over all activities designated important to safety that occur in the design, fabrication, assembly, testing, maintenance, repair, modification and use of the packaging for transportation of radioactive materials. The program applies controls to the various activities in a graded approach, such that the effort expended on an activity is consistent with its importance to safety. The program is consistent in approach and method to NRC Regulatory Guide 7.10.
In accordance with the requirements of 10 CFR 71.37(a), the approved quality assurance program has been applied to the design and analysis of the packaging and will be applied to the packaging fabrication, assembly, testing, maintenance, and repair modification. An equivalent NRC-approved program maintained by a registered user shall be applied to the use of the packaging.
NAC International                              1.4-2
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                            Revision 1 1.4.3          License Drawings This section presents the list of License Drawings for MAGNATRAN.
Drawing                                                                                    Revision Number                                          Title                                        No.
71160-500      Shipping Configuration, Transport Cask, MAGNATRAN                                2NP 71160-501      Assembly, Transport Cask, MAGNATRAN                                                0 71160-502      Transport Cask Body, MAGNATRAN                                                  5NP 71160-504      Misc. Details, Transport Cask, MAGNATRAN                                          2 71160-505      Lid Assembly, Transport Cask, MAGNATRAN                                          6NP 71160-506      Cask Cavity Spacer, MAGNATRAN                                                      1 Personnel Barrier, Shipping Configuration, Transport Cask, 71160-511      MAGNATRAN                                                                          1 71160-512      Nameplate, MAGNATRAN                                                              1 71160-530      Misc. Details, Impact Limiter, MAGNATRAN                                          1 71160-531      Impact Limiter, Transport Cask, MAGNATRAN                                        2P*
71160-551      Fuel Tube Assembly, MAGNASTOR - 37 PWR                                          10NP 71160-559      Lifting Trunnion, Transport Cask, MAGNATRAN                                        0 71160-571      Details, Neutron Absorber, Retainer, MAGNASTOR - 37 PWR                        10NP 71160-572      Details, Neutron Absorber, Retainer, MAGNASTOR - 87 BWR                          9NP 71160-574      Basket Support Weldments, MAGNASTOR - 37 PWR                                      6 71160-575      Basket Assembly, MAGNASTOR - 37 PWR                                            11NP 71160-581      Shell Weldment, TSC, MAGNASTOR                                                    5 71160-584      Details, TSC, MAGNASTOR                                                            8 71160-585      TSC Assembly, MAGNASTOR                                                          13 71160-591      Fuel Tube Assembly, MAGNASTOR - 87 BWR                                          8NP 71160-598      Basket Support Weldments, MAGNASTOR - 87 BWR                                    7NP 71160-599      Basket Assembly, MAGNASTOR - 87 BWR                                              8NP 71160-600      Basket Assembly, MAGNASTOR - 82 BWR                                              5NP 71160-601      Damaged Fuel Can (DFC), Assembly, MAGNASTOR                                        0 71160-602      Damaged Fuel Can (DFC), Details, MAGNASTOR                                        1
* License drawing is proprietary in its entirety and not included in the non-proprietary version of the SAR. It is included on the List of License Drawings for reference only.
NAC International                                  1.4-3
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 1.4.3            License Drawings (contd)
Drawing                                                                                      Revision Number                                            Title                                        No.
71160-620        Top Fuel Spacer, MAGNASTOR                                                      1P*
71160-671        Details, Neutron Absorber, Retainer, For DF Corner Weldment,                    2NP MAGNASTOR - 37 PWR 71160-673        Damaged Fuel Can (DFC), Spacer, MAGNASTOR                                        1 71160-674        DF Corner Weldment, MAGNASTOR                                                  3NP 71160-675        DF Basket Assembly, 37 Assembly PWR, MAGNASTOR                                  3NP 71160-681        DF, Shell Weldment, TSC, MAGNASTOR                                                1 71160-684        Details, DF Closure Lid, MAGNASTOR                                                2 71160-685        DF, TSC Assembly, MAGNASTOR                                                      8 71160-711        GTCC Waste Basket Liner, MAGNASTOR                                                1 71160-781        Shell Weldment, GTCC TSC, MAGNASTOR                                              1 71160-785        GTCC TSC, Assembly, MAGNASTOR                                                    4
* License drawing is proprietary in its entirety and not included in the non-proprietary version of the SAR. It is included on the List of License Drawings for reference only.
NAC International                                  1.4-4
 
The following drawings have been withheld as Sensitive Unclassified Non-Safeguards Information-Security-Related Information:
71160-500, Rev. 2NP - Shipping Configuration, Transport Cask, MAGNATRAN 71160-501, Rev. 0 - Assembly, Transport Cask, MAGNATRAN 71160-502, Rev. 5NP - Transport Cask Body, MAGNATRAN 71160-504, Rev. 2 - Misc. Details, Transport Cask, MAGNATRAN 71160-505, Rev. 6NP - Lid Assembly, Transport Cask, MAGNATRAN 71160-506, Rev. 1 - Cask Cavity Spacer, MAGNATRAN 71160-511, Rev. 1 - Personnel Barrier, Shipping Configuration, Transport Cask, MAGNATRAN 71160-512, Rev. 1 - Nameplate, MAGNATRAN 71160-530, Rev. 1 - Misc. Details, Impact Limiter, MAGNATRAN 71160-551, Rev. 10NP - Fuel Tube Assembly, MAGNASTOR - 37 PWR 71160-559, Rev. 0 - Lifting Trunnion, Transport Cask, MAGNATRAN 71160-571, Rev. -
71160-572, Rev. 9NP - Details, Neutron Absorber, Retainer, MAGNASTOR - 87 BWR 71160-574, Rev. 6 - Basket Support Weldments, MAGNASTOR - 37 PWR 71160-575, Rev. 11NP - Basket Assembly, MAGNASTOR - 37 PWR 71160-581, Rev. 5 - Shell Weldment, TSC, MAGNASTOR 71160-584, Rev. 8 - Details, TSC, MAGNASTOR 71160-585, Rev. 13 - TSC Assembly, MAGNASTOR 71160-591, Rev. 8NP - Fuel Tube Assembly, MAGNASTOR - 87 BWR 71160-598, Rev. 7NP - Basket Support Weldments, MAGNASTOR - 87 BWR 71160-599, Rev. 8NP - Basket Assembly, MAGNASTOR - 87 BWR 71160-600, Rev. 5NP - Basket Assembly, MAGNASTOR - 82 BWR 71160-601, Rev. 0 - Damaged Fuel Can (DFC), Assembly, MAGNASTOR 71160-602, Rev. 1- Damaged Fuel Can (DFC), Details, MAGNASTOR 71160-671, Rev. 2NP - Details, Neutron Absorber, Retainer, For DF Corner Weldment, MAGNASTOR - 37 PWR 71160-673, Rev. 1 - Damaged Fuel Can (DFC), Spacer, MAGNASTOR 71160-674, Rev. 3NP - DF Corner Weldment, MAGNASTOR 71160-675, Rev. 3NP - DF Basket Assembly, 37 Assembly PWR, MAGNASTOR 71160-681, Rev. 1 - DF, Shell Weldment, TSC, MAGNASTOR 71160-684, Rev. 2 - Details, DF Closure Lid, MAGNASTOR 71160-685, Rev. 8 - DF TSC Assembly, MAGNASTOR 71160-711, Rev. 1 - GTCC Waste Basket Liner, MAGNASTOR 71160-781, Rev. 1 - Shell Weldment, GTCC TSC, MAGNASTOR 71160-785, Rev. 4 - GTCC TSC, Assembly, MAGNASTOR
 
MAGNATRAN Transport Cask SAR                                                                                    January 2022 Docket No. 71-9356                                                                                                    Revision 1 Chapter 2 Structural Evaluation Table of Contents 2    STRUCTURAL EVALUATION .....................................................................................2-1 2.1 Description of Structural Design .............................................................................2.1-1 2.1.1  Discussion....................................................................................................2.1.1-1 2.1.2  Design Criteria.............................................................................................2.1.2-1 2.1.3  Weights and Centers of Gravity ..................................................................2.1.3-1 2.1.4  Identification of Codes and Standards for Packaging .................................2.1.4-1 2.2 Materials ..................................................................................................................2.2-1 2.2.1  Material Properties and Specifications ........................................................2.2.1-1 2.2.2  Chemical, Galvanic or Other Reactions ......................................................2.2.2-1 2.2.3  Effects of Radiation on Materials ................................................................2.2.3-1 2.3 Fabrication and Examination ...................................................................................2.3-1 2.3.1  Fabrication ...................................................................................................2.3.1-1 2.3.2  Examination .................................................................................................2.3.2-1 2.4 General Requirements for All Packages..................................................................2.4-1 2.4.1  Minimum Package Size ..................................................................................2.4-1 2.4.2  Tamper-Indicating Feature .............................................................................2.4-1 2.4.3  Positive Closure ..............................................................................................2.4-1 2.4.4  Chemical, Galvanic, Other Reactions and Radiation .....................................2.4-1 2.4.5  Valves and Pressure Relief Devices ...............................................................2.4-2 2.4.6  Loss or Dispersal of Radioactive Contents ....................................................2.4-2 2.4.7  Surface Temperature During Transport..........................................................2.4-2 2.4.8  Continuous Venting During Transport ...........................................................2.4-2 2.5 Lifting and Tie-Down Standards for All Packages .................................................2.5-1 2.5.1  Lifting Devices ............................................................................................2.5.1-1 2.5.2  Tie-Down Devices .......................................................................................2.5.2-1 2.6 Normal Conditions of Transport .............................................................................2.6-1 2.6.1  Heat..............................................................................................................2.6.1-1 2.6.2  Cold .............................................................................................................2.6.2-1 2.6.3  Reduced External Pressure ..........................................................................2.6.3-1 2.6.4  Increased External Pressure .........................................................................2.6.4-1 2.6.5  Vibration ......................................................................................................2.6.5-1 2.6.6  Water Spray .................................................................................................2.6.6-1 2.6.7  Free Drop .....................................................................................................2.6.7-1 2.6.8  Corner Drop .................................................................................................2.6.8-1 2.6.9  Compression ................................................................................................2.6.9-1 2.6.10  Penetration .................................................................................................2.6.10-1 2.6.11  Fabrication Stresses ...................................................................................2.6.11-1 NAC International                                      2-i
 
MAGNATRAN Transport Cask SAR                                                                                    January 2022 Docket No. 71-9356                                                                                                    Revision 1 Table of Contents (contd) 2.6.12  Transportable Storage Canister (TSC) Analysis - Normal Conditions of Transport ............................................................................................... 2.6.12-1 2.6.13  PWR Fuel Basket Analysis - Normal Conditions of Transport ................ 2.6.13-1 2.6.14  PWR DF Basket Analysis - Normal Conditions of Transport .................. 2.6.14-1 2.6.15  BWR Fuel Basket Analysis - Normal Conditions of Transport ............... 2.6.15-1 2.6.16  GTCC Transportable Storage Canister and Waste Basket Liner Analysis - Normal Conditions of Transport .............................................. 2.6.16-1 2.6.17  Cask Cavity Spacer - Normal Conditions of Transport ............................ 2.6.17-1 2.7 Hypothetical Accident Conditions .......................................................................... 2.7-1 2.7.1    Free Drop (30-Foot)..................................................................................... 2.7.1-1 2.7.2    Crush............................................................................................................ 2.7.2-1 2.7.3    Puncture ....................................................................................................... 2.7.3-1 2.7.4    Structural Evaluation - Thermal (Fire Accident) ......................................... 2.7.4-1 2.7.5    Immersion - Fissile Material ....................................................................... 2.7.5-1 2.7.6    Immersion - All Packages ........................................................................... 2.7.6-1 2.7.7    Deep Water (290 psi) Immersion Test (for Type B Packages Containing more than 105 A2)...................................................................... 2.7.7-1 2.7.8    Transportable Storage Canister Analysis - Accident Conditions ............... 2.7.8-1 2.7.9    PWR Fuel Basket Analysis - Accident Conditions .................................... 2.7.9-1 2.7.10 PWR DF Basket Analysis - Accident Conditions..................................... 2.7.10-1 2.7.11 BWR Fuel Basket Analysis - Accident Conditions .................................. 2.7.11-1 2.7.12 GTCC -TSC and Waste Basket Liner Analysis - Accident Conditions ... 2.7.12-1 2.7.13 Fuel Basket Stability Evaluation ............................................................... 2.7.13-1 2.7.14 Cask Inner Shell Buckling Analysis - Accident Conditions ..................... 2.7.14-1 2.7.15 Cask Cavity Spacer - Hypothetical Accident Conditions ......................... 2.7.15-1 2.7.16 Summary of Damage - Accident Conditions ............................................ 2.7.16-1 2.8    Accident Conditions for Air Transport of Plutonium ............................................. 2.8-1 2.9    Accident Conditions for Fissile Material Packages for Air Transport ................... 2.9-1 2.10 Special Form ......................................................................................................... 2.10-1 2.11 Fuel Rod Evaluations - Hypothetical Accident Conditions ................................. 2.11-1 2.11.1 PWR Fuel Rod Evaluation ........................................................................ 2.11.1-1 2.11.2 BWR Fuel Rod Evaluation ........................................................................ 2.11.2-1 2.11.3 RCCA Spacer Drop Evaluation ................................................................. 2.11.3-1 2.11.4 Side Drop Evaluation................................................................................. 2.11.4-1 2.11.5 Thermal Evaluation of Fuel Rods.............................................................. 2.11.5-1 2.11.6 Fatigue Evaluation of Fuel Rods ............................................................... 2.11.6-1 NAC International                                    2-ii
 
MAGNATRAN Transport Cask SAR                                                                                  January 2022 Docket No. 71-9356                                                                                                  Revision 1 Table of Contents(contd) 2.12 Appendix ...............................................................................................................2.12-1 2.12.1  References .................................................................................................2.12.1-1 2.12.2  Structural Evaluation Detail ......................................................................2.12.2-1 2.12.3  Structural Evaluation for PWR Basket Without Shims for Weldments ....2.12.3-1 NAC International                                  2-iii
 
MAGNATRAN Transport Cask SAR                                                                              January 2022 Docket No. 71-9356                                                                                              Revision 1 List of Figures Figure 2.5.1-1  MAGNATRAN Transport Cask Lifting Trunnion Finite Element Model Detail ......................................................................................... 2.5.1-7 Figure 2.5.1-2  Lifting Trunnion and Top Forging ........................................................ 2.5.1-8 Figure 2.5.2-1  Diagram of Transport Cask in Shipping Configuration ...................... 2.5.2-14 Figure 2.6.7-1  Three-Dimensional View of the MAGNATRAN Impact Limiter .. 2.6.7.5-17 Figure 2.6.7-2  Cross-Sectional View of the MAGNATRAN Impact Limiter ........ 2.6.7.5-18 Figure 2.6.7-3  LS-DYNA Model of the MAGNATRAN Transport Cask with Impact Limiters ................................................................................ 2.6.7.5-19 Figure 2.6.7-4  LS-DYNA Model of the Solid Elements of MAGNATRAN Impact Limiters ................................................................................ 2.6.7.5-20 Figure 2.6.7-5  LS-DYNA Model of the Shell and Beam Elements of MAGNATRAN Impact Limiters ..................................................... 2.6.7.5-21 Figure 2.6.7-6  Cask Drop Orientations.................................................................... 2.6.7.5-22 Figure 2.6.7-7  Acceleration Time-History for 1-ft Side Drop (Cold Condition) .... 2.6.7.5-23 Figure 2.6.7-8  Acceleration Time-History for 1-ft Side Drop (Hot Condition) ...... 2.6.7.5-23 Figure 2.6.7-9  Acceleration Time-History for 1-ft End Drop (Cold Condition) ..... 2.6.7.5-24 Figure 2.6.7-10 Acceleration Time-History for 1-ft End Drop (Hot Condition)....... 2.6.7.5-24 Figure 2.6.7-11 Acceleration Time-History for 1-ft Corner Drop (Cold Condition) ........................................................................................ 2.6.7.5-25 Figure 2.6.7-12 Acceleration Time-History for 1-ft Corner Drop (Hot Condition) ........................................................................................ 2.6.7.5-25 Figure 2.6.7-13 Acceleration Time-History for 30-ft Side Drop (Cold Condition) ........................................................................................ 2.6.7.5-26 Figure 2.6.7-14 Acceleration Time-History for 30-ft Side Drop (Hot Condition) .... 2.6.7.5-26 Figure 2.6.7-15 Acceleration Time-History for 30-ft End Drop (Cold Condition) ........................................................................................ 2.6.7.5-27 Figure 2.6.7-16 Acceleration Time-History for 30-ft End Drop (Hot Condition)..... 2.6.7.5-27 Figure 2.6.7-17 Acceleration Time-History for 30-ft Corner Drop (Cold Condition) ........................................................................................ 2.6.7.5-28 Figure 2.6.7-18 Acceleration Time-History for 30-ft Corner Drop (Hot Condition) ........................................................................................ 2.6.7.5-28 Figure 2.6.7-19 Anchorage Detail of the Retaining Rod at the End of the Impact Limiter ................................................................................. 2.6.7.5-29 Figure 2.6.7-20 Static Stress-Strain Curve for Balsa Wood at Parallel-to-Grain Direction Under Cold Temperature ................................................ 2.6.7.5-30 Figure 2.6.7-21 Static Stress-Strain Curve for Balsa Wood at Perpendicular-to-Grain Direction Under Cold Temperature ...................................... 2.6.7.5-30 Figure 2.6.7-22 Static Stress-Strain Curve for Balsa Wood at Parallel-to-Grain Direction Under Hot Temperature .................................................. 2.6.7.5-31 Figure 2.6.7-23 Static Stress-Strain Curve for Balsa Wood at Perpendicular-to-Grain Direction Under Hot Temperature ........................................ 2.6.7.5-31 Figure 2.6.7-24 Neutron Shield Assembly Layout .................................................... 2.6.7.7-16 Figure 2.6.7-25 Neutron Shield Assembly Finite Element Model ............................ 2.6.7.7-17 NAC International                              2-iv
 
MAGNATRAN Transport Cask SAR                                                                              January 2022 Docket No. 71-9356                                                                                              Revision 1 List of Figures (contd)
Figure 2.6.12-1  TSC and Basket ...................................................................................2.6.12-2 Figure 2.6.12-2  TSC Finite Element Model A ...........................................................2.6.12.2-4 Figure 2.6.12-3  TSC Finite Element Model B ...........................................................2.6.12.2-5 Figure 2.6.12-4  Identification of Sections for Evaluating Linearized Stresses in TSC for FE Model A ........................................................................2.6.12.2-6 Figure 2.6.12-5  Identification of Sections for Evaluating Linearized Stresses in TSC for FE Models B and C ............................................................2.6.12.2-7 Figure 2.6.13-1  Expanded View of PWR Basket..........................................................2.6.13-2 Figure 2.6.13-2  Bolted Attachment Details ...............................................................2.6.13.1-2 Figure 2.6.13-3  PWR Basket Finite Element Model - 0&deg; Basket Orientation ...........2.6.13.2-3 Figure 2.6.13-4  PWR Basket Finite Element Model - 45 Basket Orientation .........2.6.13.2-4 Figure 2.6.13-5  Pin-Slot Connection Model Detail ...................................................2.6.13.2-5 Figure 2.6.13-6  PWR Basket Boundary Conditions - 0&deg; Basket Orientation............2.6.13.2-6 Figure 2.6.13-7  PWR Basket Boundary Conditions - 45 Basket Orientation..........2.6.13.2-7 Figure 2.6.13-8  Fuel Tube Array and Section Cuts - 0&deg; Basket Orientation .............2.6.13.2-8 Figure 2.6.13-9  Fuel Tube Array and Section Cuts - 45&deg; Basket Orientation ...........2.6.13.2-9 Figure 2.6.13-10 Corner Support Weldment Section Cuts - 0&deg; Basket Orientation ..2.6.13.2-10 Figure 2.6.13-11 Corner Support Weldment Section Cuts - 45&deg; Basket Orientation 2.6.13.2-11 Figure 2.6.13-12 Side Support Weldment Section Cuts - 0&deg; Basket Orientation......2.6.13.2-12 Figure 2.6.13-13 Side Support Weldment Section Cuts - 45 Basket Orientation....2.6.13.2-13 Figure 2.6.13-14 Modeling of Fuel Tube Corner Moment Release (Hinge) ...............2.6.13.6-3 Figure 2.6.13-15 Finite Element Model for PWR Retainer Strip and Neutron Absorber ...........................................................................................2.6.13.7-4 Figure 2.6.14 1  PWR DF Basket Finite Element Model - 0&deg; Basket Orientation .....2.6.14.1-2 Figure 2.6.14 2  PWR DF Basket Finite Element Model - 45&deg; Basket Orientation ...2.6.14.1-3 Figure 2.6.14 3  PWR DF Basket Fuel Tube Array and Section Cuts - 0&deg; Basket Orientation ........................................................................................2.6.14.1-4 Figure 2.6.14 4  PWR DF Basket Fuel Tube Array and Section Cuts - 45&deg; Basket Orientation ........................................................................................2.6.14.1-5 Figure 2.6.14 5  DF Corner Support Weldment Section Cuts - 0&deg; Basket Orientation ........................................................................................2.6.14.1-6 Figure 2.6.14 6  DF Corner Support Weldment Section Cuts - 45&deg; Basket Orientation ........................................................................................2.6.14.1-7 Figure 2.6.14 7  DF Corner Weldment Gusset Section Cuts ......................................2.6.14.1-8 Figure 2.6.15-1  Expanded View of BWR Basket .........................................................2.6.15-2 Figure 2.6.15-2  Bolted Attachment Details ...............................................................2.6.15.1-2 Figure 2.6.15-3  BWR Basket Finite Element Model - 0&deg; Basket Orientation ..........2.6.15.2-3 Figure 2.6.15-4  BWR Basket Periodic Model - 45 Basket Orientation...................2.6.15.2-4 Figure 2.6.15-5  Pin-Slot Connection Model Detail for BWR Basket ........................2.6.15.2-5 Figure 2.6.15-6  BWR Basket Boundary Conditions - 0&deg; Basket Orientation ...........2.6.15.2-6 Figure 2.6.15-7  BWR Basket Boundary Conditions - 45 Basket Orientation .........2.6.15.2-7 Figure 2.6.15-8  Fuel Tube Array and Section Cuts - 0&deg; Basket Orientation .............2.6.15.2-8 Figure 2.6.15-9  Fuel Tube Array and Section Cuts - 45&deg; Basket Orientation ...........2.6.15.2-9 NAC International                                2-v
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Figures (contd)
Figure 2.6.15-10 Corner Support Weldment Section Cuts - 0&deg; Basket Orientation . 2.6.15.2-10 Figure 2.6.15-11 Corner Support Weldment Section Cuts - 45&deg; Basket Orientation 2.6.15.2-11 Figure 2.6.15-12 Side Support Weldment Section Cuts - 0&deg; Basket Orientation ..... 2.6.15.2-12 Figure 2.6.15-13 Side Support Weldment Section Cuts - 45&deg; Basket Orientation ... 2.6.15.2-13 Figure 2.6.15-14 Finite Element Model for BWR Retainer Strip and Neutron Absorber ........................................................................................... 2.6.15.7-3 Figure 2.6.16-1  GTCC Waste Basket Liner Finite Element Model .......................... 2.6.16.2-5 Figure 2.6.16-2  GTCC Waste Basket Liner Finite Element Model - Bottom View. 2.6.16.2-6 Figure 2.6.17-1  Cask Cavity Spacer Finite Element Model - Top End Drop ........... 2.6.17.3-6 Figure 2.6.17-2  Cask Cavity Spacer Finite Element Model - Bottom End Drop ..... 2.6.17.3-7 Figure 2.7.1-1  Lead Slump Side Drop Model ........................................................... 2.7.1.5-2 Figure 2.7.3-1  Cask Body Side Pin Puncture Finite Element Model ........................... 2.7.3-4 Figure 2.7.3-2  Cask Lid Top Pin Puncture Finite Element Model ............................... 2.7.3-5 Figure 2.7.3-3  Cask Bottom Pin Puncture Finite Element Model ................................ 2.7.3-6 Figure 2.7.13-1  Basket Pin-Tube Slot Connections at Fuel Tube Corners for PWR Configuration ......................................................................... 2.7.13.2-3 Figure 2.7.13-2  PWR Pin and Bolted Boss Locations in 0-degree Angle Drop Configuration ................................................................................... 2.7.13.2-4 Figure 2.7.13-3  PWR Pin and Bolted Boss Locations in 22.5-degree Angle Drop Configuration ................................................................................... 2.7.13.2-5 Figure 2.7.13-4  PWR Pin and Bolted Boss Locations in 45-degree Angle Drop Configuration ................................................................................... 2.7.13.2-6 Figure 2.7.13-5  PWR Basket Finite Element Model - Boss Connection for Corner and Side Support Weldment ................................................ 2.7.13.2-7 Figure 2.7.13-6  Acceleration Time History for Basket Stability Evaluation 30-ft Side Drop Acceleration .................................................................... 2.7.13.2-8 Figure 2.7.13-7  Close-up View of PWR Pin/Slot in the Model, 0&deg; Drop Orientation ....................................................................................... 2.7.13.2-8 Figure 2.7.13-8  Time History of Maximum Gap Change at Fuel Tube Corner - 0&deg; Basket Orientation - PWR ............................................................... 2.7.13.2-9 Figure 2.7.13-9  Time History of Maximum Gap Change at Fuel Tube Corner -
22.5&deg; Basket Orientation - PWR ................................................... 2.7.13.2-10 Figure 2.7.13-10 Time History of Maximum Gap at Fuel Tube Corner - 45&deg; Basket Orientation - PWR ........................................................................ 2.7.13.2-11 Figure 2.7.13-11 Finite Element Model and Pin/Slot Location Map for BWR Basket 0&deg; Drop Orientation............................................................ 2.7.13.2-12 Figure 2.7.13-12 Finite Element Model and Pin/Slot Location Map for BWR Basket 22.5&deg; Drop Orientation....................................................... 2.7.13.2-13 Figure 2.7.13-13 Finite Element Model and Pin/Slot Location Map for BWR Basket 45&#xba; Drop Orientation .......................................................... 2.7.13.2-14 Figure 2.7.13-14 BWR Basket Finite Element Model - Boss Connection for Corner Support Weldment ............................................................. 2.7.13.2-15 Figure 2.7.13-15 BWR Basket Finite Element Model - Boss Connection for Side Support Weldment ................................................................. 2.7.13.2-16 NAC International                                2-vi
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Figures (contd)
Figure 2.7.13-16 Close-up View of BWR Pin/Slot in the Model, 0&deg; Drop Orientation ......................................................................................2.7.13.2-17 Figure 2.7.13-17 Time History of Maximum Gap Change at Fuel Tube Corner -
0&deg; Basket Orientation - BWR ........................................................2.7.13.2-18 Figure 2.7.13-18 Time History of Maximum Gap Change at Fuel Tube Corner -
22.5&deg; Basket Orientation - BWR ...................................................2.7.13.2-19 Figure 2.7.13-19 Time History of Maximum Gap Change at Fuel Tube Corner -
45&deg; Basket Orientation - BWR ......................................................2.7.13.2-20 Figure 2.11.1-1 ANSYS Model for Fuel Assembly ......................................................2.11.1-5 Figure 2.11.1-2 LS-DYNA Model for 30-Foot Drop With No Damaged Grids ..........2.11.1-6 Figure 2.11.1-3 LS-DYNA Model Details for 30-Foot Drop with Damaged Grid ......2.11.1-7 Figure 2.11.1-4 Bounding Acceleration from MAGNATRAN 30-ft End Drop Applied to Fuel Rod Drop Evaluation .................................................2.11.1-8 Figure 2.11.1-5 Von-Mises Stress Time History at Location of Maximum Stress Case 1 (Intact Grid) .............................................................................2.11.1-9 Figure 2.11.1-6 Maximum Von-Mises Stress Location - Case 1 (Intact Grid) .........2.11.1-10 Figure 2.11.1-7 Von-Mises Stress Time History at Location of Maximum Stress -
Case 2 (Damaged Grid) .....................................................................2.11.1-11 Figure 2.11.1-8 Maximum Von-Mises Stress Location - Case 2 (Damaged Grid) ....2.11.1-12 Figure 2.11.2-1 Finite Element Model Set Up - End Drop Condition .........................2.11.2-3 Figure 2.11.2-2 Deformation of the Fuel Assembly Before and After Impact .............2.11.2-3 Figure 2.11.2-3 Compression of Plenum Spring ...........................................................2.11.2-4 Figure 2.11.3-1 RCCA Spacer Impact Evaluation Finite Element Model, Case 1 .......2.11.3-3 Figure 2.11.3-2 RCCA Spacer Impact Evaluation, Bounding Case 1 Deformed Shape ...................................................................................................2.11.3-4 Figure 2.11.3-3 RCCA Spacer Impact Evaluation Finite Element Model, Case 2 .......2.11.3-5 Figure 2.11.3-4 RCCA Spacer Impact Evaluation, Boudning Case 2 Deformed Shape ...................................................................................................2.11.3-6 Figure 2.11.4-1 ANSYS Model for the PWR Fuel Rod Side Drop Condition .............2.11.4-3 Figure 2.12.2-1 LS-DYNA Model Used to Verify the Crushable Foam Material Model ...................................................................................................2.12.2-5 Figure 2.12.2-2 Stress-Strain Curve Used for the Balsa Wood Material ......................2.12.2-6 Figure 2.12.2-3 Finite Element Model for Strain-Rate Dependent Crushable Foam Wood Block Impact .............................................................................2.12.2-7 Figure 2.12.2-4 Crushable Foam Block Stress Time History at 20 /sec .....................2.12.2-8 Figure 2.12.2-5 Crushable Foam Block Stress Time History at 40 /sec .....................2.12.2-9 Figure 2.12.2-6 Cask Drop Test Orientations .............................................................2.12.2-26 Figure 2.12.2-7 Finite Element Side Drop Model of the STC Quarter-Scale Model Cask and Impact Limiters ..................................................................2.12.2-27 Figure 2.12.2-8 Redwood Solid Segments in the QS CY Impact Limiter Side Drop Model .................................................................................................2.12.2-28 Figure 2.12.2-9 Finite Element End Drop Model of the STC Quarter-Scale Model Cask and Impact Limiters ..................................................................2.12.2-29 NAC International                                2-vii
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Figures (contd)
Figure 2.12.2-10 Finite Element Model of the Stainless Steel Shell Enclosing the Balsa Wood ....................................................................................... 2.12.2-30 Figure 2.12.2-11 Finite Element Model of the Impact Limiter Attachment Bolts ....... 2.12.2-31 Figure 2.12.2-12 Shallow Angle Drop Evaluation Set Up ........................................... 2.12.2-32 Figure 2.12.2-13 Acceleration Time Histories of Top and Bottom Accelerometer from 5&deg; Shallow Angle Drop ............................................................ 2.12.2-33 Figure 2.12.2-14 Peak Acceleration versus Shallow Angle Drop of the SideDrop Model, with &#xb5;=0.2 ............................................................................ 2.12.2-34 Figure 2.12.2-15 Instrumentation fo the NAC-STC-CY Quarter-Scale Drop Test Specimen ........................................................................................... 2.12.2-50 Figure 2.12.2-16 Typical Filtered Acceleration Time History for the Quarter-Scale Model Side Drop, Overlaid with the Unfiltered Data for the Top End Accelerometer of the Model ...................................................... 2.12.2-51 Figure 2.12.2-17 FFT for the Unfiltered Accelerometer Time Histories from (a)
Drop Test and (b) LS-DYNA Simulation ......................................... 2.12.2-52 Figure 2.12.2-18 Typical Filtered Acceleration Time History for the Quarter-Scale Model Side Drop, Overlaid with the Filtered Time History for the Top End of the Model ....................................................................... 2.12.2-53 Figure 2.12.2-19 Typical Filtered Acceleration Time History for the Quarter-Scale Model Side Drop, Overlaid with the LS-DYNA Filtered Time History for the Bottom End of the Model ........................................ 2.12.2-54 Figure 2.12.2-20 Force Deflection Curve for the 30-Foot Side Drop Test .................. 2.12.2-55 Figure 2.12.2-21 Typical Unfiltered Acceleration (Top Accelerometer) Time History for the Quarter-Scale Model Top Corner Drop.................... 2.12.2-56 Figure 2.12.2-22 Typical Filtered Acceleration (Top Accelerometer) Time History for the Quarter-Scale Model Top Corner Side Drop ........................ 2.12.2-57 Figure 2.12.2-23 Comparison of Quarter-Scale Top Corner Drop (LS-DYNA and Drop Test) Results ............................................................................ 2.12.2-58 Figure 2.12.2-24 Force Deflection Curve for the Top Corner Drop ............................ 2.12.2-59 Figure 2.12.2-25 Typical Unfiltered Acceleration (Top Accelerometer) Time History for the Quarter-Scale Model Top End Drop ........................ 2.12.2-60 Figure 2.12.2-26 FFT for the Unfiltered Accelerometer Time History of Top End Impact ............................................................................................... 2.12.2-61 Figure 2.12.2-27 Typical Filtered Acceleration (Top Accelerometer) Time History for the Quarter-Scale Model Top End Drop ..................................... 2.12.2-62 Figure 2.12.2-28 Comparison of Quarter-Scale Top End Drop (LS-DYNA and Drop Test) Results (Upper Accelerometer) ...................................... 2.12.2-63 Figure 2.12.2-29 Force Deflection Curve for the Top Corner Drop ............................ 2.12.2-64 Figure 2.12.2-30 Cask Body Finite Element Model ..................................................... 2.12.2-73 Figure 2.12.2-31 Cask Body Section Locations ........................................................... 2.12.2-74 Figure 2.12.2-32 Elastic Plastic (Stainless Steel) Cask Body Finite Element Model for Side Drop Accident Conditions................................................... 2.12.2-75 Figure 2.12.2-33 Side Pin Puncture Finite Element Model .......................................... 2.12.2-76 NAC International                                2-viii
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 List of Figures (contd)
Figure 2.12.2-34 Top Pin Puncture Finite Element Model ...........................................2.12.2-77 Figure 2.12.2-35 Bottom Pin Puncture Finite Element Model .....................................2.12.2-78 NAC International                      2-ix
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Tables Table 2.1.2-1  Load Combinations: Normal and Hypothetical Accident Conditions ............................................................................................. 2.1.2-9 Table 2.1.2-2  Allowable Stress Limits for Containment Structures ......................... 2.1.2-10 Table 2.1.2-3  Allowable Stress Limits for Noncontainment Structures ................... 2.1.2-11 Table 2.1.3-1  Calculated Weights and Centers of Gravity.......................................... 2.1.3-2 Table 2.1.4-1  ASME Code Alternatives for MAGNATRAN Components................ 2.1.4-4 Table 2.2.1-1  Mechanical Properties of SA-240, Type 304 Stainless Steel ............... 2.2.1-4 Table 2.2.1-2  Mechanical Properties of SA-336, Type F304 Stainless Steel ............. 2.2.1-5 Table 2.2.1-3  Mechanical Properties of SA-479, Type 304 Stainless Steel ............... 2.2.1-6 Table 2.2.1-4  Mechanical Properties of SA-240 Type XM-19 Stainless Steel ........... 2.2.1-7 Table 2.2.1-5  Mechanical Properties of SA-564/SA-693/SA-705, Type 630 (17-4 PH) Stainless Steel ...................................................................... 2.2.1-8 Table 2.2.1-6  Mechanical Properties of SA-537, Class 1, Carbon Steel .................... 2.2.1-9 Table 2.2.1-7  Mechanical Properties of SA-695, Type B, Grade 40, and SA-696, Type C, Carbon Steel .......................................................................... 2.2.1-10 Table 2.2.1-8  Mechanical Properties of SA-193, Grade B6, High Alloy Bolting Steel..................................................................................................... 2.2.1-11 Table 2.2.1-9  Mechanical Properties of SA-193, Grade B8, Bolting Steel .............. 2.2.1-12 Table 2.2.1-10 Mechanical Properties of SA-193, Grade B8S, Bolting Steel ............ 2.2.1-13 Table 2.2.1-11 Mechanical Properties of SB-637, Grade N07718, Nickel Alloy Bolting Steel........................................................................................ 2.2.1-14 Table 2.2.1-12 Mechanical Properties of Chemical Copper Grade Lead ................... 2.2.1-15 Table 2.2.1-13 Mechanical Properties of NS-4-FR ..................................................... 2.2.1-16 Table 2.2.1-14 Mechanical Properties of 1100-O Aluminum Alloy ........................... 2.2.1-16 Table 2.2.2-1  Summary of MAGNATRAN Transport Cask Materials Categories and Operating Environments ................................................................ 2.2.2-9 Table 2.5.2-1  Summary of Reaction Forces per CFR 71.45(b) for CG (105.0 in.) .. 2.5.2-15 Table 2.5.2-2  Summary of Reaction Forces per AAR Rule 88 for CG (105.0 in.) ... 2.5.2-15 Table 2.5.2-3  Summary of Reaction Forces per CFR 71.45(b) for CG (102.0 in.) .. 2.5.2-16 Table 2.5.2-4  Summary of Reaction Forces per AAR Rule 88 for CG (102.0 in.) ... 2.5.2-16 Table 2.5.2-5  Summary of Reaction Forces per CFR 71.45(b) for CG (108.0 in.) .. 2.5.2-17 Table 2.5.2-6  Summary of Reaction Forces per AAR Rule 88 for CG (108.0 in.) ... 2.5.2-17 Table 2.5.2-7  Minimum Factor of Safety Summary ................................................. 2.5.2-18 Table 2.6.1-1  Summary of Canister Pressures During Normal Conditions of Transport ............................................................................................... 2.6.1-8 Table 2.6.1-2  Summary of Cask Pressures During Normal Conditions of Transport ............................................................................................... 2.6.1-8 Table 2.6.1-3  Internal Pressure Only, Heat (100&deg;F), Pm, ksi....................................... 2.6.1-9 Table 2.6.1-4  Internal Pressure Only, Heat (100&deg;F), Pm + Pb, ksi ............................. 2.6.1-10 NAC International                                  2-x
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Tables (contd)
Table 2.6.1-5  Thermal (Q) Stresses, Heat (100F), ksi .............................................2.6.1-11 Table 2.6.1-6  1g Gravity Load, Heat (100&deg;F), Pm, ksi ...............................................2.6.1-12 Table 2.6.1-7  1g Gravity Load, Heat (100&deg;F), Pm + Pb, ksi .......................................2.6.1-13 Table 2.6.1-8  Combined 1g, Thermal and Internal Pressure, Heat (100&deg;F),
Pm, ksi ..................................................................................................2.6.1-14 Table 2.6.1-9  Combined 1g, Thermal and Internal Pressure, Heat (100&deg;F),
Pm + Pb, ksi ...........................................................................................2.6.1-15 Table 2.6.2-1  Internal Pressure Only, Cold (-40&deg;F), Pm, ksi........................................2.6.2-4 Table 2.6.2-2  Internal Pressure Only, Cold (-40&deg;F), Pm + Pb, ksi ................................2.6.2-5 Table 2.6.2-3  Thermal (Q) Stresses, Cold (-40F), ksi ................................................2.6.2-6 Table 2.6.2-4  1-g Gravity Load, Cold (-40&deg;F), Pm, ksi ................................................2.6.2-7 Table 2.6.2-5  1-g Gravity Load, Cold (-40&deg;F), Pm + Pb, ksi ........................................2.6.2-8 Table 2.6.2-6  Combined 1g, Thermal and Internal Pressure, Cold (-40&deg;F),
Pm, ksi ....................................................................................................2.6.2-9 Table 2.6.2-7  Combined 1g, Thermal and Internal Pressure, Cold (-40&deg;F),
Pm + Pb, ksi ...........................................................................................2.6.2-10 Table 2.6.5-1  2g Only, Pm, ksi .....................................................................................2.6.5-4 Table 2.6.5-2  2g Only, Pm + Pb, ksi .............................................................................2.6.5-5 Table 2.6.7-1  1-foot Top End Drop, Pm, ksi .............................................................2.6.7.1-2 Table 2.6.7-2  1-foot Top End Drop, Pm + Pb, ksi .....................................................2.6.7.1-3 Table 2.6.7-3  1-foot Top End Drop, P+Q, ksi ..........................................................2.6.7.1-4 Table 2.6.7-4  Critical Pm Stress Summary foot Top End Drop, ksi ...................2.6.7.1-5 Table 2.6.7-5  Critical Pm + Pb Stress Summary foot Top End Drop, ksi ...........2.6.7.1-5 Table 2.6.7-6  Critical P+Q Stress Summary foot Top End Drop, ksi ................2.6.7.1-5 Table 2.6.7-7  1-foot Bottom End Drop, Pm, ksi ........................................................2.6.7.1-6 Table 2.6.7-8  1-foot Bottom End Drop, Pm + Pb, ksi ................................................2.6.7.1-7 Table 2.6.7-9  1-foot Bottom End Drop, P+Q, ksi .....................................................2.6.7.1-8 Table 2.6.7-10 Critical Pm Stress Summary foot Bottom End Drop, ksi .............2.6.7.1-9 Table 2.6.7-11 Critical Pm + Pb Stress Summary foot Bottom End Drop, ksi .....2.6.7.1-9 Table 2.6.7-12 Critical P+Q Stress Summary foot Bottom End Drop, ksi...........2.6.7.1-9 Table 2.6.7-13 1-foot Side Drop, Pm, ksi ....................................................................2.6.7.2-2 Table 2.6.7-14 1-foot Side Drop, Pm + Pb, ksi ............................................................2.6.7.2-3 Table 2.6.7-15 1-foot Side Drop, P+Q, ksi .................................................................2.6.7.2-4 Table 2.6.7-16 Critical Pm Stress Summary foot Side Drop, ksi ..........................2.6.7.2-5 Table 2.6.7-17 Critical Pm + Pb Stress Summary foot Side Drop, ksi ..................2.6.7.2-5 Table 2.6.7-18 Critical P+Q Stress Summary foot Side Drop, ksi .......................2.6.7.2-5 Table 2.6.7-19 1-foot Top Corner Drop, Pm, ksi.........................................................2.6.7.3-2 Table 2.6.7-20 1-foot Top Corner Drop, Pm + Pb, ksi .................................................2.6.7.3-3 Table 2.6.7-21 1-foot Top Corner Drop, P+Q, ksi......................................................2.6.7.3-4 Table 2.6.7-22 Critical Pm Stress Summary foot Top Corner Drop, ksi ..............2.6.7.3-5 Table 2.6.7-23 Critical Pm + Pb Stress Summary foot Top Corner Drop, ksi ......2.6.7.3-5 Table 2.6.7-24 Critical P+Q Stress Summary foot Top Corner Drop, ksi ...........2.6.7.3-5 Table 2.6.7-25 1-foot Bottom Corner Drop, Pm, ksi ...................................................2.6.7.3-6 Table 2.6.7-26 1-foot Bottom Corner Drop, Pm + Pb, ksi ...........................................2.6.7.3-7 NAC International                                2-xi
 
MAGNATRAN Transport Cask SAR                                                                                    January 2022 Docket No. 71-9356                                                                                                    Revision 1 List of Tables (contd)
Table 2.6.7-27  1-foot Bottom Corner Drop, P+Q Stress Summary, ksi .................... 2.6.7.3-8 Table 2.6.7-28  Critical Pm Stress Summary foot Bottom Corner Drop, ksi ........ 2.6.7.3-9 Table 2.6.7-29  Critical Pm + Pb Stress Summary foot Bottom Corner Drop, ksi ....................................................................................................... 2.6.7.3-9 Table 2.6.7-30  Critical P+Q Stress Summary foot Bottom Corner Drop, ksi ..... 2.6.7.3-9 Table 2.6.7-31  Redwood Stress-Strain Properties (Static) ....................................... 2.6.7.5-32 Table 2.6.7-32  Redwood Stress-Strain Properties (25 /sec) ................................... 2.6.7.5-32 Table 2.6.7-33  Balsa Wood Stress-Strain Properties (Static) .................................. 2.6.7.5-33 Table 2.6.7-34  Properties for the Impact Limiter Stainless Steel Shells .................. 2.6.7.5-33 Table 2.6.7-35  Stress-Strain Curve Data for Type 304 Stainless Steel .................... 2.6.7.5-33 Table 2.6.7-36  Summary of Acceleration Results for the Impact Limiter - Normal Conditions of Transport (1-Foot Drop Analysis)............................. 2.6.7.5-34 Table 2.6.7-37  Summary of Acceleration Results for the Impact Limiter -
Hypothetical Accident Conditions (30-Foot Drop Analysis) .......... 2.6.7.5-34 Table 2.6.7-38  Maximum Sectional Primary Membrane Stress Summary, 1-ft Drop........................................................................................... 2.6.7.7-18 Table 2.6.7-39  Maximum Sectional Primary Membrane Plus Bending Stress Summary, 1-ft Drop ......................................................................... 2.6.7.7-18 Table 2.6.7-40  Maximum Sectional Primary Plus Secondary Stress Summary, 1-ft Drop........................................................................................... 2.6.7.7-18 Table 2.6.7-41  Maximum Bearing Stress Summary, 1-ft Drop ............................... 2.6.7.7-19 Table 2.6.12-1  TSC Q Stresses - Thermal Only (Hot) - FE Model A1 ................... 2.6.12.3-3 Table 2.6.12-2  TSC Q Stresses - Thermal Only (Hot) - FE Models B1 and C1 ...... 2.6.12.3-3 Table 2.6.12-3  TSC Q Stresses - Thermal Only (Cold) - FE Model A1 ................. 2.6.12.3-4 Table 2.6.12-4  TSC Q Stresses - Thermal Only (Cold) - FE Models B1 and C1 .... 2.6.12.3-4 Table 2.6.12-5  TSC Critical Sections for the Pressure Only and 1-Foot End Drop Load Condition - Model A1 ............................................................. 2.6.12.4-2 Table 2.6.12-6  TSC Critical Sections for the Pressure Only and 1-Foot End Drop Load Condition - Models B1 and C1................................................ 2.6.12.4-2 Table 2.6.12-7  TSC Pm Stresses - Internal Pressure - Model A1 ............................ 2.6.12.4-3 Table 2.6.12-8  TSC Pm + Pb Stresses - Internal Pressure - Model A1..................... 2.6.12.4-3 Table 2.6.12-9  TSC Pm Stresses - Internal Pressure - Model B1 and C1 ................. 2.6.12.4-4 Table 2.6.12-10 TSC Pm + Pb Stresses - Internal Pressure - Model B1 and C1 ......... 2.6.12.4-4 Table 2.6.12-11 TSC Pm Stresses Foot Top End Drop - Model A1..................... 2.6.12.4-5 Table 2.6.12-12 TSC Pm + Pb Stresses Foot Top End Drop - Model A1 ............. 2.6.12.4-5 Table 2.6.12-13 TSC Pm Stresses Foot Top End Drop - Model B1 and C1 ......... 2.6.12.4-6 Table 2.6.12-14 TSC Pm + Pb Stresses Foot Top End Drop - Model B1 and C1.. 2.6.12.4-6 Table 2.6.12-15 TSC Pm Stresses Foot Top End Drop, Internal Pressure -
Model A1 .......................................................................................... 2.6.12.4-7 Table 2.6.12-16 TSC Pm + Pb Stresses - 1 Foot Top End Drop, Internal Pressure -
Model A1 .......................................................................................... 2.6.12.4-7 Table 2.6.12-17 TSC Pm Stresses Foot Top End Drop, Internal Pressure -
Model B1 and C1 .............................................................................. 2.6.12.4-8 NAC International                                    2-xii
 
MAGNATRAN Transport Cask SAR                                                                                  January 2022 Docket No. 71-9356                                                                                                  Revision 1 List of Tables (contd)
Table 2.6.12-18 TSC Pm + Pb Stresses Foot Top End Drop, Internal Pressure -
Model B1 and C1 ...............................................................................2.6.12.4-8 Table 2.6.12-19 TSC Pm Stresses Foot Bottom End Drop - Model A1................2.6.12.4-9 Table 2.6.12-20 TSC Pm + Pb Stresses Foot Bottom End Drop - Model A1 ........2.6.12.4-9 Table 2.6.12-21 TSC Pm Stresses Foot Bottom End Drop - Model B1 and C1 ....................................................................................................2.6.12.4-10 Table 2.6.12-22 TSC Pm + Pb Stresses Foot Bottom End Drop - Model B1 and C1 .............................................................................................2.6.12.4-10 Table 2.6.12-23 TSC Pm Stresses Foot Bottom End Drop, Internal Pressure -
Model A1 ........................................................................................2.6.12.4-11 Table 2.6.12-24 TSC Pm + Pb Stresses - 1 Foot Bottom End Drop, Internal Pressure - Model A1 .......................................................................2.6.12.4-11 Table 2.6.12-25 TSC Pm Stresses Foot Bottom End Drop, Internal Pressure -
Model B1 and C1 .............................................................................2.6.12.4-12 Table 2.6.12-26 TSC Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure - Model B1 and C1 ...........................................................2.6.12.4-12 Table 2.6.12-27 TSC Critical Sections for the Combined 1-Foot End Drop and Thermal Load Condition - Model A1 ...............................................2.6.12.5-2 Table 2.6.12-28 TSC Critical Sections for the Combined 1-Foot End Drop and Thermal Load Condition - Model B1 and C1 ...................................2.6.12.5-2 Table 2.6.12-29 TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Cold - Model A1 ...............................................................................2.6.12.5-3 Table 2.6.12-30 TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Cold - Model B1 and C1 ...................................................................2.6.12.5-3 Table 2.6.12-31 TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Hot - Model A1 ................................................................................2.6.12.5-4 Table 2.6.12-32 TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Hot -
Model B1 and C1 ...............................................................................2.6.12.5-4 Table 2.6.12-33 TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Cold - Model A1 ...............................................................................2.6.12.5-5 Table 2.6.12-34 TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Cold - Model B1 and C1 ...................................................................2.6.12.5-5 Table 2.6.12-35 TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Hot - Model A1 ................................................................................2.6.12.5-6 Table 2.6.12-36 TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Hot - Model B1 and C1 .....................................................................2.6.12.5-6 Table 2.6.12-37 TSC Critical Sections for the 1-Foot Side Drop Load Condition -
Model A1 ..........................................................................................2.6.12.6-2 Table 2.6.12-38 TSC Pm Stresses - 1 Foot Side Drop - Model A1 ............................2.6.12.6-2 Table 2.6.12-39 TSC Pm + Pb Stresses Foot Side Drop - Model A1 ....................2.6.12.6-3 Table 2.6.12-40 TSC Pm Stresses Foot Side Drop, Internal Pressure -
Model A1 ..........................................................................................2.6.12.6-3 Table 2.6.12-41 TSC Pm + Pb Stresses Foot Side Drop, Internal Pressure -
Model A1 ..........................................................................................2.6.12.6-4 NAC International                                  2-xiii
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Tables (contd)
Table 2.6.12-42 TSC Critical Sections for Combined 1-Foot Side Drop and Thermal Load Condition - Model A1 .............................................. 2.6.12.7-2 Table 2.6.12-43 TSC Pm + Pb + Q Stresses Foot Side Drop, Thermal Cold -
Model A1 .......................................................................................... 2.6.12.7-2 Table 2.6.12-44 TSC Pm + Pb + Q Stresses Foot Side Drop, Thermal Hot -
Model A1 .......................................................................................... 2.6.12.7-3 Table 2.6.12-45 TSC Critical Sections for the 1-Foot Corner Drop Load Condition - Model A1 ...................................................................... 2.6.12.8-2 Table 2.6.12-46 TSC Critical Sections for the 1-Foot Corner Drop Load Condition - Model B1 and C1 .......................................................... 2.6.12.8-2 Table 2.6.12-47 TSC Pm Stresses Foot Top Corner Drop, Internal Pressure -
Model A1 .......................................................................................... 2.6.12.8-3 Table 2.6.12-48 TSC Pm+ Pb Stresses Foot Top Corner Drop, Internal Pressure - Model A1 ........................................................................ 2.6.12.8-3 Table 2.6.12-49 TSC Pm Stresses Foot Top Corner Drop, Internal Pressure -
Model B1 and C1 .............................................................................. 2.6.12.8-4 Table 2.6.12-50 TSC Pm + Pb Stresses Foot Top Corner Drop, Internal Pressure - Model B1 and C1 ............................................................. 2.6.12.8-4 Table 2.6.12-51 TSC Pm Stresses Foot Top Corner Drop - Model A1 ................ 2.6.12.8-5 Table 2.6.12-52 TSC Pm + Pb Stresses Foot Top Corner Drop - Model A1 ........ 2.6.12.8-5 Table 2.6.12-53 TSC Pm Stresses Foot Top Corner Drop - Model B1 and C1 .... 2.6.12.8-6 Table 2.6.12-54 TSC Pm + Pb Stresses Foot Top Corner Drop - Model B1 and C1 ............................................................................................... 2.6.12.8-6 Table 2.6.12-55 TSC Pm Stresses Foot Bottom Corner Drop, Internal Pressure - Model A1 ........................................................................ 2.6.12.8-7 Table 2.6.12-56 TSC Pm + Pb Stresses Foot Bottom Corner Drop, Internal Pressure - Model A1 ........................................................................ 2.6.12.8-7 Table 2.6.12-57 TSC Pm Stresses Foot Bottom Corner Drop, Internal Pressure - Model B1 and C1 ............................................................. 2.6.12.8-8 Table 2.6.12-58 TSC Pm + Pb Stresses Foot Bottom Corner Drop, Internal Pressure - Model B1 and C1 ............................................................. 2.6.12.8-8 Table 2.6.12-59 TSC Pm Stresses Foot Bottom Corner Drop - Model A1 .......... 2.6.12.8-9 Table 2.6.12-60 TSC Pm + Pb Stresses Foot Bottom Corner Drop - Model A1... 2.6.12.8-9 Table 2.6.12-61 TSC Pm Stresses Foot Bottom Corner Drop - Model B1 and C1 ............................................................................................. 2.6.12.8-10 Table 2.6.12-62 TSC Pm + Pb Stresses Foot Bottom Corner Drop - Model B1 and C1 ............................................................................................. 2.6.12.8-10 Table 2.6.12-63 TSC Critical Sections for the Combined 1-Foot Corner Drop and Thermal Load Condition - Model A1 .............................................. 2.6.12.9-2 Table 2.6.12-64 TSC Critical Sections for the Combined 1-Foot Corner Drop and Thermal Load Condition - Model B1 and C1................................... 2.6.12.9-2 Table 2.6.12-65 TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Cold - Model A1 .............................................................................. 2.6.12.9-3 NAC International                                2-xiv
 
MAGNATRAN Transport Cask SAR                                                                                  January 2022 Docket No. 71-9356                                                                                                  Revision 1 List of Tables (contd)
Table 2.6.12-66 TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Cold - Model B1 and C1 ...................................................................2.6.12.9-3 Table 2.6.12-67 TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Hot - Model A1 ................................................................................2.6.12.9-4 Table 2.6.12-68 TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Hot - Model B1 and C1 .....................................................................2.6.12.9-4 Table 2.6.12-69 TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Cold - Model A1 ................................................................2.6.12.9-5 Table 2.6.12-70 TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Cold - Model B1 and C1.....................................................2.6.12.9-5 Table 2.6.12-71 TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Hot - Model A1 ................................................................................2.6.12.9-6 Table 2.6.12-72 TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Hot - Model B1 and C1 ......................................................2.6.12.9-6 Table 2.6.12-73 Buckling Evaluation Results for the TSC for 1-Foot End Drop ....2.6.12.12-2 Table 2.6.12-74 Stresses in Lid Bolts for All Load Cases ........................................2.6.12.13-3 Table 2.6.12-75 Maximum Stresses in Shield Plate .................................................2.6.12.14-2 Table 2.6.13-1  PWR Fuel Tube Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi.....................2.6.13.4-9 Table 2.6.13-2  PWR Fuel Tube Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi ...............2.6.13.4-9 Table 2.6.13-3  PWR Fuel Tube Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi..................2.6.13.4-9 Table 2.6.13-4  PWR Corner Weldment Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi ......2.6.13.4-10 Table 2.6.13-5  PWR Corner Weldment Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;,
ksi ...................................................................................................2.6.13.4-10 Table 2.6.13-6  PWR Corner Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;,
ksi ...................................................................................................2.6.13.4-10 Table 2.6.13-7  PWR Corner Weldment Support Bars, 1-ft Side Drop - 0&deg;,
ksi ...................................................................................................2.6.13.4-10 Table 2.6.13-8  PWR Side Weldment Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi ..........2.6.13.4-11 Table 2.6.13-9  PWR Side Weldment Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi ....2.6.13.4-11 Table 2.6.13-10 PWR Side Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi .......2.6.13.4-11 Table 2.6.13-11 PWR Fuel Tube Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi.................2.6.13.4-12 Table 2.6.13-12 PWR Fuel Tube Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi ...........2.6.13.4-12 Table 2.6.13-13 PWR Fuel Tube Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi..............2.6.13.4-12 Table 2.6.13-14 PWR Corner Weldment Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi ....2.6.13.4-13 Table 2.6.13-15 PWR Corner Weldment Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;,
ksi ...................................................................................................2.6.13.4-13 Table 2.6.13-16 PWR Corner Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;,
ksi ...................................................................................................2.6.13.4-13 Table 2.6.13-17 PWR Corner Weldment Support Bars, 1-ft Side Drop - 45&deg;,
ksi ...................................................................................................2.6.13.4-13 Table 2.6.13-18 PWR Side Weldment Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi ........2.6.13.4-14 Table 2.6.13-19 PWR Side Weldment Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi ..2.6.13.4-14 Table 2.6.13-20 PWR Side Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi .....2.6.13.4-14 NAC International                                  2-xv
 
MAGNATRAN Transport Cask SAR                                                                                    January 2022 Docket No. 71-9356                                                                                                    Revision 1 List of Tables (contd)
Table 2.6.13-21 Fuel Tube Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;, Results from Modified Model ...................................................................... 2.6.13.6-4 Table 2.6.13-22 Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model.......................................................... 2.6.13.6-4 Table 2.6.13-23 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model.......................................................... 2.6.13.6-4 Table 2.6.13-24 Fuel Tube Stresses, P+Q, 1-ft Side Drop, 45&deg;, Results from Original Model at Locations with Bending Stress Classified as Secondary ......................................................................................... 2.6.13.6-5 Table 2.6.13-25 Side Weldment Stresses, P+Q, 1-ft Side Drop, 45&deg;, Results from Original Model at Locations with Bending Stress Classified as Secondary ......................................................................................... 2.6.13.6-5 Table 2.6.14-1  Fuel Tube Stresses, Pm, and Pm+Pb, 1-ft Side Drop - 0&deg;, ksi ........... 2.6.14.3-9 Table 2.6.14-2  Fuel Tube Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi........................... 2.6.14.3-9 Table 2.6.14-3  DF Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop -
0&deg;, ksi ............................................................................................... 2.6.14.3-9 Table 2.6.14-4  DF Corner Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi ...... 2.6.14.3-10 Table 2.6.14-5  DF Corner Weldment Gusset Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;, ksi ................................................................................. 2.6.14.3-10 Table 2.6.14-6  DF Corner Weldment Gusset Stresses, P+Q, 1-ft Side Drop -
0&deg;, ksi ............................................................................................. 2.6.14.3-10 Table 2.6.14-7  Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;,
ksi ................................................................................................... 2.6.14.3-11 Table 2.6.14-8  Side Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi ................ 2.6.14.3-11 Table 2.6.14-9  Fuel Tube Stresses, Pm, and Pm+Pb, 1-ft Side Drop - 45&deg;, ksi ....... 2.6.14.3-11 Table 2.6.14-10 Fuel Tube Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi....................... 2.6.14.3-12 Table 2.6.14-11 DF Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop -
45&deg;, ksi ........................................................................................... 2.6.14.3-12 Table 2.6.14-12 DF Corner Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi .... 2.6.14.3-12 Table 2.6.14-13 DF Corner Weldment Gusset Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;, ksi ............................................................................... 2.6.14.3-13 Table 2.6.14-14 DF Corner Weldment Gusset Stresses, P+Q, 1-ft Side Drop -
45&deg;, ksi ........................................................................................... 2.6.14.3-13 Table 2.6.14-15 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop -
45&deg;, ksi ........................................................................................... 2.6.14.3-13 Table 2.6.14-16 Side Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi .............. 2.6.14.3-14 Table 2.6.14-17 Fuel Tube Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;, Results from Modified Model ...................................................................... 2.6.14.4-2 Table 2.6.14-18 Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model.......................................................... 2.6.14.4-2 Table 2.6.14-19 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model.......................................................... 2.6.14.4-3 NAC International                                  2-xvi
 
MAGNATRAN Transport Cask SAR                                                                                  January 2022 Docket No. 71-9356                                                                                                  Revision 1 List of Tables (contd)
Table 2.6.14-20 Fuel Tube Stresses, P+Q, 1-ft Side Drop, 45&deg;, Results from Original Model at Locations with Bending Stress Classified as Secondary .........................................................................................2.6.14.4-3 Table 2.6.15-1  BWR Fuel Tube Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi ..................2.6.15.4-10 Table 2.6.15-2  BWR Fuel Tube Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi ............2.6.15.4-10 Table 2.6.15-3  BWR Fuel Tube Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi ...............2.6.15.4-10 Table 2.6.15-4  BWR Corner Weldment Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi ......2.6.15.4-11 Table 2.6.15-5  BWR Corner Weldment Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;,
ksi ...................................................................................................2.6.15.4-11 Table 2.6.15-6  BWR Corner Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi...2.6.15.4-11 Table 2.6.15-7  BWR Side Weldment Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi ..........2.6.15.4-12 Table 2.6.15-8  BWR Side Weldment Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi ....2.6.15.4-12 Table 2.6.15-9  BWR Side Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi.......2.6.15.4-12 Table 2.6.15-10 BWR Fuel Tube Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi ................2.6.15.4-13 Table 2.6.15-11 BWR Fuel Tube Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi ..........2.6.15.4-13 Table 2.6.15-12 BWR Fuel Tube Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi .............2.6.15.4-13 Table 2.6.15-13 BWR Corner Weldment Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi ....2.6.15.4-14 Table 2.6.15-14 BWR Corner Weldment Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;,
ksi ...................................................................................................2.6.15.4-14 Table 2.6.15-15 BWR Corner Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;,
ksi ...................................................................................................2.6.15.4-14 Table 2.6.15-16 BWR Side Weldment Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi ........2.6.15.4-15 Table 2.6.15-17 BWR Side Weldment Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;,
ksi ...................................................................................................2.6.15.4-15 Table 2.6.15-18 BWR Side Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi.....2.6.15.4-15 Table 2.6.15-19 Fuel Tube Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;, Results from Modified Model .......................................................................2.6.15.6-3 Table 2.6.15-20 Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;,
Results from Modified Model ..........................................................2.6.15.6-3 Table 2.6.15-21 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;,
Results from Modified Model ..........................................................2.6.15.6-3 Table 2.6.15-22 Fuel Tube Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;, Results from Modified Model .......................................................................2.6.15.6-4 Table 2.6.15-23 Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model ..........................................................2.6.15.6-4 Table 2.6.15-24 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model ..........................................................2.6.15.6-4 Table 2.6.15-25 Fuel Tube Stresses, P+Q, 1-ft Side Drop, Results from Original Model at Locations with Bending Stress Classified as Secondary .........................................................................................2.6.15.6-5 Table 2.6.16-1  GTCC-TSC Linearized Q Stresses - Thermal Only (Hot) ...............2.6.16.3-3 Table 2.6.16-2  GTCC-TSC Linearized Q Stresses - Thermal Only (Cold)..............2.6.16.3-3 Table 2.6.16-3  GTCC-TSC Critical Sections for the Pressure Only and 1-Foot End Drop Load Condition ................................................................2.6.16.4-2 NAC International                                  2-xvii
 
MAGNATRAN Transport Cask SAR                                                                                  January 2022 Docket No. 71-9356                                                                                                  Revision 1 List of Tables (contd)
Table 2.6.16-4  GTCC-TSC Pm Stresses - Internal Pressure Only - 5 psi ............... 2.6.16.4-3 Table 2.6.16-5  GTCC-TSC Pm + Pb Stresses - Internal Pressure Only - 5 psi........ 2.6.16.4-3 Table 2.6.16-6  GTCC-TSC Pm Stresses Foot Top End Drop ............................ 2.6.16.4-4 Table 2.6.16-7  GTCC-TSC Pm + Pb Stresses Foot Top End Drop .................... 2.6.16.4-4 Table 2.6.16-8  GTCC-TSC Pm Stresses Foot Top End Drop, Internal Pressure ............................................................................................ 2.6.16.4-5 Table 2.6.16-9  GTCC-TSC Pm + Pb Stresses Foot Top End Drop, Internal Pressure ............................................................................................ 2.6.16.4-5 Table 2.6.16-10 GTCC-TSC Pm Stresses Foot Bottom End Drop ....................... 2.6.16.4-6 Table 2.6.16-11 GTCC-TSC Pm + Pb Stresses Foot Bottom End Drop ............... 2.6.16.4-6 Table 2.6.16-12 GTCC-TSC Pm Stresses Foot Bottom End Drop, Internal Pressure ............................................................................................ 2.6.16.4-7 Table 2.6.16-13 GTCC-TSC Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure............................................................................... 2.6.16.4-7 Table 2.6.16-14 GTCC-TSC Critical Sections for the Combined 1-Foot End Drop and Thermal Load Condition ........................................................... 2.6.16.5-2 Table 2.6.16-15 GTCC-TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Cold ................................................................................... 2.6.16.5-3 Table 2.6.16-16 GTCC-TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Hot ..................................................................................... 2.6.16.5-3 Table 2.6.16-17 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Cold ................................................................................... 2.6.16.5-4 Table 2.6.16-18 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Hot ..................................................................................... 2.6.16.5-4 Table 2.6.16-19 GTCC-TSC Critical Sections for the 1-Foot Side Drop Load Condition.......................................................................................... 2.6.16.6-2 Table 2.6.16-20 GTCC-TSC Pm Stresses Foot Side Drop ................................... 2.6.16.6-2 Table 2.6.16-21 GTCC-TSC Pm + Pb Stresses Foot Side Drop ........................... 2.6.16.6-2 Table 2.6.16-22 GTCC-TSC Pm Stresses Foot Side Drop, Internal Pressure ...... 2.6.16.6-3 Table 2.6.16-23 GTCC-TSC Pm + Pb Stresses Foot Side Drop, Internal Pressure ............................................................................................ 2.6.16.6-3 Table 2.6.16-24 GTCC-TSC Critical Sections for Combined Thermal, Pressure and 1-Foot Side Drop Load Condition............................................. 2.6.16.7-2 Table 2.6.16-25 GTCC-TSC Pm + Pb + Q Stresses Foot Side Drop, Thermal Cold .................................................................................................. 2.6.16.7-2 Table 2.6.16-26 GTCC-TSC Pm + Pb + Q Stresses Foot Side Drop, Thermal Hot.................................................................................................... 2.6.16.7-3 Table 2.6.16-27 GTCC-TSC Pm + Pb + Q Stresses Foot Side Drop, Internal Pressure, Thermal Cold.................................................................... 2.6.16.7-3 Table 2.6.16-28 GTCC-TSC Pm + Pb + Q Stresses Foot Side Drop, Internal Pressure, Thermal Hot ..................................................................... 2.6.16.7-4 Table 2.6.16-29 GTCC-TSC Critical Sections for the 1-Foot Corner Drop Load Condition.......................................................................................... 2.6.16.8-2 Table 2.6.16-30 GTCC-TSC Pm Stresses Foot Top Corner Drop........................ 2.6.16.8-3 NAC International                                2-xviii
 
MAGNATRAN Transport Cask SAR                                                                              January 2022 Docket No. 71-9356                                                                                              Revision 1 List of Tables (contd)
Table 2.6.16-31 GTCC-TSC Pm + Pb Stresses Foot Top Corner Drop ................2.6.16.8-3 Table 2.6.16-32 GTCC-TSC Pm Stresses Foot Top Corner Drop, Internal Pressure.............................................................................................2.6.16.8-4 Table 2.6.16-33 GTCC-TSC Pm+ Pb Stresses Foot Top Corner Drop, Internal Pressure.............................................................................................2.6.16.8-4 Table 2.6.16-34 GTCC-TSC Pm Stresses Foot Bottom Corner Drop...................2.6.16.8-5 Table 2.6.16-35 GTCC-TSC Pm + Pb Stresses Foot Bottom Corner Drop ...........2.6.16.8-5 Table 2.6.16-36 GTCC-TSC Pm Stresses Foot Bottom Corner Drop, Internal Pressure.............................................................................................2.6.16.8-6 Table 2.6.16-37 GTCC-TSC Pm + Pb Stresses Foot Bottom Corner Drop, Internal Pressure ...............................................................................2.6.16.8-6 Table 2.6.16-38 GTCC-TSC Critical Sections for the Combined 1-Foot Corner Drop and Thermal Load Condition ..................................................2.6.16.9-2 Table 2.6.16-39 GTCC-TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Cold ....................................................................................2.6.16.9-3 Table 2.6.16-40 GTCC-TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Hot......................................................................................2.6.16.9-3 Table 2.6.16-41 GTCC-TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Pressure, Thermal Cold ....................................................................2.6.16.9-4 Table 2.6.16-42 GTCC-TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Pressure, Thermal Hot ......................................................................2.6.16.9-4 Table 2.6.16-43 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Cold ....................................................................................2.6.16.9-5 Table 2.6.16-44 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Hot......................................................................................2.6.16.9-5 Table 2.6.16-45 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Internal Pressure, Thermal Cold .......................................................2.6.16.9-6 Table 2.6.16-46 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Internal Pressure, Thermal Hot.........................................................2.6.16.9-6 Table 2.6.16-47 GTCC Waste Basket Liner Pm Foot Drop Cases .....................2.6.16.13-2 Table 2.6.16-48 GTCC Waste Basket Liner Pm+Pb Foot Drop Cases................2.6.16.13-2 Table 2.6.16-49 GTCC Waste Basket Liner Pm+Pb+Q Foot Drop Cases ..........2.6.16.13-3 Table 2.7.1-1  Pm Stresses Foot Top End Drop, ksi ..........................................2.7.1.1-2 Table 2.7.1-2  Pm + Pb Stresses Foot Top End Drop, ksi ...................................2.7.1.1-3 Table 2.7.1-3  Critical Pm Stress Summary Foot Top End Drop, ksi ................2.7.1.1-4 Table 2.7.1-4  Critical Pm + Pb Stress Summary Foot Top End Drop, ksi ........2.7.1.1-4 Table 2.7.1-5  Pm Stresses Foot Bottom End-Drop, ksi.....................................2.7.1.1-5 Table 2.7.1-6  Pm + Pb Stresses Foot Bottom End-Drop, ksi .............................2.7.1.1-6 Table 2.7.1-7  Critical Pm Stress Summary Foot Bottom End-Drop, ksi ..........2.7.1.1-7 Table 2.7.1-8  Critical Pm + Pb Stress Summary Foot Bottom End-Drop, ksi...2.7.1.1-7 Table 2.7.1-9  Pm Stresses Foot Side-Drop, ksi .................................................2.7.1.2-2 Table 2.7.1-10  Pm + Pb Stresses Foot Side-Drop, ksi ........................................2.7.1.2-3 Table 2.7.1-11  Critical Pm Stress Summary Foot Side-Drop, ksi .......................2.7.1.2-4 Table 2.7.1-12  Critical Pm + Pb Stress Summary Foot Side-Drop, ksi ...............2.7.1.2-4 NAC International                              2-xix
 
MAGNATRAN Transport Cask SAR                                                                                  January 2022 Docket No. 71-9356                                                                                                  Revision 1 List of Tables (contd)
Table 2.7.1-13 Pm Stresses Foot Top Corner-Drop, ksi ..................................... 2.7.1.3-2 Table 2.7.1-14 Pm + Pb Stresses Foot Top Corner-Drop, ksi ............................. 2.7.1.3-3 Table 2.7.1-15 Critical Pm Stress Summary Foot Top Corner-Drop, ksi ........... 2.7.1.3-4 Table 2.7.1-16 Critical Pm + Pb Stress Summary Foot Top Corner-Drop, ksi ... 2.7.1.3-4 Table 2.7.1-17 Pm Stresses Foot Bottom Corner-Drop, ksi ............................... 2.7.1.3-5 Table 2.7.1-18 Pm + Pb Stresses Foot Bottom Corner-Drop, ksi........................ 2.7.1.3-6 Table 2.7.1-19 Critical Pm Stress Summary Foot Bottom Corner-Drop, ksi ..... 2.7.1.3-7 Table 2.7.1-20 Critical Pm + Pb Stress Summary Foot Bottom Corner-Drop, ksi ....................................................................................................... 2.7.1.3-7 Table 2.7.1-21 Parameters for Lead Slump Calculations ........................................... 2.7.1.5-3 Table 2.7.1-22 Maximum Sectional Primary Membrane Stress Summary, 30-ft Side Drop .................................................................................. 2.7.1.8-6 Table 2.7.1-23 Maximum Sectional Primary Membrane Plus Bending Stress Summary, 30-ft Side Drop ................................................................. 2.7.1.8-6 Table 2.7.3-1  Section Locations for Cask Body Side Pin Puncture Model ................ 2.7.3-7 Table 2.7.3-2  Section Locations for Cask Lid Top Pin Puncture Model .................... 2.7.3-8 Table 2.7.3-3  Section Locations for Cask Bottom Pin Puncture Model ..................... 2.7.3-8 Table 2.7.3-4  Cask Body Side Pin Puncture, Pm Stress Summary, ksi ....................... 2.7.3-9 Table 2.7.3-5  Cask Lid Top Pin Puncture, Pm Stress Summary, ksi ......................... 2.7.3-10 Table 2.7.3-6  Cask Lid Top Pin Puncture, Pm + Pb Stress Summary, ksi ................. 2.7.3-10 Table 2.7.3-7  Cask Bottom Pin Puncture, Pm Stress Summary, ksi .......................... 2.7.3-11 Table 2.7.3-8  Cask Bottom Pin Puncture, Pm + Pb Stress Summary, ksi .................. 2.7.3-11 Table 2.7.4-1  Summary of Maximum TSC Pressures During Hypothetical Accident Conditions.............................................................................. 2.7.4-3 Table 2.7.4-2  Summary of Maximum Cask Cavity Pressures During Hypothetical Accident Conditions ........................................................ 2.7.4-4 Table 2.7.4-3  Cask Body Fire Accident, Pm Stress Summary, ksi .............................. 2.7.4-5 Table 2.7.4-4  Cask Body Fire Accident, Pm + Pb Stress Summary, ksi ...................... 2.7.4-6 Table 2.7.7-1  Deep Water (290 psi) Immersion, Pm Stress Summary, ksi.................. 2.7.7-2 Table 2.7.7-2  Deep Water (290 psi) Immersion, Pm + Pb Stress Summary, ksi .......... 2.7.7-3 Table 2.7.8-1  TSC Pm Stresses - Internal Pressure (300 psig) - Model A1 ................ 2.7.8-3 Table 2.7.8-2  Canister Pm + Pb Stresses - Internal Pressure (300 psig) -
Model A1 ............................................................................................... 2.7.8-3 Table 2.7.8-3  Canister Pm Stresses - Internal Pressure (300 psig) - Model B1 and C1 .................................................................................................... 2.7.8-4 Table 2.7.8-4  Canister Pm + PB Stresses - Internal Pressure (300 psig) - Model B1 and C1 ............................................................................................... 2.7.8-4 Table 2.7.8-5  Canister Critical Sections for the 30-Foot End Drop Load Condition - Model A1 ........................................................................... 2.7.8-6 Table 2.7.8-6  Canister Critical Sections for the 30-Foot End Drop Load Condition - Model B1 and C1 ............................................................... 2.7.8-6 Table 2.7.8-7  Canister Pm Stresses Foot Top End Drop - Model A1.................. 2.7.8-7 Table 2.7.8-8  Canister Pm + Pb Stresses Foot Top End Drop - Model A1 .......... 2.7.8-7 Table 2.7.8-9  Canister Pm Stresses Foot Top End Drop - Model B1 and C1 ...... 2.7.8-8 NAC International                                  2-xx
 
MAGNATRAN Transport Cask SAR                                                                              January 2022 Docket No. 71-9356                                                                                              Revision 1 List of Tables (contd)
Table 2.7.8-10 Canister Pm + Pb Stresses Foot Top End Drop - Model B1 and C1 ....................................................................................................2.7.8-8 Table 2.7.8-11 Canister Pm Stresses Foot Top End Drop, Internal Pressure -
Model A1 ...............................................................................................2.7.8-9 Table 2.7.8-12 Canister Pm + Pb Stresses Foot Top End Drop, Internal Pressure - Model A1 ............................................................................2.7.8-10 Table 2.7.8-13 Canister Pm Stresses Foot Top End Drop, Internal Pressure -
Model B1 and C1 ..................................................................................2.7.8-11 Table 2.7.8-14 Canister Pm + Pb Stresses Foot Top End Drop, Internal Pressure -Model B1 and C1 .................................................................2.7.8-11 Table 2.7.8-15 Canister Pm Stresses Foot Bottom End Drop - Model A1...........2.7.8-12 Table 2.7.8-16 Canister Pm + Pb Stresses Foot Bottom End Drop - Model A1 ...2.7.8-12 Table 2.7.8-17 Canister Pm Stresses Foot Bottom End Drop - Model B1 and C1 ..................................................................................................2.7.8-13 Table 2.7.8-18 Canister Pm + Pb Stresses Foot Bottom End Drop - Model B1 and C1 ..................................................................................................2.7.8-13 Table 2.7.8-19 Canister Pm Stresses Foot Bottom End Drop, Internal Pressure - Model A1 ............................................................................2.7.8-14 Table 2.7.8-20 Canister Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure - Model A1 ............................................................................2.7.8-15 Table 2.7.8-21 Canister Pm Stresses Foot Bottom End Drop, Internal Pressure - Model B1 and C1 ................................................................2.7.8-16 Table 2.7.8-22 Canister Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure - Model B1 and C1 ................................................................2.7.8-16 Table 2.7.8-23 Canister Critical Sections for the 30-Foot Side Drop Load Condition - Model A1 .........................................................................2.7.8-18 Table 2.7.8-24 Canister Pm Stresses Foot Side Drop - Model A1 .......................2.7.8-18 Table 2.7.8-25 Canister Pm + Pb Stresses Foot Side Drop - Model A1 ...............2.7.8-19 Table 2.7.8-26 Canister Pm Stresses Foot Side Drop, Internal Pressure -
Model A1 .............................................................................................2.7.8-19 Table 2.7.8-27 Canister Pm + Pb Stresses Foot Side Drop, Internal Pressure -
Model A1 .............................................................................................2.7.8-20 Table 2.7.8-28 Canister Critical Sections for the 30-Foot Corner Drop Load Condition - Model A1 .........................................................................2.7.8-22 Table 2.7.8-29 Canister Critical Sections for the 30-Foot Corner Drop Load Condition - Model B1 and C1 ..............................................................2.7.8-22 Table 2.7.8-30 Canister Pm Stresses 30-Foot Top Corner Drop, Internal Pressure - Model A1 ............................................................................2.7.8-23 Table 2.7.8-31 Canister Pm+ Pb Stresses 30-Foot Top Corner Drop, Internal Pressure - Model A1 ............................................................................2.7.8-23 Table 2.7.8-32 Canister Pm Stresses Foot Top Corner Drop, Internal Pressure - Model B1 and C1 ................................................................2.7.8-24 Table 2.7.8-33 Canister Pm + Pb Stresses Foot Top Corner Drop, Internal Pressure - Model B1 and C1 ................................................................2.7.8-24 NAC International                              2-xxi
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Tables (contd)
Table 2.7.8-34 Canister Pm Stresses Foot Top Corner Drop - Model A1 ........... 2.7.8-25 Table 2.7.8-35 Canister Pm + Pb Stresses Foot Top Corner Drop - Model A1 ... 2.7.8-25 Table 2.7.8-36 Canister Pm Stresses Foot Top Corner Drop - Model B1 and C1 .................................................................................................. 2.7.8-26 Table 2.7.8-37 Canister Pm + Pb Stresses Foot Top Corner Drop - Model B1 and C1 .................................................................................................. 2.7.8-26 Table 2.7.8-38 Canister Pm Stresses 30-Foot Bottom Corner Drop, Internal Pressure - Model A1 ........................................................................... 2.7.8-27 Table 2.7.8-39 Canister Pm + Pb Stresses 30-Foot Bottom Corner Drop, Internal Pressure - Model A1 ........................................................................... 2.7.8-27 Table 2.7.8-40 Canister Pm Stresses Foot Bottom Corner Drop, Internal Pressure - Model B1 and C1 ................................................................ 2.7.8-28 Table 2.7.8-41 Canister Pm + Pb Stresses Foot Bottom Corner Drop, Internal Pressure - Model B1 and C1 ................................................................ 2.7.8-28 Table 2.7.8-42 Canister Pm Stresses Foot Bottom Corner Drop - Model A1 ..... 2.7.8-29 Table 2.7.8-43 Canister Pm + Pb Stresses Foot Bottom Corner Drop -
Model A1 ............................................................................................. 2.7.8-29 Table 2.7.8-44 Canister Pm Stresses Foot Bottom Corner Drop - Model B1 and C1 .................................................................................................. 2.7.8-30 Table 2.7.8-45 Canister Pm + Pb Stresses Foot Bottom Corner Drop - Model B1 and C1 ............................................................................................. 2.7.8-30 Table 2.7.8-46 Buckling Evaluation Results for the PWR Canister for 30-Foot End Drop ............................................................................................. 2.7.8-32 Table 2.7.9-1  PWR Fuel Tube Stresses, 30-ft Side Drop - 0&deg;, ksi ........................... 2.7.9-14 Table 2.7.9-2  PWR Corner Weldment Plate Stresses, 30-ft Side Drop - 0&deg;, ksi ...... 2.7.9-14 Table 2.7.9-3  PWR Corner Weldment Support Bars, 30-ft Side Drop - 0&deg;, ksi ....... 2.7.9-14 Table 2.7.9-4  PWR Side Weldment Stresses, 30-ft Side Drop - 0&deg;, ksi ................... 2.7.9-14 Table 2.7.9-5  PWR Fuel Tube Stresses, 30-ft Side Drop - 45&deg;, ksi ......................... 2.7.9-15 Table 2.7.9-6  PWR Corner Weldment Plate Stresses, 30-ft Side Drop - 45&deg;, ksi .... 2.7.9-15 Table 2.7.9-7  PWR Corner Weldment Support Bars, 30-ft Side Drop - 45&#xba;, ksi ..... 2.7.9-15 Table 2.7.9-8  PWR Side Weldment Stresses, 30-ft Side Drop - 45&deg;, ksi ................. 2.7.9-15 Table 2.7.10-1 PWR-DF Fuel Tube Stresses, 30-ft Side Drop - 0&deg;, ksi ................... 2.7.10-10 Table 2.7.10-2 PWR-DF Corner Weldment Plate Stresses, 30-ft Side Drop -
0&deg;, ksi ................................................................................................ 2.7.10-10 Table 2.7.10-3 PWR-DF Corner Weldment Gusset Stresses, 30-ft Side Drop -
0&deg;, ksi ................................................................................................ 2.7.10-10 Table 2.7.10-4 PWR-DF Side Weldment Stresses, 30-ft Side Drop - 0&deg;, ksi .......... 2.7.10-11 Table 2.7.10-5 PWR-DF Fuel Tube Stresses, 30-ft Side Drop - 45&deg;, ksi ................. 2.7.10-11 Table 2.7.10-6 PWR-DF Corner Weldment Plate Stresses, 30-ft Side Drop -
45&deg;, ksi .............................................................................................. 2.7.10-11 Table 2.7.10-7 PWR-DF Corner Weldment Gusset Stresses, 30-ft Side Drop -
45&deg;, ksi .............................................................................................. 2.7.10-12 Table 2.7.10-8 PWR-DF Side Weldment Stresses, 30-ft Side Drop - 45&deg;, ksi ........ 2.7.10-12 NAC International                                2-xxii
 
MAGNATRAN Transport Cask SAR                                                                                  January 2022 Docket No. 71-9356                                                                                                  Revision 1 List of Tables (contd)
Table 2.7.11-1  BWR Fuel Tube Stresses, 30-ft Side Drop - 0&deg;, ksi .........................2.7.11-13 Table 2.7.11-2  BWR Corner Weldment Plate Stresses, 30-ft Side Drop - 0&deg;, ksi ....2.7.11-13 Table 2.7.11-3  BWR Side Weldment Stresses, 30-ft Side Drop - 0&deg;, ksi .................2.7.11-13 Table 2.7.11-4  BWR Fuel Tube Stresses, 30-ft Side Drop - 45&deg;, ksi .......................2.7.11-14 Table 2.7.11-5  BWR Corner Weldment Plate Stresses, 30-ft Side Drop - 45&deg;,
ksi ......................................................................................................2.7.11-14 Table 2.7.11-6  BWR Side Weldment Stresses, 30-ft Side Drop - 45&deg;, ksi ...............2.7.11-14 Table 2.7.12-1  GTCC-TSC Pm Stresses - Internal Pressure (10 psig) .....................2.7.12.1-2 Table 2.7.12-2  GTCC-TSC Pm + Pb Stresses - Internal Pressure (10 psig) .............2.7.12.1-2 Table 2.7.12-3  GTCC-TSC Critical Sections for the 30-Foot End-Drop Load Condition ..........................................................................................2.7.12.2-2 Table 2.7.12-4  GTCC-TSC Pm Stresses Foot Top End Drop ...........................2.7.12.2-3 Table 2.7.12-5  GTCC-TSC Pm + Pb Stresses Foot Top End Drop ...................2.7.12.2-3 Table 2.7.12-6  GTCC-TSC Pm Stresses Foot Top End Drop, Internal Pressure.............................................................................................2.7.12.2-4 Table 2.7.12-7  GTCC-TSC Pm + Pb Stresses - 30 Foot Top End Drop, Internal Pressure.............................................................................................2.7.12.2-4 Table 2.7.12-8  GTCC-TSC Pm Stresses Foot Bottom End Drop .....................2.7.12.2-5 Table 2.7.12-9  GTCC-TSC Pm + Pb Stresses Foot Bottom End Drop .............2.7.12.2-5 Table 2.7.12-10 GTCC-TSC Pm Stresses Foot Bottom End Drop, Internal Pressure.............................................................................................2.7.12.2-6 Table 2.7.12-11 GTCC-TSC Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure ...............................................................................2.7.12.2-6 Table 2.7.12-12 GTCC-TSC Critical Sections for the 30-Foot Side Drop Load Condition ..........................................................................................2.7.12.3-2 Table 2.7.12-13 GTCC-TSC Pm Stresses Foot Side Drop..................................2.7.12.3-3 Table 2.7.12-14 GTCC-TSC Pm + Pb Stresses Foot Side Drop ..........................2.7.12.3-3 Table 2.7.12-15 GTCC-TSC Pm Stresses 30-Foot Side Drop, Internal Pressure........2.7.12.3-4 Table 2.7.12-16 GTCC-TSC Pm+ Pb Stresses 30-Foot Side Drop, Internal Pressure .2.7.12.3-4 Table 2.7.12-17 GTCC-TSC Critical Sections for the 30-Foot Corner Drop Load Condition ..........................................................................................2.7.12.4-2 Table 2.7.12-18 GTCC-TSC Pm Stresses Foot Top Corner Drop ......................2.7.12.4-3 Table 2.7.12-19 GTCC-TSC Pm + Pb Stresses Foot Top Corner Drop...............2.7.12.4-3 Table 2.7.12-20 GTCC-TSC Pm Stresses 30-Foot Top Corner Drop, Internal Pressure.............................................................................................2.7.12.4-4 Table 2.7.12-21 GTCC-TSC Pm+ Pb Stresses 30-Foot Top Corner Drop, Internal Pressure.............................................................................................2.7.12.4-4 Table 2.7.12-22 GTCC-TSC Pm Stresses Foot Bottom Corner Drop.................2.7.12.4-5 Table 2.7.12-23 GTCC-TSC Pm + Pb Stresses Foot Bottom Corner Drop .........2.7.12.4-5 Table 2.7.12-24 GTCC-TSC Pm Stresses 30-Foot Bottom Corner Drop, Internal Pressure.............................................................................................2.7.12.4-6 Table 2.7.12-25 GTCC-TSC Pm + Pb Stresses 30-Foot Bottom Corner Drop, Internal Pressure ...............................................................................2.7.12.4-6 Table 2.7.12-26 GTCC Waste Basket Liner Pm Stresses Foot Drop Cases .......2.7.12.6-2 NAC International                                  2-xxiii
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Tables (contd)
Table 2.7.12-27 GTCC Waste Basket Liner Pm+Pb Stresses Foot Drop Cases ................................................................................................ 2.7.12.6-2 Table 2.7.13-1  Summary of Maximum Gap Changes at Pin-Slot Connections for PWR Basket ............................................................................. 2.7.13.2-21 Table 2.7.13-2  Summary of Maximum Gap Changes at Pin-Slot Connections for BWR Basket ............................................................................. 2.7.13.2-21 Table 2.7.14-1  Buckling Evaluation Load Cases and Results - Cask Inner Shell ...... 2.7.14-7 Table 2.7.14-2  Geometry Parameters for the MAGNATRAN Transport Cask .......... 2.7.14-8 Table 2.7.16-1  Critical Pm Stress Summary - Accident Conditions, ksi .................... 2.7.16-3 Table 2.7.16-2  Critical Pm + Pb Stress Summary - Accident Conditions, ksi ............. 2.7.16-4 Table 2.11.3-1  Changes of Key Dimensions of Case 1 Model After Impact.............. 2.11.3-2 Table 2.11.3-2  Changes of Key Dimensions of Case 2 Model After Impact.............. 2.11.3-2 Table 2.11.6-1  Maximum Stress and Strain - PWR Fuel Rods Spectrum Analysis... 2.11.6-2 Table 2.11.6-2  Maximum Stress and Strain - BWR Fuel Rods Spectrum Analysis .. 2.11.6-2 Table 2.12.2-1  Comparison of the MAGNATRAN and NAC-STC Cask and Impact Limiter Designs..................................................................... 2.12.2-35 Table 2.12.2-2  Impact Limiter Benchmarking Analysis and Test Summary ............ 2.12.2-36 Table 2.12.2-3  Maximum Accelerations versus the Shallow Angle Drop for the NAC-STC Cask Design .................................................................... 2.12.2-36 Table 2.12.2-4  Maximum Accelerations versus the Coefficient of Friction of the Impact Plane for Slapdown (5o) for the NAC-STC Cask Design ..... 2.12.2-36 Table 2.12.2-5  Parts Description of the NAC-STC-CY Cask Finite Element Side Drop Model ....................................................................................... 2.12.2-37 Table 2.12.2-6  Section Locations for Nonpuncture Cases ........................................ 2.12.2-79 Table 2.12.2-7  Section Stress Allowable Temperature Summary (Rounded Values) .............................................................................................. 2.12.2-80 Table 2.12.2-8  Section Locations for Side Puncture Model ..................................... 2.12.2-81 Table 2.12.2-9  Section Locations for Top Puncture Model ...................................... 2.12.2-82 Table 2.12.2-10 Section Locations for Bottom Puncture Model ................................ 2.12.2-82 NAC International                              2-xxiv
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2              STRUCTURAL EVALUATION This chapter presents the structural analyses of the MAGNATRAN transport cask. The results of the analyses demonstrate that the package satisfies the requirements of 10 CFR 71, specifically, Subpart E, Package Approval Standards, and Subpart F, Package, Special Form, and LSA-III Tests. The results show that containment is not compromised under any of the normal conditions of transport or the hypothetical accident conditions specified in 10 CFR 71.
In the structural analyses presented herein, state-of-the-art methods are used to calculate stresses in large structures subject to steady-state and transient loadings. The evaluation of the structural characteristics of the containment boundary is based on a conservative interpretation of the requirements of the ASME Boiler and Pressure Vessel Code, Section III, Subsection NB, which is the recognized consensus standard for nuclear pressure vessel analysis, mechanical properties of materials, and allowable stress values.
Analyses are performed for the principal structural components of the MAGNATRAN transport cask for the normal conditions of transport and the hypothetical accident conditions specified in 10 CFR 71.
NAC International                                2-1
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 2.1            Description of Structural Design This section describes and discusses the principal structural design of the MAGNATRAN packaging, components and systems that are important to safety.
NAC International                            2.1-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.1.1          Discussion The MAGNATRAN transport cask is the transport component for the MAGNASTOR Transportable Storage Canister (TSC). The TSC assembly includes a canister and a basket loaded with PWR or BWR spent fuel, PWR damaged fuel, or a GTCC waste basket liner loaded with GTCC waste. The impact limiters attached to the top and bottom of the transport cask limit to acceptable design values the accelerations that may be applied to the MAGNATRAN package during transport. The principal components of the MAGNATRAN transport cask system are described in this section.
2.1.1.1        Cask Body The MAGNATRAN transport cask (transport cask or cask) is designed to transport a TSC containing up to 37 undamaged PWR fuel assemblies in the 37 PWR basket assembly or up to 87 undamaged BWR fuel assemblies in the 87 BWR basket assembly. The cask is also designed to transport a TSC containing up to four damaged fuel cans (DFCs) in the DF Basket Assembly.
The DF Basket Assembly has a capacity of up to 37 undamaged PWR fuel assemblies, including four DFC locations. DFCs may be placed in up to four of the DFC locations. Each DFC may contain an undamaged PWR fuel assembly, a damaged PWR fuel assembly, or PWR fuel debris equivalent to one PWR fuel assembly. Undamaged PWR fuel assemblies may be placed directly in the DFC locations of a DF Basket Assembly. The cask is also designed to transport a TSC containing up to 55,000 pounds of GTCC waste in a GTCC waste basket liner.
Primarily on the basis of their lengths, two categories of PWR fuel assemblies and two categories of BWR fuel assemblies have been evaluated for transport. Two lengths of TSCs (long and short) are designed to transport the two categories of PWR and BWR fuel assemblies. The short TSC is also designed to transport GTCC wastes. A cavity spacer shall be used in the transport cask cavity to axially position the short TSC and limit its potential axial movement under normal conditions and hypothetical accident conditions of transport.
The primary components of the transport cask are:
* Cask body
* Cask lid, bolts and O-rings
* Lid port coverplate, bolts and O-rings
* Lifting trunnions and rotation trunnions
* Impact limiters
* Cavity Spacer NAC International                            2.1.1-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Detailed descriptions of these cask components are presented in Section 1.3.1. The cask containment boundary is also described in that section. A detailed discussion of the containment boundary is presented in Chapter 4. The design pressure for the cask is 120 psig. The geometry and materials of fabrication of the cask components are described in Section 1.3.1 and are shown on the license drawings presented in Section 1.4.3.
The cask supports and protects the cask cavity contents for the normal conditions of transport and the hypothetical accident conditions. The lead located between the cask inner and outer shells provides the primary gamma radiation shielding for the cask in the radial direction. The bottom plate, bottom inner forging and bottom outer forging close the cask bottom end and provide axial gamma radiation shielding.
The cask lid, lid bolts and O-rings are the primary closure components of the cask. The cask lid and the inner O-ring provide the containment boundary. The lid is secured to the top forging by 48 bolts (2-8 UN-2A bolts) preloaded by an installation torque to restrain rotation of the edge of the lid and to maintain a containment seal for the critical load condition. The critical load condition for the cask inner shell is a uniformly distributed pressure resulting from the impact of the TSC and cavity contents on the cask inner shell during a side or corner impact. The critical load condition for the outer shell is a localized pressure resulting from the impact of the cask outer shell onto a six-inch diameter solid mild steel bar following a 40-inch (side drop) free fall.
The critical load condition for the cask lid and lid bolts is a uniformly distributed pressure due to the cask cavity contents which results from a top end or top corner impact.
The lid port is located in the cask lid and is protected by a bolted port coverplate. The containment boundary at the lid port is the port coverplate and its inner O-ring. The port coverplate inner O-ring is located on the bottom surface of the port coverplate. A second O-ring is also located on the bottom surface of the port coverplate outside of, and concentric with, the inner O-ring. The port coverplate has a test port that penetrates the region between the port coverplate O-rings to facilitate leak testing of the port coverplate O-rings using the interseal region. The inner O-rings are tested by pressurizing the cask cavity with helium and using a helium leak detector at the test ports in the cask lid and in the port coverplate.
The neutron shielding material, NS-4-FR, is installed in neutron shield assemblies that are bolted in place around the circumference and along the length of the cask outer shell over the active fuel region. NS-4-FR is a solid, synthetic polymer that absorbs the neutron radiation emitted by the cask contents.
Two lifting trunnions are bolted to the outside of the top forging at a 180&deg; interval. The purpose of the lifting trunnions is to facilitate lifting and handling of the cask. The lifting trunnions are NAC International                                  2.1.1-2
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 designed to satisfy the heavy lifting requirements of NUREG-0612 and ANSI N14.6 for a nonredundant lift, as well as the requirements of 10 CFR 71.45(a). Analyses show that overload failure of the lifting trunnions will not impair the ability of the cask body to continue to perform its design function.
Two rotation trunnion supports are welded to the outer shell and bottom outer forging near the bottom of the cask, and removable rotation trunnion pins are inserted into the supports. Neutron shield material is displaced to accommodate the placement of the rotation trunnions, which are used to support the bottom of the cask on the shipping frame, and also as a pivot point to rotate the cask from the vertical lifting position to the horizontal position and vice versa. The rotation trunnion design interfaces with the shipping frame to prevent lateral and rearward movement of the cask during transport. The rotation trunnion pin is designed to fail in shear before the outer shell fails, thereby enabling the cask to continue to perform its function.
Forward movement of the cask is prevented by a shear ring integral to the top forging of the cask. In the transport configuration, forward axial loads from the cask are passed through to the shipping frame where the shear ring contacts the frame. The shear ring is designed to fail in shear before the top forging fails, thus minimizing the damage to the cask and enabling the cask body to continue to perform its function.
2.1.1.2          Impact Limiters The MAGNATRAN transport cask packaging includes two removable impact limiters, which absorb the energy of a cask drop impact through the crushing of balsa wood and redwood. Prior to shipment, the upper impact limiter is bolted to the cask lid with 16 equally spaced retaining rods, washers and nuts. Likewise, the lower impact limiter is bolted to the bottom plate with 16 equally spaced retaining rods, washers and nuts. Both impact limiters are designed to limit impact loads on the cask and its contents resulting from either the normal conditions of transport or hypothetical accident condition drop scenarios. The impact limiters are fabricated from balsa wood and redwood wedge-shaped sections glued together to form cylindrical shapes. The wood impact-absorbing medium is completely enclosed in a stainless steel shell. A detailed description of the impact limiters is provided in Section 1.3.1, with the geometry and materials of fabrication being defined on the license drawings presented in Section 1.4.3.
The maximum normal condition of transport (1-ft free drop) impact load is calculated to be 14g for the side drop. The design load used in the normal conditions of transport side impact evaluations is 15g. The maximum normal condition of transport (1-ft free drop) impact load for the end and corner drops is calculated to be 8g. The design load used in the normal conditions of transport end and corner impact evaluations is 10g.
NAC International                          2.1.1-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The maximum hypothetical accident condition (30-ft free drop) impact load is calculated to be 46g for the side drop. The design load used in the hypothetical accident condition (30-foot free drop) side impact evaluations is 60g. The maximum hypothetical accident condition (30-foot free drop) impact load for the end and corner drops impact load is calculated to be 32g. A design load of 60g is used in the end and corner drop hypothetical accident condition evaluations. A design load of 40g (for an end drop) is used for determination of the minimum required closure bolt preload.
2.1.1.3        Transportable Storage Canister The transportable storage canister (TSC) consists of a stainless steel shell, bottom, closure lid and port covers. The shell assembly is a cylindrical shell welded to a bottom plate. The shell assembly, with the closure lid welded in place, provides a welded closure system for the contents loaded in the TSC. The TSC provides confinement for the contents during storage and transport.
The closure lid is positioned in the top of the loaded TSC and welded to the shell. The closure lid is designed with removable hoist rings so that the loaded TSC can be lifted. The TSC design parameters for the transport of different classes of PWR and BWR fuel and for GTCC waste are provided in Chapter 1. Detailed descriptions of the TSC components are provided in Section 1.3.1, with the geometry and materials of fabrication being described on the license drawings presented in Section 1.4.3. The TSC is evaluated for normal conditions of transport and hypothetical accident conditions for PWR fuel, BWR fuel and GTCC waste. These analyses show that the TSC maintains its leaktight confinement function in all of the evaluated conditions.
A PWR or BWR fuel basket assembly, as described in Section 1.3.1, is positioned inside the TSC. The TSC and basket are moved in a transfer cask during fuel-loading operations. In the spent fuel pool, the fuel is loaded into the basket/TSC assembly positioned in the transfer cask.
Upon completion of fuel loading, the closure lid is lowered into the top of the TSC. The loaded TSC assembly is then moved to a decontamination pit for the remaining TSC closure operations, including installation of the drain pipe. The closure lid is welded to the TSC shell while the loaded TSC is in the transfer cask. Two penetrations through the closure lid are provided for draining, vacuum drying and backfilling the TSC with helium. The drain penetration supports the drain pipe. The pipe extends almost to the bottom of the TSC to facilitate draining water from the inside of the TSC. The vent port is used to pressurize the TSC or as a vent/discharge port, during cask operations. Both the drain and vent ports have dual port covers welded over the quick-disconnect.
An empty GTCC waste basket liner, as described in Section 1.3.1, is moved into the spent fuel pool and loaded with GTCC waste. The loaded waste basket liner will remain in the spent fuel NAC International                          2.1.1-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 pool until a GTCC TSC in the transfer cask is moved into the pool. The loaded waste basket liner will be placed into the GTCC TSC and the closure lid lowered into the TSC to rest on the top of the waste basket liner. The remaining TSC transfer and closure operations proceed as described for the spent fuel TSCs. The remaining TSC transfer and closure operations proceed as described Chapter 7, Section 7.1.5 for GTCC TSCs. Note that the GTCC TSC does not require redundant closure so the installation and welding of the closure ring and the redundant vent and drain port covers is not required.
2.1.1.4        Fuel Basket Assembly A fuel basket assembly is located inside the TSC. There are two different length fuel baskets.
The fuel basket assembly and TSC are handled as one unit. The fuel basket assembly is designed with a capacity of up to 37 undamaged PWR fuel assemblies in the 37 PWR basket assembly or up to 87 undamaged BWR fuel assemblies in the 87 BWR basket assembly. The DF Basket Assembly is designed to transport up to four Damaged Fuel Cans (DFC). The DF Basket Assembly has a capacity of up to 37 undamaged PWR fuel assemblies, including four DFC locations. DFCs may be placed in up to four of the DFC locations. Each DFC may contain an undamaged PWR fuel assembly, a damaged PWR fuel assembly, or PWR fuel debris equivalent to one PWR fuel assembly. Undamaged PWR fuel assemblies may be placed directly in the DFC locations of a DF Basket Assembly.
The basket structure provides the fuel assemblies with lateral support, decay heat removal capability, and criticality control during all normal conditions of transport and hypothetical accident conditions. Both the PWR and BWR fuel baskets consist of an arrangement of square fuel tubes held in a right-circular cylinder configuration by side and corner support weldments that are bolted to the outer fuel tubes. Both designs minimize horizontal surfaces that could entrain water and provide an open path for water flow to the drain tube and sump in the bottom of the TSC. Detailed descriptions of the basket assemblies are provided in Section 1.3.1, with the geometry and materials of fabrication being described on the license drawings presented in Section 1.4.3.
The basket assemblies are evaluated for normal conditions of transport and hypothetical accident conditions for both PWR fuel and BWR fuel. These analyses show that the fuel baskets maintain their fuel assembly support, decay heat removal and criticality control functions for all of the evaluated conditions.
2.1.1.5        GTCC Waste Basket Liner A GTCC waste basket liner is designed to hold GTCC waste (e.g., reactor baffle plates and angles, baffle formers, and lower core plates) and dimensionally fit in a TSC. The waste basket liner design includes a shell (structural and shield functions) and welded bottom plate, and lifting NAC International                          2.1.1-5
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 lugs welded on the inside diameter of the shell so that the liner may be loaded with GTCC waste prior to being inserted into a TSC (Table 1.3-5). The liner design also includes an outer ring and a middle support under the bottom plate and drain holes in the bottom plate to facilitate free flow drainage from the liner. The GTCC TSC includes a sump location in the bottom plate, and the closure lid includes a drain tube assembly to enable draining and drying of the loaded TSC.
2.1.1.6        Damaged Fuel Can The MAGNASTOR Damaged Fuel Can (DFC), shown in Figure 1.3-3, is provided to accommodate damaged PWR fuel assemblies. The primary function of the DFC is to confine the fuel material within the can to minimize the potential for dispersal of the fuel material into the TSC cavity. In normal operation, the DFC is in a vertical orientation. The DFC may also contain PWR fuel assemblies in an undamaged condition or fuel debris equivalent to one PWR fuel assembly. Up to four DFCs may be loaded, one into each outer corner, in the DF Basket Assembly. Figure 1.3-3 provides nominal dimensions for the DFC. Variations in DFC length and width are acceptable as long as the DFC fits into its associated TSC and has sufficient fuel assembly clearance.
If needed, a DFC spacer is used in the DF basket assembly to position the DFC for DFC lid retention and ease of handling. The DFC lid and bottom include screened drain holes.
2.1.1.7        Cask Cavity Spacer A cask cavity spacer is used in the upper end of the MAGNATRAN cask cavity to limit the axial movement of the short TSCs. The spacer consists of six concentric rings welded to a flat plate (Drawing No. 71160-506). The depth of the rings, i.e., the length of the spacer, is approximately seven inches, which represents the difference in length between the short and long TSCs. The spacer is bolted through the flat plate to the underside of the cask lid.
NAC International                          2.1.1-6
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.1.2          Design Criteria This section defines the design criteria that are used to establish the material properties, allowable stress and strain limits, load combinations, and stress combinations for the MAGNATRAN transport cask. The detailed allowable stress and strain limits, load combinations and stress combinations are also included in this section. The detailed material properties are presented in Section 2.2.1.
2.1.2.1        Load Combinations The load conditions that must be considered for the design of a spent-fuel transport cask are defined in 10 CFR 71 and Regulatory Guide 7.8 and summarized in Table 2.1.2-1. The calculated stresses in the containment structures and the noncontainment structures satisfy the stress limits defined in Regulatory Guide 7.6, Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels. These limits are essentially the same as those in the ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB, for Class 1 Components.
The MAGNATRAN transport cask is analyzed as a pressure vessel, whose containment boundary is not breached during any loading condition. The cask design allows for well-defined load paths that are analyzed by using straightforward, proven structural analysis methods. The structural analysis of the cask is a linear elastic analysis for all evaluations except the accident condition side drop. For the accident condition side drop, and elastic-plastic analysis is implemented per ASME Boiler and Pressure Vessel Code, Section III, Division 1, Appendix F.
In those cases where loadings are open to analytical interpretation, several load condition analyses are performed to bound the actual load conditions.
Each normal condition of transport and each hypothetical accident condition is characterized by a combination of various loading types. These load type combinations define the total load criteria for each condition. The loading types that must be considered include ambient thermal, decay heat, external and internal pressures, bolt preload, inertia, and cask drop impacts. The cask is analyzed for normal conditions of transport in Section 2.6 and for hypothetical accident conditions in Section 2.7.
The total stresses in the cask components are calculated as the combination of the stresses that result from each of the various load types (thermal, pressure and mechanical) associated with a given load condition. For those load conditions and components analyzed by using classical hand-calculation methods, the total stress components are obtained by summing the individual stress components for each type of load associated with the load condition. This summation is appropriate because the individual and total stress components are linear, elastic stresses.
NAC International                            2.1.2-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 The evaluation of lead-pour fabrication stress is presented in Section 2.6.11. Since the residual stress in the inner shell induced by shrinkage of the lead after pouring is relieved because of the low creep strength of the lead, the stresses are not combined with other loads. The evaluations of Heat (100&#xba;F) and Cold (-40&#xba;F) ambient temperature conditions are presented in Sections 2.6.1 and 2.6.2, respectively. The cask free drops are evaluated in Sections 2.6.7 and 2.7.1, and the loading conditions (bolt preload, internal pressure, inertia load and thermal load) are also included there.
2.1.2.2          Allowable Stress Limits - Ductile Failure Allowable stress limits are established for the cask containment structures, noncontainment structures, lifting trunnions, rotation trunnions, bolts and impact limiters. Regulatory Guide 7.6, ASME Code Section III, Division 1, Appendix F, and the ASME Code Section III, Subsection NB, are used to establish the allowable stress limits for the MAGNATRAN transport cask containment boundary for both normal conditions of transport and hypothetical accident conditions. Material property data used in calculating the allowable stress limits correspond to the design stress intensities (Sm), yield strengths (Sy) and ultimate strengths (Su) presented in Section 2.2.1.
The cask containment boundary includes the following elements:
* 5-inch thick cup-shaped bottom inner forging (Type 304 stainless steel)
* 72.25-inch ID, 1.75-inch thick inner shell (Type 304 stainless steel), to which the bottom inner forging is welded
* Top forging (Type 304 stainless steel), to which the inner shell is welded
* 7.75-inch thick cask lid (17-4 PH H1025 stainless steel), cask lid inner metal O-ring and 48 lid bolts (SB 637, Grade N07718 nickel alloy steel)
* 1.25-inch thick lid port coverplate (Type 304 stainless steel), coverplate inner metal O-ring and 4 coverplate bolts (SA 193, GR B6, Type 410 stainless steel)
The allowable stress criteria used for containment structures and bolting materials are summarized in Table 2.1.2-2. These criteria are consistent with Regulatory Guide 7.6 and applicable parts of Article NB 3000 and Appendix F of the ASME Code, and NUREG CR-6007.
Analysis section locations on the cask are identified in Section 2.6 to aid in the evaluations of the various load conditions. In the evaluation of the cask containment boundary, no credit is taken for the transportable storage canister (TSC), although the TSC is designed as a confinement boundary to satisfy spent fuel storage requirements.
The noncontainment structural members are shown to satisfy essentially the same structural criteria as the containment structural members, even though Regulatory Guide 7.6 applies only to containment structures. Noncontainment structures include all structural members other than the NAC International                            2.1.2-2
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 containment boundary components, but exclude the lifting trunnions, rotation trunnions, and impact limiters. Allowable stresses for the noncontainment structures and noncontainment bolting materials are presented in Table 2.1.2-3.
The allowable stresses for the lifting and handling components of the MAGNATRAN transport cask are based on the requirements of 10 CFR 71.45(a), which require the use of material yield strength with a load factor of 3.0. The lifting and handling components of the cask also satisfy the structural requirements of NUREG-0612 and ANSI N14.6, i.e., the maximum allowable stress is the material yield strength with a load factor of 6.0 or the material ultimate strength with a load factor of 10.0, whichever is less.
The lead (gamma shielding material) is enclosed between the inner and outer cask shells. The lead does not perform a structural function. However, the weight and low-yield strength of the lead is considered, where appropriate, in the analyses of the cask shell components.
The impact limiters are not stress-limited. While performing their intended function during a free-drop impact, the impact limiters crush and, thereby, absorb the energy of the impact. The crushing of the balsa wood and redwood contained in the impact limiter dissipates the kinetic energy of the cask, while limiting the deceleration forces applied to the cask.
The TSC is analyzed as a confinement structure. The TSC is structurally sound, criticality safe, and contains a thermally efficient basket. The TSC, which has a single-welded closure, serves as a redundant containment of the spent fuel, with the fuel cladding being the first containment.
The basket provides the lateral structural support for the fuel assemblies and maintains the subcritical configuration of the fuel during all normal conditions of transport and hypothetical accident conditions.
2.1.2.3          Miscellaneous Structural Failure Modes 2.1.2.3.1        Brittle Fracture The primary structural material of the MAGNATRAN transport cask is Type 304 stainless steel.
The inner shell, top forging, bottom inner forging, bottom outer forging, bottom plate, neutron shield assemblies and port coverplate are fabricated from Type 304 stainless steel. The outer shell is fabricated from Type XM-19 stainless steel. The cask lid, lifting trunnions and the rotation trunnion pins are Type 17-4PH precipitation-hardened stainless steel. The TSC shell, closure lid, bottom and port covers are fabricated from dual-certified Type 304/304L stainless steel. The fuel basket support weldments and fuel tubes are fabricated from SA-537, Class 1, carbon steel.
Type 304, 304L, XM-19 and 17-4PH stainless steels do not undergo a ductile-to-brittle transition in the temperature range of interest for a spent-fuel transport cask. Therefore, brittle fracture is not a concern.
NAC International                          2.1.2-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Regulatory Guide 7.11, Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask Containment Vessels with a Maximum Wall Thickness of 4 inches (0.1 m), which identifies fracture toughness criteria, references the criteria contained in NUREG/CR-1815, Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Up to Four Inches Thick. The cask lid bolts are made of SB 637, Grade N07718 nickel alloy steel bolting material. The port coverplate bolts are made of SA-193, Grade B6, Type 410 stainless steel. According to Section 5 of NUREG/CR-1815, bolts generally are not considered fracture-critical components because multiple load paths exist and because bolted systems are designed to be redundant. Therefore, brittle fracture evaluation of the bolts is not required. Nonetheless, the bolt materials possess a level of resistance to brittle fracture that is comparable to the other cask component materials.
The PWR and BWR fuel baskets are comprised of welded fuel tubes and support weldments that are fabricated from SA-537, Class 1, carbon steel, with material thicknesses up to 0.875 inch.
The material will meet ASME Code, Section III, Subsection NG, Article NG-2300, requirements for impact tests and will be tested in accordance with Paragraph NG-2320. The procurement and fabrication specification will describe fracture toughness testing of these materials for each heat of material subjected to the equivalent forming/bending process or heat-treated condition.
Acceptance values shall be per ASTM A370, Section 26.1, with values meeting the requirements of Table NG-2331(a)(1) at a Lowest Service Temperature (LST) of -40&deg;F.
2.1.2.3.2      Fatigue The MAGNATRAN transport cask containment structure is evaluated for the effects of fatigue in accordance with the criteria contained in ASME Code, Section III, NB-3222.4 for cyclic operation. NB-3222.4(a) states that cyclical service analysis is not required when the six criteria of NB-3222.4(d) are satisfied. Justification for exemption from a detailed cyclic analysis is as follows.
A normal operating cycle of the transport cask consists of: (1) loading an empty cask at ambient temperature with a TSC containing maximum heat load; (2) transporting the contents to a destination; and (3) unloading the contents and letting the cask return to ambient temperature.
The anticipated number of normal operating cycles for the cask is not expected to exceed 1,200 cycles (24 cycles per year x 50 years).
The following is a summary of the application of the six NB-3222.4(d) criteria to the MAGNATRAN transport cask.
: 1. Atmospheric Pressure Cycle. Since the cask normally operates at atmospheric pressure, the normal operation process for the cask includes one evacuation cycle and one pressurization cycle for the total of two pressure changes. This results in 2,400 (2x1,200) pressure cycles. This is significantly lower than the value of 10,000 cycles corresponding NAC International                          2.1.2-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 to 3Sm for the cask body materials (3Sm = 60.0 ksi at 300&deg;F) and the value of 200,000 cycles, which conservatively bounds the maximum stress value for the lid material.
: 2. Normal Pressure Service Fluctuations. The Maximum Normal Operating Pressure (MNOP) for the cask is 23 psig, but the pressure boundary is designed for 135 psig. For the cask body materials, Sa for 106 cycles is determined to be 28.3 ksi, Sm is 20.0 ksi, and the design pressure is 120 psi. The significant range of normal pressure changes is 1/3 x design pressure x (S/Sm) = 56.6 psi. For the cask lid material, Sa for 106 cycles is determined to be 28.3 ksi and Sm is 45.0 ksi. The significant range of normal pressure changes is 1/3 x design pressure x (S/Sm) = 25.2 psi. The only pressure fluctuations during normal operations occur due to changes in ambient condition and are calculated to be below 3 psi, and for evaluations purposes are conservatively considered to be below 10 psi. Therefore, these fluctuations are insignificant and do not need to be considered.
: 3. Temperature Difference - Startup and Shutdown. As previously discussed, not more than 1,200 startup-shutdown cycles are expected during the lifetime of the cask. The corresponding Sm determined from the fatigue curves is 113 ksi. Therefore, taking the material properties from Section 2.2.1 and bounding cask lid and body materials, the maximum allowable value of delta-T between any two adjacent points on the cask (adjacent points as defined in NB-3222.4) is Sa/2E, which is calculated to be 196&deg;F.
The maximum temperature difference of 196&deg;F is larger than what would result between adjacent points for normal startup and shutdown, and therefore, the cask meets the Temperature Difference - Startup and Shutdown requirement.
: 4. Temperature Difference - Normal Service. For the cask body and lid materials, Sa for 106 cycles is determined to be 28.3 ksi and S/2E is calculated to be 49&deg;F. The maximum temperature difference between any two adjacent points is 45&deg;F or less; therefore, the cask body and lid materials meet the Temperature Difference - Normal Service requirement.
: 5. Temperature Difference - Dissimilar Materials. The cask components are fabricated from austenitic stainless steel except for the lid, which is SA-693/SA-705, Type 630 (17-4PH); the lid bolts, which are ASME SB-637, Grade N07718; and the coverplate bolts, which are SA-193, Grade B6. The quantity of S/2(E11 - E22) is calculated to be 2000&deg;F for the coverplate bolts and 153&deg;F for the lid bolts. The range of temperature fluctuation of dissimilar materials is less than 134&deg;F for the coverplate bolts and less than 130&deg;F for the lid bolts; therefore, the cask components meet the Temperature Difference
      - Dissimilar Materials requirement.
: 6. Mechanical Loads. The fluctuations due to mechanical loads are considered significant only when they exceed the Sa quantity corresponding to 106 cycles. For the cask body materials, Sa is determined to be 28.3 ksi. From the results in Section 2.6.7, the maximum stress in the cask body for normal conditions of transport is 24.7 ksi, which occurs in the 1-foot side drop case. The maximum mechanical stress for normal conditions is less than the maximum allowable value of Sa; therefore, the cask meets the Mechanical Loads requirement.
Therefore, the MAGNATRAN transport cask structural components meet the exemption criteria of NB-3222.4(d) and do not require a detailed cyclic service analysis. However, a fatigue evaluation is performed for the cask closure lid bolts as shown in Section 2.6.7.6.
NAC International                          2.1.2-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The TSC is not evaluated for effects of fatigue. A normal operating cycle for a TSC consists of:
(1) loading an empty TSC/basket at the spent fuel pool (assumed to be ambient temperature) with a full load of fuel assemblies generating the maximum allowable heat load; (2) storage of the loaded TSC for up to five years or more; and (3) loading the TSC into the transport cask in which it is be shipped to a destination for unloading. The TSC may be exposed to one hypothetical accident, after which the TSC is taken out of service. A typical TSC is not exposed to significant cycling during its design life.
2.1.2.3.3      Buckling The MAGNATRAN transport cask inner shell and the TSC are evaluated for structural stability by using ASME Code Case N-284-1 (Metal Containment Shell Buckling Design Methods). The PWR and BWR basket structures, without the support of the canister, are evaluated for buckling effects by using the criteria defined in NUREG/CR-6322, which is based on ASME Code, Section III, Division 1, Subsection NF. The code or standard used to evaluate structural stability of the inner shell, TSC shell and basket is described in the following paragraphs.
Structural stability ensures that the inner shell does not buckle during fabrication for normal conditions of transport or hypothetical accident conditions. The buckling evaluation requirements of Regulatory Guide 7.6, Paragraph C.5, are shown to be satisfied by the results of the interaction equation calculations of ASME Code Case N-284-1. This section discusses the Code Case N-284-1 methodology for the evaluation of the MAGNATRAN transport cask inner shell buckling. The detailed buckling evaluation of the cask is provided in Section 2.7.14. The basket evaluations for the normal conditions of transport and hypothetical accident conditions are presented in Sections 2.6.13 and 2.6.15, and in Sections 2.7.9 and 2.7.11, respectively.
The ASME Boiler and Pressure Vessel Code sets forth service limits that are analogous to load conditions found in 10 CFR 71. As stated in Regulatory Guide 7.6, the normal conditions of transport correspond to ASME Code Level A Service Limits, and the hypothetical accident conditions correspond to ASME Code Level D Service Limits. A buckling safety factor of 2.0 is used for Level A (normal transport) conditions. A buckling safety factor of 1.34 is used for Level D (accident) conditions. ASME Code Case N-284-1 addresses both elastic and inelastic buckling. Interaction equations are used to combine the largest hoop compression, axial compression, and in-plane shear loadings calculated in each load case (cask inner shell or TSC) analyzed. ASME Code, Section III, Appendix F (for Level D Service Loadings), specifically identifies the use of a Code Case for metal containment shell buckling as an acceptable means of addressing buckling issues. Buckling of the cask inner shell, which is the primary component of containment, is evaluated as follows.
: 1. Use classical theory to determine the theoretical elastic buckling stresses.
NAC International                          2.1.2-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1
: 2. Apply the appropriate factors of safety and interaction equations to elastic and inelastic buckling cases and establish the worst-case compressive and in-plane shear stresses.
: 3. Calculate and apply capacity reduction factors, which account for differences between classical theory and predicted instability stress for fabricated shells.
: 4. Calculate plasticity reduction factors and apply them in cases where elastically determined buckling stresses are above the proportional limit.
Cask inner shell geometric parameters and material properties are used in the elastic buckling evaluation. The theoretical elastic buckling stresses for the inner shell are calculated by using the equations of ASME Code Case N-284-1, the inner shell geometric parameters, and the material yield strength and elastic modulus. ASME Code Case N-284-1 provides elastic stress formulas for unstiffened cylindrical shells.
Capacity reduction factors compensate for differences between classically determined and predicted instability stresses for fabricated shells. The capacity reduction factors are determined by using methods described in Section 1500 of Code Case N-284-1. To directly use the capacity reduction factors, the tolerance requirements of ASME Code, Subsection NE, Article NE 4220, must be satisfied - Articles NE 4221.1 and NE 4221.2 set forth the maximum difference in cross-section diameters and maximum deviation from true theoretical form for external pressure.
Plasticity reduction factors account for nonlinear material behavior, which occurs when buckling stresses exceed the proportional limit of the material. Plasticity reduction factors are dependent upon the magnitude of the applied compressive or in-plane shear stress, Si. Because values for Si are not directly calculated, the equations used to determine the plasticity reduction factors for axial compression, hoop compression and shear (Section 1600 of Code Case N-284-1) are used.
From Section 1600 of ASME Code Case N-284-1, as an upper limit, the compressive stresses, Si (i =  or ), must be less than the yield strength, Sy, divided by the appropriate factor of safety (Si
< Sy/FS). Similarly, for shear, S, must be less than or equal to 0.6 Sy divided by the appropriate factor of safety (S < 0.6Sy/FS). As discussed earlier in this section, the factor of safety is 2.0 for normal transport and 1.34 for hypothetical accident conditions. Under no circumstances may the values for the upper bound magnitudes of compression stresses and in-plane shear stresses be exceeded. However, satisfying these limits alone is not sufficient to demonstrate that buckling does not occur. The interaction equations must also be satisfied.
NAC International                          2.1.2-7
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Elastic and inelastic interaction equations must be satisfied for all states of compression and in-plane shear stress. The interaction equations for cylindrical shells are directly available from Article 1713.1.1 and Article 1713.2.1 of ASME Code Case N-284-1. Once a stress state is established for a specific shell, plasticity reduction factors can be determined and all appropriate interaction equations checked. Elastic interaction equations must be satisfied and, if any of the uniaxial critical stress values exceed the proportional limit of the fabricated material, the inelastic interaction equations must also be satisfied.
2.1.2.3.4        Creep Considerations at Elevated Temperatures Structural components of the MAGNATRAN transport cask and the TSC are fabricated from stainless steel, which does not experience creep below temperatures of 700&deg;F. The TSC is the package structural component exposed to the highest temperatures, which remain below 700&deg;F.
Therefore, the potential for creep is essentially zero. Design considerations relative to the creep failure mode are, therefore, satisfied.
2.1.2.3.5        Impact Limiter Deformation Limits The MAGNATRAN transport cask impact limiters are designed to crush and, thereby, absorb the kinetic energy of the cask acquired during a free-drop accident. The geometry of the impact limiters and the crush characteristics of the energy-absorbing material are designed to limit the deceleration forces applied to the cask. As shown in Table 2.6.7-37, the MAGNATRAN transport cask impact limiters restrict the maximum deceleration experienced by the cask to 46g for all impact conditions. The deceleration force is a function of the crush strength of the energy-absorbing material in the impact limiter and the area of crush. The impact limiter must provide a sufficient depth of energy-absorbing material so that all of the kinetic energy of the package is absorbed (i.e., cask is stopped) before the limiter is crushed to its solid locked-up volume (approximately 65% of the initial volume).
NAC International                            2.1.2-8
 
MAGNATRAN Transport Cask SAR                                                                                                    January 2022 Docket No. 71-9356                                                                                                                Revision 1 Table 2.1.2-1      Load Combinations: Normal and Hypothetical Accident Conditions Applicable Initial Conditions Ambient Temperature      Solar Insolation                Decay Heat        Internal Pressure    Fabrication Minimum                      Minimum  Maximum    Minimum Load Conditions - Apply Separately    100F    -40F Maximum          (Zero)      Maximum        (Zero)  135 psig    0 psig      Stresses Normal Conditions of Transport Hot Environment (100o F Ambient Temperature)                              X                              X                      X                        X Cold Environment
(-40o F Ambient Temperature)                                              X                            X                    X            X Reduced External Pressure (3.5 psia)    X                X                              X                      X                        X X                      X                            X                    X            X Increased External Pressure (20 psia)              X                      X                            X                    X            X Vibration                                X              X                              X                      X                        X X                      X                            X                    X            X Free Drop (1-foot)                        X              X                              X                      X          X            X X                      X                            X      X            X          X Hypothetical Accident Conditions Free Drop (30-foot)                      X              X                              X                      X          X            X X                      X                            X      X            X          X Puncture                                  X              X                              X                      X          X            X X                      X                            X        X          X            X Thermal Fire Accident                    NA              X                              X                  255 psig                    X 200 Meter Immersion (290 psi external pressure)            70F                              X                            X                    X            X NAC International                                                    2.1.2-9
 
MAGNATRAN Transport Cask SAR                                                                                                  January 2022 Docket No. 71-9356                                                                                                                Revision 1 Table 2.1.2-2          Allowable Stress Limits for Containment Structures Allowable Stress                                                  Bolt Allowable Intensity                                                    Stress Intensity*
Stress Intensity              Normal                  Accident          Plastic Analysis    Normal                  Accident Category                Conditions                Conditions            Accident        Conditions                Conditions Conditions Primary Membrane                  1.0Sm              Lesser of: 2.4 Sm          0.7 Su          (Sm)BM              Lesser of: 1.0 Sy and 0.7 Su                                                      and 0.7 Su Primary Membrane +                1.5 Sm              Lesser of: 3.6 Sm          0.9 Su        1.35 (Sm)BM                  1.0 Su and 1.0 Su Primary Bending Range of Primary +                3.0 Sm                    N/A                  N/A            N/A                      N/A Secondary Shear                              0.6 Sm                  0.42 Su                N/A          0.6(Sm)BM            Lesser of: 0.42 Su and 0.6 Sy Bearing                            1.0 Sy                    N/A                  N/A            N/A                      N/A or 1.5 Sy**
Buckling                                  Inner shell: ASME Code Case N-284-1                      N/A                      N/A Neglecting stress concentrations Distance to edge > distance over which bearing load is applied Su = material ultimate strength Sy = material yield strength Sm = material design stress intensity
    = lesser of: Su/3 and 2Sy/3 (Sm)BM = (Sm) bolting material = 2Sy/3 (NUREG/CR-6007)
NAC International                                                        2.1.2-10
 
MAGNATRAN Transport Cask SAR                                                                                              January 2022 Docket No. 71-9356                                                                                                            Revision 1 Table 2.1.2-3        Allowable Stress Limits for Noncontainment Structures Allowable Stress                    Bolt Allowable                  Basket Allowable Intensity                      Stress Intensity*                    Stress**
Stress Intensity              Normal              Accident        Normal            Accident      Normal              Accident Category                Conditions          Conditions    Conditions        Conditions    Conditions          Conditions Primary Membrane                  1.0 Sm              0.7 Su      2.0(Sm)BM        *Lesser of :    1.0 Sm              0.7 Su 1.0 Sy and 0.7 Su Primary Membrane +                1.5 Sm              1.0 Su      3.0(Sm)BM          1.0 Sy        1.5 Sm              1.0 Su Primary Bending Range of Primary +                3.0 Sm                N/A                                          3.0 Sm                N/A Secondary Shear                        Greater of: 0.6 Sm        0.5 Su                                        0.6 Sm              0.42 Su or 0.6 Sy Bearing                            1.0 Sy              1.0 Su                                        1.0 Sy              1.0 Su or 1.5 Sy***
Buckling                                                                                                    NUREG/CR-6322 Neglecting stress concentrations ASME Boiler & Pressure Vessel Code, Section III, Subsection NG Distance to edge > distance over which bearing load is applied Su =    material ultimate strength Sy =    material yield strength Sm = material design stress intensity
    = lesser of: Su/3 and 2Sy/3 (Sm) bolting material = Sy/3 NAC International                                                    2.1.2-11
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.1.3          Weights and Centers of Gravity The calculated weights of the major components of the MAGNATRAN transport cask containing PWR fuel, BWR fuel, damaged PWR fuel or GTCC waste are presented in Table 2.1.3-1. The table also summarizes the weights and center of gravity locations of the cask for several configurations: (1) the loaded TSC, (2) empty transport cask with lid and lid bolts, (3) transport cask loaded and (4) loaded transport cask with top and bottom impact limiters (transport ready).
The axial locations of the centers of gravity are measured from the bottom outer surface of each component. The center of gravity of TSC contents is assumed to equal the mid-length of the TSC cavity. The centers of gravity are on the axial centerline of the cask because the cask is symmetric about that axis.
NAC International                              2.1.3-1
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                                                                                            January 2022 Docket No. 71-9356                                                                                                                                          Revision 1 Table 2.1.3-1            Calculated Weights and Centers of Gravity Long TSC(1)                                Short TSC(2)
PWR                      BWR                  PWR                    BWR              PWR-DF                GTCC Description CG                        CG                    CG                    CG                    CG                CG Weight                  Weight                    Weight                Weight              Weight                Weight(l (lb)(3)    (in)(4)      (lb)(3)      (in)(4)    (lb)(3)  (in)(4)    (lb)(3)  (in)(4)    (lb)(3)    (in)(4)    b)(3)  (in)(4)
Maximum Contents (Fuel, DFC, GTCC and/or spacers if used)                                      62,160          -        62,656          -      62,160        -      62,656        -      61,184          -    55,000      -
Basket                                                20,500          -        22,000          -      19,500        -      21,000        -      24,000          -    23,500      -
TSC w/o Lid                                            9,500          -        9,500          -        9,500        -        9,500        -      9,500          -      9,500      -
Closure Lid                                          10,500          -        10,500          -      10,500        -      10,500        -      10,500          -    10,500      -
Loaded TSC (TSC, Lid, Basket and Contents)          102,000        100      104,500          99      101,000      96      103,500      95      104,500        96    98,000      96
: 1. Bounding weights and centers of gravity for the long TSC configurations.
: 2. Bounding weights and centers of gravity for the short TSC configurations.
: 3. Weights and CGs are maximum calculated values based on nominal component dimensions. All weights except the maximum contents weight and the cavity spacer weight are rounded up to the nearest 500 pounds. The cavity spacer weight is rounded to the nearest 10 pounds. Component weights are rounded individually, so the total assembly weights may not equal the sum of the component weights.
: 4. CG is measured from the bottom of each component and CG of TSC contents is assumed to equal the mid-length of the TSC cavity, except for the GTCC, which is assumed to equal the mid-length of the waste basket liner.
: 5. The cavity spacer is only used with the short TSC configurations.
NAC International                                                                    2.1.3-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.1.4          Identification of Codes and Standards for Packaging 2.1.4.1        Codes and Standards The MAGNATRAN transport cask is designed, fabricated, assembled, tested, maintained and used in accordance with general regulatory requirements and established codes and standards to the extent practical.
The structural design criteria are described in Section 2.1.2. The cask thermal, containment, shielding and criticality design criteria are based on regulatory documents and established industry codes and standards, which are detailed in the list of references in Chapter 3 through Chapter 6 of this Safety Analysis Report - i.e., the Code of Federal Regulations (10 CFR 71);
Regulatory Guides, NUREGs and Interim Staff Guidance (ISG) issued by the U.S. Nuclear Regulatory Commission; the American Society of Mechanical Engineers Boiler and Pressure Vessel Code - Section II, Part D, and Section III, Division 1, Subsections NB, NF and NG; the American National Standards Institute; the American Nuclear Society; the American Society for Testing and Materials; and applicable technical reports.
The MAGNATRAN transport cask and the transportable storage canister (TSC) are fabricated, assembled, acceptance tested and maintained to the extent practical in accordance with the following regulatory requirements, codes and standards.
General Criteria 10 CFR 71, Packaging and Transportation of Radioactive Material 10 CFR 21, Reporting of Defects and Noncompliance Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material, Revision 2, March 2005 NUREG/CR-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, Final Report, March 2000 NUREG/CR-6407, Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety, February 1996 NRC Bulletin 96-04, Chemical, Galvanic, or Other Reactions in Spent Fuel Storage and Transportation Casks, U.S. Nuclear Regulatory Commission, Washington, DC, July 5, 1996 NRC Interim Staff Guidance, ISG-18,The Design/Qualification of Final Closure Welds on Austenitic Stainless Steel canisters as Confinement Boundary for Spent Fuel Storage and Containment Boundary for Spent Fuel Transportation, May 2, 2003 ASME Boiler and Pressure Vessel Code, Section II, Materials, Part A - Ferrous Material Specifications, Part B - Nonferrous Material Specifications, Part C -
Specifications for Welding Rods, Electrodes, and Filler Materials, Part D, Properties, 2001 Edition, with 2003 Addenda ASME Boiler and Pressure Vessel Code, Section V, Nondestructive Examination, 2001 Edition, with 2003 Addenda NAC International                          2.1.4-1
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 ASME Boiler and Pressure Vessel Code, Section IX, Welding and Brazing Qualifications, 2001 Edition, with 2003 Addenda Recommended Practice SNT-TC-1A, Nondestructive Testing, American Society for Nondestructive Testing, edition as invoked by the applicable ASME Code ANSI N45.2.1-1973, Cleaning of Fluid Systems and Associated Components During Construction Phase of Nuclear Power Plants, Cask Containment Components NUREG/CR-3019, Recommended Welding Criteria for Use in the Fabrication of Shipping Containers for Radioactive Materials, March 1984 NUREG/CR-3854, Fabrication Criteria for Shipping Containers, March 1985 ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB -
Class 1 Components, 2001 Edition, with 2003 Addenda ANSI N14.5-1997. American National Standard for Radioactive Materials - Leakage Tests on Packages for Shipment Cask Noncontainment Components ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF-Component Supports, 2001 Edition, with 2003 Addenda ASME Boiler and Pressure Vessel Code, Section VIII, Rules for Construction of Pressure Vessels, 2001 Edition, with 2003 Addenda AISC, Manual of Steel Construction, ASD, 9th Edition, 1989 American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, Current Edition ANSI/AWS D1.1, Structural Welding Code - Steel, American National Standards Institute, 1998 Cask Lifting Components NUREG-0612, Control of Heavy Loads at Nuclear Power Plants, July 1980 ANSI N14.6 for Radioactive Materials, Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More, 1997 ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF-Component Supports, 2001 Edition, with 2003 Addenda AISC, Manual of Steel Construction, ASD, 9th Edition, 1989 American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, Current Edition ANSI/AWS D1.1, Structural Welding Code - Steel, American National Standards Institute, 1998 Transportable Storage Canister NRC Interim Staff Guidance, ISG-18,The Design/Qualification of Final Closure Welds on Austenitic Stainless Steel canisters as Confinement Boundary for Spent Fuel Storage and Containment Boundary for Spent Fuel Transportation, May 2, 2003 NAC International                      2.1.4-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB- Class 1 Components, 2001 Edition, with 2003 Addenda ASME Boiler and Pressure Vessel Code, Code Cases - Nuclear Components, Code Case N-595-4, Requirements for Spent Fuel Storage Canisters Section III, Division 1, Approved May 12, 2004 ANSI N14.5-1997. American National Standard for Radioactive Materials - Leakage Tests on Packages for Shipment Spent Fuel Basket ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NG- Core Support Structures, 2001 Edition, with 2003 Addenda ASTM B733-97, Standard Specification for Autocatalytic (Electroless) Nickel-Phosphorus Coatings on Metal, Annual Book of ASTM Standards, Col. 0205, American Society for Testing and Materials, Conshohocken, PA, 1996 2.1.4.2        Alternatives to Codes and Standards Specific alternatives to the ASME Code requirements are presented and justified in Table 2.1.4-1.
These alternatives are justified based on other requirements for the design and analysis of the MAGNATRAN transport cask and the transportable storage canister, as well as based upon standard industry practice for the storage and transport of spent nuclear fuel.
Carbon Steel components plated using an electroless plating process in accordance with ASTM B733-97 may have plated areas repaired due to damages during assembly. The repair process is considered a special process and must meet the same FSAR electroless plating requirements for service condition, appearance, and adhesion.
Surfaces shall be cleaned to a surface cleanness classification C, or better, as defined in ANSI N45.2.1 or an approved alternative.
NAC International                        2.1.4-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.1.4-1    ASME Code Alternatives for MAGNATRAN Components Reference ASME Code                                      Alternative, Justification and Component      Section/Article      Code Requirement              Compensatory Measures Transport          NB-8000    Requirements for            Code nameplates, stamping and reports Cask                            nameplates, stamping and    are not required because the cask is not reports                    N-stamped. However, the cask is marked as required by 10 CFR 71.
TSC and Fuel      NCA-1000,    Requirements for Code      Code stamping is not required for the Basket            NCA-2000,    stamping of NB components TSC, fuel baskets or damaged fuel can.
NCA-3000,    and preparation of Code    Code Design Specifications, Design NCA-4000,    Design Specifications,      Reports, Overpressure Protection Report, NCA-5000,    Design Reports,            and Data Reports are not required. The NCA-8000,    Overpressure Protection    TSC, fuel basket and damaged fuel can NB-1110, and  Report (TSC only), and      are designed, procured, fabricated, NG-1110    Data Reports, and Quality  inspected and tested in accordance with Assurance requirements in a QA Program meeting 10 CFR 71, accordance with Code        Subpart H, and 10 CFR 72, Subpart G.
requirements.              Authorized Nuclear Inspection Agency Services are not required.
TSC Pressure-      NB-2000    Pressure-retaining material Materials will be supplied with Certified Retaining                      to be provided by ASME-    Material Test Reports by NAC approved Materials                      approved Material          suppliers.
Organization.
TSC Closure        NB-4243    Full penetration welds      The closure lid-to-shell weld is not a full Lid-to-Shell                    required for Category C    penetration weld. The design and Weld                            joints.                    analysis of the closure lid weld utilizes a 0.8 stress reduction factor in accordance with ISG-15.
Port Cover-to-      NB-5230    Radiographic (RT)          Final surface liquid penetrant (PT)
Closure Lid                    examination required.      examination to be performed per ASME Weld                                                        Code, Section V, Article 6. PT acceptance criteria is to be in accordance with NB-5350.
TSC Closure        NB-5230    Radiographic (RT)          In accordance with ISG-15, the TSC Lid-to-Shell                    examination required.      closure lid-to-shell weld is to be inspected Weld                                                        by progressive surface liquid penetrant (PT) examination of the root, midplane and final surface layers. The progressive PT examination of the weld will be performed in accordance with ASME Code, Section V, Article 6, and acceptance criteria per NB-5350.
NAC International                            2.1.4-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.1.4-1 ASME Code Alternatives for MAGNATRAN Components (contd)
Reference ASME Code                                        Alternative, Justification and Component      Section/Article      Code Requirement                Compensatory Measures TSC Closure        NB-5230    Radiographic (RT)            Final surface liquid penetrant (PT)
Ring-to-TSC                    examination required.        examination to be performed per ASME Shell Weld                                                  Code Section V, Article 6. PT
& TSC Closure                                                acceptance criteria is to be in accordance Ring-to-                                                    with NB-5350.
Closure Lid Weld TSC                NB-6111    All completed pressure      Following closure lid to TSC shell retaining systems shall be  welding, each TSC shall be pressure tested.            hydrostatically pressure tested to 125% of the TSC design pressure. No observable pressure drop or water leakage from the closure lid to TSC shell weld is allowed.
Since the shell welds of the TSC cannot be checked for leakage during this pressure test, as required by the Code, the shop leakage test to 10-7 ref cc/sec (as described in Section 8.1.4) provides reasonable assurance as to its leak tightness.
TSC                NB-7000    Pressure vessels shall be    No overpressure protection is provided.
protected from the          The function of the TSC is to confine consequences of pressure    radioactive contents without release conditions exceeding design under normal conditions, or off-normal pressure.                    and accident events of storage. The TSC is designed to withstand the maximum internal pressure considering 100% fuel rod failure and maximum accident condition temperatures.
TSC                NB-8000    States requirements for      The TSC is marked and identified to nameplates, stamping and    ensure proper identification of the reports per NCA-8000.        contents. Code stamping is not required.
TSC Basket          NG-2000    Core support structural      Fuel basket and damaged fuel can Assembly &                      materials are to be provided structural materials with Certified Material Damaged Fuel                    by an ASME approved          Test Reports to be supplied by NAC Can Structural                  Material Organization.      approved suppliers.
Materials NAC International                            2.1.4-5
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 Table 2.1.4-1 ASME Code Alternatives for MAGNATRAN Components (contd)
Reference ASME Code                                          Alternative, Justification and Component    Section/Article      Code Requirement                  Compensatory Measures Fuel Basket        NG-2300    Fuel basket materials will    Fuel basket materials fabricated from Assembly                      meet ASME Code, Section        Carbon Steel  , may optionally have III, Subsection NG,            impact tests performed on specimens Subarticle NG-2300            oriented in a direction parallel to the requirements for impact        principal rolling direction of the plate, tests and will be tested in    provided that the results from the tests accordance with paragraph      are scaled down to 67% of the measured NG-2320.                      values before comparing to acceptance criteria Table NG-2331(a)(1) at the Lowest Service Temperature (LST) of -
40&deg;F.
Fuel Basket        NG-2500    All plates for core support    Ultrasonic testing of plate material for Assembly                      structures greater than 3/4    core support structures greater than 3/4 thickness shall be examined    thickness shall be examined by the by the straight beam          straight beam method in accordance with ultrasonic method in          NG-2532.1, before or after normalization.
accordance with NG-2532.1. Acceptance examinations (NG-2537) shall be performed at the time of manufacture as required in the following:
(a) Ultrasonic examination shall be performed after rolling to size and after heat treatment, except post-weld heat treatment.
TSC Basket        NG-8000    Requirements for              The TSC basket structural assembly and Assembly &                    nameplates, stamping and      the damaged fuel can is marked and Damaged Fuel                  reports per NCA-8000.          identified to ensure component Can Structural                                                traceability in accordance with the NAC Components                                                    QA Program.
NAC International                            2.1.4-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.2            Materials This section provides the detailed descriptions of the materials selected for use in the components of the MAGNATRAN system. The component materials are specified in the license drawings in Section 1.4.3. The significant physical and mechanical properties of the component materials are defined in this section, along with the material specifications, tests and acceptance conditions important to material use. These component materials are consistent with the application of the accepted design criteria, codes, standards and specifications described in Section 2.1.2 and Section 2.1.4.
NAC International                              2.2-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.2.1            Material Properties and Specifications A summary list of the structural materials from which the MAGNATRAN transport cask and other major components are fabricated and the bases for their selection are described in this section.
2.2.1.1          Material Selection The austenitic stainless steels used for the structural components of the transport cask are selected because of their strength, ductility, resistance to corrosion and brittle fracture, and metallurgical stability over a broad temperature range. The precipitation-hardened stainless steel is selected for the cask lid, lifting trunnions and the rotation trunnion pins because of its high strength combined with good corrosion and brittle fracture resistance. The bolting materials are selected to provide high strength, good resistance to corrosion and coefficients of thermal expansion similar to those of the components being joined. The copper cooling fin material is selected for its high thermal conductivity and because its melting point is above the fire accident temperature. The aluminum cooling fin material is selected for its high thermal conductivity relative to the material weight. Lead is selected as the gamma shielding material in the transport cask because of its excellent gamma radiation shielding characteristics. A solid synthetic polymer, NS-4-FR, is selected as the neutron shielding material to eliminate leakage concerns associated with liquid neutron shields. The materials used in the fabrication of the transport cask are:
Component                                              Material Top Forging                            ASME SA-336, Type 304, stainless steel Inner Shell                            ASME SA-240, Type 304, stainless steel Outer Shell                          ASME SA-240. Type XM-19, stainless steel Bottom Inner Forging                        ASME SA-336, Type 304, stainless steel Bottom Outer Forging                          ASME SA-336, Type 304, stainless steel Bottom Plate                      ASME SA-240/SA-336, Type 304/F304, stainless steel Lifting Trunnion                ASME SA-564/SA-693, Type 630 (17-4 PH), stainless steel Rotation Trunnion              ASME SA-240/SA-276, Type XM-19, stainless steel w/17-4 PH pin Neutron Shield Inner and Outer Plates                ASME SA-240, Type 304, stainless steel Cooling Fins                      ASTM B152 copper and ASTM B209, 1100, aluminum Neutron Shield                                          NS-4-FR Gamma Shield                              ASTM B29, lead, chemical copper grade Lid                            ASME SA-693/SA-705, 17-4 PH, stainless steel Lid Bolt                        ASME SB-637, Grade N07718, nickel alloy steel Coverplate                        ASME SA-240/SA-479, Type 304, stainless steel Coverplate Bolt                      ASME SA-193, GR B6, Type 410 stainless steel NAC International                                2.2.1-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 A cask cavity spacer is used in the upper end of the cask cavity to control the axial position of the shorter length canisters. The spacer is bolted to the cask lid.
Component                                            Material Cask Cavity Spacer                      ASME SA-240, Type 304, stainless steel The transport cask shipping configuration includes impact limiters that fit over each end of the cask for protection during drop impact events. The stainless steel shell, gussets and tubes provide strength, ductility, resistance to corrosion and brittle fracture, and metallurgical stability.
The redwood and balsa wood provide high capacity, predictable energy absorption; both static and dynamic crush properties are provided. The materials used in the fabrication of the impact limiters are:
Component                                            Material Shell/Plate/Ring                        ASTM A240, Type 304, stainless steel Gussets                              ASTM A240, Type 304, stainless steel Screw Tubes                            ASTM A269, Type 304, stainless steel Anti-Rotation Angles                      ASTM A276, Type 304, stainless steel Side Wedges                                          Redwood Impact Body                                        Balsa wood The Transportable Storage Canister (TSC) is fabricated from dual-certified Type 304/304L stainless steel. Type 304/304L stainless steel is selected for this use because of its high strength, ductility, resistance to corrosion and brittle fracture, and metallurgical stability for long-term storage. The steels used in the fabrication of the TSC are as follows.
Component                                            Material Shell                  ASME SA-240, Type 304/304L dual-certified, stainless steel Bottom                  ASME SA-240, Type 304/304L dual-certified, stainless steel Closure Lid*              ASME SA-240/SA-336/SA-182, Type 304/304L stainless steel Closure Ring              ASME SA-240/SA-479, Type 304/304L dual-certified, stainless steel Port Covers                ASME SA-240, Type 304/304L dual-certified, stainless steel Closure lid material to have yield and ultimate strengths greater than, or equal to, those of the ASME SA-240 Type 304 stainless steel material.
The carbon steels used in the fabrication of the fuel baskets are selected based on their high strength, thermal conductivity, and resistance to corrosion and high levels of radiation. After fabrication, the carbon steel basket components are electroless nickel-coated to improve resistance to corrosion and to significantly reduce the potential for the formation of flammable gases during in-pool loading. The materials used in the fabrication of the fuel baskets are:
NAC International                                2.2.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Component                                          Material Support Weldments                        ASME SA-537, Class 1, Carbon Steel Corner Support Bars                      ASME SA-695, Type B, Grade 40 or SA-696, Grade C, or SA-516 GR 70, Carbon Steel Fuel Tubes                          ASME SA-537, Class 1, Carbon Steel Connector Pins                        SA-696, Grade C, or SA-36, Carbon Steel Mounting Bolts                          ASME SA-193, Gr B6, stainless steel Neutron Absorber                            Borated Metallic Composite, Borated Aluminum Alloy or Boral 2.2.1.2          Mechanical Properties of Materials The mechanical properties of the structural materials used in the fabrication of the MAGNATRAN system components are presented in Table 2.2.1-1 through Table 2.2.1-14. The effects of temperature on the mechanical properties of the structural materials are shown in those tables. The coefficients of thermal expansion presented in this section represent the mean value for the temperature range from 70&deg;F to the indicated temperature.
The mechanical properties of the impact limiter shell and gusset material (ASTM 240 Type 304 stainless steel) are presented in Table 2.2.1-1. The mechanical properties of the impact limiter energy absorbing materials (redwood and balsa) are presented in Section 2.6.7.5.
Materials for small components, which are not explicitly modeled, are not included in the property tabulation.
NAC International                              2.2.1-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.2.1-1        Mechanical Properties of SA-240, Type 304 Stainless Steel Value at Temperature (&deg;F)
Property (units)            -40  -20    70  200    300      400  500  650  800  900 Ultimate Tensile Strengtha, Su 75.0  75.0  75.0  71.0  66.2      64.0 63.4 63.4  62.8  60.8 (ksi)
Yield Strengtha, Sy (ksi)          30.0  30.0  30.0  25.0  22.4      20.7 19.4 18.0  16.9  16.2 Design Stress Intensitya, Sm 20.0  20.0  20.0  20.0  20.0      18.6 17.5 16.2  15.2  -
(ksi)
Modulus of Elasticitya, E (106 28.8  28.7  28.3  27.6  27.0      26.5 25.8 25.1  24.1  23.5 psi)
Coefficient of Thermal 8.13c 8.2c    8.5  8.9    9.2      9.5  9.7  9.9  10.1  10.2 Expansiona,  (10-6 in/in/&deg;F)
Poissons Ratioa                                                  0.31 Densityb (lb/in3)                                                0.29 Notes:
a ASME Boiler and Pressure Vessel Code b Metals Handbook Desk Edition c Extrapolated value NAC International                              2.2.1-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.2.1-2    Mechanical Properties of SA-336, Type F304 Stainless Steel Value at Temperature (&deg;F)
Property (units)        -40          70        200        300      400  500      750 Ultimate Tensile Strength, 70.0        70.0        66.3      61.8    59.7  59.2      59.0 Su (ksi)
Yield Strength, Sy (ksi)      30.0        30.0        25.0      22.4    20.7  19.4      17.2 Design Stress Intensitya, 20.0        20.0        20.0      20.0    18.6  17.5      15.5 Sm (ksi)
Modulus of Elasticitya , E 28.8        28.3        27.6      27.0    26.5  25.8      24.4 (106 psi)
Coefficient of Thermal Expansiona ,                  8.5          8.5        8.9        9.2      9.5  9.7      10.0 (10-6 in/in/ &deg;F)
Poissons Ratioa                                                  0.31 Densitya                                                    0.291 lbm/in3 Note:
a ASME Boiler and Pressure Vessel Code (all properties)
NAC International                                  2.2.1-5
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.2.1-3      Mechanical Properties of SA-479, Type 304 Stainless Steel Value at Temperature (&deg;F)
Property (units)      -40        70    200      300        400    500        750 Ultimate Tensile 75.0      75.0    71.0      66.2      64.0    63.4      63.3 Strengtha, Su (ksi)
Yield Strengtha, Sy 30.0      30.0    25.0      22.4      20.7    19.4      17.2 (ksi)
Design Stress 20.0      20.0    20.0      20.0      18.6    17.5      15.5 Intensitya, Sm (ksi)
Modulus of Elasticitya , E        28.8      28.3    27.6      27.0      26.5    25.8      24.4 (10 6 psi)
Coefficient of Thermal 8.1 b        8.5    8.9        9.2        9.5    9.7      10.0 Expansiona, (10-6 in/in/ &deg;F)
Poissons Ratioa                                      0.31 Densitya                                          0.291 lbm/in3 Notes:
a ASME Boiler and Pressure Vessel Code b Extrapolated NAC International                            2.2.1-6
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 Table 2.2.1-4      Mechanical Properties of SA-240 Type XM-19 Stainless Steel Value at Temperature (&deg;F)
Property (units)      -40      70      200        300      400        500    750    800    900 Ultimate Tensile 100.0    100.0    99.4        94.2      91.1        89.1  85.6    84.8    82.6 Strength, Su (ksi)]
Yield Strength, Sy 55.0    55.0    47.1        43.3      40.7        38.8  35.8    35.3    34.5 (ksi)
Design Stress 33.3    33.3    33.1        31.4      30.4        29.7  28.5    28.3      -
Intensity, Sm (ksi)
Modulus of Elasticitya, E,        28.8    28.3    27.6        27.0      26.5        25.8  24.4c  24.1    23.5 (106 psi)
Coefficient of Thermal 8.2      8.2      8.5        8.8      8.9        9.1    9.3    9.4    9.5 Expansiona, (10-6 in/in/ oF)
Poissons Ratioa                                                  0.31 Densitya                                              503 lbm/ft3(0.291 lbm/in3)
Note:
a ASME Boiler and Pressure Vessel Code (all properties)
NAC International                                  2.2.1-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.2.1-5          Mechanical Properties of SA-564/SA-693/SA-705, Type 630 (17-4 PH)
Stainless Steel Value at Temperature (&deg;F)
Property (units)          -40      70    200 300          400  500    600    700 Ultimate  Strengtha, Su (ksi)          135.0  135.0  135.0  135.0    131.2 128.6  126.7  123.8 Yield Strength a, Sy (ksi)            105.0  105.0  97.1    93.0      89.7  87.0  84.7  82.5 Design Stress Intensity a, Sm (ksi)    45.0    45.0  45.0  45.0      43.7  42.9  42.2    -
Modulus of Elasticity a, E 29.4    28.5  27.8  27.2      26.6  26.1  25.5  24.9 (x 106 psi)
Coefficient of Thermal Expansion a, 5.9 (x10-6 in/in/&deg;F)
Poissons Ratio a                                                  0.31 Density b (lb/in3)                                                0.28 Notes:
a ASME Boiler and Pressure Vessel Code b Metals Handbook Desk Edition NAC International                              2.2.1-8
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.2.1-6          Mechanical Properties of SA-537, Class 1, Carbon Steel Value at Temperature (&deg;F)
Property (units)            -40    70      200      300      400    500  700    800 Ultimate Strengtha, Su  (ksi)        70.0    70.0      70.0    69.1    68.4  68.4  68.4    65.4 Yield Strengtha,  Sy (ksi)          54.9    50.0      44.2    40.5    37.6  35.4  32.3    30.5 Design Stress Intensitya, Sm (ksi)    23.3    23.3      23.3    22.8    22.7  22.7  21.4    20.3c Modulus of Elasticitya, E 30.0    29.5      28.8    28.3    27.7  27.3  25.5    24.2 (x 106 psi)
Coefficient of Thermal Expansiona, 6.1    6.4      6.7      6.9      7.1    7.3  7.6    7.8 (x10-6 in/in/&deg;F)
Poissons Ratio a                                                    0.31 Density b (lb/in3)                                                    0.284 Notes:
a ASME Boiler and Pressure Vessel Code b Metals Handbook Desk Edition c ASME Boiler and Pressure Vessel Code, Case N-707 NAC International                                  2.2.1-9
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.2.1-7          Mechanical Properties of SA-695, Type B, Grade 40, and SA-696, Type C, Carbon Steel Value at Temperature (&deg;F)
Property (units)          -40    70    200    300      400  500    700  800 Ultimate Strength a , Su (ksi)        70.0    70.0  70.0 70.0 70.0 70.0          70.0  64.3 Yield Strength a , Sy (ksi)          40.0    40.0  36.6 35.4 34.2 32.6          28.6  26.8 Design Stress Intensity, Sm (ksi)    23.3    23.3  23.3 23.3 22.8 21.7          19.2    --
Modulus of Elasticity a, E 29.8    29.3  28.6    28.1    27.5 27.1    25.3  24.0 (x 106 psi)
Coefficient of Thermal Expansion a, 6.13    6.4    6.7    6.9      7.1  7.3    7.6  7.8 (x10-6 in/in/&deg;F)
Poissons Ratio a                                                0.31 Density b (lb/in3)                                              0.284 Notes:
a ASME Boiler and Pressure Vessel Code b Metals Handbook Desk Edition NAC International                            2.2.1-10
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.2.1-8            Mechanical Properties of SA-193, Grade B6, High Alloy Bolting Steel Value at Temperature (&deg;F)
Property (units)              -40    -20      70      200      300  400    500    700 Ultimate  Strength a  , Su (ksi)        110.0  110.0  110.0    104.9    101.4  98.3  95.6  90.6 Yield Strength a  , Sy (ksi)              85.0  85.0  85.0      81.1      78.4  76.0  73.9  70.0 Design Stress Intensityb, Sm (ksi)        28.3  28.3    28.3    27.0      26.1  25.3  24.6  23.3 Bolt Stress  Intensityb, Smbm (ksi)      21.2  21.2  21.2      21.2      21.2  21.2  21.2  21.2 Modulus of Elasticityb, E 29.8  29.7    29.2    28.5      27.9  27.3  26.7  25.6 (x 106 psi)
Coefficient of Thermal Expansionb, 5.65 d 5.69 d  5.90    6.20      6.30  6.40  6.50  6.60 (x10-6 in/in/&deg;F)
Poissons Ratio b                                                      0.31 Density c (lb/in3)                                                    0.28 Notes:
a Calculated based on design stress intensity b ASME Boiler and Pressure Vessel Code c Metal Handbook Desk Edition d Extrapolated value NAC International                                2.2.1-11
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.2.1-9      Mechanical Properties of SA-193, Grade B8, Bolting Steel Value at Temperature (&deg;F)
Property (units)            -40  70    200      300      400  500    700    800 Ultimate Strengtha, Su (ksi)          75.0  75.0    71.0    66.2      64.0  63.4  63.4  62.8 Yield Strengtha, Sy (ksi)            30.0  30.0    25.0    22.4      20.7  19.4  17.6  16.9 Design Stress Intensity, Sm (ksi) 10.0  10.0    8.3      7.5      6.9  6.5    5.9    5.6 (Bolt Material) a Modulus of Elasticitya,E 28.8  28.3    27.6    27.0      26.5  25.8  24.8  24.1 (x 106 psi)
Coefficient of Thermal 8.13c  8.5    8.9    9.2        9.5  9.7    10.0  10.1 Expansiona,  (x10-6 in/in/&deg;F)
Poissons Ratioa                                                  0.31 Density b (lb/in3)                                                0.29 Notes:
a ASME Boiler and Pressure Vessel Code b Metals Handbook Desk Edition c Extrapolated NAC International                            2.2.1-12
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.2.1-10      Mechanical Properties of SA-193, Grade B8S, Bolting Steel Value at Temperature (&deg;F)
Property (units)              -40  70    200      300      400  500    700    800 Ultimate Strength a , Su (ksi)          95.0  95.0    74.0    62.6      56.3  52.3  48.4  47.8 Yield Strength a  , Sy (ksi)            50.0  50.0    38.9    32.9      29.6  27.5  25.4  25.1 Design Stress Intensityb, Sm (ksi)      16.7  16.7    13.0    11.0      9.9  9.2    8.5    8.4 Modulus of    Elasticityb, E 28.8  28.3    27.6    27.0      26.5  25.8  24.8  24.1 (x 106 psi)
Coefficient of Thermal Expansionb, 8.13d  8.5    8.9      9.2      9.5  9.7  10.0  10.1 (x10-6 in/in/&deg;F)
Poissons Ratio b                                                    0.31 Density c (lb/in3)                                                  0.29 Notes:
a Calculated based on design stress intensity b ASME Boiler and Pressure Vessel Code c Metal Handbook Desk Edition d Extrapolated value NAC International                                2.2.1-13
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.2.1-11      Mechanical Properties of SB-637, Grade N07718, Nickel Alloy Bolting Steel Value at Temperature (&deg;F)
Property (units)              -40  70    200    300    400    500  700 Ultimate Strength a, Su (ksi)                185.0 185.0 177.6 173.5 170.6 168.7 165.8 Yield Strength a, Sy (ksi)                    150.0 150.0 144.0 140.7 138.3 136.8 134.4 Design Stress Intensity b, Sm (ksi)            50.0 50.0 48.0 46.9 46.1 45.6 44.8 Modulus of Elasticity b, E (x 106 psi)        29.6 29.0 28.3 27.8 27.6 27.1 26.4 Coefficient of Thermal Expansion b, 7.0 c  7.1    7.2      7.3  7.5    7.6  7.8 (x10-6 in/in/&deg;F)
Poissons Ratio b                                                  0.31 Density b (lb/in3)                                                0.297 Notes:
a Calculated based on design stress intensity b ASME Boiler and Pressure Vessel Code c Extrapolated NAC International                            2.2.1-14
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.2.1-12        Mechanical Properties of Chemical Copper Grade Lead Value at Temperature (&deg;F)
Property (units)                            -40    -20    70      200 300    600 Tensile Yield Strength a , Sy (psi)                              720 b  700 640 b    b    500 370      -
Modulus of Elasticity c, E (x 106 psi)                          2.45    2.42 2.28 2.06 1.94          1.5 Coefficient of Thermal Expansion c,  (x10-6 in/in/&deg;F)          15.6    15.7 16.1 16.7 17.3        20.2 Poissons Ratio d                                                                    0.4 Density d (lb/in3)                                                                  0.41 Notes:
a Determination of the Mechanical Properties of High Purity Lead and a 0.05% Copper-Lead Alloy b Extrapolated c NUREG/CR-0481 d Standard Handbook for Mechanical Engineers NAC International                                    2.2.1-15
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.2.1-13      Mechanical Properties of NS-4-FR Value at Temperature (&deg;F)
Property (units)                          108        158          212        302 Coefficient of Thermal Expansiona (x10-6 in/in/&deg;F)            51.8        57.9        57.4      58.9 Compressive Modulus of Elasticityb (ksi)                                          561 Density b (lbm/in3)                                                            0.0607 Notes:
a GESC Shield Materials Technical Report b GESC Shield Materials Product Data Table 2.2.1-14      Mechanical Properties of 1100-O Aluminum Alloy Value at Temperature (&deg;F)
Property (units)              -40      70    200    212    300    400    500    600    700 Ultimate Tensile Strengtha, Su (ksi)        14.2    13.1    10.3  10.0    8.0    6.0    4.0  2.9    2.1 Yield Strengtha, Sy (ksi)                    5.1    5.0    4.6    4.6    4.2    3.5    2.6  2.0    1.6 Modulus of Elasticityb, E (106 psi)          10.3    10.0    9.6    9.6    9.2    8.7    8.1    -      -
Coefficient of Thermal Expansionb, ,
12.1    12.1    13.0  13.0    13.3    13.6    13.9  14.2    -
(10-6 in/in/&deg;F)
Poissons Ratiob                                                            0.33 Densityb (lb/in3)                                                          0.098 Notes:
a Required 13.1 ksi minimum ultimate strength and 5.0 ksi minimum yield strength at 70&deg;F. Aluminum Standards and Data b ASME Boiler and Pressure Vessel Code NAC International                                  2.2.1-16
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 2.2.1.3          Impact Limiter Materials The impact limiters for the MAGNATRAN transport cask are fabricated from balsa wood and redwood encased in a stainless steel shell. The impact limiters absorb the kinetic energy of the loaded cask in a drop impact by crushing the redwood and balsa wood. The energy dissipated, or absorbed by crushing the wood, for a given increment of time, is equal to the integral of the area (i.e., area of impact limiter engaged in crushing) times the crush strength of the wood. The area under the force-deflection curve is equal to the amount of energy absorbed by crushing of the redwood, balsa wood, and the impact limiter shell.
The static and dynamic crush properties have been determined by performing tests on redwood and balsa wood of the types used in the impact limiters. The results of these tests are discussed in Section 2.6.7.5.1. These properties have been used in LS-DYNA, which is an explicit finite element program capable of performing three-dimensional nonlinear analysis of structures containing nonlinear material behavior such as plastic deformation of steel or crushing of wood.
NAC International                            2.2.1-17
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.2.2            Chemical, Galvanic or Other Reactions The materials used in the fabrication and operation of the MAGNATRAN transport cask systemincluding coatings, lubricants and cleaning agentsare evaluated to determine whether chemical, galvanic or other reactions among the materials, contents and environments can occur.
All phases of cask operationsloading, unloading, handling and transportationare considered for the environments that may be encountered under normal conditions of transport or hypothetical accident conditions. Based on the evaluation, no potential reactions that could adversely affect the overall integrity of the cask, the transportable storage canister (TSC), the fuel basket, or the structural integrity and retrievability of the fuel from the TSC have been identified. The evaluation conforms to the guidelines of ISG-15.
No potential chemical, galvanic or other reactions have been identified for the MAGNATRAN transport cask system. Therefore, the overall integrity of the cask, the TSC, the fuel basket, and the structural integrity and retrievability of the spent fuel are not adversely affected for any operations of the cask system. Based on the evaluation, no change in the cask, TSC, fuel basket, or fuel cladding thermal properties is expected during use, and no corrosion of mechanical surfaces is anticipated. No change in basket clearances or degradation of any safety components, either directly or indirectly, is likely to occur since no potential reactions have been identified.
2.2.2.1          Component Operating Environment The MAGNATRAN transport cask is loaded and handled dry. The component materials of the cask, TSC and fuel baskets are exposed to an operating environment in which the cask cavity contains either helium or air, but transport cask external surroundings could be air, rain water/snow/ice, and/or marine (salty) water/air. The exposed surfaces of the cask and the TSC are all stainless steel, except for the leak test annulus (outer) O-ring seals of the transport cask lid.
Most of the component materials of the TSC are exposed to two typical operating environments:
: 1) an open TSC containing fuel pool water or borated water with a pH of 4.5 and spent fuel or other radioactive material; or 2) a sealed TSC containing helium, but with external environments that may include air or helium.
The long-term environment to which the TSC internal components are exposed is dry helium.
Both moisture and oxygen are removed prior to sealing the TSC. The helium displaces the oxygen in the TSC, effectively precluding chemical corrosion. The dry environment inside the sealed TSC also inhibits galvanic corrosion between dissimilar metals in electrical contact.
In addition to the spent fuel, the fuel assemblies in the basket may hold control element assemblies, thimble plugs or other nonfuel components that are nonreactive with the fuel assembly. By design, the control components and nonfuel components are inserted in the guide NAC International                                2.2.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 tubes of a fuel assembly. During reactor operation, the control and nonfuel components are immersed in acidic water having a high flow rate and are exposed to significantly higher neutron flux, radiation and pressure than will exist in dry storage. The control and nonfuel components are physically placed in storage in a dry, inert atmosphere in the same configuration as when used in the reactor. Therefore, there are no adverse reactions such as gas generation, galvanic or chemical reactions, or corrosion since these components are nonreactive with the zirconium-alloy guide tubes and fuel rods. There are no aluminum or carbon steel fuel assembly parts, and no gas generation or corrosion occurs during prolonged water immersion. Thus, no adverse reactions occur with the control and nonfuel components over prolonged periods of dry storage.
Each of the categories of cask component materials is evaluated for potential reactions in each of the operating environments to which these materials are exposed. These exposures may occur for cask loading, unloading or handling during normal conditions of transport and hypothetical accident conditions.
The operating environments to which the cask component materials can be exposed do not provide the conditions necessary for a reaction (corrosion) because both moisture and oxygen must be present for corrosion to occur. Since the transport cask and TSC are both dry at the time of loading, corrosion of the transport cask cavity shell and TSC exterior surface does not occur.
Loading of the TSC in the transport cask occurs in air. During closing and sealing of the transport cask, the air is evacuated and the cask cavity is backfilled with helium. The displacement of oxygen in the cavity by helium effectively precludes corrosion. Galvanic corrosion (between dissimilar metals that are in contact) does not occur because the transport cask cavity and the TSC are both fabricated from stainless steel.
Some of the cask component materials are completely enclosed and are exposed to an unchanging environment that is permanently sealed. These components include shielding materials in the cask body (lead and NS-4-FR) and the energy-absorbing materials in the impact limiters (wood) that are exposed only to the temperature effects of the operating environment.
The sealed shielding material regions are typically evacuated and backfilled with helium, and the impact limiter shells are leak tested following fabrication. The metals oxidize any oxygen trapped in the sealed region until thermodynamic equilibrium is reached, i.e., a thin oxide layer develops on the lead. Similarly, the hydrogen in the NS-4-FR material captures any oxygen present until thermodynamic equilibrium is reached. Because the quantity of oxygen present, if any, is very small, equilibrium is reached very quickly and active corrosion in sealed regions does not occur.
NAC International                              2.2.2-2
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 2.2.2.2        Component Material Categories The component materials evaluated are categorized on the basis of similarity of physical and chemical properties or similarity of component functions. The categories of materials that are considered are: (1) stainless/nickel alloy steels; (2) carbon steels; (3) nonferrous metals; (4) shielding materials; (5) criticality control materials; (6) energy-absorbing materials; (7) cellular foams and insulations; (8) lubricants and greases; and (9) seals. These categories are evaluated on the basis of the environment to which they could be exposed during operation or use of the transport cask. The material categories and exposure environments are summarized in Table 2.2.2-1.
The cask component materials are not reactive among themselves, with the cask contents (the TSC), nor with the casks dry operating environment during any phase of normal conditions of transport or hypothetical accident conditions loading, unloading, handling or transportation operations. Because no reactions occur, no gases or other corrosion by-products are generated.
The TSC component materials are not reactive among themselves with the contents of the TSC, or with the operating environments of the TSC during any phase of normal transport or hypothetical accident conditions, loading, unloading or handling operations. Since no reactions will occur, no gases or other corrosion by-products will be generated.
The control component and nonfuel component materials are those that are typically used in the fabrication of fuel assemblies, i.e., stainless steels, Inconel 625, and zirconium-based alloy, so no adverse reactions occur in the inert atmosphere that exists in the canister. The control element assembly, thimble plugs and nonfuel componentsincluding start-up sources or instrument segments to be inserted into a fuel assemblyare nonreactive among themselves with the fuel assembly or with the operating environment of the TSC.
2.2.2.2.1      Stainless/Nickel Alloy Steels No reaction of the cask component steels (stainless or nickel alloy) is expected in any environment except for the external marine (salt air) environment, where chloride-containing salt spray might initiate pitting of the exterior surface if the chlorides are allowed to concentrate and stay wet for extended periods of time (weeks). Only the external cask surface could be so exposed to the marine environment. The corrosion rate is, however, so low that no detectable corrosion products or gases are generated. Additionally to minimize the collection of such materials as salts, the cask has smooth external surfaces, and ridges and crevices are limited.
The cask exterior is cleaned each time it is decontaminated to eliminate any collection of such chloride-containing salts or other corrosive agents.
NAC International                                2.2.2-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Galvanic corrosion between the stainless steels, inconel, and the nickel alloy steels does not occur because no effective electrochemical potential difference exists between these metals. No coatings are applied to the stainless or nickel alloy steels.
The neutron shield material and the lead gamma radiation shield material are in contact with the stainless steel, but only in the completely enclosed (permanently sealed) gamma or neutron shield regions where no water is present. Therefore, no reaction with stainless steel occurs.
Copper and aluminum cooling fins are bolted in place around the stainless steel-enclosed neutron shield material assemblies. Copper cooling fins are also in contact with the stainless steel outer shell. Refer to the nonferrous metals discussion, which follows.
No potential exists for a reaction between stainless steel and any silicone products, dry film lubricants, or ethylene propylene rubber (EPDM). Therefore, there is no potential for reactions associated with the transport cask stainless steel components.
No reaction of the TSC component stainless steels is expected in any environment, except for the marine environment where chloride-containing salt spray could potentially initiate pitting of the steels if the chlorides are allowed to concentrate and stay wet for extended periods of time (weeks). Only the external TSC surface could be so exposed. The corrosion rate will, however, be so low that no detectable corrosion products or gases will be generated. The canister has smooth external surfaces to minimize the collection of such materials as salts. The TSC confinement boundary uses Type 304/304L dual-certified stainless steel for all components except the closure lid, which is Type 304 stainless steel. No coatings are applied to the stainless steels. Type 304/304L stainless steel resists chromium-carbide precipitation at the grain boundaries during welding and ensures that degradation from intergranular stress corrosion will not be a concern over the life of the TSC. Fabrication specifications control the maximum interpass temperature for austenitic steel welds to less than 350&deg;F. The material will not be heated to a temperature above 800&deg;F, other than by welding or thermal cutting. Minor sensitization of Type 304/304L stainless steel that may occur during welding will not affect the material performance over the design life.
2.2.2.2.2        Carbon Steel Carbon steel is used to fabricate all of the structural components of the PWR and BWR baskets.
There is a small electrochemical potential difference between carbon steel and the stainless steel of the TSC shell and the stainless steel sheet used to protect the neutron absorber in the fuel tubes. However, the carbon steel basket components are coated with electroless nickel using an immersion process. The immersion process ensures that the carbon steel is appropriately coated, reducing the possibility of corrosion due to exposure to air or pool water. When in contact with stainless steel in water, the carbon steel exhibits a limited electrochemically driven corrosion.
NAC International                              2.2.2-4
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Typically, BWR pool water is demineralized and is not sufficiently conductive to promote detectable corrosion for these metal couples. Once the TSC is loaded, the water is drained from the cavity, the air is removed, and the TSC is backfilled with helium and sealed. Removal of the water and the moisture eliminates the catalyst for galvanic reaction between the carbon and stainless steels. In addition, the displacement of oxygen by helium effectively inhibits oxidation.
No potential reactions associated with basket supports and fuel tubes are expected to occur.
2.2.2.2.3        Nonferrous Metals/Criticality Control Material The nonferrous metals used in the MAGNATRAN transport cask are copper, aluminum and lead. Reactions of lead are described in a following section.
Copper cooling fins are included in the MAGNATRAN transport cask body to provide heat removal paths for the contents of the canister being transported. The cooling fins are located around the exterior of the cask body outer shell between the neutron shield assemblies. The neutron shield assemblies are enclosed in stainless steel with a bolted aluminum cover. The copper cooling fins are bolted in contact with the stainless steel outer shell, the stainless steel neutron shield assemblies, and the aluminum neutron shield assembly cover. The copper cooling fins are also exposed to the environment surrounding the cask.
The bare copper surface will oxidize due to exposure to the environment during fabrication of the cask body. The thin oxidation film precludes a chemical reaction on the exposed copper surfaces and on the contact surfaces between copper and stainless steel and between copper and aluminum.
There is a significant electrochemical potential difference between austenitic stainless steel and copper, but the bolted contact provides poor electrical contact between the stainless steel and the oxidation film surface of the copper. Therefore, chemical or galvanic driven corrosion does not occur between the copper and the stainless steel.
Since there is no electrochemical driving potential between copper and aluminum and the bolted contact between the materials provides poor, if any, electrical contact, neither chemical nor galvanic corrosion will occur at the interface between the copper and the aluminum.
Aluminum is used as cooling fins on the exterior of the cask and in the neutron absorber material in the fuel basket. The aluminum material in electrical contact with stainless steel and the nickel-coated carbon steel (fuel tube) could experience corrosion driven by an electrochemically induced electromotive force, when immersed in water, where the conductivity of the water is the dominant factor. Typically, BWR fuel pool water is demineralized and is not sufficiently conductive to promote detectable corrosion for these metal couples. PWR pool water, however, does provide a conductive medium.
NAC International                            2.2.2-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Shortly after fabrication, aluminum produces a thin surface film of oxidation that effectively inhibits further oxidation of the surface. This oxide layer adheres tightly to the base metal and does not react readily with the materials or environments to which it will be exposed. The volume of the aluminum oxide does not increase significantly over time. The borated water in a PWR fuel pool is an oxidizing-type acid with a pH on the order of 4.5. However, aluminum is generally passive in pH ranges down to about 4. Data provided by The Aluminum Association shows that aluminum alloys are resistant to aqueous solutions (1-15%) of boric acid (at 140&deg;F).
Based on these considerations and the very short exposure of the aluminum in the fuel basket to the borated water, oxidation of the aluminum is not likely to occur beyond the formation of a thin surface film. No observable degradation of aluminum is expected as a result of exposure to BWR or PWR pool water at temperatures up to 200&deg;F, which is higher than the normal condition permissible fuel pool water temperature.
Aluminum is high on the electromotive potential table, and it becomes anodic when in electrical contact with stainless or carbon steel in the presence of water. BWR pool water is demineralized and is not sufficiently conductive to promote detectable corrosion for these metal couples. PWR pool water is sufficiently conductive to allow galvanic activity to begin. However, exposure time of the aluminum to the PWR pool environment is short. The long-term storage environment is sufficiently dry to inhibit galvanic corrosion.
From the foregoing discussion, it is concluded that the initial surface oxidation of the aluminum component surfaces and the conditions of long-term storage effectively inhibit any potential galvanic reactions.
Vendor and Nuclear Regulatory Commission evaluations have concluded that combustible gases, primarily hydrogen, may be produced by a chemical reaction and/or radiolysis when aluminum components are immersed in spent fuel pool water. The evaluations further concluded that it is possible, at higher temperatures (above 150-160&deg;F), for the aluminum/water reaction to produce a hydrogen concentration in the TSC that approaches or exceeds the Lower Flammability Limit (LFL) for hydrogen of 4 percent.
Thus, it is reasonable to conclude that small amounts of combustible gases, primarily hydrogen, may be produced during TSC loading or unloading operations as a result of a chemical reaction between the aluminum neutron absorber in the fuel basket and the spent fuel pool water. The generation of combustible gases stops when the water is removed from the TSC and the aluminum surfaces are dry.
There are no significant potential reactions associated with the nonferrous metal components of the transport cask.
NAC International                              2.2.2-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.2.2.2.4        Shielding Materials The primary shielding materials used in the cask are lead and NS-4-FR. These materials are completely enclosed and sealed in stainless steel during transport cask fabrication. These materials do not react with the stainless steel. The lead oxidizes any oxygen trapped in the sealed region until thermodynamic equilibrium is reached, i.e., a thin oxide layer develops on the lead. Similarly, the hydrogen in the NS-4-FR material captures any oxygen present until thermodynamic equilibrium is reached. Because the quantity of oxygen present, if any, is very small, equilibrium is reached very quickly and active corrosion in sealed regions does not occur.
Therefore, no potential reactions are associated with the cask shielding materials.
2.2.2.2.5        Energy-Absorbing Material Redwood and balsa wood are used for energy absorption in the transport cask impact limiters.
The wood is completely enclosed (sealed) in a stainless steel shell and no potential reactions occur between the wood and the stainless steel shells. The wood is coated with a preservative prior to installation in the impact limiter shell and blocks of wood may be glued together with an epoxy adhesive. These are standard applications of preservatives and adhesives, and no post-application reaction occurs. No potential reactions are associated with the energy-absorbing or insulating material.
2.2.2.2.6        Cellular Foam and Insulation Layers of expansion foam are used in the solid neutron shield regions of the cask. The expansion foam permits thermal expansion of the solid neutron shield material during normal operation.
The foam is a nonflammable, nontoxic and noncorrosive silicone product that is used in the cask in a standard design application. No potential reactions are associated with the silicone expansion foam or insulation.
2.2.2.2.7        Lubricant and Grease The dry film lubricants used in the cask meet the performance and general compositional requirements of the nuclear power industry. NEVER-SEEZ lubricant is used primarily on rotating bearing surfaces. Neolube is used primarily on threaded/mechanical connection surfaces. In addition, Dow Corning High Vacuum Grease may be used as an adherent/lubricant to lubricate and retain the O-ring seals in their grooves. None of these lubricants contains elements or compounds prohibited by the NRC. NEVER-SEEZ is a superior, high-temperature, antiseize and extreme pressure lubricant that contains flake particles of pure nickel, graphite and other additives in a special grease carrier. It is used on the trunnion surfaces of the cask.
Neolube is 99% pure furnace graphite particles in isopropanol. It has excellent radiation resistance and high chemical purity. It dries as a thin, noncorrosive film with excellent adhesion, does not migrate, and is nonfreezable. Dow Corning High Vacuum Grease is a stiff, nonmelting, NAC International                              2.2.2-7
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 nonoxidizing, nongumming silicone lubricating material that is insoluble in most solutions. No potential reactions are associated with these lubricants or grease.
2.2.2.2.8      Seals O-ring seals formed from stainless steel and EPDM are used in the MAGNATRAN transport cask. EPDM or elastomer O-rings are used for transport cask applications because of their excellent short-term sealing capabilities, resistance to radiation effects and ease of handling.
Stainless steel was previously discussed. The components of all of the seal and gasket materials are stable and nonreactive. No potential reactions are associated with the cask seal materials.
2.2.2.3        General Effects of Identified Reactions No potential chemical, galvanic or other reactions have been identified for the MAGNATRAN transport cask. Therefore, no adverse conditionssuch as the generation of flammable or explosive quantities of combustible gasescan result during any phase of cask operations for normal conditions of transport or hypothetical accident conditions.
2.2.2.4        Evaluation of the Operating Procedures This section evaluates the operating procedures to identify the potential for galvanic reactions, corrosion or flammable gas formation to occur during planned operations. As described in this section, no potential chemical, galvanic or other reactions have been identified for the MAGNATRAN transport cask. The use of a dry inert helium atmosphere in the TSC inhibits galvanic and corrosion events and flammable gas formation. Therefore, no adverse conditions, such as the ignition of flammable or explosive quantities of combustible gases, can result during any phase of cask or TSC operations.
Because this evaluation identifies no reactions between or among cask components, the MAGNATRAN transport cask operating controls and procedures presented in Chapter 7 are adequate to minimize the occurrence of hazardous conditions.
2.2.2.5        Effects of Reaction Products No potential chemical, galvanic, or other reactions have been identified for the cask. Therefore, the overall integrity of the cask and the structural integrity and retrievability of the spent fuel is not adversely affected for any cask operations throughout the design basis life of the cask. No reactions occur between or among cask components that results in a change in thermal properties, changes in basket clearances, the binding of mechanical surfaces or the degrading of safety components, either directly or indirectly.
NAC International                              2.2.2-8
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.2.2-1        Summary of MAGNATRAN Transport Cask Materials Categories and Operating Environments Item                          Material              Environment Stainless Steels/Alloys        304, 304L, XM-19, 17-4PH,      Sealed Internal Nickel Alloy, 410      Open Internal/ External Carbon Steel (electroless nickel  537 - Class 1, 695 - Type B,    Open Internal/
coated)                        696 - C                Sealed Internal Nonferrous Metals              ASTM B152 Copper,                External 1100 Aluminum Shielding Materials                  NS-4-FR,                  Enclosed Chemical Copper Lead Criticality Control Materials  Borated Metal Matrix Composite    Open Internal/
(MMC), Borated Aluminum Alloy,    Sealed Internal Boral Energy Absorbing Materials          Balsa Wood, Redwood              Enclosed Cellular Foam/Insulation          HT-800 Silicone Foam            Enclosed Lubricants and Greases                Never-Seeze              Sealed Internal Neolube                Open Internal High Vacuum Grease by Dow Corning Seals and Gaskets              EPDM, Stainless Steel        Sealed Internal Open Internal/ External NAC International                            2.2.2-9
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.2.3          Effects of Radiation on Materials The materials selected for the MAGNATRAN transport cask system components have a long, proven history of use in the nuclear industry and are essentially not affected by the radiation levels produced by the spent nuclear fuel. Significant neutron radiation damage does not occur for neutron fluences below 1019 n/cm2. This value is much greater than the neutron fluence exposure that is experienced by the transport cask system components. Significant gamma radiation damage to metals only occurs for doses of 1018 rads, or more. This value is much higher than the gamma dose produced by spent nuclear fuel in the transport cask, approximately 1010 rads.
NAC International                            2.2.3-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.3              Fabrication and Examination Fabrication, examination and testing are performed in accordance with the applicable design criteria listed in Section 2.1.2, the codes and standards identified in Section 2.1.4, and the license drawings contained in Section 1.4.3. Detailed descriptions of these activities are provided in the following sections, as well as in Chapter 8.
NAC International                                2.3-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.3.1            Fabrication The fabrication of the MAGNATRAN transport cask system components is performed under a NRC-approved quality assurance (QA) program that meets the requirements of 10 CFR 71, Subpart H, and/or 10 CFR 72, Subpart G. A graded quality approach consistent with the provisions of the NRC Regulatory Guide 7.10 and the NRC-approved NAC International QA Program and implementing procedures is used.
To the extent practical, all materials and fabrication of the MAGNATRAN transport cask system components are in accordance with the codes and standards defined in Section 2.1.4. Code stamping is not required. Specific fabrication codes and requirements are provided in Section 8.1.1. The lead is poured directly into the cask body annulus between the inner and outer shells in a controlled process.
Approved fabricators shall prepare, and NAC shall approve, special process procedures for the cask body lead pouring and the installation of the neutron shield material. The NS-4-FR neutron shield material may be poured into, or may be pre-cast prior to placement into, each of the neutron shield assemblies, which are then welded closed and bolted in place on the outer shell of the transport cask.
The welding operations for the MAGNATRAN components are performed in accordance with the requirements of a number of codes and standards, depending on the design and functional requirements of the specific component. The TSC and fuel basket assemblies are welded using welding procedures, processes and welders prepared and qualified in accordance with the ASME Code, Section IX requirements. The specific weld designs and examination requirements for the TSC and fuel basket comply with the applicable subsection of the ASME Code, Section III, which are Subsection NB for the TSC and Subsection NG for the fuel baskets. Alternatives to the Code requirements applicable to these system components are listed in Table 2.1.4-1. Weld filler materials and processes used in the fabrication of the TSC are in accordance with ASME Code Section II-C requirements for SFA 5.9 and SFA 5.22. For SFA 5.9 and SFA 5.22, respectively, AWS ER 308L and AWS E308LTX-X will be specifically identified in the approved welding procedures.
Bolt and fastener materials have been selected for material compatibility to preclude galling during use, and to have the requisite material strength for the application.
The exposed surfaces of the carbon steel fuel basket are coated with a specially designed and applied electroless nickel coating system. This coating reduces corrosion of the exposed carbon steel surfaces, minimizes adverse reactions between dissimilar materials, and minimizes adverse interactions with the operating environment. During the TSC and fuel basket assembly process, coating damage can occur. Localized scratches, etc., can result in coating damage, but are NAC International                              2.3.1-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 considered insufficient to cause concerns relative to the functional and structural performance of the basket. Additionally, due to the configuration of the fuel basket, some areas of the fuel basket may not be completely coated. These areas are also considered minor and insufficient to affect either the functional or operational aspects of the fuel basket. Carbon Steel components plated using an electroless plating process in accordance with ASTM B733-97 may have plated areas repaired due to damages during assembly. The repair process is considered a special process and shall meet plating requirements for service condition, appearance, and adhesion.
NAC International                              2.3.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.3.2          Examination This section describes the workmanship inspections, material and weld examinations, and the acceptance test program to be implemented for the fabrication of the MAGNATRAN transport cask system components. The inspections, examinations and tests are performed in accordance with the applicable codes and standards identified in Section 2.1.4 and the license drawings provided in Section 1.4.3. These inspections, examinations and tests ensure that the fabricated and assembled components and systems comply with the Certificate of Compliance, this Safety Analysis Report, and all applicable NRC regulations, and that the packaging will maintain the confinement of radioactive material, will maintain subcriticality control, and will properly transfer the decay heat of the stored radioactive materials under normal conditions of transport and hypothetical accident conditions. Information on the general inspection and examination techniques and the associated acceptance criteria is provided, or referenced. The inspection and examination requirements for all MAGNATRAN component welds, inspector qualification requirements, and the applicable acceptance criteria are defined/referenced.
The MAGNATRAN system is classified as important-to-safety and, therefore, the structures, systems and components (SSCs) of the system are designed, fabricated, assembled, inspected, examined, tested and accepted in accordance with a NRC-approved quality assurance program.
The application of the quality assurance program for the system SSCs shall be commensurate with their defined safety category.
Cask and weld materials and components shall be visually inspected upon receipt for visual and dimensional acceptability per the license drawings, for surface defects, material conformance to the applicable Code specification and traceability markings, as applicable. Materials for the transport cask containment boundary components and for the TSC shall also be examined per the requirements of ASME Code, Section III, Subsection NB-2500. Minor defects in materials, as defined by the appropriate ASME Code specification, may be repaired according to written procedures. Refer to Section 8.1.1 for additional details.
Visual examination (VT) is required for all welds. Specific nondestructive weld examinations to be performed and the applicable acceptance criteria are defined on the license drawings in Section 1.4.3 in accordance with the codes and standards listed in Section 2.1.4. Detailed weld examinations are described in Section 8.1.2.
Structural and pressure tests required by the codes, standards and regulations and the associated acceptance criteria are described in Section 8.1.3. The required leakage tests and acceptance criteria are described in Section 8.1.4. Sections 8.1.5, 8.1.6 and 8.1.7 contain descriptions of the required component and material tests, shielding tests and thermal test, respectively.
NAC International                              2.3.2-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.4            General Requirements for All Packages This section demonstrates that the design of the MAGNATRAN transport cask complies with the general standards for all packages as specified in Paragraphs (a) through (h) of 10 CFR 71.43. A packaging is defined as an assembly of components necessary to ensure compliance with the packaging requirements of 10 CFR 71 for the transportation of radioactive contents.
2.4.1          Minimum Package Size The transverse dimension of the MAGNATRAN transport cask is approximately 87 inches (diameter of outer shell, neglecting NS-4-FR enclosures and cooling fins), and the longitudinal dimension is approximately 214 inches (without impact limiters). Both of these dimensions are greater than 10 cm; therefore, the requirements of 10 CFR 71.43(a) are satisfied.
2.4.2          Tamper-Indicating Feature Crimped wire seals are used on the MAGNATRAN transport cask as tamper indicators. A numbered metal cup seal is looped through a hole in the end of an upper impact limiter retaining rod to preclude removal of the hex nuts. The hex nuts on the retaining rod must be removed to remove the upper impact limiter to gain access to the cask closure assembly (lid and bolts); thus, a severed seal will indicate purposeful tampering. This feature satisfies the tamper-indication requirement of 10 CFR 71.43(b).
2.4.3          Positive Closure Inadvertent opening of the MAGNATRAN transport cask lid or port coverplate from the combined effects of shock, vibration, thermal expansion, internal loads or external loads cannot occur because of the large preload applied to the lid bolts. Loosening of these bolts is resisted by friction from the large clamping forces produced by the bolt installation torque. A written cask operations procedure is followed to ensure that each bolt is torqued. To open the cask lid, the bolts must be deliberately loosened with a wrench. Tamper-indicating features (Section 2.4.2) provide evidence of attempted unauthorized access to the cask closure. Therefore, the transport cask containment system cannot be opened unintentionally and evidence of attempted unauthorized operation is provided. Thus, the requirements of 10 CFR 71.43(c) are satisfied.
2.4.4          Chemical, Galvanic, Other Reactions and Radiation The requirements of 10 CFR 71.43(d) concerning chemical, galvanic and other reactions are addressed in Section 2.2.2. The requirements of 10 CFR 71.43(d) concerning the effects of radiation on materials are addressed in Section 2.2.3.
NAC International                              2.4-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 2.4.5          Valves and Pressure Relief Devices The MAGNATRAN transport cask and transportable storage canister (TSC) do not have any valves or pressure relief devices; therefore, the requirements of 10 CFR 71.43(e) are met.
2.4.6          Loss or Dispersal of Radioactive Contents The requirements of 10 CFR 71.43(f) concerning loss or dispersal of radioactive contents under normal conditions of transport are addressed in Section 2.6.
2.4.7          Surface Temperature During Transport The maximum temperature of any accessible surface of the MAGNATRAN transport cask, under the conditions of still air at 100&deg;F and in the shade, is 162&deg;F. This meets the requirements of 10 CFR 71.43(g) for exclusive use shipment (<185&deg;F).
2.4.8          Continuous Venting During Transport The MAGNATRAN transport cask does not have any valves or pressure relief devices.
Therefore, there is no venting during transport and the requirements of 10 CFR 71.43(h) are met.
NAC International                              2.4-2
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 2.5            Lifting and Tie-Down Standards for All Packages This section identifies and evaluates the lifting devices used for the MAGNATRAN transport cask and closure lid and, also, evaluates the components of the tie-down system for the package.
NAC International                              2.5-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.5.1            Lifting Devices The MAGNATRAN transport cask has two types of lifting devices: lifting trunnions and hoist rings. These lifting devices are designed to satisfy the requirements of 10 CFR 71.45(a),
NUREG-0612 and ANSI N14.6. NUREG-0612 defines specific design criteria to ensure the safe handling of heavy loads in critical regions of nuclear power plants and ANSI N14.6 defines very similar lifting criteria. The design criteria in NUREG-0612 and ANSI N14.6 equal, or exceed, those of 10 CFR 71.
The cask is equipped with two lifting trunnions bolted to the top forging of the cask, located at 180o intervals. Two rotation trunnions located on the outer shell near the bottom of the cask permit rotation of the cask to and from the horizontal position and also provide longitudinal tie-down restraint in the aft direction during transport.
A single two-arm yoke (nonredundant, but designed to the critical load requirements) may be used to lift and handle the cask. An overhead crane is used to lift the cask and yoke. No impact limiter is attached to the cask during lifting and handling.
Four hoist-rings are used to lift the closure lid during installation or removal from the cask body.
2.5.1.1          Lifting Trunnion Analysis 2.5.1.1.1        Analysis Techniques The finite element code ANSYS is used to generate a three-dimensional model of the MAGNATRAN transport cask lifting trunnion and to determine its response during lifting operations. Specifically, a quarter-symmetry (90&deg;) 3D model of the lifting trunnion and top forging is constructed using ANSYS solid elements. Bolts are modeled using beam elements, and the interaction between the lift trunnion and the bolts is modeled using gap elements.
Pressure loads are applied to the trunnion to represent lift conditions. Details of the ANSYS model and boundary conditions are presented in Figure 2.5.1-1 and Figure 2.5.1-2. Classical hand calculations are used to qualify the trunnion bolts.
2.5.1.1.2        Analysis Criteria The lifting trunnions are designed in accordance with NUREG-0612 and ANSI N14.6 for heavy lifting conditions. Linearized stress values are compared to a factor of 6 on yield strength and a factor of 10 on ultimate strength for lifting components. Membrane stresses are compared to 1.0 Sm and membrane plus bending stresses are compared to 1.5 Sm for the top forging.
NAC International                              2.5.1-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Since the bolts are not in the load path for the lift, the bolt stresses are compared to the following allowables:
Stress                Stress Criteria Shear                    0.6 Sm Tensile                    Sm 2.5.1.1.3      Design Input The calculated weight of the loaded transport cask without impact limiters is 296,500 pounds. In the ANSYS model, a maximum loaded cask weight of 299,000 pounds is used to bound the maximum loaded cask configuration (without impact limiters). A dynamic load factor of 1.10 is also applied. The lifting trunnion and bolts are fabricated from SA-564, Type 630 (17-4PH) and SB-637, Grade N07718, respectively.
2.5.1.1.4      Finite Element Model A three-dimensional finite element model of a lifting trunnion and the top forging, using ANSYS, is constructed using SOLID45 (trunnion) and SOLID95 (forging) elements, respectively (see Figure 2.5.1-1 and Figure 2.5.1-2). By taking advantage of the symmetry of the transport cask, the model represents a one-quarter (90&deg;) section. Bolts are modeled using BEAM4 elements and the interaction between the lift trunnion and top forging is modeled using CONTAC52 elements. The trunnion will load the cask body forging during lifting operations because the gap between the cask body and trunnion is smaller than the radial gap between the trunnion and bolts. To simulate the bolt, actual properties, including area and moment of inertia, are included. The model is constrained at both ends in the circumferential direction for all nodes in the planes of symmetry, and the nodes at the bottom of the shells are axially restrained. Gap elements are used to transmit compression loads from the trunnion to the cask forging. Pressure equivalent to one-quarter of the total lift load times a dynamic load factor of 1.10 is applied to the element faces on the surface of the lift trunnion. This pressure load is applied to an area equivalent to the contact area with the lift yoke.
2.5.1.1.5      Trunnion Results The stress evaluation for the lifting trunnion is performed by comparing average stresses against allowable stresses. The averaging is performed using element table operations in ANSYS. For the trunnion, the stresses are averaged across the axial trunnion section where maximum bending occurs. The maximum average trunnion stresses are:
b = -9,435 psi --------------------------------- Bending Stress
          = 5,430 psi ---------------------------------- Shear Stress t = -8 psi -------------------------------------- Axial Stress NAC International                                2.5.1-2
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 Conservatively assuming the stresses occur at the point, the Von Mises stress is:
          =      ( t +  b ) 2 + 3() 2 = ( 8  9,435 ) 2 + 3(5, 430 ) 2 = 13.33 ksi The factor of safety for the material yield strength (93.0 ksi at 300&deg;F, SA-564 Type 630 (17-4PH)) is:
FS = 7.0  6.0 The factor of safety for the material ultimate strength (135.0 ksi at 300&deg;F, SA-564 Type 630 (17-4PH)) is:
FS = 10.1  10.0 The lift load is transmitted from the trunnion to the cask body forging. The resulting load induces a prying action in the five bolts at the base of the trunnion and the plate section between bolts. The maximum calculated stresses for the section between the bolts are:
b1 = 4,010 psi ---------------------------------- Top layer average bending stress b2 = -2,690 psi --------------------------------- Bottom layer average bending stress m = 660 psi ------------------------------------ Average membrane stress The maximum membrane plus bending stress is:
          = 660 + 4,010 = 4,670 psi The factor of safety for the material yield strength (93.0 ksi at 300&deg;F, SA-564 Type 630 (17-4PH)) is:
FS = 19.8  6.0 The factor of safety for the material ultimate strength (135.0 ksi at 300&deg;F, SA-564 Type 630 (17-4PH)) is:
FS = 28.7  10.0 2.5.1.1.6        Bearing Stress Evaluation During the lift of the MAGNATRAN transport cask, the primary lifting trunnion engages the cask body and bears against the upper forging. The bearing stress in the forging is:
P
          =        = 7,780 psi A
where:
W = 297,000 lb -------------------------------- Conservative loaded weight of transport cask P = W/2 x DLF = 163,350 lb --------------- Applied load NAC International                                2.5.1-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 DLF = 1.1 ----------------------------------------- Dynamic load factor A = w x t = 21.0 in2 -------------------------- Contact area of trunnion plate t = 1.75 in ------------------------------------ Thickness of the trunnion plate acting on top forging w = 12.0 in ------------------------------------ Width of contact area The factor of safety is:
Sy    22,400 FS =      =          = 2.88 7,780 where:
Sy = 22,400 psi -------------------------------- Yield strength of SA-336, Type 304 Stainless Steel at 300&deg;F 2.5.1.1.7        Bolt Evaluation The bolts do not carry shear loads due to the lifting of the cask. The cask weight is carried through bearing of the trunnion on the cask body, which is evaluated above. The bolts only carry the prying loads of the trunnion lift. The trunnion bolts are evaluated using the methodology presented in Machinerys Handbook. The bolt preload torque is 120+/-20 ft-lb. The maximum bolt preload is:
T      140x12 P =      =                    = 9,451 lb kD 0.158x1.125 where:
T = 140 ft-lb ---------------------------------- Maximum bolt torque D = 1.125 in ----------------------------------- Bolt diameter k = 0.158 -------------------------------------- Torque coefficient for dry threads From the finite element model, the maximum bolt load is 12,984 pounds. Combining with the bolt preload, the maximum bolt load is 22,435 pounds.
The following equations are required to calculate thread areas for tensile and shear.
2 E        0.16238 At = 3.1416 s min                    = 0.776 in2 2            n Area to compute the shear stress for the bolt:
As = 3.1416 nL e K n max 1
                                        + 0.57735 (E s min  K n max ) = 4.602 in2 2n Area to compute the shear stress for the forging:
An = 3.1416 nL e D s min 1
                                        + 0 .57735 (D s min  E n max ) = 6.408 in2 2n NAC International                                  2.5.1-4
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 where:
d =  1.125 in ----------------------------------- Bolt diameter n =  8 ------------------------------------------- Threads per inch Le =    2.44 in ------------------------------------ Thread length of engagement Knmax =    1.015 in ----------------------------------- Maximum minor diameter of internal thread Enmax =    1.0528 in --------------------------------- Maximum pitch diameter of internal thread Esmin =  1.0348 in --------------------------------- Minimum pitch diameter of external thread Dsmin =  1.1079 in --------------------------------- Minimum major diameter of external thread Following is a summary of the factors of safety for the maximum bolt load.
Applied Load Maximum Bolt Load                                            22.44 kips Thread Stress Evaluation External Thread Shear Stress (SB-637, Grade N07718)          4.9 ksi Factor of Safety (0.6Sm)                                      5.74 Internal Thread Shear Stress (SA-336, 304)                    3.50 ksi Factor of Safety (0.6Sm)                                      3.43 Bolt Tensile Stress (SB-637, Grade N07718)                    28.91 ksi Factor of Safety (Sm)                                        1.62 where the allowable stresses are defined as:
SA-336, 304 Stainless Steel @ 300&deg;F (internal threads)        Sm      20.0 ksi SB-637, Grade N07718                                          Sm      46.9 ksi 2.5.1.1.8        Top Forging Evaluation The top forging is evaluated by taking sections, through representative cross-sections in the top forging, away from the localized stresses near the trunnion. Two sections are taken at 10 degrees in the model and two sections are taken at 45 degrees to show the decay in stresses with distance from the trunnion region. The section path end-point locations are listed in the following table in a cylindrical coordinate system with the origin located at the center of the top forging at the height of the top of the lead.
Node 1                            Node 2 Section X          Y          Z          X            Y    Z 1        36.12      10.26        0        36.12      10.26 20.04 2        43.35      9.78        0        43.35      9.78  20.04 3        36.12        45          0        36.12        45  20.04 4        43.35        45          0        43.35        45  20.04 NAC International                                    2.5.1-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The stresses and safety factors are listed in the following table. A temperature of 300&deg;F is used to determine the allowable values.
Membrane                              M+B Membrane Allowable Membrane            M+B SI    Allowable    M+B Section  Node 1    Node 2      SI (ksi)        (ksi)        FS      (ksi)      (ksi)      FS 1      67309    89523        0.84          20          23.87    1.24        30      24.11 2      73197    83218        3.06          20          6.54      4.01        30        7.48 3      67353    89567        0.64          20          31.4      1.02        30      29.48 4      73251    83272        0.13          20        159.28      0.3        30      100.31 NAC International                              2.5.1-6
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.5.1-1 MAGNATRAN Transport Cask Lifting Trunnion Finite Element Model Detail NAC International              2.5.1-7
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.5.1-2 Lifting Trunnion and Top Forging NAC International                  2.5.1-8
 
MAGNATRAN Transport Cask SAR                                                                            January 2022 Docket No. 71-9356                                                                                          Revision 1 2.5.1.2          Lifting Trunnion Overload 10 CFR 71.45(a) requires any lifting attachment that is a structural part of a packaging to be designed so that failure under excessive load would not impair the ability of the packaging to meet other 10 CFR 71 requirements.
2.5.1.2.1        Lifting Trunnion Shank The ultimate shear strength of the lifting trunnion shank is:
d2 Fu =              (0.5Su ) = 2.33 x 106      lb 4
where:
d = 6.625 in.
Su = 135.0 ksi (ultimate tensile strength of the trunnion, SA 564 Type 630 (17-4PH), at
                            -40&deg;F to 300&deg;F)
Alternatively, ultimate strength of the lifting trunnion shank can be determined by scaling up the applied force used in the ANSYS analysis by the ratio of ultimate tensile stress to the actual tensile stress found in the trunnion shank by the ANSYS analysis.
Fu                    Su                                                Su
                                    =                    ;      Fu = Factual ( ANSYS ) x Factual ( ANSYS )    S actual ( ANSYS )                                S actua ( ANSYS )
135.0 Fu = 299,000x            = 3.03x106 lb 13.33 where:
Factual(ANSYS) = 299,000 lb -------------------------------- Actual applied load used in the ANSYS analysis Sactual(ANSYS) = 13.33 ksi ---------------------------------- Von-Mises stress at the axial trunnion section where maximum bending occurs, from the ANSYS analysis The higher value of ultimate strength of the lifting trunnion shank found by scaling the ANSYS results is due to inherent consideration of bending and short beam effects in the ANSYS analysis.
2.5.1.2.2        Top Forging The ultimate strength of the top forging is determined by scaling up the applied force used in the ANSYS analysis by the ratio of ultimate tensile stress to the actual tensile stress found in the top forging by the ANSYS analysis.
Fu                    Su                                                Su
                                    =                    ;      Fu = Factual ( ANSYS ) x Factual ( ANSYS )    S actual ( ANSYS )                                S actual ( ANSYS )
NAC International                                          2.5.1-9
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 61.8 Fu = 299,000 x          = 4.61x 106 lb 4.01 where:
Factual(ANSYS) = 299,000 lb -------------------------------- Actual applied load used in the ANSYS analysis Su = 61,800 psi ------------------------------------------- Ultimate tensile strength (top forging),
SA 336 Type 304, 300&#xba;F Sactual(ANSYS) = 4.01 ksi ----------------------------------- Maximum stress intensity in top forging, from the ANSYS analysis The ultimate strength of the top forging exceeds the ultimate strength of the lifting trunnion; therefore, the lifting trunnion will fail before the forging, ensuring that failure caused by excessive overload on the lifting trunnion will not impair the ability of the cask to meet other 10 CFR 71 requirements.
2.5.1.3          Cask Lid Lifting Analysis The cask lid lifting system provides a mechanism to lift the cask lid and install/remove it from the cask body. The MAGNATRAN transport cask lid assembly is lifted using four threaded holes located on the top surface of the lid assembly. These holes are clearly marked by engraved black painted letters on the top surface of the lid The lid-lifting system uses four equally spaced 1-1/4 -7 UNC-2B x 2.5-inch deep threaded holes located on a 70.00-inch bolt circle. Helicoil thread inserts are used to increase the wear endurance of the threads. The lid material is SA693/SA705, 17-4PH stainless steel.
In accordance with the requirements of 10 CFR 71.45(a), a factor of safety of three against material yield strength is required of any lifting attachment that is a structural part of the packaging. Additionally, for nonredundant systems, ANSI N14.6 requires that load-bearing members of a special lifting device must be capable of lifting six times the weight of the package without generating a combined shear stress or maximum tensile stress at any point in the device in excess of the minimum yield strength of the materials. The load-bearing members must be capable of lifting 10 times the weight of the package without exceeding the ultimate strength of the materials. NUREG-0612 requires that dynamic loads must be considered when demonstrating compliance with ANSI N14.6.
The requirements of ANSI N14.6 and NUREG-0612 envelope those of 10 CFR 71.45.
Therefore, the cask lid lift is evaluated to the ANSI N14.6 and NUREG-0612 requirements. The shear stress generated in the bolt hole threads in the cask lid during lifting must maintain a factor of safety of six against material yield strength and a factor of safety of 10 against material ultimate strength.
NAC International                                  2.5.1-10
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 The cask lid weighs 10,500 pounds. Assuming the load on the four lifting bolts is purely tensile results in a maximum shear stress on the cask lid bolt hole threads. Using a four-point lifting arrangement evaluated as a nonredundant load path, and using a dynamic load factor of an additional 10%, the load carried by each lifting bolt, Fy, is calculated as:
Cask Lid Weight x Dynamic Load 10,500 x 1.1 Fy =                                            =                = 2,888 lb 4 Lift Points                      4 There are four 1-1/4 -7 UNC-2B x 2.500-inch deep tapped holes. The lid material is SA693/SA705, 17-4PH stainless steel.
From the Machinerys Handbook, the shear area, An, in the lid bolt hole threads is calculated as 1
A n = 3.1416 n L e D s min  + 0.57735(D s min  E n max )
2n 1                                     
            = 3.1416(7 )(1.50 in.)(1.2314 in.)      + 0.57735(1.2314 in. 1.1668 in.)
2(7 )
2
            = 4.4164 in where:
n        = 7 threads per in, Le      = 1.50-in. bolt thread engagement length (Actual depth of available thread is 2.500 inches. A value of 1.50 inch of thread engagement is conservatively used.)
Dsmin = 1.2314 in., minimum major diameter of class 2A bolt threads Enmax = 1.1668 in., maximum pitch diameter of class 2B lid threads The shear stress , in the lid hole threads is calculated as:
Fy      2888 lb
        =      =            =654psi An    4.4164 in 2 The lid is constructed of SA693/SA705, 17-4PH stainless steel. Using shear allowables of 0.6 Sy and 0.5 Su at a temperature of 400&deg;F, the shear stress of 654 psi results in factors of safety of:
(F.S.)y = 0.6 x 89,700 psi = 82 > 6 654 psi (F.S.)u = 0.5 x 131,200 psi = 100 > 10 654 psi where:
Sy = 89.7 ksi-----Yield strength, SA693/SA705, 17-4PH Stainless Steel, 400&deg;F Su = 131.2 ksi----Ultimate strength, SA693/SA705, 17-4PH Stainless Steel, 400&deg;F NAC International                                2.5.1-11
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 The criteria of NUREG-0612 and ANSI N14.6 for a nonredundant system are met. The bolt and lid materials are adequate. A 1.50-inch length of engagement of 1-1/4 - 7 UNC-2B threads is adequate.
NAC International                          2.5.1-12
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.5.2            Tie-Down Devices The MAGNATRAN transport cask is designed to satisfy the requirements of 10 CFR 71.45 (b) and the AAR Field Manual, Rule 88, because rail is the most likely mode of transport. In this analysis, the cask is assumed to be supported horizontally on a railcar and subjected to the more limiting of either:
Per 10 CFR 71.45(b), the shipping inertia loads are
: a. 10g longitudinal acceleration in the direction of travel b 2g vertical acceleration
: c. 5g lateral acceleration perpendicular to the direction of travel Per AAR Rule 88, the shipping inertia loads are
: a. 7.5g longitudinal acceleration in the direction of travel
: b. 2.0g vertical acceleration
: c. 2.0g lateral acceleration perpendicular to the direction of travel These loads are transferred to the railcar supports by bearing on the rear rotation trunnions, the front shear ring, and the tie-down assembly. Dynamic effects are negligible when considered in combination with the large applied load factors. In accordance with 10 CFR 71.45 (b), the structural components integral with the cask that are used for tie-down must be capable of withstanding the specified forces without generating stress in any material of the package in excess of its yield strength.
2.5.2.1          Tie-Down Component Loading 2.5.2.1.1        Overview of Cask Tie-Down Analysis Side and end views of the cask system in the shipping configuration are given in Figure 2.5.2-1.
The appropriate dimensions that locate the cask center of gravity (CG) to the cask support points are shown. End 1, which is the top end of the cask, is supported by a saddle for lateral (+Z or
-Z) and downward loads (-Y), a tie-down strap for upward loads (+Y), and a shear ring for longitudinal loads in the -X direction. The opposite end of the cask at End 2 is supported by two rotation trunnions, locations 2a and 2b that support the cask for vertical loads (+Y or -Y) and longitudinal loads in the +X direction.
At End 1, the resultant force on the cask from the saddle due to a longitudinal load (-X) is assumed to act at both locations 1b, which are the locations of the centroid of the axial contact area between the saddle and the shear ring. For a lateral load, the contact surface is only one-half of the saddle, and the resultant force is assumed to act at one location 1a. This point is found by assuming that the contact pressure between the saddle and cask is proportional to the sine function of the angular distance measured from the lowest point on the saddle.
NAC International                              2.5.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The load reactions at the cask support locations are calculated using the following static equations of equilibrium:
M = 0 F = 0 Loading is considered in both the positive and negative directions for each of the three global directions and, therefore, reaction forces at the cask support locations are calculated for a total of six cases. The individual reactions in the three loading directions are then combined to provide the resultant reactions at the cask support locations, and these are used for computing stresses.
2.5.2.1.2        Evaluation of Cask/Saddle Reaction Locations Calculation of Vertical Dimension h1a The vertical location, referenced from the cask CG, of the resultant point of contact between the cask and saddle for lateral loading (+Z or -Z direction), h1a, is found using 2
1 R (sin 3  2  sin 3 1 )
1 2 h1a =  R 2 sin 2  cos  d =
A 1                          3A where:
2 sin 2 2 1 sin 21 R sin  d 2
A=                      = R 2            +
1                        2    4        2        4 From Figure 2.5.2-1:
R = r1 = 43.35 in 1 = as1 = 7.7&deg; = 0.1344 radians 2 = as2 = 50.0&deg; = 0.8727 radians This gives h1a = 34.13 in.
Calculation of Vertical Dimension h1b The vertical location, referenced from the cask CG, of the resultant point of contact between the cask shear ring and saddle for longitudinal loading (-X direction), h1b, is found using 2 r 2 1
h1b =
A 1 r1 r 2 cos  dr d =
3A (r2  r1 )(sin 2  sin 1 )
1 3 3 NAC International                                  2.5.2-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 where:
(
A =  r22  r12 )  360 2    1 From Figure 2.5.2-1:
r1 = 43.35 in r2 = 46.35 in 1 = ar1 = 0.0&deg; 2 = as2 = 50.0&deg; This gives h1b = 39.39 in.
2.5.2.1.3      Reaction Forces per 10 CFR 71.45(b)
Reaction forces at the cask support locations are calculated below for the six individual load cases and the results per 10 CFR 71.45(b) are summarized in Table 2.5.2-1, Table 2.5.2-3 and Table 2.5.2-5. All computations were performed for three values of axial CG location (102.0, 105.0 and 108.0 inches) to account for a range of CG locations resulting from different payload fuel and canister configurations. All calculation details are presented here for the median value of axial CG location. Factors of safety are provided for all three values of axial CG location.
Minimum factors of safety are summarized in Table 2.5.2-7. A bounding transport package weight of 315,000 pounds is used in these calculations.
(Case 1: Longitudinal +X direction)
Force = 10W in +X direction at the cask CG. Cask longitudinal restraint is at the rotation trunnions at point 2, vertical restraints at points 1 and 2. The tie-down strap provides restraint for the +Y reaction at point 1.
Summing longitudinal forces, Fx 2 = 10W = 3150 kip.
At each trunnion, Fx2a = 1/2 Fx2 = -1575 kip Fx2b = 1/2 Fx2 = -1575 kip 10W x h 2 Summing moments about point 2, Fy1 =                  = 91.2 kip L1a + L2 where:
h2 = 5.14 in L1a = 90.18 in L2 = 87.3 in Summing vertical forces, Fy2 = Fy1 =  91.2 kip NAC International                              2.5.2-3
 
MAGNATRAN Transport Cask SAR Docket No. 71-9356                                                              January 2022 Revision 1 At each trunnion, Fy2a = 1/2 Fy2 = -45.6 kip Fy2b = 1/2 Fy2 = -45.6 kip (Case 2: Longitudinal -X direction)
Force = 10W in -X direction at the cask CG. Cask longitudinal restraint at the shear ring and saddle interface at point 1b, vertical restraints at points 1 and 2.
Summing horizontal forces, Fx1 = 10W = 3150 kip 10W x h1b Summing moments about point 2, Fy1 =                    = 699 kip L1a + L2 Summing vertical forces, Fy2 = Fy1 = -699 kip At each trunnion, Fy2a = 1/2 Fy2 = -349.5 kip Fy2b = 1/2 Fy2 = -349.5 kip where:
h1b = 39.39 in L1a = 90.18 in L2 = 87.3 in (Case 3: Vertical +Y direction)
Force = 2W in +Y direction at the cask CG. Cask vertical restraints at points 1 and 2. The tie-down strap provides restraint for the -Y reaction at point 1.
2 W x L2 Summing moments about point 2, Fy1 =                    = 309.9 kip L1a + L2 Summing vertical forces, Fy2 = 2W  Fy1 = 320.1 kip At each trunnion, Fy2a = 1/2 Fy2 = -160.1 kip Fy2b = 1/2 Fy2 = -160.1 kip where:
L1a = 90.18 in L2 = 87.3 in NAC International                              2.5.2-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 (Case 4: Vertical -Y direction)
Force = 2W in -Y direction at the cask CG. Cask vertical restraints at points 1 and 2.
2 W x L2 Summing moments about point 2, Fy1 =                  = 309.9 kip L1a + L2 Summing vertical forces, Fy2 = 2W  Fy1 = 320.1 kip At each trunnion, Fy2a = 1/2 Fy2 = 160.1 kip Fy2b = 1/2 Fy2 = 160.1 kip where:
L1a = 90.18 in L2 = 87.3 in (Case 5: Lateral +Z direction)
Force = 5W in +Z direction at the cask CG. Cask lateral restraints at points 1a and 2. Vertical downward restraint at point 1 provided by strap. Equal and opposite vertical restraints at the trunnions at points 2a and 2b to prevent rotation of the cask about the longitudinal (X) axis.
5W x L2 Summing moments about point 2, Fz1 =                  = 774.7 kip L1a + L2 where:
L2 = 87.3 in L1a= 90.18 in Summing lateral forces, Fz2 = 5W  Fz1 = 800.3 kip The net vertical reaction Fy2 = 0.0. However, Fy2a and Fy2b are equal and opposite and form a couple to prevent rotation of the cask. Summing moments about the X axis:
Fz 2 x h 2  Fz1 x h1a Fy 2 a =                        = 218.0 kip dt Fy2b = -Fy2a = -218.0 kip where:
h1a = 34.13 in h2 = 5.14 in dt = 102.4 in NAC International                              2.5.2-5
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 (Case 6: Lateral -Z direction)
Force = 5W in -Z direction at the cask CG. Cask lateral restraints at points 1a and 2. Vertical downward restraint at point 1 provided by the tie-down strap. Equal and opposite vertical restraints at the trunnions at points 2a and 2b prevent rotation of the cask about the longitudinal (X) axis. The lateral reactions and the vertical reactions on the trunnions are equal and opposite to those from Case 5.
Fz1 = 774.7 kip Fz2 = 800.3 kip Fy2a = -218.0 kip Fy2a= 218.0 kip Reaction Forces per AAR Rule 88 Reaction forces at the cask support locations for the AAR Rule 88 load values are computed in the same manner as given above. Summaries of the reaction forces per AAR Rule 88 for individual load cases and for load case combinations are in presented in Table 2.5.2-2, Table 2.5.2-4 and Table 2.5.2-6.
2.5.2.2          Transport Cask Tie-Down Stress Evaluation At the top end of the cask, a shear ring constrains the forward longitudinal movement
(-X direction) of the cask against the shipping frame, and the cask rests on a saddle that provides lateral and downward vertical restraint. A tie-down strap restrains upward movement. At the opposite end of the shipping frame, the cask is supported by rotation trunnions that provide vertical and backward longitudinal restraint (+X direction). Lateral restraint is provided by bearing between the cask and the frame. The maximum reaction forces for the combined load cases from either Table 2.5.2-1 or Table 2.5.2-2 (Lcg = 105 in) are used in the following stress evaluation. However, factors of safety are summarized for all three CG locations.
2.5.2.2.1        Bearing on Shear Ring The shear ring restrains the cask body from a forward inertia load by bearing on the shipping frame saddle. The shear ring consists of one stainless steel arc. From Figure 2.5.2-1, the bearing area, Abrg, between the axial surface of the shear ring and the saddle is:
(          )
Abrg = 2 x  r 2 2  r12 (as 2  as1) / 360 = 198.67 in where:
r2  =  46.35 in ----------------------------------- Shear ring outer radius r1  =  43.35 in ----------------------------------- Cask body outer radius as2  =  50.0&deg; -------------------------------------- Angle defining contact at top of saddle as1  =  7.7&deg; ---------------------------------------- Angle defining contact at bottom of saddle NAC International                                  2.5.2-6
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 The maximum longitudinal load on the shear ring, Psr, is 3,150 kip (Fx1, Figure 2.5.2-1). The bearing stress is:
Psr      3,150 brg =          =          = 15.86 ksi Abrg 198.67 The factor of safety for Lcg 105 is:
Sy      23.22 FS =          =        = 1.46 (1.46, 1.46 for Lcg =102, 108, respectively) brg    15.86 where:
Sy = 23.22 ksi Yield strength, SA-336 Type 304, 266&deg;F 2.5.2.2.2        Shear Ring Shear Loading The shear stress on the shear ring is Psr 3,150 sr =        =        = 11.89 ksi Asr      265 where:
Asr = 4 x  x r1 x tsr x (as2-ar1)/360 = 265 in2 r1 = 43.35 in ------------------------------------- Cask body outer radius as2 = 50.0&deg; -------------------------------------- Angle defining contact at top of saddle ar1 = 0.0&deg; ----------------------------------------- Angle defining bottom of shear ring tsr = 3.50 in --------------------------------------- Shear ring thickness The factor of safety for Lcg 105 is:
0.577 x S y      0.577 x 23.22 13.40 FS =                =                =        = 1.13    (1.13, 1.13 for Lcg =102, 108, respectively) sr            11.89        11.89 where:
Sy = 23.22 ksi Yield strength, SA-336 Type 304, 266&deg;F 2.5.2.2.3        Bearing on Cask Body The maximum vertical force, Pvert, for considering bearing between the cask body and the saddle is 1008.9 kip (Fy1, Figure 2.5.2-1). The bearing stress is:
Pvert 1008.9 brg,v =        =          = 7.80 ksi Abrg    129.3 where:
Abrg,v = Lb x w = 129.3 in2 NAC International                                  2.5.2-7
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Lb = 2 x r1x (sin as2  sin as1) = 54.8 in ------ Projected length of bearing area r1 = 43.35 in ------------------------------------- Cask body outer radius as2 = 50.0&deg; --------------------------------------- Angle defining top of saddle contact as1 = 7.7&deg;----------------------------------------- Angle defining bottom of saddle contact w = 2.36 in --------------------------------------- Saddle width The factor of safety for Lcg 105 is:
Sy        24.02 FS =            =              = 3.08    (3.11, 3.05 for Lcg =102, 108, respectively) brg        7.80 where:
Sy = 24.02 ksi Yield strength, SA-336 Type 304, 235&deg;F The maximum lateral force, Plat, for considering bearing between the cask body and the saddle is 774.7 kip (Fz1, Table 2.5.2-1). Considering only one side of the saddle, the bearing stress is:
Plat        774.7 brg,l =            =            = 21.76 ksi A brg        35.6 where:
Abrg,l = Lb x w = 35.6 in2 Lb = r1(cosas1  cosas2) = 15.1 in------------- Projected length of bearing area r1 = 43.35 in ------------------------------------- Cask body outer radius as2 = 50.0&deg; -------------------------------------- Angle defining top of saddle contact as1 = 7.7&deg; ---------------------------------------- Angle defining bottom of saddle contact w = 2.36 in --------------------------------------- Saddle width The factor of safety for Lcg 105 is:
Sy        24 .02 FS =            =              = 1.10      (1.14, 1.07 for Lcg =102, 108, respectively) brg      21 .76 where:
Sy = 24.02 ksi Yield strength, SA-336 Type 304, 235&deg;F For simultaneous vertical and lateral loading, the bounding resultant bearing stress is:
brg,=    2brg , v +  2brg ,l =  7.802 + 21.762 = 23.1 ksi The factor of safety for Lcg 105 is:
Sy        24.02 FS =            =              = 1.04      (1.07, 1.01 for Lcg =102, 108, respectively brg        23.1 where:
Sy = 24.02 ksi Yield strength, SA-336 Type 304, 235&deg;F NAC International                                      2.5.2-8
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.5.2.2.4        Shear in Rotation Trunnion Pin At the two rotation trunnion locations, the loadings to be considered for analysis are the shear across the rotation pin, the shear acting on the trunnion support, and the shear on the weld between the cask and the trunnion support.
The rotation trunnion pin is a cylinder with a 6-in diameter and its material is SA693/SA564 Type 630, 17-4 Stainless Steel. The shear in the pin is calculated from the maximum resultant force from the vertical and axial loads at the trunnion. From Figure 2.5.2-1:
Pshear =    Fx 22 b + Fy 22 b = 1631.0 kip where:
Fx2b = -1575.0 kip Fy2b = -423.7 kip The shear stress in the pin is:
Pshear 1631.0 pin =          =            = 57.7ksi A pin        28.27 where:
D 2 Apin =          = 28 .27 in2 4
D = 6.0 in          Pin diameter The factor of safety is:
0.577 x S y      0.577 x 100.6 FS =                    =                  = 1.01 (for Lcg =102, 105, 108) pin              57.7 where:
Sy = 100.6 ksi ----------------------------------- Yield Strength, SA 564 Type 630, 17-4 Stainless Steel, 142&deg;F 2.5.2.2.5        Shear in Rotation Trunnion Support The average shear stress considering tearing through the rotation trunnion support is calculated separately in the vertical and axial direction.
Vertical Direction Pshear  727.6 tear =          =            = -14.5 ksi Asup        50.16 where:
Pshear vertical = Fy2 b= -727.6 kip NAC International                                    2.5.2-9
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 a +b Asup = 2            w = 50 .16 in 2
2 a = 3.51 in ---------------------------------------- Small dimension of support taper b = 4.85 in ---------------------------------------- Large dimension of support taper w = 6.0 in----------------------------------------- Width of contact between pin and support The factor of safety for Lcg 105 is:
0.577 x S y        0.577 x 44.46 FS =                    =                =1.77 (1.78, 1.76 for Lcg =102, 108, respectively) tear          14.5 where:
Sy = 44.46 ksi ------------------------------------ Yield Strength, SA240 Type XM-19 Stainless Steel, 266&deg;F Axial Direction Pshear 1575.0 tear =            =          = 13.8 ksi A sup        114 where:
Pshear  axial =    Fx2a = -1575.0 kip Asup = 2xcxw = 114 in2 c = 9.5 in ----------------------------------------- Edge to pin center length w = 6.0 in----------------------------------------- Width of contact between pin and support The factor of safety is:
0.577 x S y        0.577 x 44.46 FS =                    =                = 1.86 (for Lcg =102, 105, 108) tear          13.8 where:
Sy = 44.46 ksi ------------------------------------ Yield Strength SA240 Type XM-19 Stainless Steel, 266&deg;F 2.5.2.2.6        Rotation Trunnion Support Weld The weld between the trunnion support and the cask body spans the outer shell (SA240, XM-19) and the bottom outer forging (SA336, Type 304). The trunnion support material is SA240, XM-19. The modulus of elasticity is identical for both materials.
The factor of safety for the trunnion support weld is determined based on the total strength of the weld. Two separate weld areas are determined. The first weld area represents the contact area between the SA240, XM-19 trunnion support and the SA240, XM-19 outer shell. This weld area is considered to have the yield strength of SA240, XM-19. The second weld area represents the contact area between the SA240, XM-19 trunnion support and the SA336, Type 304 bottom NAC International                                  2.5.2-10
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 outer forging. The second weld area is considered to have the yield strength of SA336, Type 304.
The factor of safety is:
FS =
((                        ) (
0.577 x S y xm 19 x Aweld _ xm 19 + S y 336 x Aweld _ 336 ))
Pshear 0.577 x ((44.46 x 56.0) + (23.22 x 34.4)) 0.577 x (2490 + 799)
        =                                                  =                        = 1.16 1631.0                                    1631.0 (for Lcg =102, 105, 108) where:
Sy xm-19 = 44.46 ksi ------------------------------ Yield Strength SA240 Type XM-19 Stainless Steel, 266&deg;F Sy336 = 23.22 ksi --------------------------------- Yield Strength, SA336 Type 304, 266&deg;F Aweld xm-19 = tw x [(b x axm-19) - (( b-2tw)x( axm tw)] = 56.0 in2 Aweld 336 = tw x [(b x a336) - (( b-2tw)x( a336 - tw)] = 34.4 in2 tw = 2.0 in ----------------------------------------- Weld size a = 15.0 in ---------------------------------------- Total weld length along length of support axm-19 = 10.2 in ----------------------------------- Weld length along length of support in contact with outer shell XM-19 material a336 = 4.8 in --------------------------------------- Weld length along length of support in contact with bottom outer forging SA336 material b = 11.6 in ---------------------------------------- Weld length on side of support Pshear = 1631 kip --------------------------------- maximum resultant force from vertical and axial loads at the trunnion (Sec 2.5.2.2.4) 2.5.2.3          Overload According to 10 CFR 71.45 (b)(3), each tie-down device that is a structural part of a packaging must be designed so that failure of the device under excessive load would not impair the ability of the packaging to meet the other requirements of 10 CFR 71. For this reason, the shear capacity of the shear ring is compared with the strength of the top forging, and the shear capacity of the rotation trunnion is compared with the shear capacity of the outer shell.
2.5.2.3.1        Shear Capacities at Shear Ring Shear Ring The effective shear area at the root of the shear ring is:
NAC International                                  2.5.2-11
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 Ashear = 2 x  x r x tsr x (2 x as2)/360 = 264.8 in2 where:
r = 43.35 in ----------------------------------- Outer radius of the outer shell as2 = 50.0&deg; ------------------------------------- Angle defining contact at top of saddle tsr = 3.5 in -------------------------------------- Thickness shear ring base Applying the Von-Mises failure criterion, the ultimate shear capacity of the shear ring is:
Fshear ring = (264.8)(0.577)(63,330) = 9,676,165 lb where:
Su = 63,330 psi ----------------------------------- Ultimate Tensile Strength, SA336 Type 304, 266&deg;F Cask Top Forging Longitudinal loading applied to the shear ring will result in tensile force applied to the top forging, on the leg of the top forging that is welded to the outer shell. If the shear ring remained intact, an overload applied to the shear ring would result in a failure of the outer leg of the top forging at the transition (on the transition plane) from the full thickness of the top forging (7.225 inches of radial thickness) to the 2.25-inch (radial) thickness leg that extends to the outer shell.
Although failure of this leg of the top forging would not compromise the containment boundary, the following evaluation will show that the shear ring fails in shear before the top forging fails on the transition plane. The area of the transition plane (within the top forging), considering the circumferential distance associated with the shear ring, is:
Atplane = 2 x  x rave-tplane x tos x (2 x as2)/360 = 165.8 in2 where:
rave-tplane =1/2 x (43.35+41.1) = 42.225 in ------- Average radius within the transition plane as2 = 50.0&deg; ------------------------------------- Angle defining contact at top of saddle tos = (43.35-41.1) = 2.25 in ------------------ Thickness of outer shell (and related leg of the top forging)
The top forging has a tensile strength of 63,330 psi. The ultimate tensile capacity of the top forging at the transition plane is:
Fut = (165.8)(63,330) = 10,500,114 lb > 9,676,165 lb Thus, the shear ring will fail in shear before the top forging, ensuring that failure caused by excessive overload on the shear ring will not impair the ability of the package to meet the other requirements of 10 CFR 71.
NAC International                                  2.5.2-12
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.5.2.3.2        Shear Capacities at Rotation Trunnion Rotation Trunnion Shank The ultimate shear strength of the rotation trunnion shank is:
d2 Fu =          (0.577 x S u ) = 2,202,429 lb 4
where:
d = 6.00 in Su= 135,000 psi ----------------------------------- Ultimate Tensile Strength, SA564 Type 630 (17-4PH), 300&deg;F Rotation Trunnion Support Weld The trunnion support is welded to both the outer shell material (SA240 XM-19) and the bottom outer forging material (SA336 Type 304). The evaluation will consider only the weld area between the rotation trunnion and the outer shell, both of which are SA240 XM-19, conservatively ignoring the weld area in contact with the weaker SA 336 material of the bottom outer forging. As shown in Section 2.5.2.2.6, the XM-19 contact area is Aweld xm-19 = 56.0 in2.
The filler material used to weld the rotation trunnion support to the cask body is assumed to have a minimum ultimate tensile strength of 80.0 ksi, which is lower than the ultimate tensile strength of SA240 XM-19.
Applying the Von-Mises failure criterion, the ultimate shear capacity of the weld is:
Fw = (56.0)(0.577)(80,000) = 2,584,960 lb Cask Body The weld between the rotation trunnion and the cask body is a bevel weld. Therefore, the area of the interface between the weld and the cask body is the same as the weld area. As explained previously for the weld, the evaluation will conservatively consider only the weld area between the rotation trunnion and the outer shell. The outer shell (SA240 XM-19) has a tensile strength of 94.2 ksi (300&deg;F). The ultimate shear capacity of the cask body at the interfacing area with the weld, conservatively considering only the outer shell interfacing area, Aweld xm-19 = 56.0 in2, is:
Fcb = (56.0)(0.577)(94,200) = 3,043,790 lb > 2,584,960 lb > 2,202,429 lb Thus, the trunnion shank will fail in shear before either the cask body or the trunnion support weld, thereby ensuring that failure caused by excessive overload on the rotation trunnions will not impair the ability of the packaging to meet the other requirements of 10 CFR 71.
NAC International                                2.5.2-13
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                      Revision 1 Figure 2.5.2-1      Diagram of Transport Cask in Shipping Configuration End 1                                                                                End 2 Y
Pt. 2 CG h2 = 5.14 X
h1a h1b                                              Z 1a  Pt. 1 1b Lrt =1.18 L1a = 93.2,90.2,87.2                        L2 = 84.3,87.3,90.3 Lsr =19.9    L1b = 92.0,89.0,86.0                                        Lcg = 102.0,105.0,108.0        Lt =17.7 Lck = 213.9 Y
dt = 102.4 2b                                                              2a Z
as2 = 50.0                        r1= 43.35 h1a h1b r2 = 46.35 1a                                1a ar1 = 0 as1=7.7 1b 1b NAC International                                  2.5.2-14
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.5.2-1      Summary of Reaction Forces per CFR 71.45(b) for CG (105.0 in.)
Load Case                      Calculated Reactions per CFR 71.45(b) Loading, kips
& Direction      Fx1        Fy1          Fz1      Fx2a    Fx2b        Fy2a      Fy2b      Fz2 1 +X          0.0      91.2        0.0      -1575.0 -1575.0      -45.6    -45.6      0.0 2  -X      3150.0    699.0        0.0        0.0    0.0      -349.5    -349.5      0.0 3 +Y          0.0    -309.9        0.0        0.0    0.0      -160.1    -160.1      0.0 4  -Y        0.0      309.9        0.0        0.0    0.0        160.1    160.1      0.0 5 +Z          0.0        0.0      -774.7      0.0    0.0        218.0    -218.0    -800.3 6  -Z        0.0        0.0        774.7      0.0    0.0      -218.0    218.0    800.3 Combined Load Cases 1+3+5          0.0    -218.7      -774.7    -1575.0 -1575.0      12.4    -423.7    -800.3 2+3+5        3150.0    389.1      -774.7      0.0    0.0      -291.5    -727.6    -800.3 1+4+5          0.0      401.1      -774.7    -1575.0 -1575.0      332.5    -103.6    -800.3 2+4+5        3150.0    1008.9      -774.7      0.0    0.0        28.6    -407.5    -800.3 Table 2.5.2-2      Summary of Reaction Forces per AAR Rule 88 for CG (105.0 in.)
Load Case                      Calculated Reactions per AAR Rule 88 Loading, kips
& Direction      Fx1        Fy1          Fz1      Fx2a    Fx2b        Fy2a      Fy2b      Fz2 1 +X          0.0      68.4        0.0    -1181.3  -1181.3      -34.2    -34.2      0.0 2  -X      2362.5    524.3          0.0        0.0    0.0      -262.1    -262.1      0.0 3 +Y          0.0    -309.9        0.0        0.0    0.0      -160.1    -160.1      0.0 4  -Y        0.0    309.9          0.0        0.0    0.0      160.1      160.1      0.0 5 +Z          0.0        0.0      -309.9      0.0    0.0        87.2    -87.2    -320.1 6  -Z        0.0      0.0        309.9        0.0    0.0        -87.2    87.2      320.1 Combined Load Cases 1+3+5          0.0    -241.5      -309.9    -1181.3  -1181.3    -107.1    -281.5    -320.1 2+3+5        2362.5    214.4      -309.9      0.0    0.0      -335.0    -509.4    -320.1 1+4+5          0.0    378.3        -309.9    -1181.3  -1181.3    213.1      38.6    -320.1 2+4+5        2362.5    834.2      -309.9      0.0    0.0        -14.9    -189.3    -320.1 NAC International                              2.5.2-15
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.5.2-3      Summary of Reaction Forces per CFR 71.45(b) for CG (102.0 in.)
Load Case                    Calculated Reactions per CFR 71.45(b) Loading, kips
& Direction    Fx1        Fy1          Fz1      Fx2a    Fx2b        Fy2a      Fy2b      Fz2 1  +X        0.0      91.2        0.0      -1575.0 -1575.0      -45.6    -45.6      0.0 2  -X      3150.0    699.0        0.0        0.0    0.0      -349.5    -349.5      0.0 3  +Y        0.0    -299.2        0.0        0.0    0.0      -165.4    -165.4      0.0 4  -Y        0.0    299.2          0.0        0.0    0.0      165.4      165.4      0.0 5  +Z        0.0        0.0      -748.1      0.0    0.0        207.8    -207.8    -826.9 6  -Z        0.0      0.0        748.1      0.0    0.0      -207.8    207.8    826.9 Combined Load Cases 1+3+5          0.0    -208.0      -748.1    -1575.0 -1575.0      -3.2    -418.8    -826.9 2+3+5        3150.0    399.8      -748.1      0.0    0.0      -307.1    -722.7    -826.9 1+4+5          0.0      390.5      -748.1    -1575.0 -1575.0    327.6      -88.0    -826.9 2+4+5        3150.0    998.3      -748.1      0.0    0.0        23.7    -391.9    -826.9 Table 2.5.2-4      Summary of Reaction Forces per AAR Rule 88 for CG (102.0 in.)
Load Case                    Calculated Reactions per AAR Rule 88 Loading, kips
& Direction    Fx1        Fy1          Fz1      Fx2a    Fx2b        Fy2a      Fy2b      Fz2 1  +X        0.0      68.4        0.0      -1181.3 -1181.3      -34.2    -34.2      0.0 2  -X      2362.5    524.3        0.0        0.0    0.0      -262.1    -262.1      0.0 3  +Y        0.0    -299.2        0.0        0.0    0.0      -165.4    -165.4      0.0 4  -Y        0.0    299.2          0.0        0.0    0.0      165.4      165.4      0.0 5  +Z        0.0        0.0      -299.2      0.0    0.0        83.1    -83.1    -330.8 6  -Z        0.0      0.0        299.2      0.0    0.0        -83.1      83.1    330.8 Combined Load Cases 1+3+5          0.0    -230.8      -299.2    -1181.3 -1181.3    -116.5    -282.7    -330.8 2+3+5        2362.5    225.0      -299.2      0.0    0.0      -344.4    -510.6    -330.8 1+4+5          0.0      367.7      -299.2    -1181.3 -1181.3    214.3      48.0    -330.8 2+4+5        2362.5    823.5      -299.2      0.0    0.0        -13.6    -179.9    -330.8 NAC International                            2.5.2-16
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.5.2-5      Summary of Reaction Forces per CFR 71.45(b) for CG (108.0 in.)
Load Case                    Calculated Reactions per CFR 71.45(b) Loading, kips
& Direction    Fx1        Fy1          Fz1      Fx2a    Fx2b        Fy2a      Fy2b      Fz2 1  +X        0.0      91.2        0.0      -1575.0 -1575.0      -45.6    -45.6      0.0 2  -X      3150.0    699.0        0.0        0.0    0.0      -349.5    -349.5      0.0 3  +Y        0.0    -320.5        0.0        0.0    0.0      -154.7    -154.7      0.0 4  -Y        0.0    320.5          0.0        0.0    0.0        154.7    154.7      0.0 5  +Z        0.0        0.0      -801.3      0.0    0.0        228.2    -228.2    -773.7 6  -Z        0.0      0.0        801.3      0.0    0.0      -228.2    228.2    773.7 Combined Load Cases 1+3+5          0.0    -229.3      -801.3    -1575.0 -1575.0      27.9    -428.6    -773.7 2+3+5        3150.0    378.5      -801.3      0.0    0.0      -276.0    -732.5    -773.7 1+4+5          0.0      411.8      -801.3    -1575.0 -1575.0      337.3    -119.1    -773.7 2+4+5        3150.0    1019.6      -801.3      0.0    0.0        33.4    -423.0    -773.7 Table 2.5.2-6      Summary of Reaction Forces per AAR Rule 88 for CG (108.0 in.)
Load Case                    Calculated Reactions per AAR Rule 88 Loading, kips
& Direction    Fx1        Fy1          Fz1      Fx2a    Fx2b        Fy2a      Fy2b      Fz2 1  +X        0.0      68.4        0.0      -1181.3 -1181.3      -34.2    -34.2      0.0 2  -X      2362.5    524.3        0.0        0.0    0.0      -262.1    -262.1      0.0 3  +Y        0.0    -320.5        0.0        0.0    0.0      -154.7    -154.7      0.0 4  -Y        0.0    320.5          0.0        0.0    0.0      154.7      154.7      0.0 5  +Z        0.0        0.0      -320.5      0.0    0.0        91.3    -91.3    -309.5 6  -Z        0.0      0.0        320.5        0.0    0.0        -91.3    91.3      309.5 Combined Load Cases 1+3+5          0.0    -252.1      -320.5    -1181.3 -1181.3      -97.7    -280.2    -309.5 2+3+5        2362.5    203.7      -320.5      0.0    0.0      -325.6    -508.2    -309.5 1+4+5          0.0      389.0      -320.5    -1181.3 -1181.3    211.8      29.2    -309.5 2+4+5        2362.5    844.8      -320.5      0.0    0.0        -16.1    -198.7    -309.5 NAC International                            2.5.2-17
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.5.2-7      Minimum Factor of Safety Summary Stress Evaluation                CG Location (in) Minimum Factor of Safety Bearing on Shear Ring                    All                1.46 Shear in Shear Ring                      All                1.13 Vertical Bearing on Cask Body                108.0                3.05 Lateral Bearing on Cask Body                108.0                1.07 Combined Bearing on Cask Body                  108.0                1.01 Shear in Rotation Trunnion Pin                All                1.01 Vertical Shear in Rotation Trunnion Support        108.0                1.76 Axial Shear in Rotation Trunnion Support            All                1.86 Rotation Trunnion Support Weld                All                1.16 NAC International                            2.5.2-18
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6            Normal Conditions of Transport This section presents the evaluation of the MAGNATRAN transport cask for structural integrity for the normal conditions of transport.
10 CFR 71.71 requires that the transport cask be structurally adequate for the following normal conditions of transport: (1) heat, (2) cold, (3) reduced external pressure, (4) increased external pressure, (5) vibration, (6) water spray, (7) free drop, (8) corner-drop, (9) compression, and (10) penetration. In the free-drop analyses, the cask impact orientation evaluated is the orientation that results in the maximum damage to the cask. The regulation requires that the cask be evaluated for the normal conditions of transport at the most unfavorable ambient temperature in the range from -20&deg;F to +100&deg;F. The evaluations are conservatively made over the ambient temperature range of -40&deg;F to +100&deg;F.
The results of these evaluations demonstrate that the structural integrity of the MAGNATRAN transport cask is maintained for all of the requirements of 10 CFR 71.71 for normal conditions of transport.
NAC International                                2.6-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.1            Heat The MAGNATRAN transport cask is analyzed for structural adequacy in accordance with the requirements of 10 CFR 71.71(c)(1), Heat (normal condition of transport). The cask is loaded, ready for shipment and supported in the horizontal position with an ambient temperature environment of 100&deg;F, a conservatively defined internal pressure of 135 psig [from Section 3.4.4, the calculated Maximum Normal Operating Pressure (MNOP) for the transport cask (with an intact canister) is 23 psig], maximum decay heat load, maximum solar insolation and still air.
The stress analysis of the cask is performed by using a three-dimensional finite element model and the ANSYS computer program. The model considers thermal heat, internal pressure, bolt preload, gravity and combined loading conditions. The finite element model is described in Section 2.12.2.6. The temperature-dependent material properties considered in the analysis are documented in Section 2.2.
The following categories of load on the cask are considered for the heat condition.
Closure lid bolt preload - The required total bolt preload on the lid bolts is 8.7x106 pounds (182,278 lb/bolt for 48 bolts). Bolt preload is applied to the model by imposing initial strains to the bolt shafts.
Internal pressure - Under all normal conditions of transport, the TSC confinement boundary remains intact, and the normal internal cask operating pressure (23 psig) is dependent only on the helium backfill and maximum normal gas temperatures in the cask cavity. For analysis purposes, it is assumed that the TSC confinement boundary is breached, resulting in a maximum internal pressure of 112.4, as shown in Table 3.4-3. Therefore, an internal pressure of 135 psig is applied on the interior surfaces of the cask cavity in the outward normal direction to conservatively bound this maximum internal pressure under normal conditions. The pressure loading region includes the lid surfaces, which are within the cask cavity, but does not include the mating surfaces of the lid and upper body forging outward to the lid seal centerline.
Thermal - The heat transfer analyses performed for maximum normal operating conditions determine the cask temperature distribution for the heat condition. For the heat condition, the cask is considered to be in the horizontal position subjected to an ambient temperature of 100&deg;F, with maximum decay heat load and maximum solar insolation, in still air. The cask temperature distribution obtained for this heat condition is used as input to the ANSYS analysis to determine the thermal-mechanical stresses in the cask. The ANSYS analysis determines the stresses resulting from thermal expansion of the cask from its initial 70&deg;F condition to its normal transport temperature condition. These stresses include the effects of the differential thermal growth within the components, which result from the temperature difference across the cask NAC International                              2.6.1-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 walls. The cask temperature distribution is also used in the ANSYS structural analysis to determine the values of the temperature-dependent material properties.
Gravity - The mechanical loads consist of gravity acting on the cask structure and its contents.
The cask is assumed to be loaded and resting in the horizontal position on the front and rear cask supports. Mechanical loads resulting from a 1g application of the cask structure and contents are imposed on the model. The weight of the cavity contents is imposed on the model as a contents pressure on the contact surface of the cask cavity.
Fabrication and Installation - The effects of stresses resulting from the processes used in fabrication and installation are negligible.
2.6.1.1          Summary of Pressures and Temperatures The maximum normal conditions of transport temperatures are summarized in Table 3.4-1 for the various PWR and BWR cask components. Summaries of pressures for the PWR and BWR canister and cask configurations are listed in Table 2.6.1-1 and Table 2.6.1-2, respectively. The MNOP is 23 psig (Section 3.4.4).
2.6.1.2          Differential Themal Expansion The differential thermal expansions of the cask are evaluated based on bounding results from the PWR and BWR thermal analyses. In performing the calculations, nominal dimensions of the various components are used. The data used in the evaluation are presented in Chapter 1.
All thermal expansions are calculated using the following relation:
l = l0  T where:
l is the resulting change in linear dimension l0 is the original dimension is the material thermal expansion coefficient T is the temperature differential.
The original dimensions are expressed in terms of room temperature, so the calculated temperature differences are based on 70&deg;F reference temperature.
The component temperatures are selected such that the corresponding T bounds both hot and cold thermal ambient conditions. Additionally, the thermal expansion coefficient values are selected to provide bounding thermal growth scenarios.
NAC International                              2.6.1-2
 
MAGNATRAN Transport Cask SAR                                                                        January 2022 Docket No. 71-9356                                                                                      Revision 1 2.6.1.2.1      Canister/Cask Radial Thermal Expansion Diametral Clearance = d2cask - d2canister = 72.28 - 72.226 = 0.054 inches where:
d2cask = d0cask + d = d0cask + (d0caskxcaskx Tcask )
                  = 72.25 + (72.25x(8.5x10-6)x50) = 72.25 + 0.03 = 72.28 inches d2cask = ..........................................Cask cavity (internal) diameter, at Tmin d0cask = 72.25 inch ........................Cask cavity (internal) diameter, at Tref =70&deg;F cask = 8.5x10-6 in/in/&deg;F ...............Coefficient of thermal expansion, SA240 Type 304 & SA336, Type 304 Stainless Steel, conservatively taken at 70&deg;F Tcask =Tmin-Tref =120-70 = 50&deg;F ............Minimum change of the cask inner shell temperature from reference temperature Tmin = 120&deg;F .................................Minimum temperature of the cask inner shell (for BWR Cold case, Cask Pt. 4)
Tref = 70&deg;F ....................................Reference temperature of the cask inner shell d2canister = d0canister + d = d0canister + (d0canisterxcanisterx Tcanister)
                      = 72.00 + (72.00x(9.5x10-6)x330) = 72.00 + 0.226 = 72.226 inches d2canister = .......................................Canister outside diameter, at Tmax d0canister = 72.00 inch .....................Canister outside diameter, at Tref =70&deg;F canister = 9.5x10-6 in/in/&deg;F ...........Coefficient of thermal expansion, SA-240, Type 304 Stainless Steel, conservatively taken at 400&deg;F Tcanister=Tmax-Tref =400-70=330&deg;F ..........Maximum change (conservative) of the canister shell temperature from reference temperature Tmax  400&deg;F ................................Maximum temperature of the cask inner shell (for PWR Hot case, Max. Temp. of Canister Inner Shell = 364&deg;F  400&deg;F)
A resulting minimum diametrical clearance of 0.054 inch is ensured during normal operating conditions. Therefore, the canister and cask will expand radially and not bind during normal transport conditions.
NAC International                                              2.6.1-3
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                        Revision 1 2.6.1.2.2        Canister/Cask Axial Thermal Expansion Axial Clearance = L2cask - L2canister = 192.58 - 192.38 = 0.20 inches where:
L2cask = L0cask + L = L0cask + (L0caskxcaskx Tcask)
= 192.5 + (192.5 x (8.5x10-6) x 50) = 192.5 + 0.082 = 192.58 inches L2cask = ............................................Cask cavity length, at Tmin L0cask = 192.5 inch ...........................Cask cavity length, at Tref =70&deg;F cask = 8.5x10-6 in/in/&deg;F ..................Coefficient of thermal expansion, SA240 Type 304 & SA336, Type 304 Stainless Steel, conservatively taken at 70&deg;F Tcask =Tmin-Tref =120-70 = 50&deg;F ...Minimum change of the cask inner shell temperature from reference temperature Tmin = 120&deg;F ....................................Minimum temperature of the cask inner shell (for BWR Cold case, Cask Pt. 4)
Tref = 70&deg;F .......................................Reference temperature of the cask inner shell L2canister = L0canister + d = L0canister + (L0canister x canister x Tcanister)
                      = 191.78 + (191.78x(9.5x10-6)x330) = 191.78 + 0.60 = 192.38 inches L2canister = .........................................Canister length, longest canister, at Tmax L0canister = 191.78 inch .....................Canister length, longest canister, at Tref =70&deg;F canister = 9.5x10-6 in/in/&deg;F ..............Coefficient of thermal expansion, SA-240, Type 304 Stainless Steel, conservatively taken at 400&deg;F Tcanister=Tmax-Tref =400-70=330&deg;F .............Maximum change (conservative) of the canister shell temperature from reference temperature (for PWR Hot case)
Tmax  400&deg;F ...................................Maximum temperature (conservative) of the cask inner shell (for PWR Hot case, Maximum temperature of canister inner shell = 364&deg;F, which is  400&deg;F)
When the shorter canister is used, a cask cavity spacer is used in the resulting axial gap area.
The combined axial length of the shorter canister plus cask cavity spacer is equal to the length of the longest canister.
L0 short canister + L0cask cavity spacer = 184.78 + 7.0 = 191.78 inches NAC International                                              2.6.1-4
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                  Revision 1 where:
L0 short canister = Lweldment + tlid - Llug position L0 short canister = 184.78 inches ....Canister length, shorter canister Lweldment = 184.75 inches .................Canister weldment length, shorter canister Llug position = 8.97 inches ...................Position of lift lugs from top of canister weldment tlid = 9inches ....................................Thickness of the closure lid L0cask cavity spacer = 7.0 inches ...Cask cavity spacer length The resulting axial clearance of 0.20 inch is ensured during normal operating conditions.
Therefore, the canister and cask will expand axially and not bind during normal transport conditions 2.6.1.3          Stress Calculations The stresses throughout the cask body are calculated for the individual and combined loading conditions. The loading conditions are: (1) 135 psig internal pressure (including bolt preload);
(2) thermal heat (100&#xba;F) loads; and (3) gravity. Stress results for the individual loading case of 135 psig internal pressure (including bolt preload) are documented in Table 2.6.1-3 and Table 2.6.1-4. Stress results for the thermal loading case are documented in Table 2.6.1-5. Stress results for the individual 1g gravity case are documented in Table 2.6.1-6 and Table 2.6.1-7.
Stress results for the case of combined internal pressure, thermal heat, and 1g gravity are documented in Table 2.6.1-8 and Table 2.6.1-9.
The conventions used for the stress summary tables are:
: 1. All stresses are in ksi.
: 2. Section stress locations are shown in Figure 2.12.2-31 and tabulated in Table 2.12.2-6.
: 3. The stress intensities (SI) presented in the tables represent the maximum SI occurring at any circumferential location of the specified section. The stress components correspond to the section having the largest SI.
: 4. Angles shown in the tables are in degrees and they identify the circumferential location where the maximum stress intensity occurs. These angles are measured from the x-axis rotating about the y-axis (Figure 2.12.2-30).
: 5. Any stress component that is shown to be 0 ksi is defined as being less than 0.1 ksi.
: 6. The stress intensities shown in the tables are rounded to the nearest 0.01 ksi. The margins of safety are calculated prior to rounding the stress intensities.
: 7. Heat, Thermal Hot, and Hot refer to 100&deg;F ambient temperature, maximum solar insolation, and maximum decay heat applied to the cask in still air.
: 8. All stress components are in a cylindrical coordinate system, and x, y, z correspond to radial, circumferential and axial directions, respectively.
NAC International                                            2.6.1-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 These tables document primary membrane (Pm), primary membrane plus primary bending (Pm +
Pb), primary plus secondary (P + Q), and critical Pm, Pm + Pb, and P + Q stresses in accordance with the criteria presented in Regulatory Guide 7.6. As described in Section 2.12.2.6.5, procedures have been implemented to document the sectional stresses, as well as to determine the critical stress summary for all cask components.
For the individual loading condition of internal pressure (including lid bolt preload), the maximum calculated primary membrane stress intensity is 3.76 ksi and the maximum calculated primary membrane plus bending stress intensity is 11.76 ksi. For the individual thermal loading condition (including lid bolt preload), the secondary stress intensity is 15.24 ksi. For the individual gravity loading condition (including lid bolt preload), the maximum calculated primary membrane stress intensity is 4.44 ksi and the maximum calculated primary membrane plus bending stress intensity is 13.22 ksi.
Note that closure bolt preload is included in all three loading conditions.
2.6.1.4          Comparison with Allowable Stresses To show that the MAGNATRAN transport cask meets the requirements for normal conditions of transport, the calculated stress intensities are compared to the allowable stress criteria presented in Regulatory Guide 7.6. The allowable stress comparisons are presented in Table 2.6.1-3 through Table 2.6.1-9.
For normal conditions, the primary membrane, primary membrane plus bending, and primary membrane plus bending plus secondary stresses; are compared to the following stress allowables:
Pm < Sm Pm + Pb < 1.5 Sm Pm + Pb + Q < 3 Sm The stress intensity results for the case of combined 1g gravity, thermal loading and internal pressure loading, for the hot ambient condition, are reported in Table 2.6.1-8 (Pm stresses) and Table 2.6.1-9 (Pm+Pb stresses). Because thermal loading is included in this analysis case, the values reported as Pm are actually Pm+Q stresses, and the values reported as Pm+Pb are actually P+Q stresses. Therefore, the factors of safety reported in the following summary table for Pm and Pm+Pb stresses are conservative.
NAC International                              2.6.1-6
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 The minimum factors of safety for the Pm, Pm+Pb, and P+Q stresses in the cask for the heat condition are:
Stress State            Max. Stress (ksi)      Allowable Stress (ksi)  Factor of Safety Pm (+Q)                      9.86                    20                  2.03 Pm + Pb (+Q)                  15.66                    30                  1.92 P+Q                        15.66                    60                  3.83 Since the factors of safety are all positive, the MAGNATRAN transport cask satisfies the requirements of 10 CFR 71.71(c)(1) for the heat (normal transport) condition.
NAC International                              2.6.1-7
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.1-1        Summary of Canister Pressures During Normal Conditions of Transport Canister Internal        Canister Internal  Canister Internal Condition              Pressure                  Pressure            Pressure (PWR)                    (BWR)              (PWR DF)
Normal (3% Rod Failure)          114.7 psig              112.7 psig            114.8 psig Pressure used for Canister Analysis            120 psig                120 psig              120 psig Table 2.6.1-2        Summary of Cask Pressures During Normal Conditions of Transport Cask Cavity Internal    Cask Cavity Internal Cask Cavity Internal Condition          Pressure (PWR)          Pressure (BWR)    Pressure (PWR DF)
Normal (Intact Canister)          23 psig                  23 psig            23 psig (3% Rod Failure)
Normal (Failed Canister)          112.3 psig              110.7 psig          112.4 psig (3% Rod Failure)
Pressure used for Cask Lid              135 psig                135 psig            135 psig Closure Analysis Pressure used for Cask Body              135 psig                135 psig            135 psig Finite Element Analysis Note: The cask design pressure is 120 psig.
NAC International                            2.6.1-8
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.1-3      Internal Pressure Only, Heat (100&deg;F), Pm, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                      FS (deg)    Sx      Sy      Sz    Sxy Syz      Sxz  Int. Allow.
1        0.0  -0.16  -0.21    -0.32  0.00  -0.02 -0.13  0.32  19.64  Large 2        0.0    0.15    0.20    -0.30  0.00  -0.01  0.10  0.52    19.74  Large 3        0.0  -0.18    0.17    0.99  -0.01  0.00  0.24  1.27    20.00  Large 4        0.0    0.20    0.21    0.04  0.00  0.00  0.03  0.18  20.00  Large 5      78.8  -0.38    0.09    0.30  0.00  0.00  0.13  0.73    20.00  Large 6        0.0    1.57    0.11    0.62  0.04  0.00  0.11  1.47    20.00  Large 7        0.0  -0.11  -0.14    1.11  0.00  0.01  0.40  1.46    20.00  Large 8        0.0  -0.07    1.84    1.07  -0.06  0.00  0.03  1.91    20.00  Large 9        0.0  -0.06    2.89    1.08  -0.10  0.00 -0.03  2.96    20.00  6.76 10      0.0  -0.06    2.78    1.08  -0.09  0.00  0.00  2.85    19.83  6.96 11      0.0  -0.06    2.78    1.08  -0.09  0.00  0.00  2.85    19.73  6.92 12      0.0  -0.06    2.78    1.08  -0.09  0.00  0.00  2.85    19.84  6.96 13      0.0  -0.06    2.85    1.08  -0.10  0.00  0.01  2.92    20.00  6.85 14      0.0  -0.06    2.69    1.08  -0.09  0.00  0.02  2.76    20.00  7.25 15      71.2  -0.07    1.75    1.09  0.00  -0.01 -0.10  1.83    20.00  Large 16      75.0  -0.40    1.25    1.09  0.00  -0.01 -0.01  1.65    20.00  Large 17      0.0  0.42    -0.18    0.11  0.02  0.00  -0.09  0.63    20.00  Large 18      0.0  -0.01  -0.37    0.20  0.01  0.00  0.08  0.60  20.00  Large 19      0.0  0.00    -0.26    0.19  0.01  0.00  0.02  0.45  31.88  Large 20      0.0  0.00    -0.04    0.18  0.00  0.00  0.00  0.22  31.89  Large 21      15.0    0.00    0.00    0.18  0.00  0.00  0.00  0.19  31.84  Large 22      30.0    0.00    0.00    0.19    0.00  0.00  0.00  0.19  31.81  Large 23      33.8    0.00    0.00    0.19    0.00  0.00  0.00  0.19  31.84  Large 24      63.8  0.00    -0.01    0.19  0.00  0.00 -0.01  0.21  31.89  Large 25      0.0    0.00    0.19    0.19  -0.01  0.00  0.00  0.19  31.89  Large 26      0.0  0.01    0.70    0.18  -0.02  0.00  0.09  0.73  20.00  Large 27      0.0  -0.31    0.74    0.23  -0.03  0.00  0.01  1.06    20.00  Large 28      67.5  -0.14    0.69    0.25  -0.01  0.00  0.03  0.84  20.00  Large 29      3.8  -0.92    0.38    -0.23  0.00  0.00 -0.10  1.32    20.00  Large 30      0.0  0.01    0.01    -0.07  0.00  0.04  -0.03  0.14    44.66  Large 31      3.8  -0.07    0.81    -0.59  0.00  0.00 -1.08  2.25    45.00  Large 32      3.8  -1.04  -0.53    -4.28  0.00  0.00 -0.15  3.76    45.00  Large Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
Special Note:    Throughout Chapter 2, Large means FS >10.
NAC International                              2.6.1-9
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.1-4      Internal Pressure Only, Heat (100&deg;F), Pm + Pb, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                          FS (deg)    Sx      Sy      Sz    Sxy    Syz  Sxz    Int. Allow.
1      0.0    0.83    0.72    -0.52    0.00  -0.02 -0.11  1.37  29.46    Large 2      0.0    1.20    1.84    -0.28  -0.02  0.00  0.13  2.14  29.61    Large 3      0.0  -2.51    -0.48    -0.54  -0.06  0.00  0.00  2.03  30.00    Large 4      0.0    0.61    0.30    0.07    0.01  0.00  0.08  0.56  30.00    Large 5      0.0  -0.01    0.47    1.22  -0.01  0.00  0.05  1.24  30.00    Large 6      0.0    0.69    -1.05    -2.38    0.05  0.00 -0.24  3.11  30.00    9.65 7      0.0  -0.16    0.92    4.59  -0.04  0.01  0.33  4.79  30.00    6.26 8      0.0  -0.02    2.12    2.11  -0.07  0.00  0.03  2.14  30.00    Large 9      0.0  -0.01    2.96    1.55  -0.10  0.00 -0.03  2.98  30.00    Large 10      0.0  -0.12    2.85    1.09  -0.10  0.00  0.00  2.97  29.75    Large 11      45.0  -0.12    2.86    1.09    0.00  0.00  0.00  2.98  29.60    9.93 12      63.8  -0.12    2.87    1.10    0.00  0.00  0.00  2.99  29.76    9.95 13      71.2  -0.12    2.91    0.99    0.00  0.00  0.01  3.04  30.00    9.87 14      0.0  -0.01    2.80    1.60  -0.09  0.00  0.02  2.82    30.00    Large 15      71.2  -0.10    1.87    1.25    0.00  0.00 -0.10  1.98    30.00    Large 16      0.0  -0.12    1.59    2.20  -0.06  0.00 -0.01  2.32  30.00    Large 17      0.0    0.90    0.22    0.98    0.02  0.00 -0.05  0.78    30.00    Large 18      0.0    0.00    -0.07    1.21    0.00  0.00  0.07  1.28    30.00    Large 19      0.0    0.00    -0.26    0.21    0.01  0.00  0.02  0.47    47.83    Large 20      0.0    0.00    0.00    0.31    0.00    0.00  0.00  0.32    47.84    Large 21      0.0    0.00    0.00    0.19    0.00  0.00  0.00  0.19    47.76    Large 22      0.0    0.00    -0.01    0.18    0.00  0.00  0.00  0.19    47.71    Large 23      56.2    0.00    0.00    0.19  0.00    0.00  0.00  0.20    47.77    Large 24      0.0    0.00    0.02    0.35    0.00  0.00 -0.01  0.35    47.84    Large 25      0.0    0.00    0.27      0.48  -0.01  0.00  0.00  0.48    47.84    Large 26      0.0  -0.01    0.54    -0.32  -0.02  0.00  0.08  0.88  30.00    Large 27      0.0    0.02    1.11    1.12    -0.04  0.00 -0.04  1.11  30.00    Large 28      75.0  -0.23    0.96    0.53    0.00  -0.01 0.13  1.21    30.00    Large 29      3.8  -2.35    -0.09    -1.11    0.00  0.00 -0.32  2.34  30.00    Large 30      60.0    4.23    5.76    -0.01    0.00  0.00  -0.03  5.77  67.00    Large 31      0.0    2.07    2.96    -0.10    0.06  -0.19 -0.31  3.14  67.50    Large 32      3.8    2.54    1.54    -8.60    0.00  0.00 -1.89  11.76  67.50    5.74 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.1-10
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.1-5      Thermal (Q) Stresses, Heat (100&deg;F), ksi Angle                Stress Components b            Stress Sect.a (deg)      Sx      Sy      Sz  Sxy    Syz  Sxz    Int.
1      0.0    -4.97    -6.82    0.22  0.06  0.01  0.01    7.05 2      0.0    -2.70    -3.75    0.27  0.03  0.00  0.01    4.02 3      0.0    -6.14    0.46    -0.90 -0.20  0.01 -0.42    6.65 4      0.0      1.35    4.57      0.20 -0.11  0.00  0.02    4.38 5      0.0    -0.26    6.46    7.94 -0.21  0.01  0.36    8.24 6      0.0    -4.97    0.99    -0.58 -0.18  -0.01 -0.73    6.09 7      0.0      0.06    1.45    -4.01 -0.04  0.00 -0.16    5.47 8      0.0      0.00    -1.81    -3.50  0.06  0.00  0.10    3.52 9      0.0    -0.03    -3.01    -5.42  0.10  0.00  0.03    5.40 10    0.0    -0.04    -4.07    -6.64  0.13  0.00  0.01    6.60 11    0.0    -0.04    -4.40    -7.09  0.14  0.00  0.00    7.05 12    0.0    -0.04    -3.98    -6.57  0.13  0.00 -0.01    6.54 13    0.0    -0.03    -2.92    -5.89  0.09  0.00  0.01    5.87 14    0.0    -0.03    -3.18    -5.71  0.10  0.00 -0.05    5.68 15    0.0    -0.18    -2.64    -5.03  0.08  -0.01 -0.38    4.91 16    0.0    -3.18    -4.79    -7.95  0.07  0.00 -0.06    4.78 17    0.0    -2.45    4.74    5.25 -0.22  0.04  1.19    8.07 18    0.0      0.12    6.00    10.90  -0.20  -0.01 -0.11  10.79 19    0.0    -0.32    5.99    8.46 -0.21  0.00  0.11    8.79 20    0.0    -0.02    7.16    8.55 -0.23  0.00  0.02    8.58 21    0.0    -0.01    7.61    8.90 -0.25  0.00  0.01    8.92 22    0.0    -0.02    7.66    8.96 -0.25  0.00  0.00    8.98 23    0.0    -0.01    7.58    8.84 -0.25  0.00  0.00    8.86 24    0.0    -0.02    7.55    9.16 -0.25  0.00  0.00    9.18 25    0.0    -0.01    6.59    8.97 -0.22  0.00 -0.04    8.98 26    0.0    -0.24    2.84    11.71  -0.10  0.00 -0.07  11.95 27    0.0    -0.68    1.75    7.04 -0.07  -0.05 -1.60    8.36 28    3.8    -0.12    2.49    2.69  0.00  0.00 -0.52    3.00 29    3.8    -2.58    1.12    -2.00  0.00  0.00 -0.75    4.21 30    0.0    -2.69    -3.66    -0.01  0.03  0.00  0.01    3.65 31    0.0    -3.30    -0.07    -2.33 -0.30  -0.10  1.98    4.89 32    3.8      7.66    5.03    -7.01  0.00  0.00 -2.06  15.24 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.1-11
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.1-6      1g Gravity Load, Heat (100&deg;F), Pm, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                        FS (deg)      Sx      Sy      Sz    Sxy    Syz  Sxz  Int. Allow.
1      0.0    -0.05    -0.06    0.00    0.00  0.00  0.00  0.06    19.64  Large 2    75.0    -0.01    -0.11    -0.01    0.02  0.00  0.00  0.12    19.74  Large 3      0.0    -0.08    -0.27    0.17    0.00  0.00 -0.04  0.45    20.00  Large 4    30.0    -0.12    -0.17    -0.01    0.02  0.02  0.00  0.18    20.00  Large 5    93.8    0.01    0.04    0.01    0.00  -0.16  0.01  0.33    20.00  Large 6    45.0    0.07    0.00    0.12    -0.02  -0.25  0.00  0.51    20.00  Large 7    41.2    0.00    -0.04    0.10    0.02  -0.43  0.00  0.88    20.00  Large 8    37.5    0.00    0.06    0.04    -0.01  -0.56  0.00  1.12    20.00  Large 9    37.5    0.00    0.14    0.06    -0.01  -0.52 -0.01  1.04    20.00  Large 10    52.5    0.01    0.09    -0.03    0.00  -0.29  0.00  0.59    19.83  Large 11      0.0    -0.02    0.22    0.86  -0.01  0.00  0.00  0.88    19.73  Large 12    45.0    0.01    0.12    0.07  -0.01  0.30  0.00  0.61    19.84  Large 13    37.5    0.00    0.13    0.07  -0.01  0.51  0.00  1.03    20.00  Large 14    37.5    0.00    0.18    0.05    -0.01  0.57  0.01  1.15    20.00  Large 15    41.2    -0.01    0.35    0.11    0.01  0.48  0.05  1.00    20.00  Large 16    56.2    0.26    0.59    0.19  0.08    0.37  0.02  0.85    20.00  Large 17      0.0    0.16    -0.25    0.22    0.01  0.00  0.06  0.50    20.00  Large 18      0.0    -0.01    -0.26    0.33    0.01  0.00  0.07  0.61    20.00  Large 19      0.0    0.00    -0.08    0.33    0.00  0.00  0.01  0.42    31.88  Large 20      0.0    0.00    0.06    0.36    0.00  -0.01 0.00  0.36    31.89  Large 21      0.0    0.00    0.06    0.46    0.00  0.00  0.00  0.46    31.84  Large 22      0.0    0.00    0.05    0.54    0.00    0.00  0.00  0.54    31.81  Large 23      0.0    0.00    0.06    0.52    0.00    0.00  0.00  0.52    31.84  Large 24      0.0    0.00    0.08    0.48    0.00  0.00  0.00  0.48    31.89  Large 25      0.0    0.00    0.11    0.47    0.00  0.00  0.00  0.47    31.89  Large 26    97.5    0.01    0.36    -0.15    0.00  0.13  0.06  0.59    20.00  Large 27    101.2    -0.17    0.35    -0.08  -0.02  0.12  0.02  0.56    20.00  Large 28      3.8    -0.24    -0.55    0.04    0.00  0.00 -0.06  0.60    20.00  Large 29      0.0    1.27    -0.47    0.18    0.20  0.02  0.19  1.81    20.00  Large 30      0.0    0.06    0.11    0.00    0.00  0.01 -0.01  0.11    44.66  Large 31    180.0    0.29    0.15    -0.39  0.06    0.15 0.61  1.44    45.00  Large 32    101.2    -1.09    -0.99    -5.28    0.00  0.01  0.73  4.44    45.00  Large Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.1-12
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.1-7        1g Gravity Load, Heat (100&deg;F), Pm + Pb, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                          FS (deg)      Sx      Sy      Sz    Sxy    Syz  Sxz    Int. Allow.
1      0.0    0.01    -0.11    0.00    0.00  0.00  0.00  0.12    29.46  Large 2    101.2    0.04    -0.18    -0.01  -0.05  0.00  0.00  0.24    29.61  Large 3      0.0    -0.20    -0.34    0.51    0.00  -0.01 -0.04  0.86    30.00  Large 4      0.0    -0.14    -0.26    -0.01    0.00  0.00 -0.03  0.26    30.00  Large 5      0.0    -0.23    -0.26    0.09    0.00  0.00 -0.01  0.35    30.00  Large 6      0.0    0.00    -0.18    0.87    0.00  -0.02 -0.11  1.07    30.00  Large 7      0.0    0.01    -1.08    -2.17    0.04  -0.01  0.14  2.21    30.00  Large 8    33.8    0.00    0.06    -0.13  -0.01  -0.86  0.00  1.72    30.00  Large 9    33.8    0.00    0.28    0.03    -0.02  -0.74 -0.01  1.51    30.00  Large 10      0.0    -0.01    1.43    1.02  -0.05  0.00  0.01  1.45    29.75  Large 11      0.0    -0.02    1.80    1.45  -0.06  0.00  0.00  1.82    29.60  Large 12      0.0    -0.01    1.41    0.95  -0.05  0.01 -0.01  1.42    29.76  Large 13    33.8    0.00    0.32    0.12  -0.02  0.72  0.00  1.46    30.00  Large 14    33.8    0.00    0.29      0.03  -0.01  0.84  0.01  1.70    30.00  Large 15    41.2    -0.02    0.27    -0.41    0.01  0.69  0.06  1.55    30.00  Large 16    56.2    0.02    0.24    -0.90  -0.01  0.42 -0.10  1.43    30.00  Large 17      0.0    0.22    -0.07    0.77    0.01  0.01  0.15  0.88    30.00  Large 18      0.0    -0.01    -0.11    0.86    0.00  0.00  0.06  0.97    30.00  Large 19    56.2    -0.01    -0.03    -0.06  -0.02  -0.29 -0.01  0.59    47.83  Large 20      0.0    0.00    0.15      0.49  -0.01  0.00  0.00  0.49    47.84  Large 21      0.0    0.00    0.19      0.53  -0.01  0.00  0.00  0.53    47.76  Large 22      0.0    0.00    0.25      0.64  -0.01  0.00  0.00  0.64    47.71  Large 23      0.0    0.00    0.20      0.60  -0.01  0.00  0.00  0.60    47.77  Large 24    67.5    -0.02    0.41    0.15    0.02  0.18  0.00  0.53    47.84  Large 25    67.5    -0.03    0.46    0.10    0.02  0.23  0.01  0.60    47.84  Large 26    67.5    -0.02    0.22    -0.62    0.01  0.20  0.06  0.94    30.00  Large 27    93.8    -0.34    0.02    -0.75  -0.04  0.11  0.10  0.83    30.00  Large 28    26.2    -0.33    -0.48    0.36  -0.01  -0.11 -0.19  0.93    30.00  Large 29      0.0    3.44    0.40    1.94    0.39  0.03  0.55  3.32    30.00    9.04 30      0.0    0.69    1.10      0.00  -0.01  0.01 -0.01  1.10    67.00  Large 31    105.0    -1.43    -1.07    -0.59    0.01  0.02  1.59    3.29    67.50  Large 32    101.2    4.03    1.23    -8.96  -0.01  0.02 -1.23  13.22    67.50    5.11 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.1-13
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.1-8      Combined 1g, Thermal and Internal Pressure, Heat (100&deg;F), Pm, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                      FS (deg)    Sx      Sy      Sz    Sxy    Syz  Sxz  Int. Allow.
1      0.0    -4.34  -6.88    -0.35    0.05  -0.01  0.01  6.53  19.64  3.01 2      0.0    -1.68  -2.97    -0.20    0.02  -0.02  0.04  2.78  19.74    7.1 3      75.0    -3.41    2.55    0.18  -0.14  -0.05  0.11  5.96  20.00  3.36 4      75.0    -0.95    3.09    0.03  -0.06  0.00  0.20  4.08  20.00    4.9 5      78.8    -3.06    3.01    1.93    0.05  -0.02  0.98  6.26  20.00  3.19 6      75.0    -4.67    1.30    -1.01  -0.12  -0.12 -0.08  5.98  20.00  3.34 7    176.2    0.00    1.19    -2.05    0.00  -0.01  0.42  3.33  20.00  6.01 8      0.0    -0.09    1.75    -2.26  -0.06  -0.04  0.15  4.02  20.00  4.98 9      0.0    -0.10    2.94    -1.98  -0.10  -0.04  0.01  4.93  20.00  4.06 10    180.0    -0.10    2.65    -2.11    0.09  0.00  0.01  4.77  19.83  4.16 11    176.2    -0.10    2.79    -2.03    0.00  0.01  0.00  4.82  19.73  4.09 12    135.0    -0.10    2.67    -1.89    0.02  0.07 -0.01  4.56  19.84  4.35 13      0.0    -0.14    3.14    -1.76  -0.10  0.01  0.09  4.91  20.00  4.07 14    105.0    -0.07    2.30    -1.57    0.06  0.13 -0.06  3.88  20.00  5.15 15      0.0    -0.12  -4.90    -1.78    0.16  -0.05 -0.91  5.19  20.00  3.85 16      82.5    -0.95    4.90    -1.98    0.04  0.27  0.37  7.02  20.00  2.85 17      90.0    -1.27    5.46    6.45    0.02  -0.16  0.10  7.75  20.00  2.58 18      0.0    0.21    4.93    8.04    -0.16  0.01 -0.09  7.84  20.00  2.55 19      0.0    -0.17    5.92    8.05  -0.20  0.01  0.14  8.24  31.88  3.87 20      0.0    -0.19    6.32    8.06  -0.21  0.00  0.02  8.26  31.89  3.86 21      33.8    -0.17    6.56    8.10  -0.01  -0.01  0.01  8.28  31.84  3.85 22      52.5    -0.17    6.62    8.17  -0.01  0.00  0.00  8.34  31.81  3.81 23      75.0    -0.15    6.55    8.25    0.00  0.10  0.00  8.41  31.84  3.79 24      78.8    -0.15    6.51    8.36    0.00  0.15  0.02  8.53  31.89  3.74 25      78.8    -0.21    5.00    8.43    0.00  0.21 -0.06  8.65  31.89  3.69 26      78.8    -0.13  -0.95    8.84  -0.02  0.44 -0.54  9.86  20.00  2.03 27      78.8    0.70    -1.94    7.18  -0.20  0.47 -0.64  9.24  20.00  2.16 28      82.5    -0.21    2.41    0.60    0.15  0.14 -0.78  3.12  20.00  6.41 29      3.8    -3.33  4.27      0.31    0.01  -0.04 -0.89  7.81  20.00  2.56 30      63.8    -1.40  -1.93    -0.12    0.01  -0.01 -0.04  1.81  44.66  Large 31      78.8    -0.19    2.79    -0.58    0.00  0.02 -1.13  4.32  45.00  Large 32      78.8    -1.13    1.55    -4.19    0.00  0.01 -0.30  5.77  45.00    7.8 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.1-14
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.1-9      Combined 1g, Thermal and Internal Pressure, Heat (100&deg;F), Pm + Pb, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                        FS (deg)      Sx      Sy      Sz    Sxy    Syz  Sxz    Int. Allow.
1      0.0    -5.65  -9.02    0.21    0.07  -0.01  0.01  9.23  29.46  3.19 2      0.0    -3.62  -6.23    0.23    0.05  -0.01  0.06  6.47  29.61  4.58 3      75.0    -5.66    1.38    0.80  -0.19  -0.12 -0.02  7.07  30.00  4.24 4      75.0    -2.80    2.09    -0.16  -0.03  0.01  0.24  4.91  30.00  6.11 5      75.0    -1.83    4.44    6.97    0.00  -0.01  0.34  8.82  30.00    3.4 6      0.0    -3.26    1.80    3.19  -0.17  -0.02 -0.51  6.54  30.00  4.59 7      0.0    0.04    -0.37    -8.17    0.02  0.01  0.38  8.24  30.00  3.64 8      0.0    -0.12  -0.51    -4.50    0.02  -0.07  0.15  4.39  30.00  6.83 9      0.0    -0.03    6.47    1.60  -0.21  -0.01  0.01  6.51  30.00  4.61 10      3.8    -0.12    8.51    3.29  -0.02  0.01  0.02  8.63  29.75  3.45 11      11.2    -0.05    9.06    3.64    0.00  0.05  0.00  9.11  29.60  3.25 12      15.0    -0.05    8.73    3.00    0.00  0.12 -0.01  8.78  29.76  3.39 13      11.2    -0.03    8.56    2.73    0.00  0.15  0.06  8.60  30.00  3.49 14      0.0    -0.18  -3.84    -8.22    0.12  0.01  0.02  8.04  30.00  3.73 15      0.0    0.06    -7.00    0.63    0.22  -0.02 -1.00  8.39  30.00  3.58 16      0.0    -0.58  -6.83    7.88    0.22  0.01  0.50  14.75  30.00  2.03 17      0.0    -1.80    4.75    6.48  -0.20  0.05  1.32  8.70  30.00  3.45 18      0.0    0.12  5.85    12.41    -0.19  0.00 -0.03  12.30  30.00  2.44 19      0.0    -0.32    5.65    8.81  -0.20  0.00  0.14  9.15  47.83  5.23 20      0.0    -0.03    7.43    9.17  -0.24  0.01  0.02  9.21  47.84  5.19 21      22.5    -0.01    7.98    9.44    0.00  0.10  0.01  9.46  47.76  5.05 22      0.0    -0.03    8.96    9.79  -0.30  0.02  0.01  9.83  47.71  4.85 23      0.0    -0.03    9.69    9.93  -0.33  0.01  0.01  9.97  47.77  4.79 24      78.8    0.00    6.17  10.02    0.00  0.25  0.02  10.04  47.84  4.76 25      78.8    0.01    4.37  10.43    0.00  0.38  -0.05  10.44  47.84  4.58 26      82.5    -0.20    2.75  14.91    -0.01  0.17  -0.39  15.13  30.00  1.98 27      75.0    1.43    1.63  11.19    -0.67  0.67  -2.24  11.09  30.00  2.71 28      82.5    0.22  12.11    -2.09    0.17  0.71  -0.73  14.48  30.00  2.07 29      78.8    -0.48  -7.38    8.26    0.07  0.41 -0.20  15.66  30.00  1.92 30      86.2    -5.88  -8.41    -0.15    0.02  0.00 -0.03  8.26  67.00  8.11 31    112.5    2.69    5.20    0.01    0.12  -0.05 -0.44  5.26  67.50  Large 32    176.2    6.44    5.08    -7.15    0.01  -0.01 -2.36  14.38  67.50  4.69 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.1-15
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.2            Cold The MAGNATRAN transport cask body and closure lid are analyzed for structural adequacy in accordance with the requirements of 10 CFR 71.71(c)(2), Cold (normal condition of transport).
The cask is loaded and ready for shipment in the horizontal position, with an ambient temperature environment of -40&deg;F, an analyzed internal pressure of 135 psig, no decay heat load, no solar insolation, and in still air and shade. Note that although the Cold condition is associated with the minimum internal pressure, an internal pressure of 135 psig, which corresponds to the maximum internal pressure, is conservatively used.
2.6.2.1          Summary of Pressures and Temperatures The minimum normal condition temperatures are summarized in Table 3.4-2 for the various PWR and BWR cask components. Maximum internal pressures generated in the canister and cask are listed in Table 2.6.1-1 and Table 2.6.1-2. Closure bolts are qualified for a maximum pressure of 135 psig (Section 2.6.7.6). The MNOP is 23 psig (Section 3.4.4).
2.6.2.2          Differential Thermal Expansion Evaluation The discussion presented in Section 2.6.1.2 bounds the worst differential thermal expansion conditions since the evaluation results in higher temperatures. According to Section 2.6.2, thermal expansion of the MAGNATRAN transport cask is less than the minimum clearance between components.
2.6.2.3          Stress Calculations and Comparison to Allowable Stresses The stresses throughout the cask body are calculated for the individual and combined loading conditions. The loading conditions are: (1) 135 psig internal pressure (including bolt preload);
(2) cold (-40&deg;F) thermal loads; and (3) gravity. Stress results for the individual loading case of 135 psig internal pressure (including bolt preload) are documented in Table 2.6.2-1 and Table 2.6.2-2. Stress results for the thermal loading case are documented in Table 2.6.2-3. Stress results for the individual 1g gravity case are documented in Table 2.6.2-4 and Table 2.6.2-5. The conventions used for the stress summary tables are:
: 1. All stresses are in ksi.
: 2. Section stress locations are shown in Figure 2.12.2-31 and tabulated in Table 2.12.2-6.
: 3. The stress intensities (SI) presented in the tables represent the maximum SI occurring at any circumferential location or the specified section. The stress components correspond to the section having the largest SI.
: 4. Angles shown in the tables are in degrees and they identify the circumferential location where the maximum stress intensity occurs. These angles are measured from the x-axis rotating about the y-axis (Figure 2.12.2-30).
NAC International                              2.6.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1
: 5. Any stress component that is shown to be 0 ksi is defined as being less than 0.1 ksi.
: 6. The stress intensities shown in the tables are rounded to the nearest 0.01 ksi. The margins of safety are calculated prior to rounding the stress intensities.
: 7. Cold (-40&deg;F) refers to -40&deg;F ambient temperature, no solar insolation and no decay heat applied to the cask in still air.
: 8. Stresses are reported in a cylindrical system and X, Y, Z correspond to radial, circumferential and axial, respectively.
These tables document the primary membrane (Pm), primary membrane plus primary bending (Pm + Pb), primary plus secondary stresses (P + Q), and critical Pm, Pm + Pb, and P + Q stresses in accordance with the criteria presented in Regulatory Guide 7.6. As described in Section 2.12.2.6.5, procedures have been implemented to document the nodal and sectional stresses, as well as to determine the critical stress summary for all cask components.
For the individual loading condition of internal pressure (including lid bolt preload), the maximum calculated primary membrane stress intensity is 3.80 ksi, and the maximum calculated primary membrane plus bending stress intensity is 11.92 ksi. For the individual thermal loading condition (including lid bolt preload), the secondary membrane stress is 15.03 ksi. For the individual 1g gravity loading condition (including lid bolt preload), the maximum calculated primary membrane stress intensity is 4.49 ksi, and the maximum calculated primary membrane plus bending stress intensity is 13.39 ksi.
Note that closure bolt preload is included in all three loading conditions.
2.6.2.4        Comparison with Allowable Stresses To show that the MAGNATRAN transport cask meets the requirements for normal conditions of transport, the calculated stress intensities are compared to the allowable stress criteria presented in Regulatory Guide 7.6. The allowable stress comparisons are presented in Table 2.6.2-1 through Table 2.6.2-7.
For normal conditions, the primary membrane, primary membrane plus bending, and primary membrane plus bending plus secondary stresses; are compared to the following stress allowables:
Pm < Sm Pm + Pb < 1.5 Sm Pm + Pb + Q < 3 Sm NAC International                              2.6.2-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 The stress intensity results for the case of combined 1g gravity, thermal loading and internal pressure loading, for the cold ambient condition, are reported in Table 2.6.2-6 (Pm stresses) and Table 2.6.2-7 (Pm+Pb stresses). Because thermal loading is included in this analysis case, the values reported as Pm are actually Pm+Q stresses, and the values reported as Pm+Pb are actually P+Q stresses. Therefore, the factors of safety reported in the summary table below for Pm and Pm+Pb stresses are conservative. The minimum factors of safety for the Pm, Pm+Pb, and P+Q stresses in the cask for the cold condition are:
Stress State            Max. Stress (ksi)      Allowable Stress (ksi)    Factor of Safety Pm (+Q)                      6.01                      20                    3.33 Pm + Pb (+Q)                  9.67                      30                    3.10 P+Q                        9.67                      60                    6.20 Since the factors of safety are greater than 1.0, the MAGNATRAN transport cask satisfies the requirements of 10 CFR 71.71(c)(1) for the cold (normal transport) condition.
NAC International                              2.6.2-3
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.2-1        Internal Pressure Only, Cold (-40&deg;F), Pm, ksi Angle                Stress Components b              Stress Stress Sect.a                                                                          FS (deg)      Sx      Sy      Sz    Sxy    Syz    Sxz    Int. Allow.
1      0.0    -0.16    -0.21    -0.33  0.00  -0.02  -0.14  0.33  20.00  Large 2      0.0    0.15    0.19    -0.31  0.00  -0.01  0.11  0.53  20.00  Large 3      0.0    -0.18    0.17    0.99  -0.01  0.00  0.24  1.27  20.00  Large 4      0.0    0.20    0.21    0.03  0.00  0.00  0.03  0.18  20.00  Large 5      0.0    -0.39    0.09    0.30  -0.01  0.00  0.13  0.74  20.00  Large 6      0.0    1.58    0.11    0.62  0.04  0.00  0.11  1.49  20.00  Large 7    60.0    -0.11    -0.14    1.12  0.00  0.00  0.40  1.47  20.00  Large 8      0.0    -0.07    1.84    1.08  -0.06  0.00  0.03  1.91  20.00  Large 9      0.0    -0.06    2.89    1.08  -0.10  0.00  -0.03  2.96  20.00    6.76 10      0.0    -0.06    2.78    1.08  -0.09  0.00  0.00  2.85  20.00    7.02 11      0.0    -0.06    2.78    1.08  -0.09  0.00  0.00  2.85  20.00    7.02 12      0.0    -0.06    2.78    1.08  -0.09  0.00  0.00  2.85  20.00    7.02 13      0.0    -0.06    2.85    1.08  -0.10  0.00  0.01  2.92  20.00    6.85 14      0.0    -0.06    2.69    1.08  -0.09  0.00  0.02  2.76  20.00    7.25 15    67.5    -0.07    1.75    1.09  0.00  -0.01  -0.10  1.83  20.00  Large 16    71.2    -0.40    1.25    1.09  0.00  -0.01  -0.01  1.65  20.00  Large 17      0.0    0.43    -0.18    0.11  0.02  0.00  -0.09  0.64  20.00  Large 18      0.0    -0.01    -0.38    0.20  0.01  0.00  0.08  0.60  20.00  Large 19      0.0    0.00    -0.26    0.19  0.01  0.00  0.02  0.45  33.18  Large 20      0.0    0.00    -0.04    0.18  0.00  0.00  0.00  0.22  33.19  Large 21    26.2    0.00    0.00    0.18  0.00  0.00  0.00  0.19  33.18  Large 22    33.8    0.00    0.00    0.19  0.00  0.00  0.00  0.19  33.18  Large 23    37.5    0.00    0.00    0.19  0.00  0.00  0.00  0.19  33.18  Large 24    71.2    0.00    -0.01    0.19  0.00  0.00  -0.01  0.21  33.19  Large 25      0.0    0.00    0.19    0.19  -0.01  0.00  0.00  0.19  33.18  Large 26      0.0    0.01    0.70    0.18  -0.02  0.00  0.09  0.73  20.00  Large 27      0.0    -0.31    0.75    0.23  -0.03  0.00  0.01  1.06  20.00  Large 28    60.0    -0.14    0.69    0.24  -0.01  0.00  0.03  0.84  20.00  Large 29      3.8    -0.93    0.38    -0.23  0.00  0.00  -0.10  1.32  20.00  Large 30      0.0    0.01    0.01    -0.07  0.00  0.04  -0.03  0.14  45.00  Large 31      3.8    -0.07    0.81    -0.59  0.00  0.00  -1.09  2.26  45.00  Large 32      3.8    -1.06    -0.54    -4.33  0.00  0.00  -0.14  3.80  45.00  Large Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.2-4
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.2-2      Internal Pressure Only, Cold (-40&deg;F), Pm + Pb, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                          FS (deg)    Sx      Sy      Sz    Sxy    Syz  Sxz    Int. Allow.
1      0.0    0.85    0.73    -0.53  0.00  -0.02 -0.12    1.40  30.00    Large 2      0.0    1.19    1.84    -0.29  -0.02  0.00  0.13    2.13  30.00    Large 3      0.0  -2.52    -0.47    -0.54  -0.06  0.00  0.00    2.05  30.00    Large 4      48.8    0.61    0.31    0.07  0.00  0.00  0.07    0.56  30.00    Large 5      0.0  -0.02    0.48    1.25  -0.01  0.00  0.05    1.27  30.00    Large 6      0.0    0.70    -1.05    -2.40  0.05  0.00 -0.24    3.13  30.00    9.58 7      0.0  -0.16    0.92    4.61  -0.04  0.01  0.34    4.82  30.00    6.22 8      0.0  -0.02    2.11    2.11  -0.07  0.00  0.03    2.14  30.00    Large 9      0.0  -0.01    2.96    1.56  -0.10  0.00 -0.03    2.98  30.00    Large 10      0.0  -0.12    2.85    1.09  -0.10  0.00  0.00  2.97    30.00    Large 11      45.0  -0.12    2.86    1.09  0.00  0.00  0.00  2.98    30.00    Large 12      63.8  -0.12    2.87    1.10  0.00  0.00  0.00  2.99    30.00    Large 13      71.2  -0.12    2.91    0.99  0.00  0.00  0.01    3.04  30.00    9.87 14      0.0  -0.01    2.80    1.60  -0.09  0.00  0.02    2.82  30.00    Large 15      78.8  -0.10    1.88    1.25  0.00  0.00  -0.10    1.99  30.00    Large 16      0.0  -0.12    1.59    2.19  -0.06  0.00 -0.01    2.32  30.00    Large 17      0.0    0.91    0.22    0.99  0.02  0.00 -0.05  0.79    30.00    Large 18      0.0    0.00    -0.07    1.22  0.00  0.00  0.07  1.30    30.00    Large 19      0.0    0.00    -0.26    0.21  0.01  0.00  0.02  0.48    49.78    Large 20      0.0    0.00    0.00    0.32  0.00  0.00  0.00  0.32    49.78    Large 21      0.0    0.00    0.00    0.19    0.00  0.00  0.00  0.19    49.77    Large 22      0.0    0.00    -0.01    0.18  0.00  0.00  0.00  0.19    49.77    Large 23      56.2    0.00    0.00    0.19  0.00  0.00  0.00  0.20    49.77    Large 24      0.0    0.00    0.02    0.35  0.00  0.00 -0.01  0.35    49.78    Large 25      0.0    0.00    0.27    0.48  -0.01  0.00  0.00  0.48    49.78    Large 26      0.0  -0.01    0.54    -0.33  -0.02  0.00  0.08    0.89  30.00    Large 27      0.0    0.02    1.11    1.13  -0.04  0.00  -0.04  1.11    30.00    Large 28      75.0  -0.23    0.96    0.53  0.00  -0.01  0.13    1.21  30.00    Large 29      11.2  -2.37    -0.09    -1.12  -0.01  0.00 -0.32    2.36  30.00    Large 30      0.0    4.25    5.77    -0.01  -0.05  0.04 -0.03    5.78  67.50    Large 31      0.0    2.10    2.98    -0.11  0.06  -0.19 -0.31    3.16  67.50    Large 32      3.8    2.59    1.56    -8.70  0.00  0.00 -1.90  11.92  67.50    5.66 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.2-5
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.2-3      Thermal (Q) Stresses, Cold (-40&deg;F), ksi Angle                Stress Components b            Stress Sect.a (deg)      Sx      Sy      Sz  Sxy    Syz  Sxz    Int.
1      0.0    -4.60    -6.30    0.22  0.05  0.01  0.00  6.52 2      0.0    -2.49    -3.47    0.23  0.03  0.01  0.02  3.70 3      0.0    -5.06    0.55    -0.96 -0.17  0.01 -0.33  5.65 4      0.0      1.04    4.17      0.15 -0.10  0.00 -0.03  4.02 5      0.0    -0.28    5.81    7.03 -0.19  0.01  0.29  7.33 6      0.0    -3.94    0.33    -4.24 -0.12  0.02  0.97  5.40 7      0.0      0.12    0.73    -5.76 -0.02  0.00 -0.03  6.49 8      0.0      0.00    -2.64    -5.38  0.09  0.00  0.11  5.39 9      0.0    -0.03    -3.55    -7.19  0.11  0.00  0.02  7.16 10    0.0    -0.05    -4.69    -8.34  0.15  0.00  0.01  8.29 11    0.0    -0.05    -4.80    -8.57  0.16  0.00  0.00  8.53 12    0.0    -0.05    -4.60    -8.27  0.15  0.00 -0.01  8.23 13    0.0    -0.03    -3.45    -7.60  0.11  0.00  0.01  7.57 14    0.0    -0.03    -3.76    -7.47  0.12  0.00 -0.05  7.44 15    0.0    -0.01    -2.93    -6.42  0.10  -0.01 -0.42  6.47 16    0.0    -2.64    -4.64    -8.00  0.08  -0.02 -0.76  5.57 17    0.0      0.16    5.99    6.30  -0.19  -0.01 -0.40  6.20 18    0.0      0.05    3.51    4.78  -0.11  -0.01 -0.32  4.79 19    0.0    -0.03    2.12    6.09 -0.07  0.00  0.14  6.14 20    0.0    -0.02    2.64    4.95 -0.09  0.00  0.04  4.96 21    0.0    -0.01    3.24    5.59 -0.11  0.00  0.00  5.61 22    0.0    -0.01    3.52    5.79 -0.12  0.00  0.00  5.81 23    0.0    -0.01    3.20    5.56 -0.11  0.00  0.00  5.57 24    0.0    -0.01    2.98    5.53 -0.10  0.00  0.00  5.55 25    0.0      0.00    2.24    4.71  -0.07  0.00 -0.12  4.72 26    0.0    -0.09    0.67    5.72 -0.02  0.00  0.07  5.81 27    0.0    -0.02    1.97    4.21 -0.06  0.01  0.37  4.30 28    3.8    -0.11    1.97    2.24  0.00  0.00 -0.42  2.50 29    3.8    -2.57    0.65    -1.80  0.00  0.00 -0.65  3.59 30    0.0    -2.71    -3.70    -0.01  0.03  0.00  0.01  3.69 31    0.0    -3.09    0.06    -2.10 -0.31  -0.10  1.95  4.78 32    3.8      7.08    4.74    -7.45  0.00  0.00 -1.92  15.03 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                              2.6.2-6
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.2-4      1-g Gravity Load, Cold (-40&deg;F), Pm, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                          FS (deg)      Sx      Sy      Sz    Sxy    Syz  Sxz    Int. Allow.
1      0.0    -0.05    -0.06    0.00  0.00  0.00  0.00  0.06    20.00  Large 2    75.0    -0.01    -0.11    -0.01  0.02  0.00  0.00  0.12    20.00  Large 3      0.0    -0.08    -0.27    0.17  0.00  0.00 -0.04  0.45    20.00  Large 4    30.0    -0.12    -0.17    -0.01  0.02  0.02  0.00  0.18    20.00  Large 5    93.8    0.01    0.03    0.01  0.00  -0.16  0.01  0.33    20.00  Large 6    45.0    0.07    0.00      0.12  -0.02  -0.25  0.00  0.51    20.00  Large 7    41.2    0.00    -0.04    0.10  0.02  -0.43  0.00  0.88    20.00  Large 8    37.5    0.00    0.06      0.04  -0.01  -0.56  0.00  1.12    20.00  Large 9    37.5    0.00    0.14      0.06  -0.01  -0.52 -0.01  1.04    20.00  Large 10    52.5    0.01    0.09    -0.03  0.00  -0.29  0.00  0.59    20.00  Large 11      0.0    -0.02    0.22    0.86  -0.01  0.00  0.00  0.88    20.00  Large 12    45.0    0.01    0.12      0.08  -0.01  0.30  0.00  0.61    20.00  Large 13    37.5    0.00    0.13    0.07  -0.01  0.51  0.00  1.03    20.00  Large 14    37.5    0.00    0.18    0.05  -0.01  0.57  0.01  1.15    20.00  Large 15    41.2    -0.01    0.35    0.11  0.01  0.48  0.05  1.00    20.00  Large 16    60.0    0.27    0.62      0.21  0.07  0.37  0.02  0.86    20.00  Large 17      0.0    0.16    -0.25    0.22  0.01  0.00  0.06  0.50    20.00  Large 18      0.0    -0.01    -0.26    0.33  0.01  0.00  0.07  0.61    20.00  Large 19      0.0    0.00    -0.08    0.33  0.00  0.00  0.01  0.42    33.18  Large 20      0.0    0.00    0.06    0.36  0.00  -0.01  0.00  0.36    33.19  Large 21      0.0    0.00    0.06      0.46  0.00  0.00  0.00  0.46    33.18  Large 22      0.0    0.00    0.05    0.54  0.00  0.00  0.00  0.54    33.18  Large 23      0.0    0.00    0.06      0.52  0.00  0.00  0.00  0.52    33.18  Large 24      0.0    0.00    0.08      0.48  0.00  0.00  0.00  0.48    33.19  Large 25      0.0    0.00    0.11    0.47  0.00  0.00  0.00  0.47    33.18  Large 26    97.5    0.01    0.36    -0.15  0.00  0.13  0.06  0.59    20.00  Large 27    101.2    -0.17    0.36    -0.07  -0.02  0.12  0.02  0.57    20.00  Large 28      3.8    -0.24    -0.55    0.04  0.00  0.00 -0.06  0.60    20.00  Large 29      0.0    1.28    -0.47    0.18  0.20  0.02  0.19  1.82    20.00  Large 30      0.0    0.06    0.11    0.00  0.00  0.01 -0.01  0.11    45.00  Large 31    180.0    0.30    0.16    -0.40  0.06  0.15  0.62  1.46    45.00  Large 32    101.2    -1.11  -1.00    -5.34  0.00  0.01  0.74  4.49    45.00  Large Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.2-7
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.2-5        1-g Gravity Load, Cold (-40&deg;F), Pm + Pb, ksi Angle                Stress Components b              Stress Stress Sect.a                                                                          FS (deg)      Sx      Sy      Sz    Sxy    Syz    Sxz    Int. Allow.
1      0.0    0.01    -0.11    0.00  0.00  0.00  0.00    0.12  30.00  Large 2    101.2    0.04    -0.18    -0.01  -0.05  0.00  0.00    0.24  30.00  Large 3      0.0    -0.20    -0.34    0.51  0.00  -0.01  -0.04    0.86  30.00  Large 4      0.0    -0.14    -0.26    -0.01  0.00  0.00  -0.03    0.26  30.00  Large 5    97.5    0.01    0.04      0.02  0.00  -0.18  0.01  0.36    30.00  Large 6      0.0    0.00    -0.18    0.87  0.00  -0.02  -0.11    1.07  30.00  Large 7      0.0    0.01    -1.08    -2.17  0.04  -0.01  0.14    2.21  30.00  Large 8    33.8    0.00    0.06    -0.13  -0.01  -0.86  0.00    1.72  30.00  Large 9    33.8    0.00    0.28      0.03  -0.02  -0.74  -0.01    1.51  30.00  Large 10      0.0    -0.01    1.43    1.02  -0.05  0.00  0.01    1.45  30.00  Large 11      0.0    -0.02    1.80    1.45  -0.06  0.00  0.00    1.82  30.00  Large 12      0.0    -0.01    1.41    0.95  -0.05  0.01  -0.01    1.42  30.00  Large 13    33.8    0.00    0.32    0.12  -0.02  0.72  0.00    1.46  30.00  Large 14    33.8    0.00    0.29    0.03  -0.01  0.84  0.01    1.70  30.00  Large 15    41.2    -0.02    0.28    -0.41  0.01  0.69  0.06    1.55  30.00  Large 16    60.0    0.02    0.26    -0.91  -0.02  0.41  -0.10  1.45    30.00  Large 17      0.0    0.22    -0.07    0.77  0.01  0.01  0.15    0.88  30.00  Large 18      0.0    -0.01    -0.11    0.86  0.00  0.00  0.06    0.97  30.00  Large 19    60.0    -0.03    0.16      0.01  -0.04  -0.28  -0.01    0.60  47.83  Large 20      0.0    0.00    0.15      0.49  -0.01  0.00  0.00    0.49  49.78  Large 21      0.0    0.00    0.19      0.53  -0.01  0.00  0.00    0.53  49.77  Large 22      0.0    0.00    0.25      0.64  -0.01  0.00  0.00    0.64  49.77  Large 23      0.0    0.00    0.20      0.60  -0.01  0.00  0.00    0.60  49.77  Large 24    67.5    -0.04    0.40    0.13  0.02  0.18  -0.01    0.53  49.78  Large 25    67.5    -0.03    0.48    0.12  0.02  0.23  0.01    0.62  49.78  Large 26    67.5    -0.02    0.23    -0.63  0.01  0.20  0.06    0.96  30.00  Large 27    90.0    -0.35    0.01    -0.76  -0.03  0.10  0.10  0.83    30.00  Large 28    18.8    -0.37  -0.48      0.37  0.00  -0.08  -0.22  0.93    30.00  Large 29      0.0    3.47    0.40    1.95  0.40  0.03  0.55    3.34  30.00    8.98 30      0.0    0.70    1.11      0.00  -0.01  0.01  -0.01    1.12  67.50  Large 31    112.5    -1.45  -1.09    -0.60  0.02  0.01  1.61  3.34    67.50  Large 32    101.2    4.09    1.25    -9.07  -0.01  0.02  -1.24  13.39  67.50    5.04 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.2-8
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.2-6      Combined 1g, Thermal and Internal Pressure, Cold (-40&deg;F), Pm, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                      FS (deg)    Sx      Sy      Sz    Sxy  Syz  Sxz  Int. Allow.
1      0.0    -4.16  -6.26    -0.31    0.05 -0.01  0.01  5.95  20.00  3.36 2      0.0    -1.63  -2.70    -0.17    0.02 -0.01  0.04  2.53  20.00  7.91 3      71.2    -2.77  2.25      0.17  -0.09 -0.07  0.16  5.03  20.00  3.98 4    180.0    0.44    3.62      0.07    0.10 -0.01  0.13  3.59  20.00  5.57 5    180.0    -1.47    3.91    1.71    0.16 -0.04  0.93  5.64  20.00  3.55 6      71.2    -3.23  1.16    -1.57  -0.07 -0.18  0.19  4.43  20.00  4.51 7    146.2    0.02    0.86    -2.83    0.00 -0.04  0.49  3.77  20.00  5.31 8      0.0    -0.09  1.47    -3.19  -0.05 -0.04  0.15  4.67  20.00  4.28 9      0.0    -0.10  2.96    -2.90  -0.10 -0.04  0.00  5.86  20.00  3.41 10    176.2    -0.10    2.64    -2.94    0.00  0.00  0.01  5.59  20.00  3.58 11      82.5    -0.09    2.83    -2.95    0.01 -0.01  0.00  5.78  20.00  3.46 12    131.2    -0.10    2.66    -2.90    0.01  0.01 -0.01  5.56  20.00  3.60 13      0.0    -0.11    3.21    -2.79  -0.11  0.04  0.04  6.01  20.00  3.33 14      0.0    -0.11  1.85    -3.05  -0.07  0.04 -0.03  4.90  20.00  4.08 15      0.0    -0.01  -3.17    -3.21    0.10 -0.01 -0.82  3.60  20.00  5.56 16      82.5    -1.23    0.99    -1.93    0.04  0.30 -0.06  2.99  20.00  6.69 17    101.2    -0.89  4.72      4.16  -0.06 -0.20 -0.16  5.68  20.00  3.52 18      0.0    0.08    3.54    4.89    -0.11  0.00 -0.28  4.84  20.00  4.13 19      0.0    -0.03    2.02    4.90  -0.07  0.01  0.16  4.94  33.18  6.72 20      0.0    -0.07    1.84    4.89  -0.06  0.00  0.04  4.96  33.19  6.69 21      0.0    -0.07    2.13    4.93  -0.07  0.00  0.00  4.99  33.18  6.65 22      0.0    -0.08    2.27    5.01  -0.08  0.00  0.00  5.09  33.18  6.52 23      0.0    -0.06    2.08    4.95  -0.07  0.00  0.00  5.01  33.18  6.62 24      0.0    -0.07  1.99      5.00  -0.07 -0.01 -0.02  5.07  33.19  6.55 25      0.0    -0.11  2.03      5.04  -0.07 -0.01 -0.11  5.16  33.18  6.43 26      0.0    -0.03    2.81    5.02  -0.09  0.02  0.27  5.08  20.00  3.94 27      0.0    -1.12    3.30    4.61  -0.15  0.01 -0.03  5.74  20.00  3.48 28      82.5    -0.16    1.58    0.38    0.07  0.16 -0.43  2.01  20.00  9.95 29    176.2    -1.48    3.28    -0.09    0.01  0.01 -0.35  4.84  20.00  4.13 30      78.8    -1.43  -1.98    -0.13    0.00  0.00 -0.03  1.86  45.00  Large 31      3.8    -0.41    2.63    -0.72    0.04  0.00 -1.10  4.30  45.00  Large 32      63.8    -1.27  1.53    -4.14    0.01 -0.03 -0.11  5.67  45.00  7.94 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.2-9
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.2-7      Combined 1g, Thermal and Internal Pressure, Cold (-40&deg;F), Pm + Pb, ksi Angle                Stress Components b            Stress Stress Sect.a                                                                        FS (deg)      Sx      Sy      Sz    Sxy    Syz  Sxz    Int. Allow.
1      0.0    -5.38  -8.19    0.20    0.07  -0.01  0.01  8.39  30.00  3.58 2      0.0    -3.50  -5.68    0.27    0.04  -0.01  0.06  5.95  30.00  5.04 3      71.2    -4.15    1.37    0.77  -0.14  -0.15  0.07  5.57  30.00  5.39 4    123.8    1.77    4.27    0.26    -0.14  -0.08  0.20  4.05  30.00  7.41 5      71.2    -1.07    4.58    6.25    0.00  -0.04  0.31  7.35  30.00  4.08 6      0.0    -4.50  -1.63    -7.79  -0.07  0.02  0.97  6.43  30.00  4.67 7      0.0    0.09    -0.89    -9.54    0.04  0.00  0.49  9.67  30.00  3.10 8      0.0    -0.13  -1.25    -6.18    0.04  -0.07  0.16  6.06  30.00  4.95 9      0.0    -0.03    6.96    1.33  -0.23  -0.02  0.00  7.01  30.00  4.28 10      0.0    -0.03    8.74    2.82  -0.29  0.00  0.02  8.80  30.00  3.41 11      11.2    -0.05    9.20    3.21  -0.01  0.02  0.00  9.25  30.00  3.24 12      0.0    -0.10    9.31    3.03  -0.31  0.02  0.00  9.43  30.00  3.18 13      0.0    -0.04    8.23    1.96  -0.27  0.02  0.04  8.28  30.00  3.62 14      0.0    -0.17  -2.75    -8.67    0.08  0.07 -0.03  8.50  30.00  3.53 15      0.0    -0.09  -2.44    -6.58    0.08  -0.04 -0.71  6.65  30.00  4.51 16      0.0    -0.31  -2.90    5.76    0.10  0.04  0.59  8.71  30.00  3.44 17      93.8    0.14    6.08    6.70    0.00  -0.14 -0.41  6.64  30.00  4.52 18      0.0    0.04    3.39    6.14    -0.11  -0.01 -0.25  6.12  30.00  4.90 19      0.0    -0.04    1.87    6.51  -0.06  0.00  0.17  6.57  49.78  7.58 20      0.0    -0.02    2.85    5.64  -0.09  0.00  0.04  5.66  49.78  8.79 21      0.0    -0.01    3.53    6.23  -0.12  0.00  0.00  6.25  49.77  7.96 22      0.0    -0.02    4.30    6.69  -0.15  0.01  0.00  6.71  49.77  7.42 23      7.5    -0.01    3.91    6.32    0.00  0.00  0.00  6.34  49.77  7.85 24      0.0    -0.02    3.73    6.05  -0.12  0.00 -0.02  6.08  49.78  8.19 25      0.0    -0.20    0.60    5.09  -0.03  -0.02 -0.11  5.30  49.78  9.39 26      82.5    -0.08    0.89    6.73    0.00  0.20 -0.02  6.82  30.00  4.40 27      0.0    0.03    5.99      7.91  -0.20  0.02  0.23  7.91  30.00  3.79 28      82.5    -0.05    5.10    -1.49    0.08  0.56 -0.35  6.76  30.00  4.44 29      78.8    0.17    -1.45    5.11  -0.02  0.05  0.03  6.56  30.00  4.57 30      82.5    -6.05  -8.34    -0.15    0.01  0.00 -0.02  8.20  67.50  8.23 31    112.5    2.79    5.09    0.02    0.04  -0.02 -0.47  5.15  67.50  Large 32    176.2    5.24    4.56    -7.92    0.00  0.00 -2.15  13.85  67.50  4.87 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                            2.6.2-10
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.3          Reduced External Pressure The drop in atmospheric pressure to 3.5 psia, as specified in 10 CFR 71.71(c)(3), effectively results in an additional internal pressure in the cask of 11.2 psig (14.7 -3.5 = 11.2).
From Table 2.6.1-2, the maximum cask cavity internal pressure is 112.4 psig, for the normal condition (with 3% rod failure and a failed canister). Therefore, in the event of a drop in atmospheric pressure to 3.5 psia, the maximum effective internal pressure of the cask will be 112.4 + 11.2 = 123.6 psig. However, stresses are conservatively calculated for a 135 psig internal pressure as presented in Section 2.6.1 and Section 2.6.2.
Compliance with 10 CFR 71.71(c)(3) is conservatively demonstrated by evaluation of the cask with the combined loadings of: 1) an internal pressure of 135 psig, 2) thermal stress, 3) an imposed acceleration of 1.0g, and 4) closure bolt preload. Stress results for the combined loading condition are documented in Table 2.6.1-8 and Table 2.6.1-9 for the Heat condition and in Table 2.6.2-6 and Table 2.6.2-7 for the Cold condition.
The maximum stress intensities in the cask due to the 135 psig pressure, thermal stress, 1.0-g gravity and closure bolt preload are from the Heat (100&deg;F) case and are calculated to be a primary membrane stress of 9.86 ksi with a factor of safety of 2.03, and a primary membrane plus bending stress of 15.66 ksi with a factor of safety of 1.92.
The primary membrane and primary membrane plus bending results presented above conservatively include secondary thermal stresses, even though the factors of safety are determined using allowable stresses for primary stresses only.
The maximum stress intensity for primary membrane plus bending stress plus secondary (thermal) stress (P +Q) is 15.66 ksi with a factor of safety of 3.83.
Therefore, the requirements of 10 CFR 71.71(c)(3) are met.
NAC International                              2.6.3-1
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 2.6.4          Increased External Pressure An increased external pressure of 20 psia (5.3 psig external pressure), as specified in 10 CFR 71.71(c)(4), has a negligible effect on the MAGNATRAN transport cask because of the thick outer shell and end closures of the cask. Additionally, this requirement is bounded by the results of the 200 meter immersion condition [10 CFR 71.61], which has an external pressure condition of 290 psi.
Applying an increased external pressure of 20 psia (5.3 psig external pressure) to the neutron shield assembly produces stresses in the (relatively) flat sidewalls of the enclosure. The enclosure sidewalls are evaluated by considering the application of a 5.3 psig uniform pressure applied to the largest flat plate component in the assembly. The larger of the enclosures, with a 12.69-inch face width, bounds the results of enclosure with smaller flat plate components. All four edges of the flat plate are welded to the adjacent components of the enclosure. The edge condition is taken to be fixed on all four edges. Bending stresses and maximum deflection in the plate are determined by formulas presented in Roark.
The maximum deflection (y) of a rectangular flat plate with all four edges fixed, under uniform pressure, is:
qb 4          0.0284x 5.3 x (12.44)4 Max y =                =                                    = 0.068 inch 27,000,000 x (0.125) 3 Et 3 where:
a = 176.7 inch...............................Longer dimension of flat plate, between fixed ends b = 12.44 inch .............................Shorter dimension of flat plate, between fixed ends (12.69 inches less 2 x 0.125 inches, the thickness of two sidewalls) a/b = 14.2 .....................................Aspect ratio t = 0.125 inch ..............................Thickness of flat plate (11-gauge stainless steel)
            = 0.0284 ....................................Deflection parameter, (for a/b > 2.0) q = 5.3 lb/in2.................................Increased external pressure E = 27,000,000 lb/in2 ..................Modulus of Elasticity, SA240, Type 304 at 300&deg;F The maximum (bending) stress in the flat plate is:
1 qb 2          - 0.5 x 5.3 x (12.44)2
            =                  =                                    = -26,246 lb/in2 t 2 (0.125)    2 where:
1 = 0.5 .........................................Stress parameter, (for a/b > 2.0)
NAC International                                            2.6.4-1
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 The allowable membrane plus bending stress, for a normal condition is 1.5 Sm. The minimum factor of safety, for the NS-4-FR enclosure sidewalls, is:
1 .5 S m  1.5 x 20,000 F.S. =            =                    = 1.14 26,246 where:
Sm = 20,000 lb/in2 .......................Design Stress Intensity for SA240, Type 304 Stainless Steel at -40&deg;F to 300&deg;F The effect of increased external pressure on the cask outer shell is bounded by results of the 200 meter immersion condition; and the factor of safety for the NS-4-FR enclosure walls is greater than 1.0. Therefore, the requirements of 10 CFR 71.71 (c)(4) are met.
NAC International                                    2.6.4-2
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                      Revision 1 2.6.5              Vibration The effect of vibrations, normally incident to transportation, is considered to be negligible for the MAGNATRAN transport cask. This conclusion is based on the following factors:
: 1.      The minimum natural frequency of the cask body is conservatively calculated as 199 Hertz (Roark, Table 36, Case 4a). The determination of this natural frequency is made considering only the stiffness of the cask outer shell and the total cask weight of 191,500 lb for the case of a free cylinder. The most significant periodic impulse load occurs as the two closest rail car wheels pass over a rail junction. A maximum speed for rail transportation of 100 miles/hour or 146.7 feet/second is conservatively assumed. The distance between wheel centers on a standard railcar bogie is 5 ft 10 inches (5.83 feet). The duration between pulses is 0.04 second, which corresponds to a frequency of 1/0.04 = 25 hertz. This is significantly below the fundamental frequency of the cask. Consequently, vibrational excitation is considered to be insignificant.
: 2.      The minimum natural frequency of the cask lid is determined considering the lid thickness of 7.75 inches and the radius of the cask lid out to the radius of the cask body cavity (which is the radius at which the lid is supported). For determination of natural frequency, the cask lid is considered to be a flat, uniform circular plate, simply supported at the cask cavity radius. The result is conservative compared with treating the lid as having a clamped edge (edge constrained by cask lid bolts). The natural frequency for the first mode, for the simply supported condition, is:
fij =
2 ij x
Eh3 (g )
                                            =
4.977 x
(28.5 x10 )x (7.75 )x (386.1 ) = 278 Hz 6          3 2a  2 12 (1  ) 2 x (36.1252 )
2 12 x (2.255 ) x (1 - 0.31 )
2 where:
2ij= 200= 4.977 ...........................First mode constant for i=0, j=0, a = (72.25)/2 = 36.125 inch.........Radius of circular plate (to inner diameter of cask inner shell) 6        2 E = 28.5 x 10 lb/in .....................Modulus of Elasticity, SA564, Type 630 (17-4PH)
Stainless Steel, 70&deg;F h= 7.75 inch .................................Thickness of circular plate (lid) g = 386.1 in/sec2..........................Acceleration of gravity
              = h = 2.255 lbm/in2 .................Mass per unit area of the plate
              = 0.291 lbm/in3 .........................Density of SA564, Type 630 (17-4PH) Stainless Steel
              = 0.31 .......................................Poissons ratio, SA564, Type 630 (17-4PH)
Stainless Steel NAC International                                            2.6.5-1
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 The frequency of the periodic impulse load (25 Hertz) is also significantly below the fundamental frequency of the cask lid, 278 Hertz. Therefore, vibrational excitation of the cask lid is considered to be insignificant.
: 3.      The calculated stresses due to vibrations normally incident to transportation are much smaller than the calculated stresses for the normal transport 1-ft drop event and are less than the allowable alternating stress intensity The following analysis documents the third factor mentioned above.
It is conservatively assumed that the normal conditions of transport vibration acceleration are equal to the equivalent acceleration, which will produce the normal vertical loading imposed on the tie-down devices by 10 CFR 71.45 (b)(1). This regulation specifies a load factor of 2.0 to be applied to the package weight. Therefore, it is assumed that the tie-down devices and the cask must resist an imposed 2.0 g vibration acceleration. From the 2g stress evaluation results presented in Table 2.6.5-1 and Table 2.6.5-2, the maximum stress intensity produced in the cask is 13,450 psi. However, this value for stress intensity is for a location that is influenced by bolt preload, which is not an alternating stress. The stress at this location due to bolt preload (only) is 13,270 psi. The maximum stress intensity for the 2g stress evaluation, excluding the location influenced by bolt preload, is 4,530 psi. Conservatively, the stress intensity of 13,450 psi at Section Location 32 is used as the alternating stress.
The maximum stress intensity range for normal transport vibration for the 2g loading is Smax =
13,450 psi and Smin = -13.450 psi. This maximum stress value occurs on the lid flange.
The allowable alternating stress intensity for austenitic stainless steel is determined as the 1011 cycle value from the ASME Boiler and Pressure Vessel Code, Section III, Appendices, Table I-9.2.2. This value is Sa = 23,700 psi for austenitic stainless steel. Therefore, the factor of safety for the critical component of the MAGNATRAN transport cask for normal transport vertical vibration is:
FS = (Sa/Salt) -1 = (23,700/13,450) = 1.76 where:
Sa = 23,700 psi --------Allowable alternating stress intensity for austenitic stainless steel for 1 x 1011 cycles Salt = 13,450 psi ----------- 1/2 of the total applied stress range for 2.0 g acceleration Therefore, stresses due to transportation vibration in the vertical direction are less than the allowable alternating stress intensity.
NAC International                                  2.6.5-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 At the top end of the cask, a shear ring section of the top forging constrains the forward longitudinal movement (-X direction) of the cask against the shipping frame, and the cask rests on a saddle that provides lateral and downward vertical restraint. A tie-down strap restrains upward movement. At the opposite end of the transport structure, the cask is supported by rotation trunnions that provide vertical and backward longitudinal restraint (+X direction).
Lateral restraint is provided by bearing between the cask and the frame.
The shear ring is the critical tie-down component. The critical loading on the shear ring is shear in the attachment area between the shear ring and the balance of the top forging. The maximum shear stress is 16,490 psi. This shear stress is produced by a 10.0g longitudinal load imposed on tie-down load components per 10 CFR 71.45 (b)(1).
The ratio of the normal transport vibration acceleration to the resultant acceleration for the longitudinal shock is used to ratio the stresses. The alternating shear stresses are Smax =
(2.0/10.0)(16,490) = 3,298 psi, and Smin = -(2.0/10.0)(16,490) = -3,298 psi. The factor of safety for the shear ring as a tie-down device for normal transport is:
FS = (Sa/Salt) = (23,700/3,298) = 7.2 The lateral accelerations specified by 10 CFR 71.45(b)(1) result in lateral loadings on the cask body. However, these are not the critical loadings compared to the vertical and longitudinal loadings evaluated above.
Therefore, the MAGNATRAN transport cask satisfies the requirements for normal vibration incident to transportation as required by 10 CFR 71.71(c)(5).
NAC International                              2.6.5-3
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.5-1      2g Only, Pm, ksi Angle                Stress Components b              Stress Stress Temp Sect.a                                                                            FS (deg)      Sx      Sy      Sz    Sxy  Syz    Sxz  Int. Allow.
H      1      0.0    -0.09  -0.13    -0.01    0.00  0.00    0.01  0.12  19.64  Large H      2      97.5    -0.02  -0.24    -0.01  -0.03  0.00  -0.01  0.24  19.74  Large H      3      0.0    -0.17  -0.54    0.33    0.00 -0.01  -0.08  0.89  20.00  Large C      4      26.2    -0.26  -0.34    -0.02    0.03  0.04    0.00  0.35  20.00  Large C      5      97.5    0.03    0.07    0.00    0.00 -0.31    0.00  0.63  20.00  Large C      6      48.8    0.20    0.12    0.31  -0.04 -0.51  -0.01  1.05  20.00  Large C      7      45.0    -0.01    0.05    0.31    0.03 -0.89  -0.04  1.80  20.00  Large C      8      37.5    0.00    0.11    0.07  -0.02 -1.13  -0.01  2.27  20.00  8.81 C      9      41.2    0.00    0.24    0.14  -0.02 -1.05  -0.01  2.11  20.00  9.48 C      10      48.8    0.01    0.22    0.04  -0.01 -0.59  -0.01  1.20  20.00  Large H      11      0.0    -0.04    0.44    1.74  -0.03  0.00  0.00  1.79  19.73  Large C      12      48.8    0.01    0.21    0.08  -0.01  0.63  0.01  1.26  20.00  Large C      13      41.2    0.00    0.23    0.17  -0.02  1.05    0.01  2.10  20.00  9.52 C      14      37.5    0.00    0.33    0.10  -0.02  1.16    0.02  2.34  20.00  8.55 C      15      45.0    -0.01    0.62    0.35    0.02  0.99    0.11  2.01  20.00  9.95 C      16      56.2    0.44    0.93    0.41    0.18  0.76  0.04  1.64  20.00  Large C      17      0.0    0.32  -0.48    0.45    0.03  0.01  0.11  1.00  20.00  Large C      18      0.0    -0.01  -0.51    0.68    0.02  0.01  0.13  1.22  20.00  Large H      19      0.0    0.00  -0.16    0.68    0.01 -0.01    0.02  0.84  31.88  Large H      20      0.0    0.00    0.11    0.72    0.00 -0.01    0.00  0.73  31.89  Large H      21      0.0    0.00    0.11    0.89    0.00 -0.01  0.00  0.90  31.84  Large H      22      0.0    0.00    0.10    1.04    0.00  0.00  0.00  1.05  31.81  Large H      23      0.0    0.00    0.10    1.02    0.00  0.00  0.00  1.02  31.84  Large H      24      0.0    0.00    0.15    0.96  -0.01  0.00  0.00  0.96  31.89  Large H      25      0.0    0.00    0.17    0.94  -0.01  0.00  0.00  0.94  31.89  Large C      26      97.5    0.01    0.53    -0.34    0.00  0.27  0.09  1.04  20.00  Large C      27      0.0    -0.04    0.01    0.88    0.00  0.00  -0.03  0.92  20.00  Large H      28      3.8    -0.39  -1.13    0.02    0.00  0.00  -0.17  1.21  20.00  Large H      29      0.0    1.45  -1.13    0.10    0.21  0.02    0.33  2.69  20.00  7.43 H      30      0.0    0.05    0.12    0.00    0.00  0.01  -0.01  0.12  44.66  Large C      31    180.0    0.30    0.17    -0.39    0.06  0.15  0.62  1.47  45.00  Large C      32    101.2    -1.11  -1.02    -5.37    0.00  0.02    0.74  4.51  45.00  9.98 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                              2.6.5-4
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.5-2        2g Only, Pm + Pb, ksi Angle                Stress Components b              Stress Stress Temp Sect.a                                                                            FS (deg)    Sx      Sy      Sz      Sxy    Syz  Sxz    Int. Allow.
H      1        0.0    0.03  -0.22    0.00    0.00  0.00  0.01  0.25  29.46  Large H      2      101.2    0.07  -0.35    -0.02    -0.09  0.00 -0.01  0.47  29.61  Large C      3        0.0  -0.43  -0.69    1.02    0.00  -0.02 -0.08  1.71  30.00  Large C      4        0.0  -0.26  -0.51    -0.02    0.01  0.00 -0.06  0.51  30.00  Large C      5        0.0  -0.45  -0.50    0.20    0.00  0.01 -0.02  0.70  30.00  Large C      6        0.0  -0.02  -0.37    1.74    0.00  -0.05 -0.22  2.14  30.00  Large C      7        0.0    0.02  -2.16    -4.36    0.08  -0.02  0.29  4.43  30.00    6.77 C      8      33.8  -0.01    0.13    -0.26    -0.02  -1.72  0.00  3.46  30.00    8.67 C      9      33.8  -0.01    0.56    0.05    -0.03  -1.49 -0.01  3.03  30.00    9.9 H      10        0.0  -0.02    2.83    2.03    -0.10  -0.01  0.01  2.86  29.75  Large H      11        0.0  -0.03    3.54    2.90    -0.13  0.00  0.00  3.58  29.60    8.27 H      12        0.0  -0.02    2.78    1.90    -0.10  0.01 -0.01  2.81  29.76  Large C      13      33.8  -0.01    0.65    0.20    -0.04  1.45  0.00  2.94  30.00  Large C      14      33.8  -0.01    0.53    -0.03    -0.03  1.69  0.01  3.42  30.00    8.77 C      15      37.5  -0.02    0.29    -0.60    0.02  1.43  0.06  2.99  30.00  Large C      16      56.2    0.03    0.35    -1.45    -0.03  0.86 -0.17  2.51  30.00  Large C      17        0.0    0.44  -0.14    1.52    0.02  0.01  0.31  1.74  30.00  Large C      18        0.0  -0.02  -0.21    1.70    0.01  0.00  0.13  1.92  30.00  Large H      19      63.8  -0.04    0.26    -0.07    -0.05  -0.52 -0.02  1.10  47.83  Large H      20        0.0    0.00    0.30    0.99    -0.01  0.00  0.00  0.99  47.84  Large H      21        0.0    0.00    0.38    1.04    -0.01  0.00  0.00  1.04  47.76  Large H      22        0.0    0.00    0.47    1.23    -0.02  0.00  0.00  1.23  47.71  Large H      23        0.0    0.00    0.39    1.18    -0.01  0.00  0.00  1.18  47.77  Large H      24        0.0    0.00    0.34    1.09    -0.01  0.00  0.00  1.09  47.84  Large H      25        0.0    0.00    0.34    1.14    -0.01  0.00  0.00  1.14  47.84  Large H      26      71.2  -0.02    0.27    -1.08    0.02  0.38  0.09  1.56  30.00  Large C      27      93.8  -0.54  -0.04    -1.27    -0.11  0.23  0.16  1.36  30.00  Large C      28      26.2  -0.56  -1.06    0.38    -0.01  -0.21 -0.28  1.58  30.00  Large H      29        0.0    4.14    0.05    2.64    0.40  0.01  0.83  4.53  30.00    6.62 C      30        0.0    0.61    1.15    0.00    -0.01  0.01 -0.01  1.16  67.50  Large C      31      112.5  -1.49  -1.10    -0.61    0.03  0.03  1.63  3.37  67.50  Large C      32      108.8    4.20    1.30    -9.00    -0.03  0.03  -1.26  13.45  67.50    5.02 Notes:
a.
Section locations are presented in Figure 2.12.2-31.
b.
Results include cask lid bolt preload.
NAC International                              2.6.5-5
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.6          Water Spray Water causes negligible corrosion of the stainless steel shell of the MAGNATRAN transport cask, and the cask contents are protected in the sealed cavity. A water spray as specified in 10 CFR 71.71(c)(6) has no adverse effect on the package. The cask surface temperature specified during the water spray is between 100&deg;F and -20&deg;F. Consequently, the induced thermal stress in the cask components is less than the thermal stresses that occur during the extreme temperature conditions for normal conditions of transport. Therefore, the requirements of 10 CFR 71.71(c)(6) are satisfied.
NAC International                            2.6.6-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.7          Free Drop The free drop scenario outlined by 10 CFR 71.71(c)(7) requires the MAGNATRAN transport cask to be structurally adequate for a 1-ft drop (normal conditions of transport) onto a flat, essentially unyielding horizontal surface in the orientation that inflicts the maximum damage to the cask. In the following sections, the cask body, impact limiters, closure lid and bolts, and neutron shield assemblies are evaluated for the end, side and corner drop orientations.
Evaluation of each drop orientation is accomplished by using finite element analysis techniques.
A complete description of the 3D model used to analyze the cask body is presented in Section 2.12.2.6, which also describes the loadings applied to the finite element model, the thermal conditions considered, and the locations of the sections on the cask body that are evaluated. The results of each drop orientation listed above are presented in this section. The impact limiters and the impact limiter attachments are evaluated in Section 2.6.7.5 for all loading conditions and orientations.
The analysis is performed using a 20g acceleration for the end and corner drops and a 15g acceleration for the side drops. Using 20g and 15g accelerations provides bounding analyses, as these acceleration values exceed the calculated g-loads for the end, corner and side drop events as documented in Table 2.6.7-36.
For normal conditions of transport, the one-foot drop is not a sufficient height to permit rotation of the cask to an oblique orientation following a drop. Therefore, oblique drop orientations are not considered a credible event and are not included in these analyses.
The analysis uses bounding structural conditions, enveloping maximum temperatures, maximum radial thermal gradients and contents weight for the PWR and BWR configurations. The bounding conditions impose larger impact loads on the cask components, greater thermal stresses and lower material strength, resulting in a more restrictive loading configuration than the PWR or BWR configurations would impose. The cask body is evaluated for hot and cold ambient thermal conditions, as well as with and without internal pressure. The critical factors of safety, considering all thermal and pressure conditions, are presented in the stress summary tables (Table 2.6.7-1 through Table 2.6.7-30) for the end, side and corner-drop conditions. The following labeling convention is used in the stress summary tables to identify the thermal and internal pressure cases:
: 1. Hot, 100&deg;F ambient, with internal pressure, 135 psig
: 2. Cold, -40&deg;F ambient, with internal pressure, 135 psig
: 3. Hot, 100&deg;F ambient, without internal pressure
: 4. Cold, -40&deg;F ambient, without internal pressure NAC International                              2.6.7-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.7.1          One-Foot End Drop In accordance with the requirements of 10 CFR 71.71, the MAGNATRAN transport cask is structurally evaluated for the normal condition of transport 1-foot end-drop. In this event, the cask (equipped with an impact limiter over each end) falls a distance of 1 foot onto a flat, unyielding, horizontal surface. The cask strikes the surface in a vertical position; consequently, an end impact on the bottom end or top end of the cask occurs. The analysis is performed using a 20g acceleration, which provides a bounding analysis as it exceeds the calculated g-loads for the end drop event as documented in Table 2.6.7-36.
Stress results for the 1-ft top and bottom end drop combined loading are documented in Table 2.6.7-1 through Table 2.6.7-12. These tables document the primary membrane (Pm), primary membrane plus primary bending (Pm + Pb), primary membrane plus primary bending plus secondary peak stress (P + Q), and critical (Pm, Pm + Pb, and P + Q) stresses in accordance with the criteria presented in Regulatory Guide 7.6.
As shown in Table 2.6.7-1 through Table 2.6.7-6, the factors of safety for the primary stress intensity category are greater than 1.0 for all of the 1-ft top end drop conditions. The most critically stressed component in the system is the lid flange for the top end drop. The minimum factor of safety for Pm stress intensity for the top end drop condition is found to be 4.29 for the top forging, as documented in Table 2.6.7-4. The minimum factor of safety for Pm + Pb stress intensity for the top end drop condition is found to be 3.99 for the lid flange, as documented in Table 2.6.7-5. The minimum factor of safety for the P + Q stresses (4.26) also occurs in the lid flange, as documented in Table 2.6.7-6.
As shown in Table 2.6.7-7 through Table 2.6.7-12, the factors of safety for the primary stress intensity category are all greater than 1.0 for all of the 1-ft bottom end drop conditions. The most critically stressed component in the system is the bottom outer forging for the bottom-end-drop. The minimum factor of safety for Pm stress intensity for the bottom end drop condition is found to be 5.04, as documented in Table 2.6.7-10. The minimum factor of safety for Pm + Pb stress intensity for the bottom-end-drop condition is found to be 4.45, as documented in Table 2.6.7-11. The minimum factor of safety for the P + Q stresses, 4.60, also occurs in the bottom outer forging as documented in Table 2.6.7-12.
Because the factors of safety are all greater than 1.0 for the 1-foot top and bottom end drops, the MAGNATRAN transport cask satisfies the requirements of 10 CFR 71.71(c)(7) for the 1-ft end drop (normal transport) condition.
NAC International                              2.6.7.1-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-1      1-foot Top End Drop, Pm, ksi Angle                  Stress Components                  Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy      Sz    Sxy    Syz    Sxz    Int. Allow.
2      1        0.0    0.15    0.20    -0.20    0.00    0.00  -0.08    0.42    20.00    Large 2      2        0.0    0.01    0.01    -0.18    0.00    0.00    0.05    0.21    20.00    Large 2      3        0.0    0.15    0.41    0.72  -0.01    0.00    0.15    0.64    20.00    Large 4      4        0.0    -0.16  -0.21    -0.17    0.00  -0.01  -0.18    0.37    20.00    Large 2      5        0.0    -0.79    0.14    0.05  -0.02    0.00  -0.03    0.93    20.00    Large 2      6        0.0    0.78  -0.05    -0.07    0.02    0.00    0.14    0.89    20.00    Large 3      7        7.5    0.12  -0.08    -1.01    0.00  -0.01    0.03    1.13    20.00    Large 1      8        0.0    -0.06    1.89    -0.01  -0.07    0.00    0.03    1.97    20.00    Large 1      9        0.0    -0.06    2.90    -0.06  -0.10    0.00  -0.03    3.00    20.00    6.67 1      10        0.0    -0.06    2.78    -0.22  -0.09    0.00    0.00    3.00    19.83    6.61 1      11        0.0    -0.06    2.78    -0.48  -0.09    0.00    0.00    3.26    19.73    6.05 1      12        0.0    -0.06    2.78    -0.76  -0.09    0.00    0.00    3.54    19.84    5.61 2      13        0.0    -0.06    2.84    -0.90  -0.10    0.00    0.01    3.75    20.00    5.33 2      14        0.0    -0.06    2.74    -0.95  -0.09    0.00    0.01    3.69    20.00    5.42 2      15        0.0    -0.08    1.95    -0.99  -0.07    0.00  -0.07    2.95    20.00    6.78 2      16        0.0    -0.33    1.47    -1.05  -0.06    0.00  -0.02    2.52    20.00    7.94 2      17        0.0    0.39  -0.09    -0.26    0.01    0.00  -0.07    0.67    20.00    Large 3      18      82.5    0.03    0.01    -0.43    0.01  -0.01    0.00    0.46    20.00    Large 3      19      86.2    0.04  -0.06    -0.52    0.00    0.00    0.02    0.56    31.88    Large 3      20      82.5    0.00  -0.02    -0.64    0.00    0.00    0.01    0.64    31.89    Large 3      21      78.8    0.00    0.00    -0.97    0.00    0.00    0.01    0.98    31.84    Large 3      22        0.0    0.00    0.00    -1.52    0.00    0.00    0.01    1.52    31.81    Large 3      23        0.0    0.00    0.00    -2.12    0.00    0.00  0.01    2.12    31.84    Large 3      24        0.0    0.00    0.01    -2.44    0.00    0.00    0.01    2.45    31.89    Large 3      25        0.0    0.00    0.10    -2.54    0.00    0.00    0.01    2.63    31.89    Large 1      26        0.0    0.00    0.84    -2.44  -0.03    0.00    0.14    3.29    20.00    6.08 1      27        0.0    -0.50    0.79    -2.34  -0.04    0.00    0.01    3.14    20.00    6.37 2      28        0.0    -0.20    0.68    -1.81  -0.03    0.03    0.07    2.50    20.00    8.00 4      29        0.0    1.18  -0.14    -3.45    0.19    0.02    0.00    4.66    20.00    4.29 2      30        3.8    -0.12  -0.25    -2.54    0.00    0.00    0.54    2.66    45.00    Large 4      31        0.0    0.31  -0.91    -3.61  -0.02  -0.14    0.88    4.30    45.00    Large 4      32        3.8    -1.00  -1.87    -8.71    0.00    0.00    1.48    8.26    45.00    5.45 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-2      1-foot Top End Drop, Pm + Pb, ksi Angle                  Stress Components                  Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy        Sz    Sxy    Syz    Sxz    Int. Allow.
3      1        0.0    0.96    1.34    -0.10  -0.01  0.01  -0.01    1.44    29.46    Large 3      2      63.8    -1.55  -2.16      0.19    0.00  0.00  -0.02    2.35    29.61    Large 1      3        0.0    1.21    0.66      1.92    0.01  0.00    0.30    1.38    30.00    Large 3      4      67.5    -0.66    0.16    -0.13    0.00  0.00  -0.42    1.06    30.00    Large 2      5        0.0    -0.15    0.92      2.03  -0.03  0.00  -0.02    2.19    30.00    Large 2      6        0.0    -0.02  -1.19    -3.02    0.04  0.00    0.04    3.00    30.00    Large 1      7        0.0    -0.13    0.89      3.40  -0.03  0.01    0.37    3.60    30.00    8.33 1      8      11.2    -0.11    1.60    -1.08    0.00  -0.02    0.03    2.69    30.00    Large 1      9      15.0    -0.12    2.84    -0.53    0.00  0.01  -0.03    3.37    30.00    8.90 1      10      22.5    -0.12    2.85    -0.21    0.00  0.00    0.00    3.07    29.75    9.69 1      11        0.0    -0.12    2.85    -0.47  -0.10  0.00    0.00    3.33    29.60    8.89 1      12        0.0    -0.12    2.85    -0.75  -0.10  0.00    0.00    3.61    29.76    8.24 2      13        0.0    -0.12    2.89    -0.97  -0.10  0.00    0.01    3.87    30.00    7.75 1      14        0.0    -0.12    2.68    -1.36  -0.09  0.00    0.01    4.04    30.00    7.43 2      15        0.0    -0.10    1.99    -1.04  -0.07  0.00  -0.07    3.04    30.00    9.87 2      16        0.0    -0.42    1.16    -1.77  -0.05  0.00  -0.07    2.93    30.00    Large 2      17        0.0    -0.02  -0.49    -1.19    0.01  0.00  -0.11    1.19    30.00    Large 2      18        0.0    -0.01  -0.59    -1.21    0.02  0.00    0.10    1.22    30.00    Large 3      19      90.0    0.00  -0.13    -0.70    0.00  0.00    0.02    0.70    47.83    Large 3      20      37.5    0.00  -0.02    -0.64    0.00  0.00    0.00    0.64    47.84    Large 3      21      48.8    0.00    0.00    -0.97    0.00  0.00    0.01  0.98    47.76    Large 3      22        0.0    0.00    0.00    -1.52    0.00  0.00    0.01    1.52    47.71    Large 3      23        0.0    0.00    0.00    -2.12    0.00  0.00    0.00    2.12    47.77    Large 3      24        0.0    0.00    0.00    -2.50    0.00  0.00    0.01  2.50    47.84    Large 1      25        0.0    0.00    0.17    -2.65  -0.01  0.00    0.02    2.81    47.84    Large 1      26        0.0    -0.01    0.57    -3.38  -0.02  0.00    0.12    3.95    30.00    7.59 1      27        0.0    -0.90    0.28    -3.73  -0.03  0.01    0.17    4.02    30.00    7.46 1      28        0.0    -0.10    0.47    -2.23  -0.03  0.01  -0.09    2.71    30.00    Large 4      29        0.0    3.07    0.56    -2.20    0.39  0.05  -0.07    5.33    30.00    5.63 2      30        0.0    2.53    4.63    -0.20  -0.07  -0.01    0.33    4.87    67.50    Large 4      31        3.8    1.82  -0.53    -3.85    0.00  0.00  -2.52    7.58    67.50    8.91 4      32        3.8    4.20    0.08    -12.71    0.00  0.00    0.05  16.92    67.50    3.99 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.1-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.6.7-3      1-foot Top End Drop, P+Q, ksi Angle                Stress Components                Stress Stress Casea Sect.b                                                                                  FS (deg)      Sx      Sy      Sz    Sxy Syz        Sxz    Int. Allow.
1      1        0.0    -4.82  -6.38    0.03  0.05    0.01  -0.07    6.41    58.91    9.19 1      2        0.0    -2.53  -3.61    -0.04  0.03    0.01  0.04    3.57    59.22  Large 3      3        0.0    -6.78    0.36    -1.29  -0.22    0.01  -0.57    7.21    60.00    8.32 1      4        0.0    1.35  4.98    0.15  -0.12  -0.01  -0.27    4.89    60.00  Large 1      5      82.5    -0.42    7.37    9.96  0.00    0.00  0.34  10.40    60.00    5.77 3      6        0.0    -5.58  0.89    -1.01  -0.19  -0.01  -0.96    6.68    60.00    8.98 2      7        0.0    0.09  -0.27    -8.71  0.01    0.01  0.38    8.83    60.00    6.80 4      8        0.0    0.00  -2.60    -6.30  0.09    0.00  0.11    6.31    60.00    9.51 4      9        0.0    -0.03  -3.50    -8.14  0.11    0.00  0.02    8.11    60.00    7.40 4      10      0.0    -0.05  -4.63    -9.44  0.15    0.00  0.01    9.40    60.00    6.38 4      11      0.0    -0.05  -4.74    -9.93  0.15    0.00  0.00    9.89    60.00    6.07 4      12      0.0    -0.04  -4.54    -9.91  0.15    0.00  -0.01    9.87    60.00    6.08 4      13      0.0    -0.03  -3.41    -9.33  0.11    0.00  0.01    9.30    60.00    6.45 4      14      0.0    -0.03  -3.58    -9.13  0.12    0.00  -0.05    9.11    60.00    6.59 4      15      0.0    -0.02  -2.44    -8.02  0.08  -0.01  -0.37    8.04    60.00    7.46 4      16      0.0    -2.23  -3.92    -9.42  0.07  -0.03  -0.78    7.36    60.00    8.15 1      17      0.0    -1.66    5.05    5.91  -0.20    0.04  1.16    7.92    60.00    7.58 1      18      0.0    0.12  6.01    11.67  -0.20    0.00  -0.05  11.55    60.00    5.19 1      19      86.2    -0.34    5.82    8.32  -0.01  -0.02  0.15    8.66    95.65  Large 1      20      48.8    -0.03    7.16    8.24  0.00    0.00  0.04    8.27    95.67  Large 1      21      0.0    -0.01    7.61    8.13  -0.25    0.00  0.02    8.15    95.53  Large 3      22      0.0    -0.02    7.66    7.44  -0.25    0.00  0.01    7.70    95.42  Large 1      23      0.0    -0.01    7.58    6.93  -0.25    0.00  0.01    7.61    95.53  Large 3      24      0.0    -0.02    7.55    6.66  -0.25    0.00  0.02    7.58    95.67  Large 1      25      0.0    -0.01    6.75    6.31  -0.22    0.00  -0.02    6.77    95.68  Large 3      26      75.0    -0.24    2.91    8.58  0.00    0.00  -0.04    8.82    60.00    6.80 3      27      78.8    -0.95    1.71    3.92  0.00    0.00  -1.49    5.72    60.00  Large 1      28      67.5    -0.46    0.75    -4.32  0.00    0.00  0.02    5.07    60.00  Large 1      29      71.2    -4.32    0.85    -5.90  0.00    0.00  -1.34    7.53    60.00    7.97 1      30      0.0    -2.76  -5.15    -5.07  0.08    0.00  0.77    2.78    133.99  Large 3      31      18.8    5.42  3.41    -2.97  0.00    0.00  -4.19  11.87    135.00  Large 3      32      41.2    11.80    5.09  -19.62  0.00    0.00  -1.99  31.67    135.00    4.26 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.1-4
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.7-4        Critical Pm Stress Summary foot Top End Drop, ksi Angle Component              Sec      (deg)    SI    Allow. FS Bottom Plate            4          0.0  0.37      20.00  Large Bottom Forging - Inner      7          7.5  1.13      20.00  Large Bottom Forging - Outer      5          0.0  0.93      20.00  Large Inner Shell            13        0.0  3.75      20.00    5.33 Outer Shell            25        0.0  2.63      31.89  Large Top Forging            29        0.0  4.66      20.00    4.29 Lid                32        3.8  8.26      45.00    5.45 Table 2.6.7-5        Critical Pm + Pb Stress Summary foot Top End Drop, ksi Angle Component              Sec      (deg)  SI      Allow. FS Bottom Plate              2        63.8 2.35      29.61  Large Bottom Forging - Inner        7        0.0 3.60      30.00    8.33 Bottom Forging - Outer        5        0.0 2.19      30.00  Large Inner Shell            14        0.0 4.04      30.00    7.43 Outer Shell            25        0.0 2.81      47.84  Large Top Forging            29        0.0 5.33      30.00    5.63 Lid                32        3.8 16.92    67.50    3.99 Table 2.6.7-6      Critical P+Q Stress Summary foot Top End Drop, ksi Angle Component              Sec      (deg)  SI      Allow. FS Bottom Plate              4        0.0  4.89    60.00  Large Bottom Forging - Inner        7        0.0  8.83    60.00    6.80 Bottom Forging - Outer        18        0.0 11.55    60.00    5.19 Inner Shell            11        0.0  9.89    60.00    6.07 Outer Shell            19        86.2  8.66    95.65  Large Top Forging            26        75.0  8.82    60.00    6.80 Lid                32        41.2 31.67    135.00  4.26 NAC International                            2.6.7.1-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-7      1-foot Bottom End Drop, Pm, ksi Angle                  Stress Components                  Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy      Sz    Sxy    Syz    Sxz    Int. Allow.
1        1      0.0    0.08    0.10    -0.82    0.00    0.01  -0.08    0.93    19.64    Large 1        2      0.0    0.07    -0.02    -2.92    0.00    0.00  -0.53    3.17    19.74      6.23 2        3      0.0      0.21    0.59    0.86  -0.01    0.03  0.50    1.20    20.00    Large 4        4      18.8    0.26    0.05    -1.24    0.00  0.00  -0.84    2.25    20.00      8.89 4        5      0.0    -2.31  -0.80    -3.74  -0.03    0.00  0.03    2.94    20.00      6.80 2        6      41.2    -0.68  -1.21    -0.67    0.01    0.00  0.40    0.95    20.00    Large 4        7      0.0    0.04    -1.70    -1.73    0.06    0.01  0.33    1.89    20.00    Large 1        8      0.0    -0.07    1.36    -0.72  -0.05    0.00  0.06    2.09    20.00      9.57 2        9      0.0    -0.06    2.90    -0.66  -0.10    0.00  -0.04    3.57    20.00      5.60 1      10      0.0    -0.06    2.78    -0.50  -0.09    0.00  0.00    3.28    19.83      6.05 1      11      0.0    -0.06    2.78    -0.24  -0.09    0.00  0.00    3.03    19.73      6.51 1      12      0.0    -0.06    2.78    0.04  -0.09    0.00  0.00    2.85    19.84      6.96 1      13      0.0    -0.06    2.86    0.20  -0.10    0.00  0.01    2.93    20.00      6.83 1      14      3.8    -0.10    2.75    0.23  -0.02    0.00  0.04    2.85    20.00      7.02 2      15      3.8    -0.08    1.81    0.27  -0.02    0.01  -0.11    1.92    20.00    Large 2      16      63.8    -0.34    1.34    0.36    0.00  0.00  -0.04    1.68    20.00    Large 4      17      45.0    0.93    -1.15    -3.03    0.01    0.04  -0.01    3.97    20.00      5.04 4      18      45.0    -0.02  -1.59    -2.71    0.00    0.05  0.31    2.77    20.00      7.22 3      19      22.5    0.01    -1.04    -2.65    0.01    0.04  0.04    2.66    31.88    Large 3      20    165.0    0.01    -0.22    -2.56    0.01  -0.01  -0.01    2.57    31.89    Large 3      21      0.0    0.00    0.00    -2.21    0.00  0.00  -0.01    2.21    31.84    Large 3      22      0.0    0.00    0.00    -1.65    0.00  0.00  -0.01    1.65    31.81    Large 3      23      0.0    0.00    0.00    -1.04    0.00  0.00  -0.01    1.04    31.84    Large 3      24      0.0    0.00    0.01    -0.72    0.00  0.00  -0.01    0.74    31.89    Large 3      25      0.0    0.00    0.19    -0.63  -0.01    0.00  0.00    0.82    31.89    Large 2      26      0.0    0.02    0.90    -0.29  -0.03    0.00  0.10    1.23    20.00    Large 2      27      0.0    -0.35    0.93    -0.15  -0.04    0.00  0.03    1.28    20.00    Large 2      28      0.0    -0.16    0.69    -0.05  -0.03    0.03  0.06    0.88    20.00    Large 4      29      0.0      1.14  -0.18    0.23    0.19    0.02  0.07    1.38    20.00    Large 3      30      0.0      0.10    0.13    0.04  0.00    -0.01  0.04    0.11    44.66    Large 4      31      0.0    0.30    -0.36    -0.74  -0.04  -0.14  0.94    2.17    45.00    Large 4      32      3.8    -1.16  -1.33    -6.02    0.00    0.00  0.79    5.11    45.00      8.81 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.1-6
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.6.7-8        1-foot Bottom End Drop, Pm + Pb, ksi Angle                Stress Components                Stress Stress Casea Sect.b                                                                                  FS (deg)      Sx      Sy      Sz    Sxy Syz      Sxz      Int. Allow.
1      1        0.0    0.92  1.52    -0.84  -0.02  0.01  -0.08    2.37    29.46    Large 1      2        0.0    1.54  3.07    -1.16  -0.04  0.00  -0.40    4.29    29.61    6.90 2      3      75.0    -1.38  -0.50    2.46    0.00  0.00  0.67    4.07    30.00    7.37 4      4        0.0    1.13  1.18    -0.58    0.00  -0.04  -1.29    3.10    30.00    9.68 4      5        0.0    -3.95  -3.04    -9.48    0.00  0.00  0.10    6.45    30.00    4.65 2      6        0.0    -1.24  -2.83    -5.47    0.06  0.01  0.52    4.35    30.00    6.90 2      7        0.0    0.02  -2.83    -6.45    0.09  0.02  0.56    6.57    30.00    4.57 1      8        0.0    -0.11    1.01    -1.96  -0.04  0.00  0.06    2.97    30.00    Large 2      9        0.0    -0.12    2.76    -1.37  -0.09  0.00  -0.04    4.13    30.00    7.26 1      10      0.0    -0.12    2.85    -0.49  -0.10  0.00  0.00    3.35    29.75    8.88 1      11      0.0    -0.12    2.85    -0.24  -0.10  0.00  0.00    3.09    29.60    9.58 1      12      30.0    -0.12    2.86    0.05    0.00  -0.01  0.00    2.98    29.76    9.99 1      13      22.5    -0.12    2.93    0.10    0.00  -0.01  0.01    3.05    30.00    9.84 1      14      3.8    -0.10    3.00    0.90  -0.01  0.01  0.04    3.10    30.00    9.68 2      15      7.5    -0.10    1.89    0.35  -0.01  0.05  -0.11    2.02    30.00    Large 2      16      52.5    -0.13    1.70    1.17    0.00  0.00  0.01    1.84    30.00    Large 4      17      48.8    -0.06  -2.55    -6.77    0.00  0.04  -0.34    6.74    30.00    4.45 4      18      52.5    -0.03  -2.64    -6.26    0.00  0.04  0.33    6.27    30.00    4.78 3      19      18.8    0.02  -1.25    -2.86    0.00  0.03  0.01    2.88    47.83    Large 3      20      48.8    0.00  -0.38    -3.06    0.00  0.02  -0.02    3.07    47.84    Large 3      21      0.0    0.00  -0.02    -2.23    0.00  0.00  -0.01    2.23    47.76    Large 3      22      0.0    0.00    0.01    -1.64    0.00  0.00  0.00    1.66    47.71    Large 3      23      0.0    0.00    0.00    -1.05    0.00  0.00  0.00    1.05    47.77    Large 3      24      0.0    0.00  -0.03    -0.86    0.00  0.00  -0.02    0.86    47.84    Large 3      25      75.0    0.00  0.15    -0.76    0.00  0.00  0.00    0.91    47.84    Large 2      26      7.5    0.00    0.66    -1.11    0.00  0.00  0.09    1.78    30.00    Large 2      27      0.0    -0.70    0.49    -1.29  -0.04  0.00  0.14    1.81    30.00    Large 4      28      0.0    -0.16  -0.23    -1.24    0.01  0.04  0.25    1.20    30.00    Large 4      29      0.0    2.95    0.42    1.22    0.40  0.06  0.29    2.70    30.00    Large 2      30      90.0    1.75    2.34    -0.06    0.00  0.00  0.00    2.41    67.50    Large 4      31      0.0    -1.72  -1.27    -1.48  -0.22  -0.09  2.52    5.08    67.50    Large 4      32      3.8    5.26  1.32    -8.91    0.00  0.00  -1.12    14.34  67.50    4.71 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                                2.6.7.1-7
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.6.7-9        1-foot Bottom End Drop, P+Q, ksi Angle                  Stress Components                Stress Stress Casea Sect.b                                                                                  FS (deg)      Sx      Sy        Sz    Sxy  Syz    Sxz    Int. Allow.
3      1      0.0    -4.46  -6.17    -1.09    0.05  0.02  -0.07    5.08    58.91  Large 1      2      0.0    -2.56  -4.64    -5.21    0.06 -0.01  -0.69    2.99    59.22  Large 1      3      75.0    -7.53  -0.03      1.52    0.00  0.00    0.24    9.07    60.00    6.62 3      4      0.0    2.47    5.73      -0.38  -0.11 -0.04  -1.26    6.60    60.00    9.09 3      5      0.0    -7.04  -0.86    -13.46  -0.14  0.05    1.70  13.02    60.00    4.61 1      6      75.0    -5.09    1.42      3.53    0.00  0.00  -0.45    8.67    60.00    6.92 2      7      0.0    0.14  -2.18    -12.40    0.08  0.02  0.56    12.59  60.00    4.77 4      8      48.8      0.01  -3.70    -7.55    0.00  0.00    0.17    7.57    60.00    7.93 4      9      0.0    -0.03  -3.67    -9.34    0.12  0.00    0.00    9.31    60.00    6.44 4      10      0.0    -0.05  -4.71    -9.90    0.15  0.00    0.01    9.86    60.00    6.09 4      11      0.0    -0.05  -4.82    -9.89    0.16  0.00    0.00    9.85    60.00    6.09 4      12      0.0    -0.05  -4.61    -9.31    0.15  0.00  -0.01    9.26    60.00    6.48 4      13      0.0    -0.03  -3.46    -8.44    0.11  0.00    0.01    8.41    60.00    7.13 4      14      0.0    -0.03  -3.66    -8.18    0.12  0.00  -0.05    8.16    60.00    7.35 4      15      0.0    -0.01  -2.48    -6.90    0.08 -0.01  -0.39    6.93    60.00    8.66 4      16      0.0    -2.31  -3.90    -8.14    0.06 -0.02  -0.76    6.03    60.00    9.95 1      17      48.8    -0.60    5.00      5.94    0.03  0.05    1.49    7.19    60.00    8.34 1      18      56.2      0.12    5.51    11.82    0.00  0.05  0.15    11.71  60.00    5.12 1      19      22.5    -0.38    5.23      6.36  -0.01  0.03    0.13    6.74    95.65  Large 3      20    135.0    -0.03    7.26      6.56    0.00 -0.01  -0.01    7.29    95.67  Large 3      21      45.0    -0.01    7.62      6.70    0.00  0.00  -0.01    7.63    95.53  Large 3      22      63.8    -0.02    7.67      7.32    0.00  0.00  -0.01    7.69    95.42  Large 1      23      0.0    -0.01    7.58      8.05  -0.25  0.00  -0.01    8.06    95.53  Large 1      24      0.0    -0.02    7.48      8.45  -0.25  0.00  -0.02    8.48    95.67  Large 1      25      0.0    -0.01    6.77      8.25  -0.22  0.00  -0.05    8.26    95.68  Large 1      26      60.0    -0.22  3.49      10.58    0.00  0.00  0.00    10.81  60.00    5.55 1      27      63.8    -1.30    2.26      5.83    0.00  0.00  -1.47    7.72    60.00    7.77 3      28      0.0    -0.33  -0.39    -4.17    0.02  0.08    0.04    3.85    60.00  Large 1      29      3.8    -4.72    0.91    -2.99    0.00  0.00  -1.05    6.12    60.00    9.80 2      30      0.0    -4.41  -5.96      0.00    0.05  0.02    0.02    5.97  135.00  Large 3      31      0.0    -5.00  -1.32    -3.81  -0.52 -0.19    4.48    9.21  135.00  Large 4      32      3.8    12.35    6.07    -16.35    0.00  0.00  -3.04  29.33  135.00    4.60 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                                2.6.7.1-8
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.6.7-10      Critical Pm Stress Summary foot Bottom End Drop, ksi Angle Component            Sec      (deg)    SI    Allow. FS Bottom Plate            2        0.0  3.17      19.74  6.23 Bottom Forging - Inner      7        0.0  1.89      20.00  Large Bottom Forging - Outer      17      45.0  3.97      20.00  5.04 Inner Shell            9        0.0  3.57      20.00  5.60 Outer Shell          19      22.5  2.66      31.88  Large Top Forging            16      63.8  1.68      20.00  Large Lid              32        3.8  5.11      45.00  8.81 Table 2.6.7-11      Critical Pm + Pb Stress Summary foot Bottom End Drop, ksi Angle Component            Sec      (deg)    SI      Allow. FS Bottom Plate          2        0.0  4.29    29.61    6.90 Bottom Forging - Inner      7        0.0  6.57    30.00    4.57 Bottom Forging - Outer    17      48.8  6.74    30.00    4.45 Inner Shell          9        0.0  4.13    30.00    7.26 Outer Shell          20      48.8  3.07    47.84  Large Top Forging          29        0.0  2.70    30.00  Large Lid              32        3.8  14.34    67.50    4.71 Table 2.6.7-12      Critical P+Q Stress Summary foot Bottom End Drop, ksi Angle Component            Sec      (deg)    SI    Allow. FS Bottom Plate            4        0.0  6.60    60.00    9.09 Bottom Forging - Inner      7        0.0  12.59    60.00    4.77 Bottom Forging - Outer      5        0.0  13.02    60.00    4.61 Inner Shell          10        0.0  9.86    60.00    6.09 Outer Shell          24        0.0  8.48    95.67  Large Top Forging            26      60.0  10.81      60.00  5.55 Lid              32        3.8  29.33    135.00  4.60 NAC International                        2.6.7.1-9
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.7.2          One-Foot Side Drop In the 1-ft side drop event, the cask (equipped with an impact limiter over each end) falls a distance of 1 foot onto a flat, unyielding, horizontal surface. The cask strikes the surface in a horizontal orientation, thereby resulting in a side impact on the package. The types of loading involved in a side drop event are closure lid bolt preload, internal pressure load, thermal load, and inertial body load. The analysis is performed using a 15g acceleration load, which provides a bounding analysis, since it exceeds the calculated g-loads for the 1-ft side drop event as documented in Table 2.6.7-36.
The same conditions evaluated for the end drop are also used in the side drop evaluation. Stress results for the combined 1-ft side impact loading condition are documented in Table 2.6.7-13 through Table 2.6.7-18.
As shown in Table 2.6.7-16 and Table 2.6.7-17, the factors of safety for the primary stress intensity category are greater than 1.0 for the 1-ft side drop condition. The most critically stressed component in the system is the cask bottom inner forging. The minimum factor of safety for Pm stress intensity for the 1-ft side drop condition is found to be 1.39 for the top forging, as documented in Table 2.6.7-16. The minimum factor of safety for Pm + Pb stress intensity for the 1-ft side drop condition is found to be 1.21 for the bottom inner forging, as documented in Table 2.6.7-17. As seen from Table 2.6.7-18, the minimum factor of safety for primary plus secondary stress intensity for the 1-ft side-drop is 1.95, which occurs in the bottom inner forging.
Because the factors of safety are greater than 1.0, the MAGNATRAN transport cask satisfies the requirements of 10 CFR 71.71(c)(7) for the 1-ft side-drop (normal transport) condition.
NAC International                              2.6.7.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-13        1-foot Side Drop, Pm, ksi Angle                  Stress Components                Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy      Sz    Sxy    Syz    Sxz    Int. Allow.
3      1        0.0    -0.63    -1.07    -0.04    0.00  -0.02  0.07    1.03    19.64    Large 3      2      97.5    -0.05    -1.88    -0.12  -0.27  -0.01  -0.05    1.93    19.74    Large 2      3        0.0    -1.35    -3.92    3.47    0.00  -0.06  -0.15    7.40    20.00    2.70 4      4      26.2    -2.00    -2.72    -0.11    0.22    0.29  -0.04    2.74    20.00    7.30 4      5      101.2    -0.03    0.74    0.14  -0.08  -2.32  0.10    4.68    20.00    4.27 2      6      41.2    1.37    -1.33    0.99  -0.80  -3.11  0.13    6.87    20.00    2.91 2      7      41.2    -0.13    -1.01    1.68    0.18  -5.36  0.47  11.09    20.00    1.80 4      8      41.2    0.00    0.98      0.58  -0.10  -6.62  -0.09  13.26    20.00    1.51 2      9      41.2    -0.05    4.64    1.64  -0.14  -5.76  -0.10  11.91    20.00    1.68 1      10        0.0    -0.31    5.44    8.12  -0.18  -0.14  0.02    8.44    19.83    2.35 1      11        0.0    -0.32    4.85    10.47  -0.19  0.00  0.00    10.80    19.73    1.83 1      12        0.0    -0.30    5.64    7.76  -0.19    0.15  -0.03    8.08    19.84    2.46 2      13      41.2    -0.04    4.61    1.87  -0.15    5.77  0.04    11.87    20.00    1.68 2      14      37.5    -0.07    4.97    1.55  -0.17    6.68  0.12    13.80    20.00    1.45 4      15      45.0    -0.07    3.13    1.45    0.07    6.15  0.55    12.47    20.00    1.60 4      16      60.0    2.19    4.59    1.65    1.01    5.05  0.19    10.70    20.00    1.87 1      17        0.0    3.12    -4.30    0.96    0.21  -0.02  0.70    7.64    20.00    2.62 2      18        0.0    -0.11    -4.65    2.71    0.16  -0.04  1.17    7.78    20.00    2.57 3      19      63.8    -0.02    1.10    0.38  -0.07  -3.34  -0.10    6.73    31.88    4.74 1      20      56.2    -0.01    0.79    1.17  -0.03  -3.23  -0.05    6.47    31.89    4.93 1      21        0.0    -0.13    1.52    7.56  -0.10  -0.13  0.06    7.69    31.84    4.14 1      22        0.0    -0.15    1.61    9.87  -0.10  -0.02  0.00  10.02    31.81    3.17 1      23        0.0    -0.11    1.36    8.39  -0.09    0.10  -0.05    8.51    31.84    3.74 1      24        0.0    -0.04    1.05    6.13  -0.04    0.13  -0.05    6.17    31.89    5.17 3      25      71.2    0.00    1.32    -0.70    0.01    2.75  0.13    5.87    31.89    5.43 2      26      101.2    0.05    3.16    -2.04  -0.04    2.12  0.53    6.81    20.00    2.94 2      27      105.0    -1.58    2.92    -1.44  -0.47    1.99  0.16    6.06    20.00    3.30 3      28        3.8    -2.37    -9.02    -0.10  -0.01    0.04  -1.36    9.55    20.00    2.09 4      29        0.0    2.57  -11.19    -0.73    0.57  0.00  1.47    14.36    20.00    1.39 2      30        0.0    -0.22    0.12    -0.07    0.00    0.06  -0.10    0.42    45.00    Large 2      31        3.8    -1.80    0.50    -0.65    0.13  -0.09  -0.98    2.90    45.00    Large 4      32      26.2    -0.52    -1.15    -5.48    0.06  -0.24  0.77    5.20    45.00    8.65 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.2-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-14      1-foot Side Drop, Pm + Pb, ksi Angle                  Stress Components                Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy        Sz    Sxy  Syz    Sxz    Int. Allow.
1      1        0.0    -1.84    -3.10      0.03    0.00 -0.04  -0.20    3.15    29.46    9.35 1      2        0.0    -1.24    2.96    -0.12  -0.01 -0.03    0.25    4.25    29.61    6.97 2      3        0.0    1.98    -2.86      9.63    0.01 -0.16    0.35  12.50    30.00    2.40 3      4        0.0    -2.56    -4.43    -0.21    0.04  0.03  -0.47    4.31    30.00    6.96 1      5      97.5    -0.75    0.34    -0.55  -0.18 -2.48    0.40    5.11    30.00    5.87 2      6        0.0    4.39    -0.59    15.09    0.03 -0.29  -0.25  15.70    30.00    1.91 2      7        0.0    0.01  -13.15    -24.27    0.46 -0.12    2.29  24.73    30.00    1.21 4      8      33.8    -0.07    1.01    -1.53  -0.15 -9.90    0.00  19.97    30.00    1.50 2      9      37.5    -0.16    7.18      1.76  -0.20 -7.95  -0.09  16.81    30.00    1.78 1      10      52.5    -0.07  12.54      4.25  -0.05 -3.92  -0.02  14.17    29.75    2.10 1      11        0.0    -0.22  14.19      14.15  -0.49  0.00    0.00  14.44    29.60    2.05 1      12      52.5    -0.07  12.83      4.45  -0.04  4.17    0.02  14.62    29.76    2.04 2      13      41.2    -0.13    9.10      3.68  -0.17  7.68    0.04  16.30    30.00    1.84 2      14      33.8    -0.19    6.09      0.30  -0.20  9.45    0.10  19.78    30.00    1.52 4      15      37.5    -0.12    1.64    -3.39    0.05  8.86    0.28  18.43    30.00    1.63 4      16      52.5    0.13    1.74    -7.70  -0.12  5.96  -0.79  15.29    30.00    1.96 1      17        0.0    4.90    -0.89    11.04    0.13 -0.02    2.00  12.53    30.00    2.39 1      18        0.0    -0.18    -2.24    11.77    0.08 -0.14    1.10  14.12    30.00    2.12 1      19      48.8    -0.03    0.57      0.69  -0.02 -4.51  -0.03    9.03    47.83    5.30 1      20      45.0    -0.02    1.63      1.73  -0.04 -4.28  -0.05    8.56    47.84    5.59 1      21        0.0    -0.08    9.03    10.71  -0.34 -0.03    0.06  10.81    47.76    4.42 1      22        0.0    -0.19    -8.31      5.82    0.22 -0.02    0.00  14.14    47.71    3.37 1      23        0.0    -0.07    8.79    11.50  -0.33  0.00  -0.05  11.59    47.77    4.12 1      24        0.0    -0.02    4.22      7.31  -0.15 -0.02  -0.05    7.33    47.84    6.53 3      25      60.0    -0.04    2.46      0.19  -0.04  3.81    0.11    7.97    47.84    6.00 2      26      71.2    0.01    1.14    -5.54    0.01  3.26    0.42    9.36    30.00    3.21 2      27      97.5    -3.46    -0.40    -7.50  -0.93  1.84    0.86    8.38    30.00    3.58 3      28        3.8    0.31    -9.02      1.18  -0.02  0.35  -0.88  10.76    30.00    2.79 4      29        0.0    10.06    -6.32      9.73    0.77  0.06    3.58  19.86    30.00    1.51 1      30        0.0    2.98    6.58    -0.01  -0.04  0.06  -0.10    6.60    67.00    Large 2      31        3.8    -3.95    -2.13    -1.43    0.18 -0.07  -1.96    4.67    67.50    Large 4      32      108.8    5.90    1.90    -8.27  -0.22  0.24  -1.62  14.55    67.50    4.64 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                                2.6.7.2-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-15        1-foot Side Drop, P+Q, ksi Angle                  Stress Components                Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy        Sz      Sxy  Syz    Sxz    Int. Allow.
1      1        0.0    -6.73  -10.08      0.24    0.06 -0.04  -0.20  10.32    58.91    5.71 1      2      176.2    -4.12    -6.20    -0.04    0.03  0.00  0.08    6.16    59.22    9.61 1      3        0.0    -4.22    -2.50      8.76    -0.19 -0.14  -0.09  13.00    60.00    4.62 1      4      101.2    2.12    5.50      0.31    -1.59 -0.84  0.18    6.08    60.00    9.87 1      5      108.8    -0.30    7.86      9.55    -0.01 -2.16  0.43  11.35    60.00    5.29 1      6        7.5    -0.71    0.35    14.08    -0.80 -1.15  -0.97  15.50    60.00    3.87 2      7        0.0    0.13  -12.51    -30.21    0.44 -0.12  2.27  30.70    60.00    1.95 2      8      33.8    -0.18    -0.14    -6.91    -0.15 -9.73  0.14  20.61    60.00    2.91 2      9      37.5    -0.19    3.62    -5.47    -0.20 -7.96  -0.07  18.34    60.00    3.27 2      10      15.0    -0.17    17.67    11.36    0.00 -0.66  0.02  17.90    60.00    3.35 1      11        0.0    -0.24  19.08    15.86    -0.65 0.01  0.00    19.37    59.20    3.06 2      12      11.2    -0.21    18.28    11.49    0.03  0.65  -0.02  18.55    60.00    3.23 1      13        0.0    -0.10    18.48      8.07    -0.65  0.29  0.02  18.64    60.00    3.22 2      14      33.8    -0.21    2.05    -7.39    -0.21  9.44  0.05  21.11    60.00    2.84 4      15      37.5    0.00    -1.74    -4.40    0.05  8.78  -0.30  17.76    60.00    3.38 1      16        0.0    -0.95    -7.61    12.28    0.27  0.47  1.25  20.04    60.00    2.99 3      17        0.0    1.49    3.60    15.44    -0.10  0.03  3.29  15.43    60.00    3.89 1      18        0.0    -0.06    3.74    22.85    -0.12 -0.14  1.00  23.00    60.00    2.61 1      19      48.8    -0.35    6.56      9.18    -0.02 -4.50  0.08  12.90    95.65    7.42 1      20        0.0    -0.05    11.12    14.96    -0.37 -0.01  0.04  15.02    95.67    6.37 1      21        0.0    -0.10    16.75    19.53    -0.59 -0.02  0.07  19.65    95.53    4.86 1      22        0.0    -0.12    19.46    22.74    -0.68 -0.01  0.00  22.88    95.42    4.17 1      23        0.0    -0.09    16.95    20.28    -0.60  0.00  -0.05  20.39    95.53    4.69 1      24        0.0    -0.05    12.45    16.20    -0.42 -0.02  -0.06  16.26    95.67    5.88 3      25        0.0    -0.03    10.92    15.67    -0.36  0.00  -0.04  15.71    95.68    6.09 3      26        0.0    -0.37    1.45    13.64    -0.06  0.19  -0.09  14.02    60.00    4.28 1      27        0.0    -0.05    6.06    12.38    -0.19  0.04  0.72  12.52    60.00    4.79 3      28        0.0    -0.03  -13.42    -2.31    0.44  0.20  -1.10  13.87    60.00    4.33 4      29        0.0    11.66    -4.49      9.48    1.07  0.10  3.41  18.76    60.00    3.20 2      30        0.0    -6.15  -10.00    -0.14    0.08  0.06  -0.09    9.87  135.00    Large 4      31      112.5    -5.14    -1.31    -3.31    0.21  0.21  3.86    8.01  135.00    Large 4      32      108.8    12.58    6.44    -15.93    -0.15  0.23  -3.42  29.32  135.00    4.60 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                                2.6.7.2-4
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.7-16      Critical Pm Stress Summary foot Side Drop, ksi Angle Component              Sec                SI    Allow. FS (deg)
Bottom Plate            4      26.2    2.74    20.00    7.30 Bottom Forging - Inner        7      41.2  11.09    20.00    1.80 Bottom Forging - Outer      18        0.0    7.78    20.00    2.57 Inner Shell            14      37.5  13.80    20.00    1.45 Outer Shell            22        0.0  10.02    31.81    3.17 Top Forging            29        0.0  14.36    20.00    1.39 Lid                32      26.2    5.20    45.00    8.65 Table 2.6.7-17        Critical Pm + Pb Stress Summary foot Side Drop, ksi Angle Component              Sec                SI    Allow.      FS (deg)
Bottom Plate            4      0.0    4.31    30.00    6.96 Bottom Forging - Inner        7      0.0    24.73    30.00    1.21 Bottom Forging - Outer      18      0.0    14.12    30.00    2.12 Inner Shell            8      33.8    19.97    30.00    1.50 Outer Shell            22      0.0    14.14    47.71    3.37 Top Forging            29      0.0    19.86    30.00    1.51 Lid                32      108.8  14.55    67.50    4.64 Table 2.6.7-18      Critical P+Q Stress Summary foot Side Drop, ksi Angle Component              Sec                SI    Allow.      FS (deg)
Bottom Plate            2      176.2    6.16    59.22    9.61 Bottom Forging - Inner      7        0.0    30.70    60.00    1.95 Bottom Forging - Outer      18      0.0    23.00    60.00    2.61 Inner Shell            14      33.8    21.11    60.00    2.84 Outer Shell            22      0.0    22.88    95.42    4.17 Top Forging            16      0.0    20.04    60.00    2.99 Lid                32      108.8  29.32  135.00    4.60 NAC International                          2.6.7.2-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.7.3        One-Foot Corner Drop For the 1-ft corner drop, the MAGNATRAN transport cask (equipped with an impact limiter over each end) falls a distance of 1 foot onto a flat, unyielding, horizontal surface. The cask strikes the surface on its top or bottom corner. The cask center of gravity is considered to be directly above the initial point of impact for the corner-drop condition. For the MAGNATRAN transport cask, the orientation angle is 20&deg; for both the top and bottom corner-drops.
The types of loading involved in a corner-drop event are closure lid bolt preload, internal pressure load, thermal load, and inertial body load. The analysis is performed using a 20g acceleration load, which provides a bounding analysis, since it exceeds the calculated g-loads for the one-ft corner drop event as documented in Table 2.6.7-36.
Results for the top corner and bottom corner 1-ft drop evaluations are presented in Table 2.6.7-19 through Table 2.6.7-30. For the top corner-drop loading case including inertial loads, bolt preload, and internal pressures, the minimum factor of safety resulting from calculated Pm stress intensity is 2.03 (Table 2.6.7-22) and the minimum calculated Pm + Pb stress intensity factor of safety is 1.61 (Table 2.6.7-23). As seen from the tables, the minimum factor of safety for primary plus secondary stress intensity for the 1-ft top corner-drop is 2.42 (Table 2.6.7-24).
For the bottom-corner-drop loading case including inertial loads, bolt preload, and internal pressures, the minimum factor of safety resulting from calculated Pm stress intensity is 2.34 (Table 2.6.7-28) and the minimum factor of safety resulting from calculated Pm + Pb stress intensity is 1.23 (Table 2.6.7-29). As seen from the tables, the minimum factor of safety for primary plus secondary stress intensity for the 1-ft bottom corner drop is 1.96 (Table 2.6.7-30).
Because the factors of safety are all positive, the MAGNATRAN transport cask satisfies the requirements of 10 CFR 71.71(c)(7) for the 1-ft corner drop (normal transport) condition. The most critically stressed component in the system, for the 1-ft corner drops, is the cask bottom inner forging.
NAC International                              2.6.7.3-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-19    1-foot Top Corner Drop, Pm, ksi Angle                  Stress Components                  Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy      Sz    Sxy    Syz    Sxz    Int. Allow.
2      1      37.5    -0.19  -0.25    -0.25  -0.06    0.00  -0.11    0.26    20.00    Large 3      2      90.0    -0.16  -1.06    -0.08  -0.02    0.00  -0.04    1.01    19.74    Large 2      3        0.0    -0.16  -1.30    2.45  -0.01  -0.04  -0.12    3.75    20.00    5.33 4      4      26.2    -1.04  -1.36    -0.20    0.16    0.21  -0.19    1.35    20.00    Large 3      5      97.5    -0.54    0.37    -0.13  -0.02  -1.02  -0.09    2.13    20.00    9.39 2      6        0.0    -1.14  -4.58    -2.69    0.13  -0.11    0.44    3.58    20.00    5.59 4      7        7.5    0.03  -3.95    -3.99    0.10  -1.03    1.30    5.63    20.00    3.55 4      8      30.0    0.02    0.33    -0.98  -0.04  -3.41  -0.06    6.94    20.00    2.88 2      9      30.0    -0.04    4.06    0.22  -0.08  -2.73  -0.07    6.69    20.00    2.99 1      10      63.8    -0.03    2.93    -1.08    0.09  -1.06  -0.02    4.54    19.83    4.37 1      11      78.8    -0.04    2.80    -2.27    0.11    0.26    0.00    5.11    19.73    3.86 1      12      52.5    -0.02    3.15    -1.23    0.05    1.76    0.02    5.62    19.84    3.53 2      13      26.2    -0.04    4.29    -1.72  -0.15    3.04    0.03    8.55    20.00    2.34 2      14      22.5    -0.06    4.03    -2.73  -0.18    3.57    0.05    9.84    20.00    2.03 4      15        0.0    0.01  -2.74    -7.91    0.08    0.32  -0.94    8.17    20.00    2.45 4      16      37.5    1.05    1.47    -2.19    0.53    2.55  -0.01    6.41    20.00    3.12 1      17        0.0    1.65  -1.97    0.33    0.11    0.02    0.31    3.70    20.00    5.41 2      18        0.0    -0.05  -2.30    1.18    0.08    0.02    0.61    3.73    20.00    5.36 3      19      67.5    0.00    0.55    -0.65  -0.01  -1.48  -0.05    3.19    31.88    Large 3      20      63.8    0.01    0.35    -0.70  -0.02  -1.38  -0.01    2.95    31.89    Large 1      21        0.0    -0.10    0.79    2.49  -0.08  -0.06    0.05    2.60    31.84    Large 3      22      97.5    0.00  -0.05    -2.87    0.03    0.01    0.01    2.89    31.81    Large 3      23      71.2    0.00    0.31    -2.29    0.03    1.07    0.01    3.37    31.84    9.45 3      24      60.0    -0.01    0.67    -2.09    0.00    1.71    0.02    4.41    31.89    7.23 1      25      60.0    0.01    0.85    -1.98    0.00    1.89    0.06    4.73    31.89    6.74 1      26      63.8    0.01    1.01    -2.06    0.00    1.81    0.25    4.77    20.00    4.19 1      27      101.2    -1.07    1.69    -1.60  -0.33    1.11    0.03    4.02    20.00    4.98 3      28        3.8    -1.20  -4.51    -3.53  -0.03    0.04  -0.81    3.56    20.00    5.62 3      29        0.0    0.56  -6.80    -7.46    0.36    0.00    0.26    8.05    20.00    2.48 2      30      78.8    -0.10  -0.39    -2.49    0.03    0.00    0.54    2.62    45.00    Large 4      31      180.0    0.30  -0.78    -3.40    0.02    0.14  0.87    4.10    45.00    Large 4      32      18.8    -0.60  -2.14    -9.37    0.14  -0.08    2.50  10.10    45.00    4.46 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.3-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-20      1-foot Top Corner Drop, Pm + Pb, ksi Angle                  Stress Components                  Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy        Sz    Sxy    Syz    Sxz    Int. Allow.
3      1      86.2    0.36    1.18    -0.12  -0.05  -0.02  -0.03    1.31    29.46    Large 3      2      86.2    -1.10  -3.32      0.11    0.08  -0.02  -0.03    3.44    29.61    8.61 2      3        0.0    1.24  -0.95      6.83  -0.01  -0.12    0.24    7.80    30.00    3.85 4      4      52.5    -0.18  -2.08    -0.12    0.26  0.03    0.05    2.04    30.00    Large 2      5        0.0    -1.68  -1.15      1.43  -0.02  0.07  -0.13    3.13    30.00    9.58 2      6        0.0    -5.34  -9.88    -16.17    0.23  0.01    1.08  11.05    30.00    2.71 2      7        0.0    0.00  -8.08    -18.31    0.30  0.09    1.76  18.66    30.00    1.61 2      8      22.5    -0.13    2.61    -2.04  -0.15  -5.83    0.05  12.56    30.00    2.39 2      9        0.0    -0.11  13.83      6.00  -0.52  -0.04    0.01  13.98    30.00    2.15 1      10        3.8    -0.25  13.07      6.53    0.01  -0.06    0.00  13.32    29.75    2.23 1      11        0.0    -0.24  13.34      6.91  -0.44  0.01    0.00  13.61    29.60    2.17 1      12        3.8    -0.24  13.14      4.73    0.01  0.14  -0.01  13.38    29.76    2.22 2      13        0.0    -0.12  13.98      2.39  -0.53  0.11  -0.03  14.14    30.00    2.12 2      14      26.2    -0.12    5.76    -2.49  -0.13  6.02    0.08  14.60    30.00    2.05 4      15        0.0    -0.06  -2.39    -12.30    0.08  -0.04  -0.81  12.35    30.00    2.43 4      16        0.0    -4.67  -7.47    -15.75    0.17  -0.02  -2.12  11.88    30.00    2.53 2      17        0.0    2.71  -0.15      5.72    0.07  0.02    1.01    6.18    30.00    4.85 2      18        0.0    -0.08  -0.96      6.20    0.04  -0.03    0.57    7.21    30.00    4.16 3      19      52.5    -0.02    0.56    -0.61  -0.01  -1.94  -0.04    4.05    47.83    Large 1      20      41.2    -0.01    0.81      0.16  -0.02  -1.89  -0.02    3.83    47.84    Large 1      21        0.0    -0.07    5.63      4.45  -0.23  0.02    0.05    5.72    47.76    8.35 1      22        0.0    -0.09    7.36      5.17  -0.30  0.01    0.01    7.47    47.71    6.39 1      23        0.0    -0.06    5.45      2.46  -0.22  -0.01  -0.03    5.53    47.77    8.64 3      24      48.8    -0.03    1.70    -1.94  -0.01  1.99    0.02    5.39    47.84    8.87 3      25      48.8    0.00    1.37    -2.32  -0.01  2.19    0.04    5.73    47.84    8.35 2      26      60.0    -0.02    0.57    -4.75  -0.01  2.16    0.20    6.87    30.00    4.37 2      27      56.2    -1.57  -0.60    -5.03  -1.03  1.73    0.22    6.11    30.00    4.91 4      28        0.0    -0.13  -4.87    -2.33    0.14  0.13  -0.51    4.86    30.00    6.17 4      29        0.0    3.97  -5.27    -3.83    0.56  0.01    0.36    9.33    30.00    3.22 2      30      172.5    2.27    4.32    -0.17  -0.01  0.00    0.32    4.54    67.50    Large 4      31      176.2    1.72  -0.37    -3.72  -0.01  0.00  -2.40    7.25    67.50    9.31 4      32      176.2    3.91    0.06    -12.66  -0.01  0.00    0.06  16.58    67.50    4.07 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.3-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-21      1-foot Top Corner Drop, P+Q, ksi Angle                  Stress Components                Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy        Sz    Sxy  Syz    Sxz    Int. Allow.
1      1      176.2    -4.84  -7.38      0.03    0.05  0.01  -0.03    7.41    58.91    7.95 3      2      86.2    -2.24  -4.87    -0.29    0.09 -0.02  -0.05    4.58    59.22    Large 1      3        0.0    -4.96  -0.58      5.95  -0.21 -0.10  -0.19  10.93    60.00    5.49 1      4      108.8      1.40    5.21      0.16  -0.63 -0.36  -0.26    5.27    60.00    Large 1      5        0.0    -1.96    5.30      9.33  -0.23  0.09    0.22  11.31    60.00    5.31 1      6        0.0    -1.93    1.64    10.27  -0.16 -0.24  -0.96  12.37    60.00    4.85 2      7        0.0      0.12  -7.51    -24.42    0.29  0.09    1.76  24.80    60.00    2.42 2      8      22.5    -0.13  -0.11    -7.57  -0.16 -5.84    0.17  13.87    60.00    4.33 2      9        0.0    -0.13  16.94      5.69  -0.62 -0.04    0.03  17.11    60.00    3.51 2      10        3.8    -0.27  17.66      7.37    0.01 -0.06    0.01  17.93    60.00    3.35 1      11        0.0    -0.27  18.22      8.62  -0.61  0.02    0.00  18.53    59.20    3.19 2      12        0.0    -0.25  17.91      5.64  -0.59  0.07  -0.02  18.20    60.00    3.30 1      13        0.0    -0.14  18.02      3.47  -0.66  0.11    0.00  18.20    60.00    3.30 4      14        0.0    -0.24  -8.97    -17.49    0.23  0.73  -0.17  17.33    60.00    3.46 4      15        0.0    -0.10  -5.65    -18.77    0.18 -0.07  -1.29  18.85    60.00    3.18 4      16        0.0    -7.69  -12.98    -24.25    0.26 -0.06  -2.95  17.60    60.00    3.41 3      17        0.0    -0.51    4.39    10.29  -0.15  0.08    2.29  11.73    60.00    5.12 1      18        0.0      0.04    5.01    17.25  -0.16 -0.03    0.47  17.24    60.00    3.48 1      19      60.0    -0.36    6.66      8.17  -0.05 -1.84    0.08    9.77    95.65    9.79 1      20        0.0    -0.04    9.17    11.01  -0.31  0.03    0.05  11.06    95.67    8.65 1      21        0.0    -0.08  13.35      13.27  -0.49  0.03    0.06  13.48    95.53    7.09 1      22        0.0    -0.11  15.29      13.99  -0.56  0.02    0.01  15.44    95.42    6.18 1      23        0.0    -0.08  13.60      11.24  -0.49  0.00  -0.02  13.72    95.53    6.96 1      24        0.0    -0.05  10.75      8.46  -0.36  0.00  -0.02  10.82    95.67    8.84 1      25        0.0    -0.02    9.52      7.26  -0.32  0.01  -0.05    9.56    95.68    Large 3      26      82.5    -0.23    2.74      9.02  -0.02  1.82  -0.07    9.74    60.00    6.16 1      27      71.2    -1.49    1.17      3.76  -1.33  2.02  -1.59    7.62    60.00    7.87 3      28        0.0    -0.42  -9.15    -5.58    0.27  0.16  -0.69    8.84    60.00    6.79 1      29      86.2    -11.57  -5.17    -9.31    2.07  2.29  -3.55  10.99    60.00    5.46 2      30      86.2    -2.47  -4.95    -4.88    0.01  0.01    0.74    2.84  135.00    Large 3      31      176.2      5.61    3.55    -2.71    0.01  0.00  -4.18  11.80  135.00    Large 3      32      176.2    12.17    5.34    -19.25    0.01 -0.01  -2.16  31.71  135.00    4.26 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                                2.6.7.3-4
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.7-22      Critical Pm Stress Summary foot Top Corner Drop, ksi Angle Component              Sec      (deg)      SI  Allow. FS Bottom Plate            4        26.2      1.35  20.00  Large Bottom Forging - Inner        7        7.5      5.63  20.00    3.55 Bottom Forging - Outer      18        0.0      3.73  20.00    5.36 Inner Shell            14        22.5      9.84  20.00    2.03 Outer Shell            25        60.0      4.73  31.89    6.74 Top Forging            29        0.0      8.05  20.00    2.48 Lid                32        18.8    10.10  45.00    4.46 Table 2.6.7-23          Critical Pm + Pb Stress Summary foot Top Corner Drop, ksi Angle Component            Sec      (deg)        SI  Allow. FS Bottom Plate            2      86.2      3.44  29.61    8.61 Bottom Forging - Inner      7        0.0    18.66  30.00    1.61 Bottom Forging - Outer      18        0.0      7.21  30.00    4.16 Inner Shell          14      26.2      14.60  30.00    2.05 Outer Shell          22        0.0      7.47  47.71    6.39 Top Forging            16        0.0    11.88  30.00    2.53 Lid              32      176.2    16.58  67.50    4.07 Table 2.6.7-24      Critical P+Q Stress Summary foot Top Corner Drop, ksi Angle Component            Sec      (deg)        SI  Allow. FS Bottom Plate            4      108.8      5.27  60.00    Large Bottom Forging - Inner      7        0.0    24.80  60.00    2.42 Bottom Forging - Outer      18        0.0    17.24  60.00    3.48 Inner Shell          15        0.0    18.85  60.00    3.18 Outer Shell          22        0.0    15.44  95.42    6.18 Top Forging            16        0.0    17.60  60.00    3.41 Lid              32      176.2    31.71  135.00    4.26 NAC International                          2.6.7.3-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.6.7-25      1-foot Bottom Corner Drop, Pm, ksi Angle                  Stress Components                  Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy      Sz    Sxy    Syz    Sxz    Int. Allow.
1        1      97.5    -0.22  -0.44    -0.81  -0.04  -0.01  -0.08    0.62    19.64    Large 1        2    101.2    -0.05  -0.85    -2.84  -0.15  -0.04  -0.52    3.01    19.74    6.56 2        3      0.0    -0.29  -1.21    2.08  -0.01  -0.02  0.05    3.29    20.00    6.08 4        4      0.0    -0.89  -1.54    -2.04    0.03  -0.04  -1.35    2.94    20.00    6.80 3        5      0.0    -4.51  -3.76    -7.11  -0.01    0.01  -0.03    3.35    20.00    5.97 2        6      37.5    -0.62  -1.82    -0.65  -0.16  -1.72  0.45    3.80    20.00    5.26 4        7      7.5      0.10  -5.87    -7.02    0.10  -1.20  1.64    8.50    20.00    2.35 2        8      26.2    -0.05    1.58    -2.35  -0.08  -3.71  0.04    8.40    20.00    2.38 2        9      26.2    -0.04    4.32    -1.66  -0.14  -3.05  -0.08    8.55    20.00    2.34 1      10      56.2    -0.02    3.05    -1.32    0.06  -1.69  -0.02    5.52    19.83    3.59 1      11      78.8    -0.04    2.81    -2.09    0.11  -0.39  0.00    4.96    19.73    3.98 1      12      0.0    -0.32    4.03    3.25  -0.13    0.05  0.00    4.36    19.84    4.55 2      13      30.0    -0.03    4.01    0.53  -0.09    2.70  0.04    6.43    20.00    3.11 2      14      26.2    -0.05    3.86    0.16  -0.12    3.30  0.07    7.58    20.00    2.64 2      15      48.8    -0.12    4.07    2.06    0.01    2.43  0.32    5.92    20.00    3.38 4      16      52.5      1.43    3.18    0.68    0.36    1.98  0.10    4.73    20.00    4.23 3      17      0.0      2.04  -3.37    -4.72    0.16  -0.02  0.35    6.80    20.00    2.94 3      18      30.0    -0.02  -2.90    -3.48    0.05  -0.97  0.50    4.30    20.00    4.65 3      19      60.0      0.00  -0.51    -2.35  -0.01  -2.10  0.04    4.59    31.88    6.95 3      20      52.5    -0.02    0.57    -2.31  -0.01  -2.00  -0.05    4.93    31.89    6.47 3      21      60.0      0.01    0.41    -2.12  0.02    -1.46  -0.02    3.86    31.84    8.25 3      22      86.2      0.01    0.05    -2.93  0.03    -0.36  -0.01    3.07    31.81    Large 1      23      0.0    -0.09    0.69    2.71  -0.07    0.04  -0.04    2.81    31.84    Large 3      24      71.2      0.01    0.30    -1.37    0.01    1.03  0.00    2.65    31.89    Large 3      25      71.2      0.01    0.72    -1.20    0.00    1.16  0.06    3.01    31.89    Large 2      26    101.2      0.04    2.05    -1.17  -0.01    0.74  0.30    3.60    20.00    5.56 2      27    105.0    -0.93    2.03    -0.78  -0.14    0.69  0.10    3.26    20.00    6.13 4      28      3.8    -1.21  -3.75    -0.43  -0.04  -0.02  -0.64    3.68    20.00    5.43 4      29      37.5      1.32  -5.50    0.14    0.16  -0.28  0.16    6.86    20.00    2.92 3      30      0.0    -0.04    0.18    0.04  0.00    -0.01  -0.01    0.22    44.66    Large 4      31    105.0      0.29  -0.48    -0.90    0.00    0.08  0.93    2.21    45.00    Large 4      32      18.8    -0.92  -1.46    -5.89    0.16  -0.13  1.39    5.71    45.00    7.88 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.3-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-26        1-foot Bottom Corner Drop, Pm + Pb, ksi Angle                  Stress Components                Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy        Sz    Sxy  Syz    Sxz    Int. Allow.
1      1        0.0    0.52    1.00    -0.81  -0.01  0.01  -0.07    1.81    29.46    Large 1      2      176.2    0.88    2.75    -1.06  -0.04  0.00  -0.40    3.89    29.61    7.61 2      3        0.0    -2.45    -2.32      6.32  -0.07 -0.11    0.29    8.81    30.00    3.41 4      4        0.0    0.76    -0.32    -0.99    0.00 -0.06  -2.04    4.44    30.00    6.76 4      5        0.0    -6.34    -6.32    -13.73    0.01  0.01    0.09    7.43    30.00    4.04 2      6        0.0    -7.46  -12.04    -20.54    0.26  0.01    2.23  13.83    30.00    2.17 2      7        0.0    0.10  -10.15    -24.07    0.37  0.04    1.86  24.47    30.00    1.23 2      8      22.5    -0.12    1.94    -4.60  -0.15 -6.15    0.09  13.93    30.00    2.15 2      9        0.0    -0.11    13.65      3.59  -0.51 -0.08  -0.01  13.80    30.00    2.17 2      10        3.8    -0.24    12.74      4.95    0.01 -0.12    0.00  12.98    30.00    2.31 1      11        0.0    -0.24    13.23      6.96  -0.44 -0.01    0.00  13.51    29.60    2.19 2      12        3.8    -0.25    13.51      6.68    0.00  0.09    0.00  13.76    30.00    2.18 2      13        0.0    -0.12    14.16      5.29  -0.53  0.07  -0.03  14.32    30.00    2.09 2      14      26.2    -0.12    5.65    -0.07  -0.14  5.57    0.08  12.53    30.00    2.39 4      15      22.5    0.02    0.08    -1.48    0.07  5.02  -0.10  10.17    30.00    2.95 1      16        0.0    -0.48    -0.96      7.39    0.09  0.38    0.68    8.46    30.00    3.55 3      17        0.0    0.57    -6.14    -12.86    0.21 -0.03  -0.56  13.49    30.00    2.22 3      18        0.0    -0.04    -5.99    -11.26    0.20  0.02    0.78  11.34    30.00    2.65 3      19      48.8    0.00    -0.55    -2.94  -0.01 -2.51    0.07    5.57    47.83    8.59 3      20      41.2    -0.03    0.81    -3.36  -0.02 -2.35  -0.05    6.29    47.84    7.61 1      21        0.0    -0.07    5.54      1.83  -0.23 -0.01    0.03    5.63    47.76    8.48 1      22        0.0    -0.09    7.29      4.81  -0.29 -0.02  -0.01    7.40    47.71    6.45 1      23        0.0    -0.06    5.40      4.60  -0.22 -0.04  -0.05    5.48    47.77    8.72 3      24      60.0    -0.01    1.55    -0.34  -0.02  1.35    0.01    3.30    47.84    Large 3      25      60.0    0.05    1.60    -0.67  -0.02  1.63    0.05    3.98    47.84    Large 2      26      63.8    -0.06    0.94    -3.29    0.03  1.50    0.22    5.21    30.00    5.76 2      27      97.5    -1.94    0.14    -4.21  -0.24  0.61    0.48    4.64    30.00    6.47 4      28      26.2    -1.63    -3.90      0.10  -0.05 -1.17  -0.54    4.76    30.00    6.30 4      29        0.0    6.98    -1.22      5.55    0.50  0.01    2.12    9.78    30.00    3.07 1      30        0.0    1.28    2.85    -0.07  -0.02  0.03  -0.03    2.92    67.00    Large 4      31      105.0    -2.09    -1.51    -1.99    0.09  0.10    2.65    5.30    67.50    Large 4      32      108.8    6.13    1.67    -8.51  -0.10  0.11  -1.33  14.88    67.50    4.54 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                                2.6.7.3-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.7-27      1-foot Bottom Corner Drop, P+Q Stress Summary, ksi Angle                  Stress Components                  Stress Stress Casea Sect.b                                                                                    FS (deg)      Sx      Sy        Sz    Sxy    Syz    Sxz    Int. Allow.
3      1        0.0    -4.45  -6.13    -0.43    0.05  0.02  -0.04    5.70    58.91    Large 1      2      90.0    -2.45  -5.39    -4.93  -0.01  -0.04  -0.65    3.11    59.22    Large 1      3        0.0    -8.68  -1.95      5.40  -0.27  -0.09  -0.16  14.09    60.00    4.26 3      4      180.0    1.80    5.82    -0.35    0.12  0.03  -1.20    6.72    60.00    8.93 3      5        0.0    -9.48  -4.18    -17.90  -0.13  0.06    1.69  14.05    60.00    4.27 1      6        0.0    -4.79    0.63    10.11  -0.21  -0.27  -1.36  15.16    60.00    3.96 2      7        0.0    0.23  -9.59    -30.22    0.36  0.04    1.86  30.69    60.00    1.96 4      8      11.2    -0.11  -6.40    -13.44  -0.20  -4.36    0.37  15.45    60.00    3.88 2      9        0.0    -0.13  16.75      3.26  -0.62  -0.08    0.01  16.93    60.00    3.54 2      10        3.8    -0.27  17.25      5.75    0.01  -0.12    0.01  17.53    60.00    3.42 1      11        0.0    -0.27  18.12      8.67  -0.60  0.00    0.00  18.43    59.20    3.21 2      12        0.0    -0.26  18.22      7.55  -0.60  0.05  -0.01  18.52    60.00    3.24 1      13        0.0    -0.14  18.21      6.39  -0.67  0.07    0.00  18.40    60.00    3.26 4      14        7.5    -0.21  -8.05    -13.76  -0.19  2.78  -0.15  14.68    60.00    4.09 4      15        0.0    -0.12  -5.42    -15.07    0.17  -0.12  -1.29  15.18    60.00    3.95 1      16        0.0    -0.88  -5.67    11.32    0.24  0.37    1.13  17.11    60.00    3.51 1      17        0.0    1.16    4.20      8.88  -0.11  0.03    2.44    9.14    60.00    6.56 1      18        0.0    0.10    4.29    15.06  -0.13  -0.07    0.57  15.01    60.00    4.00 1      19      60.0    -0.32    5.71      6.28    0.00  -2.43    0.15    8.77    95.65    Large 1      20        0.0    -0.05    9.49      7.76  -0.32  -0.02    0.00    9.56    95.67    Large 1      21        0.0    -0.08  13.27    10.65  -0.48  0.00    0.04  13.38    95.53    7.14 1      22        0.0    -0.11  15.23    13.64  -0.55  -0.02  -0.01  15.38    95.42    6.20 1      23        0.0    -0.08  13.56    13.38  -0.49  -0.03  -0.04  13.67    95.53    6.99 1      24        0.0    -0.04  10.48    11.62  -0.35  -0.04  -0.05  11.67    95.67    8.20 3      25        0.0    -0.02    9.49    11.25  -0.32  -0.03  -0.05  11.28    95.68    8.48 3      26        0.0    -0.30    2.31    11.06  -0.09  0.06    0.04  11.36    60.00    5.28 1      27        0.0    -0.11    7.29    10.28  -0.24  0.02    0.65  10.47    60.00    5.73 3      28        0.0    -0.36  -8.87    -3.88    0.27  0.14  -0.53    8.60    60.00    6.98 3      29      82.5    -2.68  -6.10      6.04  -0.21  0.60  -0.70  12.27    60.00    4.89 2      30        0.0    -4.21  -6.33      0.00    0.05  0.03  -0.02    6.33  135.00    Large 4      31      112.5    -5.03  -1.38    -3.94    0.07  0.09    4.60    9.27  135.00    Large 4      32      116.2    12.91    6.30    -16.11  -0.07  0.09  -3.16  29.70  135.00    4.55 Notes:
a.
The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
b.
Section locations are presented in Figure 2.12.2-31.
NAC International                              2.6.7.3-8
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.7-28        Critical Pm Stress Summary foot Bottom Corner Drop, ksi Angle Component              Sec      (deg)    SI    Allow. FS Bottom Plate            2      101.2    3.01    19.74  6.56 Bottom Forging - Inner        7        7.5    8.50    20.00  2.35 Bottom Forging - Outer      17        0.0    6.80    20.00  2.94 Inner Shell            9      26.2    8.55    20.00  2.34 Outer Shell            20      52.5    4.93    31.89  6.47 Top Forging            29      37.5    6.86    20.00  2.92 Lid                32      18.8    5.71    45.00  7.88 Table 2.6.7-29      Critical Pm + Pb Stress Summary foot Bottom Corner Drop, ksi Angle Component            Sec      (deg)    SI    Allow. FS Bottom Plate            4        0.0    4.44    30.00    6.76 Bottom Forging - Inner      7        0.0  24.47    30.00  1.23 Bottom Forging - Outer      17        0.0  13.49    30.00  2.22 Inner Shell          13        0.0  14.32    30.00  2.09 Outer Shell          22        0.0    7.40    47.71    6.45 Top Forging            29        0.0    9.78    30.00  3.07 Lid              32      108.8  14.88    67.50  4.54 Table 2.6.7-30      Critical P+Q Stress Summary foot Bottom Corner Drop, ksi Angle Component            Sec      (deg)    SI    Allow. FS Bottom Plate            4      180.0    6.72    60.00    8.93 Bottom Forging - Inner      7        0.0  30.69    60.00  1.96 Bottom Forging - Outer      18        0.0  15.01    60.00  4.00 Inner Shell          11        0.0  18.43    59.20  3.21 Outer Shell          22        0.0  15.38    95.42    6.20 Top Forging            16        0.0  17.11    60.00  3.51 Lid              32      116.2  29.70    135.00  4.55 NAC International                          2.6.7.3-9
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.7.4        One-Foot Oblique Drop One foot is not a sufficient height for the cask to rotate to an oblique orientation following a drop. Therefore, one-foot drops at oblique orientations are not considered as a credible event and are not included in these analyses.
NAC International                            2.6.7.4-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.7.5        Impact Limiters The MAGNATRAN transport cask design includes identical removable impact limiters on the top and bottom of the cask to ensure that the design impact loads on the package are not exceeded for any of the design impact load conditions. The design impact load conditions include a cask drop of 1 foot or 30 feet, landing: (1) horizontally on its side on both impact limiters; (2) vertically on one impact limiter at either end; (3) corner drop (22.5&#xba; from vertical) on one impact limiter at either end.
Parametric studies on the shallow-angle impacts of the NAC-STC MPC Transport Cask (used in the quarter drop test at Sandia National Laboratory) are described in Section 2.12.2.3.16, which were performed using the quarter-scale half symmetry finite element model. The results summarized in Table 2.12.2-3 concluded that the peak accelerations of shallow-angle package drops are bounded by the 90-degree side drop. Therefore, the 3 evaluated free drop orientations are the end drop (for the maximum axial damage), the corner drop (maximum damage to the end section of the limiter), and the side drop (for the maximum lateral damage).
Using the validated simulation methodology, the MAGNATRAN transport cask full-scale finite element models are used for the dynamic simulation. The top and bottom impact limiters are identical, and the cask CG is centered between the two impact limiters. Consequently, there is no need to distinguish between the top orientation of the cask and the bottom orientation of the cask in any of the cask drop evaluations in this section. The side drop simulations were performed using a quarter symmetry model with a quarter of the cask assembly in the finite element model.
For the end drops and CG-Over-Corner drops, the drop simulations were performed using a half-symmetry model with the half symmetry plane runs along the longitudinal direction of the cask assembly.
2.6.7.5.1      Impact Limiter Evaluation The impact limiter evaluation presented in this section is applicable for either the short or the long canister configuration, with a total package weight with impact limiters attached not exceeding 312,000 pounds. The package geometry is described in Section 1.3. An axial spacer is designed for the cask cavity to locate the short canisters (TSCs), such that the package center of gravity location is essentially the same for all package configurations. Differences in contents weight and the weights of the associated package configurations have no significant effect on the impact limiter design or performance. Therefore, the impact limiter analysis in this section and the cask drop analyses in Sections 2.6.7 and 2.7.1 are applicable for both TSC configurations of the MAGNATRAN transport cask.
NAC International                        2.6.7.5-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Design Parameters The following design parameters form the basis for the MAGNATRAN impact limiter analysis.
: 1. The package impacts on an unyielding surface.
: 2. The impact limiter remains in position on the cask during all impact events.
The qualifications of the impact limiter attachment are presented in Section 2.6.7.5.2.
Load Conditions The impact limiters described and analyzed in the following paragraphs decelerate the MAGNATRAN transport cask by applying a force in the direction opposite the motion of the package. Crushing the balsa wood and redwood materials, the stainless steel gussets and stainless steel shells of the impact limiter between the cask and the unyielding surface generates the deceleration force. The specific loading conditions for the impact limiters are defined by 10 CFR 71.71(c)(7), 10 CFR 71.73(c)(1) and Regulatory Guide 7.8, as follows.
: 1. A 1-foot drop of the package impacting at any angle from vertical (flat end) to corner (CG is directly above the point of impact) for the top and bottom of the package.
: 2. A 1-foot drop of the package impacting in a horizontal orientation.
: 3. A 30-foot drop of the package in an end (top and bottom), a side and a corner orientation (top and bottom).
Based on these loading conditions, the MAGNATRAN impact limiters are primarily designed for the 30-foot drops, but with consideration of the 1-foot end, side and corner (22.5&#xba;) drops.
The maximum impact forces and the maximum crush depth for the 1-foot and 30-foot drops are obtained from the LS-DYNA analyses of the impact limiters. LS-DYNA is an explicit finite element program for the nonlinear dynamic analysis of three-dimensional structures (Section 2.12.2.1). The verification of LS-DYNA for cask drop impact limiter evaluation is summarized in Section 2.12.2.2. The detailed benchmarking and confirmatory testing results are presented in Sections 2.12.2.3 and 2.12.2.4.
Description - Impact Limiters Figure 2.6.7-1 shows the overall view of the cross-sections of the impact limiter and the overall dimensions are shown in Figure 2.6.7-2. The impact limiters attached to the top and bottom end of the transport cask are identical. Each impact limiter includes both balsa wood and redwood for energy absorption. The grain directions of the wood are shown in Figure 2.6.7-2. The balsa wood consists of a base section with a circular disk at its end, and a corner section consists of 24 segments. The balsa wood and redwood are enclosed in a stainless steel shell to protect and maintain their position and orientation. The redwood is the primary energy-absorbing material for the 30-ft side drop. The parallel redwood grain is radially oriented. Stainless steel gussets are arranged in 15-degree increments to maintain the orientation of the redwood during the side NAC International                          2.6.7.5-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 drop. The balsa wood consists of two sections. The base section is 64 inches in diameter and 50 inches thick, and the grain is parallel to the cask longitudinal axis. The 4-inch thick end section, which is 48 inches in diameter, orients the grain perpendicular to cask longitudinal axis. The balsa wood on the cask end with grain in the longitudinal direction is the primary energy-absorbing material during the 30-ft end drop and corner drop. The end disk section with grain in the lateral direction is the primary energy-absorbing material during the 1-ft end drop. The two sections are glued to maintain the position of the 4-inch section. The balsa wood in the corner, whose grain directions are 30o off-axis to cask longitudinal axis with an average thickness of 34 inches, is the primary energy-absorbing material during the 30-ft corner drop (22.5o). The corner balsa wood grain orientation assures that during any off-axis drop orientation, the off-axis angle is less than 30&deg; and retains the most crush strength of the wood fiber.
Properties of Balsa Wood and Redwood The balsa wood to be used in the MAGNATRAN impact limiter is specified to have a density between 7 and 10 pounds per cubic foot and to have moisture content between 5 and 15 percent for any one piece, with an average moisture content of not more than 12 percent for any lot. A density limit of 7 to 10 lbs/ft3 is applied to be consistent with dynamic wood test density criteria.
To adequately specify the balsa wood crush strength, NAC conducted dynamic compression tests of specimens taken from balsa wood obtained from a commercial supplier. The average density of the balsa wood tested was 8.5 lbs/ft3 (8.5 +/- 1.5 lbs/ft3). To ensure an adequate sampling, the following test matrixes were developed to test a series of specimens at various strain rates.
NAC International                          2.6.7.5-3
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Grain Direction        Temp (oF)        Strain Rate (s-1)      Number of Tests Perpendicular              70                  25                    8 Perpendicular              70                  75                    8 Perpendicular              70                175                    8 Perpendicular              70                275                    10 Perpendicular              70                375                    9 Perpendicular            -40                  25                    3 175                    3 375                    3 Perpendicular            200                  25                    3 175                    3 375                    3 Perpendicular              70                  25                    3 (Stack Configuration)                            175                    4 375                    3 Parallel              70                  25                    8 Parallel              70                  75                    8 Parallel                70                175                    8 Parallel                70                275                    9 Parallel              70                  375                    10 Parallel              -40                  25                    3 175                    3 375                    3 Parallel              200                  25                    3 175                    3 375                    3 Parallel                70                  25                    3 (Stack Configuration)                            175                    3 375                    3 Note: Each specimen in a test series is taken out of a different board.
The redwood material to be used in the impact limiters must satisfy density and moisture content specifications. The density of any single redwood board shall be 23.5 +/- 3.5 lbs/ft3. The moisture content of any single board shall be greater than 5 percent, but less than 15 percent. The average moisture content for the lot of redwood shall be less than 12 percent.
To adequately specify the redwood crush strength, NAC conducted dynamic compression tests of specimens taken from redwood obtained from a commercial supplier. The average density of the redwood tested was 23.5 lbs/ft3 (23.5 +/- 3.5 lbs/ft3).
NAC International                        2.6.7.5-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Grain Direction          Temp (oF)        Strain Rate (s-1)      Number of Tests Perpendicular            70 +/- 10              Static                  10 Perpendicular            -40 +/- 10              Static                  10 Perpendicular            200 +/- 10              Static                  10 Parallel              70 +/- 10              Static                  10 Parallel              -40 +/- 10              Static                  10 Parallel              200 +/- 10              Static                  10 Perpendicular            70 +/- 10                25                    10 Perpendicular            -40 +/- 10                25                    10 Perpendicular            200 +/- 10                25                    10 Parallel              70 +/- 10                25                    10 Parallel              -40 +/- 10                25                    10 Parallel              200 +/- 10                25                    10 Perpendicular            70 +/- 10              100                    10 Parallel              70 +/- 10              100                    10 15&deg; from Parallel          70 +/- 10              Static                  10 30&deg; from Parallel          70 +/- 10              Static                  10 Note: Each specimen in a test series is taken out of a different board.
The tests included both parallel-to-the-grain (parallel) and perpendicular-to-the-grain (perpendicular) directions for hot, cold and ambient temperature conditions. Compression testing of the wood specimen was performed using a servohydraulic test machine. The test machine consists primarily of a load frame, actuator for applying the dynamic load, a load cell, and associated voltage transducer. The maximum actuator speed is 200 inches/second with a load capacity of 20 kips. Fixturing is used to position the test specimen for the application of the load and to hold instrumentation used to record test results. Test specimens are sized to conform to the geometry of the test machine and to allow the establishment of empirical relationships between actuator speed, actuator and specimen impact area, and total displacement, including crush. Test specimens are fabricated from larger wood boards having specified material properties for moisture content and density. Wood test specimen size was based on test machine requirements.
For each strain rate and temperature condition, a data set was created that consists of 10 to 15 individual test specimens. To reduce this data, individual files of a data set were averaged NAC International                        2.6.7.5-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 together. These average curves were then simplified using minimal (30) data points. To incorporate the test data into the LSDYNA finite element program, the stress-strain curves from the test results are normalized to represent a typical engineering material property that the compressive stress increases with increasing volumetric strain up to 50%, and then increases asymptotically to lock up conditions beyond 60% of volumetric strain. To produce simplified curves, the peak acceleration was retained and the area under the curve that represents the energy absorption capacity was maintained. Stress-strain curves are developed in the parallel and perpendicular-to-the-grain directions for hot (200&deg;F) and cold (-40&deg;F) conditions. Table 2.6.7-31 through Table 2.6.7-33 provide a summary of the wood property data used in the LS-DYNA analyses.
For each strain rate and temperature condition, a data set was created that consists of 10 to 15 individual test specimens. To reduce this data, individual files of a data set were averaged together. These average curves were then simplified using minimal (30) data points. To incorporate the test data into the LSDYNA finite element program, the stress-strain curves from the test results are normalized to represent a typical engineering material property that the compressive stress increases with increasing volumetric strain up to 50%, and then increases asymptotically to lock up conditions beyond 60% of volumetric strain. To produce simplified curves, the peak acceleration was retained and the area under the curve that represents the energy absorption capacity was maintained. Stress-strain curves are developed in the parallel and perpendicular-to-the-grain directions for hot (200&deg;F) and cold (-40&deg;F) conditions. Tables 2.6.7-31 through 2.6.7-32 provide a summary of the redwood property data used in the LS-DYNA analyses. The stress-strain curves for tor the balsa wood are shown in the following Figures 2.6.7-20 through 2.6.7-23 and summarized in Table 2.6.7-33.
The material properties for the balsa wood described above is the bases for the material type 126,
*mat_modified_honeycomb, in the LSDYNA input. This material type uses a load curve to scale the stress-strain curve based on the strain-rate. Based on the averaged test data, the load curve to scale the stress-strain curve of Balsawood is listed in the table below.
Scale Factors based on the Strain Rate for the Balsa Wood Stress-Strain Curve Strain Rate, in/in Scale Factor 0              1.000 75            1.019 175            1.038 275            1.087 The balsa wood displays strain increase during dynamic tests due to the strain-rate effects. At ambient temperature, the average strain rate increase at different strain rate is shown in the Table NAC International                          2.6.7.5-6
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 above. At cold and hot temperature conditions, the strain rate effects exhibit the similar trend.
In the CY quarter-scale model drop simulation, the instantaneous peak strain rate of an individual element is less than 300/s. The instantaneous peak average strain rate of the entire balsa wood block is less than 80/s.
In the full scale MAGNATRAN drop simulation under HOT condition, the instantaneous peak strain rate of an individual element is less than 125/s. The instantaneous peak average strain rate of the entire balsa wood block is less than 10/s.
In the full scale MAGNATRAN drop simulation under COLD condition, the instantaneous peak strain rate of an individual element is less than 130/s. The instantaneous peak average strain rate of the entire balsa wood block is less than 11/s.
The strain rate table is adequate to cover the strain rate range of interest. With the higher stress at high strain rate, the overall effect is that more energy is being dissipated for the same amount of crush of wood. In the macroscopic analyses of balsawood loaded parallel to the grain direction, the highest stress of the balsa wood occurs before the granular wood fiber starts to buckle under pressure at volumetric strain less the 30%. When the wood fiber buckles, it bends and forms a kink. When the wood fiber is being bended and twisted, the wood fiber undergoes the greatest length change but at the lowest stiffness value. At this transition stage, the strain rate is the greatest, but the stress is the lowest. This phenomenon can be observed on every stress strain curve of the balsa wood test result. Therefore, the stress increase at early stage of crush due to high strain-rate has no significant effect on the overall peak acceleration. Due to the increased energy absorption, the net effect on the drop simulation is to reduce the percentage of wood that reaches lock-up condition. The impact limiter stops at lesser crush and results in a smaller peak acceleration that occurs towards the final stage of the crush.
As can be seen in Figure 2.6.7-20 through Figure 2.6.7-23, all test data indicate that the slopes of the yield stress of balsawood decreases after the initial threshold of the sudden stress increase at the volumetric strain level of about 3%. The yield stress continues to decrease to about 60%
volumetric strain, which is the effective useable deformation that the balsa wood can withstand.
After the compressive volumetric strain exceeds 60%, the stress suddenly increases exponentially and reaches the lockup state. Since LSDYNA material model introduces numerical instability in the form of negative volume with negative stress-strain curve, the stress-strain curve is modified to show an ever-increasing slope (normalized), while preserving the total energy absorbed in the first 60% of the crushable volume. Therefore, the final stress-strain curve reported in the table has slightly higher stress at 40% volumetric strain than at 10% volumetric strain.
NAC International                            2.6.7.5-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Finite Element Model of the MAGNATRAN Transport Cask with Impact Limiters The side drop, end drop, and corner drop analyses were performed using the LS-DYNA program. The model is constructed of eight-node brick and four-node shell elements. Using the symmetry plane that exists for the various drop orientations, two finite element models are developed to perform the required drop scenarios as shown in Figure 2.6.7-3. A half symmetry model is used to simulate the end drops and corner drops. The model used in the end drop and corner drop uses a single impact limiter in the model with the weight of upper impact limiter combined with the cask weight. The longitudinal axis of the cask aligns with the Z-axis. The plane of symmetry is about the X-Z plane. The side drop model is similar to the model used for the end and corner drops, but a quarter symmetry model is used as shown in Figure 2.6.7-3. The description of the side drop model is not repeated in this section. The cask body section of the model, consisting of a cylinder, the TSC, and the contents, is represented by a solid cylinder.
The redwood and the balsa wood were modeled as solid brick elements as shown in Figure 2.6.7-4. The stainless steel shells enclosing the redwood and balsa wood were modeled as shell elements, as shown in Figure 2.6.7-5. Since a half symmetry model is used, only eight of the 16 threaded rods attaching the impact limiter to the cask are modeled. Each threaded rod is modeled as a series of beam elements with stainless steel elastic plastic properties. Each threaded rod is sufficiently subdivided with elements to allow each threaded rod to independently experience collapse. The model for the threaded rods is shown in Figure 2.6.7-5.
Boundary Conditions and Initial Conditions The LS-DYNA Automatic Single Surface contact algorithm is employed between each part in the impact limiter, the cask body and the impact limiter shells. The package model impacts a rigid plane (Rigidwall Geometric Flat). Symmetry boundary conditions are imposed on the nodes in the X-Y plane for all drop conditions. For side drop cases, the initial velocity is in the X direction. For end drop cases, the initial velocity is in the -Y direction. For the corner drop and oblique drop cases, the initial velocity is defined by a vector consist of components in both X and Y directions. The weight of the finite element model bounds the loaded MAGNATRAN transport cask.
Because the flexibility of the items described above has no contribution to increasing the maximum accelerations of the overall cask body, the cask body of the loaded MAGNATRAN transport cask is modeled as a rigid body.
The wood impact limiters remain in position on the cask body during all impact events. Quarter-scale drop tests of an NAC-STC cask assembly (Section 2.12.2.4) have shown that the impact limiters stay in place. The discussion of the impact limiter attachments is addressed in Section NAC International                        2.6.7.5-8
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.7.5.2. To simulate this condition, the mounting plate of the impact limiter in contact with the cask was treated as a rigid body and constrained with the cask. The weights of the finite element model were verified by checking both the calculated individual model mass and the total kinetic energy of the model. Initial velocities of 96.3 in./sec and 527.4 in./sec were applied to the entire model to represent the 1-ft and 30-ft drops, respectively. To bound the extreme temperature conditions and maximize accelerations and crush, cold (-40&#xba;F) and hot (200&deg;F) analyses are performed for accident conditions.
The drop orientations considered in the evaluation of the impact limiter are shown in Figure 2.6.7-6. The nodal solutions at the accelerometers locations are flagged for acceleration, velocity and displacement output.
Material Properties The properties of the balsa wood and the redwood used in the MAGNATRAN impact limiters are developed as previously discussed and summarized in Section 2.12.2.5. To account for the strain-rate sensitivity of the wood, the LS-DYNA analyses use material Modified_Crushable_
Foam. The Modified_Crushable_Foam material model allows for the input of several stress-strain curves of increasing strain rates. Stress-strain properties for redwood ranging from 0 /sec to 25 /sec are presented in Table 2.6.7-31 and Table 2.6.7-32. Stress-strain properties for balsa wood at static load are presented in Table 2.6.7-33. Strain rate behavior for balsa wood is minimal as compared to redwood. For each time step during an analysis, LS-DYNA calculates the strain-rate of an individual element and uses the stress-strain data from the inputted stress-strain curves. For strain rates between the inputted curves, LS-DYNA interpolates between the given curves. To account for crush strength tolerances, which is dependent on the wood density, the -40&#xba;F cold case compression stresses are factored by 1.10. This identifies the maximum wood crush strength, which results in the maximum accelerations. The +200&#xba;F hot case compression stresses are factored by 0.90 to identify the minimum wood crush strength, which results in the maximum crush of the impact limiters.
The redwood sections of the impact limiter surrounding the cask consist of 24 equally spaced angular wedges separated by radial gussets fabricated from stainless steel plates. Since a half-symmetry finite element model is used to represent the impact limiters, only 12 of the wood wedges are modeled. Out of the 12 modeled wood wedges, only three wedges are loaded during a 30-ft side drop. The first wedge fills angular space between 0 and 7.5 degrees and is loaded in the parallel-to-grain direction. The second and third wedges are loaded between the parallel and perpendicular-to-grain directions. The second wedge fills angular space between 7.5 and 22.5 degrees. The third wedge fills angular space between 22.5 and 37.5 degrees. For the wedges where the impact force is applied between the parallel and perpendicular-to-grain directions, NAC International                        2.6.7.5-9
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Hankinsons formula is used to vary the strength properties of wood with the orthotropic axes of the wood grain (ref. Baumeister).
PQ N=
P sin  + Q cos 2 2
where:
N  =  compressive stress induced by a load acting at an angle to the grain direction P  =  compressive stress parallel to the grain direction Q  =  compressive stress perpendicular to the grain direction
          =  angle between direction of load and grain direction Using Hankinsons formula, stress-strain curves are generated for the second and third wedges at 15 and 30 degrees, respectively. Therefore, in the LS-DYNA input files, unique stress-strain curves are applied to each wood wedge, depending on the loading angle and strain rate.
The LS-DYNA material Crushable-foam model does not adjust the angle  during the transient deformation of the element. Due to the radial stainless steel stiffeners, the redwood is not permitted to be reoriented during the element deformation. Therefore, the angle  remains constant during the impact for the side drop. In the end drop and the corner drop, the deceleration of the cask is controlled by the balsa wood sections of the impact limiters.
The balsa wood is modeled with the honeycomb material model. The LS-DYNA material model simulates the anisotropic behavior of honeycomb and foam material. In the finite element model simulation, the anisotropic honeycomb material model of LS-DYNA varies the strength properties of wood according to the angle between the instantaneous local wood grain direction and the crush orientation. During the transient, the material properties are allowed to change associated with the angular orientation of the element. Typical time steps used in LS-DYNA are on the order of micro-seconds over a 50 millisecond impact duration. This permits the balsa wood properties to be revised for several thousand iterations during the impact. The initial balsa wood grain directions of different sections in the impact limiter are shown in Figure 2.6.7-1.
To account for the stainless steel shell stiffness, the Type 304 stainless steel shells and gussets were modeled with elastic plastic material. The LS-DYNA material Type 24 was used (Piecewise Linear Plasticity). The material properties used in the evaluations are contained in Table 2.6.7-34 and Table 2.6.7-35.
A rigid material model with the following properties was used to represent the transport cask body.
NAC International                        2.6.7.5-10
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 Cask Body Properties        -40oF    200oF Modulus of Elasticity, E 2.83E7 psi 2.76E7 psi Poissons Ratio,        0.31      0.31 The cask model, including the cask forging and the TSC with its contents, consists of brick elements using rigid material. The elastic modulus of the cask body is equivalent to stainless steel to properly account for the interface forces between the cask body and impact limiter. The mass density of the cask was adjusted to correspond to the maximum cask and contents weight.
Results To obtain results from LS-DYNA, nodes of interest are used to record output data. The output is in the form of displacement and acceleration time histories. However, the acceleration time histories contain high frequency components that are induced by the models wood crushing, metal buckling and metal deformation, but do not represent a global response to the external impact. Therefore, the time histories have to be filtered to obtain true accelerations corresponding to the global response. For this evaluation, the Butterworth low-pass filter in LS-DYNAs post-processor is used with a filter at 100 Hz. Figure 2.6.7-7 through Figure 2.6.7-12 provide the filtered acceleration time-history curves for the normal conditions 1-ft drop analyses.
Evaluation of the impact limiter for the normal conditions of transport shows that a maximum acceleration of 14g occurs during the cold condition side drop. Table 2.6.7-36 summarizes the accelerations for the three normal condition cases considered. The maximum acceleration of 14g occurs during the cold condition side drop.
Figure 2.6.7-13 through Figure 2.6.7-18 provide the acceleration time-history curves for the accident conditions 30-ft drop analyses. For accident conditions, the maximum lateral acceleration of 45.5g occurs during the cold condition side drop. During the end drop, the maximum axial acceleration of 32g occurs for the cold condition. During the corner drop, the maximum axial acceleration of 30g occurs for the cold condition. Table 2.6.7-37 summarizes the accelerations for the three accident drop orientations. The maximum crush is defined as the greatest change of relative volume of a single wood segment (30o circular section) defined from the fabrication process. As Table 2.6.7-37 shows, for the redwood, the maximum volumetric change of 65% occurs during the hot condition side drop. For the balsa wood, the maximum volumetric change of 54% occurs during the hot condition end drop.
2.6.7.5.2        Impact Limiter Attachment Analysis Each MAGNATRAN transport cask impact limiter weighs approximately 8,000 lbs, which is the weight incorporated into the LS-DYNA model used for this analysis. The impact limiter uses 16 stainless steel retaining rods, each 1.25 inches in diameter and equally spaced on a 70-inch NAC International                        2.6.7.5-11
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 diameter bolt circle. The 16 retaining rods share the same interior dimensions and cask interface.
The impact limiter retaining rods are fabricated from ASME SA193 Grade B8S stainless steel, which has yield and ultimate strengths of 39.8 ksi and 93.7 ksi, respectively, at 200&#xba;F.
A three-part design criteria applies to the method of attachment of the impact limiters to the cask body. These three criteria are as follows:
: 1. The impact limiters must remain attached to the cask body during normal handling and transport. Satisfaction of this criterion ensures that the limiters will be in a proper position to perform their impact limiting function in the event of a free drop (normal or accident).
During a free drop (normal or accident) impact, the limiter(s) making initial contact with the unyielding surface must remain in position on the end(s) of the cask for the full duration of the initial impact. Satisfaction of this criterion ensures that the limiter(s) will be able to properly perform their impact limiting function.
: 2. During a free drop (normal or accident) impact involving initial contact on a single impact limiter, the limiter on the opposite end of the cask must remain attached to the cask during the initial impact. Satisfaction of this criterion ensures that the limiter will be in a proper position to perform its impact limiting function in a subsequent secondary impact following the initial impact.
These criteria are satisfied as described by the following evaluations.
Impact Limiter Attachment During Normal Handling and Transport Attachment of the impact limiters to the cask body during normal handling and transport is ensured by demonstrating that the attachment hardware does not yield under normal handling and transport conditions. The worst case loading associated with normal handling and transport is a 7.5g load corresponding to the peak longitudinal shock loading expected as the result of rail transport (as specified by the Field Manual of the AAR). The design load, P, on the attachment is:
P= (7.5)(8,000)
          = 60,000 lbs where:
8,000 pounds = design weight of each impact limiter 2.6.7.5.3      Analysis of Retaining Rods There are 16 retaining rods, each 1-1/4-inch in diameter, equally spaced on a 70.0-inch diameter bolt circle. The attachment geometry is shown in Figure 2.6.7-19. The retaining rods are SA193 Grade B8S stainless steel, with a yield strength of 39.8 ksi at 200&deg;F.
NAC International                        2.6.7.5-12
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The load on each retaining rod due to a longitudinal shock load of 7.5g is determined as:
60,000 P =                  = 3,750 lbs per retaining rod 16 The tensile stress in the retaining rod, which has a tensile area of A = 0.969 in2 in the threaded region, is calculated as:
P St = = 3,870 psi A
39 ,800 MS =                - 1 = +Large 3,870 Analysis of Retaining Rod Anchorage The detail of the anchorage of the retaining rod to the impact limiter is shown in Figure 2.6.7-19.
The nut of the retaining rod is bearing on a washer that has a diameter of 5.0 inches and a thickness of 0.50 inch. The washer is bearing on the bearing plate portion of the impact limiter shell, which bears on the balsa wood material.
The load on each of the 16 retaining rods due to the normal transportation acceleration is 3,870 pounds. The bearing area between the bearing plate and the balsa wood material is calculated as:
A = (/4)(5.02 - 3.02) = 12.57 in2 The bearing pressure is:
P = 3,870/12.57 = 308 psi The minimum static compressive strength of the balsa wood parallel to the grain(hot) is 1,530 psi. The factor of safety for compression of the balsa wood is:
FS = 1,530/308 = 4.97 The washer is made of Type 304 stainless steel. It has a 1.31-inch diameter hole in the center. It is analyzed by assuming that it is simply supported along a circle having a diameter equal to the edge of the hole in the bearing plate. The load of 3,750 pounds is distributed along the edge of the nut having an average diameter of 2.02 inches. From Roark, Table 24, Case 1a:
12Wa 2            r  1 +  a    1    ro 2
o      ln    +    1      = 12.5ksi a  b  t 2 2
a    2      ro      4  a a
NAC International                                2.6.7.5-13
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 where:
a = radius of simple support by the tube=1.50 in b = washer inner radius = 0.655 in t = washer thickness = 0.50 in
        = Poissons ratio =0.31 ro = radius of the load = 1.01 in W = load/circumference = (3,750/(2x1.01)) = 591 lb/in The yield strength of Type 304 stainless steel is 25.0 ksi at 200&deg;F. The factor of safety is:
FS = 25.0/12.5 = 2.0 The positive margins of safety show that the attachment of the impact limiters is adequate during normal conditions of transport.
Evaluation of Impact Limiter Attachment for Vibration During normal transport conditions, the impact limiter attachment may be subjected to vibration induced from the combination of component natural frequency and a dynamic load forcing function dependent on the transport media. Design of the impact limiter attachment eliminates the potential for the postulated vibration loading loosening the impact limiter attachment. Lock nuts are installed in back of each of the retaining rod attachment nuts to prevent them from becoming loose. Locking wires installed between sets of two retaining rods eliminate rotation of the impact limiter retaining rods relative to their anchorage. The combination of these two design features eliminates the potential for the impact limiter attachment becoming loose as a result of postulated vibration loading during transport.
Response of the Impacted Limiter(s) During Impact of Package with Ground The second criterion applicable to the impact limiter attachments requires that the impact limiter(s) making initial contact with the unyielding surface must remain in position on the end(s) of the cask for the full duration of the initial impact. To satisfy this criterion, attachment hardware (mounting plate and bolts) may fail during an impact event, as long as the impact limiter(s) being crushed remains in position on the end of the cask and does not separate from the cask.
Dynamic Free Drop Test Results As presented in Section 2.12.2.4, a series of 30-ft drop tests was performed using a quarter-scale cask model of the NAC-STC cask. Drop orientations included an end drop, a center of gravity over impacted corner drop and a side drop. The quarter-scale NAC-STC drop test model is similar to the MAGNATRAN transport cask. The MAGNATRAN impact limiter attachment is comprised of 16 stainless steel retaining rods, which is the same material and number of rods NAC International                        2.6.7.5-14
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 used in the quarter-scale drop test model described in Section 2.12.2.4. The retaining rods in the MAGNATRAN design are 1.25-inch diameter rods, as compared to the full-scale design 1-inch diameter rods corresponding to the 1/4-inch diameter rods used in the drop test model. The limiter washer, which limits the axial motion of the limiter used in the drop test model, corresponds to a full-scale design of 0.42 inch, which has a lower load capacity than the 0.50-inch thick washer used in the MAGNATRAN design. This confirms that the MAGNATRAN impact limiter attachment has greater capacity to maintain the attachment of the impact limiter to the cask body than the design tested in Section 2.12.2.4.
Based on the above considerations, it is concluded that the impact limiters will remain in position on the cask body for the full duration of the free drop impact event.
Response of Secondary Impact Limiter During Initial Impact of Package The final criterion to be satisfied is for a free drop (normal or accident) involving an initial impact on a single impact limiter. The impact limiter on the opposite end of the cask (secondary limiter) must remain attached to the cask during the initial impact. This ensures that the secondary limiter will be in position to absorb a secondary impact and will remain in position to perform its impact limiting function for the full duration of the secondary impact. Attachment is ensured by demonstrating that the attachment hardware (mounting plate and retaining rods) does not fail during the initial impact.
Drop Scenario During the rotation of the cask with an angular velocity of , the radial acceleration at a distance Ro from the point of rotation is Ro2, which will result in a tensile load on the retaining rods. A bounding value for the angular velocity can be determined by conservatively assuming that the cask does not decelerate when the lower impact limiter impacts the ground and that the cask is in the horizontal orientation. The horizontal orientation corresponds to the maximum moment generated by the linear momentum. The expression for the angular velocity due to the momentum is:
H x Vo    214 x 527.4
        =          =              = 3.20 rad/sec 2rg 2
2 x17,614 where:
Vo = initial velocity = 527.4 in/sec rg = radius of gyration about the point of rotation of the cask as a right circular cylinder (the use of the cask dimensions is conservative since it neglects the contribution of the impact limiters which would increase rg and decrease the angular velocity () )
NAC International                          2.6.7.5-15
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 rg2 =
g 1
12
(              )
15R 2 + 4 H 2 =
1 12
(                      )
15 x 43.35 2 + 4 x 214 2 = 17,614 in2 where:
R=cask radius = 0.5x86.7 =43.45 inches H=cask height = 214 inches The tensile load produced by the impact limiter is the radial acceleration (Aradial) of the impact limiter CG times the mass of the impact limiter. The impact limiter CG is located a distance of Ro from the point of rotation of the cask:
Ro =      ((214 / 2 + 33.5 + 118)  2
                                                        )
                                            + 43.35 2 = 262 inches where:
The axial distance from the cask center to the impact limiter CG =118 inches.
The length of the lower impact limiter edge initially impacting the ground=33.5 inches. (This conservatively assumes that the cask rotates about the edge of the impact limiter.)
The radial acceleration component is computed by:
Aradial ( g ) = 262 x 3.20 2 / 386.4 = 6.94 g ' s The controlling factor of safety for the impact limiter attachment is the limiter washer, corresponding to a load of 7.5gs, which bounds the calculated radial acceleration of 6.94gs.
Thus, the MAGNATRAN transport cask impact limiter attachments provide significant resistance to any separation force expected to act on the impact limiters.
NAC International                            2.6.7.5-16
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.6.7-1  Three-Dimensional View of the MAGNATRAN Impact Limiter NAC International              2.6.7.5-17
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.6.7-2 Cross-Sectional View of the MAGNATRAN Impact Limiter NAC International              2.6.7.5-18
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.6.7-3      LS-DYNA Model of the MAGNATRAN Transport Cask with Impact Limiters NAC International              2.6.7.5-19
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.6.7-4 LS-DYNA Model of the Solid Elements of MAGNATRAN Impact Limiters NAC International            2.6.7.5-20
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.7-5 LS-DYNA Model of the Shell and Beam Elements of MAGNATRAN Impact Limiters NAC International            2.6.7.5-21
 
MAGNATRAN Transport Cask SAR                                January 2022 Docket No. 71-9356                                            Revision 1 Figure 2.6.7-6    Cask Drop Orientations NAC International              2.6.7.5-22
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.7-7  Acceleration Time-History for 1-ft Side Drop (Cold Condition)
Figure 2.6.7-8  Acceleration Time-History for 1-ft Side Drop (Hot Condition)
NAC International                2.6.7.5-23
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.7-9  Acceleration Time-History for 1-ft End Drop (Cold Condition)
Figure 2.6.7-10  Acceleration Time-History for 1-ft End Drop (Hot Condition)
NAC International                2.6.7.5-24
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.7-11 Acceleration Time-History for 1-ft Corner Drop (Cold Condition)
Figure 2.6.7-12  Acceleration Time-History for 1-ft Corner Drop (Hot Condition)
NAC International                2.6.7.5-25
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.7-13  Acceleration Time-History for 30-ft Side Drop (Cold Condition)
Figure 2.6.7-14 Acceleration Time-History for 30-ft Side Drop (Hot Condition)
NAC International                2.6.7.5-26
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.7-15  Acceleration Time-History for 30-ft End Drop (Cold Condition)
Figure 2.6.7-16 Acceleration Time-History for 30-ft End Drop (Hot Condition)
NAC International                2.6.7.5-27
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.7-17  Acceleration Time-History for 30-ft Corner Drop (Cold Condition)
Figure 2.6.7-18 Acceleration Time-History for 30-ft Corner Drop (Hot Condition)
NAC International                2.6.7.5-28
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                          Revision 1 Figure 2.6.7-19 Anchorage Detail of the Retaining Rod at the End of the Impact Limiter NAC International                2.6.7.5-29
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Figure 2.6.7-20  Static Stress-Strain Curve for Balsa Wood at Parallel-to-Grain Direction Under Cold Temperature Figure 2.6.7-21  Static Stress-Strain Curve for Balsa Wood at Perpendicular-to-Grain Direction Under Cold Temperature NAC International                    2.6.7.5-30
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Figure 2.6.7-22  Static Stress-Strain Curve for Balsa Wood at Parallel-to-Grain Direction Under Hot Temperature Figure 2.6.7-23  Static Stress-Strain Curve for Balsa Wood at Perpendicular-to-Grain Direction Under Hot Temperature NAC International                    2.6.7.5-31
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.7-31      Redwood Stress-Strain Properties (Static)
Compressive Stress (psi)
Hot            Cold            Hot              Cold Volumetric (Parallel to    (Parallel to  (Perpendicular  (Perpendicular to Strain Grain)          Grain)        to Grain)          Grain) 0.000              0                0              0                0 0.100            3736            9294            542              1396 0.200            3789            8294            609              1600 0.300            3768            8347            687              1746 0.400            3685            8531            849              2054 0.500            3685            8601            1308              3304 0.600            5098            11019            2850              7744 Table 2.6.7-32      Redwood Stress-Strain Properties (25 /sec)
Compressive Stress (psi)
Hot            Cold            Hot            Cold Volumetric    (Parallel to    (Parallel to (Perpendicular to (Perpendicular to Strain        Grain)          Grain)          Grain)            Grain) 0.000            0              0                0                0 0.100          5859            8506            968              1629 0.200          5499            9469            996              2003 0.300          4999            10185            1112            2227 0.400          4996            10734            1363            2608 0.500          5413            10076            2202            3919 0.600          7012            11047            5119            8736 NAC International                    2.6.7.5-32
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.6.7-33        Balsa Wood Stress-Strain Properties (Static)
Compressive Stress (psi)
Cold                  Cold                  Hot                  Hot Volumetric            (Parallel          (Perpendicular          (Parallel        (Perpendicular Strain              to Grain)              to Grain)            to Grain)            to Grain)
Ref Figure        Figure 2.6.7-20        Figure 2.6.7-21      Figure 2.6.7-22      Figure 2.6.7-23 0.000                  0                      0                    0                    0 0.100                2020                    148                1530                  102 0.200                2060                    151                1570                  110 0.300                2160                    152                1610                  118 0.400                2260                    153                1650                  126 0.500                2360                    154                1720                  134 0.600                2710                    169                2280                  153 Table 2.6.7-34        Properties for the Impact Limiter Stainless Steel Shells Value at                    Value at              Value at Ambient Property Cold Condition              Hot Condition Mass Density,                7.51E-04 lb-sec2/in4        7.51E-04 lb-sec2/in4      7.51E-04 lb-sec2/in4 Modulus of Elasticity, E            28.8E6 psi                  28.3E6 psi                27.6E6 psi Poissons Ratio,                      0.3                          0.3                        0.3 Table 2.6.7-35        Stress-Strain Curve Data for Type 304 Stainless Steel Stress at Hot Condition,          Stress at Cold Strain (in/in)
(psi)                Condition, (psi) 0.002                          33,800                      35,000 0.100                          50,800                      53,000 0.200                          60,700                      64,000 0.300                          66,700                      71,000 0.400                          70,400                      76,500 0.465                          70,200                      79,000 0.500                          37,900                      79,500 0.520                          64,300                      80,000 NAC International                            2.6.7.5-33
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                          Revision 1 Table 2.6.7-36  Summary of Acceleration Results for the Impact Limiter - Normal Conditions of Transport (1-Foot Drop Analysis)
Table 2.6.7-37  Summary of Acceleration Results for the Impact Limiter - Hypothetical Accident Conditions (30-Foot Drop Analysis)
NAC International                  2.6.7.5-34
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.7.6          Closure Analysis The MAGNATRAN transport cask closure lid and the lid bolts are required to satisfy two criteria: (1) calculated maximum stresses must be less than the allowable stress limit (the material yield strength is conservatively selected); and (2) lid deformation or rotation at the O-rings must be less than the elastic rebound of the O-rings. Using consistently conservative assumptions, the NUREG/CR6007 analysis of the cask closure system demonstrates that the cask closure assembly satisfies the performance and structural integrity requirements of 10 CFR 71.71(c)(7) for normal conditions of transport. The NUREG/CR-6007 analysis is summarized in the following paragraphs.
NUREG/CR-6007 provides formulas for calculating bolt forces generated by all regulatory (normal and hypothetical accident) transportation loading. Specifically, the report deals with the bolt stress analysis of a circular, cylindrical cask with a flat, circular closure lid.
To ensure positive closure, the cask has 48 bolts 2-8 UN-2A socket head cap screws fabricated from SB-637, grade N07718. Material properties are taken at 300&deg;F for the cask lid, closure bolts and cask wall. A maximum temperature gradient of 5&deg;F through the thickness of the cask lid is used as well. For evaluation purposes, a maximum internal pressure of 135 psi is used.
Accelerations are based on the impact limiter analysis for normal conditions of transport.
Therefore, an acceleration of 20g (1-ft drop) is taken to be the worst case. The 20g load is also used for the vibration case. A factor of 1.1 is used for the dynamic load. The following calculations are a summary of the NUREG/CR-6007 evaluation based on the calculated maximum preload of 182,278 lb/bolt.
The required preload on the cask lid closure bolts considers the following factors: (1) an internal pressure force on the inner lid of 135 psi; (2) the O-ring compression force; (3) the inertial weight of the lid, canister, basket and fuel due to the 30-ft accident end drop conditions (considering a bounding 40g acceleration for end and corner drop accident conditions); and (4) relief of the axial thermal bolt force as the temperatures of the lid flange and closure bolts increase from their (thermal) stress-free condition of 70&deg;F to their maximum temperatures associated with the hot condition. The closure bolts have a greater coefficient of thermal expansion than the lid flange material. As the temperatures of the lid flange and closure bolts increase from their (thermal) stress-free condition of 70&deg;F to their maximum temperatures associated with the hot condition, the bolts expand more than the lid flange, resulting in relief of a portion of the initial bolt preload. The minimum required bolt preload is increased by an amount equal to relief of the axial thermal bolt force. The thermal load is conservatively calculated ignoring the stiffness of the lid flange. Based on the above considerations, a minimum preload of 166,996 pounds/bolt is required for the cask lid closure bolts.
NAC International                          2.6.7.6-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 The torque required to generate the minimum required bolt preload is:
T = FBolt x k x d = 52,771 in-lb &#xf7;12 in/ft = 4,398 ft-lb where:
FBolt = 166,996 pounds            Bolt load d = 2.0 inch                      Bolt diameter k = 0.158                        Torque Coefficient or Nut factor An installation torque of 4,600 +/-200 foot-pounds is specified to ensure that the minimum required torque of 4,398 foot-pounds is achieved.
Maximum stresses in the closure bolt result during the top-end drop assuming the closure bolts support the full weight of the cask lid and contents. This is conservative since during a top end drop, the cask lid is fully supported by the impact limiter; thus, the closure bolts do not carry any weight. For the following evaluation, only worst case forces and stresses are reported.
The tensile force per bolt, Fa_pt, due to preload and thermal is:
Fa_pt =    PL + Pth = 199,993 pounds where:
PL = 182,278 pounds, preload (for maximum installation torque of 4,800 ft-lb)
Pth = 17,715 pounds resulting from thermal expansion The tensile force per bolt, Fa_al, from all other credible loads is:
Fa_al  =  Po + Pi + P20 + Pv = 101,837 pounds where:
Po = 13,754 + 157 = 13,911 pounds, load due to O-ring compression and operation Pi = 12,001 pounds, load resulting from internal pressure P20 = 71,550 pounds, load due to 20 g top-end (1-foot) normal impact event Pv = 4,375 pounds, load resulting from 20 g vibration.
Since Fa_pt is greater than Fa_al, the total tensile bolt load, Fa, is equal to Fa_pt:
Fa = 199,993 pounds The shear load is:
Fs = Pi + Pth + P20 + Pv = 65,214 pounds where:
Pi = 42,611 pounds, load resulting from internal pressure Pth = 18,228 pounds, load resulting from temperature difference between the cask lid and upper forging P20 = 0 pounds, load resulting from 20g top end drop NAC International                            2.6.7.6-2
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                              Revision 1 Pv = 4,375 pounds, load resulting from 20 g side vibration load The bending moment is:
Mb = -1,561 inch-pounds, due to thermal load (other loads do not contribute due to cask lid design) and the load resulting from torsion is:
Mt = 28,818 inch-pounds.
These loads and moments translate into the following stresses:
The tensile stress in the bolt is:
1.2732 Fa Sba =                = 72.2 ksi D2 where:
D = Db - (0.9743/n) 1.8782 in ----------------------------------- Bolt diameter for stress calculations Db = 2.0 in --------------------------------------- Nominal closure lid bolt diameter n = 8 -------------------------------------------- Number of threads per inch The shear stress is:
1.2732 Fs Sbs =                = 23.5 ksi D2 The bending stress is:
10.186M b Sbb =                  = 2.4 ksi D3 The stress resulting from torsion is:
5.093M t Sbt =                = 22.2 ksi D3 For normal conditions, Table 6.1 of NUREG/CR-6007 requires that the average tensile stress is less than Sm (where Sm = 2/3 Sy), or:
t(ave) = Sba = 72.2 ksi < Sm = 100.0 ksi.
Table 6.1 also requires that the average shear, which is comprised of the average direct shear ()
be less than 0.6 Sm. This is expressed as:
s(ave)= Sbs = 23.5 ksi < 0.6 Sm = 60.0 ksi NAC International                              2.6.7.6-3
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 For the combined state of stress that includes tension plus shear, the square of the ratio of the average tensile stress to the allowable tensile stress, plus the square of the ratio of the average shear stress to the allowable shear stress, must be less than one. This is expressed as:
2                2 S ba  S bs
              +            < 1.0 S m      0 .6 S m 2                2 72.2  23.5
                  +            = 0.67 < 1.0 100.0  60.0 For the combined state of stress that includes tensile, shear and bending; the bolts must have a maximum stress intensity less than 1.35 Sm (when the minimum tensile strength is greater than 100.0 ksi). The maximum bolt stress intensity is:
Si =        (Sba + Sbb )2 + 4(Sbs + Sbt )2  = 118 ksi < 1.35 Sm = 135 ksi.
The factor of safety for the ASME SB637, Grade N07718 closure bolts is:
1.35S m 135 FS =                =        = 1.14 Si        118 2.6.7.6.1          Bolt Fatigue Evaluation The following evaluation calculates the maximum number of times or cycles that the closure bolts can be torqued and untorqued to the maximum value during lid installation.
The maximum stress, S, on the cask closure bolts due to initial torque is:
KF 4 x 182,278 S =            =                  = 266,099 psi = 266.1 ksi A            2.74 where:
F = 182,278 lb                        Bolt load due to maximum torque K = 4.0                                Fatigue strength reduction factor (NB-3232.3(c))
2 E min 0.16238 A = 3.1416 s                            = 2.74 in2 Bolt tensile area [Machinerys Handbook]
2                n Esmin = 1.9087 in                      Minimum pitch diameter of ext. thread n = 8                                Threads per inch The maximum stress, Sth, on the cask closure bolts due to bolt thermal load is:
KF 4 x 17,715 Sth =          =                = 25,861 psi = 25.9 ksi A          2.74 NAC International                                2.6.7.6-4
 
MAGNATRAN Transport Cask SAR                                                                        January 2022 Docket No. 71-9356                                                                                      Revision 1 where:
FTc = 17,715 lb                              Bolt load due to thermal load at the cold condition K = 4.0                                      Fatigue strength reduction factor (NB-3232.3(c))
2 E min 0.16238 A = 3.1416 s                                    = 2.741 in2 ------ Bolt tensile area 2                          n Esmin = 1.9087 in                            Minimum pitch diameter of external thread n = 8                                        Threads per inch The alternating stress (Sa) is:
(S + S th )  0 (266.1 + 25.9 )  0 = 146 ksi Sa =                          =
2                              2 Therefore, using Table I.9-1, for Figure I-9.4 (MNS = 3Sm, ASME Code, Section III, Div. 1, App. I), the maximum number of cycles is:
S        S l og  i  log  i                      205      205 S        Sj                l og      log 146      122 N                                  500 N = N i  j                          = 200                                = 364 cycles Ni                                200 where:
S = 146 ksi (Alternating stress, Sa)
Ni = 200 cycles Nj = 500 cycles Si = 205 ksi Sj = 122 ksi NAC International                                      2.6.7.6-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.7.7        Neutron Shield Assembly Analysis - Normal Conditions of Transport This section documents the evaluation of the structural integrity of the of the neutron shield assembly for normal conditions of transport. The neutron shield assemblies are attached to the outer shell of the transport cask. The layout of the neutron shield and cooling fin assembly is shown in Figure 2.6.7-24. The neutron shield assemblies have a 0.12-inch thick SA240, Type 304 stainless steel shell with 0.25-inch thick end caps. The cavity of the shell is filled with NS-4-FR. There are three types of neutron shield assemblies: A, B and C. Each of the B assemblies is attached to the cask body by ten 3/4-inch diameter, SA240, Type 304 stainless steel studs that are spaced along the axial length of the cask body at a pitch of 16.9 inches. The retention studs are welded to the cask body outer shell using a full-penetration fusion weld. The A and C neutron shield assemblies are positioned between the bolted B assemblies forming a dove-tail geometry. As a result, the bolted B assemblies retain the A and C assemblies in the radial direction. Mounting rings located at the upper and lower ends of the cask body restrain axial movement of the neutron shield assemblies. Cooling fins are used to enhance the thermal capacity of the cask. Copper and aluminum cooling fins (cooling fins A and B) are positioned at the inner and outer surfaces of the B assemblies, respectively. Similarly, copper cooling fins (cooling fins C and D) are positioned between the cask body and the A and C assemblies. Expansion foam is used to permit differential thermal growth between the stainless steel shell and the NS-4-FR. For the B assemblies, 3/8-inch long expansion joints are positioned at each stud location. The A and C neutron shield assemblies have 2 inches of expansion foam at one end of the NS-4-FR section. Additional expansion foam is placed between the steel shell and NS-4-FR to allow thermal expansion in the radial direction.
The neutron shield and cooling fin assembly is analyzed for thermal stresses and the 1-ft drop conditions. The end drop and side drop evaluations bound all other drop orientations of the cask body.
2.6.7.7.1      Thermal Expansion Differential thermal expansion of the neutron shield and cooling fin assembly is evaluated in the following section.
Neutron Shield Assembly Shell For the bolted-on neutron shield assemblies, the difference in coefficients of thermal expansion for SA240, Type XM-19 stainless steel outer shell and the neutron shield assembly, which is made of the NS-4-FR blocks, and the SA240, Type 304 stainless steel enclosure, is analyzed in the following evaluation. The cask body outer shell has a higher average temperature as NAC International                        2.6.7.7-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 compared to the neutron shield assemblies. Conservatively, this temperature difference is neglected.
Axial Thermal Expansion The thermal expansion of the NS-4-FR blocks in the B assembly is:
L =  NS 4 x T x Lstuds = 58.9 x106 x (300  70) x16.9 = 0.229 in where:
NS4 = 58.9x10-6 in/in/&deg;F ------------- Coef. of Thermal Expansion, NS-4-FR, 300&deg;F T = 300&deg;F --------------------------- Maximum bounding temperature of the neutron shield assembly and cask body outer shell Lstuds = 16.9 inches --------------------- Length between studs The thermal expansion of the SA240, Type 304 stainless steel enclosure of the B assembly is:
L =  SS x T x Lstuds = 9.2 x106 x (300  70) x16.9 = 0.036 in where:
SS = 9.2x10-6 in/in/&deg;F --------------- Coeff. of Thermal Expansion, SA240, Type 304, at 300&deg;F T = 300&deg;F --------------------------- Maximum bounding temperature of the neutron shield assembly and cask body outer shell Lstuds = 16.9 inches --------------------- Length between studs The thermal expansion of the cask outer shell between studs is:
L =  SS x T x Lstuds = 8.8 x106 x (300  70) x16.9 = 0.034 in where:
SS = 8.8x10-6 in/in/&deg;F --------------- Coef. of Thermal Expansion, SA240 XM-19, at 300&deg;F T = 300&deg;F --------------------------- Maximum bounding temperature of the neutron shield assembly and cask body outer shell Lstuds = 16.9 inches --------------------- Length between studs Each NS-4-FR block in assembly B expands 0.193 inch (0.229 in - 0.036 in) more than the SA240, Type 304 stainless steel enclosure over the distance between adjacent studs. There is 0.375-inch expansion foam on either side of the NS-4-FR blocks, which permits the expansion of the NS-4-FR relative to the SA240, Type 304 stainless steel enclosure. The stainless steel enclosure expands 0.002 inch (0.036 in - 0.034 in) more than the cask outer shell in the axial direction over the distance between adjacent studs.
NAC International                        2.6.7.7-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 The axial gap between the mounting tubes and retention studs is:
Gap = Dtube - 2 x t - Dstud = 0.26 where:
Dtube = 1.25 inches --------------------- Outer diameter of the mounting tube t = 0.120 inch --------------------- Mounting tube wall thickness Dstud = 0.75 inch ----------------------- Outer diameter of the stud Therefore, the differential axial expansion between the cask body and the stainless steel neutron shield enclosure is accommodated.
In type A and C assemblies, the entire length of the assembly is a solid piece of NS-4-FR.
Additionally, assembly C has a shorter length than assemblies A and B. This means that the differential thermal expansion in assembly A bounds that for assembly C.
The thermal expansion of the NS-4-FR in the A assembly is:
L =  NS 4 x T x LNS 4 = 58.4 x106 x (270  70) x177.2 = 2.04 in where:
NS4 = 58.4 x10-6 in/in/&deg;F ------------ Coef. of Thermal Expansion, NS-4-FR, 270&deg;F T = 270&deg;F --------------------------- Maximum bounding temperature of the neutron shield assembly LNS 4 = 174.7 inches ------------------- NS-4-FR length.
The thermal expansion of the stainless steel tube is:
L =  SS x T x LSS = 9.2 x106 x (270  70) x176.7 = 0.325 in where:
SS = 9.2x10-6 in/in/&deg;F ---------------- Coef. of Thermal Expansion, SA240, Type 304, at 300&deg;F T = 270&deg;F ---------------------------- Maximum bounding temperature of the neutron shield assembly LSS = 176.7 inches -------------------- Cavity length of the neutron shield assembly The NS-4-FR expands 1.72 inches (2.04 in - 0.325 in) more in the axial direction than the stainless steel shell. There is a 2-inch gap between each end of the NS-4-FR and the stainless steel shell, which is filled with expansion foam to allow for this expansion. As a result, the expansion foam is compressed by 90 % of its original thickness, which corresponds to a modulus of 140 psi. Conservatively using a compression modulus of 300 psi, the axial load incident on the end plate of the neutron shield assembly is:
NAC International                          2.6.7.7-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 P = Ax E90 = 17,190 lb where:
E90 = 300 psi --------------------------- Bounding Modulus of Silicone Foam HT800 at 90% compressed 2
A = 57.3 inch ----------------------- Area of the end plate The resulting stress on the end plate weld is:
P        17,190 weld =          =        = 4,436 psi = 4.44 ksi Aweld      3.875 where:
Aweld = Lweld x tweld = 3.875 inch2 ----- Area of the end plate weld Lweld = 31 inches ------------------------ Length end plate weld tweld = 0.125 inch ----------------------- Thickness of end plate weld The factor of safety for shear on the end plate weld is:
0.6 S m      12 FS =            =      = 2.7 weld      4.44 where:
Sm = 20 ksi ---------------------------- Design stress intensity for SA-240, Type 304, at 300&deg;F Radial Thermal Expansion To account for the differential expansion of the stainless steel shell and NS-4-FR in the radial direction, 0.125 inch of HT-800 expansion foam is filled in between the two components. The thermal expansion of the NS-4-FR is:
L        =  NS 4 x T x LNSA = 58.9 x 106 x (300  70) x 5.8 = 0.0786 in where:
NS4 = 58.9x10-6 in/in/&deg;F -------------- Coef. of Thermal Expansion, NS-4-FR, at 300&deg;F T = 300&deg;F ---------------------------- Bounding maximum temperature of the neutron shield assembly LNSA = 5.8 inches ----------------------- Thickness of the neutron shield assembly The thermal expansion of the stainless steel tube is:
L = SS x T x LSS = 9.2 x 106 x (300  70) x 5.8 = 0.0123 in where:
SS = 9.2x10-6 in/in/&deg;F ---------------- Coef. of Thermal Exp. of SA240, Type 304, at 300&deg;F NAC International                            2.6.7.7-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 T = 300&deg;F ---------------------------- Maximum bounding temperature of the neutron shield assembly LSS = 5.8 inches ----------------------- Thickness of the neutron shield assembly Therefore, the expansion foam is compressed to 53% of its original thickness:
0.0786  0.0123 0.0663 Compressio n% =                        =        x 100% = 53%
0.125        0.125 Using the modulus of the Silicone Foam HT800 at 55% compressed, the following radial load is incident on the radial cover plate of the neutron shield assembly:
P = Ax E55 = 55,826 lb where:
E55 = 24.9 psi -------------------------- Modulus of Silicone Foam HT800 at 55%
compressed 2
A = 2,242 inch ----------------------- Area of the cover plate The resulting stress on the cover plate weld is:
P        55,826 weld =          =        = 1,175 psi = 1.18 ksi Aweld      47.5 where:
Aweld = Lweld x tweld = 47.5 inch2 ------- Area of the end plate weld Lweld = 380 inches ----------------------- Length cover plate weld tweld = 0.125 inch ----------------------- Thickness of end plate weld The factor of safety for shear on the end plate weld is:
0 .6 S m      12 FS =              =      = 10.2 weld      1.18 where:
Sm = 20 ksi ---------------------------- Design stress intensity for SA240, Type 304, at 300&deg;F Copper Cooling Fins The copper cooling fins have a higher coefficient of thermal expansion than stainless steel. To mitigate thermal stresses, gaps are provided between the mounting rings and the copper fins to allow the expansion of the copper fins relative to the cask outer shell. Additionally, diametrical gaps are provided between the through holes in the copper fins and the studs welded to the cask outer shell. The copper cooling fins, under normal conditions, have a lower average temperature NAC International                            2.6.7.7-5
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 than the cask outer shell. Conservatively, the temperature difference between the cask outer shell and the copper fins is neglected.
The axial thermal expansion of the copper fin over the distance between end studs is:
L =  Cu x T x LCu = 9.7 x106 x (300  70) x152.1 = 0.34 in where:
Cu = 9.7x10-6 in/in/&deg;F ---------------- Coeff. of Thermal Expansion, Copper, 300&deg;F T = 300&deg;F ---------------------------- Bounding maximum temperature of copper fin and cask outer shell.
LCu = 152.1 inches -------------------- Length between end studs The axial thermal expansion of the cask outer shell over the distance between end studs is:
L = SS x T x LSS = 8.8 x106 x (300  70) x152.1= 0.308 in where:
SS = 8.8x10-6 in/in/&deg;F ---------------- Coeff. of Thermal Expansion., SA240 XM-19, 300&deg;F T = 300&deg;F ---------------------------- Bounding maximum temperature of copper fin and cask outer shell.
LSS = 152.1 inches -------------------- Length of shielding tube assembly The copper fins expand 0.032 inch (0.34 in - 0.308 in) more than the axial expansion of the cask outer shell between the end studs. There is a 0.55-inch (1.3 in - 0.75 in) diametral gap between the through holes in the copper fins and studs. Therefore, the thermal expansion of the copper fins is not impeded by the studs.
The axial thermal expansion of the copper fin over it full length is:
L =  Cu x T x LCu = 9.7 x 106 x (300  70) x 177 = 0.395 in where:
Cu = 9.7x10-6 in/in/&deg;F ---------------- Coeff. of Thermal Expansion, Copper, 300&deg;F T = 300&deg;F ---------------------------- Bounding maximum temperature of copper fin and cask outer shell.
LCu = 177 inches ----------------------- Length of copper fin The axial thermal expansion of the cask outer shell over the distance between mounting rings is:
L =  SS x T x LSS = 8.8 x106 x (300  70) x177.36 = 0.359 in NAC International                        2.6.7.7-6
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 where:
SS = 8.8x10-6 in/in/&deg;F ---------------- Coeff. of Thermal Exp., SA240 XM-19, 300&deg;F T = 300&deg;F ---------------------------- Bounding maximum temperature of copper fin and cask outer shell.
LSS = 177.36 inches ------------------- Length between mounting rings The copper fins expand 0.036 inch (0.395 in - 0.359 in) more than the cask outer shell over the distance between mounting rings. The distance between mounting rings is 0.36 inch longer than the length of the copper fins, permitting the thermal expansion of the copper fins.
Aluminum Cooling Fins The aluminum cooling fins have a higher coefficient of thermal expansion than stainless steel.
To mitigate thermal stresses, diametrical gaps are provided between the through holes in the aluminum fins, the lower washer fitted with the through hole of the fin, and the studs welded to the cask outer shell. The aluminum cooling fins under normal conditions have a lower average temperature than the cask outer shell. Conservatively, the temperature difference between the cask outer shell and aluminum fins is neglected.
The axial thermal expansion of the aluminum fin over the distance between end studs is:
L =  AL x T x L AL = 13.3 x 106 x (300  70) x 152.1= 0.465 in where:
AL = 13.3x10-6 in/in/&deg;F -------------- Coeff. of Thermal Expansion, 1100-O Aluminum alloy, at 300&deg;F T = 300&deg;F ---------------------------- Bounding maximum temperature of aluminum fin and cask outer shell.
LAL = 152.1 inches -------------------- Length between end studs The axial thermal expansion of the cask outer shell over the distance between end studs is:
L = SS x T x LSS = 8.8 x106 x (300  70) x152.1= 0.308 in where:
SS = 8.8x10-6 in/in/&deg;F ---------------- Coeff. of Thermal Exp., SA240 XM-19, 300&deg;F T = 300&deg;F ---------------------------- Bounding maximum temperature of aluminum fin and cask outer shell.
LSS = 152.1 inches -------------------- Length of shielding tube assembly The aluminum fins expand 0.157 inch (0.465 in - 0.308 in) more than the axial expansion of the cask outer shell between the end studs. There is a 0.22-inch (1.65 in - 1.5 in + 0.82 in - 0.75 in) diametral gap between the through holes in the aluminum fins, the lower washer and the studs.
Therefore, the axial thermal expansion of the aluminum fins is not impeded by the studs.
NAC International                        2.6.7.7-7
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 2.6.7.7.2      End Drop For an end drop, the shield assemblies A and C are critical. Since the A assembly is larger, it provides the bounding case and used in this analysis.
The maximum compressive stress in the NS-4-FR is:
W NS 4 a 571 x 20 NS4 =              =          = 215 psi A NS 4        53.2 where:
ANS4  = Vin / Lin = 53.2 in2 ----------------------- Cross-sectional area of NS-4-FR WNS4    = 571 lb ------------------------------------- Weight of NS-4-FR Vin  = 9,406 in3 ---------------------------------- Cavity volume of shield assembly A Lin  = 176.7 in ----------------------------------- Cavity length of shield assembly A a  = 20 g --------------------------------------- 1-ft end drop acceleration The factor of safety is:
1 Su Sm        3        3,500 FS =          =        =      = 16 NS 4      NS 4    215 where:
Su = 10,500 psi            Ultimate Compressive Stress, NS-4-FR 1
Sm =    Su 3
The maximum compressive stress in the stainless steel tube is:
WSS a 216 x 20 SS =          =          = 1,072 psi = 1.07 ksi A SS        4.03 where:
WSS = 216 lbs ------------------------------------ Weight of stainless steel enclosure a = 20g ---------------------------------------- 1-ft end drop acceleration ASS = 4.03 in2 ----------------------------------- Cross-sectional area of stainless steel tube The factor of safety is:
Sm        20.0 FS =          =        = 18.7 SS    1.07 where:
Sm = 20.0 ksi ----------------------------------- Design stress intensity, SA240, Type 304, at 300&deg;F NAC International                            2.6.7.7-8
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The end drop evaluation of the retention studs considers the studs loaded by the B neutron shield assembly and the aluminum and copper fins above and below the neutron shield assembly, respectively. In an end drop condition, the retention rings at the top and bottom of the cask body carry the load of the neutron shielding from the A and C assemblies.
The maximum load on a stud is:
W        + WSS + WAL + WC FStud =      WNS4 mid + NS4end                        a = 2,742 lb 10 where:
WNS4mid = 53 lbs ------------------------------------- Weight of NS-4 middle section - 16.9 length WNS4end = 39 lbs ------------------------------------- Weight of NS-4 end section - 12.3 length WSS = 219 lbs ------------------------------------ Weight of stainless steel enclosure for the B assembly WAL = 69 lbs ------------------------------------- Weight of aluminum cooling fin WC = 514 lbs ------------------------------------ Weight of copper cooling fin a = 20 g --------------------------------------- 1-ft end drop acceleration The shear stress in the stud is:
FStud Stud =              = 6,203 psi = 6.2 ksi AStud where:
FStud = 2,742 lbs ---------------------------------- Force on the stud AStud = (D2/4) = 0.442 in2 ---------------------- Cross-sectional area of stud D = 0.75 in ------------------------------------ Diameter of stud The factor of safety is:
0.6S m 12.0 FS =            =        = 1.9 stud      6 .2 where:
Sm = 20 ksi ---------------------------- Design stress intensity of Type 304 stainless steel at 300&deg;F The retention ring is a 1-inch thick by 3.0-inch wide ring welded to the cask outer shell with two 1/4-inch groove welds. Conservatively using the weight of all fins and neutron shielding assemblies, the shear stress in the welds is:
Pg      35,361 x 20 weld =              =              = 5,193 psi = 5.2 ksi Aweld      136 .2 NAC International                            2.6.7.7-9
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 where:
P = 35,361 lbs -------------------------------- Weight of all neutron shielding and fins g = 20 g --------------------------------------- 1-ft end drop acceleration Aweld =  x D x (2 x t weld ) = 136.2 in2 ----------- Ring weld area D = 86.7 inches ------------------------------- Cask outer diameter tweld = 0.25 inch --------------------------------- Weld size The factor of safety is:
0 .6 S m  0.6 x 20.0 FS =            =            = 2.3 weld        5.2 2.6.7.7.3      Side Drop For the 1-ft side drop condition, the bolted neutron shield assembly B and the copper cooling fin A support the A and C neutron shield assemblies. Accordingly, the side drop evaluation considers the stresses developed in the bolted section of the B neutron shield assembly. Using the finite element model presented in Section 2.6.7.7.4, maximum sectional stresses are evaluated for the nut, aluminum fin, and lower and upper washer.
The maximum primary membrane sectional stresses and safety factors in the various components of the assembly are presented in Table 2.6.7-38. Additionally, the stress summaries for the maximum primary membrane plus bending stresses and the primary plus secondary stresses are presented in Table 2.6.7-39 and Table 2.6.7-40, respectively. The elastic modulus and stress allowables for each component are based on a bounding maximum temperature of 300&deg;F, except for the properties of the aluminum fin, which are based on a bounding temperature 256&deg;F.
The bearing stresses for the lower washer, upper washer, nut and aluminum cooling fin are calculated using the results of the finite element analysis by summing the forces in the vertical direction for each component face and dividing it by the representative contact area. Bounding values for force and area are used. The NS-4-FR was analyzed considering a circular area with an outer diameter equal to the upper washer diameter. The bearing stresses and safety factors are presented in Table 2.6.7-41.
The values in Table 2.6.7-41 are based on the following component data, Lower Washer:
P = 1,600 lbs ---------------------------------- Bearing force on the lower washer A = 0.96 in2 ----------------------------------- Bearing area between lower washer and neutron shield assembly Sy = 22,400 psi -------------------------------- Yield strength of SA240, Type 304 stainless steel at 300&deg;F NAC International                          2.6.7.7-10
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Upper Washer:
P = 5,800 lbs ---------------------------------- Bearing force on the upper washer A = 1.54 in2 ------------------------------------ Bearing area between upper washer and nut Sy = 22,400 psi -------------------------------- Yield strength of SA240, Type 304 stainless steel at 300&deg;F Nut:
P = 5,800 lbs ---------------------------------- Bearing force on the upper washer A = 1.54 in2 ------------------------------------ Bearing area between upper washer and nut Sy = 22,400 psi -------------------------------- Yield strength of SA240, Type 304 stainless steel at 300&deg;F Aluminum fin:
P = 4,200 lbs ---------------------------------- Bearing force on the aluminum fin A = 2.77 in2 ------------------------------------ Bearing area between upper washer and aluminum Sy = 4,400 psi ---------------------------------- Yield strength of 1100-O aluminum alloy at 256&deg;F NS-4-FR:
          = P/A = 848 lbs  1,000 lbs -------------- Bearing force on the NS4 sections P = WNS4 x a = 1,340 lbs -------------------- Bearing force on the upper washer a = 20g ---------------------------------------- 1-ft side drop acceleration WNS4 = 67 lbs ------------------------------------- Weight of NS4 sections loading the end stud A = 1.58 in2 ------------------------------------ Bearing area for NS4 sections Sy = 8,780 psi ---------------------------------- Compressive yield strength NS-4-FR The 10 retention studs in a B tube assembly must carry the load for one B assembly, and one-half the load of two A assemblies (Figure 2.6.7-24). The preload torque for the nut is set such that the minimum preload is greater than the load required to prevent joint separation under transport conditions of a 2g load. The load per stud is:
P =
(W NS _ A + W NS _ B + WCF _ Al + WCF _ Cu 1 + WCF _ Cu 2 + Ws _ n _ w )
                                                                                        =
2,368
                                                                                                = 236.8 lbs 10                                        10 where:
WNS_A    =  786 lbs ------------------------------------ Weight of neutron shield assembly A WNS_B    =  769 lbs ------------------------------------ Weight of neutron shield assembly B WCF_Al  =  69 lbs ------------------------------------- Weight of aluminum cooling fin WCF_Cu1    =  514 lbs ------------------------------------ Weight of copper cooling fin under assembly B WCF_Cu2    = 212 lbs ------------------------------------ Weight of copper cooling fin under assembly A Ws_n_w  = 18 lbs ------------------------------------- Weight of studs, nuts and washers for ten studs NAC International                              2.6.7.7-11
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 Therefore, the minimum required bolt preload for a 2g load, Fstud, is:
Fstud  =  2 P = 474 lbs The torque required to generate the minimum required bolt preload is calculated as follows:
T = Fstud kd = 56 in-lb where:
Fstud = 474 lbs ------------------------------------ Stud load d = 0.75 inch --------------------------------- Stud diameter k = 0.158 ------------------------------------- Torque Coefficient or Nut factor The stud preload force for the maximum torque is:
T          80 FmaxT =      =                  = 675 lb kd (0.158 x 0.75 )
where:
T= 80 in-lbs Maximum torque Conservatively, the evaluation of the bolted section considers a maximum preload of 700 pounds. The tensile load in the retention stud, including the maximum preload, is:
Pn = Pa + Fmax T = 236.8 x 20 + 700 = 5,436 lb = 5.44 kip where:
P = 236.8 lbs ---------------------------------- 1g load per stud a = 20g ---------------------------------------- 1-ft side drop acceleration FmaxT = 700 lbs ------------------------------------ Maximum preload The tensile area of the stud at the threads is:
2 0.9743 At = 0.7854 D                = 0.3345 in2 n
The shear area of the stud threads is:
1 As = 3.1416nL e K n max  + 0.57735(E s min  K n max ) = 1.21 in2 2n The shear area of the nut threads is:
1 An = 3.1416nL e D s min  + 0.57735(D s min  E n max ) = 1.723 in2 2n NAC International                          2.6.7.7-12
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 where:
D = 0.75 inch --------------------------------- Diameter of stud n = 10 ------------------------------------------ Threads per inch, 3/4-10 UNC-2A Le = 1.0 inch ----------------------------------- Thread length, heavy hex head nut Kn max = 0.663 inch -------------------------------- Maximum minor diameter of internal thread En max = 0.6927 inch ------------------------------ Maximum pitch diameter of internal thread Es min = 0.6773 inch ------------------------------ Minimum pitch diameter of external thread Ds min = 0.7353 inch ------------------------------ Minimum major diameter of external thread Using the previous equations, the stresses in the retention stud are calculated as follows.
The tensile stress in the stud is:
P        5.44 t =        =          = 16.3 ksi At 0.3345 The factor of safety is:
Sm      20.0 FS =        =        = 1.23 t      16.3 where:
Sm = 20.0 ksi ----------------------------------- Design stress intensity of Type 304 stainless steel at 300&deg;F The shear stress in the stud threads is:
P 5.44 s =        =        = 4.5 ksi As 1.21 The factor of safety is:
0 .6 S m    0.6 x 20.0 FS =              =            = 2.67 s          4.5 where:
Sm = 20.0 ksi ----------------------------------- Design stress intensity of Type 304 stainless steel at 300&deg;F The shear stress in the nut threads is:
P        5.44 n =        =          = 3.16 ksi An 1.723 The factor of safety is:
0 .6 S m    0.6 x 20.0 FS =              =            = 3.80 n          3.16 NAC International                            2.6.7.7-13
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 where:
Sm = 20 ksi ------------------------------------- Design stress intensity of Type 304 stainless steel at 300&deg;F The compressive stress in the mounting tube considering the maximum preload is:
(WSSB + Wcf  + WA )a + Ppl tube =                                    = 11,690 psi = 11.7 ksi A tube where:
WSSB = 29 lbs ------------------------------------- Weight of assembly B stainless steel shell loading an end stud Wcf = 64 lbs ------------------------------------- Weight of copper cooling fin under assembly B loading an end stud WA = 120 lbs ------------------------------------ Weight of neutron shield assembly A and copper fin under assembly A loading an end stud 2
Atube = 0.426 in ---------------------------------- Area of the mounting tube a = 20g ---------------------------------------- 1-ft side drop acceleration Ppl = 700 lbs ------------------------------------ Maximum preload The factor of safety is:
Sm        20 FS =            =      = 1.71 tube    11.7 where:
Sm = 20 ksi ------------------------------------- Design stress intensity of Type 304 stainless steel at 300&deg;F 2.6.7.7.4        Finite Element Model A half-symmetry ANSYS finite element model is used for the structural evaluation of the bolted B neutron shield assembly, as shown in Figure 2.6.7-25. The end stud is modeled, as it provides bounding loading conditions. SOLID45 elements are used to model the neutron shielding, retention stud, retention nut and washers. The stiffness of the stainless steel enclosure is neglected. The density of the NS-4-FR elements is adjusted to account for the weight of the stainless steel enclosure. SHELL63 elements with appropriate densities have been added to the underside of the solid elements representing the NS-4-FR to account for the weight of the cooling fin beneath the assembly and the adjacent neutron shield assembly and copper cooling fin. Similarly, SHELL63 elements are used at the end of the assembly to represent the weight of the end plate of the stainless steel enclosure. Vertical and radial gap elements, CONTAC52, are modeled for the interaction of the various components of the neutron shielding assembly.
Additionally, gap elements are used at the bottom surface of the NS-4-FR, representing the cask NAC International                          2.6.7.7-14
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 outer shell. Symmetry boundary conditions are applied to the y-z face of the model, representing half-symmetry. Symmetric boundary conditions are applied at the model face representing the plane at the mid-point between two adjacent studs. The retention stud and cask outer shell interface is modeled by restraining the nodes at that location in all degrees of freedom. An inertial load of 20g is conservatively applied in the z-direction for the 1-ft side-drop condition.
For the primary plus secondary evaluation, the elements representing the NS-4-FR and enclosure are conservatively assigned a coefficient of thermal expansion equal to that of the copper fin beneath the assembly.
NAC International                        2.6.7.7-15
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.6.7-24  Neutron Shield Assembly Layout NAC International                2.6.7.7-16
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.7-25 Neutron Shield Assembly Finite Element Model NAC International              2.6.7.7-17
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Table 2.6.7-38  Maximum Sectional Primary Membrane Stress Summary, 1-ft Drop Pm Pm    Allowable Component          (psi)      (psi)    FS Lower Washer        10      20,000    Large Upper Washer        70      20,000    Large Nut            900    20,000    Large Aluminum Fin        100      2,933    Large Table 2.6.7-39  Maximum Sectional Primary Membrane Plus Bending Stress Summary, 1-ft Drop Pm+Pb Pm+Pb    Allowable Component        (psi)      (psi)      FS Lower Washer      1,100    30,000    Large Upper Washer      11,200    30,000      2.68 Nut          12,600    30,000      2.38 Aluminum Fin      3,800      4,400      1.16 Table 2.6.7-40  Maximum Sectional Primary Plus Secondary Stress Summary, 1-ft Drop P+Q P+Q      Allowable Component        (psi)      (psi)      FS Lower Washer        600      60,000    Large Upper Washer      11,700    60,000      5.13 Nut          13,700    60,000      4.38 Aluminum Fin      3,500      8,800      2.51 NAC International                2.6.7.7-18
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Table 2.6.7-41    Maximum Bearing Stress Summary, 1-ft Drop Bearing            Bearing  Allowable Area Component        Force            Stress  Bearing Stress  FS (in2)
(lbs)              (psi)      (psi)
Lower Washer      1,600    0.96    1,700    22,400      Large Upper Washer      5,800    1.54    3,800    22,400        5.9 Nut          5,800    1.54    3,800    22,400        5.9 Aluminum        4,200    2.77    1,550      4,400        2.8 NS4          1,340    1.58    1,000      8,780        8.8 NAC International                  2.6.7.7-19
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 2.6.8            Corner Drop The MAGNATRAN transport cask is composed of materials other than fiberboard or wood, and the weight of the package exceeds 220 lb (100 kg). Therefore, according to 10 CFR 71.71(c)(8),
this test is not applicable to the MAGNATRAN transport cask.
NAC International                      2.6.8-1
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 2.6.9        Compression According to 10 CFR 71.71(c)(9), this test is not applicable to the MAGNATRAN transport cask because the package weight is greater than 11,000 lb (5,000 kg).
NAC International                        2.6.9-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.10          Penetration According to 10 CFR 71.71(c)(10), a penetration test involving a 13-lb (6-kg) penetration cylinder dropped from a height of 1 m is required for evaluation of packages during normal conditions of transport. However, Regulatory Guide 7.8 states that the penetration test of 71.71 is not considered by the NRC staff to have structural significance for large shipping casks (except for unprotected valves and rupture disks) and will not be considered as a general requirement. Because the MAGNATRAN transport cask has no unprotected valves or rupture disks that could be affected by normal conditions of transport, a penetration test evaluation is not performed.
NAC International                      2.6.10-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.11          Fabrication Stresses The process of manufacturing the MAGNATRAN transport cask can introduce thermal stresses in the inner and outer shells as a result of pouring molten lead between them. These thermal stresses are evaluated in this section to provide assurance that the manufacturing process does not adversely affect the normal operation of the cask or its ability to survive an accident.
According to Regulatory Position 7 of Regulatory Guide 7.6, any residual stresses in the containment vessel shell resulting from inelastic strain associated with the secondary local bending stresses, which are due to the lead pour thermal gradient, must be considered in the total stress range for normal and accident load conditions. Residual stresses in the containment vessel and the outer shell induced by shrinkage of the lead shielding after the lead pouring operation are relieved early in the life of the cask because of the low creep strength of lead.
For the lead pour process, the initial temperature of the cask shells is controlled between 550&deg;F and 650&deg;F, and the lead temperature before pouring is between 698&deg;F and 790&deg;F. The cask is initially heated, at a rate not to exceed 90&deg;F/hour, by using heaters inside the inner shell and heating rings around the outside of the outer shell. Heat-up is time-controlled consistent with uniform increases in shell temperatures. The heating procedures ensure that the cask surface temperature does not exceed 800&deg;F during the molten lead pouring process. The shell temperatures are measured by thermocouples attached to the shell surfaces. A portable thermometer is also used to measure temperature at any location. To minimize the time that the cask is at elevated temperatures, cask heating begins only after all preparations have been completed.
The lead is poured after the cask reaches the specified temperatures. Molten lead is poured continuously through a filling tube with its open end maintained under the lead surface. The pouring time is kept as short as possible. During pouring, the interior heaters and exterior heating rings are continuously energized.
The cooling process consists of sequentially turning the exterior heating rings and interior heaters off, starting from the lowest point, and of spraying the cask with water from the outside.
A layer of molten lead is maintained until the upper surface starts to solidify. This process allows the molten lead to fill the open space below it created by the lead shrinkage as it cools.
NAC International                          2.6.11-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.11.1          Lead Pour 2.6.11.1.1        Cask Shell Geometry At 70&deg;F, the stainless steel shell geometry is:
Inner Shell (SA240, Type 304)
Inside Diameter (di-70)          = 72.25 in Outside Diameter (do-70) = 75.75 in Shell Thickness (ti)            = 1.75 in Outer Shell (SA240, Type XM-19)
Inside Diameter (Di-70)          = 82.2 in Outside Diameter (Do-70) = 86.7 in Shell Thickness (To-70)          = 2.25 in 2.6.11.1.2        Stresses Resulting from Lead Pour Assuming that the lead and the inner and outer shells are uniformly at 750&deg;F, the hydrostatic pressure produced by the column of lead is:
q= h = 73.9 psi where:
          = 0.41 lb/in3 (lead density) h= 180.21 in (maximum height of lead column)
At 750&deg;F, key shell geometric dimensions are:
d o-750 = d o-70 (1 +  T) = 76.26 in Di-750 = Di-70 (1 +  T) = 82.76 in t i-750 = t i70 (1 +  T) = 1.76 in where:
          = 10.0 x 10-6 in/in/&deg;F at 750&deg;F (SA240, Type 304 St. Steel)
T= 750 - 70 = 680&deg;F The hydrostatic pressure of the molten lead subjects the inner shell to an external hydrostatic pressure, and the outer shell to an internal hydrostatic pressure. The hydrostatic pressure will vary from a maximum of 73.9 psi at the bottom of the inner shell to 0 psi at the top of the lead cylinder.
NAC International                              2.6.11-2
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Using Roark, Table 29, Case 6, the deformation at the bottom of the inner shell, yB, is found to be -0.0024 inch.
The maximum circumferential membrane stress in the inner shell is:
S max =            =
(
y B E  0.0024 24 .4 x 10 6    ) = 1,572 psi R              37 .25 where:
E = 24.4x106 psi.................................Modulus of elasticity of SA240, Type 304 stainless steel at 750&deg;F R = do-750/2 - ti-750/2 = 37.25 inches ...Mean radius of inner shell This stress will exist only as long as the lead is molten and will produce no plastic deformation of the inner shell. When the lead solidifies and begins to cool, it will shrink and exert a uniform external pressure on the inner shell because the coefficient of expansion of lead is larger than that of stainless steel.
2.6.11.2              Cooldown 2.6.11.2.1            Hoop (Circumferential) Stresses Lead decreases in volume during solidification. As the lower lead region solidifies, the molten lead above fills the shrinkage void between the solidifying lead and the inner and outer shells.
Using the coefficients of expansion for stainless steel and lead, the outer diameter of the steel shell and the inner diameter of the lead cylinder (assuming it is free to shrink) can be determined at 620&deg;F (the melting point of lead) and at 70&deg;F (normal conditions). Because the lead has a higher coefficient of expansion than stainless steel, a shrinkage force will develop between the steel (inner) shell outer surface and the lead inner surface.
The maximum circumferential stress, Smax, the lead shell can reach is bounded by the yield strength of the lead, 720 psi at -40&deg;F. The force from this stress must be equilibrated by a stress in the steel inner shell. The maximum stress of the inner steel shell will depend on the ratio of the thickness of the steel shell to the lead shell, or:
S ,max,lead t lead  720(3.225)
S max,steel =                      =            = 1,327 psi              [Roark] Table 28, Case 1b.
t steel            1.75 where:
tlead = (Di do-70)/2 = (82.2 - 75.75)/2 = 3.225 inches tsteel = (do di-70)/2 = (75.75 - 72.25)/2 = 1.75 inches NAC International                                    2.6.11-3
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.11.2.2          Axial Stresses Axial stresses also develop in the lead shell and inner shell during fabrication as a result of the unequal shrinkage of the lead and steel shells. Assume bonding of the lead shell to the inner shell during the cooldown process after completion of lead pouring. The strain in the lead, when cooled to 70&deg;F, is:
lead= (lead- shell)T = 0.0060 in/in where:
lead = 20.2 x 10-6 in/in/&deg;F (at 600&deg;F) shell = 8.5 x 10-6 in/in/&deg;F (at 70&deg;F)
T = 620 - 70 = 550&deg;F Slead = leadE = 0.006 x 2.28x106 = 13,680 psi E = 2.28 x 106 psi, modulus of elasticity of lead (at 70&deg;F)
This is above the yield point of lead (ranging from 370 psi at 300&deg;F to 720 psi at -40&deg;F). The axial load placed on the steel inner shell by shrinkage of the lead is limited by the yield strength of lead. The maximum load is:
(      2          2
                                                )
Plead = S y x  ro, lead  ri, lead = 720 x (41.12 - 37.8752) = 576,105 lb.
where:
ro, lead = Lead outer radius = 41.1 in ri, lead = Lead inner radius = 37.875 in Sy = Lead yield strength = 720 psi (-40&deg; F)
The corresponding compression stress in the inner shell to maintain equilibrium is:
P            576 ,105 S shell =    =                              = -1,416 psi
(
A  37 .875 2  36 .125 2      )
This value is conservative because the yield strength of lead is very low at elevated temperatures (500 psi at 200&deg;F / 370 psi at 300&deg;F) and creep is very high. Also, complete bonding of the lead to the stainless steel inner shell is not expected to occur. Because it is based on the yield strength of lead at -40&deg;F, this case bounds all others to be considered for axial loading.
NAC International                                2.6.11-4
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.11.2.3      Effects of Temperature Differential During Cooldown The preceding analyses assume that the inner and outer shells and the lead are always at the same temperature at any time during the cooldown process. This assumption may not be true under actual conditions. However, because of the high thermal conductivity of the stainless steel and the lead, and because of the time-controlled cooldown process, the temperature differential between any two of the above shells is kept to a minimum. To determine the effect of temperature differential on the stresses in the shells, a temperature differential of 100&deg;F is used.
If the inner shell is cooler than the lead, the interference between them, as well as the corresponding interface pressure and hoop stresses, is less than for the case of equal temperatures. Hence, the preceding analysis is conservative.
If the inner shell is hotter than the lead shell, the maximum stress that can be reached in the steel inner shell is 1,416 psi, as calculated for the hoop stress during cooldown described above.
2.6.11.3        Lead Creep As discussed in Section 2.6.11.2, cooling of the lead shell and inner shell introduces acceptably low hoop and axial stresses in the inner shell. Because lead demonstrates a significant creep rate at both room and elevated temperatures, these small stresses will be relieved early in the life of the cask, and will be further relieved during the thermal test of the cask.
NAC International                          2.6.11-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.12          Transportable Storage Canister (TSC) Analysis - Normal Conditions of Transport In this section, the Transportable Storage Canister (TSC) is evaluated for the normal conditions of transport. The TSC consists of a cylindrical stainless steel shell with a welded stainless steel bottom plate and a closure lid assembly at its top end. The TSC forms the confinement boundary for the basket assembly that contains the loaded PWR or BWR spent fuel basket. The TSC is designed to accommodate PWR and BWR classes of spent fuel. Figure 2.6.12-1 shows a TSC with a BWR fuel basket. TSCs are provided in four configurations designated TSC1 through TSC4. TSC1 and TSC2 include a 9-inch thick solid stainless steel closure lid assembly. TSC3 and TSC4 include a composite lid assembly consisting of a 4-inch thick stainless steel closure lid and a 5-inch thick A36 carbon steel shield plate that is coated using electroless nickel plating.
The shield plate is attached to the closure lid by ten 1-1/2 inch diameter A193, Grade B6 bolts.
The TSC closure lid is fabricated from Type 304 or 304L stainless steel, with material yield and ultimate strengths equal to, or greater than, those of SA240 Type 304. The stainless steel shell and bottom plate are dual-certified SA240 Type 304/304L. The TSC shell is a 0.5-inch thick plate formed into a 72-inch outer diameter cylinder and the bottom plate is 2.75-inch thick. The closure rings for all four TSC configurations are made from a 3/4-inch square rolled bar.
Alternatively, TSC3 and TSC4 closure rings may be made from a 1-1/2-inch x 3/4-inch rolled bar.
The closure rings are dual certified Type 304/304L stainless steel.
Two TSC lengths are designed to accommodate various lengths of fuel. A spacer is used to locate the short length TSCs in the cask cavity. The analysis of the cask cavity spacer is presented in Section 2.6.17. The geometries and materials of construction of the TSC, baskets, and spacers are described in Section 1.3.1.
NAC International                        2.6.12-1
 
MAGNATRAN Transport Cask SAR                              January 2022 Docket No. 71-9356                                            Revision 1 Figure 2.6.12-1  TSC and Basket BWR Fuel Basket TSC NAC International            2.6.12-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.12.1        TSC Analysis Description The MAGNATRAN transport cask provides the containment boundary for transport. The TSC in the transfer cask serves as the handling component for the basket and contents during loading and unloading from the transport cask.
Two TSC lengths are designed to accommodate various lengths of fuel. The design parameters of the TSCs are provided in Table 1.3-2. A bounding content weight is considered in the TSC analysis in this Section.
The structural design criteria for the TSC are based on ASME Code Section III, Subsection NB.
Consistent with this criteria, the structural components of the TSC are shown to satisfy the allowable stress limits presented in Table 2.1.2-2 and Table 2.1.2-3, as applicable.
The TSC is analyzed by using the ANSYS finite element computer program for the 1-ft free drop condition in the top and bottom end, side, and top and bottom corner impact orientations. In addition, the effects of normal operating internal pressure and thermal stresses resulting from exposure of the cask to the hot (100&deg;F ambient, maximum heat load, and solar insolance) and cold (-40&deg;F ambient) normal conditions are evaluated.
NAC International                              2.6.12.1-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.12.2        TSC Finite Element Model Description Three finite element models (FE models A, B and C) are used to analyze the four TSC configurations as shown in the following table. Each finite element model corresponds to one of the three lid configurations. FE Model A is used to analyze the configuration with the 9-in thick lid; FE Model B is used to analyze the configuration with the composite lid and the 3/4-in closure ring; and FE Model C is used to analyze the configuration with the composite lid and the 1-1/2-in closure ring.
TSC Configuration      TSC 1      TSC 2        TSC 3          TSC 4 Length                  191.8      184.8        191.8          184.8 Lid Type                Solid      Solid    Composite      Composite Closure Ring Options      3/4"      3/4"    3/4" 1-1/2" 3/4" 1-1/2" Finite Element Model            A            B      C      B        C 2.6.12.2.1      Description of Finite Element Model A (9-inch Solid Lid Configuration)
A three-dimensional finite element model of the TSC is constructed using ANSYS. The TSC body is modeled with SOLID45 elements. By taking advantage of the symmetry of the TSC and loadings, the model represents one-half (180&deg; portion) of the TSC including the TSC shell, bottom plate and closure lid. The three-dimensional finite element model of the TSC is shown in Figure 2.6.12-2. ANSYS CONTAC52 elements are used to model the interaction between the TSC closure lid assembly and the TSC shell. CONTAC52 elements are also used to simulate the interaction with the transport cask inner shell, cask bottom forging, and cask lid for side and off-angle impacts. The CONTAC52 gap sizes are determined from nominal dimensions of contacting components and are defined in the analysis by the element real constants. The CONTAC52 elements are assigned a stiffness of 1 x 108 lb/in, except the contact elements at TSC bottom. Half of the stiffness is assigned to the contact elements on the symmetry plane.
Fixed nodes on the gap elements represent the cask body. The model is constrained in the global Z-direction for all nodes in the plane of symmetry.
A pressure loading is applied to the inner surface of the TSC to represent the weight of the TSC contents. For end drops, a uniform pressure load is applied to either the TSC lid or bottom plate.
For side and off-angle drops, a linearly varying pressure is applied to the inner shell surface around the TSC circumference. To represent the internal pressure inside the TSC during the transport conditions, bounding internal pressure for normal (120 psig) and accident (210 psig) conditions is modeled as a uniform pressure over the entire inner surface of the TSC.
The inertial load resulting from the weight of the TSC is considered by applying an appropriate deceleration factor (g-load) for either the 1-ft or 30-ft cask drops. Inertial loads from the TSC NAC International                        2.6.12.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 contents are included by applying pressure on the inside of the TSC. The TSC is evaluated for the following drop orientations: top and bottom end drops, side drop, and top and bottom corner drops (20&deg;). Oblique drop orientations are bounded by the side drop condition and are not considered.
Bounding temperatures and thermal gradients for hot transport conditions (100&deg;F ambient with solar insolance) and cold transport conditions (-40&deg;F without solar insolance) are used in a thermal analysis to compute temperatures throughout the TSC. These temperatures are then used to calculate the thermal stresses in the TSC and to determine the allowable stresses. The following table summarizes the applied temperatures.
Location                      Hot                    Cold Lid Center - Outer                380&deg;F                  280&deg;F Lid Center - Inner                400&deg;F                  300&deg;F Shell Top                    300&deg;F                  180&deg;F Shell Peak Temperature              400&deg;F                  300&deg;F Bottom Plate - Center              400&deg;F                  300&deg;F Bottom Plate - Edge                300&deg;F                  180&deg;F Post-Processing Results The stress evaluation for the TSC is performed in accordance with the ASME Code, Section III, Subsection NB, by comparing the linearized sectional stresses with allowable stresses. The sectional stresses at 15 locations of the TSC are obtained for each 4.5&deg; angular division of the model. The locations for the stress sections are shown in Figure 2.6.12-4. The allowable stresses for normal and accident conditions are taken from Subsection NB. Bounding temperatures that envelop the maximum temperatures experienced by canister components during transport conditions are used to determine allowable stress values based on mechanical properties for SA240, Type 304 stainless steel. All stress components are reported in a cylindrical coordinate system (X = Radial, Y = Circumferential, Z = Axial). The evaluation of the canister lid weld (Section 11 of Figure 2.6.12-4) is performed in accordance with NRC Interim Staff Guidance-4 (ISG-4) applying a weld reduction factor of 0.8 to the allowable stresses for the closure lid weld (Section 11). For side drops, the stress intensities at Sections 10 and 11 are averaged over the bearing region of the impact between the canister closure weld and canister shell (from 0&deg; to 13.5&deg; and 18&deg; for the normal and accident conditions, respectively).
The stress intensities of the averaged stresses for the membrane and membrane plus bending are compared to the standard stress allowables. For the primary plus secondary stresses, no averaging is done, and the maximum stress intensity is compared to the standard primary plus secondary stress allowable.
NAC International                        2.6.12.2-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.12.2.2      Description of Finite Element Model B (Composite Lid Configuration with 3/4-Inch Closure Ring)
Model B is the same as Model A except that the 9-inch solid lid is replaced with a composite lid assembly with a 4-inch stainless steel lid and a 5-inch carbon steel shield plate. Both the lid and shield plate are modeled using SOLID45 elements. The interaction between the lid and the shield plate is modeled with CONTAC52 gap elements. LINK10 elements are used to model the bolts attaching the shield plate to the lid. The model is shown in Figure 2.6.12-3.
All loading is the same for Model B, as in Model A, except that the side drop load cases are not performed, as the stresses are bounded by the results of Model A. For the side drop conditons, the design of the composite lid assembly configuration allows the inertial load from the shield plate to be tranfered to the TSC shell. Therefore, the loading on the closure weld for the composite lid assembly (primarily from the 4-inch think lid) is bounded by that for the 9-inch solid lid.
Post-Processing Results The post-processing is performed as described in Section 2.6.12.2.1, except only the stresses at the seven sections affected by the change in the lid configuration are reported. The section locations are shown in Figure 2.6.12-5. The results for Models B and C are summarized in the same table with the model generating the bounding stress noted.
2.6.12.2.3      Description of Finite Element Model C (Composite Lid Configuration with 1-1/2-Inch Closure Ring)
Model C is the same as Model B, except the elements in the region of the closure ring are modified to reflect the size of the 1-1/2-inch closure ring.
All loading is the same for Model C and Model B.
Post-Processing Results The post-processing is performed as described in Section 2.6.12.2.1, except only the seven sections affected by the change in the lid configuration are reported. The section locations are shown in Figure 2.6.12-5. The results for Models B and C are summarized in the same table with the model generating the bounding stress noted.
NAC International                          2.6.12.2-3
 
MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.6.12-2  TSC Finite Element Model A NAC International                2.6.12.2-4
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.6.12-3      TSC Finite Element Model B NAC International                2.6.12.2-5
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 Figure 2.6.12-4 Identification of Sections for Evaluating Linearized Stresses in TSC for FE Model A Nodal Coordinates No. of        Node 1                      Node 2 Section    X            Z            X            Z Cuts 1      35.50        0.00          35.50        2.75 2      35.50        2.75          36.00        2.75 3      35.50        5.75          36.00        5.75 4      35.50        41.42        36.00        36.96 5      35.50        69.58        36.00        68.17 6      35.50        94.92        36.00        94.92 7      35.50        112.75        36.00        126.13 8      35.50        148.42        36.00        157.34 9      35.50        182.75        36.00        182.75 10      35.50        190.50        36.00        190.50 11      35.50        190.25        35.50        190.75 12      0.00        0.00          0.00        2.75 13      0.00        182.75          0.00        191.75 14      34.50        191.56        34.50        191.75 15      35.50        191.56        35.50        191.75 NAC International                  2.6.12.2-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 Figure 2.6.12-5 Identification of Sections for Evaluating Linearized Stresses in TSC for FE Models B and C 15 14 10 11 13 16 9
Nodal Coordinates No. of            Node 1                        Node 2 Section        X            Z              X              Z Cuts 9        35.50        182.75        36.00          182.75 10        35.50        190.50        36.00          190.50 11        35.50        190.25        35.50          190.75 13          0.00        187.75          0.00          191.75 14        34.50        191.56        34.50          191.75 15        35.50        191.56        35.50          191.75 16          0.0        182.74          0.0          187.74 The coordinate system is defined in Figure 2.6.12-4.
NAC International                        2.6.12.2-7
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                          Revision 1 2.6.12.3        Thermal Expansion and Thermal Stresses Evaluation of TSC A thermal stress evaluation is performed to determine the differential thermal expansion and the associated thermal stresses that result from the decay heat in the TSC. Two conditions are considered as shown in the following table.
Solar Insolance Applied Condition        Ambient Temperature                to Cask Surface                Fuel Decay Heat Hot                  100&deg;F                              Yes                          Yes Cold                  -40&deg;F                              No                          Yes The finite element models described in Section 2.6.12.2 are used to perform the thermal stress analysis for each TSC configuration. The temperature boundary conditions used in the models are obtained from the thermal analysis presented in Chapter 3. The equivalent thermal models are obtained by changing the structural element (SOLID45) to the corresponding thermal element (SOLID70). The temperature-dependent thermal conductivity for the TSC material is employed in each thermal conduction analysis. The temperatures generated in these analyses are used in the thermal stress analyses to determine the properties at temperature, as well as the stresses resulting from thermal expansion. For FE Model A, the maximum thermal (Q) stress at the 15 section locations, as shown in Figure 2.6.12-4, are presented in Table 2.6.12-1 and Table 2.6.12-3 for the hot and cold thermal conditions, respectively. For FE Models B and C, the maximum thermal (Q) stress at the seven section locations, as shown in Figure 2.6.12-5, are presented in Table 2.6.12-2 and Table 2.6.12-4 for the hot and cold thermal conditions, respectively.
During transport conditions, the average temperature of the TSC shell is higher than that for the cask body. The differential thermal expansions of the TSC and cask inner shell in both the radial and axial directions are determined as follows. For expansion in the radial direction, the TSC is conservatively considered to be at 400&deg;F and the cask inner shell is conservatively assumed to be at 70&deg;F with no thermal expansion considered. The total diametric expansion of the TSC, d, is:
d =  d T = 0.226 in.
where:
= 9.5 x 10-6 in/in/&deg;F ----------------------------------- Thermal expansion of SA240 Type 304 stainless steel at 400&deg;F d = 72.0 in --------------------------------------------- Outside diameter of TSC shell T = 400-70 = 330&deg;F ------------------------------------ Temperature increase of TSC shell The nominal inside diameter of the cask inner shell is 72.25 inches. Since the diametric clearance is 0.25 inch between the TSC shell and the cask inner shell, there is no interference between the parts.
NAC International                              2.6.12.3-1
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 To calculate the thermal expansion in the axial direction, the TSC shell is conservatively assumed to be at a uniform temperature of 400&deg;F. The increase in the length of the TSC, L, is then:
L =  L T = 0.601 in.
where:
= 9.5 x 10-6 in/in/&deg;F------------------------------------ Thermal expansion of SA240 Type 304 stainless steel at 400&deg;F L = 191.75 in --------------------------------------------- Overall length of TSC shell T = 400-70 = 330&deg;F ------------------------------------ Temperature increase of TSC shell The cask inner shell is conservatively assumed to be at 70&deg;F with no axial growth considered.
The nominal axial clearance in the cavity between the TSC and the cask inner shell is 1.00 inch.
Since this clearance is larger than the shell thermal expansion, no interference occurs in the axial direction between the TSC and the cask.
NAC International                              2.6.12.3-2
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.6.12-1          TSC Q Stresses - Thermal Only (Hot) - FE Model A1 Q Stresses (ksi)
Section                                                                SI Location        Sx        Sy      Sz      Sxy    Syz      Sxz      (ksi) 1          0.0        2.5      0.1      -0.1    0.0      0.0      2.5 2          -0.1      2.0      -0.2    -0.1    0.0      0.0      2.2 3          0.1        0.9      -0.2    0.0      0.0      0.0      1.1 4          0.0        0.0      0.0      0.0      0.0      0.0      0.0 5          0.0        0.0      0.0      0.0      0.0      0.0      0.0 6          0.0        -0.2    0.6      0.0      0.0      0.0      0.8 7          0.0        0.0      0.0      0.0      0.0      0.0      0.0 8          0.0        0.0      0.0      0.0      0.0      0.0      0.0 9          0.0        0.0      0.1      0.0      0.0      0.0      0.1 10          0.0        0.8      -0.2    0.0      0.0      0.0      0.9 11          -0.1      0.7      0.0      0.0      0.0      0.0      0.8 12        -15.3      -15.3    -7.5    0.1      1.8      0.0        8.6 13          -4.6      -4.6    -2.3    0.0      0.3      0.0      2.4 14          0.0        0.6      -0.1    0.0      0.0      0.0      0.7 15          0.0      0.8      0.1    0.0      0.0      0.0      0.8
: 1. See Section 2.6.12.2 for model description.
Table 2.6.12-2        TSC Q Stresses - Thermal Only (Hot) - FE Models B1 and C1 FE      Section                          Q Stresses (ksi)                        SI Model    Location        Sx        Sy      Sz    Sxy      Syz      Sxz      (ksi)
B          9          0.00    -0.71    -1.62    0.03    0.01    -0.03      1.62 B          10          0.29      6.03    -1.96    0.00    0.00    -0.48      8.09 B          11          0.48      6.29    -1.42    0.00    0.00    -0.32      7.76 B          13        -9.94    -9.96    -0.77    0.00    0.07      0.00      9.18 B          14          0.83      7.34    -2.60    0.00    0.00    -0.37      9.98 B          15        -0.07      7.94    2.03    0.02    -0.01    -0.13      8.01 B          16        -7.23    -7.24    -0.74    0.00    -0.06      0.00      6.50
: 1. See Section 2.6.12.2 for model description.
NAC International                              2.6.12.3-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 Table 2.6.12-3        TSC Q Stresses - Thermal Only (Cold) - FE Model A1 Q Stresses (ksi)
Section                                                      SI Location      Sx      Sy    Sz    Sxy    Syz      Sxz    (ksi) 1        0.0    3.0  0.1    -0.1    0.0    0.0      3.1 2      -0.2 2.3 -0.2          -0.1    0.0    0.0      2.5 3        0.1    0.9 -0.4      0.0      0.0    0.0      1.3 4        0.0    0.0  0.0    0.0      0.0    0.0      0.0 5        0.0    0.0  0.0    0.0      0.0    0.0      0.0 6        0.0 -0.3 0.7          0.0      0.0    0.0      1.0 7        0.0    0.0  0.0    0.0      0.0    0.0      0.0 8        0.0    0.0  0.0    0.0      0.0    0.0      0.0 9        0.0    0.0  0.1    0.0      0.0    0.0      0.2 10      -0.1 0.9 -0.2          0.0      0.0    0.0      1.1 11      -0.1 0.9      0.0    0.0      0.0    0.0      1.0 12      -17.3 -17.2 -8.4        0.1    -2.2    0.0    10.0 13      -5.4 -5.4 -2.7        0.0      0.4    0.0      2.8 14        0.0    0.7 -0.2      0.0      0.0    0.0      0.8 15      -0.1 0.9      0.1    0.0      0.0    0.0      1.0
: 1. See Section 2.6.12.2 for model description.
Table 2.6.12-4        TSC Q Stresses - Thermal Only (Cold) - FE Models B1 and C1 FE      Section                  Pm + Pb + Q Stresses (ksi)                SI Model    Location          Sx        Sy        Sz      Sxy    Syz    Sxz  (ksi)
B            9          0.00    -0.89    -1.88    -0.05  -0.01  -0.03 1.88 B            10        0.28      7.20    -2.13    0.00  0.00  -0.52 9.43 B            11        0.51      7.50    -1.55    0.00  0.00  -0.35 9.10 B            13        -11.63    -11.65    -1.08    0.01  0.10  0.00  10.57 B            14        0.73      8.53    -2.99    0.00    0.00  -0.36 11.56 B            15        -0.14      9.33      2.34    -0.02    0.01  -0.15 9.48 B            16        -8.60    -8.60    -1.06    0.01  -0.09  0.00  7.55
: 1. See Section 2.6.12.2 for model description.
NAC International                              2.6.12.3-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.12.4        Stress Evaluation of PWR Fuel TSC for 1-Foot End-Drop Load Condition A structural analysis performed by ANSYS evaluates the effect of a 1-ft end drop impact for both the bottom and top end orientations of the TSC. The ASME Code, Section III, Subsection NB requires that stresses arising from operational loads be assessed on the basis of the primary loads. The primary loads for the 1-ft drop result from the deceleration of the TSC and its contents and the 120 psig pressure load internal to the TSC. The applied deceleration is 20g for both orientations. The inertial load of the TSC is addressed by the deceleration factor applied to the TSC density. The weight of the contents is represented by a pressure load on the inner end surface of the TSC. Displacement constraints are applied to the plane of symmetry. Gap elements are defined at the TSC end to represent the interface with the top or bottom of the transport cask. To determine the effect of the 120 psig pressure load, the top end and bottom end orientations with and without the pressure load are analyzed.
This load condition is evaluated using Models A, B and C as described in Section 2.6.12.2. The Section locations for linearized stress evaluation are shown in Figure 2.6.12-4 for Model A and in Figure 2.6.12-5 for Models B and C. Table 2.6.12-5 provides a summary of critical section stresses for the top and bottom end-drop conditions for Model A and Table 2.6.12-6 provides a summary of critical section stresses for the top and bottom end-drop conditions for Models B and C. The summaries for Pm and Pm+Pb stresses due to 120 psig internal pressure (pressure only) for Model A are provided in Table 2.6.12-7 and Table 2.6.12-8, respectively. The summaries for Pm and Pm+Pb stresses due to 120 psig internal pressure (pressure only) for Models B and C are provided in Table 2.6.12-9 and Table 2.6.12-10, respectively. Results for the Pm and Pm+Pb stresses for the top and bottom drop loading conditions are provided in Table 2.6.12-11 through Table 2.6.12-26.
NAC International                        2.6.12.4-1
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.12-5        TSC Critical Sections for the Pressure Only and 1-Foot End Drop Load Condition - Model A1 Critical  Minimum Factor Condition            Stress    Section      of Safety Pressure (only)          Pm          3            1.60 Pressure (only)        Pm + Pb      12            1.33 Top End Drop            Pm          3            8.76 Top End Drop          Pm + Pb      3            8.56 Top End Drop +            Pm          3            1.95 Pressure Top End Drop +          Pm + Pb      12            1.54 Pressure Bottom End Drop            Pm          4            6.63 Bottom End Drop          Pm + Pb      2            8.11 Bottom End Drop +          Pm          3            1.92 Pressure Bottom End Drop +        Pm + Pb      2            1.20 Pressure
: 1. See Section 2.6.12.2 for model description.
Table 2.6.12-6      TSC Critical Sections for the Pressure Only and 1-Foot End Drop Load Condition - Models B1 and C1 Critical  Minimum Factor Condition              Stress    Section      of Safety Pressure (only)            Pm          9          2.33 Pressure (only)          Pm + Pb      13          2.95 Top End Drop              Pm          9          5.22 Top End Drop            Pm + Pb        9          6.89 Top End Drop +              Pm          9          2.19 Pressure Top End Drop +          Pm + Pb        9          2.91 Pressure Bottom End Drop              Pm          9          5.11 Bottom End Drop          Pm + Pb        9          6.48 Bottom End Drop +            Pm          9          2.24 Pressure Bottom End Drop +          Pm + Pb        9          2.99 Pressure
: 1. See Section 2.6.12.2 for model description.
NAC International                          2.6.12.4-2
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-7        TSC Pm Stresses - Internal Pressure - Model A1 Pm Stresses (ksi)
Section                                                          SI          Allowable Factor of Location      Sx    Sy    Sz      Sxy      Syz    Sxz        (ksi)      Stress (ksi) Safety 1        -0.11  1.42 3.95      -0.05    0.06    -0.18      4.07          19.68          4.83 2        0.89  -7.98 -1.31      0.30    -0.02  -0.61      9.04          19.68          2.18 3        -0.54  -7.71 4.23        0.22    0.04    0.93      12.12          19.35          1.60 4        -0.07  8.51 4.20      -0.34    0.00    0.00      8.61          18.10          2.10 5        -0.03  8.51 4.20      -0.34    0.00    0.00      8.57          17.80          2.08 6        -0.04  8.51 4.20      -0.34    0.00    0.00      8.58          17.50          2.04 7        -0.05  8.51 4.20      -0.34    0.00    0.00      8.58          17.80          2.07 8        -0.05  8.51 4.20      -0.34    0.00    0.00      8.58          18.10          2.11 9        -0.06  8.43 4.20      -0.33    0.00    0.04      8.52          19.35          2.27 10      -0.41  0.81 0.48      -0.05    0.02    0.31      1.32          19.48        Large 11      -0.15  0.92 0.54      -0.05    0.01  -0.51      1.36          15.482        Large 12        0.36  0.35 -0.39      0.00    -0.01  -0.04      0.75          19.35        Large 13        0.04  0.04 -0.06      0.00    0.00    0.00      0.10          18.70        Large 14        0.50  1.27 0.06      -0.03    0.02    -0.08      1.23          19.35        Large 15        0.01  1.08 0.02      -0.04    -0.02  -0.01      1.08          19.35        Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-8        TSC Pm + Pb Stresses - Internal Pressure - Model A1 Pm + Pb Stresses (ksi)
Section                                                                  SI      Allowable Factor of Location      Sx      Sy        Sz      Sxy      Syz        Sxz      (ksi)    Stress (ksi) Safety 1        -0.77    -5.08 10.44        0.12      0.02      -0.26    15.53        29.51          1.90 2        2.50  -12.53 -18.38        0.52    -0.05      -1.09    21.01        29.51          1.40 3        -0.23    -3.78 17.24        0.08      0.05      1.18    21.10        29.02          1.38 4        -0.11    8.58    4.22      -0.34    0.00      -0.01    8.72        27.15          3.11 5        -0.06    8.58    4.21      -0.34    0.00      0.00    8.67        26.70          3.08 6        -0.07    8.58    4.21      -0.34    0.00      0.00    8.68        26.25          3.02 7        -0.08    8.58    4.21      -0.34    0.00      0.00    8.68        26.70          3.08 8        -0.08    8.58    4.21      -0.34    0.00      0.00    8.69        27.15          3.12 9        -0.04    8.91    6.03      -0.35    0.00      0.02    8.98        29.02          3.23 10      -0.82    0.45    -0.28    -0.04    0.03      1.07    2.20        29.22        Large 11      -0.04    1.35      2.07    -0.06    0.00      -0.75    2.59        23.222          8.97 12      21.49    21.38 -0.40          0.00    -0.02      -0.04    21.89        29.02          1.33 13        2.44    2.44    0.01      0.00    0.00      0.00    2.43        28.05        Large 14        0.52    1.21    -0.06    -0.03    0.00      -0.08    1.29        29.02        Large 15      -0.63    0.82    -0.31    -0.05    -0.02      0.06    1.46        29.02        Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.4-3
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-9        TSC Pm Stresses - Internal Pressure - Model B1 and C1 Pm Stresses (ksi)                                      Stress    Factor FE    Section                                                                        SI      Allowable    of Model  Location        Sx        Sy        Sz        Sxy        Syz      Sxz      (ksi)        (ksi)  Safety B          9        -0.07      8.20      4.23      -0.32      0.01      0.04    8.30        19.35      2.33 B          10        -0.77      1.00      0.11      0.00      0.00      0.69      2.15        19.35      9.01 B          11        -0.34      1.47      2.13      -0.03      0.03      -0.30    2.54        15.482    6.09 C          13        0.02      -0.04      -0.46      -0.01      0.04      0.05    0.50        18.70    Large C          14        0.39      3.35      0.15      0.00      0.00      -0.08    3.22        19.35      6.01 C          15        -0.27      2.81      -0.14      0.00      0.00      0.07    3.11        19.35      6.21 C          16        0.01      0.01      0.00      0.00      0.00      0.00    0.01        19.35    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-10 TSC Pm + Pb Stresses - Internal Pressure - Model B1 and C1 Pm + Pb Stresses (ksi)                                    Stress    Factor FE    Section                                                                        SI      Allowable    of Model  Location        Sx        Sy        Sz        Sxy        Syz        Sxz      (ksi)        (ksi)  Safety C          9        -0.05      8.81      6.48      -0.35      0.00      0.00      8.90        29.02      3.26 C          10        -0.18      2.87      6.57      0.00      0.00      -0.56      6.84        29.02      4.24 B          11        0.17      2.11      3.87      0.00      0.00      -0.72      3.96        23.222    5.86 C          13        8.39      8.22      -1.12      -0.02      0.20      0.14      9.52        28.05      2.95 C          14        0.45      3.52      0.16      0.00      0.00      -0.05      3.37        29.02      8.61 C          15        -0.87      2.68      -0.46      0.00      0.00      0.12      3.58        29.02      8.11 B          16        2.48      2.47      0.01      0.00      0.00      0.00      2.47        29.02    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.4-4
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-11 TSC Pm Stresses Foot Top End Drop - Model A1 Pm Stresses (ksi)
Section                                                            SI        Allowable Factor of Location      Sx      Sy    Sz      Sxy      Syz      Sxz        (ksi)      Stress (ksi) Safety 1        0.01 -0.16 -0.48      0.01    -0.01    0.01      0.49          19.68        Large 2        -0.1 1.1        0.1    0.0      0.0      0.1      1.25          19.68        Large 3        0.1    1.6 -0.6      -0.1    0.0      -0.1      2.21          19.35          8.76 4        0.0    0.0 -0.8      0.0      0.0      0.0      0.78            18.1        Large 5        0.0    0.0 -1.0      0.0      0.0      0.0      0.96            17.8        Large 6        0.0    0.0 -1.1      0.0      0.0      0.0      1.11            17.5        Large 7        0.0    0.0 -1.3      0.0      0.0      0.0      1.29            17.8        Large 8        0.0    0.0 -1.5      0.0      0.0      0.0      1.48            18.1        Large 9        0.0    0.0 -1.6      0.0      0.0      0.0      1.63          19.35        Large 10        0.0 -0.3 -1.5          0.0      0.0      0.0      1.51          19.48        Large 11        0.0    0.0 -0.6      0.0      0.0      0.0        0.6          15.482        Large 12        0.0    0.0    0.0    0.0      0.0      0.0      0.04          19.35        Large 13        0.0    0.0 -0.5      0.0      0.0      0.0      0.48            18.7        Large 14        0.0    0.0 -0.6      0.0      0.0      0.0      0.57          19.35        Large 15        -0.1 0.0 -0.5          0.0      0.0      0.1      0.47          19.35        Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-12 TSC Pm + Pb Stresses Foot Top End Drop - Model A1 Pm + Pb Stresses (ksi)
Section                                                          SI        Allowable        Factor of Location Sx          Sy      Sz    Sxy      Syz      Sxz      (ksi)      Stress (ksi)        Safety 1      0.12    0.82    -1.26  -0.02    -0.01    0.02      2.08          29.51          Large 2      0.12    0.63    -1.88  -0.02      0      0.01      2.51          29.51          Large 3        0.0      1.1    -2.3    0.0    0.0      -0.1    3.39          29.02            8.56 4        0.0    0.0      -0.8    0.0    0.0      0.0      0.78          27.15          Large 5        0.0    0.0      -1.0    0.0    0.0      0.0      0.96            26.7          Large 6        0.0    0.0      -1.1    0.0    0.0      0.0      1.11          26.25          Large 7        0.0    0.0      -1.3    0.0    0.0      0.0      1.29            26.7          Large 8        0.0    0.0      -1.5    0.0    0.0      0.0      1.48          27.15          Large 9        0.0    0.0      -1.7    0.0    0.0      0.0      1.7          29.02          Large 10      0.1    -0.5    -2.4    0.0    0.0      0.0      2.54          29.22          Large 11      0.0    -0.1    -0.8    0.0    0.0      -0.1    0.79          23.222          Large 12      -3.1    -3.1    0.0      0.0    0.0      0.0      3.05          29.02            9.52 13      0.1      0.1    -0.5    0.0    0.0      0.0    0.51          28.05          Large 14      0.0    -0.1    -0.6    0.0    0.0      0.0      0.6          29.02          Large 15      0.1      0.0    -0.6    0.0    0.0      0.1    0.74          29.02          Large
: 1. See Section Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.4-5
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-13 TSC Pm Stresses Foot Top End Drop - Model B1 and C1 Pm Stresses (ksi)                                      Stress    Factor FE    Section                                                                        SI      Allowable    of Model  Location        Sx        Sy        Sz      Sxy        Syz      Sxz      (ksi)        (ksi)  Safety C          9        -0.03      3.68        0.16    -0.01      -0.01      0.03      3.71        19.35      5.22 B          10        -0.24      -0.22      -1.05      0.00        0.01      0.27      0.97        19.35    Large B          11        -0.07      0.26        0.08      0.00        0.03    -0.11      0.39        15.482    Large C          13        0.04      0.04      -0.54      0.00        0.00      0.00      0.58        18.70    Large C          14        -0.01      0.02      -0.60    -0.02        0.00    -0.01      0.63        19.35    Large B          15        -0.10      0.05      -0.42      0.00        0.00      0.05      0.48        19.35    Large C          16        0.00      0.00      -0.01      0.00        0.00      0.00      0.01        19.35    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-14 TSC Pm + Pb Stresses Foot Top End Drop - Model B1 and C1 Pm + Pb Stresses (ksi)                                    Stress    Factor FE    Section                                                                        SI      Allowable    of Model  Location        Sx        Sy        Sz      Sxy        Syz      Sxz      (ksi)        (ksi)  Safety C          9        -0.04      3.35      -0.86      0.00      -0.02      0.04      4.21        29.02      6.89 C          10        0.26      -0.66      -2.97      0.00      0.01      0.22      3.26        29.02      8.91 B          11        0.12      0.47      0.86    -0.01        0.01    -0.10      0.76        23.222    Large C          13        0.06      0.06      -0.54      0.00      -0.01      0.00      0.61        28.05    Large C          14        -0.02      0.00      -0.64    -0.03        0.00    -0.02      0.65        29.02    Large B          15        0.06      0.11      -0.37      0.00        0.00      0.05      0.49        29.02    Large B          16        0.24        0.24      0.00      0.00        0.00      0.00      0.24        29.02    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.4-6
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-15 TSC Pm Stresses Foot Top End Drop, Internal Pressure - Model A1 Pm Stresses (ksi)
Section                                                        SI          Allowable        Factor of Location    Sx      Sy      Sz    Sxy Syz        Sxz        (ksi)        Stress (ksi)      Safety 1      -0.10 1.26 3.47 -0.05 0.05 -0.18                  3.59            19.68          5.48 2      0.81 -6.84 -1.25 0.25 -0.01 -0.55                7.80            19.68          2.52 3      -0.48 -6.12 3.63 0.17 0.03 0.83                    9.91            19.35          1.95 4      -0.07 8.51 3.43 -0.34 0.00 0.00                    8.61            18.10          2.10 5      -0.04 8.51 3.24 -0.34 0.00 0.00                    8.57            17.80          2.08 6      -0.04 8.51 3.09 -0.34 0.00 0.00                    8.58            17.50          2.04 7      -0.05 8.51 2.91 -0.34 0.00 0.00                    8.58            17.80          2.07 8      -0.05 8.51 2.73 -0.34 0.00 0.00                    8.58            18.10          2.11 9      -0.06 8.44 2.58 -0.33 0.00 0.04                    8.53            19.35          2.27 10      -0.39 0.52 -1.00 -0.04 0.02 0.32                  1.66            19.48          Large 11      -0.15 0.89 -0.06 -0.04 0.01 -0.52                  1.51            15.482          Large 12      0.32 0.32 -0.39 0.00 -0.02 -0.03                  0.71            19.35          Large 13      0.04 0.04 -0.54 0.00 0.00 0.00                    0.58            18.70          Large 14      0.47 1.24 -0.54 -0.03 0.02 -0.10                  1.78            19.35          Large 15      -0.04 1.08 -0.43 -0.04 -0.02 0.08                  1.53            19.35          Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-16 TSC Pm + Pb Stresses - 1 Foot Top End Drop, Internal Pressure -
Model A1 Pm + Pb Stresses (ksi)
Section                                                          SI          Allowable Factor of Location    Sx      Sy        Sz    Sxy Syz        Sxz        (ksi)      Stress (ksi) Safety 1      -0.65 -4.26        9.18 0.10 0.02        -0.24      13.45          29.51          2.19 2      2.22 -10.88 -16.37 0.45 -0.04            -0.97      18.70          29.51          1.58 3      -0.20 -2.70 14.94 0.05 0.04              1.05      17.71          29.02          1.64 4      -0.10 8.58        3.44 -0.34 0.00        -0.01      8.71          27.15          3.12 5      -0.07 8.58        3.26 -0.34 0.00        0.00      8.67          26.70          3.08 6      -0.07 8.58        3.10 -0.34 0.00        0.00      8.68          26.25          3.02 7      -0.08 8.58        2.92 -0.34 0.00        0.00      8.68          26.70          3.08 8      -0.08 8.58        2.74 -0.34 0.00        0.00      8.69          27.15          3.12 9      -0.04 8.94        4.49 -0.35 0.00        0.02      9.01          29.02          3.22 10      -0.69 -0.09 -2.69 -0.02 0.03              1.10      3.09          29.22          9.46 11      -0.28 0.40        -1.77 -0.03 0.01        -0.33      2.24          23.222        Large 12      18.41 18.32 -0.42 0.00 -0.03              -0.03      18.84          29.02          1.54 13      2.40    2.40    -0.49 0.00 -0.01        0.00      2.89          28.05          9.71 14      0.50    1.19    -0.63 -0.03 0.00        -0.10      1.82          29.02          Large 15      -0.85 0.81        -0.63 -0.06 -0.02      0.15        1.74          29.02          Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.4-7
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-17 TSC Pm Stresses Foot Top End Drop, Internal Pressure - Model B1 and C1 Pm Stresses (ksi)                                      Stress    Factor FE      Section                                                                        SI      Allowable    of Model  Location        Sx        Sy        Sz      Sxy        Syz      Sxz      (ksi)        (ksi)  Safety C          9        -0.07      8.78        2.65    -0.02      -0.03      0.07      8.85        19.35      2.19 B          10        -0.59      -0.07      -0.27    -0.01        0.01      0.66      1.35        19.35    Large B          11        -0.21      0.66      1.67    -0.01        0.01    -0.13      1.90        15.482    8.17 C          13        0.08      0.08      -0.61      0.00        0.00      0.00      0.69        18.70    Large C          14        0.07      0.23      -0.27    -0.02        0.00    -0.01      0.51        19.35    Large C          15        -0.15      0.25      0.10      0.01        0.00      0.01      0.41        19.35    Large C          16        0.00      0.00      -0.01      0.00        0.00      0.00      0.02        19.35    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-18 TSC Pm + Pb Stresses Foot Top End Drop, Internal Pressure -
Model B1 and C1 Pm + Pb Stresses (ksi)                                    Stress    Factor FE      Section                                                                        SI      Allowable    of Model  Location        Sx        Sy        Sz      Sxy        Syz      Sxz      (ksi)        (ksi)  Safety B          9        -0.06      9.91        5.31    -0.04        0.01    -0.01      9.96        29.02      2.91 C          10        0.67      -0.77      -3.87      0.00      0.03      0.63      4.71        29.02      6.16 B          11        0.31      1.18      2.84    -0.01        0.01    -0.30      2.60        23.222    8.94 C          13        0.11      0.10      -0.61      0.00      -0.01      0.00      0.72        28.05    Large C          14        0.09      0.24      -0.27    -0.02      -0.01    -0.01      0.51        29.02    Large B          15        -0.16      0.11      -0.40    -0.01        0.00    -0.01      0.51        29.02    Large B          16        0.25      0.25      0.00      0.00        0.00      0.00      0.25        29.02    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.4-8
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-19            TSC Pm Stresses Foot Bottom End Drop - Model A1 Pm Stresses (ksi)
Section                                                            SI        Allowable Factor of Location      Sx    Sy    Sz      Sxy      Syz      Sxz        (ksi)      Stress (ksi) Safety 1          0    -0.17  -1.11    0.01      0.02      0.2      1.18          19.68        Large 2        0.18  -0.72  -2.44      0        0      -0.15      2.64          19.68          7.45 3        -0.01  -0.63  -2.91      0        0      0.03        2.9          19.35          6.67 4          0      0  -2.72      0        0        0        2.73            18.1          6.63 5          0      0  -2.55      0        0        0        2.55            17.8          6.98 6          0      0  -2.39      0        0        0        2.39            17.5          7.32 7          0      0  -2.21      0        0        0        2.21            17.8          8.05 8        0.01  0.02  -2.01    0.02      0        0        2.05            18.1          8.83 9        0.01  0.07  -1.89      0        0      0.01      1.96          19.35          9.87 10        -0.08  -0.6  -0.82    0.02      0.01    0.35      1.02          19.48        Large 11        -0.02  -0.08  0.86      0        0      0.44      1.24          15.482        Large 12        0.06  0.05  -0.29      0      0.04    0.02      0.35          19.35        Large 13          0      0      0      0        0        0          0            18.7        Large 14        -0.44  -0.6    0    0.01    -0.01    0.07      0.61          19.35        Large 15        -0.19  -0.53  -0.04    0.01      0.02    0.03      0.49          19.35        Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-20 TSC Pm + Pb Stresses Foot Bottom End Drop - Model A1 Pm + Pb Stresses (ksi)
Section                                                          SI        Allowable        Factor of Location Sx          Sy      Sz    Sxy      Syz      Sxz      (ksi)      Stress (ksi)        Safety 1        0.54    0.29    -0.9    0.01    0.04    0.48    1.73          29.51          Large 2        0.23  -0.98    -3.39      0        0    -0.17    3.64          29.51            8.11 3      -0.02  -0.69    -3.13      0        0    0.03      3.12          29.02            9.3 4          0      0    -2.73      0        0        0      2.73          27.15            9.95 5          0      0    -2.54      0        0        0      2.55            26.7          Large 6          0    0.01    -2.39      0        0        0      2.4          26.25          Large 7          0    0.01    -2.21      0        0        0      2.22            26.7          Large 8        0.01  -0.05    -2.06    0.02      0        0      2.07          27.15          Large 9          0    0.03      -2      0    -0.01      0      2.04          29.02          Large 10      0.02  -1.09    -2.57  -0.04    -0.01    0.19      2.62          29.22          Large 11      -0.43  -0.16    1.16      0        0      0.39    1.77          23.222          Large 12      1.16    0.94    -0.36      0      0.04    0.02    1.52          29.02          Large 13      1.03    1.03      0      0        0        0      1.02          28.05          Large 14      -0.4  -0.54    0.09    0.01      0      0.05    0.64          29.02          Large 15      0.41    -0.3    0.19    0.02    0.02    -0.06    0.72          29.02          Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.4-9
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-21 TSC Pm Stresses Foot Bottom End Drop - Model B1 and C1 Pm Stresses (ksi)                                      Stress    Factor FE    Section                                                                        SI      Allowable    of Model  Location        Sx        Sy        Sz      Sxy        Syz      Sxz      (ksi)        (ksi)  Safety B          9        -0.03      3.68      -0.09    -0.01      -0.03      0.03      3.78        19.35      5.11 C        10        0.36      -0.10      -0.73      0.01      0.01      0.23      1.18        19.35    Large B        11        -0.13      0.39        1.43    -0.01        0.01      0.29      1.67        15.482    9.25 C        13        0.04      0.04      -0.02      0.00        0.00      0.00      0.06        18.70    Large C        14        -0.23      0.22      -0.01      0.00        0.00    -0.02      0.45        19.35    Large C        15        -0.21      0.18        0.02      0.00        0.00      0.01      0.39        19.35    Large C        16        0.00      0.00      0.00      0.00        0.00      0.00      0.00        19.35    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-22 TSC Pm + Pb Stresses Foot Bottom End Drop - Model B1 and C1 Pm + Pb Stresses (ksi)                                    Stress    Factor FE    Section                                                                        SI      Allowable    of Model  Location        Sx        Sy          Sz      Sxy        Syz      Sxz    (ksi)        (ksi)  Safety C        9        -0.04      3.34      -1.14      0.00      -0.03    0.04    4.48        29.02      6.48 C        10        0.34      -0.94      -3.44      0.01        0.02    0.31    3.82        29.02      7.59 B        11        -0.63      0.17        1.26    -0.02        0.01    0.33      2.01        23.222    Large C        13        1.05      1.04        0.00      0.00        0.00    0.00    1.05        28.05    Large B        14        -0.55      -0.13        0.21      0.00        0.00    0.01      0.76        29.02    Large B        15        -0.54      0.01      -0.21      0.00        0.00    0.09    0.56        29.02    Large C        16        0.79      0.79        0.00      0.00        0.00    0.00    0.79        29.02    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.4-10
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-23 TSC Pm Stresses Foot Bottom End Drop, Internal Pressure -
Model A1 Pm Stresses (ksi)
Section                                                        SI          Allowable        Factor of Location    Sx      Sy    Sz      Sxy    Syz    Sxz        (ksi)        Stress (ksi)      Safety 1      -0.11  1.25  2.83    -0.05  0.07  0.01        2.95            19.68            6.67 2      1.07  -8.69  -3.75    0.33  -0.02  -0.76        9.90            19.68            1.99 3      -0.55  -8.33  1.33    0.24  0.04  0.96      10.07            19.35            1.92 4      -0.07  8.51  1.48    -0.34  0.00  0.00        8.61            18.10            2.10 5      -0.03  8.51  1.66    -0.34  0.00  0.00        8.57            17.80            2.08 6      -0.04  8.51  1.81    -0.34  0.00  0.00        8.58            17.50            2.04 7      -0.05  8.51  1.99    -0.34  0.00  0.00        8.58            17.80            2.07 8      -0.04  8.53  2.19    0.36  0.00  0.00        8.60            18.10            2.10 9      -0.06  8.50  2.31    -0.33  0.00  0.05        8.59            19.35            2.25 10      -0.50  0.21  -0.34  -0.03  0.03  0.66        1.33            19.48          Large 11      -0.17  0.84  1.40    -0.04  0.01  -0.08        1.58            15.482          9.80 12      0.42    0.40  -0.67    0.00  0.02  -0.01        1.09            19.35          Large 13      0.04    0.04  -0.06    0.00  0.00  0.00        0.10            18.70          Large 14      0.06    0.68  0.06    -0.03  0.01  -0.01        0.62            19.35          Large 15      -0.19  0.55  -0.02  -0.03  0.00  0.02        0.74            19.35          Large
: 1. See Section2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-24 TSC Pm + Pb Stresses - 1 Foot Bottom End Drop, Internal Pressure -
Model A1 Pm + Pb Stresses (ksi)
Section                                                            SI        Allowable Factor of Location      Sx      Sy        Sz      Sxy    Syz      Sxz      (ksi)      Stress (ksi) Safety 1      -1.31 -5.72      9.11 0.13 0.02            -0.35    14.84        29.51          1.99 2        2.72 -13.51 -21.75 0.56 -0.05              -1.26    24.63        29.51          1.20 3      -0.23 -4.34 14.56 0.10 0.05                  1.21      19.01        29.02          1.53 4      -0.10 8.58        1.50 -0.34 0.00            -0.01      8.72        27.15          3.11 5      -0.06 8.58        1.67 -0.34 0.00            0.00      8.67        26.70          3.08 6      -0.07 8.58        1.83 -0.34 0.00            0.00      8.68        26.25          3.02 7      -0.08 8.58        2.01 -0.34 0.00            0.00      8.68        26.70          3.08 8      -0.08 8.58        2.19 -0.34 0.00            0.00      8.69        27.15          3.12 9      -0.03 9.02        4.26 -0.35 0.00            0.03      9.08        29.02          3.20 10      -0.80 -0.64 -2.85 0.00 -0.04                  1.25      3.24        29.22          9.02 11        0.36    1.34      2.62 0.05 -0.01          -0.27      2.33        23.222          9.97 12      20.45 20.54 -0.62 0.00 0.01                  -0.01    21.15        29.02          1.37 13        1.41    1.41      0.00 0.00 0.00            0.00      1.41        28.05          Large 14        0.01    0.69      0.10 -0.03 0.01            0.01      0.68        29.02          Large 15      -0.21 0.52        -0.12 -0.03 0.00          0.00      0.74        29.02          Large
: 1. See Section2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.4-11
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-25 TSC Pm Stresses Foot Bottom End Drop, Internal Pressure -
Model B1 and C1 Pm Stresses (ksi)                                      Stress    Factor FE      Section                                                                        SI      Allowable    of Model  Location        Sx        Sy        Sz        Sxy        Syz        Sxz      (ksi)        (ksi)  Safety B        9        -0.07    8.55      2.33      -0.02      -0.04      0.06      8.62        19.35      2.24 B        10        -0.88    0.04      -0.70      0.01      -0.04      1.00      2.02        19.35      9.59 B        11        -0.34    1.29        2.76      0.01      -0.02      0.13      3.11        15.482    4.98 C        13        0.09    0.09      -0.06      0.00      -0.01      0.01      0.15        18.70    Large C        14        0.00    2.21        0.09      0.00      0.00      -0.07    2.25        19.35      8.61 C        15        -0.37    1.86      -0.07      0.00        0.00      0.04      2.24        19.35      8.65 C        16        0.01    0.01        0.00      0.00      0.00      0.00      0.01        19.35    Large
: 1. See Section2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-26 TSC Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure -
Model B1 and C1 Pm + Pb Stresses (ksi)                                    Stress    Factor FE      Section                                                                        SI      Allowable    of Model  Location        Sx        Sy          Sz        Sxy        Syz      Sxz      (ksi)        (ksi)  Safety C          9        -0.06      9.65        5.09      -0.03      0.01      -0.02      9.72        29.02      2.99 C        10        0.89    -1.35      -6.58      -0.03      0.01      0.86      7.66        29.02      3.79 B        11        0.50      1.76        3.99      -0.03      -0.02    -0.03      3.49        23.222    6.65 C        13        5.99      5.97        0.01      0.00      -0.01      0.01      5.98        28.05      4.69 C        14        0.09      2.33        0.06      0.00      0.00      -0.04      2.30        29.02    Large C        15        -0.46      1.88      -0.21      0.00      0.00      0.03      2.35        29.02    Large B        16        0.57      0.56        0.00      0.00      0.00      0.00      0.56        29.02    Large
: 1. See Section2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.4-12
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.12.5      Stress Evaluation of PWR Fuel TSC for Combined Thermal and 1-Foot End Drop Load Condition The thermal stress loads described in Section 2.6.12.3 are applied in conjunction with the primary loads in Section 2.6.12.4 to produce a combined thermal stress plus end-impact loading.
The stress evaluation is performed according to the ASME Code, Section III, Subsection NB.
The most critical sections are listed in Table 2.6.12-27 and Table 2.6.12-28. The stresses reported in these tables correspond to the nodal stress at the surface. Table 2.6.12-29 through Table 2.6.12-36 tabulate the peak stresses for both the hot and cold conditions for both the top-and bottom end drop cases for the conditions that result in the minimum factor of safety.
NAC International                        2.6.12.5-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.6.12-27 TSC Critical Sections for the Combined 1-Foot End Drop and Thermal Load Condition - Model A1 Minimum Factor Condition                Stress        Critical Section    of Safety Top End Drop +              P+Q                  12              2.18 Thermal (cold)
Top End Drop +              P+Q                  12              2.35 Thermal (hot)
Bottom End Drop +              P+Q                  12              2.05 Thermal (cold)
Bottom End Drop +              P+Q                  12              2.21 Thermal (hot)
: 1. See Section 2.6.12.2 for model description.
Table 2.6.12-28            TSC Critical Sections for the Combined 1-Foot End Drop and Thermal Load Condition - Model B1 and C1 Minimum Factor Condition                Stress        Critical Section    of Safety Top End Drop +              P+Q                  11              3.86 Thermal (cold)
Top End Drop +              P+Q                  11              4.30 Thermal (hot)
Bottom End Drop +              P+Q                  13              4.16 Thermal (cold)
Bottom End Drop +              P+Q                  13              3.78 Thermal (hot)
: 1. See Section 2.6.12.2 for model description.
NAC International                          2.6.12.5-2
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-29 TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Cold -
Model A1 Pm + Pb + Q Stresses (ksi)                                                    Factor Section                                                                                      Allowable      of Location      Sx        Sy          Sz        Sxy        Syz        Sxz      SI (ksi)  Stress (ksi)  Safety 1        0.42      9.79      -2.19      -0.31      0.08      -0.08      11.99        59.02      4.92 2        2.19      -8.43      -15.96        0.36      -0.04      -0.95      18.26        59.02      3.23 3      -0.23      -1.59      15.31        0.00      0.04      1.00      16.96        58.05      3.42 4      -0.10      8.58        3.44      -0.34      0.00      -0.01        8.71      54.30      6.23 5      -0.07      8.58        3.26      -0.34      0.00      0.00        8.68      53.40      6.15 6      -0.05      8.16        3.77      -0.33      0.00      0.00        8.24      52.50      6.37 7      -0.08      8.58        2.92      -0.34      0.00      0.00        8.68      53.40      6.15 8      -0.08      8.58        2.74      -0.34      0.00      0.00        8.69      54.30      6.25 9      -0.05      8.84        4.39      -0.35      0.00      0.01        8.91      58.05      6.52 10      -0.75      0.82      -2.86      -0.06      0.03      1.13        4.17      58.44      Large 11      -0.37      1.29      -1.79      -0.07      0.01      -0.33        3.16      46.442      Large 12    -35.08      -34.93      -8.70        0.07      -2.23      -0.03      26.66        58.05      2.18 13      -7.70      -7.67      -3.29        0.02      0.35      -0.02        4.46      56.10      Large 14        0.39      1.86      -0.75      -0.06      0.01      -0.11        2.62      58.05      Large 15      -0.90      1.72      -0.50      -0.10      -0.02      0.13        2.67      58.05      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-30 TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Cold -
Model B1 and C1 Pm + Pb + Q Stresses (ksi)                              Allowable    Factor FE      Section                                                                    SI      Stress      of Model    Location        Sx        Sy        Sz      Sxy      Syz      Sxz      (ksi)      (ksi)    Safety C          9        -0.08      4.44      0.87    -0.05    0.04    -0.11    4.53        58.05    Large B          10        0.26        7.44      -3.38    0.30      0.10    -1.23    11.21      58.05      5.18 B          11        0.44        7.30      -4.51    0.29      0.09    -1.07    12.05      46.442      3.86 B          13        -10.68      -10.66    -2.02    0.01    0.08      0.00    8.67        56.10      6.47 B          14        0.92        9.53      -3.65    0.35      0.06    -0.23    13.21      58.05      4.40 B          15        -0.21      10.30      1.86    0.39    -0.03    0.06    10.54      58.05      5.51 C          16        -8.76      -8.73    -1.41    0.00    -0.04    -0.01    7.35        58.05      7.90
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.5-3
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-31 TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Hot -
Model A1 Pm + Pb + Q Stresses (ksi)                                                  Factor Section                                                                                      Allowable      of Location        Sx        Sy        Sz          Sxy        Syz        Sxz      SI (ksi)  Stress (ksi)  Safety 1          0.43      9.27      -2.19      -0.29      0.08      -0.08      11.47        59.02      5.15 2          2.19      -8.73      -15.91        0.37      -0.04      -0.95      18.21        59.02      3.24 3          -0.22      -1.71      15.18        0.00      0.00      1.01        16.96        58.05      3.42 4          -0.10      8.58      3.44        -0.34      0.00      -0.01        8.71        54.30      6.23 5          -0.07      8.58      3.26        -0.34      0.00        0.00        8.68        53.40      6.15 6          -0.04      8.20      3.67        -0.33      0.00        0.00        8.27        52.50      6.35 7          -0.08      8.58      2.92        -0.34      0.00        0.00        8.68        53.40      6.15 8          -0.08      8.58      2.74        -0.34      0.00        0.00        8.69        54.30      6.25 9          -0.05      8.85      4.40        -0.35      0.00        0.01        8.93        58.05      6.50 10        -0.74      0.67      -2.84      -0.05      0.03        1.12        4.00        58.44      Large 11        -0.36      1.14      -1.79      -0.06      0.01      -0.33        3.00        46.442      Large 12        -31.92    -31.81      -7.48        0.06      -1.91      -0.02      24.67        58.05      2.35 13        -6.96      -6.94      -2.93        0.02      0.29      -0.02        4.07        56.10      Large 14          0.41      1.75      -0.73      -0.05      0.01      -0.11        2.49        58.05      Large 15        -0.89      1.57      -0.52      -0.09      -0.02      0.14        2.51        58.05      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-32 TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Hot - Model B1 and C1 Pm + Pb + Q Stresses (ksi)                              Allowable    Factor FE      Section                                                                    SI      Stress      of Model    Location        Sx        Sy        Sz        Sxy      Syz      Sxz      (ksi)      (ksi)    Safety B            9      -0.08      4.57      1.02      -0.05    0.05    -0.11      4.66      58.05    Large B          10        0.28      6.28    -3.28      0.24      0.11    -1.23      9.95      58.05      5.83 B          11        0.46      6.11    -4.47      0.23      0.10    -1.06      10.81      46.442      4.30 B          13      -9.43    -9.41    -1.65      0.00      0.05    0.00      7.78      56.10      7.21 B          14        1.01      8.34    -3.39      0.28      0.05    -0.25      11.76      58.05      4.94 B          15      -0.17      8.97      1.63      0.33    -0.02    0.08      9.17      58.05      6.33 B          16      -7.03    -7.00    -1.03      0.00    -0.02    -0.01      5.99      58.05      9.68
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.5-4
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-33 TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Cold -
Model A1 Pm + Pb + Q Stresses (ksi)                                                    Factor Section                                                                                      Allowable      of Location      Sx        Sy          Sz        Sxy        Syz        Sxz      SI (ksi)  Stress (ksi)  Safety 1            1.06      11.23        -3.39      -0.34      0.13      0.41      14.66        59.02      4.03 2            2.70    -11.05      -21.34      0.47      -0.05      -1.25      24.19        59.02      2.44 3          -0.26      -3.23        14.93      0.05      0.05      1.16      18.26        58.05      3.18 4          -0.10      8.58        1.49      0.34      0.00      -0.01        8.72      54.30      6.23 5          -0.07      8.58        1.67      -0.34      0.00      0.00        8.68      53.40      6.15 6          -0.05      8.16        2.50      -0.33      0.00      0.00        8.24      52.50      6.37 7          -0.08      8.58        2.01      -0.34      0.00      0.00        8.68      53.40      6.15 8          -0.08      8.58        2.19      -0.34      0.00      0.00        8.69      54.30      6.25 9          -0.04      8.91        4.16      0.35      0.00      0.02        8.98      58.05      6.46 10          -0.85      0.27        -3.02      0.04      -0.05      1.28        3.89      58.44      Large 11          0.37      2.21        2.78      0.09      -0.01      -0.25        2.47      46.442      Large 12        -36.91      -36.98        -9.08      0.08      -2.19      -0.01      28.27        58.05      2.05 13          -6.72      -6.70        -2.82      0.02      0.35      -0.02        3.96      56.10      Large 14          0.01      1.34        -0.09      -0.05      0.01      -0.04        1.45      58.05      Large 15          -0.26      1.44        0.01      -0.07      0.01      -0.01        1.71      58.05      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-34 TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Cold -
Model B1 and C1 Pm + Pb + Q Stresses (ksi)                              Allowable    Factor FE      Section                                                                    SI      Stress      of Model    Location        Sx          Sy        Sz      Sxy      Syz      Sxz      (ksi)      (ksi)    Safety B          9        -0.10      10.09      4.58    -0.05    0.07    -0.11    10.19      58.05      5.70 C          10          0.55        5.06    -3.89    -0.02      0.08    0.67    9.05        58.05      6.41 B          11        -0.49      7.08      -0.63    -0.05    -0.02    -0.19    7.85      46.442      5.92 C          13        -14.09      -14.10    -0.62    0.00      0.10    0.00    13.48      56.10      4.16 B          14          0.72      9.11      -2.38    0.00      0.00    -0.30    11.52      58.05      5.04 C          15        -1.23      8.55      1.10    0.00      0.00    0.05      9.78      58.05      5.94 C          16        -5.67      -5.69    -0.47    0.00    -0.10    0.00    5.22        58.05    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.5-5
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-35 TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Hot -
Model A1 Pm + Pb + Q Stresses (ksi)                                                    Factor Section                                                                                      Allowable      of Location      Sx        Sy          Sz        Sxy        Syz        Sxz      SI (ksi)  Stress (ksi)  Safety 1            1.07      10.71      -3.38      -0.32      0.13      0.41      14.14        59.02      4.17 2            2.69    -11.36      -21.29        0.48      -0.05      -1.25      24.13        59.02      2.45 3          -0.26      -3.36      14.80        0.06      0.05      1.16      18.25        58.05      3.18 4          -0.10      8.58        1.49        0.34      0.00      -0.01        8.72      54.30      6.23 5          -0.07      8.58        1.67      -0.34      0.00      0.00        8.68      53.40      6.15 6          -0.04      8.21        2.40        0.33      0.00      0.00        8.28      52.50      6.34 7          -0.08      8.58        2.01      -0.34      0.00      0.00        8.68      53.40      6.15 8          -0.08      8.58        2.19      -0.34      0.00      0.00        8.69      54.30      6.25 9          -0.04      8.93        4.17        0.35      0.00      0.02        9.00      58.05      6.45 10          -0.84      0.11      -3.00        0.00      0.00      1.28        3.71      58.44      Large 11          0.37      2.07        2.76        0.08      -0.01      -0.25        2.45      46.442      Large 12        -33.76    -33.86      -7.86        0.06      -1.87      -0.01      26.28        58.05      2.21 13          -5.98      -5.96      -2.46        0.02      0.29      -0.02        3.57      56.10      Large 14          0.03      1.23      -0.07      -0.05      0.01      -0.03        1.31      58.05      Large 15          -0.25      1.29      -0.01      -0.06      0.01      -0.01        1.55      58.05      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-36 TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Hot -
Model B1 and C1 Pm + Pb + Q Stresses (ksi)                                Allowable    Factor FE      Section                                                                      SI      Stress      of Model  Location        Sx        Sy        Sz        Sxy      Syz      Sxz      (ksi)      (ksi)    Safety C          9        -0.11    10.04      4.52      -0.07    0.04    -0.11      10.15      58.05      5.72 C          10        0.49      5.94    -4.22      0.00    0.07      0.65      10.25      58.05      5.67 B          11        -0.47      8.33    -0.76      -0.05    -0.02    -0.22      9.21      46.442      5.04 C          13      -15.66    -15.68    -0.86      0.01    0.15      0.00      14.83      56.10      3.78 B          14        0.61      10.38    -2.74      0.00    0.00    -0.29      13.15      58.05      4.41 B          15        -0.29      10.98      2.09      0.00    0.00    -0.14      11.27      58.05      5.15 C          16        -6.96      -6.99    -0.73      0.01    -0.14      0.00      6.27        58.05      9.26
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.5-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.12.6        Stress Evaluation of the PWR Fuel TSC for 1-Foot Side Drop Load Condition The stresses in the TSC for 1-ft side drop conditions are evaluated per ASME Code, Section III, Subsection NB using the three-dimensional finite element model (Model A) as described in Section 2.6.12.2.1, which corresponds to the governing TSC configuration with a 9-inch solid lid.
The load resulting from the TSC contents is applied to the TSC by means of pressure acting in the inner surface of the TSC shell. The content weight is applied to the TSC over a 90&#xba; angle in the circumferential direction in the half-symmetry model (180&#xba; for the complete TSC), with a deceleration of 15g. In addition to the contents load, a 120 psig pressure is applied to the inner surfaces of the TSC for applicable load cases containing the internal pressure.
The locations of the linearized stresses are shown in Figure 2.6.12-4. The evaluation of the TSC lid weld (Sections 11, 14 and 15 on Figure 2.6.12-4) is performed in accordance with ISG-15. A weld reduction factor of 0.8 is applied to the allowable stresses for the closure lid weld (Section
: 11) per ISG-4. The critical section stresses are summarized in Table 2.6.12-37 for the Pm and Pm
+ Pb stresses. Results are calculated for the 1-ft side-drop with or without internal pressure.
Table 2.6.12-38 to Table 2.6.12-41 present the analysis results for the side drop, which occurs with the conditions noted.
Note that the stresses at Sections 10 and 11 for the Pm and Pm + Pb stresses were averaged over the bearing region of the impact between the TSC closure weld and TSC shell (0&deg; to 13.5&deg; in the half-symmetry model).
NAC International                        2.6.12.6-1
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-37          TSC Critical Sections for the 1-Foot Side Drop Load Condition -
Model A1 Critical        Minimum Factor Condition          Stress        Section            of Safety Side Drop            Pm            10                  1.04 Side Drop        P m + Pb          10                  1.35 Side Drop +
Pressure            Pm            10                  1.01 Side Drop +
Pressure        P m + Pb          2                  1.03
: 1. See Section 2.6.12.2 for model description.
Table 2.6.12-38 TSC Pm Stresses - 1 Foot Side Drop - Model A1 Pm Stresses (ksi)
Angle of Peak                                                                Allowable Section      Stress                                                        SI      Stress      Factor of Location Location          Sx      Sy      Sz  Sxy    Syz      Sxz    (ksi)      (ksi)      Safety 1            0        -7.79  -6.97    0.09  0.33    0.05      0      7.99      19.68        2.46 2          67.5        0.36  -1.57  -1.06  -0.74    -2.9  -0.15    6.04      19.68        3.26 3            72        -0.09  -0.32  -0.31  0.15  -5.48    0.1    10.96      19.35        1.77 4          103.5        0.01    0.14  -3.49    0    -1.98  -0.01    5.37        18.1        3.37 5          121.5          0      0    -4.42  0.03  -0.84  -0.01    4.73        17.8        3.76 6          130.5        0.01  -0.08  -4.76  0.03  -0.11      0      4.79        17.5        3.65 7          121.5        0.01  -0.04  -3.83  0.03      0.8    0.01    4.12        17.8        4.32 8          94.5      -0.01    0.44    -2.5  -0.02    2.55      0      5.89        18.1        3.07 9          76.5        0.01    0.95  -2.19  -0.03    6.1  -0.02    12.6      19.35        1.54 10        0~13.5      -14.96  -6.14    2.60  0.35  -0.79  -3.04    18.66      19.35        1.04 11        0~13.5      -12.65  -6.42  -1.49  0.75    -0.49  -2.66    12.49      15.482        1.24 12            0          -1.2    0.42      0    0.02      0    0.01    1.62      19.35        Large 13            0          -0.5    0.16      0    0.01      0    -0.04    0.67        18.7        Large 14            0        -11.25  -3.73    0.26  0.44  -0.01    0.12    11.54      19.35        1.68 15            0        -13.46  -6.29  -0.56  0.26    -0.09  -0.36    12.93      19.35        1.5
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.6.12.6-2
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-39 TSC Pm + Pb Stresses Foot Side Drop - Model A1 Angle of                    Pm + Pb Stresses (ksi)
Peak                                                                              Allowable  Factor Section      Stress                                                                    SI        Stress        of Location    Location        Sx        Sy          Sz      Sxy        Syz      Sxz    (ksi)        (ksi)    Safety 1            0        -9.18    -8.14      -0.04    0.34      -0.02      0.30    9.26        29.51      3.19 2            54        0.76    -3.57      -6.02    -0.27    -2.65    -0.28    8.51        29.51      3.47 3          76.5        0.01      0.19      0.50      0.22    -6.81      0.09  13.63        29.02      2.13 4          67.5        0.03      8.59      5.67      0.09    -1.62    -0.01    9.28        27.15      2.93 5          76.5        -0.01    10.46      5.16    -0.02    -0.46      0.01  10.51        26.70      2.54 6          76.5        -0.03    10.34      5.09      0.00      0.03      0.00  10.37        26.25      2.53 7          76.5        0.00    10.36      5.12      0.00      0.61    -0.01  10.43        26.70      2.56 8          67.5        0.00      8.32      4.17      0.08      1.82    -0.01    9.01        27.15      3.01 9          76.5        0.03      0.71      -2.16    -0.04      7.26    -0.03  14.81        29.02      1.96 10        0~13.5      -16.97    -7.04      3.80      0.26    -0.95    -2.87  21.64        29.22      1.35 11        0~13.5      -11.95    -6.10      -1.03    0.70      -0.43    -2.74  12.33        23.222      1.88 12            0        -1.41      0.40      0.00      0.01      0.00      0.00    1.80        29.02      Large 13            0        -1.08    -0.02      0.00      0.00      0.00    -0.04    1.08        28.05      Large 14            0      -12.14    -3.90      0.93      0.37      0.03      0.07  13.09        29.02      2.22 15            0      -17.86    -7.97      -1.49    0.19      -0.14      0.38  16.40        29.02      1.77
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-40          TSC Pm Stresses Foot Side Drop, Internal Pressure - Model A1 Angle of                  Pm Stresses (ksi)
Peak Section    Stress                                                            SI          Allowable        Factor of Location Location        Sx      Sy      Sz    Sxy    Syz      Sxz        (ksi)      Stress (ksi)        Safety 1            0        -7.90 -5.55 4.04        0.27    0.11    -0.18      11.97            19.68            1.64 2            0        -3.66 -13.79 -1.38      0.51    0.17    -0.82      12.70            19.68            1.55 3          67.5      -0.65 -8.30 4.19        0.16  -5.34    1.07      16.59            19.35            1.17 4            0        -0.20 11.61 5.58        -0.46  -0.12    -0.01      11.85            18.10            1.53 5            0        -0.18 9.35 7.07        -0.37  -0.03    0.00      9.56            17.80            1.86 6          67.5      -0.30 8.79 6.41          0.13  -0.02    0.00      9.09            17.50            1.93 7          63        -0.39 9.27 6.65          0.04  0.08    0.02      9.66            17.80            1.84 8          54        -0.25 11.26 7.15        -0.11  0.67    -0.09      11.62            18.10            1.56 9          72        -0.06 9.64 1.71        -0.02  5.93    0.01      14.27            19.35            1.36 10        0~13.5    -15.37 -5.33 3.08        0.34  -0.78    -2.73      19.32            19.48            1.01 11        0~13.5    -12.80 -5.49 -0.95      0.74  -0.49    -3.17      13.57            15.482            1.14 12          0        -0.84 0.77 -0.39        0.02  -0.01    -0.03      1.61            19.35            Large 13          0        -0.46 0.20 -0.06        0.01  0.00    -0.04      0.67            18.70            Large 14          0      -10.75 -2.46 0.32        0.41    0.01    0.04      11.10            19.35            1.74 15          0      -13.45 -5.21 -0.54      0.22  -0.11    -0.37      12.94            19.35            1.50
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.6-3
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-41 TSC Pm + Pb Stresses Foot Side Drop, Internal Pressure - Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section    Stress                                                              SI    Allowable      Factor of Location Location        Sx      Sy      Sz      Sxy    Syz      Sxz      (ksi) Stress (ksi)      Safety 1            0        -7.17  -10.88    10.65    0.44    0.13    -0.56    21.61      29.51          1.37 2          54        3.25  -16.10  -24.40  -0.27    -2.65    -1.37    28.56      29.51          1.03 3          63        -0.22    -4.00    20.18    0.24    -5.64    1.41    26.82      29.02          1.08 4          72        -0.04    17.13    9.00    0.06    -1.38    0.01    17.40      27.15          1.56 5          76.5      -0.01    18.90    9.35  -0.02    -0.46    0.01    18.93      26.70          1.41 6          76.5      -0.04    18.78    9.28    0.00    0.03    0.00    18.81      26.25          1.40 7          76.5      -0.02    18.79    9.31    0.00    0.61    -0.01    18.85      26.70          1.42 8          67.5      -0.02    16.76    8.36    0.08    1.82    -0.02    17.16      27.15          1.58 9          76.5      -0.06    8.66    0.20  -0.04    7.26    0.04    16.81      29.02          1.73 10        0~13.5    -17.59    -6.41    3.90    0.25    -0.94    -2.18    22.02      29.22          1.33 11        0~13.5    -13.65    -6.07    -1.53    0.74    -0.59    -3.21    13.87      23.222        1.67 12          0        20.08    21.78    -0.40    0.02    -0.02    -0.03    22.18      29.02          1.31 13          0        1.37    2.42    0.01    0.00    0.00    -0.04    2.41      28.05        Large 14          0      -11.63    -2.69    0.86    0.34    0.04    -0.01    12.50      29.02          2.32 15          0      -17.23    -6.63    -1.14    0.16    -0.16    0.30    16.10      29.02          1.80
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.6-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.12.7      Stress Evaluation of the PWR Fuel TSC for Combined Thermal and 1-Foot Side Drop Load Condition The thermal stress loads described in Section 2.6.12.3 are applied in conjunction with the primary loads in Section 2.6.12.6 to produce a combined thermal stress plus 1-ft side-drop loading. The stress evaluation is performed according to the ASME Code, Section III, Subsection NB. The most critical sections are listed in Table 2.6.12-42. Results from the side-drop plus thermal load cases for the configurations are presented in Table 2.6.12-43 and Table 2.6.12-44.
NAC International                      2.6.12.7-1
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-42 TSC Critical Sections for Combined 1-Foot Side Drop and Thermal Load Condition - Model A1 Critical        Minimum Factor of Condition                  Stress            Section              Safety Side Drop +            Pm + Pb + Q              10                1.64 Thermal (cold)
Side Drop +            Pm + Pb + Q              10                1.64 Thermal (hot)
: 1. See Section 2.6.12.2 for model description.
Table 2.6.12-43 TSC Pm + Pb + Q Stresses Foot Side Drop, Thermal Cold - Model A1 Pm + Pb + Q Stresses (ksi)
Angle of Peak Section    Stress                                                            SI        Allowable    Factor of Location  Location      Sx      Sy      Sz    Sxy    Syz      Sxz        (ksi)      Stress (ksi)    Safety 1          0        -9.22    -5.13    0.02    0.22  -0.02    0.34        9.27          59.02        6.37 2        54        0.74    -1.11    -5.6  -0.27  -2.65    -0.27        7.63          59.02        7.74 3        76.5      -0.02    1.3    0.86    0.22  -6.81    0.04      13.64          58.05        4.26 4        67.5        0.03    8.6    5.67    0.09  -1.62    -0.01        9.28            54.3        5.85 5        76.5      -0.01  10.46    5.16  -0.02  -0.46    0.01      10.51            53.4        5.08 6        76.5        0.33  -10.48  -1.74    0.05  -0.06      0        10.81            52.5        4.86 7        76.5          0    10.36    5.12      0    0.61    -0.01      10.43            53.4        5.12 8        67.5          0      8.33    4.17    0.08  1.82    -0.01        9.01            54.3        6.03 9        76.5        0.03    0.66  -2.06  -0.04  7.26    -0.03      14.78          58.05        3.93 10        0      -27.64    -8.94    6.79  -0.19  -0.64    -4.36      35.53          58.44        1.64 11        0      -19.11    -7.35    0.22  -0.24  -0.33    -4.26      21.14          46.442        2.20 12        0        -18.3    -16.8  -8.35    0.1  -2.23    0.01      10.52          58.05        5.52 13        0        -3.26    -2.26    0.07    0.01  -0.34    -0.02        3.37            56.1        Large 14        0      -12.25    -3.22    0.81    0.34  0.03    0.06      13.07          58.05        4.44 15        0      -17.91    -7.06  -1.37  0.15  -0.15    0.39      16.56          58.05        3.51
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.6.12.7-2
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-44 TSC Pm + Pb + Q Stresses Foot Side Drop, Thermal Hot - Model A1 Pm + Pb + Q Stresses (ksi)
Angle of Peak Section    Stress                                                                SI        Allowable    Factor of Location Location        Sx      Sy        Sz    Sxy      Syz      Sxz        (ksi)      Stress (ksi)    Safety 1            0        -9.2  -5.65    0.02    0.24    -0.02    0.33      9.27          59.02        6.37 2          54        0.73  -1.42    -5.56    -0.27    -2.65    -0.26      7.63          59.02        7.74 3          76.5      -0.01    1.18    0.73    0.22    -6.81    0.04      13.64          58.05        4.26 4          67.5        0.03    8.6    5.67    0.09    -1.62    -0.01      9.28          54.3        5.85 5          76.5      -0.01  10.46    5.16    -0.02    -0.46    0.01      10.51          53.4        5.08 6          76.5        0.33  -10.38    -1.64    0.05    -0.06      0      10.71          52.5          4.9 7          76.5          0    10.36    5.12      0      0.61    -0.01      10.43          53.4        5.12 8          67.5          0    8.33    4.17    0.08      1.82    -0.01      9.01          54.3        6.03 9          76.5        0.03    0.67    -2.08    -0.04      7.26    -0.03      14.78          58.05        3.93 10          0      -27.63  -9.10    6.81    -0.19    -0.64    -4.36      35.55          58.44        1.64 11          0      -19.10  -7.50    0.22    -0.23    -0.33    -4.27      21.14        46.442        2.20 12          0      -16.67  -14.87    -7.5    0.08      1.8        0        9.59          58.05        6.05 13          0        -2.74  -1.74    0.13    0.01    -0.28    -0.02      2.92          56.1        Large 14          0      -12.23  -3.34    0.83    0.35      0.03    0.06      13.07          58.05        4.44 15          0        -17.9  -7.21    -1.39    0.16      -0.15    0.39      16.53          58.05        3.51
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.7-3
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.12.8        Stress Evaluation of the PWR Fuel TSC for 1-Foot Corner Drop Load Condition A structural analysis is performed by using ANSYS to evaluate the effect of a 1-ft corner drop impact for both the top and bottom corner orientations of the TSC. The ASME Code, Section III, Subsection NB, requires that stresses arising from operational loads be assessed on the basis of the primary loads. The primary loads for the 1-ft corner-drop result from the deceleration of the TSC and its contents and the 120 psig pressure load internal to the TSC. The applied deceleration is 10g for both orientations. The inertial load of the TSC is addressed by the deceleration factor applied to the TSC density. The contents weight is represented by a pressure load on the inner surface of the TSC. Displacement constraints are applied to the plane of symmetry and the gap elements attached at the TSC end to represent the top or bottom of the transport cask.
This load condition is evaluated using Models A, B and C as described in Section 2.6.12.2. The Section locations for linearized stress evaluation are shown in Figure 2.6.12-4 for Model A and in Figure 2.6.12-5 for Models B and C. The critical sections for the pressure and the pressure plus the deceleration load, with reference to the section and the appropriate tables, are shown in Table 2.6.12-45 and Table 2.6.12-46. The maximum Pm and Pm+Pb stresses are tabulated in Table 2.6.12-47 through Table 2.6.12-62 for top and bottom corner drop conditions.
NAC International                        2.6.12.8-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.12-45 TSC Critical Sections for the 1-Foot Corner Drop Load Condition - Model A1 Condition              Stress        Critical Section Factor of Safety Top Corner Drop +
Pm                11            1.45 Pressure Top Corner Drop +
Pm + Pb                2            1.31 Pressure Top Corner Drop              Pm                11            1.63 Top Corner Drop          Pm + Pb              11            2.22 Bottom Corner Drop +
Pm                10            1.32 Pressure Bottom Corner Drop +
Pm + Pb                2            1.08 Pressure Bottom Corner Drop            Pm                10            1.39 Bottom Corner Drop          Pm + Pb              10            1.79
: 1. See Section 2.6.12.2 for model description.
Table 2.6.12-46 TSC Critical Sections for the 1-Foot Corner Drop Load Condition -
Model B1 and C1 Condition              Stress        Critical Section Factor of Safety Top Corner Drop +
Pm                10            2.01 Pressure Top Corner Drop +
Pm + Pb              10            2.29 Pressure Top Corner Drop              Pm                10            2.17 Top Corner Drop          Pm + Pb              10            2.71 Bottom Corner Drop +
Pm                15            1.08 Pressure Bottom Corner Drop +
Pm + Pb              15            1.48 Pressure Bottom Corner Drop            Pm                15            2.00 Bottom Corner Drop          Pm + Pb              11            2.68
: 1. See Section 2.6.12.2 for model description.
NAC International                          2.6.12.8-2
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-47 TSC Pm Stresses Foot Top Corner Drop, Internal Pressure -
Model A1 Pm Stresses (ksi)
Angle of Peak Section      Stress                                                                SI      Allowable  Factor of Location    Location      Sx        Sy      Sz      Sxy      Syz    Sxz        (ksi)    Stress (ksi)  Safety 1          0        -3.90    -1.51    3.80    0.22    -0.04  -0.38      7.76        19.68      2.54 2          9          1.26    -8.74    -0.72    0.19    -0.25  -0.45      10.11        19.68      1.95 3          13.5      -0.47    -7.64    4.56    -0.09    -0.14  1.04      12.41        19.35      1.56 4          0        -0.09      9.87    4.85    -0.39    -0.04  0.00        9.99        18.10      1.81 5          0        -0.06      9.20    5.19    -0.36    0.00  0.00      9.28        17.80      1.92 6          0        -0.06      9.07    4.99    -0.36    0.01  0.00      9.16        17.50      1.91 7          0        -0.07      9.39    4.42    -0.37    0.03  0.00      9.49        17.80      1.88 8          22.5      -0.09      9.74    3.56    0.02    0.54  0.01      9.88        18.10      1.83 9          67.5      -0.06      8.70    3.02    -0.01    2.84  0.04      9.94        19.35      1.95 10          0        -13.24    -5.77    -2.64    -0.46    -0.08  -2.59      11.83        19.48      1.65 11          0        -11.61    -4.66    -3.60    -0.21    -0.06  -3.55      10.71        15.482      1.45 12          0        -0.03      0.46    -0.39    0.01    -0.02  -0.04      0.85        19.35      Large 13          0        -0.14      0.10    -0.29    0.00    0.00  0.00      0.38        18.70      Large 14          0        -8.20    -1.60    -1.84    0.48    0.00  -0.31      6.69        19.35      2.89 15          0        -12.32    -4.47    -2.31    0.09    -0.03  0.39      10.04        19.35      1.93
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-48 TSC Pm+ Pb Stresses Foot Top Corner Drop, Internal Pressure -
Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section      Stress                                                                SI      Allowable  Factor of Location    Location      Sx        Sy      Sz      Sxy      Syz    Sxz        (ksi)    Stress (ksi)  Safety 1          0        -6.22    -7.68 10.29 0.30 -0.09            -0.61      18.06        29.51      1.63 2          40.5        2.64    -13.21 -19.66 -0.10 -0.95          -1.14      22.55        29.51      1.31 3          36        -0.22    -3.58 17.72 0.04 -1.10            1.23      21.50        29.02      1.35 4          49.5      -0.05    11.29 5.81 0.01 -0.70              0.01      11.42        27.15      2.38 5          58.5      -0.01    12.84 6.26 0.00 -0.03              0.00      12.85        26.70      2.08 6          58.5      -0.01    13.17 6.26 0.00 0.31                0.00      13.20        26.25      1.99 7          54        -0.02    12.35 5.67 0.00 0.79                0.00      12.46        26.70      2.14 8          45        -0.02    10.89 4.16 0.01 1.39              -0.01      11.19        27.15      2.43 9          27        -0.08    10.34 4.65 0.01 0.73                0.02      10.51        29.02      2.76 10          0        -11.91    -4.30 -2.24 -0.33 -0.02          -3.85      12.38        29.22      2.36 11          0        -10.85    -3.96 -1.48 -0.16 -0.07          -3.10      11.24        23.222      2.07 12          0        19.64    20.35 -0.41 0.01 -0.03            -0.04      20.76        29.02      1.40 13          0          2.24      2.47 -0.23 0.00 0.00              0.00      2.70        28.05      Large 14          0        -8.43    -1.73 -1.72 0.41 0.06            -0.39      6.82        29.02      4.26 15          0        -12.60    -4.43 -2.17 0.10 0.02              0.01      10.43        29.02      2.78
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.6.12.8-3
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-49 TSC Pm Stresses Foot Top Corner Drop, Internal Pressure -
Model B1 and C1 Stress FE      Section                          Pm Stresses (ksi)                                    Allowable Factor of Model    Location      Sx        Sy          Sz      Sxy        Syz      Sxz    SI (ksi)        (ksi)  Safety C          9        -0.09      8.89        3.61    -0.03      -0.13      0.08      8.99        19.35      2.15 B        10        -7.03      -1.40        1.94    0.09      -0.35      -1.70      9.63        19.35      2.01 B        11        -5.89      -1.43      -1.11    0.30      -0.25      -2.18      6.57        15.482    2.36 C        13        -0.06      0.13      -0.39    0.00      0.00      0.00      0.52        18.70    Large B        14        -4.41      -0.37      -0.06    0.62      -0.01      0.04      4.45        19.35      4.35 B        15        -7.34      -1.68      -0.18    0.45      -0.18      -0.20      7.23        19.35      2.68 C        16        0.03      0.00      -0.01    0.00      0.00      0.00      0.04        19.35    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-50 TSC Pm + Pb Stresses Foot Top Corner Drop, Internal Pressure -
Model B1 and C1 Stress FE      Section                        Pm + Pb Stresses (ksi)                                  Allowable Factor of Model    Location      Sx        Sy          Sz      Sxy        Syz        Sxz    SI (ksi)        (ksi)  Safety C        9        -0.06      11.50      7.28      0.03      -0.14      0.10    11.57        29.02      2.51 B        10        -8.26      -1.74        4.27    -0.07      -0.46    -0.95    12.70        29.02      2.29 B        11        -7.04      -1.80      -1.50      0.28      -0.21    -2.62      7.70        23.222    3.02 C        13        -0.05      0.14      -0.39    0.00        0.00      0.00      0.53        28.05    Large B        14        -4.49      -0.25      -0.03    0.73      -0.08      0.17      4.61        29.02      6.29 B        15        -7.93      -1.96      -0.13    0.38      -0.29      0.07      7.87        29.02      3.69 B        16        0.21        0.18        0.00      0.00      0.00      0.00      0.20        29.02    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.8-4
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-51            TSC Pm Stresses Foot Top Corner Drop - Model A1 Pm Stresses (ksi)
Angle of Peak Section      Stress                                                                SI      Allowable    Factor of Location    Location      Sx      Sy      Sz      Sxy      Syz    Sxz        (ksi)    Stress (ksi)  Safety 1          0          -3.8    -2.93    -0.15      0.28    -0.09    -0.2      3.75        19.68        5.25 2          4.5        -3.72    -2.4    -0.72    0.17    -0.21    -0.3        3.1        19.68        6.35 3          63          0      0.5      -0.4      0.05    -1.8  -0.01      3.71        19.35        5.22 4          90          0      0.12    -1.66      0      -0.79      0        2.38          18.1        7.61 5          108          0      0.01    -2.52    0.02    -0.19      0        2.58          17.8        6.9 6          108          0      0.02    -2.53    0.02      0.16      0        2.59          17.5        6.76 7          90        -0.01    0.16    -1.49    -0.01    0.87      0        2.4          17.8        7.42 8          67.5        0      0.5    -1.02    -0.01    1.79      0        3.88          18.1        4.66 9          58.5        0      0.39    -2.19      0      2.73  -0.01      6.03        19.35        3.21 10          0        -12.83    -6.58    -3.12    -0.41    -0.11    -2.9      11.33        19.48        1.72 11          0        -11.45    -5.58    -4.15    -0.16    -0.06  -3.04      9.51        15.482        1.63 12          0        -0.39    0.11      0        0.01      0      0        0.49        19.35      Large 13          0        -0.18    0.06    -0.23      0        0      0        0.28          18.7      Large 14          0          -8.7    -2.87    -1.9      0.51    -0.02  -0.23      6.86        19.35        2.82 15          0        -12.32    -5.55    -2.33      0.13    -0.01    0.4      10.03        19.35        1.93
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-52 TSC Pm + Pb Stresses Foot Top Corner Drop - Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section      Stress                                                                  SI      Allowable  Factor of Location    Location      Sx      Sy        Sz      Sxy    Syz      Sxz        (ksi)    Stress (ksi)  Safety 1          0        -5.45    -2.59    -0.14    0.18    -0.11    -0.36        5.37        29.51        5.5 2          0        -4.35    -2.31    -0.46    0.12    -0.1    -0.4        3.98        29.51      7.42 3          76.5      0.01    0.81    -1.39    0.06    -2.1    -0.06        4.75        29.02      6.11 4          90      -0.01    1.94    -1.03    -0.01      -1      0          3.58        27.15      7.58 5          58.5        0      4.4      2.07      0    -0.03      0          4.41          26.7      6.05 6          58.5        0      4.74      2.07      0    0.31      0          4.77        26.25        5.5 7          54          0      3.91      1.49      0    0.79      0          4.15          26.7      6.43 8          72          0      0.48    -0.91    -0.02    2.16      0          4.53        27.15      5.99 9          63        0.01    0.24      -1.8    -0.01    3.1    -0.01        6.53        29.02      4.44 10          0      -13.76    -7.68    -2.76    -0.55  -0.18    -2.39        12.04        29.22      2.43 11          0      -12.09    -5.86    -4.74    -0.23  -0.06    -3.73        10.48        23.222      2.22 12          0        -1.85    -1.03    -0.01    0.01      0        0          1.84        29.02      Large 13          0        -0.16    0.08    -0.22      0      0        0          0.3        28.05      Large 14          0        -8.95    -2.94    -1.66    0.43    0.06    -0.31        7.35        29.02      3.95 15          0      -11.97    -5.25    -1.86    0.15    0.04    -0.06        10.12        29.02      2.87
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.6.12.8-5
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-53 TSC Pm Stresses Foot Top Corner Drop - Model B1 and C1 Stress FE      Section                          Pm Stresses (ksi)                                    Allowable Factor of Model    Location      Sx        Sy        Sz        Sxy        Syz      Sxz    SI (ksi)        (ksi)  Safety C          9        -0.05      4.35      0.42      -0.02      0.56      0.05      4.48        19.35      4.32 B          10        -8.52      -3.28      -0.39      0.03      -0.10    -1.83      8.92        19.35      2.17 B          11        -7.30      -2.81      -2.08      0.23      -0.05    -1.92      6.51        15.482    2.38 C          13        -0.16      0.10      -0.31      0.00        0.00      0.00      0.41        18.70    Large B          14        -5.30      -1.55      -0.83      0.55      -0.01    -0.10      4.55        19.35      4.25 B          15        -7.90      -3.04      -1.66      0.38        0.00      0.15      6.27        19.35      3.09 B          16        0.01      0.01      0.00      0.00        0.00      0.00      0.02        19.35    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-54 TSC Pm + Pb Stresses Foot Top Corner Drop - Model B1 and C1 Stress FE      Section                        Pm + Pb Stresses (ksi)                                  Allowable Factor of Model    Location      Sx        Sy        Sz        Sxy        Syz      Sxz    SI (ksi)        (ksi)  Safety C          9        -0.04      6.72      3.02      0.03      0.47      0.07      6.83        29.02      4.25 B          10        -9.48      -3.94      0.81    -0.13      -0.17    -1.47    10.71        29.02      2.71 B          11        -7.88      -2.92      -2.21      0.23      -0.01    -2.46      7.52        23.222    3.09 C          13        -0.14      0.11      -0.31      0.00        0.00      0.00      0.42        28.05    Large B          14        -5.50      -1.66      -0.72      0.48        0.06    -0.15      4.84        29.02      5.99 B          15        -8.32      -3.33      -1.81      0.35      -0.06      0.45      6.61        29.02      4.39 B          16        0.16      0.15      0.00      0.00        0.00      0.00      0.15        29.02    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.8-6
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-55 TSC Pm Stresses Foot Bottom Corner Drop, Internal Pressure -
Model A1 Pm Stresses (ksi)
Angle of Peak Section      Stress                                                                SI      Allowable  Factor of Location    Location      Sx        Sy      Sz      Sxy      Syz    Sxz        (ksi)    Stress (ksi)  Safety 1          0        -4.94    -2.36    3.32    0.17      0.10  -0.03      8.27        19.68      2.38 2          9          1.32    -9.65    -2.76    0.24    0.24  -0.81      11.15        19.68      1.76 3          94.5      -0.53    -7.21    4.80    0.05    -1.64  0.92      12.59        19.35      1.54 4          0        -0.09      9.79    3.00    -0.39    -0.06  0.00        9.91        18.10      1.83 5          0        -0.06      9.32    4.00    -0.37    -0.03  0.00        9.41        17.80      1.89 6          0        -0.06      9.08    4.41    -0.36    -0.01  0.00        9.17        17.50      1.91 7          0        -0.07      9.23    4.57    -0.37    0.00  0.00      9.33        17.80      1.91 8          27        -0.11      9.64    4.53    0.00    0.20  -0.01      9.76        18.10      1.85 9          63        -0.06      8.79    2.56    0.00    2.05  0.03      9.47        19.35      2.04 10          0        -12.23    -4.15    2.01    -0.47    -0.28  -1.82      14.74        19.48      1.32 11          0        -10.20    -3.17    0.15    -0.20    -0.21  -2.25      11.30        15.482      1.37 12          0        -0.09      0.53    -0.52    0.01    0.00  -0.03      1.05        19.35      Large 13          0        -0.11      0.09    -0.06    0.00    0.00  -0.01      0.20        18.70      Large 14          0        -4.58      0.17    0.15    0.59    0.08  0.16      4.95        19.35      3.91 15          0        -6.15    -1.33    -0.33    0.37    -0.12  -0.34      5.91        19.35      3.27
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-56 TSC Pm + Pb Stresses Foot Bottom Corner Drop, Internal Pressure -
Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section      Stress                                                                SI      Allowable  Factor of Location    Location      Sx        Sy      Sz      Sxy      Syz    Sxz        (ksi)    Stress (ksi)  Safety 1          0        -4.05    -8.23 9.61 0.31            0.09  -0.49      17.88        29.51      1.65 2          36        2.96    -14.83 -24.07 -0.08        -0.77  -1.36      27.23        29.51      1.08 3          108        -0.24    -3.40 17.59 0.05          -0.81  1.15      21.13        29.02      1.37 4          45        -0.04    11.14 4.15 0.01            -1.25  0.01      11.40        27.15      2.38 5          54        0.00    12.53 5.31 0.00            -0.65  0.00      12.59        26.70      2.12 6          58.5      -0.01    13.10 5.69 0.00            -0.23  0.00      13.12        26.25      2.00 7          54        -0.02    12.57 5.70 0.00              0.23  0.00      12.59        26.70      2.12 8          45        -0.02    11.05 4.90 0.01              0.76  -0.01      11.16        27.15      2.43 9          27        -0.07    10.22 5.97 0.01              0.34  0.01      10.32        29.02      2.81 10          0        -13.68    -5.39 2.52 -0.61          -0.41  -1.09      16.41        29.22      1.78 11          0        -11.16    -3.58 0.47 -0.18          -0.25  -2.42      12.61        23.222      1.84 12          0        20.52    21.13 -0.50 0.01          -0.01  -0.03      21.64        29.02      1.34 13          0          1.48      2.12    0.01 0.00        0.00  -0.01      2.12        28.05      Large 14          0        -4.89    -0.02 0.32 0.49            0.11  0.13      5.31        29.02      5.47 15          0        -8.13    -2.19 -0.69 0.27          -0.23  0.05      7.49        29.02      3.88
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.6.12.8-7
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-57 TSC Pm Stresses Foot Bottom Corner Drop, Internal Pressure -
Model B1 and C1 Stress FE      Section                          Pm Stresses (ksi)                                    Allowable Factor of Model    Location        Sx          Sy          Sz      Sxy        Syz      Sxz    SI (ksi)        (ksi)  Safety B          9          -0.07      8.81      3.52      0.01      -0.30      0.11      8.91        19.35      2.17 B          10        -1.07        0.63      2.25      -0.03    -0.32      0.47      3.50        19.35      5.52 B          11        -0.44        1.56      3.97      0.09      0.01      0.27      4.45        15.482    3.48 C          13        -0.06        0.14      -0.06    0.00      -0.01      0.00      0.21        18.70    Large B          14        -9.95      -0.98      -0.31      0.46    -0.03    -1.14      9.94        19.35      1.95 B          15        -17.65      -4.16      0.20      0.04      -0.24    -0.53    17.90        19.35      1.08 C          16          0.04        0.01      0.00      0.00      0.00      0.00      0.04        19.35    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-58 TSC Pm + Pb Stresses Foot Bottom Corner Drop, Internal Pressure -
Model B1 and C1 Stress FE      Section                        Pm + Pb Stresses (ksi)                                  Allowable Factor of Model    Location        Sx          Sy          Sz      Sxy      Syz      Sxz    SI (ksi)        (ksi)  Safety B          9        -0.04      11.32        7.42    0.09      0.08      0.11    11.36        29.02      2.55 C          10          1.18        -2.29      -9.49    0.08    -0.28      1.15    10.93        29.02      2.66 C          11        -5.53        -2.12      -4.64    0.00    -0.06    -2.04      5.06        23.222    4.59 C          13          6.95        7.11        0.01    0.00    -0.01      0.00      7.10        28.05      3.95 B          14        -10.39        -1.16        0.14    0.33      0.04    -1.32    10.87        29.02      2.67 B          15        -19.90        -4.87      -0.26    0.02    -0.15    -0.53    19.68        29.02      1.48 B          16          1.51        1.48        0.00    0.00      0.00      0.00      1.51        29.02    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.6.12.8-8
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.12-59 TSC Pm Stresses Foot Bottom Corner Drop - Model A1 Pm Stresses (ksi)
Angle of Peak Section      Stress                                                                SI      Allowable    Factor of Location    Location      Sx      Sy      Sz      Sxy      Syz      Sxz      (ksi)    Stress (ksi)    Safety 1            0        -4.83    -3.78    -0.62    0.23      0.04    0.15      4.26        19.68          4.62 2          45        0.42    -1.42    -3.05    -0.26    -1.04    -0.27      4.04        19.68          4.87 3          63        -0.02    -0.37    -2.24      0.07    -2.58    0.05      5.49        19.35          3.52 4          72          0      0.4    -1.58    -0.01    -1.54      0        3.67          18.1        4.93 5          99          0      0.08    -2.52    0.01    -0.67      0        2.92          17.8          6.1 6          108          0      0.02    -3.05    0.02    -0.18      0        3.1          17.5        5.65 7        103.5        0      0.04    -2.7      0.01    0.27      0        2.8          17.8        6.36 8          76.5          0      0.31    -1.49    -0.01    1.14      0        2.9          18.1        6.24 9          63          0      0.36    -1.63      0      2.05      0        4.56        19.35          4.24 10          0        -11.82    -4.96    1.53    -0.42    -0.3    -2.12    14.05        19.48          1.39 11          0        -10.04    -4.09    -0.39    -0.15    -0.22    -1.74    10.27        15.482        1.51 12          0        -0.45    0.17    -0.13    0.01      0.02    0.01      0.62        19.35        Large 13          0        -0.15    0.05      0        0        0    -0.01      0.2          18.7        Large 14          0        -5.08    -1.11    0.09      0.62    0.06    0.24      5.29        19.35          3.66 15          0        -6.15    -2.41    -0.35      0.41    -0.11    -0.34      5.9        19.35          3.28
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-60            TSC Pm + Pb Stresses Foot Bottom Corner Drop - Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section      Stress                                                            SI      Allowable      Factor of Location    Location      Sx      Sy      Sz      Sxy      Syz    Sxz      (ksi)    Stress (ksi)      Safety 1            0      -6.38    -4.43    -0.43    0.27    0.02    0.53    6.08        29.51          4.85 2          36        0.47    -2.3    -5.69    -0.08    -0.77  -0.27    6.35        29.51          4.65 3          67.5        0    -0.16    -1.58    0.11    -2.99    0.04    6.15        29.02          4.72 4          81          0      1.29    -1.28    -0.02    -1.84    0      4.49        27.15          6.05 5          94.5      -0.01    2.87    -1.46    0.01    -0.85    0      4.66          26.7          5.73 6          99          0      3.13    -1.76    0.02    -0.22    0      4.92        26.25          5.34 7          94.5      -0.01    2.86    -1.52    0.01    0.47    0      4.48          26.7          5.96 8          81          0      1.21    -1.21    -0.02    1.43      0      3.75        27.15          7.24 9          67.5      0.01    0.22    -1.48    -0.01    2.43  -0.01    5.14        29.02          5.65 10          0      -12.86    -5.84      2.8    -0.56    -0.44  -2.15    16.31        29.22          1.79 11          0        -8.97    -3.26    0.82    -0.18    -0.19    -1.8    10.45      23.222          2.22 12          0        -0.96    -0.25    -0.1    0.01    0.02    0.01      0.87        29.02          Large 13          0        -0.97    -0.32      0        0        0    -0.01      0.96        28.05          Large 14          0        -5.41    -1.23    0.38    0.51    0.11    0.21      5.87        29.02          4.94 15          0        -8.77    -3.53    -1.04    0.3    -0.22    0.13      7.77        29.02          3.74
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.6.12.8-9
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.12-61 TSC Pm Stresses Foot Bottom Corner Drop - Model B1 and C1 Stress FE      Section                          Pm Stresses (ksi)                                    Allowable Factor of Model    Location      Sx        Sy          Sz      Sxy      Syz        Sxz    SI (ksi)        (ksi)  Safety B          9        -0.03      4.38      1.17      0.03      0.07      0.08      4.41        19.35      4.38 B          10        -7.14      -2.33        1.28    0.04      -0.32      -1.21      8.79        19.35      2.20 B          11        -6.19      -1.93      -0.42    0.21      -0.22      -1.47    6.51        15.482    2.38 B          13        -0.14      0.10      -0.02    0.00      0.00      0.00      0.24        18.70    Large B          14        -6.57      -1.36      -0.06    0.61      0.00      -0.15      6.59        19.35      2.94 B          15        -9.88      -3.14      -0.23    0.33      -0.17      -0.18    9.68        19.35      2.00 B          16        0.02      0.01        0.00    0.00      0.00      0.00      0.02        19.35    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-62 TSC Pm + Pb Stresses Foot Bottom Corner Drop - Model B1 and C1 Stress FE      Section                        Pm + Pb Stresses (ksi)                                  Allowable Factor of Model    Location        Sx          Sy        Sz      Sxy      Syz        Sxz    SI (ksi)        (ksi)  Safety C          9          -0.05      6.65        3.65    0.03      0.41      0.07      6.75        29.02      4.30 B          10        -8.04      -2.95      2.50    -0.08      -0.45    -0.86    10.72        29.02      2.71 B          11        -7.79      -2.28      -0.28    0.17      -0.19    -2.14      8.66        23.222    2.68 C          13          1.98        2.25      0.00    0.00      0.00      0.00      2.25        28.05    Large B          14        -6.97      -1.46      0.41    0.49      0.07    -0.27      7.45        29.02      3.90 B          15        -11.02      -3.70      -0.62    0.26      -0.28      0.18    10.44        29.02      2.78 B          16          0.13        0.21      0.00    0.00      0.00      0.00      0.21        29.02    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.6.12.8-10
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 2.6.12.9      Stress Evaluation of the TSC for Combined Thermal and 1-Foot Corner Drop Load Condition The thermal stress loads are applied in conjunction with the primary loads to produce a combined thermal stress plus corner impact loading. The stress evaluation is performed according to the ASME Code, Section III, Subsection NB. The most critical sections are summarized in Table 2.6.12-63 and Table 2.6.12-64. Table 2.6.12-65 through Table 2.6.12-72 provide the primary + secondary (thermal) stress results for top and bottom corner-drop conditions.
NAC International                      2.6.12.9-1
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.12-63 TSC Critical Sections for the Combined 1-Foot Corner Drop and Thermal Load Condition - Model A1 Critical Condition                  Stress    Section  Factor of Safety Top Corner Drop +
Thermal (cold)            Pm + Pb + Q    12          2.04 Top Corner Drop +
Thermal (hot)            Pm + Pb + Q    12          2.19 Bottom Corner Drop +
Thermal (cold)            Pm + Pb + Q    12          1.98 Bottom Corner Drop
            + Thermal (hot)            Pm + Pb + Q    12          2.12
: 1. See Section 2.6.12.2 for model description.
Table 2.6.12-64 TSC Critical Sections for the Combined 1-Foot Corner Drop and Thermal Load Condition - Model B1 and C1 Critical Condition                  Stress    Section  Factor of Safety Top Corner Drop +
Thermal (cold)            Pm + Pb + Q    11          3.81 Top Corner Drop +
Thermal (hot)            Pm + Pb + Q    11          4.17 Bottom Corner Drop +
Thermal (cold)            Pm + Pb + Q    13          3.48 Bottom Corner Drop
            + Thermal (hot)            Pm + Pb + Q    13          3.80
: 1. See Section 2.6.12.2 for model description.
NAC International                        2.6.12.9-2
 
MAGNATRAN Transport Cask SAR                                                                        January 2022 Docket No. 71-9356                                                                                        Revision 1 Table 2.6.12-65 TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Cold -
Model A1 Pm + Pb + Q Stresses (ksi)
Angle of Peak Section      Stress                                                              SI        Allowable        Factor of Location    Location      Sx        Sy        Sz      Sxy    Syz    Sxz      (ksi)      Stress (ksi)      Safety 1            0        -6.38    -5.40    10.16    0.21  -0.09    -0.61    16.62          59.02            3.55 2          40.5        2.62    -10.76    -19.24    -0.10  -0.95    -1.13    22.08          59.02            2.67 3          40.5      -0.25    -2.49    17.99    0.06  -1.40    1.19    20.76          58.05            2.80 4          49.5      -0.04    11.29      5.81    0.01  -0.70    0.01    11.42          54.30            4.75 5          58.5      -0.01    12.84      6.26    0.00  -0.03    0.00    12.85          53.40            4.16 6          58.5      -0.05    12.90      6.96    0.00    0.31    0.00    12.96          52.50            4.05 7          54        -0.02    12.35      5.67    0.00    0.79    0.00    12.46          53.40            4.29 8          45        -0.02    10.89      4.16    0.01  1.39    -0.01    11.19          54.30            4.85 9          27        -0.08    10.23      4.54    0.01    0.73    0.01    10.41          58.05            5.58 10            0      -11.92    -3.40    -2.16    -0.37  -0.02    -3.84    12.43          58.44            4.70 11            0      -10.84    -3.09    -1.32    -0.20  -0.07    -3.09    11.35          46.442          4.09 12            0      -37.00    -36.68    -8.71    0.08  -2.23    -0.03    28.50          58.05            2.04 13            0        -7.91    -7.64    -3.04    0.02  0.35    -0.02    4.90          56.10          Large 14            0        -8.53    -1.05    -1.84    0.37  0.07    -0.40    7.55          58.05            7.69 15            0      -12.65    -3.52    -2.04    0.06    0.03    -0.01    10.60          58.05            5.48
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-66 TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Cold -
Model B1 and C1 FE      Section                      Pm + Pb + Q Stresses (ksi)                              Allowable    Factor of Model    Location        Sx          Sy          Sz      Sxy    Syz      Sxz      SI (ksi)  Stress (ksi)    Safety C          9        -0.03        4.84        -0.03    0.03    -4.09    0.02      9.52        58.05          6.10 B          10          0.51        7.58        -3.64    0.28    0.13    -1.51      11.73      58.05          4.95 B          11          0.80        7.64        -4.24    0.28    0.11    -1.25      12.18      46.442        3.81 B          13        -10.70      -10.66      -1.78    0.01    0.08    0.00      8.92        56.10          6.29 B          14          1.04        10.28      -2.70    0.18    0.00    -0.17      12.99      58.05          4.47 B          15        -0.19        10.80        1.79    0.14    0.00    0.02      11.00      58.05          5.28 C          16        -8.57        -8.58      -1.39    0.00    -0.04    -0.02      7.20        58.05          8.07
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                2.6.12.9-3
 
MAGNATRAN Transport Cask SAR                                                                        January 2022 Docket No. 71-9356                                                                                      Revision 1 Table 2.6.12-67 TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Hot -
Model A1 Pm + Pb + Q Stresses (ksi)
Angle of Peak Section      Stress                                                              SI          Allowable    Factor of Location    Location      Sx      Sy      Sz      Sxy      Syz      Sxz        (ksi)      Stress (ksi)    Safety 1            0        -6.36    -5.72  10.13    0.22    -0.09    -0.60      16.60          59.02          3.56 2          40.5        2.61  -11.06  -19.19    -0.10    -0.95    -1.13      22.03          59.02          2.68 3          36        -0.25    -2.60  17.95    0.04    -1.10    1.19      20.75          58.05          2.80 4          49.5      -0.04  11.29    5.81    0.01    -0.70    0.01      11.42          54.30          4.75 5          58.5      -0.01  12.84    6.26    0.00    -0.03    0.00      12.85          53.40          4.16 6          58.5      -0.04  12.94    6.86    0.00    0.31    0.00      13.00          52.50          4.04 7          54        -0.02  12.35    5.67    0.00    0.79    0.00      12.46          53.40          4.29 8          45        -0.02  10.89    4.16    0.01    1.39    -0.01      11.19          54.30          4.85 9          27        -0.08  10.25    4.56    0.01    0.73    0.01      10.42          58.05          5.57 10            0      -11.92    -3.55  -2.17    -0.36    -0.02    -3.84      12.42          58.44          4.71 11            0      -10.84    -3.24  -1.34    -0.19    -0.07    -3.09      11.33          46.442        4.10 12            0      -33.84  -33.55  -7.49    0.07    -1.91    -0.03      26.51          58.05          2.19 13            0        -7.17    -6.90  -2.68    0.02    0.29    -0.02      4.51          56.10        Large 14            0        -8.52    -1.17  -1.82    0.38    0.06    -0.40      7.42          58.05          7.82 15            0      -12.64    -3.67  -2.07    0.07    0.03    -0.01      10.57          58.05          5.49
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-68 TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Hot -
Model B1 and C1 FE      Section                    Pm + Pb + Q Stresses (ksi)                              Allowable    Factor of Model    Location      Sx        Sy        Sz      Sxy      Syz      Sxz      SI (ksi)  Stress (ksi)    Safety C          9        -0.02      4.92    -0.35    0.01      -2.80      0.01      7.69        58.05        7.55 B          10        0.61      6.41    -3.83    0.22      0.14    -1.59    10.76        58.05        5.40 B          11        0.96      6.51    -4.31    0.21      0.12    -1.30    11.13        46.442        4.17 B          13        -9.44      -9.41    -1.42    0.00      0.05      0.00      8.03        56.10        6.99 B          14        1.48      8.86    -2.54    0.25      0.07    -0.38    11.44        58.05        5.08 B          15        -0.03      9.36      1.61    0.12      0.00    -0.02      9.39        58.05        6.18 B          16        -6.87      -6.89    -1.02    0.00      -0.02    -0.01      5.88        58.05        9.87
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.6.12.9-4
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                        Revision 1 Table 2.6.12-69 TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Cold -
Model A1 Pm + Pb + Q Stresses (ksi)
Angle of Peak Section      Stress                                                              SI          Allowable    Factor of Location    Location      Sx      Sy        Sz    Sxy      Syz      Sxz        (ksi)        Stress (ksi)    Safety 1            0      -4.21    -5.95    9.48    0.22      0.09    -0.48    15.47            59.02          3.82 2          36        2.94  -12.38    -23.66  -0.08    -0.77    -1.35    26.78            59.02          2.20 3          108      -0.27    -2.29    17.96    0.05    -0.81    1.10    20.39            58.05          2.85 4          45      -0.04    11.14    4.15    0.01    -1.25    0.01    11.40            54.30          4.76 5          54        0.00    12.54    5.31    0.00    -0.65    0.00    12.60            53.40          4.24 6          58.5      -0.05    12.83    6.39    0.00    -0.23    0.00    12.89            52.50          4.07 7          54      -0.02    12.57    5.70    0.00    0.23    0.00    12.59            53.40          4.24 8          45      -0.02    11.05    4.90    0.01    0.76    -0.01    11.16            54.30          4.87 9          27      -0.08    10.11    5.87    0.01    0.34    0.01    10.22            58.05          5.68 10            0      -13.73    -4.48      2.35  -0.64    -0.41    -1.05    16.29            58.44          3.59 11            0      -11.15    -2.71      0.63  -0.22    -0.25    -2.41    12.74            46.442        3.65 12            0      -38.00  -37.32    -8.89    0.08    -2.21    -0.02    29.30            58.05          1.98 13            0      -7.07    -7.31    -2.82    0.03    0.35    -0.04      4.55            56.10        Large 14            0      -5.00    0.65      0.20    0.45    0.12    0.12      5.76            58.05        Large 15            0      -8.18    -1.28    -0.58    0.23    -0.23    0.06      7.68            58.05          7.56
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-70 TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Cold -
Model B1 and C1 FE      Section                    Pm + Pb + Q Stresses (ksi)                                Allowable  Factor of Model    Location        Sx          Sy        Sz      Sxy      Syz      Sxz      SI (ksi)  Stress (ksi)    Safety B          9        -0.19      11.44        5.67    -0.02    -1.65    0.08      12.06        58.05        4.81 C          10          0.72        5.50      -5.61      0.19    -0.94    0.89    11.40        58.05        5.09 B          11        -0.02        8.66      -1.81    -0.12    0.01    -0.57    10.63        46.442      4.37 C          13        -16.98      -16.68      -0.86    0.01      0.15    0.00    16.12        56.10        3.48 B          14          1.03      11.22      -2.58    -0.10    0.01    -0.39    13.85        58.05        4.19 B          15        -0.63      11.48      1.90    -0.09    -0.01    -0.13    12.12        58.05        4.79 B          16        -8.06      -7.66      -1.02      0.01    0.14    0.00      7.05        58.05        8.24
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 xallowable stress.
NAC International                              2.6.12.9-5
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                        Revision 1 Table 2.6.12-71 TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Hot -
Model A1 Pm + Pb + Q Stresses (ksi)
Angle of Peak Section      Stress                                                                  SI        Allowable    Factor of Location    Location      Sx        Sy        Sz    Sxy    Syz        Sxz        (ksi)      Stress (ksi)    Safety 1            0        -4.19    -6.27    9.45    0.23    0.09      -0.48      15.76        59.02          3.75 2          36        2.93    -12.69    -23.61  -0.08  -0.77      -1.35      26.73        59.02          2.21 3          108        -0.26    -2.41    17.83    0.05  -0.81      1.11      20.38        58.05          2.85 4          45        -0.04    11.14      4.15    0.01  -1.25      0.01      11.40        54.30          4.76 5          54        0.00    12.54    5.31    0.00  -0.65      0.00      12.60        53.40          4.24 6          58.5      -0.04    12.87      6.29    0.00  -0.23      0.00      12.92        52.50          4.06 7          54        -0.02    12.57      5.70    0.00  0.23      0.00      12.59        53.40          4.24 8          45        -0.02    11.05      4.90    0.01  0.76      -0.01      11.16        54.30          4.87 9          27        -0.08    10.13      5.89    0.01  0.34      0.01      10.24        58.05          5.67 10            0      -13.73    -4.64      2.37  -0.64  -0.41      -1.06      16.30        58.44          3.59 11            0      -11.15    -2.86      0.61  -0.22  -0.25      -2.41      12.72        46.442        3.65 12            0      -34.85    -34.20    -7.67    0.07  -1.89      -0.02      27.32        58.05          2.12 13            0        -6.34    -6.57    -2.46    0.02  0.29      -0.03        4.16        56.10        Large 14            0        -4.98      0.54      0.22    0.46  0.12      0.12        5.64        58.05        Large 15            0        -8.17    -1.44    -0.60    0.24  -0.23      0.06      7.65          58.05          7.59
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.6.12-72 TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Hot -
Model B1 and C1 FE      Section                      Pm + Pb + Q Stresses (ksi)                                Allowable    Factor of Model    Location        Sx          Sy        Sz      Sxy      Syz      Sxz    SI (ksi)  Stress (ksi)    Safety B          9        -0.18      12.10        6.13    -0.02    -0.78    0.03    12.38        58.05        4.69 C          10          0.76        5.61      -4.11    0.00    -0.22    0.86      9.87        58.05        5.88 B          11          0.05        7.40      -1.84    -0.14      0.01    -0.58    9.41        46.442        4.94 C          13        -15.40      -15.10      -0.63    0.00      0.10    0.00    14.77        56.10        3.80 B          14          1.17        9.92      -2.19    -0.09      0.02    -0.42    12.17        58.05        4.77 C          15        -1.56        9.02      0.90    -0.10    -0.03    0.15    10.59        58.05        5.48 B          16        -6.82        -6.43      -0.77    0.01      0.10    0.00      6.05        58.05        9.60
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                2.6.12.9-6
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 2.6.12.10      TSC Shear Stresses Foot Drop The primary mechanism for shear loading in the TSC drop analyses occurs for the bottom end-drop in the TSC closure weld. The maximum stress intensity for Section 11 is 12.05 ksi for the top end drop with thermal cold condition (Table 2.6.12-30). The maximum shear is 12.05/2 =
6.03 ksi. The allowable shear is 0.6 Sm per the ASME Code, Section III, Subsection NB-3227.2 for pure shear loading. The maximum TSC shell temperature is 400&deg;F and the factor of safety for pure shear is:
FS = 0.6 x 19.35 / 6.03 = 1.93 NAC International                      2.6.12.10-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.12.11      TSC Bearing Stresses Foot Side Drop The bearing stress evaluation is performed for the region of the TSC closure lid welds for the normal side drop conditions. The bearing region is considered from the top of the 0.25-inch weld for the closure ring to the bottom of the 0.5-inch weld for the lid (a total length of 1.5 inches) axially and 18&deg; circumferentially (0&deg; - 9&deg; for the half-symmetry model).
The compressive forces from the gap elements between the TSC shell and the cask inner shell in the region (0&deg; to 9&deg;) from Model A (Section 2.6.12.2) are used for the bearing evaluation. This is slightly conservative since the inertial load from the TSC shell is included in these forces. The forces from the gap elements act normal to the surface of the shell (i.e., radially), but are conservatively summed for the region. Using the enveloping force summation of 168,307 lbs for the side drop conditions, the bearing stress for the considered region is calculated to be 19,859 psi.
The peak temperature in the TSC shell in the region of the lid is 380&deg;F. Using a yield strength of 20,700 psi at 400&deg;F for the 304 stainless steel, the factor of safety for the bearing is calculated to be 1.04 (20,700 / 19,859 ).
NAC International                        2.6.12.11-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.12.12        TSC Shell Buckling Evaluation for 1-Foot End Drop Condition Code Case N-284-1 of the ASME Boiler and Pressure Vessel Code is used to perform a buckling evaluation for the TSC shell for the normal condition 1-foot end drops. The evaluation requirements of Regulatory Guide 7.6, Paragraph C.5, are shown to be satisfied by the results of the buckling interaction equation calculations of Code Case N-284-1.
The analytical process used for the buckling evaluation for the TSC is the same as that described in a step-by-step example presented in Section 2.7.14 (for the cask inner shell). The data considered for the buckling evaluation includes shell geometry parameters, shell fabrication tolerances, shell material properties, theoretical elastic buckling stress values for the shell, and membrane stress components in the shell. The internal stress field that controls the buckling of a cylindrical shell consists of the longitudinal (axial) membrane, circumferential (hoop) membrane, and in-plane shear stresses. These stresses may exist singly or in combination, depending on the applied loading. Only these three stress components are considered in the buckling analysis.
A 20g deceleration load was used for the 1-ft end drop TSC analyses. The top and bottom end drops result in the largest potential for TSC shell buckling. Comparing the top and bottom end drops, it is seen that the bottom end drop produces larger load to the TSC shell in terms of shell buckling since the closure lid is much heavier than the TSC bottom plate. Therefore, the bottom end drop is the load case presented here. The side drop load case is not considered a credible buckling mode of the TSC shell and is not evaluated. The TSC stresses due to bottom end drop are screened for the maximum values of the longitudinal compression, circumferential compression, or in-plane shear stresses for the 1-ft bottom end drop cases with and without pressure. The largest of the three stress components, regardless of location within the region, are combined. These maximum stress components are then added to the maximum stresses from the hot and cold thermal cases. Combining the maximum stress components in this way produces a conservative, bounding case buckling evaluation of the TSC, which envelops all 1-ft TSC drop cases.
The maximum stress components used in the evaluation and the resulting buckling interaction equation ratios are provided in Table 2.6.12-73. The results show that all interaction equation ratios are less than 1.0. Therefore, the buckling criteria of Code Case N-284-1 are satisfied, thus demonstrating that buckling of the TSC shell does not occur.
NAC International                        2.6.12.12-1
 
MAGNATRAN Transport Cask SAR                                                                                                    January 2022 Docket No. 71-9356                                                                                                                  Revision 1 Table 2.6.12-73 Buckling Evaluation Results for the TSC for 1-Foot End Drop Longitudinal  Circumferential    In-plane            Elastic Buckling                  Plastic Buckling (Axial) Stress* (Hoop) Stress*  Shear Stress    Interaction Equation Ratios      Interaction Equation Ratios Load Condition            S (psi)        S (psi)      S (psi)  Q1        Q2      Q3      Q4  Q5        Q6        Q7      Q8 1-Ft Top End Drop            1490            290              0      0.005    0.066    0.092  0.005 0.066    0.092    0.066    0.092 1-Ft Bottom End Drop          2910            630              0      0.105    0.129    0.199  0.105 0.129    0.199    0.129    0.199
* Compressive stresses NAC International                                              2.6.12.12-2
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                  Revision 1 2.6.12.13        Lid Joining Bolt Evaluation For the TSC with composite lid (TSC3 and TSC4), the bolts joining the closure lid and shield plate are made of SA-193 grade B6 bolting steel. These bolts are subjected to stresses due to the impact, thermal and pressure loading cases listed in Table 2.6.12-74 and bolt preload. The upper-bound bolt preload force is:
Q          1,680 FB =            =            = 11,200 lbs KD b .1x1.5 where:
Q = 1680 in-lbs ..................................Maximum bolt torque K = 0.1 ..............................................Lower bound nut factor for lubricated bolt Db= 1-1/2 inch ....................................Nominal bolt diameter The bolt stress due to the preload is then:
FB 11,200 B =        =              = 8,098 psi A t 1.383 where:
2 E min 0.16238 A t =  s                              = 1.383 in 2 2                    n n = 6 ...................................................Number of threads per inch Esmin = 1.3812 inch ...........................Minimum pitch diameter The initial strain in the bolt due to the preload, based on the elastic modulus of the bolt material (SA-193 Grade B6) at a design temperature of 500&deg;F, is:
8,098 0 =      =                6
                                      = 3.03 x10  4 in / in E 26.7 x10 where:
E = 26.7x106 psi..................... Modulus of elasticity, SA-193 Grade B6, 500&deg;F The effects of the differential thermal expansion of the dissimilar materials of the bolt and carbon steel shield plate are also accounted for by applying the bounding temperature loads.
NAC International                                      2.6.12.13-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Using this initial strain as an input to the models, stresses in the bolts are shown with the allowables and factors of safety for each service level in Table 2.6.12-74. The allowable stresses for the bolts are taken at an upper-bound temperature of 525&deg;F (Su = 94,975 psi).
This lid joining bolt evaluation bounds the results for the GTCC-TSC because the TSC3 and TSC4 internal pressures, thermal loads, and end and corner drop decelerations bound those for the GTCC-TSC.
NAC International                        2.6.12.13-2
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.12-74 Stresses in Lid Bolts for All Load Cases Allowable  Factor of Load Case                                              (ksi)    Safety Normal Top End Drop                                                                    47.49      Large Normal Top End Drop w/ Internal Pressure                                              47.49      9.89 Normal Top End Drop w/ Hot Thermal                                                    47.49      5.90 Normal Top End Drop w/ Cold Thermal                                                    47.49      7.24 Normal Top End Drop w/ Internal Pressure and Hot Thermal                              47.49      5.80 Normal Top End Drop w/ Internal Pressure and Cold Thermal                              47.49      7.09 Normal Bottom End Drop                                                                47.49      4.63 Normal Bottom End Drop w/ Internal Pressure                                            47.49      1.94 Normal Bottom End Drop w/ Hot Thermal                                                  47.49      3.86 Normal Bottom End Drop w/ Cold Thermal                                                47.49      4.12 Normal Bottom End Drop w/ Internal Pressure and Hot Thermal                            47.49      2.77 Normal Bottom End Drop w/ Internal Pressure and Cold Thermal                          47.49      2.83 Normal Pressure Only                                                                  47.49      1.79 Hot Thermal Only                                                                      47.49      5.36 Cold Thermal Only                                                                      47.49      5.99 Normal Top Corner Drop                                                                47.49      9.21 Normal Top Corner Drop w/ Internal Pressure                                            47.49      7.87 Normal Top Corner Drop w/ Hot Thermal                                                  47.49      5.68 Normal Top Corner Drop w/ Cold Thermal                                                47.49      6.78 Normal Top Corner Drop w/ Internal Pressure and Hot Thermal                            47.49      5.54 Normal Top Corner Drop w/ Internal Pressure and Cold Thermal                          47.49      6.60 Normal Bottom Corner Drop                                                              47.49      4.24 Normal Bottom Corner Drop w/ Internal Pressure                                        47.49      1.87 Normal Bottom Corner Drop w/ Hot Thermal                                              47.49      5.36 Normal Bottom Corner Drop w/ Cold Thermal                                              47.49      5.68 Normal Bottom Corner Drop w/ Internal Pressure and Hot Thermal                        47.49      2.59 Normal Bottom Corner Drop w/ Internal Pressure and Cold Thermal                        47.49      2.63 Accident Top End Drop                                                                  66.48      Large Accident Top End Drop w/ Internal Pressure                                            66.48      Large Accident Bottom End Drop                                                              66.48      2.31 Accident Bottom End Drop w/ Internal Pressure                                          66.48      2.72 Accident Top Corner Drop                                                              66.48      Large Accident Top Corner Drop w/ Internal Pressure                                          66.48      Large Accident Bottom Corner Drop                                                            66.48      2.32 Accident Bottom Corner Drop w/ Internal Pressure                                      66.48      2.76 Accident Pressure Only                                                                66.48      1.25 NAC International                                2.6.12.13-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.12.14      Brittle Fracture of the Shield Plate For the TSC with composite lid assembly (TSC3 and TSC4), the shield plate is not a confinement component; therefore it is evaluated according to the ASME Pressure Vessel and Boiler Code, Section III, Subsection NF. According to paragraph NF-2311, no impact testing is required for materials with a maximum tensile stress of less than 6,000 psi. The maximum nodal tensile stresses in the shield plate for each load case are listed in Table 2.6.12-75. As seen in the table, the maximum tensile stress in the shield plate is calculated as 5,885 psi. Therefore, no impact testing is required.
This brittle fracture evaluation bounds the results for the GTCC-TSC because the TSC3 and TSC4 maximum contents weights, internal pressures, and end and corner drop decelerations bound those for the GTCC-TSC.
NAC International                        2.6.12.14-1
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.12-75 Maximum Stresses in Shield Plate Maximum          Maximum Tensile Stress  Tensile Stress in Lower Lid    in Lower Lid (3/4" ring)    (1-1/2" ring)
Load Case                                  (psi):          (psi):
Normal Top End Drop                                                    253              249 Normal Top End Drop w/ Internal Pressure                              261              259 Normal Top End Drop w/ Hot Thermal                                    2451            2455 Normal Top End Drop w/ Cold Thermal                                  2759            2767 Normal Top End Drop w/ Internal Pressure and Hot Thermal              2462            2473 Normal Top End Drop w/ Internal Pressure and Cold Thermal            2771            2782 Normal Bottom End Drop                                                799              808 Normal Bottom End Drop w/ Internal Pressure                          1449            1412 Normal Bottom End Drop w/ Hot Thermal                                3361            3353 Normal Bottom End Drop w/ Cold Thermal                                3759            3751 Normal Bottom End Drop w/ Internal Pressure and Hot Thermal          2816            2805 Normal Bottom End Drop w/ Internal Pressure and Cold Thermal          3236            3231 Normal Pressure Only                                                  2915            2864 Hot Thermal Only                                                      3341            3334 Cold Thermal Only                                                    3736            3729 Normal Top Corner Drop                                                162              160 Normal Top Corner Drop w/ Internal Pressure                            275              276 Normal Top Corner Drop w/ Hot Thermal                                2466            2473 Normal Top Corner Drop w/ Cold Thermal                                2788            2784 Normal Top Corner Drop w/ Internal Pressure and Hot Thermal          2475            2486 Normal Top Corner Drop w/ Internal Pressure and Cold Thermal          2783            2792 Normal Bottom Corner Drop                                              671              662 Normal Bottom Corner Drop w/ Internal Pressure                        2229            2190 Normal Bottom Corner Drop w/ Hot Thermal                              2917            2909 Normal Bottom Corner Drop w/ Cold Thermal                            3421            3412 Normal Bottom Corner Drop w/ Internal Pressure and Hot Thermal        3841            3829 Normal Bottom Corner Drop w/ Internal Pressure and Cold Thermal      4384            4369 Accident Top End Drop                                                  628              619 Accident Top End Drop w/ Internal Pressure                            633              625 Accident Bottom End Drop                                              4886            4884 Accident Bottom End Drop w/ Internal Pressure                        3031            3030 Accident Top Corner Drop                                              681              673 Accident Top Corner Drop w/ Internal Pressure                          668              661 Accident Bottom Corner Drop                                          4475            4472 Accident Bottom Corner Drop w/ Internal Pressure                      2925            2925 Accident Pressure Only                                                5885            5776 NAC International                        2.6.12.14-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.13          PWR Fuel Basket Analysis - Normal Conditions of Transport This section evaluates the PWR fuel basket for normal conditions of transport. The MAGNATRAN PWR basket is designed to accommodate up to 37 PWR fuel assemblies. The basket consists of 21 fuel tubes, four side support weldments, and four corner support weldments. An exploded view of the PWR basket assembly is presented Figure 2.6.13-1. The structural evaluation for the PWR fuel basket is performed using the criteria for Service Level A limits from ASME Code, Section III, Subsection NG.
NAC International                        2.6.13-1
 
MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.6.13-1  Expanded View of PWR Basket NAC International                2.6.13-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.13.1        PWR Fuel Basket Load Path Description This section describes the load paths and interactions between basket components during transport conditions. The PWR fuel basket is designed to accommodate up to 37 PWR fuel assemblies. For end drop conditions, the bottom plate or the lid of the TSC directly supports the weight of the fuel assemblies. The basket is subjected to its self-weight only. For side drop conditions associated with loadings in the transverse direction of the basket, 21 fuel tubes, side support weldments, and corner support weldments support the weight of the fuel assemblies.
Referring to Figure 2.6.13-1, load transfer between the fuel tubes, 1, is through contact at the tube corners. This contact consists of two types: the intermediate pins, and the region between pins where the tube sections are in contact. The pin-slot connections at a 20-inch center-to-center distance prevent the fuel tubes from sliding past each other. The shear load transmitted across the pins is reacted out in bearing in the fuel tube pin slots. The tube region between the pins transmits bearing loads directly between fuel tubes.
Axial support of the fuel basket is provided by standoffs at the top and bottom of the basket, formed by extension of the fuel tube corners or use of connector pin assemblies. The top and bottom standoffs provide an axial gap between basket and TSC, i.e., at the TSC lid and bottom plate, improving airflow inside the TSC. Bearing loads due to the basket weight are transmitted through these standoffs to the TSC lid or bottom plate for end drops.
The corner and side support weldments provide rigidity to the basket. The weldments are attached to the fuel tube array by means of bolted boss connections. Bosses welded to the fuel tubes are slotted into the weldments. Connection is made with the use of a washer and bolt combination.
Figure 2.6.13-1 and Figure 2.6.13-2 show the boss connection details, 2. To ensure the connection is in tension, the bosses are designed not to penetrate completely through the weldment wall. Therefore, once installed and preloaded, the bolts are always in tension. Shear loads are reacted out by the interaction of the bosses, boss welds, and the support weldments, 3.
When the support weldments are in compression, bearing loads are transferred through the support weldment to the fuel tube array, 4.
NAC International                        2.6.13.1-1
 
MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                              Revision 1 Figure 2.6.13-2  Bolted Attachment Details NAC International              2.6.13.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.13.2        Finite Element Model Description - PWR Fuel Basket For normal conditions of transport, two 3-dimensional periodic half-symmetry finite element models of the PWR basket are used to evaluate the structural integrity of the basket for side drop conditions. As shown in Figure 2.6.13-3 and Figure 2.6.13-4, these models correspond to the critical basket orientations, 0&deg; and 45&deg;, for the loadings in transverse direction of the basket. The 0&deg; basket orientation maximizes the stresses in the fuel tube sidewalls and the 45&deg; basket orientation maximizes the bending stresses in the tube corners. Intermediate basket orientations are bounded by the 0&deg; and 45&deg; orientations. The fuel tube pins and slot joints are spaced on 20.0-inch centers. Therefore, the periodic model extends from the axial center of a fuel tube support pin to the mid-point of the fuel tube between the pins (10.0-inch segment). The effect of connector pins at both ends of the basket is ignored.
The finite element model is constructed from ANSYS SOLID45 and BEAM4 elements. Fuel tube assemblies, pins, corner weldment plates, and side support weldments are modeled using SOLID45 elements. BEAM4 elements are used to model the support bars on the corner weldments. CONTAC52 elements are used to model the interface between basket components, except that CONTA173 and TARGE170 elements are used to model the interaction of pins and fuel tube slots, as shown in Figure 2.6.13-5. CONTA173 elements are used around the periphery of the pins and TARGE170 elements are used at the inner surface of the fuel tube slots. Note that the gap between the pin and the fuel slot is considered to be initially closed. CONTAC52 gap elements are used at the basket periphery to represent the interface between the PWR basket and the TSC shell, as shown in Figure 2.6.13-6 and Figure 2.6.13-7. Material properties at 500&deg;F are used in the models.
The corner and side support weldments are bolted to the fuel tube array at 20 locations around the circumference of the basket. The bolt/boss joints are modeled using LINK10 for the bolts and COMBIN40 elements for the bosses. The LINK10 element represents the bolt and is capable of tension loads only. Compression loads are carried by the CONTAC52 gap elements discussed above. The COMBIN40 elements represent the shear restraint provided by the bosses welded to the fuel tubes. A gap of 1/16 inch is considered on each side of the boss, as defined by the real constants of the COMBIN40 elements. The interaction between the corner weldment support bar and the ridge gusset is modeled using a LINK10 element capable of compression only, since there is no weld between the support bar and the gusset. The weight of the neutron absorbers and the retainers, which are not included in the finite element mode, is considered by increasing the density of the carbon steel for the fuel tube sidewalls.
The models are also used to evaluate the primary plus secondary (thermal) stresses in the basket.
A thermal conduction analysis is first performed by converting the structural elements to their NAC International                        2.6.13.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 corresponding thermal elements. The computed nodal temperatures are then imported into the structural model to calculate the stresses due to a combined effect of the secondary (thermal) and primary (1-ft side drop) loadings. Note that the periodic model is adequate to evaluate the thermal stresses in the basket, which mainly result from the thermal expansion of the basket in the radial and circumferential directions. Thermal stress due to thermal expansion in the axial direction is negligible since the basket components are free to expand in the axial direction.
2.6.13.2.1      Boundary Conditions For the evaluation of the normal conditions for side drops, an inertia load of 15g in the transverse direction is considered. To represent the loads from the fuel assemblies, a pressure load is applied to the fuel tube sidewalls. The applied pressure is conservatively based on the heaviest fuel assembly being loaded into the shortest basket and is scaled by the inertia load of 15g.
Symmetry boundary conditions are applied at the plane of symmetry. Symmetry boundary conditions are also applied to both ends of the finite element model to represent a periodic section of the basket. The locations of the outer nodes of the gap elements at the basket periphery are defined based on the TSC shell profile with the maximum radial displacements during the side drop conditions. The maximum TSC shell displacement occurs at approximately mid-height of the TSC shell. Figure 2.6.13-6 and Figure 2.6.13-7 show the boundary conditions for the basket evaluations.
For the thermal conduction solution for thermal stress evaluation, a maximum temperature of 725&deg;F is applied at the center of the basket and a minimum temperature of 300&deg;F is applied to the periphery of the basket, which results in a bounding average gradient of 425&deg;F for the basket radial direction. Note that the applied temperatures are conservatively selected to envelop the maximum temperature, as well as the maximum radial temperature gradient (T) of the basket for all conditions of the PWR system for transport.
2.6.13.2.2      Post-Processing The post-processing of the PWR basket finite element analysis results is performed to calculate critical stresses at various locations of the basket structure using the ANSYS post-processor.
Figure 2.6.13-8 through Figure 2.6.13-13 show the locations of the sections cuts for the various basket components.
For normal conditions of transport, sectional stresses are calculated to obtain the critical membrane, membrane plus bending, and primary plus secondary stresses for inertial loadings and inertia plus thermal loadings. Stresses are calculated by using the PRSECT command. The membrane stresses are calculated by extracting the sectional stress intensity at the mid-thickness of the various basket components. The membrane plus bending and primary plus secondary stresses are calculated by extracting the maximum sectional stress intensity at the inner or outer surface of the various basket components.
NAC International                          2.6.13.2-2
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.13-3 PWR Basket Finite Element Model - 0&deg; Basket Orientation Corner Weldment Fuel Tube Side Weldment Y
Z X
Plane of Symmetry Pin NAC International              2.6.13.2-3
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.13-4 PWR Basket Finite Element Model - 45&deg; Basket Orientation Side Weldment Fuel Tube Y                                                          Corner Weldment X
Z Plane of Symmetry Pin NAC International              2.6.13.2-4
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.13-5  Pin-Slot Connection Model Detail NAC International                2.6.13.2-5
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                              Revision 1 Figure 2.6.13-6          PWR Basket Boundary Conditions - 0&deg; Basket Orientation Y
CONTAC52 elements (typical) representing the interface of basket and canister shell (inside transport cask). Outer nodes of gap elements are fixed.
Inertia Load (G)
X Symmetry boundary conditions at X = 0 in Applied Fuel Pressure Load NAC International                          2.6.13.2-6
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                            Revision 1 Figure 2.6.13-7          PWR Basket Boundary Conditions - 45&deg; Basket Orientation Y
CONTAC52 elements (typical) representing the interface of basket and canister shell (inside transport cask).
Outer nodes of gap elements are fixed.
Applied Fuel Pressure Load Plane of Symmetry Inertia Load (G)
X Symmetry boundary conditions at X = 0 NAC International                      2.6.13.2-7
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.13-8 Fuel Tube Array and Section Cuts - 0&deg; Basket Orientation NAC International                2.6.13.2-8
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.13-9 Fuel Tube Array and Section Cuts - 45&deg; Basket Orientation NAC International            2.6.13.2-9
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.13-10 Corner Support Weldment Section Cuts - 0&deg; Basket Orientation NAC International            2.6.13.2-10
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.13-11  Corner Support Weldment Section Cuts - 45&deg; Basket Orientation NAC International            2.6.13.2-11
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.13-12 Side Support Weldment Section Cuts - 0&deg; Basket Orientation NAC International            2.6.13.2-12
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.13-13 Side Support Weldment Section Cuts - 45&deg; Basket Orientation NAC International            2.6.13.2-13
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.13.3        Stress Evaluation for the PWR Basket for 1-Foot End Drop Condition The basket is analyzed using classical hand calculations for an inertia loading of greater than or equal to 10g in the basket axial direction (cask top or bottom end drop). During normal end drop conditions, the PWR fuel assemblies do not apply loads to the basket. Using a bounding weight of 22,500 pounds, the maximum stress in the fuel tube is calculated below. A bounding temperature of 550&deg;F at top or bottom ends of the basket is used to determine the allowable stresses. There are 21 fuel tubes in the PWR basket. Conservatively assuming the entire basket weight is carried through the fuel tubes, the stress in the tube is:
Ptube 21.4 tube =            =        = 1.9 ksi A      11.4 where:
Wxa Ptube =              = 21,429 lb ------------ Load per tube n
W = 22,500 lb ----------------------- Bounding basket weight N = 21 -------------------------------- Number of fuel tubes a = 20g ------------------------------ End drop acceleration A = 11.4 in2 ------------------------- Tube cross-sectional area The factor of safety is:
Sm        22.4 FS =          =        = large tube      1 .9 where:
Sm = 22.4 ksi ------------------------- Design stress intensity, SA537 Class 1, 550&deg;F Axial support of the fuel tubes is provided by standoffs at the top and bottom of the basket, formed by extension of the fuel tube corners or use of connector pin assemblies. Referring to Figure 2.6.13-8, the interior tubes (Tube #4) are supported by four standoffs, the side fuel tubes (Tube #1) are supported by two standoffs and the side and corner weldments, and the corner fuel tubes (Tube #3) are supported by three standoffs and the corner weldment. Using the minimum bearing area between the fuel tube and different design options of the connector pin assembly (CPA), provides a bounding bearing stress evaluation which envelopes all end of tube configurations. The fuel tube bearing stress is:
a x Pt/s brg =            = 28.9 ksi A brg NAC International                            2.6.13.3-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 where:
Abrg  = 0.0583 in2 ---------------------- Minimum bearing area for a single tube Pt/s  = Pt 4 ---------------------------- Load on tube from single standoff a  = 10g ------------------------------ End drop acceleration Pt  = 675 lb --------------------------- Tube weight The factor of safety for bearing is:
Sy      34.6 FS =          =        = 1.20 brg    28.9 where:
Sy = 34.6 ksi ----------------------------- Yield stress, SA537 Class 1, 550&deg;F The bearing stress in the standoff at the TSC bottom plate is:
10 x Pt/s brg =            = 12.3 ksi A brg where:
Abrg =
4 (D  2 o      )
Di2 =
4
(              )
0.62 2  0.19 2 = 0.274 in2 Do = 0.62 in --------------------------- Outer diameter of CPA spacer at chamfered end Di = 0.19 in --------------------------- Diameter of hole in CPA spacer for drive pin The factor of safety for bearing is:
1.5S y      1.5 x 20.7 FS =            =            = 2.52 brg        12.3 where:
Sy = 20.7 ksi ----------------------------- Yield stress, SA240, Type 304, 400&deg;F The weight of the side and corner weldments is carried by the TSC bottom plate or lid through the supports at the bottom and top of the weldments during end drop conditions. The bounding dimensions for the supports of the weldments are 5.0-inch length and 0.3125-inch thickness (corner weldment). The maximum weight of one weldment is 800 lb (bounding, side weldment).
The weldment supports one-quarter the weight of two fuel tubes (675 lb per tube, bounding).
NAC International                            2.6.13.3-2
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 The bearing stress is:
a x Wsup brg=              = 14.5 ksi A sup where:
Wsup =      800 + 2 x (0.25 x 675 ) = 1138 lb a=    20g Asup =    5.0 x 0.3125 = 1.56 in2 The factor of safety for bearing is:
Sy      20.7 FS =          =        = 1.43 brg    14.5 where:
Sy = 20.7 ksi ------------------------------ Yield stress, SA-240, Type 304, 400&deg;F The buckling evaluation for the standoffs is performed in Section 2.7.9.1. The accident condition buckling evaluation is bounding.
NAC International                            2.6.13.3-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.13.4        Stress Evaluation for the PWR Basket for 1-Foot Side Drop Condition The analysis for the PWR basket subjected to a 1-ft side drop was performed using the elastic ANSYS finite element model. The analysis results for the major basket components (tubes, support weldments) are summarized in Table 2.6.13-1 through Table 2.6.13-20. The allowable stresses are determined at a bounding temperature of 725&deg;F for the fuel tubes and 500&deg;F for the support weldments.
2.6.13.4.1      Fuel Tube Evaluation The Pm (primary membrane), Pm+Pb (primary membrane plus bending) and P+Q (primary plus secondary) stresses are evaluated at 16 section locations as shown in Figure 2.6.13-8 and Figure 2.6.13-9 for 0&deg; and 45&deg; basket orientations, respectively. The maximum stresses are presented in Table 2.6.13-1 through Table 2.6.13-3 for the 0&deg; basket orientation and Table 2.6.13-11 through Table 2.6.13-13 for the 45&deg; basket orientation. The minimum factor of safety is 2.59, 1.01 and 1.20 for Pm, Pm+Pb and P+Q stresses, respectively.
For the 45&deg; basket orientation, calculated stresses at some fuel tube corners are above the allowable value of 1.5Sm for primary membrane plus bending stresses. These stresses are not included in the results in Table 2.6.13-12 as the bending stresses at these locations are classified as secondary, applying the stress classification method in ASME Code, Section III, Subsection NB. Further discussion and justification of the classification of these stresses are provided in Section 2.6.13.6.
The fuel tubes are fabricated by welding two tube halves together using a full-penetration weld the length of the fuel tube at the center of opposing flats. A surface PT or MT weld examination per ASME III-NG-5233 is used, which has a 0.65 weld quality factor (wf). From the elastic analysis of the PWR basket (Section cuts no. 2, 6, 10 and 14), the maximum membrane, membrane plus bending, and primary plus secondary stress intensity at a tube weld is 4.7 ksi (0&deg;,
Tube #12, Section 6), 12.6 ksi (45&deg;, Tube #13, Section 10), and 13.1 ksi (45&deg;, Tube #11, Section 6), respectively. The factors of safety for the weld are:
Membrane:
S m x wf 21.1 x 0.65 FS =            =              = 2.92 4.7 Membrane plus bending:
1.5S m x wf 1.5 x 21.1 x 0.65 FS =                =                  = 1.63 12.6 NAC International                        2.6.13.4-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 Primary plus secondary:
3S m x wf 3 x 21.1 x 0.65 FS =                =                    = 3.14 13.1 where:
Sm = 21.1 ksi ------------------------------ Design stress intensity, SA537 Class 1, 725&deg;F The pins in the tube slots are subjected to bearing load. The governing bearing load occurs at the pin located between Tube #11 and #12 for 0&deg; basket orientation (see Figure 2.6.13-8). The bearing stress (brg) on the pin is evaluated using the bounding load of 11.0 kips.
P brg =        = 24.2 ksi LS where:
P=    11.0 kips ------------------------ Bounding load on pin in ANSYS model L=      1.625 inches ------------------- Length of pin S=      0.28 inch ----------------------- Width of contact surface between pin and slot The factor of safety is:
Sy      25.4 FS =          =      = 1.05 brg    24.2 where:
Sy = 25.4 ksi ---------------------------- Yield stress, SA36 Carbon Steel, 725&deg;F The bearing stress evaluation for the flats between fuel tubes is bounded by the evaluation for the pins in the slots.
2.6.13.4.2      Corner Support Weldment Evaluation The corner support weldment is comprised of two major components: the mounting plate and the side support bars, which are located on 5-inch centers.
The analysis results using the 3-D finite element model for the corner weldment are summarized in Table 2.6.13-4 through Table 2.6.13-10 for the 0&deg; basket orientation and Table 2.6.13-14 through Table 2.6.13-17 for the 45&deg; basket orientation. The minimum factors of safety are 4.75, 1.80 and 3.21 for Pm, Pm+Pb and P+Q stresses, respectively.
The support bar is a continuous bar that is bent at the ridge gusset. The maximum Pm, Pm+Pb and P+Q stresses for the support bars are presented in Table 2.6.13-7 for 0&deg; basket orientation and Table 2.6.13-17 for 45&deg; basket orientation, respectively. The minimum factor of safety for the support bars is 1.57. The bars are welded to the plate with a minimum 5/16-inch groove weld on NAC International                            2.6.13.4-2
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 the sides of the bars using the visual inspection criteria per ASME Code, Section III, Subsection NG, Article NG-5260. A weld quality factor of 0.35 is applied based on visual inspection of the weld per ASME Code, Section III, Subsection NG, Article NG-3352.
The welded joint between the support bar and corner mounting plate is capable of carrying bending, axial and shear loads. The maximum weld loads occur at the member end at Section 12 of Figure 2.6.13-10 for 0&#xba; basket orientation and at Section 16 of Figure 2.6.13-11 for 45&deg; basket orientation. Using a bounding bending moment (M), axial load (P), and shear load (V) of 1.91 in-kip, 1.55 kips and 1.34 kips, respectively, the weld stress intensity (weld) is:
2            2 M          P          V weld  =        +        + 4      = 10.1 ksi S
w        A w          A w
where:
Sw = Lw x t g x t w = 0.320 in3 Aw = 2 x (L w x t w ) = 0.547 in2 The factor of safety (FS) for the weld is 0.35(1.5Sm )
FS =                    = 1.07 weld where:
Sm = 20.6 ksi ------------------------------ Design Stress Intensity, SA516, at 500&deg;F The corner weldment ridge gusset is welded to the corner support weldment with two 1/8-inch groove welds on each side of the gusset. The gussets exert compressive loads on the support weldment; however, only shear and bending loads are transferred through the welds. The welds have a visual inspection criterion per ASME III-NG-5260. Visual inspection of the weld has a weld quality factor of 0.35, per ASME III-NG-3352. The maximum weld stress occurs in the 0&deg; basket orientation at Section 22 (Figure 2.6.13-10). The stress intensity in the weld is:
2              2 M              V weld  =        + 4        = 3.6 ksi Sw            Aw where:
M = 1.7 in-kips -------------------------- Bounding Bending moment V = 1.3 kips ------------------------------ Bounding shear load Aw = 2 x (L w x t w ) = 2.0 in2 NAC International                              2.6.13.4-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Sw = Lw x t g x t w = 0.50 in3 Lw = 10.0 - 2.0 = 8.0 in ----------------- Length of weld tw = 0.125 in ----------------------------- Weld size tg = 0.50 in ------------------------------- Gusset thickness The factor of safety for the weld is:
0.35(1.5Sm )
FS =                    = 3.31 weld where:
Sm = 22.7 ksi ------------------------------ Design Stress Intensity, SA537 Class 1, at 500&deg;F 2.6.13.4.3      Side Support Weldment Evaluation Based on the analysis using the three-dimensional finite element models, the maximum stresses for the side support weldment are presented in Table 2.6.13-8 through Table 2.6.13-10 for the 0&deg; basket orientation and Table 2.6.13-18 through Table 2.6.13-20 for the 45&deg; basket orientation.
The minimum factors of safety are 6.29, 2.72 and 2.35 for Pm, Pm+Pb and P+Q stresses, respectively.
Side and Corner Weldment / Fuel Tube Attachment Evaluation The corner and side support weldments are the primary structures that maintain the geometry of the fuel tube array. The support weldments are bolted to the fuel tubes at 20 circumferential locations. The bolted joint between the support weldment and fuel tubes is preloaded. The maximum torque on the 5/8-inch bolt is 50 in-lb (40 +/-10 in-lb). The preload on the bolt (Pb) is:
T            50 Pb =            =                = 400 lb 0.2D 0.2 x 0.625 where:
T=      50 in-lb ------------------------- Maximum bolt torque D=      0.625 in ------------------------- Bolt diameter The maximum bolt tensile load is the 3,700 lb, 45&deg; basket orientation. Combining the tensile bolt load with the bolt preload, the maximum bolt load is 4,100 pounds. A bounding load (P) of 4,100 lb is conservatively used for evaluation. The bolt thread is a 5/8-11 UNC and the length of engagement is 0.50 inch. The bolt material is SA193 Grade B6 stainless steel. From Machinerys Handbook, the tensile stress in the bolt is:
NAC International                              2.6.13.4-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 P        4.1 t =        =        = 17.8 ksi A t 0.23 where:
2                            2 0.9743                        0.9743 At =    0.7854 D                = 0.7854 0.625          = 0.23 in2 n                            11 D = 0.625 in -------------------------- Bolt diameter n = 11 --------------------------------- Threads per inch The factor of safety is:
Sm FS =            = 1.38 t
where:
Sm = 24.6 ksi ----------------------------- Design stress intensity, SA193 Grade B6, 500&deg;F The shear stress in the bolt thread is:
P        4.1 bolt =      =          = 8.2 ksi A s 0.499 where:
1 As = 3.1416nLe K n max  + 0.57735(E s min  K n max ) = 0.499 in2 2n Le = 0.5 in -------------------------------- Thread length Knmax = 0.546 -------------------------------- Maximum minor diameter of internal thread Esmin = 0.5589 ------------------------------ Minimum pitch diameter of external thread n = 11 ----------------------------------- Threads per inch The factor of safety is:
0.6S y FS =              = 5.33 bolt where:
Sy = 73.9 ksi ----------------------------- Yield Strength, SA193 Grade B6, 500&deg;F NAC International                            2.6.13.4-5
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 The shear stress in the boss thread is:
P      4.1 boss    =            =        = 5.8 ksi A n 0.713 where:
1 An = 3.1416nLe Ds min  + 0.57735(Ds min  E n max ) = 0.713 in2 2n Le = 0.5 in -------------------------------- Thread length Enmax = 0.5732 ------------------------------ Maximum pitch diameter of internal thread Dsmin = 0.6113 ------------------------------ Minimum major diameter of external thread n = 11 ----------------------------------- Threads per inch The factor of safety is:
FS = Sy / boss = 3.03 where:
Sy =29.3 ksi ------------------------------ Yield Strength, SA36, 500&deg;F The maximum shear load (Ps) on the boss is less than 2,500 lb. Using a bounding load of 2,500 lb, the shear stress in the boss is:
PS      2.5 boss =        =        = 2.7 ksi A b 0.92 where:
Ab =
(
Do2  Di2  ) = 0.92 in2 4
Do = 1.25 in ------------------------------ Boss outer diameter Di = 0.63 in ------------------------------ Boss inner diameter The factor of safety is:
0.6Sm FS =                = 4.58 boss where:
Sm = 20.6 ksi ------------------------------ Design stress intensity, SA516 Grade 70, 500&deg;F NAC International                              2.6.13.4-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The bearing stress between the boss and the support weldment is:
PS            2.5 Sbrg =        =                = 6.4 ksi Dt sup 1.25 x 0.3125 where:
D = 1.25 in ------------------------------ Boss outer diameter tsup = 0.3125 in --------------------------- Support weldment plate thickness The factor of safety is:
Sy FS =          = 4.58 Sbrg where:
Sy = 29.3 ksi ----------------------------- Yield Strength, SA36, 500&deg;F The boss is welded into the fuel tube with a 1/4-inch groove weld. The weld has a visual inspection criterion per ASME III-NG-5260. Visual inspection of the weld has a weld quality factor of 0.35, per ASME III-NG-3352. The stress in the boss weld, using the lesser of SA537, Class 1 and SA516, Grade 70 Sm allowable, is:
P      4.1 weld  =            =      = 4.18 ksi A w 0.98 where:
P=      4.1 kips ------------------------- Bolt tensile load Aw =      Dtweld =  x1.25x 0.25 = 0.98 in2 D=      1.25 in -------------------------- Boss diameter The factor of safety is:
0.35(0.6S m )
FS =                    = 1.03 weld where:
Sm = 20.6 ksi----------------------------- Design stress intensity, SA516 Grade 70, 500&deg;F NAC International                            2.6.13.4-7
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 The washers under the bolts at the boss locations are subjected to shear from the bolt tensile load and the support condition at the weldment. The bounding bolt tensile force is 4.1 kips and the shear stress is:
P      4.1 wash =            =        = 4.04 ksi Aw 1.015 where:
Aw = Pb t w = 1.015 in2 Pb =    3.248 in ------------------------- Perimeter of mounting bolt head tw =    0.3125 in ----------------------- Washer thickness The factor of safety is:
0.6Sm FS =              = 2.6 wash where:
Sm = 17.5 ksi ------------------------------ Design stress intensity, SA-240, Type 304, 500&deg;F Bearing Stress on TSC Shell The side and corner support weldments are laterally supported by the TSC shell during side drop conditions. Based on the finite element analysis results, the maximum reaction at the periphery of the support weldments (interfacing with the TSC shell) occurs in the 0&deg; basket orientation for 1-ft side drop. A bounding load (Pbrg) of 16 kips is used for the bearing stress evaluation for the TSC shell. The bearing area (Abrg) at the TSC shell is considered to be 5 in2 (0.5x10) (0.5 inch is a conservative bearing length circumferentially and 10 inches is the axial length of the model).
The bearing stress at the TSC shell is:
Pbrg brg =          = 3.2 ksi A brg The factor of safety for bearing is:
1.5S y    1.5 x 18.9 FS =            =            = 8.86 brg        3 .2 where:
Sy = 19.4 ksi ------------------------------ Yield stress, SA240 Type 304, 500&deg;F NAC International                            2.6.13.4-8
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.13-1    PWR Fuel Tube Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi Tube Section Sint          Sallow    FS 12      8      7.96      21.1    2.65 11      13      4.88      21.1    4.32 12      9      4.79      21.1    4.41 11      8      4.74      21.1    4.45 12      6      4.67      21.1    4.52 Note: See Figure 2.6.13-8 for tube and section cut locations.
Table 2.6.13-2    PWR Fuel Tube Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Tube Section Sint          Sallow    FS 7      12      25.20    31.7    1.26 11      16      23.57    31.7    1.34 7      16      23.39    31.7    1.36 12      4      22.43    31.7    1.41 12      5      21.44    31.7    1.48 Note: See Figure 2.6.13-8 for tube and section cut locations.
Table 2.6.13-3    PWR Fuel Tube Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi Tube Section      Sint    Sallow    FS 3      12      26.60    63.3    2.38 7      12      26.33    63.3    2.40 7      16      26.09    63.3    2.43 12      4      23.16    63.3    2.73 3      16      22.33    63.3    2.83 Note: See Figure 2.6.13-8 for tube and section cut locations.
NAC International                    2.6.13.4-9
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.13-4  PWR Corner Weldment Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi Section      Sint  Sallow    FS 17      4.78    22.7    4.75 16      2.61    22.7    8.70 22      2.33    22.7    9.74 Note: See Figure 2.6.13-10 for section cut locations.
Table 2.6.13-5  PWR Corner Weldment Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Section      Sint  Sallow    FS 16      18.97    34.1    1.80 22      9.97    34.1    3.42 4      9.85    34.1    3.46 Note: See Figure 2.6.13-10 for section cut locations.
Table 2.6.13-6  PWR Corner Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi Section      Sint  Sallow    FS 16      21.21    68.1    3.21 22      12.22    68.1    5.57 4      9.47    68.1    7.19 Note: See Figure 2.6.13-10 for section cut locations.
Table 2.6.13-7  PWR Corner Weldment Support Bars, 1-ft Side Drop - 0&deg;, ksi Stress Sint          Sallow            FS Category Pm          2.73            20.6            7.55 Pm+Pb          18.8            30.9            1.64 P+Q          17.8            61.8            3.47 NAC International                  2.6.13.4-10
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.13-8  PWR Side Weldment Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi Section    Sint  Sallow    FS 14      3.61    22.7    6.29 15      1.32    22.7    large 13      0.98    22.7    large Note: See Figure 2.6.13-12 for section cut locations.
Table 2.6.13-9  PWR Side Weldment Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Section    Sint  Sallow    FS 19    12.52    34.1    2.72 14    11.68    34.1    2.92 15      5.07    34.1    6.73 Note: See Figure 2.6.13-12 for section cut locations.
Table 2.6.13-10 PWR Side Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi Section    Sint  Sallow    FS 19    14.83    68.1    4.59 14    12.23    68.1    5.57 15      5.55    68.1    Large Notes: See Figure 2.6.13-12 for section cut locations.
NAC International                  2.6.13.4-11
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.13-11 PWR Fuel Tube Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi Tube Section Sint          Sallow    FS 13        8      8.14    21.1    2.59 11        5      8.07    21.1    2.61 9        8      4.85    21.1    4.34 9        7      4.75    21.1    4.44 11        3      4.32    21.1    4.98 Note: See Figure 2.6.13-9 for tube and section cut locations.
Table 2.6.13-12 PWR Fuel Tube Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Tube Section Sint          Sallow    FS 8        8    31.45    31.7    1.01 9        16    31.35    31.7    1.01 13        4    31.27    31.7    1.01 11        3    29.16    31.7    1.09 5        8    29.03    31.7    1.09 Note: See Figure 2.6.13-9 for tube and section cut locations.
Table 2.6.13-13 PWR Fuel Tube Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi Tube Section Sint          Sallow    FS 9        8    52.71    63.3    1.20 13        7    45.50    63.3    1.39 9        4    37.75    63.3    1.68 13        4    32.94    63.3    1.92 11        4    32.47    63.3    1.95 Note: See Figure 2.6.13-9 for tube and section cut locations.
NAC International                    2.6.13.4-12
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.13-14 PWR Corner Weldment Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi Section    Sint    Sallow    FS 23      3.75    22.7    6.05 22      3.26    22.7    6.96 17      2.69    22.7    8.44 Note: See Figure 2.6.13-11 for section cut locations.
Table 2.6.13-15 PWR Corner Weldment Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Section    Sint    Sallow    FS 22    13.51    34.1    2.52 12    11.44    34.1    2.98 16    10.29    34.1    3.31 Note: See Figure 2.6.13-11 for section cut locations.
Table 2.6.13-16 PWR Corner Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi Section    Sint    Sallow    FS 22    17.24    68.1    3.95 11    14.67    68.1    4.64 23    12.85    68.1    5.30 Note: See Figure 2.6.13-11 for section cut locations.
Table 2.6.13-17 PWR Corner Weldment Support Bars, 1-ft Side Drop - 45&deg;, ksi Stress Sint    Sallow    FS Cat.
Pm      2.66    20.6    7.74 Pm + Pb  19.7    30.9    1.57 P+Q      14.8    61.8    4.18 NAC International                2.6.13.4-13
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.6.13-18 PWR Side Weldment Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi Section  Sint  Sallow      FS 9      2.95    22.7      7.69 12    2.33    22.7      9.74 14    1.86    22.7    large Note: See Figure 2.6.13-13 for section cut locations.
Table 2.6.13-19 PWR Side Weldment Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Section  Sint  Sallow      FS 18    12.27    34.1      2.78 14    10.21    34.1      3.34 11    8.64    34.1      3.95 Note: See Figure 2.6.13-13 for section cut locations.
Table 2.6.13-20 PWR Side Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi Section  Sint  Sallow      FS 17    28.93    68.1      2.35 14    11.79    68.1      5.78 11    10.15    68.1      6.71 Note: See Figure 2.6.13-13 for section cut locations.
NAC International                  2.6.13.4-14
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.13.5        Thermal Expansion of PWR Basket in Normal Conditions 2.6.13.5.1      Axial Thermal Expansion of Fuel Tube Using average axial temperatures at the center and outer radius of the basket of 650&deg;F and 400&deg;F, respectively, a bounding relative thermal expansion of the basket in the axial direction between the center and outer edge of the basket is:
x = xinner - xouter = 0.377 - 0.203 = 0.174 in where:
xinner =                                      (          )
T x L x  i = (651 70)(173.5 / 2) 7.5 x10 6 = 0.377 in xouter =  T x L x  o = (402 70)(173.5 / 2)(7.1x10 ) = 0.203 in 6
L = 173.5 in --------------------------- Fuel tube length i = 7.5x10-6 in/in/&deg;F ----------------- Coef. of thermal expansion, SA537 Class 1, 650&deg;F o= 7.1x10-6 in/in/&deg;F ----------------- Coef. of thermal expansion, SA537 Class 1, 400&deg;F Connector pins at the top and bottom of the basket may be used to maintain the geometry of the fuel tube array during manufacturing. A pin (i.e., the drive pin of the connector pin assembly or an alignment pin) may be inserted into the connector pin to maintain geometry between adjacent fuel tubes. Adjacent fuel tube connector pins have a 0.10-inch gap between the connector pins.
There are a minimum of two connector pin locations in the radial direction of the PWR basket.
Therefore, the relative thermal expansion between the adjacent tubes is approximately 0.087 inch (0.173/2), which is less than the pin gap of 0.10 inch, as shown in the following sketch. No axial thermal stresses are produced by the axial expansion of the basket.
0.10 inch NAC International                        2.6.13.5-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Note that use of pins with the sets of connector pins will not result in any thermal stress in the basket. The difference in the radial thermal expansion at the middle basket section (average temperature = 525&deg;F) and at the basket end section (average temperature = 400&deg;F) is 0.034 inch.
This is less than the clearance of 0.112 inch (a pin of 0.188-inch diameter in a hole of 0.3-inch diameter) for a single pin and set of connector pins.
NAC International                        2.6.13.5-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.13.6        Fuel Tube Bending Stress Classification for Normal Conditions The results from the elastic finite element analysis for the normal condition side drop show that the primary membrane plus bending stresses at some locations in the fuel tube corners for the 45&deg; basket orientation are above the allowable value of 1.5Sm for primary stresses (P). Applying the stress classification principle in ASME Section III, Subsection NB, Table NB-3217-1, the bending stresses at these locations are classified as secondary (Q),. Therefore, the allowable stress intensity value for the primary plus secondary stresses (3.0Sm) is applicable for the stress evaluation for these sections.
In ASME Section III, Subsection NB, Table NB-3217-1, Classification of Stress Intensity in Vessels for Some Typical Cases, bending stresses resulting from internal pressure at the junction of a flat head to a cylindrical shell are considered secondary (Q). However, from Note 2 of that table:
If the bending moment at the edge is required to maintain the bending stress in the middle to acceptable limits, the edge bending is classified as Pb. Otherwise, it is classified as Q.
The stress condition in the tube corners is considered to be analogous to the flat head/cylindrical shell case given in Table NB-3217-1. Therefore, the tube bending stress in the corners can be classified as secondary (Q) if the bending moments at these locations are not required to maintain stresses in the basket under the maximum allowable values for primary stresses.
This condition is verified from an additional analysis for the 45&deg; basket finite element model for the side drop normal condition. At all tube corner locations where the calculated primary membrane plus bending stress is higher than 1.5Sm, the model is modified to effectively insert a hinge along the fuel tube in the corner to eliminate the bending moment. The calculated force and stress results with this modification show no significant change compared to the analysis results for the original model without the hinges. The elimination of the fuel tube corner bending moments does not increase stresses in the basket above the allowable values for primary stresses; and per Note 2 in Table NB-3217-1, the bending stress is classified as secondary (Q).
The hinge to remove the bending moment at a fuel tube corner location is modeled as shown in Figure 2.6.13-14. The mesh is modified to give duplicate nodes to the finite elements on either side of the moment release plane, through the tube cross-section at the tube corner, except at the middle location of the plane. This eliminates any moment in the fuel tube at this plane. The common node at the mid-plane is effectively the hinge about which the fuel tube elements on either side of the interface may pivot. This modification is made for all elements along the axial length of the fuel tube model for Tubes no. 7, 10 and 11 (at Sections 8, 8 and 4, respectively).
NAC International                        2.6.13.6-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 See Figure 2.6.13-9 for locations of the fuel tube and sections. For Tubes no. 3 and 9 (Section 8 for both tubes), the moment release is applied at the plane of symmetry as shown in Figure 2.6.13-9. The hinge at a corner in this case is implemented by removing the applied boundary conditions at all nodes except the one at the cross-section mid-plane. A hinge is also added to the side support weldment (Section 17 in Figure 2.6.13-11).
Stress results from the finite element analysis of the modified model (45&deg; basket) with the hinges at several fuel tube corner locations are summarized in Table 2.6.13-21 through Table 2.6.13-23 for the fuel tubes, corner support weldment and side support weldment, respectively. The stresses of the support bar weld, the ridge gusset weld, the bolts and the bosses are also evaluated. Maximum stresses are shown to be less than the allowables at all locations, and no significant redistribution of load is shown. This provides justification for classifying the bending stress as secondary, as the fuel tube corner bending moments are not required to limit the stresses throughout the basket.
Further justification for classifying the tube corner bending stress as secondary is provided by the calculated plastic strain. An additional analysis of the original 45&deg; basket model (no hinge modification) in which plastic material properties are used for normal loading shows that the total plastic strain is small at the fuel tube corners where the stress is greater than 1.5Sm, with a maximum plastic strain of 0.02%. The plastic strain is localized near the tube wall surface, with a significant portion of the wall cross-section still in the elastic region.
For the original 45&deg; basket model and analysis for the normal side drop condition, there are a total of eight fuel tube sections and one side weldment section where the bending stress is classified as secondary. The primary plus secondary (P+Q) stresses for these sections are presented in Table 2.6.13-24 and Table 2.6.13-25 and are shown to be below the allowable of 3.0Sm.
NAC International                          2.6.13.6-2
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.6.13-14 Modeling of Fuel Tube Corner Moment Release (Hinge)
NAC International            2.6.13.6-3
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.13-21 Fuel Tube Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model Pm                                            Pm+Pb Tube    Sect. Sint, ksi          FS(1)      Tube    Sect. Sint, ksi    FS(2) 11      4        18.02              1.17        6      8        30.41        1.04 13      8        10.34              2.04        5      8        30.29        1.05 11      5        6.05              3.49        10      8        24.98        1.27 11      3        4.57              4.62        5      4        23.25        1.36 13      7        4.24              4.98        8      8        22.37        1.42 (1)
Factor of safety based on allowable of Sm = 21.1 ksi (2)
Factor of safety based on allowable of 1.5Sm = 31.7 ksi See Figure 2.6.13-9 for tube and section cut locations.
Table 2.6.13-22 Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model Pm                                            Pm+Pb Section        Sint, ksi          FS(1)          Section        Sint, ksi    FS(2) 23            3.94              5.76            16            30.89        1.10 22            3.70              6.14            15            14.65        2.33 12            2.93              7.75            22            14.26        2.39 (1)
Factor of safety based on allowable of Sm = 22.7 ksi (2)
Factor of safety based on allowable of 1.5Sm = 34.1 ksi See Figure 2.6.13-11 for section cut locations.
Table 2.6.13-23 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model Pm                                            Pm+Pb Section        Sint, ksi          FS(1)          Section        Sint, ksi    FS(2) 9            3.90              5.82            8            14.63        2.33 10            3.01              7.54            9            11.78        2.89 12            2.80              8.11            12            10.08        3.38 (1)
Factor of safety based on allowable of Sm = 22.7 ksi (2)
Factor of safety based on allowable of 1.5Sm = 34.1 ksi See Figure 2.6.13-13 for section cut locations.
NAC International                        2.6.13.6-4
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.6.13-24 Fuel Tube Stresses, P+Q, 1-ft Side Drop, 45&deg;, Results from Original Model at Locations with Bending Stress Classified as Secondary P+Q Tube(1)  Section(1)      Sint, ksi      FS(2) 9          8            53.98          1.17 11          4            44.45          1.42 9          4            42.11          1.50 13          7            41.70          1.52 4          8            34.77          1.82 1          8            33.81          1.87 7          8            33.75          1.88 13          4            31.27          2.02 (1)
See Figure 2.6.13-9 for tube and section cut locations (2)
Factor of safety based on allowable of 3Sm = 63.3 ksi Table 2.6.13-25 Side Weldment Stresses, P+Q, 1-ft Side Drop, 45&deg;, Results from Original Model at Locations with Bending Stress Classified as Secondary Section(1)    Sint, ksi      FS(2) 17          26.27          2.59 (1)
See Figure 2.6.13-13 for section cut locations (2)
Factor of safety based on allowable of 3Sm = 68.1 ksi NAC International                      2.6.13.6-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.13.7        Neutron Absorber Retainer Evaluation for Normal Conditions The neutron absorber retainer strips for the PWR fuel tubes are made of Type 304 stainless steel.
The strip is supported by two rows of weld posts located every 10 inches along the undersides of the fuel tube. The neutron absorber is supported by the retainer strip at the inside surface of the fuel tube. The pitches of the slotted holes in the neutron absorber are the same as the holes in the retainer strip. The holes are slotted to prevent interference during thermal expansion. The heads of the weld posts supporting the retainer strip are engaged in the recessed conical pockets of the retainer strip. The structural evaluation of the neutron absorber retainer for the governing loading condition for the 1-ft side drop is presented in this section.
The retainer strip is evaluated using the LS-DYNA program for the side impact conditions. A quarter-symmetry finite element model is constructed to represent one-half of the 10-inch periodic section for the PWR design. As shown in Figure 2.6.13-15, the model consists of the neutron absorber, retainer strip and the weld post. The retainer strip, located in the x-y plane, is modeled with shell elements. The model for the neutron absorber plate is comprised of three layers of materials. The two outer layers employ the inelastic properties of aluminum 1100 series cladding at 700&#xba;F. The center layer represents the neutron absorber material, which is assigned a yield strength of 10 psi and an elastic modulus of elasticity of 1,000 psi. The low yield strength for the core material allows the neutron absorber core to provide only a minimal contribution of stiffness of the neutron absorber plate. The weld post was modeled as being rigid to maximize deformation of the conical-shaped section of the retainer by the weld post. All nodes on the weld post have all degrees-of-freedom fixed. Symmetry boundary conditions are applied to the edges of the model for the planes of symmetry. To simulate side impact conditions, gravity loads are applied in the global Z-direction. A maximum acceleration of 15g is applied to the model.
The maximum stress intensity is 24.0 ksi for the retainer strip. The allowable stress intensity is 1.5Sm for the retainer strip.
The factor of safety for retainer strip is:
FS = 1.5 Sm / 24.0 = 1.5 x 15.9 /24.0 = 1.05 where:
Sm = 15.9 --------------------------------------- Design Stress Intensity of SA240, Type 304 stainless steel at 700&deg;F The peak force on the weld post is 12 pounds. The shear area governs the capacity of the weld post. The depth of the weld post is h = 0.13 inch. The diameter of the weld post is D = 0.25 inch. The governing stress is the shear stress in the base material. The allowable shear stress for NAC International                          2.6.13.7-1
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 accident condition is 0.6Sm. The Design Stress Intensity of the base material (SA240, Type 304) is Sm = 15,900 psi. The weld post capacity, Fcap is calculated as:
Fcap= 0.6 x n x Sm x h x D
            = 0.6 x 0.3 x 15,900 x 0.13 x (3.1416 x 0.25) = 292 lb where:
n = The design factor per ASME B&PV Code, Section III, Division 1, Subsection NG, Table NG-3352-1 for the intermittent plug weld employing surface visual examination method per NG-5260.
The factor of safety is:
FS = 292 / 12 = Large Thermal Expansion Evaluation The stainless steel retainer strips are fastened to the carbon steel fuel tube using fixed weld posts spaced every 10 inches along the length of the tube. Because of the dissimilar material properties, the components expand at a varying rate creating thermal stresses in some components.
The equation used to calculate the difference in expansion between carbon and stainless steel, ,
is:
        = ( ss x T x L)  ( cs x T x L)                                                      (1)
The standard formula to calculate the deflection of a beam or plate is:
PL    L
        =        =                                                                                (2)
AE      E Substituting equation (1) into equation (2) and solving, the thermal stress, , is:
E
        =        = E( ss  cs )(T ) = 37,350 psi                                              (3)
L where:
ss = 10.0 x 10-6 in/in/&deg;F ------------------------- Coefficient of thermal expansion for SA240 Type 304 stainless steel at 700&deg;F
                    -6 cs = 7.6 x 10 in/in/&deg;F --------------------------- Coefficient of thermal expansion for SA537 Class 1 carbon steel at 700&deg;F T = 700&deg;F -70&deg;F = 630&deg;F ----------------------- Difference between maximum PWR temperature and ambient conditions 6
E = 24.7 x 10 psi -------------------------------- Modulus of elasticity for SA240 Type 304 stainless steel at 700&deg;F NAC International                          2.6.13.7-2
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                          Revision 1 The factor of safety is:
FS = 3Sm /  = 3 x 15,900 / 37,350 = 1.28 where:
Sm = 15.9 ksi --------------------------------------- Design stress intensity of SA240 Type 304 stainless steel at 700&deg;F Note that the preceding thermal stress calculation conservatively ignores any gap between the weld post and the retainer strip. The thermal stress is a secondary stress, which is self-relieving.
It occurs only at the edge of the holes of the retainer and, therefore, the stress is not to be combined with the stress due to impact.
NAC International                            2.6.13.7-3
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.13-15 Finite Element Model for PWR Retainer Strip and Neutron Absorber NAC International                2.6.13.7-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.14          PWR DF Basket Analysis - Normal Conditions of Transport This section evaluates the MAGNATRAN PWR DF (damaged fuel) basket assembly for Normal Conditions of Transport. The PWR DF basket is designed to accommodate up to 37 undamaged PWR fuel assemblies, including four damaged fuel can (DFC) locations. DFCs may be placed in up to four of the DFC locations. The basket consists of 17 fuel tubes, four side support weldments, and four DF corner support weldments. The fuel tubes and side weldment for the DF basket are identical to those for standard PWR fuel basket, while the DF corner support weldment is designed to accommodate the DFCs. The structural evaluation for the PWR DF basket is performed using the criteria for Service Level A limits from ASME Code, Section III, Subsection NG.
NAC International                        2.6.14-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.14.1        Finite Element Model Description - PWR DF Basket For normal conditions of transport, two 3-dimensional periodic half-symmetry finite element models of the PWR DF basket are used to evaluate the structural integrity of the basket for side drop conditions. As shown in Figure 2.6.14-1 and Figure 2.6.14-2, these models correspond to the critical basket orientations, 0&deg; and 45&deg;, for the loadings in the transverse direction of the basket. The fuel tube pins and slot joints are spaced on 20.0-inch centers. Therefore, the periodic model extends from the axial center of a fuel tube support pin to the mid-point of the fuel tube between the pins (10.0-inch segment). The modeling details, including boundary conditions, loading and temperature data, for the PWR DF basket models are identical to those for the standard PWR basket, as discussed in Section 2.6.13. Based on the thermal analysis results in Chapter 3, the maximum temperatures and temperature gradients corresponding to the DF basket are bounded by those for the regular basket and, therefore, the same temperatures are used for the models for thermal stress evaluation for normal conditions of transport.
The post-processing of the PWR DF basket finite element analysis results is performed using the same method for the regular basket as described Section 2.6.13. Critical stresses at various locations of the basket structure are calculated using the ANSYS post-processor. Figure 2.6.14-3 and Figure 2.6.14-4 show the locations of the section cuts for the fuel tube. Figure 2.6.14-5 through Figure 2.6.14-7 show the section locations for the DF corner support weldment. The sections for the side weldment are the same as those shown in Figure 2.6.13-12 and Figure 2.6.13-13.
NAC International                        2.6.14.1-1
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.14-1 PWR DF Basket Finite Element Model - 0&deg; Basket Orientation NAC International            2.6.14.1-2
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.14-2 PWR DF Basket Finite Element Model - 45&deg; Basket Orientation NAC International            2.6.14.1-3
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Figure 2.6.14-3      PWR DF Basket Fuel Tube Array and Section Cuts - 0&deg; Basket Orientation Tube numbers 3 and 11 are shown in Figure 2.6.14-5.
NAC International                    2.6.14.1-4
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Figure 2.6.14-4      PWR DF Basket Fuel Tube Array and Section Cuts - 45&deg; Basket Orientation Tube numbers 1, 8, and 12 are shown in Figure 2.6.14-6.
NAC International                    2.6.14.1-5
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.14-5  DF Corner Support Weldment Section Cuts - 0&deg; Basket Orientation NAC International                2.6.14.1-6
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.14-6  DF Corner Support Weldment Section Cuts - 45&deg; Basket Orientation NAC International              2.6.14.1-7
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.14-7 DF Corner Weldment Gusset Section Cuts NAC International              2.6.14.1-8
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 2.6.14.2        Stress Evaluation for the PWR DF Basket for 1-Foot End Drop Condition The basket is analyzed using classical hand calculations for an inertia loading of greater than or equal to 20g in the basket axial direction (cask top or bottom end drop). During normal end drop conditions, the PWR fuel assemblies do not apply loads to the basket. Using a bounding weight of 25,000 pounds, the maximum stress in the fuel tube is calculated as follows. A bounding temperature of 550&deg;F at top or bottom ends of the basket is used to determine the allowable stresses. There are 17 fuel tubes in the PWR DF basket. Conservatively assuming the entire basket weight is carried through the fuel tubes, the stress in the tube is:
Ptube 29.4 tube =            =      = 2.6 ksi A      11.4 where:
Wxa Ptube =        = 29,412 lb ----------------- Load per tube n
W=      25,000 lb ----------------------- Bounding basket weight n=    17 -------------------------------- Number of fuel tubes a=    20g ------------------------------ End drop inertia load A=    11.4 in2 ------------------------- Tube cross-sectional area The factor of safety is:
Sm        22.4 FS =          =        = 8.62 tube      2.6 where:
Sm = 22.4 ksi ------------------------------ Design stress intensity, SA537 Class 1, 550&deg;F Axial support of the fuel tubes is provided by standoffs at the top and bottom of the basket, formed by extension of the fuel tube corners or use of connector pin assemblies. The bearing stress between the fuel tube and the standoff, and the bearing stress between the standoffs and the TSC bottom plate or lid, are identical for the DF basket and the standard PWR basket, as presented in Section 2.6.13.3.
The weight of the side and corner weldments is carried through to the canister bottom plate by supports at the top and bottom of the weldments. The heavier corner weldment provides a bounding condition for the bearing stress. The evaluation considers that the corner weldment supports one-fourth the weight of the two fuel tubes bolted to it.
NAC International                            2.6.14.2-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 The bearing stress is:
10 x Wsup      10 x 2,788 brg =              =            = 6.9 ksi A sup          4.06 where:
P Wsup = 2,788 lb = Wcor + 2 t  --------- Weight supported by the corner weldment 4
Wcor = 2,450 lb ----------------------------- Weight of corner weldment Pt = 675 lb ------------------------------- Bounding weight of fuel tube assembly Asup = 4.06 in2 ---------------------------- Bearing area for DF corner weldment The factor of safety for bearing is:
Sy      20.7 FS =        =        = 3.1 brg    6 .9 where:
Sy = 20.7 ksi ------------------------------ Yield stress, SA240 Type 304, 400&deg;F NAC International                            2.6.14.2-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.14.3        Stress Evaluation for the PWR DF Basket for 1-Foot Side Drop Condition The analysis for the PWR DF basket subjected to a 1-ft side drop was performed using the elastic ANSYS finite element models described in Section 2.6.14.1. The analysis results for the major basket components (tubes, support weldments) are summarized in Table 2.6.14-1 through Table 2.6.14-20. The allowable stresses are determined at a bounding temperature of 725&deg;F for the fuel tubes and 550&deg;F for the support weldments.
2.6.14.3.1      Fuel Tube Evaluation The Pm (primary membrane), Pm+Pb (primary membrane plus bending) and P+Q (primary plus secondary) stresses are evaluated at 16 section locations as shown in Figure 2.6.14-3 and Figure 2.6.14-4 for 0&deg; and 45&deg; basket orientations, respectively. The maximum stresses are presented in Table 2.6.14-1 and Table 2.6.14-2 for the 0&deg; basket orientation and Table 2.6.14-9 and Table 2.6.14-10 for the 45&deg; basket orientation. The minimum factors of safety are 1.95, 1.04 and 1.38 for Pm, Pm+Pb and P+Q stresses, respectively.
For the 45&deg; basket orientation, calculated stresses at some fuel tube corners are above the allowable value of 1.5Sm for primary membrane plus bending stresses. These stresses are not included in the results in Table 2.6.14-9, as the bending stresses at these locations are classified as secondary, applying the stress classification method in ASME Code, Section III, Subsection NB. Further discussion and justification of the classification of these stresses are provided in Section 2.6.14.4.
The fuel tubes are constructed by welding two tube halves together using a full-penetration weld the length of the fuel tube at the center of opposing flats. A surface PT or MT weld examination per ASME III-NG-5233 is used, which has a 0.65 weld quality factor (wf). From the elastic analysis of the PWR basket (Section cuts no. 2, 6, 10 and 14), the maximum membrane, membrane plus bending, and primary plus secondary stress intensity at a tube weld is 5.8 ksi (0&deg;,
Tube #12, Section 6), 10.1 ksi (45&deg;, Tube #10, Section 2), and 9.8 ksi (0&deg;, Tube #12, Section 6),
respectively. The factors of safety for the weld are:
Membrane:
S m x wf 21.1 x 0.65 FS =            =              = 2.36 5.8 Membrane plus bending:
1.5S m x wf 1.5 x 21.1 x 0.65 FS =                =                  = 2.04 10.1 NAC International                        2.6.14.3-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 Primary plus secondary:
3S m x wf 3 x 21.1 x 0.65 FS =                =                    = 4.20
 
===9.8 where===
Sm = 21.1 ksi ------------------------------ Design stress intensity, SA537 Class 1, 725&deg;F The pins in the tube slots are subjected to bearing load. The governing bearing load is 10.8 kips.
The bearing stress (brg) on the pin is evaluated using the bounding load of 11.0 kips as follows.
P brg =        = 24.2 ksi LS where:
P = 11.0 kips ---------------------------- Bounding load on pin in ANSYS model L = 1.625 inch--------------------------- Length of pin S = 0.28 inch --------------------------- Width of contact surface between pin and slot The factor of safety is:
Sy      25.4 FS =          =      = 1.05 brg    24.2 where:
Sy = 25.4 ksi ---------------------------- Yield stress, SA36 Carbon Steel, 725&deg;F The bearing stress evaluation for the flats between fuel tubes is bounded by the evaluation for the pins in the slots.
2.6.14.3.2      Corner Support Weldment Evaluation The corner support weldment is comprised of two major components: the fabricated damaged fuel can tube and the gussets, which are welded to the tube. Stresses are evaluated at the sections of the corner weldment shown in Figure 2.6.14-5 and Figure 2.6.14-6 and the gusset section shown in Figure 2.6.14-7.
The analysis results using the 3-D finite element model for the corner weldment are summarized in Table 2.6.14-3 through Table 2.6.14-6 for the 0&deg; basket orientation and Table 2.6.14-11 through Table 2.6.14-14 for the 45&deg; basket orientation. The minimum factors of safety are 8.41, 5.17 and 9.08 for Pm, Pm+Pb and P+Q stresses, respectively.
The corner weldment has welds located at section 1, sections 5 through 8, and sections 12 though 14 for the 0&deg; orientation, and at sections 3 through 5, sections 9 through 11, and section 14 through 15 for the 45&deg; orientation as shown in Figure 2.6.14-5 and Figure 2.6.14-6. The maximum Pm, Pm+Pb and P+Q stresses are 2.7 ksi (Section 10, 45&deg;), 5.3 ksi (Section 10, 45&deg;),
NAC International                            2.6.14.3-2
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 and 7.1 ksi (Section 14, 0&deg;), respectively. At these welds, a surface PT or MT weld examination per ASME III-NG-5233 is used, which has a 0.65 weld quality factor (wf). The minimum factors of safety are 5.46, 4.18 and 6.23, respectively.
Stresses in the gussets are calculated at the sections shown in Figure 2.6.14-7. The maximum gusset stresses are given in Table 2.6.14-5 and Table 2.6.14-6 for 0&deg; basket orientation and Table 2.6.14-13 and Table 2.6.14-14 for 45&deg; basket orientation. The minimum factors of safety are 6.14, 4.61, and greater than 10.0 for Pm, Pm+Pb and P+Q stresses, respectively.
The gussets are welded to the corner weldment plates with a full-penetration weld. A surface MT weld examination per ASME Code, Section III, Subsection NG, Article NG-5232 is used, which has a 0.65 weld quality factor (wf). The welded joint between the gusset and corner weldment is capable of carrying bending, axial and shear loads. The maximum weld loads occur in the 0&#xba; orientation basket model. The bending moment (M), tensile load (P), and shear load (V) corresponding to the maximum weld loads are 646 in-lb, 5,479 lb, and 116 lb, respectively.
ANSYS FSUM command is used to extract these forces and moments in a coordinate system in which P and V are parallel and perpendicular to the gusset direction, respectively. The weld stress intensity (weld) is:
2            2 M        P          V weld  =      +      + 4      = 7.1 ksi Sw A w            Aw where:
Sw = 2.00x0.752/6 = 0.1875 in3 Aw = 0.75x2.00 = 1.50 in2 The factor of safety (FS) for the weld is:
0.65(1.5S m )
FS =                  = 2.83 weld where:
Sm = 20.6 ksi ------------------------------ Design Stress Intensity, SA516, at 500&deg;F 2.6.14.3.3      Side Support Weldment Evaluation Using the finite element models for the DF basket, stresses in the side weldments are calculated at the sections shown in Figure 2.6.13-12 and Figure 2.6.13-13. The maximum stresses for the side support weldment are presented in Table 2.6.14-7 and Table 2.6.14-8 for the 0&deg; basket orientation and Table 2.6.14-15 and Table 2.6.14-16 for the 45&deg; basket orientation. The minimum factors of safety are 6.31, 1.55 and 2.83 for Pm, Pm+Pb and P+Q stresses, respectively.
NAC International                            2.6.14.3-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 Welds are located at sections 16 through 19 for the 0&deg; orientation and sections 15 through 18 for the 45&deg; orientation as shown in Figures 2.6.13-12 and 2.6.13-13. The maximum Pm, Pm+Pb and P+Q stresses are 1.8 ksi (Section 18, 45&deg;), 22.0 ksi (Section 19, 0&deg;), and 24.1 ksi (Section 19, 0&deg;), respectively. At these welds, a surface PT or MT weld examination per ASME III-NG-5233 is used, which has a 0.65 weld quality factor (wf). Applying the 0.65 factor to the allowable stresses, the minimum factors of safety are 8.20, 1.01 and 1.84 Pm, Pm+Pb and P+Q stresses, respectively.
2.6.14.3.4      Side and Corner Weldment / Fuel Tube Attachment Evaluation The corner and side support weldments are the primary structure that maintains the geometry of the fuel tube array. The support weldments are bolted to the fuel tubes at 16 circumferential locations. The bolted joint between the support weldment and fuel tubes is preloaded. The maximum torque on the 5/8-inch bolt is 50 in-lb (40 +/-10 in-lb). The preload on the bolt (Pb) is:
T          50 Pb =          =              = 400 lb                                      [Ref. 61]
0.2D 0.2 x 0.625 where:
T=      50 in-lb ------------------------- Maximum bolt torque D=      0.625 in ------------------------- Bolt diameter The maximum bolt tensile load is 1.7 kips (45&deg; basket orientation). Combining the tensile bolt load with the bolt preload, the maximum bolt load is 2.1 kips. A bounding load (P) of 3.0 kips is conservatively used for evaluation. The bolt thread is a 5/8-11 UNC and the length of engagement is 0.50 inch. The bolt material is SA193 Grade B6 stainless steel. From Machinerys Handbook, the tensile stress in the bolt is:
P      3.0 t =        =        = 13.0 ksi A t 0.23 where:
2                              2 0.9743                        0.9743 At = 0.7854 D                  = 0.7854 0.625          = 0.23 in2 n                            11 D = 0.625 in n = 11 The factor of safety is:
Sm FS =          = 1.89 t
where:
Sm = 24.6 ksi ------------------------- Design stress intensity, SA193 Grade B6, 500&deg;F NAC International                          2.6.14.3-4
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 The shear stress in the bolt thread is:
P      3.0 bolt =        =        = 6.0 ksi A s 0.499 where:
1 As =    3.1416nLe K n max  + 0.57735(E s min  K n max ) = 0.499 in2 2n Le  =  0.5 in Knmax  =  0.546 Esmin  =  0.5589 n  =  11 The factor of safety is:
0.6S y FS =              = 7.39 bolt where:
Sy = 73.9 ksi ------------------------- Yield Strength, SA193 Grade B6, 500&deg;F The shear stress in the boss thread is:
P      3.0 boss =          =        = 4.2 ksi A n 0.713 where:
1 An =      3.1416nLe Ds min  + 0.57735(Ds min  E n max ) = 0.713 in2 2n Le =    0.5 in Enmax =    0.5732 Dsmin =    0.6113 n =    11 The factor of safety is:
0.6S y FS =              = 4.19 bolt where:
Sy = 29.3 ksi ------------------------- Yield Strength, SA36, 500&deg;F NAC International                        2.6.14.3-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The shear load (Ps) at all boss locations is calculated to be zero for both the 0&deg; and 45&deg; basket orientations. For evaluation, a bounding load of 2.5 kips is used, and the boss shear stress is:
PS      2.5 boss =        =        = 2.7 ksi A b 0.92 where:
Ab =
(
Do2  Di2  ) = 0.92 in 4
Do = 1.25 in -------------------------- Boss outer diameter Di = 0.63 in -------------------------- Boss inner diameter The factor of safety is:
0.6Sm FS =                = 4.29 boss where:
Sm = 19.3 ksi ------------------------- Design stress intensity, SA36, 500&deg;F The bearing stress between the boss and the support weldment is:
PS            2.5 Sbrg =            =                = 6.4 ksi Dt sup 1.25 x 0.3125 where:
D = 1.25 in -------------------------- Boss outer diameter tsup = 0.3125 in ----------------------- Support weldment plate thickness The factor of safety is:
Sy FS =            = 4.84 Sbrg where:
Sy = 31.0 ksi ------------------------- Yield Strength, SA516 Grade 70, 500&deg;F The boss is welded into the fuel tube with a 1/4-inch groove weld. The weld has a visual inspection criterion per ASME III-NG-5260. Visual inspection of the weld has a weld quality factor of 0.35, per ASME III-NG-3352. The stress in the boss weld, using the lesser of SA537 Class 1 and SA-516 Grade 70 Sm allowable, is:
P        3.0 weld =          =        = 3.06 ksi A w 0.98 NAC International                            2.6.14.3-6
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 where:
P = 3.0 kips ------------------------- Bolt tensile load Aw = Dt weld =  x 1.25 x 0.25 = 0.98 in D = 1.25 in -------------------------- Boss diameter The factor of safety is:
0.35(0.6Sm )
FS =                      = 1.41 weld where:
Sm = 20.6 ksi ------------------------------ Design stress intensity, SA516 Grade 70, 500&deg;F The washers under the bolts at the boss locations are subjected to shear from the bolt tensile load and the support condition at the weldment. The bounding bolt tensile force is 3.0 kips and the shear stress is:
P    3 .0 wash =            =      = 2.96 ksi Aw 1.015 where:
Aw = Pb t w = 1.015 in2 Pb =      3.248 in ------------------------- Perimeter of mounting bolt head tw =    0.3125 in ----------------------- Washer thickness The factor of safety is:
0.6Sm FS =              = 3.55 wash where:
Sm = 17.5 ksi ------------------------------ Design stress intensity, SA240, Type 304, 500&deg;F 2.6.14.3.5        Bearing Stress on TSC Shell The side and corner support weldments are laterally supported by the TSC shell during side drop conditions. Based on the finite element analysis results, the maximum reaction at the periphery of the support weldments (interfacing with the TSC shell) occurs in the 0&deg; basket orientation for 1-ft side drop. A bounding load (Pbrg) of 25 kips is used for the bearing stress evaluation for the TSC shell. The bearing area (Abrg) at the TSC shell is considered to be 5 inch2 (0.5x10), where 0.5 inch is a conservative bearing length circumferentially and 10 inches is the axial length of the model.
NAC International                            2.6.14.3-7
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 The bearing stress at the TSC shell is:
Pbrg brg =        = 5.0 ksi A brg The factor of safety for bearing is:
1.5S y    1.5 x 18.9 FS =            =              = 5.82 brg        5 .0 where:
Sy = 19.4 ksi ------------------------------ Yield stress, SA240 Type 304, 500&deg;F The thermal expansion evaluation for the DF basket is bounded by that presented in Section 2.6.13.5 for the regular basket.
NAC International                            2.6.14.3-8
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.14-1      Fuel Tube Stresses, Pm, and Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Pm                                                  Pm + Pb Tube    Section    Sint      Sallow        FS      Tube    Section      Sint  Sallow      FS 12        9      10.8      21.1        1.95      12        9        30.5  31.7      1.04 12        8        8.2      21.1        2.57      12        8        23.4  31.7      1.35 12        6        5.8      21.1        3.64      9          16        19.9  31.7      1.59 12        5        5.5      21.1        3.84      12        7        19.6  31.7      1.62 12        7        5.3      21.1        3.98      12        4        17.9  31.7      1.77 Note: See Figure 2.6.14-3 for tube and section cut locations.
Table 2.6.14-2    Fuel Tube Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi P+ Q Tube      Section    Sint    Sallow      FS 12        9        34.7      63.3      1.82 12        7        25.9      63.3      2.44 12        8        20.8      63.3      3.04 4          16        19.9      63.3      3.18 7          16        19.4      63.3      3.26 Note: See Figure 2.6.14-3 for tube and section cut locations.
Table 2.6.14-3    DF Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Pm                                              Pm + Pb Section                                              Section Sint      Sallow      FS                            Sint  Sallow    FS 12            1.7      22.7      Large            10              3.7  34.1      9.22 8            1.3      22.7      Large            14              3.3  34.1    Large 13            1.3      22.7      Large            11              2.8  34.1    Large 10            1.3      22.7      Large            12              2.7  34.1    Large 9            1.2      22.7      Large            9              2.4  34.1    Large Note: See Figure 2.6.14-5 for section cut locations.
NAC International                      2.6.14.3-9
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.6.14-4      DF Corner Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi P+ Q Section Sint      Sallow      FS 14            7.1        68.1      9.59 13            4.4        68.1      Large 10            4.4        68.1      Large 9            2.7        68.1      Large 7            1.8        68.1      Large Note: See Figure 2.6.14-5 for section cut locations.
Table 2.6.14-5  DF Corner Weldment Gusset Stresses, Pm and Pm+Pb, 1-ft Side Drop -
0&deg;, ksi Pm                                              Pm + Pb Section                                            Section Sint      Sallow    FS                              Sint  Sallow    FS 24          3.7      22.7      6.14              24              7.4  34.1      4.61 23          3.6      22.7      6.31              12              6.9  34.1      4.94 22          3.6      22.7      6.31              23              4.7  34.1      7.26 12          3.0      22.7      7.57              11              4.2  34.1      8.12 10          3.0      22.7      7.57              22              3.0  34.1    Large Note: See Figure 2.6.14-7 for section cut locations.
Table 2.6.14-6  DF Corner Weldment Gusset Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi P+ Q Section Sint      Sallow      FS 12            5.5        68.1      Large 24            5.1        68.1      Large 11            2.4        68.1      Large 23            2.4        68.1      Large 13            2.2        68.1      Large Note: See Figure 2.6.14-7 for section cut locations.
NAC International                    2.6.14.3-10
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.14-7    Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Pm                                              Pm + Pb Section                                            Section Sint      Sallow      FS                              Sint  Sallow    FS 14            3.6      22.7      6.31            19            22.0    34.1      1.55 12            2.5      22.7      9.08            12              9.9    34.1      3.44 15            2.0      22.7      Large            14              9.9    34.1      3.44 19            1.7      22.7      Large            15              6.1    34.1      5.59 13            1.2      22.7      Large            4              4.8    34.1      7.10 Note: See Figure 2.6.13-12 for section cut locations.
Table 2.6.14-8    Side Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi P+ Q Section Sint      Sallow      FS 19            24.1      68.1        2.83 14            10.3      68.1        6.61 12              9.8      68.1        6.95 18              7.9      68.1        8.62 16              7.6      68.1        8.96 Note: See Figure 2.6.13-12 for section cut locations.
Table 2.6.14-9      Fuel Tube Stresses, Pm, and Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Pm                                                  Pm + Pb Tube    Section    Sint    Sallow      FS      Tube      Section    Sint  Sallow      FS 13        7      9.8      21.1      2.15      11          3        30.1    31.7      1.05 11        5      9.2      21.1      2.29        9        16        29.9    31.7      1.06 13        8      8.0      21.1      2.64      11          4        29.1    31.7      1.09 11        4      7.8      21.1      2.71        3          4        27.5    31.7      1.15 13        12      6.1      21.1      3.46        9          7        27.2    31.7      1.17 Note: SeeFigure 2.6.14-4 for tube and section cut locations.
NAC International                    2.6.14.3-11
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.6.14-10 Fuel Tube Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi P+ Q Tube      Section    Sint    Sallow      FS 3          8        45.8      63.3      1.38 9          8        41.4      63.3      1.53 6          8        38.1      63.3      1.66 3          4        35.7      63.3      1.77 13        7        34.2      63.3      1.85 Note: See Figure 2.6.14-4 for tube and section cut locations.
Table 2.6.14-11 DF Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Pm                                              Pm + Pb Section                                            Section Sint      Sallow      FS                            Sint  Sallow    FS 10            2.7      22.7        8.41            12              6.6    34.1      5.17 11            2.4      22.7        9.46            10              5.3    34.1      6.43 14            2.0      22.7      Large            7              5.2    34.1      6.56 5            1.9      22.7      Large            11              4.1    34.1      8.32 4            1.6      22.7      Large            6              3.4    34.1    Large Note: See Figure 2.6.14-6 for section cut locations.
Table 2.6.14-12 DF Corner Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi P+ Q Section Sint    Sallow      FS 7              7.5      68.1      9.08 12              6.8      68.1      Large 1              5.6      68.1      Large 5              4.3      68.1      Large 9              4.2      68.1      Large Note: See Figure 2.6.14-6 for section cut locations.
NAC International                      2.6.14.3-12
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.6.14-13 DF Corner Weldment Gusset Stresses, Pm and Pm+Pb, 1-ft Side Drop -
45&deg;, ksi Pm                                              Pm + Pb Section                                            Section Sint      Sallow      FS                              Sint  Sallow    FS 24          3.2      22.7      7.09            22              6.7  34.1      5.09 23          3.2      22.7      7.09            10              5.1  34.1      6.69 22          3.2      22.7      7.09            23              3.9  34.1      8.74 10          2.8      22.7      8.11            11              3.3  34.1    Large 12          2.7      22.7      8.41            12              2.4  34.1    Large Note: See Figure 2.6.14-7 for section cut locations.
Table 2.6.14-14 DF Corner Weldment Gusset Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi P+ Q Section Sint      Sallow      FS 21            2.9        68.1      Large 9            2.8        68.1      Large 15            2.8        68.1      Large 22            2.1        68.1      Large 4            1.9        68.1      Large Note: See Figure 2.6.14-7 for section cut locations.
Table 2.6.14-15 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Pm                                              Pm + Pb Section                                            Section Sint      Sallow      FS                              Sint  Sallow    FS 10          2.7      22.7      8.41            18            14.4  34.1      2.37 14          2.4      22.7      9.46            17            14.0  34.1      2.44 12          2.3      22.7      9.87            14            11.7  34.1      2.91 18          1.8      22.7      Large            10              8.2  34.1      4.16 11          1.4      22.7      Large              8              7.2  34.1      4.74 Note: See Figure 2.6.13-13 for section cut locations.
NAC International                    2.6.14.3-13
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                          Revision 1 Table 2.6.14-16 Side Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi P+ Q Section Sint    Sallow      FS 18          17.8      68.1      3.83 17          14.4      68.1      4.73 14          11.9      68.1      5.72 10            8.7      68.1      7.83 11            7.1      68.1      9.59 Note: See Figure 2.6.13-13 for section cut locations.
NAC International                2.6.14.3-14
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.14.4        Fuel Tube Bending Stress Classification for Normal Conditions The results from the elastic finite element analysis for the normal condition side drop show that the primary membrane plus bending stresses at some locations in the fuel tube corners for the 45&deg; basket orientation are above the allowable value of 1.5Sm for primary stresses (P). Applying the stress classification principal in ASME Section III, Subsection NB, Table NB-3217-1, the bending stresses at these locations are classified as secondary (Q) and, therefore, the allowable stress intensity value for the primary plus secondary stresses (3.0Sm) is applicable for the stress evaluation for these sections. (See Section 2.6.13.6 for more discussion.)
Using the same methodology as presented in Section 2.6.13.6, an additional analysis is performed using a modified basket finite element model (45&deg; orientation) for the side drop normal condition. At all tube corner locations where the calculated primary membrane plus bending stress is higher than 1.5Sm, the model is modified to effectively insert a hinge along the fuel tube in the corner to eliminate the bending moment. The calculated stress results with this modification show no significant change compared to the analysis results for the original model without the hinges. The elimination of the fuel tube corner bending moments does not increase stresses in the basket above the allowable values for primary stresses, and per Note 2 in Table NB-3217-1, the bending stress is classified as secondary (Q).
The hinge to remove the bending moment at a fuel tube corner location is modeled for all elements along the axial length of the fuel tube model for Section 8 of Tubes no. 3, 4, 5, 6, 7 and 9, Section 4 of Tubes no. 6, 7 and 9, Section 12 of Tube no. 7. See Figure 2.6.14-4 for locations of the fuel tube and sections.
Stress results from the finite element analysis of the modified model (45&deg; basket) with the hinges at several fuel tube corner locations are summarized in Table 2.6.14-17 through Table 2.6.14-19 for the fuel tubes, corner support weldment and side support weldment, respectively. Maximum stresses are shown to be less than the allowables at all locations, and no significant redistribution of load is shown. This provides justification for classifying the bending stress as secondary as the fuel tube corner bending moments are not required to limit the stresses throughout the basket.
For the original 45&deg; basket model and analysis for the normal side drop condition, there are a total of 10 sections where the bending stress is classified as secondary. The primary plus secondary (P+Q) stresses for these sections are presented in Table 2.6.14-20 and shown to be below the allowable of 3.0Sm.
NAC International                        2.6.14.4-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.6.14-17 Fuel Tube Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model Pm                                              Pm+Pb Tube        Sect.        Sint, ksi      FS(1)      Tube        Sect.        Sint, ksi    FS(2) 13          7            9.5          2.22        11          3            30.6        1.04 11          5            9.4          2.24        11          4            30.3        1.05 7          8            7.9          2.67        2          8            27.7        1.14 11          4            7.8          2.71        5          4            26.8        1.18 13          8            7.3          2.89        10          8            25.7        1.23 (1)
Factor of safety based on allowable of Sm = 21.1 ksi (2)
Factor of safety based on allowable of 1.5Sm = 31.7 ksi See Figure 2.6.14-4 for tube and section cut locations.
Table 2.6.14-18 Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model Pm                                              Pm+Pb Section          Sint, ksi          FS(1)          Section          Sint, ksi          FS(2) 12              2.3                9.87            12              7.5              4.55 10              1.7              Large            13              4.8              7.10 13              1.6              Large            10              3.4              Large (1)
Factor of safety based on allowable of Sm = 22.7 ksi (2)
Factor of safety based on allowable of 1.5Sm = 34.1 ksi See Figure 2.6.14-6 for section cut locations.
NAC International                        2.6.14.4-2
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.14-19 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model Pm                                              Pm+Pb Section        Sint, ksi          FS(1)        Section          Sint, ksi    FS(2) 10              2.8              8.11            18              14.7        2.32 12              2.6              8.73            17              14.2        2.40 8              1.9            Large            14              11.5        2.97 (1)
Factor of safety based on allowable of Sm = 22.7 ksi (2)
Factor of safety based on allowable of 1.5Sm = 34.1 ksi See Figure 2.6.13-13 for section cut locations.
Table 2.6.14-20 Fuel Tube Stresses, P+Q, 1-ft Side Drop, 45&deg;, Results from Original Model at Locations with Bending Stress Classified as Secondary P+Q Tube          Section      Sint, ksi        FS(1) 9              8            51.7          1.22 6              8            49.0          1.29 7              8            47.8          1.32 3              8            41.5          1.52 9              4            40.9          1.55 4              8            37.8          1.67 6              4            35.9          1.76 7              12          35.8          1.77 5              8            33.8          1.87 7              4            33.1          1.91 (1)
See Figure 2.6.14-4 for tube and section cut locations (2)
Factor of safety based on allowable of 3Sm = 63.3 ksi NAC International                      2.6.14.4-3
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.15          BWR Fuel Basket Analysis - Normal Conditions of Transport This section evaluates the BWR fuel basket for normal conditions of transport. The MAGNATRAN BWR fuel basket is designed to accommodate up to 87 BWR fuel assemblies.
The basket consists of 45 fuel tubes, four side support weldments, and four corner support weldments. An expanded view of the BWR basket assembly is presented Figure 2.6.15-1. The structural evaluation for the BWR fuel basket is performed using the criteria for Service Level A limits from ASME Code, Section III, Subsection NG.
NAC International                        2.6.15-1
 
MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.6.15-1  Expanded View of BWR Basket NAC International                2.6.15-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.15.1        BWR Fuel Basket Load Path Description This section describes the load paths and interactions between basket components during transport conditions. For the end drop condition, the bottom plate or the lid of the TSC directly supports the weight of the fuel assemblies. The basket is subjected to its self-weight only. For side drop conditions associated with loading in the transverse direction of the basket, the fuel assemblies are supported by the fuel tubes and the side and corner support weldments. Referring to Figure 2.6.15-1, load transfer between the fuel tubes, 1, is through contact at the tube corners. This contact consists of two types: the intermediate pins, and the region between pins where the tube sections are in contact. The pins prevent relative sliding motion between adjacent tubes. The compression load transmitted across the pins is reacted out in bearing in the fuel tube slots. The tube region between the intermediate pins and the top and bottom connector pin assemblies transmit bearing directly between fuel tubes.
Connector pin assemblies are installed as axial basket tube supports at the top and bottom of the fuel basket. The pin assemblies join adjacent fuel tubes to ensure each tube is properly aligned during the assembly process. The connector pins provide an end weldment effect that allows for handling of the assembled basket outside of the TSC without special fixtures. The top and bottom connector pin assemblies also provide standoffs between the TSC lid and bottom plate and basket. Bearing loads due to the basket weight are transmitted through the assemblies to the TSC lid or bottom plate for end drops.
The corner and side support weldments provide rigidity to the basket. The weldments are attached to the fuel tube array by means of bolted boss connections. Bosses welded to the fuel tubes are slotted into the weldments. Connection is made with the use of a washer and bolt combination. Figure 2.6.15-1 and Figure 2.6.15-2 show the boss connection details, 2. The bolted joints are designed to transmit tensile loads. Shear loads are reacted out by the interaction of the bosses, boss welds, and the support weldments 2 and 3. When the support weldments are in compression, bearing loads are transferred through the support weldment to the fuel tube array, 4. At location 5, Figure 2.6.15-1, a pin slot connection exists between the corner support weldment and the fuel tube and prevents relative sliding motion.
NAC International                        2.6.15.1-1
 
MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                              Revision 1 Figure 2.6.15-2  Bolted Attachment Details NAC International              2.6.15.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.15.2        Finite Element Model Description - BWR Fuel Basket For normal conditions of transport, two 3-dimensional periodic half-symmetry finite element models of the BWR basket are used to evaluate the structural integrity of the basket for side drop conditions. As shown in Figure 2.6.15-3 and Figure 2.6.15-4, these models correspond to the critical basket orientations of 0&deg; and 45&deg; for loading in the transverse direction. Figure 2.6.15-5 shows the model detail for the intermediate pin. The 0&deg; basket orientation maximizes the stresses in the fuel tube sidewalls and the 45&deg; basket orientation maximizes the bending stresses in the tube corners. Intermediate loading angles of the basket are bounded by these two orientations. The fuel tube support pins are spaced on 10.0-inch centers and the boss connections are spaced on 20.0-inch centers, with every other pin center at the same axial location of a boss. Therefore, the periodic model extends between the axial centers of two adjacent fuel tube support pins (10.0-inch segment). The basket end effects of the pinned connections are conservatively ignored.
The finite element model is constructed from ANSYS SOLID45, SHELL43, BEAM4, LINK10, COMBIN40, and CONTAC52 elements types. Fuel tube assemblies, pins, corner weldment plates, and side support weldments are modeled using SOLID45 elements. SHELL43 elements are used to model the support plates at the corner weldments. The interaction between fuel tubes, pins, corner support weldments, and side support weldments is modeled with CONTAC52 gap elements. The gap elements allow for the transfer of compression loads only between these basket components. CONTAC52 gap elements are used to model the gap between the BWR basket and the TSC shell. Material properties at 500&deg;F are used in the models.
The corner and side support weldments are bolted to the fuel tube array at 24 locations around the circumference of the basket. Each bolt/boss joint is modeled using a LINK10 and two COMBIN40 elements. The LINK10 element represents the bolt and is capable of tension loads only; compression loads are carried by the CONTAC52 gap elements discussed previously. The COMBIN40 elements are used to transmit the shear loads and model the radial gap between the boss, which is welded to the fuel tube, and the support weldment.
The weights of the neutron absorbers and the retainers, which are not explicitly modeled, are included in the analysis by increasing the density of the carbon steel along the sides of the fuel tube.
This model is also used to evaluate the primary plus secondary thermal stress condition. A thermal conduction analysis is first performed by converting the structural elements to their corresponding thermal elements. The computed nodal temperatures from the conduction analysis are then imported into the structural model to include the thermal effect (secondary stresses) with the side drop normal loading (primary stresses). Note that the periodic model is NAC International                        2.6.15.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 adequate to evaluate the thermal stresses in the basket, which mainly result from thermal expansion of the basket in the radial and circumferential directions. Thermal stress due to thermal expansion in the axial direction is negligible since the basket components are free to axially expand.
2.6.15.2.1      Boundary Conditions For the evaluation of the normal conditions for side drops, an inertia load of 15g in the transverse direction is considered. To represent the loads from the fuel assemblies, a pressure load is applied to the fuel tube sidewalls. The applied pressure is conservatively based on the heaviest fuel assembly being loaded into the shortest basket and is scaled by the inertia load of 15g.
Symmetry boundary conditions are applied to the nodes at the diametric plane of symmetry.
Symmetry boundary conditions are also applied to both axial ends of the finite element model to represent a periodic section of the basket. The locations of the outer nodes of the gap elements at the basket periphery are defined based on the TSC shell profile with the maximum radial displacements during the side drop conditions. Figure 2.6.15-6 and Figure 2.6.15-7 show the boundary conditions for the basket evaluations.
For the thermal conduction analysis, a maximum temperature of 725&deg;F is specified at the center of the basket. A minimum temperature of 300&deg;F is applied to the weldment at the outer edges of the basket, which results in a temperature gradient of 425&deg;F in the radial direction. Note that the applied temperatures are conservatively selected to envelop the maximum temperature, as well as the maximum radial temperature gradient (T) of the basket for all operations of the BWR system for transport.
2.6.15.2.2      Post-Processing The post-processing of the BWR basket finite element analysis results is performed to calculate critical stresses at various locations of the basket structure using the ANSYS post-processor.
Figure 2.6.15-8 through Figure 2.6.15-13 show the locations of the sections cut for the various basket components that are selected for extracting stress results.
For normal conditions of transport, the ANSYS is used to calculate the sectional membrane, membrane plus bending, and primary plus secondary stresses. The membrane stresses are calculated by extracting the sectional stress intensity at the mid-thickness of the various basket components. The membrane plus bending and primary plus secondary stresses are calculated by extracting the maximum sectional stress intensity at the inner or outer surface of the various basket components.
NAC International                          2.6.15.2-2
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.15-3  BWR Basket Finite Element Model - 0&deg; Basket Orientation NAC International            2.6.15.2-3
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.6.15-4 BWR Basket Periodic Model - 45&deg; Basket Orientation NAC International          2.6.15.2-4
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.6.15-5 Pin-Slot Connection Model Detail for BWR Basket NAC International            2.6.15.2-5
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.15-6 BWR Basket Boundary Conditions - 0&deg; Basket Orientation NAC International              2.6.15.2-6
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.15-7 BWR Basket Boundary Conditions - 45&deg; Basket Orientation Symmetry boundary condition along line rotated 45 deg from x-y coordinate system NAC International                2.6.15.2-7
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.6.15-8 Fuel Tube Array and Section Cuts - 0&deg; Basket Orientation NAC International                2.6.15.2-8
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.15-9 Fuel Tube Array and Section Cuts - 45&deg; Basket Orientation Y        X NAC International            2.6.15.2-9
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.15-10 Corner Support Weldment Section Cuts - 0&deg; Basket Orientation NAC International            2.6.15.2-10
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.15-11 Corner Support Weldment Section Cuts - 45&deg; Basket Orientation NAC International            2.6.15.2-11
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.15-12 Side Support Weldment Section Cuts - 0&deg; Basket Orientation NAC International            2.6.15.2-12
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.15-13 Side Support Weldment Section Cuts - 45&deg; Basket Orientation NAC International            2.6.15.2-13
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 2.6.15.3        Stress Evaluation for the BWR Basket for 1-Foot End Drop Condition The basket is analyzed using classical hand calculations for a 20g inertia loading in the basket axial direction (top or bottom end drop). During normal end drop conditions, the BWR fuel assemblies do not apply loads to the basket. Using a bounding weight of 22,000 pounds for the basket, the maximum stress in the fuel tube is calculated below. There are 45 fuel tubes in the BWR basket. Conservatively assuming the entire basket weight is carried through the fuel tubes, the stress in the tube is:
Ptube 9.78 tube =            =      = 1.60 ksi A      6.1 where:
Wxa Ptube =        = 9,778 lb ------------------ Load per tube n
W = 22,000 lb --------------------------- Bounding basket weight n = 45 ----------------------------------- Number of fuel tubes a = 20g ---------------------------------- End drop acceleration A = 6.1 in2 ------------------------------- Tube cross-sectional area The factor of safety is:
Sm      22.4 FS =          =        = large tube 1.60 where:
Sm = 22.4 ksi ------------------------------ Design stress intensity, SA537 Class 1, 550&deg;F During an end drop, the weight of the fuel tubes is supported on connector pins. Referring to Figure 2.6.15-8, the interior tubes (Tube #4) are supported by four connector pins, the side fuel tubes (Tube #1) are supported by two connector pins and the side and corner weldments, and the corner fuel tubes (Tube #5) are supported by three connector pins. The adjacent figure shows the cross-sectional area of tubes loaded by the connector pin. The diameter of the connector pin assembly is 1.00 inch. The bearing stress on the fuel tube is:
a x Ppin brg =            = 33.7 ksi A brg where:
Abrg = 0.344 in2 Ppin = W/np = 22,000/38 = 579 lb --- Maximum pin load a = 20g ----------------------------- End drop acceleration np = 38 ------------------------------- number of pins NAC International                            2.6.15.3-1
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 The factor of safety for bearing is:
Sy      34.6 FS =            =        = 1.03 brg    33.7 where:
Sy = 34.6 ksi ------------------------------ Yield stress, SA537 Class 1, 550&deg;F The bearing stress in the connector pin at the TSC end plate is:
a x Ppin brg =              = 14.8 ksi A brg where:
Abrg = /4(D2pin) = 0.784 in2 The factor of safety for bearing is:
Sy      18.9 FS =            =        = 1.28 brg    14.8 where:
Sy = 18.9 ksi ------------------------------ Yield stress, SA240 Type 304, 550&deg;F The weight of the side and corner weldments is carried by the TSC lid or bottom plate through the supports at the top and bottom of the weldments (top or bottom end drop). The corner weldment is bounding for the bearing evaluation of side and corner weldments. The dimensions for the corner support weldment are an 8.0-inch length and a 0.375-inch thickness. The bounding weight of the corner weldment is 1,100 pounds. The corner weldment also supports one-quarter the weight of four fuel tubes (400 lb per tube, bounding). The bearing stress is:
Wsup      30.0 brg=            =      = 10.0 ksi A sup      3.0 where:
Wsup = 20 x (1,100 + 4 x (0.25 x 400 )) = 30,000 lb Asup = 8.0 x 0.375 = 3.0 in2 The factor of safety for bearing is:
1.5S y      1.5 x 34.6 FS =              =            = 5.19 brg        10.0 where:
Sy = 34.6 ksi ------------------------------ Yield stress, SA537 Class 1, 550&deg;F NAC International                            2.6.15.3-2
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 2.6.15.4        Stress Evaluation for the BWR Basket for 1-Foot Side Drop Condition The analysis for the BWR basket subjected to a 1-ft side drop was performed using the elastic ANSYS finite element model. The analysis results for the major basket components (tubes, support weldments) are summarized in Table 2.6.15-1 through Table 2.6.15-18. The allowable stresses are determined at a bounding temperature of 725&deg;F for the fuel tubes and 550&deg;F for the support weldments.
2.6.15.4.1      Fuel Tube Evaluation The stresses in each fuel tube are post-processed at the 16 locations shown in Figure 2.6.15-8 and Figure 2.6.15-9.
Table 2.6.15-1 through Table 2.6.15-3 for the 0&deg; basket orientation and Table 2.6.15-10 through Table 2.6.15-12 for the 45&deg; basket orientation summarize results at locations with the highest stresses. The largest stress intensities for membrane, membrane plus bending, and the primary plus secondary loading condition are 10.7 ksi (0&deg;, Tube 25, Section 9), 30.78 ksi (45&deg;, Tube 5, Section 16), and 50.10 ksi (0&deg;, Tube 25, Section 8), respectively. The factors of safety are:
Membrane:
S m 21.1 FS =        =      = 1.97 10.7 Membrane plus bending:
1.5S m 31.65 FS =            =        = 1.03 30.78 Primary plus secondary:
3S m 63.3 FS =          =        = 1.26 50.1 where:
Sm = 21.1 ksi ------------------------------ Design stress intensity, SA537 Class 1, 725&deg;F For both the 0&deg; and 45&deg; basket orientations, calculated stresses at some fuel tube corners are above the allowable value of 1.5Sm for primary membrane plus bending. These stresses are not included in the results in Table 2.6.15-2 and Table 2.6.15-11 as the bending stresses at these locations have been classified as secondary and are, therefore, not included as primary bending.
Further discussion and justification of the classification of these stresses is provided in Section 2.6.15.6. The fuel tubes are constructed by welding two tube halves together using a full- penetration weld the length of the fuel tube at the center of opposing flats. A surface PT or MT weld examination per ASME Code Section III, Subsection NG-5233 is used, which has a 0.65 weld quality factor (wf). The weld location and orientation are not specified on the NAC International                            2.6.15.4-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 assembly drawings; therefore, the maximum weld stress intensity is checked at each side of a tube (section cuts #2, #6, #10, #14). From the analysis results, the maximum membrane, membrane plus bending, and primary plus secondary stress intensities at a tube weld are 4.88 ksi (0&deg;, Tube #25 Section 10), 16.36 ksi (45&deg;, Tube #26 Section 10), and 20.98 ksi (45&deg;, Tube #26 Section 6), respectively. The factors of safety for the weld are:
Membrane:
0.65S m 13.72 FS =              =          = 2.81 4.88 Membrane plus bending:
0.65(1.5S m ) 20.57 FS =                    =          = 1.26 16.36 Primary plus secondary:
0.65(3S m ) 41.15 FS =                  =          = 1.96 20.98 where:
Sm = 21.1 ksi ------------------------------ Design stress intensity, SA537 Class 1, 725&deg;F The pins in the tube slots are subjected to bearing load. The bearing stresses at the pins are calculated from the compression force at each tube and pin interface from the analysis results.
For the primary loading case, the maximum bearing force is 4,210 lb (0&deg; basket orientation).
The maximum bearing stress at the pin is:
Fbrg brg =        = 24.8 ksi LS where:
Fbrg = 4,210 lb ----------------------------- Maximum bearing force at pin L = 1.00 in ------------------------------- Length of pin/tube contact S = 0.17 in ------------------------------- Minimum width of pin/tube contact The factor of safety is:
Sy      28.2 FS =          =        = 1.14 brg    24.8 where:
Sy = 28.2 ksi ------------------------------ Yield stress, SA695 Type B Gr40, 725&deg;F The bearing stress evaluation for the flats between fuel tubes is bounded by the evaluation for the pins in the slots.
NAC International                            2.6.15.4-2
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 2.6.15.4.2      Corner Support Weldment Evaluation The corner support weldment stresses are processed at the locations shown in Figure 2.6.15-10 and Figure 2.6.15-11. The highest stresses are summarized in Table 2.6.15-4 through Table 2.6.15-6 for the 0&deg; basket orientation and Table 2.6.15-13 through Table 2.6.15-15 for the 45&deg; basket orientation. The largest stresses for membrane, membrane plus bending, and the primary plus secondary loading condition are 9.17 ksi (0&deg;, Section 72), 24.19 ksi (0&deg;, Section 72), and 25.48 ksi (45&deg;, Section 45), respectively. The factors of safety are:
Membrane:
S m 22.4 FS =          =        = 2.44 9.17 Membrane plus bending:
1.5S m        33.6 FS =              =          = 1.39 24.19 Primary plus secondary:
3S m      67.2 FS =            =          = 2.64 25.48 where:
Sm = 22.4 ksi ------------------------------ Design stress intensity, SA537 Class 1, 550&deg;F Each support plate of the corner support weldment is welded to the corner plate with a 5/16-inch groove weld on each side of the plate. The welds have a visual inspection criterion per ASME III-NG-5260 and a weld quality factor of 0.35, per ASME III-NG-3352. The ridge gussets are welded to the corner plate with a 0.25-inch bevel weld that is continuous along the length of the basket. Inspection is by liquid penetrant, and per ASME III-NG-3350, the weld quality factor is 0.55. At each of these weld locations in the model, the membrane force along the plate or gusset length (Fax), the transverse shear force perpendicular to the plate or gusset (Ft), and the bending moment (Mz) in the weld joint are extracted from the finite element analysis results. The weld stress intensity (weld) is then computed using:
weld =      ( ax +  m )2 + 4 2 where:
Fax ax =
A weld Mz m =
S weld NAC International                            2.6.15.4-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Ft
        =
A weld For the side support plate weld:
Aweld = 2 x (L p x t w ) = 3.62 in2 Sweld =      L p x Wp x t w = 1.35 in3 Lp =      5.8 in ---------------------------- Length of support plate Wp =      0.75 in -------------------------- Plate thickness tw =    0.3125 in ----------------------- Weld size For the ridge gusset weld:
Aweld = L x t w = 2.50 in2 Sweld = (L x t 2w ) / 6 = 0.104 in3 Lp = 10.0 in ------------------------------- Length of basket model tw = 0.25 in ------------------------------- Weld size For the support plate weld, the largest stress intensities for the membrane plus bending and primary plus secondary loading conditions are 5.02 ksi and 4.14 ksi, respectively. The factors of safety are:
Membrane plus bending:
0.35(1.5S m ) 11.76 FS =                    =        = 2.34 weld        5.02 Primary plus secondary:
0.35(3.0S m ) 23.52 FS =                  =        = 5.68 weld        4.14 where:
Sm = 22.4 ksi ------------------------------ Design stress intensity, SA537 Class A, 550&deg;F For the ridge gusset weld, the largest stress intensities for the membrane plus bending and primary plus secondary loading conditions are 11.51 ksi and 13.78 ksi, respectively. The factors of safety are:
NAC International                            2.6.15.4-4
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Membrane plus bending:
0.55(1.5S m ) 18.48 FS =                  =        = 1.61 weld      11.51 Primary plus secondary:
0.55(3.0S m ) 36.96 FS =                =          = 2.68 weld      13.78 where:
Sm = 22.4 ksi ------------------------------ Design stress intensity, SA537 Class A, 550&deg;F 2.6.15.4.3      Side Support Weldment Evaluation The side support weldment stresses are processed at the locations shown in Figure 2.6.15-12 and Figure 2.6.15-13. Table 2.6.15-7 through Table 2.6.15-9 for the 0&deg; basket orientation and Table 2.6.15-16 through Table 2.6.15-18 for the 45&deg; basket orientation summarize the highest stresses at these locations. The minimum factors of safety are 4.68, 2.40 and 2.94 for Pm, Pm+Pb and P+Q stresses, respectively.
Side and Corner Weldment/Fuel Tube Attachment Evaluation The corner and side support weldments are the primary structure that maintains the geometry of the fuel tube array. The support weldments are bolted to the fuel tubes at 24 circumferential locations. The bolted joint between the support weldment and fuel tubes is preloaded. The maximum torque on the 5/8-inch bolt is 50.0 in-lb (40 +/-10 in-lb). The preload on the bolt (Pb) is:
T          50 P =            =              = 400 lb 0.2D 0.2 x 0.625 where:
T=      50 in-lb ------------------------- Maximum bolt torque D=      0.625 in ------------------------- Bolt diameter The largest bolt tensile load is 2,724 lb (0&deg;, bolt 2, P+Q loading). Combining this tensile bolt force with the bolt preload gives a maximum bolt load of 3,124 pounds. The bolt thread is a 5/8-11 UNC and the minimum length of engagement is 0.47 inch. The bolt material is SA193 Grade B6 stainless steel. The tensile stress in the bolt is:
P 3.124 t =        =        = 13.58 ksi At      0.23 NAC International                            2.6.15.4-5
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 where:
2                            2 0.9743                      0.9743 At = 0.7854 D                    = 0.7854 0.625          = 0.23 in2 n                          11 D = 0.625 in n = 11 The factor of safety is:
Sm        24.3 FS =          =          = 1.79 t 13.58 where:
Sm = 24.3 ksi ------------------------------ Design stress intensity, SA193 Grade B6, 550&deg;F P 3.124 bolt =      =          = 6.66 ksi A s 0.469 where:
1 As = 3.1416nL e K n max  + 0.57735(E s min  K n max ) = 0.469 in2 2n Le = 0.47 in Knmax = 0.546 Esmin = 0.5589 n = 11 The factor of safety is:
0.6S y        43.74 FS =              =          = 6.57 bolt      6.66 where:
Sy = 72.9 ksi ------------------------------ Yield stress, SA193 Grade B6, 550&deg;F The shear stress in the boss thread from the maximum bolt tensile force is:
P      3.124 boss  =            =        = 4.66 ksi An      0.67 where:
1 An = 3.1416nL e D s min  + 0.57735(D s min  E n max ) = 0.67 in2 2n Le = 0.47 in Enmax = 0.5732 Dsmin = 0.6113 n = 11 The factor of safety is:
NAC International                            2.6.15.4-6
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 0.6S y        18.96 FS =                =        = 3.88 bolt      4.66 where:
Sy = 30.1 ksi ------------------------------ Yield stress, SA516, 550&deg;F There are two boss diameters in the BWR basket, 1.00-inch and 1.38-inch diameter, type A and type B, respectively. The boss is evaluated for the maximum shear load of 2,717 lb (0&deg; basket orientation, boss 1, P+Q loading) and the small boss diameter (type A). The shear stress in the boss is:
P    2.717 boss    =            =        = 5.78 ksi Ab      0.47 where:
Ab =
(
Do2  Di2    ) = 0.47 in2 4
Do =      1.00 in -------------------------- Boss outer diameter Di =      0.63 in -------------------------- Boss inner diameter The factor of safety is:
0.6S m 12.0 FS =                =      = 2.08 boss      5.78 where:
Sm =      20.0 ksi ------------------------- Design stress intensity, SA516, 550&deg;F The maximum bearing stress between the boss and the side support weldment occurs at boss type A and is:
P            2.717 Sbrg =              =              = 7.25 ksi Dt sup 1.00 x 0.375 where:
D=        1.00 in -------------------------- Boss outer diameter tsup =      0.375 in ------------------------- Support weldment plate thickness The factor of safety is:
Sy        34.6 FS =              =        = 4.77 S brg      7.25 where:
Sy = 34.6 ksi ------------------------------ Yield Stress, SA537 Class 1, 550&deg;F The boss is welded into the fuel tube with a 3/16-inch groove weld and has a visual inspection criterion. Per ASME Code, Section III, Subsection NG-5260, the weld quality factor is 0.35.
NAC International                              2.6.15.4-7
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Considering the governing case (primary load) for shear evaluation, the maximum bolt force at a type A boss is 694 lb (0&deg;, bolt 1). Including the 400 lb bolt preload, the maximum shear stress in the weld is:
P    1.094 weld =    =          = 1.86 ksi A w 0.589 where:
P=    1,094 lb ------------------------- Maximum bolt tensile load, boss A Aw =      Dt weld =  x 1.00 x 3/16 = 0.589 in2 D=      1.00 in -------------------------- Boss diameter tweld =  3/16 in -------------------------- Weld size The factor of safety using the lesser of SA537 Class 1 and SA695 B/40 Sm allowables is:
0.35(0.6S m ) 4.20 FS =                  =        = 2.26 weld      1.86 where:
Sm = 20.0 ksi ------------------------------ Design stress intensity, SA516, 550&deg;F At boss type B, the maximum bolt tensile force is 2,686 lb (0&deg;, bolt 9). Including the 400 lb bolt preload, the maximum shear stress in the weld is:
P    3.086 weld =    =          = 3.80 ksi A w 0.813 where:
P=    3,086 lb ------------------------- Maximum bolt tensile load, boss B Aw =      Dt weld =  x 1.38 x 3/16 = 0.813 in2 D=      1.38 in -------------------------- Boss diameter tweld =  3/16 in -------------------------- Weld size The factor of safety using the lesser of SA537 Class 1 and SA695 B/40 Sm allowables is:
0.35(0.6S m ) 4.43 FS =                  =        = 1.11 weld      3.80 where:
Sm =    20.0 ksi ------------------------- Design stress intensity, SA516, 550&deg;F The washers under the bolts at the boss locations are subjected to shear from the bolt tensile load and the support condition at the weldment. Using a bounding bolt tensile load of 3,086 lb, the maximum washer shear stress (type A boss) is:
NAC International                            2.6.15.4-8
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 P 3.086 wash =          =        = 5.0 ksi Aw 0.617 where:
Aw = Pb t w = 0.617 in2 Pb =      3.248 in ------------------------- Perimeter of mounting bolt head tw =    0.19 in -------------------------- Washer thickness The factor of safety is:
0.6Sm FS =          = 2.05 wash where:
Sm = 17.1 ksi ------------------------------ Design stress intensity, SA240 Type 304, 550&deg;F Bearing Stress on TSC Shell The side and corner support weldments are laterally supported by the TSC shell during a side drop condition. Based on the finite element analysis results, the maximum radial force at the periphery of the support weldments acting on the TSC shell occurs for the 0&deg; basket orientation.
A bounding load (Pbrg) from the results of 20 kips is used in the bearing stress evaluation for the TSC shell. The bearing area (Abrg) at the TSC shell is considered to be 5.0 in2 (10 inch axial length in the model with a 0.5 inch width of contact conservatively assumed).
The bearing stress at the TSC shell is:
Pbrg    20 brg =        =      = 4.0 ksi A brg    5.0 The factor of safety for bearing is:
Sy    18.9 FS =        =        = 4.73 brg    4.0 where:
Sm = 18.9 ksi Yield stress, SA240 Type 304, 550&deg;F NAC International                            2.6.15.4-9
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.15-1    BWR Fuel Tube Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi Tube Section Sint          Sallow    FS 25        9    10.70    21.10    1.97 25        7      9.52    21.10    2.22 20      12      7.38    21.10    2.86 20      16      6.13    21.10    3.44 14      12      5.55    21.00    3.80 Note: See Figure 2.6.15-8 for tube and section cut locations.
Table 2.6.15-2    BWR Fuel Tube Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Tube Section Sint          Sallow    FS 25        9    29.95    31.65    1.06 20        4    26.97    31.65    1.17 20      11    25.99    31.65    1.22 24      12    25.61    31.65    1.24 24      16    25.55    31.65    1.24 Note: See Figure 2.6.15-8 for tube and section cut locations.
Table 2.6.15-3    BWR Fuel Tube Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi Tube Section Sint          Sallow    FS 25        8    50.10    63.30    1.26 13      16    28.92    63.30    2.19 13      12    27.91    63.30    2.27 25        9    24.87    63.30    2.55 14      12    24.72    63.30    2.56 Note: See Figure 2.6.15-8 for tube and section cut locations.
NAC International                    2.6.15.4-10
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.6.15-4  BWR Corner Weldment Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi Section Sint      Sallow    FS 72      9.17    22.40    2.44 68      9.06    22.40    2.47 70      8.96    22.40    2.50 Note: See Figure 2.6.15-10 for section cut locations.
Table 2.6.15-5  BWR Corner Weldment Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Section Sint      Sallow    FS 72    24.19    33.60    1.39 71    23.82    33.60    1.41 44    21.12    33.60    1.59 Note: See Figure 2.6.15-10 for section cut locations.
Table 2.6.15-6  BWR Corner Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi Section Sint      Sallow    FS 44    22.88    67.20    2.94 72    20.52    67.20    3.27 71    19.66    67.20    3.42 Note: See Figure 2.6.15-10 for section cut locations.
NAC International                  2.6.15.4-11
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.6.15-7  BWR Side Weldment Stresses, Pm, 1-ft Side Drop - 0&deg;, ksi Section Sint      Sallow      FS 15      3.11    22.40      7.20 11      2.55    22.40      8.78 10      2.07    22.40    large Note: See Figure 2.6.15-12 for section cut locations.
Table 2.6.15-8    BWR Side Weldment Stresses, Pm+Pb, 1-ft Side Drop - 0&deg;, ksi Section Sint      Sallow      FS 11      9.11    33.60      3.69 14      4.26    33.60      7.89 15      4.22    33.60      7.96 Note: See Figure 2.6.15-12 for section cut locations.
Table 2.6.15-9    BWR Side Weldment Stresses, P+Q, 1-ft Side Drop - 0&deg;, ksi Section Sint      Sallow      FS 13    11.57    67.20      5.81 11      9.15    67.20      7.34 4      7.36    67.20      9.13 Note: See Figure 2.6.15-12 for section cut locations.
NAC International                    2.6.15.4-12
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.15-10 BWR Fuel Tube Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi Tube Section Sint          Sallow    FS 26        7      9.20    21.10    2.29 23        5      7.28    21.10    2.90 26        9      5.56    21.10    3.79 9        7      4.40    21.10    4.80 25      12      4.22    21.10    5.00 Note: See Figure 2.6.15-9 for tube and section cut locations.
Table 2.6.15-11 BWR Fuel Tube Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Tube Section Sint          Sallow    FS 5      16    30.78    31.65    1.03 5        9    30.71    31.65    1.03 10      12    30.59    31.65    1.03 14        7    30.51    31.65    1.04 4        3    30.25    31.65    1.05 Note: See Figure 2.6.15-9 for tube and section cut locations.
Table 2.6.15-12 BWR Fuel Tube Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi Tube Section Sint          Sallow    FS 7      16    42.49    63.30    1.49 26        9    42.08    63.30    1.50 26        3    41.50    63.30    1.53 4        8    41.41    63.30    1.53 8        8    41.19    63.30    1.54 Note: See Figure 2.6.15-9 for tube and section cut locations.
NAC International                    2.6.15.4-13
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.6.15-13 BWR Corner Weldment Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi Section Sint      Sallow    FS 70      5.74    22.40    3.90 74      5.70    22.40    3.93 72      5.69    22.40    3.94 Note: See Figure 2.6.15-11 for section cut locations.
Table 2.6.15-14 BWR Corner Weldment Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Section Sint      Sallow    FS 30    16.25    33.60    2.07 31    15.12    33.60    2.22 68    12.28    33.60    2.74 Note: See Figure 2.6.15-11 for section cut locations.
Table 2.6.15-15 BWR Corner Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi Section Sint      Sallow    FS 45    25.48    67.20    2.64 42    22.09    67.20    3.04 44    21.25    67.20    3.16 Note: See Figure 2.6.15-11 for section cut locations.
NAC International                  2.6.15.4-14
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.6.15-16 BWR Side Weldment Stresses, Pm, 1-ft Side Drop - 45&deg;, ksi Section Sint      Sallow      FS 14      2.79    22.40      8.03 13      1.91    22.40    large 7      1.56    22.40    large Note: See Figure 2.6.15-13 for section cut locations.
Table 2.6.15-17 BWR Side Weldment Stresses, Pm+Pb, 1-ft Side Drop - 45&deg;, ksi Section Sint      Sallow      FS 14      6.51    33.60      5.16 10      6.16    33.60      5.45 8      5.30    33.60      6.34 Note: See Figure 2.6.15-13 for section cut locations.
Table 2.6.15-18 BWR Side Weldment Stresses, P+Q, 1-ft Side Drop - 45&deg;, ksi Section Sint      Sallow      FS 12    14.86    67.20      4.52 5    14.62    67.20      4.60 14    13.53    67.20      4.97 Note: See Figure 2.6.15-13 for section cut locations.
NAC International                  2.6.15.4-15
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.15.5        Thermal Expansion of BWR Basket in Normal Conditions The average axial temperature at the center of the basket is 619&deg;F and the average axial temperature at the outer radius of the basket is 298&deg;F. As the basket is free to expand axially in both directions from the middle, the relative thermal expansion in the axial direction between the center and outer radius of the basket is:
x = xinner - xouter = 0.342 - 0.131 = 0.211 inch where:
xinner =                                            (          )
T x 0.5L x  i = (619  70)(0.5)(166.5) 7.49 x10 6 = 0.342 inch xouter =  T x 0.5L x  o = (298  70)(0.5)(166.5)(6.92 x10 ) = 0.131 inch 6
L = 166.5 inch ------------------------- Fuel tube length i= 7.49x10-6 in/in/&deg;F----------------- Coef. of thermal expansion, SA-537 Class 1, 626&deg;F o= 6.92x10-6 in/in/&deg;F----------------- Coef. of thermal expansion, SA-537 Class 1, 310&deg;F .
Connector pins at the top and bottom of the basket are used to maintain the geometry of the fuel tube array. A pin is inserted into the connector pin to maintain geometry between adjacent fuel tubes. Adjacent fuel tube connector pins have a 0.08-inch gap between the connector pins at the top and bottom of the fuel tubes (see following figure). There are a minimum of three connector pin assemblies in the radial direction of the basket from the center to the outer edge. The average difference in the axial thermal expansion between adjacent tubes is 0.07 inch (0.211/3).
As this value is less than the pin gap, no axial thermal stresses are produced by the axial expansion of the basket.
Top of Fuel Tube Top of Fuel Tube NAC International                        2.6.15.5-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.15.6        Fuel Tube Bending Stress Classification for Normal Conditions The results from the elastic finite element analysis for the normal condition side drop show that the primary membrane plus bending stresses at some locations in the fuel tube corners for the 45&deg; basket orientation are above the allowable value of 1.5Sm for primary stresses (P). Applying the stress classification principal in ASME Section III, Subsection NB, Table NB-3217-1, the bending stresses at these locations are classified as secondary (Q) and, therefore, the allowable stress intensity value for the primary plus secondary stresses (3.0Sm) is applicable for the stress evaluation for these sections.
In ASME Code, Section III, Subsection NB, Table NB-3217-1, Classification of Stress Intensity in Vessels for Some Typical Cases, bending stresses resulting from internal pressure at the junction of a flat head to a cylindrical shell are considered secondary (Q). However, from Note 2 of that table:
If the bending moment at the edge is required to maintain the bending stress in the middle to acceptable limits, the edge bending is classified as Pb. Otherwise, it is classified as Q.
The stress condition in the tube corners is considered to be analogous to the flat head/cylindrical shell case given in Table NB-3217-1. Therefore, the tube bending stress in the corners can be classified as secondary (Q) if the bending moments at these locations are not required to maintain stresses in the basket under the maximum allowable values for primary stresses.
This condition is verified from additional analysis cases using the 0&deg; and 45&deg; elastic basket finite element models for the normal load case. At all tube corner locations where the calculated primary membrane plus bending stress is higher than 1.5Sm, the models are modified to effectively insert a hinge along the fuel tube in the corner to eliminate the bending moment.
The calculated force and stress results with this modification to both the 0&deg; and 45&deg; models show no significant change compared to the analysis results for the original models without the hinge. The elimination of the fuel tube corner bending moments does not increase stresses in the basket above the allowable values for primary stress, and per Note 2 in Table NB-3217-1, the bending stress is classified as secondary (Q).
The hinge to remove the bending moment at a fuel tube corner location is modeled using the same methodology as for the PWR configuration, as described in Section 2.6.13.6.
Stress results from the finite element analysis of the modified model (45&deg; basket) with the hinges at several fuel tube corner locations are summarized in Table 2.6.15-19 through Table 2.6.15-21 for 0&deg; model and Table 2.6.15-22 though Table 2.6.15-24 for the 45&deg; model.
The stresses of the support bar weld, the ridge gusset weld, the bolts and the bosses are also NAC International                        2.6.15.6-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 evaluated. Maximum stresses are shown to be less than the allowables at all locations, and no significant redistribution of load is shown. This provides justification for classifying the bending stress as secondary, as the fuel tube corner bending moments are not required to limit the stresses throughout the basket.
Further justification for classifying the tube corner bending stress as secondary is provided by the calculated plastic strain. An additional analysis of the original 45&deg; basket model (no hinge modification) in which plastic material properties are used for normal loading shows that the total plastic strain is small at the fuel tube corners where the stress is greater than 1.5Sm, with a maximum plastic strain of 0.02 percent. The plastic strain is localized near the tube wall surface, with a significant portion of the wall cross-section still in the elastic region.
For the original models and analysis cases at normal load, Table 2.6.15-2 and Table 2.6.15-11 of Section 2.6.15.4, give the fuel tube stresses for primary membrane plus bending, Pm+Pb. As discussed, bending stresses at locations where Pm+Pb is greater than 1.5Sm are classified as secondary and, consequently, are not reported in those tables. However, these P+Q stresses are shown in Table 2.6.15-25. At all locations, the stresses are below the P+Q allowable of 3.0Sm.
NAC International                          2.6.15.6-2
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.15-19 Fuel Tube Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;,
Results from Modified Model Pm                                          Pm+Pb Tube    Sect. Sint, ksi        FS(1)      Tube Sect.        Sint, ksi      FS(2) 25      8        17.80            1.19        20      4        29.94          1.06 25      9        12.11            1.74        14    12        25.40          1.25 25      7        6.81            3.10        24    16        24.91          1.27 14      12        6.14            3.44        14    16        24.24          1.31 14      16        5.17            4.08        19    12        24.21          1.31 (1)
Factor of safety based on allowable of Sm = 21.1 ksi (2)
Factor of safety based on allowable of 1.5Sm = 31.7 ksi See Figure 2.6.15-8 for tube and section cut locations.
Table 2.6.15-20 Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;,
Results from Modified Model Pm                                          Pm+Pb Section        Sint, ksi        FS(1)        Section        Sint, ksi      FS(2) 72            9.79            2.29            72          28.94          1.16 68            9.64            2.32            71          28.59          1.18 71            9.59            2.34            48          28.32          1.19 (1)
Factor of safety based on allowable of Sm = 22.4 ksi (2)
Factor of safety based on allowable of 1.5Sm = 33.6 ksi See Figure 2.6.15-10 for section cut locations.
Table 2.6.15-21 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 0&deg;,
Results from Modified Model Pm                                          Pm+Pb Section        Sint, ksi        FS  (1)      Section        Sint, ksi      FS(2) 15            2.93            7.65            11            7.76          4.33 11            2.49            9.00            14            3.15        Large 10            1.58            large            15            3.03        Large (1)
Factor of safety based on allowable of Sm = 22.4 ksi (2)
Factor of safety based on allowable of 1.5Sm = 33.6 ksi See Figure 2.6.15-12 for section cut locations.
NAC International                      2.6.15.6-3
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.6.15-22 Fuel Tube Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model Pm                                          Pm+Pb Tube    Sect. Sint, ksi          FS  (1)    Tube Sect.      Sint, ksi      FS(2) 26      8        12.99              1.62        2      8      30.17          1.05 23      4        11.46              1.84      23      8      26.13          1.21 26      7        8.70              2.43        2      4      25.73          1.23 13      5        8.03              2.63      2      12      25.43          1.24 1      16        6.65              3.17      21      8      25.15          1.26 (1)
Factor of safety based on allowable of Sm = 21.1 ksi (2)
Factor of safety based on allowable of 1.5Sm = 31.7 ksi See Figure 2.6.15-9 for tube and section cut locations.
Table 2.6.15-23 Corner Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;,
Results from Modified Model Pm                                          Pm+Pb Section        Sint, ksi          FS  (1)      Section      Sint, ksi      FS(2) 70            8.36              2.68          33          23.27          1.44 74            8.23              2.72          68          19.90          1.69 72            8.22              2.73          64          19.89          1.69 (1)
Factor of safety based on allowable of Sm = 22.4 ksi (2)
Factor of safety based on allowable of 1.5Sm = 33.6 ksi See Figure 2.6.15-11 for section cut locations.
Table 2.6.15-24 Side Weldment Stresses, Pm and Pm+Pb, 1-ft Side Drop - 45&deg;, Results from Modified Model Pm                                          Pm+Pb Section        Sint, ksi          FS  (1)      Section      Sint, ksi      FS(2) 14            2.58              8.68          14            5.95          5.65 13            1.71            large          10            5.20          6.46 8            1.65            large            6            3.98          8.44 (1)
Factor of safety based on allowable of Sm = 22.4 ksi (2)
Factor of safety based on allowable of 1.5Sm = 33.6 ksi See Figure 2.6.15-13 for section cut locations.
NAC International                        2.6.15.6-4
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.15-25 Fuel Tube Stresses, P+Q, 1-ft Side Drop, Results from Original Model at Locations with Bending Stress Classified as Secondary P+Q, 0&deg;                                      P+Q, 45&deg; Tube    Sect.      Sint, ksi        FS(1)      Tube Sect.        Sint, ksi      FS(1) 25      8        55.22          1.15        9      8        55.14          1.15 20      12        32.92          1.92        9      12        49.88          1.27 20      16        31.35          2.02        4      8        49.48          1.28 9      4        49.47          1.28 8      8        47.76          1.33 (1)
Factor of safety based on allowable of 3Sm = 63.3 ksi See Figure 2.6.15-8 and Figure 2.6.15-9 for tube and section cut locations.
NAC International                    2.6.15.6-5
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 2.6.15.7        Neutron Absorber Retainer Evaluation for Normal Conditions The retainer strips for the BWR fuel tubes are made of Type 304 stainless steel. The strip is supported by a row of weld posts located every 12 inches along the undersides of the fuel tube.
The neutron absorber is supported by the retainer strip at the inside surface of the fuel tube. The pitches of the slotted holes in the neutron absorber are the same as the holes in the retainer strip.
The holes are slotted to prevent interference during thermal expansion. The head of the weld posts supporting the retainer strip are engaged in the recessed conical pockets of the retainer strip. The structural evaluation of the neutron absorber retainer for the governing loading condition for the 1-ft side drop is presented in this section.
The retainer strip is evaluated using LS-DYNA program for the side impact conditions. A quarter-symmetry finite element model is constructed to represent one-half of the 10-inch periodic section for the BWR design. As shown in Figure 2.6.15-14, the model consists of the neutron absorber, retainer strip and the weld post. The retainer strip, located in the x-y plane, is modeled with shell elements. The model for the neutron absorber plate is comprised of three layers of materials. The two outer layers employ the inelastic properties of aluminum 1100 series cladding at 700&#xba;F. The center layer represents the neutron absorber material, with a yield strength of 10 psi and an elastic modulus of elasticity of 1,000 psi. The low yield strength for the core material allows the neutron absorber core to provide only a minimal contribution of stiffness of the neutron absorber plate. The weld post was modeled as being rigid to maximize deformation of the conical-shaped section of the retainer by the weld post. All nodes on the weld post have all degrees of freedom fixed. Symmetry boundary conditions are applied to the edges of the model for the plans of symmetry. To simulate side impact conditions, gravity loads are applied in the global Z-direction. A maximum acceleration of 15g is applied to the model.
The maximum stress intensity is 14.4 ksi for the retainer strip. The allowable stress intensity is 1.5Sm for the retainer strip.
The factor of safety for retainer strip is:
FS = 1.5 Sm / 14.4 = 1.5 x 15.9 /14.4 = 1.65 where:
Sm = 15.9 ksi --------------------------------------- Design Stress Intensity of SA240, Type 304 stainless steel at 700&deg;F The peak force on the weld post is 6 pounds. The shear area governs the capacity of the weld.
The depth of the weld is h = 0.13 inch. The diameter of the weld post is D = 0.25 inch. The governing stress is the shear stress in the base material. The allowable shear stress for accident condition is 0.6Sm. The Design Stress Intensity of the base material (SA240, type 304) per is Sm= 15,900 psi. The weld capacity, Fcap is calculated as:
NAC International                            2.6.15.7-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Fcap= 0.6 x n x Sm x h x D
            = 0.6 x 0.3 x 15,900 x 0.13 x (3.1416 x 0.25)
            = 292 lb where:
n=      The design factor per ASME B&PV Code, Section III, Division 1, Subsection NG, Table NG-3352-1(Ref. 23) for the intermittent plug weld employing surface visual examination method per NG-5260.
The factor of safety is:
FS = 292 / 6 = large Thermal Expansion Evaluation The stainless steel retainer strips are fastened to the carbon steel fuel tube using fixed weld posts spaced every 12 inches along the length of the tube. Because of the dissimilar material properties, the components expand at varying rate creating thermal stresses in some components.
As shown in equation (3) in Section 2.6.13.7, the thermal stress is not dependent on the length.
Therefore, the maximum thermal stress and the factor of safety for the BWR are identical to those for the PWR as calculated in Section 2.6.13.7. No further evaluation is required.
NAC International                          2.6.15.7-2
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.15-14  Finite Element Model for BWR Retainer Strip and Neutron Absorber NAC International                2.6.15.7-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.16          GTCC Transportable Storage Canister and Waste Basket Liner Analysis - Normal Conditions of Transport In this section, the GTCC transportable storage canister (GTCC-TSC) and waste basket liner are evaluated for the normal conditions of transport. The construction of the GTCC-TSC shell weldment is as described for the TSC in Section 2.6.12, except for the lid. The GTCC closure lid is a composite lid design with a 4-inch stainless steel lid and a 5-inch thick electroless nickel-coated carbon steel shield plate and a 3/4-inch closure ring.
The GTCC-TSC forms the confinement boundary for the GTCC waste basket liner and contents.
The GTCC-TSC with GTCC waste basket liner is structurally evaluated for a payload of 55,000 pounds of Greater Than Class C (GTCC) waste. The GTCC liner fits inside of the GTCC-TSC and consists of a 2.0-inch thick cylindrical shield plate with a welded bottom plate. The cylindrical shield plate is fabricated from SA240, Type 304 stainless steel. The bottom plate of the liner is a 1-inch thick SA240, Type 304 stainless steel plate with several 1-inch thick ring segments welded to the bottom side of the bottom plate.
NAC International                          2.6.16-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.16.1        GTCC-TSC Analysis Description The GTCC-TSC contains and confines the contents in the GTCC waste basket liner. The GTCC-TSC is not considered to provide containment during transport operation; the MAGNATRAN transport cask provides the containment boundary for transport. The GTCC-TSC in the transfer cask serves as the handling component for the waste basket liner and contents during loading and unloading from the transport cask.
The GTCC-TSC lid configuration is a composite lid design with a 4-inch stainless steel lid and a 5-inch thick carbon steel shield plate and a 3/4-inch closure ring.
The structural design criteria for the GTCC-TSC are conservatively based on the ASME Code Section III, Subsection NB as compared to Subsection NF, which could be used to perform the structural evaluation. The GTCC-TSC will be fabricated using the Rules of ASME Code Section III, Subsection NF. Consistent with this criteria, the structural components of the GTCC-TSC are shown to satisfy the allowable stress limits presented in Table 2.1.2-2 and Table 2.1.2-3, as applicable.
The structural design criteria for the GTCC waste basket liner are based on the ASME Code Section III, Subsection NF. Consistent with this criteria, the structural components of the GTCC waste basket liner are shown to satisfy the allowable stress limits presented in Table 2.1.2-2 and Table 2.1.2-3, as applicable.
The GTCC-TSC and liner are analyzed by using the ANSYS finite element computer program for the 1-ft free drop condition in the top and bottom end, side, and top and bottom corner impact orientations. In addition, the effects of normal operating internal pressure and thermal stresses resulting from exposure of the cask to the hot (100&deg;F ambient and solar insolance) and cold
(-40&deg;F ambient) normal conditions are evaluated.
NAC International                        2.6.16.1-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.16.2        GTCC-TSC Finite Element Model Description The finite element model used to analyze the TSC portion of the GTCC-TSC assembly is Finite Element Model B, the model described in Section 2.6.12.2.2, including the relevant portions of the description in Section 2.6.12.2.1 (Finite Element Model A) that apply to both Model A and Model B. Model B is shown in Figure 2.6.12-3; its configuration includes the composite lid and the 3/4-inch closure ring. However, for the GTCC-TSC the model has been modified to eliminate the 3/4-inch closure ring, and the redundant welded port cover.
A three-dimensional finite element model of the GTCC waste basket liner is also constructed using ANSYS. The waste basket liner shell, bottom plate and spacer rings are modeled with SOLID45 elements. By taking advantage of the symmetry of the waste basket liner and loadings, the model represents one-half (180&deg; portion) of the waste basket liner including the liner shell, bottom plate and spacer rings. The three-dimensional finite element model of the waste basket liner is shown in Figure 2.6.16-1 and Figure 2.6.16-2. TARGE170 and CONTA174 surface-to-surface contact elements are modeled between the outer diameter of the liner shell and the inner diameter of the canister shell. These contact pairs are used between the top of the canister bottom plate and the bottom of the liner spacer rings, as well as between the top of the liner shell and the bottom of the shield plate.
The GTCC-TSC model uses a contents (payload) weight of 55,000 pounds.
The accelerations used in the GTCC-TSC 1-foot drop analyses are:
1-Foot Side Drop        15g 1-Foot End Drop          15g 1-Foot Corner Drop      8g The internal pressure used in the GTCC-TSC 1-ft drop analyses is 5 psig.
NAC International                        2.6.16.2-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 The design parameters of the GTCC-TSC and GTCC-waste basket liner are:
GTCC-TSC        GTCC - Waste Basket Liner GTCC-TSC Component            (inches)                (inches)
Length                184.8                  173.03 Outside Diameter              72.0                    70.5 Shell Thickness              0.5                    2.0 1.0 (plus 1.0 thick Bottom Plate Thickness            2.75              ring segments)
Lid Type            Composite                    -
Closure Lid Thickness            4.00                      -
Shield Plate Thickness          5.00                      -
Closure Lid Weld Size            0.5                      -
Finite Element Model              B A pressure loading is applied to the inner surface of the liner to represent the weight of the GTCC waste basket contents. For end drops, a uniform pressure load is applied to either the canister lid or bottom plate. For the side drop, a uniform force is applied to the middle third of the inner shell surface and around a 90&#xba; sector of the liner circumference. For the bottom corner drop, a uniform load is applied to a 90&#xba; sector of the liner inner shell and a distributed pressure is applied to the bottom surface of the liner. For the top corner drop, a uniform load is applied to a 90&#xba; sector of the inner shell and a distributed pressure is applied to the bottom surface of the shield plate. To represent the internal pressure inside the canister during the transport conditions, bounding internal pressure for normal (5 psig) and accident (10 psig) conditions is modeled as a uniform pressure over the entire inner surface of the canister.
The inertial loads resulting from the weight of the liner and canister are considered by applying an appropriate deceleration factor (g-load) for either the 1-ft or 30-ft cask drops. Inertia loads from the GTCC liner contents are included by applying pressure on the inside of the liner. The canister is evaluated for the following drop orientations: top and bottom end drops, the side drop and top and bottom corner drops (20&deg;).
A bounding temperature and thermal gradient for hot transport conditions (100&deg;F ambient with solar insolence and maximum heat load) and cold transport conditions (-40&deg;F without solar insolance) are used in a thermal analysis to compute temperatures throughout the canister. These temperatures are then used to calculate the thermal stresses in the canister and to determine the allowable stresses.
The thermal finite element model that was used for the PWR transport cask and internals (see Section 2.6.12.3) is used to compute the temperatures in the GTCC-TSC and waste basket liner, NAC International                        2.6.16.2-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 for both hot and cold cases, except that the GTCC heat load is 4 kW instead of 23 kW for the PWR fuel. The surface temperatures from this analysis are applied as boundary conditions to a thermal model of the GTCC assembly, and the thermal analysis is rerun for the hot and cold cases. These temperatures are then read into the GTCC assembly structural model as structural body loads.
The GTCC component temperatures used in the analyses are:
Location                      Hot                Cold Closure Lid Center - Outer            184&deg;F                35 &deg;F Shield Plate Center - Bottom          191 &deg;F              48 &deg;F Shell Top (Closure Lid Outer          184 &deg;F              35 &deg;F Corner)
Shell Peak Temperature              184 &deg;F              35 &deg;F Bottom Plate - Center              191&deg;F                49 &deg;F Bottom Plate - Corner              190&deg;F                35 &deg;F Shield Plate Edge - Inner            188 &deg;F              43 &deg;F Shield Plate/ Closure Lid            191 &deg;F              49 &deg;F Junction - Center Shield Plate/ Closure Lid            188 &deg;F              43 &deg;F Junction - Edge 2.6.16.2.1      Description of Post Processing Results for the GTCC-TSC Model The stress evaluation for the GTCC-TSC (canister component, not including the waste basket liner) is performed in accordance with the ASME Code, Section III, Subsection NB by comparing the linearized sectional stresses with allowable stresses. The sectional stresses at seven locations of the TSC are obtained for each 4.5 angular division of the model. The locations for the stress sections are shown in Figure 2.6.12-5. The allowable stresses for normal and accident conditions are taken from Subsection NB. Bounding temperatures that envelop the maximum temperatures experienced by canister components during transport conditions are used to determine allowable stress values based on mechanical properties for SA240, Type 304 stainless steel. All stress components are reported in a cylindrical coordinate system (X = Radial, Y = Circumferential, Z = Axial).
The evaluation of the TSC lid weld (Sections 11, 14 and 15 on Figure 2.6.12-5) is performed in accordance with ISG 15, Revision 0. A weld reduction factor of 0.8 (ISG-4, Revision 1) is applied to the allowable stresses for the closure lid weld (Section 11).
NAC International                          2.6.16.2-3
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.16.2.2    Description of Post-Processing Results for the GTCC Waste Basket Liner Model The stress evaluation for the GTCC waste basket liner is performed in accordance with the ASME Code, Section III, Subsection NF. The stresses in the liner were extracted at the points where the stress intensities were the highest. The allowable stresses for normal and accident conditions are taken from Subsection NF.
NAC International                        2.6.16.2-4
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.16-1 GTCC Waste Basket Liner Finite Element Model NAC International              2.6.16.2-5
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.6.16-2 GTCC Waste Basket Liner Finite Element Model - Bottom View NAC International            2.6.16.2-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.16.3        Thermal Expansion and Thermal Stresses Evaluation of GTCC-TSC A thermal stress evaluation is performed to determine the associated thermal stresses that result from the decay heat in the GTCC-TSC. Two ambient conditions are considered as shown in the following table.
Solar Insolance Applied Condition        Ambient Temperature                to Cask Surface          Content Decay Heat Hot                  100F                          Yes                        Yes Cold                    -40F                          No                        Yes The thermal evaluation of the GTCC assembly is a three-step process. First the existing 3D thermal finite element model for the PWR transport cask and internals is used to predict the temperatures on the outer surface of the canister due to a heat load of 4 kW. The analysis is run for both the hot and cold ambient conditions. The surface temperatures for the canister from this 3D analysis are then applied to a 2D, axisymmetric thermal model of the GTCC waste assembly for both hot and cold cases, and these thermal analyses are run. The temperatures on all surfaces of the canister, shield plate, structural lid and the GTCC liner are then extracted and applied to a 3D thermal model of the GTCC assembly (canister plus liner) to obtain a 3D thermal solution, which is used to determine the thermally induced stresses in the GTCC assembly.
The GTCC component temperatures used in the analyses are:
Location                        Hot                Cold Closure Lid Center - Outer              184&deg;F              35 &deg;F Shield Plate Center - Bottom            191 &deg;F              48 &deg;F Shell Top (Closure Lid Outer            184 &deg;F              35 &deg;F Corner)
Shell Peak Temperature                184 &deg;F              35 &deg;F Bottom Plate - Center                191&deg;F              49 &deg;F Bottom Plate - Corner                190&deg;F              35 &deg;F Shield Plate Edge - Inner              188 &deg;F              43 &deg;F Shield Plate/ Closure Lid            191 &deg;F              49 &deg;F Junction - Center Shield Plate/ Closure Lid            188 &deg;F              43 &deg;F Junction - Edge NAC International                          2.6.16.3-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 The thermal stresses reported in Table 2.6.16-1 and Table 2.6.16-2 correspond to the maximum stresses for any circumferential section, for each of the locations shown in Figure 2.6.12-5. For Table 2.6.16-1 and Table 2.6.16-2, the angle of peak stress at each section is zero degrees.
The allowable stresses are evaluated at 250&deg;F, which is higher than the maximum predicted temperature for the GTCC assembly of 227&deg;F.
The differential thermal expansions of the GTCC-TSC and the cask inner shell in both the radial and axial directions are bounded by the results determined in Section 2.6.12.3 for the standard TSC because TSC materials and dimensions are the same, but the GTCC internal heat load is lower.
NAC International                        2.6.16.3-2
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-1        GTCC-TSC Linearized Q Stresses - Thermal Only (Hot)
Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                  SI        Stress      of Location      Sx        Sy          Sz      Sxy    Syz      Sxz      (ksi)        (ksi)    Safety 9          0.07    -2.23      5.22        0.00  -0.01    -0.05    7.45          60.0      8.05 10          0.56      3.19      8.32      0.12    0.10    -0.99    8.02          60.0      7.48 11          1.48      0.01      -3.67      -0.07  0.11      -1.25    5.74        48.01      8.36 13          0.68      0.82      -0.01      1.47  -0.01    -0.30    3.01          60.0    Large 14          1.01      0.93      -0.48      -0.05  0.01      -0.21    1.58          60.0    Large 15          2.31      1.84      1.12      -0.05    0.07    -0.47    1.52          60.0    Large 16        -0.11    -0.26      0.01      -1.23  0.00      -0.23    2.51          60.0    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-2        GTCC-TSC Linearized Q Stresses - Thermal Only (Cold)
Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                  SI        Stress      of Location        Sx        Sy          Sz      Sxy    Syz      Sxz    (ksi)        (ksi)    Safety 9          -0.05      3.68        6.23    -0.18  0.02      0.04    6.28          60.0      9.55 10          0.15      2.54        6.55    -0.03    0.21    -0.43    6.47          60.0      9.28 11          1.14      -0.09      -3.27    -0.08  0.03    -1.11    4.95        48.01      9.70 13          0.87      0.92      -0.01      1.32  -0.01    -0.25    2.72          60.0    Large 14          1.01      0.92      -0.45    -0.07  0.00    -0.20    1.55          60.0    Large 15          -0.90      0.51      -0.41      0.01  0.05      0.04    1.42          60.0    Large 16          -0.20      -0.23      0.01      -1.11  0.00    -0.19    2.26          60.0    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                              2.6.16.3-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.16.4        Stress Evaluation of GTCC-TSC for 1-Foot End-Drop Load Condition A structural analysis performed by using ANSYS evaluates the effect of a 1-ft end-drop impact for both the bottom and top-end orientations of the canister. The ASME Code, Section III, Subsection NB requires that stresses arising from operational loads be assessed on the basis of the primary loads. The primary loads for the 1-ft drop result from the deceleration of the canister and its contents and the 5 psig pressure load internal to the canister. The applied deceleration is 8g for both orientations. The inertial load of the canister is addressed by the deceleration factor applied to the canister density. The weight of the contents is represented by a pressure load on the inner end surface of the GTCC liner or shield plate, depending on the drop orientation.
Displacement constraints are applied to the plane of symmetry. Gap elements are attached at the canister ends to represent the top or bottom of the transport cask.
To determine the effect of the 5 psig pressure load, the top end and bottom end orientations, with and without the pressure load, are analyzed.
The locations of the linearized stresses are shown in Figure 2.6.12-5. The summaries for Pm and Pm + Pb stresses due to 5 psig internal pressure (pressure only) are in Table 2.6.16-4 and Table 2.6.16-5, respectively. Results from the end-drops are summarized in Table 2.6.16-6 through Table 2.6.16-13. Table 2.6.16-3 provides a summary of critical section stresses for the top and bottom end drop conditions.
The allowable stresses are evaluated at 250&deg;F, which is higher than the maximum calculated temperature for the GTCC assembly of 227&deg;F.
NAC International                        2.6.16.4-1
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.6.16-3    GTCC-TSC Critical Sections for the Pressure Only and 1-Foot End Drop Load Condition Critical    Minimum Condition              Stress    Section  Factor of Safety Pressure (only)            Pm        9          Large Pressure (only)          Pm + Pb      9          Large Top-End Drop              Pm        14          Large Top-End Drop            Pm + Pb    14          Large Top-End Drop + Pressure          Pm        14          Large Top-End Drop + Pressure        Pm + Pb    14          Large Bottom-End Drop              Pm        15          Large Bottom-End Drop            Pm + Pb    16          Large Bottom-End Drop + Pressure        Pm        15          Large Bottom-End Drop + Pressure      Pm + Pb    16          Large NAC International                    2.6.16.4-2
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-4        GTCC-TSC Pm Stresses - Internal Pressure only - 5psi Pm Stresses (ksi)                                      Stress    Factor Section2                                                                      SI        Allowable    of Location        Sx        Sy          Sz        Sxy      Syz        Sxz      (ksi)        (ksi)    Safety 9        0.00      0.36        0.16        0.00    0.00      0.00    0.36          20.0    Large 10        -0.01      0.07        0.05      0.00      0.01      0.00      0.08          20.0    Large 11        -0.02      0.00        0.09      -0.01    0.01      0.00      0.11          16.01    Large 13        0.00      0.01        0.00        0.03    0.00      0.00    0.07          20.0    Large 14        0.03      0.12        0.00        0.00    0.00      -0.01    0.13          20.0    Large 15        0.01      0.11        0.01        0.00    0.00      -0.01    0.11          20.0    Large 16        0.01      0.00        0.00      -0.03    0.00      0.00      0.05          20.0    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-5        GTCC-TSC Pm + Pb Stresses - Internal Pressure only - 5 psi Pm + Pb Stresses (ksi)                                      Stress    Factor Section2                                                                      SI        Allowable    of Location        Sx        Sy        Sz        Sxy      Syz        Sxz      (ksi)        (ksi)    Safety 9          0.00      0.38      0.26        0.00    0.00      0.00      0.38          30.0    Large 10        -0.02      0.01      0.14      -0.01    0.01      0.00      0.16          30.0    Large 11        -0.01      0.05      0.10        0.00    0.00      -0.05      0.15          24.01    Large 13          0.01      0.01      0.00        0.03    0.00      0.01      0.07          30.0    Large 14          0.06    -0.03      -0.09      -0.05    0.02      -0.07      0.23          30.0    Large 15        -0.03      0.09      -0.01        0.00    0.00      0.00      0.12          30.0    Large 16          0.03      0.03      0.00      -0.03    0.00      0.00      0.06          30.0    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.4-3
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.16-6          GTCC-TSC Pm Stresses Foot Top End Drop Pm Stresses (ksi)                                      Stress      Factor Section2                                                                        SI      Allowable      of Location      Sx        Sy        Sz        Sxy        Syz      Sxz      (ksi)        (ksi)    Safety 9          0.00      -0.03      -1.13      0.00      0.00      0.00      1.13          20.0      Large 10        0.06      -0.28      -1.37      0.00    -0.02      -0.13      1.46          20.0      Large 11        -0.11      -0.16      -1.38      -0.01      0.07      -0.24      1.37        16.01      Large 13        0.02      0.02      -0.26      0.04      0.00      0.01      0.31          20.0      Large 14        0.00      -0.28      -1.69      0.02    -0.01      -0.12      1.70          20.0      Large 15        0.12      0.20      -0.14      0.00    -0.01      0.10      0.37          20.0      Large 16        0.02      0.02      -0.21      -0.03      0.00      -0.03      0.27          20.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-7          GTCC-TSC Pm + Pb Stresses Foot Top End Drop Pm + Pb Stresses (ksi)                                    Stress      Factor Section2                                                                        SI      Allowable      of Location      Sx        Sy        Sz        Sxy        Syz      Sxz      (ksi)        (ksi)    Safety 9          0.00      -0.09      -1.21      0.00      0.00      0.00      1.21          30.0      Large 10        0.12      -0.31      -1.77      0.01    -0.01      0.00      1.89          30.0      Large 11        0.21      -0.10      -1.43      0.00      0.07      -0.34      1.78        24.01      Large 13        0.08      0.11      -0.26      0.05    -0.02      0.01      0.40          30.0      Large 14        0.08      -0.31      -1.86      0.03      0.00      -0.17      1.98          30.0      Large 15        0.59      0.29      -0.28      -0.01      0.01      0.06      0.88          30.0      Large 16        1.31      1.30      -0.18      -0.06    -0.01      -0.03      1.55          30.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.4-4
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.6.16-8      GTCC-TSC Pm Stresses Foot Top End Drop, Internal Pressure Stress        Factor Section3        SI2    Allowable          of Location      (ksi)        (ksi)        Safety 9          1.49        20.0        Large 10          1.82        20,0        Large 11          1.73        16.01        Large 13          0.67        20.0        Large 14          2.06        20.0        Large 15          0.73        20.0        Large 16          0.63        20.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.36 ksi for pressure only to the SI for top end drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
Table 2.6.16-9      GTCC-TSC Pm + Pb Stresses Foot Top End Drop, Internal Pressure Stress        Factor Section3        SI2    Allowable          of Location      (ksi)        (ksi)        Safety 9          1.59        30.0        Large 10          2.27        30.0        Large 11          2.16        24.01        Large 13          0.78        30.0        Large 14          2.36        30.0        Large 15          1.26        30.0        Large 16          1.93        30.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for top end drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.4-5
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.16-10 GTCC-TSC Pm Stresses Foot Bottom End Drop Pm Stresses (ksi)                                      Stress      Factor Section2                                                                        SI      Allowable      of Location      Sx          Sy        Sz        Sxy        Syz      Sxz      (ksi)        (ksi)    Safety 9        -0.01      0.21      -0.31      -0.01      0.00      0.00      0.52          20.0      Large 10        0.03      -0.21      -0.00      -0.02      0.03      -0.06      0.30          20.0      Large 11        0.02      -0.27      -0.14      -0.01      0.01      0.05      0.30        16.01      Large 13        -0.02      0.00        0.00      0.18      0.00      0.00      0.37          20.0      Large 14        -0.10      -0.62      -0.09      -0.06      0.03      -0.04      0.58          20.0      Large 15        0.08      -0.50      0.06      -0.05      0.02      -0.01      0.59          20.0      Large 16        0.02      0.00      0.00      -0.16      0.00      0.00      0.32          20.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-11 GTCC-TSC Pm + Pb Stresses Foot Bottom End Drop Pm + Pb Stresses (ksi)                                    Stress      Factor Section2                                                                        SI      Allowable      of Location        Sx        Sy          Sz        Sxy      Syz      Sxz      (ksi)        (ksi)    Safety 9          0.00        0.17      -0.42      -0.01      0.00      0.00    0.59          30.0      Large 10        0.10      -0.14      0.21      -0.01      0.01      -0.16    0.46          30.0      Large 11        -0.05      -0.28      -0.46      -0.02      0.04      0.08    0.45        24.001      Large 13        1.26      -1.23      -0.01      0.18      0.00      -0.03    1.42          30.0      Large 14        0.03      -0.64      -0.19      -0.08      0.05      -0.07    0.71          30.0      Large 15        0.18      -0.47      0.15      0.00      0.00      -0.01    0.65          30.0      Large 16        1.67        1.64      0.01      -0.15      0.00      -0.03    1.80          30.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.4-6
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.6.16-12 GTCC-TSC Pm Stresses Foot Bottom End Drop, Internal Pressure Stress        Factor Section3        SI2    Allowable          of Location      (ksi)        (ksi)        Safety 9          0.88        20.0        Large 10          0.66        20.0        Large 11          0.66        16.01        Large 13          0.73        20.0        Large 14          0.94        20.0        Large 15          0.95        20.0        Large 16          0.68        20.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.36 ksi for pressure only to the SI for bottom end drop.
This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
Table 2.6.16-13 GTCC-TSC Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure Stress        Factor Section3        SI2    Allowable          of Location      (ksi)        (ksi)        Safety 9          0.97        30.0        Large 10          0.84        30.0        Large 11          0.83        24.01        Large 13          1.80        30.0        Large 14          1.09        30.0        Large 15          1.03        30.0        Large 16          2.18        30.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for bottom end drop.
This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.4-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.16.5        Stress Evaluation of GTCC-TSC for Combined Thermal and 1-Foot End Drop Load Condition The thermal stress loads described in Section 2.6.16.3 are applied in conjunction with the primary loads in Section 2.6.16.4 to produce a combined thermal stress plus end impact loading.
The stress evaluation is performed according to the ASME Code, Section III, Subsection NB.
The most critical sections are listed in Table 2.6.16-14. The stresses reported in these tables correspond to the nodal stress at the surface. Table 2.6.16-15 through Table 2.6.16-18 tabulate the peak stresses for both the hot and cold conditions for both the top-and bottom end drop cases for the conditions that result in the minimum factor of safety.
The allowable stresses are evaluated at 250&deg;F, which is higher than the maximum calculated temperature for the GTCC assembly of 227&deg;F.
NAC International                        2.6.16.5-1
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.6.16-14 GTCC-TSC Critical Sections for the Combined 1-Foot End Drop and Thermal Load Condition Critical1 Factor of Condition                Stress    Section    Safety Top-End Drop +              P+Q        11      7.63 Thermal (cold)
Top-End Drop +              P+Q        11      5.33 Thermal (hot)
Bottom-End Drop +              P+Q        10      9.22 Thermal (cold)
Bottom-End Drop +              P+Q        10      7.32 Thermal (hot) 1 See Section 2.6.12.2 for section locations.
NAC International                          2.6.16.5-2
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-15 GTCC-TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Cold Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                  SI        Stress        of Location      Sx          Sy        Sz      Sxy      Syz    Sxz      (ksi)        (ksi)    Safety 9        -0.03        3.54      5.08      0.00    0.04    0.03    5.11        60.0      Large 10          0.53        0.31      -3.37    -0.14    0.08  -1.57    5.03        60.0      Large 11          1.25      -0.32      -4.46    -0.08    0.03  -1.32    6.29        48.01      7.63 13          0.83        0.85      -0.26      1.35    0.01  -0.25    2.82        60.0      Large 14          1.24        1.05      -1.65    -0.08    0.00  -0.55    3.12        60.0      Large 15        -1.25        0.62      -0.40      0.03    0.07    0.17    1.92        60.0      Large 16          1.11        1.07      -0.17    -1.17    -0.02  -0.23    2.58        60.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-16          GTCC-TSC Pm + Pb + Q Stresses Foot Top End Drop, Thermal Hot Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                    SI        Stress      of Location      Sx        Sy        Sz        Sxy      Syz      Sxz      (ksi)        (ksi)    Safety 9        0.08      -2.31      4.01      -0.01      0.00    -0.05      6.32        60.0      9.49 10        0.76      -0.66    -4.71      -0.04      0.14    -1.77      6.53        60.0      9.19 11        1.69      -0.09    -5.11      -0.07      0.18    -1.58      7.51        40.01      5.33 13        0.64      0.75    -0.26      1.50      0.01    -0.30      3.10        60.0    Large 14        1.44      1.09    -1.61      -0.11      0.00    -0.61      3.31        60.0    Large 15        2.90      2.13      0.84      -0.06      0.08    -0.40      2.22        60.0    Large 16        1.20      1.04    -0.17      -1.29    -0.02    -0.27      2.80        60.0    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                              2.6.16.5-3
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-17 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Cold Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                  SI        Stress      of Location        Sx          Sy        Sz        Sxy    Syz      Sxz    (ksi)        (ksi)    Safety 9          -0.03        3.75      5.94      0.00    0.05    0.03    5.97          60.0    Large2 10          0.22        2.42      6.64    -0.03    0.20    -0.52    6.51          60.0      9.22 11          1.18      -0.29    -3.17    -0.07    0.03    -1.09    4.87        48.01      9.86 13          0.39        0.31    -0.01      1.50    0.00    -0.28    3.05          60.0    Large 14          1.18        0.72      0.02    -0.13    0.05    -0.45    1.49          60.0    Large 15          2.01        1.22      1.08    -0.05    0.02    -0.42    1.25          60.0    Large 16          -1.78      -1.80      0.00    -1.24    0.01    0.20    3.08          60.0    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-18            GTCC-TSC Pm + Pb + Q Stresses Foot Bottom End Drop, Thermal Hot Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                  SI        Stress      of Location      Sx        Sy        Sz        Sxy      Syz      Sxz      (ksi)        (ksi)    Safety 9          0.12    -2.28      4.87      0.02    0.03      -0.06    7.16          60.0      8.38 10          0.67      3.05      8.53      0.11    0.12      -1.14    8.20          60.0      7.32 11          1.55    -0.21    -3.57      -0.09    0.16      -1.23    5.69        48.01      8.44 13        -0.59    -0.41    -0.01      1.64    0.00      -0.33    3.36          60.0    Large 14          1.38      0.76      0.06      -0.16    0.05      -0.51    1.70          60.0    Large 15          2.30      1.31      1.08      -0.09    0.08      -0.48    1.57          60.0    Large 16          1.55      1.39      0.02      -1.39    0.00      -0.26    3.01          60.0    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                              2.6.16.5-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.16.6        Stress Evaluation of the GTCC-TSC for 1-Foot Side Drop Load Condition A structural analysis performed by using ANSYS to evaluate the effect of a 1-ft side drop impact. The ASME Code, Section III, Subsection NB, requires that stresses arising from operational loads be assessed on the basis of the primary loads. The primary loads for the 1-ft side-drop result from the deceleration of the TSC and its contents and the 5 psig pressure load internal to the canister. The applied deceleration is 15g for the side drop orientation. The inertial load of the TSC is addressed by the deceleration factor applied to the TSC density. The contents weight is represented by a pressure load on the inner surface of the GTCC liner.
Displacement constraints are applied to the plane of symmetry. Gap elements are attached at the canister ends to represent the top or bottom of the transport cask.
The locations of the linearized stresses are shown in Figure 2.6.12-5. The maximum stresses for Pm and Pm + Pb are tabulated in Table 2.6.16-20 through Table 2.6.16-23 for the side drop conditions. The critical sections for the side drop and the side drop plus pressure load, with reference to the section and the appropriate tables, are shown in Table 2.6.16-19.
The allowable stresses are evaluated at 250&deg;F, which is higher than the maximum calculated temperature for the GTCC assembly of 227&deg;F.
NAC International                        2.6.16.6-1
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-19 GTCC-TSC Critical Sections for the 1-Foot Side Drop Load Condition Critical      Factor of Condition              Stress          Section          Safety Side Drop                Pm              10              1.33 Side Drop            Pm + Pb            10              1.66 Side Drop +                Pm              10              1.30 Pressure Side Drop +            Pm + Pb            10              1.63 Pressure Table 2.6.16-20 GTCC-TSC Pm Stresses Foot Side Drop Pm Stresses (ksi)                                        Stress    Factor Section3                                                                      SI      Allowable      of Location      Sx        Sy          Sz      Sxy      Syz        Sxz      (ksi)        (ksi)    Safety 9          0.08      4.82      -1.34      0.03      5.66        -0.10    12.9        20.0      1.55 10      -13.06      -7.05      1.18      0.35    -0.71        -2.30    15.042        20.0      1.33 11      -11.09      -6.84      -0.99      0.78    -0.49        -1.23    10.572      16.01      1.51 13        -1.00      0.32      0.00      0.01      0.00        -0.05    1.32        20.0      Large 14      -10.28      -5.59      0.03      0.62    -0.04        -0.05    10.39        20.0      1.93 15      -10.43      -7.35      -0.83      0.36    -0.14        0.03      9.64        20.0      2.07 16        -0.18      0.07      0.00      0.00      0.00        -0.01    0.25        20.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 Averaged over 0-13.5 degrees.
3 See Section 2.6.12.2 for section locations.
Table 2.6.16-21            GTCC-TSC Pm + Pb Stresses Foot Side Drop Pm + Pb Stresses (ksi)                                    Stress    Factor Section3                                                                      SI      Allowable      of Location      Sx          Sy        Sz      Sxy      Syz        Sxz    (ksi)        (ksi)    Safety 9          0.13        3.52    -4.78      -0.08      7.62      -0.10    17.35        30.0      1.73 10        -14.55      -7.71      2.63      0.24      -0.89      -2.67    18.062        30.0      1.66 11        -10.56      -6.34    -0.22      0.89      -0.61      -1.4    10.932      24.01      2.20 13        -1.33        1.07      0.00      0.00      0.00      -0.05    2.40        30.0      Large 14        -12.23      -5.74      1.60      0.49      0.03      0.16    13.87        30.0      2.16 15        -15.73      -9.54    -2.58      0.27      -0.20      0.67    13.24        30.0      2.27 16        -0.70        0.62      0.00      0.00      0.00      -0.01    1.32        30.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 Averaged over 0-13.5 degrees 3
See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.6-2
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.6.16-22          GTCC-TSC Pm Stresses Foot Side Drop, Internal Pressure Stress      Factor Section3        SI2      Allowable          of Location      (ksi)        (ksi)        Safety 9          13.26        20.0          1.51 10        15.40        20.0          1.30 11        10.93        16.01          1.46 13          1.68        20.0        Large 14        10.75        20.0          1.86 15        10.00        20.0          2.00 16          0.61        20.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.36 ksi for pressure only to the SI for side drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
Table 2.6.16-23          GTCC-TSC Pm + Pb Stresses Foot Side Drop, Internal Pressure Stress      Factor Section3        SI2      Allowable          of Location      (ksi)        (ksi)        Safety 9          17.73        30.0          1.69 10        18.42        30.0          1.63 11        11.31        24.01          2.12 13          2.78        30.0        Large 14        14.25        30.0          2.11 15        13.62        30.0          2.20 16          1.70        30.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for side drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                          2.6.16.6-3
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.16.7      Stress Evaluation of the GTCC-TSC for Combined Thermal, Pressure and 1-Foot Side Drop Load Condition The thermal stress loads described in Section 2.6.16.3 are applied in conjunction with the primary loads in Section 2.6.16.6 to produce a combined thermal stress plus 1-ft side-drop loading. The stress evaluation is performed according to the ASME Code, Section III, Subsection NB. The most critical sections are listed in Table 2.6.16-24. Results from the side-drop plus thermal load cases for the configurations are presented in Table 2.6.16-25 and Table 2.6.16-26.
Additionally, the combined thermal and 1-foot side drop loads are applied in conjunction with the pressure loads to produce a combined thermal stress plus 1-ft side-drop plus pressure loading.
The stress evaluation is performed according to the ASME Code, Section III, Subsection NB.
The most critical sections are listed in Table 2.6.16-24. Results from the side-drop plus thermal plus pressure load cases for the configurations are presented in Table 2.6.16-27 and Table 2.6.16-28.
NAC International                        2.6.16.7-1
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-24 GTCC-TSC Critical Sections for Combined Thermal, Pressure and 1-Foot Side Drop Load Condition Critical      Factor of Condition              Stress        Section          Safety Side Drop +          Pm + Pb +          10              1.96 Thermal Cold              Q Side Drop +          Pm + Pb +          10              1.95 Thermal Hot                Q Side Drop +          Pm + Pb +          10              1.93 Pressure + Thermal            Q Cold Side Drop +          Pm + Pb +          10              1.92 Pressure + Thermal            Q Hot Table 2.6.16-25 GTCC-TSC Pm + Pb + Q Stresses Foot Side Drop, Thermal Cold Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                  SI        Stress      of Location        Sx          Sy        Sz      Sxy      Syz      Sxz    (ksi)        (ksi)    Safety 9          -0.74      16.56    16.61    -0.01    3.55    -0.04  20.88          60.0      2.87 10        -24.26      -10.94      5.08    -0.10  -0.63    -4.42  30.67          60.0      1.96 11        -16.12      -8.35      1.36    -0.11  -0.30    -3.38  18.74        48.01      2.56 13          -0.46        1.99      0.00      1.32  -0.01    -0.29    3.68          60.0    Large 14        -11.63      -5.27      1.32      0.53  -0.01      0.01  13.00          60.0      4.62 15        -15.51      -9.23    -2.34    0.28    -0.22      0.45  13.22          60.0      4.54 16          -0.86        0.46      0.01    -1.07    0.01      0.16    2.54          60.0    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                              2.6.16.7-2
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-26 GTCC-TSC Pm + Pb + Q Stresses Foot Side Drop, Thermal Hot Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                    SI      Stress        of Location          Sx        Sy        Sz      Sxy      Syz      Sxz      (ksi)      (ksi)    Safety 9            -0.75    14.01      14.52      0.04    3.59    -0.05      18.61        60.0      3.22 10          -24.24    -10.90      5.25    -0.11  -0.63    -4.45      30.82        60.0      1.95 11          -15.81    -8.32      0.87    -0.09  -0.31    -3.24      17.90      48.01      2.68 13          -0.66      1.89    -0.01      1.47  -0.01    -0.34      3.97        60.0      Large 14          -11.48    -5.10      1.21      0.54  -0.02    -0.04      12.74        60.0      4.71 15          -15.73    -9.08    -2.25      0.28  -0.23    0.35      13.16        60.0      4.56 16            0.22    -0.73      0.01    -1.22    0.00    -0.25      2.68        60.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-27 GTCC-TSC Pm + Pb + Q Stresses Foot Side Drop, Internal Pressure, Thermal Cold Allowable      Factor Section3      SI2      Stress          of Location      (ksi)      (ksi)        Safety 9          21.26        60.0          2.82 10        31.05        60.0          1.93 11        19.12        48.01        2.51 13          4.06        60.0        Large 14        13.38        60.0          4.48 15        13.60        60.0          4.41 16          2.92        60.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for side drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                              2.6.16.7-3
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.6.16-28 GTCC-TSC Pm + Pb + Q Stresses Foot Side Drop, Internal Pressure, Thermal Hot Allowable      Factor Section3        SI2      Stress          of Location        (ksi)      (ksi)        Safety 9          18.99        60.0          3.16 10          31.20        60.0          1.92 11          18.28        48.01        2.63 13          4.35        60.0        Large 14          13.12        60.0          4.57 15          13.54        60.0          4.43 16          3.06        60.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for side drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.7-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.16.8        Stress Evaluation of the GTCC-TSC for 1-Foot Corner Drop Load Condition A structural analysis is performed by using ANSYS to evaluate the effect of a 1-ft corner drop impact for both the top-and bottom-corner orientations of the TSC. The ASME Code, Section III, Subsection NB, requires that stresses arising from operational loads be assessed on the basis of the primary loads. The primary loads for the 1-ft corner-drop result from the deceleration of the canister and its contents and the 5 psig pressure load internal to the canister. The applied deceleration is 8g for both orientations. The inertial load of the canister is addressed by the deceleration factor applied to the canister density. The contents weight is represented by a pressure load on the inner surface of the GTCC liner in the vertical direction and a force load in the horizontal directon. Displacement constraints are applied to the plane of symmetry. Gap elements are attached at the canister ends to represent the top or bottom of the transport cask.
The locations of the linearized stresses are shown in Figure 2.6.12-5. The critical sections for the corner drops and corner drops plus pressure loads, with reference to the section and the appropriate tables, are shown in Table 2.6.16-29. The maximum Pm and Pm+Pb stresses are tabulated in Table 2.6.16-30 through Table 2.6.16-37 for top and bottom corner drop conditions.
The allowable stresses are evaluated at 250&deg;F, which is higher than the maximum calculated temperature for the GTCC assembly of 227&deg;F.
NAC International                        2.6.16.8-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.6.16-29          GTCC-TSC Critical Sections for the 1-Foot Corner Drop Load Condition Condition                Stress    Critical Section1 Factor of Safety Top Corner Drop                    Pm              10            2.54 Top Corner Drop                Pm + Pb            10            3.31 Top Corner Drop +
Pressure                  Pm              10            2.43 Top Corner Drop +
Pressure              Pm + Pb            10            3.17 Bottom Corner Drop              Pm              10            2.53 Bottom Corner Drop          Pm + Pb            10            3.19 Bottom Corner Drop +
Pressure                  Pm              10            2.42 Bottom Corner Drop +
Pressure              Pm + Pb            10            3.07 1
See Section 2.6.12.2 for section locations.
NAC International                          2.6.16.8-2
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.6.16-30 GTCC-TSC Pm Stresses Foot Top Corner Drop Pm Stresses (ksi)                                      Stress      Factor Section2                                                                        SI      Allowable      of Location      Sx        Sy        Sz        Sxy        Syz      Sxz      (ksi)        (ksi)    Safety 9          0.00      0.00      -0.45      0.00      0.72      0.00      1.50          20.0      Large 10        -8.35      -3.69      -1.19      0.05      -0.05      -1.64      7.88          20.0      2.54 11        -7.24      -3.05      -2.20      0.22    -0.01      -1.64      6.02        16.01      2.66 13        -0.20      0.07      -0.16      0.00      0.00      0.01      0.28          20.0      Large 14        -5.24      -1.72      -0.74      0.53      -0.01      -0.10      4.58          20.0      4.37 15        -7.79      -3.31      -1.94      0.39      -0.02      0.17      5.90          20.0      3.39 16        -0.02      0.03      -0.06      0.00      0.01      -0.03      0.11          20.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-31 GTCC-TSC Pm + Pb Stresses Foot Top Corner Drop Pm + Pb Stresses (ksi)                                    Stress      Factor Section2                                                                        SI      Allowable      of Location      Sx        Sy        Sz        Sxy        Syz      Sxz      (ksi)        (ksi)    Safety 9        -0.06      1.87      1.24      0.06      0.23      -0.01      2.01          30.0      Large 10        -9.13      -4.46      -0.54      -0.08    -0.10      -1.44      9.07          30.0      3.31 11        -7.70      -3.09      -2.22      0.23      0.02      -2.21      7.06        24.01      3.40 13        -0.14      0.14      -0.15      0.00    -0.01      0.01      0.30          30.0      Large 14        -5.48      -1.84      -0.63      0.46      0.05      -0.15      4.91          30.0      6.11 15        -8.23      -3.62      -2.15      0.36      -0.07      0.46      6.19          30.0      4.85 16        0.90      0.97      0.02      0.01      0.00      -0.03      0.95          30.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.8-3
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-32 GTCC-TSC Pm Stresses Foot Top Corner Drop, Internal Pressure Stress        Factor Section3        SI2    Allowable          of Location      (ksi)        (ksi)        Safety 9          1.86        20.0        Large 10          8.24        20.0          2.43 11          6.38        16.01          2.51 13          0.64        20.0        Large 14          4.94        20.0          4.05 15          6.26        20.0          3.19 16          0.47        20.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.36 ksi for pressure only to the SI for top corner drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
Table 2.6.16-33 GTCC-TSC Pm+ Pb Stresses Foot Top Corner Drop, Internal Pressure Stress        Factor Section3        SI2    Allowable          of Location      (ksi)        (ksi)        Safety 9          2.39        30.0        Large 10          9.45        30.0          3.17 11          7.44        24.01          3.23 13          0.68        30.0        Large 14          5.29        30.0          5.67 15          6.57        30.0          4.57 16          1.33        30.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for top corner drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.8-4
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                      Revision 1 Table 2.6.16-34            GTCC-TSC Pm Stresses Foot Bottom Corner Drop Pm Stresses (ksi)                                  Stress FE      Section2                                                                  SI      Allowable      Factor of Model    Location        Sx        Sy        Sz    Sxy      Syz      Sxz      (ksi)        (ksi)        Safety B          9          0.00      0.05      -0.42    0.00    0.29      0.00      0.74        20.0          Large B          10        -7.20    -2.55      0.33    0.14    -0.19    -1.16      7.90        20.0          2.53 B          11        -5.90    -1.91      -0.60    0.30    -0.16    -0.75      5.55        16.01          2.88 B          13        -0.13      0.04      0.00    0.00    0.00      0.00      0.17        20.0          Large B          14        -2.22    -0.68      -0.08    0.57    0.01      0.25      2.39        20.0          8.37 B          15        -2.58    -1.03      -0.42    0.54    -0.21    -0.18      2.46        20.0          8.13 B          16        -0.02      0.01      0.00    0.00    0.00      0.00      0.03        20.0          Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-35            GTCC-TSC Pm + Pb Stresses Foot Bottom Corner Drop Pm + Pb Stresses (ksi)                                Stress FE      Section2                                                                      SI  Allowable    Factor of Model    Location        Sx        Sy          Sz    Sxy      Syz      Sxz      (ksi)      (ksi)      Safety C          9          -0.75      0.56      -0.25    -0.11      0.00    -0.02      1.32      30.0      Large B          10          -7.96      -3.24      1.03    0.04    -0.24    -1.35      9.40      30.0        3.19 B          11          -4.94      -1.24      0.33    0.37    -0.15    -0.88      5.61      24.01        4.28 C          13          -0.77      -0.52      0.00    0.00      0.00      0.00      0.77      30.0      Large B          14          -2.56      -0.78      0.19    0.47      0.05      0.27      2.92      30.0      Large B          15          -4.31      -1.85      -1.12    0.47      -0.29    0.06      3.38      30.0        8.86 B          16          -0.91      -0.79      0.00    0.00      0.00      0.00      0.91      30.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                                2.6.16.8-5
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.6.16-36 GTCC-TSC Pm Stresses Foot Bottom Corner Drop, Internal Pressure Stress        Factor Section3        SI2    Allowable          of Location      (ksi)        (ksi)        Safety 9          1.10        20.0        Large 10          8.26        20.0          2.42 11          5.91        16.01          2.71 13          0.53        20.0        Large 14          2.75        20.0          7.27 15          2.82        20.0          7.09 16          0.39        20.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.36 ksi for pressure only to the SI for bottom corner drop.
This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
Table 2.6.16-37          GTCC-TSC Pm + Pb Stresses Foot Bottom Corner Drop, Internal Pressure Stress        Factor Section3        SI2    Allowable          of Location      (ksi)        (ksi)        Safety 9            1.7        30.0        Large 10          9.78        30.0          3.07 11          5.99        24.01          4.01 13          1.15        30.0        Large 14          3.30        30.0          9.09 15          3.76        30.0          7.98 16          1.29        30.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for bottom corner drop.
This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.8-6
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.16.9      Stress Evaluation of the GTCC-TSC for Combined Thermal and 1-Foot Corner Drop Load Condition The thermal stress loads are applied in conjunction with the primary loads to produce a combined thermal stress plus corner impact loading. The stress evaluation is performed according to the ASME Code, Section III, Subsection NB. The most critical sections are summarized in Table 2.6.16-38. Table 2.6.16-39 through Table 2.6.16-46 provide the primary +
secondary (thermal) stress results for top and bottom corner-drop conditions that result in the minimum factors of safety.
The allowable stresses are evaluated at 250&deg;F, which is higher than the maximum calculated temperature for the GTCC assembly of 227&deg;F.
NAC International                        2.6.16.9-1
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.6.16-38 GTCC-TSC Critical Sections for the Combined 1-Foot Corner Drop and Thermal Load Condition Critical1 Condition                    Stress    Section  Factor of Safety Top Corner Drop +
Pm + Pb + Q    11          6.46 Thermal (cold)
Top Corner Drop +
Pm + Pb + Q    11          6.05 Thermal (hot)
Top Corner Drop +
Pressure + Thermal            Pm + Pb + Q    11          6.15 (cold)
Top Corner Drop +
Pressure + Thermal            Pm + Pb + Q    11          5.78 (hot)
Bottom Corner Drop +
Pm + Pb + Q    10          6.42 Thermal (cold)
Bottom Corner Drop Pm + Pb + Q    10          3.19
              + Thermal (hot)
Bottom Corner Drop +
Pressure                Pm + Pb + Q    10          6.17
              + Thermal (cold)
Bottom Corner Drop +
Pressure                Pm + Pb + Q    10          3.13
              + Thermal (hot) 1 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.9-2
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-39 GTCC-TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Cold Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                  SI        Stress        of Location        Sx          Sy        Sz      Sxy    Syz      Sxz    (ksi)        (ksi)    Safety 9          -0.07        5.13      7.22      0.08    0.41    0.02    7.37          60.0      8.14 10          -9.12      -4.46      -0.50    -0.08  -0.09    -1.28    9.00          60.0      6.67 11          -7.31      -2.86      -2.06    0.23    0.01    -2.62    7.43        48.01      6.46 13          0.61        0.92      -0.17      1.32    0.00    -0.24    2.74          60.0      Large 14          -4.88      -1.37      -0.91    0.49    0.01    -0.30    4.08          60.0      Large 15          -8.01      -3.31      -1.91    0.37    -0.09    0.24    6.15          60.0      9.75 16          0.70        0.74      0.03    -1.10    0.00    -0.23    2.28          60.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-40 GTCC-TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Thermal Hot Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                  SI        Stress        of Location        Sx      Sy          Sz      Sxy      Syz      Sxz      (ksi)        (ksi)    Safety 9          0.07    -2.25      5.58      0.00    0.07    -0.05    7.82          60.0      7.67 10        -9.09    -4.43      -0.33    -0.08    -0.09    -1.32    9.15          60.0      6.55 11          1.95      0.18      -5.15    -0.08    0.19    -1.75    7.93        48.01      6.05 13          0.41      0.83      -0.17      1.47    0.00    -0.29    3.04          60.0      Large 14        -4.73    -1.20      -1.02    0.50      0.01    -0.35    3.85          60.0      Large 15        -7.87    -3.15      -1.81    0.37    -0.10      0.14    6.10          60.0      Large 16          0.78      0.71      0.03    -1.22    0.00    -0.27    2.53          60.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                              2.6.16.9-3
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.6.16-41 GTCC-TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Pressure, Thermal Cold Allowable      Factor Section3        SI2      Stress          of Location        (ksi)      (ksi)        Safety 9          7.75        60.0          7.74 10          9.38        60.0          6.40 11          7.81        48.01        6.15 13          3.12        60.0        Large 14          4.46        60.0        Large 15          6.53        60.0          9.19 16          2.66        60.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for top corner drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
Table 2.6.16-42 GTCC-TSC Pm + Pb + Q Stresses Foot Top Corner Drop, Pressure, Thermal Hot Allowable      Factor Section3        SI2      Stress          of Location        (ksi)      (ksi)        Safety 9          8.20        60.0          7.32 10          9.53        60.0          6.30 11          8.31        48.01        5.78 13          3.42        60.0        Large 14          4.23        60.0        Large 15          6.49        60.0          9.26 16          2.91        60.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for top corner drop. This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                            2.6.16.9-4
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.6.16-43 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Cold Pm + Pb + Q Stresses (ksi)                              Allowable Section2                                                                      SI      Stress      Factor of Location      Sx          Sy        Sz        Sxy      Syz      Sxz      (ksi)      (ksi)      Safety 9          -0.02        4.09      6.17      0.04      0.07    0.03      6.20        60.0          9.68 10        -7.95      -3.24      1.07      0.04      -0.24    -1.19      9.34        60.0          6.42 11        -4.55      -1.01      0.48      0.37      -0.16    -1.29      5.72      48.01          8.40 13          0.11        0.40    -0.01      1.32      0.00    -0.25      2.71        60.0        Large 14        -1.97      -0.31    -0.10      0.51      0.00    0.11      2.04        60.0        Large 15        -4.09      -1.54    -0.88      0.48      -0.32    -0.17      3.46        60.0        Large 16          0.68        0.59      0.01      -1.11      0.00    -0.20      2.27        60.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
Table 2.6.16-44 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Thermal Hot Pm + Pb + Q Stresses (ksi)                              Allowable    Factor Section2                                                                      SI      Stress        of Location        Sx          Sy        Sz      Sxy      Syz      Sxz      (ksi)      (ksi)    Safety 9          -1.50        1.12    -0.50    -0.21      0.01  -0.04      2.65        60.0      Large 10        -15.92      -6.48      2.07      0.08    -0.48  -2.69    18.80        60.0      3.19 11        -9.87        2.48      0.66      0.74    -0.30  -1.77    11.23      48.01      4.28 13        -1.53      -1.03      0.00      0.00      0.00  -0.01      1.53        60.0      Large 14        -5.13      -1.56    -0.37      0.94      0.09    0.53      5.85        60.0      Large 15        -8.62      -3.69    -2.24      0.94    -0.58    0.12      6.77        60.0      8.86 16        -1.82      -1.58    -0.01      0.00      0.00  -0.01      1.82        60.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 See Section 2.6.12.2 for section locations.
NAC International                              2.6.16.9-5
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.6.16-45 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Internal Pressure, Thermal Cold Allowable      Factor Section3        SI2      Stress          of Location        (ksi)      (ksi)        Safety 9          6.58        60.0          9.12 10          9.72        60.0          6.17 11          6.10        48.01        7.87 13          3.09        60.0        Large 14          2.42        60.0        Large 15          3.84        60.0        Large 16          2.65        60.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for bottom corner drop.
This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
Table 2.6.16-46 GTCC-TSC Pm + Pb + Q Stresses Foot Bottom Corner Drop, Internal Pressure, Thermal Hot Allowable      Factor Section3        SI2      Stress          of Location        (ksi)      (ksi)        Safety 9          3.03        60.0        Large 10        19.18        60.0          3.13 11        11.61        48.01        4.14 13          1.91        60.0        Large 14          6.23        60.0          9.63 15          7.15        60.0          8.39 16          2.20        60.0        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.38 ksi for pressure only to the SI for bottom corner drop.
This is a conservative approach.
3 See Section 2.6.12.2 for section locations.
NAC International                          2.6.16.9-6
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 2.6.16.10      GTCC-TSC Shear Stresses Foot Drop The primary mechanism for shear loading in the GTCC-TSC drop analyses occurs for the bottom end-drop in the GTCC-TSC closure weld. The maximum stress intensity for Section 11 during the bottom end drop (with thermal) is 5.69 ksi (contained in Table 2.6.16-18). The maximum shear is 5.69/2 = 2.85 ksi. The allowable shear is 0.6 Sm per the ASME Code, Section III, Subsection NB-3227.2 for pure shear loading. The maximum canister shell temperature is 250&deg;F and the factor of safety for pure shear is:
FS = 0.6 x 20.0 / 2.85 = 4.21 NAC International                        2.6.16.10-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.16.11      GTCC-TSC Bearing Stresses Foot Side Drop The bearing stress analysis in Section 2.6.12.11 bounds that for the GTCC-TSC because the 9-inch thick stainless steel closure lid for the fuel TSC is heavier than the composite (stainless and carbon steel) closure lid of the GTCC-TSC due to the lower density of the carbon steel shield plate.
NAC International                        2.6.16.11-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.6.16.12    GTCC-TSC Shell Buckling Evaluation for 1-Foot End Drop Condition The buckling analysis in Section 2.6.12.12 is bounding as the 9-inch thick lid is heavier than the GTCC composite lid, due to the lower density of the carbon steel shield plate.
NAC International                    2.6.16.12-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.6.16.13      Stress Evaluation of the GTCC Waste Basket Liner for 1-Foot Drop Conditions The GTCC waste basket liner is included inside of the GTCC-TSC for the three-dimensional finite element model. Plots of the liner basket are shown in Figure 2.6.16-1 and Figure 2.6.16-2.
TARGE170 and CONTA174 surface-to-surface contact elements were modeled between the outer diameter of the liner and the inner diameter of the GTCC-TSC. These contact elements were also inserted between the bottom spacers of the liner and the top surface of the GTCC-TSC bottom plate, as well as between the top of the liner and the bottom surface of the shield plate.
These contact elements were used because the liner mesh and the TSC mesh do not match at these surfaces. These contact elements are designed to handle this mesh condition. The stresses in the liner were extracted at the points where the stress intensities were the highest. The linearized stress intensities at these points are listed in Tables 2.6.16-47 through 2.6.16-49 for all of the 1-ft drop cases.
NAC International                        2.6.16.13-1
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Table 2.6.16-47 GTCC Waste Basket Liner Pm Foot Drop Cases Allowable      Factor Drop          SI    Stress          of Case        (ksi)    (ksi)      Safety Top End      1.14    20.0        Large Bottom End    5.94    20.0        3.37 Side      18.621    20.0        1.07 Top Corner    6.04    20.0        3.31 Bottom Corner      12.03    20.0        1.66 1
Averaged membrane over 0-9 degrees Table 2.6.16-48 GTCC Waste Basket Liner Pm+Pb Foot Drop Cases Allowable      Factor Drop          SI    Stress          of Case        (ksi)    (ksi)      Safety Top End      5.80    30.0        5.17 Bottom End    10.33    30.0        2.90 Side      24.071    30.0        1.25 Top Corner    8.86    30.0        3.39 Bottom Corner      15.48    30.0        1.94 1
Averaged membrane over 0-9 degrees NAC International                  2.6.16.13-2
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                  Revision 1 Table 2.6.16-49 GTCC Waste Basket Liner Pm+Pb+Q Foot Drop Cases Allowable Factor SI    Stress    of Drop Case        (ksi)    (ksi)  Safety Top End +
5.29      60.0  Large Cold Top End + Hot    5.29      60.0  Large Bottom End +
10.37      60.0    5.79 Cold Bottom End +
10.37      60.0    5.79 Hot Side + Cold    29.11      60.0    2.06 Side + Hot    29.11      60.0    2.06 Top Corner +
8.67      60.0    6.92 Cold Top Corner +
8.68      60.0    6.91 Hot Bottom Corner 15.05      60.0    3.99
                          + Cold Bottom Corner 30.96      60.0    1.94
                          + Hot NAC International                  2.6.16.13-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.17          Cask Cavity Spacer - Normal Conditions of Transport This section documents the design analysis of the cask cavity spacer used to position the Transportable Storage Canister (TSC) containing PWR or BWR fuel and GTCC waste in the MAGNATRAN transport cask cavity. The cask cavity spacer is a freestanding component that is bolted to the inner surface of the cask lid at the top of the cask cavity. The cask cavity spacer is only used when the cask is loaded with a short TSC.
The following requirements bound the spacer design:
* The cask cavity spacer must meet the normal conditions of transport requirements detailed in 10 CFR 71.43(f) when subjected to the free drop (10 CFR 71.71 and 10 CFR 71.73).
* The cask cavity spacer must provide spacing of the TSC so that the center of gravity of the cask and contents is maintained.
For impact loading conditions, the cask cavity spacer is designed to meet the requirements of 10 CFR 71.43(f) for the 1-ft and 30-ft drop conditions. 10 CFR 71.43(f) requires that no substantial reduction in the effectiveness of the package be experienced in normal conditions of transport. Classical analysis is used to demonstrate compliance with these requirements by meeting the stress allowable criteria as defined in ASME Code, Section III, Subsection NF. For normal conditions of transport, the cask cavity spacer is subjected to a 1-ft drop with a bounding inertia load of 20g. For accident conditions of transport, the cask cavity spacer is subjected to a 30-ft drop with a bounding inertia load of 60g. The following sections present the evaluation of the cask cavity spacer for the bounding drop orientations, end and side drops for both normal and accident conditions.
NAC International                          2.6.17-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.6.17.1        Cask Cavity Spacer Description A single cask cavity spacer is used whenever a short TSC configuration is loaded into the cask.
The spacer materials, dimensions and methods of construction are documented in Section 1.3.
The spacer is a weldment made of ASME SA240, Type 304 stainless steel, 3/8-inch plate. The weldment consists of a base that is 70.7 inches in diameter with six raised cylinders of different diameters welded to it. The six different (outer) diameters are: 17.6, 27.6, 37.6, 47.6, 57.6 and 67.6 inches. The length (height) of the spacer is 7.00 inches. The spacer is attached to the cask lid using four 1-8 UNC-2A bolts of SA193 GR B6 material. A sketch of the spacer follows.
Spacer Top Disk Individual Cylinders The following bounding weights are used for the structural evaluation:
Loaded Canister        105,000 lb Cask Cavity Spacer    1,000 lb The analysis of the cask cavity spacer is performed using classical hand calculations and ANSYS finite element models.
NAC International                      2.6.17.1-1
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 2.6.17.2        Normal Conditions of Transport For normal conditions of transport, the cask cavity spacer is subjected to 1-ft drops. The bounding drop orientations are the end and side drops. For normal conditions, the inertia loading is 20g.
2.6.17.2.1      End Drops - Normal Top End Drop - Normal For the 1-ft top end drop evaluation, the finite element model of the cask cavity spacer shown in Figure 2.6.17-1 is used. The finite element model consists of the spacer rings and the TSC lid.
The finite element model is a 1/8 periodic model with symmetry boundary conditions. For the top end drop, the base disk is not required in the finite element model because the load is carried by the rings. The rings are modeled with SHELL63 elements with a thickness of 3/8 inch. The TSC lid is also modeled with SHELL63 elements with a thickness of 9.0 inches. A pressure load is applied to the TSC lid to conservatively represent the weight of a loaded canister, 105,000 lb, multiplied by the inertia load. The rings and TSC lid are coupled with restraints in the Z-direction. A 20g acceleration is applied in the Z-direction. From the finite element model, the maximum nodal stress in the rings is 8.0 ksi. Conservatively using the membrane stress allowable, the factor of safety is:
Sm      18.6 FS =        =        = 2.33 8 .0 where:
Sm = 18.6 ksi ...................................Design Stress Intensity, SA240 Type 304, 400&deg;F Bottom End Drop - Normal For the 1-ft bottom end drop evaluation, the finite element model of the cask cavity spacer shown in Figure 2.6.17-2 is used. During a bottom end drop, the cask cavity spacer is supported by four 1-inch bolts threaded into the cask lid. The only loading on the cask cavity spacer is the self-weight of the spacer multiplied by the inertia load, 20g. The finite element model is a 1/8 periodic model with symmetry boundary conditions. SHELL63 elements are used to model the spacer. The shell thickness is 3/8 inch. In the bolt region, a 5/8-inch thick plate is welded to the base disk. The bolt location is modeled with a z-constraint. The maximum nodal stress intensity in the cask cavity spacer is 12.0 ksi. The factor of safety is:
1 .5 S m    27.9 FS =            =      = 2.33 12.0 NAC International                              2.6.17.2-1
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 where:
Sm = 18.6 ksi                            Design Stress Intensity, SA240 Type 304, 400&deg;F During a bottom end drop, the four 1-inch diameter bolts are loaded in tension. For normal conditions of transport the bolt load is:
Ws a Pb =          = 5,000 lbs N
where:
Ws = 1,000 lb ..................................Canister spacer weight a = 20g..........................................Inertia load N = 4..............................................Number of bolts The bolts are 1-8 UNC-2B with a thread engagement length of 1.62-inches. The bolts are preloaded with a 300+/-20 in-lb torque. The preload on the bolt is:
T        320 P =          =              = 1,600 lb 0.2D 0.2 x 1.0 where:
T = 320 in-lb .................................Maximum bolt torque D = 1.0 in ......................................Bolt diameter Therefore, the maximum bolt load, P, is 6,600 pounds. The bolt material is SA193 Grade B6 stainless steel. From Machinerys Handbook, the tensile stress in the bolt is:
P 6,600 t =        =        = 10.8 ksi At      0.61 where:
2 0.9743 At =    0.7854  D                = 0.61 in2 n
D = 1.0 in -------------------------------------- Bolt diameter n = 8 ------------------------------------------- Number of threads per inch The factor of safety is:
Su / 2 49.15 FS =          =          = 4.55 t      10.8 where:
Su = 98.3 ksi                    Ultimate Tensile Strength, SA193 Grade B6, 400&deg;F NAC International                                2.6.17.2-2
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 The shear stress in the bolt thread is:
P      6,600 bolt =      =        = 2.5 ksi As        2.68 where:
1 As =    3.1416nLe K n max  + 0.57735(E s min  K n max ) = 2.68 in2 2n Le =    1.62 in ------------------------------------ Thread length Knmax =    0.89 in ------------------------------------ Maximum minor diameter of internal thread Esmin =    0.91 in ------------------------------------ Minimum pitch diameter of external thread N =    8 ------------------------------------------- Number of threads per inch The factor of safety is:
0.6Sm 0.6 x 25.3 FS =              =            = 6.1 bolt      2.5 where:
Sm = 25.3 ksi ...................................Design Stress Intensity, SA193 Grade B6, 400&deg;F The shear stress in the cask lid bolt hole thread is:
P      6,600 lid =        =        = 1.7 ksi An        3.78 where:
1 An =      3.1416nLe Ds min  + 0.57735(Ds min  E n max ) = 3.78 in2 2n Le    = 1.62 in ------------------------------------ Thread length Enmax    = 0.9276 in --------------------------------- Maximum pitch diameter of internal thread Dsmin    = 0.983 in ----------------------------------- Minimum major diameter of external thread n    = 8 ------------------------------------------- Number of threads per inch The factor of safety is:
0.6Sm 0.6 x 43.7 FS =              =              = 15.4 bolt      1.7 where:
Sm = 43.7 ksi --------------------------------------- Design Stress Intensity, SA564, Type 630 (17-4PH), 400&deg;F NAC International                            2.6.17.2-3
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Side Drop - Normal During a side drop the critical load is a shearing load on the bolts. An evaluation of the cask cavity spacer is bounded by the end drop evaluations. The shear stress through the cross-section of the bolt is:
P 5,000 b =          =            = 8.2 ksi At        0.61 where:
At = 0.61 in2 ...................................Bolt cross-sectional area 1,000 x 20 P =                    = 5,000 lb 4
The factor of safety is:
0.62Su / 3 0.62 x 32.8 FS =                    =                    = 2.48 b                8.2 where:
Su = 98.3 ksi ...................................Ultimate Tensile Strength, SA193 Grade B6, 400&deg;F Canister Spacer Weld Evaluation - Normal The rings are welded to the base disk with a 1/4-inch fillet weld. Using a unit length of the ring, the shear stress on the weld is:
at p L p        20 x 0.291x 0.38 x 6.62 weld  =                      =                                = 83 psi  0.1 ksi t weld (0.707)              0.25 x 0.707 where:
a =    20g..........................................Normal conditions inertia load
          =    0.291 lb/in3 .............................Density, SA240 Type 304 stainless steel tp =    0.38 in ....................................Ring thickness Lp  =    6.62 in ....................................Ring height tweld =    0.25 in ....................................Fillet weld size The factor of safety is:
0.3Su        0.3 x 64.0 FS =              =                  = +Large weld          0.1 For accident conditions of transport, the cask cavity spacer is where:
Su = 64.0 ksi ...................................Ultimate Tensile Strength, SA240 Type 304, 400&deg;F NAC International                                    2.6.17.2-4
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 2.6.17.3        Accident Conditions For hypothetical accident conditions, the cask cavity spacer is subjected to 30-ft drops. The bounding drop orientations are the end and side drops. For accident conditions, the inertia loading is 60g.
2.6.17.3.1      End Drops - Accident Top End Drop - Accident Using the finite element model described in Section 2.6.17.2.1 the maximum nodal stress for a 30-ft top end drop, 60g inertial loading is 23.9 ksi.
The factor of safety is:
: 1. 5 S m    27.9 FS =            =        = 1.17 23.9 where:
Sm = 18.6 ksi ...................................Design Stress Intensity, SA240 Type 304, 400&deg;F A local buckling evaluation for diamond-shaped buckles is done using Blake. The critical buckling stress is:
0.605  107 m 2 Scr = E                        = 29.3 ksi m(1 + 0.004) where:
E = 26.5 x106 psi ..........................Modulus of Elasticity, SA240 Type 304, 400&deg;F r      33.61 m = m =                = 88.4 tp      0.38 E 26.5 x 10 6
        =          =              = 1280 Sy      20,700 rm = 33.61 in ..................................Mean radius of largest ring tp = 0.38 in ....................................Ring thickness Sy = 20,700 psi ...............................Yield Strength, SA240 Type 304, 400&deg;F The factor of safety against local buckling is:
Scr 29 .3 FS =        =        = 1.23 23 .9 NAC International                                2.6.17.3-1
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 Bottom End Drop - Accident Using the finite element model described in Section 2.6.17.2.1, the maximum nodal stress intensity for a 30-ft bottom end drop, 60g inertial loading is 36.1 ksi. The factor of safety is:
S u 64.0 FS =        =      = 1.77 36.1 where:
Su = 64.0 ksi ...................................Ultimate Tensile Strength, SA240 Type 304, 400&deg;F During a bottom end drop, the four 1-inch diameter bolts are loaded in tension. For accident conditions of transport, the bolt load is:
Ws a Pb =          = 15,000 lbs N
where:
Ws = 1,000 lb ..................................cask cavity spacer weight a = 60g..........................................Inertia load N = 4..............................................Number of bolts The bolts are 1-8 UNC-2A with a thread engagement length of 1.62-inches. The bolts are preloaded with a 300+/-20 in-lb torque. The preload on the bolt is:
T        320 P =          =              = 1,600 lb 0.2D 0.2 x 1.0 where:
T = 320 in-lb .................................Maximum bolt torque D = 1.0 in ......................................Bolt diameter Therefore, the maximum bolt load, P, is 16,600 pounds. The bolt material is SA-193 Grade B6 stainless steel. From Machinerys Handbook, the tensile stress in the bolt is:
P 16,600 t =        =            = 27.2 ksi At      0.61 where:
2 0.9743 At =    0.7854  D                = 0.61 in2 n
D = 1.0 in -------------------------------------- Bolt diameter n = 8 ------------------------------------------- Number of threads per inch NAC International                                2.6.17.3-2
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                          Revision 1 The factor of safety is:
0.7Su 68.8 FS =            =        = 2.53 t      27.2 where:
Su = 98.3 ksi ...................................Ultimate Tensile Strength, SA193 Grade B6, 400&deg;F The shear stress in the bolt thread is:
P 16,600 bolt =      =          = 6.2 ksi As        2.68 where:
1 As =      3.1416nLe K n max  + 0.57735(E s min  K n max ) = 2.68 in2 2n Le =    1.62 in ------------------------------------ Thread length Knma x =  0.89 in ------------------------------------ Maximum minor diameter of internal thread Esmin =    0.91 in ------------------------------------ Minimum pitch diameter of external thread N =    8 ------------------------------------------- Number of threads per inch The factor of safety is:
0.42Su 41.29 FS =              =          = 6.6 bolt      6.2 where:
Su = 98.3 ksi ...................................Ultimate Tensile Strength, SA193 Grade B6, 400&deg;F The shear stress in the cask lid bolt hole thread is:
P 16,600 lid =        =          = 4.4 ksi An        3.78 where:
1 An =      3.1416nLe Ds min  + 0.57735(Ds min  E n max ) = 3.78 in2 2n Le    = 1.62 in ------------------------------------ Length of thread Enmax    = 0.9276 in --------------------------------- Maximum pitch diameter of internal thread Dsmin    = 0.983 in ----------------------------------- Minimum pitch diameter of external thread N    = 8 ------------------------------------------- Number of threads per inch NAC International                              2.6.17.3-3
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                            Revision 1 The factor of safety is:
0.42Su 55.1 FS =                =        = 12.5 bolt        4.4 where:
Su = 131.2 ksi ------------------------------------- Ultimate Tensile Strength, SA564 Type 630 (17-4PH), 400&deg;F Side Drop - Accident During a side drop, the critical load is a shearing load on the bolts. An evaluation of the canister spacer is bounded by the end drop evaluations. The shear stress through the cross-section of the bolt is:
P 15,000 b =        =              = 24.6 ksi At        0.61 where:
At = 0.61 in2 ...................................Bolt cross-sectional area 1,000 x 60 P =                    = 15,000 lb 4
The factor of safety is:
0.42S u 41.29 FS =                =          = 1.68 24.6 where:
Su = 98.3 ksi ...................................Ultimate Tensile Strength, SA193 Grade B6, 400&deg;F Canister Spacer Weld Evaluation - Accident The rings are welded to the base disk with a 1/4-inch fillet weld. Using a unit arc-length of the ring, the shear stress on the weld is at p L p      60 x 0.291x 0.38 x 6.62 weld  =                      =                              = 249 psi  0.3 ksi t weld (0.707 )          0.25 x 0.707 where:
a  = 60g ---------------------------------------- Accident conditions inertia load
            = 0.291 lb/in3 ------------------------------- Density, SA240 Type 304 tp  = 0.38 in ------------------------------------ Ring thickness Lp  = 6.62 in ------------------------------------ Ring height tweld  = 0.25 in ------------------------------------ Fillet weld size NAC International                                2.6.17.3-4
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                          Revision 1 The factor of safety is:
0.42Su 0.42 x 64.0 FS =            =                = +Large weld      0.3 where:
Su = 64.0 ksi ...................................Ultimate Tensile Strength, SA240 Type 304, 400&deg;F NAC International                              2.6.17.3-5
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.17-1 Cask Cavity Spacer Finite Element Model - Top End Drop NAC International                2.6.17.3-6
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.6.17-2 Cask Cavity Spacer Finite Element Model - Bottom End Drop NAC International                2.6.17.3-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7            Hypothetical Accident Conditions The MAGNATRAN transport cask meets the standards specified in 10 CFR 71.51 when subjected to the conditions and tests specified in 10 CFR 71.73 for hypothetical accidents. In accordance with 10 CFR 71.73, the cask is structurally evaluated for hypothetical accident scenarios of free drop, crush, puncture, thermal (fire) and water immersion.
In the free-drop analyses, the cask impact orientation evaluated is that which inflicts the maximum damage to the cask. The most unfavorable ambient temperature condition during operation in the range from -40&deg;F to 100&deg;F is assumed, except for the water immersion evaluation, which assumes an ambient temperature condition of 70&deg;F. The following sections contain the evaluation of the cask for structural integrity under the hypothetical accident conditions.
NAC International                              2.7-1
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.1          Free Drop (30-Foot)
The MAGNATRAN transport cask is required by 10 CFR 71.73(c)(1) to demonstrate structural adequacy for a free drop through a distance of 30 feet (9 meters) onto a flat, unyielding, horizontal surface. The cask with payload is oriented to strike the surface to inflict the maximum damage. In determining the orientation that produces the maximum damage, the cask is evaluated for impact orientations in which the cask strikes the impact surface on its top end, bottom end, side, top corner and bottom corner. Evaluation of each drop orientation is accomplished by using finite element analysis techniques. A complete description of the 3-D model used to analyze the cask body is presented in Section 2.12.2.6. The results for each drop orientation are presented in this section. The impact limiters and the impact limiter attachments are evaluated in Section 2.6.7.5 for all loading conditions and orientations.
The mass of the contents is included when evaluating the impact conditions. The environmental temperature for the drop is between -40&deg;F and 100&deg;F. For the accident condition, stresses arising from thermal expansion are not considered for the stress evaluation. However, for determination of properties, the temperatures are considered. Heat generation from the contents and solar insolance are also considered. For each drop orientation, separate evaluations are performed for ambient temperature conditions of -40&deg;F and 100&deg;F. Also, for each drop orientation and ambient temperature condition, separate evaluations are performed using internal pressures of 135 psig and 0 psig applied in the finite element models. The bounding critical stress condition in conjunction with the other loads previously discussed is determined for each section cut location.
An internal pressure of 135 psig is used in the cask closure analysis. As shown in Table 2.7.4-2, a pressure of 135 psig conservatively exceeds the maximum calculated internal pressures.
Closure lid bolt preload is considered and fabrication stresses are discussed.
The following method and assumptions are adopted in all the drop analyses.
: 1. The ANSYS computer program is utilized to perform the impact analyses.
: 2. The cask contents are applied to the cask as a pressure load. The pressure simulates the actual contents by applying the pressure as a cosine distribution.
: 3. The finite element model of the cask includes, geometrically, only the components of the cask body to be structurally analyzed. However, the weight of the impact limiters is modeled as a pressure applied to the solid model using a weight of 8,000 lbs for each impact limiter. To bound the loads produced during a 30-ft drop, an acceleration of 60g was used for all 30-ft drop orientations presented in this section. The actual calculated accelerations are less than 45.5g (Section 2.6.7.5, Table 2.6.7-37). For the cask body, an acceleration scale factor is implemented to provide a cask body inertial load equal to that of the cask body weight of                    The payload and spacer (as appropriate) are modeled as distributed loads to attain a targeted contents weight of                    The total weight modeled is                    not including the impact limiters). Therefore, the NAC International                              2.7.1-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 weights presented for the cask body analysis are conservative and envelop the actual values presented in Section 2.1.3.
: 4. To account for the lead slump during the drops, and for the differential thermal expansion between the cask stainless steel shells and lead shell, gap elements are used in the finite element model to represent the compression-only loads developed from the lead.
As discussed in Section 2.12.2.6, the loads and boundary conditions considered in the finite element analyses are: (1) closure lid bolt preload, (2) internal pressure, (3) thermal and (4) impact and inertial loads resulting from the impact event.
During fabrication of the MAGNATRAN transport cask, thermal stresses can be introduced in the inner and outer shells as a result of pouring molten lead between them. However, any residual stresses in the containment vessel and the outer shell induced by shrinkage of the lead shielding after the lead pouring operation are relieved due to the low creep strength of lead.
Therefore, the effects of stresses resulting from the processes used in fabrication of the cask are negligible. Further discussion of fabrication stresses is provided in Section 2.6.11.
The following sections contain the evaluation of the cask for impact orientations in which the cask strikes the impact surface on its end (top and bottom), side and corner (top and bottom).
The impact conditions are in accordance with Regulatory Guide 7.8 and the categories of load to be considered for the hypothetical accident conditions are similar to those for the 1-ft free drops, under normal conditions of transport, discussed in Section 2.12.2.6. Therefore, the discussions in the following sections refer to Section 2.12.2.6, wherever applicable.
Three categories of loadclosure lid bolt preload, internal pressure, and inertial body loadsare considered on the cask. The inertia loads imposed upon the cask by the impact limiter result from the weight of the entire assembly being acted upon by a deceleration value of 60g for the 30-ft end drop case. The closure lid bolt preload, internal pressure load, and contents loads considered for the 30-ft end drop condition are similar to those considered for 1-ft end drop condition in Section 2.6.7.1, with the exception that thermal stresses are not considered for accident conditions. The material properties of the components are considered to be temperature dependent.
The allowable stress limit criteria are discussed in Section 2.1.2. These criteria are used to determine the allowable stresses for each cask section cut location, based on the nodal temperatures from the thermal conduction analysis (refer to Table 2.12.2-7). However, the puncture cases use the maximum cask temperature for the hot condition to determine the section allowable stresses for all section cut locations.
NAC International                              2.7.1-2
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 For cask body analyses presented in this section, the Hot condition is 100&deg;F ambient temperature, maximum decay heat load, and maximum solar insolation. The Cold condition is
-40&deg;F ambient temperature, minimum (zero) decay heat load, and minimum (zero) solar insolation.
NAC International                            2.7.1-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.1.1          30-Foot End Drop In accordance with the requirements of 10 CFR 71.73(c)(1), the MAGNATRAN transport cask is structurally evaluated for the 30-ft end drop condition. In this hypothetical accident, the package, with its payload, spacer (if appropriate) and the impact limiters, falls 30 feet onto a flat, unyielding, horizontal surface. The cask strikes the surface in a vertical orientation; consequently, an end impact on the bottom or top end of the cask may occur. The loading for the drop accident includes the closure lid bolt preload, internal pressure, and inertial body load.
Section 2.12.2.6 describes the application of each loading condition. Elastic material properties are used for the cask body for the drop evaluation.
Figure 2.12.2-31 depicts the section cut locations used in the post-processing of the cask body results.
The membrane (Pm) stresses, membrane plus bending (Pm+Pb) stresses, and factors of safety for the cask body for the end drop evaluations for accident conditions are presented in this section.
The critical factor of safety for each section cut is presented for a particular drop orientation. All stresses presented are in a cylindrical coordinate system, axial = z-direction, radial = x-direction, circumferential = y-direction.
The following key is used in the result summary tables to identify thermal and internal pressure conditions that result in the minimum factors of safety.
: 1. Hot, 100&deg;F ambient, with internal pressure, 135 psig
: 2. Cold, -40&deg;F ambient, with internal pressure, 135 psig
: 3. Hot, 100&deg;F ambient, without internal pressure
: 4. Cold, -40&deg;F ambient, without internal pressure Table 2.7.1-1 through Table 2.7.1-4 present the analysis results for the top-end drop. Table 2.7.1-3 and Table 2.7.1-4 provide a summary of Pm and Pm + Pb stresses on a component basis for the top-end drop. Table 2.7.1-5 through Table 2.7.1-8 present the results for the bottom-end drop. Table 2.7.1-7 and Table 2.7.1-8 provide a summary of Pm and Pm + Pb stresses on a component basis for the bottom end drop.
For the top end drop, combined impact loading case, the calculated minimum factor of safety for primary membrane stress intensity is 3.57 in the top forging (Table 2.7.1-3). The calculated minimum factor of safety is 4.98 (Table 2.7.1-4) for primary membrane plus bending stress intensity, also in the top forging. For the bottom end drop, combined impact loading case, the minimum factor of safety for primary membrane stress intensity is 4.86 (Table 2.7.1-7) in the bottom outer forging. The minimum factor of safety for primary membrane plus bending stress intensity is 4.52 (Table 2.7.1-8) in the bottom outer forging.
NAC International                        2.7.1.1-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.7.1-1        Pm Stresses Foot Top End Drop, ksi Angle                  Stress Components                Stress Stress Case1 Sect.2                                                                                  FS (deg)    Sx      Sy        Sz  Sxy    Syz    Sxz      Int. Allow.
3        1        0.0    0.92    1.24      0.00 -0.01    0.04  -0.05    1.24    42.88    Large 3        2        0.0    -0.46  -0.62    -0.09  0.01    0.04  -0.04    0.54    42.99    Large 3        3        0.0    1.04    0.81    -0.62  0.01    0.00  -0.23    1.72    43.72    Large 3        4        0.0    -0.49  -0.62    -0.51  0.00  -0.02  -0.55    1.10    43.70    Large 3        5        0.0    -1.70    0.23    -0.57 -0.05  -0.02  -0.49    2.11    43.84    Large 3        6        0.0    -1.84  -0.58    -2.10 -0.03    0.00  0.10    1.56    43.83    Large 3        7        0.0    0.08  -0.29    -3.12  0.01    0.00  0.05    3.20    43.77    Large 1        8        0.0    -0.07    1.95    -2.24 -0.07    0.00  0.02    4.19    46.51    Large 1        9        0.0    -0.06    2.90    -2.38 -0.10    0.00  -0.03    5.28    46.38    8.78 1      10        0.0    -0.06    2.78    -2.86 -0.09    0.00  0.00    5.64    46.14    8.18 1      11        0.0    -0.06    2.78    -3.62 -0.09    0.00  0.00    6.41    46.02    7.18 1      12        0.0    -0.06    2.78    -4.46 -0.09    0.00  0.00    7.25    46.15    6.37 1      13        0.0    -0.06    2.83    -4.90 -0.09    0.00  0.01    7.74    46.38    5.99 1      14        0.0    -0.06    2.76    -5.04 -0.09    0.00  0.01    7.80    46.47    5.96 1      15        0.0    -0.12    2.10    -5.18 -0.07    0.00  -0.05    7.28    43.75    6.01 1      16        0.0    -0.50    1.54    -5.51 -0.06    0.00  0.04    7.06    43.83    6.21 3      17        7.5    0.14    0.19    -1.18  0.00    0.00  0.02    1.37    44.07    Large 3      18        0.0    0.01    0.04    -1.26  0.00    0.00  0.06    1.30    44.07    Large 3      19        0.0    0.00  -0.09    -1.54  0.00    0.00  0.04    1.54    66.98    Large 3      20      45.0    0.00  -0.04    -1.87  0.00    0.00  0.03    1.87    66.99    Large 3      21      78.8    0.00    0.00    -2.90  0.00    0.00  0.02    2.91    66.89    Large 3      22      78.8    0.00    0.04    -4.53  0.00    0.01  0.02    4.57    66.81    Large 3      23        0.0    -0.01    0.56    -6.34 -0.02    0.00  0.02    6.90    66.89    9.69 3      24        0.0    -0.03    1.02    -7.29 -0.03    0.00  0.04    8.31    66.99    8.06 3      25        0.0    -0.02    0.80    -7.58 -0.03    0.00  -0.03    8.38    66.99    7.99 1      26        0.0    -0.03    1.03    -7.65 -0.03    0.01  0.22    8.69    44.09    5.07 1      27        0.0    -0.94    0.68    -7.69 -0.04    0.00  -0.08    8.37    44.05    5.26 1      28        0.0    -0.29    0.74    -5.89 -0.03    0.02  0.08    6.63    43.83    6.61 3      29        0.0    1.51  -0.74    -10.71  0.22    0.01  -0.10    12.24    43.75    3.57 2      30        0.0    -0.29  -0.61    -6.14  0.01  -0.03  1.27    6.37    94.50    Large 4      31        0.0    0.34  -2.90    -10.42  0.05  -0.12  1.32    11.08    94.50    8.53 4      32        3.8    -0.67  -3.56    -15.59  0.00    0.00  3.17    16.21    94.50    5.83 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.1.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.7.1-2      Pm + Pb Stresses Foot Top End Drop, ksi Angle                  Stress Components                Stress Stress Case1 Sect.2                                                                                FS (deg)      Sx      Sy        Sz  Sxy    Syz    Sxz      Int. Allow.
3        1      0.0      3.19    4.51      -0.36 -0.04    0.04  -0.05    4.87  61.26    Large 3        2      0.0    -4.53  -6.28      0.53  0.05    0.04  -0.03    6.81  61.41    9.02 3        3      0.0      4.09    1.99      0.10  0.06    0.01  -0.03    3.99    62.45  Large 3        4      0.0    -1.97    0.47      -0.39 -0.07  -0.04  -1.24    3.12  62.43    Large 3        5      0.0    -0.50    1.86      3.71 -0.07  -0.01  -0.22    4.23    62.63  Large 1        6      0.0    -1.52  -1.44      -4.21  0.01    0.02  0.63    2.97    62.61  Large 1        7      0.0      0.03  -0.92      -4.95  0.03    0.01  0.32    5.02    62.53  Large 1        8      0.0    -0.12    1.66      -3.32 -0.06    0.00  0.02    4.98    66.68  Large 1        9      0.0    -0.12    2.84      -2.81 -0.10    0.00  -0.03    5.66    66.32  Large 1      10      0.0    -0.12    2.85      -2.85 -0.10    0.00  0.00    5.71    65.94  Large 1      11      0.0    -0.12    2.86      -3.62 -0.10    0.00  0.00    6.47    65.78  Large 1      12      0.0    -0.12    2.85      -4.46 -0.10    0.00  0.00    7.31    65.95    9.02 1      13      0.0    -0.12    2.89      -4.95 -0.10    0.00  0.01    7.84    66.31    8.46 1      14      0.0    -0.12    2.73      -5.37 -0.09    0.00  0.01    8.10    66.59    8.22 1      15      0.0    -0.10    2.13      -5.31 -0.07    0.00  -0.05    7.44    62.50    8.40 1      16      0.0    -0.43    1.23      -6.37 -0.05    0.00  -0.11    7.61    62.61    8.23 1      17      41.2      0.05  -0.27      -1.96  0.00    0.00  -0.03    2.02    62.95  Large 1      18      30.0      0.01  -0.37      -1.90  0.00    0.00  0.11    1.92    62.96  Large 3      19      37.5      0.00  -0.13      -1.68  0.00    0.00  0.06    1.69    95.68  Large 3      20      0.0      0.00  -0.04      -1.88  0.00    0.00  0.01    1.88    95.70  Large 3      21      86.2      0.00    0.03      -2.90  0.00    0.00  0.00    2.93    95.55  Large 3      22      0.0      0.00  -0.02      -4.59  0.00    0.00  0.04    4.60    95.45  Large 3      23      0.0    -0.03    0.58      -6.32 -0.02  0.00    0.00    6.90    95.56  Large 3      24      0.0    -0.05    0.93      -7.66 -0.03  0.00    0.02    8.59    95.70  Large 3      25      0.0    -0.03    0.79      -7.68 -0.03  0.00  -0.05    8.48  95.71    Large 1      26      0.0    -0.07    0.73      -8.69 -0.02  0.01    0.17    9.43    62.98    6.68 1      27      0.0    -1.47  -0.02      -9.61 -0.03  0.01  0.18    9.60  62.92    6.55 1      28      0.0    -0.20    0.23      -7.19 -0.02  0.01  -0.16    7.43  62.61    8.43 3      29      0.0      3.91    0.40      -8.50  0.42    0.02  -0.72  12.54  62.50    4.98 2      30      0.0      6.55  11.68      -0.60 -0.16  -0.03  0.76  12.37  135.00  Large 4      31      3.8      0.68  -3.90    -12.76  0.00    0.00  -5.22  17.01  135.00    7.94 4      32      3.8      3.07  -2.89    -21.15  0.00    0.00  2.94  24.92  135.00    5.42 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.1.1-3
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.1-3      Critical Pm Stress Summary Foot Top End Drop, ksi Angle Component              Sec      (deg)      SI    Allow. FS Bottom Plate            4        0.0      1.10    43.70  Large Bottom Forging - Inner      7        0.0      3.20    43.77  Large Bottom Forging - Outer      5        0.0      2.11    43.84  Large Inner Shell            14      0.0      7.80    46.47  5.96 Outer Shell            25      0.0      8.38    66.99  7.99 Top Forging            29      0.0    12.24    43.75  3.57 Lid                32      3.8    16.21    94.50  5.83 Note: Section locations are presented in Figure 2.12.2-31.
Table 2.7.1-4      Critical Pm + Pb Stress Summary Foot Top End Drop, ksi Angle Component              Sec      (deg)      SI    Allow. FS Bottom Plate            2      0.0      6.81    61.41  9.02 Bottom Forging - Inner        7      0.0      5.02    62.53  Large Bottom Forging - Outer        5      0.0      4.23    62.63  Large Inner Shell            14      0.0      8.10    66.59  8.22 Outer Shell            24      0.0      8.59    95.70  Large Top Forging            29      0.0    12.54    62.50  4.98 Lid                32      3.8    24.92    135.00  5.42 Note: Section locations are presented in Figure 2.12.2-31.
NAC International                    2.7.1.1-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.7.1-5        Pm Stresses Foot Bottom End-Drop, ksi Angle                  Stress Components                Stress  Stress Case1 Sect.2                                                                                FS (deg)    Sx      Sy        Sz    Sxy Syz      Sxz      Int. Allow.
1        1        0.0    0.46    0.61    -2.13  0.00  0.04  -0.23    2.76    42.88    Large 1        2        0.0    -0.20  -0.55    -7.67  0.01  0.00  -1.38    7.96    42.99    5.40 3        3        0.0    0.74    0.88    -0.71  0.00  0.02  -0.39    1.69    43.72    Large 3        4        0.0    0.27  -0.13    -3.23  0.01 -0.06  -1.92    5.21    43.70    8.39 3        5        0.0    -3.58  -2.48    -10.98  0.00 -0.01  -0.14    8.50    43.84    5.16 3        6        0.0    -5.56  -3.11    -4.34  -0.06  0.01  0.28    2.51    43.83    Large 3        7        0.0    0.14  -2.03    -5.73  0.07  0.01  0.35    5.92    43.77    7.39 1        8        0.0    -0.07    1.31    -4.63  -0.05  0.00  0.05    5.94    46.51    7.83 1        9        0.0    -0.06    2.92    -4.48  -0.10  0.00  -0.04    7.40    46.38    6.27 1      10        0.0    -0.06    2.78    -3.99  -0.09  0.00  0.00    6.77    46.14    6.81 1      11        0.0    -0.06    2.78    -3.22  -0.09  0.00  0.00    6.01    46.02    7.66 1      12        0.0    -0.06    2.78    -2.38  -0.09  0.00  0.00    5.17    46.15    8.93 1      13        0.0    -0.06    2.85    -1.94  -0.10  0.00  0.01    4.79    46.38    9.68 1      14        0.0    -0.06    2.72    -1.81  -0.09  0.00  0.01    4.53    46.47    Large 1      15      75.0    -0.05    1.88    -1.67  0.00  0.00  -0.08    3.56    43.75    Large 3      16      82.5    0.30    0.70    -2.54  0.00  0.00  -0.06    3.25    43.83    Large 3      17        0.0    0.60  -2.21    -8.44  0.09  0.01  0.33    9.07    44.07    4.86 3      18        0.0    -0.02  -2.37    -7.82  0.08  0.01  0.41    7.85    44.07    5.61 3      19      33.8    0.04  -0.80    -7.59  0.00  0.00  0.14    7.64    66.98    8.77 3      20        0.0    -0.03    0.88    -7.28  -0.03  0.00  -0.07    8.17    66.99    8.20 3      21        0.0    -0.01    0.54    -6.24  -0.02  0.00  -0.02    6.78    66.89    9.87 3      22      86.2    0.00    0.06    -4.60  0.00  0.00  -0.02    4.66    66.81    Large 3      23        0.0    0.00    0.00    -2.79  0.00  0.00  -0.02    2.80    66.89    Large 3      24        0.0    0.00    0.03    -1.84  0.00  0.00  -0.03    1.87    66.99    Large 3      25        0.0    0.00    0.40    -1.55  -0.01  0.00  0.00    1.95    66.99    Large 1      26        0.0    0.05    1.34    -1.04  -0.04  0.00  0.12    2.40    44.09    Large 1      27        0.0    -0.39    1.34    -0.73  -0.05  0.00  0.07    2.09    44.05    Large 1      28      45.0    -0.19    0.73    -0.64  0.00  0.00  0.14    1.41    43.83    Large 3      29        0.0    1.35  -0.65      0.16  0.21  0.02  0.07    2.05    43.75    Large 3      30        0.0    0.13    0.17      0.13  0.00 -0.06  0.11    0.26    93.81    Large 4      31        0.0    0.30  -1.41    -1.63  0.00 -0.12  1.53    3.63    94.50    Large 4      32        3.8    -1.32  -1.93    -7.09  0.00  0.00  0.75    5.96    94.50    Large Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.1.1-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.7.1-6        Pm + Pb Stresses Foot Bottom End-Drop, ksi Angle                  Stress Components                Stress  Stress Case1 Sect.2                                                                                  FS (deg)    Sx      Sy        Sz  Sxy Syz        Sxz      Int. Allow.
1        1        0.0    3.42    5.41    -2.29 -0.06    0.04  -0.23    7.71    61.26    7.95 1        2        0.0    4.89    9.24    -3.24 -0.13    0.00  -1.04  12.62    61.41    4.87 3        3        0.0    7.93    4.26      0.35  0.10    0.03  -0.11    7.58    62.45    8.24 3        4        0.0    2.04    1.93    -1.60  0.00  -0.10  -2.81    6.70    62.43    9.32 3        5        0.0    -5.80  -5.78    -19.56 0.05    -0.01  -0.12  13.83    62.63    4.53 1        6        0.0    -4.46  -0.87      1.56 -0.10  -0.01  -0.70    6.18    62.61    Large 1        7        0.0    0.09  -3.16    -10.39  0.11    0.01  0.40  10.51    62.53    5.95 1        8        0.0    -0.11    0.89    -6.07 -0.03    0.00  0.05    6.97    66.68    9.57 1        9        0.0    -0.12    2.77    -5.21 -0.09    0.00  -0.05    7.99    66.32    8.30 1      10        0.0    -0.12    2.85    -3.98 -0.10    0.00  0.00    6.84    65.94    9.64 1      11        0.0    -0.12    2.85    -3.22 -0.10    0.00  0.00    6.08    65.78    Large 1      12      71.2    -0.12    2.86    -2.38  0.00    0.00  0.00    5.24    65.95    Large 1      13        0.0    -0.12    2.89    -2.03 -0.10    0.00  0.01    4.92    66.31    Large 1      14        0.0    -0.12    2.65    -2.25 -0.09    0.00  0.01    4.90    66.59    Large 1      15      90.0    -0.10    1.96    -1.61  0.00    0.00  -0.09    3.58    62.50    Large 3      16      45.0    -0.03    0.25    -3.72  0.00    0.00  0.04    3.97    62.61    Large 3      17        0.0    -0.14  -4.08    -14.04 0.13    -0.01  -0.34  13.92    62.95    4.52 3      18        0.0    -0.01  -3.85    -12.87 0.13    0.01  0.41  12.88    62.96    4.89 3      19      33.8    0.11  -0.90    -7.89 -0.01    0.01  0.15    8.00    95.68    Large 3      20      30.0    -0.05    0.53    -8.52  0.00    0.00  -0.06    9.05    95.70    Large 3      21        0.0    0.00    0.51    -6.28 -0.02    0.00  -0.04    6.79    95.55    Large 3      22        0.0    0.01    0.00    -4.66  0.00    0.00  -0.04    4.67    95.45    Large 3      23      90.0    0.00    0.01    -2.81  0.00    0.00  0.00    2.82    95.56    Large 3      24        0.0    0.00  -0.06    -2.13  0.00    0.00  -0.05    2.13    95.70    Large 3      25      26.2    0.00    0.30    -1.81  0.00    0.00  -0.02    2.12    95.71    Large 1      26        0.0    0.02    0.95    -2.43 -0.03    0.00  0.11    3.38    62.98    Large 1      27        0.0    -0.77    0.78    -2.34 -0.05    0.01  0.30    3.18    62.92    Large 3      28        0.0    -0.20  -0.54    -2.95 0.02    0.05  0.36    2.85    62.61    Large 3      29        0.0    3.43    0.13      1.51  0.42    0.06  0.33    3.46    62.50    Large 3      30      37.5    6.38    8.83      0.40  0.00    0.00  0.13    8.43    134.02    Large 4      31        0.0    -2.41  -1.95    -4.03 -0.22  -0.03  4.32    8.81    135.00    Large 4      32        3.8    7.93    1.62    -8.38  0.00    0.00  -1.08  16.45    135.00    8.21 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.1.1-6
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.1-7      Critical Pm Stress Summary Foot Bottom End-Drop, ksi Angle Component            Sec      (deg)      SI    Allow. FS Bottom Plate            2        0.0    7.96  42.99    5.40 Bottom Forging - Inner      7        0.0    5.92  43.77    7.39 Bottom Forging - Outer      17        0.0    9.07  44.07    4.86 Inner Shell            9        0.0    7.40  46.38    6.27 Outer Shell          20        0.0    8.17  66.99    8.20 Top Forging            16      82.5    3.25  43.83  Large Lid              32        3.8    5.96  94.50  Large Notes: Section locations are presented in Figure 2.12.2-31.
Table 2.7.1-8      Critical Pm + Pb Stress Summary Foot Bottom End-Drop, ksi Angle Component            Sec      (deg)      SI    Allow. FS Bottom Plate            2        0.0    12.62  61.41    4.87 Bottom Forging - Inner      7        0.0    10.51  62.53    5.95 Bottom Forging - Outer      17        0.0    13.92  62.95    4.52 Inner Shell            9        0.0    7.99    66.32  8.30 Outer Shell          20      30.0    9.05    95.70  Large Top Forging          16      45.0    3.97    62.61  Large Lid              32        3.8    16.45  135.00  8.21 Notes: Section locations are presented in Figure 2.12.2-31.
NAC International                      2.7.1.1-7
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.1.2          30-Foot Side Drop In accordance with the requirements of 10 CFR 71.73(c)(1), the MAGNATRAN transport cask is structurally evaluated for the hypothetical accident 30-ft side drop condition. In this event, the cask, with its payload, spacer (if appropriate), and impact limiters, falls 30 feet onto a flat, unyielding, horizontal surface. The package strikes the surface in a horizontal position; consequently, a side impact occurs. The loading for a side drop accident includes the closure lid bolt preload, internal pressure, and inertial body load.
The 30-ft side drop conditions are evaluated using the model described in Section 2.12.2.6 with elastic-plastic material properties. The elastic-plastic model is implemented, per ASME Code Appendix F, to confirm that the cask body stresses are below the allowable stresses.
As shown in Table 2.7.1-9 through Table 2.7.1-12, the factors of safety are greater than one for the 30-ft side drop accident. The minimum factor of safety for primary membrane stress intensity is 1.35 in section location 29, located at the base of the cask flange (the portion of the top forging that forms the recess for the lid) (Table 2.7.1-11). The minimum factor of safety for primary membrane plus bending stress intensity is 1.72 in section location 22, located in the outer shell (Table 2.7.1-10).
For the results presented in Table 2.7.1-11 and Table 2.7.1-12, plastic stresses are obtained by identifying the maximum nodal plastic equivalent stress at each section location. The membrane stress is taken as the nodal equivalent stress value nearest the center of the section, and the peak stress is taken as the maximum stress value for the inner and outer nodes. Based on the difference in the equivalent stress from the finite element results [(2 + 32)1/2] versus the ASME Code, Section III stress intensity criterion [(2 + 42)1/2], the maximum nodal plastic equivalent stresses are conservatively factored (4/3)1/2. If yielding has not occurred along the section, the membrane and membrane plus bending stress intensities are determined using linearized stresses.
NAC International                          2.7.1.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.1-9        Pm Stresses Foot Side-Drop, ksi Angle                    Stress Components                Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy        Sz  Sxy    Syz    Sxz      Int. Allow.
1        1      101.2    -3.05  -4.04      0.07 -0.21    0.21  -0.05    4.17    42.88    Large 3        2      101.2    -0.13  -7.26      -0.47 -1.57  0.04  -0.18    7.85    42.99    5.48 1        3          0    -6.78  -16.98      4.28  0.06  -0.08  -0.05  21.26    43.72    2.06 3        4          0    -10.08  -12.21      -0.79  0.12    0.07  -0.61  11.47    43.70    3.81 3        5        105    -0.71    3.15      1.00 -0.92  -9.31  0.48  18.83    43.84    2.33 4        6        37.5    -1.80  -3.74      1.29 -3.43  -11.41  0.23  34.65    47.33    1.37 4        7        37.5    -0.07  -0.22      1.19 -0.01  -16.98  0.03  34.66    47.26    1.36 4        8        45    -0.11    3.63      1.03 -0.25  -17.25  -0.10  34.76    50.41    1.45 4        9        48.8    0.00    5.10      1.05 -0.42  -16.71  -0.11  34.66    50.23    1.45 1      10          0    -0.74  11.42      21.48 -0.45  -0.39  0.06  22.25    46.15    2.07 1      11          0    -0.85  12.26      30.23 -0.43    0.03  0.00  31.10    46.05    1.48 1      12      56.2      0.02    6.61      1.85 -0.46  11.85    0.11  24.20    46.17    1.91 4      13        60    -0.10    4.24      1.25 -0.57  17.06    0.09  34.68    50.22    1.45 4      14      52.5    -0.13  5.50        1.20 -0.40  17.14    0.25  34.84    50.37    1.45 4      15      52.5    -0.24    2.16      -1.20  0.00  17.18  -0.66  34.86    47.24    1.36 4      16        60    -5.28  -39.44    -18.03 1.09    0.43  -2.73  34.84    47.33    1.36 3      17      67.5    -3.24    3.31      5.03 -3.45  -12.00  0.02  31.10    44.07    1.42 3      18          0      0.04    3.91      4.12 -0.11  -14.55  -0.89  31.10    44.07    1.42 1      19      56.2    -0.02    2.90      5.61 -0.10  -16.13  -0.25  32.38    66.98    2.07 1      20      52.5      0.01    4.10      6.58 -0.12  -15.26  -0.20  30.63    66.99    2.19 1      21          0    -0.32    7.18      29.39 -0.29  -0.50  0.16  29.74    66.89    2.25 1      22          0    -0.39    6.52      38.30 -0.31  -0.08  0.01  38.70    66.81    1.73 1      23          0    -0.30    7.22      33.67 -0.29    0.35  -0.13  33.99    66.89    1.97 1      24      56.2      0.06    5.59      5.92 -0.09  13.43    0.15  26.86    66.99    2.49 1      25      56.2    -0.02  7.59        5.89 -0.23  15.61    0.51  31.29    66.99    2.14 3      26      52.5    -0.17  -13.61    17.42  0.36    0.32  -1.02  31.12    44.09    1.42 3      27          0      0.48  -15.88      15.03  0.33    0.13  -1.88  31.17    44.05    1.41 4      28          0    -9.41  -32.00      -0.08  0.82  -0.07  -5.88  34.91    47.33    1.36 4      29          0    -9.77  -32.79      1.02  2.49    0.12  -3.12  35.03    47.28    1.35 3      30        78.8    0.37  -2.55      -0.16  0.54    0.17  0.16    3.18    93.81    Large 3      31          0    -3.30  -0.76      0.18 -0.03  -0.33  1.89    5.19    94.50    Large 4      32        33.8    0.61  -1.58      -7.83  0.28  -0.91  -1.20    8.96    94.50    Large Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.1.2-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.7.1-10        Pm + Pb Stresses Foot Side-Drop, ksi Angle                    Stress Components                Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy        Sz  Sxy    Syz    Sxz      Int. Allow.
1        1        0      -4.26  -8.57      0.17  0.04  -0.08  0.05    8.74    55.13    6.31 3        2      116.2    0.75  -8.14      -0.42 -5.76    0.29  -0.13  14.58    55.27    3.79 4        3        0      -1.36  -18.54      16.07 -0.09  -0.25  0.91  34.71    60.76    2.02 3        4        0    -11.19  -18.50      -0.82  0.12    0.05  -1.55  17.90    56.18    3.14 3        5      101.2    -2.10    3.11      -2.56 -2.08  -9.82  0.82  31.11    56.36    2.09 4        6        0      3.35  -2.22      22.47 -8.04  -8.95  -0.89  34.72    60.85    2.02 4        7        0      -0.58  -2.19      17.68  1.04  -15.89  3.76  34.70    60.77    2.02 4        8      48.8    -0.59  -4.10    -16.20  0.01  -17.01  0.26  34.83    64.81    2.15 4        9      52.5    -0.34  -1.22      -4.86 -0.20  -18.32  -0.19  34.71    64.58    2.15 2      10      63.8      0.01  27.62      6.18 -0.12  -10.76  -0.06  32.08    64.15    2.00 4      11        0      -0.45  29.27      34.21 -1.05    0.03  0.01  34.69    63.98    2.13 4      12      63.8      0.15  27.72      6.84 -0.13  12.67  0.05  34.65    64.17    2.14 4      13        60    -0.45  -2.13      -4.74  0.24  18.26  0.17  34.72    64.57    2.15 4      14      56.2    -0.04    1.64      -3.86  0.21  18.13  0.41  34.91    64.76    2.14 4      15        48.8    -0.38    0.63      -9.55 -0.02  17.26  1.33  34.93    60.73    2.01 4      16        60    -0.21    0.35      0.52 -0.92  18.40  -0.14  34.87    60.85    2.01 4      17        0      9.70  -0.40      32.57  0.09  -0.25  7.63  34.72    61.04    2.03 4      18        0      -1.54  -7.39      27.09  0.36  -0.78  2.27  34.66    61.02    2.03 1      19        45    -0.11    3.06      4.00 -0.14  -21.76  -0.09  43.54    86.11    1.98 1      20        45    -0.10    9.05      7.71 -0.23  -19.59  -0.20  39.21    86.13    2.20 1      21        0      -0.12  25.84      37.70 -0.89  -0.22  0.15  37.85    86.00    2.27 1      22        0      -0.20  32.45      49.57 -1.15  -0.06  0.01  49.82    85.90    1.72 1      23        0      -0.10  26.49      42.12 -0.92    0.09  -0.12  42.25    86.00    2.04 1      24        0      -0.03  24.87      34.24 -0.83    0.39  0.19  34.32    86.13    2.51 1      25      48.8    -0.16  13.54      4.04 -0.37  21.19  0.58  43.46    86.14    1.98 4      26        0      0.12    1.35    -14.65  0.08  17.54  1.25  34.65    61.03    2.03 4      27        45    -8.02  -8.40    -17.50 -9.89  14.55  1.12  34.74    61.00    2.03 4      28        0      -0.21  -19.42      -5.68  1.97  18.64  -0.11  34.91    60.85    2.01 4      29        0      -9.29  -44.93    -29.90  1.23    0.02  0.05  35.71    60.78    1.97 1      30        0      -0.85    9.41      0.10 -0.03    0.11  -0.27  10.33    120.62  Large 1      31        0      -6.75    3.39      -2.23  0.06  -0.29  2.73  11.44    121.50  Large 3      32        0    -30.34  -16.76    -10.92 -0.53  -2.06  8.17  25.87    121.50    4.70 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.1.2-3
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.1-11    Critical Pm Stress Summary Foot Side-Drop, ksi Angle Component              Sec                  SI    Allow. FS (deg)
Bottom Plate            4        0.0      11.47    43.70  3.81 Bottom Forging - Inner        7        37.5    34.66    47.26  1.36 Bottom Forging - Outer      17        67.5    31.10    44.07  1.42 Inner Shell            15        52.5    34.86    47.24  1.36 Outer Shell            22        0.0      38.70    66.81  1.73 Top Forging            29        0.0      35.03    47.28  1.35 Lid                32        33.8      8.96    94.50 Large Note: Section locations are presented in Figure 2.12.2-31.
Table 2.7.1-12    Critical Pm + Pb Stress Summary Foot Side-Drop, ksi Angle Component              Sec                  SI    Allow. FS (deg)
Bottom Plate            4        0.0      17.90    56.18  3.14 Bottom Forging - Inner        3        0.0      34.71    60.76  2.02 Bottom Forging - Outer      17        0.0      34.72    61.04  2.03 Inner Shell            10        63.8    32.08    64.15  2.00 Outer Shell            22        0.0      49.82    85.90  1.72 Top Forging            29        0.0      35.71    60.78  1.97 Lid                32        0.0      25.87  121.50  4.70 Note: Section locations are presented in Figure 2.12.2-31.
NAC International                    2.7.1.2-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.1.3          30-Foot Corner Drop In accordance with the requirements of 10 CFR 71.73(c)(1), the MAGNATRAN transport cask is structurally evaluated for the hypothetical accident 30-ft corner drop condition. In this event, the cask, with its payload, spacer (if appropriate), and impact limiters, falls 30 feet onto a flat, unyielding, horizontal surface. The cask strikes the surface on its top or bottom corner. The cask center of gravity is directly above the initial impact point for the corner drop condition. For the cask, an angle of 20&deg; from vertical is calculated for the top corner drop orientation, and an angle of 20&deg; from vertical is calculated for the bottom corner drop orientation. The loading for the drop accident includes cloure lid bolt preload, internal pressure and inertial body load.
The results of the stress evaluation are provided in Table 2.7.1-13 through Table 2.7.1-16 for the top corner drop. Table 2.7.1-15 and Table 2.7.1-16 provide stress summaries on a component basis for the top corner drop. The results of the stress evaluation for the bottom corner drop are provided in Table 2.7.1-17 through Table 2.7.1-20. Table 2.7.1-19 and Table 2.7.1-20 provide stress summaries on a component basis for the bottom corner drop.
For the top corner combined impact loading case, the minimum factor of safety for primary membrane stress intensity is 2.01 in the inner shell (Table 2.7.1-15). The minimum factor of safety for primary membrane plus bending stress intensity is 1.67 in the bottom inner forging (Table 2.7.1-16).
For the bottom corner, combined impact loading case, the minimum factor of safety for membrane stress intensity is 2.09 in the bottom inner forging (Table 2.7.1-19). The minimum factor of safety for primary membrane plus bending stress intensity is 1.23 in the bottom inner forging (Table 2.7.1-20).
NAC International                        2.7.1.3-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.1-13        Pm Stresses Foot Top Corner-Drop, ksi Angle                    Stress Components                Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy        Sz  Sxy    Syz    Sxz      Int. Allow.
1        1      37.5    -0.30    -0.39      -0.17 -0.15  -0.05  -0.05    0.37    42.88    Large 3        2      93.8    -0.45    -3.23      -0.23 -0.22  -0.01  -0.11    3.07    42.99    Large 1        3        0.0    -0.41    -4.41      4.36  0.00  -0.09  -0.57    8.84    43.72    4.95 3        4      26.2    -3.13    -4.17      -0.60 0.42    0.54  -0.57    4.02    43.70    Large 3        5      97.5    -1.65    1.13      -0.36 -0.09  -3.03  -0.28    6.31    43.84    6.95 1        6        0.0    -3.97  -11.13      -6.24 0.20  -0.25    0.82    7.44    43.83    5.89 3        7      11.2    0.03    -8.73      -7.81  0.26  -3.23    2.74  12.83    43.77    3.41 3        8      33.8    0.03    1.17      -2.34 -0.13  -7.89  -0.13  16.17    46.51    2.88 1        9      33.8    -0.01    5.55      -1.08 -0.22  -6.37  -0.11  14.38    46.38    3.23 1      10      67.5    0.01    3.14      -5.22  0.20  -2.46  -0.05    9.72    46.14    4.75 1      11      82.5    -0.02    2.78      -8.61 0.25    0.71    0.00  11.49    46.02    4.00 1      12      56.2    0.03    3.65      -5.53  0.12  4.59    0.05  12.99    46.15    3.55 1      13      30.0    -0.03    6.10      -6.40 -0.37  7.55    0.03  19.61    46.38    2.36 1      14      26.2    -0.09    6.30      -8.64 -0.40  8.84    0.10  23.16    46.47    2.01 3      15      33.8    -0.06    2.07      -8.15 0.16    8.54    0.49  19.94    43.75    2.19 3      16      45.0    2.62    4.64      -5.49  1.19  6.83    0.16  17.25    43.83    2.54 1      17        0.0    4.46    -5.82      -0.94  0.28  -0.02    1.07  10.50    44.07    4.20 3      18      75.0    0.03    2.22      -1.39 -0.05  -4.62  -0.46    9.96    44.07    4.43 3      19      63.8    0.02    1.59      -1.25 -0.05  -4.84  -0.12  10.09    66.98    6.64 3      20      56.2    0.00    1.25      -1.04 -0.01  -4.67  -0.05    9.63    66.99    6.96 1      21        0.0    -0.27    2.86      7.44 -0.20  -0.16    0.11    7.73    66.89    8.65 3      22      93.8    0.00    0.09      -8.55  0.09  0.04    0.03    8.69    66.81    7.69 3      23      67.5    0.01    1.48      -6.55  0.08  3.63    0.05  10.83    66.89    6.18 3      24      56.2    -0.02    2.69      -5.98 0.01    5.56    0.12  14.10    66.99    4.75 1      25      56.2    -0.06    2.75      -6.05 -0.01  6.03    0.12  14.93    66.99    4.49 1      26      60.0    0.01    1.23      -6.23  0.01  5.85    0.49  13.91    44.09    3.17 1      27      101.2    -2.56    3.37      -5.77 -1.08  3.71    0.01  11.95    44.05    3.69 3      28        0.0    -3.33  -13.88    -10.51 0.33    0.03  -2.23  11.21    43.83    3.91 3      29      22.5    -1.24  -22.52    -19.17 0.42  -0.28  -1.08  21.38    43.75    2.05 2      30      78.8    -0.26    -1.00      -5.98 0.08    0.00    1.27    6.26    94.50    Large 4      31      180.0    0.33    -2.50      -9.75 -0.03  0.13    1.29  10.41    94.50    9.08 4      32      18.8    -0.31    -4.40    -17.52 0.58  -0.24    6.13  21.18    94.50    4.46 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.1.3-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.7.1-14      Pm + Pb Stresses Foot Top Corner-Drop, ksi Angle                    Stress Components              Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy          Sz  Sxy    Syz    Sxz      Int. Allow.
3        1      86.2    -1.60    -3.45      0.36  0.03  -0.08  -0.07    3.82    61.26  Large 3        2      90.0    -3.24    -9.97      0.32 -0.08  -0.03  -0.10  10.29    61.41    5.97 1        3        0.0      0.73    -3.86      12.38 -0.08  -0.25  0.00  16.25    62.45    3.84 3        4        0.0    -5.83    -5.89      -0.70 -0.01  0.02  -1.90    6.38    62.43    9.78 3        5      101.2    -2.97    -0.61      -5.04 -0.19  -3.17  -0.47    7.80    62.63    8.03 1        6        0.0    -12.23  -21.54    -32.34  0.42  -0.02  2.53  20.76    62.61    3.02 1        7      0.0      0.07  -17.26    -36.69  0.63  0.03  3.36  37.39    62.53    1.67 3        8      30.0    -0.02    3.63      -3.64 -0.25 -13.37  -0.05  27.71    66.68    2.41 1        9      33.8    -0.11    11.66      0.45 -0.25  -9.96  -0.11  22.87    66.32    2.90 1      10        0.0    -0.47    22.15      12.44 -0.76  -0.01  0.04  22.67    65.94    2.91 1      11      0.0      -0.49    25.14      14.43 -0.88  0.03  0.00  25.69    65.78    2.56 1      12        0.0    -0.43    22.12      7.16 -0.76  0.13  -0.06  22.60    65.95    2.92 1      13      33.8    -0.11    12.94      -3.12 -0.26  11.03  0.05  27.29    66.31    2.43 1      14      30.0    -0.13    9.84      -7.60 -0.33  13.88  0.15  32.80    66.59    2.03 3      15      30.0    -0.06    1.59    -12.84  0.12  13.10  0.23  29.91    62.50    2.09 3      16        0.0    -9.96  -17.25    -35.52  0.36  0.05  -4.58  27.17    62.61    2.30 1      17        0.0      1.92  -10.94    -16.52  0.41  0.03  -0.78  18.52    62.95    3.40 1      18        0.0    -0.23    -3.02      15.19  0.12  -0.30  1.63  18.40    62.96    3.42 1      19      41.2    -0.04    1.19      -0.57 -0.03  -6.77  -0.05  13.65    95.68    7.01 1      20      37.5    -0.03    3.41      0.85 -0.07  -6.57  -0.09  13.39    95.70    7.15 1      21      0.0      -0.19    17.94      13.43 -0.69  0.00  0.13  18.18    95.55    5.26 1      22      0.0      -0.22    21.61      15.03 -0.82  0.03  0.04  21.89    95.45    4.36 1      23        0.0    -0.17    17.89      7.63 -0.69  0.05  -0.04  18.11    95.56    5.28 3      24      45.0    -0.09    6.25      -5.30 -0.03  6.69  0.11  17.67    95.70    5.42 3      25      45.0    -0.17    4.50      -7.93 -0.04  7.20  0.10  19.02    95.71    5.03 1      26      52.5    -0.06    0.57    -12.29 -0.04  7.09  0.34  19.15    62.98    3.29 1      27      48.8    -2.59    -2.79    -12.45 -3.73  5.68    0.30  17.53    62.92    3.59 3      28        0.0      0.03  -13.75      -4.58  0.43  0.36  -1.63  14.34    62.61    4.37 3      29        3.8    -5.60  -24.71    -29.21  0.00  -0.15  0.74  23.67    62.50    2.64 2      30      176.2      5.78    10.76      -0.51 -0.01  0.00  0.73  11.36    135.00  Large 4      31      176.2      0.32    -3.44    -12.37 -0.02  0.01  -4.85  15.98    135.00    8.45 4      32      176.2      2.08    -2.98    -21.04 -0.03  0.01  3.00  23.88    135.00    5.65 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                            2.7.1.3-3
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                          Revision 1 Table 2.7.1-15      Critical Pm Stress Summary Foot Top Corner-Drop, ksi Angle Component            Sec      (deg)      SI    Allow. FS Bottom Plate            4      26.2    4.02  43.70  Large Bottom Forging - Inner      7      11.2    12.83  43.77  3.41 Bottom Forging - Outer      17        0.0    10.50  44.07  4.20 Inner Shell          14      26.2    23.16  46.47  2.01 Outer Shell          25      56.2    14.93  66.99  4.49 Top Forging            29      22.5    21.38  43.75  2.05 Lid              32      18.8    21.18  94.50  4.46 Note: Section locations are presented in Figure 2.12.2-31.
Table 2.7.1-16    Critical Pm + Pb Stress Summary Foot Top Corner-Drop, ksi Angle Component            Sec      (deg)      SI    Allow. FS Bottom Plate            2      90.0    10.29  61.41  5.97 Bottom Forging - Inner      7        0.0    37.39  62.53  1.67 Bottom Forging - Outer      17        0.0    18.52  62.95  3.40 Inner Shell          14      30.0    32.80  66.59  2.03 Outer Shell          22        0.0    21.89  95.45  4.36 Top Forging            16        0.0    27.17  62.61  2.30 Lid              32      176.2    23.88  135.00  5.65 Note: Section locations are presented in Figure 2.12.2-31.
NAC International                      2.7.1.3-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.1-17      Pm Stresses Foot Bottom Corner-Drop, ksi Angle                    Stress Components                Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy        Sz  Sxy    Syz    Sxz      Int. Allow.
1        1      112.5    -0.44    -0.95      -2.07 -0.20  -0.05  -0.24    1.76    42.88    Large 1        2      105.0    -0.54    -2.99      -7.41 -0.60  -0.11  -1.35    7.51    42.99    5.72 1        3        0.0    -1.11    -4.89      1.64  0.02  -0.15  -1.67    7.32    43.72    5.97 3        4        0.0    -3.40    -5.27      -5.60  0.07  -0.09  -3.08    6.53    43.70    6.69 3        5        0.0    -9.28  -11.50    -20.53  0.10  -0.01  -0.77  11.35    43.84    3.86 3        6      41.2    -5.69    -4.81      -4.08 -1.02  -4.67    0.40    9.60    43.83    4.57 3        7        7.5    0.23  -12.15    -18.42  0.17  -2.87    3.42  20.91    43.77    2.09 1        8      30.0    -0.05    2.15      -8.28 -0.21  -9.26    0.01  21.26    46.51    2.19 1        9      30.0    -0.03    6.17      -6.82 -0.33  -7.68  -0.12  20.13    46.38    2.30 1      10      56.2    0.03    3.62      -5.69  0.11  -4.53  -0.05  12.99    46.14    3.55 1      11      82.5    -0.02    2.78      -8.32  0.24  -1.12    0.00  11.35    46.02    4.05 1      12      63.8    0.02    3.31      -4.12  0.19  2.54    0.05    9.01    46.15    5.12 1      13      33.8    0.00    5.47      -0.41 -0.25  6.25    0.04  13.82    46.38    3.36 1      14      30.0    -0.04    5.93      -1.03 -0.32  7.65    0.14  16.83    46.47    2.76 3      15      37.5    -0.07    4.06      -0.40  0.13  6.67    0.79  14.16    43.75    3.09 3      16      56.2    3.35    7.74      0.44  0.86  5.19    0.23  12.80    43.83    3.42 3      17        0.0    4.53    -9.12    -15.10  0.38  -0.12    1.31  19.81    44.07    2.22 3      18      67.5    -0.01    -1.31      -6.04 -0.03  -6.29  0.15    13.44    44.07    3.28 3      19      56.2    -0.04    0.26      -6.64 -0.03  -6.74    0.07  15.14    66.98    4.42 3      20      48.8    -0.04    2.53      -6.60 -0.03  -6.50  -0.18  15.89    66.99    4.22 3      21      60.0    0.02    1.70      -6.17  0.06  -4.64  -0.06  12.18    66.89    5.49 3      22      86.2    0.01    0.37      -8.42  0.10  -1.11  -0.03    9.09    66.81    7.35 1      23        0.0    -0.25    2.60      8.17 -0.20  0.11  -0.09    8.44    66.89    7.93 3      24      67.5    0.02    1.01      -3.00 -0.01  3.48    0.00    8.04    66.99    8.33 3      25      67.5    0.02    2.00      -2.46  0.00  3.87    0.17    8.95    66.99    7.49 1      26      101.2    0.10    4.96      -3.59 -0.03  2.53    0.74  10.05    44.09    4.39 1      27      108.8    -2.13    4.80      -2.50 -0.54  2.38    0.29    8.89    44.05    4.95 3      28        3.8    -3.30  -11.43      -1.18 -0.05  0.00  -1.73  11.22    43.83    3.91 3      29      37.5    1.69  -16.67      -0.11  0.48  -0.76    0.29  18.46    43.75    2.37 3      30      52.5    0.05    -0.06      0.11  0.27  0.14    0.10    0.66    93.81    Large 4      31        0.0    -1.92    -1.40      -0.25  0.00  -0.19    1.97    4.29    94.50    Large 4      32      26.2    -0.36    -1.93      -6.75  0.13  -0.37    2.50    8.14    94.50    Large Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.1.3-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.7.1-18        Pm + Pb Stresses Foot Bottom Corner-Drop, ksi Angle                    Stress Components              Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy        Sz  Sxy    Syz    Sxz      Int. Allow.
1        1      172.5      2.09    3.84      -2.16 -0.04  0.00  -0.24    6.02    61.26  Large 1        2      180.0      2.90    8.34      -2.93  0.11  0.00  -1.04  11.46    61.41    5.36 1        3      11.2    -6.06    -6.13      6.56 -1.68  -2.20  -1.39  15.24    62.45    4.10 3        4        0.0      0.01    -3.29      -2.91  0.02  -0.15  -4.59    9.64    62.43    6.48 3        5        0.0    -11.52  -14.91    -29.30  0.15  -0.05  -0.92  17.87    62.63    3.50 1        6        0.0    -18.48  -26.14    -43.25  0.43  -0.06  5.04  26.75    62.61    2.34 3        7        0.0      0.32  -20.78    -50.26  0.75  -0.16  3.09  50.98    62.53    1.23 1        8      26.2    -0.18    2.52    -12.80 -0.33 -14.31  0.10  32.47    66.68    2.05 1        9      33.8    -0.11    11.51      -5.34 -0.22 -11.46  -0.14  28.46    66.32    2.33 1      10        0.0    -0.46    21.32      7.21 -0.73  -0.10  0.04  21.83    65.94    3.02 1      11        0.0    -0.49    24.87      14.16 -0.87  -0.03  0.01  25.42    65.78    2.59 1      12        0.0    -0.43    22.58      12.28 -0.78  0.04  -0.05  23.07    65.95    2.86 1      13        3.8    -0.35    21.12      6.37  0.04  0.63  0.09  21.50    66.31    3.08 1      14      30.0    -0.13    9.74      -0.85 -0.36  12.34  0.14  26.88    66.59    2.48 3      15      30.0    -0.09    2.25      -5.86  0.12  11.55  0.31  24.50    62.50    2.55 3      16      52.5      0.18    3.81    -13.89 -0.18  6.12  -1.14  21.64    62.61    2.89 1      17        0.0      1.78  -15.79    -35.58  0.56  -0.10  -0.90  37.42    62.95    1.68 1      18        0.0    -0.06  -14.21    -30.33  0.48  0.00  1.95  30.54    62.96    2.06 1      19      41.2    -0.10    -0.07      -9.63 -0.04  -8.39  0.16    19.31    95.68    4.96 1      20      37.5    -0.10    4.19      -8.49 -0.06  -8.04  -0.17  20.48    95.70    4.67 1      21        0.0    -0.18    17.87      5.72 -0.69  -0.10  0.06  18.11    95.55    5.28 1      22        0.0    -0.22    21.39      14.05 -0.81  -0.06  -0.03  21.68    95.45    4.40 1      23        0.0    -0.17    17.53      14.05 -0.68  -0.05  -0.10  17.76    95.56    5.38 1      24      41.2    -0.03    5.07      2.19 -0.06  5.15  0.06  10.70    95.70    8.94 1      25      48.8    -0.03    4.52      -0.24 -0.03  5.50  0.17  12.00    95.71    7.98 1      26      67.5      0.04    1.60      -8.82  0.01  4.53  0.49  13.85    62.98    4.55 1      27      97.5    -4.64    -0.25    -11.25 -0.96  2.11  1.35  12.20    62.92    5.16 3      28        0.0      0.22  -12.66      0.26  0.40  0.31  -1.17  14.10    62.61    4.44 3      29        0.0    12.59    -7.03      12.25  0.84  0.05  4.76  24.27    62.50    2.58 3      30      86.2    -5.27  -10.36      -0.18  0.15  0.03  0.15  10.19    134.02  Large 4      31      105.0    -3.58    -2.71      -5.63  0.23  0.29  4.68    9.62    135.00  Large 4      32      108.8    10.64    2.72      -7.11 -0.27  0.29  -1.76  18.12    135.00    7.45 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Figure 2.12.2-31.
NAC International                            2.7.1.3-6
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.1-19      Critical Pm Stress Summary Foot Bottom Corner-Drop, ksi Angle Component            Sec      (deg)      SI  Allow. FS Bottom Plate          2      105.0      7.51 42.99    5.72 Bottom Forging - Inner      7        7.5    20.91 43.77    2.09 Bottom Forging - Outer      17        0.0    19.81 44.07    2.22 Inner Shell          8        30.0    21.26  46.51  2.19 Outer Shell          20      48.8    15.89 66.99    4.22 Top Forging            29      37.5    18.46  43.75  2.37 Lid              32      26.2    8.14  94.50  Large Note: Section locations are presented in Figure 2.12.2-31.
Table 2.7.1-20    Critical Pm + Pb Stress Summary Foot Bottom Corner-Drop, ksi Angle Component            Sec      (deg)      SI  Allow. FS Bottom Plate          2      180.0    11.46 61.41    5.36 Bottom Forging - Inner      7        0.0    50.98 62.53    1.23 Bottom Forging - Outer      17        0.0    37.42 62.95    1.68 Inner Shell          8        26.2    32.47  66.68  2.05 Outer Shell          22        0.0    21.68 95.45    4.40 Top Forging            29        0.0    24.27 62.50    2.58 Lid              32      108.8    18.12 135.00  7.45 Note: Section locations are presented in Figure 2.12.2-31.
NAC International                      2.7.1.3-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.1.4        30-Foot Oblique Drop In accordance with the requirements of 10 CFR 71.73, (c) (1) the MAGNATRAN transport cask is to be structurally evaluated for the hypothetical accident 30-ft oblique drop condition. In this event, the cask, with its payload, spacer (if appropriate), and impact limiters, falls 30 feet onto a flat, unyielding, horizontal surface. The cask strikes the surface obliquely on its top or bottom corner. The oblique drop results in deformation of a single impact limiter followed by cask rotation and the subsequent impact of the impact limiter at the opposite end of the cask. The cask corner drop is the cask CG over the impact limiter corner and the CG remains within the projected area of the deformation, so that the cask rotation is insignificant during the corner drop.
This section addresses only the oblique drop orientation.
As shown in Table 2.6.7-37 for the accident conditions, the side drop accelerations bound the accelerations of the end drop and corner drop orientations. The side drop accelerations are developed due to the deformation of both the top and bottom imact limiters. During the oblique drop only a single impact limiter is engaged with the unyielding surface and for the oblique drops, the balsa wood section of the impact limiter is primarily being deformed. The balsa wood section has significantly lower crush strength to generate deceleration forces than does the redwood which is engaged in the side drops. Also, during the oblique drop, there is a moment developed about the point of the rotation to induce an angular acceleration of the cask. However, due to the limited moment and the large cask moment of inertia, the angular acceleration is negilible compared to the accelerations developed by the deformation of the top and bottom impact limiters. For both impact limiters to be engaged, the cask body is in the side drop position, not any of the oblique orientations. It should be noted that the end, corner and side drop evaluations used accelerations which significantly bound acelerations shown in Table 2.6.7-37.
Therefore, no separate evaluation of the hypothetical accident 30-ft oblique drop condition is performed.
NAC International                        2.7.1.4-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.1.5            Lead Slump Resulting from a Cask Drop Accident Following a drop accident, the shielding capability of the MAGNATRAN transport cask may be reduced as a result of lead slump. The effect of the lead slump due to a bottom end drop and a side drop from a height of 30 feet on the dose rates is conservatively evaluated in Chapter 5. The dose rate as a result of the corner drop is bounded by that for the bottom end drop accident. The results of the evaluation are summarized in this section.
In the event of an end drop, the lead gamma shielding could slump and fill the annular gap (if one exists) created by the cooling of the lead after fabrication. This accident may result in a maximum gap of 0.87 inches at the top of the lead annulus. This gap is determined by considering the conservation of total lead volume:
(          )      (        )
roa2  ri2 H a =  rob2  ri2 H b where subscript a indicates quantities after slump, b, before slump, H is the total lead height, ri and ro are the inner and outer lead radii, respectively. Using the transport cask geometry dimensions, the computed slump height is:
H b  H a = 180.21  177.88 = 0.87 inches Note that the slumped lead is allowed to fill the gap between the before drop lead outer radius and the outer shell inner radius. The parameters used in the calculation are shown in Table 2.7.1-21.
For a 30-ft side-drop accident, the lead may slump into the lower portion of the annulus between the inner and outer shells. Therefore, a reduction in the thickness of lead shielding may occur on the upper side of the cask as shown in Figure 2.7.1-1. An evaluation of the side drop accident shows that the lead may slump by a maximum of 0.47 inch. The slump height is computed by equating the before and after drop cross-sectional areas:
roa 2 roa2                ri 2 2
2
(        2
                      )
roa  ri +
2 (2  sin (2 ))
2                    2
(
                                                            =  rob2  ri2 )
is the angle subtended by the top of the slumped lead, as measured from the vertical; and the term in parentheses gives the area of that part of the upper half of the semi-circle containing the slumped lead. Excel is used to solve the resulting equation for  (= 8.66&deg;). Given , the resulting slump height is 40.63 (= roa cos) inches. Table 2.7.1-21 provides the parameters and results of the lead slump analysis. The radial slump is:
roa  rslump = 41.1  40.63 = 0.47 inch NAC International                            2.7.1.5-1
 
MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                              Revision 1 Figure 2.7.1-1  Lead Slump Side Drop Model rslump ri rob NAC International                2.7.1.5-2
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                          Revision 1 Table 2.7.1-21      Parameters for Lead Slump Calculations Value, inches (unless Parameter              otherwise noted)
Axial Inner Radius                  37.875 Outer Lead Radius (pre)            41.085 Outer Lead Radius (post)              41.1 Lead Gap                    0.015 Pre Shield Height                180.21 Shield Volume (in3)              143,496 Post Shield Height                179.34 Axial Gap                    0.87 Radial Preslump Area                7.963E+02 Slump Angle (rad)                0.151 Slump Height                    40.63 Slump Lower Area (in2)          4.001E+02 Slump Upper Area (in2)          3.962E+02 Total Slump Area (in2)          7.963E+02 Radial Slump                    0.47 Slump Width                    12.38 NAC International                    2.7.1.5-3
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.1.6        Impact Limiter Analysis - Hypothetical Accident Conditions Removable upper and lower impact limiters are provided on the MAGNATRAN transport cask to ensure that the design impact loads on the cask are not exceeded for any of the defined impact conditions. The defined conditions are that the cask falls 30 feet and lands (a) on its side, so that both impact limiters are impacted simultaneously; (b) flat on one impact limiter at either end; or (c) oblique on one impact limiter at either end. The oblique orientation can be considered to include the CG over the corner as well as other arbitrary cask orientations. The impact limiter evaluation addresses the CG over the corner orientation. As discussed in Section 2.7.1.4, the oblique orientations other than the CG over corner drop are not considered.
Detailed analyses of the impact limiters for normal conditions of transport and hypothetical accident conditions are provided in Section 2.6.7.5. The analysis is based on the assumptions that the cask impacts on an unyielding surface and that the impact limiter remains in position on the cask during all impact events. The finite element program LS-DYNA is used to evaluate the impact limiters for the 30-ft drop to determine the maximum accelerations and the depth of crush. Results of the impact limiter analysis are provided in Section 2.6.7.5.
The results for the LS-DYNA 30-ft cask drop impact limiter analyses are summarized in Table 2.6.7-37. Evaluations of the MAGNATRAN cask body and TSC use accelerations greater than those in Table 2.6.7-37.
NAC International                        2.7.1.6-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.1.7          Closure Analysis Section 2.6.7.6 provides a general description of the analysis approaches employed to demonstrate the structural integrity of the MAGNATRAN transport cask closure assembly. The materials of construction and the geometry of the components of the closure assembly are also identified in Section 2.6.7.6.
The MAGNATRAN transport cask closure lid and the lid bolts are required to satisfy two criteria: (1) calculated maximum stresses must be less than the allowable stress limit (the material yield strength is conservatively selected); and (2) lid deformation or rotation at the O-ring must be less than the elastic rebound of the O-rings. Analysis of the cask closure system in accordance with NUREG/CR-6007 is summarized in the following section. Using consistently conservative assumptions, the analysis demonstrates that the cask closure assembly satisfies the performance and structural integrity requirements of 10 CFR 71.73(c)(1) for hypothetical accident conditions.
Accelerations for accident conditions are based on the impact limiter analysis for 30-ft drops.
An acceleration of 40g bounds the calculated values for the 30-ft end drops. The following calculations are a summary of the NUREG/CR-6007 evaluation based on a calculated preload of 182,278 lb/bolt as presented in Section 2.6.7.6. Maximum stresses result during the top end drop in the cold condition. Therefore, the bolt evaluation presented is for the 90&deg; drop orientation, cold condition (-40&deg;F ambient), with the maximum preload torque.
Two load cases are considered for this evaluation. The first case includes the accident conditions including top end impact (30-ft drop), but excluding puncture. The second case includes the top end 40-inch puncture accident, but excludes the 30-ft top end impact. The second case (puncture) conservatively ignores internal pressurization (for prying loads only), since the puncture load counters the moment produced by internal pressurization. This ensures that the closure bolts experience the maximum prying effect.
2.7.1.7.1        Closure Bolt Stress Evaluation Case 1Accident Conditions (30-foot top end drop, no puncture)
The tensile bolt force per bolt, Fa/pt, due to preload and thermal is:
Fa/pt = PL + Pth = 199,993 pounds where:
PL = 182,278 pounds, preload Pth = 17,715 pounds resulting from thermal expansion NAC International                          2.7.1.7-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 The total tensile force per bolt, Fa/al, is:
Fa/al = Po + Pi + P40 = 169,013 pounds where:
Po = 13,754 + 157 = 13,911 lbs, load resulting from O-ring compression and operation Pi = 12,001 lbs, load resulting from internal pressure of 135 psig P40 = 143,101 lbs, load resulting from 40 g top-end impact Since Fa/pt is greater than Fa/al, the total tensile bolt load, Fa, is equal to Fa/pt:
Fa = 199,993 pounds The shear load is:
Fs = Pi + Pth + P40= 60,839 lb where:
Pi = 42,611 lb, load resulting from internal pressure (135 psi)
Pth = 18,228 lb, load resulting from temperature difference between the cask lid and upper forging, and P40 = 0 lb, load resulting from 40 g top-end drop The bending moment is:
Mb = -1561 inch-pounds, due to thermal load (other loads do not contribute due to cask lid design)
The load resulting from torsion is:
Mt = 28,818 inch-pounds.
These loads and moments translate into the following stresses:
The tensile stress in the bolt is:
1.2732 Fa Sba =              = 72.2 ksi D2 where:
D = Db - (0.9743/n)
            = 1.8782 in.,bolt diameter for stress calculations Db = 2.0 in., nominal closure lid bolt diameter n = 8, number of threads per inch The shear stress is 1.2732 Fs Sbs =              = 22.0 ksi D2 NAC International                            2.7.1.7-2
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 The bending stress is:
10.186M b Sbb =                      = 2.4 ksi D3 The stress resulting from torsion is:
5.093M t Sbt =                  = 22.2 ksi D3 For accident conditions, Table 6.3 of NUREG/CR-6007 requires that the average tensile stress is the smaller of 0.7 Su or Sy. For this case, t(ave) = a = 72.2 ksi < 0.7 Su = 129.5 ksi Table 6.3 also requires that the average shear, which is comprised of the average direct shear ()
is the smaller of 0.42 Su or 0.6 Sy. This is expressed as:
s(ave) =  = 22.2 ksi < 0.42 Su = 77.7 ksi For the combined state of stress that includes tension plus shear, the square of the ratio of the average tensile stress to the allowable tensile stress, plus the square of the ratio of the average shear stress to the allowable shear stress must be less than one. This is expressed as:
2                2 S ba        S bs       
                    +            < 1.0 0.7 S u    0.42S u 2          2 72.2  22.0
                    +          = 0.39 < 1.0 129.5  77.7 For the combined state of stress that includes tensile, shear, and bending; the bolts must have a maximum stress intensity less than 1.0Su (when the minimum tensile strength is greater than 100 ksi). The maximum bolt stress intensity is:
Si =          (Sba + Sbb )2 + 4(Sbs + Sbt )2 = 116 ksi < 1.0 Su = 185 ksi.
The factor of safety for the ASME SB-637, Grade N07718 closure bolts is:
S u 185 FSult =              =          = 1.6 S i 116 Additionally, the bolt is evaluated against yield to determine whether the integrity of the cask lid seal is maintained:
Sy    150 FSyld =              =          = 1.3 Si  116 NAC International                                  2.7.1.7-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Since, the maximum stress in the bolt is less than the yield stress allowable, the cask lid seal is not broken during accident conditions of transport.
Case 2Accident Conditions (with puncture)
The tensile bolt force per bolt, Fa/pt, due to preload and thermal is:
Fa/pt = PL + Pth = 199,993 pounds where:
PL = 182,278 pounds, preload Pth = 17,715 pounds, load resulting from thermal expansion The tensile force per bolt, Fa/al, from all other credible loads is:
Fa/al = Po + Pi + Ppun = -1773 pounds where:
Po = 13,754 + 157 = 13,911 lbs, load resulting from O-ring compression and operation Pi = 12,001 lbs, load resulting from internal pressure of 135 psig Ppun = -27,685 lbs, load resulting from puncture Since Fa/pt is greater than Fa/al, the total tensile bolt load, Fa, is equal to Fa/pt:
Fa = 199,993 pounds The shear load is:
Fs = Pi + Pth + Ppun= 60,839 lb where:
Pi = 42,611 lb, load resulting from internal pressure (135 psi)
Pth = 18,228 lb, load resulting from temperature difference between the cask lid and upper forging, and Ppun = 0 lbs, load resulting from puncture The bending moment is:
Mb = -27,799 inch-pounds, due to thermal and puncture loads (other loads do not contribute due to cask lid design)
The load resulting from torsion is:
Mt = 28,818 inch-pounds These loads and moments translate into the following stresses:
The tensile stress in the bolt is:
1.2732 Fa Sba =              = 72.2 ksi D2 NAC International                            2.7.1.7-4
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 where D = Db - (0.9743/n)
          = 1.8782 in., bolt diameter for stress calculations Db = 2.0 in., nominal closure lid bolt diameter n = 8, number of threads per inch The shear stress is:
1.2732 Fs Sbs =                  = 22.0 ksi D2 The bending stress is:
10.186M b Sbb =                      = 42.7 ksi D3 The stress resulting from torsion is:
5.093M t Sbt =                  = 22.2 ksi D3 For accident conditions, Table 6.3 of NUREG/CR-6007 requires that the average tensile stress is the smaller of 0.7 Su or Sy. For this case:
t(ave) = a = 72.2 ksi < 0.7 Su = 129.5 ksi Table 6.3 also requires that the average shear, which is comprised of the average direct shear ()
is the smaller of 0.42 Su or 0.6 Sy. This is expressed as:
s(ave) =  = 22.0 psi < 0.42 Su = 77.7 psi For the combined state of stress that includes tension plus shear, the square of the ratio of the average tensile stress to the allowable tensile stress, plus the square of the ratio of the average shear stress to the allowable shear stress must be less than one. This is expressed as:
2              2 S ba        S bs       
                              < 1.0 0.7 S u    0.42S u 2          2 72.2  22.0
                              = 0.39 < 1.0 129.5  77.7 For the combined state of stress that includes tensile, shear, and bending; the bolts must have a maximum stress intensity less than 1.0Su (when the minimum tensile strength is greater than 100 ksi). The maximum bolt stress intensity is:
Si =          Sba  Sbb 2  4Sbs  Sbt 2 = 145 ksi < 1.0 Su = 185 ksi NAC International                                2.7.1.7-5
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                          Revision 1 The factor of safety for the ASME SB-637, Grade N07718 closure bolts is:
S u 185 FSult =              = 1.28 S i 145 NAC International                    2.7.1.7-6
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.1.8          Neutron Shield Assembly Analysis - Hypothetical Accident Conditions This section documents the evaluation of the structural integrity of the of the neutron shield assembly for accident conditions. The neutron shield assemblies and cooling fins are attached to the outer shell of the transport cask. The layout of the neutron shield assemblies and cooling fins is shown in Figure 2.6.7-24. A description of the construction and assembly of the neutron shield assemblies is provided in Section 2.6.7.7.
The neutron shielding is analyzed for the 30-ft drop accident conditions. The end drop and side drop evaluations bound all other drop orientations of the cask body.
2.7.1.8.1        End Drop For an end drop, the neutron shield A and C assemblies are critical. Since the A assembly is larger, it provides the bounding case and its dimensions will be used in this analysis.
The maximum compressive stress in the NS-4 FR is:
W NS 4 a 571 x 60 NS 4 =                =        = 644 psi A NS 4      53.2 where:
ANS4    =  Vin / Lin = 53.2 in2 -------------- Cross-sectional area of NS-4-FR WNS4    =  571 lbs --------------------------- Weight of NS-4-FR Vin  =  9,406 in3 ------------------------- Cavity volume of shield assembly A Lin  =  176.7 in -------------------------- Cavity length of shield assembly A a  =  60 g ------------------------------ 30-ft end drop acceleration The factor of safety is:
0.7 S u    7,350 FS =            =          = 11.4 NS 4      644 where:
Su = 10,500 psi            Ultimate Compressive Strength, NS-4-FR The maximum compressive stress in the stainless steel tube is:
WSS a 216 x 60 SS =            =            = 3,216 psi = 3.22 ksi A SS          4.03 where:
WSS = 216 lbs --------------------------- Weight of stainless steel enclosure a = 60g ------------------------------- 30-ft end drop acceleration ASS = 4.03 in2 -------------------------- Cross-sectional area of stainless steel tube NAC International                              2.7.1.8-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 The factor of safety is:
0.7S u 0.7(66.2 )
FS =            =          = 14.4 SS        3.22 where:
Sm = 66.2 ksi -------------------------- Ultimate Strength, SA240 Type 304, 300&deg;F The end drop evaluation of the retention studs considers the studs loaded by the B neutron shield assembly and the aluminum and copper fins above and below the neutron shield assembly, respectively. In an end drop condition, the retention rings at the top and bottom of the cask body carry the load of the neutron shielding from the A and C assemblies.
The maximum load on a stud is:
W        + WSS + WAL + WC FStud = WNS 4mid + NS 4end                      a = 8,226 lb 10 where:
WNS4mid = 53 lbs ---------------------------- Weight of NS-4 middle section - 16.9 length WNS4end = 39 lbs ---------------------------- Weight of NS-4 end section - 12.3 length WSS = 219 lbs --------------------------- Weight of stainless steel enclosure for the B assembly WAL = 69 lbs ---------------------------- Weight of aluminum cooling fin WC = 514 lbs --------------------------- Weight of copper cooling fin a = 60g ------------------------------- 30-ft end drop acceleration The shear stress in the stud is:
FStud stud =        = 18,611 psi = 18.6 ksi AStud where:
FStud = 8,226 lb -------------------------- Force on the stud AStud = (D2/4) = 0.442 in2 ------------- Cross-sectional area of stud D = 0.75 inch ------------------------ Diameter of stud The factor of safety is:
0.42S u    27.8 FS =              =      = 1.5 stud    18.6 NAC International                          2.7.1.8-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 where:
Su = 66.2 ksi -------------------------- Ultimate Strength of Type 304 stainless steel at 300&deg;F The retention ring is a 1-inch thick by 3-inch wide ring welded to the cask body with two 1/4-inch groove welds. Conservatively using the weight of all fins and neutron shielding assemblies, the shear stress in the welds is:
Pg    35,361 x 60 weld =            =              = 15,577 psi = 15.6 ksi Aweld      136 .2 where:
P = 35,361 lb ------------------------ Weight of all neutron shielding and fins a = 60 g ------------------------------ 30-ft end drop acceleration Aweld =  x D x (2 x t weld ) = 136.2 in2 -- Ring weld area D = 86.7 inches ---------------------- Cask outer diameter tweld = 0.25 inch ------------------------ Weld size The factor of safety is:
0.42 S u    0.42 x 66.2 FS =              =              = 1.78 weld        15.6 where:
Su = 66.2 ksi -------------------------- Ultimate Strength of Type 304 stainless steel at 300&deg;F 2.7.1.8.2      Side Drop For the 30-ft side drop condition, the bolted on neutron shield assembly B and the copper cooling fin A support the A and C neutron shield assemblies. Accordingly, the side drop evaluation considers the stresses developed in the bolted section of the B neutron shield assembly. Using the finite element model presented in Section 2.6.7.7.4, the maximum sectional stresses are evaluated for the nut and lower and upper washers.
The maximum primary membrane sectional stresses and safety factors in the various components of the assembly are presented in Table 2.7.1-22. Additionally, the stress summary for the maximum primary membrane plus bending stresses is presented in Table 2.7.1-23.
The 10 retention studs in a B tube assembly must carry the load for one B assembly, and one-half the load of two A assemblies (Figure 2.6.7-24). Conservatively, the evaluation of the bolted section considers a maximum preload of 700 pounds. The tensile load in the retention stud, including the maximum preload, is:
Pn = Pa + Fmax T    =  236.8 x 60 + 700 = 14,908 lb = 14.9 kip NAC International                            2.7.1.8-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 where:
P = 236.8 lbs ------------------------- 1g load per stud a = 60 g ------------------------------ 30-foot side drop acceleration FmaxT = 700 lbs --------------------------- Maximum preload The tensile area of the stud at the threads is:
2 0.9743 At = 0.7854 D                = 0.3345 in2 n
The shear area of the stud threads is:
1 As = 3.1416nL e K n max  + 0.57735 (E s min  K n max ) = 1.21 in2 2n The shear area of the nut threads is:
1 An = 3.1416nL e D s min  + 0.57735 (D s min  E n max ) = 1.723 in2 2n where:
D = 0.75 inch ------------------------ Diameter of stud n = 10 --------------------------------- Threads per inch, 3/4-10 UNC-2A Le = 1.0 inch -------------------------- Thread length, heavy hex head nut Kn max = 0.663 inch ----------------------- Maximum minor diameter of internal thread En max = 0.6927 inch --------------------- Maximum pitch diameter of internal thread Es min = 0.6773 inch --------------------- Minimum pitch diameter of external thread Ds min = 0.7353 inch --------------------- Minimum major diameter of external thread Using the above equations, the stresses in the retention stud are calculated as follows:
The tensile stress in the stud is:
P 14,908 t =        =        = 44,568 psi = 44.6 ksi At 0.3345 The factor of safety is 0 .7 S u  46.3 FS =            =      = 1.04 t      44.6 where:
Su = 66.2 ksi -------------------------- Ultimate Strength of Type 304 stainless steel at 300&deg;F The shear stress in the stud threads is:
P 14,908 s =        =        = 12,321 psi = 12.3 ksi As      1.21 NAC International                          2.7.1.8-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 The factor of safety is:
0.42 S u    27.8 FS =              =        = 2.26 s        12.3 where:
Su = 66.2 ksi -------------------------- Ultimate Strength of Type 304 stainless steel at 300&deg;F The shear stress in the nut threads is P 14,908 n =        =          = 8,652 psi = 8.7 ksi An      1.723 The factor of safety is:
0.42S u      27.8 FS =              =        = 3.20 n        8.7 where:
Su = 66.2 ksi -------------------------- Ultimate Strength of Type 304 stainless steel at 300&deg;F The compressive stress in mounting tube considering the maximum preload is:
(WSSB + Wcf    + WA )a + Ppl tube =                                      = 31,784 psi = 31.8 ksi A tube where:
WSSB = 29 lbs ---------------------------- Weight of assembly B stainless steel shell loading an end stud Wcf = 64 lbs ---------------------------- Weight of copper cooling fin A loading an end stud WA = 121lbs ---------------------------- Weight of neutron shield assembly A and copper fin D loading an end stud 2
Atube = 0.426 in ------------------------- Area of the mounting tube a = 60g ------------------------------- 30-foot side drop acceleration Ppl = 700 lbs --------------------------- Maximum preload The factor of safety is:
0 .7 S u    46.3 FS =            =        = 1.46 tube    31.8 where:
Su = 66.2 ksi -------------------------- Ultimate Strength of Type 304 stainless steel at 300&deg;F NAC International                          2.7.1.8-5
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Table 2.7.1-22    Maximum Sectional Primary Membrane Stress Summary, 30-ft Side Drop Primary Membrane          Pm Stress      Allowable Component          (psi)        ( psi)    FS Lower Washer        30          46,340    Large Upper Washer        200        46,340    Large Nut          2,500        46,340    Large Table 2.7.1-23  Maximum Sectional Primary Membrane Plus Bending Stress Summary, 30-ft Side Drop Pm+Pb Pm+Pb Component                Allowable    FS (psi)
(psi)
Lower Washer    3,100      66,200    Large Upper Washer    33,600      66,200    1.97 Nut        37,800      66,200    1.75 NAC International                2.7.1.8-6
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.7.2          Crush According to 10 CFR 71.73(c)(2), this test is not applicable to the MAGNATRAN transport cask because the mass of the cask and contents is greater than 1,100 lb (500 kg), and the cask and contents have an overall density greater than 62.4 lb/ft3 (1,000 kg/m3).
NAC International                            2.7.2-1
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 2.7.3            Puncture In accordance with 10 CFR 71.73(c)(3), a puncture evaluation of the cask body is required. The puncture accident outlined in 10 CFR 71 requires that the cask suffer no loss of containment as a result of a 40-inch free fall onto an upright 6-inch diameter mild steel bar, which is supported on an unyielding surface. The impact orientation of the cask is required such that the maximum damage is inflicted upon the cask. The maximum cask damage will result from direct impacts of the pin on the following locations: (1) midpoint of cask side, (2) center of cask lid and (3) center of cask bottom.
2.7.3.1          Cask Body Puncture - Finite Element Models The cask side, cask lid and cask bottom punctures are analyzed using the cask finite element models shown in Figure 2.7.3-1 through Figure 2.7.3-3, respectively, with additional details in Section 2.12.2.6. The section cut locations for each of the pin puncture models are documented in Table 2.7.3-1 through Table 2.7.3-3. In each case, the finite element models are quarter-symmetry models. The models are modified to refine the mesh in the impact regions (6-inch diameter). In the side puncture model, only the upper region of the cask, which is lighter than the lower half of the cask, is modeled. The neutron shielding is also conservatively omitted from the structural evaluation. The pin puncture is represented by applying an acceleration to the entire model, while restraining the nodes that would be in contact with the pin. Strain rate and dynamic behavior of the bar material are considered. The limiting bar impact force is that imposed by the dynamic yield stress (flow stress) of the bar material, which is related to the static yield stress by the following expression.
1/ p SYd      =        S y 1 +        = 46,250 psi < 47,000 psi (pressure used in evaluation)
D where:
Sy  =  36,000 psi -------------------------------- Static Yield Strength, SA36
            =  100 sec-1 ---------------------------------- Strain rate of bar material during drop D  =  40 ------------------------------------------ Material constant for mild steel p  =  5 ------------------------------------------- Material constant for mild steel The acceleration applied to the model is computed by considering a conservatively light transport cask weight as follows.
SYd Apin a pun =            = 4.58 g M cask NAC International                                2.7.3-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 where:
SYd = 47,000 psi -------------------------------- Dynamic yield stress of bar used in the evaluation D  2 Apin =          -------------------------------------- Area of pin (in2) 4 D = 6.0 in -------------------------------------- Pin head diameter Mcask= 290,000 lb -------------------------------- Cask weight (conservatively light) 2.7.3.2        Analysis Results For the side pin puncture case, stresses are evaluated at the pin contact. Therefore, only the membrane stresses are evaluated; the localized bending stresses are considered secondary. Both primary membrane stresses and primary membrane plus bending stresses are reported for the top and bottom pin puncture cases, since the pin puncture loading will result in flexure of the cask bottom forging and cask lid.
The results of the three pin puncture evaluations are summarized in Table 2.7.3-4 through Table 2.7.3-8, for side, top and bottom puncture cases. The maximum stress occurs in the cask outer shell during a side impact pin puncture at the center of the cask outer shell.
For the side puncture case, the maximum Pm stress is 59.4 ksi, and the factor of safety is 1.1 as documented in Table 2.7.3-4. For the top end puncture case, the maximum Pm + Pb stress is 51.39 ksi and the factor of safety is 2.60 as documented in Table 2.7.3-6. For the bottom end puncture case, the maximum Pm + Pb stress is 33.37 ksi and the factor of safety is 1.83 as documented in Table 2.7.3-8.
Additionally, the shear stress in the outer shell due to pin puncture is calculated using the perimeter of the pin as a shear plane through the outer shell.
P      P os =      =        = 31.3 ksi A Dt where:
S = 47,000 psi -------------------------------- Dynamic yield stress for pin D = 6.0 in -------------------------------------- Pin Diameter SD 2 P =            = 1,329 kip ---------------------- Shear load due to pin 4
t = 2.25in ------------------------------------- Outer shell thickness 0.42S u 38.9 FS =              =        = 1.24 os      31.3 where:
Su = 92,650 psi -------------------------------- Tensile Strength, SA240 XM-19, 350&deg;F NAC International                              2.7.3-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The factors of safety for the finite element analyses of the side, top and bottom pin puncture evaluations, and the factor of safety for the shear evaluation of the side pin puncture are all greater than 1.0. Therefore, the MAGNATRAN transport cask is shown to satisfy the performance and structural integrity requirements of 10 CFR 71.73(c)(3) for the hypothetical puncture accident conditions.
Consequently, the outer shell of the cask body is not punctured.
2.7.3.3        Puncture - Port Cover The MAGNATRAN transport cask has one port coverplate located on the top surface of the lid near the lid perimeter. The coverplate is recessed one-quarter inch below the lid top surface.
The diameter of the coverplate is 5.32 inches, which is smaller than the hypothetical puncture pin. The cavity below the coverplate is 2.00 inches in diameter and 1.65 inches deep.
Since the unsupported area beneath the coverplate is only 2.00 inches in diameter (significantly smaller than the puncture pin) and is located near the perimeter of the lid, the effect of pin puncture on the port coverplate is negligible.
The results for the top pin puncture analysis (which is evaluated for impact at the center of the lid) bound the effect of pin puncture on the port coverplate.
2.7.3.4        Puncture Accident - Shielding Consequences The cask body side puncture accident causes a localized reduction in the cask shielding. The resulting dose rates are bounded by the loss of neutron shield accident dose rates, which do not exceed the limits of 10 CFR 71.51.
NAC International                          2.7.3-3
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.3-1 Cask Body Side Pin Puncture Finite Element Model NAC International              2.7.3-4
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.7.3-2 Cask Lid Top Pin Puncture Finite Element Model NAC International                2.7.3-5
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.3-3 Cask Bottom Pin Puncture Finite Element Model NAC International              2.7.3-6
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.7.3-1      Section Locations for Cask Body Side Pin Puncture Model Nodal Location                          Nodal Location Section                                Section Y (&deg;)        Z (in)                    Y (&deg;)        Z (in) 1            0          107.806        22          2.25        107.806 2            0          108.556        23          2.25        108.556 3            0          109.306        24          2.25        109.306 4            0          110.056        25          2.25        110.056 5            0          110.806        26          2.25        110.806 6            0          111.556        27          2.25        111.556 7            0          112.306        28          2.25        112.306 8          0.75        107.806        29          3.0        107.806 9          0.75        108.556        30          3.0        108.556 10          0.75        109.306        31          3.0        109.306 11          0.75        110.056        32          3.0        110.056 12          0.75        110.806        33          3.0        110.806 13          0.75        111.556        34          3.0        111.556 14          0.75        112.306        35          3.0        112.306 15          1.5        107.806        36          3.75        107.806 16          1.5        108.556        37          3.75        108.556 17          1.5        109.306        38          3.75        109.306 18          1.5        110.056        39          3.75        110.056 19          1.5        110.806        40          3.75        110.806 20          1.5        111.556        41          3.75        111.556 21          1.5        112.306        42          3.75        112.306 Notes:
: 1. Nodes 1 and 2 of the section cuts have X-locations equal to the OD and ID of the outer shell, 43.35 inches and 41.1 inches, respectively.
: 2. Z-locations are measured with respect to the full-length model.
: 3. Allowable stresses for each section are evaluated at 202&deg;F and 330&deg;Fthe maximum temperature for the cold and hot ambient conditions, respectively.
NAC International                      2.7.3-7
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.7.3-2    Section Locations for Cask Lid Top Pin Puncture Model Node 1                              Node 2 Section X (in)            Z (in)            X (in)            Z (in) 1            0.5              206.4              0.5            214.15 2          0.875            206.4            0.875            214.15 3          1.304            206.4            1.304            214.15 4          1.794            206.4            1.794            214.15 5          2.355            206.4            2.355            214.15 6          2.996            206.4            2.996            214.15 7          3.728            206.4            3.728            214.15 8          4.566            206.4            4.566            214.15 9          5.524            206.4            5.524            214.15 10          6.619            206.4            6.619            214.15 11          7.871            206.4            7.871            214.15 12          9.302            206.4            9.302            214.15 13          36.125            209.65            36.125            214.15 14          36.85            209.65            36.85            211.9 Note:
: 1. Allowable stresses for each section are evaluated at 202&deg;F and 330&deg;Fthe maximum temperature for the cold and hot ambient conditions, respectively.
Table 2.7.3-3      Section Locations for Cask Bottom Pin Puncture Model Node 1                              Node 2 Section X (in)            Z (in)            X (in)            Z (in) 1            0.5                0                0.5              8.64 2          0.946              0              0.946            8.64 3          1.450              0              1.450            8.64 4          2.018              0              2.018            8.64 5          2.660              0              2.660            8.64 6          3.384              0              3.384            8.64 7          4.202              0              4.202            8.64 8          5.125              0              5.125            8.64 9          6.167              0              6.167            8.64 10          7.343              0              7.343            8.64 11          8.671              0              8.671            8.64 12          10.170              0              10.170            8.64 13          39.488              0              39.488            8.64 Note:
: 1. Allowable stresses for each section are evaluated at 202&deg;F and 330&deg;Fthe maximum temperature for the cold and hot ambient conditions, respectively.
NAC International                    2.7.3-8
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.7.3-4          Cask Body Side Pin Puncture, Pm Stress Summary, ksi Angle                  Stress Components                    Stress    Stress Case1 Sect.2                                                                                            FS (deg)      Sx      Sy      Sz    Sxy      Syz      Sxz      Int. Allow.
3      1        0.0    -40.97  -30.51  -35.05  6.14    -0.04    0.15    16.12    65.29      4.05 1      2        0.0    -40.03  -29.98  -34.62  6.16    -0.08    1.20    16.07    65.29      4.06 3      3        0.0    -43.72  -30.42  -34.49  6.16    -0.19    4.45    19.85    65.29      3.29 3      4        0.0    -48.85  -30.92  -33.53  6.00    -0.45  11.03    29.65    65.29      2.20 1      5        0.0    -54.54  -32.05  -31.53  5.10    -0.88  23.86    53.84    65.29      1.21 3      6        0.0      -3.40  -17.07  -28.66  2.93    -1.04  26.70    59.40    65.29      1.10 3      7        0.0      -0.82  -15.91  -25.93  1.74    -0.76  16.94    42.35    65.29      1.54 3      8        0.8    -37.66  -30.64  -34.02  11.62    -0.08    0.16    24.28    65.29      2.69 3      9        0.8    -36.80  -30.14  -33.91  11.67    -0.16    1.21    24.39    65.29      2.68 3      10        0.8    -40.43  -30.51  -33.52  11.64    -0.42    4.40    26.71    65.29      2.44 1      11        0.8    -45.34  -30.99  -32.44  11.50    -0.97  10.67    33.92    65.29      1.92 3      12        0.8    -50.69  -31.46  -31.05  10.05    -1.99  22.75    53.04    65.29      1.23 3      13        0.8      -3.02  -17.57  -28.26    5.46    -2.36  25.41    58.00    65.29      1.13 3      14        0.8      -0.81  -16.13  -25.66    2.83    -1.69  16.28    41.52    65.29      1.57 3      15        1.5    -28.13  -30.97  -31.06  20.57    -0.15    0.21    41.24    65.29      1.58 3      16        1.5    -27.39  -30.48  -30.91  20.68    -0.32    1.21    41.56    65.29      1.57 3      17        1.5    -30.88  -30.86  -30.78  20.72    -0.79    4.33    42.36    65.29      1.54 3      18        1.5    -34.10  -30.01  -29.21  20.26    -1.75    9.90    45.22    65.29      1.44 3      19        1.5    -41.79  -31.83  -31.08  19.84    -3.64  19.59    56.16    65.29      1.16 3      20        1.5      -1.05  -17.78  -25.92    9.40    -4.34  21.56    54.12    65.29      1.21 3      21        1.5      -0.91  -16.90  -25.08    5.16    -3.13  14.37    39.61    65.29      1.65 3      22        2.2    -13.30  -31.23  -26.27  23.94    -0.21    0.31    51.14    65.29      1.28 3      23        2.2    -12.77  -30.81  -26.26  24.17    -0.46    1.32    51.67    65.29      1.26 3      24        2.2    -15.16  -30.58  -25.70  24.42    -1.17    4.07    51.94    65.29      1.26 3      25        2.2    -21.93  -32.59  -26.65  24.13    -2.57  10.14    53.63    65.29      1.22 3      26        2.2      -2.44  -25.03  -20.99  21.16    -4.60  15.00    57.84    65.29      1.13 3      27        2.2      -4.07  -22.24  -25.50  11.42    -5.22  14.81    45.14    65.29      1.45 3      28        2.2      -0.33  -17.34  -23.56    6.66    -4.06  12.05    37.35    65.29      1.75 3      29        3.0      -4.45  -31.37  -23.18  22.00    -0.31    0.53    51.60    65.29      1.27 3      30        3.0      -3.33  -30.92  -22.95  22.18    -0.66    1.58    52.36    65.29      1.25 3      31        3.0      -3.84  -30.78  -22.54  22.30    -1.62    4.28    52.96    65.29      1.23 3      32        3.0      -2.87  -29.12  -21.19  21.56    -3.20    7.74    53.37    65.29      1.22 3      33        3.0      -3.23  -27.08  -23.08  16.40    -4.76  10.40    47.31    65.29      1.38 3      34        3.0      -1.11  -21.63  -22.73  11.47    -5.17  10.91    41.14    65.29      1.59 3      35        3.0      -0.54  -18.32  -22.93    7.32    -4.51    9.52    34.77    65.29      1.88 3      36        3.8      -2.64  -31.09  -22.23  18.50    -0.43    0.58    46.69    65.29      1.40 3      37        3.8      -1.66  -30.63  -22.10  18.50    -0.91    1.55    47.15    65.29      1.38 3      38        3.8      -1.70  -30.04  -21.81  18.14    -2.01    3.70    46.91    65.29      1.39 3      39        3.8      -1.56  -28.77  -21.72  16.67    -3.38    5.91    45.47    65.29      1.44 3      40        3.8      -1.04  -25.70  -21.84  13.78    -4.56    7.58    41.90    65.29      1.56 3      41        3.8      -0.82  -22.23  -22.24  10.34    -5.01    8.13    37.27    65.29      1.75 3      42        3.8      -0.44  -18.84  -22.22    7.32    -4.78    7.50    32.73    65.29      1.99 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are listed in Table 2.7.3-1.
NAC International                                  2.7.3-9
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Table 2.7.3-5        Cask Lid Top Pin Puncture, Pm Stress Summary, ksi Angle                    Stress Components                Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy          Sz    Sxy  Syz    Sxz      Int. Allow.
3        1      67.5      1.67  8.72      -6.89    0.00 0.00  0.63    15.66    93.70    5.98 3        2      0.0      2.28    5.06      -8.08  -0.09 0.03  0.93    13.23    93.70    7.08 3        3      0.0      2.95    4.21      -8.71  -0.04 0.05  1.63    13.14    93.70    7.13 3        4      0.0      2.81    3.48      -9.78  -0.02 0.08  2.54    13.75    93.70    6.81 3        5      0.0      2.13    2.61    -11.35  -0.02 0.13  4.01    15.69    93.70    5.97 3        6      0.0      -0.86  0.54      -14.57  -0.05 0.20  6.74    19.23    93.70    4.87 3        7      0.0      -2.94  1.41      -6.21  -0.14 0.26  7.69    15.74    93.70    5.95 3        8      0.0      -2.21  1.34      -3.78  -0.12 0.21  6.29    12.69    93.70    7.38 3        9      0.0      -1.60  1.38      -1.67  -0.10 0.17  5.24    10.48    93.70    8.94 3      10      0.0      -1.11  1.22      -0.67  -0.08 0.14  4.36    8.74    93.70    Large 3      11      0.0      -0.75  1.02      -0.19  -0.06 0.12  3.65    7.32    93.70    Large 3      12      0.0      -0.49  0.82      -0.04  -0.04 0.10  3.06    6.14    93.70    Large 3      13      90.0      0.94  -2.63      0.63    0.23 -0.63  -1.58    5.19    93.70    Large 3      14      90.0      0.91  -0.64      7.83    0.22 -1.45  -2.81    9.98    93.70    9.39 Table 2.7.3-6        Cask Lid Top Pin Puncture, Pm + Pb Stress Summary, ksi Angle                    Stress Components                Stress  Stress Case1 Sect.2                                                                                  FS (deg)        Sx      Sy        Sz    Sxy  Syz    Sxz      Int. Allow.
3        1      90.0    13.83  56.15      4.81    1.37  0.04  -0.18  51.39    133.86    2.60 3        2      90.0    18.15  34.94      0.03    0.54  0.00  0.02  34.93    133.86    3.83 3        3      90.0    24.16  31.85      1.30    0.25 -0.01  0.39  30.57    133.86    4.38 3        4      67.5    26.37  30.61      2.43  -0.01  0.00  0.75  28.21    133.86    4.75 3        5      90.0    27.53  30.38      4.41    0.09 -0.02  0.66  26.00    133.86    5.15 1        6        0.0    -30.26  -28.83    -38.76  -0.04  0.39  14.15  29.56    133.86    4.53 3        7        0.0    -38.71  -27.56    -11.81  -0.35  0.55  15.91  41.69    133.86    3.21 3        8        0.0    -32.72  -26.35      -6.59  -0.20  0.34  10.09  33.03    133.86    4.05 3        9      90.0    24.36  27.29      -1.13    0.09 -0.12  3.77  28.97    133.86    4.62 3      10      82.5    21.01  25.51      -0.59    0.00  0.00  4.01  26.83    133.86    4.99 3      11      90.0    18.06  23.56      -0.24    0.18 -0.12  3.70  24.53    133.86    5.46 3      12      90.0    15.37  21.50      -0.08    0.20 -0.10  3.18  22.22    133.86    6.02 3      13      86.2    -7.42  -3.08    -10.84  -0.38 -0.71  4.90  11.67    133.86  Large 3      14      90.0    -20.54  -5.85      2.02  -1.23 -2.85  -0.89  23.65    133.86    5.66 Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Table 2.7.3-2.
NAC International                                2.7.3-10
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.3-7          Cask Bottom Pin Puncture, Pm Stress Summary, ksi Angle                    Stress Components              Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy          Sz    Sxy  Syz    Sxz    Int. Allow.
1        1      0.0      -0.09    1.94    -13.97  -0.07 -0.01  -0.72  15.95    42.82    2.68 1        2      0.0      0.03    0.75    -14.48  -0.02 -0.04  -1.17  15.32    42.82    2.79 1        3      0.0      0.08    0.40    -14.94  -0.01 -0.07  -2.15  15.64    42.82    2.74 1        4      0.0      -0.35    -0.06    -15.68  -0.01 -0.12  -3.62  16.95    42.82    2.53 1        5      0.0      -2.40    -1.37    -17.45  -0.03 -0.20  -6.33  19.67    42.82    2.18 1        6      0.0      -3.69    0.22      -7.78  -0.13 -0.24  -7.18  14.95    42.82    2.86 3        7      0.0      -3.15    0.17      -4.89  -0.11 -0.19  -5.62  11.39    42.82    3.76 3        8      0.0      -2.54    0.28      -2.59  -0.09 -0.15  -4.45  8.90    42.82    4.81 3        9      90.0      -2.04    0.21      -1.23    0.07  0.14  -3.56  7.17    42.82    5.97 3      10      90.0      -1.69    0.10      -0.49    0.06  0.11  -2.88  5.89    42.82    7.27 3      11      90.0      -1.43    -0.05      -0.15    0.04  0.09  -2.37  4.91    42.82    8.72 3      12      90.0      -1.24    -0.20      -0.02    0.03  0.07  -1.97  4.13    42.82    Large 3      13      0.0      -0.76    -0.83      -0.55    0.00 -0.01  -0.38  0.79    42.82    Large Table 2.7.3-8        Cask Bottom Pin Puncture, Pm + Pb Stress Summary, ksi Angle                    Stress Components              Stress  Stress Case1 Sect.2                                                                                  FS (deg)      Sx      Sy          Sz    Sxy  Syz    Sxz    Int. Allow.
3        1      0.0      10.05    34.40      1.05  -0.77  0.01  -0.15  33.37    61.17    1.83 3        2      0.0      12.29    21.02      -1.60  -0.27 -0.01  -0.47  22.64    61.17    2.70 3        3      0.0      15.57    19.61      -0.22  -0.13 -0.03  -1.01  19.90    61.17    3.07 1        4      90.0    -16.31  -18.29    -33.27  -0.06  0.20  -6.15  20.95    61.17    2.92 1        5      90.0    -23.03  -22.22    -41.28    0.02  0.41 -13.35  32.36    61.17    1.89 3        6      0.0    -28.19  -18.21    -11.89  -0.32 -0.51 -15.21  34.53    61.17    1.77 3        7      0.0    -23.21  -17.22      -6.55  -0.19 -0.32  -9.38  25.10    61.17    2.44 3        8      82.5    -19.08  -15.82      -2.42    0.00 -0.01  -5.93  20.46    61.17    2.99 3        9      82.5      11.69    15.24      -1.75    0.00  0.03  -3.18  17.70    61.17    3.46 3      10      82.5      9.76    13.99      -0.90    0.00  0.02  -2.95  15.66    61.17    3.91 3      11      86.2      8.09    12.67      -0.38    0.00  0.03  -2.54  13.75    61.17    4.45 3      12      86.2      -9.07  -11.69      0.04    0.00  0.00  -1.83  12.08    61.17    5.06 3      13      0.0      -3.42    0.26      -0.71  -0.11 -0.05  -1.29  4.21    61.17    Large Notes:
: 1. The case number identifies the thermal and internal pressure condition for the maximum sectional stress: (1) hot with internal pressure, (2) cold with internal pressure, (3) hot without internal pressure and (4) cold without internal pressure.
: 2. Section locations are presented in Table 2.7.3-3.
NAC International                                  2.7.3-11
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.4          Structural Evaluation - Thermal (Fire Accident)
In accordance with the requirements of 10 CFR 71.73(c)(4), Thermal, the MAGNATRAN transport cask is analyzed for structural adequacy for the fire accident. The cask is assumed to be subjected to a fire, which produces a surrounding environment of 1,475&deg;F for 30 minutes.
The thermal evaluation of the hypothetical fire transient is presented in Section 3.5.
2.7.4.1        Summary of Pressures and Temperatures For the fire accident pressure case, the nodal temperature results of the thermal conduction analysis, which correspond to the maximum component temperatures for the fire accident condition, are used for selecting material properties and allowable stresses.
The maximum thermal accident condition temperatures are summarized in Table 3.5-1 and Table 3.5-2 for the various PWR and BWR cask components, respectively. A summary of TSC pressures for the PWR and BWR configurations are listed in Table 2.7.4-1.
A summary of cask pressures for the PWR and BWR configurations are listed in Table 2.7.4-2.
The evaluation of the cask for the hypothetical thermal accident condition is performed with an internal pressure of 300 psig, which bounds the maximum cask internal pressure for the combined case of a failed TSC and the hypothetical thermal accident defined in 10 CFR 71.73(c)(4).
Cask closure bolts are qualified for a maximum pressure of 135 psig, which envelops the maximum pressure developed during the fire accident considering 3% failed rods.
Stress results for the thermal accident evaluation of the cask body are provided in Table 2.7.4-3 and Table 2.7.4-4. The minimum factor of safety for primary membrane stress intensity for the cask is 6.11 (Table 2.7.4-3) in the inner shell. The minimum factor of safety for primary membrane plus bending stress intensity for the cask is 5.44 in the bottom inner forging (Table 2.7.4-4).
2.7.4.2        Closure Bolt Evaluation during Fire Accident The bounding maximum internal pressure for a fire accident is 300 psig. Therefore the bolt load due to internal pressure is:
D lg2 i Pi Fap =              = 26,669 lb 4N b where:
Dlgi = 73.709 in --------------------------------- Inner gasket diameter Pi = 300 psig ---------------------------------- Fire accident internal pressure Nb = 48 ------------------------------------------ Number of bolts NAC International                              2.7.4-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 From the bolt closure evaluation, the bolt load due to an internal pressure of 135 psig is 12,001 lb; therefore, there is an increase in bolt load of 14,668 lb during the fire accident.
Fbolt = 226,669 - 12,001 = 14,668 lb The bolt load due to inertia loads is not present because the cask is stationary and the fire accident condition is not considered simultaneously with drop accidents. From the bolt closure evaluation, the bolt load, due to the internal loading of the contents, is 143,100 lb (40g top end accident impact case).
Therefore, the bolt load during the fire condition is reduced since the increase in bolt load, due to internal pressure for the fire accident (14,668 lb), is bounded by the decrease in bolt load due to the absence of the inertial load (143,100 lb).
The increase in the bolt thermal load during a fire accident is negligible because the impact limiters remain attached to the cask and act as insulators against the fire. Therefore, the change in the thermal gradient for the fire accident, when compared to the hot ambient (100&deg;F with solar insolance) gradient, is negligible.
Consequently, no further evaluation of the bolts is required for the fire accident because the impact bolt analysis is bounding.
The MAGNATRAN transport cask inner and outer shells, lid and lid bolts are demonstrated to be structurally adequate against loss of containment following a thermal (fire) accident.
Therefore, the cask satisfies 10 CFR 71(c)(4) structural requirements for the fire accident scenario.
2.7.4.3          Differential Thermal Expansion Stress Differential thermal expansion stresses and through-thickness thermal gradient stresses are induced in the MAGNATRAN transport cask as a result of the thermal (fire) accident event. All of these thermal stresses are classified as secondary, displacement-limited stresses according to the ASME Boiler and Pressure Vessel Code. Limits on secondary stresses do not apply for accident conditions; the secondary stresses, in themselves, do not compromise the integrity of the cask.
NAC International                              2.7.4-2
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                          Revision 1 Table 2.7.4-1      Summary of Maximum TSC Pressures During Hypothetical Accident Conditions Internal Pressure      Canister Internal  Canister Internal Canister (PWR)        Pressure (BWR)    Pressure (PWR DF)
Pressure Condition Fire Accident and 3% Rod Failure        133.2 psig            131.0 psig          133.4 psig Pressures Used for Canister Analyses Pressure Used for Canister Analysis        300 psig              300 psig            300 psig NAC International                        2.7.4-3
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.4-2        Summary of Maximum Cask Cavity Pressures During Hypothetical Accident Conditions Cask Cavity Internal Cask Cavity Internal        Cask Cavity Internal          Pressure Pressure (PWR)              Pressure (BWR)              (PWR DF)
Pressure Condition Normal Condition:
Failed Canister            112.3 psig                  110.7 psig              112.4 psig 3% Rod Failure Accident Condition:
Fire Accident            130.6 psig                  128.7 psig              130.7 psig Failed Canister 3% Rod Failure Pressures Used for Cask Analyses Cask Lid Bolt Closure Analyses                135 psig                    135 psig                135 psig Cask Body Finite Element Analysis            135 psig                    135 psig                135 psig 30-foot Free Drop Analyses Puncture Analyses Cask Body Finite Element Analysis            300 psig                    300 psig                300 psig Fire Accident Analysis Cask Body Finite              0 psig                      0 psig                    0 psig Element Analysis      (conservative for the    (conservative for the water (conservative for the Water Immersion      water immersion case)          immersion case)          water immersion Analysis                                                                        case)
NAC International                            2.7.4-4
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.4-3      Cask Body Fire Accident, Pm Stress Summary, ksi Angle                Stress Components              Stress Stress Sect.1                                                                      FS (deg)    Sx      Sy      Sz    Sxy    Syz    Sxz  Int. Allow.
1      0.0    -0.37  -0.52    -0.29  0.00  -0.03  -0.01  0.24  38.51  Large 2      0.0    0.28    0.50    -0.11  0.00  -0.03  0.07  0.63  38.51  Large 3      0.0    -0.49    0.02    2.08  -0.02  0.00  0.43  2.71  38.51  Large 4    135.0    0.40    0.53    0.14  -0.05  -0.03  0.13  0.48  38.51  Large 5      0.0    -0.37  -0.17    0.42  -0.01  0.02  0.35  1.06  38.51  Large 6      0.0    2.35  -0.27    0.96  0.07  -0.01  0.26  2.66  38.51  Large 7      60.0  -0.23    0.39    2.66  0.00  -0.47  0.74  3.35  38.51  Large 8      52.5  -0.15    4.48    2.50  0.00  -0.56  0.03  4.78  42.58    8.91 9      0.0    -0.15    6.74    2.31  -0.23  -0.04  -0.06  6.91  42.58    6.16 10      0.0    -0.16    6.43    2.95  -0.22  -0.02  0.01  6.60  42.58    6.45 11      0.0    -0.16    6.41    3.27  -0.22  0.00  0.00  6.59  42.58    6.46 12      0.0    -0.16    6.43    2.90  -0.22  0.02  -0.01  6.60  42.58    6.45 13      0.0    -0.15    6.66    2.31  -0.23  0.04  0.02  6.83  42.58    6.23 14      30.0  -0.15    6.14    2.27  -0.02  0.55  0.04  6.37  42.58    6.68 15      63.8  -0.15    3.85    2.63  0.00  0.49  -0.16  4.18  35.10    8.40 16      67.5  -0.75    2.79    2.58  0.11  0.40  -0.03  3.86  35.10    9.09 17      0.0    0.73  -0.47    0.58  0.04  0.00  -0.10  1.24  38.51  Large 18      0.0    -0.01  -0.74    0.81  0.02  0.01  0.17  1.57  38.51  Large 19      0.0    0.00  -0.42    0.80  0.01  0.00  0.04  1.22  59.24  Large 20      0.0    0.00  -0.03    0.82  0.00  0.00  0.00  0.85  59.24  Large 21      0.0    0.00    0.02    0.90  0.00  0.00  0.00  0.90  59.24  Large 22      0.0    0.00    0.02    0.94  0.00  0.00  0.00  0.95  59.24  Large 23      0.0    0.00    0.02    0.95  0.00  0.00  0.00  0.95  59.24  Large 24      0.0    0.00    0.03    0.93  0.00  0.00  -0.02  0.93  59.24  Large 25      0.0    0.00    0.40    0.92  -0.01  0.00  -0.01  0.92  59.24  Large 26    105.0    0.01    1.40    0.24  0.00  0.10  0.18  1.50  35.10  Large 27    108.8  -0.65    1.48    0.36  -0.02  0.09  0.01  2.14  35.10  Large 28    180.0  -0.20    1.52    0.63  0.06  -0.02  0.01  1.72  35.10  Large 29    138.8  -1.15    1.01    -0.21  -0.01  0.01  -0.13  2.18  35.10  Large 30      0.0    -0.08  -0.08    -0.16  0.00  0.09  -0.07  0.25  94.50  Large 31      3.8    -0.26    1.57    -0.83  0.01  0.00  -1.80  3.94  94.50  Large 32      3.8    -1.53  -0.38    -4.27  0.02  0.00  -1.22  4.36  94.50  Large Note:
: 1. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.4-5
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.4-4    Cask Body Fire Accident, Pm + Pb Stress Summary, ksi Angle                Stress Components              Stress Stress Sect.1                                                                      FS (deg)      Sx    Sy      Sz    Sxy    Syz  Sxz  Int. Allow.
1    180.0    -1.87  -2.64    -0.06  -0.02  0.03  0.00  2.58  56.85  Large 2    176.2    3.06  4.56    -0.45  -0.02    0.00  0.06  5.01  56.85  Large 3    0.0      3.53  1.36    5.34  0.05    0.00  0.90  4.35  56.85  Large 4    52.5    1.59  0.38    0.21  -0.08  -0.01  0.37  1.58  56.85  Large 5    0.0    -0.65  -0.42    -0.14  -0.01  0.02  0.57  1.25  56.85  Large 6    0.0      0.26  -2.96    -5.91  0.11  -0.02 -0.32  6.21  56.85    9.15 7    0.0    -0.33  1.94    9.59  -0.07  -0.02  0.84 10.06  56.85    5.65 8    71.2    -0.04  5.01    4.76  0.00  -0.48  0.03  5.42  63.22  Large 9    0.0    -0.02  7.43    3.58  -0.25  -0.02 -0.06  7.46  63.22    8.47 10    48.8    -0.26  7.24    2.71  -0.01  -0.41 0.00  7.54  63.22    8.38 11    0.0    -0.03  7.71    3.81  -0.26    0.00  0.00  7.76  63.22    8.15 12    48.8    -0.26  7.25    2.72  -0.01  0.43  0.00  7.56  63.22    8.36 13    45.0    -0.27  6.99    2.38  -0.01  0.67  0.03  7.36  63.22    8.59 14    0.0    -0.03  6.89    3.63  -0.23    0.02  0.03  6.93  63.22    9.12 15    56.2    -0.22  3.96    2.40  0.00    0.57 -0.18  4.38  52.65  Large 16    0.0    -0.31  2.97    5.35  -0.10    0.03  0.07  5.66  52.65    9.30 17    0.0      1.50  0.20    2.09  0.04    0.00  0.06  1.89  56.85  Large 18    0.0      0.00  -0.21    2.57  0.01    0.00  0.14  2.80  56.85  Large 19    0.0      0.00  -0.49    0.73  0.02  -0.01  0.04  1.23  84.62  Large 20    0.0      0.00  0.15    1.11  0.00    0.00  0.00  1.12  84.62  Large 21    0.0      0.00  -0.22    0.79  0.01  -0.01  0.00  1.01  84.62  Large 22    0.0      0.00  -0.31    0.81  0.01    0.00  0.00  1.12  84.62  Large 23    0.0      0.00  0.31    1.09  -0.01    0.00  0.00  1.09  84.62  Large 24    0.0      0.00  -0.06    1.11  0.00    0.01 -0.02  1.17  84.62  Large 25    0.0    -0.01  0.44    1.37  -0.02    0.01 -0.01  1.38  84.62  Large 26    97.5    -0.01  1.08    -0.83  0.00    0.09  0.16  1.95  52.65  Large 27    0.0      0.06  2.13    2.73  -0.07    0.00 -0.05  2.67  52.65  Large 28    180.0    -0.36  2.06    1.52  0.07  -0.04  0.11  2.44  52.65  Large 29    153.8    -2.89  0.41    -1.44  -0.03  -0.02 -0.40  3.41  52.65  Large 30    0.0      8.66  11.94    -0.02  -0.10    0.09 -0.07 11.97  135.0  Large 31    180.0    3.04  5.53    0.13  -0.01    0.21 -0.50  5.50  135.0  Large 32    93.8    3.13  2.98    -8.11  -0.01    0.01 -3.41 13.16  135.0  Large Note:
: 1. Section locations are presented in Figure 2.12.2-31.
NAC International                          2.7.4-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.5          Immersion - Fissile Material According to the requirements of 10 CFR 71.73(c)(5), a package containing fissile material, where water in-leakage has not been assumed for criticality analysis, must be subjected to water pressure equivalent to immersion under a head of water of at least 0.9 meter (3 ft) for 8 hours.
This immersion is the fourth test in the hypothetical accident sequence of tests for the package.
A head of water of 0.9 meter (3 ft) is equivalent to an external pressure of (3)(0.433) = 1.3 psig.
The analysis presented in Section 2.7.7 evaluates the MAGNATRAN transport cask for an external pressure of 290 psig. Since the containment boundary is predicted to not be structurally reduced following the hypothetical accident sequence, the external pressure analysis presented in Section 2.7.7 bounds this case.
NAC International                        2.7.5-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.7.6          Immersion - All Packages According to the requirements of 10 CFR 71.73(c)(6), a package must be subjected to water pressure equivalent to immersion under a head of water of at least 15 meters (50 ft) for 8 hours.
A head of water of 15 meters (50 ft) is equivalent to an external pressure of (50)(0.433) = 21.65 psig.
The analyses presented in Section 2.7.7 evaluate the MAGNATRAN transport cask for an external pressure of 290 psig. Since the containment boundary is predicted not to be structurally reduced following the hypothetical accident sequence, the external pressure analysis presented in Section 2.7.7 bounds this case.
NAC International                        2.7.6-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.7.7          Deep Water (290 psi) Immersion Test (for Type B Packages Containing more than 105 A2) 10 CFR 71.61 requires that a packages undamaged containment system be capable of withstanding an external water pressure of 290 psi (200 meters immersion) for not less than one hour without collapse, buckling, or in-leakage of water.
The finite element model used for the cask body drop analyses was used for the immersion analysis. For the immersion analysis, the internal pressure of the cask body is conservatively assumed to be 0 psig. The neutron shielding was also omitted from the structural evaluation.
The results of the analysis are summarized in Table 2.7.7-1 and Table 2.7.7-2. The critical factors of safety are:
Pm          FS = Large Pm+Pb      FS = 8.15 The factors of safety for the deep water immersion analysis are greater than 1.0. Therefore, the MAGNATRAN transport cask meets the deep water immersion requirement of 10 CFR 71.61.
NAC International                        2.7.7-1
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.7-1      Deep Water (290 psi) Immersion, Pm Stress Summary, ksi Angle                Stress Components              Stress Stress Sect.1                                                                      FS (deg)      Sx      Sy      Sz    Sxy    Syz    Sxz  Int. Allow.
1      0.0    0.41    0.49    0.02    0.00 0.04    -0.07  0.49  42.88  Large 2      0.0    -0.85  -1.03 -0.20 0.00 0.04        -0.13  0.86  42.99  Large 3      0.0    0.45    0.39 -0.04 0.00 0.01        -0.12  0.55  43.72  Large 4      0.0    -0.81  -0.94 -0.63 0.00 -0.02        -0.59  1.20  43.70  Large 5      0.0    -2.04  -0.19 -0.68 -0.04 -0.02      -0.48  2.01  43.84  Large 6      0.0    -1.54  -0.52 -0.45 -0.03 0.00        0.04  1.09  43.83  Large 7      0.0    0.03  -0.20 -0.74 0.01 0.00          0.04  0.77  43.77  Large 8      0.0    0.00  -0.12 -0.74 0.00 0.00          0.01  0.74  46.51  Large 9      0.0    0.00    0.00 -0.74 0.00 0.00          0.00  0.74  46.38  Large 10      0.0    0.00    0.00 -0.74 0.00 0.00          0.00  0.74  46.14  Large 11      0.0    0.00    0.00 -0.74 0.00 0.00          0.00  0.74  46.02  Large 12      0.0    0.00    0.00 -0.74 0.00 0.00          0.00  0.74  46.15  Large 13      0.0    0.00    0.04 -0.74 0.00 0.00          0.00  0.78  46.38  Large 14      0.0    0.00    0.04 -0.74 0.00 0.00          0.01  0.78  46.47  Large 15      0.0    0.00  -0.43 -0.74 0.01 0.00        -0.02  0.75  43.75  Large 16      0.0    -0.01  -0.80 -0.72 0.03 0.00        -0.04  0.80  43.83  Large 17      0.0    -1.33  -1.06 -1.79 0.00 -0.01        -0.23  0.83  44.07  Large 18      0.0    -0.12  -1.54 -2.38 0.05 -0.02        -0.47  2.45  44.07  Large 19      0.0    -0.15  -4.27 -2.35 0.14 0.00        -0.03  4.13  66.98  Large 20      0.0    -0.15  -5.70 -2.35 0.18 0.00          0.05  5.56  66.99  Large 21      0.0    -0.15  -5.57 -2.36 0.18 0.00          0.00  5.43  66.89  Large 22      0.0    -0.15  -5.58 -2.36 0.18 0.00          0.00  5.44  66.81  Large 23      0.0    -0.15  -5.58 -2.36 0.18 0.00          0.00  5.43  66.89  Large 24      0.0    -0.15  -5.63 -2.36 0.18 0.00        -0.05  5.50  66.99  Large 25      0.0    -0.15  -4.52 -2.35 0.14 0.00          0.02  4.38  66.99  Large 26      0.0    -0.10  -1.88 -2.39 0.06 0.02          0.47  2.48  44.09  Large 27      0.0    -1.49  -1.56 -1.78 0.01 0.01          0.25  0.59  44.05  Large 28      3.8    -0.30  -2.01 -0.92 0.00 0.00          0.30  1.83  43.83  Large 29      0.0    1.37  -2.49 -0.11 0.27 0.02          0.16  3.91  43.75  Large 30      0.0    -0.06  -0.07 -0.15 0.00 -0.07        0.20  0.44  93.81  Large 31      0.0    0.01  -1.73 -1.87 0.00 -0.12        1.55  3.64  94.50  Large 32      3.8    -1.64  -2.22 -7.32 0.00 0.00          0.66  5.83  94.50  Large Note:
: 1. Section locations are presented in Figure 2.12.2-31.
NAC International                        2.7.7-2
 
MAGNATRAN Transport Cask SAR                                                January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.7-2    Deep Water (290 psi) Immersion, Pm + Pb Stress Summary, ksi Angle                Stress Components2            Stress Stress Sect.1                                                                      FS (deg)    Sx      Sy      Sz    Sxy  Syz    Sxz  Int. Allow.
1      0.0    2.97    3.40 -0.44 -0.01 0.04        -0.07  3.85  61.26  Large 2      0.0  -5.03  -6.03 0.30        0.02 0.04  -0.13  6.34  61.41  9.69 3      0.0    2.87    1.31    0.04    0.04 0.01  -0.10  2.85  62.45  Large 4      0.0  -2.32    0.07 -0.44 -0.07 -0.05      -1.32  3.24  62.43  Large 5      0.0  -0.80    1.55    3.91 -0.07 -0.01    -0.18  4.73  62.63  Large 6      0.0  -1.56  -0.34 0.06 -0.03 0.00        -0.24  1.68  62.61  Large 7      0.0    0.03  -0.37 -1.32 0.01 0.00        -0.02  1.35  62.53  Large 8      0.0    0.00  -0.13 -0.77 0.00 0.00          0.01  0.77  66.68  Large 9      0.0    0.00  -0.02 -0.80 0.00 0.00          0.00  0.80  66.32  Large 10      0.0    0.00    0.00 -0.74 0.00 0.00          0.00  0.74  65.94  Large 11      0.0    0.00    0.00 -0.74 0.00 0.00          0.00  0.74  65.78  Large 12      0.0    0.00    0.00 -0.74 0.00 0.00          0.00  0.74  65.95  Large 13      0.0    0.00    0.04 -0.75 0.00 0.00          0.00  0.79  66.31  Large 14      0.0    0.00  -0.04 -0.99 0.00 0.00          0.01  0.99  66.59  Large 15      0.0    0.00  -0.59 -1.23 0.02 0.00        -0.02  1.23  62.50  Large 16      0.0  -0.01  -0.90 -0.96 0.03 0.00        -0.03  0.95  62.61  Large 17      0.0  -2.46  -2.29 -4.67 0.01 -0.02        -0.72  2.64  62.95  Large 18      0.0  -0.02  -2.26 -4.65 0.07 -0.01        -0.44  4.72  62.96  Large 19      0.0  -0.26  -4.70 -4.09 0.15 0.00        -0.02  4.45  95.68  Large 20      0.0  -0.27  -5.83 -3.28 0.18 0.00          0.05  5.57  95.70  Large 21      0.0  -0.03  -5.73 -2.40 0.19 0.00          0.00  5.71  95.55  Large 22      0.0  -0.03  -5.74 -2.37 0.19 0.00          0.00  5.72  95.45  Large 23      0.0  -0.03  -5.74 -2.41 0.19 0.00          0.00  5.72  95.56  Large 24      0.0  -0.28  -5.76 -3.26 0.18 0.00        -0.05  5.50  95.70  Large 25      0.0  -0.27  -4.88 -3.86 0.15 0.00          0.02  4.62  95.71  Large 26      0.0  -0.01  -2.84 -5.36 0.09 0.01          0.41  5.42  62.98  Large 27      0.0  -2.68  -3.34 -6.31 0.04 0.03          0.87  4.03  62.92  Large 28      0.0  -0.22  -2.66 -2.63 0.09 0.05          0.49  2.62  62.61  Large 29      0.0    3.86  -1.43 1.95        0.48 0.07    0.54  5.52  62.50  Large 30      0.0    7.33    8.55 -0.05 -0.03 -0.07        0.21  8.61  134.02  Large 31    90.0  -2.87  -2.31 -4.52 0.00 0.00          4.44  9.03  135.00  Large 32      3.8    8.05    1.50 -8.36 0.00 0.00        -1.17 16.57  135.00  8.15 Note:
: 1. Section locations are presented in Figure 2.12.2-31.
NAC International                        2.7.7-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.8            Transportable Storage Canister Analysis - Accident Conditions This section presents the evaluation of the Transportable Storage Canister (TSC) for the hypothetical accident conditions. The evaluation of the canister for normal conditions of transport is presented in Section 2.6.12.
A drop accident stress evaluation of the TSC is performed for the 30-ft side drop, top and bottom end drops, and for the top and bottom corner drop conditions by applying a 60g deceleration load. The loads developed in the basket are transferred through the canister wall into the inner shell (for the side-drop and corner drops), and any axial component is transferred into the ends of the cask cavity. The axial loads are maximized for the end-drops and corner-drop conditions.
The lateral loads are maximized in the side-drop as discussed in Section 2.7.1.4. Regardless of the angle of the drop, the TSC shell is uniformly supported along its length by the transport cask inner shell which confirms that the load path does not change with respect to the angle of drop.
As discussed in Section 2.7.1.4, the oblique orientations other than the CG over corner drop need not be considered.
The structural design criteria for the TSC are contained in the ASME Code, Section III, Subsection NB, Class 1 Components. The structural components of the TSC (shell, bottom plate and closure lid) are shown to satisfy the allowable stress intensity limits.
The ANSYS finite element program is used to evaluate the TSC for the 30-ft drop conditions in the top and bottom end, top and bottom corner, and side impact orientations. The ANSYS finite element models (Models A, B and C) are the same as those used for the evaluation of the 1-ft drop events evaluated for normal conditions of transport (Section 2.6.12). For the TSC lid weld (Section 11, Figure 2.6.12-4), the allowable stress is multiplied by a stress reduction factor of 0.8 per ISG-4.
For accident conditions of transport, the TSC is evaluated for the following load conditions:
* 30-ft drop inertia load conditions (end, side or corner orientations) with or without an internal pressure of 120 psig for normal condition
* Internal pressure of 300 psig for accident condition 2.7.8.1          Internal Pressure A finite element analysis is performed for the TSC for the accident pressure condition (300 psig) for Models A, B and C. The locations of the linearized stresses are shown in Figure 2.6.12-4 for Model A and in Figure 2.6.12-5 for Models B and C. The maximum Pm and Pm + Pb stresses due to the internal pressure for Model A are summarized in Table 2.7.8-1 and Table 2.7.8-2, respectively. The maximum Pm and Pm + Pb stresses due to the internal pressure for Models B NAC International                          2.7.8-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 and C are summarized in Table 2.7.8-3 and Table 2.7.8-4, respectively. The minimum factors of safety are 1.50 for Pm stresses and 1.19 Pm + Pb stresses in Table 2.7.8-1 and Table 2.7.8-2, respectively.
NAC International                        2.7.8-2
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.8-1            Canister Pm Stresses - Internal Pressure (300 psig) - Model A1 Pm Stresses (ksi)
Section                                                              SI      Allowable Factor of Location      Sx      Sy        Sz    Sxy      Syz      Sxz      (ksi)    Stress (ksi) Safety 1      -0.26    3.55    9.88  -0.13    0.14    -0.46    10.19        45.92      4.51 2        2.22  -19.94    -3.28    0.74    -0.04    -1.54    22.61        45.92      2.03 3      -1.33  -19.26    10.58    0.55    0.10    2.33    30.30        45.55      1.50 4      -0.18    21.28    10.50  -0.84    0.00    0.00    21.53        43.40      2.02 5      -0.08    21.28    10.50  -0.84    0.00    0.00    21.43        42.70      1.99 6      -0.10    21.28    10.50  -0.84    0.00    0.00    21.44        42.00      1.96 7      -0.12    21.26    10.50  -0.84    0.00    0.00    21.46        42.70      1.99 8      -0.12    21.28    10.50  -0.84    0.00    0.00    21.46        43.40      2.02 9      -0.16    21.08    10.49  -0.83    0.00    0.10    21.31        45.55      2.14 10      -1.03    2.03    1.20  -0.12    0.06      0.77    3.31        45.70      Large 11      -0.38    2.30    1.36  -0.11    0.01    -1.28    3.38        36.442    Large 12        0.90    0.89    -0.96    0.00    -0.04    -0.08    1.87        45.55      Large 13        0.10    0.10    -0.16    0.00    -0.01    0.00    0.25        44.80      Large 14        1.26    3.18    0.16  -0.08      0.04    -0.19    3.06        45.55      Large 15        0.01    2.70    0.05  -0.11    -0.04    -0.01    2.70        45.55      Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-2          Canister Pm + Pb Stresses - Internal Pressure (300 psig) - Model A1 Pm + Pb Stresses (ksi)
Section                                                                  SI    Allowable Factor of Location      Sx        Sy        Sz    Sxy        Syz      Sxz      (ksi)  Stress (ksi) Safety 1      -1.932    -12.71    26.10      0.30      0.05    -0.65    38.83      65.65      1.69 2        6.24    -31.33    -45.95    1.30    -0.12    -2.72    52.51      65.65      1.25 3      -0.564    -9.46    43.09    -0.20    -0.12    2.94    52.76      65.10      1.23 4      -0.264    21.46    10.55    -0.85      0.00    -0.02    21.79      63.50      2.91 5      -0.156    21.46    10.54    -0.85      0.00      0.01    21.68      63.25      2.92 6      -0.18    21.46    10.54    -0.85      0.00      0.00    21.70      63.00      2.90 7      -0.192    21.44    10.54    -0.85      0.00      0.00    21.71      63.25      2.91 8      -0.192    21.46    10.54    -0.85      0.00      0.00    21.72      63.50      2.92 9      -0.108    22.27    15.07    -0.88      0.00      0.04    22.45      65.10      2.90 10      -2.052      1.12    -0.71    -0.11      0.07      2.66    5.50      65.32      Large 11      -0.084      3.36      5.17    -0.14      0.00    -1.88    6.48      52.082      8.04 12      53.712    53.46    -1.01    0.01    -0.06    -0.10    54.72      65.10      1.19 13      6.108      6.10      0.02    0.00    -0.01      0.00    6.08      64.00      Large 14      1.284      3.02    -0.16    -0.07      0.01    -0.20    3.22      65.10      Large 15      -1.56      2.05    -0.78    -0.13    -0.05    0.16      3.65      65.10      Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                2.7.8-3
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.7.8-3          Canister Pm Stresses - Internal Pressure (300 psig) - Model B1 and C1 Pm Stresses (ksi)                                Stress    Factor FE      Section                                                              SI      Allowable      of Model    Location        Sx        Sy      Sz      Sxy    Syz      Sxz    (ksi)        (ksi)    Safety C          9        -0.18    20.45    10.60    -0.80    0.01      0.10  20.69        45.55      2.20 B          10        -1.96      2.53    0.24    0.00    0.00      1.75    5.46        45.55      8.34 B          11        -0.85      3.77    5.38    -0.06    0.08    -0.76    6.42        36.442      5.68 C          13          0.06    -0.11    -1.16    -0.02    0.11      0.14    1.26        44.80    Large C          14          0.98    8.51      0.41    0.00    0.00    -0.19    8.17        45.55      5.57 C          15        -0.70      7.15    -0.36    0.00    0.00      0.17    7.92        45.55      5.75 C          16          0.02      0.02    0.00    0.00    0.00      0.00    0.02        45.55    Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-4          Canister Pm + PB Stresses - Internal Pressure (300 psig) -
Model B1 and C1 Pm Stresses (ksi)                                Stress    Factor FE      Section                                                              SI      Allowable      of Model    Location        Sx        Sy      Sz      Sxy    Syz      Sxz    (ksi)        (ksi)    Safety B          9        -0.13    22.03    16.15    -0.86    0.01      0.01  22.24        65.10      2.93 C          10        -0.42    7.26    16.57    0.00    0.00    -1.38  17.22        65.10      3.78 B          11          0.46    5.35      9.79    0.00    0.00    -1.78    9.98        52.081      5.22 C          13        21.26    20.83    -2.83    -0.05    0.52      0.36  24.12        64.00      2.65 C          14          1.09    8.95      0.43    0.00    0.00    -0.11    8.54        65.10      7.62 C          15        -2.16      6.83    -1.18    0.00    0.00      0.30    9.07        65.10      7.18 B          16          6.01      5.99    0.02    0.00    0.00      0.00    5.99        65.10    Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                2.7.8-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.8.2        Stress Evaluation of the Canister for 30-Foot End Drop Load Condition A structural analysis performed by using ANSYS evaluates the effect of a 30-ft end drop impact for both the bottom and top end orientations of the canister. The analysis considers an inertial load of 60g for the canister and its content and the 120 psig normal pressure load internal to the canister. The inertial load of the canister is addressed by the deceleration factor applied to the canister density, and the inertial load of the weight of the contents at 60g is represented by a pressure load on the inner end surface of the canister. Displacement constraints are applied to the plane of symmetry, and gap elements at the canister end are used to model the interface between the top or bottom of the transport cask. To determine the effect of the 120 psig pressure load, the top end and bottom end orientations, with and without the pressure load, are analyzed.
The locations of the linearized stresses are shown in Figure 2.6.12-4 for Model A and in Figure 2.6.12-5 for Models B and C. Results from the end-drops are summarized in Table 2.7.8-7 through Table 2.7.8-22. Table 2.7.8-5 provides a summary of critical section stresses for the top and bottom end-drop conditions for Model A. Table 2.7.8-6 provides a summary of critical section stresses for the top and bottom end-drop conditions for models B and C.
NAC International                          2.7.8-5
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1 Table 2.7.8-5    Canister Critical Sections for the 30-Foot End Drop Load Condition -
Model A1 Critical Condition              Stress      Section    Factor of Safety Top-End Drop              Pm            3          6.88 Top-End Drop            Pm + Pb        3          6.39 Top-End Drop + Pressure        Pm            6          4.90 Top-End Drop + Pressure      Pm + Pb        2          4.66 Bottom-End Drop            Pm            3          5.24 Bottom-End Drop          Pm + Pb        2          6.02 Bottom-End Drop + Pressure        Pm            4          3.47 Bottom-End Drop + Pressure      Pm + Pb        2          2.06
: 1. See Section 2.6.12.2 for model description.
Table 2.7.8-6    Canister Critical Sections for the 30-Foot End Drop Load Condition -
Model B1 and C1 Critical Condition              Stress      Section    Factor of Safety Top-End Drop              Pm            9          6.37 Top-End Drop            Pm + Pb        10          7.73 Top-End Drop + Pressure        Pm            9          4.82 Top-End Drop + Pressure      Pm + Pb        9          5.85 Bottom-End Drop            Pm            9          5.73 Bottom-End Drop          Pm + Pb        9          7.63 Bottom-End Drop + Pressure        Pm            9          4.28 Bottom-End Drop + Pressure      Pm + Pb        9          5.17
: 1. See Section 2.6.12.2 for model description.
NAC International                    2.7.8-6
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.8-7          Canister Pm Stresses Foot Top End Drop - Model A1 Pm Stresses (ksi)
Section                                                            SI      Allowable Factor of Location      Sx    Sy      Sz    Sxy      Syz      Sxz        (ksi)    Stress (ksi) Safety 1        0.03  -0.49  -1.44    0.02    -0.03    0.02        1.47        45.92    Large 2        -0.24  3.42    0.19  -0.13      0        0.2        3.74        45.92    Large 3        0.15  4.77  -1.81  -0.16    -0.01    -0.3        6.62        45.55      6.88 4        0.01    0    -2.33      0      0        0        2.34          43.4      Large 5          0      0    -2.87      0      0        0        2.87          42.7      Large 6          0      0    -3.34      0      0        0        3.34          42      Large 7          0      0    -3.88      0      0        0        3.88          42.7      Large 8          0      0    -4.42      0      0        0        4.42          43.4      9.82 9          0    0.03  -4.86      0      0      0.01        4.89        45.55      9.31 10        0.07  -0.87  -4.45    0.04      0      0.04        4.52        45.55      Large 11          0    -0.1  -1.81      0      0      -0.01        1.81        36.442    Large 12        -0.11  -0.11    0        0    -0.02    0.02        0.12        45.55      Large 13        0.01  0.01  -1.44      0      0        0        1.45          44.8      Large 14        -0.09  -0.11    -1.8      0      0      -0.07        1.71        45.55      Large 15        -0.14    0    -1.35  -0.01    -0.01    0.27        1.4        45.55      Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-8          Canister Pm + Pb Stresses Foot Top End Drop - Model A1 Pm + Pb Stresses (ksi)
Section                                                          SI        Allowable    Factor of Location Sx          Sy        Sz    Sxy      Syz    Sxz      (ksi)      Stress (ksi)    Safety 1        0.37    2.46    -3.76    -0.06  -0.02    0.06    6.23          65.65        Large 2        0.35    1.88    -5.65    -0.05  -0.01    0.03    7.52          65.65        8.73 3        0.08    3.27    -6.89    -0.1  -0.01    -0.38    10.18          65.1        6.39 4        0.01      0    -2.33      0      0        0      2.34          63.5        Large 5          0      0    -2.87      0      0        0      2.87          63.25        Large 6          0      0    -3.34      0      0        0      3.34            63        Large 7          0      0    -3.88      0      0        0      3.88          63.25        Large 8          0      0    -4.42      0      0        0      4.42          63.5        Large 9          0    -0.04    -5.1      0      0        0      5.1          65.1        Large 10        0.38    -1.6    -7.22    0.07      0      0.09    7.61          65.32        8.58 11      -0.03  -0.29    -2.36    0.01      0      -0.18    2.36          52.082      Large 12      -9.21  -9.19    -0.05      0    -0.02    0.02    9.16          65.1        7.11 13        0.15    0.14    -1.39      0      0        0      1.54            64        Large 14      -0.11  -0.15    -1.9      0      0      -0.08    1.79          65.1        Large 15        0.4    0.03    -1.74    0.01    0      0.29    2.22          65.1        Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                2.7.8-7
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.8-9          Canister Pm Stresses Foot Top End Drop - Model B1 and C1 Pm Stresses (ksi)                              Stress    Factor FE      Section                                                                SI  Allowable      of Model      Location        Sx      Sy      Sz      Sxy      Syz      Sxz    (ksi)    (ksi)    Safety C            9        -0.05      4.04    -3.11    0.00    -0.11      0.05    7.16    45.55      6.37 C          10        0.25    -0.71    -4.04    0.00    -0.03      0.04    4.29    45.55    Large C          11        -0.06      0.17    -1.41    0.00    0.03    -0.23    1.61    36.442    Large C          13        0.05      0.05    -1.55    0.00    -0.01      0.00    1.60    44.80    Large C          14        -0.02    -0.01    -1.91    -0.02    0.00      -0.03    1.91    45.55    Large B          15        -0.30    -0.14    -1.69    0.01    0.00      0.21    1.59    45.55    Large C          16        0.01      0.00    -0.04    0.00    0.00    -0.01    0.05    45.55    Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-10        Canister Pm + Pb Stresses Foot Top End Drop - Model B1 and C1 Pm + Pb Stresses (ksi)                          Stress    Factor FE      Section                                                                SI  Allowable      of Model      Location        Sx      Sy      Sz      Sxy      Syz      Sxz    (ksi)    (ksi)    Safety C            9        -0.06      3.77    -4.41    0.03    -0.16      0.06    8.18    65.10      7.95 C          10        0.23    -1.98    -8.18    0.00    -0.03      0.14    8.42    65.10      7.73 C          11        -0.01    -0.14    -2.43    -0.01    0.03      -0.34    2.52    52.082    Large C          13        0.11      0.11    -1.56    0.00    -0.02      0.00    1.67    64.00    Large C          14        -0.06    -0.06    -2.02    -0.02    0.00      -0.03    1.99    65.10    Large B          15          0.26    0.02    -1.73    0.01    0.00      0.24    2.05    65.10    Large B          16          0.61    0.60    0.00    0.00    -0.01    -0.01    0.61    65.10    Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-8
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.7.8-11        Canister Pm Stresses Foot Top End Drop, Internal Pressure -
Model A1 Pm Stresses (ksi)
Section                                                        SI          Allowable    Factor of Location    Sx      Sy      Sz    Sxy Syz      Sxz        (ksi)        Stress (ksi)  Safety 1      -0.08    0.93  2.51    -0.04  0.03  -0.16      2.61            45.92      17.60 2      0.65    -4.56  -1.12    0.17  -0.01  -0.41      5.31            45.92      8.65 3      -0.38    -2.94  2.43    0.06  0.02  0.63      5.50            45.55        8.28 4      -0.06    8.51  1.87    -0.34  0.00  0.00      8.60            43.4        5.05 5      -0.04    8.51  1.33    -0.34  0.00  0.00      8.57            42.7        4.98 6      -0.04    8.51  0.86    -0.34  0.00  0.00      8.58              42        4.90 7      -0.05    8.51  0.32    -0.34  0.00  0.00      8.58            42.7        4.98 8      -0.05    8.51  -0.22    -0.34  0.00  0.00      8.75            43.4        4.96 9      -0.06    8.46  -0.66    -0.33  0.00  0.05      9.14            45.55        4.98 10      -0.35    -0.06  -3.97    -0.01  0.02  0.34        3.94            45.55      11.60 11      -0.15    0.82  -1.26    -0.04  0.01  -0.52      2.29            36.442      15.91 12      0.25    0.24  -0.39    0.00  -0.03  -0.02      0.64            45.55      71.17 13      0.05    0.05  -1.50    0.00  -0.01  0.00      1.55            44.8      28.90 14      0.41    1.16  -1.73  -0.03  0.02  -0.15      2.91            45.55      15.65 15      -0.14    1.08  -1.33    -0.05  -0.02  0.26        2.46            45.55      18.52
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.7.8-9
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.7.8-12      Canister Pm + Pb Stresses Foot Top End Drop, Internal Pressure -
Model A1 Pm + Pb Stresses (ksi)
Section                                                          SI        Allowable Factor of Location    Sx      Sy      Sz    Sxy    Syz      Sxz        (ksi)      Stress (ksi) Safety 1      -0.40 -2.62 6.67 0.06            0.00    -0.20        9.30          65.65      7.06 2      1.66 -7.58 -12.35 0.31        -0.03    -0.72      14.10          65.65      4.66 3      -0.14 -0.52 10.34 -0.02          0.03    0.80      10.93            65.1      5.96 4      -0.10 8.58      1.89 -0.34      0.00    -0.01        8.71            63.5      7.29 5      -0.07 8.58      1.34 -0.34      0.00    0.00        8.68          63.25      7.29 6      -0.07 8.58      0.88 -0.34      0.00    0.00        8.68            63      7.26 7      -0.08 8.58      0.33 -0.34      0.00    0.00        8.68          63.25      7.29 8      -0.08 8.58 -0.21 -0.34          0.00    0.00        8.81            63.5      7.21 9      -0.08 7.91 -2.74 -0.31          0.00    0.07      10.66            65.1      6.11 10      -0.44 -1.15 -7.50 0.03          0.03    1.16        7.44            65.1      8.78 11      -0.30 0.21 -3.34 -0.02          0.01    -0.45        3.62          52.082    14.39 12      12.27 12.19 -0.46 0.00          -0.04    -0.02      12.73            65.1      5.11 13      2.32 2.31 -1.47 0.00          -0.01    0.00        3.79            64      16.89 14      0.37 1.19 -1.71 -0.04          0.03    -0.15        2.91            65.1    22.37 15      1.03 1.37 -1.39 -0.02          -0.01    0.21        2.79            65.1    23.33
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.7.8-10
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.8-13        Canister Pm Stresses Foot Top End Drop, Internal Pressure -
Model B1 and C1 Pm Stresses (ksi)                              Stress    Factor FE        Section                                                                SI  Allowable      of Model    Location        Sx      Sy      Sz      Sxy      Syz      Sxz      (ksi)    (ksi)    Safety C            9        -0.06    8.84    -0.60    -0.02    -0.03    0.07      9.44    45.55      4.82 C          10          0.44    -0.18    -2.77    0.00    0.01      0.15    3.23    45.55    Large C          11        -0.18    0.51    -0.37    0.02    0.03    -0.20    1.00    36.442    Large C          13          0.10    0.09    -1.62    0.00    -0.01      0.00    1.71    44.80    Large C          14          0.00    0.12    -1.66    -0.01    0.00    -0.02    1.78    45.55    Large B          15        -0.30    0.08    -1.35    0.00    0.00      0.15    1.46    45.55    Large C          16          0.00    0.00    -0.04    0.00    0.00    -0.01    0.05    45.55    Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-14        Canister Pm + Pb Stresses Foot Top End Drop, Internal Pressure -
Model B1 and C1 Pm + Pb Stresses (ksi)                          Stress    Factor FE        Section                                                                SI  Allowable      of Model    Location        Sx      Sy      Sz      Sxy      Syz      Sxz      (ksi)    (ksi)    Safety C            9        -0.09    8.03    -3.10    0.00    -0.06      0.09    11.13    65.10      5.85 C          10          0.61    -1.89    -8.50    0.00    0.02      0.52    9.17    65.10      7.10 C          11        -0.46    -0.09    -1.99    0.01    0.03    -0.13    1.91  52.082    Large C          13          0.16    0.15    -1.63    0.00    -0.02      0.00    1.78    64.00    Large C          14        -0.06    0.08    -1.76    -0.02    0.01    -0.02    1.83    65.10    Large B          15          0.28    0.36    -1.17    -0.01    0.01      0.17    1.55    65.10    Large B          16          0.62    0.60    0.00    0.00    -0.01    -0.01    0.61    65.10    Large
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-11
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.8-15          Canister Pm Stresses Foot Bottom End Drop - Model A1 Pm Stresses (ksi)
Section                                                            SI      Allowable Factor of Location      Sx      Sy      Sz    Sxy      Syz      Sxz        (ksi)    Stress (ksi) Safety 1          0  -0.52  -3.35      0        0    0.59        3.55        45.92    Large 2        0.53  -2.15  -7.33      0        0    -0.44        7.91        45.92      5.81 3        -0.04  -1.87  -8.73      0      -0.02    0.09        8.69        45.55      5.24 4        0.01  0.02  -8.17    0.02        0      0        8.21          43.4      5.29 5          0      0    -7.64      0        0      0        7.64          42.7      5.59 6          0      0    -7.18      0        0      0        7.18          42        5.85 7          0      0    -6.63      0        0      0        6.63          42.7      6.44 8          0      0    -6.08      0        0      0        6.09          43.4      7.13 9        0.02  0.21  -5.65      0        0    0.02        5.86        45.55      7.77 10        -0.25  -1.8  -2.46    0.07      0.03    1.05        3.05        45.55    Large 11        -0.05  -0.24    2.55    0.01      0.02    1.31        3.69        36.442      9.88 12        0.18  0.14  -0.86      0      0.11    0.07        1.06        45.55      Large 13          0      0      0      0      0.01      0        0.01          44.8      Large 14        -1.32  -1.79      0    0.02    -0.02    0.21        1.83        45.55      Large 15        -0.57  -1.59  -0.13    0.04      0.05    0.08        1.48        45.55      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-16        Canister Pm + Pb Stresses Foot Bottom End Drop - Model A1 Pm + Pb Stresses (ksi)
Section                                                          SI        Allowable    Factor of Location Sx          Sy        Sz    Sxy      Syz    Sxz      (ksi)      Stress (ksi)    Safety 1        1.61    0.87    -2.69    0.02    0.11    1.45      5.2          65.65        Large 2        0.69  -2.92    -10.16      0    -0.01  -0.52    10.9          65.65        6.02 3      -0.06  -2.06      -9.4  0.07        0      0.1    9.35          65.1        6.96 4        0.01  -0.04    -8.21  0.02        0      0      8.23          63.5        7.72 5          0    0.05    -7.62  -0.01      0      0      7.67          63.25        8.25 6          0    0.02    -7.17      0        0      0      7.19            63          8.76 7          0      0      -6.63      0        0      0      6.63          63.25        9.54 8          0      0      -6.09      0        0      0      6.09          63.5        Large 9          0      0.1      -6      0        0      0      6.1          65.1        Large 10        0.07  -3.24    -7.65    0        0    0.55      7.8          65.32        8.38 11      -1.28  -0.47    3.47    -0.02    0.01  1.16      5.29          52.082        9.84 12        3.48    2.81    -1.08    0.01    0.11    0.07    4.56          65.1        Large 13        3.08    3.08      0.01      0      0.01      0      3.07            64        Large 14      -1.21  -1.63    0.28    0.02        0    0.16    1.93          65.1        Large 15        1.23  -0.89      0.58    0.07    0.06  -0.18    2.17          65.1        Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                2.7.8-12
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.8-17        Canister Pm Stresses Foot Bottom End Drop - Model B1 and C1 Pm Stresses (ksi)                            Stress    Factor FE        Section                                                                SI  Allowable      of Model    Location        Sx        Sy        Sz    Sxy      Syz      Sxz      (ksi)    (ksi)    Safety C            9        -0.01    3.98    -3.97    0.00    0.00      0.04    7.95    45.55      5.73 C          10          0.60    -1.35    -2.69    -0.02  -0.01      0.41    3.39    45.55    Large B          11        -0.13    -0.46      2.21    0.03  -0.03      1.14    3.27    36.442    Large B          13          0.04    0.04      0.00    0.00    0.01      0.00    0.04    44.80    Large C          14        -1.57    -3.61    -0.38    0.24  -0.09    -0.20    3.30    45.55    Large C          15        -0.23    -2.66      0.34    0.19  -0.06      0.00    3.02    45.55    Large B          16          0.01    0.01      0.03    0.00    0.00      0.00    0.02    45.55    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-18        Canister Pm + Pb Stresses Foot Bottom End Drop - Model B1 and C1 Pm + Pb Stresses (ksi)                          Stress    Factor FE        Section                                                                SI  Allowable      of Model    Location        Sx      Sy        Sz    Sxy    Syz      Sxz      (ksi)    (ksi)    Safety C            9        -0.05    3.83      -4.70    0.00    0.00    0.02      8.53    65.10      7.63 B          10        -0.12    -3.01    -5.91    0.12  -0.01    0.24      5.81    65.10    Large B          11        -0.98    -0.68      3.59    0.06  -0.01    1.00      4.99    52.082    Large B          13          3.15      3.14      0.02    0.00    0.01      0.00    3.13    64.00    Large B          14        -2.26    -3.24      0.42    0.15  -0.01    0.04      3.68    65.10    Large B          15          1.80    -1.89      1.33    0.28  -0.05    -0.04    3.74    65.10    Large B          16        -4.74    -4.73      0.03    0.00    0.00    0.00      4.77    65.10    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-13
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.7.8-19        Canister Pm Stresses Foot Bottom End Drop, Internal Pressure -
Model A1 Pm Stresses (ksi)
Section                                                        SI          Allowable    Factor of Location    Sx      Sy    Sz      Sxy Syz      Sxz        (ksi)        Stress (ksi)  Safety 1      -0.11 0.90 0.61 -0.03 0.11 0.40                    1.25            45.92      36.74 2      1.42 -10.12 -8.63 0.39 -0.03 -1.06              11.68            45.92      3.93 3      -0.57 -9.58 -4.48 0.29 0.04 1.02                  9.27            45.55        4.91 4      -0.06 8.53 -3.97 0.36 0.00 0.00                  12.51            43.4      3.47 5      -0.04 8.51 -3.43 -0.34 0.00 0.00                  11.96            42.7        3.57 6      -0.04 8.51 -2.97 -0.34 0.00 0.00                  11.49              42        3.66 7      -0.05 8.51 -2.43 -0.34 0.00 0.00                  10.95            42.7        3.90 8      -0.05 8.51 -1.88 -0.34 0.00 0.00                  10.41            43.4        4.17 9      -0.05 8.64 -1.45 -0.34 0.00 0.06                  10.11            45.55        4.51 10      -0.66 -0.99 -1.98 0.02 0.05 1.36                  3.02            45.55      15.13 11      -0.20 0.68 3.10 -0.04 0.03 0.79                    3.67            36.442      9.93 12      0.54    0.49 -1.25 0.00 0.10 0.03                1.79            45.55      25.45 13      0.04    0.04 -0.06 0.00 0.00 0.00                0.10            44.8      448.00 14      -0.82 -0.52 0.07 0.01 0.01 0.13                    0.93            45.55      48.98 15      -0.57 -0.51 -0.11 0.00 0.04 0.07                  0.48            45.55      94.90
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.7.8-14
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.7.8-20        Canister Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure - Model A1 Pm + Pb Stresses (ksi)
Section                                                          SI        Allowable Factor of Location    Sx      Sy      Sz    Sxy    Syz      Sxz        (ksi)      Stress (ksi) Safety 1      2.17 8.80 -5.24 -0.20 0.20              1.34      14.28          65.65      4.60 2      3.19 -15.46 -28.54 0.00 -0.01          -1.61      31.89          65.65      2.06 3      -0.90 -13.69 -18.17 0.43 0.03            0.78      17.36            65.1      3.75 4      -0.10 8.61 -3.96 0.00 0.01              -0.01      12.57            63.5      5.05 5      -0.07 8.61 -3.42 0.00 0.00                0.00      12.03          63.25      5.26 6      -0.07 8.58 -2.96 -0.34 0.00              0.00      11.55            63      5.45 7      -0.08 8.58 -2.41 -0.34 0.00              0.00      11.01          63.25      5.74 8      -0.08 8.58 -1.87 -0.34 0.00              0.00      10.47            63.5      6.06 9      -0.08 8.05 -3.64 0.32 0.00                0.06      11.71            65.1      5.56 10      -0.76 -2.80 -7.93 -0.09 -0.07            1.62        7.88            65.1      8.29 11      -1.55 0.03      2.49 0.00 0.00          0.88        4.42          52.082    11.78 12      18.37 18.84 -1.04 -0.01 0.08              0.03      19.89            65.1      3.27 13      0.72 0.72 -0.11 0.00 0.00                0.00        0.83            64      77.11 14      -0.94 -0.61 -0.09 -0.01 -0.02            0.18        0.93            65.1    70.00 15      -1.74 -0.96 -0.49 -0.02 0.03              0.26        1.36            65.1    47.87
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.7.8-15
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.8-21        Canister Pm Stresses Foot Bottom End Drop, Internal Pressure -
Model B1 and C1 Pm Stresses (ksi)                              Stress    Factor FE        Section                                                                SI  Allowable      of Model    Location        Sx      Sy        Sz      Sxy      Syz      Sxz      (ksi)    (ksi)    Safety C            9        -0.09    9.31    -1.33    -0.01    -0.05    0.10    10.65    45.55      4.28 C          10          0.94    -0.57    -2.30    -0.05    0.15      0.63    3.49    45.55    Large B          11        -0.31    0.73    3.60    -0.09    0.06      0.93    4.34    36.442    8.39 B          13          0.09    0.09    -0.06    0.00    0.00      0.00    0.15    44.80    Large C          14        -1.14    -1.19    -0.13    0.14    -0.01    -0.15    1.21    45.55    Large C          15        -0.42    -0.78    0.14      0.00    0.01      0.04    0.92    45.55    Large B          16          0.01    0.00    0.00    0.00    0.01      0.00    0.02    45.55    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-22          Canister Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure - Model B1 and C1 Pm + Pb Stresses (ksi)                          Stress    Factor FE        Section                                                                SI  Allowable      of Model    Location        Sx      Sy        Sz      Sxy      Syz      Sxz      (ksi)    (ksi)    Safety C            9        -0.11    8.62    -3.96    0.04    -0.16      0.11    12.58    65.10      5.17 C          10          0.80    -2.49    -9.07    -0.01    -0.01    0.74      9.98    65.10      6.52 B          11        -1.61    0.19    3.56    -0.08    0.01      0.96    5.52    52.082    9.44 B          13          1.07    1.07    -0.01    0.00    0.00      0.00    1.08    64.00    Large B          14        -1.56    -0.98    0.53    0.00    0.01      0.05    2.09    65.10    Large B          15        -1.71    -1.14    -0.20    -0.10    -0.05    0.16      1.56    65.10    Large C          16          2.97    2.96    0.01    0.00    0.01      0.00    2.96    65.10    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-16
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.8.3          Stress Evaluation of the Canister for 30-Foot Side-Drop Load Condition The stresses in the canister for 30-ft side drop conditions are evaluated per ASME Code, Section III, Subsection NB, using the three-dimensional finite element model (Model A) as described in Section 2.6.12.2, which corresponds to the governing TSC configuration with a 9-inch solid lid.
The load resulting from the canister contents is applied to the canister by means of pressure acting in the inner surface of the canister shell. The content weight is applied to the canister over a 90&#xba; angle in the circumferential direction in the half-symmetry model (180&#xba; for the complete canister), with a deceleration of 60g. In addition to the contents load, a 120-psig pressure is applied to the inner surfaces of the canister for applicable load cases containing the internal pressure.
The locations of the linearized stresses are shown in Figure 2.6.12-4. A weld reduction factor of 0.8 is applied to the allowable stresses for the closure lid weld (Section 11) per ISG-4. The critical section stresses are summarized in Table 2.7.8-23 for the Pm and Pm + Pb stresses.
Results are calculated for a 1-ft side-drop with or without internal pressure. Table 2.7.8-24 through Table 2.7.8-27 present the analysis results for the side-drop, which occurs with the conditions noted.
Note that at Sections 10 and 11, the Pm and Pm + Pb stresses were averaged over the bearing region of the impact between the canister closure weld and canister shell (0&deg; to 18&deg; in the half-symmetry model).
NAC International                          2.7.8-17
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.8-23        Canister Critical Sections for the 30-Foot Side Drop Load Condition -
Model A1 Critical        Minimum Factor Condition          Stress        Section            of Safety Side Drop              Pm            10                  1.21 Side Drop          P m + Pb          10                  1.43 Side Drop +
Pressure              Pm            10                  1.19 Side Drop +
Pressure          P m + Pb          10                  1.43
: 1. See Section 2.6.12.2 for model description.
Table 2.7.8-24          Canister Pm Stresses Foot Side Drop - Model A1 Pm Stresses (ksi)
Angle of                                                                            Allow.
Section peak stress                                                                        SI    Stress  Factor of Location location            Sx        Sy        Sz      Sxy        Syz      Sxz      (ksi)    (ksi)  Safety 1            0        -12.11    -11.17      0.01    0.27        0.08      0.00    12.20    45.92    3.76 2            81          0.50      -1.79      -1.59    -1.53      -5.33    -0.22    11.12    45.92    4.13 3            81        -0.14      0.38      -0.44    0.15    -10.22      0.31    20.47    45.55    2.23 4          117          0.03      -0.23      -4.89    0.02      -3.12    -0.01    7.79    43.4    5.57 5          139.5        0.01      -0.45      -6.21    0.03      -1.20    -0.01    6.46    42.7    6.61 6          144          0.01      -0.47      -6.91    0.04      -0.10      0.00    6.92      42      6.07 7          139.5        0.01      -0.50      -5.78    0.03        1.14      0.01    6.03    42.7    7.08 8          108          0.01      0.14      -4.45    0.02      3.59      0.01    8.52    43.4    5.09 9          85.5        0.02      1.88      -4.02    -0.14    10.85      -0.08    22.49    45.55    2.03 10          0~18        -31.34    -12.67      4.36    0.51      -1.42    -5.91    37.73    45.55    1.21 11          0~18        -26.06    -12.64      -2.27    1.21      -0.89    -5.00    25.99  36.442    1.40 12            0          -2.63      0.98      0.00    0.04      0.00      0.01    3.62    45.55    12.58 13            0          -1.33      0.42      0.00    0.01      0.00    -0.11    1.76    44.8    25.45 14            0        -20.04      -8.35      0.31    0.30        0.07      0.25    20.36    45.55    2.24 15            0        -22.83    -11.42      -1.13    0.06      -0.07    -0.63    21.74    45.55    2.10
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-18
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.7.8-25            Canister Pm + Pb Stresses Foot Side Drop - Model A1 Pm + Pb Stresses (ksi)
Angle of                                                                            Allow.
Section peak stress                                                                        SI  Stress    Factor of Location location              Sx        Sy        Sz      Sxy        Syz      Sxz      (ksi)  (ksi)    Safety 1            0        -13.91    -12.56    -0.16      0.27      -0.03    0.45    13.83  65.65      4.75 2          67.5          1.68    -6.81    -13.36    -0.42      -4.85    -0.50    17.67  65.65      3.72 3            81          0.06      0.91      2.56      0.31      -13.55    0.37    27.17  65.1      2.40 4            81          0.02    15.28      8.68      0.03      -2.20    0.02    15.92  63.5      3.99 5          85.5          0.63    -12.93    -0.88    -0.01        0.28    0.00    13.56  63.25      4.66 6          85.5          0.60    -12.18    -0.60      0.06      -0.18    0.00    12.79    63        4.93 7          85.5        -0.04    13.26      6.71    -0.04        0.78    -0.01    13.40  63.25      4.72 8            81          0.03    15.19      6.69      0.03        2.57    -0.04    15.88  63.5      4.00 9          85.5          0.02      3.01    -2.92    -0.18      13.86    -0.09    28.36    65.1      2.30 10          0~18        -34.57    -12.57      9.42    -0.09      -2.05    -5.78    45.67    65.1      1.43 11          0~18        -26.57    -12.64    -2.08      1.46      -1.27    -5.19    26.88  52.082      1.94 12            0          -2.35      1.43      0.00      0.04        0.00    0.01      3.78  65.1      17.22 13            0          -0.51      1.64      0.00      0.03        0.00    -0.11      2.17    64      29.49 14            0        -21.93    -8.61      1.59      0.24        0.03    0.18    23.53    65.1      2.77 15            0        -30.99    -14.47    -2.77    -0.08      -0.15    0.65    28.25    65.1      2.30
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-26        Canister Pm Stresses Foot Side Drop, Internal Pressure - Model A1 Pm Stresses (ksi)
Angle of                                                                            Allow.
Section peak stress                                                                      SI    Stress    Factor of Location location              Sx      Sy        Sz      Sxy      Syz      Sxz        (ksi)    (ksi)      Safety 1            0        -12.22    -9.75      3.96    0.22      0.14    -0.19      16.21    45.92        2.83 2            0        -6.38    -17.53    -1.40    0.44      0.28    -0.92      16.32    45.92        2.81 3            81        -0.68    -7.33      3.79    0.15    -10.22    1.23      23.40    45.55        1.95 4          31.5        -0.54    11.65      6.81    0.00      -1.99    0.04      12.90    43.4        3.36 5          139.5        -0.03      8.06    -2.01    0.03      -1.20    -0.01      10.35    42.7        4.13 6          144        -0.03      8.04    -2.71    0.04      -0.10    0.00      10.75      42        3.91 7          135        -0.04      8.08    -1.46    0.03      1.30      0.01      9.89    42.7        4.32 8          40.5        -0.38    11.64      8.08    0.00      0.80    0.02      12.19    43.4        3.56 9          85.5        -0.04    10.31      0.17    -0.14    10.85    -0.04      23.95    45.55        1.90 10          0~18        -31.75    -11.86      4.85    0.50      -1.42    -5.60      38.40    45.55        1.19 11          0~18        -26.22    -11.72    -1.72    1.20      -0.89    -5.51      27.03  36.442        1.35 12            0        -2.27      1.34    -0.39    0.04      -0.01    -0.03      3.61    45.55      12.62 13            0        -1.29      0.46    -0.06    0.01      0.00    -0.11      1.76    44.8      25.45 14            0        -19.54    -7.07    0.37      0.27      0.08      0.17      19.92    45.55        2.29 15            0        -22.82    -10.35    -1.11    0.02      -0.09    -0.64      21.75    45.55        2.09
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                2.7.8-19
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.8-27        Canister Pm + Pb Stresses Foot Side Drop, Internal Pressure -
Model A1 Pm + Pb Stresses (ksi)
Angle of                                                                          Allow.
Section peak stress                                                                      SI  Stress  Factor of Location location            Sx        Sy          Sz    Sxy        Syz      Sxz    (ksi)  (ksi)  Safety 1            0        -11.09    -14.86    10.62      0.39      0.22    -0.71  25.55  65.65    2.57 2            63          4.34    -19.55    -32.01    -0.32      -4.19    -1.68  37.78  65.65    1.74 3            81        -0.15      -3.25    21.89      0.36    -12.43      1.58  35.53    65.1    1.83 4            81        -0.02      23.71      12.86    0.03      -2.20      0.03  24.16    63.5    2.63 5          85.5        -0.05      21.53      11.20    -0.02      -0.78    -0.01  21.64  63.25    2.92 6          85.5        -0.07      20.36      10.73    -0.01      -0.09      0.00  20.43    63      3.08 7          85.5        -0.06      21.70      10.90    -0.04      0.78    -0.01  21.81  63.25    2.90 8            81          0.02      23.63      10.88    0.03      2.57    -0.04  24.11    63.5    2.63 9          85.5        -0.06      10.97      -0.56    -0.18    13.86      -0.02  30.03    65.1    2.17 10          0~18        -35.39    -12.13      9.14    -0.10      -2.04    -4.71  45.71    65.1    1.43 11          0~18        -29.38    -13.00      -2.88    1.53      -1.45    -5.77  29.24  52.082    1.78 12            0        -23.11    -19.24      -0.37    0.04        0.00    -0.02  22.75    65.1    2.86 13            0        -2.88      -0.73      -0.13    0.03        0.00    -0.11    2.76    64    23.19 14            0        -21.42      -7.40      1.52    0.21      0.04      0.10  22.95    65.1    2.84 15            0        -30.35    -13.13      -2.42    -0.11      -0.16      0.57  27.96    65.1    2.33
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-20
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.8.4        Stress Evaluation of the Canister for 30-Foot Corner Drop Load Condition A structural analysis is performed by using ANSYS to evaluate the effect of a 30-ft corner drop impact for both the top and bottom corner orientations of the canister. The ASME Code, Section III, Subsection NB, requires that stresses arising from operational loads be assessed on the basis of the primary loads. The primary loads for the 30-ft corner drop result from the deceleration of the canister and its contents and the 120 psig pressure load internal to the canister. The applied deceleration is 60g for both orientations. The inertial load of the canister is addressed by the deceleration factor applied to the canister density. The contents weight is represented by a pressure load on the inner surface of the canister. Displacement constraints are applied to the plane of symmetry and the gap elements attached at the canister end to represent the top or bottom of the transport cask.
The locations of the linearized stresses for Model A are shown in Figure 2.6.12-4. The locations of the linearized stresses for Models B and C are shown in Figure 2.6.12-5. The Pm and Pm + Pb stresses are tabulated in Table 2.7.8-28 through Table 2.7.8-45 for the corner drop conditions.
The critical sections for the pressure and the pressure plus the deceleration load, with reference to the section and the appropriate tables, are shown in Table 2.7.8-28 for Model A and in Table 2.7.8-29 for Models B and C.
NAC International                        2.7.8-21
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.8-28    Canister Critical Sections for the 30-Foot Corner Drop Load Condition -
Model A1 Condition            Stress        Critical Section Factor of Safety Top Corner Drop +
Pressure                Pm                11            1.82 Top Corner Drop +
Pressure              Pm + Pb                2              2.4 Top Corner Drop              Pm                11            1.94 Top Corner Drop          Pm + Pb              11            2.49 Bottom Corner Drop +
Pressure                Pm                10            1.52 Bottom Corner Drop +
Pressure              Pm + Pb                2            1.49 Bottom Corner Drop            Pm                10            1.55 Bottom Corner Drop        Pm + Pb              10            1.94
: 1. See Section 2.6.12.2 for model description.
Table 2.7.8-29    Canister Critical Sections for the 30-Foot Corner Drop Load Condition -
Model B1 and C1 Condition            Stress        Critical Section Factor of Safety Top Corner Drop +
Pressure                Pm                10            2.68 Top Corner Drop +
Pressure              Pm + Pb              10            3.25 Top Corner Drop              Pm                10            2.97 Top Corner Drop          Pm + Pb              10            3.25 Bottom Corner Drop +
Pressure                Pm                10            2.33 Bottom Corner Drop +
Pressure              Pm + Pb              10            2.78 Bottom Corner Drop Pm                10            2.14 Bottom Corner Drop Pm + Pb              10            2.36
: 1. See Section 2.6.12.2 for model description.
NAC International                            2.7.8-22
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.8-30        Canister Pm Stresses 30-Foot Top Corner Drop, Internal Pressure -
Model A1 Pm Stresses (ksi)
Angle of Peak Section      Stress                                                                SI  Allowable  Factor of Location    Location        Sx      Sy      Sz      Sxy    Syz      Sxz      (ksi) Stress (ksi)  Safety 1            0        -5.23    -4.49    2.87    0.23 -0.05      -0.72      8.28    45.92      5.55 2            0        -10.58 -14.58 -2.56          0.35 -0.07      -1.64      12.38    45.92      3.71 3          67.5        -0.53    -4.42    2.56    0.14 -5.33      0.84      12.86    45.55      3.54 4            0        -0.19    11.74    2.92    -0.47 -0.13      0.01      11.96    43.4      3.63 5          121.5        -0.03    8.45    -2.47    0.03 -0.47      0.00      10.96    42.7      3.90 6          126        -0.04    8.42    -2.78    0.03    0.28    0.00      11.21      42        3.75 7          112.5        -0.04    8.54    -1.75    0.02  1.50      0.01      10.72    42.7      3.98 8          85.5        -0.08    9.47    -1.33 -0.06 3.48          -0.01      12.85    43.4      3.38 9            72        -0.05    9.70    -3.86 -0.04 7.61          0.01      20.39    45.55      2.23 10            0        -27.80 -13.20 -8.42 -0.25 -0.37              -5.96      22.78    45.55      2.01 11            0        -24.18 -12.06 -9.93 -0.22 -0.33              -7.03      20.04    36.442      1.82 12            0        -0.94    0.68    -0.39    0.02 -0.03      -0.05      1.62    45.55      28.12 13            0        -0.60    0.25    -1.41    0.01 -0.01      0.00      1.66    44.8      26.99 14            0        -17.86    -6.80    -5.39    0.16 -0.01      -0.71      12.55    45.55      3.63 15            0        -25.88 -11.26 -5.73 -0.12 -0.03              0.97      20.25    45.55      2.25
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-31        Canister Pm+ Pb Stresses 30-Foot Top Corner Drop, Internal Pressure -
Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section      Stress                                                                SI  Allowable  Factor of Location    Location        Sx      Sy      Sz      Sxy    Syz      Sxz      (ksi) Stress (ksi)  Safety 1            0        -14.86 -11.87      8.62    0.46 -0.06      -1.89      23.84    65.65      2.75 2            0        -14.06 -10.38 13.09          0.26 -0.04      -1.68      27.37    65.65      2.40 3          67.5        -0.15    -1.41    14.73    0.23 -5.85      1.12      20.09    65.1      3.24 4          67.5        0.00    17.81    7.69    0.08 -1.34      0.00      17.99    63.5      3.53 5          76.5        -0.01    18.97    6.45    -0.02 -0.03      0.00      18.98    63.25      3.33 6          76.5        -0.02    18.89    5.82    -0.02 0.62        0.00      18.95      63        3.32 7            72        -0.04    18.52    5.11    -0.01 1.53        0.00      18.74    63.25      3.38 8          67.5        -0.01    17.42    3.41    0.07    3.05    -0.02      18.07    63.5      3.51 9            72        -0.05    8.80    -5.99 -0.05 8.89          0.03      23.12    65.1      2.82 10            0        -25.21 -11.75 -8.02 -0.37 -0.36              -7.84      23.29    65.1      2.80 11            0        -25.54 -13.40 -12.94 -0.19 -0.33            -8.31      20.87    52.082      2.50 12            0        12.13    14.39    -0.45    0.02 -0.04      -0.05      14.84    65.1      4.39 13            0          1.68    2.52    -1.39    0.01 -0.01      0.00      3.91      64      16.37 14            0        -18.34    -6.80    -4.69    0.15  0.00    -0.85      13.76    65.1      4.73 15            0        -26.42 -11.13 -5.04 -0.20 -0.06              0.22      21.39    65.1      3.04
: 1. See Section 2.6.12.2 for model description
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                2.7.8-23
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                        Revision 1 Table 2.7.8-32        Canister Pm Stresses Foot Top Corner Drop, Internal Pressure -
Model B1 and C1 Pm Stresses (ksi)                                Stress    Factor FE        Section                                                                SI      Allowable      of Model      Location          Sx        Sy      Sz    Sxy    Syz      Sxz      (ksi)        (ksi)    Safety B            9            -0.12      9.34    -1.65  -0.06  0.34      0.10    11.02        45.55      4.13 B          10          -17.59    -8.40    -2.68  -0.22  -0.25    -4.04    16.97        45.55      2.68 C          11          -14.16    -7.52    -5.09  0.00  -0.20    -4.36    12.59      36.442      2.89 C          13            -0.64      0.34    -1.75  0.01  -0.01    0.00      2.09        44.80      Large B          14          -11.77    -4.67    -2.43  0.40  -0.03    -0.40      9.40        45.55      4.85 B          15          -16.31    -8.02    -4.07  0.04  -0.04    0.56    12.29        45.55      3.71 C          16            -0.05      0.05    -0.04  0.00    0.00    -0.01      0.11        45.55      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-33            Canister Pm + Pb Stresses Foot Top Corner Drop, Internal Pressure - Model B1 and C1 Pm + Pb Stresses (ksi)
Stress    Factor FE      Section                                                                        SI    Allowable      of Model Location            Sx        Sy          Sz    Sxy      Syz        Sxz      (ksi)      (ksi)    Safety B          9          -0.01      13.91      4.29    0.28    -0.10      0.09    13.94      65.10      4.67 B          10        -19.33      -9.01      -0.49    -0.30    -0.32      -3.36    20.02      65.10      3.25 B          11        -16.51      -8.47      -6.18    -0.10    -0.13      -5.21    14.68      52.082      3.55 C          13          -0.58      0.40      -1.76    0.01    -0.02      0.00      2.16      64.00      Large B          14        -12.19      -4.74      -2.08    0.36      0.04      -0.48    10.18      65.10      6.40 C          15        -16.59      -8.17      -4.04    0.04    -0.06      1.23    12.79      65.10      5.09 B          16          0.54      0.64      0.00    0.00      0.00      -0.01      0.63      65.10      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                    2.7.8-24
 
MAGNATRAN Transport Cask SAR                                                                      January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.7.8-34            Canister Pm Stresses Foot Top Corner Drop - Model A1 Pm Stresses (ksi)
Angle of Peak Section      Stress                                                                  SI    Allowable    Factor of Location    Location        Sx      Sy      Sz      Sxy      Syz    Sxz      (ksi)  Stress (ksi)  Safety 1            0        -5.12    -5.91    -1.08      0.28    -0.11  -0.54      5      45.92        9.18 2            4.5      -11.44 -6.25      -1.15      0.38    -0.08  -1.08    10.55      45.92        4.35 3          76.5        0.08    4.09    -2.16      0.11    -5.33  -0.16    12.36      45.55        3.69 4          103.5        0.02    0.08    -5.57      0.01    -1.65  -0.01    6.55      43.4        6.63 5          121.5          0    -0.06    -6.67      0.03    -0.47      0      6.73      42.7        6.34 6          126            0    -0.09    -6.98      0.03      0.28    0      7.01        42          5.99 7          112.5        0.01    0.03    -5.95      0.02      1.5    0.01      6.7      42.7        6.37 8            90        -0.03    0.65    -5.69    -0.03      3.59    0      9.58      43.4        4.53 9            72          0.01    1.27    -8.06    -0.04      7.61  -0.03    17.85      45.55        2.55 10            0        -27.39 -14.01      -8.9      -0.2    -0.39  -6.27    22.36      45.70        2.04 11            0        -24.03 -12.98 -10.47 -0.18            -0.33  -6.52    18.83      36.442        1.94 12            0          -1.3    0.32      0      0.02    -0.01  -0.01    1.62      45.55        Large 13            0        -0.64    0.21    -1.35      0.01        0      0      1.56      44.8        Large 14            0        -18.36 -8.07      -5.46      0.19    -0.03  -0.64    12.97      45.55        3.51 15            0        -25.89 -12.34 -5.75          -0.08    -0.02  0.97    20.24      45.55        2.25
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-35          Canister Pm + Pb Stresses Foot Top Corner Drop - Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section      Stress                                                                  SI    Allowable  Factor of Location    Location        Sx      Sy        Sz      Sxy      Syz      Sxz        (ksi)  Stress (ksi)  Safety 1            0      -14.09 -6.78        -1.82    0.34    -0.08    -1.63      12.71      65.65        5.17 2            0      -13.34 -6.96        -2.66    0.19    -0.06    -1.54      11.12      65.65        5.9 3            81        0.07    3.47    -6.47    0.18    -6.61    -0.23      16.55      65.1        3.93 4            99          0      4.91    -3.61      0    -2.45    -0.01      9.83      63.5        6.46 5          76.5          0    10.53      2.26    -0.02    -0.03      0      10.53      63.25        6.01 6          76.5      -0.01 10.46        1.63    -0.02    0.62      0      10.52        63        5.99 7            72        -0.02 10.09        0.92    -0.01    1.53      0      10.36      63.25        6.11 8            90        -0.05    4.88    -4.05 -0.04        4.57      0      12.77      63.5        4.97 9            72        0.04    0.84    -8.36 -0.05        8.89    -0.04      20.01      65.1        3.25 10            0      -29.57 -15.09 -8.54 -0.08            -0.41    -5.14      23.44      65.32        2.79 11            0      -25.27 -13.9 -11.96 -0.16            -0.34    -8.03      20.88      52.082      2.49 12            0        -9.36    -6.99    -0.05    0.02    -0.01    -0.01      9.31      65.1        6.99 13            0        -0.53    0.34    -1.31    0.01      0        0        1.65        64        Large 14            0      -18.85 -8.02        -4.62    0.18        0    -0.77      14.32      65.1        4.55 15            0        -25.8 -11.95 -4.73 -0.15            -0.04    0.16      21.07      65.1        3.09
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-25
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                          Revision 1 Table 2.7.8-36          Canister Pm Stresses Foot Top Corner Drop - Model B1 and C1 Pm Stresses (ksi)                                  Stress        Factor FE      Section                                                                  SI      Allowable        of Model      Location          Sx      Sy        Sz    Sxy    Syz      Sxz      (ksi)        (ksi)      Safety B            9          -0.07    4.62      -4.37  -0.07  1.62      0.04      9.56        45.55        4.77 B            10        -17.93    -9.67      -4.75  -0.17  -0.23    -3.93    15.36        45.55        2.97 C            11        -14.52    -8.42      -5.79    0.00  -0.18    -4.22    12.14        36.442        3.00 C            13          -0.71    0.30      -1.68    0.01  -0.01      0.00      1.98        44.80        Large B            14        -12.21    -5.43      -2.84    0.39  -0.03    -0.42      9.42        45.55        4.83 C            15        -15.24    -8.25      -3.20  0.17  -0.02      0.74    12.14        45.55        3.75 C            16          -0.13    0.07      -0.04    0.00  0.00    -0.01      0.19        45.55        Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-37        Canister Pm + Pb Stresses Foot Top Corner Drop - Model B1 and C1 Pm + Pb Stresses (ksi)                                    Stress      Factor FE      Section                                                                        SI    Allowable        of Model Location            Sx        Sy          Sz        Sxy    Syz        Sxz      (ksi)        (ksi)    Safety B          9        -0.09      5.19      -5.37    -0.09    2.36        0.06    11.58        65.10      5.62 C          10        0.95      -5.74      -19.03    -0.02    0.01        0.74    20.03        65.10      3.25 B          11        -16.75    -9.32      -6.87    -0.09    -0.12      -5.03    14.10      52.082      3.69 B          13        -0.66      0.36      -1.69      0.01    -0.02        0.00      2.05        64.00      Large B          14        -12.66    -5.48      -2.41      0.35    0.03      -0.49    10.31        65.10      6.31 C          15        -14.93    -7.73      -2.10      0.14    -0.03      -0.04    12.83        65.10      5.07 B          16          0.47      0.65        0.00      0.00    0.00      -0.01      0.65        65.10      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                    2.7.8-26
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.8-38        Canister Pm Stresses 30-Foot Bottom Corner Drop, Internal Pressure -
Model A1 Pm Stresses (ksi)
Angle of Peak Section      Stress                                                                SI  Allowable  Factor of Location    Location        Sx        Sy        Sz    Sxy      Syz    Sxz      (ksi) Stress (ksi)  Safety 1            0          -8.80    -6.47      0.42    0.28    0.17  0.76      9.38    45.92      4.90 2            63          2.24    -12.56 -12.73 -0.78 -3.13          -1.49      18.33    45.92      2.51 3            72        -0.64    -9.77    -7.08    0.16 -6.84      1.15      15.31    45.55      2.98 4          94.5        -0.09      8.94    -5.22 -0.01 -2.92        0.00      15.32    43.4      2.83 5          121.5        -0.03      8.42    -5.81    0.03 -1.20    -0.01      14.44    42.7      2.96 6          126        -0.03      8.42    -6.23    0.03 -0.38      0.00      14.67      42        2.86 7          121.5        -0.04      8.41    -5.40    0.03    0.50  0.01      13.85    42.7      3.08 8          94.5        -0.06      8.90    -3.83 -0.01 2.09        0.00      13.41    43.4      3.24 9            72        -0.04      9.86    -3.52 -0.04 5.58        0.02      17.43    45.55      2.61 10            0        -26.88 -10.59        2.17  -0.33 -0.52    -3.97      30.15    45.55      1.52 11            0        -22.01    -9.34    -0.37 -0.26 -0.39      -3.44      22.73    36.442      1.60 12            0        -0.87      0.97    -1.19    0.02    0.09  0.03      2.17    45.55      20.99 13            0        -0.50      0.22    -0.06    0.01    0.00  -0.04      0.72    44.8      62.22 14            0        -9.29    -3.09      0.27    0.53    0.01  0.38      9.64    45.55      4.73 15            0        -9.30    -4.89    -0.66    0.37 -0.06    -0.30      8.69    45.55      5.24
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-39          Canister Pm + Pb Stresses 30-Foot Bottom Corner Drop, Internal Pressure - Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section      Stress                                                                SI  Allowable  Factor of Location    Location        Sx        Sy        Sz    Sxy      Syz    Sxz      (ksi) Stress (ksi)  Safety 1            0        -4.33    -11.39      6.04    0.51    0.16  -0.72      17.52    65.65      3.75 2            54          4.24    -20.22 -39.34 -0.24 -2.34          -2.11      44.06    65.65      1.49 3            63        -1.19    -14.88 -24.06 0.06 -4.73            0.94      24.94    65.1      2.61 4          94.5        -0.14    13.67    -3.47 -0.01 -3.82      -0.01      18.76    63.5      3.38 5          76.5        -0.01    18.43      1.69  -0.01 -1.21      0.01      18.52    63.25      3.42 6          76.5        -0.03    18.49      2.20  -0.01 -0.52      0.00      18.54      63        3.40 7          76.5        -0.02    18.44      2.82  -0.01 0.22      -0.01      18.46    63.25      3.43 8          67.5        -0.01    17.55      3.16    0.05    1.53  0.00      17.72    63.5      3.58 9          76.5        -0.06      8.97    -5.24 -0.05 7.12        0.04      20.12    65.1      3.24 10            0        -29.68 -11.76        3.02  -0.24 -0.67    -3.82      33.61    65.1      1.94 11            0        -25.70 -11.10 -2.34 -0.30 -0.50              -3.68      24.52    52.082      2.12 12            0          17.15    19.48    -1.00    0.02    0.07  0.02      20.48    65.1      3.18 13            0        -1.52    -0.53    -0.01    0.00    0.00  -0.04      1.52      64      42.11 14            0        -10.26    -3.27    0.97    0.45    0.05  0.38      11.29    65.1      5.77 15            0        -14.90    -7.10    -2.09    0.25 -0.13      0.48      12.86    65.1      5.06
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-27
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                          Revision 1 Table 2.7.8-40        Canister Pm Stresses Foot Bottom Corner Drop, Internal Pressure -
Model B1 and C1 Pm Stresses (ksi)                                  Stress        Factor FE      Section                                                                  SI      Allowable        of Model      Location          Sx      Sy      Sz      Sxy    Syz      Sxz      (ksi)        (ksi)      Safety C            9          -0.04    8.73    -1.20    0.00    0.91    0.06    10.09        45.55        4.51 B            10        -16.90    -7.38    1.64  -0.28    -0.52    -2.98    19.51        45.55        2.33 B            11        -14.10    -6.58    -1.07  -0.09    -0.37    -2.00    13.66        36.442        2.67 B            13          -0.55    0.30    -0.06    0.01    0.00    -0.01      0.86        44.80        Large C            14          -8.79    -3.12    -0.02    0.74    0.05    -0.20      8.87        45.55        5.13 C            15          -9.61    -5.26    -0.07    0.44    -0.20    -0.42      9.63        45.55        4.73 C            16          -0.07    0.06    0.00    0.00    0.01    0.00      0.13        45.55        Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-41          Canister Pm + Pb Stresses Foot Bottom Corner Drop, Internal Pressure - Model B1 and C1 Pm + Pb Stresses (ksi)                                    Stress      Factor FE      Section                                                                        SI      Allowable        of Model Location            Sx        Sy        Sz        Sxy      Syz        Sxz      (ksi)        (ksi)      Safety B          9          0.01    13.77      4.92      0.30      0.19      0.08      13.78        65.10        4.72 B          10        -18.48    -7.99      3.90    -0.36      -0.68    -3.42      23.45        65.10        2.78 B          11        -12.95    -5.60      1.01    -0.15      -0.28    -2.47      14.83        52.082      3.51 C          13        -2.06    -1.01      -0.11      0.01      0.00    -0.01      1.95        64.00      Large B          14        -9.73    -3.47      1.23      0.56      0.05      0.10      11.01        65.10        5.91 C          15        -13.52    -6.84      -1.06      0.34      -0.28      0.27      12.51        65.10        5.21 C          16          2.61      2.88      0.01      0.00      0.01      0.00      2.87        65.10      Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-28
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                        Revision 1 Table 2.7.8-42        Canister Pm Stresses Foot Bottom Corner Drop - Model A1 Pm Stresses (ksi)
Angle of Peak Section      Stress                                                                  SI        Allowable    Factor of Location    Location        Sx      Sy        Sz      Sxy      Syz      Sxz      (ksi)    Stress (ksi)    Safety 1            0        -8.69    -7.89    -3.53    0.33      0.11    0.95    5.59        45.92          8.22 2          58.5        1.45    -4.92 -11.71 -0.66            -2.69    -0.91    14.28        45.92          3.22 3          76.5        -0.07    -1.63    -10.5    0.16      -6.97    0.19    16.53        45.55          2.76 4          94.5        -0.01    0.43    -9.42    -0.01    -2.92      0      11.45          43.4          3.79 5          121.5        0.01    -0.09 -10.02        0.03      -1.2    -0.01    10.23          42.7          4.17 6          130.5        0.01    -0.15 -10.46        0.03    -0.35      0    10.49          42            4 7          121.5        0.01    -0.1      -9.6    0.03        0.5    0.01    9.65          42.7          4.42 8          94.5        -0.01    0.39    -8.04    -0.01      2.09      0      9.41          43.4          4.61 9            72          0.02    1.43    -7.72    -0.04      5.58    -0.02    14.43        45.55          3.16 10            0        -26.47 -11.4        1.69    -0.28    -0.54    -4.28    29.46        45.70          1.55 11            0        -21.86 -10.26 -0.92          -0.22      -0.4    -2.93    21.77        36.442        1.67 12            0        -1.23    0.62    -0.81      0.02      0.1    0.06    1.86        45.55        Large 13            0        -0.54    0.18        0      0.01      0.01    -0.04    0.72          44.8        Large 14            0        -9.79    -4.37      0.21      0.56        0      0.45    10.1        45.55          4.51 15            0          -9.3    -5.97    -0.67      0.41    -0.05    -0.29      8.7        45.55          5.24
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-43        Canister Pm + Pb Stresses Foot Bottom Corner Drop - Model A1 Pm + Pb Stresses (ksi)
Angle of Peak Section      Stress                                                                SI      Allowable      Factor of Location    Location        Sx      Sy        Sz      Sxy      Syz    Sxz    (ksi)    Stress (ksi)      Safety 1            0      -13.83 -9.47 -2.67            0.27    0.08    2.35    12.13        65.65          5.41 2            54        1.74    -7.69 -20.96 -0.24 -2.34            -1.02    23.19        65.65          2.83 3          76.5      -0.01    -1.27 -9.25        0.26    -8.53    0.2    18.85        65.1          3.45 4          94.5      -0.03    5.09    -7.69    -0.01 -3.82        0      14.88        63.5          4.27 5          108        -0.01      5.6    -7.43    0.02      -1.8      0    13.52        63.25          4.68 6          112.5      -0.01    5.87    -7.44    0.02      -0.5      0    13.35          63            4.72 7          108        -0.01    5.57    -6.95    0.02    0.98      0    12.68        63.25          4.99 8          94.5      -0.03    4.82    -6.34    -0.01    2.99      0    12.66        63.5          5.02 9          76.5        0.03    1.01    -7.61    -0.05    7.12    -0.03    16.65        65.1          3.91 10            0      -28.86 -12.21        3.3    -0.19 -0.69      -4.88    33.64        65.1          1.94 11            0      -25.66 -12.44 -4.41          -0.24      -0.5  -2.93    22.08        52.082          2.36 12            0        1.88    3.14    -1.02    0.03    0.11    0.06    4.16        65.1          Large 13            0        -3.96    -2.97 -0.01          0      0.01    -0.04    3.95          64          Large 14            0      -10.77 -4.48        1.04    0.47    0.04    0.46    11.88        65.1          5.48 15            0      -15.54 -8.43 -2.44            0.28    -0.12    0.56    13.15        65.1          4.95
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                    2.7.8-29
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.8-44        Canister Pm Stresses Foot Bottom Corner Drop - Model B1 and C1 Pm Stresses (ksi)                            Stress    Factor FE      Section                                                                  SI  Allowable      of Model      Location          Sx        Sy      Sz    Sxy      Syz      Sxz      (ksi)    (ksi)    Safety C            9          -0.06      4.87    -3.27    -0.07    0.98    0.04    8.37    45.55      5.44 C          10        -20.97    -9.98    -0.06    -0.18    -0.55    -1.87    21.27    45.55      2.14 C          11        -12.80    -7.22    -0.87    0.08    -0.36    -0.93    12.10    36.442    3.01 B          13          -0.63      0.25    -0.02    0.01    0.00    0.00    0.88    44.80    Large B          14          -0.70    -4.01    -0.57    1.41    0.13    -0.26    4.44    45.55    Large C          15          1.47    -3.51    -0.24    0.62    -0.26    -0.67    5.38    45.55      8.46 C          16          -0.13      0.07    0.00    0.00    0.01    -0.01    0.20    45.55    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.8-45            Canister Pm + Pb Stresses Foot Bottom Corner Drop -
Model B1 and C1 Pm + Pb Stresses (ksi)                          Stress    Factor FE      Section                                                                  SI  Allowable      of Model      Location        Sx        Sy        Sz      Sxy    Syz      Sxz    (ksi)    (ksi)    Safety C            9          -0.01      9.98      1.56    0.24    0.63    0.12    10.06    65.10      6.47 C          10        -21.60      -9.21      5.38  -0.46    -0.71  -2.69    27.57    65.10      2.36 B          11        -22.23    -11.49    -6.52  -0.07    -0.48  -1.37    15.99  52.082      3.26 B          13          -3.38      -2.56    -0.01    0.01    0.00    0.00    3.37    64.00    Large B          14          0.71      -3.91    -1.11    1.52    0.52  -0.50    5.70    65.10    Large C          15          6.98      -1.21      1.92    0.76    -0.18  -1.17    8.59    65.10      7.58 C          16          -4.39      -4.25    -0.01    0.00    0.01  -0.01    4.37    65.10    Large
: 1. See Section 2.6.12.2 for model description.
: 2. Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                                  2.7.8-30
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.8.5          Canister Buckling Evaluation for 30-Foot End Drop Code Case N-284-1 of the ASME Boiler and Pressure Vessel Code is used to analyze the PWR canister for the accident condition 30-ft end drop (both top and bottom end drops). The evaluation requirements of Regulatory Guide 7.6, Paragraph C.5, are shown to be satisfied by the results of the buckling interaction equation calculations of Code Case N-284-1.
The canister for the 30-ft end drop is evaluated for buckling in the same manner as the canister for the 1-ft end drop (see Section 2.6.12.12). The analytical process used for the canister is the same as that described in a step-by-step example presented in Section 2.7.14 (for the cask inner shell).
A 60g deceleration load was used for all the 30-ft drop canister analyses and bounds all 30-ft deceleration loads for all other drop angles. The top and bottom end drops result in the largest potential for canister shell buckling and, therefore, are the two load cases presented here. The side drop load case is not considered a credible buckling mode of the canister shell and is not taken into account.
The maximum stress components used in the evaluation and the resulting buckling interaction equation ratios are provided in Table 2.7.8-46. The results show that all interaction equation ratios are less than 1.0. Therefore, the buckling criteria of Code Case N-284-1 are satisfied, demonstrating that buckling of the canister does not occur.
NAC International                        2.7.8-31
 
MAGNATRAN Transport Cask SAR                                                                                        January 2022 Docket No. 71-9356                                                                                                      Revision 1 Table 2.7.8-46    Buckling Evaluation Results for the PWR Canister for 30-Foot End Drop Longitudinal Circumferential In-plane            Elastic Buckling              Plastic Buckling (Axial) Stress* (Hoop) Stress* Shear Stress    Interaction Equations        Interaction Equations Load Condition            S (psi)        S (psi)      S (psi)  Q1      Q2      Q3    Q4    Q5      Q6      Q7      Q8 30-Ft Top End Drop          8,730          1,870            0    0.700    0.387  0.592  0.700 0.387    0.592  0.387  0.592 30-Ft Bottom End Drop        4,860            30              0    0.157    0.215  0.009  0.157 0.189    0.009  0.189  0.009
* Compressive stresses NAC International                                          2.7.8-32
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.9          PWR Fuel Basket Analysis - Accident Conditions This section evaluates the PWR fuel basket for accident conditions of transport. The PWR fuel basket is designed to accommodate up to 37 PWR fuel assemblies. The basket consists of 21 fuel tubes, four side support weldments, and four corner support weldments. The structural evaluation for the PWR fuel basket is performed using the criteria for Service Level D limits from ASME Section III-NG and ASME Appendix F.
The load developed in the basket is due to the fuel assembly bearing against the basket tube wall, and any axial component is transferred into the ends of the cask cavity. The axial loads are maximized for the end-drop conditions and due to the weight of the basket. The lateral loads are maximized in the side-drop as discussed in Section 2.7.1.4. Regardless of the angle of the drop, the basket is uniformly supported along its length by the canister shell which is restrained by the transport cask inner shell which confirms that the load path does not change with respect the drop angle. Since the accelerations used for the end drop and side drop significantly bound the accelerations in Table 2.6.7-37, the loads developed during the corner drop or any other oblique angle is also bounded.
NAC International                        2.7.9-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.7.9.1        Stress Evaluation for the PWR Basket for 30-Foot End Drop Condition The basket is analyzed using classical hand calculations for an inertia loading of greater than or equal to 50g in the basket axial direction for top or bottom end drop conditions. Using a bounding weight of 22,500 pounds for the PWR basket, the maximum stress in the fuel tube is calculated as follows. A bounding temperature of 550&deg;F at the top or bottom ends of the basket is used to determine the allowable stresses. Conservatively assuming the entire basket weight is carried through the fuel tubes, the stress in the tube is:
P 64.3 tube =          =      = 5.6 ksi A 11.4 where:
W x a 22500 x 60 Ptube =            =              = 64,286 lb n            21 W    = 22,500 lb ------------------------- Bounding basket weight n  = 21 ---------------------------------- Number of fuel tubes A  = 11.4 in2 --------------------------- Tube cross-sectional area a  = 60g -------------------------------- End drop inertia load The factor of safety is:
0.7 x S u 0.7 x 68 .4 FS =              =              = 8.6 tube        5 .6 where:
Su = 68.4 ksi ------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F Axial support of the fuel tubes is provided by standoffs at the top and bottom of the basket, formed by extension of the fuel tube corners or use of connector pin assemblies. Referring to Figure 2.6.13-8, the interior tubes (Tube #4) are supported by four standoffs, the side fuel tubes (Tube #1) are supported by two standoffs and the side and corner weldments, and the corner fuel tubes (Tube #3) are supported by three standoffs and the corner weldment. Evaluation of the connector pin assembly provides a bounding evaluation which envelops all end of tube configurations.
The membrane stress (m) in the standoffs is 50 x Pso m =              = 40.9 ksi A brg NAC International                              2.7.9-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 where:
Abrg =
4 (Do 2
                              )
Di2 =
4
(              )
0.752  0.19 2 = 0.413 in2 Pso = Pt 2 ----------------------------- Load per standoff Pt = 675 lb --------------------------- Fuel tube assembly weight The factor of safety (FS) for membrane stress is 0.7S u 0.7(68.4)
FS =            =            = 1.17 m          40.9 where:
Sy = 68.4 ksi ------------------------- Ultimate strength, SA-537 Class 1, 550&deg;F The weight of the side and corner weldments is carried through to the TSC base plate or lid by supports at the top and bottom of the weldments. The bounding dimensions for the supports of the weldments are 5.0-inch length and 0.3125-inch thickness (corner weldment). The maximum weight of one weldment is 800 lb (bounding, side weldment). The weldment supports one-quarter of the weight of two fuel tubes (675 lb per tube, bounding). The membrane stress is:
a x Wsup      60 x 1,138 m =                =              = 43.8 ksi A sup          1.56 where:
Wsup = 800 + 2 x (0.25 x 675) = 1,138 lb Asup = 5.0 x 0.3125 = 1.56 in2 a = 60g ------------------------------ Inertia load The factor of safety for membrane stress is:
0.7S u 0.7 x 68.4 FS =            =              = 1.09 m          43.8 where:
Su = 68.4 ksi ------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F Axial support of the PWR basket is provided by fuel tube standoffs at the top and bottom of the basket, formed by extension of the fuel tube corners or use of connector pin assemblies. During an end drop, the standoffs are subjected to compressive loads; therefore, a buckling evaluation of the standoff is presented as follows. Evaluation of the connector pin assemblies for an end drop accidient provides a bounding evaluation which enevolopes all end of tube configurations. The load in one standoff is:
W x a 22.5 x 60 Pso =            =            = 42.2 kip n          32 NAC International                              2.7.9-3
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 where:
W = 22,500 lb ------------------------- Bounding basket weight n = 32 -------------------------------- Number of connector pin assemblies a = 60g ------------------------------ Inertia load Using Euler buckling theory, the critical buckling load (Pcr) is:
2 EI    2 x (26.9 x 103 ) x 0.015 Pcr =            =                            = 110.6 kip (K L)2            (2 x 3.0)2 where:
r = 0.375 in ------------------------- Radius of connector pin assembly L = 3.0 in ---------------------------- Length of standoff r4 I =          = 0.015 in4 4
K = 2.0 ------------------------------- Buckling constant, clamped free E = 26.9 x 106 psi ------------------ SA537, Class1, 550&deg;F The factor of safety for buckling of the standoffs is Pcr 110.6 FS =          =        = 2.62 Ppin    42.2 NAC International                            2.7.9-4
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.9.2          Stress Evaluation for the PWR Basket for 30-Foot Side Drop Condition The evaluation of the PWR basket for the side drop accident is performed using two elastic-plastic three-dimensional periodic models. These finite element models are essentially the same as the elastic models presented in Section 2.6.13.2 for the 0&deg; and 45&deg; basket orientations. The main difference is that the linear elastic material properties used for fuel tubes and weldment (SA537 Class 1) and pins (SA695 Type B) are replaced with bilinear kinematic hardening plastic material properties. The temperature-dependent tangent modulus is calculated based on the yield and ultimate strength. In addition, the outer node locations of the CONTAC52 elements at the basket periphery are defined based on the TSC shell profile corresponding to the 30-ft side drop conditions. For the evaluation of the accident conditions, an inertia load of 60g in the transverse direction is applied. The pressure loads representing the fuel assemblies are also scaled by the 30-ft drop acceleration.
The post-processing of the PWR basket finite element analysis results is performed to calculate critical stresses at various locations of the basket structure using the ANSYS post-processor.
Similar to the normal conditions of transport, section cuts are taken at various locations (Figure 2.6.13-8 through Figure 2.6.13-13) to determine the critical membrane and membrane plus bending stresses. Critical plastic stresses are obtained by identifying the maximum nodal plastic equivalent stress at each section location. If yielding has not occurred along a section, the sectional membrane or membrane plus bending stress intensities are determined.
The analysis results for the major basket components (tubes, support weldments) are summarized in Table 2.7.9-1 through Table 2.7.9-8. The allowable stresses are determined at a bounding temperature of 725&deg;F for the fuel tubes and 500&deg;F for the support weldments.
2.7.9.2.1        Fuel Tube Evaluation The fuel tubes are processed for both elastic and plastic stresses at the 16 locations shown in Figure 2.6.13-8 and Figure 2.6.13-9 for the 0&deg; and 45&deg; basket orientations, respectively. At these locations, the elastic stress intensity and maximum nodal plastic stress are calculated. The tube stresses are summarized in Table 2.7.9-1 and Table 2.7.9-5 for the 0&deg; and 45&deg; basket orientations, respectively. Note that if the maximum nodal stress at the section cut is less than the material yield strength (35.4 ksi at 500&deg;F), the sectional stress intensity is presented in the table. Otherwise, the maximum nodal plastic stress intensity at the section cut is presented. The minimum factors of safety are 1.14 and 1.37 for Pm and Pm+Pb stresses, respectively.
NAC International                          2.7.9-5
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 The fuel tubes are constructed by welding two tube halves together using a full-penetration weld the length of the fuel tube at the center of opposing flats. A surface PT or MT weld examination per ASME III-NG-5233 is used, which has a 0.65 weld quality factor (wf). The weld stress is evaluated at four section-cut locations (#2, #6, #10, #14) of each tube. From the 30-ft side drop analysis results, the maximum primary membrane and membrane plus bending stress intensity at a tube weld is 13.9 ksi (0&deg;, Tube #12 Section 14) and 35.4 ksi (45&deg;, Tube #11 Section 10),
respectively.
The factors of safety (FS) for the weld are:
Membrane:
0.7Su x wf 0.7 x 67.7 x 0.65 FS =                  =                = 2.22 13.9 Membrane plus bending:
0.9 x S u x wf 0.9 x 67.7 x 0.65 FS =                    =                = 1.12 35.4 where:
Su = 67.7 ksi ------------------------- Ultimate Strength, SA537 Class 1, 725&deg;F The pins in the tube slots are subjected to bearing load. The governing bearing load occurs at the pin located between tube no. 6 and 8 for 0&deg; basket orientation (see Figure 2.6.13-8). The bearing stress (brg) on the pin is evaluated using the bounding load of 20.0 kips.
P brg =        = 44.0 ksi LS where:
P = 20.0 kips ------------------------ Assumed bounding load on pin L = 1.625 inch ---------------------- Length of pin S = 0.28 inch ----------------------- Width of contact surface between pin and slot Per ASME Appendix F-1336, the allowable bearing stress is 2.1Su; therefore, the factor of safety is:
2.1S u FS =              = 2.77 brg where:
Su = 58.0 ksi ------------------------- Ultimate strength, SA36 Carbon Steel, at 725&deg;F NAC International                          2.7.9-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.9.2.2      Corner Support Weldment Evaluation The analysis results for the corner support weldment are presented in Table 2.7.9-2 for the support plate and Table 2.7.9-3 for the support bars for the 0&#xba; basket orientation and Table 2.7.9-6 for the support plate and Table 2.7.9-7 for the support bars for the 45&#xba; basket orientation. The stresses are evaluated at section locations as shown in Figure 2.6.13-10 and Figure 2.6.13-11 for the 0&#xba; and 45&#xba; orientation, respectively. The minimum factors of safety for the corner weldment plates are 1.84 and 1.59 for the Pm and Pm+Pb stresses, respectively. The minimum factor of safety for the corner weldment support bars is 1.94.
The support bars are welded to the corner mounting plate with a minimum 5/16-inch groove weld on the sides of the bars using the visual inspection criteria per ASME Code, Section III, Subsection NG, Article NG-5260. A weld quality factor of 0.35 is applied based on visual inspection of the weld per ASME Code, Section III, Subsection NG, Article NG-3352.
The welded joint between the support bar and corner mounting plate is capable of carrying bending, axial and shear loads. The maximum weld loads occur at the member end at Section 12 of Figure 2.6.13-10 for the 0&#xba; basket orientation and at Section 5 of Figure 2.6.13-11 for the 45&deg; basket orientation. Using a bounding bending moment (M), axial load (P), and shear load (V) of 2.38 in-kip, 4.14 kips and 2.22 kips, respectively, the weld stress intensity (weld) is:
2          2 M        P        V weld =      +      + 4    = 17.1 ksi Sw A w            Aw where:
Sw    =        0.320 in3 Aw    =        0.547 in2 The factor of safety (FS) for the weld is:
0.35(S u )
FS =              = 1.40 weld where:
Su = 68.4 ksi ------------------------- Ultimate strength, SA537 Class 1, at 500&deg;F The ridge gusset is welded to the corner mounting plate with -inch flare bevel welds on both sides of the plate. The weld uses the visual inspection criteria per ASME Code, Section III, Subsection NG, Article NG-5260 and a quality factor of 0.35, as defined previously. From the finite element analysis, the governing loads on the weld are 6.14 in-kip bending (M) and 4.56 NAC International                              2.7.9-7
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 kips shear (V) at the ridge gusset near Section 22 of Figure 2.6.13-10. The stress in the weld (weld) is:
2          2 M            V weld  =        + 4      = 13.1 ksi Sw          Aw where:
Aw =      2 x (L w x t w ) = 2.0 in2 Sw =    L w x t g x t w = 0.50 in3 Lw = 10.0 - 2.0 = 8.0 in ------------- Length of weld tw = 0.125 in ------------------------- Weld size tg = 0.50 in -------------------------- Gusset thickness The factor of safety (FS) in the weld is:
0.35 x S u FS =                  = 1.83 weld where:
Su = 68.4 ksi ------------------------- Ultimate strength, SA-537 Class 1, at 500&deg;F 2.7.9.2.3        Side Support Weldment Evaluation The analysis results for the side support weldment are presented in Table 2.7.9-4 and Table 2.7.9-8 for the 0&#xba; and 45&#xba; basket orientations, respectively. The stresses are evaluated at section locations as shown in Figure 2.6.13-12 and Figure 2.6.13-13 for the 0&#xba; and 45&#xba; orientations, respectively. The minimum factors of safety for the side support weldment are 2.58 for Pm stress and 1.73 for Pm+Pb stresses.
Side and Corner Weldment / Fuel Tube Attachment Evaluation From the finite element analysis results, the maximum bolt tensile load is 2,390 lb for the 45&deg; basket orientation. Combining the tensile bolt load with the bolt preload (400 lb), the maximum bolt load is 5,634 pounds. The bolt thread is a 5/8-11 UNC-2B and the length of engagement is 0.50 inch. A bounding load (P) of 5,700 lb is conservatively used for evaluation. The bolt material is SA193 Grade B6 stainless steel.
The tensile stress in the bolt is:
P      5.7 t =        =          = 24.8 ksi A t 0.23 NAC International                              2.7.9-8
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 where:
2                            2 0.9743                          0.9743 At      = 0.7854 D                  = 0.7854 0.625          = 0.23 in2 n                            11 D = 0.625 in ---------------------------------- Bolt diameter n = 11 ------------------------------------------ Threads per inch The factor of safety is:
0.7S u FS =                = 2.70 t
where:
Su = 95.6 ksi ------------------------- Ultimate Strength, SA193 Grade B6, 500&deg;F The shear stress in the bolt thread is:
P        5.7 bolt =        =          = 11.4 ksi A s 0.499 where:
1 As =      3.1416nL e K n max  + 0.57735 (E s min  K n max ) = 0.499 in2 2n Le    =  0.5 in -------------------------------------- Thread length of engagement Knmax    =  0.546 in ----------------------------------- Maximum minor diameter of internal thread Esmin    =  0.5589 in --------------------------------- Minimum pitch diameter of external thread n    =  11 ------------------------------------------ Threads per inch The factor of safety is:
0.42S u FS =                = 3.52 bolt where:
Su = 95.6 ksi ------------------------- Ultimate Strength, SA193 Grade B6, 500&deg;F The shear stress in the boss thread is:
P      5 .7 boss    =            =        = 8.0 ksi A n 0.713 where:
1 An =      3.1416nL e D s min  + 0.57735 (D s min  E n max ) = 0.713 in2 2n NAC International                                2.7.9-9
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Le =  0.5 in -------------------------------------- Thread length of engagement Enmax =    0.5732 in --------------------------------- Maximum pitch diameter of internal thread Dsmin =  0.6113 in --------------------------------- Minimum major diameter of external thread n =  11 ------------------------------------------ Threads per inch The factor of safety is:
0.42S u FS =              = 3.26 boss where:
Su = 62.0 ksi ------------------------- Ultimate Strength, SA36, 500&deg;F The maximum shear load (PS) on the boss is 2,996 lb (45&deg; basket orientation). A bounding load of 3,000 lb is conservatively used for the evaluation.
The shear stress in the boss is:
PS    3.0 boss  =          =      = 3.3 ksi A b 0.92 where:
Ab      =
(
Do2  Di2 ) = 0.92 in2 4
Do    = 1.25 in ------------------------- Boss outer diameter Di    = 0.63 in ------------------------ Boss inner diameter The factor of safety is 0.42S u FS =              = 7.89 boss where:
Su = 62.0 ksi ------------------------- Ultimate Strength, SA36, 500&deg;F The boss is welded into the fuel tube with a 1/4-inch groove weld. The weld has a visual inspection criterion per ASME III, NG-5260. Visual inspection of the weld has a weld quality factor of 0.35, per ASME III, NG-3352. The stress in the boss weld is:
P    5.7 weld  =          =      = 5.8 ksi A w 0.98 where:
P = 5.7 kips --------------------------- Bounding bolt tensile load Aw = Dt weld =  x 1.25 x 0.25 = 0.98 in2 D = 1.25 in ---------------------------- Boss diameter NAC International                            2.7.9-10
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Using the lesser of SA537 Class 1 and SA695 Type B GR 40, Sm allowable, the factor of safety is:
0.35 (0.42S u )
FS =                      = 1.57 weld where:
Su = 62.0 ksi ------------------------- Ultimate Strength, SA36, 500&deg;F The washers under the bolts at the boss locations are subjected to shear from the bolt tensile load and the support condition at the weldment. Using a bounding bolt tensile force (P) of 5.7 kips, the shear stress is:
P      5.7 wash =              =      = 5.62 ksi A w 1.015 where:
Aw = Pb t w = 1.015 in2 Pb =    3.248 in ------------------------- Perimeter of mounting bolt head tw =    0.3125 in ----------------------- Washer thickness The factor of safety is:
0.42S u FS =                = 4.74 wash where:
Su = 63.4 ksi ------------------------- Ultimate Strength, SA240 Type 304, 550&deg;F NAC International                            2.7.9-11
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.9.3          Neutron Absorber Retainer Evaluation for Accident Conditions The structural evaluation of the neutron absorber retainer for the governing loading condition for the 30-ft side drop is presented in this section.
The retainer strip is evaluated using the LS-DYNA program. A quarter-symmetry finite element model is constructed for the analysis of the 60g side impact condition. The model is identical to the model used for the evaluation of the normal condition described in Section 2.6.13.7.
Inelastic properties are employed for the stainless steel retainer strip and the neutron absorber at 700F to adequately represent the stiffness at the maximum temperature condition.
The maximum stress intensity is 33.8 ksi. The allowable stress intensity for accident condition is 0.9Su.
The factor of safety for the retainer strip is:
FS = 0.9Su / 38.5 = 0.9 x 63.2/33.8 = 1.68 where:
Su = 63.2 ksi ---------------------------------- Ultimate Strength of SA240, Type 304 stainless steel at 700&deg;F Since the function of the retainer is to maintain the neutron absorber in its position, the criteria for the retainer is to limit the motion of the neutron poison during and after the impact. This is confirmed by considering the permanent strains and displacement of the retainer. The results from the finite element analysis show the maximum strain of the retainer strip is 2.1% and is local to the conical-shaped hole. This minimal strain level indicates that the conical pocket retains its configuration for the weld post to restrain the retainer.
The displacements of the neutron absorber and retainer strip during the impact are also evaluated. The maximum out-of-plane (Global Z direction in Figure 2.6.13-15) displacement of the retainer strip is 0.12 inch during the impact and settles to a final position of about 0.05 inch.
This deflection is well below the clearance between the PWR fuel assembly and the inside dimension of the fuel tube (0.32 inch). Therefore, the fuel assembly will be retrievable after the impact.
The peak force on the weld post during the impact is 47 pounds. The shear area governs the capacity of the weld. The depth of the weld is h = 0.13 inch. The diameter of the weld post is D = 0.25-inch. The governing stress is the shear stress in the base material. The allowable shear stress for the accident condition is 0.42Su. The ultimate strength of the base material (SA240, Type 304) is Su= 63,200 psi. The weld capacity, Fcap, is calculated as:
Fcap = 0.42 x n x Su x h x D
            = 0.42 x 0.3 x 63,200 x 0.13 x (3.1416 x 0.25)
NAC International                          2.7.9-12
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1
          = 813 lb where:
n = The design factor per ASME B&PV Code, Section III, Division 1, Subsection NG, Table NG-3352-1, for the intermittent plug weld employing surface visual examination method per NG-5260.
The factor of safety is:
FS = 813/47 = Large NAC International                    2.7.9-13
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                            Revision 1 Table 2.7.9-1      PWR Fuel Tube Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                                        Membrane plus Bending Tube    Section      Sint    Sallow      FS      Tube      Section  Sint        Sallow    FS 12        8        31.8      47.4      1.49        12          9    36.8        60.9      1.65 12        9        30.5      47.4      1.55        8          8    36.2        60.9      1.68 10        8        18.2      47.4      2.60        4          8    36.1        60.9      1.69 12        15        17.1      47.4      2.77        12          7    35.9        60.9      1.70 12        12        16.9      47.4      2.80        7          8    35.8        60.9      1.70 Note:  See Figure 2.6.13-8 for tube and section cut locations.
Table 2.7.9-2      PWR Corner Weldment Plate Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                            Membrane plus Bending Section      Sint      Sallow      FS      Section      Sint  Sallow        FS 16        26.1      47.9      1.84      16          38.8  61.6        1.59 17        21.8      47.9      2.20      22          36.6  61.6        1.68 22        11.3      47.9      4.24      15          21.4  61.6        2.88 Note:    See Figure 2.6.13-10 for section cut locations.
Table 2.7.9-3      PWR Corner Weldment Support Bars, 30-ft Side Drop - 0&deg;, ksi Stress Category              Sint                Sallow                FS Pm                  1.92                47.9                Large Pm+Pb                  29.0                61.1                  2.12 Table 2.7.9-4        PWR Side Weldment Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                            Membrane plus Bending Section      Sint      Sallow      FS      Section      Sint  Sallow        FS 14        18.6      47.9      2.58      14          35.7  61.6        1.73 11        4.3      47.9      Large      13          25.1  61.6        2.45 13        3.7      47.9      Large      15          12.4  61.6        4.97 Note:  See Figure 2.6.13-12 for section cut locations.
NAC International                          2.7.9-14
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.7.9-5        PWR Fuel Tube Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                                          Membrane plus Bending Tube    Section        Sint      Sallow        FS        Tube      Section  Sint      Sallow    FS 9          8        41.7        47.4        1.14        9          8    44.5      60.9      1.37 12          8        41.5        47.4        1.14        7          8    44.2      60.9      1.38 13          8        22.7        47.4        2.09        6          8    43.8      60.9      1.39 13          7        20.4        47.4        2.34        4          8    43.3      60.9      1.41 11          5        19.4        47.4        2.44        13          7    42.7      60.9      1.42 Note:  See Figure 2.6.13-9 for tube and section cut locations.
Table 2.7.9-6        PWR Corner Weldment Plate Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                              Membrane plus Bending Section      Sint      Sallow        FS      Section      Sint  Sallow      FS 22        25.2        47.9        1.88        23        36.1  61.6        1.71 23        20.5        47.9        2.34        22        35.7  61.6        1.73 12      10.68        47.9        4.49        5        24.0  61.6        2.57 Note:    See Figure 2.6.13-11 for section cut locations.
Table 2.7.9-7        PWR Corner Weldment Support Bars, 30-ft Side Drop - 45&#xba;, ksi Stress Category                Sint                  Sallow                FS Pm                      6.1                  47.9                7.85 Pm+Pb                    31.8                  61.6                1.94 Table 2.7.9-8          PWR Side Weldment Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                              Membrane plus Bending Section      Sint      Sallow        FS      Section      Sint  Sallow      FS 12        13.3        47.9        3.60        12        31.6  61.6        1.74 10        11.2        47.9        4.28        5        29.9  61.6        2.06 14        4.0        47.9        large        10        27.2  61.6        2.26 Note:    See Figure 2.6.13-13 for section cut locations.
NAC International                              2.7.9-15
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.7.10          PWR DF Basket Analysis - Accident Conditions This section evaluates the PWR DF (Damaged Fuel) basket for transport hypothetical accident conditions. The PWR DF basket is designed to accommodate up to 37 PWR fuel assemblies with up to four damaged fuel cans (DFCs). The basket consists of 17 fuel tubes, four side support weldments, and four DF corner support weldments. The structural evaluation for the PWR fuel basket is performed using the criteria for Service Level D limits from ASME Section III-NG and ASME Appendix F. As discussed in Section 2.7.9 only the end drop and side drop orientations are evaluated.
2.7.10.1        Stress Evaluation for the PWR DF Basket for 30-Foot End Drop Condition The basket is analyzed using classical hand calculations for an inertia loading of greater than or equal to 50g in the basket axial direction for top or bottom end drop conditions. Using a bounding weight of 22,500 pounds for the PWR DF basket, the maximum stress in the fuel tube is calculated as follows. A bounding temperature of 550&deg;F at the top or bottom ends of the basket is used to determine the allowable stresses. Conservatively assuming the entire basket weight is carried through the fuel tubes, the stress in the tube is:
P 88.2 tube =          =      = 7.7 ksi A 11.4 where:
W x a 22,500 x 60 Ptube =            =              = 88,235 lb n            17 W    = 22,500 lb ------------------------- Bounding basket weight n  = 17 ---------------------------------- Number of fuel tubes A  = 11.4 in2 --------------------------- Tube cross-sectional area a  = 60g -------------------------------- End drop inertia load The factor of safety is:
0.7 x S u 0.7 x 68.4 FS =              =              = 6.2 tube        7.7 where:
Su = 68.4 ksi ------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F Axial support of the fuel tubes is provided by standoffs at the top and bottom of the basket, formed by extension of the fuel tube corners or use of connector pin assemblies. The membrane stress in standoffs is identical for the DF basket and the standard PWR basket, as presented in Section 2.7.9.1.
NAC International                              2.7.10-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The weight of the side and corner weldments is transmitted to the TSC bottom plate by supports at the top and bottom of the weldments. The heavier corner weldment provides a bounding condition for the membrane stress. The evaluation considers that the corner weldment supports one-fourth the weight of the two fuel tubes bolted to it.
The membrane stress is:
a x Wsup    50 x 2,788 m =                =              = 40.9 ksi A sup        4.06 where:
P Wsup =      2,788 lb = Wcor + 2 t  ---- Weight supported by the corner weldment 4
Wcor    =  2,450 lb ------------------------ Weight of corner weldment Pt  =  675 lb -------------------------- Bounding weight of fuel tube assembly Asup  =  4.06 in2 ------------------------ Bearing area for DF corner weldment a  =  50g ------------------------------ Inertia load The factor of safety for membrane stress is:
0.7S u 0.7(68.4)
FS =            =            = 1.17 m          40.9 where:
Su = 68.4 ksi ---------------- Ultimate Strength, SA537 Class 1, 550&deg;F Axial support of the PWR basket is provided by fuel tube standoffs at the top and bottom of the basket, formed by extension of the fuel tube corners or use of connector pin assemblies. During an end drop, the standoffs are subjected to compressive loads; therefore, a buckling evaluation of the standoff is presented as follows. Evaluation of the connector pin assemblies for an end drop accidient provides a bounding evaluation which enevolopes all end of tube configurations. The load in one standoff is:
W x a 25x 60 Pso =          =          = 46.9 kip n          32 where:
W = 25,000 lb ------------------------- Bounding basket weight n = 32 -------------------------------- Number of connector pin assemblies a = 60g ------------------------------ Inertia load Using Euler buckling theory, the critical buckling load (Pcr) is:
2 EI      2 x (27.3 x 103 )x 0.015 Pcr =            =                            = 112.3 kip (K L)2              (2 x 3.0)2 NAC International                              2.7.10-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 where:
r = 0.375 in ------------------------- Radius of connector pin assembly L = 3.0 in ---------------------------- Length of standoff r4 I =          = 0.015 in4 4
K = 2.0 ------------------------------- Buckling constant, clamped free E = 26.9 x 106 psi ------------------ SA537, Class1, 550&deg;F The factor of safety for buckling of the standoffs is Pcr 112.3 kip FS =        =            = 2.39 Pso    46.9 kip 2.7.10.2        Stress Evaluation for the PWR DF Basket for 30-Foot Side Drop Condition The evaluation of the PWR DF basket for the side drop accident is performed using two elastic-plastic three-dimensional periodic models. These finite element models are essentially the same as the elastic models presented in Section 2.6.14.1 for the 0&deg; and 45&deg; basket orientations. The main difference is that the linear elastic material properties used for fuel tubes and weldment (SA537 Class 1) and pins (SA695 Type B) are replaced with bilinear kinematic hardening plastic material properties. The temperature-dependent tangent modulus is calculated based on the yield and ultimate strength. In addition, the outer node locations of the CONTAC52 elements at the basket periphery are defined based on the canister shell profile corresponding to the 30-ft side drop conditions. For the evaluation of the accident conditions, an inertia load of 60g in the transverse direction is applied. The pressure loads representing the fuel assemblies are also scaled by the acceleration.
The post-processing of the PWR DF basket finite element analysis results is performed to calculate critical stresses at various locations of the basket structure using the ANSYS post-processor. Similar to the normal conditions of transport, section cuts are taken at various locations (Figure 2.6.14-3 through Figure 2.6.14-7) to determine the critical membrane and membrane plus bending stresses using the PRSECT command. Critical plastic stresses are obtained by sorting for the maximum nodal plastic equivalent stress at each section cut location for membrane and membrane plus bending stresses. If yielding has not occurred along a section, the sectional membrane or membrane plus bending stress intensities are determined using the PRSECT command as for normal conditions.
The analysis results for the major basket components (tubes, support weldments) are summarized in Table 2.7.10-1 through Table 2.7.10-8. The allowable stresses are determined at a bounding temperature of 725&deg;F for the fuel tubes and 500&deg;F for the support weldments.
NAC International                          2.7.10-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.10.2.1      Fuel Tube Evaluation The fuel tubes are processed for both elastic and plastic stresses at the 16 locations shown in Figure 2.6.14-3 and Figure 2.6.14-4 for the 0&#xba; and 45&#xba; basket orientations, respectively. At these locations, the elastic stress intensity and maximum nodal plastic stress are calculated. The tube stresses are summarized in Table 2.7.10-1 and Table 2.7.10-5 for the 0&deg; and 45&deg; basket orientations, respectively. Note that if the maximum nodal stress at the section cut is less than the material yield strength (35.4 ksi at 500&deg;F), the sectional stress intensity is presented in the table. Otherwise, the maximum nodal plastic stress intensity at the section cut is presented. The minimum factors of safety are 1.16 and 1.37 for Pm and Pm+Pb stresses, respectively.
The fuel tubes are constructed by welding two tube halves together using a full-penetration weld the length of the fuel tube at the center of opposing flats. A surface PT or MT weld examination per ASME III-NG-5233 is used, which has a 0.65 weld quality factor (wf). The weld stress is evaluated at four section-cut locations (#2, #6, #10, #14) of each tube. From the 30-ft side drop analysis results, the maximum membrane and membrane plus bending stress intensity at a tube weld is 14.0 ksi (45&deg;, Tube #13, Section 10) and 35.4 ksi (45&deg;, Tube #5, Section 10),
respectively.
The factors of safety (FS) for the weld are:
Membrane:
0.7Su x wf 0.7 x 67.7 x 0.65 FS =                =                  = 2.20 14.0 Membrane plus bending:
0.9S u x wf 0.9 x 67.7 x 0.65 FS =                =                  = 1.12 35.4 where:
Su = 67.7 ksi ------------------------- Ultimate Strength, SA537 Class 1, 725&deg;F The pins in the tube slots are subjected to bearing load. The governing bearing load is 19.7 kips.
The bearing stress (brg) on the pin is evaluated using the bounding load of 20.0 kips.
P brg =      = 44.0 ksi LS where:
P = 20.0 kips ------------------------ Bounding load on pin L = 1.625 inch ---------------------- Length of pin S = 0.28 inch ----------------------- Width of contact surface between pin & slot NAC International                          2.7.10-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Per ASME Appendix F-1336, the allowable bearing stress is 2.1Su; therefore, the factor of safety is:
2.1S u FS =          = 2.77 brg where:
Su = 58.0 ksi ---------------- Ultimate strength, SA36 Carbon Steel, at 725&deg;F 2.7.10.2.2      Corner Support Weldment Evaluation The corner support weldment is comprised of two major components: the fabricated damaged fuel can tube and the gussets, which are welded to the tube. Stresses are evaluated at the sections of the corner weldment shown in Figure 2.6.14-5 and Figure 2.6.14-6 and the gusset section shown in Figure 2.6.14-7.
The analysis results using the 3-D finite element model for the corner support weldment are summarized in Table 2.7.10-2 for the 0&deg; basket orientation and Table 2.7.10-6 for the 45&deg; basket orientation. The minimum factors of safety are 4.09 and 2.56 for Pm and Pm+Pb stresses, respectively.
The corner support weldment has welds located at section 1, sections 5 through 8, and sections 12 though 14 for the 0&deg; orientation, and at sections 3 through 5, sections 9 through 11, and section 14 for the 45&deg; orientation as shown in Figure 2.6.14-5 and Figure 2.6.14-6. The maximum Pm and Pm+Pb stresses are 11.7 ksi (Section 14, 45&deg;) and 16.8 ksi (Section 8, 0&deg;),
respectively. At these welds, a surface PT or MT weld examination per ASME III-NG-5233 is used, which has a 0.65 weld quality factor (wf). The minimum factors of safety are 2.66 and 2.38, respectively.
Stresses in the corner weldment gussets are calculated at the sections shown in Figure 2.6.14-7.
The maximum gusset stresses are given in Table 2.7.10-3 for 0&deg; basket orientation and Table 2.7.10-7 for 45&deg; basket orientation. The minimum factors of safety are 4.39 and 2.63 for Pm and Pm+Pb stresses, respectively.
The gussets are welded to the corner weldment plates with a full-penetration weld. A surface MT weld examination per ASME Code, Section III, Subsection NG, Article NG-5232 is used, which has a 0.65 weld quality factor (wf). The welded joint between the ridge gusset and corner weldment is capable of carrying bending, axial and shear loads. The maximum weld loads occur in the 45&#xba; orientation basket model and the critical location is at weld location 15 (see Figure 2.6.14-7). The bending moment (M), tensile load (P), and shear load (V) are 2,541 in-lb, 13,659 lb, and 8,873 lb, respectively. The weld stress intensity (weld) is NAC International                        2.7.10-5
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2            2 M        P        V weld  =        +      + 4      = 25.6 ksi Sw A w            Aw where:
Sw      =        2.00x0.752/6 = 0.1875 in3 Aw      =        0.75x2.00 = 1.50 in2 The factor of safety (FS) for the weld is 0.65(S u )
FS =                = 1.74 weld where:
Su = 68.4 ksi ------------------------- Ultimate strength, SA537 Class 1, at 500&deg;F 2.7.10.2.3      Side Support Weldment Evaluation Stresses in the side weldments are calculated at the sections shown in Figures 2.6.13-12 and Figure 2.6.13-13. The maximum stresses for the side support weldment from the finite element analysis are presented in Table 2.7.10-4 for the 0&deg; basket orientation and Table 2.7.10-8 for the 45&deg; basket orientation. The minimum factors of safety are 2.74 and 1.73 for Pm and Pm+Pb stresses, respectively.
2.7.10.2.4      Side and Corner Weldment/Fuel Tube Attachment Evaluation The support weldments are bolted to the fuel tubes at 16 circumferential locations. From the finite element analysis results, the maximum bolt tensile load is 1,891 pounds. Combining the tensile bolt load with the bolt preload (400 lb), the maximum bolt load is 2,291 pounds. The bolt thread is a 5/8-11 UNC and the length of engagement is 0.50 inch. A bounding load (P) of 3.0 kips is conservatively used for evaluation. The bolt material is SA193 Grade B6 stainless steel.
The tensile stress in the bolt is:
P        3 .0 t =        =          = 13.0 ksi A t 0.23 where:
2                            2 0.9743                        0.9743 At =    0.7854 D                = 0.7854 0.625          = 0.23 in2 n                          11 D = 0.625 in ----------------------------------- Bolt diameter n = 11 ------------------------------------------ Threads per inch NAC International                                2.7.10-6
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 The factor of safety is:
0.7S u FS =              = 5.15 t
where:
Su = 95.6 ksi ------------------------- Ultimate Strength, SA193 Grade B6, 500&deg;F The shear stress in the bolt thread is:
P        3.0 bolt =        =          = 6.0 ksi A s 0.499 where:
1 As =      3.1416nL e K n max  + 0.57735 (E s min  K n max ) = 0.499 in2 2n Le =    0.5 in ---------------------------- Thread length of engagement Knmax =      0.546 in ------------------------- Maximum minor diameter of internal thread Esmin =    0.5589 in ----------------------- Minimum pitch diameter of external thread n =    11 -------------------------------- Threads per inch The factor of safety is:
0.42S u FS =                = 6.69 bolt where:
Su = 95.6 ksi ------------------------- Ultimate Strength, SA-193 Grade 6, 500&deg;F The shear stress in the boss thread is:
P      3 .0 boss  =            =        = 4.2 ksi A n 0.713 where:
1 An =      3.1416nL e D s min  + 0.57735 (D s min  E n max ) = 0.713 in2 2n Le =    0.5 in -------------------------------------- Thread length of engagement Enmax =    0.5732 in --------------------------------- Maximum minor diameter of internal thread Dsmin =    0.6113 in --------------------------------- Minimum major diameter of external thread n =    11 ------------------------------------------ Threads per inch The factor of safety is:
0.42S u FS =                = 5.80 boss NAC International                            2.7.10-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 where:
Su = 58.0 ksi ------------------------- Ultimate Strength, SA36, 500&deg;F The shear load (Ps) at all boss locations is calculated to be zero for both the 0&deg; and 45&deg; basket orientations. For evaluation, a bounding load of 3.0 kips is used.
The shear stress in the boss is:
PS    3.0 boss  =            =      = 3.3 ksi A b 0.92 where:
Ab =
(
Do2  Di2  )  = 0.92 in 4
Do = 1.25 in -------------------------- Boss outer diameter Di = 0.63 in -------------------------- Boss inner diameter The factor of safety is:
0.42S u FS =              = 7.38 boss where:
Su = 58.0 ksi ------------------------- Ultimate Strength, SA36, 500&deg;F The boss is welded into the fuel tube with a 1/4-inch groove weld. The weld has a visual inspection criterion per ASME III-NG-5260. Visual inspection of the weld has a weld quality factor of 0.35, per ASME III-NG-3352. The stress in the boss weld is:
P      3.0 weld  =            =        = 3.1 ksi A w 0.98 where:
P = 3.0 kip -------------------------- Bounding bolt tensile load Aw = Dt weld =  x 1.25 x 0.25 = 0.98 in2 D = 1.25 in -------------------------- Boss diameter The factor of safety, using the lesser of the SA-537 Class 1 and the SA-36 allowable, is:
0.35 (0.42S u )
FS =                      = 2.75 weld where:
Su = 58.0 ksi ------------------------- Ultimate Strength, SA36, 500&deg;F NAC International                              2.7.10-8
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 The washers under the bolts at the boss locations are subjected to shear from the bolt tensile load and the support condition at the weldment. Using a bounding bolt tensile force (P) of 3 kips, the shear stress is:
P    3.0 wash =          =      = 2.96 ksi Aw 1.015 where:
Aw = Pbtw= 1.015 in2 Pb = 3.248 in ------------------------- Perimeter of mounting bolt head tw = 0.3125 in ----------------------- Washer thickness The factor of safety is:
0.42S u FS =              = 9.0 wash where:
Su = 63.4 ksi ------------------------- Ultimate Strength, SA240 Type 304, 500&deg;F NAC International                        2.7.10-9
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.10-1      PWR-DF Fuel Tube Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                                        Membrane + Bending Tube    Section    Sint      Sallow        FS      Tube      Section  Sint    Sallow    FS 12        8        41.0      47.4        1.16      12          8    42.5      60.9    1.43 12        9        27.7      47.4        1.71      12          9    42.3      60.9    1.44 12        4        19.8      47.4        2.40        8          8    41.7      60.9    1.46 10        8        17.5      47.4        2.71        4          8    41.6      60.9    1.46 12        7        17.1      47.4        2.77        7        12    41.5      60.9    1.47 Note:  See Figure 2.6.14-3 for tube and section cut locations.
Table 2.7.10-2      PWR-DF Corner Weldment Plate Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                                        Membrane + Bending Section          Sint      Sallow        FS          Section        Sint    Sallow    FS 8            11.3      47.9        4.24            8          16.8      61.6    3.67 12            11.3      47.9        4.24            12        15.7      61.6    3.92 11              6.8      47.9        7.04            10        17.5      61.6    3.52 9              6.8      47.9        7.04            11        10.7      61.6    5.76 10              4.0      47.9      Large            9          9.6      61.6    6.42 Note:  See Figure 2.6.14-5 for section cut locations.
Table 2.7.10-3      PWR-DF Corner Weldment Gusset Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                                        Membrane + Bending Section          Sint      Sallow        FS          Section        Sint    Sallow    FS 24              7.6      47.9        6.30            24        18.0      61.6    3.42 23              7.6      47.9        6.30            12        17.5      61.6    3.52 22              7.5      47.9        6.39            19          7.8      61.6    7.90 12              6.8      47.9        7.04            7          7.7      61.6    8.00 11              6.4      47.9        7.48            23          7.6      61.6    8.11 Note:  See Figure 2.6.14-7 for section cut locations.
NAC International                          2.7.10-10
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.10-4      PWR-DF Side Weldment Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                                        Membrane + Bending Section          Sint      Sallow        FS          Section        Sint    Sallow    FS 14            17.5      47.9        2.74            14        35.6      61.6    1.73 15              6.4      47.9        7.48            19        35.3      61.6    1.75 12              5.5      47.9        8.71            18        20.9      61.6    2.95 13              3.6      47.9      Large            13        20.2      61.6    3.05 11              3.0      47.9      Large            12        16.7      61.6    3.69 Note:  See Figure 2.6.13-12 for section cut locations.
Table 2.7.10-5      PWR-DF Fuel Tube Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                                        Membrane + Bending Tube    Section    Sint      Sallow        FS      Tube      Section  Sint    Sallow    FS 9        8        41.5      47.4        1.16        6          8    44.4      60.9    1.37 13        8        41.0      47.4        1.16        3          8    44.1      60.9    1.38 11        4        34.0      47.4        1.39        7          8    43.8      60.9    1.39 13        7        28.7      47.4        1.65        4          8    43.7      60.9    1.40 11        5        25.3      47.4        1.87        9          8    43.5      60.9    1.40 Note:  See Figure 2.6.14-4 for tube and section cut locations.
Table 2.7.10-6      PWR-DF Corner Weldment Plate Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                                        Membrane + Bending Section          Sint      Sallow        FS          Section        Sint    Sallow    FS 14            11.7      47.9        4.09            12        24.1      61.6    2.56 9            10.3      47.9        4.65            14        16.7      61.6    3.69 5              9.3      47.9        5.15            9          14.0      61.6    4.40 12              8.4      47.9        5.70            5          13.1      61.6    4.70 13              7.3      47.9        6.56            7          11.4      61.6    5.40 Note:  See Figure 2.6.14-6 for section cut locations.
NAC International                          2.7.10-11
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.7.10-7      PWR-DF Corner Weldment Gusset Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                                    Membrane + Bending Section          Sint      Sallow      FS      Section        Sint    Sallow    FS 22            10.9      47.9      4.39        22          23.4      61.6    2.63 24            10.9      47.9      4.39        10          18.9      61.6    3.26 23            10.9      47.9      4.39        21          17.8      61.6    3.46 10              9.9      47.9      4.84        9          17.4      61.6    3.54 12              9.5      47.9      5.04        23          12.9      61.6    4.78 Note:  See Figure 2.6.14-7 for section cut locations.
Table 2.7.10-8      PWR-DF Side Weldment Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                                  Membrane + Bending Section          Sint      Sallow      FS      Section        Sint    Sallow    FS 10            12.2      47.9      3.92        17          35.4      61.6    1.74 12            11.6      47.9      4.13        10          32.3      61.6    1.91 14              5.6      47.9      8.55        18          31.6      61.6    1.95 11              5.5      47.9      8.71        12          29.6      61.6    2.08 8              4.9      47.9      9.78        14          20.3      61.6    3.03 Note:  See Figure 2.6.13-13 for section cut locations.
NAC International                          2.7.10-12
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.7.11          BWR Fuel Basket Analysis - Accident Conditions This section evaluates the BWR fuel basket for accident conditions of transport. The BWR basket is designed to accommodate up to 87 BWR fuel assemblies. The basket consists of 45 fuel tubes, four side support weldments, and four corner support weldments. The structural evaluation for the BWR fuel basket is performed using the criteria for Service Level D limits from ASME Code Section III, Subsection NG, and ASME Code Appendix F. As discussed in Section 2.7.9, only the end drop and side drop orientations are evaluated.
2.7.11.1        Stress Evaluation for the BWR Basket for 30-Foot End Drop Condition The BWR fuel basket is analyzed using classical hand calculations for a 40g inertia loading in the basket axial direction for top or bottom end drop conditions. During accident end drop conditions, the BWR fuel assemblies do not apply loads to the basket. Using a bounding weight of 22,000 pounds, the maximum stress in the fuel tube is calculated as follows. There are 45 fuel tubes in the BWR basket. Conservatively assuming the entire basket weight is carried through the fuel tubes, the stress in the tube is:
Ptube 19.6 tube =            =      = 3.21 ksi A    6 .1 where:
Wxa Ptube =          = 19,556 lb --------------- Load per tube n
W    = 22,000 lb ------------------------- Bounding basket weight n  = 45 ---------------------------------- Number of fuel tubes a  = 40g -------------------------------- End drop inertia load A  = 6.1 in2 ----------------------------- Tube cross-sectional area The factor of safety is:
0.7 x S u 47.9 FS =              =      = large tube    3.21 where:
Su = 68.4 ksi ------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F For the buckling analysis of the connector pin assemblies, the entire weight of the basket is assumed to be supported by the connector pins at the top or bottom of the basket.
Conservatively, no credit is taken for the support from the side and corner weldments. The portion of the connector pin assembly extending from the basket is 10.44-inches long at the top of the basket and 3-inches long at the bottom.
NAC International                              2.7.11-1
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 The buckling stress for the connector pin assembly is calculated as follows.
40 x Ppin    40 x 0.579 b =              =              = 29.5 ksi A            0.785 where:
D pin 2 A =            = 0.785 inch2 ----------- Connector pin area 4
Dpin = 1.0 inch --------------------------- Connector pin diameter P      22,000 Ppin = B =                = 579 lb --------- Load per connector pin Np        38 PB = 22,000 lb ------------------------- BWR basket bounding weight Np = 38 --------------------------------- Number of connector pins The buckling factor of safety for the connector pin assembly is calculated based on the criteria for Service Level D limits for a column from the NUREG/CR-6322 Buckling Analysis of Spent Fuel Basket. Using the following parameters, the permitted axial compressive stress is calculated to be 38.4 ksi.
Kl/r = 50.1 K = 1.2 -------------------------------- Effective-length factor 1
I 2 r =  = 0.25 inch --------------- Radius of gyration A
D pin 4 I =              = 0.049-inch4 ---------------- Connector pin area moment of inertia 64 D pin 2 A =              = 0.785 inch2----------- Connector pin area 4
Dpin =  1.0 inch --------------------------- Connector pin diameter l =  10.44 inch ------------------------ Connector pin bounding length E =    25.8 x 106 psi -------------------- Elastic modulus, SA564, Type 630, 550&deg;F Sy =    85.9 ksi --------------------------- Yield strength, SA564, Type 630 (17-4PH), 550&deg;F The factor of safety for buckling is:
Fa 38.4 FS =      =        = 1.30 b 29.5 NAC International                              2.7.11-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The weight of the side and corner weldments is transmitted to the TSC lid or bottom plate through the supports at the top and bottom of the weldments. The corner weldment is bounding for the top and bottom supports. The dimensions for the corner support weldment are 8.0-inch length and 0.375-inch thickness. The bounding weight of the corner weldment is 1,100 pounds.
The corner weldment also supports one-quarter the weight of four fuel tubes (400 lb per tube, bounding). The membrane stress in the corner weldment is:
Wsup      64.0
          =          =        = 21.3 ksi A sup      3. 0 where:
Wsup =    40 x (1,100 + 4 x (0.25 x 400)) = 64,000 lb Asup =    8 .0 x 0 .375 = 3.0 in2 The factor of safety is:
0.7S u 47.9 FS =            =        = 2.25 m        30.0 where:
Su = 68.4 ksi ----------------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F 2.7.11.2        Stress Evaluation for the BWR Basket for 30-Foot Side Drop Condition The evaluation of the BWR basket for the side drop accident is performed using two elastic-plastic three-dimensional periodic models. These finite element models are essentially the same as the elastic models presented in Section 2.6.15.4 for the 0&deg; and 45&deg; basket orientations. The main difference is that the linear elastic material properties used for fuel tubes and weldment (SA537 Class 1) and pins (SA695 Type B) are replaced with bilinear kinematic hardening plastic material properties. The temperature-dependent tangent modulus is calculated based on the yield and ultimate strength. In addition, the outer node locations of the CONTAC52 elements at basket periphery are defined based on the canister shell profile corresponding to the 30-ft side drop conditions. For the evaluation of the accident conditions, an inertia load of 60g in the transverse direction is applied. The pressure loads representing the fuel assemblies are also scaled by the acceleration.
The post-processing of the BWR basket finite element analysis results is performed to calculate critical stresses at various locations of the basket structure using the ANSYS post-processor.
Similar to the normal conditions of transport, section cuts are taken at various locations (Figure 2.6.15-8 through Figure 2.6.15-13) to determine the critical membrane and membrane plus bending stresses using the PRSECT command. Critical plastic stresses are obtained by NAC International                          2.7.11-3
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 sorting for the maximum nodal plastic equivalent stress at each section cut location for membrane and membrane plus bending stresses. If yielding has not occurred along a section, the sectional membrane or membrane plus bending stress intensities are computed.
The analysis results for the major basket components (tubes, support weldments) are summarized in Table 2.7.11-1 through Table 2.7.11-6. The allowable stresses are determined at a bounding temperature of 725&deg;F for the fuel tubes and 550&deg;F for the support weldments.
2.7.11.2.1      Fuel Tube Evaluation The stresses in each fuel tube are post-processed at the 16 locations shown in Figure 2.6.15-8 and Figure 2.6.15-9 for 0&deg; and 45&deg; basket orientations, respectively. At these locations, both the section elastic stress intensity and maximum nodal plastic stress intensity at the section are calculated. If the plastic nodal stress at a section cut is less than the tube yield stress used in the analysis (35.4 ksi for SA537 Class 1 at 500&deg; F), the section elastic stress intensity is the reported stress result. If the plastic stress is above the yield stress, the plastic nodal stress intensity is reported. Table 2.7.11-1 and Table 2.7.11-4 summarize the highest stress results for the fuel tubes for the 0&deg; and 45&deg; basket orientations, respectively. The maximum stresses for primary membrane and membrane plus bending are 43.15 ksi (0&deg;, Tube #25, Section 8) and 55.40 ksi (0&deg;,
Tube #25, Section 12), respectively. The factors of safety are:
Membrane:
0.7S u    47.4 FS =          =        = 1.10 43.15 Membrane plus bending:
0.9S u    60.9 FS =          =        = 1.10 55.40 where:
Su = 67.7 ksi ------------------------- Ultimate Strength, SA537 Class 1, 725&deg;F The fuel tubes are constructed by welding two tube halves together using a full-penetration weld the length of the fuel tube at the center of opposing flats. A surface PT or MT weld examination per ASME III-NG-5233 is used, which has a 0.65 weld quality factor (wf). The weld location and orientation are not specified on the assembly drawings; therefore, the maximum weld stress intensity is evaluated at each side of a tube (section cuts #2, #6, #10, #14). From the analysis results, the maximum membrane and membrane plus bending stress intensities at a tube weld are 18.69 ksi (0&deg;, Tube #25 Section 6) and 35.49 ksi (0&deg;, Tube #25 Section 6), respectively. The factors of safety for the weld are:
NAC International                          2.7.11-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Membrane:
0.65(0.7S u ) 30.80 FS =                  =        = 1.65 18.69 Membrane plus bending:
0.65(0.9S u ) 36.56 FS =                  =        = 1.03 35.49 where:
Su = 67.7 ksi ------------------------- Ultimate strength, SA537 Class 1, 725&deg;F The bearing stresses at the pins are calculated by extracting the total compression force at each tube-and-pin interface from the analysis results. The maximum bearing force is 11,600 lb (0&deg; basket orientation). The maximum bearing stress at the pin is:
Fbrg brg =          = 68.2 ksi A brgs where:
Fbrg  =  11,596 lb ----------------------- Maximum bearing force at pin Lb  =  1.00 in -------------------------- Length of pin/tube contact wf  =  0.17 in -------------------------- Minimum width of pin/tube contact Abrg  =  Lbwf = 0.17 in2 The factor of safety using the lesser of SA537 Class 1 and SA695, Type B,GR 40, Su allowables is:
2.1Su      2.1 x 67.7 FS =            =            = 2.08 brg      68.2 where:
Su = 67.7 ksi ------------------------- Ultimate Strength, SA537 Class 1, 725&deg;F 2.7.11.2.2      Corner Support Weldments The corner support weldment stresses are processed at the locations shown in Figure 2.6.15-10 and Figure 2.6.15-11. The section elastic stress intensity and the plastic nodal stress are evaluated in the same manner as described for the tubes stresses. The highest stresses are summarized in Table 2.7.11-2 for the 0&deg; basket orientation and Table 2.7.11-5 for the 45&deg; basket orientation. The largest stresses for primary membrane and membrane plus bending are 42.49 ksi (0&deg;, Section 72) and 43.61 ksi (0&deg;, Section 72), respectively. The factors of safety are:
NAC International                            2.7.11-5
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 Membrane:
0.7S u      47.9 FS =            =          = 1.13 42.49 Membrane plus bending:
0.9S u      61.6 FS =            =        = 1.41 43.61 where:
Su = 68.4 ksi ------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F Support Plate and Ridge Gusset Welds Each support plate is welded to the corner weldment with a 5/16-inch groove weld on each side of the plate. The welds have visual inspection criteria per ASME III-NG-5260 and a weld quality factor of 0.35 per ASME III-NG-3352. The ridge gussets are welded to the corner weldment with a 0.25-inch bevel weld that is continuous along the length of the basket.
Inspection is by liquid penetrant, and per ASME III-NG-3350, the weld quality factor is 0.55. At each of these weld locations in the model, the membrane force along the plate or gusset length (Fax), the transverse shear force perpendicular to the plate or gusset (Ft), and the bending moment (Mz) in the weld joint are extracted from the finite element analysis results. The weld stress intensity (weld) is then computed using:
weld =    ( ax +  m )2 + 4 2 where:
Fax ax =
A weld Mz m =
S weld Ft
          =
A weld For the side support plate weld:
Aweld =    2 x (L p x t w ) = 3.62 in2 Sweld =    L p x Wp x t w = 1.35 in3 Lp = 5.8 in ---------------------------- Length of support plate Wp = 0.75 in -------------------------- Plate thickness tw = 0.3125 in ----------------------- Weld size NAC International                            2.7.11-6
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 For the ridge gusset weld:
Aweld =    L x t w = 2.50 in2
(        )
Sweld = L x t 2w / 6 = 0.104 in3 Lp = 10.0 in -------------------------- Length of basket model tw = 0.25 in -------------------------- Weld size Based on the weld loads obtained from the finite element analysis results, the largest support plate weld stress intensity is 12.70 ksi (0&deg;). The factor of safety is:
0.35(.9S u ) 21.55 FS =                =        = 1.70 weld      12.70 where:
Su = 68.4 ksi ------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F The largest ridge gusset weld stress intensity is 25.88 ksi (0&deg;). The factor of safety is:
0.55(.9S u ) 33.86 FS =                =        = 1.31 weld      25.88 where:
Su = 68.4 ksi ------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F 2.7.11.2.3    Side Support Weldments The side support weldments stresses are processed at the locations shown in Figure 2.6.15-12 and Figure 2.6.15-13. The section elastic stress intensity and the plastic nodal stress are evaluated in the same manner as described for the tubes stresses. Table 2.7.11-3 for the 0&deg; basket orientation and Table 2.7.11-6 for the 45&deg; basket orientation summarize the highest stresses. The minimum factors of safety for the side support weldment are 4.45 for Pm stress and 2.37 for Pm+Pb stresses.
Side and Corner Weldment / Fuel Tube Attachment Evaluation Based on the finite element analysis results, the largest bolt tensile load is 3,710 lb (45&deg;, bolt 2).
Combining this load with the bolt preload (400 lb) gives a maximum bolt load of 4,110 pounds.
The bolt thread is a 5/8-11 UNC and the length of engagement is 0.47 inch. The bolt material is SA193 Grade B6 stainless steel. The tensile stress in the bolt is:
P      4.110 t =        =          = 17.87 ksi At      0.23 NAC International                          2.7.11-7
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 where:
2                            2 0.9743                      0.9743 At =    0.7854 D                = 0.7854 0.625              = 0.23 in2 n                          11 D = 0.625 in ------------------------------------ Bolt diameter n = 11 ------------------------------------------ Threads per inch The factor of safety is:
0.7S u        66.1 FS =              =        = 3.70 t        17.87 where:
Su = 94.4 ksi ------------------------- Ultimate Strength, SA193 Grade B6, 550&deg;F The shear stress in the bolt thread is:
P      4.110 bolt =      =            = 8.76 ksi A s 0.469 where:
1 As =      3.1416nL e K n max  + 0.57735 (E s min  K n max ) = 0.469 in2 2n Le =    0.47 in ------------------------------------ Thread length of engagement Knmax =    0.546 in ----------------------------------- Maximum minor diameter of internal thread Esmin =    0.5589 in --------------------------------- Minimum pitch diameter of external thread n =    11 ------------------------------------------ Threads per inch The factor of safety is:
0.42S u 39.6 FS =              =        = 4.52 bolt      8.76 where:
Su = 94.4 ksi ------------------------- Ultimate tensile stress, SA193 Grade B6, 550&deg;F The shear stress in the boss thread from the maximum bolt tensile force is:
P      4.110 boss  =            =          = 6.13 ksi An        0.67 where:
1 An =      3.1416nL e D s min  + 0.57735 (D s min  E n max ) = 0.67 in2 2n Le = 0.47 in ------------------------------------ Thread length engagement Enmax = 0.5732 in --------------------------------- Maximum pitch diameter of internal thread NAC International                              2.7.11-8
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Dsmin = 0.6113 in --------------------------------- Minimum major diameter of external thread n = 11 ------------------------------------------ Threads per inch The factor of safety is:
0.42S u 29.4 FS =              =        = 4.80 boss      6.13 where:
Su = 70.0 ksi ------------------------- Ultimate Strength, SA695, Type B, GR 40, 550&deg;F There are two boss diameters in the BWR basket, 1.00-inch and 1.38-inch diameter, Type A and Type B, respectively. The boss is evaluated for the maximum shear load of 8,741 lb (0&deg;)
and the small boss diameter (Type A). The shear stress in the boss is:
P    8.741 boss  =          =        = 18.60 ksi Ab      0.47 where:
Ab =
(
Do2  Di2  ) = 0.47 in2 4
Do = 1.00 in -------------------------- Boss outer diameter Di = 0.63 in -------------------------- Boss inner diameter The factor of safety is:
0.42S u      29.4 FS =              =        = 1.58 boss    18.60 where:
Su = 70.0 ksi ------------------------- Ultimate Strength, SA695, Type B, GR 40, 550&deg;F The bearing stress between the boss and weldment does not need to be considered for the accident event.
The boss is welded into the fuel tube with a 3/16-inch groove weld and has a visual inspection criterion. Per ASME Code, Section III, Subsection NG-5260, the weld quality factor is 0.35.
The maximum bolt tensile force at a Type A boss is 1,839 lb (0&deg;). Including the bolt preload of 400 lb, the shear stress in the weld for boss Type A is:
P    2.239 weld  =          =          = 3.80 ksi A w 0.589 NAC International                            2.7.11-9
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 where:
Aw = Dt weld =  x 1.00 x 3/16 = 0.589 in2 D = 1.00 in -------------------------- Boss diameter tweld = 3/16 in -------------------------- Weld size The factor of safety using the lesser of SA537 Class 1 and SA695, Type B, GR 40, Su allowable is:
0.35(0.42S u ) 10.05 FS =                    =        = 2.65 weld        3.80 where:
Su = 68.4 ksi --------------------------- Ultimate tensile stress, SA537 Class 1, 550&deg;F The maximum bolt tensile force at a Type B boss is 3,710 lb (45&deg;). Including the bolt preload of 400 lb, the shear stress in the weld for boss Type B is:
P      4.110 weld  =      =          = 5.06 ksi A w 0.813 where:
Aw = Dt weld =  x 1.38 x 3/16 = 0.813 in2 D = 1.38 in -------------------------- Boss diameter tweld = 3/16 in -------------------------- Weld size The factor of safety using the lesser of SA537 Class 1 and SA695, Type B, GR 40, Su allowable is:
0.35(0.42S u ) 10.05 FS =                    =        = 1.99 weld        5.06 where:
Sm = 68.4 ksi ------------------------- Ultimate Strength, SA537 Class 1, 550&deg;F The washers under the bolts at the boss locations are subjected to shear from the bolt tensile load and the support condition at the weldment. Using a bounding bolt tensile load of 4,110 lb, the maximum washer shear stress (Type A boss) is:
P      4.110 wash =            =        = 6.66 ksi A w 0.617 where:
Aw = Pb t w = 0.617 in2 NAC International                            2.7.11-10
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Pb =    3.248 in ------------------------- Perimeter of mounting bolt head tw =  0.19 in -------------------------- Washer thickness The factor of safety is:
0.42S u FS =              = 4.00 wash where:
Su = 63.4 ksi ------------------------- Ultimate Strength, SA240, Type 304, 550&deg;F 2.7.11.3        BWR Neutron Absorber Retainer Evaluation for Accident Conditions The structural evaluation of the neutron absorber retainer for the governing loading condition for the 30-ft side drop is presented in this section.
The retainer strip and the neutron absorber are evaluated using LS-DYNA program for the side impact conditions for accident conditions. A quarter-symmetry finite element model is constructed for the analysis of the 60g side impact condition. The model is identical to the model used for the evaluation of normal condition as described in Section 2.6.15.7. Inelastic properties are employed for the stainless steel retainer strip and the neutron absorber at 700F to adequately represent the stiffness at the maximum temperature condition.
The maximum stress intensity (twice maximum shear) is 34.8 ksi. The allowable stress intensity for accident condition is 0.9Su.
The factor of safety for the retainer strip is:
FS = 0.9Su / 34.8 = 0.9 x 63.2 / 34.8 = 1.63 where:
Su = 63.2 ksi ---------------------------------- Ultimate Strength of SA240, Type 304 stainless steel at 700&deg;F Since the function of the retainer is to maintain the neutron absorber in its position, the criteria for the retainer is to limit the motion of the neutron poison during and after the impact. This is confirmed by considering the permanent strains and the permanent set of the retainer. The maximum strain of 2.5% is local to the conical-shaped hole. Such a minimal strain level indicates that the conical pocket retains its configuration for the weld post to restrain the retainer.
The final maximum displacement of the retainer strip at the axial midpoint between the weld posts is computed to be 0.06 inch, which is consistent with the minimal plastic strain in the retainer. This also confirms that the retainer remains engaged with the weld post during and after the impact.
NAC International                          2.7.11-11
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The retainer strip deflected 0.2 inch during the impact and settled to a final position of about 0.07 inch. This deflection is well below the clearance between the PWR fuel assembly and the inside dimension of the fuel tube (0.34 inch). Therefore, the fuel assembly will be retrievable after the impact.
The peak force on the weld post is 50 pounds. The shear area governs the capacity of the weld.
The depth of the weld is h = 0.13-inch. The diameter of the weld post is D = 0.25-inch. The governing stress is the shear stress in the base material. The allowable shear stress for accident condition is 0.42Su. The ultimate strength of the base material (SA240, Type 304) is Su= 63,200 psi at 700&deg;F. The weld capacity, Fcap is calculated as:
Fcap = 0.42 x n x Su x h x D
            = 0.42 x 0.3 x 63,200 x 0.13 x (3.1416 x 0.25)
            = 813 lb where:
n = The design factor per ASME B&PV Code, Section III, Division 1, Subsection NG, Table NG-3352-1 for the intermittent plug weld employing surface visual examination method per NG-5260.
The factor of safety is:
FS = 813/50 = Large NAC International                        2.7.11-12
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.11-1      BWR Fuel Tube Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                                      Membrane plus Bending Tube    Section      Sint      Sallow      FS        Tube    Section    Sint    Sallow    FS 25        8        43.15      47.40      1.10        25        12    55.40    60.90    1.10 22        8        43.00      47.40      1.10        25        8      45.20    60.90    1.35 20        12        42.59      47.40      1.11        17        7      38.90    60.90    1.57 24        12        41.98      47.40      1.13        22        8      37.61    60.90    1.62 22        12        41.93      47.40      1.13        20        12    37.25    60.90    1.63 Note:  See Figure 2.6.15-8 for tube and section cut locations.
Table 2.7.11-2      BWR Corner Weldment Plate Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                            Membrane plus Bending Section      Sint    Sallow      FS      Section    Sint  Sallow    FS 72        42.49    47.90      1.13        72      43.61  61.60    1.41 71        42.49    47.90      1.13        71      43.60  61.60    1.41 68        41.65    47.90      1.15        48      43.20  61.60    1.43 Note:    See Figure 2.6.15-10 for section cut locations.
Table 2.7.11-3        BWR Side Weldment Stresses, 30-ft Side Drop - 0&deg;, ksi Membrane                            Membrane plus Bending Section      Sint    Sallow      FS      Section    Sint  Sallow    FS 15        10.76      47.9      4.45        11      25.99    61.6    2.37 11        7.60      47.9      6.30        14      21.93    61.6    2.81 7        5.97      47.9      8.02        15      15.57    61.6    3.96 Note:    See Figure 2.6.15-12 for section cut locations.
NAC International                          2.7.11-13
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.11-4      BWR Fuel Tube Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                                      Membrane plus Bending Tube    Section      Sint      Sallow      FS      Tube    Section    Sint    Sallow    FS 26        8      41.96      47.40      1.13        23      8      48.47    60.90    1.26 23        4      41.43      47.40      1.14        26      4      41.87    60.90    1.45 26        4      41.26      47.40      1.15        26      8      41.26    60.90    1.48 4        8      41.23      47.40      1.15        12      7      39.94    60.90    1.52 2        8      41.07      47.40      1.15        9      9      39.38    60.90    1.55 Note:  See Figure 2.6.15-9 for tube and section cut locations.
Table 2.7.11-5      BWR Corner Weldment Plate Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                          Membrane plus Bending Section      Sint      Sallow      FS      Section    Sint  Sallow    FS 70      41.45      47.90      1.16        38      43.01  61.60    1.43 69      41.45      47.90      1.16        48      42.71  61.60    1.44 38      41.44      47.90      1.16        76      42.03  61.60    1.47 Note:  See Figure 2.6.15-11 for section cut locations.
Table 2.7.11-6      BWR Side Weldment Stresses, 30-ft Side Drop - 45&deg;, ksi Membrane                          Membrane plus Bending Section      Sint      Sallow      FS      Section    Sint  Sallow    FS 14        9.75      47.90      4.91        8      18.26  61.60    3.37 13        7.87      47.90      6.09        13      14.53  61.60    4.24 8        6.25      47.90      7.66        14      14.49  61.60    4.25 Note:  See Figure 2.6.15-13 for section cut locations NAC International                        2.7.11-14
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.12          GTCC -TSC and Waste Basket Liner Analysis - Accident Conditions This section presents the evaluation of the GTCC-TSC and GTCC waste basket liner for the hypothetical accident conditions. The evaluation of the GTCC-TSC and GTCC waste basket liner for normal conditions of transport is presented in Section 2.6.16.
Drop accident stress evaluations of the GTCC-TSC and GTCC waste basket liner are performed for the 30-ft top and bottom end drops and top and bottom corner drop conditions by applying a 40g deceleration load. Drop accident stress evaluations for the 30-ft side drop are performed by applying a 60g deceleration load. The loads developed in the GTCC waste basket liner are transferred through the TSC wall into the cask inner shell (for the side-drop and corner drops),
and any axial component is transferred into the ends of the cask cavity. The axial loads are maximized for the end drops and corner drop conditions. The lateral loads are maximized in the corner drop and side drop since an enveloping acceleration is employed in the analysis.
Regardless of the angle of the drop, the GTCC-TSC shell is uniformly supported along its length by the transport cask inner shell. The loading for the oblique orientation close to the side drop orientation is bounded by the loading for the side drop orientation. Therefore, oblique orientations other than the corner drops are not considered.
The 30-ft drop buckling load case for the GTCC-TSC is bounded by the analysis of the TSC in Section 2.7.8.5 because the 9-inch thick lid is heavier than the GTCC composite lid due to the lower density of the carbon steel shield plate. The 30-ft drop buckling load case for the GTCC waste basket liner is also bounded by the analysis of the TSC in Section 2.7.8.5 because the waste basket liner, which is constructed of the same material, is shorter, has a thicker cylindrical shell, has a lighter bottom plate, and is not subjected to the weight of the lid during a bottom end drop. Additionally, the buckling analysis in Section 2.7.8.5 considered a 60g deceleration, whereas the bounding end drop deceleration for the GTCC-TSC is 40g.
The structural design criteria for the GTCC-TSC are conservatively based on the ASME Code, Section III, Subsection NB as compared to Subsection NF, which could be used to perform the structural evaluation. The GTCC-TSC will be fabricated using the Rules of ASME Code Section III, Subsection NF. The structural components of the TSC (shell, bottom plate and closure lid) are shown to satisfy the allowable stress intensity limits.
The structural design criteria for the GTCC waste basket liner are contained in ASME Code, Section III, Subsection NF. The structural components of the GTCC waste basket liner (cylindrical shield plate [shell], bottom plate and spacer rings) are shown to satisfy the allowable stress intensity limits.
The ANSYS finite element program is used to evaluate the GTCC-TSC for the 30-ft drop conditions in the top and bottom end, side, and top and bottom corner impact orientations. The NAC International                          2.7.12-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 ANSYS finite element model is the same as that used for the evaluation of the 1-ft drop events for normal conditions of transport (Model B, Section 2.6.16). The 30-ft drop evaluations of the GTCC waste basket liner use the ANSYS finite element model described in Section 2.6.16.2 and shown in Figure 2.6.16-1 and Figure 2.6.16-2.
For the GTCC-TSC lid weld (Section 11, Figure 2.6.12-5), base metal properties are used to define the allowable stress limits since the weld filler rod tensile properties are greater than the base metal. Also, the allowable stress is multiplied by a stress reduction factor of 0.8 per ISG-4.
For accident conditions of transport, the GTCC-TSC is evaluated for the following load conditions:
* 30-ft drop inertia loads due to end, side and corner orientations; internal pressure (10 psig)
The load combinations analyzed for the GTCC-TSC are:
                - Accident Pressure Only
                - Accident Top End Drop
                - Accident Bottom End Drop
                - Accident Side Drop
                - Accident Bottom Corner Drop
                - Accident Top Corner Drop For accident conditions of transport, the GTCC waste basket liner is evaluated for the following load conditions:
* 30-ft drop inertia loads due to end, side and corner orientations The load combinations analyzed for the GTCC waste basket liner are:
                - Accident Top End Drop
                - Accident Bottom End Drop
                - Accident Side Drop
                - Accident Top Corner Drop
                - Accident Bottom Corner Drop NAC International                          2.7.12-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                  Revision 1 2.7.12.1      Internal Pressure A finite element analysis is performed for the GTCC-TSC for the accident pressure condition (10 psig). The locations of the linearized stresses are shown in Figure 2.6.12-5. The maximum Pm and Pm + Pb stresses due to the internal pressure are summarized in Table 2.7.12-1 and Table 2.7.12-2, respectively. The minimum factor of safety for Pm is greater than 10; see Table 2.7.12-1. The minimum factor of safety for Pm + Pb is greater than 10; see Table 2.7.12-2.
NAC International                      2.7.12.1-1
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.7.12-1          GTCC-TSC Pm Stresses - Internal Pressure (10 psig)
Pm Stresses (ksi)                                Stress      Factor Section                                                              SI    Allowable      of Location    Sx        Sy        Sz    Sxy      Syz      Sxz      (ksi)      (ksi)      Safety 9      -0.01      0.71    0.34      0.00    0.00      0.00    0.71        48.0      Large 10      -0.06    -0.03    0.01    -0.01    0.02    0.05      0.14        48.0      Large 11      -0.03      0.03    0.16    -0.02    0.01    -0.02    0.20      38.41      Large 13        0.00      0.01    -0.02    0.09    0.00      0.01    0.18        48.0      Large 14        0.06      0.19      0.00    -0.01    0.00    -0.02    0.19        48.0      Large 15        0.01      0.17      0.01    -0.01    0.00    -0.01    0.17        48.0      Large 16        0.01      0.00    -0.01    -0.07    0.00      0.00    0.14        48.0      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.12-2          GTCC-TSC Pm + Pb Stresses - Internal Pressure (10 psig)
Pm + Pb Stresses (ksi)                                Stress      Factor Section                                                              SI    Allowable      of Location      Sx        Sy        Sz      Sxy    Syz      Sxz    (ksi)      (ksi)      Safety 9        0.00      0.77      0.58    0.00  0.01      0.00    0.77        68.6      Large 10      -0.03      0.05      0.25    -0.02  0.01    -0.01    0.28        68.6      Large 11      -0.01      0.10      0.25    -0.01  0.00    -0.07    0.28      54.881      Large 13        0.01      0.02      -0.02    0.09  0.00      0.02    0.18        68.6      Large 14        0.08      0.05      -0.07    -0.05  0.02    -0.07    0.24        68.6      Large 15      -0.06      0.14      -0.04    0.01  0.00      0.00    0.20        68.6      Large 16        0.08      0.07      -0.01    -0.07  0.00      0.01    0.17        68.6      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                          2.7.12.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.12.2        Stress Evaluation of the GTCC-TSC for 30-Foot End-Drop Load Condition A structural analysis performed by using ANSYS evaluates the effect of a 30-ft end-drop impact for both the bottom and top end orientations of the canister. The analysis considers an inertial load of 40g for the canister and its contents (for both orientations) and the 10 psig accident pressure load internal to the canister. The inertial load of the canister is addressed by the deceleration factor applied to the canister density, and the contents inertial load due to 40g is represented by a pressure load on either the bottom surface of the liner or the bottom surface of the shield plate. Displacement constraints are applied to the plane of symmetry. Gap elements at the canister ends are used to model the interface between the top or bottom of the transport cask.
To determine the effect of the 10 psig pressure load, the top end and bottom end orientations, with and without the pressure load, are analyzed.
The locations of the linearized stresses are shown in Figure 2.6.12-5. Results from the end drops are summarized in Table 2.7.12-4 through Table 2.7.12-11. Table 2.7.12-3 provides a summary of critical section stresses for the top and bottom end-drop conditions.
The allowable stresses are evaluated at 250&deg;F which is higher than the maximum predicted temperature for the GTCC assembly of 227&deg;F.
NAC International                          2.7.12.2-1
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.12-3      GTCC-TSC Critical Sections for the 30-Foot End-Drop Load Condition Critical Condition                Stress Section  Factor of Safety Top-End Drop                Pm    14          Large Top-End Drop            Pm + Pb  14          Large Top-End Drop + Pressure          Pm    11          Large Top-End Drop + Pressure      Pm + Pb  11            9.87 Bottom-End Drop              Pm      9          Large Bottom-End Drop            Pm + Pb  16          Large Bottom-End Drop + Pressure        Pm      9          Large Bottom-End Drop + Pressure      Pm + Pb  16          Large NAC International                      2.7.12.2-2
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.12-4          GTCC-TSC Pm Stresses Foot Top End Drop Pm Stresses (ksi)                                  Stress      Factor Section                                                              SI    Allowable        of Location    Sx        Sy      Sz      Sxy      Syz      Sxz      (ksi)      (ksi)      Safety 9        0.00    -0.17    -3.01    0.00    0.00      0.00    3.01      47.15        Large 10        0.17    -0.74    -3.66    -0.01    -0.06    -0.36    3.90      47.15        Large 11      -0.27    -0.43    -3.72    -0.04    0.18    -0.65    3.70      37.721      Large 13        0.05      0.05    -0.68    0.15    -0.01    -0.02    0.88      47.15        Large 14        0.01    -0.75    -4.49    -0.07    0.04    -0.33    4.55      47.15        Large 15        0.32      0.53    -0.36    0.00    -0.03      0.27    0.99      47.15        Large 16        0.07      0.05    -0.55    -0.13    0.01    -0.08    0.75      47.15        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.12-5            GTCC-TSC Pm + Pb Stresses Foot Top End Drop Pm + Pb Stresses (ksi)                              Stress      Factor Section                                                              SI    Allowable        of Location    Sx        Sy      Sz      Sxy      Syz      Sxz      (ksi)      (ksi)      Safety 9        0.01    -0.21    -3.19    0.00    0.00      0.00    3.21        68.6        Large 10        0.31    -0.82    -4.72    0.02    -0.02      0.00    5.03        68.6        Large 11        0.58    -0.25    -3.85    0.00    0.19    -0.90    4.79      54.881      Large 13        0.20      0.28    -0.69    0.17    -0.05      0.04    1.11        68.6        Large 14        0.24    -0.80    -4.96    -0.08    0.00    -0.46    5.29        68.6        Large 15        1.57      0.77    -0.74    0.04    -0.02      0.17    2.34        68.6        Large 16        3.50      3.46    -0.48    -0.20    -0.04    -0.10    4.16        68.6        Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x. allowable stress.
NAC International                          2.7.12.2-3
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.12-6        GTCC-TSC Pm Stresses Foot Top End Drop, Internal Pressure Section                SI2              Stress            Factor of Location                (ksi)        Allowable (ksi)        Safety 9                  3.72                47.15              Large 10                  4.61                47.15              Large 11                  4.41                37.721            Large 13                  1.59                47.15              Large 14                  5.26                47.15              Large 15                  1.70                47.15              Large 16                  1.46                47.15              Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.71 ksi for pressure only to the SI for top end drop. This is a conservative approach.
Table 2.7.12-7          GTCC-TSC Pm + Pb Stresses Foot Top End Drop, Internal Pressure Section                SI2              Stress            Factor of Location                (ksi)        Allowable (ksi)        Safety 9                  3.98                68.6              Large 10                  5.80                68.6              Large 11                  5.56                54.881              9.87 13                  1.88                68.6              Large 14                  6.06                68.6              Large 15                  3.11                68.6              Large 16                  4.93                68.6              Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.77 ksi for pressure only to the SI for top end drop. This is a conservative approach.
NAC International                          2.7.12.2-4
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.12-8          GTCC-TSC Pm Stresses Foot Bottom End Drop Pm Stresses (ksi)                                Stress      Factor Section                                                              SI    Allowable      of Location      Sx        Sy        Sz      Sxy      Syz      Sxz      (ksi)      (ksi)      Safety 9        -0.02      0.65    -0.80    -0.05    0.00    -0.01    1.45      47.15      Large 10        0.17    -0.43    0.09    -0.01    0.01    -0.18    0.75      47.15      Large 11        0.07    -0.66    -0.48    -0.02    0.02      0.08    0.74      37.721      Large 13      -0.06      0.01    0.00    0.57    0.01    -0.03    1.14      47.15      Large 14      -0.21    -1.47    -0.20    -0.08    -0.06    -0.03    1.32      47.15      Large 15        0.09    -1.26    0.13    -0.01    0.00    -0.01    1.39      47.15      Large 16        0.06      0.00    0.00    -0.48    0.01    -0.03    0.96      47.15      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.12-9          GTCC-TSC Pm + Pb Stresses Foot Bottom End Drop Pm + Pb Stresses (ksi)                              Stress      Factor Section                                                                SI    Allowable        of Location      Sx        Sy        Sz      Sxy      Syz      Sxz    (ksi)        (ksi)    Safety 9        0.01      0.53    -1.20      0.01    0.01      0.00    1.73        68.6      Large 10        0.30      -0.20    0.79    -0.02    0.01    -0.40    1.22        68.6      Large 11      -0.14      -0.71    -1.18    -0.05    0.08      0.17    1.11      54.881      Large 13      -3.39      -3.30    -0.02      0.60    0.00    -0.13    3.94        68.6      Large 14        0.01      -1.48    -0.30    -0.12    0.09    -0.08    1.54        68.6      Large 15        0.26      -1.22    0.29    -0.01    0.00    -0.01    1.51        68.6      Large 16        4.43      4.35    -0.02    -0.52    0.00    -0.11    4.89        68.6      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                            2.7.12.2-5
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.12-10      GTCC-TSC Pm Stresses Foot Bottom End Drop, Internal Pressure Stress Section                      Allowable        Factor of Location        SI2 (ksi)        (ksi)          Safety 9            2.16          47.15            Large 10            1.46          47.15            Large 11            1.45          37.721            Large 13            1.85          47.15            Large 14            2.03          47.15            Large 15            2.10          47.15            Large 16            1.67          47.15            Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.71 ksi for pressure only to the SI for bottom end drop.
This is a conservative approach.
Table 2.7.12-11          GTCC-TSC Pm + Pb Stresses Foot Bottom End Drop, Internal Pressure Stress Section                      Allowable      Factor of Location        SI2 (ksi)      (ksi)        Safety 9            2.50          68.6          Large 10            1.99          68.6          Large 11            1.88        54.881          Large 13            4.71          68.6          Large 14            2.31          68.6          Large 15            2.28          68.6          Large 16            5.66          68.6          Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.77 ksi for pressure only to the SI for bottom end drop.
This is a conservative approach.
NAC International                            2.7.12.2-6
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.12.3        Stress Evaluation of the GTCC-TSC for 30-Foot Side-Drop Load Condition A structural analysis is performed by using ANSYS to evaluate the effect of a 30-ft side drop impact of the GTCC-TSC. The loads for the 30-ft side drop result from the deceleration of the TSC and its contents and the 10 psig pressure load internal to the TSC. The applied deceleration is 60g for this orientation. The inertial load of the TSC is addressed by the deceleration factor applied to the TSC density. The contents weight is represented by a distributed force on the middle third of the inner surface of the GTCC liner. Displacement constraints are applied to the plane of symmetry. Gap elements are attached at the TSC ends to represent the top or bottom of the transport cask.
The locations of the linearized stresses are shown in Figure 2.6.12-5. The maximum stresses for Pm and Pm + Pb are tabulated in Table 2.7.12-13 through Table 2.7.12-16 for the side drop conditions. The critical sections for the side drop and the side drop plus pressure load, with reference to the section and the appropriate tables, are shown in Table 2.7.12-12.
The allowable stresses are evaluated at 250&deg;F, which is higher than the maximum predicted temperature for the GTCC assembly of 227&deg;F.
NAC International                        2.7.12.3-1
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.12-12    GTCC-TSC Critical Sections for the 30-Foot Side Drop Load Condition Condition      Stress    Critical Section  Factor of Safety Side Drop        Pm            10                1.53 Side Drop      Pm + Pb          10                1.81 Side Drop + Pressure  Pm            10                1.49 Side Drop + Pressure Pm + Pb          10                1.77 NAC International                2.7.12.3-2
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.12-13            GTCC-TSC Pm Stresses Foot Side Drop Pm Stresses (ksi)                                  Stress    Factor Section                                                                    SI    Allowable        of Location          Sx        Sy          Sz      Sxy    Syz      Sxz      (ksi)      (ksi)    Safety 9          -0.50      10.74      -0.72      0.04  13.20    -0.51    28.81      47.153      1.64 10          -26.87    -14.12      2.48    -0.464  -1.13    -4.66    30.892      47.15      1.53 11          -22.54    -13.80      -2.31      1.15  -0.72    -2.65    21.082      37.721      1.79 13          -2.66      0.83      0.00      0.03  0.00    -0.07      3.49      47.15      Large 14          -17.30    -11.54      0.05      0.50  0.05    0.19    17.39      47.15      2.71 15          -16.74    -12.72      -1.16      0.94  -0.31    -0.27    15.81      47.15      2.98 16          -0.80      0.25      0.00      0.01  0.00    -0.04      1.06      47.15      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x. allowable stress.
2 Stresses for section 10 and 11 were averaged over 0-18 degrees.
3 Allowable is conservative.
Table 2.7.12-14            GTCC-TSC Pm + Pb Stresses Foot Side Drop Pm + Pb Stresses (ksi)                                Stress    Factor Section                                                                      SI    Allowable        of Location          Sx        Sy          Sz      Sxy    Syz      Sxz      (ksi)        (ksi)    Safety 9            0.45      11.08      -2.74      -0.27  17.31    0.11    37.29        68.6      1.84 10        -29.05    -13.88      7.00      -0.10  -1.58    -5.73    37.952        68.6      1.81 11        -20.12    -12.52      -0.06      1.04  -1.15    -0.57    21.062      54.881      2.61 13          -3.09      1.72        0.00      0.02  0.00    0.06      4.81        68.6    Large 14        -20.90    -11.82      2.67      0.38    0.04    0.38    23.59        68.6      2.91 15        -25.75    -17.14      -4.36      0.13  -0.18    1.07    21.51        68.6      3.19 16          -1.45      0.79        0.00      0.00  0.00    -0.04      2.25        68.6    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 Stresses for section 10 and 11 were averaged over 0-18 degrees.
NAC International                              2.7.12.3-3
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.12-15        GTCC-TSC Pm Stresses 30-Foot Side Drop, Internal Pressure Stress Section                      Allowable        Factor of Location          SI2 (ksi)        (ksi)          Safety 9            29.52          47.153            1.60 10            31.60          47.15            1.49 11            21.79          37.721            1.73 13              4.20          47.15          Large 14            18.10          47.15            2.60 15            16.52          47.15            2.85 16              1.77          47.15          Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.71 ksi for pressure only to the SI for side drop. This is a conservative approach.
3 Allowable is conservative.
Table 2.7.12-16        GTCC-TSC Pm+ Pb Stresses 30-Foot Side Drop, Internal Pressure Stress Section                        Allowable      Factor of Location          SI2  (ksi)      (ksi)        Safety 9                38.08          68.6          1.80 10              38.72          68.6          1.77 11              21.83          54.881          2.51 13                5.58          68.6          Large 14              24.36          68.6          2.82 15              22.28          68.6          3.08 16                3.02          68.6          Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.77 ksi for pressure only to the SI for side drop. This is a conservative approach.
NAC International                          2.7.12.3-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.12.4        Stress Evaluation of the GTCC-TSC for 30-Foot Corner-Drop Load Condition A structural analysis is performed by using ANSYS to evaluate the effect of a 30-ft corner drop impact for both the top-and bottom-corner orientations of the GTCC-TSC. The ASME Code, Section III, Subsection NB, requires that stresses arising from operational loads be assessed on the basis of the primary loads. The primary loads for the 30-ft corner-drop result from the deceleration of the TSC and its contents and the 10 psig pressure load internal to the TSC. The applied deceleration is 40g for both orientations. The inertial load of the TSC is addressed by the deceleration factor applied to the TSC density. The contents weight is represented by a distributed load on the bottom third or the top third of the inner surface of the liner and a pressure load on either the bottom plate or the bottom surface of the shield plate. Displacement constraints are applied to the plane of symmetry. Gap elements at the TSC ends are used to model the interface between the top or bottom of the transport cask.
The locations of the linearized stresses are shown in Figure 2.6.12-5. The maximum stresses for Pm and Pm + Pb are tabulated in Table 2.7.12-18 through Table 2.7.12-25 for the corner drop conditions. The critical sections for the corner drop pressure and the corner drop plus pressure load, with reference to the section and the appropriate tables, are shown in Table 2.7.12-17.
The allowable stresses are evaluated at 250&deg;F, which is higher than the maximum predicted temperature for the GTCC assembly of 227&deg;F.
NAC International                        2.7.12.4-1
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.7.12-17    GTCC-TSC Critical Sections for the 30-Foot Corner Drop Load Condition Condition      Stress    Critical Section  Factor of Safety Top Corner Drop    Pm              10                2.68 Top Corner Drop  Pm + Pb          10                3.41 Top Corner Drop +
Pressure        Pm              10                2.57 Top Corner Drop +
Pressure      Pm + Pb          10                3.28 Bottom Corner Drop    Pm              10                2.40 Bottom Corner Drop  Pm + Pb          10                2.84 Bottom Corner Drop +
Pressure        Pm              10                2.32 Bottom Corner Drop +
Pressure      Pm + Pb          10                2.75 NAC International                2.7.12.4-2
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.12-18          GTCC-TSC Pm Stresses Foot Top Corner Drop Pm Stresses (ksi)                                    Stress    Factor Section                                                                      SI    Allowable      of Location        Sx        Sy        Sz      Sxy      Syz    Sxz      (ksi)      (ksi)    Safety 9        -0.24      6.91      -3.19    -0.22      5.11    -0.16    14.38      47.15      3.28 10        -19.75    -10.94      -4.21    -0.15    -0.27    -4.13    17.61      47.15      2.68 11        -17.25    -10.16      -6.39    -0.07    -0.23    -3.90    13.38      37.721      2.82 13        -0.93      0.32      -0.84    0.02      0.00    0.06    1.27      47.15      Large 14        -13.48      -6.61      -2.62    0.36    -0.05    -0.46    10.92      47.15      4.32 15        -18.15    -10.25      -4.72    0.04    -0.04    0.67    13.49      47.15      3.49 16        -0.12      0.15      -0.33    0.00      0.04    -0.18    0.59      47.15      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.12-19          GTCC-TSC Pm + Pb Stresses Foot Top Corner Drop Pm + Pb Stresses (ksi)                                Stress    Factor Section                                                                      SI    Allowable      of Location        Sx        Sy        Sz      Sxy      Syz      Sxz      (ksi)      (ksi)    Safety 9          0.06      2.53      -9.37    -0.07      7.36    -0.11    18.93        68.6      3.62 10      -21.32    -11.66      -2.65    -0.14    -0.31    -3.77    20.14        68.6      3.41 11      -18.26    -10.54      -6.33    -0.11    -0.19    -5.23    15.87      54.881      3.46 13        -0.64      0.65      -0.82      0.02    -0.06    0.06      1.49        68.6    Large 14      -14.07      -6.64      -2.02      0.33      0.01    -0.51    12.10        68.6      5.67 15      -18.70    -10.59      -4.97      0.07    -0.04    1.41    14.02        68.6      4.89 16        4.49      4.85      0.09      0.04    -0.01    -0.19      4.78        68.6    Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.7.12.4-3
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                Revision 1 Table 2.7.12-20        GTCC-TSC Pm Stresses 30-Foot Top Corner Drop, Internal Pressure Section                      Stress Allowable            Factor of Location        SI2 (ksi)            (ksi)                Safety 9            15.09              47.15                  3.12 10            18.32              47.15                  2.57 11            14.09              37.721                  2.68 13            1.98              47.15                  Large 14            11.63              47.15                  4.05 15            14.20              47.15                  3.32 16            1.30              47.15                  Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.71 ksi for pressure only to the SI for top corner drop.
This is a conservative approach.
Table 2.7.12-21        GTCC-TSC Pm+ Pb Stresses 30-Foot Top Corner Drop, Internal Pressure Section                      Stress Allowable          Factor of Location        SI2  (ksi)            (ksi)                Safety 9              19.7                68.6                  3.48 10            20.91                68.6                  3.28 11            16.64              54.881                  3.30 13              2.26                68.6                Large 14            12.87                68.6                  5.33 15            14.79                68.6                  4.64 16              5.55                68.6                Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.77 ksi for pressure only to the SI for top corner drop.
This is a conservative approach.
NAC International                            2.7.12.4-4
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 2.7.12-22            GTCC-TSC Pm Stresses Foot Bottom Corner Drop Pm Stresses (ksi)                                Stress      Factor Section                                                                  SI    Allowable      of Location        Sx        Sy        Sz    Sxy      Syz      Sxz      (ksi)      (ksi)    Safety 9          0.01      0.24    -1.81    0.00    1.44    0.01      3.53      47.15      Large 10        -17.48    -8.48    1.13    -0.30    -0.37    -3.12    19.65      47.15      2.40 11        -14.18    -7.56    -1.85    -0.05    -0.27    -1.31    12.63      37.721      2.99 13          -0.61      0.19    0.00    0.01    0.00    0.00      0.80      47.15      Large 14          -0.64    -3.30    -0.37    1.20      0.13    -0.19      3.66      47.15      Large 15          0.88    -2.92    -0.56    0.61    -0.24    -0.15      4.03      47.15      Large 16          -0.12      0.06    0.00    0.00    0.01    -0.03      0.19      47.15      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
Table 2.7.12-23          GTCC-TSC Pm + Pb Stresses Foot Bottom Corner Drop Pm + Pb Stresses (ksi)                                Stress    Factor Section                                                                      SI  Allowable        of Location        Sx        Sy          Sz      Sxy      Syz      Sxz      (ksi)      (ksi)    Safety 9          0.00      0.28      -1.74      0.00    1.50      0.00    3.62      68.6      Large 10      -18.93      -8.99        3.73      -0.42    -0.46    -4.13    24.16      68.6      2.84 11      -19.38    -10.04      -4.70      -0.10    -0.34    -1.76    15.12    54.881      3.63 13        -3.88      -2.69      -0.01      0.01      0.01      0.00    3.87      68.6      Large 14        -3.85      -3.08        0.76      0.56    0.04      0.69    5.08      68.6      Large 15        4.59      -1.21        0.82      0.62    -0.09    -0.53    6.00      68.6      Large 16        -4.45      -3.84      -0.01      0.00      0.01    -0.03    4.44      68.6      Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
NAC International                              2.7.12.4-5
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                              Revision 1 Table 2.7.12-24        GTCC-TSC Pm Stresses 30-Foot Bottom Corner Drop, Internal Pressure Stress Section                          Allowable          Factor of Location            SI2 (ksi)        (ksi)            Safety 9                4.24          47.15            Large 10                20.36          47.15              2.32 11                13.34          37.721              2.83 13                1.51          47.15            Large 14                4.37          47.15            Large 15                4.74          47.15            Large 16                0.90          47.15            Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.71 ksi for pressure only to the SI for bottom corner drop.
This is a conservative approach.
Table 2.7.12-25        GTCC-TSC Pm + Pb Stresses 30-Foot Bottom Corner Drop, Internal Pressure Stress Section                        Allowable          Factor of Location          SI2  (ksi)        (ksi)            Safety 9              4.39            68.6            Large 10              24.93            68.6              2.75 11              15.89          54.881              3.45 13              4.64            68.6            Large 14              5.85            68.6            Large 15              6.77            68.6            Large 16              5.21            68.6            Large 1
Allowable stress includes a stress reduction factor for weld: 0.8 x allowable stress.
2 SI is obtained by adding the maximum SI of 0.77 ksi for pressure only to the SI for bottom corner drop.
This is a conservative approach.
NAC International                          2.7.12.4-6
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 2.7.12.5        GTCC-TSC Buckling Evaluation for 30-Foot End Drop The 30-ft buckling load case for the GTCC-TSC is bounded by the buckling analysis of the TSC in Section 2.7.8.5 because the TSC evaluated in this section has a 9 inch thick lid, which is heavier than the GTCC-TSC composite lid due to the lower density of the carbon steel shield plate.
The 30-ft buckling load case for the GTCC waste basket liner is also bounded by the buckling analysis of the TSC in Section 2.7.8.5. This is true because the waste basket liner is constructed of the same material (SA240, Type 304 stainless steel). However, the waste basket liner:
: 1) is shorter; 2) has a thicker cylindrical shell; 3) has a lighter bottom plate; and 4) is not subjected to the weight of the lid during a bottom end drop. Additionally, the buckling analysis in Section 2.7.8.5 considered a 60g deceleration, whereas the bounding end drop deceleration for the GTCC-TSC is 40g. The side drop load case is not considered a credible buckling mode of the GTCC waste basket liner because the liner is fully supported along its full length by the inner wall of the TSC shell.
NAC International                        2.7.12.5-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.12.6        Stress Evaluation of the GTCC Waste Basket Liner for 30-Ft Drop Conditions The GTCC waste basket liner is evaluated for the 30-ft drop conditions using the finite element model described in Section 2.6.16.13 for the 1-ft drop normal conditions of transport.
A 40g deceleration load is applied for the 30-ft top and bottom end drops and top and bottom corner drop conditions. A 60g deceleration load is applied for the 30-ft side drop condition.
The sectional stresses in the liner were computed at the location of the maximum stress intensity.
The sectional stress intensities at these points are contained in Table 2.7.12-26 and Table 2.7.12-27 for all of the 30-ft drop cases.
NAC International                          2.7.12.6-1
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Table 2.7.12-26    GTCC Waste Basket Liner Pm Stresses Foot Drop Cases Allowable Stress      Factor of Drop Case    SI (ksi)      (ksi)      Safety Top End      3.03      48.02        Large Bottom End    15.75      48.02        3.05 Side      33.68      48.02        1.43 Top Corner    17.52      48.02        2.74 Bottom Corner  30.62      48.02        1.57 Table 2.7.12-27    GTCC Waste Basket Liner Pm+Pb Stresses Foot Drop Cases Allowable Stress      Factor of Drop Case    SI2 (ksi)    (ksi)      Safety Top End      15.47        68.6        4.43 Bottom End    27.39        68.6        2.50 Side      53.53        68.6        1.28 Top Corner    28.59        68.6        2.40 Bottom Corner  68.04        68.6        1.01 NAC International                2.7.12.6-2
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 2.7.13        Fuel Basket Stability Evaluation This section presents the stability evaluations for the PWR fuel basket or the BWR fuel basket in a MAGNASTOR TSC transported in the MAGNATRAN transport cask.
NAC International                            2.7.13-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.13.1          PWR Fuel Basket Stability This section describes the LS-DYNA models and the analyses confirming the stability of the MAGNASTOR PWR fuel basket for the 30-foot side drop hypothetical accident condition of the MAGNATRAN transport cask.
The basket geometric configuration, presented in this section, is maintained by three features of basket component design: (1) the side and corner support weldments bolted to the fuel tubes at the basket periphery, (2) the pin-slot connections between adjacent fuel tubes, and (3) the connector pin assemblies at both ends of the basket.
Both the standard PWR basket for intact fuel and the PWR basket for damaged fuel (PWR DF basket) have the same three features to maintain stability of the basket configuration. Each of the four PWR DF corner weldments are comprised of primarily a 0.75 inch plate as compared to the 0.25 plate forming the tube in the PWR basket for undamaged fuel. Therefore, the PWR DF basket has a significantly stiffer corner weldment. The increased stiffness of the corner weldments further limits the motion of the tubes forming the basket as compared to the standard PWR basket. Using the standard PWR basket design to evaluate structural stability of the assembled basket provides a bounding evaluation for the PWR basket.
The geometric stability of the basket ensures that the fuel tubes retain their initial geometric configuration and all the pin-slot connections remain engaged after the side-drop accident. Eight pin-slot shear connections (20-inch center-to-center axially) are placed between adjacent fuel tubes for the PWR configuration, as shown in Figure 2.7.13-1. To observe the dynamic responses of the fuel tube assemblies and the pin-slot interface, a transient analysis is performed using a LS-DYNA model corresponding to a 10-inch periodic section (Figure 2.7.13-1). The periodic model conservatively ignores the effects of tube and support weldment stiffness and the multiple pins at the tube interface surface along the length of the tubes. Basket geometric stability is validated using the conservative periodic model and TSC shell boundary conditions representative of the axial locations along the TSC shell, which represents the maximum TSC shell displacement resulting from the interaction of the basket near the middle section of the TSC shell. With the conservative periodic model, the analysis shows that all pin-slot connections (i.e., all fuel tubes) remain engaged after the side-drop event.
The safety factor for stability is based on the loading associated with the 30-ft side drop event.
During the side drop accident, lateral loading is applied to the fuel basket. The accelerations experienced by the fuel basket are computed in the transport cask side drop analysis in Section 2.7.1.6. The acceptance criteria for basket stability evaluation is established based on the acceptance criteria of the Plastic Instability Load Analysis as discussed in ASME Code Subsection III, Appendix F. Section F-1341.4 states that the load should not exceed 70% of the NAC International                            2.7.13.1-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 plastic instability load. The criterion for the minimum safety factor for the basket stability evaluation is considered to be 1.4 (1/0.7). The safety factor is defined as the factor applied to the acceleration time history only, while maintaining the nominal weight of the mass of the basket assembly (including fuel elements) in which the basket tubes maintain their geometric stability.
In this evaluation, the acceleration time history contains a factor of 1.4. Using a factor of 1.4 on the acceleration time history confirms that the minimum safety factor for basket stability is greater than 1.4.
Three basket orientations (0&deg;, 22.5&deg; and 45&#xba;) are considered in the evaluation for the PWR basket using the LS-DYNA models with the locations of pins, as shown in Figure 2.7.13-2, Figure 2.7.13-3 and Figure 2.7.13-4, respectively.
The most significant condition affecting the stability of the fuel basket is gaps between adjacent fuel tubes. Specifically, those fuel tubes that are not physically attached to the side weldment or corner weldment are identified as most susceptible to instability issues. The gaps between the fuel tubes may be developed due to a lack of straightness of the tubes and/or dimensional tolerance due to fabrication. Based on the basket assembly process and tolerance, the maximum gap between adjacent tubes occurs when a single Least Material Condition (LMC) tube is surrounded by eight Maximum Material Condition (MMC) tubes, as shown in the following sketch. To represent this arrangement, a bounding gap of 0.025 inch (incorporated by reduction of tube width, while maintaining the tube wall thickness) is considered for three tubes for the PWR 0&#xba; model (see tube locations 3, 6 and 11 in Figure 2.6.13-8 for the 0&deg; half-symmetry fuel tube representation. Note tube width reduction is also considered for the corresponding tube locations in the models for 22.5&deg; and 45&deg; basket orientations. Use of the gap size of 0.025 inch is conservative since the maximum gap size permitted during the basket assembly is limited to 0.02 inch.
Use of this approach results in the initial position of the fuel tube, in the transient evaluation, being suspended without contact between the individual tubes. While this is analytically NAC International                            2.7.13.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 possible, the occurrence of such gaps during fabrication is not physically possible. The assembly process, horizontal stacking, will result in minimal gaps that would generally occur along the length of the fuel tubes between points of contact. Additionally, the fuel basket design provides connector pin assemblies at the top and bottom ends of the basket that develop an assembly verification of tube-to-tube interface and act as restraints against any arbitrary motion of the interior tubes. The effect of the connector pin assemblies at basket ends is not included in the periodic models.
Model Descriptions Three-dimensional periodic finite element models used for the evaluation, as shown in Figure 2.7.13-2 through Figure 2.7.13-4, are mainly comprised of brick elements representing the fuel tubes, the fuel assembly, the pins, the support weldments, the bolts/bosses, the TSC shell and the transport cask shells. Figure 2.7.13-5 shows the modeling of the boss connection for the corner and side support weldments.
The length of the model in the axial direction is 10 inches, which corresponds to the half the distance between adjacent pins along the length of the basket. The corner support weldment is represented by shell elements and the shell elements are modeled along the centerline of the weldment. Since LS-DYNA takes into account the thickness of the shell element during the transient evaluation, the model must have a gap incorporated between the shell and the solid elements corresponding to a minimum value of the half-thickness of the shell element. Gaps between brick elements do not require this consideration. The bolted boss connections for attaching the support weldment to the fuel tube arrays are also modeled using brick elements.
The modeling details of the bosses for the corner support weldment and side support weldment are shown in Figure 2.7.13-5 for the PWR basket. The model allows a relative planar displacement of 1/16 inch between the support weldment and the fuel tubes by incorporating a gap of 1/16 inch on both sides of the bosses.
The pins are welded to one side of the adjacent fuel tube slots prior to the assembly of the fuel tubes to form the basket. These welds are not included in the models.
The finite element model also contains the transport cask shells, which are represented by elastic brick elements. The purpose of these elements is to impose the accelerations on the TSC and basket based on the analysis results for the transport cask side-drop accident from Section 2.7.1.2.
The width for the tubes corresponding to the selected tube locations as previously discussed is reduced by 0.025 inch.
2.7.13.1.1      Material Properties The mechanical properties used in the analyses are described as follows.
NAC International                            2.7.13.1-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Carbon Steel Fuel Tubes and Weldments:
The fuel tubes and the side and corner support weldments are represented by a piecewise linear plasticity model with the following elastic properties. Note that the maximum tube temperature is less than 700&deg; for PWR basket.
Fuel tubes at 700&#xba;F (SA537, Class 1, carbon steel)
Yield strength = 32.3 ksi Ultimate strength = 68.4 ksi Ultimate strain = 21%
Poissons Ratio = 0.31 Modulus of Elasticity = 25.5 x 106 psi The density corresponding to the fuel tubes was adjusted to account for the neutron absorber material:
Side and corner weldments at 500&#xba;F (SA537, Class 1, carbon steel)
Yield strength = 35.4 ksi Ultimate strength =68.4 ksi Ultimate strain = 21%
Poissons Ratio = 0.31 Modulus of Elasticity = 27.3 x 106 psi TSC Shell (SA240, Type 304/304L stainless steel)
The TSC shell is represented by inelastic material with the following properties at 500&#xba;F.
Yield strength = 19.4 ksi Ultimate strength = 63.4 ksi Poissons Ratio = 0.31 Modulus of Elasticity = 25.8 x 106 psi Steel Inner Liner (A36 carbon steel)
The steel liner is represented by an elastic material with the following properties at 500&#xba;F.
Yield strength = 29.3 ksi Ultimate strength = 58.0 ksi Poissons Ratio = 0.31 NAC International                            2.7.13.1-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Modulus of Elasticity = 27.3 x 106 psi Fuel Assembly The element representing the fuel assembly were modeled with the following inelastic properties Yield strength =1 ksi Poissons Ratio = 0.49 Modulus of Elasticity = 1 x 105 psi 2.7.13.1.2      Boundary Conditions The axial displacements were restrained on both axial faces of the model.
The TSC portion of the periodic model does not account for the end effects of the TSC. With the rigid plates (lid and bottom plate) at each end of the TSC, the TSC shell physically restricts the motion of the tubes. To permit the TSC shell elements in the periodic model to restrict the in-plane motion of the tube elements parallel to the periodic surfaces, the inner surface of the cask inner shell in the periodic model is defined based on a TSC shell displacement profile corresponding to the maximum TSC shell displacement during the cask side-drop accident. The nodal position of the inner surface of the liner is altered so that the displacements of the TSC shell nodes in the periodic model are restricted to the same physical displacements as if the ends of the TSC shell were present in the model. The TSC shell displacements are determined by the quasi-static three-dimensional ANSYS model for the TSC as shown in Section 2.7.8 for the evaluation of cask accident drop conditions. The maximum TSC shell displacement corresponds to an axial location of approximately 95 inches from the TSC bottom. The TSC loads used to determine these displacements conservatively used an acceleration of 60g (i.e., a factor of 1.3) and an internal pressure of 210 psig.
To represent the accelerations applied to the periodic basket model during the side-drop, an acceleration time history is applied to the nodes of the transport cask liner elements in the model.
The applied acceleration data, as shown in Figure 2.7.13-6, bounds the acceleration time history calculated in Section 2.6.7.
An initial velocity of 527.5 in/s, which corresponds to the 30-ft drop, is applied to all the nodes of the model as an initial condition. A uniform body force of 1g was applied to simulate gravity.
2.7.13.1.3      Conservatism in the Periodic Models
* The models neglect any restraint developed by neighboring pin-slot connections (axially) in the tubes.
NAC International                            2.7.13.1-5
 
                    "NAC PROPRIETARY INFORMATION REMOVED" MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1
* The models incorporate beyond design basis maximum-minimum material conditions for the pins. A conservative tube size reduction of 0.025 inch is used for the base cases for the PWR basket models. The actual maximum fabricated assembly gap is 0.02 inch.
* The models consider boundary conditi List of Tables
* ons corresponding to the maximum TSC shell displacement, which occurs at a small section near the middle of the TSC shell. Most parts of the basket are actually supported by the TSC shell with less displacement (the periodic models neglect the stiffness of the basket support weldments and the fuel tube).
* The models consider the maximum displaced TSC shell to be constant over the impact time history (70 milliseconds). This is also conservative because the TSC shell displacement will be reduced significantly (providing more constraint to limit basket deflection) after the peak of the impact.
* The boundary condition of the TSC shell displacement is determined based on conservative loading of 60g.
2.7.13.1.4      Post-Processing Because of the geometry of the pin-slot configurations, the square pins are restrained by the flat surfaces of the adjacent slots forming a sliding surface contact. In order for the pins to dislodge from the restraints of the slots, for PWR baskets, the minimum relative sliding movement of the fuel tube corners is 0.429 inch.
To observe the response of the pin-slot connections, the relative movements (gap) of the 2 individual nodes on the opposite surfaces of the adjacent fuel tubes (as shown in Figure 2.7.13-7)
NAC International                            2.7.13.1-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 is measured. The time history plots of the relative movements of the 2 individual nodes obtained from the LS-DYNA analysis results are shown in Figure 2.7.13-8, Figure 2.7.13-9 and Figure 2.7.13-10 for the basket orientation of 0&deg;, 22.5&deg; and 45&deg;, respectively. The largest gap changes and the corresponding pin-slot locations are summarized in Table 2.7.13-1. As shown in Table 2.7.13-1, the maximum gap change is 0.161 inch (location B-4 of the 0&deg; basket orientation) which is significantly less than the allowable movement of 0.429 inch. All of the pin-slot connections remain engaged for all of the cases for the PWR basket.
2.7.13.1.5      Conclusion The evaluations provided in this section confirm that the PWR basket maintains its configuration during the cask 30-ft side drop accident event. As discussed, a 1.4 factor is applied to the acceleration time history used for the periodic LS-DYNA models for the stability evaluation presented in this section. The acceleration used to evaluate the TSC shell displacement has a factor of 1.4. The criterion for the minimum safety factor for the basket stability evaluation is 1.4 based on the acceptance criteria of the Plastic Instability Load in ASME Code Subsection III, Appendix F. Considering the conservatisms in the models, it is concluded that the factor of safety for the PWR basket stability for the cask side drop accident is considerably greater than 1.4.
2.7.13.1.6      Basket Stability The standard PWR basket modeled in this section is the bounding configuration for structural stability performance. The PWR DF basket through the corner weldments provide greater basket stiffness to further limit the motion of the tubes. Using the standard PWR basket is bounding for the PWR DF basket structural stability performance because the PWR-DF basket configuration replaces the standard corner weldment and independent corner fuel tube of 0.25 plate with a much stiffer integrated welded corner weldment of 0.75 plate and oversized fuel tube assembly.
NAC International                            2.7.13.1-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.7.13.2        BWR Fuel Basket Stability The stability evaluation for the BWR fuel basket for the hypothetical 30-foot side drop conditions is performed using the same methodology as presented in Section 2.7.13.1 for the PWR fuel basket. As shown in Figures 2.7.13-11 through Figure 2.7.13-13, three-dimensional periodic LS-DYNA models (with the pin locations mapped) are used for the evaluation of basket orientations of 0&deg;, 22.5&deg; and 45&deg;, respectively. Figure 2.7.13-14 and Figure 2.7.13-15 show the modeling of the boss connection for the corner support weldment and side support weldment respectively.
Similar to the models for the PWR basket, a tube size reduction of 0.025 inch is conservatively applied to selected positions (tube no. 2, 7, 12, 14, 19 and 23 in Figure 2.6.15-8 for the half-symmetry presentation of tube arrays).
All other modeling details, including the boundary conditions and the applied acceleration time history, are identical to those for the PWR models presented in Section 2.7.13.1.
A typical BWR pin/slot close-up detail is shown in Figure 2.7.13-16. The pin/slot view corresponds to Pin Location A-04 in Figure 2.7.13-11. The material marked as fuel tube No. 1 in Figure 2.7.13-16 corresponds to the upper right corner of a fuel tube. The root of the pin is welded to a grind-out square pocket within the radius of fuel tube No. 1. The material marked as fuel tube No. 2 corresonds to the lower left corner of an adjacent fuel tube. There is a grind-out square pocket within the radius of fuel tube No. 2 to allow the insertion of the square pin. The two fuel tubes are kinematically locked by the interference of the pin with each fuel tube.
During the sidedrop accident, the two adjacent fuel tubes tend to move away from each other.
Consequently the point A on fuel tube No. 2 is moving horizontally towards pont B on the square pin. When point A is on top of point B, the two tubes no longer lock in place and would become kinematically unstable. Since the side drop is in the vertical direction, the relative horizontal movements of two tubes determine the stability of the two basket tubes. To keep track of the pin/slot movements, the relative distance between two opposite nodes of the two fuel tubes across the square pin; i.e. the node 90391 from fuel tube No. 1 and the node 86025 on fuel tube No. 2, are tracked during the dynamic impacts. The pair of nodes for tracking the relative pin/slot movements for each of the 76 pin locations is tabulated in the original calculation.
Because of the geometry of the pin-slot configurations, the square pins are restrained by the flat surfaces of the adjacent slots forming a sliding surface contact. In order for the pins to dislodge from the restraints of the slots, for BWR baskets, the minimum relative sliding movement of the fuel tube corners is 0.372 inch.
NAC International                            2.7.13.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 To observe the response of the pin-slot connections, the relative movements (gap) of the two individual nodes on the opposite surfaces of the adjacent fuel tubes (as shown in Figure 2.7.13-
: 16) is measured. The time history plots of the relative movements of the two individual nodes obtained from the LS-DYNA analysis results are shown in Figure 2.7.13-17, Figure 2.7.13-18 and Figure 2.7.13-19 for the basket orientation of 0&deg;, 22.5&deg; and 45&deg;, respectively. The maximum gap change and the corresponding pin-slot location for each of the three drop orientations are summarized in Table 2.7.13-2. As shown in Table 2.7.13-2, the maximum gap change is 0.145 inch (pin location B-08 of the 2.25&deg; basket orientation), which is significantly less than the allowable movement of 0.372 inch. All the pin-slot connections remain engaged for all the cases for the PWR basket.
The evaluations provided in this section confirm that the BWR basket maintains its configuration during a cask side-drop accident event. The safety factor is defined as the factor applied to the acceleration time history in which the basket tubes maintain their geometric stability. In this evaluation, the acceleration time history contains a factor of 1.4. Using a factor of 1.4 on the acceleration time history confirms that the minimum safety factor for basket stability is greater than 1.4.
NAC International                          2.7.13.2-2
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.7.13-1  Basket Pin-Tube Slot Connections at Fuel Tube Corners for PWR Configuration NAC International                  2.7.13.2-3
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.13-2 PWR Pin and Bolted Boss Locations in 0-degree Angle Drop Configuration NAC International                2.7.13.2-4
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.13-3 PWR Pin and Bolted Boss Locations in 22.5-degree Angle Drop Configuration NAC International                2.7.13.2-5
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.13-4 PWR Pin and Bolted Boss Locations in 45-degree Angle Drop Configuration NAC International                2.7.13.2-6
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.7.13-5  PWR Basket Finite Element Model - Boss Connection for Corner and Side Support Weldment NAC International                  2.7.13.2-7
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Figure 2.7.13-6    Acceleration Time History for Basket Stability Evaluation 30-ft Side Drop Acceleration Figure 2.7.13-7    Close-Up View of PWR Pin/Slot in the Model, for the 0o Drop Orientation NAC International                    2.7.13.2-8
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.13-8    Time History of Maximum Gap Change at Fuel Tube Corner - 0&deg; Basket Orientation - PWR NAC International                    2.7.13.2-9
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.7.13-9  Time History of Maximum Gap Change at Fuel Tube Corner -
22.5&deg; Basket Orientation - PWR NAC International                  2.7.13.2-10
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.13-10  Time History of Maximum Gap Change at Fuel Tube Corner -
45&deg; Basket Orientation - PWR NAC International                  2.7.13.2-11
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.7.13-11 Finite Element Model and Pin/Slot Location Map for BWR Basket 0&#xba; Drop Orientation NAC International                  2.7.13.2-12
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.7.13-12 Finite Element Model and Pin/Slot Location Map for BWR Basket 22.5&deg; Drop Orientation NAC International                  2.7.13.2-13
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.7.13-13 Finite Element Model and Pin/Slot Location Map for BWR Basket 45&#xba; Drop Orientation NAC International                  2.7.13.2-14
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.13-14 BWR Basket Finite Element Model - Boss Connection for Corner Support Weldment NAC International                2.7.13.2-15
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.7.13-15 BWR Basket Finite Element Model - Boss Connection for Side Support Weldment NAC International                  2.7.13.2-16
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.7.13-16 Close-Up View of BWR Pin/Slot in the Model, for the 0o Drop Orientation NAC International                2.7.13.2-17
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.13-17  Time History of Maximum Gap Change at Fuel Tube Corner -
0&deg; Basket Orientation - BWR NAC International                  2.7.13.2-18
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.7.13-18  Time History of Maximum Gap Change at Fuel Tube Corner -
22.5&deg; Basket Orientation - BWR NAC International                  2.7.13.2-19
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.7.13-19 Time History of Maximum Gap Change at Fuel Tube Corner -
45&deg; Basket Orientation - BWR NAC International                  2.7.13.2-20
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 2.7.13-1            Summary of Maximum Gap Changes at Pin-Slot Connections for PWR Basket Resulting Pin/Slot Movement (SF on Acceleration = 1.4, SF on Mass =1.0)
Basket Orientation with respect to Sidedrop Direction                            0o        22.5o          45o Pin Location with Maximum Pin/Slot movement*1                                    B-4          A-5            A-5 Result Plot Curve Number                                                          08          04            04 Maximum Pin/Slot movement, in.                                                  0.161        0.120        0.112 Maximum Allowable Pin/Slot Gap Movement*2, in.                                  0.429        0.429        0.429 Notes:
: 1. See Figure 2.7.13-2 through Figure 2.7.13-4 for locations for PWR basket orientation of 0&deg;, 22.5&deg; and 45&deg;, respectively.
: 2. This is the gap distance at which the basket tube is completely disengaged from the pin outside width.
Table 2.7.13-2          Summary of Maximum Gap Changes at Pin-Slot Connections for BWR Basket Resulting Pin/Slot Movement Using the Alternate Loading Approach (SF on Acceleration = 1.4, SF on Mass =1.0)
Basket Orientation with respect to Sidedrop Direction                                0o      22.5o          45o Pin Location with Maximum Pin/Slot movement*1                                      B-08        B-08        B-08 Result Plot Curve Number                                                            10        10            10 Maximum Pin/Slot movement, in.                                                    0.096      0.145        0.105 Maximum Allowable Pin/Slot Gap Movement, in. *2                                    0.372      0.372        0.372 Notes:
: 1. See Figure 2.7.13-11 through Figure 2.7.13-13 for locations for BWR basket orientation of 0&deg;, 22.5&deg; and 45&deg;, respectively.
: 2. This is the gap distance at which the basket tube is completely disengaged from the pin outside width.
NAC International                                  2.7.13.2-21
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.14          Cask Inner Shell Buckling Analysis - Accident Conditions Code Case N-284-1 (Metal Containment Shell Buckling Design Methods) of the ASME Boiler and Pressure Vessel Code is used to analyze the MAGNATRAN transport cask inner shell for structural stability. Structural stability ensures that the inner shell does not buckle during cask fabrication, normal conditions of transport, or hypothetical accident conditions. Fabrication stresses are evaluated in Section 2.6.11 and are shown to be very low, so that including them in the buckling evaluation would not significantly affect the margins of safety demonstrated in this section. The buckling evaluation requirements of Regulatory Guide 7.6, Paragraph C.5, are shown to be satisfied by the results of the buckling interaction equation calculations from Code Case N-284-1 (Section 2.1.2.3.3).
2.7.14.1        Analysis Methodology The structural stability of the MAGNATRAN transport cask inner shell is analyzed in accordance with the ASME Code Case N-284-1. The data considered for the buckling evaluation includes shell geometry parameters, shell fabrication tolerances, shell material properties, theoretical elastic buckling stress values for the shell, and membrane stress components in the shell. The internal stress field that controls the buckling of a cylindrical shell consists of the longitudinal (axial) membrane, circumferential (hoop) membrane, and in-plane shear stresses. These stresses may exist singly or in combination, depending upon the applied loading. Only these three stress components are considered in the buckling analysis.
For each load case, the stresses for the 1-ft cask drops (Section 2.6.7.1 through Section 2.6.7.3) and for the 30-ft cask drops (Section 2.7.1.1 through Section 2.7.1.3) are reviewed to determine the maximum values of the longitudinal compression, circumferential compression, or in-plane shear stresses for the individual drop load cases.
The analyses for both the 1-ft and 30-ft drops were performed with an internal pressure of zero psig. This is conservative for the buckling evaluation since internal pressure induces tensile stresses in the cask shell.
For the normal condition 1-ft drop cases, the peak thermal stresses are conservatively added to the stress results of the drop cases. Combining the maximum stress components in this manner produces a conservative, bounding-case buckling evaluation of the inner shell. The maximum stress components used in the buckling evaluations are presented in Table 2.7.14-1.
NAC International                          2.7.14-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.14.2        Analysis Results As previously discussed, the worst-case combination of stress components within a given drop orientation from the ANSYS analyses, regardless of location within the shell cylinder and including temperature effects, is determined and used for input as stress components in the buckling evaluations. These conservatively determined stress components, therefore, envelop the specific load case tables presented in Section 2.6.7.1 through Section 2.6.7.3 for 1-ft cask drops and Section 2.7.1.1 through Section 2.7.1.3 for 30-ft cask drops.
The results of the buckling analysis of the cask inner shell are summarized in Table 2.7.14-1. All interaction equations ratios are less than 1.0. Therefore, the buckling criteria of Code Case N-284-1 are satisfied, thus demonstrating that buckling of the MAGNATRAN transport cask inner shell does not occur.
2.7.14.3        Detailed Code Case N-284-1 Buckling Evaluation A step-by-step analysis procedure follows as an example of implementing the procedure in Code Case N-284-1.
In the buckling evaluation, the symbols , , or  correspond to the longitudinal (axial) direction or stress component, circumferential (hoop) direction or stress component, and in-plane shear stress component, respectively, as used in Code Case N-284-1.
In the evaluation, the formulas for cylindrical shells (unstiffened) are used. Each of the 10 load cases presented in Table 2.7.14-1 is evaluated in the following manner detailed for Load Case H, the hypothetical accident condition of a 30-ft side drop; the results are listed in the table.
The manner of conservatively screening for the highest stress components is as previously described.
The geometry parameters used for the cask inner shell evaluation are presented in Table 2.7.14-2.
In the example that follows, a factor of safety (FS) of 1.34, for accident conditions, is used in accordance with the Code Case.
Step 1- Determine Stresses For the 30-ft side drop (load case H shown in Table 2.7.14-1), the maximum individual axial, hoop and shear stresses, regardless of location in the cask inner shell, from the ANSYS analysis are:
Axial Stress (ANSYS)  = 16,362 psi (compression)
Hoop Stress (ANSYS)  = 5,124 psi (compression)
Shear Stress (ANSYS)  = 22,740 psi NAC International                          2.7.14-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Step 2 - Determine Capacity Reduction Factors (Code Case N-284-1, Paragraph-1500)
The reduction in capacity due to imperfections and nonlinearity in geometry and boundary conditions is provided through the use of Capacity Reduction Factors. Capacity Reduction Factors, based on the parameters in Table 2.7.14-2 are:
L = 0.207 L = 0.8 L = 0.8 To directly use the Capacity Reduction Factors, the tolerance requirements of Article NE-4220 of the ASME Boiler and Pressure Vessel Code, Section III, Subsection NE must be satisfied.
Article NE-4221.1 and Article NE-4221.2 set forth the maximum difference in cross-sectional diameters and maximum deviation from true theoretical form for external pressure.
The requirements of Articles NE-4221.1 and NE-4221.2 are satisfied, as long as the maximum tolerances and configuration constraints are met during manufacturing.
Max ID = 72.50 in Min ID = 72.25 in Max ID - Min ID = 0.25 in Allowable deviation (per Subsection NE) = Nominal ID/100 = 0.725 in; 0.25 in < 0.725 in Allowable deviation (per Subsection NB*) shall not exceed the smaller of:
(D + 50)/200 = (72.5 + 50)/200 = 0.613 in, and Nominal ID/100 = 0.725 in 0.25 in < 0.613 in
* Evaluation of the tolerance requirements of Subsection NB is included in the evaluation because the MAGNATRAN transport cask is being constructed to the requirements of Subsection NB.)
Therefore, direct use of the Capacity Reduction Factors is allowed.
Step 3 - Determine Plasticity Reduction Factors (Code Case N-284-1, Paragraph-1600)
When the elastic buckling stresses exceed the proportional limit for the fabricated material, Plasticity Reduction Factors are used to account for the nonlinear material properties. Plasticity Reduction Factors are determined as follows:
: a. Axial Compression
        = (FS)/Sy = (16,362)(1.34)/(2.07x104) = 1.05918261 For 0.55 <  1.6,
        = 0.45/ +0.18 = (0.45/1.05918261) + 0.18 = 0.604856 NAC International                        2.7.14-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1
: b. Hoop Compression
          = (FS)/Sy = (5,124)(1.34)/(2.07x104) = 0.33169855 For  0.67 ,
          = 1.000
: c. Shear
          = (FS)/Sy = (22,740)(1.34)/( 2.07x104) = 1.47205797 For 0.48 <  1.7,
          = 0.43/ + 0.1 = (0.43/1.47205797) + 0.1 = 0.39210806 Step 4 - Determine Theoretical Uniaxial Buckling Values (Code Case N-284-1, Paragraph-1712)
Elastic Buckling Coefficients are first calculated followed by the calculation of the theoretical buckling values as follows.
M = L/(Rt)0.5 = 180.21/(37.00 x 1.75)0.5 = 22.395409 M = L/(Rt)0.5 = 232.477856/(37.00 x 1.75)0.5 = 28.890942 Et/R = [26.5(10)6 x 1.75] / 37.00 = 1,253,378 psi
: a. Axial Compression For M  1.73, C = 0.605 SeL = C (Et/R) = 758,294 psi b(1). External Pressure - No End Pressure 1.65(R/t) = 34.89 For 3.0  M < 1.65(R/t),
Cr = 0.92/(M  1.17) = 0.04334428 SeL = SreL = Cr (Et/R) = 54,327 psi b(2). External Pressure - End Pressure Included For 3.5  M < 1.65(R/t),
Ch = 0.92/(M  0.636) = 0.03256068 SheL = Ch (Et/R) = 40,811 psi
: c. Shear For 1.5 < M < 26, C = (4.82/M2) x (1+0.0239M3).5 = 0.15775163 SeL = C (Et/R) = 197,722 psi Step 5 - Evaluate Elastic Buckling (Code Case N-284-1, Paragraph-1713.1)
First, the elastic buckling allowable stresses for specific loading cases are calculated. This is followed by determining the individual elastic interaction ratios, Q1 through Q4.
NAC International                          2.7.14-4
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Elastic buckling allowable stresses are:
Sxa = aLSeL/FS = 117,139 psi          Axial Compression alone Sha = aLSheL/FS = 24,365 psi            Hydrostatic External Pressure Sra = aLSreL/FS = 32,434 psi            Radial External Pressure Sta = aLSeL/FS = 118,043 psi        In-plane Shear alone
: a. Axial Compression plus Hoop Compression (for K < 0.5)
K = S/S = 3.19 > 0.5 Therefore, go to (b) below.
: b. Axial Compression plus Hoop Compression (for K  0.5)
No interaction check is required if  / Sha < 0.5
        / Sha = 16,362/24,365 = 0.672 > 0.5 Therefore, the Q1 interaction check is required:
( - 0.5Sha)/(Sxa -0.5Sha) + (/ Sha)2  1.0 (16,362 - 0.5x24,365)/(117,139 -0.5x24,365) + (5,124/ 24,365)2 = 0.084 Therefore:
Q1 = 0.084  1.0
: c. Axial Compression plus Shear
(/Sxa) + (/Sa)2  1.0 (16,362/117,139) + (22,740/118,043)2 = 0.177 Therefore:
Q2 = 0.177 < 1.0
: d. Hoop Compression plus Shear
(/Sra) + (/Sa)2  1.0 (5,124/32,434) + (22,740/118,043)2 = 0.195 Therefore, Q3 = 0.195 < 1.0
: e. Axial Compression plus Hoop Compression plus Shear Ks = 1 - (/Sa)2 = 0.963 Substituting K into Equation (b):
(-.5*KsSha)/(KsSxa-.5*KsSha) + (/KsSha)2  1.0 (16,362 - 0.5x0.963x24,365)/(0.963x117,139 -0.5x0.963x24,365) +
(5,124/ (0.963x24,365))2 = 0.094 NAC International                          2.7.14-5
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Therefore:
Q4 = 0.094 < 1.0 Step 6 - Evaluate Inelastic Buckling (Code Case N-284-1, Paragraph-1713.2)
The inelastic buckling allowable stresses for specific loading cases are calculated. This is followed by determining the individual elastic interaction ratios, Q5 through Q8.
Inelastic buckling allowable stresses are:
Sxc = Sxa = 70,852 psi      Axial compression alone Src = Sra = 32,434 psi      Radial external pressure Sc = Sa = 46,286 psi    In-plane shear alone.
: a. Axial Compression or Hoop Compression Axial Compression:
        /Sxc  1.0 16,362/70,852 = 0.231 Therefore, Q5 = 0.231 < 1.0 Hoop Compression:
        /Src  1.0 5,124/32,434 = 0.158 Therefore, Q6 = 0.158 < 1.0
: b. Axial Compression plus Shear
        /Sxc + (/Sc)2  1.0 16,362/70,852 + (22,740/46,286)2 = 0.472 Therefore, Q7 = 0.472 < 1.0
: c. Hoop Compression plus Shear
        /Src + (/Sc)2  1.0 5,124/32,434 + (22,740/46,286)2 = 0.399 Therefore, Q8 = 0.399 < 1.0 NAC International                        2.7.14-6
 
MAGNATRAN Transport Cask SAR                                                                                              January 2022 Docket No. 71-9356                                                                                                            Revision 1 Table 2.7.14-1    Buckling Evaluation Load Cases and Results - Cask Inner Shell Longitudinal Circumferential      In-plane            Elastic Buckling                Plastic Buckling Load                        (Axial) Stress* (Hoop) Stress* Shear Stress          Interaction Equations          Interaction Equations Case    Load Condition          (psi)        (psi)        (psi)    Q1      Q2      Q3      Q4      Q5      Q6    Q7      Q8 Normal Conditions A        1-Ft Top End            4653          2293              8      not req. 0.059    0.106  not req. 0.059  0.106  0.059  0.106 B      1-Ft Bottom End          4352          3732              8      not req. 0.055    0.172  not req. 0.055  0.172  0.055  0.172 C          1-Ft Side            7236          3758            6880    not req. 0.100    0.181  not req. 0.112  0.173  0.126  0.187 D      1-Ft Top Corner          8862          3085            4020      0.0    0.115    0.145  0.046  0.160  0.142  0.163  0.145 E    1-Ft Bottom Corner          8611          4362            3901      0.1    0.112    0.203  0.078  0.152  0.201  0.155  0.203 Accident Conditions F      30-Ft Top End            6110            296              0      not req. 0.052    0.009  not req. 0.052  0.009  0.052  0.009 G    30-Ft Bottom End          5677          1933              4      not req. 0.048    0.060  not req. 0.048  0.060  0.048  0.060 H        30-Ft Side            16362          5124            22740      0.084    0.177    0.195  0.094  0.231  0.158  0.472  0.399 I    30-Ft Top Corner          15452          1706            9819      0.0    0.139    0.060  0.037  0.209  0.053  0.221  0.064 J    30-Ft Bottom Corner        15827          2876            9647      0.0    0.142    0.095  0.050  0.218  0.089  0.229  0.099
* Compressive stresses.
NAC International                                            2.7.14-7
 
MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                                Revision 1 Table 2.7.14-2 Geometry Parameters for the MAGNATRAN Transport Cask Parameter          Value t = thickness (in)      1.75 ID = inside diameter (in)  72.25 R = radius (in) = (ID+t)/2  37.00 R/t            21.14 L = Length (in)      180.21 (Rt)0.5          8.046 L = 2R = circumference (in) 232.48 M = L/(Rt)0.5      22.40 M = L/(Rt)0.5      28.89
                            = Poissons ratio      0.31 NAC International                  2.7.14-8
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 2.7.15        Cask Cavity Spacer - Hypothetical Accident Conditions The design analysis of the cask cavity spacer used in the MAGNATRAN transport cask cavity to position the short transportable storage TSC is documented in Section 2.6.17 for the hypothetical accident conditions, as well as for the normal conditions of transport.
NAC International                        2.7.15-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.7.16          Summary of Damage - Accident Conditions Table 2.7.16-1 and Table 2.7.16-2 summarize the critical stresses within the MAGNATRAN transport cask for the accident conditions on a component basis.
The conformance of the cask to the 30-ft drop requirements is discussed in Section 2.7.1.
Analysis results for the drop cases are reported in Table 2.7.1-1 through Table 2.7.1-20. Critical stress summary tables detail the worst case results of each drop scenario on a component basis.
The lowest factor of safety for the accident drop conditions is 1.23, which occurs on the bottom inner forging in the 30-ft bottom corner drop case. The 30-ft drop condition results demonstrate that all components of the MAGNATRAN transport cask remain intact during the hypothetical 30-ft drop events and the containment boundary is maintained. In a 30-ft hypothetical corner-drop accident, an impact limiter may crush to a maximum depth of 51.8 inches (Section 2.6.7.5).
Review of the applicable regulations presented for crush in Section 2.7.2 shows that crush need not be considered for the MAGNATRAN transport cask.
The conformance of the cask to the pin puncture requirements is discussed in Section 2.7.3.
Analysis results for the pin puncture cases are reported in Table 2.7.3-4 through Table 2.7.3-8.
The lowest factor of safety for the pin puncture conditions is 1.10, which occurs on the outer shell in the side pin puncture case. The results shown in the pin puncture stress tables demonstrate that the outer shell, cask lid and cask bottom remain intact during the respective hypothetical pin puncture events and the containment boundary is maintained. A 40-in. pin puncture drop accident results in local damage to the neutron shield. The gamma shielding remains intact to provide sufficient shielding to satisfy the accident shielding criteria.
The conformance of the cask to the thermal (fire) accident requirements is discussed in Section 2.7.4. Analysis results for the thermal accident cases are reported in Table 2.7.4-3 and Table 2.7.4-4. The lowest factor of safety for the fire accident conditions is 6.39, which occurs in the bottom inner forging. The results shown in the stress tables demonstrate that all components of the MAGNATRAN transport cask remain intact during the hypothetical fire accident event and the containment boundary is maintained.
The conformance of the cask to immersion requirements is discussed in Sections 2.7.5 through 2.7.7. The evaluation of the cask for a sustained external pressure of 290 psi is provided in Section 2.7.7 and shows that the cask meets worst case immersion requirements. Analysis results for the 290 psi immersion case are reported in Table 2.7.7-1 and Table 2.7.7-2. The lowest factor of safety for the 290 psi immersion case is 8.15, which occurs in the lid flange.
NAC International                        2.7.16-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Based on the analyses of Section 2.7.1 through Section 2.7.7, the MAGNATRAN transport cask fulfills the structural and shielding requirements of 10 CFR 71 for all of the hypothetical accident conditions.
NAC International                          2.7.16-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 Table 2.7.16-1      Critical Pm Stress Summary - Accident Conditions, ksi Critical Accident                    Angle      Maximum        Stress Component                Case            Section      (deg)(4)      Stress      Allowable      FS Bottom End Pin Puncture      Bottom Pin Bottom Plate        (Table 2.7.3-7)    Punc. 5 (1)    0.0        19.67        42.82      2.18 30-foot Bottom Forging -        Side Drop Inner          (Table 2.7.1-11)        7 (2)      37.50        34.66        47.26      1.36 30-foot Bottom Forging -        Side Drop Outer          (Table 2.7.1-11)      17 (2)      67.50        31.10        44.07      1.42 30-foot Side Drop Inner Shell      (Table 2.7.1-11)        15 (2)      52.50        34.86        47.24      1.36 Side Pin Puncture        Side Pin Outer Shell        (Table 2.7.3-4)    Punc. 6 (3)    N/A        59.40        65.29      1.10 30-foot Side Drop Top Forging        (Table 2.7.1-11)      29 (2)        0.0        35.03        47.28      1.35 30-foot Top Corner Drop Lid          (Table 2.7.1-15)      32 (2)      18.80        21.18        94.50      4.46 (1)
Bottom end pin puncture section locations are detailed in Figure 2.7.3-3 and Table 2.7.3-3.
(2)
Drop case section locations are detailed in Figure 2.12.2-31 and Table 2.12.2-6.
(3)
Side pin puncture section locations are detailed in Figure 2.7.3-1 and Table 2.7.3-1.
(4)
Circumferential angle from plane of symmetry (Figure 2.12.2-30).
NAC International                          2.7.16-3
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.7.16-2      Critical Pm + Pb Stress Summary - Accident Conditions, ksi Critical Accident                  Angle      Maximum        Stress Component                Case          Section      (deg)(4)    Stress      Allowable        FS Bottom End Pin Puncture      Bottom Pin Bottom Plate        (Table 2.7.3-8)    Punc. 6 (1)    0.0        34.53        61.17        1.77 30-foot Bottom Corner Bottom Forging -            Drop Inner          (Table 2.7.1-20)        7 (2)      0.0        50.98        62.53        1.23 30-foot Bottom Corner Bottom Forging -            Drop Outer          (Table 2.7.1-20)      17 (2)      0.0        37.42        62.95        1.68 30-foot Side Drop Inner Shell        (Table 2.7.1-12)      10 (2)      63.8      32.08          64.15      2.00 30-foot Side Drop Outer Shell        (Table 2.7.1-12)      22 (2)      0.0        49.82        85.90        1.72 30-foot Side Drop Top Forging        (Table 2.7.1-12)      29 (2)      0.0        35.71        60.78        1.97 Top End Pin Puncture        Top Pin Lid            (Table 2.7.3-6)    Punc 1 (3)    90.0      51.39        133.86      2.60 (1)
Bottom end pin puncture section locations are detailed in Figure 2.7.3-3 and Table 2.7.3-3.
(2)
Drop case section locations are detailed in Figure 2.12.2-31 and Table 2.12.2-6.
(3)
Top end pin puncture section locations are detailed in Figure 2.7.3-2 and Table 2.7.3-2.
(4)
Circumferential angle from plane of symmetry (Figure 2.12.2-30).
NAC International                          2.7.16-4
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 2.8            Accident Conditions for Air Transport of Plutonium This section is not applicable to the MAGNATRAN transport cask because the cask is not designed for air transport of plutonium and will not be used for that purpose. Therefore, the requirements of specified in 10 CFR 71.74 are not evaluated in this document.
NAC International                        2.8-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.9            Accident Conditions for Fissile Material Packages for Air Transport This section is not applicable to the MAGNATRAN transport cask because the cask is not designed for air transport of fissile material and will not be used for that purpose. Therefore, the requirements of specified in 10 CFR 71.55(f) are not evaluated in this document.
NAC International                            2.9-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 2.10            Special Form This section is not applicable to the MAGNATRAN transport cask because the fuel to be transported in the cask does not satisfy the definition in 10 CFR 71.4 for special form radioactive material.
NAC International                          2.10-1
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 2.11            Fuel Rod Evaluations - Hypothetical Accident Conditions This section presents an evaluation of the PWR and BWR fuel rods for the 30-ft drop conditions for the MAGNATRAN system. Additionally, a thermal evaluation and a fatigue evaluation of the fuel rods are provided in Sections 2.11.5 and 2.11.6, respectively.
NAC International                        2.11-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.11.1          PWR Fuel Rod Evaluation This section presents the buckling evaluation for PWR fuel having cladding oxide layers that are 80 and 120 microns thick. A reduced cladding thickness is assumed due to the cladding oxide layer. The fuel assemblies are considered to be subjected to an axial loading with bounding acceleration corresponding to the 30-ft end drop condition. These analyses show that the maximum stresses in the PWR fuel rods remain below the yield strength in the design basis accident events and confirm that the fuel rods will return to their original configuration.
In the end drop orientation, the fuel rods are laterally restrained by the grids and come into contact with the fuel assembly base. The only vertical constraint for the fuel rod is the base of the assembly. Rather than evaluating a straight fuel assembly with all the grids present, the fuel assembly evaluated is considered to be bowed, and a fuel assembly grid may be missing (may still meet the acceptable configuration for undamaged fuel). The evaluation of the PWR fuel rods is based on the following representative samples.
Gap Between Fuel Cladding    Cladding      Fuel Rod      Assembly and Fuel Diameter    Thickness      Pitch          Tube Wall Fuel Assembly        (in)          (in)        (in)              (in)
WE 17x17          0.360        0.023        0.496              0.564 WE 15x15          0.422        0.024        0.563              0.561 WE 14x14          0.400        0.024        0.556              1.232 CE16x16          0.382        0.025        0.506              0.888 CE14x14          0.440        0.028        0.580              0.880 BW17x17          0.379        0.024        0.502              0.451 BW15x15          0.430        0.027        0.568              0.494 Review of the design basis fuel inventory indicates that the bounding fuel assembly is the WE 17x17, as it has the lowest fuel rod cross-sectional moment of inertia. This fuel assembly is analyzed with an initial bow of 0.01 inch (see NUREG-1864). The fuel assembly is analyzed for the following two cases:
Case 1. Intact grid Case 2. One grid damaged 2.11.1.1        Models for Cases 1 and 2 (Intact and Damaged Grid, No Gap)
A half-symmetry ANSYS model corresponding to a single row of fuel rods is used to model the case with intact and damaged grids. The ANSYS model for the 17x17 assembly is shown in Figure 2.11.1-1. The fuel rod cladding is modeled with shell elements. Each grid is modeled NAC International                        2.11.1-1
 
MAGNATRAN Transport Cask SAR                                                                        January 2022 Docket No. 71-9356                                                                                      Revision 1 using brick elements to maintain the spacing between the fuel rods at the grid. The fuel tube is modeled using brick elements to restrict the lateral motion of the fuel assembly. Each of the fuel rods in the ANSYS model is simply supported at each end. Spring elements support the shell elements of the fuel rods at the locations of the grids and represent the fuel pellets. Static forces are applied between each grid to induce a maximum bow of 0.010 inch, which occurs between the lowest two grids. The purpose of the ANSYS model and solution is to provide the coordinates of the fuel clad for the LS-DYNA model. This is accomplished by obtaining a static solution with the ANSYS model, and then using the option to update the coordinates of the nodes based on the displacements from the solution. The LS-DYNA models are shown in Figure 2.11.1-2 and Figure 2.11.1-3 for Case 1 (intact grids) and Case 2 (one damaged grid),
respectively. A section of bottom grid in the intact grid model was removed to create the damaged grid model as shown in the Figure 2.11.1-3. In the analysis of fuel rod assemblies, the thickness of the cladding given above is reduced by 120 microns (0.0047 inch).
An initial velocity of 527 in/sec is defined on all the nodes of fuel rod and fuel tube. The initial position of the fuel of the fuel assembly corresponds to the fuel assembly resting on the canister end. A deceleration curve, as shown in Figure 2.11.1-4, uses a maximum deceleration of 36 gs which bound the maximum axial acceleration in Table 2.6.7-37. The deceleration curve in Figure 2.11.1-4 is applied to the nodes of the elements representing the fuel tubes and fuel end fittings.
The deceleration time history is defined to result in a final velocity of 0 in/sec at the end of the 30-foot drop.
The LS-DYNA model employs the same nodes and elements as the ANSYS models (with the incorporation of the 0.010 inch bow). Elastic material properties are used in the ANSYS model and bilinear material properties are employed in the LS-DYNA model. Material properties for the zircaloy clad and the fuel pellet at 572&#xba;F (300&deg;C) and 5/s strain rate are considered as shown in the following table.
Modulus of                          Yield Elasticity          Density      Strength (106 psi)          (lb/in3)      (psi)
Fuel Clad            10.89(1)            0.237        90,625 Fuel Pellet            (2)              0.396          (2)
(1)
Based on 90% of the modulus at 150&deg;C.
(2)
Fuel pellet weight is considered and structural influence on fuel cladding stiffness is conservatively ignored.
NAC International                                2.11.1-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.11.1.2        Analyses Results The LS-DYNA analyses for the cases with no initial gap (Cases 1 and 2) were performed for the duration of 0.08 second to determine the maximum stresses in the fuel. Since the fuel is to remain elastic during the impact, the Von-Mises stress is computed for each element. Post-processing each analysis set identifies the maximum Von-Mises stress occurring at the shell surface during the 30-foot end drop.
The time history of the Von-Mises stress in the fuel clad for Case 1 (intact grid) is shown in Figure 2.11.1-5. The Von-Mises stress contour for the fuel corresponding to the time of the maximum Von-Mises stress is shown in Figure 2.11.1-6 (in conjunction with the location of the maximum Von-Mises stress).
The time history of the Von-Mises stress in the fuel clad for Case 2 (one damaged grid) is shown in Figure 2.11.1-7 and the Von-Mises stress contour for the fuel corresponding to the time of the maximum Von-Mises stress is shown in Figure 2.11.1-8 (with the identification of the element with the maximum stress).
The maximum internal pressure in the fuel clad is 2,000 psi. The axial stress in the fuel clad due to internal pressure is added algebraically to the Von-Mises stress obtained from LS-DYNA.
The axial stress is calculated as:
P x r 2000 x 0 .18
                              =          =                  = 10 ,112 psi 2x t      2 x 0 .0178 The maximum stresses for each case are summarized in the following table with the computed factor of safety. All factors of safety are greater than unity.
Initial Stress Von-Mises      due to                    Yield  Factor Initial    Stress from    Pressure                Strength    of Total Bow      Model (psi)      (psi)                  (psi)  Safety Case        Grid                                            Stress (psi)
(in) 1        Intact      0.01        31,967      10,112        42,079    90,625    2.2 2      Damaged      0.01        29,214      10,112        39,326    90,625    2.3 NAC International                          2.11.1-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 As shown in the preceding table, the maximum stresses in the PWR fuel rods remain below the yield strength in the design basis accident events, confirming that the fuel rods remain elastic and will return to their original configuration after the 30-ft end drop accident condition.
NAC International                          2.11.1-4
 
MAGNATRAN Transport Cask SAR                                  January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.11.1-1  ANSYS Model for Fuel Assembly NAC International              2.11.1-5
 
MAGNATRAN Transport Cask SAR                                                                                                    January 2022 Docket No. 71-9356                                                                                                                    Revision 1 Figure 2.11.1-2      LS-DYNA Model for 30-Foot Drop with No Damaged Grids All shell elements were modeled at the mid-plane thickness of the All shell elements were modeled at the mid-plane thickness of the clad. clad.The      LS-DYNA The LS-DYNA            interface interface takes into accounttakes      into the thickness of account the thickness of thetheshellshell element when determining the contact element when determining the contact Brick Elements for the Grid Brick Elements for the Grid The nodes in the bricks for the sides The nodes in the bricks for the sides and bottom are restrained in the and the bottom are restrained in the lateral direction lateral direction Brick elements representing the sides of the fuel tube. The These brick elements        represent deceleration time-history          theto sides was applied              of the nodes of these  brick fuel tube or the fuel assembly end elements fitting. for the 30-foot drop.
The deceleration time-history was applied to the nodes of these brick elements for the 30-foot drop.
NAC International                                  2.11.1-6
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.11.1-3 LS-DYNA Model Details for 30-Foot Drop with Damaged Grid NAC International            2.11.1-7
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                Revision 1 Figure 2.11.1-4 Bounding Acceleration from MAGNATRAN 30-ft End Drop Applied to Fuel Rod Drop Evaluation NAC International              2.11.1-8
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.11.1-5  Von-Mises Stress Time History at Location of Maximum Stress Case 1 (Intact Grid)
NAC International                2.11.1-9
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.11.1-6 Maximum Von-Mises Stress Location - Case 1 (Intact Grid)
NAC International            2.11.1-10
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.11.1-7  Von-Mises Stress Time History at Location of Maximum Stress -
Case 2 (Damaged Grid)
NAC International              2.11.1-11
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.11.1-8 Maximum Von-Mises Stress Location - Case 2 (Damaged Grid)
NAC International            2.11.1-12
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.11.2          BWR Fuel Rod Evaluation The evaluation of the BWR fuel rod is based on the following representative sample of BWR fuel rods:
Cladding Cladding Diameter Thickness Fuel Assembly                (in)        (in)
EX 9x9                0.424      0.030 GE 7x7-GE2                0.563      0.032 GE 7x7-GE3                0.563      0.032 GE 8x8- GE4-Zirc-2            0.483      0.032 GE 8x8- GE5-Zirc-2            0.483      0.032 GE 8x8- GE-8-Zirc-4            0.484      0.032 GE 8x8- GE-10-Zirc-4            0.484      0.032 GE 9x9-2                0.441      0.028 GE 10x10-2                0.378      0.024 The location of the lateral constraints in the BWR fuel are: 0.00 in, 22.88 in, 43.03 in, 63.18 in, 83.33 in, 103.48 in, 122.3 in, 143.78 in and 163.42 inches.
The BWR fuel assembly is evaluated for an intact grid in which the initial position of the fuel assembly is that it is resting on the on the end of the canister.
2.11.2.1        Evaluation for BWR Fuel Rod End Drop For the PWR fuel rod (with all grids intact and with the 120 micron thickness reduction), the largest ratio of unsupported length (L) to radius of gyration of the cladding cross section (r) is:
33 L/r =                                                    = 279 0.5 x  ((0.360 - 2 x 0.0047)/2 )2 + (0.318 / 2)2 The ratio (L/r) for a BWR fuel rod (with the 125 micron thickness reduction for high burnup fuel) is:
22.88 L/r =                                                    = 185 0 .5 x  ((0.378  2 x 0.0049) / 2)2 + (0.330 / 2)2 The analysis presented in Section 2.11.1 is bounding for both PWR and BWR fuel rods, since the (L/r) for the PWR fuel rod is larger than the (L/r) for the BWR fuel rod. Therefore, no further evaluation of the BWR fuel rod is required.
NAC International                          2.11.2-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.11.2.2        BWR Fuel Assembly End Drop Evaluation The LS-DYNA model shown in Figure 2.11.2-1 is used determine the final position of the fuel assembly and the fuel pellets at the end of the top end drop. The total weight of the BWR fuel assembly model used in the analysis is equal to 704 lbs. The BWR fuel assembly model is composed of four parts: fuel pellets, plenum spring, end fitting assembly and the canister lid. The fuel pellets in the BWR fuel assembly are modeled as one rigid body. There is no interaction or resistance to pellet motion by the fuel clad. This bounds any condition in which the fuel clad would prevent motion of the fuel pellets. The total weight of the fuel pellets equal 499.2 lbs. The remaining 204.8 lbs of weight of the BWR fuel assembly is distributed to the end fitting assembly. The end fitting assembly consists of two cylindrical corner posts, a limited section of the shroud, the bail handle, and the platform to which the spring is connected. The plenum spring (length of 10.59 inches) is represented by a massless nonlinear discrete spring. The platform is assumed to be rigid, while the corner posts and bail handle (6.9 inches in length) are assumed to be deformable and uses properties corresponding to stainless steel. The canister lid is modeled as being rigid. The initial velocity of the model corresponds to a 30-foot drop and the subsequent motion cask body is prescribed using a decceleration time history which uses a maximum deceleration of 36 gs. The maximum deceleration used in the evaluation bounds the maximum axial acceleration in Table 2.6.7-37.
2.11.2.3        Analysis Results The LS-DYNA analysis was performed for the duration of 1.0 second to determine the response BWR fuel assembly. The time history of the deformation of the change in length of the bail handle is shown in Figure 2.11.2-2. The final height of the bail handle is equal to 0.96 in.
Therefore, the crush of the bail handle is determined to be 5.9 inches. The time history of compression of the plenum spring is shown in Figure 2.11.2-3. The length of the spring at the end of the impact is 3.76 in. Therefore, the compression of the spring due to the top end impact is 6.83 inches.
NAC International                          2.11.2-2
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                          Revision 1 Figure 2.11.2-1      Finite Element Model Set Up - End Drop Condition Fuel Pellet End Fitting Canister Figure 2.11.2-2    Deformation of the Fuel Assembly Before and After Impact NAC International                    2.11.2-3
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.11.2-3  Compression of Plenum Spring NAC International                2.11.2-4
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 2.11.3          RCCA Spacer Drop Evaluation When Rod Cluster Control Assemblies (RCCAs) are utilized for reactivity suppression, top spacers are used to reduce gaps within the TSC cavity, limiting axial movement of the RCCA and fuel assembly. Accordingly, the top spacer provides axial support of the fuel assembly and RCCA when the cask is in a top end orientation. Under accident condition loading, deformation of the spacer and RCCA is limited to 1.38 inches such that the effective TSC cavity gap for the RCCA is enveloped by the criticality evaluation. This limit is applicable for all conditions of transport, of which the 30-foot top end drop accident is bounding. The adequacy of the spacer design to limit permanent deformation of the spacer and RCCA to less than 1.38 inches is evaluated in the following section. Note that weights are increased to demonstrate that the accident condition loading does not exceed 70% of the spacers plastic instability load (ASME Code Section III, Division 1, Appendix F, Section F-1341.4).
The criticality evaluation considers a maximum extraction of a RCCA from the fuel assembly which is equivalent to a gap increase of 1.38 inches.
The RCCA spacer is analyzed for two selected bounding cases with diffenent lower leg support lengths:
Case 1. The length of the top leg plus the center plate is 5.0 inches.
Case 2. The length of the top leg plus the center plate is 5.8 inches.
2.11.3.1        Models for Cases 1 and 2 The finite element model for Case 1 is shown in Figure 2.11.3-1. The finite element model for Case 2 is shown in Figure 2.11.3-3. In both cases, the increased weight of RCCA is 240 lbs.
The increased gross weight of the fuel assembly is 2,200 lbs. The total height of the spacer is 11.8 inches. The RCCA nozzle is 4.4-in long. The RCCA weight with its nozzle is free to drop onto the lower plate.
2.11.3.2        Analyses Results for Cases 1 and 2 The deformed shape of Case 1 is shown in Figure 2.11.3-2. The deformed shape of Case 2 is shown in Figure 2.11.3-4. The key dimension changes are summarized in Table 2.11.3-1 for Case 1 and Table 2.11.3-2 for the Case 2. In both Cases, the spacer did not collapse. The results show that the gap increase is limited to 1.27 inches and less than the allowable gap increase of 1.38 inches. Therefore, the RCCA spacer design is adequate.
NAC International                        2.11.3-1
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.11.3-1      Changes of Key Dimensions of Case 1 Model After Impact Initial  Final Value Designation                                  Changes, in Value, in after Impact, in A              11.8        11.7          0.1 B1            5.0 B2            4.4 B1+B2              9.4        8.14          1.26 Initial Gap        4.4            0          4.4 Table 2.11.3-2      Changes of Key Dimensions of Case 2 Model After Impact Initial  Final Value Designation                                  Changes, in Value, in after Impact, in A              11.8        11.69          0.11 B1            5.8 B2            4.4 B1+B2            10.2        8.93        1.27*
Initial Gap        4.4            0          4.4
            *Gap Increase NAC International                    2.11.3-2
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.11.3-1  RCCA Spacer Impact Evaluation Finite Element Model, Case 1 NAC International              2.11.3-3
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.11.3-2  RCCA Spacer Impact Evaluation, Bounding Case 1 Deformed Shape NAC International                2.11.3-4
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.11.3-3  RCCA Spacer Impact Evaluation Finite Element Model, Case 2 NAC International              2.11.3-5
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.11.3-4  RCCA Spacer Impact Evaluation, Bounding Case 2 Deformed Shape NAC International                2.11.3-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.11.4          Side Drop Evaluation The basket side drop configuration is evaluated using a uniformly applied 60gs along the length of the basket. This bounds the accelerations developed in the transport cask side drop accident.
The analyzed bounding fuel rod length of 60.0 inches envelops all fuel types and includes the condition with a missing support grid in the fuel assembly. During a side drop, the maximum deflection of a fuel rod is based on the fuel rod spacing of the fuel assembly. Assuming a 17x17 array (fuel assembly with the maximum number of rods), the maximum fuel rod deflection, including the 120-micron oxide layer, is:
(17-1) x (0.496-0.36+2x120x10-6x39.37) = 2.33 in.
The side drop loading is evaluated for three fuel rods, which corresponds to the limits of the stress modulus Z (ratio of the cross-sectional moment of inertia to the maximum radius to relate the maximum fiber stress (S) to the bending moment (M), S=M/Z ) and the maximum span, as shown in the following table.
Rod Diameter        Clad        Z (in3)      Span Case        (inches)      Thickness      (10-3)    (inches)
(inches)
CE14x14          0.440          0.031        3.18        16.8 WE15x15          0.417          0.024        2.20        26.2 WE17x17          0.360          0.0205        1.33        20.6 ANSYS is used to perform a static analysis with a lateral loading of 60g. The model is shown in Figure 2.11.4-1. The fuel rod is modeled with beam elements, and the properties for the fuel clad take into account the reduction of the outer radius by 0.0047 inch (120 microns). The density of the beam element material was based on the zircaloy clad (0.237 lb/in3) and the pellet density (0.396 lb/in3). The lateral constraints show the location of the grids used in the model, and the distance from the end of the fuel rod to the first support is 60 inches. The analyses confirm that the rod lateral displacement is 2.33 inches, which results when the fuel rod is assumed to be supported with a 60-inch distance between adjacent grids. Therefore, the location of the unsupported span along the fuel rod is not significant. The spacing for the adjacent grids is shown in the preceding table.
To represent the maximum gap of 2.33 inches, which the fuel rod can displace in the side drop, CONTAC52s were modeled at each node. The gap for each CONTAC52 was set to 2.33 inches to limit the lateral displacement of the fuel rod to 2.33 inches. The gap stiffness for each CONTAC52 was defined to be 106 lb/in, which simulates the resistance of the basket to the NAC International                          2.11.4-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 lateral motion of the fuel rod. The lateral flexural stiffness of the fuel rod is considered to be insignificant compared to the stiffness of the basket. The effect of this stiffness, whether larger or smaller, would not influence the maximum stress. The maximum stress in the fuel rods is shown in the following table, and the allowable stress is the material yield strength at 752&deg;F (69.6 ksi).
Case        Maximum Stress (ksi)        Factor of Safety CE14x14                37.1                    +1.88 WE15x15                48.1                    +1.45 WE17x17                46.3                    +1.50 This confirms that the PWR fuel rods remain intact for a 60g side drop load condition.
Additional analyses are performed using the same fuel rod models for these PWR rods to incorporate the effect of DLF (Dynamic Load Factor). A maximum acceleration of 45.5g for cask side drop, as discussed in Section 2.6.7.5.1, is considered in the analyses. Since only the fuel clad is considered in the models, a factor of 1.25 is applied to the rod moment of inertia to implement the methodology to calculate cladding stress when using cladding-only properties as discussed in Section 2.3.3 of NUREG-2224. A DLF of 1.75, which is the maximum response ratio corresponding to a half sine wave type impulse [Clough], is conservatively considered. The maximum stresses calculated by the finite element models and the amplified stresses with the conservative DLF are summarized in the following table. Using an allowable stress of the material yield strength at 752&deg;F (69.6 ksi), the factors of safety are also provided. It is concluded that the PWR fuel rods remain structurally adequate for the side drop accident.
Case        Maximum Stress      Maximum Stress          Factor of (ksi)            With DLF (ksi)          Safety CE14x14            29.2                  51.1                1.36 WE15x15            35.5                  62.1                1.12 WE17x17            34.5                  60.4                1.15 The side drop evaluations for the PWR fuel rods in this section are bounding for the BWR fuel rods, since the (L/r) for the PWR fuel rod is significanly larger than the (L/r) for the BWR fuel rod, as discussed in Section 2.11.2. Therefore, no further evaluation of the BWR fuel rod is required.
NAC International                        2.11.4-2
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.11.4-1      ANSYS Model for the PWR Fuel Rod Side Drop Condition Typical CONTAC52 Typical lateral restraint representing the grid that was altered for each fuel rod analyzed. Smaller grid spacing would require more grids.
A single beam element connected each adjacent              Direction of lateral gap element.                          loading for the side drop.
60-inch spacing NAC International                  2.11.4-3
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 2.11.5        Thermal Evaluation of Fuel Rods Normal condition fuel cladding temperatures are limited to be  400&#xba;C (752&#xba;F) in accordance with ISG-11, Revision 3. Zirconium alloy or stainless steel cladding degradation is not expected to occur below this temperature in an inert gas environment.
The fuel cladding temperature limit for short-term off-normal and accident events is 570&deg;C (1,058&#xba;F). Refer to Chapter 3, which demonstrates that the maximum fuel cladding temperatures are well below the temperature limits for all design conditions of storage.
NAC International                        2.11.5-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.11.6          Fatigue Evaluation of Fuel Rods The section presents a fatigue evaluation for the PWR and BWR high burnup fuel assemblies for normal condition of transport for the MAGNATRAN system.
Three representative PWR fuel rods (CE 14x14, WE 15x15 and WE 17x17) and four BWR fuel rods (GE 7x7, GE 8x8, GE 9x9 and GE 10x10) are considered in the evaluation. Two finite element models representing a single fuel rod for each of the PWR fuels are used (one without missing grid and the other with missing grids) to determine the stress and strain in the fuel cladding during normal conditions of transport. Similar models are used for the BWR fuel without missing grids. The fuel rod is modeled with ANSYS three-dimensional BEAM4 elements to represent the fuel clad only, and the properties for the fuel clad take into account the reduction of the outer radius by 0.0047 inch (120 microns). The density of the clad is adjusted to account for the mass of the fuel pellet. The locations of the grids are modeled as simply supports in the lateral directions. The model for the missing grids case for PWR fuel rods has a maximum span of 60 inches.
Response spectrum analyses are performed for the fuel rods using response spectra of the transport cask platform from seven test cases as documented in the ENSA/DOE rail cask test
[SAND2018-13258R]. The response spectra include acceleration data in the axial and two lateral directions of the fuel rods up to 1,000 Hz frequency. Missing mass and Close Mode Grouping options are considered in the analyses.
The maximum stress and strain of the fuel rods from the spectrum analyses for the PWR fuel and BWR fuel are summarized in Table 2.11.6-1 and Table 2.11.6-2, respectively. The maximum strain is 0.046% for the PWR fuel and 0.043% for the BWR fuel, which are well below the 0.06% end point of the Lower-Bound Fatigue Curve as shown in Table 2-5 and Figure 2-12 of NUREG-2224, Dry Storage and Transportation of High Burnup Spent Nuclear Fuel. Therefore, fatigue is not a concern of the high burnup PWR and BWR fuel assemblies for transport conditions.
NAC International                        2.11.6-1
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 Table 2.11.6-1    Maximum Stress and Strain - PWR Fuel Rods Spectrum Analysis Fuel Type        Missing Grid      Max. Stress (ksi)      Max. Strain (%)
CE 14x14              No                4.76                  0.044 Yes                4.87                  0.045 WE 15x15              No                3.93                  0.036 Yes                3.95                  0.036 WE 17x17              No                4.98                  0.046 Yes                4.12                  0.038 Table 2.11.6-2    Maximum Stress and Strain - BWR Fuel Rods Spectrum Analysis Fuel Type        Max. Stress (ksi)      Max. Strain (%)
GE 7x7                4.68                  0.043 GE 8x8                4.19                  0.038 GE 9x9                4.09                  0.038 GE 10x10              3.86                  0.035 NAC International                    2.11.6-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.12          Appendix This section contains a list of references for the entire Chapter 2 and structural evaluation details, including computer program descriptions and benchmarking of methodologies related to the analyses of the various components of the MAGNATRAN transport system.
NAC International                          2.12-1
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 2.12.1        References
: 1. Title 10 of the Code of Federal Regulations, Part 71 (10 CFR 71), Packaging and Transportation of Radioactive Material.
: 2. US NRC Regulatory Guide 1.92, Combining Modal Responses and Spatial Components in Seismic Response Analysis, Revision 3, April 2019.
: 3. US NRC Regulatory Guide 7.6, Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels, Revision 1, March 1978.
: 4. US NRC Regulatory Guide 7.8, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material, Revision 1, March 1989.
: 5. US NRC Regulatory Guide 7.9, Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material, Revision 2, March 2005.
: 6. US NRC Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material, Revision 1, June 1986.
: 7. Interim Staff Guidance (ISG)-4, Revision 1, Cask Closure Weld Inspections.
: 8. ISG-15, Revision 0, Materials Evaluation, US Nuclear Regulatory Commission, Washington, DC, January 10, 2001.
: 9. ISG-18, The Design/Qualification of Final Closure Welds on Austenitic Stainless Steel Canisters as Confinement Boundary for Spent Fuel Storage and Containment Boundary for Spent Fuel Transportation, US Nuclear Regulatory Commission, Washington, DC, May 2003.
: 10. US NRC Regulatory Guide 7.11, Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask Containment Vessels with a Maximum Wall Thickness of 4 Inches 0.1 m), June 1991.
: 11. US NRC Regulatory Guide 7.12, Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask Containment Vessels with a Wall Thickness Greater than 4 Inches (0.1 m) But Not Exceeding 12 Inches (0.3m), June 1991.
: 12. NUREG/CR-0322, SAND 77-1589, Von Riesemann, W.A., and Guess, T.R., The Effects of Temperature on the Energy-Absorbing Characteristics of Redwood, August 1978.
: 13. NUREG/CR-0481, SAND77-1872, Rack, H.J., Knorovsky, G.A., An Assessment of Stress-Strain Data Suitable for Finite-Element Elastic-Plastic Analysis of Shipping Containers, September 1978.
: 14. NUREG-0612, Control of Heavy Loads at Nuclear Power Plants, July 1980.
: 15. NUREG-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, Final Report, March 2000.
NAC International                        2.12.1-1
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                              Revision 1
: 16. NUREG/CR-1815, Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Up to Four Inches Thick, June 1981.
: 17. NUREG-1864, A Pilot Probabilistic Risk Assessment of a Dry Cask Storage System at a Nuclear Power Plant, March 2007.
: 18. NUREG/CR-3019, Recommended Welding Criteria for Use in the Fabrication of Shipping Containers for Radioactive Materials, March 1984.
: 19. NUREG/CR-3826, Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Greater Than Four Inches Thick, April 1984.
: 20. NUREG/CR-3854, Fabrication Criteria for Shipping Containers, March 1985.
: 21. NUREG/CR-6007, Stress Analysis of Closure Bolts for Shipping Casks, January 1993.
: 22. NUREG/CR-6322, Buckling Analysis of Spent Fuel Baskets, May 1995.
: 23. NUREG/CR-6407, Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety, February 1996.
: 24. US NRC Bulletin 96-04, Chemical, Galvanic, or Other Reactions in Spent Fuel Storage and Transportation Casks, July 1996.
: 25. ASME Boiler and Pressure Vessel Code, Section II, Part D, Properties, 2001 Edition with 2003 Addenda.
: 26. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB, Class 1 Components, 2001 Edition with 2003 Addenda.
: 27. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF, Component Supports, 2001 Edition with 2003 Addenda.
: 28. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NG, Core Support Structures, 2001 Edition with 2003 Addenda.
: 29. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NE - Class MC Components, Rules for Construction of Nuclear Facility Components, 2001 Edition with 2003 Addenda.
: 30. ASME Boiler and Pressure Vessel Code, Section V, Nondestructive Examination, 2001 Edition with 2003 Addenda.
: 31. ASME Boiler and Pressure Vessel Code, Section VIII, Rules for Construction of Pressure Vessels, 2001 Edition with 2003 Addenda.
: 32. ASME Boiler and Pressure Vessel Code, Section IX, Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators, 2001 Edition with 2003 Addenda.
NAC International                      2.12.1-2
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1
: 33. ASME Boiler and Pressure Vessel Code, Code Cases - Nuclear Components, Code Case N-284-1, Metal Containment Shell Buckling Design Methods, Approved March 1995.
: 34. ASME Boiler and Pressure Vessel Code, Code Cases - Nuclear Components, Code Case N-707, Use of SA-537, class 1 Plate Material for Spent-Fuel Containment Internals in Non-pressure Retaining Applications Above 700&#xba;F (370&#xba;C), Approved November 2004.
: 35. ASME Code, Section III, Subsection NB, 2001 Edition with 2003 Addenda.
: 36. ANSI N14.5-1997. American National Standard for Radioactive Materials - Leakage Tests on Packages for Shipment, American National Standards Institute, Washington, DC, 1997.
: 37. ANSI N14.6-1993, Radioactive Materials - Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4,500 kg) or More, American National Standards Institute, 1993.
: 38. ASTM B733-97, Standard Specification for Autocatalytic (Electroless) Nickel-Phosphorus Coatings on Metal, Annual Book of ASTM Standards, Vol. 02.05, American Society for Testing and Materials, Conshohocken, PA, 1996.
: 39. AWS D1.1, Structural Welding Code, American Welding Society, Miami, FL, 1996.
: 40. Recommended Practice SNT-TC-1A, Nondestructive Testing, American Society for Nondestructive Testing, Columbus, OH, edition as invoked by the applicable ASME Code.
: 41. American Society for Metals (ASM), Metals Handbook, 1985.
: 42. American Institute of Steel Construction (AISC), Manual of Steel Construction, ASD, 9th Edition, 1989.
: 43. Association of American Railroads (AAR), Field Manual of the Interchange Rules, Rule 88, Mechanical Requirements for Acceptance, 1989 Edition.
: 44. MIL-HDBK-5H, Metallic Materials and Elements for Aerospace Vehicle Structures, U.S. Department of Defense, October 2001.
: 45. MIL-S-7998 A Sandwich Construction Core Material, Balsa Wood, March 1970 with Amend. 1, February 1978.
: 46. Bisco HT 800 Cellular Silicons - Product Technical Data, Rogers Corporation, Elk Grove Village, IL.
: 47. NS-4-FR Fire Resistant Neutron and/or Gamma Shielding Material - Product Technical Data, Genden Engineering Services & Construction Company, Tokyo, Japan.
: 48. ORNL/TM-1312, Structural Analysis of Shipping Casks, Volume 8, Experimental Study of the Stress-Strain Properties of Lead Under Specified Impact Conditions, Evans, J.H.,
Volume 8, Oak Ridge National Laboratory, Oak Ridge, TN, August 1970.
NAC International                      2.12.1-3
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                  Revision 1
: 49. SAND90-2187 TTC-1012 UC-80, An Analysis of Parameters Affecting Slapdown of Transportation Packages, Sandia National Laboratories, Albuquerque, NM, 1991.
: 50. Technical Report 32-944, Knoell, A.C., Environmental and Physical Effects on the Response of Balsa Wood as an Energy Dissipator, Jet Propulsion Laboratory, June 1966.
: 51. Technical Report 32-1295, The Wood Handbook, Jet Propulsion Laboratory.
: 52. UCID - 21246, Dynamic Impact Effects on Spent Fuel Assemblies, Chun, R., Witte, M.,
and Schwartz, M., Lawrence Livermore Laboratory, October 1987.
: 53. ARMCO Product Data Bulletin No. S-22, 17-4PH, Precipitation Hardening Stainless Steel, ARMCO, Inc., 1988.
: 54. Blake, A., How to Find Deflection and Moment of Rings and Arcuate Beams, Product Engineering, January 1963.
: 55. Blevins, R.D., Formulas for Natural Frequency and Mode Shape, Krieger Publishing Co.,
Malabar, Florida, 1995.
: 56. Clough, Ray W. and Joseph Penzien, Dynamics of Structures, 2nd Edition, 1993.
: 57. Duncan, R.N., Corrosion Resistance of High-Phosphorus Electroless Nickel Coatings, Plating and Surface Finishing, July 1986, pages 52-56.
: 58. Guidelines for the Use of Aluminum with Food and Chemicals, 5th Edition, the Aluminum Association, Washington, D.C., April 1984.
: 59. Hallquist, John 0., LS-DYNA, Version 950c, Livermore Software Technology Corporation, Livermore, CA., 1999.
: 60. Marks Standard Handbook for Mechanical Engineers, 9th Edition, McGraw-Hill Book Company, New York, New York.
: 61. Oberg, Erik, et al, Machinerys Handbook, 25th Edition, First Printing, Industrial Press, Inc., New York, New York, 1984.
: 62. Parker Seals O-Ring Handbook, ORD-5700, 1992.
: 63. Resnick, R., and Halliday, D, Physics, 3rd Edition, Part 1, New York, John Wiley & Sons, 1977.
: 64. Roark, R. J., and Young, W.C., Formulas for Stress and Strain, 6th Edition, New York, McGraw Hill, Inc., 1989.
: 65. Rust, James H., Nuclear Power Plant Engineering, 1979.
: 66. Spotts, M. F., Design of Machine Elements, 2nd Edition, Prentice Hall, 1953.
: 67. Standard Handbook for Mechanical Engineers, 7th Edition, New York, McGraw-Hill Book Co., New York, N.Y., 1967.
NAC International                      2.12.1-4
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1
: 68. Tietz, T.E., Determination of the Mechanical Properties of High Purity Lead and a 0.05%
Copper-Lead Alloy, Stanford Research Institute, Menlo Park, CA, WADC Technical Report 57-695, ASTIA Document Number 151165, April 1958.
: 69. Weaver, William Jr. and James M. Gere, Matrix Analysis of Framed Structures, Second Edition, D. Van Nostrand Company, New York, 1980.
: 70. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Appendices, 2001 Edition with 2003 Addenda.
: 71. Machinerys Handbook, 25th Edition, Industrial Press, New York, 1996.
: 72. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Appendix F, Rules For Evaluation of Service Loadings With Level D Service Limits, American society of Mechanical Engineers, New York, New York, 2001 Edition with 2003 Addenda.
: 73. Blake, Alexander, Practical Stress Analysis in Engineering Design, 2nd Ed., Marcel Dekker, Inc., 1990.
: 74. Boyer, H.E., Atlas of Stress-Strain Curves, ASM International, Metals Park, OH, 1987.
: 75. Field Manual of the Interchange Rules as Adopted by the Association of American Railroads, Rule 88, Mechanical Requirements for Acceptance, Washington, DC, 1986.
: 76. ASME Boiler and Pressure Vessel Code, Code Cases - Nuclear Components, Code Case N-595-4, Requirements for Spent Fuel Storage Canisters Section III, Division 1, Approved May 12, 2004.
: 77. ANSI N45.2.1-1973, Cleaning of Fluid Systems and Associated Components During Construction Phase of Nuclear Power Plants, American National Standards Institute, Inc.,
Washington, DC.
: 78. NUREG-2224, Dry Storage and Transportation of High Burnup Spent Nuclear Fuel (Draft Report for Comment), Office of Nuclear Material Safety and Safeguards, July, 2018.
: 79. SAND2018-13258R, Data Analysis of ENSA/DOE Rail Cask Tests, Spent Fuel and Waste Disposition, US Department of Energy, Spent Fuel and Waste Science and Technology, November 19, 2018.
NAC International                      2.12.1-5
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.12.2          Structural Evaluation Detail This section contains computer program descriptions and benchmarking methodologies related to the analyses of the various components of the MAGNATRAN transport system.
Computer Program Descriptions The structural evaluation of the MAGNATRAN transport cask body, closure lid, transportable storage canister (TSC), fuel baskets and GTCC waste basket liner, and impact limiters is accomplished using the ANSYS and LS-DYNA computer codes. These programs are summarized in the following sections.
ANSYS The structural analyses of the cask body, the closure lid, the TSC, and the fuel baskets and GTCC waste basket liner of the MAGNATRAN transport cask are performed by the finite element analysis method using the ANSYS structural analysis computer program. The ANSYS computer program is a large-scale, general purpose computer program for the solution of several classes of engineering analyses that include: static and dynamic; elastic, plastic, creep and swelling; buckling; and small and large deflections. The matrix displacement method of analysis based on finite element idealization is employed throughout the program. The large variety of element types available gives ANSYS the capability of analyzing two-dimensional and three-dimensional frame structures, piping systems, two-dimensional plane and axisymmetric solids, three-dimensional solids, flat plates, axisymmetric and three-dimensional shells, and nonlinear problems, including gap element interfaces.
A three-dimensional model is used in the analysis of the cask body for the free-drop cases. The interface gap elements provide the capability of realistic modeling and evaluation of the interactions between the lead layer and the surrounding stainless steel shells; between the top forging, and the lid; between the impact limiters and the cask body and lid; and between the bottom forgings and bottom plate, which together comprise the bottom of the cask.
The ANSYS preprocessing routine (PREP7) is used to construct the finite element mesh, describe each cask component material (temperature-dependent) property, assign unique identifiers for cask components, model displacement boundary conditions and prescribe temperature, point loads, or surface tractions of appropriate element faces or nodes. The PREP7 graphics option is a valuable tool that permits the user to check the model for completeness. The ANSYS analysis option uses the PREP7 file to generate a solution file and to provide a user-oriented printout of the solution phase.
A variety of ANSYS post-processors (for example, Post1) utilizes the solution file to sort, print, or plot selected results from the ANSYS analysis. The post-processors can provide many useful NAC International                          2.12.2-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 features including a maximum set of variables (such as stress components or displacements) or sectional stresses along a designated path. Additionally, the structural behavior can be viewed by model displacement and stress contour plots.
LS-DYNA LS-DYNA is an explicit general-purpose finite element program for the nonlinear dynamic analysis of three-dimensional structures. It was originally used to simulate permanent deformations of metallic objects impacting hard surfaces at high velocities. Its accuracy has been benchmarked through correlation with experimental data. LS-DYNA features include the ability to handle large deformations, finite rotation, sophisticated material models (for steel and aluminum, foams and orthotropic crushable materials), complex contact conditions among multiple components, and impact dynamics.
LS-DYNA post-processing utilizes the solution results to plot selected results from the LS-DYNA analysis. Post-processing can provide displays of the transient model contour plots of the results including stresses and strains. Numerous options are available to display the time history of results such as energy time histories, element and nodal data and acceleration time-history plots. LS-DYNA incorporates the Butterworth Filter for data filtering.
Impact Limiter Evaluation Methodology - LS-DYNA The analysis of the MAGNATRAN impact limiters is performed by the finite element analysis method using the LS-DYNA computer program.
Two separate cases are used to verify the adequacy of the LS-DYNA program to conservatively predict the deceleration of the MAGNATRAN package during normal and accident conditions.
The first verification problem is designed to determine the accuracy of the modeling methodology when compared to closed form solutions. The second verification problem shows that strain rate dependent material models properly interpolate between inputted stress-strain curves at a given strain rate. LS-DYNA provides two strain rate dependent material models that adequately simulate the behavior of wood crushing during a dynamic impact event.
Benchmarking of the two material properties and the method of analysis are presented in this Section.
2.12.2.2.1      Predicting Impact Deceleration Using Strain Rate Sensitive Properties The validation of the use of LS-DYNA to represent the behavior of the impact limiters was accomplished by using the balsa wood stress-strain curve for a simple geometry for which the crushing and acceleration are determined. The geometry used is shown in Figure 2.12.2-1, which corresponds to a right circular cylinder 50 inches in diameter and 50 inches in length. The NAC International                        2.12.2-2
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 model employed symmetry boundary conditions for the quarter-symmetry model. The stress-strain curve representative of balsa wood is shown in Figure 2.12.2-2. The material model used in this evaluation is the modified crushable foam (material 163), which is the material model employed in the impact limiter evaluation. The impacting object is a quarter-symmetry circular plate of the same diameter with an assigned weight of 257 kips. The interface between the balsa wood cylinder and the plate is modeled using automatic surface-to-surface contact, while the unyielding surface was modeled using the RIGIDWALL_GEOMETRIC_FLAT option. The system has an initial velocity of 150 in/sec. To compute the crush, an energy balance is used.
mv o2                  i
                =        AL  i d 2                  0 where:
A= area of the block being crushed L= total original height of the block di= the incremental strain as the block crushes i = the stress at the given incremental strain value The acceleration is computed by  A/W (g), where W is the weight of the modeled plate. The peak crush strength is 2,090 psi obtained from Figure 2.12.2-2. The results of the calculation are:
Item                LS-DYNA        Calculation    % Difference Crush (in)                12.9          12.6              2 Acceleration (maximum) (g)        4.04          3.99              1 This demonstrates that the material model and numerical methodology used in LS-DYNA for the impact limiters is acceptable.
2.12.2.2.2        Accounting for Strain Rate Sensitivity by Interpolation The strain rate sensitive foam/wood is modeled using LS-DYNA. The model is comprised of a steel block and a wooden cube. The model, as shown in Figure 2.12.2-3, is constructed of solid brick elements. The wooden cube measures 5 inches by 5 inches. The impacting steel plate is 5 inches tall and 7.5 inches across. Surface-to-surface contact interfaces are employed between the steel block and the wooden cube. The wooden cube sits on a rigid plane.
The Piecewise_Linear_Plasticity material model is used to represent the steel block. The Redwood cube is represented as a homogeneous isotropic material, type number 163 in LS-DYNA (Modified_Crushable_Foam). Since material strain rate sensitivity methodology is NAC International                          2.12.2-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 the same for other materials such as the orthotropic crushable material, this validation serves to validate the strain rate sensitive behavior for other crushable materials also.
For this example, three strain rates are inputted into the material model, 0 /sec, 20 /sec, 60
/sec, with corresponding constant stress values of 2,000 psi, 7,000 psi and 10,000 psi, respectively. A prescribed motion is applied to the steel block to apply a constant strain rate to the wood cube after 0.01 second.
To demonstrate that the correct strain rate curve is used during the crushing of the Redwood cube, two cases are considered. The first case uses 20 /sec, and the second case uses 40 /sec.
The stress in the wood block should compare to the applied stress-strain curve at the strain rate of interest. For the 20 /sec case, the compressive stress in the cube is approximately 7,000 psi, which agrees with the LS-DYNA result in Figure 2.12.2-4. For the 40 /sec case, the compressive stress in the cube is a value of 8,000 psi, due to logarithmic interpolation that agrees with the LS-DYNA result in Figure 2.12.2-5. Therefore, the material modeling of strain rate sensitive properties is an acceptable method of accounting for the strain rate variability of foam and wood crushable materials.
The detailed benchmarking of the LS-DYNA impact limiter analysis methodology is presented in Section 2.12.2.3.
NAC International                          2.12.2-4
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.12.2-1  LS-DYNA Model Used to Verify the Crushable Foam Material Model Rigid Plate Balsa 50 in.
Z Y
X 25 in.
Note: XZ and YZ planes are planes of symmetry.
NAC International                  2.12.2-5
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.12.2-2 Stress-Strain Curve Used for the Balsa Wood Material NAC International                2.12.2-6
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-3 Finite Element Model for Strain-Rate Dependent Crushable Foam Wood Block Impact NAC International                2.12.2-7
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 Figure 2.12.2-4      Crushable Foam Block Stress Time History at 20 /sec 1000 0
              -1000
              -2000 Stress (psi)
              -3000
              -4000
              -5000
              -6000
              -7000
              -8000 0.000    0.005    0.010    0.015    0.020      0.025  0.030  0.035  0.040 Time (sec)
NAC International                                2.12.2-8
 
MAGNATRAN Transport Cask SAR                                                                        January 2022 Docket No. 71-9356                                                                                    Revision 1 Figure 2.12.2-5      Crushable Foam Block Stress Time History at 40 /sec 1000 0
              -1000
              -2000
              -3000 Stress (psi)
              -4000
              -5000
              -6000
              -7000
              -8000
              -9000 0.000    0.002  0.004    0.006  0.008    0.010      0.012  0.014  0.016  0.018  0.020 Time (sec)
NAC International                                    2.12.2-9
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Benchmarking of LS-DYNA Impact Limiter Analysis Methodology 2.12.2.3.1      Introduction The purpose of this section is to validate the adequacy of the nonlinear dynamic structural analysis software, LS-DYNA, and material models for the impact limiter made of balsa wood and redwood.
This is accomplished by using the results of a quarter-scale model testing program to validate the analytical results. The test results referenced in this evaluation correspond to the NAC STC-CY transport cask quarter-scale model drop tests performed at Sandia National Laboratory (SNL).
The confirmatory testing program is described in Section 2.12.2.4.
Two finite element models are developed to perform the simulations. The first model is a Side Drop Model. The second model is an End Drop Model. Both finite element models have the same quarter-scale dimensions, number of components, and total weight as the NAC-STC-CY Quarter-Scale Drop Test Model. The Side Drop Model has a set of trunnions and the corresponding pocket in the top impact limiter, while the End drop Model has no trunnion or the pocket in the impact limiter.
The finite element Side Drop Model focuses on the material behavior of the redwood, which is the predominant energy dissipating material in the side drop configuration. The redwood is modeled using the modified_crushable_foam material (mat 163) type with strain-rate and grain-direction dependency.
The finite element End Drop Model focuses on the material behavior of the balsa wood, which is the predominant energy dissipating material in the end drop and CG-over-Corner drop configuration. The balsa wood is modeled using the honeycomb material (mat 26) type also with strain-rate and grain-direction dependency.
In addition to the comparison of the analysis results and the drop test results, two additional parametric studies are performed using the finite element Side Drop Model. Parametric studies are performed for the evaluation of the effect of the shallow angle drop on the peak accelerations and the effect of friction on the peak acceleration for the shallow angle drop configurations.
Table 2.12.2-3 shows the effect of the drop angle on the peak acceleration results for the side drop and confirms that the side drop accelerations is bounding based on &#xb5;=0.2.
The effect of the coefficient of friction on the shallow angle drop is summarized in Table 2.12.2-4.
The results of this evaluation indicate that the case (&#xb5;=0.20) produces maximum accelerations followed by &#xb5;=0.3. The coefficient of friction has diminishing effects on the peak accelerations NAC International                          2.12.2-10
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 with &#xb5; > 0.2. This is the sliding coefficient of friction for steel on steel per Machinerys Handbook, 27th Edition and the lower bound friction coefficient value per NUREG /CR-6865.
The three models referred in this Section are compared in the following table:
Model Drop Test Model            Side Drop Model          End Drop Model Designation Description          Drop Test Specimen          Finite Element Model    Finite Element Model Quarter scale                Quarter scale          Quarter scale Scale NAC-STC-CY                  NAC-STC-CY              NAC-STC-CY Redwood,                Balsa wood, Benchmarked part and modified_crushable_foam        honeycomb material type (type 163)                (type 26)
Strain-rate dependency                                          Yes                      Yes Side drop, end drop                                      End drop, Drops performed                                          Side drop Cg over corner drop                                  cg over corner drop Validation runs                                  &#xb5;=0.2            = 0o  =        &#xb5; 0.25
                                                                        = 5o, Shallow-angle drops,                      =        &#xb5; 0.2            = 10o,            n/a
                                                                        = 15o Coefficient of Friction                                              &#xb5;=0.2, Studies                                      = 5o          &#xb5;=0.3,              n/a
            &#xb5;                                                        &#xb5;=1.0 2.12.2.3.2          Similarity between NAC-STC-CY Cask and MAGNATRAN Cask The MAGNATRAN and NAC-STC-CY casks are both stainless steel casks comprised of a series of steel-lead-steel shells for the cask body and both designs use balsa-redwood impact limiters. A comparison of the dimensions, weights and impact limiters of the two cask designs is shown in Table 2.12.2-1. To establish that the NAC-STC-CY drop tests apply to the MAGNATRAN design, the behavior of the impact limiters is compared for the side drop and the end drop. These two orientations result in the largest lateral and axial accelerations for the cask drops.
In the side drop, the redwood segments are crushed to dissipate the energy and decelerate the cask. In each design, the number of segments, the orientation of the redwood grain, the wood densities, and the inner and outer dimensions of the impact limiters are the same. This ensures that the force developed during the side drop for each design is the same. The construction of the stainless steel gussets and shells for both designs is the same, which confirms that the manner in which the redwood is maintained in position during the side drop is the same. The MAGNATRAN upper impact limiter does not contain a trunnion pocket, which the NAC-STC-CY design includes. By removing the trunnion pocket from the MAGNATRAN design, the capacity of the redwood segment subject to the maximum crush in the side drop is increased by 32 NAC International                              2.12.2-11
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 percent. The increased capacity of the redwood segment subjected to the maximum crush permits the MAGNATRAN to accommodate a 20% weight increase. The 11% increase in the MAGNATRAN cask length does not affect the performance of the impact limiters in the side drop, since the CGs of the casks are in the same relative position with respect to the impact limiters. The redwood material model is validated using the previous NAC-STC-CY Impact Limiter drop test results.
The balsa wood is represented as an anisotropic material using the Honeycomb material model (Mat_Honeycomb or Mat_026) in LSDYNA. The parameters used for the Honeycomb model are taken from the available published experimental results. The balsa wood material model is also validated using the previous NAC-STC-CY Impact Limiter drop test results. A single block test model is also used to verify the stress and crush within the block agree with the material model input.
The end drop results in the balsa wood being crushed. In both designs, the grain orientation is parallel to the direction of crush, which ensures that both designs use the same compression versus crush data. This allows the forces decelerating the casks to be developed in the same manner. The balsa wood is enclosed by stainless steel shells for both designs, which confirms that the restraint to maintain the balsa wood in position is the same. The different lengths of the two impact limiters for the end drop do not affect the manner in which the balsa wood is crushed or the manner in which the enclosing stainless steel shells are deformed. The purpose of the longer MAGNATRAN impact limiter is to reduce the end drop accelerations. The different dimensions of the cylindrical shapes do not result in a significant increase in the balsa wood volume for the MAGNATRAN impact limiter.
In considering the orientations that develop the maximum accelerations for the drop, both impact limiters employ the same design and develop the forces in the same manner. The validation of the LS-DYNA software for the NAC-STC-CY impact limiters applies to the MAGNATRAN design also.
For this validation, three 30-foot drop impact orientations were analyzed for the NAC-STC-CY quarter-scale model: the end drop, the side drop, and the C.G.-over-corner drop. Figure 2.12.2-6 shows the various drop orientations performed for the drop test.
The accelerations predicted by the LS-DYNA analyses are compared with the accelerometer output recorded previously for the NAC-STC-CY cask quarter-scale model drop tests. The cask model DT was designed with impact limiters on both ends of the cylindrical cask. The impact limiters are made of balsa wood and redwood enclosed in Type 304 stainless steel shells. In the LS-DYNA Side Drop Model and End Drop Model for the scaled model simulation, the balsa NAC International                        2.12.2-12
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 wood is modeled using the orthotropic honeycomb material and the redwood is modeled using the crushable foam material model.
2.12.2.3.3      Method of Analysis The analytical models (Side Drop Model and End Drop Model) representing the quarter-scale model NAC-STC-CY cask (Drop Test Model) equipped with impact limiters were constructed using the LS-DYNA computer program. The analyses were performed using the LS-DYNA program. LS-DYNA is a nonlinear dynamic structural analysis program. Stress-strain curves of redwood and balsa wood are input into LS-DYNA input files to represent the behavior of the wood during impact conditions. Initial velocities (527.4 in/sec) are applied to the models to represent the 30-foot drops. The kinetic energy is checked to ensure that the total initial energy is correct. The sliding energy is checked to ensure the adequacy of interface controls and minimum passing-through between parts. The hourglass energy is checked to ensure the material deformation is within reasonable limits. The analysis results are processed and extracted using the postprocessor of LS-DYNA.
2.12.2.3.4      Design Input Geometry of the NAC-STC quarter-scale model drawings.
Height of dropmeasured from the impact plane to the nearest point on the quarter-scale model package.
Material properties for balsa wood and redwood from static and dynamic strain-rate testing.
2.12.2.3.5      Assumptions The cask impacts an unyielding surface.
Material properties are considered at ambient temperaturemild outdoor test conditions.
Half-symmetry analytical models are usedcasks and impact limiters are symmetric about the centerline.
2.12.2.3.6      Model Description - NAC-STC-CY Two finite element models are used to evaluate the NAC-STC-CY quarter scale model drop tests, which are due to the use of the different material models for the redwood and the balsa wood. The finite element End Drop Model uses more refined finite element meshes of anisotropic honeycomb material to represent balsa wood while the finite element Side Drop Model uses modified crushable foam to represent the redwood. For the end and the corner drop (End Drop Model), the balsa wood provides the energy absorption, and the redwood section of the impact limiter is not engaged. For the Side Drop Model, the balsa wood provides an insignificant level of energy absorption since it is neither backed by a structure such as the cask body and the crush strength is significantly smaller than the redwood crush strength. Therefore, NAC International                        2.12.2-13
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 for the side drop, the balsa wood material uses the same LS-DYNA material model as for the redwood, but with significantly reduced stiffness that is typically associated with the balsa wood.
Quarter-Scaled NAC-STC Side Drop Model Benchmarking The first finite element Side Drop Model of the NAC-STC-CY quarter-scale model cask and impact limiters for the side drop is shown in Figure 2.12.2-7. The overall length of the quarter-scale model, including two impact limiters, is 68.7 inches. The maximum diameter of the impact limiter is 32 inches. The height of the impact limiter in the axial direction is 13.1 inches. The overall length of the cask is 48.2 inches. The diameter of the cask is 21.7 inches.
The Redwood segments in the impact limiter used to absorb the impact energy during side drop are modeled as solid elements of modified_crushable_foam (mat_163) as shown in Figure 2.12.2-8. The Redwood material model is to be benchmarked against the side drop test result.
Twelve accelerometers are mounted on the Drop Test Model body to record the acceleration time history. The mounting positions of the accelerometers on the Drop Test Model and the corresponding nodal numbers in the FEM Side Drop Model are shown in Figure 2.12.2-15.
The six top accelerometers are mounted approximately 7.5 inches axially from the top end of the cask body. The six bottom accelerometers are mounted approximately 7.5 inches axially from the bottom end of the cask. The accelerometers are mounted on angular positions 0o, 90o and 270o from the vertical symmetry plane starting from the top of the cask body. The accelerometers are unidirectional in either the axial direction or the lateral direction. Only 6 accelerometers are effective in any drop. For the simulated drop using Side Drop Model, the nodal outputs of two nodes representing the locations of the two accelerometers on the top side of the Drop Test Model cask body are printed to a database for subsequent post-processing.
Node 13871 is located at the top accelerometer location. Node 15685 represents the bottom accelerometers location. The global X-axis aligns with the longitudinal axis of the cask model.
The Z-axis of the model aligns with the cask lateral direction.
Because the Side Drop Model is symmetrical about the longitudinal axis, only one-half of the cask and impact limiters is modeled (Y > 0). The nodes along the plane of symmetry are restrained in the direction normal to the plane.
The various structural members in the finite element model are assigned different part identifications, i.e., part IDs and part names. Each part in the LS-DYNA program has its associated finite element type (e.g. shell or solid), the section thickness, stress solution method, and material model type. The part descriptions are listed in Table 2.12.2-5.
For the side drop and slap down drop analyses, the cask is treated as an elastic body. The cross-section moment of the finite element Side Drop Model matches the cross-sectional moment of NAC International                          2.12.2-14
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 the quarter-scale specimen Drop Test Model that was dropped. The weight of the fuel contents is modeled as increased density of the cask body.
When the NAC-STC quarter-scale side drop analyses using Side Drop Model were performed, the finite element mesh size of the redwood segments was determined based on engineering judgment to optimize the run time while achieving reasonable analytical results. A sensitivity study was performed to assess the adequacy of the mesh size for the finite element redwood model. In the study, the mesh size of the redwood was reduced to half of the original mesh size, resulting in doubling the number of finite elements in the radial direction facing the impact plane. The accelerations predicted by the LSDYNA dynamic analyses were compared with the accelerometer output of the drop test specimen and the peak accelerations predicted previously for the original finite element Side Drop Model. The results show that with finer meshes, the resulting accelerations decrease slightly. Therefore, it can be concluded that the current mesh size of the redwood model is conservative and adequate for the intended impact analyses.
Quarter-Scale STC-CY Cask Side Drop Model Mesh Size Sensitivity Study Summary Top Accelerometer          Bottom Accelerometer Model Description                Peak Output, G                Peak Output, G Node 13871                    Node 15685 Drop Test Specimen                        150                          164 Side Drop Model (current model)                  199                          176 Side Drop Model-2X 193                          181 (finer Redwood meshes)
A second sensitivity study is performed on the mesh sizes of the cask body using the ANSYS program. For comparison, the mesh size on the cask body was reduced, resulting in doubling the number of meshes in the cask body. The current Side Drop Model and the finer mesh models (STC-CY Side Drop Model-2Y) have the same boundary condition, material density and elasticity, with the only difference in the number of meshes in the cask body. The modal frequencies and modal participation factors predicted by the analyses were compared for the two models. The results show that both models have almost identical dynamic characteristics.
Therefore, it can be concluded that the current mesh size in the cask body is adequate for the intended impact analyses.
NAC International                        2.12.2-15
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Quarter-Scale STC-CY Cask Side Drop Model Modal Analyses Summary ANSYS Program Prediction Cask Model and                Fundamental            Percent Mass Modal Drop Geometry                Frequency, Hz          Participation Factor STC-CY, Side Drop Model                366.1                      92.5%
(current model)
STC, Side Drop Model-2Y                365.9                      92.5%
(finer cask body meshes)
Quarter-Scaled NAC-STC End and Corner Drop End Model Benchmarking The second finite element End Drop Model is generated for the NAC-STC quarter-scale model cask and impact limiter for the end and corner drops. This model incorporates the anisotropic honeycomb crushable material for the balsa wood. For these orientations, the redwood material is not engaged. The overall length of the quarter-scale model, including two impact limiters, is 68.7 inches. The maximum diameter of the impact limiter is 32 inches. The height of the impact limiter in the axial direction is 13.1 inches. The overall length of the cask is 47.6 inches. The diameter of the cask is 21.7 inches. An overall view of the half symmetry model used in the end and corner drop is shown in Figure 2.12.2-9.
The balsa wood in the impact limiter used to absorb the impact energy during end drop is modeled as solid elements of mat_honeycomb (Mat_026) as shown in Figure 2.12.2-9. The balsa wood material model is to be benchmarked against the end drop and cg-over-corner drop test results.
The balsa wood elements are enclosed with a stainless steel shell shown in Figure 2.12.2-10.
The shell elements are not connected to the balsa wood elements. The contact interface models the interaction between the balsa wood and the shell. The shell is modeled to respond with collapse of the shell in the end and corner drops. The impact limiter is attached to the cask body by beam elements representing the impact limiter attachment bolts shown in Figure 2.12.2-11.
Shell elements are modeled as washers at the end of the bolts to permit the impact limiter attachment to be simulated. The cask body is modeled as rigid body.
2.12.2.3.7        Material Property and Strain-Rate Effects To account for gross deformation and buckling, the 304 stainless steel shells and gussets are modeled with an elastic-plastic material. The LS-DYNA material type 24 is used (Piecewise_Linear_Plasticity). From Reference 21, the required material input data is:
NAC International                          2.12.2-16
 
MAGNATRAN Transport Cask SAR                                                                          January 2022 Docket No. 71-9356                                                                                        Revision 1 Property                                    Value Mass Density,                        7.51 x 10-4 lb-sec2/in4 Modulus of Elasticity, E                      27.9 x 106 psi Poissons Ratio,                                  0.3 Yield Stress, y                            22,780 psi Tangent Modulus, Etan                        22.5 x 104 psi To adequately specify the impact limiter crush strength, NAC conducted dynamic compression tests of specimens taken from redwood and balsa wood obtained from a commercial supplier.
The average density of the redwood and balsa wood tested was 23 lb/ft3 and 8.5 lb/ft3, respectively. To ensure an adequate sampling, over 36 specimens were tested with varying strain rates. The tests included both parallel-to-the-grain (parallel) and perpendicular-to-the-grain (perpendicular) directions for hot, cold and ambient temperature conditions.
The properties used in the quarter scaled model for the redwood, balsa wood and the stainless steel shells are taken from Section 2.6.7.5. The wood material for the model used the LS-DYNA modified_crushable_foam (Mat_163), which included strain rate sensitive properties. Since the redwood is restrained by stainless steel stiffeners, the redwood is not permitted to be reoriented during the side drop. The stress-strain curve for each circumferential segment is corrected using Hankinsons formula based on the wood grain direction with respect to the impact direction. The balsa wood is represented as an anisotropic material using the strain-rate sensitive Honeycomb material model (Mat_Honeycomb or Mat_026) in LSDYNA. This material allows the properties to be updated as the element experience reorientation during the drop. This is the same material model used in the full scale limiter design as described in Section 2.6.7.5.
2.12.2.3.8        Cask Body Natural Frequency To ensure that the frequency response of the side drop and slap down models are equivalent to the Drop Test Model, the cross-sectional moment of inertia (EI) for the LS-DYNA model was calculated to be equal to the quarter-scale NAC-STC side drop and slap down Side Drop Model.
This was accomplished by adjusting the modulus of elasticity (E) of the LS-DYNA model. The modulus of elasticity is:
ELSDYNA        =        E Test R 4 1O Test R 24O Test  R 14I Test  R 24 I Test  = 1.57E+07 psi R 4 1 LSDYNA  R 4 2 LSDYNA where:
NAC-STC-CY Drop Test Model Quarter-Scale Cask Drop Specimen:
R1Otest = 10.84 in., outer shell outside radius R1Itest = 9.25 in., inner shell outside radius NAC International                            2.12.2-17
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 R2Otest = 10.175 in., outer shell inside radius R2Itest = 8.875 in., inner shell inside radius ETest = 2.83E+07 psi, modulus of steel LS-DYNA Side Drop Model - NAC-STC-CY Quarter-Scale Cask Model:
R1LSDYNA = 10.84 in., outside radius R2LSDYNA = 8.875 in., inside radius 2.12.2.3.9      Initial Condition Since the 30-ft drop represents the dynamic force input, the initial velocity is 527.4 in/sec, which is the vertical velocity of a rigid body after a free fall of 30-ft under 1g gravitational force.
2.12.2.3.10 Description of Interfaces For the Side Drop Model, the contact interface is the automatic single surface contact to include all parts in the contact treatments.
For the End Drop Model, the contact interfaces are modeled for the following contact conditions.
: 1. Between trunnion and top impact limiter
: 2. Between cask and top impact limiter
: 3. Between cask and top cask lid
: 4. Between cask and bottom impact limiter
: 5. Between cask and bottom cask lid
: 6. Between cask bottom ring and the bottom impact limiter LS-DYNA can treat impact and sliding along interfaces. The interface model for this analysis is the penalty method. Interfaces are defined in three dimensions by listing in arbitrary order all triangular and quadrilateral segments that comprise each of the interfaces. One side of the interface is designated as the slave side, and the other side as the master side. Nodes lying in those surfaces are referred to as slave and master nodes, respectively. The slave nodes are constrained to slide on the master surface after impact and must remain on the master surface until any tensile force develops between the slave nodes and the master surface.
The penalty method used by LS-DYNA consists of placing normal interface springs between all penetrating nodes and the contact surface. The spring stiffness matrix is assembled in the global stiffness matrix and solved in every time step. The coefficients of friction and the normal force to the interface determine the shear force between two sliding surfaces. The coefficient of friction is a function of static coefficient of friction, dynamic coefficient of friction, exponential decay coefficient, and the relative velocity of the surfaces in contact. In this calculation, the NAC International                          2.12.2-18
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 exponential decay coefficient is set to zero by program default. The static and dynamic coefficients of friction between the interfaces are set to 0.3 as default of the LS-DYNA preprocessor. These values are considered a nonfactor since the cask is totally surrounded by the impact limiter and the slippage is negligible.
2.12.2.3.11 Body Force The body force applied to cask and impact limiter is the 1g acceleration representing the gravitational force. Body force is a vectored input depending on the angle of drop.
2.12.2.3.12 Rigid Wall The rigid wall is an infinite plane that has infinite rigidity. The rigid wall in the LS-DYNA is used to simulate the rigid ground surface onto which the cask is dropped. The rigid wall is a vectored input in the LS-DYNA program depending on the angle of drop. For the parametric study for the effect of the friction, a coefficient of friction was assigned to the rigid plane. This allowed the friction to be the same for both the upper and lower impact limiter contact against the rigid plane.
2.12.2.3.13 Post-processing The nodal outputs of the two designated nodes representing the accelerometers are stored as a text file by LS-DYNA that can be post-processed. The output database is a time-series of nodal displacement, velocity and acceleration. The nodal outputs are programmed in the input data file to report the results of local coordinate system to match exactly that of the transducer output.
2.12.2.3.14 Filter Frequency Since the cask body is modeled as elastic material, the strain waves propagate and reflect within the boundary of solid elements. Additionally, the cask body also responds elastically as a simply supported elastic beam. The solution algorithm of LS-DYNA when treating interface movements also creates stiff spring elements between the contacting model parts. These factors contribute to noise in the acceleration time-histories. The Butterworth filter in LS-DYNA is used to eliminate the noise inherent in the acceleration time history. This method was used in the evaluation of impact of a steel billet due to tip-over, which is primarily an event with a single impulse. The cut-off frequency of the cask has been calculated as 450 Hz. The nodal acceleration output from Side Drop Model is filtered. For the End Drop Model, since the cask body is treated as rigid body, the cask acceleration is derived from the averaged cask part output that is reported in the output file MATSUM, the acceleration is not filtered.
NAC International                          2.12.2-19
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 2.12.2.3.15 Results of LS-DYNA Analyses on the NAC-STC-CY Transport Cask Quarter-Scale Models The analysis results are obtained by using the LS-DYNA post-processor to graphically display the nodal acceleration time-histories. For comparison, the LS-DYNA acceleration time-history plots are overlaid on the actual filtered test results from the drop test specimen.
NAC-STC Cask Quarter-Scale Side Drop Model - Side Drop Acceleration Time History (Top Accelerometer)
The acceleration traces from the LSDYNA simulation and actual drop test for the top and bottom accelerometers are shown on Figures 2.12.2-18 and 2.12.2-19 respectively. It is noted that the general shapes of both the LS-DYNA Side Drop Model and Drop Test Model results curves are in good agreement. The filtered curves for the test data are the results of using the Butterworth filter in LS-DYNA. Both acceleration time traces use the same filter frequency of 450 Hz.
NAC-STC Cask Quarter-Scale End Drop Model - Top Corner Drop Acceleration Time History The acceleration traces from the LSDYNA simulation and actual drop test are shown on Figure 2.12.2-23. It should be noted that the general shapes of both the LS-DYNA End Drop Model and Drop Test Model results curves are in good agreement. The drop test acceleration trace did not exhibit a similar level of noise and, therefore, the acceleration trace was not filtered.
NAC-STC-CY Cask Quarter-Scale End Drop Model - Top End Drop Acceleration Time History Only the peak value and the signal shape are used for comparison of LS-DYNA End Drop Model and Drop Test Model results. The acceleration traces from the LSDYNA simulation and actual drop tests are shown on Figure 2.12.2-28. It is noted that the general shapes of both the LS-DYNA and drop test results curves are in good agreement. The filtered curve for the test data is a result of using the Butterworth filter.
Conclusion Remarks on Acceleration Based on the comparison of the results of software simulation and drop tests, the LS-DYNA predicted acceleration time-histories of the quarter-scale NAC-STC cask analytical models (Drop Test Model and End Drop Model) agree well with the actual Drop Test Model results on peak g-value and curve shape. The comparison of test results and analysis results is tabulated in Table 2.12.2-2.
NAC International                          2.12.2-20
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 2.12.2.3.16 Parametric Study for the effect of the Maximum Accelerations versus the Shallow Angle Drop for the NAC-STC Design The study is performed using the STC-CY Side Drop Model. The shallow angle drops are associated with the slapdown effect. For casks with L/r (ratio of the cask length to the radius of gyration of the cask about the edge) greater than 2, the effect of the shallow angle drop is to increase the accelerations during the impact of the second impact limiter. The L/r ratio for the NC-STC-CY cask is 193/105.8 = 1.82. The L/r ratio for the MAGNATRAN cask is 214/115.5 =
1.85. The two ratios are very similar to that of the MAGNATRAN cask with less than 2%
difference. Therefore, the parametric study using LSDYNA program performed for the NAC-STC cask as follows and is applicable to the MAGNARAN cask.
This increase of the acceleration is due to a torque applied to the cask CG by the force generated in the initial crushing of the first limiter to impact the rigid plane. The L/r for the NAC-STC-CY cask is less than 2, which would minimize the slapdown effect. In the NAC-STC-CY cask design, the controlling design feature is the top impact limiter due to the presence of the pockets in the limiters for the trunnions. For this reason, the first impact limiter to contact the plane is the lower impact limiter followed by a rotation of the cask leading to the impact of the top impact limiter.
To perform dynamic simulation for the shallow angles impact study, the finite element model coordinates are rotated to match the shallow slapdown angle. The shallow angle, , represents the slope of the side of the cask with respect to the rigid plane as shown in Figure 2.12.2-12.
Where 30 ft = the vertical distance between the lowest positions of the cask assembly at the beginning of the drop accident and at the threshold of the impact. This is the definition of the drop distance defined by the NUREG 10CFR 71.73.
H = the difference of the heights of the cask Center of Gravity from beginning of the drop accident to the threshold of the impact.
L=      the projected axial distance from the corner of the impact limiter to the Center of Gravity of the cask body.
        =      the shallow angle between the line formed by the lowest sides of the impact limiters and surface of the unyielding surface.
h = the elevated differential height of the cask Center of Gravity with respect to the unyielding surface measured from the line formed by the lowest sides of the impact limiters = L x sin NAC International                          2.12.2-21
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 Impact Velocity The impact velocity, Vo, is determined by the formula below.
Vo= (2 x g x H)1/2 Where H = 30 FT - h h = L x sin The sum of kinetic energy and potential energy at the threshold of impact onto the rigid plane always equals the potential energy of the cask CG at the 30-ft drop height. Three shallow angle drop cases are simulated. The drop cases are performed for shallow angles of 5o, 10o and 15o.
All drop cases were computed for a coefficient of friction (&#xb5;) of 0.2 between the cask and the rigid plane.
The initial velocities for the selected shallow angle drops are listed in the following table.
Shallow Angle                                                                Impact Velocity Vo Coefficient of Friction, &#xb5;  Drop Height H, in in/sec 0o                        0.2                    360.0                      527.5 5o                        0.2                    357.5                      525.6 10 o                      0.2                    354.9                      523.7 15 o                      0.2                    352.5                      521.9 Wood grain direction Since the Redwood impact limiter is thinnest at the top impact limiter under the trunnion that the top impact limiter presents the possibility of withstanding the greatest damage due to any slap down effects. The bottom impact limiter is therefore set up to impact the unyielding surface first. For the finite element redwood model in the bottom impact limiter, the stress strain curve is corrected to reflect the effective angle in the wood grain with respect to the normal vector direction of the unyielding surface at the threshold of the primary impact. The stress strain curve for the redwood model in the top impact limiter is not altered. The effective wood grain angle, ,
of the impact limiter redwood segments is determined by the installed angle, , and the primary impact angle,  , by the following formula.
cos  = cos  x cos NAC International                          2.12.2-22
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 where
        =      the effective angle between the wood grain direction and the normal vector of the unyielding surface.
        =      the angle between the installed wood grain and the symmetry plane of the cask assembly.
        =      the shallow angle (slap down angle) between the lowest sides of the impact limiter and the unyielding surface.
The effective redwood grain directions for each of the installed redwood segment for the selected shallow angle drops are listed in the following table below.
Wood Grain Direction as Installed        Slapdown angle            Effective Wood Grain Angle Degree,                          Degree,                      Degree, 0                                2.5                          2.50 15                                2.5                          15.20 30                                2.5                          30.09 0                                5.0                          5.00 15                                5.0                          15.79 30                                5.0                          30.38 0                              10.0                          10.00 15                              10.0                          17.96 30                              10.0                          31.47 0                              15.0                          15.00 15                              15.0                          21.09 30                              15.0                          33.23 Of the three shallow-angle drops, the 5o drop case represents the condition of greatest rotational moment after the initial impact. The acceleration traces for the two nodal positions simulating the installed accelerometers are shown in the Figure 2.12.2-13. The time delay between the leading edges of the acceleration output representing impacts of the bottom impact limiter and the top impact limiter is about 12.5 milliseconds.
The result are shown in Table 2.12.2-3, and presented in Figure 2.12.2-14 showing the peak accelerations against the shallow angle.
The peak accelerations increase as the drop angle decreases and reaches peak at 0o drop angle (side drop). This trend is observed for both the top and bottom accelerometers, which indicates that the side drop is the controlling drop. For shallow-angle drop cases with an angle greater than 5o, there is a pronounced time delay between the main impulse of the lower impact limiter and the upper impact limiter. The observations are made to support the result that the 0o (side drop) would be controlling.
NAC International                        2.12.2-23
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 For drop angles greater than 15o, the initial crushing of the impact limiter would produce less accelerations such as is observed in the corner drops. The reason is that more wood is actually available for crushing since the direction of crush is along a diagonal. This greater available crushable depth would result in lower crush forces since the strain resulting from wood crush would be smaller. Lower forces would result in lower torques available to produce an additional acceleration for the top impact limiter of the cask to impact the rigid plane.
For drop angles between 5o and 15o, the time delay between the crushing of the lower impact limiter and the upper impact limiter becomes smaller. The decrease in the period of delay reduces the effect of the additional torque applied to the cask CG to induce additional rotational acceleration.
Once the upper limiter becomes engaged with the plane, the potential effect of the slapdown is virtually eliminated.
For angles smaller than 5o, the main impulses become more overlapped, so that the crush force of both limiters are acting simultaneously to produce a larger total crush force to result in a larger acceleration.
2.12.2.3.17 Study of the Effect of Coefficient of Friction on Maximum Accelerations for the 5 Shallow Angle Drop The study is performed using the STC-CY Side Drop Model. Friction may have a significant effect on the acceleration of the top of the cask. To examine the effect of friction, the 5 drop case is used, and additional analyses were performed for the frictions shown in Table 2.12.2-4.
While the 0.0 and 1.0 friction values are not physically possible, they were included in the evaluation to provide the extreme values for the accelerations. The maximum accelerations versus the coefficient of friction of the impact plane are summarized in Table 2.12.2-4. For both the top and bottom accelerations, the peak values for each analysis increase as the friction decreases. This is in contrast to the top accelerations from SAND90-2187, which shows a maximum effect of the friction for values of 0.2 to 0.3. It should be noted that the increase of the maximum acceleration (at =0.0) to the minimum acceleration (at =1.0) is 14%, which is smaller than the 20% in SAND90-2187. The value for which the maximum effect for the top acceleration occurs is different between the two methodologies. The model employed in SAND90-2187, page 28, is described to be a simplification. In view of the detailed model employed in this evaluation, the interaction of the friction and the time varying force-deflection curve is more accurately modeled with a detailed 3D model as opposed to a single spring representation. The variation of the accelerations that follow are considered to be consistent. It is noted that the 0.0 friction case is still bounded by the side drop. For drop angles smaller than 5, the maximum accelerations are expected to remain bounded by the side drop, since the main NAC International                            2.12.2-24
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 impulses for the upper and lower impact limiter become more overlapped, which would decrease the effect of slapdown.
2.12.2.3.18 Conclusions The LS-DYNA predicted acceleration time histories of the quarter-scale NAC-STC cask analytical models are in good agreement with the actual drop test results on peak g-values and the shape of the acceleration time histories. In the terms of the end drop, the agreement is excellent. For the NAC-STC side drop, the LS-DYNA maximum acceleration values of the accelerometers bound the maximum value observed in the NAC-STC-CY test specimen.
In evaluating the impact at 5, 10 and 15, it is shown that the side drop provides the bounding accelerations as compared to the maximum accelerations for other shallow drop angles. With respect to friction, the bounding condition is &#xb5;=0, which is not physically possible. Since the side drop accelerations are shown to be controlling, friction is not a significant physical parameter.
This evaluation verifies that LS-DYNA is acceptable for use in the design and analysis of wood impact limiters. Additionally, it provides the justification to choose the side drop as the design basis instead of evaluating shallow angle drops when the casks length to radius of gyrations ratio is less than 2.
NAC International                        2.12.2-25
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.12.2-6    Cask Drop Test Orientations Top Limiter Bottom Limiter NAC International                2.12.2-26
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.12.2-7 Finite Element Side Drop Model of the STC Quarter-Scale Model Cask and Impact Limiters NAC International                2.12.2-27
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-8  Redwood Solid Segments in the QS CY Impact Limiter Side Drop Model NAC International              2.12.2-28
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-9 Finite Element End Drop Model of the STC Quarter-Scale Model Cask and Impact Limiters NAC International              2.12.2-29
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                          Revision 1 Figure 2.12.2-10 Finite Element Model of the Stainless Steel Shell Enclosing the Balsa Wood NAC International              2.12.2-30
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.12.2-11 Finite Element Model of the Impact Limiter Attachment Bolts NAC International              2.12.2-31
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-12 Shallow Angle Drop Evaluation Set Up NAC International              2.12.2-32
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.12.2-13 Acceleration Time Histories of Top and Bottom Accelerometer from 5o Shallow Angle Drop NAC International                2.12.2-33
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                              Revision 1 Figure 2.12.2-14                        Peak Acceleration versus Shallow Angle Drop of the Side Drop Model , with &#xb5;=0.2 250 200 Peak Accelerations, G 150 100 Top Accelerometer Bottom Accelerometer 50 0
0            5                  10            15 Shallow Angle, degree NAC International                                    2.12.2-34
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                          Revision 1 Table 2.12.2-1          Comparison of the MAGNATRAN and NAC-STC Cask and Impact Limiter Designs Cask Body Data NAC-STC              MAGNATRAN Cask cavity diameter (in)                      71                    72.25 Length of body (L) (in)                    192.96                  213.9 Cask outer diameter at impact limiter (in)            86.7                    86.7 Transport weight (lb)                    260,000                312,000 Impact Limiter Data NAC-STC              MAGNATRAN Outer diameter (in)                        128                    128 Shell material enclosing the redwood and balsa wood                      Stainless steel        Stainless steel Number of radial redwood segments                    24                    24 Grain is parallel to Grain is parallel to radial Redwood orientation                  radial direction          direction Bottom impact limiter radial redwood thickness (in)                          20.45                  20.45 Top impact limiter radial redwood thickness (in)                        20.45(1)                20.45 Axial redwood thickness (in)                      12                    12 Balsa wood dimensions for end drop (in)      40.2 x 70 in. diameter  50x64 in. diameter Balsa wood volume for end drop                    89.5 ft3              93.1 ft2 Grain is parallel to Grain is parallel to axial Balsa wood orientation                  axial direction          direction (1)      The 20.45-inch radial thickness corresponds to the redwood segments outside the trunnion pocket. The NAC-STC has two trunnions. For the segments at the location of each trunnion, the segment radial thickness is 15.45 inches.
NAC International                            2.12.2-35
 
MAGNATRAN Transport Cask SAR                                                              January 2022 Docket No. 71-9356                                                                            Revision 1 Table 2.12.2-2        Impact Limiter Benchmarking Analysis and Test Summary Quarter-Scale Model Drop Test Model                LS-DYNA Prediction Filtered Results                Filtered Results (g)                              (g)
Cask Model and                Top            Bottom            Top            Bottom Drop Geometry            Accelerometer    Accelerometer  Accelerometer    Accelerometer NAC-STC End Drop                  122              N/A            130              N/A Model, Top End Drop NAC-STC Side Drop                150              164            199              176 Model, Side Drop NAC-STC End Drop                  126              N/A            129              N/A Model, Top Corner Drop Table 2.12.2-3          Maximum Accelerations versus the Shallow Angle Drop for the NAC-STC Cask Design LS-DYNA Prediction STC                            Filtered Results (g)
Cask Slapdown                    Top                  Bottom Drop Geometry              Accelerometer          Accelerometer 0 degrees (side drop)              199                    176 5 degrees                    188                    162 10 degrees                    187                    163 15 degrees                    182                    140 Table 2.12.2-4      Maximum Accelerations versus the Coefficient of Friction of the Impact Plane for Slapdown (5o) for the NAC-STC Cask Design LS-DYNA Prediction Coefficient                      Filtered Results (g)
Of                      Top                Bottom Friction            Accelerometer        Accelerometer 0.0                    213.0                168.0 0.2                    188.3                162.0 0.3                    187.8                170.3 1.0                    187.5                165.5 NAC International                          2.12.2-36
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Table 2.12.2-5        Parts Description of the NAC-STC-CY Cask Finite Element Side Drop Model Part          Part                                        Element  Actual      LS-DYNA ID          Name                  Description            Type    Material Material Formula Piecewise_linear_
2        Top Shell    Shell At Inner Top End Of Wood    Shell  SS304 plasticity Piecewise_linear_
3      Recess band            Inner Recess Band          Shell  SS304 plasticity Piecewise_linear_
4      Recess ring            Recess End Ring            Shell  SS304 plasticity Piecewise_linear_
5      Outside shell        Trough Outside Shell        Shell  SS304 plasticity Piecewise_linear_
6    Outer top end ring    Wood Outer Top End Ring        Shell  SS304 plasticity Piecewise_linear_
7    Trunnion pocket            Trunnion Pocket          Shell  SS304 plasticity Piecewise_linear_
8      Outer top shell        Steel Outer Top Shell        Shell  SS304 plasticity Piecewise_linear_
9    Bottom end shell      Steel Bottom End Shell        Shell  SS304 plasticity Top separator                                                        Piecewise_linear_
10                          Steel Top Separator Plate      Shell  SS304 plate                                                                plasticity Piecewise_linear_
11-16    Steel gusset                Gusset                Shell  SS304 plasticity Bottom outer ring                                                      Piecewise_linear_
18                          Bottom Outer Ring Shell        Shell  SS304 shell                                                                plasticity Slanted cover                                                        Piecewise_linear_
19                              Slanted Cover Plate        Shell  SS304 plate                                                                plasticity End bottom ring                                                      Piecewise_linear_
20                          End Bottom Ring Of Shell        Shell  SS304 shell                                                                plasticity Center core of                                                      Modified_crushable 51                                Core Of Wood            Solid Balsa wood balsawood                                                                _foam Outer ring of                                                      Modified_crushable 52                        Bottom Outer Ring Of Wood        Solid Balsa wood balsa wood                                                                _foam End disk balsa                                                      Modified_crushable 54                              End Layer Wood            Solid Balsa wood wood                                                                  _foam Redwood                                                          Modified_crushable 101-107                    Wood Wedge In The 1 St Slot      Solid  Redwood segments                                                                _foam 1200-Cask body                  Cask body              Solid  SS304          Elastic 1218 Bottom impact limiter parts 2002-    Bottom impact                                                        Piecewise_linear_
Same as top impact limiter      Shell  SS304 2107      limiter parts                                                            plasticity Parts 2 through 107 3000          Bolts                Retaining bolts        Beam    SS304          Elastic NAC International                            2.12.2-37
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Confirmatory Testing Program - Balsa Impact Limiters and Attachments This section provides a description of the scale model test program, which was carried out as confirmatory support of the analysis and licensing effort for the design qualification of the NAC-STC-CY balsa impact limiters and attachments. More specifically, the purpose of the balsa impact limiter scale model test program was to confirm the capability of the impact limiters to restrict the deceleration of the cask to the design limits used in the structural evaluation, show that the impact limiters remain attached to the cask body, and show that the crush depth is limited to prevent an impact of the cask body on the impacted surface.
The test results confirm the impact limiter analysis and provide physical evidence that the balsa impact limiters will function as designed to limit the deceleration applied to the cask and its contents and to remain attached to the transport cask during an accident condition impact.
The scale model test program included 30-foot drops of a quarter-scale model of the NAC-STC-CY cask in the top end, side and top corner impact orientations. The total weight of the quarter-scale model and impact limiters was 4,140 pounds.
This section presents the scale model impact limiter and attachment drawings, the test descriptions, test results and conclusions that demonstrate the design qualification of the impact limiters and their attachments.
2.12.2.4.1      Confirmatory Testing Program Results Summary Three 30-foot drop tests were performed for the NAC-STC-CY transport cask quarter-scale model test program. The top end drop, top corner drop and side drop tests were performed at the drop test facility at the Sandia National Laboratory (SNL) in October 2001.
Since the purpose of the test program was to confirm the design of the balsa and redwood impact limiters and attachments, the design of the scale model package focused on the limiters and their attachments to the cask body. The scale model body was designed to accurately represent the interface between the cask body and the impact limiters, as well as the weight and CG of the cask body and the maximum contents weight. The use of a scale model is appropriate to perform these tests and the scale selected for the tests was a quarter-scale model. Using a smaller scale model presents fabrication difficulties, while use of a larger scale model would increase the drop pad requirement (mass and geometric size). The drop pad at SNL meets the requirements of the IAEA for simulating an essentially unyielding surface.
NAC International                          2.12.2-38
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The test data consisted of measurements of the deformations of the impact limiters, recordings of the package accelerations, and inspections of the retaining rods. Impact limiter measurements were performed before and after each test to determine the crush depth of the impact limiters.
The measured crush depths are used to demonstrate that the impact limiter design calculations are bounding. The accelerations are recorded by accelerometers attached to the model cask body. The accelerometers are positioned and oriented so that the acceleration in each direction is recorded. The acceleration data obtained from the accelerometers contained some contributions to the acceleration signal that were extraneous, based on the frequencies of the contributions.
For this reason, the acceleration data was filtered to extract appropriate accelerations, which were compared to the accelerations calculated by the LS-DYNA finite element analysis program.
The LS-DYNA analyses for the quarter-scale model are presented in Section 2.12.2.3. The balsa wood is modeled using the honeycomb material type. The redwood is modeled using the crushable foam material type.
Additional test documentation included high-speed photography that confirmed the orientation of the cask at impact and still photographs of the scale model, impact limiters, and the impact limiter retaining rods. Post-test inspection of the retaining rods and the impact limiters confirmed that the impact limiters have a significant margin of safety for remaining attached to the cask body during and after a 30-foot drop test impact.
The quarter-scale model 30-foot drop test acceleration values and the LS-DYNA predicted (calculated) values are summarized in the following table.
Quarter-Scale Drop Test              LS-DYNA Prediction            Design Cask Model                Results (g)                          (g)                    Basis Drop              Top            Bottom            Top            Bottom        Acceleration Orientation    Accelerometer Accelerometer Accelerometer Accelerometer                  (g)
Top Corner          126              N/A              129              N/A            192 Top End            122              N/A              130              N/A            192 Side            150              164              199              176            220 NAC International                        2.12.2-39
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The drop test measured crush depths and the LS-DYNA predicted (calculated) values are summarized in the following table.
Measured  Calculated Cask Model Drop      Crush Depth Crush Depth Orientation      After Drop    After Test    Simulation Top End Drop            4.40      4.64 Top Corner Drop          5.50      5.52 Side Drop-Near 2.88      2.73 the Trunnion Side Drop-Lower 2.88      2.77 Impact limiter Measured              Calculated Cask Model Drop Crush Depth          Crush Depth Orientation After Drop Test      After Simulation Top End Drop                          4.40                  4.64 Top Corner Drop                        5.50                  5.52 Side Drop-Near 2.88                  2.73 the Trunnion Side Drop-Lower Impact limiter                2.88                  2.77 These results of the NAC-STC-CY balsa impact limiter drop test program confirm that the design-basis accelerations and crush depths used for the evaluation of the transport cask are bounding. The table also shows that LS-DYNA accurately predicts the amount of crush experienced during the drop tests except in regions where extreme irregular deformations occur (i.e., directly below the trunnions and corner.
2.12.3.4.2        Acceptance Criteria for Model Performance Acceptance criteria were established only for the scale model impact limiters and their attachment components, since the purpose of the scale model test program was to confirm their performance capabilities. The function of the scale model impact limiters is to limit the deceleration of the scale model package during the 30-ft drop event, while remaining firmly attached to the cask body. The impact limiter acceptance criteria require that:
: 1. The crush depth be limited to prevent an impact of the cask body on the impact surface.
: 2. The accelerations be limited to be less than, or equal to, those used in the design analysis.
: 3. The impact limiters remain attached to the cask body and in position after the impact event.
The results of the NAC-STC- CY balsa impact limiter drop test program confirm:
NAC International                            2.12.2-40
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1
: 1. The scale model body did not impact the pad surface, confirming that the impact limiters possess a sufficient depth of wood to absorb all of the energy of a 30-foot drop in any orientation.
: 2. The maximum accelerations determined from the scale model tests are less than the design basis values used to evaluate the NAC-STC transport cask components for a 30-foot drop accident.
: 3. The impact limiters remain attached to the transport cask body.
2.12.2.4.3      Description of 30-Foot Drop Tests Performed at SNL A quarter-scale model was used for the confirmatory testing of the balsa impact limiters and attachments for the top end drop, top corner drop and side drop. These drop tests were performed at the Sandia National Laboratory (SNL) in October 2001. The acceptance criteria for the testing were primarily concerned with the impact limiters. Therefore, the quarter-scale model was only required to represent the appropriate cask body weight, center of gravity and attachment interface to the impact limiters.
The cask body used for the balsa impact limiter quarter-scale model testing was the NAC-STC-CY quarter-scale model body previously used for redwood impact limiter testing, except with modifications for the cask ends and the additional weight for the contents. The closure end of the cask quarter-scale model used a 4.49-inch thick plate welded to the cask body. To represent the contents weight, a 10-inch, schedule 120 pipe was filled with poured lead. This pipe was extended from the bottom plate to the inner surface of the closure end plate and was attached to the end plates by welds. The thickness of the two end plates was adjusted to allow the CG of the quarter-scale model to match the location of the CG in the full-scale design.
The total weight of the quarter-scale model, including the impact limiters, was 4,140 pounds.
This closely approximates (1/4)3 = 1/64 of the full-scale transport cask weight of 265,000 pounds that bounds the maximum design weight of the transport configurations of 260,000 pounds.
Since the top end drop and top corner drop tests involve only the top end of the model, there was no need to include a lower impact limiter on the model for these tests. To ensure that the total scale model package weight and CG were properly represented for the top end and top corner drop tests, a steel plate corresponding to the weight of the lower impact limiter was designed, fabricated and bolted to the bottom end of the model.
The model impact limiters were quarter-scale representations of the full-scale impact limiters.
The redwood and balsa wood used in the model limiters met the same specifications that are defined for the full-scale limiters. The wood section shapes, joints and bonds of the scale model impact limiters duplicate those of the full-scale impact limiters. The grain orientation of the redwood and balsa wood in the scale model impact limiters is identical to that as designed in the NAC International                        2.12.2-41
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 full-scale impact limiters. The scale model impact limiter shells and gussets were fabricated from 16 gauge (0.0625-inch thick) Type 304 stainless steel sheets. The screw tubes, which serve as the penetrations for the impact limiter retaining rods, were fabricated from 0.035-inch thick, 0.75-inch diameter tubes. Each model impact limiter is attached to the cask by 16 quarter-scale retaining rods fabricated from ASME SA-193 Grade B8S stainless steel.
The model impact limiter shells, i.e., material thickness, geometry, and welds, are appropriately quarter scale. The diameter of the screw tubes is quarter scale, but the tube wall thickness is full scale due to fabricability and material availability limitations. The use of the thicker tube is considered to have an insignificant effect, since the tubes are not located in the primary crush regions of the impact limiter for any of the drop orientations.
Equipment and Instrumentation for the Tests Conducted at SNL The drop pad at the SNL functions as an essentially unyielding impact surface. The surface of the drop pad consists of armor plate measuring 34 feet by 16 feet and has a varying thickness from 8 inches to 4 inches. The plate is attached to reinforced concrete that allows the total mass of the system to be 1,000 tons. The total mass of the target is approximately 500 times that of the quarter-scale test model, which is large compared to the ratio of 30 recommended by IAEA.
The pad at SNL is considered to meet the IAEA requirements for a drop test pad.
Lifting and dropping the model was performed with a system of cables to provide sufficient restraint from lateral motion of the cask, as well as to limit the motion of the cables upon release of the cask model. The cask model was attached to the cable system via a single point, and an explosive bolt mechanism was used to release the cask from the cables. This mechanism allowed the free fall of the package to be initiated in an unimpeded fashion with minimum perturbation to the position of the cask model.
To assess the model performance with respect to the acceptance criteria, a set of basic data was required to be collected throughout each test. This data included:
: 1. Acceleration data - to determine the maximum impact acceleration of the cask. All of the accelerometers used in the drop tests were the same model and they were calibrated to NIST traceable standards corresponding to frequencies ranging from 30 Hz to 350 kHz.
Accelerometers were mounted on steel blocks bolted to the cask model at three locations 90 apart at the end of the test model, as shown below. Locations 1, 2 and 3 were 7.5 inches from the top end of the model, and accelerometers 4, 5 and 6 were 7.5 inches from the bottom end of the model. At each of the six locations, two accelerometers were mounted to record a lateral acceleration and an axial acceleration. The X and Y directions of the accelerations remained the same for all the drop tests. The locations of the accelerometers and the directions are shown in Figure 2.12.2-15. The acceleration NAC International                        2.12.2-42
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 time histories were stored electronically, which permitted them to be filtered after the tests were completed. The unfiltered data consisted of acceleration (in units of gravity g) points corresponding to time increments of 2 microseconds.
: 2. Impact limiter deformation data - to evaluate the behavior of the impact limiters, the crush depth for each orientation and the condition of the limiter attachment to the model body after each test. After each test, the impact limiters were inspected to determine the amount of deformation that had occurred (the crush depth) and to determine the condition of the retaining rods. Photographs were taken to record the post-test condition of the impact limiters and retaining rods.
: 3. High speed photography - to review and assess the actual angle of impact and the behavior of the cask body and impact limiters during the impact. Several high-speed cameras were used to record the behavior of the quarter-scale model as it impacted the target surface. Film speeds were 500 frames/second or greater. One camera was positioned and focused to obtain a close up view of the impact deformation. The other camera was focused to record an overall view of the impact and to verify the orientation of the cask as the impact was initiated.
Filter Frequency Identification for Accelerometer Data Accelerometers can be sensitive to high frequency vibrations in parts of the structure that could be considered to be remote from the actual location of the accelerometer. The purpose of the accelerometer is to determine the rigid body deceleration of the model body during the impact, not the high frequency vibration dynamic response of other components of the model body.
High frequency vibrations typically correspond to mode shapes, which are excited by the impact.
Since these high frequency vibration dynamic responses are a function of the loadings on the model body, separate filter frequencies are determined and applied for each of the different drop orientations. The corner drop impact orientation produces an axial loading on the cask components in a manner similar to the end drop. The filter frequencies are determined at the test site using Fast Fourier Transforms (FFT) that is embedded in the software used to record the acceleration data during the drop test. The FFT identifies the frequency content of the unfiltered data as a function of the frequency.
Scale Model Drawings The drawings for the NAC-STC quarter-scale models are included in this section for reference.
The detailed dimensions, welding and materials are shown on the drawings of the model body and impact limiters used in the drop tests performed at SNL.
NAC International                        2.12.2-43
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Drawing          Number Number          of Sheets  Revision                            Title 423-354            2            2        Drop Test Assembly, 1/4 Scale Model, NAC-STC Cask 423-355            4            2        Cask Body-Scale Model, 2nd Generation, NAC-STC Cask 423-357            1            0      Balsa Impact Limiter, Upper, 1/4 Scale, NAC-STC Cask 423-358            1            0      Balsa Impact Limiter, Lower, 1/4 Scale, NAC-STC Cask 2.12.2.4.4      Results/Evaluation for the 30-Foot Side Drop Test Prior to lifting the scale model package to the 30-foot drop height, the torque for the retaining rods and nuts was verified to ensure that the torque specifications were met.
Several high-speed cameras were used to record the side drop impact. The high speed camera used to record an overall view of the drop test showed that the scale models longitudinal axis was essentially horizontal and that the model impacted the drop test facility pad as targeted. The high-speed camera also showed that the model rebounded an estimated 4 to 6 inches into the air after the initial 30-foot drop impact.
Impact Limiter Deformation and Attachment Data After the side drop test, the scale model package was lifted off the ground to remove the impact limiters. During the impact limiter removal, it was observed that none of the retaining rods were broken. This confirms that the impact limiters remained attached to the cask body during and after the 30-foot side drop.
Measurements of the deformed model impact limiter dimensions were obtained after the side drop test to determine the crush depth that occurred. These dimensions are tabulated in Section 2.12.2.4.1, but for convenience are presented in the following table, along with the crush depth calculated by LS-DYNA for the quarter-scale model. (The description of the LS-DYNA analyses supporting these values is presented in Section 2.12.2.3.)
Measured Crush Depth            Calculated Crush Depth Location After Drop Test                After Simulation Side Drop-Top Impact Limiter                          2.88                            2.73 Side Drop-Lower Impact Limiter                        2.88                            2.76 Accelerometer Data The unfiltered accelerometer traces were electronically stored to permit filtering after the tests.
Three acceleration traces were obtained near the bottom of the model and three acceleration traces were obtained near the top of the model. The acceleration time histories, both the filtered and the unfiltered data with maximum accelerations, are shown in Figure 2.12.2-16 for the top NAC International                        2.12.2-44
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 end. The unfiltered acceleration data was filtered at 450 Hz. The FFT for the unfiltered data is shown in Figure 2.12.2-17, which shows there is insignificant frequency content after 300 Hz.
Therefore, the use of 450 Hz as the filter frequency is acceptable. Figure 2.12.2-18 shows the acceleration trace containing the maximum acceleration for the top end along with the acceleration time history computed by LS-DYNA (as described in Section 2.12.2.3.15). For the purpose of benchmarking, the unfiltered nodal acceleration time history from the top accelerometer location from LSDYNA and the processed FF of this signal is presented in Figure 2.12.2-17 for comparison. The frequency contents of both the simulation and test are very compatible indicating a good match between the finite element model and the test specimen structure.
For the bottom end of the cask, a similar set of curves is shown in Figure 2.12.2-19 that compares the maximum acceleration obtained from testing to the acceleration time history obtained from the LS-DYNA analysis in Section 2.12.2.3.15. The peak accelerations for the quarter-scale model are shown in the following table.
Model Acceleration Results        LS-DYNA Acceleration Prediction      Design (g)                                (g)                    Basis Cask Model Top            Bottom            Top            Bottom        Acceleration Drop Orientation Accelerometer Accelerometer Accelerometer Accelerometer                    (g)
Side              150                164            199              176              220 Energy Absorption Capacity of the Impact Limiter in the 30-Foot Side Drop The capacity to absorb energy is the function of the impact limiter. For a side impact, the energy absorption of the impact limiter can be obtained from the 30-foot side drop test results.
Similarly, the results of the static test for the end drop orientation can be used to determine the energy absorption for the end orientation. The side drop acceleration time history can be integrated twice to obtain the displacement, which can be plotted versus the force (the product of the acceleration time history and the model weight, i.e., the acceleration time history in units of g). This force versus displacement time history is shown in Figure 2.12.2-20. The area under this curve corresponds to 1.50E6 inch-pounds, which is within 2% of the total energy (TE) of the side drop test (1.47E6 inch-pounds). The total energy is obtained by multiplying the model weight of 4,140 pounds times the total distance traversed.
Summary of the Side Drop Test The comparison of the maximum test accelerations to those computed by LS-DYNA is considered to be acceptable. The LS-DYNA results show that the predicted accelerations are conservative over the test values by approximately 20 percent. Additionally, the design acceleration corresponding to the quarter-scale model is 220g. This indicates that not only is NAC International                          2.12.2-45
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 there a margin between LS-DYNA and the design basis acceleration, but there is considered to be additional 20% margin between the predicted values and the test data. With respect to maximum crush depth, LS-DYNA was shown to provide a conservative prediction. Using the dynamic force-deflection curve, the balsa impact limiter design is shown to have an additional 25% energy absorption capacity required to decelerate the transport cask. The side drop test performed at SNL confirms that the balsa impact limiters are adequate to limit the cask component accelerations well within the design basis accelerations.
2.12.2.4.5      Results/Evaluation for the 30-Foot Top Corner Drop Test The 30-foot top corner drop test was performed using the NAC-STC-CY quarter-scale model.
Prior to lifting the scale model package to the 30-foot drop height, the torque for the retaining rods and nuts were confirmed to ensure that the torque specifications were met.
Only the upper impact limiter was attached to the cask model. The bottom end of the scale model used the same test weight that was to be used for the top end drop. This test weight was a substitute for a lower impact limiter and ensures that the tested package has the proper weight and CG location to bound all transport configurations.
Several high-speed cameras were used to record the top corner drop impact. One of the high-speed cameras recorded a close-up view of the impact limiter crush in the region of the impact plane. The other camera recorded an overall view of the drop test and showed that the cask orientation was very close to the target angle of 15 from vertical.
Impact Limiter Deformation and Attachment Data After the top corner drop test, the scale model package was lifted off the ground to remove the impact limiters. During the impact limiter removal, it was observed that none of the retaining rods were broken. This confirms that the impact limiters remained attached to the cask body during and after the 30-foot top corner drop.
Measurements of the deformed model impact limiter dimensions were obtained after the top corner drop test to determine the crush depth that occurred. These dimensions are tabulated in the following table, along with the crush depth calculated by LS-DYNA for the quarter-scale model. (The description of the LS-DYNA analyses supporting these values is presented in Section 2.12.2.3.)
Measured Crush                Total Crush Location            After Drop Test          predicted by LSDYNA Top Corner Drop, in            5.50                        5.52 NAC International                        2.12.2-46
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Accelerometer Data An initial observation is that significant noise vibrations associated with the accelerations do exist and that filtering of the accelerometer data is appropriate. The typical unfiltered result is shown in Figure 2.12.2-21, while the filtered data is shown in Figure 2.12.2-22. The filter frequency was selected to be 450 Hz. The comparison of the accelerometer data test results and the LS-DYNA results is shown in Figure 2.12.2-23. The results from the LS-DYNA finite element analysis program and the maximum acceleration determined from the three accelerometer traces are:
Quarter-Scale Model              LS-DYNA Calculated Location                  Acceleration (g)                  Acceleration (g)
Top Impact Limiter                    126                            129 The acceleration determined from the quarter-scale model top corner drop test is enveloped by the LS-DYNA calculated design basis accelerations.
Energy Absorption Capacity of the Impact Limiter in the 30-Foot Top Corner Drop The capacity to absorb energy is the function of the impact limiter. For a top corner impact, the energy absorption of the impact limiter can be obtained from the 30-foot top corner drop test results. Similarly, the results of the static test for the end drop orientation can be used to determine the energy absorption for the end orientation. The corner drop acceleration time history can be integrated twice to obtain the displacement, which can be plotted versus the force (the product of the acceleration time history and the model weight, i.e., the acceleration time history in units of g). This force versus displacement time history is shown in Figure 2.12.2-24.
The area under this curve corresponds to 1.49E6 inch-pounds, which is within 1% of the total energy (TE) of the side drop test (1.47E6 inch-pounds). The total energy is obtained by multiplying the model weight of 4,140 pounds times the total distance traversed.
Summary of the Top Corner Drop Test Results The crush depth and impact accelerations determined from the 30-foot top corner drop test of the NAC-STC-CY quarter-scale model are enveloped by the LS-DYNA calculated design-basis analysis data used in the SAR. The NAC-STC-CY balsa impact limiters are confirmed to provide adequate design margin to limit the acceleration and the crush depth of the transport cask for the 30-foot top corner drop. Thus, the NAC-STC cask body will not contact the impact plane during the 30-foot top corner drop.
2.12.2.4.6        Results/Evaluation for the 30-Foot Top End Drop Test Two 30-foot top end drop tests were performed using the NAC-STC quarter-scale model. In the first test of the top end drop, the accelerometer traces demonstrated that the accelerometers attached to the cask body had experienced a resonance condition. This resulted in large spurious NAC International                          2.12.2-47
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 signals in the traces, which were on the order of several thousand gs, even though the limiter performed as intended. To correct this accelerometer performance, the accelerometers in the first end drop test, which had a resonance frequency of 160 kHz, were replaced with accelerometers with a resonance frequency of 350 kHz. The new accelerometers were subjected to the same calibration and traceability criteria as the initial accelerometers. The use of the new accelerometers resolved the resonance problem. The results presented in this section correspond to the second top end drop. The first end drop employed an unused impact limiter. The second end drop was done using the top end impact limiter from the side drop. In the side drop test, the balsa portion of the impact limiter, which protects in the end drop, was not deformed. This impact limiter was inspected to verify that the dimensions for the balsa section corresponded to those for an unused impact limiter intended for an end drop orientation. Therefore, the second end drop test is considered to be acceptable for confirming the design of the balsa impact limiter for the end drop.
In each test, prior to lifting the scale model package to the 30-foot drop height, the torques for the retaining rods and nuts were confirmed to ensure that the torque specifications were met.
Only the upper impact limiter was attached to the cask model. The bottom end of the scale model used the same test weight that was used for the top end drop. This test weight is an inexpensive substitute for a lower impact limiter and ensures that the tested package has the proper weight and CG location to bound all transport configurations.
Several high-speed cameras were used to record the top corner drop impact. One of the high-speed cameras recorded a close-up view of the impact limiter crush in the region of the impact plane. The other camera recorded an overall view of the drop test and showed that the cask orientation was very close to being perpendicular with the target.
Impact Limiter Deformation and Attachment Data After the top end drop test, the scale model package was lifted off the ground to remove the impact limiter.
Measurements of the model impact limiter dimensions after the top end drop test were obtained to determine the crush depth. The measured crush depth is tabulated as follows, along with the LS-DYNA calculated crush depth.
Quarter-Scale Model Impact Limiter Crush          LS-DYNA Calculated Crush Location                      Depth (inch)                      Depth (inch)
Top Impact Limiter                    4.40                            4.64 NAC International                          2.12.2-48
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 The resulting crush depth determined from the quarter-scale model top end drop test is enveloped by the LS-DYNA calculated design basis crush depths for the full-scale NAC-STC transport cask for a 30-foot top corner drop with impact limiters.
Accelerometer Data An initial observation is that significant noise vibrations associated with the accelerations do exist and that filtering of the accelerometer data is appropriate. The typical unfiltered trace is shown in Figure 2.12.2-25, while the filtered result is shown in Figure 2.12.2-27. The filter frequency was selected to be 450 Hz. The FFT of the end drop time history is shown in Figure 2.12.2-26 and it confirms that the use of 450 Hz as the filter frequency is acceptable. The comparison of the LS-DYNA results and the test results is shown in Figure 2.12.2-28. The results from the LS-DYNA finite element analysis program and the maximum acceleration determined from the three accelerometer traces are:
Quarter-Scale Model              LS-DYNA Calculated Location                  Acceleration (g)                  Acceleration (g)
Top Impact Limiter                      122                            130 The acceleration determined from the quarter-scale model top corner drop test is enveloped by the LS-DYNA calculated design basis accelerations.
Energy Absorption Capacity of the Impact Limiter in the 30-Foot Top End Drop The capacity to absorb energy is the function of the impact limiter. For a top end impact, the energy absorption of the impact limiter can be obtained from the 30-foot top end drop test results. Similarly, the results of the static test for the end drop orientation can be used to determine the energy absorption for the end orientation. The end drop acceleration time history can be integrated twice to obtain the displacement, which can be plotted versus the force (the product of the acceleration time history and the model weight, i.e., the acceleration time history in units of g). This force versus displacement time history is shown in Figure 2.12.2-29. The area under this curve corresponds to 1.49E6 inch-pounds, which is within 1% of the total energy (TE) of the side drop test (1.47E6 inch-pounds). The total energy is obtained by multiplying the model weight of 4,140 pounds times the total distance traversed.
Summary of the Top End Drop Test Results The crush depth and impact accelerations determined from the 30-foot top end drop test of the NAC-STC-CY quarter-scale model are enveloped by the LS-DYNA calculated design-basis analysis data used in the SAR. The NAC-STC-CY balsa impact limiters are confirmed to provide adequate design margin to limit the acceleration and the crush depth of the transport cask for the 30-foot top end drop. Thus, the NAC-STC cask body will not contact the impact plane during the 30-foot top end drop.
NAC International                          2.12.2-49
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-15 Instrumentation of the NAC-STC-CY Quarter-Scale Drop Test Specimen NAC International              2.12.2-50
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.12.2-16 Typical Filtered Acceleration Time History for the Quarter-Scale Model Side Drop, Overlaid with the Unfiltered Data for the Top End Accelerometer of the Model NAC International                2.12.2-51
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.12.2-17 FFT for the Unfiltered Accelerometer Time Histories from (a) Drop Test and (b) LSDYNA Simulation (a) Drop Test Results (a) LSDYNA Simulation Results NAC International                2.12.2-52
 
MAGNATRAN Transport Cask SAR                                                                                          January 2022 Docket No. 71-9356                                                                                                        Revision 1 Figure 2.12.2-18 Typical Filtered Acceleration Time History for the Quarter-Scale Model Side Drop, Overlaid with the Filtered Time History for the Top End of the Model Side Drop Top Accelerometer 200 180 top Accelerometer A1X 160                                                                                LSDYNA Prediction 140 120 Acceleration (g) 100 80 60 40 20 0
                        -20
                          -0.004  -0.002  0.000  0.002  0.004  0.006  0.008  0.010  0.012  0.014    0.016  0.018  0.020 Time (sec)
NAC International                                              2.12.2-53
 
MAGNATRAN Transport Cask SAR                                                                                              January 2022 Docket No. 71-9356                                                                                                            Revision 1 Figure 2.12.2-19 Typical Filtered Acceleration Time History for the Quarter-Scale Model Side Drop, Overlaid with the LS-DYNA Filtered Time History for the Bottom End of the Model Side Drop Bottom Accelerometer 200 180 Bottom Accelerometer,A6X 160 LSDYNA PREDICTION 140 120 100 Acceleration (g) 80 60 40 20 0
                        -20
                          -0.004  -0.002  0.000  0.002  0.004  0.006    0.008      0.010  0.012  0.014    0.016  0.018  0.020 Time (sec)
NAC International                                              2.12.2-54
 
MAGNATRAN Transport Cask SAR                                                            January 2022 Docket No. 71-9356                                                                        Revision 1 Figure 2.12.2-20  Force Deflection Curve for the 30-Foot Side Drop Test NAC INTERNATIONAL 1/4 SCALE STC-RW SIDE IMPACT TEST                                  Sequence: 587 Sensors: Average A1X/A3X/A4X/A5X/A6X Force-Displacement 700000 600000 500000 400000 Force (lbs) 300000                                            Avg. X 200000 100000 0
                  -100000 0    0.5    1          1.5        2            2.5  3          3.5 Displacement (inches)
NAC International                            2.12.2-55
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                              Revision 1 Figure 2.12.2-21                    Typical Unfiltered Acceleration (Top Accelerometer) Time History for the Quarter-Scale Model Top Corner Drop NAC INTERNATIONAL 1/4 SALE STC-RW CG OVER CORNER IMPACT TEST                                Sequence: 586 Sensors: A1Y/A1X Raw Vertical Data 250 200 150 A1Y/A1X Acceleration (g) 100 50 0
                    -50
                    -100
                            -5  0      5      10    15    20      25    30      35    40 Time (msec)
NAC International                                    2.12.2-56
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                Revision 1 Figure 2.12.2-22                    Typical Filtered Acceleration (Top Accelerometer) Time History for the Quarter-Scale Model Top Corner Side Drop NAC INTERNATIONAL 1/4 SALE STC-RW CG OVER CORNER IMPACT TEST                                Sequence: 586 Sensors: A1Y/A1X 6-pole Lowpass Butterworth Filter 450 Hz 140 120 100 80 Acceleration (g)
A1Y/A1X 60 40 20 0
                      -20
                            -5  0      5    10    15      20      25  30    35      40 Time (msec)
NAC International                                    2.12.2-57
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-23 Comparison of Quarter-Scale Top Corner Drop (LS-DYNA and Drop Test) Results NAC International                2.12.2-58
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Figure 2.12.2-24      Force Deflection Curve for the Top Corner Drop NAC INTERNATIONAL 1/4 SALE STC-RW CG OVER CORNER IMPACT TEST            Sequence: 586 Sensors: Average X/Y Merge 600000 500000 400000 300000 Force (lbs)
Avg. Lid Vertical 200000                                                  Avg. Bottom Vertical 100000 0
                  -100000 0          1            2            3            4                5 Displacement (inches)
NAC International                                2.12.2-59
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.12.2-25 Typical Unfiltered Acceleration (Top Accelerometer) Time History for the Quarter-Scale Model Top End Drop
                                            -A4Y NAC International                2.12.2-60
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-26 FFT for the Unfiltered Accelerometer Time History of Top End Impact NAC International            2.12.2-61
 
MAGNATRAN Transport Cask SAR                                          January 2022 Docket No. 71-9356                                                        Revision 1 Figure 2.12.2-27 Typical Filtered Acceleration (Top Accelerometer) Time History for the Quarter-Scale Model Top End Drop NAC International                  2.12.2-62
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Figure 2.12.2-28            Comparison of Quarter-Scale Top End Drop (LS-DYNA and Drop Test) Results (Upper Accelerometer) 140 120 100 Acceleration, G 80 60 40 End Drop Test LSDYNA prediction 20 0
0    0.005      0.01                0.015  0.02        0.025 Time, Sec NAC International                          2.12.2-63
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.12.2-29 Force Deflection Curve for the Top End Drop NAC International              2.12.2-64
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Reduction of the Redwood and Balsa Wood Test Data 2.12.2.5.1      Synopsis of Results Dynamic wood testing was performed at the Naval Surface Warfare Center (NSWC) in Bethesda, Maryland. The raw data was provided to NAC International and it was reduced for use in LS-DYNA analyses. The individual raw data sheets, as well as the computer output data files, are reviewed for proper format and proper grouping by wood type, orientation, test type and strain rate.
Each stress-strain curve represents the average properties of each set of test samples. A total of 59 stress-strain curves are produced to quantify the stress-strain characteristics of wood under different strain rates. Curves critical to current impact limiter designs are simplified to provide appropriate input for the LS-DYNA analyses.
2.12.2.5.2      Purpose The purpose of this calculation is to average and format the data resulting from the NSWC testing program so that it can be imported into LS-DYNA to properly represent the properties of the wood in dynamic analyses.
2.12.2.5.3      Method of Data Reduction Two individuals separately reviewed all test data files to verify consistent formatting and complete data. The test data is organized into seven master files according to wood type, grain orientation and test type. Within each of the files, the data is further subdivided into groups based on the strain rate at which each sample was tested. The measured strain rates in each group vary within +/-10% of the nominal strain rate assigned to the group. The measured strain rates of some anomalous data sets fall outside this +/-10% tolerance. These are removed from the data reduction process.
Each file is used to calculate the average stress versus strain for each subgroup of samples tested at a given strain rate. The results are used to generate an input file to define the stress-strain curve for LS-DYNA.
2.12.2.5.4      Design Input The data used to characterize the wood was obtained through testing at the NSWC. This test consists of striking and crushing each wood sample, while measuring the applied force and displacement of the striker versus time. The test results produced input data for two types of wood: balsa and redwood. The data includes measured physical dimensions and measured mass prior to testing, as well as the time-dependent force and displacement measurements for each sample. Variations used to produce different categories of results included grain orientation NAC International                          2.12.2-65
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 (parallel to the grain or perpendicular to the grain) with respect to the striking direction and various applied strain rates.
2.12.2.5.5      Definition of Test Categories Both redwood and balsa wood are used in the design of the MAGNATRAN impact limiter to provide the range of crush strengths required for the cask end drop and side drop orientations.
The wood testing must also include the effect of the grain orientation in the direction of impact, which is parallel to grain or perpendicular to grain. The test data for the two grain orientations is sufficient to determine the stress-strain curves for arbitrary wood grain orientation. Since the ambient temperature can range from -40&deg;F to 100&deg;F, and the cask heat load can vary from essentially zero heat load to the design basis heat loads, the impact limiter material temperatures may also vary from -40&deg;F to 200&deg;F. To perform evaluations that bound the response of the impact limiter, the impact limiter material properties must also support this range of temperatures. Therefore, testing is performed for the following conditions for the redwood and the balsa wood.
Wood Grain Orientation                    Test Temperature Parallel to grain                  Cold condition (-40F)
Parallel to grain                  Hot condition (200F)
Perpendicular to grain                Cold condition (-40F)
Perpendicular to grain                Hot condition (200F)
Data Processing The data is averaged and is used to define curves of stress-strain for subsequent LS-DYNA analyses, and to plot the curve data on graphs for review. All 59 curve data files are read into Excel spreadsheets. These curves include the redwood and balsa parallel-to-grain, the redwood perpendicular-to-grain, and the stacked testing results. The curves critical to the design are then simplified to reduce the number of data points defining each curve and to reduce the scatter in the test data. The peak acceleration and area under the curves are preserved in all data reduction.
The spreadsheet is used to define each complex curve in terms of several linear segments using minimal data points.
NAC International                        2.12.2-66
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 2.12.2.5.6      Summary of Results/Conclusions Fifty-nine sets of data have been compiled for use in LS-DYNA dynamic analyses of wood under impact loading. Each set of data consists of the average calculated density for the given type of wood and a curve of stress versus strain for that wood type under specified loading conditions. The loading conditions are defined by loading direction with respect to wood grain orientation and the applied strain rate. Note that these curves are grouped into seven categories by wood type and grain. All balsa stress-strain curves are simplified using an Excel spreadsheet, using minimal points to define the curve as linear segments.
Cask Body Finite Element Models 2.12.2.6.1      Structural Finite Element Model A three-dimensional half-symmetry finite element model is used for the structural evaluation of the MAGNATRAN transport cask for normal and accident conditions of transport. The finite element model is used for the following structural evaluations.
Thermal gradient; 100F ambient with solar insolance; -40F without solar insolance 1-ft and 30-ft drops - end, side and corner (20 measured from vertical)
Transport side orientation 1g, 2g, internal pressure, 1g with thermal and internal pressure Immersion of cask in 200 meters of water = 290 psi on cask exterior Fire accident Pin puncture (modified quarter-symmetry models are used)
The finite element model of the cask is shown in Figure 2.12.2-30. The section locations for the stress evaluation are shown in Figure 2.12.2-31. The primary structural components of the cask are modeled using SOLID45 elements. Specifically, the cask shell, end forgings, lid, bottom end plate, lead gamma shielding, and neutron shielding are modeled with SOLID45 elements.
The 2.0-inch diameter lid closure bolts are modeled using BEAM4 elements. The bolt mechanical properties (area and moment of inertia), as well as the preload, are represented with the BEAM4 elements. The bolt circle annulus region of the lid flange and cask body is modeled as having a reduced stiffness to represent the reduction in stiffness due to the hole pattern for the bolts. The head of each bolt is modeled using a circular array of BEAM4 elements, combined with CONTAC52 gap elements, such that the bolt is loaded only by axial displacement of the lid with respect to the cask body. Each bolt head BEAM4 element has one end connected to the upper element of the bolt shank, which is not connected to the lid and extends beyond the lid flanges upper surface. The other end of the bolt head BEAM4 elements is connected to CONTAC52 gap elements that extend vertically down to the lid flanges upper surface.
Constraint equations are used to couple the vertical displacement of the free end of the CONTAC52 elements to the top of the lid flange.
NAC International                          2.12.2-67
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The finite element model uses CONTAC52 gap elements to model the gaps generated between cask components. The gap elements have a stiffness of 1.0106 psi everywhere except between the bottom of the lid flange and the cask body and between the bottom forging and bottom plate, which use a stiffness of 1.0108 psi. The stiffness of the gap elements is halved at the symmetry plane. Gap elements with a zero gap are used between the bottom of the lid flange and the cask body, while the gaps between the end of the lid flange and cask flange, as well as between the lid region inside the cask and the cask body, are set equal to gaps defined by lid and cask body geometry. A gap of 0.015 inch is modeled between the lead and cask body. The gap between the bottom forging and bottom plate is 0.01 inch. Conservatively, the neutron shielding is modeled with a significantly low modulus of elasticity such that it provides negligible rigidity in the analyses.
Gap elements are used to represent the impact limiters. The gap elements at the top and bottom of the cask ends are modeled with no initial gap and a stiffness of 1.0106 psi. The gap elements on the outer radius of the cask body are also modeled with no gap but the stiffness reduces by the cosine of the angle from the symmetry plane starting at 1.0106 psi going to 0.65105 psi at the 90 location. The stiffness for the gap elements from 90 to 180 is 100 psi. The side impact region extends from the ends of the cask to 12-inch inward, based on impact limiter design.
Similar to the other gap elements in the finite element model, the stiffness of the gap elements at the symmetry plane are halved. For the drop analyses, the weight of the impact limiters is modeled as a pressure applied to the solid model.
2.12.2.6.2      Thermal Conduction Finite Element Model For the thermal conduction and thermal stress evaluation, nodal temperatures are used that are bounding in magnitude and establish bounding radial thermal gradients for hot and cold ambient conditions. The nodal temperatures are determined the MAGNATRAN thermal analyses for the PWR and BWR configurations (Chapter 3). For the thermal analysis, the cask body structural finite element model is changed to a thermal model. The SOLID45 elements are converted to SOLID70 elements and CONTAC52 elements are converted to LINK33 conduction elements.
The gap elements representing the impact limiters and the BEAM4 elements representing the lid bolts are not included in the analysis. A bounding thermal gradient is derived by applying bounding maximum temperatures determined for different regions of the cask under normal conditions at ambient temperatures of 100&deg;F and -40&deg;F, with and without solar insolance, respectively. The thermal analysis implements an ANSYS finite element model of the bottom half of the cask. Nodal temperatures for the inner surface of the cask, the inner and outer surface of the outer shell and the outer surface of the cask bottom plate are obtained from the thermal conduction analysis results. The derived temperatures are symmetrically applied to the top and bottom of the cask, which is conservative as the position of the fuel is biased towards the bottom NAC International                        2.12.2-68
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 of the cask, causing the bottom half of the cask to be hotter than the top. The nodal temperatures from the conduction analysis are written to files, which are then used to apply body force temperature constraints for the thermal stress analyses. The temperature results of the described conduction analyses are also used to evaluate the allowable stress values for calculating the stress intensity-based safety factors. These nodal temperatures are also used to define the section allowable stresses. For the fire accident analysis, thermal stress is not considered and the maximum component temperatures from the cask body hypothetical fire accident analysis are used to define material allowables.
2.12.2.6.3      Elastic-Plastic Finite Element Model An elastic-plastic finite element model is used for side drop accident conditions. The elastic-plastic model is implemented, per ASME Code Appendix F, to show that the cask body stresses are below the allowable stresses.
The elastic plastic finite element model, shown in Figure 2.12.2-32, uses a bilinear kinematic hardening elastic-plastic material model for the stainless steel components (minus the reduced strength region for the bolt annulus), while the rest of the materials use an elastic material. The tangent moduli of the stainless steel materials were determined by:
Su  S y E tan 0 .4 where Su is the ultimate strength, Sy is the yield strength, and the ultimate strain is 0.4 (ASM Metals Handbook).
Temperature-dependent tangent modulus values are computed for all stainless steel materials, i.e., SA336, Type 304 for the forgings, SA240, Type 304 for the inner shell and bottom plate, SA240, Type XM-19 for the outer shell, and SA564, Type 630 (17-4PH) for the lid. The bottom plate of the cask has a SA182, Type 304 material option, which has equivalent material properties and strength allowables as SA336, Type 304 (for the given thickness, i.e., greater than 5 inches).
The mesh of the elastic plastic model (for the side drop evaluation) was refined, as compared to the linear elastic model (for the end and corner drop evaluations), by doubling the number of elements through the thickness of the inner and outer shells from four to eight. Additional element refinement was performed for the cask upper forging, as can be seen from a comparison of Figure 2.12.2-30 and Figure 2.12.2-31.
2.12.2.6.4      Boundary Conditions and Applied Loads A discussion of the boundary conditions and applied loads used in the finite element models is provided in the following section.
NAC International                        2.12.2-69
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 Displacements For the structural evaluation of the cask, the external nodes on the gap elements are fixed in all degrees of freedom. The gap elements simulate the loads applied to the cask by the impact limiters during the various drop conditions. Symmetry boundary conditions are applied to the modeled plane of symmetry (XZ-plane) by setting the translation in the out-of-plane direction to zero.
Internal Pressure The cask structural analyses for the various drop conditions are run with and without internal pressure. For normal and accident conditions, an internal pressure of 135 psig is used, and it is applied to all the internal surfaces of the cask. A maximum bounding pressure of 255 psig is used for the fire accident condition.
Inertial Load Inertial loads are applied to the cask body and contents. For normal conditions, a 15g inertial load is used for the side drop condition, while the other 1-ft drops use a 20g inertial load. For accident conditions, a 60g inertial load is applied to the model for 30-ft drops. For the transport side orientation conditions, 1g and 2g inertial loads are considered. A 1g inertial load is used for fire accident analysis. For the cask body, an acceleration scale factor is implemented to provide a FSUM of the cask body inertial load equal to that of the targeted cask body weight of 191,500 pounds.
Cask Contents The inertial load of the cask contents, i.e., the loaded canister and spacer, is modeled as a pressure load on the inner surface of the cask. The contents load is applied over the length of the cask inner shell, up to the closure lid, and is multiplied by the sine of the drop orientation (90 for a side drop, 20&deg; for a corner drop, and 0 for an end drop). For the end and corner drop orientations, the contents load is also applied to either the inner surface of the closure lid or the inner surface of the bottom forging. The contents load is multiplied by the cosine of the drop orientation for the top and bottom surfaces. A loading scale factor is implemented to provide a FSUM of the applied load equal to that of the targeted contents weight of 106,000 pounds.
A cosine load distribution, as a function of the contact angle, was implemented to simulate the loading of the cylindrical canister on the casks cylindrical inner shell. The side drop analyses used a contact half angle of 45&deg; for normal conditions and 60&deg; for accident conditions. The corner drop analyses use a contact half-angle of 22.5&deg; for normal conditions and 30&deg; for accident conditions.
NAC International                          2.12.2-70
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 Impact Limiter Inertial Load The impact limiters cover the top and bottom of the cask and extend 12 inches along each side.
The inertial load of the impact limiters is applied to the cask for the top, bottom, and corner drops and all puncture cases. For the end and corner drops and the top and bottom puncture cases, only weight of the one impact limiter is applied to the model, as the other would be supported by the impacted surface. The impact limiter load is not considered for the side drop case, as both impact limiters would be supported by the impacted surface. For the side puncture case, the cask is dropped on and supported by a 6-inch diameter pin at the center of the cask.
Therefore, both impact limiters are represented in the model as they would be supported by the cask. Similar to the cask contents load, a cosine distribution is used for the impact limiter load applied to the outer diameter of the cask. A half contact angle of 45&deg; was used in all cases. A loading scale factor is implemented to provide a FSUM of the applied load equal to that of the targeted impact limiter mass of 9,000 pounds.
Immersion - External Pressure For the immersion analysis, the model is constrained at the plane of symmetry using the same boundary conditions as the drop case, with the addition of axial constraints on the lower nodes of the small hole in the center of the bottom plate. Additionally, the gap elements representing the impact limiters are excluded from the finite element model solution.
The immersion event is simulated by applying a pressure of 290 psi to the external surfaces of the cask outer shell. Conservatively, no internal pressure or inertial load is applied to the model.
In addition, a uniform temperature of 70&deg;F is applied.
Thermal Expansion For the thermal stress analysis, the model is constrained at the plane of symmetry using the same boundary conditions as the drop case, with the addition of axial constraints on the lower nodes of the small hole in the center of the bottom plate. The thermal stress analysis does not consider the canister load or internal pressure. Nodal temperatures from the conduction analysis are applied for the given temperature case, and the resulting thermal mechanical stresses are determined.
Primary + Secondary Stress Calculation A bounding thermal gradient is used for the hot (100F ambient, maximum heat load with solar insolance) and cold (-40F, maximum heat load without solar insolance) heat conditions. The thermal gradient is applied to all nodes in the cask body for determination of the thermal stresses.
Every drop analysis has three load steps, namely, normal, accident and thermal expansion. To determine primary stresses, a uniform temperature equal to the minimum temperature for the hot and cold cases is applied to the models. The defined reference temperature for each model is NAC International                        2.12.2-71
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 equal to the applied uniform temperature, such that secondary thermal stresses are excluded from the load step solution. The secondary thermal stress load step uses the nodal temperatures from the corresponding conduction analysis. The results of the normal condition load step and the thermal load step are added to compute the primary plus secondary stresses. The closure bolt preloaded is included for both the normal condition load step and thermal load analysis.
Therefore, the effect of the preload on the cask body stresses is conservatively counted twice in the reported primary plus secondary stresses.
Temperatures for Primary Stress Calculation For determination of primary stresses, analyses are run using a constant temperature to neglect secondary thermal stresses. Temperatures of 150&deg;F and 20&deg;F are used for the hot and cold conditions, respectively. These temperatures are 100&deg;F less the minimum cask temperature from the conduction analysis for the respective temperature condition. Note that section allowable stresses are determined using the nodal temperature results for the hot and cold conduction analyses.
2.12.2.6.5      Post-Processing of Results The post-processing of the transport cask body finite element analysis results for the normal and accident conditions is performed to calculate critical stresses at various location of the cask body using the ANSYS post-processor. The location of the section cuts selected for extracting stress results are shown Figure 2.12.2-31. Additionally, the coordinates of the nodes defining the section cuts are provided in Table 2.12.2-6. These section cuts are taken for every 3.75&deg; increment of the model. The temperatures at each section from which the allowable stresses are derived are listed in Table 2.12.2-7.
2.12.2.6.6      Pin Puncture Finite Element Models The finite element models used for the side, top and bottom pin puncture evaluations are shown in Figure 2.12.2-33, Figure 2.12.2-34 and Figure 2.12.2-35, respectively. The section locations for the side, top and bottom pin puncture models are listed in Table 2.12.2-8, Table 2.12.2-9 and Table 2.12.2-10, respectively.
NAC International                        2.12.2-72
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 2.12.2-30  Cask Body Finite Element Model NAC International                2.12.2-73
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Figure 2.12.2-31    Cask Body Section Locations Z
31      32 30                                29 28 16      27 15      26 14      25 13      24 12      23 11      22 10      21 9      20 8        19 7
3  6          18 1                                17 5
2                                    4 X
Note:
: 1. Cask body shown in phantom.
: 2. Coordinate system shown is cylindrical coordinate system (Y-direction is circumferential).
NAC International                    2.12.2-74
 
MAGNATRAN Transport Cask SAR                                            January 2022 Docket No. 71-9356                                                          Revision 1 Figure 2.12.2-32 Elastic Plastic (Stainless Steel) Cask Body Finite Element Model for Side Drop Accident Conditions NAC International                  2.12.2-75
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 2.12.2-33 Side Pin Puncture Finite Element Model NAC International              2.12.2-76
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-34 Top Pin Puncture Finite Element Model NAC International              2.12.2-77
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 2.12.2-35 Bottom Pin Puncture Finite Element Model NAC International              2.12.2-78
 
MAGNATRAN Transport Cask SAR                                              January 2022 Docket No. 71-9356                                                            Revision 1 Table 2.12.2-6    Section Locations for Nonpuncture Cases Node 1                          Node 2 Section X (in)          Z (in)          X (in)          Z (in) 1            0.5            8.65            0.5          13.65 2            0.5              0              0.5            8.64 3          36.125            8.65          36.125          13.65 4          39.488              0            39.488          8.64 5            41.1            8.65            43.35          8.65 6          36.125          13.65          37.875          13.65 7          36.125          15.663          37.875          15.663 8          36.125          22.706          37.875          22.706 9          36.125          31.456          37.875          31.456 10          36.125            58.8          37.875          58.8 11          36.125          102.33          37.875          102.33 12          36.125          150.235          37.875        150.235 13          36.125          175.391          37.875        175.391 14          36.125          182.96          37.875          182.96 15          36.125          191.01          37.875          191.01 16          36.125          193.86          37.875          193.86 17            41.1          13.65            43.35          13.65 18            41.1          15.663            43.35          15.663 19            41.1          22.706            43.35          22.706 20            41.1          31.456            43.35          31.456 21            41.1            58.8            43.35          58.8 22            41.1          102.33            43.35          102.33 23            41.1          150.235          43.35        150.235 24            41.1          175.391          43.35        175.391 25            41.1          182.96            43.35          182.96 26            41.1          191.01            43.35          191.01 27            41.1          193.86            43.35          193.86 28          36.125          202.15            43.35          202.15 29            41.1          209.649          43.35        209.649 30            0.5            206.4            0.5          214.15 31          36.125          209.65          36.125          214.15 32          36.85          209.65          36.85          211.9 NAC International                  2.12.2-79
 
MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                        Revision 1 Table 2.12.2-7  Section Stress Allowable Temperature Summary (Rounded Values)
Section      Hot Case (&deg;F)      Cold Case (&deg;F)  Fire Accident (&deg;F) 1              326                198              673 2              319                190              673 3              285                157              673 4              286                158              673 5              282                154              673 6              282                154              673 7              284                157              673 8              290                167              478 9              297                175              478 10              312                191              478 11              319                197              478 12              311                190              478 13              298                176              478 14              292                169              478 15              284                158              896 16              282                154              896 17              274                146              673 18              274                147              673 19              271                145              808 20              271                144              808 21              274                147              808 22              276                150              808 23              274                147              808 24              271                144              808 25              271                145              808 26              274                147              896 27              275                148              896 28              282                154              896 29              284                157              896 30              326                198              296 31              287                159              296 32              287                159              296 NAC International                2.12.2-80
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.12.2-8        Section Locations for Side Puncture Model Nodal Location                            Nodal Location Section                                  Section Y (&deg;)          Z (in)                      Y (&deg;)        Z (in) 1            0          107.806          22          2.25        107.806 2            0          108.556          23          2.25        108.556 3            0          109.306          24          2.25        109.306 4            0          110.056          25          2.25        110.056 5            0          110.806          26          2.25        110.806 6            0          111.556          27          2.25        111.556 7            0          112.306          28          2.25        112.306 8          0.75        107.806          29            3.0        107.806 9          0.75        108.556          30            3.0        108.556 10          0.75        109.306          31            3.0        109.306 11          0.75        110.056          32            3.0        110.056 12          0.75        110.806          33            3.0        110.806 13          0.75        111.556          34            3.0        111.556 14          0.75        112.306          35            3.0        112.306 15          1.5        107.806          36          3.75        107.806 16          1.5        108.556          37          3.75        108.556 17          1.5        109.306          38          3.75        109.306 18          1.5        110.056          39          3.75        110.056 19          1.5        110.806          40          3.75        110.806 20          1.5        111.556          41          3.75        111.556 21          1.5        112.306          42          3.75        112.306 Notes:
      - Nodes 1 and 2 of the section cuts have X-locations equal the OD and ID of the outer shell:
43.35 inches and 41.1 inches, respectively.
      - Z-locations are measured with respect to the full-length model.
      - Allowable stresses for each section are evaluated at 202&deg;F and 330&deg;Fthe maximum temperature for the cold and hot ambient conditions, respectively.
NAC International                      2.12.2-81
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 2.12.2-9        Section Locations for Top Puncture Model Node 1                                Node 2 Section X (in)              Z (in)            X (in)          Z (in) 1            0.5                206.4              0.5            214.15 2            0.875              206.4              0.875          214.15 3            1.304              206.4              1.304          214.15 4            1.794              206.4              1.794          214.15 5            2.355              206.4              2.355          214.15 6            2.996              206.4              2.996          214.15 7            3.728              206.4              3.728          214.15 8            4.566              206.4              4.566          214.15 9            5.524              206.4              5.524          214.15 10            6.619              206.4              6.619          214.15 11            7.871              206.4              7.871          214.15 12            9.302              206.4              9.302          214.15 13          36.125              209.65            36.125          214.15 14            36.85              209.65              36.85          211.9 Note:
      - Allowable stresses for each section are evaluated at 202&deg;F and 330&deg;Fthe maximum temperature for the cold and hot ambient conditions, respectively.
Table 2.12.2-10      Section Locations for Bottom Puncture Model Node 1                                Node 2 Section X (in)              Z (in)            X (in)          Z (in) 1            0.5                  0                0.5            8.64 2            0.946                0                0.946            8.64 3            1.450                0                1.450            8.64 4            2.018                0                2.018            8.64 5            2.660                0                2.660            8.64 6            3.384                0                3.384            8.64 7            4.202                0                4.202            8.64 8            5.125                0                5.125            8.64 9            6.167                0                6.167            8.64 10            7.343                0                7.343            8.64 11            8.671                0                8.671            8.64 12          10.170                0              10.170            8.64 13          39.488                0              39.488            8.64 Note:
      - Allowable stresses for each section are evaluated at 202&deg;F and 330&deg;F the maximum temperature for the cold and hot ambient conditions, respectively.
NAC International                      2.12.2-82
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 2.12.3      Structural Evaluation for PWR Basket Without Shims for Weldments NAC International                2.12.3-1
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                          January 2022 Docket No. 71-9356                                      Revision 1 NAC International          2.12.3-2
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                          January 2022 Docket No. 71-9356                                      Revision 1 NAC International          2.12.3-3
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                          January 2022 Docket No. 71-9356                                      Revision 1 NAC International          2.12.3-4
 
MAGNATRAN Transport Cask SAR                                                                                    January 2022 Docket No. 71-9356                                                                                                    Revision 1 Chapter 3 Thermal Evaluation Table of Contents 3        THERMAL EVALUATION ................................................................................... 3-1 3.1    Discussion ............................................................................................................. 3.1-1 3.2    Summary of Thermal Properties of Materials....................................................... 3.2-1 3.2.1 Conductive Properties ........................................................................................... 3.2-1 3.2.2 Radiative Properties .............................................................................................. 3.2-1 3.2.3 Convective Properties ........................................................................................... 3.2-3 3.3    Technical Specifications for Components ............................................................ 3.3-1 3.3.1 Radiation Protection Components ........................................................................ 3.3-1 3.3.2 Safe Operating Ranges .......................................................................................... 3.3-1 3.4    Thermal Evaluation for Normal Conditions of Transport .................................... 3.4-1 3.4.1 Thermal Models .................................................................................................... 3.4-2 3.4.2 Maximum Temperatures ..................................................................................... 3.4-14 3.4.3 Minimum Temperatures...................................................................................... 3.4-15 3.4.4 Maximum Internal Pressures .............................................................................. 3.4-15 3.4.5 Maximum Thermal Stresses................................................................................ 3.4-18 3.4.6 Evaluation of Package Performance for Normal Conditions of Transport ......... 3.4-18 3.5    Thermal Evaluation for Hypothetical Accident Conditions ................................. 3.5-1 3.5.1 Thermal Models .................................................................................................... 3.5-1 3.5.2 Package Conditions and Environment .................................................................. 3.5-3 3.5.3 Package Temperatures .......................................................................................... 3.5-4 3.5.4 Maximum Internal Pressures ................................................................................ 3.5-4 3.5.5 Maximum Thermal Stresses.................................................................................. 3.5-5 3.5.6 Evaluation of Package Performance for Hypothetical Accident Conditions ........ 3.5-5 3.6    References ............................................................................................................. 3.6-1 NAC International                                    3-i
 
MAGNATRAN Transport Cask SAR                                                                                  January 2022 Docket No. 71-9356                                                                                                  Revision 1 List of Figures Figure 3.4-1  Three-Dimensional PWR Cask Finite Element Model ............................. 3.4-20 Figure 3.4-2  Three-Dimensional Model of PWR Cask Loaded with DFC (Intact Fuel and Damaged Fuel Assemblies) ....................................................... 3.4-21 Figure 3.4-3  Design Basis PWR Fuel Assembly Axial Power Distribution ................. 3.4-22 Figure 3.4-4  PWR 14x14 Fuel Assembly Two-Dimensional Finite Element Model ........................................................................................................ 3.4-23 Figure 3.4-5  Two-Dimensional PWR Neutron Absorber Model .................................. 3.4-24 Figure 3.4-6  Three-Dimensional BWR Cask Finite Element Model ............................ 3.4-25 Figure 3.4-7  Design Basis BWR Fuel Assembly Axial Power Distribution ................. 3.4-26 Figure 3.4-8  BWR 10x10 Fuel Assembly Two-Dimensional Finite Element Model ........................................................................................................ 3.4-27 Figure 3.4-9  Two-Dimensional BWR Neutron Absorber Model .................................. 3.4-28 Figure 3.4-10  Two-Dimensional BWR Neutron Absorber Model with Fuel Channel Only ............................................................................................ 3.4-29 Figure 3.4-11  Three-Dimensional Periodic Cask CFD Model ........................................ 3.4-30 Figure 3.4-12  Mesh of a Section of the Periodic Cask CFD Model ................................ 3.4-31 Figure 3.4-13  [DELETED] .............................................................................................. 3.4-32 Figure 3.5-1  Three-Dimensional Finite Element Cask Model (PWR and BWR) ........... 3.5-6 Figure 3.5-2  Upper Region of Three-Dimensional Cask Finite Element Model ............ 3.5-7 Figure 3.5-3  Cross-Section of Three-Dimensional Cask Finite Element Model............. 3.5-8 Figure 3.5-4  Hypothetical Accident Conditions Maximum Lead Temperature History......................................................................................................... 3.5-9 Figure 3.5-5  Hypothetical Accident Conditions Maximum Exterior Temperature History....................................................................................................... 3.5-10 Figure 3.5-6  Hypothetical Accident Conditions Maximum Cask Inner Shell Temperature History ................................................................................. 3.5-11 Figure 3.5-7  Hypothetical Accident Conditions Maximum Cask Outer Shell Temperature History ................................................................................. 3.5-12 Figure 3.5-8  Hypothetical Accident Conditions Maximum Lid Containment O-Ring Temperature History ........................................................................ 3.5-13 Figure 3.5-9  Hypothetical Accident Conditions Maximum Temperature of Lid Coverplate Containment O-Ring .............................................................. 3.5-14 NAC International                                3-ii
 
MAGNATRAN Transport Cask SAR                                                                                January 2022 Docket No. 71-9356                                                                                                Revision 1 List of Tables Table 3.1-1    Thermal Analysis Bounding Conditions - Normal Conditions of Transport ..................................................................................................... 3.1-3 Table 3.2-1    Thermal Properties of Solid Neutron Shield (NS-4-FR) ............................ 3.2-4 Table 3.2-2    Thermal Properties of Stainless Steel ......................................................... 3.2-4 Table 3.2-3    Thermal Properties of Carbon Steel (A36, A588, A537) ........................... 3.2-5 Table 3.2-4    Thermal Properties of Nickel-Plated Steel ................................................. 3.2-5 Table 3.2-5    Thermal Properties of Chemical Lead ........................................................ 3.2-5 Table 3.2-6    Thermal Properties of Type 1100 Aluminum Alloy ................................... 3.2-6 Table 3.2-7    Thermal Properties of Helium .................................................................... 3.2-6 Table 3.2-8    Thermal Properties of Dry Air .................................................................... 3.2-6 Table 3.2-9    Thermal Properties of Copper ..................................................................... 3.2-7 Table 3.2-10  Thermal Properties of Zircaloy and Zircaloy-4 Cladding........................... 3.2-7 Table 3.2-11  Thermal Properties of Fuel (UO2)............................................................... 3.2-7 Table 3.2-12  Neutron Absorber Material Minimum Effective Thermal Conductivity ................................................................................................ 3.2-8 Table 3.2-13  Gaps in the MAGNATRAN Transport Cask Model .................................. 3.2-8 Table 3.4-1    Maximum Component Temperatures - Normal Conditions of Transport, Maximum Decay Heat, Maximum Ambient Temperature ..... 3.4-33 Table 3.4-2    Maximum Component Temperatures - Normal Conditions of Transport, Maximum Decay Heat, Minimum Ambient Temperature ...... 3.4-34 Table 3.4-3    Maximum Internal Pressures for Transport Under Normal Conditions ................................................................................................. 3.4-34 Table 3.4-4    PWR Per Assembly Fuel Generated Gas Inventory ................................. 3.4-35 Table 3.4-5    PWR Canister Free Volume (No Fuel or Inserts) ..................................... 3.4-35 Table 3.4-6    BWR Per Assembly Fuel Generated Gas Inventory ................................. 3.4-35 Table 3.4-7    BWR Canister Free Volume (No Fuel or Inserts) .................................... 3.4-35 Table 3.5-1    Maximum Component Temperatures - Hypothetical Accident Condition Fire Transient (PWR Cask)...................................................... 3.5-15 Table 3.5-2    Maximum Component Temperatures - Hypothetical Accident Condition Fire Transient (BWR Cask) ..................................................... 3.5-16 Table 3.5-3    Maximum Internal Pressures for Hypothetical Accident Conditions ....... 3.5-17 NAC International                              3-iii
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                Revision 1 3              THERMAL EVALUATION This chapter presents the thermal design and analyses of the MAGNATRAN transport cask for the 10 CFR 71 normal conditions of transport and hypothetical accident conditions. The analyses include consideration of design basis PWR fuel, BWR fuel, damaged fuel in damaged fuel cans (DFCs), and Greater Than Class C (GTCC) waste. Results of the analyses demonstrate that with the design basis payloads, the MAGNATRAN transport cask meets the thermal performance requirements of 10 CFR 71.
NAC International                              3-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 3.1              Discussion The MAGNATRAN transport cask is designed to transport two categories of PWR fuel assemblies, two categories of BWR fuel assemblies, PWR damaged fuel in DFCs and GTCC waste. Two lengths of transportable storage canisters (TSCs), long and short, are designed to transport the two categories of PWR and BWR fuel assemblies. The short TSC is also designed to transport GTCC waste with a maximum heat load of 1.7 kW. A cavity spacer shall be used in the transport cask cavity to axially position the short TSC and limit its potential movement under normal conditions of transport and hypothetical accident conditions. Only the bounding evaluation for the PWR and BWR classes of fuel is reported herein. The bounding case is represented by a configuration consisting of the short canister, short fuel tube, and short fuel assemblies with the lowest effective thermal conductivity. The fuel assemblies are confined within the fuel tubes of the fuel basket. The short fuel basket results in a larger gap between the basket and the canister. The short canister provides the longest space in the bottom and top of the cask cavity. The result is a greater concentration of heat and maximized thermal resistance for rejection of heat through the cavity top and bottom.
The design basis heat loads are 23 kW for up to 37 PWR fuel assemblies and 22 kW for up to 87 BWR fuel assemblies. The individual PWR assembly decay heat is limited to 0.622 kW (including damaged fuel), and the individual BWR assembly decay heat load is limited to 0.253 kW. As shown in Table 3.2-12, there are two types of required effective thermal conductivities for the neutron absorber. For the PWR basket with design basis heat load of 23 kW, Type 2 thermal conductivity of the neutron absorber is required. For the PWR basket with neutron absorbers with Type 1 thermal conductivity, the heat load is limited to 22 kW, with the individual assembly decay heat limited to 0.595 kW. For the BWR basket with design basis heat load, Type 1 thermal conductivity of the neutron absorber is required. As shown in Section 3.4.6, the thermal analysis considers a range of fuel assembly burnup and cool times for both fuel types to establish the allowable cladding temperatures. These limits are used to establish the allowable decay heat loads for fuel having cooling times of five years or more.
The thermal analyses presented in the following sections use helium as the cover gas in the cask cavity and in the TSC.
Heat transfer from the MAGNATRAN transport cask to the environment is by passive means only and no forced cooling is necessary. Conduction and radiation are the means by which heat is transferred from the fuel assemblies to the fuel tubes and through the tubes to the TSC wall and then to the cask cavity inner shell. From the MAGNATRAN transport cask cavity, heat is conducted through the inner shell, the lead (gamma shield) and then through the cask outer shell.
NAC International                              3.1-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 The copper heat transfer fins surrounding the outer shell along most of the casks length conducts heat to the neutron shield assemblies and the environment. Heat is removed from the surface of the copper and aluminum heat transfer fins by convection and radiation.
Because of the insulating characteristics of the impact limiters, no heat is modeled as being removed from the ends of the cask. The bounding thermal conditions for the analysis required by 10 CFR 71 under normal conditions of transport are presented in Table 3.1-1.
During normal conditions of transport and hypothetical accident conditions, the cask must reject the fuel decay heat to the environment without exceeding the operational temperature ranges of the cask seals or other components important to safety. In addition, to maintain fuel rod integrity for normal conditions of transport, the fuel must be maintained at a sufficiently low temperature in an inert atmosphere such that thermally induced fuel rod cladding deterioration is precluded.
Finally, the thermally induced stresses, in combination with pressure and mechanical load stresses, must be below allowable stress levels.
The temperatures for the various components of the fuel, TSC, basket and cask during normal conditions of transport and the hypothetical accident condition fire are calculated by using finite element methods. For the normal conditions of transport and the hypothetical accident conditions, the cask loaded with PWR fuel and the cask loaded with BWR fuel, are analyzed by using separate finite element models. For each fuel configuration, the thermal analyses of the cask for normal conditions of transport are performed by using three-dimensional finite element models of the loaded cask. The cask is transported in a horizontal orientation. These models are described in Section 3.4.1.1 and Section 3.4.1.2. The thermal analyses of the cask for the hypothetical accident fire condition are performed by using three-dimensional models of the cask. These models are described in Section 3.5.1.1.
Results of the thermal analyses of the package are presented in Section 3.4 and Section 3.5. The results demonstrate that the maximum fuel rod cladding temperatures remain below the allowable temperatures for normal conditions of transport and hypothetical accident conditions.
The thermally induced stresses, combined with pressure and mechanical load stresses, are within the allowable levels, as demonstrated in Chapter 2.0. Therefore, the cask design and operation are in conformance with temperature and thermal stress criteria.
The temperatures determined in this chapter, and other properties evaluated herein, are used in other analyses included in this Safety Analysis Report. The material properties and allowable stresses at the corresponding component temperatures are used in the structural calculations presented in Chapter 2.0. The structural evaluation of the cask components also incorporates stresses resulting from differential thermal expansion and temperature effects on the cask internal pressure as applicable.
NAC International                              3.1-2
 
MAGNATRAN Transport Cask SAR                                                                    January 2022 Docket No. 71-9356                                                                                    Revision 1 Table 3.1-1            Thermal Analysis Bounding Conditions - Normal Conditions of Transport Condition                                                    Value Ambient Temperature per 10 CFR 71:
Maximum (hot conditions)                                                      100&deg;F Minimum (cold conditions and                                                  -40&deg;F minimum temperature)
Insolance (for 12 hr per day) per 10 CFR 71:
Horizontal Flat Surfaces (facing up)                                      2,950 Btu/ft2 Curved Surfaces                                                            1,475 Btu/ft2 PWR Fuel Assembly Decay Heat, Total:                                              23 kW*
PWR Fuel Peaking Factor                                                        1.08 BWR Fuel Assembly Decay Heat, Total:                                              22 kW BWR Fuel Peaking Factor                                                        1.22
* For PWR basket using Type 1 neutron absorber as defined in Table 3.2-12, the heat load is limited to 22 kW NAC International                                  3.1-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 3.2            Summary of Thermal Properties of Materials The transfer of heat within the MAGNATRAN transport cask is primarily accomplished by conduction and radiation. The thermal conductivities and emissivities of the materials of construction are required for the thermal analysis of the cask. In addition, certain convective properties are required for modeling of convective heat transfer at the cask exterior surface.
Table 3.2-1 through Table 3.2-12 include only the properties of materials that form the heat transfer pathways employed in the finite element models. Materials for small components, such as valves and trunnions, which are not directly modeled, are not included in the property tabulation.
3.2.1          Conductive Properties The values for the conductivities of the materials are given in Table 3.2-1 through Table 3.2-12.
3.2.2          Radiative Properties 3.2.2.1        Governing Radiation Principle Radiation heat transfer between two nodes, i (hotter node) and j (colder node), is accounted for by the expression:
(
q r = AF  i4  j4 )
where:
        = Stefan-Boltzman constant
            = 1.19 x 10-11 Btu/hr-in2-&deg;R4
          = emissivity A = surface area F = shape factor for the surfaces Ti = temperature of i-th node Tj = temperature of j-th node.
NAC International                              3.2-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 3.2.2.2        Radiation from Cask Surface The expression shown previously is considered to be the governing equation for radiation within the cask and from the cask to the environment. Radiation heat transfer from the surface of the cask can be incorporated in the model by modifying the convection coefficient as follows:
Qt = qr + qc where qr is specified as shown for the radiation heat transfer and qc, which is the heat transfer by convection, is expressed as:
qc = hcA(Ti - Tj) where:
hc = film coefficient (Btu/hr - in2 - &deg;F).
The qr can be rewritten as:
qr = AF(Ti2 + Tj2)(Ti + Tj)(Ti - Tj) .
By combining both expressions:
Qt = (F(Ti2 + Tj2)(Ti+Tj) + hc)A(Ti - Tj) or Qt = heffA(Ti - Tj) where:
heff = F(Ti2 + Tj2)(Ti+Tj) + hc The effective convection coefficient used for the cask surface (heff) now includes the radiation heat transfer. In this application, the form factor (F) is taken to be unity.
3.2.2.3        Radiation across Gaps within the Cask The gaps represented in the cask model are small compared with the surfaces separated by the gap. These gaps for both the PWR and the BWR casks are provided in Table 3.2-13.
The total heat transfer can be expressed as the sum of the radiation and the conduction processes.
Qt = qr + qk where qr is specified as shown for the radiation heat transfer and qk, which is the heat transfer by conduction, is expressed as:
NAC International                              3.2-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 KA qk =      (Ti - Tj) g where:
g = gap distance (between two surfaces defined by nodes i and j)
K = conductivity of gas in gap A = cross sectional area for heat conduction By combining the two expressions (for qk and qr) and factoring out the term A(Ti - Tj)/g, Qt = [gF(Ti2 + Tj2)(Ti+Tj) + K][A(Ti - Tj)/g]
or Qt = KeffA(Ti - Tj)/g where:
Keff = gF(Ti2 + Tj2)(Ti+Tj) + K The material conductivity used in the analysis for the elements that constitute the gap includes the heat transfer by both conduction and radiation. Because the gap is small compared with the basket length, the form factor (F) is taken to be unity.
3.2.3          Convective Properties A convective heat transfer coefficient, hc, is associated with each surface where convection operates. The cylindrical surface of the cask and the surface of the heat transfer fins take part in the convection heat removal process because the ends of the cask are thermally insulated from the environmental ambient thermal sink by the impact limiters.
The surface is represented by a horizontal cylinder and fins in air. From the Standard Handbook for Mechanical Engineers, Eq. 4.4.12d, Page 4-88, the heat transfer coefficient, hc, is:
hc = 0.19 T1/3 BTU/hr-ft2-&deg;F, for D3T > 100 where:
T = temperature difference between surface and air, &deg;F D = cylinder diameter, ft For D = 7.225 ft and T > 100&deg;F, the value of D3T > 37,000 is significantly larger than 100.
The expression can be converted into:
hc = 0.00132 T1/3 Btu/(hr-in2-&deg;F)
Alternatively, the heat transfer coefficient may be determined by the CFD model as presented in Section 3.4.1.3.
NAC International                              3.2-3
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 Table 3.2-1            Thermal Properties of Solid Neutron Shield (NS-4-FR)
Property (units)                                Value Conductivity (Btu/hr-in-&deg;F)                                    0.0311 Density (Borated) (lbm/in3)                                    0.0589 Density (Nonborated) (lbm/in3)                                0.0607 Specific heat (Btu/lbm-&deg;F)                                      0.319 Table 3.2-2            Thermal Properties of Stainless Steel Type 304 and 304L Temperature Property                100&deg;F        200&deg;F        400&deg;F        550&deg;F      750&deg;F Conductivity                        0.725          0.775        0.867        0.925      1.000 (Btu/hr-in-&deg;F)
Density (lbm/in3)                    0.290          0.289        0.287        0.286      0.284 Specific Heat (Btu/lbm-&deg;F)          0.116          0.120        0.127        0.131      0.136 Emissivity                                                    0.36 (300&deg;F)
Type SA240, Type XM-19 Stainless Steel Temperature Property                70&deg;F    100&deg;F      200&deg;F    300&deg;F      500&deg;F    700&deg;F    750&deg;F Conductivity                    0.533      0.550      0.592    0.642      0.733    0.825    0.842 (Btu/hr -in-&deg;F)
Emissivity                                                        0.36 NAC International                                  3.2-4
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                Revision 1 Table 3.2-3          Thermal Properties of Carbon Steel (A36, A588, A537)
Temperature Property              100&deg;F        200&deg;F      400&deg;F        500&deg;F      700&deg;F Conductivity                      2.30          2.30        2.23          2.16      2.0 (Btu/hr-in-&deg;F)
Density (lbm/in3)                                          0.284 Specific Heat (Btu/lbm-&deg;F)                                0.113 Emissivity                                                  0.80 Table 3.2-4      Thermal Properties of Nickel-Plated Steel Property                                        Value Emissivity                                    0.20-0.32 Table 3.2-5        Thermal Properties of Chemical Lead Temperature Property                  209&deg;F        400&deg;F            581&deg;F        630&deg;F Conductivity (Btu/hr -in-&deg;F)              1.63          1.53            1.21        1.01 Density (lbm/in3)                                            0.41 (68&deg;F)
Specific Heat (Btu/lbm-&deg;F)                                  0.03 (68&deg;F)
Emissivity                                                  0.28 (75&deg;F)
NAC International                            3.2-5
 
MAGNATRAN Transport Cask SAR                                                                January 2022 Docket No. 71-9356                                                                              Revision 1 Table 3.2-6            Thermal Properties of Type 1100 Aluminum Alloy Temperature Property                        70&deg;F          100&deg;F        200&deg;F      300&deg;F      400&deg;F Conductivity (Btu/hr -in-&deg;F)                    11.1            11.0        10.7        10.5        10.4 Density (lbm/in3)                                                            0.098 Specific Heat (Btu/lbm-&deg;F)                                                    0.23 Emissivity*                                                                    0.4
* An emissivity of 0.22 is conservatively used in all evaluations.
Table 3.2-7              Thermal Properties of Helium Temperature Property                          80&deg;F              260&deg;F          440&deg;F          800&deg;F Conductivity (Btu/hr -in-&deg;F)                    0.00751            0.00915        0.01068      0.01355 Specific Heat (Btu/lbm-&deg;F)                                                    1.24 200&deg;F              400&deg;F          600&deg;F          800&deg;F Density  (lbm/in3)                              4.8E-06            3.7E-06        3.0E-06        2.5E-06 Temperature (K)                        240                300          350            400 Viscosity 170                199          221            243 (x 107, N-s/m2)
Table 3.2-8              Thermal Properties of Dry Air Temperature Property                          100&deg;F              300&deg;F          500&deg;F          700&deg;F Conductivity (Btu/hr -in-&deg;F)                    0.00127            0.00163        0.00195      0.00226 Density (lbm/in3)                                4.0E-05            3.0E-05        2.3E-05        1.9E-05 Specific Heat (Btu/lbm-&deg;F)                        0.242              0.246        0.249          0.252 Temperature (K)        250    300    350      400    450    500    550  600  650    700  750      800 Viscosity 159.6 184.6 208.2 230.1 250.7 270.1 288.4 305.8 322.5 338.8 354.6                369.8 (x 107, N-s/m2)
NAC International                                      3.2-6
 
MAGNATRAN Transport Cask SAR                                                                  January 2022 Docket No. 71-9356                                                                                  Revision 1 Table 3.2-9              Thermal Properties of Copper Temperature Property                          32&deg;F              212&deg;F            392&deg;F Conductivity (Btu/hr -in-&deg;F)                      18.6              18.3            18.0 Density (lbm/in3)                                                      0.32 Specific Heat (Btu/lbm-&deg;F)                                            0.09 Emissivity                                                            0.65 Table 3.2-10            Thermal Properties of Zircaloy and Zircaloy-4 Cladding Temperature Property                          392&deg;F              572&deg;F            752&deg;F            932&deg;F Conductivity (Btu/hr -in-&deg;F)                      0.69              0.73            0.80            0.87 Density (lbm/in3)                                                              0.237 Specific Heat (Btu/lbm-&deg;F)                      0.072              0.074            0.076          0.079 Emissivity                                                                      0.75 Table 3.2-11            Thermal Properties of Fuel (UO2)
Temperature Property                    100&deg;F            257&deg;F            482&deg;F        707&deg;F        932&deg;F Conductivity*                          0.38            0.347            0.277        0.236        0.212 (Btu/hr-in-&deg;F)
Density (lbm/in3)                                                        0.396 Specific Heat (Btu/lbm-&deg;F)            0.057            0.062            0.067        0.071        0.073 Emissivity                                                                0.85
* 60% of the conductivities are conservatively used in the evaluations for both PWR and BWR configurations.
NAC International                                      3.2-7
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Table 3.2-12          Neutron Absorber Material Minimum Effective Thermal Conductivity Minimum Effective Thermal Conductivity - BTU/(hr-in-&#xba;F)
Neutron Absorber                      Radial                                Axial Type*                  100&deg;F              500&deg;F            100&deg;F                500&deg;F Type 1                1.503              1.972            3.295              3.669 Type 2                  3.12                3.21              4.31                4.65
* Type 1 thermal conductivity for the neutron absorber is required for PWR or BWR baskets with a maximum heat load of 22 kW. Type 2 thermal conductivity is required for PWR baskets with a maximum heat load of 23 kW.
Table 3.2-13          Gaps in the MAGNATRAN Transport Cask Model Gap (in.)
Cask with PWR        Cask with BWR Gap Location                          Fuel Canister        Fuel Canister Gap between basket slots at corners                                0.01                0.01 Gap between canister and cask inner shell                        0.125*              0.125*
Gap between lead gamma shield and inner shell                    0.015                0.015 Gap between basket and canister bottom plate                        0.25                0.25 Gap between canister bottom plate and cask bottom plate          5.625                5.625 Gap between canister lid and cask lid**                              8.5                N/A
* The gap size is 0.125 inch. The TSC in the model is shifted downward to simulate contact with the cask inner shell resulting in a non-uniform gap around the TSC (larger gap at the upper region and smaller gap at the lower region).
** This gap is applicable for the full-length PWR model only.
NAC International                              3.2-8
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 3.3              Technical Specifications for Components This section provides a discussion of the major components that provide radiation protection and of the other cask components that must be maintained within their safe operating temperature ranges.
3.3.1            Radiation Protection Components Radiation protection in the MAGNATRAN transport cask is provided by gamma and neutron shielding. The primary gamma radiation shielding components are the materials used in fabricating the multi-walled body and the cask lid. The multi-walled body consists of the lead poured in place between the inner and outer stainless steel shells. Neutron shielding is provided in the radial direction by solid NS-4-FR enclosed in stainless steel neutron shield assemblies.
The NS-4-FR is borated to suppress secondary gamma generation. The capture of neutrons by many materials produces a secondary gamma ray that must also be shielded; however, when 10B absorbs a neutron, the alpha particle emitted is stopped locally. Thus, the secondary gamma dose rate is minimized. The radiation protection components are analyzed for normal conditions of transport in Section 3.4 and for hypothetical accident event conditions in Section 3.5.
3.3.2            Safe Operating Ranges Four major components must be maintained within their safe operating temperature ranges: the cask lid containment O-ring, the port coverplate containment O-ring, the lead gamma shield, and the NS-4-FR solid neutron shield. The safe operating ranges for these components are as follows:
Component                        Safe Operating Range Cask Lid and Port Coverplate Metallic              -40&deg;F to 500&deg;F O-rings Lead Gamma Shield                                  -40&deg;F to 600&deg;F Radial NS-4-FR Neutron Shield                      -40&deg;F to 300&deg;F The safe operating range of the metallic O-rings is obtained from the technical information presented in Section 4.5.2. Maintaining the metallic O-rings within this range ensures that the O-rings maintain their ability to perform their containment sealing function. The analyses of Section 3.4 and Section 3.5 demonstrate that the temperatures of the metallic O-rings are maintained within the safe operating range during normal conditions of transport and hypothetical accident conditions.
NAC International                                3.3-1
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                      Revision 1 The safe operating range of the lead gamma shield is based on preventing the lead from reaching its melting point of 620&deg;F.
Because the temperature of the radial neutron shield exceeds the temperature allowable during the 30-minute hypothetical accident fire, the radial neutron shield is considered lost after the fire accident for shielding purposes. The necessity for the neutron shield material to remain within its safe operating range is thus eliminated. (See Chapter 5 for a discussion of the effect of a loss of the neutron shield on the cask dose rates.) The radial neutron shield is assumed to remain intact throughout the hypothetical fire and to be removed and replaced with air at the end of the fire for the fire analysis.
The function of the EPDM O-ring is to provide a volume for the leak test of the metallic O-ring.
The allowable temperature range for the EPDM O-ring for normal conditions of transport is considered to be -40&deg;F to 250&deg;F, which is bounded by the information provided in Section 4.5.3.
The adhesive used for the impact limiters also retains its bond strength for a temperature range of
-40&deg;F to 300&deg;F. The function of the silicone foam is to accommodate thermal expansion and to prevent arbitrary motion of the adjacent neutron shield. The silicone maintains its normal function for the temperature range of -40&deg;F to 300&deg;F. The thermal insulator (part of the neutron shield assembly) provides additional protection for the cask contents during a fire accident. The thermal insulator has an operating temperature limit of 2,150&deg;F (1,250&deg;C), which is significantly higher than the fire temperature of 1,475&deg;F. The allowable temperature for the steel components is defined as 800&deg;F for both the normal and accident conditions, based on the ASME Boiler and Pressure Vessel Code, Section II, Part D. Since the ignition temperature of the wood for the impact limiters is greater than 500&deg;F, the wood temperature limit for normal conditions of transport is defined to be 400&deg;F.
NAC International                              3.3-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 3.4              Thermal Evaluation for Normal Conditions of Transport The finite element method is used to evaluate the thermal performance of the MAGNATRAN transport cask for normal conditions of transport as specified in 10 CFR 71. The general-purpose finite element analysis program ANSYS is used to perform the finite element evaluations.
The normal conditions of transport used in the thermal evaluation of the cask are as follows:
* Hot Conditions: maximum decay heat generation, ambient temperature = 100&deg;F, solar insolance (solar insolance applied according to Table 3.1-1)
* Cold Conditions: maximum decay heat generation, ambient temperature = -40&deg;F, no solar insolance
* Minimum Temperature Conditions: no decay heat generation, ambient temperature =
        -40&deg;F, no solar insolance (no analysis is performed for this condition because all component temperatures will be -40&deg;F for steady-state conditions)
The objectives of the cask thermal analyses under normal conditions of transport are as follows:
: 1. Demonstrate that the cask can safely maintain the design basis temperatures required for fuel cladding integrity under the range of thermal conditions expected during normal conditions
: 2. Demonstrate that cask components important to safety are maintained within their safe operating temperature ranges
: 3. Provide thermal input to the structural analyses The first objective is met by demonstrating that the cask maintains maximum fuel rod cladding temperatures below the allowable temperatures during normal conditions.
The second objective is met by comparing the results of the analyses with the safe operating ranges established in Section 3.3.
The third objective is met by using the results of the thermal analyses (as direct import of ANSYS temperature data, as maximum and minimum component temperatures, or as allowable look-up temperatures) as input to the structural analyses, which demonstrate that the combined load stresses are within allowable limits.
NAC International                              3.4-1
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 3.4.1          Thermal Models The finite element and finite volume methods are used to evaluate the MAGNATRAN transport cask for exposure to normal conditions of transport as specified in 10 CFR 71. This section describes the finite element and finite volume models used in the thermal evaluation of the cask under normal conditions of transport. Separate three-dimensional finite element models are used to evaluate the cask loaded with PWR fuel and the cask loaded with BWR fuel. A three-dimensional finite volume model of the cask body section is developed to evaluate the convection film coefficients on the cask surface. The analyses for normal conditions of transport consider the transport cask oriented horizontally.
For each fuel-loading configuration, the cask is evaluated for normal conditions of transport using a three-dimensional finite element model of the loaded cask including internal components. The three-dimensional finite element models of the cask/internal components each comprise four parts: basket with fuel assembly; TSC; transport cask body; and gases between components. To model the cask in a horizontal orientation, the fuel basket in each model is modeled in contact with the TSC on one side which, in turn, is in contact with the inner shell of the cask on one side.
Solar insolance, natural convection and thermal radiation boundary conditions based on ambient temperature are applied to the outer surface of the cask (the sections of the cask body covered by the impact limiters are modeled as adiabatic). The three-dimensional finite element model for the cask loaded with PWR fuel is described in Section 3.4.1.1.1. The three-dimensional finite element model for the cask loaded with BWR fuel is described in Section 3.4.1.2.1.
The models of the cask/internal components (both PWR and BWR) are constructed of ANSYS three-dimensional, solid brick, thermal conduction elements (SOLID70) and thermal shell (SHELL57) to model heat conduction/combined conduction and thermal radiation, as well as superelement (MATRIX50) to model thermal radiation.
In the three-dimensional cask models, the fuel assemblies are modeled as homogeneous regions with effective temperature-dependent thermal conductivity. The effective thermal conductivity of the fuel region in the plane perpendicular to the major axis of the cask is determined for each fuel (PWR and BWR) by using two-dimensional finite element models representing the cross-section of a single fuel assembly. The two-dimensional finite element models of the fuel assemblies consist of the UO2 fuel pellets; Zircaloy cladding; and gas between the fuel pellets and cladding and between the fuel rods (fuel pellet/cladding). Heat generation rates (multiplied by the respective peaking factors for each fuel) are applied to the elements representing the UO2 and an isothermal temperature condition is applied to the edges of the model representing the NAC International                              3.4-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 outer surfaces of the fuel assembly. The effective conductivity of the fuel assembly is then calculated by determining the maximum temperature in the fuel and using a closed form expression for a square with uniform heat generation. The two-dimensional finite element model of the PWR fuel is also described in Section 3.4.1.1.2. The two-dimensional finite element model of the BWR fuel is also described in Section 3.4.1.2.2. The models of the fuel assemblies are constructed of ANSYS two-dimensional thermal elements (PLANE55) to model heat conduction and superelement (MATRIX50) to model thermal radiation. The analyses of the fuel assembly models are steady-state.
Additionally, the neutron absorber regions (between the fuel assembly and the fuel tube) are modeled in the three-dimensional cask models as homogeneous regions by using effective thermal conductivity properties. The effective thermal conductivity of the neutron absorber region is determined for each fuel tube (PWR and BWR) by using two-dimensional finite element models representing the cross-section of a typical fuel tube. A heat flux is applied to the inner face of the composite tube wall while a temperature is applied to the outer face. The change in temperature is then used to calculate the effective thermal conductivity. This method treats the thermal resistance of the different layers as being in series. The effective thermal conductivity for heat condition parallel to the axis of the cask is computed as a weighted average based on the thickness of each layer. The two-dimensional finite element model of the PWR neutron absorber is described in Section 3.4.1.1.3. The two-dimensional finite element model of the BWR neutron absorber is described in Section 3.4.1.2.3. The models of the neutron absorber are constructed of ANSYS two-dimensional thermal elements (PLANE55) to model heat conduction and a superelement (PLANE55 to model heat conduction and LINK31 to model thermal radiation). The analyses of the neutron absorber models are steady-state.
The impact limiters are not explicitly modeled in the cask thermal analyses previously discussed.
The cask surfaces covered by the impact limiters are modeled as adiabatic.
A three-dimensional periodic axial section of the cask is modeled using Computational Fluid Dynamic (CFD) code, FLUENT. Natural convection of air surrounding the cask is simulated, and surface temperature and heat flux are determined from the simulation results to determine the convection film coefficients. The average convective film coefficients are determined for eight divisions of the cask outer surface in the circumferential direction in a 180-degree half-symmetry model.
A sensitivity study for convection film coefficients on the cask outer surface for the PWR hot case of normal conditions of transport is performed using the sectional convection film coefficients determined by this model.
NAC International                                3.4-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                        Revision 1 3.4.1.1        Analytical Models: Cask with PWR Fuel The thermal analysis of the cask transporting PWR fuel uses three finite element ANSYS models as previously described. A three-dimensional model is employed to evaluate the cask in a horizontal position with the basket in contact with the TSC, which, in turn, is in contact with the cask inner shell. The fuel regions and the fuel tubes with neutron absorber plates in this model are modeled by using effective properties. The effective property of the fuel is determined by a second model, which is a detailed two-dimensional thermal model of the fuel assembly. The effective properties of the fuel tube wall and neutron absorber plate are calculated by using a third model, which is a two-dimensional thermal model of the fuel tube. The three ANSYS thermal models are described in the following paragraphs.
3.4.1.1.1      Three-Dimensional Cask Model: Cask with PWR Fuel The three-dimensional MAGNATRAN transport cask model is a full-length half-symmetry (180&deg;) finite element model constructed by using ANSYS Revision 06.2. The model considers the fuel assemblies, fuel tubes, basket plates, TSC shell, TSC lid and bottom plate, cask inner shell, lead, outer shell, cask lid and bottom, neutron shield, copper and aluminum cooling fins and neutron shield shell. The gaps between the individual components are also considered. The ANSYS model is shown in Figure 3.4-1. The internal cavity of the TSC in the model contains the active fuel region, the top and bottom end fitting zone of the fuel assemblies, and fuel tubes enclosing the fuel assemblies.
The gas inside the TSC is modeled as helium. The gas inside the cask cavity is modeled as helium because the cavity will be backfilled with helium following fuel loading prior to transport. The finite element model is constructed of ANSYS three-dimensional, solid brick, thermal conduction elements (SOLID70), as well as two-dimensional elements (SHELL57) to model heat conduction/combined conduction and thermal radiation and superelement (MATRIX50) to model thermal radiation. The principal gaps applied to the model are described in Section 3.2.2.3.
Because the TSC is in the horizontal position during transport, the TSC shell is in contact with the inner shell of the cask. Similarly, the basket is in contact with the canister shell. Due to the small diametrical difference between these components, the basket is considered to be in contact with the canister shell in five local regions of the basket support weldment. This is equivalent to an angle of approximately 40&deg; (out of 180&deg;) in the model. Similarly, the canister shell is considered to be in contact with the cask inner shell with a contact angle of approximately 50&deg;.
NAC International                                3.4-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The contact is simulated by using a thermal conductivity of 2.0 BTU/hr-in-&deg;F for the elements in the contact regions.
Solar insolance and ambient temperature conditions are applied to the cask surface including the surface of the cooling fins. Insolance is used at the exterior surface of the cask and the cooling fins and is based on the amount of insolation required by 10 CFR 71 to be applied over a 12-hr period evaluated in the steady state (applied over 24 hours simulating 12-hour period of solar exposure and 12-hour period of no solar exposure). The heat flux resulting from insolation on a curved surface is calculated as follows:
Btu        12 hr      1 ft 2                    2 1475            2 x        x          2 = 0.427 Btu/hr-in .
12 hr - ft    24 hr      144 in The heat flux resulting from insolance is factored by the emissivities of the materials on which the insolance is applied.
The model is analyzed for a steady-state condition to determine the maximum temperatures for the fuel, basket, TSC, cask shells, radial shielding and surface conditions under normal conditions of transport. All material thermal properties are shown in Table 3.2-1 through Table 3.2-12.
The fuel regions (inside tubes) are modeled as homogeneous regions with effective conductivities, determined by the two-dimensional fuel model as described in Section 3.4.1.1.2.
The fuel tube and the neutron absorber plate, including gaps on both sides of the neutron absorber sheet and the gap between the stainless steel cladding for neutron absorber and disk, are modeled as one element thick with effective conductivities, as established by using the two-dimensional neutron absorber and tube model discussed in Section 3.4.1.1.3.
The neutron shield assembly of the MAGNATRAN Transport Cask is consisted of NS-4-FR, thermal insulator, and stainless steel shell. The orthotropic effective material properties are computed for the three layers as listed below.
: 1) 0.125-inch silicone foam
: 2) 0.125-inch thermal insulator
: 3) 0.12-inch stainless steel In the model, radiation heat transfer is considered from the bottom of the fuel region to the top surface of the TSC bottom plate, and from the outer surfaces of the basket to the inner surface of the TSC shell. The radiation from the bottom of the fuel region to the top surface of the TSC bottom plate and the radiation from the top of fuel region to the bottom surface of the TSC lid are modeled by using effective properties as described in Section 3.2.2.1. The radiation from the exterior surfaces of the fuel tubes to the inner surface of the TSC shell is modeled by using ANSYS superelement, MATRIX50.
NAC International                                3.4-5
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 Radiation at the cask surface to ambient is combined with the convection effect by using the method described in Section 3.2.2.2. The convection heat transfer coefficients at the cask surface are determined using the Cask CFD model as presented in Section 3.4.1.3. Effective emissivities are used for all radiation calculations, with the form factor taken to be unity.
Effective emissivity is computed by using the following formula based on corresponding material emissivities:
eff = 1/ (1/1 + 1/ 2 - 1)
Solar insolance is applied to the cask surface for the Hot condition (ambient temperature =
100&deg;F). A uniform heat flux is considered for the insolance.
Volumetric heat generation (Btu/hr-inch3) is applied to the active fuel region on the basis of a total heat load of 23 kW, with an active fuel length of 144 inches, and an axial power distribution as shown in Figure 3.4-3.
There are a number of conservative conditions in this three-dimensional cask model:
: 1. The fuel assembly is conservatively considered to be located at the center of the basket slot. (The fuel assembly will be in contact with the fuel tube on its side since the cask is in the horizontal position during transport. The contact will reduce the maximum component temperature.)
: 2. Convection heat transfer is conservatively ignored inside the cask and the TSC.
: 3. The gap between the lead and the cask inner shell is conservatively considered to be 360&deg; around the shell. (A good portion of the lead will be in contact with the inner shell since the cask is in the horizontal position during transport. The contact will reduce the maximum component temperature.)
Damaged Fuel Configuration The three-dimensional cask model loaded with PWR fuel assemblies described in this section is modified to simulate the configuration of the cask loaded with PWR fuel assemblies and damaged fuel cans (DFCs). Four damaged fuel cans are loaded in the PWR basket at the locations shown in Figure 3.4-2. The model described in this section is modified for the DFC geometry and the heat load applied to the DFC. A damaged fuel height of 107-inches is determined based on a 50% compaction of the damaged fuel. A damaged fuel length of 103 inches is conservatively used in this modified model. As shown in Figure 3.4-2, the damaged fuel is concentrated at the center (103 inches) in the model, with the material properties conservatively corresponding to the effective properties for the intact fuel assembly. It is conservative to neglect any contact among the fuel debris. The regions below and above the damaged fuel region are conservatively modeled as helium without radiation. The conductance of the DFCs is conservatively not included in the model.
NAC International                                3.4-6
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 A computed heat generation rate based on the total heat load per canister (23kW), divided by 37 fuel assemblies and a volume corresponding to the 103 inches of damaged fuel, is applied to the damaged fuel regions at the four corner slots of the model.
The thermal evaluation of the MAGNATRAN transport cask loaded with PWR fuel assemblies and DFCs is performed for the normal transport condition (hot conditions, ambient temperature of 100&deg;F). Due to the improved conduction performance of the damaged fuel basket configuration design, the maximum fuel temperature is 29&#xba;F lower for the basket loaded with DFCs than for the intact fuel basket configuration (Table 3.4-1). Therefore, the analysis results for the intact fuel configuration, shown in Table 3.4-1, bound the analysis results for the configuration of the basket loaded with DFCs.
GTCC Configuration The MAGNATRAN cask system may contain a TSC with GTCC waste. The maximum heat load for the GTCC configuration is 1.7 kW, which is well below the design basis heat load of 23 kW for the PWR system. Therefore, the thermal analysis results obtained using the three-dimensional cask model with the 23 kW heat load for the PWR system, as described in this Section, bounds those for the GTCC configuration. No further evaluation is required.
3.4.1.1.2        Two-Dimensional Fuel Assembly Model: PWR Fuel The effective conductivity of the fuel is determined by detailed two-dimensional finite element thermal models of the PWR fuel assembly. The model includes the fuel pellets, cladding, gas between the fuel rods, and gas occupying the gap between the fuel pellets and cladding. Modes of heat transfer modeled include conduction and radiation between individual fuel rods for the steady-state condition. Thermal analyses are performed for PWR 14x14, 15x15, 16x16 and 17x17 fuel assemblies. However, because the PWR 14x14 fuel assembly results in the lowest effective thermal conductivities, only the effective properties of that fuel assembly are used in the cask model presented in Section 3.4.1.1.1.
ANSYS PLANE55 conduction elements and MATRIX50 radiation elements are used to model conduction and radiation. Radiation elements are defined between fuel rods and between the fuel rods and the fuel tube. A typical PWR fuel assembly finite element model is shown in Figure 3.4-4, which corresponds to the 14x14 fuel assembly.
The effective conductivity for the fuel is determined by using an equation defined in the Sandia National Laboratory (SNL) Report SAND90-2406. Conservatively, 60% of the conductivities of fuel pellets (UO2) are used in the models. The equation is used to determine the maximum temperature of a square cross-section of an isotropic homogeneous fuel with a uniform NAC International                              3.4-7
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 volumetric heat generation. At the boundary of the square cross-section, the temperature is constrained to be uniform. The expression for the temperature at the center of the fuel is given by:
Tc = Te + 0.29468 (Qa2 / Keff )
where:
Tc =  the temperature at the center of the fuel (&deg;F)
Te =  the temperature applied to the exterior of the fuel (&deg;F)
Q =    volumetric heat generation rate (Btu/hr-in3) a =    half-length of the square cross-section of the fuel (inch)
Keff = effective thermal conductivity for the isotropic homogeneous fuel (Btu/hr-in-&deg;F)
Volumetric heat generation (Btu/hr-in3) based on the design heat load is applied to the pellets.
The effective conductivity is determined based on the heat generated and the temperature difference from the center of the model to the edge of the model. Temperature-dependent effective properties are established by performing multiple analyses using different boundary temperatures. The effective conductivity in the axial direction and the effective density of the fuel assembly are calculated on the basis of the material area ratio. The effective specific heat is computed on the basis of a weighted mass average.
3.4.1.1.3      Two-Dimensional Neutron Absorber Model: PWR Fuel The two-dimensional neutron absorber model is used to calculate the effective conductivities of the neutron absorber, and the neutron absorber retainer. These effective conductivities are used in the three-dimensional cask models (Section 3.4.1.1.1). As shown in Figure 3.4-5, the PWR neutron absorber model includes the neutron absorber, the stainless steel retainer, and the gaps between the neutron absorber and the stainless steel retainer and the surface of the fuel tube.
Helium is considered in the gap. Note that two types of neutron absorbers are considered (see Table 3.2-12 for the corresponding thermal conductivities).
ANSYS PLANE55 conduction elements and LINK31 radiation elements are used to construct the model. The model consists of four layers of conduction elements and two sets of radiation elements that are defined at the gaps (two for each gap). The thickness of the model (x-direction) is the distance measured from the outside surface of the stainless steel retainer to the inside surface of the fuel tube (assuming the neutron absorber is centered between the retainer and the fuel tube, and there is no contact for the length of the basket).
Heat flux is applied at the left side of the model, and the temperature at the right boundary of the model is specified. The heat flux is determined based on the design heat load. The maximum NAC International                              3.4-8
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 temperature of the model (at the left boundary) and the temperature difference (T) across the model are calculated by the ANSYS model. The effective conductivity (Kxx) is determined using the following formula.
q = Kxx (A/L) T or Kxx = q L / (A T) where:
Kxx = effective conductivity (Btu/hr-in-&deg;F) in X direction (the X direction in Figure 3.4-5) q = heat rate (Btu/hr)
A = area (in2)
L = length (thickness) of model (in)
T = temperature difference across the model (&deg;F)
The temperature-dependent conductivity is determined by varying the temperature constraints at one boundary of the model and solving for the temperature difference. The effective conductivity for the parallel path (the Y direction in Figure 3.4-5) is calculated by the following:
Kyy =
K    i ti L
where:
Ki = thermal conductivity of each layer (Btu/hr-in-&deg;F) ti = thickness of each layer (in)
L = total length (thickness) of the model (in) 3.4.1.2        Analytical Models: Cask with BWR Fuel The finite element ANSYS models used in the thermal analysis of the cask transporting BWR fuel are similar to those used in the thermal analysis of the cask transporting PWR fuel discussed in previous sections. A three-dimensional model is employed to evaluate the cask in a horizontal position with the basket in contact with the TSC, which, in turn, is in contact with the cask inner shell. The fuel regions and the fuel tubes with neutron absorber plates are modeled by using effective conductivities. A detailed two-dimensional thermal model of the fuel assembly is used to determine the effective conductivity of the fuel. A two-dimensional thermal model of the fuel tube is used to calculate the effective conductivities of the fuel tube wall and neutron absorber plate. Another two-dimensional thermal model for the fuel tube is used to calculate the effective conductivity of the fuel tube wall with no neutron absorber plate present. These four ANSYS thermal models are described in the following sections.
NAC International                              3.4-9
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 3.4.1.2.1      Three-Dimensional Cask Model: Cask with BWR Fuel The three dimensional MAGNATRAN transport cask model containing a BWR canister is a half-length finite element model (360&deg;) constructed by using ANSYS Revision 10.0. The model considers the fuel assemblies, fuel tubes, basket plates, TSC shell and bottom plate, cask inner shell, lead, outer shell, neutron shield, copper and aluminum cooling fins, and neutron shield shell. The gaps between the individual components are also considered. The ANSYS model is shown in Figure 3.4-6. The internal cavity of the TSC contains the active fuel region, the bottom end fitting zone of the fuel assemblies, and fuel tubes enclosing the fuel assemblies.
The gas inside the TSC is modeled as helium. The gas inside the cask cavity is modeled as helium, because the cavity will be backfilled with helium following fuel loading prior to transport. The finite element model is constructed of ANSYS three-dimensional, solid brick, thermal conduction elements (SOLID70), as well as two-dimensional elements (SHELL57) to model heat conduction/combined conduction and thermal radiation and Superelement (MATRIX50) to model thermal radiation. The principal gaps applied to the model are described in Section 3.2.2.3.
Because the TSC is in the horizontal position during transport, the elements for the TSC shell are in contact with the inner shell of the cask. Similarly, the basket is in contact with the TSC shell.
A 65-degree contact arc is considered for the gaps between the TSC shell and the cask inner shell and a 64-degree arc (five small contact zones) is considered for the gaps between the basket and the TSC shell. The contact is simulated by turning the gap in the contact zones into carbon steel that has high thermal conductivities (in range of 2 Btu/hr-in-&deg;F).
Solar insolance and ambient temperature conditions are applied to the cask surface including the heat fins. Insolance is used at the exterior surface of the cask and the heat fins and is based on the amount of insolation required by 10 CFR 71 to be applied over a 12-hour period evaluated in the steady state (applied over 24 hr simulating 12-hour period of solar exposure and 12-hour period of no solar exposure). The heat flux resulting from insolation on a curved surface is calculated as follows:
Btu        12 hr        1 ft 2 1475              x        x          = 0.427 Btu/hr-in2.
12 hr - ft 2  24 hr      144 in 2 The heat flux resulting from solar insolance is factored by the emissivities of the materials on which the insolance is applied.
The model is analyzed to determine the maximum temperatures for the basket, TSC, cask shells, radial shielding, and surface conditions under normal conditions of transport. All material thermal properties are shown in Table 3.2-1 through Table 3.2-12.
NAC International                                3.4-10
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 The fuel regions (inside tubes) are modeled as homogeneous regions with effective conductivities, determined by the two-dimensional fuel model as described in Section 3.4.1.2.2.
The fuel assembly tube and the neutron absorber plate, including gaps on both sides of the neutron absorber sheet and the gap between the stainless steel cladding for neutron absorber and disk, are modeled as one element thick with effective conductivities, as established by using the two-dimensional tube model discussed in Section 3.4.1.2.3.
The neutron shield assemblies of the MAGNATRAN transport cask consist of NS-4-FR, thermal insulator, and stainless steel shells. The orthotropic effective material properties are computed for the three layers as listed below.
: 1) 0.125-inch silicone foam
: 2) 0.125-inch thermal insulator
: 3) 0.12-inch stainless steel In the model, radiation heat transfer is considered from the bottom of the fuel region to the top surface of the TSC bottom plate, and from the exterior surfaces of the fuel tubes to the inner surface of the TSC shell. The radiation from the bottom of the fuel region to the top surface of the TSC bottom plate is modeled by using effective properties. The radiation from the exterior surfaces of the fuel tubes to the inner surface of the TSC shell is modeled by using ANSYS Superelement, MATRIX50.
Radiation at the cask surface to ambient is combined with the convection effect by using the method described in Section 3.2.2.2. The convection heat transfer coefficient is calculated on the basis of the formula shown in Section 3.2.3. Effective emissivities are used for all radiation calculations, with the form factor taken to be unity. Effective emissivity is computed by using the following formula based on corresponding material emissivities:
eff = 1/ (1/1 + 1/ 2 - 1)
Solar insolance is applied to the cask surface for the Hot condition (ambient temperature =
100&deg;F). A uniform heat flux is considered for the insolance.
Volumetric heat generation (Btu/hr-inch3) is applied to the active fuel region of 87 assemblies on the basis of a total heat load of 22 kW, with an active fuel rod length of 144 inches, and an axial power distribution as shown in Figure 3.4-7.
The conservative conditions in this three-dimensional cask model are identical to those in the cask model for the PWR fuels.
NAC International                              3.4-11
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 3.4.1.2.2      Two-Dimensional Fuel Assembly Model: BWR Fuel The two-dimensional fuel assembly models include the fuel pellets, cladding, fuel channel, and the helium occupying the space between fuel rods. The media is considered to be helium for transport conditions. The two-dimensional finite element models of the fuel assemblies are used to determine the effective conductivities for the BWR fuel assemblies. The effective conductivities are used in the three-dimensional fuel basket models described in Section 3.4.1.2.1. For the BWR fuel assemblies, four separate types are considered: 7x7, 8x8, 9x9 and 10x10. A fuel channel is considered since it may be present and it will result in bounding fuel cladding temperatures. The effective properties corresponding to the 10x10 BWR fuel assembly type (Table 3.2-11) are used in the cask model as presented in Section 3.4.1.2.1, since the 10x10 fuel has the lowest thermal conductivities.
Modes of heat transfer modeled include conduction and radiation between individual fuel rods for the steady-state condition. ANSYS PLANE55 conduction elements and MATRIX50 radiation elements are used to model conduction and radiation. Radiation elements are defined between fuel rods and between the fuel rods and the fuel channel. The BWR fuel assembly model only considers the region up to the inner surface of the channel, and a typical BWR fuel assembly is shown in Figure 3.4-8, which corresponds to the 10x10 fuel assembly.
The effective conductivity for the fuel is determined by using an equation defined in a Sandia National Laboratory (SNL) Report, as discussed in Section 3.4.1.1.2. Conservatively, 60% of the conductivities of fuel pellets (UO2) are used in the models (Table 3.2-11).
Volumetric heat generation (Btu/hr-in3) based on the design heat load is applied to the pellets.
The effective conductivity is determined based on the heat generated and the temperature difference from the center of the model to the edge of the model. Temperature-dependent effective properties are established by performing multiple analyses using different boundary temperatures. The effective conductivity in the axial direction and the effective density of the fuel assembly are calculated on the basis of the material area ratio. The effective specific heat is computed on the basis of a weighted mass average.
3.4.1.2.3      Two-Dimensional Neutron Absorber Model: BWR Fuel The two-dimensional neutron absorber model is used to calculate the effective conductivities of the neutron absorber, the neutron absorber retainer, and the fuel channel. These effective conductivities are used in the three-dimensional cask models (Section 3.4.1.2.1). Two neutron absorber models are required: one with the neutron absorber plate and channel, and one with the channel but without the neutron absorber plate, corresponding to the enveloping configurations NAC International                              3.4-12
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 of the 10x10 BWR fuel assembly. Thermal conductivities for the Type 1 neutron absorber, as shown in Table 3.2-12, are used in the models.
ANSYS PLANE55 conduction elements and LINK31 radiation elements are used to construct the model. As shown in Figure 3.4-9, the first BWR neutron absorber model includes the fuel channel, the retainer, the neutron absorber and associated gaps. As shown in Figure 3.4-10, the second BWR neutron absorber model includes the fuel channel and the gap between the fuel channel and the fuel tube surface.
Heat flux is applied at the left side of the model (fuel channel for BWR model), and the temperature at the right boundary of the model is specified. The heat flux is determined based on the design heat load. The maximum temperature of the model (at the left boundary) and the temperature difference (T) across the model are calculated by the ANSYS model. The effective conductivity (Kxx) is determined using the following formula.
q = Kxx (A/L) T or Kxx = q L / (A T) where:
Kxx = effective conductivity (Btu/hr-in-&deg;F) in X direction in Figure 3.4-9 and Figure 3.4-10 q = heat rate (Btu/hr)
A = area (in2)
L = length (thickness) of model (in)
T = temperature difference across the model (&deg;F)
The temperature-dependent conductivity is determined by varying the temperature constraints at one boundary of the model and solving for the temperature difference. The effective conductivity for the parallel path (the Y direction in Figure 3.4-9 and Figure 3.4-10) is calculated by the following:
Kyy =
K    i ti L
where:
Ki = thermal conductivity of each layer (Btu/hr-in-&deg;F) ti = thickness of each layer (in)
L = total length (thickness) of the model (in)
NAC International                              3.4-13
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 3.4.1.3        Analytical Models: Cask Periodic CFD Model As shown in Figure 3.4-11, a three-dimensional periodic axial section of the cask is modeled using the Computational Fluid Dynamic (CFD) code, FLUENT. The model includes the cask outer shell, the neutron shield, the cooling fins and the surrounding air at ambient temperature of 100&#xba;F. In the cask axial direction, the model includes one-half the axial length of a fin. Half of the cask (180&#xba; in the circumferential direction) is modeled because of symmetry. A close-up section of the mesh is shown in Figure 3.4-12. The model contains 1,647,000 computational cells, with higher concentration of cells near the wall to capture the near-wall velocity and temperature gradients. Transitional k- turbulence model is used for the simulation. The mesh ensures that the average y+ is less than 1.0 on the cask surface wall. Natural convection of air surrounding the cask is simulated, and surface temperature and heat flux are determined from the simulation results to determine the convection film coefficients. The average convective film coefficients for eight divisions (180 degrees) of the cask outer surface in the circumferential direction are determined.
The personnel barrier is made from aluminum mesh with a large ratio of open area. Due to the small surface area of the aluminum mesh and the low emissivity of aluminum (0.22), the personnel barrier absorbs an insignificant amount of solar energy or radiant energy from the transport cask. The high percentage of open area allows free flow of the air through the aluminum mesh. The additional flow restriction by the mesh is insignificant; therefore, natural convection is not affected by the personnel barrier. The thermal effect of the personnel barrier on the transport thermal performance is insignificant; therefore, the personal barrier is not explicitly included in the CFD thermal model.
3.4.1.4        Test Model The methods previously described have been used in previous transport cask licensing and are sufficient to show that the MAGNATRAN transport cask meets the criteria set forth in Section 3.4. Therefore, no thermal test model is created.
3.4.2          Maximum Temperatures Using the thermal models described in Section 3.4.1.1 and Section 3.4.1.2, temperatures for the PWR and BWR cask body, TSC, basket, and fuel rod cladding are determined for two normal conditions of transport: (1) maximum decay heat, 100&deg;F ambient temperature, and solar insolance; and (2) maximum decay heat, -40&deg;F ambient temperature, and no insolance. The maximum temperatures of the principal PWR and BWR cask components, TSC, basket NAC International                              3.4-14
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 components, and fuel rod cladding are shown in Table 3.4-1 and Table 3.4-2 for the two environmental conditions listed above. For the environmental condition with no decay heat,
-40&deg;F ambient temperature, and no insolance, no analysis is necessary because all package temperatures will equilibrate to -40&deg;F. The cask body maximum allowable component temperatures are shown in Section 3.3.2.
As discussed in Section 3.1, for the PWR basket with neutron absorbers with a Type 1 thermal conductivity (see Table 3.2-12), the heat load per cask is limited to 22 kW. Two additional analyses (hot and cold conditions as described above for normal transport conditions) were performed for this PWR configuration (22 kW). The analysis results indicate that the temperatures reported in Tables 3.4-1 and 3.4-2 are bounding.
Note that the O-ring temperatures for the BWR configuration are considered to be bounded by those for the PWR configuration, since the decay heat at the top portion of the cask for the BWR configuration is less than that for the PWR configuration, based on the comparison of maximum decay heat (PWR: 23 kW and BWR: 22 kW) and the fuel assembly axial power distribution (Figure 3.4-3 and Figure 3.4-7).
Based on the temperature profile from the analysis results using the periodic cask CFD model (Figure 3.4-11), the maximum temperature of the personnel barrier is 162&deg;F.
3.4.3          Minimum Temperatures The minimum temperatures of the cask and components occur with no heat load and -40&deg;F.
These conditions yield a uniform -40&deg;F temperature throughout the MAGNATRAN transport cask package.
3.4.4          Maximum Internal Pressures In the following sections, the maximum internal pressures for normal conditions of transport are calculated for intact PWR and BWR canisters and for the MAGNATRAN transport cask cavity under the condition of hypothetical canister boundary failure. No normal condition of operation breaches the canister boundary. Gauge pressure inside the cask cavity is, therefore, solely the result of the 1.36 atmosphere (20 psia) cask backfill being adjusted from a conservative backfill temperature of 20&deg;C to cask operating temperature. Maximum normal operating pressure for the cask cavity is calculated to be 23 psig. Conservatively, the cask containment boundary is structurally evaluated based on a hypothetical failure of the canister boundary. The hypothetical canister failure results in a substantial increase in cask cavity pressure. The maximum internal pressures for an intact canister and for the cask cavity, assuming a failed canister, are summarized in Table 3.4-3.
NAC International                                3.4-15
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 3.4.4.1        Maximum Internal Pressure for PWR Fuel Canister and Transport Cask The internal pressures within the PWR fuel TSC and transport cask are a function of fuel type, fuel condition (failure fraction), burnup, TSC length, and the backfill gases in the TSC and cask cavity. Gases included in the pressure evaluation include rod-fill, rod fission and rod backfill gases, TSC and cask backfill gases and burnable poison generated gases. Each of the fuel types expected to be loaded into the MAGNATRAN transport cask is separately evaluated to arrive at a bounding TSC pressure.
Fission gases include all fuel material generated gases including long-term actinide decay generated helium. Based on detailed SAS2H calculations of the maximum fissile material mass assemblies in each TSC, the quantity of gas generated by the fuel rods rises as burnup and cool time is increased and enrichment is decreased. To assure the maximum gas is available for release, the PWR inventories are extracted from conservatively high 70,000 MWd/MTU burnup cases at an enrichment of 1.9 wt. % 235U and a cool time of 40 years. Gases included are all krypton, iodine, and xenon isotopes in addition to helium and tritium (3H). Molar quantities for each of the maximum fissile mass assemblies are summarized in Table 3.4-4. Fuel generated gases are scaled by fissile mass to arrive at molar contents of other MAGNATRAN fuel types.
Fuel rod backfill pressure varies significantly between the PWR fuel types. The maximum reported backfill pressure is listed for the Westinghouse 17x17 fuel assembly at 500 psig. With the exception of the B&W fuel assemblies, which are limited to 435 psig, all fuel assemblies evaluated are set to the maximum 500 psig backfill reported for the Westinghouse assembly.
Backfill quantities are based on the free volume between the pellet and the clad and the plenum volume. The fuel rod backfill gas temperature is conservatively assumed to have an initial temperature of 68&#xba;F.
Burnable poison rod assemblies (BPRAs) placed within the TSC may contribute additional molar gas quantities due to (n, alpha) reactions of fission generated neutrons with 10B during in-core operation. 10B forms the basis of a portion of the neutron poison population. Other neutron poisons, such as gadolinium and erbium, do not produce a significant amount of helium nuclides (alpha particles) as part of their activation chain. Primary BPRAs in existence include Westinghouse Pyrex (borosilicate glass) and WABA (wet annular burnable absorber) configurations, as well as B&W BPRAs and shim rods employed in CE cores. The CE shim rods replace standard fuel rods to form a complete assembly array. The quantity of helium available for release from the BPRAs is directly related to the initial boron content of the rods and the release fraction of gas from the matrix material in question. Release from either of the low temperature, solid matrix materials is likely to be limited, but no release fractions were NAC International                                3.4-16
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 available in open literature. Therefore, a 100% release fraction is assumed based on a boron content of 0.0063 g/cm 10B per rod, with the maximum number of rods per assembly. The maximum number of rods is 16 for Westinghouse core 14x14 assemblies, 20 rods for Westinghouse and B&W 15x15 assemblies, and 24 rods for Westinghouse and B&W 17x17 assemblies. The length of the absorber is conservatively taken as the active fuel length. CE core shim rods are modeled at 0.0126 g/cm 10B for 16, 12, and 12 rods applied to CE manufactured 14x14, 15x15 and 16x16 cores, respectively.
Fuel rods may contain integral fuel burnable absorbers (IFBAs). The absorber is typically zirconium diboride and, as such, will generate helium gas as part of the neutron capture process.
IFBA assemblies are generally used as an alternative or augmentation to BPRA use. The IFBA loading employed in the pressure analysis is based on NUREG-6760 as 2.355 mg 10B/inch in 156 rods. To bound the presence of both BPRA and IFBA materials in a fuel assembly, when loaded, the cask pressure calculations assume a design basis IFBA loading in the fuel assembly with a design basis BPRA inserted into the assembly guide tubes prior to loading into the system.
Rather than accounting for the IFBA rods as an individual component, the pressure calculations double the BPRA gases for non-CE fuel assembly types (bound the combined inventory of IFBA and BPRA based on linear loading and number of rods affected).
Under normal operating conditions, the helium backfill for a TSC containing PWR fuel assemblies is at a bounding maximum average gas temperature of 500&deg;F and a pressure of 103 psig. The cask backfill temperature and pressure are assumed to be 68&#xba;F and 1.36 atm. Free volume inside each PWR TSC is listed in Table 3.4-5. Also included are the total TSC and cask free volumes. The listed free volumes do not include fuel assembly components since these components vary for each assembly type and fuel insert, but do account for axial spacers. By subtracting the rod and guide tube volumes and all hardware component volumes from the listed free volume, the free volume of the TSCs including fuel assemblies and a load of 24 BPRAs can be determined. For the Westinghouse BPRAs, the Pyrex volume is employed since it displaces more volume than the WABA rods.
The total pressure for each of the MAGNATRAN payloads is found by calculating the releasable molar quantity of each gas (30% of the fission gas, 100% of the rod backfill, BPRA, IFBA and shim rod gases adjusted for the 3% fuel failure fraction and the TSC and cask backfill gases), and summing the quantities directly. The quantity of gas is then employed in the ideal gas equation in conjunction with the average gas temperature at normal operating conditions to arrive at system pressures. The normal condition average temperature of the gas within the TSC and cask is considered to be 515&deg;F, rounded up from the maximum evaluated normal temperature for both the PWR and BWR fuel of 508&deg;F. Each of the MAGNATRAN PWR fuel types is individually NAC International                            3.4-17
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 evaluated for normal condition pressure, and the maximum normal condition PWR fuel TSC and cask pressures are determined to be 114.7 psig and 112.6 psig, respectively. A summary of the maximum pressure in the TSC and in the cask for each PWR TSC length is shown in Table 3.4-3. The table also includes the fuel type producing the listed maximum pressures.
Similarly, the maximum internal pressures are calculated for the DF-PWR TSC and the transport cask. The normal condition pressures are determined to be 114.8 psig and 112.6 psig for the DF-PWR TSC and the cask, respectively (Table 3.4-3).
3.4.4.2        Maximum Internal Pressure for BWR Fuel Canister and Transport Cask BWR TSC and cask maximum pressures are determined in the same manner as those documented for the PWR cases. Primary differences between PWR and BWR analysis include a rod backfill gas pressure of 132 psig, a maximum burnup of 60,000 MWd/MTU used to generate fission gases, and pressurizing gases are limited to fission gases (including helium actinide decay gas), rod backfill gases, and canister and cask backfill gas. The 132 psig employed in this analysis is significantly higher than the 6 atmosphere maximum pressure reported in open literature. BWR assemblies do not contain an equivalent to the PWR BPRAs and, therefore, do not require 10B helium generated gases to be added. Fissile gas inventories for the maximum fissile material assemblies in each of the three BWR lattice configurations (7x7, 8x8, and 9x9) are shown in Table 3.4-6. Free volumes, without fuel components, in MAGNATRAN TSCs are shown in Table 3.4-7. Cask and TSC maximum pressures for each TSC are listed in Table 3.4-3.
The maximum normal condition TSC pressure of 112.7 psig is based on a GE 7x7 assembly designed for a BWR/2-3 reactor. Cask maximum pressure for the GE 8x8 fuel is 110.9 psig.
Similar fuel masses and displaced volume account for similar system pressures.
3.4.5          Maximum Thermal Stresses The ANSYS program is used to obtain temperatures for use in the structural analyses of Chapter 2.0. These temperatures are presented in Table 3.4-1 and Table 3.4-2. The thermal stress calculations for normal conditions of transport are performed in Sections 2.6.1 and 2.6.2.
3.4.6          Evaluation of Package Performance for Normal Conditions of Transport Results of thermal analysis of the MAGNATRAN transport cask containing PWR and BWR fuel under normal conditions of transport are summarized in Tables 3.4-1 through 3.4-3. The maximum fuel rod cladding temperature is maintained below 752&deg;F (400&deg;C); temperatures of safety-related cask components are maintained within their safe operating ranges; and thermally NAC International                              3.4-18
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 induced stresses in combination with pressure and mechanical load stresses are shown in the structural analysis of Chapter 2.0 to be less than the allowable stresses. As shown in Section 3.4.2, the personnel barrier temperature of 162&deg;F is below the allowable temperature of 185&deg;F for exclusive use shipment. Therefore, the MAGNATRAN transport cask can safely transport the design basis fuel under the normal conditions of transport specified in 10 CFR 71.71.
NAC International                              3.4-19
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 3.4-1    Three-Dimensional PWR Cask Finite Element Model NAC International                3.4-20
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                  Revision 1 Figure 3.4-2    Three-Dimensional Model of PWR Cask Loaded with DFC (Intact Fuel and Damaged Fuel Assemblies)
NAC International                    3.4-21
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 3.4-3  Design Basis PWR Fuel Assembly Axial Power Distribution NAC International                3.4-22
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 3.4-4    PWR 14x14 Fuel Assembly Two-Dimensional Finite Element Model Y
Z  X NAC International                  3.4-23
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                          Revision 1 Figure 3.4-5        Two-Dimensional PWR Neutron Absorber Model Y
7                          8 1        2              3        4 Temperature Boundary Conditions Heat Flux X
5                      6 Element Number                                      Material 1          Stainless Steel 2          Media - Helium 3          Neutron Absorber 4          Media - Helium 5,7          Radiation Links (between stainless steel and aluminum) 6,8          Radiation Links (between aluminum and nickel plated carbon steel)
NAC International                              3.4-24
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 3.4-6    Three-Dimensional BWR Cask Finite Element Model NAC International                3.4-25
 
MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 3.4-7  Design Basis BWR Fuel Assembly Axial Power Distribution NAC International                3.4-26
 
MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 3.4-8 BWR 10x10 Fuel Assembly Two-Dimensional Finite Element Model NAC International                  3.4-27
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Figure 3.4-9    Two-Dimensional BWR Neutron Absorber Model 11                      12 10 1              2            3 4            5          6      Temperature B.C.
Heat Flux Y
7              8                      9 X
Element Number                                Description 1      Zirconium-based alloy (BWR fuel channel) 2, 4, 6  Media - Helium 3      Stainless Steel Retainer Strip 5      Neutron Absorber 7, 10    Radiation Links (between zirconium-based alloy and stainless steel) 8, 11    Radiation Links (between stainless steel and aluminum) 9, 12    Radiation Links (between aluminum and nickel-plated carbon steel)
NAC International                          3.4-28
 
MAGNATRAN Transport Cask SAR                                                    January 2022 Docket No. 71-9356                                                                  Revision 1 Figure 3.4-10    Two-Dimensional BWR Neutron Absorber Model with Fuel Channel Only 4
Temperature 1                                2                                  B.C.
Heat Flux Y
X                                    3 Element Number                              Description 1      Zirconium-based alloy (BWR fuel channel) 2      Media - Helium 3, 4    Radiation Links (between zirconium-based alloy and nickel-plated carbon steel)
NAC International                        3.4-29
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Figure 3.4-11  Three-Dimensional Periodic Cask CFD Model NAC International                3.4-30
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 3.4-12  Mesh of a Section of the Periodic Cask CFD Model NAC International                  3.4-31
 
MAGNATRAN Transport Cask SAR                      January 2022 Docket No. 71-9356                                  Revision 1 Figure 3.4-13      [DELETED]
NAC International                3.4-32
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                    January 2022 Docket No. 71-9356                                                  Revision 1 Table 3.4-1      Maximum Component Temperatures - Normal Conditions of Transport, Maximum Decay Heat, Maximum Ambient Temperature NAC International                  3.4-33
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Table 3.4-2        Maximum Component Temperatures - Normal Conditions of Transport, Maximum Decay Heat, Minimum Ambient Temperature Table 3.4-3      Maximum Internal Pressures for Transport Under Normal Conditions NAC International                    3.4-34
 
MAGNATRAN Transport Cask SAR                                                  January 2022 Docket No. 71-9356                                                                  Revision 1 Table 3.4-4            PWR Per Assembly Fuel Generated Gas Inventory Array                Assy Type            MTU            Moles 14x14              WE Standard          0.4144          35.52 15x15                  B&W              0.4807          41.32 16x16                    CE              0.4417          38.10 17x17              WE Standard          0.4671          40.18 Table 3.4-5            PWR Canister Free Volume (No Fuel or Inserts)
Canister Type                    Short      Long Basket Volume    (in3)                                  75,221    78,420 Canister Height (inch)                                  184.75    191.75 Canister Free Volume w/o Fuel (liter)                    9,922    10,324 Canister and Cask Free Volume w/o Fuel (liter)          10,526    10,461 Table 3.4-6            BWR Per Assembly Fuel Generated Gas Inventory Array                Assy Type              MTU            Moles 7x7            GE 7x7 (49 Rods)          0.1985          16.78 8x8            GE 8x8 (63 Rods)          0.1880          16.07 9x9            GE 9x9 (79 Rods)          0.1979          16.86 Table 3.4-7            BWR Canister Free Volume (No Fuel or Inserts)
Canister Type                          Short              Long Basket Volume  (in3)                                        82,442            85,808 Canister Height (inch)                                      184.75            191.75 Canister Free Volume w/o Fuel (liter)                        9,797            10,196 Canister and Cask Free Volume w/o Fuel (liter)              10,402            10,333 NAC International                              3.4-35
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 3.5              Thermal Evaluation for Hypothetical Accident Conditions This section provides the thermal evaluation of the MAGNATRAN transport cask containing PWR or BWR fuel under hypothetical accident conditions. The objective of the thermal analysis of the cask under hypothetical accident conditions is to demonstrate that the cask containment boundary structural components are maintained within their safe operating temperature ranges.
Because the fire accident is considered to be of short duration, the limit for maximum cladding temperature may be higher than that for normal conditions of transport. A cladding temperature limit of 1,058&deg;F, however, is conservatively applied. To determine their cumulative effect on the package, the tests specified in 10 CFR 71.73 are to be performed or analyzed in sequence. Thus, the MAGNATRAN transport cask is analyzed for the fire transient, specified in 10 CFR 71.73(c)(4), assuming that the package is in a form consistent with the damage sustained in the free-drop and puncture tests of 10 CFR 71.73.
3.5.1            Thermal Models Finite element models are used in the thermal evaluation of the MAGNATRAN transport cask under hypothetical accident conditions. The same cask body model is used to evaluate the cask transporting the PWR fuel and the BWR fuel. Heat flux is applied differently for the PWR and BWR fuels to the inner shell of the cask model to simulate the decay heat of the fuel. The distribution of the heat flux corresponds to the power distribution shown in Figure 3.4-3 and Figure 3.4-7 for PWR and BWR fuel, respectively.
The environmental conditions and decay heat loads for the analysis are provided as discussed in Section 3.5.1.1. Convection during the fire accident has been considered. Results are given in the form of maximum component temperatures in Table 3.5-1 (PWR) and Table 3.5-2 (BWR).
3.5.1.1          Analytical Models Taking advantage of the symmetry of geometry and thermal loads of the cask about its major axis, the finite element model of the cask (with PWR fuel and with BWR fuel) are three-dimensional one-fifteenth model representations of the cask. The finite element model is constructed by using ANSYS two-dimensional thermal shell (SHELL57) and three-dimensional thermal elements (SOLID70). The loaded TSCs are not explicitly modeled. The maximum temperatures of the basket components and fuel cladding are conservatively calculated by adding the increase of the cask maximum inner shell temperature due to fire (from the fire transient analysis using the cask model in this section) to the normal condition temperatures of the component of interest (from Table 3.4-1). The maximum component temperatures for the NAC International                              3.5-1
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                        Revision 1 hypothetical accident case are provided in Table 3.5-1 and Table 3.5-2 for the PWR fuel and the BWR fuel, respectively. The cask model for PWR fuel and BWR fuel used in the accident condition evaluation is shown in Figures 3.5-1 through 3.5-3.
In the model, the cask body is modeled as three concentric shells (the inner stainless steel shell, the lead shielding, and the outer stainless steel shell), the layer of the neutron shield assemblies, and the cask fins. The gap between the cask and lead is considered.
The analyses of the finite element models are composed of three distinct phases:
: 1. Initial conditions (steady-state): Maximum decay heat of the fuel; ambient temperature = 100&deg;F; solar insolance
: 2. 30-min fire (transient): Maximum decay heat of the fuel; fire temperature = 1,475&deg;F (including convection and radiation); no solar insolance
: 3. Post-fire cool-down (transient): Maximum decay heat of the fuel; ambient temperature = 100&deg;F; solar insolance For the first two phases of the analyses, the neutron shield of NS-4-FR is considered to be functional. At the end of the 30-min fire transient, the neutron shield of NS-4-FR is considered to be voided. The air conductivity is then used for the voided NS-4-FR region.
The effect of impact limiters is included in the model for the fire analysis. The area covered by the impact limiter is assumed adiabatic. The fire transient models include natural convection and thermal radiation boundary conditions during all phases of the analyses and account for solar insolance effects in the pre- and post-fire transient phases. The natural convection during the fire is modeled with a convection coefficient of 0.01833 Btu/hr-in2-&deg;F that is 50% more than the value of 0.01222 Btu/hr-in2-&deg;F specified in the PATRAM 95 Proceedings. After the fire, the convection coefficient, as described in Section 3.2.3, is used. The natural convection and thermal radiation boundary conditions are applied to all external cask surfaces not covered by the impact limiters. The solar insolance boundary condition is also applied to all external cask surfaces not covered by the impact limiters. During all phases of the analyses, the areas of the cask covered by the impact limiters are modeled as adiabatic surfaces.
To confirm the adequacy of the finite element mesh, a sensitivity study for the mesh of finite element model for the PWR configuration of fire accident condition is performed. The three-dimensional model described in this section is used for the sensitivity study for the fire accident condition. The total number of the elements in the model for the fire condition is increased by a factor of 2.21 or 121% more elements than the original mesh. The mesh sensitivity study shows that using current mesh are conservative in determining the maximum component temperatures, and therefore, is adequate.
NAC International                                3.5-2
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 An additional fire transient analysis is performed to demonstrate the conservatism of T method to determine the maximum temperatures for the fuel and basket components for the fire accident as described at the beginning of this section. A full-length half-symmetry (180&deg;) three-dimensional finite element model corresponding to the cask and loaded canister (including basket and fuel) for the PWR configuration is used for this transient analysis. The model is similar to the three-dimensional models presented in Section 3.4.1.1.1 for the evaluation of normal conditions of transport. The transient analysis is performed for the same three phases as described above and the maximum temperature is 762&deg;F for the fuel and 741&deg;F for the basket, which are significantly lower than the temperatures reported in Table 3.5-1. Therefore, it is conservative to use the T method to determine the maximum temperatures for cask contents for the fire accident.
3.5.1.2          Test Model The thermal analyses presented in Section 3.5 demonstrate that the MAGNATRAN transport cask is capable of meeting the design basis temperature requirements under hypothetical accident conditions. The methodology used in this analysis is conservative, consistent with those used in prior transport cask licensing, and sufficient to show that the cask meets the criteria set forth in Section 3.5. Therefore, no thermal test model is created.
3.5.2            Package Conditions and Environment As demonstrated in Chapter 2, the MAGNATRAN transport cask body sustains no major damage as a result of the free drop and puncture events, and the impact limiters remain attached to the cask. Since the pin puncture only results in local damage to the neutron shield, the cask body is modeled in an undamaged configuration.
The emissivity of stainless steel is 0.36. The copper emissivity is 0.65. The aluminum emissivity of 0.22 is conservatively used for the aluminum plates on the cask surface. However, during the 30-min fire portion of the transient analysis, the emissivity is assumed to be 0.9.
Also, the emissivity of the fire is assumed to be 1.0.
At the end of the fire, the NS-4-FR in the neutron shield is assumed to be destroyed. The result is a lower conductivity, and thus a greater resistance to heat leaving the cask. The emissivity of stainless steel of 0.36, the emissivity of aluminum of 0.22, and the emissivity of copper of 0.65 are again used, which also provides a greater resistance to heat leaving the cask. The cool-down is analyzed for a period of 64 hours after the end of the fire. At the end of the cool-down period, all cask components have already reached their maximum temperatures and have begun to cool down to their post-fire, steady-state temperatures.
NAC International                              3.5-3
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                      Revision 1 3.5.3            Package Temperatures The ANSYS computer code is used to evaluate the MAGNATRAN transport cask for the hypothetical accident fire. A steady-state initial temperature profile is calculated on the basis of a 100&deg;F ambient temperature and solar insolance and used as initial condition for the 30-min fire transient, which considers exposure of the cask to a 1,475&deg;F radiant environment. This exposure is followed by a 64-hour cool-down period, which considers exposure of the cask to a 100&deg;F ambient temperature and solar insolance.
The safe operating temperature ranges of the components specified in Section 3.3.2 are also evaluated for the fire accident. These components include the metallic containment O-ring seals and lead gamma shielding. The radial neutron shield temperature is not considered to be significant; therefore its loss is assumed in this accident. The shielding consequences of the fire accident on the radial neutron shield are provided in Chapter 5.
The maximum component temperatures during the hypothetical fire accident and cool-down period are provided in Table 3.5-1 (PWR) and Table 3.5-2 (BWR). The tables also show the maximum component temperatures for the fuel cladding, and the lead in the cask body. None of the safety-related components, with the exception of the radial neutron shield, as noted previously, exceeds its safe operating temperature as a result of the fire accident. The temperature histories of the major cask components are shown in Figures 3.5-4 through 3.5-9 for the PWR configuration. The temperature histories of the major cask components for the BWR configuration are not shown due to the similarity of the histories to those for the PWR configuration.
3.5.4            Maximum Internal Pressures The internal pressure analysis requires the calculation of the free volume of the canister, calculation of the releasable quantity of fill and fission gas in the fuel assemblies, BPRA gases, and the subsequent calculation of the pressure in the canister and cask if these gases are added to the backfill helium pressure (initially at 1.36 atm) already present in the TSC and cask (Sections 3.4.1.1 and 3.4.1.2). TSC and cask pressures are determined for the accident condition of 100% fuel failure and maximum temperature. The method employed in the accident analyses is identical to that employed in the normal condition evaluation of Section 3.4.1.
For the accident condition, the gas quantities associated with 100% fuel rod failure are combined with the bounding fire accident average gas temperatures of 670&deg;F to determine the system pressures. The maximum TSC pressure for the 100% fuel rod failure and maximum temperature accident (fire) condition is 276.6 psig (DF-PWR). The maximum transport cask pressure is 256.5 psig (DF-PWR), where the cask pressure assumes the loss of TSC confinement.
NAC International                                3.5-4
 
MAGNATRAN Transport Cask SAR                                                        January 2022 Docket No. 71-9356                                                                    Revision 1 The maximum internal pressures for the hypothetical accident condition are summarized in Table 3.5-3.
3.5.5          Maximum Thermal Stresses The maximum thermal stresses in the cask and the cask contents resulting from the hypothetical accident fire are not calculated. Thermal stresses are secondary stresses. Evaluation of secondary stresses is not required by the ASME code for accident conditions.
3.5.6          Evaluation of Package Performance for Hypothetical Accident Conditions The MAGNATRAN transport cask thermal performance has been assessed for the hypothetical accident fire transient, as specified in 10 CFR 71. Except for the radial neutron shield, which is assumed to be lost, all cask components important to safety remain within their safe operating ranges. The ability of the cask to safely contain its radioactive contents is not compromised.
NAC International                              3.5-5
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                      January 2022 Docket No. 71-9356                                                    Revision 1 Figure 3.5-1    Three-Dimensional Finite Element Cask Model (PWR and BWR)
NAC International                    3.5-6
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                    Revision 1 Figure 3.5-2    Upper Region of Three-Dimensional Cask Finite Element Model NAC International                    3.5-7
 
NAC PROPRIETARY INFORMATION REMOVED MAGNATRAN Transport Cask SAR                                        January 2022 Docket No. 71-9356                                                      Revision 1 Figure 3.5-3    Cross-Section of Three-Dimensional Cask Finite Element Model NAC International                    3.5-8
 
MAGNATRAN Transport Cask SAR                                                      January 2022 Docket No. 71-9356                                                                    Revision 1 Figure 3.5-4                    Hypothetical Accident Conditions Maximum Lead Temperature History Maximum Temperature of Lead 600 550 500 Temperature (&deg;F) 450 400 350 300 250 200 0  10      20      30        40    50      60      70 Time (hour)
NAC International                                    3.5-9
 
MAGNATRAN Transport Cask SAR                                                          January 2022 Docket No. 71-9356                                                                      Revision 1 Figure 3.5-5                      Hypothetical Accident Conditions Maximum Exterior Temperature History Maximum Temperature of Surface 1600 1400 1200 Temperature (&deg;F) 1000 800 600 400 200 0      10      20      30      40    50      60      70 Time (hour)
NAC International}}

Latest revision as of 01:21, 16 November 2024

Redacted Magnatran SAR Submittal, Rev. 1
ML22299A191
Person / Time
Site: 07109356
Issue date: 03/07/2022
From:
NAC International
To:
Office of Nuclear Material Safety and Safeguards
Shared Package
ML22299A190 List:
References
ED20220001
Download: ML22299A191 (1)


Text