Regulatory Guide 1.126: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(11 intermediate revisions by the same user not shown)
Line 14: Line 14:
| page count = 4
| page count = 4
}}
}}
{{#Wiki_filter:U.S. NUCLEAR REGULATORY COMMISSIONMarch 1977REGULATORY GUIDEOFFICE OF STANDARDS DEVELOPMENTREGULATORY GUIDE 1.126AN ACCEPTABLE MODEL AND RELATED STATISTICAL METHODS FOR THEANALYSIS OF FUEL DENSIFICATION
{{#Wiki_filter:U.S. NUCLEAR REGULATORY COMMISSION                                                                                                      March 1977 REGULATORY GUIDE
                                  OFFICE OF STANDARDS DEVELOPMENT
                                                                        REGULATORY GUIDE 1.126 AN ACCEPTABLE MODEL AND RELATED STATISTICAL METHODS FOR THE
                                                                ANALYSIS OF FUEL DENSIFICATION


==A. INTRODUCTION==
==A. INTRODUCTION==
and C.2 of this guide is not intended to supersedeNRC-approved vendor models.Appendix K. "ECCS Evaluation Models," to 10 CFRPart 50, "Licensing of Production and Utilization The statistical methods (SectionC-.3). measurementFacilities," requires that the steady-state temperature methods (Section C.4), and istarooy assumptionsdistribution and stored energy in the fuel before a hypo- (Section C.5) are compatible wtth models.thetical loss-of-coolant accident (LOCA) be calculated, Therefore Sections C.3. C-.;,aJid:`;c.5 co ild be appliedtaking fuel densification into consideration. This to densitication models the one pre-guide provides an analytical model and related assump- sented in Sect ins.Q.-i 'nd C2;, "tions and procedures that are acceptable to the NRCstaff for predicting thle effects of fuel densification inlight-water-cooled nuclear power reactors. The guide C REGU.iATORY POSITIONalso describes statistical methods related to productsampling that will provide assurance that this and li.-Maximum iDisificationother approved analytical models will adequately de-scribe the effects of densification for each initial core" -:-, .The; density of a fuel pellet* in the reactor increasesand reload fuel quantity produced. ,.... witA. burnup and achieves a maximum value at a rela--tively low burntip (generally < 10,000 M\Yd/t U). For
and C.2 of this guide is not intended to supersede NRC-approved vendor models.
 
Appendix K. "ECCS Evaluation Models," to 10 CFR
  Part 50, "Licensing of Production and Utilization                                                     The statistical methods (SectionC-.3). measurement Facilities," requires that the steady-state temperature                                         methods (Section C.4), and istarooy assumptions distribution and stored energy in the fuel before a hypo-                                       (Section C.5) are compatible wtth*nosi.*e*,idor models.
 
thetical loss-of-coolant accident (LOCA) be calculated,                                         Therefore Sections C.3. C-.;,aJid:`;c.5 co ild be applied taking fuel densification into consideration.                                       This         to densitication models liIIdtfter*from the one pre- guide provides an analytical model and related assump-                                           sented in Sect ins.Q.-i 'nd C2;,                             "
  tions and procedures that are acceptable to the NRC
  staff for predicting thle effects of fuel densification in light-water-cooled nuclear power reactors.                             The guide                                   C REGU.iATORY POSITION
  also describes statistical methods related to product sampling that will provide assurance that this and                                               li.-Maximum iDisification other approved analytical models will adequately de- scribe the effects of densification for each initial core"-                                 :-,     .The; density of a fuel pellet* in the reactor increases and reload fuel quantity produced.                                             ,....           witA. burnup and achieves a maximum value at a rela-
                                                                                                -tively low burntip (generally < 10,000 M\Yd/t U). For  


==B. DISCUSSION==
==B. DISCUSSION==
analytical purposes, this maximum density minusthe initial density. i.e., the maximum density change,* In-reactor densification (shrinkage)','of oxide Iitel is assumed to be the same as the density change Asntrpellets affects fuel temperatures in ste..ral '0*ys: (1) that would occur outside the reactor in the samegap conductance may be reduced beca f''6rthe de- pellet during resintering at I 700&deg;C for 24 hours.0crease in pellet uiameter;.1t),) me linear neat generationrate is increased decrease in pellet length;and (3) the pellet-le' .d'teases may cause gaps inthe fuel colur id n, prMce local power spikesand the pot ial c ing collapse. Dimensionalchanges i Il11ets in lie reactor do not appear to be, a radial pellet dimension changeswill b ted "clferently. Furthermore, items (1) and(2) abo i;re single-pellet effects, whereas item (3)is the result of simultaneous changes in a large numberof pellets. These distinctions must be taken into accountin applying analytical models.The NRC staff has reviewed the available informationconcerning fuel densification, and the technical basisfor the Regulatory Position of this guide is given inReference 1. The model presented in Sections C.IWhere the ex-reactor resintering results in a negativedensity change (i.e.. swelling), zero in-reactor densifi-cation should le assumed.2. Densifieation KineticsFor pellets that have a resintering density changeAsntr of less than 4% of theoritical density (TD),the in-reactor density change Ap -1% a function ofburnup BU may be taken as***The model presented in this guide is applicahle only to U02fuel pellets.*&Symbols are defined in the List of Symtols at the back of thisguide.USNRC REGULATORY GUIDESReggulatory Guide% wte issuerd to desribe ant make available to the public methodsacieptable to the NRC stail of implementing speeilic paris of the Commission'stegufations, to delineate techniqtur$ used by the %tsalI in evaluating poecifIic litottlernof rostulated accidents, or to provide guidance to applicants, Regulatory Guidesawe not subltitutes lot regublions, arnd commlhince with them is tot required.Methods and solutions dilferent from those set Out in the guides will be accept-able If they provide a basis for the findings requisite to the issuance or continuanceof a permit or license by the Commission,Comments and suggestions for improvements in these guides rt- encouraged at alltimes, and guides wtil bit revised, A ,tprotriatle. to accommodate comments andto tretect new Information or experience. However. comments on this guideifI eceived within about two months alter its i-.suanca. will fe tParticularly useful Inevaluating the neate for an early reviston.Conmments should be ent 1o thi, Secretary of tI! US. Nucleiar latury Commitsion. Wsiir'nton, O.C. 70555, Attention- Dorcketrrg and ServlyBranch.The guides are in ttte following ten rlwvivionst. Power Reactors 6. PelXjucls2. Research and Te'st Reactors 7. Ttantrurtatiun3. Fuellsant Materials Facilities 8, Occupational IHealth4. Environmental aontSiting 9. Antitrust tlevew.S. Materials and Plant Protection t0. GeriryalRectueSts fat single covies Ol isisuo guides ferhich rmnay' tie eprodur.ced at tto* ;iace-ment on an automatic dititl)ution list for sing1le copies of future f tidus in streciftcdivisions should be madte in writing to the US. Nuclear Regutlarnrv Cnnmission,Washington, D.C. 70555, Attention: Ditector. Division otDocument Crontfrol.
analytical purposes, this maximum density                                           minus
0 *     In-reactor densification pellets affects fuel temperatures in ste..ral (shrinkage)','of oxide Iitel gap conductance may be reduced beca f''6rthe de-
                                                                                  '0*ys: (1)
                                                                                                    the initial density. i.e., the maximum density change, is assumed to be the same as the density change Asntr that would occur outside the reactor in the same pellet during resintering at I700&deg;C for 24 hours.
 
crease in pellet uiameter;.1t),) me linear neat generation rate is increased because,*\de decrease in pellet length;
  and (3) the pellet-le'                   .d'teases         may cause gaps in                        Where the ex-reactor resintering results in a negative the fuel colur id                     n, prMce local power spikes                                density change (i.e.. swelling), zero in-reactor densifi- and the pot ial                       c ing collapse. Dimensional                              cation should le assumed.
 
changes i                 Il11ets in lie reactor do not appear to be isotro,* , a                           radial pellet dimension changes                          2. Densifieation Kinetics will b             ted "clferently. Furthermore, items (1) and
  (2) abo i;re single-pellet effects, whereas item (3)                                                   For pellets that have a resintering density change is the result of simultaneous changes in a large number                                          Asntr of less than 4% of theoritical density (TD),
  of pellets. These distinctions must be taken into account                                        the in-reactor density change Ap                               -1%a function of in applying analytical models.                                                                    burnup BU may be taken as**
      The NRC staff has reviewed the available information                                          *The model presented in this guide is applicahle only to U0 2 concerning fuel densification, and the technical basis                                              fuel pellets.
 
for the Regulatory Position of this guide is given in                                            *&Symbols are defined in the List of Symtols at the back of this Reference 1. The model presented in Sections C.I                                                      guide.
 
USNRC REGULATORY GUIDES                                                Conmments should be ent 1o thi, Secretary of tI! Commist*,u,* US. Nucleiar Rf*u"
      Reggulatory Guide%wte issuerd to desribe ant make available to the public methods          latury Commitsion. Wsiir'nton, O.C.        70555, Attention-      Dorcketrrg and Servly Branch.
 
acieptable to the NRC stail of implementing speeilic paris of the Commission's tegufations, to delineate techniqtur$ used by the %tsalIin evaluating poecifIic litottlern The guides are ss*uiri in ttte following ten htut*,t rlwvivions of rostulated accidents, or to provide guidance to applicants, Regulatory Guides awe not subltitutes lot regublions, arnd commlhince with them is tot required.               t. Power Reactors                              6.    PelXjucls Methods and solutions dilferent from those set Out in the guides will be accept-             2. Research and Te'st Reactors                  7.    Ttantrurtatiun able If they provide a basis for the findings requisite to the issuance or continuance      3. Fuellsant Materials Facilities              8,    Occupational IHealth of a permit or license by the Commission,                                                   4. Environmental aontSiting                    9.    Antitrust tlevew.
 
S. Materials and Plant Protection              t0.  Geriryal Comments and suggestions for improvements in these guides rt- encouraged at all times, and guides wtil bit revised, A ,tprotriatle. to accommodate comments and              RectueSts fat single covies Ol isisuo guides ferhich rmnay' tie eprodur.ced at tto;iace- to tretect new Information or experience.       However. comments on this guideif            ment on an automatic dititl)ution list for sing    le copies of future f    tidus in streciftc
                                                                                                                                                  1 Ieceived within about two months alter its i-.suanca. will fe tParticularly useful In        divisions should be madte in writing to the US. Nuclear Regutlarnrv  t        Cnnmission, evaluating the neate for an early reviston.                                                 Washington, D.C.      70555, Attention: Ditector. Division o Document Crontfrol.
 
I . Ap=O0                                (la)          ating normally distributed data may be use
 
====d. If the====
                                                                    "W" test (Ref. 2) demonstrates nonnormality at the -1%
    (for BU < 20 NIWd/tU);                                        level of significance. nonparametric statistical methods S *p=mlog(BU)+b                        (I b)          should be used unless a different functional form can be (for 20 < BU < 2000 NtWd/tU);                                  satisfactorily justified to describe the distribution of the LAsntr values. Thus 6sAnptr is tile upper one.sided and            ,,  = APsntr                        (Ic)
                                                                    95/95 tolerance limit for the density changes and can (for BU > 2000 MWd/tU),                                       be obtained from the sample values using one of the where tile coefficients m and b are given by                      methods outlined below.
 
0 = m log(20) + b and                                  (1) NormalDistribution. In this case,            Ps*nr is
          'Psntr = i log(2000) + b.                               given by ASiltr = Epsnir + C's.
 
For pellets exhiibiting a resintering density change in excess of 4% TD. the in-reactor density change as              wherce -'Nsntr is tile mean of the sample data, s is the a function burnup may be taken as                                  standard deviation of tile sample data, and c' is given Lp =0                                (2a)            in Table I (from Ref. 3).
    (forhBU *<5 MWd/tU):
              Ap = m log(BU) + b                  (21b )
    (for 5 < BU < 500 MWd/tU):                                                                TABLE I
                                                                                VALUES TO BE USED FOR c'
and            -P  - APsntr                        GOc                                TO DETERMINE 64lr (for BU > 500 MWd/tU),                                                      WITH NORMAL DISTRIBUTION
where the coefficients m and b are given by Number of
                0 = m log(S) + b                                            Observations                              c and      ,Psntr = m log(500) + b.
 
4                                5.15 In applications of Equations I and 2, ,Psntr will                                5                              4.20
have tile value      st**r or tmntr. which will be described
                                                                                    6                                3.71 in Section C.3. The burnup unit MWd/tU in the above
                                                                                    7                              3.40
expressions is megawatt days per metric ton of heavy
                                                                                    8                                3.19 metal (uranium).
                                                                                    9                                3.03
                                                                                  10                                2.91
3. Statistical Methods                                                            11                                2.82
                                                                                  12                                2.74 To apply tile above model or any densification model                          is                                2.57 that depends on an ex-reactor resintering density change,                        20                                :.40
a random sample of the pellet population of interest                              25                                2.29 must be resintered. Resintering the pellets in the sample                          30                                2.2 2 will result in a set of density changes 6Psntr. Several                            40                                2.13 characteristics of these values are needed to complete                            60                                2.02 the densification analysis.                                                    100                                  1.93
                                                                                200                                  1.84 a. Single-Pellet Effects                                                    500                                  1.76
                                                                                  00                                  1.64 Analyses of the effect of densification on stored energy and linear heat generation rate must account for pellets that have the greatest propensity for densifica.
 
tion. To accomplish this with a resintering-based model such as that described in Sections C.1 and C.2, a re-                    (2) NonnormalDistribution. In this case Apntis sintering density change value Apjn*tr that conservative-          given by                        Ap~t                      t ly bounds 95% of the population APsntr values with
95% confidence should be used. The population of interest is the initial core loading or. reload quantity            where    P      is the mth largest 5Psntr value in a ranking of fuel for which the safety analysis, and hence the den-          ot the observed values o0 6Psntr            from the sample.
 
sification analysis, is being performed. If the distri-            The integer m depends on tile sample size according to bution of *Asnlr values is normal, methods of evalu.                Table 2 (from Ref. 4).
                                                              1.126-2
 
TABLE 2                            where 'P;sntr is the mean of t(ie sample data from the VALUES TO BE USED FOR m TO DETERMINE                        selected lot, s' is the standard deviation of the sample tA*rrn*tr WITH NONNORMAL DISTRIBUTION                    data from the selected lot, and c is given in Table 3 (from Ref. 3).
              Number of Observations                      m TABLE 3 VALUES TO BE USED FOR c
                  50
                                                                                    TO DETERMNINE i.snir
                  55
                  60
                                                                            Number of
                  65 Observations                          C
                  70
                  75
                                                                                  4                            1.18
                  80                                                                                          0.95
                  85
                                                                                  6                            0.82
                  90
                                                                                  7                           0.73
                  95                            2                                                            (0.67
                  100                                                              8
                                                                                  9                            0.62
                  110
                                                                                  10                            0.58
                  120
                                                                                  II                            0.55
                  130                            3                              12                            0.52
                  140                            3                                                            0.45
                  15o                            3
                                                                                  20                            0.39
                  170                            4                              25                            0.34
                  200                            5
                                                                                30                            0.31
                  300                            9                                                            0.27
                                                13                              40
                  400                                                                                          0.-2
                                                                                60
                  500                            17                                                            0.17
                                                                                100
                  600                          21                                                              0.12
                                                                                200
                  700                          26
                                                                                500                            0.07
                  800                          30                                                              0
                  900                          35
                1000                          39                4. Measurement Methods Note that a minimum of 60 observations is required to              To measure the density change A,sntr during resin- produce a meaningful result by this method.                    tering, either geometric or true densities may he used, so long as the same method is used before and after resin.
 
b. Multiple-Pellet Effects                                tering. Techniques such as vacuum impregnation/
                                                                  water immersion, mercury immersion, gamnta.r-ay ab- Fuel-column.length changes, which can result in          sorption. and mensuration ate acceptable. It is also axial gaps in the pellet stack, are determined by average      acceptable to infer the density change from a diameter pellet behavior. In this case, however, the population          change. using the isotropic relation "Psnir/o =
  to be considered is not the core or reload quantity            3LDsntr/D. where ADsntr is the diameter change exper- characterized above, but rather the pellet lot within          ienced during resintering.
 
that quantity that exhibits the largest mean of the
  6,sntr values from the sample. A pellet lot is defined              Resintering should be performed in a laboratory- as a group of pellets made from a single UOi powder            quality furnace with a known temperature distribution, source that has been processed under the same condi-            in the working region. Temperatures during resintering tions. The distribution of 6Psntr values for the selected      should be measured using either thermocouples or pellet lot is assumed to be normal. To analyze effects          calibrated optical methods with established black- related to column-length changes. resintering-based            body conditions. Furnace temperatures should be so densification models should use a density change value          maintained that true specimen temperatures are no Ap*sntr that bbunds the selected pellet lot mean with          lower than the desired test temperature (1700'C in
  95% confidence, Thus ,'s'ntr is the upper one-sided            the model above) after temperature measurement errors
  95% confidence limit on the mean density change and            have been taken into account.
 
can be obtained from the sample values using the expres- sion:                                                                Fuel stoichiometry (O/M ,; 2.00) should be main- tained by using dry tank hydrogen or dry gas mixtures
0
                                                                  (e.g.. N2-H2) and avoiding temperatures in excess of
                      4                                          - 1800&deg;eC.
 
APs ntr ="Psntr + cs'
                                                            1.126-3
 
5. Isotropy Assumptions                                          theoretical density as measured geometrically.      Except iim those cases in which the applicant proposes an accept- In order to use predicted density changes in a cal-          able alternative method for complying with specified culation of the effects of inTreactor densification, it is      portions of the Commission's regulations,. the method necessary to make some assumlplion about tile isotropy          described herein will be used in the evaluation of sub.
 
of' fuel densification. For ch: ages in pellet diameter          mittals for construction permit, operating license, and D. isotropic densilication may be assumed, so that              reload applications docketed after November I. 1977.
 
,:I)/D = .Ap/3p. For changes in pellet or fuel column          unless this guide is revised as a result of suggestions from leigth L. anisolropic densification is assumed such            the public or additional staff revie


I .Ap=O0(for BU < 20 NIWd/tU);S (for 20 < BU < 2000 NtWd/tU);(la)(I b)(Ic)and,, = APsntr(for BU > 2000 MWd/tU),where tile coefficients m and b are given by0 = m log(20) + b and'Psntr = i log(2000) + b.For pellets exhiibiting a resintering density changein excess of 4% TD. the in-reactor density change asa function burnup may be taken asating normally distributed data may be used. If the"W" test (Ref. 2) demonstrates nonnormality at the -1%level of significance. nonparametric statistical methodsshould be used unless a different functional form can besatisfactorily justified to describe the distribution ofthe LAsntr values. Thus 6sAnptr is tile upper one.sided95/95 tolerance limit for the density changes and canbe obtained from the sample values using one of themethods outlined below.(1) NormalDistribution. In this case, Ps*nr isgiven byASiltr = Epsnir + C's.wherce -'Nsntr is tile mean of the sample data, s is thestandard deviation of tile sample data, and c' is givenin Table I (from Ref. 3).Lp =0(forhBU 5 MWd/tU):Ap = m log(BU) + b(for 5 < BU < 500 MWd/tU):and -P -APsntr(for BU > 500 MWd/tU),where the coefficients m and b are given by0 = m log(S) + band ,Psntr = m log(500) + b.(2a)(21b )GOcTABLE IVALUES TO BE USED FOR c'TO DETERMINE 64lrWITH NORMAL DISTRIBUTIONNumber ofObservationscIn applications of Equations I and 2, ,Psntr willhave tile value st**r or tmntr. which will be describedin Section C.3. The burnup unit MWd/tU in the aboveexpressions is megawatt days per metric ton of heavymetal (uranium).3. Statistical MethodsTo apply tile above model or any densification modelthat depends on an ex-reactor resintering density change,a random sample of the pellet population of interestmust be resintered. Resintering the pellets in the samplewill result in a set of density changes 6Psntr. Severalcharacteristics of these values are needed to completethe densification analysis.a. Single-Pellet EffectsAnalyses of the effect of densification on storedenergy and linear heat generation rate must account forpellets that have the greatest propensity for densifica.tion. To accomplish this with a resintering-based modelsuch as that described in Sections C.1 and C.2, a re-sintering density change value Apjn*tr that conservative-ly bounds 95% of the population APsntr values with95% confidence should be used. The population ofinterest is the initial core loading or. reload quantityof fuel for which the safety analysis, and hence the den-sification analysis, is being performed. If the distri-bution of values is normal, methods of evalu.456789101112is2025304060100200500005.154.203.713.403.193.032.912.822.742.57:.402.292.2 22.132.021.931.841.761.64(2)given byNonnormalDistribution. In this case ApntisAp~t twhere P is the mth largest 5Psntr value in a rankingot the observed values o0 6Psntr from the sample.The integer m depends on tile sample size according toTable 2 (from Ref. 4).1.126-2 TABLE 2VALUES TO BE USED FOR m TO DETERMINEWITH NONNORMAL DISTRIBUTIONNumber ofObservations5055606570758085909510011012013014015o1702003004005006007008009001000m233345913172126303539where 'P;sntr is the mean of t(ie sample data from theselected lot, s' is the standard deviation of the sampledata from the selected lot, and c is given in Table 3(from Ref. 3).TABLE 3VALUES TO BE USED FOR cTO DETERMNINE i.snirNumber ofObservations C4678910I I1220253040601002005001.180.950.820.73(0.670.620.580.550.520.450.390.340.310.270.-20.170.120.0704. Measurement MethodsNote that a minimum of 60 observations is required toproduce a meaningful result by this method.b. Multiple-Pellet EffectsFuel-column.length changes, which can result inaxial gaps in the pellet stack, are determined by averagepellet behavior. In this case, however, the populationto be considered is not the core or reload quantitycharacterized above, but rather the pellet lot withinthat quantity that exhibits the largest mean of the6,sntr values from the sample. A pellet lot is definedas a group of pellets made from a single UOi powdersource that has been processed under the same condi-tions. The distribution of 6Psntr values for the selectedpellet lot is assumed to be normal. To analyze effectsrelated to column-length changes. resintering-baseddensification models should use a density change valuethat bbunds the selected pellet lot mean with95% confidence, Thus ,'s'ntr is the upper one-sided95% confidence limit on the mean density change andcan be obtained from the sample values using the expres-sion:APs4ntr ="Psntr + cs'To measure the density change A, sntr during resin-tering, either geometric or true densities may he used, solong as the same method is used before and after resin.tering. Techniques such as vacuum impregnation/water immersion, mercury immersion, gamnta.r-ay ab-sorption. and mensuration ate acceptable. It is alsoacceptable to infer the density change from a diameterchange. using the isotropic relation "Psnir/o =3LDsntr/D. where ADsntr is the diameter change exper-ienced during resintering.Resintering should be performed in a laboratory-quality furnace with a known temperature distribution,in the working region. Temperatures during resinteringshould be measured using either thermocouples orcalibrated optical methods with established black-body conditions. Furnace temperatures should be somaintained that true specimen temperatures are nolower than the desired test temperature (1700'C inthe model above) after temperature measurement errorshave been taken into account.Fuel stoichiometry (O/M ,; 2.00) should be main-tained by using dry tank hydrogen or dry gas mixtures(e.g.. N2-H2) and avoiding temperatures in excess of-1800&deg;eC.01.126-3
====w. If for any reason====
5. Isotropy AssumptionsIn order to use predicted density changes in a cal-culation of the effects of inTreactor densification, it isnecessary to make some assumlplion about tile isotropyof' fuel densification. For ch: ages in pellet diameterD. isotropic densilication may be assumed, so that,:I)/D = .Ap/3p. For changes in pellet or fuel columnleigth L. anisolropic densification is assumed suchthat -./L =Ar.12,o.
                  1 that -. /L =Ar. 2,o.                                           the effects of' fuel densification are reanalyzed for fuel covered in an applicalion docketed on tir before No-  


==D. IMPLEMENTATION==
==D. IMPLEMENTATION==
The purpose of this section is to provide informationto applicants and licensees regarding the NRC" staft'splans for using this regulatory guide.This guide reflects a relinement in NRC( practice andsupersedes the previously accepted assumption that allfuels densify to a maximum density of 9thi.5'; of tineirtheoretical density as measured geometrically. Exceptiim those cases in which the applicant proposes an accept-able alternative method for complying with specifiedportions of the Commission's regulations,. the methoddescribed herein will be used in the evaluation of sub.mittals for construction permit, operating license, andreload applications docketed after November I. 1977.unless this guide is revised as a result of suggestions fromthe public or additional staff review. If for any reasonthe effects of' fuel densification are reanalyzed for fuelcovered in an applicalion docketed on tir before No-vember 1. 1977. the method described in this guidewould not be necessary and previously approved assunmp-tions would he allowed for that fuel.If an applicant wishes to use this regulatory guide indeveloping submittals for applications docketed on orbefore November 1. 1977. the pertinent portions of theapplication will be evaluated on ihe basis of1 this guide.REFERENCES1. R. 0. Meyer. ""rhe Anakysis of Fuel Densi-fication." USNRC Report NURIFG-005. July 1976.2. "American National Standard Assessment of' theAssumnption of' Normnality (Emploving Ind ividu;,I Ob-served Values)'" ANSI Standard NI 5.15-19 74.3. G. J. Hahn. "Statistical Intervals for a Normal Pop-ulation. Part I. Tables, Examples and Applications,"J. Quality Technol. 115 (1970),4, P. N. Somerville. "Tables for Obtaining Non.Para-metric Tolerance Limits." Ann. Math. Stat. 29, 559(1958).LIST OF SYMBOLST'he major symbols used in Sections C.I through C.5are identified below:BU iHurnup. %IWdjtU.D Nominal initial pellet diameter, cni.I, Nominal initial pellet length, cm.TI) Theoretical density, g/cm3.A 1) In-reactor pellet diameter change (function ofburnup). cm.ADsntr Measured diameter change of a pellet due toex-reactor resintering, cm.A t. In-reactor pellet length change (function ofhurnup), cm.A, In-reactor pellet density change (function ofburnup), g/cm3.APsntr Measured density change of a pellet due to ex-reactor resintering, g/cm3.s.ntr One-sided 95% upper confidence limit on, themean of tile A0sntr values from the selectedlot. g/cm3.A 0 *n*r One-sided 95/95 upper tolerance limit for thetotal population of tLsntr values, g/cm3.P Nominal initial pellet density, g/cm3.1,126-4  
vember 1. 1977. the method described in this guide would not be necessary and previously approved assunmp- The purpose of this section is to provide information        tions would he allowed for that fuel.
}}
 
to applicants and licensees regarding the NRC" staft's plans for using this regulatory guide.
 
If an applicant wishes to use this regulatory guide in This guide reflects a relinement in NRC( practice and        developing submittals for applications docketed on or supersedes the previously accepted assumption that all          before November 1. 1977. the pertinent portions of the fuels densify to a maximum density of 9thi.5'; of tineir        application will be evaluated on ihe basis of1 this guide.
 
REFERENCES
1. R. 0. Meyer. ""rhe Anakysis of Fuel Densi-                   3. G. J. Hahn. "Statistical Intervals for a Normal Pop- fication." USNRC Report NURIFG-005. July 1976.                  ulation. Part I. Tables, Examples and Applications,"
                                                                J. Quality Technol. 115 (1970),
2. "American National Standard Assessment of' the              4, P. N. Somerville. "Tables for Obtaining Non.Para- Assumnption of' Normnality (Emploving Ind ividu;,I Ob-          metric Tolerance Limits." Ann. Math. Stat. 29, 559 served Values)'" ANSI Standard NI 5.15-19 74.                  (1958).
                                                  LIST OF SYMBOLS
  T'he major symbols used in Sections C.I through C.5          At.       In-reactor pellet length change (function       of are identified below:                                                      hurnup), cm.
 
BU        iHurnup. %IWdjtU.                                   A,         In-reactor pellet density change (function of burnup), g/cm 3 .
D        Nominal initial pellet diameter, cni.
 
APsntr     Measured density change of a pellet due to ex- I,        Nominal initial pellet length, cm.                              reactor resintering, g/cm 3 .
TI)      Theoretical density, g/cm 3 .                             s.ntr One-sided 95% upper confidence limit on, the mean of tile A0sntr values from the selected A1)        In-reactor pellet diameter change (function of                  lot. g/cm 3 .
          burnup). cm.                                          A0 *n*r   One-sided 95/95 upper tolerance limit for the total population of tLsntr values, g/cm 3 .
ADsntr Measured diameter change of a pellet due to ex-reactor resintering, cm.                           P         Nominal initial pellet density, g/cm 3 .
                                                          1,126-4}}


{{RG-Nav}}
{{RG-Nav}}

Latest revision as of 01:20, 20 March 2020

an Acceptable Model and Related Statistical Methods for the Analysis of Fuel Densification
ML13350A271
Person / Time
Issue date: 03/31/1977
From:
NRC/OSD
To:
References
RG-1.126
Download: ML13350A271 (4)


U.S. NUCLEAR REGULATORY COMMISSION March 1977 REGULATORY GUIDE

OFFICE OF STANDARDS DEVELOPMENT

REGULATORY GUIDE 1.126 AN ACCEPTABLE MODEL AND RELATED STATISTICAL METHODS FOR THE

ANALYSIS OF FUEL DENSIFICATION

A. INTRODUCTION

and C.2 of this guide is not intended to supersede NRC-approved vendor models.

Appendix K. "ECCS Evaluation Models," to 10 CFR

Part 50, "Licensing of Production and Utilization The statistical methods (SectionC-.3). measurement Facilities," requires that the steady-state temperature methods (Section C.4), and istarooy assumptions distribution and stored energy in the fuel before a hypo- (Section C.5) are compatible wtth*nosi.*e*,idor models.

thetical loss-of-coolant accident (LOCA) be calculated, Therefore Sections C.3. C-.;,aJid:`;c.5 co ild be applied taking fuel densification into consideration. This to densitication models liIIdtfter*from the one pre- guide provides an analytical model and related assump- sented in Sect ins.Q.-i 'nd C2;, "

tions and procedures that are acceptable to the NRC

staff for predicting thle effects of fuel densification in light-water-cooled nuclear power reactors. The guide C REGU.iATORY POSITION

also describes statistical methods related to product sampling that will provide assurance that this and li.-Maximum iDisification other approved analytical models will adequately de- scribe the effects of densification for each initial core"-  :-, .The; density of a fuel pellet* in the reactor increases and reload fuel quantity produced. ,.... witA. burnup and achieves a maximum value at a rela-

-tively low burntip (generally < 10,000 M\Yd/t U). For

B. DISCUSSION

analytical purposes, this maximum density minus

0 * In-reactor densification pellets affects fuel temperatures in ste..ral (shrinkage)','of oxide Iitel gap conductance may be reduced beca f6rthe de-

'0*ys: (1)

the initial density. i.e., the maximum density change, is assumed to be the same as the density change Asntr that would occur outside the reactor in the same pellet during resintering at I700°C for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

crease in pellet uiameter;.1t),) me linear neat generation rate is increased because,*\de decrease in pellet length;

and (3) the pellet-le' .d'teases may cause gaps in Where the ex-reactor resintering results in a negative the fuel colur id n, prMce local power spikes density change (i.e.. swelling), zero in-reactor densifi- and the pot ial c ing collapse. Dimensional cation should le assumed.

changes i Il11ets in lie reactor do not appear to be isotro,* , a radial pellet dimension changes 2. Densifieation Kinetics will b ted "clferently. Furthermore, items (1) and

(2) abo i;re single-pellet effects, whereas item (3) For pellets that have a resintering density change is the result of simultaneous changes in a large number Asntr of less than 4% of theoritical density (TD),

of pellets. These distinctions must be taken into account the in-reactor density change Ap -1%a function of in applying analytical models. burnup BU may be taken as**

The NRC staff has reviewed the available information *The model presented in this guide is applicahle only to U0 2 concerning fuel densification, and the technical basis fuel pellets.

for the Regulatory Position of this guide is given in *&Symbols are defined in the List of Symtols at the back of this Reference 1. The model presented in Sections C.I guide.

USNRC REGULATORY GUIDES Conmments should be ent 1o thi, Secretary of tI! Commist*,u,* US. Nucleiar Rf*u"

Reggulatory Guide%wte issuerd to desribe ant make available to the public methods latury Commitsion. Wsiir'nton, O.C. 70555, Attention- Dorcketrrg and Servly Branch.

acieptable to the NRC stail of implementing speeilic paris of the Commission's tegufations, to delineate techniqtur$ used by the %tsalIin evaluating poecifIic litottlern The guides are ss*uiri in ttte following ten htut*,t rlwvivions of rostulated accidents, or to provide guidance to applicants, Regulatory Guides awe not subltitutes lot regublions, arnd commlhince with them is tot required. t. Power Reactors 6. PelXjucls Methods and solutions dilferent from those set Out in the guides will be accept- 2. Research and Te'st Reactors 7. Ttantrurtatiun able If they provide a basis for the findings requisite to the issuance or continuance 3. Fuellsant Materials Facilities 8, Occupational IHealth of a permit or license by the Commission, 4. Environmental aontSiting 9. Antitrust tlevew.

S. Materials and Plant Protection t0. Geriryal Comments and suggestions for improvements in these guides rt- encouraged at all times, and guides wtil bit revised, A ,tprotriatle. to accommodate comments and RectueSts fat single covies Ol isisuo guides ferhich rmnay' tie eprodur.ced at tto;iace- to tretect new Information or experience. However. comments on this guideif ment on an automatic dititl)ution list for sing le copies of future f tidus in streciftc

1 Ieceived within about two months alter its i-.suanca. will fe tParticularly useful In divisions should be madte in writing to the US. Nuclear Regutlarnrv t Cnnmission, evaluating the neate for an early reviston. Washington, D.C. 70555, Attention: Ditector. Division o Document Crontfrol.

I . Ap=O0 (la) ating normally distributed data may be use

d. If the

"W" test (Ref. 2) demonstrates nonnormality at the -1%

(for BU < 20 NIWd/tU); level of significance. nonparametric statistical methods S *p=mlog(BU)+b (I b) should be used unless a different functional form can be (for 20 < BU < 2000 NtWd/tU); satisfactorily justified to describe the distribution of the LAsntr values. Thus 6sAnptr is tile upper one.sided and ,, = APsntr (Ic)

95/95 tolerance limit for the density changes and can (for BU > 2000 MWd/tU), be obtained from the sample values using one of the where tile coefficients m and b are given by methods outlined below.

0 = m log(20) + b and (1) NormalDistribution. In this case, Ps*nr is

'Psntr = i log(2000) + b. given by ASiltr = Epsnir + C's.

For pellets exhiibiting a resintering density change in excess of 4% TD. the in-reactor density change as wherce -'Nsntr is tile mean of the sample data, s is the a function burnup may be taken as standard deviation of tile sample data, and c' is given Lp =0 (2a) in Table I (from Ref. 3).

(forhBU *<5 MWd/tU):

Ap = m log(BU) + b (21b )

(for 5 < BU < 500 MWd/tU): TABLE I

VALUES TO BE USED FOR c'

and -P - APsntr GOc TO DETERMINE 64lr (for BU > 500 MWd/tU), WITH NORMAL DISTRIBUTION

where the coefficients m and b are given by Number of

0 = m log(S) + b Observations c and ,Psntr = m log(500) + b.

4 5.15 In applications of Equations I and 2, ,Psntr will 5 4.20

have tile value st**r or tmntr. which will be described

6 3.71 in Section C.3. The burnup unit MWd/tU in the above

7 3.40

expressions is megawatt days per metric ton of heavy

8 3.19 metal (uranium).

9 3.03

10 2.91

3. Statistical Methods 11 2.82

12 2.74 To apply tile above model or any densification model is 2.57 that depends on an ex-reactor resintering density change, 20  :.40

a random sample of the pellet population of interest 25 2.29 must be resintered. Resintering the pellets in the sample 30 2.2 2 will result in a set of density changes 6Psntr. Several 40 2.13 characteristics of these values are needed to complete 60 2.02 the densification analysis. 100 1.93

200 1.84 a. Single-Pellet Effects 500 1.76

00 1.64 Analyses of the effect of densification on stored energy and linear heat generation rate must account for pellets that have the greatest propensity for densifica.

tion. To accomplish this with a resintering-based model such as that described in Sections C.1 and C.2, a re- (2) NonnormalDistribution. In this case Apntis sintering density change value Apjn*tr that conservative- given by Ap~t t ly bounds 95% of the population APsntr values with

95% confidence should be used. The population of interest is the initial core loading or. reload quantity where P is the mth largest 5Psntr value in a ranking of fuel for which the safety analysis, and hence the den- ot the observed values o0 6Psntr from the sample.

sification analysis, is being performed. If the distri- The integer m depends on tile sample size according to bution of *Asnlr values is normal, methods of evalu. Table 2 (from Ref. 4).

1.126-2

TABLE 2 where 'P;sntr is the mean of t(ie sample data from the VALUES TO BE USED FOR m TO DETERMINE selected lot, s' is the standard deviation of the sample tA*rrn*tr WITH NONNORMAL DISTRIBUTION data from the selected lot, and c is given in Table 3 (from Ref. 3).

Number of Observations m TABLE 3 VALUES TO BE USED FOR c

50

TO DETERMNINE i.snir

55

60

Number of

65 Observations C

70

75

4 1.18

80 0.95

85

6 0.82

90

7 0.73

95 2 (0.67

100 8

9 0.62

110

10 0.58

120

II 0.55

130 3 12 0.52

140 3 0.45

15o 3

20 0.39

170 4 25 0.34

200 5

30 0.31

300 9 0.27

13 40

400 0.-2

60

500 17 0.17

100

600 21 0.12

200

700 26

500 0.07

800 30 0

900 35

1000 39 4. Measurement Methods Note that a minimum of 60 observations is required to To measure the density change A,sntr during resin- produce a meaningful result by this method. tering, either geometric or true densities may he used, so long as the same method is used before and after resin.

b. Multiple-Pellet Effects tering. Techniques such as vacuum impregnation/

water immersion, mercury immersion, gamnta.r-ay ab- Fuel-column.length changes, which can result in sorption. and mensuration ate acceptable. It is also axial gaps in the pellet stack, are determined by average acceptable to infer the density change from a diameter pellet behavior. In this case, however, the population change. using the isotropic relation "Psnir/o =

to be considered is not the core or reload quantity 3LDsntr/D. where ADsntr is the diameter change exper- characterized above, but rather the pellet lot within ienced during resintering.

that quantity that exhibits the largest mean of the

6,sntr values from the sample. A pellet lot is defined Resintering should be performed in a laboratory- as a group of pellets made from a single UOi powder quality furnace with a known temperature distribution, source that has been processed under the same condi- in the working region. Temperatures during resintering tions. The distribution of 6Psntr values for the selected should be measured using either thermocouples or pellet lot is assumed to be normal. To analyze effects calibrated optical methods with established black- related to column-length changes. resintering-based body conditions. Furnace temperatures should be so densification models should use a density change value maintained that true specimen temperatures are no Ap*sntr that bbunds the selected pellet lot mean with lower than the desired test temperature (1700'C in

95% confidence, Thus ,'s'ntr is the upper one-sided the model above) after temperature measurement errors

95% confidence limit on the mean density change and have been taken into account.

can be obtained from the sample values using the expres- sion: Fuel stoichiometry (O/M ,; 2.00) should be main- tained by using dry tank hydrogen or dry gas mixtures

0

(e.g.. N2-H2) and avoiding temperatures in excess of

4 - 1800°eC.

APs ntr ="Psntr + cs'

1.126-3

5. Isotropy Assumptions theoretical density as measured geometrically. Except iim those cases in which the applicant proposes an accept- In order to use predicted density changes in a cal- able alternative method for complying with specified culation of the effects of inTreactor densification, it is portions of the Commission's regulations,. the method necessary to make some assumlplion about tile isotropy described herein will be used in the evaluation of sub.

of' fuel densification. For ch: ages in pellet diameter mittals for construction permit, operating license, and D. isotropic densilication may be assumed, so that reload applications docketed after November I. 1977.

,:I)/D = .Ap/3p. For changes in pellet or fuel column unless this guide is revised as a result of suggestions from leigth L. anisolropic densification is assumed such the public or additional staff revie

w. If for any reason

1 that -. /L =Ar. 2,o. the effects of' fuel densification are reanalyzed for fuel covered in an applicalion docketed on tir before No-

D. IMPLEMENTATION

vember 1. 1977. the method described in this guide would not be necessary and previously approved assunmp- The purpose of this section is to provide information tions would he allowed for that fuel.

to applicants and licensees regarding the NRC" staft's plans for using this regulatory guide.

If an applicant wishes to use this regulatory guide in This guide reflects a relinement in NRC( practice and developing submittals for applications docketed on or supersedes the previously accepted assumption that all before November 1. 1977. the pertinent portions of the fuels densify to a maximum density of 9thi.5'; of tineir application will be evaluated on ihe basis of1 this guide.

REFERENCES

1. R. 0. Meyer. ""rhe Anakysis of Fuel Densi- 3. G. J. Hahn. "Statistical Intervals for a Normal Pop- fication." USNRC Report NURIFG-005. July 1976. ulation. Part I. Tables, Examples and Applications,"

J. Quality Technol. 115 (1970),

2. "American National Standard Assessment of' the 4, P. N. Somerville. "Tables for Obtaining Non.Para- Assumnption of' Normnality (Emploving Ind ividu;,I Ob- metric Tolerance Limits." Ann. Math. Stat. 29, 559 served Values)'" ANSI Standard NI 5.15-19 74. (1958).

LIST OF SYMBOLS

T'he major symbols used in Sections C.I through C.5 At. In-reactor pellet length change (function of are identified below: hurnup), cm.

BU iHurnup. %IWdjtU. A, In-reactor pellet density change (function of burnup), g/cm 3 .

D Nominal initial pellet diameter, cni.

APsntr Measured density change of a pellet due to ex- I, Nominal initial pellet length, cm. reactor resintering, g/cm 3 .

TI) Theoretical density, g/cm 3 . s.ntr One-sided 95% upper confidence limit on, the mean of tile A0sntr values from the selected A1) In-reactor pellet diameter change (function of lot. g/cm 3 .

burnup). cm. A0 *n*r One-sided 95/95 upper tolerance limit for the total population of tLsntr values, g/cm 3 .

ADsntr Measured diameter change of a pellet due to ex-reactor resintering, cm. P Nominal initial pellet density, g/cm 3 .

1,126-4