ML17228B237: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML17228B237
| number = ML17228B237
| issue date = 07/14/1995
| issue date = 07/14/1995
| title = Stresses for St Lucie Unit 2,PZR Lefm.
| title = Stresses for St Lucie Unit 2,PZR Lefm
| author name = Miller A, Wiger T
| author name = Miller A, Wiger T
| author affiliation = BABCOCK & WILCOX CO.
| author affiliation = BABCOCK & WILCOX CO.
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:BNT-20697-2 (11/B9)
{{#Wiki_filter:I jIPBBMfNllClSAR
%MTECHNOLOGIES BNT-20697-2 (11/B9)
(BNNP.20697.1)
(BNNP.20697.1)
I jIPBBMfNllClSAR                                          CALCULATION  
CALCULATION  


==SUMMARY==
==SUMMARY==
SHEET (CSS)
SHEET (CSS)
        %M TECHNOLOGIES DOCUMENT IDENTIFIER 32-1235127" 02 TI TLF  Stresses       for   St . Lucie Unit 2, Pzr LEFM                         4100533 PREPARED BY:                                                        REVIENEO BY:
DOCUMENT IDENTIFIER 32-1235127" 02 TITLF Stresses for St. Lucie Unit 2, Pzr LEFM 4100533 PREPARED BY:
T.M. Wi er                                                         A.M. Miller SIGNATURE                                                          SIGNATURE TITLE   En   r III
T.M. Wi er REVIENEO BY:
                .                                                  TIT E En   r. IV                         ,7   // 9s-COST CENTER                      REF. PAGE(S)                      TM STATEMENT: REVIEllER INDEPENDENCE PURPOSE AND  
A.M. Miller SIGNATURE TITLE En r. III COST CENTER REF.
PAGE(S)
SIGNATURE TIT E En r. IV
,7 // 9s-TM STATEMENT:
REVIEllER INDEPENDENCE PURPOSE AND  


==SUMMARY==
==SUMMARY==
OF RESULTS:
OF RESULTS:
The purpose of this document is                       to determine enveloping Normal, Upset and Emergency Condition stresses                         for the six 1" instrumentation nozzles in the upper and lower spherical                         regions in the pressurizer at St. Lucie Unit 2. Results from this document were used as input to the fracture mechanics evaluation, Reference [7] .
The purpose of this document is to determine enveloping Normal, Upset and Emergency Condition stresses for the six 1" instrumentation nozzles in the upper and lower spherical regions in the pressurizer at St. Lucie Unit 2.
The   stress results are summarized in Tables 6.1 through 6.15 in Section 6.0.
Results from this document were used as input to the fracture mechanics evaluation, Reference
No   conclusions are drawn by, these calculations.
[7].
                                            ** BWNT Non-Proprietary **
The stress results are summarized in Tables 6.1 through 6.15 in Section 6.0.
This document consists of pages                       1   through       51 including 20a,             33a and 33b.
No conclusions are drawn by, these calculations.
THE FOLLONING COMPUTER CODES HAVE BEEN USED   IN THIS DOCUMENT:
** BWNT Non-Proprietary **
CODE / VERSION / REV                       CODE / VERSION / REV                     THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED ISRK
This document consists of pages 1 through 51 including 20a, 33a and 33b.
  '75081'00'l84 '950802 PDR     ADOCk 0500038'P
THE FOLLONING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:
                                  '.                                                                YES (     ) NO ( X )
CODE / VERSION / REV CODE / VERSION / REV THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED ISRK
PDR                                                                          PAGE 1       oF   51 Q
'75081'00'l84
'950802 '.
PDR ADOCk 0500038'P Q
PDR YES (
)
NO ( X )
PAGE 1
oF 51


tie' at)
tie' at)


I BRA NUCLEAR TECHNOLOGIES   ** BWNT NON-PROPRIETARY **   32-1235127<<02 RECORD OF REVISIONS Pages Revision        Added/
I BRA NUCLEAR TECHNOLOGIES
Number        Chanched                   Descri tion 0          All        Original issue All        Issue of Non-Proprietary Version Removed assumption 5.
** BWNT NON-PROPRIETARY **
32-1235127<<02 RECORD OF REVISIONS Revision Number 0
Pages Added/
Chanched All All Descri tion Original issue Issue of Non-Proprietary Version Removed assumption 5.
Corrected Young's modulus of base material.
Corrected Young's modulus of base material.
Modulus used in the analysis of previous revisions   was   correct,   but   reported incorrectly in this table.
Modulus used in the analysis of previous revisions was
Corrected equation for K,.
: correct, but reported incorrectly in this table.
8-40      Performed   the analysis     for only the spherical region with corrected hillside stress concentration factor and actual thickness. New model covers all nozzles in the upper and lower spherical regions.
8-40 Corrected equation for K,.
Performed the analysis for only the spherical region with corrected hillside stress concentration factor and actual thickness.
New model covers all nozzles in the upper and lower spherical regions.
Replaced with pages 8 through 50.
Replaced with pages 8 through 50.
Prepared By: T.M. Wi er               Date:
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Reviewed By: A.M. Miller             Date:                     Page: 2
Date:
Page:
2


BaW NUCLEAR TECHNOLOGIES     ** BWNT NON-PROPRIETARY ** 32-1235127-02 1.0   Introduction                                                   4 2.0   Assumptions 3.0   Design Input                                                   5 3.1 Design Characteristics                                     5 3.2 Material Properties                                         6 3.3 Model Geometry                                             8
BaW NUCLEAR TECHNOLOGIES
: 4. 0 Finite Element Model                                         10
** BWNT NON-PROPRIETARY **
: 5. 0 Thermal Analysis                                               11 6.0   Stress Analysis                                               20 7.0   ANSYS 5.0A Verification                                       48 8.0   References                                                     49 9.0   Microfiche                                                     50 Prepared By: T.M. Wi er               Date:
32-1235127-02 1.0 Introduction 2.0 Assumptions 3.0 Design Input 3.1 Design Characteristics 3.2 Material Properties 3.3 Model Geometry
Reviewed By: A.M. Miller             Date:                   Page: 3
: 4. 0 Finite Element Model
: 5. 0 Thermal Analysis 6.0 Stress Analysis 7.0 ANSYS 5.0A Verification 8.0 References 9.0 Microfiche 4
5 5
6 8
10 11 20 48 49 50 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
3


B&W'UCLEAR TECHNOLOGIES     ** BWNT NON-PROPRIETARY **   32-1235127-02 1.0   Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle "C" of Florida Power & Light Company's St.
B&W'UCLEAR TECHNOLOGIES
Lucie Unit 2. Subsequent NDE identified indications on the J-welds for all four steam space instrument nozzles. Modifications were made and justifications performed to determine the potential for crack growth during plant operation.     The evaluation performed at the time was conservatively limited to one cycle based on the design information available. The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that     it is applicable to all six instrument/temperature 1" nozzles in the spherical regions of the pressurizer.                                         I Results from this document are used as input to the fracture mechanics evaluation, Reference [7] . The results are presented in the coordinate system shown in figure 6.2, which is orthogonal to the postulated flaw, as required by Reference [7] . The component stresses along a postulated flaw plane shown in Figure 6.2 were determined using ANSYS'5.0A finite element software.
** BWNT NON-PROPRIETARY **
2.0   Assumptions
32-1235127-02 1.0 Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle "C" of Florida Power
: 1)   Material properties for SA-240, Type 304 were assumed for the stainless steel cladding on the pressurizer heads and shell.
& Light Company's St.
: 2)   The effects of the nozzle     were neglected in determining the shell/head stresses   (i.e. the nozzle was omitted from the finite element model) .
Lucie Unit 2.
: 3)   The hT between the cladding surface temperature and the bulk fluid temperature was assumed to be 15'F for calculating the natural convection heat transfer coefficient.
Subsequent NDE identified indications on the J-welds for all four steam space instrument nozzles.
: 4)   Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head.
Modifications were made and justifications performed to determine the potential for crack growth during plant operation.
5)'Removed)
The evaluation performed at the time was conservatively limited to one cycle based on the design information available.
: 6)   Hydrotest was assumed to be shop hydrotest only.     Therefore, no future hydrotests are assumed to occur.
The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that it is applicable to all six instrument/temperature 1" nozzles in the spherical regions of the pressurizer.
Prepared By: T.M. Wi er                 Date:
I Results from this document are used as input to the fracture mechanics evaluation, Reference
Reviewed By: A.M. Miller               Date:                   Page:   4
[7].
The results are presented in the coordinate system shown in figure 6.2, which is orthogonal to the postulated flaw, as required by Reference
[7].
The component stresses along a postulated flaw plane shown in Figure 6.2 were determined using ANSYS'5.0A finite element software.
2.0 Assumptions 1)
Material properties for SA-240, Type 304 were assumed for the stainless steel cladding on the pressurizer heads and shell.
2)
The effects of the nozzle were neglected in determining the shell/head stresses (i.e. the nozzle was omitted from the finite element model).
3)
The hT between the cladding surface temperature and the bulk fluid temperature was assumed to be 15'F for calculating the natural convection heat transfer coefficient.
4)
Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head.
5)'Removed) 6)
Hydrotest was assumed to be shop hydrotest only.
Therefore, no future hydrotests are assumed to occur.
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
4


BEcT4 NUCLEAR TECHNOLOGIES       ** BWNT NON-PROPRIETARY   **   32-1235127-02 3.0   Design Input 3.1   Design Characteristics The   following design parameters       for the pressurizer     were taken   from Reference   [8] .
BEcT4 NUCLEAR TECHNOLOGIES
Heatup                               100 F/hr
** BWNT NON-PROPRIETARY **
            'Cooldown                             200 F/hr Operating Pressure                   2250 psia Operating Temperature                 653 F Minimum Pressure (Reactor Trip transient)                           1740 psia   (653-616 'F hT)
32-1235127-02 3.0 Design Input 3.1 Design Characteristics The following design parameters for the pressurizer were taken from Reference
Maximum Pressure      (Abnormal Loss of    Load transient)                2400 psia   (664-614 'F hT)
[8].
Prepared By: T.M. Wi er                     Date:
Heatup
Reviewed By: A.M.       Miller               Date:                       Page: 5
'Cooldown Operating Pressure Operating Temperature Minimum Pressure (Reactor Trip transient)
Maximum Pressure (Abnormal Loss of Load transient) 100 F/hr 200 F/hr 2250 psia 653 F 1740 psia (653-616 'F hT) 2400 psia (664-614 'F hT)
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
5


B&k NUCLEAR TECHNOLOGIES           ** BWNT       NON-PROPRIETARY   **   32-1235127-02 3.2   Material Properties This     section summarizes the material properties used in the thermal/stress analysis. The material types come from References [8-10]
B&k NUCLEAR TECHNOLOGIES
and assumption 1. References for the material properties are given in the tables below. The material property designation and units are:
** BWNT NON-PROPRIETARY **
KXX - thermal conductivity,       btu/(hr-in-'F)
32-1235127-02 3.2 Material Properties This section summarizes the material properties used in the thermal/stress analysis.
DENS - density,     lb/in'
The material types come from References
          -   specific heat, btu/(lb-'F)
[8-10]
C   is a calculated value based               on   C = KXX/(DENS     x Thermal Diffusivity) where thermal       diffusivity is taken from the same source as             KXX EX   - Young's Modulus, psi x
and assumption 1.
                - coefficient of thermal expansion, in/in/'F x 10'LPX
References for the material properties are given in the tables below.
            - design stress intensity, ksi 10'm Sy -     yield strength, ksi Su -     ultimate strength, ksi v - Poisson's     ratio =   .3 for all materials PRESSURIZER HEADS AND SHELL SA-533 GR-B CL-1, Low         Alloy Steel (Mn-.SMo-.5Ni)
The material property designation and units are:
TEMP       DENS                               EX     ALPX           Sy       Su 100       .2839   1.8833     .1079         29.0    7.06  26.7  50 '      80. 0 200      ~ 2831   1.9500     .1139         28.5    7.25  26.7  47.5      80.0 300      .2823    1.9833    .1196          28.0    7.43  26.7  46.1     80.0 400      .2817    1.9833    .1257          27.4   7.58  26.7   45.1      80.0 500      .2809    1.9583    .1323          27.0    7.70   26.7   44.S     80.0 600      .2802    1.9167    .1389          26.4    7.83   26.7   43.8     80.0 700      .2794    1.8583    .1448          25.3    7.94   26.7   43.1     80. 0 REF          .3 Prepared By: -T.M. Wi er                             Date:
KXX - thermal conductivity, btu/(hr-in-'F)
Reviewed By: A.M.       Miller                       Date:                       Page: 6
DENS - density, lb/in'
- specific heat, btu/(lb-'F)
C is a
calculated value based on C
=
KXX/(DENS x Thermal Diffusivity) where thermal diffusivity is taken from the same source as KXX EX - Young's Modulus, psi x 10'LPX
- coefficient of thermal expansion, in/in/'F x 10'm
- design stress intensity, ksi Sy - yield strength, ksi Su - ultimate strength, ksi v - Poisson's ratio
=.3 for all materials PRESSURIZER HEADS AND SHELL SA-533 GR-B CL-1, Low Alloy Steel (Mn-.SMo-.5Ni)
TEMP DENS EX ALPX Sy Su 100 200 300 400 500 600 700 REF
.2839 1.8833
.1079
~ 2831 1.9500
.1139
.2823 1.9833
.1196
.2817 1.9833
.1257
.2809 1.9583
.1323
.2802 1.9167
.1389
.2794 1.8583
.1448
.3 29.0 28.5 28.0 27.4 27.0 26.4 25.3 7.06 26.7 50 '
7.25 26.7 47.5 7.43 26.7 46.1 7.58 26.7 45.1 7.70 26.7 44.S 7.83 26.7 43.8 7.94 26.7 43.1
: 80. 0 80.0 80.0 80.0 80.0 80.0
: 80. 0 Prepared By: -T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
6


I 0
I 0
Line 91: Line 170:
1
1


BED NUCLEAR TECHNOLOGIES       ** BWNT NON-PROPRIETARY   **   32-1235127-02 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni)
BED NUCLEAR TECHNOLOGIES
TEMP   DENS                         EX      ALPX          Sy      Su 100  .2862   .7250    .1157    28.1    8.55  20 '    30.0    75.0 200  .2853    .7750    .1209     27.6     8.79  20 '    25.0   71.0 300  .2844    .8167    .1246    27.0    9.00 20.0   22.5    66.0 400  .2836    ~ 8667    .1286    26.5     9.19  18.7   20.7   64.4 500  .2827    ~ 9083    .1313    25.8    9.37  17.5    19.4   63.5 600   .2818   . 9417   . 1334   25. 3   9. 53 16.4   18.2     63. 5 700  .2810    .9833    . 1358    24. 8    9.69  16.0   17.7   63.5 REF Prepared By: T.M. Wi er                     Date:
** BWNT NON-PROPRIETARY **
Reviewed By: A.M. Miller                   Date:                     Page: 7
32-1235127-02 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni)
TEMP 100 200 300 400 500 DENS
.2862
.2853
.2844
.2836
.2827
.7250
.7750
.8167
~ 8667
~ 9083 EX
.1157 28.1
.1209 27.6
.1246 27.0
.1286 26.5
.1313 25.8 ALPX 8.55 8.79 9.00 9.19 9.37 Sy 20 '
30.0 20 '
25.0 20.0 22.5 18.7 20.7 17.5 19.4 Su 75.0 71.0 66.0 64.4 63.5 600 700 REF
.2818
.2810
. 9417
.9833
. 1334
: 25. 3
. 1358
: 24. 8
: 9. 53 9.69 16.4 18.2
: 63. 5 16.0 17.7 63.5 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
7


BOW NUCLEAR   TECHNOLOGIES ** BWNT NON-PROPRXETARY **   32-1235127-02 3.3   Model Geometry The model   is axisymmetric with the axis of rotation at the center of the penetration, as if the penetration was located radially. Both the base metal and the cladding are represented   thermally and mechanically (see Figure 3.1) .
BOW NUCLEAR TECHNOLOGIES
R Clo,clcllng             ( Lp D RNaz Figure 3.1 Model Geometry The cladding and base metal thicknesses, T~~ and T,~, respectively, and the penetration radius, RNoz come from References [10] and [12] . The radius R, is not the actual radius to the base metal but is modified as discussed later to account for hillside effects.
** BWNT NON-PROPRXETARY **
Prepared By: T.M. Wi er                 Date:
32-1235127-02 3.3 Model Geometry The model is axisymmetric with the axis of rotation at the center of the penetration, as if the penetration was located radially.
Reviewed By: A.M. Miller             Date:                     Page: 8
Both the base metal and the cladding are represented thermally and mechanically (see Figure 3.1).
R Clo,clcllng
( Lp D RNaz Figure 3.1 Model Geometry The cladding and base metal thicknesses, T~~ and T,~, respectively, and the penetration
: radius, RNoz come from References
[10]
and
[12].
The radius R, is not the actual radius to the base metal but is modified as discussed later to account for hillside effects.
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
8


B&W NUCLEAR TECHNOLOGIES           ** BWNT   NON-PROPRIETARY     **   32-1235127-02 The dimensions     in Figure 3.1     above as used     in the analysis are:
B&W NUCLEAR TECHNOLOGIES
R, =   1.52(48 7/16) = 73.63 in. (1.52           = hillside stress factor)
** BWNT NON-PROPRIETARY **
R = 11/16 = 0.6875 in.
32-1235127-02 The dimensions in Figure 3.1 above as used in the analysis are:
T~~ = 7/32 = 0. 219 in.
R,
T,~, = 3 7/8 = 3.875 in.
= 1.52(48 7/16)
The model     was   built   such that the hoop stress was increased by an appropriate value to account for the hillside (non-radial) penetrations which are not inherent in an axisymmetric model.                   This increase was accomplished by increasing the radius to the base metal (R,) by an appropriate factor       K, calculated later.
= 73.63 in.
A sufficient portion of the         head was modeled       to attenuate the stress concentration effects at nozzle penetration (discussed in Section 4.0).
(1.52
= hillside stress factor)
R = 11/16
= 0.6875 in.
T~~
= 7/32
= 0. 219 in.
T,~,
=
3 7/8
= 3.875 in.
The model was built such that the hoop stress was increased by an appropriate value to account for the hillside (non-radial) penetrations which are not inherent in an axisymmetric model.
This increase was accomplished by increasing the radius to the base metal (R,)
by an appropriate factor K, calculated later.
A sufficient portion of the head was modeled to attenuate the stress concentration effects at nozzle penetration (discussed in Section 4.0).
Hillside Effect Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration.
Hillside Effect Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration.
From Ref.     [4, p. '337], the following stress concentration factor was calculated for the hillside effect. The maximum stress concentration was present at the instrument nozzles in the lower head where P (the angle between the penetration centerline and the normal to the head) was a maximum.
From Ref.
sin '(24.5625/48.21875)       = 30.62~                 Refs.  [9  & 10]
[4, p. '337],
K, = K,(1 +     2sin'$)                                       Ref. [4, p. 337]
the following stress concentration factor was calculated for the hillside effect.
K r = Kr (1 + 2sin'0. 62o)     1, 52 K, Where:,       K, =   radial nozzle stress concentration factor K, =   non-radial nozzle stress concentration factor P = angle the axis of the nozzle makes with the normal to the vessel wall Prepared By: T.M. Wi er                           Date:
The maximum stress concentration was present at the instrument nozzles in the lower head where P (the angle between the penetration centerline and the normal to the head) was a
Reviewed By: A.M. Miller                         Date:                         Page: 9
maximum.
sin '(24.5625/48.21875)
= 30.62~
K, = K,(1
+ 2sin'$)
Refs.
[9
& 10]
Ref.
[4, p.
337]
K r
= Kr (1
+ 2sin'0. 62o) 1, 52 K, Where:,
K, = radial nozzle stress concentration factor K, = non-radial nozzle stress concentration factor P
= angle the axis of the nozzle makes with the normal to the vessel wall Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
9


I B&W NUCLEAR TECHNOLOGIES     ** BWNT NON-PROPRIETARY ** '2-1235127-02 4.0   Finite Element Model ANSYS 5.0A finite element software, Reference [6], was used to perform the axisymmetric thermal and stress analyses of the nozzle penetration in the spherical regions.
I B&W NUCLEAR TECHNOLOGIES
The model extends away from the penetration far enough that the increase in stress due to the penetration is not present at the boundary. This will insure that any inaccuracies at the location of boundary condition application will not affect the results at the penetration.
** BWNT NON-PROPRIETARY **
J The head and   cladding were modeled using axisymmetric elements PLANE42 for the structural   and PLANE55 for the thermal.
'2-1235127-02 4.0 Finite Element Model ANSYS 5.0A finite element software, Reference
Prepared By: T.M. Wi er                 Date:
[6], was used to perform the axisymmetric thermal and stress analyses of the nozzle penetration in the spherical regions.
Reviewed By: A.M. Miller                 Date:                   Page: 10
The model extends away from the penetration far enough that the increase in stress due to the penetration is not present at the boundary.
" This will insure that any inaccuracies at the location of boundary condition application will not affect the results at the penetration.
J The head and cladding were modeled using axisymmetric elements PLANE42 for the structural and PLANE55 for the thermal.
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
10


BEcl NUCLEAR TECHNOLOGIES     ** BWNT NON-PROPRXETARY   **   32-1235127-02 5.0   Thermal Analysis The transients in Ref. [8] were reviewed       for those likely to   produce maximum tensile stress     on the inside     surface of the pressurizer (conservative for the fracture mechanics analysis in Reference [7]).
BEcl NUCLEAR TECHNOLOGIES
Based on the review, the     following transients   were evaluated in this analysis: 100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure = 1740 psia) and a 53 F Step-up (pressure = 2400 psia), and             Loss of Secondary Pressure. The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche SPHTHERM.OUT) with"Heatup from 70'F to 653'F (ramped over 5.83 hours, then held constant until t=7.0 hours), 53'F Step-down (instantaneously dropped at t=7.0 hrs, then held for 1.0 hour), 53'F Step-up (instantaneously raised at t=8.0, then held for 1 hour) and Cooldown from 653'F to 70'F (ramped over 2.915 hours starting at t=9.0 hours, then held constant until t=13.0 hours)         ~
** BWNT NON-PROPRXETARY **
The Loss of Secondary Pressure transient consists of a step decrease to 504F which is then ramped to 348F over the next 90 seconds at which time it   is held constant out to t=0.50 hours. The thermal results are 4
32-1235127-02 5.0 Thermal Analysis The transients in Ref.
contained in microfiche SPHTHLP.OUT.
[8] were reviewed for those likely to produce maximum tensile stress on the inside surface of the pressurizer (conservative for the fracture mechanics analysis in Reference
Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures.         Heat transfer was assumed to occur   at only the inside surface of the pressurizer as shown in Figure 5.1.     All other surfaces, including the penetration surface, were assumed   to be insulated.
[7]).
A constant heat transfer coefficient was used to simplify the analysis in a conservative manner. Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference [7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer.
Based on the review, the following transients were evaluated in this analysis:
Prepared By: T.M. Wi er                   Date:
100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure
Reviewed By: A.M. Miller               Date:                       Page: 11
= 1740 psia) and a
53 F Step-up (pressure
=
2400 psia),
and Loss of Secondary Pressure.
The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche SPHTHERM.OUT) with"Heatup from 70'F to 653'F (ramped over 5.83 hours, then held constant until t=7.0 hours),
53'F Step-down (instantaneously dropped at t=7.0 hrs, then held for 1.0 hour),
53'F Step-up (instantaneously raised at t=8.0, then held for 1 hour) and Cooldown from 653'F to 70'F (ramped over 2.915 hours starting at t=9.0 hours, then held constant until t=13.0 hours)
~
The Loss of Secondary Pressure transient consists of a step decrease to 504F which is then ramped to 348F over the next 90 seconds at which time 4
it is held constant out to t=0.50 hours.
The thermal results are contained in microfiche SPHTHLP.OUT.
Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures.
Heat transfer was assumed to occur at only the inside surface of the pressurizer as shown in Figure 5.1.
All other surfaces, including the penetration
: surface, were assumed to be insulated.
A constant heat transfer coefficient was used to simplify the analysis in a conservative manner.
Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference
[7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer.
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
11


B&W NUCLEAR TECHNOLOGIES         ** BWNT   NON-PROPRIETARY   **   32"1235127-02 During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer. Therefore, use of a low heat transfer coefficient results in conservative (tensile) stresses. Conversely, during Cooldown and the Step-down transient, a high heat transfer coefficient results in conservative (tensile) stresses. Therefore, nozzles in the steam space were conservatively represented using heat transfer coefficients in the water space (i.e. for heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space). Zn the case of the Step Down and Loss of Secondary Pressure transients, however, boiling may occur, raising the heat transfer coefficient significantly.
B&W NUCLEAR TECHNOLOGIES
The -heat transfer correlations in Ref. [2] were reviewed for horizontal
** BWNT NON-PROPRIETARY **
'and vertical plates. The correlation for a horizontal heating plate, face up (T > Tco) was selected as a representative heat transfer coefficient for the nozzles in the water space.
32"1235127-02 During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer.
HORIZONTAL PLATE, NATURAL CO1VVECTION, TURBULENT REGIME ST~yg   650 FI ASSUME 15 F     IT 1               1 H = (hT)   K4~Kt; = (15)   (.17) (1100)   = 461 HR-FT2-oF H=3 HR IN2 oF For the Step Down     transient,     where   boiling can occur, the heat transfer coefficient comes from Table 2.2 of           Ref. [11] . The maximum coefficient is conservatively used.
Therefore, use of a low heat transfer coefficient results in conservative (tensile) stresses.
H = 10, 000 (BTU/f  t'r. P) = 70   (BTU/in.'r.   'F)
Conversely, during Cooldown and the Step-down transient, a
The results of the thermal analyses         were reviewed using the ANSYS POST26 post processor to determine times           when the radial hT's occurred. The Prepared By: T.M. Wi er                         Date:
high heat transfer coefficient results in conservative (tensile) stresses.
Reviewed By: A.M. Miller                   Date:                     Page: 12
Therefore, nozzles in the steam space were conservatively represented using heat transfer coefficients in the water space (i.e. for
: heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space).
Zn the case of the Step Down and Loss of Secondary Pressure transients, however, boiling may occur, raising the heat transfer coefficient significantly.
The -heat transfer correlations in Ref.
[2] were reviewed for horizontal
'and vertical plates.
The correlation for a horizontal heating plate, face up (T
Tco) was selected as a
representative heat transfer coefficient for the nozzles in the water space.
HORIZONTAL PLATE, NATURAL CO1VVECTION, TURBULENT REGIME ST~yg 650 FI ASSUME 15 F IT 1
1 H = (hT)
K4~Kt; = (15)
(.17) (1100)
= 461 HR-FT2-oF H=3 HR IN2 oF For the Step Down transient, where boiling can occur, the heat transfer coefficient comes from Table 2.2 of Ref.
[11].
The maximum coefficient is conservatively used.
H = 10, 000 (BTU/ft'r.
P)
= 70 (BTU/in.'r. 'F)
The results of the thermal analyses were reviewed using the ANSYS POST26 post processor to determine times when the radial hT's occurred.
The Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
12


BOW NUCLEAR   TECHNOLOGIES     ** BWNT NON-PROPRIETARY   **   32-1235127-02 temperatures as function of time at the base metal-to-cladding interface and at the outer radius of the pressurizer shell are plotted in Figure 5.2. The radial dT is shown in figure 5.3.
BOW NUCLEAR TECHNOLOGIES
The temperature distribution at times of   extreme hT's were used to load the structure since the extreme hT's resulted in extreme thermal stresses. For Cooldown, other time points were also considered since the pressure at the time of maximum hT is significantly lower than at earlier times where the tT is almost as large.
** BWNT NON-PROPRIETARY **
Steady state temperature cases were also run at 653'F/2250 psig without material discontinuity effects (T, = T<< = 653'F) and at- 653'F/ 2400 psig with material discontinuity effects (T,       = 70'F).
32-1235127-02 temperatures as function of time at the base metal-to-cladding interface and at the outer radius of the pressurizer shell are plotted in Figure 5.2.
Table 5.1 summarize     the   critical transient   times and identifies the associated pressures for each model. The     location of node pair used for evaluation of the hT's was the same node       pair used for the stress path in Section 6.0 and is shown in Figure 6.1 and the POST26 results are contained at the end of the thermal runs in the microfiche in Section 9.0. Note that although the node pair used for evaluating the radial hT was at a 45'ngle through the shell wall,         it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface isothermal).
The radial dT is shown in figure 5.3.
Prepared By: T.M. Wi er                   Date:
The temperature distribution at times of extreme hT's were used to load the structure since the extreme hT's resulted in extreme thermal stresses.
Reviewed By: A.M. Miller                   Date:                     Page: 13
For Cooldown, other time points were also considered since the pressure at the time of maximum hT is significantly lower than at earlier times where the tT is almost as large.
Steady state temperature cases were also run at 653'F/2250 psig without material discontinuity effects (T, = T<< = 653'F) and at-653'F/ 2400 psig with material discontinuity effects (T, = 70'F).
Table 5.1 summarize the critical transient times and identifies the associated pressures for each model.
The location of node pair used for evaluation of the hT's was the same node pair used for the stress path in Section 6.0 and is shown in Figure 6.1 and the POST26 results are contained at the end of the thermal runs in the microfiche in Section 9.0.
Note that although the node pair used for evaluating the radial hT was at a 45'ngle through the shell wall, it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface isothermal).
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
13


fl BAH NUCLEAR TECHNOLOGIES       ** BWNT   NON-PROPRIETARY **     32-1235127-02 TABLE 5.1 CRITICAL TRANSIENT TIMES TRANSIENT         TRANSIENT TIME (HR)       PRESSURE   (PSIG)
fl
Heatup                   5.83                   2,250 Step-down                 7.0667                   1,740 Step-up                 8.0667                   2,400 Steady State'.000                                   2,400 Cooldown'.2915                                     1,472 9.4081                   1I 232 9.8162                   607 11.915 Steady State'/A                                     2,250 Loss of Secondary             0.010                   310 Pressure 0.015                   210 0.020                   185 0.063                   116
 
      'The pressure was assumed to equal the     saturation pressure of the steam at the current fluid temperature.
BAH NUCLEAR TECHNOLOGIES
      'Includes material discontinuity temperature effects (T, = 70'F)         .
** BWNT NON-PROPRIETARY **
      'Excludes material discontinuity temperature effects (Tf T 653 F) .
32-1235127-02 TABLE 5.1 CRITICAL TRANSIENT TIMES TRANSIENT TRANSIENT TIME (HR)
Prepared By: T.M. Wi er                     Date:
PRESSURE (PSIG)
Reviewed By: A.M. Miller                   Date:                       Page: 14
Heatup 5.83 2,250 Step-down 7.0667 1,740 Step-up 8.0667 2,400 Steady State'.000 2,400 Cooldown'.2915 1,472 9.4081 1I 232 9.8162 607 11.915 Steady State'/A 2,250 Loss of Secondary Pressure 0.010 0.015 310 210 0.020 185 0.063 116
'The pressure was assumed to equal the saturation pressure of the steam at the current fluid temperature.
'Includes material discontinuity temperature effects (T, = 70'F).
'Excludes material discontinuity temperature effects (Tf T
653 F).
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
14


I I
I I
I l l I lHQISk  NOQNHOO+++
I l
l88llSQ51115580+++     gg'g ulngaaaiaaaaaaaI1ay lll8lRHISR550%88++++
l I e
lll8085REOOSN'I++++gy     gg Illllll!IISQOESH%8++++
e I
e e IIIIIIIIII)      ~ +++++
lHQISkNOQNHOO+++
l88llSQ51115580+++ gg'g lll8lRHISR550%88++++ gg ulngaaaiaaaaaaaI1ay lll8085REOOSN'I++++gy Illllll!IISQOESH%8++++
Illlllllll1%5%%%%%~~~~~
Illlllllll1%5%%%%%~~~~~
IN5558 I
IIIIIIIIII)IN5558~+++++
Illlllllllll5%88%%%~~~~~
Illlllllllll5%88%%%~~~~~
lllllllll55%%5555%8++++~
lllllllll55%%5555%8++++~
IllllllHSIISN5555'8+++g IlllllllllllNERNSI''+++
IllllllHSIISN5555'8+++g IlllllllllllNERNSI''+++
I I, g I
I I,
g I


0
0
'I ~
'I ~


ANSYS   5.0 A JUN 20   1995 18: 44.:10 PLOT   NO.     I W  W POST26 "C
W W
ZV  = I DIST=0.75 XF   =0.5         n YF   =0.5 ZF   =0.5 CENTROID HIDDEN 0
"C ANSYS 5.0 A
gI 0
JUN 20 1995 18: 44.:10 PLOT NO.
I POST26 ZV
= I DIST=0.75 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROID HIDDEN n
TEMP TEMP 0gI 0
H W'
H W'
TEMP
'0 lg6
                                              '6 TEMP 0                                                                   Id 0                         12                                       M 10                                              I hl
~ ~
'0                              TIME                                              Cd UI lg                                                                                  I hl 6
0 0
~~
10 TIME 12'6 ST.
ST. LUCIE PRESSURIZER SPHERICAL REGION IFMPERATURE NOZZLE I
LUCIE PRESSURIZER SPHERICAL REGION IFMPERATURE NOZZLE Id M
CO M
I hl Cd UI Ihl I
COM


R ANSYS     5.0   A JUN 20       1995 18: 0 4: 10         n PI.OT   NO.       2 POST26 ZV     = I DIST=0.75 XF     =0.5           n YF     =0.5 H
Ha A
ZF    =0.5 CENTROIO HIODEN a
8OA tid 8
A 8O A
I
tid 8
~0 Q.
TOIF F g0 I ~
Q C40 TOIF F ANSYS 5.0 A
0                                                                                       I Q.                                                                                      0 Q                                                                                      H C4 0
JUN 20 1995 18:
4J 12 10                                                I hl TIME                                                  VJ Ul 8
0 4: 10 PI.OT NO.
~~     ST. I.UCIE PRESSURIZER SPHERICAL REGION TEMPERATURE NOZZLE                       hl I
2 POST26 ZV
= I DIST=0.75 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROIO HIODEN R
n n
g0 I
0 H
8
~ ~
10 TIME 12 ST.
I.UCIE PRESSURIZER SPHERICAL REGION TEMPERATURE NOZZLE 4J I
hl VJ Ul hl I
C) h)
C) h)


ANSYS     5.0 A JUN 20     I995 I7:04:01 PI.OT   NO.     I POST26 2V   = I OIST=0.~5 XF   =0.5 YF   =0.5 ZF   =0.5 CENTROID HIOOEN
ANSYS 5.0 A
    <<C gO I
JUN 20 I995 I7:04:01 PI.OT NO.
I POST26 2V
= I OIST=0.~5 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROID HIOOEN
<<C TEMP gO I
0 H
0 H
t4 TEMP TEMP (s IOtt-1) 4J 0.5             2.5     3,5                                         I M
t4 TEMP (s IOtt-1) 0.5 2.5 TIME 3,5 ST.
TIME                                                  4l Vl ST. lUCIE PRESSURllER SPHERICAl REGION TEMPERATURE NOlllE                         M I
lUCIE PRESSURllER SPHERICAl REGION TEMPERATURE NOlllE 4J I
C)
M 4l Vl M
M
I C)M


~g CD                                                                       ANSZS      5.0 A CD                                                                           JVN 20      I995    5 Ij:04:07 PLOT      NO. 2
~g CD CD CO ~
~~
~
CO CD POST26 RB                                                                           LV      = I CD                                                                       0 I S T =0.15 XF      =0.5          n YF      =0.5 0  CD ZF      =0.5 CENTROIO IIIOOEN C~
CD RB CD 0
8O Cl                                                             TOIFF 8       <<C g0 gI Ba Ql 0
CD C~
H W
8O Cl 8
Q K
Ba Ql Q
Q FL CL B
Q FL CL B
[ a 1044-0 GJ 0.6     1.6     2+6                                                     I kO TIME                                                     bJ Ul ST. I.VCIE PRESSVRILER SPHERICAL REGION TEMPERATURE N022LE                           h)
<<C TOIFF
I C) hl
[a 1044-0 ANSZS 5.0 A
JVN 20 I995 Ij:04:07 PLOT NO.
2 POST26 LV
= I 0
I S T =0.15 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROIO IIIOOEN 5
n g0g I
0 H
W K
0.6 1.6 2+6 TIME ST.
I.VCIE PRESSVRILER SPHERICAL REGION TEMPERATURE N022LE GJ I
kO bJ Ul h)
I C)hl


B6cW NUCLEAR TECHNOLOGIES     ** BWNT NON-PROPRIETARY **   32-1235127-02 6.0   Stress Analysis The temperature   distributions and pressures at the critical times in Table 5.1 were imposed on the model to obtain the stresses in the pressurizer shell. The pressure boundary conditions are shown in Figure 6.1. Since the fracture mechanics evaluation in Reference [7] requires stresses along the flaw line that is approximately 45 from the axis of the nozzle penetration, the ANSYS POST1 post processor was used to transform the stresses into the flaw line coordinate system as shown in Figure 6.1.
B6cW NUCLEAR TECHNOLOGIES
Symmetry boundary conditions were used at the edge of the pressurizer head to restrict the heads motion to only the radial direction. A nodal force was applied to the head to represent the end cap load developed at the nozzle (nozzle end cap load = mr'(pressure) = m(.6875)'(pressure) 1.4849(pressure)). The nodal force was conservatively applied to the outside surface of the model since   it would tend to increase the tensile stresses in the pressurizer shell which is the region of interest.
** BWNT NON-PROPRIETARY **
Stress results for the given model are contained in the microfiche of Section 9.0. The stresses along the 45 degree flaw line are summarized for each transient analyzed in the Tables 6.1 through 6.13 and the figures on pages 35 to 47.
32-1235127-02 6.0 Stress Analysis The temperature distributions and pressures at the critical times in Table 5.1 were imposed on the model to obtain the stresses in the pressurizer shell.
The results reported by the finite element model have accounted for the stress concentration for a hillside penetration subject to pressure by the increase of the radius by a factor of 1.52, however, the increase in thermal stresses due to the hillside positioning is not included. From
The pressure boundary conditions are shown in Figure 6.1.
: p. 200 of Reference [13] the stress concentration due to an elliptical hole in a biaxially stressed plate where e,=e, and b/a=1.16, the stress concentration should be 2.32 (say 2.4). The model is picking up a stress concentration of 2 0 from the radially positioned circular hole (b/a=1. 0)
Since the fracture mechanics evaluation in Reference
                    ~
[7] requires stresses along the flaw line that is approximately 45 from the axis of the nozzle penetration, the ANSYS POST1 post processor was used to transform the stresses into the flaw line coordinate system as shown in Figure 6.1.
in the model.       The increase in hoop stress due to the hillside positioning when subject to pressure has been included by the increase in radius, but the model is only picking up the inherent SCF of 2.0 for thermal stress since the thermal stresses are essentially unaffected by radius'he thermal stresses, therefore, must be increased by a factor of 1.2 to account for the hillside positioning.
Symmetry boundary conditions were used at the edge of the pressurizer head to restrict the heads motion to only the radial direction.
This increase has been performed by separating the thermal and pressure stress components, multiplying the thermal component by 1.2, and adding the pressure component and the increased thermal component to arrive at the total stress. Since hoop stress (Sz) is dominant, the increase will only be performed for that stress component.         A sample calculation appears below.
A nodal force was applied to the head to represent the end cap load developed at the nozzle (nozzle end cap load
Page 20a has been   inserted between 20 and 21.
= mr'(pressure)
Prepared By: T.M. Wi er                   Date:
= m(.6875)'(pressure) 1.4849(pressure)).
Reviewed By: A.M. Miller             Date:                     Page: 20
The nodal force was conservatively applied to the outside surface of the model since it would tend to increase the tensile stresses in the pressurizer shell which is the region of interest.
Stress results for the given model are contained in the microfiche of Section 9.0.
The stresses along the 45 degree flaw line are summarized for each transient analyzed in the Tables 6.1 through 6.13 and the figures on pages 35 to 47.
The results reported by the finite element model have accounted for the stress concentration for a hillside penetration subject to pressure by the increase of the radius by a factor of 1.52, however, the increase in thermal stresses due to the hillside positioning is not included.
From p.
200 of Reference
[13] the stress concentration due to an elliptical hole in a biaxially stressed plate where e,=e, and b/a=1.16, the stress concentration should be 2.32 (say 2.4).
The model is picking up a stress concentration of 2
~ 0 from the radially positioned circular hole (b/a=1. 0) in the model.
The increase in hoop stress due to the hillside positioning when subject to pressure has been included by the increase in radius, but the model is only picking up the inherent SCF of 2.0 for thermal stress since the thermal stresses are essentially unaffected by radius'he thermal stresses, therefore, must be increased by a factor of 1.2 to account for the hillside positioning.
This increase has been performed by separating the thermal and pressure stress components, multiplying the thermal component by 1.2, and adding the pressure component and the increased thermal component to arrive at the total stress.
Since hoop stress (Sz) is dominant, the increase will only be performed for that stress component.
A sample calculation appears below.
Page 20a has been inserted between 20 and 21.
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
20


B&W NUCLEAR TECHNOLOGIES         ** BWNT     NON-PROPRIETARY   **   32-1235127-02 For Cooldown-1 (Table 6.5), at         position   S=0.3360 inches:
B&W NUCLEAR TECHNOLOGIES
Sz = 25288.0 Pressure component is taken from the pressure only case in table 6.9.
** BWNT NON-PROPRIETARY **
This pressure must be multiplied by the ratio of pressures Sz-press =   (P/Ppo) Sz-po       (1472/2250)'32353     21166 psi Hence,   the thermal component     is   25288 - 21166   = 4122 psi This is multiplied by 1.2 and the pressure stress is added to arrive at the corrected total stress.         I Sz = 4122 (1.2)+21166   = 26112.4     psi which is exactly what the table reports.
32-1235127-02 For Cooldown-1 (Table 6.5), at position S=0.3360 inches:
h Two additional transients, fluctuations from steady state, are calculated using the results from the 53'F Step Up and Step Down. They use the method above to isolate the thermal stresses and approximate a 20'F Step change by multiplying the thermal component by the ratio 20/53.'he transient also includes a pressure change as described in the relevant tables, 6.14 and 6.15.
Sz
= 25288.0 Pressure component is taken from the pressure only case in table 6.9.
This pressure must be multiplied by the ratio of pressures Sz-press
=
(P/Ppo) Sz-po (1472/2250)'32353 21166 psi
: Hence, the thermal component is 25288
- 21166
= 4122 psi This is multiplied by 1.2 and the pressure stress is added to arrive at the corrected total stress.
I Sz
= 4122 (1.2)+21166
= 26112.4 psi which is exactly what the table reports.
h Two additional transients, fluctuations from steady state, are calculated using the results from the 53'F Step Up and Step Down.
They use the method above to isolate the thermal stresses and approximate a 20'F Step change by multiplying the thermal component by the ratio 20/53.'he transient also includes a pressure change as described in the relevant
: tables, 6.14 and 6.15.
Note that the stresses (in psi) are in the local coordinate system of the 45 degree flaw line as shown in Figure 6.1 and "S" is the distance from the inside surface,to the outside surface along the flaw line.
Note that the stresses (in psi) are in the local coordinate system of the 45 degree flaw line as shown in Figure 6.1 and "S" is the distance from the inside surface,to the outside surface along the flaw line.
Note also that the figures on pages 37 through 47 show the stresses not including the'actor of 1.2 on thermal stress and are for information only.
Note also that the figures on pages 37 through 47 show the stresses not including the'actor of 1.2 on thermal stress and are for information only.
Prepared By: T.M. Wi er                         Date:
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Reviewed By: A.M.     Miller                   Date:                       Page: 20a
Date:
Page:
20a


P 0
P 0


B&W NUCLEAR TECHNOLOGIES                 NON-PROPRIETARY   ** 32-1235127-02 Table 6.1   END OF HEATUP,   P=2250 PSIG STRESSES WITHOUT      WITH 1.2   SCF THERMAL S CF          ON THERMAL S       SX          SY          SZ        SZ 0.0000   -2539. 5    -721.5    23098.0    19234 '
B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY **
0.1120     -62.5      229.6    25811.0   23322.0 0.2240    1818.2      554.0     26602.0   25004.4 0.3360    2846.5      770.8    26553.0   25393.0 0.4480    3962.3      2596.5    26346.0    25538.0 0.5600    4368.8      3683.5    26134.0    25564.6 0.6720    5035.5      4580.2     25733.0    25332.8 0.7840    5502.6      5303.1    25458.0    25185.6 0.8960    5928.8      5957.6    25138.0    24974.2 1.0080    6268.7      6449.9    24927.0    24844.6 1.1200    6662.0      6937.1    24672.0    24661.4 1.2319    6889.8      7336.4    24532.0    24584.2 1.3439    7167.5     7706.5     24373.0    24479.0 1.4559    7420.0      8045.6    24238.0    24392.0 1.5679    7609.0      8346.2    24157.0   24356.0 1 '799    7819.5     8638.4    24057.0    24297.0 1.7919    7990.3     8886.6     24001.0   24277.4 1.9039    8150.1      9125.0    23954 '    24265.8 2.0159    8307.7     9358.4    23906.0   24251.8 2.1279    8439.3     9550.6     23885.0    24260.2 2.2399      8571.5      9739.5     23861.0   24265.0 2.3519      8699.6      9923.2    23840.0   24272.0 2.4639    8803.1     10083.0    23844.0    24302.6 2.5759    8912.0     10230.0    23834.0    24316.0 2.6879    9020.4    10376.0     23823.0   24328.2 2.7999    9106.7    10508.0     23838.0   24366.2 2.9119    9194.0     10629.0     23842.0   24391.0 3.0239    9281.5    10742.0     23837.0   24404.8 3.1359    9358.4    10850.0     23843.0   24429.4 3.2479    9428.8    10953.0     23857 '    24462.2 3.3599    9497.7    11048.0     23860.0   24481.6 3.4719    9564.2    11135.0     23853.0   24488.8 3.5838    9619.0     11216.0     23861.0   24511.4 3.6958    9673.2    11298.0     23867.0   24531.6 3.8078    9725.5    11376.0     23868.0   24545.8 3.9198    9771.3    11442.0     23856.0   24544.0 4.0318    9810.2    11505.0     23852.0   24550.0 4.1438    9848.6    11569.0     23847.0   24555.0 4.2558    9886.5    11633.0     23842 '   24559.8 4.3678    9917.6    11686.0     23822.0   24546.6 4.4798    9941.3    11733.0    23804.0    24534.2 4.5918    9964.7    11781.0     23785 '    24520.8 4.7038    9987.5    11830.0     23766.0   24507.2 4.8158    10010.0    11878.0     23746.0   24492.6 4.9278    10243.0    11671.0     23704.0    24451.4 5.0398    10468.0    11472.0    23664.0    24412.2 5.1518    10683.0     11281.0     23623 '    24372.0 5.2638    10890.0    11100.0    23582.0    24331.6 5.3758    11089.0    10927.0     23540.0    24290.2 Prepared By: T.M. Wi er                     Date:
32-1235127-02 Table 6.1 END OF HEATUP, P=2250 PSIG THOUT STRESSES WI THERMAL S CF WITH 1.2 SCF ON THERMAL S
Reviewed By: A.M. Miller                 Date:                   Page: 21
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1 '799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX
-2539. 5
-62.5 1818.2 2846.5 3962.3 4368.8 5035.5 5502.6 5928.8 6268.7 6662.0 6889.8 7167.5 7420.0 7609.0 7819.5 7990.3 8150.1 8307.7 8439.3 8571.5 8699.6 8803.1 8912.0 9020.4 9106.7 9194.0 9281.5 9358.4 9428.8 9497.7 9564.2 9619.0 9673.2 9725.5 9771.3 9810.2 9848.6 9886.5 9917.6 9941.3 9964.7 9987.5 10010.0 10243.0 10468.0 10683.0 10890.0 11089.0 SY
-721.5 229.6 554.0 770.8 2596.5 3683.5 4580.2 5303.1 5957.6 6449.9 6937.1 7336.4 7706.5 8045.6 8346.2 8638.4 8886.6 9125.0 9358.4 9550.6 9739.5 9923.2 10083.0 10230.0 10376.0 10508.0 10629.0 10742.0 10850.0 10953.0 11048.0 11135.0 11216.0 11298.0 11376.0 11442.0 11505.0 11569.0 11633.0 11686.0 11733.0 11781.0 11830.0 11878.0 11671.0 11472.0 11281.0 11100.0 10927.0 SZ 23098.0 25811.0 26602.0 26553.0 26346.0 26134.0 25733.0 25458.0 25138.0 24927.0 24672.0 24532.0 24373.0 24238.0 24157.0 24057.0 24001.0 23954 '
23906.0 23885.0 23861.0 23840.0 23844.0 23834.0 23823.0 23838.0 23842.0 23837.0 23843.0 23857 '
23860.0 23853.0 23861.0 23867.0 23868.0 23856.0 23852.0 23847.0 23842 '
23822.0 23804.0 23785 '
23766.0 23746.0 23704.0 23664.0 23623 '
23582.0 23540.0 SZ 19234 '
23322.0 25004.4 25393.0 25538.0 25564.6 25332.8 25185.6 24974.2 24844.6 24661.4 24584.2 24479.0 24392.0 24356.0 24297.0 24277.4 24265.8 24251.8 24260.2 24265.0 24272.0 24302.6 24316.0 24328.2 24366.2 24391.0 24404.8 24429.4 24462.2 24481.6 24488.8 24511.4 24531.6 24545.8 24544.0 24550.0 24555.0 24559.8 24546.6 24534.2 24520.8 24507.2 24492.6 24451.4 24412.2 24372.0 24331.6 24290.2 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
21


0
0
~ BOW NUCLEAR TECHNOLOGIES                    NON-PROPRIETARY    ** 32-1235127-02 Table 6.2    53F STEP    DOWN,  P=1740 PSIG STRESSES WITHOUT      WITH  1.2  SCF THERMAL S CF          ON THERMAL S        SX            SY          SZ          SZ 0.0000    -3039.0        2198.3    37940.0    38967.8 0.1120      350.3        2565.5    37707.0    39331.5 0.2240    3114  F 1    2497.1    36148.0    38027.7 0.3360    4598.9        2587.3    34456.0    36343.3 0.4480    5658.2        4413.0    32768.0    34621.9 0.5600    5966.2        5425.9    31306.0    33084.8 0.6720    6461.3        6193.7    29778.0    31444.1 0.7840    6718.8        6719.7    28489.0    30038.6 0.8960    6909.5        7143.2    27210.0    28637.3 1.0080    7003.0        7373.5    26132.0    27439.3 1.1200    7130.5        7576.9    25054.0    26240.7 1.2319    7091 '        7673.8    24121.0    25191.3 1.3439    7102.1        7738.3    23233.0    24191.9 1.4559    7089.2        7767.7    22410 '    23262.3 1.5679    7011.9        7752.5    21650.0    22397.6 1.6799    6957.8        7730.6    20917.0    21565.2 1.7919    6885.6        7682.3    20280.0    20837.6 1.9039    6798.5        7620.5    19659.0    20127.0 2.0159    6703.7        7549.2    19044.0    19422.8 2.1279    6620.4        7475.0    18538.0    18841.5 2.2399    6535.1        7396.6    18038.0    18267.5 2.3519    6443.1        7311.8    17544.0    17699.6 2.4639    6342.5        7220.2    17102.0    17189.2 2.5759    6267.6        7142 '    16707.0    16734.8 2.6879    6189.8        7062.3    16314.0    16282.9 2.7999    6095.0        6972.0    15942.0    15851.9 2.9119    6017.0        6892.9    15607.0    15465.4 3.0239    5954.0        6825 '    15304.0    15117.1 3.1359    5883.0        6753.7    15011.0    14779.0 3.2479    5806.9        6679 '    14724.0    14446.9 3.3599    5744.0        6616.3    14466.0    14149.6 3.4719    5694.7        6566.5    14241.0    13891.6 3.5838    5638.0        6513.3    14026.0    13643.7 3.6958    5580.4        6459.5    13812.0    13396.9 3.8078    5527.8        6411.2    13610.0    13164.6 3.9198    5492.6        6381.7    13451.0    12983.5 4.0318    5453 '        6349.9    13298.0    12808.3 4.1438    5414.1        6318.0    13146.0    12634.4 4.2558    5374.2        6285.9    12994.0    12460.3 4.3678    5349.5        6270.9    12878.0    12329.5 4.4798    5327.8        6260.2    12780.0    12219.0 4.5918    5305.8        6249.4    12682.0    12108 '
4.7038    5283.7        6238.4    12584.0      11998.2 4.8158    5261 '        6227.3    12486.0      11887.9 4.9278    5374.0        6112.2    12433.0      11831.4 5.0398    5481.8        6000.5    12382.0      11777.0 5.1518    5585.2        5893.2    12330.0      11721.5 5.2638    5684.0        5790.2    12279.0      11667.1 5.3758    5778.2        5691.4    12228.0      11612 '
r Prepared By: T.M. Wi er                        Date:
Reviewed By: A.M. Miller                      Date:                    Page:  22


BOW NUCLEAR   TECHNOLOGIES                   NON-PROPRIETARY     ** 32-1235127-02 Table 6.3    53F STEP UP, P=2400 PSIG STRESSES WITHOUT      WITH 1.2   SCF THERMAL S CF          ON THERMAL S       SX              SY          SZ          SZ
~
    '0.0000   -2467.           -1533.7     18740.0     13439.5 0.1120    -260.           -449.6     22212.0     18493.1 0.2240    1372.             -23.8   23644.0     20993.6 0.3360    2283.             227.7     24080.0     21994.0 0.4480    3417.           2023.0     24327.0     22710.1 0.5600    3872.           3125.1    24510.0     23229.4 0.6720    4601.           4062.3    24475.0     23453 '
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **
0.7840    5143.           4851.0     24534.0     23719.2 0.8960    5655.           5585.5    24533.0     23902.1 1.0080    6080.           6168.4    24609.0     24125.1 1.1200    6562.           6753.1    24625.0     24275.3 1.2319    6882.           7256.2    24749.0     24521.0 1.3439    7247.           7729.0     24826.0     24704.7 1.4559    7584.           8170.5     24911.0     24886.7 1.5679    7860.           8575.2     25047.0     25115 '
32-1235127-02 Table 6.2 53F STEP
1.6799    8153.           8969.0     25146.0     25299.0 1.7919    8398.           9309.9    25266.0    25493.8 1.9039     8632.           9642.0     25393.0     25694.0 2.0159    8867.           9970.2     25516.0     25888.1 2.1279    9059.           10240.0     25632.0     26063.1 2.2399    9252.           10507.0     25742.0     26231.0 2.3519    9442.           10768.0     25853.0     26398.5 2.4639    9601.           10998.0     25980.0     26578.5 2.5759    9757.           11206.0     26067.0     26709.9 2.6879    9914.           11412 '     26153.0     26840.2 2.7999    10047.           11602.0     26266.0     26997.2 2.9119    10174.           11775.0     26353.0     27122.9 3.0239    10297.           11931.0     26414 '     27217.2 3.1359    10407.           12080 '     26487.0     27323.4 3.2479    10511.           12226.0     26568.0     27437.7 3.3599    10609.           12356.0     26626.0     27524.1 3.4719   10699.           12472.0    26660.0    27581.5 3.5838    10776.           12582.0     26710.0    27655.4 3.6958    10853.           12691.0    26759.0     27728.1 3.8078    10926.           12795.0     26798.0     27788.7 3.9198  .10986.           12878 '    26808.0     27814.2 4.0318    11039.           12959 '     26828.0     27849.7 4.1438    11091.           13040.0     26847.0     27884.2 4.2558    11143.           13121.0     26864.0     27916.2 4.3678    11183.           13186.0     26857.0     27919.3 4.4798    11214            13242.0     26849.0     27919.5 4.5918          '1244.
: DOWN, P=1740 PSIG THOUT STRESSES WI THERMAL S CF WITH 1.2 SCF ON THERMAL S
13300.0     26840.0     27918.7 4.7038    11273.           13358.0     26829.0     27915.3 4.8158    11303.           13416.0     26818.0     27912.2 4.9278    11567.           13182 '    26775.0     27870.4 5.0398    11820.           12956.0     26734.0     27830.6 5.1518    12065.           12741.0     26692.0     27789.8 5.2638    12299.           12536.0     26648.0     27746.3 5.3758    12524.           12341.0     26604.0     27703.1 V
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX
Prepared By: T.M. Wi er                         Date:
-3039.0 350.3 3114 F 1 4598.9 5658.2 5966.2 6461.3 6718.8 6909.5 7003.0 7130.5 7091 '
Reviewed By: A.M. Miller                         Date:                     Page: 23
7102.1 7089.2 7011.9 6957.8 6885.6 6798.5 6703.7 6620.4 6535.1 6443.1 6342.5 6267.6 6189.8 6095.0 6017.0 5954.0 5883.0 5806.9 5744.0 5694.7 5638.0 5580.4 5527.8 5492.6 5453 '
5414.1 5374.2 5349.5 5327.8 5305.8 5283.7 5261 '
5374.0 5481.8 5585.2 5684.0 5778.2 SY 2198.3 2565.5 2497.1 2587.3 4413.0 5425.9 6193.7 6719.7 7143.2 7373.5 7576.9 7673.8 7738.3 7767.7 7752.5 7730.6 7682.3 7620.5 7549.2 7475.0 7396.6 7311.8 7220.2 7142 '
7062.3 6972.0 6892.9 6825 '
6753.7 6679 '
6616.3 6566.5 6513.3 6459.5 6411.2 6381.7 6349.9 6318.0 6285.9 6270.9 6260.2 6249.4 6238.4 6227.3 6112.2 6000.5 5893.2 5790.2 5691.4 SZ 37940.0 37707.0 36148.0 34456.0 32768.0 31306.0 29778.0 28489.0 27210.0 26132.0 25054.0 24121.0 23233.0 22410 '
21650.0 20917.0 20280.0 19659.0 19044.0 18538.0 18038.0 17544.0 17102.0 16707.0 16314.0 15942.0 15607.0 15304.0 15011.0 14724.0 14466.0 14241.0 14026.0 13812.0 13610.0 13451.0 13298.0 13146.0 12994.0 12878.0 12780.0 12682.0 12584.0 12486.0 12433.0 12382.0 12330.0 12279.0 12228.0 r
SZ 38967.8 39331.5 38027.7 36343.3 34621.9 33084.8 31444.1 30038.6 28637.3 27439.3 26240.7 25191.3 24191.9 23262.3 22397.6 21565.2 20837.6 20127.0 19422.8 18841.5 18267.5 17699.6 17189.2 16734.8 16282.9 15851.9 15465.4 15117.1 14779.0 14446.9 14149.6 13891.6 13643.7 13396.9 13164.6 12983.5 12808.3 12634.4 12460.3 12329.5 12219.0 12108 '
11998.2 11887.9 11831.4 11777.0 11721.5 11667.1 11612 '
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
22
 
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **
32-1235127-02 Table 6.3 53F STEP UP, P=2400 PSIG STRESSES WI THERMAL S THOUT CF WITH 1.2 SCF ON THERMAL S
'0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX
-2467.
-260.
1372.
2283.
3417.
3872.
4601.
5143.
5655.
6080.
6562.
6882.
7247.
7584.
7860.
8153.
8398.
8632.
8867.
9059.
9252.
9442.
9601.
9757.
9914.
10047.
10174.
10297.
10407.
10511.
10609.
10699.
10776.
10853.
10926.
.10986.
11039.
11091.
11143.
11183.
11214
'1244.
11273.
11303.
11567.
11820.
12065.
12299.
12524.
SY
-1533.7
-449.6
-23.8 227.7 2023.0 3125.1 4062.3 4851.0 5585.5 6168.4 6753.1 7256.2 7729.0 8170.5 8575.2 8969.0 9309.9 9642.0 9970.2 10240.0 10507.0 10768.0 10998.0 11206.0 11412 '
11602.0 11775.0 11931.0 12080 '
12226.0 12356.0 12472.0 12582.0 12691.0 12795.0 12878 '
12959 '
13040.0 13121.0 13186.0 13242.0 13300.0 13358.0 13416.0 13182 '
12956.0 12741.0 12536.0 12341.0 SZ 18740.0 22212.0 23644.0 24080.0 24327.0 24510.0 24475.0 24534.0 24533.0 24609.0 24625.0 24749.0 24826.0 24911.0 25047.0 25146.0 25266.0 25393.0 25516.0 25632.0 25742.0 25853.0 25980.0 26067.0 26153.0 26266.0 26353.0 26414 '
26487.0 26568.0 26626.0 26660.0 26710.0 26759.0 26798.0 26808.0 26828.0 26847.0 26864.0 26857.0 26849.0 26840.0 26829.0 26818.0 26775.0 26734.0 26692.0 26648.0 26604.0 V
SZ 13439.5 18493.1 20993.6 21994.0 22710.1 23229.4 23453 '
23719.2 23902.1 24125.1 24275.3 24521.0 24704.7 24886.7 25115 '
25299.0 25493.8 25694.0 25888.1 26063.1 26231.0 26398.5 26578.5 26709.9 26840.2 26997.2 27122.9 27217.2 27323.4 27437.7 27524.1 27581.5 27655.4 27728.1 27788.7 27814.2 27849.7 27884.2 27916.2 27919.3 27919.5 27918.7 27915.3 27912.2 27870.4 27830.6 27789.8 27746.3 27703.1 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
23
 
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **
32-123S127-02 Table 6.4 STEADY STATE, Tref 70F, Tunif = 653F, P
= 2400 PSZG STRESSES WZ THERMAL S THOUT CF WITH 1.2 SCF
~ ON THERMAL S
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599
'3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX
-3281.3
-156.3 2331.3 3706.3 4926.7 5382.5 6081.6 6551.0 6969.9 7285.6 7651.4 7839.6 8076.6 8285.5 8425.7 8587.6 8709.8 8819.1 8924.6 9008.3 9092.0 9170.7 9225.9 9290.6 9354.1 93.95.0 9440.3 9489.0 9526.9 9558.0 9591.2 9625.8 9648.7 9671.0 9693.2 9715.3 9730.7 9745 '
9759.9 9774.1 9783.5 9792.6 9801.3 9809.7 10034.0 10250.0 10457.0 10655.0 10846.0 SY 478.1 1203.2 1373.3 1568.8 3540.3 4706.3 5658.2 6399.5 7059.4 7534.5 7999.4 8361.1 8690.7 8984.4 9233.4 9473.2 9667.6 9849.9 10025.0 10163.0 10297.0 10424.0 10528.0 10625.0 10720.0 10799.0 10873.0 10942.0 11005.0 11064.0 11119.0 11170.0 11217.0 11263 '
11308.0 11349.0 11387.0 11425.0 11463.0 11499.0 11532.0 11565.0 11598.0 11632.0 11427.0 11229.0 11039.0 10858.0 10686.0 SZ 32074.0 33605.0 33377.0 32639.0 31826.0 31127.0 30290.0 29651.0 28985.0 28484.0 27950.0 27560.0 27167.0 26816.0 26529.0 26233.0 26000.0 25779.0 25560.0 25391.0 25221.0 25055.0 24923.0 24791.0 24658.0 24553.0 24448.0 24343.0 24250.0 24166.0 24081.0 23996.0 23926.0 23855.0 23784.0 23715.0 23656.0 23595.0 23535.0 23475.0 23423.0 23370.0 23317.0 23264.0 23211.0 23160.0 23108.0 23056.0 23003.0 SZ 29440.3 32164.7 32673.2 32264.8 31708.9 31169.8 30431.4 29859.6 29244.5 28775.1 28265.3 27894.2 27513.9 27172.7 26893.6 26603.4 26374.6 26157.2 25940.9 25773.9 25605.8 25440.9 25310.1 25178.7 25046.2 24941.6 24836.9 24732.0 24639.0 24555.3 24470.1 24384.7 24314.6 24243.3 24171.9 24102.6 24043.3 23981.8 23921.4 23860.9 23808.3 23754.7 23700.9 23647 '
23593.6 23541.8 23489.0 23435.9 23381.9 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
24,


BOW NUCLEAR  TECHNOLOGIES              NON-PROPRIETARY    **    32-123S127-02 Table 6.4      STEADY STATE,    Tref    70F,  Tunif  =  653F,  P = 2400 PSZG STRESSES WZ THOUT      WITH  1.2  SCF THERMAL S CF        ~
pl
ON THERMAL S      SX          SY          SZ          SZ 0.0000  -3281.3        478.1    32074.0    29440.3 0.1120    -156.3      1203.2    33605.0    32164.7 0.2240    2331.3      1373.3    33377.0    32673.2 0.3360    3706.3      1568.8    32639.0    32264.8 0.4480    4926.7      3540.3    31826.0    31708.9 0.5600    5382.5      4706.3    31127.0    31169.8 0.6720    6081.6      5658.2    30290.0    30431.4 0.7840    6551.0      6399.5    29651.0    29859.6 0.8960    6969.9      7059.4    28985.0    29244.5 1.0080    7285.6      7534.5    28484.0    28775.1 1.1200    7651.4      7999.4    27950.0    28265.3 1.2319    7839.6      8361.1    27560.0    27894.2 1.3439    8076.6      8690.7    27167.0    27513.9 1.4559    8285.5      8984.4    26816.0    27172.7 1.5679    8425.7      9233.4    26529.0    26893.6 1.6799    8587.6      9473.2    26233.0    26603.4 1.7919    8709.8      9667.6    26000.0    26374.6 1.9039    8819.1      9849.9    25779.0    26157.2 2.0159    8924.6    10025.0    25560.0    25940.9 2.1279    9008.3    10163.0    25391.0    25773.9 2.2399    9092.0    10297.0    25221.0    25605.8 2.3519    9170.7    10424.0    25055.0    25440.9 2.4639    9225.9    10528.0    24923.0    25310.1 2.5759    9290.6    10625.0    24791.0    25178.7 2.6879    9354.1    10720.0    24658.0    25046.2 2.7999    93.95.0    10799.0    24553.0    24941.6 2.9119    9440.3    10873.0    24448.0    24836.9 3.0239    9489.0    10942.0    24343.0    24732.0 3.1359    9526.9    11005.0    24250.0    24639.0 3.2479    9558.0    11064.0    24166.0    24555.3 3.3599    9591.2    11119.0    24081.0    24470.1
    '3.4719    9625.8    11170.0    23996.0    24384.7 3.5838    9648.7    11217.0    23926.0    24314.6 3.6958    9671.0    11263 '    23855.0    24243.3 3.8078    9693.2    11308.0    23784.0    24171.9 3.9198    9715.3    11349.0    23715.0    24102.6 4.0318    9730.7    11387.0    23656.0    24043.3 4.1438    9745 '    11425.0    23595.0    23981.8 4.2558    9759.9    11463.0    23535.0    23921.4 4.3678    9774.1    11499.0    23475.0    23860.9 4.4798    9783.5    11532.0    23423.0    23808.3 4.5918    9792.6    11565.0    23370.0    23754.7 4.7038    9801.3    11598.0    23317.0    23700.9 4.8158    9809.7    11632.0    23264.0    23647 '
4.9278  10034.0    11427.0    23211.0    23593.6 5.0398  10250.0    11229.0    23160.0    23541.8 5.1518  10457.0    11039.0    23108.0    23489.0 5.2638  10655.0    10858.0    23056.0    23435.9 5.3758  10846.0    10686.0    23003.0    23381.9 Prepared By: T.M. Wi er                    Date:
Reviewed By: A.M. Miller                  Date:                        Page: 24,


pl BOW NUCLEAR     TECHNOLOGIES             NON-PROPRIETARY   ** 32-1235127-02 Table 6.5     COOLDOWN-1, Psat=1472 PSIG STRESSES WITHOUT     WITH 1.2   SCF THERMAL SCF         ON THERMAL S       SX          SY        SZ        SZ 0.0000     -1570.8      738. 8  24997 '   24446.6 0.1120        702.6    1302.8    26308.0    26564.0 0 '240      2447.1     1350.6    26075.0    26764 '
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **
0 '360      3354.6    1419.9    25288.0    26112.4 0.4480      4226.8    3004.3   24449.0    25363.0 0.5600      4436.0    3871.3   23660.0    24600.0 0 '720      4868.4     4536.8    22761.0    23684.4 0.7840      5119.2    5025.9    22012.0    22905.2 0.8960      5317.2    5432.4    21247.0    22100.1 1.0080      5449.6     5688.6    20613.0    21420.1 1.1200      5622.6     5928.9    19967.0   20725.3 1.2319      5649.7    6087.5    19425.0    20134.3 1.3439      5725.6     6218.6    18900.0    19560.3 1.4559      5782.7    6322.2   18415.0    19027 '
32-1235127-02 Table 6.5 COOLDOWN-1, Psat=1472 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL S
1.5679      5783.9    6391.2   17977.0    18541.8 1.6799      5805.3    6452.3   17545.0    18063.3 1.7919      5804 '    6485.4    17173.0   17648.0 1.9039      5792.6    6508.3   16810.0    17241.7 2.0159      5775.2    6524.4    16451.0    16839.5 2.1279      5754.8     6523.7    16150.0    16500.2 2.2399      5733.2    6519.5    15850.0    16162.2 2.3519      5706.4    6510.2   15555.0    15829.3 2 ~ 4639    5666.7    6489.4   15292.0    15530.6 2 '759      5641.5    6470.5   15046.0    15252.0 2.6879      5614.4    6449.2   14801.0    14974.6 2.7999      5571.2     6418.9   14574.0    14715.3 2.9119      5537 '    6390.6   14362.0    14474.0 3.0239      5510.8     6365.2   14164.0    14249.3 3.1359      5476.8     6335.9    13973 '    14031 '
0.0000 0.1120 0 '240 0 '360 0.4480 0.5600 0 '720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2
3.2479      5438.1    6303.9    13788.0    13820.0 3 '599      5406.7    6275.8    13617.0   13625.1 3.4719      5382.4    6252.6    13461.0   13448.1 3.5838      5350 '    6226.1    13313.0   13279.0 3.6958      5318.3    6199.1    13166.0   13111.1 3.8078      5288.7    6174.5    13026.0   12951.6 3.9198      5268.9    6158.8    12910.0   12820.7 4.0318      5245.0     6141.2    12798.0   12693.3 4.1438      5220.7    6123.4    12687.0   12567.3 4.2558      5196.0     6105.5    12576.0   12441.2 4.3678      5181.1    6097.5    12488.0   12342.7 4.4798      5166.9    6091.6   12412.0   12257.5 4.5918      5152.3    6085.8    12335.0   12171.2 4.7038      5137.5    6080.0    12259.0    12086.1 4.8158      5122.4    6074.2    12183.0   12001.0 4.9278      5233.3     5960.4    12138.0   11953.0 5.0398      5339.6     5850.3   12094.0   11906.0 5.1518      5441.3    5744.7    12050.0   11859 '
~ 4639 2 '759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3 '599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX
5.2638      5538.6     5643.3   12005.0    11810.8 5.3758      5631.5    5546.4    11961.0   11763.9 Prepared By: T.M. Wi er                     Date:
-1570.8 702.6 2447.1 3354.6 4226.8 4436.0 4868.4 5119.2 5317.2 5449.6 5622.6 5649.7 5725.6 5782.7 5783.9 5805.3 5804 '
Reviewed By: A.M. Miller                   Date:                   Page: 25
5792.6 5775.2 5754.8 5733.2 5706.4 5666.7 5641.5 5614.4 5571.2 5537 '
5510.8 5476.8 5438.1 5406.7 5382.4 5350 '
5318.3 5288.7 5268.9 5245.0 5220.7 5196.0 5181.1 5166.9 5152.3 5137.5 5122.4 5233.3 5339.6 5441.3 5538.6 5631.5 SY 738. 8 1302.8 1350.6 1419.9 3004.3 3871.3 4536.8 5025.9 5432.4 5688.6 5928.9 6087.5 6218.6 6322.2 6391.2 6452.3 6485.4 6508.3 6524.4 6523.7 6519.5 6510.2 6489.4 6470.5 6449.2 6418.9 6390.6 6365.2 6335.9 6303.9 6275.8 6252.6 6226.1 6199.1 6174.5 6158.8 6141.2 6123.4 6105.5 6097.5 6091.6 6085.8 6080.0 6074.2 5960.4 5850.3 5744.7 5643.3 5546.4 SZ 24997 '
26308.0 26075.0 25288.0 24449.0 23660.0 22761.0 22012.0 21247.0 20613.0 19967.0 19425.0 18900.0 18415.0 17977.0 17545.0 17173.0 16810.0 16451.0 16150.0 15850.0 15555.0 15292.0 15046.0 14801.0 14574.0 14362.0 14164.0 13973 '
13788.0 13617.0 13461.0 13313.0 13166.0 13026.0 12910.0 12798.0 12687.0 12576.0 12488.0 12412.0 12335.0 12259.0 12183.0 12138.0 12094.0 12050.0 12005.0 11961.0 SZ 24446.6 26564.0 26764 '
26112.4 25363.0 24600.0 23684.4 22905.2 22100.1 21420.1 20725.3 20134.3 19560.3 19027 '
18541.8 18063.3 17648.0 17241.7 16839.5 16500.2 16162.2 15829.3 15530.6 15252.0 14974.6 14715.3 14474.0 14249.3 14031 '
13820.0 13625.1 13448.1 13279.0 13111.1 12951.6 12820.7 12693.3 12567.3 12441.2 12342.7 12257.5 12171.2 12086.1 12001.0 11953.0 11906.0 11859 '
11810.8 11763.9 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
25


BOW NUCLEAR     TECHNOLOGIES     ** BWNT NON-PROPRIETARY     ** 32-1235127-02 Table 6.6     COOLDOWN-2,   Psat=1232   PSIG STRESSES WITHOUT        WITH 1.2   SCF THERMAL S CF          ON THERMAL S       SX          SY        SZ          SZ 0.0000     -1131. 7      694. 8  22395 .0   22229 F 1 0.1120        875.9      1231 '    23714 .0   24267.3 0.2240      2390.7      1265.8    23554 .0    24476.8 0.3360      3159.7      1310.0    22821 .0    23842.2 0.4480      3934.4      2771.6    22035 .0    23114.4 0.5600      4084.5      3553.5    21278 .0    22359.9 0.6720      4449.9      4141.8    20413 .0    21458.4 0.7840      4649.1      4566.6    19680 .0    20678.9 0.8960      4796.9      4911.0    18932 .0    19875.8 1 F 0080    4889.0      5116.4    18302 .0    19187.5 1.1200      5018.9       5305.2    17662 .0    18486.7 1.2319      5013.3      5419.3    17114 .0   17878.9 1.3439      5055.3       5507.5    16585 .0   17290.9 1.4559      5081.0      5570.7    16093 .0    16741.6 1.5679      5055.0      5602.5    15643 .0   16235.1 1.6799      5048.3       5626.8   15201 .0    15738.1 1.7919      5024.1      5627.4    14815 .0   15301.0 1.9039      4988.4      5618.4    14439 .0    14874.3 2.0159      4947.6      5602.8    14066 .0    14450.6 2.1279      4907.2      5574.9    13749 .0   14088.6 2.2399      4865.6      5543.6   13435 .0   13730.2 2.3519      4818.8      5507.5   13124 .0    13374 '
BOW NUCLEAR TECHNOLOGIES
2.4639      4761.5       5462 '    12844 .0    13052.7 2.5759      4719.2      5421.2    12584 .0    12754.6 2.6879      4674.7      5377.4   12325 .0   12457.7 2.7999      4616.0       5326.0    12081 .0    12175.9 2.9119      4566..9      5278.1    11854 .0    11914.4 3.0239      4526.3       5234.1   11643 .0    11672.1 3.1359      4478.8       5187.0   11439 .0   11436.8 3.2479      4427.1      5137.4    11240 .0   11206.8 3.3599      4383.4      5093.2    11056 .0   10994.6 3.4719      4347.8      .5055.1    10890 .0   10804.0 3.5838      4305.7      5014.3    10732 .0   10621.5 3.6958      4263.0       4973.0   10573 .0   10437.8 3.8078      4223.5      4934.7    10423 .0   10264.9 3.9198      4195.6      4907.4    10300 .0   10124.2 4.0318      4164.2      4878.6   10181 .0    9987.3 4.1438      4132.5      4849.6   10062 .0    9850.6 4.2558      4100.3       4820.3    9943 .8    9714.6 4.3678      4079 '      4803.1    9851 .8    9610.1 4.4798      4060.8       4789 '    9772 .7     9520.3 4.5918      4041.7      4775.1     9693 .6    9430.5 4.7038      4022.3       4761.1    9614 .5    9340.6 4.8158      4002.7       4747 '    9535 .3    9250.7 4.9278      4086.8       4655.3    9493 .2    9205.2 5.0398      4167.2       4566.4    9451 .9    9160.5 5.1518      4244.1      4480.9    9410 .6     9115.9 5.2638      4317.5       4398.8    9369 .2    9071.0 5.3758      4387.4      4320.1    9327 .7    9026.1 Prepared By: T.M. Wi er                       Date:
** BWNT NON-PROPRIETARY **
Reviewed By.: A.M. Miller                 Date:                     Page: 26
32-1235127-02 Table 6.6 COOLDOWN-2, Psat=1232 PSIG STRESSES WI THERMAL S THOUT CF WITH 1.2 SCF ON THERMAL S
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1
F 0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX
-1131. 7 875.9 2390.7 3159.7 3934.4 4084.5 4449.9 4649.1 4796.9 4889.0 5018.9 5013.3 5055.3 5081.0 5055.0 5048.3 5024.1 4988.4 4947.6 4907.2 4865.6 4818.8 4761.5 4719.2 4674.7 4616.0 4566..9 4526.3 4478.8 4427.1 4383.4 4347.8 4305.7 4263.0 4223.5 4195.6 4164.2 4132.5 4100.3 4079 '
4060.8 4041.7 4022.3 4002.7 4086.8 4167.2 4244.1 4317.5 4387.4 SY 694. 8 1231 '
1265.8 1310.0 2771.6 3553.5 4141.8 4566.6 4911.0 5116.4 5305.2 5419.3 5507.5 5570.7 5602.5 5626.8 5627.4 5618.4 5602.8 5574.9 5543.6 5507.5 5462 '
5421.2 5377.4 5326.0 5278.1 5234.1 5187.0 5137.4 5093.2
.5055.1 5014.3 4973.0 4934.7 4907.4 4878.6 4849.6 4820.3 4803.1 4789 '
4775.1 4761.1 4747 '
4655.3 4566.4 4480.9 4398.8 4320.1 SZ 22395 23714 23554 22821 22035 21278 20413 19680 18932 18302 17662 17114 16585 16093 15643 15201 14815 14439 14066 13749 13435 13124 12844 12584 12325 12081 11854 11643 11439 11240 11056 10890 10732 10573 10423 10300 10181 10062 9943 9851 9772 9693 9614 9535 9493 9451 9410 9369 9327
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.8
.8
.7
.6
.5
.3
.2
.9
.6
.2
.7 SZ 22229 F 1 24267.3 24476.8 23842.2 23114.4 22359.9 21458.4 20678.9 19875.8 19187.5 18486.7 17878.9 17290.9 16741.6 16235.1 15738.1 15301.0 14874.3 14450.6 14088.6 13730.2 13374 '
13052.7 12754.6 12457.7 12175.9 11914.4 11672.1 11436.8 11206.8 10994.6 10804.0 10621.5 10437.8 10264.9 10124.2 9987.3 9850.6 9714.6 9610.1 9520.3 9430.5 9340.6 9250.7 9205.2 9160.5 9115.9 9071.0 9026.1 Prepared By: T.M. Wi er Reviewed By.: A.M. Miller Date:
Date:
Page:
26


BOW NUCLEAR   TECHNOLOGIES             NON-PROPRIETARY   ** 32-1235127-02 Table 6.7   COOLDOWN-3, Psat=607 PSIG STRESSES WITHOUT      WITH 1. 2 SCF THERMAL S CF          ON THERMAL S       SX          SY        SZ        SZ 0.0000       57.3      340.1    13615.0   14049 '
BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **
0.1120    1224 '      817.4    15087.0   16040.3 0.2240    2018.2      840.3    15283.0    16473.3 0.3360    2366.1       825.9    14838.0    16060.0 0.4480    2858.6    1898.7    14332.0    15558.9 0.5600    2859.8    2429.0    13780.0    14972.3 0.6720    3050.5    2801.8    13130.0    14259.6 0.7840    3126.0    3058.0    12552.0    13615.3 0.8960    3158.0    3246.6    11958.0    12949.1 1 '080    3162.9    3334.5     11433.0    12352.4 1.1200    3198 '     3406.4    10905.0    11751.9 1.2319    3131.7    3426.8    10432.0   11208.8 1.3439    3107.0     3426.2      9975.5    10684.1 1.4559    3072.6     3408.3      9545.6    10188.5 1.5679    2999.8     3369.2      9140.7     9719.1 1.6799    2943 '    3323.6      8746.9     9263.0 1.7919    2878.4     3265.0      8392.8    8850.9 1.9039    2804.7    3199.3      8045.0    8445.7 2.0159    2726.3    3128.3      7700.2     8043.7 2.1279    2655.4     3054.4      7401 '    7693 '
32-1235127-02 Table 6.7 COOLDOWN-3, Psat=607 PSIG STRESSES WI THERMAL S THOUT CF WITH 1. 2 SCF ON THERMAL S
2.2399    2582.9    2978.0      7104 '    7347.2 2.3519    2506.1     2898.2      6811.3     7003.8 2.4639    2424.4    2815.5     6539.7    6684.8 2.5759    2356.7    2738.3     6290.4     6392.5 2.6879    2287.1    2659.4     6042.4     6101.8 2.7999    2207.9    2576.4     5802.1     5818.8 2.9119    2138.3    2499.0     5580.8    5558.7 3.0239    2077.2    2427.1      5376.7     5319.1 3.1359    2011.6     2353.5      5176.2    5083.2 3.2479    1943.2    2278.4      4978.0     4849.7 3.3599    1883;2    2210.3      4798.0     4637.9 3.4719    1831.9    2149.9      4637.4    4449.4 3.5838    1776.8     2088.1      4480.0    4264.0 3.6958    1721.2    2025.8      4323.0    4079.1 3.8078    1669.2     1967.1    4175.0     3905.0 3.9198    1630.5      1922.0     4057.4     3767.3 4.0318    1589.8      1876.0     3941.5    3631.2 4.1438    1548.8     1829.7     3825.9    3495.4 4.2558    1507.5      1783.1    3710.5    3359.8 4.3678    1479.4      1750.9    3625.0     3260.2 4.4798    1454.9     1723.4    3551.6     3174.6 4.5918    1430.2      1695.7    3478.2    3089.0 4.7038    1405.1     1668.0     3404.9     3003 '
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1 '080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 57.3 1224 '
4.8158    1379.8     1640.1    3331.8     2918.3 4.9278    1402.8      1601.2     3300 '    2883  '
2018.2 2366.1 2858.6 2859.8 3050.5 3126.0 3158.0 3162.9 3198 '
5.0398    1424.5      1563.3     3270.2     2849  '
3131.7 3107.0 3072.6 2999.8 2943 '
5.1518    1444.8     1526.6     3239.7    2815  '
2878.4 2804.7 2726.3 2655.4 2582.9 2506.1 2424.4 2356.7 2287.1 2207.9 2138.3 2077.2 2011.6 1943.2 1883;2 1831.9 1776.8 1721.2 1669.2 1630.5 1589.8 1548.8 1507.5 1479.4 1454.9 1430.2 1405.1 1379.8 1402.8 1424.5 1444.8 1463.8 1481.5 SY 340.1 817.4 840.3 825.9 1898.7 2429.0 2801.8 3058.0 3246.6 3334.5 3406.4 3426.8 3426.2 3408.3 3369.2 3323.6 3265.0 3199.3 3128.3 3054.4 2978.0 2898.2 2815.5 2738.3 2659.4 2576.4 2499.0 2427.1 2353.5 2278.4 2210.3 2149.9 2088.1 2025.8 1967.1 1922.0 1876.0 1829.7 1783.1 1750.9 1723.4 1695.7 1668.0 1640.1 1601.2 1563.3 1526.6 1490.9 1456.4 SZ 13615.0 15087.0 15283.0 14838.0 14332.0 13780.0 13130.0 12552.0 11958.0 11433.0 10905.0 10432.0 9975.5 9545.6 9140.7 8746.9 8392.8 8045.0 7700.2 7401 '
5.2638    1463.8      1490.9    3209.3     2781 '
7104 '
5.3758    1481.5      1456.4    3178.8    2746 '
6811.3 6539.7 6290.4 6042.4 5802.1 5580.8 5376.7 5176.2 4978.0 4798.0 4637.4 4480.0 4323.0 4175.0 4057.4 3941.5 3825.9 3710.5 3625.0 3551.6 3478.2 3404.9 3331.8 3300 '
Prepared By: T.M. Wi er                   Date:
3270.2 3239.7 3209.3 3178.8 SZ 14049 '
Reviewed By: A.M. Miller                   Date:                   Page: 27
16040.3 16473.3 16060.0 15558.9 14972.3 14259.6 13615.3 12949.1 12352.4 11751.9 11208.8 10684.1 10188.5 9719.1 9263.0 8850.9 8445.7 8043.7 7693 '
7347.2 7003.8 6684.8 6392.5 6101.8 5818.8 5558.7 5319.1 5083.2 4849.7 4637.9 4449.4 4264.0 4079.1 3905.0 3767.3 3631.2 3495.4 3359.8 3260.2 3174.6 3089.0 3003 '
2918.3 2883 '
2849 '
2815 '
2781 '
2746 '
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
27


BEc'PJ NUCLEAR TECHNOLOGZES     ** BWNT NON-PROPRIETARY       ** 32-1235127-02 Table 6. 8     END OF COOLDOWN, P = 0 PSIG STRESSES WITHOUT         WITH 1. 2 SCF THERMAL SCF            ON THERMAL S       SX        SY          SZ            SZ 0.0000     -408.5    1474.9      9157.4      10988.9 0.1120     141.8    1166.1      7776.0      9331.2 0.2240     671.7      945.8    6596.7      7916.0 0.3360     968.2      890.6    5783.7      6940.4 0.4480     1026 '    1004.8      5081.0      6097.2 0.5600     1033.0    1048.0      4499.2      5399.0 0.6720     1020.8    1063.3      3979.7      4775.6 0.7840     981.6    1041.5      3533.7      4240.4 0.8960      930.7    1003.0      3110.8      3733 '
BEc'PJ NUCLEAR TECHNOLOGZES
1.0080      867.3      943.2     2744 F 9    3293.9 1.1200      799 '      876.2     2396.6      2875.9 1.2319      721.0      794.6    2072.2      2486.6 1.3439      642.6      710.0    1772.0      2126.4 1.4559      562.3       621.0    1490.2      1788.2 1 '679      477.9      526.1    1218.1      1461.7 1.6799      393.6      430.5       960.1      1152.1 1.7919      312.3      335.9      722.8         867.4 1.9039      228.8       238.8      489.4        587.3 2.0159      143.3       139.6     259.4        311.3 2.1279      66 1 F        48.1       56.3          67.6 2.2399      -12.1      -44.3     -143.6      -172.3 2.3519      -91.5    -137.8     -341.4      -409.7 2.4639    -167.6     -227.7     -529.0      -634.8 2.5759    -237.8    -310.8      -697.9       -837.5 2.6879    -308.9     -394.5      -865.3     -1038.4 2.7999    -379.6     -478.0     -1032.6     -1239.1 2.9119    -445.3    -555.1    -1184.6      -1421.5 3.0239    -506.3    -626.1     -1322.6      -1587.1 3.1359    -567.0    -697.2     -1460 '     -1752.5 3.2479    -627.7    -768.3    -1597.9      -1917.5 3.3599    -683.1     -832.4    -1720.8      -2065.0 3.4719    -732.8    -889.2    -1828.5      -2194.2 3.5838    -781.7     -946 '    -1936.8     -2324.2 3.6958    -830.7    -1002.9    -2044.5      -2453.4 3.8078    -877.0    -1056.4    -2144.9     -2573.9 3.9198    -913.6   -1097.6     -2222 '     -2666.5 4.0318    -949.7    -1139.1    -2299.8     -2759.8 4.1438    -985.6    -1180.8     -2377 '     -2852.4 4.2558    -1021.5    -1222.8    -2453.8      -2944.6 4.3678    -1047.5    -1252 '    -2507.4      -3008.9 4.4798    -1069.4    -1277.6     -2553.4     -3064.1 4.5918    -1091.2    -1303 '    -2599.1     -3118.9 4.7038    -1112.9    -1329.1    -2644.4      3 173 ~ 3 4.8158    -1134.5    -1355.2    -2689 '      -3227.3 4.9278    -1167.0    -1335.9    -2701.7      -3242.0 5.0398    -1198.4    1317 7~    -2714.0     -3256.8 5.1518    -1228.9    -1300.7    -2726.0      -3271.2 5.2638    -1258.4   -1284.9    -2737.7      -3285.2 5.3758    -1286.9   -1270.3     -2749.0     -3298.8 Prepared By: T.M. Wi er                     Date:
** BWNT NON-PROPRIETARY **
Reviewed By: A.M. Miller                     Date:                       Page: 28
32-1235127-02 Table 6. 8 END OF
: COOLDOWN, P
=
0 PSIG STRESSES WITHOUT THERMAL SCF WITH 1. 2 SCF ON THERMAL S
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1 '679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX
-408.5 141.8 671.7 968.2 1026 '
1033.0 1020.8 981.6 930.7 867.3 799 '
721.0 642.6 562.3 477.9 393.6 312.3 228.8 143.3 66 F 1
-12.1
-91.5
-167.6
-237.8
-308.9
-379.6
-445.3
-506.3
-567.0
-627.7
-683.1
-732.8
-781.7
-830.7
-877.0
-913.6
-949.7
-985.6
-1021.5
-1047.5
-1069.4
-1091.2
-1112.9
-1134.5
-1167.0
-1198.4
-1228.9
-1258.4
-1286.9 SY 1474.9 1166.1 945.8 890.6 1004.8 1048.0 1063.3 1041.5 1003.0 943.2 876.2 794.6 710.0 621.0 526.1 430.5 335.9 238.8 139.6 48.1
-44.3
-137.8
-227.7
-310.8
-394.5
-478.0
-555.1
-626.1
-697.2
-768.3
-832.4
-889.2
-946 '
-1002.9
-1056.4
-1097.6
-1139.1
-1180.8
-1222.8
-1252 '
-1277.6
-1303 '
-1329.1
-1355.2
-1335.9 1317
~ 7
-1300.7
-1284.9
-1270.3 SZ 9157.4 7776.0 6596.7 5783.7 5081.0 4499.2 3979.7 3533.7 3110.8 2744 F 9 2396.6 2072.2 1772.0 1490.2 1218.1 960.1 722.8 489.4 259.4 56.3
-143.6
-341.4
-529.0
-697.9
-865.3
-1032.6
-1184.6
-1322.6
-1460 '
-1597.9
-1720.8
-1828.5
-1936.8
-2044.5
-2144.9
-2222 '
-2299.8
-2377 '
-2453.8
-2507.4
-2553.4
-2599.1
-2644.4
-2689 '
-2701.7
-2714.0
-2726.0
-2737.7
-2749.0 SZ 10988.9 9331.2 7916.0 6940.4 6097.2 5399.0 4775.6 4240.4 3733 '
3293.9 2875.9 2486.6 2126.4 1788.2 1461.7 1152.1 867.4 587.3 311.3 67.6
-172.3
-409.7
-634.8
-837.5
-1038.4
-1239.1
-1421.5
-1587.1
-1752.5
-1917.5
-2065.0
-2194.2
-2324.2
-2453.4
-2573.9
-2666.5
-2759.8
-2852.4
-2944.6
-3008.9
-3064.1
-3118.9 3 173
~ 3
-3227.3
-3242.0
-3256.8
-3271.2
-3285.2
-3298.8 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
28


B&rf NUCLEAR TECHNOLOGIES                 NON-PROPRIETARY       **   32-1235127-02 Table 6.9   PRESSURE ONLY AT STEADY STATE,             P = 2250 PSIG STRESSES WITHOUT              WITH 1.2 SCF THERMAL S CF                ON THERMAL S        SX        SY            SZ              SZ 0.0000     -6135.0     3634.1    42415.0             XXX 0.1120    -2413.7    3040.1     38256.0 0.2240      1029.4    2733.2    34590.0 0.3360      3102.0    2906.6    32353.0 0.4480      4040.0    3907.9    30386.0 0.5600      4710.5    4642.9    28981.0 0.6720      5309.2    5310.3     27734.0 0.7840      5736.4     5811.8    26820.0 0.8960      6146.0    6288.1    25957.0 1.0080      6428.9    6643.5     25339.0 1.1200      6710.7    6997.3    24725.0 1.2319      6914.1     7268.2     24271.0 1.3439      7103.6     7526 '    23843.0 1.4559      7266.9     7756 '    23468.0 1.5679      7397.1     7949.9    23162.0 1.6799      7526.9     8140 '     22857.0 1.7919      7623.5     8295.2    22619.0 1.9039      7714.0    8440.1     22395.0 2.0159      7803.0    8580.3    22177.0 2.1279      7867.5     8691.6     22009.0 2.2399      7932.5    8800.0     21841.0 2.3519      7995.6    8903.5    21680.0 2 '639      8043.1     8988.1     21551.0 2.5759      8091.3    9069.0     21424.0 2.6879      8139.6     9147.8    21297.0 2.7999      8175.3     9214.1    21197.0 2.9119      8210.9    9277.1    21097 '
B&rf NUCLEAR TECHNOLOGIES NON-PROPRIETARY **
3.0239      8246.6     9337.5     20998.0 3.1359      8276.2     9393.0    20911.0 3.2479      8301.8     9445.2     20831.0 3.3599      8327.1    9495.8    20752.0 3.4719      8351.8    9544.9    20674.0 3.5838      8369.3    9589.4    20609.0 3.6958      8386.6    9634.0     20544.0'0479.0 3.8078      8403.5    9678.4 3.9198      8418.4    9721.5    20416.0 4.0318      8429.3    9761.6    20362.0 4.1438      8440.3    9801.9    20307.0 4.2558      8451.2    9842.4    20253 '
32-1235127-02 Table 6.9 PRESSURE ONLY AT STEADY STATE, P
4.3678      8460.9    9882.6    20199.0
= 2250 PSIG S
      '4.4798      8467.4    9919.7    20153.0 4.5918      8474.0     9956.9    20106.0 4.7038      8480.8    9994 '     20060.0 4.8158      8487.8    10031.0     20013.0 4.9278      8682.2    9862.2    19967.0 5.0398      8869.3    9698.9    19923.0 5.1518      9049.3    9542.7    19878.0 5.2638      9222.3    9393.5    19834.0 5.3758      9388.3    9251.3    19789.0 Prepared By: T.M. Wi er                         Date:
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2 '639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678
Reviewed By: A.M. Miller                   Date:                       Page: 29
'4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES WI THERMAL S SY 3634.1 3040.1 2733.2 2906.6 3907.9 4642.9 5310.3 5811.8 6288.1 6643.5 6997.3 7268.2 7526 '
7756 '
7949.9 8140 '
8295.2 8440.1 8580.3 8691.6 8800.0 8903.5 8988.1 9069.0 9147.8 9214.1 9277.1 9337.5 9393.0 9445.2 9495.8 9544.9 9589.4 9634.0 9678.4 9721.5 9761.6 9801.9 9842.4 9882.6 9919.7 9956.9 9994 '
SX
-6135.0
-2413.7 1029.4 3102.0 4040.0 4710.5 5309.2 5736.4 6146.0 6428.9 6710.7 6914.1 7103.6 7266.9 7397.1 7526.9 7623.5 7714.0 7803.0 7867.5 7932.5 7995.6 8043.1 8091.3 8139.6 8175.3 8210.9 8246.6 8276.2 8301.8 8327.1 8351.8 8369.3 8386.6 8403.5 8418.4 8429.3 8440.3 8451.2 8460.9 8467.4 8474.0 8480.8 8487.8 8682.2 8869.3 9049.3 9222.3 9388.3 10031.0 9862.2 9698.9 9542.7 9393.5 9251.3 WITH 1.2 SCF ON THERMAL SZ XXX THOUT CF SZ 42415.0 38256.0 34590.0 32353.0 30386.0 28981.0 27734.0 26820.0 25957.0 25339.0 24725.0 24271.0 23843.0 23468.0 23162.0 22857.0 22619.0 22395.0 22177.0 22009.0 21841.0 21680.0 21551.0 21424.0 21297.0 21197.0 21097 '
20998.0 20911.0 20831.0 20752.0 20674.0 20609.0 20544.0'0479.0 20416.0 20362.0 20307.0 20253 '
20199.0 20153.0 20106.0 20060.0 20013.0 19967.0 19923.0 19878.0 19834.0 19789.0 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
29


BRW NUCLEAR TECHNOLOGIES     ** BWNT NON-PROPRIETARY   **   32-1235127-02 Table 6.10   LOSS OF SECONDARY PRESSURE   - 1, T=0.010, P=310 PSIG STRESSES WITHOUT               WITH 1.2 SCF THERMAL SCF                     ON THERMAL SX        SY        SZ 0.0000     2295.1    639. 7    8290.4    8779.7 0.1120     2366.7    877.6    9822.5    10732.8 0.2240    2150.7    600.6    9932.2    10965.5 0.3360    1851.8    366.1     9277.8    10241.9 0.4480    2023.4    1256.9    8725.2     9632 '
BRW NUCLEAR TECHNOLOGIES
0.5600    1710.0    1544.1    8014.0    8818.2 0.6720    1674.6    1679.3     7321.9    8022.1 0.7840    1601.3   1749.7    6732.4     7339.8 0.8960    1471.5    1742.7    6116.7    6624.8 1.0080    1401.6    1704.8    5652.5     6084.8 1.1200    1379.5    1669.7     5234.5    5600.1 1.2319    1271.0   1607.2    4839.3     5138.4 1.3439    1236.7   1558.6     4530.5    4779.6 1.4559    1216.6    1521.0    4278.6    4487.6 1.5679    1165.7    1475.2     4037.8     4207.1 1.6799    1139.0   1437.6    3831.4    3967.8 1 '919    1129.9   1416.2    3690.2     3805.0 1.9039    1113.0   1392.7    3551.5    3644.7 2.0159    1091.4    1367.5    3413.8     3485.5
** BWNT NON-PROPRIETARY **
: 2. 1279   1092.3    1359 '    3335.2    3395.8 2.2399    1092.1   1350.8    3258.9    3308.8 2.3519    1088.5    1341.9    3183.7     3223.0 2.4639    1083.2   1334.9    3123.5     3154.4 2.5759    1089.9   1334.5     3082.1    3108.2 2.6879    1095.1    1334.0     3040.9    3062.2 2.7999    1094.3    1332.5     3003.9    3020.6 2.9119    1097.9    1333.0    2974.1    2987.6 3.0239    1105.2   1335.7     2950.9    2962.5 3.1359    1109.8    1338.0     2929.6     2939.3 3.2479    1112.5   1340.0     2909.4     2917.3 3.3599    1117.0    1342.5    2892.0     2898.6 3.4719    1123.1    1345.8    2877.7    2883.6 3.5838    1126.8    1348.8     2865.4     2870.6 3.6958    1130 '    1351.8     2853.1     2857.6 3.8078    1133.6   1354.8    2841.3    2845.2
32-1235127-02 Table 6.10 LOSS OF SECONDARY PRESSURE
: 3. 9198    1137.9    1357.7    2831.5     2835.2 4 '318    1140 '    1360.5     2822.9    2826.4 4.1438    1143.7   1363.3    2814.2    2817.5 4.2558    1146.2    1366.2    2805.5     2808.5 4.3678    1149.0    1368.7    2797.4    2800.3 4.4798    1151 '    1371.0    2790.6     2793.4 4.5918    1153.0   1373.5     2783.7    2786.4 4.7038    1154 '    1376.0     2776.6    2779.2 4.8158    1156.2   1378.6     2769.6     2772.1 4.9278    1183.1    1353.1    2762.9    2765.3 5.0398    1208.8    1328.5    2756.4     2758.7 5.1518    1233.5   1305.0    2749.8    2752.0 5.2638    1257 '    1282.6    2743.1     2745.2 5.3758    1279.8    1261.2     2736 '    2738.3 Prepared By: T.M. Wi er                 Date:
- 1, T=0.010, P=310 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1 '919 1.9039 2.0159
Reviewed By: A.M. Miller                 Date:                     Page: 30
: 2. 1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078
: 3. 9198 4 '318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 2295.1 2366.7 2150.7 1851.8 2023.4 1710.0 1674.6 1601.3 1471.5 1401.6 1379.5 1271.0 1236.7 1216.6 1165.7 1139.0 1129.9 1113.0 1091.4 1092.3 1092.1 1088.5 1083.2 1089.9 1095.1 1094.3 1097.9 1105.2 1109.8 1112.5 1117.0 1123.1 1126.8 1130 '
1133.6 1137.9 1140 '
1143.7 1146.2 1149.0 1151 '
1153.0 1154 '
1156.2 1183.1 1208.8 1233.5 1257 '
1279.8 SY 639. 7 877.6 600.6 366.1 1256.9 1544.1 1679.3 1749.7 1742.7 1704.8 1669.7 1607.2 1558.6 1521.0 1475.2 1437.6 1416.2 1392.7 1367.5 1359 '
1350.8 1341.9 1334.9 1334.5 1334.0 1332.5 1333.0 1335.7 1338.0 1340.0 1342.5 1345.8 1348.8 1351.8 1354.8 1357.7 1360.5 1363.3 1366.2 1368.7 1371.0 1373.5 1376.0 1378.6 1353.1 1328.5 1305.0 1282.6 1261.2 SZ 8290.4 9822.5 9932.2 9277.8 8725.2 8014.0 7321.9 6732.4 6116.7 5652.5 5234.5 4839.3 4530.5 4278.6 4037.8 3831.4 3690.2 3551.5 3413.8 3335.2 3258.9 3183.7 3123.5 3082.1 3040.9 3003.9 2974.1 2950.9 2929.6 2909.4 2892.0 2877.7 2865.4 2853.1 2841.3 2831.5 2822.9 2814.2 2805.5 2797.4 2790.6 2783.7 2776.6 2769.6 2762.9 2756.4 2749.8 2743.1 2736 '
8779.7 10732.8 10965.5 10241.9 9632 '
8818.2 8022.1 7339.8 6624.8 6084.8 5600.1 5138.4 4779.6 4487.6 4207.1 3967.8 3805.0 3644.7 3485.5 3395.8 3308.8 3223.0 3154.4 3108.2 3062.2 3020.6 2987.6 2962.5 2939.3 2917.3 2898.6 2883.6 2870.6 2857.6 2845.2 2835.2 2826.4 2817.5 2808.5 2800.3 2793.4 2786.4 2779.2 2772.1 2765.3 2758.7 2752.0 2745.2 2738.3 Prepared By:
Reviewed By:
T.M. Wi er A.M. Miller Date:
Date:
Page:
30


B&W NUCLEAR TECHNOLOGIES       ** BWNT NON-PROPRIETARY     ** 32-1235127-02 Table 6.11   LOSS OF SECONDARY PRESSURE     - 2, T=0.015, P=210 PSIG STRESSES WITHOUT       WITH 1.2   SCF THERMAL SCF           ON THERMAL S       SX          SY          SZ          SZ 0.0000   2043.4      2272.8    16343.0   18819.9 0.1120    2493.2      2111.6    16086.0   18589.1 0.2240    2665.6      1564.2    14776.0    17085.5 0.3360    2562.6      1241 '    13160.0    15188.1 0.4480    2669.3      2101.1    11786.0    13576.0 0.5600    2285.7      2320.2     10380.0    11915.0 0.6720    2149.8      2366.1      9102.2    10404.9 0.7840    1972.1      2320.9      8008.8    9109.9 0.8960    1724.1      2181.8      6916.9    7815.7 1.0080    1547.7      2013 '      6062.0    6801.4 1.1200    1413.3     1844.7     5288.9    5885.1 1.2319    1196.9     1643.3      4552.8     5010.3 1.3439    1062.7      1468.1     3961.4    4308.6 1.4559    950.8      1311.0      3460.9     3715.0 1.5679    809.5      1145.5      2976.3    3139.2 1.6799    697.1        996.8    2558.3    2643 '
B&W NUCLEAR TECHNOLOGIES
1.7919    621.1        883.2    2249.4    2277.1 1.9039    536.2        767.5    1945.5      1916.6 2.0159    444.2       649.5    1645.2    1560.3 2.1279    399.0       575.3    1458.8     1339.7 2.2399    352.3       502.5     1278.6      1126.6 2.3519    301.1        429.5     1100.9      916.4 2.4639    256.8       367.4     952.0       740.1 2.5759    234.1        325.8     851.3      621.6 2.6879    209.2        284.4      751.9      504.7 2.7999    181.1        244.0      655.4       390.8 2.9119    162.3        213.5      581.8       304.4 3.0239    151.9        192.7     529.4       243.3 3.1359    140.1        172.5      478.4      183.8 3.2479    127 '        152.8     428.5      125 '
** BWNT NON-PROPRIETARY **
3.3599    118.8       138.6      390.3       81.0 3.4719    114 '        130.4     364.5       51.5 3.5838    110.3        122.6     339.7        23.0 3.6958    105.4       115.0      315.4       -5.0 3.8078    101.'2      109.0      294.0       -29.5 3.9198    100. 1      107.7      281.8       -43.0 4.0318      99.0        106.4      270.1       -56.0 4.1438      97.7        105.2      258 '      -68 '
32-1235127-02 Table 6.11 LOSS OF SECONDARY PRESSURE
4.2558      96.3       104.1     247.7      -80.8 4.3678      96.1        105.2     240.7      -88.3 4.4798      96.4        106.8      235.3      -93.9 4.5918      96.7       108.4     230.1       -99.2 4.7038      97.0       109.9      225.2     -104.2 4.8158      97.3       111.4      220.6     -108.9 4.9278    100.6       111.7     218.2      -110.9 5.0398    103.8       112.0     216.0     -112.7 5.1518    106.9        112.2      214.0     -114.3 5.2638    109 '        112.4      212.2     -115.7 5.3758    112.7       112.6      210.5      -116.8 Prepared By: T.M. Wi er                   Date:
- 2, T=0.015, P=210 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL S
Reviewed By: A.M. Miller                 Date:                     Page: 31
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 2043.4 2493.2 2665.6 2562.6 2669.3 2285.7 2149.8 1972.1 1724.1 1547.7 1413.3 1196.9 1062.7 950.8 809.5 697.1 621.1 536.2 444.2 399.0 352.3 301.1 256.8 234.1 209.2 181.1 162.3 151.9 140.1 127 '
118.8 114 '
110.3 105.4 101.'2 100. 1 99.0 97.7 96.3 96.1 96.4 96.7 97.0 97.3 100.6 103.8 106.9 109 '
112.7 SY 2272.8 2111.6 1564.2 1241 '
2101.1 2320.2 2366.1 2320.9 2181.8 2013 '
1844.7 1643.3 1468.1 1311.0 1145.5 996.8 883.2 767.5 649.5 575.3 502.5 429.5 367.4 325.8 284.4 244.0 213.5 192.7 172.5 152.8 138.6 130.4 122.6 115.0 109.0 107.7 106.4 105.2 104.1 105.2 106.8 108.4 109.9 111.4 111.7 112.0 112.2 112.4 112.6 SZ 16343.0 16086.0 14776.0 13160.0 11786.0 10380.0 9102.2 8008.8 6916.9 6062.0 5288.9 4552.8 3961.4 3460.9 2976.3 2558.3 2249.4 1945.5 1645.2 1458.8 1278.6 1100.9 952.0 851.3 751.9 655.4 581.8 529.4 478.4 428.5 390.3 364.5 339.7 315.4 294.0 281.8 270.1 258 '
247.7 240.7 235.3 230.1 225.2 220.6 218.2 216.0 214.0 212.2 210.5 SZ 18819.9 18589.1 17085.5 15188.1 13576.0 11915.0 10404.9 9109.9 7815.7 6801.4 5885.1 5010.3 4308.6 3715.0 3139.2 2643 '
2277.1 1916.6 1560.3 1339.7 1126.6 916.4 740.1 621.6 504.7 390.8 304.4 243.3 183.8 125 '
81.0 51.5 23.0
-5.0
-29.5
-43.0
-56.0
-68 '
-80.8
-88.3
-93.9
-99.2
-104.2
-108.9
-110.9
-112.7
-114.3
-115.7
-116.8 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
31


B&Q NUCLEAR TECHNOLOGIES       ** BWNT NON-PROPRIETARY     ** 32-1235127-02 Table 6.12   LOSS OF SECONDARY PRESSURE       - 3, T=0.0201 P=185 PSIG STRESSES WITHOUT       WITH 1. 2 SCF THERMAL SCF          ON THERMAL S. SX            SY        SZ          SZ 0.0000   1500 ~ 4      3990.9    26048.0     30560 .1 0 '120    2511 .6      3432.7    23922.0     28077 .3 0.2240    3241 .7      2625.1   21115.0    24769 .2 0.3360    3441 ~ 3      2234.2   18499.0    21666 .8 0.4480    3540 ~ 4      3117.2   16257.0    19008 .7 0.5600    3129 .7      3315.1    14133.0    16483 .0 0.6720    2930 .9      3316.5    12237.0    14228 .3 0.7840    2674 .7      3191.9    10616.0    12298 .2 0.8960    2334 .8      2956.4     9025.2    10403 ~ 4 1.0080    2065 ~ 4     2681.6     7753.3     8887 .3 1.1200    1830 .8       2399.9    6593.2      7505 .3 1.2319    1513 .7       2075.1    5491.7     6190 .9 1.3439    1282 ~ 4     1782.9    4583.3      5107 .9 1.4559    1077 .3      1511.1    3796.4      4169 .8 1.5679    842 ~ 4      1227.6     3033.3      3259 .1 1.6799    639 ~ 4       966.7     2365.0     2462 .1 1.7919    486 .9        754.3     1845.6      1842 .8 1.9039    323 .7       538.5    1334.5      1233 .1 2.0159    151 .2        319.3      830.2      631 .6 2.1279      46 .9       167.3     492.8      229 ,4 2.2399    -59 .8        17 '     165.6     -160 .5 2.3519    -171 .7      -133 '    -157.3      -545 3
B&Q NUCLEAR TECHNOLOGIES
                                                          ~
** BWNT NON-PROPRIETARY **
2.4639    -269 .2      -264.6     -435.5      -877 .0 2.5759    -334 .3      -361.1    -634.4     -1113 .5 2.6879    -402 4
32-1235127-02 Table 6.12 LOSS OF SECONDARY PRESSURE
                    ~        -457.2    -830.6     -1346 .9 2.7999    -471 .7      -551.1    -1024.3     -1577 .7 2.9119    -525 .2      -625.5    -1175 '    -1757 .6 3.0239    -564 .0       -681.4    -1287.7     -1890 .5 3.1359    -603 .2      -735.9    -1398.5     -2022 .1 3.2479    -642 .8       -789 '    -1508.0    -2152 .2 3.3599    -673 .9      -830.6   -1592.8    -2252 .6 3.4719    -695 4
- 3, T=0.0201 P=185 PSIG STRESSES WITHOUT THERMAL SCF WITH 1. 2 SCF ON THERMAL S.
                    ~        -858.3    -1651.5     -2321 .8 3.5838    -715 .9      -885.2    -1709.7     -2390 .5 3.6958    -736 .9       -911.7   -1766.9    -2458 .1 3.8078    -756 .0      -934.2    -1816.9     -2517 .0 3.9198    -766 .8      -944.4    -1844.7    -2549 4 4.0318    -776 .6       -954.5    -1872.4    -2581 .7 4.1438    -786 .6      -964.6    -1899.2    -2613 .0 4 '558    -796 .5      -974.5    -1925.4    -2643 .5 4.3678    -802 4
0.0000 0 '120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4 '558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 1500 2511 3241 3441 3540 3129 2930 2674 2334 2065 1830 1513 1282 1077 842 639 486 323 151 46
                    ~        -977.5    -1939.9    -2660 .0 4.4798    -806 .0      -978.6    -1950.7     -2672 .2 4.5918    -809 4
-59
                    ~        -979.9   -1960.9     -2683 .7 4.7038    -812 .6      -981.5    -1970.5    -2694 .5 4.8158    -815 .7      -983.3   -1979.5    -2704 .5 4.9278    -833 .3      -960 '    -1980.3    -2704 .7 5.0398    -850 .0      -938.9    -1980.8     -2704 .6 5.1518    -866 .0       -918.3    -1980.9    -2704 0
-171
                                                          ~
-269
5.2638    -881 .3      -898.6    -1980.5     -2702 .8 5.3758    -895 .8      -880.0   -1979.6    -2700 .9 I
-334
Prepared By: T.M. Wi er                     Date:
-402
Reviewed By: A.M. Miller                   Date:                     Page: 32
-471
-525
-564
-603
-642
-673
-695
-715
-736
-756
-766
-776
-786
-796
-802
-806
-809
-812
-815
-833
-850
-866
-881
-895
~ 4
.6
.7
~ 3
~ 4
.7
.9
.7
.8
~ 4
.8
.7
~ 4
.3
~ 4
~ 4
.9.7
.2
.9
.8
.7
.2
.3
~ 4
.7
.2
.0
.2
.8
.9
~ 4
.9
.9
.0
.8
.6
.6
.5
~ 4
.0
~ 4
.6
.7
.3
.0
.0
.3
.8 SY 3990.9 3432.7 2625.1 2234.2 3117.2 3315.1 3316.5 3191.9 2956.4 2681.6 2399.9 2075.1 1782.9 1511.1 1227.6 966.7 754.3 538.5 319.3 167.3 17 '
-133 '
-264.6
-361.1
-457.2
-551.1
-625.5
-681.4
-735.9
-789 '
-830.6
-858.3
-885.2
-911.7
-934.2
-944.4
-954.5
-964.6
-974.5
-977.5
-978.6
-979.9
-981.5
-983.3
-960 '
-938.9
-918.3
-898.6
-880.0 SZ 26048.0 23922.0 21115.0 18499.0 16257.0 14133.0 12237.0 10616.0 9025.2 7753.3 6593.2 5491.7 4583.3 3796.4 3033.3 2365.0 1845.6 1334.5 830.2 492.8 165.6
-157.3
-435.5
-634.4
-830.6
-1024.3
-1175 '
-1287.7
-1398.5
-1508.0
-1592.8
-1651.5
-1709.7
-1766.9
-1816.9
-1844.7
-1872.4
-1899.2
-1925.4
-1939.9
-1950.7
-1960.9
-1970.5
-1979.5
-1980.3
-1980.8
-1980.9
-1980.5
-1979.6 SZ 30560 28077 24769 21666 19008 16483 14228 12298 10403 8887 7505 6190 5107 4169 3259 2462 1842 1233 631 229
-160
-545
-877
-1113
-1346
-1577
-1757
-1890
-2022
-2152
-2252
-2321
-2390
-2458
-2517
-2549
-2581
-2613
-2643
-2660
-2672
-2683
-2694
-2704
-2704
-2704
-2704
-2702
-2700
.1
.3
.2
.8
.7
.0
.3
.2
~ 4
.3
.3
.9
.9
.8
.1
.1
.8
.1
.6
,4
.5
~ 3
.0
.5
.9
.7
.6
.5
.1
.2
.6
.8
.5
.1
.0 4
.7
.0
.5
.0
.2
.7
.5
.5
.7
.6
~ 0
.8
.9 I
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
32


14 'I 4
14 'I 4


BOW NUCLEAR TECHNOLOGIES         ** BWNT NON-PROPRIETARY   **     32-1235127-02 Table 6.13   LOSS OF SECONDARY PRESSURE         - 4, T=0.063, P=116 PSIG STRESSES WITHOUT        WITH  1.2  SCF THERMAL S CF          ON THERMAL S        SX            SY          SZ          SZ 0.0000   -3873.7        12867.0     86107.0   102891.1 0.1120    1715.5        10563.0     74667.0    89205.9 0.2240    6852.0          8736.5    64405.0    76929.3 0.3360    9623.1         8235.7    56957.0    68014 '
BOW NUCLEAR TECHNOLOGIES
0.4480    10312.0          9692.4     50389.0    60153.5 0.5600    10289.0        10260.0    44855.0    53527.2 0.6720    10200.0        10509.0    39860.0   47546.0 0.7840    9828.8        10380.0    35555.0   42389.5 0.8960    9326.0         10068.0     31453.0    37476.0 1.0080    8711.3          9522.3    27886.0   33201.9 1.1200    8066.5         8900.6     24484.0    29125.9 1.2319    7290.8          8128.1    21310.0   25321.7 1.3439    6529.6          7312.8    18359.0   21785.0 1.4559    5746.8          6447.7    15582.0   18456.4 1.5679    4911.5          5522.5     12897.0   15237.6 1.6799    4085.8          4,587. 0   10351.0   12185.5 1.7919    3289.3         3659.4      8015.0      9384.8 1.9039    2469.6          2707.7      5714.8     6626.8 2.0159    1628.5         1733.5      3445.9     3906.4 2.1279      881.9          844.6     1468.2      1534.9 2.2399      125.4          -52.4    -478.9      -799.9 2.3519      -644.2        -960.4    -2406.3    -3111.1 2.4639    1 3 77 ~ 2     -1826.9    -4219.1    -5285.1 2 '759    -2037.6        -2613.7     -5822.0    -7207 '
** BWNT NON-PROPRIETARY **
2.6879  -2706.6        -3405.7    -7411.4    -9113.3 2.7999    -3375.1.       -4195 '    -8997.9   -11016.0 2.9119  -3980.3         -4908.-10409.0   -12708.3 3.0239  -4526.6        -5549.-11656.0   -14203.7 3.1359  -5072.1        -6188.-12901.0   -15696.8 3.2479  -5617.5        -6828.-14144.0   -17187.6 3.3599  -6100.7        -7390.-15224.0   -18482.8 3.4719  -6516.6        -7869.0   -16132.0   -19571.6 3.5838  -6926.3        -8346.-17046.0    -20667.7 3.6958  -7337.0         -8825.3   -17954.0    -21756.6 3.8078  -7720.7        -9269.7   -18791.0    -22760.4 3.9198  -8008.2        -9594.4   -19399.0    -23489 '
32-1235127-02 Table 6.13 LOSS OF SECONDARY PRESSURE
4.0318  -8290.3        -9920.7   -20012.0    -24224.4 4.1438  -8572.2        -10249.-20620.0    -24953.4 4.2558  -8854.0       -10579.0   -21225.0.   -25678.8 4.3678  -9050.7        -10803.0   -21631.0   -26165.5 4.4798  -9212 '       -10991.0  -21973.0    -26575.4 4.5918  -9372.7        -11181.0  -22312.0    -26981.7 4.7038   -9532.7        -11374.0  -22647.0   -27383 '
- 4, T=0.063, P=116 PSIG S
4.8158  -9692.2       -11569.0   -22979.0    -27781.2 4.9278  -9957.5        -11392.0   -23063 '   -27881.5 5.0398  -10214.0       -11225.0   -23147.0   -27981.8 5.1518  -10463.0       -11069.0   -23228.0   -28078 '    Pa ges 33a and 33b 5.2638  -10703.0       -10922.0   -23306.0   -28171.7 ha ve been inserted 5.3758  -10935.0       -10786.0   -23382.0V
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2 '759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES WI THERMAL S SY 12867.0 10563.0 8736.5 8235.7 9692.4 10260.0 10509.0 10380.0 10068.0 9522.3 8900.6 8128.1 7312.8 6447.7 5522.5 4,587. 0 3659.4 2707.7 1733.5 844.6
                                                    -28262.4 be tween 33 and 34.
-52.4
Prepared By: T.M. Wi er                       Date:
-960.4
Reviewed By: A.M. Miller                   Date:                         Page: 33
-1826.9
-2613.7
-3405.7
-4195 '
-4908.5
-5549.2
-6188.9
-6828.9
-7390.7
-7869.0
-8346.4
-8825.3
-9269.7
-9594.4
-9920.7
-10249.0
-10579.0
-10803.0
-10991.0
-11181.0
-11374.0
-11569.0
-11392.0
-11225.0
-11069.0
-10922.0
-10786.0 SX
-3873.7 1715.5 6852.0 9623.1 10312.0 10289.0 10200.0 9828.8 9326.0 8711.3 8066.5 7290.8 6529.6 5746.8 4911.5 4085.8 3289.3 2469.6 1628.5 881.9 125.4
-644.2 1 3 77
~ 2
-2037.6
-2706.6
-3375.1.
-3980.3
-4526.6
-5072.1
-5617.5
-6100.7
-6516.6
-6926.3
-7337.0
-7720.7
-8008.2
-8290.3
-8572.2
-8854.0
-9050.7
-9212 '
-9372.7
-9532.7
-9692.2
-9957.5
-10214.0
-10463.0
-10703.0
-10935.0 WITH 1.2 SCF ON THERMAL THOUT CF SZ 86107.0 74667.0 64405.0 56957.0 50389.0 44855.0 39860.0 35555.0 31453.0 27886.0 24484.0 21310.0 18359.0 15582.0 12897.0 10351.0 8015.0 5714.8 3445.9 1468.2
-478.9
-2406.3
-4219.1
-5822.0
-7411.4
-8997.9
-10409.0
-11656.0
-12901.0
-14144.0
-15224.0
-16132.0
-17046.0
-17954.0
-18791.0
-19399.0
-20012.0
-20620.0
-21225.0.
-21631.0
-21973.0
-22312.0
-22647.0
-22979.0
-23063 '
-23147.0
-23228.0
-23306.0
-23382.0 V
SZ 102891.1 89205.9 76929.3 68014 '
60153.5 53527.2 47546.0 42389.5 37476.0 33201.9 29125.9 25321.7 21785.0 18456.4 15237.6 12185.5 9384.8 6626.8 3906.4 1534.9
-799.9
-3111.1
-5285.1
-7207 '
-9113.3
-11016.0
-12708.3
-14203.7
-15696.8
-17187.6
-18482.8
-19571.6
-20667.7
-21756.6
-22760.4
-23489 '
-24224.4
-24953.4
-25678.8
-26165.5
-26575.4
-26981.7
-27383 '
-27781.2
-27881.5
-27981.8
-28078 '
ges 33a and 33b ve been inserted tween 33 and 34.
Pa
-28171.7 ha
-28262.4 be Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
33
 
II )4,
 
B&W NUCLEAR TECHNOLOGIES
** BWNT NON-PROPRIETARY **
32-1235127-02 Table 6.14 FLUCTUATION DN-20F STRESSES WITHOUT THERMAL SCF STEP DN, 100 PSI DECREASE TO 2150 PSIG WITH 1.2 SCF ON THERMAL S
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1 '559 1 '679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SZ 42469.2 39620 '
36599.2 34476.0 32533 '
31049.2 29644.9 28551.8 27496.4 26679 '
25865.1 25211 '
24592.5 24033.1 23543.2 23064.1 22665.8 22282.8 21906.0 21603.5 21303.4 21010.1 20757.7 20524.3 20291.7 20085.0 19892'.2 19712.1 19543.8 19382.4 19232.6 19096.0 18971.7 18847.8 18728.4 18626.6 18533.0 18439.2 18346.0 18266.3 18198.8 18130.6 18063.1 17995.0 17944.4 17896.0 17846.5 17798.0 17748.9 SZmod 42857.0 40233.8 37308.5 35188.2 33233.0 31720.4 30273.6 29136.6 28035.0 27172.7 26312.9 25615.6 24954.4 24354.7 23825.3 23308.7 22876.2 22459.4 22048.9 21718.1 21390.0 21068.8 20790.6 20534.8 20280.0 20051.0 19838.7 19641.6 19456.3 19277.9 19113.2 18964.1 18827.4 18691.1 18560.3 18450.2 18348.2 18246.1 18144.6 18059.4 17987.1 17914.3 17842.1 17769.2 17717.4 17667.7 17616.9 17567.1 17516.8 Prepared By:
Reviewed By:
T.M. Wi er A.M. Miller Date:
Date:
Page:
33'.


II )4, B&W NUCLEAR TECHNOLOGIES     ** BWNT NON-PROPRIETARY **   32-1235127-02 Table 6.14    FLUCTUATION DN-20F STEP DN, 100 PSI DECREASE TO 2150 PSIG STRESSES WITHOUT    WITH  1.2  SCF THERMAL SCF        ON THERMAL S       SZ                  SZmod 0.0000    42469.2            42857.0 0.1120   39620 '            40233.8 0.2240   36599.2            37308.5 0.3360   34476.0            35188.2 0.4480   32533 '            33233.0 0.5600   31049.2            31720.4 0.6720   29644.9            30273.6 0.7840   28551.8            29136.6 0.8960   27496.4            28035.0 1.0080   26679 '            27172.7 1.1200   25865.1            26312.9 1.2319   25211 '            25615.6 1.3439   24592.5            24954.4 1 '559    24033.1             24354.7 1 '679    23543.2             23825.3 1.6799    23064.1            23308.7 1.7919    22665.8            22876.2 1.9039    22282.8            22459.4 2.0159    21906.0            22048.9 2.1279    21603.5             21718.1 2.2399    21303.4            21390.0 2.3519    21010.1             21068.8 2.4639    20757.7            20790.6 2.5759    20524.3            20534.8 2.6879    20291.7             20280.0 2.7999    20085.0            20051.0 2.9119    19892'.2             19838.7 3.0239    19712.1              19641.6 3.1359    19543.8             19456.3 3.2479    19382.4              19277.9 3.3599    19232.6             19113.2 3.4719    19096.0              18964.1 3.5838    18971.7              18827.4 3.6958    18847.8              18691.1 3.8078    18728.4             18560.3 3.9198    18626.6             18450.2 4.0318    18533.0              18348.2 4.1438    18439.2             18246.1 4.2558    18346.0             18144.6 4.3678    18266.3              18059.4 4.4798    18198.8             17987.1 4.5918    18130.6             17914.3 4.7038    18063.1             17842.1 4.8158    17995.0            17769.2 4.9278    17944.4             17717.4 5.0398    17896.0             17667.7 5.1518    17846.5            17616.9 5.2638    17798.0             17567.1 5.3758    17748.9            17516.8 Prepared By: T.M. Wi er                 Date:
BSW NUCLEAR TECHNOLOGIES
Reviewed By: A.M. Miller                 Date:                   Page: 33'.
** BWNT NON-PROPRIETARY **
32-1235127-02 Table 6.15 FLUCTUATION UP-20F STEP UP, 100 PSI INCREASE TO 2350 PSIG S
0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4 '438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES THERMAL SZ 34299.1 32939.5 31126.6 29855.1 28685.6 27852.8 27039.1 26474.6 25920.3 25552.2 25164.1 24919.5 24673.8 24465.2 24320.1 24161 '
24054.1 23958 '
23864.7 23800.7 23734.3 23672.9 23638 '
23589.3 23540.2 23518.7 23487.3 23446.8 23418.5 23397.7 23368.9 23331.6 23308.8 23285.5 23258.5 23221.8 23194.7 23166.6 23138.3 23101. 0 23068.5 23034.9 23001.2 22966.9 22921.2 22877.4 22832.7 22787.9 22742.4 WITHOUT SCF WITH 1 '
SCF ON THERMAL SZmod 32298.9 31536.2 30126.4 29068.0 28075.5 27369.5 26653.6 26167.2 25682.2 25369.7 25032.2 24833.5 24628.0 24456.0 24345.8 24219.4 24140.1 24071.8 24005.2 23963.4 23918.9 23878.7 23863.8 23831.9 23799.5 23794.6 23777.8 23749.9 23734.1 23725.8 23707.8 23679.4 23665 '
23651 '
23632.4 23601.5 23580.3 23558.0 23535.4 23501.9 23472.4 23442.0 23411 '
23379.8 23334.5 23291.2 23247 '
23202.3 23157.1 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
33b


BSW NUCLEAR TECHNOLOGIES    ** BWNT  NON-PROPRIETARY  **    32-1235127-02 Table 6.15  FLUCTUATION UP-20F STEP UP,    100 PSI INCREASE TO 2350 PSIG STRESSES WITHOUT    WITH 1 '    SCF THERMAL SCF        ON THERMAL S      SZ                  SZmod 0.0000  34299.1            32298.9 0.1120  32939.5              31536.2 0.2240  31126.6              30126.4 0.3360  29855.1              29068.0 0.4480  28685.6              28075.5 0.5600  27852.8              27369.5 0.6720  27039.1              26653.6 0.7840  26474.6              26167.2 0.8960  25920.3              25682.2 1.0080  25552.2              25369.7 1.1200  25164.1              25032.2 1.2319  24919.5              24833.5 1.3439  24673.8              24628.0 1.4559  24465.2              24456.0 1.5679  24320.1              24345.8 1.6799  24161 '              24219.4 1.7919  24054.1              24140.1 1.9039  23958 '              24071.8 2.0159  23864.7              24005.2 2.1279  23800.7              23963.4 2.2399  23734.3              23918.9 2.3519  23672.9              23878.7 2.4639  23638 '              23863.8 2.5759  23589.3              23831.9 2.6879  23540.2              23799.5 2.7999  23518.7              23794.6 2.9119  23487.3              23777.8 3.0239  23446.8              23749.9 3.1359  23418.5              23734.1 3.2479  23397.7              23725.8 3.3599  23368.9              23707.8 3.4719  23331.6              23679.4 3.5838  23308.8              23665 '
L)t
3.6958  23285.5              23651 '
3.8078  23258.5              23632.4 3.9198  23221.8              23601.5 4.0318  23194.7              23580.3 4 '438  23166.6              23558.0 4.2558  23138.3              23535.4 4.3678  23101. 0            23501.9 4.4798  23068.5              23472.4 4.5918  23034.9              23442.0 4.7038  23001.2              23411 '
4.8158  22966.9              23379.8 4.9278  22921.2              23334.5 5.0398  22877.4              23291.2 5.1518  22832.7              23247 '
5.2638  22787.9              23202.3 5.3758  22742.4              23157.1 Prepared By: T.M. Wi er                Date:
Reviewed By: A.M. Miller                Date:                      Page: 33b


L)t I
I I
I    I I
I
I
~   ~
~
                                                'I I   Il zssg~~~~~1>
~
        ~ssaseeaaamww&w~~~~~
I I
lli58(ESS) SHOS+5 IBBlREISISSSSHgg 1
r e
        "iiiaRhaYaFaa5%58'8+++
~
I IIIQI8158%E1%00++++ ggg IBRBE1SQ1OSOSOO++++ggg pygmy>~
I
I+g~y  gg+
~ssaseeaaamww&w~~~~~
r
zssg~~~~~1>
  ~
"iiiaRhaYaFaa5%58'8+++ pygmy>~
e I
lli58(ESS)SHOS+5 1I+g~y IBBlREISISSSSHggI gg+
8885501115OSN+'+++
IBRBE1SQ1OSOSOO++++ggg IIIQI8158%E1%00++++ggg 8885501115OSN+'+++
IIIIIIRIL~0%550%%%%~~~
IIIIIIRIL~0%550%%%%~~~
llllllll18(IIIE55SS+
llllllll18(IIIE55SS+g
=
lilllilaNh%aaaaaaaeeaaa lllllll8llh1i5%558++++
lilllilaNh%aaaaaaaeeaaa lllllll8llh1i5%558++++
llllllggllaaraaaaaaaaa g  =
llllllggllaaraaaaaaaaa IlllllllllllS%585NI+'+++g=
IlllllllllllS%585NI+'+++g=
IlllllllllSISOEN'1+++
IlllllllllSISOEN'1+++
                                    ~ ~, ~
'I I
Il
~
~,
~
I
I


ANSTS     5.0 A JUN 21     1995 10: 43: 39 PI.OT   NO.
( ~ 104!O 211 S2 ANSTS 5.0 A
POSTI STEP=I
JUN 21 1995 10: 43: 39 PI.OT NO.
( ~ 104!O                                                SUB =I TIME=I PATH PI.OT NOD I =2 N002=10&
POSTI STEP=I SUB
S2 2V   = I OIST=0.75 211 XF   =0.5 YF   =0.5 ZF   =0.5 CENTROIO HIOOEN 156 gO gI 0
=I TIME=I PATH PI.OT NOD I =2 N002=10&
747e H
2V
474+3 201. 0
= I OIST=0.75 XF
      -72o15 4J 1 o075       2o 15            4m 301 0o537        1.613       2odm 3.763                             I I
=0.5 YF
DIST                                      4J Ul h)
=0.5 ZF
ENO OF    HEATUP,  P=2250      PSIG I
=0.5 CENTROIO HIOOEN 156 747e gOgI 0
C)
H 474+3 201. 0
-72o15 0o537 1 o075 1.613 ENO OF
: HEATUP, P=2250 PSIG 2o 15 2odm DIST 3.763 4m 301 4J I
I 4J Ul h)
I C)


ANSTS     5.0 A JUN 21     1995 10:43:44 PI.OT   NO. 2 POSTI STEP=2 (a10ffo                                                                  SUB   =I TIME=2 PATH PI.OT N001=2 N002=108 2'V   = I OIST=0.75 XF   =0.5 YF   =0.5 ZF   =0.5 CENTROIO HIOOEN g
(a10ffo ANSTS 5.0 A
0 gI 0
JUN 21 1995 10:43:44 PI.OT NO.
S2 H
2 POSTI STEP=2 SUB
K ST 577.2 219+ 533                                                                                    44 0          1+075        2o 15      ~ 225      i.301      5+376                  M 0o 537        1e613      2eam      3o763      4e535                          I M
=I TIME=2 PATH PI.OT N001=2 N002=108 2'V
'5                                           DIST                                                    4J Vl 8                                                                                                     h)
= I OIST=0.75 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROIO HIOOEN 577.2 S2 ST g0g I
0 H
K
'5 8
~ ~
~ ~
53F STEP   OOWN,   P= 1740   PSIG I
219+ 533 0
ED
0o 537 1+075 1e613 53F STEP
: OOWN, P= 1740 PSIG 2o 15 2eam DIST
~225 i.301 5+376 3o763 4e535 44 M
I M
4J Vl h)
I ED
 
(a 100' 211 SE ANSYS 5.0 A
JUN 21 1995 10:43:48 PLOT NO.
3 POSTI STEP=3 SUB
=I T IME=3 PATH PLOT N001=2 N002= 108 2V
= I OIST=0.75 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROIO HIDDEN SY gOg I
0 H
130.6
-153+371 0
0+ 537 1 a075 1.613 53F STEP-UP, P=2400 PSIG 2m 15 2+666 DIST 3.763 4o301 4l h)
I 4J Ul hl Io h)


ANSYS    5.0 A JUN 21    1995 10:43:48 PLOT NO.        3 POSTI STEP=3 (a 100'                                                  SUB  =I T IME=3 SE PATH PLOT N001=2 N002= 108 2V  = I OIST=0.75 211 XF  =0.5 YF  =0.5 ZF  =0.5 CENTROIO HIDDEN SY gO gI 0
0
H 130.6
    -153+371                                                                        4l 0        1 a075      2m 15            4o301                      h) 0+ 537        1.613      2+666 3.763                              I DIST                                        4J Ul hl 53F STEP- UP,    P=2400      PSIG I
oh)


0 R.
( ~ 10'1)
ANSYS     5.0 A JUN 21     1995 10:43:53 PI.OT   NO.
SZ ANSYS 5.0 A
POSTI STEP=4
JUN 21 1995 10:43:53 PI.OT NO.
( ~ 10'1)                                                                SUB TIME=%
POSTI STEP=4 SUB TIME=%
PATH PI,OT N001=2 N002= 108 ZV   = I OIST=0.75 XF   =0.5 YF   =0.5 ZF   =0.5 CENTROIO HIOOEN SZ 20 0
PATH PI,OT N001=2 N002= 108 ZV
gI 0
= I OIST=0.75 XF
SY 14 710m 370.0 47+805 1.075       2. 15       3 0 225      4.301      5o37d 0+537       1+d13       2 Idm          3.7d3 DIST EQ rtr
=0.5 YF
~ ~
=0.5 ZF
STEAOY STATE,     TreI   = 10F,   Tunif   = 653F,     P   = 2400 PSIG
=0.5 CENTROIO HIOOEN R.
20 710m SY 0g I
0 14 370.0 47+805 1.075
: 2. 15 0+537 1+d13 2Idm 3 0 225 3.7d3 4.301 5o37d EQ rtr
~ ~
DIST STEAOY
: STATE, TreI
=
: 10F, Tunif
=
: 653F, P
=
2400 PSIG


S r- 4Sc                                                                        ANSYS       5.0 A R
S Sc r-4 S
S  Q JUN 21       1095 S  S                                                                        IO:43:57             n Q                                                                        PI.OT NO.         5 W                                                                        P0 5 'T I
Q S
'C 'C                                                                          STEP=5
S Q
( ~ 109 fl)                                                    SUB TIME=5 PATH PI.OT           n N001=2 NOOZ=I08 ZV     = I OIST=0.75 211                                                        XF     =0.5 YF     =0.5 ZF     =0.5 CENTROID HIDDEN g0 SZ                        g e e S   S 0
W
'C
'C
( ~ 109fl) 211 ANSYS 5.0 A
JUN 21 1095 IO:43:57 PI.OT NO.
5 P0 5
'T I STEP=5 SUB TIME=5 PATH PI.OT N001=2 NOOZ=I08 ZV
= I OIST=0.75 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROID HIDDEN R
n n
e e
S S
SZ g0g 0
M SY 329.57
M SY 329.57
: 73. baal 0           1.07d       2old            io301 o376 4) h)
: 73. baal 0
Oe d37        1+613     2I665 3o763                                  I M
Oe d37 1.07d 1+613 COOlOOWN-I, Psa1= 1<72 PS IG 2old 2I665 DEST 3o763 io301 o376 4) h)
DEST                                            Vl Vl COOlOOWN-     I,   Psa1= 1<72     PS IG                                                   hl I
I M
CI hl
Vl Vl hl I
CIhl


ANSYS   5.0 A JUN 21   1995 10:44:02 PLOT   NO.     6 POSTI STEP=6 (a109 91)                                                                  SUB =I TIME=6 PATH PI.OT N001=2 N002=108 214 ZV   = I OIST=0.75 XF   =0.5 191 YF   =0.5 ZF   =0.5 CENTROIO HIDDEN 0
(a109 91) 214 191 ANSYS 5.0 A
gI SZ 0
JUN 21 1995 10:44:02 PLOT NO.
760. 06 H
6 POSTI STEP=6 SUB
SY 299. d7 69.475 0         1 s075         2. 15       .225       4o301       5+576                   bb Oslo          1e 615      2e dbb      5o765       4.515                         I hD 0                                          DIST                                                      4J Vl 8
=I TIME=6 PATH PI.OT N001=2 N002=108 ZV
~~ COOI.OOWN.2,    Psal=1232      PSIG I
= I OIST=0.75 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROIO HIDDEN 760. 06 SZ 0g I
0 H
SY 299. d7 0
8
~ ~
69.475 0
Oslo 1 s075 1 e 615 COOI.OOWN.2, Psal=1232 PSIG
: 2. 15 2e dbb DIST
.225 4o301 5+576 5o765 4.515 bb I
hD 4J Vl I
C) h)
C) h)


ANSYS     5.0 A JUN 21     IS95 IO:44:06 PI.OT   NO.     7 POSTI STEP=7 (a 104'                                                      SUB   = I TIME=7 PATH PI.OT N001=2 N002 = 108 2V   = I OIST=0.75 XF   =0.5 YF   =0.5 ZF   =0.5 CENTROID HIOOEN 7Il.i                                                                             g0 g
(a 104' ANSYS 5.0 A
631 ~
JUN 21 IS95 IO:44:06 PI.OT NO.
0
7 POSTI STEP=7 SUB
                                                                                        &#xc3; H
= I TIME=7 PATH PI.OT N001=2 N002
0a Sl 183.                                                       SY 3io007 0         1 a075      2o 15            is 301 5.376                    M hP 0.537       1+613       2+6M 3.763                                   I hP DIST                                          VJ Ul COOI.OOWN-3,    PsaI=607      PSIG                                                    hP I
= 108 2V
= I OIST=0.75 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROID HIOOEN 7Il.i 631 ~
Sl g0g 0
&#xc3;H 0a 183.
SY 3io007 0
0.537 1 a075 1+613 COOI.OOWN-3, PsaI=607 PSIG 2o 15 2+6M DIST 3.763 is 301 5.376 M
hP I
hP VJ Ul hP I
CI hP
CI hP


ANSYS     5 .0  A JUN 21       1995 IO: (4:   I I PLOT     NO       8 POST I 5 I' P = 8 SUB TIME=8 91                                                                    PATH PI. OT NOD1=2 NOD2 =10 ZV     =I DIST=0.     75 XF     =0. 5 YF     =0. 5 ZF     =0. 5 CENTROI      D HIDDEN 0
91 ANSYS 5
gI 0t(f H
JUN 21 IO: (4: I PLOT NO POST I
14
5 I' P = 8 SUB TIME=8 PATH PI.
      -3d7o7 sv SZ M749                                                                                          4J 0         lo075       2s15       3 0 225       4. 301       5o376                         h) 0.537        lod13      2odb5         3.763       4s63$                               I M
NOD1=2 NOD2 =10 ZV
DIST                                                              4l Vl h)
=I DIST=0.
END OF  COOLDOWN,  P  =  0  PSIG I
XF
M
=0.
YF
=0.
ZF
=0.
CENTROI
.0 A
1995 I
8 OT 75 5
5 5
D HIDDEN
-3d7o7 sv SZ 0g I
0t(f H
14 M749 0
0.537 lo075 lod13 END OF
: COOLDOWN, P
=
0 PSIG 2s15 DIST 3 0 225
: 4. 301 5o376 2odb5 3.763 4s63$
4J h)
I M
4l Vl h)
I M


8 r- 'dS                                                                              ANSYS     5.4 A 0                                                                                    JUN 21     Icq5 8    8                                                                              10: 44:15 P    A                                                                              PI OT   NO. 9 POSTI W    W                                                                              STEP=9 (a 1040O SUB   =I I' ME = 9 424                                                                  PATH PLOT         n N001=2 NOO2=100 zr.                                                                                  2V   = I 17ISTc0.75 XF   =0.5 8                                                                                  YF   =0,5 ZF   =0.5 CENTROIO HIOOEN 0
8 S
52                   gI 0
r- 'd 0
H W
8 8
SY 670. 1 273.3 la                                                                                 4J 0         1.075       2o15       3.225       ho301     0.376                   h)
P A
OI537        1+613      2odbb       3e763       heKR                         I h)
W W
DIST                                                     GJ Ul I
zr.
8                                                                                                    h)
8 (a 1040O 424 ANSYS 5.4 A
~~
JUN 21 Icq5 10: 44:15 PI OT NO.
PRESSURE     ONLY AT   STEAOY STATE,       P   = 2250   PSIG I
9 POSTI STEP=9 SUB
oM
=I I'
ME = 9 PATH PLOT N001=2 NOO2=100 2V
= I 17ISTc0.75 XF
=0.5 YF
=0,5 ZF
=0.5 CENTROIO HIOOEN n
52 0g I
0 H
W SY 670. 1 8
~ ~
273.3 la 0
1.075 2o15 OI537 1+613 3.225 ho301 0.376 2odbb 3e763 heKR DIST PRESSURE ONLY AT STEAOY
: STATE, P
=
2250 PSIG 4J h)
I h)
GJ Ul Ih)
IoM


ANSYS   5.0 A JUN 21   1995 10:44:20 PLOT NO. 10 POSTI STEP=IO SUB TIME=10 PAI'H PLOT N001= 2 N002=108 ZV   =I DIST=0.15 XF   =0.5 YF   =0.5 ZF   =0.5 CENTROIO HIOOEN 61 514 0
ANSYS 5.0 A
gI 41 0
JUN 21 1995 10:44:20 PLOT NO.
H SZ                  W SY 366al3                                                                                     4l 0         1 +075       2m 15       o225       4+301         5 +376                 M OICP        le613        2+6M      3.7IL$       4 e Md                         I M
10 POSTI STEP=IO SUB TIME=10 PAI'H PLOT N001= 2 N002=108 ZV
DlST                                                       4J Vl hl LOSS OF   SECONOARY   PRESSURE       -   I, 1=0.010,     P=310     PSIG I
=I DIST=0.15 XF
=0.5 YF
=0.5 ZF
=0.5 CENTROIO HIOOEN 61 514 41 SZ 0g I
0 H
W SY 366al3 0
OICP 1 +075 le613 2m 15 2+6M o225 4+301 5 +376 3.7IL$
4 e Md DlST LOSS OF SECONOARY PRESSURE
- I, 1=0.010, P=310 PSIG 4l M
I M
4J Vl hl I
ED bJ
ED bJ


R ANSYS     5.0 A JUN 21       1055 10: 41:24           n PLOT     HO. 11 POS I' STEP=   I I SUB   = I
( ~ 1040O 14 114 ANSYS 5.0 A
( ~ 1040O                                                                      TIME=II PAT'N   PlOT       n H001=2 H002= 108 14 LV     = I DIST=0.15 XF     =0.5 YF     =0.5 2F     =0.5 CENTROIO HIDDEN 114 9M.71 gO gI 0
JUN 21 1055 10: 41:24 PLOT HO.
497.                                                                                                 H 335,1 K
11 POS I' STEP=
S2 172.                                                                        SY 10.406                                                                                               La) 1 a075       2,15         3e 225       4.301       5.376 2odbb       3e763       4m 535                             I 0 I 537        1+613 M
I I SUB
DIST                                                           4J Ul lg                                                                                                            h) 8  lOSS OF     SECOHOARY     PRESSURE     -  2,   T=0.015, P=210 PSIG
= I TIME=II PAT'N PlOT H001=2 H002= 108 LV
~~
= I DIST=0.15 XF
=0.5 YF
=0.5 2F
=0.5 CENTROIO HIDDEN R
n n
9M.71 497.
335,1 172.
S2 SY gOgI 0
H K
lg8
~ ~
10.406 0 I537 1 a075 1+613 2,15 3e 225 4.301 5.376 2odbb 3e763 4m 535 DIST lOSS OF SECOHOARY PRESSURE 2,
T=0.015, P=210 PSIG La)
I M
4J Ul h)
I M
I M


$ 41
$ 41


ANSYS     5.0 A JUN 21     1995 IO:41:29           n PLOT     NO. 12 POS I' ST EP =12 (s 109$ O                                                              SUB   =I TIME=12 PATH PLOT           n NOD1=2 NOO2=100 2V     = I         O OIST=O.)5           Q XF     =0.5         H YF     =0.5 ZF     =0.5 CENTROIO HIOOEN 17 0g gI 0
(s 109$ O 17 ANSYS 5.0 A
642 o7 H
JUN 21 1995 IO:41:29 PLOT NO.
3d2o4 K
12 POS I' ST EP =12 SUB
52 II2. 1                                                             ST
=I TIME=12 PATH PLOT NOD1=2 NOO2=100 2V
        -19bo09                                                                                     4J 0         1.075       2olm                  4.301      Oo37d                    M 0.537        l.dl3       2odbb   3e7d3         4eES I
= I OIST=O.)5 XF
I hl DIST                                                     4J Ul I
=0.5 YF
8
=0.5 ZF
~~ LOSS OF   SECONOARZ   PRESSURE     . 3, T=0.020,   P= 185   PSIG I
=0.5 CENTROIO HIOOEN n
ED h)
n OQH 642 o7 3d2o4 II2. 1 52 ST g0g I
0 H
K 8
~ ~
-19bo09 0
0.537 1.075 l.dl3 2olm 2odbb 3e7d3 4.301 4eES DIST LOSS OF SECONOARZ PRESSURE 3,
T=0.020, P= 185 PSIG Oo37d 4J M
I Ihl 4J Ul I
I ED h)


ANSYS               5.0   A JUN 21                 1995 I 0: 11:           3 3 PLOT     NO.               13 POST   I STEP=13
[I10661) 661 ANSYS 5.0 A
[I10661)                                                                    SUB =I
JUN 21 1995 I 0: 11:
                                                                                    'T IME =13 661                                                                      PATH     PI.OI'001=2 N002=108 2Y     =I OI SI =0.15 XF     =0.5 YF     =0.5 2F     =0.5 CENTROIO HIOOEN gO gI 0
3 3 PLOT NO.
946o4 H
13 POST I STEP=13 SUB
    -146+39                                                                                                       Pl SY
=I
        -12                                                                   SL 4J 1 +075       2o 16       ~ 226       4o361         o376                              M 0.537        1 o613        2.666      3+763       4. 636,                                     I M
'T IME =13 PATH PI.OI'001=2 N002=108 2Y
DIST                                                                    Vl Ul T=0.063, P=116 PSIG                                             M lOSS  Of    SECONOARY    PRESSURE      ~
=I OI SI =0.15 XF
1, I
=0.5 YF
M
=0.5 2F
=0.5 CENTROIO HIOOEN 946o4
-146+39
-12 SY SL gOg I
0 H
Pl 0.537 1 +075 1 o613 2o 16 2.666
~ 226 4o361 3+763
: 4. 636, DIST lOSS Of SECONOARY PRESSURE
~
1, T=0.063, P=116 PSIG o376 4J M
I M
Vl Ul M
I M


4 BOW NUCLEAR TECHNOLOGZES           ** BWNT NON-PROPRZETARY     **     32-1235127-02 7.0   ANSYS   5.0A   Verification The ANSYS   analysis code, version S.OA, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors.
4 BOW NUCLEAR TECHNOLOGZES
** BWNT NON-PROPRZETARY **
32-1235127-02 7.0 ANSYS 5.0A Verification The ANSYS analysis
: code, version S.OA, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors.
The following comparison of finite element (FE) stress results and closed form solut'ns indicated that the software provided accu.ate results.
The following comparison of finite element (FE) stress results and closed form solut'ns indicated that the software provided accu.ate results.
Therefore, ANSYS 5.0A was verified for this application.
Therefore, ANSYS 5.0A was verified for this application.
Finite Element Results from Table 6.9, Pressure = 2250 psia Distance             Hoo Stress     Sz 0.0(clad/base)             42,415 psi
Finite Element Results from Table Distance Hoo Stress 0.0(clad/base) 42,415
: 2. 6879 (mid base)         21, 297 psi
: 2. 6879 (mid base) 21, 297
: 5. 3758 (external)         19, 789 psi Hoop Stress   (using thin shell theory) e = pr/2t                                       Ref. [5, Table 28 case 3a.]
: 5. 3758 (external) 19, 789 Hoop Stress (using thin shell theory) 6.9, Pressure
e = 2250 (73 .63) / [2 (4 .094)] = 20, 233 psi Compared   to:
= 2250 psia Sz psi psi psi e
21g297   psi (FE), b%'     )21297/20233 - 1)(100%) =       5.26%'nd 19,789 psi (FE), b%'       )19789/20233 - 1~(100%') =
= pr/2t Ref.
[5, Table 28 case 3a.]
e
= 2250 (73.63) / [2 (4.094)]
= 20, 233 psi Compared to:
21g297 psi (FE),
b%'
)21297/20233
- 1)(100%)
=
5.26%'nd 19,789 psi (FE),
b%'
)19789/20233
- 1~(100%')
=
2.19%'hese percent differences are attributable to the differences b'etween thin and thick pressure vessel theory and the fact that at the mid point of the line there may still be some stress concentration effect due to the penetration.
2.19%'hese percent differences are attributable to the differences b'etween thin and thick pressure vessel theory and the fact that at the mid point of the line there may still be some stress concentration effect due to the penetration.
Stress Concentration at Hole SCF =   a,,/e,   =   42415/19789   = 2.143 (FE) k Compared   to 2.0 (from Sect. 3.3),     h%   = ]2.14/2.0 - 1] (100%) = 7.2%
Stress Concentration at Hole SCF
Prepared By: T.M. Wi er                       Date:
= a,,/e, = 42415/19789
Reviewed By: A.M. Miller                   Date:                                 Page: 48
= 2.143 (FE) k Compared to 2.0 (from Sect. 3.3),
h%
= ]2.14/2.0 - 1] (100%)
= 7.2%
Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
48


J
J


B&W'UCLEAR TECHNOLOGIES       ** BWNT NON-PROPRIETARY   **   32-1235127-02 8.0   References
B&W'UCLEAR TECHNOLOGIES
: 1)   ASME Boiler and Pressure Vessel Code, Section ZZI,     Division 1, Appendices, 1986 Edition with no Addenda.
** BWNT NON-PROPRIETARY **
: 2)   BWNS Document No. 51-1155656-00,   "Standard Correlations   for Natural Convection".
32-1235127-02 8.0 References 1)
: 3)   BWNS Document No. NPGD-TM-500, "NPGD Material   Properties Program User's Manual", Rev. D, March, 1985.
ASME Boiler and Pressure Vessel
: 4)   Harvey, J. F., "Theory and Design of Modern Pressure Vessels",   Van Nostrand Reinhold Co., New York, 1974.
: Code, Section ZZI, Division 1, Appendices, 1986 Edition with no Addenda.
: 5)   Young, W. C., "Roark's Formulas for Stress   & Strain", 6th Edition McGraw-Hill,   New York, 1989.
2)
: 6)   DeSalvo, G. J. and Gorman, R. W., "ANSYS User's Manual       for Revision 5. 0", 1992, Swanson Analysis Systems, Houston, Pennsylvania.
BWNS Document No. 51-1155656-00, "Standard Correlations for Natural Convection".
: 7)   BWNT Document 32-1235128-02,   "FM Analysis of St. Lucie Pressurizer Instrument Nozzles"   .
3)
: 8)   BWNT Document   38-1210588-00, "Pressurizer Instrument Nozzles, FM Design   Input," for St. Lucie Unit 2, dated 11/11/94     (FP&L Number JPN-PSLP-94-631, File: PSL-100-14).
BWNS Document No. NPGD-TM-500, "NPGD Material Properties Program User's Manual",
: 9)   Florida Power & Light Drawing No. 2998-19321, Rev. 0,       "Top Head Instrument Nozzles Repair".
Rev.
: 10)   Florida Power & Light Drawing No. 2998-18709, Rev. 1, "Pressurizer General Arrangement".
D, March, 1985.
: 11) Arpaci, V.S., Conduction Heat Transfer, Adelson-Wesley Publishing, 1966.
4)
: 12) *Florida Power and Light Drawing No. 2998-18594     Rev. 0, "Pressurizer Top Head Details and Assembly."
Harvey, J. F.,
: 13) Peterson,   R.E., "Stress Concentration Factors", Wiley     & Sons, 1974.
"Theory and Design of Modern Pressure Vessels",
          *References marked with an "asterisk" are retrievable from the Utilities Record System.
Van Nostrand Reinhold Co.,
A horize   Project     ger's Signature Prepared By: T.M. Wi er                   Date:
New York, 1974.
Reviewed By: A.M. Miller               Date:                     Page:   49
5)
: Young, W. C.,
"Roark's Formulas for Stress
& Strain", 6th Edition McGraw-Hill, New York, 1989.
6)
: DeSalvo, G. J.
and Gorman, R. W.,
"ANSYS User's Manual for Revision 5. 0",
: 1992, Swanson Analysis Systems,
: Houston, Pennsylvania.
7)
BWNT Document 32-1235128-02, "FM Analysis of St. Lucie Pressurizer Instrument Nozzles".
8)
BWNT Document 38-1210588-00, "Pressurizer Instrument Nozzles, FM Design Input," for St. Lucie Unit 2, dated 11/11/94 (FP&L Number JPN-PSLP-94-631, File: PSL-100-14).
9)
Florida Power
& Light Drawing No. 2998-19321, Rev.
0, "Top Head Instrument Nozzles Repair".
10)
Florida Power
& Light Drawing No. 2998-18709, Rev.
1, "Pressurizer General Arrangement".
: 11) Arpaci, V.S., Conduction Heat Transfer, Adelson-Wesley Publishing, 1966.
12)
*Florida Power and Light Drawing No. 2998-18594 Rev.
0, "Pressurizer Top Head Details and Assembly."
13)
: Peterson, R.E.,
"Stress Concentration Factors",
Wiley & Sons, 1974.
*References marked with an "asterisk" are retrievable from the Utilities Record System.
A horize Project ger's Signature Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
49


BSc't~'UCLEAR TECHNOLOGIES       ** BWNT NON-PROPRIETARY **     32-1235127-02 9.0     Microfiche The following table contains   a list of microfiche of the ANSYS S.OA computer output. The nodes and elements were   identical   among all the models.
BSc't~'UCLEAR TECHNOLOGIES
FILE NAME   FILE DATE                       DESCRIPTION S PHTHERM. OUT   6/20/95 Composite transient thermal runs including 100 'F/hr Heatup, 53'F Step-down, 53'F Step-up and 200 'F/hr Cooldown SPHTHLP.OUT     6/20/95 Loss of pressure thermal run SPHSTRES.OUT      6/21/95 Stress runs   for all cases MATPROP . MAC    6/14/95 Macro file containing all material property date used in the analysis.
** BWNT NON-PROPRIETARY **
PRESS.MAC       6/15/95 Macro   for applying pressure during the stress runs FILMCOEF.MAC     6/14/95 Macro for applying thermal loads during thermal runs Prepared By: T.M. Wi er                     Date:
32-1235127-02 9.0 Microfiche The following table contains a list of microfiche of the ANSYS S.OA computer output.
Reviewed By: A.M. Miller                   Date:                       Page: 50
The nodes and elements were identical among all the models.
FILE NAME FILE DATE DESCRIPTION S PHTHERM. OUT 6/20/95 Composite transient thermal runs including 100 'F/hr Heatup, 53'F Step-down, 53'F Step-up and 200 'F/hr Cooldown SPHTHLP.OUT SPHSTRES.OUT MATPROP. MAC 6/20/95 6/21/95 6/14/95 Loss of pressure thermal run Stress runs for all cases Macro file containing all material property date used in the analysis.
PRESS.MAC 6/15/95 Macro for applying pressure during the stress runs FILMCOEF.MAC 6/14/95 Macro for applying thermal loads during thermal runs Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
50


    '4
'4
\ >
\\ >


B&Vl NUCLEAR TECHNOLOGIES ** BWNT NON-PROPRIETARY ** 32-1235127-02 Computer Output Mi.crofiche Prepared By: T.M. Wi er             Date:
B&Vl NUCLEAR TECHNOLOGIES
Reviewed By: A.M. Miller             Date:                 Page: 51
** BWNT NON-PROPRIETARY **
32-1235127-02 Computer Output Mi.crofiche Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:
Date:
Page:
51


r tl}}
r tl}}

Latest revision as of 13:35, 8 January 2025

Stresses for St Lucie Unit 2,PZR Lefm
ML17228B237
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 07/14/1995
From: Miller A, Wiger T
BABCOCK & WILCOX CO.
To:
Shared Package
ML17228B236 List:
References
32-1235127-02, 32-1235127-2, NUDOCS 9508100184
Download: ML17228B237 (77)


Text

I jIPBBMfNllClSAR

%MTECHNOLOGIES BNT-20697-2 (11/B9)

(BNNP.20697.1)

CALCULATION

SUMMARY

SHEET (CSS)

DOCUMENT IDENTIFIER 32-1235127" 02 TITLF Stresses for St. Lucie Unit 2, Pzr LEFM 4100533 PREPARED BY:

T.M. Wi er REVIENEO BY:

A.M. Miller SIGNATURE TITLE En r. III COST CENTER REF.

PAGE(S)

SIGNATURE TIT E En r. IV

,7 // 9s-TM STATEMENT:

REVIEllER INDEPENDENCE PURPOSE AND

SUMMARY

OF RESULTS:

The purpose of this document is to determine enveloping Normal, Upset and Emergency Condition stresses for the six 1" instrumentation nozzles in the upper and lower spherical regions in the pressurizer at St. Lucie Unit 2.

Results from this document were used as input to the fracture mechanics evaluation, Reference

[7].

The stress results are summarized in Tables 6.1 through 6.15 in Section 6.0.

No conclusions are drawn by, these calculations.

    • BWNT Non-Proprietary **

This document consists of pages 1 through 51 including 20a, 33a and 33b.

THE FOLLONING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT:

CODE / VERSION / REV CODE / VERSION / REV THIS DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED ISRK

'75081'00'l84

'950802 '.

PDR ADOCk 0500038'P Q

PDR YES (

)

NO ( X )

PAGE 1

oF 51

tie' at)

I BRA NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127<<02 RECORD OF REVISIONS Revision Number 0

Pages Added/

Chanched All All Descri tion Original issue Issue of Non-Proprietary Version Removed assumption 5.

Corrected Young's modulus of base material.

Modulus used in the analysis of previous revisions was

correct, but reported incorrectly in this table.

8-40 Corrected equation for K,.

Performed the analysis for only the spherical region with corrected hillside stress concentration factor and actual thickness.

New model covers all nozzles in the upper and lower spherical regions.

Replaced with pages 8 through 50.

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

2

BaW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 1.0 Introduction 2.0 Assumptions 3.0 Design Input 3.1 Design Characteristics 3.2 Material Properties 3.3 Model Geometry

4. 0 Finite Element Model
5. 0 Thermal Analysis 6.0 Stress Analysis 7.0 ANSYS 5.0A Verification 8.0 References 9.0 Microfiche 4

5 5

6 8

10 11 20 48 49 50 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

3

B&W'UCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 1.0 Introduction During the 1994 refueling outage, external leakage was identified at the pressurizer instrument nozzle "C" of Florida Power

& Light Company's St.

Lucie Unit 2.

Subsequent NDE identified indications on the J-welds for all four steam space instrument nozzles.

Modifications were made and justifications performed to determine the potential for crack growth during plant operation.

The evaluation performed at the time was conservatively limited to one cycle based on the design information available.

The purpose of this analysis is to provide stress analysis input for a bounding fracture mechanics flaw evaluation so that it is applicable to all six instrument/temperature 1" nozzles in the spherical regions of the pressurizer.

I Results from this document are used as input to the fracture mechanics evaluation, Reference

[7].

The results are presented in the coordinate system shown in figure 6.2, which is orthogonal to the postulated flaw, as required by Reference

[7].

The component stresses along a postulated flaw plane shown in Figure 6.2 were determined using ANSYS'5.0A finite element software.

2.0 Assumptions 1)

Material properties for SA-240, Type 304 were assumed for the stainless steel cladding on the pressurizer heads and shell.

2)

The effects of the nozzle were neglected in determining the shell/head stresses (i.e. the nozzle was omitted from the finite element model).

3)

The hT between the cladding surface temperature and the bulk fluid temperature was assumed to be 15'F for calculating the natural convection heat transfer coefficient.

4)

Piping loads on the instrumentation/temperature sensing nozzles produce negligible stresses on the pressurizer shell/head.

5)'Removed) 6)

Hydrotest was assumed to be shop hydrotest only.

Therefore, no future hydrotests are assumed to occur.

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

4

BEcT4 NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 3.0 Design Input 3.1 Design Characteristics The following design parameters for the pressurizer were taken from Reference

[8].

Heatup

'Cooldown Operating Pressure Operating Temperature Minimum Pressure (Reactor Trip transient)

Maximum Pressure (Abnormal Loss of Load transient) 100 F/hr 200 F/hr 2250 psia 653 F 1740 psia (653-616 'F hT) 2400 psia (664-614 'F hT)

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

5

B&k NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 3.2 Material Properties This section summarizes the material properties used in the thermal/stress analysis.

The material types come from References

[8-10]

and assumption 1.

References for the material properties are given in the tables below.

The material property designation and units are:

KXX - thermal conductivity, btu/(hr-in-'F)

DENS - density, lb/in'

- specific heat, btu/(lb-'F)

C is a

calculated value based on C

=

KXX/(DENS x Thermal Diffusivity) where thermal diffusivity is taken from the same source as KXX EX - Young's Modulus, psi x 10'LPX

- coefficient of thermal expansion, in/in/'F x 10'm

- design stress intensity, ksi Sy - yield strength, ksi Su - ultimate strength, ksi v - Poisson's ratio

=.3 for all materials PRESSURIZER HEADS AND SHELL SA-533 GR-B CL-1, Low Alloy Steel (Mn-.SMo-.5Ni)

TEMP DENS EX ALPX Sy Su 100 200 300 400 500 600 700 REF

.2839 1.8833

.1079

~ 2831 1.9500

.1139

.2823 1.9833

.1196

.2817 1.9833

.1257

.2809 1.9583

.1323

.2802 1.9167

.1389

.2794 1.8583

.1448

.3 29.0 28.5 28.0 27.4 27.0 26.4 25.3 7.06 26.7 50 '

7.25 26.7 47.5 7.43 26.7 46.1 7.58 26.7 45.1 7.70 26.7 44.S 7.83 26.7 43.8 7.94 26.7 43.1

80. 0 80.0 80.0 80.0 80.0 80.0
80. 0 Prepared By: -T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

6

I 0

I 4'8 1

1

BED NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 HEAD AND SHELL CLADDING 304 STAINLESS STEEL, SA-240 ASSUMED (18Cr-8Ni)

TEMP 100 200 300 400 500 DENS

.2862

.2853

.2844

.2836

.2827

.7250

.7750

.8167

~ 8667

~ 9083 EX

.1157 28.1

.1209 27.6

.1246 27.0

.1286 26.5

.1313 25.8 ALPX 8.55 8.79 9.00 9.19 9.37 Sy 20 '

30.0 20 '

25.0 20.0 22.5 18.7 20.7 17.5 19.4 Su 75.0 71.0 66.0 64.4 63.5 600 700 REF

.2818

.2810

. 9417

.9833

. 1334

25. 3

. 1358

24. 8
9. 53 9.69 16.4 18.2
63. 5 16.0 17.7 63.5 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

7

BOW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRXETARY **

32-1235127-02 3.3 Model Geometry The model is axisymmetric with the axis of rotation at the center of the penetration, as if the penetration was located radially.

Both the base metal and the cladding are represented thermally and mechanically (see Figure 3.1).

R Clo,clcllng

( Lp D RNaz Figure 3.1 Model Geometry The cladding and base metal thicknesses, T~~ and T,~, respectively, and the penetration

radius, RNoz come from References

[10]

and

[12].

The radius R, is not the actual radius to the base metal but is modified as discussed later to account for hillside effects.

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

8

B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 The dimensions in Figure 3.1 above as used in the analysis are:

R,

= 1.52(48 7/16)

= 73.63 in.

(1.52

= hillside stress factor)

R = 11/16

= 0.6875 in.

T~~

= 7/32

= 0. 219 in.

T,~,

=

3 7/8

= 3.875 in.

The model was built such that the hoop stress was increased by an appropriate value to account for the hillside (non-radial) penetrations which are not inherent in an axisymmetric model.

This increase was accomplished by increasing the radius to the base metal (R,)

by an appropriate factor K, calculated later.

A sufficient portion of the head was modeled to attenuate the stress concentration effects at nozzle penetration (discussed in Section 4.0).

Hillside Effect Penetrations in the spherical heads experience increased stress due to the hillside effect of the skewed penetration.

From Ref.

[4, p. '337],

the following stress concentration factor was calculated for the hillside effect.

The maximum stress concentration was present at the instrument nozzles in the lower head where P (the angle between the penetration centerline and the normal to the head) was a

maximum.

sin '(24.5625/48.21875)

= 30.62~

K, = K,(1

+ 2sin'$)

Refs.

[9

& 10]

Ref.

[4, p.

337]

K r

= Kr (1

+ 2sin'0. 62o) 1, 52 K, Where:,

K, = radial nozzle stress concentration factor K, = non-radial nozzle stress concentration factor P

= angle the axis of the nozzle makes with the normal to the vessel wall Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

9

I B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

'2-1235127-02 4.0 Finite Element Model ANSYS 5.0A finite element software, Reference

[6], was used to perform the axisymmetric thermal and stress analyses of the nozzle penetration in the spherical regions.

The model extends away from the penetration far enough that the increase in stress due to the penetration is not present at the boundary.

" This will insure that any inaccuracies at the location of boundary condition application will not affect the results at the penetration.

J The head and cladding were modeled using axisymmetric elements PLANE42 for the structural and PLANE55 for the thermal.

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

10

BEcl NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRXETARY **

32-1235127-02 5.0 Thermal Analysis The transients in Ref.

[8] were reviewed for those likely to produce maximum tensile stress on the inside surface of the pressurizer (conservative for the fracture mechanics analysis in Reference

[7]).

Based on the review, the following transients were evaluated in this analysis:

100'F/hr Heatup, 200'F/hr Cooldown, a bounding Upset Condition transient which was represented as a 53'F Step-down (pressure

= 1740 psia) and a

53 F Step-up (pressure

=

2400 psia),

and Loss of Secondary Pressure.

The Heatup, Step-down, Step-up and Cooldown transients were combined into one computer run (microfiche SPHTHERM.OUT) with"Heatup from 70'F to 653'F (ramped over 5.83 hours9.606481e-4 days <br />0.0231 hours <br />1.372354e-4 weeks <br />3.15815e-5 months <br />, then held constant until t=7.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />),

53'F Step-down (instantaneously dropped at t=7.0 hrs, then held for 1.0 hour0 days <br />0 hours <br />0 weeks <br />0 months <br />),

53'F Step-up (instantaneously raised at t=8.0, then held for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />) and Cooldown from 653'F to 70'F (ramped over 2.915 hours0.0106 days <br />0.254 hours <br />0.00151 weeks <br />3.481575e-4 months <br /> starting at t=9.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />, then held constant until t=13.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />)

~

The Loss of Secondary Pressure transient consists of a step decrease to 504F which is then ramped to 348F over the next 90 seconds at which time 4

it is held constant out to t=0.50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br />.

The thermal results are contained in microfiche SPHTHLP.OUT.

Thermal conditions were imposed on the finite element model as applied heat transfer coefficients and bulk fluid temperatures.

Heat transfer was assumed to occur at only the inside surface of the pressurizer as shown in Figure 5.1.

All other surfaces, including the penetration

surface, were assumed to be insulated.

A constant heat transfer coefficient was used to simplify the analysis in a conservative manner.

Since overestimating the tensile stresses at the inside surface of the pressurizer was conservative for the fracture mechanics analysis in Reference

[7], the heat transfer coefficient was selected to result in conservatively high tensile stresses on the inside surface of the pressurizer.

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

11

B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32"1235127-02 During Heatup and the Step-up transients, heating of the inside surface causes compression on the inside surface of the pressurizer.

Therefore, use of a low heat transfer coefficient results in conservative (tensile) stresses.

Conversely, during Cooldown and the Step-down transient, a

high heat transfer coefficient results in conservative (tensile) stresses.

Therefore, nozzles in the steam space were conservatively represented using heat transfer coefficients in the water space (i.e. for

heating, condensing steam coefficients are greater than natural convection coefficients in the water space and for cooling, natural convection steam coefficients are less than natural convection coefficients in the water space).

Zn the case of the Step Down and Loss of Secondary Pressure transients, however, boiling may occur, raising the heat transfer coefficient significantly.

The -heat transfer correlations in Ref.

[2] were reviewed for horizontal

'and vertical plates.

The correlation for a horizontal heating plate, face up (T

Tco) was selected as a

representative heat transfer coefficient for the nozzles in the water space.

HORIZONTAL PLATE, NATURAL CO1VVECTION, TURBULENT REGIME ST~yg 650 FI ASSUME 15 F IT 1

1 H = (hT)

K4~Kt; = (15)

(.17) (1100)

= 461 HR-FT2-oF H=3 HR IN2 oF For the Step Down transient, where boiling can occur, the heat transfer coefficient comes from Table 2.2 of Ref.

[11].

The maximum coefficient is conservatively used.

H = 10, 000 (BTU/ft'r.

P)

= 70 (BTU/in.'r. 'F)

The results of the thermal analyses were reviewed using the ANSYS POST26 post processor to determine times when the radial hT's occurred.

The Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

12

BOW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 temperatures as function of time at the base metal-to-cladding interface and at the outer radius of the pressurizer shell are plotted in Figure 5.2.

The radial dT is shown in figure 5.3.

The temperature distribution at times of extreme hT's were used to load the structure since the extreme hT's resulted in extreme thermal stresses.

For Cooldown, other time points were also considered since the pressure at the time of maximum hT is significantly lower than at earlier times where the tT is almost as large.

Steady state temperature cases were also run at 653'F/2250 psig without material discontinuity effects (T, = T<< = 653'F) and at-653'F/ 2400 psig with material discontinuity effects (T, = 70'F).

Table 5.1 summarize the critical transient times and identifies the associated pressures for each model.

The location of node pair used for evaluation of the hT's was the same node pair used for the stress path in Section 6.0 and is shown in Figure 6.1 and the POST26 results are contained at the end of the thermal runs in the microfiche in Section 9.0.

Note that although the node pair used for evaluating the radial hT was at a 45'ngle through the shell wall, it was representative of the radial gradient since the heat transfer is one dimensional in the radial direction (i.e., the entire inside surface is isothermal and the entire outside surface isothermal).

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

13

fl

BAH NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 TABLE 5.1 CRITICAL TRANSIENT TIMES TRANSIENT TRANSIENT TIME (HR)

PRESSURE (PSIG)

Heatup 5.83 2,250 Step-down 7.0667 1,740 Step-up 8.0667 2,400 Steady State'.000 2,400 Cooldown'.2915 1,472 9.4081 1I 232 9.8162 607 11.915 Steady State'/A 2,250 Loss of Secondary Pressure 0.010 0.015 310 210 0.020 185 0.063 116

'The pressure was assumed to equal the saturation pressure of the steam at the current fluid temperature.

'Includes material discontinuity temperature effects (T, = 70'F).

'Excludes material discontinuity temperature effects (Tf T

653 F).

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

14

I I

I l

l I e

e I

lHQISkNOQNHOO+++

l88llSQ51115580+++ gg'g lll8lRHISR550%88++++ gg ulngaaaiaaaaaaaI1ay lll8085REOOSN'I++++gy Illllll!IISQOESH%8++++

Illlllllll1%5%%%%%~~~~~

IIIIIIIIII)IN5558~+++++

Illlllllllll5%88%%%~~~~~

lllllllll55%%5555%8++++~

IllllllHSIISN5555'8+++g IlllllllllllNERNSI+++

I I,

g I

0

'I ~

W W

"C ANSYS 5.0 A

JUN 20 1995 18: 44.:10 PLOT NO.

I POST26 ZV

= I DIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROID HIDDEN n

TEMP TEMP 0gI 0

H W'

'0 lg6

~ ~

0 0

10 TIME 12'6 ST.

LUCIE PRESSURIZER SPHERICAL REGION IFMPERATURE NOZZLE Id M

I hl Cd UI Ihl I

COM

Ha A

8OA tid 8

I

~0 Q.

Q C40 TOIF F ANSYS 5.0 A

JUN 20 1995 18:

0 4: 10 PI.OT NO.

2 POST26 ZV

= I DIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO HIODEN R

n n

g0 I

0 H

8

~ ~

10 TIME 12 ST.

I.UCIE PRESSURIZER SPHERICAL REGION TEMPERATURE NOZZLE 4J I

hl VJ Ul hl I

C) h)

ANSYS 5.0 A

JUN 20 I995 I7:04:01 PI.OT NO.

I POST26 2V

= I OIST=0.~5 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROID HIOOEN

<<C TEMP gO I

0 H

t4 TEMP (s IOtt-1) 0.5 2.5 TIME 3,5 ST.

lUCIE PRESSURllER SPHERICAl REGION TEMPERATURE NOlllE 4J I

M 4l Vl M

I C)M

~g CD CD CO ~

~

CD RB CD 0

CD C~

8O Cl 8

Ba Ql Q

Q FL CL B

<<C TOIFF

[a 1044-0 ANSZS 5.0 A

JVN 20 I995 Ij:04:07 PLOT NO.

2 POST26 LV

= I 0

I S T =0.15 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO IIIOOEN 5

n g0g I

0 H

W K

0.6 1.6 2+6 TIME ST.

I.VCIE PRESSVRILER SPHERICAL REGION TEMPERATURE N022LE GJ I

kO bJ Ul h)

I C)hl

B6cW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 6.0 Stress Analysis The temperature distributions and pressures at the critical times in Table 5.1 were imposed on the model to obtain the stresses in the pressurizer shell.

The pressure boundary conditions are shown in Figure 6.1.

Since the fracture mechanics evaluation in Reference

[7] requires stresses along the flaw line that is approximately 45 from the axis of the nozzle penetration, the ANSYS POST1 post processor was used to transform the stresses into the flaw line coordinate system as shown in Figure 6.1.

Symmetry boundary conditions were used at the edge of the pressurizer head to restrict the heads motion to only the radial direction.

A nodal force was applied to the head to represent the end cap load developed at the nozzle (nozzle end cap load

= mr'(pressure)

= m(.6875)'(pressure) 1.4849(pressure)).

The nodal force was conservatively applied to the outside surface of the model since it would tend to increase the tensile stresses in the pressurizer shell which is the region of interest.

Stress results for the given model are contained in the microfiche of Section 9.0.

The stresses along the 45 degree flaw line are summarized for each transient analyzed in the Tables 6.1 through 6.13 and the figures on pages 35 to 47.

The results reported by the finite element model have accounted for the stress concentration for a hillside penetration subject to pressure by the increase of the radius by a factor of 1.52, however, the increase in thermal stresses due to the hillside positioning is not included.

From p.

200 of Reference

[13] the stress concentration due to an elliptical hole in a biaxially stressed plate where e,=e, and b/a=1.16, the stress concentration should be 2.32 (say 2.4).

The model is picking up a stress concentration of 2

~ 0 from the radially positioned circular hole (b/a=1. 0) in the model.

The increase in hoop stress due to the hillside positioning when subject to pressure has been included by the increase in radius, but the model is only picking up the inherent SCF of 2.0 for thermal stress since the thermal stresses are essentially unaffected by radius'he thermal stresses, therefore, must be increased by a factor of 1.2 to account for the hillside positioning.

This increase has been performed by separating the thermal and pressure stress components, multiplying the thermal component by 1.2, and adding the pressure component and the increased thermal component to arrive at the total stress.

Since hoop stress (Sz) is dominant, the increase will only be performed for that stress component.

A sample calculation appears below.

Page 20a has been inserted between 20 and 21.

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

20

B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 For Cooldown-1 (Table 6.5), at position S=0.3360 inches:

Sz

= 25288.0 Pressure component is taken from the pressure only case in table 6.9.

This pressure must be multiplied by the ratio of pressures Sz-press

=

(P/Ppo) Sz-po (1472/2250)'32353 21166 psi

Hence, the thermal component is 25288

- 21166

= 4122 psi This is multiplied by 1.2 and the pressure stress is added to arrive at the corrected total stress.

I Sz

= 4122 (1.2)+21166

= 26112.4 psi which is exactly what the table reports.

h Two additional transients, fluctuations from steady state, are calculated using the results from the 53'F Step Up and Step Down.

They use the method above to isolate the thermal stresses and approximate a 20'F Step change by multiplying the thermal component by the ratio 20/53.'he transient also includes a pressure change as described in the relevant

tables, 6.14 and 6.15.

Note that the stresses (in psi) are in the local coordinate system of the 45 degree flaw line as shown in Figure 6.1 and "S" is the distance from the inside surface,to the outside surface along the flaw line.

Note also that the figures on pages 37 through 47 show the stresses not including the'actor of 1.2 on thermal stress and are for information only.

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

20a

P 0

B&W NUCLEAR TECHNOLOGIES NON-PROPRIETARY **

32-1235127-02 Table 6.1 END OF HEATUP, P=2250 PSIG THOUT STRESSES WI THERMAL S CF WITH 1.2 SCF ON THERMAL S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1 '799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX

-2539. 5

-62.5 1818.2 2846.5 3962.3 4368.8 5035.5 5502.6 5928.8 6268.7 6662.0 6889.8 7167.5 7420.0 7609.0 7819.5 7990.3 8150.1 8307.7 8439.3 8571.5 8699.6 8803.1 8912.0 9020.4 9106.7 9194.0 9281.5 9358.4 9428.8 9497.7 9564.2 9619.0 9673.2 9725.5 9771.3 9810.2 9848.6 9886.5 9917.6 9941.3 9964.7 9987.5 10010.0 10243.0 10468.0 10683.0 10890.0 11089.0 SY

-721.5 229.6 554.0 770.8 2596.5 3683.5 4580.2 5303.1 5957.6 6449.9 6937.1 7336.4 7706.5 8045.6 8346.2 8638.4 8886.6 9125.0 9358.4 9550.6 9739.5 9923.2 10083.0 10230.0 10376.0 10508.0 10629.0 10742.0 10850.0 10953.0 11048.0 11135.0 11216.0 11298.0 11376.0 11442.0 11505.0 11569.0 11633.0 11686.0 11733.0 11781.0 11830.0 11878.0 11671.0 11472.0 11281.0 11100.0 10927.0 SZ 23098.0 25811.0 26602.0 26553.0 26346.0 26134.0 25733.0 25458.0 25138.0 24927.0 24672.0 24532.0 24373.0 24238.0 24157.0 24057.0 24001.0 23954 '

23906.0 23885.0 23861.0 23840.0 23844.0 23834.0 23823.0 23838.0 23842.0 23837.0 23843.0 23857 '

23860.0 23853.0 23861.0 23867.0 23868.0 23856.0 23852.0 23847.0 23842 '

23822.0 23804.0 23785 '

23766.0 23746.0 23704.0 23664.0 23623 '

23582.0 23540.0 SZ 19234 '

23322.0 25004.4 25393.0 25538.0 25564.6 25332.8 25185.6 24974.2 24844.6 24661.4 24584.2 24479.0 24392.0 24356.0 24297.0 24277.4 24265.8 24251.8 24260.2 24265.0 24272.0 24302.6 24316.0 24328.2 24366.2 24391.0 24404.8 24429.4 24462.2 24481.6 24488.8 24511.4 24531.6 24545.8 24544.0 24550.0 24555.0 24559.8 24546.6 24534.2 24520.8 24507.2 24492.6 24451.4 24412.2 24372.0 24331.6 24290.2 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

21

0

~

BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **

32-1235127-02 Table 6.2 53F STEP

DOWN, P=1740 PSIG THOUT STRESSES WI THERMAL S CF WITH 1.2 SCF ON THERMAL S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX

-3039.0 350.3 3114 F 1 4598.9 5658.2 5966.2 6461.3 6718.8 6909.5 7003.0 7130.5 7091 '

7102.1 7089.2 7011.9 6957.8 6885.6 6798.5 6703.7 6620.4 6535.1 6443.1 6342.5 6267.6 6189.8 6095.0 6017.0 5954.0 5883.0 5806.9 5744.0 5694.7 5638.0 5580.4 5527.8 5492.6 5453 '

5414.1 5374.2 5349.5 5327.8 5305.8 5283.7 5261 '

5374.0 5481.8 5585.2 5684.0 5778.2 SY 2198.3 2565.5 2497.1 2587.3 4413.0 5425.9 6193.7 6719.7 7143.2 7373.5 7576.9 7673.8 7738.3 7767.7 7752.5 7730.6 7682.3 7620.5 7549.2 7475.0 7396.6 7311.8 7220.2 7142 '

7062.3 6972.0 6892.9 6825 '

6753.7 6679 '

6616.3 6566.5 6513.3 6459.5 6411.2 6381.7 6349.9 6318.0 6285.9 6270.9 6260.2 6249.4 6238.4 6227.3 6112.2 6000.5 5893.2 5790.2 5691.4 SZ 37940.0 37707.0 36148.0 34456.0 32768.0 31306.0 29778.0 28489.0 27210.0 26132.0 25054.0 24121.0 23233.0 22410 '

21650.0 20917.0 20280.0 19659.0 19044.0 18538.0 18038.0 17544.0 17102.0 16707.0 16314.0 15942.0 15607.0 15304.0 15011.0 14724.0 14466.0 14241.0 14026.0 13812.0 13610.0 13451.0 13298.0 13146.0 12994.0 12878.0 12780.0 12682.0 12584.0 12486.0 12433.0 12382.0 12330.0 12279.0 12228.0 r

SZ 38967.8 39331.5 38027.7 36343.3 34621.9 33084.8 31444.1 30038.6 28637.3 27439.3 26240.7 25191.3 24191.9 23262.3 22397.6 21565.2 20837.6 20127.0 19422.8 18841.5 18267.5 17699.6 17189.2 16734.8 16282.9 15851.9 15465.4 15117.1 14779.0 14446.9 14149.6 13891.6 13643.7 13396.9 13164.6 12983.5 12808.3 12634.4 12460.3 12329.5 12219.0 12108 '

11998.2 11887.9 11831.4 11777.0 11721.5 11667.1 11612 '

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

22

BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **

32-1235127-02 Table 6.3 53F STEP UP, P=2400 PSIG STRESSES WI THERMAL S THOUT CF WITH 1.2 SCF ON THERMAL S

'0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX

-2467.

-260.

1372.

2283.

3417.

3872.

4601.

5143.

5655.

6080.

6562.

6882.

7247.

7584.

7860.

8153.

8398.

8632.

8867.

9059.

9252.

9442.

9601.

9757.

9914.

10047.

10174.

10297.

10407.

10511.

10609.

10699.

10776.

10853.

10926.

.10986.

11039.

11091.

11143.

11183.

11214

'1244.

11273.

11303.

11567.

11820.

12065.

12299.

12524.

SY

-1533.7

-449.6

-23.8 227.7 2023.0 3125.1 4062.3 4851.0 5585.5 6168.4 6753.1 7256.2 7729.0 8170.5 8575.2 8969.0 9309.9 9642.0 9970.2 10240.0 10507.0 10768.0 10998.0 11206.0 11412 '

11602.0 11775.0 11931.0 12080 '

12226.0 12356.0 12472.0 12582.0 12691.0 12795.0 12878 '

12959 '

13040.0 13121.0 13186.0 13242.0 13300.0 13358.0 13416.0 13182 '

12956.0 12741.0 12536.0 12341.0 SZ 18740.0 22212.0 23644.0 24080.0 24327.0 24510.0 24475.0 24534.0 24533.0 24609.0 24625.0 24749.0 24826.0 24911.0 25047.0 25146.0 25266.0 25393.0 25516.0 25632.0 25742.0 25853.0 25980.0 26067.0 26153.0 26266.0 26353.0 26414 '

26487.0 26568.0 26626.0 26660.0 26710.0 26759.0 26798.0 26808.0 26828.0 26847.0 26864.0 26857.0 26849.0 26840.0 26829.0 26818.0 26775.0 26734.0 26692.0 26648.0 26604.0 V

SZ 13439.5 18493.1 20993.6 21994.0 22710.1 23229.4 23453 '

23719.2 23902.1 24125.1 24275.3 24521.0 24704.7 24886.7 25115 '

25299.0 25493.8 25694.0 25888.1 26063.1 26231.0 26398.5 26578.5 26709.9 26840.2 26997.2 27122.9 27217.2 27323.4 27437.7 27524.1 27581.5 27655.4 27728.1 27788.7 27814.2 27849.7 27884.2 27916.2 27919.3 27919.5 27918.7 27915.3 27912.2 27870.4 27830.6 27789.8 27746.3 27703.1 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

23

BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **

32-123S127-02 Table 6.4 STEADY STATE, Tref 70F, Tunif = 653F, P

= 2400 PSZG STRESSES WZ THERMAL S THOUT CF WITH 1.2 SCF

~ ON THERMAL S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599

'3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX

-3281.3

-156.3 2331.3 3706.3 4926.7 5382.5 6081.6 6551.0 6969.9 7285.6 7651.4 7839.6 8076.6 8285.5 8425.7 8587.6 8709.8 8819.1 8924.6 9008.3 9092.0 9170.7 9225.9 9290.6 9354.1 93.95.0 9440.3 9489.0 9526.9 9558.0 9591.2 9625.8 9648.7 9671.0 9693.2 9715.3 9730.7 9745 '

9759.9 9774.1 9783.5 9792.6 9801.3 9809.7 10034.0 10250.0 10457.0 10655.0 10846.0 SY 478.1 1203.2 1373.3 1568.8 3540.3 4706.3 5658.2 6399.5 7059.4 7534.5 7999.4 8361.1 8690.7 8984.4 9233.4 9473.2 9667.6 9849.9 10025.0 10163.0 10297.0 10424.0 10528.0 10625.0 10720.0 10799.0 10873.0 10942.0 11005.0 11064.0 11119.0 11170.0 11217.0 11263 '

11308.0 11349.0 11387.0 11425.0 11463.0 11499.0 11532.0 11565.0 11598.0 11632.0 11427.0 11229.0 11039.0 10858.0 10686.0 SZ 32074.0 33605.0 33377.0 32639.0 31826.0 31127.0 30290.0 29651.0 28985.0 28484.0 27950.0 27560.0 27167.0 26816.0 26529.0 26233.0 26000.0 25779.0 25560.0 25391.0 25221.0 25055.0 24923.0 24791.0 24658.0 24553.0 24448.0 24343.0 24250.0 24166.0 24081.0 23996.0 23926.0 23855.0 23784.0 23715.0 23656.0 23595.0 23535.0 23475.0 23423.0 23370.0 23317.0 23264.0 23211.0 23160.0 23108.0 23056.0 23003.0 SZ 29440.3 32164.7 32673.2 32264.8 31708.9 31169.8 30431.4 29859.6 29244.5 28775.1 28265.3 27894.2 27513.9 27172.7 26893.6 26603.4 26374.6 26157.2 25940.9 25773.9 25605.8 25440.9 25310.1 25178.7 25046.2 24941.6 24836.9 24732.0 24639.0 24555.3 24470.1 24384.7 24314.6 24243.3 24171.9 24102.6 24043.3 23981.8 23921.4 23860.9 23808.3 23754.7 23700.9 23647 '

23593.6 23541.8 23489.0 23435.9 23381.9 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

24,

pl

BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **

32-1235127-02 Table 6.5 COOLDOWN-1, Psat=1472 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL S

0.0000 0.1120 0 '240 0 '360 0.4480 0.5600 0 '720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2

~ 4639 2 '759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3 '599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX

-1570.8 702.6 2447.1 3354.6 4226.8 4436.0 4868.4 5119.2 5317.2 5449.6 5622.6 5649.7 5725.6 5782.7 5783.9 5805.3 5804 '

5792.6 5775.2 5754.8 5733.2 5706.4 5666.7 5641.5 5614.4 5571.2 5537 '

5510.8 5476.8 5438.1 5406.7 5382.4 5350 '

5318.3 5288.7 5268.9 5245.0 5220.7 5196.0 5181.1 5166.9 5152.3 5137.5 5122.4 5233.3 5339.6 5441.3 5538.6 5631.5 SY 738. 8 1302.8 1350.6 1419.9 3004.3 3871.3 4536.8 5025.9 5432.4 5688.6 5928.9 6087.5 6218.6 6322.2 6391.2 6452.3 6485.4 6508.3 6524.4 6523.7 6519.5 6510.2 6489.4 6470.5 6449.2 6418.9 6390.6 6365.2 6335.9 6303.9 6275.8 6252.6 6226.1 6199.1 6174.5 6158.8 6141.2 6123.4 6105.5 6097.5 6091.6 6085.8 6080.0 6074.2 5960.4 5850.3 5744.7 5643.3 5546.4 SZ 24997 '

26308.0 26075.0 25288.0 24449.0 23660.0 22761.0 22012.0 21247.0 20613.0 19967.0 19425.0 18900.0 18415.0 17977.0 17545.0 17173.0 16810.0 16451.0 16150.0 15850.0 15555.0 15292.0 15046.0 14801.0 14574.0 14362.0 14164.0 13973 '

13788.0 13617.0 13461.0 13313.0 13166.0 13026.0 12910.0 12798.0 12687.0 12576.0 12488.0 12412.0 12335.0 12259.0 12183.0 12138.0 12094.0 12050.0 12005.0 11961.0 SZ 24446.6 26564.0 26764 '

26112.4 25363.0 24600.0 23684.4 22905.2 22100.1 21420.1 20725.3 20134.3 19560.3 19027 '

18541.8 18063.3 17648.0 17241.7 16839.5 16500.2 16162.2 15829.3 15530.6 15252.0 14974.6 14715.3 14474.0 14249.3 14031 '

13820.0 13625.1 13448.1 13279.0 13111.1 12951.6 12820.7 12693.3 12567.3 12441.2 12342.7 12257.5 12171.2 12086.1 12001.0 11953.0 11906.0 11859 '

11810.8 11763.9 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

25

BOW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Table 6.6 COOLDOWN-2, Psat=1232 PSIG STRESSES WI THERMAL S THOUT CF WITH 1.2 SCF ON THERMAL S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1

F 0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX

-1131. 7 875.9 2390.7 3159.7 3934.4 4084.5 4449.9 4649.1 4796.9 4889.0 5018.9 5013.3 5055.3 5081.0 5055.0 5048.3 5024.1 4988.4 4947.6 4907.2 4865.6 4818.8 4761.5 4719.2 4674.7 4616.0 4566..9 4526.3 4478.8 4427.1 4383.4 4347.8 4305.7 4263.0 4223.5 4195.6 4164.2 4132.5 4100.3 4079 '

4060.8 4041.7 4022.3 4002.7 4086.8 4167.2 4244.1 4317.5 4387.4 SY 694. 8 1231 '

1265.8 1310.0 2771.6 3553.5 4141.8 4566.6 4911.0 5116.4 5305.2 5419.3 5507.5 5570.7 5602.5 5626.8 5627.4 5618.4 5602.8 5574.9 5543.6 5507.5 5462 '

5421.2 5377.4 5326.0 5278.1 5234.1 5187.0 5137.4 5093.2

.5055.1 5014.3 4973.0 4934.7 4907.4 4878.6 4849.6 4820.3 4803.1 4789 '

4775.1 4761.1 4747 '

4655.3 4566.4 4480.9 4398.8 4320.1 SZ 22395 23714 23554 22821 22035 21278 20413 19680 18932 18302 17662 17114 16585 16093 15643 15201 14815 14439 14066 13749 13435 13124 12844 12584 12325 12081 11854 11643 11439 11240 11056 10890 10732 10573 10423 10300 10181 10062 9943 9851 9772 9693 9614 9535 9493 9451 9410 9369 9327

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.8

.8

.7

.6

.5

.3

.2

.9

.6

.2

.7 SZ 22229 F 1 24267.3 24476.8 23842.2 23114.4 22359.9 21458.4 20678.9 19875.8 19187.5 18486.7 17878.9 17290.9 16741.6 16235.1 15738.1 15301.0 14874.3 14450.6 14088.6 13730.2 13374 '

13052.7 12754.6 12457.7 12175.9 11914.4 11672.1 11436.8 11206.8 10994.6 10804.0 10621.5 10437.8 10264.9 10124.2 9987.3 9850.6 9714.6 9610.1 9520.3 9430.5 9340.6 9250.7 9205.2 9160.5 9115.9 9071.0 9026.1 Prepared By: T.M. Wi er Reviewed By.: A.M. Miller Date:

Date:

Page:

26

BOW NUCLEAR TECHNOLOGIES NON-PROPRIETARY **

32-1235127-02 Table 6.7 COOLDOWN-3, Psat=607 PSIG STRESSES WI THERMAL S THOUT CF WITH 1. 2 SCF ON THERMAL S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1 '080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 57.3 1224 '

2018.2 2366.1 2858.6 2859.8 3050.5 3126.0 3158.0 3162.9 3198 '

3131.7 3107.0 3072.6 2999.8 2943 '

2878.4 2804.7 2726.3 2655.4 2582.9 2506.1 2424.4 2356.7 2287.1 2207.9 2138.3 2077.2 2011.6 1943.2 1883;2 1831.9 1776.8 1721.2 1669.2 1630.5 1589.8 1548.8 1507.5 1479.4 1454.9 1430.2 1405.1 1379.8 1402.8 1424.5 1444.8 1463.8 1481.5 SY 340.1 817.4 840.3 825.9 1898.7 2429.0 2801.8 3058.0 3246.6 3334.5 3406.4 3426.8 3426.2 3408.3 3369.2 3323.6 3265.0 3199.3 3128.3 3054.4 2978.0 2898.2 2815.5 2738.3 2659.4 2576.4 2499.0 2427.1 2353.5 2278.4 2210.3 2149.9 2088.1 2025.8 1967.1 1922.0 1876.0 1829.7 1783.1 1750.9 1723.4 1695.7 1668.0 1640.1 1601.2 1563.3 1526.6 1490.9 1456.4 SZ 13615.0 15087.0 15283.0 14838.0 14332.0 13780.0 13130.0 12552.0 11958.0 11433.0 10905.0 10432.0 9975.5 9545.6 9140.7 8746.9 8392.8 8045.0 7700.2 7401 '

7104 '

6811.3 6539.7 6290.4 6042.4 5802.1 5580.8 5376.7 5176.2 4978.0 4798.0 4637.4 4480.0 4323.0 4175.0 4057.4 3941.5 3825.9 3710.5 3625.0 3551.6 3478.2 3404.9 3331.8 3300 '

3270.2 3239.7 3209.3 3178.8 SZ 14049 '

16040.3 16473.3 16060.0 15558.9 14972.3 14259.6 13615.3 12949.1 12352.4 11751.9 11208.8 10684.1 10188.5 9719.1 9263.0 8850.9 8445.7 8043.7 7693 '

7347.2 7003.8 6684.8 6392.5 6101.8 5818.8 5558.7 5319.1 5083.2 4849.7 4637.9 4449.4 4264.0 4079.1 3905.0 3767.3 3631.2 3495.4 3359.8 3260.2 3174.6 3089.0 3003 '

2918.3 2883 '

2849 '

2815 '

2781 '

2746 '

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

27

BEc'PJ NUCLEAR TECHNOLOGZES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Table 6. 8 END OF

COOLDOWN, P

=

0 PSIG STRESSES WITHOUT THERMAL SCF WITH 1. 2 SCF ON THERMAL S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1 '679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX

-408.5 141.8 671.7 968.2 1026 '

1033.0 1020.8 981.6 930.7 867.3 799 '

721.0 642.6 562.3 477.9 393.6 312.3 228.8 143.3 66 F 1

-12.1

-91.5

-167.6

-237.8

-308.9

-379.6

-445.3

-506.3

-567.0

-627.7

-683.1

-732.8

-781.7

-830.7

-877.0

-913.6

-949.7

-985.6

-1021.5

-1047.5

-1069.4

-1091.2

-1112.9

-1134.5

-1167.0

-1198.4

-1228.9

-1258.4

-1286.9 SY 1474.9 1166.1 945.8 890.6 1004.8 1048.0 1063.3 1041.5 1003.0 943.2 876.2 794.6 710.0 621.0 526.1 430.5 335.9 238.8 139.6 48.1

-44.3

-137.8

-227.7

-310.8

-394.5

-478.0

-555.1

-626.1

-697.2

-768.3

-832.4

-889.2

-946 '

-1002.9

-1056.4

-1097.6

-1139.1

-1180.8

-1222.8

-1252 '

-1277.6

-1303 '

-1329.1

-1355.2

-1335.9 1317

~ 7

-1300.7

-1284.9

-1270.3 SZ 9157.4 7776.0 6596.7 5783.7 5081.0 4499.2 3979.7 3533.7 3110.8 2744 F 9 2396.6 2072.2 1772.0 1490.2 1218.1 960.1 722.8 489.4 259.4 56.3

-143.6

-341.4

-529.0

-697.9

-865.3

-1032.6

-1184.6

-1322.6

-1460 '

-1597.9

-1720.8

-1828.5

-1936.8

-2044.5

-2144.9

-2222 '

-2299.8

-2377 '

-2453.8

-2507.4

-2553.4

-2599.1

-2644.4

-2689 '

-2701.7

-2714.0

-2726.0

-2737.7

-2749.0 SZ 10988.9 9331.2 7916.0 6940.4 6097.2 5399.0 4775.6 4240.4 3733 '

3293.9 2875.9 2486.6 2126.4 1788.2 1461.7 1152.1 867.4 587.3 311.3 67.6

-172.3

-409.7

-634.8

-837.5

-1038.4

-1239.1

-1421.5

-1587.1

-1752.5

-1917.5

-2065.0

-2194.2

-2324.2

-2453.4

-2573.9

-2666.5

-2759.8

-2852.4

-2944.6

-3008.9

-3064.1

-3118.9 3 173

~ 3

-3227.3

-3242.0

-3256.8

-3271.2

-3285.2

-3298.8 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

28

B&rf NUCLEAR TECHNOLOGIES NON-PROPRIETARY **

32-1235127-02 Table 6.9 PRESSURE ONLY AT STEADY STATE, P

= 2250 PSIG S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2 '639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678

'4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES WI THERMAL S SY 3634.1 3040.1 2733.2 2906.6 3907.9 4642.9 5310.3 5811.8 6288.1 6643.5 6997.3 7268.2 7526 '

7756 '

7949.9 8140 '

8295.2 8440.1 8580.3 8691.6 8800.0 8903.5 8988.1 9069.0 9147.8 9214.1 9277.1 9337.5 9393.0 9445.2 9495.8 9544.9 9589.4 9634.0 9678.4 9721.5 9761.6 9801.9 9842.4 9882.6 9919.7 9956.9 9994 '

SX

-6135.0

-2413.7 1029.4 3102.0 4040.0 4710.5 5309.2 5736.4 6146.0 6428.9 6710.7 6914.1 7103.6 7266.9 7397.1 7526.9 7623.5 7714.0 7803.0 7867.5 7932.5 7995.6 8043.1 8091.3 8139.6 8175.3 8210.9 8246.6 8276.2 8301.8 8327.1 8351.8 8369.3 8386.6 8403.5 8418.4 8429.3 8440.3 8451.2 8460.9 8467.4 8474.0 8480.8 8487.8 8682.2 8869.3 9049.3 9222.3 9388.3 10031.0 9862.2 9698.9 9542.7 9393.5 9251.3 WITH 1.2 SCF ON THERMAL SZ XXX THOUT CF SZ 42415.0 38256.0 34590.0 32353.0 30386.0 28981.0 27734.0 26820.0 25957.0 25339.0 24725.0 24271.0 23843.0 23468.0 23162.0 22857.0 22619.0 22395.0 22177.0 22009.0 21841.0 21680.0 21551.0 21424.0 21297.0 21197.0 21097 '

20998.0 20911.0 20831.0 20752.0 20674.0 20609.0 20544.0'0479.0 20416.0 20362.0 20307.0 20253 '

20199.0 20153.0 20106.0 20060.0 20013.0 19967.0 19923.0 19878.0 19834.0 19789.0 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

29

BRW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Table 6.10 LOSS OF SECONDARY PRESSURE

- 1, T=0.010, P=310 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL 0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1 '919 1.9039 2.0159

2. 1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078
3. 9198 4 '318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 2295.1 2366.7 2150.7 1851.8 2023.4 1710.0 1674.6 1601.3 1471.5 1401.6 1379.5 1271.0 1236.7 1216.6 1165.7 1139.0 1129.9 1113.0 1091.4 1092.3 1092.1 1088.5 1083.2 1089.9 1095.1 1094.3 1097.9 1105.2 1109.8 1112.5 1117.0 1123.1 1126.8 1130 '

1133.6 1137.9 1140 '

1143.7 1146.2 1149.0 1151 '

1153.0 1154 '

1156.2 1183.1 1208.8 1233.5 1257 '

1279.8 SY 639. 7 877.6 600.6 366.1 1256.9 1544.1 1679.3 1749.7 1742.7 1704.8 1669.7 1607.2 1558.6 1521.0 1475.2 1437.6 1416.2 1392.7 1367.5 1359 '

1350.8 1341.9 1334.9 1334.5 1334.0 1332.5 1333.0 1335.7 1338.0 1340.0 1342.5 1345.8 1348.8 1351.8 1354.8 1357.7 1360.5 1363.3 1366.2 1368.7 1371.0 1373.5 1376.0 1378.6 1353.1 1328.5 1305.0 1282.6 1261.2 SZ 8290.4 9822.5 9932.2 9277.8 8725.2 8014.0 7321.9 6732.4 6116.7 5652.5 5234.5 4839.3 4530.5 4278.6 4037.8 3831.4 3690.2 3551.5 3413.8 3335.2 3258.9 3183.7 3123.5 3082.1 3040.9 3003.9 2974.1 2950.9 2929.6 2909.4 2892.0 2877.7 2865.4 2853.1 2841.3 2831.5 2822.9 2814.2 2805.5 2797.4 2790.6 2783.7 2776.6 2769.6 2762.9 2756.4 2749.8 2743.1 2736 '

8779.7 10732.8 10965.5 10241.9 9632 '

8818.2 8022.1 7339.8 6624.8 6084.8 5600.1 5138.4 4779.6 4487.6 4207.1 3967.8 3805.0 3644.7 3485.5 3395.8 3308.8 3223.0 3154.4 3108.2 3062.2 3020.6 2987.6 2962.5 2939.3 2917.3 2898.6 2883.6 2870.6 2857.6 2845.2 2835.2 2826.4 2817.5 2808.5 2800.3 2793.4 2786.4 2779.2 2772.1 2765.3 2758.7 2752.0 2745.2 2738.3 Prepared By:

Reviewed By:

T.M. Wi er A.M. Miller Date:

Date:

Page:

30

B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Table 6.11 LOSS OF SECONDARY PRESSURE

- 2, T=0.015, P=210 PSIG STRESSES WITHOUT THERMAL SCF WITH 1.2 SCF ON THERMAL S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 2043.4 2493.2 2665.6 2562.6 2669.3 2285.7 2149.8 1972.1 1724.1 1547.7 1413.3 1196.9 1062.7 950.8 809.5 697.1 621.1 536.2 444.2 399.0 352.3 301.1 256.8 234.1 209.2 181.1 162.3 151.9 140.1 127 '

118.8 114 '

110.3 105.4 101.'2 100. 1 99.0 97.7 96.3 96.1 96.4 96.7 97.0 97.3 100.6 103.8 106.9 109 '

112.7 SY 2272.8 2111.6 1564.2 1241 '

2101.1 2320.2 2366.1 2320.9 2181.8 2013 '

1844.7 1643.3 1468.1 1311.0 1145.5 996.8 883.2 767.5 649.5 575.3 502.5 429.5 367.4 325.8 284.4 244.0 213.5 192.7 172.5 152.8 138.6 130.4 122.6 115.0 109.0 107.7 106.4 105.2 104.1 105.2 106.8 108.4 109.9 111.4 111.7 112.0 112.2 112.4 112.6 SZ 16343.0 16086.0 14776.0 13160.0 11786.0 10380.0 9102.2 8008.8 6916.9 6062.0 5288.9 4552.8 3961.4 3460.9 2976.3 2558.3 2249.4 1945.5 1645.2 1458.8 1278.6 1100.9 952.0 851.3 751.9 655.4 581.8 529.4 478.4 428.5 390.3 364.5 339.7 315.4 294.0 281.8 270.1 258 '

247.7 240.7 235.3 230.1 225.2 220.6 218.2 216.0 214.0 212.2 210.5 SZ 18819.9 18589.1 17085.5 15188.1 13576.0 11915.0 10404.9 9109.9 7815.7 6801.4 5885.1 5010.3 4308.6 3715.0 3139.2 2643 '

2277.1 1916.6 1560.3 1339.7 1126.6 916.4 740.1 621.6 504.7 390.8 304.4 243.3 183.8 125 '

81.0 51.5 23.0

-5.0

-29.5

-43.0

-56.0

-68 '

-80.8

-88.3

-93.9

-99.2

-104.2

-108.9

-110.9

-112.7

-114.3

-115.7

-116.8 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

31

B&Q NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Table 6.12 LOSS OF SECONDARY PRESSURE

- 3, T=0.0201 P=185 PSIG STRESSES WITHOUT THERMAL SCF WITH 1. 2 SCF ON THERMAL S.

0.0000 0 '120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4 '558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SX 1500 2511 3241 3441 3540 3129 2930 2674 2334 2065 1830 1513 1282 1077 842 639 486 323 151 46

-59

-171

-269

-334

-402

-471

-525

-564

-603

-642

-673

-695

-715

-736

-756

-766

-776

-786

-796

-802

-806

-809

-812

-815

-833

-850

-866

-881

-895

~ 4

.6

.7

~ 3

~ 4

.7

.9

.7

.8

~ 4

.8

.7

~ 4

.3

~ 4

~ 4

.9.7

.2

.9

.8

.7

.2

.3

~ 4

.7

.2

.0

.2

.8

.9

~ 4

.9

.9

.0

.8

.6

.6

.5

~ 4

.0

~ 4

.6

.7

.3

.0

.0

.3

.8 SY 3990.9 3432.7 2625.1 2234.2 3117.2 3315.1 3316.5 3191.9 2956.4 2681.6 2399.9 2075.1 1782.9 1511.1 1227.6 966.7 754.3 538.5 319.3 167.3 17 '

-133 '

-264.6

-361.1

-457.2

-551.1

-625.5

-681.4

-735.9

-789 '

-830.6

-858.3

-885.2

-911.7

-934.2

-944.4

-954.5

-964.6

-974.5

-977.5

-978.6

-979.9

-981.5

-983.3

-960 '

-938.9

-918.3

-898.6

-880.0 SZ 26048.0 23922.0 21115.0 18499.0 16257.0 14133.0 12237.0 10616.0 9025.2 7753.3 6593.2 5491.7 4583.3 3796.4 3033.3 2365.0 1845.6 1334.5 830.2 492.8 165.6

-157.3

-435.5

-634.4

-830.6

-1024.3

-1175 '

-1287.7

-1398.5

-1508.0

-1592.8

-1651.5

-1709.7

-1766.9

-1816.9

-1844.7

-1872.4

-1899.2

-1925.4

-1939.9

-1950.7

-1960.9

-1970.5

-1979.5

-1980.3

-1980.8

-1980.9

-1980.5

-1979.6 SZ 30560 28077 24769 21666 19008 16483 14228 12298 10403 8887 7505 6190 5107 4169 3259 2462 1842 1233 631 229

-160

-545

-877

-1113

-1346

-1577

-1757

-1890

-2022

-2152

-2252

-2321

-2390

-2458

-2517

-2549

-2581

-2613

-2643

-2660

-2672

-2683

-2694

-2704

-2704

-2704

-2704

-2702

-2700

.1

.3

.2

.8

.7

.0

.3

.2

~ 4

.3

.3

.9

.9

.8

.1

.1

.8

.1

.6

,4

.5

~ 3

.0

.5

.9

.7

.6

.5

.1

.2

.6

.8

.5

.1

.0 4

.7

.0

.5

.0

.2

.7

.5

.5

.7

.6

~ 0

.8

.9 I

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

32

14 'I 4

BOW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Table 6.13 LOSS OF SECONDARY PRESSURE

- 4, T=0.063, P=116 PSIG S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2 '759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES WI THERMAL S SY 12867.0 10563.0 8736.5 8235.7 9692.4 10260.0 10509.0 10380.0 10068.0 9522.3 8900.6 8128.1 7312.8 6447.7 5522.5 4,587. 0 3659.4 2707.7 1733.5 844.6

-52.4

-960.4

-1826.9

-2613.7

-3405.7

-4195 '

-4908.5

-5549.2

-6188.9

-6828.9

-7390.7

-7869.0

-8346.4

-8825.3

-9269.7

-9594.4

-9920.7

-10249.0

-10579.0

-10803.0

-10991.0

-11181.0

-11374.0

-11569.0

-11392.0

-11225.0

-11069.0

-10922.0

-10786.0 SX

-3873.7 1715.5 6852.0 9623.1 10312.0 10289.0 10200.0 9828.8 9326.0 8711.3 8066.5 7290.8 6529.6 5746.8 4911.5 4085.8 3289.3 2469.6 1628.5 881.9 125.4

-644.2 1 3 77

~ 2

-2037.6

-2706.6

-3375.1.

-3980.3

-4526.6

-5072.1

-5617.5

-6100.7

-6516.6

-6926.3

-7337.0

-7720.7

-8008.2

-8290.3

-8572.2

-8854.0

-9050.7

-9212 '

-9372.7

-9532.7

-9692.2

-9957.5

-10214.0

-10463.0

-10703.0

-10935.0 WITH 1.2 SCF ON THERMAL THOUT CF SZ 86107.0 74667.0 64405.0 56957.0 50389.0 44855.0 39860.0 35555.0 31453.0 27886.0 24484.0 21310.0 18359.0 15582.0 12897.0 10351.0 8015.0 5714.8 3445.9 1468.2

-478.9

-2406.3

-4219.1

-5822.0

-7411.4

-8997.9

-10409.0

-11656.0

-12901.0

-14144.0

-15224.0

-16132.0

-17046.0

-17954.0

-18791.0

-19399.0

-20012.0

-20620.0

-21225.0.

-21631.0

-21973.0

-22312.0

-22647.0

-22979.0

-23063 '

-23147.0

-23228.0

-23306.0

-23382.0 V

SZ 102891.1 89205.9 76929.3 68014 '

60153.5 53527.2 47546.0 42389.5 37476.0 33201.9 29125.9 25321.7 21785.0 18456.4 15237.6 12185.5 9384.8 6626.8 3906.4 1534.9

-799.9

-3111.1

-5285.1

-7207 '

-9113.3

-11016.0

-12708.3

-14203.7

-15696.8

-17187.6

-18482.8

-19571.6

-20667.7

-21756.6

-22760.4

-23489 '

-24224.4

-24953.4

-25678.8

-26165.5

-26575.4

-26981.7

-27383 '

-27781.2

-27881.5

-27981.8

-28078 '

ges 33a and 33b ve been inserted tween 33 and 34.

Pa

-28171.7 ha

-28262.4 be Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

33

II )4,

B&W NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Table 6.14 FLUCTUATION DN-20F STRESSES WITHOUT THERMAL SCF STEP DN, 100 PSI DECREASE TO 2150 PSIG WITH 1.2 SCF ON THERMAL S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1 '559 1 '679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4.1438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 SZ 42469.2 39620 '

36599.2 34476.0 32533 '

31049.2 29644.9 28551.8 27496.4 26679 '

25865.1 25211 '

24592.5 24033.1 23543.2 23064.1 22665.8 22282.8 21906.0 21603.5 21303.4 21010.1 20757.7 20524.3 20291.7 20085.0 19892'.2 19712.1 19543.8 19382.4 19232.6 19096.0 18971.7 18847.8 18728.4 18626.6 18533.0 18439.2 18346.0 18266.3 18198.8 18130.6 18063.1 17995.0 17944.4 17896.0 17846.5 17798.0 17748.9 SZmod 42857.0 40233.8 37308.5 35188.2 33233.0 31720.4 30273.6 29136.6 28035.0 27172.7 26312.9 25615.6 24954.4 24354.7 23825.3 23308.7 22876.2 22459.4 22048.9 21718.1 21390.0 21068.8 20790.6 20534.8 20280.0 20051.0 19838.7 19641.6 19456.3 19277.9 19113.2 18964.1 18827.4 18691.1 18560.3 18450.2 18348.2 18246.1 18144.6 18059.4 17987.1 17914.3 17842.1 17769.2 17717.4 17667.7 17616.9 17567.1 17516.8 Prepared By:

Reviewed By:

T.M. Wi er A.M. Miller Date:

Date:

Page:

33'.

BSW NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Table 6.15 FLUCTUATION UP-20F STEP UP, 100 PSI INCREASE TO 2350 PSIG S

0.0000 0.1120 0.2240 0.3360 0.4480 0.5600 0.6720 0.7840 0.8960 1.0080 1.1200 1.2319 1.3439 1.4559 1.5679 1.6799 1.7919 1.9039 2.0159 2.1279 2.2399 2.3519 2.4639 2.5759 2.6879 2.7999 2.9119 3.0239 3.1359 3.2479 3.3599 3.4719 3.5838 3.6958 3.8078 3.9198 4.0318 4 '438 4.2558 4.3678 4.4798 4.5918 4.7038 4.8158 4.9278 5.0398 5.1518 5.2638 5.3758 STRESSES THERMAL SZ 34299.1 32939.5 31126.6 29855.1 28685.6 27852.8 27039.1 26474.6 25920.3 25552.2 25164.1 24919.5 24673.8 24465.2 24320.1 24161 '

24054.1 23958 '

23864.7 23800.7 23734.3 23672.9 23638 '

23589.3 23540.2 23518.7 23487.3 23446.8 23418.5 23397.7 23368.9 23331.6 23308.8 23285.5 23258.5 23221.8 23194.7 23166.6 23138.3 23101. 0 23068.5 23034.9 23001.2 22966.9 22921.2 22877.4 22832.7 22787.9 22742.4 WITHOUT SCF WITH 1 '

SCF ON THERMAL SZmod 32298.9 31536.2 30126.4 29068.0 28075.5 27369.5 26653.6 26167.2 25682.2 25369.7 25032.2 24833.5 24628.0 24456.0 24345.8 24219.4 24140.1 24071.8 24005.2 23963.4 23918.9 23878.7 23863.8 23831.9 23799.5 23794.6 23777.8 23749.9 23734.1 23725.8 23707.8 23679.4 23665 '

23651 '

23632.4 23601.5 23580.3 23558.0 23535.4 23501.9 23472.4 23442.0 23411 '

23379.8 23334.5 23291.2 23247 '

23202.3 23157.1 Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

33b

L)t

I I

I

~

~

I I

r e

~

I

~ssaseeaaamww&w~~~~~

zssg~~~~~1>

"iiiaRhaYaFaa5%58'8+++ pygmy>~

lli58(ESS)SHOS+5 1I+g~y IBBlREISISSSSHggI gg+

IBRBE1SQ1OSOSOO++++ggg IIIQI8158%E1%00++++ggg 8885501115OSN+'+++

IIIIIIRIL~0%550%%%%~~~

llllllll18(IIIE55SS+g

=

lilllilaNh%aaaaaaaeeaaa lllllll8llh1i5%558++++

llllllggllaaraaaaaaaaa IlllllllllllS%585NI+'+++g=

IlllllllllSISOEN'1+++

'I I

Il

~

~,

~

I

( ~ 104!O 211 S2 ANSTS 5.0 A

JUN 21 1995 10: 43: 39 PI.OT NO.

POSTI STEP=I SUB

=I TIME=I PATH PI.OT NOD I =2 N002=10&

2V

= I OIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO HIOOEN 156 747e gOgI 0

H 474+3 201. 0

-72o15 0o537 1 o075 1.613 ENO OF

HEATUP, P=2250 PSIG 2o 15 2odm DIST 3.763 4m 301 4J I

I 4J Ul h)

I C)

(a10ffo ANSTS 5.0 A

JUN 21 1995 10:43:44 PI.OT NO.

2 POSTI STEP=2 SUB

=I TIME=2 PATH PI.OT N001=2 N002=108 2'V

= I OIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO HIOOEN 577.2 S2 ST g0g I

0 H

K

'5 8

~ ~

219+ 533 0

0o 537 1+075 1e613 53F STEP

OOWN, P= 1740 PSIG 2o 15 2eam DIST

~225 i.301 5+376 3o763 4e535 44 M

I M

4J Vl h)

I ED

(a 100' 211 SE ANSYS 5.0 A

JUN 21 1995 10:43:48 PLOT NO.

3 POSTI STEP=3 SUB

=I T IME=3 PATH PLOT N001=2 N002= 108 2V

= I OIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO HIDDEN SY gOg I

0 H

130.6

-153+371 0

0+ 537 1 a075 1.613 53F STEP-UP, P=2400 PSIG 2m 15 2+666 DIST 3.763 4o301 4l h)

I 4J Ul hl Io h)

0

( ~ 10'1)

SZ ANSYS 5.0 A

JUN 21 1995 10:43:53 PI.OT NO.

POSTI STEP=4 SUB TIME=%

PATH PI,OT N001=2 N002= 108 ZV

= I OIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO HIOOEN R.

20 710m SY 0g I

0 14 370.0 47+805 1.075

2. 15 0+537 1+d13 2Idm 3 0 225 3.7d3 4.301 5o37d EQ rtr

~ ~

DIST STEAOY

STATE, TreI

=

10F, Tunif

=

653F, P

=

2400 PSIG

S Sc r-4 S

Q S

S Q

W

'C

'C

( ~ 109fl) 211 ANSYS 5.0 A

JUN 21 1095 IO:43:57 PI.OT NO.

5 P0 5

'T I STEP=5 SUB TIME=5 PATH PI.OT N001=2 NOOZ=I08 ZV

= I OIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROID HIDDEN R

n n

e e

S S

SZ g0g 0

M SY 329.57

73. baal 0

Oe d37 1.07d 1+613 COOlOOWN-I, Psa1= 1<72 PS IG 2old 2I665 DEST 3o763 io301 o376 4) h)

I M

Vl Vl hl I

CIhl

(a109 91) 214 191 ANSYS 5.0 A

JUN 21 1995 10:44:02 PLOT NO.

6 POSTI STEP=6 SUB

=I TIME=6 PATH PI.OT N001=2 N002=108 ZV

= I OIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO HIDDEN 760. 06 SZ 0g I

0 H

SY 299. d7 0

8

~ ~

69.475 0

Oslo 1 s075 1 e 615 COOI.OOWN.2, Psal=1232 PSIG

2. 15 2e dbb DIST

.225 4o301 5+576 5o765 4.515 bb I

hD 4J Vl I

C) h)

(a 104' ANSYS 5.0 A

JUN 21 IS95 IO:44:06 PI.OT NO.

7 POSTI STEP=7 SUB

= I TIME=7 PATH PI.OT N001=2 N002

= 108 2V

= I OIST=0.75 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROID HIOOEN 7Il.i 631 ~

Sl g0g 0

ÃH 0a 183.

SY 3io007 0

0.537 1 a075 1+613 COOI.OOWN-3, PsaI=607 PSIG 2o 15 2+6M DIST 3.763 is 301 5.376 M

hP I

hP VJ Ul hP I

CI hP

91 ANSYS 5

JUN 21 IO: (4: I PLOT NO POST I

5 I' P = 8 SUB TIME=8 PATH PI.

NOD1=2 NOD2 =10 ZV

=I DIST=0.

XF

=0.

YF

=0.

ZF

=0.

CENTROI

.0 A

1995 I

8 OT 75 5

5 5

D HIDDEN

-3d7o7 sv SZ 0g I

0t(f H

14 M749 0

0.537 lo075 lod13 END OF

COOLDOWN, P

=

0 PSIG 2s15 DIST 3 0 225

4. 301 5o376 2odb5 3.763 4s63$

4J h)

I M

4l Vl h)

I M

8 S

r- 'd 0

8 8

P A

W W

zr.

8 (a 1040O 424 ANSYS 5.4 A

JUN 21 Icq5 10: 44:15 PI OT NO.

9 POSTI STEP=9 SUB

=I I'

ME = 9 PATH PLOT N001=2 NOO2=100 2V

= I 17ISTc0.75 XF

=0.5 YF

=0,5 ZF

=0.5 CENTROIO HIOOEN n

52 0g I

0 H

W SY 670. 1 8

~ ~

273.3 la 0

1.075 2o15 OI537 1+613 3.225 ho301 0.376 2odbb 3e763 heKR DIST PRESSURE ONLY AT STEAOY

STATE, P

=

2250 PSIG 4J h)

I h)

GJ Ul Ih)

IoM

ANSYS 5.0 A

JUN 21 1995 10:44:20 PLOT NO.

10 POSTI STEP=IO SUB TIME=10 PAI'H PLOT N001= 2 N002=108 ZV

=I DIST=0.15 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO HIOOEN 61 514 41 SZ 0g I

0 H

W SY 366al3 0

OICP 1 +075 le613 2m 15 2+6M o225 4+301 5 +376 3.7IL$

4 e Md DlST LOSS OF SECONOARY PRESSURE

- I, 1=0.010, P=310 PSIG 4l M

I M

4J Vl hl I

ED bJ

( ~ 1040O 14 114 ANSYS 5.0 A

JUN 21 1055 10: 41:24 PLOT HO.

11 POS I' STEP=

I I SUB

= I TIME=II PAT'N PlOT H001=2 H002= 108 LV

= I DIST=0.15 XF

=0.5 YF

=0.5 2F

=0.5 CENTROIO HIDDEN R

n n

9M.71 497.

335,1 172.

S2 SY gOgI 0

H K

lg8

~ ~

10.406 0 I537 1 a075 1+613 2,15 3e 225 4.301 5.376 2odbb 3e763 4m 535 DIST lOSS OF SECOHOARY PRESSURE 2,

T=0.015, P=210 PSIG La)

I M

4J Ul h)

I M

$ 41

(s 109$ O 17 ANSYS 5.0 A

JUN 21 1995 IO:41:29 PLOT NO.

12 POS I' ST EP =12 SUB

=I TIME=12 PATH PLOT NOD1=2 NOO2=100 2V

= I OIST=O.)5 XF

=0.5 YF

=0.5 ZF

=0.5 CENTROIO HIOOEN n

n OQH 642 o7 3d2o4 II2. 1 52 ST g0g I

0 H

K 8

~ ~

-19bo09 0

0.537 1.075 l.dl3 2olm 2odbb 3e7d3 4.301 4eES DIST LOSS OF SECONOARZ PRESSURE 3,

T=0.020, P= 185 PSIG Oo37d 4J M

I Ihl 4J Ul I

I ED h)

[I10661) 661 ANSYS 5.0 A

JUN 21 1995 I 0: 11:

3 3 PLOT NO.

13 POST I STEP=13 SUB

=I

'T IME =13 PATH PI.OI'001=2 N002=108 2Y

=I OI SI =0.15 XF

=0.5 YF

=0.5 2F

=0.5 CENTROIO HIOOEN 946o4

-146+39

-12 SY SL gOg I

0 H

Pl 0.537 1 +075 1 o613 2o 16 2.666

~ 226 4o361 3+763

4. 636, DIST lOSS Of SECONOARY PRESSURE

~

1, T=0.063, P=116 PSIG o376 4J M

I M

Vl Ul M

I M

4 BOW NUCLEAR TECHNOLOGZES

    • BWNT NON-PROPRZETARY **

32-1235127-02 7.0 ANSYS 5.0A Verification The ANSYS analysis

code, version S.OA, was verified using closed form solutions for hoop stress in a sphere and stress concentration factors.

The following comparison of finite element (FE) stress results and closed form solut'ns indicated that the software provided accu.ate results.

Therefore, ANSYS 5.0A was verified for this application.

Finite Element Results from Table Distance Hoo Stress 0.0(clad/base) 42,415

2. 6879 (mid base) 21, 297
5. 3758 (external) 19, 789 Hoop Stress (using thin shell theory) 6.9, Pressure

= 2250 psia Sz psi psi psi e

= pr/2t Ref.

[5, Table 28 case 3a.]

e

= 2250 (73.63) / [2 (4.094)]

= 20, 233 psi Compared to:

21g297 psi (FE),

b%'

)21297/20233

- 1)(100%)

=

5.26%'nd 19,789 psi (FE),

b%'

)19789/20233

- 1~(100%')

=

2.19%'hese percent differences are attributable to the differences b'etween thin and thick pressure vessel theory and the fact that at the mid point of the line there may still be some stress concentration effect due to the penetration.

Stress Concentration at Hole SCF

= a,,/e, = 42415/19789

= 2.143 (FE) k Compared to 2.0 (from Sect. 3.3),

h%

= ]2.14/2.0 - 1] (100%)

= 7.2%

Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

48

J

B&W'UCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 8.0 References 1)

ASME Boiler and Pressure Vessel

Code, Section ZZI, Division 1, Appendices, 1986 Edition with no Addenda.

2)

BWNS Document No. 51-1155656-00, "Standard Correlations for Natural Convection".

3)

BWNS Document No. NPGD-TM-500, "NPGD Material Properties Program User's Manual",

Rev.

D, March, 1985.

4)

Harvey, J. F.,

"Theory and Design of Modern Pressure Vessels",

Van Nostrand Reinhold Co.,

New York, 1974.

5)

Young, W. C.,

"Roark's Formulas for Stress

& Strain", 6th Edition McGraw-Hill, New York, 1989.

6)

DeSalvo, G. J.

and Gorman, R. W.,

"ANSYS User's Manual for Revision 5. 0",

1992, Swanson Analysis Systems,
Houston, Pennsylvania.

7)

BWNT Document 32-1235128-02, "FM Analysis of St. Lucie Pressurizer Instrument Nozzles".

8)

BWNT Document 38-1210588-00, "Pressurizer Instrument Nozzles, FM Design Input," for St. Lucie Unit 2, dated 11/11/94 (FP&L Number JPN-PSLP-94-631, File: PSL-100-14).

9)

Florida Power

& Light Drawing No. 2998-19321, Rev.

0, "Top Head Instrument Nozzles Repair".

10)

Florida Power

& Light Drawing No. 2998-18709, Rev.

1, "Pressurizer General Arrangement".

11) Arpaci, V.S., Conduction Heat Transfer, Adelson-Wesley Publishing, 1966.

12)

  • Florida Power and Light Drawing No. 2998-18594 Rev.

0, "Pressurizer Top Head Details and Assembly."

13)

Peterson, R.E.,

"Stress Concentration Factors",

Wiley & Sons, 1974.

  • References marked with an "asterisk" are retrievable from the Utilities Record System.

A horize Project ger's Signature Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

49

BSc't~'UCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 9.0 Microfiche The following table contains a list of microfiche of the ANSYS S.OA computer output.

The nodes and elements were identical among all the models.

FILE NAME FILE DATE DESCRIPTION S PHTHERM. OUT 6/20/95 Composite transient thermal runs including 100 'F/hr Heatup, 53'F Step-down, 53'F Step-up and 200 'F/hr Cooldown SPHTHLP.OUT SPHSTRES.OUT MATPROP. MAC 6/20/95 6/21/95 6/14/95 Loss of pressure thermal run Stress runs for all cases Macro file containing all material property date used in the analysis.

PRESS.MAC 6/15/95 Macro for applying pressure during the stress runs FILMCOEF.MAC 6/14/95 Macro for applying thermal loads during thermal runs Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

50

'4

\\ >

B&Vl NUCLEAR TECHNOLOGIES

    • BWNT NON-PROPRIETARY **

32-1235127-02 Computer Output Mi.crofiche Prepared By: T.M. Wi er Reviewed By: A.M. Miller Date:

Date:

Page:

51

r tl