ML18143A832: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:AEC DZo   "BCTZON FOR PART 0 DOCKET MATZSILL TEMPORARY FOIWi                             CONTROL No l
{{#Wiki_filter:AEC DZo "BCTZON FOR PART
                                    \
. 0 DOCKET MATZSILL TEMPORARY FOIWi CONTROL No l
n                                                                     FX FROM:   Rochester Gas 5 Electric       DATE OF DOC:          DATE REC'D              nZMO
\\
.'orporation         Rochester, N.Y.
n FX FROM: Rochester Gas 5 Electric
Keith   W.. Amish 12-28-72            1-2-73 TO ~                                         ORIG          CC                        &iiT AZC                PDR SERT LOCAL PDR
.'orporation Rochester, N.Y.
."Mr. John P. O'eary                     1  signed CLASS<'         PROP INFO                   INPUT           mo cYs REc'D             DOCiKT NO:
Keith W.. Amish DATE OF DOC:
50-244 DESCRIPTION;       Ltr trans   the following:             ENCLOSURES:       REPORT- on   Physics Measurements on Cycle   III at   the Ginna     Station.....'1 cy encl rec'd)
DATE REC'D nZMO TO ~
PLAhg   ~S.       Ginna P'lant FOR ACTION INFORMATION                       DL     1- "73 BUTLEz(r,)             SCH~CER(L)                ACHED,(i)                  KNXGHTON(E)
."Mr. John P. O'eary CLASS<'
W/ Copies             W/ Copies                   W/ 6copies                W/  Copies CLARK(L)             STOLz(z,)                   ZIEh~(L)                  YOUNGBLOOD(E)
PROP INFO 12-28-72 ORIG 1 signed INPUT 1-2-73 CC mo cYs REc'D
W/ Copies             W/ Copies                   W/   Copies              W/ Copies GOLLER(r,)            VASSALM(Z,)                CHXTtrOOD(FM)             HEGAN(E)       j W/ Copies              W/  Copies                W/    Copies              W/ Copies
&iiT AZC PDR SERT LOCAL PDR DOCiKT NO:
  'mxEr,(z,)                Ho DEIGN                  . Dmm(E)
50-244 DESCRIPTION; Ltr trans the following:
W/   Copies           W/ Copies                   W/ . Copies.            . Q/. Copies Xii7QIAL DISTRIBUTION C                                             VOLLMER                  EGQKZSS              WADE                      E AEC~R                                     DENTON                                        SHAFER                    F 8c M lac~   .ROOM P-506A     SCHROEDER          GRIMES                    F'Zo M              BROWN                    E
ENCLOSURES:
  +UNTZXNG/STAFF           MACCARY            GAMMILL                  S~QY                G. WILLXAhS E CASE                   LANGE(2)          KASTNER                  NUSSBAUMER          E. GOULBOURNE              L GXAMBUSSO               PAWLICKI          BALLARD                                        AT IND BOYD-L(BWR)             SHAO              SPANGLER                  LIC ASST.
REPORT-on Physics Measurements on Cycle III at the Ginna Station.....'1 cy encl rec'd)
DEYOUNG-L(PWR)         KNUTH                                                            SALTZMAN l4KOVHOLT-L              STELTD            ZZVZRO                    MASON      L Po COLLXhtS             YDORE MULL'ICKER WILSON     L       PLANS HOUSTON                                      MAIGRET     L       MCDONALD OPR                TEDESCO            KNIGHTON                  SMITH       L ILE a. REGION  (2)    IDNG              YOUNGBIDOD                GEARXN     L MORRXS                  LAINAS            PKQ ZZJQXER              DIGGS       L       INFO STELLE                  BENAROYA                                    TEETS       L       C, MILES "LEE        L EXTERNAL DISTRIBUTION
PLAhg ~S.
      -IDCAL PDR     L ons   N Y.
Ginna P'lant FOR ACTION INFORMATION DL 1- "73 BUTLEz(r,)
      -DTIE(ABmmATHY)                       (1)(5)(9)-NATIONAL LAB          S             1 PDR-SAN/LA/NY g-NSXC(BUCHANAN)                                      1-Ro CARROLL<<OC~ GT B227           1-GERALO LELTDUCHE 1-ASLB-YORE/SAYRE                                  -1 Ro CATLXNE E-256<<GT                 BROOKHAVEN NAT. LAB NOODWARD/H. ST.                                      1 comsULANT's                     1-AGMED( WALTER KOESTERp
W/
~3.6-CYS ACRS 3MHKgKX        SENT TO LIC, ASST,                                             Rm  C-427F GT)
Copies CLARK(L)
ST TEETS ON 1-5>>73                                           1-RDo   ~ o MULTiRZo ~       oF-309GT
W/
Copies GOLLER(r,)
W/
Copies
'mxEr,(z,)
W/
Copies SCH~CER(L)
W/
Copies STOLz(z,)
W/
Copies VASSALM(Z,)
W/
Copies Ho DEIGN W/
Copies ACHED,(i)
W/ 6copies ZIEh~(L)
W/
Copies CHXTtrOOD(FM)
W/
Copies
. Dmm(E)
W/
. Copies.
KNXGHTON(E)
W/
Copies YOUNGBLOOD(E)
W/
Copies HEGAN(E) j W/
Copies
. Q/. Copies Xii7QIALDISTRIBUTION C
AEC~R lac~
.ROOM P-506A
+UNTZXNG/STAFF CASE GXAMBUSSO BOYD-L(BWR)
DEYOUNG-L(PWR) l4KOVHOLT-L Po COLLXhtS OPR ILE a. REGION (2)
MORRXS STELLE SCHROEDER MACCARY LANGE(2)
PAWLICKI SHAO KNUTH STELTD YDORE HOUSTON TEDESCO IDNG LAINAS BENAROYA VOLLMER DENTON GRIMES GAMMILL KASTNER BALLARD SPANGLER ZZVZRO MULL'ICKER KNIGHTON YOUNGBIDOD PKQ ZZJQXER EGQKZSS F'Zo M S~QY NUSSBAUMER LIC ASST.
MASON L
WILSON L
MAIGRET L SMITH L
GEARXN L
DIGGS L
TEETS L
"LEE L
WADE E
SHAFER F
8c M BROWN E
G. WILLXAhS E
E.
GOULBOURNE L
AT IND SALTZMAN PLANS MCDONALD INFO C, MILES
-IDCAL PDR L ons
-DTIE(ABmmATHY) g-NSXC(BUCHANAN) 1-ASLB-YORE/SAYRE NOODWARD/H. ST.
~3.6-CYS ACRS 3MHKgKX EXTERNAL DISTRIBUTION N Y.
(1)(5)(9)-NATIONALLAB S 1-Ro CARROLL<<OC~
GT B227
-1 Ro CATLXNE E-256<<GT 1 comsULANT's SENT TO LIC, ASST, ST TEETS ON 1-5>>73 1 PDR-SAN/LA/NY 1-GERALO LELTDUCHE BROOKHAVEN NAT. LAB 1-AGMED(WALTER KOESTERp Rm C-427F GT) 1-RDo ~ o MULTiRZo ~ oF-309GT


J
J
~ ~ ~ ~ ~ P JIP 0 k
~
                        .P4
~
~ ~
~
P JIP 0
k
.P4


0                     , Regulatory;       j Fife Cy
0
+c.-'Zii1glll   lllll'IlIll 5     .' 55455 ROCHESTER GAS AND ELECTRIC CORPORATION o S9 EAST AVENUE, ROCHESTER, N.Y. %68+ 14'649 KEITH W. AMISH                                                                       TELEPHONE SENIOR VICE PRESIDENT                                                           AREA CODE T51  546 2700 KLKCTRIC AND STEAM                     December 28, 1972                                       g}
, Regulatory; jFife Cy
                                                                                      ~9 1gpg Mr. John P. O'eary, Director Directorate of Licensing U. S. Atomic Energy Commission                                                               'v Washington, D. C. 20545
+c.-'Zii1glll lllll'IlIll 5
55455 ROCHESTER GAS AND ELECTRIC CORPORATION o
S9 EAST AVENUE, ROCHESTER, N.Y. %68+ 14'649 KEITH W. AMISH SENIOR VICE PRESIDENT KLKCTRICAND STEAM December 28, 1972 Mr. John P. O'eary, Director Directorate of Licensing U. S. Atomic Energy Commission Washington, D. C. 20545 TELEPHONE AREA CODE T51 546 2700 g}
~9 1gpg
'v


==Subject:==
==Subject:==
Physics Measurements of Cycle III R. E. Ginna Nuclear Power Plant Unit No.       1 Docket 50-244
Physics Measurements of Cycle III R. E. Ginna Nuclear Power Plant Unit No.
1 Docket 50-244


==Dear Mr. 0,==
==Dear Mr. 0,==
'Leary:
'Leary:
As required by the Ginna Unit No. 1 Technical Specifications, para-graph 6. 6.4, attached herewith is a description of the measured values and comparisons with design predictions and specifications for the designated Cycle III. There was generally good agreement between the measured and predicted values.
As required by the Ginna Unit No.
Very   t ly yours, eith W. Amish Attachment xc: Mr. J. P. O'Reilly IlpCKgpp Ups 0     r 4(g "i~Pl'   t.
1 Technical Specifications, para-graph 6. 6.4, attached herewith is a description of the measured values and comparisons with design predictions and specifications for the designated Cycle III. There was generally good agreement between the measured and predicted values.
Very t ly yours, eith W. Amish Attachment xc:
Mr. J. P. O'Reilly IlpCKgpp Ups 0
r 4(g "i~Pl' t.
Dpp~~CrtpII Jj g 6
Dpp~~CrtpII Jj g 6


r     7 H
r 7
II
H
* II
 
Regulatory:
P>~>
QY~
PHYSICS MEASUREMENTS CYCLE III Rochester Gas and Electric Corporation R. E. Ginna Nuclear Power Plant Unit No.
1 Docket 50-244 December 22, 1972


Regulatory: P>~> QY~
l
PHYSICS MEASUREMENTS CYCLE  III Rochester Gas and Electric Corporation R. E. Ginna Nuclear Power Plant Unit No. 1 Docket 50-244 December 22, 1972


l REPORT OF PHYSICS MEASUREMENTS ON CYCLE             'III
REPORT OF PHYSICS MEASUREMENTS ON CYCLE 'III
                                                                                'T GXNNA STATION ABSTRACT:
'T GXNNA STATION ABSTRACT:
This report is a description of the operating conditions or characteristics and a comparison   with design predictions       and     specifications,     as     required by Technical Specifications 6.6.Q.
This report is a description of the operating conditions or characteristics and a comparison with design predictions and specifications, as required by Technical Specifications 6.6.Q.
The Ginna Nuclear   Station Cycle     III Physics       Testing Pxogram   was conducted       over the period of November 8, 1972 to December 2, 1972.               The majority of measure-ments were made during the period       of November     8,'972 to   November 15, 1972.
The Ginna Nuclear Station Cycle III Physics Testing Pxogram was conducted over the period of November 8, 1972 to December 2,
The period of November 16, 1972     to November 25,'1972 was       required to increase power from 75% to 100%     of 1266 K<t   at a rate of     3% pex day, 1.0   SM'1MARY OF FUEL LOADING AND       TESTING
1972.
                                                    'he Cycle IXI fuel loading pattern       was loaded as       designed duxing the refueling outage of October -         November,     1972. Figure   1     is the Cycle III loading   pattern,   as loaded.
The majority of measure-ments were made during the period of November 8,'972 to November 15, 1972.
There was generally good agreement between the measured and predicted II values. These values are presented         as   part of Section     3'f this     report.
The period of November 16, 1972 to November 25,'1972 was required to increase power from 75% to 100% of 1266 K<t at a rate of 3% pex day, 1.0 SM'1MARY OF FUEL LOADING AND TESTING
The time   required to complete the entire test program             was 25 days.         This length of time   was due   to limiting power increases and performing the power coefficient   measurement     by a powex     reduction. Maximum power increase rate   was 3%   per hour   until. 75% of   1266  Kft was    reached and    3%
'he Cycle IXI fuel loading pattern was loaded as designed duxing the refueling outage of October - November, 1972.
per day from   75%   to 100% of 1266 0&#xc3;t.     The power   coefficient       measure-ment requix'es a   fast rate of change, which         can only be achieved by power reduction.
Figure 1 is the Cycle III loading pattern, as loaded.
There was generally good agreement between the measured and predicted II values.
These values are presented as part of Section 3'f this report.
The time required to complete the entire test program was 25 days.
This length of time was due to limiting power increases and performing the power coefficient measurement by a powex reduction.
Maximum power increase rate was 3% per hour until. 75% of per day from 75% to 100% of 1266 0&#xc3;t.
The 1266 Kft was reached and 3%
power coefficient measure-ment requix'es a fast rate of change, which can only be achieved by power reduction.


I f
If


2~0 PHYSICS TESTING PROGRAM The physics   testing program consisted of       measurements   made at zero power, (power was increased     to 3% of 1266 hat for incore flux maps),
2 ~ 0 PHYSICS TESTING PROGRAM The physics testing program consisted of measurements made at zero
incore   flux maps at 25%, 50%, 75%, and 100%       of 1266 Mft, calibration of axial offset at   960 Mft, and power   coefficient   measurement   at   1266 The measurements   made at zero   power included:
: power, (power was increased to 3% of 1266 hat for incore flux maps),
: 1. Isothermal Temperature Coefficient
incore flux maps at 25%,
: 2. Differential   Boron Worth
50%,
: 3. Boron End Points
75%,
: 4. Control Rod Bank "C" and "D"     Differential   Worth The condition .of the core during     power   escalation   was verified   by reduction of Incore Flux     Map data. The calibration of the Axial Offset   was accomplished   by use   of Incore Flux     Maps and   Part Length Rods. The power coefficient   measurement     was made by   reducing power after 1266 MNt was reached.
and 100% of 1266 Mft, calibration of axial offset at 960 Mft, and power coefficient measurement at 1266 The measurements made at zero power included:
1.
Isothermal Temperature Coefficient 2.
Differential Boron Worth 3.
Boron End Points 4.
Control Rod Bank "C" and "D" Differential Worth The condition.of the core during power escalation was verified by reduction of Incore Flux Map data.
The calibration of the Axial Offset was accomplished by use of Incore Flux Maps and Part Length Rods.
The power coefficient measurement was made by reducing power after 1266 MNt was reached.
~
~
3~0 ZERO POWER PHYSICS MEASUREMENTS The reactivity   computer, which provides an on-line solution of the point model neutron kinetics equations,         was used   for all core reactivity   measurements,   Power Range Channel N-41 was placed         in the trip mode   and its'ignal   supplied to the reactivity computer.           The reactivity   computer was   verified   b'y comparing   its'esults     to a corresponding reactor period.
3 ~ 0 ZERO POWER PHYSICS MEASUREMENTS The reactivity computer, which provides an on-line solution of the point model neutron kinetics equations, was used for all core reactivity measurements, Power Range Channel N-41 was placed in the trip mode and its'ignal supplied to the reactivity computer.
The combination   of the reactivity     measurements   from the   reactivity computer and changes made     in Control     Rod Position, Temperature,     and Boron concentration produce the       reactivity coefficients.
The reactivity computer was verified b'y comparing its'esults to a corresponding reactor period.
 
The combination of the reactivity measurements from the reactivity computer and changes made in Control Rod Position, Temperature, and Boron concentration produce the reactivity coefficients.
3.1   ISOTHERMAL TEMPERATURE COEFFICIENT The   Isothermal Temperature Coefficient       was measured   with all rods out, Bank   "D" inserted,   and Banks "C" and     "D" inserted. The results are given in Table 3.1, 3~2   DIFFERENTIAL     BORON WORTH The Boron   Concentration   was varied   as Control   Rod Banks   "D" and "C" wex'e inserted   and removed from   the core at zero power.         The change   in boron concentration was monitored by 20 minute samplin'g during these periods. The results of these data are presented in Table 3.2.
3.1 ISOTHERMAL TEMPERATURE COEFFICIENT The Isothermal Temperature Coefficient was measured with all rods out, Bank "D" inserted, and Banks "C" and "D" inserted.
3~3 'ORON     ENDPOINTS The boron endpoints were measured       with   all x'ods out, Bank "D" inserted and Banks "C" and "D"     inserted. The'esulting boron endpoints       compared to predicted values are presented in Table 3. 3.
The results are given in Table 3.1, 3 ~ 2 DIFFERENTIAL BORON WORTH The Boron Concentration was varied as Control Rod Banks "D" and "C" wex'e inserted and removed from the core at zero power.
3.4   BANKS   "C" AND "D" DIFFERENTIAL WORTH The   differential worth of Control Rod       Banks "C" and "D" w'ere measured using their normal insertion sequence.           The resulting curves are     shown on Figures 2 and 3.       The comparison   of measured   to predicted values is given in Table 3.4.
The change in boron concentration was monitored by 20 minute samplin'g during these periods.
3~5   ZERO POWER FLUX MAPS The proper   fuel loading, design     pow'er distribution,   and hot channel factors were verified by Incore Flux         Maps taken duxing zero power I
The results of these data are presented in Table 3.2.
physics measurements.     The maps were taken     with three diffexent con-trol rod configurations,   all rods out, Control Rod Bank "D" inserted and   Control Rod Banks   "C" and "D" inserted.       These maps showed good agreement between the measured and predicted power           in the   measured assemblies.
3 ~ 3 'ORON ENDPOINTS The boron endpoints were measured with all x'ods out, Bank "D" inserted and Banks "C" and "D" inserted.
The'esulting boron endpoints compared to predicted values are presented in Table 3. 3.
3.4 BANKS "C" AND "D" DIFFERENTIAL WORTH The differential worth of Control Rod Banks "C" and "D" w'ere measured using their normal insertion sequence.
The resulting curves are shown on Figures 2 and 3.
The comparison of measured to predicted values is given in Table 3.4.
3 ~ 5 ZERO POWER FLUX MAPS The proper fuel loading, design pow'er distribution, and hot channel factors were verified by Incore Flux Maps taken duxing zero power I
physics measurements.
The maps were taken with three diffexent con-trol rod configurations, all rods out, Control Rod Bank "D" inserted and Control Rod Banks "C" and "D" inserted.
These maps showed good agreement between the measured and predicted power in the measured assemblies.
4.0 VERIFICATION OF CORE CONDITION Flux maps were taken at 25%,
50%,
75%,
and 100% of 1266 MJ.
These maps were reduced and shown to be acceptable prior to any increase in If
.power.
5 ~ 0 CALIBRATION OF AXIAL OFFSET The power of the reactor was held at 960 K<t while three flux maps were taken.
The Axial Offset of the core was varied by means of the part length rods and maps were'aken at positive, negative and zero values.
Heat balances were calculated and the detector currents recorded ior each Axial Offset.
The Incore Flux Maps were reduced by the INCORE computer code providing the Axial Offset of the core.
This information was then extrapolated to full power to provide the setting for the Axial Offset protective circuitry.
Table F 1 presents the setpoints generated 'for the beginning of Core III.
6 0 PO[iER COEFFXCIENCE The Power coefficience could not be measured during the power increase due to the resCriction on the rate of change.
These values therefore, were measured using a power reduction of 1 percent per minute.
The-reductions were stopped every 20 percent of reduction for calorimetric purposes.
The preliminary results are given in table 6.1.


4.0  VERIFICATION OF    CORE CONDITION Flux  maps were  taken at 25%, 50%, 75%, and    100%  of  1266 MJ. These maps were reduced    and shown  to be acceptable    prior to  any increase  in If
TABLE 3.1
    .power.
~ TEMPERATURE COEFFICIENTS AT ZERO POWER 547 All rods out Bank "D" inserted Banks D and C inserted Measured cm/ F 0.0
5~ 0  CALIBRATION OF AXIAL OFFSET The power  of the reactor  was  held at 960 K<t while three    flux maps were taken. The  Axial Offset of the core    was  varied by  means  of the part length rods and maps were'aken at positive, negative and zero values. Heat balances  were calculated and the detector currents recorded  ior each  Axial Offset. The Incore Flux    Maps were  reduced by the INCORE computer code providing the      Axial Offset of the core.
- 2.4
This information was then extrapolated to        full power  to provide the setting for the Axial Offset protective circuitry. Table          F 1  presents the setpoints generated    'for  the beginning of Core    III.
'5 ~ 5 Predicted cm/ F
6 0  PO[iER COEFFXCIENCE The Power  coefficience could not    be measured    during the power increase due  to the resCriction on the rate of change.        These values  therefore, were measured using a power reduction      of  1  percent per minute.      The-reductions were stopped every 20 percent of reduction for calorimetric purposes. The  preliminary results are given in table 6.1.
+ 1.3
 
+ 0.3
TABLE   3.1
=- 1.8 Measured Boron m
                    ~ TEMPERATURE COEFFICIENTS AT ZERO POWER           547 Measured Measured      cm/ F      Predicted      cm/ F    Boron    m All rods   out                             0.0                    + 1.3                1665 Bank "D"   inserted                   - 2.4                        + 0.3                1565 Banks D and C inserted                 '5 ~ 5                   =- 1.8               1408 TABLE   3.2 DIFFERENTIAL     BORON WORTH   AT HZP CB                ACB  P  Measured            Pred  ic ted
1665 1565 1408 TABLE 3.2 DIFFERENTIAL BORON WORTH AT HZP
.DtC worth (ppm)
.DtC worth (ppm)
DtC worth (pcm)             265 ppm               114.7 (ppm/pcm)           116 (ppm/pcm)
DtC worth (pcm)
TABLE   3.3 BORON ENDPOINTS AT HZP 5KASUREMENTS & PREDICTXONS BANK POSXTIONS               MEASURED               P RED IC TED           DIFF.     M-P ARO                            1675 ppm              1585 ppm                    .90 ppm D  inserted                    1573 ppm              1465 ppm                  108 ppm D & C  inserted                1410 ppm              1305 ppm                  105 ppm TABLE   3.4 S%1HARY AND COMPARISON OF MEASURED AND PREDICTED INTEGRAL CONTROL BANK WORTHS BANKS             BANK WORTH   PCM)                     TOTAL BANK WORTHS (CPCM)
CB 265 ppm ACB P Measured 114.7 (ppm/pcm)
INSERTED          PREDICTED      MEASURED              PRED ICTED       MEASURED 1030          920                    1030.            920 D and C             1360         1390                     2390           2310
Pred icted 116 (ppm/pcm)
TABLE 3.3 BORON ENDPOINTS AT HZP 5KASUREMENTS & PREDICTXONS BANK POSXTIONS ARO D inserted D & C inserted MEASURED 1675 ppm 1573 ppm 1410 ppm P RED IC TED 1585 ppm 1465 ppm 1305 ppm DIFF.
M-P
.90 ppm 108 ppm 105 ppm TABLE 3.4 S%1HARY AND COMPARISON OF MEASURED AND PREDICTED INTEGRAL CONTROL BANK WORTHS BANKS INSERTED BANK WORTH PCM)
MEASURED PREDICTED TOTAL BANK WORTHS (CPCM)
PRED ICTED MEASURED D and C
1030 1360 920 1390 1030.
2390 920 2310


TABLE 6.1 POWER COEFFICIENT VALUE         % OP    1266 M<
TABLE 6.1 POWER COEFFICIENT VALUE
- 9.3   pcm/%            88.6%
- 9.3 pcm/%
- -12,3 pcm/%           69.1%
- -12,3 pcm/%
- 15.pcm/%
- 15.5 pcm/%
- 15.2 pcm/%
% OP 1266 M<
88.6%
69.1%
49.4%'0,9%
49.4%'0,9%
- 15.2  pcm/%


                                          . Q     Rg-3)y t80~
N L
l N    L    K'            H   G   F   E 0 t- O' I "I   I 5
K'
Qo   Qo   Qo 900      7                            Qo       Qo (o. Cia
. Q Rg-3)y t80~
      . lo..                             Qo ll 1
l H
0o Q      HE-32 Region 4     (3. 14 w/o)
G F
Region 5   {3.3 v~/o)
E 0
[g     Region 3   (2.25 M/o)
t-O' I "I I
        'egion Q            48 (2.9   w/o)
5 900 7
Qo Qo Qo Qo Qo (o. Cia lo..
ll Qo 10o Q
HE-32 Region 4
(3. 14 w/o)
Region 5
{3.3 v~/o)
[g Region 3
(2.25 M/o)
Q 'egion 48 (2.9 w/o)
~
~
              ~
~
Region 4A (3.22 vi/o)
~
                          ~
 
h Figure l     Cycle III Core   As Loaded
Region 4A (3.22 vi/o) h Figure l Cycle III Core As Loaded


4 RGE CYCLE           III         STARTUP CONTROL       BANK       D   DIFFERENTIAL               5 INTEGRAL WORTH HOT ZERO POWER Figur'e           2
4 RGE CYCLE III STARTUP CONTROL BANK D DIFFERENTIAL 5 INTEGRAL WORTH HOT ZERO POWER Figur'e 2
                                                                &#xb9; 4
>> ~
                                  >>~
4
&#xb9; 4
&#xb9; ~
- ~
'00 4
~
~ It 600 44
~
~
~ I
~
If5 lies QJ n00 200 4 ~
~...$..
4 tt
. ~ 4-
~ 4~I -I 4
~ "-
~<<
,, /Q*
~
~
&#xb9;
'&#xb9; 4
V~ ~
i-"
't&#xb9; I
$ ~
~ \\
I I 4.
~
4
4
                                                                              &#xb9; ~                - ~
~
                                                                          ~    It                    '00 4        ~
~
                                                                                                ~
I
* 44
+J 44 0
                                  ~ ~
00 I
                                                        ~ I 600 4 ~
~
* 4 I                                          -:-' ~
80 120
                                                  "-                      ,, /Q*    V~ ~                  I f5  n00                                                                                                      $ ~  4 ~  ~
~
            ~ ...$ ..                                                                                                      I  +J lies                                                                                                    ~ \    I 4.I ~
~ &#xb9;
QJ 4
~
                                                                      ~ ~
~ " ~ ~
                                                                            '&#xb9;
160 200 220 Bank Position (steps withdraw(n) t
                                                                              &#xb9;
                                                                  ~ <<
200    .~
tt 4-                                                                    i-"
                                                                                    't&#xb9;                                  44
                              ~ 4 4
                                ~ I -I                                            ~     &#xb9;
                                                                                      ~      ~
I  ~
                                                                                                            ~ "~ ~
0                      00              80              120                    160                     200     220 Bank   Position (steps withdraw(n) t


PG"-         C,CLE             III       STARTUP COf'fTROL BANK C                                 DIf'f'f:flEflTIr'",L(c Ef",TEGRAL hOf<TH tlOT Zf:.f10 PO;"fER l igux'e             3 4 .
PG"- C,CLE III STARTUP COf'fTROL BANK C DIf'f'f:flEflTIr'",L(c Ef",TEGRAL hOf<TH tlOT Zf:.f10 PO;"fER l igux'e 3
4.
lj
lj
                                            ". ~                                           jj 1400 4
". ~
I 4      =jt b
jj 1400 I
I  I    ~      b I
4
1200                           jl   V           I'
=jt 4
                                                                      ~,
1200 jl V
12 I V.
I'
                        ~
*~,
('j                                                                           t
I V.
                                                          *,                                                      j 44 1000                                                                                                                                                          10 4
b I II
                                                                                                                                ~ '    ~,
~
                                                                                                                                                            +P
b 12 1000 800 O
: 4.                                    II II '
600
~
4 4 ~
, ('j
~ ~
I
I
                                                                                                        ~ ~
\\\\
800                                                                                    I                                                               gJ O
~ =,
                                                                  \
I 4
I  I      ~  ~
4 4.
                                                                    \  ~ =,                                                                           'I g
~
4 4
~
                              ~
j 44 I
4 600
t
                                                  ~ ~   I
~ '
                                                                          ~
~,
        ~ '
II
                                                                                                                            ~
+P II '
                                                                                                                              )
gJ I I
400       I b
~~
I I
'I g
Vb ~= =-
10
          ,, j~j         I
~ '
                        ~ k I'
~
                                        ~
400 200 I
g I
I
200        jj <<                                                                                                                          4
,,j~j jj <<
                                                                                                                                            =[*
II ~
I                                                              H II ~                                                                      4 HI
I
                      ~   I         ~ = ~
~ k I'
                                                                      -I I
~
                                                            -~
b I
                                                                -I
I 4
                                                      ~
Vb
Ift 0                                                                                                                                                           0 0                      40                           80                           120               160                   200             220 Bank             Position (steps withdrawn)
~ = =-
~)
g I 4
=[*
H HI
~ I
~ = ~
-I I
- ~
0
~
-I Ift 0
40 80 120 160 200 220 Bank Position (steps withdrawn) 0


TABLE   5.1 fb CALIBRATIOH AND SETPOihTS A<%LYSIS SHEET INCORE   'OWER     O/        I    I                                  d,T      RECORDER RECORDER  FLUX IiXDICAT EXCORE  AXIAL     LEVEL   FULL    TOP    BOT      V-TOP    V-BOT    gV      PENALTY  TOP        BOT DETECTOR OFFSET     (~ii ) POWER   (W~) (P~)     (VOLTS)   (VOLTS) (VOLTS) ( F)     (VOLTS) (VOLTS)- (/)
TABLE 5.1 f b CALIBRATIOHAND SETPOihTS A<%LYSIS SHEET EXCORE DETECTOR INCORE 'OWER AXIAL LEVEL OFFSET
CH-41       0%    1520      100  248    393    7.000      7.000                        4'      4;0          0 CH-41   +10%     1520   ~
(~ii
100   267   374     7.536       6.662    +0.874                                +10 CH-41    -10%      1520      100  229    413. 6.464      7.356     -0.892                                 -10 CH-41    +20%      1520      100  287    355    8.101      6.323    +1.778                                 +20 CH-41   -20% . 1520     100   209   432     5.899   . 7.695     -1.796   11.4                         -20 CH-42       0%     1520     100   273   412     7;000     7.000                 0-     4.0     4.0 CH-42   +10%     1520     100   293   392     7. 513     6.660     +0.853                                +10 CH-42    -10%      1520      100    252  433    6.462      7.357    -0.895                                 -10 CH-42    +20%      1520      100,  314  372    8.053      6.320    +1.733   11.4                         +20 CH-42    -20%      1520      100    232  453      5.949      7.697    -1.748 . 11.4                         -20 CH-43       0%     1520       100   285   479     7.000     7. 000                        4.0    4.0 CH-43    +10%      1520      108  308  456      7.565      6.664   '0.901                                   +10 CH-43    -10%    1520      100  262  502  ~
)
6.435      7.336    >>0.901                                 -10 CH-43    +20%      1520      100  331  433      8.129      6.328    +1.801                                +20
O/
FULL POWER I
TOP (W~)
I BOT (P~)
V-TOP (VOLTS)
V-BOT (VOLTS) gV (VOLTS) d,T PENALTY
( F)
RECORDER TOP (VOLTS)
RECORDER BOT (VOLTS)-
FLUX IiXDICAT
(/)
CH-41 CH-41 CH-41 CH-41 0%
+10%
-10%
+20%
1520 1520
~
1520 1520 100 100 100 100 248 267 229 287 393 374 413.
355 7.000 7.536 6.464 8.101 7.000 6.662 7.356 6.323
+0.874
-0.892
+1.778 4 '
4;0 0
+10
-10
+20 CH-41
-20%
1520 100 209 432 5.899 7.695
-1.796 11.4
-20 CH-42 0%
1520 100 273 412 7;000 7.000 0-4.0 4.0 CH-42 CH-42 CH-42 CH-42
-10%
1520
+20%
1520
-20%
1520
+10%
1520 100 100
: 100, 100 293 252 314 232 392 433 372 453
: 7. 513 6.462 8.053 5.949 6.660 7.357 6.320 7.697
+0.853
-0.895
+1.733 11.4
-1.748
. 11.4
+10
-10
+20
-20 CH-43 CH-43 CH-43 CH-43 0%
1520
-10%
1520
+20%
1520
+10%
1520 100 108 100 100 285 308 262 331 479 456 502
~
433 7.000 7.565 6.435 8.129
: 7. 000 6.664 7.336 6.328
'0.901
>>0.901
+1.801 4.0 4.0
+10
-10
+20
 
0
~4


0 ~4 TABLE 5.1 fb CALIBRATION AND SETPOINTS ANALYSIS SHEET INCORE   POWER   0/        I    I                                    hT      RECORDER RECORDER  FLUX EXCORE  AXIAL   LEVEL   PULL    TOP  BOT    V-TOP      V-BOT    QV      'ENALTY  TOP        BOT    IiXDICA'I DETECTOR OFFSET   (YiAT) POWER   (~~) (~~)   (VOLTS)     (VOLTS) (VOLTS)   ('F)   (VOLTS) (VOLTS) (%)
TABLE 5.1 f b CALIBRATIONAND SETPOINTS ANALYSIS SHEET EXCORE DETECTOR INCORE POWER AXIAL LEVEL OFFSET (YiAT) 0/
CH-43   -20% . 1520     100   239 525     5.870       7.672   -1.802       11.4 CH-44       0%   1520     .100   272 418. 7.000       7.000
PULL POWER I
                                                          .                0        0     4.0     4.0         0 CH<<44   +10%   1520     100 294   397     7.566       6.648   +0.918           0                       +10 CH-44   -10%   1520     100 250   440     6.434       7.368  -0.934
I TOP BOT
                                            ~
(~~)
0                      -10 CH-44    +20%    1520    100  316   375     8.132       6.279  +1.853      11.4                        +20 CH-44    -20%    1520    100  228   462     5.868       7.737   -1.869       11.4                       -20}}
(~~)
V-TOP (VOLTS)
V-BOT (VOLTS)
QV (VOLTS) hT
'ENALTY
('F)
RECORDER TOP (VOLTS)
RECORDER BOT (VOLTS)
FLUX IiXDICA'I
(%)
CH-43
-20%
1520 100 239 525 5.870 7.672
-1.802 11.4 CH-44 0%
1520
.100 272 418.
7.000
. 7.000 0
0 4.0 4.0 0
CH<<44
+10%
1520 100 294 397 7.566 6.648
+0.918 0
+10 CH-44 CH-44 CH-44
-10%
+20%
-20%
1520 1520 1520 100 100 100 250 440
~
6.434 316 375 8.132 228 462 5.868 7.368 6.279 7.737
-0.934
+1.853
-1.869 0
11.4 11.4
-10
+20
-20}}

Latest revision as of 20:39, 5 January 2025

Physics Measurements of Cycle III
ML18143A832
Person / Time
Site: Ginna Constellation icon.png
Issue date: 12/28/1972
From: Amish K
Rochester Gas & Electric Corp
To: O'Leary J
US Atomic Energy Commission (AEC)
References
Download: ML18143A832 (19)


Text

AEC DZo "BCTZON FOR PART

. 0 DOCKET MATZSILL TEMPORARY FOIWi CONTROL No l

\\

n FX FROM: Rochester Gas 5 Electric

.'orporation Rochester, N.Y.

Keith W.. Amish DATE OF DOC:

DATE REC'D nZMO TO ~

."Mr. John P. O'eary CLASS<'

PROP INFO 12-28-72 ORIG 1 signed INPUT 1-2-73 CC mo cYs REc'D

&iiT AZC PDR SERT LOCAL PDR DOCiKT NO:

50-244 DESCRIPTION; Ltr trans the following:

ENCLOSURES:

REPORT-on Physics Measurements on Cycle III at the Ginna Station.....'1 cy encl rec'd)

PLAhg ~S.

Ginna P'lant FOR ACTION INFORMATION DL 1- "73 BUTLEz(r,)

W/

Copies CLARK(L)

W/

Copies GOLLER(r,)

W/

Copies

'mxEr,(z,)

W/

Copies SCH~CER(L)

W/

Copies STOLz(z,)

W/

Copies VASSALM(Z,)

W/

Copies Ho DEIGN W/

Copies ACHED,(i)

W/ 6copies ZIEh~(L)

W/

Copies CHXTtrOOD(FM)

W/

Copies

. Dmm(E)

W/

. Copies.

KNXGHTON(E)

W/

Copies YOUNGBLOOD(E)

W/

Copies HEGAN(E) j W/

Copies

. Q/. Copies Xii7QIALDISTRIBUTION C

AEC~R lac~

.ROOM P-506A

+UNTZXNG/STAFF CASE GXAMBUSSO BOYD-L(BWR)

DEYOUNG-L(PWR) l4KOVHOLT-L Po COLLXhtS OPR ILE a. REGION (2)

MORRXS STELLE SCHROEDER MACCARY LANGE(2)

PAWLICKI SHAO KNUTH STELTD YDORE HOUSTON TEDESCO IDNG LAINAS BENAROYA VOLLMER DENTON GRIMES GAMMILL KASTNER BALLARD SPANGLER ZZVZRO MULL'ICKER KNIGHTON YOUNGBIDOD PKQ ZZJQXER EGQKZSS F'Zo M S~QY NUSSBAUMER LIC ASST.

MASON L

WILSON L

MAIGRET L SMITH L

GEARXN L

DIGGS L

TEETS L

"LEE L

WADE E

SHAFER F

8c M BROWN E

G. WILLXAhS E

E.

GOULBOURNE L

AT IND SALTZMAN PLANS MCDONALD INFO C, MILES

-IDCAL PDR L ons

-DTIE(ABmmATHY) g-NSXC(BUCHANAN) 1-ASLB-YORE/SAYRE NOODWARD/H. ST.

~3.6-CYS ACRS 3MHKgKX EXTERNAL DISTRIBUTION N Y.

(1)(5)(9)-NATIONALLAB S 1-Ro CARROLL<<OC~

GT B227

-1 Ro CATLXNE E-256<<GT 1 comsULANT's SENT TO LIC, ASST, ST TEETS ON 1-5>>73 1 PDR-SAN/LA/NY 1-GERALO LELTDUCHE BROOKHAVEN NAT. LAB 1-AGMED(WALTER KOESTERp Rm C-427F GT) 1-RDo ~ o MULTiRZo ~ oF-309GT

J

~

~

~ ~

~

P JIP 0

k

.P4

0

, Regulatory; jFife Cy

+c.-'Zii1glll lllll'IlIll 5

55455 ROCHESTER GAS AND ELECTRIC CORPORATION o

S9 EAST AVENUE, ROCHESTER, N.Y. %68+ 14'649 KEITH W. AMISH SENIOR VICE PRESIDENT KLKCTRICAND STEAM December 28, 1972 Mr. John P. O'eary, Director Directorate of Licensing U. S. Atomic Energy Commission Washington, D. C. 20545 TELEPHONE AREA CODE T51 546 2700 g}

~9 1gpg

'v

Subject:

Physics Measurements of Cycle III R. E. Ginna Nuclear Power Plant Unit No.

1 Docket 50-244

Dear Mr. 0,

'Leary:

As required by the Ginna Unit No.

1 Technical Specifications, para-graph 6. 6.4, attached herewith is a description of the measured values and comparisons with design predictions and specifications for the designated Cycle III. There was generally good agreement between the measured and predicted values.

Very t ly yours, eith W. Amish Attachment xc:

Mr. J. P. O'Reilly IlpCKgpp Ups 0

r 4(g "i~Pl' t.

Dpp~~CrtpII Jj g 6

r 7

H

  • II

Regulatory:

P>~>

QY~

PHYSICS MEASUREMENTS CYCLE III Rochester Gas and Electric Corporation R. E. Ginna Nuclear Power Plant Unit No.

1 Docket 50-244 December 22, 1972

l

REPORT OF PHYSICS MEASUREMENTS ON CYCLE 'III

'T GXNNA STATION ABSTRACT:

This report is a description of the operating conditions or characteristics and a comparison with design predictions and specifications, as required by Technical Specifications 6.6.Q.

The Ginna Nuclear Station Cycle III Physics Testing Pxogram was conducted over the period of November 8, 1972 to December 2,

1972.

The majority of measure-ments were made during the period of November 8,'972 to November 15, 1972.

The period of November 16, 1972 to November 25,'1972 was required to increase power from 75% to 100% of 1266 K<t at a rate of 3% pex day, 1.0 SM'1MARY OF FUEL LOADING AND TESTING

'he Cycle IXI fuel loading pattern was loaded as designed duxing the refueling outage of October - November, 1972.

Figure 1 is the Cycle III loading pattern, as loaded.

There was generally good agreement between the measured and predicted II values.

These values are presented as part of Section 3'f this report.

The time required to complete the entire test program was 25 days.

This length of time was due to limiting power increases and performing the power coefficient measurement by a powex reduction.

Maximum power increase rate was 3% per hour until. 75% of per day from 75% to 100% of 1266 0Ãt.

The 1266 Kft was reached and 3%

power coefficient measure-ment requix'es a fast rate of change, which can only be achieved by power reduction.

If

2 ~ 0 PHYSICS TESTING PROGRAM The physics testing program consisted of measurements made at zero

power, (power was increased to 3% of 1266 hat for incore flux maps),

incore flux maps at 25%,

50%,

75%,

and 100% of 1266 Mft, calibration of axial offset at 960 Mft, and power coefficient measurement at 1266 The measurements made at zero power included:

1.

Isothermal Temperature Coefficient 2.

Differential Boron Worth 3.

Boron End Points 4.

Control Rod Bank "C" and "D" Differential Worth The condition.of the core during power escalation was verified by reduction of Incore Flux Map data.

The calibration of the Axial Offset was accomplished by use of Incore Flux Maps and Part Length Rods.

The power coefficient measurement was made by reducing power after 1266 MNt was reached.

~

3 ~ 0 ZERO POWER PHYSICS MEASUREMENTS The reactivity computer, which provides an on-line solution of the point model neutron kinetics equations, was used for all core reactivity measurements, Power Range Channel N-41 was placed in the trip mode and its'ignal supplied to the reactivity computer.

The reactivity computer was verified b'y comparing its'esults to a corresponding reactor period.

The combination of the reactivity measurements from the reactivity computer and changes made in Control Rod Position, Temperature, and Boron concentration produce the reactivity coefficients.

3.1 ISOTHERMAL TEMPERATURE COEFFICIENT The Isothermal Temperature Coefficient was measured with all rods out, Bank "D" inserted, and Banks "C" and "D" inserted.

The results are given in Table 3.1, 3 ~ 2 DIFFERENTIAL BORON WORTH The Boron Concentration was varied as Control Rod Banks "D" and "C" wex'e inserted and removed from the core at zero power.

The change in boron concentration was monitored by 20 minute samplin'g during these periods.

The results of these data are presented in Table 3.2.

3 ~ 3 'ORON ENDPOINTS The boron endpoints were measured with all x'ods out, Bank "D" inserted and Banks "C" and "D" inserted.

The'esulting boron endpoints compared to predicted values are presented in Table 3. 3.

3.4 BANKS "C" AND "D" DIFFERENTIAL WORTH The differential worth of Control Rod Banks "C" and "D" w'ere measured using their normal insertion sequence.

The resulting curves are shown on Figures 2 and 3.

The comparison of measured to predicted values is given in Table 3.4.

3 ~ 5 ZERO POWER FLUX MAPS The proper fuel loading, design pow'er distribution, and hot channel factors were verified by Incore Flux Maps taken duxing zero power I

physics measurements.

The maps were taken with three diffexent con-trol rod configurations, all rods out, Control Rod Bank "D" inserted and Control Rod Banks "C" and "D" inserted.

These maps showed good agreement between the measured and predicted power in the measured assemblies.

4.0 VERIFICATION OF CORE CONDITION Flux maps were taken at 25%,

50%,

75%,

and 100% of 1266 MJ.

These maps were reduced and shown to be acceptable prior to any increase in If

.power.

5 ~ 0 CALIBRATION OF AXIAL OFFSET The power of the reactor was held at 960 K<t while three flux maps were taken.

The Axial Offset of the core was varied by means of the part length rods and maps were'aken at positive, negative and zero values.

Heat balances were calculated and the detector currents recorded ior each Axial Offset.

The Incore Flux Maps were reduced by the INCORE computer code providing the Axial Offset of the core.

This information was then extrapolated to full power to provide the setting for the Axial Offset protective circuitry.

Table F 1 presents the setpoints generated 'for the beginning of Core III.

6 0 PO[iER COEFFXCIENCE The Power coefficience could not be measured during the power increase due to the resCriction on the rate of change.

These values therefore, were measured using a power reduction of 1 percent per minute.

The-reductions were stopped every 20 percent of reduction for calorimetric purposes.

The preliminary results are given in table 6.1.

TABLE 3.1

~ TEMPERATURE COEFFICIENTS AT ZERO POWER 547 All rods out Bank "D" inserted Banks D and C inserted Measured cm/ F 0.0

- 2.4

'5 ~ 5 Predicted cm/ F

+ 1.3

+ 0.3

=- 1.8 Measured Boron m

1665 1565 1408 TABLE 3.2 DIFFERENTIAL BORON WORTH AT HZP

.DtC worth (ppm)

DtC worth (pcm)

CB 265 ppm ACB P Measured 114.7 (ppm/pcm)

Pred icted 116 (ppm/pcm)

TABLE 3.3 BORON ENDPOINTS AT HZP 5KASUREMENTS & PREDICTXONS BANK POSXTIONS ARO D inserted D & C inserted MEASURED 1675 ppm 1573 ppm 1410 ppm P RED IC TED 1585 ppm 1465 ppm 1305 ppm DIFF.

M-P

.90 ppm 108 ppm 105 ppm TABLE 3.4 S%1HARY AND COMPARISON OF MEASURED AND PREDICTED INTEGRAL CONTROL BANK WORTHS BANKS INSERTED BANK WORTH PCM)

MEASURED PREDICTED TOTAL BANK WORTHS (CPCM)

PRED ICTED MEASURED D and C

1030 1360 920 1390 1030.

2390 920 2310

TABLE 6.1 POWER COEFFICIENT VALUE

- 9.3 pcm/%

- -12,3 pcm/%

- 15.5 pcm/%

- 15.2 pcm/%

% OP 1266 M<

88.6%

69.1%

49.4%'0,9%

N L

K'

. Q Rg-3)y t80~

l H

G F

E 0

t-O' I "I I

5 900 7

Qo Qo Qo Qo Qo (o. Cia lo..

ll Qo 10o Q

HE-32 Region 4

(3. 14 w/o)

Region 5

{3.3 v~/o)

[g Region 3

(2.25 M/o)

Q 'egion 48 (2.9 w/o)

~

~

~

Region 4A (3.22 vi/o) h Figure l Cycle III Core As Loaded

4 RGE CYCLE III STARTUP CONTROL BANK D DIFFERENTIAL 5 INTEGRAL WORTH HOT ZERO POWER Figur'e 2

>> ~

4

¹ 4

¹ ~

- ~

'00 4

~

~ It 600 44

~

~

~ I

~

If5 lies QJ n00 200 4 ~

~...$..

4 tt

. ~ 4-

~ 4~I -I 4

~ "-

~<<

,, /Q*

~

~

¹

'¹ 4

V~ ~

i-"

't¹ I

$ ~

~ \\

I I 4.

~

4

~

~

I

+J 44 0

00 I

~

80 120

~

~ ¹

~

~ " ~ ~

160 200 220 Bank Position (steps withdraw(n) t

PG"- C,CLE III STARTUP COf'fTROL BANK C DIf'f'f:flEflTIr'",L(c Ef",TEGRAL hOf<TH tlOT Zf:.f10 PO;"fER l igux'e 3

4.

lj

". ~

jj 1400 I

4

=jt 4

1200 jl V

I'

  • ~,

I V.

b I II

~

b 12 1000 800 O

600

~

4 4 ~

, ('j

~ ~

I

\\\\

~ =,

I 4

4 4.

~

~

j 44 I

t

~ '

~,

II

+P II '

gJ I I

~~

'I g

10

~ '

~

400 200 I

I

,,j~j jj <<

II ~

I

~ k I'

~

b I

I 4

Vb

~ = =-

~)

g I 4

=[*

H HI

~ I

~ = ~

-I I

- ~

0

~

-I Ift 0

40 80 120 160 200 220 Bank Position (steps withdrawn) 0

TABLE 5.1 f b CALIBRATIOHAND SETPOihTS A<%LYSIS SHEET EXCORE DETECTOR INCORE 'OWER AXIAL LEVEL OFFSET

(~ii

)

O/

FULL POWER I

TOP (W~)

I BOT (P~)

V-TOP (VOLTS)

V-BOT (VOLTS) gV (VOLTS) d,T PENALTY

( F)

RECORDER TOP (VOLTS)

RECORDER BOT (VOLTS)-

FLUX IiXDICAT

(/)

CH-41 CH-41 CH-41 CH-41 0%

+10%

-10%

+20%

1520 1520

~

1520 1520 100 100 100 100 248 267 229 287 393 374 413.

355 7.000 7.536 6.464 8.101 7.000 6.662 7.356 6.323

+0.874

-0.892

+1.778 4 '

4;0 0

+10

-10

+20 CH-41

-20%

1520 100 209 432 5.899 7.695

-1.796 11.4

-20 CH-42 0%

1520 100 273 412 7;000 7.000 0-4.0 4.0 CH-42 CH-42 CH-42 CH-42

-10%

1520

+20%

1520

-20%

1520

+10%

1520 100 100

100, 100 293 252 314 232 392 433 372 453
7. 513 6.462 8.053 5.949 6.660 7.357 6.320 7.697

+0.853

-0.895

+1.733 11.4

-1.748

. 11.4

+10

-10

+20

-20 CH-43 CH-43 CH-43 CH-43 0%

1520

-10%

1520

+20%

1520

+10%

1520 100 108 100 100 285 308 262 331 479 456 502

~

433 7.000 7.565 6.435 8.129

7. 000 6.664 7.336 6.328

'0.901

>>0.901

+1.801 4.0 4.0

+10

-10

+20

0

~4

TABLE 5.1 f b CALIBRATIONAND SETPOINTS ANALYSIS SHEET EXCORE DETECTOR INCORE POWER AXIAL LEVEL OFFSET (YiAT) 0/

PULL POWER I

I TOP BOT

(~~)

(~~)

V-TOP (VOLTS)

V-BOT (VOLTS)

QV (VOLTS) hT

'ENALTY

('F)

RECORDER TOP (VOLTS)

RECORDER BOT (VOLTS)

FLUX IiXDICA'I

(%)

CH-43

-20%

1520 100 239 525 5.870 7.672

-1.802 11.4 CH-44 0%

1520

.100 272 418.

7.000

. 7.000 0

0 4.0 4.0 0

CH<<44

+10%

1520 100 294 397 7.566 6.648

+0.918 0

+10 CH-44 CH-44 CH-44

-10%

+20%

-20%

1520 1520 1520 100 100 100 250 440

~

6.434 316 375 8.132 228 462 5.868 7.368 6.279 7.737

-0.934

+1.853

-1.869 0

11.4 11.4

-10

+20

-20