ML20065M475: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 18: Line 18:
{{#Wiki_filter:.
{{#Wiki_filter:.
hblT Q;
hblT Q;
Department of Energy                                                           9 Washington, D.C. 20545 Docket No. 50-537
Department of Energy 9
                                                                              -(3 HQ:S:82:105 0CT 151982 r
Washington, D.C. 20545
Mr. Paul S. Check, Director CRBR Program Office                                                 , . ,,
-(3 Docket No. 50-537 HQ:S:82:105 0CT 151982 r
Office of Nuclear Reactor Regulation                                 -C U.S. Nuclear Regulatory Commission                                 ,
Mr. Paul S. Check, Director CRBR Program Office Office of Nuclear Reactor Regulation
Washington, D.C. 20555                                           -s
-C U.S. Nuclear Regulatory Commission Washington, D.C.
20555
-s


==Dear Mr. Check:==
==Dear Mr. Check:==
Line 30: Line 32:
OF HCDA ENERGETICS MEETING HELD ON SEPTEMBER 21, 1982 The meeting agenda, attendance list, and viewgraphs distributed at the subject meeting are enclosed as Enclosures 1, 2, and 3, respectively. The formal presentations and general discussion focused on clarification of technical issues associated with the CRBRP/P0 response to formal NRC questions. Presentations were made by both the NRC and CRBRP consultants. As a result of the meeting, the Project will undertake the actions listed in Enclosure 4.
OF HCDA ENERGETICS MEETING HELD ON SEPTEMBER 21, 1982 The meeting agenda, attendance list, and viewgraphs distributed at the subject meeting are enclosed as Enclosures 1, 2, and 3, respectively. The formal presentations and general discussion focused on clarification of technical issues associated with the CRBRP/P0 response to formal NRC questions. Presentations were made by both the NRC and CRBRP consultants. As a result of the meeting, the Project will undertake the actions listed in Enclosure 4.
Sincerely.
Sincerely.
J n R. Longe     ker Acting Directo , Of fice of the Clinch River Breeder Reactor Plant Project Office of Nuclear Energy Enclosures cc: Service List Standard Distribution Licensing Distribution 8210210273 821015                                                           pol PDR ADOCK 05000537 A                 PDR
J n R. Longe ker Acting Directo, Of fice of the Clinch River Breeder Reactor Plant Project Office of Nuclear Energy Enclosures cc: Service List Standard Distribution Licensing Distribution 8210210273 821015 pol PDR ADOCK 05000537 A
PDR


LNLLUbOHL 1 Pogn 2 of 2 Ar.CHDA citBi1P/IIRC llCDA Energetics liceting                           .
LNLLUbOHL 1
Sr pte.niber 21, 1982 Argnnne. Ib tional I.cbora tory Building 207 Con ference Poom DA-126 1..
Pogn 2 of 2 Ar.CHDA citBi1P/IIRC llCDA Energetics liceting Sr pte.niber 21, 1982 Argnnne. Ib tional I.cbora tory Building 207 Con ference Poom DA-126 1.
Introductory rcuarks, (unc/CRBRP, is mi.n).                            .
Introductory rcuarks, (unc/CRBRP, is mi.n).
: 2.     TO.P cncrgetics potential (pin internal fuel motion, sweapout, inccher-nn c e ) , (CRDEP, 15 min - NRC, 15 min).
2.
: 3.     1.0F-d-TOP potential (sodima void worth and other uncertainties), (CRBRP, 30 min - Rnc, 30 min).
TO.P cncrgetics potential (pin internal fuel motion, sweapout, inccher-nn c e ), (CRDEP, 15 min - NRC, 15 min).
: 4.     Plenum fi s: ion Das compact. ton (energetics potential, clad relocation,
3.
                                                                            .                      :4 initiating powcr phase histories), (CABRP, 30 min - /mC, 26 min).                         ~
1.0F-d-TOP potential (sodima void worth and other uncertainties), (CRBRP, 30 min - Rnc, 30 min).
I.UUCil
4.
: 5.       Fuel remuval and cuerget ler. rotont.f al in connect.lon wit.h mci tout /ai nular.
Plenum fi s: ion Das compact. ton (energetics potential, clad relocation,
pool phctu   s (CRDRY, GO v1f *! - UliCa GO mist).           -
:4 initiating powcr phase histories), (CABRP, 30 min - /mC, 26 min).
G.       Pole of struct.ui-es in energetic teminction, (CN?iRP, 25 min - luiC, .10 r:d n) .
~
: 7.       Conc 1uding rnnneht., (CRUn!', 30 miss - VRC, 30 min 1 I
I.UUCil 5.
%_      w
Fuel remuval and cuerget ler. rotont.f al in connect.lon wit.h mci tout /ai nular.
pool phctu (CRDRY, GO v1f *! - UliC GO mist).
s a
G.
Pole of struct.ui-es in energetic teminction, (CN?iRP, 25 min - luiC,.10 r:d n).
7.
Conc 1uding rnnneht., (CRUn!', 30 miss - VRC, 30 min 1 I
w


ENCLOSURE         2 Y
ENCLOSURE 2
c a ngepb,c c                           it e: pi.;         x=,       .. j ,,i (fu)'i, S .y.&.., l u. 2. / , /9s 2-
Y c a ngepb,c c it e: pi.;
                                  ~~~
x=,.. j,,i (fu)'i, S.y.&.., l u.
H c ,. , s                 t       - s A .e.-
: 2. /,
/9s 2-
~~~
H c,., s t
- s A.e.-
i=nz- (.ea - s2 s - e uc)
i=nz- (.ea - s2 s - e uc)
C L.                     Alics                                       c Rgep- vac.. ( m - e 2 - % e c)
C L.
                                                                                                                              'k4-)
Alics c Rgep-vac.. ( m - e 2 - % e c)
Mh             t'p i em                             ..                      Y=NI (.us -w R a_v           G o o i- b                                               C. R. s p o ( 6 / c - s 7 cf - c 3 7 2 .'>
Mh t'p em Y=NI (.us -w 'k4-)
s         /       s t
i R a_v G o o i-b C. R. s p o ( 6 / c - s 7 cf - c 3 7 2.'>
0: ;n :           Uulmd. -                       ..                        Gw.EW.                         +'ot- 7at- Jsxs 00L S(>Efl WEN'T                                                         MC- /?d25 ;L 0 & /d3t/-2M ~)
s
0b0'O.)               l}C/'/                                               l.AA/L.                   S~as       a 7 7.22 2.
/
          't I?. 3pn s-                                                         l AIJ L                 So5 - Lc,1 - ;139S' 0 !f 0 k $~                                                           SWL                       SOS - 9% - D 3b ?-
s t
    ~(. YrC 0 W.t.                                                                 fwb'l c 2l'? '[iG'l7 ~S~I 5 s    dw        b4.ka_lc%                                                 /@           RAS           Ff 5 - 972 //68 A-T. Ysscx                                                                 Aix/ Riis                   t=rs- 91z </1c (
0: ;n :
NE1:ta.<r N&.inv.:eJ                                                     A1)LjkP                     Frb- 972-+957
Uulmd. -
        /9 L/!&             4. .A r-.7?{AL                                     _ tutic-                 _
Gw.EW.
F7s - 144 - r 2.r 7
+'ot-7at-Jsxs 00L S(>Efl WEN'T MC- /?d25 ;L 0 & /d3t -2M ~)
      /g., fza t4 W                                                           ' Ant / nit s                 Fr5       N ' - 4 & 90
/
      /,I : e.l.o. .l       0 , .e!w e s                                         f- i.,- l     L 3 lg - p :l,3 - [',~. m ,)
0b0'O.) l}C/'/
s                                                                               ~
l.AA/L.
[.     ( >,' . e 4.     Idn t s'       c. s..'                       /,s         f. v. t,       l'7- c., q q 7 ..-lg"::I 5-F,'tC\1A>,..                                                               wizeo                   9 .,.ci. csv-5s ,i
S~as a 7 7.22 2.
[.. . . 7 * ? , ,.     . . . . ,                                              AtJi Mn :                 t ,s <> y 2.   ,a 5 y
't I?. 3 n s-l AIJ L So5 - Lc,1 - ;139S' p
0 !f 0 k $~
SWL SOS - 9% - D 3b ?-
~(. YrC 0 W.t.
fwb'l c 2l'? '[iG'l7 ~S~I 5 b4.ka_lc%
/@
RAS Ff 5 - 972 //68 A-s dw T.
Ysscx Aix/ Riis t=rs-91z </1c (
NE1:ta.<r N&.inv.:eJ A1)LjkP Frb-972-+957
/9 L/!&
: 4..A r-.7?{AL
_ tutic-F7s - 144 - r 2.r 7
/g., fza t4 W
' Ant / nit s Fr5 N ' - 4 & 90
/,I : e.l.o..l 0,.e!w e s f-i.,- l L 3 lg - p :l,3 - [',~. m,)
s
~
[.
( >,'. e 4.
Idn t s' c.
s..'
/,s
: f. v. t, l'7-c.,
q q 7..-lg"::I 5-F,'tC\\1A>,..
wizeo 9.,.ci. csv-5s,i
[.... 7 * ?,,.
AtJi Mn :
t,s <> y 2.
,a 5 y


Q.v.d v2.''d>~*:~ ;
Q.v.d v2.''d>~*:~ ;
EELOSURE     3 CEBRP HCDA EllERGETICS MEETillG INITI ATING PHASE ASSESSMENTS 1
EELOSURE 3
PRESENTED BY DAVID P. WEBER SEPTEMBER 21, 1982 ARGONNE NATIONAL 1.ABORATORY ARG0llNE, ILLINDIS     60439' 4
CEBRP HCDA EllERGETICS MEETillG INITI ATING PHASE ASSESSMENTS 1
e e                                                               6
PRESENTED BY DAVID P. WEBER SEPTEMBER 21, 1982 ARGONNE NATIONAL 1.ABORATORY ARG0llNE, ILLINDIS 60439' 4
e e
6


1 CRBRP HCDA ENERGETICS MEETIllG INITIATING PHASE ASSESSMENT
1 CRBRP HCDA ENERGETICS MEETIllG INITIATING PHASE ASSESSMENT TOP ENERGETICS POTENTIAL LOF'n' TOP POTENTI AL
* TOP ENERGETICS POTENTIAL
=
      =                LOF'n' TOP POTENTI AL a                PLENUM FISSION GAS COMPACTION 6
PLENUM FISSION GAS COMPACTION a
e
6 e


ASSESSMENT OF WHOLE CORE IMPLICATIONS OF MIDPLANE PIN FAILURES IN SLOW RNiP TOP IN HETEROGENEOUS CORE CRBRP WITH SAS/PLUT02 EOC-410&/SEC SCENARIO
ASSESSMENT OF WHOLE CORE IMPLICATIONS OF MIDPLANE PIN FAILURES IN SLOW RNiP TOP IN HETEROGENEOUS CORE CRBRP WITH SAS/PLUT02 EOC-410&/SEC SCENARIO o
* FAILURE MELT FRACTION, CAVITY PRESSURE, AND PARTICLE i
FAILURE MELT FRACTION, CAVITY PRESSURE, AND PARTICLE SIZE CHOSEN TO SIMULATE W2 EXPERIMENT ALL FUEL PINS ASSUMED TO Fall C0HERENTLY LEAD CHAN!!EL FAILURE (6) LEADS TO LOW PEAK POWER (4 5 P ) AND LIMITED POSITIVE REACTIVITY (10&)
SIZE CHOSEN TO SIMULATE W2 EXPERIMENT
o LIMITED PLUTO-2 PREDICTED SWEEPOUT LEADS TO MORE RAPID POWER REC 0VERY THAN E0C-4 TOP CASE 2 (GEFR 523)
* ALL FUEL PINS ASSUMED TO Fall C0HERENTLY
SUBSEQUENT DRIVER ASSEMBLY FAILURES AT LOW REACTIVITY STATE IMPLY SUB-PROMPT CRITICAL EXCURSION AND SUBCRITICALITY (PEAK POWER = 5 7 P )
* LEAD CHAN!!EL FAILURE (6) LEADS TO LOW PEAK POWER (4 5 Po) AND LIMITED POSITIVE REACTIVITY (10&)
o EOC-310C/SEC SCENARIO E0C-3 CHANNEL. POWER FACTORS USED WITH EXISTING E0C-4 a
* LIMITED PLUTO-2 PREDICTED SWEEPOUT LEADS TO MORE RAPID POWER REC 0VERY THAN E0C-4 TOP CASE 2 (GEFR 523)
DATA
* SUBSEQUENT DRIVER ASSEMBLY FAILURES AT LOW REACTIVITY STATE IMPLY SUB-PROMPT CRITICAL EXCURSION AND SUBCRITICALITY (PEAK POWER = 5 7 Po )
?
* EOC-310C/SEC SCENARIO E0C-3 CHANNEL. POWER FACTORS USED WITH EXISTING E0C-4 DATA
SEC0llDARY ASSEMBLY FAILURES (Cal 11 AND 7) DELAYED Ill TIME (66 AND 82 MSEC) PREVENT SUPERPOSITION OF POSITIVE FUEL FEEDBACKS SIGNIFICAllT NEGATIVE FUEL REACTIVITY FROM LEAD CHANNELS
                ?   SEC0llDARY ASSEMBLY FAILURES (Cal 11 AND 7) DELAYED Ill TIME (66 AND 82 MSEC) PREVENT SUPERPOSITION OF POSITIVE FUEL FEEDBACKS
=
                =    SIGNIFICAllT NEGATIVE FUEL REACTIVITY FROM LEAD CHANNELS WITilIN 300 Msec (~ 45)                                 .
WITilIN 300 Msec (~ 45)


                                                                                  .A t t PLUT02 APPLICATIONS TO IN-PILE TESTS PRE-TEST AND POST-TEST ANALYSES OF TREAT TESTS E8, H6, AllD L8 WITH PLUTO AllD PLUT02 o TREAT TEST E8
.A t t PLUT02 APPLICATIONS TO IN-PILE TESTS PRE-TEST AND POST-TEST ANALYSES OF TREAT TESTS E8, H6, AllD e
          *      $3/SEc TOP FFTF SIMULATION
L8 WITH PLUTO AllD PLUT02 o
* LOW PUMP PRESSURE AND INITIAL SODIUM VELOCITY
TREAT TEST E8
          =        FAILURE LOCATION ABOVE MID-PLAllE
$3/SEc TOP FFTF SIMULATION LOW PUMP PRESSURE AND INITIAL SODIUM VELOCITY FAILURE LOCATION ABOVE MID-PLAllE
          =       CONSIDERABLE EARLY SWEEP 00T WITH EXPERIMENTAL RESULTS FASTER AND LARGER THAN PLUTO CALCULATIONS o TREAT TEST H6
=
* 50&/SEc TOP FFTF SIMULATION i           a        PROTOTYPIC PRESSURE DROP AND IlllTIAL S0DIUM VELOCITY a       SEVERAL EVENTS SEPARATED BY MORE THAN 100 MSEC
CONSIDERABLE EARLY SWEEP 00T WITH EXPERIMENTAL RESULTS
                                                      \
=
o        CALCULAT10ll AllD H0DOSCOPE SHOW SIGNIFICANT EARLY SWEEP 00T (10s WITHIN 30 MSEC AllD 28s WITH 90 MSEC) TREAT TEST L8
FASTER AND LARGER THAN PLUTO CALCULATIONS o
            =        LOF'n' TOP SIMULATION FOR CRBRP A0M0GEllE00S CORE o        DEGRADED POTEllTI AL FOR FUEL SWEEP 00T t
TREAT TEST H6 50&/SEc TOP FFTF SIMULATION i
a        FUEL MOT 10tl REACTIVITY NEGATIVE 20 MSEC AFTER R0D l
PROTOTYPIC PRESSURE DROP AND IlllTIAL S0DIUM VELOCITY a
SEVERAL EVENTS SEPARATED BY MORE THAN 100 MSEC a
\\
CALCULAT10ll AllD H0DOSCOPE SHOW SIGNIFICANT EARLY o
SWEEP 00T (10s WITHIN 30 MSEC AllD 28s WITH 90 MSEC)
TREAT TEST L8 e
LOF'n' TOP SIMULATION FOR CRBRP A0M0GEllE00S CORE
=
DEGRADED POTEllTI AL FOR FUEL SWEEP 00T o
FUEL MOT 10tl REACTIVITY NEGATIVE 20 MSEC AFTER R0D a
t l
FAILURE.
FAILURE.
a        CALCULATED SWEEP 00T LAGGED MEASUREMEllTS l
CALCULATED SWEEP 00T LAGGED MEASUREMEllTS a
l


                                                                                                    - e m w tw g
- e m w tw g
                                                                                                    'M n. a e .:. .   .
'M n. a e :...
e CRBRP HCDA ENERGETICS MEETING INITIATING PHASE ASSESSMENT
e CRBRP HCDA ENERGETICS MEETING INITIATING PHASE ASSESSMENT TOP ENERGETICS POTENTIAL
            =                TOP ENERGETICS POTENTIAL
=
* LOF'n' TOP POTENTI AL                           -
LOF'n' TOP POTENTI AL PLENUM FISS10!! GAS C0KPACTION o
o                PLENUM FISS10!! GAS C0KPACTION 4
4 e
e 9
9


VOID WORTH Ul1 CERTAINTY IMPLICATI0!ls ON LOF'o' TOP POTENTI AL o SAS3D MODELING ASSUMPTIONS BEST ESTIMATE SODIUM VOID REACTIVITY WORTHS PROVIDED BY AHL/AP SODIUM VOID "0RTH UNCERTAlllTIES BASED 011 AllL/AP ZPPR EXPERIMEllTAL RESULTS AND ANALYTICAL METHODS AllD DATA BASE USED Ill CRITICAL EXPERIMEllTS FUEL MOTION ASSUMPTI0llS IN SLUMPY BASED 011 RECENT AllL/ RAS L6/L7 AllALYSIS e KEY MODELillG P0iHTS i
VOID WORTH Ul1 CERTAINTY IMPLICATI0!ls ON LOF'o' TOP POTENTI AL o
i         =
SAS3D MODELING ASSUMPTIONS BEST ESTIMATE SODIUM VOID REACTIVITY WORTHS PROVIDED BY AHL/AP SODIUM VOID "0RTH UNCERTAlllTIES BASED 011 AllL/AP ZPPR EXPERIMEllTAL RESULTS AND ANALYTICAL METHODS AllD DATA BASE USED Ill CRITICAL EXPERIMEllTS FUEL MOTION ASSUMPTI0llS IN SLUMPY BASED 011 RECENT AllL/ RAS L6/L7 AllALYSIS e
MAXIMUM POSITIVE COOLANT VOIDillG REACTIVITY PLUS TWICE UllCERTAlllTY RESULTS IN $219 VOIDING REACTIVITY l
KEY MODELillG P0iHTS i
          =
i MAXIMUM POSITIVE COOLANT VOIDillG REACTIVITY PLUS TWICE
EXPERil1ENTALLY C0llSISTENT FUEL NOTION MODELING PLAYS l         ,
=
IMPORTANT ROLE IN ANY LOF'n' TOP ' ASSESSMENT l
UllCERTAlllTY RESULTS IN $219 VOIDING REACTIVITY l
EXPERil1ENTALLY C0llSISTENT FUEL NOTION MODELING PLAYS
=
l IMPORTANT ROLE IN ANY LOF'n' TOP ' ASSESSMENT l
l l.
l l.
l             _ _ _ - - - _ _ _
l


V0ID WORTH UNCERTAlllTY IMPLICAT1011S ON LOF'n' TOP POTENTI AL o SAS3D WHOLE CORE RESULTS COOLANT BOILING IN ALL DRIVER ASSEMBLIES BEFORE LEAD CHANilEL (CH. 6) FUEL MOTION COMPLETE CORE VOIDING IN DRIVER ASSEMBLY CHANilELS 2,4,6,7,9,10 AllD 11 AT TIME OF CHAllllEL 6 FUEL MOT 10ll a    PARTIAL VOIDING IN CHAllllELS 12, 13, 14 AND 15
V0ID WORTH UNCERTAlllTY IMPLICAT1011S ON LOF'n' TOP POTENTI AL o
* POWER LEVEL IS LOW (~ 10 P   o ) A!!D FAILURE C0!!DITI0lls ARE FAR FROM BEING MET IN LOW POWER CHAllllELS.
SAS3D WHOLE CORE RESULTS COOLANT BOILING IN ALL DRIVER ASSEMBLIES BEFORE LEAD CHANilEL (CH. 6) FUEL MOTION COMPLETE CORE VOIDING IN DRIVER ASSEMBLY CHANilELS 2,4,6,7,9,10 AllD 11 AT TIME OF CHAllllEL 6 FUEL MOT 10ll PARTIAL VOIDING IN CHAllllELS 12, 13, 14 AND 15 a
C00LAllT BOILING IN INTERilAL BLANKETS TAKES PLACE AFTER FUEL DISRUPTION AND GROSS DISPERSAL IN CHAllllELS 6, 2, 4 AND 7 o C0llCLUS10N l        EVEN USING C0!1SERVATIVE ESTIMATE'S OF THE UllCERTAINTIES 111 C00LAllT V01DillG REACTIVITY,110 THRESHOLD FOR LOF'n' TOP EVEllTS WAS FOUllD WHEll EXPERIMEllTALLY VERIFIED FUEL MOT 10ll BEHAVIOUR WAS BKPLOYED i
POWER LEVEL IS LOW (~ 10 P ) A!!D FAILURE C0!!DITI0lls ARE o
i
FAR FROM BEING MET IN LOW POWER CHAllllELS.
                                                -  e
C00LAllT BOILING IN INTERilAL BLANKETS TAKES PLACE AFTER FUEL DISRUPTION AND GROSS DISPERSAL IN CHAllllELS 6, 2, 4 AND 7 o
C0llCLUS10N EVEN USING C0!1SERVATIVE ESTIMATE'S OF THE UllCERTAINTIES l
111 C00LAllT V01DillG REACTIVITY,110 THRESHOLD FOR LOF'n' TOP EVEllTS WAS FOUllD WHEll EXPERIMEllTALLY VERIFIED FUEL MOT 10ll BEHAVIOUR WAS BKPLOYED i
i e


                                                    ~~
~~
    -                                                          c e .m                 e... g.
c e.m e...
CRBRP HCDA EllERGETICS MEETIllG INITIATil1G PHASE ASSESSMENT o     TOP ENERGETICS POTENTIAL
g.
* LOF'o' TOP POTENTI AL o      PLE110M FISSION GAS COMPACTION 6
CRBRP HCDA EllERGETICS MEETIllG INITIATil1G PHASE ASSESSMENT o
e O
TOP ENERGETICS POTENTIAL LOF'o' TOP POTENTI AL PLE110M FISSION GAS COMPACTION o
6 e
O


POTEllTIAL FOR AUT0 CATALYSIS DUE TO PLEl10M FISS1011 GAS INDUCED FUEL COMPACTION
POTEllTIAL FOR AUT0 CATALYSIS DUE TO PLEl10M FISS1011 GAS INDUCED FUEL COMPACTION INITIAL ASSESSMENT (BASED ON GEFR-523 EOC-4 LOF BASE CASE
  =
=
INITIAL ASSESSMENT (BASED ON GEFR-523 EOC-4 LOF BASE CASE 1A) SHOWED COMPLETE BLOWDOWil IN EARLY ASSEMBLIES BUT POTEllTIAL FOR CGiPACTION IN LATER ASSEMBLIES a
1A) SHOWED COMPLETE BLOWDOWil IN EARLY ASSEMBLIES BUT POTEllTIAL FOR CGiPACTION IN LATER ASSEMBLIES AUTOCATALYTit BEHAVIOR WAS AFFECTED BY C0llSERVATIVE MODELING a
AUTOCATALYTit BEHAVIOR WAS AFFECTED BY C0llSERVATIVE MODELING OF EARLY FUEL MOT 10H e
OF EARLY FUEL MOT 10H TREAT LOF TESTS, ESPECIALLY L6 AND L7, WERE IDENTIFIED AS e
TREAT LOF TESTS, ESPECIALLY L6 AND L7, WERE IDENTIFIED AS THE MOST RELEVAllT DATABASE AllD EXTENSIVE SAS3D/SLUMPY ANALYSES WERE PERF0miED o
THE MOST RELEVAllT DATABASE AllD EXTENSIVE SAS3D/SLUMPY ANALYSES WERE PERF0miED FISSION GAS AVAILABILITY AND DISTRIBUT10ll WERE DETERMl!JED o
FISSION GAS AVAILABILITY AND DISTRIBUT10ll WERE DETERMl!JED WITH FRAS3 CODE e
WITH FRAS3 CODE WHOLE CORE AllALYSES WERE PERFORMED WITH EXPERIMENTALLY e
WHOLE CORE AllALYSES WERE PERFORMED WITH EXPERIMENTALLY CONSISTEllT FUEL DISPERSAL MODELING, LEADING TO ELIMINATI0ll 0F CollCERll FOR PLElluM GAS COMPACT 10!l e
CONSISTEllT FUEL DISPERSAL MODELING, LEADING TO ELIMINATI0ll 0F CollCERll FOR PLElluM GAS COMPACT 10!l e


FISS10!! GAS MODEllilG WITH FRAS3
FISS10!! GAS MODEllilG WITH FRAS3 TECHillCAL APPROACH VAllDATION OF FRAS3..MODELING BY COMPARISON OF PREDICTED AllD MEASURED GAS RELEASES Ill FGR TESTS WHICH MOST CLOSELY REPRESEllT CRBR C0!!DIT10lls PREDICT 10lls 0F THE FRACT10110F THE INITIAL FISSION GAS COUCEllTRATIONS RETAlllED AT TIME OF FUEL MOT 10!l IN L6 AllD L7 TESTS FOR USE IN SAS3D/SLUMPY PREDICT 10lls 0F GAS C0llCEllTRAT10llS FOR EOC-4 LEAD CHAllllEL 6 WITH LOF GEFR-523 BEST ESTIMATE THERMAL HISTORY C0llCLUS10llS 011 GAS RETEllTION a
* TECHillCAL APPROACH VAllDATION OF FRAS3..MODELING BY COMPARISON OF PREDICTED AllD MEASURED GAS RELEASES Ill FGR TESTS WHICH MOST CLOSELY REPRESEllT CRBR C0!!DIT10lls PREDICT 10lls 0F THE FRACT10110F THE INITIAL FISSION GAS COUCEllTRATIONS RETAlllED AT TIME OF FUEL MOT 10!l IN L6 AllD L7 TESTS FOR USE IN SAS3D/SLUMPY PREDICT 10lls 0F GAS C0llCEllTRAT10llS FOR EOC-4 LEAD
PERCEllT RETAltlED PERCEllT RETAlHED t
                          '      CHAllllEL 6 WITH LOF GEFR-523 BEST ESTIMATE THERMAL HISTORY a        C0llCLUS10llS 011 GAS RETEllTION t
IN GRAlllS ON GRAIN BOUNDARIES L6 24 95 L7 64 47 CH 6 54 47 l
PERCEllT RETAltlED       PERCEllT RETAlHED IN GRAlllS         ON GRAIN BOUNDARIES L6                     24             -
95
                      .      L7                     64                     47 CH 6                   54                     47 l


SAS3D/SLUMPY ANALYSIS OF L6 AND L7 TREAT TESTS e     TECHNICAL APPROACH PROCEDURE FOLLOWED FOR HEAT BALANCE AND TEST SIMULATIONS
SAS3D/SLUMPY ANALYSIS OF L6 AND L7 TREAT TESTS e
          =
TECHNICAL APPROACH PROCEDURE FOLLOWED FOR HEAT BALANCE AND TEST SIMULATIONS STEADY-STATE SIMULATION OF 1RRADIAT10N HISTORY
STEADY-STATE SIMULATION OF 1RRADIAT10N HISTORY a
=
20-SECOND TRANSIENT TO SET INITIAL THEmiAL-HYDRAULIC CONDITION
20-SECOND TRANSIENT TO SET INITIAL THEmiAL-HYDRAULIC a
* TEST TRANSIENT e     SAS3D INPUT e
CONDITION TEST TRANSIENT e
FISSION GAS PARAMETERS BASED ON FRAS3 ANALYSIS FRACTION OF GRAVITY SET TO 0 2 o    VERY LITTLE COUPLING BETWEEN COOLANT VAPOR STREN4, AND FUEL MOTION (0 SODOM = 0 02)
SAS3D INPUT FISSION GAS PARAMETERS BASED ON FRAS3 ANALYSIS e
!          o EFFECTIVE FUEL VISCOSITY ENHANCED TO ACC0llNT FOR PRESENCE OF PARTIALLY SOLID FUEL (VISFU = 10000)
FRACTION OF GRAVITY SET TO 0 2 VERY LITTLE COUPLING BETWEEN COOLANT VAPOR STREN4, AND o
I          o FUEL MOTION INITIATED ON 50% FUEL MELT FRACTION i
FUEL MOTION (0 SODOM = 0 02) o EFFECTIVE FUEL VISCOSITY ENHANCED TO ACC0llNT FOR PRESENCE OF PARTIALLY SOLID FUEL (VISFU = 10000)
i   o     TEST RESULTS a
FUEL MOTION INITIATED ON 50% FUEL MELT FRACTION I
SATISFACTORY SIMULATION OF BOTH L6 AND L7 TESTS l
o i
i o
TEST RESULTS SATISFACTORY SIMULATION OF BOTH L6 AND L7 TESTS a
l


WHOLE CORE AllALYSIS AllD PLEllUM GAS COMPACT 10!! ASSESSMENT WHOLE CORE POWER AND REACTIVITY RESULTS LEAD CHAullEL REACTIVITY STAYS POSITIVE FOR 146 MSEC, WITH PEAK POWER OF 4 7 Po a
WHOLE CORE AllALYSIS AllD PLEllUM GAS COMPACT 10!! ASSESSMENT WHOLE CORE POWER AND REACTIVITY RESULTS LEAD CHAullEL REACTIVITY STAYS POSITIVE FOR 146 MSEC, WITH PEAK POWER OF 4 7 Po REACTOR DRIVEN SUBCRITICAL ON LEAD CHANilEL FUEL MOTIO a
REACTOR DRIVEN SUBCRITICAL ON LEAD CHANilEL FUEL MOTIO BY 406 MSEC a
BY 406 MSEC ASSESSMENTS PERFORMED ON SUBSEQUEllT FAILURES AND TIM a
ASSESSMENTS PERFORMED ON SUBSEQUEllT FAILURES AND TIM
POTEllTI AL FOR COMPACTION OF FUEL
    =
=
POTEllTI AL FOR COMPACTION OF FUEL o
PIPFLO MODEllllG IN SAS3D AND 1400 C CLADDING o
PIPFLO MODEllllG IN SAS3D AND 1400 C CLADDING TEMPERATURE FAILURE CONDITION USED l
TEMPERATURE FAILURE CONDITION USED TIME C0llSTANT FOR BLOWDOWil CALCULA ED TO BE LESS THAN l
o TIME C0llSTANT FOR BLOWDOWil CALCULA ED TO BE LESS THAN 250 MSEC a
o 250 MSEC ALL DRIVER CHANilELS HAVE SEVERAL TIME C0llSTAllTS TO a
ALL DRIVER CHANilELS HAVE SEVERAL TIME C0llSTAllTS TO BLOWD0l!!1 PRIOR TO FUEL MOTION INITIATION
BLOWD0l!!1 PRIOR TO FUEL MOTION INITIATION C0!!CLUS10ll 4
* C0!!CLUS10ll                             .
AUTOCATALYSI,S BY PLElluM GAS COMPACTI0ll 0F pills IS HIGilLY UllLIKELY i
4 AUTOCATALYSI,S BY PLElluM GAS COMPACTI0ll 0F pills IS HIGilLY UllLIKELY i
9 l
9 l                               ..


                                                        ~
- g.[.c,,.. gd
                                                                - g.[.c ,,.. gdp ,
~
S0DIUM VOID WORTH ALTERNATIVE METHODOLOGIES 0     USE STATE-OF-THE-ART METHODS AND. CROSS SECTION DATA FOR CALCULA-TIONS. DETERMINE UNCERTAINTIES FROM " KNOWLEDGE" 0F UNCERTAINTIES IN METHODS / DATA.
p S0DIUM VOID WORTH ALTERNATIVE METHODOLOGIES 0
0     USE INTEGRAL DATA BASE TO DERIVE AN " EXPERIMENTAL"'VALUE.         UNCER-TAINTIES FALL OUT OF ANALYSIS O
USE STATE-OF-THE-ART METHODS AND. CROSS SECTION DATA FOR CALCULA-TIONS.
DETERMINE UNCERTAINTIES FROM " KNOWLEDGE" 0F UNCERTAINTIES IN METHODS / DATA.
0 USE INTEGRAL DATA BASE TO DERIVE AN " EXPERIMENTAL"'VALUE.
UNCER-TAINTIES FALL OUT OF ANALYSIS O
b o
b o
      -  ,--n,-                     _            , .
,--n,-


I BIAS FACTOR METHOD e         SINGLE BIAS FACTOR P=aC e       Two FACTORS                   (LEAKAGE AND NON-LEAKAGE)                                                   .
I BIAS FACTOR METHOD e
9 P = $N + il I
SINGLE BIAS FACTOR P=aC e
                                                              -E MIN              [ (P     'I I)2                                 '
Two FACTORS (LEAKAGE AND NON-LEAKAGE) 9 P = $N + il
I 4
-E
[ (P I)2 I
MIN
'I I
4


COMPUTATIONAL MODEL o   ENDF/B-IV DATA 2
COMPUTATIONAL MODEL o
o   MC -2/SDX PROCESSING TO 20 ENERGY GROUPS
ENDF/B-IV DATA 2
                                                                        ~~
o MC -2/SDX PROCESSING TO 20 ENERGY GROUPS
e   THREE-DIf4ENSIONAL DIFFUSION THEORY 5 : ,.
~~
1 e   CORRECT FOR STREAlilNG USING BENOIST DIRECTIONAL DIFFUSION i$
e THREE-DIf4ENSIONAL DIFFUSION THEORY 5 :,.
COEFFICIENTS                                                         ,
1 e
, o  EXACT PERTURBATION THEORY e
CORRECT FOR STREAlilNG USING BENOIST DIRECTIONAL DIFFUSION i$
COEFFICIENTS o
EXACT PERTURBATION THEORY e
9 t
9 t
t
t
                                        .f
.f


9W Ratios of Calculated to tieasured Reactivities for Sodium Voiding C/E Before                       . Standard Devia-
9W Ratios of Calculated to tieasured Reactivities for Sodium Voiding C/E Before Standard Devia-Cases Biasing tion After Biasinga CRBR-EMCb BOC-1, positive part of core 0.98 10
    .,                Cases                                     Biasing                     tion After Biasinga CRBR-EMCb BOC-1, positive part of core                   0.98                                         10
. 'CRBR-EMC EOC-4, positive part of core 1.23 6
        . 'CRBR-EMC EOC-4,     positive part of core                 1.23                                           6 101 mixed zones                       -
101 mixed zones 1.08 12 Axial blankets without control rods 0.91 1
1.08                                         12 Axial blankets without control rods                       0.91                                           1 Axial blankets with control rods                         1.23                                           2 Core zones with negative reactivity signals-             1.02                                           9 a
Axial blankets with control rods 1.23 2
Separate' bias factors applied to positive and negative components of reactivity. For any subset, the average C/E is 1.0 after biasing.
Core zones with negative reactivity signals-1.02 9
b Engineering mockup critical experiments foc sodium-void reactivity in CRBR; reactor geometry and composition closely matched.
aSeparate' bias factors applied to positive and negative components of reactivity. For any subset, the average C/E is 1.0 after biasing.
x -
bEngineering mockup critical experiments foc sodium-void reactivity in CRBR; reactor geometry and composition closely matched.
k A                             A''
x k
                                                                                                        'T
A A''
                                                                                          %                                      ,,              7 eY
'T 7
* 6 Y                         a m
eY 6 Y a
W             #
m W
9                                 #
9 4
4 e
e s-
* s- *^
*^
f T                                                                                             b e s.,
f T
N                 *
b e s.,
                                                                                  ~
N
i                                                                           .                .
~
                                                                    ~                                         ',
i
~


Ratios of talculated to Nessured Reactivities for Sodium Voiding C/E Before           % Standard Devia-Cases                               Biasing       tion After Biasinga CRBR-EMCb BOC-1, positive part of core                   0.98                     10 CRBR-EMC EOC-4,         positive part of core             1.23                     6
Ratios of talculated to Nessured Reactivities for Sodium Voiding C/E Before
,      101 mixed Jones                            -
% Standard Devia-Cases Biasing tion After Biasinga CRBR-EMCb BOC-1, positive part of core 0.98 10 CRBR-EMC EOC-4, positive part of core 1.23 6
1.08                     12 Axial blankets without control rods                       0.91 1
1.08 12 101 mixed Jones Axial blankets without control rods 0.91 1
Axial blankets with control rods                         1.23                     2 Core zones with negative reactivity signals               1.02                     9 aSeparate bias factors applied to positive and negative components of reactivity. For any subset, the average C/E is 1.0 after biasing.
Axial blankets with control rods 1.23 2
b Engineering mockt? critical experiments foc sodium-void reactivity.in CRDR; reactor gc00 try and composition closely matched.
Core zones with negative reactivity signals 1.02 9
aSeparate bias factors applied to positive and negative components of reactivity. For any subset, the average C/E is 1.0 after biasing.
bEngineering mockt? critical experiments foc sodium-void reactivity.in CRDR; reactor gc00 try and composition closely matched.
t O
t O
e l
e l


Bias Factors and Uncertainties for Sodium-void Reactivity in CRBR Calculational Bias Factora       Uncertainty,b%
Bias Factors and Uncertainties for Sodium-void Reactivity in CRBR Calculational Bias Factora Uncertainty,b%
Zone           BOC-1   EOC-4     BOC-1   EOC-4 Central core           1.0   0.82       10       6 /
Zone BOC-1 EOC-4 BOC-1 EOC-4 Central core 1.0 0.82 10 6 /
External core         1.0   1.0       10       10 Axial blankets         1.0   1.0       20       20
External core 1.0 1.0 10 10 Axial blankets 1.0 1.0 20 20
              . Internal blankets     1.0   1.0       20       20 "to be multiplied times the calculated value.
. Internal blankets 1.0 1.0 20 20 "to be multiplied times the calculated value.
b to be added in quadrature with uncertainties from other sources.
bto be added in quadrature with uncertainties from other sources.
l l
l l
l                                                       .
l 4
4 l
l t
t


Bias Factors and Uncertainties for Sodium-void React.vity in CRBR Calculational Bias Factora     Uncertainty,bg Zone               BOC-1   EOC-4     BOC-1   EOC-4 Central core             1.0     0.82       10     6 External core             1.0     1.0         10     10 Axial blankets           1.0     1.0         20     20 Internal blankets         1.0     1.0         20     20 a
Bias Factors and Uncertainties for Sodium-void React.vity in CRBR Calculational Bias Factora Uncertainty,bg Zone BOC-1 EOC-4 BOC-1 EOC-4 Central core 1.0 0.82 10 6
to be multiplied times the calculated value.
External core 1.0 1.0 10 10 Axial blankets 1.0 1.0 20 20 Internal blankets 1.0 1.0 20 20 ato be multiplied times the calculated value.
b to be added in quadrature with uncertainties from other sources.
bto be added in quadrature with uncertainties from other sources.
4 e
4 e


i Additional Uncertainties in CRBR Sodium-void Reactivity
i Additional Uncertainties in CRBR Sodium-void Reactivity a
                                              .                Uncertaintya ,
Uncertainty,
Source                           % of Total Reactivity BOC-1         EOC-4 Fuel pins instead of plates                     0             0 4                Sequence of voiding                           3.5           3.5 Temperature distribution                       2.5           2.5 Fission products                               0           3.0 a
Source
To be added in quadrature with the values of
% of Total Reactivity BOC-1 EOC-4 Fuel pins instead of plates 0
                    " experimental" uncertainty.
0 Sequence of voiding 3.5 3.5 4
                                                                                                ?
Temperature distribution 2.5 2.5 Fission products 0
3.0 aTo be added in quadrature with the values of
" experimental" uncertainty.
?
4 e
4 e
4 g           -+e-,-- -           , ,,  r       . - + , -       'w - m--* --
4 g
                    , - -                                -7
-+e-,--
-7 r
. - +, -
'w m--*


                                                                                ~
~
a Best Estimate Sodium Void Reactivity Worths ($)b           ,
Best Estimate Sodium Void Reactivity Worths ($)b a
BOC-1         EOC-4 Driver Assemblies Core                    -
BOC-1 EOC-4 Driver Assemblies 0.256 1.528 Core Lower Axial Blanket
0.256         1.528 Lower Axial Blanket         -0.225       -0.160 Upper Axial Blanket         -0.177       -0.177
-0.225
;                      Total                        -0.146         1.191 Internal Blanket Assemblies Core                         1.381         1.593 Lower Axial Extension       0.008       -0.020 Upper Axial Extension       -0.007       -0.006 Total                         1.382         1.567 a
-0.160 Upper Axial Blanket
Void Flowing Sodium (81.8% driver, 72.6% Blanket) b
-0.177
                        = .0032 4
-0.177 Total
-0.146 1.191 Internal Blanket Assemblies Core 1.381 1.593 Lower Axial Extension 0.008
-0.020 Upper Axial Extension
-0.007
-0.006 Total 1.382 1.567 aVoid Flowing Sodium (81.8% driver, 72.6% Blanket) b
=.0032 4
e 9
e 9


I i
I i
!                            FUEL REMOVAL AND ENERGETICS POTENTIAL IN CONNECTION WITH MELT-0VT/ ANNULAR POOL PHASE e
FUEL REMOVAL AND ENERGETICS POTENTIAL IN CONNECTION WITH MELT-0VT/ ANNULAR POOL PHASE e
PRESENTED BY:
PRESENTED BY:
MICHAEL EPSTEIN FAUSKE t. ASSOCIATESs INC.
MICHAEL EPSTEIN FAUSKE t. ASSOCIATESs INC.
Line 263: Line 347:
I e
I e
4 4
4 4
.w.
-.m--
--n-
-v


  ~.
~.
QUESTIONS CS760.178B5, -C.6, -C7
QUESTIONS CS760.178B5, -C.6, -C7
      -B5, What is the basis for maintaining continuous subtriticali-ty in the high heat loss environment of early melt-out phase?
-B5, What is the basis for maintaining continuous subtriticali-ty in the high heat loss environment of early melt-out phase?
What are the fuel-losses (quantified), taking into account uncertainties in removal path geometries, driving pressures and freezing mechanisms?
What are the fuel-losses (quantified), taking into account uncertainties in removal path geometries, driving pressures and freezing mechanisms?
    -C6.
What degree of subtriticality is required to prevent pool
What degree of subtriticality is required to prevent pool recriticality       from tilermal   and   fluid dynamics upset conditions? What is your position on the potential for small recriticalities to amplify? What is the Justifica-tion for your position?
-C6.
recriticality from tilermal and fluid dynamics upset conditions?
What is your position on the potential for small recriticalities to amplify?
What is the Justifica-tion for your position?
i
i
    -C7.
-C7.
In assessing benign termination from the boiled-up pool, t
In assessing benign termination from the boiled-up pool, t
Justify the fuel removal mechanisms and rates, in par-ticular, assess the potential for, upper pool sodium entry via rapid condensation of steel vdpor pressure.
Justify the fuel removal mechanisms and rates, in par-ticular, assess the potential for, upper pool sodium entry via rapid condensation of steel vdpor pressure.


e                                   ,  e *
e e
* l
GENERIC ISSUES COVEREll 1.
          ..                                                      l GENERIC ISSUES COVEREll 1.
DEFINITION OF MELT-0UT PHASE.
DEFINITION OF MELT-0UT PHASE.
2.
2.
Line 286: Line 376:
FUEL FREEZING MECHANISMS AND REMOVAL PATHS.
FUEL FREEZING MECHANISMS AND REMOVAL PATHS.
5.
5.
FUEL REMOVAL REQUIREMENTS FOR PERMANENT S       ~
FUEL REMOVAL REQUIREMENTS FOR PERMANENT S
~
6.
6.
SODIUM RE-ENTRY VIA STEEL VAPOR CONDENSATION.
SODIUM RE-ENTRY VIA STEEL VAPOR CONDENSATION.
Line 293: Line 384:
e
e


f       .                      ,  .
f POOL DEFINITIONS,
POOL DEFINITIONS ,
1.
1.
Melt-Out/ Annular Pool Phase     -
Melt-Out/ Annular Pool Phase Merging of molten driver fuel assemblies while the inner blanket fuel assemblies remain intact.
Merging of molten driver '
2.
fuel assemblies while the inner blanket fuel assemblies remain intact.
Large Scale Pool Configuration after the melting Of the inner blanket assemblies.
: 2.       Large Scale Pool   -
Configuration after the melting Of the inner blanket assemblies.
ess 4
ess 4
e
e
                                                                              ._w
. w


i NX%N l
i NX%N l
                                        \\ ~                           '
\\\\ ~
                                        \       %          IO x\\                           O           A s
\\
I    i
IO x\\\\
                            \             4           4 axx                          .
O A
i                         N
s axx I
                                                                                          \,
i
NN             i                                                               S\
\\
x(
4 4
M                I O"\%N
i
                                                                                \
\\,
                                                                            .s\\
N S\\
                                                                                              \
NN i
                                                                                                ~ q O ~'
\\
i I
\\
i x(
O"\\%N
.s\\\\
~ q O ~'
M I
I N
N N
~
^\\
M\\
'{.
N
N
                                            ~
%N Nx
N          N                                                                      ,
'\\.
                                                    ^\                M\                            '{. N
s
                                                          %N                 Nx
.NN 0 4N.N.
                          ,                                                                                              s
o W
                                                                                                                    '\.
Ns 5
5
'\\s 8
                                                .NN         0 4N.N .                       o           W       Ns
w\\\\
                                                                                                                '\s 4                             <'
4
8
: s..
                                                                    '.              s. .                     w\\
Radial Blankets 4
Radial Blankets 4
O           Fuel Assemblies                         O       Alternate Fuel-Blanket-Assemblies g         Blanket Assemblies                 g             Centrol Assemblies A:
O Fuel Assemblies O
Alternate Fuel-Blanket-Assemblies g
Blanket Assemblies g
Centrol Assemblies A:


Ilff SCALE OF THE_tlELT-00T/Al#10LAR POOL PHASE:   Ball 1
Ilff SCALE OF THE_tlELT-00T/Al#10LAR POOL PHASE:
: 1. POWER LEVEL BOUNDED BY 50% OF NOMINAL TO PRECLUDE RECRITICALITY ON AN ASSEMBLY SCALE.
Ball 1 1.
: 2. ADIABATIC HEATUP OF INTER BLANKET FUEL ASSEMBLIES:
POWER LEVEL BOUNDED BY 50% OF NOMINAL TO PRECLUDE RECRITICALITY ON AN ASSEMBLY SCALE.
E0C-4                 BOC-1 TIME =               46 SEC             150 SEC
2.
: 3. MOLTEN DRIVER FUEL ENTERS INNER BLANKET FUEL ASSEMBLIES':
ADIABATIC HEATUP OF INTER BLANKET FUEL ASSEMBLIES:
E0C-4                 BOC-1 TIME =             35 SEC                 46 SEC
E0C-4 BOC-1 TIME =
: 4. CHOICE OF THE POWER LEVEL IS NOT IMPORTANT SO LONG AS LARGE l         RAMP RATE RECRITICALITIES CAN BE PR"ECLUDED, i       -
46 SEC 150 SEC 3.
MOLTEN DRIVER FUEL ENTERS INNER BLANKET FUEL ASSEMBLIES':
E0C-4 BOC-1 TIME =
35 SEC 46 SEC 4.
CHOICE OF THE POWER LEVEL IS NOT IMPORTANT SO LONG AS LARGE l
RAMP RATE RECRITICALITIES CAN BE PR"ECLUDED, i
I
I


NEUTRONIC EVENTS DURING THE MELT-00T/ ANNULAR POOL PHASE
NEUTRONIC EVENTS DURING THE MELT-00T/ ANNULAR POOL PHASE 1.
: 1.     }F RECRITICALITIES SHOULD OCCUR THEY ARE MILD AND DO NOT
}F RECRITICALITIES SHOULD OCCUR THEY ARE MILD AND DO NOT AMPLIFY.
,              AMPLIFY.
2.
: 2. ASSEMBLY WALL / FUEL MIXING IS MINIMAL DUE TO FUEL CRUSTING AND MELT LAYER STABILITY.
ASSEMBLY WALL / FUEL MIXING IS MINIMAL DUE TO FUEL CRUSTING AND MELT LAYER STABILITY.
: 3. MECHANISM (S) FOR SODIUM RE-ENTRY HAS EQI BEEN IDENTIFIED.
3.
MECHANISM (S) FOR SODIUM RE-ENTRY HAS EQI BEEN IDENTIFIED.
b o
b o
                                -.n. ,
-.n.


O %        -4           e                           e   -e & J - g e
O
-4 e
e
-e J
- g e
e FLOWREGIMEANDREL51TICALITYCONSIDERATIONS DURING THE MELT-00T/ ANNULAR POOL PHASE
e FLOWREGIMEANDREL51TICALITYCONSIDERATIONS DURING THE MELT-00T/ ANNULAR POOL PHASE
{
{
0       EXPERIMENT 0     ANALYTICAL CONSIDERATIONS O
0 EXPERIMENT 0
ANALYTICAL CONSIDERATIONS O
b o
b o
_      __________m________m_.-_   __
__________m________m_.-_


L.iquid. S.lug       Insta an                  ..ty       :: xpen. ment
L.iquid. S.
                                -    ss)                       #
lug Insta..ty xpen. ment an ss) s
s
/
                                            '                  /
/
                                                                /
Low Pressure Channel
                                                                ,          Low Pressure
/
                                            /
i
i Channel
/
                                      .    /                   ,
/
                                            /
/
                                                                /
/
                                            /
j
j
                                                                /
/
                                            /             .    ,
/
                                            /                   /
/
                                            /
/
                                                                /
/
                                            /
/
                                                                /
/
l
/
                                            ,~/
l,~/
                                            /
/
                                  .                            /
/
                                          /                         -
/
:            Diaphragrn.
Diaphragrn.
                                          -/ ,,                                          ~
-/
LNNW                             ANNN I///////////           ''~0* ~ /' //////////
~
M'   /
LNNW ANNN I/////////// ''~0* ~ /' //////////
                                          / s' I
M'
                                          /
/
                                                              /
s' I
M II         /         /
/
M
/
/
II
/
/
t
t
                            /             /       11         /           /
/
                            /             /       II        /,
/
                                                                          /
11
2                   J
/
                            /
/
                            -                      ll                    /
/
l                                                   li                   -
/
                            /                     I                     /
I I
3
/,
                            /
/
jj                     l
ll
                                                                          /
/
2 J
/
l li
/
I
/
3 jj l
High Pressure
High Pressure
                            /
/
                            /
/
ll ll
ll Gas Reservoir
                                                                    -  /
/
Gas Reservoir
/
          ~
ll
                            /                     o                   v
/
                            /                     '                    /
~
                            /
/
llt                    /
o v
                            /                     u                     /
/
                            /                     is                     /
llt
(/ ///)                 *tt                       irf///
/
bh%%\%Nh%%%M         '- ;:        '
/
l I
/
ll l
/
l                                                 ll
u
::l:::..
/
u                             -
/
is
/
(/ ///)
*tt irf///
bh%%\\%Nh%%%M I
l ll l
l ll
::l:::
u


s 7                             .
.. 7/
                            /
s/ ~_ _ s < m _ x _.
s s_. / ~_ x__ _ s < m _ x _. -_            .
s s_.
sm
sm x__
: m. m m. -s s 6 O O O.             O s
: m. m m. -s
s e
' 6 O
O                     O          O oO                               o
O.
                                                                . m e,
O s
                          -  /,x (x x x x x x x x u w x u x x x x x x x y, Z
O O
O O oO s
o
. se
. m e,
/ x (x x x x x x x x u w x u x x x x x x x y, Z
9.-
9.-
I-7                                                                                            f
I-
                          !/wOcgO    .
!/w _-_ _ _ a.
_-_+O _ -
f 7
_      _-    a.             -,
x OcgO +O _.
p           x U
p O
OO O O
O U
s s
O O
                        'r        i                   =~.             T-o                          cj) x x x x x { x x x x x x % x x x x x x xW .N-N.iI en L'J O
o cj) s s
3:
i
                                                                                                                    <C   _
=~.
r                                                                                        g_
T-
lj ~' ~ ~                                                                               d.
'r x x x x x { x x x x x x % x x x x x x xW N N I en
                          '                                                .          ''""s UJ s
. -.i O
o                          y o              o l
L'J 3:
s                                     ,, l                                               a x m _ xs m m s (m s m.sms                                               , ,
<C g_
y
rlj ~' ~ ~
                                                  ,                                                        x3 g
d.
''""s UJ o
y l
s
,, l o
o a
(
s y
x m _ xs m m s m s m.sms x3 g
D.
D.
LU i
LU i
b%
b
b
                                              ^ _                     h       . ,              ,,                l b%
^ _
                                                                    *                                  .p y
h l
N                                                                                 i
.p y
                          -Nti                                                                                I s
N i
s              _T.AN.h3i^3NxxxNNNxxNNi i
-Nt I
i s
_T.AN.h3i^3NxxxNNNxxNNi s
i


s L
s L
d         T                                 -
d T
L                   .
L H
H Ho       J-R Y
Ho J-R Y
Y
Y D
              <                D i
i l
l R>       D    -
D R>
16L ANALYTICAL CONSIDERATIONS; ID vs. 3D
16L ANALYTICAL CONSIDERATIONS; ID vs. 3D


                                                                ^
^
IERMINATION OEJELI:OllI/mg!LAR POOL PHASE 1,
IERMINATION OEJELI:OllI/mg!LAR POOL PHASE 1,
FUEL REMOVAL PATHS ARE AVAILABLE, 2,
FUEL REMOVAL PATHS ARE AVAILABLE, 2,
FUEL REMOVAL IS SUFFICIENT TO ASOU CRITI'CALITY EVEN WHEN ASSESSED               ELS. WITH C B
FUEL REMOVAL IS SUFFICIENT TO ASOU CRITI'CALITY EVEN WHEN ASSESSED WITH C ELS.
l l                                       .
B l
l t
l l
k l
t l
t l
l k
l t
l


S x \ \\\\\\
S x \\ \\\\\\\\\\\\
                                          \sN'A'                               %
\\sN'A'
                            \         \
\\
                        \     -            ~                     s
\\
                                                  ,                    c                    s 3x               'y       OA'N \\
\\
o           .s' K s'         s           a k\ As I
~
                                \                     l xx      -
s 3x
i     N                        5                    \\
'y OA'N \\\\
NN N       N             \^
o
            \               Cd % %w\                                 3s.
.s' K c
i                        ,
s s'
o N l
s a
                                                      %                           O[l
As I
        'o h      \
\\
                                                                    \         \                  ,
k\\
Ti4      OA% 3                                '
xx l
1 h *\\     1
5 i
                                                                          ':~. . .        N NN                                                                 \
N N
\\\\
%w\\
N
\\
NN Cd %
i
i
_Os'%         NN   \0                                   g
^
                                                                ,              %                's
\\
3s. O[
l
\\
\\
l o
N h
\\
'o Ti4 OA% 3
':~
N 1
h *\\\\
1 NN
_Os'%
NN \\ 0
's i
\\
g
(
(
s, s '             IQ'             \\         l s%N s
s, s '
Radial Blankets Q , Fuel Assemblies g     Al a e Fuel-Blanket g     Blanket Assernblies g     Centrol Assemblies CRBRP lieterogeneous Core t'
IQ' s%N
\\\\
l s
Radial Blankets Q, Fuel Assemblies g
Al a e Fuel-Blanket g
Blanket Assernblies g
Centrol Assemblies CRBRP lieterogeneous Core t'


s luDIAL SHitLD RADIA'l BLANCtf Nfjty}) ,/W                       'J,/[y1
s luDIAL SHitLD RADIA'l BLANCtf Nf
      \                  /
\\ jty}) /W 'J,/[y1
{/,/                          ~!P NT /                 /                               .
/
                                                          /[!                     AtLP) l x          ,/       / ,// / /!           /
~!P
N         114 cn -
/ / {/,/ /[!
N T AtLP) l
,/ /
x
,/ /
/ /!
/
N 114 cn h /[
[
[
h /[
/i;/ /
CORE Ric!ON E
l' CORE Ric!ON E
                                  /i;/ /                        l'
. A55tMBLY PITCH: 12.1 CH cont /LAs Mak;62@dh[fdp bh 6
                                                                . A55tMBLY PITCH: 12.1 CH                 ,
f
cont /LAs 6Mak;62@dh[fdp                                                                       f bh
/
                                        /   i a     j
j i
  \'        '
i a
                      ~
\\
                          /
/
i 4 1
1 4
V l
V
d
,it l
                                        ,it               ;
~
N ~ ~N     %
d N ~ ~N It<tti e 39tt N
It<tti e 39tt N         ~
~
t and Be200 the Core Region. Sketch                         e       Shouing I
and Be200 the Core Region. Sketch Shouing e
t I
i
i


e itYDRAULIC O'                                                                     DESICNATIONS            '
e itYDRAULIC O'
                              ^
: i. _nCCION NO.
og 8 ne              .
DESICNATIONS
: i. _nCCION       il n  NO.
^
                                                                                                                                                .l p               E I                                       *
n e n
                                          ,I         i                       '
il
4                                                               .                                ..
.l og 8 p
i C/R TOP TO
E I
                                        * * }/
,I i
4 C/R TOP TO i
PCA OUTLET
PCA OUTLET
* 1r e--
* * }/
JL I
1r e--
                                              /                                                         *
JL
                                                                          --~_                                       CONTROL ROD IC/R) 4   ..
/
4 I.                                      .
I
                ,                              T                                         I' b
- - ~ _
RADIATION SHIELDING           _
CONTROL ROD IC/R) 4 4
                              .j.
I.
ORIFICE PLATES qd:i:,                                                           1 PCAINLET n                                             l, d                                     .
T I'
b RADIATION SHIELDING
.j.
qd:i:,
ORIFICE PLATES 1
PCAINLET n
l, d
t t
t t
l                                                                                                   .            .
l l
l         .
Schematic of Prbna2'y Control Assembly.
Schematic of Prbna2'y Control Assembly.
4            Indicates niel Melt Path.
Indicates niel Melt Path.
l
4 l


Normal Sodium Out1ct
Normal Sodium Out1ct
                                                                                                                    /*'
/*'
                                                        .d
.d L-l
                                                        -                                                        L-- -
- }
l                                                              -
/
                                                        '                                                          ~
~
                                                        }
/
                                                                                                                  /
/
                                                                                                                  /
/
                                                        /                                                          /
/
                                                        /                                                          /
/
:' \
:' \\
                                                                                                    /:               -
/:
                                                        -                                      ~
~
                                                                                              .                ~
Absorber Bundle at
                                                                                                                "            Absorber Bundle at
~
                                                    -                                                                -      Operational Level Duct                                   -
Operational Level Duct Mel't'-Thr5'u gh 777771 -l-I Lower Seal Ring l
Mel't'-Thr5'u gh                         -
~\\
                                                    ,                              777771                 -l-I           Lower Seal Ring Core Midplanc;-      --
[,I Core Midplanc;-
l
l 81 cm 7
                                                                      ~
Cuide Tube Bottom of LABF---l 56'cm-l
                                                                              \                                [ ,I                             -
l 81 cm                     -                                                          . 7     Cuide Tube Bottom of LABF---l                                           ,
56'cm-                                                                                     l
[
[
4 d
4
                                                                                              ,-                          Low Pressure Vent
[f d
[f s
Low Pressure Vent s
                                                                        ;             g                                   Kosepiece Orifice 3-              ;
; g Kosepiece Orifice 3
Normal Inlet Flow h}                         -
Normal Inlet Flow h}
b                     -
b
                                                                                              '' Vent Outlet to Core Barrel Cooling SstmW of SCA .F7ou PcL7:s for F:tc1.
'' Vent Outlet to Core Barrel Cooling SstmW of SCA.F7ou PcL7:s for F:tc1.
Re.moval (not to scale).
Re.moval (not to scale).


Line 594: Line 783:
i l
i l


e REACTIVITY LEVELS FOR VARIOUS DISRUPTE6 CORE CONFIGURATIONS AT BOC-1 Case         Description of Core Configuration         Reactivity ($)
e REACTIVITY LEVELS FOR VARIOUS DISRUPTE6 CORE CONFIGURATIONS AT BOC-1 Case Description of Core Configuration Reactivity ($)
1       43% of total fuel inventory removed from           -1.4 the core. The remaining fuel in the annu-lar regions is hoinogenized in the core and fully compacted with IB and CR assemblies intact.
1 43% of total fuel inventory removed from
2       Sace as Case 1 except that only 33% of             +10.2 total fuel inventory is removed.
-1.4 the core.
3       Same as 2 except fuel boils up with a linear /     3]
The remaining fuel in the annu-lar regions is hoinogenized in the core and fully compacted with IB and CR assemblies intact.
2 Sace as Case 1 except that only 33% of
+10.2 total fuel inventory is removed.
3 Same as 2 except fuel boils up with a linear / 3]
uniform void fraction.
uniform void fraction.
4       41% of total inventory removed from core. The     -10.5 remaining fuel, the IB and CR (except B C) 4 assemblies are homogenized and fully compact.
4 41% of total inventory removed from core.
The
-10.5 remaining fuel, the IB and CR (except B C) 4 assemblies are homogenized and fully compact.
l 4
l 4
e 1
e 1
i I
i I


l                     l                                                                                                                                         I 8
l l
                                                                                                                                            % Driver Fuel Inventory                                   -
I l-8
l-Upper Axial                   1                             l                                 Power Level end Time Interval Blanket and                                                                                     Between Melt-Out/ Annular. Pool g
% Driver Fuel Inventory Upper Axial 1
Location                 Radial                         Interassembly                     Control Rod               Phase and Homogeneous Fool
l Power Level end Time Interval Blanket and Between Melt-Out/ Annular. Pool l
                                                                                                                    , Blanket                               Gaps                     Assemblies                 Phase **
' Location Radial Interassembly Control Rod Phase and Homogeneous Fool g
                                            !                                    ;                                                            i                     .
, Blanket Gaps Assemblies Phase **
                                                                                  .                                                            1                    1 Carly*                 < 10%                                   > 40%                         = 10%
i 1
* i BL Fuel l Removal                     Based on                           Rate of Removal                                                     = 150 sec 0j                                                     Limited Opening                   is Fuel Melt
1 Carly*
                                                                                    ;                            in Clad Bkg.                       Limited             ,
< 10%
C ' - - - - - - - - - -
> 40%
                                                                                      !      Later*                 = 20%                                       15%                       > 40%                 Time Interval Reduced by 1/4         i l                                             Fuel                 No fuel Pene-                       Based on BFM                                               Due to Driver Fuel Penetra-tration into                       and BOC Gaps                                                 tion into Bkt. Assembly             I 1 *l Removal                                         UAB - RB only                                           [                               ,
= 10%
                                                                                                                                                                                                                        = 35 see Early*                 > 25%                                     > 40%
i BL Fuel l Removal Based on Rate of Removal
= 150 sec 0j Limited Opening is Fuel Melt in Clad Bkg.
Limited C ' - - - - - - - - - -
ater*
= 20%
15%
> 40%
Time Interval Reduced by 1/4 i
L l
Fuel No fuel Pene-Based on BFM Due to Driver Fuel Penetra-tration into and BOC Gaps tion into Bkt. Assembly I
1 *l Removal UAB - RB only
[
= 35 see Early*
> 25%
> 40%
lE
lE
                                                ,                                      ' Fuel                       -
' Fuel
                                                                                                                                                                                                                            ~
~
i                                           Removal             . Based on Exp..                     Rate of Removal                             0%                   = 46 see 10 l                                                               Data Limited                       is Fuel Melt                                                                                     i l                                     1                           Cla'd 'Bkg.                       Limited C                               ---------------------------l----------------                                         - - - - - - -                l - - - - - - -      -
i Removal
l                                                                                                                                           ,
. Based on Exp..
Later*                 > 40%                         i           > 10%                         > 30%                 Time Interval Reduced by 1/2
Rate of Removal 0%
                                                                                .            Fuel                 Based on BFM                       Based on BFM                                                 Due to Driver Fuel Penetra-
= 46 see 10 l Data Limited is Fuel Melt i
                                                ,4                                         Removal               in UAB (25%)                       and EOC Caps                                                 tion into Bkt. Assembly             '
l 1
:                                                                                                                              I Plus (20%) in *                                                                                       = 23 see                     -
Cla'd 'Bkg.
l                                       ,
Limited C
to RB                                                       !
---------------------------l----------------
l                                      I                                                                                                                               .
l l
;                                                                                            ' Relative to the annular pool phase time interval.
Later*
l                                                                                                   .
> 40%
l Defined by loss of inner blanket fuel assemblics structural integrity.                                                            .
i
POTENTIAL FOR LOSS OF FUEL INVENTORY PRIOR TO                                                                       .
> 10%
HELT-OUT OF INNER llLANKET ASSEHilLIES L
> 30%
Time Interval Reduced by 1/2 Fuel Based on BFM Based on BFM Due to Driver Fuel Penetra-
,4 Removal in UAB (25%)
and EOC Caps tion into Bkt. Assembly Plus (20%) in
* I
= 23 see l
to RB l
I
' Relative to the annular pool phase time interval.
l l
Defined by loss of inner blanket fuel assemblics structural integrity.
POTENTIAL FOR LOSS OF FUEL INVENTORY PRIOR TO HELT-OUT OF INNER llLANKET ASSEHilLIES L


EFFECT OF SODIUM IMPEDANCE ON FUEL EENETRATION INTO GAPS _
EFFECT OF SODIUM IMPEDANCE ON FUEL EENETRATION INTO GAPS _
  ~
~
      ~1.
~1.
CONDUCTION MODEL:
CONDUCTION MODEL: PENETRATION LENGTH IS REDUCED B MOST 40%.
PENETRATION LENGTH IS REDUCED B MOST 40%.
THIS REDUCTION DOES NOT ALTER THE FUEL REMOVAL INVENTORY.
THIS REDUCTION DOES NOT ALTER THE FUEL REMOVAL INVENTORY.
2.
2.
Butx FREEZING MODEL_:
Butx FREEZING MODEL_:NO EFFECT ON PENETRATION LENGT O
NO EFFECT ON PENETRATION LENGT O
4 e
4 e
l
l
Line 648: Line 865:
I
I
)
)
RADIAL SHIELO               RAD!ilBLANKET 1                       A Ok P     ACLP)
RADIAL SHIELO RAD!ilBLANKET A
S      CtiOn to Na g                      Ai                                                           Flow at ACLP)
1 Ok P S
CORE REGION
CtiOn to Na ACLP)
          $                                  $'                      .        L55tr.'8LY Pi1CH: 12.1 CM                         ED W Las Y .hh /,Y                                             hkc?Yhhh,                                                     '
Ai Flow at ACLP) g CORE REGION L55tr.'8LY Pi1CH: 12.1 CM ED W Las Y.hh /,Y hkc?Yhhh, h
\\ {-
/h 0.17CM-t-l
/
-~
'If
<lf hn a/
_s fj[ll4siittLOatocKl"/
/ g ll / /;
/
h
h
                                            /hg                                  'If              '
/
                                                                                                                          !      -~
/
        \ {-                _s
e
                                          /                                    0.17CM-t-l          /
\\
                                                                                                                      <lf  !!
Yf :/V ll if I
hn h          /
l u
a/ ,              /
N N N N N
                                          / #e ll_
N lutEI noault N Sketch Showing the Inicrstitial Gaps Outside and Below the Core Rcgion.
                                                        / /; fj[ll4siittLOatocKl"/
        \    u      Yf
:/V ll         if l
                                                                      ;                              I N N       N N           N     N     lutEI noault N Sketch Showing the Inicrstitial Gaps Outside and Below the Core Rcgion.
e
e
  -__      .e--..         - , ,
.e--..
                                      .-            =--                                                 --c-,-   ,s.
=--
--c-,-
,s.


_ - _      . - - _ . -          -.-.              _ -.        = - .       -    -  - r. - .-                      - -                  - -- - .
= -.
e                                                                       I g
r.
i t
e I
I 89 f
g i
t I
89 f
l
l
^
^
CONSIDERATION OF P0OL S0DIUM ENTRY VIA RAPID CONDENSATION OF STEEL VAPOR PRESSURE l
CONSIDERATION OF P0OL S0DIUM ENTRY VIA RAPID CONDENSATION OF STEEL VAPOR PRESSURE l
i J
i J
l i                                                                                                       e.
l i
                                                                                                                    .y I
e.
                                                                                                                                                        +
I
.y
+
W i
W i
,                                                                                                                                        w
w
                                                                                                                  + -
+ -
a
a
                                                                                                                " ' a i                                                                                                           v' k           %.
" ' a i
v' k
s N.
s N.
2
2 y.
        -  ,            -,- ,        y. _-.... , , ,-                    -                .- _ ,                    ,.. -_ . . . , .


8 O
8 O
e 0             .
e 0
O Y
O Y
x                                       ..
x
                                ..)                                       e N
..)
Wm 1
e N
P (A                       e l
W m
I e
1 P
,-                                              p l                                               m           -
(A e
l t
l I
m            .
e p
                ~
l m
b h
l m
t
~
b h l
l l
l l
l l
l l
l l
l 1
1


e%     v 9       m             4         &
e%
0 e                                         k G
v 9
a                   .
m 4
0 e
k
&G a
d Z. -
d Z. -
G
G
                                    ~>
-~>
v N
v N
Z CD CL                         cc O.Z b
Z CD CL cc O.Z b
o
o A>
* A v
v CD i
        .                            CD i
O e
O e
b l
b l
 
:.~ ;-~_. -. ~.. - ~
: .~ ;-~_ . - . ~ . . - ~


==SUMMARY==
==SUMMARY==
RESPONSE TO QUESTIONS 1,
RESPONSE TO QUESTIONS 1,
Once molten fuel mild                                                  becomes available on on                                       assembly b recriticality                             events asis, may be possible but they are limited in amplitude and do not amplify, 2.
Once molten fuel becomes available on on assembly b mild recriticality events may be possible but they are
Multiple paths for fusl time scale, assemblies.
: asis, limited in amplitude and do not amplify, 2.
relative to the melt-outremoval                                       of internal blanket                 are Correspondingly,                                 fuel           removal       is not overly sensitive to fuel penetration model escape impedances.                                                                       assumptions and fuel 3.
Multiple paths for fusl time scale, relative to the melt-outremoval are of internal blanket assemblies.
There is always time for sufficient fuel removal                                                         , 1,.e. about 40% of the driver fuel, to achieve permanent                                                                     cality subtriti prior to loss Of the annular inner blanketer,barri 4.
Correspondingly, fuel removal is not overly sensitive to fuel penetration model escape impedances.
The accident sequence will terminate benignly without the development of a homogeneous large scale                                                               _
assumptions and fuel 3.
phase confined poo as defined in (Ref, QCS760,178BS-1),
There is always time for sufficient fuel removal
* 5.
, 1,.e. about 40% of the driver fuel, to achieve permanent subtriti prior to loss Of the annular inner blanket barri cality er, 4.
Sodium out              re-entry on the basis via steel vapor condensation                               ruled can be of excessive sodium vaporization when llould sodium comes into contact with steel vapor                                                         ,
The accident sequence will terminate benignly without the development of a homogeneous large scale confined poo as defined in (Ref, QCS760,178BS-1),
* phase 5.
Sodium re-entry via steel vapor condensation can be out on ruled the basis of excessive sodium vaporization when llould sodium comes into contact with steel vapor


ROLEOFSTRUCTURESDURINGENERGETIC. TERMINATION e       INTERNAL STRUCTURES ACT TO ABSORB, PARTITION AND REDUCE THE LEVEL OF CORE EXPANSION FORCES ON THE PHTS BOUNDARY.
ROLEOFSTRUCTURESDURINGENERGETIC. TERMINATION e
e       THE UIS PLAYS AN IMPORTANT MITIGATING ROLE VIA BOTH HYDRODYNAMIC AND HEAT TRANSFER OROCESSES e       FINITE ELEMENT ANALYSIS INDICATES THAT A FORCE OF 6.5 MILLION LBF IS REQUIRED TO BUCKLE THE UlS SUPPORT COLUMNS, AND THEREBY REDUCE ITS MITIGATING ROLE.
INTERNAL STRUCTURES ACT TO ABSORB, PARTITION AND REDUCE THE LEVEL OF CORE EXPANSION FORCES ON THE PHTS BOUNDARY.
e       THE MAJOR UNCERTAINTY IN THE ABOVE ANALYSIS OF UlS
e THE UIS PLAYS AN IMPORTANT MITIGATING ROLE VIA BOTH HYDRODYNAMIC AND HEAT TRANSFER OROCESSES e
            ,    COLUV.N BUCKLING IS IN THE YlELD STRESS:
FINITE ELEMENT ANALYSIS INDICATES THAT A FORCE OF 6.5 MILLION LBF IS REQUIRED TO BUCKLE THE UlS SUPPORT COLUMNS, AND THEREBY REDUCE ITS MITIGATING ROLE.
                  -20 TO +100%.
e THE MAJOR UNCERTAINTY IN THE ABOVE ANALYSIS OF UlS COLUV.N BUCKLING IS IN THE YlELD STRESS:
e       INTRAASSEMBLY BLOCKAGES IN UCS ARE STRONG RELATIVE TO EXPECTED CORE PRESSURES, WITH THE BLOCKAGE TEMPERATURE THE CONTROLLING FACTOR.
-20 TO +100%.
e       OVERALL EFFECT OF STRUCTURES IS TO REDUCE THE PHTS
e INTRAASSEMBLY BLOCKAGES IN UCS ARE STRONG RELATIVE TO EXPECTED CORE PRESSURES, WITH THE BLOCKAGE TEMPERATURE THE CONTROLLING FACTOR.
        ~
e OVERALL EFFECT OF STRUCTURES IS TO REDUCE THE PHTS LOADS BELOW THOSE CALCULATED VIA AN ISENTROPIC
LOADS BELOW THOSE CALCULATED VIA AN ISENTROPIC CORE EXPANSION PROCESS.
~
CORE EXPANSION PROCESS.


ENCLOSURE 4 ACTION ITEMS FOLLOWING THE SEPTEMBER 21, 1982 CRBRP/NRC HCDA ENERGETICS MEETING HELD AT ARGONNE NATION AL L ABORATORY The following action items will be completed and submitted to NRC w i th i n two month s.
ENCLOSURE 4
: 1. Provide concise statement on TOP Initiating ramp rates.
ACTION ITEMS FOLLOWING THE SEPTEMBER 21, 1982 CRBRP/NRC HCDA ENERGETICS MEETING HELD AT ARGONNE NATION AL L ABORATORY The following action items will be completed and submitted to NRC w i th i n two month s.
: 2. Provide EOC-3 neutronics data (data type transmitted to ANL will suffice).
1.
: 3. Provide results of SAS sensitivity eval uation of best parameters for L6 and 17 in-pile tests.
Provide concise statement on TOP Initiating ramp rates.
: 4. Provide SAS 3D input deck with SLUMPY parameters used in response to QCS.760.
2.
: 5. Recalculate plenum fission gas effects f or EOC-4 w i th new sodium void worth.
Provide EOC-3 neutronics data (data type transmitted to ANL will suffice).
: 6. Provide SAS 3D corrections made to complete item 5.
3.
: 7. Provide TREAT test R-8 fuel pin data.
Provide results of SAS sensitivity eval uation of best parameters for L6 and 17 in-pile tests.
: 8. Provide analysis supporting fuel freezing upon entry to inner blanket assemblies.
4.
: 9. Provide resul ts of the GAP tests being perf ormed at ANL when av ai l abl e.
Provide SAS 3D input deck with SLUMPY parameters used in response to QCS.760.
5.
Recalculate plenum fission gas effects f or EOC-4 w i th new sodium void worth.
6.
Provide SAS 3D corrections made to complete item 5.
7.
Provide TREAT test R-8 fuel pin data.
8.
Provide analysis supporting fuel freezing upon entry to inner blanket assemblies.
9.
Provide resul ts of the GAP tests being perf ormed at ANL when av ai l abl e.
b e
b e
                                                          ^
4
                                  %}}
^}}

Latest revision as of 19:25, 16 December 2024

Forwards Summary of Crbr/Nrc Hypothetical Core Disruptive Accident Energetics 820921 Meeting Re Plenum Fission Gas Compaction,Role of Structures in Energetic Termination & Fuel Removal & Energetic Potential
ML20065M475
Person / Time
Site: Clinch River
Issue date: 10/15/1982
From: Longenecker J
ENERGY, DEPT. OF
To: Check P
Office of Nuclear Reactor Regulation
References
HQ:S:82:105, NUDOCS 8210210273
Download: ML20065M475 (51)


Text

.

hblT Q;

Department of Energy 9

Washington, D.C. 20545

-(3 Docket No. 50-537 HQ:S:82:105 0CT 151982 r

Mr. Paul S. Check, Director CRBR Program Office Office of Nuclear Reactor Regulation

-C U.S. Nuclear Regulatory Commission Washington, D.C.

20555

-s

Dear Mr. Check:

v

SUMMARY

OF HCDA ENERGETICS MEETING HELD ON SEPTEMBER 21, 1982 The meeting agenda, attendance list, and viewgraphs distributed at the subject meeting are enclosed as Enclosures 1, 2, and 3, respectively. The formal presentations and general discussion focused on clarification of technical issues associated with the CRBRP/P0 response to formal NRC questions. Presentations were made by both the NRC and CRBRP consultants. As a result of the meeting, the Project will undertake the actions listed in Enclosure 4.

Sincerely.

J n R. Longe ker Acting Directo, Of fice of the Clinch River Breeder Reactor Plant Project Office of Nuclear Energy Enclosures cc: Service List Standard Distribution Licensing Distribution 8210210273 821015 pol PDR ADOCK 05000537 A

PDR

LNLLUbOHL 1

Pogn 2 of 2 Ar.CHDA citBi1P/IIRC llCDA Energetics liceting Sr pte.niber 21, 1982 Argnnne. Ib tional I.cbora tory Building 207 Con ference Poom DA-126 1.

Introductory rcuarks, (unc/CRBRP, is mi.n).

2.

TO.P cncrgetics potential (pin internal fuel motion, sweapout, inccher-nn c e ), (CRDEP, 15 min - NRC, 15 min).

3.

1.0F-d-TOP potential (sodima void worth and other uncertainties), (CRBRP, 30 min - Rnc, 30 min).

4.

Plenum fi s: ion Das compact. ton (energetics potential, clad relocation,

4 initiating powcr phase histories), (CABRP, 30 min - /mC, 26 min).

~

I.UUCil 5.

Fuel remuval and cuerget ler. rotont.f al in connect.lon wit.h mci tout /ai nular.

pool phctu (CRDRY, GO v1f *! - UliC GO mist).

s a

G.

Pole of struct.ui-es in energetic teminction, (CN?iRP, 25 min - luiC,.10 r:d n).

7.

Conc 1uding rnnneht., (CRUn!', 30 miss - VRC, 30 min 1 I

w

ENCLOSURE 2

Y c a ngepb,c c it e: pi.;

x=,.. j,,i (fu)'i, S.y.&.., l u.

2. /,

/9s 2-

~~~

H c,., s t

- s A.e.-

i=nz- (.ea - s2 s - e uc)

C L.

Alics c Rgep-vac.. ( m - e 2 - % e c)

Mh t'p em Y=NI (.us -w 'k4-)

i R a_v G o o i-b C. R. s p o ( 6 / c - s 7 cf - c 3 7 2.'>

s

/

s t

0: ;n :

Uulmd. -

Gw.EW.

+'ot-7at-Jsxs 00L S(>Efl WEN'T MC- /?d25 ;L 0 & /d3t -2M ~)

/

0b0'O.) l}C/'/

l.AA/L.

S~as a 7 7.22 2.

't I?. 3 n s-l AIJ L So5 - Lc,1 - ;139S' p

0 !f 0 k $~

SWL SOS - 9% - D 3b ?-

~(. YrC 0 W.t.

fwb'l c 2l'? '[iG'l7 ~S~I 5 b4.ka_lc%

/@

RAS Ff 5 - 972 //68 A-s dw T.

Ysscx Aix/ Riis t=rs-91z </1c (

NE1:ta.<r N&.inv.:eJ A1)LjkP Frb-972-+957

/9 L/!&

4..A r-.7?{AL

_ tutic-F7s - 144 - r 2.r 7

/g., fza t4 W

' Ant / nit s Fr5 N ' - 4 & 90

/,I : e.l.o..l 0,.e!w e s f-i.,- l L 3 lg - p :l,3 - [',~. m,)

s

~

[.

( >,'. e 4.

Idn t s' c.

s..'

/,s

f. v. t, l'7-c.,

q q 7..-lg"::I 5-F,'tC\\1A>,..

wizeo 9.,.ci. csv-5s,i

[.... 7 * ?,,.

AtJi Mn :

t,s <> y 2.

,a 5 y

Q.v.d v2.d>~*:~ ;

EELOSURE 3

CEBRP HCDA EllERGETICS MEETillG INITI ATING PHASE ASSESSMENTS 1

PRESENTED BY DAVID P. WEBER SEPTEMBER 21, 1982 ARGONNE NATIONAL 1.ABORATORY ARG0llNE, ILLINDIS 60439' 4

e e

6

1 CRBRP HCDA ENERGETICS MEETIllG INITIATING PHASE ASSESSMENT TOP ENERGETICS POTENTIAL LOF'n' TOP POTENTI AL

=

PLENUM FISSION GAS COMPACTION a

6 e

ASSESSMENT OF WHOLE CORE IMPLICATIONS OF MIDPLANE PIN FAILURES IN SLOW RNiP TOP IN HETEROGENEOUS CORE CRBRP WITH SAS/PLUT02 EOC-410&/SEC SCENARIO o

FAILURE MELT FRACTION, CAVITY PRESSURE, AND PARTICLE SIZE CHOSEN TO SIMULATE W2 EXPERIMENT ALL FUEL PINS ASSUMED TO Fall C0HERENTLY LEAD CHAN!!EL FAILURE (6) LEADS TO LOW PEAK POWER (4 5 P ) AND LIMITED POSITIVE REACTIVITY (10&)

o LIMITED PLUTO-2 PREDICTED SWEEPOUT LEADS TO MORE RAPID POWER REC 0VERY THAN E0C-4 TOP CASE 2 (GEFR 523)

SUBSEQUENT DRIVER ASSEMBLY FAILURES AT LOW REACTIVITY STATE IMPLY SUB-PROMPT CRITICAL EXCURSION AND SUBCRITICALITY (PEAK POWER = 5 7 P )

o EOC-310C/SEC SCENARIO E0C-3 CHANNEL. POWER FACTORS USED WITH EXISTING E0C-4 a

DATA

?

SEC0llDARY ASSEMBLY FAILURES (Cal 11 AND 7) DELAYED Ill TIME (66 AND 82 MSEC) PREVENT SUPERPOSITION OF POSITIVE FUEL FEEDBACKS SIGNIFICAllT NEGATIVE FUEL REACTIVITY FROM LEAD CHANNELS

=

WITilIN 300 Msec (~ 45)

.A t t PLUT02 APPLICATIONS TO IN-PILE TESTS PRE-TEST AND POST-TEST ANALYSES OF TREAT TESTS E8, H6, AllD e

L8 WITH PLUTO AllD PLUT02 o

TREAT TEST E8

$3/SEc TOP FFTF SIMULATION LOW PUMP PRESSURE AND INITIAL SODIUM VELOCITY FAILURE LOCATION ABOVE MID-PLAllE

=

CONSIDERABLE EARLY SWEEP 00T WITH EXPERIMENTAL RESULTS

=

FASTER AND LARGER THAN PLUTO CALCULATIONS o

TREAT TEST H6 50&/SEc TOP FFTF SIMULATION i

PROTOTYPIC PRESSURE DROP AND IlllTIAL S0DIUM VELOCITY a

SEVERAL EVENTS SEPARATED BY MORE THAN 100 MSEC a

\\

CALCULAT10ll AllD H0DOSCOPE SHOW SIGNIFICANT EARLY o

SWEEP 00T (10s WITHIN 30 MSEC AllD 28s WITH 90 MSEC)

TREAT TEST L8 e

LOF'n' TOP SIMULATION FOR CRBRP A0M0GEllE00S CORE

=

DEGRADED POTEllTI AL FOR FUEL SWEEP 00T o

FUEL MOT 10tl REACTIVITY NEGATIVE 20 MSEC AFTER R0D a

t l

FAILURE.

CALCULATED SWEEP 00T LAGGED MEASUREMEllTS a

l

- e m w tw g

'M n. a e :...

e CRBRP HCDA ENERGETICS MEETING INITIATING PHASE ASSESSMENT TOP ENERGETICS POTENTIAL

=

LOF'n' TOP POTENTI AL PLENUM FISS10!! GAS C0KPACTION o

4 e

9

VOID WORTH Ul1 CERTAINTY IMPLICATI0!ls ON LOF'o' TOP POTENTI AL o

SAS3D MODELING ASSUMPTIONS BEST ESTIMATE SODIUM VOID REACTIVITY WORTHS PROVIDED BY AHL/AP SODIUM VOID "0RTH UNCERTAlllTIES BASED 011 AllL/AP ZPPR EXPERIMEllTAL RESULTS AND ANALYTICAL METHODS AllD DATA BASE USED Ill CRITICAL EXPERIMEllTS FUEL MOTION ASSUMPTI0llS IN SLUMPY BASED 011 RECENT AllL/ RAS L6/L7 AllALYSIS e

KEY MODELillG P0iHTS i

i MAXIMUM POSITIVE COOLANT VOIDillG REACTIVITY PLUS TWICE

=

UllCERTAlllTY RESULTS IN $219 VOIDING REACTIVITY l

EXPERil1ENTALLY C0llSISTENT FUEL NOTION MODELING PLAYS

=

l IMPORTANT ROLE IN ANY LOF'n' TOP ' ASSESSMENT l

l l.

l

V0ID WORTH UNCERTAlllTY IMPLICAT1011S ON LOF'n' TOP POTENTI AL o

SAS3D WHOLE CORE RESULTS COOLANT BOILING IN ALL DRIVER ASSEMBLIES BEFORE LEAD CHANilEL (CH. 6) FUEL MOTION COMPLETE CORE VOIDING IN DRIVER ASSEMBLY CHANilELS 2,4,6,7,9,10 AllD 11 AT TIME OF CHAllllEL 6 FUEL MOT 10ll PARTIAL VOIDING IN CHAllllELS 12, 13, 14 AND 15 a

POWER LEVEL IS LOW (~ 10 P ) A!!D FAILURE C0!!DITI0lls ARE o

FAR FROM BEING MET IN LOW POWER CHAllllELS.

C00LAllT BOILING IN INTERilAL BLANKETS TAKES PLACE AFTER FUEL DISRUPTION AND GROSS DISPERSAL IN CHAllllELS 6, 2, 4 AND 7 o

C0llCLUS10N EVEN USING C0!1SERVATIVE ESTIMATE'S OF THE UllCERTAINTIES l

111 C00LAllT V01DillG REACTIVITY,110 THRESHOLD FOR LOF'n' TOP EVEllTS WAS FOUllD WHEll EXPERIMEllTALLY VERIFIED FUEL MOT 10ll BEHAVIOUR WAS BKPLOYED i

i e

~~

c e.m e...

g.

CRBRP HCDA EllERGETICS MEETIllG INITIATil1G PHASE ASSESSMENT o

TOP ENERGETICS POTENTIAL LOF'o' TOP POTENTI AL PLE110M FISSION GAS COMPACTION o

6 e

O

POTEllTIAL FOR AUT0 CATALYSIS DUE TO PLEl10M FISS1011 GAS INDUCED FUEL COMPACTION INITIAL ASSESSMENT (BASED ON GEFR-523 EOC-4 LOF BASE CASE

=

1A) SHOWED COMPLETE BLOWDOWil IN EARLY ASSEMBLIES BUT POTEllTIAL FOR CGiPACTION IN LATER ASSEMBLIES AUTOCATALYTit BEHAVIOR WAS AFFECTED BY C0llSERVATIVE MODELING a

OF EARLY FUEL MOT 10H TREAT LOF TESTS, ESPECIALLY L6 AND L7, WERE IDENTIFIED AS e

THE MOST RELEVAllT DATABASE AllD EXTENSIVE SAS3D/SLUMPY ANALYSES WERE PERF0miED FISSION GAS AVAILABILITY AND DISTRIBUT10ll WERE DETERMl!JED o

WITH FRAS3 CODE WHOLE CORE AllALYSES WERE PERFORMED WITH EXPERIMENTALLY e

CONSISTEllT FUEL DISPERSAL MODELING, LEADING TO ELIMINATI0ll 0F CollCERll FOR PLElluM GAS COMPACT 10!l e

FISS10!! GAS MODEllilG WITH FRAS3 TECHillCAL APPROACH VAllDATION OF FRAS3..MODELING BY COMPARISON OF PREDICTED AllD MEASURED GAS RELEASES Ill FGR TESTS WHICH MOST CLOSELY REPRESEllT CRBR C0!!DIT10lls PREDICT 10lls 0F THE FRACT10110F THE INITIAL FISSION GAS COUCEllTRATIONS RETAlllED AT TIME OF FUEL MOT 10!l IN L6 AllD L7 TESTS FOR USE IN SAS3D/SLUMPY PREDICT 10lls 0F GAS C0llCEllTRAT10llS FOR EOC-4 LEAD CHAllllEL 6 WITH LOF GEFR-523 BEST ESTIMATE THERMAL HISTORY C0llCLUS10llS 011 GAS RETEllTION a

PERCEllT RETAltlED PERCEllT RETAlHED t

IN GRAlllS ON GRAIN BOUNDARIES L6 24 95 L7 64 47 CH 6 54 47 l

SAS3D/SLUMPY ANALYSIS OF L6 AND L7 TREAT TESTS e

TECHNICAL APPROACH PROCEDURE FOLLOWED FOR HEAT BALANCE AND TEST SIMULATIONS STEADY-STATE SIMULATION OF 1RRADIAT10N HISTORY

=

20-SECOND TRANSIENT TO SET INITIAL THEmiAL-HYDRAULIC a

CONDITION TEST TRANSIENT e

SAS3D INPUT FISSION GAS PARAMETERS BASED ON FRAS3 ANALYSIS e

FRACTION OF GRAVITY SET TO 0 2 VERY LITTLE COUPLING BETWEEN COOLANT VAPOR STREN4, AND o

FUEL MOTION (0 SODOM = 0 02) o EFFECTIVE FUEL VISCOSITY ENHANCED TO ACC0llNT FOR PRESENCE OF PARTIALLY SOLID FUEL (VISFU = 10000)

FUEL MOTION INITIATED ON 50% FUEL MELT FRACTION I

o i

i o

TEST RESULTS SATISFACTORY SIMULATION OF BOTH L6 AND L7 TESTS a

l

WHOLE CORE AllALYSIS AllD PLEllUM GAS COMPACT 10!! ASSESSMENT WHOLE CORE POWER AND REACTIVITY RESULTS LEAD CHAullEL REACTIVITY STAYS POSITIVE FOR 146 MSEC, WITH PEAK POWER OF 4 7 Po REACTOR DRIVEN SUBCRITICAL ON LEAD CHANilEL FUEL MOTIO a

BY 406 MSEC ASSESSMENTS PERFORMED ON SUBSEQUEllT FAILURES AND TIM a

POTEllTI AL FOR COMPACTION OF FUEL

=

PIPFLO MODEllllG IN SAS3D AND 1400 C CLADDING o

TEMPERATURE FAILURE CONDITION USED TIME C0llSTANT FOR BLOWDOWil CALCULA ED TO BE LESS THAN l

o 250 MSEC ALL DRIVER CHANilELS HAVE SEVERAL TIME C0llSTAllTS TO a

BLOWD0l!!1 PRIOR TO FUEL MOTION INITIATION C0!!CLUS10ll 4

AUTOCATALYSI,S BY PLElluM GAS COMPACTI0ll 0F pills IS HIGilLY UllLIKELY i

9 l

- g.[.c,,.. gd

~

p S0DIUM VOID WORTH ALTERNATIVE METHODOLOGIES 0

USE STATE-OF-THE-ART METHODS AND. CROSS SECTION DATA FOR CALCULA-TIONS.

DETERMINE UNCERTAINTIES FROM " KNOWLEDGE" 0F UNCERTAINTIES IN METHODS / DATA.

0 USE INTEGRAL DATA BASE TO DERIVE AN " EXPERIMENTAL"'VALUE.

UNCER-TAINTIES FALL OUT OF ANALYSIS O

b o

,--n,-

I BIAS FACTOR METHOD e

SINGLE BIAS FACTOR P=aC e

Two FACTORS (LEAKAGE AND NON-LEAKAGE) 9 P = $N + il

-E

[ (P I)2 I

MIN

'I I

4

COMPUTATIONAL MODEL o

ENDF/B-IV DATA 2

o MC -2/SDX PROCESSING TO 20 ENERGY GROUPS

~~

e THREE-DIf4ENSIONAL DIFFUSION THEORY 5 :,.

1 e

CORRECT FOR STREAlilNG USING BENOIST DIRECTIONAL DIFFUSION i$

COEFFICIENTS o

EXACT PERTURBATION THEORY e

9 t

t

.f

9W Ratios of Calculated to tieasured Reactivities for Sodium Voiding C/E Before Standard Devia-Cases Biasing tion After Biasinga CRBR-EMCb BOC-1, positive part of core 0.98 10

. 'CRBR-EMC EOC-4, positive part of core 1.23 6

101 mixed zones 1.08 12 Axial blankets without control rods 0.91 1

Axial blankets with control rods 1.23 2

Core zones with negative reactivity signals-1.02 9

aSeparate' bias factors applied to positive and negative components of reactivity. For any subset, the average C/E is 1.0 after biasing.

bEngineering mockup critical experiments foc sodium-void reactivity in CRBR; reactor geometry and composition closely matched.

x k

A A

'T 7

eY 6 Y a

m W

9 4

e s-

  • ^

f T

b e s.,

N

~

i

~

Ratios of talculated to Nessured Reactivities for Sodium Voiding C/E Before

% Standard Devia-Cases Biasing tion After Biasinga CRBR-EMCb BOC-1, positive part of core 0.98 10 CRBR-EMC EOC-4, positive part of core 1.23 6

1.08 12 101 mixed Jones Axial blankets without control rods 0.91 1

Axial blankets with control rods 1.23 2

Core zones with negative reactivity signals 1.02 9

aSeparate bias factors applied to positive and negative components of reactivity. For any subset, the average C/E is 1.0 after biasing.

bEngineering mockt? critical experiments foc sodium-void reactivity.in CRDR; reactor gc00 try and composition closely matched.

t O

e l

Bias Factors and Uncertainties for Sodium-void Reactivity in CRBR Calculational Bias Factora Uncertainty,b%

Zone BOC-1 EOC-4 BOC-1 EOC-4 Central core 1.0 0.82 10 6 /

External core 1.0 1.0 10 10 Axial blankets 1.0 1.0 20 20

. Internal blankets 1.0 1.0 20 20 "to be multiplied times the calculated value.

bto be added in quadrature with uncertainties from other sources.

l l

l 4

l t

Bias Factors and Uncertainties for Sodium-void React.vity in CRBR Calculational Bias Factora Uncertainty,bg Zone BOC-1 EOC-4 BOC-1 EOC-4 Central core 1.0 0.82 10 6

External core 1.0 1.0 10 10 Axial blankets 1.0 1.0 20 20 Internal blankets 1.0 1.0 20 20 ato be multiplied times the calculated value.

bto be added in quadrature with uncertainties from other sources.

4 e

i Additional Uncertainties in CRBR Sodium-void Reactivity a

Uncertainty,

Source

% of Total Reactivity BOC-1 EOC-4 Fuel pins instead of plates 0

0 Sequence of voiding 3.5 3.5 4

Temperature distribution 2.5 2.5 Fission products 0

3.0 aTo be added in quadrature with the values of

" experimental" uncertainty.

?

4 e

4 g

-+e-,--

-7 r

. - +, -

'w m--*

~

Best Estimate Sodium Void Reactivity Worths ($)b a

BOC-1 EOC-4 Driver Assemblies 0.256 1.528 Core Lower Axial Blanket

-0.225

-0.160 Upper Axial Blanket

-0.177

-0.177 Total

-0.146 1.191 Internal Blanket Assemblies Core 1.381 1.593 Lower Axial Extension 0.008

-0.020 Upper Axial Extension

-0.007

-0.006 Total 1.382 1.567 aVoid Flowing Sodium (81.8% driver, 72.6% Blanket) b

=.0032 4

e 9

I i

FUEL REMOVAL AND ENERGETICS POTENTIAL IN CONNECTION WITH MELT-0VT/ ANNULAR POOL PHASE e

PRESENTED BY:

MICHAEL EPSTEIN FAUSKE t. ASSOCIATESs INC.

w 0

6 e

I e

4 4

.w.

-.m--

--n-

-v

~.

QUESTIONS CS760.178B5, -C.6, -C7

-B5, What is the basis for maintaining continuous subtriticali-ty in the high heat loss environment of early melt-out phase?

What are the fuel-losses (quantified), taking into account uncertainties in removal path geometries, driving pressures and freezing mechanisms?

What degree of subtriticality is required to prevent pool

-C6.

recriticality from tilermal and fluid dynamics upset conditions?

What is your position on the potential for small recriticalities to amplify?

What is the Justifica-tion for your position?

i

-C7.

In assessing benign termination from the boiled-up pool, t

Justify the fuel removal mechanisms and rates, in par-ticular, assess the potential for, upper pool sodium entry via rapid condensation of steel vdpor pressure.

e e

GENERIC ISSUES COVEREll 1.

DEFINITION OF MELT-0UT PHASE.

2.

DURATION OF MELT-0UT PHASE AND SENSITIVITY CONDITIONS (POWER LEVEL).

3.

RECRITICALITY AND RELATED PHENOMENA.

4.

FUEL FREEZING MECHANISMS AND REMOVAL PATHS.

5.

FUEL REMOVAL REQUIREMENTS FOR PERMANENT S

~

6.

SODIUM RE-ENTRY VIA STEEL VAPOR CONDENSATION.

6 e

O e

e

f POOL DEFINITIONS,

1.

Melt-Out/ Annular Pool Phase Merging of molten driver fuel assemblies while the inner blanket fuel assemblies remain intact.

2.

Large Scale Pool Configuration after the melting Of the inner blanket assemblies.

ess 4

e

. w

i NX%N l

\\\\ ~

\\

IO x\\\\

O A

s axx I

i

\\

4 4

i

\\,

N S\\

NN i

\\

\\

i x(

O"\\%N

.s\\\\

~ q O ~'

M I

I N

N N

~

^\\

M\\

'{.

N

%N Nx

'\\.

s

.NN 0 4N.N.

o W

Ns 5

'\\s 8

w\\\\

4

s..

Radial Blankets 4

O Fuel Assemblies O

Alternate Fuel-Blanket-Assemblies g

Blanket Assemblies g

Centrol Assemblies A:

Ilff SCALE OF THE_tlELT-00T/Al#10LAR POOL PHASE:

Ball 1 1.

POWER LEVEL BOUNDED BY 50% OF NOMINAL TO PRECLUDE RECRITICALITY ON AN ASSEMBLY SCALE.

2.

ADIABATIC HEATUP OF INTER BLANKET FUEL ASSEMBLIES:

E0C-4 BOC-1 TIME =

46 SEC 150 SEC 3.

MOLTEN DRIVER FUEL ENTERS INNER BLANKET FUEL ASSEMBLIES':

E0C-4 BOC-1 TIME =

35 SEC 46 SEC 4.

CHOICE OF THE POWER LEVEL IS NOT IMPORTANT SO LONG AS LARGE l

RAMP RATE RECRITICALITIES CAN BE PR"ECLUDED, i

I

NEUTRONIC EVENTS DURING THE MELT-00T/ ANNULAR POOL PHASE 1.

}F RECRITICALITIES SHOULD OCCUR THEY ARE MILD AND DO NOT AMPLIFY.

2.

ASSEMBLY WALL / FUEL MIXING IS MINIMAL DUE TO FUEL CRUSTING AND MELT LAYER STABILITY.

3.

MECHANISM (S) FOR SODIUM RE-ENTRY HAS EQI BEEN IDENTIFIED.

b o

-.n.

O

-4 e

e

-e J

- g e

e FLOWREGIMEANDREL51TICALITYCONSIDERATIONS DURING THE MELT-00T/ ANNULAR POOL PHASE

{

0 EXPERIMENT 0

ANALYTICAL CONSIDERATIONS O

b o

__________m________m_.-_

L.iquid. S.

lug Insta..ty xpen. ment an ss) s

/

/

Low Pressure Channel

/

i

/

/

/

/

j

/

/

/

/

/

/

/

/

l,~/

/

/

/

Diaphragrn.

-/

~

LNNW ANNN I/////////// ~0* ~ /' //////////

M'

/

s' I

/

M

/

/

II

/

/

t

/

/

11

/

/

/

/

I I

/,

/

ll

/

2 J

/

l li

/

I

/

3 jj l

High Pressure

/

/

ll Gas Reservoir

/

/

ll

/

~

/

o v

/

llt

/

/

/

/

u

/

/

is

/

(/ ///)

  • tt irf///

bh%%\\%Nh%%%M I

l ll l

l ll

l:::

u

.. 7/

s/ ~_ _ s < m _ x _.

s s_.

sm x__

m. m m. -s

' 6 O

O.

O s

O O

O O oO s

o

. se

. m e,

/ x (x x x x x x x x u w x u x x x x x x x y, Z

9.-

I-

!/w _-_ _ _ a.

f 7

x OcgO +O _.

p O

O U

O O

o cj) s s

i

=~.

T-

'r x x x x x { x x x x x x % x x x x x x xW N N I en

. -.i O

L'J 3:

<C g_

rlj ~' ~ ~

d.

""s UJ o

y l

s

,, l o

o a

(

s y

x m _ xs m m s m s m.sms x3 g

D.

LU i

b%

b

^ _

h l

.p y

N i

-Nt I

i s

_T.AN.h3i^3NxxxNNNxxNNi s

i

s L

d T

L H

Ho J-R Y

Y D

i l

D R>

16L ANALYTICAL CONSIDERATIONS; ID vs. 3D

^

IERMINATION OEJELI:OllI/mg!LAR POOL PHASE 1,

FUEL REMOVAL PATHS ARE AVAILABLE, 2,

FUEL REMOVAL IS SUFFICIENT TO ASOU CRITI'CALITY EVEN WHEN ASSESSED WITH C ELS.

B l

l t

l l

k l

t l

S x \\ \\\\\\\\\\\\

\\sN'A'

\\

\\

\\

~

s 3x

'y OA'N \\\\

o

.s' K c

s s'

s a

As I

\\

k\\

xx l

5 i

N N

\\\\

%w\\

N

\\

NN Cd %

i

^

\\

3s. O[

l

\\

\\

l o

N h

\\

'o Ti4 OA% 3

':~

N 1

h *\\\\

1 NN

_Os'%

NN \\ 0

's i

\\

g

(

s, s '

IQ' s%N

\\\\

l s

Radial Blankets Q, Fuel Assemblies g

Al a e Fuel-Blanket g

Blanket Assernblies g

Centrol Assemblies CRBRP lieterogeneous Core t'

s luDIAL SHitLD RADIA'l BLANCtf Nf

\\ jty}) /W 'J,/[y1

/

~!P

/ / {/,/ /[!

N T AtLP) l

,/ /

x

,/ /

/ /!

/

N 114 cn h /[

[

/i;/ /

l' CORE Ric!ON E

. A55tMBLY PITCH: 12.1 CH cont /LAs Mak;62@dh[fdp bh 6

f

/

j i

i a

\\

/

1 4

V

,it l

~

d N ~ ~N It<tti e 39tt N

~

and Be200 the Core Region. Sketch Shouing e

t I

i

e itYDRAULIC O'

i. _nCCION NO.

DESICNATIONS

^

n e n

il

.l og 8 p

E I

,I i

4 C/R TOP TO i

PCA OUTLET

  • * }/

1r e--

JL

/

I

- - ~ _

CONTROL ROD IC/R) 4 4

I.

T I'

b RADIATION SHIELDING

.j.

qd:i:,

ORIFICE PLATES 1

PCAINLET n

l, d

t t

l l

Schematic of Prbna2'y Control Assembly.

Indicates niel Melt Path.

4 l

Normal Sodium Out1ct

/*'

.d L-l

- }

/

~

/

/

/

/

/

' \\

/:

~

Absorber Bundle at

~

Operational Level Duct Mel't'-Thr5'u gh 777771 -l-I Lower Seal Ring l

~\\

[,I Core Midplanc;-

l 81 cm 7

Cuide Tube Bottom of LABF---l 56'cm-l

[

4

[f d

Low Pressure Vent s

g Kosepiece Orifice 3

Normal Inlet Flow h}

b

Vent Outlet to Core Barrel Cooling SstmW of SCA.F7ou PcL7:s for F:tc1.

Re.moval (not to scale).

REQUIREMENTS FOR PERMANENT SUBCRITICALITY AD b

e l

i l

e REACTIVITY LEVELS FOR VARIOUS DISRUPTE6 CORE CONFIGURATIONS AT BOC-1 Case Description of Core Configuration Reactivity ($)

1 43% of total fuel inventory removed from

-1.4 the core.

The remaining fuel in the annu-lar regions is hoinogenized in the core and fully compacted with IB and CR assemblies intact.

2 Sace as Case 1 except that only 33% of

+10.2 total fuel inventory is removed.

3 Same as 2 except fuel boils up with a linear / 3]

uniform void fraction.

4 41% of total inventory removed from core.

The

-10.5 remaining fuel, the IB and CR (except B C) 4 assemblies are homogenized and fully compact.

l 4

e 1

i I

l l

I l-8

% Driver Fuel Inventory Upper Axial 1

l Power Level end Time Interval Blanket and Between Melt-Out/ Annular. Pool l

' Location Radial Interassembly Control Rod Phase and Homogeneous Fool g

, Blanket Gaps Assemblies Phase **

i 1

1 Carly*

< 10%

> 40%

= 10%

i BL Fuel l Removal Based on Rate of Removal

= 150 sec 0j Limited Opening is Fuel Melt in Clad Bkg.

Limited C ' - - - - - - - - - -

ater*

= 20%

15%

> 40%

Time Interval Reduced by 1/4 i

L l

Fuel No fuel Pene-Based on BFM Due to Driver Fuel Penetra-tration into and BOC Gaps tion into Bkt. Assembly I

1 *l Removal UAB - RB only

[

= 35 see Early*

> 25%

> 40%

lE

' Fuel

~

i Removal

. Based on Exp..

Rate of Removal 0%

= 46 see 10 l Data Limited is Fuel Melt i

l 1

Cla'd 'Bkg.

Limited C


l----------------

l l

Later*

> 40%

i

> 10%

> 30%

Time Interval Reduced by 1/2 Fuel Based on BFM Based on BFM Due to Driver Fuel Penetra-

,4 Removal in UAB (25%)

and EOC Caps tion into Bkt. Assembly Plus (20%) in

  • I

= 23 see l

to RB l

I

' Relative to the annular pool phase time interval.

l l

Defined by loss of inner blanket fuel assemblics structural integrity.

POTENTIAL FOR LOSS OF FUEL INVENTORY PRIOR TO HELT-OUT OF INNER llLANKET ASSEHilLIES L

EFFECT OF SODIUM IMPEDANCE ON FUEL EENETRATION INTO GAPS _

~

~1.

CONDUCTION MODEL: PENETRATION LENGTH IS REDUCED B MOST 40%.

THIS REDUCTION DOES NOT ALTER THE FUEL REMOVAL INVENTORY.

2.

Butx FREEZING MODEL_:NO EFFECT ON PENETRATION LENGT O

4 e

l

I

)

RADIAL SHIELO RAD!ilBLANKET A

1 Ok P S

CtiOn to Na ACLP)

Ai Flow at ACLP) g CORE REGION L55tr.'8LY Pi1CH: 12.1 CM ED W Las Y.hh /,Y hkc?Yhhh, h

\\ {-

/h 0.17CM-t-l

/

-~

'If

<lf hn a/

_s fj[ll4siittLOatocKl"/

/ g ll / /;

/

h

/

/

e

\\

Yf :/V ll if I

l u

N N N N N

N lutEI noault N Sketch Showing the Inicrstitial Gaps Outside and Below the Core Rcgion.

e

.e--..

=--

--c-,-

,s.

= -.

r.

e I

g i

t I

89 f

l

^

CONSIDERATION OF P0OL S0DIUM ENTRY VIA RAPID CONDENSATION OF STEEL VAPOR PRESSURE l

i J

l i

e.

I

.y

+

W i

w

+ -

a

" ' a i

v' k

s N.

2 y.

8 O

e 0

O Y

x

..)

e N

W m

1 P

(A e

l I

e p

l m

l m

t

~

b h l

l l

l l

l 1

e%

v 9

m 4

0 e

k

&G a

d Z. -

G

-~>

v N

Z CD CL cc O.Z b

o A>

v CD i

O e

b l

.~ ;-~_. -. ~.. - ~

SUMMARY

RESPONSE TO QUESTIONS 1,

Once molten fuel becomes available on on assembly b mild recriticality events may be possible but they are

asis, limited in amplitude and do not amplify, 2.

Multiple paths for fusl time scale, relative to the melt-outremoval are of internal blanket assemblies.

Correspondingly, fuel removal is not overly sensitive to fuel penetration model escape impedances.

assumptions and fuel 3.

There is always time for sufficient fuel removal

, 1,.e. about 40% of the driver fuel, to achieve permanent subtriti prior to loss Of the annular inner blanket barri cality er, 4.

The accident sequence will terminate benignly without the development of a homogeneous large scale confined poo as defined in (Ref, QCS760,178BS-1),

  • phase 5.

Sodium re-entry via steel vapor condensation can be out on ruled the basis of excessive sodium vaporization when llould sodium comes into contact with steel vapor

ROLEOFSTRUCTURESDURINGENERGETIC. TERMINATION e

INTERNAL STRUCTURES ACT TO ABSORB, PARTITION AND REDUCE THE LEVEL OF CORE EXPANSION FORCES ON THE PHTS BOUNDARY.

e THE UIS PLAYS AN IMPORTANT MITIGATING ROLE VIA BOTH HYDRODYNAMIC AND HEAT TRANSFER OROCESSES e

FINITE ELEMENT ANALYSIS INDICATES THAT A FORCE OF 6.5 MILLION LBF IS REQUIRED TO BUCKLE THE UlS SUPPORT COLUMNS, AND THEREBY REDUCE ITS MITIGATING ROLE.

e THE MAJOR UNCERTAINTY IN THE ABOVE ANALYSIS OF UlS COLUV.N BUCKLING IS IN THE YlELD STRESS:

-20 TO +100%.

e INTRAASSEMBLY BLOCKAGES IN UCS ARE STRONG RELATIVE TO EXPECTED CORE PRESSURES, WITH THE BLOCKAGE TEMPERATURE THE CONTROLLING FACTOR.

e OVERALL EFFECT OF STRUCTURES IS TO REDUCE THE PHTS LOADS BELOW THOSE CALCULATED VIA AN ISENTROPIC

~

CORE EXPANSION PROCESS.

ENCLOSURE 4

ACTION ITEMS FOLLOWING THE SEPTEMBER 21, 1982 CRBRP/NRC HCDA ENERGETICS MEETING HELD AT ARGONNE NATION AL L ABORATORY The following action items will be completed and submitted to NRC w i th i n two month s.

1.

Provide concise statement on TOP Initiating ramp rates.

2.

Provide EOC-3 neutronics data (data type transmitted to ANL will suffice).

3.

Provide results of SAS sensitivity eval uation of best parameters for L6 and 17 in-pile tests.

4.

Provide SAS 3D input deck with SLUMPY parameters used in response to QCS.760.

5.

Recalculate plenum fission gas effects f or EOC-4 w i th new sodium void worth.

6.

Provide SAS 3D corrections made to complete item 5.

7.

Provide TREAT test R-8 fuel pin data.

8.

Provide analysis supporting fuel freezing upon entry to inner blanket assemblies.

9.

Provide resul ts of the GAP tests being perf ormed at ANL when av ai l abl e.

b e

4

^