ML20066A847: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
(One intermediate revision by the same user not shown)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:. _ -...
1 i
l t
l 1
WQ4.FCREEK NUCLEAR OPERATING CORPORATION Bert D. Withers Preement and CNef Enocottvo Omo,e December 28, 1990 WM 90-0204 U. S. Nuclear Regulatory Commission ATTN:
Document Control Desk Hall Station P1-137 Washington, D. C. 20$$$
 
==Reference:==
: 1) Letter dated May 25, 1989 from F. J. Hebdon, NRC to B. D. Withers, VCNOC
: 2) ET 89-0076, dated September 22, 1989 from F. T. Rhodes, WCNOC to NRC
: 3) Letter dated March 27, 1990 from D. V. Pickett, NRC to B. D. Withers, WCN00
: 4) VM 90 0118, dated July 5, 1990 from B. D. Withere.
WCNOC to NRC
: 5) Letter dated September 27, 1990 from D. V. Pickett, NRC to B. D. Withers, WCNOC
 
==Subject:==
Docket No 50-482: Response to Request for Additional Information Concerning Selsuic Design Considerations for Certain Safety-Related Vertical Steel Tanks l
Gentlemen:
i i provides Wolf Creek Nuclear Operating Corporation's (WCNOC) 3 response to the request for additional information which is documented in Reference 5.
The request for additional information concerned the seismic design considerations for certain safety-related vertical steel tanks.
Reference 1 reque0ted information concerning seismic design considerations for the Wolf areek Generating Station (WCGS) Refueling Water Storage Tank l
(RWST) which was subsequently provided in Reference 2.
Reference 2 provided the results of a reanalysis of the RWST which was performed in accordance with the guidance of Draft Revision 2 of the Standard Review Plan Section 3.7.3.
The Nuclear Regulatory Commission (NRC) Staff performed an audit of the reanalysis on February 14,
: 1990, which resulted in a request _ for additional information (Reference 3).
Reference 4 provided WCNOC's response to the request for additional information.
Reference 5 requested additional information for the staff to continue its review.
n1010'40147 901228.'
;DR ADOCK 0500 RO. Ekx 411/ Burhngton, KS 66839 / Phone:(316) 364 8831 00
(; ',} P fi(;]
An EM opportunny EmrWoyer M F/HcWET
 
VM 90-0304 Page 2 of 2 If you have any questions concerning this matter, please contact me or Mr.11. K. Chernof f of my staf f.
Very truly yours, Lart D. Withers President and Chief Executive Officer BDW/jra Attachment cci A. T. Ilowell (NRC),w/a R. D. Martin (NRC), w/a D. V. Pickett (NRC, w/a H. E. Skow (NRC, w/a
 
Attachment to WM 90-0204 Page 1 of 3 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION REGARDING SEISMIC DESIGN CONSIDERATIONS FOR CERTAIN SAFETY-RELATED VERTICAL STEEL TANKS QUESTION 1:
During the audit on February 14,
: 1990, the licensee's consultant (Bechtel) had provided a handout of what was presented.
Provide revised Tables 2 and 3 and any other changes to the handout resulting from the reanalysis.
 
===RESPONSE===
The handout presented to the NRC during the audit on February 14, 1990 has been revised to indicate the subsequent results of the reanalysis. provides the revised handout including Tables 2 and 3.
Pages 18, 19, 26, 28 (Table 2),
29, and 31 (Table 3) of 31 have been revised as indicated by Revision bars on these pages.
New pages 20 and 30 are due to text ' carryover' from changes to previous pages.
Changes were made to Table 2 Flexible Analysis, Shell Course 6 OBE calculated and allowable stresses.
The calculated stress was revised to reflect the use of the licensed OBE level of 0.12g rather than the previous use of 0.138 The allowable stress was revised to reflect a more accurate interpolation of values from Figure VII-1102-4 of the ASME Code, 1974 Edition through Winter 1975 Addenda.
The Table 3 value for shear in a typical slab strip, calculated using flexible analysis, was revised per the response to question 3 below.
QUESTION 2:
Provide the maximum stress values (due to sloshing) in the angle welds at the roof-cylinder junction with stresses combined from the three components of earthquake (SSE),
Compare with the allowables.
 
===RESPONSE===
The maximum force on the 1/4 inch circumferential fillet weld of the steel angle connecting the tank roof to the tank cylinder was calculated with consideration given to the sloshing effects during an earthquake.
A comparison of the calculated maximum force with the allowable force is shown below.
CALCULATED HAXIMUM FORCE ALLOWABLE FORCE (KIPS / INCH)
(KIPS / INCH) 0.0253 3.00
 
Attachment to WM 90-0204 Pate 2 of 3 QUESTION 3:
Provide a summary of the maximum stresses in base slab (rebar and concrete),
including those under the sump.
Compare with the allowables.
 
===RESPONSE===
The table below provides values of the allowable moments and shears at various sections of the base slab and the corresponding maximum design values.
The maximum design values are based on factored loads and the allowable values are based on nominal strength multiplied by strength reduction factors in accordance with the American Concrete Institute code (ACI 318-1983).
ALLOWABLE HAXIMUM ALLOWABLE HAXIMUM HOMENT DESIGN /MOHENT SHEAR DESIGN SHEAR LOCATION (KIP-FT/ft)
(KIP-FT/ft)
(KIPS /ft)
(KIPS /ft) 1.
Typical 216.57 174.2 79.35 63.5 base slab strip 2.
Slab strip 568.3 494.0 79.35 74.5 around the sump pit 3.
Sump 88.5 13.2 32.9 11.9 pit slab (2'6' Thick)
QUESTION 4:
In response to question 2(a) of the previous RAI, it is indicated that the I
bolts will not experience any shear load because of the static friction between the tank bottom and the concrete slab.
This cannot be justified unless slotted or oversized bolt holes are used to allow for tank bending and flexibility.
Provide maximum calculated stresses in bolts under the l
three components of earthquake (SSE),
in pure tension as well as when l
tension and shear are combined.
Compare them with the corresponding l
allowables.
l l
 
===RESPONSE===
As requested in Reference 3 and reported in Reference 4, the anchor bolt analysis was revised using classical methods to be consistent with the foundation analysis.
The analysis for transmitting shear loads from the tank to the foundation vas also revised to utilize static friction between the tank bottom and the concrete footing.
With consideration given to this static friction, it was demonstrated that tank sliding did not occur, and therefore, the anchor bolts did not experience any shear loads.
 
l Attachment to eM 90 0204 P8ge 3,of 3
The tank base is anchored to the foundation by 2 inch diameter anchor bolts and the base plate is provided with 3 1/4 inch diameter holes for the bolts.
Since overcized bolt holes are used, the static friction utilized in the analysis for transferring shear loads is justified.
Based upon the
: above, the anchor bolts have been adequately evaluated for pure tension resulting from uplift loads.
The maximum tension load calculated in any anchor bolt under the three components of the earthquake ($$E) is 9.864 kips and the corresponding allowable bolt tension value is 50.625 kips.
 
~ CALLAWAY & WOLF CREEK RWST SEISMIC ANALYSIS 1
l
: 1. TANK MODEL - MASS l
1 MASS FOR CONVECTIVE (SLOSHING) EFFECTS 1 MASS FOR BASE SLAB 9 MASS POINTS FOR SHELL AND IMPULSIVE COMPONENTS OF FLUID l
PG.1 OF 31
-.. - -- ::, - -. - -. T -. L. -. - -.- _.
 
U
.)
h.
CALCULATION SHEET
~
xe m.
ca. m.
ntv. w3.
m m.
f4894 C-1989-t30 0
~/
[
ton mTu oMacr4o mit bOdCI
: 7. II.99
: s. M /thn.
' zt-'t I
t B. AnsturieAt JCompuree hobets s
: 1. Rxes-Base lumpeo Mess Motet s e
Learno s O
g O - Mass Aab Noos No, so o
D (D - EteneurNo., EEAM w
}
b - Erneur No., Spins 13 6
14
.?,, @,
StoEAL 00RblNATES '
(
a, C
D 4'
g}
e I
9-Y x
.... g m
g
'q 10 cal $ orb!NATE4 s
/v e
v o
O, a'f(i
_i
(-
m i
i a
1 I I
I l
Se4Ms ll o
$,'j l
)E
.g y
?-
b L
f l SPRINS5
{a s
Py N
a PG. 2 OF 31
 
CALCULATlDN SHE
.cs wo.
cu wo.
mv.wo.
ensete.o:
i
(
ffAf4 C-t747-tJo o
24 mice un owscuo win
=o blt/hw 7-I*-61
$kD
: 1. lf.9Q 1
SUMMARM Of Mass }btNT NetGHTS '
s A/efgv75 (r)
Poirs r aritournt Ve,rriest
* Trie havecrive unree LIILL I
B B
Be I1/MP2t> 07 NobE 4 f0K 1
12 12 Ttte Ves11 cat &Atysis.
s 4
4 Tais Is &cceprnete Fon
+
4
~)26 RE VERTICAL b/RECTION SINCE r
1 9
$l0$HING. bot $ A/07 $CCUR.
4 2859 2851 7
la 18 S
20 20
(
1 3/4
.36
'8 to 72f 0
It Itto 1210 r*
4903*
4905#
19
*1 NOT&t
~-
G IMEhlEVIDL/SANhyLSES,0y NE Vik/bOR (P.EFERENCas it- /4),
00N5tRV6TIVELLj "JNCLt/DEp 19H AbbtTIONat )bOf /.bMb (SNON LL 87 75117 917s4 ) Ar Mms /bint@. (basssisur Hirn Tne SNyPPS [,kirense Ano Bwicine, Aunt.yses(Eeregences 27-19)
IM/S 10hb net 0 NOT BE INCLt/htO ThI Trie Sesnic AuMysis.
l 31 U
l' a
N PG. 3 OF 31
 
)
CALCULATIDN SHEET
~.
4Ii4 cYtafr3o "f,"
(
o M14A
: 2. ;?,,
"dc gA./
G.qq t
Summeu or lumpeo Mrs Anwereesi 4
^
8 MA:s kest,nr tiest,nrAsovt.JkYM)L
.G
- DL' No.
MW Bese-(AD /t k ft '
k It' hit' s
55,77 24882 865 25745 f2 48.77 28542 f617 30159 4
: 41. f 0 10155 1084 If2f9 4
3 7 7 5' 5700 754 G454 9
33.4%
10058 f686 i f 744 2ss9 27.70
-f897f69 2768-I899937 f6 18.09 5891 3514 9405
(
20 10,42 2f72 40f5 Gf87 34
'2,75 272 2008 2280 72f 37 75 f027470 0
f027470 12to o
'O 151793 IS$197 Z-4903 501229f f 70 f 0 6 5f82397 m
ei Torm Tui ~I,"- - 3,1s2,597 k ft *
(bre hbenonrnt.bneenons) o I' Tl ~
$2?1.
~ 98832 k fi-ste' o
a m
m 31 3
m M
PG,4 OF 31
 
1 l(
' RWST SEISMIC ANALYSIS
: 1. TANK MODEL - STIFFNESS l
STRUCTURE - 3D BEAMS (TANK SHELL ONLY)
BASE SLAB - 3D BEAM lt CONVECTIVE (SLOSHING)
EFFECTS - SPRING i
i l
SOIL - SPRINGS i
PG,5 OF 31
 
l CALCULATION SHEET
*=
ca. e.
m.
f4894 c.f 939. t g o o
g 4AVr>w sir e, d(6/,d q,"lf,9q 1
3
: 2. lumpet Mats Mocet 0F Snvervee-Foun0 Anon Synen a a
e 7
O 20
(>)
si 12 9
fou.[NFORHhTtoM NOT Stfew, $25 SHSET No. 7 is 6
4,,
;...w $
i.
g b
lEGFub1 m
i.
$0ll$AlHGSkNbb&4fERS f
x g
(Motet $i00, Bevusagt; mew 75) u m
O rr g
a h
a
^
/
[
st
(
cy p q'"
;-g-]
9'Cy Xy R9 N
W5Nv Aw%
PG. 6 CF 31
 
(3
)
h CALCULATION SHEET
' ca uo.
cau:.no.
nrv.wo.
me 14 C H C-Issf-fle o
18 L<
0*!GNATOM DATE CHEGr3D DA75 QCGld
: 1. u.qq
%ss
,. ii -,
t Summsev 07 Mensen Fkorreries s 4
Mensrc fjern ~ Su rar k ans 4t') hen Monens of Evenrin Of *)
Nuatre (ft')
NS ga Ws 04 t
4.201 2.101 2.101 488 488 a
2 f.1427 0 982 0 fet 372 572.
10 B
: t. p t']
01t2 0 192 311 111 13 4
17C27 0 182 0.ft 2 392 Jf1 w
5 3.27 f.6BS t.63 r 653 653 u
0 3 724 f.742
: f. 742.
78 4 784 ss 7
S.231 2.01ff 2.6155 f044 1044 m
8 S.1*) i 2.L155 26155 1644 1044 n
9 1500 18 76 f35"O 184317 98+311 M
=
=
0?Sweee esce Are Temv As
% dbee+ rea 74,vr Det.4. Faz_
Refeerme af. Ma Sas, 9etts Are receu As o.9 dreer
.ha fetter +rs st ifbssreiae 4 Oscount Sotic Set 77tw.
bus To Synmeray, Tor.ston I)nt AtorOccut. RE Conwree Ruus, N ""
h%evee, EeQuine Aki Evfyr fog 7 (TorrionM. ffoneur 0F Enre riA ) To Execuit. As SucN firdet RE CALCVU97EO Vntve$
i of C Op $ nerinis Vrue (of1.0 ft") Lint Be Eupur.
Pa.7 or 31
 
O J
h.
CALCULATION SHEET
~xn w ca.w nuv. > o.
een e
(
14694 c.1989-no o
31 cnamrom mis cHac.ato mis
( $' /I 7.ld.99 Ow A/Mw 7 '/-t f l
~,
i 3
H. MATERIAL hoptRTIES t DENCITy i Of loNCRETE Ye ' 4
' I45 Pcf OFSreEt Ys
~ 490pcf 7
2founs's Mobutus, OF CONCREre'''
E
~ 0247s7 Xsl e
OFSTEEL E
~ 4170000 ksl s
10 kHERE E ' (U)"On}}' ' (I45)"Q1)}4000 pn "'
c SHEAR nosutus, Or ConcREre Ge
~ 209903 Ksf OF STEEL Cy
* 14126 00 N l
(
is UHERE &c ~ O*4 Sc.
17 hlSSON'S Rhilo, FOR CONCRETE Tc.
~ 0. 2 5 FoaSTEEL V
s O.30 0
UMERE Ve.Ts BA:Ei> 0N THE REthrloNSHIP BETWEEN E &ns Ge e
l)hMP!NG, Sinucivre 2 2 (OBEY
~
4 %
(SSE) a-
. Cauvecrive hv10 (Refenence.s)
~ h2 m
n (I} SEE Section ns.s OFREFERENCE 24.
(1) SEE REFEo?ENCE 22.
(S) SNE hGrE is7 0F REFERENCE 2fo.
g (4) kRCENT OF$RiflCAL bAMPtNGu lbR A NELbEb $ TEEL $7RUCTVRE-FROM REFERENCL' 27 M
=
PG. 8 OF 31 1
 
l RWST' SEISMIC ANALYSIS z
: 1. TANK MODEL - DAMPING BASED ON SNUPPS FSAR (REG. GUIDE 1.61)
STEEL TANK OBE-2%
SSE - 4%
1 CONVECTIVE FLUID 1!2 %
SOIL (BASED ON SNUPPS EM8!FEA STUDY APPROACH)
PG.9 OF 31
 
l RWST SEISMIC ANALYSIS
: 2. FOUNDATION MEDIUM
- NRC SUGGESTION TO USE SIMPLIFIED APPROACH
- CONSISTENT WITH EMSIFEA STUDY
- RICHERT EQUATIONS
- LAYERING BASED ON WEIGHTED AVERAGE (DEPTH = BASE DIM.)
s)
- USED DYNARN (BSAP"~""'
FAMILY OF COMPUTER PROGRAMS PG.10 CF 31
 
.t.
( )
_)
CALCULATION SHEET
~.~
MV.lC.
W NQ,
(
I4BT4 c-ITS9-13 0 o
se m im ari e-Ow d/t/s, 5-i..a 7 Cd/
[g,9q 1
s DNe Base l)imension ~ n't21 4'')
- 42'-8" L
Use 4s' 4
$lTE $PECIFIC $ OIL $0 FILES ARE t e
7
_Gs A br.
a Acettiton GLey UncessM hex SAHL.troNE Y'125 elots05 G " 29000 D} %.
. G (* C-c. ooo i ) ~ 167o h /_ 'n r it7 pef, vm o.47 P
1
,,.utese efeu8aagt Sn44.c
,g so G u erat n u.
Y ~ ISS pel, Y ~ 0.4
. G (e f
* o.obos ). gcoo rip
.4 7-f A4 ec
: v. o. 47 m
e
. G (e la o.todott) ~ 2900 n /~._'
L
, 4,u,,e g,,g4 3, A SnA t t s
it 7 Wt,!c.l oho %Qgneo y,q~..
n C
n G**Yton CHERT MGL6MERATE.
QATT3MUT!! bHtSTONS-
's
_ G (e E~ o ooo t 1)*ts9oot.3/.g
- g'.',Mfjf g 7,7 0 30 ti
- Y-ti8pe/, Y-o.59
. Hersatt, LeAvenwaarn &b n
S NbtRVILLE f> tmh 7 tons
,t Y
ga ya f40 x/, ya o.3, G a stooo tr/
lipA0 V ib L)H N TC H E U
. BURLINGTON, BusMtFRG bb.
.1^ the p*/, ts/
Y" 0 30
. Syneer (se e a:
. Y-f 60 pc/, fon.mariem 4 ~ 270o0c ts v a 0.42
_. 4 G-Mfo9 As/
g,,eg,,,f so 8tbreek s NOLF [ REEK e
22
_CA t t /W AV 3:
FOR OALLAkJAy s
=
I Yi #1 (f77Yf 53 + ff 94Yf 5') + (if 8Yf 5) 3 Y
* I 44 45
^
135 pef a
Ya
* T W HZ fo 47Yfs)+ (o47Yr3) f(o3Wf ri as
~
Z. H i, 45...
~ o,442 E ' Ict4; (fc7oys!q + (nooyf 3)+(f,9eoy,g) ao
^
a E4 45 8052.K/
L Tacoyonere Trie +/-co7. On 7a' e Vmye of Q,
34 PG.11 OF 31
 
RWST SEISMIC ANALYSIS
: 3.
 
==SUMMARY==
OF RESPONSE -
MODES:
FREQ.
MODE EFFECTIVE RANGE MASS (Hz)
.22 (CONVECTIVE) 15%
4.6/6.2 (1ST HORIZ) 70 %
8.4/13.1 (1ST VERT) 93 %
l i
1
(
PG.12 OF 31
 
//
RWST SEISMIC ANALYSIS
: 4. TREATMENT OF MODES HORIZONTAL DIRECTIONS
- HYDRODYNAMIC COMPUTED PER NUREG CR-1161 (SRSS OF IMPULSE, SLOSHING AND i
VERTICAL MODES
- HYDROSTATIC &
HYDRODYNAMIC SUMMED ABS
(
PG.13 OF 31
 
' RWST SEISMIC ANALYSIS
(
: 4. TREATMENT OF MODES HORIZONTAL DIRECTIONS:
(CONTINUED)
- ONE HORIZ. ANALYSIS (DUE TO SYMMETRY)
- 2ND HORIZ. DIRECTION IS 40% OF FIRST
- ADDED NOZZLE LOADS FROM SEPARATE ANALYSIS FOR EACH DIRECTION PG.14 OF 31
 
RWST SEISMIC ANALYSIS
: 4. TREATMENT OF MODES (CONTINUED)
- COMBINED TWO HORIZ.
DIRECTIONS AS VECTOR SUM
- VERTICAL DIRECTION
(
CONSERVATIVELY ADDED ABS TO HORIZ
- USED MULTIMODE APROACH TO COMBINE ALL MODES IN A '
SPECIFIC DIRECTION
(
PG.15 OF 31
 
~
RWST SEISMIC ANALYSIS l
: 5. SLOSHING HEIGHT
- BASED ON NUREG CR-1161
- CONSIDERED ROOF STRESSES
- SNOW LOAD CONTROLLED PG.16 OF 31
 
U J
CALCULATION SHEET
. ~
mm nrv. m.
m m.
I f4894 C-f 18 ?- f 30 o
6 A
'- M 1
k'
). QQ 1
1
~
A. Svercees (Coarinvec) <
4 llQutblEVEL*45' e
1 e
'e e
's
[--.... '.,2, h.
...M
,o e
e p
_ _ _ _7
_m______
n v
Sh a' g
u u
4
(
(ng,g t1_
B/ra' 1s 3
c e
17
,3
-w a
D 8/fG E
to 4
CNUE3 LC 1'
io o
'E Y
so 3'
y
[way4 tt n
3 D
cupy g-ts s
66 E
'E Mg 4 C
~
~ !.
4
- __.c a
:.: :. _.._ : -. _ _ _, _- p,. - -
w- - - -
~
~
31
-u
\\
a a
(
^
m EtevArioNyieu Legu&negere (SEE REreReNees 12,14 ene 22')
PG.17 OF 31 m
 
RWST SEISMIC ANALYSIS
: 6. UPLIFT POTENTIAL
-ANALYSIS BY CLASSICAL METHOD INDICATES UPLIFT
( l.E. TENSION IN BOLTS)
-TANK DISPLACEMENTS CONSIDERED IN PIPE ANALYSIS 1
(
PG.18 OF 31
 
RWST SEISMIC ANALYSIS
'7. OVERTURNING MOMENTS-
-CONTROLLING CASES
-FULL ThNK '//ISEISMIC
-EMPTY TANK '//I'//IND
-BOLTS DESIGN PER CLASSICAL METHOD, BOLTS TAKE TENSION LOAD ONLY
-SHEAR LOAD TRANSFERRED TO CONCRETE FOOTING BY STATIC FRICTION BET //EEN TANK BOTTOM AND CONCRETE f OVERSIZED HOLES PROVIDED PG.19 OF 31
 
RWST SEISMIC ANALYSIS IN TANK BASE TO JUSTIFY THE ABOVE) l I
i I
l
'f PG.20 OF 31 i
t.
 
U CALCULATION SHEET eassees mm.has so.es M NO.
CALC. NO.
Mt.NO.
am No.
f4sf4 c-cra9-t5o o
s
(
onoowon un c>nc#c un
.Q+AA%
t11-n 00 Ob.'-l
: 9. ll. qq l
3
[v. DESICH hlCULhrloNS t O
A. Tene/Fovatarion Annaeneur Sxerci+es s @ers.12-ts se n) 8 4
1 7
g 270 e
to x
.*.w-.+.''.,
'su ' '
12
's nom SPActs
]
10 g
f 23*41 '
36 gt qq.3 h=
/'
r t r
]
a A
e e
I
' u Eo.swis M' #
t i7 t ie
't..-
*' r.
~
180
' e sorw 4'
'^
c'l)po d
19
%~
' s,, '.....
+
d s.
. s m
, e <
e'
}}O peg n
N *
. \\JAO. (2 hCST
*M
=
m
*v. %,& *.e m
...2.
..-..._....y9,........_.....
'k 4 N M/F W, a
(hoM REFERENCE 22')
;I a
m m
PG 21 O~ 31
.q p.ryym,g
,-gms v-er
 
l lz RWST SEISMIC ANALYSIS
: 8. STRESSES IN SHELL
- BASED ON ORIGINAL SPEC. FOR TANKS
- ASME SECTION III SUBSECTION NC I
l l (
PG. 22OF 31 l.
 
s l(
RWST SEISMIC ANALYSIS 9.
 
==SUMMARY==
- HOOP STRESS RIGID ANALYSIS:
-ONLY HYDROSTATIC PRESSURES CONSIDERED l
1
-PRESSURES COMPUTED AT BASE OF EACH COURSE I
P G, 2 3 OF 31
. - l
 
RWST SEISMIC ANALYSIS z
FLEXIBLE ANALYSIS:
-HYDRODYNAMIC AND HYDROSTATIC PRESSURES WERE CONSIDERED
-PRESSURES COMPUTED ONE FOOT ABOVE BASE OF EACH COURSE THICKNESS REQUIREMENTS COMPARED IN TABLE 1
(
PG. 24 OF 31
 
~
TABLE 1
(
Comparison of Required Shell course Thicknesses (inches)
Shell Comeuted Recuired Thickness Actual Courses Ricid Analysis Florible Analysis Thickness 1
0.0520 0.1875
* 0.1875 2
0.1041 0.1875
* 0.1875 3
0.1563 0.2179 0.3125 4
0.2083 0.2789 0.3750 5
0.2605 0.3418 0.5000 6
0.3126 0.4061 0.5000 4
* Minimum Requirements Govern PG.25 OF 31
 
RWST SEISMIC ANALYSIS
(
9.
 
==SUMMARY==
- ROOF DESIGN
-SLOSH HEIGHT OF 3.36 FT (CALCULATED PER NUREG CR-1161)
-PREVIOUS DESIGN LOADS (ROOF SNO// LOADS)
CONTROL
-CONNECTION // ELD BET //EEN TANK ROOF AND CYLINDER JUNCTION CHECKED t
PG. 26 OF 31
 
RWST SEISMIC ANALYSIS 9.
 
==SUMMARY==
- COMPRESSION
-SEISMIC GOVERNED OVER WIND
-SSE CONTROLLED RIGID ANALYSIS
-FLEXIBLE ANALYSIS CONSIDERED OBE AND SSE COMPRESSION STRESSES COMPARED IN TABLE 2 l(
l PG. 27 OF 31
 
j TABLE 2 k
comparison of Longitudinal compression Stresses (PSI)
Shell Ricid Analysis Flexible Analysis Courses.
Stress Allowable Stress Allowable 1
13 4 (----) - 2698 (1484) 2 16 5 (----)
2698 (1484) 3 1912 3307 140 (----)
4200 (2310) 4 2925 3933 2670 (----)
5400 (2970) 5 4273 (2749) 7000 (3850) 6 4235 4964 6584 (3927 )
7000 ( 3960 )
Signifies Negligible Course 5-was enveloped by Course 6 In flexible analysis, OBE values-are given in parenthesis, values shown as (----)
were not computed since SSE stress was less than the CBE allowable.
(
l l
l l
l i
l l
1 PG.28 OF 31 l
\\
.~,
,e..
~+--,. ----.
r-.. - - - - -, ~ - - -
 
g.
RWST SEISMIC ANALYSIS 9.
 
==SUMMARY==
- FOUNDATION
-SOIL PRESSURES
-SHEAR AND IAOIAENT IN
(
BASE SLAB EVALUATED
-SHEAR AND IAOldENT IN
\\
BASE SLAB ADJACENT TO SUIAP PIT EVALUATED
-SHEAR AND MOIAENT IN SUIAP PIT SLAB (2'-6" THICK)
EVALUATED PG.29 OF 31
 
0 RWST SEISMIC ANALYSIS COMPARISONS PROVIDED IN TABLE 3 PG. 30 OF 31
: C e
TABLE 3 Foundation Comparisons Item of Comoarison1 Ricid Analysis Flexible Anal'vsis Allowable Static Soil
,f Pressure (ksf) 3.36 3.27 20.00-Dynamic Soil J
Pressure (ksf) 7.81 15.14-30.00 Shear in Typ. Slab Strip i
(Vu in Kips /FT) 49.90 63.5 79.35 Moment in Typ. Slab' Strip (Mu in Kip-Ft/Ft) 107.90_
_174.~20 216.57 E
Shear in Slab Strip i
eroend the Sump Pit 74.5 79.35 (Vu in Kips /ft)
Moment in Slab Strip 1
around the_ Sump Pit (Mu in - Kip-FT/ f t) 494.0-568.3 L
Shear in 2'-6" thick Sump Pit Slab (Vu in Kips /ft) 11'.9 32.9-
^
Moment in 2'-6" thick Sump Pit Slab 13.2 88.E' l
(Mu - in kip-FT/ f t)
}
I i
l Fh3. 31-OF 31
.. _.. - _. - -..,. _. _ _}}

Latest revision as of 18:45, 16 December 2024

Forwards Response to 900927 Request for Addl Info Re Seismic Design Considerations for Certain safety-related Vertical Steel Tanks
ML20066A847
Person / Time
Site: Wolf Creek Wolf Creek Nuclear Operating Corporation icon.png
Issue date: 12/28/1990
From: Withers B
WOLF CREEK NUCLEAR OPERATING CORP.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
WM-90-0204, WM-90-204, NUDOCS 9101040147
Download: ML20066A847 (36)


Text

. _ -...

1 i

l t

l 1

WQ4.FCREEK NUCLEAR OPERATING CORPORATION Bert D. Withers Preement and CNef Enocottvo Omo,e December 28, 1990 WM 90-0204 U. S. Nuclear Regulatory Commission ATTN:

Document Control Desk Hall Station P1-137 Washington, D. C. 20$$$

Reference:

1) Letter dated May 25, 1989 from F. J. Hebdon, NRC to B. D. Withers, VCNOC
2) ET 89-0076, dated September 22, 1989 from F. T. Rhodes, WCNOC to NRC
3) Letter dated March 27, 1990 from D. V. Pickett, NRC to B. D. Withers, WCN00
4) VM 90 0118, dated July 5, 1990 from B. D. Withere.

WCNOC to NRC

5) Letter dated September 27, 1990 from D. V. Pickett, NRC to B. D. Withers, WCNOC

Subject:

Docket No 50-482: Response to Request for Additional Information Concerning Selsuic Design Considerations for Certain Safety-Related Vertical Steel Tanks l

Gentlemen:

i i provides Wolf Creek Nuclear Operating Corporation's (WCNOC) 3 response to the request for additional information which is documented in Reference 5.

The request for additional information concerned the seismic design considerations for certain safety-related vertical steel tanks.

Reference 1 reque0ted information concerning seismic design considerations for the Wolf areek Generating Station (WCGS) Refueling Water Storage Tank l

(RWST) which was subsequently provided in Reference 2.

Reference 2 provided the results of a reanalysis of the RWST which was performed in accordance with the guidance of Draft Revision 2 of the Standard Review Plan Section 3.7.3.

The Nuclear Regulatory Commission (NRC) Staff performed an audit of the reanalysis on February 14,

1990, which resulted in a request _ for additional information (Reference 3).

Reference 4 provided WCNOC's response to the request for additional information.

Reference 5 requested additional information for the staff to continue its review.

n1010'40147 901228.'

DR ADOCK 0500 RO. Ekx 411/ Burhngton, KS 66839 / Phone
(316) 364 8831 00

(; ',} P fi(;]

An EM opportunny EmrWoyer M F/HcWET

VM 90-0304 Page 2 of 2 If you have any questions concerning this matter, please contact me or Mr.11. K. Chernof f of my staf f.

Very truly yours, Lart D. Withers President and Chief Executive Officer BDW/jra Attachment cci A. T. Ilowell (NRC),w/a R. D. Martin (NRC), w/a D. V. Pickett (NRC, w/a H. E. Skow (NRC, w/a

Attachment to WM 90-0204 Page 1 of 3 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION REGARDING SEISMIC DESIGN CONSIDERATIONS FOR CERTAIN SAFETY-RELATED VERTICAL STEEL TANKS QUESTION 1:

During the audit on February 14,

1990, the licensee's consultant (Bechtel) had provided a handout of what was presented.

Provide revised Tables 2 and 3 and any other changes to the handout resulting from the reanalysis.

RESPONSE

The handout presented to the NRC during the audit on February 14, 1990 has been revised to indicate the subsequent results of the reanalysis. provides the revised handout including Tables 2 and 3.

Pages 18, 19, 26, 28 (Table 2),

29, and 31 (Table 3) of 31 have been revised as indicated by Revision bars on these pages.

New pages 20 and 30 are due to text ' carryover' from changes to previous pages.

Changes were made to Table 2 Flexible Analysis, Shell Course 6 OBE calculated and allowable stresses.

The calculated stress was revised to reflect the use of the licensed OBE level of 0.12g rather than the previous use of 0.138 The allowable stress was revised to reflect a more accurate interpolation of values from Figure VII-1102-4 of the ASME Code, 1974 Edition through Winter 1975 Addenda.

The Table 3 value for shear in a typical slab strip, calculated using flexible analysis, was revised per the response to question 3 below.

QUESTION 2:

Provide the maximum stress values (due to sloshing) in the angle welds at the roof-cylinder junction with stresses combined from the three components of earthquake (SSE),

Compare with the allowables.

RESPONSE

The maximum force on the 1/4 inch circumferential fillet weld of the steel angle connecting the tank roof to the tank cylinder was calculated with consideration given to the sloshing effects during an earthquake.

A comparison of the calculated maximum force with the allowable force is shown below.

CALCULATED HAXIMUM FORCE ALLOWABLE FORCE (KIPS / INCH)

(KIPS / INCH) 0.0253 3.00

Attachment to WM 90-0204 Pate 2 of 3 QUESTION 3:

Provide a summary of the maximum stresses in base slab (rebar and concrete),

including those under the sump.

Compare with the allowables.

RESPONSE

The table below provides values of the allowable moments and shears at various sections of the base slab and the corresponding maximum design values.

The maximum design values are based on factored loads and the allowable values are based on nominal strength multiplied by strength reduction factors in accordance with the American Concrete Institute code (ACI 318-1983).

ALLOWABLE HAXIMUM ALLOWABLE HAXIMUM HOMENT DESIGN /MOHENT SHEAR DESIGN SHEAR LOCATION (KIP-FT/ft)

(KIP-FT/ft)

(KIPS /ft)

(KIPS /ft) 1.

Typical 216.57 174.2 79.35 63.5 base slab strip 2.

Slab strip 568.3 494.0 79.35 74.5 around the sump pit 3.

Sump 88.5 13.2 32.9 11.9 pit slab (2'6' Thick)

QUESTION 4:

In response to question 2(a) of the previous RAI, it is indicated that the I

bolts will not experience any shear load because of the static friction between the tank bottom and the concrete slab.

This cannot be justified unless slotted or oversized bolt holes are used to allow for tank bending and flexibility.

Provide maximum calculated stresses in bolts under the l

three components of earthquake (SSE),

in pure tension as well as when l

tension and shear are combined.

Compare them with the corresponding l

allowables.

l l

RESPONSE

As requested in Reference 3 and reported in Reference 4, the anchor bolt analysis was revised using classical methods to be consistent with the foundation analysis.

The analysis for transmitting shear loads from the tank to the foundation vas also revised to utilize static friction between the tank bottom and the concrete footing.

With consideration given to this static friction, it was demonstrated that tank sliding did not occur, and therefore, the anchor bolts did not experience any shear loads.

l Attachment to eM 90 0204 P8ge 3,of 3

The tank base is anchored to the foundation by 2 inch diameter anchor bolts and the base plate is provided with 3 1/4 inch diameter holes for the bolts.

Since overcized bolt holes are used, the static friction utilized in the analysis for transferring shear loads is justified.

Based upon the

above, the anchor bolts have been adequately evaluated for pure tension resulting from uplift loads.

The maximum tension load calculated in any anchor bolt under the three components of the earthquake ($$E) is 9.864 kips and the corresponding allowable bolt tension value is 50.625 kips.

~ CALLAWAY & WOLF CREEK RWST SEISMIC ANALYSIS 1

l

1. TANK MODEL - MASS l

1 MASS FOR CONVECTIVE (SLOSHING) EFFECTS 1 MASS FOR BASE SLAB 9 MASS POINTS FOR SHELL AND IMPULSIVE COMPONENTS OF FLUID l

PG.1 OF 31

-.. - -- ::, - -. - -. T -. L. -. - -.- _.

U

.)

h.

CALCULATION SHEET

~

xe m.

ca. m.

ntv. w3.

m m.

f4894 C-1989-t30 0

~/

[

ton mTu oMacr4o mit bOdCI

7. II.99
s. M /thn.

' zt-'t I

t B. AnsturieAt JCompuree hobets s

1. Rxes-Base lumpeo Mess Motet s e

Learno s O

g O - Mass Aab Noos No, so o

D (D - EteneurNo., EEAM w

}

b - Erneur No., Spins 13 6

14

.?,, @,

StoEAL 00RblNATES '

(

a, C

D 4'

g}

e I

9-Y x

.... g m

g

'q 10 cal $ orb!NATE4 s

/v e

v o

O, a'f(i

_i

(-

m i

i a

1 I I

I l

Se4Ms ll o

$,'j l

)E

.g y

?-

b L

f l SPRINS5

{a s

Py N

a PG. 2 OF 31

CALCULATlDN SHE

.cs wo.

cu wo.

mv.wo.

ensete.o:

i

(

ffAf4 C-t747-tJo o

24 mice un owscuo win

=o blt/hw 7-I*-61

$kD

1. lf.9Q 1

SUMMARM Of Mass }btNT NetGHTS '

s A/efgv75 (r)

Poirs r aritournt Ve,rriest

  • Trie havecrive unree LIILL I

B B

Be I1/MP2t> 07 NobE 4 f0K 1

12 12 Ttte Ves11 cat &Atysis.

s 4

4 Tais Is &cceprnete Fon

+

4

~)26 RE VERTICAL b/RECTION SINCE r

1 9

$l0$HING. bot $ A/07 $CCUR.

4 2859 2851 7

la 18 S

20 20

(

1 3/4

.36

'8 to 72f 0

It Itto 1210 r*

4903*

4905#

19

  • 1 NOT&t

~-

G IMEhlEVIDL/SANhyLSES,0y NE Vik/bOR (P.EFERENCas it- /4),

00N5tRV6TIVELLj "JNCLt/DEp 19H AbbtTIONat )bOf /.bMb (SNON LL 87 75117 917s4 ) Ar Mms /bint@. (basssisur Hirn Tne SNyPPS [,kirense Ano Bwicine, Aunt.yses(Eeregences 27-19)

IM/S 10hb net 0 NOT BE INCLt/htO ThI Trie Sesnic AuMysis.

l 31 U

l' a

N PG. 3 OF 31

)

CALCULATIDN SHEET

~.

4Ii4 cYtafr3o "f,"

(

o M14A

2. ;?,,

"dc gA./

G.qq t

Summeu or lumpeo Mrs Anwereesi 4

^

8 MA:s kest,nr tiest,nrAsovt.JkYM)L

.G

- DL' No.

MW Bese-(AD /t k ft '

k It' hit' s

55,77 24882 865 25745 f2 48.77 28542 f617 30159 4

41. f 0 10155 1084 If2f9 4

3 7 7 5' 5700 754 G454 9

33.4%

10058 f686 i f 744 2ss9 27.70

-f897f69 2768-I899937 f6 18.09 5891 3514 9405

(

20 10,42 2f72 40f5 Gf87 34

'2,75 272 2008 2280 72f 37 75 f027470 0

f027470 12to o

'O 151793 IS$197 Z-4903 501229f f 70 f 0 6 5f82397 m

ei Torm Tui ~I,"- - 3,1s2,597 k ft *

(bre hbenonrnt.bneenons) o I' Tl ~

$2?1.

~ 98832 k fi-ste' o

a m

m 31 3

m M

PG,4 OF 31

1 l(

' RWST SEISMIC ANALYSIS

1. TANK MODEL - STIFFNESS l

STRUCTURE - 3D BEAMS (TANK SHELL ONLY)

BASE SLAB - 3D BEAM lt CONVECTIVE (SLOSHING)

EFFECTS - SPRING i

i l

SOIL - SPRINGS i

PG,5 OF 31

l CALCULATION SHEET

  • =

ca. e.

m.

f4894 c.f 939. t g o o

g 4AVr>w sir e, d(6/,d q,"lf,9q 1

3

2. lumpet Mats Mocet 0F Snvervee-Foun0 Anon Synen a a

e 7

O 20

(>)

si 12 9

fou.[NFORHhTtoM NOT Stfew, $25 SHSET No. 7 is 6

4,,

...w $

i.

g b

lEGFub1 m

i.

$0ll$AlHGSkNbb&4fERS f

x g

(Motet $i00, Bevusagt; mew 75) u m

O rr g

a h

a

^

/

[

st

(

cy p q'"

-g-]

9'Cy Xy R9 N

W5Nv Aw%

PG. 6 CF 31

(3

)

h CALCULATION SHEET

' ca uo.

cau:.no.

nrv.wo.

me 14 C H C-Issf-fle o

18 L<

0*!GNATOM DATE CHEGr3D DA75 QCGld

1. u.qq

%ss

,. ii -,

t Summsev 07 Mensen Fkorreries s 4

Mensrc fjern ~ Su rar k ans 4t') hen Monens of Evenrin Of *)

Nuatre (ft')

NS ga Ws 04 t

4.201 2.101 2.101 488 488 a

2 f.1427 0 982 0 fet 372 572.

10 B

t. p t']

01t2 0 192 311 111 13 4

17C27 0 182 0.ft 2 392 Jf1 w

5 3.27 f.6BS t.63 r 653 653 u

0 3 724 f.742

f. 742.

78 4 784 ss 7

S.231 2.01ff 2.6155 f044 1044 m

8 S.1*) i 2.L155 26155 1644 1044 n

9 1500 18 76 f35"O 184317 98+311 M

=

=

0?Sweee esce Are Temv As

% dbee+ rea 74,vr Det.4. Faz_

Refeerme af. Ma Sas, 9etts Are receu As o.9 dreer

.ha fetter +rs st ifbssreiae 4 Oscount Sotic Set 77tw.

bus To Synmeray, Tor.ston I)nt AtorOccut. RE Conwree Ruus, N ""

h%evee, EeQuine Aki Evfyr fog 7 (TorrionM. ffoneur 0F Enre riA ) To Execuit. As SucN firdet RE CALCVU97EO Vntve$

i of C Op $ nerinis Vrue (of1.0 ft") Lint Be Eupur.

Pa.7 or 31

O J

h.

CALCULATION SHEET

~xn w ca.w nuv. > o.

een e

(

14694 c.1989-no o

31 cnamrom mis cHac.ato mis

( $' /I 7.ld.99 Ow A/Mw 7 '/-t f l

~,

i 3

H. MATERIAL hoptRTIES t DENCITy i Of loNCRETE Ye ' 4

' I45 Pcf OFSreEt Ys

~ 490pcf 7

2founs's Mobutus, OF CONCREre

E

~ 0247s7 Xsl e

OFSTEEL E

~ 4170000 ksl s

10 kHERE E ' (U)"On' ' (I45)"Q1)}4000 pn "' c SHEAR nosutus, Or ConcREre Ge ~ 209903 Ksf OF STEEL Cy

  • 14126 00 N l

( is UHERE &c ~ O*4 Sc. 17 hlSSON'S Rhilo, FOR CONCRETE Tc. ~ 0. 2 5 FoaSTEEL V s O.30 0 UMERE Ve.Ts BA:Ei> 0N THE REthrloNSHIP BETWEEN E &ns Ge e l)hMP!NG, Sinucivre 2 2 (OBEY ~ 4 % (SSE) a- . Cauvecrive hv10 (Refenence.s) ~ h2 m n (I} SEE Section ns.s OFREFERENCE 24. (1) SEE REFEo?ENCE 22. (S) SNE hGrE is7 0F REFERENCE 2fo. g (4) kRCENT OF$RiflCAL bAMPtNGu lbR A NELbEb $ TEEL $7RUCTVRE-FROM REFERENCL' 27 M = PG. 8 OF 31 1

l RWST' SEISMIC ANALYSIS z

1. TANK MODEL - DAMPING BASED ON SNUPPS FSAR (REG. GUIDE 1.61)

STEEL TANK OBE-2% SSE - 4% 1 CONVECTIVE FLUID 1!2 % SOIL (BASED ON SNUPPS EM8!FEA STUDY APPROACH) PG.9 OF 31

l RWST SEISMIC ANALYSIS

2. FOUNDATION MEDIUM

- NRC SUGGESTION TO USE SIMPLIFIED APPROACH - CONSISTENT WITH EMSIFEA STUDY - RICHERT EQUATIONS - LAYERING BASED ON WEIGHTED AVERAGE (DEPTH = BASE DIM.) s) - USED DYNARN (BSAP"~""' FAMILY OF COMPUTER PROGRAMS PG.10 CF 31

.t. ( ) _) CALCULATION SHEET ~.~ MV.lC. W NQ, ( I4BT4 c-ITS9-13 0 o se m im ari e-Ow d/t/s, 5-i..a 7 Cd/ [g,9q 1 s DNe Base l)imension ~ n't21 4) - 42'-8" L Use 4s' 4 $lTE $PECIFIC $ OIL $0 FILES ARE t e 7 _Gs A br. a Acettiton GLey UncessM hex SAHL.troNE Y'125 elots05 G " 29000 D} %. . G (* C-c. ooo i ) ~ 167o h /_ 'n r it7 pef, vm o.47 P 1 ,,.utese efeu8aagt Sn44.c ,g so G u erat n u. Y ~ ISS pel, Y ~ 0.4 . G (e f

  • o.obos ). gcoo rip

.4 7-f A4 ec

v. o. 47 m

e . G (e la o.todott) ~ 2900 n /~._' L , 4,u,,e g,,g4 3, A SnA t t s it 7 Wt,!c.l oho %Qgneo y,q~.. n C n G**Yton CHERT MGL6MERATE. QATT3MUT!! bHtSTONS- 's _ G (e E~ o ooo t 1)*ts9oot.3/.g - g'.',Mfjf g 7,7 0 30 ti - Y-ti8pe/, Y-o.59 . Hersatt, LeAvenwaarn &b n S NbtRVILLE f> tmh 7 tons ,t Y ga ya f40 x/, ya o.3, G a stooo tr/ lipA0 V ib L)H N TC H E U . BURLINGTON, BusMtFRG bb. .1^ the p*/, ts/ Y" 0 30 . Syneer (se e a: . Y-f 60 pc/, fon.mariem 4 ~ 270o0c ts v a 0.42 _. 4 G-Mfo9 As/ g,,eg,,,f so 8tbreek s NOLF [ REEK e 22 _CA t t /W AV 3: FOR OALLAkJAy s = I Yi #1 (f77Yf 53 + ff 94Yf 5') + (if 8Yf 5) 3 Y

  • I 44 45

^ 135 pef a Ya

  • T W HZ fo 47Yfs)+ (o47Yr3) f(o3Wf ri as

~ Z. H i, 45... ~ o,442 E ' Ict4; (fc7oys!q + (nooyf 3)+(f,9eoy,g) ao ^ a E4 45 8052.K/ L Tacoyonere Trie +/-co7. On 7a' e Vmye of Q, 34 PG.11 OF 31

RWST SEISMIC ANALYSIS

3.

SUMMARY

OF RESPONSE - MODES: FREQ. MODE EFFECTIVE RANGE MASS (Hz) .22 (CONVECTIVE) 15% 4.6/6.2 (1ST HORIZ) 70 % 8.4/13.1 (1ST VERT) 93 % l i 1 ( PG.12 OF 31

// RWST SEISMIC ANALYSIS

4. TREATMENT OF MODES HORIZONTAL DIRECTIONS

- HYDRODYNAMIC COMPUTED PER NUREG CR-1161 (SRSS OF IMPULSE, SLOSHING AND i VERTICAL MODES - HYDROSTATIC & HYDRODYNAMIC SUMMED ABS ( PG.13 OF 31

' RWST SEISMIC ANALYSIS (

4. TREATMENT OF MODES HORIZONTAL DIRECTIONS:

(CONTINUED) - ONE HORIZ. ANALYSIS (DUE TO SYMMETRY) - 2ND HORIZ. DIRECTION IS 40% OF FIRST - ADDED NOZZLE LOADS FROM SEPARATE ANALYSIS FOR EACH DIRECTION PG.14 OF 31

RWST SEISMIC ANALYSIS

4. TREATMENT OF MODES (CONTINUED)

- COMBINED TWO HORIZ. DIRECTIONS AS VECTOR SUM - VERTICAL DIRECTION ( CONSERVATIVELY ADDED ABS TO HORIZ - USED MULTIMODE APROACH TO COMBINE ALL MODES IN A ' SPECIFIC DIRECTION ( PG.15 OF 31

~ RWST SEISMIC ANALYSIS l

5. SLOSHING HEIGHT

- BASED ON NUREG CR-1161 - CONSIDERED ROOF STRESSES - SNOW LOAD CONTROLLED PG.16 OF 31

U J CALCULATION SHEET . ~ mm nrv. m. m m. I f4894 C-f 18 ?- f 30 o 6 A '- M 1 k' ). QQ 1 1 ~ A. Svercees (Coarinvec) < 4 llQutblEVEL*45' e 1 e 'e e 's [--.... '.,2, h. ...M ,o e e p _ _ _ _7 _m______ n v Sh a' g u u 4 ( (ng,g t1_ B/ra' 1s 3 c e 17 ,3 -w a D 8/fG E to 4 CNUE3 LC 1' io o 'E Y so 3' y [way4 tt n 3 D cupy g-ts s 66 E 'E Mg 4 C ~ ~ !. 4 - __.c a

.: :. _.._ : -. _ _ _, _- p,. - -

w- - - - ~ ~ 31 -u \\ a a ( ^ m EtevArioNyieu Legu&negere (SEE REreReNees 12,14 ene 22') PG.17 OF 31 m

RWST SEISMIC ANALYSIS

6. UPLIFT POTENTIAL

-ANALYSIS BY CLASSICAL METHOD INDICATES UPLIFT ( l.E. TENSION IN BOLTS) -TANK DISPLACEMENTS CONSIDERED IN PIPE ANALYSIS 1 ( PG.18 OF 31

RWST SEISMIC ANALYSIS '7. OVERTURNING MOMENTS- -CONTROLLING CASES -FULL ThNK '//ISEISMIC -EMPTY TANK '//I'//IND -BOLTS DESIGN PER CLASSICAL METHOD, BOLTS TAKE TENSION LOAD ONLY -SHEAR LOAD TRANSFERRED TO CONCRETE FOOTING BY STATIC FRICTION BET //EEN TANK BOTTOM AND CONCRETE f OVERSIZED HOLES PROVIDED PG.19 OF 31

RWST SEISMIC ANALYSIS IN TANK BASE TO JUSTIFY THE ABOVE) l I i I l 'f PG.20 OF 31 i t.

U CALCULATION SHEET eassees mm.has so.es M NO. CALC. NO. Mt.NO. am No. f4sf4 c-cra9-t5o o s ( onoowon un c>nc#c un .Q+AA% t11-n 00 Ob.'-l

9. ll. qq l

3 [v. DESICH hlCULhrloNS t O A. Tene/Fovatarion Annaeneur Sxerci+es s @ers.12-ts se n) 8 4 1 7 g 270 e to x .*.w-.+.., 'su ' ' 12 's nom SPActs ] 10 g f 23*41 ' 36 gt qq.3 h= /' r t r ] a A e e I ' u Eo.swis M' # t i7 t ie 't..-

  • ' r.

~ 180 ' e sorw 4' '^ c'l)po d 19 %~ ' s,, '..... + d s. . s m , e < e' }}O peg n N * . \\JAO. (2 hCST

  • M

= m

  • v. %,& *.e m

...2. ..-..._....y9,........_..... 'k 4 N M/F W, a (hoM REFERENCE 22')

I a

m m PG 21 O~ 31 .q p.ryym,g ,-gms v-er

l lz RWST SEISMIC ANALYSIS

8. STRESSES IN SHELL

- BASED ON ORIGINAL SPEC. FOR TANKS - ASME SECTION III SUBSECTION NC I l l ( PG. 22OF 31 l.

s l( RWST SEISMIC ANALYSIS 9.

SUMMARY

- HOOP STRESS RIGID ANALYSIS:

-ONLY HYDROSTATIC PRESSURES CONSIDERED l 1 -PRESSURES COMPUTED AT BASE OF EACH COURSE I P G, 2 3 OF 31 . - l

RWST SEISMIC ANALYSIS z FLEXIBLE ANALYSIS: -HYDRODYNAMIC AND HYDROSTATIC PRESSURES WERE CONSIDERED -PRESSURES COMPUTED ONE FOOT ABOVE BASE OF EACH COURSE THICKNESS REQUIREMENTS COMPARED IN TABLE 1 ( PG. 24 OF 31

~ TABLE 1 ( Comparison of Required Shell course Thicknesses (inches) Shell Comeuted Recuired Thickness Actual Courses Ricid Analysis Florible Analysis Thickness 1 0.0520 0.1875

  • 0.1875 2

0.1041 0.1875

  • 0.1875 3

0.1563 0.2179 0.3125 4 0.2083 0.2789 0.3750 5 0.2605 0.3418 0.5000 6 0.3126 0.4061 0.5000 4

  • Minimum Requirements Govern PG.25 OF 31

RWST SEISMIC ANALYSIS ( 9.

SUMMARY

- ROOF DESIGN

-SLOSH HEIGHT OF 3.36 FT (CALCULATED PER NUREG CR-1161) -PREVIOUS DESIGN LOADS (ROOF SNO// LOADS) CONTROL -CONNECTION // ELD BET //EEN TANK ROOF AND CYLINDER JUNCTION CHECKED t PG. 26 OF 31

RWST SEISMIC ANALYSIS 9.

SUMMARY

- COMPRESSION

-SEISMIC GOVERNED OVER WIND -SSE CONTROLLED RIGID ANALYSIS -FLEXIBLE ANALYSIS CONSIDERED OBE AND SSE COMPRESSION STRESSES COMPARED IN TABLE 2 l( l PG. 27 OF 31

j TABLE 2 k comparison of Longitudinal compression Stresses (PSI) Shell Ricid Analysis Flexible Analysis Courses. Stress Allowable Stress Allowable 1 13 4 (----) - 2698 (1484) 2 16 5 (----) 2698 (1484) 3 1912 3307 140 (----) 4200 (2310) 4 2925 3933 2670 (----) 5400 (2970) 5 4273 (2749) 7000 (3850) 6 4235 4964 6584 (3927 ) 7000 ( 3960 ) Signifies Negligible Course 5-was enveloped by Course 6 In flexible analysis, OBE values-are given in parenthesis, values shown as (----) were not computed since SSE stress was less than the CBE allowable. ( l l l l l i l l 1 PG.28 OF 31 l \\ .~, ,e.. ~+--,. ----. r-.. - - - - -, ~ - - -

g. RWST SEISMIC ANALYSIS 9.

SUMMARY

- FOUNDATION

-SOIL PRESSURES -SHEAR AND IAOIAENT IN ( BASE SLAB EVALUATED -SHEAR AND IAOldENT IN \\ BASE SLAB ADJACENT TO SUIAP PIT EVALUATED -SHEAR AND MOIAENT IN SUIAP PIT SLAB (2'-6" THICK) EVALUATED PG.29 OF 31

0 RWST SEISMIC ANALYSIS COMPARISONS PROVIDED IN TABLE 3 PG. 30 OF 31

C e

TABLE 3 Foundation Comparisons Item of Comoarison1 Ricid Analysis Flexible Anal'vsis Allowable Static Soil ,f Pressure (ksf) 3.36 3.27 20.00-Dynamic Soil J Pressure (ksf) 7.81 15.14-30.00 Shear in Typ. Slab Strip i (Vu in Kips /FT) 49.90 63.5 79.35 Moment in Typ. Slab' Strip (Mu in Kip-Ft/Ft) 107.90_ _174.~20 216.57 E Shear in Slab Strip i eroend the Sump Pit 74.5 79.35 (Vu in Kips /ft) Moment in Slab Strip 1 around the_ Sump Pit (Mu in - Kip-FT/ f t) 494.0-568.3 L Shear in 2'-6" thick Sump Pit Slab (Vu in Kips /ft) 11'.9 32.9- ^ Moment in 2'-6" thick Sump Pit Slab 13.2 88.E' l (Mu - in kip-FT/ f t) } I i l Fh3. 31-OF 31 .. _.. - _. - -..,. _. _ _}}