Information Notice 2013-20, Official Exhibit - NYS000538-00-BD01 - NRC Information Notice 2013-20: Steam Generator Channel Head and Tubesheet Degradation (October 3, 2013) (ML13204A143): Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 1: Line 1:
{{Adams
#REDIRECT [[Information Notice 2013-20, NYS000538 - NRC Information Notice 2013-20: Steam Generator Channel Head and Tubesheet Degradation (October 3, 2013) (ML13204A143)]]
| number = ML15331A226
| issue date = 10/03/2013
| title = Official Exhibit - NYS000538-00-BD01 - NRC Information Notice 2013-20: Steam Generator Channel Head and Tubesheet Degradation (October 3, 2013) (ML13204A143)
| author name =
| author affiliation = State of NY, Office of the Attorney General
| addressee name =
| addressee affiliation = NRC/ASLBP
| docket = 05000247, 05000286
| license number =
| contact person = SECY RAS
| case reference number = RAS 27914, ASLBP 07-858-03-LR-BD01, 50-247-LR, 50-286-LR
| document type = Legal-Exhibit
| page count = 8
}}
{{#Wiki_filter:United States Nuclear Regulatory Commission Official Hearing Exhibit
 
In the Matter of:                    Entergy Nuclear Operations, Inc.
 
(Indian Point Nuclear Generating Units 2 and 3)
                                                                                                                    NYS000538 ASLBP #: 07-858-03-LR-BD01                                                          Submitted: June 9, 2015 Docket #: 05000247 l 05000286 Exhibit #: NYS000538-00-BD01                Identified: 11/5/2015 Admitted: 11/5/2015                        Withdrawn:
                  Rejected:                                      Stricken:
                      Other:
                                                                                  UNITED STATES
 
NUCLEAR REGULATORY COMMISSION
 
OFFICE OF NUCLEAR REACTOR REGULATION
 
OFFICE OF NEW REACTORS
 
WASHINGTON, DC 20555-0001 October 3, 2013 NRC INFORMATION NOTICE 2013-20:                                      STEAM GENERATOR CHANNEL HEAD AND
 
TUBESHEET DEGRADATION
 
==ADDRESSEES==
All holders of an operating license or construction permit for a nuclear power reactor under
 
Title 10 of the Code of Federal Regulations (10 CFR) Part 50, Domestic Licensing of
 
Production and Utilization Facilities, except those who have permanently ceased operations
 
and have certified that fuel has been permanently removed from the reactor vessel.
 
All holders of or applicants for an early site permit, standard design certification, standard
 
design approval, manufacturing license, or combined license under 10 CFR Part 52, Licenses, Certifications, and Approvals for Nuclear Power Plants.
 
==PURPOSE==
The U.S. Nuclear Regulatory Commission (NRC) is issuing this information notice (IN) to inform
 
addressees of instances of steam generator channel head and tubesheet degradation.
 
Although the operating experience discussed is related to steam generators, the findings may
 
relate to other structures, systems, and components. The NRC expects that recipients will
 
review the information for applicability to their facilities and consider actions, as appropriate, to
 
ensure that regulatory requirements are met. Suggestions contained in this IN are not NRC
 
requirements; therefore, no specific action or written response is required.
 
==DESCRIPTION OF CIRCUMSTANCES==
The primary side of a recirculating steam generator consists of several components, including
 
the channel head, divider plate, tubesheet, and tubes (refer to Figure 1). The channel head is
 
hemispherically shaped and is divided into two chambers by a divider plate. One chamber
 
receives the primary coolant from the reactor through the primary inlet (hot-leg) nozzle, and the
 
divider plate channels this coolant through the tubes. After exiting the tubes, the primary
 
coolant enters the other chamber of the channel head and exits the steam generator through
 
the primary coolant outlet (cold-leg) nozzle(s) so that it can be pumped back into the reactor.
 
The steam generator channel head is typically made of carbon or low-alloy steel base material
 
and is clad on the interior surface with a corrosion-resistant material such as stainless steel to
 
protect the channel heads base material. Some steam generator designs have a drain line that
 
is centered under a semicircular cutout region of the divider plate (frequently referred to as a
 
mouse hole) in the bottom center of the channel head. The drain line facilitates removal of
 
water from the steam generator for maintenance and permits draining of both the hot- and
 
cold-leg sides of the channel head. The tubesheet is a thick plate, typically made from low-alloy
 
ML13204A143 steel that contains thousands of holes for the steam generator tubes. The primary side
 
(underside) of the tubesheet is clad with a corrosion-resistant material and each tube is welded
 
to the tubesheets primary face.
 
As discussed below, recent operating experience has revealed degradation of the steam
 
generator channel head and tubesheet.
 
===Foreign Operating Experience===
In 2011, a foreign utility identified apparent defects in the steam generator channel head in one
 
of its three steam generators at one of its nuclear power plants. The steam generators were
 
placed into operation in 1987. The inspections showed indications of degradation in the
 
cladding and/or divider plate-to-channel head weld resulting in exposure and corrosion of the
 
channel head base material. The visually observed degradation is located on the cold leg side
 
of the channel head in the vicinity of the drain line. The largest observed defect in the cladding
 
measured 7.5 mm (0.3 in.) by 14.4 mm (0.6 in.) by ultrasonic examination. There were five
 
other smaller defects in the cladding in the region of the drain line. The degradation in the
 
channel head base material is volumetric in the form of one large cavity which extends to a
 
maximum depth of 28 mm (1.1 in.). The area of the degradation in the base material is irregular
 
in shape and extends a maximum of 75 mm (3.0 in.) from the edge of the drain line with a
 
maximum azimuthal extent of 285 degrees about the central drain. The cause of the cladding
 
degradation is not currently known.
 
In January 2012, Westinghouse issued a Nuclear Safety Advisory Letter (NSAL) informing their
 
customers of the operating experience and providing recommendations for inspections. The
 
Electric Power Research Institutes Steam Generator Management Program shared this
 
information with all member utilities that operate steam generators. The recommendations in
 
the NSAL included performing a visual inspection of the steam generators channel head area
 
under dry conditions the next time the primary side of the steam generator is open, with the
 
intent of identifying gross defects. The inspections are to include the channel heads cladding, the weld connecting the divider plate to the channel head, and, when it is accessible, the weld at
 
the top of the channel heads bowl drain tube. The inspections could be limited to a circle with a
 
914-mm (36-in.) radius centered on the very bottom of the channel heads bowl. If no
 
degradation is detected during the initial visual inspection, the inspection results should be
 
documented and visual inspections should be performed each time the primary steam generator
 
manway is open. If degradation is detected, the NSAL recommended performing dye penetrant
 
testing if the inside surface of the channel head has been machined smooth to establish the
 
extent of the cladding degradation, using ultrasonic testing from outside of the steam generator
 
to determine whether any corrosion of the channel heads base material has occurred, and
 
performing an engineering assessment of the findings. An assessment of the foreign operating
 
experience by the domestic nuclear industry concluded that the most likely failure mode was
 
gross defects in the stainless steel cladding that resulted in exposure of the base material to
 
water with high concentrations of dissolved oxygen and boric acid.
 
Visual inspections of the steam generators channel head region have been performed at many
 
domestic utilities with none reporting similar degradation. Although no similar degradation has
 
been found domestically, one utility did identify some base material corrosion in its steam
 
generator channel head in 2013 as discussed below. Wolf Creek Generating Station
 
Wolf Creek Generating Station (Wolf Creek) has four Westinghouse Model F steam generators.
 
In spring 2013, Wolf Creek Nuclear Operating Corporation (the licensee) conducted visual
 
inspections of the steam generators channel head region in response to the foreign operating
 
experience discussed above. During these inspections, the licensee did not identify any
 
degradation in the region where degradation was observed in the steam generator at the foreign
 
unit; however, a rust-colored spot was identified approximately 152 mm (6 in.) below the primary
 
face of the tubesheet along the weld connecting the divider plate to the channel head.
 
The divider-plate-to-channel-head weld is made with weld material of the Alloy 600 type. The
 
cladding on the channel head is primarily stainless steel; however, the cladding near the
 
rust-colored spot may be either stainless steel or Alloy 182 (an Alloy 600 type material)
depending on the actual fabrication process. Visual inspections revealed a flaw in the
 
divider-plate-to-channel-head fillet weld, which was attributed to a fabrication defect. An
 
ultrasonic test indicated the flaw in the channel heads base material was approximately 2.5 mm
 
(0.1 in.) deep and approximately 51 mm (2 in.) long. The width of the flaw could not be
 
determined because the ultrasonic testing equipment could not be placed at the appropriate
 
location on the outside surface of the channel head due to access limitations.
 
The flaw at the edge of the divider-plate-to-channel-head weld was evaluated in accordance
 
with Subparagraph IWB-3510.1 and Table IWB-3510-1 of Section XI of the American Society of
 
Mechanical Engineers Boiler and Pressure Vessel Code. The flaw in the base material was
 
treated as a planar flaw. The evaluation considered flaw growth in the future. The licensee
 
concluded that it was acceptable to operate the steam generator through the operating cycle.
 
During the cycle, the licensee planned to perform a detailed fracture mechanics analysis of the
 
flaw to determine the long-term corrective action required.
 
Based on the corrosion properties of the stainless steel cladding and Alloy 600 weld material, and because the primary chemistry is usually maintained in a condition that scavenges oxygen, the licensee concluded that the flaw in the divider-plate-to-channel-head weld was only able to
 
grow when there were oxidizing conditions in the primary coolant (i.e., for a short period before
 
each shutdown as a result of peroxide addition during the shutdown process) and when the
 
steam generator was open for inspection. Based on this estimated exposure period and boric
 
acid corrosion rates in literature, the licensee predicted that the flaw in the base material would
 
be approximately 2.5 mm (0.1 in.) deep, assuming that the base material corrosion started at
 
the beginning of plant operation. This matches the actual extent of degradation observed in the
 
channel head base material, as determined from the ultrasonic examination. Using a flaw
 
growth rate of approximately 0.1 mm (0.005 in.) per operating cycle, the licensee concluded the
 
flaw in the channel head base material would be approximately 2.7 mm (0.105 in.) deep at the
 
next refueling outage.
 
The licensee performed a review of historical steam generator channel head visual inspections
 
and noted that the rust spot was not visible during the 2011 inspections, but was visible during
 
all prior outages in which visual inspections of this region were performed (i.e., in 2009, 2006,
2000, and 1994). The 1994 video is the earliest video recording of this area and is a
 
black-and-white recording.
 
Because structural interferences prevent a zero-degree ultrasonic examination of the
 
divider-plate-to-channel-head weld flaw, the licensee could not confirm that there is no
 
delamination between the stainless steel cladding and the channel heads base material in the area directly under the flaw. The licensee has confirmed that there are no delaminations
 
between the cladding and the channel head in those areas around the
 
divider-plate-to-channel-head weld flaw, where there is access for a zero-degree ultrasonic
 
examination.
 
The licensee has no direct evidence that the flaw at the rust spots location was not caused by
 
stress corrosion cracking (SCC) or fatigue. However, the licensee has indirect evidence to
 
support the conclusion that the flaw was not caused by SCC or fatigue. The licensees
 
evidence includes the fact that SCC is highly unlikely in stainless steel or carbon steel on the
 
primary side of a steam generator, and the existence of the rust stain is evidence that the
 
carbon steel channel head is corroding. The rust spot is around a black spot that the licensee
 
has stated appears to be either a weld crater pit or weld porosity. The rust spot appears to be
 
about 21.8 mm (0.86 in.) long and 6.4 mm (0.25 in.) wide. Also, a fatigue stress analysis
 
performed by the industry and cited by the licensee showed that the fatigue stresses in this
 
location of the steam generator are very low. The licensee indicated there could be additional
 
paths of SCC in the weld, but that there was currently no evidence of these additional paths.
 
The licensee concluded that the black spot is a fabrication defect in the weld material and that a
 
breach through the cladding was probably created as a result of the high tensile stresses from
 
the weld geometry.
 
The licensee plans to re-inspect this area during the next refueling outage to monitor/confirm the
 
flaws growth rate.
 
===Surry Power Station Unit 2===
Surry Power Station Unit 2 has three Westinghouse Model 51F steam generators. During a
 
refueling outage in 2006, Virginia Electric and Power Company, the licensee, performed a visual
 
inspection of the plugs inserted into some of the tubes on the hot-leg side of the steam
 
generators channel head. During these visual inspections, a yellow stain was noted in the tube
 
end of one of the tubes and on a portion of the channel head near this tube location. Upon
 
further investigation, it was determined that the affected tube was inadvertently plugged in 1986.
 
When this plug was removed by drilling in 1991, the tube appeared to have been drilled off- center longitudinally from the tube end for a distance of approximately 44 mm (1.75 in.). This
 
resulted in perforating the tube wall over a circumferential distance of approximately 23 mm
 
(0.9 in.). As a result, this damaged tube end was in service from 1991 until 2006 when the
 
yellow stain was noticed. The yellow stain was attributed to the corrosion of the tubesheet
 
material. Although the damage to the tube end was substantial, the licensee concluded that the
 
as-found condition did not compromise tube integrity given that the tube damage was near the
 
primary face of the tubesheet.
 
Given the damage to the tube near the tube-end, a special plug was used on the hot-leg side of
 
the tube. The plugs structural joint was above the damaged region. Two other joints, including
 
one below the damaged region, were made. The lowest joint was expected to form a tortuous
 
leakage path and allow little or no primary coolant to contact the tubesheet material. However, to the extent that the lower joint does not isolate the carbon steel, it was assumed that corrosion
 
of the tubesheet material could occur. The rate of carbon steel corrosion during operation with
 
very low oxygen in the primary coolant is much lower than that during shutdown when the
 
material could be exposed to air. The licensee performed an assessment assuming corrosion
 
would occur and concluded that the corrosion would not impact the structural integrity of the
 
tubesheet. This tube was plugged at both ends during the 2006 outage. The licensee plans to visually inspect this region during future inspections of the tubes in the affected steam
 
generator.
 
The channel head degradation was characterized and evaluated by the licensee. Ultrasonic
 
examination of the tubesheet-to-channel-head transition region confirmed that no degradation
 
extended into the base material. The licensee performed an evaluation of potential carbon steel
 
corrosion rates and concluded that the condition was acceptable for continued service without
 
repair for the remaining licensed life of the unit. During an outage in 2012, the licensee visually
 
inspected this region and there was no change in the indication/degradation.
 
During the 2006 outage at Surry 2, a visual examination of the hot-leg primary manway flange
 
face was performed. This inspection revealed a localized region of corrosion between the
 
gasket seating surface and the bolt circle. During 2012, this area was re-examined and there
 
was no advancement of the degradation. The licensee concluded that the degradation was
 
caused by gasket leakage at some point prior to 2006.
 
==DISCUSSION==
The steam generator is an integral part of the reactor coolant pressure boundary, and its
 
integrity is important to the safe operation of the plant. Carbon and low-alloy steel portions of
 
the steam generator are typically isolated from the primary coolant to prevent their corrosion. In
 
several instances it appears that defects in the cladding have resulted in exposing the
 
underlying carbon and low-alloy steels, resulting in their corrosion. Although the most probable
 
cause of the cladding defects identified at Surry were mechanical activities and not original
 
fabrication, it is not conclusively known whether the other cladding/weld defects discussed
 
above were service-induced (e.g., as a result of cracking) or whether they were present since
 
fabrication. Nonetheless, the operating experience indicates the importance of monitoring clad
 
regions to ensure the integrity of the cladding and for ensuring that maintenance activities
 
(e.g., tube inspections and repairs) do not result in exposing the underlying carbon or low-alloy
 
steels. If the carbon or low-alloy steels are exposed, it is important to determine the extent of
 
any corrosion of the base material to ensure the component can still perform its intended safety
 
function until the next inspection or until the component can be replaced or repaired.
 
==CONTACT==
This IN requires no specific action or written response. Please direct any questions about this
 
matter to the technical contact listed below or to the appropriate NRC project manager.
 
/RA/                                          /RA/
Lawrence E. Kokajko, Director                  Michael C. Cheok, Acting Director
 
Division of Policy and Rulemaking              Division of Construction Inspections
 
Office of Nuclear Reactor Regulation            and Operational Programs
 
Office of New Reactors
 
Technical Contacts:    Kenneth J. Karwoski, NRR
 
301-415-2752 E-mail: kenneth.karwoski@nrc.gov
 
ML13204A143; *concurred via e-mail                      TAC MF2313 OFFICE TECH EDITOR*                  NRR/DE*          NRR/DE/EPNB*      NRR/DE/ESGB*    NRO/DE/CIB*
NAME      CHsu                      KKarwoski        KHoffman          GKulesa          DTerao
 
DATE      7/2/13                    9/10/13          9/10/13            9/12/13          7/31/13 OFFICE NRR/DE/D                      OIP/ICA          NRR/DPR/PGCB      NRR/DPR/PGCB    NRO/DCIP/D (A)
NAME      PHiland                  SDembek          CHawes            MBanic          MCheok
 
DATE      9/17/13                  9/10/13          9/23/13            9/23/13          9/25/13 OFFICE NRR/DPR/PGCB/BC (A) NRR/DPR/DD                NRR/DPR/D
 
NAME      SStuchell                SBahadur        LKokajko
 
DATE      9/23/13                  10/02/13        10/ 3 /13}}
 
{{Information notice-Nav}}

Revision as of 20:52, 30 November 2019