ML18128A178: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:Tennessee Valley Authority, Sequoyah Nuclear Plant, P.O. Box 2000, Soddy Daisy, Tennessee 37384 May 8, 2018 10 CFR 50.4 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001 Sequoyah Nuclear Plant, Unit 1 Renewed Facility Operating License No. DPR-77 NRC Docket No. 50-327
{{#Wiki_filter:/'
Tennessee Valley Authority, Sequoyah Nuclear Plant, P.O. Box 2000, Soddy Daisy, Tennessee 37384 May 8, 2018 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001 Sequoyah Nuclear Plant, Unit 1 Renewed Facility Operating License No. DPR-77 NRC Docket No. 50-327 10 CFR 50.4


==Subject:==
==Subject:==
SEQUOYAH UNIT 1CYCLE23 CORE OPERATING LIMITS REPORT REVISION 0 In accordance with Sequoyah Nuclear Plant (SQN) Unit 1 Technical Specification (TS) 5.6.3.d, enclosed is the Unit 1 Cycle 23 Core Operating Limits Report (COLR), Revision 0 that was issued on April 21, 2018.
SEQUOYAH UNIT 1CYCLE23 CORE OPERATING LIMITS REPORT REVISION 0 In accordance with Sequoyah Nuclear Plant (SQN) Unit 1 Technical Specification (TS) 5.6.3.d, enclosed is the Unit 1 Cycle 23 Core Operating Limits Report (COLR), Revision 0 that was issued on April 21, 2018.
There are no new regulatory commitments in this letter. If you have any questions, please contact Michael McBrearty, SQN Site Licensing Manager at (423) 843-7170.
There are no new regulatory commitments in this letter. If you have any questions, please contact Michael McBrearty, SQN Site Licensing Manager at (423) 843-7170.  
  ~spectfully,
~spectfully, ony L. Williams Site Vice President Sequoyah Nuclear Plant Enclosure Sequoyah Unit 1 Cycle 23 Core Operating Limits Report cc (Enclosure):
/'
NRC Regional Administrator - Region II NRC Senior Resident Inspector - SQN printed on recycled paper  
ony L. Williams Site Vice President Sequoyah Nuclear Plant Enclosure Sequoyah Unit 1 Cycle 23 Core Operating Limits Report cc (Enclosure):
NRC Regional Administrator - Region II NRC Senior Resident Inspector - SQN printed on recycled paper


ENCLOSURE SEQUOYAH UNIT 1CYCLE23 CORE OPERATING LIMITS REPORT*
ENCLOSURE SEQUOYAH UNIT 1CYCLE23 CORE OPERA TING LIMITS REPORT*  


QA Record                                                                         L36 180418 800 SEQUOYAH UNIT 1 CYCLE 23 CORE OPERATING LIMITS REPORT REVISION 0 April 2018 Prepared by:
QA Record Prepared by:
Jo    Elkins I John Ritchie , PWR Verified by:
Jo Elkins I John Ritchie, PWR SEQUOYAH UNIT 1 CYCLE 23 CORE OPERATING LIMITS REPORT REVISION 0 April 2018 L36 180418 800 Verified by:  
-Jo_h_n~~7-~~
-Jo_h_n~~
            -tr-an~g-e~
7-~~
                    ~. -P_W_R--,~e-l-E-ng-i-ne-e-ri-ng~~~~~~~~~~1~-4~/_l_,ft_l_~_at-e~~~~
-tr-an~g-e~
~
. -P_W_R--,~e-l -E-ng-i-ne-e-ri-ng~~~~~~~~~~1~-4~/_l_,ft_l_~_at-e~~~~
Reviewed by:
Reviewed by:
Date Brandbn S Catalanotto , Reactor Engineering Manager                           Date Date
Date Brandbn S Catalanotto, Reactor Engineering Manager Date Date  
~~odb~Plant Manager                                                             Date Date of PORC           Affected Revision         Approval         Paqes           Reason for Revision 0         See above           All         Initial issue.
~~odb~
SEQUOYAH UNIT 1                                               Page 1 of 16             Revision 0
Plant Manager Date Date of PORC Affected Revision Approval Paqes Reason for Revision 0
See above All Initial issue.
SEQUOYAH UNIT 1 Page 1 of 16 Revision 0  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 1.0       CORE OPERATING LIMITS REPORT This CORE OPERATING LIMITS REPORT (COLR) for Sequoyah Unit 1 Cycle 23 has been prepared in accordance with the requirements of Technical Specification (TS) 5.6.3.
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 2 of 16 Revision 0 1.0 CORE OPERATING LIMITS REPORT This CORE OPERATING LIMITS REPORT (COLR) for Sequoyah Unit 1 Cycle 23 has been prepared in accordance with the requirements of Technical Specification (TS) 5.6.3.
The TSs affected by this Report are listed below:
The TSs affected by this Report are listed below:
TS                                                                     COLR COLR Section     Technical Specification             COLR Parameter           Section Page 3.1.1   SHUTDOWN MARGIN (SDM)         SDM                               2.1     3 BOL MTC Limit                    2.2.1    4 Moderator Temperature         EOL MTC Limit                     2.2.2   4 3.1.3 Coefficient (MTC)              300 ppm Surveillance Limit        2.2.3   4 60 ppm Surveillance Limit        2.2.4   4 3.1.4   Rod Group Alignment Limits     SDM                               2.1.3   3 Shutdown Bank Insertion Limits    2.3    4 3.1.5   Shutdown Bank Insertion Limits SDM                               2.1.4   3 Control Bank Insertion Limits      2.4    5 3.1.6   Control Bank Insertion Limits SDM                               2.1.5   3 PHYSICS TESTS Exceptions -
TS Section Technical Specification COLR Parameter COLR Section COLR Page 3.1.1 SHUTDOWN MARGIN (SDM)
3.1.8                                 SDM                               2.1.6   3 MODE 2 RTP FQ                                2.5.1   6 K(Z)                             2.5.2   6 NSLOPEAFD                         2.5.3   6 Heat Flux Hot Channel Factor  PSLOPEAFD                         2.5.4   6 3.2.1 (FQ(X,Y,Z))                    NSLOPEf2(I)                     2.5.5   6 f2(I)
SDM 2.1 3
PSLOPE                            2.5.6   6 FQ(X,Y,Z) Appropriate Factor     2.5.7   6 TS LCO 3.2.1 Required Action A.3 2.5.8   6 MAP(X,Y,Z)                       2.6.1   6 RRH                               2.6.2   6 Nuclear Enthalpy Rise Hot      TRH                               2.6.3   6 3.2.2 Channel Factor (FH(X,Y))      FH(X,Y) Appropriate Factor       2.6.4   7 TS 3.2.2 Required Action A.4     2.6.5   7 TS 3.2.2 Required Action B.1     2.6.6   7 AXIAL FLUX DIFFERENCE 3.2.3                                 AFD Limits                         2.7     7 (AFD)
3.1.3 Moderator Temperature Coefficient (MTC)
Reactor Trip System (RTS)     QTNL, QTPL, QTNS, and QTPS       2.8.1    8 3.3.1 Instrumentation                QPNL, QPPL, QPNS, and QPPS       2.8.2   9 3.9.1   Boron Concentration           Refueling Boron Concentration     2.9     9 CORE OPERATING LIMITS 5.6.3                                 Analytical Methods              Table 1  10 REPORT (COLR)
BOL MTC Limit EOL MTC Limit 300 ppm Surveillance Limit 60 ppm Surveillance Limit 2.2.1 2.2.2 2.2.3 2.2.4 4
SEQUOYAH UNIT 1                     Page 2 of 16                        Revision 0
4 4
4 3.1.4 Rod Group Alignment Limits SDM 2.1.3 3
3.1.5 Shutdown Bank Insertion Limits Shutdown Bank Insertion Limits SDM 2.3 4
2.1.4 3
3.1.6 Control Bank Insertion Limits Control Bank Insertion Limits 2.4 5
SDM 2.1.5 3
3.1.8 PHYSICS TESTS Exceptions -
MODE 2 SDM 2.1.6 3
3.2.1 Heat Flux Hot Channel Factor (FQ(X,Y,Z))
FQ RTP 2.5.1 6
K(Z) 2.5.2 6
NSLOPEAFD 2.5.3 6
PSLOPEAFD 2.5.4 6
NSLOPEf2(I) 2.5.5 6
PSLOPE f2(I) 2.5.6 6
FQ(X,Y,Z) Appropriate Factor 2.5.7 6
TS LCO 3.2.1 Required Action A.3 2.5.8 6
3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FH(X,Y))
MAP(X,Y,Z) 2.6.1 6
RRH 2.6.2 6
TRH 2.6.3 6
FH(X,Y) Appropriate Factor 2.6.4 7
TS 3.2.2 Required Action A.4 2.6.5 7
TS 3.2.2 Required Action B.1 2.6.6 7
3.2.3 AXIAL FLUX DIFFERENCE (AFD)
AFD Limits 2.7 7
3.3.1 Reactor Trip System (RTS)
QTNL, QTPL, QTNS, and QTPS QPNL, QPPL, QPNS, and QPPS 2.8.1 8
Instrumentation 2.8.2 9
3.9.1 Boron Concentration Refueling Boron Concentration 2.9 9
5.6.3 CORE OPERATING LIMITS REPORT (COLR)
Analytical Methods Table 1 10


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 2.0       OPERATING LIMITS The cycle-specific parameter limits for the TS listed in section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in TS 5.6.3. The versions of the topical reports, which describe the methodologies used for this cycle, are listed in Table 1.
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 3 of 16 Revision 0 2.0 OPERATING LIMITS The cycle-specific parameter limits for the TS listed in section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in TS 5.6.3. The versions of the topical reports, which describe the methodologies used for this cycle, are listed in Table 1.
The following abbreviations are used in this section:
The following abbreviations are used in this section:
BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.1       SHUTDOWN MARGIN - SDM (TS 3.1.1, 3.1.4, 3.1.5, 3.1.6, 3.1.8) 2.1.1 For TS 3.1.1, SDM shall be 1.6 %k/k in MODE 2 with keff < 1.0, MODE 3 and MODE 4.
BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.1 SHUTDOWN MARGIN - SDM (TS 3.1.1, 3.1.4, 3.1.5, 3.1.6, 3.1.8) 2.1.1 For TS 3.1.1, SDM shall be 1.6 %k/k in MODE 2 with keff < 1.0, MODE 3 and MODE 4.
2.1.2 For TS 3.1.1, SDM shall be 1.0 %k/k in MODE 5.
2.1.2 For TS 3.1.1, SDM shall be 1.0 %k/k in MODE 5.
2.1.3 For TS 3.1.4, SDM shall be 1.6 %k/k in MODE 1 and MODE 2.
2.1.3 For TS 3.1.4, SDM shall be 1.6 %k/k in MODE 1 and MODE 2.
2.1.4 For TS 3.1.5, SDM shall be 1.6 %k/k in MODE 1 and MODE 2.
2.1.4 For TS 3.1.5, SDM shall be 1.6 %k/k in MODE 1 and MODE 2.
2.1.5 For TS 3.1.6, SDM shall be 1.6 %k/k in MODE 1 and MODE 2 with keff 1.0.
2.1.5 For TS 3.1.6, SDM shall be 1.6 %k/k in MODE 1 and MODE 2 with keff 1.0.
2.1.6 For TS 3.1.8, SDM shall be 1.6 %k/k in MODE 2.
2.1.6 For TS 3.1.8, SDM shall be 1.6 %k/k in MODE 2.  
SEQUOYAH UNIT 1                    Page 3 of 16                            Revision 0


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 2.2   Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.2.1 The BOL MTC limit is:
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 4 of 16 Revision 0 2.2 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.2.1 The BOL MTC limit is:
less positive than               -0.09 x 10-5 k/k/&#xba;F.
less positive than  
2.2.2 The EOL MTC limit is:
-0.09 x 10-5 k/k/&#xba;F.
less negative than or equal to     -4.50 x 10-4 k/k/&#xba;F.
2.2.2 The EOL MTC limit is:
2.2.3 The 300 ppm Surveillance limit is:
less negative than or equal to  
less negative than or equal to     -3.80 x 10-4 k/k/&#xba;F.
-4.50 x 10-4 k/k/&#xba;F.
2.2.4 The 60 ppm Surveillance limit is:
2.2.3 The 300 ppm Surveillance limit is:
less negative than or equal to   -4.20 x 10-4 k/k/&#xba;F.
less negative than or equal to  
2.3   Shutdown Bank Insertion Limits (TS 3.1.5) 2.3.1   Each shutdown bank shall be withdrawn to a position as defined below:
-3.80 x 10-4 k/k/&#xba;F.
Cycle Burnup                       Steps (MWd/mtU)                     Withdrawn 0                       225 to 231 SEQUOYAH UNIT 1              Page 4 of 16                        Revision 0
2.2.4 The 60 ppm Surveillance limit is:
less negative than or equal to  
-4.20 x 10-4 k/k/&#xba;F.
2.3 Shutdown Bank Insertion Limits (TS 3.1.5) 2.3.1 Each shutdown bank shall be withdrawn to a position as defined below:
Cycle Burnup (MWd/mtU)
Steps Withdrawn 0
225 to 231  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 2.4   Control Bank Insertion Limits (TS 3.1.6) 2.4.1     The control banks shall be limited in physical insertion as shown in Figure 1.
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 5 of 16 Revision 0 2.4 Control Bank Insertion Limits (TS 3.1.6) 2.4.1 The control banks shall be limited in physical insertion as shown in Figure 1.
2.4.2     Each control bank shall be considered fully withdrawn from the core at 225 steps.
2.4.2 Each control bank shall be considered fully withdrawn from the core at 225 steps.
2.4.3     The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.
2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.
2.4.4     Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of full out position.
2.4.4 Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of full out position.
Full Out Position (steps)     Bank Overlap (steps)       Bank Difference (steps) 225                         97                           128 226                         98                           128 227                         99                           128 228                         100                         128 229                         101                         128 230                         102                         128 231                         103                         128 SEQUOYAH UNIT 1                  Page 5 of 16                        Revision 0
Full Out Position (steps)
Bank Overlap (steps)
Bank Difference (steps) 225 97 128 226 98 128 227 99 128 228 100 128 229 101 128 230 102 128 231 103 128  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 2.5   Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1)
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 6 of 16 Revision 0 2.5 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.5.1 FQ RTP
RTP 2.5.1   FQ     =       2.62 2.5.2   K(Z) is provided in Figure 2 2.5.3   NSLOPEAFD =     1.3 2.5.4   PSLOPEAFD =     1.6 2.5.5   NSLOPEf2(I) = 1.6 2.5.6   PSLOPEf2(I) = 2.3 M
=
2.5.7   The appropriate factor for increase in FQ (X,Y,Z) for compliance with SR 3.2.1.2 and SR 3.2.1.3 is specified as follows:
2.62 2.5.2 K(Z) is provided in Figure 2 2.5.3 NSLOPEAFD = 1.3 2.5.4 PSLOPEAFD = 1.6 2.5.5 NSLOPEf2(I) = 1.6 2.5.6 PSLOPEf2(I) = 2.3 2.5.7 The appropriate factor for increase in FQ M(X,Y,Z) for compliance with SR 3.2.1.2 and SR 3.2.1.3 is specified as follows:
For all burnups, use 2.0%
For all burnups, use 2.0%
2.5.8   TS LCO 3.2.1 Required Action A.3 reduces the Overpower Delta-T Trip setpoints (value of K4) at least 1% (in T span) for each 1% that FQC(X,Y,Z) exceeds its limit.
2.5.8 TS LCO 3.2.1 Required Action A.3 reduces the Overpower Delta-T Trip setpoints (value of K4) at least 1% (in T span) for each 1% that FQ C(X,Y,Z) exceeds its limit.
2.6   Nuclear Enthalpy Rise Hot Channel Factor - FH(X,Y) (TS 3.2.2) 2.6.1   MAP(X,Y,Z) is provided in Table 2.
2.6 Nuclear Enthalpy Rise Hot Channel Factor - FH(X,Y) (TS 3.2.2) 2.6.1 MAP(X,Y,Z) is provided in Table 2.
2.6.2   RRH = 3.34     when 0.8 < P 1.0 RRH = 1.67     when P 0.8 Where RRH = Thermal power reduction required to compensate for each 1% that FH(X,Y) exceeds its limit.
2.6.2 RRH = 3.34 when 0.8 < P 1.0 RRH = 1.67 when P 0.8 Where RRH = Thermal power reduction required to compensate for each 1% that FH(X,Y) exceeds its limit.
P = THERMAL POWER / RATED THERMAL POWER 2.6.3   TRH = 0.0334 when 0.8 < P 1.0 TRH = 0.0167 when P 0.8 Where TRH = Reduction in Overtemperature Delta-T K1 setpoint required to compensate for each 1% that FH(X,Y) exceeds its limit.
P = THERMAL POWER / RATED THERMAL POWER 2.6.3 TRH = 0.0334 when 0.8 < P 1.0 TRH = 0.0167 when P 0.8 Where TRH = Reduction in Overtemperature Delta-T K1 setpoint required to compensate for each 1% that FH(X,Y) exceeds its limit.
P = THERMAL POWER / RATED THERMAL POWER SEQUOYAH UNIT 1                Page 6 of 16                        Revision 0
P = THERMAL POWER / RATED THERMAL POWER  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 2.6.4   The appropriate factor for increase in FHM (X,Y) for compliance with SR 3.2.2.1 and SR 3.2.2.2 is specified as follows:
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 7 of 16 Revision 0 2.6.4 The appropriate factor for increase in FH M (X,Y) for compliance with SR 3.2.2.1 and SR 3.2.2.2 is specified as follows:
For all cycle burnups, use 2.0%
For all cycle burnups, use 2.0%
2.6.5   TS LCO 3.2.2 Required Action A.4 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by TRH multiplied by the FH minimum margin.
2.6.5 TS LCO 3.2.2 Required Action A.4 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by TRH multiplied by the FH minimum margin.
2.6.6   TS LCO 3.2.2 Required Action B.1 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by TRH multiplied by the f1(I) minimum margin.
2.6.6 TS LCO 3.2.2 Required Action B.1 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by TRH multiplied by the f1(I) minimum margin.
2.7   Axial Flux Difference - AFD (TS 3.2.3) 2.7.1   The AFD limits are specified in Figure 3.
2.7 Axial Flux Difference - AFD (TS 3.2.3) 2.7.1 The AFD limits are specified in Figure 3.  
SEQUOYAH UNIT 1                Page 7 of 16                        Revision 0


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 2.8   Reactor Trip System Instrumentation (TS 3.3.1) 2.8.1       Trip Reset Term [f1(I)] for Overtemperature Delta-T Trip The following parameters are required to specify the power level-dependent f1(I) trip reset term limits for Table 3.3.1-1 (function 6), Overtemperature Delta-T trip function:
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 8 of 16 Revision 0 2.8 Reactor Trip System Instrumentation (TS 3.3.1) 2.8.1 Trip Reset Term [f1(I)] for Overtemperature Delta-T Trip The following parameters are required to specify the power level-dependent f1(I) trip reset term limits for Table 3.3.1-1 (function 6), Overtemperature Delta-T trip function:
2.8.1.1     QTNL = -20%
2.8.1.1 QTNL = -20%
where QTNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
where QTNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
2.8.1.2     QTPL = +5%
2.8.1.2 QTPL = +5%
where QTPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
where QTPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
2.8.1.3     QTNS = 2.50%
2.8.1.3 QTNS = 2.50%
where QTNS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QTNL).
where QTNS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QTNL).
2.8.1.4     QTPS = 1.40%
2.8.1.4 QTPS = 1.40%
where QTPS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QTPL).
where QTPS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QTPL).  
SEQUOYAH UNIT 1                    Page 8 of 16                            Revision 0


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 2.8.2       Trip Reset Term [f2(I)] for Overpower Delta-T Trip The following parameters are required to specify the power level-dependent f2(I) trip reset term limits for Table 3.3.1-1 (function 7), Overpower Delta-T trip function:
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 9 of 16 Revision 0 2.8.2 Trip Reset Term [f2(I)] for Overpower Delta-T Trip The following parameters are required to specify the power level-dependent f2(I) trip reset term limits for Table 3.3.1-1 (function 7), Overpower Delta-T trip function:
2.8.2.1     QPNL = -25%
2.8.2.1 QPNL = -25%
where QPNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
where QPNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
2.8.2.2     QPPL = +25%
2.8.2.2 QPPL = +25%
where QPPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
where QPPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
2.8.2.3     QPNS = 1.70%
2.8.2.3 QPNS = 1.70%
where QPNS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QPNL).
where QPNS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QPNL).
2.8.2.4     QPPS = 1.70%
2.8.2.4 QPPS = 1.70%
where QPPS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QPPL).
where QPPS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QPPL).
2.9   Boron Concentration (TS 3.9.1) 2.9.1       The refueling boron concentration shall be 2060 ppm.
2.9 Boron Concentration (TS 3.9.1) 2.9.1 The refueling boron concentration shall be 2060 ppm.  
SEQUOYAH UNIT 1                    Page 9 of 16                          Revision 0


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 Table 1 COLR Methodology Topical Reports
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 10 of 16 Revision 0 Table 1 COLR Methodology Topical Reports
: 1. BAW-10180-A, Revision 1, NEMO-Nodal Expansion Method Optimized, March 1993.
: 1.
BAW-10180-A, Revision 1, NEMO-Nodal Expansion Method Optimized, March 1993.
(Methodology for TS 3.1.1-SHUTDOWN MARGIN, 3.1.3-Moderator Temperature Coefficient, 3.9.1-Boron Concentration)
(Methodology for TS 3.1.1-SHUTDOWN MARGIN, 3.1.3-Moderator Temperature Coefficient, 3.9.1-Boron Concentration)
: 2. BAW-10169P-A, Revision 0, RSG Plant Safety Analysis-B&W Safety Analysis Methodology for Recirculating Steam Generator Plants, October 1989.
: 2.
BAW-10169P-A, Revision 0, RSG Plant Safety Analysis-B&W Safety Analysis Methodology for Recirculating Steam Generator Plants, October 1989.
(Methodology for TS 3.1.3-Moderator Temperature Coefficient)
(Methodology for TS 3.1.3-Moderator Temperature Coefficient)
: 3. BAW-10163P-A, Revision 0, Core Operating Limit Methodology for Westinghouse-Designed PWRs, June 1989.
: 3.
BAW-10163P-A, Revision 0, Core Operating Limit Methodology for Westinghouse-Designed PWRs, June 1989.
(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f1(I), f2(I) limits],
(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f1(I), f2(I) limits],
3.1.5-Shutdown Bank Insertion Limits, 3.1.6-Control Bank Insertion Limits, 3.2.1-Heat Flux Hot Channel Factor, 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.2.3-AXIAL FLUX DIFFERENCE)
3.1.5-Shutdown Bank Insertion Limits, 3.1.6-Control Bank Insertion Limits, 3.2.1-Heat Flux Hot Channel Factor, 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.2.3-AXIAL FLUX DIFFERENCE)
: 4. EMF-2328(P)(A), Revision 0 PWR Small Break LOCA Evaluation Model, March 2001.
: 4.
EMF-2328(P)(A), Revision 0 PWR Small Break LOCA Evaluation Model, March 2001.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
: 5. BAW-10227P-A, Revision 1, Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel, June 2003.
: 5.
BAW-10227P-A, Revision 1, Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel, June 2003.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
: 6. BAW-10186P-A, Revision 2, Extended Burnup Evaluation, June 2003.
: 6.
BAW-10186P-A, Revision 2, Extended Burnup Evaluation, June 2003.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
: 7. EMF-2103P-A, Revision 0, Realistic Large Break LOCA Methodology for Pressurized Water Reactors, April 2003.
: 7.
EMF-2103P-A, Revision 0, Realistic Large Break LOCA Methodology for Pressurized Water Reactors, April 2003.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
: 8. BAW-10241P-A, Revision 1, BHTP DNB Correlation Applied with LYNXT, July 2005.
: 8.
BAW-10241P-A, Revision 1, BHTP DNB Correlation Applied with LYNXT, July 2005.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
: 9. BAW-10199P-A, Revision 0, The BWU Critical Heat Flux Correlations, August 1996.
: 9.
BAW-10199P-A, Revision 0, The BWU Critical Heat Flux Correlations, August 1996.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
: 10. BAW-10189P-A, CHF Testing and Analysis of the Mark-BW Fuel Assembly Design, January 1996.
: 10.
BAW-10189P-A, CHF Testing and Analysis of the Mark-BW Fuel Assembly Design, January 1996.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
: 11. BAW-10159P-A, BWCMV Correlation of Critical Heat Flux in Mixing Vane Grid Fuel Assemblies, August 1990.
: 11.
BAW-10159P-A, BWCMV Correlation of Critical Heat Flux in Mixing Vane Grid Fuel Assemblies, August 1990.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
: 12. BAW-10231P-A, Revision 1, COPERNIC Fuel Rod Design Computer Code, January 2004.
: 12.
(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f2(I) limits])
BAW-10231P-A, Revision 1, COPERNIC Fuel Rod Design Computer Code, January 2004.
SEQUOYAH UNIT 1                  Page 10 of 16                          Revision 0
(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f2(I) limits])  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 Table 2 Maximum Allowable Peaking Limits MAP(X,Y,Z) for Operation AXIAL(X,Y) ELEVATION MAP(X,Y,Z)             AXIAL(X,Y) ELEVATION     MAP(X,Y,Z)
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 11 of 16 Revision 0 Table 2 Maximum Allowable Peaking Limits MAP(X,Y,Z) for Operation AXIAL(X,Y)
(FT)                                          (FT) 1          1.7084                            1         2.4093 2          1.7084                             2        2.4077 3          1.7083                            3        2.4068 4          1.7082                            4        2.4063 5          1.7081                            5        2.4050 1.03        6          1.7079              1.3           6         2.4043 7          1.7078                            7        2.4034 8          1.7073                            8        2.3923 9          1.7072                            9        2.3053 10          1.7072                            10        2.1479 11          1.7066                            11        2.0305 1         1.8764                            1         2.7078 2          1.8761                             2        2.6846 3          1.8758                             3        2.6349 4          1.8755                            4        2.5983 5          1.8750                            5        2.5933 1.1         6          1.8746              1.4           6         2.6505 7          1.8732                            7        2.6394 8          1.8731                            8        2.5563 9          1.8729                            9        2.4572 10          1.8733                            10        2.2668 11          1.8320                            11        2.1190 1         2.1327                            1         2.8223 2          2.1321                             2         2.7591 3          2.1315                            3        2.6985 4          2.1306                            4        2.6542 5          2.1295                            5        2.6482 1.2         6         2.1290              1.5          6        2.7162 7          2.1286                            7        2.7495 8          2.1274                            8        2.6507 9          2.1254                            9        2.5578 10          2.0247                            10        2.3791 11          1.9355                            11        2.2011 SEQUOYAH UNIT 1            Page 11 of 16                  Revision 0
ELEVATION (FT)
MAP(X,Y,Z)
AXIAL(X,Y)
ELEVATION (FT)
MAP(X,Y,Z) 1.03 1
2 3
4 5
6 7
8 9
10 11 1.7084 1.7084 1.7083 1.7082 1.7081 1.7079 1.7078 1.7073 1.7072 1.7072 1.7066 1.3 1
2 3
4 5
6 7
8 9
10 11 2.4093 2.4077 2.4068 2.4063 2.4050 2.4043 2.4034 2.3923 2.3053 2.1479 2.0305 1.1 1
2 3
4 5
6 7
8 9
10 11 1.8764 1.8761 1.8758 1.8755 1.8750 1.8746 1.8732 1.8731 1.8729 1.8733 1.8320 1.4 1
2 3
4 5
6 7
8 9
10 11 2.7078 2.6846 2.6349 2.5983 2.5933 2.6505 2.6394 2.5563 2.4572 2.2668 2.1190 1.2 1
2 3
4 5
6 7
8 9
10 11 2.1327 2.1321 2.1315 2.1306 2.1295 2.1290 2.1286 2.1274 2.1254 2.0247 1.9355 1.5 1
2 3
4 5
6 7
8 9
10 11 2.8223 2.7591 2.6985 2.6542 2.6482 2.7162 2.7495 2.6507 2.5578 2.3791 2.2011  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 Table 2 (continued)
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 12 of 16 Revision 0 Table 2 (continued)
AXIAL(X,Y) ELEVATION     MAP(X,Y,Z)         AXIAL(X,Y) ELEVATION   MAP(X,Y,Z)
AXIAL(X,Y)
(FT)                                        (FT) 1         2.8935                            1         3.0267 2          2.8252                           2         2.9676 3          2.7571                            3        2.8960 4          2.7055                            4        2.8345 5          2.6985                            5        2.8256 1.6          6          2.7776                1.9         6         2.9291 7          2.8428                            7        3.0655 8          2.7401                            8        2.9714 9          2.6471                            9        2.8741 10          2.4862                          10        2.7780 11          2.2766                          11        2.4797 1         2.9545                            1         2.6005 2          2.8786                           2         2.5794 3          2.8103                            3        2.5536 4          2.7522                            4        2.5118 5          2.7457                            5        2.4500 1.7          6          2.8308              >1.9         6         2.4520 7          2.9230                            7        2.6494 8          2.8209                            8        2.5446 9          2.7287                            9        2.4371 10          2.5873                          10        2.2595 11          2.3478                          11        2.0819 1         2.9942                            1         2.7049 2          2.9271                           2         2.6623 3          2.8570                            3        2.6375 4          2.7942                            4        2.5288 5          2.7875                            5        2.5460 1.8          6          2.8823                2.1         6         2.5252 7          2.9967                            7        2.7990 8          2.8980                            8        2.6963 9          2.8027                            9        2.5830 10          2.6853                          10        2.4527 11          2.4156                          11        2.1796 SEQUOYAH UNIT 1            Page 12 of 16                  Revision 0
ELEVATION (FT)
MAP(X,Y,Z)
AXIAL(X,Y)
ELEVATION (FT)
MAP(X,Y,Z) 1.6 1
2 3
4 5
6 7
8 9
10 11 2.8935 2.8252 2.7571 2.7055 2.6985 2.7776 2.8428 2.7401 2.6471 2.4862 2.2766 1.9 1
2 3
4 5
6 7
8 9
10 11 3.0267 2.9676 2.8960 2.8345 2.8256 2.9291 3.0655 2.9714 2.8741 2.7780 2.4797 1.7 1
2 3
4 5
6 7
8 9
10 11 2.9545 2.8786 2.8103 2.7522 2.7457 2.8308 2.9230 2.8209 2.7287 2.5873 2.3478
>1.9 1
2 3
4 5
6 7
8 9
10 11 2.6005 2.5794 2.5536 2.5118 2.4500 2.4520 2.6494 2.5446 2.4371 2.2595 2.0819 1.8 1
2 3
4 5
6 7
8 9
10 11 2.9942 2.9271 2.8570 2.7942 2.7875 2.8823 2.9967 2.8980 2.8027 2.6853 2.4156 2.1 1
2 3
4 5
6 7
8 9
10 11 2.7049 2.6623 2.6375 2.5288 2.5460 2.5252 2.7990 2.6963 2.5830 2.4527 2.1796  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 Table 2 (continued)
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 13 of 16 Revision 0 Table 2 (continued)
AXIAL(X,Y) ELEVATION   MAP(X,Y,Z)         AXIAL(X,Y) ELEVATION     MAP(X,Y,Z)
AXIAL(X,Y)
(FT)                                      (FT) 1        2.7475                          1           2.8372 2        2.7275                           2           2.7099 3        2.6457                          3          2.7081 4        2.6125                          4          2.6340 5        2.5774                          5          2.6483 2.3        6        2.5707              2.5         6           2.6284 7        2.9015                          7          3.0303 8        2.7773                          8          2.8965 9        2.6757                          9          2.8111 10        2.4740                          10          2.7019 11        2.2722                          11          2.3542 SEQUOYAH UNIT 1          Page 13 of 16                    Revision 0
ELEVATION (FT)
MAP(X,Y,Z)
AXIAL(X,Y)
ELEVATION (FT)
MAP(X,Y,Z) 2.3 1
2 3
4 5
6 7
8 9
10 11 2.7475 2.7275 2.6457 2.6125 2.5774 2.5707 2.9015 2.7773 2.6757 2.4740 2.2722 2.5 1
2 3
4 5
6 7
8 9
10 11 2.8372 2.7099 2.7081 2.6340 2.6483 2.6284 3.0303 2.8965 2.8111 2.7019 2.3542  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 Fraction of RATED THERMAL POWER FIGURE 1 Rod Bank Insertion Limits Versus THERMAL POWER, Four Loop Operation (TS 3.1.6)
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 14 of 16 Revision 0 Fraction of RATED THERMAL POWER FIGURE 1 Rod Bank Insertion Limits Versus THERMAL POWER, Four Loop Operation (TS 3.1.6)
* Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of 225 and 231steps withdrawn.
* Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of 225 and 231steps withdrawn.
Fully withdrawn shall be the position as defined below, Cycle Burnup (MWd/mtU)                                 Steps Withdrawn 0                                             225 to 231 This figure is valid for operation at a RATED THERMAL POWER of 3455 MWth when the LEFM is in operation.
Fully withdrawn shall be the position as defined below, Cycle Burnup (MWd/mtU)
If the LEFM becomes inoperable, then prior to the next NIS calibration, the maximum allowable power level must be reduced by 1.3% in power, and the rod insertion limit lines must be increased by 3 steps withdrawn until the LEFM is returned to operation.
Steps Withdrawn 0
SEQUOYAH UNIT 1                              Page 14 of 16                                    Revision 0
225 to 231 This figure is valid for operation at a RATED THERMAL POWER of 3455 MWth when the LEFM is in operation.
If the LEFM becomes inoperable, then prior to the next NIS calibration, the maximum allowable power level must be reduced by 1.3% in power, and the rod insertion limit lines must be increased by 3 steps withdrawn until the LEFM is returned to operation.  


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 1.2 1.0 0.8 K(Z)   0.6 Elevation     K(z)
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 15 of 16 Revision 0 FIGURE 2 K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height (TS 3.2.1) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0
(ft) 0.000       1.0000 0.4                    6.285       1.0000 7.995       1.0000 9.705       1.0000 12.000       1.0000 0.2 0.0 0        2            4              6          8  10          12 Core Height (Feet)
2 4
FIGURE 2 K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height (TS 3.2.1)
6 8
SEQUOYAH UNIT 1                          Page 15 of 16                  Revision 0
10 12 Core Height (Feet)
K(Z)
Elevation K(z)
(ft) 0.000 1.0000 6.285 1.0000 7.995 1.0000 9.705 1.0000 12.000 1.0000


COLR FOR SEQUOYAH UNIT 1 CYCLE 23 FIGURE 3 AXIAL FLUX DIFFERENCE Limits As A Function of RATED THERMAL POWER For Burnup Range 0 EFPD to EOL (TS 3.2.3)
COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 16 of 16 Revision 0 FIGURE 3 AXIAL FLUX DIFFERENCE Limits As A Function of RATED THERMAL POWER For Burnup Range 0 EFPD to EOL (TS 3.2.3)
This figure is valid for operation at a RATED THERMAL POWER of 3455 MWth when the LEFM is in operation.
This figure is valid for operation at a RATED THERMAL POWER of 3455 MWth when the LEFM is in operation.
If the LEFM becomes inoperable, then prior to the next NIS calibration, the maximum allowable power level must be reduced by 1.3% in power, and the AFD limit lines must be made more restrictive by 1% in AFD until the LEFM is returned to operation.
If the LEFM becomes inoperable, then prior to the next NIS calibration, the maximum allowable power level must be reduced by 1.3% in power, and the AFD limit lines must be made more restrictive by 1% in AFD until the LEFM is returned to operation.}}
SEQUOYAH UNIT 1                              Page 16 of 16                                  Revision 0}}

Latest revision as of 22:29, 5 January 2025

Cycle 23 Core Operating Limits Report, Revision 0
ML18128A178
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 05/08/2018
From: Anthony Williams
Tennessee Valley Authority
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML18128A178 (18)


Text

/'

Tennessee Valley Authority, Sequoyah Nuclear Plant, P.O. Box 2000, Soddy Daisy, Tennessee 37384 May 8, 2018 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001 Sequoyah Nuclear Plant, Unit 1 Renewed Facility Operating License No. DPR-77 NRC Docket No. 50-327 10 CFR 50.4

Subject:

SEQUOYAH UNIT 1CYCLE23 CORE OPERATING LIMITS REPORT REVISION 0 In accordance with Sequoyah Nuclear Plant (SQN) Unit 1 Technical Specification (TS) 5.6.3.d, enclosed is the Unit 1 Cycle 23 Core Operating Limits Report (COLR), Revision 0 that was issued on April 21, 2018.

There are no new regulatory commitments in this letter. If you have any questions, please contact Michael McBrearty, SQN Site Licensing Manager at (423) 843-7170.

~spectfully, ony L. Williams Site Vice President Sequoyah Nuclear Plant Enclosure Sequoyah Unit 1 Cycle 23 Core Operating Limits Report cc (Enclosure):

NRC Regional Administrator - Region II NRC Senior Resident Inspector - SQN printed on recycled paper

ENCLOSURE SEQUOYAH UNIT 1CYCLE23 CORE OPERA TING LIMITS REPORT*

QA Record Prepared by:

Jo Elkins I John Ritchie, PWR SEQUOYAH UNIT 1 CYCLE 23 CORE OPERATING LIMITS REPORT REVISION 0 April 2018 L36 180418 800 Verified by:

-Jo_h_n~~

7-~~

-tr-an~g-e~

~

. -P_W_R--,~e-l -E-ng-i-ne-e-ri-ng~~~~~~~~~~1~-4~/_l_,ft_l_~_at-e~~~~

Reviewed by:

Date Brandbn S Catalanotto, Reactor Engineering Manager Date Date

~~odb~

Plant Manager Date Date of PORC Affected Revision Approval Paqes Reason for Revision 0

See above All Initial issue.

SEQUOYAH UNIT 1 Page 1 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 2 of 16 Revision 0 1.0 CORE OPERATING LIMITS REPORT This CORE OPERATING LIMITS REPORT (COLR) for Sequoyah Unit 1 Cycle 23 has been prepared in accordance with the requirements of Technical Specification (TS) 5.6.3.

The TSs affected by this Report are listed below:

TS Section Technical Specification COLR Parameter COLR Section COLR Page 3.1.1 SHUTDOWN MARGIN (SDM)

SDM 2.1 3

3.1.3 Moderator Temperature Coefficient (MTC)

BOL MTC Limit EOL MTC Limit 300 ppm Surveillance Limit 60 ppm Surveillance Limit 2.2.1 2.2.2 2.2.3 2.2.4 4

4 4

4 3.1.4 Rod Group Alignment Limits SDM 2.1.3 3

3.1.5 Shutdown Bank Insertion Limits Shutdown Bank Insertion Limits SDM 2.3 4

2.1.4 3

3.1.6 Control Bank Insertion Limits Control Bank Insertion Limits 2.4 5

SDM 2.1.5 3

3.1.8 PHYSICS TESTS Exceptions -

MODE 2 SDM 2.1.6 3

3.2.1 Heat Flux Hot Channel Factor (FQ(X,Y,Z))

FQ RTP 2.5.1 6

K(Z) 2.5.2 6

NSLOPEAFD 2.5.3 6

PSLOPEAFD 2.5.4 6

NSLOPEf2(I) 2.5.5 6

PSLOPE f2(I) 2.5.6 6

FQ(X,Y,Z) Appropriate Factor 2.5.7 6

TS LCO 3.2.1 Required Action A.3 2.5.8 6

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FH(X,Y))

MAP(X,Y,Z) 2.6.1 6

RRH 2.6.2 6

TRH 2.6.3 6

FH(X,Y) Appropriate Factor 2.6.4 7

TS 3.2.2 Required Action A.4 2.6.5 7

TS 3.2.2 Required Action B.1 2.6.6 7

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

AFD Limits 2.7 7

3.3.1 Reactor Trip System (RTS)

QTNL, QTPL, QTNS, and QTPS QPNL, QPPL, QPNS, and QPPS 2.8.1 8

Instrumentation 2.8.2 9

3.9.1 Boron Concentration Refueling Boron Concentration 2.9 9

5.6.3 CORE OPERATING LIMITS REPORT (COLR)

Analytical Methods Table 1 10

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 3 of 16 Revision 0 2.0 OPERATING LIMITS The cycle-specific parameter limits for the TS listed in section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in TS 5.6.3. The versions of the topical reports, which describe the methodologies used for this cycle, are listed in Table 1.

The following abbreviations are used in this section:

BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.1 SHUTDOWN MARGIN - SDM (TS 3.1.1, 3.1.4, 3.1.5, 3.1.6, 3.1.8) 2.1.1 For TS 3.1.1, SDM shall be 1.6 %k/k in MODE 2 with keff < 1.0, MODE 3 and MODE 4.

2.1.2 For TS 3.1.1, SDM shall be 1.0 %k/k in MODE 5.

2.1.3 For TS 3.1.4, SDM shall be 1.6 %k/k in MODE 1 and MODE 2.

2.1.4 For TS 3.1.5, SDM shall be 1.6 %k/k in MODE 1 and MODE 2.

2.1.5 For TS 3.1.6, SDM shall be 1.6 %k/k in MODE 1 and MODE 2 with keff 1.0.

2.1.6 For TS 3.1.8, SDM shall be 1.6 %k/k in MODE 2.

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 4 of 16 Revision 0 2.2 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.2.1 The BOL MTC limit is:

less positive than

-0.09 x 10-5 k/k/ºF.

2.2.2 The EOL MTC limit is:

less negative than or equal to

-4.50 x 10-4 k/k/ºF.

2.2.3 The 300 ppm Surveillance limit is:

less negative than or equal to

-3.80 x 10-4 k/k/ºF.

2.2.4 The 60 ppm Surveillance limit is:

less negative than or equal to

-4.20 x 10-4 k/k/ºF.

2.3 Shutdown Bank Insertion Limits (TS 3.1.5) 2.3.1 Each shutdown bank shall be withdrawn to a position as defined below:

Cycle Burnup (MWd/mtU)

Steps Withdrawn 0

225 to 231

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 5 of 16 Revision 0 2.4 Control Bank Insertion Limits (TS 3.1.6) 2.4.1 The control banks shall be limited in physical insertion as shown in Figure 1.

2.4.2 Each control bank shall be considered fully withdrawn from the core at 225 steps.

2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.

2.4.4 Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of full out position.

Full Out Position (steps)

Bank Overlap (steps)

Bank Difference (steps) 225 97 128 226 98 128 227 99 128 228 100 128 229 101 128 230 102 128 231 103 128

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 6 of 16 Revision 0 2.5 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.5.1 FQ RTP

=

2.62 2.5.2 K(Z) is provided in Figure 2 2.5.3 NSLOPEAFD = 1.3 2.5.4 PSLOPEAFD = 1.6 2.5.5 NSLOPEf2(I) = 1.6 2.5.6 PSLOPEf2(I) = 2.3 2.5.7 The appropriate factor for increase in FQ M(X,Y,Z) for compliance with SR 3.2.1.2 and SR 3.2.1.3 is specified as follows:

For all burnups, use 2.0%

2.5.8 TS LCO 3.2.1 Required Action A.3 reduces the Overpower Delta-T Trip setpoints (value of K4) at least 1% (in T span) for each 1% that FQ C(X,Y,Z) exceeds its limit.

2.6 Nuclear Enthalpy Rise Hot Channel Factor - FH(X,Y) (TS 3.2.2) 2.6.1 MAP(X,Y,Z) is provided in Table 2.

2.6.2 RRH = 3.34 when 0.8 < P 1.0 RRH = 1.67 when P 0.8 Where RRH = Thermal power reduction required to compensate for each 1% that FH(X,Y) exceeds its limit.

P = THERMAL POWER / RATED THERMAL POWER 2.6.3 TRH = 0.0334 when 0.8 < P 1.0 TRH = 0.0167 when P 0.8 Where TRH = Reduction in Overtemperature Delta-T K1 setpoint required to compensate for each 1% that FH(X,Y) exceeds its limit.

P = THERMAL POWER / RATED THERMAL POWER

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 7 of 16 Revision 0 2.6.4 The appropriate factor for increase in FH M (X,Y) for compliance with SR 3.2.2.1 and SR 3.2.2.2 is specified as follows:

For all cycle burnups, use 2.0%

2.6.5 TS LCO 3.2.2 Required Action A.4 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by TRH multiplied by the FH minimum margin.

2.6.6 TS LCO 3.2.2 Required Action B.1 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by TRH multiplied by the f1(I) minimum margin.

2.7 Axial Flux Difference - AFD (TS 3.2.3) 2.7.1 The AFD limits are specified in Figure 3.

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 8 of 16 Revision 0 2.8 Reactor Trip System Instrumentation (TS 3.3.1) 2.8.1 Trip Reset Term [f1(I)] for Overtemperature Delta-T Trip The following parameters are required to specify the power level-dependent f1(I) trip reset term limits for Table 3.3.1-1 (function 6), Overtemperature Delta-T trip function:

2.8.1.1 QTNL = -20%

where QTNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.

2.8.1.2 QTPL = +5%

where QTPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.

2.8.1.3 QTNS = 2.50%

where QTNS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QTNL).

2.8.1.4 QTPS = 1.40%

where QTPS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QTPL).

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 9 of 16 Revision 0 2.8.2 Trip Reset Term [f2(I)] for Overpower Delta-T Trip The following parameters are required to specify the power level-dependent f2(I) trip reset term limits for Table 3.3.1-1 (function 7), Overpower Delta-T trip function:

2.8.2.1 QPNL = -25%

where QPNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.

2.8.2.2 QPPL = +25%

where QPPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.

2.8.2.3 QPNS = 1.70%

where QPNS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QPNL).

2.8.2.4 QPPS = 1.70%

where QPPS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QPPL).

2.9 Boron Concentration (TS 3.9.1) 2.9.1 The refueling boron concentration shall be 2060 ppm.

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 10 of 16 Revision 0 Table 1 COLR Methodology Topical Reports

1.

BAW-10180-A, Revision 1, NEMO-Nodal Expansion Method Optimized, March 1993.

(Methodology for TS 3.1.1-SHUTDOWN MARGIN, 3.1.3-Moderator Temperature Coefficient, 3.9.1-Boron Concentration)

2.

BAW-10169P-A, Revision 0, RSG Plant Safety Analysis-B&W Safety Analysis Methodology for Recirculating Steam Generator Plants, October 1989.

(Methodology for TS 3.1.3-Moderator Temperature Coefficient)

3.

BAW-10163P-A, Revision 0, Core Operating Limit Methodology for Westinghouse-Designed PWRs, June 1989.

(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f1(I), f2(I) limits],

3.1.5-Shutdown Bank Insertion Limits, 3.1.6-Control Bank Insertion Limits, 3.2.1-Heat Flux Hot Channel Factor, 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.2.3-AXIAL FLUX DIFFERENCE)

4.

EMF-2328(P)(A), Revision 0 PWR Small Break LOCA Evaluation Model, March 2001.

(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)

5.

BAW-10227P-A, Revision 1, Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel, June 2003.

(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)

6.

BAW-10186P-A, Revision 2, Extended Burnup Evaluation, June 2003.

(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)

7.

EMF-2103P-A, Revision 0, Realistic Large Break LOCA Methodology for Pressurized Water Reactors, April 2003.

(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)

8.

BAW-10241P-A, Revision 1, BHTP DNB Correlation Applied with LYNXT, July 2005.

(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])

9.

BAW-10199P-A, Revision 0, The BWU Critical Heat Flux Correlations, August 1996.

(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])

10.

BAW-10189P-A, CHF Testing and Analysis of the Mark-BW Fuel Assembly Design, January 1996.

(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])

11.

BAW-10159P-A, BWCMV Correlation of Critical Heat Flux in Mixing Vane Grid Fuel Assemblies, August 1990.

(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])

12.

BAW-10231P-A, Revision 1, COPERNIC Fuel Rod Design Computer Code, January 2004.

(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f2(I) limits])

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 11 of 16 Revision 0 Table 2 Maximum Allowable Peaking Limits MAP(X,Y,Z) for Operation AXIAL(X,Y)

ELEVATION (FT)

MAP(X,Y,Z)

AXIAL(X,Y)

ELEVATION (FT)

MAP(X,Y,Z) 1.03 1

2 3

4 5

6 7

8 9

10 11 1.7084 1.7084 1.7083 1.7082 1.7081 1.7079 1.7078 1.7073 1.7072 1.7072 1.7066 1.3 1

2 3

4 5

6 7

8 9

10 11 2.4093 2.4077 2.4068 2.4063 2.4050 2.4043 2.4034 2.3923 2.3053 2.1479 2.0305 1.1 1

2 3

4 5

6 7

8 9

10 11 1.8764 1.8761 1.8758 1.8755 1.8750 1.8746 1.8732 1.8731 1.8729 1.8733 1.8320 1.4 1

2 3

4 5

6 7

8 9

10 11 2.7078 2.6846 2.6349 2.5983 2.5933 2.6505 2.6394 2.5563 2.4572 2.2668 2.1190 1.2 1

2 3

4 5

6 7

8 9

10 11 2.1327 2.1321 2.1315 2.1306 2.1295 2.1290 2.1286 2.1274 2.1254 2.0247 1.9355 1.5 1

2 3

4 5

6 7

8 9

10 11 2.8223 2.7591 2.6985 2.6542 2.6482 2.7162 2.7495 2.6507 2.5578 2.3791 2.2011

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 12 of 16 Revision 0 Table 2 (continued)

AXIAL(X,Y)

ELEVATION (FT)

MAP(X,Y,Z)

AXIAL(X,Y)

ELEVATION (FT)

MAP(X,Y,Z) 1.6 1

2 3

4 5

6 7

8 9

10 11 2.8935 2.8252 2.7571 2.7055 2.6985 2.7776 2.8428 2.7401 2.6471 2.4862 2.2766 1.9 1

2 3

4 5

6 7

8 9

10 11 3.0267 2.9676 2.8960 2.8345 2.8256 2.9291 3.0655 2.9714 2.8741 2.7780 2.4797 1.7 1

2 3

4 5

6 7

8 9

10 11 2.9545 2.8786 2.8103 2.7522 2.7457 2.8308 2.9230 2.8209 2.7287 2.5873 2.3478

>1.9 1

2 3

4 5

6 7

8 9

10 11 2.6005 2.5794 2.5536 2.5118 2.4500 2.4520 2.6494 2.5446 2.4371 2.2595 2.0819 1.8 1

2 3

4 5

6 7

8 9

10 11 2.9942 2.9271 2.8570 2.7942 2.7875 2.8823 2.9967 2.8980 2.8027 2.6853 2.4156 2.1 1

2 3

4 5

6 7

8 9

10 11 2.7049 2.6623 2.6375 2.5288 2.5460 2.5252 2.7990 2.6963 2.5830 2.4527 2.1796

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 13 of 16 Revision 0 Table 2 (continued)

AXIAL(X,Y)

ELEVATION (FT)

MAP(X,Y,Z)

AXIAL(X,Y)

ELEVATION (FT)

MAP(X,Y,Z) 2.3 1

2 3

4 5

6 7

8 9

10 11 2.7475 2.7275 2.6457 2.6125 2.5774 2.5707 2.9015 2.7773 2.6757 2.4740 2.2722 2.5 1

2 3

4 5

6 7

8 9

10 11 2.8372 2.7099 2.7081 2.6340 2.6483 2.6284 3.0303 2.8965 2.8111 2.7019 2.3542

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 14 of 16 Revision 0 Fraction of RATED THERMAL POWER FIGURE 1 Rod Bank Insertion Limits Versus THERMAL POWER, Four Loop Operation (TS 3.1.6)

  • Fully withdrawn region shall be the condition where shutdown and control banks are at a position within the interval of 225 and 231steps withdrawn.

Fully withdrawn shall be the position as defined below, Cycle Burnup (MWd/mtU)

Steps Withdrawn 0

225 to 231 This figure is valid for operation at a RATED THERMAL POWER of 3455 MWth when the LEFM is in operation.

If the LEFM becomes inoperable, then prior to the next NIS calibration, the maximum allowable power level must be reduced by 1.3% in power, and the rod insertion limit lines must be increased by 3 steps withdrawn until the LEFM is returned to operation.

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 15 of 16 Revision 0 FIGURE 2 K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height (TS 3.2.1) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0

2 4

6 8

10 12 Core Height (Feet)

K(Z)

Elevation K(z)

(ft) 0.000 1.0000 6.285 1.0000 7.995 1.0000 9.705 1.0000 12.000 1.0000

COLR FOR SEQUOYAH UNIT 1 CYCLE 23 SEQUOYAH UNIT 1 Page 16 of 16 Revision 0 FIGURE 3 AXIAL FLUX DIFFERENCE Limits As A Function of RATED THERMAL POWER For Burnup Range 0 EFPD to EOL (TS 3.2.3)

This figure is valid for operation at a RATED THERMAL POWER of 3455 MWth when the LEFM is in operation.

If the LEFM becomes inoperable, then prior to the next NIS calibration, the maximum allowable power level must be reduced by 1.3% in power, and the AFD limit lines must be made more restrictive by 1% in AFD until the LEFM is returned to operation.