ML17286A853: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:ACCELERATED DISTRIBUTION DEMONSTjRATION SYSTEM I~REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)ACCESSION NBR:9106050251 DOC.DATE: 90/12/31 NOTARIZED:
{{#Wiki_filter:ACCELERATED DISTRIBUTION DEMONSTjRATION SYSTEM
NO DOCKET FACIL:50-397 WPPSS Nuclear Project, Unit 2, Washington Public Powe 05000397 AUTH.NAME AUTHOR AFFILIATION BELL,J.C., Washington Public Power Supply System RECIP.NAME RECIPIENT AFFILIATION ZELLER,J.J.
                            ~
Washington, State of  
I REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)
ACCESSION NBR:9106050251               DOC.DATE: 90/12/31 NOTARIZED: NO             DOCKET FACIL:50-397   WPPSS   Nuclear Project, Unit 2, Washington Public           Powe 05000397 AUTH. NAME           AUTHOR AFFILIATION BELL,J.C.     ,
Washington Public Power Supply System RECIP.NAME           RECIPIENT AFFILIATION ZELLER,J.J.         Washington, State of


==SUBJECT:==
==SUBJECT:==
"Operational Ecological, Monitoring Program for Nuclear Plant 2-1990 Annual Rept." W/910531 Itr.DISTRIBUTION CODE: IE25D COPIES RECEIVED:LTR f ENCL Q SIZE: l5~TITLE: Environmental Monitoring Rept (per Tech Specs)NOTES: RECIPIENT ID CODE/NAME PD5 LA ENG,P.L.INTERNAL: ACRS NRR/DREP/PRPB1 1 RES RADDATZ,C.
  "Operational Ecological, Monitoring Program for Nuclear Plant 1990 Annual Rept." W/910531 Itr.
RGN5 FILE 02 EXTERNAL: EG&G SIMPSON, F COPIES LTTR ENCL 3 3 1 1 1 1 2 2 1 1 1 1 2 2 RECIPIENT ID CODE/NAME PD5 PD P EOJ)/J3SPQTPAB L 01 S/RPB NRC PDR COPIES LTTR ENCL 1 1 1 1 1 1 1 1 1 1 D D D NOTE TO ALL"RIDS" RECIPIENTS:
2 DISTRIBUTION CODE: IE25D COPIES RECEIVED:LTR TITLE: Environmental Monitoring Rept (per Tech Specs) f  ENCL  Q SIZE:  l5~
A D D PLEASE HELP US TO REDUCE WASTEl CONTACT THE DOCUMENT CONTROL DESK ROOM P 1-37 (EXT.20079)TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENT YOU DON'T NEED!TOTAL NUMBER OF COPIES REQUIRED: LTTR 16 ENCL 16 I 1~1 f UNDERSIZED DOCUMENTS
NOTES:
RECIPIENT              COPIES            RECIPIENT         COPIES ID  CODE/NAME            LTTR ENCL      ID   CODE/NAME     LTTR ENCL PD5 LA                       3    3    PD5 PD                  1    1            D ENG,P.L.                     1    1 D
INTERNAL: ACRS                           1    1    P EOJ)/J3SPQTPAB        1    1 NRR/DREP/PRPB1 1            2    2              L        01    1    1 RES RADDATZ,C.               1    1                  S/RPB    1    1 RGN5     FILE 02             1    1 EXTERNAL: EG&G SIMPSON, F               2     2     NRC PDR                 1   1 D
A D
D NOTE TO ALL "RIDS" RECIPIENTS:
PLEASE HELP US TO REDUCE WASTEl CONTACT THE DOCUMENT CONTROL DESK ROOM P 1-37 (EXT. 20079) TO ELIMINATEYOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENT YOU DON'T NEED!
TOTAL NUMBER OF COPIES REQUIRED: LTTR               16   ENCL     16


WASHINGTON PUBLIC POWER SUPPLY SYSTEM P.O.Bax 968~3000 George Washtngton Way~Rtchland, Wasbtngton 993524968~(509)372-5000 May 31, 1991 Mr.Jason J.Zeller EFSEC Manager Mail Stop FA-11 Olympia, WA 98504-1211
I
      ~ 1 1
f
 
UNDERSIZED DOCUMENTS
 
WASHINGTON PUBLIC POWER SUPPLY SYSTEM P.O. Bax 968 ~ 3000 George Washtngton Way ~ Rtchland, Wasbtngton 993524968 ~ (509) 372-5000 May 31,     1991 Mr. Jason     J. Zeller EFSEC Manager Mail Stop FA-11 Olympia, WA 98504-1211


==SUBJECT:==
==SUBJECT:==
TRANSMIITAL OF OPERATIONAL ECOLOGICAL MONITORING PROGR/IM NUCLEAR PLANT 2 ANNUAL REPORT
TRANSMIITALOF OPERATIONAL ECOLOGICAL MONITORING PROGR/IM NUCLEAR PLANT 2 ANNUALREPORT
 
==Dear Mr. Zeller:==
 
Enclosed are five (5) copies      of the subject report; Sincerely, J.C. Bell Manager Plant Services JCB:pg Enclosures cc:    g3ocument Control Desk; HRC (w/enclosures)'g R.B. Samworth, NRC (w/enclosures)
C.D. Becker, Battelle (w/enclosures)
D. Geist, Washington Department of Fisheries (w/enclosures) 9/060 ADOCK 90i23t 5q op@00397
      -
O        poR                      PDR R
 
3
'f t
 
        //910605025 b g
    ~
      ~ I
: 93. 040 OAT%,
OFFICIAL PHOTO.
WASIIINCTOII PUBLIC POWEI
'63i) SUPPLY          SYSTEb/I P.O. 80X 968 R1CHLAND) VIA 99352
~ g5544&C$ CDIS QPO!I PVQLIC4T~
 
ABLE        F              NT
  ~t~in ACKNOWLEDGEMENTS.
TABLES .
F IGURES    ~ ~  ~ ~  ~  ~  ~  ~  ~  ~  ~  ~  ~  ~  ~    ~  ~  ~  ~  ~  ~  ~  ~  ~                      V


==Dear Mr.Zeller:==
==1.0  INTRODUCTION==
Enclosed are five (5)copies of the subject report;Sincerely, J.C.Bell Manager Plant Services JCB:pg Enclosures cc: g3ocument Control Desk;HRC (w/enclosures)'g R.B.Samworth, NRC (w/enclosures)
                                                    ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   ~ 1  1
C.D.Becker, Battelle (w/enclosures)
D.Geist, Washington Department of Fisheries (w/enclosures) 9/060 op@00397 5q 90i23t O-poR ADOCK PDR R 3'f t
//910605025 b g~~I 93.040 OAT%, OFFICIAL PHOTO.WASIIINCTOII PUBLIC POWEI'63i)SUPPLY SYSTEb/I P.O.80X 968 R1CHLAND)VIA 99352~g5544&C$CDIS QPO!I PVQLIC4T~
ABLE F NT~t~in ACKNOWLEDGEMENTS.
TABLES.F IGURES~~~~~~~~~~~~~~~~~~~~~~~~V


==1.0 INTRODUCTION==
==1.1    BACKGROUND==


~~~~~~~~~~~~~1 1  
1.2    THE  SITE                                                                                                  T-2
: 1. 3  BIBLIOGRAPHY                                                                                              1-4 2.0  NOTABLE ENVIRONMENTAL OBSERVATIONS.                                                                                2-1


==1.1 BACKGROUND==
==2.1     INTRODUCTION==
.            .  .  .  .  .  .    .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-1 2.2    METHODS.                                                                                                  2-1 2 3
          ~    RESULTS  ~  ~  ~  ~  ~  ~  ~  ~  ~  ~    ~  ~  ~  ~  ~  ~  ~  ~  ~  ~  ~  ~          2-1
~
3.0  FISH    BIOASSAYS...,...,...,.......,...                                                                          3-1


1.2 THE SITE 1.3 BIBLIOGRAPHY T-2 1-4 2.0 NOTABLE ENVIRONMENTAL OBSERVATIONS.
==3.1    INTRODUCTION==
2-1
3-1 3.2     METHODS AND MATERIALS.                                                     ~  ~  ~  ~  ~              3-1 3.3    RESULTS AND DISCUSSION                                                                                    3-4


==2.1 INTRODUCTION==
==3.4    REFERENCES==
3-5 4.0  WATER    QUALITY    .  .  .  .  .  .  .  .  .    .  .  .  .  .  .  .  ~  .  .  .  .  .  . 4-1


.....................2-1~2.2 METHODS.2~3 RESULTS~~~~~~~~~~~~~~~~~~~~~~2-1 2-1 3.0 FISH BIOASSAYS...,...,...,.......,...
==4.1     INTRODUCTION==
3-1
                                              ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   4  1 4.2    MATERIALS AND METHODS.                                    ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   ~   4  1 4.2.1           SAMPLE COLLECTION.                    .  .  .  .   .   .   .   .   .   .   .   .   . 4-2 4.2.2          FIELD EQUIPMENT                8(  MEASUREMENTS .               .   .   .   .   .   . 4-3 4.2.3           LABORATORY MEASUREMENTS.                          .  .  .  .  .  .  .  .  .  . 4-3


==3.1 INTRODUCTION==
T B      F    T  T (Continued)
Law 4.3  RESULTS.    .  .  .  . . .  . .  . . . .  . .  . . . . . . . . . 4-4 4.3.1          TEMPERATURE.                                          4-4 4.3.2          DISSOLVED OXYGEN (DO).                                4-4 4.3.3          pH AND  ALKALINITY.                                  4-4 4.3.4          CONDUCTIVITY                                          4-5 4.3.5          TOTAL RESIDUAL .CHLORINE.,(TRC) .                    4-5 4.3.6          METALS  o ~  ~ ~  ~ ~ ~ ~  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~    4-6 4.3.7          HARDNESS                                              4-8 4.3.8          OIL  AND GREASE                                      4-8 4.3.9          AMMONIA-NITROGEN AND NITRATE-NITROGEN.                4-9 4.3.10        TOTAL PHOSPHORUS AND ORTHOPHOSPHORUS                  4-9 4.3.11        SULFATE.                                              4 9 4 '.12        TOTAL DISSOLVED SOLIDS, TOTAL SUSPENDED SOLIDS AND TURBIDITY                                  4-10
: 4. 4 DISCUSSION      .                                                    4-11
: 4. 5 BIBLIOGRAPHY                                                        4-11 5.0 COOLING TONER DRIFT STUDIES                                              5-1


3.2 METHODS AND MATERIALS.
==5.1  INTRODUCTION==
3.3 RESULTS AND DISCUSSION
5-1 5.2  MATERIALS AND METHODS.                                              5-1 5.2.1          HERBACEOUS CANOPY COVER.                              5-1 5.2.2          HERBACEOUS PHYTOMASS                                  5-2 5.2.3         SHRUB CANOPY COVER .                                 5-2 5.2.4          SHRUB DENSITY.
                '.2.5 SOIL CHEMISTRY                                        5-3 5.2.6          VEGETATION CHEMISTRY .                               5-4


==3.4 REFERENCES==
TBE (Continued) 5, 3 RESULTS AND DISCUSSION,...............                      5-4
: 5. 3.1    HERBACEOUS COVER .                                5-4 5.3,2    HERBACEOUS PHYTOMASS                              5-5 5.3.3    SHRUB COVER AND DENSITY.                      . 5-6 5.3.4    "SOIL CHEMISTRY                                    5-6 5.3.5    VEGETATION CHEMISTRY .                            5-7 5.4


~~~~~3-1 3-1 3-4 3-5 4.0 WATER QUALITY................~......4-1  
==SUMMARY==
AND CONCLUSIONS.    . . . . . . .  . . . . . . . . 5-7 5,5  COOLING TONER DRIFT MODEL VALIDATION    STUDY......        5-8 INTRODUCTION................
5.5.1 5.5.2    MATERIALS AND    METHODS....    '........        5-8 5-9 5.5.2.1     SAMPLE PLAN. .  . .  . , . . . . . . 5-9 5.5.2.2    SAMPLE COLLECTION.  . . . . . . . . '5-10 5.5.2.3     ANALYTICAL METHODS  . . . , . . . . 5-11 5.5.3     SAMPLE PREPARATION AND COLLECTION. .    . . . . 5-11 5.5.4     SAMPLE MEASUREMENT AND ANALYSIS. .    . . . . . 5-12 5.5.5    DATA  ANALYSIS................                    5-12 5.5.6    RESULTS...................                        5-13 5.6  BIBLIOGRAPHY...........,.........                           5-15 6.0 INTAKE STRUCTURE FOULING SURVEYS.   ~ ~ ~ . . . . ~ ~ . ~ ~ ~  6-1


==4.1 INTRODUCTION==
==6.1 INTRODUCTION==
.  . . .  . .  . . . . . . .  . . . . . . . . 6-1


4.2 MATERIALS AND METHODS.~~~~~~~~~~~~4 1~~~~~~~~~~~~4 1 4.2.1 4.2.2 4.2.3 SAMPLE COLLECTION.
B E (Continued) 7.0  AERIAL  PHOTOGRAPHY.....................               7-1
.............4-2 FIELD EQUIPMENT 8(MEASUREMENTS
.......4-3 LABORATORY MEASUREMENTS.
..........4-3 T B F T T (Continued)
Law 4.3 RESULTS........................4-4 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 4.3.10 4.3.11 4'.12 TEMPERATURE.
DISSOLVED OXYGEN (DO).pH AND ALKALINITY.
CONDUCTIVITY TOTAL RESIDUAL.CHLORINE.,(TRC)
.METALS o~~~~~~~~~~~~~~~~~HARDNESS OIL AND GREASE AMMONIA-NITROGEN AND NITRATE-NITROGEN.
TOTAL PHOSPHORUS AND ORTHOPHOSPHORUS SULFATE.TOTAL DISSOLVED SOLIDS, TOTAL SUSPENDED SOLIDS AND TURBIDITY 4-4 4-4 4-4 4-5 4-5 4-6 4-8 4-8 4-9 4-9 4 9 4-10 4.4 DISCUSSION
.4.5 BIBLIOGRAPHY 4-11 4-11 5.0 COOLING TONER DRIFT STUDIES 5-1  


==5.1 INTRODUCTION==
==7.1   INTRODUCTION==
7-1 7.2    MATERIALS AND METHODS.                          7-1
: 7. 3  RESULTS AND DISCUSSION                          7-3
: 7. 4  BIBLIOGRAPHY                                    7-5 APPENDIX A        PLANT OPERATIONAL DATA APPENDIX  B      METEOROLOGICAL CONDITIONS APPENDIX C        ANALYTICAL RESULTS FOR EACH SAMPLE STATION


5.2 MATERIALS AND METHODS.5-1 5-1 5.2.1 5.2.2 5.2.3 5.2.4'.2.5 5.2.6 HERBACEOUS CANOPY COVER.HERBACEOUS PHYTOMASS SHRUB CANOPY COVER.SHRUB DENSITY.SOIL CHEMISTRY VEGETATION CHEMISTRY.5-1 5-2 5-2 5-3 5-4 TBE (Continued) 5, 3 RESULTS AND DISCUSSION,...............
EXECUTIVE
5-4 5.3.1 5.3,2 5.3.3 5.3.4 5.3.5 HERBACEOUS COVER.HERBACEOUS PHYTOMASS SHRUB COVER AND DENSITY."SOIL CHEMISTRY VEGETATION CHEMISTRY.5-4 5-5.5-6 5-6 5-7 5.4


==SUMMARY==
==SUMMARY==
AND CONCLUSIONS.
...............5-7 5,5 COOLING TONER DRIFT MODEL VALIDATION STUDY......
5-8 5.


==5.1 INTRODUCTION==
During 1990 there were no unusual events which resulted in    significant environmental impacts from the operation of WNP.-2.
................
0 There were no unanticipated or emergency discharges    of water or wastewater during the reporting period.
5-8 5.5.2 MATERIALS AND METHODS....
The  first fish  bioassay required by the HNP-2 NPDES Permit  was performed in October, 1990. A 1001. survival rate was observed.
'........5-9 5.5.2.1 SAMPLE PLAN.....,......5-9 5.5.2.2 SAMPLE COLLECTION.
Significant interstation differences could not be detected among any of the water quality parameters measured for'early all sampling periods. 1990 marks the first year in which results of metals 'analyses performed on plant dis-charge water are included in the report. It appears that during 1990, HNP-2 cooling water discharge had little effect upon Columbia River water quality.
........'5-10 5.5.2.3 ANALYTICAL METHODS...,....5-11 5.5.3 5.5.4 5.5.5 5.5.6 SAMPLE PREPARATION AND COLLECTION.
The  cooling tower drift model verification study concluded sample collection in March 1990. Results indicated and further investigations proved that the
.....5-11 SAMPLE MEASUREMENT AND ANALYSIS.......5-12 DATA ANALYSIS................
                ~
5-12 RESULTS...................
model's isopleths incorrectly predict areas of maximum and minimum cooling tower drift. The isopleths, as drawn, predict maximum deposition along
5-13 5.6 BIBLIOGRAPHY...........,.........
              ~
5-15 6.0 INTAKE STRUCTURE FOULING SURVEYS.~~~....~~.~~~6-1  
transects running in a northeasterly and nearly south-southwesterly direc-tion. This contradicts prevailing wind directions which are southerly (blowing north) and northeasterly (blowing southeast).
Total herbaceous  cover decreased 38.011. in 1990. A corresponding decrease in herbaceous phytomass was also observed. Soil and vegetation analyte concen-trations were generally within the ranges observed in previous years. Changes in vegetation cover and density recorded in 1990 appear to be climatically induced and no signs of adverse impacts from the operation of WNP-2 cooling towers are evident.
Color infrared aerial photographs along 5 flightlines were taken in June 1990. Because of the lateness in the season when the photographs were taken, most of the grasses were inactive and growth patterns could not be discerned.
The general health of those plants and shrubs that were active was good.     No adverse impact was evident from Plant 2 operation.
 
D  E This annual report, prepared by Washington Public Power Supply System, describes the aquatic, terrestrial and water quality programs for Nuclear Project  No. 2 (WNP-2).
Joe Bell                  Manager, Plant Services Terry  E. Northstrom    Supervisor, Environmental Sciences Sara L. Lindberg          Environmental Scientist  I John E. McDonald          Environmental Scientist  I Deborah C, Singleton      Environmental Scientist  I Richard E. Welch          Environmental Scientist  I Todd A. Borak            Environmental Scientist  II Lana S, Schleder          Environmental  Scientist II Kathryn E. Humphreys      Administrative Specialist
 
~u5yr ~TQg, Size and Weight .of Fish Used in Bioassay Test                3-7 Summary of Bioassay Parameters and Associated EPA Methods      3-8 3-3  Temperature and pH Measurements                                3-9 3-4  Dissolved Oxygen and Conductivity Measurements                3-10 Total Alkalinity and Total Hardness Measurements              3-11 3-6  Magnesium and Calcium Measurements                            3-12 3-7  Total Copper Concentrations                                    3-13 3-8  Total Zinc Concentrations                                      3-14 4-1  Summary  of Water Quality Parameters,  Stations, and          4-13 Sampling Frequencies, 1990 4-2  Summary of Water Quality Parameters  EPA and ASTM Method      4-14 Numbers 4-3  Summary  of Temperature Measurements for 1990                  4-15 4-4  Summary of Dissolved Oxygen Measurements for 1990              4-16 4-5   Summary of pH Measurements for 1990                            4-17 4-6   Summary of pH, Alkalinity and Hardness Measurements for  1990 4-18 Summary of Conductivity Measurements for 1990                  4-19 4-8  Summary of Turbidity and Total Residual Chlorine Measurements for 1990                                          4-20 4-9  Summary of Copper Measurements for 1990                        4-21 4-10  Summary of Nickel and Zinc Measurements for 1990              4-22 4-11  Summary of Iron and Lead Measurements for 1990                4-23 4-12 Summary of Cadmium and Chromium Measurements for 1990          4-24 4-13 Summary of Oil and Grease, and Ammonia Measurements for  1990 4-25 4-14  Summary of Nitrate and Total Phosphorus Measurements          4-26 for 1990 4-15  Summary of Orthophosphate and Sulfate Measurements            4-27 for 1990 4-16  Summary of Total Dissolved and Total Suspended Solids          4-28 Measurements for 1990 5-1  Vascular Plants Observed During 1990 Field Work                5-16 5-2  Vascular Plants Observed During 1975-1990 Field Work          5-19
 
(Continued) 5-3  Herbaceous  Cover  for Fifteen Sampling "Stations-1990 5-4  Mean Herbaceous    Cover for 1975 Through 1990                5-24 Mean  Frequency  Values (L) by Species for Each Sampling      5-26 Station  -  1990 5-6  Mean  Terrestrial Phytomass for 1990                          5-27 5-7  Comparison of Herbaceous Phytomass for 1975 Through 1990      5-28 5-8  Summary of Shrub Density for 1990                              5-29 Summary of Shrub Cover,(1.) at. Five Stations for 1990        5-30 5-10 Summary 'of Soil Chemistry for 1990                            5-31 5-11 Summaryof Vegetation Chemistry      for 1990                5-32 5-12 Drift Sampler    Locations in Reference to    WNP-2  Cooling 5-33 Towers 5-13 Drift Deposition    Rates  (Gross and Background Corrected)  5-34 A-1  Plant  Operational  Data  for Collection Period    1        A-1 A-2  Plant  Operational  Data  for Collection Period    2 A-3  Plant  Operational  Data  for Collection Period    3 A-4  Plant  Operational  Data  'for Collection  Period  4        A-4 A-5  Plant  Operational  Data for Collection    Period  5        A-5 A-6  Plant  Operational  Data for Collection    Period  6        A-6 A-7  Plant  Operational  Data for Collection    Period  7        A-7 A-9  Plant  Operational  Data for Collection    Period  8        A-8 A-10 Plant  Operational  Data for Collection    Period  9        A-9 A-ll Plant  Operational  Data for Collection    Period  10        A-10 A-12 Plant  Operational  Data for Collection    Period  ll        A-11 A-2  Plant  Operational  Data= for Collection  Period  12        A-12 B-1  Meteorological    Conditions  for March 1989                  B-l B-2  Meteorological    Conditions  for April 1989                  B-2 B-3  Meteorological    Conditions  for May 1989                    B-3 B-4  Meteorological    Conditions  for June 1989                  B-4 B-5  Meteorological    Conditions  for July 1989                  B-5
 
(Continued) 5yml~er Ti )~l e 8-6    Meteorological Conditions  for August 1989                    B-6 B-7    Meteorological Conditions  for September 1989                B-7 B-8    Meteorological Conditions  for October 1989                  8-8 B-9    Meteorological Conditions  for November 1989                  B-9 B-10    Meteorological Conditions  for December 1989                  B-10 B-ll    Meteorological Conditions  for January 1990                  B-ll B-12    Meteorological Conditions  for February 1990                  B-12 B-13    Meteorological Conditions  for March 1990                    B-13 C-1    Analytical Results  for Each Sample  Location April  1989    C-1 C-2    Analytical Resul,ts for Each Sample  Location- May 1989      C-2 C-3    Analytical Results  for Each Sample  Location June 1989      C-3 C-4    Analytical Results  for Each Sample  Location July 1989      C-4 C-5    Analytical Results  for Each Sample  Location August 1989    C-5 C-6    Analytical Results  for Each Sample  Location September 1989 C-6 Analytical Results  for Each Sample  Location October 1989  C-7
~        Analytical Results  for Each Sample  Location November 1989  C-8 C-9    Analytical Results  for Each Sample  Location December 1989  C-9 C-10    Analytical Results  for Each Sample  Location January 1990  C-10 C-11    Analytical Results  for Each Sample  Location February 1990  C-11 C-12    Analytical Results  for Each Sample  Location March 1990    C-12
 
Ii Qe.
NNP-2 Gross  Thermal Production  for 1990 1-2  HNP-2 Days Per Month  Discharging and  Mean Monthly Discharge 1-3  NNP-2  Location Map                                          1-9 1-4  Columbia River Mean Monthly Flow for 1990                    1-10 2-1  NNP-2 Property Boundary                                      2-3 3-1  Attachment 1.0, Test Plan 27 Secondary Chemistry Report      3-15 3-2  Attachment 2.0, Hater Chemistry Report                        3-16 4-1  Location~ of Sampling Stations in the Columbia River          4-29 4-2  Sampling, Station Locations for, Hater Chemistry              4-30 4-3  Columbia'iver Temperature Measurements at Six Stations        4-31 During 1990 4 4  Columbia River Dissolved Oxygen Measurements at Four Stations 4-32 During 1990 4-5  Columbia River pH Measurements at Six Stations During 1990    4-33 4-6  Columbia River Total Alkalinity Measurements at Four Stations 4-34 During 1990 4-7  Columbia River Conductivity Measurements at Six Stations      4-35
                                                                        ~
During 1990 4-8  Columbia River Total Zinc Measurements at Four Stations      4-36 During 1990 4-9  Columbia River Total Iron Measurements at Four Stations      4-37 During ~1990 4-10 Columbia River Total Hardness Measurements at Four Stations  4-38 During, 1990 4-11 Columbia River Nitrate  Nitrogen Measurements at Four        4-39 Stations During 1990 4-12 Columbia River Total Sulfate Measurements at Four Stations    4-40 During 1990 4-13 Columb'ia River Total Dissolved Solids Measurements at Four  4-41 Stations During 1990
 
(Continued)
NuZber j'1 i~1 Columbia River Total Suspended        Solids Measurements    at Four Stations During    1990 4-15  Columbia River    Turbidity  Measurements  at Four Stations During 1990 5-1    Soil and Vegetation Sampling Location Map 5-2    Layout of Vegetation and Soil Sampling Plots 5-3    Mean Herbaceous    Cover  for  1975 Through 1990 Mean Herbaceous    Cover,  Mean Dry  Height (g/m  ), Total Precipitation,    and Mean Temperature    From 1982 Through 1990 5-5    Mean Herbaceous    Phytomass  at Grassland  and Shrub  Stations for    1975 Through 1990 5-6    Mean Herbaceous    Cover and Phytomass    for Stations  G01  to G04    for 1980 Through 1990 5-7    Mean Herbaceous    Cover and Phytomass    for Stations  G05  to G08    for 1980 Through 1990 5-8    Mean Herbaceous    Cover and Phytomass    for Stations  S01  to S04    for 1980 Through 1990 Mean Herbaceous    Cover and Phytomass    for Stations  S05  to S07    for 1980 Through 1990 5-10    Shrub Density at Five Stations for 1984 Through 1990 5-11  Mean Total Shrub Cover for 1975 Through 1990 5-12    Shrub Cover and Density      for Five Stations for 1990 5-13    Soil pH and Conductivity for 1980 Through 1990 5-14    Soil Sulfate and Chloride for 1980 Through 1990 5-15    Soil Bicarbonate and Copper for 1980 Through 1990 5-16    Soil Lead and Nickel for 1980 Through 1990 5-17    Soil Cadmium and Zinc for 1980 Through 1990 5-1.8  Soil Chromium and Sodium for 1980 Through 1990 5-19    Soil Potassium and Calcium for 1980 Through 1990 5-20    Soil Magnesium for 1980 Through 1990 5-21        p          t tl ( I> I 8              ~il'I        d
      ~nrem by Station for 1984 Through 1990 vii
 
2Qa (Continued)
                                              ~~'J        ~
      ~
PP    0        t ti      I  glg)    1                                d 580~        C)dgJ559 by 5t tl                f    195  Th    gh 1990 0        0        t tl ( ig)            \    5)dgdg)88 aUdalJllm          d  5-57
                                                          ~~
PP f
by  yt Chloride Concentration ('/.) in 1
1 ggjf~li by Station for 1984 Through 1990 19
                                            ~B  ~  h    h 1990
                                                      ~gzgm and 5JZ            5-58 tl C) I            ift    JJ Cll Id C
          ~,by      8                                                  d      5-59
                                                    ~~
    'J 1                        5t ti .I'          98 Th    gh 99 Id C          t tl (5) I P 50898CI)( d                                  5-60
        'y Chl by  5t  tl    I'984          Tl  gh 1990 5  if t    C        1    tl    (5)    I    9)  I                  d  lyygdtJPP 5-61
  )JJJ          by  yt ti    f      198    Th    gh  990 If t            t tl        ('f)  1    8J~J                      d        5-62 Station for 555.'J 51 t~Zgm t
by t tl Station for (9)  1 958~  1984 Through 1990 1984 Through 1990 d              5-63 Total Vegetation Copper, Chloride and Sulfate for 1990                          S-6e Predicted Salt Deposition Patterns Out to 0.5 Mile                              5-65 (0.8 km) (lb/acre/yr)
Predicted Salt Deposition Patterns Out to 6.9 Miles                            5-66 (11.1 km) (lb/acre/yr)
Location Map of Cooling Tower Drift Monitoring Sites                            5-67 Cooling Tower Drift Collection Vessel                                          5-68 Cumulative Wind Rose April 1989 Through March 1990 WNP-2                        5-69 Meteorological Station 33 Foot Level Cumulative Wind Rose 1984 Through 1989 WNP-2 Meterological                      5-70 Station 33 Foot Level Deposition'ate as a Function of Distance                                        5-71 Aerial Photography Flightlines                                                  7-6
 
                                  .0 Washington Public Power Supply System (Supply System) began site prepa-ration for Nuclear Plant Number 2 (WNP-2) near Richland, Washington in March 1973. WNP-2 loaded fuel in December 1983, reached approximately 75  percent thermal load in November 1984, and began commercial opera-
  'ion in December 1984.
The  Site Certification Agreement    (SCA) for WNP-2, executed on May 17, 1972, between the State    of Washington and the Supply System requires that ecological monitoring be conducted during the preoperational and operational phases of site, development and use. The Washington State Energy  Facility Site Evaluation  Council (EFSEC) approved a change in 1978 to the technical scope of environmental monitoring required by the SCA (EFSEC Resolution No. 132, January 23, 1978). In 1980, the
  .
aquatic and water quality portions of the preoperational monitoring program were terminated (EFSEC Resolution No. 166, March 24, 1980).
The following year the preoperational and operational terrestrial monitoring program scope for WNP-2 was modified (EFSEC Resolution No.
193, Hay 26, 1981). Prior to operation, the council reviewed the preoperational aquatic monitoring data and approved the operational monitoring program (EFSEC Resolution No. 214, November 8, 1982).
The Supply System    in 1974 retained Battelle Pacific Northwest Labora-tories (BNW) to conduct the preoperational aquatic monitoring for WNP-2. The results of aquatic studies performed from September 1974 through August 1978 are presented in various reports (Battelle 1976, 1977, 1978, 1979a and 1979b).      From August 1978 through March 1980 the aquatic studies were performed by Beak Consultants, Inc. (Beak 1980).
In 1982 the Supply System analyzed the 1974-1980 aquatic data and presented the results and a recommended operational monitoring program to EFSEC (Mudge et. al., 1982). The operational program was accepted with minor modifications and initiated in March 1983. Due to
.
 
operational conditions, the plant did not consistently discharge liquid effluents until the fall of 1984. Figures l-l and 1-2 present summaries'f electrical generation and monthly discharges for 1990.
Terrestrial monitoring      was  initiated in  1974 and was conducted  by BNW until  1979  (Rickard and Gano, 1976, 1977, 1979a, 1979b). Beak Consultants, Inc. performed the vegetation monitoring program from 1980-1982 (Beak 1981, 1982a,        1982b). Since 1983, Supply System scientists have been responsible for the vegetation aspects of the program (Northstrom et. al. 1984; Supply System 1985, 1986, 1987, 1988, 1989). During 1981, the animal. studies program was taken over by Supply System      scientists  and  results  were reported annually (Schleder 1982, 1983, 1984; Supply System 1985, 1986, 1987, 1988, 1989). The first comprehensive operational environmental report was prepared by Supply. System scientists in 1984 (Supply System 1985).
During    their regular    meeting of September 14, 1987 the Energy Facility Site Evaluation Council approved Resolution No. 239 which adopted a long-term environmental monitoring program for WNP-2. This decision was based upon, the council's examination of the document titled 3gv1ew f        nvi    m n  1 M ni  rin Pr r        f  WNP- wi h      mm n r D              n in in        i  (Davis and Northstrom, 1987).
This report presents the results of the Ecological Monitoring Program (ENP) for the period January 1990 through December 1990.
1.2  TffT '/TED.,
The WNP-2    plant site is located 19 km (12 miles) north of Richland, Washington in Benton County (Figure 1-3). The Supply System has leased 441  hectares    (1089 acres) from the U.S. Department      of Energy's Hanford Site for    WNP-2.
1-2
 
WNP-2  lies within the boundaries of the Columbia Basin, an extensive area south of the Columbia River between the Cascade Range and Blue Mountains in Oregon and approximately two thirds of the area lying east of the Cascades in Washington. The plant communities within the region are described as shrub-steppe communities consisting of various layers of perennial grasses overlayed by a discontinuous layer of shrubs. In general, moisture relations do not support arborescent species except along streambanks.      Approximately 5 km (3.25 miles) to the east, the site is bounded by the Columbia River. In August of 1984 a range fire destroyed much of the shrub cover which occupied the site and temporarily modified the shrub-steppe associations which were formerly present.
The  aquatic  and water quality sampling stations are located near the west bank of the Columbia River at mile 352. Sampling was limited to the main channel Benton County side which, near the site, averages 370 meters (1200 feet) wide at a river elevation of 105 meters (345 feet>
above sea level and ranges to 7.3 meters (24 feet) deep.      Sampling stations have been established in the river both upstream and down-stream from the plant intake and discharge structures,      The river-level in this area fluctuates considerably diurnally and from day-to-day in response to release patterns at the Priest Rapids Dam (River Mile 397). These fluctuations cause large areas of river bottom to be alternately exposed and covered. The river bottom within the study area varies from exposed Ringold conglomerate to boulders, cobble, gravel, and sand. River velocities at the surface average approxi-mately 2 meters (5 to 6 feet) per second in this area of the river, and water temperature varies from approximately 0 to 22'C.
The  flow of the Columbia River at WNP-2 is controlled by releases from Priest Rapids Dam. The minimum flow, measured at the USGS stream-quality station located at river mile 388.1 near the Vernita bridge, was 58,400 cfs (cubic feet per second), while average and maximum flows in 1989 were 134,022 cfs and 322,000 cfs, respectively (Figure 1-4) .
 
The  terrestrial    sampling locations are all within an 8 km (5 mile) radius from WNP-2. The topography is flat to gently rolling, gradually increasing from an elevation of 114 meters (375 feet) at the riparian sampling locations to approximately 152 meters (500 feet) at more distant shrubgrass      sample  stations.
  .3  ILBLIGG Battelle Pacific Northwest Laboratories.            1976. Aquatic ecological studies conducted near WNP-1, 2, and 4, September 1974 through September 1975. 'upply System Columbia River ecology studies Vol. 2.
Richland, WA.
Battelle Pacific Northwest Laboratories.            1977. Aquatic ecological studies near WNP-l, 2, and 4, October 1975 through February 1976.
Supply System Columbia River Ecology Studies Vol. 3. Richland, WA.
Battelle Pacific Northwest Laboratories.          1978. Aquatic ecological studies near    WNP-1,    2, and 4, March through December 1976. Supply System Columbia River ecology studies Vol. 4. Richland, WA.
Battelle Pacific Northwest Laboratories.            1979a. Aquatic ecological studies near WNP-l, 2, and 4, March through December 1977. Supply System Columbia River ecology studies Vol. 5. Richland, WA.
Battelle Pacific Northwest Laboratories.            1979b. Aquatic ecological studies near WNP-l, 2, and 4, January through August 1978. Supply System Columbia River ecology studies Vol. 6. Richland, WA.
Beak    Consultants,    Inc. 1980. Aquatic ecological studies near  WNP-1, 2, and 4, August 1978 through March 1980.            Supply System Columbia River ecology studies Vol. 7. Portland,            OR, Beak  Consultants,    Inc. 1981. Terrestrial monitoring studies near WNP-1, 2, and    4,  May  through December 1980. Portland,  OR.
1-4
 
Beak  Consultants,  Inc. 1982a. Terrestrial monitoring studies near WNP-1,  2, and 4,  May  through December 1981.      Portland, OR.
Beak  Consultants, Inc. 1982b. Preoperational terrestrial monitoring studies near WNP-l, 2,    and 4, May through August 1982. Portland, OR.
Davis, W. III and T.E. Northstrom.      1987. Review of the environmental monitoring program for WNP-1 with recommendations for design of con-tinuing studies. Washington Public Power Supply System, Richland, WA.
Mudge,  J.E., T,B. Stables,    W. Davis  III. 1982. Technical review of the aquatic monitoring program      of  WNP-2. Washington Public Power Supply System, Richland WA.
Northstrom, T.E, J.L. Hickam and T.B. Stables.          1984. Terrestrial monitoring studies for 1983. Washington Public Power Supply System, Richland, WA.
Rickard, W.H. and K.A. Gano. 1976. Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects  1  and 4. Progress report for the period July 1974 to June 1975. Battelle Pacific Northwest Laboratories, Richland, WA.
Rickard,  W,H. and K.A. Gano.      1977. Terrestial ecology studies in the vicinity of  Washington Public Power Supply System Nuclear Power Projects  1  and 4. Progress report for 1976.        Battelle Pacific North-west Laboratories, Richland,      WA.
Rickard, W.H. and K.A. Gano. 1979a. Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4. Progress report for 1977. Battelle Pacific Northwest Laboratories, Richland, WA.
Rickard, W.H. and K.A. Gano. 1979b. Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects  1  and 4. Progress report for 1978.        Battelle Pacific Northwest Laboratories, Richland, WA.
1-5
 
Schleder, L.S.            1982. Preoperational  animal studies near WNP-1, 2 and
: 4. Annual  report for 1981.            Washington Public Power Supply System, Richland,  HA.
Schleder, L.S.            1983. Preoperational  animal studies near WNP-1, 2 and
: 4. Annual  report for          1982.=- Washington Public Power Supply System, Richland,  WA.
Schleder,  L.S.            1984. Preoperational  animal studies near HNP-l, 2 and
: 4. Annual  report for          1983. Washington Public Power Supply System, Richland,  WA.
Washington Public Power Supply System.                1985. Operational ecological monitoring program for Nuclear Plant 2. Annual report for 1984.
Richland,  WA.
Washington Public Power Supply System.                1986. Operational ecological
'monitoring program for Nuclear Plant 2. Annual report for 1985.
Richland,  HA.
Washington Public Power Supply System.                1987. Operational ecological monitoring program for Nuclear Plant 2. Annual report for 1986.
Richland,  WA.
Washington Public Power Supply System.                1988. Operational ecological monitoring program for Nuclear Plant 2. Annual Report for 1987.
Richland,  HA.
Public Power Supply System. 1989. Operational ecological
                'ashington monitoring program for Nuclear Plant 2. Annual Report for 1988.
Richland, WA.
Washington Public Power Supply System.                1990. Operational ecological monitoring program for Nuclear Plant 2. Annual Report for 1989.
Richland,  HA, 1-6
 
MWH/MONTH THERMAL (MILLIONS)
: 3. 00 2.75
: 2. 50
: 2. 25 2.00 1.75 1.50
: 1. 25 1.00
: 0. 75
: 0. 50 0.25 0.00 JAN FEB MAR  APR    MAY    JUN      JUL    AUG    SEP OCT NOV DEC MONTH FIGURE 1-1 HNP-2 GROSS THERMAL PRODUCTION FOR 1990
 
DAYS/MONTH DISCHARGE                                  M EAN Dl SCH ARG E  GAL/DAY X 100000 35                                                                                            36 30                                                                                            30 25                                                                                            25 20                                                                                            20 15 10 JAN  FEB    IYIAR  APR    MAY      JUN      JUL    AUG    SEP      OCT    NOV  DEC 1990 RR DAYS        m GPD
                                                  \
FIGURE 1-2 NNP-2 DAYS PER MONTH DISCHARGE AND MEAN MONTHLY DISCHARGE
 
5                        311C 0 3110    5 311C                                                                                                3110 o&                                                                                                0 313A                                                                                                3l30
                                                                        ~ waswecsaw
                                                                            ~
sal cc eeaa
                                                                          ~
                                                      ', I'1i 0
rscre                      aae OO                          ~ e rc
                                                                                        ~ ass%
5l
          ~    Legend
          ~ spraws Casa le%
iree I Qrasw lssal ssswsac tewc Uas    wsw Sssw Tenon
~      ~
ssrrsr Ure wss ssssc salas
          ~ ease Urw wsss waassa svss
          /sacs llse a  se ursa acsscsac sclssstlrW 5sa  343e o 34ii D    ascarcssa Sssa UWI Pl  IeWssel ssa Qsrs Sl IlcsHcsall arcs slws IO Wscrs  wancsl    Slsrs Owl l4cosayss laresc 5IIO Osswsrc SCIW 11 WL FIGURE 1-3 NNP-2 LOCATION MAP 1-9
 
FLOW (KCFSj 336 308 280 252 224 196 168 140 112 84 56 28 JAN  FEB  MAR  APR    MAY    JUN    JUL    AUG    SEP  OCT NOV DEC MONTH I  MAX/MIN    +  MEAN FIGURE 1-4 COLUMBIA RIVER MEAN MONTHLY FLOH FOR 1990
: 2. 0  N TAB E ENVI  NNENTA    B  RVATI  N
      ~NT        II Any  occurrence of an unusual or notable event that indicates or could result in a significant environmental impact causally related to plant operation shall be recorded and reported to the NRC within 24 hours followed by a written report. The following are examples: excessive bird impaction events, onsite plant or animal disease outbreaks, mortality or unusual occurrence of any species protected by the Endangered Species Act of 1973, fish kills, increase in nuisance organisms or conditions, and a significant, unanticipated or emergency discharge of waste w'ater or chemical substances.
: 2. 2  ~)~D Weekly ground surveys were conducted from January 1st through December 31st to document the occurrence of unusual species or events within the property boundary of    WNP-2 (Figure 2.1). Additional information was  supplied by security and environmental personnel.
: 2. 3  gQ~T There were no unusual or notable events which      resulted in significant environmental  impacts from the operation    of WNP-2.
There were, however, some 'general    observations worth noting.
Tt I I-N111 d          I  (II,      I          )    t      t I resident during spring periods, with several nesting pairs sighted in the shrub-steppe communities surrounding WNP-2.
2-1
 
hb\g l.lith~,>1plgtl of the Hanford Reservation, fd t with several sightings being reported from locations within WNP-2's site area boundary. Of particular note during 1990, was the establishment of a nesting pair at the edge of a gravel parking lot, immediately northeast of Plant 2. Although the pair was continuously subjected to disturbances from human activities (a major access road and railroad bordered the burrow on each side),
their breeding attempt was successful. On May 25, a total of four young were observed at the burrow entrance. Several more observations of the owls were reported in early June.
Spring 1990 produced one 'of the largest grasshopper hatches in recent memory, Vegetation in some areas was severely impacted.      In late May, a large population of gulls were using the grasshoppers    as a major food source. Feeding groups numbering from a few individuals to several dozen birds were routinely sighted at several locations near WNP-2.
There were no unanticipated or emergency discharges    of water or wastewater during the reporting period.
2-2
 
ASHE SUBSTATION ROAD QN SECURITY RANGE ROAD        FIRING H.J. ASHE                                        RANGE r
SUBSTATION I
II I
WNP-2 RIVER PUMP-HOUS    n PUMP HOUSE ROAD                PUMP- HOUSE ROAD              0 QO~
OO WNP-2                                          II PROPERTY LINE
                              ~0                                    II I
SANITARY'OC                                    I WASTE FACILITY                WNP-1            I EMERGENCY RESPONSEI                                                                    BENTON PLANTSUPPORT FACILITY                                                                  SWITCHING STATION O
WNP-2                                              0 K
ACCESS ROAD O
0 FIGURE 2-1 WNP-2 PROPERTY BOUNDARY
 
3.0  FI H BI 3.1 A  bioassay using chinook salmon (      rh    h              ) was per-formed from October 20 through October 24; 1990, in compliance with Special Condition S4 of the WNP-2 National Pollutant Discharge Elimination System Waste Discharge Permit (NPDES No. WA-002515-1).
Specifically, the permit requires 96-hour flow-through testing in 01.
(control)  and 1001. effluent concentrations. An 801. or greater survival rate in 1001. effluent is specified    as the successful test criteria.
At the time of the test, normal operating conditions for WNP-2 were characterized by 1001. power production and a recirculating cooling water system exhibiting 12 cycles of concentration.        Calgon PCL 8125 is added to the recirculating water to inhibit corrosion of the admiralty brass condenser tubes. In addition, chlorine and sulfuric acid are introduced to the system on a routine basis for biofouling treatment and pH adjustment, respectively. Recirculating cooling water blowdown (effluent) is discharged on a continuous basis except during periods of biofouling treatment. Following a treatment, discharge is resumed when total residual halogen concentration meets permit requirements (less than or equal to 0,1 mg/1). The discharge rate during the bioassay averaged 1350 gpm, ranging from a low of 1200 gpm on October 20 to a high of 1500 gpm on October 24, 1990.
Secondary Chemistry Program Data (Attachment 1) includes information on the chemical composition of the recirculating water system (CW) for a sample taken on October 23, 1990.
3.2 The  bioassay generally adhered to the requirements set forth in EPA Publications "Methods for Measuring the Acute Toxicity of Effluents to 3-1
 
Freshwater and Marine Organisms," 1985, and "Quality Assurance Guide-lines for Biological Testing," 1978. Specific methodology is provided in Environmental Programs Instruction 13.2.11, "WNP-2 Aquatic Bio-assays" and "Environmental Sciences and Plant Support Chemistry Quality Assurance Manual," (Washington Public    Power Supply System, 1990).
The  bioassay test facility is situated on the west bank of the Columbia River directly ad]acent to the WNP-2 makeup water pumphouse.
Effluent used for the test was diverted from the discharge pipe and      .
pumped to the test facility. Control (dilution) water was untreated Columbia River 'water pumped from the makeup water pumphouse directly to the test facility. Water Quality Program data from a Columbia River monitoring station sample taken October 2, 1990 provides information as to the chemical makeup of the control (dilution) water (Attachment 2).
Temperature  control for the holding tank water  and the 01. (control) and 1001. plant effluent solutions was provided  by a 200,000 BTU capacity  chiller  and an in-house designed  temperature conditioning unit. A system of heat exchangers, flow and temperature control valves, water heater, and controllers produced a test water temperature of 12 C, controllable to within +/-1 C.
The  chinook salmon juveniles utilized for the bioassay were obtained from the Washington Department of Fisheries, Ringold Hatchery on October 4, 1990, The fish were acclimatized in a 2000-liter capacity holding tank for 14 days. The water temperature of the holding tank was gradually. reduced from an initial temperature of 15.9 C (which approximated the temperature of the hatchery holding pond) to the desired test,,temperature at 12'C four days prior to the start of the 96-hour test. At no time did the change in temperature exceed 3 C in a 12-hour period. A commercial fish food (Bio-Dry by Bioproducts) was utilized, with food size and feeding rates as used at the hatchery.
Fish were not fed for 48 hours prior to handl'ing or during the 96-hour test.
3-2
 
The  flow-through system consisted of six 132.5-liter capacity'glass aquaria, each containing a volume of approximately 114 liters. The system included three control (1001. Columbia River water) and three toxicant (100'/. plant effluent) aquaria selected on a random basis.
Aquaria flow rates were approximately 1.43 liters/minute/aquaria.
Water temperature    in both the control and toxicant head boxes    was monitored continuously by use of an Astro-Med Dash 2 recorder.
Control water (Columbia River) flow to all six aquaria was initiated at 2400 hours on October 6, 1990. At 1400 hours on October 17, 1990, ten fish were distributed to each aquaria, two per tank, in a stratified random manner. The aquarium loading factor was-approximately 180 grams or 1.58      g/liter.
Fish were acclimatized in the aquaria at 100'/. control water      for  48 hours  prior to toxicant (plant effluent) introduction.      The 96-hour test was begun by siphoning down the aquaria (including controls) until there was approximately 23 liters of water remaining, and then toxicant flow was initiated to,the test aquaria. Control aquaria were allowed to refill with river water. The aquaria were checked for mortalities twice per day.
Fork lengths and wet weights were determined by anesthetizing and measuring control fish at the end of the test (Table 3-1). All fish surviving the test were released to the Columbia River.
Temperature, dissolved oxygen, pH and conductivity were measured daily in the control and toxicant head boxes, and each aquaria. Grab water samples were collected daily from the control and toxicant head boxes and each aquaria, and analyzed for calcium, magnesium, alkalinity, total copper,  and  total zinc.
l The pH and  temperature measurements were made with an IBM Model EC105-2A portable pH meter.      Prior to each use the instrument was 3-3
 
calibrated using    pH standards of 4.0, 7.0, and 10.0. If  necessary, the probes were 'adjusted to within 0.1 unit of the standards.        The temperature probe was calibrated against an NBS-traceable thermometer.
Dissolved oxygen measurements were made using a Yellow Springs Instrument (YSI) Model 57 meter. The meter was air-calibrated prior to each use per manufacturer's instruction. In addition, Hinkler D.O.
measurements were made prior to the bioassay and results compared to the Model 57 meter.
Conductivity measurements were made with a YSI Model 33 meter.          Daily measurements using conductivity standards were performed.
Sample  holding'times followed those recommended by the U.S. Environ-mental Protection Agency (USEPA 1983). Analyses were performed per USEPA (1983) approved methods (Table 3-2).
3.3            ND No  fish mortal,ities were observed in any of the control    <0'/. effluent) or toxicant (1001. effluent) aquaria. This result is in      agreement    with several static bioassays conducted at NNP-2 during 1984      and 1985 (Supply System, 1986)    .
Temperature measurements    remained fairly constant  throughout the test period. Only slight variations occurred between control and toxicant solutions. All measurements were within the required range of 12 C +/-1'C (Table 3-3). The pH values are presented in Table 3-3.
Discharge water (toxicant) exhibited a value about one unit higher than the control values.
Dissolved oxygen measurements were fairly constant. Discharge aquaria averaged approximately 2 mg/1 less than control aquaria throughout the bioassay (Table 3-4). Conductivity measurements (Table 3-4) demon-strate the difference in concentration (cycles) between control (Columbia River) and toxicant <100/. effluent) water sources.
3-4
 
Total alkalinity measurements for both the control and toxicant aquaria remained constant throughout the bioassay.        Discharge values were approximately four times higher than control values (Table 3-5).
Total hardness  values given in Table 3-5 are indicative of the cycles of'oncentration. Hardness was determined by calculation from magnesium and calcium measurements (Table 3-6). The number of cycles of concentration of discharge water ranged from approximately 11.6 at the start of the test to 10.1 at the end of the test period. This calculation is based  on calcium  levels recorded from control      and toxicant head boxes.
Copper and  zinc concentrations are presented in Tables 3-7 and 3-8, respectively. The elevated levels in the discharge water may be
. attributed to corrosion of the condenser      tubes and system piping as well as concentration of metals in the makeup water. These values are considerably lower than the concentrations observed during the static bioassays of 1984/1985. A discussion of the chemical composition of Calgon PCL 8125 and its ability to chemically bind toxic metal forms is presented in the "Operational Ecological Monitoring Program for Nuclear Plant No. 2, 1985 Annual Report" (Supply System, 1986).
: 3. 4  ~F~F~
a            f          in                r    H    w  r,  16th Edition,  APHA, AHWA, HPCF,  Washington, D.C., 1985 fr    h  i    A          f W    r    W    ,  EPA-0600/4-79-/020, Environmental Monitoring and Support Laboratory, Environmental.
Protection Agency, Cincinnati, Ohio 1983 "Environmental and Plant Support Chemistry Laboratory Quality Assurance Manual," Washington Public Power Supply System, 1990 3-5
 
rin  h  A          i      f ff  n      F  hw M  rin            E  il  I-    I    .E  I      tt    t tt March 1985 1        rBi                  EPA/600/4-78/043, Environmental Protection Agency, 1978 im            hr n      vi  W              hw    r r          EPA/600/4-85/014, December  1985 "Operational Ecological Monitoring Program for Nuclear Plant No. 2, 1985 Annual Report," Washington Public Power Supply System, 1986 "WNP-2  Aquatic Bioassays," Environmental Programs Instruction 13.2.11, Washington Public Power Supply System, 1990 3-6
 
Table 3-1. Size and Weight    of Fish  used  in Bioassay Test.
F  r 5J~i'i                  ~Av  r~      ~an              ~vrk9R ~~nC Chinook        30        11.0        8.9  16.2        15.6  8.5  50.8 3-7
 
Table 3-2. Summary  of Bioassay  Parameters and Associated  EPA Methods.
Hater Temperature  ( C)                                    170.1 Conductivity (us/cm) at 25'C                                120.1 Dissolved Oxygen (mg/1)                                    360.1 360.2 pH (su)                                                    150.1 Total  Alkalinity (Mg/1  as CaC03)                        310.1 Total Hardness  (mg/1 as CaC03)                            130.2 Calcium                                          200.7 Magnesium                                        200.7 Total Copper (ug/1    as Cu)                                220.2 200.7 Total Zinc(ug/1  as Zn)                                    289.2 200.7 3-8
 
Table 3-3. Temperature  and pH Measurements Temperature    ('C)                                          pH
                                      @~I~i            Emily<                  ~~ri
              %  Discharge Conc.      X Discharge Conc. %  Discharge Conc.      %  Discharge Conc.
Sample
~D 10/20/90        11.4        11.6        11.7    11.9  7.91        8.63        7.71        8. 57 11.7    11.8                        . 7.74        8.62 11.7    11.9                          7.81        8.62 10/21/90        11.7        12.1        11.9    12.4  7.87        8.67        7.82        8.61 11.9    12.5                          7.81        8.67 12.0      12.5                          7.84        8.66 10/22/90        12.3        12.1        12.7      13.0  7.88        8.69        7.87        8.64 12.7      13.0                          7.90        8.67 12.7    13.0                          7.89        8.66 10/23/90        12.0        12.5        11.9      12.3  7.95        8.65        7.95        8.63 11.9      12.3                          7.91        8.66 11.9      12.3                          7.92        8.65 10/24/90        11.8        12.1        12.0      12.5  7.95        8.60        7.93        8.55 12.0      12.3                          7 '2        8.61
: 11. 9    12.2                          7.93        8.57
 
Table 3-4. Dissolved Oxygen and Conductivity Measurements Dissolved Oxygen (mg/1)                    Conductivity (uS/cm)
He  ULCC              mmar~
X Discharge Conc. X  Discharge Conc.    'L  Discharge Conc. 4  Discharge Conc.
Sample
~D 10/20/90      10.2      8.5        10. 5      8.9        98        1050    100          900 10.2        9.9                            99          900 10.4        9.3                            103          890 10/21/90        9.8      7.8          9.4      7.8      100          1050      99        1000 9.5      7.8                            99        1020 9.6      7.9                            100        1000 10/22/90      10.0      7.7          9.5      7.7      100          970      100          950 9.5      7.8                            100          970 9.5      7.8                            100          970 10/23/90      10.2      8.0          9.9      8.2        90        890      97          900 9.9      8.2                            .97          900 9.9      8.2                            98          900 10/24/90        9.9      7.8          9.6      7.8                  790      99          850 9.5      7.9                            98          860 9.6      7.8                            100          850
 
Table 3-5. Total  Alkalinity and Total  Hardness  Measurements Total  Alkalinity (mg/1)                          Total Hardness (mg/1) kg~i
                'L Discharge Conc.      'L Discharge Conc.        'L Discharge Conc. 4  Discharge Conc.
Sample
~D 10/20/90          54.0      197.0        53.0      177.0        65.2        768        64.7        689 54.0      180.0                              64.0        656 55.0      176.0                              64.2        666 10/21/90          54.0      194.0        55.0      196.0        63.7        735        64.1        595 54.0      197.0                              62.1        717 54.0      197.0                              62.9        740 10/22/90          54.0      190.0        54.0      191.0        64.0        678        62.3        683 54.0      192.0                              61.6        670 54.0      188.0                              63.3        665 10/23/9054.0      196.0      53.0        202.0      61.5        633        61. 6      652 54.0      200.0                              60.7        613 54.0      202.0                              62.9        655 10/24/90          55.0      179.0        55.0      180.0        61.4        615        63.0        610 54.0      180.0                              62.9        660 54.0      179.0                              61. 6      595
 
Table 3-6. Magnesium and Calcium Measurements
              , Magnesium (mg/1)                            Calcium (mg/1)
Hmf~B
                '4 Discharge Conc.    '/. Discharge Conc. L Discharge Conc.  'L Discharge Conc.
Sample
~D 10/20/90        4.2        52.0          4.2      46.0  19.2      222.0  19.0        200.0 4.2      44.0                      18.7        190.0 4.2      44.0                      18.8        194.0 10/21/90        4.3        50.0    ,    4.3      42.0  18.4      212.0  18.6        169.0 4.1      48.0                      18.1        208.0 4.1      50.0                      18.4        214.0 10/22/90          4.2        46.0          4.2      46.0  18.7      196.0  18.0        198.0 4.1      44.0                      17.9        196.0 4.2      44.0                      18.4        194.0 10/23/90          4.0        42.0          4.1      42.0  18.0      184.0  17.9        192.0 4.0      48.0                      17.7        167.0 4.1      44.0                      18.4        190.0 10/24/90 4.1      40.0        4.2        40.0        17.8  180.0      18.3    178.0 4.1      44.0                      18.4        192.0 4.1      40.0                      17.9        172.0
 
Table 3-7. Total Copper Concentrations  (ppb) 1  D Percent Discharge        October      October    October    October    October 24 Sample L~tim                n          ~hr      20
                                                ~4hr 21
                                                            ~4r    22
                                                                    )  ~~h)    23 hr Head Box                                0.3          0.8        1.6      1.3        1.2 100              81.0          78.0      78.0      75.0      71.0 Aquaria (3)                            0.4          0.5        1.0                  1.2 0.4          0.3                  1.0 0.3          0.3                  0.9        0.4 100              70.0          78.0      76.0      73.0      67.0 100              72.0          76.0      77.0      75.0      68.0 100              68.0          76.0      75.0      73.0      69.0
 
Table 3-8. Total 2inc Concentrations  (ppb) 1  D Percent Sample          Discharge          October 20 October  21 October 22 October 23 October 24 Laa~n              n                                      ~LhcQ Head Box                              2.0        2.0        2.0      3.0 100              87.0      64.0        59.0      64.0      60.0 Aquaria                0              4.0        4.0        2.0      4.0 4.0        4.0                  3.0 4.0        2.0        1.0      1.0 100              59.0      61.0        63.0      62.0      55.0 100              62.0      63.0        61.0      62.0      57.0 100              55.0      62.0        58.0      61.0      57.0
*Less than detection  limit.
 
DATE-  18/25/98 DIC:  1444.27 ENVIRONMENTAL AND PLANT SUPPORT CHEMISTRY LABORATORY TEST PLAN 27 SECONDARY CHEMISTRY REPORT TERRY NORTHSTROM          EXT. 8462                      RICK WELCH EXT. 8324 SAMPLE    &#xb9;:            3197.                          DATE RECKIVED:      18/23/98 LOCATION:            CW CUSTOMER:            R. ED WELCH                        DATE COMPLET
                                                                          '
REVIEWED BY: T. NORTHSTROM              7              ANALY    ".            E G TOTAL  METALS  (mg/1)
B      C CALCIUM      198                                  ALUMINUM      8.12          89 MAGNESIUM    48  F 1                              MANGANESE    8.818          88 SODIUM        45                                  POTASSIUM    7.8 COPPER      8.863              91                CHROMIUM      <8.886        89.
ZINC        8  '52            91                PHOSPHORUS    4.2 NICKEL        8 83              84                SULFUR        149 IRON        8  '3              83                SILICON      24.3 DISSOLVED METALS. (mg/1)
CALCIUM .        175                          ALUMINUM            <8.83 MAGNESIUM        38.6                        MANGANESE            8 883 SODIUM                                        POTASSIUM            6+3 COPPER          8.858                        CHROMIUM            <Q.QQ6 ZINC            8.849                        PHOSPHORUS          3.9 NICKEL IRON 8
8
                        '2
                        '43 SULFUR SILICON 148 22.8 INORGANIC NON-METALS AND PHYSICAL PROPERTIES B      C SULFATE      418                                  PHOSPHATE    Q.B6 CHLORIDE      22 FLUORIDE      8.82                                pH            8.58 NITRATE      1 ~ 2                                CONDUCTIVITY 113B            uS CALCULATED RESULTS CYCLES (Ca)        18.6                          CALGON  PCL-8125 SI02            48 79 mg/1                            (P BASIS)        85.92 mg/1 LEGEND COLUMN:
A    SAMPLE ANALYSIS RESULTS B  SPIKE SAMPLE RESULTS (% RECOVERY)
C  OC SAMPLE RESULTS              (% OF TRUE VALUE) 3-1 Attachment 1.0 3-15
 
e.
REPORT  DATE:82/i2/9i ENVIRONMENTAL AND PLANT SUPPORT CHEM1STRY LABORATORY WATER CHEMISTRY REPORT TERRY NORTHSTROM    EXT. 8462                            SARA LINDBERG      EXT. 8825 SAMPLE 8    2124.                                    DATE RECEIVED:    18/82/98 DESCRIPTION: WATER QUALITY    9i-i CUSTOMER: RE WELCH                                    DATE COMPLETED    i2/87/98 ANALYST:                                              REVIEWED BY:
DATE SAMPLE TAKEN:
NALYSIS AMMONIA NITROGEN    8.8i6    (mg/1)            NITRATE NITROGEN <d 1        (mg/1)
SULFATE            8.97      (mg/1)            TEMPERATURE        17.8      (C)
DISSOLVED OXYGEN        18.8  (mg/1)            CONDUCTIVITY        1 ~4. 1  (ua/cm/25C)
TOTAL RESIDUAL CL      <8.85  (ug/1)            OIL 5 GREASE        <8.5      (mg/1)
TOTAL PHOSPHORUS      8 '16  (mg/1)            ORTHOPHOSPHORUS    <dl 7.87 (mg/1)
TQT. DISSOLVED SLDS 7'9. 8    (mg/1  )          PH TOT SUSPENDED SLDS 2.5        (mg/1)
TURBIDITY              8.85  (NTU)            HARDNESS            61.6      (mg/1)
ALKALINITY            58.8  ((mg/1)
CQPPER      i. I  (ug/1 >    Z INC      ~. 9    (ug/1  >  NICKEL      8 2
                                                                            ~      (ug/1 )
CHROMIUM    8 28
              ~    (ug/1 )    IRON        58. 8    (ug/1  )  LEAD        8. 4 i  (ug/1 )
CADMIUM    <8. 1 (ug/1 )
3-2 Attachment 2.0 3-16
 
4.0 UUZJIKJL The  water quality monitoring program documents the chemical character of the Columbia River in the vicinity of the WNP-2 discharge. The monitoring data is used to assess    if  chemical changes in the Columbia River result from WNP-2 cooling tower blowdown. The program is per-formed to comply with EFSEC Resolution No. 239.
4.2  M Columbia River surface water was sampled monthly January 1990 through December 1990. Samples were collected near River Mile 352 from four stations  numbered  1, 7,  ll, and 8  (Figures 4-1, 4-2). Station  1 is upstream of the WNP-2 intake and discharge and represents a control.
Station 7 is in the center of the mixing zone approximately 45 meters (150 feet) downstream of the discharge and provides a measure of near-field discharge effects. Station 11, at 91 meters (300 feet) down-stream from the discharge, represents the extremity of the mixing zone allowed by WNP-2's National Pollutant Discharge Elimination System (NPDES) permit. Sub-stations 11M and 118 sample water from middle and bottom depths, respectively. Station 8 is approximately 568 meters (1870 feet) downstream from the discharge and represents a location where the discharge is well mixed in the Columbia River:
Plant discharge water (P.H.Dis.) was sampled monthly during 1990.
Samples were collected from the discharge pipe, at a sample point located in the WNP-2 makeup water pumphouse, immediately prior to      its entering the Columbia River.
The samples  were analyzed  for temperature, dissolved oxygen (DO), pH, conductivity, turbidity, total alkalinity, total hardness, filterable residue (total dissolved solids), nonfilterable residue (total sus-pended solids), ammonia-nitrogen, nitrate-nitrogen, total phosphorus, 4-1
 
orthophosphorus, sulfate, oil and grease, total residual chlorine, total copper, total iron, total zinc, total nickel, total lead, total cadmium and total chromium. A summary of water quality parameters, stations and sample frequencies is presented in Table 4-1.
Discharge samples were analyzed      for total copper, total iron, total zinc, total nickel, total lead, total cadmium and total chromium.
4.2.1      m Columbia River samples were collected by boat approximately 300 feet from the Benton County shore. Temperature, conductivity, dissolved oxygen, and pH were determined in-situ with portable instruments.
Water  for total metal, conductivity, sulfate, orthophosphorus, ammonia-nitrogen, nitrate-nitrogen, turbidity, total alkalinity and total hardness analyses was collected in one-liter polypropylene cubitainers and kept on ice until delivered to the Supply System's Environmental Programs Laboratory (EPL). Hater for total copper analysis from Stations llM and 11B were collected in 125 ml nalgene bottles with an All-Teflon pump and Tygon tubing. In the laboratory the metals samples were acidified to 0.5'/ with concentrated nitric acid. Determinations for filterable residue, non-filterable residue, total phosphorus, and total residual chlorine were made on water samples collected in 3.8-liter polypropylene cubitainers and kept on ice unti 1 delivered to the Supply System's Radiological Services Laboratory (RSL). Hater for oil and grease analysis was skimmed from the surface into solvent rinsed borosilicate glass bottles. After collection, samples were placed on ice and transported to the RSL for analysis.
Discharge samples were collected in      one-liter polypropylene cubi-tainers  and  kept on ice until delivered to the EPL for analysis.
During the annual plant maintenance outage (May through July) only Station  1  (control) samples were  collected.
4-2
 
4.2.2 Surface temperature and dissolved oxygen measurements were made using a Yellow Springs Instruments (YSI) Model 57 meter.        Temperature was recorded to within 0.1 C after the probe had been allowed to equili-brate in the river for a minimum of one minute. The field probe was calibrated monthly, against an NBS-traceable thermometer in the laboratory.
The  DO meter was  air-calibrated prior to each field sample date per manufacturer's instruction. In addition, Winkier DO measurements were made every month and results were compared to the field probe.
Conductivity measurements were made with a YSI model 34 meter. Prior to each sample date, measurements of conductivity standards were performed.
pH  measurements  were made  with an IBM Model EC105-2A    portable  pH meter. Prior to each use the instrument was        calibrated using  pH standards of 4.0, 7.0, and 10.0.      If  necessary,  the probes were adjusted to within 0.1 unit of the standards.
4.2.3        r  r Total metals, sulfate, conductivity, orthophosphorus, ammonia-nitrogen, nitrate-nitrogen, turbidity, total alkalinity and total hardness were determined by Supply System Environmental Programs personnel. The remaining analyses were performed by Supply System's Radiological Services personnel. Sample holding times followed those recommended by the U.S. Environmental Protection Agency (USEPA 1983).
Analyses were performed per USEPA (1983) and ASTM approved methods (Table 4-2).
4 3
 
4 3  JK2KZS Data obtained during the annual maintenance    period (May through July) is not included in table summaries.
4.3.1 Columbia River temperatures    varied seasonally with  a minimum  tempera-ture of 3.3  C at Stations 1, 7, ll and 8 on February 15th and a maximum of 19.6'C at Stations llM and 11B on August 15 (Table 4-3).
River temperatures measured in 1990 are presented graphically in Figure 4-3.
4.3.2  D The mean and range    of DO measurements  for each sample station are presented in Table 4-4. Columbia River DO concentrations ranged from 9.3 mg/1 at Station 7 in September to 13.6 mg/1 at Station 7 The mean DO concentrations ranged from 11.1 mg/1 at Stations 7 in'pril.
and 8 to 11.2 mg/1 at Stations    1 and 11.
DO  concentrations were inversely related to river temperature as would be  expected from 'solubility laws. DO levels were never below the 8 mg/1  water quality standard for Class A waters (NDOE 1988) indicating good water quality with respect to dissolved oxygen throughout the year. .Dissolved oxygen measurements are presented graphically in Figure 4-4.
4.3.3 Columbia River    pH values ranged from 7.43 at Station 7 in January to 8.27 at Station 7 in March (Table 4-5). The variation in pH between sample stations is small. The largest difference of 0.44 standard units occurred between Station 7 (pH 8.27) and Station 11B (pH 7.83) in March.
4-4
 
The pH  water, quality standard for Class A waters is from 6.5 to 8.5 (WDOE 1988). Measurements for all stations throughout 1990 were within this range. pH measurements, presented graphically in Figure 4-5, generall'y agree with historical data for the Columbia River (Silker 1964).
The  alkalinity of    a water is  a measure    of its capacity to neutralize acids and is generally due to the presence of carbonates, bicarbonates, phosphates, silicates, borates, and hydroxides. Columbia River alka-linities ranged from 49,0 to 63.0 mg/1 as calcium carbonate (Table 4-6). The alkalinity measurements are presented graphically in Figure 4-6.
4.3.4 1t Conductivity is a measure of the ionic content of a solution. Columbia River conductivity measurements ranged from 118.5 uS/cm at 25 C at Station 11M in August to 162.0 uS/cm at 25'C at Station 7 in January (Table 4-7). Station mean conductivities ranged from 136.6 uS/cm at 25'C at Station    1  to 138.6 uS/cm at 25'C at Station ll. The conduc-tivity results are very comparable to those reported in earl'ier studies of the Columbia River. (Silker 1964). The measurements are presented graphically in Figure 4-7.
4.3.5        1 R  i    1    1  n Total residual chlorine (TRC) measurements for 1990 were less than the measured detection limit of 50 ug/1 (Table 4-8).
TRC  measurements    were made using the Amperometric      Titration Method.
This method has    a  detection limit of    50  ug/1.
4-5
 
4.3.6 Columbia River  total  copper values ranged from    < 1.2 ug/1 to 3.4 ug/1 (Table 4-9). The  largest interstation  difference in copper occurred between Station  1 (3.4 ug/1) and all other stations in April.
However, the value of 3.4 is uncharacteristic and is probably an indication of a contaminated sample rather than an actual copper measurement. Our copper results show good agreement with earlier studies. In 1962, Silker (1964) analyzed 27 Columbia River samples collected upstream of WNP-2 and reported a mean copper concentration of 4.3 ug/1. Neutron activation analysis of Columbia River water was done in 1968-1969 by Cushing and Rancitelli (1972). They reported a mean copper concentration of 1.4 ug/1.      Florence and Batley (1977) state that total copper concentrations in the range of 0.3 - 3.0 ug/1 are found in many unpolluted fresh-water rivers throughout the world.
The Hanford reach of the Columbia River would generally be in that category.
Plant discharge total copper concentrations      ranged from 24.0 ug/1 in April to 209.0 ug/1 in August.
~Tl~in Mean  total zinc  measurements  ranged from 6.6 ug/1 at Station 11 to 7.0 ug/1 at Station 7 (Table 4-10). Individual zinc measurements ranged from 2.8 ug/1 at Station 1 to 12.4 ug/1 at Station 7. The greatest interstation difference (3.8 ug/1) occurred between Station        7 (12.4 ug/1) and Station 8 (8.6 (ug/1) in April.
Discharge water total zinc measurements    ranged from 26.0 ug/1 in August to 79.0 ug/1 in February.
4-6
 
~Tl~Ir n Columbia River mean iron concentrations  ranged from 136.1 ug/1 at Station  8 to 154.9,ug/1 at Station 1 (Table 4-11). The greatest interstation difference in concentration of 176 ug/1 occurred between Station 8 (48.0 ug/1) and Station 7 (224.0 ug/1) in.February.
However, measurements for Stations  1 and 7 for February are uncharacteristic and may represent contaminated sample containers rather than actual iron concentrations.
Plant discharge total iron concentrations    ranged from 180.0 ug/1 -.in January to 1400.0 ug/1 in November.
Total nickel concentrations were below the detection limit (2.6 ug/1) for nearly all periods, except November. The 5.8 ug/1 recorded for Station 7 in March is uncharacteristic and probably represents a contaminated sample rather than an actual Columbia River nickel measurement.
Plant discharge total nickel concentrations    ranged from <2.6 ug/1 in August to 14.2 ug/1 in October.
~Tl  ~
Total lead concentrations  were low with nearly all stations recording levels below detection limits for most periods (Table 4-11).
Discharge water total lead measurements  ranged from <1.2 ug/1 in September to 6.8 ug/1 in August.
 
Cadmium  concentrations were below detection limits for  all stations during all periods, Plant discharge total cadmium concentrations were below the detection limit (0.5 ug/1) for all periods except March, in which 1.1 ug/1 was recorded.
T    1  hrm Chromium  concentrations were below detection limits for  all periods except November (Table 4-12).
Plant discharge total chromium concentrations ranged from <1.9 ug/1 (January, March, August) to 32.0 ug/1 in October.
Total zinc and total iron measurements    are presented  graphically in Figures 4-8 and 4-9, respectively.
4.3.7  ~rn~
Hardness  indicates the quantity of divalent metallic cations present in the system, principally calcium and magnesium ions. Hardness ranged from 58.0 to 71.3 mg/1 as calcium carbonate (Table 4-6). Mean hardness values ranged from 64.8 mg/1 at Station 7 to 65.2 mg/1 at Station 11.
The hardness measurements are presented graphically in Figure 4-10.
Oil  and grease  values were below the detection  limit of 0.5  mg/1 for all stations and periods except December 1990.      Oil and grease measurements are summarized in Table 4-13.
4-8
 
4.3.9    Amm r    i r                  - Q~ri&#xc3;Q Ammonia and    nitrate are forms of nitrogen commonly    found in water systems. Both nitrate and ammonia are assimilated      by plants and con-verted to proteins. Common sources of nitrate and        ammonia to the aquatic system are breakdown of organic matter in the        soil, industrial discharges, fertilizers and septic tank leachate.
Ammonia  concentrations  ranged from <0.01 to 0.04 mg-N/1 (Table 4-13).
Nitrate concentrations    ranged from <0.01 to 0.13 mg-N/1. The nitrate measurements    are summarized in Table 4-14. The nitrate  measurements are presented graphically in Figure 4-11.
4.3.10 Phosphorus  is a required nutrient for plant growth and, while found in certain minerals, is commonly added to streams through fertilizers, treated sewage, and septic tank leachate.
Measured  total  phosphorus  concentrations ranged from <0.1 to 0.19 mg-P/1. Orthophosphorus concentrations were below the detection limit of 0.01 mg/1 for all stations and periods (Table 4-15).
4.3.11    ~f~
Mean  sulfate concentrations ranged from 9.16 mg/1 at Station 8 to 9.27 mg/1 at Station 11 (Table 4-15).        Individual sulfate measurements ranged from 8.00 to 10.60 mg/1. Sulfuric acid is added at WNP-2 to control circulating water pH and a by-product is sulfate. Based on the river measurements, WNP-2 discharges are not appreciably altering river sulfate concentrations. Total sulfate measurements are presented graphically in Figure 4-12.
4-9
 
4.3.12  T  1  Di    v'      i                      li    n  Tr i i Total dissolved solids or total filterable residue, TDS, is defined as that portion of the total residue that passes through a glass fiber filter and remains after ignition at 180'C for one hour. Total dissolved solids do not necessarily represent only the dissolved con-stituents but may also include colloidal materials and some small particulates. The mean TDS measured in the Columbia River varied from 77.7 mg/1 at Station 1 to 80.2 mg/1 at Station 7 (Table 4-16). There were no consistent differences in TDS concentrations between stations or through time, Total suspended solids (TSS) or total nonfilterable residue is the material retained on a standard glass fiber filter after filtration of a well-mixed sample.      TSS concentrations were generally low and varied from <1.2 to 23.1 mg/1 (Table 4-16). Mean TSS concentrations ranged from 4.5 mg/1 at Station 7 to 4.8 mg/1 at Station 8.
Turbidity is  a measure  of the suspended  matter that interferes with the passage of light through water. In the Columbia River, measured turbidities were low and ranged from 0.80 nephelometric turbidity units (NTU) to 17.0 NTU (Table 4-8). Total dissolved solids, total suspended solids and turbidity data are presented graphically in Figures 4-13, 4-14, and 4-15.
4-10
 
4.4  ~DI  QgjLQN Unusually warm temperatures and heavy precipitation during November resulted in high flow rates for the Columbia River and a corresponding increase in the levels of several parameters. Turbidity values were the highest recorded since the water quality progam began in April, 1983. The figure of 17.0 NTUs for Stations 1, ll and 8 was greater than three times the previous maximum of 5.4 NTUs reported for Stations 7 and ll in June, 1983. Other parameters demonstrating seasonally uncharacteristic increases included copper, nickel, iron',
lead, chromium and total suspended solids.
Plant discharge data basically demonstrates the increase in certain constituents of the blowdown due mainly to concentrating the circu-lating cooling water (Columbia River water). Preferred operating conditions at WNP-2 are in part characterized by a circulating water concentration of 12 cycles.
In comparing river and plant discharge data,    it is evident that the impact on the Columbia River is minimal, with no significant inter-station differences being detected.
Overall,    it appears that, with respect to all the measured parameters sampled under the operating conditions prevailing during 1990, WNP-2 cooling water discharge had little effect upon Columbia River water qual i ty.
4.5 Cushing, C.E., and L.A. Rancitelli. 1972. Trace element analyses      of Columbia River water and phytoplankton. Northwest Science 46(2):115-121.
4-11
 
Florence, T.M. and G.E. Batley. 1977. Determination of the chemical forms of trace metals in natural waters with special reference to copper, lead, cadmium and zinc. Talanta 24:151-158.
Silker,  H.B. 1964. Variations in elemental concentrations  in the Columbia River. Limnol. Oceanogr. 9;540-545.
Environmental Protection Agency. 1983. 'Methods for chemical analysis of water and wastes. Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH.
r, 16th Edition,  APHA, AWHA, HPCF,  Washington, D.C., 1985.
Washington Department of Ecology. 1988. Water Quality Standards for Surface Waters of the State of Washington. Hater Quality Planning Office of Hater Programs. Olympia, HA.
Washington Public Power Supply System. 1987. Operational Ecological Monitoring Program for Nuclear Plant 2. Annual Report for 1986.
Richland,  WA.
Washington Public Power Supply System. 1988. Operational Ecological Monitoring Program for Nuclear Plant 2. Annual Report for 1987, Richland,  WA.
Washington Public Power Supply System. 1989. Operational Ecological Monitoring Program for Nuclear Plant 2. Annual Report for 1988.
Richland,  HA.
Washington Public Power Supply System. 1990. Operational Ecological Monitoring Program for Nuclear Plant 2. Annual Report for 1989.
Richland,  WA.
4-12
 
1 Table 4-1.      Summary  of Water ()vali ty Parameters, Stations,  and Sampling Frequencies,    1990 Wells in Stations                  Vicinity of Parameter                                    7        11        11H 8 118    8 Plant Site Ouantity (flow)
Temperature Oissolved Oxygen pH Turbidity Total  Alkalinity Filterable Residue (Total Oissolved Solid)
Nonfilterable Residue (Suspended Solids)
Conductivity Iron (Total)
Copper  (Total)
Nickel (Total)
Zinc (Total)
Lead (Total)
Cadmium (Total)
Chromium  (Total)
Sulfate Ammonia  Nitrogen Nitrate Nitrogen Ortho Phosphorus Total Phosphorus Oil and Grease Chlorine, Total Residual Hardness Q~mb  1~K~~
H =  Honthly g =  ()uarterly
+ Samples wi 11 be  collected  if wells  are being used  for drinking water.
- Analysis  not required
""  Samples  taken in triplicate
++ Samples  collected only  if  the plant is operating.
4-13
 
Table 4-2. Summary  of  Water    Quality Parameters,  EPA and ASTM Method Number EPA  Method              ASTM Meth Bu~~                                                    ~her Water Temperature    ('C)                                    170.1 Turbidity,    (NTU)                                          180.1 Conductivity (umhos/cm) at          25 C                    120.1 Dissolved Oxygen (mg/1) probe                                360.1 Dissolved Oxygen (mg/1) Modi'fied Winkler"                  360.2 pH  (Standard Unit)                                          150.1 Total  Alkalinity (mg/1      as CaC03)                      310.1 Total Hardness (mg/1      as CaC03)                          130.2, 6010 Oil  and Grease  (mg/1)                                    413.2 Nitrogen, Ammonia, Total (mg/1            as N)              350.3 Nitrate Nitrogen, Total        (mg/1 as N)                  352.1                  D4327-88 Total Phosphorus    (mg/1 as P)                              365.2 Ortho Phosphorus    (mg/1 as P)                              365.2                  D4327-88 Sulfate  (mg/1 as S04)                                      375.4                  D4327-88 Total Copper (ug/1 as Cu)                                    220.1, 220.2, 200.7 Total Iron (ug/1 as Fe)                                      236.1, 236.2, 200.7 Total Nickel (ug/1    as  Ni)                              249.1, 249.2 Total Zinc (ug/1    as Zn)                                  289.1, 289.2, 200.7 Total Lead (ug/1    as P6)                                  239.1, 239.2 Total  Cadmium (ug/1 as Cd>                                213.1, 213.2 Chromium (ug/1 as Cr)
                                  'otal 218.1, 218.2 Total Residual Chlorine (ug/1)                              330.1 Filterable Residue:      Total Dissolved Solids (mg/1)                                  160.1 Non-Filterable Residue: Total Suspended Solids (mg/1)                                  160.2 4-14
 
Table 4-3. Summary  of  Temperature Measurements  for  1990.
Temperature    (Degrees C)
Sample Date                            11      11M  118 01/18/90      4.7      5.0      4.9      4.8    4.8      4.8 02/15/90      3.3      3.3      3.3      3.6    3.5      3.3 03/14/90      4.7      4.3      4.3      4.9    4.5      4.6 04/11/90      7.3      7.3      7.3      7.5    8.0      7.4 05/16/90    11.3 06/13/90    13.6 07/18/90    18.2 08/15/90    19.3    19.4      19.3    19.6  19.6      19.3 09/13/90    19.0    19.2      19.0    18.9  18.6      19.3 10/02/90    17.8    17.6      17.8    18.0  17.8,    17.9 11/28/90      9.5      9.4      9.4      9.5    9.5      9.4 12/12/90      8.3      8.3      8.3      8.7    8.2      8.3 Mean        10.4    10.4      10.4    10.6  10.5      10.5 SD          6.5      6.5      6.5      6.5    6.5      6.5 Maximum      19.3    19.4      19.3    19.6  19.6      19.3 Minimum      3.3      3.3      3.3      3.6    3.5      3.3 4-15
 
Table 4-4. Summary of Dissolved    Oxygen Measurements for 1990.
Dissolved Oxygen (mg/1)
Samp'le Date 01/18/90    Meter Breakdown in Field 02/15/90    12.8    12.7      12.7    12.8 03/14/90    12.1    12.0      12.0    12.0 04/11/90    13.4    13.6      13.5    13.5 05/16/90    12.7 06/13/90    12.3 07/18/90    10.8 08/15/90      9.5      9.6      9.5      9.7 09/13/90      9'      9.3      9.4      9.4 10/02/90    10.0      9.5      9.8      9.4 11/28/90    11.2    11.2      11.2    11.1 12/12/90    11.2    11.2      11.2    11.2 Mean      11.2    11.1      11.2    11.1 SD        1.5      1.6      1.5      1.6 Maximum      13 '    13,6      13.5    13.5 Minimum      9.4      9.3      9.4      9.4 4-16
 
Table 4-5. Summary  of pH  Measurements for  1990.
pH Sample Date                            11      llM    118 01/18/90      7.57    7.43      7.49      7.61    7.57    7.57 02/15/90      7.68    7.67      7.71      7.71    7.68    7.73 03/14/90      7.91    8.27      7.87      7.87    7.83    7.90 04/11/90      7.76    7.62      7.71      7.67    7.61    7.73 05/16/90      7.71 06/13/90      7.73 07/18/90      7.71 08/15/90      7.73    7.64      7.72      7.78    7.79    7.78 09/13/90      7.87    7.74      7.82      7.84    7.88    7.80 10/02/90      7.87    7.87      7.91      7.89    7.93    7.87 11/28/90      7.68    7.73      7.71      7.68    7.69    7.69 12/12/90      7.74    7.72      7.73      7.74    7.74    7.76 Mean SD Maximum      7.91    8.27      7.91      7.89    7.93    7.90 Minimum      7.57    7.43      7.49      7.61    7.57    7.57 4-17
 
Table 4-6. Summary of Alkalinity and  Hardness    Measurements  for  1990.
Total  Alkalinity (mg/1)                        Total Hardness (mg/1)
(as CaC03)                                      (as  CaCO    ~
Sample                                      Sample Date              7      ll      8        Date          1        7      ll        8 01/18/90  63.0  63.0    62.5  61.0      01/18/90    71.0    70.0    71.2    71.3 02/15/90  59.0  59.0    58.0  60.0      02/15/90    68,5    65.6    69.9    69.4 ~
03/14/90  59.5  59.5    59.0  60.0      03/14/90    68.1    68.4    67.6    .67.7 04/11/90  57.5  58.0    60.0  59.0      04/11/90    64.9    66.2    65.1    64.9 05/16/90  65.0                              05/16/90    58.6                            0 06/13/90  54.0                              06/13/90    60.4 07/18/90  51.0                              07/18/90    54.7 08/15/90  54.0  55.0    54.0  54.0      08/15/90    58.5    58.0    58.7    58.3 09/13/90  54.0 -
55.0    55.0  54.0      09/13/90    63.3    63.9    62.9    61.6 10/02/90  58.0    58.0    59.0  57.0      10/02/90    61.6    61.8    61.6    62.0 11/28/90  49.0    50.0    51.0  50.0      11/28/90    58.9    60.1    59.9    60 12/12/90  58.5    60.0    60.0  59.0      12/12/90    69.3    69.0    69.8    69.
Mean    56.9    57.5    57.6  57.1        Mean        64.9    64.8    65.2    65.0 SD      4.1    3.7    3.6    3.7        SD          4.6    4.2      4.7      4.7 Maximum  63.0    63.0    62.5  61.0      Maximum      71.0    70.0    71.2    71.3 Minimum  49.0    50.0    51.0  50.0      Minimum      58.5    58.0    58.7    58,3 4-18
 
Table 4-7. Summary of Conductivity  Measurements  for  1990.
Conductivity at 25'C (uS/cm)
Sample Date                              11M    118 01/18/90    155.1  162.0    161,8  153.8  154.6    154.1 02/15/90    151.7  152.1    151.9  151.8  152.3    151.9 03/14/90    153.6  153.7    156.5  156.1  157.8    154.6 04/11/90    136.4  137.0    137.7  136.2  136.3    136.4 05/16/90    121.0 06/13/90    123 '
07/18/90    119.3 08/15/90    119.8  127.6    126.9  118.5  118.8    126.9 09/13/90    127.1  126.3    128.0  127.5  129.4    127.3 10/02/90    134.1  131.3    132.0  133.1  133.7    133.7 11/28/90    126.9  126.3    126.7  127.3  127.9    126.7 12/12/90    125.3  125.4    125.5  126.2  126.5    125.4 Mean      136.6  138.0    138.6  136.7  137.5    137.4 SD        13.5    14.2    14.3    13,8  14.0      12.6 Maximum    155. 1 162.0    161.8  156.1  157.8'    154.6 Minimum    119 '  125.4    125.5  118.5  118.8    125.4 4-19
 
Table 4-8. Summary of Turbidity  and  Total Residual Chlorine Measurements for  1990.
Turbidity (NTU)                            Total Residual Chlorine  (mg  ~
Sample                                      Sample Date                                        Date                      ll      8 01/18/90  1.0                                01/18/90    <0.05  <0.05  <0.05  <0.05 02/15/90  1.2    1.3    1.2    1.2          02/15/90    <0.05  <0.05  <0.05  <0.05 03/14/90  1.1    1.2    1.2    1.2          03/14/90    <0.05  <0.05  <0.05  <0.05 04/11/90  1.1                  1.5          04/11/90    <0.05  <0.05  <0.05  <0.05 05/16/90  2.2                                05/16/90    <0.05 06/13/90  2.0                                06/13/90    <0.05 07/18/90  1.2                                07/18/90    <0.05 08/15/90  0.9    1.0    1.0    0.9          08/15/90    <0.05  <0.05  <0.05  <0.05 09/13/90  0.8    0.8    0.8    0.9          09/13/90    <0.05  <0.05  <0.05  <0.05 10/02/90  0.9    0.8    0.9    0,8          10/02/90    <0.05  <0.05  <0.05  <0.05 11/28/90 17.0  16.0    17,0  17.0          11/28/90    <0.05  <0.05  <0.05  <0.0 12/12/90  1.5    1.4    1.7    1.7          12/12/90    <0.05  <0.05  <0.05  <0.05 Mean    2,8    2.7    2.9    2.9          Mean SD      5.3    5.0    5.3    5.3            SD Maximum  17.0  16.0    17.0  17.0          Maximum Minimum  0.8    0.8    0.8    0.8          Minimum 4-20
 
Table 4-9. Summary  of  Copper Measurements    for 1990.
Copper (ug/1)
Sample Date            1        7        1 1  1 1M      11B        8    PH  DIS 01/18/90        1.2    <1.0      <1.0    1.3      1.2    <1.0    30.0 02/15/90      <1.0      <1.0      <1.0  <1.0      <1.0      <1.0    42.0 03/14/90      <1.0      <1.0      <1.0  <1.0      <1.0      <1.0    48.0 04/'ll/90      3.4    <1.0      <1.0  <1.0      <1,0      <1.0    24.0 05/16/90        1.2 06/13/90        1.7 07/18/90      <1.0 08/15/90      <1.0        1.3      <1.0  <1.0      <1.0    <1,0  209.0 09/13/90        1.3      1,3      1.5    1.5      1.2      1.2    104.0 10/02/90      <1.0        1.3      1.2    1.2      1.2      1.2    64.0 11/28/90        2.6      2.6              3.3      2.7      2.6    82.0 12/12/90        1.5      2.8      <1.0    <1.0      <1.0      2.4    60.0 Mean                                                                  73.7 SD                                                                  53.4 Maximum        3.4      2.8      1.5    3.3      2.7      2.6  209.0 Minimum      <1  0    <1  0    <1  0  <1  0    <1  0    <1  0    24 0 4-21
 
Table 4-10.      Summary of Nickel  and Zinc Measurements        for  1990.
Nickel (ug/1)                                  Zinc (ug/1)
Sample                                        Sample Date      1      7      11          PH Ois. Date      1    7        ll        8    PH  Dis.
01/18/90  <3.0  <3.0  <3.0    <3.0  4.7    01/18/90  3.4  3.8      4 ~ 1    5.1    33.0 02/15/90  <3.0  <3.0  <3.0    <3.0  5.8    02/15/90  8.1  7.3      9.5      7.4    79.0 03/14/90  <3.0    5.8  <3.0    <3.0  5.5    03/14/90  10.4  8.0      9.7      10.3    59.0 04/11/90  <3.0  <3.0 . <3.0    <3.0  3.4    04/11/90  9.8  12.4      9.2      8.6    41.0 05/16/90  <3.0                                05/16/90  10.7 06/13/90  <3.0                                06/13/90  8.3 07/18/90  <3 '                                07/18/90  5.6 08/15/90  <3.0  <3.0  <3.0    <3,0 <3.0    08/15/90  2.8  3.1      4.8      3. 1  26.0 09/13/90  <3.0  <3.0  <3.0    <3.0 12.3    09/13/90  76    7 9
                                                                  ~      67        57    710 10/02/90  <3.0  <3.0  <3.0    <3.0 14.2    10/02/90  3.9  5.8      3.0      5,5    62.0 11/28/90  12.9  10.2  13.3    13.6 12.9    11/28/90  8.3  7.6      7.5      9.5    60.0 12/12/90  <3.0  <3.0  <3.0    <3.0 10.8    12/12/90  5.8  7. 1    6.7      4.2    60.0 Hean                                  8.7"    Hean      6.7  7.0      6.8      6.6    54.6 SD                                  4.0"      SD      2.8  2.7      2.4      2.5    17.6 Haximum    12.9  10.2  13.3    13,6 14.2    Haximum  10.4  12.4      9.7      10.3    79.0 Hinimum    <3.0  <3.0  <3.0    <3.0 <3.0    Hinimum    2.8  3.1    3.0        3.1    26.0 "Less-than values not included.
4-22
 
Table 4-11.        Summary  of Iron  and Lead Measurements            for  1990.
Iron(ug/1)                                            Lead  (ug/1)
Sample                                            Sample Date    1      7      ll      8    PH Dis. Date        I      7          11      8    PN  Ois.
01/18/90  43.0    29.0    28.0    28.0  180.0  01/18/90    <1.0    <1.0    <1.0    <1.0      4.7 02/15/90 112.0  224 0
                    ~    59.0    48.0  346.0  02/15/90    <1.0    <1.0              <1.0      4.1 03/14/90  56. 0  43. 0  49. 0    43. 0  380.0  03/14/90    <1 ~ 0  <1. 0    <1. 0    <1. 0      3. 5 04/11/90  46.0    53.0    39.0    40.0  205.0  04/11/90      1.8  <1.0      <1.0    <1.0      2. 1 05/16/90  59.0                                    05/16/90    <1.0 06/13/90 116.0                                    06/13/90      1. 9 07/IB/90  30.0                                    07/18/90    <1. 0 08/15/90  39 '    34.0    35.0    34.0  198.0  08/15/90    <1.0  '1.0      <1.0    <1.0      6.8 09/13/90  42.0    50.0    46.0    47.0  385.0  09/13/90    <1.0    <1.0    <1.0    <1.0    <1.?
10/02/90  58.0    57.0    59.0    65.0  785.0  10/02/90    <1.0    <1 0    <1.0    <1 0      1  4 11/28/90 905.0  745.0  845.0  820.0  1400.0  11/28/90      1.9    1.5      1.2      1.7    2.2 12/12/90  93.0    94.0    93.0    100.0  1040.0  12/12/90    <1.0    <1.0    <1.0    <1 ~ 0    2.5 Hean    154.9  147.7  139.2    136.1  546.6    Hean                                          3 4A SO    282.4  231.9  265.3  257.3    432.3    SO                                            1.7" Maximum  905.0  745.0  845.0  820.0  1400.0  Haximum      1.9    1.5      'I.2    1.7    6.8 Ninimum  39.0    29.0    28.0    28.0  180.0  Ninimum    <1.0    <1.0    <1.0    <1.0    <1.0 "Less-than values not included.
4-23
 
Table 4-12.      Summary      of  Cadmium and Chromium Measurements            for  1990.
Cadmium  (ug/1)                                      Chromium  (ug/1)
Sample                                                Sample Date      1    7        ll      8      PH    Dis. Date        1    7      11      8    PH  Dis.
01/18/90  <0.5  <0.5    <0.5    <0.5    <0.5        01/18/90    <2.0  <2.0    <2.0  <2.0    <2.0 02/15/90  <0. 5 <0 ~ 5  <0. 5  <0. 5    <0. 5      02/15/90    <2.0  <2.0    <2.0    <2.0    5.0 03/14/90  <0. 5 <0. 5    <0. 5  <0. 5      1 ~ 1    03/14/90    <2,0  <2.0    <2.0    <2.0 04/11/90  <0.5  <0.5    <0.5    <0.5    <0.5        04/11/90    <2.0  <2.0    <2.0    <2.0  25.0 05/16/90  <0.5                                        05/16/90  '2.0 06/13/90  <0.5                                        06/13/90    <2,0 07/18/90  <0.5                                        07/18/90    <2.0 08/15/90  <0.5  <0.5    <0.5    <0.5    <0.5        08/15/90    <2.0  <2.0    <2.0    <2.0  <2.0 09/13/90  <0.5  <0.5    <0.5    <0.5    <0.5        09/13/90    <2.0  <2.0    <2.0    <2.0    3.4 10/02/90  <0.5  <0.5    <0/5    <0/5    <0.5        10/02/90    <2.0  <2.0    <2.0    <2.0  32.0 11/28/90  <0.5  <0.5    <0.5    <0.5    <0.5        ll/28/90      4.0  2.1    3.6    4.0    3'
                                                                                                        ~
12/12/90  <0.5  <0.5    <0.5    <0 '    <0.5        12/12/90    <2.0  <2.0    <2.0    <2.0    2.0 Hean                                                  Hean                                      11.8" SD                                                    SD                                      12.0" Haximum  <0.5  <0.5    <0.5    <0.5      1.1      Haximum      4.0  2.1    3.6    4.0  32.0 Hinimum  <0.5  <0.5    <0.5    <0.5    <0.5        Hinimum      <2.0  <2.0    <2.0    <2.0    <2.0 "Less-than values not included.
4-24
 
Table 4-13. Summary  of Oil  and Grease,  and Ammonia Measurements  for 1990.
Oil 5 Grease (mg/1)                          Ammonia (mg NH3  N/1)
Sample                                        Sample Date              7        11    8          Date                        11    8 01/18/90  <0.5  <0.5    <0.5    <0.5          01/18/90  <0.01  <0.01    <0.01  <0.01 02/15/90  <0.5  <0.5    <0.5    <0.5          02/15/90  <0.01  <0.01    <0.01  <0.01 03/14/90  <0.5  <0.5    <0.5    <0.5          03/14/90  <0.01  <0.01    <0.01  <0.01 04/11/90  <0.5  <0.5    <0.5    <0.5          04/11/90  0.02  <0.01    <0.01  <0.01 05/16/90  <0.5  <0.5    <0.5    <0.5          05/16/90  <0.01 06/13/90  <0.5                                06/13/90  <0.01 07/18/90  <0.5                                07/18/90  <0.01 08/15/90  <0.5  <0,5    <0.5    <0.5          08/15/90  0.03  0.02    0.02  0.04 09/13/90  <0.5  <0.5    <0.5    <0.5          09/13/90  0.02  0.02    0.02  0.01 10/02/90  <0.5  <0.5    <0.5    <0.5          10/02/90  0.02    0.01    0.01  0.02 11/28/90  <0.5  <0.5    <0.5    <0.5          11/28/90  <0.01  <0.01    <0.01  <0.01 12/12/90  0.6    0.8    0'      0.8          12/12/90  <0.01  <0.01    <0.01  <0.01 Mean                                          Mean SD                                              SD Maximum    0.6    0.8    0.8    0.8          Maximum    0,03    0.02    0.02  0.04 Minimum  <0.5    <0.5  <0.5    <0.5          Minimum  <0.01  <0.01    <0.01  <0.01 4-25
 
Table'4-14. Summary of Nitrate  and Total Phosphorus Measurements  for  1990.
Nitrate (mg/1)                          Total Phosphorus    (mg/1)
Sample                                        Sample 0
Date                7    11                Date              7      ll      8 01/18/90    0.12    0.12  0.12  0.12        01/18/90  <0.1  <0.12  <0.1    <0.10 02/15/90    0.10    0.10  0.10  0.10        02/15/90    0.15  0.15    0.16    0.19 03/14/90    0.10    0.10  0.10  0.10        03/14/90  <0.1  <0.1  <0.1    <0.1 04/11/90    0.12    0.13  0.12  0.12        04/11/90  <0.1  <0.1  <0.1    <0.1 05/16/90    0.03                              05/16/90  <0 ~ 1 06/13/90    0.06                              06/13/90  <0.1 07/18/90  <0.01                              07/18/90  <0.1 08/15/90  <0.01  <0.01  <0.01  <0.01        08/15/90  <0.1  <0.1  <0.1    <0.1 09/13/90                                      09/13/90  <0.1  <0.1  <0.1    <0.1 10/02/90  <0.01  <0.01  <0.01  <0.01        10/02/90  <0.1  <0.1  <0.1    <0.1 11/28/90    0.11    0.11  0.12  0.11        11/28/90  <0.1  <0.1  <0.1    <0.1 12/12/90    0.13    0.13  0.13  0.13        12/12/90  <0.1  <0.1  <0.1      0.1
*Mean      0,11    0.12  0.12  O.ll        Mean
* SD        0.01    0.01  0.01  0.01          SD Maximum    0.13    0.13  0.13  0.13        Maximum    0.15  0.15    0.16    0.19
(-EAST-)  <0.01  <0.01  <0.01  <0.01        Minimum    <0.1  <0.1  <0.1      <0.1
*Less-than values not included.
4-26
 
Table 4-15. Summary  for  Orthophosphate  and  Sulfate Measurements for 1990.
Orthophosphate    (mg/1)                          Sulfate (mg/1)
Sample                                          Sample Date                        11      8          Date                        ll    8 01/18/90  <0. 01  <0. 01  <0. 01  <0. 01    01/18/90      9.63    9.72  9.94  9.64 02/15/90  <0.01    <0.01  <0,01    <0.01      02/15/90    10.10  10.20  10.10  10.10 03/14/90  <0.01    <0.01  <0.01    <0.01      03/14/90    10.20  10.40  10.60  10.30
*04/11/90  <0.01    <0.01  <0.01    <0.01      04/11/90      9.60    9.50  9.20  9.40 05/16/90  <0.01                                05/16/90      8.85 06/13/90  <0.01                                06/13/90      8.60 07/18/90  <0.01                                07/18/90      7.55 08/15/90  <0.01    <0.01  <0.01    <0.01      08/15/90      8.04    8.03  8.15  8.00
*09/13/90  <0.01    <0.01  <0.01    <0.01      09/13/90 10/02/90  <0.01    <0.01  <0.01    <0.01      10/02/90      8.97    9.02  9.09  8.97 11/28/90  <0.01    <0.01  <0.01    <0.01      11/28/90      7.66    7.76  7.81  7.66 12/12/90  <0.01    <0.01  <0.01    <0.01      12/12/90      9.16    9.20  9.29  9.20 Mean                                            Mean        9.17    9.23  9.27  9.16 SD                                              SD        0.92    0.95  0.95  0.93 Maximum                                        Maximum      10.20  10.40  10.60  10.30 Minimum                                        Minimum      8.04    8.03  8.15  8,00 4-27
 
Table 4-16. Summary  of Total Dissolved  and  Total Suspended Solids Measurements for  1990.
Total Dissolved Solids (mg/1)                Total Suspended Solids (mg/1 Sample                                        Sample Date        1      7        ll    8          Date          1      7 01/18/90    80.0  84.0    83.0    82.0      01/18/90      1.5    1.2    1.3  1.6 02/15/90    73.0  75,0    74.0    74.0      02/15/90      3.8    3.9    3.8  4.0 03/14/90    78.0  91.0    96.0    81.0      03/14/90      1.4    1.7    1.5  1.7 04/11/90    79.0  81.0    77.0    80.0      04/11/90      2.6    2.7    2.5  2.6 05/16/90    74.0                              05/16/90      3.7 06/13/90    83.0                              06/13/90      6.4 07/18/90    79.0                              07/18/90      2.9-08/15/90    67.0  69.0    68.0    71.0      08/15/90      2,1    2.4    2. 6  2.8 09/13/90    83.0  80,0'2.0        84.0      09/13/90      2.0    1.9  2.0  2.0 10/02/90    79.0  82.0    75.0    79.0      10/02/90      2.5    2.0    2.3  2.4 11/28/90    77.0  75.0    76.0    74.0      11/28/90      23.1  21.7  22.5  23.1 12/12/90    83,0  85.0    87.0    83.0      12/12/90      2.7    2.8    2.9  3.1 Mean      77.7  80.2    79,8    78.7        Mean          4.6    4.5  4.6  4.8 SD        5.0    6.5      8:3    4.6          SD          7.0    6.5  6.8  6.9 Maximum    83.0  91.0    96.0    84.0      Maximum      23.1  21.7  22.5  23.1 Minimum    67.0  69.0    68.0    71.0      Minimum        1.4    1.2  1.3  1.6 4-28
 
Plow Island Mes quit island WNP-2 Discharge
                    ~7              River Mile-352
                    ~ 11 a8 Power Lines Figure 4-1   Location of Sampling Stations in the Columbia River


==6.1 INTRODUCTION==
River Station 1 Flow
                  +N                                                            555m (1822 feet)
WNP-2 intake Structures To Plant WNP-2 Olscharge 44m (146 feet) 568m (187
~                                            Station 7                                    feet) 63m (208 feet)
P    Statlon11,11M,158 461m (1516 feet)
Station 8 (Not to scale)
Figure 4-2 Sampling Station Locations            for  Water Chemistry 4-30


.....................6-1 B E (Continued) 7.0 AERIAL PHOTOGRAPHY.....................
s TEMPERATURE (DEGREES C.j 25 20 I
7-1
mm m>>M
                                                                      >
7, EQ>>B
                                                                    &  s 15 10 0
JAN FEB  MAR  APR MAY    JUN  JUL    AUG  SEP    OCT NOV DEC 1990 Figure 4-3 Columbia River Temperature Measure-ments at Six Stations During 1990


==7.1 INTRODUCTION==
DISSOLVED OXYGEN MILLIGRAMS/LITER 16 14 12 10 JAN  FEB MAR    APR  MAY  JUN    JUL  AUG    SEP    OCT NOV DEC 1SQQ Figure 4-4  Columbia River Dissolved Oxygen.
Measurements at Four Stations During 1990


7.2 MATERIALS AND METHODS.7.3 RESULTS AND DISCUSSION 7.4 BIBLIOGRAPHY 7-1 7-1 7-3 7-5 APPENDIX A PLANT OPERATIONAL DATA APPENDIX B METEOROLOGICAL CONDITIONS APPENDIX C ANALYTICAL RESULTS FOR EACH SAMPLE STATION EXECUTIVE
pH 8.5 I
RB C3>>
m>>M 1
7 EQ>>B
                                                                          %  8 7.5 6.5 JAN FEB MAR  APR    MAY  JUN  JUL    AUG  SEP    OCT  NOV DEC 1990 Figure 4-5   Columbia River  pH Measurements  at Six Stations During  1990


==SUMMARY==
TOTAL ALKALINITY (MG/LITER AS CaCO3) 80 70 60 50 40 30 20 10 JAN FEB  MAR    APR  MAY    JUN    JUL  AUG    SEP  .OCT NOV DEC 1990 Figure 4-6   Columbia River Total Alkalinity Measurements at Four Stations During 1990
During 1990 there were no unusual events which resulted in significant environmental impacts from the operation of WNP.-2.0 There were no unanticipated or emergency discharges of water or wastewater during the reporting period.The first fish bioassay required by the HNP-2 NPDES Permit was performed in October, 1990.A 1001.survival rate was observed.Significant interstation differences could not be detected among any of the water quality parameters measured for'early all sampling periods.1990 marks the first year in which results of metals'analyses performed on plant dis-charge water are included in the report.It appears that during 1990, HNP-2 cooling water discharge had little effect upon Columbia River water quality.The cooling tower drift model verification study concluded sample collection in March 1990.Results indicated and further investigations proved that the~~model's isopleths incorrectly predict areas of maximum and minimum cooling tower drift.The isopleths, as drawn, predict maximum deposition along transects running in a northeasterly and nearly south-southwesterly direc-tion.This contradicts prevailing wind directions which are southerly (blowing north)and northeasterly (blowing southeast).
 
Total herbaceous cover decreased 38.011.in 1990.A corresponding decrease in herbaceous phytomass was also observed.Soil and vegetation analyte concen-trations were generally within the ranges observed in previous years.Changes in vegetation cover and density recorded in 1990 appear to be climatically induced and no signs of adverse impacts from the operation of WNP-2 cooling towers are evident.Color infrared aerial photographs along 5 flightlines were taken in June 1990.Because of the lateness in the season when the photographs were taken, most of the grasses were inactive and growth patterns could not be discerned.
CONDUCTIVITY (AT 25 C) uS/CM 170 RB 1 ES 7 160 C3 <<
The general health of those plants and shrubs that were active was good.No adverse impact was evident from Plant 2 operation.
II >>M 150                                                                    KQ>>B W s 140 130 120 110 100 JAN FEB   MAR   APR MAY   JUN   JUL   AUG   SEP   OCT NOV DEC 1990 Figure 4-7  Columbia River Conductivity Measure-ments at Six Stations During 1990
D E This annual report, prepared by Washington Public Power Supply System, describes the aquatic, terrestrial and water quality programs for Nuclear Project No.2 (WNP-2).Joe Bell Manager, Plant Services Terry E.Northstrom Supervisor, Environmental Sciences Sara L.Lindberg Environmental Scientist I John E.McDonald Environmental Scientist I Deborah C, Singleton Environmental Scientist I Richard E.Welch Environmental Scientist I Todd A.Borak Environmental Scientist II Lana S, Schleder Environmental Scientist II Kathryn E.Humphreys Administrative Specialist
~u5yr 3-3 3-4 3-6 3-7 3-8 4-1 4-2 4-3 4-4 4-5 4-64-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 5-1 5-2~TQg, Size and Weight.of Fish Used in Bioassay Test Summary of Bioassay Parameters and Associated EPA Methods Temperature and pH Measurements Dissolved Oxygen and Conductivity Measurements Total Alkalinity and Total Hardness Measurements Magnesium and Calcium Measurements Total Copper Concentrations Total Zinc Concentrations Summary of Water Quality Parameters, Stations, and Sampling Frequencies, 1990 Summary of Water Quality Parameters EPA and ASTM Method Numbers Summary of Temperature Measurements for 1990 Summary of Dissolved Oxygen Measurements for 1990 Summary of pH Measurements for 1990 Summary of pH, Alkalinity and Hardness Measurements for 1990 Summary of Conductivity Measurements for 1990 Summary of Turbidity and Total Residual Chlorine Measurements for 1990 Summary of Copper Measurements for 1990 Summary of Nickel and Zinc Measurements for 1990 Summary of Iron and Lead Measurements for 1990 Summary of Cadmium and Chromium Measurements for 1990 Summary of Oil and Grease, and Ammonia Measurements for 1990 Summary of Nitrate and Total Phosphorus Measurements for 1990 Summary of Orthophosphate and Sulfate Measurements for 1990 Summary of Total Dissolved and Total Suspended Solids Measurements for 1990 Vascular Plants Observed During 1990 Field Work Vascular Plants Observed During 1975-1990 Field Work 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-13 4-14 4-15 4-16 4-17 4-18 4-19 4-20 4-21 4-22 4-23 4-24 4-25 4-26 4-27 4-28 5-16 5-19 (Continued) 5-3 5-4 5-6 5-7 5-8 5-10 5-11 5-12 5-13 Herbaceous Cover for Fifteen Sampling"Stations-1990 Mean Herbaceous Cover for 1975 Through 1990 Mean Frequency Values (L)by Species for Each Sampling Station-1990 Mean Terrestrial Phytomass for 1990 Comparison of Herbaceous Phytomass for 1975 Through 1990 Summary of Shrub Density for 1990 Summary of Shrub Cover,(1.)
at.Five Stations for 1990 Summary'of Soil Chemistry for 1990 Summaryof Vegetation Chemistry for 1990 Drift Sampler Locations in Reference to WNP-2 Cooling Towers Drift Deposition Rates (Gross and Background Corrected) 5-24 5-26 5-27 5-28 5-29 5-30 5-31 5-32 5-33 5-34A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-9 A-10 A-ll A-12 A-2 Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Data for Data for Data for Data'for Data for Data for Data for Data for Data for Data for Data for Data=for Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9 Period 10 Period ll Period 12 A-1 A-4 A-5 A-6 A-7 A-8 A-9 A-10 A-11 A-12 B-1 B-2 B-3 B-4 B-5 Meteorological Meteorological Meteorological Meteorological Meteorological Conditions for March 1989 Conditions for April 1989 Conditions for May 1989 Conditions for June 1989 Conditions for July 1989 B-l B-2 B-3 B-4 B-5 (Continued) 5yml~er e 8-6 B-7 B-8 B-9 B-10 B-ll B-12 B-13 Ti)~l Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions for August 1989 for September 1989 for October 1989 for November 1989 for December 1989 for January 1990 for February 1990 for March 1990 B-6 B-7 8-8 B-9 B-10 B-ll B-12B-13~C-1 C-2 C-3 C-4 C-5 C-6 C-9 C-10 C-11 C-12 Analytical Results for Each Sample Location-Analytical Resul,ts for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-April 1989 May 1989 June 1989 July 1989 August 1989 September 1989 October 1989 November 1989 December 1989 January 1990 February 1990 March 1990 C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-11 C-12 1-2 1-3 1-4 2-1 3-1 3-2 4-1 4-2 4-3 4 4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 Ii Qe.NNP-2 Gross Thermal Production for 1990 HNP-2 Days Per Month Discharging and Mean Monthly Discharge NNP-2 Location Map Columbia River Mean Monthly Flow for 1990 NNP-2 Property Boundary Attachment 1.0, Test Plan 27 Secondary Chemistry Report Attachment 2.0, Hater Chemistry Report Location~of Sampling Stations in the Columbia River Sampling, Station Locations for, Hater Chemistry Columbia'iver Temperature Measurements at Six Stations During 1990 Columbia River Dissolved Oxygen Measurements at Four Stations During 1990 Columbia River pH Measurements at Six Stations During 1990 Columbia River Total Alkalinity Measurements at Four Stations During 1990 Columbia River Conductivity Measurements at Six Stations During 1990 Columbia River Total Zinc Measurements at Four Stations During 1990 Columbia River Total Iron Measurements at Four Stations During~1990 Columbia River Total Hardness Measurements at Four Stations During, 1990 Columbia River Nitrate-Nitrogen Measurements at Four Stations During 1990 Columbia River Total Sulfate Measurements at Four Stations During 1990 Columb'ia River Total Dissolved Solids Measurements at Four Stations During 1990 1-9 1-10 2-3 3-15 3-16 4-29 4-30 4-31 4-32 4-33 4-34 4-35~4-36 4-37 4-38 4-39 4-40 4-41 (Continued)
NuZber 4-15 5-1 5-2 5-3 5-5 5-6 5-75-8 5-10 5-11 5-12 5-13 5-14 5-15 5-16 5-17 5-1.8 5-19 5-20 5-21 j'1 i~1 Columbia River Total Suspended Solids Measurements at Four Stations During 1990 Columbia River Turbidity Measurements at Four Stations During 1990 Soil and Vegetation Sampling Location Map Layout of Vegetation and Soil Sampling Plots Mean Herbaceous Cover for 1975 Through 1990 Mean Herbaceous Cover, Mean Dry Height (g/m), Total Precipitation, and Mean Temperature From 1982 Through 1990 Mean Herbaceous Phytomass at Grassland and Shrub Stations for 1975 Through 1990 Mean Herbaceous Cover and Phytomass for Stations G01 to G04 for 1980 Through 1990 Mean Herbaceous Cover and Phytomass for Stations G05 to G08 for 1980 Through 1990 Mean Herbaceous Cover and Phytomass for Stations S01 to S04 for 1980 Through 1990 Mean Herbaceous Cover and Phytomass for Stations S05 to S07 for 1980 Through 1990 Shrub Density at Five Stations for 1984 Through 1990 Mean Total Shrub Cover for 1975 Through 1990 Shrub Cover and Density for Five Stations for 1990 Soil pH and Conductivity for 1980 Through 1990 Soil Sulfate and Chloride for 1980 Through 1990 Soil Bicarbonate and Copper for 1980 Through 1990 Soil Lead and Nickel for 1980 Through 1990 Soil Cadmium and Zinc for 1980 Through 1990 Soil Chromium and Sodium for 1980 Through 1990 Soil Potassium and Calcium for 1980 Through 1990 Soil Magnesium for 1980 Through 1990 p t tl (I>I 8~il'I d~nrem by Station for 1984 Through 1990 vii (Continued) 2Qa PP 0 t ti I glg)1~~'J~d 580~C)dgJ559 by 5t tl f 195 Th gh 1990 0 PP 0 t tl (ig)\5)dgdg)88 aUdalJllm d~by yt 1 f 19 h h 1990 Chloride Concentration
('/.)in~B~~gzgm and 5JZ 1 ggjf~li by Station for 1984 Through 1990 Cll Id C 8 tl C)I ift JJ~d'J 1~,by 5t ti.I'98 Th gh 99 Chl Id C t tl (5)I P 50898CI)(d~by 5t tl I'984 Tl gh 1990 5 if t C 1 tl (5)I 9)I~d lyygdtJPP)JJJ by yt ti f 198 Th gh 990 If t t tl ('f)1 8J~J~d 555.'J'y Station for 1984 Through 1990 51 t t tl (9)1 958~d t~Zgm by Station for 1984 Through 1990 Total Vegetation Copper, Chloride and Sulfate for 1990 Predicted Salt Deposition Patterns Out to 0.5 Mile (0.8 km)(lb/acre/yr)
Predicted Salt Deposition Patterns Out to 6.9 Miles (11.1 km)(lb/acre/yr)
Location Map of Cooling Tower Drift Monitoring Sites Cooling Tower Drift Collection Vessel Cumulative Wind Rose April 1989 Through March 1990 WNP-2 Meteorological Station 33 Foot Level Cumulative Wind Rose 1984 Through 1989 WNP-2 Meterological Station 33 Foot Level Deposition'ate as a Function of Distance Aerial Photography Flightlines 5-57 5-58 5-59 5-60 5-61 5-62 5-63 S-6e5-65 5-66 5-67 5-68 5-69 5-70 5-71 7-6
.0 Washington Public Power Supply System (Supply System)began site prepa-ration for Nuclear Plant Number 2 (WNP-2)near Richland, Washington in March 1973.WNP-2 loaded fuel in December 1983, reached approximately 75 percent thermal load in November 1984, and began commercial opera-'ion in December 1984.The Site Certification Agreement (SCA)for WNP-2, executed on May 17, 1972, between the State of Washington and the Supply System requires that ecological monitoring be conducted during the preoperational and operational phases of site, development and use.The Washington State Energy Facility Site Evaluation Council (EFSEC)approved a change in 1978 to the technical scope of environmental monitoring required by the SCA (EFSEC Resolution No.132, January 23, 1978).In 1980, the.aquatic and water quality portions of the preoperational monitoring program were terminated (EFSEC Resolution No.166, March 24, 1980).The following year the preoperational and operational terrestrial monitoring program scope for WNP-2 was modified (EFSEC Resolution No.193, Hay 26, 1981).Prior to operation, the council reviewed the preoperational aquatic monitoring data and approved the operational monitoring program (EFSEC Resolution No.214, November 8, 1982).The Supply System in 1974 retained Battelle Pacific Northwest Labora-tories (BNW)to conduct the preoperational aquatic monitoring for WNP-2.The results of aquatic studies performed from September 1974 through August 1978 are presented in various reports (Battelle 1976, 1977, 1978, 1979a and 1979b).From August 1978 through March 1980 the aquatic studies were performed by Beak Consultants, Inc.(Beak 1980).In 1982 the Supply System analyzed the 1974-1980 aquatic data and presented the results and a recommended operational monitoring program to EFSEC (Mudge et.al., 1982).The operational program was accepted with minor modifications and initiated in March 1983.Due to.
operational conditions, the plant did not consistently discharge liquid effluents until the fall of 1984.Figures l-l and 1-2 present summaries'f electrical generation and monthly discharges for 1990.Terrestrial monitoring was initiated in 1974 and was conducted by BNW until 1979 (Rickard and Gano, 1976, 1977, 1979a, 1979b).Beak Consultants, Inc.performed the vegetation monitoring program from 1980-1982 (Beak 1981, 1982a, 1982b).Since 1983, Supply System scientists have been responsible for the vegetation aspects of the program (Northstrom et.al.1984;Supply System 1985, 1986, 1987, 1988, 1989).During 1981, the animal.studies program was taken over by Supply System scientists and results were reported annually (Schleder 1982, 1983, 1984;Supply System 1985, 1986, 1987, 1988, 1989).The first comprehensive operational environmental report was prepared by Supply.System scientists in 1984 (Supply System 1985).During their regular meeting of September 14, 1987 the Energy Facility Site Evaluation Council approved Resolution No.239 which adopted a long-term environmental monitoring program for WNP-2.This decision was based upon, the council's examination of the document titled 3gv1ew f nvi m n 1 M ni rin Pr r f WNP-wi h mm n r D n in in i (Davis and Northstrom, 1987).This report presents the results of the Ecological Monitoring Program (ENP)for the period January 1990 through December 1990.1.2 TffT'/TED., The WNP-2 plant site is located 19 km (12 miles)north of Richland, Washington in Benton County (Figure 1-3).The Supply System has leased 441 hectares (1089 acres)from the U.S.Department of Energy's Hanford Site for WNP-2.1-2 WNP-2 lies within the boundaries of the Columbia Basin, an extensive area south of the Columbia River between the Cascade Range and Blue Mountains in Oregon and approximately two thirds of the area lying east of the Cascades in Washington.
The plant communities within the region are described as shrub-steppe communities consisting of various layers of perennial grasses overlayed by a discontinuous layer of shrubs.In general, moisture relations do not support arborescent species except along streambanks.
Approximately 5 km (3.25 miles)to the east, the site is bounded by the Columbia River.In August of 1984 a range fire destroyed much of the shrub cover which occupied the site and temporarily modified the shrub-steppe associations which were formerly present.The aquatic and water quality sampling stations are located near the west bank of the Columbia River at mile 352.Sampling was limited to the main channel Benton County side which, near the site, averages 370 meters (1200 feet)wide at a river elevation of 105 meters (345 feet>above sea level and ranges to 7.3 meters (24 feet)deep.Sampling stations have been established in the river both upstream and down-stream from the plant intake and discharge structures, The river-level in this area fluctuates considerably diurnally and from day-to-day in response to release patterns at the Priest Rapids Dam (River Mile 397).These fluctuations cause large areas of river bottom to be alternately exposed and covered.The river bottom within the study area varies from exposed Ringold conglomerate to boulders, cobble, gravel, and sand.River velocities at the surface average approxi-mately 2 meters (5 to 6 feet)per second in this area of the river, and water temperature varies from approximately 0 to 22'C.The flow of the Columbia River at WNP-2 is controlled by releases from Priest Rapids Dam.The minimum flow, measured at the USGS stream-quality station located at river mile 388.1 near the Vernita bridge, was 58,400 cfs (cubic feet per second), while average and maximum flows in 1989 were 134,022 cfs and 322,000 cfs, respectively (Figure 1-4).
The terrestrial sampling locations are all within an 8 km (5 mile)radius from WNP-2.The topography is flat to gently rolling, gradually increasing from an elevation of 114 meters (375 feet)at the riparian sampling locations to approximately 152 meters (500 feet)at more distant shrubgrass sample stations..3 ILBLIGG Battelle Pacific Northwest Laboratories.
1976.Aquatic ecological studies conducted near WNP-1, 2, and 4, September 1974 through September 1975.'upply System Columbia River ecology studies Vol.2.Richland, WA.Battelle Pacific Northwest Laboratories.
1977.Aquatic ecological studies near WNP-l, 2, and 4, October 1975 through February 1976.Supply System Columbia River Ecology Studies Vol.3.Richland, WA.Battelle Pacific Northwest Laboratories.
1978.Aquatic ecological studies near WNP-1, 2, and 4, March through December 1976.Supply System Columbia River ecology studies Vol.4.Richland, WA.Battelle Pacific Northwest Laboratories.
1979a.Aquatic ecological studies near WNP-l, 2, and 4, March through December 1977.Supply System Columbia River ecology studies Vol.5.Richland, WA.Battelle Pacific Northwest Laboratories.
1979b.Aquatic ecological studies near WNP-l, 2, and 4, January through August 1978.Supply System Columbia River ecology studies Vol.6.Richland, WA.Beak Consultants, Inc.1980.Aquatic ecological studies near WNP-1, 2, and 4, August 1978 through March 1980.Supply System Columbia River ecology studies Vol.7.Portland, OR, Beak Consultants, Inc.1981.Terrestrial monitoring studies near WNP-1, 2, and 4, May through December 1980.Portland, OR.1-4 Beak Consultants, Inc.1982a.Terrestrial monitoring studies near WNP-1, 2, and 4, May through December 1981.Portland, OR.Beak Consultants, Inc.1982b.Preoperational terrestrial monitoring studies near WNP-l, 2, and 4, May through August 1982.Portland, OR.Davis, W.III and T.E.Northstrom.
1987.Review of the environmental monitoring program for WNP-1 with recommendations for design of con-tinuing studies.Washington Public Power Supply System, Richland, WA.Mudge, J.E., T,B.Stables, W.Davis III.1982.Technical review of the aquatic monitoring program of WNP-2.Washington Public Power Supply System, Richland WA.Northstrom, T.E, J.L.Hickam and T.B.Stables.1984.Terrestrial monitoring studies for 1983.Washington Public Power Supply System, Richland, WA.Rickard, W.H.and K.A.Gano.1976.Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4.Progress report for the period July 1974 to June 1975.Battelle Pacific Northwest Laboratories, Richland, WA.Rickard, W,H.and K.A.Gano.1977.Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4.Progress report for 1976.Battelle Pacific North-west Laboratories, Richland, WA.Rickard, W.H.and K.A.Gano.1979a.Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4.Progress report for 1977.Battelle Pacific Northwest Laboratories, Richland, WA.Rickard, W.H.and K.A.Gano.1979b.Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4.Progress report for 1978.Battelle Pacific Northwest Laboratories, Richland, WA.1-5 Schleder, L.S.1982.Preoperational animal studies near WNP-1, 2 and 4.Annual report for 1981.Washington Public Power Supply System, Richland, HA.Schleder, L.S.1983.Preoperational animal studies near WNP-1, 2 and 4.Annual report for 1982.=-Washington Public Power Supply System, Richland, WA.Schleder, L.S.1984.Preoperational animal studies near HNP-l, 2 and 4.Annual report for 1983.Washington Public Power Supply System, Richland, WA.Washington Public Power Supply System.1985.Operational ecological monitoring program for Nuclear Plant 2.Annual report for 1984.Richland, WA.Washington Public Power Supply System.1986.Operational ecological
'monitoring program for Nuclear Plant 2.Annual report for 1985.Richland, HA.Washington Public Power Supply System.1987.Operational ecological monitoring program for Nuclear Plant 2.Annual report for 1986.Richland, WA.Washington Public Power Supply System.1988.Operational ecological monitoring program for Nuclear Plant 2.Annual Report for 1987.Richland, HA.'ashington Public Power Supply System.1989.Operational ecological monitoring program for Nuclear Plant 2.Annual Report for 1988.Richland, WA.Washington Public Power Supply System.1990.Operational ecological monitoring program for Nuclear Plant 2.Annual Report for 1989.Richland, HA, 1-6 MWH/MONTH THERMAL (MILLIONS) 3.00 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MONTH FIGURE 1-1 HNP-2 GROSS THERMAL PRODUCTION FOR 1990  


35 DAYS/MONTH DISCHARGE M EAN Dl SCH ARG E GAL/DAY X 100000 36 30 30 25 25 20 20 15 10 JAN FEB IYIAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 RR DAYS m GPD\FIGURE 1-2 NNP-2 DAYS PER MONTH DISCHARGE AND MEAN MONTHLY DISCHARGE
0 o
II


5 311C 0 3110 5 311C o&313A 3110 0 3l30~wecsaw~w sal cc~as eeaa', I'1i rc rscre OO 0 aae~e~ass%5l Legend~~a D Pl Sl IO~le%~spraws I Qrasw lssal Casa iree ssswsac tewc Uas wsw Sssw Tenon ssrrsr Ure wss ssssc salas~ease Urw wsss waassa svss/sacs llse se acsscsac sclssstlrW 5sa ursa ascarcssa Sssa UWI IeWssel ssa Qsrs IlcsHcsall arcs slws Wscrs wancsl Slsrs Owl l4cosayss laresc 5IIO Osswsrc SCIW 11 WL 343e o 34ii FIGURE 1-3 NNP-2 LOCATION MAP 1-9
TOTAL Z N C (MICROGR AMS/ L T E R)
I                           I 15 10 JAN FEB  MAR    APR  MAY  JUN    JUL  AUG    SEP  OCT NOV DEC 1990 Figure 4-8  Columbia River Total Zinc Measurements at Four Stations During 1990


336 308 280 252 224 196 168 140 112 84 56 28 FLOW (KCFSj JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MONTH I MAX/MIN+MEAN FIGURE 1-4 COLUMBIA RIVER MEAN MONTHLY FLOH FOR 1990  
TOTAL IRON (Ml CROGRAMSI LI TER) 1000 800 600 400 200 JAN FEB   MAR   APR   MAY   JUN   JUL   AUG   SEP   OCT NOV DEC 1990 Figure 4-9    Columbia River Total Iron Measurements at Four Stations During 1990


2.0 N TAB E ENVI NNENTA B RVATI N~NT II Any occurrence of an unusual or notable event that indicates or could result in a significant environmental impact causally related to plant operation shall be recorded and reported to the NRC within 24 hours followed by a written report.The following are examples: excessive bird impaction events, onsite plant or animal disease outbreaks, mortality or unusual occurrence of any species protected by the Endangered Species Act of 1973, fish kills, increase in nuisance organisms or conditions, and a significant, unanticipated or emergency discharge of waste w'ater or chemical substances.
90 TOTAL HARDNESS (MG/LITER AS CcICO3)
2.2~)~D Weekly ground surveys were conducted from January 1st through December 31st to document the occurrence of unusual species or events within the property boundary of WNP-2 (Figure 2.1).Additional information was supplied by security and environmental personnel.
II ~
2.3 gQ~T There were no unusual or notable events which resulted in significant environmental impacts from the operation of WNP-2.There were, however, some'general observations worth noting.Tt I I-N111 d I (II, I)t t I resident during spring periods, with several nesting pairs sighted in the shrub-steppe communities surrounding WNP-2.2-1 hb\g l.lith~,>1plgtl fd t of the Hanford Reservation, with several sightings being reported from locations within WNP-2's site area boundary.Of particular note during 1990, was the establishment of a nesting pair at the edge of a gravel parking lot, immediately northeast of Plant 2.Although the pair was continuously subjected to disturbances from human activities (a major access road and railroad bordered the burrow on each side), their breeding attempt was successful.
I 7
On May 25, a total of four young were observed at the burrow entrance.Several more observations of the owls were reported in early June.Spring 1990 produced one'of the largest grasshopper hatches in recent memory, Vegetation in some areas was severely impacted.In late May, a large population of gulls were using the grasshoppers as a major food source.Feeding groups numbering from a few individuals to several dozen birds were routinely sighted at several locations near WNP-2.There were no unanticipated or emergency discharges of water or wastewater during the reporting period.2-2 ASHE SUBSTATION ROAD QN SECURITY FIRING RANGE RANGE ROAD H.J.ASHE SUBSTATION r I I I I PUMP-HOUSE ROAD PUMP HOUSE ROAD QO~OO WNP-2~0 SANITARY'OC WASTE FACILITY PROPERTY LINE I I I I I I I WNP-1 EMERGENCY RESPONSEI PLANT SUPPORT FACILITY O 0 K O 0 WNP-2 ACCESS ROAD FIGURE 2-1 WNP-2 PROPERTY BOUNDARY WNP-2 RIVER PUMP-HOUS n 0 BENTON SWITCHING STATION
80                                                                      C3 ~~
8-70 60 50 40 30 JAN FEB  MAR    APR  MAY    JUN  JUL    AUG    SEP    OGT NOV DEG 1990 Figure 4-10 Columbia River Total Hardness Heasure-ments at Four Stations During 1990


3.0 FI H BI 3.1 A bioassay using chinook salmon (rh h)was per-formed from October 20 through October 24;1990, in compliance with Special Condition S4 of the WNP-2 National Pollutant Discharge Elimination System Waste Discharge Permit (NPDES No.WA-002515-1).
Specifically, the permit requires 96-hour flow-through testing in 01.(control)and 1001.effluent concentrations.
An 801.or greater survival rate in 1001.effluent is specified as the successful test criteria.At the time of the test, normal operating conditions for WNP-2 were characterized by 1001.power production and a recirculating cooling water system exhibiting 12 cycles of concentration.
Calgon PCL 8125 is added to the recirculating water to inhibit corrosion of the admiralty brass condenser tubes.In addition, chlorine and sulfuric acid are introduced to the system on a routine basis for biofouling treatment and pH adjustment, respectively.
Recirculating cooling water blowdown (effluent) is discharged on a continuous basis except during periods of biofouling treatment.
Following a treatment, discharge is resumed when total residual halogen concentration meets permit requirements (less than or equal to 0,1 mg/1).The discharge rate during the bioassay averaged 1350 gpm, ranging from a low of 1200 gpm on October 20 to a high of 1500 gpm on October 24, 1990.Secondary Chemistry Program Data (Attachment 1)includes information on the chemical composition of the recirculating water system (CW)for a sample taken on October 23, 1990.3.2 The bioassay generally adhered to the requirements set forth in EPA Publications"Methods for Measuring the Acute Toxicity of Effluents to 3-1 Freshwater and Marine Organisms," 1985, and"Quality Assurance Guide-lines for Biological Testing," 1978.Specific methodology is provided in Environmental Programs Instruction 13.2.11,"WNP-2 Aquatic Bio-assays" and"Environmental Sciences and Plant Support Chemistry Quality Assurance Manual," (Washington Public Power Supply System, 1990).The bioassay test facility is situated on the west bank of the Columbia River directly ad]acent to the WNP-2 makeup water pumphouse.
Effluent used for the test was diverted from the discharge pipe and.pumped to the test facility.Control (dilution) water was untreated Columbia River'water pumped from the makeup water pumphouse directly to the test facility.Water Quality Program data from a Columbia River monitoring station sample taken October 2, 1990 provides information as to the chemical makeup of the control (dilution) water (Attachment 2).Temperature control for the holding tank water and the 01.(control)and 1001.plant effluent solutions was provided by a 200,000 BTU capacity chiller and an in-house designed temperature conditioning unit.A system of heat exchangers, flow and temperature control valves, water heater, and controllers produced a test water temperature of 12 C, controllable to within+/-1 C.The chinook salmon juveniles utilized for the bioassay were obtained from the Washington Department of Fisheries, Ringold Hatchery on October 4, 1990, The fish were acclimatized in a 2000-liter capacity holding tank for 14 days.The water temperature of the holding tank was gradually.
reduced from an initial temperature of 15.9 C (which approximated the temperature of the hatchery holding pond)to the desired test,,temperature at 12'C four days prior to the start of the 96-hour test.At no time did the change in temperature exceed 3 C in a 12-hour period.A commercial fish food (Bio-Dry by Bioproducts) was utilized, with food size and feeding rates as used at the hatchery.Fish were not fed for 48 hours prior to handl'ing or during the 96-hour test.3-2 The flow-through system consisted of six 132.5-liter capacity'glass aquaria, each containing a volume of approximately 114 liters.The system included three control (1001.Columbia River water)and three toxicant (100'/.plant effluent)aquaria selected on a random basis.Aquaria flow rates were approximately 1.43 liters/minute/aquaria.
Water temperature in both the control and toxicant head boxes was monitored continuously by use of an Astro-Med Dash 2 recorder.Control water (Columbia River)flow to all six aquaria was initiated at 2400 hours on October 6, 1990.At 1400 hours on October 17, 1990, ten fish were distributed to each aquaria, two per tank, in a stratified random manner.The aquarium loading factor was-approximately 180 grams or 1.58 g/liter.Fish were acclimatized in the aquaria at 100'/.control water for 48 hours prior to toxicant (plant effluent)introduction.
The 96-hour test was begun by siphoning down the aquaria (including controls)until there was approximately 23 liters of water remaining, and then toxicant flow was initiated to,the test aquaria.Control aquaria were allowed to refill with river water.The aquaria were checked for mortalities twice per day.Fork lengths and wet weights were determined by anesthetizing and measuring control fish at the end of the test (Table 3-1).All fish surviving the test were released to the Columbia River.Temperature, dissolved oxygen, pH and conductivity were measured daily in the control and toxicant head boxes, and each aquaria.Grab water samples were collected daily from the control and toxicant head boxes and each aquaria, and analyzed for calcium, magnesium, alkalinity, total copper, and total zinc.l The pH and temperature measurements were made with an IBM Model EC105-2A portable pH meter.Prior to each use the instrument was 3-3 calibrated using pH standards of 4.0, 7.0, and 10.0.If necessary, the probes were'adjusted to within 0.1 unit of the standards.
The temperature probe was calibrated against an NBS-traceable thermometer.
Dissolved oxygen measurements were made using a Yellow Springs Instrument (YSI)Model 57 meter.The meter was air-calibrated prior to each use per manufacturer's instruction.
In addition, Hinkler D.O.measurements were made prior to the bioassay and results compared to the Model 57 meter.Conductivity measurements were made with a YSI Model 33 meter.Daily measurements using conductivity standards were performed.
Sample holding'times followed those recommended by the U.S.Environ-mental Protection Agency (USEPA 1983).Analyses were performed per USEPA (1983)approved methods (Table 3-2).3.3 ND No fish mortal,ities were observed in any of the control<0'/.effluent)or toxicant (1001.effluent)aquaria.This result is in agreement with several static bioassays conducted at NNP-2 during 1984 and 1985 (Supply System, 1986).Temperature measurements remained fairly constant throughout the test period.Only slight variations occurred between control and toxicant solutions.
All measurements were within the required range of 12 C+/-1'C (Table 3-3).The pH values are presented in Table 3-3.Discharge water (toxicant) exhibited a value about one unit higher than the control values.Dissolved oxygen measurements were fairly constant.Discharge aquaria averaged approximately 2 mg/1 less than control aquaria throughout the bioassay (Table 3-4).Conductivity measurements (Table 3-4)demon-strate the difference in concentration (cycles)between control (Columbia River)and toxicant<100/.effluent)water sources.3-4 Total alkalinity measurements for both the control and toxicant aquaria remained constant throughout the bioassay.Discharge values were approximately four times higher than control values (Table 3-5).Total hardness values given in Table 3-5 are indicative of the cycles of'oncentration.
Hardness was determined by calculation from magnesium and calcium measurements (Table 3-6).The number of cycles of concentration of discharge water ranged from approximately 11.6 at the start of the test to 10.1 at the end of the test period.This calculation is based on calcium levels recorded from control and toxicant head boxes.Copper and zinc concentrations are presented in Tables 3-7 and 3-8, respectively.
The elevated levels in the discharge water may be.attributed to corrosion of the condenser tubes and system piping as well as concentration of metals in the makeup water.These values are considerably lower than the concentrations observed during the static bioassays of 1984/1985.
A discussion of the chemical composition of Calgon PCL 8125 and its ability to chemically bind toxic metal forms is presented in the"Operational Ecological Monitoring Program for Nuclear Plant No.2, 1985 Annual Report" (Supply System, 1986).3.4~F~F~a f in r H w r, 16th Edition, APHA, AHWA, HPCF, Washington, D.C., 1985 f r h i A f W r W , EPA-0600/4-79-/020, Environmental Monitoring and Support Laboratory, Environmental.
Protection Agency, Cincinnati, Ohio 1983"Environmental and Plant Support Chemistry Laboratory Quality Assurance Manual," Washington Public Power Supply System, 1990 3-5 M rin March 1985 rin h A i f ff n F hw E il I-I.E I tt t tt 1 rBi Environmental Protection Agency, 1978 EPA/600/4-78/043, n vi W December 1985 im hw r r hr EPA/600/4-85/014,"Operational Ecological Monitoring Program for Nuclear Plant No.2, 1985 Annual Report," Washington Public Power Supply System, 1986"WNP-2 Aquatic Bioassays," Environmental Programs Instruction 13.2.11, Washington Public Power Supply System, 1990 3-6 Table 3-1.Size and Weight of Fish used in Bioassay Test.F r 5J~i'i~Av r~~an~vrk9R~~nC Chinook 30 11.0 8.9-16.2 15.6 8.5-50.8 3-7 Table 3-2.Summary of Bioassay Parameters and Associated EPA Methods.Hater Temperature (C)Conductivity (us/cm)at 25'C Dissolved Oxygen (mg/1)pH (su)Total Alkalinity (Mg/1 as CaC03)Total Hardness (mg/1 as CaC03)Calcium Magnesium Total Copper (ug/1 as Cu)Total Zinc(ug/1 as Zn)170.1 120.1 360.1 360.2 150.1 310.1 130.2 200.7 200.7 220.2 200.7 289.2 200.7 3-8 Table 3-3.Temperature and pH Measurements Temperature
('C)pH%Discharge Conc.@~I~i X Discharge Conc.Emily<%Discharge Conc.~~ri%Discharge Conc.Sample~D 10/20/90 10/21/90 10/22/90 10/23/90 10/24/90 11.4 11.7 12.3 12.0 11.8 11.6 12.1 12.1 12.5 12.1 11.7 11.7 11.7 11.9 11.9 12.0 12.7 12.7 12.7 11.9 11.9 11.9 12.0 12.0 11.9 11.9 11.8 11.9 12.4 12.5 12.5 13.0 13.0 13.0 12.3 12.3 12.3 12.5 12.3 12.2 7.91 7.87 7.88 7.95 7.95 8.63 8.67 8.69 8.65 8.60 7.71.7.74 7.81 7.82 7.81 7.84 7.87 7.90 7.89 7.95 7.91 7.92 7.93 7'2 7.93 8.57 8.62 8.62 8.61 8.67 8.66 8.64 8.67 8.66 8.63 8.66 8.65 8.55 8.61 8.57 Table 3-4.Dissolved Oxygen and Conductivity Measurements Dissolved Oxygen (mg/1)Conductivity (uS/cm)He ULCC mmar~X Discharge Conc.X Discharge Conc.'L Discharge Conc.4 Discharge Conc.Sample~D 10/20/90 10/21/90 10/22/90 10/23/90 10/24/90 10.2 9.8 10.0 10.2 9.9 8.5 7.8 7.7 8.0 7.8 10.5 10.2 10.4 9.4 9.5 9.6 9.5 9.5 9.5 9.9 9.9 9.9 9.6 9.5 9.6 8.9 9.9 9.3 7.8 7.8 7.9 7.7 7.8 7.8 8.2 8.2 8.2 7.8 7.9 7.8 98 100 100 90 1050 1050 970 890 790 100 99 103 99 99 100 100 100 100 97.97 98 99 98 100 900 900 890 1000 1020 1000 950 970 970 900 900 900 850 860 850 Table 3-5.Total Alkalinity and Total Hardness Measurements Total Alkalinity (mg/1)Total Hardness (mg/1)Sample~D'L Discharge Conc.kg~i'L Discharge Conc.'L Discharge Conc.4 Discharge Conc.10/20/90 10/21/90 10/22/90 54.0 54.0 54.0 197.0 194.0 190.0 53.0 54.0 55.0 55.0 54.0 54.0 54.0 54.0 54.0 177.0 180.0 176.0 196.0 197.0 197.0 191.0 192.0 188.0 65.2 63.7 64.0 768 735 678 64.7 64.0 64.2 64.1 62.1 62.9 62.3 61.6 63.3 689 656 666 595 717 740 683 670 665 10/23/9054.0 196.0 53.0 202.0 54.0 54.0 61.5 200.0 202.0 633 61.6 652 60.7 62.9 613 655 10/24/90 55.0 179.0 55.0 54.0 54.0 180.0 180.0 179.0 61.4 615 63.0 62.9 61.6 610 660 595 Table 3-6.Magnesium and Calcium Measurements
, Magnesium (mg/1)Calcium (mg/1)Hmf~B'4 Discharge Conc.'/.Discharge Conc.L Discharge Conc.'L Discharge Conc.Sample~D 10/20/90 10/21/90 10/22/90 10/23/90 4.2 4.3 4.2 4.0 52.0 50.0 46.0 42.0 4.2 4.2 4.2 , 4.3 4.1 4.1 4.2 4.1 4.2 4.1 4.0 4.1 46.0 44.0 44.0 42.0 48.0 50.0 46.0 44.0 44.0 42.0 48.0 44.0 19.2 18.4 18.7 18.0 222.0 212.0 196.0 184.0 19.0 18.7 18.8 18.6 18.1 18.4 18.0 17.9 18.4 17.9 17.7 18.4 200.0 190.0 194.0 169.0 208.0 214.0 198.0 196.0 194.0 192.0 167.0 190.0 10/24/90 4.1 40.0 4.2 40.0 4.1 4.1 17.8 44.0 40.0 180.0 18.3 178.0 18.4 17.9 192.0 172.0 Table 3-7.Total Copper Concentrations (ppb)1 D Sample L~tim Head Box Percent Discharge n 100 October 20~hr 0.3 81.0 October 21~4hr 0.8 78.0 October 22~4r)1.6 78.0 October 23~~h)1.3 75.0 October 24 hr 1.2 71.0 Aquaria (3)100 100 100 0.4 0.4 0.3 70.0 72.0 68.0 0.5 0.3 0.3 78.0 76.0 76.0 1.0 76.0 77.0 75.0 1.0 0.9 73.0 75.0 73.0 1.2 0.4 67.0 68.0 69.0 Table 3-8.Total 2inc Concentrations (ppb)1 D Sample Laa~n Head Box Percent Discharge n 2.0 2.0 2.0 3.0 October 20 October 21 October 22 October 23 October 24~LhcQ 100 87.0 64.0 59.0 64.0 60.0 Aquaria 0 100 100 100 4.0 4.0 4.0 59.0 62.0 55.0 4.0 4.0 2.0 61.0 63.0 62.0 2.0 1.0 63.0 61.0 58.0 4.0 3.0 1.0 62.0 62.0 61.0 55.0 57.0 57.0*Less than detection limit.
DATE-18/25/98 DIC: 1444.27 ENVIRONMENTAL AND PLANT SUPPORT CHEMISTRY LABORATORY TEST PLAN 27 SECONDARY CHEMISTRY REPORT TERRY NORTHSTROM EXT.8462 RICK WELCH EXT.8324 SAMPLE&#xb9;: 3197.DATE RECKIVED: 18/23/98 LOCATION: CW CUSTOMER: R.ED WELCH DATE COMPLET REVIEWED BY: T.NORTHSTROM 7 ANALY".'E G TOTAL-METALS (mg/1)B C CALCIUM MAGNESIUM SODIUM COPPER ZINC NICKEL IRON 198 48 F 1 45 8.863 8'52 8 83 8'3 91 91 84 83 ALUMINUM MANGANESE POTASSIUM CHROMIUM PHOSPHORUS SULFUR SILICON 8.12 8.818 7.8<8.886 4.2 149 24.3 89 88 89.CALCIUM.MAGNESIUM SODIUM COPPER ZINC NICKEL IRON 175 38.6 8.858 8.849 8'2 8'43 DISSOLVED METALS.(mg/1)ALUMINUM MANGANESE POTASSIUM CHROMIUM PHOSPHORUS SULFUR SILICON INORGANIC NON-METALS AND PHYSICAL PROPERTIES
<8.83 8 883 6+3<Q.QQ6 3.9 148 22.8 SULFATE CHLORIDE FLUORIDE NITRATE 418 22 8.82 1~2 PHOSPHATE Q.B6 pH 8.58 CONDUCTIVITY 113B B C uS CALCULATED RESULTS CYCLES (Ca)18.6 SI02 48 79 mg/1 LEGEND CALGON PCL-8125 (P BASIS)85.92 mg/1 COLUMN: A SAMPLE ANALYSIS RESULTS B SPIKE SAMPLE RESULTS (%RECOVERY)C OC SAMPLE RESULTS (%OF TRUE VALUE)3-1 Attachment 1.0 3-15 e.REPORT DATE:82/i2/9i ENVIRONMENTAL AND PLANT SUPPORT CHEM1STRY LABORATORY WATER CHEMISTRY REPORT TERRY NORTHSTROM EXT.8462 SARA LINDBERG EXT.8825 SAMPLE 8 2124.DESCRIPTION:
WATER QUALITY 9i-i CUSTOMER: RE WELCH ANALYST: DATE SAMPLE TAKEN: DATE RECEIVED: 18/82/98 DATE COMPLETED i2/87/98 REVIEWED BY: NALYSIS AMMONIA NITROGEN 8.8i6 SULFATE 8.97 DISSOLVED OXYGEN 18.8 TOTAL RESIDUAL CL<8.85 TOTAL PHOSPHORUS 8'16 TQT.DISSOLVED SLDS 7'9.8 TOT SUSPENDED SLDS 2.5 TURBIDITY 8.85 ALKALINITY 58.8 (mg/1)(mg/1)(mg/1)(ug/1)(mg/1)(mg/1)(mg/1)(NTU)((mg/1)NITRATE NITROGEN<d 1 TEMPERATURE 17.8 CONDUCTIVITY 1~4.1 OIL 5 GREASE<8.5 ORTHOPHOSPHORUS
<dl PH 7.87 (mg/1)(C)(ua/cm/25C)(mg/1)(mg/1)HARDNESS 61.6 (mg/1)CQPPER i.I (ug/1>CHROMIUM 8~28 (ug/1)CADMIUM<8.1 (ug/1)Z INC IRON~.9 (ug/1>58.8 (ug/1)NICKEL 8~2 (ug/1)LEAD 8.4 i (ug/1)3-2 Attachment 2.0 3-16 4.0 UUZJIKJL The water quality monitoring program documents the chemical character of the Columbia River in the vicinity of the WNP-2 discharge.
The monitoring data is used to assess if chemical changes in the Columbia River result from WNP-2 cooling tower blowdown.The program is per-formed to comply with EFSEC Resolution No.239.4.2 M Columbia River surface water was sampled monthly January 1990 through December 1990.Samples were collected near River Mile 352 from four stations numbered 1, 7, ll, and 8 (Figures 4-1, 4-2).Station 1 is upstream of the WNP-2 intake and discharge and represents a control.Station 7 is in the center of the mixing zone approximately 45 meters (150 feet)downstream of the discharge and provides a measure of near-field discharge effects.Station 11, at 91 meters (300 feet)down-stream from the discharge, represents the extremity of the mixing zone allowed by WNP-2's National Pollutant Discharge Elimination System (NPDES)permit.Sub-stations 11M and 118 sample water from middle and bottom depths, respectively.
Station 8 is approximately 568 meters (1870 feet)downstream from the discharge and represents a location where the discharge is well mixed in the Columbia River: Plant discharge water (P.H.Dis.)
was sampled monthly during 1990.Samples were collected from the discharge pipe, at a sample point located in the WNP-2 makeup water pumphouse, immediately prior to its entering the Columbia River.The samples were analyzed for temperature, dissolved oxygen (DO), pH, conductivity, turbidity, total alkalinity, total hardness, filterable residue (total dissolved solids), nonfilterable residue (total sus-pended solids), ammonia-nitrogen, nitrate-nitrogen, total phosphorus, 4-1 orthophosphorus, sulfate, oil and grease, total residual chlorine, total copper, total iron, total zinc, total nickel, total lead, total cadmium and total chromium.A summary of water quality parameters, stations and sample frequencies is presented in Table 4-1.Discharge samples were analyzed for total copper, total iron, total zinc, total nickel, total lead, total cadmium and total chromium.4.2.1 m Columbia River samples were collected by boat approximately 300 feet from the Benton County shore.Temperature, conductivity, dissolved oxygen, and pH were determined in-situ with portable instruments.
Water for total metal, conductivity, sulfate, orthophosphorus, ammonia-nitrogen, nitrate-nitrogen, turbidity, total alkalinity and total hardness analyses was collected in one-liter polypropylene cubitainers and kept on ice until delivered to the Supply System's Environmental Programs Laboratory (EPL).Hater for total copper analysis from Stations llM and 11B were collected in 125 ml nalgene bottles with an All-Teflon pump and Tygon tubing.In the laboratory the metals samples were acidified to 0.5'/with concentrated nitric acid.Determinations for filterable residue, non-filterable residue, total phosphorus, and total residual chlorine were made on water samples collected in 3.8-liter polypropylene cubitainers and kept on ice unti 1 delivered to the Supply System's Radiological Services Laboratory (RSL).Hater for oil and grease analysis was skimmed from the surface into solvent rinsed borosilicate glass bottles.After collection, samples were placed on ice and transported to the RSL for analysis.Discharge samples were collected in one-liter polypropylene cubi-tainers and kept on ice until delivered to the EPL for analysis.During the annual plant maintenance outage (May through July)only Station 1 (control)samples were collected.
4-2 4.2.2 Surface temperature and dissolved oxygen measurements were made using a Yellow Springs Instruments (YSI)Model 57 meter.Temperature was recorded to within 0.1 C after the probe had been allowed to equili-brate in the river for a minimum of one minute.The field probe was calibrated monthly, against an NBS-traceable thermometer in the laboratory.
The DO meter was air-calibrated prior to each field sample date per manufacturer's instruction.
In addition, Winkier DO measurements were made every month and results were compared to the field probe.Conductivity measurements were made with a YSI model 34 meter.Prior to each sample date, measurements of conductivity standards were performed.
pH measurements were made with an IBM Model EC105-2A portable pH meter.Prior to each use the instrument was calibrated using pH standards of 4.0, 7.0, and 10.0.If necessary, the probes were adjusted to within 0.1 unit of the standards.
4.2.3 r r Total metals, sulfate, conductivity, orthophosphorus, ammonia-nitrogen, nitrate-nitrogen, turbidity, total alkalinity and total hardness were determined by Supply System Environmental Programs personnel.
The remaining analyses were performed by Supply System's Radiological Services personnel.
Sample holding times followed those recommended by the U.S.Environmental Protection Agency (USEPA 1983).Analyses were performed per USEPA (1983)and ASTM approved methods (Table 4-2).4 3 4 3 JK2KZS Data obtained during the annual maintenance period (May through July)is not included in table summaries.
4.3.1 Columbia River temperatures varied seasonally with a minimum tempera-ture of 3.3 C at Stations 1, 7, ll and 8 on February 15th and a maximum of 19.6'C at Stations llM and 11B on August 15 (Table 4-3).River temperatures measured in 1990 are presented graphically in Figure 4-3.4.3.2 D The mean and range of DO measurements for each sample station are presented in Table 4-4.Columbia River DO concentrations ranged from 9.3 mg/1 at Station 7 in September to 13.6 mg/1 at Station 7 in'pril.The mean DO concentrations ranged from 11.1 mg/1 at Stations 7 and 8 to 11.2 mg/1 at Stations 1 and 11.DO concentrations were inversely related to river temperature as would be expected from'solubility laws.DO levels were never below the 8 mg/1 water quality standard for Class A waters (NDOE 1988)indicating good water quality with respect to dissolved oxygen throughout the year..Dissolved oxygen measurements are presented graphically in Figure 4-4.4.3.3 Columbia River pH values ranged from 7.43 at Station 7 in January to 8.27 at Station 7 in March (Table 4-5).The variation in pH between sample stations is small.The largest difference of 0.44 standard units occurred between Station 7 (pH 8.27)and Station 11B (pH 7.83)in March.4-4 The pH water, quality standard for Class A waters is from 6.5 to 8.5 (WDOE 1988).Measurements for all stations throughout 1990 were within this range.pH measurements, presented graphically in Figure 4-5, generall'y agree with historical data for the Columbia River (Silker 1964).The alkalinity of a water is a measure of its capacity to neutralize acids and is generally due to the presence of carbonates, bicarbonates, phosphates, silicates, borates, and hydroxides.
Columbia River alka-linities ranged from 49,0 to 63.0 mg/1 as calcium carbonate (Table 4-6).The alkalinity measurements are presented graphically in Figure 4-6.4.3.4 1t Conductivity is a measure of the ionic content of a solution.Columbia River conductivity measurements ranged from 118.5 uS/cm at 25 C at Station 11M in August to 162.0 uS/cm at 25'C at Station 7 in January (Table 4-7).Station mean conductivities ranged from 136.6 uS/cm at 25'C at Station 1 to 138.6 uS/cm at 25'C at Station ll.The conduc-tivity results are very comparable to those reported in earl'ier studies of the Columbia River.(Silker 1964).The measurements are presented graphically in Figure 4-7.4.3.5 1 R i 1 1 n Total residual chlorine (TRC)measurements for 1990 were less than the measured detection limit of 50 ug/1 (Table 4-8).TRC measurements were made using the Amperometric Titration Method.This method has a detection limit of 50 ug/1.4-5 4.3.6 Columbia River total copper values ranged from<1.2 ug/1 to 3.4 ug/1 (Table 4-9).The largest interstation difference in copper occurred between Station 1 (3.4 ug/1)and all other stations in April.However, the value of 3.4 is uncharacteristic and is probably an indication of a contaminated sample rather than an actual copper measurement.
Our copper results show good agreement with earlier studies.In 1962, Silker (1964)analyzed 27 Columbia River samples collected upstream of WNP-2 and reported a mean copper concentration of 4.3 ug/1.Neutron activation analysis of Columbia River water was done in 1968-1969 by Cushing and Rancitelli (1972).They reported a mean copper concentration of 1.4 ug/1.Florence and Batley (1977)state that total copper concentrations in the range of 0.3-3.0 ug/1 are found in many unpolluted fresh-water rivers throughout the world.The Hanford reach of the Columbia River would generally be in that category.Plant discharge total copper concentrations ranged from 24.0 ug/1 in April to 209.0 ug/1 in August.~Tl~in Mean total zinc measurements ranged from 6.6 ug/1 at Station 11 to 7.0 ug/1 at Station 7 (Table 4-10).Individual zinc measurements ranged from 2.8 ug/1 at Station 1 to 12.4 ug/1 at Station 7.The greatest interstation difference (3.8 ug/1)occurred between Station 7 (12.4 ug/1)and Station 8 (8.6 (ug/1)in April.Discharge water total zinc measurements ranged from 26.0 ug/1 in August to 79.0 ug/1 in February.4-6
~Tl~Ir n Columbia River mean iron concentrations ranged from 136.1 ug/1 at Station 8 to 154.9,ug/1 at Station 1 (Table 4-11).The greatest interstation difference in concentration of 176 ug/1 occurred between Station 8 (48.0 ug/1)and Station 7 (224.0 ug/1)in.February.
However, measurements for Stations 1 and 7 for February are uncharacteristic and may represent contaminated sample containers rather than actual iron concentrations.
Plant discharge total iron concentrations ranged from 180.0 ug/1-.in January to 1400.0 ug/1 in November.Total nickel concentrations were below the detection limit (2.6 ug/1)for nearly all periods, except November.The 5.8 ug/1 recorded for Station 7 in March is uncharacteristic and probably represents a contaminated sample rather than an actual Columbia River nickel measurement.
Plant discharge total nickel concentrations ranged from<2.6 ug/1 in August to 14.2 ug/1 in October.~Tl~Total lead concentrations were low with nearly all stations recording levels below detection limits for most periods (Table 4-11).Discharge water total lead measurements ranged from<1.2 ug/1 in September to 6.8 ug/1 in August.
Cadmium concentrations were below detection limits for all stations during all periods, Plant discharge total cadmium concentrations were below the detection limit (0.5 ug/1)for all periods except March, in which 1.1 ug/1 was recorded.T 1 hrm Chromium concentrations were below detection limits for all periods except November (Table 4-12).Plant discharge total chromium concentrations ranged from<1.9 ug/1 (January, March, August)to 32.0 ug/1 in October.Total zinc and total iron measurements are presented graphically in Figures 4-8 and 4-9, respectively.
4.3.7~rn~Hardness indicates the quantity of divalent metallic cations present in the system, principally calcium and magnesium ions.Hardness ranged from 58.0 to 71.3 mg/1 as calcium carbonate (Table 4-6).Mean hardness values ranged from 64.8 mg/1 at Station 7 to 65.2 mg/1 at Station 11.The hardness measurements are presented graphically in Figure 4-10.Oil and grease values were below the detection limit of 0.5 mg/1 for all stations and periods except December 1990.Oil and grease measurements are summarized in Table 4-13.4-8 4.3.9 Amm r-i r-Q~ri&#xc3;Q Ammonia and nitrate are forms of nitrogen commonly found in water systems.Both nitrate and ammonia are assimilated by plants and con-verted to proteins.Common sources of nitrate and ammonia to the aquatic system are breakdown of organic matter in the soil, industrial discharges, fertilizers and septic tank leachate.Ammonia concentrations ranged from<0.01 to 0.04 mg-N/1 (Table 4-13).Nitrate concentrations ranged from<0.01 to 0.13 mg-N/1.The nitrate measurements are summarized in Table 4-14.The nitrate measurements are presented graphically in Figure 4-11.4.3.10 Phosphorus is a required nutrient for plant growth and, while found in certain minerals, is commonly added to streams through fertilizers, treated sewage, and septic tank leachate.Measured total phosphorus concentrations ranged from<0.1 to 0.19 mg-P/1.Orthophosphorus concentrations were below the detection limit of 0.01 mg/1 for all stations and periods (Table 4-15).4.3.11~f~Mean sulfate concentrations ranged from 9.16 mg/1 at Station 8 to 9.27 mg/1 at Station 11 (Table 4-15).Individual sulfate measurements ranged from 8.00 to 10.60 mg/1.Sulfuric acid is added at WNP-2 to control circulating water pH and a by-product is sulfate.Based on the river measurements, WNP-2 discharges are not appreciably altering river sulfate concentrations.
Total sulfate measurements are presented graphically in Figure 4-12.4-9 4.3.12 T 1 Di v'i li n Tr i i Total dissolved solids or total filterable residue, TDS, is defined as that portion of the total residue that passes through a glass fiber filter and remains after ignition at 180'C for one hour.Total dissolved solids do not necessarily represent only the dissolved con-stituents but may also include colloidal materials and some small particulates.
The mean TDS measured in the Columbia River varied from 77.7 mg/1 at Station 1 to 80.2 mg/1 at Station 7 (Table 4-16).There were no consistent differences in TDS concentrations between stations or through time, Total suspended solids (TSS)or total nonfilterable residue is the material retained on a standard glass fiber filter after filtration of a well-mixed sample.TSS concentrations were generally low and varied from<1.2 to 23.1 mg/1 (Table 4-16).Mean TSS concentrations ranged from 4.5 mg/1 at Station 7 to 4.8 mg/1 at Station 8.Turbidity is a measure of the suspended matter that interferes with the passage of light through water.In the Columbia River, measured turbidities were low and ranged from 0.80 nephelometric turbidity units (NTU)to 17.0 NTU (Table 4-8).Total dissolved solids, total suspended solids and turbidity data are presented graphically in Figures 4-13, 4-14, and 4-15.4-10 4.4~DI QgjLQN Unusually warm temperatures and heavy precipitation during November resulted in high flow rates for the Columbia River and a corresponding increase in the levels of several parameters.
Turbidity values were the highest recorded since the water quality progam began in April, 1983.The figure of 17.0 NTUs for Stations 1, ll and 8 was greater than three times the previous maximum of 5.4 NTUs reported for Stations 7 and ll in June, 1983.Other parameters demonstrating seasonally uncharacteristic increases included copper, nickel, iron', lead, chromium and total suspended solids.Plant discharge data basically demonstrates the increase in certain constituents of the blowdown due mainly to concentrating the circu-lating cooling water (Columbia River water).Preferred operating conditions at WNP-2 are in part characterized by a circulating water concentration of 12 cycles.In comparing river and plant discharge data, it is evident that the impact on the Columbia River is minimal, with no significant inter-station differences being detected.Overall, it appears that, with respect to all the measured parameters sampled under the operating conditions prevailing during 1990, WNP-2 cooling water discharge had little effect upon Columbia River water qual i ty.4.5 Cushing, C.E., and L.A.Rancitelli.
1972.Trace element analyses of Columbia River water and phytoplankton.
Northwest Science 46(2):115-121.
4-11 Florence, T.M.and G.E.Batley.1977.Determination of the chemical forms of trace metals in natural waters with special reference to copper, lead, cadmium and zinc.Talanta 24:151-158.
Silker, H.B.1964.Variations in elemental concentrations in the Columbia River.Limnol.Oceanogr.9;540-545.
Environmental Protection Agency.1983.'Methods for chemical analysis of water and wastes.Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH.Edition, APHA, AWHA, HPCF, Washington, D.C., 1985.r, 16th Washington Department of Ecology.1988.Water Quality Standards for Surface Waters of the State of Washington.
Hater Quality Planning Office of Hater Programs.Olympia, HA.Washington Public Power Supply System.1987.Operational Ecological Monitoring Program for Nuclear Plant 2.Annual Report for 1986.Richland, WA.Washington Public Power Supply System.1988.Operational Ecological Monitoring Program for Nuclear Plant 2.Annual Report for 1987, Richland, WA.Washington Public Power Supply System.1989.Operational Ecological Monitoring Program for Nuclear Plant 2.Annual Report for 1988.Richland, HA.Washington Public Power Supply System.1990.Operational Ecological Monitoring Program for Nuclear Plant 2.Annual Report for 1989.Richland, WA.4-12 1 Table 4-1.Summary of Water ()vali ty Parameters, Stations, and Sampling Frequencies, 1990 Parameter Wells in Stations Vicinity of 7 11 11H 8 118 8 Plant Site Ouantity (flow)Temperature Oissolved Oxygen pH Turbidity Total Alkalinity Filterable Residue (Total Oissolved Solid)Nonfilterable Residue (Suspended Solids)Conductivity Iron (Total)Copper (Total)Nickel (Total)Zinc (Total)Lead (Total)Cadmium (Total)Chromium (Total)Sulfate Ammonia Nitrogen Nitrate Nitrogen Ortho Phosphorus Total Phosphorus Oil and Grease Chlorine, Total Residual Hardness Q~mb 1~K~~H=Honthly g=()uarterly
+Samples wi 11 be collected if wells are being used for drinking water.-Analysis not required"" Samples taken in triplicate
++Samples collected only if the plant is operating.
4-13 Table 4-2.Summary of Water Quality Parameters, EPA and ASTM Method Number Bu~~Water Temperature
('C)Turbidity, (NTU)Conductivity (umhos/cm) at 25 C Dissolved Oxygen (mg/1)probe Dissolved Oxygen (mg/1)Modi'fied Winkler" pH (Standard Unit)Total Alkalinity (mg/1 as CaC03)Total Hardness (mg/1 as CaC03)Oil and Grease (mg/1)Nitrogen, Ammonia, Total (mg/1 as N)Nitrate Nitrogen, Total (mg/1 as N)Total Phosphorus (mg/1 as P)Ortho Phosphorus (mg/1 as P)Sulfate (mg/1 as S04)Total Copper (ug/1 as Cu)Total Iron (ug/1 as Fe)Total Nickel (ug/1 as Ni)Total Zinc (ug/1 as Zn)Total Lead (ug/1 as P6)Total Cadmium (ug/1 as Cd>'otal Chromium (ug/1 as Cr)Total Residual Chlorine (ug/1)Filterable Residue: Total Dissolved Solids (mg/1)Non-Filterable Residue: Total Suspended Solids (mg/1)EPA Method~her 170.1 180.1 120.1 360.1 360.2 150.1 310.1 130.2, 6010 413.2 350.3 352.1 365.2 365.2 375.4 220.1, 220.2, 200.7 236.1, 236.2, 200.7 249.1, 249.2 289.1, 289.2, 200.7 239.1, 239.2 213.1, 213.2 218.1, 218.2 330.1 160.1 160.2 ASTM Meth D4327-88 D4327-88 D4327-88 4-14 Table 4-3.Summary of Temperature Measurements for 1990.Temperature (Degrees C)Sample Date 11 11M 118 01/18/90 02/15/90 03/14/90 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 4.7 5.0 4.9 4.8 3.3 3.3 3.3 3.6 4.7 4.3 4.3 4.9 7.3 7.3 7.3 7.5 11.3 13.6 18.2 4.8 4.8 3.5 3.3 4.5 4.6 8.0 7.4 17.8 17.6 17.8 18.0 9.5 9.4 9.4 9.5 8.3 8.3 8.3 8.7 17.8, 17.9 9.5 9.4 8.2 8.3 19.3 19.4 19.3 19.6 19.6 19.3 19.0 19.2 19.0 18.9 18.6 19.3 Mean SD Maximum Minimum 10.4 10.4 10.4 10.6 10.5 10.5 6.5 6.5 6.5 6.5 6.5 6.5 19.3 19.4 19.3 19.6 19.6 19.3 3.3 3.3 3.3 3.6 3.5 3.3 4-15 Table 4-4.Summary of Dissolved Oxygen Measurements for 1990.Dissolved Oxygen (mg/1)Samp'le Date 01/18/90 02/15/90 03/14/90 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 9.5 9'10.0 9.6 9.3 9.5 9.5 9.4 9.8 9.7 9.4 9.4 Meter Breakdown in Field 12.8 12.7 12.7 12.8 12.1 12.0 12.0 12.0 13.4 13.6 13.5 13.5 12.7 12.3 10.8 11/28/90 11.2 11.2 11.2 11.1 12/12/90 11.2 11.2 11.2 11.2 Mean SD Maximum Minimum 11.2 11.1 11.2 11.1 1.5 1.6 1.5 1.6 13'13,6 13.5 13.5 9.4 9.3 9.4 9.4 4-16 Sample Date Table 4-5.Summary of pH Measurements for 1990.pH 11 llM 118 01/18/90 02/15/90 03/14/90 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 7.57 7.43 7.49 7.61 7.57 7.57 7.68 7.67 7.71 7.71 7.68 7.73 7.91 8.27 7.87 7.87 7.83 7.90 7.76 7.62 7.71 7.67 7.61 7.73 7.71 7.73 7.71 7.73 7.64 7.72 7.78 7.79 7.78 7.87 7.74 7.82 7.84 7.88 7.80 7.87 7.87 7.91 7.89 7.93 7.87 7.68 7.73 7.71 7.68 7.69 7.69 7.74 7.72 7.73 7.74 7.74 7.76 Mean SD Maximum Minimum 7.91 8.27 7.91 7.89 7.93 7.90 7.57 7.43 7.49 7.61 7.57 7.57 4-17 Table 4-6.Summary of Alkalinity and Hardness Measurements for 1990.Sample Date Total Alkalinity (mg/1)(as CaC03)7 ll 8 Sample Date Total Hardness (mg/1)(as CaCO~1 7 ll 8 01/18/90 63.0 63.0 62.5 61.0 02/15/90 59.0 59.0 58.0 60.0 03/14/90 59.5 59.5 59.0 60.0 04/11/90 57.5 58.0 60.0 59.0 05/16/90 65.0 06/13/90 54.0 07/18/90 51.0 08/15/90 54.0 55.0 54.0 54.0 09/13/90 54.0-55.0 55.0 54.0 10/02/90 58.0 58.0 59.0 57.0 11/28/90 49.0 50.0 51.0 50.0 12/12/90 58.5 60.0 60.0 59.0 05/16/90 06/13/90 07/18/90 08/15/90 58.6 0 60.4 54.7 58.5 58.0 58.7 58.3 09/13/90 63.3 63.9 62.9 61.6 10/02/90 61.6 61.8 61.6 62.0 11/28/90 12/12/90 58.9 60.1 59.9 60 69.3 69.0 69.8 69.01/18/90 71.0 70.0 71.2 71.3 02/15/90 68,5 65.6 69.9 69.4~03/14/90 68.1 68.4 67.6.67.7 04/11/90 64.9 66.2 65.1 64.9 Mean 56.9 57.5 57.6 57.1 SD 4.1 3.7 3.6 3.7 Maximum 63.0 63.0 62.5 61.0 Minimum 49.0 50.0 51.0 50.0 Mean SD 64.9 64.8 65.2 65.0 4.6 4.2 4.7 4.7Maximum 71.0 70.0 71.2 71.3 Minimum 58.5 58.0 58.7 58,3 4-18 Table 4-7.Summary of Conductivity Measurements for 1990.Conductivity at 25'C (uS/cm)Sample Date 01/18/90 02/15/90 11M 118 155.1 162.0 161,8 153.8 154.6 154.1 151.7 152.1 151.9 151.8 152.3 151.9 03/14/90 153.6 153.7 156.5 156.1 157.8 154.6 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 136.4 137.0 137.7 136.2 136.3 136.4 121.0 123'119.3 119.8 127.6 126.9 118.5 118.8 126.9 127.1 126.3 128.0 127.5 129.4 127.3 134.1 131.3 132.0 133.1 133.7 133.7 126.9 126.3 126.7 127.3 127.9 126.7 125.3 125.4 125.5 126.2 126.5 125.4 Mean SD Maximum Minimum 136.6 138.0 138.6 136.7 137.5 137.4 13.5 14.214.3 13,8 14.0 12.6 155.1 162.0 161.8 156.1 157.8'154.6 119'125.4 125.5 118.5 118.8 125.4 4-19 Table 4-8.Summary of Turbidity and Total Residual Chlorine Measurements for 1990.Turbidity (NTU)Total Residual Chlorine (mg~Sample Date Sample Date ll 8 01/18/90 1.0 02/15/90 1.2 1.3 1.2 1.2 01/18/90<0.05<0.05<0.05 02/15/90<0.05<0.05<0.05<0.05<0.05 03/14/90 1.1 1.2 1.2 1.2 04/11/90 1.1 05/16/90 2.2 06/13/90 2.0 07/18/90 1.2 08/15/90 0.9 09/13/90 0.8 10/02/90 0.9 1.0 0.8 0.8 1.5 1.0 0.9 0.8 0.9 0.9 0,8 11/28/90 17.0 16.0 17,0 17.0 03/14/90<0.05<0.05<0.05<0.05 04/11/90<0.05<0.05<0.05<0.05 05/16/90<0.05 06/13/90<0.05 07/18/90<0.05 08/15/90<0.05<0.05<0.05<0.05 10/02/90<0.05<0.05<0.05 11/28/90<0.05<0.05<0.05<0.05<0.009/13/90<0.05<0.05<0.05<0.05 12/12/90 1.5 1.4 1.7 1.7 12/12/90<0.05<0.05<0.05<0.05 Mean 2,8 2.7 2.9 2.9 SD 5.3 5.0 5.3 5.3 Maximum 17.0 16.0 17.0 17.0 Minimum 0.8 0.8 0.8 0.8 Mean SD Maximum Minimum 4-20 Table 4-9.Summary of Copper Measurements for 1990.Sample Date 01/18/90 02/15/90 03/14/90 04/'ll/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 Copper (ug/1)1 7 1 1 1 1M 11B 8 PH DIS 1.2<1.0<1.0 1.3<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0 1.2<1.0 30.0<1.0<1.0 42.0<1.0<1.0 48.0<1.0 1.3<1.0<1.0<1.0<1,0 209.0 1.3 1,3 1.5 1.5 1.2 1.2 104.0<1.0 2.6 1.5 1.3 1.2 1.2 1.2 1.2 64.0 2.6-3.3 2.7 2.6 82.0 2.8<1.0<1.0<1.0 2.4 60.0 3.4<1.0<1.0<1.0<1,0<1.0 24.0 1.2 1.7<1.0 Mean SD Maximum Minimum 73.7 53.4 3.4 2.8 1.5 3.3 2.7 2.6 209.0<1 0<1 0<1 0<1 0<1 0<1 0 24 0 4-21 Table 4-10.Summary of Nickel and Zinc Measurements for 1990.Nickel (ug/1)Zinc (ug/1)Sample Date 1 7 11 PH Ois.Sample Date 1 7 ll 8 PH Dis.01/18/90<3.0<3.0<3.0<3.0 4.7 02/15/90<3.0<3.0<3.0<3.0 5.8 03/14/90<3.0 5.8<3.0<3.0 5.5 01/18/90 02/15/90 3.4 3.8 4~1 5.1 33.0 8.1 7.3 9.5 7.4 79.0 03/14/90 10.4 8.0 9.7 10.3 59.0 04/11/90<3.0<3.0.<3.0<3.0 3.4 05/16/90<3.0 06/13/90<3.0 07/18/90<3'10/02/90<3.0<3.0<3.0<3.0 14.2 11/28/90 12.9 10.2 13.3 13.6 12.9 12/12/90<3.0<3.0<3.0<3.0 10.8 08/15/90<3.0<3.0<3.0<3,0<3.0 09/13/90<3.0<3.0<3.0<3.0 12.3 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 9.8 12.4 9.2 8.6 41.0 10.7 8.3 5.6 76 7~9 67 57 710 3.9 5.8 3.0 5,5 62.0 8.3 7.6 7.5 5.8 7.1 6.7 9.5 60.0 4.2 60.0 2.8 3.1 4.8 3.1 26.0 Hean 8.7" Hean 6.7 7.0 6.8 6.6 54.6 SD 4.0" SD 2.8 2.7 2.4 2.5 17.6 Haximum Hinimum 12.9 10.2 13.3 13,6 14.2<3.0<3.0<3.0<3.0<3.0 Haximum 10.4 12.4 9.7 10.3 79.0 Hinimum 2.8 3.1 3.0 3.1 26.0"Less-than values not included.4-22 Table 4-11.Summary of Iron and Lead Measurements for 1990.Iron(ug/1)
Lead (ug/1)Sample Date 1 7 ll 8 PH Dis.Sample Date I 7 11 8 PN Ois.01/18/90 43.0 29.0 28.0 28.0 180.0 01/18/90<1.0<1.0<1.0<1.0 4.7 02/15/90 112.0 224~0 59.0 48.0 346.0 02/15/90<1.0<1.0<1.0 4.1 03/14/90 56.0 43.0 49.0 43.0 380.0 03/14/90<1~0<1.0<1.0<1.0 3.5 04/11/90 46.0 53.0 39.0 40.0 205.0 04/11/90 1.8<1.0<1.0<1.0 2.1 05/16/90 59.0 06/13/90 116.0 07/IB/90 30.0 05/16/90<1.0 06/13/90 1.9 07/18/90<1.0 08/15/90 39'34.0 35.0 34.0 198.0 08/15/90<1.0'1.0<1.0<1.0 6.8 09/13/90 42.0 50.0 46.0 47.0 385.0 09/13/90<1.0<1.0<1.0<1.0<1.?10/02/90 58.0 57.0 59.0 65.0 785.0 10/02/90<1.0<1 0<1.0<1 0 1 4 11/28/90 905.0 745.0 845.0 820.0 1400.0 11/28/90 1.9 1.5 1.2 1.7 2.2 12/12/90 93.0 94.0 93.0 100.0 1040.0 12/12/90<1.0<1.0<1.0<1~0 2.5 Hean SO Maximum Ninimum 154.9 147.7 139.2 136.1 546.6 Hean 282.4 231.9 265.3 257.3 432.3 SO 905.0 745.0 845.0 820.0 1400.0 Haximum 39.0 29.0 28.0 28.0 180.0 Ninimum 3 4A 1.7" 1.9 1.5'I.2 1.7 6.8<1.0<1.0<1.0<1.0<1.0"Less-than values not included.4-23 Table 4-12.Summary of Cadmium and Chromium Measurements for 1990.Cadmium (ug/1)Chromium (ug/1)Sample Date 1 7 ll 8 PH Dis.Sample Date 1 7 11 8 PH Dis.01/18/90<0.5<0.5<0.5<0.5<0.5 02/15/90<0.5<0~5<0.5<0.5<0.5 03/14/90<0.5<0.5<0.5<0.5 1~1 04/11/90<0.5<0.5<0.5<0.5<0.5 01/18/90<2.0<2.0<2.0<2.0<2.0 02/15/90<2.0<2.0<2.0<2.0 5.0 03/14/90<2,0<2.0<2.0<2.0 04/11/90<2.0<2.0<2.0<2.0 25.0 05/16/90 06/13/90<0.5<0.5 05/16/90'2.0 06/13/90<2,0 07/18/90<0.5 07/18/90<2.0 08/15/90<2.0<2.0<2.0<2.0<2.0 08/15/90<0.5<0.5<0.5<0.5<0.5 09/13/90<0.5<0.5<0.5<0.5<0.5 10/02/90<0.5<0.5<0/5<0/5<0.5 11/28/90<0.5<0.5<0.5<0.5<0.5 3.4 09/13/90<2.0<2.0<2.0<2.0 10/02/90<2.0<2.0<2.0<2.0 32.0 3'~2.0 2.1 3.6 4.0 ll/28/90 4.0 12/12/90<0.5<0.5<0.5<0'<0.5 12/12/90<2.0<2.0<2.0<2.0 Hean Hean 11.8" SD SD 12.0" Haximum<0.5<0.5<0.5<0.5 1.1 Haximum 4.0 2.1 3.6 4.0 32.0 Hinimum<0.5<0.5<0.5<0.5<0.5 Hinimum<2.0<2.0<2.0<2.0<2.0"Less-than values not included.4-24 Table 4-13.Summary of Oil and Grease, and Ammonia Measurements for 1990.Sample Date Oil 5 Grease (mg/1)7 11 8 Sample Date Ammonia (mg NH3-N/1)11 8 12/12/90 0.6 0.8 0'0.8 01/18/90<0.5<0.5<0.5<0.5 02/15/90<0.5<0.5<0.5<0.5 03/14/90<0.5<0.5<0.5<0.5 04/11/90<0.5<0.5<0.5<0.5 05/16/90<0.5<0.5<0.5<0.5 06/13/90<0.5 07/18/90<0.5 08/15/90<0.5<0,5<0.5<0.5 09/13/90<0.5<0.5<0.5<0.5 10/02/90<0.5<0.5<0.5<0.5 11/28/90<0.5<0.5<0.5<0.5 01/18/90<0.01<0.01<0.01<0.01 02/15/90<0.01<0.01<0.01<0.01 03/14/90<0.01<0.01<0.01<0.01 04/11/90 0.02<0.01<0.01<0.01 05/16/90 06/13/90<0.01<0.01 07/18/90<0.01 08/15/90 0.03 0.02 0.02 0.04 09/13/90 0.02 0.02 0.02 0.01 10/02/90 0.02 0.01 0.01 0.02 11/28/90<0.01<0.01<0.01<0.01 12/12/90<0.01<0.01<0.01<0.01 Mean SD Maximum 0.6 0.8 0.8 0.8 Minimum<0.5<0.5<0.5<0.5 Mean SD Maximum 0,03 0.02 0.02 0.04 Minimum<0.01<0.01<0.01<0.01 4-25 Table'4-14.
Summary of Nitrate and Total Phosphorus Measurements for 1990.Sample Date Nitrate (mg/1)7 11 Sample Date Total Phosphorus (mg/1)0 7 ll 8 01/18/90 0.12 0.12 0.12 0.12 02/15/90 0.10 0.10 0.10 0.10 03/14/90 0.10 0.10 0.10 0.10 04/11/90 0.12 0.13 0.12 0.12 05/16/90 0.03 06/13/90 0.06 07/18/90<0.01 08/15/90<0.01<0.01<0.01<0.01 09/13/90 10/02/90<0.01<0.01<0.01<0.01 11/28/90 0.11 0.11 0.12 0.11 12/12/90 0.13 0.13 0.13 0.13 02/15/90 03/14/90 0.15 0.15 0.16 0.19<0.1<0.1<0.1<0.1 04/11/90<0.1<0.1<0.1<0.1 05/16/90<0~1 06/13/90<0.1 07/18/90<0.1 08/15/90<0.1<0.1<0.1<0.1 09/13/90<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1 10/02/90 11/28/90<0.1<0.1<0.1<0.1 0.1 12/12/90<0.1<0.1<0.1 01/18/90<0.1<0.12<0.1<0.10*Mean 0,11 0.12 0.12 O.ll*SD 0.01 0.01 0.01 0.01 Maximum 0.13 0.13 0.13 0.13 (-EAST-)<0.01<0.01<0.01<0.01 Mean SD Maximum 0.15 0.15 0.16 0.19 Minimum<0.1<0.1<0.1<0.1*Less-than values not included.4-26 Table 4-15.Summary for Orthophosphate and Sulfate Measurements for 1990.Sample Date Orthophosphate (mg/1)11 8 Sample Date Sulfate (mg/1)ll 8 01/18/90<0.01<0.01<0.01<0.01 02/15/90<0.01<0.01<0,01<0.01 03/14/90<0.01<0.01<0.01<0.01*04/11/90<0.01<0.01<0.01<0.01 05/16/90<0.01 06/13/90<0.01 07/18/90<0.01 08/15/90<0.01<0.01<0.01<0.01*09/13/90<0.01<0.01<0.01<0.01 10/02/90<0.01<0.01<0.01<0.01 11/28/90<0.01<0.01<0.01<0.01 12/12/90<0.01<0.01<0.01<0.01 01/18/90 9.63 9.72 9.94 9.64 02/15/90 10.10 10.20 10.10 10.10 03/14/90 10.20 10.40 10.60 10.30 04/11/90 9.60 9.50 9.20 9.40 05/16/90 8.85 06/13/90 8.60 07/18/90 7.55 08/15/90 8.04 8.03 8.15 8.00 09/13/90 10/02/90 8.97 9.02 9.09 8.97 11/28/90 7.66 7.76 7.81 7.66 12/12/90 9.16 9.20 9.29 9.20 Mean Mean 9.17 9.23 9.27 9.16 SD Maximum Minimum SD 0.92 0.95 0.95 0.93 Maximum 10.20 10.40 10.60 10.30 Minimum 8.04 8.03 8.15 8,00 4-27 Table 4-16.Summary of Total Dissolved and Total Suspended Solids Measurements for 1990.Total Dissolved Solids (mg/1)Total Suspended Solids (mg/1 Sample Date 1 7 ll 8 01/18/90 80.0 84.0 83.0 82.0 02/15/90 73.0 75,0 74.0 74.0 03/14/90 78.0 91.0 96.0 81.0 04/11/90 79.0 81.0 77.0 80.0 05/16/90 74.0 06/13/90 83.0 07/18/90 79.0 Sample Date 01/18/90 02/15/90 03/14/90 1 7 1.5 1.2 3.8 3.9 1.4 1.7 04/11/90 2.6 05/16/90 3.7 2.7 06/13/90 6.4 07/18/90 2.9-1.3 3.8 1.6 4.0 2.5 2.6 1.5 1.7 08/15/90 67.0 69.0 68.0 71.0 09/13/90 83.0 80,0'2.0 84.0 10/02/90 79.0 82.0 75.0 79.0 11/28/90 77.0 75.0 76.0 74.0 12/12/90 83,0 85.0 87.0 83.0 08/15/90 09/13/90 10/02/90 2,1 2.0 2.5 2.4 2.6 1.9 2.0 2.0 2.3 12/12/90 2.7 2.8 2.9 11/28/90 23.1 21.7 22.5 2.8 2.0 2.4 23.1 3.1 Mean 77.7 80.2 79,8 78.7 SD 5.0 6.5 8:3 4.6 Maximum 83.0 91.0 96.0 84.0 Minimum 67.0 69.0 68.0 71.0 Mean 4.6 4.5 4.6 4.8 SD 7.0 6.5 6.8 6.9 Maximum 23.1 21.7 22.5 23.1 Minimum 1.4 1.2 1.3 1.6 4-28 Plow Island WNP-2 Discharge Mes quit island~7~11 River Mile-352 a8 Power Lines Figure 4-1 Location of Sampling Stations in the Columbia River Station 1 River Flow+N WNP-2 intake Structures 555m (1822 feet)To Plant WNP-2 Olscharge 44m (146 feet)~Station 7 P Statlon11,11M,158 63m (208 feet)568m (187 feet)461m (1516 feet)(Not to scale)Station 8 Figure 4-2 Sampling Station Locations for Water Chemistry 4-30 s
25 20 15 TEMPERATURE (DEGREES C.j mm>I 7, m>>M EQ>>B&s 10 0 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-3 Columbia River Temperature Measure-ments at Six Stations During 1990 16 DISSOLVED OXYGEN MILLI GRAMS/LI TER 14 12 10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1SQQ Figure 4-4 Columbia River Dissolved Oxygen.Measurements at Four Stations During 1990 pH 8.5 RB 1 I 7 C3>>m>>M EQ>>B%8 7.5 6.5 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-5 Columbia River pH Measurements at Six Stations During 1990 80 TOTAL ALKALINITY (MG/LITER AS CaCO3)70 60 50 40 30 20 10 JAN FEB MAR APR MAY JUN JUL AUG SEP.OCT NOV DEC 1990 Figure 4-6 Columbia River Total Alkalinity Measurements at Four Stations During 1990 170 160 150 CONDUCTIVITY (AT 25 C)uS/CM RB 1 ES 7 C3<<II>>M KQ>>B W s 140 130 120 110 100 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-7 Columbia River Conductivity Measure-ments at Six Stations During 1990 0 II o 15 TOTAL Z I N C (MI CROGR AMS/L I T E R)10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-8 Columbia River Total Zinc Measurements at Four Stations During 1990 1000 TOTAL IRON (Ml CROGRAMSI LI TER)800 600 400 200 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-9 Columbia River Total Iron Measurements at Four Stations During 1990 90 80 TOTAL HARDNESS (MG/LITER AS CcICO3)I~I 7 C3~~I 8-70 60 50 40 30 JAN FEB MAR APR MAY JUN JUL AUG SEP OGT NOV DEG 1990 Figure 4-10 Columbia River Total Hardness Heasure-ments at Four Stations During 1990
.
.
NITRATE-NITROGEN MG/LITER AS N 0.2 0.1 0.05 JAN FEB MAR APR MAY JUN JUL AUG SEP OOT NOV DEC 1990 Figure 4-11 Columbia River Nitrate-Nitrogen Measurements at Four Stations During 1990 15 TOTAL SULFATE MG/LITER 10 JAN f EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-12 Columbia River Total Sulfate Measure-ments at Four Stations During 1990 TOTAL DISSOLVED SOLIDS MG/LITER 140 120 100 80 60 40 20 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-13 Columbia River Total Dissolved Solids Heasurements at Four Stations During 1990  
NITRATE-NITROGEN MG/LITER AS             N 0.2 0.1
: 0. 05 JAN FEB   MAR   APR   MAY   JUN   JUL   AUG   SEP   OOT NOV DEC 1990 Figure 4-11   Columbia River Nitrate Nitrogen Measurements at Four Stations During 1990
 
TOTAL SULFATE MG/LITER 15 10 JAN f EB MAR   APR MAY   JUN   JUL   AUG   SEP   OCT NOV DEC 1990 Figure 4-12 Columbia River Total Sulfate Measure-ments at Four Stations During 1990
 
TOTAL DISSOLVED SOLIDS MG/LITER 140 120 100 80 60 40 20 JAN FEB MAR   APR MAY   JUN   JUL   AUG   SEP OCT   NOV DEC 1990 Figure 4-13 Columbia River Total Dissolved Solids Heasurements at Four Stations During 1990
 
TOTAL SUSPENDED SOLIDS MG/LITER 25 20 15 10 JAN FEB  MAR    APR    MAY    JUN  JUL  AUG    SEP    OCT NOV DEC 1990 Figure 4-14  Columbia River Total Suspended Sol'ids Heasurements at Four Stations During 1990
 
s TURBIDITY (NTU) 20 10 JAN FEB  MAR    APR  MAY    JUN    JUL  AUG    SEP    OCT NOV DEC 1990 Figure 4-15 Co1umbia River  Turbidity Measurements at Four Stations. During 1990


25 TOTAL SUSPENDED SOLIDS MG/LITER 20 15 10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-14 Columbia River Total Suspended Sol'ids Heasurements at Four Stations During 1990 s
5,0     LI         D I T     D The cooling tower drift studies were designed to identify any impact of cool-ing tower operation upon the surrounding plant communities, as well as any edaphic impacts. The program includes the measurement of herbaceous and shrub canopy cover, shrub density, herbaceous phytomass, vegetation chemistry and soil chemistry. Soil chemical parameters measured include pH, carbonate, bicarbonate, sulfate, chloride, sodium, potassium, calcium, magnesium, copper, zinc, lead, chromium, nickel, cadmium, and conductivity. Vegetation chemistry includes extractable sulfate, chloride and total copper. This study provides operational data for comparison with preoperational data and meets the requirements of Hashi ngton State Energy Facility Site Evaluation Council (EFSEC) Resolution 239 dated September 14, 1987.
20 TURBIDITY (NTU)10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-15 Co1umbia River Turbidity Measurements at Four Stations.During 1990 5,0 LI D I T D The cooling tower drift studies were designed to identify any impact of cool-ing tower operation upon the surrounding plant communities, as well as any edaphic impacts.The program includes the measurement of herbaceous and shrub canopy cover, shrub density, herbaceous phytomass, vegetation chemistry and soil chemistry.
In past years, sampling was conducted in May at each of nine permanent stations, four grassland Stations GOl-G04, and five shrub Stations SOl-S05.
Soil chemical parameters measured include pH, carbonate, bicarbonate, sulfate, chloride, sodium, potassium, calcium, magnesium, copper, zinc, lead, chromium, nickel, cadmium, and conductivity.
In 1988, preliminary data was obtained for six additional stations.         In 1989, the additional six stations were added to the sampling program, four grassland sites G05, G06, G07 and G08 and 2 shrub Stations S06 and S07. Two of these Stations, S06 and S07 are on the east side of the Columbia River in Franklin County. Figure 5-1 shows the location of each station. The orientation of the various components including transects and productivity plots within each community are depicted in Figure 5-2.
Vegetation chemistry includes extractable sulfate, chloride and total copper.This study provides operational data for comparison with preoperational data and meets the requirements of Hashi ngton State Energy Facility Site Evaluation Council (EFSEC)Resolution 239 dated September 14, 1987.In past years, sampling was conducted in May at each of nine permanent stations, four grassland Stations GOl-G04, and five shrub Stations SOl-S05.In 1988, preliminary data was obtained for six additional stations.In 1989, the additional six stations were added to the sampling program, four grassland sites G05, G06, G07 and G08 and 2 shrub Stations S06 and S07.Two of these Stations, S06 and S07 are on the east side of the Columbia River in Franklin County.Figure 5-1 shows the location of each station.The orientation of the various components including transects and productivity plots within each community are depicted in Figure 5-2.5,2 T D 5.2.1 r Fifty microplots (20 cm x 50 cm)were placed at 1-m intervals on alternate sides of the herbaceous transect (Figure 5-2).Canopy cover was estimated for each species occurring within a microplot using Daubenmire's (1968)cover classes.Data were recorded on a standard data sheet.
5,2                   T   D 5.2.1     r Fifty microplots   (20 cm x 50 cm) were placed at   1-m intervals on alternate sides of the herbaceous transect (Figure 5-2).     Canopy cover was estimated   for each species occurring within a microplot using     Daubenmire's   (1968) cover classes. Data were recorded on a standard data   sheet.
guality assurance was accomplished by twice sampling three randomly selected L microplots on each herbaceous transect.The entire transect was resampled if cover estimates for any major species (>50 percent frequency) differed by more than one cover class.All vegetation studies including cover, density, productivity, and chemistry were sampled, as in previous years, at the peak of the cheatgrass growth cycle known as the purple stage (Klemmedson and Smith 1964).5.2.2 H P m Phytomass sampling was conducted concurrently with cover sampling.Phytomass sampling plots were randomly located within an area adjacent to the permanent transects or plots (Figure 5-2).At each station, all live herbaceous vege-tation rooted in five randomly located microplots (20 x 50 cm)was clipped to ground level and placed in paper bags.Each bag was stapled shut and labeled with station code, plot number;date and personnel.
Sample bags were transported to the laboratory, opened, and placed in a drying.oven until a consistent weight is obtained.Following drying, the bags were removed singly from the oven and their contents immediately weighed to the nearest F 1 g.Laboratory quality assurance consisted of independently reworking 10 percent of the phytomass samples to assess data validi,ty and reliability.
5.2.3 Five 50-m lines were used to measure shrub canopy cover in each of the seven shrub plots (Figure 5-2).Whenever a shrub was crossed by a tape stretched between the end posts, its species and the distance (cm)at which it inter-cepted the line were recorded.For each shrub plot, intercept distances of each species along all five lines were summed to give a total intercept distance.From this, a shrub canopy cover value (percent)was obtained by dividing total intercept distance by total line length.
Quality assurance procedures consisted of twice sampling one major species along a randomly selected shrub transect.Resampling was conducted if intercept lengths differed by more than 10 percent.5.2.4 r Individual live shrubs were counted and recorded by species within each of the four strips delineated by shrub intercept transects (Figure 5-2).Number of V shrubs per strip were summed to obtain shrub density by species for the entire 1000 m2 plot.Sampling was concurrent with cover sampling.Quality assurance consisted of resampling one randomly selected species within one strip.Resampling was conducted if the count difference exceeded one individual.
5.2.5 At each of the fifteen grassland and shrub stations, five soil samples were collected from the top 15 cm of soil with a clean stainless steel trowel.The samples were placed in 250 ml sterile plastic cups with lids, labeled and refrigerated at 4'C.Sixteen parameters were analyzed in e'ach sample includ-ing pH, bicarbonate, carbonate, conductivity, sulfate, chloride, copper, zinc, nickel, cadmium, lead, chromium, calcium, magnesium, sodium and potassium.
Samples were analyzed for pH, bicarbonate, carbonate, sulfate, chloride and conductivity according to 1 i (1965).Samples for chromium, cadmium and lead were analyzed by graphite furnace atomic absorption I'pectroscopy according to (USEPA 1983).The remaining elements were analyzed by inductively coupled plasma emission spectroscopy (ICPES)(USEPA 1983).Aliquots of soil for trace metal analyses were digested according to Gilman (1990).Preservation times and conditions, when utilized, were according to USEPA (1983).\Laboratory quality control comprised 10K-20%of the sample analysis load.Routine quality control samples included internal laboratory standards, reagent blanks, and prepared EPA or NIST controls.5-3 5.2.6 V Samples of~Br~~gzgm, gga~berg~,~zmj~~e~z, and~P~ri~~Z were collected at each station.Two species were substituted at some of the stations due to absence of one or more of those listed above.Substitute species were Hex~gjf~and~lhzjgm~j.'~ag.Samples were collected as close to the soil sampling station as possible.Sufficient quantities of leafy material of each species were collected to yield at least five grams of dry weight.The clipped material was sealed in a plastic bag, labeled and refrigerated at 4'C until sample preparation.
In the laboratory, the clipped plant tissue was oven dried to a constant weight, ground in a Hi ley mi 1 1 and digested accord)ng to Gi lman (1990).Sulfate was analyzed by nephalometry and chloride by mercuric chloride titration according to USEPA (1983).Copper was analyzed by ICPES according to USEPA (1983).5.3 During the 1990 season, 58 plant taxa were observed in the study area.These are presented in Table 5-1.Table 5-2 lists by year the species of vascular plants observed during field activities from 1975-1990.
Many of the graphs will depict a preoperational, operational and 1990 status.The preoperational data is that which was collected annually prior to NNP-2 becoming.fully operational (1980-1984).
Operational data is that which is collected after 1984 but not including the current year which is listed separately (1990).5.3.1 Herbaceous cover data for 1990 are summarized in Tables 5-3 and 5-4.Figures 5-3 and 5-4 provide a comparison of shrub and grassland sites (annual grasses-AG, perennial grasses-PG, annual forbs-AF, and perennial forbs-PF)with the data of previous years.There is a noticable trend of the herbaceous cover reverting back to its original state prior to the fire of 1984.5-4 Total herbaceous cover averaged 45.56%in 1990 which represents a 38,01/decrease from 1989 (73.5'/).As in previous years, the dominant annual grass was~Br 1m~bZgg with 25.80%followed by~1~~gjlgZa with 0.25%.Perennial grasses averaged 11.73%in comparison to 32.5%in 1989.'ga~~r i (9.18%)was the dominant perennial grass at most stations followed by~~~(1.94%), Total annual forb cover averaged 5.8%down from the 11.3'/measured in 1989.~Hl~ZLug ggiJjj~g was the dominant component with 2.37'/followed by~D d~grat~;\th.t.'.Perennial forb cover decreased 63.3/from 1989 (1.98%vs.5.4%).The dominant CE'le (.84%)and (.48%).Species frequency values (%)for each station were similar to previous years and are summarized in Table 5-5.The greatest diversity of species was observed at Station S02 (17)while the smallest was observed at Station S07 (2).Due to misinterpretation of 1989 data, Station S02 was listed as having the greatest diversity of species, the text should have listed station G05(19)as having the greatest diversity.
Growing season precipitation decreased 51%from 1989 (6.83 cm vs 13.97 cm), with the total precipitation for the 1990 growing season being 6.83 cm.December 1989 and March 1990 precipitation, 0.74 cm and 0.25 cm, respectively, were lower than all previously recorded data for those months.Mean temper-ature during the growing season was 6.4'C in 1990 vs.4.5 C in 1989.5 3 2 Harhamm RhXiatuu.Mean production of herbaceous phytomass in 1990 was 34.95 gm/m2.At grassland stations, phytomass production averaged 33.8 g/m2 while at shrub stations it was 36.2 g/m2.Production varied widely among stations from a low of 4.1 g/m2 at Station G02 to a high of 78.3 g/m2 at Station S02.Mean herbaceous phytomass production at grassland stations and at shrub stations for 1990 is shown graphically in Figure 5-5 (Stations GOS, G06, G07, G08, S06 and S07 were 5-5 not added until 1989)and is summarized in Table 5-6.Table 5-7 presents mean phytomass values for each station in each year since 1975.Mean herbaceous phytomass and percent herbaceous cover for each station from 1980 through 1990 are presented graphically in Figures 5-6 through 5-9.5.3.3 D i There are four shrub species in the study area:~dbd~" d~" Ldl bb bl dd tl present, however, they are not included in the cover data.During a 1984 August range fire, all viable shrubs were completely destroyed at Stations S02 and S04, while the only individuals surviving at Station SOl were isolated clumps of low growing~eggy~r~~g.Shrub density and cover data continue to reflect recovery from the 1984 fire.Percent cover measurements taken in 1990 are very similar to those measured in 1989 with an overall slight decrease in average cover (1,561.versus 1.631.).Shrub density increased slightly at Stations S02 and S05, and decreased slightly at Stations SOl, S03, and S04.Shrub density data for 1990 is summarized in Table 5-8, while shrub density data at each station from 1980 through 1990 is presented.in Figure 5-10.Shrub cover data for 1990 is summarized in Table 5-9, while Figure 5-11 presents mean shrub cover values measured from 1975 through 1990.Shrub cover and density at each station for 1990 are presented graphically in Figure 5-12.The results of the 1990 soil chemical analyses are presented in Table 5-10 and are shown graphically in Figures 5-13 through 5-20.Most metallic element concentrations were within the ranges observed in previous years.There is no concentration of carbonate, due to the pH level of the samples ((8.3).The pH value has to be above 8.3 in order for carbonate to be present.5-6 Bicarbonates was similarto that observed in past data.Conductivity was generally within range at all stations except G03 (96.8), where it increased markedly, as well as in 1985 and 1988 (98.0 and 125.6, respectively).
The pH of station G03 increased slightly after a steady decrease for the past 5 years.Sulfate and chloride concentrations were generally higher than were observed in previous year's data.5.3.5 V The results of the 1990 vegetation chemical analyses are presented in Table 5-11 and shown graphically in Figures 5-21 through 5-30.Total vegetation copper concentrations were generally within the ranges previously observed in all of the species examined.Extractable chloride concentrations were generally within the ranges observed in previous years, while extractable sulfate concentrations were higher than in previous years except at Station G08 for Qg,~}pupil.5.4 A 51%decrease in precipitation during the 1989-90 growing season was associ-ated with a 38.011.decrease in mean herbaceous cover for 1990 (Figure 5-4).A corresponding decrease in herbaceous phytomass was observed at all Stations, except S02 and G04.The remaining analytes were generally within the ranges previously observed.Changes in vegetation cover and dens,ity.recorded in 1990 appear to be climatically induced and no signs of adverse impacts from the operation of WNP-2 cooling towers are evident.Shrub cover and density data continue to reflect recovery from the 1984 range fire with slight changes in cover an'd density evident at most stations.No adverse trends or impacts upon soil or vegetation chemistry are apparent from the six years of operational data.5-7 5.5 D V 5.5.1 This study was implemented in january 1989 and its intent was to measure the levels of and determine the rate of airborne salt deposition originating from the WNP-2 cooling tower steam condensate plume.The WNP-2 heat rejection system consists of a steam condenser, six mechanical draft cooling towers and the interconnecting piping.Operation of the cooling towers results in the emission of droplets of the circulating cooling water.These droplets are referred to as drift.e The differentiation between drift and the visible steam plume condensate is important.
The drift droplets are produced mechanically within the towers whereas the visible plume condensate droplets are created by the cooling of the saturated tower exhaust air.The drift droplets contain similar, if not identical, concentrations of chemicals as the circulating cooling tower water.Depending upon the chemicals present in the circulating water, the drift may have an effect on the environment.
In order to assess environmental impact, it is important that the amount of drift and its resulting distribu-tions be determined.(Laulainen, et al)This section reports the results of a year-long study designed-to verify the predicted areas of maximum and minimum deposition.
This program was performed to comply with EFSEC Resolution No.239, dated September 14, 1987.5.5.2 5.5.2.1 An isopleth graphically depicting the predicted cooling tower drift deposition patterns was devised by Battelle in 1976.This prediction was based upon preliminary estimates of operative data and site specific meteorological data regarding predominant wind directions.
A cooling tower drift deposition model devised by C.L.Hosier was used for the calculations (Droppo,-et al 1976);5-8 The resulting prediction of deposition patterns, as published by Battelle, is presented in figures 5-31 and 5-32.As shown in these figures, the predicted maximums of drift deposition lie in a northwesterly direction and a nearly south-southwesterly direction.
These areas of predicted maximums were later revised by the Supply System.The final orientation was chosen in a north-westerly and a nearly south-southeasterly direction.
The sampling stations were chosen to lie along a northwest radial transect and an approximately C south-southeast radial transect.Sixteen sample locations were initially included in this study.A map of these locations is shown in Figure 5-33.Directions and approximate distances from the center of the cooling towers are listed in Table 5-12 for each sampling station.The sixteen locations included a pair of collectors located in the center of the six cooling towers and a control pair of collectors located approximately seven miles north-northwest of WNP-2 at the old Hanford townsite.The remaining fourteen pairs of collectors were placed at equi-distant intervals out from the plant, seven pairs along each transect.Preliminary sampling was initiated in January 1989 and actual data collection began in April 1989.A separate program involving the determination of drift deposition rates in the transformer yards surrounding WNP-2 began sample collection in July 1989.This involved the placement of an additional eight pairs of collectors, five pairs in a transformer yard 0.25 miles north, one pair in a transformer yard 0.5 miles north, one pair in a transformer yard 0.5 miles east-southeast of the WNP-2 cooling towers., While the information was intended for another purpose, the sampling was performed in the same manner as the original sixteen samplers and the results provide additional data for drift deposition characterization.
It should be noted, however, that the transformer yard sampling coincided with only nine of the twelve months of sampling for the original sixteen sites.5.5.2.2 Data gathered for this study involved surface deposition measurements.
These measurements were used to determine bulk mineral mass deposition rates.5-9 Sample collection was based upon criteria set forth in the American Standard Test Method (ASTM)D1739-70 for the collection and analysis of dust fall.The sample collection vessel consisted of an open topped linear polyethylene cylinder with vertical sides and a flat bottom.The cylinder was six inches in diameter and eighteen inches high.A support stand positioned the cylinder such that its bottom was eighteen inches above grade.The top of the con-tainer was three feet above grade which deviates from the ASTM recommended minimum and maximum heights of eight and fifty feet.This was to more closely monitor drift deposition at the typical height of local vegetation.
A metal bird ring was positioned above the cylinder to help prevent interference from birds.The cylinder was also covered with a screen'to prevent sample contami-nation from bird droppings and insects.Figure 5-34 illustrates a typical sample collector.
A pair of collectors were placed at each sampling location.O Sample collection occurred monthly (every 30 z 2 days when possible).
In the laboratory, the cylinders were-thoroughly washed and rinsed, filled with four liters of deionized water and covered.They were then transported to the field and placed in the support stands.During the summer months, the samplers were checked periodically and additional deionized water added when necessary to insure an adequate liquid level was maintained.
An antifreeze, isopropyl alcohol, was initially used during the preliminary sampling months of February and March.This was discontinued, however, due to its general ineffectiveness and to eliminate a potential source of contamination.
After approximately thirty days in the field, the cylinders were covered, exchanged with clean samplers, and transported back to the laboratory.
Any evidence of contamination such as insects or bird droppings was noted and recorded.At the laboratory, the total volume of water was measured;a 500 milliliter aliquot was taken for sample analysis, and the remaining sample was discarded.
5.5.2,3 Sample analysis involved determination of five inorganic constituents normally found in high concentrations in the cooling tower circulating water.These analytes included calcium, magnesium, sodium, sulfate and chloride.5-10 Analytical techniques utilized ion chromatography for sulfate and chloride.A Dionex Series 4000i ion chromatograph equipped with an AS4A anion separation column was used.Calcium, magnesium and sodium were analyzed using inductively-coupled plasma (ICP)atomic emission techniques.
Analyses were performed on a Perkin-Elmer P40 Model ICP.5.5.3 Pl During the sampling period from March 22, 1989 to March 20, 1990, NNP-2 operated for a total of 6826 hours or 284.4 days.Plant operational data for each sampling period is presented in Appendix A.Circulating water flow, estimated amount of drift release per day and concentrations of the tracer ions in the circulating water are listed.The plant normally operated with circulating water at approximately twelve cycles.In January 1990, however, a tube leak in a condenser was identified.
As a result, the circulating water was kept at a maximum of five to six cycles until the annual maintenance outage.This reduced the circulating water ion concentrations by more than half for the remainder of the sampling period.Drift estimates were calculated using a drift rate of 0.05 percent of the circulating water'flow.Amounts of each ionic species released per month were calculated using the average concentration for each ion during the sampling period.Until July 1989, the circulating water was analyzed daily for calcium while the remaining ion concentrations were calculated based-on the calcium concentration and established ion ratios for sodium, magnesium, chloride and sulfate to calcium.Beginning in July, the circulating water was sampled weekly and each constituent was determined by direct analysis.5.5.4 The detailed meteorological conditions concerning the sampling period are contained in Appendix B.These data were obtained at the Hanford Meteorological Station in the 200 Area of the Hanford Site, located approximately 25 miles northwest of Richland, Hashington.
Included in the 5-11 appendix are maximum, minimum and mean temperatures, prevailing wind directions, average wind speed and relative percent humidity for March 1989 through March 1990.A windrose generated from the onsite WNP-2 meteorological station at the 33 foot level is featured in Figure 5-35.This represents prevailing wind directions and percentages for the sampling period of April 1989 through March 1990.The predominant wind directions were from the south blowing north (13.4 percent)and from the northwest blowing southeast (11.2 percent).This correlates fairly well with a windrose generated from cumulative WNP-2 meteorological data gathered from 1984 through 1989, shown in Figure 5-36.For this six year period, the predominant wind directions were from the south (10.9 percent)and from the northwest (10.6 percent).Although the direction frequency percentages were somewhat higher for the sampling period, the prevailing directions were the same.5.5.5 The monthly raw analytical results for each sample location are located in Appendix C.Presented there is the average gross deposition mass in milligrams for each ion analyzed and the standard deviation between the duplicate collectors located at each site.The average ion masses for each of the analytes were summed to give a monthly bulk deposition for each of the sixteen sampling locations, The twelve monthly depositions for each station were then totaled to give a yearly bulk deposition in milligrams.
Using the diameter of the collection vessel to determine the surface area of the sampler, this mass was converted to a value in units of pounds per acre year.The values for each station are tabulated in Table 5-13.Deposition rates were corrected for background deposition by subtracting the control site deposition rate from each drift sampler rate.5.5.6 On the basis of the predicted drift patterns, the greatest deposition is expected to occur adjacent to the cooling towers and to decrease as a function of distance from the towers.This is verified by the sampling program, showing a maximum deposition rate of 52 lbs/acre-year at 0.2 miles south from 5-12 the towers (Station 7), decreasing to a deposition rate not significantly higher than background deposition at a distance of 3 miles.This is graphically presented in Figure 5-37.The model also predicts deposition rates will be much higher during the winter months due to high humidities and lower temperatures which permit the larger diameter drift droplets to intersect the ground surface.As a result, the drift falls as wet deposition in more highly concentrated areas as opposed to undergoing evaporation and subsequently a wider dispersion.
This prediction is verified by the study.At Station 7, as an example, the drift accumulated during November, December and February accounted for almost 70 percent of the w total drift mass deposited there during the twelve month sampling period.Significant increases of deposition rates were also noted during these three months for Station 8, located in the center of the towers.The drift deposited during the same three month period accounted for almost 60 percent of the total accumulated mass.In predicting the areas of maximum deposition, the maximum salt deposition will be directly proportional to the wind'direction frequency (Droppo).From this statement and the site-specific wind frequency percentages from the past six years, one would expect the maximum areas of deposition to be found to the north and southeast of the plant, correlating with the maximum wind direction frequencies of 10.9 percent from the south (drift to the north)and 10.6 percent from the northwest (drift to the southeast).
This is in direct contradiction with the isopleths showing the predicted areas.of deposition.
The figures show areas of maximum deposition to lie in a northwesterly and nearly southwesterly direction.
Referencing the text of the Battelle document in which the isopleths are presented shows further contradictions between the expected areas of maximum deposition and the isopleths.
From the document,"the maximum wind direction frequency at HNP-2 was 9 percent from the south (drift to the north).The measurement elevation was seven meters (23 feet).At an elevation of 122 meters (400 feet)at the Hanford Meteorological Station, the maximum direction frequency was 20 percent from the northwest (drift to the southeast)(Droppo).Further investigation confirmed that the isopleths, as originally presented, had been rotated a full 180', thus 5-13 incorrectly predicting the areas of maximum deposition.
As a result, the monitoring stations, as placed for this study, are not in the expected areas of maximum deposition.
This is substantiated by field data collected for the transformer yard sampling stations.At a transformer yard 0.25 miles north of the cooling towers, samplers experienced an average rate of 112 lbs/acre for a nine month period coinciding with the original sample collection.
This rate is more than two times greater than the maximum twelve month rate determined by the samplers placed along the two radial transects.
It is concluded that the isopleths, as presently drawn, do not accurately predict the areas of maximum and minimum deposition.
Since the samplers were not placed along transects in line with the directions of maximum deposition, it is difficult to verify the predicted extent of the drift plume, or the distance at which the cooling tower drift deposition is no longer distinguishable from background drift.The isopleths predict that at approximately 0.5 miles from the towers, drift deposition wi 1 1 diminish to a rate of 1 lb/acre-year.
The sampling at distances of approximately 0.5 miles from the towers determined rates ranging from 8 to 22 lbs/acre year, significantly higher than that predicted by the model.This indicates that appreciable amounts of drift may be deposited beyond the 0.5 mile radius at higher rates than predicted.
The maximum rates predicted by the model were 400 lbs/acre-year and 300 lbs/acre-year, 0.25 miles from the towers.These estimates are high as compared to the highest rate of deposition determined by the field sampling which was 112 lbs/acre for a nine month period, in a transformer yard 0.25 miles north of the towers.The efficiency factor for the drift collectors used has not been determined, thus it is difficult to compare the predicted absolute rate with the experimentally determined relative rate of deposition.
If an efficiency rate of 100 percent is assumed, however, the measured rates are still within the same order'f magnitude as those which were predicted.
Sources of error which may have biased the experimental results low include the fact that only five constituents were analyzed to 5-14 determine the amount of drift deposited.
The plant also operated at reduced cycles from mid-January through the end of the sampling period which also decreased the amount of drift which was actually released to the atmosphere.
5.6 BIBLI ASTM D1739-70, Standard Method for Collection and Analysis of Dustfall.Daubenmire, R.1968.Plant communities.
Harper and Row, New York, NY.Droppo, J.G., C.E.Hane and R.K.Woodruff, Atmospheric Effects of Circular'Mechanical Draft Cooling Towers at Washington Public Power Supply System nuclear Power Plant Number Two, B2311200735, November 1976.Environmental Protection Agency.1983.Methods for Chemical Analysis of Water and Wastes.Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH.Gilman, Lee B.1989.Microwave Sample Preparation.
CEM Corporation.
Klemmedson, J.O.and J.G.Smith, 1964.Cheat Grass (gag~~grum L)Bot.Rev.30;226-262.%i'd 1979, Battelle PNL-3083.Laulainen, N.S., R.0.Webb, K.R.Wilber, and S.L.Ulanski, D 1 n , September, NUS Corporation, Annual Report for the PVNGS Salt Deposition Monitoring Program January-December 1986;April 1987.5-15 Table 5-1.Vascular Plants Observed During 1990 Field Nork APIACEAE CY.,t~~in h~i ASTERACEAE n (Hook,)T.&G.var.(Nutt.)Coult&Rose Parsley Family Turpentine cymopterus Large-fruit lomatium Aster Family 6K(.kDD~d]zazgha (Ptutt.)T&G~re~m<~~ri i~@Nutt..M.RRII19&iZR
~~Gl ay MQ~~(Pall.)Britt Ct~h.~(k.)Wtt~~~rf~Hel ler k~gl~n~(Hook.)H&A~rima~&#xb9;dub~Scop.A~r~~(Pursh)BORAGINACEAE
/@~~i~Lehm.RS JU tt~~~imari~(Torr.)Greene BRASSICACEAE
~D[i~~i~gita (Halt.)Britt.~D~vrn L.KLKSUez mvZym (Nutt.)DC.~~~i'j'~ilJgg L.CACTACEAE QpyrLQR CARYOPHYLLACEAE A~rnaQa fzZ1JQ~Qj.
Dougl.var.~~i~Ealmhmm~tZ1lahaa L.CHENOPODIACEAE RaLmla kaLi L.Yarrow Low pussy-toes Big sagebrush Carey's balsamroot Gray rabbitbrush Green rabbitbrush Slender hawksbeard Bur ragweed Hhite daisy tidytips Yellow salsify Hoary Aster Borage Family Tarweed fiddleneck Matted cryptantha Hinged cryptantha Mustard Family Hestern tansymustard Spring draba Prairie rocket Tumblemustard Cactus Family Starvation cactus Pink Family Franklin's sandwort Jagged chickweed Chenopod Family Russian thistle 5-16 FABACEAE~~rQyg ggr~hi i Dougl.P~rig, langg~l~Pursh Table 5-1.mm Pea Fami ly Wooly-pod milk-v'etch Stalked-pod milk-vetch Lance-leaf scurf-pea HYDROPHYLLACEAE
~P~ll~hm~a Dougl.HhKQlia~1~(Pursh)Holz.LILIACEAE~Br~l~1,~~Lii Wats.Ga.Lardurtua mu~r pm Doug 1.aulll tP h)Ep LOASACEA E~z~li~~i'oug 1.MALVACEAE l~~n (Dougl.)Spach ONAGRACEAE
~ni~1~11~1 Lindl.var.~11~1 PLANTAGINACEAE
~am mdaam~Lca Jacq.POACEAE 69ZQKLrrl~~vm (L.)Gaertn.S~(.b~rapper z~i Zm (Pursh)Scribn.&Smith B~]~~rig L.F~~~~Walt.KQklMrk$~~4 Pers.GCXZSKLi hKR~~(RKS)Ricker Waterl eaf Family Whi tel eaf phace1 i a Threadleaf phacelia Lily Family Douglas'rodiaea Sego 1 i ly Chocolate lily Blazing-star Family White-stemmed mentzelia Mallow Family White-stemmed globe-mallow Evening-primrose Family White-stemmed evening-primrose Plantain Family Indian-wheat Grass Family Crested wheatgrass Thick-spiked wheatgrass Bluebunch wheatgrass Cheatgrass Six-weeks fescue Prairie Junegrass Indian ricegrass 5-17 Table 5-1.RANUNCULACEAE
-llLLU ttdll Pritz.ex Walpers ROSACEAE EUZ.'~XCldRQ~(Pursh)DC.SANTALACEAE ggmmn~r gpss~~(L.)Nutt.SAXIFRAGACEAE RiliR~age Pursh SCROPHULARIACEAE
~Pongy~~i~Doug 1.VALERIANACEAE Ply~<g m~~r TLG~P~g~r Vasey~i~ni~~<(Nutt.)Smith~m!~Trin 8 Rupr.POLEHONIACEAE g/]gg gln~if~r Benth.~1~~Dougl.J<<k)6 var.5~gQ llama (Hook.)Cronq.Lhhz~aifalia POLYGONACEAE KJ~iOMIB IUvvRm Doug 1.~R~vm Pursh Sandberg's bluegrass Bottlebrush squirreltail Needle-and-thread Phlox Family Gilia Shy gilia Pink microsteris Long-leaf phlox Buckwheat Family Snow buckwheat Wild begonia Buttercup Family Larkspur Rose Family Antelope bitterbursh I Sandalwood Family Bastard toad-flax Golden current Figwort Family Sand-dune penstemon Valerian Family Longhorn plectritis 5-18 Table 5-2.Vascular Plants Observed During 1975-1990 Field Mork Annual Grasses 199'l~177~17~7~l~~l~~4~l~~199@~l X X X X X X X X X X X X X X X Qaium~~@a~t~sp.X X X X X X X X X X Perennial Grasses$~r)~r~~~g)~r g~i~~i~ri~~db~i~~Lbbr,~ll~i.~~h~i~g~i~i~h~b~i X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Table 5-2.(Cont'd)Annual Forbs~Fyg~i~@~i~i~~Mi~~~i~m~i~jii~7~~7~17~17~l~ll~~l 19914~~~l~l~l X X X X X X X X X X X X X X X X X X X X X X X X X X"X X X~ggifjgg~lg~>~1~MatunUm~mama CQfU>hhk~i~O~RjQ iii QjQf~~b~v/~i'X X X X X X X X X X X X X X-X X X X X X X X X X X X X X X X X X X X X, X X X X X X X X X X X X X X X X X X X X X X X X Gilia~~Qara Glib amatol~mb~ll gg~pJ~~gc~ii X X l X X X X X X X X X X X X X X X X X X X X,X X X X X X X X X X X X X X X/~~i~bi~gJ ii~i~~~chili~rb~+g~if~rni phd~i]iip~i X X X'X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X P~h~sp.Pll'~~~i P~1~I~i 6hKDU~r X X X X X X X X X X X X X X X X X X X X Table 5-2.(Cont'd)~7~17 l99l.~l~17~l~l~~l~4~~1~17~lqql./~led@~~i'RaLi m~bri n}~li~imgg X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X~rgb@~~bi Perennial Forbs X X X X X X X X X X~A~ill'g gjl'~fili m X X X X X X X X X X X X X~n~n~di ash iLrra~i~fr kl'ni var.~fr nkli'i X X X X X X X X X X X X X X X X X X X X Q~~~l~l]1ii~r~l<<k~~i~A~~l sp.~ln chir@mmuna~ri ER Q~di Gem~i he~i" Qll/Hark mB JJKREElk X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Q}m~n~~ba~ll X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Table 5-2.(Cont'd)~17~17~177~7~17~~l~~l~~l 199'17~l~l QES~~RbhiQli rUlk~jiig sp.X X X X X X X X X X X X gr'LQRKQQ~vugg~Lrr,i>>via muLm~n~ig sp.X X X X X X X X X X X X X X X X X X ggggfJ>~~lli g mgn~mi~JP~~sp.~~m~f1 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Ra~rl~la3ata$ph<~r'~m~~Shrubs, subshrubs, cacti X X X X X X X X X X X X X X X X X X X X X X X X X X X X X=X X X PpJ>~i pJJp~X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Table 5-3 Herbaceous Cover for 1990 Fifteen Sampling Stations Annual Grasses Bronus tectorun Festuca octoflora Total Annual Grass Cover Perennial Grasses Agropyron splcatuu Oryzop>s hynenoides Poa sandbergii Stipa coaata Total Perennial Grass Cover Annual forbs Ansinckia lycopsoides Chenopod)un Ieptophyllun Cryptantha circunscissa Crypthantha pterocarya Oescurainsa pinnate Oraba verna Franserfa acanthacarpa Gilia sinuata Holosteun unbellatun tayia glandulosa Hentzelia albicaulis Hicrosterls gracilis Phacelia linearis Plantago pategonica Sa'Isola kali S)syubriuu a)ties lnun Tragopogon dubius Total Annual forb Cover Perennial forbs 18.60 0.00)8.60 0.00 0.00 18.70 0.00 18.70 0.00 0.00 0.00 0.00 0.00 3.20 0.00 0.00 2.95 0.00 0.00 0.35 0.00 1.15 o.'ao 0.10 0.00 7.75 7.75 0.00 7.75 0.00 0.00 0 F 00 0.00 0.00 0.00 0.00 0 F 00 0.00 0.00 1.25 D,DD 0.00 0.40 0.00 0.00 0.60 0 F 00 0.10 0.00 0.00 o'.oa 2'5 61.55 0.00 61.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75).15 0.00 9.35 0.00 0.00 2.65 0.00 0.00 0.00 0.80 0.00 15.70 13.65 0.00 13.65 0.00 0.00 13.15 16.85 30.00 0.00 0.00 0.00 0.00 0.15 1.70 0.00 0.00 0.30 0.00 0.00 0.00 0.00 1.20 0.00 0.00 0.00 3.35 22.)5 1.65 23.80 0.00 0.00 11.85 0.05 11.90 0.00 0.00 0.00 0.00 0.00 1.20 D.OD 0.00 1.15 0.00 0.00 0.30 0.00 0.00 0.05 0.05 0.00 2.75 35.30 0.15 35.45 0.00 0.00 1.50 9.20 10.70 0.00 0.00 0.00 0.00 0.00 1.70 0.30 0.00 3.65 0.00 0.00 1.05 0.00 0.00 0.10 0.10 0.00 6.90 35.55 0.00 35.55 0.00 0.00 9.30 0.00 9.30 0.00 0.00 0.00 0.00 0.00 1.70 0.00 0.00 4.90 0.00 0.00 0.60 0.55 0.00 0.00 1.15 0.05 8.95 19.75 0.00 19.75 0.00 0 F 00 11.65 0.45 12.10 0.00 0.00 0.00 0.00 0.00 2.15 0.00 0.00 2.'IS 0.00 0.00 1.75 0.00 0.40 0.00 0.55 0.00 7.00 36.80 0.00 36.80 0.00 0.00 3.30 0.00 3.30 0.30 0.00 0.00 0.00 0.00 3.00 0.00 0.00 1.25 0.00 0.00 3~10 0.00 0.00 0 F 00 0.30 0.00 7.95 16.80 0.00 16.80 2.90 2.30 5.15 2.50 12.85 0.05 0.00 0.05 0.00 0.05 0.15 0.25 0.00 0.95 0.00 0.35 0.10 0.55 0.00 0.10 0.00 0.00 2.60 17.05 0.00 17.05 0.00 0.00 18.35 0.00 18.35 0.00 0.00 0.00 0.00 0.00 2.60 0.00 0.00 2.05 0.00 0.00 1.00 0.00 2.45 0.00 0.05 0.00 8.15 30.40 2.00 32.40 0.00 1.25 11.45 0.00 12.70 0.00 0.00 0.00 0.00 0.00 1.10 0.00 0.00 0.45 0.00 0.00 1.80 0.00 0.00 O.IS 1.05 0.00 4.55 53.35 0.00 53.35 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 1.75 0.00 0.00 6.05 0.00 0.00 0.65 o'.ao 0.45 0.00 0.00 0.00 8.90 12.90 0.00 12.90 2.65 0.00 15.7$0.00 18.40 0.05 0.00 0.00 o.'ao 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.'ao 0.00 0.00 0.10 5.45 0.00 5.45 0.00 a.'ao 17.55 0.00 17.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0~aa AVERAGE RLSCZ 25.80 0.25 26.05 0.37 0.24 9.18 1.94 11.73 0.03 0.00 0.00 0.00 0.02 1.55 0.11 0.00 2.37 0.00 0.02 0.93 0.07 0.38 0.03 0.28 0.00 5.80 AVERAGE 25.39 0.00 25.39 0.00 0.00 7.96 4.21 12.18 0.00 0 F 00 0 F 00 a.'00 0.04 I~98 0.29 0.00 3.25 0.00 0.00 0.90 0.00 0.61 0.00 0.23 0.00 7.29 AVERAGE M5 30.88 0.40 31.28 0.59 0.71 7.65 0.50 9.45 0.07 0.00 0.01 0.'aa 0.01 I.72 0.05 0.00 2.15 0.00 0'7 I.33 0.11 0.58 0.05 0.28 0.00 6.43 AVG.Gal-G04 BLED 28.44 0.22 28.66 0.33 0.39 7.79 2.15 10.66 0.04 0.00 0.01 O.aa 0.02 1.83 0.16 0.00 2.64 0.00 0.04 1.14 0.06 0.59 0.03 0.26 0.00 6.81 Achil)ca nil 1efol iun Astragulus purshli Aster canescens Astragalus sclerocarpus Ba)sazorhiza careyana Brodiaea douglasii Conandra unbel)ata Crepis atrabarba Cynopterus terebinthinus Oenothera pallida Phlox longifolia Runex venosus Total Perennial Forb Cover Total Herbaceous Cover 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 45.05 0.00 0.00 0 F 00 0.00 0.00 0.00 o.'ao 0.00 0.00 0.00 0 F 05 0.00 0 F 05 10~'IS 0.00 0.00 0.00 0.00 0.00 0.00 O.DO 0.00 0.00 0.05 0.00 0.00 0.05 77.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.10 0.00 1.20 48.20 0.00 0.00 0.45 0.00 2.45 0.00 0.30 0.00 0.00 0.00 0.75 0.00 3.95 0.00 0.00 0.05 0.05 0.60 0.00 0.00 0.00 6.25 1.30 0.30 0.00 8.55 61.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.05 53.85 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.20 39.OS 0.00 o.oo 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D.30 0.00 0.40 48.45 3.10 0.00 0.10 0.00 0.00 0.00 0.00 0.00 6.35 0.00 O.DD 0.00 9.55 41.80 0.05 0.00 0.00 0.'ao 0.30 0.00 0.00 0.95 0.00 0.00 D.45 0.00 1.75 45.30 0.00 0.00 0.05 0.00 3.85 0.00 0.00 o.'aa 0.00 0.00 O.OD 0.00 3.90 53.55 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 62.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.40 0.00 0.00 0.00 o.oa 0.00 0.00 0.00 0.00 0.00 0.00 0.00~0.00 0 F 00 23.00 0.21 0.00 0.06 0.00 0.48 0.00 0.02 0.06 0.84 0.10 0.21 O.ao 1.98 45.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.29 0 F 00 0.33 0.63 0.00 0.06 0.00 0.83 0.00 0.00 O.i9 1.27 0.00 0.'IS 0.00 3.13 0.35 0.00 0.03 0.00 0.46 0.00 0.00 0.11 0.71 0.02 0.21 0.00 1.88 45.18 50~29 48.02


Table 5-4 HeaFI Herbaceous Cover for.1975 through 1990 CLASS 501 502 503 504 505 501-5 506 507 XS GO I G02 X G03 G04 GO 1-4 GOS G06 G07 GOB XG X G01-4, XSG 501-5 AG PG AF PF ALL AG PG AF PF ALL AG PG AF PF ALL 1975 1975 1975 1975 1975 1976 1976 1976 1976 1976 1977 1977 1977 1977 1977 49.90 0.60 14.60 4.30 69.40 50.70 0.40 5.50 0.00 56.60 1.35 0.35 0.25 0.55 2.50 35.30 2.00 11.70 0.90 49.90 40.90 10.50 5.30 0.50 57.20 0.65 11.30 0.05 0.60 12.60 43.80 4.50 11.70 1.80 61.80 34.30 10.30 7.20 0.20 52.00 1.90 8.28 0.90 1.47.12.50 43.00 43.90 2.37 3'0 12.67 29.50 2.33 1.50 60.37 78.60 41.97 7'1.20 7.07 4.40 6.00 11.90 0.23 0.00 55.27 87.50 1.30 5.20 6.64 3.25 0.40 2.40 0.86 0.05 9.20 10.90 43.00 5.50 13.00 2.10 63.60 51.60 3.IO 8.50 0.20 63.40 1.45 2.90 9.35 6.30 20.00 43.45 4.60 21.25 I.80 71.10 61.40 3.75 10.20 0.10 75.45 3.33 3.08 5.88 3.18 15.45 43.18 3.26 16.10 Z.12 64.66 49.74 5.74 7.68 0.18 63.34 2.11 5.22 2.59 1.78 11.70 43.18 3.26 16.10 2.12 64.66 49.74 5.74 7.68 0.18 63.34 2.11 5.22 2.59 1.78 11.70 AG PG AF PF ALL 51.00 3.00 38.00 8.00 1978 1978 1978 1978 1978 100.00 67.00 18.00 10.00 0.00 95.00 51.00 11.00 33.00 5.00 100.00 56.33 68.00 10.67 8.00 27.00 23.00 4.33 2.00 98.33 101.00 42.00 7.00 25.00 3.00 77.00 55.00 7.50 24.00 2.50 89.00 55.80 9.40 25.80 3.60 94.60 55.80 9'0 25.80 3.60 94.60 AG PG AF PF ALL 1979 1979 1979 1979 1979 25.00 1.00 2.00 11.00 39.00 29.00 18.00 4.00 0.00 51.00 9.00'11.00 10.00 3.00 33.00 21.00 31.00 10.00 7.00 5.33 43.00 4.67 0.00 41.00 81.00 10.00 5.00 33.00 7.00 55.00 20.50 6.00 38.00 3.50 68.00 20.80 8.40 18.40 4.20 51.80 20.80 8.40 18.40 4.20 51.80 AG PG AF PF ALL AG PG AF PF ALL 1980 1980 1980 1980 1980 1981 1981 1981 1981 1981 50.40 1.00 7.60 2.20 61.20 74.80 0.10 5.30 0.00 80.20 51.80 7.20 4.20 2.20 65.40 54.60 4.70 3.50 3.20 66.00 24.30 23.30 22.50 4.70 74.80 66.50 14.30'I8.20 0.70 99.70 56.20 56.40 47.82 10.90 0.10 8.50 3.40 14.10 10.36 4.60 1.80 3.10 75.10 72.40 69.78 49.80 76.20 64.38 5.80 0.00 4.98 1.20 12.50 8.14 4.90 0.50 1.86 61.70 89.20 79.36 47.82 64.30 8.50 28.30 10.36 7.30 3.10 0.40 77.80 64.00 5.00 0.00 69.78'100.30 146.80 64.38 77.40 84.00 4.98 19.60 25.90 8.14 15.90 11.90 1.86 0.20 0.00 79.36 113.10 121.80 73.80 0.10 28.70 0.00 102.60 ss.40 0.00 17.50 0.00 105.90 12.30 57.05 26.60 29.75 4.90'11.48 4.60 1.25 48.40 99.53 48.90 74.68 36.70 20.55 5.90 12.80 1.90 0.53 93.40 108.55 57.05*29.75 11.48 1.25 99.53 74.68 20.55 12.80 0.53 108.55 51.92 17.94 10.86 2.28 83.00 68.96 I'1.90 10.21 1.27 92.33 51;92 17.94 10.86 2.28 83.00 68.96 11.90 10.21 1.27 92.33 AG PG AF PF ALL 1982 1982 1982 1982 1982 51.50 0.40 4.60 0.20 56.70 25.80 6.40 4.20 4.30 40.70 36.60 17.90 7.50 0.70 62.70 32.70 20.00 33.32 4.30 0.80 5.96 1.60 17.30 7.04 6.20 1.00 2.48 44.80 39.10 48.80 33.32 42.20 5.96 I'1.20 7.04 9.70 2.48 0.30 48.80 63.40 45.50 11.60 4.60 0.00 61.70 51.00 0.10 4.60'1.30 57.00 22.90 40.40 31.30 13.55 4.10 5.75 3.80 1.35 62.10 6'I.05 40.40 13.55 5.75 1.35 61.05 36.47 9.33 6.47 1.98 54.24 36.47 9.33 6.47 1.98 54.24
guality assurance  was  accomplished by twice sampling three randomly selected if L
microplots on each herbaceous transect. The entire transect was resampled cover estimates for any major species (>50 percent frequency) differed by more than one cover class.
All vegetation studies including cover, density, productivity, and chemistry were sampled, as in previous years, at the peak of the cheatgrass growth cycle known as the  purple stage (Klemmedson and Smith 1964).
5.2.2   H          P    m Phytomass  sampling was conducted concurrently with cover sampling. Phytomass sampling plots were randomly located within an area adjacent to the permanent transects or plots (Figure 5-2). At each station, all live herbaceous vege-tation rooted in five randomly located microplots (20 x 50 cm) was clipped to ground level and placed in paper bags.       Each bag was stapled shut and labeled with station code, plot number; date    and  personnel.
Sample bags were  transported to the laboratory, opened, and placed in a drying    .
oven until a consistent weight is obtained.       Following drying, the bags were removed singly from the oven and their contents immediately weighed to the nearest F 1 g. Laboratory quality assurance consisted of independently reworking 10 percent of the phytomass samples to assess data validi,ty and reliability.
5.2.3 Five 50-m lines were used to measure shrub canopy cover in each of the seven shrub plots (Figure 5-2). Whenever a shrub was crossed by a tape stretched between the end posts, its species and the distance (cm) at which      it inter-cepted the line were recorded.     For each shrub plot, intercept distances of each species along all five lines were summed to give a total intercept distance. From this, a shrub canopy cover value (percent) was obtained by dividing total intercept distance    by total line length.


Table 5-4 Mean Herbaceous Cover for 1975 through 1990 (continued)
Quality assurance procedures consisted of twice sampling one major species along a randomly selected shrub transect. Resampling was conducted if intercept lengths differed by more than 10 percent.
CLASS AG PG AF PF ALL AG PG AF PF ALL AG PG AF PF ALL I AG PG CA PF ALL AG PG AF PF ALL YEAR 1983 1983 1983 1983 1983 1984 1984 1984 1984 1984 1985 1985 1985 1985 1985 1986 1986 1986 1986 1986 1987 1987 1987 1987 1987 Sal 53.80 2.IS 8.20 0.70 64.85 41.50 1.85 12.35 0.30 56.00 2.10 1.05 0.70 0.00 3.85 17.45 2.20 25.40 1.15 46.20 28.90 3.60 12.56 5.00 50.06 502 37.60 7.70 7.85 3.10 56.25 32.75 8.80 8.10 4.00 53.65 2.15 4.70 1.35 1.35 9.55 1.95 10.75)6.65 5.35 34.70 9.95 21.90 8.50 6.00 46.35 503 33.65 14.45 12.55 I.05 61.70 39.35 11.55 11.10 0.75 62.75 14.60 17.85 9.40 1.15 43.00 7.20 17.25 38.Ia 2.30 64.85 7.80 42.65 10.80 2.00 63.25 504 36.75 6.40 3.45 4.40 51.00 36.30 8.55 4.00 6.55 55.40 4.95 2.40 2.30 3.00 12.65 11.45 9.85 10.25 9.15 40.'70 19.05 19.55 6.55 10.40 55.55 505 3'I.85 1.29 22.35 1.95 57.44 36.50 0.40 13.40 0.65 50.95 27.05 I.85 4.75 0.25 33.90 13.05 1.30 16.70 1.25 32.30 33.40 2.30 1).40 1.75 48'.85 501-5 38.73 6.40 10.88 2.24 58.25 37.28 6.23 9.79 2.45 55.75 10.17 5.57 3.70 1.15 20.59 10.22 8.27 21.42 3.84 43.75 19.82 18.00 9.96 5.03 52.81 506 507 XS 38.73 6.40 10.88 2.24 58.25 37.28 6.23 9.79 2.45 55.75 10.)7 5.57 3.70 I.IS 20.59 10.22 8.27 21.42 3.84 43.75 19.82'I8.00 9.96 5.03 52.8)49.50 2.10 18.70 0.65 70.95 60.85 1.20 20.65 0.70 83.40 8.00 9.20 18.20 0.80 36.20 9.40 19.85 27.65'1.80 58.70 23.85 32.45'I0.30 0.90 67.50 G02 39.55 15.75 8.85 0.05 64.20 71.30 4.45 9.70 0.20 85.65 8.10)7.95 8.15 0.10 34.30 4.65 38.65 34.15 1.95 79.40 9.45 58.79 11.32).90 81.46 62.75 0.00 8.65 2.10 73.50 60.85 19.45 I.')a 81.40 18.30 0.00 7.55 2.35 28.20 13.25 0.00 25.45 0.05 38.75 51.65 0.05 14.00 0.15 6S.'OS 604 17.55 25.50 6.65 4.00 53.70 9.60 25.00 7.95 1.25 43.80 7.25 13.90 3.05 0.90 25.10 7.35 26.00 8.70 2.55 44.60 4.65 45.95 3.25 1.55 55.40 X Gal-5 42.34 10.84 10.71 1.70 65.59 50.65 10.22 14.44 0.81 73.56'I0.41 10.26 9.24 I.04 30.95 8.66 21.13 23.99 1.59 55.36 22.40 34.31 9.72).13 67.55 G06 607 Gaa 42.34 10.84 10.71 1.70 65.59 50.65 10.22 14.44 0.81 73.56 10.41 10.26 9.24'1.04 30.95 8.66 21.13 23.99 1.59 55.36 22.40 34.31 9.72 I.13 67.55 XSG 40.33 8.37 10.81 2.00 61.51 43.22 6.87 11.86 1.72 63.67 10.28 7.66 6.16 I.10 25.19 9.53 13.98 22.56 2.84 48.91 20.97 25.25 9.85 3.29 59.36 Ga)-4~50)-5 40.33 8.37 10.8)2.00 61.5)43.22 7.73 11.86 1.72 63.67 10.28 7.66 6.16 I.10 25.19 9.53 13.98 22.56 2.84 48.91 20.97 25.25 9.85 3.29 59.36 AG PG AF PF ALL AG PG AF PF ALL AG PG AF PF ALL'I 988 1988 1988 1988 1988 1989 1989 1989 1989 1989 1990 1990 1990 1990 1990 13.80'I.75 6.08 I'I.SS 33.18 21.85 8.30 12.50 4.45 47.)0 36.80 3.30 7.95 0.40 48.45 5.05 8.40 5.25 15.75 34.45 12.50 29.55 6.95'14.50 63.50 16.80 12.85 2.60 9.55 41.80 8.10 11.95 3.60 2.10 25.75 12.45 64.00 13.05 4.40 93.90 17.50 18.35 8.15 1.75 45.30 13.80 9.40 3.10 4.85 31.IS'10.25)3.00 6.45 8.20 37.90 32.40'12.70 4.55 3.90 53.55 10.15 3.35 4.00 3.25 20.75 32.90 1.25 11.10 0.55 45.80 53.35 0.05 8.90 0.05 62.35 10.18 6.97 4.41 7.50 29.06)7.99 23.22 10.01 6.42 57.64 31.37 9.45 6.43 3.13 50.29 10.40 12.24 10.5'I 16.85 17.50 9~89 0.00 0.35 3.20 0.10 0.00 5.37 27.35 30.09 28.96 15.00 47.65 21.80 30.35 37.50 26.28 0.85 F 15 8.01 0.10 0.00 4.60 46.30 90.30 60.69 12.90 5.45 25.03 18.40)7.55 11.89 0.10 0.00 4.6'I 0.00 0.00 2.24 31.40 23.00 43.69 22.95 17.85 6.30 0.20 47.30 22.50 60.40 12.85 3.85 99.60 18.60 18.70 7.75 0.00 45.05 10.'Ia 2).70 16.IS 2.00 49.95 13.20 59.60 5.90 1.10 79.80 7.75 0.00 2.35 0.05 10.)5 16.75 0.05 7.55 0.00 24.35 65.85 0.05 42.20 0.05 108.15 61.55 0.00 15.70 0.05 77.30 4.80 30.20 1.80 4.40 41.20 3.05 49.55 2.85 3.00 58.45 13.65 30.00 3.35 1.20 48.20 13.65 17.45 7.95 1.65 40.70 26.15 42.40 15.95 2.00 86.50 25.39 12.18 7.29 0.33 45.18 11.95 19.20 F 50 12.05 1.20 1.45 15.25 8.70 37.90 41'0 22.35 35.10 36.75 16.20 8.85)3.55 6.45 10.40 74.40 75.25 23.80 35.45 I'1.90 10.70 2.75 6.90 3.95 8.55 42.40 61.60 15.85 10.40 10.45 14.30 12.35 6.12 2.45 4.34 41.10 32.52 38 F 05 12.05 32.05 48.95 13.05 13.95 12.9a 10.60 96.05 85.55 35.55 19.75 9.30 12.'Ia 8.95 7.00 0.05 0.20 53.85 39.05 14.00 14.51 6.61 4.34 39.47 26.52 37.94 14.15 6.04 84.66 27.01 I I.59 6.84 1.76 47.20 12.32 12.34 5.16 4.79 34.60 24.05 32.54 I'1.48 5.23 73.31 26.06)'1.73 5.80 I.98 45.56 11.72 11.63 5.98 4.90 34.23 2).62 3'I.74 12.65 4.46 70.47 28.71 Ia.66 6.81 l.88 48.02 Table 5-5 Mean Frequency Values (5)by Species of Each Sampling Station-1990 Annual Grasses Gol G02 G03 004 G05 G06 G07 G08 Sol S02 S03 S04 S05 S06 S07 Bromus tectorum Festuca octoflora 100 100 98 96 94 100 98.96 98 76 94 98 100 72 98 36 60 40 Perennial Grasses Agropyron spicatum Oryzopis hymenoides Poa sandbergii St,ipa comata 94 100 20 6 2 96 68 10 62 70 18 32 98 56 72 2 24 8 12 2 10 60 96 Annual Forbs Amsinckia lycopsoides Chenopodium Leptophyl1um Cryptantha circumscissa Cryptantha pterocarya Descurainia pinnata Draba verna Franseria acanthacarpa Gilia sinuata Holosteum umbellatum Layia glandulosa Mentzelia albicaulis Microsteris gracilis Phacelia linearls Plantago pategonica Salsola kali Sisymbrium altissimum Tragopogon dubius 2 2 6 78 50 60 48 48 68 8 12 2 58 86 90 6 10 84 44 60 14 24 86 12 42 38 46 4 2 4 4 2 4 4 24 50 84 4 22 22 16 4 46 22 12 2 40 72 26 78 18 6 2 42 68 16 96 12 26 86 76 66 40 28 52 18 92 Perennial Forbs Achil isa mi1 1 sf ol ium Aster canescens Astragulus purshii Ast,ragulus sclerocarpus Balsamorhiza careyana Brodiaea douglasii Comandra umbellata Crepls atrabarba Cynopterus tereblnthinus Oenothera pallida Phlox longifolia Rumex venosus 2 4 16 18 2 10 2'4 4 2 2 2 4 4 2 12 20 2 2 2 4 2 Total Species per Site 7 7 7 9 13 16 9 10 9 17 11 11 7 5 2 5"26
5.2.4     r Individual live shrubs were counted and recorded by species within each of the four strips delineated by shrub intercept transects (Figure 5-2). Number of V
shrubs per strip were summed to obtain shrub density by species for the entire 1000 m2 plot. Sampling was concurrent with cover sampling.
Quality assurance  consisted of resampling one randomly selected species within one  strip. Resampling was conducted  if the count difference exceeded one individual.
5.2.5 At each of the fifteen grassland and shrub stations, five soil samples were collected from the top 15 cm of soil with a clean stainless steel trowel. The samples were placed in 250 ml sterile plastic cups with lids, labeled and refrigerated at 4'C. Sixteen parameters were analyzed in e'ach sample includ-ing pH, bicarbonate,  carbonate, conductivity, sulfate, chloride, copper, zinc, nickel, cadmium, lead, chromium, calcium, magnesium, sodium and potassium.
Samples were analyzed for pH, bicarbonate, carbonate, sulfate, chloride and conductivity according to                      1 i (1965). Samples for chromium, cadmium and lead were analyzed by graphite furnace atomic absorption according to                                    I'pectroscopy (USEPA 1983). The remaining elements were analyzed by inductively coupled plasma emission spectroscopy (ICPES) (USEPA 1983). Aliquots of soil for trace metal analyses were digested according to Gilman (1990). Preservation times and conditions, when utilized, were according to USEPA (1983).
                                                                            \
Laboratory quality control comprised 10K  20% of the sample analysis load.
Routine quality control samples included internal laboratory standards, reagent blanks, and prepared EPA or NIST controls.
5-3


Table 5-6 Mean Terrestrial Phytomass for 1990 OATK SITE PLOT MT./Mf.(g)SQ.HETER DATE SITE PLOT MT./MT.(gl 59.HETER 05/18 05/18 05/18 05/18 05/18 G01 G01 G01 G01 G01 4-8 29-4 12-3 18-5 41-6 AVG STD 0.3 0.7 0.5 2.2 3.0 1.4 1.1 2.5 7'5.4 22.3 30.4 13.6 10.8 05/29 05/29 05/29 05/29 05/29$01$01$01$01$01 41-6 12-3 44 29-4 18-5 AVG STO 4,3 2.9 2.4 2.7 4.1 3.3 0.8 42.8 29.0 23.6 27.4 41.2 32.8 7.7 DATE SITE PLOT Mf./MT.(g)SQ.HETER DATE SITE PLOT Mf./Mf.(g)SQ.HETER 05/18 05/'I&05/18 05/18 05/18 G02 G02 602 G02 G02 12-3 29-4 18-5 41-6 AVG STO 0.2 0.2 0.5 0.3 0.9 0.4 0.3 2.1 1.8 5.3 2.7 8.5 4.1 2.5 05/29 05/29 05/29 05/29 05/29$02$02$02$02$02 41-6 29-4 44 18-5 12-3 AVG STO 0.5 3.9 3.6 3.7 27.4 7.8 9.9 5.3 39.4 35.8 36.5 274.3 78.3 98.8 DATE SITE PLOT N'./Mf.(g)SQ.HETER OA1'E SITE PLOT MT./MT.(g)SQ.HETER 05/18 05/18 05/18 05/18 05/18 G03 G03 G03 G03 G03 18-5 4-8 12-3 29-4 41-6 AVG STO 6.8 6.4 1.3 68.1 64.0 13.0 7.7 77.2 7.7 77.1 5.2 51.8 4.6 45.9 05/29 05/30 05/30 05/30 05/30$03$03$03$03$03 18-5 12-3 4-8 29-4 41-6 AVG STO 2.8 3.2 2.5 4.6 1.0 2.8 1.1 28.1 32'24.7 45.7 10.4 28.2 11.4 DATE SITE PLOT MT./MT.(g)SQ.HETER DATE SITE PLOT MT./N'.(g)SQ.HETER 05/18 05/IS 05/18 OSI18 05/18 604 G04 G04 604 G04 12-3 18-5 41-6 29-4 4-8 AVG STO 7.5 5.5 2.4 19.0 2.3 7.3 6.2 75.1 54.9 23.6 189.7 22.5 73.2 61.5 OSI29 05/29 05/29 05/29 05/29$04$04$04$04 S04 4-8 12-3 41%18-5 2~AVG STO 5.4 2.5 2.0 1.6 4.1 3.1 1.4 53.8 24.6 19.6 15.7 40.7 30.9 14.3 DATE SITK PLOT Mf./IP.(g)Sg.IIEfER DATE SITE PLOT MT./MT.(g)SQ.HETER 05/30 05/30 05/30 05/30 05/30 GOS GOS GOS GOS GOS 12 3 18 5 29-4 41-6 AVG STD 1.1 4.5 1.4 2.8 8.6 3.7 2.8 10.8 44.S 13.9 28.3 86.4 36.8 27'05/2905/29 05/29 05/29 05/29$05$05$05$05$05 12-3 41%4-8 29-4 18-5 AVG STO 3.5 4.5 4.3 3.7 5.7 4.3 0.8 34.5 45.4 43.0 36.9 57.3 43.4 8.0 DATE SITE P(.OT MT./MT.(g)SQ.HETER DATE SITE PLOT MT./N.(g)SQ.PZrER 05/31 05/31 05/31 05/31 05/31 G06 G06 G06 606 606 12-3 41-6 18-5 29-4 AVG STD 5.2 2.8.4.6 4,4 2.9 4.0 0.9 51.9 28.2 45.6 43.09 29.3 39.'8 9,4 05/31 05/31 05/31 05/31 0SI31$06$06$06$06$06 18-5 12-3 41M 29~AVG STO 4.4 4.4 3.8'.1 2.4 3.4 1.0 44.3 43.6 37.5 20.8 23'34.0 9'DATE SITE PLOT N'./MT.(g)SQ.HETER DATE SITE PLOT MT./N'.(g)SQ.HETER 05/30 05/30 05/30 05/30 05/30 G07 G07 G07 607 G07 18-5 41-6 12-3 29-4 AVG STO 3.6 1.4 2.5 6.2 0.9 2.9 1.9 36.1 14.1 25.1 61.7 8.7 29.1 18.8 05/31 05/31 05/31 05/3'I 05/31$07$07$07$07$07 4-8 29~12-3 18-5 41-6 AVG STO 0.2 0.1 0.7 1.3 0.7 0.6 0.4 2.4 1.0 6.9 13.3 6.9 6.1 4.3 DATE 05/30 05/30 05/30 05/30 05/30 SITE GOS G08 GOS 608 608 PLOT 18-5 41-6 12-3 29-4 4-8 AVG STD 0.2 0.8 0.3 1.5 2.3 1.0 0.8 1.6 7.8 2.7 15.Z 22.5 10.0 7.9 MT./Mf.(g)SQ.HETER HEAN 601-G08 HEAN$01-$07 MEAN 801%05 5"27 33.8 36.2 0.0 Phytamass Sugary Grams/sq.meter Grams/sq.meter Grams/sq.meter o
5.2.6   V Samples  of ~Br ~ ~gzgm,      gga  ~berg~, ~zmj~         ~e~z,      and ~P
Table 5-7 Comparison of Herbaceous Phytomass for 1975 through 1990~l~7~77~7~7~l~~~~14~l~l~17~l GO'1 359 108 21 166 64 160 200 90 77 94 70 50 83 34 174.3 13.6 G02 302 258 11 162 37 68 255 60 137 116 27 61 77 14 657 41 G03 G04 G05 G06 G07 G08 501 S02 S03 126 137 144 98 88 177 53 261 62 64 133 12 32 134 16 105.1 64.0 79 159 113 82 67 37 35 90 61 49.5 73.2 4 173 21 36 180 98'171 104 5 35 62 7 128 28 63 115 24 232 57 1 112 144 43.2 36.8 61.0 39.8 113.1 29.1 112.3 10.0 59 53.9 32.8 73 72.8 78.3 7 115 16 43 31 22 54 95 27 25 48 15 67.0 28.2 504 78 52 39 68 93 11 176 108 24 39.8 30.9 S05 S06 S07 71 81 184 136 43 61 42 145 19 103.7 43.4 72.7 34.0 149.5 6.1 Table 5-8 Summary of Shr ub Density for 1990 Station S01 Species Ar temi si a tri dentata Chrysothamnus nauseosus Chrysothamnus viscidiflorus Purshia tridentata 1 3 0 0 0 2 2 0 0 2 3 4 0 0 1 4 0 0 0 1 Total 9 0 0 4 13 S/Ha 90 0 0 40 130 S/a 36 0 0 16 52 S02 Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidi florus Purshia tridentata 503 Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidiflorus Purshia tridentata S04 Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidiflorus Purshia tridentata 505 Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidi florus Purshia tridentata 1 0 0 0 6 4 0 0 1 0 0 0 0 0 0 1 1 0 0 0 15 2 0 0 2 0 0 0 0 1 0 3 0 0 0 0 12 2 0 0 1 0 0 0 0 4 0 4 0 0 Q 0 15 1 0 0 5 0 0 0 0 2 1 0 Total 2 0 0 0 2 Total 48 9 0 0 57 Total 9 0 0 0 9 Total 0 7 1 8 16 5/Ha 20 0 0 0 20 S/Ha 480 90 0 0 570 S/Ha 90 0 0 0 90 S/Ha 0 70 10 80 160 S/a 8 0 0 0 8 S/a 192 36 0 Q 228 S/a 36 0 0 0 36 S/a 0 28 4 32 64 Table 5-9 Su@nary of Shrub Cover (X)at Five Stations for 1990 Shrub Cover (X)Shrubs Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidiflorus Purshia tridentata Total Shrub Cover Sol 0.00 0.00 0.00 0.76 0.76 S02 0'3 0.00 0.00 0.00 0.13 S03 5.65 0.89 0.00 0.00 6.54 S04 0.00 0.00 0.00 0.00 0.00 S05 0.00 0.23 0.13 0.00 0.36 1.16 0.22 0.03 0.15 1.56 Table 5-10 Su@nary of Soil Chemistry for 1990 G01 G02 G03 G04 G05 G06 G07 G08 S01 S02 S03 S04 S05 S06 S07 pH (1:2 soil-water
~ri~~Z were      collected at each station. Two species were substituted at some of the stations due to absence of one or more of those listed above.
)Conductivity (1:2 soil-water) microsiemens/cm Sulfate ug/gm Chloride ug/gm Copper ug/gm Lead ug/gm Cadmium ug/gm Chromium ug/gm Nickel ug/gm Zinc ug/gm Sodium/Potassium 5 Calcium'4 Bicarbonates (meq/HC03/gm)
Substitute species were Hex        ~gjf~     and ~lhzjgm ~j.'~ag.         Samples were collected as close to the soil sampling station as possible.       Sufficient quantities of leafy material of each species were collected to yield at least five grams of dry weight. The clipped material was sealed in a plastic bag, labeled and refrigerated at 4'C until sample preparation.
Hagnesium 4 6.62 1~12 11.10 6.04 0.014 8.2 11.93 40.59 0.037 0.191 0.273 0.0015 0.374 6.87 0.56 9.18 4.96 0.062 6.4 9.94 37.89 0'38 0.164 0.292 0.0020 0.391 14.29 1.76 9.61 3.10 0.072 5.1 8.94 37.32 0.033 0.124 0.351 0.0014 0.376 7.07 0.24 6.92 2.58 0.100 3.5 8.54 29.27 0.029 0.079 0.298 0.0009 0.321 6.8 1.04 7.42 2.3 0.120 5.6 9.54 26.51 0.026 0.087 0.261 0.0006 0.302 6.77 0.8 8.2 2.6 0.139 4.7 8.90 29.97 0.031 0.093 0.289 0.0008 0.339 5.77 1.12 8.54 3.92 0.062 4.8 7.28 38.38 0.035 0.137 0.319 0.0017 0.374 6.78 0.48 8.14 2.08 0.064 6.0 9.90 31.58 0.027 0.119 0.245 0.0015 0.365 6.78 1.44 7.64 1.14 0.118 6.8 9.78 33.51 0.028 0.125 0.282 0.0010 0.376 6.80 1.28 6.84 0.70 0.070 5.6 9.16 21.61 0.021 0.066 0.356 0.0013 0.302 6.88 1.04 8.82 1.26 0.058 5.0 9.72 37.93 0.033 0.132 0.309 0.0014 0.366 12.95 0.96 7.94 1.00 0.060 5.7 9.18 31.87 0.031 0.128 0.274 0.0009 0.355 6.78 0.32 7.20 1.53 0.080 3.9 8.36 30.42 0.033 0.085 0.306 0.0009 0.333 6.81 0.64 9.48 1.36 0.020 9.4 10.08 38.55 0.032 0.167 0.377 0.0023 0.420 6.62 0.88 13.14 1.71 0.030 12.5 15.42 47.31 0.042 0.216 0.434 0.0027 0.632 6.86 6.92 6.95 6.94 6.77 7.02 7.12, 7.07 7.19 7.65 6.78 6.93 7.00 7.13 7.20 46.3 54.6 96.8 28.8 14.4 19.0 53.2 38'27.8 32.2 39.4 29.9 21.9 55.2 65.8 e
In the laboratory, the clipped plant tissue was oven dried to a constant weight, ground in a Hi ley mi  1 1 and digested accord) ng to Gi lman (1990) .
Table 5-11 Suranary of Vegetation Chemistry for 1990 SITE POSA BRTE SIAL PHLO PUTR ARTR CHVI GRSP Copper (ug/gm)Gp1 G02 G03 G04 GQS G06 G07 GOB Sol S02 S03 S04 S05 S06 S07 2.80 3.00 4.20 2.80 Z.'Zo 2.60 4.40 2.60 2.60 2.80 3.20 3.60 3.60 3.80 3.20 4.80 5.00 6.60 4.00 4.83 4.20 5.20 4.80 4.00 4.20 5.00 4.80 4.60 6.40 6.00 3.80 8.20 10.20 9.00 5.00 9.20 8.00 6.20 6.60 4.20 3.60 3.64 3.60 4.40 4.60 3.40 4.00 4.40 2.60 3.60 7.20 1Q.OO 8.20 3.40 4.00 9.20 3.20 3.40 4.00 4.20 3.40 3.60 3.20 6.00 10.20 7.80 4'0 5.00 Extractable Sulfate (1')Gpl G02 G03 G04 G05 G06 G07 GQB Spl S02 SD3 504 S05 S06 S07 0.020 0.019 0.023 0,020 0.019 0.018 0.018 O.OOQ 0.019 0.019 0.026 0.019 Q.019 0.024 0.018 0.041 D.029 0.036 0.021 0.018 0.018 0.023 0.022 0.020 0.019 0.027 0.017 0.030 O.OZ5 0.029 0.084 0.023 0.073 0.018 0.125 0'41 0.055 Q.Q15 0.023 0.097 0.025 0.063 0.021 0''18 0.019 0.026 0.049 0.018 0.047 0,018 0.02 0.018 0.022 P.P16 0.052 0.02 0.024 0.021 0.02 0.021 0.037 0.032 0.097 0.018 0.041 Extractable Chloride (/)Gp 1 G02 G03 G04 G05 G06 G07 G08 So 1 SO2 S03 S04 S05 S06 S07 Q.zl 0.21 0.29 0.32 0.25 0.22 O.24 0.28 D.25 0.25 0.30 0.32 0.32 0.16 0.17 0.29 O.Z4 0.29 0.14 0.18 O.Z6 0.24 0~12 0.21 0.19 0.19 0.18 0.16 0.10 0.20 0.57 0~12 0.78 0.07 0.62 0.08 0.43 0.06 0'9 0.05 0.04 0.08 0.68 0.08 0'9 0.10 0.38 0.07 0.34 0.17 0.11 0.14 0.92 e 0.90 0.23 0.'67 O'.48 0.63 0.10 0.95 0.78 0.91 0.18 0 F 89 0.73 0.49 2.11 0.59 1.85 5-32 h
Sulfate was analyzed by nephalometry and chloride by mercuric chloride titration according to USEPA (1983). Copper was analyzed by ICPES according to USEPA (1983).
Table 5-12 Drift Sampler Locations in Reference to WNP-2 Cooling Towers 1 2 3 4 5 6'8 9 10 ll 12 13 14 15*16 3.1 miles 2.6 miles 2.1 miles 1.6 miles 1.15 miles 0.65 miles 0.2 miles Center of.Towers 0.4 miles 0.9 miles 1.33 miles 1.83 miles 2.35 miles 2.83 miles 3.36 miles 7 miles 165'67.5'70'72.5'75'80'05'94'06'12'14'15'14'12'87'Control Samplers 5"33 Table 5-13 Drift Deposition Rates (Gross and Background Corrected)
5.3 During the 1990 season, 58 plant taxa were observed in the study area. These are presented in Table 5-1. Table 5-2 lists by year the species of vascular plants observed during field activities from 1975-1990. Many of the graphs will depict  a  preoperational, operational and 1990 status. The preoperational data is that which was collected annually prior to NNP-2 becoming. fully operational (1980-1984). Operational data is that which is collected after 1984 but not including the current year which is listed separately (1990).
Corrected for 1/r-r)o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 9 10 14 12 17 60 2998 16 11 9 9 8 8.8 8 3 1 2 6 4 9 52 2990 8 3 1 1 0 0 0*Control Site 5-34
5.3.1 Herbaceous  cover data  for 1990 are summarized  in Tables 5-and 5-4. Figures 5-3 and 5-4 provide a comparison of shrub and grassland sites (annual grasses AG, perennial grasses  PG, annual forbs  AF, and perennial forbs  PF) with the data of previous years. There is a noticable trend of the herbaceous cover reverting back to its original state prior to the fire of 1984.
'!~"""."'..I ROUTE 11A NE Iy~+I Pwwwwmwwm I SASti laL I I Le m a w w m w m w I BELAFLOWER RO I I r~r 3 W.KWlA ,;;>R170 g', Ah Drfr,,';",;.';;,,;ESTD IcsAPRV L,V y yl+r':+""''ERE Cage:>>'AT%~V.~OL P mnwea i+srrr g+Ot DEWS WI IVJSSELL RO.I I r w WW\~l SNRWOOO I rrr~I rrrr I I IRSQOLO RO.LII 0 N IU 6 G08~02~++~LANT2, FACUfVPtO+OF GOZ I r>'R I".,>~.j,''%.'5: 'j',"-:.'.:!gs03 a.TOPIA W'ESr EL I','+506~"";', Ml''ZONE F:: ', T~....",'y""~WORVO OORCR I VOEL I WES'CFHROI I I GAA I I~AXVER I re~C III WWHWWWWWW DOOWOOD I I I I I I I~J~(1 L RIEL I rr'ga WWWWWWWW I.',':;~..'~IN CITS W~y,.:,'...~rrvo.I I wl I I II 0 p NXWWS O'91>>II HHWHWHWW WWWWW LEGEND~PAVED ROAD m a o REPROVED ROAD DR ORAVEL ROAD RARROAO DO%CARY laCS~OWER LSNS+SuEPORO PRES'":":t IACXNO RO.000410 tasoi 1 thru 8 60=Grassland Site 1 thru 7 SO Shrub Site Figure 5-1 Soil and Vegetation Sampling Location Hap 5-35 Shrub Community 50m Herbaceous transect Shrub intercept transect Shrub intercept transect Shrub intercept transect Shrublntercept transect 20m Shrub intercept transect PhytOmasS sampnng plot I tom Herbaceous Community Herbaceous transect I I t0m Phytomass sampling plot I Figure 5-2 Layout of Vegetation and Soil Sam lin Plots p ng 5"36 50 MEAN%COVER 40 30 20 10 PREOPERATIONAL OPERATIONAL
5-4
?C 1990~AG-G ER3 PG-G C3 AF-G RH PF-G 40 MEAN%COVER 30 20 10 PREOPERATIONAL OPERATIONAL 1990 W AG-S EKKI PG-S EQ AF-S'H PF-S F/gure 5-3 Mean herbaceous Cover for 1975 Through 1990 5"37


20 TOTAL PRECIP.icm)MEAN TEMP iC)MEAN%COVER/MEAN DRY WT.ig/m2)120 15 10 I I I I I l/\/\'I'I/l I\I l l 1'l\\''100 80 60 40 20 0 1982 1983 1984 1985 1986 1987 1988 1989 1990 YEAR--Precipitation
Total herbaceous cover averaged 45.56% in 1990 which represents a 38,01/
~Temperature KQ Gover K9 Dry Weight Figure 5-4 Hean Herbaceous Cover, Hean Dry Hgt.(g/m2), Total Precip1tat1on, and Hean Temperature From 1982 Through 1990 160 140 130 120 110 100 90 80 70 80 60 40 30 20 10 0 GRAMS/SQ.METER PREOPERATIONAL OPERATIONAL SAMPLE PERIOD 1990~GRASSLAND EKI SHRUBS 150 140 130 120 110 100 90 80 70 DRY WEIGHT (G/M2)60 40 30 20 10 0 g?".', GOI GO2 G03 G04 G05 G08 G07 G08 SOI S02 S03 S04 S05 S08 S07 STATION Figure 5-5 Mean Herbaceous Phytomass at Grassland and Shrub Stations for 1975 Through 1990 5-39 1AO 100 120 110 100 00 80 10 80 80~0 00 20 10 0 GOI PHYTOMASS 6/M2 HERBACEOUS COVER MEAN I6 80 80 AO 20 lA0 100 120 110 100 00 80 To 80 eo<0 oo 20 10 0 G02 PHYTOMASS 6/M2 HERBACEOUS COVER MEAN%120 8O 80 lo 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C3DRY WOT.E3%COVER 1000 PR EOPERATI ORAL OPERATIONAL SAMPLE PERIOD C3DRY WOT.E9%COVER'l000 140 180 120 110 100 00 80 10 80 Ao 20'lo 0 603 PHYTOMASS 6/M2 HERBACEOUS COVER MEAN%80 ao Ao 20 140 120 110 00 80 To 80 80~0 80 20 10 G04 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD MDRY WOT.K3%COVER 1000 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD REDRY WQT.K3%COVER 1000 Figure 5-6 Mean Herbaceous Cover and Phytomass for Stations G01 to G04 for 1980 Through 1990 110 180 120 110 100 00 80 Tp 00 80 so 80 20 10 G05 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 40~0 20 Ilp 100 120 110 100 00 80 70 80 80+0 oo 20 10 0 G08 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 80 40 20 PAEOPEAATIONAL OPEAATIONAL SAMPLE PERIOD C3DAY WQT.E35 COYEA IOQO PAEOPEAATIONAL OPEAATIONAL SAMPLE PERIOD CD DAY WO'T.EBS COVE A 1080 140 100 120 110 100 00 80 70 00 80 40 80 20 10 G07 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 80 40 20 110 100 120 110 100 00 80 To 80 80 so 00 20 10 0 GOB PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 40 20 PAEOPEAATIOHAL OPEAATIONAL SAMPLE PERIOD MDAY wo'T.K3%coYEA IOOO PAEOPEAAIIONAL OPEAATIOHAL SAMPLE PERIOD CDDAY WOT.MBA COYEA 1000 Figure 5-7 Mean Herbaceous Cover and Phytomass for Stations G05 to G08 for 1989 Through 1990 110 100 120 110 100 00 80 To 80 80 io 80 20 10 S01 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%8O 80 Ao 20 Iio 100 120 110 100 00 80 To 80 80 lo oo 20 10 S02 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80<0 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C30RY WOT.E3%COVER 1000 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C30RY WOT.63%COVER 1000 SOS PHYTOMASS G/M2 HERBACEOUS COVER MEAN II S04 PHYTOMASS G/M2'HERBACEOUS COVER MEAN I6 To 80 80 00 80 To 80 80 80 io lo~0 lo 20 10 20 20 10 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C30RY WOT.K35 COVER 1000 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C3ORY WOT.K3%COVER 1000 F/gure 5-8 Mean Herbaceous Cover and Phytomass for Stations S01 to S04 for 1980 Through 1990 120 110 100 00 80 TO 80 80~0 20 10 S05 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%100 80 80~0 20 100 00 80 TO 80 80 Ao 30 20 10 SOO PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 AO 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C30RY wOT.IZ38 covER 1000 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD CDORY WOT.EZIR covER 1000 120 110 100 00 80 10 80 80~0 30 20 10 S07 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%100 80 80~0 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD CDORY wOT.IZIR COVER 1000 Figure 5-9 Mean Herbaceous Cover and Phytomass for Stations S05 for 1980 through 1990 and Stations S06 and S07 for 1989 Through 1990
decrease from 1989 (73.5'/). As in previous years, the dominant annual grass was ~Br 1m ~bZgg with 25.80% followed by        ~1~        ~gjlgZa with 0.25%.
Perennial grasses averaged 11.73% in comparison to 32.5% in 1989.'ga
~~r
  ~ ~~  i (9.18%) was the dominant perennial grass at most stations followed
                    ~
by                (1.94%),
Total annual forb cover averaged 5.8% down from the 11.3'/ measured in 1989.
~Hl~ZLug ggiJjj~g was the dominant component with 2.37'/ followed by          ~D d              grat~;      \th . t.'.
Perennial forb cover decreased    63.3/ from 1989 (1.98% vs. 5.4%).       The dominant CE'le                      (.84%) and                            (.48%).
Species frequency values (%) for each station were similar to previous years and are summarized in Table 5-5. The greatest diversity of species was observed at Station S02 (17) while the smallest was observed at Station S07 (2). Due to misinterpretation of 1989 data, Station S02 was listed as having the greatest diversity of species, the text should have listed station G05(19) as  having the greatest  diversity.
Growing season  precipitation decreased 51% from 1989 (6.83 cm vs 13.97 cm),
with the total precipitation for the 1990 growing season being 6.83 cm.
December 1989 and March 1990 precipitation, 0.74 cm and 0.25 cm, respectively, were lower than all previously recorded data for those months.          Mean temper-ature during the growing season    was 6.4'C in    1990  vs. 4.5 C in 1989.
5 3 2  Harhamm RhXiatuu.
Mean production of herbaceous phytomass in 1990 was 34.95 gm/m2. At grassland stations, phytomass production averaged 33.8 g/m2 while at shrub stations          it was 36.2 g/m2. Production varied widely among stations from a low of 4.1 g/m2 at Station G02 to a high of 78.3 g/m2 at Station S02. Mean herbaceous phytomass production at grassland stations and at shrub stations for 1990 is shown graphically in Figure 5-5 (Stations GOS, G06, G07, G08, S06 and S07 were 5-5


2500 DENSITY (shrubs/haj 2000 1500 1000 500 0 S01 S02 S03 STAT I ON S04 S05~PREOPERATIONAL EB OPERATIONAL EQ1990 Figure 5-10 Shrub Density at Five Stations for 1975 Through 1990 30 MEAN PERCENT COVER 25 20 15 10 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 YEAR F/gure 5-11 Hean Total Shrub Cover for 1975 Through 1990  
not added  until 1989) and  is summarized in Table 5-6. Table 5-7 presents mean phytomass values for each station in each year since 1975. Mean herbaceous phytomass and percent herbaceous cover for each station from 1980 through 1990 are presented graphically in Figures 5-6 through 5-9.
5.3.3 There are
~dbd          ~          D bb bl i
                                  "
dd d~"
four shrub species in the study area:
tl Ldl present, however, they are not included in the cover data. During a 1984 August range fire, all viable shrubs were completely destroyed at Stations    S02 and S04, while the only individuals surviving at Station SOl were isolated clumps  of  low growing ~eggy      ~r~~g.
Shrub density and cover data continue to reflect recovery from the 1984 fire.
Percent cover measurements taken in 1990 are very similar to those measured in 1989  with an overall slight decrease in average cover (1,561. versus 1.631.).
Shrub density increased slightly at Stations S02 and S05, and decreased slightly at Stations SOl, S03, and S04. Shrub density data for 1990 is summarized in Table 5-8, while shrub density data at each station from 1980 through 1990 is presented .in Figure 5-10. Shrub cover data for 1990 is summarized in Table 5-9, while Figure 5-11 presents mean shrub cover values measured from 1975 through 1990. Shrub cover and density at each station for 1990 are presented graphically in Figure 5-12.
The  results of the 1990 soil chemical analyses are presented in Table 5-10    and are shown graphically in Figures 5-13 through 5-20.
Most  metallic element concentrations were within the ranges observed in previous years. There is no concentration of carbonate, due to the pH level of the samples (( 8.3). The pH value has to be above 8.3 in order for carbonate to be present.
5-6


PERCENT COVER DENSITY (shrubs/ha) 600 500%COVER I DENSITY 400 300 200 100 SO1 S02 S03 STAT I ON SO4 S05 Figure 5-12 Shrub Cover and Density for Five Stations for 1990 9.0 pH 8.0 7.5 7.0 6.0 I e G01 G02 G03 G04 G05 G06 G07 GOS S01 S02 S03 S04 S05 S06 S07 STATION M P REOP 8 RATIONAL EK3 OP 8 RATIONAL ED 1990 100 CONDUCTIVITY MICROSIEMENS/CM 90 80 70 60 50 40 30 20 10 GOI G02 G03 G04 G05 G08 G07 G08 SOI S02 S03 S04 S05 S06 S07 STATION CHPREOPERATIONAL EKIOPERATIONAL EZ 1990 Figure 5-13 Soi1 pH and Conductivity for 1980 Through 1990 5"47 CHLORIDE MICROGRAMS/GRAM 12 10 0 601 602 603 G04 G05 G08 607 608 SOI S02 S03 S04 S05 SOO S07 STATION C3 PREOPERATIONAI.
Bicarbonates    was  similar to that observed in past data. Conductivity was generally within range at all stations except G03 (96.8), where        it increased markedly, as well as in 1985 and 1988 (98.0 and 125.6, respectively). The pH of station G03 increased slightly after a steady decrease for the past 5 years. Sulfate and chloride concentrations were generally higher than were observed in previous year's data.
EEI OPERATIONAL
5.3.5   V The  results of the    1990 vegetation chemical analyses are presented  in Table 5-11 and shown    graphically in Figures 5-21 through 5-30.
~1990 SULFATE MICROGRAMS/GRAM 50 40 30 20 10 0 GOI 602 G03 604 605 GOS 607 608 SOI S02 S03 S04 S05 SOS S07 STATION CDPREOPERATIONAL EBOPERATIONAL C31990 F/gure 5-14 So/l Sulfate and Chlor)de for 1980 Through 1990 5-48
Total vegetation copper concentrations were generally within the ranges previously observed in all of the species examined. Extractable chloride concentrations were generally within the ranges observed in previous years, while extractable sulfate concentrations were higher than in previous years except at Station G08 for Qg, ~}pupil.
.o 70 MEQ.HCO3/GRAM X 10-4 60 50 40 30 20 10 0 GOI G02 G03 G04 G05 GOS G07 GOS SOI S02 S03 S04 S05 SOB S07 STATION MPREOPERATIONAI.
5.4 A 51%  decrease  in precipitation during the 1989-90 growing season was associ-ated with a 38.011. decrease in mean herbaceous cover for 1990 (Figure 5-4). A corresponding decrease in herbaceous phytomass was observed at all Stations, except S02 and G04. The remaining analytes were generally within the ranges previously observed. Changes in vegetation cover and dens,ity .recorded in 1990 appear  to  be  climatically  induced and no signs of  adverse impacts from the operation of    WNP-2  cooling towers are evident.
EB OPERATIONAL E31990 COPPER MICROGRAMS/GRAM 15 14 13 12 10 G01 G02 G03 G04 G05 G06 607 GOB SOI S02 S03 S04 S05 SOS S07 STATION MPREOPERATIONAL EBOPERATIONAL E31990 Figure 5-15 Soil Bicarbonate and Copper for 1980 Through 1990 5-49 o
Shrub cover and    density data continue to reflect recovery from the 1984 range fire  with slight changes in cover an'd density evident at most stations.
LEAD MICROGRAMS/GRAM
No  adverse trends or impacts upon soil or vegetation chemistry are apparent from the six years of operational data.
?4 0 G01 G02 G03 G04 G05 G06 G07 GOB S01 S02 S03 S04 S05 S06 SOI STATION C3PREOPERATIONAL EB OPERATIONAL E31990 NICKEL MICROGRAMS/GRAM 20 15 10 n 4 G 0 G01 G02 G03 G04 G05 G06 G07 GOS SOI S02 S03 S04 S05 S06 S07 STATION MPREOPERATIQNAL RB OPERATIONAL E31990 F/gure 5-16 Soil Lead and N/ckel for 1980 Through 1990 0 5-50 0.8 CADMIUM MICROGRAMS/GRAM 0.5 0,4 0.3 0.2 0,1 0 Gp'I G02 G03 G04 G06 G08 G07 G08 S01 S02 S03 S04 S06 S08 S07 STATION CD PREOPERATI ONAL K3 OPERATIONAL E3 1990 80 ZINC MI CROGRAMS/GRAM 66 50 46 40 36 30 20 15 10 G01 G02 G03 G04 G05 G08 G07 GOS SOI S02 S03 S04 S05 S08 S07 STATION HPREOPERATIONAL EBOPERATIONAL ED1990 Figure 5-17 So/1 Cadm/um and Z1nc for 1980 Through 1990 5-51 20 CHROMIUM MICROGRAMS/GRAM 18 14 12 10 0 G01 G02 G03 G04 G05 GOS G07 GOS 801 S02 S03 S04 S05 S06 S07 STATION CDPREOPERATIONAL EEIOPERATIONAL E31990 0.10 SODIUM WEIGHT PERCENT 0.08 0.06 0.04 0.02 0.00 G01 G02 G03 G04 G05 G06 G07 G08 801 802 803 804 805 806 807 STATION MPREOPERATIONAL EKIOPERATIONAL E31990 Figure 5-18 Soil Chromium and Sodium for 1980 Through 1990 5"52 0.350 POTASSIUM WEIGHT PERCENT 0.300 0.250 0.200 0.160 0.100 0.050 0.000 GOI G02 G03 G04 G05 G06 GOT GOS SOI S02 S03 S04 S05 S06 SOT STATION~PREOPERATIONAL RB OPERATIONAL E31990 1.00 CALCIUM WEIGHT PERCENT 0.80 0.60 0.40 0.20 0,00 GOI G02 G03 G04 G05 G06 G07 GOS S01 S02 S03 S04 S05 S06 SOT STATION I WPREOPERATIONAL EB OPERATIONAL E31990 Figure 5-19 Soil Potassium and Calcium for 1980 Through 1990 5-53 MAGNESIUM WEIGHT PERCENT C??."?&?'.C'('?C;.':, g????.4'.;?''C;;601 602 603 604 605 606 607 608 S01 S02 S03 S04 S05 S06 S07 STATION C3 PREOP E RATIONAL I OP E RATIONAL EQ 1990 F)gure 5-20 So/1 Hagnestum for 1980 Through 1990 o
5-7
VEGETATION COPPER (saorcgrama/gram) ta 12 10 ps/os/orrgr/gris R 1080 EB 1081 CI 1082 KZI 1083 I~12 10 VEGETATION COPPER (sacrograma/gras) srcmrra loorcrrrm W 1080 EB 1081 C3 tos2 EEI 1083 8 OOI OO2 GOS GOa GOS GOS OOr GOS SOI SO2 SOS SOa SOS SOe SOr STATION GO1 GO2 GO3 Goa Goo Goe Gor GOS Sot SO2 SO3 Soa Soe Soe Sol STATION VEGETATION COPPER (mlcrograma/gram) 1a 12 10 Poler lcsgl/Or/a
%108~IccI t088 C3 1088 I Iger E3 1088 CI 1080 IoI3)goo 18 12 10 VEGETATION COPPER (mlgrograma/gram) srcmrra Ioorcrslrl W 108a E3 1088 1088 EB)ocr E3 t088 C3 1080 K3 1000 GOI OO2 GOS GOa GOe OOS GOr GOS SOI SO2 SOS SOa SOa SOe SOT STATION GO1 GO2 GO3 Goa Goe Goe Gor GO8 Sol SO2 SO3 Soa Sos SOS Sor STATION F)gure S-21 Copper Concentrat)ons (ug/g)in~hl+~~1)and~rn~~~r~for 1980 Through 1990


VEGETITIOII COPPER (mrareorama/Oram) 30 Astern/ala rrrderrrera
5.5                           D   V 5.5.1 e
%1080 E3 losl CD 10S2 KI 1083 vEGETaTIOII COPPER (mlaroor~maloram)10 PrNaer~rrIderrtele W 1080 E9 los(CD los2 EiB 1083 20 18 10 G01 G02 G03 004 000 GOO G01 008 801 S02 SO3 SOI SOS SOO 801 STATION 001 002 003 GOa 008 GOS 001 008 301 802 SO3 SOa SOS SOO SO1 STATION VEGETa)ION COPPER (mlarearama/Qrarrl) 30 20 At(em/era Irrderrrata R IOSe E3 toss CD loss RES 1081 E3 1088 CD 1080 KB 1000 VEGETATIOII COPPER (mlerOOrama/Oram) 10 PrNaela trlderrtata 108~EB 1083 CD 1080 EEB 1081 H 1088~1080 K3 1000 10 001 GO2 003 GOa GOS GOO 001 GO8 SO1 802 803 SOe SOS SOO SO1 STATION GO1 002 003 GOa 003 GOO 001 GOO SO'I SO2 SOS SOe SOS SOO 801 STATION Figure 5-22 Copper Concentration (ug/g)1n~~~(fpnf~and~~h1~r(~g for 1980 Through 1990
This study  was  implemented in january 1989 and    its intent  was to measure  the levels of  and determine  the rate of airborne salt deposition originating    from the WNP-2 cooling tower steam condensate plume. The WNP-2 heat rejection system consists of a steam condenser, six mechanical draft cooling towers and the interconnecting piping. Operation of the cooling towers results in the emission of droplets of the circulating cooling water. These droplets are referred to  as  drift.
'o VEGET4TIO/I COPPEA (mlC<OO<4ml/0<4m) 18 18 I~Slly<t<(rlvcl or/tool<<tot<<
The  differentiation  between  drift and the  visible steam plume condensate  is important. The  drift droplets  are produced mechanically within the towers whereas the visible plume condensate droplets are created by the cooling of the saturated tower exhaust air. The drift droplets contain similar,          if not identical, concentrations of chemicals as the circulating cooling tower water. Depending upon the chemicals present in the circulating water, the drift may have an effect on the environment. In order to assess environmental impact,  it  is important that the amount of drift and its resulting distribu-tions be determined. (Laulainen, et al)
1080 EB IQOI CD loa2 IZZ!1083 VEGET4(<O<t COP/'EA (mlC<OQ<4mo/0<4m) 10 PO4 444dOC<gt/
This section reports the results of a year-long study designed -to verify the predicted areas of maximum and minimum deposition. This program was performed to comply with EFSEC Resolution No. 239, dated September 14, 1987.
%loao EB IQSI CD loe2 I 1083 12 10 001 GO2 003 GO4 GOO GOO 007 008$0'I SO2 SO3$04 SOO$08 SO)STATION Gol 002 003 G04 Goa Goo Go/008$01 so2 sos so4 soo soo soy STATION vEGETITI0/I COPPEA (ogctootomo/atom) 18 18 14 12 10 Stoymort<rm ott/44/mom W IO84 E3 loss CD 1088 E3S Tost H IOSS CD loco H IOOO VEGET4210/I COPPEA (mtc<OQ<omo/0<4m) 10 PO4 44<<dOO<gl/
5.5.2 5.5.2.1 An  isopleth graphically depicting the predicted cooling tower drift deposition patterns was devised by Battelle in 1976. This prediction was based upon preliminary estimates of operative data and site specific meteorological data regarding predominant wind directions. A cooling tower drift deposition model devised by C. L. Hosier was used for the calculations (Droppo,-et al 1976);
%108~K3 1083 CD 1088 E(3I IQS/H 1088 CD loao EB 1000 2 2 001 002 G03 G04 Goa Goo Goy 008 Sol so2$03 so4 Soa soo so/STATION GOI GO2 GO3 004 GOO GOO 007 008 SOL SO2$03 S04 SOO SOO SO)STATION Figure 5-23 Copper Concentration (ug/g)in m~iq~l<~Igg]and~P~~i for 1980 Through 1990 080 0&i D.is D.i2 038 EXT4ACTABLE CHLOHIDE (8)Bremvh toot+vm%1080 63'1081 CD 1082 EEI 1&83 XT4ACTABLE CHLO4IDE (8)E 0220 0.108 0.178 0.)&i 0.132 0.110 PA/ca tcooltctth
5-8
!Xi 1081 CD los2 I lose 02i 0.18 0.12 008 000 001 002 003 GOi 00&008 007 008$01$02 SOS SOi SO&$08$07 STATION 0.088 0.0&s 0.0t h 0 022 0.000 001 G02 003 GOi GO5 GOS 007 GOB SOl$02 SO3 SOi SO&$08 SOT STATION 080 0&i D.i8 0.~2 EXTBACTABLE CHLO4IDE (8)Btomvc tcctotvm%108~K3 108&CD 1088 K3 los7 H 1&88 CD 1080 R3 1000 0 220 0.'I 08 0.178 0.15i 0.132 0.110 X)4ACTABLE CHLO4IDE (%)PAIOm tOhcttotth W 108~E3 108&CD 1088 EB los)H 1088 CD loco 69 1000 0.2~0 088 0.18 0058 0.12 0,0th 0.08 0 022 000 001 002 003 GOi GO&008 007 008 SO)$02 SOS SOi SO&SO&SOT STATION 0000 001 002 003 GOi GO5 GO&007 GO8 SO1$02 SO3 SOi SO&$08$07 STATION Figure 5-24 Chloride Concentration (1)ln~IZ~@gag and~l~n+~for 1980 Through 1990
'1.50 1.25 EXTRACTABLE CHLORIOE (8(ArlrrrdSI4 Irldknl~14 W 1080 EB 1081 C3 1082 I 1083 02'10 0.180 0.188 0.1~7 EXTRACTABLE CHLORIOE (sl PW4414 lfldcclclc 1080 Edl 1081 C)1082 IK!1083 0.128 0.15 0.50 0.084 0.083 025 0042 0021 000 001 002 003 004 005 008 GOT 008 301 302 503 504 S05 Sos 507 STATION 0.000 GO1 002 003 004 GO5 008 GOT 008 S01 S02 303$04 Sos SOO SOT STATION 1.50 1,25 1.00 0.15 0.50 025 000 EXTRACTABLE CHLORIDE (%(Arlccdrlc lrld441414
%108~EB 1085 C3 1088 EB (081 H (588 C3 1080 IEB 1000 0.231 0.210 0.180 0.188 0.141 0.128 0.105 0084 0083 0.042 0.021 0 000 EXTRACTABLE CHLORloE (5(Pvr4514 Irldccl~I4%1884 Icd(1085 C3 1088 EEI 1081 E3 1088 C)(OSO KS 1000 GOT OO2 003 GO4 OOS GOS GOT GOS SO(SO2 SOS SO4 SO5 SOS SOT STATION 001 002 003 004 005 008 GOT 008 SO1 SO2 303 SO4 SO5 Sos SOT STATION F1gure 5-25 Ch1or)de Concentration (X)1n~r)fggf~and Pg.~1 for 1980 Through 1990 080 0.~0 EXTRACTABLE CHLORIOB (8)Pee eeedsm'dll 1080 83 Ios)CD)082 IILI 1083 1.20 1.08 008 08~2 XTRACTABLK CHLORIOE (8)Slsymevlvm el Ilselmem%)080 69 1081 CD 1082 K3 1083 O.r 2 oso 0.20 0~8 0.10 0.2~0.12 000 001 002 003 Goe 005 Gos Gor GOB 50'I 502 503 Soe Sos 508 Sor STATION 0.00 001 G02 G03 Goe God 008 Gor 008 so)so2 so3 soe sos sos sor STATION 0.50 0eo 0.30 020 EXTRACTABLE CHLORIOE (5)4de eeedeeipll
%188~E3 1088 CD 1088 EBI 1081~1088 CD)080 RS 1000 120 1.08 008 Ose 0.12 080 048 EXTRACTABLf CHLORIOE (5)Slerm(clem eltlsslmem W IOse EB 1085 CD)088 EB Iosr E3)088 CD 1888 K3 1080 0.10 0.38 02e 0.00 GOI GO2 GO3 Goe 005 008 Gor GOB 501 SO2 503 Soe 505 508 Sor STATION 0.12 001 002 GO3 Goe GOS 008 Gor 008 501 502 503 Soe 505 508 SOr STATION Figure 5-26 Chloride Concentration (X)in 52k~~r11 and/~mt'~1m q for 1980 Through 1990 0 220 0.108 0.118 0.154 Ex)4ACTABLE SULFATE (%)Phlh>>(aha((O(lo W 1080 69 108(CD 1082 K3 1083 1.20 1.08 0 as O.84 0.72 EXT4ACTABLE SULFATE (%)5loymh>>lorn 4UI54lmvm Ta so GB los(CD 1082 Im)'1083 0.110 0.088 0oaa 0044 0.022 0 000 GOT GO2 003 004 005 008 GOT 008$01 802 803 S04 805 SOS SOT STATION 080 0.48 0.38 024 0.12 000 Gol 002 003 004 005 ooa Got Gos sol 802 803 304 so5 soa sol STATION EXT((ACTABLE SULFATE (%)0220 0.108 0.118 0.1&4 Phla>>lhhOUOII4%1084 EB 1585 CD 1088 I TOST E3 1088 CD 1080 EB 1000 1.20 1.08 o.oa 084 012 EXTAACTASLE SULFATE (%)Slhymhvl>>NA oltlholmvm
%1084 K3 1085 CD loss EB 1081 EB 1088 CI 1580 K9 1800 allo oao-0 088 0.48 ooas 004~0.38 0,24 0 022 0 000 001 002 003 004 005 008 GOT 008 Sol S02 SOS 304 SO5 SO&SOT STATION 001 002 G03 004 Go&Goa Gol 008 sol 302 sos so4 so&soa 801 STATION Figure 5-27 Su1fate Concentration (1.)in~h1 x~~fili and~~I)~r~~i~im for 1980 Through 1990 XTRACTABLE SULFATE (%l E 0.320 0288 0258 0.22~Ac%mille srlennlnln
%1080 EB'1081 CD 1082 EK!1083 XTRACTABLE SULFArE (%)E 030 021 02n 021 pwhhr~lrlonnl~ln R 1080 63 1081 CD 1082 ES 1083 0.102 0.18 0-180 0.1 8 0.128 0.12 0.008 aoO 0084 008 0 032 0.03 0 000 001 002 003 GOA GOS 008 GOT 008 501 502 503 SOn 50&SOS SOT STATION 000 001 002 003 GOA GOd 008 OOT GOB S01 SO2 SO3 504 SOd SOS SOT STATION 0.320 0 288 0.288 0 224 0.102 EXTRACTABLE SULFATE (%)Allemlhrr Trlonnlnl~%Iden E3 1085 CD 1088 EEI loeT E3 1088~1080 EB 1000 0.30 02T 02n 021 0.18 EXTRACTABLE SULFATE I%1 Pnrehln trldnnlnln
&108~EB 1osd CD loee EEEI 1081 K3 1oee CD 1080 K3 Tooo 0.180 0.15 0.128 0.12 0008 000 aoe<008 0 032 003 001 G02 003 004 005 GOS OOT GOB 501 502 SOS SOA SOS SOS SOT STATION 000 001 002 003 GOi GOd GOS GOT GOB 501 SO2 SO3 SOA SOd SOO 307 STATION Figure 5-28 Sulfate Concentration (1.)in~rmi~i~ri~n and~P~rhi~rt~g for 1980 Through 1990


020 0.18 0.)a 0.14 EX1RACTABLE SVLFATE (3)PDC CC+dD&dd W 1OS0 Ed)1081 C3 1082 EZI 1083 EXTRACTABLE SVLFATE (%)0.350 0315 0 280 0 215 BrOmvC TDC(mdm L880 EB 1081 CI 1882 ER!1883 0.12 0210 0.10 0.1)5 008 0.140 0.08 0.105 0 ac 0 010 0.02 0 035 0.00 001 002 003 Goi 005 Goa Gol 008 501 302 303 soi 305 soa sol STATION 0.000 001 002 003 Goc 005 Goa Gol Gos So'1 SO2 303 Soc Soe Soa Sol STATION X TRACTABLE SVLFATE (8)E 020 0.18 0.18 0.14 0.12 0,10 0.0a 0.08 RDC CCmFDmda%108~EB 1085 C3)osa I)eel H 108S u CD)580 IcxS)ooo 0.350 0.315 02eo 0.2ie 0210 0.1)5 0.1~0 EXTRACTABLE SVLFATE (8)Brymvc Tccavvm%108~E3)585)oea EB 10Sl EB)oes C)Toeo IEB 1000 00c 002 0.00 001 002 003 Goi 005 Goa Gol Gos SO1 SO2 303 Soc Soe Soa Sol STATION 0 0)0 0 035 0 000 001 002 003 Goc GOS Goa Gol GOS SO1 SO2 SO3 304 SO5 Soa Sol STATION Figure 5-29 Sulfate Concentration 0)ln~P~ggrEtil and gr~~~for 1980 Through 1990 EXTRACTABLE CHLORIDE (%)1.0 0.3&POSA E4I SATE CD SIAL EB PHLO E3 PUTA<<I AATA 020 O.la EXTRACTABLE SULFATE (%)0 POSA 63 SATE CD SIAL K3 PHLO E3 PUTA<<)AATA 03 0.10 0.4 ooa 0.0 Go1 Go2 Gos Go4 Goa Goo GoT Gos so1 so2 sos 304 soa soo soT STATION 0.00 001 002 003 004 Goa 003 007 GOS Sol S02 S03 304 Soa Sos SOT STATION VEGETATION COPPER MICROGRAMS/GRAM 12 10~POSA KB SATE CD SIAL EB PHLO<<I PUTA<<I AATA 001 002 G03 004 Goa God Gol Gos SOI S02 S03 S04 Soa Sos SOT STATION Figure 5-30 Total Vegetation Copper, Chloride and Sulfate for 1990 NW 1 10 100 NE I 200 300 (200 i 100 025 m).10 100 200 300 400 SW 300 200 100 10 SE figure 5-31 Predicted Salt Deposition Patterns Out to 0.5 Nile (0.8 km)(lb/acre/yr) 5-65 04 Oe 1.0 0.8 1.6 0.8 0.8 1.0 I I I'" I 1..1.O I o.s 0,6 I o.e 0.8 1.0 1.2 1.4'.6 I 1S 1.8 ml.o.4 NE 58 l 6.9 ml 5.0 ml.4.4 ml.3.6 mi.SW 1.0 1.0 1.2 SE 910370.2 Figure 5-32 Predicted Salt Deposition Patterns Out to 6.9 M11e (11.1 km)(1b/acre/yr) 5"66 Pg~o 4rp 0 CO CS I I lrl 0 8).///T.rs DOE)JAN: GRAVEL PIT r3$T.r8 0 rssT.r2 POWER UNE--WYE BARACADE//~/v+/@+/~O/'//rr rr rr PC Pe OO ACCESS RD.FFTF ST.2 ST.r r3~(BURIAL~GROUND r N rr r rrr rr r+sT.12 ST.rr sT.ro rs.w cc~ASHE SUBSTATION
The  resulting prediction of deposition patterns, as published by Battelle, is presented in figures 5-31 and 5-32. As shown in these figures, the predicted maximums of drift deposition lie in a northwesterly direction and a nearly south-southwesterly direction. These areas of predicted maximums were later revised by the Supply System. The final orientation was chosen in a north-westerly and a nearly south-southeasterly direction. The sampling stations were chosen to lie along a northwest radial transect and an approximately C
@ST 8/OO/~AA'T.7$O~/PSF I3)0+ST.5 4 e~O OO A O~~+(r)~V SST.2 55 41~4'D SCALE (MILES)1 1.5 5.5 Figure 5-33 Location Map of Cooling Tower Drift Monitoring Sites 880881 MARCH 1988 5-67
south-southeast radial transect.
Sixteen sample locations were initially included in this study. A map of these locations is shown in Figure 5-33. Directions and approximate distances from the center of the cooling towers are listed in Table 5-12 for each sampling station. The sixteen locations included a pair of collectors located in the center of the six cooling towers and a control pair of collectors located approximately seven miles north-northwest of WNP-2 at the old Hanford townsite. The remaining fourteen pairs of collectors were placed at equi-distant intervals out from the plant, seven pairs along each transect.
Preliminary sampling was initiated in January 1989 and actual data collection began in April 1989. A separate program involving the determination of drift deposition rates in the transformer yards surrounding WNP-2 began sample collection in July 1989. This involved the placement of an additional eight pairs of collectors, five pairs in a transformer yard 0.25 miles north, one pair in a transformer yard 0.5 miles north, one pair in a transformer yard 0.5 miles east-southeast of the WNP-2 cooling towers ., While the information was intended for another purpose, the sampling was performed in the same manner as the original sixteen samplers and the results provide additional data for drift deposition characterization. It should be noted, however, that the transformer yard sampling coincided with only nine of the twelve months of sampling for the original sixteen sites.
5.5.2.2 Data gathered  for this study involved surface deposition  measurements. These measurements  were used  to determine bulk mineral mass deposition rates.
5-9


Collector Vessel 18" High 6" Diameter<<g+,-~?<18" 0 0 0 Cl O O O'U 0 Q CO C9 co<'oiing i ower Coiiecior'Vesseis'" 890317 Figure 5-34 Cooling Tower Drift Co11ection Vesse1 5-68 NW 11.2%NNW 9.8%N 9.1%NNE 5.9%WNW 6 5%NE2 9%W 4.2%ENE 0.7%E 0.5%ESE 0 9%WSW 4.7%SE 2.3%SW 75%SSE 9.1%SSW 11 4'/Figure 5-35 9102014 S 13.4%Cumulative Wind Rose April 1989 through March 1990 WNP-2 Meterological Station 33 Foot Level 5-69 NNW 9.4%NW 10.6%N 6.9%NNE 4.7%WNW 9 5%NE 3.0%W60/ENE 1.2%E 1.1%ESE 2.1%WSW 5 7%SE 4.5%SW68%SSW 8 8%SSE 9 4%S 10.9%Figure 5-36 Cumulative Hind Rose 1984 through 1989 HNP-2 Heterological Station 33 Foot Level 5-70 s
Sample  collection  was based upon  criteria set forth in the American Standard Test Method (ASTM) D1739-70  for  the collection and analysis of dust fall.
SO DEPOSITION AS A FUNCTION OF DISTANCE STATIONS t-7 50 g 40~, 30 e z20 0 a 10 0 0 0.5 1 15 2 25 DISTANCE FROM COOLING TOWERS (miles)3.5 Figure 5-37 Deposition Rate as a Function of Distance 660 N T T N RV 6.1~T The regulatory commitment for this study has been satisfied and no further studies are planned.No fish were found impinged during any of the inspec-tions and algal growth was moderate.Incidental observations will be made when maintenance inspections of the intakes are conducted.
The sample  collection vessel consisted of an open topped linear polyethylene O
6-1 7.0 T R 7.1 I D The aerial photography program began in June of 1988 to monitor the vegetation surrounding WNP-2 for impact due to cooling tower operation.
cylinder with vertical sides and a flat bottom. The cylinder was six inches in diameter and eighteen inches high. A support stand positioned the cylinder such that its bottom was eighteen inches above grade. The top of the con-tainer was three feet above grade which deviates from the ASTM recommended minimum and maximum heights of eight and fifty feet. This was to more closely monitor drift deposition at the typical height of local vegetation. A metal bird ring was positioned above the cylinder to help prevent interference from birds. The cylinder was also covered with a screen 'to prevent sample contami-nation from bird droppings and insects. Figure 5-34 illustrates a typical sample collector. A pair of collectors were placed at each sampling location.
Aerial photo-graphs taken with color infrared (CIR)film, allow large areas to be monitored and to detect signs of possible stress before it becomes visible to the human eye.In addition to examination for stress, the photographs will be com-pared with those taken in following years to look for changes in vegetation patterns and evidence of cumulative damage.This program is performed to comply with Washington State Energy Facility Site Evaluation Council (EFSEC)Resolution No.239, dated September 14, 1987.7.2 This program was planned using guidelines published in NUREG/CR-1231 (NRC, 1980).This report outlined the basic requirements for an aerial monitoring program and suggested types of film, photograph scales, frequency of photo-graph acquisition and the size of prints.Five flightlines (Figure 7.1)were planned to cover the areas of greatest deposition according to the drift model constructed by Battelle Pacific Northwest Laboratories (PNL, 1976).Two flightlines, approximately 7 miles (11.2 Km)in length, run in a general north-south direction.
Sample  collection occurred monthly (every 30 z 2 days when possible). In the laboratory, the cylinders were-thoroughly washed and rinsed, filled with four liters of deionized water and covered. They were then transported to the field  and placed  in the support stands. During the summer months, the samplers were checked periodically and additional deionized water added when necessary to insure an adequate liquid level was maintained. An antifreeze, isopropyl alcohol, was initially used during the preliminary sampling months of February and March. This was discontinued, however, due to its general ineffectiveness and to eliminate a potential source of contamination. After approximately thirty days in the field, the cylinders were covered, exchanged with clean samplers, and transported back to the laboratory. Any evidence of contamination such as insects or bird droppings was noted and recorded. At the laboratory, the total volume of water was measured; a 500 milliliter aliquot was taken for sample analysis, and the remaining sample was discarded.
These flight-lines run between the two areas of greatest deposition according to the model, The other three flightlines of approximately 5 miles (8.1 Km)in length, run in an east-west direction and were placed to cross gradients of deposition.
5.5.2,3 Sample  analysis involved determination of five inorganic constituents normally found in high concentrations in the cooling tower circulating water. These analytes included calcium, magnesium, sodium, sulfate and chloride.
The five flightlines were flown at an altitude of 1,550 feet (477m)above mean sea level.The flightline coordinates are stored in the long-range navigation (LORAN)system in the contractors airplane.This allows the same lines to be photographed in following years.7-1 The photographs were taken with Kodak-Aerochrome 2443 color infrared film in a Hasselblad ELM 70mm camera.A Planar lens with a 80mm focal length was used with a number 12 Wratten filter attached.The scale is 1:6,000 in a 70mm x 70mm format.The relatively large scale of 1:6,000 was chosen as being large enough to differentiate the types of shrubs in the areas surrounding WNP-2.The 70mm size was chosen over the larger nine inch by nine inch format for ease of handling and the storage of the nearly 300 photographs.
5-10
Color infrared (CIR)film was chosen over natural color or black and white film because the symptoms of stress on vegetation may show in the infrared wavelengths before it becomes apparent in the visible wavelengths.
 
CIR film is easier to interpret than black and white infrared because the shades of color are easier to differentiate than the subtler shades of gray in the mono-chromatic infrared.Healthy vegetation wi 11 show as a dark red or magenta color.Stressed vegetation will show lighter shades of red to white.Inter-pretation of the photographs is done on a light table and viewed with magni-fying glass or stereo microscope.
Analytical techniques utilized ion chromatography for sulfate and chloride. A Dionex Series 4000i ion chromatograph equipped with an AS4A anion separation column was used. Calcium, magnesium and sodium were analyzed using inductively-coupled plasma (ICP) atomic emission techniques. Analyses were performed on a Perkin-Elmer P40 Model ICP.
A plastic sheet is put over the photographs to protect the film and to allow areas of interest to be marked with a grease pencil Each photograph is examined and signs of stress are noted by flight-line number and frame number.The photographs are taken with an overlap of 501.to make it possible to view them in stereo if desired.The 50/overlap was maintained during the acquisition by controlling the shutter with an intervelometer.
5.5.3  Pl During the sampling period from March 22, 1989 to March 20, 1990, NNP-2 operated for a total of 6826 hours or 284.4 days. Plant operational data for each sampling period is presented in Appendix A. Circulating water flow, estimated amount of drift release per day and concentrations of the tracer ions in the circulating water are listed.
o The photographs were used in the placing of the samplers for the cooling tower drift study.The samplers were placed on portions of the two north-south flightlines.
The  plant normally operated with circulating water at approximately twelve cycles. In January 1990, however, a tube leak in a condenser was identified.
In future overflights, the stations may be used to ground truth the photographs.
As a result, the circulating water was kept at a maximum of five to six cycles until  the annual maintenance outage. This reduced the circulating water ion concentrations by more than half for the remainder of the sampling period.
Markers will be placed next to the samplers to make the stations easier to find on the photographs.
Drift estimates  were calculated using a drift rate of 0.05 percent of the circulating water 'flow. Amounts of each ionic species released per month were calculated using the average concentration for each ion during the sampling period. Until July 1989, the circulating water was analyzed daily for calcium while the remaining ion concentrations were calculated based-on the calcium concentration and established ion ratios for sodium, magnesium, chloride and sulfate to calcium. Beginning in July, the circulating water was sampled weekly and each constituent was determined by direct analysis.
The ground truthing will consist of a survey of an area or areas on a flightline and examination of the vegetation for other signs of stress.7-2 7.3 T N D The overflight was performed by the contractor, Photography Plus of Umatilla, Oregon on June 18 and the photographs received on July 6, 1990.The initial examination of the flightlines was to determine the quality of the photo-graphs, which was found to be generally good, except for a few frames that apparently had been exposed to light, These had a green tinge to them and made't impossible to determine the health of vegetation in the photographs.
5.5.4 The  detailed meteorological conditions concerning the sampling period are contained in Appendix B. These data were obtained at the Hanford Meteorological Station in the 200 Area of the Hanford Site, located approximately 25 miles northwest of Richland, Hashington. Included in the 5-11
 
appendix are maximum, minimum and mean temperatures, prevailing wind directions, average wind speed and relative percent humidity for March 1989 through March 1990. A windrose generated from the onsite WNP-2 meteorological station at the 33 foot level is featured in Figure 5-35. This represents prevailing wind directions and percentages for the sampling period of April 1989 through March 1990. The predominant wind directions were from the south blowing north (13.4 percent) and from the northwest blowing southeast (11.2 percent). This correlates fairly well with a windrose generated from cumulative WNP-2 meteorological data gathered from 1984 through 1989, shown in Figure 5-36. For this six year period, the predominant wind directions were from the south (10.9 percent) and from the northwest (10.6 percent). Although the direction frequency percentages were somewhat higher for the sampling period, the prevailing directions were the same.
5.5.5 The  monthly raw analytical results for each sample location are located in Appendix C. Presented there is the average gross deposition mass in milligrams for each ion analyzed and the standard deviation between the duplicate collectors located at each site. The average ion masses for each of the analytes were summed to give a monthly bulk deposition for each of the sixteen sampling locations, The twelve monthly depositions for each station were then totaled to give a yearly bulk deposition in milligrams. Using the diameter of the collection vessel to determine the surface area of the sampler, this mass was converted to a value in units of pounds per acre year.
The values for each station are tabulated in Table 5-13. Deposition rates were corrected for background deposition by subtracting the control site deposition rate from each drift sampler rate.
5.5.6 On  the basis of the predicted drift patterns, the greatest deposition is expected to occur adjacent to the cooling towers and to decrease as a function of distance from the towers. This is verified by the sampling program, showing a maximum deposition rate of 52 lbs/acre-year at 0.2 miles south from 5-12
 
the towers (Station 7), decreasing to a deposition rate not      significantly higher than background deposition at a distance of 3 miles.        This is graphically presented in Figure 5-37.
The model  also predicts deposition rates will be much higher during the winter months due to high humidities and lower temperatures which permit the larger diameter drift droplets to intersect the ground surface. As a result, the drift falls as wet deposition in more highly concentrated areas as opposed to undergoing evaporation and subsequently a wider dispersion.        This prediction is verified by the study. At Station 7, as an example, the drift accumulated during November, December and February accounted for almost 70 percent of the w
total drift mass deposited there during the twelve month sampling period.
Significant increases of deposition rates were also noted during these three months for Station 8, located in the center of the towers.        The drift deposited during the same three month period accounted for almost 60 percent of the total accumulated    mass.
In predicting the areas of    maximum  deposition, the maximum salt deposition will  be directly proportional to the wind'direction frequency (Droppo). From this statement  and the  site-specific  wind frequency percentages from the past six years, one would expect the maximum areas of deposition to be found to the north and southeast of the plant, correlating with the maximum wind direction frequencies of 10.9 percent from the south (drift to the north) and 10.6 percent from the northwest (drift to the southeast).      This is in direct contradiction with the isopleths showing the predicted areas. of deposition.
The figures show areas of maximum deposition to lie in a northwesterly and nearly southwesterly direction. Referencing the text of the Battelle document in which the isopleths are presented shows further contradictions between the expected areas of maximum deposition and the isopleths.        From the document, "the maximum wind direction frequency at HNP-2 was 9 percent from the south (drift to  the north). The measurement  elevation was seven meters (23 feet).
At  an  elevation of 122  meters (400 feet) at the Hanford Meteorological Station, the maximum direction frequency was 20 percent from the northwest (drift to the southeast) (Droppo). Further investigation confirmed that the isopleths, as originally presented, had been rotated a full 180', thus 5-13
 
incorrectly predicting the areas of maximum deposition. As a result, the monitoring stations, as placed for this study, are not in the expected areas of maximum deposition. This is substantiated by field data collected for the transformer yard sampling stations. At a transformer yard 0.25 miles north of the cooling towers, samplers experienced an average rate of 112 lbs/acre for a nine month period coinciding with the original sample collection. This rate is  more than two times  greater than the maximum twelve month rate determined by the samplers placed along the two radial transects. It is concluded that the isopleths, as presently drawn, do not accurately predict the areas of maximum and minimum deposition.
Since the samplers were not placed along transects    in line with the directions of maximum deposition, it is difficult to verify the predicted extent of the drift plume, or the distance at which the cooling tower drift deposition is no longer distinguishable from background drift. The isopleths predict that at approximately 0. 5 miles from the towers, drift deposition wi  1 1 diminish to a rate of lb/acre-year. The sampling at distances of approximately 0.5 miles 1
from the towers determined rates ranging from 8 to 22 lbs/acre year, significantly higher than that predicted by the model. This indicates that appreciable amounts of drift may be deposited beyond the 0.5 mile radius at higher rates than predicted.
The maximum  rates predicted by the model were 400 lbs/acre-year and 300 lbs/acre-year, 0.25 miles from the towers. These estimates are high as compared to the highest rate of deposition determined by the field sampling which was 112 lbs/acre for a nine month period, in a transformer yard 0.25 miles north of the towers. The efficiency factor for the drift collectors used has not been determined, thus    it is difficult to compare the predicted absolute rate with the experimentally determined relative rate of deposition. If an efficiency rate of 100 percent is assumed, however, the measured rates are still within the same order'f magnitude as those which were predicted. Sources of error which may have biased the experimental results low include the fact that only five constituents were analyzed to 5-14
 
determine the amount of drift deposited.        The plant also operated at reduced cycles from mid-January through the end of the sampling period which also decreased the amount of drift which was actually released to the atmosphere.
: 5. 6  BIBLI ASTM  D1739-70, Standard Method  for Collection    and Analysis of Dustfall.
Daubenmire,  R. 1968. Plant communities. Harper and Row,  New York,  NY.
Droppo, J. G., C. E. Hane and R. K. Woodruff, Atmospheric Effects of Circular
'Mechanical Draft Cooling Towers at Washington Public Power Supply System nuclear Power Plant Number Two, B2311200735, November 1976.
Environmental Protection Agency. 1983. Methods for Chemical Analysis of Water and Wastes. Environmental Monitoring and Support Laboratory, Office of Research  and Development,  Cincinnati,  OH.
Gilman, Lee B. 1989. Microwave Sample Preparation.      CEM Corporation.
Klemmedson,  J. O. and  J. G. Smith, 1964. Cheat Grass  (gag~ ~grum        L )
Bot. Rev. 30; 226-262.
Laulainen,  N. S., R. 0. Webb, K. R. Wilber, and S. L. Ulanski,
%i'd                              D          1  n                        , September, 1979,  Battelle  PNL-3083.
NUS  Corporation, Annual Report for the    PVNGS  Salt Deposition Monitoring Program January-December    1986; April  1987.
5-15
 
Table 5-1.      Vascular Plants Observed During 1990 Field Nork APIACEAE                                            Parsley Family CY.,t                    n    (Hook,) T.&G. var.
  ~~in    h~i (Nutt.) Coult    & Rose Turpentine cymopterus Large-fruit lomatium
                ~
ASTERACEAE                                          Aster Family Yarrow 6K(.kDD~ d]zazgha (Ptutt. )        T&G              Low pussy-toes
~re~m<~ ~ri
.M.RRII19&iZR  ~~i~@ Nutt.
Gl ay MQ~~ (Pall.)          Britt Big sagebrush Carey's balsamroot Gray  rabbitbrush
      ~h.                            k.) Wtt            rabbitbrush
~~ ~rf~
Ct                                (                Green
~ gl~n~
A~r    ~~
~rima~&#xb9; dub~
Hel ler (Hook.)
Scop.
(Pursh) k H&A Slender hawksbeard Bur ragweed Hhite daisy tidytips Yellow salsify Hoary Aster BORAGINACEAE                                        Borage Family
          /@~~i~          Lehm.                    Tarweed  fiddleneck
~~~ imari~ (Torr.)
RS  JU tt Greene Matted cryptantha Hinged cryptantha BRASSICACEAE                                        Mustard Family
~D[i~~i ~gita          (Halt.) Britt.              Hestern tansymustard
~D    ~vrn L.                                      Spring draba KLKSUez mvZym        (Nutt.)                        Prairie rocket
    ~~      ~i'j'~ilJgg  L.
DC.
Tumblemustard CACTACEAE                                          Cactus Family QpyrLQR                                            Starvation cactus CARYOPHYLLACEAE                                    Pink Family A~rnaQa fzZ1JQ~Qj. Dougl. var.
Ealmhmm ~tZ1lahaa L.
                                      ~~i~        Franklin's sandwort Jagged  chickweed CHENOPODIACEAE                                      Chenopod  Family RaLmla kaLi L.                                      Russian  thistle 5-16
 
Table 5-1.
mm FABACEAE                                                Pea Fami    ly
~~rQyg      ggr  ~hi i Dougl.                          Wooly-pod milk-v'etch Stalked-pod milk-vetch P ~rig, langg~l~          Pursh                          Lance-leaf scurf-pea HYDROPHYLLACEAE                                          Waterl eaf Family
~P~ll~ hm~a                                              Whi tel eaf phace1 i a HhKQlia  ~1~        Dougl  .
(Pursh) Holz.                    Threadleaf phacelia LILIACEAE                                                Lily Family
~Br ~l    ~1,~~Lii      Wats.                          Douglas'rodiaea Ga.Lardurtua  mu~rtPpm          Doug  1 .              Sego  1 i ly aulll            h) Ep                  Chocolate      lily LOASACEAE                                                Blazing-star Family
~z~li      ~~i'oug                1 .                    White-stemmed mentzelia MALVACEAE                                                Mallow Family l~~n        (Dougl.) Spach                White-stemmed globe-mallow ONAGRACEAE                                              Evening-primrose Family
~ni~        1~11~1      Lindl. var.        ~11~1        White-stemmed evening-primrose PLANTAGINACEAE                                          Plantain Family
~am POACEAE 69ZQKLrrl S
B~
~rapper F~~
KQklMrk $
GCXZSKLi
        ~~
            ~
mdaam~Lca Jacq.
            ~~vm z~i
        ]~~rig
          ~~4 hKR~~
Zm L.
(L.) Gaertn.
Walt.
Pers.
(
(RKS)
                                      .
(Pursh) Scribn.
Ricker b
                                                & Smith Indian-wheat Grass Family Crested wheatgrass Thick-spiked wheatgrass Bluebunch wheatgrass Cheatgrass Six-weeks fescue Prairie Junegrass Indian ricegrass 5-17
 
Table 5-1.
    ~g~r
~ m!~~~<
~P                  Vasey                          Sandberg's  bluegrass
~i~ni                (Nutt.)  Smith              Bottlebrush squirreltail Trin  8  Rupr.                    Needle-and-thread POLEHONIACEAE                                      Phlox Family g/]gg
~1      ~~ J<<k)6 gln~if~r      Benth.
Dougl.
Gilia Shy  gilia var. 5~gQ llama  (Hook.) Cronq.                Pink microsteris Lhhz    ~aifalia                                  Long-leaf phlox POLYGONACEAE                                      Buckwheat Family KJ~iOMIB IUvvRm Doug      1 .                    Snow buckwheat
~R      ~vm      Pursh                            Wild begonia RANUNCULACEAE                                    Buttercup Family llLLU          ttdll        Pritz. ex Walpers Larkspur ROSACEAE                                          Rose  Family EUZ.'~ XCldRQ~ (Pursh)              DC.            Antelope bitterbursh I
SANTALACEAE                                      Sandalwood  Family ggmmn~r    gpss~~ (L.)        Nutt.              Bastard toad-flax SAXIFRAGACEAE RiliR  ~age    Pursh                            Golden  current SCROPHULARIACEAE                                  Figwort Family
~Pongy      ~~i~          Doug 1 .                Sand-dune  penstemon VALERIANACEAE                                    Valerian Family Ply~<g m~~r              TLG                    Longhorn  plectritis 5-18
 
Table 5-2. Vascular Plants Observed During 1975-1990 Field Mork 199'l        ~177  ~17    ~7    ~l    ~      ~l    ~      ~4  ~l ~ ~ 199@ ~l Annual Grasses X    X      X      X      X      X    X      X      X      X    X  X X X    X Qaium    ~~@a                                    X    X      X      X      X    X  X X X    X
  ~t~ sp.
Perennial Grasses X      X    X  X X X    X
  $ ~r)~r    ~~~g                                                        X      X    X  X X X    X
      )~r  g~i                                                        X      X    X  X X X    X
  ~~i      ~ri                                                          X      X    X      X    X X    X      X      X      X    X                    X      X    X    X    X
  ~ ~db~i                                                                X      X    X    X    X
  ~    ~Lbbr,~ll                                                          X    X
  ~i.~ ~h~i~g                                                            X    X    X    X    X
  ~i                                  X      X      X                    X    X    X    X    X
  ~i    ~h~b~i
 
Table 5-2.    (Cont'd)
                          ~7 ~ ~7 ~17    ~17    ~l      ~ll ~ ~l  19914 ~ ~ ~l ~l  ~l Annual Forbs
  ~Fyg~i    ~@~i        X    X  X      X                  X X    X    X X X  X  X
        ~i  ~~Mi~        X  X X  X      X      X      X  X X    X    X X X  X  "X
  ~~i~ m~i~jii                                            X  X
  ~ggifjgg ~lg~>~1~
MatunUm    ~mama              X              X      X  X X    X    X X X  X  X, CQfU>hhk ~i                X X  X      X      X      -X  X X    X    X X X  X  X
  ~O~RjQ iii QjQf~        X  X X  X      X      X      X  X X    X    X X X  X  X
  ~b                      X  X    X      X      X      X  X X    X    X X X  X  X
  /~i'
        ~v X  X X  X      X X  X X    X    X X X  X  X Gilia ~~Qara                                                  X          X X X  X  X Glib amatol                        l X X    X,X    X X  X  X
            ~mb ~ll  gg X  X    X      X      X      X  X X    X    X X X  X  X
  ~pJ~        ~gc~ii X X    X    X X    X  X
  /~~i      ~bi  ~gJ ii                                    X X    X    X X    X  X
  ~i~~ ~chili            X  X X  X      X      X      X  X X    X    X X    X  X
  ~rb ~+ g~if ~rni X  X X
                                                                  '      X X    X  X phd ~i ] iip~i                                  X      X  X  X  X    X X    X  X P~h~ sp.
Pll'~ ~~i              X  X    X      X        X      X  X  X  X    X X  X  X  X P~1~I~i    6hKDU~r                                            X        X X  X  X  X
 
Table 5-2.    (Cont'd)
                                  ~7 ~17 l99l. ~l    ~17    ~l      ~l  ~ ~l ~4 ~ ~1  ~17 ~ lqql.
  /~led @~~i' RaLi                  X  X  X    X    X      X      X  X X  X  X X  X  X X m~bri n}  ~li~imgg        X  X  X    X    X      X      X  X X  X  X  X  X  X X
  ~rgb@~ ~bi                                    X                    X  X X  X  X  X  X  X X Perennial Forbs
  ~A~ill  'g  gjl'~fili    m      X  X  X                  X      X  X X  X  X  X  X  X X
  ~n~n~ di ash                                                X      X  X X  X  X  X  X  X X iLrra~i      ~fr  kl 'ni  var.
  ~fr nkli    'i                                              X      X  X X  X  X  X  X  X X X  X  X  X  X  X X Q~~~l          ~l]1ii
  ~r~l<<k ~~i                      X  X                        X      X  X  X X  X  X  X  X X X      X  X  X X  X  X  X  X X
  ~A~~l            sp.
  ~ln chir@ mmuna                  X  X          X    X        X      X  X  X X  X  X  X  X X
  ~ri ER Q~di                      X  X          X    X        X      X  X  X X  X  X  X  X X Gem~i        he~i" Qll/Hark mBJJKREElk Q}m~n~ ~ba~ll                          X      X    X        X      X  X  X X  X  X  X  X  X X  X      X    X        X      X  X  X X  X  X X  X  X X      X  X  X    X  X
 
Table 5-2.  (Cont'd)
                            ~17 ~17 ~177 ~7    ~17    ~      ~l  ~ ~l ~ ~l 199'17 ~l ~l QES~        ~RbhiQli rUlk                            X      X          X  X  X  X  X
  ~jiig        sp.                                                        X  X  X  X  X gr'LQRKQQ  ~vugg~
Lrr,i>> via muLm                                                    X  X X  X  X  X  X X      X      X  X X  X X  X  X  X  X
  ~n~ig      sp.
ggggfJ>~    ~lli g        X  X  X    X    X      X      X  X X  X X  X  X  X  X mgn  ~mi~                                            X  X X  X X  X  X  X  X JP~~
  ~      ~m~f1 sp.
Ra~rl ~la3ata X
X X
X X
X X
X X
X X      X X
X X
X X
X X
X X
X X
X X
X X
X X
X            X      X  X X  X X  X  X  X  X
  $ ph<~r'~      m~~                                              X X    X  X =
X  X  X Shrubs, subshrubs,    cacti X  X        X    X      X      X          X  X  X  X  X X  X        X    X      X      X          X  X  X  X  X X  X                      X      X          X  X  X  X  X X  X        X    X      X      X          X  X  X  X  X pJJp~
X      X          X  X  X  X  X PpJ>~i                    X  X        X    X      X      X          X  X  X  X  X X  X  X  X  X
 
Table 5-3        Herbaceous    Cover    for Fifteen        Sampling Stations 1990 AVG. Gal-G04 Annual Grasses AVERAGE RLSCZ AVERAGE M5 AVERAGE BLED Bronus tectorun  18.60  7.75    61.55 13. 65 22.)5  35.30  35.55 19. 75  36.80  16.80  17.05    30.40  53.35  12.90  5.45      25.80  25.39  30. 88  28.44 Festuca octoflora    0.00  0.00    0.00  0.00  1.65    0.15  0.00  0.00    0.00    0.00  0.00    2.00  0.00  0.00  0.00      0.25  0.00    0. 40  0.22 Total Annual Grass Cover    )8.60  7.75    61.55 13.65  23.80  35.45  35.55 19.75  36.80  16. 80 17.05    32.40  53.35  12.90  5.45      26.05  25.39  31.28  28.66 Perennial Grasses Agropyron splcatuu    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    2.90  0.00    0.00  0.05  2.65  0.00      0.37  0.00    0.59    0.33 Oryzop>s hynenoides    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0 F 00  0.00    2.30  0.00    1.25  0.00  0.00  a.'ao      0.24  0.00    0.71    0.39 Poa  sandbergii 18.70  0 F 00  0.00 13.15  11.85    1.50  9.30 11.65    3.30    5.15  18.35    11.45  0.00  15.7$  17.55      9.18  7.96    7.65    7.79 Stipa coaata  0.00  0.00    0.00 16.85  0.05    9.20  0.00  0.45    0.00    2.50  0.00    0.00  0.00  0.00  0.00      1.94  4.21    0.50    2.15 Total Perennial    Grass Cover 18.70  0.00    0.00 30.00  11.90  10.70  9.30 12.10    3.30  12. 85 18.35    12.70  0.05  18.40  17.55      11.73  12.18    9.45  10.66 Annual forbs Ansinckia lycopsoides    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.30    0.05  0.00    0.00  0.00  0.05  0.00      0.03  0.00    0.07    0.04 Chenopod)un    Ieptophyllun  0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.00  0.00    0.00  0.00  0.00  0.00      0.00  0 00 F    0.00    0.00 Cryptantha circunscissa    0.00  0 F 00  0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.05  0.00    0.00  0.00  0.00  0.00      0.00  0 F 00  0.01    0.01 Crypthantha pterocarya    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.00  0.00    0.00  0.00  o.'ao  0.00      0.00  a.'00  0.'aa  O.aa Oescurainsa pinnate    0.00  0.00    0.00  0.15  0.00    0.00  0.00  0.00    0.00    0.05  0.00    0.00  0.00  0.05  0.00      0.02  0.04    0.01    0.02 Oraba verna  3.20  1.25    1.75  1.70  1.20    1.70  1.70  2.15    3.00    0.15  2.60    1.10  1.75  0.00  0.00      1.55  I 98
                                                                                                                                                              ~    I. 72  1.83 Franserfa acanthacarpa    0.00  D,DD    ).15  0.00  D.OD    0.30  0.00  0.00    0.00    0.25  0.00    0.00  0.00  0.00  0.00      0.11  0.29    0.05    0.16 Gilia sinuata  0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.00  0.00    0.00  0.00  0.00  0.00      0.00  0.00    0.00    0.00 Holosteun unbellatun    2.95  0.40    9.35  0.30  1.15    3.65  4.90  2.'IS  1.25    0.95  2.05    0.45  6.05  0.00  0.00      2.37  3.25    2.15    2.64 tayia glandulosa    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.00  0.00    0.00  0.00  0.00  0.00      0.00  0.00    0.00    0.00 Hentzelia albicaulis    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.35  0.00    0.00  0.00  0.00  0.00      0.02  0.00    0 '7    0.04 Hicrosterls gracilis    0.35  0.60    2.65  0.00  0.30    1.05  0.60  1.75    3 ~ 10  0.10  1.00    1.80  0.65 o'.ao 0.00  0.00      0.93  0.90    I. 33  1.14 Phacelia linearis    0.00  0 F 00  0.00  0.00  0.00    0.00  0.55  0.00    0.00    0.55  0.00    0.00          0.00  0.00      0.07  0.00    0. 11  0.06 Plantago pategonica    1. 15  0.10    0.00  1.20  0.00    0.00  0.00  0.40    0.00    0.00  2.45    0.00  0.45  0.00  0.00      0.38  0.61    0.58    0.59 Sa'Isola kali  o.'ao  0.00    0.00  0.00  0.05    0.10  0.00  0.00    0 F 00  0.10  0.00    O. IS  0.00  o.'ao  0.00      0.03  0.00    0.05    0.03 S)syubriuu a) ties lnun  0.10  0.00    0.80  0.00  0.05    0.10  1.15  0.55    0.30    0.00  0.05    1.05  0.00  0.00  0.00      0.28  0.23    0.28    0.26 Tragopogon dubius    0.00  o'.oa    0.00  0.00  0.00    0.00  0.05  0.00    0.00    0.00  0.00    0.00  0.00  0.00  0.00      0.00  0.00    0.00    0.00 Total Annual forb Cover    7.75  2 '5    15.70  3.35  2.75    6.90  8.95  7.00    7.95    2.60  8. 15    4.55  8.90  0. 10  0 ~ aa    5.80  7.29    6.43    6.81 Perennial forbs Achil )ca nil 1efol iun  0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    3.10  0.05    0.00  0.00  0.00  0.00      0.21  0.00    0.63    0.35 Astragulus purshli    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    o.oo    0.00  0.00    0.00  0.00  0.00  0.00      0.00  0.00    0.00    0.00 Aster canescens    0.00  0 F 00  0.00  0.00  0.45    0.05  0.00  0.10    0.10    0.10  0.00    0.05  0.05  0.00  0.00      0.06  0.00    0.06    0.03 Astragalus sclerocarpus    0.00  0.00    0.00  0.00  0.00    0.05  0.00  0.00    0.00    0.00  0.'ao    0.00  0.00  0.00  o.oa      0.00  0.00    0.00    0.00 Ba)sazorhiza careyana    0.00  0.00    0.00  0.00  2.45    0.60  0.00  0.00    0.00    0.00  0.30    3.85  0.00  0.00  0.00      0.48  0.00    0.83    0.46 Brodiaea douglasii    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.00  0.00    0.00  0.00  0.00  0.00      0.00  0.00    0.00    0.00 Conandra unbel)ata    0,00  o.'ao    O.DO  0.00  0.30    0.00  0.00  0.00    0.00    0.00  0.00    0.00  0.00  0.00  0.00      0.02  0.00    0.00    0.00 Crepis atrabarba    0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.00  0.95    o.'aa  0.00  0.00  0.00      0.06  0.00    O.i9    0.11 Cynopterus terebinthinus      0.00  0.00    0.00  0.00  0.00    6.25  0.00  0.00    0.00    6.35  0.00    0.00  0.00  0.00  0.00      0.84  0.00    1.27    0.71 Oenothera pallida    0.00  0.00    0.05  0. 10  0.00    1.30  0.00  0.00    0.00    0.00  0.00    0.00  0.00  0.00  0.00      0. 10  0.04    0.00    0.02 Phlox longifolia    0.00  0 05 F      0.00  1. 10  0.75    0.30  0.05  0. 10  D.30    O.DD  D.45    O.OD  0.00  0.00  0.00  ~
0.21  0.29    0.'IS  0.21 Runex venosus  0.00  0.00    0.00  0.00  0.00    0.00  0.00  0.00    0.00    0.00  0.00    0.00  0.00  0.00  0.00      O.ao  0 00 F    0.00    0.00 Total Perennial Forb Cover      0.00  0 F 05  0.05  1.20  3.95    8.55  0.05  0.20    0.40    9.55  1.75    3.90  0.05  0.00  0 F 00    1.98  0.33    3. 13  1.88 Total Herbaceous Cover    45. 05 10 ~ 'IS 77.30 48.20          61. 60 53.85 39. OS  48.45  41. 80 45.30    53.55  62.35  31. 40 23.00      45.56  45. 18  50 ~ 29 48.02
 
Table 5-4    HeaFI Herbaceous      Cover    for. 1975 through 1990 X                                        X G01-4, CLASS        501    502    503    504    505 501-5 506  507    XS      GO I    G02      G03    G04  GO 1-4 GOS G06 G07 GOB        XG      XSG    501-5 AG    1975  49.90  35.30  43.80                                  43.00  43.90    43.00                                            43.45    43.18      43. 18 PG    1975  0.60 14.60 2.00 11.70 4.50 11.70 2.37    3 '0    5.50                                              4.60    3.26      3.26 AF    1975                                                      12.67  29.50    13.00                                            21.25    16.10      16. 10 PF    1975  4.30  0.90    1.80                                  2.33    1.50    2.10                                              I. 80    Z. 12      2. 12 ALL  1975  69.40  49.90  61.80                                  60.37  78.60    63.60                                            71.10    64.66      64.66 AG    1976  50.70  40.90  34.30                                  41.97  7'1.20    51. 60                                          61. 40  49.74      49.74 PG    1976  0.40  10.50  10.30                                  7.07    4.40    3. IO                                            3.75      5.74      5.74 AF    1976  5.50  5.30    7.20                                  6.00  11.90    8.50                                            10.20      7.68      7.68 PF    1976  0.00  0.50    0.20                                  0.23    0.00    0.20                                            0.10      0.18      0. 18 ALL  1976  56.60  57.20  52.00                                  55.27  87.50    63. 40                                          75.45    63.34      63.34 AG    1977  1.35  0.65    1.90                                  1.30    5.20    1.45                                            3.33      2.11      2. 11 PG    1977  0.35  11.30  8.28                                  6.64    3.25    2.90                                            3.08      5.22      5.22 AF    1977  0.25  0.05  0.90                                  0.40    2.40    9.35                                            5.88      2.59      2.59 PF    1977  0.55  0.60    1.47.                                0.86    0.05    6.30                                            3.18      1.78      1.78 ALL  1977  2.50  12.60  12.50                                  9.20  10.90    20.00                                            15.45    11.70      11.70 AG    1978  51.00  67.00  51.00                                  56.33  68.00    42.00                                          55.00    55.80      55.80 PG AF 1978 1978 3.00 38.00 18.00 10.00 11.00 33.00 10.67 27.00 8.00 23.00 7.00 25.00 7.50 24.00 9.40 25.80 9 '0 25.80 PF    1978  8.00  0.00  5.00                                  4.33    2.00    3.00                                            2.50    3.60      3.60 ALL  1978 100.00  95.00 100.00                                  98.33 101.00    77.00                                          89.00    94.60      94.60 AG    1979  25.00  29.00  9.00                                  21.00  31.00    10.00                                          20.50    20.80      20.80 PG    1979  1.00  18.00  '11.00                                10.00    7.00    5.00                                            6.00    8.40      8.40 AF    1979  2.00  4.00  10.00                                  5.33  43.00    33.00                                          38.00    18.40      18. 40 PF    1979  11.00  0.00  3.00                                  4.67    0.00    7.00                                            3.50    4.20      4.20 ALL  1979  39.00  51.00  33.00                                  41.00  81.00    55.00                                          68.00    51.80      51. 80 AG    1980  50. 40 51.80  24.30  56.20  56.40  47.82            47.82  64.30    77.80    73.80  12.30  57.05                  57.05*  51.92      51; 92 PG    1980  1.00  7.20  23.30  10.90    0.10  8.50            8.50  28.30    64.00    0.10  26.60  29.75                  29.75    17.94      17.94 AF    1980  7.60  4.20  22.50    3.40  14.10  10.36            10.36    7.30    5.00  28. 70    4.90  '11.48                  11.48    10.86      10.86 PF    1980  2.20  2.20    4.70  4.60    1.80  3.10            3.10    0.40    0.00    0.00    4.60    1.25                    1.25    2.28      2.28 ALL  1980  61.20  65.40  74.80  75.10  72.40  69.78            69.78 '100.30  146.80  102.60    48.40  99.53                  99.53    83.00      83.00 AG    1981  74.80  54.60  66.50  49.80  76.20  64.38            64.38  77.40    84.00    ss.40  48.90  74.68                  74.68    68.96      68.96 PG    1981  0. 10  4.70  14.30    5.80    0.00  4.98            4.98  19.60    25.90    0.00  36.70  20.55                  20.55    I '1.90    11.90 AF    1981  5.30  3.50  'I8.20  1.20  12.50  8.14            8.14  15.90    11.90    17.50    5.90  12.80                  12.80    10.21      10. 21 PF    1981  0.00  3.20    0.70  4.90    0.50  1.86            1.86    0.20    0.00    0.00    1.90    0.53                  0.53      1.27      1.27 ALL  1981  80.20  66.00  99.70  61.70  89.20  79.36            79.36 113.10    121.80  105.90    93.40 108.55                  108.55    92.33      92.33 AG    1982  51.50  25.80  36.60  32.70  20.00  33.32            33.32  42.20    45.50    51.00  22.90  40.40                  40.40    36.47      36.47 PG    1982  0.40  6.40  17.90    4.30    0.80  5.96            5.96  I'1.20  11.60    0.10  31.30  13.55                  13.55    9.33      9.33 AF    1982  4.60  4.20    7.50  1.60  17.30  7.04            7.04    9.70    4.60    4.60    4.10    5.75                  5.75    6.47      6.47 PF    1982  0.20  4.30    0.70  6.20    1.00  2.48            2.48    0.30    0.00      '1.30  3.80    1.35                    1.35    1.98      1.98 ALL  1982  56.70  40.70  62.70  44.80  39.10  48.80            48.80  63.40    61.70    57.00  62.10  6'I.05                  61.05    54.24      54.24
 
Table 5-4        Mean Herbaceous      Cover    for    1975 through 1990 (continued)
X                                                  Ga)-4  ~
CLASS YEAR      Sal    502    503    504    505  501-5    506  507      XS          G02              604  Gal-5            G06  607    Gaa              XSG  50)-5 AG    1983  53.80    37.60  33.65  36.75  3'I. 85 38.73              38.73    49.50  39.55    62.75  17.55  42.34                                42.34  40.33    40.33 PG    1983    2. IS    7.70  14.45    6.40    1.29  6.40                6.40    2.10  15.75      0.00  25.50  10.84                                10.84    8.37    8.37 AF    1983    8.20    7.85  12.55    3.45  22.35  10.88              10.88    18.70  8.85      8.65  6.65  10.71                                10.71  10.81    10.8)
PF    1983    0.70    3. 10  I. 05  4.40    1.95  2.24                2.24    0.65  0.05      2.10  4.00    1.70                                  1.70    2.00    2.00 ALL    1983  64.85    56.25  61.70  51.00  57.44  58.25              58.25    70.95  64.20    73.50  53.70  65.59                                65.59  61.51    61. 5)
AG    1984  41.50    32.75  39.35  36.30  36.50  37.28              37.28    60. 85  71.30    60. 85  9.60  50.65                                50.65  43.22    43.22 PG    1984    1.85    8.80  11.55    8.55  0.40    6.23                6.23    1.20  4.45            25.00  10.22                                10.22    6.87    7.73 AF    1984  12.35      8.10  11.10    4.00  13.40    9.79                9.79  20.65    9.70    19.45    7.95  14.44                                14.44  11.86    11.86 PF    1984    0.30    4.00  0.75    6.55  0.65    2.45                2.45    0.70  0.20      I.')a  1.25    0.81                                0.81    1.72    1.72 ALL    1984  56.00    53.65  62.75  55.40  50.95  55.75              55.75    83.40  85.65    81. 40  43.80  73.56                                73.56  63.67    63.67 AG    1985    2.10    2. 15 14.60    4.95  27.05  10.17              10.)7      8. 00  8.10    18.30  7.25  'I0.41                                10.41  10.28    10.28 PG    1985    1.05    4.70  17.85    2.40    I. 85  5.57                5.57    9.20  )7.95      0.00  13.90  10. 26                                10.26    7. 66    7.66 AF    1985    0.70    1.35  9.40    2.30  4.75    3.70                3.70  18.20    8.15      7.55  3.05    9.24                                9.24    6. 16    6. 16 PF    1985    0.00    1.35  1.15    3.00  0.25    1.15                I. IS    0.80  0. 10    2.35  0.90    I. 04                                '1.04    I. 10    I. 10 ALL    1985    3.85    9.55  43.00  12.65  33.90  20.59              20.59    36.20  34.30    28.20  25.10  30.95                                30.95  25. 19  25. 19 I AG    1986  17. 45    1.95  7.20  11.45  13.05  10.22              10.22      9.40  4.65    13. 25  7.35    8.66                                8.66    9.53    9.53 CA PG    1986    2.20    10.75  17.25    9.85  1.30    8.27                8.27  19.85  38.65      0.00  26.00  21. 13                              21. 13  13.98    13.98 1986  25.40    )6.65  38. Ia 10.25  16.70  21. 42            21. 42  27.65  34.15    25.45    8.70  23.99                                23.99  22.56    22.56 PF    1986    1.15    5.35  2.30    9.15  1.25    3.84                3.84    '1.80  1.95      0.05  2.55    1.59                                1.59    2.84    2.84 ALL  1986  46.20    34.70  64.85  40.'70  32.30  43.75              43.75    58.70  79.40    38.75  44.60  55.36                                55.36  48.91    48.91 AG    1987  28.90    9.95    7.80  19.05  33.40  19.82              19. 82  23.85    9.45    51.65    4.65  22. 40                              22.40  20.97    20.97 PG    1987    3.60    21.90  42.65  19.55    2.30  18.00              'I8.00  32.45  58.79      0.05  45.95  34.31                                34.31  25.25    25.25 AF    1987  12.56      8.50  10.80    6.55  1).40    9.96                9.96  'I0.30  11.32    14.00    3.25  9.72                                  9.72    9.85    9.85 PF    1987    5.00    6.00    2.00  10.40    1.75    5.03                5.03    0.90  ).90      0.15  1. 55  ).13                                I. 13  3.29    3.29 ALL  1987  50.06    46.35  63.25  55.55  48'.85  52.81              52.8)    67.50  81. 46  6S.'OS  55.40  67.55                                67.55  59.36    59.36 AG    'I 988 13. 80    5.05  8.10  13.80  10.15  10.18  10.40 12.24 10.5'I  22.95  10. 'Ia  16.75    4. 80 13. 65  11.95  19.20  15.85  10.40  14.00  12.32    11.72 PG    1988    'I. 75  8. 40  11.95  9.40    3.35    6.97  16.85 17.50  9 ~ 89 17.85  2).70      0.05  30.20  17.45    F 50 12.05  10.45  14.30  14. 51  12.34    11.63 AF    1988    6.08      5.25  3.60  3.10    4.00    4.41  0.00  0.35  3.20    6.30  16. IS    7.55  1.80    7.95    1.20  1.45  12. 35  6. 12  6. 61  5. 16    5.98 PF    1988  I'I.SS  15.75    2.10    4.85  3.25    7.50  0.10  0.00  5.37    0.20  2.00      0.00  4.40    1. 65 15.25  8.70  2.45    4.34    4.34    4.79    4.90 ALL  1988  33.18    34.45  25.75  31. IS  20.75  29.06  27.35 30.09 28.96    47.30  49.95    24.35  41.20  40.70  37.90  41 '0  41.10  32.52  39.47  34.60    34.23 AG    1989  21. 85  12.50  12.45  '10.25  32.90  )7.99  15.00 47.65 21.80    22.50  13.20    65.85    3.05  26.15  22.35  35.10  38 F 05 12.05  26.52  24.05    2).62 PG    1989    8.30    29.55  64.00  )3.00    1.25  23.22  30.35 37.50 26.28    60.40  59.60      0.05  49.55  42.40  36.75  16.20  32.05  48.95  37.94  32.54    3'I.74 AF    1989  12.50    6.95  13.05  6.45  11.10  10.01  0.85  F 15  8.01  12.85    5.90    42.20    2.85  15.95    8.85  )3.55  13.05  13.95  14. 15  I '1.48  12. 65 PF    1989  4.45    '14.50  4.40  8.20    0.55    6.42  0.10  0.00  4.60    3.85  1. 10    0.05  3.00    2.00    6.45 10.40  12.9a  10.60    6.04  5.23      4. 46 ALL  1989  47.)0    63.50  93.90  37.90  45.80  57.64  46.30 90.30 60.69    99.60  79.80  108.15  58.45  86.50  74.40  75.25  96.05  85.55  84.66  73.31    70.47 AG    1990  36.80    16.80  17.50  32. 40  53.35  31.37  12.90  5.45 25.03    18.60    7.75    61.55  13. 65 25.39  23.80  35.45  35.55  19.75  27.01  26.06    28.71 PG    1990    3.30    12.85  18.35  '12.70  0.05    9.45  18.40 )7.55 11.89    18.70    0.00      0.00  30.00  12. 18  I'1.90 10.70  9.30  12.'Ia I I. 59 ) '1.73  Ia. 66 AF    1990  7.95      2.60  8.15    4.55  8.90    6.43  0.10  0.00  4.6'I    7.75  2.35    15.70    3.35    7.29    2.75  6.90  8.95    7.00  6.84    5.80      6.81 PF ALL 1990 1990 0.40 48.45 9.55 41.80 1.75 45.30 3.90 53.55 0.05 62.35 3.13 50.29 0.00 31.40 0.00  2.24    0.00  0.05      0.05  1.20    0.33    3.95  8.55  0.05    0.20    1.76    I. 98    l. 88 23.00 43.69    45.05  10.)5    77.30  48.20  45.18  42.40  61.60  53.85  39.05  47.20  45.56    48. 02
 
Table 5-5          Mean Frequency    Values (5) by Species      of Each Sampling    Station -  1990 Gol  G02 G03 004  G05  G06 G07  G08  Sol S02  S03 S04 S05 S06 S07 Annual Grasses Bromus tectorum    100  100  98  96    94  100  98  .96    98  76    94  98 100  72  98 Festuca octoflora                        36  60                          40 Perennial Grasses Agropyron spicatum                                                20            2  10 Oryzopis hymenoides                                                6        2 Poa sandbergii    94  100      96    68  10  62  70    18  32    98  56      60  96 St,ipa comata                72    2  24          8      12 Annual Forbs Amsinckia lycopsoides                                              2  2 Chenopodium Leptophyl1um Cryptantha circumscissa Cryptantha pterocarya Descurainia pinnata                    6                            2 Draba verna    78  50  60  48    48  68  58    86  90  6    84  44  60 Franseria acanthacarpa                8            12                10 Gilia sinuata Holosteum umbellatum      68  16  96  12  26  86  76    66  40  28    52  18  92 Layia glandulosa Mentzelia albicaulis                                                  4 Microsteris gracilis      14  24  86        12  42  24    50  84  4    40  72  26 Phacelia linearls                                22            22 Plantago pategonica    46    4      38                  16            78      18 Salsola kali                        2    4                  4        6 Sisymbrium altissimum      4                  2    4  46    22  12        2  42 Tragopogon dubius                                  2 Perennial Forbs Achilisa mi1 1 sf ol ium                                            10    2 Aster canescens                        18    2
                                                                  '
4  4        2  2 Astragulus purshii Ast,ragulus sclerocarpus                              2 Balsamorhiza careyana                          4    4                        2  12 Brodiaea douglasii Comandra umbellata Crepls atrabarba Cynopterus tereblnthinus                              20 Oenothera pallida              2    4 Phlox longifolia                  16    2    2  2      4  2 Rumex venosus Total Species per Site      7    7  7    9  13  16  9    10  9  17    11  11  7  5  2 5"26
 
Table 5-6        Mean        Terrestrial      Phytomass      for  1990 MT./                                                      MT./
OATK    SITE  PLOT  Mf. (g)  SQ.HETER            DATE        SITE  PLOT    MT. (gl 59.HETER 05/18  G01    4-8      0.3          2.5        05/29      $ 01    41-6        4,3          42.8 05/18  G01    29-4      0.7          7'          05/29      $ 01    12-3        2.9          29.0 05/18  G01      12-3    0.5          5.4        05/29        $ 01    44          2.4          23.6 05/18  G01      18-5      2.2      22.3          05/29      $ 01    29-4        2.7          27.4 05/18  G01    41-6      3.0        30.4          05/29      $ 01    18-5        4.1          41.2 AVG    1.4        13.6                                AVG      3.3          32.8 STD    1.1        10.8                                STO      0.8            7.7 Mf./                                                      Mf./
DATE    SITE  PLOT  MT.(g)  SQ.HETER              DATE        SITE  PLOT    Mf.(g)    SQ.HETER 05/18  G02      12-3    0.2          2.1        05/29      $ 02    41-6        0.5            5.3 05/'I & G02    29-4      0.2          1.8        05/29      $ 02    29-4        3.9          39.4 05/18  602      18-5    0.5          5.3        05/29      $ 02    44          3.6          35.8 05/18  G02              0.3          2.7        05/29      $ 02    18-5        3.7          36.5 05/18  G02    41-6      0.9          8.5        05/29      $ 02    12-3      27.4          274.3 AVG  0.4          4.1                                AVG      7.8          78.3 STO  0.3          2.5                                STO      9.9          98.8 N'. /                                                      MT./
DATE    SITE  PLOT  Mf. (g) SQ.HETER              OA1'E        SITE  PLOT    MT.(g)    SQ.HETER 05/18  G03    18-5      7.7        77.2          05/29      $ 03    18-5        2.8          28.1 05/18  G03    4-8      7.7        77.1          05/30      $ 03    12-3        3.2          32 '
05/18  G03    12-3      5.2        51.8          05/30      $ 03    4-8        2.5          24.7 05/18  G03    29-4      4.6        45.9          05/30      $ 03    29-4        4.6          45.7 05/18  G03    41-6      6.8        68.1          05/30      $ 03    41-6        1.0          10.4 AVG  6.4        64.0                                AVG      2.8          28.2 STO    1.3        13.0                                STO      1.1          11.4 MT./                                                      MT./
DATE    SITE  PLOT  MT.(g)  SQ.HETER              DATE        SITE  PLOT    N'.(g)    SQ.HETER 05/18  604    12-3      7.5        75.1          OSI29      $ 04    4-8        5.4          53.8 05/IS  G04    18-5      5.5        54.9          05/29      $ 04    12-3        2.5          24.6 05/18  G04    41-6      2.4        23.6          05/29      $ 04    41%        2.0          19.6 OSI18  604    29-4    19.0      189.7          05/29      $ 04    18-5        1.6          15.7 05/18  G04    4-8 AVG 2.3 7.3 22.5 73.2 05/29      S04      2~AVG 4.1 3.1 40.7 30.9 STO    6.2        61.5                                STO      1.4          14.3 IP. (g)
Mf. /
Sg.IIEfER MT./
DATE    SITK    PLOT                              DATE          SITE  PLOT    MT.(g)    SQ.HETER 05/30  GOS    12 3      1.1        10.8          05/29      $ 05    12-3        3.5          34.5 05/30  GOS              4.5        44.S 05/29      $ 05    41%        4.5          45.4 05/30  GOS    18 5      1.4        13.9          05/29      $ 05    4-8        4.3          43.0 05/30  GOS    29-4      2.8        28.3          05/29      $ 05    29-4      3.7          36.9 05/30  GOS    41-6      8.6        86.4          05/29      $ 05    18-5      5.7          57.3 AVG    3.7        36.8                                AVG      4.3          43.4 STD    2.8        27  '                                STO      0.8            8.0 MT./                                                        MT./
DATE    SITE    P(.OT MT. (g) SQ.HETER            DATE          SITE  PLOT    N .(g)    SQ.PZrER 05/31  G06    12-3      5.2        51.9          05/31      $ 06    18-5      4.4          44.3 05/31  G06    41-6      2.8.      28.2          05/31      $ 06    12-3      4.4          43.6 05/31  G06    18-5      4.6        45.6          05/31      $ 06                3.8          37.5 05/31  606    29-4      4,4        43.09        05/31      $ 06    41M            '.1 20.8 05/31  606              2.9        29.3          0SI31      $ 06    29~        2.4          23 '
AVG    4.0        39.'8                                AVG      3.4          34.0 STD    0.9        9,4                                STO      1.0            9' N'./                                                        MT./
DATE    SITE    PLOT  MT.(g) SQ.HETER              DATE          SITE  PLOT    N'. (g)    SQ.HETER 05/30  G07    18-5      3.6        36.1          05/31      $ 07    4-8        0.2            2.4 05/30  G07              1.4        14. 1      05/31      $ 07    29~        0.1            1.0 05/30  G07    41-6      2.5        25. 1        05/31      $ 07    12-3      0.7            6.9 05/30  607    12-3      6.2        61. 7        05/3'I      $ 07    18-5      1.3          13.3 05/30  G07    29-4      0.9          8.7        05/31      $ 07    41-6      0.7            6.9 AVG    2.9        29. 1                                AVG      0.6            6.1 STO    1.9        18.8                                STO      0.4            4.3 MT./
DATE    SITE    PLOT  Mf.(g)  SQ.HETER                                        Phytamass    Sugary HEAN 601-G08        33.8  Grams/sq. meter 05/30  GOS    18-5      0.2          1.6        HEAN $ 01-$ 07      36.2  Grams/sq. meter 05/30  G08    41-6      0.8          7.8        MEAN  801%05        0.0  Grams/sq. meter 05/30  GOS    12-3      0.3        2.7 05/30  608    29-4      1.5        15.Z 05/30  608      4-8    2.3        22.5 AVG    1.0        10.0 STD    0.8          7.9 5"27
 
o Table 5-7    Comparison  of Herbaceous  Phytomass  for 1975 through 1990
    ~l    ~7  ~77  ~7  ~7    ~l    ~ ~ ~              ~14  ~l      ~l    ~17  ~l GO'1    359  108  21  166  64    160  200    90      77  94    70      50  83    34 174.3  13.6 G02    302  258  11  162  37      68  255    60  137    116    27      61  77    14  657    41 G03                                  53  261    62      64  133    12      32  134    16 105.1  64.0 G04                                  79  159  113      82  67    37      35  90    61  49.5  73.2 G05                                                                                          43.2  36.8 G06                                                                                          61.0  39.8 G07                                                                                        113. 1 29. 1 G08                                                                                        112.3  10.0 501    126  137    4  173  21      36  180    98    '171  104      5      35  62    59  53.9  32.8 S02    144  98    7  128  28      63  115    24  232    57      1      112  144    73  72.8  78.3 S03      88  177    7  115  16      43  31    22      54  95    27      25  48    15  67.0  28.2 504                                  78  52    39      68  93    11      176  108    24  39.8  30.9 S05                                  71  81  184    136    43    61      42  145    19 103.7  43.4 S06                                                                                          72.7  34.0 S07                                                                                        149.5  6.1
 
Table 5-8 Summary of Shr ub Density for 1990 Station              Species                1        2        3        4  Total  S/Ha  S/a S01  Artemi si a tri dentata              3        2        4        0      9    90  36 Chrysothamnus nauseosus              0        0        0        0      0      0  0 Chrysothamnus viscidiflorus          0        0        0        0      0      0  0 Purshia tridentata                  0        2        1        1      4    40  16 13  130    52 Total  5/Ha  S/a S02  Artemisia tridentata                1        1        0        0      2    20    8 Chrysothamnus    nauseosus          0        0        0        0      0      0  0 Chrysothamnus    viscidi florus      0        0        0        Q      0      0  0 Purshia tridentata                  0        0        0        0      0      0  0 2    20    8 Total  S/Ha  S/a 503  Artemisia tridentata                6        15        12        15    48  480  192 Chrysothamnus    nauseosus          4        2        2        1      9    90  36 Chrysothamnus    viscidiflorus      0        0        0        0      0      0  0 Purshia tridentata                  0        0        0        0      0      0  Q 57  570  228 Total  S/Ha  S/a S04  Artemisia tridentata                1        2        1        5      9    90  36 Chrysothamnus    nauseosus          0        0        0        0      0      0  0 Chrysothamnus    viscidiflorus      0        0        0        0      0      0    0 Purshia tridentata                  0        0        0        0      0      0  0 9    90  36 Total  S/Ha  S/a 505  Artemisia tridentata                0        0        0        0      0      0    0 Chrysothamnus    nauseosus          0        1        4        2      7    70  28 Chrysothamnus    viscidi florus      0        0        0          1      1    10    4 Purshia tridentata                  1        3        4        0      8    80  32 16    160  64
 
Table 5-9  Su@nary of Shrub Cover (X) at Five Stations for 1990 Shrub Cover (X)
Shrubs        Sol        S02        S03        S04  S05 Artemisia tridentata            0.00      0 '3        5.65      0.00  0.00 1.16 Chrysothamnus  nauseosus        0.00      0.00        0.89      0.00  0.23 0.22 Chrysothamnus  viscidiflorus    0.00      0.00        0.00      0.00  0.13 0.03 Purshia tridentata              0.76      0.00        0.00      0.00  0.00 0.15 Total Shrub Cover                0.76      0.13        6.54      0.00  0.36 1.56
 
Table 5-10      Su@nary  of Soil Chemistry for        1990 G01      G02    G03      G04    G05    G06    G07    G08      S01    S02    S03    S04    S05    S06    S07 pH (  1:2 soil-water )        6.86    6.92    6.95    6.94  6.77    7.02    7.12,  7.07    7.19    7.65    6.78    6.93    7.00  7.13    7.20 Conductivity (1:2 soil-water) 46.3    54.6    96.8    28.8  14.4    19.0    53.2    38 '    27.8    32.2    39.4    29.9    21.9  55.2    65.8 microsiemens/cm Sulfate ug/gm                  6.62    6.87  14.29    7.07  6.8    6.77    5.77    6.78    6.78    6.80    6.88  12.95    6.78  6.81    6.62 Chloride ug/gm                1 ~ 12  0.56    1.76    0.24  1.04    0.8    1. 12  0.48      1.44    1.28    1.04    0.96    0.32  0.64    0.88 Copper ug/gm                  11.10    9.18    9.61    6.92  7.42    8.2    8.54    8. 14    7.64    6.84    8.82    7.94    7.20  9.48  13.14 Lead ug/gm                    6.04    4.96    3.10    2.58  2.3    2.6    3.92    2.08      1.14    0.70    1.26    1.00    1.53  1.36    1.71 Cadmium ug/gm                  0.014    0.062  0.072    0.100  0. 120  0.139  0.062  0.064    0.118    0.070  0.058  0.060  0.080  0.020  0.030 Chromium ug/gm                8.2      6.4    5.1      3.5    5.6    4.7    4.8    6.0      6.8      5.6    5.0    5.7    3.9    9.4    12.5 Nickel ug/gm                  11.93    9.94    8.94    8.54  9.54    8.90    7.28    9.90    9.78    9.16    9.72    9.18    8.36  10.08  15. 42 Zinc ug/gm                    40.59    37.89  37.32    29.27  26.51  29.97  38.38  31.58    33.51    21.61  37.93  31.87  30.42  38.55  47.31 Sodium  /                      0.037    0 '38  0.033    0.029  0.026  0.031  0.035  0.027    0.028    0. 021  0.033  0.031  0.033  0.032  0.042 Potassium 5                    0. 191  0.164  0. 124  0.079  0.087  0.093  0. 137  0. 119    0. 125  0.066  0. 132  0.128  0.085  0. 167  0.216 Calcium  '4                    0.273    0.292  0.351    0.298  0.261  0.289  0.319  0.245    0.282  0.356  0.309  0. 274  0.306  0.377  0.434 Bicarbonates  (meq/HC03/gm)  0.0015  0.0020  0.0014 0.0009 0.0006    0.0008  0.0017  0.0015 0.0010 0.0013 0.0014 0.0009 0.0009 0.0023        0.0027 Hagnesium 4                    0.374    0.391  0.376    0.321  0.302  0.339  0.374  0.365    0.376  0.302  0.366  0.355  0.333  0.420  0.632
 
e Table 5-11  Suranary    of Vegetation Chemistry for    1990 SITE  POSA    BRTE      SIAL  PHLO  PUTR  ARTR    CHVI  GRSP Copper (ug/gm)    Gp1    2.80    4.80      6.60  4.20 G02    3.00    5.00      3.60  3.64 G03    4.20    6.60      3.60  4.40  4.60 G04    2.80    4.00      3.40  4.00  4.40 GQS    Z.'Zo    4.83            2.60  3.60  7.20 G06    2.60    4.20                          1Q.OO    6.00 G07    4.40    5.20                          8.20    10.20 GOB    2.60    4.80      3.40  4.00          9.20 Sol    2.60    4.00      3.20  3.40 S02    2.80    4.20            4.00  3.80  8.20 S03    3.20    5.00            4.20        10. 20 S04    3.60    4.80      3.40  3.60          9.00 S05    3.60    4.60      3.20          5.00  9.20 S06    3.80 3.20 6.40 6.00 8.00 6.20 7.80  4 '0 S07                                                          5.00 Extractable        Gpl    0.020    0.041    0.084  0.023 Sulfate (1')      G02    0.019    D.029    0.073  0.018 G03    0.023    0.036    0.125        0 '41 G04    0,020    0.021    0.055        Q.Q15 G05    0.019    0.018                  0.023  0.02 G06    0.018    0.018                          0.018    0.022 G07    0.018    0.023                          P.P16    0.052 GQB    O.OOQ    0.022    0.097  0.025        0.02 Spl    0.019    0.020    0.063  0.021 S02    0.019    0.019            0 ''18 0.019  0.024 SD3    0.026    0.027            0.026        0.021 504    0.019    0.017    0.049  0.018        0.02 S05    Q.019    0.030    0.047        0,018  0.021 S06    0.024    O.OZ5                          0.037    0.032 0.097 S07    0.018    0.029                          0.018          0.041 Extractable        Gp 1  Q.zl    0.29      0.57  0 ~ 12 Chloride (/)      G02    0.21    O.Z4      0.78  0.07 G03    0.29    0.29      0.62  0.08  0. 17 G04    0.32    0.14      0.43  0.06  0.11 G05    0.25 0.22 0.18            0 '9  0.14  0.92    e G06            O.Z6                          0.90    0.23 G07    O.24    0.24            0.05          0.'67    O'.48 G08    0.28    0 ~ 12    0.04  0.08          0.63 So 1  D.25    0.21      0.68  0.08 SO2    0.25 0.30 0.19 0.19 0 '9  0.10  0.95 S03                              0.10          0.78 S04    0.32    0.18      0.38  0.07          0.91 S05    0.32    0.16      0.34          0.18  0 F 89 S06    0.16    0.10                          0.73    0.49  2.11 S07    0.17    0.20                          0.59          1.85 5-32
 
h Table 5-12    Drift Sampler  Locations in Reference to WNP-2 Cooling Towers 1                    3.1 miles 2                    2.6 miles 3                    2.1 miles 4                    1.6 miles 5                    1.15 miles 6                    0.65 miles
'
0.2 miles 8                    Center of. Towers 9                    0.4 miles                            165'67.5'70'72.5'75'80'05'94'06'12'14'15'14'12'87'Control 10                    0.9 miles ll                    1.33 miles 12                    1.83 miles 13                    2.35 miles 14                    2.83 miles 15                    3.36 miles
*16                      7 miles Samplers 5"33
 
Table 5-13 Drift Deposition Rates (Gross and Background Corrected)
Corrected for o
1/ r- r) 1                            11                        3 2                            9                        1 3                            10                        2 4                            14                        6 5                            12                        4 6                            17                        9 7                            60                      52 8                          2998                    2990 9                            16                        8 10                            11                        3 11                            9                        1 12                            9                        1 13                            8                        0 14                            8.                      0 15                            8                        0 16                            8
*Control Site 5-34
 
NE    Iy~+I                                                                                                Drfr,,';",;.';;,,;ESTD IcsAPRV Pwwwwmwwm SASti laL                                ,;;>R170 g',
I
      '! ~ "" ". "'.. I                                                                                        I I
Le m  a w wm wm w I        BELAFLOWER RO I                                  3 ROUTE 11A                                                                I                                                W. KWlA      Ah r~            r i+srrr y yl+r II    IVJSSELL RO.
DEWS WI                      r w          WW\
                                                                                                      ':+""'' ERE Cage: >>
L,V                                                                                                        'AT%                                  ~l
                                                                                                                ~V.~OL                                      SNRWOOO P mnwea g
I rrrr  rrr ~                I
                                                      +  Ot                                                                                                                I I
IRSQOLO RO.
I I          I          I I
LII                                                          G08~02~
I    1 I
                                                                                                                                                                            ~
L        J~(
RIEL 0
N
                                                              +                                      r>'R I
a.TOPIA W'ESr EL IU
                                                                + ~LANT2,          'j',"-:.'.:!gs03 I"., > ~ .
I    VOEL j,'                                                  WORVO                I 6                                                                  FACUfVPtO+OF
                                                                                                                        ','+506~ "" ;',                    OORCR GOZ I                                                                                  WES'CFHROI C
Ml
                                                                                                                          ''ZONE    F::  ',                          I
                                                                                                                      ~    ....",'y ""          T      ~                    I  GAA I                I
                                                                                  '% .'5:
                                                                                                                                                              ~ AXVER      I re~      WWHWWWWWW DOOWOOD          III WWWWWWWW I rr'ga NXWWS I                                      p O'91>>            HHWHWHWW I    .', ':; ~ ..                                                                            wl I
II
                                                                                                                                                                                    ~
ma    o LEGEND PAVED ROAD REPROVED ROAD DR
      '
                                            ~
                                              ~    IN CITS W I
I                      0 WWWWW                          ORAVEL ROAD RARROAO DO%CARY laCS
                                                                                                                                                                                              ~OWER LSNS
                              ~ y, .:,'...
                                                                                                                                                                                      +      SuEPORO PRES II rrvo.                                                      '":":t        IACXNORO.
000410 tasoi 1  thru 8 60 = Grassland Site 1  thru 7 SO      Shrub Site Figure 5-1      Soil and Vegetation Sampling Location Hap 5-35
 
Shrub Community 50m Herbaceous transect Shrub intercept transect Shrub intercept transect Shrub intercept transect 20m Shrub lntercept transect Shrub intercept transect PhytOmasS sampnng plot                I tom Herbaceous Community Herbaceous transect        I I t0m Phytomass sampling plot                I Figure 5-2 Layout of Vegetation  and  Soil    Sam p linng Plots 5"36
 
MEAN % COVER 50 40 30 20 10
                                                      ?C PREOPERATIONAL        OPERATIONAL          1990
          ~  AG-G    ER3 PG-G  C3 AF-G    RH PF-G MEAN % COVER 40 30 20 10 PREOPERATIONAL        OPERATIONAL          1990 W AG-S      EKKI PG-S  EQ AF-S  'H  PF-S F/gure 5-3    Mean herbaceous  Cover for 1975 Through 1990 5"37
 
TOTAL PRECIP. icm) MEAN TEMP iC)                                      MEAN % COVER/MEAN DRY WT. ig/m2) 20                                                                                                                120 100 I
I 15            I                    l\
I
                                                            //
I
                                      \'I 80
                                          'I
                                                        /
l        I
                                              \
I                                          1 ll l\
                                                                                                  '
10                                                                                                                60
                                                                                                        \'
                                                                                                          '
40 20 0
1982          1983      1984            1985        1986        1987      1988    1989              1990 YEAR
                -- Precipitation      ~            Temperature    KQ Gover      K9 Dry  Weight Figure 5-4      Hean Herbaceous            Cover, Hean Dry Hgt.
(g/m2), Total Precip1tat1on,            and Hean Temperature            From 1982 Through 1990
 
GRAMS/SQ. METER 160 140 130 120 110 100 90 80 70 80 60 40 30 20 10 0
PREOPERATIONAL              OPERATIONAL                1990 SAMPLE PERIOD
                              ~ GRASSLAND    EKI SHRUBS DRY WEIGHT (G/M2) 150 140 130 120 110 100 90 80 70 60 40 30 20                    g?".',
10 0
GOI  GO2  G03  G04 G05    G08  G07  G08  SOI  S02 S03 S04 S05  S08 S07 STATION Figure 5-5        Mean Herbaceous          Phytomass at Grassland and      Shrub  Stations    for 1975 Through 1990 5-39
 
GOI PHYTOMASS      6/M2            HERBACEOUS COVER MEAN I6                G02 PHYTOMASS 6/M2                  HERBACEOUS COVER MEAN %
1AO                                                                          lA0                                                                120 100                                                                          100 120                                                                          120 110                                                                80      110 100                                                                          100 8O 00                                                                            00 80 80                                                                          80 10                                                                          To                                                              80 80                                                                          80 AO 80                                                                          eo                                                              lo
  ~0                                                                          <0 00                                                                20        oo 20 20                                                                          20 10                                                                          10 0                                                                            0 PREOPERATIONAL          OPERATIONAL          1000                          PR EOPERATI ORAL        OPERATIONAL          'l000 SAMPLE PERIOD                                                                SAMPLE PERIOD C3DRY WOT. E3%  COVER                                                    C3DRY  WOT. E9%  COVER 603 PHYTOMASS 6/M2                  HERBACEOUS COVER MEAN %                G04 PHYTOMASS G/M2                  HERBACEOUS COVER MEAN %
140                                                                          140 180 120                                                                          120 110                                                                80        110 100 00                                                                          00 ao                                                                          80 80                                                                          80                        REDRY 10                                                                            To 80                                                                            80 Ao 80 Ao                                                                          ~0 20        80                                                              20 20                                                                          20
  'lo                                                                          10 0
PREOPERATIONAL          OPERATIONAL          1000                          PREOPERATIONAL          OPERATIONAL            1000 SAMPLE PERIOD                                                                SAMPLE PERIOD MDRY WOT. K3%  COVER                                                            WQT. K3% COVER Figure 5-6        Mean Herbaceous      Cover and Phytomass for Stations  G01    to  G04    for    1980 Through 1990
 
G05 PHYTOMASS G/M2              HERBACEOUS COVER MEAN %                G08 PHYTOMASS G/M2              HERBACEOUS COVER MEAN %
110                                                                    Ilp 180                                                                    100 120                                                                    120 110                                                          80      110                                                            80 100                                                                    100 00                                                                    00 40                                                                      80 80                                                                    80 Tp                                                                    70 00                                                                    80                                                            40
                                                              ~0 80                                                                    80 so                                                                    +0 80                                                          20        oo                                                            20 20                                                                    20 10                                                                    10 0
PAEOPEAATIONAL      OPEAATIONAL          IOQO                        PAEOPEAATIONAL        OPEAATIONAL          1080 SAMPLE PERIOD                                                          SAMPLE PERIOD C3DAY WQT. E35  COYEA                                                CD DAY WO'T. EBS  COVE A G07 PHYTOMASS G/M2              HERBACEOUS COVER MEAN %              GOB PHYTOMASS G/M2                HERBACEOUS COVER MEAN %
140                                                                    110 100                                                                    100 120                                                                    120 110                                                          80      110                                                            80 100                                                                    100 00                                                                    00 80 80                                                                    80 70                                                                    To 00                                                                    80                                                            40 40 80                                                                    80 40                                                                    so 80                                                          20        00                                                            20 20                                                                    20 10                                                                    10 0
PAEOPEAATIOHAL      OPEAATIONAL          IOOO                        PAEOPEAAIIONAL        OPEAATIOHAL          1000 SAMPLE PERIOD                                                          SAMPLE PERIOD MDAY wo'T. K3% coYEA                                                  CDDAY WOT. MBA COYEA Figure 5-7        Mean Herbaceous Cover and Phytomass for Stations G05 to G08 for 1989 Through 1990
 
S01 PHYTOMASS G/M2              HERBACEOUS COVER MEAN %                  S02 PHYTOMASS G/M2              HERBACEOUS COVER MEAN %
110                                                                      Iio 100                                                                      100 120                                                                      120 110                                                            8O        110                                                            80 100                                                                      100 00                                                                        00 80 80                                                                        80 To                                                                        To 80                                                                        80                                                            <0 Ao 80                                                                        80 io                                                                        lo 80                                                            20          oo                                                            20 20                                                                        20 10                                                                        10 PREOPERATIONAL      OPERATIONAL          1000                          PREOPERATIONAL      OPERATIONAL          1000 SAMPLE PERIOD                                                            SAMPLE PERIOD C30RY WOT. E3%  COVER                                                  C30RY WOT. 63%  COVER SOS PHYTOMASS G/M2              HERBACEOUS COVER MEAN II                S04 PHYTOMASS G/M2              'HERBACEOUS COVER MEAN I6 00 80          80                                                            80 To                                                                        To 80                                                                        80                                                            80 io                                                            lo        ~0                                                            lo 20                                                            20        20                                                            20 10                                                                        10 PREOPERATIONAL      OPERATIONAL          1000                          PREOPERATIONAL      OPERATIONAL          1000 SAMPLE PERIOD                                                            SAMPLE PERIOD C30RY WOT. K35 COVER                                                    C3ORY WOT. K3% COVER F/gure 5-8          Mean Herbaceous    Cover and Phytomass for Stations    S01  to    S04  for    1980 Through 1990
 
S05 PHYTOMASS G/M2              HERBACEOUS COVER MEAN %                    SOO PHYTOMASS      G/M2            HERBACEOUS COVER MEAN %
120                                                              100      100 110                                                                          00 100 80        80 00 TO 80 TO                                                              80        80                                                            80 80                                                                          80 80                                                              ~0        Ao                                                            AO
~0 30 20        20                                                            20 20 10                                                                          10 PREOPERATIONAL      OPERATIONAL              1000                        PREOPERATIONAL        OPERATIONAL          1000 SAMPLE PERIOD                                                                SAMPLE PERIOD C30RY wOT. IZ38 covER                                                        CDORY WOT. EZIR covER S07 PHYTOMASS G/M2              HERBACEOUS COVER MEAN %
120                                                                100 110 100 80 00 80 10                                                                80 80 80                                                                ~ 0
                                      ~0 30 20 20 10 PREOPERATIONAL      OPERATIONAL                1000 SAMPLE PERIOD CDORY wOT. IZIR COVER Figure 5-9          Mean Herbaceous Cover and Phytomass for Stations S05 for 1980 through 1990 and Stations S06 and S07 for 1989 Through 1990
 
DENSITY (shrubs/haj 2500 2000 1500 1000 500 0
S01              S02              S03              S04      S05 STAT ON I
                  ~  PREOPERATIONAL        EB OPERATIONAL      EQ1990 Figure 5-10    Shrub Density at Five Stations for 1975 Through 1990
 
MEAN PERCENT COVER 30 25 20 15 10 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 YEAR F/gure 5-11  Hean Total Shrub Cover for 1975 Through 1990
 
PERCENT COVER                                  DENSITY (shrubs/ha) 600 500 I % COVER DENSITY 400 300 200 100 SO1          S02          S03          SO4          S05 STAT ON I
Figure 5-12  Shrub Cover and Density  for Five Stations for 1990
 
pH 9.0 8.0 7.5 7.0 I                                                      e 6.0 G01  G02 G03  G04  G05  G06  G07  GOS    S01  S02  S03  S04  S05  S06 S07 STATION M  P REOP 8 RATIONAL  EK3 OP 8 RATIONAL  ED 1990 CONDUCTIVITY MICROSIEMENS/CM 100 90 80 70 60 50 40 30 20 10 GOI G02 G03  G04  G05  G08  G07  G08    SOI  S02  S03  S04  S05  S06 S07 STATION CHPREOPERATIONAL      EKIOPERATIONAL      EZ 1990 Figure 5-13        Soi1 pH and Conductivity              for  1980 Through 1990 5"47
 
CHLORIDE MICROGRAMS/GRAM 12 10 0
601 602 603  G04  G05  G08  607  608  SOI  S02 S03  S04 S05 SOO S07 STATION C3 PREOPERATIONAI. EEI OPERATIONAL  ~  1990 SULFATE MICROGRAMS/GRAM 50 40 30 20 10 0
GOI 602 G03  604  605  GOS  607  608  SOI  S02 S03  S04 S05 SOS S07 STATION CDPREOPERATIONAL    EBOPERATIONAL    C31990 F/gure 5-14      So/l Sulfate and Chlor)de for 1980 Through 1990 5-48
 
.o MEQ. HCO3/GRAM X 10-4 70 60 50 40 30 20 10 0
GOI G02 G03  G04 G05 GOS  G07  GOS  SOI  S02 S03 S04  S05  SOB S07 STATION MPREOPERATIONAI. EB OPERATIONAL E31990 COPPER MICROGRAMS/GRAM 15 14 13 12 10 G01 G02 G03  G04 G05 G06  607  GOB  SOI  S02 S03 S04  S05  SOS S07 STATION MPREOPERATIONAL    EBOPERATIONAL  E31990 Figure 5-15    Soil Bicarbonate      and Copper  for  1980 Through 1990 5-49
 
o LEAD MICROGRAMS/GRAM
          ?
4 0
G01  G02  G03  G04  G05  G06  G07  GOB  S01  S02 S03 S04 S05 S06 SOI STATION C3PREOPERATIONAL    EB OPERATIONAL E31990 NICKEL MICROGRAMS/GRAM 20 15 10 n
4 G
0 G01  G02  G03  G04  G05 G06  G07  GOS  SOI  S02 S03 S04 S05 S06 S07 STATION MPREOPERATIQNAL      RB OPERATIONAL  E31990 F/gure 5-16        Soil  Lead and N/ckel      for 1980 Through 1990 5-50 0
 
CADMIUM MICROGRAMS/GRAM 0.8 0.5 0,4 0.3 0.2 0,1 0
Gp'I G02 G03  G04  G06  G08  G07  G08  S01  S02 S03 S04  S06 S08 S07 STATION CD PREOPERATI ONAL  K3 OPERATIONAL E3 1990 ZINC MICROGRAMS/GRAM 80 66 50 46 40 36 30 20 15 10 G01  G02 G03  G04  G05  G08  G07  GOS  SOI  S02  S03 S04  S05 S08 S07 STATION HPREOPERATIONAL    EBOPERATIONAL    ED1990 Figure 5-17      So/1 Cadm/um and Z1nc        for  1980 Through 1990 5-51
 
CHROMIUM MICROGRAMS/GRAM 20 18 14 12 10 0
G01  G02  G03  G04  G05  GOS  G07  GOS  801  S02  S03  S04 S05  S06 S07 STATION CDPREOPERATIONAL    EEIOPERATIONAL    E31990 SODIUM WEIGHT PERCENT
: 0. 10 0.08 0.06 0.04 0.02 0.00 G01  G02  G03  G04  G05  G06  G07  G08  801  802 803  804 805  806 807 STATION MPREOPERATIONAL      EKIOPERATIONAL    E31990 Figure 5-18        Soil Chromium      and Sodium    for  1980 Through 1990 5"52
 
POTASSIUM WEIGHT PERCENT
: 0. 350 0.300 0.250
: 0. 200
: 0. 160
: 0. 100 0.050 0.000 GOI  G02  G03  G04  G05 G06  GOT  GOS  SOI S02 S03 S04  S05  S06 SOT STATION
                      ~PREOPERATIONAL      RB OPERATIONAL E31990 CALCIUM WEIGHT PERCENT 1.00
: 0. 80 0.60
: 0. 40 0.20 0,00 GOI  G02  G03  G04  G05  G06  G07  GOS  S01  S02 S03 S04  S05  S06 SOT STATION I
WPREOPERATIONAL      EB OPERATIONAL E31990 Figure 5-19        Soil Potassium and Calcium          for  1980 Through 1990 5-53
 
MAGNESIUM WEIGHT PERCENT C?
                                                                                        .4'
                                                                        ??    ??
                                                                                          .
                          '.C
                            '(
                          '?
C;.':,
                  ?."?
                                                                                        ;
                                                                                          ?''C;;
                  &?                            g 601 602 603  604      605      606  607  608        S01    S02  S03  S04  S05 S06        S07 C3 PREOP          E RATIONAL  I STATION OP E RATIONAL          EQ  1990 F)gure 5-20        So/1 Hagnestum      for  1980 Through 1990
 
o VEGETATION COPPER (saorcgrama/gram)              ps/os /orrgr/gris                    VEGETATION COPPER (sacrograma/gras)                srcmrra loorcrrrm ta                                                                                      I~
R    1080                                                                                W  1080 EB  1081                                                                                EB  1081 12 12 CI 1082                                                                                  C3  tos2 KZI 1083                                                                                  EEI 1083 10                                                                                      10 8
OOI OO2 GOS GOa GOS GOS OOr GOS SOI SO2 SOS SOa SOS SOe SOr                            GO1 GO2 GO3 Goa Goo Goe    Gor GOS Sot SO2 SO3 Soa Soe Soe    Sol STATION                                                                                STATION VEGETATION COPPER (mlcrograma/gram)              Poler lcsgl/Or/a                      VEGETATION COPPER (mlgrograma/gram)                srcmrra Ioorcrslrl 1a                                                                                    18
                                                                        %    108 ~                                                                                W    108a 12 10 I
IccI t088 C3 E3 1088 Iger 1088 CI 1080 12 E3 E3 C3 1088 1088 EB )ocr t088 1080 10 IoI3 )goo                                                                                K3  1000 GOI OO2 GOS GOa GOe OOS GOr GOS SOI SO2 SOS SOa SOa SOe SOT                            GO1 GO2 GO3 Goa Goe  Goe Gor GO8 Sol SO2 SO3 Soa Sos SOS Sor STATION                                                                                STATION F)gure S-21              Copper Concentrat)ons            (ug/g) in ~hl
                                                                    +~~1)          and    ~rn~        ~~r~ for 1980 Through 1990
 
VEGETITIOII COPPER (mrareorama/Oram)              Astern/ala rrrderrrera                    vEGETaTIOII COPPER (mlaroor ~ maloram)              PrNaer ~ rrIderrtele 30                                                                                            10
                                                                              %  1080                                                                                    W  1080 E3 losl                                                                                      E9 los(
CD  10S2                                                                                    CD los2 KI 1083                                                                                      EiB 1083 20 18 10 G01 G02 G03 004  000  GOO  G01 008 801 S02 SO3 SOI SOS SOO 801                            001 002 003 GOa 008 GOS 001 008 301 802 SO3 SOa SOS          SOO SO1 STATION                                                                                      STATION VEGETa)ION COPPER (mlarearama/Qrarrl)              At(em/era Irrderrrata                    VEGETATIOII COPPER (mlerOOrama/Oram)                PrNaela trlderrtata 30                                                                                            10 R  IOSe                                                                                          108 ~
E3  toss                                                                                    EB  1083 CD loss                                                                                      CD  1080 RES 1081                                                                                    EEB 1081 E3                                                                                          H    1088 20                                                                            CD 1088 1080                                                                                    ~
K3 1080 KB  1000                                                                                        1000 10 001 GO2 003 GOa GOS    GOO  001 GO8 SO1 802 803 SOe SOS SOO SO1                            GO1 002 003  GOa  003  GOO  001 GOO SO'I SO2 SOS SOe SOS SOO      801 STATION                                                                                        STATION Figure 5-22
                                                                    ~~
Copper Concentration
                                                                    ~r(~g ~(fpnf~
(ug/g) and for 1980 Through
                                                                                                            ~~h1 1n 1990
 
'o VEGET4TIO/I COPPEA (mlC<OO<4ml/0<4m)            Slly<t<(rlvcl or/tool<<tot<<                    VEGET4(<O<t COP/'EA (mlC<OQ<4mo/0<4m)                  PO4 444dOC<gt/
18                                                                                                10 1080                                                                                  %  loao I
18                                                                                EB  IQOI                                                                                  EB  IQSI CD loa2                                                                                    CD loe2 I~                                                                                IZZ! 1083                                                                                      1083 12 10 001 GO2 003 GO4  GOO GOO  007 008 $ 0'I SO2 SO3 $ 04 SOO $ 08 SO)                              Gol 002 003 G04 Goa Goo Go/ 008 $ 01 so2 sos so4 soo soo soy STATION                                                                                            STATION vEGETITI0/I COPPEA (ogctootomo/atom)              Stoymort<rm ott/44/mom                          VEGET4210/I COPPEA (mtc<OQ<omo/0<4m)                  PO4 44<<dOO<gl/
18                                                                                                10 W    IO84                                                                                  %    108 ~
18                                                                                E3 loss                                                                                    K3    1083 CD  1088                                                                                  CD    1088 14                                                                                E3S Tost                                                                                  E(3I IQS/
H    IOSS                                                                                H    1088 12                                                                                CD loco                                                                                    CD loao 10 H    IOOO                                                                                EB    1000 2
2 001 002 G03 G04 Goa Goo Goy 008 Sol so2 $ 03 so4 Soa soo              so/                        GOI GO2 GO3  004  GOO GOO  007 008 SOL SO2 $ 03 S04 SOO SOO SO)
STATION                                                                                            STATION Figure 5-23                Copper Concentration                  (ug/g) in
                                                              ~~i        m~iq ~l<~Igg] and for  1980 Through 1990
                                                                                                              ~P
 
EXT4ACTABLE CHLOHIDE (8)                          Bremvh toot+ vm                      E XT4ACTABLE CHLO4IDE (8)                        PA/ca tcooltctth 080                                                                                  0220
                                                                        %
0&i D.is 63 CD 1080
                                                                            '1081 1082 EEI 1&83 0.108 0.178 I
                                                                                                                                                                  !Xi 1081 CD los2 lose D.i2                                                                                  0.)&i 038                                                                                  0.132 0.110 02i                                                                                  0.088 0.18                                                                                  0.0&s 0.12                                                                                  0.0t h 008                                                                                  0 022 000                                                                                  0.000 001 002 003 GOi 00& 008 007 008 $ 01 $ 02 SOS SOi SO& $ 08 $ 07                        001 G02 003 GOi GO5 GOS 007 GOB SOl $ 02 SO3 SOi SO& $ 08 SOT STATION                                                                                STATION EXTBACTABLE CHLO4IDE (8)                          Btomvc tcctotvm                        X)4ACTABLE CHLO4IDE (%)                        PAIOm  tOhcttotth 080                                                                                  0 220
                                                                        %    108 ~                                                                              W 108    ~
0&i                                                                      K3  108&    0.'I 08                                                                    E3  108&
CD  1088                                                                                CD 1088 D.i8                                                                                  0.178 K3 los7                                                                                  EB los)
: 0. ~ 2                                                                  H    1&88    0.15i                                                                      H    1088 CD  1080                                                                                CD loco R3  1000    0.132                                                                      69  1000 0.110 0.2 ~                                                                                0 088 0.18                                                                                  0058 0.12                                                                                  0,0th 0.08                                                                                  0 022 000                                                                                  0000 001 002 003 GOi GO& 008 007 008 SO) $ 02 SOS SOi SO& SO& SOT                            001 002 003 GOi GO5 GO& 007 GO8 SO1 $ 02 SO3 SOi SO& $ 08 $ 07 STATION                                                                                STATION Figure 5-24
                                                            ~@gag Through 1990 and      ~l ~n+~ ~IZ Chloride Concentration (1) ln for    1980
 
EXTRACTABLE CHLORIOE (8(                      ArlrrrdSI4 Irldknl~ 14                        EXTRACTABLE CHLORIOE  (sl                      PW4414  lfldcclclc
'1.50                                                                                      02'10 W  1080                                                                                        1080 I
EB  1081        0.180                                                                        Edl 1081 1.25                                                                      C3  1082                                                                                    C)  1082 0.188 1083                                                                                    IK! 1083 0.1 ~ 7 0.128 0.15 0.084 0.50 0.083 0042 025 0021 000                                                                                        0.000 001 002 003 004 005 008 GOT 008 301 302 503 504 S05 Sos 507                                  GO1  002 003 004 GO5  008 GOT 008 S01 S02 303 $04 Sos    SOO SOT STATION                                                                                      STATION EXTRACTABLE CHLORIDE (%(                      Arlccdrlc lrld441414                          EXTRACTABLE CHLORloE  (5(                      Pvr4514  Irldccl~ I4 1.50
                                                                          %  108 ~
0.231
                                                                                                                                                                        %  1884 EB  1085                                                                                    Icd( 1085 1,25                                                                      C3  1088        0.210                                                                        C3  1088 EB  (081        0.180 EEI 1081 H    (588                                                                                    E3  1088 1.00                                                                      C3  1080      0.188                                                                        C)  (OSO IEB 1000        0.141                                                                        KS  1000 0.15                                                                                      0.128 0.105 0.50                                                                                      0084 0083 025                                                                                        0.042 0.021 000                                                                                        0 000 GOT OO2 003  GO4 OOS GOS GOT GOS SO( SO2 SOS SO4 SO5 SOS SOT                                001 002 003 004 005 008 GOT 008 SO1 SO2 303 SO4 SO5 Sos SOT STATION                                                                                        STATION F1gure 5-25                Ch1or)de Concentration (X)                    1n
                                                                                    ~r) fggf~          and    Pg.~1 for 1980 Through 1990
 
EXTRACTABLE CHLORIOB (8)                          Pee eeedsm'dll                        2 XTRACTABLK CHLORIOE (8)                  Slsymevlvm el Ilselmem 080                                                                                      1.20 1080                                                                              %  )080 83  Ios)      1.08                                                                    69 1081 CD )082                                                                                CD 1082
: 0. ~ 0 IILI 1083 008                                                                    K3 1083 08 ~
O.r 2 oso 0.20                                                                                    0 ~8 0.10                                                                                    0.2 ~
0.12 000                                                                                      0.00 001 002 003 Goe 005 Gos Gor GOB 50'I 502 503 Soe Sos 508 Sor                            001 G02 G03 Goe God 008 Gor 008 so) so2 so3 soe sos sos      sor STATION                                                                                STATION EXTRACTABLE CHLORIOE  (5)                        4de eeedeeipll                        EXTRACTABLfCHLORIOE (5)                    Slerm(clem eltlsslmem 0.50                                                                                      120
                                                                          %    188 ~                                                                            W  IOse E3  1088      1.08                                                                  EB  1085 CD  1088                                                                            CD )088 0eo                                                                      EBI 1081 008                                                                    EB Iosr
                                                                          ~    1088    Ose E3 CD
                                                                                                                                                                    )088 1888 CD )080 0.30                                                                      RS 1000      0.12                                                                    K3  1080 080 020                                                                                    048 0.38 0.10                                                                                    02e 0.12 0.00 GOI GO2 GO3 Goe  005 008 Gor GOB 501 SO2 503 Soe 505 508 Sor                            001 002 GO3 Goe GOS 008 Gor 008 501 502 503 Soe 505 508 SOr STATION                                                                                STATION Figure 5-26              Chloride Concentration (X) in 52k
                                                                        ~~r11          and /~mt'~1m                            q for    1980 Through 1990
 
Ex)4ACTABLE SULFATE (%)                          Phlh>> (aha((O(lo                    EXT4ACTABLE SULFATE (%)                    5loymh>>lorn 4UI54lmvm 0 220                                                                                  1.20 W  1080                                                                                  Ta so 0.108                                                                    69 108(      1.08                                                                    GB los(
CD 1082                                                                              CD 1082 0.118                                                                                  0 as K3 1083                                                                              Im) '1083 0.154                                                                                  O.84 0.72 0.110                                                                                  080 0.088                                                                                  0.48 0oaa                                                                                  0.38 0044                                                                                  024 0.022                                                                                  0.12 0 000                                                                                  000 GOT GO2 003 004 005 008 GOT 008 $ 01 802 803 S04 805  SOS SOT                        Gol 002 003 004 005 ooa Got Gos sol 802 803 304 so5 soa      sol STATION                                                                              STATION EXT((ACTABLE SULFATE (%)                          Phla>> lhhOUOII4                    EXTAACTASLE SULFATE (%)                    Slhymhvl>>NA oltlholmvm 0220                                                                                    1.20
                                                                        %  1084                                                                                %  1084 0.108 0.118 0.1&4 I
EB CD E3 CD 1585 1088 TOST 1088 1080 1.08 o.oa 084 K3  1085 CD loss EB 1081 EB  1088 CI 1580 EB 1000      012                                                                      K9  1800 allo                                                                                  oao-0 088                                                                                0.48 ooas                                                                                  0.38 004 ~                                                                                0,24 0 022 0 000 001 002 003 004 005 008 GOT 008 Sol S02 SOS 304 SO5 SO& SOT                          001 002 G03 004 Go& Goa Gol 008 sol 302 sos so4 so& soa 801 STATION                                                                              STATION Figure 5-27                Su1fate Concentration (1.) in              ~h1 x
                                                                  ~~fili          and ~~I)~r~ ~i~im for 1980 Through 1990
 
E XTRACTABLE SULFATE (%l                      Ac%mille srlennlnln                      E XTRACTABLE SULFArE (%)                      pwhhr ~ lrlonnl~ ln 0.320                                                                                  030
                                                                          %  1080                                                                              R    1080 0288                                                                      EB  '1081    021                                                                      63  1081 CD  1082                                                                              CD  1082 0258                                                                                    02n EK! 1083                                                                              ES  1083 0.22 ~                                                                                  021 0.102                                                                                  0.18 0-180                                                                                  0.1 8 0.128                                                                                  0.12 0.008                                                                                  aoO 0084                                                                                    008 0 032                                                                                  0.03 0 000                                                                                  000 001 002 003 GOA GOS 008 GOT 008 501 502 503 SOn 50& SOS SOT                            001 002 003 GOA GOd 008 OOT GOB S01 SO2 SO3 504 SOd SOS SOT STATION                                                                                STATION EXTRACTABLE SULFATE (%)                      Allemlhrr Trlonnlnl~                    EXTRACTABLE SULFATE I%1                        Pnrehln trldnnlnln 0.320                                                                                    0.30
                                                                          %    Iden                                                                              &    108 ~
0 288                                                                    E3  1085      02T                                                                    EB    1osd CD  1088                                                                              CD loee 0.288                                                                                    02n                                                                          1081 EEI loeT                                                                              EEEI E3  1088                                                                              K3    1oee 0 224 0.102
                                                                          ~
EB 1080 1000 021 0.18 CD K3 1080 Tooo 0.180                                                                                  0.15 0.128                                                                                  0.12 0008                                                                                    000 aoe<                                                                                    008 0 032                                                                                  003 000 001 G02 003 004 005 GOS OOT GOB 501 502 SOS SOA SOS SOS SOT                            001 002 003 GOi GOd GOS GOT GOB 501 SO2 SO3 SOA SOd    SOO  307 STATION                                                                                STATION Figure 5-28              Sulfate Concentration (1.) in                  ~rmi~i
                                                          ~ri        ~n 1980 Through 1990 and ~P~rhi      ~rt~g for
 
EX1RACTABLE SVLFATE  (3)                        PDC CC+dD&dd                          EXTRACTABLE SVLFATE (%)                          BrOmvC TDC(mdm 020                                                                                  0.350 W    1OS0                                                                                    L880 0.18                                                                Ed)  1081      0315                                                                    EB  1081 C3  1082                                                                                CI 1882 0.)a                                                                                0 280                                                                    ER! 1883 EZI 1083 0.14                                                                                0 215 0.12                                                                                0210 0.10                                                                                0.1)5 008                                                                                  0.140 0.08                                                                                0.105 0 ac                                                                                0 010 0.02                                                                                0 035 0.00                                                                                0.000 001 002 003 Goi 005 Goa Gol 008 501 302 303  soi 305 soa sol                            001 002 003 Goc 005 Goa Gol Gos So'1 SO2 303 Soc Soe Soa Sol STATION                                                                                STATION E X TRACTABLE SVLFATE  (8)                        RDC CCmFDmda                          EXTRACTABLE SVLFATE  (8)                        Brymvc Tccavvm 020                                                                                  0.350
                                                                    %    108 ~                                                                                %  108 ~
I 0.18                                                                EB  1085      0.315                                                                    E3  )585 C3  )osa                                                                                    )oea 0.18                                                                                02eo                                                                      EB  10Sl
                                                                          )eel 0.14                                                                H    108S u 0.2ie                                                                    EB  )oes CD )580                                                                                  C)  Toeo 0.12                                                                IcxS )ooo      0210                                                                      IEB 1000 0,10                                                                                0.1)5 0.0a                                                                                0.1 ~ 0 0.08 00c                                                                                  0 0)0 002                                                                                  0 035 0.00                                                                                0 000 001 002 003 Goi 005 Goa Gol Gos SO1 SO2 303 Soc Soe Soa Sol                            001 002 003 Goc GOS Goa Gol GOS  SO1 SO2 SO3 304 SO5 Soa Sol STATION                                                                                STATION Figure 5-29            Sulfate Concentration
                                                            ~ggrEtil 1980 Through 1990 and gr~        ~~
: 0)    ln  ~P for
 
EXTRACTABLE CHLORIDE (%)                                                            EXTRACTABLE SULFATE (%)
1.0
                                                                      &  POSA 020 0  POSA E4I SATE                                                                        63 SATE CD  SIAL                                                                        CD SIAL 0.3                                                                  EB  PHLO                                                                        K3 PHLO E3  PUTA      O.la                                                              E3 PUTA
                                                                      <<I AATA                                                                        <<) AATA 03 0.10 0.4 ooa 0.0                                                                                0.00 Go1 Go2 Gos Go4 Goa Goo GoT Gos so1 so2 sos 304 soa soo soT                          001 002 003 004 Goa 003 007 GOS Sol S02 S03 304 Soa Sos SOT STATION                                                                              STATION VEGETATION COPPER MICROGRAMS/GRAM 12
                                                                                                                ~  POSA KB SATE 10                                                                  CD SIAL EB PHLO
                                                                                                                <<I PUTA
                                                                                                                <<I AATA 001 002 G03 004 Goa God Gol Gos SOI S02 S03 S04 Soa Sos SOT STATION Figure 5-30            Total Vegetation Copper, Chloride and Sulfate for        1990
 
1 10 100 NW                                                NE I      200 300
(
200 100 i
025 m).
10 100 200 300 400 300 200 SW                                                SE 100 10 figure 5-31 Predicted Salt Deposition Patterns Out to 0.5 Nile (0.8 km) (lb/acre/yr) 5-65
 
0.8 1.0                  0.8 1.0                                          NE I
I
                                '"
I 1.6 I  1..
1.O I  o.s 58 l 6.9 ml 0,6                              5.0 ml.
1.8 ml.        4.4 ml.
3.6 mi.
o.4 04 Oe 0.8 I    o.e 0.8 1.0 1.2 1.4
                                      '.6 I
1S SW                                                                        SE 1.0 1.0 1.2 910370.2 Figure 5-32      Predicted Salt Deposition Patterns Out    to 6.9 M11e (11.1 km) (1b/acre/yr) 5"66
 
r N
T. rs DOE
                    )JAN:  GRAVEL PIT rrr r3$ T. r8 0                                    rrr rr rssT. r2                r+
Pg
    ~o                                          sT. 12 4rp ST. rr                          POWER UNE
              --  WYE BARACADE sT. ro rs.w    cc~          ASHE SUBSTATION
                                                //
                                                                    @ST 8
                                                                ~AA'T.
OO 7    $    O~
                                            /
PSF I3)
                                    //
41 0
                                                +
0 CO              v+
                              ~/
                              /                                            ST. 5                            ~4' CS I
lrl I
                    @+
                        /'
                            /                                                          4
                                                                                    ~O OO e
rr D
                  ~O 0                                                                                A            rr 8).                                                                      O~  ~+
            //
(r)  ~V PC    Pe SST.2 55 OO
  //
ACCESS RD.
FFTF                                ST. 2                    rr
/                                                                              ST. r  r3~
(
BURIAL~
GROUND SCALE (MILES) 5        .5          1          1.5 880881 Figure 5-33                Location Map of Cooling Tower                Drift    MARCH 1988 Monitoring Sites 5-67
 
Collector Vessel 18" High 6" Diameter                                    0 0
0
                          <<g+,-~?<                  Cl O
O O
                                                    'U 0
Q CO C9 18" co<'oiing i ower Coiiecior'Vesseis'"
890317 Figure 5-34  Cooling Tower    Drift Co11ection  Vesse1 5-68
 
NNW 9.8%          N 9.1%
NW 11.2%
NNE 5.9%
WNW 6 5%                                          NE2 9%
ENE 0.7%
W 4.2%                          E 0.5%
ESE 0 9%
WSW 4.7%                                SE 2.3%
SW 75%
SSE 9.1%
SSW 11 4'/
S 13.4%                    9102014 Figure 5-35  Cumulative Wind Rose April 1989 through March 1990 WNP-2 Meterological Station  33 Foot Level 5-69
 
NNW 9.4%
NW 10.6%
N 6.9%
NNE 4.7%
WNW 9 5%
NE 3.0%
ENE 1.2%
W60/                                      E 1.1%
ESE 2.1%
WSW 5 7%
SE 4.5%
SW68%
SSW 8 8%
SSE 9 4%
S 10.9%
Figure 5-36  Cumulative Hind Rose 1984 through  1989 HNP-2 Heterological Station 33 Foot Level 5-70
 
s DEPOSITION AS A FUNCTION OF DISTANCE STATIONS t  7 SO 50 g 40
~
  ,    30 e  z20 0
a 10 0
0   0.5       1       15           2       25               3.5 DISTANCE FROM COOLING TOWERS (miles)
Figure 5-37 Deposition Rate as a Function of Distance
 
660   N     T T           N   RV 6.1 ~T The regulatory commitment for this study   has been satisfied and no further studies are planned. No fish were found impinged during any of the inspec-tions and algal growth was moderate. Incidental observations will be made when maintenance inspections of the intakes are conducted.
6-1
 
7.0             T   R 7.1   I   D The aerial photography program began in June of 1988 to monitor the vegetation surrounding WNP-2 for impact due to cooling tower operation. Aerial photo-graphs taken with color infrared (CIR) film, allow large areas to be monitored and to detect signs of possible stress before it becomes visible to the human eye. In addition to examination for stress, the photographs will be com-pared with those taken in following years to look for changes in vegetation patterns and evidence of cumulative damage. This program is performed to comply with Washington State Energy Facility Site Evaluation Council (EFSEC)
Resolution No. 239, dated September 14, 1987.
7.2 This program was planned using guidelines published in NUREG/CR-1231 (NRC, 1980). This report outlined the basic requirements for an aerial monitoring program and suggested types of film, photograph scales, frequency of photo-graph acquisition and the size of prints.
Five flightlines (Figure 7.1) were planned   to cover the areas of greatest deposition according to the drift model     constructed by Battelle Pacific Northwest Laboratories (PNL, 1976). Two flightlines, approximately 7 miles (11.2 Km) in length, run in a general north-south direction. These flight-lines run between the two areas of greatest deposition according to the model, The other three flightlines of approximately 5 miles (8.1 Km) in length, run in an east-west direction and were placed to cross gradients of deposition. The five flightlines were flown at an altitude of 1,550 feet (477m) above mean sea level. The flightline coordinates are stored in the long-range navigation (LORAN) system in the contractors airplane. This allows the same lines to be photographed in following years.
7-1
 
The photographs   were taken with Kodak-Aerochrome 2443 color infrared film in a Hasselblad ELM 70mm camera. A Planar lens with a 80mm focal length was used with a number 12 Wratten filter attached. The scale is 1:6,000 in a 70mm x 70mm format. The relatively large scale of 1:6,000 was chosen as being large enough to differentiate the types of shrubs in the areas surrounding WNP-2.
The 70mm size was chosen over the larger nine inch by nine inch format for ease of handling and the storage of the nearly 300 photographs.
Color infrared (CIR) film was chosen over natural color or black and white film because the symptoms of stress on vegetation may show in the infrared wavelengths before   it becomes apparent in the visible wavelengths. CIR film is easier to interpret than black and white infrared because the shades of color are easier to differentiate than the subtler shades of gray in the mono-chromatic infrared. Healthy vegetation wi 11 show as a dark red or magenta color. Stressed vegetation will show lighter shades of red to white. Inter-pretation of the photographs is done on a light table and viewed with magni-fying glass or stereo microscope. A plastic sheet is put over the photographs to protect the film and to allow areas of interest to be marked with a grease pencil   Each photograph is examined and signs of stress are noted by flight-line number and frame number. The photographs are taken with an overlap of 501. to make it possible to view them in stereo   if desired. The 50/ overlap o
was maintained during the acquisition by controlling the shutter with an intervelometer.
The photographs   were used in the placing of the samplers for the cooling tower drift study. The samplers were placed on portions of the two north-south flightlines. In future overflights, the stations may be used to ground truth the photographs. Markers will be placed next to the samplers to make the stations easier to find on the photographs. The ground truthing will consist of a survey of an area or areas on a flightline and examination of the vegetation for other signs of stress.
7-2
 
7.3       T     N   D The overflight   was performed by the contractor, Photography Plus of Umatilla, Oregon on June 18 and the photographs received on July 6, 1990. The initial examination of the flightlines was to determine the quality of the photo-graphs, which was found to be generally good, except for a few frames that apparently had been exposed to light, These had a green tinge to them and made't impossible to determine the health of vegetation in the photographs.
A second, more detailed examination followed for the purpose of interpretation.
A second, more detailed examination followed for the purpose of interpretation.
The acquisition of the photographs was late in the spring season and missed the period of peak photosynthesis.
The acquisition of the photographs       was late in the spring season and missed the period d
Because of this, it was only possible to d 1h h d I h.h~l'dhh 1 h I.~l I~~d Host of the smaller forbs such as~~~f i had become inactive as had the perennial and annual grasses.It is difficult to determine the activity of smaller plants because the dark red of a healthy, active plant and the dark green of a dead or inactive plant appear very close in the 1:6,000 scale of the photographs.
of peak photosynthesis.
The medium sized shrubs were more numerous than the larger shrubs, and more evenly distributed through the flightlines.
1h        h    d    I h.        h I.~l~l Because of this, it was only possible to
These shrubs may be specimens of I.dd~11<<fd.d~UJ d P.~ri~n.Hany of the smaller shrubs noted on the northern half of flightline 2 were determined in 1989 to be immature~remi~.The large shrubs were mostly limited to isolated individuals or small clusters because the flightlines cover the area that had burned in the 1984 range fire.Hany small plants were noted along the edges of active dunes in the northern half of flightlines 1 and 2.These are most likely clumps of~~~r n~1~m,~~~m@, or Q~m~~v~.A large, healthy group of~l~l kali was found along the eastern side of the Ashe Substation, north of Plant 2.~l~is also seen along other disturbed area such as railroads, highways and gravel pits.7-3 The general health of those plants and shrubs that were active was good.Some small, localized area of stress may be seen on several flightlines but, due to the mixture of healthy vegetation to those exhibiting stress, it would seem better explained by disease or infestation.
                                                                            ~~
No adverse impact was evident from the operation of Plant 2.o 7-4 I Shipley, B.L., S.B.Pahwa, M.D.Thompson and R.B.Lantz.1980.NUREG/CR-1231.
                                                                                  '
Remote sensing for detection and monitoring of salt stress on vegetation:
become  inactive    as had Host dhh   1       h of the smaller forbs   such as the perennial and annual grasses.
Evaluation and guidelines.
                                                                  ~ ~~f It I
Final report, September 1976-March 1979.Nuclear Regulatory Commission, Washington, D.C.Droppo, J,G., C.E.Hane and R.K.Woodruff.1976.Atmospheric effects of circular mechanical draft cooling towers at Washington Public Power Supply System Nuclear Power Plant Number Two.Battelle Pacific Northwest Laboratories, Richland, WA.7-5  
i  had is difficult to d
+o~Pg d~O~dO DOE GRAVEL PIT+p lL WYE BARACADE POWER LINE FLIGHTLINE 3 ASHE'UBSTATION 0 Q/~/V~c~/'//,///0 EOF PSF 0/./././+0~0~0 00'v FUGHTUNE 4 FUGHTLINE 5//,/ACCESS RD+0~o BURIAL 4 GROUND SCALE (MILES)I'I.S CIRCLE INDICATES PLIGNTLINE STAIITING POINT C.5 CIRCLE INDICATES FLIGHTLINES STARTING POINT F)gure 7-1.Aeria1 Photography Fl tght)tnes  
determine the activity of smaller plants because the dark red of a healthy, active plant and the dark green of a dead or inactive plant appear very close
                        ~
in the 1:6,000 scale of the photographs.
The medium P.  ~ri  ~n.        Hany 11  <<
sized shrubs were more numerous than the larger shrubs, and more evenly distributed through the flightlines. These shrubs may be specimens of I.                 dd                                             fd.d ~UJ of the smaller shrubs noted on the northern half of flightline 2 were determined in 1989 to be immature ~remi~. The large d
shrubs were mostly limited to isolated individuals or small clusters because the flightlines cover the area that had burned in the 1984 range fire.
Hany small   plants were noted along the edges of active dunes in the northern half of flightlines     1 and 2. These are most   likely clumps of ~~~r     n
~1~m,     ~~ ~m@,           or Q~m~   ~v~.       A large, healthy group of     ~l~l kali was found along the eastern side of the Ashe Substation, north of Plant 2. ~l     ~     is also seen along other disturbed area such as railroads, highways and gravel pits.
7-3
 
The general health of those plants and shrubs that were active was good. Some small, localized area of stress may be seen on several flightlines but, due to the mixture of healthy vegetation to those exhibiting stress, it would seem better explained by disease or infestation. No adverse impact was evident from the operation of Plant 2.
o 7-4 I
 
Shipley, B.L., S.B. Pahwa, M.D. Thompson and R.B. Lantz. 1980. NUREG/CR-1231.
Remote sensing for detection and monitoring of salt stress on vegetation:
Evaluation and guidelines. Final report, September 1976-March 1979.       Nuclear Regulatory Commission, Washington, D.C.
Droppo, J,G., C.E. Hane and R.K. Woodruff. 1976. Atmospheric effects of circular mechanical draft cooling towers at Washington Public Power Supply System Nuclear Power Plant Number Two. Battelle Pacific Northwest Laboratories, Richland, WA.
7-5
 
dO DOE GRAVEL PIT
+o~                                     +p Pg       lL d
        ~O~
POWER LINE WYE BARACADE                                                               FLIGHTLINE3 ASHE
                                                                              'UBSTATION FUGHTUNE 4
                                                  /        0
                                              ./
                                            ./
                                          ./                 EOF PSF 0                                      FUGHTLINE 5
                                                +
                              ~/
                                  /                      ~0 0
V
                    ~c~/'/
                                                                      ~0 00 0        /                                                   'v Q
                ,/
            / /
        /           ACCESS RD
                                                                            +0
  /                                                                                ~o
,/
BURIAL GROUND 4
SCALE (MILES)
C  .5            I       'I.S         CIRCLE INDICATES PLIGNTLINE STAIITING POINT CIRCLE INDICATES FLIGHTLINES STARTING POINT F)gure 7-1.           Aeria1 Photography Fl tght) tnes
 
COLLECTILf PERIOD  1 2 PUNP    3 PUNP      DRIFT        S04    Cl      Ca      le    Na HOURS        SPN      GPN    GALS/OAY        ~PN    PPN    PPN      PPN  PPN e      22-Nar-89 23-Nar-S9 24 24 456736 456736 328850 32S850 508 506    41 204 203 49 49 20 20 11 24-Nar-89          14    456736                328850      555    45    223        53 25-Nar-89          24    456736                328850      532    43    214        51    21 25-Nar-89          24    456736                328850      538    43    216        52    22 27-Nar-S9                4 5T36                328850      516    41    207        c0    24 24 237        57    14 2$ -Nar-89          24    455736                328S50      590    47 IO 29-Nar-89          14    455736                328850      354      19  177        42    JM 30-Nar-89          24    456736                318850      344      }9  172        4}    17 31-Nar-89          24    456736                328850                18  166        40    17
                                                                                        '39 02"Apr-89          24    45&T36                328850      278      15              33    14 D2-Apr-89          23    456736                315148      250      14  }25        30 03-Apr-89          24    456736                328850      217      12  109        26  12 04-Apr-S9          24    456736                328850      280      15  140        34  14 05-Apr-89                456736                328850      245      13  222        29  12 06-Apr-89          24    456736                328850      }98      11    99        24  10 07-Apr-89          24    456736                328S50      250      }4  }25        3D  12 08"Apr-89          24    456736                328850    '37        13  119        28  12 09-Apr-89          24    4"6736                3288'0      225      12  112        27  11 10-Apr-S9          24    456736                328850      208      11  104        25  10 11-Apr-89                456736                328850      245      13    122        29  12 12-Apr-S'9        24    456736                328850      230      }3    115        28  11 13-Apr-89          24    45673&              328850      242      13    121        29    22
,'Qi    14-Apr-89 15-Apr-89 24 24 456736 456736 328850 328850 269 264 15 15 134 132 32 32 23
                                                                                                    }3 16-Apr-89          24    456736              328850      251      14    126        30    13 17-Apr"89          24    455736              328850      214      12    107        26    11 1'-Apr-89          24    456736              328S50      215      12    208        26    1}
TOTAL                671 HOURS                  9194096 GALLONS AVERAGE CDHC, PER CGLLECTIGR PERIOD          (PPN}=                      21    149        36 AVERAGE POUNDS P R COLLECTION PERIOD=                        24893  1629  1143 S    2745  2144 Ca  - Circ  Aater Analyses by Chen Lab S04    -  Used S04/Ca  of 2.49    when Ca >200;  2.0  when Ca <20D Cl  -  Used Cl/Ca of 0,20 <<hen    Ca >200;  0, 11 <<hen  Ca <200 Ng
          -  Used Ng/Ca of 0.24
    ;.a  -  Used Na/Ca  of 0, 10 Plant Operational Data for Collection Period l A-1
 
COLLECTION PERIOD 2 2 ?UNP      ~ UNP      DRIFT        SO4    C!        Ca  Ng        lla GALS/DAY        ppv  apN    oaq  ooq      ooq HOURS        GPN      GPN
  !9"Apr-89          24    456736                328850      245    !3    122  29        !2 20-Apr"89          24    456736                328S50      232    !3    116  2S        12 21-Apr-89          24    456736                328S50      227    !2    !14  27        11 22-Apr-89          24    456736                328S50      27S    !5    139 33'34 23-Apr-89          24    456736                328850              13    'i17  28        12 24-Apr-89          24    456736                3288SO      214    12    107    26        11 25-Apr-89          24    456736                32S850      208    11    104    25        10 26-Apr-89          24    456736                328850      274    !S    137    33      14 27-Apr-S9          24    456736                328850      234    13    117    28        12 2S-Apr-S9        22.S    456736                312407      308    17    154    37      15 29-Apr-89            0  456736 30-Apr-89            0  456736 01-Nay-89            0  456736 02-Nay-89            0  456736 03-Nay-89            0    456736 04-Nay-89            0    456736 05-Nay-89            0    456736 06-Nay-89            0    456736 07-Nay-89            0    456736 08-Nay-89            0    456736 09-Nay-89            0    456736 10-Nay-89            0    456736 11-Nay-89            0    4S6736 12-Nay-89            0    456736
  !3-Nay-89            0    456736 14-Nay-89            0    456736 15-Nay-89            0    456736 16-Nay-89            0    45673&
TOTAL              238. S HOURS                  3272057 GALLONS AVERAGE CONC, PER COU.ECTION PER!OD          (PPN!o              245    !4    123        29    12 h
AVERAGE POUNDS PER COLLECTION PERIODo                          6696  368    3348  804      335 Ca  - Circ  Rater Analyses by Chen l.ab 804  -  Used SO4/Ca  of 2.49  nhen Ca >200;    2,0  when Ca <200 Cl  -  Used Cl/Ca  of 0.20 shen  Ca >200;  0. 11  shen Ca <200 Ng
    -  Used Ng/Ca  of 0.24 Na  -  Used lla/Ca  of 0. 10 Plant Operational Data for Collection Pertod        2 A-2
 
COLLECTION PERIOD 3
                                                                              ";a    Mg  Mi oo 2 PUP      3 PUNP      DRIFT        S04  Cl GPN    GALS/DAY        PPN  FPN    PPN    0Dg PPN DATE        HOURS        GPN
~    15-Nay-89          0    456736 17-Nay-89          0    455736 18-Nay-89          0    456736 19-Nay-89          0    456736 20-Nay-89            0    456736 21-Nay-89            0    4c&736 22-Nay-89            0    456736 23-Nay-89            0    456736 24-Nay-89            0    456736 25-Nay-89            0    455736 26-Nay-89            0    456736 27 Nay 89            0    456736 28-Nay-89            0    456736 29-Nay-89            0    456736 30-Nay-89            0    456736 31-Nay-89            0    456736 01-Jun-89          0    456736 02-Jun-S9          0    456736 03-Jun-89          0    456736 04-Jun-89          0    456736 05-Jun-89          0    456736 06-Jun-89          0    456736 07-Jun-89          0    456736 08-Jun-89          0    456736 09-Jun-89          0    456736 10-Jun-S9          0    456736 11-Jun-89          0    456736 12-Jun-89          0    456736 13-Jun-89          0    456736 14-Jun-89          0    456736 15-Jun-89          0    456736 1&-Jun-89          0    455736 17-Jun-89          0    456736                              &0      30.1 18-Jun-89          0    456736                              62      31.2 19-Jun-89          0    456736                              50    3  252 20-Jun-89          0    456736                              69    4  34,4 TOTAL                  0 HOURS                          0 GALLONS AVERAGE CONC. PER COLLECTION PERIOD          (PPN)c AVERAGE POUNDS PER COLLECTION PERIOD II Ca  -  Circ Mater Analyses by    Chen Lab S04  -  Used SO4/Ca  of 2.49    when Ca >200;    2.0  when Ca <200 Cl  -  Used Cl/Ca of  0 '0 Shen    Ca >20D;  0, 11  chen Ca <20D Ng
      -  Used Ng/Ca of 0.24                                                      II Plant Operatfonal Data for Collectfon Na  -  Used Ra/Ca of 0. 10                  Perfod      3 A"3
 
COLLECT ION PERIOD 4 2 PUNP  3          DRIFT        804      Cl    Ca  "g  Ha PU"J'PN DATE      HDURS      GPN            SALS/DAY        PPN    ,PPN    PPN  PPN  PPN 21- Jun-89        0  456736                    0 22-Jun-S9        0  456736                    0 23-Jun-89        0  456736                    0 24-Jun-89        0  456736                    0 25-Jun-89        0  456736                    0 26-Jun-89        0  456736                    0 27-Jun-89        0  456736                    0 28-Jun-S9    S.43    456736              115509 29-Jun-89    0.05    456736                &85 30-Jun-89    10.23    456736              140172 01-Jul-89        0  456736                    0 02-Jul-89    20.53    456736              281304 03-Jul-89      24    456736              328850 04-Jul-89      24    456736              32S850 05-Jul-89      24    456736              328S50 06- Jul-89      24    456736              328850        247      35  118    26    18 07-Jul-89      24    456736              328S50 OS-Jul-89      24    45&736              328850 09"Jul-89      24    456736              328850 10- Jul-89      24    456736              328850 11-Jul-89        24  45673&              328850        490      42    189    44  24 12-Jul-89        24  456736              328850 13-Jul-89        24  456736              328850 14-Jul-89        24  456736              328S50 15-Jul-89        14  456736              328850 16-Jul-89        24    456736            328850 17-Jul-89        24  456736              328850 18-Jul-89      24    456736            328850        606      37  216    51  24 TOTAL        423.24  HOURS                5799268 GALLQHS AVERAGE CONC. PER COLLECTIOM PERIOD <PPN)"-                448      38    174    40  22 AVERAGE POUNDS PER COLLECTIOH PERIOD                    21644    1837  8429  1950  1064 Plant Operational Data              for Collection
                        -Period 4 A"4
 
COLLECTION PERIOD 5 2 PUNP    3 PUNP    DRIFT      884    Cl    Ca  Ng    Na DATE      HOURS    GPN      GFN    GALSIW        PPN    PP"    PPN  PPN  PPN 19-Jul-89        24  456736              328850 20-Jul-89        24  4567 6              328850 21-Jul-S9        24  456736              328850 22-Jul-89        24  456736              328850 23-Jul-89        14  456736              328850 24-Jul-89        24  456736              328850 25-Jul-89        24  456736              328850 26-Jul-89        24  456736              328850 27-Jul-89        24  456736              328850 28-Jul-89        24  456736              328850      594    41    217  52    20 29-Jul-89        24  456736              328850 30-Jul-89        24  456736              328850 31-Jul-89        24  456736              328850 01-Aug-89        24  456736              328850      566    48    239  58    27 02-Aug-S9        24  456736              328850 03-Aug-89        24  456736              328850 04-Aug-89        24  456736              328850 05-Aug-89        24  456736              328850 06-Aug-89    20. 45  456736              280208 07-Aug-89        0  456736                    0 08-Aug-89        0  456736                    0 09-Aug-89    15.95  456736              218548      515    25    213    54    19 e
10-Aug-89        24  456736              328850 11-Aug-89    1S.07  456736              247597 12-Aug-89        0  456736                    0 13"Aug"89        0  456736                    0 14-Aug-89        0  456736                    0 15-Aug-89        0  456736                    0 TOTAL        510.47                      6'994501 AVERAGE CONC. PER CDLLECTION PERIOD  (PPN1=            558    38    223    55    22 AVERAGE POUNDS PER COL1.ECTION PERIOD=              3255S  2216  13004 3188  12S3 Plant Operational Data for Collection Period    5 A-5
 
COLLECT'.GN PERIOD 6
                                                                    >>']
2  PGNP  3 P>>>>"Z      DRIFT      S04              Ca  Ng    Na DATE      HOURS        SPN    SPN      GALS/ON        PPN  PPN      PPN  PPN  PPN 16-Aug-89    10,9      456736                149353 17-Aug-89    8 ~ 32    456736                1]4001 18-Aug-89    22.37      45673&                306516      490    39    196    51    28 19-Aug-89        24    456736                328850 20-Aug-89        24    456736                328850 21-Aug-89        24    456736                328850 22-Aug-89        24    456736                328850      484    39    165    39    19 23-Aug-89        24    456736                328850 24-Aug-89        24    456736                328S50 25-Aug-89        24    456736                328850 26-Aug-89        24    45&736                328850 27-Aug-89        24    456736                328850 28-Aug-89        24    456736                328S50 29-Aug-89        24    456736                328850 30-Aug-89        24    456736                328850 31-Aug-89        24    456736                328850      587    63    252  58.9    30 0]-Sep-89        24    456736                328850 02-Sep"89        24    456736                328850 03-Sep-89        24    45673&                328850 04"Sep-89        24    456736                328850 05-Sep-89        24    456736                328S50 06-Sep-89        24    456736                328S50 07-Sep-89        24    456736                328850 08-Sep-89        24    45673&                328850      507    40    168    40 1S.4 09-Sep-89        24    456736                328850 10"Sep-89        24    456736                328850 1]-Sep-89        24    456736                328850 12-Sep-89        24    456736                328850 13-Sep-89        24    456736                328850 14-Sep-89        24    456736                328850      612    54    246  55.3  27 '
15-Sep-89        24    456736                328850 16-Sep-89        24  456736                328850 17-Sep<<89        24    456736              328850 18-Sep-89        24  456736                328850 19-Sep-S9        24  456736                328850 TOTAL        809.59                          ]1093067 AVERASE CONC. PER COLLECT]OH PERIOD      (PPN]=              536    47    205    49    25 AVERAGE POUNDS PER COLLECTION PERIOD                      49571  4347  18'996 4517  2273 Plant Operationa1 Data for Co11ect]on Per]od        6 A-6
 
COLLECTION PERIOD 7
                            "  PU'ip  3 PU"P  DRIFT        SO4    Cl      Ca  Ng  Ha GPN      GPN  GALS/DAY      PPN  opq    oPH  PP>>  PP DATE      HOURS
~
20-Sep-89        24  456736            328S50 21"Sep-89      17.27    456736          236635 22-Sep-89          0  456736                0 23-Sep-89          0  456736                  0 24-Sep-89          0  456736                0 25-Sep'-89        0  456736                0 26-Sep-89          0  456736                0 21-Sep-89          0  456736                0 28-Sep-89          0  456736                0 29-Sep-89      2,51    456736            35214 30-Sep-S9        24  456736          328850 01-Oct-89        24  45673&          328850 02-Oct-89        24  456736          328850 03-Oct-S'9        24  456736          328850 04-Oct-89        "4  456736          328850 05-Oct-89        24  456736          328850 06-Oct"S9        24  456736          32S85D 01-Oct-89        24  456736          32885D 08-0[t-89        24  456736          328850 09-Oct-89        24  456736          328850 10-Oct-89        24  456736          328850 11-Oct-89        24  456736          328850 12-Oct-89        24  456736          328850        520 57 '    251 61.3 29,9
~ 'Oe    13-Oct-89        24  456736          328850 14-Oct-89        24  456736          328SSD 15-Oct-89        24  456136          328850 16"Oct-89        24  456736          328850 11-Oct-89        24    456736          328850      614 37.9    230  56 23.5 TOTAL          475.84                    6519998 NERAGE CONC    PER COLLECTION PERIOD (PPN)=            567    48    241  59    27 AVERAGE POUNDS PER COLLECTION PERIOD=                30821  2601  13073 3188 1451 Plant Operational Data for Collection Period  7 A-7
 
CGLLECTIGH PERIOD S .
2 PUNP    3 PUNP    DRIFT        SG4      Ct          Ng    Ha SPN  GALS/DAY      PPN    ODlf  PPN  PPN  PPN DATE      HOURS    SPN 18-Oct-89      24  456736            328S50 19"Dct-89      24  456736            32S850 20-Oct-89      24  456736            328850 21-0(t-89      24  456736            32S850 22-Oct-89      24  456736            328850 23-Oct-89      24  456736            328850 24-0't-89      24  456736            328850 25-Oct-89      24  456736            328850 26-Oct-89      24  456736            328850                41    209 48.2  23.1 27-Oct-89      24  456736            328850 2S-Oct-89      24  456736            32S850 29-Gct-S9      25  456736            342552 30-Oct-S9      24  456736            328850 31-Gct-89      24  456736            32S850      562      39    227 53.2  23.5 01-Hov-89      24  456736            328850 02-Hov-89      24  456736.          328850 03-Hov-89      24  456736            328850 04-Hov-89      24  456736            328850 05-Hov-89      24  456736            32S850 06"Hov-89      24  456736            328S50 07-Hov-89      24  456736            328850 08-Hov-89      24  456736            328850 09-Hov-89      24  456736            328850      671      38    250 60.6    23 10-Hov-89      24  456736            328850 11-Hov-89      24  456736            328850 12-Hov-89      24  456736            328850 13-Hov-89      24  456736            328S50 14-Hov-89      24  456736            32S850      658      42    244 59.4  26.4 15-Hov-89      24  456736            328850 TOTAL            697                    9550350 AVERAGE CDHC, PER CGLLECTIGH PERIOD (PPN)=            591    40    233    55    24 AVERAGE POUHDS PER COLLECTIOH PERIOD=              47056    31S5  18512 4407  1911 Plant Operational Data for Collection Period    8 A-8
 
COLLECTION PERIOD 9 2 PUHP    3 PUHP    DRIFT      SO4    CI        Ca  H"    Ha SALS/DAY      PPH    PPH      PPH
                                                                              ~o"    op'I GATE    HOURS    SPII      SPA
    !6-Hov-89      24  456736            32S850 17-Hov-89      24  456736            32S850 18-Hov-89      24  456736            328850 19-Hov-89      24  456736            ~"~850 20-Hov-S9      24  456736            328850 21-Hov-89            456736            328850      723    40      266 65.2  25.5 22-Hov-89      24  456736            328850 23-Hov-89      24  456736            32S850 24-Hov-89      24  456736            328S50 25-Hov-89      24  456736            328S50 26-Hov-S9      24  456736            328850 27-Hov-89      24  456736            328850 2S-Hov-89      24  456736            328850      555    26      232  55  17. 9 29-Hov-S9      24  456736            328850 30-Hov-89      24  456736            328850 01-Dec-89      24  456736            328850 02-Dec-89      24  456736            328850 03-Dec-8'9      24  456736            328850 04-Dec-89      24  456736            328850 05-Dec-89      24  456736            328850      321  18.5      178 41.5      14 06-Dec-89      24  456736            32SS50 I  07-Dec-89 08-Dec-89 09-Dec-89 10-Dec-S9 ll-Dec-89 24 24 24 24 24 456736 456736 456736 456736 456736 32S850 328850 328850 328S50 32S850 12-Dec-89      24  456736            32o8850    516      14      178 39 ~ I 12.7 TOTAL                                    8878948 AV RAGE CONC. PER CO'L CTIG'H PERIOD (PPH)=          529      25      214    50    18 NERASE POUHDS PER COLLECTIOH PERIOD=                39140  1823    15804 3716  1297 Plant Operational Data for Collection Period    9 A"9.
 
COLLECTION PERIOD 10 2 PL'NP  T PUNo    DRIFT      SO4      CI      Ca,"9      Na DATE    HOURS      GPN      GPN  GALS/DAY      PPN      PPN    PPN    PPN  PPN 13-Dec-89      24  456736            328850 14-Dec-S9      24  456736            328850 15-Dec-89      24  456736            328850 16-Dec-89      24  456736            328850 328850
                                                            '6 17-Dec-89      24  456736 18-Dec-89      24  456736            328850 1't-Dec-89      24  456736              32SS50      644              195  46.1  14.2 20-Dac-89        24  456736            328850 21-Dec-89        24  456736            32S850 22-Dec-89        24  456736            328850 23-Dec-89        24  4"6736              328850 24-Dec-89        24  456736              328850 25-Dec-S9        24  456736              328S50 2b-Dec-89        24  456736              328850 27-Dec-89        24  456736              328850 28-Dec-89        24  456736              328850 29"Dec-89        24  456736              328850 30-Dec-89      24  456736              328850 31-Dec-89      24  456736              32SS'0 01"Jan-90      24  456736              328850 02-Jan-90      24    456736            328S50      427  . 27    241    59    14 03-Jan-90      24    456736            328850 04-Jan-90      24    456736            328850 05-Jan-90      A4    456736            328S50 06-Jan-90      24    456736            328850 07-Jan-90      24    456736            328850 08-Jan-90      24    456736            328850 09-Jan-90      24    456736            328850      564      24    199    50 16  1 10-Jan-90      24    456736            328850 11-Jan-90      24    456736            328850 12-Jan-90        24  456736            328S50 13-Jan-90        24  456736            328850 14-Jan-'90      24  456736            328850 15-Jan-90        24  456736            328850 16-Jan-90        24  456736            328850      163    15.3    138    35 13.5 17-Jan-.90      24  456736            328S50 1S-Jan-90        24  456736            328850 19-Jan-90      24  456736            328S50 20-Jan-90        14  456736            328850 2t-Jan-%0        24  456736            328850 22-Jan-90        24  456736              32S850 23-Jan-90        24  456736            328850      138      12      95    24  8 5 TOTAL          1008                    13811697 AVERAGE CONC  PER COI.LECTION P RIOD (PPNI              387      19    174    43    13 AVERAGE POUNDS PER COLLECTION PERIOD=                44585    2172  19990  4931  1527 Plant Operational Data for Collection Period l0 A"10
 
CDLLECTIDH PERIDD 11 2 PVNP      PVHP      DRIFT      SD4      Cl    Ca    &#xc3;g    Ha HDVRS      SPH      SPN    GALS/DAY      PPH    PPH  PPN    PPH    PPH 24-Jan-9D        24  456736              328850 25-Jan-90      24  456736              32SS50 26-Jan-90      24  %56736              32S85D 27-Jan-90      24  456736              32SS50 28-Jan-90      24  456136              328850 29-Jan-'90      24  456736              328S50 30-Jan-90      24  456736              328S50      17D    8.7  122    30  10,1 31-Jan-90      24  456736              328850 01-Feb-90      24  456736              32885D 02-Feb-90      24  456736              328850 03-Feb-90      24  456736              328850 04-Feb-90      24  456736              328850 05-Feb-'90      24  456736              328850 06-Feb-90      24  456736              328850      204  10.1    '96  24  10.9 07-Feb-90      24  456736              328850 08-Feb-90      24  456736              328850 09-Feb-'90      24  '456136              328850 10-Feb-90      24    456136              328850 11-Feb-90      24    456736              328850 12-Feb-90      24    456736              328850 13-Feb-90      24    456736              328850      330      15  135    33    11 14-Feb-90      24    456736              328850 15-Feb-90      24    456736              328850
~    16-Feb-9D      24    456736              328850 17-Feb-90      24    456736              328850 18-Feb-90      24    456736              328850 19-Feb-90      24    456736              328850 20-Feb-90      24    456736              328850      126    9.2    97  22    8.8 21-Feb-90      24    45673&              328850 TDTAL            696                      9536648 AVERAGE CDHC, PER CDLLECTICH PERIDD    (PPNI=            208      11  113    27    10 AVERAGE POVHDS PER COLLECTIDH PERIDD=                  16498    855 8945  2167    811 Plant Operational Data for Collection.
Period 11
 
COLLECT!ON PERIOD 12 2 PUNP    3 PUNP    DRIFT      S04      C1      Ca  Ng    Na GATE      HOURS    SPN      GPN  GALS/DAY      PPN    PPN      PPN  PPN    PPN 22-Feb-90      24  456736              328850 23-Feb-90      24  456736              32S850 24-Feb-90      24  456736              328850 25-Feb-90      24  456736              32S850 26"Feb-90      24  456736              328850 .
27-Feb-90      24  456736              328850      145            140    35    11 28-Feb-90      24  456736              328850 01-Nar-90      24  456736              328SS0 02-Nar-'90      24  456736              328850 03-Nar-90      24  456H6              328850 04-Nar-90      24  456736              328850 05-Nar-90      24  456736              328850 06-Nar-90      24  456736            328850      145    8.7      99  24  10 ~ 5 07-Nar-90      24  456736            328850 08-Nar-90      24  456736            328850 09-Nar-90      24  456736            32S850 10-Nar-90      24  456736            328850 11-Nar-90      24  456736            328850 12-Nar-90      24  456736            328850, 13-Nar-90      24  456736            328850      173  13.9      127  29  12.6 14-Nar-90      24  456736            328850 15-Nar-90      24  456736            328850 16-Nar-90      24  456736            328850 17-Nar-90      24  456736            328850 18-Nar-90      24  456736              328S50 19-Nar-90      24  456736            328850 20-Nar-90      24  456736            328850      250  10.6      121  27  17. 6 TOTAL            648                    8878948 AVeRAGE CGNC  PER COLLECTION PERIOD (PPN)              178    11    122    29    13 AVERAGE POUNDS PER COLLECTION PERIOD=              13195    81S    9012  2128    957 Plant Operational Data for Collect1on Period      12 A-12
 
0oaite!re
                          ~ kv ~sk NAN(FO((D M(wr(FDRO! OCY STAT(ON 55  SSILCS  1,  W    OF SIOILAISO, UAMUSCTOH                                              Harch 1989 CLIMATOLOGICAL DATA                                                                LATITUoc lcs      sl',    ~  Loacllaloc>>ss            54 w      cacTA(loa (Esovao) 755              rect TCMPCRATUAC              (~ P 1      FT.LCVCL)                  P II C(P              ~ 15      UIH0 (SO PT LCVCL(                                                              FRONTS ANO MI5C PHCNONCHA OCCSCC OATS                                  V J%a                        %CAN OUS                                              1        ~ OT ~ I V          ~ ASC  45            I            ~
V I  Ceo I                              ~ ss                    I I          Tlvaa Or Faeatkl      1 ~ saki  ~ I JJC
                                ~ I            J                          J            Jvv    V4%              v  5                                            s
                                                                                                                                                                                            ~ s'sta AFTCS TUC IOTkfsoas s
1 5'5                        J  Ia        S a% CCf            ~  v    ~ ~
                                                                                                                    ~  v      4                          s      ~ J II V
                                                                                                                                                                              ~~
ICOLO t10%fl kaa V'%ra%          Ivkkv ~ 14% f1 4%
                                              ~4 4V J
                                                                                        ~  v              1 V    V
                                                                                                                                                      ~ V J      ~ ~
                                                                                                                                                                            's * ~
                                                                                                                                                                                  ~~
5                            4%1                              V                                                                          ~ ~
5      4A      48                                            lo      II        15            15        ll    I    IS            14 35          23129 -11                      36 0              .08 .9                    T IN            6.5!15              HW            85    I  61            10          F      GL 5
5 l
130 135 18124 1-15 14:24 1-15 i 41 0 I 41          0      .07 11.8                2.11!IM 6.1 14 1.5 (E            4.2116 NH'WI SE 75 56 1254 1379        '0 I      7    I I
F 133            20i26 -14 I 39 01                                  T            T          T INW          6.2117          I NW              65    !172        i 10        I
  $      33            29 131 I -9 i 34 i 0                            .23            .4        T INW        I  4.8 16 I NM                        91    1  83      I    10        F      GL                KFR      2115
  ~    16Q            271441 +3! 21 0                                                            T    IM 16.0 30!SSW                                76    1358        I                F 54            321431 +1 22              s                                                    (E i 3:8 18 WSW                              60    .335 56            38147 i +5 I 18 0                                                                iNW I 5.5 17;. NM                            63    ! 301 i              9    !
50      !    40145 I +3 I 20 0                                .31                            !NM I 7.9(29 'SE                              89    'I:103 I 10                1  F                          KFR      1900 Io 64            I    381511 +8 I 141 0                                                                IE      I  5.0'125        ! SE I              77 1296 I 6                    ! F 11      67      I  42154 'N'll                s    (1!              .24    !                      (M i      6 1123          SHM s              70 (370 l 4                    I OL                          KFR      0310
'5!55 65      (    44154!+11 I                    ll      0      .08                            '.SE 1 4.6136              I SW I              74 '310 '
                                                                                                                                                              '237;                                                            0500 i  41 1481+4 I 17                            0                                      :M s10.5127                IWSMI 60                                      9                                  KFR Il!56
                                                                                '02 34 i45 I +11 20                          0                                      :SW!      6.9!24          (MSM. 57:308                            !      6    !  A      AU (s;50            I    29!40          I    -4! 25              0      .02                            !H      !  2.4110          .H ! 77 !199                          ',  10 i I~    143            33i38! -7                      27        0      .22                                HM I    6.6120:HNWi 91                            . 52      !    10 17    '57            27 (42 1-3                    23        0                                          S    ! 3.8(21 ISSXI 69:355                                    I 8 I          t I~    160            42    51            +5        14      0 1.04 i                                (W        8.6!29 NH 63 380                                        I      8    I Is 160                36    48      I    +2        17      0                                        iw        5.4 17 ! NK 51'386                                      I    11 co 160                28    44            -2        21        0    1.05                                IE        2.7 14 SE                          60 423 ~                  8 51 164                39    52            +6        13        0 .01                                    iW        9.5 42 MSW 63 '416                                                                                          10 55      56            35    46            -1        19        0                                          NM      4.2 23 WHM 50 ,285                                          10 55      56            34    45            -2        20        0                                          HM      5.6 18 NM 55 :348 54      56            37    46            -1        19      0      .05                                        4.1 14 !MNM 9 . 2 55    '62            38 l50              +3        15        0      .14                              iK      I 5.1123          (WSMI                7    .310                                                    KrR          00 cs      57            37 i47              -1        18            I                                          I                  I              I 57    60            46!53                +5        12101                                            ISX 114.4 141              ! SM          I  52 .245                  10 63        !  41 (52          s    +4        131 0        (                                  :X I 7.0!26                (NW I              46 467                    5    I
  >>      57      !36'46!-2:19'!                                          T        s                    IM    '.0:24                X I 46 280: 8 so    157
                    ~
28 42          !    -7;      23        0 I                I          1          S    .5.3'23                5 Mi                    298
  >> (60            '0.50              '.  +1 i 15            0 I                .          i          M      9.      33          M          I            492 !                  I
  'IVV                                                  58      0 11.5613.1
>>I 153.933.                7                                                                                      6.2
~v                                                                                                  IsACCIPITATION IINI                                              ss  1      WsscacssE.'I* slo      Arl    11  vsco    IN  c    lr (l( Halts ~ oraaawssc                  ~  Fatlnaa. Tac ekslr                      feral    raa  TUC  Ssoata                                    1.56                      1 ~ ISJSI,                  ~ I ~ ~ Ls'Vla ~    Ovs't I%VV*ITrtas40 I ~ ~ aov lais%I ~ ssf To                        vl ~ ssltssT                                                                                                  Av kvaoak                    ~ I ILOVII~ ~ IOW
  ~ J ~ ITIC ~ 'tkssoka    ~ TIVC                                                  ~ EFJJTlsac      tsov a01vkL                                +1.16                        ~ ~ Ov sf                  ~L      ~ latkaf LIS1111S ~
1(>> vws          I~    calvvas      7 ~ ~ ~ a%orts
* Takcc.
                                                                                      ~ ACJ TEST I ~    Sl aal                0.31            4%        9                  ~ ~ reo                    ~  I I IF, I I~ I%4W
                                                                                                                                                                                                                ~    1
~ (11 TssC Lka ~ LtT IcoL 11) I ~ T1E valT 1st ~                                                                                                                              ~ L ~ 4lklC                lc . Iac carstkls
( fo stssofc ~ ac ~ Ikv cAL41lc                    r tv    5                        ~ VSS ~ C1 ~  I ~ ATS WS'till                                                            ~    I I ve c                        ravs ~ lasfesss TCMPCAATURC I Fl                      5  FT. Ltvtl.l                          ra*et    0%  vokc            19        ops    01 skeet                                      ~ AROMCTRIC PAC55URC                ll~ .I kvlkkaa rea TV ~ vearv                                                              o.ol oa sssat                          0.10  0%        vekt                    JVESJ ~ E STJTI0%                                  s
  ~ CSJITUIC FIOV 101VJL                                          -0.6                o.lo  01 veac                  5      I.oo ea          ssokc        p        1savtat      ~ EA LCTCL            3p 36            I~
  ~ II%EST                        67                    ~ I                                  5HOW. (CC        PCLLC75 (SLCCTI (ISCHCSI                                Le%Est Slk        ltrtl            29.58 I~
LOWEIT                          14                  ~1                            T4TJL FI ~    TUE VI%TV                                        3.1                          5OLAA RAOIATION ILksaltTSI
  ~ vvsta      or    4JT ~ wsTss    ~                                                ~ ackTtsr    Ia ak ssovasl                                                      LOWEST'2 JVEJJIC      OJSLT T ~    TJL vks sa IA ~ clow                                                                ~ AEATEST    41 ~ JOS                2%7                0%        2          ~ AEATCJT      4AII,T                  492 VAS,    SO ~  I ASOTE                                                                                WINO      lsa rr. Lcvcl.l                                LEAST OAILT                              52          0%
      ~ ss1  sa 41    ~ cLow                                                        AUEAAIE IFEE ~        lvsvl                                      6.              MISCCLLAHCOU5 HUMOCR OS OAY5 VS ~    0 ~  I SELOW                                                          ~ trk1TUAE Faov 101VJL                                          -2.4            CLEJS                                too HCAT(HC OCOACC OAY5 Isk ~ c OSor(                                          FEAI    IIIT 42          raov          'W W            0%                    FAITLT CLOVIT                  9    Tavaoaa
                                                                                                                                                                                                                      '7+
tarsi      ~ 01  Tvt VIVTss                                    658                      AVCRAOC P5YCHROMCTfllC                                                    CLOV4T                        17    ovsr OATA'2Q
  ~ EFAJTIIIC        FIOV ls ~ IvkL                                          s      oaf avis      tert          43        war avis 14t(                39                                RC(    HUM. CXTACMC5 (            1 SCJI ~ IJL TOTAL I ~ Satt JVLT                    II                              %EL    1VV    ltl                    ~ cw FT Ios I                              III 41E  IT                          ~  I
    ~ CJIOUAL      Ocrkatvac raoss aeasskl                          152                  +It%arcs      LATEST Or ICTCSJL OATC ~                                                                              ~
  * ~M        (COO~Co        ((    751 ssosl svssksa          avs, Meteorological Conditions for March 1989 B"1
 
CBatIeIle                                                                            ((AN(TORO (e(KTEOROLOGY STATION 25 eelLSS I, V, Ot SICILANO, VAsslsafos
    ~      CLIMATOLOGICAL DATA                                                            LATITUOC Ato SA', ~ Colic!foot I (50 Sa'>> CLCYATIOO (CSOVNO( TSS                                            TCCT April          1989 TCMPCRATURC(4t                2  PT.LCVCL!                            P R CCI P                VINO (SO IeT                  I  CYCI.!                                                  SeRONTS ANO MISC, IeNCNOMCNA oaaaac cATC I                  Jvo JVO                                ~ CAN OUS                                                    Sorts
                                                  ~ kst                                                          I e
45                ~,
fleets Ot tlosfkL aallklcl JNC J                                                    v ~14        0                                                                                  leTCI ktTCI TeeC NOTATION ~ at ~
It        v <<V e
J          ~                                                                          ~ V 4 '52                                                              ~ V kso>>ra IrJar tsosrl sI
                                        ~ ~                                            0 v V                                          V                                                            MOLS  tsosrI J            V ~                                            V                      SV~ 0~ ~
I Ls 0                                e
                                                                              ~
g V  ~
s                  ~ ~
V    0 s            v~    ~
                                                                                                                                                                                            ~
I        2                          5      SA      ~8                                              ~0 I            It    I    lt        IS    I  Il      is                lt                              lv 56          6 46i -
I              I            0                                                      I        7.                        I I                I KF!I 22 0 58        37148- ! 7I 0                            I                                      I    Wl                6          IW ! I 4 59 59 35I 47i-i4;-:          i        I i      I I                                      I i
I        o
                                                                                                                            ~
o
                                                                                                                                            !
o!q lid        !4          I I                                            !            ~
                                                                                                                                                                                    !
73        52      62! +                                                                  I        I        <<dd!
0    I              47      63I+12! 2              I  0  I                                              W!          o  536WW                      55  I            I                i l63i+:                  IO                                                        l!
    '!
T I      75 68 5
44! 55i+ 4I 9 I 0 I
I I
I    M!          op\                    W      2 e
I 4    I i
                                                                                                                                                                                              !
5    I  67!39I 5 I+ ! I                                    I                                                          o                ~  ~      ~
Io        69 I4 I                  '+ d! I                  I                    I                            I        t  (T el(        5        ! '2!e  I      7 I 75 l36 I 56l+ 4i 9! 0                              I                                        iH      i        ".4:WNW!4                            !            '
77      !  41    ! 59!'+ 7'              I  0                                                                              5 '5            40    I 506                4 3      0  I                                        IW i              4.6 3'WNWI38 ! 54
                                                                                                                                                        !;
                                                                .'pi44I62!+0:
  !4    !  80      !  48    i 64!+12!            1! 0                                                :  NW'.            6.0 30 'NW ! 38: 368 '
is l4 I  71 150 !            60I+ 8'.
                              '5'                  5 ! 0      !                                          NW'13.4 35                        NW      !  40    '77          '.
9 6 I                                        I      !                                                                                                  5 73        46 160!+ 9I 5                    '. 0                                            iW      I        6.2'27.W l26 i                        602 '
  !~        79!41              60!+ BI 5              I  0  I                                        ! NWI              5.8: 16 WSW 31 '514                              i 4              i OL I~        77      e 54 66 I+14 0                        1  I.OZ                                    I W      I        6.9i 49 W                      54 ! 452          '                !    OL So        75        50 62!+ 0 3                        0 I.07                    I                  I        I        o. .'5%W 55 I 6                                  i                !                              KF          55 2      47 54 + 1 11                        0            .07                            I W      I        4.7i 15 %5W 67 i 307                              I      9 22        65 140              52-        1 13          0                                            I S      I        6.4e 22 5E                    45    '523 I 7                      !
67 138              52 -      2 13          0                                            IH I 4.9; 18;EHE                                  56      547              3        I 72 l44              58 + 4 7                  0                                            IN !11.6'35 SNE                                  45 62 I46 154I-                  lill 0              I.35                                      NW. o                ll
                                                                                                                                                                . 476
                                                                                                                                                                '219 10 Sa        60 !4 l53!- 2!12 66 l48 I 57lt 2: 8                        I  0:.28 l.04                                    I NWI 4.7'17 HNM IN      !      3.5 14NW l74 43 SE                74 8
391 3          1:9 9
I
                                                                                                                                                                                              !
A, T,OL F
68 45 ',56:+ 1! 9                        '0                                                                  7.5:24 ENE! 52 So 72:41 I
l56.':j
                              ~
                                      ~
9  '0
:
(N NE(
                                                                                                                  '.4    II R (
18    H          145 438 645
                                                                                                                                                                              !      8 0
e 21                                                  !        !
254l          !0.84
  ~ VV Jvl 69. 7 I 43.
1                          I    T IeRCCIP!TAT(ON IIN) 7.4.
                                                                                                                                                                        ~ elt
                                                                                                                                                                                    .4 Ives
                                                                                                                                                                                              'll eeCNA  'eoTATIO>>5 VSCO IN CQ            lv
(!!    SNLclo ofeecarl ~ t satclteto Teat oaeLT                                    vovka tos Tsc <<oars                                                                        J IJIL OVV<<kIT tC ~          Ill  IS TIOQ QIONIONT T4 Qll~ IONT                                                                                                0. 84                kv ~ Jvaoa        ~
                                                                                                                                                                                                                  ~0
                                                                                                                                                                                                                  ~0  ~
OL0'seal 00 ~ T SLseees ~ ssor
                                                                                      ~ C ~ JITIIIC r ~ Ov                                              +0.4 0 JCITIC Sf kaok1 ~ TIQC ~
I (2! <<v is COLN ~ 0 5 ~ scsorcl a vases.
Noa<<JL                                                              ~
t
                                                                                                                                                                                      ~  Ovlf                    ~L    ~ llfJNT Llcsfseso
;(Sl fsa Laslaar lcoa.( ~ Ill fst Vair mete                                          ~ atkraar i ~    sl  sss.                  I    0,37          os    25 26                        to ~                    ~0    Olltfl  ~ 0 assr Q,              la              lc Ica cavsrJL ~
~ To ~ CNOTc        1st    laaee CAL41ec      I  cQ 2                                NVVOCI Ot Okf ~ '>>ITNI                                                                      I~
                                                                                                                                                                                      ~  0Lk lvaeC                    T ~ Tsvaltsaf01<<
TCMPCRATURC              lltl 5 rf,    LavCI. I                            Takct 41 QOIC                    C        i o.ts 01 eclat                                        OARONCTRIC PRC55URC Ua I Jrtaklc roa vsc e lars                                                            0 Ol 11 <<lac                              ! 0.50 01 eclat                        Avt ~ Jlt 'Jllre ~ I
  ~ CtklTVIC        talv NOJQJL                                                      0,10 01 QOJC                                    ~ .Oo 01 eeoaa                    Ieelscsf ~ ck LcvtL                                    I ~ "I Illatlf                          0              oee                                        5NOW.!CC PCL'T5 (5LCCTI (lacs(S!                                        l,l>>CST SCl Ll'etl,                                    I ~I Ls>>aor                                                                              TOTAL tla TNC Vosfe                                                                                SOLAIC RAO(AT!ON ILANSLCV~ I SVQOCI        ot  OATS>>ITNI                                                        ~ IcATtsf I ~    2 ~ eeov10    ~      ~                      ~ I                kvtskct            ~ JeLT    forlL Qkt 52      ~  I ~ CLO>>                                                0    ~ atkfclf ls ~ I~ I                                            ~s                ~  ICkflltSJILT                                  d      I  ~ .
beats    00 01 JOOTC                                                                                  VINO            ltl tT      LCTCL I                      LCJIT ~ JILT                                              ~1 Qe ~, 55    01  ~ CLor                                                      kvtaklc ~ rcco (Qasl                                                                  MISCC( LANCOU5 NUMIICR Ot OATS Qe ~,    4 ~  I OCL0>>                                                        4tt JITeelt ~ IOQ 101e                                                            CLtka                                      tos
                                                            ~ Sot!                            lellT                                                  ~I                tk ~ TLT CLOVST k'Clc NCAT!NO OCORCC OAY5 IOJSC                                                                              TIoee            I                                                                                TNVsoCS TOTJL roa vsc eeosrs                                                                    AVCRACC P5YCMROVtTR(C dATA                                                    CLOVOT                                    Ovlf
  ~ tsklfvat        TIOQ NOIQJL                                                      Ssv svao    i4ri    ~
I                  !var Oval I4t!                                                  'RCL. NUM ~ CXTRCMC5 (            !
SCJJONJI        TOTAL I ~    II~ C JVLT    II                                    ICL    IVQ III                                ~ ar tv Cori                        Ieceetlf                                    ~ I stkloeeAL ~ CSJATVIC tsoee NOIQAL                                                    00CSOTCS      LkTtsf Ot SCTtllL OkTCO                                            Lo>>CST                                      ~s                  17 OM I500425 (I TS) eesaaaee<<JJSve<<L Meteorological Conditions for April 1989 B-2
 
Qaarreae                                                            HAS((TORO METEORO( OOY 5TAT(ON 15 SNLCS II, N Ot CICILAao Vksala<TOO CLIMATOLOGICAL DATA                                                                                                                                                        Iiaay 1989 LAT(lvoc cca 1< N..Loac(fvoc 1150 so'CLCTAT(os (<aors ol Tss                                FCCT TOIPCAATUAC(tf 1            fT.LCVC(.l            >>AC C(>>          aa  j    VINO ($ 0 PT LCVCLl                                                      PAONTS ANO N(SC PHCHONCNA
                                        $ 54(c okfl I rva                          rc*IC Ouo V                                                                                  ~ OTCI 4        HAEC $ $      p  I        ~
4        10 e                  I                I        ~ I                ~    ~  P    IIUCS Ot Fkt@TAL FAII<<4 AIE I                                        Vtr1                    I                                            v~,asSv 0                                      4                            4 1 r        r I
gaea        ~ ITCI AFTCI II< IOTATIeea        It ~
I I ~0I Iv VJ 5                  J              P vV                                        Ic<LS Faoafl kao rt1 Ivkav tetefl 1 1~
                                                          ~ ~          V Iv V v
                                                                                              ~ ~
V
                                                                                                        ~
V I!            V 1
J V~
Ia  ~
V~~                    ~ a                              ~                                  V        a        ~V~ ~
                              ~  va                            r                    ~ ~                                  1 1      e J        a    ~
4A    ~8                                    IS  f              111 IS            I~  I  1$            I~
71      55    6      +71 2          0    0. 12                                                    IM            7 74      53            +111            0                                      W      6.9 301 WNW                  47      4 79      45            +5!        3  0                                      M      5.9 2 ! NW                  43      627              0 81      51    66+8              0  1                                            3.5 21 W                      9      67
  $      84      52      8+9i            0  3                                I N        3.31 151 NE                  45 I 543                          OL 88      56    721 +131          0  7                                INW I      6.4 33! NW                  50 I 523                  9      OL 1      85      62    741+ 5i 0                                                INW 17                                    6  1          i      4 85      57    711+111 0              6                                I W i 4.3                17!MNW          37 i 630                  3    I 76    I 58      671+ 71 0              2                                INW I      7.8          30!MN'                                  10 10      O8      44      561    -  4!                                                                                    -dd    i 11      69      42      56!-      41      9  0                                'Wi                                            I                        I 11      7      45      5'-          I                                          I        i4        I        1            4 ls      76      47      621+        !3        0                                I N        5 1<      77      51    641+      31          0                                IN 65                      51 82      49      66+        5! 0        1            I                    INM        6.5          29!    NW            I  655 77      54      66 + 4 0              1                                  it!M      12.4        37iWNW          34    I  539110 I                  !4      i  C    Id      I          I (0                                                                                                                              !          I 1$
10 0  0 11
~C 6              6-7                  0  0 0                                  IW 1574            45      60    -  3      5  0                                  !NM        7.0        361      NW      40    I 687            3 1$                                  I    5                                                                              4
$$    6                54    -    9!          0  0.08                          IW      152            5!NM                  ~  5              9      T 1$              4      5      -          3  0  0.01                          IN I7.0                2    IN        65      3651 9 68      49      581- 6            7 10 10.01                                      '5.0 19:                      64    '90
'4    78 88 44 50 61-4 69 + 3i 0 4 0 NW SE      I3.9 14.8
                                                                                                      '9:        SE SE      57      712 I 1
                                                                                                                                              ~    7
                                                                                                                                                          'I I                                                              S                i  22    I NW      43 . 699 I 4
~ VU                                    141 34    0.59
"'94        548,5L                                                                          7.1                                                5.6
~HI                                                                            PRCCIPITATIOH (IH(                                          Il      ~H    N  4CNA NOTATE Hs            SCO IH CO      II (11 VICES< ~ TIEIHI~ c        stc<IFIEV, TIE 0AILT            GAEL I1TAL F41 TIC UtafN                                                                1    IIIL
~ VAIUAIT a<Iles I ~ Faev Ul<<I<I~ Te UI ~ II<IT                                                                            0.59                        kaetek
                                                                                                                                                                            ~4 ~
                                                                                                                                                                            ~s SLOHI ~ O <<ST el<<<I ~ < Seer
<<<ITIC STAIOAAO TIVE                                          4<kkaTVAC      Fatv ~ 01lkkL                            + .06                    ~    ovaT                ~ L ~ ~ I<TAIT LIIITIIN    ~
(11 eTI ~ II c4Lvllaa 1 ~ 0 ~ cIOTE ~ A Tak<E,                                                                                                                                      IIIIII<
(ll  TIE LAN<LET (C<L,(of I ~ ~ Ic OIIT v<C ~                ~ I<AT<sf    Ia  $ < ~ 11 ~              0.37 <<22-23                            ~ l F<4
                                                                                                                                                      <lkcC
                                                                                                                                                                          ~1 ~              Sacr IC ~ I ~ E CIT ~ ILLS IO ~ CIt<C 41< <IAU CALtalC CU 1      I                        IVU~ <1    tt  Okf ~ lllTNI                                                      ~    Ive 1 E              I    Iaeael ~ Sf<kv TCNPCRATUAC (<tl 5 n, I,EVIL(                            Tekcc 01 U<1c                  lp          ~,5' ~  I lk<1c                              ~ AAONCTRIC PAC$ 5VAC Il~ .I krlek<< tea Iac tata    ~                                      4.01 ~ I  ll~ kC                          4.so 01 roke                  1 r \ 1 <<E ~ I1 TI ~ I
~ EFAITVIC ~ aev      Itavkl                                  0,10 ~ I U ~ IC                            (,00 01 UOIC                  al<IEIT SIA LITCL                                <~ I el<I<ST                                    ~ I                          SHOH, 1CC PCLLCT5 ISI.CCT1111<1($ 1                              LOP<ST SEA LEVEL                                  ~ I      17 Ltv<ST                                    ~ I                  TOTAL Ft1 TIC UOITI                                                                    5OLAA AAO(AT(OH Ilka ~ LEIS(
aav ~ Ca Ot    OAT ~ HITNI                                    ~ ICAfCST    Ia 1< NOVI ~ I                          ~ I                1' Eak<C 0 ~ ILT TOTAL 534. 9 vk<,  SE 01  1<lor                                0      ~ IEAIC~    I <1 ~ atl                                ~ I                ~ 1<SF<ST        OAILT 0
Uks, Io  ~ I Aeovc                                0                              VINO        ISO FT LEVEL I                        LCAST OAILT 50      "          9 j
Ula, I ~ I ~ ~ L<r                                        AVEIA<C SFCI ~          Fvkel                                                N($ CCLLAHCOU5 HUNCCR Of OAY5 Ula, 0 <1 <<Ltr                                      0      ~ E ~ AITVAE    tat<<    IOIHAL                                            ClCAI                              F4 ~                    0 NCATINO OCOACC OAY5 Iek<C ~ set              1        ecka <v<T            4      ~ I~ lk                    ~ I                tkaflf Clev<t                      'lav10 ca TOTAL t<1 TIC v<1TH                                                AVCAACC PSYCNAONCTR(C CATA                                            CLteaf                              ~ Vk'I                  0
~  I FAATVIC F1<v    141UAI,                                ~ af eels(OF(                              rcT <vis    )OF                                      ACL HUN CXTRCHC5 ($ 1
<EAS<IIAL T<TAL        IIII~ c JOLT    I'I                            avll (cl                          ~ Cr  kf (451                  Iles<et                              ~ I
~ cks  ~ IAL ~ ESAI'fva<  taav atIUAL          ~ -300          < ~ Ea ~ 'IE ~ LATE<I ~      I ~ cTcakL OAT<1                          car<st              "      14        ov                    13
  ~N      ($ 00855 (1 111 kite< k<<alkaa, ella.
Heteoro1ogica1                          Conditions for                              May 1989 8"3
 
HCHTN CBattelle                                                                                  HAN)TOAD )o(STTSTDROLOCY STATION 15 vlLcs N, w or otc>>LA>>e, wksNlscTos                                                            June 1989 ZLlhlATGLOGlCAL DATA                                                                    LATITVOC kca SC            N      LSOOC)TUOC      ('ll    SC    W    CLCYATIO>> (4OVAO) TSS IC CT TCVPCRATllRC                  (4P.S PT. LCVCL )                            PRCC(P            r4 5      VINO (21 PT LCVCL)                                                                  PROHT5 ANO M)5C, PNCNOMCNA CCCOCC CATS                                rva                          I PCAN CU5 v        ~ 4TCE v                                                      Jva ekcc 45                                                                                                                                            t taastkL oosskocs kac
: ~
v t  ~
                                                                                                                    !
                                                                                                                        ~ ~
V r
oo V
                                                                                                                                                                                              ~
ss
                                                                                                                                                                                                    ~        rooots ~
                                                                                                                                                                                                            ~ ores  ktTE>> Tsc sorkTIO<<s                'to kall          1~
                                                                                                          ~
Sv        rE
                                                                                                                                  '
a
                                                                                                                                                                                              ~
Ltoao  taosrl  A<<0  v>>o ~ lwkov ooo<<T1 v J                      ~ 4~s
                                                                                              ':
                                                        ~ I sal~                  o                                        v  ~
2 ~      a                                                                    ~ ~~
Js    ~  1      4        v                                    ~
                                                                                                                                                                    ~ ~
ECA            48          T                              lo'1                  12  I    12                o Is            14      )
S'.2
                                            ~          5                                                                              ~                      )        ~
ll 1          1            2                (                                            1                                      1                              1 94 l57 !                76!+10!                                                                                              27 I Wi!!T": 34! 708 1                                                        0 i            i          i                                                                                                    1
                                                                                                                                                                                                        'U
                                                                                                                                                                                                        !
1! 90 l69 l80i+13:
1 i86 l62 !741+ 7.
0 0
15!
9!        T
                                                                                              !
I          .
                                                                                                                      ''.8 W I
                                                                                                                    )tif!13.9 43'NE 7.0      23 I HHci 32 i 665 I      3      I    41!
2 3    '0 4 (90 (59174.+ 6                                                        9!                                                            28:NE                  271734 0
I: W'.6
                                                              ~
I          I                                                  I                          i        1 5197              )55!76!+                        8'.        0:ll                                                  M)6.                33)NW i                      !736          i        0 i 195              66      )80'+12!
                                                              'o    0        15!                                                              39 'NWI 22! 740                                      0
                                                                                    '!
                                                                                              '.
      ~                                                                                                                                                                                  I            ~
T    I            I                        o+                            5  ~                                ~
NE  ~
3.0      20 MNW'4 . 737                                      0 i
                                                              'I s
I      4I'+            '.          I        i                                o                                        ~            ~            I 5    I            '                        '+O'                                                                                          0                          I lo(                  !          I              y4.                            ,                      I
                                                                                                                      '
ic              "4              I        4! 4r    ~
i 11      I                                                                                              1                            >>            ~                ~  o 11!                  !          i              4.                    (        (                                                                          i IS      i          j 1  ~    1 4            4!+              ~          1        ~
0              i                                  0 I            ~            ~
15                                                                                                                                                                          4 14                                                                                                                                                    N: 2'70                                  4
                                                              ~          !        i
                                                                                                                      'o W              5)67                      6:                                KFR 2245'1 1  ~ I 15      I                                                                                                                                                                              !      6 14                                                                                                                                                                          742        I I                                          i      i4                                1
* 11 11)
                          )
                          !    0
                                                                            !
                                                                                                                      !      !op                    .':        I 3              3 i
Oi
                                                                                                                                                                                            ':
14!0 I
l                    I 1lo'4 Sl      '94 1
                          '.67 i            (
80 +
1+
i 0
                                                                -'
5  '4 I
i M          5.7      22      W        1 o
27-620 4
6    ~
o KFR              700
                                                                                                  ':
                                                                                                                                ~
7.0                WNW'2                    52 14:
      >>I
      '4!80 21
          -r'';L!rr
                          '62 58 1
i 69=
0'
                                                    'y 4:
                                                                '
0
                                                                            '. 5        T o
SW M
W 6.> 4
: 5. 0 24 12.7 30 MNM" r'''
SW      ~
46 37 5
367 575
                                                                                                                                                                                            '
10 6
r r                                                                '.V                      '                    rr"ri 1
                                                                                                  '
rr'
    ~
    ~T
                          ~  R
                                                              ~      6    l2    5,    0.0 PVCC(PETA 7 0 OH
                                                                                                                                            // /i/
11,11 orr.4,6 OOI      PV      o  V NA NOTATIONS O'SC rr'oa IN C          lr (1) v<<LEEO or<<tawosc sotcltocs.                                      tac    okoLT                      to ~  Tsc Has TN                                                                  A ~ OOAOI                      ~4    ~ LO>>O>>4 OVOT
    ~  Uvookal'caoso ls taov Woo%la%1 To HI4>>soar TOTAI,                                                            0.01                    AV ~ kasaak                    ~0    OLO>>osa Ssow
    ~ oclolc OTkaoA>>4 To 4                  ~                                                    ocskarv oc taov ~ oavkL                                  I      -0.44                      ~ ~ Ovor                      ~L  ~ Oo ~ Tsar Lo ~ %tao% ~
(11          1    ls tsLVH<<s 2 ~ OC>> ~ TCO A Takcl                                                                                                                                      ~      t04                          oaotroso ssow
  ~ (1)        1st LksaLCT            lCOL 1st 1 ~ T<<E V<<IT UOE4
                                                                                                  ~ %tartar ~ tk 'oaa, O
                                                                                                                                            . 0.01                          14      I
                                                                                                                                                                                                  ~
                                                                                                                                                                                              ~ L ~ OLAE ~
                                                                                                                                                                                                                              ~0 I~    oct E ~ r ~ TALi To ~ ts ~ Tc ~ sc            ~ akoo c>>La%le              I    EH 1                          %swats    \t okra>>oT<<o                                                                    ~      S vs O E                T    T<<<<soo ~ Orsaoo 1  '
TCMPCRA,URC 1 Ol k<<tarot oaa T<<t >>4<<Too CtkaTUAC            tsev    Sao      oo A 1, 1  tT, LEUtl.l
                                                                                  +        7 TAkcE 4% vooc 0.01 4% o<<4<<t e.leo% Hose 6
p
                                                                                                                                      ):        e,js O.so
                                                                                                                                            ) T.oo 0% ooskc 0%
Oa
                                                                                                                                                            ~ oac Hose i
I I
p p        %os<<Ear 8ARCHCTR(C PRCS5URCP<<.1
                                                                                                                                                                                        ~ ocak ~ c ~ rkrooa stkctotL            i  30.3p          ea 0
1 oola<<EST                                97            I                                            SHOW. )CX          PCL'.S            (SLCCT) ((>>CA(S)                        Le>>tsr sta          LEVEL              29.69          4~
LS'NE ~ T                                                        4%                            T4TAL  ts ~  Tac    <<os%Too                                              0                        5OLAR RAO(AT(ON lcoaclcr ~ 1 a 4 oo ~ E a ~ o'      AT ~  w I 1 oo I                                                    c>>EATtsT    oa  jk <<ovao        ~                        ~s                        >>ac>>oat okoLT TOTAL                                                    6
                                                                                                    ~ AE>>rest 4% 4%01                                        0%                        a>>CATEET CAILT                            742          4%)
HAE ~ 11 ~ S ~ CL4>>
          ~    ks  so as kaorc 0
o 4(HO O'lt        OT  LCSEL1                            I LCkst OAILT                          I 294              "                  13 1        Ho ~
Hos ~ 4 4%
1 1 4% ~ EL4>>
                                ~ Ecow HCAT)HO OCORCC OAY5                                  14 ~ St  ~ asti 0
0 A<<tak ~ E ~ otto lvo<<l acaoaovat oooo<<
ocAO avsr so%HA'av<<OC 43 rsao                , H              4>>
7 9 4
3
                                                                                                                                                                                    ! SHSCCLLANCOU5 NUMCCR OP CAY5
                                                                                                                                                                                    ! Cack>>
                                                                                                                                                                                        ~ oatLT      cLovs ~
tea vsr
                                                                                                                                                                                                                                        ~
0 I
TOTAL t4%            Tst Ho<<Tv                                                                  AVCRACC PSYCNR HCTR(C OA,A                                                      CL4V ~  '
                                                                                                                                                                                                                              ~                                  1
      ~ Eokalva ~          taov      %a%oaks                                                    ~ AT ovLO 14<< 1                        ) )>>tr sv 0 tat)                                                    RC(. ~ HUM. CXTRCVCS l                    '1
        ~ tkao<<AL        TOTkL          1 ~ o<<CC      JULT        ll                              SCL IOVOO 1'El                            I ~ cw  tr  lot)                          <<O4<<COT                                  ~a stks4<<AL stoa>>TUA ~ tasv %4%HAL                                                              ooca  ~ TC ~ LATCOT ~          t  OCUCAAL OATC ~                                  L0>> t S ~                                ~s 4M (SCSASS () TS) a<<oak>>oooo<<a.<<ooa.
Heteoro1ogical Conditions                                                            for          June 1989 8"4
 
  -      -        -. CBattette                                                                                  HAH)TORO MCTKOROl OCT KTATIO(C Ss IJILcs Ie, w      ot A(oetkao, 'VAsaleecroN                                                July        1989 CLIMATOLOGICAL DATA                                                              Lktlfvoc tsa          14    N..Lose(rvoc>>54 ss'cccvknoa (ctovaol                                111 Fccf TCNDCRATURC(ai ) FT LCVCL)                                          PRCO)D              s CC      VlNO (50 FT. LCVCL)                                          I                  FAUN'TS ANO IH5C PHCNONCHA I
OCCNCC OATS                                      VO                          I'CAN OVS'0                              ~        v
                                                                                                                                                                                        \        NOTE I 4          ~ JSC    C5            1          ~  ~        o                    t 4                                                                                    ~ ~            tieet ~ or  riosfki, I
v 1
1    J
                                                                              ~
t 4J                    va ~4      1 T 4    4V  1                      ~  v  1 s              JV 1 ~ s1 ~
                                                                                                                                                                                                ~
                                                                                                                                                                                                  ~ ceca  krTEN  Teec
                                                                                                                                                                                                                            ~ JENJ4ts sofkfew ~
Jkc
                                                                                                                                                                                                                                          ~ r~
J I                                    v.I                                                        4
                                                                                                                  'e v ~C 1 ~~I                                'ww'%IN% rsaatl
                                                                                      '
4 11                                                                                                                        s                      kaLO    riasf1  Jaa i=J si I" 1 ~N        e 4                                        0
                                                  ~ ~
I 4 v            V                  V
                                                                                                            ~ I 1 ae V                                                sv
                                                                                                                                                                                  ~
                                                                                                                                                                                        ~
E4 4                                                        J                                                              s I I                                                          oe                                    \        lol        >>          11(111              lk I Is I                II I,
1        I  1      ~    I    1      OA                I    T        I    0 75154!'64-
                                                                                                              ~                    ~
i I                                            7!      1          01              I                    i  W I          7.5      25!MSMI 42 i 368:                              9      i 84! 50!                        -
1 I 1
I!
I    86161 67i 74+            2'!
5'                  2' 9!            I
                                                                                                              !  WI I M I        ll.
3.517i 3
SW:42 !659e iMNW! 36 5
1
                        !h                    -                          '                                                                                  4:
c 1
I j
4 i 4    I        (: O.'I i      ;
:: >>
                                                      !
                                                      .
i I
                                                                                        !
I
                                                                                                    !
                                                                                                    !
                                                                                                    !        !
I NW!
                                                                                                              ".        '
4.3        4            :.
29      I 736 44
                                                                                                                                                                                !      0 5      '
i I        I
                                  '",
n.
                                          ~
I                  I                        !        "      'We NM e
0
                                                                                                                                                                  '4
                                                                                                                                                                  '35          i 0 i
P'.:
IO iWI          .      3 If'IIW ~ 39            i 605 '
  >>i                    !                            ". I,              I,      ~    !          !              N'rl        6.018          -N    ~
36      '713' OL
                                                                                                                                                                  '93              '6 (1
  >> I
          ~            <
i
                                          !+
I+        4:      0'.                                    ~
NW          6.8 4.6 23      NE(29 WtIW'8
                                                                                                                                                        '9
                        ':
                                                                                        !                        N                    20                          682              0 I ~,            )    I        ~          +
                                                      '
NW          8. 1,'7            NM                '68          '
                        !  64    '-
78i >                      i  13'                            !            NW        10.5 35          WNW:        33 . 705 4                      5!  -    2'          I        0'      0 '                            SW          6.4      22      SM        56        283 '
                        '.''!
  >>      I  87        (54:70:-                  8e      0:          5(              e                        SM          6.          2 MSW        I  44        716 . 3 is!            4        64:            I+          ~
0:      14i                                                      3.        16 SSE            3            43 15    !    00:          70    '5i + 7!                  0  I  20'o e
W NM          6.5i          . NW I        34 7
OL I    96      I  64.! 80i+ 2I                    0!    15i                                        !  NWI      10.8 38          WNW      i 3 11      I                                                                .            j ss!
11!:
Sciaa a        I I
I:5 I
I 4!
                                            +
I i
i I          !                                  I A I              67 15!                  !        I      .                    I  ]      i I    6      62 W                  ~                  2 15!                                                                    e a        '.
c    . 4'                      I        a
                                                                '
L)l
  )O;
          '~                                        !
r M                                    3        664              0 p
r/
                                                                                                    ~
See ~
kvt ia r                        r'rir a aerrrrerrrrrrr r'r r er'A    r:r'r'er r r
  ~f (I)      UNLEI ~ ofeIE1%IIE              I ~ EEITIE ~,      T1E ~ JILT PRCC(P(TAT(ON UN)                                                VIS      ~ N 'NONCNA NOTATI N5 Sco IN CO                            lf vvvkiT rcieao Is f144 NI41I ~ eef                          T4 veoaet1f TatkL raa        Teec IJONTN 0                I  ~ WAIL                      ~ 0 ~ ~ Lowest SVST
  ~
r JCITIC        STJN4JIS TINE ~                                                      OENJitle ~ C    riav NONVJL                                                            W ~ JVJOIJ                        ~ I    ~ Lave ~ 4 I~ Ow (1)                I ~ ESLN41 ~      r ~ ~ 4c10fts k Tskcc
                                                                                                                                                                                  ~ over                        ol,  ~ Olitkst Llssraeac T
~ ()1 Teec LkatLcT IESL IQ es Tele IINIT vsco                                            ~ Nc*Ttif Ia      tk sii                ~
p p                                        r  ~  ra ~                    ~0      ~ NIrTI1~  Saaw
                                                                                                                                                                                ~L      ~ LJit                  I~
fo ~ C10TC ~ 1t              like  CkLONIC Cv      I                                  svee ~ c1  or  ~ JT ~  VITIII                                                          ~
                                                                                                                                                                                      ~
                                                                                                                                                                                      ~ ~  ~ ~~  I                T
                                                                                                                                                                                                                      ~ ICC
                                                                                                                                                                                                                      ~
ENTSTJLS fsv'esi1 ~ T414 CNPC((A)'URC              lari 1 rt LEVEL)                                  ra ice 41 erase                              4,11  ~ 1 NONC                                    4AAONCTA(C P(IC55VRC les.i krt ~ Ja ~        F4  'sc    44srs                                                  O.oe 41    e  oic                            O.SO  Oi 44JC                      kvtakcc srkvas
  ~ ESJNTV1t            f104 1414ke,                                                    4.10 ai ieait                                1,44 ~ 1  voic                    se ~ eetst    stk LtftL P                                  P      I                                            30. 20I ~ I              5 I ~ I ~ Ie IIt                                            ~1                                    5HO'V, )CK PK( LCTS (5LKCT) tlaCNCS)                                  el L4%C ~ T SCJ LCTCL
: 29. 69I O.l            29 LSVE ~ T                            4                41                              T0TJL raa Tsc NONTN                                                    p                        SOLAR RAO(AT(OH ILJNJLCTSI svvet1 4r okf ~ wef1I                                                                cktkTIJT Is IJ await                                        ~1                    krtik AC      ~ JILT TafkL I                                                        I    648.
vk ~        lt    01 ~ CLO'W                                            0          ~ ICJTIST      as  ~ sai                                  ~1                  I ~ ICJTCST OJILT                            744 eeki.      ~ Il ~ 1  kiOVC                                                                                'VINO ISO rT I ETCLI                                            t I LEJ ~ OJILT                                                wI      16 e  e  ~. St    ~1  stkaw                                                      kVCNJEE        S~ Ci ~ ivi ei                                            P            NISCKLLANCOVS HVNCCIC Oi OAV5 ve1        4 41      ~ EL4%                                                      Oci ~ NTVIE ~ 144 <<aivkL                                  I                    I ELEJN                                    raa                        0 HCAT(HO OCOACC OATS I ~ ksc ~ Sor)                                          icka    OVIT        4          t141e I as                    ~ JITLT CLOVST                          vassals 0
TOTJI, ra ~ TNE 44NTV                                                                    AVCRAOC PSVCNRONCTA(C OATA                                                    CLOIIIT                                avsr
  ~ cikiTvsc f104 1414JL                                                                01T avL ~      lail                        !wet    JNL ~  lorj                                          RCL NUII~ CXTRCNCS                (,)
SEJSONJL 'T0TJL IIINCE JTLT                          II                              NEL, IIVN, 1'Sl                3            Stw    if  14e 1                      seteettf                                  ~1
  ~ tkiaeekL OEJJNTVNE                  ts44      141ee JL                  -3            4 ~ ENOTC ~ I JTCST ~ r            ~ EVCNJL    SJTC  ~                          Law    tif                      9        a.
    ~N        (500415          (1  11)    ~ I'I w evivwk sees            ~
Meteorological Conditions for, July                                                                                    1989 8-5
 
CBaveae                                                                HA)C)TC)R() MCTCOROLOISY 5TAT(ON 55 QIL(5 N N Ot OICNLIOO, MINOOCTOI CLIMATOLOGICAL DATA                                              LATITUOC EC 54'a ~ LONE)TOO! I IS 50'Q CLSTSTIOS NAOVVO) TSS FtCT August 1989 TCIIPCAATUAC(OF ) FT LCVCL)                          PACCIP                      v)NO (50 FT, LCVC),)                                                                SAON TS ANO Il)SC, PMCNOM CNA 0(EACC SITS                    4 . vve                              ~ CAN OUCU                                      v              SITC ~
v      IIIC 55        1 1              SI  J 4                    1 v                                            =;Cao          1 ~a v
                                                                                                                                        ~a                                    hvcl ot tatafkL tallkccs            aac 5                          v4                                          etta ltTE ~ 'Ivt astafloas lta v va                                                                  ~ V
                                                                                                                                                                                                      'ta
                                              '
1                                ~                                                                                        ~
IJ
                                                '
J 1  5                        4  v      ~ ~
j5
                                                                                                  'l 0                    ~            v                            Nwo towf1 Qao                  Iwaaaa tasarl V                                ~
41
                                                                        ~  v "'.EC)            ~
                                                                                                      ~
v vv      V V ~
                                                                                                                    '
                                                                                                                                                ~
                                                                                                                                                          ~ I1 ~
0                                ~ 41    I
                                              'V
                                                    'v                4    -Cites        ~ ~
                                                                                                  ~
4  5                ~ ~
1 1              ~~
5        I  I  5  I CA    led    I  T      I    0    I    1:      10              I IS I          Il    '    ~  I IS      I    IC            )
80      61!701          -8!    0  I    5l            I          i        !Sri'.0              33      1    SW'7 I515                  )      8 84I 56:70i -8i 0 I 51                                  I          !        IW      )  8.8I27            .'SSWI        38    I 634      I      4:
84! 58'71i -7I 0! 61                                    I          !        )NW          4. '                  NW 89! 55'72 -5'" 0 I 7)                                                        INW.'.7                                    38!638 c I 9        60I
                                  ~
                                  '+la
                                  .              '13!
i I:6:3.
I
                                                                                                            )1:
                                                                                                            ~  24      .'        i
                                                                                                                                            !:
5            i                                                  )                                                            !      1 I 5!102I 67(84I +7!
T;13;:
l 95:          77'86'8'0 I+:: 1)    0  I19!
i 21 I      T i
                                                                    !
i I
                                                                                !
                                                                                          !N NW It!W
                                                                                                        .5:28
                                                                                                        .
                                                                                                        .4'
                                                                                                            '.
I  W NW' NNW'3 I    7 I            I 1
1            (  OL
                                                                                                                                                                                !    OL 91; 57;74.              -4'        I    9a        -
IIN'.2:23                                33 i64o i 4,': -,'                                    I          !                                            NW:
                                                                                                                                                        '
0                AU IS !
(SI            )411  Q        ~
I      I
                                                          !
I I
4 4 4
                            'i- !:
I                        4      i IS            I                ~      ~                          ~          I Ici            !                                      !          I
                                                                          '
If  i
                                          '                                      I 1        .      I                      i                                          4                      ~
4 I~ I            I                !  +  !      I      I          I          !        ~
I~ I        OI          I      I  +  I      i      I          I 50              I        i      I+            I      I          I
                                                  !
a        !                    I
        )I,'. i; 15                                            i      i          I 50!            !                                                  I                                                            (
SSI            l        I                    I      i                                        *        .'                    (            06 20                              a      I      i                  I                    I                  I          '                                                    I
                                                                                                                                                        !
                  ~
C    I            a                                      ~                          I          '                              I
                                                                                                                        '''i
                                                  ~                  ~
Ss  I                                                                                                                                      4              9
  )0!                64              +6                                                                                                      45      ~    4 5))                54                                  I          ~                    'I                                                            I a
4 eaa vr                          r.rr            12                                                                                                  /                      '
krr ar JF/yr            r'ter 4" ~                                                                                        r. 6                                                        4    6're'r'al PACCIP)TAT)ON                llMI                                      OVC I VENA 1                T*TIOVIUSCO Iv            CO      IT (1) vaLcsl ofaEewlsc I ~ ccl ~ IEI Tvc sall,r                      feral toa      hac aasarv                                                            ~    14IL                          ~ I  ~ ~      l Ls>>I ~ SUIT
  ~ VHVkat t\also Is tlov QIIUI41T ro QI ~ tlear taCIFIC ~ T41 ~ aao TIQC                                          octaafv ~ E tslla ~ c4>>aL kv      aalsaa                      ~ I    SLewaao Iaow Ivor                                  Iltaaf  LI~ 1 Ta lao (5) vfv Ia I ~ Lova ~ T ~ ~ ~ C10TE ~ 4 ftact
                                                                                                                                                          ~                                  OL ~ ~
4()) Tac LaaeLET Icol Isl ls Tac Usaf vsc ~                          ~ 1Ekf  tet Ia le <<ar                    P      4 Isa                              ~    te ~                        ~ I              I IHFTI~ Iaow
                                                                                                                                                          ~L  ~  CLICE                      I~ ~ IEC ~ ar0raLS ro ~ ca ~ Ic Iac ~ aav EIL~ SIE I EQ 5                              asaaoca at ears wnws                                                                ~  ~  I ve 4 I                      t  ~  rara ~ Iaotoav TCMPCAA'TUAC (otl FT ~ LCrtLI  I                              lake ~ 41    vial        I                0,5I    01 veac      (                        SAAONCTAIO PACSSUAC 0 ~ .I art ~ alt to ~ ra ~ >>gatv                                          0.0 ~ ~ 1 Qoac            )    4          0.10    ~1 vok<<                  lrtl  ~ St ~ Iatloa
  ~ 1141IUat        taov aoavaL                                      0,10 ~ I I 011                            I 0001>>0 ~ c                      VIlacsf ~ ck LEVEL                                        ~4 ales    ~~ t                  103                                          5NON. ICC PCLLCT5 (5LCCT) (lrcaC51                                    tewel'ta                  LEVEL                          ~4 (LO>>t ~ T                        52                        25        ref lo tlk f1E        HIST ~                                          0                    SOLAA AAOIATION IL4 Sterol
~  avaa ~ c1  4t olr ~ >>Ital                                        ~ 1C4TCIT    Ia  El \st ~ ~ I                            ~ <<I                lrtkklc IIILT to'taL aaal.    )l oa  sctow                                  0    I ISEIICST 01        l1 ~ I                                ~a                  ~ IEITCST              04ILT                              ~4 5
Hac      Io ~ 1  41 ~ '
C VNMO Iso        tf. Ltrcll                            Ltk ~ 1 OIILT                                              ~4 Hla    II  ~ 1 ~ ELO>>                                  0      krtaalt ~ alto IHWI                                                              II15CSLLANCOU5 NUMSCIC OF OAYS Hla & 01 IEL4'>>                                        0      ~ EIISTUSE ~ ssv        aoavaa,                                              ~ LEka                                      Fol              )      p MCAT(NO OCOACC OATS Isaac                  ~ Ier)          SE44    IUIT                rasa                                              t41TLT ELovof                              Tavaotl 5
ToT4L t44 TSE Ho ~ fa                                                  AVCAAOC PSYCMAOHCTAIC OATA                                                ELsrsr                                      ~ VST
  ~ Etaafvat ttev aoavaL                                            ~ af    wl~ Iotl                          >>Ef    OUL ~  1st!                                            ACL, NUN CXTACVCS (5)
  ~ taloaaL TITIL I~ I1E ~ JvL'I          ll                      SEL avav      Iol            4            ~ Ert  IT lot l                    ~ ala ~ Sf                                    ~4 ltkalakL ~ Etlahllt tat>> aoovaL                        -10          Hstaofts LkfCsf Ot              ~ EVEOIL    sifts                          os>>Est                                        ~4 CQ ICOSA))S (1 '))) ala aatvavaavaaw Meteoro1ogica1                                  Conditions for August 1989 B"6
 
QBaaetle                                                                                  HAH)VOR)) M)VTKO))O) O<$ Y 5TATIOH
                                                                                                                            $ $ HILCS 4, W 01 AIOILAso, WA51110$ 41                                                              September                1989 CLIMATOLOGICAL DATA                                                                lkfl)04$ acs )O'LOIICI)UOC I >>4 50'>> EL!TAT<01 ICS44141                                                      $ 55 TCCT TCNPCRATURC<or                  5  PT.LCVCL)                      IVRCC<P                st j        WINO 150 ST LCVCL)                                                                          PRON'TS ANO ll<5C, PNCVONCNA CCCSCC OATS                              4      vvs                                r CAN OUS                                        6
                                                                                                                                                                                                                ~ OTCI lt        Sale    CS              1            s v
                                                                                                                    '
1                              IS                          ~  ~        <twas  or raosTJL      ~ s ~ ~ scca  Jac V                  'vo I                                                        v                  ~'
V v~    1 ~
k ~    4 v~            'I      ~  vv V 3
                                                                                                                                ~ ~
5 1 4          "51
                                                                                                                                                                                                                ~ Ivies J ~ TE1 T1E ICSLO  raastl Jss>>rr sotattosa
                                                                                                                                                                                                                                              ~
sv1 Iwsast raasrl vv vl tv( I
                                                                                                                            'll6
                                                                                          '
                                                $$                                                                              4 1    ! a                        - 3,I ~~                                ~
v          a                V                4              ~  ~~
a3s t ~~                                                              ~
                                                                                                                                                                          '$
                                                                                                                            ~                                                                          ~ ~
s      4 >>11      E                                        ")$ -4I                  s            ~  4                    ~ 1              4
                                                                                                                                                                                                  ~
4 I              5          )  ~  a    '        I ~A I      ~ 0  '            I          0          0    I 10                    I    It  I  <5          I~                        ~      IS    I l65l-5 0'
        ~            <
is
                                                              ''
                      !5                                                                                        IW                            7:WNV              44i
                                                                                                                                                                                              'l
                                                    ~                              I                I 5!8                !5        i66l- 4                0 I          I            i                1          IW        I    84'28'HWI 4 l407:                                                    3
                      )47      ~  64<-6          ~        i    0:              I                1
                                                                                                                }          136: 6'                                42:
  ~    !89 l49 <69 - '                                                                            I          )NW! 5 8'32-HM<                                          l5 Sl                  <6            70                  Os            <            i                I          )NW              6      '              tM            3!5
                                )68."-: 0)                                                                                                                        33I55                              0:
i:
5 )82              l54                                          3l              '                            IN        !    9.0:28              H      )                              I l86 )58 i72<+ 3' 7<<7 I+
                                    "5'-4lpi ps i 7<
66 0:
                                                                                    <
I                ):N'NN:58:
I
                                                                                                                            )
                                                                                                                            '7 0.2'37 N
NE I
                                                                                                                                                              )    35.50 37 i 471                  <      0 0
                                                                                                                                                                                                            ~
KFII      850 1            7        5                                                                          I I
                                                                                                                                                              '7'478
          ~            ~        ~
N! 43'
~s'll 8:
  )4I80:45 62-6< 3!                                                0  ~            !                I                                                                                        I I I:    -            0                                                                        5.3        16                    29    '483                I      0 166!'-:                0I:
NW 30                  'MM'4 HW
                                                                                                                              ':
  >> '85                147                                                                                                  I                                                                        0 "I              7    ~
47 )67l                0'          '
                                                                                                                  '
3:46                              0
                        -47 !6 '+                    '.            4'                                I                          4            4      NW)            0            4 4        I 5!+9'0:                                                                                                            M':46                              '
                                                                                                                              ''
4:56                                            0!              i                !          IM                            4 9+;
                                  '.
64 '-:..
I~      ',
6    s    O    I                          s 4!                                            )NW'84 7                          ~          '          '48''NW'
  >>              6      '58      !                                0 '                                                                4'2          'NM        I    43    <        88        ~      0 i~            7      )        I    4)-          I        !    Qi              !                                        I 6          I i4                  ~
is 50 I I
Si 83 )46 !64)
                        !44 82 l52 <67!+
                                  ~        I- 4!
Ol 0 I 2 I I 0 I I
                                                                                                                  'W I          !
I  4 Si
                                                                                                                                          !
                                                                                                                                                    )
                                                                                                                                                                )
                                                                                                                                                                ')4740 36 6
                                                                                                                                                                            ~
4 I
0:
                                                                          ':
85 !52 l68I+ 4! 0 I 3 I                                                                          INW'.2!14                          NM            39            410          I    0 88 '53 l70I+ 6 I 0 I 5 l                                                                          IS          I  3.5;10            <ESE          39            398                2      I 54 90 l51 l70)+ 6. 0 I 5 I                                                                                      INW)49''.NM 40                                                  38
  $ 586                '<54 !75!+12 I 0 !10! O.OZ                                                                INW 9.0i42 I SSEI 39                                      . 257              10 0 I
                                                                                                                                                                                                              'L 79 )5 )6 1+3!Oi
  $5 8Q )47 87 51 169 + 7: 0
  >> l88 61:74 +12 0 9
                                    !64'+:                      '-
                                                                ! P      '!
W
                                                                                                                  'NW-63' 14 8
                                                                                                                              ~  4 2'                H H        '9
                                                                                                                                                                . 57            3 9 I
6 '
            !76 58 67 + 6 . 0 : 2                                        ~    T      '.              'W        .I'!W          8.6 10.0 32 18      MNM MNWV 32 46 344 140 '                    ~
  )1
  - 83.2!52.
SVss
            .'
                                        <Jy'ri          12      i89        i 0.02                0 6.1      'J                                                    2.5 I
                                                                                                                                                                                                              '
N  / //trll                      1      r
  ~v                                                                                                          ~ NCC<PITAT<ON <INI                                                        ~ v        rv    v v Nk NUTAT<os                    I  0  <N  C    ST II) vsLEJ ~ OT1I1rl~ I saa ~ st<as, Tsc ~ JILT                                        TOTJS,      toa TSC Voattt                                              0. 2 1    ssslL                    ~~ ~ ~  'saris  ~ OVCT
  ~ vvvasT sea<os I ~ tsar HIS1<IJT to Hsossost                                                                                                                                                  Js  ~  asst  ~1              ~ 1 ~ ILOW<1~ SSOW aacartc ~ IJJSJ1 ~ Tltsc                                                              ~ Ea Ja TV1E ~ 1ov              141V JL                                                                  ~ ~ CVIT                      ~L    ~ I ~ Vast  LICVTssso (5)          tst ls coLvssss 1 ~ ~ EsoTE ~ 1 Tsac ~                                                                                                                                              1  ~ too                      ~ o sasrtsso        astr
,
s()) Tssc LJJILET <IOL <H I ~ Tsc vs vac4                    It                        ~~    <atcsr ss Sa sa ~ .                          0,02          41        25                          OL ~  CLJ\E                  IC ICE ~ 11sT JLS 14 ~ E14TC ~ JE I ~ Jv CJLOJIC / Csa 5                                                svvacs Ov ~ JT ~ VSTst                                                                                    1    as ~ at                  T ~ tso ~ 4 ~ 1 ~ 141v TCNPCRATURC lors                      5 rt. Latas1                              Ts ace ~ 1 Hose                                      4,51 41 voaa                                              SARONCTRIC          PRC)5URC Is ~ I tv<1*at            vo ~ 1st vo                                                          4.41 1 ~ HOJE                                      4,SO 41 Haaa                                Jslaala ITJTI~ 1
  ~  I 1 1 1 Ts 1 C      ~ 1 4H ~ O 1 H1L                          +1                    4.14    O~    vl~  C                              1.40 os  s  aac                          ssasast        ~ ck  LatcL          ~                  ~1
~ sl I a 1      IIT                                        ~1                                        $ NOW.      ICC PCLLCT5 15LCCT))<SEVE))                                              Larcar        ~ Ca  SIVCL 0    oa 17 isa>>car                                                    ~1                              1 ~ TJL 141 TSC            Vo ~ TS                            I            0                                5OLAR RAO<ATION ILJVILIT~ <
svvsas            ~ 1 sass rstsl                                                  I Saaktc          ~ T SS    SJ sask        ~ I                          ~s I                          JVCJJIC SJILT TITJL                                        415.6 I -Ektasr                                                                                                              ~ LILT                                  ~a staa. 11 os JCLow                                                      p                          Os  asal                                        ~1                            asc JIEST                                                          5+
Hal        14 41 JJO1E                                                3  I                                    WINO        Ito rt. Ltvtl, I                                I 'LEJIT SJILT                          I        4          -I        p HSS        11 ~ 1 ~ ELOW                                              p          Jvcaaac        ~ Ja<    ~    lssssi                            ~          6.1                      Is<5CCLLANCOU5 NUN4CR Or OA't5 vss 4 ~ 1 ~ CLOV                                                      0          4 ~ ~ JJTII ~ C raosa        sssvsL                                              3            ELC Js                                  to ~                      0 saks 'Ivaf                                                                                                                              111 1 ~ I 1 NCATINO OCCRCC OAY5 Isaac                          ~ Sa ~    )                                    42 raov                  i SS            41        '25                SJOTLV CLOT ~ 1 TotsL aaa              TVE  Hosts                                          12                AVCRACC P5YCNROSICTR<C OCTA                                                              CLOVOV                            ~    01 ~ 1                    0
    ~ EsasTvsE            fsosa stavaL                                        55        sar sos ~        Iarl                        9 w>> svss Ios)                  5                                        RCL. NUN. CXTRCNCS                <%)
    ~  EJJOVJL TOTAL IsssscE JVLT                      11                              JEL SVH            I'l                              ~ aw  rr c4V I                              1lasaat JEkaos JL SC1111VJE rkav 141HJL                                        -65              oscsotcs Lktcsr or                    OETIVJL oatcs                                          LOVIST                        6                                  15
        ~ <I <500>>0$ 5 i< $ $ ) ssssa awvv 1 Meteoro1og)ca1 Cond) t)ons                                                                            for September 1989 B-7
 
OBaneue                                                                              HAH)tO)!5) METIC)ROI OCY STAT)O)4 55 QILCS a,          r    Ot SIOaLAIO, '>>A]II>>CTOI                                            ctaber 1989 CLIMATOLOGICAL DATA                                                          LAfltuoc aso )c'..Iosclluoc 115 ~ )4'cccv>TIO>> lc>ou>ol ])) tcCT
                                                                                                        >>IH0 150 FT LCVCL!
TCHPCRATURE IOF                    ) FT. LCVCL!                  PR CIP          <<1
                                                                                          <<4 vrvs  j                        >>CAR CUS FRONT5 ANO H15C PNCNONCHA 101CI CCCCEC CATS r v<<                                                                          I ~ TIQES Or r>calf>L il>aut> AIE l
                                                      ~ L]C  45        v v1 t          vr ~ >4
                                                                                    ~
4 v ]
t                                  vt ]                        j"        alvEI L>TC ~ Tlat Iof>floss >t>
                                  ~
                                          ~,                                    ,v v                      v                                            I          t            ~
v~ ~ ] 1> kou t>tati >so "vr><<I<<L>v raoefl v                      1 v~ sas~                      "4 C'av
                                                                              ~ v v
                                                                            ~ I r              i V ~v      V          v v a
                                                                                                                                                      ~
v  J      ~
tee 4  a>                                                        ~ ~
a      a  ]                    ~  I                t    ~4 I          2                                5      ~A      4d        t                          I IO          II        I]        1$            I~        15            I~
71          56 6                +4          1      0                                  IN            9.          26        N I        39 5          8          431                  <<4i          9      0  I  0.04                          N          8.8          27i        N I        41 I    4l-  la+                                                                                        I i 4 i
I                    I        I 64          +    I                                                                                    NW I          46 l343                  1
                                                                                                                                                                                      '71 i
I      4    I      5 I                                                                  I 5 I              I                          +    I                                                                                                        I
                                                                                                                                    '
10                    4    l41            +    I                                                I              ~
I I
I      4    I I                                                4    I                  9 l
                                                                                                                                                !      4 4  I          -'
FR          55
                                                                                                                                                '
14 I                  4      I                                                                              I          I
                                                                                                                                                ~
4    l          I 7
I~                            l4              -6 l]          5                                                                                        iW                  I      4              i4          I  94 I 14                                                                                                                                                    4                          0 i                                        F            4
                                                                                                                                                  !
4      I
]0                    4      I                                                                                                                              '52                Oi 51                    4"          4                                                                                                            !    6      1          I                                                  FR          534
: 5)                      44 5                                                                                                                      I      4    '
                                                                                                                                                              '                                              25
>>        62          4 56                                    0      00                                                    46WW'.8                                            0 IO              KFR                    KF            702 SC                                                                                                                                  I 55        62          40151            I+2            14      0                                      SW        3.7            6'              I    70 :238                  3        !AU
  )4                            !46          -      I          0                                                                                                                                                            F              0
  )4 9
I 136'4 I
4!45 i+:
I l
I                                                                                          0    ~  02 0
4 0
  >>
  )0 48 53      '728'38!40 8 25 ' I I
I i27!
I      I I                                i
                                                                                                      'W
                                                                                                                .
3 5'
4:        5 i6 70 48 51          10 6;
                    !                                            0            I                                ~                      'WNW
                                                              '0!
                                                                                                                                                                          ~
I
  >>I54              !35'44I-2i                                                !            !          IW      143        ~
N        I60          239        I    0
~ al v                                                39IO          I04      I      0 LV~                                                                                                          15                                                              5.6 '
IIIRCCIPITATIOH 11>>l                                                Q]        iv      v  v>>AQ      TATI 1          Eccl>>co              IT
  !II u>Lcs ~ 0TIcsvl ~ c Liccltlt~                        TIE oalLT          TOTAL tOA Tl>C Qo>T>                                                04                        1  ~ SAIL                  ~ 0 ~ >LO<<l> ~ SV0 1
                                                                                                                                                                                                                  ~ Lo<<leo ~    Itv SVQQ>11 >C>leo I ~ tIOQ Qi ~ II4>>T 14 Ql ~ 11411,                                                                                                                          >1 ~ Le> ~ 4>                ~0
  ~ Lalrl~ STAIOLIO TIQE                                                        ~ I ~ A>TV>C t>OQ 10>QAL                                                                      ~    Selt                  ~ I, ~ ~ I ~ TL>1 LIE>falls ~
l)l      QTQ Ql coLvval ~ 1                ~ ~ t>>41cs 1      T>>ct.          ~ >ELTtlT      ls  CE  I> ~                  0        5l  ~        .2  -22                t    tee                    ~ > ~ >l>1II~ 010<<
I!)1 1'st LL>CLCT IEOL                  Itl I> Tst VIIT V>E ~                                            'Illill
                                                                                                                                                                              ~L    ~ LL1 C lvelc Ia  ~ lac C>101>LS l
10    ~ CSOT\    OIC ~ >La> CALO>la              I CQ 5                    IVQOC> Ot ~ >10                                                                                ~ ~                          1  ~ 1 e V e 0 ~ 0 1 0 ~ a>
TRHPCRATURC                    Iorl 5 rf. Lcvtal                        TILCC ~ Q>IC I                                0.]S    0> Qo>C                                    CAROQCTRIC PR555URE                    Ils I
  ~ vf  ~ Lec  re ~  1st      Q>>T>                                                    I 0.01 ~ Qe>C                                  e.sa ea I eac                          LvEI>ct 01>vie ~
  ~ C>A>TV>a        tIOQ I ~ >QLL                                        9    o.lo oa ~ >et                                  f,00    ti Qoit                        Qesasr sca uvaL                                                    29 I t I1                                                                          5>>ON, ICC PCLLCTS (SLCCT) IIIC>>cll                                          Leva>f ~ aa uvaL                                                    23 la I ~                              80                Os              10+
LO<<CSV                            27                ~ I            29      Tot>L re> 1>C Q4>TI                                                          0                    5OI.AR RAOIATION IL>eCLCTSI IVQ>tA 4> Sais <<ITII                                                          ~ >CATE>T      I> 1 ~ laae    ~ 01                          ~  I                    LttiA4C 4>lLT TOTAL QL>, 1] 41        ~ ELO<<                                                ~ It>TEST ~      I esol                                      ~I                      ~ >C>1CST ~ LILT QLE    ~0    41  Au>>                                                                              VINO      100    rf. LEVCLI                              LEAST ~ LILT                                          ~ I
        ~ Qal ~ St 4 ~    ~ EL ~ '<<                                              ~ vts>at      sites lv>sl                                                                H15CCLLANCOU5 NUHIICR OF OAY5 ecto<<                                                  ~ E ~ L>TV>t      110<< 101QLL                                                        CLCAi                                toc QQQ      o oa HCATIHO OCORCC OATS I ~ 1st                          ~ Cori        ~ CLI CVST                    >IOQ I oe iji1LT CLSVST                        Tsv>OCI
                                                                                                                                                                                                            ~ VST Tet LL t41        flit Qe>TV                                                      AVCRACC P5YCNROQCTRIC CATA                                                      ELov>T
    ~ ltL>TV>C r14Q              10>vaL                                          oav aves cori                                vcf sec ~ Iovi              45                                R!L NUH. CXTRCHCS I
    ~ u>0>AL 101>l                I~ l>at JVLT II                                ICL IVQ ICI                                  ~ cv    it  IOrl                        IiaecsT                                  ~s
    ~ CAIOIAL ~ C>LITVI~ ~ >OQ                    Ia>QLL                            ootsofa ~ LLTCST Or SavtIAL OLTCS                                                  LO<<EST                      4            Os
      ~ II I ~ OO      05)!I ))l Laa>a>vw>a>aaa.
Meteoro1ogica1                                  Conditions for October 1989 B-B
 
QBal elle                                                                            NANSTORO SAS1TKOROLGG<<Y STATION 15 LHLCS N,        W OI    et%LA%4, W*SULVCTOE                                      November 1989 CLINATOLOG(CAL DATA                                                            LATIIUoc cse        se'.        ~ Loatllooc llse ss'            lccfelloe      (5444%01 Tss        rccT TCNPCRATURC 1st                5  PT.LCVCL 1                    PR CIP            <<  ~        WIND 154          P',    LCVCLl                                              PRONT5 AHO NI5C, PHCNONCNA II                                                                      v OCOI CC 44'll                              5<<v4                              PCAN 4US                                              %01 ~ I v          ~ JSC    45        a 1~
1                                            ~    ~<<      TIVC~ ~ 1 110<<TJL ~ 44 ~ JCCS kkC 1
                                        ~    v                        C Jv    ~4 ~l          4      v'<<  1                        v<<  5 t<<        ~ I' Ca krfCS f<<C 1 ~ TJTI4%4      J11
                                                                                                                                                      ~              ~
455                            V  ~    ~        4 v              4  vv      ~ ~
4V v                              0  ~ ~              551      NSLS 1141f1 4% ~ I %11 Iakkv rkosfl v~ 4~ ~~                        oaa
                                                                      ~,          4v<<
                                                                                    *v 1
v 1                  vv 4E vk
                                                                                                                                                            ~
J  ~      la
                                                                                                                                                                      ~ ~~
                                                                                                                                                                            ~
                                      ~ %0                          <<v                    lN ~        4 4                    <<3                        <<N          4 5        CA        ~8                                          Io          II    I    Is                Ie      15 W            38                        68      236 44                                                                                            H            2ll          9    HM I    80      142            8    IF MSM I    76          51        lp NW          9    331          W      54      142            6    I                      KFR 03 5  9!23 HWI56                    I 133 4I+          !            0                                        I  SW! 13.3 38!SSW I 55                                55 10              I                      KR14
                                          +                                                          I    Wi            3125 ~        W    149        184 i                i 4
s 10 I                      +
                                        +
I I
0                                        I I
I    Wl
                                                                                                                'I72I32'WI Wi 4 Zl 37!
                                                                                                                                      !M SMI 53 M'I'54 'I '143 53    I 155 77 1P 9
8 15 IS
                                        +
                                          +
                                          + I I
IP 4                              NWI M
3.5 18 55: 6iNWI85 8 li 37! W I 60 NNW I    70
                                                                                                                                                        '9:
i 152 i 190:
10 8
4 F
KRI KFR 13 0 10!                                      +                  O    i                                  I W            8.0! 22:WN'M!55                  i 202 I          l Is    I                                  +    I            0                                          NM          5.5i 8: NM I 65                    107 ! 10 14        4                                                  0      0        9                          NW I 4. 6 15 i NW                    1 86          82 I10            'F IT        4                  4O'+            ~    5      p      0.05                                NW'.1! 18 i NI I 91                                96    ilp        iF ls        44                        I    +                  0                                          N            1.6:        9l    NW      94          40 10              I IS                            4 I        +5                0      0 Ol                                              2.4i 141          NM    I 91          88 10              I so        5          38      45          +7 20              0                                          NW          3.P1 16        I NW      91          89          8    iF Sl                    35      4          +9 19              0                                          NM          4.5i 18            NE      80    '76              0      IF ss        5p                      9      +226 0                                                        NW          6.3l 16!          HM      73    'l70              1    IF xs        48        30      39          +2 26              0      0.14                                N            3.6:'24        I  5      91    I    83          8 ss        5                  4          +5 23              0                                          SW          5.3I 24        I SW      69    '10              6 ss        5l        36      44. +8 21                      0      O.lo                                HW          5.5! 25        I SM      72 i 125                7 008                                              8pi28:'ll i:
14                                  I    +6                0                                                  I                                          141 pl I+                    I        lp      ~                                      W      I    3.8l 5'
12 WSW1        74:      147          10 ls ss so p:
i
                  '.
4 12 I      6I I
                                          -9I39
                                          -
I 137 Ip I
IO p
I I
I NW C
                                                                                                        ! C l
0.3 2'. 6 HW W
SE i 90 l96 1 97 64 65:10 IF 43    I N
10      I F Sl                                                      i                %
                                                                                ~
~ Vv                                              621i      1      1.04            0 4% ~
6.0                                              7.4
~v                                                                                                PRCCIPCTATION UNI                                              vll pvcaovcak                1 Tktloal vlco Ia              lf 111    U<<LEOO ST%ca%I ~ c ~ stclrIE ~                1st ~ JILf                TOTJL 101 TUC ve            AT%                                                      A                            ~0    ~ Le%la ~ OUST
~ Vvvk1T      rtalee      I~  111v vlOal ~ 11          1~  vl ~ sl ~ af                                                                                            JV  ~ 441414                ~4    Steals  ~ I%ca
~ 4 ~ ITIC ~ Tk<<0410        Tlvt                                                OESJJTV1C 114V 141VJI,                                                                ~    0%41                  ~L  ~ ~ ISfkaT LIE%I%la ~
(11    4 T ~ la c4Mlv~ 4 7            ~ otsofts 4 Ts set,                                    lll SJ 11 ~                                                            ~ ~ ro ~                  ~4 ~ ~  slrfl~ 0 lac%
                                                                                  ~ 1EJTEST                                                  ~1
%(sl Tat Lka ~ LCT ICOL 1 ~ I I ~ TVE UalT Vlt~                                                                                                                        ~ I, ~ Lk1t                  IC ICt CJT ~ TJLS 1 ~ ~ EI ~ Tc ~ sc ~ OJV CJLO ~ IE            I CV    S                        ~ vvstk or ok% 4 'vlf%I                                                                    ~ vs 4 E              1 Tsa ~ Otk ~ T41V TCNPCRATURC 14<<l                    5  tT, l,tvELI                          TIJCC ~ 1 V01C                                  ~,Ss  \1 ~  41E                            OARONCTRIC PRCSSURC                ua.l 4%1 ~ 4 ~ C 1 ~ 1 T<<E      vesta                                                4,4I ~ 1 V41E                                  4.10 01 V414                    1%tsket ~ Tkfle%
  ~ CSJJTV1C 11 ~ V 1 ~ SVJL                                                      4 Io 01 veaC                                    1,44 01 V41C                  Ill~ <<EST ~ CJ \CTIL                              ~1 3P
  ~ l41EST                                            ~1 9        0                SNOW, SCC          I'CLLCTS SSLCCTl              DSCSCSl            Le<<CSt ICE LCTEL                              7"          25 Low(ST                                            ~1                          TOTJL 101 Tat veaTP                                                0                        SOLAR RAOIATIOH ILJ<<ELCT)l
  ~ %alta    Or 041 ~    'vltl I~                                              ~ ktkTCSt I ~      C ~ <<OV1 ~ I                                              aft%Jet OklLT 'TOT JL                                  192 Vkc vks, SS ~ 1 OSLO%
44 ~ 1 JSOTC Vla Sl ~ 1 ~ CL4<<
                                                                                  ~ sckftet kf ckkec sscto 4% ~ 104 WINO ISO la<<%I rt. Lt%tt I
                                                                                                                                              ~1                ~ 1CJT CST OJILT LCJST SJILT NISCCLLAHCOU5 NUNOCR OP DAY5 40      0'8l
                                                                                                                                                                                                                    ~~
VI1~ 0 ~ 1 ~ ELOV HCATINO DCORCC DAY5 ISJSC 014 ~ 1
                                                                                  ~ trkaT<<1C
                                                                                  ~ EJE OUST r<<ev ~ 41vkL 1 ~ Ov Etcke
                                                                                                                                                                ~ 41TLT cLS'lel 6
ree
                                                                                                                                                                                                    'Tavaot1 ll TOTJI, 141      fs ~  4  411%                                                        AVCRAOC PSYCNRONCTRIC DATA                                              ELOV\T                              ~ %11                  0
  ~ ErkatVSE        raev 141vkL                                                ~ <<T ~ 44 ~    I or I                          ~ lct 0%41 Ieri                                        RCL HUN. CXTRCVS5 151
  ~ tke ~ <<JL    TOTJL      I~ I ~ EC SVLT ll                                    ktL avv 111                                  ~ cv rf csrl        35          ~ le%EST                    pp        0                      +
  ~ EJS ~ <<JL    ~ E%41TVst        raev 101vkL                  -239              + ~ E14TES LJTCST Or ~ Ef ESJ'L OJTCO                                      LV<<tef                      32        4%
44      CSOO<<OSS 11            Tsl lie v Jaskv4<<lla Meteorological Conditions for November 1989 B-9
 
SEIOT  DOIIClll ra<<V CLNATOLOGICAL DATA l~                                        LATITUOC JCI rthtspvrsak SS MILLS Sc'l,    ~
I Ewaa
                                                                                                                              'w LOI4TWOC>>$ 0
                                                                                                                                  ~ tkvravvvv I v Ot EIOlLAIO, 'WJSIISCTON SC'
                                                                                                                                                            ~  ra  ~  rvla CLCYJTION ICCOUIO5 TSS rCST Oecember              198!
TCNPCAATUACEOP                5  PT LCVCL1                  PR ClP              <<15      'VINO 1$ 0 PT      LCVCLl                                                        PAONTS ANO 415C PNCNOIECN*
0                                                                              V OCCSCC    Oltl                                                        P CAN OUSW                                                      ~ 01CI V
1          ~ JSC CS          I  ~
I
                                                                                      =    C ~0        t 4I      I                  ~          l'                  0    I        TEQCI ot tso<<TJL rasskocs Asc V
V
                                                                                            <<4I  ~
v 5                                                                  ~ 1151 JITCI TIC 101ktloas          Itai SS
                                            <<J J  1  I    'C  1 I
I            ~
IV vv    ~ ~    4                                    V                        ECOLI  tstItl Aa ~ lats I<<kali ~ 10<<tl
                                                                                                                                                                        ~ vo <<
S v a~
                                                                                                                                                                          '
k 4<<~                        ~
g        Iv 4          ~4                  V      ~
                                                                                                                                                          <<<<            ~ ~0 1
                                      ~  <<I
                                          ~
a ~              <<              ~        ~                      <<
5          ~      5        CA      CO                                      110>>                  ~ $        1$  1    1 ~        1$              lc 35    I          l33      -3            32      0                                        SW        181      6          SWI      91        28        I    10 37      32 l34            - 21 31                0  I  O.pll                            SE        4.0111        I      SEI 88              55      I 10          I    F 6    32 !34I- 2i 3                            0  I  0.07I                            tl        2.5!15          I  ESE'4            I 37          I 10          1    F 44      35 !40 i+ 4 I 25 I                        0  I  0.09!                          IN            4.5i18          I    NM!      93    I 50          I 10          I F                          KFR      1930 5    I5        33 I42!+ 71 23I                          0  I            I                    It!W          6.2!18          1 NWl      87    I 109        I        9    I F 5    l3g        35 l37 I+ 3 ! 28I                        0  I                                  IS        !  3.8ilp!              S I      98    I 36          I 10          I    F T    144      136 l40 I+ 7                    .'5    I  0  I  O.pll                          INW I        4.4 13 ! NNWl                      1  1    73      5    10      I l58 l35 l46 i+13! 19I                                0  I  0.01!                I        ISWI 8.9 36! SMI                              76 ll54              I      0 i F                              KFR        23 5    l50 l35 !42 I+ 9 I 23I                              0  I            I                    IW        '!12.0 33          I WNW:          57 i 129            I      4 lo    l48 l27 i38!+ 6 I 27l                                0                I                    lW        I  5.7i14 'NW:                    67 I152              I      0 l
>> 39 !23 !31 I- 2                              I  34I      0                I                    iW        l  6.4!14 i SE                    71    '121                  6 38 20 l29 i- 4                                                                                          3.4! 1 ISSW                    84 '126 '
35      I19        l27-6 36 38 0!
0                I I
IW ESM I i
2.9:10 '
                                                                                                              !32!2! S:96:
                                                                                                                                            '1          !140 '-
ilp!
6:
1 F
ls!31          !26 !28 I- 5 37 0 I                                          I                    IS                                                      37                          F 40 33 I28 !34I+
I30 !32I- 1 l33I 0 I 3 I Oi                                          'SE iSW
                                                                                                              "  3.2i13
                                                                                                              '.6!ll l2 8i 9 '
                                                                                                                                  .
5 SSE SM 92 '121 89    '529,        !
                                                                                                                                                                      ! 10 4    I i F F
32      l25 128t SI37! Ol T                                                                IS                                      1    88 i                      10 I F            GL I30l 1 ~        5      2 24 4
I I
pi-I-
I-5 5      37I Ol 37 35 OI 0
                                                                                                    !
iNW!2.3 INW I 3.2          14 I 8
8!        t!W 5  89!.105 95 92
                                                                                                                                                        '0  71 8 I F 10 I F 9      I  F 10        7                I                                                                                                        NW ~
0                                                    55        3 I                  85        36                7 11
>>
4 I 4 6          4 21 3
33      0 INW IN      i2611                iSS      190'l I
10 I
IF
  >>      3      l27            30 I- 3            35      0                                        INW        3 2 12 INNEI 95                            26              10 I F sc              I              4  LI.                    0                                        SW        4 0              IWNMi 94                34                0        F
  >>36            82 l34M                          31        0      0.01            T                SE        3.2 10 I SEI 92: 34                                        10        F SS                          I      t" 01 1
3      0      00 '0                    T                I      l8!                  '92              6              0        F 0      I              0  l331        0      0    04lp                T !5            i3.0l              i SW          87        35              10        F 0    '27        !28'- 3137l                    0:0          03'0        4                M i    2.3!      9      IWSW          98        27              10        F    GL 31      '28        130!-          1!35'1                    T      I            O.g!M              '3.4'                  NW'5                41        i 10 I F              GL so    32      '30:31            '+ 1 i        34! 0                      I;l0.6'SW '.6!10                                      WNWl        94        29        l 10 i F sl l37        '26        '32 '+ 3          i  33    I  0 I
I    T      !    T .0.115                  ! 3.0'12            SSSW          93'6                I      8 I F
                                                                                                                                                                                                                'rr'r'''
SVV                                  rrr        85    i 0    I 0. 29i 1.4 J1438.'0 i28.                                                                                                t 3.9                                                        8.3 '
                                                                                                ~ ACClPITATION IINl                                          ~  NIS        PNCNOVCVA NOTATIONS                  SCO IN CO        IT ill    Vates ~ OYscswlst srccltlco Tvc ~ JILT                                TOTAL ros        Tst Q41TI                              I      0.29                      I IJIL
                                                                                                                                                                              ~                      ~
                                                                                                                                                                                                      ~I I  ~  ILIWISI OUST Sall<<JIT ttsl04 I ~ 110<< Qloslcst TO QI ~ VISIT                                                                                                                      JV AVI41k                            ~ Lo<<lso 510w IACltlC ITAaOJI ~            Tlvt,                                          ~ trksTVIC u4Q ISIQJL                                    -    0.66                      ~      OUST                ~L      ~ lstkat Llsstsls ~
1$ 1    <<t  ls CILVQIS 1          ~  ~  OEIITCI A Take>>                    ~ ACJTtst l1 SJ 11 ~                    p.pg            !III          4                  t  ~  144                ~  I ~ IsltTII~      saow
~  ill TNC LAS ~ LCTSJQ        '!COL ~ lo TSC 1  1            Vair USE4                                                                                                          4L    ~ ILA1C              IC      ltt CSTITALI 1 ~ ~ CIOTC ~ SE      ~        CJLIIIC I CQ        S                      <<vv>>1 ot ~ Jt ~ '<<ITIS                                                                    a      svoat                      Tata ~ E ~ IT41<<
TCNPCAATUAC 14rl                    S  tt  Lttcl,l                      Taste 01 QOIC                              o,ss 01      li~ JE    I    0                        OARONCTAIC PACS5URC ll~,I
  ~ vtakor rss 1st            ~ oat<<                                          I.ol    01 laoac                          0.10 01 <<oat            I            Jttakat Stktlo ~
I ~ CrkATV~ E 110<< IOIQAL                                                      4 10 ~  I QIIC                    P      14001QIIC                    P        IIIICST ICJ LE'ltL                                    ~ I IIIVCST                                                                              5NOW. !CC ~ CLLCT$ 1$ LCCTl OICIC5)                                    LO<<uT uk LEVEL                                        ~ I      8 LIVE~ T                                                                      TOTAL to1 1st QIITN                                                                              5OLAA AAOlATEON 1LJIILctsl
  ~ Vla ~ CI It 4AT      ~ WITIE                                              ~ scJTtst la s I vovssl                                  ~I I                  JVEAJIC OJEIT TOTAL QAI    >> 41 ~ EL4W                                                        ~ IEJTC ~ 1 Oa ~ 10l                                    ~ I                    ~ IEATCIT        IJILT                              ~a Qkt 00 01 Akott                                                                                    WINO 100    tT    ustl.l                            LCJIT SJILT                                          ~ I
      ~ Qs, Ss 01      ~ CLOW                                                  AVES JIE      ~ IEEO      liar<<1                                                      NI5CCLLANCOU5 NUNOCR OP OATS Qla. I  Oa ~ CLOV                                                      4E ~ JITVIC      114<< 101VJL                                                    CLC JS                                to ~
HCATINO OCOACC OAY5 lSJSC                          ~ 141  1
                                                                                ~ CAJ IVST                  raov                        ~ I                    ~ AITLT CLISST                        Tsvasca AVCAACC P5YCMAONCTAIC CATA                                                  CLOVST                                ~ VST TITJL 141 TIC Q4<<TS
    ~ CIJATUIC      tso<< 101QAL                                                411 IVL~ lorl                        9 vcr SUL ~ to ~ I 3'2                                            ACL NUN. CXTACNCS I              1
    ~ CAIIVJL 10>>L (IIIEC JILT 11                                              ~ CL IVQ        ltl                      ~ CW    rt  10tl                      slcatIT
    ~ EJIOIJI, ~ ESJITUI ~ uola 101QJL                      -244                  0 ~ EI ~ TCS LJTCIT 4t SCVEIAL OJTCS                                          Lowcsr                      39 Meteoro1ogica1                                    Conditions                          for        December 1989
 
Mmlleile F<<W 'HH RAN)TORO (t(CTKOROLOOY STAT(ON cs Iatacs N. w. Or slcsckso, waslt strew                                          January 1990 CLlhlATOLOGICAL DATA                                                LATITVOC 040 54'. ~ LONOTOOC )iso 24'v RCVahON (Ctatta)                                    725 FCCT TCMPCRATUAC(4i              2  PT LCVCL)                PR              r 0~ 5    %1NO ISO        PT LCVCL)                                                PROHT5 AHO IIISC. PHCHOMCHA a
V occAcc oars                      r    V ll 4 JJVO                            PC*K 4US                                      r      ~ OTEI
                                              ~ LSC 4$
1 I1            1        r                    1                        ~ I                1    ~      hvas  01 Fao<<TAL Fasskccs Aac l,r 1av 1                                      V          ~ '4      1 ~
J                                Jv V  V~              0    vV  2                      v  2        V                    ~ IVCV krTI1 TltC laOTJTIO<<s        L11 vaCrt O
                                    ~,                                                                                                                    ~
                                    ~  22                      J        S ~ v                  <<v                  0V                          ~  r            51    IC4LS 114111  krs rro Iwakal 114<<rl vV ~1 141                        1    4 at J
                                                                        ~ v r V ~      v1 v                        V                      1 Or
                                                                                                                                                                ~~
                                                              ~ 0 ~
                                                              ~
                                    ~                                    r                      1 ~          r                      ~ ~      V  5      r 4A        48      7                              la        II        12              IC        IS            '14                        17 47      32        4      +ll                                                      -W      96            29              68        71          10 2        4                    8+pl                    0                                        W  Ilp.p          29    WNW      56      138              6    I 4a+                        0                                    SW        70            31      SW      64 I 78                  9 p                49 +2                      0                                    SW          1    9      37 SW 54 115                              6 4'                                                              SW        0.4          49ISSW 68                61              9 4        59        34    I  46 +17                    0      T                                S    9.3          44) S          65        61          10 0    0      I                        SW    I!6.7          57 SSW 63                8        !      9    I 55                48 +19 17                  0    0.2                                WI16:5              61 W I 69 I 85                            7    IF                          KFR    0130 60                                            0      T                          INW        7.4 50 WSWI 79 41 10 I F                                                                  KFR    0230 lo        50                44l+ 4I2                                                      (NW        7.7 26'WSMI 56 l109 10 I                                                                  KFR    1950
)I        4                  40+        OI25          0                                  INW        7.9 15i NWI 58 I 48 10 Ic        4                                            0    00                            INW        5.3              7iWNWI 64 ! 75 ) 10 IS                                                      0    0.03                                    2.6            ll!    NM 93(58                  !10 (F ls        44          0        7+5 28                  0                                              4.4 12I SE 86 I 83 10 I IS                              7+528                    0        T                          INW        3. 9 12! NW 91 I'54 10 IF 14        4                  4 +              Z4        0    0.02                          INW        8.0 16I NW 82 I 67                                      9 I
                                  !+4 9                  0                                              5.8 181 N 61 ll69                                      0 1 ~                                      4        7                                                          5      15I    NW      86    I  46              9      F 15                                I+                                                                    4.3            12 NW          74    I  86          10 20                              4+            3        0                                                4. 0        13 I SSE      78    I  44          10 I 21                                  +            2    0                                                23            9 NW        83    I  48          10 22                            4      +          23      0                                                9.4 45              M        64    '128                                                KFR 0710 22        5P        0      40    +Ip        25                                                        3.8 41          MNW        49    '191                                                KFR 005 20                                  +          30                                                        3 1            8 WNW        67    I  97          10 25          52      35      44 + 4                    0                                    SW      II4 9          52 SW          57    I 60            10                                  KFR    2100 24                                  +      I      6    0                                        W      4 2          32 WSW        47    : 21 4      +      I      3    0                                    !SW Q          .7        53 (WSW        51    '140                                                KFR 1400 24                          48+81                7    0    00                            !SW        8    1      73!    SW      60        99                      80    WFR    1210          KFR 173 50      35      42!+12! 23              I  0    0.13                          ISW      12.6            55:    W        57 134                    8                                KFR 2348                !
24        50      34      42'12!            23      0                                    . W          7 9    I    34 SW          63 128                10 sl.        42!      28      35! + 4 30                0    0'.05'0.6                      . S      l6.6      I    32!SSW          71 . 55                10        F SVV                                            63      0    0.77 0.6
-0 8.382.                                                                                            ~    9.2                                              8.4 21QZXS          ~
PRCCIPITAT(OH OH>                                          NI5      PltCNOltCNA NOT*TIO115 5CO 11 CO                        lr (I)    IIVLCS~ ~ TNC1WISC        ~ FECIFIC ~, TVE 4AILT              'tOTAI, 101 TVC Nor TV                                                              A    SNL                ~ 4 ~ ~ LOWIJC Star
~ VNlaA1T FCOIOO I ~          114la lal411 ~ VT TO HI~ <<last                                                                          0.77                Jr    ~ LV10 1 k            ~ 1 ~ ~ Lowl~ 0 srola 1LCI1IC STAIOJ14 TINE                                                  4CFAATVIC 111Q 101QJL                                        -0    20              ~ ~ OVST                ~ L ~ ~ I ~ Tkk 1 II ~ 1 Ts la S (2) 'at ~ 11 COLO 1 ~ 7 ~ ~ StroVCS a tOACa.                          ~ Aakvasr 11        sa 11 ~ .              0 39        41    7 8                  1  ~ 104                ~ 1 ~ ~ al ~  Tlat Lkow
()l TVC LA1 ~ Lcr (COL I ~ I IS TNC VVIT Vsts                                                                                                              ~L    ~ LACE            Ia  ~ I ~ C CATSTAL~
To OtroTC 41E 01Jla CAL11IC CQ 2          I                          OVNSC ~ 11 ~ JT ~ 'WITVI                                                            1    Ivoat                T vrra ~ I ~ LToala TCMPCAATUAC lsrl                  2  Fr. Lcvacl                    T1ACC 01 NOAE                                S.SS 01 N01C                                CARONCTRIC PRCSSURC II~ .I Jrtaast      101    rvc Ho<<Tv                                          4 Ol 1a Hoot                                4 14 01 Hoke                  JVC1LCC ~ TLTIOV 0.3                                                    I.so ~ OHoac          0      1t ~ 1ttr ~ CALCTCL              3p 47          ~1        11
~ Craatvat FASH 11 ~ IIEST rtaaakt, 41
                                                            +            O.looa I ~ Ja                      3 5NOW, )CC ~ CLLCTS (5(.CCT) (ISCACS)                                LOWEST SCA LITCI,                    9      8    "        30+
LOWCST                        22                ~ lt        18        T4TJL 101 TVC la01Tlt                                          0.6                      5OLAR AAOIATION ILaaaccvsl Wlvlll                                        ~ AEJTCST 11 SC VNI1 ~ I                    0. 6        '"        31      kvt1LCE OAILT To'ILL VVILSCA ~ 1 OATS tlat    22  \1  ~ EL4w                                  0        ~ 1EJTCST      41  Sat ~I                0.6          "          31      CSCATCIT OJILT                      191
                                                                                                                                                                                                      ~1 LC ACT OJILT                            41 HAC      44 41 AOOVE                                      0                                  WINo Iso 1'r. LcvcL I
    ~ at ~  sa ~ 1 SCLOV                                    18        kvcakst tact ~ IHrvl                                            9.2            N(5CCLLANCOU5 HUMCCR Oi OAY5 Htr 4 01 ~ CL4w                                          0        ~ EFLATVJE FSOQ          141HJL                              +2.7          Cat AA                            F40 Ctr)          tks  ovsT                raoaa                      01        28      ~ aATLv      Rovsv        5      v>>vrst1                        0 HCAT)HO OCOACC OAY5 isaac                      ~              ~                  73                          SW TSTLL 1 ~ 1      tvE laorT'1                                763            AVCRAOC PSYCHROMCTRIC CATA                                              CLOVSV                  24      Ovsr
  ~ CFJJT111C FaoN          101HJL                          -3          sav    SOLO    14r I                        wcr  SCL ~ 141        36                            ACL, HUM CXTACNC5 ( )
  ~ CLSSVLL    TOTJL I ~ IVCE SVLT            ~ I                      ~ CL. 1st. (El                            ~ aw  rr ltr)        9          ~ lorcST                9          01
  ~ CAS01AL ~ CFAATV1'C FASH 101NJI,                        -  62        0 ~ CVOTCS LATEST 01              ~ CTCAAL VATES                          LOWEST
    ~ M IOOOASS (I 75) aaraa avaaaaL rata.
Meteorological Conditions for January 1990
 
QBallelle taH v        sH BAN)TORD )s(C'TKDRDt DQY 5TAT(ON 1$ ISILCS    A %    Ot AICN<<kaos        'WASNINCTON                                      February 1990 CLIMATOLOGICAL DATA                                                  LAtltusc l40    54'.. LONCITUOC I lss          $ 4'          CLCYATION (CSOV>>0) 7$ $            t(ct TCNPCAATVRC            (4F 5 FT LCVCL)                    PRC C)P        1 15    %)MO ($ 0    FT LCVCLI                                                          FAONT5 ANO NI5C, PHCNONCMA OCCECC (SETS                                                      >>CAN CUS                                            V        ~ 01<<I
                                                  ~ kit  4$        ~
s
                                                                          ~
                                                                                    ~s =  >,o                1                              ~ l                  ~    ~
Sv      Tlascs  ot tasatkL      t ~ assets    11c V
s v as ~          ~s V
5                        vV 5            V        ~
                                                                                                                                                                  ~
as sa          CIVCN  ktTE1  TNE 1 ~ Tktlees          tt ~
4 5$                              1  'E  1  "Esc      ~  v              4 vv
                                                                                                                                        ~ s 4 v                        NOLO    taoail  kao      Wt1    Ivkkv tkoatl s    1 ~~
                                            ~4
                                                                                ~
1  v          )  V 1        v        14              l    J                    <<*4
                                                                                                                                                                  ~      ~ ~
0 s                            V                                          1                        a                  e s                                              e 5      0    I  $    4A      ~5          7                        I )01 II        I IS          IS  (    Is I        IS      I      IC 44        24      34I+ 2! 31              0          T          T    ..6I      NWI      6.5      24      W    i 77 I            ]61'                        F
    $          55        38      46i +13l 19              0                                    I SMI    16.8 40 I SW I                54 I 158 I                    10 I 53        39      46I +13i 19              0        .06                        I S        9.2 31I NWI                59 I 4 (                      10(                          K    !I lo4 50        34      42'. + 8! 23            0                                    I W      12.0 26 IWSM i                50 ! 211 i                        4    I s          52        38      45'+lpi 20              0                                    I S      ]7.2! 47! SW i                46 i 183!                          7 48        33      40l+ 5! 25              0                                    I SW! 15.3 38 'W I                    49 I 199 I                        4 I 7        144          26  I  35I- l30 0                                                    I SWi]5.3 55 SW'                                I      9                                        KF.        1
    '                                                                                                                                                                                                              1 s              ~
48        27    I 38i+ 2! 27 0                                                  I NWs      3.9      13 S          (  70 I 140                          9  '
SW'.9                            I 64 'I 118
                                                                                                                                                              ':
5        I  58    (3 I44l+ 8I21 0                                                                              4 I SM                                            10!
io            64        39 I 52I+15; 13                  0                                    : SW! 20.5 51( SM i 58 I 206                                            9 il            59        33 46(+ 9l 19                    0                                    I SW:15.1'5!WSM'4                                i 154                  8                        KF        1300 i$            41        29 I 35! - 3:30                  0          T      I    .1            i SM 1].T: 32I SW) 57                            -'93                            F 38        22 130! - 8(35                    0 I T            IT                i HW    ]].l!      30 NNM I          42:          184:                6:
ll                                                                    'El I~ !
Is I
  'I4 32 35 35 I
22 9!
22(-17143 27I - 2!38 I 28! -1]I37 I  0 0
0 I
l.02 I T i
I    .4: NW'.5 3 I NWE 4.9 19 SE i 58 227!
5.4; 15:
                                                                                                                          ~
20: NW i 81 NM'9: 116!
                                                                                                                                                  '09        '0      10 I 5!
I F
  )7            34          8! 26l -13I39 0:01                                    .2        T i NW!        8.3(20! NWI68                          I  24]      I          6 IF is              4        9    22I-      7  43        0                                    IS    I  4.6!]6: E l71                          I  304      I          Oi 4    I    5l- 4 40              0                                      SEi      4.5      17 )SSE I 74                '57                    9    I 54            48        23      36l- 3 29                0          T                          N        3.8( 15        I H          75        i 137                  8!
Sl            64        30      47I+ 8 18                0                                      W        5.4I 20        i NM 64                (.241
$  554                  30      42'+ 2 23                0                                      HW      7.9i      19 NNW 75                    '95 55        30      42l+ 2 23                0          T                          E        5.2!    19;MNM 77                    . 287
  $4            48        36      42I+ 2 23                0          T                          NWI      3.5!      18 I NM I 92                . 149 36!- 4 29 1$
  $4 4'2 57 31 4
26 42l+ 2123                  I 0
0                                    I S (
W !
HW'.9!
                                                                                                              .il IE 4.4l      15 I tiM I 95 16    l NM: 53
                                                                                                                                                  ~
: 333 71            10 0    I F
5~          57    '29 I 43:+ 3122                      0                                    : W    I  6.0'6          'HNW: 53                  337      I          0    I
                      !        (      i                I        !
  $0                  '                )
SI                  I        I      (                          I          '
Svvaaa'vs s    . IP,                                                                                                                          Xr' Oi
~H                                                                                          PRCCIP(TAT)OH ((H)                                                      r>>C>>q>>C>>A>> I'ATIO>>5 USCO>>                            CO    17 Il)        VNLCSS      OT>><<1wlst 0 ~ E ~ ltIC4, 11C ~ klLT                  T411L 101 Tac HoaTss                                                                A ~ 1 kl I,                  ~0      ~ LOWI~ 0  SV ~ '1
  'avssvklT tcalso I ~ taolJ Hl ~ ascat 10 His>>)411                                                                                                              ke    ~  ksksak                ~0  ~  SLOWI ~ 0 ~ SSOW
  ~ k<<ltl~ Stkaoka ~ TIH<<.                                                    4EtkaTVNC      ~ 10H  LOWelL                                                        ~ ~ 0401                    ~L    ~ ISTkat Ll~ ls Tales (1)          '(s IN ~ 4LVssa ~ '7      ~ ot1 ~ Tts 1 111CE                                                                                                      1 tss                        ~0  ~  ~ eltTIN~ sasw
                                                                              ~ 1<<kt<<OT    I~ Sk lsk ~
~ ()I T1C LkasLCT (C4L,I' ) I ~ 11C VNIT VSE4                                                                                                                    SL ~ ELEEC                    lc    IEC C1TStkL ~
10 OCaotC 41C ~ skis CAL~ 1st I tls 1                                        1vvaca ot okl ~      'wlTNE                                                          ~  ~  avast                  1    Tae ~ 0E1 ~ Tsav TCNPCRATURC lots 5 tT. Lte<<LI                                      T1kcE 01 Hc ~ E            ]0        o,ss 41 lsskc        I    P                        AAAONCTA(C PAC$ 5UAC lle I as\1 ~ 4<< t41 el E H0111                                                    O,ol 01 Heat                          0.04 ~ 1 MsaE        I              SVISSSE 011'II01
  ~ CtkaTVNC tasse lssaHSL                                                    4,14 01 asset                        I JSO 41 Hskl                        Nl ~ Il<<01      ~ Ck  LEVEL                          I ca ai ~ 1 ~ St                                                                          5NON. (CC ~ CLLCTS (5LCC't) IINCNCS)                              Low EST          ~ Ek  LET CI                        4 Low<< ~ 1                                          ~1                        T4Tkl, tsa TNC Morta                                                                        5OLAR RAOIATION nkaCL<<1 ~ I aevaE1 Ot 0110 Wltlsl                                                        ~ 1CSTEST    la Sk NOV10l                          ~1                      ket1kst          ~ SILT T011L Hk'E    Si ~ 1 ~ E'L4W                                            ~ 1<<k1C ~ T  sa <<10l                              ~1                      ~ ktkt<<ST OSILT                                          ~a Hk ~ ~ 04 01 kaovc                                                                        VINO iso tT. LET<<I.I                                LEAST OHLT                                    46
          ~ sla, ss oa    ~ ELow                                    20      ke<<110E sat<< ~ lveal                                        8.9                NISCCLLAMCOU5 HUNSCR OF OAY$
          ~ sH>>    4 01 0<<LOV                                            0    4<<tk1TV1C tasas asevkL            ~                    +1.8              EL<<ka                            5      tos HCAT(HO OCOACC OAY5 lsksc                    ~ Sstl            ~ Cks 4401      55 114ss                5'M      01            7        ~ ka TLT      CL 0101          8      Tlvasta TOTkL          toa  Tlsc aloa Tv                                  767          AVCAAOC P5YCHAONCTAIC OATA                                              CLOSET                        ]5      svst
  ~ EtkaTVNC            t14as N41MSL                                  -4    sat 1st ~ (41)          i37. 5 wtt 04Ls Istl 33                                                      ACL HUN. CXTRCNCS I                  )
sckaoakL TOTAL I~ I ~ Cc kvLT II                                            1EL, avv, (VI                        ~ tw  tt Iot)                        lll~ l ~ EST                              ~1                        25+
0<<1101kl ~ E ~ 11Tv1c taov 1 ~ aaskL                          -566            os<<NOT<<0 LATEST Ot 0<<etakL SATCS                                        LOWC ~      T'                26        o.                        13
        ~ N (40041$ (I 7$ ) aas.aa ~ slasaaa.              ease.
Meteoro1og1ca1" Cond) t1o'ITS 'or'ebruary 1990
 
Qsartette
                        ~ k&
CLNATOLOGICAL DATA
                              ~      I>>
HAN)>ORO METL>OROLOGY 5TATION 25 UILCS N W or AIOILJNO WJSNINCTC>l Lktttooc cdo 24'., Losutvoc 1 too sd'                          cccvkrlos (Csooao)                Tss  tccr March 1990 TCVPCAATUAC(4P            5  PT.LCVCt.l              PRC C)P                      WINO (SO PT LCVCL)                                                              PAOHTS AHO NI5C, PN CROM CHA Sect( c olr s                          VO                          PCAH OUS                                                    ~OTCI a                    VVO V          ~ Jtc 45        "v                                          S Nvu or 1
                                  ~      V
                                                                      ~
V V
v> v z
vo V
1 5 ~    v  j                      V V
v~>>s>>v
                                                                                                                                                                    ~
                                                                                                                                                                            ~ lvc>
r>o>r>L ra>>>>t ~ kac k>TC1 T>c sot>El>as Nolo taearl J>e vwrav IN>all taearl Jrs  >
22 4vv t.t f                  V
                                                                            >'I 4
1 ~a                                                          V    ~  vV                                1 V              t 1 1 1>
as 4$
I 4 1
                                                              ~ V    1 V V 5                1 1        s      s  j            ~ ~
V 1            V
                                                                                                                                                            ~
V~  ~~
I      2        5      ~      5        CA                                      1    I to        11    I 12        12    I  14        IS        I        tc IM            .1    1      MNW)        1 ia        +i                                                                                !NW                    4        I        0      I 41+i                    t      I 1
P I
                                                                                                                                                                        !
4              441 +41                        !                              I    W            I        IW      i                      I        0    I 4!+
1 5                4                    i      I      I        I                      IW                          !M    Wi                        I        4    I
    ~
5 Io!
        !63 I
2 i
I 4
4 1481 4
1451+
                                    +7!
                                    +
                                    +41 ot I
I    Ol 1  01 ol 1
1    Ol I
I 1
1
                                                                                          !
I 1
Wl I
I 1
                                                                                                          . I I
I 1!
144'561
                                                                                                                      '4 I
i S    I I
O')
62 a
                                                                                                                                        !4i I
1
                                                                                                                                      't.
90 751 41 1
601 I
1      1 0
oi 0'
I KF!t 04 3
54    13      142                        0                                                      6! 01 Wt            4      '356                    4(
12 ls 5
8 i
1 43 44 48      +4 P I 0
0                                    i          6
                                                                                                              ~
1        'I44i i        ! 4 41
                                                                                                                                        !4            !                I
                                                                                          !5!:!1010t 6      136                            7    0                                    !W                1        !WNWt                    4      1 6      19        46      +      1    910                                                  4    4!      4          1 54 1405              1        3 i td 1 ~
45 49 56
                                  +41          6!  0 0                                              4      '1
                                                                                                              .                i        I      6                      1 IS                                                                                                            4
                                                                                                                      ~
i 20                                                  0 21 22 22 24 0      4      4      -5          23    01                                              66101              NW        8 l440 24 I
2T                              +        I      I                                      i      I          i        1        i      ~
4 14                              +        I
                                                  '
25
  >>7:4    4:5'5!+(46! oi)0)0' I+4        i
                                                                                                  ~
4 4 I
i  0
:4 8
I 1  A JV ~                    rr i
pi  pl            1 6r              x 1
360' rr                  rrrr rx
~NT                                                                                  PACCIP(TATIOH (IH)                                      ~ Nll          PNC'lONCNA NOTATIONS VSCO IN CO                              lr (I) 'UNLcss ~ TNE1wl ~ c s>tclrlE4, Tst eall v                    T41>L rea        TN ~  lko>TN                                                        1 ~ WAIL                        ~ 4 ~ S LOW I1 ~ OV> T
  ~ VUUJJT tC1leo I ~ t14U UIONIONT Te Ule>I ~ Nr>                                                                                                        Jv ~ JO>11>                        ~s      >Lewis ~ ~ 1ow
  ~ kclrl~ ~ Tkso 114 TIUC,                                        4trk>TV>t ~ >OU 1 ~ >UJL                                                                ~  ~  ~ V>T                  ~ I,  ~  ~ IST>aT LISNT1lsa T Nl COLU>> ~ 1 T ~ 4csetC ~ k T1>Ct
) (2)
        >
                                                                    ~ >CJTtsr I> tk 1>>                                      oa                                    roe                    ~1      ~ >lrTI>e >>os
~ (2)    TNC LJNSLCT (E>L      I>>  I ~ TNC V>lt U>t4                                                          p      4          9    0                ~ I, ~ CL>t      t                It      ICC Ear>TJLS TO ~ C1OTC ~ St ~ 1>U CJL411 ~          I  CU                    <<vwus or ~ JTS wlrsl                                                                    ~      >walt                    T  ~  T>>V ~ E ~ STO>U TCNPCRATUAC ters            4  tv. Ltvcsl                  Taktt 41 U>1C                                4&s sa    ~ o>t                                    ~ AAONCTAIC PRCSSUAC                  tl ~ .I
  ~ v ~ kat >4a Tst Us>ra                                          4,01 41 Uo>E                                0.>o oa vo>c                      JYE>kst STJTIS>
  ~  Ctkarvat t>OU 111UJL                                  +3 6    0,10  ~1    Ns>t                  0        I.oo oa ~ oac                    1I ~ IE>r ~ ck LEVEL                                      ~1 NI Sat ~ T                76                41          31              SNOW, ICC            PCLLCT5 (5LCCT) (l>CJCS)                          Lewtsr ~ lk LEVEL                                          ~1 p
L>wt>T                    24                ~N          25+      14TJI >11 T1C UONTN                                                                            SCILAA RAO)AT)OH ELJ>>LCrtl
  ~ UU ~ ca ~ r 4>T>    wlTNI                                      4>EJTEST IN          lJ No>1    ~I                      ~ <<1                  kvtaklt OJILT              TOT>I 0.1    i Ukt St    41  ~ CLOU 0      ~ It*TEST ~ 1        O>4I                                ~1                    ~ >EJTE ~ r        4JILT                                  41 Uk ~, so  ~ 1 J>OVE                                                                      WINO Ise >T, LtvtLI                                Lck>T ~ LILT                          I            4      "            7 7  1 Ula ~ tc  ~ 1 ~ ctow                                          kvc1>oc srcca Iv>>>l                                                              N(SCCLLAHCOU5 HUNSCA OP OAYS Uls, 4 ea sctew                                        0      4E>k1TV1t r>OU 141Ukl,                                                        CL ~ Ja                                  >44                            0 HCATIHO OCORCC OAY5 lsk>C                  ster)        ~ t>1 CVJT                    ~ >OU                      ~>                    ~ ANAT CLOU ~ T                          T>'Vsst1 0
TaTJL r ~ 1 Tsc UONTN st>Jar>ac taoU s>1UJL                                            oav AVCAACC P5YCNAONCTAIC CATA lvl.~ 14>l                            wcr >vs> Ierj CLOVOT                                    ~ 1st ACL HU)l CXTRCVCS (51 0!
  ~ ckses>L ror>L lslacc JVLT                II      40            WEL NUU          I'CI                      ~ tw >r tort                      1lwlur                                      ~1
  ~ tk>ONJL    Ot>k>TVWE t>OU 14>UJL                  674            woes      ~ TES  Lkrc>T ot >crt>>L OJTts                                    LONCST                                      ~>
    ~ ll    laooASS tt T>> lle>l >N>U>N >JUL Meteorological Cond'ions for. March                                                                              .
1990 8-13
 
STATION    AVE S04    STD DEV    AVE  Cl STD DEV AVE Ca STD DEV  AVE Hg  STD DEV  AVE Na  STD DEV  BULK DEP APRIL, 1989                                                                                              (ag) 1              0.3      0.022        O.l      0  0.27  0.057    0.05    0.022      0.04  0.014      0.76 0.42      0,078      0.12    0.036  0.32  0.071    0.06    0,014      0,07  0.028      0,99 0.31        0.01      0.09        0  0 '6  0.064    0.06          0    0.05              0  '7 0,26            0    0.11    0.028  0.21  0,057    0.03      0.01      0.3    0 '9    0,91 0.32      0 '28      0,12    0.022  0.24  0.064    0.04    0 '14    -0,05    0,01    0.77 0.29      0.014        O.l        0  0.28  0.036    0.05      0.01    O.ll  0.036      0.83 1.25      0.036      0,12    0.014  0.86    0.12  0.17      0,01    0,15  0.028      2.55 168.07    30.893      9,48    2:574  59.55  10  '08 19.41    2,991      8.42    1.421  264  '3
~ ~              0.39            0    0.07    0.028  0.33    0.01  0.09    0.014      0.09  0,022      0  '7 10            0.55      0.276      0.22    0.149  0.28  0.085    O.ll    0.078      0.06    0.014      1,22 O.ll      0.149      0.03    0,036  0.21  0.042    0 F 05  0 '22      0,09  0 '22      0.49 0.31        0.05      0.12    0,036  0.21  0.042    0,08    0.042      0.14    0.036      0.86 13            0.1      0.141      0.05        0  0.32  0.085    0.06    0 '22        0.1            0.63 14            0.26        0.01        0.1        0    0.2  0.014    0,06      0.01    0.09    0.014      0.71 0.23            0    0.07    0,014  0,41  0.085    0.07    0 '22      0.06    0,01    0.84 16            0.19      0.014        0.08  0,022  0.23  0.028    0.04    0.014      0 '7  0.028      0 '1 BC                0          0        0                                          0    0.09        0    0.09 VALUES ARE IN  HII I IGRAMS  PER SAMPI ER          Analytical Results for          Each Sample BC = BUIIDING CONTROL SAHPt    ERS Location - April 1989
                                                                    'I
                                                                ,
C-1
 
STATION  AVB S04    STD DBV  AVB  Cl STD DEV  AVE Ca  STD DEV  AVB Mg  STD DBV    AVE Na  STD DEV  SULK DEP HAT, 1989                                                                                                (ag) 0.7    0.12    0.17    0,042    0.61    0.304    0.06    0 ~ 014      0.3    0.01      1.84 0.66    0.064    0.18    0,042    0.98    0.523    0.09    0.042      0.26    0.01      F 17 0,73    0 ~ 028  0.16      0,01      0~3    0.05    0.05      0.01    0,24    0.01      1,48 0.59    0,042    0.15    0.014    1.01    0,53    0.1    0.057        0.2  0.014      a.os o.77    o.o14    o,16      o.ol    o.s6    o.3as    o.o7      o.ol    o.a6    o.oaa    . 1.82 0,93    0.064    0.23          0  0 ~ 61  0.071    0,07          0    0.31    0.113      2.15 2.25    0,318    0.26          o  l,al    o,a4    o.al    o.o14      o.a6                4.19 81.87    7.304    4.59    0.481  37,11    3,465    9.12    0.912      4 '8    0.212    136.97 0.88    0.163    0.33    0.057    1.18    0.12    0.16    0.092      0,24    0 ~ 028    2.79 V
10            0.64      0.05    0.2    0.064      0.5  0.036    0,07      0.01    0.14    0.014      1,55 0.6    0.064    0.19    0.057    0.37    0,092    0.05      0.01    0.17    0,022        1.38 12            0.38    0.184    0.32    0.141    0.35    0.106    0.07      0.01    0.14    0.022        1.26 13            o.s3      o.os    o.18    o.oa8    o.sa    o.24    o.o6    o.oaa      o.la    o,oaa        1.41 14            0.47    0.022    0,14          0  0.42    0.078    0.05          0    0.11    0.022        1.19 15            o.sa    o.o14    o,ls          0    0,27    0.05    0.04    0.014      0.09    0.014        1.07 16            0.41    0.014    0 ~ 14    0.01    0.32    0,042    0 F 04        0    0 ~ 06  0.014      0.97 0          0      0        0    0,08  0,071                            0        0    0.08 VALUES ARB IN HILIIGRAHS PBR SAHPLER Analytical Results for            Each Sample BC = BUILDING CONTROL SAHPLBRS              Location    -  Nay 1989 C"2
 
STATION    AVE S04    STD DEV    AVE Cl STD DEV  AVE Ca STD DEV  AVE Mg    STD DEV  AVE Na    STD DEV  BULK DEP JUNE, 1989                                                                                                  (ug) 1              1,02    0.615      0.75  0.636    0.65    0 '97  0 F 08    0.042    0.15      0.036      2 '5 0.58      0.01      0,27  0.106    0.5    0.191  0 '6      0 F 014  0 ~ 14              1.55 0.72    0,071      0.22  0,028    0.64    0.127  0.06        0.01    0.12      0,014      1 ~ 76 0.44    0 '78      0,18    0 '1    0.3    0.071  0.04      0.022    0 '5      0.022 0,49    0 '56      0.37  0.311    0.52    0.127  0,06        0.01    0 '4      0.028      1 ~ 58 0.45    0.184      0.19  0.057    0,42    0.028  0.06        0.01      O.l    0.014      1 ~ 22 0 '    0.064      0.21  0.022    0,52    0.135  0 '7      0 '14    0.13      0,022      1.63 2.42    0 '33      0.23  0,028    2.03    0.127  0.25      0.014    0.21      0,028      5.14 0.56    0.022      0.42  0.141    0.45    0.149  0.08      0.028    0.15      0.022      1.66
~ '0                                                                    0,07      0.022      O.l    0.014      1.34 0,51    0.099      0,18  0.014    0.48    0.318 0.31      0,05      0.22  0.064    0.29    0.028  0,05      0.028    0 ~ 11    0 '22      0.98 12            1.19    1,124      0.79  0,283    0,1      0.05  0,02            0  0 '3      0  '28    2,23 13            0.73    0,078      0.19  0.014    0,61  . 0.05  0.07        0,01    0.12      0.022      1.72 14            0.45    0.057      0.17  0.022    0.31    0.042  0,04        0.01      O.l    0,014      1.07 15            0,49    0.022      0.18  0.022    0.47    0.057  0.05        0 F 01  O.ll                  1.3 0.6      0.12      0.24  0.064    0.48    0 '14  0,05      0.014    0.12      0,022      1.49 BC                  0      , 0    0.18  0.141    0.12      0 '7                          0          0      0,3 V hf,UES ARE IN Mff,LIGRAMS  PER SAMPLER Ana1ytfca1 Resu1ts for Each BC = BUILDiNG CONTROf SAMPf ERS I.ocation - June lgfI9                    Sam  I C-3
 
STATION    AVB S04  STD DEV  AVB  Cl STD DBV  AVE Ca  STD DEV AVB Hg STD DBV    AVB Na STD  DEV- BULK DBP JULY, 1989                                                                                          (ag) 1            '2.32  1.124    1.21    0,127    0 F 08  0 '14  0,08    0.01      0.44  0.022      4 '3 0.26    0.028    0.17    0.022    0.35    0,141  0.12  0.085      0.13  0.064      1.03 0.38    0,283    0 ~ 11    0.01    0.35    0 '85  0.05  0.028      0.08    0.01      0.97 0.3  0 '42    0,13      0.01    0.21    0.014  0,05    0,01      0 '6  0.022      0.75 0.29    0,036    0.11      0.01    0.28    0.099  0.05    0.01      0.05  0.014      0.78 o.as    o.oaa    o.o6          0  0.26    0.071  0.04    0.01      0.07  0.022      0,68 0.43    0.057    0.11    0.014    o,a9    o.oaa  0.07    0,01      0.08    0.01      0.98 45 '4    2.291    6.52      0.17  14.64    1,131  5.05  0.233      4,46  0.057      75.81 0.25    0,036    0.11      0.05    0.53    0.014    0.1  0.036      0.05    0,01      1,04 10            0,26      0.01    0.1    0.042    0.65    0.325  0.06  0,028      0,06  0 '14      1.13 0,31    0,156    0,13    0.014    0.29      0.05  0.04  0.014      0.04  0.014      0,81 0.27    0.036    0.13    0.028    0.24    0,022  0.03        0    0.05    0.01      0.72 13            o,aa    0.022    o,ll    o,oaa      o,4  o.248  o.o4  o.o14      o.o4                0,81 14            0.24    0.071    0,08      0,01    0.51    0.163  0.04    0.01      0.03  0,014        0,9 15            0.22    0.022    0.19    0.022      0.3  0.156  0.03    0 F 01    0.07    0.01      0.81 16            0.18      0.01  0.14    0.042    0.31    0.085  0.03        0    0.05              0.71 ac                0        0                0  0.18    0.106  0.01    0,01      0.02  0.022        0,21 VALUBS ARB IN HILIIGRAHS PBR SAHPLBR Analytical Results for        Each Sample Location - July l989 I
BC = BUILDING CONTROL SAHPLBRS C-4
 
STATION    AVE S04  STD DBV  AVB Cl  STD DBV  AVE Ca STD DEV  AVB Mg  STD DBV  AVE Na. STD DEV BULR DEP AUGUST, 1989
* 1            0.89    0.05    0.21    0.014    0.36  0.163    0.07    0.036    0,14          0    1,67 1.41    0.679    0.19    0.036    0.94  0.516    0.15    0.092    0.07      0.099    2.76 0.81    0.269    0.27      0.12    0.41  0.248    0.08    0.022    0.16      0.028    1.73 3.28    3.514    1.25    1,506    0.61  0 '88    0.2    0.078    0 '5      0.396    5.69 1.05    0.17    0.19      0.01    0.56  0,135    0.09        0  0.15      0.022    F 04 1.67    1.117    0,96    1.018    0.97  0.693    0,14    0,113      0,1    0.028    3.84 1.78    0.212    0.18    0,022    0.71  0.106    0.12    0.014    0.13      0.036    2.92 234.7  26.587    17,34    1.683  71.92  7.227  19.88    1.669  11.5      1.117  355.34 1.14    0.304      0,2    0.042    0.57  0.417    0.11    0.036    0.13      0.099    2.15 1.14    0.629    0,79    0,898    0.18  0.163    0.03    0.022  0.23      0,177    2.37 1.83    0.976    1.36      1.64    O.l  0.071    0.02    0,022    0.26      0.297    3.57 12            0.69    0.014    0.16    0.057    0.32        0  0.03    0.014  0 F 08    0.028    1.28 13            1,1    0.022    0.26    0.028    0.25  0.156    0.04    0,028  0.17  '.127        1.82 14            0,8    0.085      0.3    0,191    0.41    0.057  0.04    0.022  0.09      0.042    1.64 0,78    0.078    0.15      0,01    0,35  0.057    0.05    0,014  0.14      0.071    1.47 16            1,01    0.127    0.21      0.01    0.41    0.014  0.04          0  0 '3      0.036      1.8 BC                        0    0.12                                            0  0.24      0.085    0.36 V ALUES ARE IN MILLIGRAMS PER SAMPI BR BC = BUILDING CONTROL SAMPLERS Analytical Results for        Each Sample Location    August    l989 C-5
 
SThTION    hVE S04  STD DEV    hVE Cl  STD DBV hVB Ca STD DBV  hVE Hg  STD DBV    hVB Na  STD DEV ilULE DEP SBPTEHBER,  1989 1            0.49  0.135        0.1  0.014  0 '7  0.028    0.03    0.01      0.06    0.028      0.75 0.27  0.028      0.15  0,078  0.08  0.106    0.02    0.014      0.04    0,014      0.56 0.25  0.042      0.08  0.022  0.07  0.057    0.02          0    0.05    0 '22      0.47 1,13    1.138      0.14  0.071  0.48  0 '75    0.12    0.106      0.11    0.036      1.98 1.42    1,506      0.2  0.184  0,59    0.53    0.14    0.141      0.13      0.12    a ~ 4s 0.36    0.05      0.09    0,01  0.06        0  0.03          0    0.07      0.01    0.61 2.78  0.424      0.27  0.014  1.02  0.099    0,27    0.022        0.2      0.01    4.54 115.27    22.5    16.82  3.543  32.38    5.89  12.66    2.298      9.61    1.937  186.74 0.48    0,028      0.12  0.014  0.37  0.184    0.09    0,057      0.08    0.014      1 ~ 14 10            0.59    0,219      0.23  0.141  0.04  0.028    0 '4          0      0 ~ 1  0.028 0.29    0.057      0.25    0.01  0.02  0.028    0.03    0.01      0.05    0.014      0.64 12            0.33    0,01      0.12    0,01  0,13  0.184    0,03    0,028      0.05    0.014      0.66 13            0,56    0.01      0.13    0.01  0.51  0,036    0.09    0.022      0.06    0,028      1.35 14            0,29    0.014      0.09        0  0,19  0.141    0 '3    0 F 01    0,05    0.022      0.65 0.4  0.014      0.1    0.01  0.09  0,07?    0.04    0,022      0.04    0.042      0,67 16              0,2  0.014        O.l      0  0.06  o.os5    o,oa    0.014      0.04    o.oaa      0.42 BC                0        0    0.08              0        0                0    0.02    0.028        0,1 VhLUES hRE IN HILIIGRhHS PER ShHP? ER          Analytical Results for            Each Sample SC = BUILDING CONTROL ShHPi ERS            Location      September      1989 C"6
 
S TATION    AVE S04  STD DEV  AVE  Cl STD DEV AVE Ca STD DBV  AVE Mg  STD DBV    AVE Na STD DEV  BUIK DEP OCTOBER,  1989                                                                                        ing) 1              0.36  0,057    0.12    0.01  0.26  0.028    0.03          0    0.04      0      0.81 0.39  0.014    0,11    0,036  0.51    0.01    0,04          0    0.09  0.036      1.14 0.33  0.064    0.14    0.078  0.56  0.233    0.05    0.022      0.04      0      1.12 0.29    0,01    0.09    0.01    0.4  0.127    0.04    0,01      0.04              0 '6 0.35  0 '28    0,08    0.01  0.49  0.141    0.05    0.014      0.04      0      1.01 0,45    0,12    0.08        0  0,24  0.184      0,03  0.028      0,02  0,028      0,82 2.76  0.198    0.31    0.01  1.23  0.205    0.28    0.022      0.15  0.014      4.73 92.33      3.21  14 '3    1.351  27,46  0 '09    12.47    0.474      8.55  0.354    155.04
~ 9                0.39  0.014    0.09    0,01  0.71  0.036    0.15    0.057                        1.34 10              0.38        0    0.11    0.014    0.5  0 F 135    0.05    0.01      0.01  0,014      1.05 0.36  0.071    0.11    0.022  0.55  0 '63    0.06    0.01      0.09    0.01      1.17 0.62  0.509    0.19    0.141  0,51  0.106    0.08    0.01      0.07    0.01      1,47 13              0.51  0.163    0 '6    0.078  0.51  0.014    0.08    0 F 01      0.1    0.01      1.46 0.34  0,036    0 '9    0.014    0.5  0 '62      0.06  0.014      0.08  0.022      1.17 15              0.7  0.573    0.24    0.141    0.6  0.163    0.09    0.042        0.1              1.73 16              0.2  0.014    0.09    0.01  0,44  0.042      0.05  0.014      0,09  0.036      0,87 BC                  0      0    0,08,        0  0,37  0.014    0.02          0    0.12      0'.59 VALUES ARB IN HILLIGRAMS PBR SAHPKBR BC =  BUILDING CONTROL SAHPLERS Analytical Results for            Each Sample Location      October    1989
:  C-7
 
STATION  AVE S04    STD DBV  AVB    Cl STD DBV    AVE Ca STD DBV AVB Mg  STD DEV  AVB Na  STD DEV BULK DEP NOVEHBER, 1989                                                                                          (ng) 1            1 ~ 06  0.085      0.38      0.099      0.51  0.347  0.06    0 '28    0.15    0 '14    2.16 1,07    0.078        0.3          0    0.27  0.099  0.06    0.036    0.15    0.028    1 ~ 85 1,15    0.219      0.32      0,01      0.47  0,106  0.08    0,022    0,14              a.16 1.18    0,488      0.31            0    0.68  0.354  0.08    0,057    0.17        0    2,42 0.75    0,099      0.33      0.212      0.31  0.028  0,03      0.01    0,17    0.042    1.59 1.33    0.071      0 '8      0.01      0,51  0.156    O.l    0.022    0.15    0.028    2,57 12.22    1,817      0.93      0.191      4.64  0.792  1.09    0.191    0.67    0.135    19.55 499,39  59.128    36.17      3.917    173 '4  13.782  53.59      6.35  27.01    2.772    789 9F 2.36    0.955      0.32      0.127      2.98  2,312  0.52    0,467    0.21      0.01    6 '9 10            0.72    0.028      0.23            0    0.87  0.141    O,l    0.028    0.13              a.os 0.73    0.184      0,25      0.092      0.26    0.17  0.05    0,042    0 ~ 13  0 '22    1.42 12            0.54    0.04'2    0.48      0.01      0.34  0.022  0.04          o    o.l  o,o4a      1.5 13            1.18    0.962      0.29      0.17      0.41  0.233  0.06    0,028    0 '2    0 '28    2.06 14            0.76    0,17      0.39      0.12      0,51  0.057  0.05          0    0.1  0.042      1.81 15            0.62    0.022        0 '      0.01      0.53  0 '71  0.06      0.01    0.13    0.022    1.84 16            0.78    0.085      0.49      0 F 01    0,47  0.036  0.09    0.014    0.09    0.028    1.9a BC                0        0    0.08            0    0.33  0,014  0.04    0.022    0.04    0.057    0.49 VALUES ARE IN HILLIGRAHS PBR SAHPLER              Analytical Results for        Each Sample Location    November 1989 BC = BUILDING CONTROL SAHPI BRS C"8
 
STATION    AVE S04  STD DEV  AVB  Cl STD DEV    AVE Ca  STD DEV AVE Ng    STD DEV  AVE Ha  STD DEV BULK DBP DECEMBER, 1989                                                                                          lag) 1            0.97    0.198      0.2        0    0.95    0.057    0  '      0,113    0.48    0.672        2.8 0.94    0.028      0.2        0    0.62    0,085  0 ~ 06    0.028    0.3    0,085    2.12
              ).37    0,269      0.2        .0    0.7    0.022  0.06      0 '28    0.3    0.085    2.63 1.93    0.658    0,2&          0    2.09    1.174  0,29      0 '33    0.75    0.778    5,34 2.54    0.255    0.32    0,064      1,21    0.014  0.18      0.036    0.28    0,064    4.53 4.23    0.092      0.4    0,05    2.45    0.587  0.54      0.191    0 ~ 73  0.424      8.35 17.7    2.022    1.05    0.248      7.44    0.799  1.61      0.212    2.34    0.622    30 F 14 514  1.414    22.43    0.813    199.63    6,541  50.89      1,259  50.88    1.945  837,83 a.o6    o.oas    o.as          0    1,57    0 '33  0.26      0,078    0.3    0 '35    4.47 10            1.84    1.202    0.16      0,01      2,2    2.029    0.2        0.17  0.23    0.156      4.63 0,94    0.424    0.16          0    1.54      1.16    0.3      0,311    0.18    0.085    3.12 12            l.a6    o.a55      o.a        0    0.67    0.269  0.08      0.057      0.3    0,036    2,51 13            0,66    0.099    0.24    0.057      0.31    0.092  0.01      0.014    0.23    0.092      1.45 14            1,14    0.262    0,27          0    0.54      0.01  0,04            0  0.35    0.163    2.34 15            0.74    0.022    0 '2    0.191      0.38    0.028  0.02        0.01    0.4              1 ~ 96 16            0.74    0.248    0.18    0.141    0.32    0.057  0.01      0.014    0.22    0.198    1.47 BC                0        0      0,1  0.141      0 ~ 14  0.036        0        0  0.16      0 '5      0,4 VALUES ARB IH NILLIGRAMS                      Analytical Results for            Each Sample BC = BUILDIHG COHTROI SANPLBRS            Location    December      l989 C-9
 
STATION    AVE S04  STD DEV    AVB  Cl  STD DEV  AVE Ca STD DBV    AVE Hg    STD DBV    AVB Na  STD DEV  BULK DEP JANUARY, 1990                                                                                                    (ag) 1              1.01  0.248      0.15          0    0 '5  0.283      0.03      0.014,      0 ~ 19  0.149      !  ~ 73 0.95        0    0.15          o    o.aa        0    0.03            0    0.08    0.106      1.43 2 '5  1.768      0.15          0    1.62  1.803      0.14      0.113      0,26              4.62 2.12  0.509      0.19          0    1.45  1.301      0.18      0.099      0 ~ 19  0.106      4.13 2.78  0.014      0,19          0    1,04  0.036      0.23        0.01      0.33    0.022      4.57 5.73  0.042      0.35        0,01    2.32  0.064      0.49        0.01      0.52    0,036      9.41 20.48  0.276      0.84          0    8.41      0.01    1 ~ 86    0.022      1,75    0.036    33.34 8            1127.5        0        44          0  511.5          0      121            0  107.25            1911.25 NO Sh  SAHPI E AVAILABLE--DOES NOT REPRBSENT AN AVERAGED VALUE 9                3.3  0.113      0,21  '.028        1.26  0.135      0.29      0.022        0.3    0.057      5,36 10              1.27  0,022      0.37      0.318    0.47  0.028      0.07            0    0,23    0,022      2.41 0.86    0.014    0.15            0  0,23      0.05    0.04        0 F 01    0.23      0 '5      1.51 12              1.26    0,82    0.16      0.028    0.72  0.608      0.06      0.064      0.31    0.022      2  '1 13            0,56    0.01    0.13      0,028    0,23      0,05    0.01        0.01      0,22    0.057      1.15 1.34    1,054    0.17      0.022    0.42    0 '95      0.07      0,099      0  '3    0.099      2.33 0,86    0.382    0,15            0  0.81      0.46    0.06      0.057      0.26        0    2.14 16            0.61    0.106    0,13      0.028      0.3  0.212      0.02      0.022      0.27    0.05      1.33 EC                                              0  O.ll    0.127            0          0    0.24    0.057      0,35 VALUES ARE IN HIILIGRAHS PBR SAHPIER                Analytical Results for                Each Sample BC =  BUILDING CONTROL SAHPLERS Location    -  January 1990 C"10
 
STATION    AVB S04  STD DBV  AVB  Cl STD DBV  AVB Ca STD DBV  AVB Mg STD DBV    AVB Na STD DEV  BUIK DBP FBBRUARV, 199Q                                                                                          (ng) 1            0.53    0.099    0.24    0.036    0.39  0.106    0.05  0.014        0,19  0.057        1.4 0.68    0 '41    0.31    0.014 . 0.48  0.092    0,06    0.01      0.28  0.028      1,81 0.54    0.057    0.27    0.022    0,38  0.092    0 '5    0.01      0.24  0.064      1.48 0.74      0,17    0.27    0.01    0.56  0.177    0.08  0.014        0.32  0.022      1.97 0.65    0.106    0.26    0,014    0,45  0.078    0 '6  0.014        0.31  0.036      1.73 0,69    o.o9a    o.a7    0.014    0,51  0.028    0.06    0.01      0.05  0.071      1.58 1 ~ 12  0.036    0.29    0.01    0,75  0.078      0,1  0.014        0.17  0,078      2.43 637.75  68,801    36.12    2.432  232,82  14,856    70.31  7.601      80.76  9.001    1057.76
~ '.9 10              o.7 0.092 o.aa6 0.24 o.aa 0.028 0    0.61 1  0.092 0,042 0.15 0,06 0 '42 0.01 0.13 0,08 0,042 0,028  '.67 2.42 0.44    0 '99      0.2  0.078    0.38    0,01    0.05    0.01      0.23  0,036        1.3 12            Q,47    o.oaa    o.aa    o.o36    o,44  o.oaa    o.o5        0      0.22  0.01        1,4 13            0,56    0.078    0.17    0.057    0 '3  0.028    0,09    0.01  . 0,15  0.085        1.9 0.54    0.042    0.22    0.036    0.54  0.042    0,06  0.022        0.17  0,057      1.53 15            0.41    0.042    0.15    0.022      1.2  0.036    0.07    0.01      0.22  0.042      2.05 0,66    0.502    0.15    0,022    Q.61  0.297    0.06  0,042        0.19  0.022      1.67 BC                                          0    0.14  0.028    0.01        0        0.2      0      0.35 VAIUES ARE IN HIIIIGRAHS PER SAHPIBR              Analyt/cal Results for            Each Sample Location      February    1990 8C = EUIIDING CONTROI SAMPLERS C-11


COLLECTILf PERIOD 1 e ,'Qi 22-Nar-89 23-Nar-S9 24-Nar-89 25-Nar-89 25-Nar-89 27-Nar-S9 2$-Nar-89 29-Nar-89 30-Nar-89 31-Nar-89 02"Apr-89 D2-Apr-89 03-Apr-89 04-Apr-S9 05-Apr-89 06-Apr-89 07-Apr-89 08"Apr-89 09-Apr-89 10-Apr-S9 11-Apr-89 12-Apr-S'9 13-Apr-89 14-Apr-89 15-Apr-89 16-Apr-89 17-Apr"89 1'-Apr-89 HOURS 24 24 14 24 24 24 24 14 24 24 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24 24 2 PUNP SPN 456736 456736 456736 456736 456736 4 5T36 455736 455736 456736 456736 45&T36 456736 456736 456736 456736 456736 456736 456736 4"6736 456736 456736 456736 45673&456736 456736 456736 455736 456736 3 PUNP GPN DRIFT GALS/OAY 328850 32S850 328850 328850 328850 328850 328S50 328850 318850 328850 328850 315148 328850 328850 328850 328850 328S50 328850 3288'0 328850 328850 328850 328850 328850 328850 328850 328850 328S50 S04~PN 508 506 555 532 538 516 590 354 344 278 250 217 280 245}98 250'37 225 208 245 230 242 269 264 251 214 215 Cl PPN 41 45 43 43 41 47 19}9 18 15 14 12 15 13 11}4 13 12 11 13}3 13 15 15 14 12 12 Ca PPN 204 203 223 214 216 207 237 177 172 166'39}25 109 140 222 99}25 119 112 104 122 115 121 134 132 126 107 208 le PPN 49 49 53 51 52 c0 57 42 4}40 33 30 26 34 29 24 3D 28 27 25 29 28 29 32 32 30 26 26 Na PPN 20 20 11 21 22 24 14 IO JM 17 17 14 12 14 12 10 12 12 11 10 12 11 22 23}3 13 11 1}TOTAL 671 HOURS 9194096 GALLONS AVERAGE CDHC, PER CGLLECTIGR PERIOD (PPN}=21 149 36 AVERAGE POUNDS P R COLLECTION PERIOD=24893 1629 1143 S 2745 2144 Ca-Circ Aater Analyses by Chen Lab S04-Used S04/Ca of 2.49 when Ca>200;2.0 when Ca<20D Cl-Used Cl/Ca of 0,20<<hen Ca>200;0, 11<<hen Ca<200 Ng-Used Ng/Ca of 0.24;.a-Used Na/Ca of 0, 10 Plant Operational Data for Collection Period l A-1 COLLECTION PERIOD 2 2?UNP HOURS GPN~UNP GPN DRIFT GALS/DAY SO4 C!Ca Ng lla ppv apN oaq ooq ooq!9"Apr-89 20-Apr"89 21-Apr-89 22-Apr-89 23-Apr-89 24-Apr-89 25-Apr-89 26-Apr-89 27-Apr-S9 2S-Apr-S9 29-Apr-89 30-Apr-89 01-Nay-89 02-Nay-89 03-Nay-89 04-Nay-89 05-Nay-89 06-Nay-89 07-Nay-89 08-Nay-89 09-Nay-89 10-Nay-89 11-Nay-89 12-Nay-89!3-Nay-89 14-Nay-89 15-Nay-89 16-Nay-89 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 22.S 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 4S6736 0 456736 0 456736 0 456736 0 456736 0 45673&328850 328S50 328S50 328S50 328850 3288SO 32S850 328850 328850 312407 245!3 122 29!2 232!3 116 2S 12 227!2!14 27 11 27S!5 139 33'34 13'i17 28 12 214 12 107 26 11 208 11 104 25 10 274!S 137 33 14 234 13 117 28 12 308 17 154 37 15 TOTAL 238.S HOURS 3272057 GALLONS AVERAGE CONC, PER COU.ECTION PER!OD (PPN!o AVERAGE POUNDS PER COLLECTION PERIODo 245!4 123 29 12 h 6696 368 3348 804 335 Ca-Circ Rater Analyses by Chen l.ab 804-Used SO4/Ca of 2.49 nhen Ca>200;2,0 when Ca<200 Cl-Used Cl/Ca of 0.20 shen Ca>200;0.11 shen Ca<200 Ng-Used Ng/Ca of 0.24 Na-Used lla/Ca of 0.10 Plant Operational Data for Collection Pertod 2 A-2 COLLECTION PERIOD 3~2 PUP GPN 15-Nay-89 17-Nay-89 18-Nay-89 19-Nay-89 20-Nay-89 21-Nay-89 22-Nay-89 23-Nay-89 24-Nay-89 25-Nay-89 26-Nay-89 27 Nay 89 28-Nay-89 29-Nay-89 30-Nay-89 31-Nay-89 01-Jun-89 02-Jun-S9 03-Jun-89 04-Jun-89 05-Jun-89 06-Jun-89 07-Jun-89 08-Jun-89 09-Jun-89 10-Jun-S9 11-Jun-89 12-Jun-89 13-Jun-89 14-Jun-89 15-Jun-89 1&-Jun-89 17-Jun-89 18-Jun-89 19-Jun-89 20-Jun-89 0 456736 0 455736 0 456736 0 456736 0 456736 0 4c&736 0 456736 0 456736 0 456736 0 455736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 455736 0 456736 0 456736 0 456736 0 456736 DATE HOURS 3 PUNP DRIFT GPN GALS/DAY&0 62 50 69 30.1 31.2 3 252 4 34,4 S04 Cl";a PPN FPN PPN Mg 0Dg Mi oo PPN TOTAL 0 HOURS 0 GALLONS AVERAGE CONC.PER COLLECTION PERIOD (PPN)c AVERAGE POUNDS PER COLLECTION PERIOD II Ca-Circ Mater Analyses by Chen Lab S04-Used SO4/Ca of 2.49 when Ca>200;2.0 when Ca<200 Cl-Used Cl/Ca of 0'0 Shen Ca>20D;0, 11 chen Ca<20D Ng-Used Ng/Ca of 0.24 Na-Used Ra/Ca of 0.10 II Plant Operatfonal Data for Collectfon Perfod 3 A"3 COLLECT ION PERIOD 4 DATE 2 PUNP HDURS GPN 3 PU"J'PN DRIFT SALS/DAY 804 PPN Cl ,PPN Ca"g Ha PPN PPN PPN 21-Jun-89 22-Jun-S9 23-Jun-89 24-Jun-89 25-Jun-89 26-Jun-89 27-Jun-89 28-Jun-S9 29-Jun-89 30-Jun-89 01-Jul-89 02-Jul-89 03-Jul-89 04-Jul-89 05-Jul-89 06-Jul-89 07-Jul-89 OS-Jul-89 09"Jul-89 10-Jul-89 11-Jul-89 12-Jul-89 13-Jul-89 14-Jul-89 15-Jul-89 16-Jul-89 17-Jul-89 18-Jul-89 0 0 0 0 0 0 0 S.43 0.05 10.23 0 20.53 24 24 24 24 24 24 24 24 24 24 24 24 14 24 24 24 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 45&736 456736 456736 45673&456736 456736 456736 456736 456736 456736 456736 0 0 0 0 0 0 0 115509&85 140172 0 281304 328850 32S850 328S50 328850 328S50 328850 328850 328850 328850 328850 328850 328S50 328850 328850 328850 328850 247 490 606 35 118 26 18 42 189 44 24 37 216 51 24 TOTAL 423.24 HOURS 5799268 GALLQHS AVERAGE CONC.PER COLLECTIOM PERIOD<PPN)"-AVERAGE POUNDS PER COLLECTIOH PERIOD 448 38 174 40 22 21644 1837 8429 1950 1064 Plant Operational Data for Collection-Period 4 A"4 COLLECTION PERIOD 5 DATE HOURS 2 PUNP 3 PUNP DRIFT GPN GFN GALSIW 884 PPN Cl PP" Ca Ng Na PPN PPN PPN e 19-Jul-89 20-Jul-89 21-Jul-S9 22-Jul-89 23-Jul-89 24-Jul-89 25-Jul-89 26-Jul-89 27-Jul-89 28-Jul-89 29-Jul-89 30-Jul-89 31-Jul-89 01-Aug-89 02-Aug-S9 03-Aug-89 04-Aug-89 05-Aug-89 06-Aug-89 07-Aug-89 08-Aug-89 09-Aug-89 10-Aug-89 11-Aug-89 12-Aug-89 13"Aug"89 14-Aug-89 15-Aug-89 TOTAL 24 24 24 24 14 24 24 24 24 24 24 24 24 24 24 24 24 24 20.45 0 0 15.95 24 1S.07 0 0 0 0 510.47 456736 4567 6 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 594 41 217 52 20 328850 328850 328850 328850 566 48 239 58 27 328850 328850 328850 328850 280208 0 0 218548 515 25 213 54 19 328850 247597 0 0 0 0 6'994501 AVERAGE CONC.PER CDLLECTION PERIOD (PPN1=AVERAGE POUNDS PER COL1.ECTION PERIOD=558 38 223 55 22 3255S 2216 13004 3188 12S3 Plant Operational Data for Collection Period 5 A-5 COLLECT'.GN PERIOD 6 DATE 2 PGNP HOURS SPN 3 P>>>>"Z SPN DRIFT GALS/ON S04 PPN>>']PPN Ca Ng Na PPN PPN PPN 16-Aug-89 17-Aug-89 18-Aug-89 19-Aug-89 20-Aug-89 21-Aug-89 22-Aug-89 23-Aug-89 24-Aug-89 25-Aug-89 26-Aug-89 27-Aug-89 28-Aug-89 29-Aug-89 30-Aug-89 31-Aug-89 0]-Sep-89 02-Sep"89 03-Sep-89 04"Sep-89 05-Sep-89 06-Sep-89 07-Sep-89 08-Sep-89 09-Sep-89 10"Sep-89 1]-Sep-89 12-Sep-89 13-Sep-89 14-Sep-89 15-Sep-89 16-Sep-89 17-Sep<<89 18-Sep-89 19-Sep-S9 TOTAL 10,9 8~32 22.37 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 809.59 456736 456736 45673&456736 456736 456736 456736 456736 456736 456736 45&736 456736 456736 456736 456736 456736 456736 456736 45673&456736 456736 456736 456736 45673&456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 149353 1]4001 306516 328850 328850 328850 328850 328850 328S50 328850 328850 328850 328S50 328850 328850 328850 328850 328850 328850 328850 328S50 328S50 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850]1093067 490 484 587 507 612 39 196 51 28 39 165 39 19 63 252 58.9 30 40 168 40 1S.4 54 246 55.3 27'AVERASE CONC.PER COLLECT]OH PERIOD (PPN]=AVERAGE POUNDS PER COLLECTION PERIOD 536 47 205 49 25 49571 4347 18'996 4517 2273 Plant Operationa1 Data for Co11ect]on Per]od 6 A-6 COLLECTION PERIOD 7~~'Oe DATE 20-Sep-89 21"Sep-89 22-Sep-89 23-Sep-89 24-Sep-89 25-Sep'-89 26-Sep-89 21-Sep-89 28-Sep-89 29-Sep-89 30-Sep-S9 01-Oct-89 02-Oct-89 03-Oct-S'9 04-Oct-89 05-Oct-89 06-Oct"S9 01-Oct-89 08-0[t-89 09-Oct-89 10-Oct-89 11-Oct-89 12-Oct-89 13-Oct-89 14-Oct-89 15-Oct-89 16"Oct-89 11-Oct-89 24 456736 17.27 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 2,51 456736 24 456736 24 45673&24 456736 24 456736"4 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456136 24 456736 24 456736 328S50 236635 0 0 0 0 0 0 0 35214 328850 328850 328850 328850 328850 328850 32S85D 32885D 328850 328850 328850 328850 328850 328850 328SSD 328850 328850 328850" PU'ip 3 PU"P DRIFT HOURS GPN GPN GALS/DAY SO4 PPN Cl Ca Ng Ha opq oPH PP>>PP 520 57'251 61.3 29,9 614 37.9 230 56 23.5 TOTAL 475.84 6519998 NERAGE CONC PER COLLECTION PERIOD (PPN)=AVERAGE POUNDS PER COLLECTION PERIOD=567 48 241 59 27 30821 2601 13073 3188 1451 Plant Operational Data for Collection Period 7 A-7 CGLLECTIGH PERIOD S.DATE 2 PUNP 3 PUNP DRIFT HOURS SPN SPN GALS/DAY SG4 PPN Ct ODlf Ng Ha PPN PPN PPN 18-Oct-89 19"Dct-89 20-Oct-89 21-0(t-89 22-Oct-89 23-Oct-89 24-0't-89 25-Oct-89 26-Oct-89 27-Oct-89 2S-Oct-89 29-Gct-S9 30-Oct-S9 31-Gct-89 01-Hov-89 02-Hov-89 03-Hov-89 04-Hov-89 05-Hov-89 06"Hov-89 07-Hov-89 08-Hov-89 09-Hov-89 10-Hov-89 11-Hov-89 12-Hov-89 13-Hov-89 14-Hov-89 15-Hov-89 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 25 456736 24 456736 24 456736 24 456736 24 456736.24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 328S50 32S850 328850 32S850 328850 328850 328850 328850 328850 328850 32S850 342552 328850 32S850 328850 328850 328850 328850 32S850 328S50 328850 328850 328850 328850 328850 328850 328S50 32S850 328850 562 671 658 41 209 48.2 23.1 38 250 60.6 23 42 244 59.4 26.4 39 227 53.2 23.5 TOTAL 697 9550350 AVERAGE CDHC, PER CGLLECTIGH PERIOD (PPN)=AVERAGE POUHDS PER COLLECTIOH PERIOD=591 40 233 55 24 47056 31S5 18512 4407 1911 Plant Operational Data for Collection Period 8 A-8 COLLECTION PERIOD 9 2 PUHP GATE HOURS SPII 3 PUHP DRIFT SPA SALS/DAY SO4 PPH CI Ca H" Ha PPH PPH~o" op'I I!6-Hov-89 17-Hov-89 18-Hov-89 19-Hov-89 20-Hov-S9 21-Hov-89 22-Hov-89 23-Hov-89 24-Hov-89 25-Hov-89 26-Hov-S9 27-Hov-89 2S-Hov-89 29-Hov-S9 30-Hov-89 01-Dec-89 02-Dec-89 03-Dec-8'9 04-Dec-89 05-Dec-89 06-Dec-89 07-Dec-89 08-Dec-89 09-Dec-89 10-Dec-S9 ll-Dec-89 12-Dec-89 TOTAL 24 456736 24 456736 24 456736 24 456736 24 456736 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 32S850 32S850 328850~"~850 328850 328850 328850 32S850 328S50 328S50 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 32SS50 32S850 328850 328850 328S50 32S850 32o8850 8878948 723 555 321 516 40 266 65.2 25.5 26 232 55 17.9 18.5 178 41.5 14 14 178 39~I 12.7 AV RAGE CONC.PER CO'L CTIG'H PERIOD (PPH)=NERASE POUHDS PER COLLECTIOH PERIOD=529 25 214 50 18 39140 1823 15804 3716 1297 Plant Operational Data for Collection Period 9 A"9.
STATION    AVE S04    STD DEV    AVE Cl STD DEV AVE Ca STD DEV  AVE Hg  STD DEV AVE Na  STD DEV BULK DEP HARCH, 1990                                                                                        (ngl o.66    o,o36      o.ll  o.oaa  o.36  o.lo6      o.o3        o  o,aa    0.042    1.38 0.91    0.354      0.13       0  0,72  0.622      O.l    0.078  0.18    0.064    2,04 0.64    0.028      0.1    0.01  0.61    0.24    0,08    0.036  0,13             1.56 0 '6    0.028      0.13       0    0.7  0,219      0.06    0.014  0.16    0.042    1.71 0.7  0.057      0,11   0.028  0.64  0.191      0.06    0.01  0.18    0.022    1,69 1.56    0,064      0.13        0 0,86  0,057      0.14    0,01  0,22              2,91 8.09    0.474      0.52        0 3.87  0 '69      0.9    0.071  1.14    0 '71    14.5a 197,25  12,092    10.67  0.438  98.31  4.554    26.59    0.764  33.44    0.976  366.26 0.79    0.05      0.12  o,oaa  o.6a  0.042      0.09    0.022  0.17      0.05    1.79 10            0.58    0.12      0.12  0.022  0.61  0.022      0.05    0.014  0.18    0.028    1.54 0,49    0.036      0.1        0   0.4  0.127      0.04    0.01  0.09    0,022    I.la 12            0,47    0,028      0.13        0 0.37  0.113      0.04    0,01  0.16        0   1.17 13            0.58    0.078      0.12  0,022  0.73  0.191      0.07    0.014  0.18    0.071    1.68 0.5  0.099      0.12   0.022  0.58  0.339      0.05        0 0.15    0.071      1.4 15              0,5    0.05     0.21  0.106  0.43  0.092      0.03    0.014  0.19    0.028    1.36 16            0,65    0.212      0.16  0,085  1,21  0.863      O.ll    0.092  0.15    0.022    2.28 BC                  0      0  . 0      0 0 '8  0 '98      0,01    0,01  0.22    0.028    0.41 VALUES ARE IN HILIIGRAHS PER SAHPIER Analytical Results for fach            Sample BC. = BUIIDING CONTROL SAHPLERS               Location       March 1990 C-12}}
COLLECTION PERIOD 10 2 PL'NP DATE HOURS GPN T PUNo GPN DRIFT GALS/DAY SO4 PPN CI PPN Ca,"9 Na PPN PPN PPN 13-Dec-89 14-Dec-S9 15-Dec-89 16-Dec-89 17-Dec-89 18-Dec-89 1't-Dec-89 20-Dac-89 21-Dec-89 22-Dec-89 23-Dec-89 24-Dec-89 25-Dec-S9 2b-Dec-89 27-Dec-89 28-Dec-89 29"Dec-89 30-Dec-89 31-Dec-89 01"Jan-90 02-Jan-90 03-Jan-90 04-Jan-90 05-Jan-90 06-Jan-90 07-Jan-90 08-Jan-90 09-Jan-90 10-Jan-90 11-Jan-90 12-Jan-90 13-Jan-90 14-Jan-'90 15-Jan-90 16-Jan-90 17-Jan-.90 1S-Jan-90 19-Jan-90 20-Jan-90 2t-Jan-%0 22-Jan-90 23-Jan-90 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 A4 24 24 24 24 24 24 24 24 24 24 24 24 24 24 14 24 24 24 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 4"6736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 328850 328850 328850 328850 328850 328850 32SS50 328850 32S850 328850 328850 328850 328S50 328850 328850 328850 328850 328850 32SS'0 328850 328S50 328850 328850 328S50 328850 328850 328850 328850 328850 328850 328S50 328850 328850 328850 328850 328S50 328850 328S50 328850 328850 32S850 328850 644'6 195 46.1 14.2 427.27 241 59 14 564 163 15.3 138 35 13.5 138 12 95 24 8 5 24 199 50 16 1 TOTAL 1008 13811697 AVERAGE CONC PER COI.LECTION P RIOD (PPNI 387 19 174 43 13 AVERAGE POUNDS PER COLLECTION PERIOD=44585 2172 19990 4931 1527 Plant Operational Data for Collection Period l0 A"10 CDLLECTIDH PERIDD 11 2 PVNP HDVRS SPH PVHP SPN DRIFT GALS/DAY SD4 PPH Cl Ca&#xc3;g Ha PPH PPN PPH PPH~24-Jan-9D 25-Jan-90 26-Jan-90 27-Jan-90 28-Jan-90 29-Jan-'90 30-Jan-90 31-Jan-90 01-Feb-90 02-Feb-90 03-Feb-90 04-Feb-90 05-Feb-'90 06-Feb-90 07-Feb-90 08-Feb-90 09-Feb-'90 10-Feb-90 11-Feb-90 12-Feb-90 13-Feb-90 14-Feb-90 15-Feb-90 16-Feb-9D 17-Feb-90 18-Feb-90 19-Feb-90 20-Feb-90 21-Feb-90 TDTAL 24 456736 24 456736 24%56736 24 456736 24 456136 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24'456136 24 456136 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 45673&696 328850 32SS50 32S85D 32SS50 328850 328S50 328S50 328850 32885D 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 9536648 17D 8.7 122 30 10,1 330 15 135 33 11 126 9.2 97 22 8.8 204 10.1'96 24 10.9 AVERAGE CDHC, PER CDLLECTICH PERIDD (PPNI=AVERAGE POVHDS PER COLLECTIDH PERIDD=208 11 113 27 10 16498 855 8945 2167 811 Plant Operational Data for Collection.
Period 11 GATE COLLECT!ON PERIOD 12 2 PUNP 3 PUNP DRIFT S04 HOURS SPN GPN GALS/DAY PPN C1 PPN Ca Ng Na PPN PPN PPN 22-Feb-90 23-Feb-90 24-Feb-90 25-Feb-90 26"Feb-90 27-Feb-90 28-Feb-90 01-Nar-90 02-Nar-'90 03-Nar-90 04-Nar-90 05-Nar-90 06-Nar-90 07-Nar-90 08-Nar-90 09-Nar-90 10-Nar-90 11-Nar-90 12-Nar-90 13-Nar-90 14-Nar-90 15-Nar-90 16-Nar-90 17-Nar-90 18-Nar-90 19-Nar-90 20-Nar-90 TOTAL 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456H6 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 648 328850 32S850 328850 32S850 328850.328850 145 328850 328SS0 328850 328850 328850 328850 328850 145 328850 328850 32S850 328850 328850 328850, 328850 173 328850 328850 328850 328850 328S50 328850 328850 250 8878948 8.7 13.9 10.6 140 35 11 99 24 10~5 127 29 12.6 121 27 17.6 AVeRAGE CGNC PER COLLECTION PERIOD (PPN)AVERAGE POUNDS PER COLLECTION PERIOD=178 11 122 29 13 13195 81S 9012 2128 957 Plant Operational Data for Collect1on Period 12 A-12 0oaite!re~kv~sk CLIMATOLOGICAL DATA NAN(FO((D M(wr(FDRO!
OCY STAT(ON 55 SSILCS 1, W OF SIOILAISO, UAMUSCTOH Harch 1989 LATITUoc lcs sl',~Loacllaloc>>ss 54 w cacTA(loa (Esovao)755 rect 5~I V s J 1 5'5 4%~4 4%1 OCCSCC OATS~ASC 45 TCMPCRATUAC
(~P 1 FT.LCVCL)I J J I a V~I V J vv S a%4V J~v P II C(P~15 V J%a Ceo V4%CCf~v 1 V I v 5~~~v V 4 UIH0 (SO PT LCVCL(%CAN OUS~ss s J~V~~s~J I V I~~1 I I~~'s*~~~FRONTS ANO MI5C PHCNONCHA~OT~I Tlvaa Or Faeatkl 1~saki~I JJC~s'sta AFTCS TUC IOTkfsoas ICOLO t10%fl kaa V'%ra%Ivkkv~14%f 1 35 23129 5 4A 48-11 36 0.08.9 lo T IN ll I IS II 15 15 14 6.5!15 HW 85 I 61 10 F GL 5 130 5 135 l 133 20i26-14 I 39 01 18124 1-15 I 41 0 14:24 1-15 i 41 0.07 11.8 T T 2.11!IM 1.5 (E T INW 6.1 14 NH'WI 75 1254 I 7 I F 4.2116 SE 56 1379'0 I 6.2117 I NW 65!172 i 10 I$33~16Q 29 131 I-9 i 34 i 271441+3!21 0 0.23.4 T INW I 4.8 16 I NM 91 1 83 I 10 F GL KFR 2115 T IM 16.0 30!SSW 76 1358 I F 54 56 321431+1 s 22 38147 i+5 I 18 50!40145 I+3 I 20 Io 64 I 381511+8 I 141 0 0 0.31 (E i 3:8 18 WSW 60.335 iNW I 5.5 17;.NM 63!301 i 9!!NM I 7.9(29'SE 89'I:103 I 10 1 F IE I 5.0'125!SE I 77 1296 I 6!F KFR 1900 11 67 I 42154'N'll s (1!.24!(M i 6 1123 SHM s 70 (370 l 4 I OL KFR 0310 65 (44154!+11 I ll 0'5!55 i 41 1481+4 I 17 0 Il!56 34 i45 I+11 20 0 (s;50 I 29!40 I-4!25 0.08'02.02'.SE 1 4.6136 I SW I 74'310':M s10.5127 IWSMI 60'237;9:SW!6.9!24 (MSM.57:308!6!A AU!H!2.4110.H!77!199', 10 i KFR 0500 I~143 17'57 33i38!-7 27 0 27 (42 1-3 23 0.22 HM I 6.6120:HNWi 91.52!10 S!3.8(21 ISSXI 69:355 I 8 I t I~160 42 51+5 14 0 1.04 i (W 8.6!29 NH 63 380 I 8 I Is 160 co 160 51 164 36 48 I+2 17 0 28 44-2 21 0 1.05 39 52+6 13 0.01 iw IE iW 5.4 17!NK 2.7 14 SE 9.5 42 MSW 60~423 63'416 8 51'386 I 11 10 55 56 55 56 54 56 55'62 cs 57 35 46-1 19 0 34 45-2 20 0 37 46-1 19 0.05 38 l50+3 15 0.14 37 i47-1 18 I NM 4.2 23 WHM 50 ,285 HM 5.6 18 NM 4.1 14!MNM 55:348 9.2 I I I iK I 5.1123 (WSMI 7.310 10 KrR 00 57 60 46!53+5 12101 63!41 (52 s+4 131 0 (>>57!36'46!-2:19'!
T s 10 ISX 114.4 141!SM I 52.245:X I 7.0!26 (NW I 46 467 5 I IM'.0:24 X I 46 280: 8 so 157~28 42!-7;23>>(60'0.50'.+1 i 15 0 I I 1 S.5.3'23 5 Mi 298 0 I.i M 9.33 M I 492!I'IVV>>I 153.933.7 58 0 11.5613.1 6.2~v (l(Halts~oraaawssc~Fatlnaa.Tac ekslr I%VV*IT rtas40 I~~aov lais%I~ssf To vl~ssltssT~J~ITIC~'tkssoka~TIVC 1(>>vws I~calvvas 7~~~a%orts*Takcc.~(11 TssC Lka~LtT IcoL 11)I~T1E valT 1st~(fo stssofc~ac~Ikv cAL41lc r tv 5 TCMPCAATURC I Fl 5 FT.Ltvtl.l IsACCIPITATION IINI feral raa TUC Ssoata~EFJJTlsac tsov a01vkL 1.56+1.16~ACJ TEST I~Sl aal 0.31 4%9~VSS~C1~I~ATS WS'till ra*et 0%vokc 19 ops 01 skeet~I~~Ls'Vla~Ovs't~I ILOVII~~IOW~L~latkaf LIS1111S~~I~I 1 IF, I I~I%4W lc.Iac carstkls ravs~lasfesss 1~ISJSI, Av kvaoak~~Ov sf~~reo~L~4lklC~I ve I c~AROMCTRIC PAC55URC ll~.I ss 1 WsscacssE.'I*
slo Arl 11 vsco IN c lr kvlkkaa rea TV~vearv~CSJITUIC FIOV 101VJL~II%EST 67~I LOWEIT 14~1~vvsta or 4JT~wsTss~o.ol oa sssat 0.10 0%vekt T4TJL FI~TUE VI%TV~ackTtsr Ia ak ssovasl 3.1-0.6 o.lo 01 veac 5 I.oo ea ssokc p 5HOW.(CC PCLLC75 (SLCCTI (ISCHCSI JVESJ~E STJTI0%s 1savtat~EA LCTCL 3p 36 I~Le%Est Slk ltrtl 29.58 I~5OLAA RAOIATION ILksaltTSI JVEJJIC OJSLT T~TJL vks sa IA~clow VAS, SO~I ASOTE~ss1 sa 41~cLow VS~0~I SELOW HCAT(HC OCOACC OAY5 Isk~c OSor(~AEATEST 41~JOS 2%7 0%2 WINO lsa rr.Lcvcl.l 6.-2.4 AUEAAIE IFEE~lvsvl~trk1TUAE Faov 101VJL FEAI IIIT 42 raov'W W 0%~AEATCJT 4AII,T LEAST OAILT 492 52 0%CLEJS FAITLT CLOVIT too 9 Tavaoaa MISCCLLAHCOU5 HUMOCR OS OAY5 tarsi~01 Tvt VIVTss~EFAJTIIIC FIOV ls~IvkL 658 AVCRAOC P5YCHROMCTfllC OATA'2Q s oaf avis tert 43 war avis 14t(39 CLOV4T 17 ovsr RC(HUM.CXTACMC5 (1 SCJI~IJL TOTAL I~Satt JVLT II~CJIOUAL Ocrkatvac raoss aeasskl 152*~M (COO~Co ((751 ssosl svssksa avs,%EL 1VV ltl~cw FT Ios I+It%arcs LATEST Or ICTCSJL OATC~III 41E IT~I'7+LOWEST'2~Meteorological Conditions for March 1989 B"1 CBatIeIle~CLIMATOLOGICAL DATA ((AN(TORO (e(KTEOROLOGY STATION 25 eelLSS I, V, Ot SICILANO, VAsslsafos April 1989 LATITUOC Ato SA',~Colic!foot I (50 Sa'>>CLCYATIOO (CSOVNO(TSS TCCT TCMPCRATURC(4t 2 PT.LCVCL!oaaaac cATC~kst 45 J 4'52~~I s 0 I Ls I e~, J I t e g~~V~v<<V V 0 v J s P R CCI P Jvo JVO 14 v~e I 0~V V~~~V VINO (SO IeT I CYCI.!~CAN OUS V V~V 0 s~~SV 0~~~v~SeRONTS ANO MISC, IeNCNOMCNA Sorts fleets Ot tlosfkL aallklcl JNC leTCI ktTCI TeeC NOTATION~at~MOLS tsosrI kso>>ra Ir Jar tsosrl I 2 5 SA~8~0 I It I lt IS I Il is I lt I lv 56 6 I 46i-I 0 I 7.I KF!I 22 0 0 I 58 59 59 73 T I 75'!68 37148-!7I 0 I 35I 47i-i I I i4;-: i I 52 62!+47 63I+12!2 I 0 I 5 l63i+: IO I 44!55i+4I 9 I 0 I i I~o o!q I I<<dd!W!o 536WW I l!!~!55 I I i e 4 I!I M!op W 2 I i I Wl 6 IW!I 4 I I o!lid!4 I 5 I 67!39I 5 I+!I I Io 69 I4 I'+d!I I I 75 l36 I 56l+4i 9!0 I 77!41!59!'+7'I 0.'pi44I62!+0:
3 0 I!4!80!48 i 64!+12!1!0 is I 71 150!60I+8'.5!0!l4 6 I'5'I!73 46 160!+9I 5'.0 o\~~~I t (T el(5!'2!e I 7 I iH i".4:WNW!4!'5'5 40 I 506 4 IW i 4.6 3'WNWI38!54: NW'.6.0 30'NW!38: 368'NW'13.4 35 NW!40'77'.9!;5 iW I 6.2'27.W l26 i 602'I~77 e 54 66 I+14 0 So 75 50 62!+0 3 1 I.OZ 0 I.07 I!~79!41 60!+BI 5 I 0 I!NWI 5.8: 16 WSW I W I 6.9i 49 W I I o..'5%W 31'514 i 4 i OL 54!452'!OL 55 I 6 i!KF 55 2 47 54+1 11 22 65 140 52-1 13 67 138 52-2 13 72 l44 58+4 7 0.07 0 0 0 I W I 4.7i 15%5W I S I 6.4e 22 5E IH I 4.9;18;EHE IN!11.6'35 SNE 67 i 307 I 9 45'523 I 7!56 547 3 I 45.476 10 62 I46 154I-lill 0 I.35 Sa 60!4 l53!-2!12 l.04 66 l48 I 57lt 2: 8 I 0:.28 68 45',56:+1!9'0 72:41 l56.': 9'0 NW.o ll 43 SE 74'219 9 I A, T,OL 1: F I NWI 4.7'17 HNM 8 3 IN!3.5 14NW l74 391 9!: NE(7.5:24 ENE!52 438!8 e (N'.4 18 H 145 645 0 So 21~VV I~~j!!254l 1!0.84 I T II R (Jvl 69.7 I 43.7.4.IeRCCIP!TAT(ON IIN).4'll~elt Ives eeCNA'eoTATIO>>5 VSCO IN CQ lv (!!SNLclo ofeecarl~t satclteto Teat oaeLT OVV<<kIT tC~Ill IS TIOQ QIONIONT T4 Qll~IONT 0 JCITIC Sf kaok1~TIQC~I (2!<<v is COLN~0 5~scsorcl a vases.;(Sl fsa Laslaar lcoa.(~Ill fst Vair mete~To~CNOTc 1st laaee CAL41ec I cQ 2 vovka tos Tsc<<oars 0.84+0.4~C~JITIIIC r~Ov Noa<<JL~atkraar i~sl sss.I 0,37 os 25 26 NVVOCI Ot Okf~'>>ITNI J IJIL kv~Jvaoa~~~Ovlf t to~Q,~0Lk la I~lvaeC~0 OL0'seal 00~T~0~SLseees~ssor~L~llf JNT Llcsfseso~0 Olltfl~0 assr lc Ica cavsrJL~T~Tsvaltsaf01<<
TCMPCRATURC lltl 5 rf, LavCI.I Takct 41 QOIC C i o.ts 01 eclat OARONCTRIC PRC55URC Ua I Illatlf 0 oee Jrtaklc roa vsc e lars~CtklTVIC talv NOJQJL 0 Ol 11<<lac!0.50 01 eclat 0,10 01 QOJC~.Oo 01 eeoaa 5NOW.!CC PCL'T5 (5LCCTI (lacs(S!Avt~Jlt'Jllre~I Ieelscsf~ck LcvtL l,l>>CST SCl Ll'etl, I~"I I~I Ls>>aor SVQOCI ot OATS>>ITNI Qkt 52~I~CLO>>beats 00 01 JOOTC Qe~, 55 01~CLor TOTAL tla TNC Vosfe~IcATtsf I~2~eeov10~~~I VINO ltl tT LCTCL I kvtaklc~rcco (Qasl 0~atkfclf ls~I~I~s SOLAIC RAO(AT!ON ILANSLCV~I kvtskct~JeLT for lL~ICkfllt SJILT LCJIT~JILT d I~.~1 MISCC(LANCOU5 NUMIICR Ot OATS Qe~, 4~I OCL0>>NCAT!NO OCORCC OAY5 IOJSC~Sot!TOTJL roa vsc eeosrs 4tt JITeelt~IOQ 101e k'Clc lellT TIoee I~I AVCRACC P5YCMROVtTR(C dATA CLtka tk~TLT CLOVST CLOVOT tos TNVsoCS Ovlf~tsklfvat TIOQ NOIQJL SCJJONJI TOTAL I~II~C JVLT II stkloeeAL~CSJATVIC tsoee NOIQAL OM I500425 (I TS)eesaaaee<<JJSve<<L Ssv svao i4ri~I!var Oval I4t!~ar tv Cori ICL IVQ III 00CSOTCS LkTtsf Ot SCTtllL OkTCO Ieceetlf Lo>>CST'RCL.NUM~CXTRCMC5 (!~I~s 17 Meteorological Conditions for April 1989 B-2 Qaarreae CLIMATOLOGICAL DATA HAS((TORO METEORO(OOY 5TAT(ON 15 SNLCS II, N Ot CICILAao Vksala<TOO Iia 1989 LAT(lvoc cca 1<N..Loac(fvoc 1150 so'CLCTAT(os
(<aors ol Tss FCCT ay 4 5 I 1 1~V~~~va$54(c okfl HAEC$$TOIPCAATUAC(tf 1 f T.LCVC(.l p I 0 J~~I~a I~I 4 P 0 I V V~v J I r>>AC C(>>aa j rva V e 10 Vtr 1 v I v V~~~I 4 I~~V I~v V I!V VINO ($0 PT LCVCLl rc*IC Ouo~I 4 1 r 1 V J V 1 1 I r a e J~~P v Sv~,as gaea V~Ia~V~~~a~PAONTS ANO N(SC PHCHONCNA~OTCI IIUCS Ot Fkt@TAL FAII<<4 AIE~ITCI AFTCI II<IOTATIeea It~Ic<LS Faoafl kao rt1 Ivkav tetefl 4A~8 IS f 111 IS I~I 1$I~71 74 79 55 6 53 45+71 2 0+111 0+5!3 0 0.12 W 6.9 M 5.9 IM 7 301 WNW 47 4 2!NW 43 627 0 81$84 51 66+8 0 1 52 8+9i 0 3 3.5 21 W 9 67 I N 3.31 151 NE 45 I 543 OL 88 56 721+131 0 7 INW I 6.4 33!NW 50 I 523 9 OL 1 85 85 76 I 62 741+5i 0 57 711+111 0 6 58 671+71 0 2 INW 17 6 1 i 4 INW I 7.8 30!MN'10 I W i 4.3 17!MNW 37 i 630 3 I 10 O8 11 69 11 7 ls 76 1<77 44 561-4!42 56!-41 9 0 45 5'-I 47 621+!3 0 51 641+31 0'Wi I i4 I 1 I N 5 IN 65 51-dd i I I 4 (0 1$10 82 77 49 66+5!0 1 54 66+4 0 1 I INM 6.5 29!NW I 655 it!M 12.4 37iWNW 34 I 539110 I!4 i C Id I I!I 11 6~C 6-7 0 0 0 0 0 IW 1574 1$$$6 1$68'4 78 49 581-6 7 10 10.01 44 61-4 4 0 45 60-3 5 0 I 5 54-9!0 0.08 4 5-3 0 0.01!NM 7.0 361 NW 40 I 687 3 4 IW 152 5!NM~5 9 T IN I7.0 2 IN 65 3651 9 NW'5.0 19: SE 64'90~7 SE I3.9'9: SE 57 712 I 1~VU 88 50 I 69+3i 0 141 34 0.59 S 14.8 i 22 I NW 43.699 I 4'I"'94 548,5L~HI (11 VICES<~TIEIHI~c stc<IFIEV, TIE 0AILT~VAIUAIT a<Iles I~Faev Ul<<I<I~Te UI~II<IT<<<ITIC STAIOAAO TIVE (11 eTI~II c4Lvllaa 1~0~cIOTE~A Tak<E, (ll TIE LAN<LET (C<L,(of I~~Ic OIIT v<C~IO~CIt<C 41<<IAU CALtalC I CU 1 TCNPCRATUAC
(<tl 5 n, I,EVIL(7.1 PRCCIPITATIOH (IH(I1TAL F41 TIC UtafN 4<kkaTVAC Fatv~01lkkL 0.59+.06~I<AT<sf Ia$<~11~0.37<<22-23 IVU~<1 tt Okf~lllTNI Tekcc 01 U<1c lp~,5'~I lk<1c 1 III L kaetek~ovaT F<4~l<lkcC~I ve 1 E~4~SLOHI~O<<ST~s el<<<I~<Seer~L~~I<TAIT LIIITIIN~~1~IIIIII<Sacr IC~I~E CIT~ILLS I Iaeael~Sf<kv~AAONCTRIC PAC$5VAC Il~.I 5.6 Il~H N 4CNA NOTATE Hs SCO IH CO II krlek<<tea Iac~tata 4.01~I ll~kC 4.so 01 roke 1 r\1<<E~I 1 TI~I~EFAITVIC~aev Itavkl el<I<ST Ltv<ST aav~Ca Ot OAT~HITNI vk<, SE 01 1<lor Uks, Io~I Aeovc Ula, I j~I~~L<r Ula, 0<1<<Ltr~I~I 0 0 0 0,10~I U~IC (,00 01 UOIC~ICAfCST Ia 1<NOVI~I~IEAIC~I<1~atl~I~I VINO ISO FT LEVEL I AVEIA<C SFCI~Fvkel~E~AITVAE tat<<IOIHAL SHOH, 1CC PCLLCT5 ISI.CCT1111<1($
1 TOTAL Ft1 TIC UOITI al<IEIT SIA LITCL LOP<ST SEA LEVEL<~I~I 17 5OLAA AAO(AT(OH Ilka~LEIS(1'Eak<C 0~ILT TOTAL~1<SF<ST OAILT LCAST OAILT 534.9 0 50" 9 0 N($CCLLAHCOU5 HUNCCR Of OAY5 F4~ClCAI NCATINO OCOACC OAY5 Iek<C TOTAL t<1 TIC v<1TH~I FAATVIC F1<v 141UAI,<EAS<IIAL T<TAL IIII~c JOLT I'I~cks~IAL~ESAI'fva<taav atIUAL~set 1~-300 ecka<v<T 4~I~lk~I AVCAACC PSYCNAONCTR(C CATA~af eels(OF(rcT<vis)OF~Cr kf (451 GAEL avll (cl<~Ea~'IE~LATE<I~I~cTcakL OAT<1 tkaflf Clev<t CLteaf Iles<et'lav10 ca~Vk'I ACL HUN CXTRCHC5 ($1~I car<st" 14 ov 0 13~N ($00855 (1 111 kite<k<<alkaa, ella.Heteoro1ogica1 Conditions for May 1989 8"3 CBattelle ZLlhlATGLOGlCAL DATA HAN)TOAD)o(STTSTDROLOCY STATION 15 vlLcs N, w or otc>>LA>>e, wksNlscTos LATITVOC kca SC N LSOOC)TUOC
('ll SC W CLCYATIO>>(4OVAO)TSS IC CT HCHTN June 1989 TCVPCRATllRC (4P.S PT.LCVCL)CCCOCC CATS v ekcc 45 all 1 k~~I~o sal J s~1 4 v PRCC(P r 4 5 rva Jva:~t!~v~2~~~~Sv v~a'r E VINO (21 PT LCVCL)I PCAN CU5 oo V r a v J~~V v~~~ss~4~s~~~PROHT5 ANO M)5C, PNCNOMCNA~4TCE rooots~t taastkL oosskocs kac~ores ktTE>>Tsc sorkTIO<<s'to Ltoao taosrl A<<0 v>>o~lwkov ooo<<T1 1 1 2~(5 ECA 48 T 1 1 94 l57!76!+10!0 i ll i i 1!90 l69 l80i+13: 0 15!!lo'1 1~12 I 12)1~o Is 14)S'.2 27 I Wi!!T": 34!708 1!W I 7.0 23 I HHci 32 i 665 2'U 1 i86 l62!741+7.0 9!T I.)tif!13.9 43'NE I 3 I 41!3'0 4 (90 (59174.+6~0 9!I I''.8 28:NE I 271734 i 1 5197)55!76!+8'.0:ll': M)6.33)NW i!736 i 0 i~195 66)80'+12!0 15!'.I: W'.6 39'NWI 22!740 I 0~T I I s o+'o 5~~NE~3.0 20 MNW'4.737 0 i I 4I'+'.I i o~~I 5 I''+O'0 I lo(!I y4.'I ,'!I ic"4 I 4!4 i 11 I 1'>>~~o~r 11!!i 4.((i IS i j 1~1 4 4!+~1~15 0 i I~4~0 14 1~I 15 I 14~!i'o N: 2'70 4 W 5)67 6:!6 742 I KFR 2245'1*11)11)!0 14!0 i i4 1 I!I i!!op.': 3 3 Oi l I Sl'94'.67 80+i 0 5'4 1 i (1+-'I i M 5.7 22 W 1 27-620 6~o 4 o 1lo'4~7.0 WNW'2 52': 14: 1'y 4: M 6.>4 5'KFR 700 I>>I'62 i 0'0 5 T W 5.0 24 MNM" 46 367 10'4!80 58 69=''.': SW 12.7 30 SW~37 575 6 21 1 o~-r'';L!rr~6 l2 5, 0.0'r r r''''.V'rr'rr"ri rr'oa~R 7 0///i/orr.4,6~T (1)v<<LEEO or<<tawosc sotcltocs.
tac okoLT~Uvookal'caoso ls taov Woo%la%1 To HI4>>soar~oclolc OTkaoA>>4 To~4 (11 1 ls tsLVH<<s 2~OC>>~TCO A Takcl~(1)1st LksaLCT lCOL 1st 1~T<<E V<<IT UOE4 To~ts~Tc~sc~akoo c>>La%le I EH 1~%tartar O~tk'oaa,%swats\t okra>>oT<<o.0.01 PVCC(PETA OH 11,11 TOTAI, to~Tsc Has TN ocskarv oc taov~oavkL 0.01 14 I I-0.44 A~OOAOI AV~kasaak~~Ovor~~t04~L~OLAE~~S vs O E~4~LO>>O>>4 OVOT~0 OLO>>osa Ssow~L~Oo~Tsar Lo~%tao%~~0 oaotroso ssow I~oct E~r~TALi T T<<<<soo~Orsaoo OOI PV o V NA NOTATIONS O'SC IN C lr TCMPCRA,URC 1 Ol 1 tT, LEUtl.l k<<tarot oaa T<<t>>4<<Too 1'CtkaTUAC tsev Sao A oo 1, 97 I oola<<EST TAkcE 4%vooc 6 e,js 0%ooskc i p 8ARCHCTR(C PRCS5URCP<<.1 0.01 4%o<<4<<t): O.so 0%~oac I~ocak~c~rkrooa 0+7 e.leo%Hose p)T.oo Oa Hose I p%os<<Ear stkctotL i 30.3p ea 1 SHOW.)CX PCL'.S (SLCCT)((>>CA(S)Le>>tsr sta LEVEL 29.69 4~LS'NE~T a 4 oo~E a~o'A T~w I 1 oo I HAE~11~S~CL4>>~ks so as kaorc 4%0 T4TAL ts~Tac<<os%Too c>>EATtsT oa jk<<ovao~~AE>>rest 4%4%01~s 0%0 5OLAR RAO(AT(ON lcoaclcr~1 6 742 4%)>>ac>>oat okoLT TOTAL a>>CATEET CAILT o 4(HO O'lt OT LCSEL1 I LCkst OAILT I 294" 13 1 Ho~1 1 4%~EL4>>Hos~4 4%~Ecow 0 0 HCAT)HO OCORCC OAY5 14~St~asti A<<tak~E~otto lvo<<l 4!Cack>>tea 0 acaoaovat oooo<<so%HA'av<<OC
~ocAO avsr 43 rsao , H 4>>3~oatLT cLovs~7 9!SHSCCLLANCOU5 NUMCCR OP CAY5 I TOTAL t4%Tst Ho<<Tv~Eokalva~taov%a%oaks~AT ovLO 14<<1))>>tr sv 0 tat)AVCRACC PSYCNR HCTR(C OA,A CL4V~'~vsr 1 RC(.~HUM.CXTRCVCS l'1~tkao<<AL TOTkL 1~o<<CC JULT ll SCL IOVOO 1'El I~cw tr lot)<<O4<<COT~a stks4<<AL stoa>>TUA~tasv%4%HAL 4M (SCSASS ()TS)a<<oak>>oooo<<a.<<ooa.
ooca~TC~LATCOT~t OCUCAAL OATC~L 0>>t S~~s Heteoro1ogical Conditions for June 1989 8"4
---.CBattette CLIMATOLOGICAL DATA HAH)TORO MCTKOROl OCT KTATIO(C Ss IJILcs Ie, w ot A(oetkao,'VAsaleecroN July 1989 Lktlfvoc tsa 14 N..Lose(rvoc>>54 ss'cccvknoa (ctovaol 111 Fccf I v OCCNCC OATS~JSC C5 4 1 1 J 4 11 1~N~~4 si e I" TCNDCRATURC(ai
)FT LCVCL)~1 t 4 J J I'I 4 v~~4 V PRCO)D s CC VO o~4 va i=J J~1 T 4'e v.I V I 1 ae t 4 1 V 4 V I'CAN OVS'0~v 1 VlNO (50 FT.LCVCL)s 0 s s I I~v\~~JV 1~1~4~s~v 1 I sv~C~~E4 FAUN'TS ANO IH5C PHCNONCHA NOTE I~tieet~or riosfki,~JENJ4ts Jkc~ceca krTEN Teec sofkfew~~r~kaLO riasf1 Jaa'ww'%IN%rsaatl I I 1 I 1~I 1 OA oe I T I 0\~lol>>~11(111 lk I Is I II i I 75154!'64-7!1 01 I 1 I 84!50!67i-5'2'i W I 7.5 25!MSMI 42 i 368: 9 i!WI 3.517i SW:42!659e 5 1 I 86161 74+2'!9!I I M I ll.3 iMNW!36 I, 1 I!!h-!i'!!4: 44 c I 4 i i;.::>>!!I NW!4.3 4:.29 I 736!0 1 j 4 I (: O.'I I I!".'5'I I~I I n.!"'We 0'35 i 0 NM e'4 i IO i iWI.3 If'IIW~39 i 605'OL>>i!'",".I, I,~!!N'rl 6.018-N~36'713'(1~<!+P'.:~NW 6.8 23 NE(29'93'6>>I i I+4: 0'.!N 4.6 20 WtIW'8 682 0 I~,)I~+NW 8.1,'7 NM'9'68'!64'-78i>'i 13'!NW 10.5 35 WNW: 33.705 4': 5!-2'I 0'0'SW 6.4 22 SM 56 283'>>I 87 (54:70:-8e 0: 5(e is!4 64: I+~0: 14i 15!00: 70'5i+7!0 I 20'o I 96 I 64.!80i+2I 0!15i 11 I'.''!.j ss!a I I 4!11!: I:5 I i Sciaa I I+i I!15!!I.I]i SM 6.2 MSW I 44 716.3 W 3.16 SSE 3 43 7 e NM 6.5i.NW I 34!NWI 10.8 38 WNW i 3 A I 67 I W I 6~62 2 OL 15!a'.c.4'e I a)O;!'M 3 664 0 L)l'~r~r'rir r/See~r kvt ia a aerrrrerrrrrrr p r'r r er'A r:r'r'er r r~f (I)UNLEI~ofeIE1%IIE I~EEITIE~, T1E~JILT~vvvkiT rcieao Is f144 NI41I~eef T4 veoaet1f r JCITIC STJN4JIS TINE~(1)T I~ESLN41~r~~4c10fts k Tskcc~()1 Teec LkatLcT IESL IQ es Tele IINIT vsco fo~C10TC~1t like CkLONIC I Cv PRCC(P(TAT(ON UN)TatkL raa Teec IJONTN OENJitle~C riav NONVJL~Nc*Ttif Ia tk sii~p p svee~c1 or~JT~VITIII 0 I~WAIL W~JVJOIJ~over r~ra~~L~~LJit~~~~~~I~0~~Lowest SVST~I~Lave~4 I~Ow ol,~Olitkst Llssraeac~0~NIrTI1~Saaw I~~ICC ENTSTJLS T~fsv'esi1~T414 VIS~N'NONCNA NOTATI N5 Sco IN CO lf CNPC((A)'URC lari 1 rt LEVEL)ra ice 41 erase 4,11~1 NONC 4AAONCTA(C P(IC55VRC les.i~1 LSVE~T 4 41 svvet1 4r okf~wef1I vk~lt 01~CLO'W krt~Ja~F 4'sc 44srs~ESJNTV1t f104 1414ke, I~I~Ie I I t 0 O.oe 41 e oic O.SO Oi 44JC kvtakcc srkvas T0TJL raa Tsc NONTN cktkTIJT Is IJ await~ICJTIST as~sai~1 p SOLAR RAO(AT(OH ILJNJLCTSI I 648.I krtik AC~JILT TafkL~1 I~ICJTCST OJILT 744 4.10 ai ieait P 1,44~1 voic P I se~eetst stk LtftL 30.20I~I 5 5HO'V,)CK PK(LCTS (5LKCT)tlaCNCS)el L4%C~T SCJ LCTCL 29.69I O.l 29 eeki.~Il~1 kiOVC'VINO ISO rT I ETCLI I LEJ~t OJILT wI 16 e e~.St~1 stkaw kVCNJEE S~Ci~ivi ei P NISCKLLANCOVS HVNCCIC Oi OAV5 ve1 4 41~EL4%Oci~NTVIE~144<<aivkL I I ELEJN raa 0 HCAT(HO OCOACC OATS I~ksc TOTJI, ra~TNE 44NTV~ciki Tvsc f104 1414JL~Sor)01T avL~lail!wet JNL~lorj icka OVIT 4 t141e I as AVCRAOC PSVCNRONCTA(C OATA~JITLT CLOVST CLOIIIT vassals avsr RCL NUII~CXTRCNCS (,)0 SEJSONJL'T0TJL IIINCE JTLT II~tkiaeekL OEJJNTVNE ts44 141ee JL-3 NEL, IIVN, 1'Sl 3 Stw if 14e 1 4~ENOTC~I JTCST~r~EVCNJL SJTC~seteettf Law tif~1 9 a.~N (500415 (1 11)~I'I w evivwk sees~Meteorological Conditions for, July 1989 8-5 CBaveae CLIMATOLOGICAL DATA HA)C)TC)R()
MCTCOROLOISY 5TAT(ON 55 QIL(5 N N Ot OICNLIOO, MINOOCTOI August 1989 LATITUOC EC 54'a~LONE)TOO!I IS 50'Q CLSTSTIOS NAOVVO)TSS FtCT V 0 v v~j5 4 1~4 1 TCIIPCAATUAC(OF
)FT'''V I 1'v LCVCL)0(EACC SITS IIIC 55 1 1 J 1 5 4 v~v 4 PACCIP.vve SI J 4=;Cao va~"'.EC)-Cites 1~a 4 v~~~~1 v 5~~~v v v 0 V'V~5 4 v)NO (50 FT, LCVC),)~CAN OUCU~a v 4~I J~~~V~v 1 1 v~I 1~~~SAON TS ANO Il)SC, PMCNOM CNA SITC~hvcl ot tatafkL tallkccs aac~etta ltTE~'Ivt astafloas lta Nwo towf1 Qao'ta Iwaaaa tasarl 80 5 I I 5 I CA led I T I 0 I 1: 10'l I IS I Il'~I IS I IC)61!701-8!0 I 5l I i!Sri'.0 33 1 SW'7 I515)8 84I 56:70i-8i 0 I 51 I!IW)8.8I27.'SSWI 38 I 634 I 4: 84!58'71i-7I 0!61 I!)NW 4.'NW c I 89!55'72~-5'" 0 I 7)i I INW.'.7~24.'i 38!638 5 9 i 60I.'+la'13!)I:6:3.)1:!1 I 5!102I 67(84I+7!0 I19!i I!N.5:28 I W I 7 I I 1 (OL T;13;: I+:: 1)!NW.'.NW'l 95: 77'86'8'0 i 21 I T i!It!W.4'NNW'3!: 1!OL 91;57;74.-4'I 9a-I!IIN'.2:23 NW: 33 i64o i 0 AU 4,':-,'!IS!Q~I I I (SI)411 I I 4 i 4'4 4 IS I~~~I Ici!'i-!:!I'If i 1.I'i I 4~4 I~I I!+!I I I!~I~I OI I I+I i I I 50 I i I+15 I I I!i i I a!I 50!!I SSI l I i;I i (*.'(06 20)I ,'.a I i I I I'!I~C I a~~~I'I Ss I)0!64+6 5))54 4 9 45~4 I~a'I 4 I eaa vr r.rr 12/'krr ar JF/yr r'ter 4"~r.6'''i 4 6're'r'al OVC I VENA 1 T*TIOVI USCO Iv CO IT PACCIP)TAT)ON llMI (1)vaLcsl ofaEewlsc I~ccl~IEI Tvc sall,r~VHVkat t\also Is tlov QIIUI41T ro QI~tlear taCIFIC~T41~aao TIQC (5)vfv Ia I~Lova~T~~~C10TE~4 f tact 4())Tac LaaeLET Icol Isl ls Tac Usaf vsc~ro~ca~Ic Iac~aav EIL~SIE I EQ 5 feral toa hac aasarv octaafv~E tslla~c4>>aL~1Ekf tet Ia le<<ar P 4 Isa asaaoca at ears wnws~14IL kv aalsaa~Ivor~te~~L~CLICE~~I ve 4 I~I~~Ls>>I~l SUIT~I SLewaao Iaow OL~~Iltaaf LI~1 Ta lao~I IHFTI~I Iaow I~~IEC~ar0raLS t~rara~Iaotoav TCMPCAA'TUAC (otl I FT~LCrtLI lake~41 vial I 0,5I 01 veac (SAAONCTAIO PACSSUAC 0~.I art~alt to~ra~>>gatv~1141IUat taov aoavaL ales~~t 103 0.0~~1 Qoac)4 0.10~1 vok<<0,10~I I 011 I 0001>>0~c 5NON.ICC PCLLCT5 (5LCCT)(lrcaC51 lrtl~St~Iatloa VIlacsf~ck LEVEL tewel'ta LEVEL~4~4 (LO>>t~T 52~avaa~c1 4t olr~>>Ital aaal.)l oa sctow 25 ref lo tlk f1E HIST~~1C4TCIT Ia El\st~~I~<<I 0 I ISEIICST 01 l1~I~a 0 lrtkklc IIILT to'taL~IEITCST 04ILT~4 5 SOLAA AAOIATION IL4 Sterol Hac Io~1 41~'C VNMO Iso tf.Ltrcll Ltk~1 OIILT~4 Hla II~1~ELO>>Hla&01 IEL4'>>MCAT(NO OCOACC OATS Isaac~Ier)0 0 krtaalt~alto IHWI~EIISTUSE~ssv aoavaa, SE44 IUIT rasa~LEka t41TLT ELovof Fol)p Tavaotl 5 II15CSLLANCOU5 NUMSCIC OF OAYS ToT4L t44 TSE Ho~fa~Etaafvat ttev aoavaL~taloaaL TITIL I~I1E~JvL'I ll ltkalakL~Etlahllt tat>>aoovaL CQ ICOSA))S (1')))ala aatvavaavaaw
-10 AVCAAOC PSYCMAOHCTAIC OATA~af wl~Iotl>>Ef OUL~1st!SEL avav Iol 4~Ert IT lot l Hstaofts Lkf Csf Ot~EVEOIL sifts ELsrsr~ala~Sf os>>Est~VST ACL, NUN CXTACVCS (5)~4~4 Meteoro1ogica1 Conditions for August 1989 B"6 QBaaetle CLIMATOLOGICAL DATA HAH)VOR))M)VTKO))O)
O<$Y 5TATIOH$$HILCS 4, W 01 AIOILAso, WA51110$41 September 1989 lkfl)04$acs)O'LOIICI)UOC I>>4 50'>>EL!TAT<01 ICS44141$55 TCCT CCCSCC OATS Sale CS lt V v~1 1 s 4 k 4~~$$!a3s a>>11 E TCNPCRATURC<or 5 PT.LCVCL)1 V-3,I 4 s v v'~~v~v IVRCC<P st j vvs'vo I'I vl tv(I")$-4I'~v~v~~t~s 1 V 3~~4 v a~4 WINO 150 ST LCVCL)r CAN OUS IS v 5 V~1~'1 4 4~4 6~~"51~~~~~~4 PRON'TS ANO ll<5C, PNCVONCNA~OTCI<twas or raosTJL~s~~scca Jac~Ivies J~TE1 T1E sotattosa sv1 ICSLO raastl Jss>>rr~Iwsast raasrl I~5<)~a'I~A I~0'I 0 0 I 10'l I It I<5 I~'$~IS I is!5 l65l-5~0'I I IW l6 7:WNV 44i 5!8!5 i66l-4 0 I I i 1 IW I 84'28'HWI 4 l407: 3)47~64<-6~i 0: I 1}136: 6'42:~!89 l49<69-'''I)NW!5 8'32-HM<l5 Sl<6 70 Os<i I)NW 6'tM 3!5'l 5)82 l54)68."-: 0)3l'IN!9.0:28 H)33I55 I 0: 7<<7 I+ps 66<I N:58: N)35.50~l86)58 i72<+3'i 7<I):N)0.2'37 NE I 37 i 471<0 1~7~5~"5'-4lpi 0: I I'N'7 i: 0)4I80:45 62-6<3!0~!I N!43''7'478 I KFII 850~s'll I-I: 0>>'85 147 166!'-: 0I: "I 7~47)67l 0''NW 5.3 16 HW 29'483 I 0 I 30'MM'4 0 8: 3:46 0-47!6'+'.4'I'4 4 NW)0 4 4 I 4:56'.5!+9'0: 0!i!IM': 4 M':46'I~', 6 s O I 9+;s 4!>>6'58!64'-:..0')NW'84 7~''48''NW'4'2'NM I 43<88~0 i~7)I 4)-I!Qi!I 6 I i4~is I!44~I-4!50 I 82 l52<67!+0 I 2 I I Si 83)46!64)Ol I 0 I 85!52 l68I+4!0 I 3 I 88'53 l70I+6 I 0 I 5 l 54 90 l51 l70)+6.0 I 5 I$586'<54!75!+12 I 0!10!O.OZ$5 79)5)6 1+3!Oi 8Q)47!64'+:!P'!87 51 169+7: 0'-'W'')6 4 I!Si)')47 0: 36~40 I INW'.2!14 NM 39 410 I 0 IS I 3.5;10<ESE 39 398 2 I INW)49''.NM 40 38 0 I I 4!14 8 W~4 2'H.57 3 9'NW-63'H'9 I INW 9.0i42 I SSEI 39.257 10'L>>l88 61:74+12 0 9':.I'!W 8.6 18 MNM 32 344 6'!76 58 67+6.0: 2~T'.'W 10.0 32 MNWV 46 140'~)1.'I SVss-83.2!52.<Jy'ri 12 i89 i 0.02 0 6.1'J N///tr 2.5'll 1 r~v II)vsLEJ~OT1I1rl~I saa~st<as, Tsc~JILT~vvvasT sea<os I~tsar HIS1<IJT to Hsossost aacartc~IJJSJ1~Tltsc , (5)tst ls coLvssss 1~~EsoTE~1 Tsac~s())Tssc LJJILET<IOL<H I~Tsc vs It vac4 14~E14TC~JE I~Jv CJLOJIC/Csa 5 TCNPCRATURC lors 5 rt.Latas1~NCC<PITAT<ON
<INI TOTJS, toa TSC Voattt 0.2 Ts ace~1 Hose 4,51 41 voaa~Ea Ja TV1E~1ov 141V JL~~<atcsr ss Sa sa~.0,02 41 25 svvacs Ov~JT~VSTst 1 ssslL Js~asst~1~~CVIT 1~too OL~CLJ\E 1 as~at~~~~'saris~OVCT~1~ILOW<1~SSOW~L~I~Vast LICVTssso~o sasrtsso astr IC ICE~11sT JLS T~tso~4~1~141v SARONCTRIC PRC)5URC Is~I~v rv v v Nk NUTAT<os I 0<N C ST tv<1*at vo~1st vo 4.41 1~HOJE 4,SO 41 Haaa Jslaala ITJTI~1~I 1 1 1 Ts 1 C~1 4 H~O 1 H 1 L~sl I a 1 I I T isa>>car svvsas~1 sass rstsl staa.11 os JCLow Hal 14 41 JJO1E HSS 11~1~ELOW~1~1+1 4.14 O~vl~C 1.40 os s aac$NOW.ICC PCLLCT5 15LCCT))<SEVE))
ssasast~ck LatcL~Larcar~Ca SIVCL~1 0 oa 17 1~TJL 141 TSC Vo~TS I Saaktc~T SS SJ sask~I p I-Ektasr Os asal I 0~s I~1 5OLAR RAO<ATION ILJVILIT~<415.6 JVCJJIC SJILT TITJL~a 5+asc JIEST~LILT 3 I p Jvcaaac~Ja<~lssssi WINO Ito rt.Ltvtl, I~6.1 I'LEJIT SJILT I 4-I p Is<5CCLLANCOU5 NUN4CR Or OA't5 0 vss 4~1~CLOV NCATINO OCCRCC OAY5 Isaac~Sa~)TotsL aaa TVE Hosts~EsasTvsE fsosa stavaL 4~~JJTII~C raosa sssvsL 3 saks'Ivaf 42 raov i SS 41'25 12 AVCRACC P5YCNROSICTR<C OCTA 55 sar sos~Iarl 9 w>>svss Ios)5 0 ELC Js SJOTLV CLOT~1 to~111 1~I 1 RCL.NUN.CXTRCNCS<%)CLOVOV~01~1 0~EJJOVJL TOTAL IsssscE JVLT 11 JEkaos JL SC1111VJE rkav 141HJL~<I<500>>0$5 i<$$)ssssa awvv 1-65~aw rr c4V I JEL SVH I'l oscsotcs Lktcsr or OETIVJL oatcs 1lasaat LOVIST 6 15 Meteoro1og)ca1 Cond)t)ons for September 1989 B-7 OBaneue CLIMATOLOGICAL DATA HAH)tO)!5)
METIC)ROI OCY STAT)O)4 55 QILCS a, r Ot SIOaLAIO,'>>A]II>>CTOI ctaber 1989 LAfltuoc aso)c'..Iosclluoc 115~)4'cccv>TIO>>
lc>ou>ol]))tcCT v TCHPCRATURE IOF)FT.~l 1~,~as v s~4 a>LCVCL!CCCCEC CATS~L]C 45 PR v v 1 t"4~CIP~~v r ,v v C'av v~v r I<<4<<1 j v rvs r v<<>4 4 v i v V~~~v]t V a v v a a]>>IH0 150 FT LCVCL!>>CAR CUS v]t~I v J~I~t I~j"~~~1 v]>tee~4 t FRONT5 ANO H15C PNCNONCHA 101CI TIQES Or r>calf>L il>aut>AIE alvEI L>TC~Tlat Iof>floss>t>kou t>tati>so"vr><<I<<L>v raoefl I 2 5~A 4d t I IO II I]1$I~15 I~71 5 8 56 6 431+4 1<<4i 9 0 0 I 0.04 IN 9.26 N I 39 N 8.8 27i N I 41 I 4l-I la+I I i 4 I i 5 I I 10 14 I I~64 4 l41 4 I l4+I+I+I-6 NW I 46 l343 1'71 i I 4 I 5 I I I I~I'I 4 I I I 4 I 9!4 l 4 I-'I I'~4 l I 7 FR 55 l]5 14]0 51 5)4 I 4 I 4" 4 44 5 iW I 4 i4 I 94 I 4 0 i!'52 Oi!6 1 I I 4'F 4 FR 534>>62 4 56 0 00 46WW'.8'0 IO KFR 25 KF 702 SC 55 62 40151 I+2 14 0 SW 3.7 I 6'I 70:238 3!AU)4 I!46 I-I 0 9 136'4 i+: I)4 I 4!45 l I I I>>53'7!40 I-6 I 25'I 0~02 4 0 0 i.5'i6 48 6;F 0)0 48!28'38-8 i27!0 I I'W~3 4: 5'WNW 70 51~10>>I54!35'44I-2i
'0!!!IW 143~N I60 239 I 0~al v LV~39IO I04 I 0 15 IIIRCCIPITATIOH 11>>l 5.6'Q]iv v v>>AQ TATI 1 Eccl>>co IT!II u>Lcs~0TIcsvl~c Liccltlt~TIE oalLT SVQQ>11>C>leo I~tIOQ Qi~II4>>T 14 Ql~11411,~Lalrl~STAIOLIO TIQE l)l QTQ Ql coLvval~1~~t>>41cs 1 T>>ct.I!)1 1'st LL>CLCT IEOL Itl I>Tst VIIT V>E~10~CSOT\OIC~>La>CALO>la I CQ 5 TOTAL tOA Tl>C Qo>T>~I~A>TV>C t>OQ 10>QAL 04~>ELTtlT ls CE I>~0 5l~.2-22 IVQOC>Ot~>10'Ill ill 1~SAIL>1~Le>~4>~Selt t tee~L~LL 1 C~~lvelc~0~>LO<<l>~SV0 1~0~Lo<<leo~Itv~I,~~I~TL>1 LIE>falls~~>~>l>1II~010<<Ia~lac C>101>LS 1~1 e V e 0 l~0 1 0~a>TRHPCRATURC Iorl 5 rf.Lcvtal~vf~Lec re~1st Q>>T>~C>A>TV>a tIOQ I~>QLL TILCC~I Q>IC 0.01~I Qe>C 9 o.lo oa~>et 0.]S 0>Qo>C e.sa ea I eac f,00 ti Qoit CAROQCTRIC PR555URE Ils I LvEI>ct 01>vie~Qesasr sca uvaL 29 la I~I t I 1 80 Os LO<<CSV 27~I IVQ>tA 4>Sais<<ITII QL>, 1]41~ELO<<QLE~0 41 Au>>~Qal~St 4~~EL~'<<QQQ o oa ecto<<10+29~It>TEST~I esol~I~I VINO 100 rf.LEVCLI~vts>at sites lv>sl~E~L>TV>t 110<<101QLL 5>>ON, ICC PCLLCTS (SLCCT)IIIC>>cll Tot>L re>1>C Q4>TI~>CATE>T I>1~laae~01 0 Leva>f~aa uvaL 5OI.AR RAOIATION IL>eCLCTSI LttiA4C 4>lLT TOTAL~>C>1CST~LILT LEAST~LILT~I H15CCLLANCOU5 NUHIICR OF OAY5 toc CLCAi 23 HCATIHO OCORCC OATS I~1st~Cori~CLI CVST>IOQ I oe iji1LT CLSVST Tsv>OCI Tet LL t41 flit Qe>TV~ltL>TV>C r14Q 10>vaL~u>0>AL 101>l I~l>at JVLT II~CAIOIAL~C>LITVI~~>OQ Ia>QLL~II I~OO 05)!I))l Laa>a>vw>a>aaa.
oav aves cori ICL IVQ ICI vcf sec~Iovi 45~cv it IOrl ootsofa~LLTCST Or SavtIAL OLTCS AVCRACC P5YCNROQCTRIC CATA ELov>T IiaecsT LO<<EST~VST R!L NUH.CXTRCHCS I~s 4 Os Meteoro1ogica1 Conditions for October 1989 B-B QBal elle CLINATOLOG(CAL DATA NANSTORO SAS1TKOROLGG<<Y STATION 15 LHLCS N, W OI et%LA%4, W*SULVCTOE November 1989 LATIIUoc cse se'.~Loatllooc llse ss'lccfelloe (5444%01 Tss rccT v~v 455~4~v~~~%0 OCOI CC 44'll~JSC 45 TCNPCRATURC 1st 5 PT.LCVCL 1 a~1 C V~~~, oaa<<v J v 4 v 4v<<*v PR CIP<<~II 5<<v 4~4~l lN~1 4 4 v 1 v v 1 4 4 1 v 1'<<~~4 v V v E v 4<<3 WIND 154 P', LCVCLl PCAN 4US v 5<<~0 k v~~~~J<<N v~~<<~t<<55 la~1~~~4 PRONT5 AHO NI5C, PHCNONCNA%01~I TIVC~~1 110<<TJL~44~JCCS kkC~I'Ca krfCS f<<C 1~TJTI4%4 J11 NSLS 1141f1 4%~I%11 Iakkv rkosfl 44 5 CA~8 Io II I Is W 38 H 2ll 9 NW 9 331 Ie 15 68 236 HM I 80 142 MSM I 76 51 W 54 142 8 IF lp 6 I KFR 03 4 s I 10 4I+!++I+I+I 0 0 5 9!23 HWI56 I 133 I SW!13.3 38!SSW I 55 55 10 I I Wi 3125~W 149 184 i i I Wi 4 Zl 37!SMI 53 77 1P I'I7!M M'I'54'I'143 9 I Wl 2I32'WI 53 I 155 8 3.5 18 NNW I 70 i 152 10 KR14 KRI 15+4 NWI 55: 6iNWI85'9: 8 F IS+I IP M 8 li 37!W I 60 i 190: 4 KFR 13 0 10!+O i I W 8.0!22:WN'M!55 i 202 I l Is I 14 4 IT 4+I 0 0 4O'+~5 p 0 9 0.05 NM 5.5i 8: NM I 65 NW I 4.6 15 i NW 1 86 NW'.1!18 i NI I 91 107!10 82 I10'F 96 ilp iF ls 44 IS so 5 Sl 38 35 I+0 4 I+5 0 45+7 20 0 4+9 19 0 0 Ol 40 10 I 2.4i 141 NM I 91 88 10 I 89 8 iF NW 3.P1 16 I NW NM 4.5i 18 NE 91 80'76 0 IF N 1.6: 9l NW 94 ss 5p xs 48 ss 5 ss 5l 14 30 36 9+226 39+2 26 0 4+5 23 0 44.+8 21 0 0.14 O.lo I+6 0 008 N 3.6: '24 I 5 SW 5.3I 24 I SW HW 5.5!25 I SM I 8pi28:'ll 0 NW 6.3l 16!HM 73'l70 1 IF 91 I 83 8 69'10 6 72 i 125 7 141 pl I+I lp~ls i i: I Ip I ss p: I 6I-9I39 I p I so'.4 12 I-137 IO I Sl i%~W I 3.8l 12 WSW1 74: 147 10 NW 5'HW i 90 64 N C l 2'.W l96 65:10 IF!C 0.3 6 SE 1 97 43 I 10 I F~Vv 4%~621i 1 1.04 0 6.0 7.4~v 111 U<<LEOO ST%ca%I~c~stclrIE~1st~JILf~Vvvk1T rtalee I~111v vlOal~11 1~vl~sl~af~4~ITIC~Tk<<0410 Tlvt (11 4 T~la c4Mlv~4 7~otsofts 4 Ts set,%(sl Tat Lka~LCT ICOL 1~I I~TVE UalT Vlt~1~~EI~Tc~sc~OJV CJLO~IE I CV S TCNPCRATURC 14<<l 5 tT, l,tvELI 4%1~4~C 1~1 T<<E vesta~1~vvstk or ok%4'vlf%I TIJCC~1 V01C 4,4I~1 V41E~,Ss\1~41E 4.10 01 V414 PRCCIPCTATION UNI TOTJL 101 TUC ve AT%OESJJTV1C 114V 141VJI,~1EJTEST lll SJ 11~A JV~441414~0%41~~ro~~I,~Lk1t~vs 4 E~0~Le%la~OUST~4 Steals~I%ca~L~~ISfkaT LIE%I%la~~4~~slrfl~0 lac%IC ICt CJT~TJLS 1 Tsa~Otk~T41V OARONCTRIC PRCSSURC ua.l 1%tsket~Tkf le%vll pvcaovcak 1 Tktloal vlco Ia lf~CSJJTV1C 11~V 1~SVJL 4 Io 01 veaC 1,44 01 V41C Ill~<<EST~CJ\CTIL~1 3P~l41EST Low(ST~%alta Or 041~'vltl~I~1~1 9 0 TOTJL 101 Tat veaTP~ktkTCSt I~C~<<OV1~I 0 SNOW, SCC I'CLLCTS SSLCCTl DSCSCSl Le<<CSt ICE LCTEL 7" 25 192 SOLAR RAOIATIOH ILJ<<ELCT)l aft%Jet OklLT'TOT JL Vkc SS~1 OSLO%~sckftet 4%~104~1~1CJT CST OJILT~~l vks, 44~1 JSOTC Vla Sl~1~CL4<<VI1~0~1~ELOV WINO ISO rt.Lt%tt I kf ckkec sscto la<<%I~trkaT<<1C r<<ev~41vkL LCJST SJILT 40 0'8 Etcke ree ll NISCCLLAHCOU5 NUNOCR OP DAY5 HCATINO DCORCC DAY5 ISJSC 014~1~EJE OUST 1~Ov~41TLT cLS'lel 6'Tavaot1 TOTJI, 141 fs~4 411%~ErkatVSE raev 141vkL~tke~<<JL TOTJL I~I~EC SVLT ll~EJS~<<JL~E%41TVst raev 101vkL 44 CSOO<<OSS 11 Tsl lie v Jaskv4<<lla
-239~<<T~44~I or I ktL avv 111~lct 0%41 Ieri~cv rf csrl 35+~E14TES LJTCST Or~Ef ESJ'L OJTCO AVCRAOC PSYCNRONCTRIC DATA ELOV\T~%11 0 RCL HUN.CXTRCVS5 151~le%EST pp 0+LV<<tef 32 4%Meteorological Conditions for November 1989 B-9 SEIOT DOIIClll ra<<V l~CLNATOLOGICAL DATA rthtspvrsak Ewaa~tkvravvvv I v~ra~rvla SS MILLS I'w Ot EIOlLAIO,'WJSIISCTON Oecember 198!LATITUOC JCI Sc'l,~LOI4TWOC>>$
0 SC'CLCYJTION ICCOUIO5 TSS rCST V V 1<<J S SS k 4<<~~~<<I OCCSCC Oltl~JSC CS TCNPCAATUACEOP 5 PT LCVCL1 PR I~V J 1 I~g ClP I'C 1 4 v I 0<<15=C~0<<4I I I~~4 t I 4~v I v V a~I v 5~~V 1 P CAN 4~~v a<<OUSW~l'~~'VINO 1$0 PT LCVCLl V<<<<V 0 I~vo'<<~~0<<PAONTS ANO 415C PNCNOIECN*
~01CI TEQCI ot tso<<TJL rasskocs Asc~1151 JITCI TIC 101ktloas Itai ECOLI tstItl Aa~lats I<<kali~10<<tl 35 I 5~l33 5 CA-3 32 CO 0 110>>~$1$1 1~1$lc SW 181 6 SWI 91 28 I 10 37 6 44 5 I5 5 l3g 32 l34-21 31 32!34I-2i 3 0 I O.pll 0 I 0.07I 35!40 i+4 I 25 I 0 I 0.09!33 I42!+71 23I 0 I I 35 l37 I+3!28I 0 I SE 4.0111 I SEI 88 55 I 10 I F tl 2.5!15 I ESE'4 I 37 I 10 1 F IN 4.5i18 I NM!93 I 50 I 10 I F It!W 6.2!18 1 NWl 87 I 109 I 9 I F IS!3.8ilp!S I 98 I 36 I 10 I F KFR 1930 T 144 136 l40 I+7.'5 I 0 I O.pll l58 l35 l46 i+13!19I 0 I 0.01!I 5 l50 l35!42 I+9 I 23I 0 I I lo l48 l27 i38!+6 I 27l 0 I>>39!23!31 I-2 I 34I 0 I 38 20 l29 i-4 36 0 I 35 I19 l27-6 38 0!I ls!31!26!28 I-5 37 0 I I 40 I28!34I+3 I Oi 33 I30!32I-1 l33I 0 I 32 l25 128t SI37!Ol T INW I 4.4 13!NNWl 1 1 73 5 10 I ISWI 8.9 36!SMI 76 ll54 I 0 i F IW'!12.0 33 I WNW: 57 i 129 I 4 lW I 5.7i14'NW: 67 I152 I 0 l iW l 6.4!14 i SE 71'121 6 IW i 3.4!1 ISSW 84'126'1 ESM I 2.9:10''1!140'-6: F IS!32!2!S:96: 37 ilp!F'SE" 3.2i13.SSE 92'121!4 I F iSW'.6!ll 5 SM 89'5!10 i F IS l2 8i 9'1 88 i 29, 10 I F GL KFR 23 1~5 2 I I-5 37I Ol!I30l 8 5 89!.105 8 I F 10 7 4 I I-5 37 OI 24 I pi-35 0 sc I 4 LI.0 6 4 11 4 3 0>>I 4 21 33 0>>3 l27 30 I-3 35 0 iNW!2.3 8!t!W 95'0 10 I F INW I 3.2 14 I NW~92 71 9 I F INW 55 3 I I 85 36 7 I IN i2611 iSS 190'l 10 IF INW 3 2 12 INNEI 95 26 10 I F SW 4 0 IWNMi 94 34 0 F>>36 82 l34M 1 31 0 0.01 T SE 3.2 10 I SEI 92: 34 10 F SS I t" 01 3 0 00'0 T I l8!'92 6 0 F 0 I 0 l331 0 0 04lp 0'27!28'-3137l 0:0 03'0 4 T!5 i3.0l i SW 87 35 10 F M i 2.3!9 IWSW 98 27 10 F GL SVV J1438.'0 i28.rrr 85 i 0 I 0.29i 1.4 t 3.9 8.3'31'28 130!-1!35'1 T I O.g!M'3.4'NW'5 41 i 10 I F GL so 32'30:31'+1 i 34!0 I I;l0.6'SW'.6!10 WNWl 94 29 l 10 i F sl l37'26'32'+3 i 33 I 0 I T!T.0.115!3.0'12 SSSW 93'6 I 8 I F'rr'r'''ill Vates~OYscswlst srccltlco Tvc~JILT Sall<<JIT ttsl04 I~110<<Qloslcst TO QI~VISIT IACltlC ITAaOJI~Tlvt, 1$1<<t ls CILVQIS 1~~OEIITCI A Take>>~ill TNC LAS~LCT'!COL 1~1 lo TSC Vair USE4 1~~CIOTC~SE~SJQ CJLIIIC I CQ S~ACClPITATION IINl TOTAL ros Tst Q41TI I 0.29-0.66~trksTVIC u4Q ISIQJL~ACJTtst l1 SJ 11~p.pg!II I 4<<vv>>1 ot~Jt~'<<ITIS I~I JIL JV AVI41k~OUST t~144 4L~ILA1C a svoat~I~ILIWISI OUST~I~Lo<<lso 510w~L~lstkat Llsstsls~~I~IsltTII~saow IC ltt CSTITALI Tata~E~IT41<<~NIS PNCNOVCVA NOTATIONS SCO IN CO IT TCNPCAATUAC 14rl S tt Lttcl,l Taste 01 QOIC o,ss 01 li~JE I 0 OARONCTAIC PACS5URC ll~,I~vtakor rss 1st~oat<<I~CrkATV~E 110<<IOIQAL IIIVCST LIVE~T~Vla~CI It 4AT~WITIE QAI>>41~EL4W Qkt 00 01 Akott~Qs, Ss 01~CLOW~scJTtst la s I vovssl~IEJTC~1 Oa~10l~I I~I WINO 100 tT ustl.l AVES JIE~IEEO liar<<1 I.ol 01 laoac 0.10 01<<oat I 4 10~I QIIC P 14001QIIC P 5NOW.!CC~CLLCT$1$LCCTl OICIC5)TOTAL to1 1st QIITN LO<<uT uk LEVEL~I 8 5OLAA AAOlATEON 1LJIILctsl JVEAJIC OJEIT TOTAL~IEATCIT I JILT LCJIT SJILT~a~I NI5CCLLANCOU5 NUNOCR OP OATS Jttakat Stktlo~IIIICST ICJ LE'ltL~I Qla.I Oa~CLOV HCATINO OCOACC OAY5 lSJSC~141 1 TITJL 141 TIC Q4<<TS~CIJATUIC tso<<101QAL 4E~JITVIC 114<<101VJL~CAJ IVST raov~I AVCAACC P5YCMAONCTAIC CATA 411 IVL~lorl 9 vcr SUL~to~I 3'2 CLC JS~AITLT CLISST CLOVST to~Tsvasca~VST ACL NUN.CXTACNCS I 1~CAIIV JL 10>>L (IIIEC JILT 11~CL IVQ ltl~CW rt 10tl slcatIT~EJIOIJI,~ESJITUI~uola 101QJL-244 0~EI~TCS LJTCIT 4t SCVEIAL OJTCS Lowcsr 39 Meteoro1ogica1 Conditions for December 1989 Mmlleile F<<W'HH CLlhlATOLOGICAL DATA RAN)TORO (t(CTKOROLOOY STAT(ON cs Iatacs N.w.Or slcsckso, waslt strew January 1990 LATITVOC 040 54'.~LONOTOOC)iso 24'v RCVahON (Ctatta)725 FCCT TCMPCRATUAC(4i 2 PT 1~, J~22~1 v 14~V 1 LCVCL)occAcc oars~LSC 4$PR 1 I 1 J~1~0~r 1 V J v V S~v 4 at J~v r r a 0 r~5 J ll 4 V JVO r~'4 V~1~O 0<<v V~1~1 v 2 V 1 v v r 0 V%1NO ISO PT LCVCL)PC*K 4US~I v 2 V~~V~r V 5 V r 1~av l,r 1~Crt va 51 1 Or~~r PROHT5 AHO IIISC.PHCHOMCHA~OTEI hvas 01 Fao<<TAL Fasskccs Aac~IVCV krTI1 TltC laOTJTIO<<s L11 IC4LS 114111 krs rro Iwakal 114<<rl 4A 48 7 la I I 12 IC IS'14 17 47 2 4 32 4+ll 8+pl 4a+0 0-W 96 29 W Ilp.p 29 SW 70 31 WNW SW 68 56 64 I 138 6 I 78 9 71 10 p 4 59 34 I 49+2 4'46+17 0 0 0 I 0 T SW 1 9 37 SW 54 68 65 SW I!6.7 57 SSW 63 SW 0.4 49ISSW S 9.3 44)S 115 6 61 9 61 10 8!9 I 55 60 lo 50 48+19 17 44l+4I2 0 0.2 0 T INW (NW 7.4 50 WSWI 79 41 10 I F 7.7 26'WSMI 56 l109 10 I WI16:5 61 W I 69 I 85 7 IF KFR 0130 KFR 0230 KFR 1950)I 4 Ic 4 IS ls 44 0 40+OI25 7+5 28 0 0 00 0 0.03 0 INW INW 2.6 ll!NM 4.4 12I SE 93(58!10 (F 86 I 83 10 I 7.9 15i NWI 58 I 48 10 5.3 7iWNWI 64!75)10 IS 14 4 1~15 20 21 22 22 5P 0 7+528 4+Z4!+4 9 4 7 I+4+3+2 4+23 40+Ip 25 0 T 0 0.02 0 0 0 0 INW INW 3.9 12!NW 8.0 16I NW 5.8 181 N 5 15I NW 4.3 12 NW 4.0 13 I SSE 23 9 NW 9.4 45 M 3.8 41 MNW 91 I'54 82 I 67 61 ll69 86 I 46 74 I 86 78 I 44 83 I 48 64'128 49'191 10 IF 9 I 0 9 F 10 10 I 10 KFR 0710 KFR 005 20 25 52 24 35+30 44+4+I 6 4+I 3 0 0 0 24 50 35 48+81 7 0 00 42!+12!23 I 0 0.13 24 50 34 42'12!23 0 3 1 8 WNW SW II4 9 52 SW W 4 2 32 WSW!SW Q.7 53 (WSW!SW 8 1 73!SW ISW 12.6 55: W.W 7 9 I 34 SW 67 I 97 57 I 60 47: 21 51'140 60 99 57 134 63 128 10 10 KFR 2100 KFR 1400 80 WFR 1210 KFR 173 8 KFR 2348!10 sl.42!28 35!+4 30 0 0'.05'0.6.S l6.6 I 32!SSW 71.55 10 F SVV 63 0 0.77 0.6-0 8.382.21QZXS~(I)IIVLCS~~TNC1WISC~FECIFIC~, TVE 4AILT~VNlaA1T FCOIOO I~114la lal411~VT TO HI~<<last 1LCI1IC STAIOJ14 TINE (2)'at~11 COLO 1~7~~StroVCS a tOACa.()l TVC LA1~Lcr (COL I~I IS TNC VVIT Vsts To OtroTC 41E 01Jla CAL11IC I CQ 2~9.2 PRCCIPITAT(OH OH>0.77'tOTAI, 101 TVC Nor TV 4CFAATVIC 111Q 101QJL-0 20~Aakvasr 11 sa 11~.0 39 41 7 8 OVNSC~11~JT~'WITVI A SNL Jr~LV 10 1 k~~OVST 1~104~L~LACE 1 Ivoat~4~~LOWIJC Star~1~~Lowl~0 srola~L~~I~Tkk 1 I I~1 Ts la S~1~~al~Tlat Lkow Ia~I~C CATSTAL~T vrra~I~LToala 8.4 NI5 PltCNOltCNA NOT*TIO115 5CO 11 CO lr CARONCTRIC PRCSSURC II~.I TCMPCAATUAC lsrl 2 Fr.Lcvacl Jrtaast 101 rvc Ho<<Tv~Craatvat FASH rtaaakt, 11~IIEST 41 LOWCST 22~lt VVILSCA~1 OATS Wlvlll T1ACC 01 NOAE 4 Ol 1a Hoot S.SS 01 N01C 4 14 01 Hoke JVC1LCC~TLTIOV+0.3 O.looa I~Ja 3 I.so~OHoac 0 1t~1ttr~CALCTCL 3p 47~1 11 LOWEST SCA LITCI, 9 8" 30+5OLAR AAOIATION ILaaaccvsl 5NOW,)CC~CLLCTS (5(.CCT)(ISCACS)18 T4TJL 101 TVC la01Tlt 0.6~AEJTCST 11 SC VNI1~I 0.6'" 31 kvt1LCE OAILT To'ILL tlat 22\1~EL4w HAC 44 41 AOOVE~at~sa~1 SCLOV Htr 4 01~CL4w 18 0 0 0~1EJTCST 41 Sat~I 0.6" 31~EFLATVJE FSOQ 141HJL 9.2+2.7 WINo Iso 1'r.LcvcL I kvcakst tact~IHrvl CSCATCIT OJILT LC ACT OJILT 191 41~1 N(5CCLLANCOU5 HUMCCR Oi OAY5 Cat AA F40 HCAT)HO OCOACC OAY5 isaac~Ctr)TSTLL 1~1 tvE laorT'1~CFJJT111C FaoN 101HJL~CLSSVLL TOTJL I~IVCE SVLT~I~CAS01AL~CFAATV1'C FASH 101NJI, 763-3-62~M IOOOASS (I 75)aaraa avaaaaL rata.~tks ovsT 73 raoaa SW 01 28 AVCRAOC PSYCHROMCTRIC CATA sav SOLO 14r I wcr SCL~141 36~aw rr ltr)9~CL.1st.(El 0~CVOTCS LATEST 01~CTCAAL VATES~lorcST LOWEST 9 01~aATLv Rovsv 5 v>>vrst1 CLOVSV 24 Ovsr ACL, HUM CXTACNC5 ()0 Meteorological Conditions for January 1990 QBallelle taH v sH CLIMATOLOGICAL DATA BAN)TORD)s(C'TKDRDt DQY 5TAT(ON 1$ISILCS A%Ot AICN<<kaos'WASNINCTON February 1990 LAtltusc l40 54'..LONCITUOC I lss$4'CLCYATION (CSOV>>0)7$$t(ct V s 4 5$1~~~4 0 s TCNPCAATVRC (4F 5 FT LCVCL)OCCECC (SETS~kit 4$PRC~~s 1 s V C)P~s'E 1~v 1 1 15=>,o v as s~"Esc)~v V 1 1~s 5 V v 4 v 4 v 1 1 e%)MO ($0 FT LCVCLI>>CAN CUS~l v 5 V~s J l a V 4 v V~~Sv~as~sa<<*4~~~e FAONT5 ANO NI5C, PHCNONCMA~01<<I Tlascs ot tasatkL t~assets 11c CIVCN ktTE1 TNE 1~Tktlees tt~NOLO taoail kao Wt1 Ivkkv tkoatl 5 0 I$4A 44 24 34I+2!31$55 38 46i+13l 19 53 39 46I+13i 19 50 34 42'.+8!23 s 52 38 45'+lpi 20 48 33 40l+5!25 7 144 26 I 35I-l30~5 7 0 T 0 0.06 0 0 0 0 I)01 II I IS IS (Is I IS I IC T..6I NWI 6.5 24 W i 77 I]61'F I SMI 16.8 40 I SW I 54 I 158 I 10 I I S 9.2 31I NWI 59 I 4 (10(I W 12.0 26 IWSM i 50!211 i 4 I I S]7.2!47!SW i 46 i 183!7 I SW!15.3 38'W I 49 I 199 I 4 I I SWi]5.3 55 SW'I 9 s~K!I lo4 KF.1 1'48 27 I 38i+2!27 5 I 58 (3 I44l+8I21 io 64 39 I 52I+15;13 0 0 I NWs 3.9 13 S (70 I 140 9'SW'.9 4 I SM I 64'I 118 10!0: SW!20.5 51(SM i 58 I 206 9 il 59 33 46(+9l 19 0 I SW:15.1'5!WSM'4 i 154 8 KF 1300 i$41 29 I 35!-3:30 38 22 130!-8(35 0 I T IT i HW]].l!30 NNM I 42: 184: 6: 0 T I.1 i SM 1].T: 32I SW)57-'93': F I~!32 I ll 22(-17143 I 0 I i'El 4.9 19~SE i 58 227!5!Is I 35 9!27I-2!38 0 l.02 I.4: NW'.5 20: NW i 81'09'0 I F'I4 35 22 I 28!-1]I37 0 I T 3 I NWE 5.4;15: NM'9: 116!10 I)7 34 is 4 8!26l-13I39 9 22I-7 43 0 IS I 4.6!]6: E l71 I 304 I Oi 0:01.2 T i NW!8.3(20!NWI68 I 24]I 6 IF 4 I 5l-4 40 0 SEi 4.5 17)SSE I 74'57 9 I 54 48 Sl 64$554 55$4 48 1$4'2$4 23 30 30 30 36 31 36l-3 29 47I+8 18 42'+2 23 42l+2 23 42I+2 23 36!-4 29 4 0 T 0 0 0 T 0 T 0 N 3.8(15 I H 75 i 137 W 5.4I 20 i NM 64 (.241 HW 7.9i 19 NNW 75'95 E 5.2!19;MNM 77.287 NWI 3.5!18 I NM I 92.149 S (4.4l 15 I tiM I 95~71 W!.il IE 8!10 F 57 26 42l+2123 I 0 I HW'.9!16 l NM: 53: 333 0 I 5~57'29 I 43:+3122 0!(i I!$0'): W I 6.0'6'HNW: 53 337 I 0 I SI I I (Svvaaa'vs Oi I's.IP, Xr'~H Il)VNLCSS OT>><<1wlst 0~E~ltIC4, 11C~klLT'avssvklT tcalso I~taolJ Hl~ascat 10 His>>)411~k<<ltl~Stkaoka~TIH<<.(1)'(s IN~4LVssa~'7~ot1~Tts 1 111CE~()I T1C LkasLCT (C4L,I')I~11C VNIT VSE4 10 OCaotC 41C~skis CAL~1st I tls 1 TCNPCRATURC lots 5 tT.Lte<<LI PRCCIP(TAT)OH
((H)T411L 101 Tac HoaTss 4EtkaTVNC~10H LOWelL~1<<kt<<OT I~Sk lsk~1vvaca ot okl~'wlTNE T1kcE 01 Hc~E]0 o,ss 41 lsskc I P~0~LOWI~0 SV~'1~0~SLOWI~0~SSOW~L~ISTkat Ll~ls Tales~0~~eltTIN~sasw lc IEC C1TStkL~1 Tae~0E1~Tsav A~1 kl I, ke~ksksak~~0401 1 tss SL~ELEEC~~avast AAAONCTA(C PAC$5UAC lle I r>>C>>q>>C>>A>>
I'ATIO>>5 USCO>>CO 17 as\1~4<<t41 el E H0111~CtkaTVNC tasse lssaHSL O,ol 01 Heat 4,14 01 asset 0.04~1 MsaE I I JSO 41 Hskl SVISSSE 011'II01 Nl~Il<<01~Ck LEVEL I ca ai~1~St Low<<~1 aevaE1 Ot 0110 Wltlsl~1 T4Tkl, tsa TNC Morta~1CSTEST la Sk NOV10l~1 5NON.(CC~CLLCTS (5LCC't)IINCNCS)Low EST~Ek LET CI 4 5OLAR RAOIATION nkaCL<<1~I ket1kst~SILT T011L Hk'E Si~1~E'L4W~1<<k1C~T sa<<10l~1~ktkt<<ST OSILT~a Hk~~04 01 kaovc~sla, ss oa~ELow~sH>>4 01 0<<LOV 20 0 VINO iso tT.LET<<I.I ke<<110E sat<<~lveal 8.9 4<<tk1TV1C tasas asevkL~+1.8 LEAST OHLT 46 NISCCLLAMCOU5 HUNSCR OF OAY$EL<<ka 5 tos HCAT(HO OCOACC OAY5 lsksc~Sstl TOTkL toa Tlsc aloa Tv 767~Cks 4401 55 114ss 5'M 01 7 AVCAAOC P5YCHAONCTAIC OATA 8 Tlvasta~ka TL T CL 0101 CLOSET]5 svst~EtkaTVNC t14as N41MSL sckaoakL TOTAL I~I~Cc kvLT II 0<<1101kl~E~11Tv1c taov 1~aaskL~N (40041$(I 7$)aas.aa~slasaaa.ease.-4-566 sat 1st~(41)i37.5 wtt 04Ls Istl 33 1EL, avv, (VI~tw tt Iot)os<<NOT<<0 LATEST Ot 0<<etakL SATCS lll~l~EST ACL HUN.CXTRCNCS I)~1 LOWC~T'26 o.25+13 Meteoro1og1ca1" Cond)t1o'ITS'or'ebruary 1990 Qsartette~k&~I>>CLNATOLOGICAL DATA HAN)>ORO METL>OROLOGY 5TATION 25 UILCS N W or AIOILJNO WJSNINCTC>l March 1990 Lktttooc cdo 24'., Losutvoc 1 too sd'cccvkrlos (Csooao)Tss tccr TCVPCAATUAC(4P 5 PT.LCVCt.l PRC C)P WINO (SO PT LCVCL)PAOHTS AHO NI5C, PN CROM CHA V 1~V 4 22 1~a as 1 1>Sect(c olr s~Jtc 45 a"v~4 1 I V V V~v>'I>v 4vv V V 1 VO VVO z vo V t.t f 5 1 5~V V 1 1 S v j~v V s PCAH OUS s j V V V~~1 V 1~~v>v>>s>t~1 V~~~V~OTCI Nvu or r>o>r>L ra>>>>t~kac~lvc>k>TC1 T>c sot>El>as Jrs>Nolo taearl J>e vwrav IN>all taearl I 2 4 5~5 CA 4$ia+i 41+i t I 441+41 1!1 I to IM I W 11 I 12 12 I 14.1 1 MNW)1!NW 1 I IW i IS I tc 4 I 0 I P I!I 0 I 5 4 4!+i I I I IW!M Wi I 4 I~!63 4 1481+7!1 01 I 4+I I ot ol 1 I.I I S I 62 I 90 I 0 I!I I I!4i oi I Wl I'4 1 751 41 KF!t 3 5 I i 4+41 1 1 Io!2 I 1451+I Ol 1 Ol 1!i O')a't.1 1 1 1 1 144'561 601 0'04 54 13 142 12 5 i 43 ls 8 1 44 6 136 48 6 19 46 P I 0 0 0+4 7 0+1 910!W 1!WNWt 41 4 1 4 4!4 1 54 1405 1 3 i 6!01 Wt 4'356 4(~i!4!4!I i 6 1'I44i td 1~IS 20 21 22 22 24 49 45 56+41 6!0 0 0!5!:!1010t 4.'1 i I 6 1 4~i 24 0 4 4-5 23 01 66101 NW 8 l440 2T I 14+I I+I i I i 1 i~4 25 I+4 i'I I 4:5 (46!oi 0'~4 4 i 0 8 1 A>>7:4'5!+i)0):4 1 pi pl 1 r r rrrr JV~rr 6r x 360'rx~NT (I)'UNLcss~TNE1wl~c s>tclrlE4, Tst eall v~VUUJJT tC1leo I~t14U UIONIONT Te Ule>I~Nr>~kclrl~~Tkso 114 TIUC,)(2)>T Nl COLU>>~1 T~4csetC~k T1>Ct~(2)TNC LJNSLCT (E>L I>>I~TNC V>lt U>t4 TO~C1OTC~St~1>U CJL411~I CU PACCIP(TATIOH (IH)T41>L rea TN~lko>TN 4trk>TV>t~>OU 1~>UJL~>CJTtsr I>tk 1>>p 4 oa 9 0<<vwus or~JTS wlrsl 1~WAIL Jv~JO>11>~~~V>T roe~I,~CL>t t~>walt~4~S LOW I1~OV>T~s>Lewis~~1ow~I,~~IST>aT LISNT1lsa~1~>lrTI>e>>os It ICC Ear>TJLS T~T>>V~E~STO>U~Nll PNC'lONCNA NOTATIONS VSCO IN CO lr TCNPCRATUAC ters 4 tv.Ltvcsl Taktt 41 U>1C 4&s sa~o>t~AAONCTAIC PRCSSUAC tl~.I~v~kat>4a Tst Us>ra~Ctkarvat t>OU 111UJL NI Sat~T 76 41+3 6 31 4,01 41 Uo>E 0.>o oa vo>c 0,10~1 Ns>t 0 I.oo oa~oac SNOW, ICC PCLLCT5 (5LCCT)(l>CJCS)JYE>kst STJTIS>1I~IE>r~ck LEVEL Lewtsr~lk LEVEL~1~1 p L>wt>T 24~N~UU~ca~r 4>T>wlTNI Ukt St 41~CLOU Uk~, so~1 J>OVE 25+0~<<1~1 WINO Ise>T, LtvtL I 14TJI>11 T1C UONTN 4>EJTEST IN l J No>1~I~It*TEST~1 O>4I kvtaklt OJILT TOT>I~>EJTE~r 4JILT Lck>T~LILT 0.1 i 41 7 I 4" 7 1 SCILAA RAO)AT)OH ELJ>>LCrtl Ula~tc~1~ctow Uls, 4 ea sctew HCATIHO OCORCC OAY5 lsk>C ster)TaTJL r~1 Tsc UONTN st>Jar>ac taoU s>1UJL 0 kvc1>oc srcca Iv>>>l 4E>k1TV1t r>OU 141Ukl,~t>1 CVJT~>OU~>wcr>vs>Ierj AVCAACC P5YCNAONCTAIC CATA oav lvl.~14>l~ANAT CLOU~T CLOVOT T>'Vsst1~1st ACL HU)l CXTRCVCS (51 0 0!N(SCCLLAHCOU5 HUNSCA OP OAYS CL~Ja>44 0~ckses>L ror>L lslacc JVLT II 40~tk>ONJL Ot>k>TVWE t>OU 14>UJL 674~ll laooASS tt T>>lle>l>N>U>N>JUL WEL NUU I'CI~tw>r tort woes~TES Lkrc>T ot>crt>>L OJTts 1lwlur LONCST~1~>Meteorological Cond'ions for.March.1990 8-13 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Hg STD DEV AVE Na STD DEV APRIL, 19891 0.3 0.022 O.l 0 0.27 0.057 0.05 0.022 0.04 0.014 BULK DEP (ag)0.76 0.42 0,078 0.12 0.036 0.32 0.071 0.06 0,014 0,07 0.028 0,99 0.31 0.01 0.09 0 0'6 0.064 0.06 0 0.05 0'7 0,26 0 0.11 0.028 0.21 0,057 0.03 0.01 0.3 0'9 0,91 0.32 0'28 0,12 0.022 0.24 0.064 0.04 0'14-0,05 0,01 0.77 0.29 0.014 O.l 0 0.28 0.036 0.05 0.01 O.ll 0.036 0.83 1.25 0.036 0,12 0.014 0.86 0.12 0.17 0,01 0,15 0.028 2.55 168.07 30.893 9,48 2:574 59.55 10'08 19.41 2,991 8.42 1.421 264'3~~0.39 0 0.07 0.028 0.33 0.01 0.09 0.014 0.09 0,022 0'7 10 0.55 0.276 0.22 0.149 0.28 0.085 O.ll 0.078 0.06 0.014 1,22 O.ll 0.149 0.03 0,036 0.21 0.042 0 F 05 0'22 0,09 0'22 0.49 0.31 0.05 0.12 0,036 0.21 0.042 0,08 0.042 0.14 0.036 0.86 13 0.1 0.141 0.05 0 0.32 0.085 0.06 0'22 0.1 0.63 14 0.26 0.01 0.1 0 0.2 0.014 0,06 0.01 0.09 0.014 0.71 0.23 0 0.07 0,014 0,41 0.085 0.07 0'22 0.06 0,01 0.84 16 0.19 0.014 0.08 0,022 0.23 0.028 0.04 0.014 0'7 0.028 0'1 BC 0 0 0 VALUES ARE IN HII I IGRAMS PER SAMPI ER BC=BUIIDING CONTROL SAHPt ERS 0 0.09 0 Analytical Results for Each Sample Location-April 1989 ,'I C-1 0.09 STATION AVB S04 STD DBV AVB Cl STD DEV AVE Ca STD DEV AVB Mg STD DBV AVE Na STD DEV HAT, 1989 0.7 0.12 0.17 0,042 0.61 0.304 0.06 0~014 0.3 0.01 SULK DEP (ag)1.84 0.66 0.064 0.18 0,042 0.98 0.523 0.09 0.042 0.26 0.01 F 17 0,73 0~028 0.16 0,01 0~3 0.05 0.05 0.01 0,24 0.01 1,48 0.59 0,042 0.15 0.014 1.01 0,53 0.1 0.057 0.2 0.014 o.77 o.o14 o,16 o.ol o.s6 o.3as o.o7 o.ol o.a6 o.oaa a.os.1.82 0,93 0.064 0.23 0 0~61 0.071 0,07 0 0.31 0.113 2.15 2.25 0,318 0.26 o l,al o,a4 o.al o.o14 o.a6 4.19 81.87 7.304 4.59 0.481 37,11 3,465 9.12 0.912 4'8 0.212 136.97 0.88 0.163 0.33 0.057 1.18 0.12 0.16 0.092 0,24 0~028 V 2.79 10 0.64 0.05 0.2 0.064 0.5 0.036 0,07 0.01 0.14 0.014 1,55 0.6 0.064 0.19 0.057 0.37 0,092 0.05 0.01 0.17 0,022 1.38 12 0.38 0.184 0.32 0.141 0.35 0.106 0.07 0.01 0.14 0.022 1.26 13 o.s3 o.os o.18 o.oa8 o.sa o.24 o.o6 o.oaa o.la o,oaa 1.41 14 0.47 0.022 0,14 0 0.42 0.078 0.05 0 0.11 0.022 1.19 15 o.sa o.o14 o,ls 0 0,27 0.05 0.04 0.014 0.09 0.014 1.07 16 0.41 0.014 0~14 0.01 0.32 0,042 0 F 04 0 0~06 0.014 0.97 0 0 0 0 0,08 0,071 0 0 0.08 VALUES ARB IN HILIIGRAHS PBR SAHPLER BC=BUILDING CONTROL SAHPLBRS Analytical Results for Each Sample Location-Nay 1989 C"2 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Mg STD DEV AVE Na STD DEV JUNE, 1989 1 1,02 0.615 0.75 0.636 0.65 0'97 0 F 08 0.042 0.15 0.036 BULK DEP (ug)2'5 0.58 0.01 0,27 0.106 0.5 0.191 0'6 0 F 014 0~14 1.55 0.72 0,071 0.22 0,028 0.64 0.127 0.06 0.01 0.12 0,014 1~76 0.44 0'78 0,18 0'1 0.3 0.071 0.04 0.022 0'5 0.022 0,49 0'56 0.37 0.311 0.52 0.127 0,06 0.01 0'4 0.028 1~58 0.45 0.184 0.19 0.057 0,42 0.028 0.06 0.01 O.l 0.014 1~22 0'0.064 0.21 0.022 0,52 0.135 0'7 0'14 0.13 0,022 1.63 2.42 0'33 0.23 0,028 2.03 0.127 0.25 0.014 0.21 0,028 5.14~'0 0.56 0.022 0.42 0.141 0.45 0.149 0.08 0.028 0.15 0.022 0,51 0.099 0,18 0.014 0.48 0.318 0,07 0.022 O.l 0.014 1.66 1.34 0.31 0,05 0.22 0.064 0.29 0.028 0,05 0.028 0~11 0'22 0.98 12 1.19 1,124 0.79 0,283 0,1 0.05 0,02 0 0'3 0'28 2,23 13 0.73 0,078 0.19 0.014 0,61.0.05 0.07 0,01 0.12 0.022 1.72 14 0.45 0.057 0.17 0.022 0.31 0.042 0,04 0.01 O.l 0,014 1.07 15 0,49 0.022 0.18 0.022 0.47 0.057 0.05 0 F 01 O.ll 1.3 0.6 0.12 0.24 0.064 0.48 0'14 0,05 0.014 0.12 0,022 1.49 BC 0 , 0 0.18 0.141 0.12 0'7 0 0 0,3 V hf,UES ARE IN Mff,LIGRAMS PER SAMPLER BC=BUILDiNG CONTROf SAMPf ERS Ana1ytfca1 Resu1ts for Each Sam I I.ocation-June lgfI9 C-3 STATION AVB S04 STD DEV AVB Cl STD DBV AVE Ca STD DEV AVB Hg STD DBV AVB Na STD DEV-JULY, 1989 1'2.32 1.124 1.21 0,127 0 F 08 0'14 0,08 0.01 0.44 0.022 BULK DBP (ag)4'3 0.26 0.028 0.17 0.022 0.35 0,141 0.12 0.085 0.13 0.064 1.03 0.38 0,283 0~11 0.01 0.35 0'85 0.05 0.028 0.08 0.01 0.97 0.3 0'42 0,13 0.01 0.21 0.014 0,05 0,01 0'6 0.022 0.75 0.29 0,036 0.11 0.01 0.28 0.099 0.05 0.01 0.05 0.014 0.78 o.as o.oaa o.o6 0 0.26 0.071 0.04 0.01 0.07 0.022 0,68 0.43 0.057 0.11 0.014 o,a9 o.oaa 0.07 0,01 0.08 0.01 45'4 2.291 6.52 0.17 14.64 1,131 5.05 0.233 4,46 0.057 0.98 75.81 0.25 0,036 0.11 0.05 0.53 0.014 0.1 0.036 0.05 0,01 1,04 10 0,26 0.01 0.1 0.042 0.65 0.325 0.06 0,028 0,06 0'14 1.13 0,31 0,156 0,13 0.014 0.29 0.05 0.04 0.014 0.04 0.014 0,81 0.27 0.036 0.13 0.028 0.24 0,022 0.03 0 0.05 0.01 0.72 13 o,aa 0.022 o,ll o,oaa o,4 o.248 o.o4 o.o14 o.o4 0,81 14 0.24 0.071 0,08 0,01 0.51 0.163 0.04 0.01 0.03 0,014 0,9 15 0.22 0.022 0.19 0.022 0.3 0.156 0.03 0 F 01 0.07 0.01 0.81 16 0.18 0.01 0.14 0.042 0.31 0.085 0.03 0 0.05 0.71 ac 0 0 0 0.18 0.106 0.01 0,01 0.02 0.022 0,21 VALUBS ARB IN HILIIGRAHS PBR SAHPLBR I BC=BUILDING CONTROL SAHPLBRS Analytical Results for Each Sample Location-July l989 C-4 STATION AVE S04 STD DBV AVB Cl STD DBV AVE Ca STD DEV AVB Mg STD DBV AVE Na.STD DEV AUGUST, 1989 1 0.89 0.05 0.21 0.014 0.36 0.163 0.07 0.036 0,14*0 BULR DEP 1,67 1.41 0.679 0.19 0.036 0.94 0.516 0.15 0.092 0.07 0.099 2.76 0.81 0.269 0.27 0.12 0.41 0.248 0.08 0.022 0.16 0.028 1.73 3.28 3.514 1.25 1,506 0.61 0'88 0.2 0.078 0'5 0.396 5.69 1.05 0.17 0.19 0.01 0.56 0,135 0.09 0 0.15 0.022 F 04 1.67 1.117 0,96 1.018 0.97 0.693 0,14 0,113 0,1 0.028 3.84 1.78 0.212 0.18 0,022 0.71 0.106 0.12 0.014 0.13 0.036 2.92 234.7 26.587 17,34 1.683 71.92 7.227 19.88 1.669 11.5 1.117 355.34 1.14 0.304 0,2 0.042 0.57 0.417 0.11 0.036 0.13 0.099 2.15 1.14 0.629 0,79 0,898 0.18 0.163 0.03 0.022 0.23 0,177 2.37 1.83 0.976 1.36 1.64 O.l 0.071 0.02 0,022 0.26 0.297 3.57 12 0.69 0.014 0.16 0.057 0.32 0 0.03 0.014 0 F 08 0.028 1.28 13 1,1 0.022 0.26 0.028 0.25 0.156 0.04 0,028 0.17'.127 1.82 14 0,8 0.085 0.3 0,191 0.41 0.057 0.04 0.022 0.09 0.042 1.64 0,78 0.078 0.15 0,01 0,35 0.057 0.05 0,014 0.14 0.071 1.47 16 1,01 0.127 0.21 0.01 0.41 0.014 0.04 0 0'3 0.036 1.8 BC 0 0.12 0 0.24 0.085 0.36 V ALUES ARE IN MILLIGRAMS PER SAMPI BR BC=BUILDING CONTROL SAMPLERS Analytical Results for Each Sample Location-August l989 C-5 SThTION hVE S04 STD DEV hVE Cl STD DBV hVB Ca STD DBV hVE Hg STD DBV hVB Na STD DEV SBPTEHBER, 1989 1 0.49 0.135 0.1 0.014 0'7 0.028 0.03 0.01 0.06 0.028 ilULE DEP 0.75 0.27 0.028 0.15 0,078 0.08 0.106 0.02 0.014 0.04 0,014 0.56 0.25 0.042 0.08 0.022 0.07 0.057 0.02 0 0.05 0'22 0.47 1,13 1.138 0.14 0.071 0.48 0'75 0.12 0.106 0.11 0.036 1.98 1.42 1,506 0.2 0.184 0,59 0.53 0.14 0.141 0.13 0.12 a~4s 0.36 0.05 0.09 0,01 0.06 0 0.03 0 0.07 0.01 0.61 2.78 0.424 0.27 0.014 1.02 0.099 0,27 0.022 0.2 0.01 4.54 115.27 22.5 16.82 3.543 32.38 5.89 12.66 2.298 9.61 1.937 186.74 0.48 0,028 0.12 0.014 0.37 0.184 0.09 0,057 0.08 0.014 1~14 10 0.59 0,219 0.23 0.141 0.04 0.028 0'4 0 0~1 0.028 0.29 0.057 0.25 0.01 0.02 0.028 0.03 0.01 0.05 0.014 0.64 12 0.33 0,01 0.12 0,01 0,13 0.184 0,03 0,028 0.05 0.014 0.66 13 0,56 0.01 0.13 0.01 0.51 0,036 0.09 0.022 0.06 0,028 1.35 14 0,29 0.014 0.09 0 0,19 0.141 0'3 0 F 01 0,05 0.022 0.65 0.4 0.014 0.1 0.01 0.09 0,07?0.04 0,022 0.04 0.042 0,67 16 0,2 0.014 O.l 0 0.06 o.os5 o,oa 0.014 0.04 o.oaa 0.42 BC 0 0 0.08 0 0 0 0.02 0.028 0,1 VhLUES hRE IN HILIIGRhHS PER ShHP?ER SC=BUILDING CONTROL ShHPi ERS Analytical Results for Each Sample Location-September 1989 C"6 S TATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DBV AVE Mg STD DBV AVE Na STD DEV OCTOBER, 1989 1 0.36 0,057 0.12 0.01 0.26 0.028 0.03 0 0.04 0 BUIK DEP ing)0.81 0.39 0.014 0,11 0,036 0.51 0.01 0,04 0 0.09 0.036 1.14 0.33 0.064 0.14 0.078 0.56 0.233 0.05 0.022 0.04 0 1.12 0.29 0,01 0.09 0.01 0.4 0.127 0.04 0,01 0.04 0'6 0.35 0'28 0,08 0.01 0.49 0.141 0.05 0.014 0.04 0 1.01 0,45 0,12 0.08 0 0,24 0.184 0,03 0.028 0,02 0,028 0,82 2.76 0.198 0.31 0.01 1.23 0.205 0.28 0.022 0.15 0.014 4.73 92.33 3.21 14'3 1.351 27,46 0'09 12.47 0.474 8.55 0.354 155.04~9 0.39 0.014 0.09 0,01 0.71 0.036 0.15 0.057 1.34 10 0.38 0 0.11 0.014 0.5 0 F 135 0.05 0.01 0.01 0,014 1.05 0.36 0.071 0.11 0.022 0.55 0'63 0.06 0.01 0.09 0.01 1.17 0.62 0.509 0.19 0.141 0,51 0.106 0.08 0.01 0.07 0.01 1,47 13 0.51 0.163 0'6 0.078 0.51 0.014 0.08 0 F 01 0.1 0.01 1.46 0.34 0,036 0'9 0.014 0.5 0'62 0.06 0.014 0.08 0.022 1.17 15 0.7 0.573 0.24 0.141 0.6 0.163 0.09 0.042 0.1 1.73 16 0.2 0.014 0.09 0.01 0,44 0.042 0.05 0.014 0,09 0.036 0,87 BC 0 0 0,08, 0 0,37 0.014 0.02 0 0.12 0'.59 VALUES ARB IN HILLIGRAMS PBR SAHPKBR BC=BUILDING CONTROL SAHPLERS Analytical Results for Each Sample Location-October 1989: C-7 STATION AVE S04 STD DBV AVB Cl STD DBV AVE Ca STD DBV AVB Mg STD DEV AVB Na STD DEV NOVEHBER, 1989 1 1~06 0.085 0.38 0.099 0.51 0.347 0.06 0'28 0.15 0'14 BULK DEP (ng)2.16 1,07 0.078 0.3 0 0.27 0.099 0.06 0.036 0.15 0.028 1~85 1,15 0.219 0.32 0,01 0.47 0,106 0.08 0,022 0,14 a.16 1.18 0,488 0.31 0 0.68 0.354 0.08 0,057 0.17 0 2,42 0.75 0,099 0.33 0.212 0.31 0.028 0,03 0.01 0,17 0.042 1.59 1.33 0.071 0'8 0.01 0,51 0.156 O.l 0.022 0.15 0.028 2,57 12.22 1,817 0.93 0.191 4.64 0.792 1.09 0.191 0.67 0.135 19.55 499,39 59.128 36.17 3.917 173'4 13.782 53.59 6.35 27.01 2.772 789 F 9 2.36 0.955 0.32 0.127 2.98 2,312 0.52 0,467 0.21 0.01 6'9 10 0.72 0.028 0.23 0 0.87 0.141 O,l 0.028 0.13 a.os 0.73 0.184 0,25 0.092 0.26 0.17 0.05 0,042 0~13 0'22 1.42 12 0.54 0.04'2 0.48 0.01 0.34 0.022 0.04 o o.l o,o4a 1.5 13 1.18 0.962 0.29 0.17 0.41 0.233 0.06 0,028 0'2 0'28 2.06 14 0.76 0,17 0.39 0.12 0,51 0.057 0.05 0 0.1 0.042 1.81 15 0.62 0.022 0'0.01 0.53 0'71 0.06 0.01 0.13 0.022 1.84 16 0.78 0.085 0.49 0 F 01 0,47 0.036 0.09 0.014 0.09 0.028 1.9a BC 0 0 0.08 VALUES ARE IN HILLIGRAHS PBR SAHPLER BC=BUILDING CONTROL SAHPI BRS 0 0.33 0,014 0.04 0.022 0.04 0.057 Analytical Results for Each Sample Location-November 1989 C"8 0.49 STATION AVE S04 STD DEV AVB Cl STD DEV AVE Ca STD DEV AVE Ng STD DEV AVE Ha STD DEV DECEMBER, 1989 1 0.97 0.198 0.2 0 0.95 0.057 0'0,113 0.48 0.672 BULK DBP lag)2.8 0.94 0.028 0.2 0 0.62 0,085 0~06 0.028 0.3 0,085 2.12).37 0,269 0.2.0 0.7 0.022 0.06 0'28 0.3 0.085 2.63 1.93 0.658 0,2&0 2.09 1.174 0,29 0'33 0.75 0.778 5,34 2.54 0.255 0.32 0,064 1,21 0.014 0.18 0.036 0.28 0,064 4.53 4.23 0.092 0.4 0,05 2.45 0.587 0.54 0.191 0~73 0.424 8.35 17.7 2.022 1.05 0.248 7.44 0.799 1.61 0.212 2.34 0.622 30 F 14 514 1.414 22.43 0.813 199.63 6,541 50.89 1,259 50.88 1.945 837,83 a.o6 o.oas o.as 0 1,57 0'33 0.26 0,078 0.3 0'35 4.47 10 1.84 1.202 0.16 0,01 2,2 2.029 0.2 0.17 0.23 0.156 4.63 0,94 0.424 0.16 0 1.54 1.16 0.3 0,311 0.18 0.085 3.12 12 l.a6 o.a55 o.a 0 0.67 0.269 0.08 0.057 0.3 0,036 2,51 13 0,66 0.099 0.24 0.057 0.31 0.092 0.01 0.014 0.23 0.092 1.45 14 1,14 0.262 0,27 0 0.54 0.01 0,04 0 0.35 0.163 2.34 15 0.74 0.022 0'2 0.191 0.38 0.028 0.02 0.01 0.4 1~96 16 0.74 0.248 0.18 0.141 0.32 0.057 0.01 0.014 0.22 0.198 1.47 BC 0 0 0,1 VALUES ARB IH NILLIGRAMS BC=BUILDIHG COHTROI SANPLBRS 0 0.16 0'5 C-9 0.141 0~14 0.036 0 Analytical Results for Each Sample Location-December l989 0,4 STATION AVE S04 STD DEV AVB Cl STD DEV AVE Ca STD DBV AVE Hg STD DBV AVB Na STD DEV JANUARY, 1990 1 1.01 0.248 0.15 0 0'5 0.283 0.03 0.014, 0~19 0.149 BULK DEP (ag)!~73 0.95 0 0.15 o o.aa 0 0.03 0 0.08 0.106 1.43 2'5 1.768 0.15 0 1.62 1.803 0.14 0.113 0,26 4.62 2.12 0.509 0.19 0 1.45 1.301 0.18 0.099 0~19 0.106 4.13 2.78 0.014 0,19 0 1,04 0.036 0.23 0.01 0.33 0.022 4.57 5.73 0.042 0.35 0,01 2.32 0.064 0.49 0.01 0.52 0,036 9.41 20.48 0.276 0.84 0 8.41 0.01 1~86 0.022 1,75 0.036 33.34 8 1127.5 0 44 0 511.5 0 NO Sh SAHPI E AVAILABLE--DOES NOT REPRBSENT AN AVERAGED VALUE 121 0 107.25 1911.25 9 3.3 0.113 0,21'.028 1.26 0.135 0.29 0.022 0.3 0.057 5,36 10 1.27 0,022 0.37 0.318 0.47 0.028 0.07 0 0,23 0,022 2.41 0.86 0.014 0.15 0 0,23 0.05 0.04 0 F 01 0.23 0'5 1.51 12 1.26 0,82 0.16 0.028 0.72 0.608 0.06 0.064 0.31 0.022 2'1 13 0,56 0.01 0.13 0,028 0,23 0,05 0.01 0.01 0,22 0.057 1.15 1.34 1,054 0.17 0.022 0.42 0'95 0.07 0,099 0'3 0.099 2.33 0,86 0.382 0,15 0 0.81 0.46 0.06 0.057 0.26 0 2.14 16 0.61 0.106 0,13 0.028 0.3 0.212 0.02 0.022 0.27 0.05 1.33 EC 0 O.ll 0.127 0 0 0.24 0.057 0,35 VALUES ARE IN HIILIGRAHS PBR SAHPIER BC=BUILDING CONTROL SAHPLERS Analytical Results for Each Sample Location-January 1990 C"10 STATION AVB S04 STD DBV AVB Cl STD DBV AVB Ca STD DBV AVB Mg STD DBV AVB Na STD DEV FBBRUARV, 199Q 1 0.53 0.099 0.24 0.036 0.39 0.106 0.05 0.014 0,19 0.057 BUIK DBP (ng)1.4 0.68 0'41 0.31 0.014.0.48 0.092 0,06 0.01 0.28 0.028 1,81 0.54 0.057 0.27 0.022 0,38 0.092 0'5 0.01 0.24 0.064 1.48 0.74 0,17 0.27 0.01 0.56 0.177 0.08 0.014 0.32 0.022 1.97 0.65 0.106 0.26 0,014 0,45 0.078 0'6 0.014 0.31 0.036 1.73 0,69 o.o9a o.a7 0.014 0,51 0.028 0.06 0.01 0.05 0.071 1.58 1~12 0.036 0.29 0.01 0,75 0.078 0,1 0.014 0.17 0,078 2.43 637.75 68,801 36.12 2.432 232,82 14,856 70.31 7.601 80.76 9.001 1057.76~'.9 0.092 0.24 0.028 1 0.092 0.15 0'42 0.13 0,042 2.42 10 o.7 o.aa6 o.aa 0 0.61 0,042 0,06 0.01 0,08 0,028'.67 0.44 0'99 0.2 0.078 0.38 0,01 0.05 0.01 0.23 0,036 1.3 12 Q,47 o.oaa o.aa o.o36 o,44 o.oaa o.o5 0 0.22 0.01 1,4 13 0,56 0.078 0.17 0.057 0'3 0.028 0,09 0.01.0,15 0.085 0.54 0.042 0.22 0.036 0.54 0.042 0,06 0.022 0.17 0,057 1.9 1.53 15 0.41 0.042 0.15 0.022 1.2 0.036 0.07 0.01 0.22 0.042 2.05 0,66 0.502 0.15 0,022 Q.61 0.297 0.06 0,042 0.19 0.022 1.67 BC VAIUES ARE IN HIIIIGRAHS PER SAHPIBR 8C=EUIIDING CONTROI SAMPLERS 0 0.14 0.028 0.01 0 0.2 0 Analyt/cal Results for Each Sample Location-February 1990 C-11 0.35 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Hg STD DEV AVE Na STD DEV HARCH, 1990 o.66 o,o36 o.ll o.oaa o.36 o.lo6 o.o3 o o,aa 0.042 BULK DEP (ngl 1.38 0.91 0.354 0.13 0 0,72 0.622 O.l 0.078 0.18 0.064 2,04 0.64 0.028 0.1 0.01 0.61 0.24 0,08 0.036 0,13 1.56 0'6 0.028 0.13 0 0.7 0,219 0.06 0.014 0.16 0.042 1.71 0.7 0.057 0,11 0.028 0.64 0.191 0.06 0.01 0.18 0.022 1,69 1.56 0,064 0.13 0 0,86 0,057 0.14 0,01 0,22 2,91 8.09 0.474 0.52 0 3.87 0'69 0.9 0.071 1.14 0'71 14.5a 197,25 12,092 10.67 0.438 98.31 4.554 26.59 0.764 33.44 0.976 366.26 0.79 0.05 0.12 o,oaa o.6a 0.042 0.09 0.022 0.17 0.05 1.79 10 0.58 0.12 0.12 0.022 0.61 0.022 0.05 0.014 0.18 0.028 1.54 0,49 0.036 0.1 0 0.4 0.127 0.04 0.01 0.09 0,022 I.la 12 0,47 0,028 0.13 0 0.37 0.113 0.04 0,01 0.16 0 1.17 13 0.58 0.078 0.12 0,022 0.73 0.191 0.07 0.014 0.18 0.071 1.68 0.5 0.099 0.12 0.022 0.58 0.339 0.05 0 0.15 0.071 1.4 15 0,5 0.05 0.21 0.106 0.43 0.092 0.03 0.014 0.19 0.028 1.36 16 0,65 0.212 0.16 0,085 1,21 0.863 O.ll 0.092 0.15 0.022 2.28 BC 0 0.0 0 0'8 0'98 0,01 0,01 0.22 0.028 0.41 VALUES ARE IN HILIIGRAHS PER SAHPIER BC.=BUIIDING CONTROL SAHPLERS Analytical Results for fach Sample Location-March 1990 C-12}}

Revision as of 13:13, 29 October 2019

Operational Ecological Monitoring Program for Nuclear Plant 2 - 1990 Annual Rept. W/910531 Ltr
ML17286A853
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 12/31/1990
From: Bell J
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To: Zeller J
WASHINGTON, STATE OF
References
NUDOCS 9106050251
Download: ML17286A853 (235)


Text

ACCELERATED DISTRIBUTION DEMONSTjRATION SYSTEM

~

I REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)

ACCESSION NBR:9106050251 DOC.DATE: 90/12/31 NOTARIZED: NO DOCKET FACIL:50-397 WPPSS Nuclear Project, Unit 2, Washington Public Powe 05000397 AUTH. NAME AUTHOR AFFILIATION BELL,J.C. ,

Washington Public Power Supply System RECIP.NAME RECIPIENT AFFILIATION ZELLER,J.J. Washington, State of

SUBJECT:

"Operational Ecological, Monitoring Program for Nuclear Plant 1990 Annual Rept." W/910531 Itr.

2 DISTRIBUTION CODE: IE25D COPIES RECEIVED:LTR TITLE: Environmental Monitoring Rept (per Tech Specs) f ENCL Q SIZE: l5~

NOTES:

RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD5 LA 3 3 PD5 PD 1 1 D ENG,P.L. 1 1 D

INTERNAL: ACRS 1 1 P EOJ)/J3SPQTPAB 1 1 NRR/DREP/PRPB1 1 2 2 L 01 1 1 RES RADDATZ,C. 1 1 S/RPB 1 1 RGN5 FILE 02 1 1 EXTERNAL: EG&G SIMPSON, F 2 2 NRC PDR 1 1 D

A D

D NOTE TO ALL "RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTEl CONTACT THE DOCUMENT CONTROL DESK ROOM P 1-37 (EXT. 20079) TO ELIMINATEYOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENT YOU DON'T NEED!

TOTAL NUMBER OF COPIES REQUIRED: LTTR 16 ENCL 16

I

~ 1 1

f

UNDERSIZED DOCUMENTS

WASHINGTON PUBLIC POWER SUPPLY SYSTEM P.O. Bax 968 ~ 3000 George Washtngton Way ~ Rtchland, Wasbtngton 993524968 ~ (509) 372-5000 May 31, 1991 Mr. Jason J. Zeller EFSEC Manager Mail Stop FA-11 Olympia, WA 98504-1211

SUBJECT:

TRANSMIITALOF OPERATIONAL ECOLOGICAL MONITORING PROGR/IM NUCLEAR PLANT 2 ANNUALREPORT

Dear Mr. Zeller:

Enclosed are five (5) copies of the subject report; Sincerely, J.C. Bell Manager Plant Services JCB:pg Enclosures cc: g3ocument Control Desk; HRC (w/enclosures)'g R.B. Samworth, NRC (w/enclosures)

C.D. Becker, Battelle (w/enclosures)

D. Geist, Washington Department of Fisheries (w/enclosures) 9/060 ADOCK 90i23t 5q op@00397

-

O poR PDR R

3

'f t

//910605025 b g

~

~ I

93. 040 OAT%,

OFFICIAL PHOTO.

WASIIINCTOII PUBLIC POWEI

'63i) SUPPLY SYSTEb/I P.O. 80X 968 R1CHLAND) VIA 99352

~ g5544&C$ CDIS QPO!I PVQLIC4T~

ABLE F NT

~t~in ACKNOWLEDGEMENTS.

TABLES .

F IGURES ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ V

1.0 INTRODUCTION

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 1

1.1 BACKGROUND

1.2 THE SITE T-2

1. 3 BIBLIOGRAPHY 1-4 2.0 NOTABLE ENVIRONMENTAL OBSERVATIONS. 2-1

2.1 INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . 2-1 2.2 METHODS. 2-1 2 3

~ RESULTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2-1

~

3.0 FISH BIOASSAYS...,...,...,.......,... 3-1

3.1 INTRODUCTION

3-1 3.2 METHODS AND MATERIALS. ~ ~ ~ ~ ~ 3-1 3.3 RESULTS AND DISCUSSION 3-4

3.4 REFERENCES

3-5 4.0 WATER QUALITY . . . . . . . . . . . . . . . . ~ . . . . . . 4-1

4.1 INTRODUCTION

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 1 4.2 MATERIALS AND METHODS. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 1 4.2.1 SAMPLE COLLECTION. . . . . . . . . . . . . . 4-2 4.2.2 FIELD EQUIPMENT 8( MEASUREMENTS . . . . . . . 4-3 4.2.3 LABORATORY MEASUREMENTS. . . . . . . . . . . 4-3

T B F T T (Continued)

Law 4.3 RESULTS. . . . . . . . . . . . . . . . . . . . . . . . 4-4 4.3.1 TEMPERATURE. 4-4 4.3.2 DISSOLVED OXYGEN (DO). 4-4 4.3.3 pH AND ALKALINITY. 4-4 4.3.4 CONDUCTIVITY 4-5 4.3.5 TOTAL RESIDUAL .CHLORINE.,(TRC) . 4-5 4.3.6 METALS o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4-6 4.3.7 HARDNESS 4-8 4.3.8 OIL AND GREASE 4-8 4.3.9 AMMONIA-NITROGEN AND NITRATE-NITROGEN. 4-9 4.3.10 TOTAL PHOSPHORUS AND ORTHOPHOSPHORUS 4-9 4.3.11 SULFATE. 4 9 4 '.12 TOTAL DISSOLVED SOLIDS, TOTAL SUSPENDED SOLIDS AND TURBIDITY 4-10

4. 4 DISCUSSION . 4-11
4. 5 BIBLIOGRAPHY 4-11 5.0 COOLING TONER DRIFT STUDIES 5-1

5.1 INTRODUCTION

5-1 5.2 MATERIALS AND METHODS. 5-1 5.2.1 HERBACEOUS CANOPY COVER. 5-1 5.2.2 HERBACEOUS PHYTOMASS 5-2 5.2.3 SHRUB CANOPY COVER . 5-2 5.2.4 SHRUB DENSITY.

'.2.5 SOIL CHEMISTRY 5-3 5.2.6 VEGETATION CHEMISTRY . 5-4

TBE (Continued) 5, 3 RESULTS AND DISCUSSION,............... 5-4

5. 3.1 HERBACEOUS COVER . 5-4 5.3,2 HERBACEOUS PHYTOMASS 5-5 5.3.3 SHRUB COVER AND DENSITY. . 5-6 5.3.4 "SOIL CHEMISTRY 5-6 5.3.5 VEGETATION CHEMISTRY . 5-7 5.4

SUMMARY

AND CONCLUSIONS. . . . . . . . . . . . . . . . 5-7 5,5 COOLING TONER DRIFT MODEL VALIDATION STUDY...... 5-8 INTRODUCTION................

5.5.1 5.5.2 MATERIALS AND METHODS.... '........ 5-8 5-9 5.5.2.1 SAMPLE PLAN. . . . . , . . . . . . 5-9 5.5.2.2 SAMPLE COLLECTION. . . . . . . . . '5-10 5.5.2.3 ANALYTICAL METHODS . . . , . . . . 5-11 5.5.3 SAMPLE PREPARATION AND COLLECTION. . . . . . 5-11 5.5.4 SAMPLE MEASUREMENT AND ANALYSIS. . . . . . . 5-12 5.5.5 DATA ANALYSIS................ 5-12 5.5.6 RESULTS................... 5-13 5.6 BIBLIOGRAPHY...........,......... 5-15 6.0 INTAKE STRUCTURE FOULING SURVEYS. ~ ~ ~ . . . . ~ ~ . ~ ~ ~ 6-1

6.1 INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . 6-1

B E (Continued) 7.0 AERIAL PHOTOGRAPHY..................... 7-1

7.1 INTRODUCTION

7-1 7.2 MATERIALS AND METHODS. 7-1

7. 3 RESULTS AND DISCUSSION 7-3
7. 4 BIBLIOGRAPHY 7-5 APPENDIX A PLANT OPERATIONAL DATA APPENDIX B METEOROLOGICAL CONDITIONS APPENDIX C ANALYTICAL RESULTS FOR EACH SAMPLE STATION

EXECUTIVE

SUMMARY

During 1990 there were no unusual events which resulted in significant environmental impacts from the operation of WNP.-2.

0 There were no unanticipated or emergency discharges of water or wastewater during the reporting period.

The first fish bioassay required by the HNP-2 NPDES Permit was performed in October, 1990. A 1001. survival rate was observed.

Significant interstation differences could not be detected among any of the water quality parameters measured for'early all sampling periods. 1990 marks the first year in which results of metals 'analyses performed on plant dis-charge water are included in the report. It appears that during 1990, HNP-2 cooling water discharge had little effect upon Columbia River water quality.

The cooling tower drift model verification study concluded sample collection in March 1990. Results indicated and further investigations proved that the

~

model's isopleths incorrectly predict areas of maximum and minimum cooling tower drift. The isopleths, as drawn, predict maximum deposition along

~

transects running in a northeasterly and nearly south-southwesterly direc-tion. This contradicts prevailing wind directions which are southerly (blowing north) and northeasterly (blowing southeast).

Total herbaceous cover decreased 38.011. in 1990. A corresponding decrease in herbaceous phytomass was also observed. Soil and vegetation analyte concen-trations were generally within the ranges observed in previous years. Changes in vegetation cover and density recorded in 1990 appear to be climatically induced and no signs of adverse impacts from the operation of WNP-2 cooling towers are evident.

Color infrared aerial photographs along 5 flightlines were taken in June 1990. Because of the lateness in the season when the photographs were taken, most of the grasses were inactive and growth patterns could not be discerned.

The general health of those plants and shrubs that were active was good. No adverse impact was evident from Plant 2 operation.

D E This annual report, prepared by Washington Public Power Supply System, describes the aquatic, terrestrial and water quality programs for Nuclear Project No. 2 (WNP-2).

Joe Bell Manager, Plant Services Terry E. Northstrom Supervisor, Environmental Sciences Sara L. Lindberg Environmental Scientist I John E. McDonald Environmental Scientist I Deborah C, Singleton Environmental Scientist I Richard E. Welch Environmental Scientist I Todd A. Borak Environmental Scientist II Lana S, Schleder Environmental Scientist II Kathryn E. Humphreys Administrative Specialist

~u5yr ~TQg, Size and Weight .of Fish Used in Bioassay Test 3-7 Summary of Bioassay Parameters and Associated EPA Methods 3-8 3-3 Temperature and pH Measurements 3-9 3-4 Dissolved Oxygen and Conductivity Measurements 3-10 Total Alkalinity and Total Hardness Measurements 3-11 3-6 Magnesium and Calcium Measurements 3-12 3-7 Total Copper Concentrations 3-13 3-8 Total Zinc Concentrations 3-14 4-1 Summary of Water Quality Parameters, Stations, and 4-13 Sampling Frequencies, 1990 4-2 Summary of Water Quality Parameters EPA and ASTM Method 4-14 Numbers 4-3 Summary of Temperature Measurements for 1990 4-15 4-4 Summary of Dissolved Oxygen Measurements for 1990 4-16 4-5 Summary of pH Measurements for 1990 4-17 4-6 Summary of pH, Alkalinity and Hardness Measurements for 1990 4-18 Summary of Conductivity Measurements for 1990 4-19 4-8 Summary of Turbidity and Total Residual Chlorine Measurements for 1990 4-20 4-9 Summary of Copper Measurements for 1990 4-21 4-10 Summary of Nickel and Zinc Measurements for 1990 4-22 4-11 Summary of Iron and Lead Measurements for 1990 4-23 4-12 Summary of Cadmium and Chromium Measurements for 1990 4-24 4-13 Summary of Oil and Grease, and Ammonia Measurements for 1990 4-25 4-14 Summary of Nitrate and Total Phosphorus Measurements 4-26 for 1990 4-15 Summary of Orthophosphate and Sulfate Measurements 4-27 for 1990 4-16 Summary of Total Dissolved and Total Suspended Solids 4-28 Measurements for 1990 5-1 Vascular Plants Observed During 1990 Field Work 5-16 5-2 Vascular Plants Observed During 1975-1990 Field Work 5-19

(Continued) 5-3 Herbaceous Cover for Fifteen Sampling "Stations-1990 5-4 Mean Herbaceous Cover for 1975 Through 1990 5-24 Mean Frequency Values (L) by Species for Each Sampling 5-26 Station - 1990 5-6 Mean Terrestrial Phytomass for 1990 5-27 5-7 Comparison of Herbaceous Phytomass for 1975 Through 1990 5-28 5-8 Summary of Shrub Density for 1990 5-29 Summary of Shrub Cover,(1.) at. Five Stations for 1990 5-30 5-10 Summary 'of Soil Chemistry for 1990 5-31 5-11 Summaryof Vegetation Chemistry for 1990 5-32 5-12 Drift Sampler Locations in Reference to WNP-2 Cooling 5-33 Towers 5-13 Drift Deposition Rates (Gross and Background Corrected) 5-34 A-1 Plant Operational Data for Collection Period 1 A-1 A-2 Plant Operational Data for Collection Period 2 A-3 Plant Operational Data for Collection Period 3 A-4 Plant Operational Data 'for Collection Period 4 A-4 A-5 Plant Operational Data for Collection Period 5 A-5 A-6 Plant Operational Data for Collection Period 6 A-6 A-7 Plant Operational Data for Collection Period 7 A-7 A-9 Plant Operational Data for Collection Period 8 A-8 A-10 Plant Operational Data for Collection Period 9 A-9 A-ll Plant Operational Data for Collection Period 10 A-10 A-12 Plant Operational Data for Collection Period ll A-11 A-2 Plant Operational Data= for Collection Period 12 A-12 B-1 Meteorological Conditions for March 1989 B-l B-2 Meteorological Conditions for April 1989 B-2 B-3 Meteorological Conditions for May 1989 B-3 B-4 Meteorological Conditions for June 1989 B-4 B-5 Meteorological Conditions for July 1989 B-5

(Continued) 5yml~er Ti )~l e 8-6 Meteorological Conditions for August 1989 B-6 B-7 Meteorological Conditions for September 1989 B-7 B-8 Meteorological Conditions for October 1989 8-8 B-9 Meteorological Conditions for November 1989 B-9 B-10 Meteorological Conditions for December 1989 B-10 B-ll Meteorological Conditions for January 1990 B-ll B-12 Meteorological Conditions for February 1990 B-12 B-13 Meteorological Conditions for March 1990 B-13 C-1 Analytical Results for Each Sample Location April 1989 C-1 C-2 Analytical Resul,ts for Each Sample Location- May 1989 C-2 C-3 Analytical Results for Each Sample Location June 1989 C-3 C-4 Analytical Results for Each Sample Location July 1989 C-4 C-5 Analytical Results for Each Sample Location August 1989 C-5 C-6 Analytical Results for Each Sample Location September 1989 C-6 Analytical Results for Each Sample Location October 1989 C-7

~ Analytical Results for Each Sample Location November 1989 C-8 C-9 Analytical Results for Each Sample Location December 1989 C-9 C-10 Analytical Results for Each Sample Location January 1990 C-10 C-11 Analytical Results for Each Sample Location February 1990 C-11 C-12 Analytical Results for Each Sample Location March 1990 C-12

Ii Qe.

NNP-2 Gross Thermal Production for 1990 1-2 HNP-2 Days Per Month Discharging and Mean Monthly Discharge 1-3 NNP-2 Location Map 1-9 1-4 Columbia River Mean Monthly Flow for 1990 1-10 2-1 NNP-2 Property Boundary 2-3 3-1 Attachment 1.0, Test Plan 27 Secondary Chemistry Report 3-15 3-2 Attachment 2.0, Hater Chemistry Report 3-16 4-1 Location~ of Sampling Stations in the Columbia River 4-29 4-2 Sampling, Station Locations for, Hater Chemistry 4-30 4-3 Columbia'iver Temperature Measurements at Six Stations 4-31 During 1990 4 4 Columbia River Dissolved Oxygen Measurements at Four Stations 4-32 During 1990 4-5 Columbia River pH Measurements at Six Stations During 1990 4-33 4-6 Columbia River Total Alkalinity Measurements at Four Stations 4-34 During 1990 4-7 Columbia River Conductivity Measurements at Six Stations 4-35

~

During 1990 4-8 Columbia River Total Zinc Measurements at Four Stations 4-36 During 1990 4-9 Columbia River Total Iron Measurements at Four Stations 4-37 During ~1990 4-10 Columbia River Total Hardness Measurements at Four Stations 4-38 During, 1990 4-11 Columbia River Nitrate Nitrogen Measurements at Four 4-39 Stations During 1990 4-12 Columbia River Total Sulfate Measurements at Four Stations 4-40 During 1990 4-13 Columb'ia River Total Dissolved Solids Measurements at Four 4-41 Stations During 1990

(Continued)

NuZber j'1 i~1 Columbia River Total Suspended Solids Measurements at Four Stations During 1990 4-15 Columbia River Turbidity Measurements at Four Stations During 1990 5-1 Soil and Vegetation Sampling Location Map 5-2 Layout of Vegetation and Soil Sampling Plots 5-3 Mean Herbaceous Cover for 1975 Through 1990 Mean Herbaceous Cover, Mean Dry Height (g/m ), Total Precipitation, and Mean Temperature From 1982 Through 1990 5-5 Mean Herbaceous Phytomass at Grassland and Shrub Stations for 1975 Through 1990 5-6 Mean Herbaceous Cover and Phytomass for Stations G01 to G04 for 1980 Through 1990 5-7 Mean Herbaceous Cover and Phytomass for Stations G05 to G08 for 1980 Through 1990 5-8 Mean Herbaceous Cover and Phytomass for Stations S01 to S04 for 1980 Through 1990 Mean Herbaceous Cover and Phytomass for Stations S05 to S07 for 1980 Through 1990 5-10 Shrub Density at Five Stations for 1984 Through 1990 5-11 Mean Total Shrub Cover for 1975 Through 1990 5-12 Shrub Cover and Density for Five Stations for 1990 5-13 Soil pH and Conductivity for 1980 Through 1990 5-14 Soil Sulfate and Chloride for 1980 Through 1990 5-15 Soil Bicarbonate and Copper for 1980 Through 1990 5-16 Soil Lead and Nickel for 1980 Through 1990 5-17 Soil Cadmium and Zinc for 1980 Through 1990 5-1.8 Soil Chromium and Sodium for 1980 Through 1990 5-19 Soil Potassium and Calcium for 1980 Through 1990 5-20 Soil Magnesium for 1980 Through 1990 5-21 p t tl ( I> I 8 ~il'I d

~nrem by Station for 1984 Through 1990 vii

2Qa (Continued)

~~'J ~

~

PP 0 t ti I glg) 1 d 580~ C)dgJ559 by 5t tl f 195 Th gh 1990 0 0 t tl ( ig) \ 5)dgdg)88 aUdalJllm d 5-57

~~

PP f

by yt Chloride Concentration ('/.) in 1

1 ggjf~li by Station for 1984 Through 1990 19

~B ~ h h 1990

~gzgm and 5JZ 5-58 tl C) I ift JJ Cll Id C

~,by 8 d 5-59

~~

'J 1 5t ti .I' 98 Th gh 99 Id C t tl (5) I P 50898CI)( d 5-60

'y Chl by 5t tl I'984 Tl gh 1990 5 if t C 1 tl (5) I 9) I d lyygdtJPP 5-61

)JJJ by yt ti f 198 Th gh 990 If t t tl ('f) 1 8J~J d 5-62 Station for 555.'J 51 t~Zgm t

by t tl Station for (9) 1 958~ 1984 Through 1990 1984 Through 1990 d 5-63 Total Vegetation Copper, Chloride and Sulfate for 1990 S-6e Predicted Salt Deposition Patterns Out to 0.5 Mile 5-65 (0.8 km) (lb/acre/yr)

Predicted Salt Deposition Patterns Out to 6.9 Miles 5-66 (11.1 km) (lb/acre/yr)

Location Map of Cooling Tower Drift Monitoring Sites 5-67 Cooling Tower Drift Collection Vessel 5-68 Cumulative Wind Rose April 1989 Through March 1990 WNP-2 5-69 Meteorological Station 33 Foot Level Cumulative Wind Rose 1984 Through 1989 WNP-2 Meterological 5-70 Station 33 Foot Level Deposition'ate as a Function of Distance 5-71 Aerial Photography Flightlines 7-6

.0 Washington Public Power Supply System (Supply System) began site prepa-ration for Nuclear Plant Number 2 (WNP-2) near Richland, Washington in March 1973. WNP-2 loaded fuel in December 1983, reached approximately 75 percent thermal load in November 1984, and began commercial opera-

'ion in December 1984.

The Site Certification Agreement (SCA) for WNP-2, executed on May 17, 1972, between the State of Washington and the Supply System requires that ecological monitoring be conducted during the preoperational and operational phases of site, development and use. The Washington State Energy Facility Site Evaluation Council (EFSEC) approved a change in 1978 to the technical scope of environmental monitoring required by the SCA (EFSEC Resolution No. 132, January 23, 1978). In 1980, the

.

aquatic and water quality portions of the preoperational monitoring program were terminated (EFSEC Resolution No. 166, March 24, 1980).

The following year the preoperational and operational terrestrial monitoring program scope for WNP-2 was modified (EFSEC Resolution No.

193, Hay 26, 1981). Prior to operation, the council reviewed the preoperational aquatic monitoring data and approved the operational monitoring program (EFSEC Resolution No. 214, November 8, 1982).

The Supply System in 1974 retained Battelle Pacific Northwest Labora-tories (BNW) to conduct the preoperational aquatic monitoring for WNP-2. The results of aquatic studies performed from September 1974 through August 1978 are presented in various reports (Battelle 1976, 1977, 1978, 1979a and 1979b). From August 1978 through March 1980 the aquatic studies were performed by Beak Consultants, Inc. (Beak 1980).

In 1982 the Supply System analyzed the 1974-1980 aquatic data and presented the results and a recommended operational monitoring program to EFSEC (Mudge et. al., 1982). The operational program was accepted with minor modifications and initiated in March 1983. Due to

.

operational conditions, the plant did not consistently discharge liquid effluents until the fall of 1984. Figures l-l and 1-2 present summaries'f electrical generation and monthly discharges for 1990.

Terrestrial monitoring was initiated in 1974 and was conducted by BNW until 1979 (Rickard and Gano, 1976, 1977, 1979a, 1979b). Beak Consultants, Inc. performed the vegetation monitoring program from 1980-1982 (Beak 1981, 1982a, 1982b). Since 1983, Supply System scientists have been responsible for the vegetation aspects of the program (Northstrom et. al. 1984; Supply System 1985, 1986, 1987, 1988, 1989). During 1981, the animal. studies program was taken over by Supply System scientists and results were reported annually (Schleder 1982, 1983, 1984; Supply System 1985, 1986, 1987, 1988, 1989). The first comprehensive operational environmental report was prepared by Supply. System scientists in 1984 (Supply System 1985).

During their regular meeting of September 14, 1987 the Energy Facility Site Evaluation Council approved Resolution No. 239 which adopted a long-term environmental monitoring program for WNP-2. This decision was based upon, the council's examination of the document titled 3gv1ew f nvi m n 1 M ni rin Pr r f WNP- wi h mm n r D n in in i (Davis and Northstrom, 1987).

This report presents the results of the Ecological Monitoring Program (ENP) for the period January 1990 through December 1990.

1.2 TffT '/TED.,

The WNP-2 plant site is located 19 km (12 miles) north of Richland, Washington in Benton County (Figure 1-3). The Supply System has leased 441 hectares (1089 acres) from the U.S. Department of Energy's Hanford Site for WNP-2.

1-2

WNP-2 lies within the boundaries of the Columbia Basin, an extensive area south of the Columbia River between the Cascade Range and Blue Mountains in Oregon and approximately two thirds of the area lying east of the Cascades in Washington. The plant communities within the region are described as shrub-steppe communities consisting of various layers of perennial grasses overlayed by a discontinuous layer of shrubs. In general, moisture relations do not support arborescent species except along streambanks. Approximately 5 km (3.25 miles) to the east, the site is bounded by the Columbia River. In August of 1984 a range fire destroyed much of the shrub cover which occupied the site and temporarily modified the shrub-steppe associations which were formerly present.

The aquatic and water quality sampling stations are located near the west bank of the Columbia River at mile 352. Sampling was limited to the main channel Benton County side which, near the site, averages 370 meters (1200 feet) wide at a river elevation of 105 meters (345 feet>

above sea level and ranges to 7.3 meters (24 feet) deep. Sampling stations have been established in the river both upstream and down-stream from the plant intake and discharge structures, The river-level in this area fluctuates considerably diurnally and from day-to-day in response to release patterns at the Priest Rapids Dam (River Mile 397). These fluctuations cause large areas of river bottom to be alternately exposed and covered. The river bottom within the study area varies from exposed Ringold conglomerate to boulders, cobble, gravel, and sand. River velocities at the surface average approxi-mately 2 meters (5 to 6 feet) per second in this area of the river, and water temperature varies from approximately 0 to 22'C.

The flow of the Columbia River at WNP-2 is controlled by releases from Priest Rapids Dam. The minimum flow, measured at the USGS stream-quality station located at river mile 388.1 near the Vernita bridge, was 58,400 cfs (cubic feet per second), while average and maximum flows in 1989 were 134,022 cfs and 322,000 cfs, respectively (Figure 1-4) .

The terrestrial sampling locations are all within an 8 km (5 mile) radius from WNP-2. The topography is flat to gently rolling, gradually increasing from an elevation of 114 meters (375 feet) at the riparian sampling locations to approximately 152 meters (500 feet) at more distant shrubgrass sample stations.

.3 ILBLIGG Battelle Pacific Northwest Laboratories. 1976. Aquatic ecological studies conducted near WNP-1, 2, and 4, September 1974 through September 1975. 'upply System Columbia River ecology studies Vol. 2.

Richland, WA.

Battelle Pacific Northwest Laboratories. 1977. Aquatic ecological studies near WNP-l, 2, and 4, October 1975 through February 1976.

Supply System Columbia River Ecology Studies Vol. 3. Richland, WA.

Battelle Pacific Northwest Laboratories. 1978. Aquatic ecological studies near WNP-1, 2, and 4, March through December 1976. Supply System Columbia River ecology studies Vol. 4. Richland, WA.

Battelle Pacific Northwest Laboratories. 1979a. Aquatic ecological studies near WNP-l, 2, and 4, March through December 1977. Supply System Columbia River ecology studies Vol. 5. Richland, WA.

Battelle Pacific Northwest Laboratories. 1979b. Aquatic ecological studies near WNP-l, 2, and 4, January through August 1978. Supply System Columbia River ecology studies Vol. 6. Richland, WA.

Beak Consultants, Inc. 1980. Aquatic ecological studies near WNP-1, 2, and 4, August 1978 through March 1980. Supply System Columbia River ecology studies Vol. 7. Portland, OR, Beak Consultants, Inc. 1981. Terrestrial monitoring studies near WNP-1, 2, and 4, May through December 1980. Portland, OR.

1-4

Beak Consultants, Inc. 1982a. Terrestrial monitoring studies near WNP-1, 2, and 4, May through December 1981. Portland, OR.

Beak Consultants, Inc. 1982b. Preoperational terrestrial monitoring studies near WNP-l, 2, and 4, May through August 1982. Portland, OR.

Davis, W. III and T.E. Northstrom. 1987. Review of the environmental monitoring program for WNP-1 with recommendations for design of con-tinuing studies. Washington Public Power Supply System, Richland, WA.

Mudge, J.E., T,B. Stables, W. Davis III. 1982. Technical review of the aquatic monitoring program of WNP-2. Washington Public Power Supply System, Richland WA.

Northstrom, T.E, J.L. Hickam and T.B. Stables. 1984. Terrestrial monitoring studies for 1983. Washington Public Power Supply System, Richland, WA.

Rickard, W.H. and K.A. Gano. 1976. Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4. Progress report for the period July 1974 to June 1975. Battelle Pacific Northwest Laboratories, Richland, WA.

Rickard, W,H. and K.A. Gano. 1977. Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4. Progress report for 1976. Battelle Pacific North-west Laboratories, Richland, WA.

Rickard, W.H. and K.A. Gano. 1979a. Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4. Progress report for 1977. Battelle Pacific Northwest Laboratories, Richland, WA.

Rickard, W.H. and K.A. Gano. 1979b. Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4. Progress report for 1978. Battelle Pacific Northwest Laboratories, Richland, WA.

1-5

Schleder, L.S. 1982. Preoperational animal studies near WNP-1, 2 and

4. Annual report for 1981. Washington Public Power Supply System, Richland, HA.

Schleder, L.S. 1983. Preoperational animal studies near WNP-1, 2 and

4. Annual report for 1982.=- Washington Public Power Supply System, Richland, WA.

Schleder, L.S. 1984. Preoperational animal studies near HNP-l, 2 and

4. Annual report for 1983. Washington Public Power Supply System, Richland, WA.

Washington Public Power Supply System. 1985. Operational ecological monitoring program for Nuclear Plant 2. Annual report for 1984.

Richland, WA.

Washington Public Power Supply System. 1986. Operational ecological

'monitoring program for Nuclear Plant 2. Annual report for 1985.

Richland, HA.

Washington Public Power Supply System. 1987. Operational ecological monitoring program for Nuclear Plant 2. Annual report for 1986.

Richland, WA.

Washington Public Power Supply System. 1988. Operational ecological monitoring program for Nuclear Plant 2. Annual Report for 1987.

Richland, HA.

Public Power Supply System. 1989. Operational ecological

'ashington monitoring program for Nuclear Plant 2. Annual Report for 1988.

Richland, WA.

Washington Public Power Supply System. 1990. Operational ecological monitoring program for Nuclear Plant 2. Annual Report for 1989.

Richland, HA, 1-6

MWH/MONTH THERMAL (MILLIONS)

3. 00 2.75
2. 50
2. 25 2.00 1.75 1.50
1. 25 1.00
0. 75
0. 50 0.25 0.00 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MONTH FIGURE 1-1 HNP-2 GROSS THERMAL PRODUCTION FOR 1990

DAYS/MONTH DISCHARGE M EAN Dl SCH ARG E GAL/DAY X 100000 35 36 30 30 25 25 20 20 15 10 JAN FEB IYIAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 RR DAYS m GPD

\

FIGURE 1-2 NNP-2 DAYS PER MONTH DISCHARGE AND MEAN MONTHLY DISCHARGE

5 311C 0 3110 5 311C 3110 o& 0 313A 3l30

~ waswecsaw

~

sal cc eeaa

~

', I'1i 0

rscre aae OO ~ e rc

~ ass%

5l

~ Legend

~ spraws Casa le%

iree I Qrasw lssal ssswsac tewc Uas wsw Sssw Tenon

~ ~

ssrrsr Ure wss ssssc salas

~ ease Urw wsss waassa svss

/sacs llse a se ursa acsscsac sclssstlrW 5sa 343e o 34ii D ascarcssa Sssa UWI Pl IeWssel ssa Qsrs Sl IlcsHcsall arcs slws IO Wscrs wancsl Slsrs Owl l4cosayss laresc 5IIO Osswsrc SCIW 11 WL FIGURE 1-3 NNP-2 LOCATION MAP 1-9

FLOW (KCFSj 336 308 280 252 224 196 168 140 112 84 56 28 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MONTH I MAX/MIN + MEAN FIGURE 1-4 COLUMBIA RIVER MEAN MONTHLY FLOH FOR 1990

2. 0 N TAB E ENVI NNENTA B RVATI N

~NT II Any occurrence of an unusual or notable event that indicates or could result in a significant environmental impact causally related to plant operation shall be recorded and reported to the NRC within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> followed by a written report. The following are examples: excessive bird impaction events, onsite plant or animal disease outbreaks, mortality or unusual occurrence of any species protected by the Endangered Species Act of 1973, fish kills, increase in nuisance organisms or conditions, and a significant, unanticipated or emergency discharge of waste w'ater or chemical substances.

2. 2 ~)~D Weekly ground surveys were conducted from January 1st through December 31st to document the occurrence of unusual species or events within the property boundary of WNP-2 (Figure 2.1). Additional information was supplied by security and environmental personnel.
2. 3 gQ~T There were no unusual or notable events which resulted in significant environmental impacts from the operation of WNP-2.

There were, however, some 'general observations worth noting.

Tt I I-N111 d I (II, I ) t t I resident during spring periods, with several nesting pairs sighted in the shrub-steppe communities surrounding WNP-2.

2-1

hb\g l.lith~,>1plgtl of the Hanford Reservation, fd t with several sightings being reported from locations within WNP-2's site area boundary. Of particular note during 1990, was the establishment of a nesting pair at the edge of a gravel parking lot, immediately northeast of Plant 2. Although the pair was continuously subjected to disturbances from human activities (a major access road and railroad bordered the burrow on each side),

their breeding attempt was successful. On May 25, a total of four young were observed at the burrow entrance. Several more observations of the owls were reported in early June.

Spring 1990 produced one 'of the largest grasshopper hatches in recent memory, Vegetation in some areas was severely impacted. In late May, a large population of gulls were using the grasshoppers as a major food source. Feeding groups numbering from a few individuals to several dozen birds were routinely sighted at several locations near WNP-2.

There were no unanticipated or emergency discharges of water or wastewater during the reporting period.

2-2

ASHE SUBSTATION ROAD QN SECURITY RANGE ROAD FIRING H.J. ASHE RANGE r

SUBSTATION I

II I

WNP-2 RIVER PUMP-HOUS n PUMP HOUSE ROAD PUMP- HOUSE ROAD 0 QO~

OO WNP-2 II PROPERTY LINE

~0 II I

SANITARY'OC I WASTE FACILITY WNP-1 I EMERGENCY RESPONSEI BENTON PLANTSUPPORT FACILITY SWITCHING STATION O

WNP-2 0 K

ACCESS ROAD O

0 FIGURE 2-1 WNP-2 PROPERTY BOUNDARY

3.0 FI H BI 3.1 A bioassay using chinook salmon ( rh h ) was per-formed from October 20 through October 24; 1990, in compliance with Special Condition S4 of the WNP-2 National Pollutant Discharge Elimination System Waste Discharge Permit (NPDES No. WA-002515-1).

Specifically, the permit requires 96-hour flow-through testing in 01.

(control) and 1001. effluent concentrations. An 801. or greater survival rate in 1001. effluent is specified as the successful test criteria.

At the time of the test, normal operating conditions for WNP-2 were characterized by 1001. power production and a recirculating cooling water system exhibiting 12 cycles of concentration. Calgon PCL 8125 is added to the recirculating water to inhibit corrosion of the admiralty brass condenser tubes. In addition, chlorine and sulfuric acid are introduced to the system on a routine basis for biofouling treatment and pH adjustment, respectively. Recirculating cooling water blowdown (effluent) is discharged on a continuous basis except during periods of biofouling treatment. Following a treatment, discharge is resumed when total residual halogen concentration meets permit requirements (less than or equal to 0,1 mg/1). The discharge rate during the bioassay averaged 1350 gpm, ranging from a low of 1200 gpm on October 20 to a high of 1500 gpm on October 24, 1990.

Secondary Chemistry Program Data (Attachment 1) includes information on the chemical composition of the recirculating water system (CW) for a sample taken on October 23, 1990.

3.2 The bioassay generally adhered to the requirements set forth in EPA Publications "Methods for Measuring the Acute Toxicity of Effluents to 3-1

Freshwater and Marine Organisms," 1985, and "Quality Assurance Guide-lines for Biological Testing," 1978. Specific methodology is provided in Environmental Programs Instruction 13.2.11, "WNP-2 Aquatic Bio-assays" and "Environmental Sciences and Plant Support Chemistry Quality Assurance Manual," (Washington Public Power Supply System, 1990).

The bioassay test facility is situated on the west bank of the Columbia River directly ad]acent to the WNP-2 makeup water pumphouse.

Effluent used for the test was diverted from the discharge pipe and .

pumped to the test facility. Control (dilution) water was untreated Columbia River 'water pumped from the makeup water pumphouse directly to the test facility. Water Quality Program data from a Columbia River monitoring station sample taken October 2, 1990 provides information as to the chemical makeup of the control (dilution) water (Attachment 2).

Temperature control for the holding tank water and the 01. (control) and 1001. plant effluent solutions was provided by a 200,000 BTU capacity chiller and an in-house designed temperature conditioning unit. A system of heat exchangers, flow and temperature control valves, water heater, and controllers produced a test water temperature of 12 C, controllable to within +/-1 C.

The chinook salmon juveniles utilized for the bioassay were obtained from the Washington Department of Fisheries, Ringold Hatchery on October 4, 1990, The fish were acclimatized in a 2000-liter capacity holding tank for 14 days. The water temperature of the holding tank was gradually. reduced from an initial temperature of 15.9 C (which approximated the temperature of the hatchery holding pond) to the desired test,,temperature at 12'C four days prior to the start of the 96-hour test. At no time did the change in temperature exceed 3 C in a 12-hour period. A commercial fish food (Bio-Dry by Bioproducts) was utilized, with food size and feeding rates as used at the hatchery.

Fish were not fed for 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> prior to handl'ing or during the 96-hour test.

3-2

The flow-through system consisted of six 132.5-liter capacity'glass aquaria, each containing a volume of approximately 114 liters. The system included three control (1001. Columbia River water) and three toxicant (100'/. plant effluent) aquaria selected on a random basis.

Aquaria flow rates were approximately 1.43 liters/minute/aquaria.

Water temperature in both the control and toxicant head boxes was monitored continuously by use of an Astro-Med Dash 2 recorder.

Control water (Columbia River) flow to all six aquaria was initiated at 2400 hours0.0278 days <br />0.667 hours <br />0.00397 weeks <br />9.132e-4 months <br /> on October 6, 1990. At 1400 hours0.0162 days <br />0.389 hours <br />0.00231 weeks <br />5.327e-4 months <br /> on October 17, 1990, ten fish were distributed to each aquaria, two per tank, in a stratified random manner. The aquarium loading factor was-approximately 180 grams or 1.58 g/liter.

Fish were acclimatized in the aquaria at 100'/. control water for 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> prior to toxicant (plant effluent) introduction. The 96-hour test was begun by siphoning down the aquaria (including controls) until there was approximately 23 liters of water remaining, and then toxicant flow was initiated to,the test aquaria. Control aquaria were allowed to refill with river water. The aquaria were checked for mortalities twice per day.

Fork lengths and wet weights were determined by anesthetizing and measuring control fish at the end of the test (Table 3-1). All fish surviving the test were released to the Columbia River.

Temperature, dissolved oxygen, pH and conductivity were measured daily in the control and toxicant head boxes, and each aquaria. Grab water samples were collected daily from the control and toxicant head boxes and each aquaria, and analyzed for calcium, magnesium, alkalinity, total copper, and total zinc.

l The pH and temperature measurements were made with an IBM Model EC105-2A portable pH meter. Prior to each use the instrument was 3-3

calibrated using pH standards of 4.0, 7.0, and 10.0. If necessary, the probes were 'adjusted to within 0.1 unit of the standards. The temperature probe was calibrated against an NBS-traceable thermometer.

Dissolved oxygen measurements were made using a Yellow Springs Instrument (YSI) Model 57 meter. The meter was air-calibrated prior to each use per manufacturer's instruction. In addition, Hinkler D.O.

measurements were made prior to the bioassay and results compared to the Model 57 meter.

Conductivity measurements were made with a YSI Model 33 meter. Daily measurements using conductivity standards were performed.

Sample holding'times followed those recommended by the U.S. Environ-mental Protection Agency (USEPA 1983). Analyses were performed per USEPA (1983) approved methods (Table 3-2).

3.3 ND No fish mortal,ities were observed in any of the control <0'/. effluent) or toxicant (1001. effluent) aquaria. This result is in agreement with several static bioassays conducted at NNP-2 during 1984 and 1985 (Supply System, 1986) .

Temperature measurements remained fairly constant throughout the test period. Only slight variations occurred between control and toxicant solutions. All measurements were within the required range of 12 C +/-1'C (Table 3-3). The pH values are presented in Table 3-3.

Discharge water (toxicant) exhibited a value about one unit higher than the control values.

Dissolved oxygen measurements were fairly constant. Discharge aquaria averaged approximately 2 mg/1 less than control aquaria throughout the bioassay (Table 3-4). Conductivity measurements (Table 3-4) demon-strate the difference in concentration (cycles) between control (Columbia River) and toxicant <100/. effluent) water sources.

3-4

Total alkalinity measurements for both the control and toxicant aquaria remained constant throughout the bioassay. Discharge values were approximately four times higher than control values (Table 3-5).

Total hardness values given in Table 3-5 are indicative of the cycles of'oncentration. Hardness was determined by calculation from magnesium and calcium measurements (Table 3-6). The number of cycles of concentration of discharge water ranged from approximately 11.6 at the start of the test to 10.1 at the end of the test period. This calculation is based on calcium levels recorded from control and toxicant head boxes.

Copper and zinc concentrations are presented in Tables 3-7 and 3-8, respectively. The elevated levels in the discharge water may be

. attributed to corrosion of the condenser tubes and system piping as well as concentration of metals in the makeup water. These values are considerably lower than the concentrations observed during the static bioassays of 1984/1985. A discussion of the chemical composition of Calgon PCL 8125 and its ability to chemically bind toxic metal forms is presented in the "Operational Ecological Monitoring Program for Nuclear Plant No. 2, 1985 Annual Report" (Supply System, 1986).

3. 4 ~F~F~

a f in r H w r, 16th Edition, APHA, AHWA, HPCF, Washington, D.C., 1985 fr h i A f W r W , EPA-0600/4-79-/020, Environmental Monitoring and Support Laboratory, Environmental.

Protection Agency, Cincinnati, Ohio 1983 "Environmental and Plant Support Chemistry Laboratory Quality Assurance Manual," Washington Public Power Supply System, 1990 3-5

rin h A i f ff n F hw M rin E il I- I .E I tt t tt March 1985 1 rBi EPA/600/4-78/043, Environmental Protection Agency, 1978 im hr n vi W hw r r EPA/600/4-85/014, December 1985 "Operational Ecological Monitoring Program for Nuclear Plant No. 2, 1985 Annual Report," Washington Public Power Supply System, 1986 "WNP-2 Aquatic Bioassays," Environmental Programs Instruction 13.2.11, Washington Public Power Supply System, 1990 3-6

Table 3-1. Size and Weight of Fish used in Bioassay Test.

F r 5J~i'i ~Av r~ ~an ~vrk9R ~~nC Chinook 30 11.0 8.9 16.2 15.6 8.5 50.8 3-7

Table 3-2. Summary of Bioassay Parameters and Associated EPA Methods.

Hater Temperature ( C) 170.1 Conductivity (us/cm) at 25'C 120.1 Dissolved Oxygen (mg/1) 360.1 360.2 pH (su) 150.1 Total Alkalinity (Mg/1 as CaC03) 310.1 Total Hardness (mg/1 as CaC03) 130.2 Calcium 200.7 Magnesium 200.7 Total Copper (ug/1 as Cu) 220.2 200.7 Total Zinc(ug/1 as Zn) 289.2 200.7 3-8

Table 3-3. Temperature and pH Measurements Temperature ('C) pH

@~I~i Emily< ~~ri

% Discharge Conc. X Discharge Conc. % Discharge Conc.  % Discharge Conc.

Sample

~D 10/20/90 11.4 11.6 11.7 11.9 7.91 8.63 7.71 8. 57 11.7 11.8 . 7.74 8.62 11.7 11.9 7.81 8.62 10/21/90 11.7 12.1 11.9 12.4 7.87 8.67 7.82 8.61 11.9 12.5 7.81 8.67 12.0 12.5 7.84 8.66 10/22/90 12.3 12.1 12.7 13.0 7.88 8.69 7.87 8.64 12.7 13.0 7.90 8.67 12.7 13.0 7.89 8.66 10/23/90 12.0 12.5 11.9 12.3 7.95 8.65 7.95 8.63 11.9 12.3 7.91 8.66 11.9 12.3 7.92 8.65 10/24/90 11.8 12.1 12.0 12.5 7.95 8.60 7.93 8.55 12.0 12.3 7 '2 8.61

11. 9 12.2 7.93 8.57

Table 3-4. Dissolved Oxygen and Conductivity Measurements Dissolved Oxygen (mg/1) Conductivity (uS/cm)

He ULCC mmar~

X Discharge Conc. X Discharge Conc. 'L Discharge Conc. 4 Discharge Conc.

Sample

~D 10/20/90 10.2 8.5 10. 5 8.9 98 1050 100 900 10.2 9.9 99 900 10.4 9.3 103 890 10/21/90 9.8 7.8 9.4 7.8 100 1050 99 1000 9.5 7.8 99 1020 9.6 7.9 100 1000 10/22/90 10.0 7.7 9.5 7.7 100 970 100 950 9.5 7.8 100 970 9.5 7.8 100 970 10/23/90 10.2 8.0 9.9 8.2 90 890 97 900 9.9 8.2 .97 900 9.9 8.2 98 900 10/24/90 9.9 7.8 9.6 7.8 790 99 850 9.5 7.9 98 860 9.6 7.8 100 850

Table 3-5. Total Alkalinity and Total Hardness Measurements Total Alkalinity (mg/1) Total Hardness (mg/1) kg~i

'L Discharge Conc. 'L Discharge Conc. 'L Discharge Conc. 4 Discharge Conc.

Sample

~D 10/20/90 54.0 197.0 53.0 177.0 65.2 768 64.7 689 54.0 180.0 64.0 656 55.0 176.0 64.2 666 10/21/90 54.0 194.0 55.0 196.0 63.7 735 64.1 595 54.0 197.0 62.1 717 54.0 197.0 62.9 740 10/22/90 54.0 190.0 54.0 191.0 64.0 678 62.3 683 54.0 192.0 61.6 670 54.0 188.0 63.3 665 10/23/9054.0 196.0 53.0 202.0 61.5 633 61. 6 652 54.0 200.0 60.7 613 54.0 202.0 62.9 655 10/24/90 55.0 179.0 55.0 180.0 61.4 615 63.0 610 54.0 180.0 62.9 660 54.0 179.0 61. 6 595

Table 3-6. Magnesium and Calcium Measurements

, Magnesium (mg/1) Calcium (mg/1)

Hmf~B

'4 Discharge Conc. '/. Discharge Conc. L Discharge Conc. 'L Discharge Conc.

Sample

~D 10/20/90 4.2 52.0 4.2 46.0 19.2 222.0 19.0 200.0 4.2 44.0 18.7 190.0 4.2 44.0 18.8 194.0 10/21/90 4.3 50.0 , 4.3 42.0 18.4 212.0 18.6 169.0 4.1 48.0 18.1 208.0 4.1 50.0 18.4 214.0 10/22/90 4.2 46.0 4.2 46.0 18.7 196.0 18.0 198.0 4.1 44.0 17.9 196.0 4.2 44.0 18.4 194.0 10/23/90 4.0 42.0 4.1 42.0 18.0 184.0 17.9 192.0 4.0 48.0 17.7 167.0 4.1 44.0 18.4 190.0 10/24/90 4.1 40.0 4.2 40.0 17.8 180.0 18.3 178.0 4.1 44.0 18.4 192.0 4.1 40.0 17.9 172.0

Table 3-7. Total Copper Concentrations (ppb) 1 D Percent Discharge October October October October October 24 Sample L~tim n ~hr 20

~4hr 21

~4r 22

) ~~h) 23 hr Head Box 0.3 0.8 1.6 1.3 1.2 100 81.0 78.0 78.0 75.0 71.0 Aquaria (3) 0.4 0.5 1.0 1.2 0.4 0.3 1.0 0.3 0.3 0.9 0.4 100 70.0 78.0 76.0 73.0 67.0 100 72.0 76.0 77.0 75.0 68.0 100 68.0 76.0 75.0 73.0 69.0

Table 3-8. Total 2inc Concentrations (ppb) 1 D Percent Sample Discharge October 20 October 21 October 22 October 23 October 24 Laa~n n ~LhcQ Head Box 2.0 2.0 2.0 3.0 100 87.0 64.0 59.0 64.0 60.0 Aquaria 0 4.0 4.0 2.0 4.0 4.0 4.0 3.0 4.0 2.0 1.0 1.0 100 59.0 61.0 63.0 62.0 55.0 100 62.0 63.0 61.0 62.0 57.0 100 55.0 62.0 58.0 61.0 57.0

  • Less than detection limit.

DATE- 18/25/98 DIC: 1444.27 ENVIRONMENTAL AND PLANT SUPPORT CHEMISTRY LABORATORY TEST PLAN 27 SECONDARY CHEMISTRY REPORT TERRY NORTHSTROM EXT. 8462 RICK WELCH EXT. 8324 SAMPLE ¹: 3197. DATE RECKIVED: 18/23/98 LOCATION: CW CUSTOMER: R. ED WELCH DATE COMPLET

'

REVIEWED BY: T. NORTHSTROM 7 ANALY ". E G TOTAL METALS (mg/1)

B C CALCIUM 198 ALUMINUM 8.12 89 MAGNESIUM 48 F 1 MANGANESE 8.818 88 SODIUM 45 POTASSIUM 7.8 COPPER 8.863 91 CHROMIUM <8.886 89.

ZINC 8 '52 91 PHOSPHORUS 4.2 NICKEL 8 83 84 SULFUR 149 IRON 8 '3 83 SILICON 24.3 DISSOLVED METALS. (mg/1)

CALCIUM . 175 ALUMINUM <8.83 MAGNESIUM 38.6 MANGANESE 8 883 SODIUM POTASSIUM 6+3 COPPER 8.858 CHROMIUM <Q.QQ6 ZINC 8.849 PHOSPHORUS 3.9 NICKEL IRON 8

8

'2

'43 SULFUR SILICON 148 22.8 INORGANIC NON-METALS AND PHYSICAL PROPERTIES B C SULFATE 418 PHOSPHATE Q.B6 CHLORIDE 22 FLUORIDE 8.82 pH 8.58 NITRATE 1 ~ 2 CONDUCTIVITY 113B uS CALCULATED RESULTS CYCLES (Ca) 18.6 CALGON PCL-8125 SI02 48 79 mg/1 (P BASIS) 85.92 mg/1 LEGEND COLUMN:

A SAMPLE ANALYSIS RESULTS B SPIKE SAMPLE RESULTS (% RECOVERY)

C OC SAMPLE RESULTS (% OF TRUE VALUE) 3-1 Attachment 1.0 3-15

e.

REPORT DATE:82/i2/9i ENVIRONMENTAL AND PLANT SUPPORT CHEM1STRY LABORATORY WATER CHEMISTRY REPORT TERRY NORTHSTROM EXT. 8462 SARA LINDBERG EXT. 8825 SAMPLE 8 2124. DATE RECEIVED: 18/82/98 DESCRIPTION: WATER QUALITY 9i-i CUSTOMER: RE WELCH DATE COMPLETED i2/87/98 ANALYST: REVIEWED BY:

DATE SAMPLE TAKEN:

NALYSIS AMMONIA NITROGEN 8.8i6 (mg/1) NITRATE NITROGEN <d 1 (mg/1)

SULFATE 8.97 (mg/1) TEMPERATURE 17.8 (C)

DISSOLVED OXYGEN 18.8 (mg/1) CONDUCTIVITY 1 ~4. 1 (ua/cm/25C)

TOTAL RESIDUAL CL <8.85 (ug/1) OIL 5 GREASE <8.5 (mg/1)

TOTAL PHOSPHORUS 8 '16 (mg/1) ORTHOPHOSPHORUS

Z INC ~. 9 (ug/1 > NICKEL 8 2 ~ (ug/1 ) CHROMIUM 8 28 ~ (ug/1 ) IRON 58. 8 (ug/1 ) LEAD 8. 4 i (ug/1 ) CADMIUM <8. 1 (ug/1 ) 3-2 Attachment 2.0 3-16 4.0 UUZJIKJL The water quality monitoring program documents the chemical character of the Columbia River in the vicinity of the WNP-2 discharge. The monitoring data is used to assess if chemical changes in the Columbia River result from WNP-2 cooling tower blowdown. The program is per-formed to comply with EFSEC Resolution No. 239. 4.2 M Columbia River surface water was sampled monthly January 1990 through December 1990. Samples were collected near River Mile 352 from four stations numbered 1, 7, ll, and 8 (Figures 4-1, 4-2). Station 1 is upstream of the WNP-2 intake and discharge and represents a control. Station 7 is in the center of the mixing zone approximately 45 meters (150 feet) downstream of the discharge and provides a measure of near-field discharge effects. Station 11, at 91 meters (300 feet) down-stream from the discharge, represents the extremity of the mixing zone allowed by WNP-2's National Pollutant Discharge Elimination System (NPDES) permit. Sub-stations 11M and 118 sample water from middle and bottom depths, respectively. Station 8 is approximately 568 meters (1870 feet) downstream from the discharge and represents a location where the discharge is well mixed in the Columbia River: Plant discharge water (P.H.Dis.) was sampled monthly during 1990. Samples were collected from the discharge pipe, at a sample point located in the WNP-2 makeup water pumphouse, immediately prior to its entering the Columbia River. The samples were analyzed for temperature, dissolved oxygen (DO), pH, conductivity, turbidity, total alkalinity, total hardness, filterable residue (total dissolved solids), nonfilterable residue (total sus-pended solids), ammonia-nitrogen, nitrate-nitrogen, total phosphorus, 4-1 orthophosphorus, sulfate, oil and grease, total residual chlorine, total copper, total iron, total zinc, total nickel, total lead, total cadmium and total chromium. A summary of water quality parameters, stations and sample frequencies is presented in Table 4-1. Discharge samples were analyzed for total copper, total iron, total zinc, total nickel, total lead, total cadmium and total chromium. 4.2.1 m Columbia River samples were collected by boat approximately 300 feet from the Benton County shore. Temperature, conductivity, dissolved oxygen, and pH were determined in-situ with portable instruments. Water for total metal, conductivity, sulfate, orthophosphorus, ammonia-nitrogen, nitrate-nitrogen, turbidity, total alkalinity and total hardness analyses was collected in one-liter polypropylene cubitainers and kept on ice until delivered to the Supply System's Environmental Programs Laboratory (EPL). Hater for total copper analysis from Stations llM and 11B were collected in 125 ml nalgene bottles with an All-Teflon pump and Tygon tubing. In the laboratory the metals samples were acidified to 0.5'/ with concentrated nitric acid. Determinations for filterable residue, non-filterable residue, total phosphorus, and total residual chlorine were made on water samples collected in 3.8-liter polypropylene cubitainers and kept on ice unti 1 delivered to the Supply System's Radiological Services Laboratory (RSL). Hater for oil and grease analysis was skimmed from the surface into solvent rinsed borosilicate glass bottles. After collection, samples were placed on ice and transported to the RSL for analysis. Discharge samples were collected in one-liter polypropylene cubi-tainers and kept on ice until delivered to the EPL for analysis. During the annual plant maintenance outage (May through July) only Station 1 (control) samples were collected. 4-2 4.2.2 Surface temperature and dissolved oxygen measurements were made using a Yellow Springs Instruments (YSI) Model 57 meter. Temperature was recorded to within 0.1 C after the probe had been allowed to equili-brate in the river for a minimum of one minute. The field probe was calibrated monthly, against an NBS-traceable thermometer in the laboratory. The DO meter was air-calibrated prior to each field sample date per manufacturer's instruction. In addition, Winkier DO measurements were made every month and results were compared to the field probe. Conductivity measurements were made with a YSI model 34 meter. Prior to each sample date, measurements of conductivity standards were performed. pH measurements were made with an IBM Model EC105-2A portable pH meter. Prior to each use the instrument was calibrated using pH standards of 4.0, 7.0, and 10.0. If necessary, the probes were adjusted to within 0.1 unit of the standards. 4.2.3 r r Total metals, sulfate, conductivity, orthophosphorus, ammonia-nitrogen, nitrate-nitrogen, turbidity, total alkalinity and total hardness were determined by Supply System Environmental Programs personnel. The remaining analyses were performed by Supply System's Radiological Services personnel. Sample holding times followed those recommended by the U.S. Environmental Protection Agency (USEPA 1983). Analyses were performed per USEPA (1983) and ASTM approved methods (Table 4-2). 4 3 4 3 JK2KZS Data obtained during the annual maintenance period (May through July) is not included in table summaries. 4.3.1 Columbia River temperatures varied seasonally with a minimum tempera-ture of 3.3 C at Stations 1, 7, ll and 8 on February 15th and a maximum of 19.6'C at Stations llM and 11B on August 15 (Table 4-3). River temperatures measured in 1990 are presented graphically in Figure 4-3. 4.3.2 D The mean and range of DO measurements for each sample station are presented in Table 4-4. Columbia River DO concentrations ranged from 9.3 mg/1 at Station 7 in September to 13.6 mg/1 at Station 7 The mean DO concentrations ranged from 11.1 mg/1 at Stations 7 in'pril. and 8 to 11.2 mg/1 at Stations 1 and 11. DO concentrations were inversely related to river temperature as would be expected from 'solubility laws. DO levels were never below the 8 mg/1 water quality standard for Class A waters (NDOE 1988) indicating good water quality with respect to dissolved oxygen throughout the year. .Dissolved oxygen measurements are presented graphically in Figure 4-4. 4.3.3 Columbia River pH values ranged from 7.43 at Station 7 in January to 8.27 at Station 7 in March (Table 4-5). The variation in pH between sample stations is small. The largest difference of 0.44 standard units occurred between Station 7 (pH 8.27) and Station 11B (pH 7.83) in March. 4-4 The pH water, quality standard for Class A waters is from 6.5 to 8.5 (WDOE 1988). Measurements for all stations throughout 1990 were within this range. pH measurements, presented graphically in Figure 4-5, generall'y agree with historical data for the Columbia River (Silker 1964). The alkalinity of a water is a measure of its capacity to neutralize acids and is generally due to the presence of carbonates, bicarbonates, phosphates, silicates, borates, and hydroxides. Columbia River alka-linities ranged from 49,0 to 63.0 mg/1 as calcium carbonate (Table 4-6). The alkalinity measurements are presented graphically in Figure 4-6. 4.3.4 1t Conductivity is a measure of the ionic content of a solution. Columbia River conductivity measurements ranged from 118.5 uS/cm at 25 C at Station 11M in August to 162.0 uS/cm at 25'C at Station 7 in January (Table 4-7). Station mean conductivities ranged from 136.6 uS/cm at 25'C at Station 1 to 138.6 uS/cm at 25'C at Station ll. The conduc-tivity results are very comparable to those reported in earl'ier studies of the Columbia River. (Silker 1964). The measurements are presented graphically in Figure 4-7. 4.3.5 1 R i 1 1 n Total residual chlorine (TRC) measurements for 1990 were less than the measured detection limit of 50 ug/1 (Table 4-8). TRC measurements were made using the Amperometric Titration Method. This method has a detection limit of 50 ug/1. 4-5 4.3.6 Columbia River total copper values ranged from < 1.2 ug/1 to 3.4 ug/1 (Table 4-9). The largest interstation difference in copper occurred between Station 1 (3.4 ug/1) and all other stations in April. However, the value of 3.4 is uncharacteristic and is probably an indication of a contaminated sample rather than an actual copper measurement. Our copper results show good agreement with earlier studies. In 1962, Silker (1964) analyzed 27 Columbia River samples collected upstream of WNP-2 and reported a mean copper concentration of 4.3 ug/1. Neutron activation analysis of Columbia River water was done in 1968-1969 by Cushing and Rancitelli (1972). They reported a mean copper concentration of 1.4 ug/1. Florence and Batley (1977) state that total copper concentrations in the range of 0.3 - 3.0 ug/1 are found in many unpolluted fresh-water rivers throughout the world. The Hanford reach of the Columbia River would generally be in that category. Plant discharge total copper concentrations ranged from 24.0 ug/1 in April to 209.0 ug/1 in August. ~Tl~in Mean total zinc measurements ranged from 6.6 ug/1 at Station 11 to 7.0 ug/1 at Station 7 (Table 4-10). Individual zinc measurements ranged from 2.8 ug/1 at Station 1 to 12.4 ug/1 at Station 7. The greatest interstation difference (3.8 ug/1) occurred between Station 7 (12.4 ug/1) and Station 8 (8.6 (ug/1) in April. Discharge water total zinc measurements ranged from 26.0 ug/1 in August to 79.0 ug/1 in February. 4-6 ~Tl~Ir n Columbia River mean iron concentrations ranged from 136.1 ug/1 at Station 8 to 154.9,ug/1 at Station 1 (Table 4-11). The greatest interstation difference in concentration of 176 ug/1 occurred between Station 8 (48.0 ug/1) and Station 7 (224.0 ug/1) in.February. However, measurements for Stations 1 and 7 for February are uncharacteristic and may represent contaminated sample containers rather than actual iron concentrations. Plant discharge total iron concentrations ranged from 180.0 ug/1 -.in January to 1400.0 ug/1 in November. Total nickel concentrations were below the detection limit (2.6 ug/1) for nearly all periods, except November. The 5.8 ug/1 recorded for Station 7 in March is uncharacteristic and probably represents a contaminated sample rather than an actual Columbia River nickel measurement. Plant discharge total nickel concentrations ranged from <2.6 ug/1 in August to 14.2 ug/1 in October. ~Tl ~ Total lead concentrations were low with nearly all stations recording levels below detection limits for most periods (Table 4-11). Discharge water total lead measurements ranged from <1.2 ug/1 in September to 6.8 ug/1 in August. Cadmium concentrations were below detection limits for all stations during all periods, Plant discharge total cadmium concentrations were below the detection limit (0.5 ug/1) for all periods except March, in which 1.1 ug/1 was recorded. T 1 hrm Chromium concentrations were below detection limits for all periods except November (Table 4-12). Plant discharge total chromium concentrations ranged from <1.9 ug/1 (January, March, August) to 32.0 ug/1 in October. Total zinc and total iron measurements are presented graphically in Figures 4-8 and 4-9, respectively. 4.3.7 ~rn~ Hardness indicates the quantity of divalent metallic cations present in the system, principally calcium and magnesium ions. Hardness ranged from 58.0 to 71.3 mg/1 as calcium carbonate (Table 4-6). Mean hardness values ranged from 64.8 mg/1 at Station 7 to 65.2 mg/1 at Station 11. The hardness measurements are presented graphically in Figure 4-10. Oil and grease values were below the detection limit of 0.5 mg/1 for all stations and periods except December 1990. Oil and grease measurements are summarized in Table 4-13. 4-8 4.3.9 Amm r i r - Q~riÃQ Ammonia and nitrate are forms of nitrogen commonly found in water systems. Both nitrate and ammonia are assimilated by plants and con-verted to proteins. Common sources of nitrate and ammonia to the aquatic system are breakdown of organic matter in the soil, industrial discharges, fertilizers and septic tank leachate. Ammonia concentrations ranged from <0.01 to 0.04 mg-N/1 (Table 4-13). Nitrate concentrations ranged from <0.01 to 0.13 mg-N/1. The nitrate measurements are summarized in Table 4-14. The nitrate measurements are presented graphically in Figure 4-11. 4.3.10 Phosphorus is a required nutrient for plant growth and, while found in certain minerals, is commonly added to streams through fertilizers, treated sewage, and septic tank leachate. Measured total phosphorus concentrations ranged from <0.1 to 0.19 mg-P/1. Orthophosphorus concentrations were below the detection limit of 0.01 mg/1 for all stations and periods (Table 4-15). 4.3.11 ~f~ Mean sulfate concentrations ranged from 9.16 mg/1 at Station 8 to 9.27 mg/1 at Station 11 (Table 4-15). Individual sulfate measurements ranged from 8.00 to 10.60 mg/1. Sulfuric acid is added at WNP-2 to control circulating water pH and a by-product is sulfate. Based on the river measurements, WNP-2 discharges are not appreciably altering river sulfate concentrations. Total sulfate measurements are presented graphically in Figure 4-12. 4-9 4.3.12 T 1 Di v' i li n Tr i i Total dissolved solids or total filterable residue, TDS, is defined as that portion of the total residue that passes through a glass fiber filter and remains after ignition at 180'C for one hour. Total dissolved solids do not necessarily represent only the dissolved con-stituents but may also include colloidal materials and some small particulates. The mean TDS measured in the Columbia River varied from 77.7 mg/1 at Station 1 to 80.2 mg/1 at Station 7 (Table 4-16). There were no consistent differences in TDS concentrations between stations or through time, Total suspended solids (TSS) or total nonfilterable residue is the material retained on a standard glass fiber filter after filtration of a well-mixed sample. TSS concentrations were generally low and varied from <1.2 to 23.1 mg/1 (Table 4-16). Mean TSS concentrations ranged from 4.5 mg/1 at Station 7 to 4.8 mg/1 at Station 8. Turbidity is a measure of the suspended matter that interferes with the passage of light through water. In the Columbia River, measured turbidities were low and ranged from 0.80 nephelometric turbidity units (NTU) to 17.0 NTU (Table 4-8). Total dissolved solids, total suspended solids and turbidity data are presented graphically in Figures 4-13, 4-14, and 4-15. 4-10 4.4 ~DI QgjLQN Unusually warm temperatures and heavy precipitation during November resulted in high flow rates for the Columbia River and a corresponding increase in the levels of several parameters. Turbidity values were the highest recorded since the water quality progam began in April, 1983. The figure of 17.0 NTUs for Stations 1, ll and 8 was greater than three times the previous maximum of 5.4 NTUs reported for Stations 7 and ll in June, 1983. Other parameters demonstrating seasonally uncharacteristic increases included copper, nickel, iron', lead, chromium and total suspended solids. Plant discharge data basically demonstrates the increase in certain constituents of the blowdown due mainly to concentrating the circu-lating cooling water (Columbia River water). Preferred operating conditions at WNP-2 are in part characterized by a circulating water concentration of 12 cycles. In comparing river and plant discharge data, it is evident that the impact on the Columbia River is minimal, with no significant inter-station differences being detected. Overall, it appears that, with respect to all the measured parameters sampled under the operating conditions prevailing during 1990, WNP-2 cooling water discharge had little effect upon Columbia River water qual i ty. 4.5 Cushing, C.E., and L.A. Rancitelli. 1972. Trace element analyses of Columbia River water and phytoplankton. Northwest Science 46(2):115-121. 4-11 Florence, T.M. and G.E. Batley. 1977. Determination of the chemical forms of trace metals in natural waters with special reference to copper, lead, cadmium and zinc. Talanta 24:151-158. Silker, H.B. 1964. Variations in elemental concentrations in the Columbia River. Limnol. Oceanogr. 9;540-545. Environmental Protection Agency. 1983. 'Methods for chemical analysis of water and wastes. Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH. r, 16th Edition, APHA, AWHA, HPCF, Washington, D.C., 1985. Washington Department of Ecology. 1988. Water Quality Standards for Surface Waters of the State of Washington. Hater Quality Planning Office of Hater Programs. Olympia, HA. Washington Public Power Supply System. 1987. Operational Ecological Monitoring Program for Nuclear Plant 2. Annual Report for 1986. Richland, WA. Washington Public Power Supply System. 1988. Operational Ecological Monitoring Program for Nuclear Plant 2. Annual Report for 1987, Richland, WA. Washington Public Power Supply System. 1989. Operational Ecological Monitoring Program for Nuclear Plant 2. Annual Report for 1988. Richland, HA. Washington Public Power Supply System. 1990. Operational Ecological Monitoring Program for Nuclear Plant 2. Annual Report for 1989. Richland, WA. 4-12 1 Table 4-1. Summary of Water ()vali ty Parameters, Stations, and Sampling Frequencies, 1990 Wells in Stations Vicinity of Parameter 7 11 11H 8 118 8 Plant Site Ouantity (flow) Temperature Oissolved Oxygen pH Turbidity Total Alkalinity Filterable Residue (Total Oissolved Solid) Nonfilterable Residue (Suspended Solids) Conductivity Iron (Total) Copper (Total) Nickel (Total) Zinc (Total) Lead (Total) Cadmium (Total) Chromium (Total) Sulfate Ammonia Nitrogen Nitrate Nitrogen Ortho Phosphorus Total Phosphorus Oil and Grease Chlorine, Total Residual Hardness Q~mb 1~K~~ H = Honthly g = ()uarterly + Samples wi 11 be collected if wells are being used for drinking water. - Analysis not required "" Samples taken in triplicate ++ Samples collected only if the plant is operating. 4-13 Table 4-2. Summary of Water Quality Parameters, EPA and ASTM Method Number EPA Method ASTM Meth Bu~~ ~her Water Temperature ('C) 170.1 Turbidity, (NTU) 180.1 Conductivity (umhos/cm) at 25 C 120.1 Dissolved Oxygen (mg/1) probe 360.1 Dissolved Oxygen (mg/1) Modi'fied Winkler" 360.2 pH (Standard Unit) 150.1 Total Alkalinity (mg/1 as CaC03) 310.1 Total Hardness (mg/1 as CaC03) 130.2, 6010 Oil and Grease (mg/1) 413.2 Nitrogen, Ammonia, Total (mg/1 as N) 350.3 Nitrate Nitrogen, Total (mg/1 as N) 352.1 D4327-88 Total Phosphorus (mg/1 as P) 365.2 Ortho Phosphorus (mg/1 as P) 365.2 D4327-88 Sulfate (mg/1 as S04) 375.4 D4327-88 Total Copper (ug/1 as Cu) 220.1, 220.2, 200.7 Total Iron (ug/1 as Fe) 236.1, 236.2, 200.7 Total Nickel (ug/1 as Ni) 249.1, 249.2 Total Zinc (ug/1 as Zn) 289.1, 289.2, 200.7 Total Lead (ug/1 as P6) 239.1, 239.2 Total Cadmium (ug/1 as Cd> 213.1, 213.2 Chromium (ug/1 as Cr) 'otal 218.1, 218.2 Total Residual Chlorine (ug/1) 330.1 Filterable Residue: Total Dissolved Solids (mg/1) 160.1 Non-Filterable Residue: Total Suspended Solids (mg/1) 160.2 4-14 Table 4-3. Summary of Temperature Measurements for 1990. Temperature (Degrees C) Sample Date 11 11M 118 01/18/90 4.7 5.0 4.9 4.8 4.8 4.8 02/15/90 3.3 3.3 3.3 3.6 3.5 3.3 03/14/90 4.7 4.3 4.3 4.9 4.5 4.6 04/11/90 7.3 7.3 7.3 7.5 8.0 7.4 05/16/90 11.3 06/13/90 13.6 07/18/90 18.2 08/15/90 19.3 19.4 19.3 19.6 19.6 19.3 09/13/90 19.0 19.2 19.0 18.9 18.6 19.3 10/02/90 17.8 17.6 17.8 18.0 17.8, 17.9 11/28/90 9.5 9.4 9.4 9.5 9.5 9.4 12/12/90 8.3 8.3 8.3 8.7 8.2 8.3 Mean 10.4 10.4 10.4 10.6 10.5 10.5 SD 6.5 6.5 6.5 6.5 6.5 6.5 Maximum 19.3 19.4 19.3 19.6 19.6 19.3 Minimum 3.3 3.3 3.3 3.6 3.5 3.3 4-15 Table 4-4. Summary of Dissolved Oxygen Measurements for 1990. Dissolved Oxygen (mg/1) Samp'le Date 01/18/90 Meter Breakdown in Field 02/15/90 12.8 12.7 12.7 12.8 03/14/90 12.1 12.0 12.0 12.0 04/11/90 13.4 13.6 13.5 13.5 05/16/90 12.7 06/13/90 12.3 07/18/90 10.8 08/15/90 9.5 9.6 9.5 9.7 09/13/90 9' 9.3 9.4 9.4 10/02/90 10.0 9.5 9.8 9.4 11/28/90 11.2 11.2 11.2 11.1 12/12/90 11.2 11.2 11.2 11.2 Mean 11.2 11.1 11.2 11.1 SD 1.5 1.6 1.5 1.6 Maximum 13 ' 13,6 13.5 13.5 Minimum 9.4 9.3 9.4 9.4 4-16 Table 4-5. Summary of pH Measurements for 1990. pH Sample Date 11 llM 118 01/18/90 7.57 7.43 7.49 7.61 7.57 7.57 02/15/90 7.68 7.67 7.71 7.71 7.68 7.73 03/14/90 7.91 8.27 7.87 7.87 7.83 7.90 04/11/90 7.76 7.62 7.71 7.67 7.61 7.73 05/16/90 7.71 06/13/90 7.73 07/18/90 7.71 08/15/90 7.73 7.64 7.72 7.78 7.79 7.78 09/13/90 7.87 7.74 7.82 7.84 7.88 7.80 10/02/90 7.87 7.87 7.91 7.89 7.93 7.87 11/28/90 7.68 7.73 7.71 7.68 7.69 7.69 12/12/90 7.74 7.72 7.73 7.74 7.74 7.76 Mean SD Maximum 7.91 8.27 7.91 7.89 7.93 7.90 Minimum 7.57 7.43 7.49 7.61 7.57 7.57 4-17 Table 4-6. Summary of Alkalinity and Hardness Measurements for 1990. Total Alkalinity (mg/1) Total Hardness (mg/1) (as CaC03) (as CaCO ~ Sample Sample Date 7 ll 8 Date 1 7 ll 8 01/18/90 63.0 63.0 62.5 61.0 01/18/90 71.0 70.0 71.2 71.3 02/15/90 59.0 59.0 58.0 60.0 02/15/90 68,5 65.6 69.9 69.4 ~ 03/14/90 59.5 59.5 59.0 60.0 03/14/90 68.1 68.4 67.6 .67.7 04/11/90 57.5 58.0 60.0 59.0 04/11/90 64.9 66.2 65.1 64.9 05/16/90 65.0 05/16/90 58.6 0 06/13/90 54.0 06/13/90 60.4 07/18/90 51.0 07/18/90 54.7 08/15/90 54.0 55.0 54.0 54.0 08/15/90 58.5 58.0 58.7 58.3 09/13/90 54.0 - 55.0 55.0 54.0 09/13/90 63.3 63.9 62.9 61.6 10/02/90 58.0 58.0 59.0 57.0 10/02/90 61.6 61.8 61.6 62.0 11/28/90 49.0 50.0 51.0 50.0 11/28/90 58.9 60.1 59.9 60 12/12/90 58.5 60.0 60.0 59.0 12/12/90 69.3 69.0 69.8 69. Mean 56.9 57.5 57.6 57.1 Mean 64.9 64.8 65.2 65.0 SD 4.1 3.7 3.6 3.7 SD 4.6 4.2 4.7 4.7 Maximum 63.0 63.0 62.5 61.0 Maximum 71.0 70.0 71.2 71.3 Minimum 49.0 50.0 51.0 50.0 Minimum 58.5 58.0 58.7 58,3 4-18 Table 4-7. Summary of Conductivity Measurements for 1990. Conductivity at 25'C (uS/cm) Sample Date 11M 118 01/18/90 155.1 162.0 161,8 153.8 154.6 154.1 02/15/90 151.7 152.1 151.9 151.8 152.3 151.9 03/14/90 153.6 153.7 156.5 156.1 157.8 154.6 04/11/90 136.4 137.0 137.7 136.2 136.3 136.4 05/16/90 121.0 06/13/90 123 ' 07/18/90 119.3 08/15/90 119.8 127.6 126.9 118.5 118.8 126.9 09/13/90 127.1 126.3 128.0 127.5 129.4 127.3 10/02/90 134.1 131.3 132.0 133.1 133.7 133.7 11/28/90 126.9 126.3 126.7 127.3 127.9 126.7 12/12/90 125.3 125.4 125.5 126.2 126.5 125.4 Mean 136.6 138.0 138.6 136.7 137.5 137.4 SD 13.5 14.2 14.3 13,8 14.0 12.6 Maximum 155. 1 162.0 161.8 156.1 157.8' 154.6 Minimum 119 ' 125.4 125.5 118.5 118.8 125.4 4-19 Table 4-8. Summary of Turbidity and Total Residual Chlorine Measurements for 1990. Turbidity (NTU) Total Residual Chlorine (mg ~ Sample Sample Date Date ll 8 01/18/90 1.0 01/18/90 <0.05 <0.05 <0.05 <0.05 02/15/90 1.2 1.3 1.2 1.2 02/15/90 <0.05 <0.05 <0.05 <0.05 03/14/90 1.1 1.2 1.2 1.2 03/14/90 <0.05 <0.05 <0.05 <0.05 04/11/90 1.1 1.5 04/11/90 <0.05 <0.05 <0.05 <0.05 05/16/90 2.2 05/16/90 <0.05 06/13/90 2.0 06/13/90 <0.05 07/18/90 1.2 07/18/90 <0.05 08/15/90 0.9 1.0 1.0 0.9 08/15/90 <0.05 <0.05 <0.05 <0.05 09/13/90 0.8 0.8 0.8 0.9 09/13/90 <0.05 <0.05 <0.05 <0.05 10/02/90 0.9 0.8 0.9 0,8 10/02/90 <0.05 <0.05 <0.05 <0.05 11/28/90 17.0 16.0 17,0 17.0 11/28/90 <0.05 <0.05 <0.05 <0.0 12/12/90 1.5 1.4 1.7 1.7 12/12/90 <0.05 <0.05 <0.05 <0.05 Mean 2,8 2.7 2.9 2.9 Mean SD 5.3 5.0 5.3 5.3 SD Maximum 17.0 16.0 17.0 17.0 Maximum Minimum 0.8 0.8 0.8 0.8 Minimum 4-20 Table 4-9. Summary of Copper Measurements for 1990. Copper (ug/1) Sample Date 1 7 1 1 1 1M 11B 8 PH DIS 01/18/90 1.2 <1.0 <1.0 1.3 1.2 <1.0 30.0 02/15/90 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 42.0 03/14/90 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 48.0 04/'ll/90 3.4 <1.0 <1.0 <1.0 <1,0 <1.0 24.0 05/16/90 1.2 06/13/90 1.7 07/18/90 <1.0 08/15/90 <1.0 1.3 <1.0 <1.0 <1.0 <1,0 209.0 09/13/90 1.3 1,3 1.5 1.5 1.2 1.2 104.0 10/02/90 <1.0 1.3 1.2 1.2 1.2 1.2 64.0 11/28/90 2.6 2.6 3.3 2.7 2.6 82.0 12/12/90 1.5 2.8 <1.0 <1.0 <1.0 2.4 60.0 Mean 73.7 SD 53.4 Maximum 3.4 2.8 1.5 3.3 2.7 2.6 209.0 Minimum <1 0 <1 0 <1 0 <1 0 <1 0 <1 0 24 0 4-21 Table 4-10. Summary of Nickel and Zinc Measurements for 1990. Nickel (ug/1) Zinc (ug/1) Sample Sample Date 1 7 11 PH Ois. Date 1 7 ll 8 PH Dis. 01/18/90 <3.0 <3.0 <3.0 <3.0 4.7 01/18/90 3.4 3.8 4 ~ 1 5.1 33.0 02/15/90 <3.0 <3.0 <3.0 <3.0 5.8 02/15/90 8.1 7.3 9.5 7.4 79.0 03/14/90 <3.0 5.8 <3.0 <3.0 5.5 03/14/90 10.4 8.0 9.7 10.3 59.0 04/11/90 <3.0 <3.0 . <3.0 <3.0 3.4 04/11/90 9.8 12.4 9.2 8.6 41.0 05/16/90 <3.0 05/16/90 10.7 06/13/90 <3.0 06/13/90 8.3 07/18/90 <3 ' 07/18/90 5.6 08/15/90 <3.0 <3.0 <3.0 <3,0 <3.0 08/15/90 2.8 3.1 4.8 3. 1 26.0 09/13/90 <3.0 <3.0 <3.0 <3.0 12.3 09/13/90 76 7 9 ~ 67 57 710 10/02/90 <3.0 <3.0 <3.0 <3.0 14.2 10/02/90 3.9 5.8 3.0 5,5 62.0 11/28/90 12.9 10.2 13.3 13.6 12.9 11/28/90 8.3 7.6 7.5 9.5 60.0 12/12/90 <3.0 <3.0 <3.0 <3.0 10.8 12/12/90 5.8 7. 1 6.7 4.2 60.0 Hean 8.7" Hean 6.7 7.0 6.8 6.6 54.6 SD 4.0" SD 2.8 2.7 2.4 2.5 17.6 Haximum 12.9 10.2 13.3 13,6 14.2 Haximum 10.4 12.4 9.7 10.3 79.0 Hinimum <3.0 <3.0 <3.0 <3.0 <3.0 Hinimum 2.8 3.1 3.0 3.1 26.0 "Less-than values not included. 4-22 Table 4-11. Summary of Iron and Lead Measurements for 1990. Iron(ug/1) Lead (ug/1) Sample Sample Date 1 7 ll 8 PH Dis. Date I 7 11 8 PN Ois. 01/18/90 43.0 29.0 28.0 28.0 180.0 01/18/90 <1.0 <1.0 <1.0 <1.0 4.7 02/15/90 112.0 224 0 ~ 59.0 48.0 346.0 02/15/90 <1.0 <1.0 <1.0 4.1 03/14/90 56. 0 43. 0 49. 0 43. 0 380.0 03/14/90 <1 ~ 0 <1. 0 <1. 0 <1. 0 3. 5 04/11/90 46.0 53.0 39.0 40.0 205.0 04/11/90 1.8 <1.0 <1.0 <1.0 2. 1 05/16/90 59.0 05/16/90 <1.0 06/13/90 116.0 06/13/90 1. 9 07/IB/90 30.0 07/18/90 <1. 0 08/15/90 39 ' 34.0 35.0 34.0 198.0 08/15/90 <1.0 '1.0 <1.0 <1.0 6.8 09/13/90 42.0 50.0 46.0 47.0 385.0 09/13/90 <1.0 <1.0 <1.0 <1.0 <1.? 10/02/90 58.0 57.0 59.0 65.0 785.0 10/02/90 <1.0 <1 0 <1.0 <1 0 1 4 11/28/90 905.0 745.0 845.0 820.0 1400.0 11/28/90 1.9 1.5 1.2 1.7 2.2 12/12/90 93.0 94.0 93.0 100.0 1040.0 12/12/90 <1.0 <1.0 <1.0 <1 ~ 0 2.5 Hean 154.9 147.7 139.2 136.1 546.6 Hean 3 4A SO 282.4 231.9 265.3 257.3 432.3 SO 1.7" Maximum 905.0 745.0 845.0 820.0 1400.0 Haximum 1.9 1.5 'I.2 1.7 6.8 Ninimum 39.0 29.0 28.0 28.0 180.0 Ninimum <1.0 <1.0 <1.0 <1.0 <1.0 "Less-than values not included. 4-23 Table 4-12. Summary of Cadmium and Chromium Measurements for 1990. Cadmium (ug/1) Chromium (ug/1) Sample Sample Date 1 7 ll 8 PH Dis. Date 1 7 11 8 PH Dis. 01/18/90 <0.5 <0.5 <0.5 <0.5 <0.5 01/18/90 <2.0 <2.0 <2.0 <2.0 <2.0 02/15/90 <0. 5 <0 ~ 5 <0. 5 <0. 5 <0. 5 02/15/90 <2.0 <2.0 <2.0 <2.0 5.0 03/14/90 <0. 5 <0. 5 <0. 5 <0. 5 1 ~ 1 03/14/90 <2,0 <2.0 <2.0 <2.0 04/11/90 <0.5 <0.5 <0.5 <0.5 <0.5 04/11/90 <2.0 <2.0 <2.0 <2.0 25.0 05/16/90 <0.5 05/16/90 '2.0 06/13/90 <0.5 06/13/90 <2,0 07/18/90 <0.5 07/18/90 <2.0 08/15/90 <0.5 <0.5 <0.5 <0.5 <0.5 08/15/90 <2.0 <2.0 <2.0 <2.0 <2.0 09/13/90 <0.5 <0.5 <0.5 <0.5 <0.5 09/13/90 <2.0 <2.0 <2.0 <2.0 3.4 10/02/90 <0.5 <0.5 <0/5 <0/5 <0.5 10/02/90 <2.0 <2.0 <2.0 <2.0 32.0 11/28/90 <0.5 <0.5 <0.5 <0.5 <0.5 ll/28/90 4.0 2.1 3.6 4.0 3' ~ 12/12/90 <0.5 <0.5 <0.5 <0 ' <0.5 12/12/90 <2.0 <2.0 <2.0 <2.0 2.0 Hean Hean 11.8" SD SD 12.0" Haximum <0.5 <0.5 <0.5 <0.5 1.1 Haximum 4.0 2.1 3.6 4.0 32.0 Hinimum <0.5 <0.5 <0.5 <0.5 <0.5 Hinimum <2.0 <2.0 <2.0 <2.0 <2.0 "Less-than values not included. 4-24 Table 4-13. Summary of Oil and Grease, and Ammonia Measurements for 1990. Oil 5 Grease (mg/1) Ammonia (mg NH3 N/1) Sample Sample Date 7 11 8 Date 11 8 01/18/90 <0.5 <0.5 <0.5 <0.5 01/18/90 <0.01 <0.01 <0.01 <0.01 02/15/90 <0.5 <0.5 <0.5 <0.5 02/15/90 <0.01 <0.01 <0.01 <0.01 03/14/90 <0.5 <0.5 <0.5 <0.5 03/14/90 <0.01 <0.01 <0.01 <0.01 04/11/90 <0.5 <0.5 <0.5 <0.5 04/11/90 0.02 <0.01 <0.01 <0.01 05/16/90 <0.5 <0.5 <0.5 <0.5 05/16/90 <0.01 06/13/90 <0.5 06/13/90 <0.01 07/18/90 <0.5 07/18/90 <0.01 08/15/90 <0.5 <0,5 <0.5 <0.5 08/15/90 0.03 0.02 0.02 0.04 09/13/90 <0.5 <0.5 <0.5 <0.5 09/13/90 0.02 0.02 0.02 0.01 10/02/90 <0.5 <0.5 <0.5 <0.5 10/02/90 0.02 0.01 0.01 0.02 11/28/90 <0.5 <0.5 <0.5 <0.5 11/28/90 <0.01 <0.01 <0.01 <0.01 12/12/90 0.6 0.8 0' 0.8 12/12/90 <0.01 <0.01 <0.01 <0.01 Mean Mean SD SD Maximum 0.6 0.8 0.8 0.8 Maximum 0,03 0.02 0.02 0.04 Minimum <0.5 <0.5 <0.5 <0.5 Minimum <0.01 <0.01 <0.01 <0.01 4-25 Table'4-14. Summary of Nitrate and Total Phosphorus Measurements for 1990. Nitrate (mg/1) Total Phosphorus (mg/1) Sample Sample 0 Date 7 11 Date 7 ll 8 01/18/90 0.12 0.12 0.12 0.12 01/18/90 <0.1 <0.12 <0.1 <0.10 02/15/90 0.10 0.10 0.10 0.10 02/15/90 0.15 0.15 0.16 0.19 03/14/90 0.10 0.10 0.10 0.10 03/14/90 <0.1 <0.1 <0.1 <0.1 04/11/90 0.12 0.13 0.12 0.12 04/11/90 <0.1 <0.1 <0.1 <0.1 05/16/90 0.03 05/16/90 <0 ~ 1 06/13/90 0.06 06/13/90 <0.1 07/18/90 <0.01 07/18/90 <0.1 08/15/90 <0.01 <0.01 <0.01 <0.01 08/15/90 <0.1 <0.1 <0.1 <0.1 09/13/90 09/13/90 <0.1 <0.1 <0.1 <0.1 10/02/90 <0.01 <0.01 <0.01 <0.01 10/02/90 <0.1 <0.1 <0.1 <0.1 11/28/90 0.11 0.11 0.12 0.11 11/28/90 <0.1 <0.1 <0.1 <0.1 12/12/90 0.13 0.13 0.13 0.13 12/12/90 <0.1 <0.1 <0.1 0.1
  • Mean 0,11 0.12 0.12 O.ll Mean
  • SD 0.01 0.01 0.01 0.01 SD Maximum 0.13 0.13 0.13 0.13 Maximum 0.15 0.15 0.16 0.19
(-EAST-) <0.01 <0.01 <0.01 <0.01 Minimum <0.1 <0.1 <0.1 <0.1
  • Less-than values not included.
4-26 Table 4-15. Summary for Orthophosphate and Sulfate Measurements for 1990. Orthophosphate (mg/1) Sulfate (mg/1) Sample Sample Date 11 8 Date ll 8 01/18/90 <0. 01 <0. 01 <0. 01 <0. 01 01/18/90 9.63 9.72 9.94 9.64 02/15/90 <0.01 <0.01 <0,01 <0.01 02/15/90 10.10 10.20 10.10 10.10 03/14/90 <0.01 <0.01 <0.01 <0.01 03/14/90 10.20 10.40 10.60 10.30
  • 04/11/90 <0.01 <0.01 <0.01 <0.01 04/11/90 9.60 9.50 9.20 9.40 05/16/90 <0.01 05/16/90 8.85 06/13/90 <0.01 06/13/90 8.60 07/18/90 <0.01 07/18/90 7.55 08/15/90 <0.01 <0.01 <0.01 <0.01 08/15/90 8.04 8.03 8.15 8.00
  • 09/13/90 <0.01 <0.01 <0.01 <0.01 09/13/90 10/02/90 <0.01 <0.01 <0.01 <0.01 10/02/90 8.97 9.02 9.09 8.97 11/28/90 <0.01 <0.01 <0.01 <0.01 11/28/90 7.66 7.76 7.81 7.66 12/12/90 <0.01 <0.01 <0.01 <0.01 12/12/90 9.16 9.20 9.29 9.20 Mean Mean 9.17 9.23 9.27 9.16 SD SD 0.92 0.95 0.95 0.93 Maximum Maximum 10.20 10.40 10.60 10.30 Minimum Minimum 8.04 8.03 8.15 8,00 4-27
Table 4-16. Summary of Total Dissolved and Total Suspended Solids Measurements for 1990. Total Dissolved Solids (mg/1) Total Suspended Solids (mg/1 Sample Sample Date 1 7 ll 8 Date 1 7 01/18/90 80.0 84.0 83.0 82.0 01/18/90 1.5 1.2 1.3 1.6 02/15/90 73.0 75,0 74.0 74.0 02/15/90 3.8 3.9 3.8 4.0 03/14/90 78.0 91.0 96.0 81.0 03/14/90 1.4 1.7 1.5 1.7 04/11/90 79.0 81.0 77.0 80.0 04/11/90 2.6 2.7 2.5 2.6 05/16/90 74.0 05/16/90 3.7 06/13/90 83.0 06/13/90 6.4 07/18/90 79.0 07/18/90 2.9-08/15/90 67.0 69.0 68.0 71.0 08/15/90 2,1 2.4 2. 6 2.8 09/13/90 83.0 80,0'2.0 84.0 09/13/90 2.0 1.9 2.0 2.0 10/02/90 79.0 82.0 75.0 79.0 10/02/90 2.5 2.0 2.3 2.4 11/28/90 77.0 75.0 76.0 74.0 11/28/90 23.1 21.7 22.5 23.1 12/12/90 83,0 85.0 87.0 83.0 12/12/90 2.7 2.8 2.9 3.1 Mean 77.7 80.2 79,8 78.7 Mean 4.6 4.5 4.6 4.8 SD 5.0 6.5 8:3 4.6 SD 7.0 6.5 6.8 6.9 Maximum 83.0 91.0 96.0 84.0 Maximum 23.1 21.7 22.5 23.1 Minimum 67.0 69.0 68.0 71.0 Minimum 1.4 1.2 1.3 1.6 4-28 Plow Island Mes quit island WNP-2 Discharge ~7 River Mile-352 ~ 11 a8 Power Lines Figure 4-1 Location of Sampling Stations in the Columbia River River Station 1 Flow +N 555m (1822 feet) WNP-2 intake Structures To Plant WNP-2 Olscharge 44m (146 feet) 568m (187 ~ Station 7 feet) 63m (208 feet) P Statlon11,11M,158 461m (1516 feet) Station 8 (Not to scale) Figure 4-2 Sampling Station Locations for Water Chemistry 4-30 s TEMPERATURE (DEGREES C.j 25 20 I mm m>>M > 7, EQ>>B & s 15 10 0 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-3 Columbia River Temperature Measure-ments at Six Stations During 1990 DISSOLVED OXYGEN MILLIGRAMS/LITER 16 14 12 10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1SQQ Figure 4-4 Columbia River Dissolved Oxygen. Measurements at Four Stations During 1990 pH 8.5 I RB C3>> m>>M 1 7 EQ>>B % 8 7.5 6.5 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-5 Columbia River pH Measurements at Six Stations During 1990 TOTAL ALKALINITY (MG/LITER AS CaCO3) 80 70 60 50 40 30 20 10 JAN FEB MAR APR MAY JUN JUL AUG SEP .OCT NOV DEC 1990 Figure 4-6 Columbia River Total Alkalinity Measurements at Four Stations During 1990 CONDUCTIVITY (AT 25 C) uS/CM 170 RB 1 ES 7 160 C3 << II >>M 150 KQ>>B W s 140 130 120 110 100 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-7 Columbia River Conductivity Measure-ments at Six Stations During 1990 0 o II TOTAL Z N C (MICROGR AMS/ L T E R) I I 15 10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-8 Columbia River Total Zinc Measurements at Four Stations During 1990 TOTAL IRON (Ml CROGRAMSI LI TER) 1000 800 600 400 200 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-9 Columbia River Total Iron Measurements at Four Stations During 1990 90 TOTAL HARDNESS (MG/LITER AS CcICO3) II ~ I 7 80 C3 ~~ 8-70 60 50 40 30 JAN FEB MAR APR MAY JUN JUL AUG SEP OGT NOV DEG 1990 Figure 4-10 Columbia River Total Hardness Heasure-ments at Four Stations During 1990 . NITRATE-NITROGEN MG/LITER AS N 0.2 0.1
0. 05 JAN FEB MAR APR MAY JUN JUL AUG SEP OOT NOV DEC 1990 Figure 4-11 Columbia River Nitrate Nitrogen Measurements at Four Stations During 1990
TOTAL SULFATE MG/LITER 15 10 JAN f EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-12 Columbia River Total Sulfate Measure-ments at Four Stations During 1990 TOTAL DISSOLVED SOLIDS MG/LITER 140 120 100 80 60 40 20 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-13 Columbia River Total Dissolved Solids Heasurements at Four Stations During 1990 TOTAL SUSPENDED SOLIDS MG/LITER 25 20 15 10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-14 Columbia River Total Suspended Sol'ids Heasurements at Four Stations During 1990 s TURBIDITY (NTU) 20 10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-15 Co1umbia River Turbidity Measurements at Four Stations. During 1990 5,0 LI D I T D The cooling tower drift studies were designed to identify any impact of cool-ing tower operation upon the surrounding plant communities, as well as any edaphic impacts. The program includes the measurement of herbaceous and shrub canopy cover, shrub density, herbaceous phytomass, vegetation chemistry and soil chemistry. Soil chemical parameters measured include pH, carbonate, bicarbonate, sulfate, chloride, sodium, potassium, calcium, magnesium, copper, zinc, lead, chromium, nickel, cadmium, and conductivity. Vegetation chemistry includes extractable sulfate, chloride and total copper. This study provides operational data for comparison with preoperational data and meets the requirements of Hashi ngton State Energy Facility Site Evaluation Council (EFSEC) Resolution 239 dated September 14, 1987. In past years, sampling was conducted in May at each of nine permanent stations, four grassland Stations GOl-G04, and five shrub Stations SOl-S05. In 1988, preliminary data was obtained for six additional stations. In 1989, the additional six stations were added to the sampling program, four grassland sites G05, G06, G07 and G08 and 2 shrub Stations S06 and S07. Two of these Stations, S06 and S07 are on the east side of the Columbia River in Franklin County. Figure 5-1 shows the location of each station. The orientation of the various components including transects and productivity plots within each community are depicted in Figure 5-2. 5,2 T D 5.2.1 r Fifty microplots (20 cm x 50 cm) were placed at 1-m intervals on alternate sides of the herbaceous transect (Figure 5-2). Canopy cover was estimated for each species occurring within a microplot using Daubenmire's (1968) cover classes. Data were recorded on a standard data sheet. guality assurance was accomplished by twice sampling three randomly selected if L microplots on each herbaceous transect. The entire transect was resampled cover estimates for any major species (>50 percent frequency) differed by more than one cover class. All vegetation studies including cover, density, productivity, and chemistry were sampled, as in previous years, at the peak of the cheatgrass growth cycle known as the purple stage (Klemmedson and Smith 1964). 5.2.2 H P m Phytomass sampling was conducted concurrently with cover sampling. Phytomass sampling plots were randomly located within an area adjacent to the permanent transects or plots (Figure 5-2). At each station, all live herbaceous vege-tation rooted in five randomly located microplots (20 x 50 cm) was clipped to ground level and placed in paper bags. Each bag was stapled shut and labeled with station code, plot number; date and personnel. Sample bags were transported to the laboratory, opened, and placed in a drying . oven until a consistent weight is obtained. Following drying, the bags were removed singly from the oven and their contents immediately weighed to the nearest F 1 g. Laboratory quality assurance consisted of independently reworking 10 percent of the phytomass samples to assess data validi,ty and reliability. 5.2.3 Five 50-m lines were used to measure shrub canopy cover in each of the seven shrub plots (Figure 5-2). Whenever a shrub was crossed by a tape stretched between the end posts, its species and the distance (cm) at which it inter-cepted the line were recorded. For each shrub plot, intercept distances of each species along all five lines were summed to give a total intercept distance. From this, a shrub canopy cover value (percent) was obtained by dividing total intercept distance by total line length. Quality assurance procedures consisted of twice sampling one major species along a randomly selected shrub transect. Resampling was conducted if intercept lengths differed by more than 10 percent. 5.2.4 r Individual live shrubs were counted and recorded by species within each of the four strips delineated by shrub intercept transects (Figure 5-2). Number of V shrubs per strip were summed to obtain shrub density by species for the entire 1000 m2 plot. Sampling was concurrent with cover sampling. Quality assurance consisted of resampling one randomly selected species within one strip. Resampling was conducted if the count difference exceeded one individual. 5.2.5 At each of the fifteen grassland and shrub stations, five soil samples were collected from the top 15 cm of soil with a clean stainless steel trowel. The samples were placed in 250 ml sterile plastic cups with lids, labeled and refrigerated at 4'C. Sixteen parameters were analyzed in e'ach sample includ-ing pH, bicarbonate, carbonate, conductivity, sulfate, chloride, copper, zinc, nickel, cadmium, lead, chromium, calcium, magnesium, sodium and potassium. Samples were analyzed for pH, bicarbonate, carbonate, sulfate, chloride and conductivity according to 1 i (1965). Samples for chromium, cadmium and lead were analyzed by graphite furnace atomic absorption according to I'pectroscopy (USEPA 1983). The remaining elements were analyzed by inductively coupled plasma emission spectroscopy (ICPES) (USEPA 1983). Aliquots of soil for trace metal analyses were digested according to Gilman (1990). Preservation times and conditions, when utilized, were according to USEPA (1983). \ Laboratory quality control comprised 10K 20% of the sample analysis load. Routine quality control samples included internal laboratory standards, reagent blanks, and prepared EPA or NIST controls. 5-3 5.2.6 V Samples of ~Br ~ ~gzgm, gga ~berg~, ~zmj~ ~e~z, and ~P ~ri~~Z were collected at each station. Two species were substituted at some of the stations due to absence of one or more of those listed above. Substitute species were Hex ~gjf~ and ~lhzjgm ~j.'~ag. Samples were collected as close to the soil sampling station as possible. Sufficient quantities of leafy material of each species were collected to yield at least five grams of dry weight. The clipped material was sealed in a plastic bag, labeled and refrigerated at 4'C until sample preparation. In the laboratory, the clipped plant tissue was oven dried to a constant weight, ground in a Hi ley mi 1 1 and digested accord) ng to Gi lman (1990) . Sulfate was analyzed by nephalometry and chloride by mercuric chloride titration according to USEPA (1983). Copper was analyzed by ICPES according to USEPA (1983). 5.3 During the 1990 season, 58 plant taxa were observed in the study area. These are presented in Table 5-1. Table 5-2 lists by year the species of vascular plants observed during field activities from 1975-1990. Many of the graphs will depict a preoperational, operational and 1990 status. The preoperational data is that which was collected annually prior to NNP-2 becoming. fully operational (1980-1984). Operational data is that which is collected after 1984 but not including the current year which is listed separately (1990). 5.3.1 Herbaceous cover data for 1990 are summarized in Tables 5-3 and 5-4. Figures 5-3 and 5-4 provide a comparison of shrub and grassland sites (annual grasses AG, perennial grasses PG, annual forbs AF, and perennial forbs PF) with the data of previous years. There is a noticable trend of the herbaceous cover reverting back to its original state prior to the fire of 1984. 5-4 Total herbaceous cover averaged 45.56% in 1990 which represents a 38,01/ decrease from 1989 (73.5'/). As in previous years, the dominant annual grass was ~Br 1m ~bZgg with 25.80% followed by ~1~ ~gjlgZa with 0.25%. Perennial grasses averaged 11.73% in comparison to 32.5% in 1989.'ga ~~r ~ ~~ i (9.18%) was the dominant perennial grass at most stations followed ~ by (1.94%), Total annual forb cover averaged 5.8% down from the 11.3'/ measured in 1989. ~Hl~ZLug ggiJjj~g was the dominant component with 2.37'/ followed by ~D d grat~; \th . t.'. Perennial forb cover decreased 63.3/ from 1989 (1.98% vs. 5.4%). The dominant CE'le (.84%) and (.48%). Species frequency values (%) for each station were similar to previous years and are summarized in Table 5-5. The greatest diversity of species was observed at Station S02 (17) while the smallest was observed at Station S07 (2). Due to misinterpretation of 1989 data, Station S02 was listed as having the greatest diversity of species, the text should have listed station G05(19) as having the greatest diversity. Growing season precipitation decreased 51% from 1989 (6.83 cm vs 13.97 cm), with the total precipitation for the 1990 growing season being 6.83 cm. December 1989 and March 1990 precipitation, 0.74 cm and 0.25 cm, respectively, were lower than all previously recorded data for those months. Mean temper-ature during the growing season was 6.4'C in 1990 vs. 4.5 C in 1989. 5 3 2 Harhamm RhXiatuu. Mean production of herbaceous phytomass in 1990 was 34.95 gm/m2. At grassland stations, phytomass production averaged 33.8 g/m2 while at shrub stations it was 36.2 g/m2. Production varied widely among stations from a low of 4.1 g/m2 at Station G02 to a high of 78.3 g/m2 at Station S02. Mean herbaceous phytomass production at grassland stations and at shrub stations for 1990 is shown graphically in Figure 5-5 (Stations GOS, G06, G07, G08, S06 and S07 were 5-5 not added until 1989) and is summarized in Table 5-6. Table 5-7 presents mean phytomass values for each station in each year since 1975. Mean herbaceous phytomass and percent herbaceous cover for each station from 1980 through 1990 are presented graphically in Figures 5-6 through 5-9. 5.3.3 There are ~dbd ~ D bb bl i " dd d~" four shrub species in the study area: tl Ldl present, however, they are not included in the cover data. During a 1984 August range fire, all viable shrubs were completely destroyed at Stations S02 and S04, while the only individuals surviving at Station SOl were isolated clumps of low growing ~eggy ~r~~g. Shrub density and cover data continue to reflect recovery from the 1984 fire. Percent cover measurements taken in 1990 are very similar to those measured in 1989 with an overall slight decrease in average cover (1,561. versus 1.631.). Shrub density increased slightly at Stations S02 and S05, and decreased slightly at Stations SOl, S03, and S04. Shrub density data for 1990 is summarized in Table 5-8, while shrub density data at each station from 1980 through 1990 is presented .in Figure 5-10. Shrub cover data for 1990 is summarized in Table 5-9, while Figure 5-11 presents mean shrub cover values measured from 1975 through 1990. Shrub cover and density at each station for 1990 are presented graphically in Figure 5-12. The results of the 1990 soil chemical analyses are presented in Table 5-10 and are shown graphically in Figures 5-13 through 5-20. Most metallic element concentrations were within the ranges observed in previous years. There is no concentration of carbonate, due to the pH level of the samples (( 8.3). The pH value has to be above 8.3 in order for carbonate to be present. 5-6 Bicarbonates was similar to that observed in past data. Conductivity was generally within range at all stations except G03 (96.8), where it increased markedly, as well as in 1985 and 1988 (98.0 and 125.6, respectively). The pH of station G03 increased slightly after a steady decrease for the past 5 years. Sulfate and chloride concentrations were generally higher than were observed in previous year's data. 5.3.5 V The results of the 1990 vegetation chemical analyses are presented in Table 5-11 and shown graphically in Figures 5-21 through 5-30. Total vegetation copper concentrations were generally within the ranges previously observed in all of the species examined. Extractable chloride concentrations were generally within the ranges observed in previous years, while extractable sulfate concentrations were higher than in previous years except at Station G08 for Qg, ~}pupil. 5.4 A 51% decrease in precipitation during the 1989-90 growing season was associ-ated with a 38.011. decrease in mean herbaceous cover for 1990 (Figure 5-4). A corresponding decrease in herbaceous phytomass was observed at all Stations, except S02 and G04. The remaining analytes were generally within the ranges previously observed. Changes in vegetation cover and dens,ity .recorded in 1990 appear to be climatically induced and no signs of adverse impacts from the operation of WNP-2 cooling towers are evident. Shrub cover and density data continue to reflect recovery from the 1984 range fire with slight changes in cover an'd density evident at most stations. No adverse trends or impacts upon soil or vegetation chemistry are apparent from the six years of operational data. 5-7 5.5 D V 5.5.1 e This study was implemented in january 1989 and its intent was to measure the levels of and determine the rate of airborne salt deposition originating from the WNP-2 cooling tower steam condensate plume. The WNP-2 heat rejection system consists of a steam condenser, six mechanical draft cooling towers and the interconnecting piping. Operation of the cooling towers results in the emission of droplets of the circulating cooling water. These droplets are referred to as drift. The differentiation between drift and the visible steam plume condensate is important. The drift droplets are produced mechanically within the towers whereas the visible plume condensate droplets are created by the cooling of the saturated tower exhaust air. The drift droplets contain similar, if not identical, concentrations of chemicals as the circulating cooling tower water. Depending upon the chemicals present in the circulating water, the drift may have an effect on the environment. In order to assess environmental impact, it is important that the amount of drift and its resulting distribu-tions be determined. (Laulainen, et al) This section reports the results of a year-long study designed -to verify the predicted areas of maximum and minimum deposition. This program was performed to comply with EFSEC Resolution No. 239, dated September 14, 1987. 5.5.2 5.5.2.1 An isopleth graphically depicting the predicted cooling tower drift deposition patterns was devised by Battelle in 1976. This prediction was based upon preliminary estimates of operative data and site specific meteorological data regarding predominant wind directions. A cooling tower drift deposition model devised by C. L. Hosier was used for the calculations (Droppo,-et al 1976); 5-8 The resulting prediction of deposition patterns, as published by Battelle, is presented in figures 5-31 and 5-32. As shown in these figures, the predicted maximums of drift deposition lie in a northwesterly direction and a nearly south-southwesterly direction. These areas of predicted maximums were later revised by the Supply System. The final orientation was chosen in a north-westerly and a nearly south-southeasterly direction. The sampling stations were chosen to lie along a northwest radial transect and an approximately C south-southeast radial transect. Sixteen sample locations were initially included in this study. A map of these locations is shown in Figure 5-33. Directions and approximate distances from the center of the cooling towers are listed in Table 5-12 for each sampling station. The sixteen locations included a pair of collectors located in the center of the six cooling towers and a control pair of collectors located approximately seven miles north-northwest of WNP-2 at the old Hanford townsite. The remaining fourteen pairs of collectors were placed at equi-distant intervals out from the plant, seven pairs along each transect. Preliminary sampling was initiated in January 1989 and actual data collection began in April 1989. A separate program involving the determination of drift deposition rates in the transformer yards surrounding WNP-2 began sample collection in July 1989. This involved the placement of an additional eight pairs of collectors, five pairs in a transformer yard 0.25 miles north, one pair in a transformer yard 0.5 miles north, one pair in a transformer yard 0.5 miles east-southeast of the WNP-2 cooling towers ., While the information was intended for another purpose, the sampling was performed in the same manner as the original sixteen samplers and the results provide additional data for drift deposition characterization. It should be noted, however, that the transformer yard sampling coincided with only nine of the twelve months of sampling for the original sixteen sites. 5.5.2.2 Data gathered for this study involved surface deposition measurements. These measurements were used to determine bulk mineral mass deposition rates. 5-9 Sample collection was based upon criteria set forth in the American Standard Test Method (ASTM) D1739-70 for the collection and analysis of dust fall. The sample collection vessel consisted of an open topped linear polyethylene O cylinder with vertical sides and a flat bottom. The cylinder was six inches in diameter and eighteen inches high. A support stand positioned the cylinder such that its bottom was eighteen inches above grade. The top of the con-tainer was three feet above grade which deviates from the ASTM recommended minimum and maximum heights of eight and fifty feet. This was to more closely monitor drift deposition at the typical height of local vegetation. A metal bird ring was positioned above the cylinder to help prevent interference from birds. The cylinder was also covered with a screen 'to prevent sample contami-nation from bird droppings and insects. Figure 5-34 illustrates a typical sample collector. A pair of collectors were placed at each sampling location. Sample collection occurred monthly (every 30 z 2 days when possible). In the laboratory, the cylinders were-thoroughly washed and rinsed, filled with four liters of deionized water and covered. They were then transported to the field and placed in the support stands. During the summer months, the samplers were checked periodically and additional deionized water added when necessary to insure an adequate liquid level was maintained. An antifreeze, isopropyl alcohol, was initially used during the preliminary sampling months of February and March. This was discontinued, however, due to its general ineffectiveness and to eliminate a potential source of contamination. After approximately thirty days in the field, the cylinders were covered, exchanged with clean samplers, and transported back to the laboratory. Any evidence of contamination such as insects or bird droppings was noted and recorded. At the laboratory, the total volume of water was measured; a 500 milliliter aliquot was taken for sample analysis, and the remaining sample was discarded. 5.5.2,3 Sample analysis involved determination of five inorganic constituents normally found in high concentrations in the cooling tower circulating water. These analytes included calcium, magnesium, sodium, sulfate and chloride. 5-10 Analytical techniques utilized ion chromatography for sulfate and chloride. A Dionex Series 4000i ion chromatograph equipped with an AS4A anion separation column was used. Calcium, magnesium and sodium were analyzed using inductively-coupled plasma (ICP) atomic emission techniques. Analyses were performed on a Perkin-Elmer P40 Model ICP. 5.5.3 Pl During the sampling period from March 22, 1989 to March 20, 1990, NNP-2 operated for a total of 6826 hours0.079 days <br />1.896 hours <br />0.0113 weeks <br />0.0026 months <br /> or 284.4 days. Plant operational data for each sampling period is presented in Appendix A. Circulating water flow, estimated amount of drift release per day and concentrations of the tracer ions in the circulating water are listed. The plant normally operated with circulating water at approximately twelve cycles. In January 1990, however, a tube leak in a condenser was identified. As a result, the circulating water was kept at a maximum of five to six cycles until the annual maintenance outage. This reduced the circulating water ion concentrations by more than half for the remainder of the sampling period. Drift estimates were calculated using a drift rate of 0.05 percent of the circulating water 'flow. Amounts of each ionic species released per month were calculated using the average concentration for each ion during the sampling period. Until July 1989, the circulating water was analyzed daily for calcium while the remaining ion concentrations were calculated based-on the calcium concentration and established ion ratios for sodium, magnesium, chloride and sulfate to calcium. Beginning in July, the circulating water was sampled weekly and each constituent was determined by direct analysis. 5.5.4 The detailed meteorological conditions concerning the sampling period are contained in Appendix B. These data were obtained at the Hanford Meteorological Station in the 200 Area of the Hanford Site, located approximately 25 miles northwest of Richland, Hashington. Included in the 5-11 appendix are maximum, minimum and mean temperatures, prevailing wind directions, average wind speed and relative percent humidity for March 1989 through March 1990. A windrose generated from the onsite WNP-2 meteorological station at the 33 foot level is featured in Figure 5-35. This represents prevailing wind directions and percentages for the sampling period of April 1989 through March 1990. The predominant wind directions were from the south blowing north (13.4 percent) and from the northwest blowing southeast (11.2 percent). This correlates fairly well with a windrose generated from cumulative WNP-2 meteorological data gathered from 1984 through 1989, shown in Figure 5-36. For this six year period, the predominant wind directions were from the south (10.9 percent) and from the northwest (10.6 percent). Although the direction frequency percentages were somewhat higher for the sampling period, the prevailing directions were the same. 5.5.5 The monthly raw analytical results for each sample location are located in Appendix C. Presented there is the average gross deposition mass in milligrams for each ion analyzed and the standard deviation between the duplicate collectors located at each site. The average ion masses for each of the analytes were summed to give a monthly bulk deposition for each of the sixteen sampling locations, The twelve monthly depositions for each station were then totaled to give a yearly bulk deposition in milligrams. Using the diameter of the collection vessel to determine the surface area of the sampler, this mass was converted to a value in units of pounds per acre year. The values for each station are tabulated in Table 5-13. Deposition rates were corrected for background deposition by subtracting the control site deposition rate from each drift sampler rate. 5.5.6 On the basis of the predicted drift patterns, the greatest deposition is expected to occur adjacent to the cooling towers and to decrease as a function of distance from the towers. This is verified by the sampling program, showing a maximum deposition rate of 52 lbs/acre-year at 0.2 miles south from 5-12 the towers (Station 7), decreasing to a deposition rate not significantly higher than background deposition at a distance of 3 miles. This is graphically presented in Figure 5-37. The model also predicts deposition rates will be much higher during the winter months due to high humidities and lower temperatures which permit the larger diameter drift droplets to intersect the ground surface. As a result, the drift falls as wet deposition in more highly concentrated areas as opposed to undergoing evaporation and subsequently a wider dispersion. This prediction is verified by the study. At Station 7, as an example, the drift accumulated during November, December and February accounted for almost 70 percent of the w total drift mass deposited there during the twelve month sampling period. Significant increases of deposition rates were also noted during these three months for Station 8, located in the center of the towers. The drift deposited during the same three month period accounted for almost 60 percent of the total accumulated mass. In predicting the areas of maximum deposition, the maximum salt deposition will be directly proportional to the wind'direction frequency (Droppo). From this statement and the site-specific wind frequency percentages from the past six years, one would expect the maximum areas of deposition to be found to the north and southeast of the plant, correlating with the maximum wind direction frequencies of 10.9 percent from the south (drift to the north) and 10.6 percent from the northwest (drift to the southeast). This is in direct contradiction with the isopleths showing the predicted areas. of deposition. The figures show areas of maximum deposition to lie in a northwesterly and nearly southwesterly direction. Referencing the text of the Battelle document in which the isopleths are presented shows further contradictions between the expected areas of maximum deposition and the isopleths. From the document, "the maximum wind direction frequency at HNP-2 was 9 percent from the south (drift to the north). The measurement elevation was seven meters (23 feet). At an elevation of 122 meters (400 feet) at the Hanford Meteorological Station, the maximum direction frequency was 20 percent from the northwest (drift to the southeast) (Droppo). Further investigation confirmed that the isopleths, as originally presented, had been rotated a full 180', thus 5-13 incorrectly predicting the areas of maximum deposition. As a result, the monitoring stations, as placed for this study, are not in the expected areas of maximum deposition. This is substantiated by field data collected for the transformer yard sampling stations. At a transformer yard 0.25 miles north of the cooling towers, samplers experienced an average rate of 112 lbs/acre for a nine month period coinciding with the original sample collection. This rate is more than two times greater than the maximum twelve month rate determined by the samplers placed along the two radial transects. It is concluded that the isopleths, as presently drawn, do not accurately predict the areas of maximum and minimum deposition. Since the samplers were not placed along transects in line with the directions of maximum deposition, it is difficult to verify the predicted extent of the drift plume, or the distance at which the cooling tower drift deposition is no longer distinguishable from background drift. The isopleths predict that at approximately 0. 5 miles from the towers, drift deposition wi 1 1 diminish to a rate of lb/acre-year. The sampling at distances of approximately 0.5 miles 1 from the towers determined rates ranging from 8 to 22 lbs/acre year, significantly higher than that predicted by the model. This indicates that appreciable amounts of drift may be deposited beyond the 0.5 mile radius at higher rates than predicted. The maximum rates predicted by the model were 400 lbs/acre-year and 300 lbs/acre-year, 0.25 miles from the towers. These estimates are high as compared to the highest rate of deposition determined by the field sampling which was 112 lbs/acre for a nine month period, in a transformer yard 0.25 miles north of the towers. The efficiency factor for the drift collectors used has not been determined, thus it is difficult to compare the predicted absolute rate with the experimentally determined relative rate of deposition. If an efficiency rate of 100 percent is assumed, however, the measured rates are still within the same order'f magnitude as those which were predicted. Sources of error which may have biased the experimental results low include the fact that only five constituents were analyzed to 5-14 determine the amount of drift deposited. The plant also operated at reduced cycles from mid-January through the end of the sampling period which also decreased the amount of drift which was actually released to the atmosphere.
5. 6 BIBLI ASTM D1739-70, Standard Method for Collection and Analysis of Dustfall.
Daubenmire, R. 1968. Plant communities. Harper and Row, New York, NY. Droppo, J. G., C. E. Hane and R. K. Woodruff, Atmospheric Effects of Circular 'Mechanical Draft Cooling Towers at Washington Public Power Supply System nuclear Power Plant Number Two, B2311200735, November 1976. Environmental Protection Agency. 1983. Methods for Chemical Analysis of Water and Wastes. Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH. Gilman, Lee B. 1989. Microwave Sample Preparation. CEM Corporation. Klemmedson, J. O. and J. G. Smith, 1964. Cheat Grass (gag~ ~grum L ) Bot. Rev. 30; 226-262. Laulainen, N. S., R. 0. Webb, K. R. Wilber, and S. L. Ulanski, %i'd D 1 n , September, 1979, Battelle PNL-3083. NUS Corporation, Annual Report for the PVNGS Salt Deposition Monitoring Program January-December 1986; April 1987. 5-15 Table 5-1. Vascular Plants Observed During 1990 Field Nork APIACEAE Parsley Family CY.,t n (Hook,) T.&G. var. ~~in h~i (Nutt.) Coult & Rose Turpentine cymopterus Large-fruit lomatium ~ ASTERACEAE Aster Family Yarrow 6K(.kDD~ d]zazgha (Ptutt. ) T&G Low pussy-toes ~re~m<~ ~ri .M.RRII19&iZR ~~i~@ Nutt. Gl ay MQ~~ (Pall.) Britt Big sagebrush Carey's balsamroot Gray rabbitbrush ~h. k.) Wtt rabbitbrush ~~ ~rf~ Ct ( Green ~ gl~n~ A~r ~~ ~rima~¹ dub~ Hel ler (Hook.) Scop. (Pursh) k H&A Slender hawksbeard Bur ragweed Hhite daisy tidytips Yellow salsify Hoary Aster BORAGINACEAE Borage Family /@~~i~ Lehm. Tarweed fiddleneck ~~~ imari~ (Torr.) RS JU tt Greene Matted cryptantha Hinged cryptantha BRASSICACEAE Mustard Family ~D[i~~i ~gita (Halt.) Britt. Hestern tansymustard ~D ~vrn L. Spring draba KLKSUez mvZym (Nutt.) Prairie rocket ~~ ~i'j'~ilJgg L. DC. Tumblemustard CACTACEAE Cactus Family QpyrLQR Starvation cactus CARYOPHYLLACEAE Pink Family A~rnaQa fzZ1JQ~Qj. Dougl. var. Ealmhmm ~tZ1lahaa L. ~~i~ Franklin's sandwort Jagged chickweed CHENOPODIACEAE Chenopod Family RaLmla kaLi L. Russian thistle 5-16 Table 5-1. mm FABACEAE Pea Fami ly ~~rQyg ggr ~hi i Dougl. Wooly-pod milk-v'etch Stalked-pod milk-vetch P ~rig, langg~l~ Pursh Lance-leaf scurf-pea HYDROPHYLLACEAE Waterl eaf Family ~P~ll~ hm~a Whi tel eaf phace1 i a HhKQlia ~1~ Dougl . (Pursh) Holz. Threadleaf phacelia LILIACEAE Lily Family ~Br ~l ~1,~~Lii Wats. Douglas'rodiaea Ga.Lardurtua mu~rtPpm Doug 1 . Sego 1 i ly aulll h) Ep Chocolate lily LOASACEAE Blazing-star Family ~z~li ~~i'oug 1 . White-stemmed mentzelia MALVACEAE Mallow Family l~~n (Dougl.) Spach White-stemmed globe-mallow ONAGRACEAE Evening-primrose Family ~ni~ 1~11~1 Lindl. var. ~11~1 White-stemmed evening-primrose PLANTAGINACEAE Plantain Family ~am POACEAE 69ZQKLrrl S B~ ~rapper F~~ KQklMrk $ GCXZSKLi ~~ ~ mdaam~Lca Jacq. ~~vm z~i ]~~rig ~~4 hKR~~ Zm L. (L.) Gaertn. Walt. Pers. ( (RKS) . (Pursh) Scribn. Ricker b & Smith Indian-wheat Grass Family Crested wheatgrass Thick-spiked wheatgrass Bluebunch wheatgrass Cheatgrass Six-weeks fescue Prairie Junegrass Indian ricegrass 5-17 Table 5-1. ~g~r ~ m!~~~< ~P Vasey Sandberg's bluegrass ~i~ni (Nutt.) Smith Bottlebrush squirreltail Trin 8 Rupr. Needle-and-thread POLEHONIACEAE Phlox Family g/]gg ~1 ~~ J<<k)6 gln~if~r Benth. Dougl. Gilia Shy gilia var. 5~gQ llama (Hook.) Cronq. Pink microsteris Lhhz ~aifalia Long-leaf phlox POLYGONACEAE Buckwheat Family KJ~iOMIB IUvvRm Doug 1 . Snow buckwheat ~R ~vm Pursh Wild begonia RANUNCULACEAE Buttercup Family llLLU ttdll Pritz. ex Walpers Larkspur ROSACEAE Rose Family EUZ.'~ XCldRQ~ (Pursh) DC. Antelope bitterbursh I SANTALACEAE Sandalwood Family ggmmn~r gpss~~ (L.) Nutt. Bastard toad-flax SAXIFRAGACEAE RiliR ~age Pursh Golden current SCROPHULARIACEAE Figwort Family ~Pongy ~~i~ Doug 1 . Sand-dune penstemon VALERIANACEAE Valerian Family Ply~<g m~~r TLG Longhorn plectritis 5-18 Table 5-2. Vascular Plants Observed During 1975-1990 Field Mork 199'l ~177 ~17 ~7 ~l ~ ~l ~ ~4 ~l ~ ~ 199@ ~l Annual Grasses X X X X X X X X X X X X X X X Qaium ~~@a X X X X X X X X X X ~t~ sp. Perennial Grasses X X X X X X X $ ~r)~r ~~~g X X X X X X X )~r g~i X X X X X X X ~~i ~ri X X X X X X X X X X X X X X X X ~ ~db~i X X X X X ~ ~Lbbr,~ll X X ~i.~ ~h~i~g X X X X X ~i X X X X X X X X ~i ~h~b~i Table 5-2. (Cont'd) ~7 ~ ~7 ~17 ~17 ~l ~ll ~ ~l 19914 ~ ~ ~l ~l ~l Annual Forbs ~Fyg~i ~@~i X X X X X X X X X X X X ~i ~~Mi~ X X X X X X X X X X X X X X "X ~~i~ m~i~jii X X ~ggifjgg ~lg~>~1~ MatunUm ~mama X X X X X X X X X X X, CQfU>hhk ~i X X X X X -X X X X X X X X X ~O~RjQ iii QjQf~ X X X X X X X X X X X X X X X ~b X X X X X X X X X X X X X X /~i' ~v X X X X X X X X X X X X X X Gilia ~~Qara X X X X X X Glib amatol l X X X,X X X X X ~mb ~ll gg X X X X X X X X X X X X X X ~pJ~ ~gc~ii X X X X X X X /~~i ~bi ~gJ ii X X X X X X X ~i~~ ~chili X X X X X X X X X X X X X X ~rb ~+ g~if ~rni X X X ' X X X X phd ~i ] iip~i X X X X X X X X X P~h~ sp. Pll'~ ~~i X X X X X X X X X X X X X X P~1~I~i 6hKDU~r X X X X X X Table 5-2. (Cont'd) ~7 ~17 l99l. ~l ~17 ~l ~l ~ ~l ~4 ~ ~1 ~17 ~ lqql. /~led @~~i' RaLi X X X X X X X X X X X X X X X m~bri n} ~li~imgg X X X X X X X X X X X X X X X ~rgb@~ ~bi X X X X X X X X X X Perennial Forbs ~A~ill 'g gjl'~fili m X X X X X X X X X X X X X ~n~n~ di ash X X X X X X X X X X iLrra~i ~fr kl 'ni var. ~fr nkli 'i X X X X X X X X X X X X X X X X X Q~~~l ~l]1ii ~r~l<<k ~~i X X X X X X X X X X X X X X X X X X X X X X ~A~~l sp. ~ln chir@ mmuna X X X X X X X X X X X X X X ~ri ER Q~di X X X X X X X X X X X X X X Gem~i he~i" Qll/Hark mBJJKREElk Q}m~n~ ~ba~ll X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Table 5-2. (Cont'd) ~17 ~17 ~177 ~7 ~17 ~ ~l ~ ~l ~ ~l 199'17 ~l ~l QES~ ~RbhiQli rUlk X X X X X X X ~jiig sp. X X X X X gr'LQRKQQ ~vugg~ Lrr,i>> via muLm X X X X X X X X X X X X X X X X X X ~n~ig sp. ggggfJ>~ ~lli g X X X X X X X X X X X X X X X mgn ~mi~ X X X X X X X X X JP~~ ~ ~m~f1 sp. Ra~rl ~la3ata X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X $ ph<~r'~ m~~ X X X X = X X X Shrubs, subshrubs, cacti X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X pJJp~ X X X X X X X PpJ>~i X X X X X X X X X X X X X X X X Table 5-3 Herbaceous Cover for Fifteen Sampling Stations 1990 AVG. Gal-G04 Annual Grasses AVERAGE RLSCZ AVERAGE M5 AVERAGE BLED Bronus tectorun 18.60 7.75 61.55 13. 65 22.)5 35.30 35.55 19. 75 36.80 16.80 17.05 30.40 53.35 12.90 5.45 25.80 25.39 30. 88 28.44 Festuca octoflora 0.00 0.00 0.00 0.00 1.65 0.15 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.25 0.00 0. 40 0.22 Total Annual Grass Cover )8.60 7.75 61.55 13.65 23.80 35.45 35.55 19.75 36.80 16. 80 17.05 32.40 53.35 12.90 5.45 26.05 25.39 31.28 28.66 Perennial Grasses Agropyron splcatuu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.90 0.00 0.00 0.05 2.65 0.00 0.37 0.00 0.59 0.33 Oryzop>s hynenoides 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 F 00 0.00 2.30 0.00 1.25 0.00 0.00 a.'ao 0.24 0.00 0.71 0.39 Poa sandbergii 18.70 0 F 00 0.00 13.15 11.85 1.50 9.30 11.65 3.30 5.15 18.35 11.45 0.00 15.7$ 17.55 9.18 7.96 7.65 7.79 Stipa coaata 0.00 0.00 0.00 16.85 0.05 9.20 0.00 0.45 0.00 2.50 0.00 0.00 0.00 0.00 0.00 1.94 4.21 0.50 2.15 Total Perennial Grass Cover 18.70 0.00 0.00 30.00 11.90 10.70 9.30 12.10 3.30 12. 85 18.35 12.70 0.05 18.40 17.55 11.73 12.18 9.45 10.66 Annual forbs Ansinckia lycopsoides 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.05 0.00 0.00 0.00 0.05 0.00 0.03 0.00 0.07 0.04 Chenopod)un Ieptophyllun 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 F 0.00 0.00 Cryptantha circunscissa 0.00 0 F 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0 F 00 0.01 0.01 Crypthantha pterocarya 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.'ao 0.00 0.00 a.'00 0.'aa O.aa Oescurainsa pinnate 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.02 0.04 0.01 0.02 Oraba verna 3.20 1.25 1.75 1.70 1.20 1.70 1.70 2.15 3.00 0.15 2.60 1.10 1.75 0.00 0.00 1.55 I 98 ~ I. 72 1.83 Franserfa acanthacarpa 0.00 D,DD ).15 0.00 D.OD 0.30 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.11 0.29 0.05 0.16 Gilia sinuata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Holosteun unbellatun 2.95 0.40 9.35 0.30 1.15 3.65 4.90 2.'IS 1.25 0.95 2.05 0.45 6.05 0.00 0.00 2.37 3.25 2.15 2.64 tayia glandulosa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Hentzelia albicaulis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0 '7 0.04 Hicrosterls gracilis 0.35 0.60 2.65 0.00 0.30 1.05 0.60 1.75 3 ~ 10 0.10 1.00 1.80 0.65 o'.ao 0.00 0.00 0.93 0.90 I. 33 1.14 Phacelia linearis 0.00 0 F 00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.07 0.00 0. 11 0.06 Plantago pategonica 1. 15 0.10 0.00 1.20 0.00 0.00 0.00 0.40 0.00 0.00 2.45 0.00 0.45 0.00 0.00 0.38 0.61 0.58 0.59 Sa'Isola kali o.'ao 0.00 0.00 0.00 0.05 0.10 0.00 0.00 0 F 00 0.10 0.00 O. IS 0.00 o.'ao 0.00 0.03 0.00 0.05 0.03 S)syubriuu a) ties lnun 0.10 0.00 0.80 0.00 0.05 0.10 1.15 0.55 0.30 0.00 0.05 1.05 0.00 0.00 0.00 0.28 0.23 0.28 0.26 Tragopogon dubius 0.00 o'.oa 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Annual forb Cover 7.75 2 '5 15.70 3.35 2.75 6.90 8.95 7.00 7.95 2.60 8. 15 4.55 8.90 0. 10 0 ~ aa 5.80 7.29 6.43 6.81 Perennial forbs Achil )ca nil 1efol iun 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.10 0.05 0.00 0.00 0.00 0.00 0.21 0.00 0.63 0.35 Astragulus purshli 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Aster canescens 0.00 0 F 00 0.00 0.00 0.45 0.05 0.00 0.10 0.10 0.10 0.00 0.05 0.05 0.00 0.00 0.06 0.00 0.06 0.03 Astragalus sclerocarpus 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.'ao 0.00 0.00 0.00 o.oa 0.00 0.00 0.00 0.00 Ba)sazorhiza careyana 0.00 0.00 0.00 0.00 2.45 0.60 0.00 0.00 0.00 0.00 0.30 3.85 0.00 0.00 0.00 0.48 0.00 0.83 0.46 Brodiaea douglasii 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Conandra unbel)ata 0,00 o.'ao O.DO 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 Crepis atrabarba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 o.'aa 0.00 0.00 0.00 0.06 0.00 O.i9 0.11 Cynopterus terebinthinus 0.00 0.00 0.00 0.00 0.00 6.25 0.00 0.00 0.00 6.35 0.00 0.00 0.00 0.00 0.00 0.84 0.00 1.27 0.71 Oenothera pallida 0.00 0.00 0.05 0. 10 0.00 1.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 10 0.04 0.00 0.02 Phlox longifolia 0.00 0 05 F 0.00 1. 10 0.75 0.30 0.05 0. 10 D.30 O.DD D.45 O.OD 0.00 0.00 0.00 ~ 0.21 0.29 0.'IS 0.21 Runex venosus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.ao 0 00 F 0.00 0.00 Total Perennial Forb Cover 0.00 0 F 05 0.05 1.20 3.95 8.55 0.05 0.20 0.40 9.55 1.75 3.90 0.05 0.00 0 F 00 1.98 0.33 3. 13 1.88 Total Herbaceous Cover 45. 05 10 ~ 'IS 77.30 48.20 61. 60 53.85 39. OS 48.45 41. 80 45.30 53.55 62.35 31. 40 23.00 45.56 45. 18 50 ~ 29 48.02 Table 5-4 HeaFI Herbaceous Cover for. 1975 through 1990 X X G01-4, CLASS 501 502 503 504 505 501-5 506 507 XS GO I G02 G03 G04 GO 1-4 GOS G06 G07 GOB XG XSG 501-5 AG 1975 49.90 35.30 43.80 43.00 43.90 43.00 43.45 43.18 43. 18 PG 1975 0.60 14.60 2.00 11.70 4.50 11.70 2.37 3 '0 5.50 4.60 3.26 3.26 AF 1975 12.67 29.50 13.00 21.25 16.10 16. 10 PF 1975 4.30 0.90 1.80 2.33 1.50 2.10 I. 80 Z. 12 2. 12 ALL 1975 69.40 49.90 61.80 60.37 78.60 63.60 71.10 64.66 64.66 AG 1976 50.70 40.90 34.30 41.97 7'1.20 51. 60 61. 40 49.74 49.74 PG 1976 0.40 10.50 10.30 7.07 4.40 3. IO 3.75 5.74 5.74 AF 1976 5.50 5.30 7.20 6.00 11.90 8.50 10.20 7.68 7.68 PF 1976 0.00 0.50 0.20 0.23 0.00 0.20 0.10 0.18 0. 18 ALL 1976 56.60 57.20 52.00 55.27 87.50 63. 40 75.45 63.34 63.34 AG 1977 1.35 0.65 1.90 1.30 5.20 1.45 3.33 2.11 2. 11 PG 1977 0.35 11.30 8.28 6.64 3.25 2.90 3.08 5.22 5.22 AF 1977 0.25 0.05 0.90 0.40 2.40 9.35 5.88 2.59 2.59 PF 1977 0.55 0.60 1.47. 0.86 0.05 6.30 3.18 1.78 1.78 ALL 1977 2.50 12.60 12.50 9.20 10.90 20.00 15.45 11.70 11.70 AG 1978 51.00 67.00 51.00 56.33 68.00 42.00 55.00 55.80 55.80 PG AF 1978 1978 3.00 38.00 18.00 10.00 11.00 33.00 10.67 27.00 8.00 23.00 7.00 25.00 7.50 24.00 9.40 25.80 9 '0 25.80 PF 1978 8.00 0.00 5.00 4.33 2.00 3.00 2.50 3.60 3.60 ALL 1978 100.00 95.00 100.00 98.33 101.00 77.00 89.00 94.60 94.60 AG 1979 25.00 29.00 9.00 21.00 31.00 10.00 20.50 20.80 20.80 PG 1979 1.00 18.00 '11.00 10.00 7.00 5.00 6.00 8.40 8.40 AF 1979 2.00 4.00 10.00 5.33 43.00 33.00 38.00 18.40 18. 40 PF 1979 11.00 0.00 3.00 4.67 0.00 7.00 3.50 4.20 4.20 ALL 1979 39.00 51.00 33.00 41.00 81.00 55.00 68.00 51.80 51. 80 AG 1980 50. 40 51.80 24.30 56.20 56.40 47.82 47.82 64.30 77.80 73.80 12.30 57.05 57.05* 51.92 51; 92 PG 1980 1.00 7.20 23.30 10.90 0.10 8.50 8.50 28.30 64.00 0.10 26.60 29.75 29.75 17.94 17.94 AF 1980 7.60 4.20 22.50 3.40 14.10 10.36 10.36 7.30 5.00 28. 70 4.90 '11.48 11.48 10.86 10.86 PF 1980 2.20 2.20 4.70 4.60 1.80 3.10 3.10 0.40 0.00 0.00 4.60 1.25 1.25 2.28 2.28 ALL 1980 61.20 65.40 74.80 75.10 72.40 69.78 69.78 '100.30 146.80 102.60 48.40 99.53 99.53 83.00 83.00 AG 1981 74.80 54.60 66.50 49.80 76.20 64.38 64.38 77.40 84.00 ss.40 48.90 74.68 74.68 68.96 68.96 PG 1981 0. 10 4.70 14.30 5.80 0.00 4.98 4.98 19.60 25.90 0.00 36.70 20.55 20.55 I '1.90 11.90 AF 1981 5.30 3.50 'I8.20 1.20 12.50 8.14 8.14 15.90 11.90 17.50 5.90 12.80 12.80 10.21 10. 21 PF 1981 0.00 3.20 0.70 4.90 0.50 1.86 1.86 0.20 0.00 0.00 1.90 0.53 0.53 1.27 1.27 ALL 1981 80.20 66.00 99.70 61.70 89.20 79.36 79.36 113.10 121.80 105.90 93.40 108.55 108.55 92.33 92.33 AG 1982 51.50 25.80 36.60 32.70 20.00 33.32 33.32 42.20 45.50 51.00 22.90 40.40 40.40 36.47 36.47 PG 1982 0.40 6.40 17.90 4.30 0.80 5.96 5.96 I'1.20 11.60 0.10 31.30 13.55 13.55 9.33 9.33 AF 1982 4.60 4.20 7.50 1.60 17.30 7.04 7.04 9.70 4.60 4.60 4.10 5.75 5.75 6.47 6.47 PF 1982 0.20 4.30 0.70 6.20 1.00 2.48 2.48 0.30 0.00 '1.30 3.80 1.35 1.35 1.98 1.98 ALL 1982 56.70 40.70 62.70 44.80 39.10 48.80 48.80 63.40 61.70 57.00 62.10 6'I.05 61.05 54.24 54.24 Table 5-4 Mean Herbaceous Cover for 1975 through 1990 (continued) X Ga)-4 ~ CLASS YEAR Sal 502 503 504 505 501-5 506 507 XS G02 604 Gal-5 G06 607 Gaa XSG 50)-5 AG 1983 53.80 37.60 33.65 36.75 3'I. 85 38.73 38.73 49.50 39.55 62.75 17.55 42.34 42.34 40.33 40.33 PG 1983 2. IS 7.70 14.45 6.40 1.29 6.40 6.40 2.10 15.75 0.00 25.50 10.84 10.84 8.37 8.37 AF 1983 8.20 7.85 12.55 3.45 22.35 10.88 10.88 18.70 8.85 8.65 6.65 10.71 10.71 10.81 10.8) PF 1983 0.70 3. 10 I. 05 4.40 1.95 2.24 2.24 0.65 0.05 2.10 4.00 1.70 1.70 2.00 2.00 ALL 1983 64.85 56.25 61.70 51.00 57.44 58.25 58.25 70.95 64.20 73.50 53.70 65.59 65.59 61.51 61. 5) AG 1984 41.50 32.75 39.35 36.30 36.50 37.28 37.28 60. 85 71.30 60. 85 9.60 50.65 50.65 43.22 43.22 PG 1984 1.85 8.80 11.55 8.55 0.40 6.23 6.23 1.20 4.45 25.00 10.22 10.22 6.87 7.73 AF 1984 12.35 8.10 11.10 4.00 13.40 9.79 9.79 20.65 9.70 19.45 7.95 14.44 14.44 11.86 11.86 PF 1984 0.30 4.00 0.75 6.55 0.65 2.45 2.45 0.70 0.20 I.')a 1.25 0.81 0.81 1.72 1.72 ALL 1984 56.00 53.65 62.75 55.40 50.95 55.75 55.75 83.40 85.65 81. 40 43.80 73.56 73.56 63.67 63.67 AG 1985 2.10 2. 15 14.60 4.95 27.05 10.17 10.)7 8. 00 8.10 18.30 7.25 'I0.41 10.41 10.28 10.28 PG 1985 1.05 4.70 17.85 2.40 I. 85 5.57 5.57 9.20 )7.95 0.00 13.90 10. 26 10.26 7. 66 7.66 AF 1985 0.70 1.35 9.40 2.30 4.75 3.70 3.70 18.20 8.15 7.55 3.05 9.24 9.24 6. 16 6. 16 PF 1985 0.00 1.35 1.15 3.00 0.25 1.15 I. IS 0.80 0. 10 2.35 0.90 I. 04 '1.04 I. 10 I. 10 ALL 1985 3.85 9.55 43.00 12.65 33.90 20.59 20.59 36.20 34.30 28.20 25.10 30.95 30.95 25. 19 25. 19 I AG 1986 17. 45 1.95 7.20 11.45 13.05 10.22 10.22 9.40 4.65 13. 25 7.35 8.66 8.66 9.53 9.53 CA PG 1986 2.20 10.75 17.25 9.85 1.30 8.27 8.27 19.85 38.65 0.00 26.00 21. 13 21. 13 13.98 13.98 1986 25.40 )6.65 38. Ia 10.25 16.70 21. 42 21. 42 27.65 34.15 25.45 8.70 23.99 23.99 22.56 22.56 PF 1986 1.15 5.35 2.30 9.15 1.25 3.84 3.84 '1.80 1.95 0.05 2.55 1.59 1.59 2.84 2.84 ALL 1986 46.20 34.70 64.85 40.'70 32.30 43.75 43.75 58.70 79.40 38.75 44.60 55.36 55.36 48.91 48.91 AG 1987 28.90 9.95 7.80 19.05 33.40 19.82 19. 82 23.85 9.45 51.65 4.65 22. 40 22.40 20.97 20.97 PG 1987 3.60 21.90 42.65 19.55 2.30 18.00 'I8.00 32.45 58.79 0.05 45.95 34.31 34.31 25.25 25.25 AF 1987 12.56 8.50 10.80 6.55 1).40 9.96 9.96 'I0.30 11.32 14.00 3.25 9.72 9.72 9.85 9.85 PF 1987 5.00 6.00 2.00 10.40 1.75 5.03 5.03 0.90 ).90 0.15 1. 55 ).13 I. 13 3.29 3.29 ALL 1987 50.06 46.35 63.25 55.55 48'.85 52.81 52.8) 67.50 81. 46 6S.'OS 55.40 67.55 67.55 59.36 59.36 AG 'I 988 13. 80 5.05 8.10 13.80 10.15 10.18 10.40 12.24 10.5'I 22.95 10. 'Ia 16.75 4. 80 13. 65 11.95 19.20 15.85 10.40 14.00 12.32 11.72 PG 1988 'I. 75 8. 40 11.95 9.40 3.35 6.97 16.85 17.50 9 ~ 89 17.85 2).70 0.05 30.20 17.45 F 50 12.05 10.45 14.30 14. 51 12.34 11.63 AF 1988 6.08 5.25 3.60 3.10 4.00 4.41 0.00 0.35 3.20 6.30 16. IS 7.55 1.80 7.95 1.20 1.45 12. 35 6. 12 6. 61 5. 16 5.98 PF 1988 I'I.SS 15.75 2.10 4.85 3.25 7.50 0.10 0.00 5.37 0.20 2.00 0.00 4.40 1. 65 15.25 8.70 2.45 4.34 4.34 4.79 4.90 ALL 1988 33.18 34.45 25.75 31. IS 20.75 29.06 27.35 30.09 28.96 47.30 49.95 24.35 41.20 40.70 37.90 41 '0 41.10 32.52 39.47 34.60 34.23 AG 1989 21. 85 12.50 12.45 '10.25 32.90 )7.99 15.00 47.65 21.80 22.50 13.20 65.85 3.05 26.15 22.35 35.10 38 F 05 12.05 26.52 24.05 2).62 PG 1989 8.30 29.55 64.00 )3.00 1.25 23.22 30.35 37.50 26.28 60.40 59.60 0.05 49.55 42.40 36.75 16.20 32.05 48.95 37.94 32.54 3'I.74 AF 1989 12.50 6.95 13.05 6.45 11.10 10.01 0.85 F 15 8.01 12.85 5.90 42.20 2.85 15.95 8.85 )3.55 13.05 13.95 14. 15 I '1.48 12. 65 PF 1989 4.45 '14.50 4.40 8.20 0.55 6.42 0.10 0.00 4.60 3.85 1. 10 0.05 3.00 2.00 6.45 10.40 12.9a 10.60 6.04 5.23 4. 46 ALL 1989 47.)0 63.50 93.90 37.90 45.80 57.64 46.30 90.30 60.69 99.60 79.80 108.15 58.45 86.50 74.40 75.25 96.05 85.55 84.66 73.31 70.47 AG 1990 36.80 16.80 17.50 32. 40 53.35 31.37 12.90 5.45 25.03 18.60 7.75 61.55 13. 65 25.39 23.80 35.45 35.55 19.75 27.01 26.06 28.71 PG 1990 3.30 12.85 18.35 '12.70 0.05 9.45 18.40 )7.55 11.89 18.70 0.00 0.00 30.00 12. 18 I'1.90 10.70 9.30 12.'Ia I I. 59 ) '1.73 Ia. 66 AF 1990 7.95 2.60 8.15 4.55 8.90 6.43 0.10 0.00 4.6'I 7.75 2.35 15.70 3.35 7.29 2.75 6.90 8.95 7.00 6.84 5.80 6.81 PF ALL 1990 1990 0.40 48.45 9.55 41.80 1.75 45.30 3.90 53.55 0.05 62.35 3.13 50.29 0.00 31.40 0.00 2.24 0.00 0.05 0.05 1.20 0.33 3.95 8.55 0.05 0.20 1.76 I. 98 l. 88 23.00 43.69 45.05 10.)5 77.30 48.20 45.18 42.40 61.60 53.85 39.05 47.20 45.56 48. 02 Table 5-5 Mean Frequency Values (5) by Species of Each Sampling Station - 1990 Gol G02 G03 004 G05 G06 G07 G08 Sol S02 S03 S04 S05 S06 S07 Annual Grasses Bromus tectorum 100 100 98 96 94 100 98 .96 98 76 94 98 100 72 98 Festuca octoflora 36 60 40 Perennial Grasses Agropyron spicatum 20 2 10 Oryzopis hymenoides 6 2 Poa sandbergii 94 100 96 68 10 62 70 18 32 98 56 60 96 St,ipa comata 72 2 24 8 12 Annual Forbs Amsinckia lycopsoides 2 2 Chenopodium Leptophyl1um Cryptantha circumscissa Cryptantha pterocarya Descurainia pinnata 6 2 Draba verna 78 50 60 48 48 68 58 86 90 6 84 44 60 Franseria acanthacarpa 8 12 10 Gilia sinuata Holosteum umbellatum 68 16 96 12 26 86 76 66 40 28 52 18 92 Layia glandulosa Mentzelia albicaulis 4 Microsteris gracilis 14 24 86 12 42 24 50 84 4 40 72 26 Phacelia linearls 22 22 Plantago pategonica 46 4 38 16 78 18 Salsola kali 2 4 4 6 Sisymbrium altissimum 4 2 4 46 22 12 2 42 Tragopogon dubius 2 Perennial Forbs Achilisa mi1 1 sf ol ium 10 2 Aster canescens 18 2 ' 4 4 2 2 Astragulus purshii Ast,ragulus sclerocarpus 2 Balsamorhiza careyana 4 4 2 12 Brodiaea douglasii Comandra umbellata Crepls atrabarba Cynopterus tereblnthinus 20 Oenothera pallida 2 4 Phlox longifolia 16 2 2 2 4 2 Rumex venosus Total Species per Site 7 7 7 9 13 16 9 10 9 17 11 11 7 5 2 5"26 Table 5-6 Mean Terrestrial Phytomass for 1990 MT./ MT./ OATK SITE PLOT Mf. (g) SQ.HETER DATE SITE PLOT MT. (gl 59.HETER 05/18 G01 4-8 0.3 2.5 05/29 $ 01 41-6 4,3 42.8 05/18 G01 29-4 0.7 7' 05/29 $ 01 12-3 2.9 29.0 05/18 G01 12-3 0.5 5.4 05/29 $ 01 44 2.4 23.6 05/18 G01 18-5 2.2 22.3 05/29 $ 01 29-4 2.7 27.4 05/18 G01 41-6 3.0 30.4 05/29 $ 01 18-5 4.1 41.2 AVG 1.4 13.6 AVG 3.3 32.8 STD 1.1 10.8 STO 0.8 7.7 Mf./ Mf./ DATE SITE PLOT MT.(g) SQ.HETER DATE SITE PLOT Mf.(g) SQ.HETER 05/18 G02 12-3 0.2 2.1 05/29 $ 02 41-6 0.5 5.3 05/'I & G02 29-4 0.2 1.8 05/29 $ 02 29-4 3.9 39.4 05/18 602 18-5 0.5 5.3 05/29 $ 02 44 3.6 35.8 05/18 G02 0.3 2.7 05/29 $ 02 18-5 3.7 36.5 05/18 G02 41-6 0.9 8.5 05/29 $ 02 12-3 27.4 274.3 AVG 0.4 4.1 AVG 7.8 78.3 STO 0.3 2.5 STO 9.9 98.8 N'. / MT./ DATE SITE PLOT Mf. (g) SQ.HETER OA1'E SITE PLOT MT.(g) SQ.HETER 05/18 G03 18-5 7.7 77.2 05/29 $ 03 18-5 2.8 28.1 05/18 G03 4-8 7.7 77.1 05/30 $ 03 12-3 3.2 32 ' 05/18 G03 12-3 5.2 51.8 05/30 $ 03 4-8 2.5 24.7 05/18 G03 29-4 4.6 45.9 05/30 $ 03 29-4 4.6 45.7 05/18 G03 41-6 6.8 68.1 05/30 $ 03 41-6 1.0 10.4 AVG 6.4 64.0 AVG 2.8 28.2 STO 1.3 13.0 STO 1.1 11.4 MT./ MT./ DATE SITE PLOT MT.(g) SQ.HETER DATE SITE PLOT N'.(g) SQ.HETER 05/18 604 12-3 7.5 75.1 OSI29 $ 04 4-8 5.4 53.8 05/IS G04 18-5 5.5 54.9 05/29 $ 04 12-3 2.5 24.6 05/18 G04 41-6 2.4 23.6 05/29 $ 04 41% 2.0 19.6 OSI18 604 29-4 19.0 189.7 05/29 $ 04 18-5 1.6 15.7 05/18 G04 4-8 AVG 2.3 7.3 22.5 73.2 05/29 S04 2~AVG 4.1 3.1 40.7 30.9 STO 6.2 61.5 STO 1.4 14.3 IP. (g) Mf. / Sg.IIEfER MT./ DATE SITK PLOT DATE SITE PLOT MT.(g) SQ.HETER 05/30 GOS 12 3 1.1 10.8 05/29 $ 05 12-3 3.5 34.5 05/30 GOS 4.5 44.S 05/29 $ 05 41% 4.5 45.4 05/30 GOS 18 5 1.4 13.9 05/29 $ 05 4-8 4.3 43.0 05/30 GOS 29-4 2.8 28.3 05/29 $ 05 29-4 3.7 36.9 05/30 GOS 41-6 8.6 86.4 05/29 $ 05 18-5 5.7 57.3 AVG 3.7 36.8 AVG 4.3 43.4 STD 2.8 27 ' STO 0.8 8.0 MT./ MT./ DATE SITE P(.OT MT. (g) SQ.HETER DATE SITE PLOT N .(g) SQ.PZrER 05/31 G06 12-3 5.2 51.9 05/31 $ 06 18-5 4.4 44.3 05/31 G06 41-6 2.8. 28.2 05/31 $ 06 12-3 4.4 43.6 05/31 G06 18-5 4.6 45.6 05/31 $ 06 3.8 37.5 05/31 606 29-4 4,4 43.09 05/31 $ 06 41M '.1 20.8 05/31 606 2.9 29.3 0SI31 $ 06 29~ 2.4 23 ' AVG 4.0 39.'8 AVG 3.4 34.0 STD 0.9 9,4 STO 1.0 9' N'./ MT./ DATE SITE PLOT MT.(g) SQ.HETER DATE SITE PLOT N'. (g) SQ.HETER 05/30 G07 18-5 3.6 36.1 05/31 $ 07 4-8 0.2 2.4 05/30 G07 1.4 14. 1 05/31 $ 07 29~ 0.1 1.0 05/30 G07 41-6 2.5 25. 1 05/31 $ 07 12-3 0.7 6.9 05/30 607 12-3 6.2 61. 7 05/3'I $ 07 18-5 1.3 13.3 05/30 G07 29-4 0.9 8.7 05/31 $ 07 41-6 0.7 6.9 AVG 2.9 29. 1 AVG 0.6 6.1 STO 1.9 18.8 STO 0.4 4.3 MT./ DATE SITE PLOT Mf.(g) SQ.HETER Phytamass Sugary HEAN 601-G08 33.8 Grams/sq. meter 05/30 GOS 18-5 0.2 1.6 HEAN $ 01-$ 07 36.2 Grams/sq. meter 05/30 G08 41-6 0.8 7.8 MEAN 801%05 0.0 Grams/sq. meter 05/30 GOS 12-3 0.3 2.7 05/30 608 29-4 1.5 15.Z 05/30 608 4-8 2.3 22.5 AVG 1.0 10.0 STD 0.8 7.9 5"27 o Table 5-7 Comparison of Herbaceous Phytomass for 1975 through 1990 ~l ~7 ~77 ~7 ~7 ~l ~ ~ ~ ~14 ~l ~l ~17 ~l GO'1 359 108 21 166 64 160 200 90 77 94 70 50 83 34 174.3 13.6 G02 302 258 11 162 37 68 255 60 137 116 27 61 77 14 657 41 G03 53 261 62 64 133 12 32 134 16 105.1 64.0 G04 79 159 113 82 67 37 35 90 61 49.5 73.2 G05 43.2 36.8 G06 61.0 39.8 G07 113. 1 29. 1 G08 112.3 10.0 501 126 137 4 173 21 36 180 98 '171 104 5 35 62 59 53.9 32.8 S02 144 98 7 128 28 63 115 24 232 57 1 112 144 73 72.8 78.3 S03 88 177 7 115 16 43 31 22 54 95 27 25 48 15 67.0 28.2 504 78 52 39 68 93 11 176 108 24 39.8 30.9 S05 71 81 184 136 43 61 42 145 19 103.7 43.4 S06 72.7 34.0 S07 149.5 6.1 Table 5-8 Summary of Shr ub Density for 1990 Station Species 1 2 3 4 Total S/Ha S/a S01 Artemi si a tri dentata 3 2 4 0 9 90 36 Chrysothamnus nauseosus 0 0 0 0 0 0 0 Chrysothamnus viscidiflorus 0 0 0 0 0 0 0 Purshia tridentata 0 2 1 1 4 40 16 13 130 52 Total 5/Ha S/a S02 Artemisia tridentata 1 1 0 0 2 20 8 Chrysothamnus nauseosus 0 0 0 0 0 0 0 Chrysothamnus viscidi florus 0 0 0 Q 0 0 0 Purshia tridentata 0 0 0 0 0 0 0 2 20 8 Total S/Ha S/a 503 Artemisia tridentata 6 15 12 15 48 480 192 Chrysothamnus nauseosus 4 2 2 1 9 90 36 Chrysothamnus viscidiflorus 0 0 0 0 0 0 0 Purshia tridentata 0 0 0 0 0 0 Q 57 570 228 Total S/Ha S/a S04 Artemisia tridentata 1 2 1 5 9 90 36 Chrysothamnus nauseosus 0 0 0 0 0 0 0 Chrysothamnus viscidiflorus 0 0 0 0 0 0 0 Purshia tridentata 0 0 0 0 0 0 0 9 90 36 Total S/Ha S/a 505 Artemisia tridentata 0 0 0 0 0 0 0 Chrysothamnus nauseosus 0 1 4 2 7 70 28 Chrysothamnus viscidi florus 0 0 0 1 1 10 4 Purshia tridentata 1 3 4 0 8 80 32 16 160 64 Table 5-9 Su@nary of Shrub Cover (X) at Five Stations for 1990 Shrub Cover (X) Shrubs Sol S02 S03 S04 S05 Artemisia tridentata 0.00 0 '3 5.65 0.00 0.00 1.16 Chrysothamnus nauseosus 0.00 0.00 0.89 0.00 0.23 0.22 Chrysothamnus viscidiflorus 0.00 0.00 0.00 0.00 0.13 0.03 Purshia tridentata 0.76 0.00 0.00 0.00 0.00 0.15 Total Shrub Cover 0.76 0.13 6.54 0.00 0.36 1.56 Table 5-10 Su@nary of Soil Chemistry for 1990 G01 G02 G03 G04 G05 G06 G07 G08 S01 S02 S03 S04 S05 S06 S07 pH ( 1:2 soil-water ) 6.86 6.92 6.95 6.94 6.77 7.02 7.12, 7.07 7.19 7.65 6.78 6.93 7.00 7.13 7.20 Conductivity (1:2 soil-water) 46.3 54.6 96.8 28.8 14.4 19.0 53.2 38 ' 27.8 32.2 39.4 29.9 21.9 55.2 65.8 microsiemens/cm Sulfate ug/gm 6.62 6.87 14.29 7.07 6.8 6.77 5.77 6.78 6.78 6.80 6.88 12.95 6.78 6.81 6.62 Chloride ug/gm 1 ~ 12 0.56 1.76 0.24 1.04 0.8 1. 12 0.48 1.44 1.28 1.04 0.96 0.32 0.64 0.88 Copper ug/gm 11.10 9.18 9.61 6.92 7.42 8.2 8.54 8. 14 7.64 6.84 8.82 7.94 7.20 9.48 13.14 Lead ug/gm 6.04 4.96 3.10 2.58 2.3 2.6 3.92 2.08 1.14 0.70 1.26 1.00 1.53 1.36 1.71 Cadmium ug/gm 0.014 0.062 0.072 0.100 0. 120 0.139 0.062 0.064 0.118 0.070 0.058 0.060 0.080 0.020 0.030 Chromium ug/gm 8.2 6.4 5.1 3.5 5.6 4.7 4.8 6.0 6.8 5.6 5.0 5.7 3.9 9.4 12.5 Nickel ug/gm 11.93 9.94 8.94 8.54 9.54 8.90 7.28 9.90 9.78 9.16 9.72 9.18 8.36 10.08 15. 42 Zinc ug/gm 40.59 37.89 37.32 29.27 26.51 29.97 38.38 31.58 33.51 21.61 37.93 31.87 30.42 38.55 47.31 Sodium / 0.037 0 '38 0.033 0.029 0.026 0.031 0.035 0.027 0.028 0. 021 0.033 0.031 0.033 0.032 0.042 Potassium 5 0. 191 0.164 0. 124 0.079 0.087 0.093 0. 137 0. 119 0. 125 0.066 0. 132 0.128 0.085 0. 167 0.216 Calcium '4 0.273 0.292 0.351 0.298 0.261 0.289 0.319 0.245 0.282 0.356 0.309 0. 274 0.306 0.377 0.434 Bicarbonates (meq/HC03/gm) 0.0015 0.0020 0.0014 0.0009 0.0006 0.0008 0.0017 0.0015 0.0010 0.0013 0.0014 0.0009 0.0009 0.0023 0.0027 Hagnesium 4 0.374 0.391 0.376 0.321 0.302 0.339 0.374 0.365 0.376 0.302 0.366 0.355 0.333 0.420 0.632 e Table 5-11 Suranary of Vegetation Chemistry for 1990 SITE POSA BRTE SIAL PHLO PUTR ARTR CHVI GRSP Copper (ug/gm) Gp1 2.80 4.80 6.60 4.20 G02 3.00 5.00 3.60 3.64 G03 4.20 6.60 3.60 4.40 4.60 G04 2.80 4.00 3.40 4.00 4.40 GQS Z.'Zo 4.83 2.60 3.60 7.20 G06 2.60 4.20 1Q.OO 6.00 G07 4.40 5.20 8.20 10.20 GOB 2.60 4.80 3.40 4.00 9.20 Sol 2.60 4.00 3.20 3.40 S02 2.80 4.20 4.00 3.80 8.20 S03 3.20 5.00 4.20 10. 20 S04 3.60 4.80 3.40 3.60 9.00 S05 3.60 4.60 3.20 5.00 9.20 S06 3.80 3.20 6.40 6.00 8.00 6.20 7.80 4 '0 S07 5.00 Extractable Gpl 0.020 0.041 0.084 0.023 Sulfate (1') G02 0.019 D.029 0.073 0.018 G03 0.023 0.036 0.125 0 '41 G04 0,020 0.021 0.055 Q.Q15 G05 0.019 0.018 0.023 0.02 G06 0.018 0.018 0.018 0.022 G07 0.018 0.023 P.P16 0.052 GQB O.OOQ 0.022 0.097 0.025 0.02 Spl 0.019 0.020 0.063 0.021 S02 0.019 0.019 0 18 0.019 0.024 SD3 0.026 0.027 0.026 0.021 504 0.019 0.017 0.049 0.018 0.02 S05 Q.019 0.030 0.047 0,018 0.021 S06 0.024 O.OZ5 0.037 0.032 0.097 S07 0.018 0.029 0.018 0.041 Extractable Gp 1 Q.zl 0.29 0.57 0 ~ 12 Chloride (/) G02 0.21 O.Z4 0.78 0.07 G03 0.29 0.29 0.62 0.08 0. 17 G04 0.32 0.14 0.43 0.06 0.11 G05 0.25 0.22 0.18 0 '9 0.14 0.92 e G06 O.Z6 0.90 0.23 G07 O.24 0.24 0.05 0.'67 O'.48 G08 0.28 0 ~ 12 0.04 0.08 0.63 So 1 D.25 0.21 0.68 0.08 SO2 0.25 0.30 0.19 0.19 0 '9 0.10 0.95 S03 0.10 0.78 S04 0.32 0.18 0.38 0.07 0.91 S05 0.32 0.16 0.34 0.18 0 F 89 S06 0.16 0.10 0.73 0.49 2.11 S07 0.17 0.20 0.59 1.85 5-32 h Table 5-12 Drift Sampler Locations in Reference to WNP-2 Cooling Towers 1 3.1 miles 2 2.6 miles 3 2.1 miles 4 1.6 miles 5 1.15 miles 6 0.65 miles ' 0.2 miles 8 Center of. Towers 9 0.4 miles 165'67.5'70'72.5'75'80'05'94'06'12'14'15'14'12'87'Control 10 0.9 miles ll 1.33 miles 12 1.83 miles 13 2.35 miles 14 2.83 miles 15 3.36 miles
  • 16 7 miles Samplers 5"33
Table 5-13 Drift Deposition Rates (Gross and Background Corrected) Corrected for o 1/ r- r) 1 11 3 2 9 1 3 10 2 4 14 6 5 12 4 6 17 9 7 60 52 8 2998 2990 9 16 8 10 11 3 11 9 1 12 9 1 13 8 0 14 8. 0 15 8 0 16 8
  • Control Site 5-34
NE Iy~+I Drfr,,';",;.';;,,;ESTD IcsAPRV Pwwwwmwwm SASti laL ,;;>R170 g', I '! ~ "" ". "'.. I I I Le m a w wm wm w I BELAFLOWER RO I 3 ROUTE 11A I W. KWlA Ah r~ r i+srrr y yl+r II IVJSSELL RO. DEWS WI r w WW\ ':+"" ERE Cage: >> L,V 'AT% ~l ~V.~OL SNRWOOO P mnwea g I rrrr rrr ~ I + Ot I I IRSQOLO RO. I I I I I LII G08~02~ I 1 I ~ L J~( RIEL 0 N + r>'R I a.TOPIA W'ESr EL IU + ~LANT2, 'j',"-:.'.:!gs03 I"., > ~ . I VOEL j,' WORVO I 6 FACUfVPtO+OF ','+506~ "" ;', OORCR GOZ I WES'CFHROI C Ml ZONE F:: ', I ~ ....",'y "" T ~ I GAA I I '% .'5: ~ AXVER I re~ WWHWWWWWW DOOWOOD III WWWWWWWW I rr'ga NXWWS I p O'91>> HHWHWHWW I .', ':; ~ .. wl I II ~ ma o LEGEND PAVED ROAD REPROVED ROAD DR ' ~ ~ IN CITS W I I 0 WWWWW ORAVEL ROAD RARROAO DO%CARY laCS ~OWER LSNS ~ y, .:,'... + SuEPORO PRES II rrvo. '":":t IACXNORO. 000410 tasoi 1 thru 8 60 = Grassland Site 1 thru 7 SO Shrub Site Figure 5-1 Soil and Vegetation Sampling Location Hap 5-35 Shrub Community 50m Herbaceous transect Shrub intercept transect Shrub intercept transect Shrub intercept transect 20m Shrub lntercept transect Shrub intercept transect PhytOmasS sampnng plot I tom Herbaceous Community Herbaceous transect I I t0m Phytomass sampling plot I Figure 5-2 Layout of Vegetation and Soil Sam p linng Plots 5"36 MEAN % COVER 50 40 30 20 10 ?C PREOPERATIONAL OPERATIONAL 1990 ~ AG-G ER3 PG-G C3 AF-G RH PF-G MEAN % COVER 40 30 20 10 PREOPERATIONAL OPERATIONAL 1990 W AG-S EKKI PG-S EQ AF-S 'H PF-S F/gure 5-3 Mean herbaceous Cover for 1975 Through 1990 5"37 TOTAL PRECIP. icm) MEAN TEMP iC) MEAN % COVER/MEAN DRY WT. ig/m2) 20 120 100 I I 15 I l\ I // I \'I 80 'I / l I \ I 1 ll l\ ' 10 60 \' ' 40 20 0 1982 1983 1984 1985 1986 1987 1988 1989 1990 YEAR -- Precipitation ~ Temperature KQ Gover K9 Dry Weight Figure 5-4 Hean Herbaceous Cover, Hean Dry Hgt. (g/m2), Total Precip1tat1on, and Hean Temperature From 1982 Through 1990 GRAMS/SQ. METER 160 140 130 120 110 100 90 80 70 80 60 40 30 20 10 0 PREOPERATIONAL OPERATIONAL 1990 SAMPLE PERIOD ~ GRASSLAND EKI SHRUBS DRY WEIGHT (G/M2) 150 140 130 120 110 100 90 80 70 60 40 30 20 g?".', 10 0 GOI GO2 G03 G04 G05 G08 G07 G08 SOI S02 S03 S04 S05 S08 S07 STATION Figure 5-5 Mean Herbaceous Phytomass at Grassland and Shrub Stations for 1975 Through 1990 5-39 GOI PHYTOMASS 6/M2 HERBACEOUS COVER MEAN I6 G02 PHYTOMASS 6/M2 HERBACEOUS COVER MEAN % 1AO lA0 120 100 100 120 120 110 80 110 100 100 8O 00 00 80 80 80 10 To 80 80 80 AO 80 eo lo ~0 <0 00 20 oo 20 20 20 10 10 0 0 PREOPERATIONAL OPERATIONAL 1000 PR EOPERATI ORAL OPERATIONAL 'l000 SAMPLE PERIOD SAMPLE PERIOD C3DRY WOT. E3% COVER C3DRY WOT. E9% COVER 603 PHYTOMASS 6/M2 HERBACEOUS COVER MEAN % G04 PHYTOMASS G/M2 HERBACEOUS COVER MEAN % 140 140 180 120 120 110 80 110 100 00 00 ao 80 80 80 REDRY 10 To 80 80 Ao 80 Ao ~0 20 80 20 20 20 'lo 10 0 PREOPERATIONAL OPERATIONAL 1000 PREOPERATIONAL OPERATIONAL 1000 SAMPLE PERIOD SAMPLE PERIOD MDRY WOT. K3% COVER WQT. K3% COVER Figure 5-6 Mean Herbaceous Cover and Phytomass for Stations G01 to G04 for 1980 Through 1990 G05 PHYTOMASS G/M2 HERBACEOUS COVER MEAN % G08 PHYTOMASS G/M2 HERBACEOUS COVER MEAN % 110 Ilp 180 100 120 120 110 80 110 80 100 100 00 00 40 80 80 80 Tp 70 00 80 40 ~0 80 80 so +0 80 20 oo 20 20 20 10 10 0 PAEOPEAATIONAL OPEAATIONAL IOQO PAEOPEAATIONAL OPEAATIONAL 1080 SAMPLE PERIOD SAMPLE PERIOD C3DAY WQT. E35 COYEA CD DAY WO'T. EBS COVE A G07 PHYTOMASS G/M2 HERBACEOUS COVER MEAN % GOB PHYTOMASS G/M2 HERBACEOUS COVER MEAN % 140 110 100 100 120 120 110 80 110 80 100 100 00 00 80 80 80 70 To 00 80 40 40 80 80 40 so 80 20 00 20 20 20 10 10 0 PAEOPEAATIOHAL OPEAATIONAL IOOO PAEOPEAAIIONAL OPEAATIOHAL 1000 SAMPLE PERIOD SAMPLE PERIOD MDAY wo'T. K3% coYEA CDDAY WOT. MBA COYEA Figure 5-7 Mean Herbaceous Cover and Phytomass for Stations G05 to G08 for 1989 Through 1990 S01 PHYTOMASS G/M2 HERBACEOUS COVER MEAN % S02 PHYTOMASS G/M2 HERBACEOUS COVER MEAN % 110 Iio 100 100 120 120 110 8O 110 80 100 100 00 00 80 80 80 To To 80 80 <0 Ao 80 80 io lo 80 20 oo 20 20 20 10 10 PREOPERATIONAL OPERATIONAL 1000 PREOPERATIONAL OPERATIONAL 1000 SAMPLE PERIOD SAMPLE PERIOD C30RY WOT. E3% COVER C30RY WOT. 63% COVER SOS PHYTOMASS G/M2 HERBACEOUS COVER MEAN II S04 PHYTOMASS G/M2 'HERBACEOUS COVER MEAN I6 00 80 80 80 To To 80 80 80 io lo ~0 lo 20 20 20 20 10 10 PREOPERATIONAL OPERATIONAL 1000 PREOPERATIONAL OPERATIONAL 1000 SAMPLE PERIOD SAMPLE PERIOD C30RY WOT. K35 COVER C3ORY WOT. K3% COVER F/gure 5-8 Mean Herbaceous Cover and Phytomass for Stations S01 to S04 for 1980 Through 1990 S05 PHYTOMASS G/M2 HERBACEOUS COVER MEAN % SOO PHYTOMASS G/M2 HERBACEOUS COVER MEAN % 120 100 100 110 00 100 80 80 00 TO 80 TO 80 80 80 80 80 80 ~0 Ao AO ~0 30 20 20 20 20 10 10 PREOPERATIONAL OPERATIONAL 1000 PREOPERATIONAL OPERATIONAL 1000 SAMPLE PERIOD SAMPLE PERIOD C30RY wOT. IZ38 covER CDORY WOT. EZIR covER S07 PHYTOMASS G/M2 HERBACEOUS COVER MEAN % 120 100 110 100 80 00 80 10 80 80 80 ~ 0 ~0 30 20 20 10 PREOPERATIONAL OPERATIONAL 1000 SAMPLE PERIOD CDORY wOT. IZIR COVER Figure 5-9 Mean Herbaceous Cover and Phytomass for Stations S05 for 1980 through 1990 and Stations S06 and S07 for 1989 Through 1990 DENSITY (shrubs/haj 2500 2000 1500 1000 500 0 S01 S02 S03 S04 S05 STAT ON I ~ PREOPERATIONAL EB OPERATIONAL EQ1990 Figure 5-10 Shrub Density at Five Stations for 1975 Through 1990 MEAN PERCENT COVER 30 25 20 15 10 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 YEAR F/gure 5-11 Hean Total Shrub Cover for 1975 Through 1990 PERCENT COVER DENSITY (shrubs/ha) 600 500 I % COVER DENSITY 400 300 200 100 SO1 S02 S03 SO4 S05 STAT ON I Figure 5-12 Shrub Cover and Density for Five Stations for 1990 pH 9.0 8.0 7.5 7.0 I e 6.0 G01 G02 G03 G04 G05 G06 G07 GOS S01 S02 S03 S04 S05 S06 S07 STATION M P REOP 8 RATIONAL EK3 OP 8 RATIONAL ED 1990 CONDUCTIVITY MICROSIEMENS/CM 100 90 80 70 60 50 40 30 20 10 GOI G02 G03 G04 G05 G08 G07 G08 SOI S02 S03 S04 S05 S06 S07 STATION CHPREOPERATIONAL EKIOPERATIONAL EZ 1990 Figure 5-13 Soi1 pH and Conductivity for 1980 Through 1990 5"47 CHLORIDE MICROGRAMS/GRAM 12 10 0 601 602 603 G04 G05 G08 607 608 SOI S02 S03 S04 S05 SOO S07 STATION C3 PREOPERATIONAI. EEI OPERATIONAL ~ 1990 SULFATE MICROGRAMS/GRAM 50 40 30 20 10 0 GOI 602 G03 604 605 GOS 607 608 SOI S02 S03 S04 S05 SOS S07 STATION CDPREOPERATIONAL EBOPERATIONAL C31990 F/gure 5-14 So/l Sulfate and Chlor)de for 1980 Through 1990 5-48 .o MEQ. HCO3/GRAM X 10-4 70 60 50 40 30 20 10 0 GOI G02 G03 G04 G05 GOS G07 GOS SOI S02 S03 S04 S05 SOB S07 STATION MPREOPERATIONAI. EB OPERATIONAL E31990 COPPER MICROGRAMS/GRAM 15 14 13 12 10 G01 G02 G03 G04 G05 G06 607 GOB SOI S02 S03 S04 S05 SOS S07 STATION MPREOPERATIONAL EBOPERATIONAL E31990 Figure 5-15 Soil Bicarbonate and Copper for 1980 Through 1990 5-49 o LEAD MICROGRAMS/GRAM ? 4 0 G01 G02 G03 G04 G05 G06 G07 GOB S01 S02 S03 S04 S05 S06 SOI STATION C3PREOPERATIONAL EB OPERATIONAL E31990 NICKEL MICROGRAMS/GRAM 20 15 10 n 4 G 0 G01 G02 G03 G04 G05 G06 G07 GOS SOI S02 S03 S04 S05 S06 S07 STATION MPREOPERATIQNAL RB OPERATIONAL E31990 F/gure 5-16 Soil Lead and N/ckel for 1980 Through 1990 5-50 0 CADMIUM MICROGRAMS/GRAM 0.8 0.5 0,4 0.3 0.2 0,1 0 Gp'I G02 G03 G04 G06 G08 G07 G08 S01 S02 S03 S04 S06 S08 S07 STATION CD PREOPERATI ONAL K3 OPERATIONAL E3 1990 ZINC MICROGRAMS/GRAM 80 66 50 46 40 36 30 20 15 10 G01 G02 G03 G04 G05 G08 G07 GOS SOI S02 S03 S04 S05 S08 S07 STATION HPREOPERATIONAL EBOPERATIONAL ED1990 Figure 5-17 So/1 Cadm/um and Z1nc for 1980 Through 1990 5-51 CHROMIUM MICROGRAMS/GRAM 20 18 14 12 10 0 G01 G02 G03 G04 G05 GOS G07 GOS 801 S02 S03 S04 S05 S06 S07 STATION CDPREOPERATIONAL EEIOPERATIONAL E31990 SODIUM WEIGHT PERCENT
0. 10 0.08 0.06 0.04 0.02 0.00 G01 G02 G03 G04 G05 G06 G07 G08 801 802 803 804 805 806 807 STATION MPREOPERATIONAL EKIOPERATIONAL E31990 Figure 5-18 Soil Chromium and Sodium for 1980 Through 1990 5"52
POTASSIUM WEIGHT PERCENT
0. 350 0.300 0.250
0. 200
0. 160
0. 100 0.050 0.000 GOI G02 G03 G04 G05 G06 GOT GOS SOI S02 S03 S04 S05 S06 SOT STATION
~PREOPERATIONAL RB OPERATIONAL E31990 CALCIUM WEIGHT PERCENT 1.00
0. 80 0.60
0. 40 0.20 0,00 GOI G02 G03 G04 G05 G06 G07 GOS S01 S02 S03 S04 S05 S06 SOT STATION I
WPREOPERATIONAL EB OPERATIONAL E31990 Figure 5-19 Soil Potassium and Calcium for 1980 Through 1990 5-53 MAGNESIUM WEIGHT PERCENT C? .4' ??  ?? . '.C '( '? C;.':, ?."?
?C;; &? g 601 602 603 604 605 606 607 608 S01 S02 S03 S04 S05 S06 S07 C3 PREOP E RATIONAL I STATION OP E RATIONAL EQ 1990 F)gure 5-20 So/1 Hagnestum for 1980 Through 1990 o VEGETATION COPPER (saorcgrama/gram) ps/os /orrgr/gris VEGETATION COPPER (sacrograma/gras) srcmrra loorcrrrm ta I~ R 1080 W 1080 EB 1081 EB 1081 12 12 CI 1082 C3 tos2 KZI 1083 EEI 1083 10 10 8 OOI OO2 GOS GOa GOS GOS OOr GOS SOI SO2 SOS SOa SOS SOe SOr GO1 GO2 GO3 Goa Goo Goe Gor GOS Sot SO2 SO3 Soa Soe Soe Sol STATION STATION VEGETATION COPPER (mlcrograma/gram) Poler lcsgl/Or/a VEGETATION COPPER (mlgrograma/gram) srcmrra Ioorcrslrl 1a 18 % 108 ~ W 108a 12 10 I IccI t088 C3 E3 1088 Iger 1088 CI 1080 12 E3 E3 C3 1088 1088 EB )ocr t088 1080 10 IoI3 )goo K3 1000 GOI OO2 GOS GOa GOe OOS GOr GOS SOI SO2 SOS SOa SOa SOe SOT GO1 GO2 GO3 Goa Goe Goe Gor GO8 Sol SO2 SO3 Soa Sos SOS Sor STATION STATION F)gure S-21 Copper Concentrat)ons (ug/g) in ~hl +~~1) and ~rn~ ~~r~ for 1980 Through 1990 VEGETITIOII COPPER (mrareorama/Oram) Astern/ala rrrderrrera vEGETaTIOII COPPER (mlaroor ~ maloram) PrNaer ~ rrIderrtele 30 10 % 1080 W 1080 E3 losl E9 los( CD 10S2 CD los2 KI 1083 EiB 1083 20 18 10 G01 G02 G03 004 000 GOO G01 008 801 S02 SO3 SOI SOS SOO 801 001 002 003 GOa 008 GOS 001 008 301 802 SO3 SOa SOS SOO SO1 STATION STATION VEGETa)ION COPPER (mlarearama/Qrarrl) At(em/era Irrderrrata VEGETATIOII COPPER (mlerOOrama/Oram) PrNaela trlderrtata 30 10 R IOSe 108 ~ E3 toss EB 1083 CD loss CD 1080 RES 1081 EEB 1081 E3 H 1088 20 CD 1088 1080 ~ K3 1080 KB 1000 1000 10 001 GO2 003 GOa GOS GOO 001 GO8 SO1 802 803 SOe SOS SOO SO1 GO1 002 003 GOa 003 GOO 001 GOO SO'I SO2 SOS SOe SOS SOO 801 STATION STATION Figure 5-22 ~~ Copper Concentration ~r(~g ~(fpnf~ (ug/g) and for 1980 Through ~~h1 1n 1990 'o VEGET4TIO/I COPPEA (mlC<OO<4ml/0<4m) Slly<t<(rlvcl or/tool<<tot<< VEGET4(<O<t COP/'EA (mlC<OQ<4mo/0<4m) PO4 444dOC<gt/ 18 10 1080  % loao I 18 EB IQOI EB IQSI CD loa2 CD loe2 I~ IZZ! 1083 1083 12 10 001 GO2 003 GO4 GOO GOO 007 008 $ 0'I SO2 SO3 $ 04 SOO $ 08 SO) Gol 002 003 G04 Goa Goo Go/ 008 $ 01 so2 sos so4 soo soo soy STATION STATION vEGETITI0/I COPPEA (ogctootomo/atom) Stoymort<rm ott/44/mom VEGET4210/I COPPEA (mtc<OQ<omo/0<4m) PO4 44<<dOO<gl/ 18 10 W IO84  % 108 ~ 18 E3 loss K3 1083 CD 1088 CD 1088 14 E3S Tost E(3I IQS/ H IOSS H 1088 12 CD loco CD loao 10 H IOOO EB 1000 2 2 001 002 G03 G04 Goa Goo Goy 008 Sol so2 $ 03 so4 Soa soo so/ GOI GO2 GO3 004 GOO GOO 007 008 SOL SO2 $ 03 S04 SOO SOO SO) STATION STATION Figure 5-23 Copper Concentration (ug/g) in ~~i m~iq ~l<~Igg] and for 1980 Through 1990 ~P EXT4ACTABLE CHLOHIDE (8) Bremvh toot+ vm E XT4ACTABLE CHLO4IDE (8) PA/ca tcooltctth 080 0220 % 0&i D.is 63 CD 1080 '1081 1082 EEI 1&83 0.108 0.178 I !Xi 1081 CD los2 lose D.i2 0.)&i 038 0.132 0.110 02i 0.088 0.18 0.0&s 0.12 0.0t h 008 0 022 000 0.000 001 002 003 GOi 00& 008 007 008 $ 01 $ 02 SOS SOi SO& $ 08 $ 07 001 G02 003 GOi GO5 GOS 007 GOB SOl $ 02 SO3 SOi SO& $ 08 SOT STATION STATION EXTBACTABLE CHLO4IDE (8) Btomvc tcctotvm X)4ACTABLE CHLO4IDE (%) PAIOm tOhcttotth 080 0 220 % 108 ~ W 108 ~ 0&i K3 108& 0.'I 08 E3 108& CD 1088 CD 1088 D.i8 0.178 K3 los7 EB los)
0. ~ 2 H 1&88 0.15i H 1088 CD 1080 CD loco R3 1000 0.132 69 1000 0.110 0.2 ~ 0 088 0.18 0058 0.12 0,0th 0.08 0 022 000 0000 001 002 003 GOi GO& 008 007 008 SO) $ 02 SOS SOi SO& SO& SOT 001 002 003 GOi GO5 GO& 007 GO8 SO1 $ 02 SO3 SOi SO& $ 08 $ 07 STATION STATION Figure 5-24
~@gag Through 1990 and ~l ~n+~ ~IZ Chloride Concentration (1) ln for 1980 EXTRACTABLE CHLORIOE (8( ArlrrrdSI4 Irldknl~ 14 EXTRACTABLE CHLORIOE (sl PW4414 lfldcclclc '1.50 02'10 W 1080 1080 I EB 1081 0.180 Edl 1081 1.25 C3 1082 C) 1082 0.188 1083 IK! 1083 0.1 ~ 7 0.128 0.15 0.084 0.50 0.083 0042 025 0021 000 0.000 001 002 003 004 005 008 GOT 008 301 302 503 504 S05 Sos 507 GO1 002 003 004 GO5 008 GOT 008 S01 S02 303 $04 Sos SOO SOT STATION STATION EXTRACTABLE CHLORIDE (%( Arlccdrlc lrld441414 EXTRACTABLE CHLORloE (5( Pvr4514 Irldccl~ I4 1.50 % 108 ~ 0.231 % 1884 EB 1085 Icd( 1085 1,25 C3 1088 0.210 C3 1088 EB (081 0.180 EEI 1081 H (588 E3 1088 1.00 C3 1080 0.188 C) (OSO IEB 1000 0.141 KS 1000 0.15 0.128 0.105 0.50 0084 0083 025 0.042 0.021 000 0 000 GOT OO2 003 GO4 OOS GOS GOT GOS SO( SO2 SOS SO4 SO5 SOS SOT 001 002 003 004 005 008 GOT 008 SO1 SO2 303 SO4 SO5 Sos SOT STATION STATION F1gure 5-25 Ch1or)de Concentration (X) 1n ~r) fggf~ and Pg.~1 for 1980 Through 1990 EXTRACTABLE CHLORIOB (8) Pee eeedsm'dll 2 XTRACTABLK CHLORIOE (8) Slsymevlvm el Ilselmem 080 1.20 1080  % )080 83 Ios) 1.08 69 1081 CD )082 CD 1082
0. ~ 0 IILI 1083 008 K3 1083 08 ~
O.r 2 oso 0.20 0 ~8 0.10 0.2 ~ 0.12 000 0.00 001 002 003 Goe 005 Gos Gor GOB 50'I 502 503 Soe Sos 508 Sor 001 G02 G03 Goe God 008 Gor 008 so) so2 so3 soe sos sos sor STATION STATION EXTRACTABLE CHLORIOE (5) 4de eeedeeipll EXTRACTABLfCHLORIOE (5) Slerm(clem eltlsslmem 0.50 120 % 188 ~ W IOse E3 1088 1.08 EB 1085 CD 1088 CD )088 0eo EBI 1081 008 EB Iosr ~ 1088 Ose E3 CD )088 1888 CD )080 0.30 RS 1000 0.12 K3 1080 080 020 048 0.38 0.10 02e 0.12 0.00 GOI GO2 GO3 Goe 005 008 Gor GOB 501 SO2 503 Soe 505 508 Sor 001 002 GO3 Goe GOS 008 Gor 008 501 502 503 Soe 505 508 SOr STATION STATION Figure 5-26 Chloride Concentration (X) in 52k ~~r11 and /~mt'~1m q for 1980 Through 1990 Ex)4ACTABLE SULFATE (%) Phlh>> (aha((O(lo EXT4ACTABLE SULFATE (%) 5loymh>>lorn 4UI54lmvm 0 220 1.20 W 1080 Ta so 0.108 69 108( 1.08 GB los( CD 1082 CD 1082 0.118 0 as K3 1083 Im) '1083 0.154 O.84 0.72 0.110 080 0.088 0.48 0oaa 0.38 0044 024 0.022 0.12 0 000 000 GOT GO2 003 004 005 008 GOT 008 $ 01 802 803 S04 805 SOS SOT Gol 002 003 004 005 ooa Got Gos sol 802 803 304 so5 soa sol STATION STATION EXT((ACTABLE SULFATE (%) Phla>> lhhOUOII4 EXTAACTASLE SULFATE (%) Slhymhvl>>NA oltlholmvm 0220 1.20 % 1084  % 1084 0.108 0.118 0.1&4 I EB CD E3 CD 1585 1088 TOST 1088 1080 1.08 o.oa 084 K3 1085 CD loss EB 1081 EB 1088 CI 1580 EB 1000 012 K9 1800 allo oao-0 088 0.48 ooas 0.38 004 ~ 0,24 0 022 0 000 001 002 003 004 005 008 GOT 008 Sol S02 SOS 304 SO5 SO& SOT 001 002 G03 004 Go& Goa Gol 008 sol 302 sos so4 so& soa 801 STATION STATION Figure 5-27 Su1fate Concentration (1.) in ~h1 x ~~fili and ~~I)~r~ ~i~im for 1980 Through 1990 E XTRACTABLE SULFATE (%l Ac%mille srlennlnln E XTRACTABLE SULFArE (%) pwhhr ~ lrlonnl~ ln 0.320 030 % 1080 R 1080 0288 EB '1081 021 63 1081 CD 1082 CD 1082 0258 02n EK! 1083 ES 1083 0.22 ~ 021 0.102 0.18 0-180 0.1 8 0.128 0.12 0.008 aoO 0084 008 0 032 0.03 0 000 000 001 002 003 GOA GOS 008 GOT 008 501 502 503 SOn 50& SOS SOT 001 002 003 GOA GOd 008 OOT GOB S01 SO2 SO3 504 SOd SOS SOT STATION STATION EXTRACTABLE SULFATE (%) Allemlhrr Trlonnlnl~ EXTRACTABLE SULFATE I%1 Pnrehln trldnnlnln 0.320 0.30 % Iden & 108 ~ 0 288 E3 1085 02T EB 1osd CD 1088 CD loee 0.288 02n 1081 EEI loeT EEEI E3 1088 K3 1oee 0 224 0.102 ~ EB 1080 1000 021 0.18 CD K3 1080 Tooo 0.180 0.15 0.128 0.12 0008 000 aoe< 008 0 032 003 000 001 G02 003 004 005 GOS OOT GOB 501 502 SOS SOA SOS SOS SOT 001 002 003 GOi GOd GOS GOT GOB 501 SO2 SO3 SOA SOd SOO 307 STATION STATION Figure 5-28 Sulfate Concentration (1.) in ~rmi~i ~ri ~n 1980 Through 1990 and ~P~rhi ~rt~g for EX1RACTABLE SVLFATE (3) PDC CC+dD&dd EXTRACTABLE SVLFATE (%) BrOmvC TDC(mdm 020 0.350 W 1OS0 L880 0.18 Ed) 1081 0315 EB 1081 C3 1082 CI 1882 0.)a 0 280 ER! 1883 EZI 1083 0.14 0 215 0.12 0210 0.10 0.1)5 008 0.140 0.08 0.105 0 ac 0 010 0.02 0 035 0.00 0.000 001 002 003 Goi 005 Goa Gol 008 501 302 303 soi 305 soa sol 001 002 003 Goc 005 Goa Gol Gos So'1 SO2 303 Soc Soe Soa Sol STATION STATION E X TRACTABLE SVLFATE (8) RDC CCmFDmda EXTRACTABLE SVLFATE (8) Brymvc Tccavvm 020 0.350 % 108 ~  % 108 ~ I 0.18 EB 1085 0.315 E3 )585 C3 )osa )oea 0.18 02eo EB 10Sl )eel 0.14 H 108S u 0.2ie EB )oes CD )580 C) Toeo 0.12 IcxS )ooo 0210 IEB 1000 0,10 0.1)5 0.0a 0.1 ~ 0 0.08 00c 0 0)0 002 0 035 0.00 0 000 001 002 003 Goi 005 Goa Gol Gos SO1 SO2 303 Soc Soe Soa Sol 001 002 003 Goc GOS Goa Gol GOS SO1 SO2 SO3 304 SO5 Soa Sol STATION STATION Figure 5-29 Sulfate Concentration ~ggrEtil 1980 Through 1990 and gr~ ~~
0) ln ~P for
EXTRACTABLE CHLORIDE (%) EXTRACTABLE SULFATE (%) 1.0 & POSA 020 0 POSA E4I SATE 63 SATE CD SIAL CD SIAL 0.3 EB PHLO K3 PHLO E3 PUTA O.la E3 PUTA <<I AATA <<) AATA 03 0.10 0.4 ooa 0.0 0.00 Go1 Go2 Gos Go4 Goa Goo GoT Gos so1 so2 sos 304 soa soo soT 001 002 003 004 Goa 003 007 GOS Sol S02 S03 304 Soa Sos SOT STATION STATION VEGETATION COPPER MICROGRAMS/GRAM 12 ~ POSA KB SATE 10 CD SIAL EB PHLO <<I PUTA <<I AATA 001 002 G03 004 Goa God Gol Gos SOI S02 S03 S04 Soa Sos SOT STATION Figure 5-30 Total Vegetation Copper, Chloride and Sulfate for 1990 1 10 100 NW NE I 200 300 ( 200 100 i 025 m). 10 100 200 300 400 300 200 SW SE 100 10 figure 5-31 Predicted Salt Deposition Patterns Out to 0.5 Nile (0.8 km) (lb/acre/yr) 5-65 0.8 1.0 0.8 1.0 NE I I '" I 1.6 I 1.. 1.O I o.s 58 l 6.9 ml 0,6 5.0 ml. 1.8 ml. 4.4 ml. 3.6 mi. o.4 04 Oe 0.8 I o.e 0.8 1.0 1.2 1.4 '.6 I 1S SW SE 1.0 1.0 1.2 910370.2 Figure 5-32 Predicted Salt Deposition Patterns Out to 6.9 M11e (11.1 km) (1b/acre/yr) 5"66 r N T. rs DOE )JAN: GRAVEL PIT rrr r3$ T. r8 0 rrr rr rssT. r2 r+ Pg ~o sT. 12 4rp ST. rr POWER UNE -- WYE BARACADE sT. ro rs.w cc~ ASHE SUBSTATION // @ST 8 ~AA'T. OO 7 $ O~ / PSF I3) // 41 0 + 0 CO v+ ~/ / ST. 5 ~4' CS I lrl I @+ /' / 4 ~O OO e rr D ~O 0 A rr 8). O~ ~+ // (r) ~V PC Pe SST.2 55 OO // ACCESS RD. FFTF ST. 2 rr / ST. r r3~ ( BURIAL~ GROUND SCALE (MILES) 5 .5 1 1.5 880881 Figure 5-33 Location Map of Cooling Tower Drift MARCH 1988 Monitoring Sites 5-67 Collector Vessel 18" High 6" Diameter 0 0 0 <<g+,-~?< Cl O O O 'U 0 Q CO C9 18" co<'oiing i ower Coiiecior'Vesseis'" 890317 Figure 5-34 Cooling Tower Drift Co11ection Vesse1 5-68 NNW 9.8% N 9.1% NW 11.2% NNE 5.9% WNW 6 5% NE2 9% ENE 0.7% W 4.2% E 0.5% ESE 0 9% WSW 4.7% SE 2.3% SW 75% SSE 9.1% SSW 11 4'/ S 13.4% 9102014 Figure 5-35 Cumulative Wind Rose April 1989 through March 1990 WNP-2 Meterological Station 33 Foot Level 5-69 NNW 9.4% NW 10.6% N 6.9% NNE 4.7% WNW 9 5% NE 3.0% ENE 1.2% W60/ E 1.1% ESE 2.1% WSW 5 7% SE 4.5% SW68% SSW 8 8% SSE 9 4% S 10.9% Figure 5-36 Cumulative Hind Rose 1984 through 1989 HNP-2 Heterological Station 33 Foot Level 5-70 s DEPOSITION AS A FUNCTION OF DISTANCE STATIONS t 7 SO 50 g 40 ~ , 30 e z20 0 a 10 0 0 0.5 1 15 2 25 3.5 DISTANCE FROM COOLING TOWERS (miles) Figure 5-37 Deposition Rate as a Function of Distance 660 N T T N RV 6.1 ~T The regulatory commitment for this study has been satisfied and no further studies are planned. No fish were found impinged during any of the inspec-tions and algal growth was moderate. Incidental observations will be made when maintenance inspections of the intakes are conducted. 6-1 7.0 T R 7.1 I D The aerial photography program began in June of 1988 to monitor the vegetation surrounding WNP-2 for impact due to cooling tower operation. Aerial photo-graphs taken with color infrared (CIR) film, allow large areas to be monitored and to detect signs of possible stress before it becomes visible to the human eye. In addition to examination for stress, the photographs will be com-pared with those taken in following years to look for changes in vegetation patterns and evidence of cumulative damage. This program is performed to comply with Washington State Energy Facility Site Evaluation Council (EFSEC) Resolution No. 239, dated September 14, 1987. 7.2 This program was planned using guidelines published in NUREG/CR-1231 (NRC, 1980). This report outlined the basic requirements for an aerial monitoring program and suggested types of film, photograph scales, frequency of photo-graph acquisition and the size of prints. Five flightlines (Figure 7.1) were planned to cover the areas of greatest deposition according to the drift model constructed by Battelle Pacific Northwest Laboratories (PNL, 1976). Two flightlines, approximately 7 miles (11.2 Km) in length, run in a general north-south direction. These flight-lines run between the two areas of greatest deposition according to the model, The other three flightlines of approximately 5 miles (8.1 Km) in length, run in an east-west direction and were placed to cross gradients of deposition. The five flightlines were flown at an altitude of 1,550 feet (477m) above mean sea level. The flightline coordinates are stored in the long-range navigation (LORAN) system in the contractors airplane. This allows the same lines to be photographed in following years. 7-1 The photographs were taken with Kodak-Aerochrome 2443 color infrared film in a Hasselblad ELM 70mm camera. A Planar lens with a 80mm focal length was used with a number 12 Wratten filter attached. The scale is 1:6,000 in a 70mm x 70mm format. The relatively large scale of 1:6,000 was chosen as being large enough to differentiate the types of shrubs in the areas surrounding WNP-2. The 70mm size was chosen over the larger nine inch by nine inch format for ease of handling and the storage of the nearly 300 photographs. Color infrared (CIR) film was chosen over natural color or black and white film because the symptoms of stress on vegetation may show in the infrared wavelengths before it becomes apparent in the visible wavelengths. CIR film is easier to interpret than black and white infrared because the shades of color are easier to differentiate than the subtler shades of gray in the mono-chromatic infrared. Healthy vegetation wi 11 show as a dark red or magenta color. Stressed vegetation will show lighter shades of red to white. Inter-pretation of the photographs is done on a light table and viewed with magni-fying glass or stereo microscope. A plastic sheet is put over the photographs to protect the film and to allow areas of interest to be marked with a grease pencil Each photograph is examined and signs of stress are noted by flight-line number and frame number. The photographs are taken with an overlap of 501. to make it possible to view them in stereo if desired. The 50/ overlap o was maintained during the acquisition by controlling the shutter with an intervelometer. The photographs were used in the placing of the samplers for the cooling tower drift study. The samplers were placed on portions of the two north-south flightlines. In future overflights, the stations may be used to ground truth the photographs. Markers will be placed next to the samplers to make the stations easier to find on the photographs. The ground truthing will consist of a survey of an area or areas on a flightline and examination of the vegetation for other signs of stress. 7-2 7.3 T N D The overflight was performed by the contractor, Photography Plus of Umatilla, Oregon on June 18 and the photographs received on July 6, 1990. The initial examination of the flightlines was to determine the quality of the photo-graphs, which was found to be generally good, except for a few frames that apparently had been exposed to light, These had a green tinge to them and made't impossible to determine the health of vegetation in the photographs. A second, more detailed examination followed for the purpose of interpretation. The acquisition of the photographs was late in the spring season and missed the period d of peak photosynthesis. 1h h d I h. h I.~l~l Because of this, it was only possible to ~~ ' become inactive as had Host dhh 1 h of the smaller forbs such as the perennial and annual grasses. ~ ~~f It I i had is difficult to d determine the activity of smaller plants because the dark red of a healthy, active plant and the dark green of a dead or inactive plant appear very close ~ in the 1:6,000 scale of the photographs. The medium P. ~ri ~n. Hany 11 << sized shrubs were more numerous than the larger shrubs, and more evenly distributed through the flightlines. These shrubs may be specimens of I. dd fd.d ~UJ of the smaller shrubs noted on the northern half of flightline 2 were determined in 1989 to be immature ~remi~. The large d shrubs were mostly limited to isolated individuals or small clusters because the flightlines cover the area that had burned in the 1984 range fire. Hany small plants were noted along the edges of active dunes in the northern half of flightlines 1 and 2. These are most likely clumps of ~~~r n ~1~m, ~~ ~m@, or Q~m~ ~v~. A large, healthy group of ~l~l kali was found along the eastern side of the Ashe Substation, north of Plant 2. ~l ~ is also seen along other disturbed area such as railroads, highways and gravel pits. 7-3 The general health of those plants and shrubs that were active was good. Some small, localized area of stress may be seen on several flightlines but, due to the mixture of healthy vegetation to those exhibiting stress, it would seem better explained by disease or infestation. No adverse impact was evident from the operation of Plant 2. o 7-4 I Shipley, B.L., S.B. Pahwa, M.D. Thompson and R.B. Lantz. 1980. NUREG/CR-1231. Remote sensing for detection and monitoring of salt stress on vegetation: Evaluation and guidelines. Final report, September 1976-March 1979. Nuclear Regulatory Commission, Washington, D.C. Droppo, J,G., C.E. Hane and R.K. Woodruff. 1976. Atmospheric effects of circular mechanical draft cooling towers at Washington Public Power Supply System Nuclear Power Plant Number Two. Battelle Pacific Northwest Laboratories, Richland, WA. 7-5 dO DOE GRAVEL PIT +o~ +p Pg lL d ~O~ POWER LINE WYE BARACADE FLIGHTLINE3 ASHE 'UBSTATION FUGHTUNE 4 / 0 ./ ./ ./ EOF PSF 0 FUGHTLINE 5 + ~/ / ~0 0 V ~c~/'/ ~0 00 0 / 'v Q ,/ / / / ACCESS RD +0 / ~o ,/ BURIAL GROUND 4 SCALE (MILES) C .5 I 'I.S CIRCLE INDICATES PLIGNTLINE STAIITING POINT CIRCLE INDICATES FLIGHTLINES STARTING POINT F)gure 7-1. Aeria1 Photography Fl tght) tnes COLLECTILf PERIOD 1 2 PUNP 3 PUNP DRIFT S04 Cl Ca le Na HOURS SPN GPN GALS/OAY ~PN PPN PPN PPN PPN e 22-Nar-89 23-Nar-S9 24 24 456736 456736 328850 32S850 508 506 41 204 203 49 49 20 20 11 24-Nar-89 14 456736 328850 555 45 223 53 25-Nar-89 24 456736 328850 532 43 214 51 21 25-Nar-89 24 456736 328850 538 43 216 52 22 27-Nar-S9 4 5T36 328850 516 41 207 c0 24 24 237 57 14 2$ -Nar-89 24 455736 328S50 590 47 IO 29-Nar-89 14 455736 328850 354 19 177 42 JM 30-Nar-89 24 456736 318850 344 }9 172 4} 17 31-Nar-89 24 456736 328850 18 166 40 17 '39 02"Apr-89 24 45&T36 328850 278 15 33 14 D2-Apr-89 23 456736 315148 250 14 }25 30 03-Apr-89 24 456736 328850 217 12 109 26 12 04-Apr-S9 24 456736 328850 280 15 140 34 14 05-Apr-89 456736 328850 245 13 222 29 12 06-Apr-89 24 456736 328850 }98 11 99 24 10 07-Apr-89 24 456736 328S50 250 }4 }25 3D 12 08"Apr-89 24 456736 328850 '37 13 119 28 12 09-Apr-89 24 4"6736 3288'0 225 12 112 27 11 10-Apr-S9 24 456736 328850 208 11 104 25 10 11-Apr-89 456736 328850 245 13 122 29 12 12-Apr-S'9 24 456736 328850 230 }3 115 28 11 13-Apr-89 24 45673& 328850 242 13 121 29 22 ,'Qi 14-Apr-89 15-Apr-89 24 24 456736 456736 328850 328850 269 264 15 15 134 132 32 32 23 }3 16-Apr-89 24 456736 328850 251 14 126 30 13 17-Apr"89 24 455736 328850 214 12 107 26 11 1'-Apr-89 24 456736 328S50 215 12 208 26 1} TOTAL 671 HOURS 9194096 GALLONS AVERAGE CDHC, PER CGLLECTIGR PERIOD (PPN}= 21 149 36 AVERAGE POUNDS P R COLLECTION PERIOD= 24893 1629 1143 S 2745 2144 Ca - Circ Aater Analyses by Chen Lab S04 - Used S04/Ca of 2.49 when Ca >200; 2.0 when Ca <20D Cl - Used Cl/Ca of 0,20 <<hen Ca >200; 0, 11 <<hen Ca <200 Ng - Used Ng/Ca of 0.24
.a - Used Na/Ca of 0, 10 Plant Operational Data for Collection Period l A-1
COLLECTION PERIOD 2 2 ?UNP ~ UNP DRIFT SO4 C! Ca Ng lla GALS/DAY ppv apN oaq ooq ooq HOURS GPN GPN !9"Apr-89 24 456736 328850 245 !3 122 29 !2 20-Apr"89 24 456736 328S50 232 !3 116 2S 12 21-Apr-89 24 456736 328S50 227 !2 !14 27 11 22-Apr-89 24 456736 328S50 27S !5 139 33'34 23-Apr-89 24 456736 328850 13 'i17 28 12 24-Apr-89 24 456736 3288SO 214 12 107 26 11 25-Apr-89 24 456736 32S850 208 11 104 25 10 26-Apr-89 24 456736 328850 274 !S 137 33 14 27-Apr-S9 24 456736 328850 234 13 117 28 12 2S-Apr-S9 22.S 456736 312407 308 17 154 37 15 29-Apr-89 0 456736 30-Apr-89 0 456736 01-Nay-89 0 456736 02-Nay-89 0 456736 03-Nay-89 0 456736 04-Nay-89 0 456736 05-Nay-89 0 456736 06-Nay-89 0 456736 07-Nay-89 0 456736 08-Nay-89 0 456736 09-Nay-89 0 456736 10-Nay-89 0 456736 11-Nay-89 0 4S6736 12-Nay-89 0 456736 !3-Nay-89 0 456736 14-Nay-89 0 456736 15-Nay-89 0 456736 16-Nay-89 0 45673& TOTAL 238. S HOURS 3272057 GALLONS AVERAGE CONC, PER COU.ECTION PER!OD (PPN!o 245 !4 123 29 12 h AVERAGE POUNDS PER COLLECTION PERIODo 6696 368 3348 804 335 Ca - Circ Rater Analyses by Chen l.ab 804 - Used SO4/Ca of 2.49 nhen Ca >200; 2,0 when Ca <200 Cl - Used Cl/Ca of 0.20 shen Ca >200; 0. 11 shen Ca <200 Ng - Used Ng/Ca of 0.24 Na - Used lla/Ca of 0. 10 Plant Operational Data for Collection Pertod 2 A-2 COLLECTION PERIOD 3 ";a Mg Mi oo 2 PUP 3 PUNP DRIFT S04 Cl GPN GALS/DAY PPN FPN PPN 0Dg PPN DATE HOURS GPN ~ 15-Nay-89 0 456736 17-Nay-89 0 455736 18-Nay-89 0 456736 19-Nay-89 0 456736 20-Nay-89 0 456736 21-Nay-89 0 4c&736 22-Nay-89 0 456736 23-Nay-89 0 456736 24-Nay-89 0 456736 25-Nay-89 0 455736 26-Nay-89 0 456736 27 Nay 89 0 456736 28-Nay-89 0 456736 29-Nay-89 0 456736 30-Nay-89 0 456736 31-Nay-89 0 456736 01-Jun-89 0 456736 02-Jun-S9 0 456736 03-Jun-89 0 456736 04-Jun-89 0 456736 05-Jun-89 0 456736 06-Jun-89 0 456736 07-Jun-89 0 456736 08-Jun-89 0 456736 09-Jun-89 0 456736 10-Jun-S9 0 456736 11-Jun-89 0 456736 12-Jun-89 0 456736 13-Jun-89 0 456736 14-Jun-89 0 456736 15-Jun-89 0 456736 1&-Jun-89 0 455736 17-Jun-89 0 456736 &0 30.1 18-Jun-89 0 456736 62 31.2 19-Jun-89 0 456736 50 3 252 20-Jun-89 0 456736 69 4 34,4 TOTAL 0 HOURS 0 GALLONS AVERAGE CONC. PER COLLECTION PERIOD (PPN)c AVERAGE POUNDS PER COLLECTION PERIOD II Ca - Circ Mater Analyses by Chen Lab S04 - Used SO4/Ca of 2.49 when Ca >200; 2.0 when Ca <200 Cl - Used Cl/Ca of 0 '0 Shen Ca >20D; 0, 11 chen Ca <20D Ng - Used Ng/Ca of 0.24 II Plant Operatfonal Data for Collectfon Na - Used Ra/Ca of 0. 10 Perfod 3 A"3 COLLECT ION PERIOD 4 2 PUNP 3 DRIFT 804 Cl Ca "g Ha PU"J'PN DATE HDURS GPN SALS/DAY PPN ,PPN PPN PPN PPN 21- Jun-89 0 456736 0 22-Jun-S9 0 456736 0 23-Jun-89 0 456736 0 24-Jun-89 0 456736 0 25-Jun-89 0 456736 0 26-Jun-89 0 456736 0 27-Jun-89 0 456736 0 28-Jun-S9 S.43 456736 115509 29-Jun-89 0.05 456736 &85 30-Jun-89 10.23 456736 140172 01-Jul-89 0 456736 0 02-Jul-89 20.53 456736 281304 03-Jul-89 24 456736 328850 04-Jul-89 24 456736 32S850 05-Jul-89 24 456736 328S50 06- Jul-89 24 456736 328850 247 35 118 26 18 07-Jul-89 24 456736 328S50 OS-Jul-89 24 45&736 328850 09"Jul-89 24 456736 328850 10- Jul-89 24 456736 328850 11-Jul-89 24 45673& 328850 490 42 189 44 24 12-Jul-89 24 456736 328850 13-Jul-89 24 456736 328850 14-Jul-89 24 456736 328S50 15-Jul-89 14 456736 328850 16-Jul-89 24 456736 328850 17-Jul-89 24 456736 328850 18-Jul-89 24 456736 328850 606 37 216 51 24 TOTAL 423.24 HOURS 5799268 GALLQHS AVERAGE CONC. PER COLLECTIOM PERIOD <PPN)"- 448 38 174 40 22 AVERAGE POUNDS PER COLLECTIOH PERIOD 21644 1837 8429 1950 1064 Plant Operational Data for Collection -Period 4 A"4 COLLECTION PERIOD 5 2 PUNP 3 PUNP DRIFT 884 Cl Ca Ng Na DATE HOURS GPN GFN GALSIW PPN PP" PPN PPN PPN 19-Jul-89 24 456736 328850 20-Jul-89 24 4567 6 328850 21-Jul-S9 24 456736 328850 22-Jul-89 24 456736 328850 23-Jul-89 14 456736 328850 24-Jul-89 24 456736 328850 25-Jul-89 24 456736 328850 26-Jul-89 24 456736 328850 27-Jul-89 24 456736 328850 28-Jul-89 24 456736 328850 594 41 217 52 20 29-Jul-89 24 456736 328850 30-Jul-89 24 456736 328850 31-Jul-89 24 456736 328850 01-Aug-89 24 456736 328850 566 48 239 58 27 02-Aug-S9 24 456736 328850 03-Aug-89 24 456736 328850 04-Aug-89 24 456736 328850 05-Aug-89 24 456736 328850 06-Aug-89 20. 45 456736 280208 07-Aug-89 0 456736 0 08-Aug-89 0 456736 0 09-Aug-89 15.95 456736 218548 515 25 213 54 19 e 10-Aug-89 24 456736 328850 11-Aug-89 1S.07 456736 247597 12-Aug-89 0 456736 0 13"Aug"89 0 456736 0 14-Aug-89 0 456736 0 15-Aug-89 0 456736 0 TOTAL 510.47 6'994501 AVERAGE CONC. PER CDLLECTION PERIOD (PPN1= 558 38 223 55 22 AVERAGE POUNDS PER COL1.ECTION PERIOD= 3255S 2216 13004 3188 12S3 Plant Operational Data for Collection Period 5 A-5 COLLECT'.GN PERIOD 6 >>'] 2 PGNP 3 P>>>>"Z DRIFT S04 Ca Ng Na DATE HOURS SPN SPN GALS/ON PPN PPN PPN PPN PPN 16-Aug-89 10,9 456736 149353 17-Aug-89 8 ~ 32 456736 1]4001 18-Aug-89 22.37 45673& 306516 490 39 196 51 28 19-Aug-89 24 456736 328850 20-Aug-89 24 456736 328850 21-Aug-89 24 456736 328850 22-Aug-89 24 456736 328850 484 39 165 39 19 23-Aug-89 24 456736 328850 24-Aug-89 24 456736 328S50 25-Aug-89 24 456736 328850 26-Aug-89 24 45&736 328850 27-Aug-89 24 456736 328850 28-Aug-89 24 456736 328S50 29-Aug-89 24 456736 328850 30-Aug-89 24 456736 328850 31-Aug-89 24 456736 328850 587 63 252 58.9 30 0]-Sep-89 24 456736 328850 02-Sep"89 24 456736 328850 03-Sep-89 24 45673& 328850 04"Sep-89 24 456736 328850 05-Sep-89 24 456736 328S50 06-Sep-89 24 456736 328S50 07-Sep-89 24 456736 328850 08-Sep-89 24 45673& 328850 507 40 168 40 1S.4 09-Sep-89 24 456736 328850 10"Sep-89 24 456736 328850 1]-Sep-89 24 456736 328850 12-Sep-89 24 456736 328850 13-Sep-89 24 456736 328850 14-Sep-89 24 456736 328850 612 54 246 55.3 27 ' 15-Sep-89 24 456736 328850 16-Sep-89 24 456736 328850 17-Sep<<89 24 456736 328850 18-Sep-89 24 456736 328850 19-Sep-S9 24 456736 328850 TOTAL 809.59 ]1093067 AVERASE CONC. PER COLLECT]OH PERIOD (PPN]= 536 47 205 49 25 AVERAGE POUNDS PER COLLECTION PERIOD 49571 4347 18'996 4517 2273 Plant Operationa1 Data for Co11ect]on Per]od 6 A-6 COLLECTION PERIOD 7 " PU'ip 3 PU"P DRIFT SO4 Cl Ca Ng Ha GPN GPN GALS/DAY PPN opq oPH PP>> PP DATE HOURS ~ 20-Sep-89 24 456736 328S50 21"Sep-89 17.27 456736 236635 22-Sep-89 0 456736 0 23-Sep-89 0 456736 0 24-Sep-89 0 456736 0 25-Sep'-89 0 456736 0 26-Sep-89 0 456736 0 21-Sep-89 0 456736 0 28-Sep-89 0 456736 0 29-Sep-89 2,51 456736 35214 30-Sep-S9 24 456736 328850 01-Oct-89 24 45673& 328850 02-Oct-89 24 456736 328850 03-Oct-S'9 24 456736 328850 04-Oct-89 "4 456736 328850 05-Oct-89 24 456736 328850 06-Oct"S9 24 456736 32S85D 01-Oct-89 24 456736 32885D 08-0[t-89 24 456736 328850 09-Oct-89 24 456736 328850 10-Oct-89 24 456736 328850 11-Oct-89 24 456736 328850 12-Oct-89 24 456736 328850 520 57 ' 251 61.3 29,9 ~ 'Oe 13-Oct-89 24 456736 328850 14-Oct-89 24 456736 328SSD 15-Oct-89 24 456136 328850 16"Oct-89 24 456736 328850 11-Oct-89 24 456736 328850 614 37.9 230 56 23.5 TOTAL 475.84 6519998 NERAGE CONC PER COLLECTION PERIOD (PPN)= 567 48 241 59 27 AVERAGE POUNDS PER COLLECTION PERIOD= 30821 2601 13073 3188 1451 Plant Operational Data for Collection Period 7 A-7 CGLLECTIGH PERIOD S . 2 PUNP 3 PUNP DRIFT SG4 Ct Ng Ha SPN GALS/DAY PPN ODlf PPN PPN PPN DATE HOURS SPN 18-Oct-89 24 456736 328S50 19"Dct-89 24 456736 32S850 20-Oct-89 24 456736 328850 21-0(t-89 24 456736 32S850 22-Oct-89 24 456736 328850 23-Oct-89 24 456736 328850 24-0't-89 24 456736 328850 25-Oct-89 24 456736 328850 26-Oct-89 24 456736 328850 41 209 48.2 23.1 27-Oct-89 24 456736 328850 2S-Oct-89 24 456736 32S850 29-Gct-S9 25 456736 342552 30-Oct-S9 24 456736 328850 31-Gct-89 24 456736 32S850 562 39 227 53.2 23.5 01-Hov-89 24 456736 328850 02-Hov-89 24 456736. 328850 03-Hov-89 24 456736 328850 04-Hov-89 24 456736 328850 05-Hov-89 24 456736 32S850 06"Hov-89 24 456736 328S50 07-Hov-89 24 456736 328850 08-Hov-89 24 456736 328850 09-Hov-89 24 456736 328850 671 38 250 60.6 23 10-Hov-89 24 456736 328850 11-Hov-89 24 456736 328850 12-Hov-89 24 456736 328850 13-Hov-89 24 456736 328S50 14-Hov-89 24 456736 32S850 658 42 244 59.4 26.4 15-Hov-89 24 456736 328850 TOTAL 697 9550350 AVERAGE CDHC, PER CGLLECTIGH PERIOD (PPN)= 591 40 233 55 24 AVERAGE POUHDS PER COLLECTIOH PERIOD= 47056 31S5 18512 4407 1911 Plant Operational Data for Collection Period 8 A-8 COLLECTION PERIOD 9 2 PUHP 3 PUHP DRIFT SO4 CI Ca H" Ha SALS/DAY PPH PPH PPH ~o" op'I GATE HOURS SPII SPA !6-Hov-89 24 456736 32S850 17-Hov-89 24 456736 32S850 18-Hov-89 24 456736 328850 19-Hov-89 24 456736 ~"~850 20-Hov-S9 24 456736 328850 21-Hov-89 456736 328850 723 40 266 65.2 25.5 22-Hov-89 24 456736 328850 23-Hov-89 24 456736 32S850 24-Hov-89 24 456736 328S50 25-Hov-89 24 456736 328S50 26-Hov-S9 24 456736 328850 27-Hov-89 24 456736 328850 2S-Hov-89 24 456736 328850 555 26 232 55 17. 9 29-Hov-S9 24 456736 328850 30-Hov-89 24 456736 328850 01-Dec-89 24 456736 328850 02-Dec-89 24 456736 328850 03-Dec-8'9 24 456736 328850 04-Dec-89 24 456736 328850 05-Dec-89 24 456736 328850 321 18.5 178 41.5 14 06-Dec-89 24 456736 32SS50 I 07-Dec-89 08-Dec-89 09-Dec-89 10-Dec-S9 ll-Dec-89 24 24 24 24 24 456736 456736 456736 456736 456736 32S850 328850 328850 328S50 32S850 12-Dec-89 24 456736 32o8850 516 14 178 39 ~ I 12.7 TOTAL 8878948 AV RAGE CONC. PER CO'L CTIG'H PERIOD (PPH)= 529 25 214 50 18 NERASE POUHDS PER COLLECTIOH PERIOD= 39140 1823 15804 3716 1297 Plant Operational Data for Collection Period 9 A"9. COLLECTION PERIOD 10 2 PL'NP T PUNo DRIFT SO4 CI Ca,"9 Na DATE HOURS GPN GPN GALS/DAY PPN PPN PPN PPN PPN 13-Dec-89 24 456736 328850 14-Dec-S9 24 456736 328850 15-Dec-89 24 456736 328850 16-Dec-89 24 456736 328850 328850 '6 17-Dec-89 24 456736 18-Dec-89 24 456736 328850 1't-Dec-89 24 456736 32SS50 644 195 46.1 14.2 20-Dac-89 24 456736 328850 21-Dec-89 24 456736 32S850 22-Dec-89 24 456736 328850 23-Dec-89 24 4"6736 328850 24-Dec-89 24 456736 328850 25-Dec-S9 24 456736 328S50 2b-Dec-89 24 456736 328850 27-Dec-89 24 456736 328850 28-Dec-89 24 456736 328850 29"Dec-89 24 456736 328850 30-Dec-89 24 456736 328850 31-Dec-89 24 456736 32SS'0 01"Jan-90 24 456736 328850 02-Jan-90 24 456736 328S50 427 . 27 241 59 14 03-Jan-90 24 456736 328850 04-Jan-90 24 456736 328850 05-Jan-90 A4 456736 328S50 06-Jan-90 24 456736 328850 07-Jan-90 24 456736 328850 08-Jan-90 24 456736 328850 09-Jan-90 24 456736 328850 564 24 199 50 16 1 10-Jan-90 24 456736 328850 11-Jan-90 24 456736 328850 12-Jan-90 24 456736 328S50 13-Jan-90 24 456736 328850 14-Jan-'90 24 456736 328850 15-Jan-90 24 456736 328850 16-Jan-90 24 456736 328850 163 15.3 138 35 13.5 17-Jan-.90 24 456736 328S50 1S-Jan-90 24 456736 328850 19-Jan-90 24 456736 328S50 20-Jan-90 14 456736 328850 2t-Jan-%0 24 456736 328850 22-Jan-90 24 456736 32S850 23-Jan-90 24 456736 328850 138 12 95 24 8 5 TOTAL 1008 13811697 AVERAGE CONC PER COI.LECTION P RIOD (PPNI 387 19 174 43 13 AVERAGE POUNDS PER COLLECTION PERIOD= 44585 2172 19990 4931 1527 Plant Operational Data for Collection Period l0 A"10 CDLLECTIDH PERIDD 11 2 PVNP PVHP DRIFT SD4 Cl Ca Ãg Ha HDVRS SPH SPN GALS/DAY PPH PPH PPN PPH PPH 24-Jan-9D 24 456736 328850 25-Jan-90 24 456736 32SS50 26-Jan-90 24 %56736 32S85D 27-Jan-90 24 456736 32SS50 28-Jan-90 24 456136 328850 29-Jan-'90 24 456736 328S50 30-Jan-90 24 456736 328S50 17D 8.7 122 30 10,1 31-Jan-90 24 456736 328850 01-Feb-90 24 456736 32885D 02-Feb-90 24 456736 328850 03-Feb-90 24 456736 328850 04-Feb-90 24 456736 328850 05-Feb-'90 24 456736 328850 06-Feb-90 24 456736 328850 204 10.1 '96 24 10.9 07-Feb-90 24 456736 328850 08-Feb-90 24 456736 328850 09-Feb-'90 24 '456136 328850 10-Feb-90 24 456136 328850 11-Feb-90 24 456736 328850 12-Feb-90 24 456736 328850 13-Feb-90 24 456736 328850 330 15 135 33 11 14-Feb-90 24 456736 328850 15-Feb-90 24 456736 328850 ~ 16-Feb-9D 24 456736 328850 17-Feb-90 24 456736 328850 18-Feb-90 24 456736 328850 19-Feb-90 24 456736 328850 20-Feb-90 24 456736 328850 126 9.2 97 22 8.8 21-Feb-90 24 45673& 328850 TDTAL 696 9536648 AVERAGE CDHC, PER CDLLECTICH PERIDD (PPNI= 208 11 113 27 10 AVERAGE POVHDS PER COLLECTIDH PERIDD= 16498 855 8945 2167 811 Plant Operational Data for Collection. Period 11 COLLECT!ON PERIOD 12 2 PUNP 3 PUNP DRIFT S04 C1 Ca Ng Na GATE HOURS SPN GPN GALS/DAY PPN PPN PPN PPN PPN 22-Feb-90 24 456736 328850 23-Feb-90 24 456736 32S850 24-Feb-90 24 456736 328850 25-Feb-90 24 456736 32S850 26"Feb-90 24 456736 328850 . 27-Feb-90 24 456736 328850 145 140 35 11 28-Feb-90 24 456736 328850 01-Nar-90 24 456736 328SS0 02-Nar-'90 24 456736 328850 03-Nar-90 24 456H6 328850 04-Nar-90 24 456736 328850 05-Nar-90 24 456736 328850 06-Nar-90 24 456736 328850 145 8.7 99 24 10 ~ 5 07-Nar-90 24 456736 328850 08-Nar-90 24 456736 328850 09-Nar-90 24 456736 32S850 10-Nar-90 24 456736 328850 11-Nar-90 24 456736 328850 12-Nar-90 24 456736 328850, 13-Nar-90 24 456736 328850 173 13.9 127 29 12.6 14-Nar-90 24 456736 328850 15-Nar-90 24 456736 328850 16-Nar-90 24 456736 328850 17-Nar-90 24 456736 328850 18-Nar-90 24 456736 328S50 19-Nar-90 24 456736 328850 20-Nar-90 24 456736 328850 250 10.6 121 27 17. 6 TOTAL 648 8878948 AVeRAGE CGNC PER COLLECTION PERIOD (PPN) 178 11 122 29 13 AVERAGE POUNDS PER COLLECTION PERIOD= 13195 81S 9012 2128 957 Plant Operational Data for Collect1on Period 12 A-12 0oaite!re ~ kv ~sk NAN(FO((D M(wr(FDRO! OCY STAT(ON 55 SSILCS 1, W OF SIOILAISO, UAMUSCTOH Harch 1989 CLIMATOLOGICAL DATA LATITUoc lcs sl', ~ Loacllaloc>>ss 54 w cacTA(loa (Esovao) 755 rect TCMPCRATUAC (~ P 1 FT.LCVCL) P II C(P ~ 15 UIH0 (SO PT LCVCL( FRONTS ANO MI5C PHCNONCHA OCCSCC OATS V J%a %CAN OUS 1 ~ OT ~ I V ~ ASC 45 I ~ V I Ceo I ~ ss I I Tlvaa Or Faeatkl 1 ~ saki ~ I JJC ~ I J J Jvv V4% v 5 s ~ s'sta AFTCS TUC IOTkfsoas s 1 5'5 J Ia S a% CCf ~ v ~ ~ ~ v 4 s ~ J II V ~~ ICOLO t10%fl kaa V'%ra% Ivkkv ~ 14% f1 4% ~4 4V J ~ v 1 V V ~ V J ~ ~ 's * ~ ~~ 5 4%1 V ~ ~ 5 4A 48 lo II 15 15 ll I IS 14 35 23129 -11 36 0 .08 .9 T IN 6.5!15 HW 85 I 61 10 F GL 5 5 l 130 135 18124 1-15 14:24 1-15 i 41 0 I 41 0 .07 11.8 2.11!IM 6.1 14 1.5 (E 4.2116 NH'WI SE 75 56 1254 1379 '0 I 7 I I F 133 20i26 -14 I 39 01 T T T INW 6.2117 I NW 65 !172 i 10 I $ 33 29 131 I -9 i 34 i 0 .23 .4 T INW I 4.8 16 I NM 91 1 83 I 10 F GL KFR 2115 ~ 16Q 271441 +3! 21 0 T IM 16.0 30!SSW 76 1358 I F 54 321431 +1 22 s (E i 3:8 18 WSW 60 .335 56 38147 i +5 I 18 0 iNW I 5.5 17;. NM 63  ! 301 i 9  ! 50  ! 40145 I +3 I 20 0 .31 !NM I 7.9(29 'SE 89 'I:103 I 10 1 F KFR 1900 Io 64 I 381511 +8 I 141 0 IE I 5.0'125  ! SE I 77 1296 I 6  ! F 11 67 I 42154 'N'll s (1! .24  ! (M i 6 1123 SHM s 70 (370 l 4 I OL KFR 0310 '5!55 65 ( 44154!+11 I ll 0 .08 '.SE 1 4.6136 I SW I 74 '310 ' '237; 0500 i 41 1481+4 I 17 0 :M s10.5127 IWSMI 60 9 KFR Il!56 '02 34 i45 I +11 20 0 :SW! 6.9!24 (MSM. 57:308  ! 6  ! A AU (s;50 I 29!40 I -4! 25 0 .02 !H  ! 2.4110 .H ! 77 !199 ', 10 i I~ 143 33i38! -7 27 0 .22 HM I 6.6120:HNWi 91 . 52  ! 10 17 '57 27 (42 1-3 23 0 S  ! 3.8(21 ISSXI 69:355 I 8 I t I~ 160 42 51 +5 14 0 1.04 i (W 8.6!29 NH 63 380 I 8 I Is 160 36 48 I +2 17 0 iw 5.4 17 ! NK 51'386 I 11 co 160 28 44 -2 21 0 1.05 IE 2.7 14 SE 60 423 ~ 8 51 164 39 52 +6 13 0 .01 iW 9.5 42 MSW 63 '416 10 55 56 35 46 -1 19 0 NM 4.2 23 WHM 50 ,285 10 55 56 34 45 -2 20 0 HM 5.6 18 NM 55 :348 54 56 37 46 -1 19 0 .05 4.1 14 !MNM 9 . 2 55 '62 38 l50 +3 15 0 .14 iK I 5.1123 (WSMI 7 .310 KrR 00 cs 57 37 i47 -1 18 I I I I 57 60 46!53 +5 12101 ISX 114.4 141  ! SM I 52 .245 10 63  ! 41 (52 s +4 131 0 ( :X I 7.0!26 (NW I 46 467 5 I >> 57 !36'46!-2:19'! T s IM '.0:24 X I 46 280: 8 so 157 ~ 28 42  ! -7; 23 0 I I 1 S .5.3'23 5 Mi 298 >> (60 '0.50 '. +1 i 15 0 I . i M 9. 33 M I 492 ! I 'IVV 58 0 11.5613.1 >>I 153.933. 7 6.2 ~v IsACCIPITATION IINI ss 1 WsscacssE.'I* slo Arl 11 vsco IN c lr (l( Halts ~ oraaawssc ~ Fatlnaa. Tac ekslr feral raa TUC Ssoata 1.56 1 ~ ISJSI, ~ I ~ ~ Ls'Vla ~ Ovs't I%VV*ITrtas40 I ~ ~ aov lais%I ~ ssf To vl ~ ssltssT Av kvaoak ~ I ILOVII~ ~ IOW ~ J ~ ITIC ~ 'tkssoka ~ TIVC ~ EFJJTlsac tsov a01vkL +1.16 ~ ~ Ov sf ~L ~ latkaf LIS1111S ~ 1(>> vws I~ calvvas 7 ~ ~ ~ a%orts
  • Takcc.
~ ACJ TEST I ~ Sl aal 0.31 4% 9 ~ ~ reo ~ I I IF, I I~ I%4W ~ 1 ~ (11 TssC Lka ~ LtT IcoL 11) I ~ T1E valT 1st ~ ~ L ~ 4lklC lc . Iac carstkls ( fo stssofc ~ ac ~ Ikv cAL41lc r tv 5 ~ VSS ~ C1 ~ I ~ ATS WS'till ~ I I ve c ravs ~ lasfesss TCMPCAATURC I Fl 5 FT. Ltvtl.l ra*et 0% vokc 19 ops 01 skeet ~ AROMCTRIC PAC55URC ll~ .I kvlkkaa rea TV ~ vearv o.ol oa sssat 0.10 0% vekt JVESJ ~ E STJTI0% s ~ CSJITUIC FIOV 101VJL -0.6 o.lo 01 veac 5 I.oo ea ssokc p 1savtat ~ EA LCTCL 3p 36 I~ ~ II%EST 67 ~ I 5HOW. (CC PCLLC75 (SLCCTI (ISCHCSI Le%Est Slk ltrtl 29.58 I~ LOWEIT 14 ~1 T4TJL FI ~ TUE VI%TV 3.1 5OLAA RAOIATION ILksaltTSI ~ vvsta or 4JT ~ wsTss ~ ~ ackTtsr Ia ak ssovasl LOWEST'2 JVEJJIC OJSLT T ~ TJL vks sa IA ~ clow ~ AEATEST 41 ~ JOS 2%7 0% 2 ~ AEATCJT 4AII,T 492 VAS, SO ~ I ASOTE WINO lsa rr. Lcvcl.l LEAST OAILT 52 0% ~ ss1 sa 41 ~ cLow AUEAAIE IFEE ~ lvsvl 6. MISCCLLAHCOU5 HUMOCR OS OAY5 VS ~ 0 ~ I SELOW ~ trk1TUAE Faov 101VJL -2.4 CLEJS too HCAT(HC OCOACC OAY5 Isk ~ c OSor( FEAI IIIT 42 raov 'W W 0% FAITLT CLOVIT 9 Tavaoaa '7+ tarsi ~ 01 Tvt VIVTss 658 AVCRAOC P5YCHROMCTfllC CLOV4T 17 ovsr OATA'2Q ~ EFAJTIIIC FIOV ls ~ IvkL s oaf avis tert 43 war avis 14t( 39 RC( HUM. CXTACMC5 ( 1 SCJI ~ IJL TOTAL I ~ Satt JVLT II %EL 1VV ltl ~ cw FT Ios I III 41E IT ~ I ~ CJIOUAL Ocrkatvac raoss aeasskl 152 +It%arcs LATEST Or ICTCSJL OATC ~ ~
  • ~M (COO~Co (( 751 ssosl svssksa avs, Meteorological Conditions for March 1989 B"1
CBatIeIle ((AN(TORO (e(KTEOROLOGY STATION 25 eelLSS I, V, Ot SICILANO, VAsslsafos ~ CLIMATOLOGICAL DATA LATITUOC Ato SA', ~ Colic!foot I (50 Sa'>> CLCYATIOO (CSOVNO( TSS TCCT April 1989 TCMPCRATURC(4t 2 PT.LCVCL! P R CCI P VINO (SO IeT I CYCI.! SeRONTS ANO MISC, IeNCNOMCNA oaaaac cATC I Jvo JVO ~ CAN OUS Sorts ~ kst I e 45 ~, fleets Ot tlosfkL aallklcl JNC J v ~14 0 leTCI ktTCI TeeC NOTATION ~ at ~ It v <<V e J ~ ~ V 4 '52 ~ V kso>>ra IrJar tsosrl sI ~ ~ 0 v V V MOLS tsosrI J V ~ V SV~ 0~ ~ I Ls 0 e ~ g V ~ s ~ ~ V 0 s v~ ~ ~ I 2 5 SA ~8 ~0 I It I lt IS I Il is lt lv 56 6 46i - I I 0 I 7. I I I KF!I 22 0 58 37148- ! 7I 0 I I Wl 6 IW ! I 4 59 59 35I 47i-i4;-: i I i I I I i I o ~ o ! o!q lid !4 I I  ! ~ ! 73 52 62! + I I <<dd! 0 I 47 63I+12! 2 I 0 I W! o 536WW 55 I I i l63i+: IO l! '! T I 75 68 5 44! 55i+ 4I 9 I 0 I I I I M! op\ W 2 e I 4 I i ! 5 I 67!39I 5 I+ ! I I o ~ ~ ~ Io 69 I4 I '+ d! I I I I t (T el( 5  ! '2!e I 7 I 75 l36 I 56l+ 4i 9! 0 I iH i ".4:WNW!4  ! ' 77  ! 41  ! 59!'+ 7' I 0 5 '5 40 I 506 4 3 0 I IW i 4.6 3'WNWI38 ! 54 !; .'pi44I62!+0: !4  ! 80  ! 48 i 64!+12! 1! 0  : NW'. 6.0 30 'NW ! 38: 368 ' is l4 I 71 150 ! 60I+ 8'. '5' 5 ! 0  ! NW'13.4 35 NW  ! 40 '77 '. 9 6 I I  ! 5 73 46 160!+ 9I 5 '. 0 iW I 6.2'27.W l26 i 602 ' !~ 79!41 60!+ BI 5 I 0 I  ! NWI 5.8: 16 WSW 31 '514 i 4 i OL I~ 77 e 54 66 I+14 0 1 I.OZ I W I 6.9i 49 W 54 ! 452 '  ! OL So 75 50 62!+ 0 3 0 I.07 I I I o. .'5%W 55 I 6 i  ! KF 55 2 47 54 + 1 11 0 .07 I W I 4.7i 15 %5W 67 i 307 I 9 22 65 140 52- 1 13 0 I S I 6.4e 22 5E 45 '523 I 7  ! 67 138 52 - 2 13 0 IH I 4.9; 18;EHE 56 547 3 I 72 l44 58 + 4 7 0 IN !11.6'35 SNE 45 62 I46 154I- lill 0 I.35 NW. o ll . 476 '219 10 Sa 60 !4 l53!- 2!12 66 l48 I 57lt 2: 8 I 0:.28 l.04 I NWI 4.7'17 HNM IN  ! 3.5 14NW l74 43 SE 74 8 391 3 1:9 9 I ! A, T,OL F 68 45 ',56:+ 1! 9 '0 7.5:24 ENE! 52 So 72:41 I l56.':j ~ ~ 9 '0
(N NE( '.4 II R ( 18 H 145 438 645 ! 8 0 e 21  !  ! 254l !0.84 ~ VV Jvl 69. 7 I 43. 1 I T IeRCCIP!TAT(ON IIN) 7.4. ~ elt .4 Ives 'll eeCNA 'eoTATIO>>5 VSCO IN CQ lv (!! SNLclo ofeecarl ~ t satclteto Teat oaeLT vovka tos Tsc <<oars J IJIL OVV<<kIT tC ~ Ill IS TIOQ QIONIONT T4 Qll~ IONT 0. 84 kv ~ Jvaoa ~ ~0 ~0 ~ OL0'seal 00 ~ T SLseees ~ ssor ~ C ~ JITIIIC r ~ Ov +0.4 0 JCITIC Sf kaok1 ~ TIQC ~ I (2! <<v is COLN ~ 0 5 ~ scsorcl a vases. Noa<<JL ~ t ~ Ovlf ~L ~ llfJNT Llcsfseso
(Sl fsa Laslaar lcoa.( ~ Ill fst Vair mete ~ atkraar i ~ sl sss. I 0,37 os 25 26 to ~ ~0 Olltfl ~ 0 assr Q, la lc Ica cavsrJL ~
~ To ~ CNOTc 1st laaee CAL41ec I cQ 2 NVVOCI Ot Okf ~ '>>ITNI I~ ~ 0Lk lvaeC T ~ Tsvaltsaf01<< TCMPCRATURC lltl 5 rf, LavCI. I Takct 41 QOIC C i o.ts 01 eclat OARONCTRIC PRC55URC Ua I Jrtaklc roa vsc e lars 0 Ol 11 <<lac  ! 0.50 01 eclat Avt ~ Jlt 'Jllre ~ I ~ CtklTVIC talv NOJQJL 0,10 01 QOJC ~ .Oo 01 eeoaa Ieelscsf ~ ck LcvtL I ~ "I Illatlf 0 oee 5NOW.!CC PCL'T5 (5LCCTI (lacs(S! l,l>>CST SCl Ll'etl, I ~I Ls>>aor TOTAL tla TNC Vosfe SOLAIC RAO(AT!ON ILANSLCV~ I SVQOCI ot OATS>>ITNI ~ IcATtsf I ~ 2 ~ eeov10 ~ ~ ~ I kvtskct ~ JeLT forlL Qkt 52 ~ I ~ CLO>> 0 ~ atkfclf ls ~ I~ I ~s ~ ICkflltSJILT d I ~ . beats 00 01 JOOTC VINO ltl tT LCTCL I LCJIT ~ JILT ~1 Qe ~, 55 01 ~ CLor kvtaklc ~ rcco (Qasl MISCC( LANCOU5 NUMIICR Ot OATS Qe ~, 4 ~ I OCL0>> 4tt JITeelt ~ IOQ 101e CLtka tos ~ Sot! lellT ~I tk ~ TLT CLOVST k'Clc NCAT!NO OCORCC OAY5 IOJSC TIoee I TNVsoCS TOTJL roa vsc eeosrs AVCRACC P5YCMROVtTR(C dATA CLOVOT Ovlf ~ tsklfvat TIOQ NOIQJL Ssv svao i4ri ~ I !var Oval I4t! 'RCL. NUM ~ CXTRCMC5 (  ! SCJJONJI TOTAL I ~ II~ C JVLT II ICL IVQ III ~ ar tv Cori Ieceetlf ~ I stkloeeAL ~ CSJATVIC tsoee NOIQAL 00CSOTCS LkTtsf Ot SCTtllL OkTCO Lo>>CST ~s 17 OM I500425 (I TS) eesaaaee<<JJSve<<L Meteorological Conditions for April 1989 B-2 Qaarreae HAS((TORO METEORO( OOY 5TAT(ON 15 SNLCS II, N Ot CICILAao Vksala<TOO CLIMATOLOGICAL DATA Iiaay 1989 LAT(lvoc cca 1< N..Loac(fvoc 1150 so'CLCTAT(os (<aors ol Tss FCCT TOIPCAATUAC(tf 1 fT.LCVC(.l >>AC C(>> aa j VINO ($ 0 PT LCVCLl PAONTS ANO N(SC PHCHONCNA $ 54(c okfl I rva rc*IC Ouo V ~ OTCI 4 HAEC $ $ p I ~ 4 10 e I I ~ I ~ ~ P IIUCS Ot Fkt@TAL FAII<<4 AIE I Vtr1 I v~,asSv 0 4 4 1 r r I gaea ~ ITCI AFTCI II< IOTATIeea It ~ I I ~0I Iv VJ 5 J P vV Ic<LS Faoafl kao rt1 Ivkav tetefl 1 1~ ~ ~ V Iv V v ~ ~ V ~ V I! V 1 J V~ Ia ~ V~~ ~ a ~ V a ~V~ ~ ~ va r ~ ~ 1 1 e J a ~ 4A ~8 IS f 111 IS I~ I 1$ I~ 71 55 6 +71 2 0 0. 12 IM 7 74 53 +111 0 W 6.9 301 WNW 47 4 79 45 +5! 3 0 M 5.9 2 ! NW 43 627 0 81 51 66+8 0 1 3.5 21 W 9 67 $ 84 52 8+9i 0 3 I N 3.31 151 NE 45 I 543 OL 88 56 721 +131 0 7 INW I 6.4 33! NW 50 I 523 9 OL 1 85 62 741+ 5i 0 INW 17 6 1 i 4 85 57 711+111 0 6 I W i 4.3 17!MNW 37 i 630 3 I 76 I 58 671+ 71 0 2 INW I 7.8 30!MN' 10 10 O8 44 561 - 4! -dd i 11 69 42 56!- 41 9 0 'Wi I I 11 7 45 5'- I I i4 I 1 4 ls 76 47 621+ !3 0 I N 5 1< 77 51 641+ 31 0 IN 65 51 82 49 66+ 5! 0 1 I INM 6.5 29! NW I 655 77 54 66 + 4 0 1 it!M 12.4 37iWNW 34 I 539110 I !4 i C Id I I (0  ! I 1$ 10 0 0 11 ~C 6 6-7 0 0 0 IW 1574 45 60 - 3 5 0 !NM 7.0 361 NW 40 I 687 3 1$ I 5 4 $$ 6 54 - 9! 0 0.08 IW 152 5!NM ~ 5 9 T 1$ 4 5 - 3 0 0.01 IN I7.0 2 IN 65 3651 9 68 49 581- 6 7 10 10.01 '5.0 19: 64 '90 '4 78 88 44 50 61-4 69 + 3i 0 4 0 NW SE I3.9 14.8 '9: SE SE 57 712 I 1 ~ 7 'I I S i 22 I NW 43 . 699 I 4 ~ VU 141 34 0.59 "'94 548,5L 7.1 5.6 ~HI PRCCIPITATIOH (IH( Il ~H N 4CNA NOTATE Hs SCO IH CO II (11 VICES< ~ TIEIHI~ c stc<IFIEV, TIE 0AILT GAEL I1TAL F41 TIC UtafN 1 IIIL ~ VAIUAIT a<Iles I ~ Faev Ul<<I<I~ Te UI ~ II<IT 0.59 kaetek ~4 ~ ~s SLOHI ~ O <<ST el<<<I ~ < Seer <<<ITIC STAIOAAO TIVE 4<kkaTVAC Fatv ~ 01lkkL + .06 ~ ovaT ~ L ~ ~ I<TAIT LIIITIIN ~ (11 eTI ~ II c4Lvllaa 1 ~ 0 ~ cIOTE ~ A Tak<E, IIIIII< (ll TIE LAN<LET (C<L,(of I ~ ~ Ic OIIT v<C ~ ~ I<AT<sf Ia $ < ~ 11 ~ 0.37 <<22-23 ~ l F<4 <lkcC ~1 ~ Sacr IC ~ I ~ E CIT ~ ILLS IO ~ CIt<C 41< <IAU CALtalC CU 1 I IVU~ <1 tt Okf ~ lllTNI ~ Ive 1 E I Iaeael ~ Sf<kv TCNPCRATUAC (<tl 5 n, I,EVIL( Tekcc 01 U<1c lp ~,5' ~ I lk<1c ~ AAONCTRIC PAC$ 5VAC Il~ .I krlek<< tea Iac tata ~ 4.01 ~ I ll~ kC 4.so 01 roke 1 r \ 1 <<E ~ I1 TI ~ I ~ EFAITVIC ~ aev Itavkl 0,10 ~ I U ~ IC (,00 01 UOIC al<IEIT SIA LITCL <~ I el<I<ST ~ I SHOH, 1CC PCLLCT5 ISI.CCT1111<1($ 1 LOP<ST SEA LEVEL ~ I 17 Ltv<ST ~ I TOTAL Ft1 TIC UOITI 5OLAA AAO(AT(OH Ilka ~ LEIS( aav ~ Ca Ot OAT ~ HITNI ~ ICAfCST Ia 1< NOVI ~ I ~ I 1' Eak<C 0 ~ ILT TOTAL 534. 9 vk<, SE 01 1<lor 0 ~ IEAIC~ I <1 ~ atl ~ I ~ 1<SF<ST OAILT 0 Uks, Io ~ I Aeovc 0 VINO ISO FT LEVEL I LCAST OAILT 50 " 9 j Ula, I ~ I ~ ~ L<r AVEIA<C SFCI ~ Fvkel N($ CCLLAHCOU5 HUNCCR Of OAY5 Ula, 0 <1 <<Ltr 0 ~ E ~ AITVAE tat<< IOIHAL ClCAI F4 ~ 0 NCATINO OCOACC OAY5 Iek<C ~ set 1 ecka <v<T 4 ~ I~ lk ~ I tkaflf Clev<t 'lav10 ca TOTAL t<1 TIC v<1TH AVCAACC PSYCNAONCTR(C CATA CLteaf ~ Vk'I 0 ~ I FAATVIC F1<v 141UAI, ~ af eels(OF( rcT <vis )OF ACL HUN CXTRCHC5 ($ 1 <EAS<IIAL T<TAL IIII~ c JOLT I'I avll (cl ~ Cr kf (451 Iles<et ~ I ~ cks ~ IAL ~ ESAI'fva< taav atIUAL ~ -300 < ~ Ea ~ 'IE ~ LATE<I ~ I ~ cTcakL OAT<1 car<st " 14 ov 13 ~N ($ 00855 (1 111 kite< k<<alkaa, ella. Heteoro1ogica1 Conditions for May 1989 8"3 HCHTN CBattelle HAN)TOAD )o(STTSTDROLOCY STATION 15 vlLcs N, w or otc>>LA>>e, wksNlscTos June 1989 ZLlhlATGLOGlCAL DATA LATITVOC kca SC N LSOOC)TUOC ('ll SC W CLCYATIO>> (4OVAO) TSS IC CT TCVPCRATllRC (4P.S PT. LCVCL ) PRCC(P r4 5 VINO (21 PT LCVCL) PROHT5 ANO M)5C, PNCNOMCNA CCCOCC CATS rva I PCAN CU5 v ~ 4TCE v Jva ekcc 45 t taastkL oosskocs kac
~
v t ~ ! ~ ~ V r oo V ~ ss ~ rooots ~ ~ ores ktTE>> Tsc sorkTIO<<s 'to kall 1~ ~ Sv rE ' a ~ Ltoao taosrl A<<0 v>>o ~ lwkov ooo<<T1 v J ~ 4~s ': ~ I sal~ o v ~ 2 ~ a ~ ~~ Js ~ 1 4 v ~ ~ ~ ECA 48 T lo'1 12 I 12 o Is 14 ) S'.2 ~ 5 ~ ) ~ ll 1 1 2 ( 1 1 1 94 l57 ! 76!+10! 27 I Wi!!T": 34! 708 1 0 i i i 1 'U ! 1! 90 l69 l80i+13: 1 i86 l62 !741+ 7. 0 0 15! 9! T ! I . .8 W I )tif!13.9 43'NE 7.0 23 I HHci 32 i 665 I 3 I 41! 2 3 '0 4 (90 (59174.+ 6 9! 28:NE 271734 0 I: W'.6 ~ I I I i 1 5197 )55!76!+ 8'. 0:ll M)6. 33)NW i !736 i 0 i 195 66 )80'+12! 'o 0 15! 39 'NWI 22! 740 0 '! '. ~ I ~ T I I o+ 5 ~ ~ NE ~ 3.0 20 MNW'4 . 737 0 i 'I s I 4I'+ '. I i o ~ ~ I 5 I ' '+O' 0 I lo(  ! I y4. , I ' ic "4 I 4! 4r ~ i 11 I 1 >> ~ ~ o 11!  ! i 4. ( ( i IS i j 1 ~ 1 4 4!+ ~ 1 ~ 0 i 0 I ~ ~ 15 4 14 N: 2'70 4 ~  ! i 'o W 5)67 6: KFR 2245'1 1 ~ I 15 I  ! 6 14 742 I I i i4 1
  • 11 11)
) ! 0 ! ! !op .': I 3 3 i Oi ': 14!0 I l I 1lo'4 Sl '94 1 '.67 i ( 80 + 1+ i 0 -' 5 '4 I i M 5.7 22 W 1 o 27-620 4 6 ~ o KFR 700 ': ~ 7.0 WNW'2 52 14: >>I '4!80 21 -r;L!rr '62 58 1 i 69= 0' 'y 4: ' 0 '. 5 T o SW M W 6.> 4
5. 0 24 12.7 30 MNM" r
SW ~ 46 37 5 367 575 ' 10 6 r r '.V ' rr"ri 1 ' rr' ~ ~T ~ R ~ 6 l2 5, 0.0 PVCC(PETA 7 0 OH // /i/ 11,11 orr.4,6 OOI PV o V NA NOTATIONS O'SC rr'oa IN C lr (1) v<<LEEO or<<tawosc sotcltocs. tac okoLT to ~ Tsc Has TN A ~ OOAOI ~4 ~ LO>>O>>4 OVOT ~ Uvookal'caoso ls taov Woo%la%1 To HI4>>soar TOTAI, 0.01 AV ~ kasaak ~0 OLO>>osa Ssow ~ oclolc OTkaoA>>4 To 4 ~ ocskarv oc taov ~ oavkL I -0.44 ~ ~ Ovor ~L ~ Oo ~ Tsar Lo ~ %tao% ~ (11 1 ls tsLVH<> ~ TCO A Takcl ~ t04 oaotroso ssow ~ (1) 1st LksaLCT lCOL 1st 1 ~ T<<E V<<IT UOE4 ~ %tartar ~ tk 'oaa, O . 0.01 14 I ~ ~ L ~ OLAE ~ ~0 I~ oct E ~ r ~ TALi To ~ ts ~ Tc ~ sc ~ akoo c>>La%le I EH 1 %swats \t okra>>oT<<o ~ S vs O E T T<<<<soo ~ Orsaoo 1 ' TCMPCRA,URC 1 Ol k<<tarot oaa T<<t >>4<<Too CtkaTUAC tsev Sao oo A 1, 1 tT, LEUtl.l + 7 TAkcE 4% vooc 0.01 4% o<<4<<t e.leo% Hose 6 p ): e,js O.so ) T.oo 0% ooskc 0% Oa ~ oac Hose i I I p p %os<<Ear 8ARCHCTR(C PRCS5URCP<<.1 ~ ocak ~ c ~ rkrooa stkctotL i 30.3p ea 0 1 oola<<EST 97 I SHOW. )CX PCL'.S (SLCCT) ((>>CA(S) Le>>tsr sta LEVEL 29.69 4~ LS'NE ~ T 4% T4TAL ts ~ Tac <<os%Too 0 5OLAR RAO(AT(ON lcoaclcr ~ 1 a 4 oo ~ E a ~ o' AT ~ w I 1 oo I c>>EATtsT oa jk <<ovao ~ ~s >>ac>>oat okoLT TOTAL 6 ~ AE>>rest 4% 4%01 0% a>>CATEET CAILT 742 4%) HAE ~ 11 ~ S ~ CL4>> ~ ks so as kaorc 0 o 4(HO O'lt OT LCSEL1 I LCkst OAILT I 294 " 13 1 Ho ~ Hos ~ 4 4% 1 1 4% ~ EL4>> ~ Ecow HCAT)HO OCORCC OAY5 14 ~ St ~ asti 0 0 A<<tak ~ E ~ otto lvo<<l acaoaovat oooo<< ocAO avsr so%HA'av<<OC 43 rsao , H 4>> 7 9 4 3 ! SHSCCLLANCOU5 NUMCCR OP CAY5 ! Cack>> ~ oatLT cLovs ~ tea vsr ~ 0 I TOTAL t4% Tst Ho<<Tv AVCRACC PSYCNR HCTR(C OA,A CL4V ~ ' ~ 1 ~ Eokalva ~ taov %a%oaks ~ AT ovLO 14<< 1 ) )>>tr sv 0 tat) RC(. ~ HUM. CXTRCVCS l '1 ~ tkao<<AL TOTkL 1 ~ o<<CC JULT ll SCL IOVOO 1'El I ~ cw tr lot) <<O4<<COT ~a stks4<<AL stoa>>TUA ~ tasv %4%HAL ooca ~ TC ~ LATCOT ~ t OCUCAAL OATC ~ L0>> t S ~ ~s 4M (SCSASS () TS) a<<oak>>oooo<<a.<<ooa. Heteoro1ogical Conditions for June 1989 8"4 - - -. CBattette HAH)TORO MCTKOROl OCT KTATIO(C Ss IJILcs Ie, w ot A(oetkao, 'VAsaleecroN July 1989 CLIMATOLOGICAL DATA Lktlfvoc tsa 14 N..Lose(rvoc>>54 ss'cccvknoa (ctovaol 111 Fccf TCNDCRATURC(ai ) FT LCVCL) PRCO)D s CC VlNO (50 FT. LCVCL) I FAUN'TS ANO IH5C PHCNONCHA I OCCNCC OATS VO I'CAN OVS'0 ~ v \ NOTE I 4 ~ JSC C5 1 ~ ~ o t 4 ~ ~ tieet ~ or riosfki, I v 1 1 J ~ t 4J va ~4 1 T 4 4V 1 ~ v 1 s JV 1 ~ s1 ~ ~ ~ ceca krTEN Teec ~ JENJ4ts sofkfew ~ Jkc ~ r~ J I v.I 4 'e v ~C 1 ~~I 'ww'%IN% rsaatl ' 4 11 s kaLO riasf1 Jaa i=J si I" 1 ~N e 4 0 ~ ~ I 4 v V V ~ I 1 ae V sv ~ ~ E4 4 J s I I oe \ lol >> 11(111 lk I Is I II I, 1 I 1 ~ I 1 OA I T I 0 75154!'64- ~ ~ i I 7! 1 01 I i W I 7.5 25!MSMI 42 i 368: 9 i 84! 50! - 1 I 1 I! I 86161 67i 74+ 2'! 5' 2' 9! I ! WI I M I ll. 3.517i 3 SW:42 !659e iMNW! 36 5 1 !h - ' 4: c 1 I j 4 i 4 I (: O.'I i  ;
>>
! . i I ! I ! ! !  ! I NW! ". ' 4.3 4  :. 29 I 736 44 ! 0 5 ' i I I '", n. ~ I I  ! " 'We NM e 0 '4 '35 i 0 i P'.: IO iWI . 3 If'IIW ~ 39 i 605 ' >>i  ! ". I, I, ~  !  ! N'rl 6.018 -N ~ 36 '713' OL '93 '6 (1 >> I ~ < i !+ I+ 4: 0'. ~ NW 6.8 4.6 23 NE(29 WtIW'8 '9 ': ! N 20 682 0 I ~, ) I ~ + ' NW 8. 1,'7 NM '68 ' ! 64 '- 78i > i 13'  ! NW 10.5 35 WNW: 33 . 705 4 5! - 2' I 0' 0 ' SW 6.4 22 SM 56 283 ' '.! >> I 87 (54:70:- 8e 0: 5( e SM 6. 2 MSW I 44 716 . 3 is! 4 64: I+ ~ 0: 14i 3. 16 SSE 3 43 15  ! 00: 70 '5i + 7! 0 I 20'o e W NM 6.5i . NW I 34 7 OL I 96 I 64.! 80i+ 2I 0! 15i  ! NWI 10.8 38 WNW i 3 11 I . j ss! 11!: Sciaa a I I I:5 I I 4! + I i i I  ! I A I 67 15!  ! I . I ] i I 6 62 W ~ 2 15! e a '. c . 4' I a ' L)l )O; '~  ! r M 3 664 0 p r/ ~ See ~ kvt ia r r'rir a aerrrrerrrrrrr r'r r er'A r:r'r'er r r ~f (I) UNLEI ~ ofeIE1%IIE I ~ EEITIE ~, T1E ~ JILT PRCC(P(TAT(ON UN) VIS ~ N 'NONCNA NOTATI N5 Sco IN CO lf vvvkiT rcieao Is f144 NI41I ~ eef T4 veoaet1f TatkL raa Teec IJONTN 0 I ~ WAIL ~ 0 ~ ~ Lowest SVST ~ r JCITIC STJN4JIS TINE ~ OENJitle ~ C riav NONVJL W ~ JVJOIJ ~ I ~ Lave ~ 4 I~ Ow (1) I ~ ESLN41 ~ r ~ ~ 4c10fts k Tskcc ~ over ol, ~ Olitkst Llssraeac T ~ ()1 Teec LkatLcT IESL IQ es Tele IINIT vsco ~ Nc*Ttif Ia tk sii ~ p p r ~ ra ~ ~0 ~ NIrTI1~ Saaw ~L ~ LJit I~ fo ~ C10TC ~ 1t like CkLONIC Cv I svee ~ c1 or ~ JT ~ VITIII ~ ~ ~ ~ ~ ~~ I T ~ ICC ~ ENTSTJLS fsv'esi1 ~ T414 CNPC((A)'URC lari 1 rt LEVEL) ra ice 41 erase 4,11 ~ 1 NONC 4AAONCTA(C P(IC55VRC les.i krt ~ Ja ~ F4 'sc 44srs O.oe 41 e oic O.SO Oi 44JC kvtakcc srkvas ~ ESJNTV1t f104 1414ke, 4.10 ai ieait 1,44 ~ 1 voic se ~ eetst stk LtftL P P I 30. 20I ~ I 5 I ~ I ~ Ie IIt ~1 5HO'V, )CK PK( LCTS (5LKCT) tlaCNCS) el L4%C ~ T SCJ LCTCL
29. 69I O.l 29 LSVE ~ T 4 41 T0TJL raa Tsc NONTN p SOLAR RAO(AT(OH ILJNJLCTSI svvet1 4r okf ~ wef1I cktkTIJT Is IJ await ~1 krtik AC ~ JILT TafkL I I 648.
vk ~ lt 01 ~ CLO'W 0 ~ ICJTIST as ~ sai ~1 I ~ ICJTCST OJILT 744 eeki. ~ Il ~ 1 kiOVC 'VINO ISO rT I ETCLI t I LEJ ~ OJILT wI 16 e e ~. St ~1 stkaw kVCNJEE S~ Ci ~ ivi ei P NISCKLLANCOVS HVNCCIC Oi OAV5 ve1 4 41 ~ EL4% Oci ~ NTVIE ~ 144 <<aivkL I I ELEJN raa 0 HCAT(HO OCOACC OATS I ~ ksc ~ Sor) icka OVIT 4 t141e I as ~ JITLT CLOVST vassals 0 TOTJI, ra ~ TNE 44NTV AVCRAOC PSVCNRONCTA(C OATA CLOIIIT avsr ~ cikiTvsc f104 1414JL 01T avL ~ lail !wet JNL ~ lorj RCL NUII~ CXTRCNCS (,) SEJSONJL 'T0TJL IIINCE JTLT II NEL, IIVN, 1'Sl 3 Stw if 14e 1 seteettf ~1 ~ tkiaeekL OEJJNTVNE ts44 141ee JL -3 4 ~ ENOTC ~ I JTCST ~ r ~ EVCNJL SJTC ~ Law tif 9 a. ~N (500415 (1 11) ~ I'I w evivwk sees ~ Meteorological Conditions for, July 1989 8-5 CBaveae HA)C)TC)R() MCTCOROLOISY 5TAT(ON 55 QIL(5 N N Ot OICNLIOO, MINOOCTOI CLIMATOLOGICAL DATA LATITUOC EC 54'a ~ LONE)TOO! I IS 50'Q CLSTSTIOS NAOVVO) TSS FtCT August 1989 TCIIPCAATUAC(OF ) FT LCVCL) PACCIP v)NO (50 FT, LCVC),) SAON TS ANO Il)SC, PMCNOM CNA 0(EACC SITS 4 . vve ~ CAN OUCU v SITC ~ v IIIC 55 1 1 SI J 4 1 v =;Cao 1 ~a v ~a hvcl ot tatafkL tallkccs aac 5 v4 etta ltTE ~ 'Ivt astafloas lta v va ~ V 'ta ' 1 ~ ~ IJ ' J 1 5 4 v ~ ~ j5 'l 0 ~ v Nwo towf1 Qao Iwaaaa tasarl V ~ 41 ~ v "'.EC) ~ ~ v vv V V ~ ' ~ ~ I1 ~ 0 ~ 41 I 'V 'v 4 -Cites ~ ~ ~ 4 5 ~ ~ 1 1 ~~ 5 I I 5 I CA led I T I 0 I 1: 10 I IS I Il ' ~ I IS I IC ) 80 61!701 -8! 0 I 5l I i !Sri'.0 33 1 SW'7 I515 ) 8 84I 56:70i -8i 0 I 51 I  ! IW ) 8.8I27 .'SSWI 38 I 634 I 4: 84! 58'71i -7I 0! 61 I  ! )NW 4. ' NW 89! 55'72 -5'" 0 I 7) INW.'.7 38!638 c I 9 60I ~ '+la . '13! i I:6:3. I )1: ~ 24 .' i !: 5 i )  ! 1 I 5!102I 67(84I +7! T;13;: l 95: 77'86'8'0 I+:: 1) 0 I19! i 21 I T i ! i I ! !N NW It!W .5:28 . .4' '. I W NW' NNW'3 I 7 I I 1 1 ( OL ! OL 91; 57;74. -4' I 9a - IIN'.2:23 33 i64o i 4,': -,' I  ! NW: ' 0 AU IS ! (SI )411 Q ~ I I ! I I 4 4 4 'i- !: I 4 i IS I ~ ~ ~ I Ici  !  ! I ' If i ' I 1 . I i 4 ~ 4 I~ I I  ! +  ! I I I  ! ~ I~ I OI I I + I i I I 50 I i I+ I I I ! a  ! I )I,'. i; 15 i i I 50!  ! I ( SSI l I I i * .' ( 06 20 a I i I I I ' I ! ~ C I a ~ I ' I i ~ ~ Ss I 4 9 )0! 64 +6 45 ~ 4 5)) 54 I ~ 'I I a 4 eaa vr r.rr 12 / ' krr ar JF/yr r'ter 4" ~ r. 6 4 6're'r'al PACCIP)TAT)ON llMI OVC I VENA 1 T*TIOVIUSCO Iv CO IT (1) vaLcsl ofaEewlsc I ~ ccl ~ IEI Tvc sall,r feral toa hac aasarv ~ 14IL ~ I ~ ~ l Ls>>I ~ SUIT ~ VHVkat t\also Is tlov QIIUI41T ro QI ~ tlear taCIFIC ~ T41 ~ aao TIQC octaafv ~ E tslla ~ c4>>aL kv aalsaa ~ I SLewaao Iaow Ivor Iltaaf LI~ 1 Ta lao (5) vfv Ia I ~ Lova ~ T ~ ~ ~ C10TE ~ 4 ftact ~ OL ~ ~ 4()) Tac LaaeLET Icol Isl ls Tac Usaf vsc ~ ~ 1Ekf tet Ia le <<ar P 4 Isa ~ te ~ ~ I I IHFTI~ Iaow ~L ~ CLICE I~ ~ IEC ~ ar0raLS ro ~ ca ~ Ic Iac ~ aav EIL~ SIE I EQ 5 asaaoca at ears wnws ~ ~ I ve 4 I t ~ rara ~ Iaotoav TCMPCAA'TUAC (otl FT ~ LCrtLI I lake ~ 41 vial I 0,5I 01 veac ( SAAONCTAIO PACSSUAC 0 ~ .I art ~ alt to ~ ra ~ >>gatv 0.0 ~ ~ 1 Qoac ) 4 0.10 ~1 vok<< lrtl ~ St ~ Iatloa ~ 1141IUat taov aoavaL 0,10 ~ I I 011 I 0001>>0 ~ c VIlacsf ~ ck LEVEL ~4 ales ~~ t 103 5NON. ICC PCLLCT5 (5LCCT) (lrcaC51 tewel'ta LEVEL ~4 (LO>>t ~ T 52 25 ref lo tlk f1E HIST ~ 0 SOLAA AAOIATION IL4 Sterol ~ avaa ~ c1 4t olr ~ >>Ital ~ 1C4TCIT Ia El \st ~ ~ I ~ <> 0 krtaalt ~ alto IHWI II15CSLLANCOU5 NUMSCIC OF OAYS Hla & 01 IEL4'>> 0 ~ EIISTUSE ~ ssv aoavaa, ~ LEka Fol ) p MCAT(NO OCOACC OATS Isaac ~ Ier) SE44 IUIT rasa t41TLT ELovof Tavaotl 5 ToT4L t44 TSE Ho ~ fa AVCAAOC PSYCMAOHCTAIC OATA ELsrsr ~ VST ~ Etaafvat ttev aoavaL ~ af wl~ Iotl >>Ef OUL ~ 1st! ACL, NUN CXTACVCS (5) ~ taloaaL TITIL I~ I1E ~ JvL'I ll SEL avav Iol 4 ~ Ert IT lot l ~ ala ~ Sf ~4 ltkalakL ~ Etlahllt tat>> aoovaL -10 Hstaofts LkfCsf Ot ~ EVEOIL sifts os>>Est ~4 CQ ICOSA))S (1 '))) ala aatvavaavaaw Meteoro1ogica1 Conditions for August 1989 B"6 QBaaetle HAH)VOR)) M)VTKO))O) O<$ Y 5TATIOH $ $ HILCS 4, W 01 AIOILAso, WA51110$ 41 September 1989 CLIMATOLOGICAL DATA lkfl)04$ acs )O'LOIICI)UOC I >>4 50'>> EL!TAT<01 ICS44141 $ 55 TCCT TCNPCRATURC<or 5 PT.LCVCL) IVRCC<P st j WINO 150 ST LCVCL) PRON'TS ANO ll<5C, PNCVONCNA CCCSCC OATS 4 vvs r CAN OUS 6 ~ OTCI lt Sale CS 1 s v ' 1 IS ~ ~ <twas or raosTJL ~ s ~ ~ scca Jac V 'vo I v ~' V v~ 1 ~ k ~ 4 v~ 'I ~ vv V 3 ~ ~ 5 1 4 "51 ~ Ivies J ~ TE1 T1E ICSLO raastl Jss>>rr sotattosa ~ sv1 Iwsast raasrl vv vl tv( I 'll6 ' $$ 4 1  ! a - 3,I ~~ ~ v a V 4 ~ ~~ a3s t ~~ ~ '$ ~ ~ ~ s 4 >>11 E ")$ -4I s ~ 4 ~ 1 4 ~ 4 I 5 ) ~ a ' I ~A I ~ 0 ' I 0 0 I 10 I It I <5 I~ ~ IS I l65l-5 0' ~ < is !5 IW 7:WNV 44i 'l ~ I I 5!8 !5 i66l- 4 0 I I i 1 IW I 84'28'HWI 4 l407: 3 )47 ~ 64<-6 ~ i 0: I 1 } 136: 6' 42: ~ !89 l49 <69 - ' I )NW! 5 8'32-HM< l5 Sl <6 70 Os < i I )NW 6 ' tM 3!5 )68."-: 0) 33I55 0: i: 5 )82 l54 3l ' IN  ! 9.0:28 H ) I l86 )58 i72<+ 3' 7<<7 I+ "5'-4lpi ps i 7< 66 0: < I ):N'NN:58: I ) '7 0.2'37 N NE I ) 35.50 37 i 471 < 0 0 ~ KFII 850 1 7 5 I I '7'478 ~ ~ ~ N! 43' ~s'll 8: )4I80:45 62-6< 3! 0 ~  ! I I I I: - 0 5.3 16 29 '483 I 0 166!'-: 0I: NW 30 'MM'4 HW ': >> '85 147 I 0 "I 7 ~ 47 )67l 0' ' ' 3:46 0 -47 !6 '+ '. 4' I 4 4 NW) 0 4 4 I 5!+9'0: M':46 ' 4:56 0! i  ! IM 4 9+; '. 64 '-:.. I~ ', 6 s O I s 4! )NW'84 7 ~ ' '48NW' >> 6 '58  ! 0 ' 4'2 'NM I 43 < 88 ~ 0 i~ 7 ) I 4)- I  ! Qi  ! I 6 I i4 ~ is 50 I I Si 83 )46 !64) !44 82 l52 <67!+ ~ I- 4! Ol 0 I 2 I I 0 I I 'W I  ! I 4 Si ! ) ) ')4740 36 6 ~ 4 I 0: ': 85 !52 l68I+ 4! 0 I 3 I INW'.2!14 NM 39 410 I 0 88 '53 l70I+ 6 I 0 I 5 l IS I 3.5;10 <ESE 39 398 2 I 54 90 l51 l70)+ 6. 0 I 5 I INW)49.NM 40 38 $ 586 '<54 !75!+12 I 0 !10! O.OZ INW 9.0i42 I SSEI 39 . 257 10 0 I 'L 79 )5 )6 1+3!Oi $5 8Q )47 87 51 169 + 7: 0 >> l88 61:74 +12 0 9 !64'+: '- ! P '! W 'NW-63' 14 8 ~ 4 2' H H '9 . 57 3 9 I 6 ' !76 58 67 + 6 . 0 : 2 ~ T '. 'W .I'!W 8.6 10.0 32 18 MNM MNWV 32 46 344 140 ' ~ )1 - 83.2!52. SVss .' <Jy'ri 12 i89 i 0.02 0 6.1 'J 2.5 I ' N / //trll 1 r ~v ~ NCC<PITAT<ON <INI ~ v rv v v Nk NUTAT<os I 0 <N C ST II) vsLEJ ~ OT1I1rl~ I saa ~ st<as, Tsc ~ JILT TOTJS, toa TSC Voattt 0. 2 1 ssslL ~~ ~ ~ 'saris ~ OVCT ~ vvvasT sea<os I ~ tsar HIS1<IJT to Hsossost Js ~ asst ~1 ~ 1 ~ ILOW<1~ SSOW aacartc ~ IJJSJ1 ~ Tltsc ~ Ea Ja TV1E ~ 1ov 141V JL ~ ~ CVIT ~L ~ I ~ Vast LICVTssso (5) tst ls coLvssss 1 ~ ~ EsoTE ~ 1 Tsac ~ 1 ~ too ~ o sasrtsso astr , s()) Tssc LJJILET <IOL <H I ~ Tsc vs vac4 It ~~ <atcsr ss Sa sa ~ . 0,02 41 25 OL ~ CLJ\E IC ICE ~ 11sT JLS 14 ~ E14TC ~ JE I ~ Jv CJLOJIC / Csa 5 svvacs Ov ~ JT ~ VSTst 1 as ~ at T ~ tso ~ 4 ~ 1 ~ 141v TCNPCRATURC lors 5 rt. Latas1 Ts ace ~ 1 Hose 4,51 41 voaa SARONCTRIC PRC)5URC Is ~ I tv<1*at vo ~ 1st vo 4.41 1 ~ HOJE 4,SO 41 Haaa Jslaala ITJTI~ 1 ~ I 1 1 1 Ts 1 C ~ 1 4H ~ O 1 H1L +1 4.14 O~ vl~ C 1.40 os s aac ssasast ~ ck LatcL ~ ~1 ~ sl I a 1 IIT ~1 $ NOW. ICC PCLLCT5 15LCCT))<SEVE)) Larcar ~ Ca SIVCL 0 oa 17 isa>>car ~1 1 ~ TJL 141 TSC Vo ~ TS I 0 5OLAR RAO<ATION ILJVILIT~ < svvsas ~ 1 sass rstsl I Saaktc ~ T SS SJ sask ~ I ~s I JVCJJIC SJILT TITJL 415.6 I -Ektasr ~ LILT ~a staa. 11 os JCLow p Os asal ~1 asc JIEST 5+ Hal 14 41 JJO1E 3 I WINO Ito rt. Ltvtl, I I 'LEJIT SJILT I 4 -I p HSS 11 ~ 1 ~ ELOW p Jvcaaac ~ Ja< ~ lssssi ~ 6.1 Is<5CCLLANCOU5 NUN4CR Or OA't5 vss 4 ~ 1 ~ CLOV 0 4 ~ ~ JJTII ~ C raosa sssvsL 3 ELC Js to ~ 0 saks 'Ivaf 111 1 ~ I 1 NCATINO OCCRCC OAY5 Isaac ~ Sa ~ ) 42 raov i SS 41 '25 SJOTLV CLOT ~ 1 TotsL aaa TVE Hosts 12 AVCRACC P5YCNROSICTR<C OCTA CLOVOV ~ 01 ~ 1 0 ~ EsasTvsE fsosa stavaL 55 sar sos ~ Iarl 9 w>> svss Ios) 5 RCL. NUN. CXTRCNCS <%) ~ EJJOVJL TOTAL IsssscE JVLT 11 JEL SVH I'l ~ aw rr c4V I 1lasaat JEkaos JL SC1111VJE rkav 141HJL -65 oscsotcs Lktcsr or OETIVJL oatcs LOVIST 6 15 ~ <I <500>>0$ 5 i< $ $ ) ssssa awvv 1 Meteoro1og)ca1 Cond) t)ons for September 1989 B-7 OBaneue HAH)tO)!5) METIC)ROI OCY STAT)O)4 55 QILCS a, r Ot SIOaLAIO, '>>A]II>>CTOI ctaber 1989 CLIMATOLOGICAL DATA LAfltuoc aso )c'..Iosclluoc 115 ~ )4'cccv>TIO>> lc>ou>ol ])) tcCT >>IH0 150 FT LCVCL! TCHPCRATURE IOF ) FT. LCVCL! PR CIP <<1 <<4 vrvs j >>CAR CUS FRONT5 ANO H15C PNCNONCHA 101CI CCCCEC CATS r v<< I ~ TIQES Or r>calf>L il>aut> AIE l ~ L]C 45 v v1 t vr ~ >4 ~ 4 v ] t vt ] j" alvEI L>TC ~ Tlat Iof>floss >t> ~ ~, ,v v v I t ~ v~ ~ ] 1> kou t>tati >so "vr><<I<<L>v raoefl v 1 v~ sas~ "4 C'av ~ v v ~ I r i V ~v V v v a ~ v J ~ tee 4 a> ~ ~ a a ] ~ I t ~4 I 2 5 ~A 4d t I IO II I] 1$ I~ 15 I~ 71 56 6 +4 1 0 IN 9. 26 N I 39 5 8 431 <<4i 9 0 I 0.04 N 8.8 27i N I 41 I 4l- la+ I i 4 i I I I 64 + I NW I 46 l343 1 '71 i I 4 I 5 I I 5 I I + I I ' 10 4 l41 + I I ~ I I I 4 I I 4 I 9 l ! 4 4 I -' FR 55 ' 14 I 4 I I I ~ 4 l I 7 I~ l4 -6 l] 5 iW I 4 i4 I 94 I 14 4 0 i F 4 ! 4 I ]0 4 I '52 Oi 51 4" 4  ! 6 1 I FR 534
5) 44 5 I 4 '
' 25 >> 62 4 56 0 00 46WW'.8 0 IO KFR KF 702 SC I 55 62 40151 I+2 14 0 SW 3.7 6' I 70 :238 3  !AU )4 !46 - I 0 F 0 )4 9 I 136'4 I 4!45 i+: I l I 0 ~ 02 0 4 0 >> )0 48 53 '728'38!40 8 25 ' I I I i27! I I I i 'W . 3 5' 4: 5 i6 70 48 51 10 6; ! 0 I ~ 'WNW '0! ~ I >>I54 !35'44I-2i  !  ! IW 143 ~ N I60 239 I 0 ~ al v 39IO I04 I 0 LV~ 15 5.6 ' IIIRCCIPITATIOH 11>>l Q] iv v v>>AQ TATI 1 Eccl>>co IT !II u>Lcs ~ 0TIcsvl ~ c Liccltlt~ TIE oalLT TOTAL tOA Tl>C Qo>T> 04 1 ~ SAIL ~ 0 ~ >LO<<l> ~ SV0 1 ~ Lo<<leo ~ Itv SVQQ>11 >C>leo I ~ tIOQ Qi ~ II4>>T 14 Ql ~ 11411, >1 ~ Le> ~ 4> ~0 ~ Lalrl~ STAIOLIO TIQE ~ I ~ A>TV>C t>OQ 10>QAL ~ Selt ~ I, ~ ~ I ~ TL>1 LIE>falls ~ l)l QTQ Ql coLvval ~ 1 ~ ~ t>>41cs 1 T>>ct. ~ >ELTtlT ls CE I> ~ 0 5l ~ .2 -22 t tee ~ > ~ >l>1II~ 010<< I!)1 1'st LL>CLCT IEOL Itl I> Tst VIIT V>E ~ 'Illill ~L ~ LL1 C lvelc Ia ~ lac C>101>LS l 10 ~ CSOT\ OIC ~ >La> CALO>la I CQ 5 IVQOC> Ot ~ >10 ~ ~ 1 ~ 1 e V e 0 ~ 0 1 0 ~ a> TRHPCRATURC Iorl 5 rf. Lcvtal TILCC ~ Q>IC I 0.]S 0> Qo>C CAROQCTRIC PR555URE Ils I ~ vf ~ Lec re ~ 1st Q>>T> I 0.01 ~ Qe>C e.sa ea I eac LvEI>ct 01>vie ~ ~ C>A>TV>a tIOQ I ~ >QLL 9 o.lo oa ~ >et f,00 ti Qoit Qesasr sca uvaL 29 I t I1 5>>ON, ICC PCLLCTS (SLCCT) IIIC>>cll Leva>f ~ aa uvaL 23 la I ~ 80 Os 10+ LO<<CSV 27 ~ I 29 Tot>L re> 1>C Q4>TI 0 5OI.AR RAOIATION IL>eCLCTSI IVQ>tA 4> Sais <<ITII ~ >CATE>T I> 1 ~ laae ~ 01 ~ I LttiA4C 4>lLT TOTAL QL>, 1] 41 ~ ELO<< ~ It>TEST ~ I esol ~I ~ >C>1CST ~ LILT QLE ~0 41 Au>> VINO 100 rf. LEVCLI LEAST ~ LILT ~ I ~ Qal ~ St 4 ~ ~ EL ~ '<< ~ vts>at sites lv>sl H15CCLLANCOU5 NUHIICR OF OAY5 ecto<< ~ E ~ L>TV>t 110<< 101QLL CLCAi toc QQQ o oa HCATIHO OCORCC OATS I ~ 1st ~ Cori ~ CLI CVST >IOQ I oe iji1LT CLSVST Tsv>OCI ~ VST Tet LL t41 flit Qe>TV AVCRACC P5YCNROQCTRIC CATA ELov>T ~ ltL>TV>C r14Q 10>vaL oav aves cori vcf sec ~ Iovi 45 R!L NUH. CXTRCHCS I ~ u>0>AL 101>l I~ l>at JVLT II ICL IVQ ICI ~ cv it IOrl IiaecsT ~s ~ CAIOIAL ~ C>LITVI~ ~ >OQ Ia>QLL ootsofa ~ LLTCST Or SavtIAL OLTCS LO<<EST 4 Os ~ II I ~ OO 05)!I ))l Laa>a>vw>a>aaa. Meteoro1ogica1 Conditions for October 1989 B-B QBal elle NANSTORO SAS1TKOROLGG<<Y STATION 15 LHLCS N, W OI et%LA%4, W*SULVCTOE November 1989 CLINATOLOG(CAL DATA LATIIUoc cse se'. ~ Loatllooc llse ss' lccfelloe (5444%01 Tss rccT TCNPCRATURC 1st 5 PT.LCVCL 1 PR CIP << ~ WIND 154 P', LCVCLl PRONT5 AHO NI5C, PHCNONCNA II v OCOI CC 44'll 5<<v4 PCAN 4US %01 ~ I v ~ JSC 45 a 1~ 1 ~ ~<< TIVC~ ~ 1 110<<TJL ~ 44 ~ JCCS kkC 1 ~ v C Jv ~4 ~l 4 v'<< 1 v<< 5 t<< ~ I' Ca krfCS f<<C 1 ~ TJTI4%4 J11 ~ ~ 455 V ~ ~ 4 v 4 vv ~ ~ 4V v 0 ~ ~ 551 NSLS 1141f1 4% ~ I %11 Iakkv rkosfl v~ 4~ ~~ oaa ~, 4v<<
  • v 1
v 1 vv 4E vk ~ J ~ la ~ ~~ ~ ~ %0 <<v lN ~ 4 4 <<3 <<N 4 5 CA ~8 Io II I Is Ie 15 W 38 68 236 44 H 2ll 9 HM I 80 142 8 IF MSM I 76 51 lp NW 9 331 W 54 142 6 I KFR 03 5 9!23 HWI56 I 133 4I+  ! 0 I SW! 13.3 38!SSW I 55 55 10 I KR14 + I Wi 3125 ~ W 149 184 i i 4 s 10 I + + I I 0 I I I Wl 'I72I32'WI Wi 4 Zl 37! !M SMI 53 M'I'54 'I '143 53 I 155 77 1P 9 8 15 IS + + + I I IP 4 NWI M 3.5 18 55: 6iNWI85 8 li 37! W I 60 NNW I 70 '9: i 152 i 190: 10 8 4 F KRI KFR 13 0 10! + O i I W 8.0! 22:WN'M!55 i 202 I l Is I + I 0 NM 5.5i 8: NM I 65 107 ! 10 14 4 0 0 9 NW I 4. 6 15 i NW 1 86 82 I10 'F IT 4 4O'+ ~ 5 p 0.05 NW'.1! 18 i NI I 91 96 ilp iF ls 44 I + 0 N 1.6: 9l NW 94 40 10 I IS 4 I +5 0 0 Ol 2.4i 141 NM I 91 88 10 I so 5 38 45 +7 20 0 NW 3.P1 16 I NW 91 89 8 iF Sl 35 4 +9 19 0 NM 4.5i 18 NE 80 '76 0 IF ss 5p 9 +226 0 NW 6.3l 16! HM 73 'l70 1 IF xs 48 30 39 +2 26 0 0.14 N 3.6:'24 I 5 91 I 83 8 ss 5 4 +5 23 0 SW 5.3I 24 I SW 69 '10 6 ss 5l 36 44. +8 21 0 O.lo HW 5.5! 25 I SM 72 i 125 7 008 8pi28:'ll i: 14 I +6 0 I 141 pl I+ I lp ~ W I 3.8l 5' 12 WSW1 74: 147 10 ls ss so p: i '. 4 12 I 6I I -9I39 - I 137 Ip I IO p I I I NW C ! C l 0.3 2'. 6 HW W SE i 90 l96 1 97 64 65:10 IF 43 I N 10 I F Sl i  % ~ ~ Vv 621i 1 1.04 0 4% ~ 6.0 7.4 ~v PRCCIPCTATION UNI vll pvcaovcak 1 Tktloal vlco Ia lf 111 U<<LEOO ST%ca%I ~ c ~ stclrIE ~ 1st ~ JILf TOTJL 101 TUC ve AT% A ~0 ~ Le%la ~ OUST ~ Vvvk1T rtalee I~ 111v vlOal ~ 11 1~ vl ~ sl ~ af JV ~ 441414 ~4 Steals ~ I%ca ~ 4 ~ ITIC ~ Tk<<0410 Tlvt OESJJTV1C 114V 141VJI, ~ 0%41 ~L ~ ~ ISfkaT LIE%I%la ~ (11 4 T ~ la c4Mlv~ 4 7 ~ otsofts 4 Ts set, lll SJ 11 ~ ~ ~ ro ~ ~4 ~ ~ slrfl~ 0 lac% ~ 1EJTEST ~1 %(sl Tat Lka ~ LCT ICOL 1 ~ I I ~ TVE UalT Vlt~ ~ I, ~ Lk1t IC ICt CJT ~ TJLS 1 ~ ~ EI ~ Tc ~ sc ~ OJV CJLO ~ IE I CV S ~ vvstk or ok% 4 'vlf%I ~ vs 4 E 1 Tsa ~ Otk ~ T41V TCNPCRATURC 14<<l 5 tT, l,tvELI TIJCC ~ 1 V01C ~,Ss \1 ~ 41E OARONCTRIC PRCSSURC ua.l 4%1 ~ 4 ~ C 1 ~ 1 T<<E vesta 4,4I ~ 1 V41E 4.10 01 V414 1%tsket ~ Tkfle% ~ CSJJTV1C 11 ~ V 1 ~ SVJL 4 Io 01 veaC 1,44 01 V41C Ill~ <<EST ~ CJ \CTIL ~1 3P ~ l41EST ~1 9 0 SNOW, SCC I'CLLCTS SSLCCTl DSCSCSl Le<<CSt ICE LCTEL 7" 25 Low(ST ~1 TOTJL 101 Tat veaTP 0 SOLAR RAOIATIOH ILJ<<ELCT)l ~ %alta Or 041 ~ 'vltl I~ ~ ktkTCSt I ~ C ~ <<OV1 ~ I aft%Jet OklLT 'TOT JL 192 Vkc vks, SS ~ 1 OSLO% 44 ~ 1 JSOTC Vla Sl ~ 1 ~ CL4<< ~ sckftet kf ckkec sscto 4% ~ 104 WINO ISO la<<%I rt. Lt%tt I ~1 ~ 1CJT CST OJILT LCJST SJILT NISCCLLAHCOU5 NUNOCR OP DAY5 40 0'8l ~~ VI1~ 0 ~ 1 ~ ELOV HCATINO DCORCC DAY5 ISJSC 014 ~ 1 ~ trkaT<<1C ~ EJE OUST r<<ev ~ 41vkL 1 ~ Ov Etcke ~ 41TLT cLS'lel 6 ree 'Tavaot1 ll TOTJI, 141 fs ~ 4 411% AVCRAOC PSYCNRONCTRIC DATA ELOV\T ~ %11 0 ~ ErkatVSE raev 141vkL ~ <<T ~ 44 ~ I or I ~ lct 0%41 Ieri RCL HUN. CXTRCVS5 151 ~ tke ~ <<JL TOTJL I~ I ~ EC SVLT ll ktL avv 111 ~ cv rf csrl 35 ~ le%EST pp 0 + ~ EJS ~ <<JL ~ E%41TVst raev 101vkL -239 + ~ E14TES LJTCST Or ~ Ef ESJ'L OJTCO LV<<tef 32 4% 44 CSOO<<OSS 11 Tsl lie v Jaskv4<<lla Meteorological Conditions for November 1989 B-9 SEIOT DOIIClll ra<<V CLNATOLOGICAL DATA l~ LATITUOC JCI rthtspvrsak SS MILLS Sc'l, ~ I Ewaa 'w LOI4TWOC>>$ 0 ~ tkvravvvv I v Ot EIOlLAIO, 'WJSIISCTON SC' ~ ra ~ rvla CLCYJTION ICCOUIO5 TSS rCST Oecember 198! TCNPCAATUACEOP 5 PT LCVCL1 PR ClP <<15 'VINO 1$ 0 PT LCVCLl PAONTS ANO 415C PNCNOIECN* 0 V OCCSCC Oltl P CAN OUSW ~ 01CI V 1 ~ JSC CS I ~ I = C ~0 t 4I I ~ l' 0 I TEQCI ot tso<<TJL rasskocs Asc V V <<4I ~ v 5 ~ 1151 JITCI TIC 101ktloas Itai SS <<J J 1 I 'C 1 I I ~ IV vv ~ ~ 4 V ECOLI tstItl Aa ~ lats I<<kali ~ 10<<tl ~ vo << S v a~ ' k 4<<~ ~ g Iv 4 ~4 V ~ <<<< ~ ~0 1 ~ <<I ~ a ~ << ~ ~ << 5 ~ 5 CA CO 110>> ~ $ 1$ 1 1 ~ 1$ lc 35 I l33 -3 32 0 SW 181 6 SWI 91 28 I 10 37 32 l34 - 21 31 0 I O.pll SE 4.0111 I SEI 88 55 I 10 I F 6 32 !34I- 2i 3 0 I 0.07I tl 2.5!15 I ESE'4 I 37 I 10 1 F 44 35 !40 i+ 4 I 25 I 0 I 0.09! IN 4.5i18 I NM! 93 I 50 I 10 I F KFR 1930 5 I5 33 I42!+ 71 23I 0 I I It!W 6.2!18 1 NWl 87 I 109 I 9 I F 5 l3g 35 l37 I+ 3 ! 28I 0 I IS  ! 3.8ilp! S I 98 I 36 I 10 I F T 144 136 l40 I+ 7 .'5 I 0 I O.pll INW I 4.4 13 ! NNWl 1 1 73 5 10 I l58 l35 l46 i+13! 19I 0 I 0.01! I ISWI 8.9 36! SMI 76 ll54 I 0 i F KFR 23 5 l50 l35 !42 I+ 9 I 23I 0 I I IW '!12.0 33 I WNW: 57 i 129 I 4 lo l48 l27 i38!+ 6 I 27l 0 I lW I 5.7i14 'NW: 67 I152 I 0 l >> 39 !23 !31 I- 2 I 34I 0 I iW l 6.4!14 i SE 71 '121 6 38 20 l29 i- 4 3.4! 1 ISSW 84 '126 ' 35 I19 l27-6 36 38 0! 0 I I IW ESM I i 2.9:10 ' !32!2! S:96: '1 !140 '- ilp! 6: 1 F ls!31 !26 !28 I- 5 37 0 I I IS 37 F 40 33 I28 !34I+ I30 !32I- 1 l33I 0 I 3 I Oi 'SE iSW " 3.2i13 '.6!ll l2 8i 9 ' . 5 SSE SM 92 '121 89 '529,  ! ! 10 4 I i F F 32 l25 128t SI37! Ol T IS 1 88 i 10 I F GL I30l 1 ~ 5 2 24 4 I I pi-I- I-5 5 37I Ol 37 35 OI 0 ! iNW!2.3 INW I 3.2 14 I 8 8! t!W 5 89!.105 95 92 '0 71 8 I F 10 I F 9 I F 10 7 I NW ~ 0 55 3 I 85 36 7 11 >> 4 I 4 6 4 21 3 33 0 INW IN i2611 iSS 190'l I 10 I IF >> 3 l27 30 I- 3 35 0 INW 3 2 12 INNEI 95 26 10 I F sc I 4 LI. 0 SW 4 0 IWNMi 94 34 0 F >>36 82 l34M 31 0 0.01 T SE 3.2 10 I SEI 92: 34 10 F SS I t" 01 1 3 0 00 '0 T I l8! '92 6 0 F 0 I 0 l331 0 0 04lp T !5 i3.0l i SW 87 35 10 F 0 '27 !28'- 3137l 0:0 03'0 4 M i 2.3! 9 IWSW 98 27 10 F GL 31 '28 130!- 1!35'1 T I O.g!M '3.4' NW'5 41 i 10 I F GL so 32 '30:31 '+ 1 i 34! 0 I;l0.6'SW '.6!10 WNWl 94 29 l 10 i F sl l37 '26 '32 '+ 3 i 33 I 0 I I T  ! T .0.115  ! 3.0'12 SSSW 93'6 I 8 I F 'rr'r SVV rrr 85 i 0 I 0. 29i 1.4 J1438.'0 i28. t 3.9 8.3 ' ~ ACClPITATION IINl ~ NIS PNCNOVCVA NOTATIONS SCO IN CO IT ill Vates ~ OYscswlst srccltlco Tvc ~ JILT TOTAL ros Tst Q41TI I 0.29 I IJIL ~ ~ ~I I ~ ILIWISI OUST Sall<<JIT ttsl04 I ~ 110<< Qloslcst TO QI ~ VISIT JV AVI41k ~ Lo<<lso 510w IACltlC ITAaOJI ~ Tlvt, ~ trksTVIC u4Q ISIQJL - 0.66 ~ OUST ~L ~ lstkat Llsstsls ~ 1$ 1 <<t ls CILVQIS 1 ~ ~ OEIITCI A Take>> ~ ACJTtst l1 SJ 11 ~ p.pg !III 4 t ~ 144 ~ I ~ IsltTII~ saow ~ ill TNC LAS ~ LCTSJQ '!COL ~ lo TSC 1 1 Vair USE4 4L ~ ILA1C IC ltt CSTITALI 1 ~ ~ CIOTC ~ SE ~ CJLIIIC I CQ S <<vv>>1 ot ~ Jt ~ '<<ITIS a svoat Tata ~ E ~ IT41<< TCNPCAATUAC 14rl S tt Lttcl,l Taste 01 QOIC o,ss 01 li~ JE I 0 OARONCTAIC PACS5URC ll~,I ~ vtakor rss 1st ~ oat<< I.ol 01 laoac 0.10 01 <<oat I Jttakat Stktlo ~ I ~ CrkATV~ E 110<< IOIQAL 4 10 ~ I QIIC P 14001QIIC P IIIICST ICJ LE'ltL ~ I IIIVCST 5NOW. !CC ~ CLLCT$ 1$ LCCTl OICIC5) LO<<uT uk LEVEL ~ I 8 LIVE~ T TOTAL to1 1st QIITN 5OLAA AAOlATEON 1LJIILctsl ~ Vla ~ CI It 4AT ~ WITIE ~ scJTtst la s I vovssl ~I I JVEAJIC OJEIT TOTAL QAI >> 41 ~ EL4W ~ IEJTC ~ 1 Oa ~ 10l ~ I ~ IEATCIT IJILT ~a Qkt 00 01 Akott WINO 100 tT ustl.l LCJIT SJILT ~ I ~ Qs, Ss 01 ~ CLOW AVES JIE ~ IEEO liar<<1 NI5CCLLANCOU5 NUNOCR OP OATS Qla. I Oa ~ CLOV 4E ~ JITVIC 114<< 101VJL CLC JS to ~ HCATINO OCOACC OAY5 lSJSC ~ 141 1 ~ CAJ IVST raov ~ I ~ AITLT CLISST Tsvasca AVCAACC P5YCMAONCTAIC CATA CLOVST ~ VST TITJL 141 TIC Q4<<TS ~ CIJATUIC tso<< 101QAL 411 IVL~ lorl 9 vcr SUL ~ to ~ I 3'2 ACL NUN. CXTACNCS I 1 ~ CAIIVJL 10>>L (IIIEC JILT 11 ~ CL IVQ ltl ~ CW rt 10tl slcatIT ~ EJIOIJI, ~ ESJITUI ~ uola 101QJL -244 0 ~ EI ~ TCS LJTCIT 4t SCVEIAL OJTCS Lowcsr 39 Meteoro1ogica1 Conditions for December 1989 Mmlleile F<<W 'HH RAN)TORO (t(CTKOROLOOY STAT(ON cs Iatacs N. w. Or slcsckso, waslt strew January 1990 CLlhlATOLOGICAL DATA LATITVOC 040 54'. ~ LONOTOOC )iso 24'v RCVahON (Ctatta) 725 FCCT TCMPCRATUAC(4i 2 PT LCVCL) PR r 0~ 5 %1NO ISO PT LCVCL) PROHT5 AHO IIISC. PHCHOMCHA a V occAcc oars r V ll 4 JJVO PC*K 4US r ~ OTEI ~ LSC 4$ 1 I1 1 r 1 ~ I 1 ~ hvas 01 Fao<<TAL Fasskccs Aac l,r 1av 1 V ~ '4 1 ~ J Jv V V~ 0 vV 2 v 2 V ~ IVCV krTI1 TltC laOTJTIO<<s L11 vaCrt O ~, ~ ~ 22 J S ~ v <<v 0V ~ r 51 IC4LS 114111 krs rro Iwakal 114<<rl vV ~1 141 1 4 at J ~ v r V ~ v1 v V 1 Or ~~ ~ 0 ~ ~ ~ r 1 ~ r ~ ~ V 5 r 4A 48 7 la II 12 IC IS '14 17 47 32 4 +ll -W 96 29 68 71 10 2 4 8+pl 0 W Ilp.p 29 WNW 56 138 6 I 4a+ 0 SW 70 31 SW 64 I 78 9 p 49 +2 0 SW 1 9 37 SW 54 115 6 4' SW 0.4 49ISSW 68 61 9 4 59 34 I 46 +17 0 T S 9.3 44) S 65 61 10 0 0 I SW I!6.7 57 SSW 63 8  ! 9 I 55 48 +19 17 0 0.2 WI16:5 61 W I 69 I 85 7 IF KFR 0130 60 0 T INW 7.4 50 WSWI 79 41 10 I F KFR 0230 lo 50 44l+ 4I2 (NW 7.7 26'WSMI 56 l109 10 I KFR 1950 )I 4 40+ OI25 0 INW 7.9 15i NWI 58 I 48 10 Ic 4 0 00 INW 5.3 7iWNWI 64 ! 75 ) 10 IS 0 0.03 2.6 ll! NM 93(58 !10 (F ls 44 0 7+5 28 0 4.4 12I SE 86 I 83 10 I IS 7+528 0 T INW 3. 9 12! NW 91 I'54 10 IF 14 4 4 + Z4 0 0.02 INW 8.0 16I NW 82 I 67 9 I !+4 9 0 5.8 181 N 61 ll69 0 1 ~ 4 7 5 15I NW 86 I 46 9 F 15 I+ 4.3 12 NW 74 I 86 10 20 4+ 3 0 4. 0 13 I SSE 78 I 44 10 I 21 + 2 0 23 9 NW 83 I 48 10 22 4 + 23 0 9.4 45 M 64 '128 KFR 0710 22 5P 0 40 +Ip 25 3.8 41 MNW 49 '191 KFR 005 20 + 30 3 1 8 WNW 67 I 97 10 25 52 35 44 + 4 0 SW II4 9 52 SW 57 I 60 10 KFR 2100 24 + I 6 0 W 4 2 32 WSW 47  : 21 4 + I 3 0  !SW Q .7 53 (WSW 51 '140 KFR 1400 24 48+81 7 0 00  !SW 8 1 73! SW 60 99 80 WFR 1210 KFR 173 50 35 42!+12! 23 I 0 0.13 ISW 12.6 55: W 57 134 8 KFR 2348  ! 24 50 34 42'12! 23 0 . W 7 9 I 34 SW 63 128 10 sl. 42! 28 35! + 4 30 0 0'.05'0.6 . S l6.6 I 32!SSW 71 . 55 10 F SVV 63 0 0.77 0.6 -0 8.382. ~ 9.2 8.4 21QZXS ~ PRCCIPITAT(OH OH> NI5 PltCNOltCNA NOT*TIO115 5CO 11 CO lr (I) IIVLCS~ ~ TNC1WISC ~ FECIFIC ~, TVE 4AILT 'tOTAI, 101 TVC Nor TV A SNL ~ 4 ~ ~ LOWIJC Star ~ VNlaA1T FCOIOO I ~ 114la lal411 ~ VT TO HI~ <<last 0.77 Jr ~ LV10 1 k ~ 1 ~ ~ Lowl~ 0 srola 1LCI1IC STAIOJ14 TINE 4CFAATVIC 111Q 101QJL -0 20 ~ ~ OVST ~ L ~ ~ I ~ Tkk 1 II ~ 1 Ts la S (2) 'at ~ 11 COLO 1 ~ 7 ~ ~ StroVCS a tOACa. ~ Aakvasr 11 sa 11 ~ . 0 39 41 7 8 1 ~ 104 ~ 1 ~ ~ al ~ Tlat Lkow ()l TVC LA1 ~ Lcr (COL I ~ I IS TNC VVIT Vsts ~L ~ LACE Ia ~ I ~ C CATSTAL~ To OtroTC 41E 01Jla CAL11IC CQ 2 I OVNSC ~ 11 ~ JT ~ 'WITVI 1 Ivoat T vrra ~ I ~ LToala TCMPCAATUAC lsrl 2 Fr. Lcvacl T1ACC 01 NOAE S.SS 01 N01C CARONCTRIC PRCSSURC II~ .I Jrtaast 101 rvc Ho<<Tv 4 Ol 1a Hoot 4 14 01 Hoke JVC1LCC ~ TLTIOV 0.3 I.so ~ OHoac 0 1t ~ 1ttr ~ CALCTCL 3p 47 ~1 11 ~ Craatvat FASH 11 ~ IIEST rtaaakt, 41 + O.looa I ~ Ja 3 5NOW, )CC ~ CLLCTS (5(.CCT) (ISCACS) LOWEST SCA LITCI, 9 8 " 30+ LOWCST 22 ~ lt 18 T4TJL 101 TVC la01Tlt 0.6 5OLAR AAOIATION ILaaaccvsl Wlvlll ~ AEJTCST 11 SC VNI1 ~ I 0. 6 '" 31 kvt1LCE OAILT To'ILL VVILSCA ~ 1 OATS tlat 22 \1 ~ EL4w 0 ~ 1EJTCST 41 Sat ~I 0.6 " 31 CSCATCIT OJILT 191 ~1 LC ACT OJILT 41 HAC 44 41 AOOVE 0 WINo Iso 1'r. LcvcL I ~ at ~ sa ~ 1 SCLOV 18 kvcakst tact ~ IHrvl 9.2 N(5CCLLANCOU5 HUMCCR Oi OAY5 Htr 4 01 ~ CL4w 0 ~ EFLATVJE FSOQ 141HJL +2.7 Cat AA F40 Ctr) tks ovsT raoaa 01 28 ~ aATLv Rovsv 5 v>>vrst1 0 HCAT)HO OCOACC OAY5 isaac ~ ~ 73 SW TSTLL 1 ~ 1 tvE laorT'1 763 AVCRAOC PSYCHROMCTRIC CATA CLOVSV 24 Ovsr ~ CFJJT111C FaoN 101HJL -3 sav SOLO 14r I wcr SCL ~ 141 36 ACL, HUM CXTACNC5 ( ) ~ CLSSVLL TOTJL I ~ IVCE SVLT ~ I ~ CL. 1st. (El ~ aw rr ltr) 9 ~ lorcST 9 01 ~ CAS01AL ~ CFAATV1'C FASH 101NJI, - 62 0 ~ CVOTCS LATEST 01 ~ CTCAAL VATES LOWEST ~ M IOOOASS (I 75) aaraa avaaaaL rata. Meteorological Conditions for January 1990 QBallelle taH v sH BAN)TORD )s(C'TKDRDt DQY 5TAT(ON 1$ ISILCS A % Ot AICN<<kaos 'WASNINCTON February 1990 CLIMATOLOGICAL DATA LAtltusc l40 54'.. LONCITUOC I lss $ 4' CLCYATION (CSOV>>0) 7$ $ t(ct TCNPCAATVRC (4F 5 FT LCVCL) PRC C)P 1 15  %)MO ($ 0 FT LCVCLI FAONT5 ANO NI5C, PHCNONCMA OCCECC (SETS >>CAN CUS V ~ 01<,o 1 ~ l ~ ~ Sv Tlascs ot tasatkL t ~ assets 11c V s v as ~ ~s V 5 vV 5 V ~ ~ as sa CIVCN ktTE1 TNE 1 ~ Tktlees tt ~ 4 5$ 1 'E 1 "Esc ~ v 4 vv ~ s 4 v NOLO taoail kao Wt1 Ivkkv tkoatl s 1 ~~ ~4 ~ 1 v ) V 1 v 14 l J <<*4 ~ ~ ~ 0 s V 1 a e s e 5 0 I $ 4A ~5 7 I )01 II I IS IS ( Is I IS I IC 44 24 34I+ 2! 31 0 T T ..6I NWI 6.5 24 W i 77 I ]61' F $ 55 38 46i +13l 19 0 I SMI 16.8 40 I SW I 54 I 158 I 10 I 53 39 46I +13i 19 0 .06 I S 9.2 31I NWI 59 I 4 ( 10( K !I lo4 50 34 42'. + 8! 23 0 I W 12.0 26 IWSM i 50 ! 211 i 4 I s 52 38 45'+lpi 20 0 I S ]7.2! 47! SW i 46 i 183! 7 48 33 40l+ 5! 25 0 I SW! 15.3 38 'W I 49 I 199 I 4 I 7 144 26 I 35I- l30 0 I SWi]5.3 55 SW' I 9 KF. 1 ' 1 s ~ 48 27 I 38i+ 2! 27 0 I NWs 3.9 13 S ( 70 I 140 9 ' SW'.9 I 64 'I 118 ': 5 I 58 (3 I44l+ 8I21 0 4 I SM 10! io 64 39 I 52I+15; 13 0  : SW! 20.5 51( SM i 58 I 206 9 il 59 33 46(+ 9l 19 0 I SW:15.1'5!WSM'4 i 154 8 KF 1300 i$ 41 29 I 35! - 3:30 0 T I .1 i SM 1].T: 32I SW) 57 -'93 F 38 22 130! - 8(35 0 I T IT i HW ]].l! 30 NNM I 42: 184: 6: ll 'El I~ ! Is I 'I4 32 35 35 I 22 9! 22(-17143 27I - 2!38 I 28! -1]I37 I 0 0 0 I l.02 I T i I .4: NW'.5 3 I NWE 4.9 19 SE i 58 227! 5.4; 15: ~ 20: NW i 81 NM'9: 116! '09 '0 10 I 5! I F )7 34 8! 26l -13I39 0:01 .2 T i NW! 8.3(20! NWI68 I 24] I 6 IF is 4 9 22I- 7 43 0 IS I 4.6!]6: E l71 I 304 I Oi 4 I 5l- 4 40 0 SEi 4.5 17 )SSE I 74 '57 9 I 54 48 23 36l- 3 29 0 T N 3.8( 15 I H 75 i 137 8! Sl 64 30 47I+ 8 18 0 W 5.4I 20 i NM 64 (.241 $ 554 30 42'+ 2 23 0 HW 7.9i 19 NNW 75 '95 55 30 42l+ 2 23 0 T E 5.2! 19;MNM 77 . 287 $4 48 36 42I+ 2 23 0 T NWI 3.5! 18 I NM I 92 . 149 36!- 4 29 1$ $4 4'2 57 31 4 26 42l+ 2123 I 0 0 I S ( W ! HW'.9! .il IE 4.4l 15 I tiM I 95 16 l NM: 53 ~
333 71 10 0 I F
5~ 57 '29 I 43:+ 3122 0  : W I 6.0'6 'HNW: 53 337 I 0 I ! ( i I  ! $0 ' ) SI I I ( I ' Svvaaa'vs s . IP, Xr' Oi ~H PRCCIP(TAT)OH ((H) r>>C>>q>>C>>A>> I'ATIO>>5 USCO>> CO 17 Il) VNLCSS OT>><<1wlst 0 ~ E ~ ltIC4, 11C ~ klLT T411L 101 Tac HoaTss A ~ 1 kl I, ~0 ~ LOWI~ 0 SV ~ '1 'avssvklT tcalso I ~ taolJ Hl ~ ascat 10 His>>)411 ke ~ ksksak ~0 ~ SLOWI ~ 0 ~ SSOW ~ k<<ltl~ Stkaoka ~ TIH<<. 4EtkaTVNC ~ 10H LOWelL ~ ~ 0401 ~L ~ ISTkat Ll~ ls Tales (1) '(s IN ~ 4LVssa ~ '7 ~ ot1 ~ Tts 1 111CE 1 tss ~0 ~ ~ eltTIN~ sasw ~ 1<<kt<<OT I~ Sk lsk ~ ~ ()I T1C LkasLCT (C4L,I' ) I ~ 11C VNIT VSE4 SL ~ ELEEC lc IEC C1TStkL ~ 10 OCaotC 41C ~ skis CAL~ 1st I tls 1 1vvaca ot okl ~ 'wlTNE ~ ~ avast 1 Tae ~ 0E1 ~ Tsav TCNPCRATURC lots 5 tT. Lte<<LI T1kcE 01 Hc ~ E ]0 o,ss 41 lsskc I P AAAONCTA(C PAC$ 5UAC lle I as\1 ~ 4<< t41 el E H0111 O,ol 01 Heat 0.04 ~ 1 MsaE I SVISSSE 011'II01 ~ CtkaTVNC tasse lssaHSL 4,14 01 asset I JSO 41 Hskl Nl ~ Il<<01 ~ Ck LEVEL I ca ai ~ 1 ~ St 5NON. (CC ~ CLLCTS (5LCC't) IINCNCS) Low EST ~ Ek LET CI 4 Low<< ~ 1 ~1 T4Tkl, tsa TNC Morta 5OLAR RAOIATION nkaCL<<1 ~ I aevaE1 Ot 0110 Wltlsl ~ 1CSTEST la Sk NOV10l ~1 ket1kst ~ SILT T011L Hk'E Si ~ 1 ~ E'L4W ~ 1<<k1C ~ T sa <<10l ~1 ~ ktkt<<ST OSILT ~a Hk ~ ~ 04 01 kaovc VINO iso tT. LET<<I.I LEAST OHLT 46 ~ sla, ss oa ~ ELow 20 ke<<110E sat<< ~ lveal 8.9 NISCCLLAMCOU5 HUNSCR OF OAY$ ~ sH>> 4 01 0<<LOV 0 4<<tk1TV1C tasas asevkL ~ +1.8 EL<<ka 5 tos HCAT(HO OCOACC OAY5 lsksc ~ Sstl ~ Cks 4401 55 114ss 5'M 01 7 ~ ka TLT CL 0101 8 Tlvasta TOTkL toa Tlsc aloa Tv 767 AVCAAOC P5YCHAONCTAIC OATA CLOSET ]5 svst ~ EtkaTVNC t14as N41MSL -4 sat 1st ~ (41) i37. 5 wtt 04Ls Istl 33 ACL HUN. CXTRCNCS I ) sckaoakL TOTAL I~ I ~ Cc kvLT II 1EL, avv, (VI ~ tw tt Iot) lll~ l ~ EST ~1 25+ 0<<1101kl ~ E ~ 11Tv1c taov 1 ~ aaskL -566 os<<NOT<<0 LATEST Ot 0<<etakL SATCS LOWC ~ T' 26 o. 13 ~ N (40041$ (I 7$ ) aas.aa ~ slasaaa. ease. Meteoro1og1ca1" Cond) t1o'ITS 'or'ebruary 1990 Qsartette ~ k& CLNATOLOGICAL DATA ~ I>> HAN)>ORO METL>OROLOGY 5TATION 25 UILCS N W or AIOILJNO WJSNINCTC>l Lktttooc cdo 24'., Losutvoc 1 too sd' cccvkrlos (Csooao) Tss tccr March 1990 TCVPCAATUAC(4P 5 PT.LCVCt.l PRC C)P WINO (SO PT LCVCL) PAOHTS AHO NI5C, PN CROM CHA Sect( c olr s VO PCAH OUS ~OTCI a VVO V ~ Jtc 45 "v S Nvu or 1 ~ V ~ V V v> v z vo V 1 5 ~ v j V V v~>>s>>v ~ ~ lvc> r>o>r>L ra>>>>t ~ kac k>TC1 T>c sot>El>as Nolo taearl J>e vwrav IN>all taearl Jrs > 22 4vv t.t f V >'I 4 1 ~a V ~ vV 1 V t 1 1 1> as 4$ I 4 1 ~ V 1 V V 5 1 1 s s j ~ ~ V 1 V ~ V~ ~~ I 2 5 ~ 5 CA 1 I to 11 I 12 12 I 14 IS I tc IM .1 1 MNW) 1 ia +i !NW 4 I 0 I 41+i t I 1 P I ! 4 441 +41  ! I W I IW i I 0 I 4!+ 1 5 4 i I I I IW !M Wi I 4 I ~ 5 Io! !63 I 2 i I 4 4 1481 4 1451+ +7! + +41 ot I I Ol 1 01 ol 1 1 Ol I I 1 1 ! I 1 Wl I I 1 . I I I 1! 144'561 '4 I i S I I O') 62 a !4i I 1 't. 90 751 41 1 601 I 1 1 0 oi 0' I KF!t 04 3 54 13 142 0 6! 01 Wt 4 '356 4( 12 ls 5 8 i 1 43 44 48 +4 P I 0 0 i 6 ~ 1 'I44i i  ! 4 41 !4  ! I !5!:!1010t 6 136 7 0 !W 1 !WNWt 4 1 6 19 46 + 1 910 4 4! 4 1 54 1405 1 3 i td 1 ~ 45 49 56 +41 6! 0 0 4 '1 . i I 6 1 IS 4 ~ i 20 0 21 22 22 24 0 4 4 -5 23 01 66101 NW 8 l440 24 I 2T + I I i I i 1 i ~ 4 14 + I ' 25 >>7:4 4:5'5!+(46! oi)0)0' I+4 i ~ 4 4 I i 0
4 8
I 1 A JV ~ rr i pi pl 1 6r x 1 360' rr rrrr rx ~NT PACCIP(TATIOH (IH) ~ Nll PNC'lONCNA NOTATIONS VSCO IN CO lr (I) 'UNLcss ~ TNE1wl ~ c s>tclrlE4, Tst eall v T41>L rea TN ~ lko>TN 1 ~ WAIL ~ 4 ~ S LOW I1 ~ OV> T ~ VUUJJT tC1leo I ~ t14U UIONIONT Te Ule>I ~ Nr> Jv ~ JO>11> ~s >Lewis ~ ~ 1ow ~ kclrl~ ~ Tkso 114 TIUC, 4trk>TV>t ~ >OU 1 ~ >UJL ~ ~ ~ V>T ~ I, ~ ~ IST>aT LISNT1lsa T Nl COLU>> ~ 1 T ~ 4csetC ~ k T1>Ct ) (2) > ~ >CJTtsr I> tk 1>> oa roe ~1 ~ >lrTI>e >>os ~ (2) TNC LJNSLCT (E>L I>> I ~ TNC V>lt U>t4 p 4 9 0 ~ I, ~ CL>t t It ICC Ear>TJLS TO ~ C1OTC ~ St ~ 1>U CJL411 ~ I CU <<vwus or ~ JTS wlrsl ~ >walt T ~ T>>V ~ E ~ STO>U TCNPCRATUAC ters 4 tv. Ltvcsl Taktt 41 U>1C 4&s sa ~ o>t ~ AAONCTAIC PRCSSUAC tl ~ .I ~ v ~ kat >4a Tst Us>ra 4,01 41 Uo>E 0.>o oa vo>c JYE>kst STJTIS> ~ Ctkarvat t>OU 111UJL +3 6 0,10 ~1 Ns>t 0 I.oo oa ~ oac 1I ~ IE>r ~ ck LEVEL ~1 NI Sat ~ T 76 41 31 SNOW, ICC PCLLCT5 (5LCCT) (l>CJCS) Lewtsr ~ lk LEVEL ~1 p L>wt>T 24 ~N 25+ 14TJI >11 T1C UONTN SCILAA RAO)AT)OH ELJ>>LCrtl ~ UU ~ ca ~ r 4>T> wlTNI 4>EJTEST IN lJ No>1 ~I ~ <<1 kvtaklt OJILT TOT>I 0.1 i Ukt St 41 ~ CLOU 0 ~ It*TEST ~ 1 O>4I ~1 ~ >EJTE ~ r 4JILT 41 Uk ~, so ~ 1 J>OVE WINO Ise >T, LtvtLI Lck>T ~ LILT I 4 " 7 7 1 Ula ~ tc ~ 1 ~ ctow kvc1>oc srcca Iv>>>l N(SCCLLAHCOU5 HUNSCA OP OAYS Uls, 4 ea sctew 0 4E>k1TV1t r>OU 141Ukl, CL ~ Ja >44 0 HCATIHO OCORCC OAY5 lsk>C ster) ~ t>1 CVJT ~ >OU ~> ~ ANAT CLOU ~ T T>'Vsst1 0 TaTJL r ~ 1 Tsc UONTN st>Jar>ac taoU s>1UJL oav AVCAACC P5YCNAONCTAIC CATA lvl.~ 14>l wcr >vs> Ierj CLOVOT ~ 1st ACL HU)l CXTRCVCS (51 0! ~ ckses>L ror>L lslacc JVLT II 40 WEL NUU I'CI ~ tw >r tort 1lwlur ~1 ~ tk>ONJL Ot>k>TVWE t>OU 14>UJL 674 woes ~ TES Lkrc>T ot >crt>>L OJTts LONCST ~> ~ ll laooASS tt T>> lle>l >N>U>N >JUL Meteorological Cond'ions for. March . 1990 8-13 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Hg STD DEV AVE Na STD DEV BULK DEP APRIL, 1989 (ag) 1 0.3 0.022 O.l 0 0.27 0.057 0.05 0.022 0.04 0.014 0.76 0.42 0,078 0.12 0.036 0.32 0.071 0.06 0,014 0,07 0.028 0,99 0.31 0.01 0.09 0 0 '6 0.064 0.06 0 0.05 0 '7 0,26 0 0.11 0.028 0.21 0,057 0.03 0.01 0.3 0 '9 0,91 0.32 0 '28 0,12 0.022 0.24 0.064 0.04 0 '14 -0,05 0,01 0.77 0.29 0.014 O.l 0 0.28 0.036 0.05 0.01 O.ll 0.036 0.83 1.25 0.036 0,12 0.014 0.86 0.12 0.17 0,01 0,15 0.028 2.55 168.07 30.893 9,48 2:574 59.55 10 '08 19.41 2,991 8.42 1.421 264 '3 ~ ~ 0.39 0 0.07 0.028 0.33 0.01 0.09 0.014 0.09 0,022 0 '7 10 0.55 0.276 0.22 0.149 0.28 0.085 O.ll 0.078 0.06 0.014 1,22 O.ll 0.149 0.03 0,036 0.21 0.042 0 F 05 0 '22 0,09 0 '22 0.49 0.31 0.05 0.12 0,036 0.21 0.042 0,08 0.042 0.14 0.036 0.86 13 0.1 0.141 0.05 0 0.32 0.085 0.06 0 '22 0.1 0.63 14 0.26 0.01 0.1 0 0.2 0.014 0,06 0.01 0.09 0.014 0.71 0.23 0 0.07 0,014 0,41 0.085 0.07 0 '22 0.06 0,01 0.84 16 0.19 0.014 0.08 0,022 0.23 0.028 0.04 0.014 0 '7 0.028 0 '1 BC 0 0 0 0 0.09 0 0.09 VALUES ARE IN HII I IGRAMS PER SAMPI ER Analytical Results for Each Sample BC = BUIIDING CONTROL SAHPt ERS Location - April 1989 'I , C-1 STATION AVB S04 STD DBV AVB Cl STD DEV AVE Ca STD DEV AVB Mg STD DBV AVE Na STD DEV SULK DEP HAT, 1989 (ag) 0.7 0.12 0.17 0,042 0.61 0.304 0.06 0 ~ 014 0.3 0.01 1.84 0.66 0.064 0.18 0,042 0.98 0.523 0.09 0.042 0.26 0.01 F 17 0,73 0 ~ 028 0.16 0,01 0~3 0.05 0.05 0.01 0,24 0.01 1,48 0.59 0,042 0.15 0.014 1.01 0,53 0.1 0.057 0.2 0.014 a.os o.77 o.o14 o,16 o.ol o.s6 o.3as o.o7 o.ol o.a6 o.oaa . 1.82 0,93 0.064 0.23 0 0 ~ 61 0.071 0,07 0 0.31 0.113 2.15 2.25 0,318 0.26 o l,al o,a4 o.al o.o14 o.a6 4.19 81.87 7.304 4.59 0.481 37,11 3,465 9.12 0.912 4 '8 0.212 136.97 0.88 0.163 0.33 0.057 1.18 0.12 0.16 0.092 0,24 0 ~ 028 2.79 V 10 0.64 0.05 0.2 0.064 0.5 0.036 0,07 0.01 0.14 0.014 1,55 0.6 0.064 0.19 0.057 0.37 0,092 0.05 0.01 0.17 0,022 1.38 12 0.38 0.184 0.32 0.141 0.35 0.106 0.07 0.01 0.14 0.022 1.26 13 o.s3 o.os o.18 o.oa8 o.sa o.24 o.o6 o.oaa o.la o,oaa 1.41 14 0.47 0.022 0,14 0 0.42 0.078 0.05 0 0.11 0.022 1.19 15 o.sa o.o14 o,ls 0 0,27 0.05 0.04 0.014 0.09 0.014 1.07 16 0.41 0.014 0 ~ 14 0.01 0.32 0,042 0 F 04 0 0 ~ 06 0.014 0.97 0 0 0 0 0,08 0,071 0 0 0.08 VALUES ARB IN HILIIGRAHS PBR SAHPLER Analytical Results for Each Sample BC = BUILDING CONTROL SAHPLBRS Location - Nay 1989 C"2 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Mg STD DEV AVE Na STD DEV BULK DEP JUNE, 1989 (ug) 1 1,02 0.615 0.75 0.636 0.65 0 '97 0 F 08 0.042 0.15 0.036 2 '5 0.58 0.01 0,27 0.106 0.5 0.191 0 '6 0 F 014 0 ~ 14 1.55 0.72 0,071 0.22 0,028 0.64 0.127 0.06 0.01 0.12 0,014 1 ~ 76 0.44 0 '78 0,18 0 '1 0.3 0.071 0.04 0.022 0 '5 0.022 0,49 0 '56 0.37 0.311 0.52 0.127 0,06 0.01 0 '4 0.028 1 ~ 58 0.45 0.184 0.19 0.057 0,42 0.028 0.06 0.01 O.l 0.014 1 ~ 22 0 ' 0.064 0.21 0.022 0,52 0.135 0 '7 0 '14 0.13 0,022 1.63 2.42 0 '33 0.23 0,028 2.03 0.127 0.25 0.014 0.21 0,028 5.14 0.56 0.022 0.42 0.141 0.45 0.149 0.08 0.028 0.15 0.022 1.66 ~ '0 0,07 0.022 O.l 0.014 1.34 0,51 0.099 0,18 0.014 0.48 0.318 0.31 0,05 0.22 0.064 0.29 0.028 0,05 0.028 0 ~ 11 0 '22 0.98 12 1.19 1,124 0.79 0,283 0,1 0.05 0,02 0 0 '3 0 '28 2,23 13 0.73 0,078 0.19 0.014 0,61 . 0.05 0.07 0,01 0.12 0.022 1.72 14 0.45 0.057 0.17 0.022 0.31 0.042 0,04 0.01 O.l 0,014 1.07 15 0,49 0.022 0.18 0.022 0.47 0.057 0.05 0 F 01 O.ll 1.3 0.6 0.12 0.24 0.064 0.48 0 '14 0,05 0.014 0.12 0,022 1.49 BC 0 , 0 0.18 0.141 0.12 0 '7 0 0 0,3 V hf,UES ARE IN Mff,LIGRAMS PER SAMPLER Ana1ytfca1 Resu1ts for Each BC = BUILDiNG CONTROf SAMPf ERS I.ocation - June lgfI9 Sam I C-3 STATION AVB S04 STD DEV AVB Cl STD DBV AVE Ca STD DEV AVB Hg STD DBV AVB Na STD DEV- BULK DBP JULY, 1989 (ag) 1 '2.32 1.124 1.21 0,127 0 F 08 0 '14 0,08 0.01 0.44 0.022 4 '3 0.26 0.028 0.17 0.022 0.35 0,141 0.12 0.085 0.13 0.064 1.03 0.38 0,283 0 ~ 11 0.01 0.35 0 '85 0.05 0.028 0.08 0.01 0.97 0.3 0 '42 0,13 0.01 0.21 0.014 0,05 0,01 0 '6 0.022 0.75 0.29 0,036 0.11 0.01 0.28 0.099 0.05 0.01 0.05 0.014 0.78 o.as o.oaa o.o6 0 0.26 0.071 0.04 0.01 0.07 0.022 0,68 0.43 0.057 0.11 0.014 o,a9 o.oaa 0.07 0,01 0.08 0.01 0.98 45 '4 2.291 6.52 0.17 14.64 1,131 5.05 0.233 4,46 0.057 75.81 0.25 0,036 0.11 0.05 0.53 0.014 0.1 0.036 0.05 0,01 1,04 10 0,26 0.01 0.1 0.042 0.65 0.325 0.06 0,028 0,06 0 '14 1.13 0,31 0,156 0,13 0.014 0.29 0.05 0.04 0.014 0.04 0.014 0,81 0.27 0.036 0.13 0.028 0.24 0,022 0.03 0 0.05 0.01 0.72 13 o,aa 0.022 o,ll o,oaa o,4 o.248 o.o4 o.o14 o.o4 0,81 14 0.24 0.071 0,08 0,01 0.51 0.163 0.04 0.01 0.03 0,014 0,9 15 0.22 0.022 0.19 0.022 0.3 0.156 0.03 0 F 01 0.07 0.01 0.81 16 0.18 0.01 0.14 0.042 0.31 0.085 0.03 0 0.05 0.71 ac 0 0 0 0.18 0.106 0.01 0,01 0.02 0.022 0,21 VALUBS ARB IN HILIIGRAHS PBR SAHPLBR Analytical Results for Each Sample Location - July l989 I BC = BUILDING CONTROL SAHPLBRS C-4 STATION AVE S04 STD DBV AVB Cl STD DBV AVE Ca STD DEV AVB Mg STD DBV AVE Na. STD DEV BULR DEP AUGUST, 1989
  • 1 0.89 0.05 0.21 0.014 0.36 0.163 0.07 0.036 0,14 0 1,67 1.41 0.679 0.19 0.036 0.94 0.516 0.15 0.092 0.07 0.099 2.76 0.81 0.269 0.27 0.12 0.41 0.248 0.08 0.022 0.16 0.028 1.73 3.28 3.514 1.25 1,506 0.61 0 '88 0.2 0.078 0 '5 0.396 5.69 1.05 0.17 0.19 0.01 0.56 0,135 0.09 0 0.15 0.022 F 04 1.67 1.117 0,96 1.018 0.97 0.693 0,14 0,113 0,1 0.028 3.84 1.78 0.212 0.18 0,022 0.71 0.106 0.12 0.014 0.13 0.036 2.92 234.7 26.587 17,34 1.683 71.92 7.227 19.88 1.669 11.5 1.117 355.34 1.14 0.304 0,2 0.042 0.57 0.417 0.11 0.036 0.13 0.099 2.15 1.14 0.629 0,79 0,898 0.18 0.163 0.03 0.022 0.23 0,177 2.37 1.83 0.976 1.36 1.64 O.l 0.071 0.02 0,022 0.26 0.297 3.57 12 0.69 0.014 0.16 0.057 0.32 0 0.03 0.014 0 F 08 0.028 1.28 13 1,1 0.022 0.26 0.028 0.25 0.156 0.04 0,028 0.17 '.127 1.82 14 0,8 0.085 0.3 0,191 0.41 0.057 0.04 0.022 0.09 0.042 1.64 0,78 0.078 0.15 0,01 0,35 0.057 0.05 0,014 0.14 0.071 1.47 16 1,01 0.127 0.21 0.01 0.41 0.014 0.04 0 0 '3 0.036 1.8 BC 0 0.12 0 0.24 0.085 0.36 V ALUES ARE IN MILLIGRAMS PER SAMPI BR BC = BUILDING CONTROL SAMPLERS Analytical Results for Each Sample Location August l989 C-5
SThTION hVE S04 STD DEV hVE Cl STD DBV hVB Ca STD DBV hVE Hg STD DBV hVB Na STD DEV ilULE DEP SBPTEHBER, 1989 1 0.49 0.135 0.1 0.014 0 '7 0.028 0.03 0.01 0.06 0.028 0.75 0.27 0.028 0.15 0,078 0.08 0.106 0.02 0.014 0.04 0,014 0.56 0.25 0.042 0.08 0.022 0.07 0.057 0.02 0 0.05 0 '22 0.47 1,13 1.138 0.14 0.071 0.48 0 '75 0.12 0.106 0.11 0.036 1.98 1.42 1,506 0.2 0.184 0,59 0.53 0.14 0.141 0.13 0.12 a ~ 4s 0.36 0.05 0.09 0,01 0.06 0 0.03 0 0.07 0.01 0.61 2.78 0.424 0.27 0.014 1.02 0.099 0,27 0.022 0.2 0.01 4.54 115.27 22.5 16.82 3.543 32.38 5.89 12.66 2.298 9.61 1.937 186.74 0.48 0,028 0.12 0.014 0.37 0.184 0.09 0,057 0.08 0.014 1 ~ 14 10 0.59 0,219 0.23 0.141 0.04 0.028 0 '4 0 0 ~ 1 0.028 0.29 0.057 0.25 0.01 0.02 0.028 0.03 0.01 0.05 0.014 0.64 12 0.33 0,01 0.12 0,01 0,13 0.184 0,03 0,028 0.05 0.014 0.66 13 0,56 0.01 0.13 0.01 0.51 0,036 0.09 0.022 0.06 0,028 1.35 14 0,29 0.014 0.09 0 0,19 0.141 0 '3 0 F 01 0,05 0.022 0.65 0.4 0.014 0.1 0.01 0.09 0,07? 0.04 0,022 0.04 0.042 0,67 16 0,2 0.014 O.l 0 0.06 o.os5 o,oa 0.014 0.04 o.oaa 0.42 BC 0 0 0.08 0 0 0 0.02 0.028 0,1 VhLUES hRE IN HILIIGRhHS PER ShHP? ER Analytical Results for Each Sample SC = BUILDING CONTROL ShHPi ERS Location September 1989 C"6 S TATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DBV AVE Mg STD DBV AVE Na STD DEV BUIK DEP OCTOBER, 1989 ing) 1 0.36 0,057 0.12 0.01 0.26 0.028 0.03 0 0.04 0 0.81 0.39 0.014 0,11 0,036 0.51 0.01 0,04 0 0.09 0.036 1.14 0.33 0.064 0.14 0.078 0.56 0.233 0.05 0.022 0.04 0 1.12 0.29 0,01 0.09 0.01 0.4 0.127 0.04 0,01 0.04 0 '6 0.35 0 '28 0,08 0.01 0.49 0.141 0.05 0.014 0.04 0 1.01 0,45 0,12 0.08 0 0,24 0.184 0,03 0.028 0,02 0,028 0,82 2.76 0.198 0.31 0.01 1.23 0.205 0.28 0.022 0.15 0.014 4.73 92.33 3.21 14 '3 1.351 27,46 0 '09 12.47 0.474 8.55 0.354 155.04 ~ 9 0.39 0.014 0.09 0,01 0.71 0.036 0.15 0.057 1.34 10 0.38 0 0.11 0.014 0.5 0 F 135 0.05 0.01 0.01 0,014 1.05 0.36 0.071 0.11 0.022 0.55 0 '63 0.06 0.01 0.09 0.01 1.17 0.62 0.509 0.19 0.141 0,51 0.106 0.08 0.01 0.07 0.01 1,47 13 0.51 0.163 0 '6 0.078 0.51 0.014 0.08 0 F 01 0.1 0.01 1.46 0.34 0,036 0 '9 0.014 0.5 0 '62 0.06 0.014 0.08 0.022 1.17 15 0.7 0.573 0.24 0.141 0.6 0.163 0.09 0.042 0.1 1.73 16 0.2 0.014 0.09 0.01 0,44 0.042 0.05 0.014 0,09 0.036 0,87 BC 0 0 0,08, 0 0,37 0.014 0.02 0 0.12 0'.59 VALUES ARB IN HILLIGRAMS PBR SAHPKBR BC = BUILDING CONTROL SAHPLERS Analytical Results for Each Sample Location October 1989
C-7
STATION AVE S04 STD DBV AVB Cl STD DBV AVE Ca STD DBV AVB Mg STD DEV AVB Na STD DEV BULK DEP NOVEHBER, 1989 (ng) 1 1 ~ 06 0.085 0.38 0.099 0.51 0.347 0.06 0 '28 0.15 0 '14 2.16 1,07 0.078 0.3 0 0.27 0.099 0.06 0.036 0.15 0.028 1 ~ 85 1,15 0.219 0.32 0,01 0.47 0,106 0.08 0,022 0,14 a.16 1.18 0,488 0.31 0 0.68 0.354 0.08 0,057 0.17 0 2,42 0.75 0,099 0.33 0.212 0.31 0.028 0,03 0.01 0,17 0.042 1.59 1.33 0.071 0 '8 0.01 0,51 0.156 O.l 0.022 0.15 0.028 2,57 12.22 1,817 0.93 0.191 4.64 0.792 1.09 0.191 0.67 0.135 19.55 499,39 59.128 36.17 3.917 173 '4 13.782 53.59 6.35 27.01 2.772 789 9F 2.36 0.955 0.32 0.127 2.98 2,312 0.52 0,467 0.21 0.01 6 '9 10 0.72 0.028 0.23 0 0.87 0.141 O,l 0.028 0.13 a.os 0.73 0.184 0,25 0.092 0.26 0.17 0.05 0,042 0 ~ 13 0 '22 1.42 12 0.54 0.04'2 0.48 0.01 0.34 0.022 0.04 o o.l o,o4a 1.5 13 1.18 0.962 0.29 0.17 0.41 0.233 0.06 0,028 0 '2 0 '28 2.06 14 0.76 0,17 0.39 0.12 0,51 0.057 0.05 0 0.1 0.042 1.81 15 0.62 0.022 0 ' 0.01 0.53 0 '71 0.06 0.01 0.13 0.022 1.84 16 0.78 0.085 0.49 0 F 01 0,47 0.036 0.09 0.014 0.09 0.028 1.9a BC 0 0 0.08 0 0.33 0,014 0.04 0.022 0.04 0.057 0.49 VALUES ARE IN HILLIGRAHS PBR SAHPLER Analytical Results for Each Sample Location November 1989 BC = BUILDING CONTROL SAHPI BRS C"8 STATION AVE S04 STD DEV AVB Cl STD DEV AVE Ca STD DEV AVE Ng STD DEV AVE Ha STD DEV BULK DBP DECEMBER, 1989 lag) 1 0.97 0.198 0.2 0 0.95 0.057 0 ' 0,113 0.48 0.672 2.8 0.94 0.028 0.2 0 0.62 0,085 0 ~ 06 0.028 0.3 0,085 2.12 ).37 0,269 0.2 .0 0.7 0.022 0.06 0 '28 0.3 0.085 2.63 1.93 0.658 0,2& 0 2.09 1.174 0,29 0 '33 0.75 0.778 5,34 2.54 0.255 0.32 0,064 1,21 0.014 0.18 0.036 0.28 0,064 4.53 4.23 0.092 0.4 0,05 2.45 0.587 0.54 0.191 0 ~ 73 0.424 8.35 17.7 2.022 1.05 0.248 7.44 0.799 1.61 0.212 2.34 0.622 30 F 14 514 1.414 22.43 0.813 199.63 6,541 50.89 1,259 50.88 1.945 837,83 a.o6 o.oas o.as 0 1,57 0 '33 0.26 0,078 0.3 0 '35 4.47 10 1.84 1.202 0.16 0,01 2,2 2.029 0.2 0.17 0.23 0.156 4.63 0,94 0.424 0.16 0 1.54 1.16 0.3 0,311 0.18 0.085 3.12 12 l.a6 o.a55 o.a 0 0.67 0.269 0.08 0.057 0.3 0,036 2,51 13 0,66 0.099 0.24 0.057 0.31 0.092 0.01 0.014 0.23 0.092 1.45 14 1,14 0.262 0,27 0 0.54 0.01 0,04 0 0.35 0.163 2.34 15 0.74 0.022 0 '2 0.191 0.38 0.028 0.02 0.01 0.4 1 ~ 96 16 0.74 0.248 0.18 0.141 0.32 0.057 0.01 0.014 0.22 0.198 1.47 BC 0 0 0,1 0.141 0 ~ 14 0.036 0 0 0.16 0 '5 0,4 VALUES ARB IH NILLIGRAMS Analytical Results for Each Sample BC = BUILDIHG COHTROI SANPLBRS Location December l989 C-9 STATION AVE S04 STD DEV AVB Cl STD DEV AVE Ca STD DBV AVE Hg STD DBV AVB Na STD DEV BULK DEP JANUARY, 1990 (ag) 1 1.01 0.248 0.15 0 0 '5 0.283 0.03 0.014, 0 ~ 19 0.149  ! ~ 73 0.95 0 0.15 o o.aa 0 0.03 0 0.08 0.106 1.43 2 '5 1.768 0.15 0 1.62 1.803 0.14 0.113 0,26 4.62 2.12 0.509 0.19 0 1.45 1.301 0.18 0.099 0 ~ 19 0.106 4.13 2.78 0.014 0,19 0 1,04 0.036 0.23 0.01 0.33 0.022 4.57 5.73 0.042 0.35 0,01 2.32 0.064 0.49 0.01 0.52 0,036 9.41 20.48 0.276 0.84 0 8.41 0.01 1 ~ 86 0.022 1,75 0.036 33.34 8 1127.5 0 44 0 511.5 0 121 0 107.25 1911.25 NO Sh SAHPI E AVAILABLE--DOES NOT REPRBSENT AN AVERAGED VALUE 9 3.3 0.113 0,21 '.028 1.26 0.135 0.29 0.022 0.3 0.057 5,36 10 1.27 0,022 0.37 0.318 0.47 0.028 0.07 0 0,23 0,022 2.41 0.86 0.014 0.15 0 0,23 0.05 0.04 0 F 01 0.23 0 '5 1.51 12 1.26 0,82 0.16 0.028 0.72 0.608 0.06 0.064 0.31 0.022 2 '1 13 0,56 0.01 0.13 0,028 0,23 0,05 0.01 0.01 0,22 0.057 1.15 1.34 1,054 0.17 0.022 0.42 0 '95 0.07 0,099 0 '3 0.099 2.33 0,86 0.382 0,15 0 0.81 0.46 0.06 0.057 0.26 0 2.14 16 0.61 0.106 0,13 0.028 0.3 0.212 0.02 0.022 0.27 0.05 1.33 EC 0 O.ll 0.127 0 0 0.24 0.057 0,35 VALUES ARE IN HIILIGRAHS PBR SAHPIER Analytical Results for Each Sample BC = BUILDING CONTROL SAHPLERS Location - January 1990 C"10 STATION AVB S04 STD DBV AVB Cl STD DBV AVB Ca STD DBV AVB Mg STD DBV AVB Na STD DEV BUIK DBP FBBRUARV, 199Q (ng) 1 0.53 0.099 0.24 0.036 0.39 0.106 0.05 0.014 0,19 0.057 1.4 0.68 0 '41 0.31 0.014 . 0.48 0.092 0,06 0.01 0.28 0.028 1,81 0.54 0.057 0.27 0.022 0,38 0.092 0 '5 0.01 0.24 0.064 1.48 0.74 0,17 0.27 0.01 0.56 0.177 0.08 0.014 0.32 0.022 1.97 0.65 0.106 0.26 0,014 0,45 0.078 0 '6 0.014 0.31 0.036 1.73 0,69 o.o9a o.a7 0.014 0,51 0.028 0.06 0.01 0.05 0.071 1.58 1 ~ 12 0.036 0.29 0.01 0,75 0.078 0,1 0.014 0.17 0,078 2.43 637.75 68,801 36.12 2.432 232,82 14,856 70.31 7.601 80.76 9.001 1057.76 ~ '.9 10 o.7 0.092 o.aa6 0.24 o.aa 0.028 0 0.61 1 0.092 0,042 0.15 0,06 0 '42 0.01 0.13 0,08 0,042 0,028 '.67 2.42 0.44 0 '99 0.2 0.078 0.38 0,01 0.05 0.01 0.23 0,036 1.3 12 Q,47 o.oaa o.aa o.o36 o,44 o.oaa o.o5 0 0.22 0.01 1,4 13 0,56 0.078 0.17 0.057 0 '3 0.028 0,09 0.01 . 0,15 0.085 1.9 0.54 0.042 0.22 0.036 0.54 0.042 0,06 0.022 0.17 0,057 1.53 15 0.41 0.042 0.15 0.022 1.2 0.036 0.07 0.01 0.22 0.042 2.05 0,66 0.502 0.15 0,022 Q.61 0.297 0.06 0,042 0.19 0.022 1.67 BC 0 0.14 0.028 0.01 0 0.2 0 0.35 VAIUES ARE IN HIIIIGRAHS PER SAHPIBR Analyt/cal Results for Each Sample Location February 1990 8C = EUIIDING CONTROI SAMPLERS C-11 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Hg STD DEV AVE Na STD DEV BULK DEP HARCH, 1990 (ngl o.66 o,o36 o.ll o.oaa o.36 o.lo6 o.o3 o o,aa 0.042 1.38 0.91 0.354 0.13 0 0,72 0.622 O.l 0.078 0.18 0.064 2,04 0.64 0.028 0.1 0.01 0.61 0.24 0,08 0.036 0,13 1.56 0 '6 0.028 0.13 0 0.7 0,219 0.06 0.014 0.16 0.042 1.71 0.7 0.057 0,11 0.028 0.64 0.191 0.06 0.01 0.18 0.022 1,69 1.56 0,064 0.13 0 0,86 0,057 0.14 0,01 0,22 2,91 8.09 0.474 0.52 0 3.87 0 '69 0.9 0.071 1.14 0 '71 14.5a 197,25 12,092 10.67 0.438 98.31 4.554 26.59 0.764 33.44 0.976 366.26 0.79 0.05 0.12 o,oaa o.6a 0.042 0.09 0.022 0.17 0.05 1.79 10 0.58 0.12 0.12 0.022 0.61 0.022 0.05 0.014 0.18 0.028 1.54 0,49 0.036 0.1 0 0.4 0.127 0.04 0.01 0.09 0,022 I.la 12 0,47 0,028 0.13 0 0.37 0.113 0.04 0,01 0.16 0 1.17 13 0.58 0.078 0.12 0,022 0.73 0.191 0.07 0.014 0.18 0.071 1.68 0.5 0.099 0.12 0.022 0.58 0.339 0.05 0 0.15 0.071 1.4 15 0,5 0.05 0.21 0.106 0.43 0.092 0.03 0.014 0.19 0.028 1.36 16 0,65 0.212 0.16 0,085 1,21 0.863 O.ll 0.092 0.15 0.022 2.28 BC 0 0 . 0 0 0 '8 0 '98 0,01 0,01 0.22 0.028 0.41 VALUES ARE IN HILIIGRAHS PER SAHPIER Analytical Results for fach Sample BC. = BUIIDING CONTROL SAHPLERS Location March 1990 C-12