ML17332A851: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
| Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:wnu- | {{#Wiki_filter:wnu-7306NUCLEARENERGYSYSTEMSCLASS3REACTORPROTECTION SYSTEMDIVERSITY ZNWESTINGHOUSE PRESSURIZED WATERREACTORSApril1969Author:T.Q.T.BurnettContributors: | ||
FOREWORDOverthepastfouryears, | J.W.Dorrycott A.C.HallD.H.RisherAPPROVED: | ||
S.ore,ManagerCoreEngineering Westinghouse ElectricCorporation NuclearEnergySystemsDivisionP.O.Box355Pittsburgh, Pennsylvania 152309507180151 950707PDRADQCK050003159PDR<3RZRestintthouse ElectricCorp./ | |||
FOREWORDOverthepastfouryears,considerable attention hasbeenfocusedondesigncx'iteria andmethodsofimplementation fornuclearpowerplantprotection systems.Ofpaxticular difficulty hasbeenche"establishment ofsuitablecriteriatodealwiththeproblemsofsingleandmultiplefailures, channelindependence, ControlandProteccion Systemindependence, andthe'eviation ofProtection Systeminputs..Akeyfactorinthisdifficulty hasb'eentheconflictbetweenthegoaltominimizethenumberofredundant measurements fox'nysingleprocessvariable, withregaxdtotheoverallnuclearplanerequirements, andthegoaltoestablish aauucbnumdegreeofseparation betweentheProtection SystemandtheControlSystem.Obtaining anaccurateandreliablemeasuxement ofaparticular processvariableisoneofthemostdifficult aspectsofaninstrumentacdon system.Therearesignificant problemsassociated withthephysicalmountingofthemeasurement devicesincluding optimumlocation, supporting structuxes, accesstocheequipment formaintenance, andprotection againstadverseenvironmental factors.Inthecaseofnuclearpowerplants,thereisalsotheproblemoftransmitting thesignalsfxomthecontainment tothecontrolroomequipment. | |||
Allofthesefactorsprovidearguments forminimizing thenumberofseparatemeasuremencs. | |||
Mostofthefunctions performed bytheplantControlSystemrequirethesameprocessinformation astheProtection System.Inthesecases,Westinghouse providesControlSysteminputsfromProtection Systemchannels. | |||
The"Proposed IEEECriteriaforNuclearPowerPlantProtection Systems," | |||
IEEENo.279,permitsthisdesignapproach, sub)ecttocertainrestrictions. | |||
However,thisproposedresolution wasnotunanimously acceptedbymembersofotherUnitedStatesstandards andregulatory | |||
: agencies, inparticular, USASXSectional Committee N3(N42),andtheAEC-ACRS. | |||
Westinghouse heldmeetingswithmembersoftheAECtoclarifytheWestinghouse designapproachandtoidentifytheadditional designcriteriaappliedbyWestinghouse, whichgobeyondtheproposedIEEEcriteria. | |||
Theseadditional criteriarequireseparation andidentification ofcontrolandprotection equipment andtheuseofisolation devicestotransmitsignalsfromtheProtection SystemtotheControlSystem.ItisthepositionofWestinghouse thattheseadditional criteriaofferaresolution tothe'tated designconflict. | |||
Westinghouse hasdemonstrated byactualimplementation ofthesecriteriathatahighdegreeofseparation, including properidentification, canbeachievedbetweenProtection Systemequipment andControlSystemequipment. | |||
Morerecently, thequestionofthefailuremodechangedfromthatofasinglerandomfailuretocommon-mode failure-afailuremodewhichwouldadversely affectall,redundant channelsofaparticular protective functionintheProtection System.Itisgenerally recognized thatseparation ofcontrolandprotection doesnotprovidedefenseagainstthecommon-mode failures. | |||
ThenuclearpowerplantControlandProtection SystemdesignemployedbyWestinghouse wasevaluated indetailwithrespecttothecommonmode failureandpresented inaseriesofmeetingstomembersoftheAEC.Thisreportdocuments theinformation transmitted inthesemeetingsandprovidesatechnical basisforthedevelopment ofcriteriafordesignofProtection Systemswithadequateconsideration forcommon-mode failures. | |||
Theconclusion ofWestinghouse based>upon actualexperience, previouswork,andreinforced bytheresultspresented herein,isthatdesigncriteriafornuclearpowerplantprotection systemsshouldpermitmagnumeffective useofprocessmeasurements bothforcontrolandprotection functions including theuseofProtection Systemmeasurements intheControl.System.Suchcriteriasignificantly enhancethedesigner's capability toprovideasystemwithadequatecapability todealwiththemajorityofcommon~ode failurestaswellastoprovideredundancy forcriticalcontrolfunctions. | |||
J.M.Gallagher,'Jr. | |||
Consulting Engineer-ControlTechnology Vestinghouse designphilosophy forReactorProtection andControlSystemsistomakemaxiunaause,forbothprotection andcontrolfunctions, ofawiderangeofmeasurements. | |||
TheProtection andControlSystemsareseparateandidentifiable. | |||
Thedesignapproachpermitsnotonlyredundancy ofcontrol,providing itsowndesirable increment tooverallplantsafety,butalsoprovidesaProtection Systemwhichcontinuously monitorsnumeroussystemvariables bydifferent means;i.e.,protection systemdiversity. | |||
TheextentofProtection Systemdiversity hasbeenevaluated forawidevarietyofpostulated accidents. | |||
Inmostcases,twoormore=diversepro-tectivefunctions. | |||
wouldterminate anaccidentbeforeintolerable consequences couldoccur. | |||
teetiee11.11.2233.13.1.13.1.23.1.33.1.43.1.53.23.2.3.,3.2.23. | teetiee11.11.2233.13.1.13.1.23.1.33.1.43.1.53.23.2.3.,3.2.23.3TABLEOFCONTENTSTitleABSTRACTINTRODUCTION COMMONMODE FAILURESAND.DIVERSITY PROTECTION SYSTEMEVALUATION QjMMARYFUNCTIONAL DESCRIPTION, REACTORCONTROLANDPROTECTION SYSTEMREACTORPROTECTION SYSTEMGENERALREACTORTRIPSManualTripHighNuclearPower(PowerRange)HighNuclearPower(Intermediate Range)HighNuclearPower(SourceRange)Overtemperature 4TTripOverpower 4TTrip'LowPressureTripHighPressureTripHighPressurizer WaterLevelTripLowReactorCoolantFlowSafetyIn)ection SystemActuation Trip(SIS)TurbineTripLowFeedwater FlowReactorTripLowSteamGenerator WaterLevelTripPERMISSIVE CIRCUITSListofPermissive CircuitsRODSTOPSRodStopListINDICATION ControlBoardIndicators andRecorderCentralBoardAnnunciator PanelControlBoardStatusPanelSTEAMDUMPCONTROLSYSTEMCONDENSER STEAMDUMPSYSTEMSystemDesignControlSystemLoadRefection ControlTurbineTripControlPressureControlATMOSPHERIC STEAMRELIEFSYSTEMREACTORCONTROLTheTemperature ChanelThePowerMismatchChannelThePressureChannelTheRodSpeedProgram~Paeiv1>>1l-l1-5213.1-13.1-13.1>>13.1-13.1-13.1-13.1-23.1-23.1-33.1-33.1-43.1W3.1-53.1>>53.1-63.1-73.1-73.1-73.1-83.1-83.1-93.1-93.1-103.1-103.'1-103.1-113.2-13.2-13.2-13e2~33e2~33.2-43.2-53.2-63.3-13.3-13.3-13'~23~32 Seetiet3,4'.53.5.13.5.23.5.344.14.24.34.44.4.14.4.24.4.34.4.44.4.54.4.655.l.5.1.15.1.25.1.35.1.45.25.2.1~5.2.2.;:!.5.35.3-15-3.2TABLEOPCONTENTS(Cont'd)TitleSTEAMGENERATOR LEVELCONTROLSTEAMBREAKPROTECTION SYSTEMSAFETYINJECTION SYSTEMACTUATION FEEDWATER LINEXSOLATION STEAMLINEISOLATION PROTECTION ANDCONTROLSYSTEMSDESXGNPRINCIPLES PROTECTION SYSTEMFUNCTIONAL DESIGNCONTROLSYSTEMPJNCTIONAL DESXGNCONTROLANDPROTECTION INTERRELATION SPECIFICCONTROLANDPROTECTION INTERACTIONS NUCLEARFLUXCOOLANTTEMPERATURE PRESSURIZER PRESSUREControlofRodMotionPressureControlLowPressureHighPressurePRESSURIZER LEVELHighLevelLowLevelSTEAMGENERATOR WATERLEVELFEEDWATER PLO..Feedwater FlowSteamFlowLevelSTEAMLINEPRESSUREACCIDENTEVALUATXON RODWITHDRAWAL ACCIDENTIPROBABLECONSEOUENCES OFACCIDENTPROBABILITY OFACCIDENTMANUALINTERVENTION DIVERSXTY OFREACTORTRIPSLOSSOFFEEDWATER LOSSOFFEEDWATER | ||
-TRANSIENT ANALYSISTYPXCALSYSTEMDESIGNREOUIR1M2KS Auxiliary Feedwater SystemMainSteamandFeedwater PipingLOSSOFCOOLANTPLOWANALYSISZNTRODUCTION ANDSUMMARYPROTECTION SYSTEMDESCRIPTXON LowReactorCoolantPlowReactorCoolantPumpLowVoltageReactorCoolantPumpLowFrequency PumpCircuitBreakerPositionOverpower Delta-TReactorTripInterlocks | |||
~Pae3.4-13.5-13.5-13-5-13.5-14.1<<14.1-14.2-14.3-14.4-14.4-14e4-24.4-34.4-34.M34.4-34.4-44.4-44.4-54.4-54.4>>64.4>>74.4-84.4-84.4-85.3.-15.1-15.1-25.1-45.1-45.1-65.2-15.2-25.2-45.2-45.2-65.3-15.3-15.3-15.3-25.3-25.3-25.3-35.3-35.3-4 14C Sectice5.3.35.3.45.3.55.45.4.15.4.25.4.35.55.5.15.5.25.5.35.5.45.65.75.85.95.10:5.115.12TABLEOFCONTENTS(Cont'd)TitleMULTILOOP LOSSOFFLOWSINGLELOOPLOSSOFFLOWLOCKEDROTORACCIDENTRODEJECTIONANALYSISINTRODUCTION ANDSUMMARYCASESCONSIDERED INDETAILZeroPowerCaseFullPowerEndofLifeCozeBACK-UPTRIPPROTECTION LOSSOFSTEAMLOADINTRODUCTION ANDSUMMARYLOSSOFLOADPROTECTION ANDDESIGNCRITERIASteamDumptoCondenser Pressurizer PressureReliefSteamSystemPressureReliefDirectReactorTripHighPressurizer PressureTripOvertemperature 4THighPressurizer LevelTripEVALUATION OF'PROTECTION SYSTEMFORLOSSOFLOADInitiation ofAccidentAnalysisandDiscussion CONCLUSIONS RODWITHDRAWAL DURINGSTARTUPCONTROLRODDROPENGINEERED SAFEGUARDS ACTUATION CONTAINMENT PRESSUREPROTECTION EXCESSIVE MADEXCESSZVE FEEDWATER PLOWSTATIONBLACKOUTCONTROLANDPROTECTION FUNCTIONS | |||
~Pae5.3-45.3-65.3-75.4-15.4-15.4-15.415.4-25.4-35.5-15.5-15.5-25.5-25.5-35.5-35.5-35,5~45.5W5.5-45.5-55.5-55.5-75.5-95.615.7-15.8-15.9-15.10-15.11-15.12-1 | |||
LISTOFFIGURES~FgureNo.2- | LISTOFFIGURES~FgureNo.2-1Illustration ofControlandProtection Design3.1-13.1-23.2-13.3-23.3-1Overtemperature dTChannelOverpower dTChannelSteamCycleValveArrangement Condenser SteamDumpControlSchemeReactorControlSystem4.2-14.3-15.1-15.1-25.1-35.1-45.1-55.1-65.1-75.1-85.1-95.1-1052-1522.~5.2-35.2-45.2-55.2-65.2-75.2-85.2-95.3-I.5-3-25+335.3-45.3-55.3-6SteamGenerator LevelContxolandProtection SystemPressurizer PressureProtection andContxolSystemsDesignIFaultTreefoxRodWithdrawal AccidentFaultTreeforRodWithdrawal AccidentInsertedRodWox'thandReactivity RequiredtoReachDNBR~1.0inHotAssemblyVersusCoreLifeCompleteRodWithdrawal fromMaximumFullPowerCompleteRodWithdrawal fromMaximumFullPowerSteadyStateCoreLimitsandReactorTripandAlarmPointsBeginning ofLife,RodWithdrawal from102XPower,MinimumDNBRBeginning ofLife,RodWithdrawal from102XPower,TimeofEventBeginning ofLife,RodWithdrawal from80XPower,Resulting MinimumDNBRBeginning ofLife,RodWithdrawal from80XPower,TimeofEventFaultTreeforLossofFeedwater FlowFaultTreeforLossofFeedwater FlowFaultTreeforLossofFeedwater FlowLevelResponsetoLossofSteamFlowSignalLossofFeedwater FlowtoOneSteamGenerator atT~OneSecond,TypicalTwo-LoopPlantLossofFeedwater FlowtoOneSteamGenerator atT~OneSecond,TypicalTwo-LoopPlantCompleteLossofFeedwater CompleteLossofFeedwater Auxiliary Feedwater SystemSchematic, Two-LoopPlantFaultTreeforMulti-Loop LossofFlowFaultTreeforSingleLoopLossofFlowFaultTreeforLockedRotorAccidentMulti-Loop LossofFlow,TypicalPlantSingleLoopLossofFlow,TwoLoopPlantLockedRotorLossofFlow,TwoLoopPlant | ||
~e+lyIA'I'I'lhPl0V0 LISTOFFIGURES(Cont'd)FiureNo-5.4-15.4-25.4-35.4-45.5-15.5>>25.5-35.6-15.6-25.7-1.5.725.8-1ZeroPowerEndofLifeRodEjection,NoTripFullPowerEndofLifeRodEjection, | ~e+lyIA'I'I'lhPl0V0 LISTOFFIGURES(Cont'd)FiureNo-5.4-15.4-25.4-35.4-45.5-15.5>>25.5-35.6-15.6-25.7-1.5.725.8-1ZeroPowerEndofLifeRodEjection, NoTripFullPowerEndofLifeRodEjection, NoTripIllustration ofSafetyLimitsandTripPointsforRodEjectionAccidents, NoTripIllustration ofTransient Trajectories forRodEjectionAccidents, WithNoTripFaultTreeforLossofLoadAccidentFaultTreeforCoreDamage,LossofSteamLoadLossofLoadAccidentUncontrolled RodWithdrawal fromSubcritical, FractionofNuclearPowerUncontrolled RodWithdrawal fromSubcritical Condition, Temperature ResponsetoaDroppedControlRodResponsetoaDroppedControlRodSafetyInjection Actuation SignalvsBreakArea | ||
~emme~e'~'%qelt*49~*t 1. | ~emme~e'~'%qelt*49~*t 1.INTRODUCTION poophyforReactorProtection andCooltomaemaxaumuseforbothprotection andcontrolfunctions ofawiderangeofmeasurements. | ||
Thisresultsinabroadspectrumofredundant protection andcontrolfunctions. | |||
Thedesignapproachusedpermitsallequipment components tobeidentified asprotection orcontrolandlocatedaccordingly, withelectrical isolation andphysicalseparation betweenthem.Thedesignapproachthuspermitsnotonlyreduncancy ofcontx'ol, providing asignificant anddesirable increment tooverallplantsafety,butalsoprovidesaProtection Systemwhichcontinuously monitorsnumeroussystemvax'iables bydifferent means;i.e.,Protection Systemdiversity. | |||
AlthoughtheProtection SystemdesignbasisrequiresonlythatrandomsinglefailuresnotnegatetheProtection System,aconsiderable depthofprotection IisachievedbytheWestinghouse designapproach. | |||
Systemsdesigners andre-viewershavexecentlyemphaaLzed theimportance ofachieving asuitablebalanceofdesignobfectives inregardtofunctional andequipment diversity. | |||
"'nteraction ofcontrolandprotection functions, testing,andsurveillance to~thieveaProtection Systemdesignthathasadequatecapability tocopewithbothrandomandsystematic failuremodes.(Systematic failuresarealsoknownascommon-mode, ornonrandom failures.) | |||
1.1COMMONWODE FAILURESANDDIVERSITY Common-mode, orsystematic | |||
: failures, arethosethatpartially orcompletely preventidentical, instrument channelsfromperforming theirfunction-p'~.4*/I dundancyisnotananswertothistyPeoffailure,sinceallchannelsareassume~edtobeaffected. | |||
Further,thesefailurescannotbeevaluated byproao~bability analysisorreliability data;indeed,theyarecharacterized byoversights ordeficiencies whichpresumably wouldbecorrected whenfirstdetected. | |||
Thegeneralcategories ofcommon~ode failuresare:a)Functional deficiency | |||
-Thevariablebeingmonitored doesnotprovidetheinformation intendedduringthecourseofanaccident. | |||
Thisdeficiency couldbecausedbytheaccident's following adifferent course/thancalcu1ated bythedesigners, orbyachangeintheplantcharacteristics whichchangestherelationbetweenthepxocessandthevariablebeingmonitored. | |||
b)Maintenance error-Thisfailureincludesconsistent miscalibration ofallchannelsofatype,andalsocircuitmodification oxrepqirwhichinadvertently rendersthechannelsfunctionally inoperative.'esign deficiency | |||
-Pailuxeoftheequipment asinstalled tomeetfunctional requirements. | |||
Thiscouldarisethxoughunrecognized dependence onasingle,commonelement., | |||
suchasventilation; byanunexpected charpcteristic (suchassaturation orslowresponse) inallcontrollers ofatype;orbytheinstrumentation beingdisabledasaresultoftheaccident-d)~<<malcatastrophe | |||
-Withproperisolation andseparation betweenredundant | |||
: channels, thisisconfinedtoma)ordisasters suchasflood,<<rthquake, fire,etc.Whereseparation isnotcomplete, lessdrastic~ventscanhavethesameresult.Forexample,afallingob)ectcouldconceivably severallcablesinasmallarea.1-2 t+J~~N Considerable effortisbeingmadeinReactorProtection Systemsdesignpreventthesecommon-mode | |||
: failures, asillustrated bytheexamplesbelow.Howeverremote,thepossibility ofacommonmode failuremustnevertheless beconsidered. | |||
Thelikelihood ofmaintenance errorscanbeminimized byproperadministrative procedures, identificationofProtection Systemcomponents, andcompletedocumentation oftheas-supplied Protection System,including thedesignbasis.Designdeficiencies canbelargely.eliminated byequipment qualification testingandbycaxefulreviewofallpotential commonelements. | |||
Redundancy isanaccepteddefenseagainstx'andomfailureswhichaffectonlyonecomponent orchannelatatime.Similarly, "cliversity isadefenseagainstcommon~de failureswhichcouldaffectmultiplechannels. | |||
Suchprotective diversity canbeachievedineitheroftwoways:equipment diversity, byproviding different typesofinstrumentat'ion'to monitorthesamevariable, orfunctional diversity, bymonitoring different plantvariables. | |||
Functional diversity entailssomedegreeofequipment diversity, P~rilywithrespecttosensorsandsetpoints. | |||
Moreimportantly, however,functional diversity isnotdependent onthecalculated respenseofanyone"ariableduringanaccident. | |||
Asaconvex'se ofthis,functional diversity ismorecomplextodemonstrate sincetheresponseofseveralvariables mustbeanalyzedforeachtypeofaccidentevaluated. | |||
TheWestinghouse Pxotection Systemistherefore evaluated inthisreportwithrespecttofunctional divexsity. | |||
Todemonstrate diversity whereprotective actionisneeded,itisnecessary toshowcombinations oftwoormoreofthe1-3 e4 fo1lowingbarriers" foreachaccident. | |||
Someoftheseareaddressed totheneedforprotective action,ratherthantotheInstrumentation Systemitself.Thisisconsidered areasonable approachtojudgingtheadequacyofaProtection System.a)Tolerable consequences forexpectedconditions | |||
-Althoughcase"analysismightfailtoprovethatprotection isnotvastmajorityofcasesmayhaveacceptable consequences. | |||
worstneeded,theWhetherornotthisisasuitablebarrierdependsontheprobability ofadverseconditions (suchasexcessive insertedrodworth)andthedesignandoperating precautions takentopreventthem.b)Lowprobability ofaccident-Probability oftheinitiating faultmightbeconsidered, butonlyinconjunction withtheprobableconsequences. | |||
Thatis,aloss-of-coolant accidentdoesnotrequirelessprotection tthanalossofflowaccidentsimplybecauseitislesslikelytooccur.c)Controlinterlocks | |||
-RodstopsorotherdeviceswhicharrestormodifyspuriouscontrolactionshortofreactortripcanbepartoftheProtection System.Protection Systemdesignstandards, equipment testing,andTechnical Specification limitswouldtherefore beapplied.nualaction-Manualactioncanbeconsidered areliablebackuptoautomatic protection, depending ontheaccidentrate,thecomplextytheproblemandcorrective action,andthealarmsandindication provided. | |||
1-4 | |||
Automatic reactortrip-Eachaccidentmayhavea"principle" reactortripassociated withit..)BackuPreactortrip-Asecondreactortripfunctionofisanadditional barrier.InallbutafewcasesintheWestinghouse design,aspecificreactortripisnotcategorically either"principle" or"backup": | |||
SL~5ARYIntheWestingoutinhouseReactorControlandProtectionSystemstheControlSystemisseoara' | itservesastheprinciple protection againstsomeaccidents, andasbackupprotection againstothers.1.ZPROTECTION SYSTEM-EVALUATION Anaccident-by>>accident evaluation hasbeenperformed inordertoevaluatethe"depth"ordegreeofdiversity providedbycurrentWestinghouse design.Asexpected, diversity couldnotbedemonstrated forallaccidents. | ||
Thexesultsingenex'al, however,indicateaconsiderable degreeofprotection Systemdivexsity. | |||
Theevaluation, reportedin-.Section 5ofthisreport,analyzedeachpostulated | |||
~ccidentwithoutcreditforprotective actiontothepointatwhichoneofthethreefollowing eventsoccurs:Inherentplantcharactex'istics terminated theaccident; b)Theconsequences areclearlyintolex'able', | |||
orc)=<<<tinganalytical methodsarenolongervalid(forexample,systemalculations cannotbeperfoxmed withanydegx'eeofconfidence ifseverecoredamageoccurs).1-5 tyneofevaluation, theamountofanalytical rigormustbereducedKathistypeoascontonsbecomeincreasingly remoteandsafetylhaitsareexceededisbecausepresenttechnology cannotrigorously supportassumptions assystembehaviorfortheseremotecases.Inlargepart,thisfactexplainsthereasonwhysuchconservative safetylimitsareselectedfordesignpurposes. | |||
1-6 I | |||
SL~5ARYIntheWestingoutinhouseReactorControlandProtectionSystemstheControlSystemisseoara'sseoarateanddistinctfromtheProtection SystP"orection Systemisindependent oftheContro]heProtectonS"ste-"Lishighlydependent uponsignalsderivedfromtheProtectio Sthroughisolation amplifiers; Thisinterre].ationship isillustdininure-1.hedesignoftheControlandProtection Syst~dthinteractions betweenthemarediscussed indetailiSectio'd4ofthisreport.Thedesignphilosophy istomakemaxianunusage,forbothcontrolandprotection | |||
: purposes, ofallmeasurements ofplantvariables. | |||
Foreachvariablemonitored, thebesttypeofequipment available isselectedasthevehicleofmeasurement. | |||
Clearly,therequirements formeasurements forcontrolorprotection purposessonearlyoverlapthattheoptimumequipment foronepurposeisalsotheoptimumfortheother,.It'srecognized bythoseresponsible forProtection Systemdesignandreviewthatlittleifanyadditional safetyisachievedbyutilizing independent, butidentical, measurements forcontrolandprotection. | |||
Infa<<,itisWestinghouse's positionthatadditional identical channelsareseriously disadvantageous jnthatmorepenetrations, maintenance, andcontrolroomreadoutsarerequired. | |||
porexample,operatorsurveiU.ance ofprotection channels'isnecessarily dilutedwhenplantoperation isdependent onotherindications. | |||
pressurized waterreactorplant,itisalmostaxiomatic that-.naLargePresrturbation whichencroaches onsafetylimitssignificantly affects~vperturaForexample,areactivity excursion | |||
'P''h contro3.channels,derivedformthefourpressureprotection."-ourpressurecontnosing3.eins-hanne3.s,areuse-el'eiwhenneeded,norcananysingleiQt~ | -suchasaccidental rodvt.thrawdrawal-causesnotonlyanincreaseinneutronfluxandcorepower,~soanincreaseincoolanttemperatures andinpressurizer pressurebutandlevel.Reliablecontrolisobviously'he bestapproachtoplantsafety.Theprime,purposeofacontrolsystemistolimitexcursions beforeprotective actionisnecessary. | ||
hasaDNgratioof1.30, | SincethecontroldevicesmustbecapableofLimitingexcursions, theyarealsocapableofcausinganexcursion | ||
'P7"IHtI0 | -perhapsinthe,oppositedirection | ||
~,'I1"k0P | -ifspuriously actuated. | ||
)Low( | FailureoftheControlSystem,eitherbynotactingwhenneeded,oractingwhennotneeded,decreases theleve1ofsafety.Redundancy-ofcontrol,whereapplicable, istherefore highlydesirable. | ||
Pressurizer pressurecontrolisaprimeexampleofefficient useofredundant measurements forsafeoperation viaareliableControlSystem.Twooower-operated pneumatic reliefvalvesareprovidedtolimitpressureexcursions withinthenormaloperating range.Althoughnotessential to-safety,thesevalvesincreasesafetymarginsforsystemoverpressure | |||
~overpressure protection isprovidedbythehighpressurereactortrip~safetyvalves).Shouldeithervalvebeactuatedspuriously, however,p~tection againstthereduction inpressuremightalsoberequired. | |||
2~2 | |||
'P''h contro3.channels, derivedformthefourpressureprotection | |||
."-ourpressurecontnosing3.eins-hanne3.s, areuse-el'eiwhenneeded,norcananysingleiQt~tfailducepressuretothepointatwhichprotection wouldbeneededressurechannelsareusedtocontro1eachvalve.OnepressurechannelMopressureservesasaninterlock, blockingtheairsupplytothevalveonalowpressurea3.arm.Sincethepneumatic valverequiresairtoopen,thi'slowpressurealarmclosesthevalve(ifopen)andholdsitclosed.Intheabsenceofalowpressurealarmonthefirstchannel,ahighpressurealarmonthesecondchannelopensthevalve.."-romtheprotection Systemviewpoint, thecorollary tomaxbaumusageofallmeasurements isthatprotection againstanygivenaccidentisnotnecessarily confinedtomeasurement ofjustonevariable. | |||
Thusthereactivity excursion notedpreviously, thereactortriponhighpressurizer wagerleve3,alsoprovidesadegreeofprotection, eventhoughthebasicpurposeofthistripistoprotectthepressurizer reliefpipingfromwaterreliefsurge,throughthesafetyvalves.Sincecompletely different. | |||
typesofmeasurement areused<<rneutronfluxandpressurizer waterlevel,diversity doesexistintheProtection System.Lheextentofsuchdiversity isevaluated inSection5forawidevarietyotaccidents. | |||
Inmostcases,twoormorediversereactortripsterminate | |||
~accidentbeforecatastrophic consequences canoccur.However,thesecondtripreached(the"backup")generally doesnotpreventthedesignsateylimitfrombeingexceeded. | |||
Inthiscontext,thedesignsaiety2-3 h | |||
hasaDNgratioof1.30,isitselfahighlyconservative such~,.exceeding thislimitdoesnotimplyintolerable consequences. | |||
~onecaseevaluated | |||
-thehypothetical rodejectionaccident-protection systememdiversity couldnotbeadequately demonstrated fortheworstcase.~eyerarodejectionisconsidered tobeanextremely unlikelyaccidentonecausedbycompleteandinstantaneous mechanical failureofacontrolrodpressurehousing.Further,theprobableconsequences, asdistinctfromtheworstcase,aretolerable sincemostcontrolrodsarefullywithdrawn fromthecore.Eventhoserodsthatremaininsertedareseldominsertedtotheirinsertion limits.."-oranothertypeofaccident-completelossoffeedwater | |||
-diversity ofreactortripsdoesexist.Ho~ever,automatic actuation oftheauxiliary feedwater systemisnotdiverseforallof'hewaysinwhichfeedwater flowcouldbelost.Forthosecases,itisshownthatmanualactuation consti-rutesareliableback-uptoautomatic actuation. | |||
2-4 | |||
'P7"IHtI0 ILLUSTRATION OFCONT."d)L | |||
'lNDPROTECTION DESIGNCONTROLSYSTEMl(Signalcon~itionins, controllers, | |||
~Iinterlocks, anddefeatswitches) t.otection | |||
{testsigna.ague)(testradout)~estCONTROLPROTECTION Channel'SensorI\ICablingandPenetrations | |||
~I!PewerSuoply!Isolation I;ihmplifier IBistablelI(Fromotherprotection channels) | |||
".harmelChannel23f"1IIn8icatio Channel4CCCJo4kIJCOCIHg~gOCl~+Icd0CcCCJPROTECTION LOGICa&CKSTRAINTOREACTORTRIPBREAKERSFIGURE2-l | |||
~,'I1"k0P CTIONALDESCRIPTION REACTORCONTROLANDPROTECTION SYSTEH~~CTIONAL REACTORPROTECTION SYSTEH3.13.1.1GENERAL'r'1andProtection Szstmfuncti~di,,basedontheRobertEmmettGinnaNuclearStationoftheRochester GasandElectricCo.(RGBE).Itisrepresentative ofWestinghouse designpractice. | |||
Allreactortripsmeetthefollowing criteria: | |||
a)Asinglefai1ureshallnotnegateareactortripb)Allchannelsarecapableofcalibration andmaintenance atpower.3.1.2REACTORTRIPS4Aresumeofreactortrips,meansofactuation andcoincident circuitrequirements isgiveninTable3.1-1.i~fllnual TrigDepressing eitheroftwomanualpushbuttonsonthemaincontrolboardactuatesareactortrip.HihNuclearPower(PowerRane)Dualtripsettings= | |||
areprovided: | |||
3.11 "ca.l\"1~ | |||
)Low(approximately 25X)b)High(approximately 110X).Thelowsettingcanbemanuallyblockedwhenpowerincreases aboveP-10*(approximately 10Xpower)andisautomatically reinstated whenpowerdecreases belowP-10.Thesecircuitstripthereactorwhentwoofthefourexternalionchamberaveragefluxsignalsareabovethetripsetpoint. | |||
HihNuclearPower(Intermediate Rane)Thiscircuittripsthereactorwheneitherofthetwointermediate channelsindicateabovethetripsetpoint, Etmaybemanual1yblockedwhenpowerisaboveP-10andisautomatically resetwhenpowerdecreases-below P-10.Expectedtripsetpointis25X.HLhNuclearPower(SourceRane)Thiscircuittripsthereactorwheneitherofthetwointermediate Prangechannelsindicateabovethetripsetpoint. | |||
Itmaybemanua11yblockedwhentwointermediate rangechannelsreadsavalueaboveP-6andisautomatically reinstated whenbothintermediate rangechannelsdecreasebelowP-6.TripsettingisbetweenP-6andthemaximumsourcerangepowerlevel.*P-()designates apermissive circuittoblockoractivateatripfunction. | |||
ThesecircuitsaredefinedinSection3.1.3. | |||
4~I' | 4~I' | ||
~ | ~Fjtyvertemoe temperature 4TTrioofthistripistoprotectthecorepurposeopo,pssure,temperature, | ||
~ | 'cionTwoout~ffouroop~Foreachchannelpereactorclativemeasureofreactorpowerandiscomparedwithacontinuouslycalculated setpointoftheform:4T~K+KxPressure-K xT>>f(4I)setpointL2Javg~enthereactorcoolantloop4Texceedsthecalculated | ||
~wga~~V~~ | : setpoint, theratfectedchannelistripped.Zntheaboveequation, 4Zisthedifference'between thetopandbottompower-range ionchambersignals.. | ||
Trio~tripsensedbylossofautostopoi1pressureorbyturbinestopgturbinetrpslosureactuatesareactortripduringhighpoweroperation.Trip<s~o~r- | Thiscompensation signalautomat-icallyreducesthetripsetpointifadverseaxialcorepowerIdistribution exists.Dynamiccompensation oftheTsignalisavgalsoprovidedtocompensate forinstrument andpipingdelaysbetweenthereactorcoreandthe'looptemperature sensors.. | ||
/t6.,.t;>)0C 3>MQSSIVECIRCUITS3.'. | Aschematic representation ofthiscircuitisshownonFigure3.1-1.Anillustration ofthesetpointisshownonFigure5.1-6.Overoower 4TTriThepurposeofthistripistoprotectagainstexcessive power(fuel<<dpowerdensity). | ||
Two-out-of-four triplogicisused;therearetwochannelsperreactorcoolantloop.3.1-3 iforeachchanneliscalculated as:Nesetpointtore~K-K-T-K(T-T)-f(II)45dtavg6avgavg~'quation> | |||
f(41)isthesamefunctionasusedintheovertemperature equato-serpontetpointequation. | |||
ThetermK5compensates forthepipingandinstrument delay.ThetermK6compensates forthechangeindensityandheatt~actyoityofwaterwithtemperature (T'sthenominalTatfullpower).avgavg6~thKandKarelimitedsuchthattherateand/ormagnitude ofTcanavgonlydecreasethe4Ttripsetpointfromitsnormalvalueatfullpower.ectedsteady-state tripsetpointisllOXoftheindicated hTatfullpoMer;i.e.,llOXpower.Aschematic representation ofthiscricuitisshownonFigure3.1-2.~PressureTri.hepurposeof'thistripistoprotectagainstexcessive boilinginthecoreandtolimitthepressurerangeinwhichcozeDNBprotection isrequiredfortheovertempezature aTzeactortrip.Thiscircuittripsthe:eactoroncoincidence oftwmf-four channels. | |||
Itisautomatically blockedbelowP-7.Theexpectedsetpointis1715psig.-"-'-hPressureTri=hepurposeofthistripistoprotectagainstoverpressure andtolimitthees<<<<rangeinwhichcoreDNBprotection isrequiredoftheovertemperature Wectedsetpointis2385psig.-a<<circuittripsthereactoroncoincidence oftwo~f-three channels. | |||
3.1-4 | |||
~hPressurizer WaterLevelTritzipprovidesabackuptothehighpressuretripandalsopreventsthepzessuzzessuzizer safetyandreliefvalvesfromrelieving waterforcredibleaccidentconditions. | |||
Expectedsetpointis92Xofspan.Thiscircuittripsthereactoroncoincidence oftwo-of-three channels. | |||
Xtisautomatically blocked.belowP-7.LowReactorCoolantFlowThiscircuitisprovidedtoprotectthecorefromDUBfollowing alossofcoolantflowaccident. | |||
Themeansofsensingalossofcoolantflowaccidentazeasfollows:a)Measuredlowflowtnthereactorcoolantpipingb)Reactorcoolantpumpcircuitbreakeropenc)Undervoltage onreactorcoolantpumpbusd)Underfrequency onreactorcoolantpumpbusThelowflowtripsignalisactuatedbythecoincidence oftwo-of-three signalsperloop.AboveP-7,reactortripoccursforalossofflowinbothloops;aboveP-S,reactortripoccursforalossoffewineitherloop.Expectedsetpointis90Kofindicated fullflow.Thereactortripsignalderivedfromreactorcoolantpumpbreakerpositionisactuatedbyasingleauxiliary contact'or eachreactorcoolantpumpbreaker.Triplogicissimilartothelowflowtrip;aboveP-7reactortripoccursfora"breakeropen"signalfromanytwobreakers; aboveP8.asignalfzomanyonebreakeractuatesareactortrip. | |||
~wga~~V~~tortripprovidesadditonal reactorprotection against~undervoltage reactorpowers4coapletelossoo~tpumpbusesas~dboaLcwvoltageonoectedsetpointis70Zof~crvoltage sea~tartjrapiddecreaseinelectrical frequency candecelerate th~principe,a~torcoolantpumpsfasterthanacompletelossofpower.Anunderfrequency condition onbothreactorcoolantbuses,assensedbyeitheroftwounder>>frequency relayson'achbus,tripsthereactorandopensbothreactorcoolantpumpcircuitbreakers. | |||
Expectedsetpointisapproximately 58cps.aSafetyXnectionSstemActuation Tri(SIS)"ponactuation oftheSafetyInfection System,thereactorfstrippedtodecreasetheseverityoftheaccidentcondition. | |||
Themeansofactuating theSafetyIn)ection Systemandthustrippingthereactorareasfollows:la)Lowpressurizer pressure(1715psig)incoincidence withlowpressurizer water.level(5Zspan).AnyoneofthethreecircuitsLaactuatestheSIS.Thisfunctionmaybemanuallybypassedbelow2000psig.~Pressure(500psig)inanysteamline.Acoincidence oftwo~f-three signalsforanysteamlineactuatesthisfunction. | |||
Thisfunctioncanbemanuallybypassedwhenreactorcoolantpr~ssureisbelow2000psig.c)"ighcontainment pressure(6psig).Acoincidence oftwo-of-three signalsactuatestheSIS.d)ManualActuatjon f~~ | |||
Trio~tripsensedbylossofautostopoi1pressureorbyturbinestopgturbinetrpslosureactuatesareactortripduringhighpoweroperation. | |||
Trip<s~o~r-three fortheautostopoilpressureswitchesandtwo~f-two picissorthestopvalvepositionswitches. | |||
Thistripisincoincidence with~r~sszveci~ssiyecircuitP-7(blockedbelow10Xpower)andpermissive circuitP-9~blockedbelow50Xpowerunlesscondenser steamdumpisblocked). | |||
Low."-eedvater PlowReactorTriForeithersteamgenerator, lowfeedwater flow(compared tosteamflow)incoincidence withlowsteamgenerator vaterlevelactuatesareactortrip.'Msprotectsthereactoragainstasuddenlossofheatsink.Thiscondition issensedforeithersteamgenerator ife'itherof:twosteamflow~feedvater flovchannelsindicateadifference greaterthanasetpointandeitheroftvosteamgenerator narrow-range levelchannelsindicateless6thanasetpoint. | |||
Expectedsetpoints are0.7x.10lbs/hrand30Xofspanrespectively. | |||
LowSteamGenerator WaterLevelTri~epurposeofthistripistoprotectthereactorfroma'1ossofheatsink-<<thecaseofasustained steam/feedwater flowmismatchwhichistooll<<actuatethelowfeedwater flowtrip.~h~s~~-stripisactuatedoncoincidence oftwo-of-three lov-lovlevelsignals~nsteamgenerator. | |||
Expectedsetpoint, is15Xofnarrowrangelevelspan-3.1-7 | |||
/t6.,.t;>)0C 3>MQSSIVECIRCUITS3.'.3pouslytopermissive circuitsReference hasbeenmaokcertainactivities aswell-~~itsareusetoac'vfties.tofPermissive CircuitsnunbncFunccfnnRodwithdrawal stoponoverpower (Automatic andmanual)~XnucOne~f-fourhighnuclearpower(powerrange)*;one-of-two highnuclearpower(intermediate range*l;one-of-four overtemperature AW;orone-of-four overpower AT*.Automatic rodwith-drawalstopatlowpower.Automatic rodwith-drawalstoponroddropSelection ofsteamdumpcontroller modePermitmanualblockofsourcerangehighnuclearpowertripOne-of-one turbinefirststagesteampressureIOneof-four rapiddecreaseofnuclearpowerorrodbottomindication hTurbinetripsignalOne~f-two highintermediate rangenuclearpowerallowsmanualblock,twomf-two lowintermediate rangenuclearpowerautomatically reinstates trip.~bypassonindividual channels. | |||
."~ye~allyblockedifpeanissive circuitP-10iscleared. | |||
~' | ~' | ||
~ssiveCircuits(Cont'd)tofPessluabaapuaaaiaa~ | ~ssiveCircuits(Cont'd)tofPessluabaapuaaaiaa~Xauapermissive power(blockvarioustripsatlowpower)BlocksingleprimarylooplossofflowtripBlockreactortriponturbinetripThreemf-four lownuclearpowerandonemf-two lowturbineimpulsestagepressureThreeof-four lownuclearpowerThree~f-four lownuclearpowerandcondenser steamdumpavaQ-able(notlockedoutbyhighcondenser pressureorbylossofbothcirculating waterpumps)103.1.>>RODSTOPSPermitmanualblockofintermediate rangepowerleveltripandrodstopandlowpowerrangetripTwo-of-four highnuclearpowerallowsmanualblock,thre~f-fourlownuclearpowerautomatically reinstates thetripsAcompletelistofrodstopsisnotedbelow.RdStopListFuaaataaa)Roddropb)NuclearOverpower Actuation SinalOne~f-four rapidpowerrangenuclearpowerdecreaseoranyrodbottomsignalOneof-four highpowerrangenuclearpowerorRodMotiontobeBlockedAutomatic withdrawal (redundant, contacts) | ||
Automatic andmanualwithdrawal one-of-two highintermediate rangenuclearpower3.1-9 t~g 4-top~st(Contd)UjjCj:Xjjn c)iU.gh4TActuation SinalOne-of-four overpower 4Torone-of-four RodMotiontobeBlockedAutomatic andmanualwithdrawal overtemperature 4T(Manualbypassonindi-vidual4Tchannels) | |||
(Actuation ofthisrodstopinitiates acontinuous turbineloadreduction untiltheactuation signalis'emoved) | |||
.d)Lowpowere)Tavgdeviation One-ofmne lowturbineimpulsestagepressureOne-of-four Tdevia-avgtionfromaverageTavgAutomatic withdrawal HAutomatic withdrawal andinsertion 3.1.5LQXCATION FControlBoardXndicators andRecorder-Alltransmitted analogsignalswhichactuatereactortrips,rodstops,ozpermissive circuitsareeitherindicated orrecordedforevery.channel-Also.variabletripsetpoints (overpower 4Tandovertemperature 4T)areicatedorrecordedforeverychannel.CentralBoardAnnunciator Panel~yofthefollowing conditions actuateanalarm:Reactortrip(firstoutannunciator) b).aztialreactortrip(anychannel)~wioz~i<<deviation ofanycontrolvariable(pressure, T,pressurizer levelavg'linuclearpower,andsteamgenerator level)foranychannel.3.1-10 | |||
~>>~t'lvl%1~yWC~ns'r,zy~\~ | ~>>~t'lvl%1~yWC~ns'r,zy~\~ | ||
';t"o>. | ';t"o>.3oard StatusPm&statusofeachreactortrip'c"onthetripstatuspanel'-'. | ||
.,yll+~~lIE~TgtpI.fluuual2.HighnuclearfluxCplHClUEHCY. | channeliscontinuously displayed Istatusofeachpermissive circuitiscontinuously displayed onthpe~sivestatpanel~~'reactor tripchannel;bypass is.continuously indicated onthehyposstatuspmn-'I17~a3.1-11 sPk | ||
.,yll+~~lIE~TgtpI.fluuual2.HighnuclearfluxCplHClUEHCY. | |||
ClRCULTRY blHTERIXKKS 1/2,nointerlocks 2/4,nointerlocks forhighsettingP-10forlowsettingl.'ON1kl)1SHighandlowsetttngs; manualblockandautomatic resetoflowsetting3.',llighnuclearflux(inter>>mediaterange)Highnuclearflux(sourcerange)1/2qP-10I2/4;nointerlocks 2/4,nointerlocks 2/4>blockedbyP-72/3>nointerlocks 2/3,blockedbyP-75,Overtemperature LiT6.Overpower hT7.Low'ressure 8.9.HighpressureHighpressurizer waterlevel10a.LowFlop10b.Pumpbreakertrip10c.Undervoltage 10d.Underfrequency SISactuation 12.Turbinetrip13,Lowfeedwater flow14.Low-lowS.G.waterlevel2/3perloop~p7~P>>S1/1perloop]P7)P+S1/2t'1/2~P-71/2+1/2P-71/3,.(lowpressurizer pressureandlowpressurizer level);2/3Lowpressureinanysteamline;or2/3highcontainment pressure2/3autostopoilor2/2stopvalves>P;7]P-91/2+1/2perloop,(flowmismatchincoincidence withlowleyel)2/3$perloop h0Taygn>AYOK4T388ATsetpoint1Comparator C3.C3C42/4ogichotTcComparator RodStop0~POWERATCHANNEL(ONECHANNELOFFOURSROHH)FIGURE3.1-2 l.l CONTROLSYSTEHtamdumPareavailable: | |||
condensex'umP andatmosPheric | |||
<clevalvearrangement isshownonFigure3-2-1-yqsteamcyC0gDENSER S~QUMPSYSTEMSvseaDesisteamlinesareinstalled todumpsteamfromthesteamgenerators directlycothecondenser, bypassing theturbine.Connections withthesteammainsaxedownstream ofthestea'mmainisolation valves.ralvesandLLnesaresizedtopass35Xofturbineauuctunan calculated steamflowatfullloadsteampressure. | |||
Condenser steamdumpperformsthreefunctions: | |||
Following asuddenlossofloadofupto210MRe{about45Xof=aximumcalculated turbineload),condenser dumpactsasanartificial loadremovingexcesspowerandstoredenergywhilethereactorpowerisdecreased tomatchthexeducedturbine\Inthismanner,thecondenser steamdumpactstopreventareactortrip.Condenser steamdump,togetherwithfeedwater | |||
: addition, removesstoredenergyintheReactorCoolantSystemfollowing aplanttrip,bringingtheplantroequilibrium noloadcondition without3.2-1 rofthesteamgenerator safetyvalves.Italsomaintains | |||
~tuationo1tathotshutdownbyremovingresidualheat.ggpJ.antatsersteamdumpisusedforplantcooldowntocoldshutdown. | |||
condenser ste~~ersteamdumpisusedtoimproveoperational flexibility. | |||
Foraplanttripmayoccurfollowing alargeloadreduction if~le,apan~4.usersteamdumpisnotavailable. | |||
~condenser steamdumpsystemusesmodulating, Unear-characteristics, | |||
~~cratedvalves(airtoopen).Theirstroketimeisapproximately 5aecaads.Xnaddition, theycanbetrippedfromthefullyclosedtotatefu11openpositionwithin3secondsafterreceiving aninputeLectrictripsignal.Whilethistripsignalexists,thevalvesarebahf~thefullyopenposition. | |||
Whenthetripsignaldoesnotexist,chevalvepositionisdetermined byavariableinputelectrical signal-Forcondenser protection, condenser steamdumpisblockedbyhigh~enserpressure. | |||
Otherinterlocks'described below)areused~~esamemannertoavoidspuriousoperation. | |||
~pur'<<ous actuation ofsteamdumpmaycauseaplanttripInaddition, | |||
'-theralvesstayopen,anuncontrolled cooldownresults.Forthesethesteamdumpcontrolsystemisrequiredtomeetthecriterion signalfailureshallcausespuriousactuation-3~2~2 | |||
ControlSystemalblockdiagramfortheCondenser SteamDumpControl~efunctonSvstemisshownonFigure3.2-2.LoadReectionControl."-orpartiallossofturbineload,steamdumpiscontrolled bytheerrorsignalbetweenTandTf,whereTistheaverageoffouravgref'vgreactorcoolantaverage.temperatures and.T"istheprogz~ed, se~ref,pointforTasafunctionofturbineload.(ThesesignalsaretheavgsameasthoseusedintheReactorControlSystem.)Following aturbineloaddecrease, Tisimm'ediately resettoalowervalue,causinganreferrorsignal.Iftheerrorsignalexceedsthedeadbandfortheload.re)ection controller, thedumpvalvesaremodulated open.IftheerrorsignalexceedstheHIsetpoint, atrip.signalisgenerated whichrapidlyopensfouroftheeightvalvestotheirfully~~en position. | |||
At'heoccurrence ofaHZ-HItripsignal,alleightvalvestripopen.Thedistinction betweenmodulating andtrippingvalvesopenismadebecauseofthedifference inrequiredtimeforbothoftheseactions.Ifvalvesarealreadymodulated opencorresponding totheerrorsignal<<thetimeatripopensignalisgenerated, noadditional tripactiontakesplace.Sin~ethesteamdumpsystemrequiresafinitetimeto,act,anincreaseistobeexpected. | |||
Lead/lagcompensation forTincreases avgavg3~23 gfTontheerror,therebycompensating forthelegs~gcectoflresponseandvalvepositioning. | |||
sreactorpowerbycontrolrodinsertion. | |||
reducesreactpointsteamdumpisreduappx'oaches avgvalvesarefullyseatedMenoughtobehandledoontroLsystemalone.~~dcontratrolsystemalsoactingontheT-Tferrox'ignal | |||
~avgrefLnordertopreventactuation ofsteamdumponsmallloadperturbations, | |||
,rablockisprovidedwhichpreventsvalveresponsetoeitherthetrip~modulatesignalunlessaturbineloadreduction hasoccurred. | |||
AIlelcaentsofthischannel,including theturbineimpulsechamberpressuretap,areindependent ofthesteamdumpcontrolsystemdescribed above.4rate/lagunitinthischannelgenerates anoutputproportional to~rareofdecreaseinturbineload;Thisoutput,whenindicating aLoadrejection gxeaterthanlOXstepor5X/mLnute ramp,removestheOnceunblocked, thisblockismanuallyxeset.Minual-contxolof~teamdumpalsoremovesthisblock.7uxbincTriControl~~eofthelaxgeheatcapacityoftheReactoxCoolantSystemand~~highTatfullloadthesteamgenerator safetyvalveswouldavg~'~owingaturbinetripiftherewerenoothermeansofremovingedheat.'ondenser steamdumpandsubcooled feedwater flow3.2-4 | |||
planttothermalno- | planttothermalno-loadequilibrium without~~edtobring-leasetoatmosphere. | ||
~pbbsj, S>H~ZCS~RELIEFSYSTEHsteamreliefvalvesaremountedonthesteammainsupstreamuoayher' | eeaIetrip,monitored bylossofturbineautostopoilteoheloadre]ection steamdumpcontroller isdefeatedandplanttrptripcontroller becomesactive.IntheTcontrolmode,avgrsignalisT-Td'ndsteamdumpisproportional | ||
~errorsgnavgno-Load'he sameerrorsignalisusedforon-offcontrolof~fe~>>tercontrolvalve,asdescribed in3.4,SteamGenerator | |||
~LControl.AsT.isreducedtoitsno>>loadsetpoint, steam'vgreducedandfeedwater isshutoff.Asinthecaseofploadre)ection, iftheerrorsignalexceedstheHXsetpoint, atripasgaaLwgenerated whichtripsopenfouroftheeightvalvestotheiriull~penposition. | |||
Attheoccurrence ofaHI-Hltripsignal,all~ghtvalvestripopen.GeneraUy, thevalvesarenotclosedcompletely l~useofdecayheat.No-loadconditions areestablished withinmominutes.pressureControl'or><<gtermremovalofresidualheatathotshutdown, o~duringplantit>rtuporcooldown, theplantoperatorcanmanuallyswitchtosteamderpressurecontrol.Inthiscontrolmode,condenser steamdumpomaintainapresetpressureinthesteamheader.Amanual~tionisprovidedsothattheoperatorcanad)ustthesetpoint~<<ssureormanuallypositionthevalves.3.2-5 | |||
~pbbsj, S>H~ZCS~RELIEFSYSTEHsteamreliefvalvesaremountedonthesteammainsupstreamuoayher'c steamves.Atthesetpre4g~>osteam(about1050psig),flowcalcu'chaveprovisgon feslessthanZ0Providedtoreducedtopermitaplantoolds'cediadumpisnotavailable. | |||
Thesefunctions areexplained below.a)Ifaplanttripiscausedbylossofcondenser vacuum,condenser dumpmbIocked.The'steamgenerator safetyvalvesareavailable toremovestoredenergyfromtheReactorCoolantSystem.Atmos-@heroicsteamreliefreducesthesteampressurebelowthesafetyvalvesetpressurewithintwominutesafterthetrip.Thisprevents'ontinuous chattering ofthesafetyvalvesasresidualbeatmremovedfromthereactor.Plantcoo]downisaccomplished bysteamdump.Ifcondens<<dump notavailable, theatmospheric reliefisadequatetocoold~tothetemperature andpressureatwhichtheresidualheatremovalsystemcanbeused.3.2-6 | |||
C)Zntheeventofaplanttripcausedbyanoverpower/ | C)Zntheeventofaplanttripcausedbyanoverpower/overtemperature condition orbyafaU.ureinthefeedwater system,theatmospheric steamdumpprovidesadditidhal reliefcapacity, reducingthepro-babDityofsafetyvalveactuation. | ||
~en/ | Separatecontrollers areprovidedfortheatmospheric dumpvalvesonthetwosteamgenerators, permitting independent pressureregu-lationifthesteamgenerators areisolated. | ||
3e2~7 TcoldAVGT~at1V2SwlK3PK2ATsetpoitEComparator 22]4Logic3C4hotcold'/Comparator RodStop0$EBTEMPEBATURE ATCHANNEL(ONECHANNELOFPOURSHOWN)P1GVRE3.1-1 F~.~~'IrlEnMlEHEl/ATOR Nntrr.)VAlVNISAtIMYAllglJIOOla'nON VALVEBYPASS.VALVEHAINFEEDWATEE kLN.IQ'AI.VL IIA)IATIlNliOlla:KTOTURBINECON1'AINMENT AUXILIARY FEEUHATER | |||
+PgoIiCONDENSER STEAMDUMPVALVES<<TEAMIEHERATOR BMAINFEEWATERTOCONDENSER AUXILIARY FEEOHATER Figure3.2-1STEAMCYCLEVALVEARRAMEMENT Ii | |||
~en/LAGCOMPENSATION STEAMDUMP)ERPRESSURECONTROLLER rRATE+RESETAUTO"MANSTATIONPROP.ANALOGSWITCHOPERA-TINGONTURBIHETRIPSIGHALSTEAMDUMPSELECTORSWITCHMODULATECOHDEHSER DUMPVALVESLEAD/LAGCOMPENSATION | |||
((<>>s).IJf<Sgl+fg | |||
$)LTRZICOmZROLIhR Hi-TURBZHETRIPINTER-LOCKLOGICTURBINE-TRIP SIGNALTRIPOPEHGROUPAVALVESORTRIPOPENGROUPA8cBVAL~STEAMDUMPVALVES.TRIPOPEHONLYIFUHBLOCKSIGNALISPRESENT(SEEBELOW)HjELOSSOFLOADINTERLOCK r:J+A--ROPRIATEPOSITIONOHSKZCTORSWITCHZHTKGDCKFigure3.2-2CONDENSER STEAMEUMPCONTROLSC1HHEUHBLOCKSTEAMDUMPVALVESSIGHALTURBINETRIPSIGNALBYPASSESLOSSOFLOADINTERLOCK AHDUHBLOCKSSTEAMDUMPVALVES 1f'V(Y+gpQ+g+q+gl Yf"Al+J1l 33REACTORCONTROLThebasicReactorControlSystemconsistsofthreechannels, whichareretemperature (T),powez'ismatch (QT-Q)andreactorcoolantavg'x'essure (P)~Theoutput'ofthesethreechannelsisusedtodrivethecontrolrodsviatherodprogram.Aschematic representation ofthecontrolsystemisgiveninFigure3.3>>1.Thefunctions ofeachofthesechannelsareasfoU.ows:a)Tomaintaintheprogrammed Tasaccurately aspossibleavgb)Toberesponsive toloadperturbations withoutcausingunduemovementandreactortripsc)Totakecorrective actioninthecaseoflargeloadchangesifthepressureexceedsthelimitsofthenoxma1pressurecontrol.TheTeratureChannelThetemperature channelfunctions tomaintaintheprogrammed temperature | |||
-(T)asaccurately aspossible. | |||
Themainrequirements ofthischannelavgarethatitshouldbeaccuxate, stableandrepeatable. | |||
Thisisthedominantcontx'olchannelinsteady-state conditions.'he PowerMismatchChannelThepowermismatchchannelsprovidecontrolstability andfastresponset>>oadpertuxbations. | |||
Theoutputisproportional tothemismatchbetweenturbinepowerandnucleaxpower.Ahigh-pass filterinthischannelensuresthatsteady-state calibration errorsintheinputpowersignals"asnoeffectonsteady-state control.3.3-1 | |||
.atI,'gl~jl | .atI,'gl~jl | ||
~ | ~otherrequirement ofthischannelisthatitssteady-state outputshouldbezeroeventhoughaAxedoffsetinpowersignalsmayexist.ThePressureChannelThischannelisprovidedtopreventlargepressurechangesfoU.owing alargechangeinpower.Itretardstherateatwhichthecontroller changesTtoitsnewprogrammed setpoint.(IfTweretobechangedavgavgtoorapidly,pressurizer pressurecontxolmightnotbeabletomaintainpressurewithinthenormaloperating range.)Thepressurecontrolchannelhasanadjustable | ||
: deadband, sothatonlylargepressurechangeshaveaneffectonrodmotion.Thischannelisnotrequiredforinitialplant.operation. | |||
TheRodSeedProamTherodspeedprogramismadeupoffourparts:ariadjustable | |||
: deadband, aminimumspeed,aproportional speed,andamaxLmumspeed.TheauucLannn speedisdictatedbythemechanism design.A11theothersettingsaread)ustable. | |||
Expectedsetpointsare+1.5Fforthedeadband, and+5Fforamximumrodspeeddemand.Theoutputsfromthethreechanne1smentioned abovefeedintothesummingamplifier associated withtherodprogram.3a3~2 Ijgg~gi4t'~s~A)tl(~<lI>Il.(I~')F~As)uAVOlTurbineImulsePressure~gS+1Speed4n+ETSt6S+10ariableGain+Pressurizer PressureEtyS+1~88+1PressureSetointREACTORCONTROLSYSTEHFigure3.3-'1 | |||
~I~I4j~ | ~I~I4j~ | ||
CINERATOR LEVELCONTROLMoperation, thepositionofthemainfeedwatercontrolvalveisope11edbythethree-element controller (feedwater flow,steamflow,Atlowloadsabypasscontrolvalveisused.>+tpointofthe1evelcontro11erisafunctionofload,programned isewithloadbetweenOXand-2OXload.Adeviation alarmprovides~ti~uousmonitoring ofthelevelchannelusedforcontxolversustheprogrammed level.~>narrow-range levelchannelsareindicated. | |||
~ | Thewide-range levelchannelisrecorded. | ||
.OV< | .hesteamflowandfeedwater flowsignalsazesuppliedbyeitheroftwotransmitters asselectedbyacontxolboardmountedselectorswitch.Thesteamandfeedwater flowsignalsusedforcontrolarerecordedonatwopenrecorder. | ||
":ollowing aturbinetrip,automatic controlofthefeedwater valveisswitchedfromthethreemodelevelcontroller toonoffTcontrol.avg<1<<edwatercontrolvalvesunderautomatic controlarefullyopenedtoadmitauucbnumfeedwater, thenfullyclosedasno-loadTavgapproached toavoidexcessive cooldownoftheReactorCoolantSystem.~<<1contzoloffeedwater controlvalvepositionisavailable attheontrolboard.Thismodeofcontroloverrides automatic contzoloneitherlevelorTavg3.4-1 tO~+~~'"'=*4%-4'ft'%41''V~~k/+''tpit' ordertopreventexcessive'moisture cazxyover causedbyhighsteam~eratorwaterlev~.asigalofhighwaterlevelove~desa3.Othertzolandclosesthefeedwater controlvalve.Thesignalisobtainedfromcoincidence oftwo-of-three levelchanneLsaboveapresetvalue.Thisoverrideisautomatically removedfromthemaincontrolvalvesasthewaterleveldropsbelowChesetvalue.Manualresetisrequiredforthebypasscontrolvalve.Thesignalsaffecting feedwater valvecontrol,inincreasing theorderofpriority, arelistedbelow:a)Three-element levelcontroloron-offTcontrol(dependent onavgwhethezornot'turbine istripped)b)Manualcontrolc)Highleveloverride(closesfeedwater valves)d)SafetyInjection Systemactuation (closesfeedwater valves).Awide-range levelchanneL,calibrated forno-loadconditions, faprovidedcoallowmanualcontrolathotshutdownandisalsousefulatcoldshutdownThischannelincludesarecorder. | |||
3.4-2 | |||
~PROTECTION SYSTEM~~qBRINJECTIONSYSTEMACTUATION QEEIYfactuating theSafetyInjection SystemhavebeennotedinoactThoseparticularly concerned withsteamlinebreakpro-~~43~~~aarelowsteam1inepressureandhighcontainment pressure. | |||
~Anareolowsteam~steamlinepressuresignalisgenerated bythecoincidence of~fthreechannelsbelowapproximately 500psigforeithersteamline.~~highcontainment pressuresignalisgenerated bythecoincidence of~f-threechannelsaboveapproximately tenpercentofcontainment | |||
~ignpressure. | |||
3.5.2FEEDWATER LINEISOLATION Anysafetyinfection signalisolatesthemainfeedwater linesbyclosingallfourmaincontrolvalves,trippingthemainfeedwater pumps,andclosingthepumpdischarge valves.3.5-3STEAMLINEISOLATION a)Highsteamflowincoincidence withanysafetyin)ection signa1closestheisolation valveinthatsteamUne.One-out-of-two steamflowsignalsaboveaHI-HI~pp(approximately 120XoffuLlloadsteamflow)One-out-of-two steamflowsignalsaboveaHItrippoint(approx-imately20Xoffullloadsteamflow)incoincidence withtwo-out-of-four lowTsignals(belowapproximately 540'7)avg3.5-1 llIJ,J,="4~1'~~"J bi~ecoincidence oftv~f-three highcontaf.nment pressuresignaLsRctustion~ | |||
3.5-2 A'~8) | |||
.OV<VDCONTROLSYSTEMSDESIGNPRINCIPLES PUNCTIONAL DESIGNphilosoohyforfunctional designProtection Systemistoderiveposon~rewirectlyfromtheprocessvariables ofinterestwheneverpossible. | |||
~oner,safetylimitprotection isassuredindependent ofthetingacc'dent. | |||
.~ertemperature highdelta-TtripprotectsthecoreagainstDeparture nucleateBoiling(DNB)forallcombinations ofpressure, temperature, | |||
~r.andaxialpowerdistribution. | |||
Thus,thissingletrippreventsDNB!'r.-cd<<ithdrawal accidents, borondilution, xenonoscillations, andcxcessire loadvariations. | |||
Protection againstotherlimits,suchasexcessvepower,densityandsystemoverpressure, isalsoprovidedbyclose~itorinzofthevariableofdirectinterest. | |||
;cce="aincases,however,thesegeneralprotection functions arenotrapidenough,orcompleteenough,toassureprotection againstaspecificaccident, suchaslossofcoo~~ntflow.Inthesecases,specifictripfunctions areorovidec, suchasreactorcoolantpumpbusundervoltage andreactorcoolant~orce""ainmorecre"'bletransients, suchasturbinetrip,areactortrip4-sderivedfromthe.nitiating event-eventhoughsafetylimf.tswouldnotoeexceededifareac":=tripweredelayeduntilanoverpressure orover-tempera=ure rri"oc""red.1nthismanner,undesirable excursions arepreven=ed, rathet"..scterminated. | |||
4.1-1 certainprotective functions areprovidedprimarily toensuretheF~~lly,ceufngintegrity ofplantcomponent andpipingsystems.Examplesinclude-ortriponhighpressurizer waterleveltoprotectsafetyvalverelief.eacor@fanCoandreactortriponlossoffeedwater toanysteamgenerator. | |||
(The@clear'ossofsafetyrequirement istopreventcompletelossofheatsink;i.e.,feedwater toallsteamgenerators.) | |||
."-orequipment designpurposes, nodistinction ismadebetweenthevariouscategories ofprotection mentioned above.ThesamecriteriaanddesignoracticeareappLiedtoallchannels. | |||
Otheralternatives areneitherdefensible norpractical, sincealloftheseprotective functions enhancenuclearsafetyandcomplement orsupplement oneanother.:hisapproachrequiresaninstrumentation systemthatmeasures, onatimely,accurate, andreLiablebasis,dominatenuclearplantprocessvariables. | |||
instrument ranges,sensitivity, andtimeresponsemustbeselectedconsistent Wththerangeandvariation ofeachvariablemonitored. | |||
Also,sincemanyprocessvariables aremonitored, considerable overlapinprotection functions isanaturalconsequence. | |||
4.L-2 | |||
~lst'I~ | ~lst'I~ | ||
CONTROLSYS~ | CONTROLSYS~FUNCTIONAL DESIGNPowerlevelandreactorcoolanttemperatures arecontrolled automatica3.l.y inaWestinghouse PWRPlant.Thereactoriscontrolled tofoU.owanyturbineloadperturbation. | ||
Thisisidealforloadfrequency control.Theautomatic ReactorControlSystem,therefore, formsanessential partoftheplantoperation. | |||
Itisbasically aregulating systemwhichmaintains propersteady-state operating conditions, therebyassuringadequatemarginstotripsettingsforoperational purposesandpropereconomicperformance. | |||
Otherautomatic controlsystemsarepressurizer pressureandlevelcontrol,feedwater control,andsteamdumpcontrol.Thesesystemsarealsoessential tomaintainnormaloperating conditions ortosuppressexcursions imposedbyoaerational transients withoutrecoursetoprotective action.AsintheProtection Systemdesign,thisrequiresaninstrumentation systemthat\measures, onanaccurate, timely,andreliablebasis,'ominate nuclearplaneprocessvariables. | |||
Theqevariables are,forthemostpart;thesameasthoserequiredbytheProtection System:looptemperatures, neutronflux;oressurizer pressureandlevel,steamgenerator level,steamflowandfeedwater flow.Inaddition, thetimeresponse, instrument, span,and~~nsitivity requirements formeasurement channelsservingeachofthetwo~y~temsaresimilar.Asaresult,primarysensorandtransducing equipment thatisacceptable forusewiththeProtection SystemshouldalsobeemployedwiththeControlSystem.FailureoftheControlSystemtoactwhenneeded,orspuriousactuation whennotneeded,generates aneedforprotection. | |||
Thesafest,plantis4.2-L onipedtobeonethatrequirestheLeastprotection. | |||
Forthisreason,wellastheeconomicdesirability ofavoidingplantoutageswhichcouldgavebeenprevented bypropercontrolactions,everyeffortismadetoensurereliablecontrol.Whereverpractical, controlinterlocks and/orredundant controldevicesareprovidedtoensurethatcontroLactiontakesolacewhenneeded-butonlywhenneeded.Controller-induced excursions causedby asinglesensorfailurearelargelyeliminated inWestinghouse designpractice. | |||
: i. | : i. | ||
~g++SFEEDPLOWL3SF1)XgIPROP+INZECIII~I-,IIIIIIIIIPROP+INTEGILEVELCONTROLSYSTEMlIIIPI'2) | ~g++SFEEDPLOWL3SF1)XgIPROP+INZECIII~I-,IIIIIIIIIPROP+INTEGILEVELCONTROLSYSTEMlIIIPI'2)FWPlFWIIIPEEDWATER ICONTROLVALVEIACTUATORIII~/7t~JiIt2/3HILEVEL2/3LO-LOLEVELI2/2I1/2LOFLOWLEGENDFWF-PEEDWATER PLOWTRANSMITTER SF-STEAMPLOWTRANSMITTER P-STEAHPRESSURETRANSMITTER L-LEVELTRANSMITTER I-ISOLATION AMPLIFIER h-DIPPERENCE AMPLIFIER X-MULTIPLIER EDWATERCONTROLREACTORTRIPREACTORTRIPVALVECLOSUREANDAUX.FEEDPL"IPSTARTANDINDICATORS NOTSHOWN.STEAMGENERATOR LEVELCONTROLANDPROTECTION SYSTEHFIGURE4.2-1 | ||
3CONTROLANDPROTECTION INTERRELATION AorrentWestinghouse PWRsystems,theProtection andControlSystemsare'ncurrenanddistinctandareidentified assuchTheControlSystem><<eer,isdependent onsignalsderivedfromtheProtection Systemthroughisolation devices.However,thereisnofeedbackfromtheControlSystem.otheProtection System.>eequipment designphilosophy, illustrated onFigure2-1,isthattheControlSystemsensoristheoutputoftheisolation amplifier. | |||
Bythisorinciple, nocomponents areshared-theyareeitherpartoftheProtection Systemandarelocatedanddesignedassuch,ortheyarepartoftheControlSystem.Thisisaveryimportant featureoftheWestinghouse design,andpermitsadividingline,bothfunctionaUy andphysically, tobedrawnbetweencontrolandprotection. | |||
Italsoensuresthat,inadvertent orIdeliberate changestotheControlSystemhavenomoreeffectonthePro-IrectionSystemthaniftheControlSystemcontained independent sensors.Thedesignrequirement fortheanalogisolation amplifiers istoisolatethe~<<tectionSystemfromanyelectrical faultswhichmightoccurinthe<<<<rolSystem.Extensive testswereperformed todemonstrate this'apability. | |||
Inthesetests,shorts,grounds,anda-candd-cvoltageswereappliedtotheamplifier output.Eventhoughsomeofthesetestswerest<<ctive(i.e.,destroyed theabilityoftheamplifier toproduceameaningful outputsignal),innocasewasanyperceptible disturbance fedac"intotheinputcircuitandhencetotheprotection System.4.3-1 0 | |||
Thepresenceorabsenceofregulating controldevicesonthedownstream sideoftheisolation amplifier hasnoeffectontheisolation requirements. | |||
Thesameequipment anddesignrequirement wouldexistevenifthesesignalswerebroughtoutoftheProtection Systemmerelyforremotereadoutanddata-logping purposes. | |||
Sincechanne1isolation cannotbereliablymain-tainedonthecontrolboardorattheinputterminals toadata-logger, anisolation device(amplifier orimpedance network)intheprotection channelrepresents theonlyfeasiblewaytopreserveprotection channelindependence. | |||
CertainfailuresintheProtection Systemcouldconceivably negateapar-ticularchannelofaprotective | |||
: function, simultaneously causingspuriouscontrolactionthatmight,requireprotective actionfromthatsamefunctiontopreventtheexcursion fromexceeding designlimits.Suchpossiblefailureisdealtwithinaccordance withtheproposedstandard, "Criteria | |||
<orNuclearPowerPlantProtection Systems", | |||
IEENo.279,Section4.7,whichrequiresthatforsuchafault,asecondfailurebeassumedinthe'Protection eInmostcasesin'whichcontrolisderivedfromprotection, Westing-"sedesignmeetsthiscriterion byproviding atwo-out-of-four Protection SystemLoaic.Forexample,asshowninFigure4.3-1,'afailurecanbe"s~edinProtection ChannelLwhichcausesthatchanneltoindicatehigh.defeatsthelowpressurereactortripforthechannel,andalsomay"ePressureControlSystem(reliefvalvesandspray)torapidlyreduce~assure.However,threeofthepressureprotection channelsareleft-.@achedtsuretPndareactortripwouldautomatically occurwhenanytwoofthem Tthisadditional redundancy isnotnecessary becausesuchothercases,cannotcausethesafetylimitstobeexceeded. | |||
Thisfactcancannoillustrated byFigure4.3-1.Alossofsignal(lowindication) bcassumedforProtection Channel1.Thisdefeatsthehighpressurebcassumeorthatchannelandmayalsoenergizethepressurizer heaters,causingl~increaseinpressure. | |||
Ifanindependent failureisassumedinChannel2,gglownccactortripwouldoccurwhenthepressurereachedthehighpressuretrip~taintsinceonlyoneofthethreehighpressuretripchannelsisleftHowever,underthiscondition thesafetyvalvesonthepressurizer g<c~orethanadequatetoensurethatthehighpressuresafetylimitisnotacceded.Section4.4discusses allsuchcontrolandprotection interactions foramccificplantdesign.Inthatsection,itisnotedthatnumerousoperational | |||
-'cfenses againstthesefailuresexistinadditiontotheprimaryor"protection a'ade"defense.Manyoftheseadditional barriersto.anundesirable excursion N4c'cmadepossiblebymakingredundant information avaQ.able totheControlSystem.+cpossibility ofcommon-mode failurecannotbecompletely ruledout;itis<<<<eivable thatallidentical channelsbehaveidentically, butincorrectly. | |||
.""-hiscase,thequestionofControlSystemdependence ontheProtection emisirrelevant. | |||
Ithasbeenrecognized thatlittle,ifany,additional deeree<<<<ofprotection isachievedbyhavingseparate, butidentical, instru-"tchannelsforcontrolandprotection. | |||
Indeed,Westinghouse considers tseparation inthismanneractuallydeprivestheprotection Systemof4.3-3 | |||
eoftheday-Sy&ay,hour-by- | eoftheday-Sy&ay, hour-by-hour surveillance giventoinstrument chaelsneededforroutineplantoperation. | ||
~+m8w4':'ln1' PROTECTION~ | Afurther,althoughoftenggnoreddisadvantage ofproliferation ofidentical | ||
: channels, istheattendant increaseinvisualdisplaysandinformation processing problemsofsignificant oroportions. | |||
(Timely,accurateandcomplet~Lnformation readoutisrequiredbytheIEEEcriteriapreviously referenced.)' | |||
frequently expressed concernistheneedforassurance thattheProtection Systemwillnotbeinadvertently modifiedduringthe40-yearlifeoftheplant,Thisisoccasionally citedasanargumentagainstcontroldependence onProtection Systeminformation Westinghouse completely agreesthateveryprecaution mustbetakentoensureadequatereviewofanyfuturemodification thatcouldaffecttheProtection System.Suchassurance canonlybeachievedbycompleteattention todetailsinProtection Systemdesign,operation andmaintenance. | |||
ThismustincludeIidentifica'tion ofsystemcomponents ondrawingsandonthaequipment', | |||
documentation ofthesystemdesignanddesignbasis,andestablishment ofgroupstoreviewallproposedinstrument changesthatcouldaffect'plant~safetyorplantoperations. | |||
Itisfallacious tobelievethatindependent controladdstothisassurance. | |||
Infact,suchindependence coulddecreasetheprobability thatanecessary correction totheProtection SystemwillbeInadequacy ofcontroller designrequirescorrection toallowplantoperation toproceed;inadequacy ofprotection issometimes discovered onlyafteranincident. | |||
4,34 ControlSystemmodifications mayberequiredtoimproveplaatoperation. | |||
porencamp1e,afi1termayhavetobeaddedtoachievestability.Asacontrolmodification, thiswouldlogically beperformed intheControlSystm;i-e-7downstream oftheisolation dancesseparating theControlandProtection Systems.Physicalseparation andidentification ofequipment (separate racksforControlaadProtection Systems)andadmini-strativeprecautions ensurethatthelogicalrouteis,iafact,theoneused.Evenadvocates ofcompleteindependence betweencontrolandprotection recognize thedesirability andfeasibility ofusingprotection signalsfornon-protective functions...his introduces thepossibility ofthesesignals beingdivertedforotherpurposesunlessacarefulreviewandadherence todesignbasesisenforced. | |||
Thedivisionbetweencontrolandprotection isnotalwaysclear.Thisreflectsdifficulty indefiningthefunctionachieved, ratherthaninequipment designimnlementatioa. | |||
Definitions thatplaceallreacto'x" tripaadsafeguards actuation instrumentation intheProtection System,andallautomatic regulating instrumentation intheControlSystem,clearlyleavemanyimportant itemsinbetween.Anotherdefinition advanced'is thattheControlSystemis"allinstrumentation whichisnotprotection," | |||
andtheProtection Systemis"thatinstrumentation whichmustworkwhenneeded(topreventunacceptable consequences)." | |||
Thislatterdefiaitioa hasconsiderable meritforgeneraldiscussions andisusefulinJudgingwhetherornotaparticular itemisa"protection" itemornot.However,iftakenasarigiditisdifficult toapplytoalldesigndetails,asisshowabelow.4.3-5 Pzexamplealarmsand/orcontrolroomindications derivedfromprotection hannelinformation areessential iftheoperatoristobeproperlyandcontinuingly infoxmedoftheProtection Systemstatusandthestatusofplantsafety.Aspx'eviously noted,thesealarmsandindications azerequiredbythereferenced IEEEcriteriaasavitalpaztoftheProtection System.ordertomaintainprotection channelisolation, Westinghouse equipment designpracticeassociates remoteindication withtheoutputoftheisolation device.Otherfunctions, suchascontrolinterlocks (e.g.,rodstops)areoftenhighlydesirable, andmayevenbeessential toplantsafetyifanumberofmalfunctions ormaloperations shouldoccursimultaneously (i.e.,beyondthenormaldesignproundrules). | |||
Westinghouse hasusedtheterm"supervisory" forthatcategoryoffunctions that.isneitherclearlycontrolorprotection. | |||
(Thisisafunctional Idesignation only,anddoesnotimplyathirdcategoryforequipment design.)Supervisory functions canbefurthersubdivided intotwotypes:thosethatareinformative only(indicators, recorders, alarms,anddata-logging); | |||
andthosewhichautomatically acttoarrestdeteriorating conditions beforeprotective actionisneeded.(Thislattertypehasbeentexmedi"override", | |||
or"protective override.".) | |||
Sincethequestionisoneofwhethermanualorautomatic intervention isintended, thevalueofdistinction islimitedtofailuremodeanalysisofautomatic controllers. | |||
4.36 N%&At'9"r.l~r' westinghouse record.zes thateach"supervisory" functionmustbeconsidered onitsownmeritstodetermine ifitshouldformpartoftheprotection ortheControlSystem.Acompletelistofprotection, control,and"supervisory" functions isincludedintheAppendix. | |||
4.3-7 | |||
~+m8w4':'ln1' PROTECTION | |||
~axWELPROTECTION CHANNEL2PROTECTION CHANNEL3PROTECTION CHANNEL4PTiPQ~~~PC'~HIPR.T.tPC~LOPR.T.IIISOL'.~~PC~HIP'.T.PC'OP~ISOLQPT"PQPC'~HIPR.T.)PCLOPSOLgPTPgQPCLOPR.T.SOLIrILPRESSURECONTROLSYST~IIIIIPRESSURECONTROLSYSTEH(INCLUDES SIGNALCONDITION-INGANDCONTROLLERS ANDINTERLOCKS FORHEATERS,SPRAYAND RELIEFVALVES)PT-PRESSURETRANSHITTER PQ-POWERSUPPLYPC-CONTROLLER ISOL-ISOLATION AHPHI(LO)R.T.-HIGH(LOW)PRESSUREREACTORTRIPPROTECTION SYSTEMCOMPONENTS CONTROLSYSTEMCMPONENTS INDICATORS, ANDRECORDERS ARENOTSHOWNPRESSURIZER PRESSUREPROTECTION ANDCONTROLSYSTEMSDESIGNFIGURE4.3-1 th(OP'I4A4'g~ | |||
SPECIFICCONTROLANDPROTECTION INTERACTIONS designbasisfortheControlandProtection Systempermitstheuseoffoxbothprotection andcontrolfunctions-Wherethisisdone,>lequipment commontoboththeprotection andcontrolfunctions areclassified aspartoftheProtection System.Isolation amplifiers prevent.aControlSystemfailurefromaffecting theProtection System.Inaddition, MherefailureofaProtection Systemcomponent cancauseaprocessexcursion whichrequiresprotective action,thePxotection Systemcanwithstand another,independent failurewithoutlossoffunction. | |||
Generally, thisisaccomplished vithtwo-out-of-four triplogic.Also,whereverpractical, provisions areincludedintheControlorProtection Systemtopreventaplantoutagebecauseofsinglefailureofasensor.Thefollowing discussion ofspecificcontrolandprotection interactions tisbasedonthedesignfortheRobertEmmettGinnaNuclearStationoftheRochester GasandElectricCo.(RGE)-Itisxepresentative ofcurrentWestinghouse design-practice. | |||
4.4.lNUCLEARFLUXFourpowexrangenuclearfluxchannelsarepxovidedforoverpower protection. | |||
so~<<edoutputsfromallfourchannelsareaveragedforautomatic control<odregulation ofpower.Ifanychannelfailsinsuchawayastopxoduce~owoutput,thatchannelisincapable ofproperoverpower protection-Inpinciple,thesamefailurecouldcauserodwithdrawal andoverpower. | |||
Two-"t<<-fouroverpower triplogicinsuresanoverpower tripifneeded,even"ithanindependent failureinanothexchannel.4'>>l ddition"theContxolSystemrespondsonlytorapidchangesinindicated f1~.slowchangesordriftsareoverridden bythetemperature controlnucleartial.Alsoarapiddecreaseofanynuclearf1~sig1blockautisticxowdwithdrawal aspartoftheroddropprotection circuitry. | |||
Finally,anoverpower signalfromanynuclearchannelblocksautomatic rodwithdrawal. | |||
Thesetpointforthisrodstopisbelowthexeactortxipsetpoint. | |||
4.4.2COOLANTTEMPERATURE Fourtemperature | |||
: channels, eachcontaining aTavganda4Tsignal,areusedforovertemperature-overpower protection. | |||
IsolatedoutputsfromallfourTsignalsare,alsoaveragedforautomatic. | |||
controlrodregulation ofavgpowerandtemperature. | |||
Inprincipal, aspuriously lowTsignalfromone.sensorwouldpartially defeatthisprotection functionandalsocauserodwithdrawal andovertemperature. | |||
Twomut-of-four triplogicisusedtoinsurethatanovertemperature tripoccurs,ifneeded,evenwithanindepen-dentfailureinanotherchannel.Inaddition, channeldeviation alarmsintheControlSystemblockautomatic | |||
<<dmotion(insertion orwithdrawal) ifanyTavsignaldevtatessignificant3.y fromtheothers.Automatic rodwithdrawal blocksalsooccurifanyon~f-<<urnuclearchannelsindicates anoverpower condition orifanyoneof-four temperature channelsindicates anovertemperature oroverpower condition. | |||
Finally,asshowninSection14.3..2,oftheRG&EFinalSafety'Analysis Report,th<<ombination oftripsonnuclearoverpower, highpressurizer waterlevel,ndhighpressurizer pressurealsoservetolimitanexcursion foranyratefreactivity insex'tion. | |||
4.4-2 PRESSURIZER PRESSUREpressurechannelsareusedforhighandLowpressureprotection andFforoverpower-overtemperature protection.Isolatedoutputsignalsfromthesechannelsalsoareusedforpressurecontrolandcompensation signalsforrodcontrol.Thesearediscussed separately below.ControlofRodMotiononeofthepressurechannelsisusedforrodcontrolwithalowpressuresignalactingtowithdrawrods.Thediscussion forcoolanttemperature isapplicable; i.e.,twowutwf-four logicforoverpower-overtemperature protection astheprimaryprotection, withbackupfrommultiplerodstopsand"backup"tripcircuits. | |||
Inaddition, thepressurecompensation signalis,LimitedintheControlSystemsuchthatfailureofthepressuresigna1cannotcausemorethanaboutaLO'FchangeinT.Thischangecanbeavgaccommodated atfullpowerwithoutaDNBRless.thanL.30.tFinally,thepressurizer safetyvalvesareadequately sized.topreventsystemoverpressure. | |||
PressureControlLowPressureAspurioushighpressuresignalfromonechannelcancauselowpressurebyspuriousactuation ofsprayand/orareliefvalve.Additional redundancy isprovidedintheProtection Systemtoinsureunderpressure protection; | |||
<.e.,two~ut~f-four lowpressurereactortriplogicandone-out~f-three Logicforsafetyin)ection. | |||
(Safetyin]ection isactuatedonone-outmf-threecoincident Lowpressureandlowleve1signals.) | |||
4.4-3 | |||
0addition,iterloclareProvidedinthPressureCtolSystemsuch~tarelief. | 0addition, iterloclareProvidedinthPressureCtolSystemsuch~tarelief.valveclosesifeitheroftwoindependent pressurechannelsidicateslowpressure. | ||
Sprayreducespressureatalowerrate,andsometieisavaiLable forooeratoraction(aboutthreeminutesatmmchnnaspray-atebeforealowpressuretripisrequired.) | |||
Thepressurizer heatersareincapable ofoverpressurizing theReactorCoolantSystem.Maxinnmsteamgeneration ratewithheatersisabout7500lbs/hr.,comparedwithatotalcapacityof576,000Lbs/hr.,forthetwosafetyvalvesandatotalcapacityof179,000lbs/hr.,forthetwopower-operated reliefvalves.Therefore, overpressure protection isnotrequiredforapressurecontroLfailure.Twomutmf-three highpressuretripLogicisused.Xnaddition, eitherofthetworeliefvalvescan.easilymaintainpressurebelowthehighpressuretrippoint.Thetworeliefvalvesarecontrolled byindependent pressurechannels, oneofwhichisindependent ofthepressurechannelusedforheatercontxol.Anally,therateofpressureriseachievable withheatersisslow,andampletimeandpressurealarmsareavailable foroperatoraction.4.4.4PRESSURIZER LEVELThreepressurizer levelchannelsareusedforhighlevelreactortrip(2/3)andlowlevelsafetyinfection (1/3logiclevelcoincident with"Pressure). | |||
IsolatedoutputsignalsfromthesechanneLsareusedforvolumecontrol,increasing ordecreasing waterlevel.Alevelcontrol4.4-4 | |||
'El | 'El | ||
; | ;ailurecouldfilloremptythepressurizer atasLowrate(ontheorderOEfhalfanhourormore).Irggh18V81~reactortriponpressurizer highlevelisprovidedtopreventrapid4thermaLexpansions ofreactorcoolantfluidfromfiLLingthepressurizer; therapidchangefromhighratesofsteamrelieftowaterreliefcanbedamagingtothesafetyvalvesandthereLiefpipingandpressurerelieftank.However,aLevelcontrolfailurecannotactuatethesafetyvalvesbecausethehighpressurereactortripissetbelo~thesafetyvaLvesetpressure. | ||
Withtheslowrateofchargingavailable, overshoot inpressurebeforethetripiseffective ismuchlessthanthedifference betweenreactortripandsafetyvalvesetpressures. | |||
r~c-'c.'(l\1I pipebreakbetweenthefeedwaterflowelementandthesteamos] | Therefore, acontrolfailuredoesnotrequireProtection Systemaction.Tnaddition, ampletimeand.alarmsareavailable foroperatoraction.LawLevelForcontrolfailureswhichtendtoemptythepressurizer, one-out-of-three Logicforsafetyinfection actuation onLowLevelinsuresithat theProtection Sy<<emcanwithstand anindependent failureinanotherchannel.<nadditon,asignaLoflowlevelfromeitheroftwoindependent levelcontrolchannelsisolatesLetdown,thuspreventing thelossofcoolant.ampuletimeandalarmsexistforoperatoraction.4.4-$ | ||
gTEQfGENERATOR WATERLEVELPESWATERPLOWbeforedescribing controlandprotection interaction forthesechannels, itisbeneficial toreviewtheProtection Systembasisforthisinstru-mentation Thesystemisshownschematically inPigux'e4.4-L..Thebasicfunctionofthereactorprotection circuitsassociated withLowsteamgenerator waterlevelandlowfeedwater flowistopreservethesteamgenerator heatsinkforremovaloflongtermresiduaLheat.Shouldacompletelossoffeedwater occurwithnoprotective action,Pthesteamgenerators wouldboildryandcauseanovertemperatur~verpressure excursion inthereactorcoolant.Reactortripson'emperature, | |||
: pressure, andpressuri.e'er waterleveltriptheplantbeforethereisanydamagetothecoreorReactorCoolantSystem.However,residuaLheataftertripcausesthermalexpansion anddischarge ofthexeactorcoolanttocontainment throughthepressurizer reliefvalves.Thiswouldbxeachoneofthebarriers-.theReactorCooLantSystemtoreleaseoffissionproducts. | |||
Redundant emergency feedwater pumpsareprovidedtopreventthis.Reactortripsactbeforethesteamgenerators aredrytoxeducetherequiredcapacityandstartingtimerequirements ofthesepumpsandtominimizethethermaLtransient ontheReactorCoolantSystemandsteamgenerators. | |||
Xndependent tx'ipcircuitsareprovidedfoxthetwosteamgenerators forthefollowing reasons:a)ShouldseveremechanicaL damageoccurtothefeedwatsx'in'e toones~eamgenerator, itisdifficult toinsurethefunctional integrity oflevelandflowinstrumentation forthat-unit.Porinstance, a4-4-6. | |||
r~c-'c.'(l\1I pipebreakbetweenthefeedwaterflowelementandthesteamos]orppegenerator exatorwouldcausehighflowthroughtheflowelement.Therapidxessurization ofthesteamgenerator woulddrastically affectthedepxessuacelationbetweendowncomer waterlevelandsteamgenerator waterinven-However,theindependent circuitsonthesecondsteamgenerator | |||
~esufficient toactuateareactortripifneeded.~jgt~rdesirable tomiabaizethermaltransients onasteamgenerator forcrediblelossoffeedwater accidents. | |||
Coatxoller malfunctions causedbyaProtection Systemfailureaffectonlyaoesteamgenexator. | |||
A1so,theydo.notimpairthecapability ofthemainfeedsrater systemundereithermanualcontrolorautomatic Tcontrol.avgHence,thesefailuresarefarfrombeingtheworstcasewithrespecttocoredecayheatremovalwiththesteamgenerators. | |||
Frectvater Plow*Npu<<oushighsignalfrom,thefeedwater flowchannelbeingusedforcontrolusedcauseareduction infeedwater flowandpreventthatchannelfrom~ping.Areactortriponlow-lowwaterlevel,independeqxt ofindicated | |||
~<<er.low,insuresaxeactortrip,ifneeded."t<<n.thethree-element feedwater controller incorporates reseton~suchthatwithexpectedgains,arapidincreaseintheflowsignal~dcao>>ya12-inchdecreaseinlevelbeforethecontroller xe-opened eedwatrvalve.Aslowincreaseinthefeedwater signalwouldhavenog4C+~~ect4.47 CC88Kspuriouslowsteamflowsignalwouldhavethesameeffectasahighceedwater signal,discussed above.~rAspurioushighwaterlevelsigna1fromtheprotection channelusedforcontoltendstoclosethefeedwater valve.ThislevelchannelisindeFPendentofthelevelandflowchannelsusedforreactortriponlowflowcoincident withlowlevel.a)Arapidincreaseinthelevelsignalcompletely stopsfee@rater flowandactuatesareactortriponlowfeedwater flowcoincident withlowlevel.b)Aslowdriftinthelevelsignalmaynotactuatealowfeedwater signal.Sincetheleveldecreaseisslow,theoperatorhastimetorespondtolowlevelalarms.Sinceonlyonesteamgenerator isaffected, automatic protection isnotmandatory andreactortrip..ontwo-out~f-threelow-lowlevelisacceptable. | |||
4-4.6STEANLINEPRESSURE~<<threepressurechannelspersteamlineareusedforsteambreakProtection (twomutmf-three lowpressuresignalsforanysteamlineactuatessafBtyin]ectj.on) | |||
.OneofthesechannelsisusedtocontrolthePowermperated reliefvalveonthatsteamline.Thesevalves.aretypically t<<at10KofthesafetyvalvecapacityAspurioushighpressuresignalC>>hechannelusedforcontrolopensthere1iefvalveandcauseslow~ure~Thisisaslowrateofsteamrelease,evaluated asacredible4.4-8 breakinSection14.2.5oftheRG&EFinalSafetyAnalysisReport.~theanalysisofsteambreaksofthissize,nocreditistakenforthete~linepressureinstrumentation-Safetyinjection isactuatedbytheoressurizer instrumentation. | |||
Therefore, acontrolfairedoesnotcreateforthisprotection, andtwo-out-of-three logicisacceptable. | |||
4'g | |||
~~~ATIONe~DEWALACCT~Syst'~ | ~~~ATIONe~DEWALACCT~Syst'~evaluation oftherodwithdrawal accidentisbasedSystemparameters, protection system,andexpectedreactivity | ||
?ThedesignbasisfortheReactorProtection Systemto~tt~ts-carefarrodwithdrawal accidents istotripthereactorygececi30DNBRisreachedinthehotchannel.Whilediversity intrumentation isnotapartafthedesignbasis,thesystem~~idleddoesprovidealarms,rodstopsandcontrolfunctions to~~t>evithdrawal fromproceeding tothetrippoint.Becauseof~~teffectofoverpower onalltheprocessvariables, additional | |||
~!unct~<aswouldacttoterminate theexcursion, butaot'necessarily | |||
~el.30.Extending thecourseoftheaccident, aDNBRof1.0inthe.~+seeably" isarbitrarily selectedasaUmitfora.secondLevelofycecectian. | |||
(The"hotassembly" isessentia1ly thehotchannelwithouta?Xueaaca forengineering hotchannelfactors.) | |||
Nocredit.'is takenfor~!~ttening orLocal,'void reactivity effectsatoverpower conditions. | |||
~estpess&istic instrument error.and'set pointsareassumedforaLlItea:tarwips.~icedaverpawer isofseriousconcernbecauseofthepotential damagetoDecoredtheReactorCoolantSystem.Systbyeitherthehighpressurereactortrip~seaMcon)unction withanyreactor~pat'aterlevityforcoredamage+nWtaevaluauatianiszocusedonthiscance~'.L-L | |||
'~ | '~sprottectionagainsttherodwithdrawal leadingtoundesirable conse-quencessisinconsiderable depth,andthereareindeedmultiplelevelsofPratefro'rection aslistedbelow.Eachoftheselevelscouldbeindependently | ||
'I'5.JIC1 leteanalysis, | ~ideredadequate, diverseprotection againstanaccident. | ||
~armsandtrippaints.'(Farinstance~ | Becausethereactivity available byrodwithdrawal islimited,onlyveryrarecasescouldcompleterodwithdrawal causecoredamage.Asingletripfunctionwithredundant channelsprotectsagainstthiscondition. | ||
Nodiversity orseparation isrequired. | |||
b)~u1tiple, diverserodstopsareprovidedsuchthatnofailurecancauseasustained automatic rodwithdrawal. | |||
Therefore, areactortripcouldbeconsidered asbackupprotecti.on. | |||
c)For"fast"excursions, tworeactortripfunctions preventallbutlimitedcoredamage.For"slow"excursions, manualactionisanadequatebackuptotheautomatic protection system.4)Forallrodwithdrawal accidents, aeleasttworeactortripfunctions exist,eitherofwhichwouldagainpreventallbutlimitedcoredamage.FaulttreediagramsareshownonFigure5.1-1and53.-2.5'l.l.PROBABLECONSEQUENCES OPACCIDENTTheadequacy, ordepth,ofprotection requiredforanaccidentshouldbemeasuredagainsttheprobability oftheaccidentandtheprobableconsequences oftheunprotected accident. | |||
Theprobableconsequences arediscussed here.Theodtivityavailable isin(alizeburnupmai,ntain e5.1-2 sA distribution, andreduceejectedrodworths).Thedesignallowance | |||
~erdstrodinsertion atfullpoweris0.1Xfor"bite"plus0.4Xfortheman-euvergi.e.,rodinsertion maybeanywherefromO.IXto0.5X.~izhcalculated valuesformoderator andpowercoefficients atbeginning fcorelife*,0.3Xreactivity insertion isrequiredtoreachahotassemblygggRpf1.0.Also,after20Xcoreburnup,0.5Xinsertion doesnotcauseahotassemblyDNBRlessthan1.0-Therefore, arandom,completerodwithdrawal fromdesignfullpowerconditions withnoprotection hasaboutprobability ofcausing,DNBRlessthan1.0.Thisisillustrated byFigure5.1.3.Althoughthefigureandtheabovediscussion arebasedonfullpower,theyareequallyapplicable toaccidents startingfromlessthanfullpowersincetheadditional insertedrodworthisneededtoachievefullpower.However,itmaynotbepractical toguarantee theseconditions becauseallowances forcalculation ormeasurement uncertainties cansignificantly affecttheresults.. | |||
Figures5-1-4.and5.1.5showsa"worstcase"completerodwithdrawal at25X.ofcox'eIlifefrom102Xpower,nondnalTplus4F,andnominalpressurelessavg30psi.Reactivity insertion isassumedtobe0.6X,or0.5Xx1.2.(This20Xuncertainty couldhavebeenapplied,tothereactivity coefficients-insteadoftherodworth.)M~aumhotassemblyDNBRis0.91,orslightlylessthantheaxbitrary limitof1.0.Thesametransient at6(Xofcoreknifeisshownfoxcomparison. | |||
MfxdnnmLhotassemblyDNBRis1.4&.*RactivitycoefficientsbasedonFigures3Z.1-8and3.2.110inSupplement 4totheRGEPSAR,datedOctober23,1968.5.1-3 | |||
'I'5.JIC1 leteanalysis, considering statistical variations inalluncertainties, Acomp~ddetermine amorevalidvalueortheprobability ofexceeding anyvouldlivensassfstylimitIfthisvalueweresufficientlysmall,acomparatively | |||
~a~i<<protection systemmightbejustified. | |||
2PROEABII,ITY OFACCZDENT~edesignintentoftheReactorControlSystemistoblockautomatic | |||
~dwithdrawal foranyfailurewhichcancausesustained rodwithdrawaL. | |||
~isisaccomplished byrodstopsonrapidnuclearfluxdecrease, Tavgchanneldeviation, spuriousrodmotion,andsubsequent rodstopsonhighATorhighflux.Ifrodstopswereconsidered asindependent protection, Protection Systemcriteriawouldbeapplied.Theserodstopswouldthenbeclassified fuLLyaspartoftheProtection Systemforarodwithdrawal accident. | |||
5.l.3MANUALINTERVENTXON | |||
!annualactionisreliablebackuptoautomatic protection providedthatsufficient timeexistsforoperatorresponse. | |||
Thetimerequireddependsnthealarmsavailable, thenatureoftheproblem,andtherequiredaction.igure5.1-6illustrates steadymtate corelimitsandseveralalarmpointsndtrippoints.Alarmsareintentionally quiteclosetothedesignoperating conditions. | |||
Otheralarmssuchashighpressurewouldbereachedduringatransient. | |||
Thesealarmsaretabulated onTable5.1-1.~thoughsteamcycleheatremovalmaybethemostLimitingsteadymtate resttrictiononreactorpower,timeisrequiredtoreachcorresponding | |||
~armsandtrippaints.'(Farinstance~ | |||
itwouldtakeabouttwominutesst110XreactorPowerwithsteamgenerator saftyvaLvesblowingbeforeasteamgenerator Low-lowwaterleveLtripcouldbeexpected.) | |||
Forthireason,thisevaluation didnotincludethesealarmsandtripsFigures5.1-7through5.1-10showtheresultsoftransient analysifarvariousreactivity insertion ratesatbeginning ofcoreLifefrom~fullpower(102X,nominalT+4'F,noa~pressureless30psiavgfromnominaLconditions at80Xpower.Aconstantreactivity insertion ratewithunlimited available reactivity isassumed.Hmdmeasettingsendinstrument errorsareassumedforthereactortrips,andnominaLsetpointsforthealarms.(Note:thehigh4Trodstopsaretakenas3'Fbelowtheirreactortripsratherthantheirnominalsetpoints.)rorareactivity insertion rateof0.5x.10gk./sec,, | |||
(corresponding roughlytomaxfxnunrodspeedataveragerodworth),ahotassemblyDERof1.0isreached,inabout.twominutes.Duringthistime,therearealarmsonhighT,pressurizer | |||
: pressure, andpressurizer Level,aswellasrodstopsandalarmsonhighfluxandhigh4T.Also,thesteamsafety.alveswouldbeactuated. | |||
Miththemultiplicity ofaLarms,i.t.-iseasytodiagnoseams)oroverpower-avertemperature excursion. | |||
Xtisreasonable | |||
<<expectoperatorintervention (manualtrip)duringthistheaForfastterreactivity insertion rates,reacto<triponhighnuclearfluxisareliableprotection systembarrier.Therefore, sincetheavertemperature | |||
}11hg4Ttripprotectsforallexcursions, onecouldclassifyitastheprincipal protection barrierwith"backup"fromhighnuclearfluxincon-~un<<ianwithmanualaction.5.1-5 DEITYOFREACTORTRIPSeprotection systemdesignbasisfortherodwithdrawal accidentfororeprotection requiredthatonetripfunctionwithredundant channelspreven<eventaminimumDNBRlessthan1.30.Thisisaccomplished withthe<<ertemperature ATtripforslowreactivity excursions, andthehighnuclearfluxtripforfastexcursions. | |||
AsshownbyFigures5.1-7through5.1-10,thesetwotripsmeetthedesignbasis-Theevaluation alsoshowsthatforallcasesofsustained reactivity insertion forratesuptofourtimesthemaximkarateexpectedfromrodwithdrawal, anyofthefollowing preventahotassemblyDNBRlessthan1.0.a)Highnuclearfluxreactortripb)HighATtripl.Overpower AT2.Overtemperature ATc)Highpressurizer levelreactortripplushighpressurizer pressurereactortrip.(Notvalidforhighreactivity insertion rates:,.fromnearfullpower.)Thisdepthofprotection cannotbeexpectedforallaccidents orforallplants.5.1-6 TABLE5.1-1ALARMSFORRODWITHDRAWAL | |||
~armswhichwouldbeactuatedforaspuriousrodwithdrawal accident~eeax'rM.lPowerarelistedbelowitheaPPro~teorderiwhichtheyAlarmpointsassumedfortheevaluation arelisted.Initiating Fault*-Mose'failures whichcancauseaspuriouscontrolrodwithdrawal arealarmedand,ingeneral,automatic moeianprahibited. | |||
Theseinclude-a)NXSfluxrapiddecrease(1/4)(5Xin5seconds)b)Tchanneldeviation (1/4)p5Ffromaverage)avgc)Rod.control fault-rodmotionwithnodemandZ.SeepCounter-audibleclicksfromstepcounteralertsoperatoreoradmotion.3.NISPWRRANGEOVERPOWER RODSTOP+(1/4)(105X)4.AVGTAVG-TREFDEV(T5'Ffromprogram)avg5.PRESSURIZER HXPRESSURE(2350psia)6.PRESSURIZER RELXEFLXNEHXTEMP(whenpower-operated reliefvalvesopen)7.REACTOR'OOL HXTAVG(1/4)(5'bovenominalTatfullpower)avg8.PRESSURXZER LEVELDEVIATION (5Xabaveprogr:mamed levelaefullpower)9.AUTOTURBINERUNBACKOVERPOWER AW(1/4)(3Flesschanhigh4Ttrippaine)AUTOTURBINERUNBACKOVERTEMP4M(1/4)(3FlessthanhighATtrippoint)Ll.SteamGenerator ReliefandSafetyValveActuation | |||
-audiblesteamreleaseeoatmosphere 12.STEAMGENERATOR LEVELSETPOINTDEVIATION PRESSURIZER SAFETYVALVEOUTLETHXTEMP(2500psia)CHAHM.'LALERT-asreactortrippaintsarereachedforeachchannelCapitalized wordgroupings represent engxaving onannunciator panels.REACTORTRXPSFORRODWITHDRAWAL Th<<allowing tx'ippaintswereassumedfortheevaluation: | |||
NISPOWERRANGEHIGHRANGE(2/4)(118X)2.OVERPOWER 4T(2/4)(118XoffullpawerAT).OVERTEMPERATURE dT(2/4)(variable) 4~PRESSURIZER HXPRESSURE(2/3)(2400psia)PRESSURXZER HILEVEL(2/3)(95Xofspan)AlarmandRodStop PAULTTREEfORRODNITHDRANAL ACCIDENTAUIONATIC PROTECTION HEEDEDINSUFFICIENT TI'lEfORMANUALPROTECTION NEEDEDEXCESSIVE RODNORTHINSERTEDEARLYINCORELIPESUSTAIllED RODMITHDRAVAL HIGHTBQ'ATRODSTOtRICHPOSERATRDDSTOtCONTINUOUS RODllITHDRANAL REACTORINNANUALCONIROLAIPIQIATIC CONTHOLPAILURE(SEEPICURE5+12)fICURE51~1 wJ4 SfltAOLIt~fISA~~~VII~A441~~IICC480fl4.tf&I(SRSPICURE$.1-1)PAILURECONTINUOUS RODMITHDRAMAL CONDIT1OHOREVENTRPS~REACTORPROTECTION STSTIHRCS~REACTORCONTROI.SISTIHPROPERC1RCUITIHRCSROD'NITHDRAMAL SECIHS1HDlGATEDTISIPERATUREODSPEEDHTROLLER(RCS) | |||
RODMITHDRAMAL SECIHSALLTVGCHANHE(RtS)OaTHPROPERSETPOINTS(RCS)AHDTURSINKLOADSICHALORtOMERHISHATCHCHAICIFL(RCS)AVGODSTOPRODMITHDRAMAL SECINSNISRODDROPRODSTOtAVIRAGETAVGDECREASEINDICATED tRESSUREDECREASEDECREASEININDlCATED PLUZORNIS(RPS)QQNHEL(RtS)AY%ETAVGRCSRESSURECHANNEL(RtS)RESSURECHAHHEI.(RCS)FIGURE5.1-2 INSERTEDRODWORTHANDREACTIVIXY REQUIREDTOREACHDNBR~1.0INHOTASSEMBLYVERSUSCORELIFE1.5~~~-Reactivity RequiredToReachHotAssemblyDNBROf1.0(116.5XPower,"T~~589,2250PSZA)FromFuLLPower~~10RegionWhereProtection Is.Required~IP0.5PPMax.InsertedRodWorth~P'~(BottomofManeuvering Band)-':I0Min.~ertedRodWorth(TopofManeuvering Band)-.020406080100XOFCORELIFEFIGURE5.1-3 | |||
1a1.0o. | 1a1.0o.50COMPLETERODWITHDRAWAL FROMMAXIMUMFULLPOWERCa/-----MIDDLEOFCORELIFEINITIALRATE~Oa9X106k/SeC.)i~I..I[~.'.".a...p....'.",.'I.. | ||
0'040.6080100120140TIME,SECONDS160150~la~~140UP120~0~OWfeo1004<<:HIFLUXtRODSTOP.':;: | |||
iHIFLUX=.-.~aa~~020406080100120140TIME1SECONDS160a~~ta3jdTmENTS(M.OL)620~aaaaaaa'~~I600tPHIPOWER.HI'PORN'SHI TEMP.)HITZMIP.""""'"IHi&"'"'-I-I""" | |||
dTROD:dTTRIP:IATROD.":dTTRIP.":I:'::-:.::!!::":I=-i:I | |||
.'i:0......',.".'.-..'.~:.:'.....i:-..~jllaa':::a~"'g580560540IN~<<~~(~''iLI~1""~=-q--)~..'..."..'"::I.i:: | |||
T~+:Ii52O2040608O100120140160TIME,SECONDS | |||
.t~C0't-...:--0'I'>>I>>~~TRIPANDSTEADY- | .t~C0't-...:--0'I'>>I>>~~TRIPANDSTEADY-STATE CORELIMITSANDREACTOR.-.ALABMPOINTS160>>~~If~:t->>~~i---.-ALARMPOINTS--'...RODSTOPI>>>>>>y>>.',:.:..[~>>IJ-.I>>~$~~>>-REACTORTRIP~>>>>~~.I~.>>!WATERLEVELTRIPII'..I-HIPRESSURIZER | ||
~ | "-~-.-"-n140~~~+o.~:>>~~p>>I-~~Ii."IIiI~I.'STM.GEN.SAFETYVALVES..lI~~'-:IIPI.-}.I~>>>>>>/>>~('Tl~~>>II~~~/>>120110'>>,!I..pl".I.:.HXFLUX.HIATp,i..:l~I~I.f.::..HIAT~PI~Tl.'I>>I.~.~I..-.3.I"I'-.":l,*>>+100~.:::I,~~~:'I~'I)HIFLUX~>>I~~~~~III~~~,LLNOM'l"II>>l'~rI'NAL'-Itt90~>>>>>>~>>I'Lis>>I>>~>>~~>>>>I~PLOWLIMITI.'~HIPRESSURIZER WATERLEVFL:Ii>~.I.i'HIAX82400PSIA~I~I8070>>~I>>~~~>>GfxAVI'.I.g.II~'II.III>>I7'~-HITEMP.4T-HIPOWERdT540560580INLETTEMPERATURE, | ||
, | 'P600FIGURE5.1-6 BEGINNING OFLIFERODWITHDRAWAL FROMl02XPOWERMINIMUMDNBR;I2.502.00.IsfIIsll'eti~essseIe's~~Ill:W)I'ttI~,Iessg~~ertet'I~IeIslee~f~IIIIIlift:efII~I~II~I~LEVIIIIs~Ie~~[,Hliftfitssf''e~e's"''tellift:net1set.11estIelIsIIsl-Itsstsl"IiII.I'IllstI.'tpgSsuRE~elt'f<<s'st~~e'l$N~HIFLUX~~~'eII.eIIIfit""~Ifl;eIRefstffIfttilees..-,ilIfl'IIIIIeees.~~IIIIIII'setits(MAXRODSPEED,MAXRODWORTH)'-'Hl'LuX:.'- | ||
II~~IIIt~IIfetfI)efl'l~ell.50\~I~s<<s'I~'s'I.s.e,lift'llIIII~~IfI<<HITEMP.AT.:-Ie.~..Qtf'~IIteltf~''Ieislettet'IJ~I'tl'Itees~~'I',Pt'1st"."Ifljj'l<<n-'HIPOWERdTIIII~fe'HITBPe~~~~H':-'"''sstte~es't~tt~ileseeIsit',I's'tl~ss'II'eteswlff''tsf~e:HIPOWERATf-,s'T-.I~~III~~,~~~I~I~'llI~tieeI~Is~III~IHIPOWERdT;ttIsttstsl;IIIII!"IIII.i'Is~'"<<tt''I'IIItestJssr,1':,Iee'.HIPOWERhT;,~ie~stlIII'',;:.-.~HILEVEL',&SIC(.,'ITEMP.AT!III~IIIst~IIII~gtItlettellisteIIsless~el.0050IsttOle'~Iefl'S.G.~f"j:('ORHOTASSEMBLY)i | |||
olantfluid' | ..SAFETY>VALVES'-, | ||
~ofthesteamgenerators.Theflowrate,usuallyabout200gpmnrsteamgenerator,is, | el~I~t~~IIIItsiiIIIIIIIteIslint(fIIIIetInesII.,~'Ittl''I~I~II~'.IfIleIlseeI'iltfssftsI*e'ttsI~e~e~~~fitIesI+etesi~sesteesIsIt'I(CORRESPONDS TODNBRit'.e,SIfI''te<<I~IIIIi<<II'':"I~',IttlIfttf~~ItlsitseIIgtnII~I<<Is'<<s.In~ss;Ij'IseslfIII<<IIII~~~Iltlfit0.05O.IO0.250.5L.O2.04.0Reactivity Insertion Rate,106k/secALARMRODSTOPREACTORTRIP"DESIGN"REACTORTRIPCORELIYiITFIGURE5.l-7s | ||
~eBEGXNNING OFLIFERODWITHDRAWAL FROM102XPOWERTIMEOFEVENTllstrI~1rIssstelillsI'IsoI'tss~tlssIIIIsIleillslesesltI"sII~III~ILI1~~sitssisillsiiIIlsi1111I,sIisetsst250IlsiII:stilIseess200vo11'iesstssiisetst'IstII~,s~~~IseesstIts;ii~IHIle,'ss.'I"soI~IIIIilIts.;Ii~~II~~~TEMP.dT'?.iHILEVEL~'~ssAst'II't~esssssJl1.'l'ssl'Isells'1sssItIseIss.'SOIli~lI;III'~I"I'ItI~ssI~~~IsI'l"Ili:stt?e"s~~~'seII,I~I~sJCI~~~<'ltllslHOsIIsIIIII@isl1II~~dsDNBRHA~1.0~~sI~IIsiless~I1i'ii!i~rrII's1st~iIIssslsr~IslIIsIIIllsIIIIIII.'~Ill ilr,.II'~~~ALARMRODSTOP,REACTOR.TRXP"DESIGN"REACTORTRXPCORELXMITsI'~IisI'1stllr<osII,,I''I10050IC'llsitist,HIPRESSUREsill~1s'is.tfII~'illts'elsss"I'I'I',ltsIIIIski'S'II;1stceil;I,~stssllII'Ie~Ii'i'stI.i.IesdTitI>>IsIiI'.ssisst...~II".IIHIPOWER.IIl''tssI'~e~IIIsistJit1tlsll'IIil'aIssl(MAXRODSPEED,;MAXRODWORTH);,11ss'ItsteII1t'I!1stIsIs'stitst'ssi~~~HXLEVELlg-7:<~ILI11eIis~essIsstlStslI1st4iIJllII*Illsr,qtt\ses~~~~'3DNBRMIN~1.ss'Is's~s.rs't~~~IiI~~~I~sIslisII~IIIli"I~:I~IIs'1I,'It'IIjesIs~ststI'slie,'.'\llsI.s~eli~I1stItssI~tVgis~p'l'sa~IIIIt'lIs+IIstsglssIl.IIs~lIIs~~dTIlltli~~I~I;Is,sets:IiHXTEMPssI~sIIsI~II~~>>IeI~IsssillIII~sl11IIIIIII.0.'050.100.250.51.02.04.0REACTIVITY INSERTION RATE,10hK/SECFIGURE5.1-8 | |||
,wtCBEGINNING OFLIFERODWITHDRAWAL FROM80XPOWERMXNIMUMDNBRs'AVG~sls~I,I~ilesIl~s~~~I~f~IHIFLUX~I.Ii~-,.~,r,<;'r:,HZT':::"I'IiI;IIAVGI~s"(jestQsIIIIs~Isq)AVG,I,~eiIsII<<HILEVEL.g..(PRESSURIZER) sti~HIPOWER'~~tsIIisa'.'S.G.-:-SAFETY:'ALVES-i.'>>-'-'IAgg'I,~~~I;s>>I'isI'"I')HITEMP'~st.I~I,~'~~e~esetsieiiiis'Is's, teI,~I-'-AT:Ils)~I~,~~~Ii'ltesIII~I:~T'IM~~f$:.-';~~~si"I'P~~IIee~Ises~IIIL-rWERhT'XPRESSURE. | |||
"NNR!!',tGMFI::"'.:l iI-I-~HIPoI>>ssII['tt'It'Ls I'i'DEVIATION I>>:fs~~sIIi~II:IIllI~I~Iirpge,sli(i~I~sALARMRODSTOPREACTORTRXP"DESIGN"REACTORs>>>>seeeels>>%TRXP'~~~~i~tlIII~~~~I'IIlls'e~I~.;IsII~e'HXFLGX~III~I.II<<Ii<<lit~CORRESP1.0"IiI~IIsS~.IIIII~issI~i'llilONDSTODNBR>LNHOTASSEMBLYi:e~~~,i'sseIIIItsI~iteIIIllss'sJI'elI~slile',~ei~~~,(MAX.RODSPEED,-.MAX.RODWORTH)~It'tsiIles~~~~iIil~t~I;~Illsi'~II~~s,~~~~~~Isss~I~,seiie~~~sI~iii~III~Islei.e~<<s'Ie~sI0tlssillsse'.III'Iii't'll'll'lel~ilIIIlssO.OSO.1OO.ZSO.S1.O2.04.0REACTIVITY INSERTION RATE,108K/SECFIGURE5.1-9 W4olBEGINNXNG OFLIFERODWITHDRAWAL FROM80/POWERo~TIMEOFEVENTi~~o'tlll-;-I-.':i'-:: | |||
~G:"-HIPRESSURIZER';, | |||
LEVEL~.I~~~IIIIt~-'rrr-I~i~ii~I~I~I"oI'.~I~IIos.tlSAFEZYs-l~vALvEss Io~I~J'IIIQ1,~I,LEVEL~~~I,Ij"-,T',;I3 | |||
..'.",.'IPRESSURE'vIsoElio.'I~~tsl'II~'AVG;,I;:AT,:Lol | |||
''ITJ~gHIPRESSURXZER,. | |||
t:itlt!:I',.;IIlllli!ii~~'io~I~~HITEMP4T~o~I41:,~oHXPOWER4TDNBR~1.0'.o~IIILI'.~~io~I:III!4II~I''-~JIiIIIII~sill~I~II'~~I~,IlsI~~~o~~~il:~ilt'~,~Ioo~~~IDNBR~1.3'it'I~'t~~'~~(MAX,RODSPEED,,MAX4RODWORTH)~il,is~II:II!IIsItts~oALARMRODSTOPREACTORTRIP"DESEGN"REACTORTREE~~LsslotIllsiil~Its~IIIII~oilIoI~o~.L.l.J:::: | |||
4ltI~II~~~It~o4~o~jilt!tooio.,';:@goal:"i~I~oj>>!iisIoJ~III:I'ts't.Il'"..Itlt!I~~st~o~~~E'XPRESSo,is>>I~~IIIIIIIStI'~I.iIH%H&iti,'-',: | |||
HIFLUX'ot'isJtl~o~~II~IIIII~II~I~I:tl~~II~~o!It~~"ilii~o~I~'~il>>io~~~I~~~itissl100TAVC50olo~oo~I'!to'lli IIDoi":iri.~II'~~o~III~4I~'~II~IIIII*I~I~ooIo~I~~~~IIIlo~~II4I~o~II~~tI~~~I~'iti,~!ilI~I~o-::".:++I~.-..'i'il~o~I~~~~o~iis4si~!~lI~I~I~Ii~oL~I~~~!iot~~I~~I~s~!I~tillIllIIQ~Il'~'iot!4III~~;IsoI~I~IIiItI~II~IHIPOWER4T~-:.';HITEMP4TIo~IIt~II~JA.IIilotgiiIt/lt!.~it'ilio~Io~~io,is.,'Ioi't~tl~'~si~~sot!IlossI~SS"~'II:I:~-."I0.050.100.250.51.02.04.0Reactivity Insertion Rate,106k/secFIGURE5.1-10 LPSSOpFEEDWATER | |||
>ringpoweroperation, lossoffeedwater tothesteamgenerators isofpotential concernbecauseitaffectstheabilityofthesteamgenerators tormovedecayheataftertripTheprotection forthiaccidentconsistsofreactortripandanauxiliary feedwater system.Thisevaluation describes theControlandProtection Systeminstrumentation providedonatypicalWestinghouse PWRPlanttodirectlymonitororcontrolsteamgenitorwaterlevel.Lossoffeedwater accidents withoutcreditforthisinstrumentation areevaluated. | |||
TypicalWestinghouse designrequirements fortheauxiliary feedwater systemareincluded. | |||
Atypical1456MWttwo-loopplantwasselectedforthetransient analysis. | |||
Alossoffeedwater accidenttoonesteamgenerator ismostsevereonatwo-loopplant.Foracompletelossoffeedwater, thetransient perloop,isdependent onthenormalized kineticparameters; e.g.,power(sotheresultsshownherearerepresentative forallplantscurrently underdesign.Znallcases,diverseautomatic reactortripsinsureaplanttripbeforeanycoredamageorsystemoverpressure occurs.Manualactuation oftheauxiliary feedwater systemisconsidered anadequatebackuptotheautomatic actuation. | |||
Thereissufficient time(24minutes)andalarmstotakecreditformanualactuation. | |||
<nteractions ofsteamgenerator levelcontrolandprotection resulting C~romrandomfailuremodesarepresented inSection4.2.5.Alarmsactuated5.2-1 oracompletelossoffeedwateraccidentarepresented inTable5.2-1'C-.suittreesforlossoffeedwater accidents arepresented inFiguresC-2l,5.2-2,and 5.2-3.LOSSOFFEEDQATER | |||
-TRANSIENT ANALYSISSeveralrepresentative transient casesareevaluated forlossoffeedwater accidents. | |||
Figure5.2-4showsthetransient resulting fromcompletelossofthesteamflowcontrolsignal.Asshownbythefigure,theLevelControlSystemrestoreswaterlevelsuchthatonlyatemporary decreasein~sterleveloccurs.Thereisnoapproachtounsafeconditions ortoanyreactortripsetpoint.Figures5.2-'5and5.2-6illustrate atypicalcompletelossoffeedwater "oonesteamgenerator | |||
'ofatwo-loopplant.Nocreditwastakenforreactortripsderivedfromthesteamgenerator. | |||
Thelossofsubcooled feedwater isreflected tothereactorasasmalldecreaseintherma1Iload,causingtheincreaseinpressureandtemperature showninthe-irstminute.(Thereactorwasassumedtobeinmanualcontrolwith<<manualcorrection.) | |||
Oneminuteafterthe.lossoffeedwater, thesteamgenerator tubesbegintouncover,causingarapid.pressureandtemperature increase. | |||
Ifamchnumpressurecontrolcapacity(poweroperatedreliefvalves)isavailable, thepressureriseislimitedandahighpressurereactortripdoesnotresult.Areactortriponhighpressurizer eloccursappro~tely twominutesafterthelossoffeedwater. | |||
5.2-2 lr> | |||
zinventory inthesecondsteamgenerator issufficient tobringWaterplanttonormalno>>loadconditions.Thereisnooverpressure oxthepanofwaterfromtheReactozCoolantSystem.lossofigures,5.2-7 and5.2-8illustrate aworstcasecompletelossoffeed>>watertoallsteamgenerators withnotripfromsteamgeneratox instxu>>~tation.Aconservative evaluation isdoneforahigh-power densi.typanlanttypicalofcurrentPWRdesigng.456MWt2>>loop).Nocreditistakenforchargingsystemsorforenergyabsorption bymetalintheReactorCoolantSystem.Theresultsareconsidered tobeextremevaluesratherthanrealistic conditions foranactualplant.Thereactortripsonhighpressurizer pressureaboutoneminuteafterthelossoffeed.Storedheatinthecorecontinues toheatthereactorcoolantandthepressurizer M.lsinaboutthreeminutes.SteamdumpvaluesopenfuU.yunderTavgcontrolandreducesteamlinelIpressure. | |||
Afterabouttenminutes,theReactorCoolantSystembeginstoboy.,aa"h<<htimethex'eactorcoolantpumpsareassumedtoceaseaddingenergytothecoolant.Boilingcausesarapidincreaseinthevolumetric surgerate,andsystempressurerisesuntilthevolumetric expansion isbalancedbysafetyvaluecapacityforwaterzelief.(Nocreditwastaken"orthepower-operated reliefvaluesinthisanalysis.) | |||
teŽgenerated inthecoreisassumedtofilltheupperreactorvessel,esteamgenerators, andhalfofthecoolantpipingbefoxeescapingtoepx'essurizer. | |||
Duringthisfourminuteperiod,mostofthereactor5.2-3 e | |||
olantfluid'islostaswaterdischarge throughthepressurizer | |||
>+styvalve.Assteamisdischarge throughthepressurizer, premeasuredecreases tothesetpressureforthesafetyvalves.Afteranadditional tenminutesofboiling,(24minutesafterthelossoffeedwater), | |||
thetopofthecoreisnearlyuncovered. | |||
XtwasassumedthattheAuxiliary Feedwater Systemwasmanuallyactuatedatthistime(pushbuttonsonthecontrolboard)and200gpmauxiliary feedwaterpersteamgenerator beganimmediately. | |||
Qithintwominutesofstartingauxiliary feedwater, thesteamgenerator heatremovalexceedsdecayheatandreactorcoolant~emperature andpressurerapidlydecrease. | |||
5.2.2TYPICALSYSTEM1ESIPilREQVIEEMENTS Auxiliarv Feedwater SystemTopreventreleaseofreactorcoolantthroughpressurizer safetyvalvesiandtoprotectthecore,asupplyofhighpressurefeedwater mustbeprovidedfortheremovalofresidualheatfromthecorebyheatexchangeinthesteamgenerators whenthemainfeedwater pumpsceasetooperateonblackoutorbecauseoffaultconditions. | |||
'yp<<alcriteriaforactuation ofauxiliary feedwater ispresented iniable52-2afetyzequi.rement istoincludetwoseparateauxiliary feedwater yternatoensurereliability ofsupply.Ones'ystemutilixasasteamturbinedrivenauxfLiazy feedwater pump,aeurbinebeingconnected suchthatsteamcanbesuppliedfromsome5.2-4 t, | |||
~ofthesteamgenerators. | |||
Theflowrate,usuallyabout200gpmnrsteamgenerator, is,sufficient tomaintainamilkmandepthofwater>rstethesteamgenerators. | |||
ochersystemutilizestwo(2)reserveauxiliary feedwaterpumps,a~ofabouthalfthecapacityofthesteamdriven.pump.HowratesufficienctoensurecoolingofthesystemandtoPreventwaterdischarge cromReactor'oolant Systemxeliefvalves.Thereserveauxiliary feed-vacexpumpsnormallyaredrivenbyprimemoversusing'sourceofenergyotherthansteamfromsteamgenerators. | |||
Theheadgenerated bythefeedwater pumpsistobesufficient toensurethatfeedwater canbepumpedintothesteamgeneracor whensafety'valvesaredischarging. | |||
Pumpsaxecapableofstartinganddelivering feedwater vithintwo(2)minutesoftheblackoutorfaultconditions requiring puupactuation. | |||
>ietypicaldesignbasisforsizingauxiliary feedwater pumpsisgivenbyTable5.2-3.Sourcesofwaterforauxiliary andreserveauxiliary feedwater pumpsareduplicated orifconvenient, triplicated. | |||
Ordinarily, wageris'}rawnfromacondensate storagetankcontaining waterofnormalpurity,'<<maybedrawnthroughemergency connections fromothersourcessuch~citywater,wellwater,fix~+inwater,servicewater,etc.,toobtainasupplyundersufficient pressuretosatisfyauxiliary feed>>"-pumpsuctionrequirements underemergency conditions. | |||
5.2-5 | |||
( | ( | ||
fromtheauxiliary pumpsisdelivered tothesteamgenerators | |||
~pterpipelinesseparatefromthemainfeedpipelines.Pipelinesarepapespacedtoassurethatasinglefaultdoesnotpreventfeedwater | |||
~~Jvspa~ewholeoftheauxiliary feedwater system(watersupply,piping,dieselgenerators, etc.)mustbe"ClassI"seismicdesignstandard.+ | |||
pggp+I~SteamandFeedwater Piin<iailureofanymainsteamorfeedwater lineormalfunction ofavalve~tel].edthe"einoranyconsequential damagemustnotreduceflowcapability if>eauxiliary (emergency) feedwater system,renderinoperable any~eeredsafeguard service(i.e.,controls, electriccables,containment aeM4gpiping,etc.),initiatealoss-of-coolant | |||
: accident, causefailureifanyothersteamorfeedwater line,resultinthecontainment pressureexceeding thedesignvalueorimpairitsimpermeability andintegrity. | |||
I>steamandfeedwater linestogetherwiththeirsupportsandstructures | |||
~<<eneachsteamgenerator andtheirassociated isolation valvesareto-"'"Classl"seismicdesignstandard.* | |||
eoeexpression "ClassI"usedinthiscontextisdefinedinsignofNuclearPowerReactorsagainstEarthquakes" inadocument~titled"Behaviour ofStructures DuringEarthquakes" AppendixA,byHousner,professor ofCivilEngineering', | |||
California Institute of,~""oology. | |||
: Pasadena, California. | |||
Published byAmericanSocietyof"-+1Engineers | |||
-Engineering Mechanics Division. | |||
(October1959EM4)5.2-6 | |||
TABLE5.2-1~SACTUATEDFORACO%' | TABLE5.2-1~SACTUATEDFORACO%'LETELOSSOFFEEDWATER ACCIDENTCauseoffault(ingeneral,anycondition causingacompletelossoffeedwater causesanalarm)2.Lowfeedwater flow(partialreactortrip,twochannelspersteamgenerator) | ||
TABLE5.2- | Steamgenerator leveldeviation (onepersteamgenerator) | ||
4000HZPRESS/ALARM:-":.'-.='::.-,'tL.'-':4:-:1::!!t:::il::-:: | Lowsteamgenerator level(partialreactortrip,incoincidence with2.above,twochannelspersteamgenerator) a5.Low-lowsteamgenerator level(reactortrip,thr'eechannelspersteamgenerator) 6.Automatic controlrodmotion7.Tdeviation avg8.HighT(3or4channels) avg9.Pressurizer leveldeviation LO.Highpressurizer pressure(twochannels) 11.Pressurizer relieflinehightemperature lHighpressurizer pressurereactortripNote:Itisassumedthatthe-turbineandreactoraretrippedonhighpressurizer pressure. | ||
Pressurizer safetyvalveoutlethightemperature | |||
~4'ighpressurizer levelreactortripLowsteamlinepressure(notonallplants)~6~Pressurizer relieftankliquidhightemperature | |||
~7'ressurizer relieftankhighpressure~8'ressurizer relieftankhighlevel19.~Highcontainment pressure(safetyinjection actuation, ataboutlO~ofdesignpressure) 10Lowpressurizer level(partialsafetyin)ection actuation) | |||
TABLE5.2-2TYPICALCRITERIAFORAUXILIARY FEEDVATER ACTUATION Motor"Qxiven PsLow-lowlevelinanysteamgenerator startsbothpumps.actionrequiresthesamebistables andrelaylogicasusedforthereactortrfp.(2/3circuitry foranysteamgenerator) | |||
.b)Openingofbothfeedwater pumpcircuitbreakersstaxtsbothpumps(1/1+1/1logic).c)Safetyinjection sequenced)Manual.Turbine-Driven Pa)Low-lowlevelintwosteamgenerators. | |||
(Samecircuitry asI.A.above)b)Lossofvoltageonboth4KVbuses(1/1+1/1logic)c)Manual.3.GeneralCriteriaa)Allthreepumpsaretohaveindependent startingcircuitssuchthatnosinglefailurepreventsmirethanonepumpfromstarting. | |||
b)Instxmentation andlogiccircuitsforlaand2amustmeetthesingle-failure cxiterion foxactuation andbecapableoftestingatpo~er.Compatibility withreactortripcircuittestingisalsorequired. | |||
c)Spuriousactuation duetounusualfailuresistolerable, butroutinetestingofreactortripcircuitsshouldnotcausespuriousstarts. | |||
4000HZPRESS/ALARM:-":.'-.='::. | |||
-,'tL.'-':4:-:1::!! | |||
t:::il::-::rW I'.='=Qptftt!ti.!r.'L"COMPLETERODWITHDRAWAL FROMMAX.HJLLPOWERBBCINNZNC URE-----MIDDLEOFOFCORELIFECORELIFE020406080TIMENSECONDS1001201401608004&NNaWi50HILEVEL406080IflP~&l~a100120140160TIMENSECONDS2.01.51.00.5'Wa.IBt~IVPfPt.-DNBRMIN.:~1.30tll')"HOTQQLNNEL:1-WOOI~NC1BBBMILY-N~020'0608010012014010TIME,SECONDS TABLE5.2>>2d)Instrumentation andlogicforlband2bshouldbeconsidered asoperational signalsforeconomic(notpublicsafety)protec-tion,(SimQ.artoreactortriponreactorcoolantpumpcircuitbreakeropening).e)AsEngineered Safeguards components, theactuation circuitry forauxiliary feedvater actuation shallmeetallappU.cable IEEEDesignCriteria. | |||
e'TABLE5.2-3CALDESIGNBASISFORSIZINGAUXILLQEFEEDWATER'PUMPS~~DRIVENPUMPSI~steam~ | e'TABLE5.2-3CALDESIGNBASISFORSIZINGAUXILLQEFEEDWATER'PUMPS | ||
FAULTTRttFORIDSSOl'IB+ | ~~DRIVENPUMPSI~steam~riven pumpcapacityisadequatetomaintainatleastlpfeetofwaterinallsteamgenerators intheeventoflossofstationpowerfromnormalfullpoweroperation. | ||
Nocreditis~owedformotor-driven pumpcapacity. | |||
~OR-DRIVEN PUMPS'IEachmoto~venpump,byitself,.is'adequate topreventwaterrelieffromthepressurizer reliefvalvesunderthefollowing assumptions.a)Planttripoccursfrommaachnun steadymtate powerandtemperature. | |||
conditions. | |||
b)Allsteamgenerators areattheirlowlowleve1trippointsatthetimeoftrip.c)Nocreditistakenforanyadditional sourcesoffeedwater aftertrip(stationblackoutassumed.) | |||
d)Atleasthalf,butnotallofthesteamgenerators aresupplied. | |||
withamcLliary feedwater. | |||
e)Naturalcirculation existsintheReactorCoolantSystem.0NocreditistakenforchargingorletdownfromtheReactorCoolantSystem.g)Applicable startingdelaysandfeedwater pipepurgingtimesareused. | |||
FAULTTRttFORIDSSOl'IB+STIR F(DM'.m~I'l~OCORESECIHSToUNCOVERINSUffoSIolgURCINCCAT.ANAHUALAof0ll0$oTIKE(iloNIH.)NANUALA,F,M,S,TINE(oloNIN.)RCSHEATSOHDECATHEATMOoAUTO,A.F.M.S.ALLSoCo'SDtfSTATION(SttFICURRSotIRoToONH'loFREEOIllttSoCo'$Q(FTTbCSHFATSSoCTURESRECINToUNCOVERHOTElHI.FREES.R.T.NATbtHECSSSART TO=FREVBITSTSTtÃOVERTRESSUREIOIOIXIOLIOII.OIO.IIOIIOOI.IIIOIIMIOI.OIO.IOIOOOOOOLOMSoCoLEVELNANUALREACTORANDIRIF-~MSINoNISIPSLUMLOSSOrLEVELRAPIDlOSSOFLEVtLLOSSOFSoCoLEVELREACIORATFMRoMITHIHSUFF.F.MORAbbbtVIATIOHS RCS~REACIORCOOLANfSTSTENRTREACIORIRIFS.ISAftffIlQECTION FoMoftEDMATER AofoMoSoAUIILIART FoMoSTARTSooo~STEANCENtRATOR NJ4NOIORDRIVENNECRANICAL FAULTAUTO.C(NIROLFAULTELECTRICAL fAULTLOSSOfFELID(SttFICURRSotI) | |||
pan.TTacepoarossoppcaeATcanuuSERFlcuacS.I- | pan.TTacepoarossoppcaeATcanuuSERFlcuacS.I-IAUTQtATIC CONTROFAULTELECTRICAL fhULTLOSSOff.M.SUCTION2/>Hl.LEVELCLOSESF.M.VLVIHCOHPLETE S.leSIGQ-H$R.T.IRQQIHIHGF.MoMHAN~f.M.VALVECLOSEEICONTROLfAULTILOOPLOSSOfCOOIAHFFLOVRE-REACTORATBILLPOllERS.CEN.LEVELCONTROLLER fAULORRFACIORATRE-DUCIDFOlXRTNFROFERcxTeINCONTROLLER IPLPIPL.O.F.M.-(ELEC.FAULT)4EV.RUSFAILUREONESUSLOSSOFCOH-OENSATEtUHPSORI~lieSSOFHTR.DRABfLBPLO.SIN.fLOMRlfEEDBOllCTOHTOHHILEVELINDICA-TION(R,t.S.)AILUREOFCOH-EHSATERYPASSAbbaEVIATIONSfAILURECONDITION R.T.-REACTORTaitS.l.-,SAfETTIHIECTION R.t.S.-REACTORPROTECTION STSTEHf.M.-FEEDMATER Aaf.M.S.-AUXILIARY f.M.STARTfIGURE5.2-2, | ||
~~ | ~~FAULTTREEPORLOSSOFPEEDWATER PLOWSEEFIGURE5.2-1STATIONBLACKOUTWITHLOSSOFPEEDSTM.GEN.LO-LOLEVELA.F.W.S.LOSSOPLEVELINSTM.GEN.F.WPUMPBKR.MOTORA.F.WS4KVUNDERVOLT STEAMA.F.WS.(LOSSOPREACTORCOOLANTFMWREQUIRES2963)IATE REACTORTRIP)COMPLETELOSSOF4RVSYMBOLSABBREVIATIONS F.W.-PEEDWATERA..P.W.S. | ||
'te'e00F0050003.02e52.0200100ga00Q2IPLETELOSSOFPEEDWATER<<~~I~~I~~~~Ieeei!i~:..i'.I~~I~II~I>>~e~~~'I~~5001000TIMESECONDS1500I~Ir~~I,t':I~~~('I~I::::J<<i~~I.<<nI..~::~(r'i:..('I~.I~'I'~~I~e~e~I.~eI~eI~I.eI'00TIMESECOR)S5001500STEhMPLOW'TOPRESSURIZER~II(iWhTERBKZEFjIe(*'STEhMRELIEFIHSBOILIHG.COHDENSATZOS~HZPRESSTRZP-'KCEIESBOILS~:...II....j;-.-:i:<<;';;,II-:;:-'-'I'<<'U-~e0'0001500~~:~II:4J<<~::.i.-.~~10.:::.."::LIIIIt~~:-BOTLTHGf~WhTERR1KXEF::.-.;hei~.:.'"::.:.ll'.Ig~i'.I:.III."Ie.I~.~iII(:-:~~,"".,: | -AUXILIARY P.W.STAR]FIGURE5.2-3 ltFF LEVELRESPONSETOLOSSOFSTER%ANSIGNALPROP+INTEGRALK+-11SPROP+INTEGRALK+-12TSPHEOMATIC POSITIONER POSITIONW8QfQNORMALIZED STEhKFLOQ8QfNOHHAIZZED PEEDWATER PLOW-1K<<1feT-200sec1K~10T~200sec22l~~-"FEED%TERVALVE~POLLYOPEN~~~]~~~~4~-~~~--I-I~~1010202030~,SECONDS3040405050'060~~~~~~~~I'~~W~~~~~I.~~oFZGaaE5.2-4 LOSSOFFEEDQATER TOONESTEAMGENERATOR ATT~ONESECONDTYPXCALTWO-LOOPPLANT260022001800~W~It=LL:~t1400~~800600400~t~~~PRESSURIZER | ||
OSSOFCOOT~i-~OWANALYSISLOINTRODUCTIOÃ~SDSUMMARYc~3~Ithereactoris~thepowerrangeofoperation, | .LEVELHEACTORTRXP-'~t200'25,,dao~~50,0025,Oej~~4~~~~4080120160200MME,SECONDSFIGURE5.2-5 LOSSOFFEEDWATER TOONESTEhHGENERATOR ATT~ONESECOND"640:".I:~lI~E~~~IA.~I~'I620"..:.:-:.-.~~~-:600~~~~~E"'3'-'-=580~~:~~500540.L--..:4.P':: | ||
ll=.S'5001.0.8-COEE~-POWER'-:=..~.6i-.:)"ŽTOTALGEN.~204080120160200~,SECONDSFIGURE52-6 l~ | |||
'te'e00F0050003.02e52.0200100ga00Q2IPLETELOSSOFPEEDWATER | |||
<<~~I~~I~~~~Ieeei!i~:..i'.I~~I~II~I>>~e~~~'I~~5001000TIMESECONDS1500I~Ir~~I,t':I~~~('I~I::::J<<i~~I.<<nI..~::~(r'i:..('I~.I~'I'~~I~e~e~I.~eI~eI~I.eI'00TIMESECOR)S5001500STEhMPLOW'TOPRESSURIZER | |||
~II(iWhTERBKZEFjIe(*'STEhMRELIEFIHSBOILIHG.COHDENSATZOS | |||
~HZPRESSTRZP-'KCEIESBOILS~:...II....j;-.-:i:<<;';;,II-:;:-'-'I'<<'U- | |||
~e0'0001500~~:~II:4J<<~::.i.-.~~10.:::.."::LIIIIt~~:-BOTLTHGf~WhTERR1KXEF::.-.;hei~.:.'"::.:.ll'. | |||
Ig~i'.I:.III."Ie.I~.~iII(:-:~~,"".,:hIEZLZhRT PEH"'HsSRSi:II.':j~e10005001500TIMEAFZERLOSSOFPEED,SECONDSPIGUBE527 CQHFLEZELOSSOFPEEDWATEK | |||
~+o600)$5005001000-1500TZHE,SECONDS10QOla8QQ6QQ.'0gQQQ0500100015002000TIME,SECONDS AUXILIARY FEHNATERSYSTEMSCHEMATIC 2LOOPPLANTMotorOperatedValveMPneumatica11y LO.LockedOpenOperatedValveManualValve(normally open)I,~MOTOROPERAL~CHECKVALVESTOPCHECKVALVECondensate StorageTankManualValve(normally closed)~PromAlternate WaterSupply(CLASSI)CLASSIXiCLASSIL0.LOL.O.MotorDriveTurbinefDriveMotorDrivePromMainPeedwater SystemSGB-"romMainPeedwater SystemFIGURE5.29 4* | |||
OSSOFCOOT~i-~OWANALYSISLOINTRODUCTIOÃ | |||
~SDSUMMARYc~3~Ithereactoris~thepowerrangeofoperation, lossofcoolantfloweatentepotential conce-n.Withoutsufficientflow,DNBandcladfailure~dquicklyoccur.estinghouse PWR's,constant-speed pumpssupplycoolantflow.Plowisegulatedorotherwise varied.High-inertia flywheels aremountedoneach.sothatflowdec=eases ovex'periodoftime(typically 12secondstofflow)following alossofpowertothepumpmotor.Thisflowcoast-ioMnallowsforProtection SystemtMedelaysandremova1ofstoredheatinxbefueL.Subsequent decayheatisremovedbynaturalcirculation. | |||
Diverse,redundant protection circuitsareprovidedtoprotectagainstallpossiblelossofflowaccidents. | |||
Theseprotection circuitsaxeevaluated thisreportformultiloop lossofflow,singlelooplossof;flow,and~othetical pumoseizure.AlthoughdesignLimitsmightbeexceeded, theonsequences arefoundtobetolerable inallcasesevenifanyoneprotection circuitfailedtoperormitsfunction. | |||
-3.ZPROTECTION SYSTRfDESCRIPTION erousreactortrf.pcircuitsprovidecoreprotection foraLossofflow~c-"ident. | |||
Thesetripsare:reactor'oolant flow,ReactorcoolantpumpbusLowvoltage,ReactorcoolantpumpbusLowfrequency, Reactorcoolantpumpbx'eskerposition, Overpower Delta-T.5.3-L | |||
perceptfortheoverpower Delta-Ttrip,alltripsareblockedbelow10Xpower.LowReactorCoolantFlowThreeredundant flowchannelsareprovidedforeachloop.Athighpower,lossofflowinanyloop,assensedbytwoofthethreechannels, actuatesareactortrip.Thesetpointforthistripistypically at90Xofnormalindicated flow.Atlowerpower(typically 50X,65X,and75Xfor2,3,and4-loopplantsrespectively) lossofflowinanytwoloopsactuatestrip.Thesameflowsetpointand2/3logicisusedasforthesinglelooplowflowtrip.ReactorCoolantPumpLowVoltaeInordertoinsurethattotallossofpumppowerdoesnotviolatethecoredesignlimits,areactortripisactuatedbylowvoltageonthy,reactorIcoolantpumpbuses.Thedesignrequirement istomeetthesingle-failure criterion forcompleteloss'ofpumppower.Thetriplogicisgenerally suchthatlossofpoweronanytwobusescausesareactortrip.Typicalsetpointsforthistripareintherangeof60Xto80X~ofnormalvoltage.ReactorCoolantPunmLowFreuencThereactorcoolantpumpsareprovidedwithflywheels toincreasetheirrotatinginertia.Thisprovidesforcedcirculation forsomeperiodoftimeafteralossofpower.Itisconceivable thatarapidsystemfre-quencydecreasewouldslowthepumpsdownfasterthanforalossofpower.5.3-2 | |||
Therefore, | Therefore, anundhrfzequency reactortirpisprovided. | ||
Thetriplogicisidentical tothatusedfoxtheundexvoltage reactoxtrip.Inadditiontotrippingthereactor,underfxequency alsotripsopenthereactorcoolantPumpcircuitbreakerstomaintaineffective flywheelinertia.Typicalsetpoints forthistxipareintherangeof56-58cps.pCircuitBreakerPositionAreactortripdezivedfromauxiliary contactsonthereactorcoolantpumpcircuitbreakeraffordsadditional safetymazginforthemostLikelycausesoflossofflow.Triplogicissheartothatusedfoxthelowflow'rip; i.e.,openingofanybreaker,asindicated byapositioncontact,actuatesazeactortripathighpower,andopeningofanytwobreakersatreducedpoweractuatesatrip.OveowerDelta>>TReactorTriThistripcircuitisdesignedtoprotectthecoreagainstoverpower transients. | |||
However,sinceDelta>>Tincreases asflowdecreases, italsoprovidesbackupprotection forlossofflowaccidents. | |||
Onatwo-loopplant,twoDelta-Tchannelsperlooparepxovided; onechannelperloopUprovidedonthx'ee-andfour-loop plants.ForaLLplants,tripoftwochannelstripsthereactor.Duringsteady-state operation, thetripset-PointforthesechannelsisintherangeofllOXto120XofthenormalDelta-Tindicated atfullpower.Thissetpointisautomatically reduced<<rincreasing temperature (x'ateofchangeofT)tocompensate forpipingavgdelays.(However, thesetpointisnotincreased fordecreasing T.)Sinceavgalsoincreases following alossofflowaccident, theDelta-Tset-avg5.3-3 4@i'4.a*A'4" poointdecreases at.thesametimeasDelta-Tincreases. | |||
Thissignificantly decreases thetripdelaytime.ggarlacks | |||
~ceptfortheoverpower Delta-Treactortrip,thelossofflowprotection tripsareblockedatlowpower.Thisinterlock isinitselfredundant anddiverse,inthatthetripsignalispassed.ifeither2/4nuclearchannelsindicateabove10Xorif2/2turbineloadsignalsindicateabove10X.Singlelooplossofflowtripsfromlowflowandcircuitbreakerpositionareblockedatreducedpower.(Thetripispassedif2/4nuclearchannelsindicateaboveapreset,power.)Sincethesetwotripsshareacommon,nonMiverse interlock, theyshouldnotbeconsidered as.completely diverseprotection functions. | |||
5.3.3MULTILOOP LOSSOFFLOWIAfaulttreeforamulti-loop lossofflowaccidentisshown,onFigure5.3-1.Onlyelectrical faultscancauseallpumpstofailsimultaneously, andtheundervoltage andunderfrequency reactortripsprovidedirectprotection againstthesefaults.Thelowflowreactortripcircuitsprovidebackupprotection forthisaccident, andtheydonotnecessarily insureaminimumDNBratiogreaterthan1.30.Figure5.3-4illustrates thetransient resulting fromacompletelossofflowaccidentrepresentative ofhighpowerdensityplantscurrently underdesign.Thesolidlinesrepresent thedesigncase,withreactortriponundervoltage. | |||
Thedashedlinesillustrate thecalculated transient ifthisreactortripisneglected. | |||
5.3-4 alculations aredonebystandarddesignmethods,withtheusual~esecactionsforsafetyanalysis; e.g.,themostadversesteady-state sssump<<operaratingconditions atthetimeoftrip.accidentisrelatively rapid,withaDNBratioof1.3in..thehot~eaccchannelreachedinabouttwoseconds.Itisnotappropriate, therefore, gpassumssumeanymanualcorrective action.Also,theminimumDNBratioisreachedatthetimethehotspotheatfluxbeginstodecrease. | |||
Thereislittletransient overshoot exceptforreactortriptimedelays.Theundervoltage tripiithedesignprotection forthisaccident, anditmeetstherequirement that,theminimumDNBratiodoesnotfallbelow1.30.Lessrestrictive requirements wouldbeimposedonabackuptrip.Aminimumallowable DNBratioof1.0inthehotassembly, couldbeselectedonthebasisthatthiswouldinsurethatcoredamage,ifitoccurredat,all,wouldbelimitedtoaverysmallfractionofthecoze.(Thepeakingfactorsinthehotassemblyareessentially thoseinthehotchannelgthoutal1owance forengineering subfactors.) | |||
Alternately, ahot-spotcladmeltinglimitcouldbeimposedforthisaccidentonthebackupprotection. | |||
Witheitherrequirement, Protection Systemdiversity exLsts.Thelowflowreactortrippointisreachedat1.8seconds,assayinga3Zerrorinthesetpoint(trippointat87Xflow).AlthoughthehotchannelminimumDNBratioissomewhatbelow1.3,thehotassemblyminimumDNBratioisstillwellabove1.0.IfDNBshouldoccuratthe>>tspot,thetransition boilingcorrelation'ndicates thatpeakcladtemperature wouldbeintheneighborhood of1000'F,andnocladdamageisexpected. | |||
(Seeresultsforsingle1ooplossofflow.)5.3-5 NeDeta-eDlta-Ttransient iscalculated forthiscase.Becauseofpiping~dinstrumetrumentdelaysatripsignalwouldnotbegenerated untilaboutgeconndsafterthelossofflow.Theeffectofratecompensation onistoreducethetripsetpoint.Evenwiththislongertripdelay,avediepeaakcladtemperature isnotexpectedtoexceed1500'F,we11below<hemeltingpoint.Therefore, threelevelsofprotection existfora~nltiloop lossofflowaccident.. | |||
5.3,4SINGLELOOPLOSSOFFLOEAEaulttreeforasinglelooplossofflowaccidentisshownonFigure5.3-2.Votethatlossofpowertoonebusistheonlycrediblewaythisaccidentcanoccurwithoutanimmediate tripfromthepumpcircuitbreaker.{Anopencircuitinthepumpmotorisahighlyunlikelyfault,andisshownrEorthesakeofcompleteness.) | |||
Thecircuitbreakertripistherefore classedasabackup,oranticipatory, trip.IFigure5.3-5illustrates thetransient resulting fromasingle-loop lossotflowaccidentinahigh-power density,two-loopplant.Thetransient hislesssevereinathreeorfour-loop plant.Thelow-flowreactortripisthedesignprotection forthisaccident, | |||
<nditmeetsthedesignrequirement ofminimumhotchannelDNBratiouolessthan1.30.Iftheaccidentiscausedbylossofbusvoltage,andnocreditistakenEorthelowflowreactortrip,thehotchannelDNBratiowouldbelessthan1.3.However,areactortriponhighDelta-Twouldterminate the5.3-6 iccidentbefore18Boccursinasignificant percentage ofthecore.pssumIsagthatthehotspotgoesintoDNBatthetimethehotspotDNBrato+tjoisL.30,andassigning aconservative additional instrument delayofp9sectotheDelta-Ttrip,apeakhotspotcladtemperature (ontheinnercladsurface)ofappro~tely 1300'Fiscalculated usingatransition boilingcorrelation. | |||
OnlytheDelta-Ttransient fortheactiveloopisshownonFigure5.3-5.SForthedeadloop,Delta-Tincreases somewhatmorerapidly.Onatwo-loopplant,twoDelta-Tchannelsexistoneachloop,soareactortripisexpectedearlierthanisshown.Iasummary:Forasinglelooplossofflowaccident, Protection Systemddversdty doesseder.Atleasttso,andgenerally three,dndspendent levelsofprotection exist.5.3.5LOCKEDROTORACCIDENTThehypothetical'case ofaninstantaneous pumpseizure.hasbeen'evaluated | |||
<odetermine whetherdiversity exists.ThefaulttreeisshownonFigure5.3-3.Ifthisaccidentoccurswhenthereactorisathighpower,thecoredesignlimitsareexceededindependent ofanyprotective action.Thedesignrequirement forthisaccidentistopreventanyconsequential failureof<heReactorCoolantSystem.Failurecouldbecausedbyhighsystempressure. | |||
Also,systemscalculations cannotbedonewithconfidence ifgrosscoredamageoccurs.Forthisreason,coreconditions areevaluated. | |||
5.3-7 Thetransient forahypothetica1 lockedrotoraccidentisshownonFigure5.3-6..FlowthroughtheReactorCoolantSystemisrapidlyreduced,Leadingtoareactortriponalow-flowsignal.Following thetrip,heatstoredinthefuelrodscontinues topassintothecorecoolant,causingthecoolanttoexpand.Atthesametime,heattransfertotheshellsidepfthesteamgenerator isreduced,firstbecausethereducedflowresuLtsinadecreased tubesidefilmcoefficient andthenbecausethereactorcoolant,inthetubescoolsdownwhiletheshellsidetemperature increases (turbinesteamflowisreducedtozerouponplanttrip).Therapidexpansion ofthecoolantinthereactorcore,combinedwiththereducedheattransferinthesteamgenerator, causesaninsurgeintothepressurizer andapressureincreasethroughout theReactorCoolantSystem.Theinsurgeintothepressurizer compresses thesteamvolume,actuatestheautomatic SpraySystem,opensthepower~perated reliefvalves,andopensthepressurizer safetyvaLves,inthatsequence. | |||
Thetwopower-'operated reliefvalvesaredesignedforreLiableoperation andwouldbeexpectedtofunctionproperlyduringtheaccident. | |||
However,forconservatism, theirpressure-reducingeffectisnotincludedintheanalysis. | |||
Withnoprotection, apeakreactorcoolantpressureofapproximately 3050psiawouldbereachedabout.3.5secondsafterthepumpseizes.Afterthistime,fluid,mixingandincreased heattransferintheactivesteamgenerator tendtoreducethepressurizer surgerate,andthepressurizer safetyvalvesreducepressure. | |||
(Duringthepeak,thepressurizer surgeratemayslightlyexceedthepressurizer safetyvalvecapacity, butpressurizer pressuredoesnotsignificantly exceedthesafetyvalveset5.3-8 lusaU.owance foraccumulation.) | |||
Althoughthenormalcode-allowable | |||
><assurepUspressureoof2750psiaisexceededfozthisaccident, thepeakpressureisbelowteuheultimatestrengthofallmembersoftheReactorCooLantSystembyanapproxaximatefactoroftwo.Therefore, theReactorCoolantSystemwouldz'egajnintactoInthecore,cladmeltingatthe.hotspotinnercladsurfacebeginsat.24seconds.Afterthistime,systemcalculations areuncertain. | |||
Thereactortripset.pointfortheredundant lowflowinstrumentation ontheaffectedloopisreachedwithin0.1seconds.AssumingDNBat0.1seconds,and.aconservative tripdelay(2secondsbefozethenuclearfluxisreducedto80X),thepeakcladtemperature isapproximately 1%0'Pandisreachedat4.5seconds.Othercalculated resultsforthiscasearepeaksystempressureof2800psiaandlessthan20Kofthefuel.rodswithakcalculated DNBratioof1.0orless.Neglecting thistrip,ahighpressurizer pressuretrippointwouldbeCreachedatabout1.5seconds,'nd ahighDelta<<Ttrip(fromtheactiveloop)wouldbereachedatabout4.5seconds.Thepeakcladtemperature forthesecaseswouldbe1750and1950forthehighpressureandhighDelta>>Ttripsrespectively. | |||
Sincethesevaluesarewellbelowthemeltingpoint,nogrosscLadfailureisexpected. | |||
Insummary:Forthehypothetical lockedrotoraccident, coredesignLimitsmaybeexceeded. | |||
However,threeindependent, diverselevelsofprotection exist,anyofwhichwouldinsurethattheReactorCoolantSystemboundaryisnotviolated. | |||
5.3-9 FAULTTREEFORMULTZLOOP LOSSOFFLOWPROBABLEGROSSCOREDAMAGESLSHI4TR.T.CONDXTIOPOSSIBLECOREDAMAGEFAXL'ORELOWPLOWR.T.L.O;F.-LOSSOFFLOWR.T.-REACTORTRIPR.C.P.-REACTORCOOLANTPUMPDESIGNCORELIMITSEXCEEDED(DNBR<1.30)REACTOR.ATHXGH~~POWER~ALLLOOPL.O.F.WXTHNOIMMEDIATE R.TORUNDERVOLTAGERT.BKR.OPENR.T.LOWFREQUEHCY ONALLBUSESSIMULTANEOUS LOSSOFPOWERSIMULTANEOUS R.C.P.BKR.OPTING."IGURE5.3-1 | |||
FAULTTREEIORSIICLEUM) | FAULTTREEIORSIICLEUM)tlOSSOFFMQtRObhhLKCROSSCORENHhCICONDITION NlATR.T.CORKDKSICNLINITSKICKKDKDUNFLONR>>T>>.L>>O>>F~MSSOFFLONR>>T>>~REACTORIRItR>>C>>tiiRKACFORCOOIANTFUNtCORKDNSR>>l3hfACIORATRICiRFOMER'llCLE LOOtL>>O>>NOINNKDIA(I)REACTOR'NOFFKTION SISTIIl(2)ELECTRICAL thOFKCTION STETS)ISINCLEUXltRCFAULTlAl5$OFbUSPARRSKROFKNR>>E,(I)SUSFAULTIOntKNSKR.aTSKFAKDSKRIOOPENSTRIP!KACIOR(2)R>>C>>P>>bKR>>OtINCIC>>P>>OPENCKT>>R>>C>>t>>QIORTCKTSUSFAULTPI&et$3>>>>2 | ||
~qIIi FAULTTREEFORLOCKEDROTORACCIDENTPROBABLEGROSSCOREDAMAGEHIdTR.T.HIPRESSURER.T.PROBABLECOREDAMAGELOWFLOWR.T.COREDESIGNLIMITSEXCEEDEDSYMBOLSCONDITIOREACTORATHIGHPOWERR.C.P.MECHANIFAIISRE(LOCKEDROTOR)R.T.-REACTORTRIPR.C.P.-REACTORCOOLANTPUMPFIGURE5.3-3 hPt~>a' EsKULTI~PLOSSOPPLOW,TYPIChLPL@K'I~t80a706050COREFLOWPONUCLEhRPOWER{meZRVOLTaCZ,TRIP)HOTSPOTHKLTFLUX' | ~qIIi FAULTTREEFORLOCKEDROTORACCIDENTPROBABLEGROSSCOREDAMAGEHIdTR.T.HIPRESSURER.T.PROBABLECOREDAMAGELOWFLOWR.T.COREDESIGNLIMITSEXCEEDEDSYMBOLSCONDITIOREACTORATHIGHPOWERR.C.P.MECHANIFAIISRE(LOCKEDROTOR)R.T.-REACTORTRIPR.C.P.-REACTORCOOLANTPUMPFIGURE5.3-3 hPt~>a' EsKULTI~PLOSSOPPLOW,TYPIChLPL@K'I~t80a706050COREFLOWPONUCLEhRPOWER{meZRVOLTaCZ | ||
,TRIP)HOTSPOTHKLTFLUX'UNDEKVOLThaK lzazH..,pe~I~a:tIl.6HOTASSMLY'--MXH.DHBRATIO=)iI()~fe~J1.2L000 10090SICLOOPLOSSOPKlÃ2-UNpMT80~070OWDEAD:LOOP501.8:.:.iHIM.DMSRATIOj~I~1.4ROTASSZ8BLY-1.014001200NOTRIPaooTRXPONLOWPLOW~*I*~\120u.pDELThTTRXPPOISEHX4T-=-...TRZP.~NOTRIP~~~~I~100(ACTIVELNP-TRZPPolllT012'345678910~jj&la'ehtTPVrtmTPC0C | |||
LOCKEDROTOR,LOSSOPHOW2LOOPPLANT~~F00SOI..i~~~ACTXVZMOPI~~~~~*60~~COREPL(M~~~I]JJ~~~~w~40203000zsoo~~DEADLOOP':.lI~~~~>>~l-~~I~~~'I~I~~~~05'oS~6'.I'.~IOJ26002400~~REACTORfCOOLANTSYSTEHPRESSURIZER'NOTRIPLOPFL(NTRIP~~2200'03000~o~~~~~~TIHE,SECONDS\~2500J~+>>~efI~~~III.I'ITIHEOFREACTOR.NOTRIP-=(SEC)2000e44F500H2lOQO500~~~~~~~~l~iII~%t~IL~~~\)~~~I~~'lI~~<<II~I2TIHEAFTERPUHPSEIZURE,SECONDS 0 | LOCKEDROTOR,LOSSOPHOW2LOOPPLANT~~F00SOI..i~~~ACTXVZMOPI~~~~~*60~~COREPL(M~~~I]JJ~~~~w~40203000zsoo~~DEADLOOP':.lI~~~~>>~l-~~I~~~'I~I~~~~05'oS~6'.I'.~IOJ26002400~~REACTORfCOOLANTSYSTEHPRESSURIZER | ||
'NOTRIPLOPFL(NTRIP~~2200'03000~o~~~~~~TIHE,SECONDS\~2500J~+>>~efI~~~III.I'ITIHEOFREACTOR.NOTRIP-=(SEC)2000e44F500H2lOQO500~~~~~~~~l~iII~%t~IL~~~\)~~~I~~'lI~~<<II~I2TIHEAFTERPUHPSEIZURE,SECONDS 0 | |||
RODJUNCTIONANALYSISji4INTRODUCTION ANDSUMMARY54~zimaryprotection forarodejectionaccidentisareactortripon~epz~ighnuchnuclearflux.Thenuclearfluxinstzumentation ismadeupoffource>peletelyseparatesensorsandchannels, andreactortripisactuatedifanytwochannelsindicatehighpower.Analysishasbeenconducted tor:.'.-e*t~~~=~vl~Iedetermine theconsequences ofahypothetical failureofallthenuclearchannelscoupledwithahypothetical rodejectionaccident. | |||
: Analysis, madeonthebasisoftheGinnaNuclearPlantofRochester GasaElectricCo.(RGB),indicatethatinthemajorityofrodejectioncasesnoprotection isrequired(forexample,ejectionofazodfromitsnormally-expectedposition). | |||
ItisfurthershownthattheDelta-TtripprovidesI~,anacceptable secondlevelofdefenseforsomecases.However,protection cannotbedemonstrated forsomeofthemoreseverefullpowercases.Protection mayinfactexist,butitisnotpossibletopositively demonstrate thiswiththecurrently available models.Ananalysisoftheavailable triphasbeenmade,andiscomparedwithanIarbitrary cladlimitof2750'Fandanarbitrary pressureVmsof3000'psi. | |||
Twodetailedcasesarepresented: | |||
aseverecasefromzeropowerendofcorelife,andamoderatecasefromfullpowerendofcorelife.Noreactortriphasbeenassumedforeithercase.5.4.2CASESCONSIDERED INDETAILZeroPowerCaseThecaseconsidered represents azodejectionaccidentforanendoflifecore.Theassumedejectedzodworthandhotchannelfactoraze1.0X6kand12.5respectively. | |||
~ | ~tingpowertransient andhotspottemperatures aredetailedin~~resultF5.4-1.1steadypowerlevelisconservatively assumedtobe15Xoffull~+finasThispowerlevelislowerthanthevaluewhichonemightnormally~er.~q)ectfozarodreactivity insertion of1.0<k>>owingtothehighfeedbackueigihtingfactors-{Thelargehotchannelfactorsresultsinalargepowern<einthehotspot,wherethestatistical weightishigh).Thepromptyzstresultsinareactivity undershoot which,combinedwiththeshortageofdelayedneutrons, temporarily fozcesthepowertoavaluebelowequilibrium condition. | ||
Thepowerlevelisassumedtorampupto15Xat5secondsaftere]ection>> | |||
althoughcalculations indicated thatitwouldtakemuchlongertoreachthispowerlevel.Theplottedhotspottemperatures indicatethatequilibrium conditions canbesustained. | |||
Ztistherefore concluded thatnoprotection isrequiredforthisaccident. | |||
Zngeneral,theejectedrodworthsandhotchannelfactorsarqlowerforthebeginning oflifezeropowercases,andtherefore theconsequences areexpectedtobe,somewhatlesssevere.FullPowerEndofLifeCaseThecasepresented isforarodejectionaccidentoccurring attheendofcorelifewithane5ectedrodworthof0.336kandahotchannelfactorof3'3.Thepowertransients andhotspottemperatures aredetailedinFigure5.4-2.Theequilibrium powerlevelis112Xoffullpower.5.4-2 0 | |||
kcladdingtemperature of2950'Foccurssome50secondsaftergepeUnderequilibrium conditions, some50Xbyvolumeofthehot,ection0]fuelismelted.Areactortrip'noverpower Delta-Toccursat6~~cuelimitingcladtemperature toabout2400'.Thiscaserepresents recons,evereaccident, butisnotintendedtorepresent alimit.~<eve>~~larrodejectionaccident, occurring atthebeginning oflife,auldresultinanequilibrium powerlevelofabout12SXoffullpower,ithanequilibrium claddingtemperature oftheorder3100'Fto3200'F.5.4.3BACK<<UPTRIPPROTECTION Themostlimitingcasesoccuratornearfullpower.Theprotection Systemisexaminedtodetermine underwhatcircumstances atripsignalwouldterminate arodejectionaccidentatfullpower.Theresultsofthestudyareillustrated inFigure5.4-3.Thegraphisaplotoftotalexcessnuclearenergyadditionversustime.Steadyfullpoweroperation resultsinalocuscoveringthehd~ontalaxis.Thenuclearfluxtripisrepresented byastraightlineofgradient0.18,,corresponding toapower'level of118XNotethatthislineisanupperanditspositionisinfactdependent onthepowerversustimeshape.Thisisageneral,butnotimportant, effectforthelinesplot~ed.Ariseinnuclearpowerproducesapressuresurge.However,theeffectisattenuated bytheheattransfertimeconstant, ofthefuel(oftheorderof4seconds), | |||
andthepossiblerelieving effectoftheholeinthevesselheadandrelieving capacityofthepower-operated reliefvalves.Thehighpressuretripcouldnotbeexpectedforanyrodejectionaccident. | |||
5.4-3 ThehighDelta-Ttripfurnishes abackuptripforanysevererode)ectionzcccident.Exceptinthemostseverecases,itLimitsthecladtemperatuxe pp]essthan2750'F.Transport delaysinthecoolantloopdelaythetripforseveralseconds.Alsoplottedonthegraphaxetwoarbitrary limitlines.Theyarerespectively acladLimitof2750F*andaCoolantSystempressureof3000psi.BoththeseLimitshavebeenarbitrarily selectedandarenotintendedtorepresent I~I-.rpl~SphysicalLimits.Apowerburstofsomesixfullpowersecondsattimezeroresultsinboththese1lmitsbeingreachedsometwoto.threesecondsIlater.Thisisnotaphysically reliablecondition foranyWestinghouse reactor.Figure5.4-4showsthepowertransients forrodejectionaccidents occurring atendofcorelifeforvariousejectedxodworths.frftI1+TheseLinesarebasedonstead~tate andtransient hotchannelfactorsof3.23.5.4W jZEROPOWEREHDOFLIFERODEJECTION, NOTRIP&~~~HjjCLjj&R POjjE&VS~T2$=~1~~~Ii.:A~~4~1.0XF~12.S"::?3020M~--EHERGTINPUTUPTOO.SSECONDS~1.70F.P.Sfact::.FPS:Fullotspopowerseconds~'-9-&vmbols6k:Changeinreactiviey T.F:Totalheatfluxpeald.ngoratht10~~~i~~~i~i&(&.=~::iI:.-:ii&~~~~&--~)&'i0246810121416TQK,SECONDS:HOTSPOTVS.TIHE=-"-.~~~4000:FUELAVG.-I~~~L~e:::3Z&&":&&20001~-~~-~~~~~~~-.-::-.1008046S1012141618TIME,SECONDSFIGURES.4-1 | |||
PULLPOWERENDOPLIFERODEJECTION,NOTRIPI~>~~:=' | PULLPOWERENDOPLIFERODEJECTION, NOTRIPI~>~~:='UCLEAR POWERVS.TIME~leak0.33Pm'3~23Tr~~'i.-:L~SbaIIISk:ChangeinReactivity P:TotalHeatFluxPeakingFactorTqatHotSpot~.~45TIME,SECONDSting).~II~~rI~4sr,~~IIII~IHOTSPOTTEMPSULTURE VS+TZME':.-.-,:- | ||
I0 LOSSOFSTEAMLOAD5,5. | 'Mel=--'-'-~~~PURLAVGI:~r~~~'"I~~~WM.:~..~'~..':'LADOUT~T':.I:I~Ii~~IP'PEAKCLADSURFACETEMP.''--:~2950'PAT50SEC.50X(HYVOLUME)OF'cCLi'.."MELTS.V.~:.-..~-=-'i::!=-'i;:, | ||
i-.--'246S10121416TIME,SECONDSPIGURI'.4-2 0P eFullPowerEndofLifeF~3.23Txa~+\87643pi2C~8p~023456789l0TIME,SECONDS~~TOMOFSkFEXYGZHZTSANDTRIPPOINTS'~<RODEJECTION'ACCIDENTS, HOTRIP-represents thelocusofpointsatwhichtriowouldterminate theaccidentrepreseecs lacesarseferylfrsirs FULLPOWERENDOPLIPSROBEHKTIONWH33RKTRIPCO4l5CD~CC3CO~~C~2~~I1~l0010.e0.33TIME,SECOHDSWte:0.4XQc'represents apractical Bait:arfuIlpcwerceses.~RODEJECTIONACCIDEHTS | |||
'CThefaulttreeshownonFigure5.5. | 'QXXHN)THXP,'IGURE 5.4~ | ||
Afaulttreefortheaccident,leadingtocoredamage,isshowninPigure5.5.2.5. | I0 LOSSOFSTEAMLOAD5,5.1XNTRODUCTION ANDSUHHARYVp'<<,',lossofsteamloadmaybecausedbyclosingoftheturbinestopvalves,whichnorma21yfollowsaturbinetripsignal;byclosingoftheturbinecontrolvalvesfollowing arejection ofelectrical load;orbysteamisolation following aReactorprotection Systemsignal.Theconsequences | ||
<<ofalossofsteamloadarearapidlyincreasing SteamSystempressureandReactorCoolantSystemtemperature andpressureduetothelossofheatsink.Protection instrumentation isprovidedtoimmediately tripthereactorfollowing aturbinetripsignal.A.steamlineisolation signalisnormallyaccompanied byasafetyinfection signalandalsoresultsinareactortrip.Following are)ection ofelectrical load,aSteamDump<<~"".%'ystem actstopreventreactortripbyautomatic steamdumptothecon-,denser.(Upto100Xloadrejection canbehandledbysome'planes-) | |||
Xftheloadre)ection great1yexceedsthesteamdumpcapacity, oriftheSteamDumpSystemshouldfailtooperate,areactortripmayoccuronhighpressure. | |||
Redundant protective instrumentation andconservative designofpressurereliefdevicesassuresthesafetyoftheplantforalargeloadrejection withoutrecoursetoAutomatic RodControl,Pressurizer PressureControl,orSteamDumpControlSystems.5.5-1 Inthisreport,theProtection Systemisexaminedtoseeifdiversepx'orotection existsforacompletelossofloadwithoutdirectreactortrip.Diversity isfoundtoexisttoprotecttheReactorCoolantSystemandreactorcoxe.5.5.2LOSSOFLOADPROTECTION ANDDESIGNCRITERIAThereactorispxotected forlossofloadby:a)Steamdumpto'ondenser (actuated bytheContxolSystem)b)c)Pressurizer pressurerelief(safetyvalvesandpowez~perated reLiefvalves)SteamSystempressurerelief(safetyvalvesandpower-operated relief.valves)') | |||
Directreactortrip(onturbinetrip)e)Highpressurizer-pressuretripf)Overtemperatuze 4Ttripg)Highpressurizer leveltrip.SteamDtoCondenser TheSteamDumpSystemactsautomatically uponsensingalossofloadgreaterthanapresetamount.Thesteamdumpvalvesaretheneithermodulated ortrippedopenuntiltheReactorCoolantSystemtemperatuxe reachesthenewprogrammed loadreference temperature. | |||
Thereactorpowerisreducedbycontrolrod,insertion duringthistime.Zncaseofaturbinetriporreactortrip,thesteamdumpisactuatedandcon-trolledonapresetuo-loadreference temperatuze. | |||
TheSteamDumpControlSystemisdescribed inSection3.2.5.5-2 0 | |||
tPressurizer PressureReliefThepressurizer safetyvalvesaresizedtomatchthemaxfmnnnvolumetric surgerateassociated withacompletelossofloadwithoutsteamdumporadirectreactortrip.Thisisnotdependent onpxessurizer pressurecontrol.Thepressurizer safetyvalvestherefore completely protecttheReactorCoolantSystemagainstovexpressure, independent ofthehighpressurereactortrip.Thereliefvalvesaresizedtopreventactuation ofthehighpressuretripwhenthesteamdumpandroddrivesystemswork,andtherequiredsteamreLLefiswithinthecapacityoftheSteamDumpSystem.SteamSstemPressureReliefTheSteamSystemsafetyvalvespass100Zofma~mancalculated turbinesteamflow,atthesafetyvalvesetpressureplusaccumulation. | |||
Thisallowstheplanttoaccepta100Zloadre]ection withoutreactortxiporsteamdumpwithoutovexpressurizing theSteamSystem..Xnaddition, reliefvalvessettoopenatalowerpressurearealsoprovided, andaxetypically sizedataboutlOZofthesafetyvalvecapacity. | |||
DirectReactorTriThemostcommoncauseofalossofloadisaturbine-generator trip.Zntheeventofsuchatrip,theturbinestopvalvesclose.Aturbine5.5-3 tripsensedbye2/3lowauto-scop oilpressureor2/2stopvalveclosureresultsinareactortripifthereactorisathighpower.ThepurposeofthesetriPsistomizdzMethethermaltransient sndsteamdumPrequirements fortheserelatively frequentplanttransients. | |||
HihPressurizer PressureTriThereisareactortripon2/3highpressurizer | |||
: pressure, generally setto2400psia,orslightlyabovethepressurizer poweroperatedreliefvalvesettingandbelowthepressurizer safetyvalveopeningpressure. | |||
OverteraturedTThepurposeofthistripistoprotectthecoreagainstanycombination ofreactorcoolanttemperature, powerorpressurewhichcouldcauseIDNS.Triplogicis2/4for2.and4-loopplantssnd2/3for3-loopplants.HihPressurizer LevelTriThistripactstopreventwaterdischarge fromthepressurizer safetyvalves.Logicis2/3.5.5W 5.5.3EVALELKON OFPROTECTION SYSTEMFORLOSSOFLOADAcompletelossofloadwithoutsteamdumpandwithoutadirectreactortripisevaluated tofindifdiverseprotection existstopreventahazardtotheintegrity oftheplantthroughoverpressurization or'NB.Thetransient wasinvestigated foracurrent,highpowerdensity\lant,andnocreditwastakenforpowerreduction duetoautomatic | |||
'../'.".t~controlrodmotionormoderator temperature coefficient. | |||
/'Initiation ofAccidentFigure5.5.1showsafaulttreeforalossofloadwithoutsteamdump,withthereactorathighpowerandaodirectreactortrip.Onewaya1088ofloadcanoccurisbyclosingoftheturbinestopvalvesfollowing aturbinetripsignalorbyhydraulic fluidpressurefailure{thevalvesareheldopenbyhydraulic fluid)-However,oneand.possiblytwotripsmustthenfailinordertopreventanimmediate reactortrip.Anotherpossiblefailuremodeisaturbinerunbackcausedby,thethrottlevalvesclosing.Thiscouldbeinitiated byaroddrop,anoverpower orovertemperature 4Tsignal,byanactualorspuriouslossofelectrical loadsignal,orbyafailureintheturbinecontroller andloadlimitsystem.Aspuriousroddropsignalwouldnormallydecreasetheturbineloadbyafixedsmallpercentage offullload.Thecontrol5.5-5 alvecouldclosecompletely onlyifanimpropercircuitexistsinthecontroller. | |||
Similarly, anoverpower orovertemperature 4Tsignalcoxmallycausesastepload.decrease ofSXevery30seconds;andonlyinthecaseofasimultaneous failureoximpropercircuitinthecontroller couldtherebeinsufficient timefortheoperatortotakenotice.Eftheturbinerunbackiscausedbyanoverpower orovertemperature 4Tprotection Systemfailure,thefailurecouldonlybeinthesafedirection; thatis,theerrororfailurewouldbeinthedirection tocauseareactortrip.Athirdpossiblepathforalossofloadisthroughsteamlineisolation. | |||
Thismayoccureitherthroughalossofairsupplytotheisolation valves,orbyaspuriousorrealisolation signa1fromtheReactorProtection System.Asaresultofthelossofsteamflow.totheturbinebyanyhfthethreepathsoutlinedabove,theSteamDumpSystemisactivated. | |||
However,no1creditcanbetakenforthisfollowing steamlineisolation, since,thedumpvalvesaredownstream oftheisolation valves.Forallthreepaths,theresulting decreaseinfirststageturbineimpulsepressurecausesautomatic reactox'ower reduction bycontrolrodinsertion. | |||
Evenifthereactorisinmanualcontrol,themoderator coefficient ofreactivity isgenerally negativeandwouldcauseapowerdecreaseastemperatures increase. | |||
5.5-6 0Ii)~~ | |||
'CThefaulttreeshownonFigure5.5.1indicates that,inmostcases,afaultcouldcauseacompletelossofloadwithnosteamdumporreactorit"~>>I'powerdecreaseonlyifoneoxmoresimultaneous failuresoftheControlorProtection SystemalsoxesuLted. | |||
However,thefollowing analysisisbasedonacompletelossofsteamloadwithoutsteamdump,reactorcontxol,ordirectreactortrip.AnalsisandDiscussion Figure5.5.3showstheresultsofatransient analysisforacompletelossofloadwithoutsteamdump.Theresults'showthat'hesafety~~II'III>>valvescapacityoftheSteamSystemis..sufficient toLixQtthepressurel''risetolessthanLUOpsia,evenwithoutareactortrip.TheReactorCoolantSystemT.transient isshownforahighpressurizer pressureavgorhighpressurizer levelreactortrip,aswellasfornotxip.IActuation oftheSteamSystemsafetyvalvesrestoresthereactorheat\s~andcausesadecxeaseintherateofriseofthereactorcoolantaveragetempexature. | |||
Withoutareactortrip,Twouldeventually comeavgintoequilibrium whentherequiredheatdissipation atthesuetyvalve,~setpressureisreached.TheReactorCooLantSystempressuretransient isalsodepicted. | |||
inFigure5.5.3.Theeffectofthepressurizer poweroperatedreliefvalvesisfeltslightlyabovetheirsetpressureof2350psia.Sincetherequired5.5-7 4e relieffora&61lossofloadwithoutsteamdumpfarexceedsthereliefvalvecapacity, thepressurecontinues torisetothesafetyvalvesetpressureof2500psia.Theopeningofthepressurizer safetyvalves,andtherestoration ofthesecondary sinkbysteamrelief,limitstheReactorCoolantSystempressurerise.Thesurgeratedecreases astherateofriseofTdecreases, andeventually thepressuredecreases toavgthereliefvalveopeningpressure. | |||
Thetransient isalsoshownforthehighpressurizer pressureandleve1reactortrips.Thepoweroperatedreliefvalvesdelaythereachingofthehighpressurereactortripsetpointbyabout2seconds.ThelowergraphinFigure5.5.3showstheaduinnxm(hotchannel)DNBtransient. | |||
Forthefirstfewseconds,theDNBratiorisesduetotheincreasing systempressure, whilepipingdelayscausethecoreinlettemperature toremainconstant. | |||
Twotrips,thehighpressureandovertemperature hTreactortrips,preventthecoredesignlimf.tsfrombeingexceeded. | |||
Ratecompensation onT,which.isincludedinavg'heovertemperature dTtrip,wouldactuallycausethetripsetpoint-tobereachedmuchsoonerthanisdepictedinthefigure.Thehighpressurizer waterlevelreactortripisinadequate topreventthecorefromexceeding thedesignlimits.However,theminimumDNBratiointhehotassemblyforahighleveltripisabove1.0andwouldassurethatcoredamage,ifitoccuredatall,wouldbelimitedtoasmallfractionofthecore.Aconservative setpointwasassumedforthehighleveltrip.5.5-8 0 | |||
Afaulttreefortheaccident, leadingtocoredamage,isshowninPigure5.5.2.5. | |||
==5.4CONCLUSION== | ==5.4CONCLUSION== | ||
S Thisaccidentisnotconsidered 1Qcelysinceinmostoftheincidents whichcouldcauseit,oneormoresimultaneous failuresofcontrolorprotection instrumentation mustalsooccur.Inaddition, atanytime.otherthanearlyin.coreLife,thelargenegativemoderator coefficient wouldcausetheaccidenttobeselflimitingandgivemuchbetterresultsthandepictedinthisanalysis. | |||
,Ih SJSNfs<<ls<<s<<<<<<<<<<<<u~<<"<<<<<<<<.<<<<<<NSJSSR<<j~R<<g@N<<'JJ@"g<<<<j,,<<,lt,fIQJRS5.52OjRTsORSD<<sNORODJIFIONCFORNMANUALCONIIJOL<<<<4fTKAMLIbEISOIATION,NOTURRINECOÃIROLVALVESCLO.E,NOTURSINESTOPvvx.v""AIRSUPPLIAUTO.S,D,AUTO.S.D,LOADLIMITACIUALORSIUFIQJSLOSSOjEJECT~LOADSCOPVALVER<<T<<TURBINECONIROLIA3. | However,iftheaccidentweretooccur,diversity doesexistinthatthreedifferent levelsofprotection areavail,able. | ||
,5'~a~'11 | 5.5-9 | ||
~' | ,Ih SJSNfs<<ls<<s<<<<<<<<<<<<u~<<"<<<<<<<<.<<<<<<NSJSSR<<j~R<<g@N<<'JJ@ | ||
~I1010'~III~~ | "g<<<<j,,<<,lt,fIQJRS5.52OjRTsORSD<<sNORODJIFIONCFORNMANUALCONIIJOL<<<<4fTKAMLIbEISOIATION, NOTURRINECOÃIROLVALVESCLO.E,NOTURSINESTOPvvx.v""AIRSUPPLIAUTO.S,D,AUTO.S.D,LOADLIMITACIUALORSIUFIQJSLOSSOjEJECT~LOADSCOPVALVER<<T<<TURBINECONIROLIA3 | ||
~~~ | .SREXCESSIVE RUNS'XIJJSSOFIIQiCENCV FIUIDNJRIQJFICOIATIONfIGNAI'<<ITNQJTREAClORTRIPIMISOPERCRTANDhlJTOGIOP R.T<<CONDITIOJI FAIJJJRIREACIORI%REC-TIONSISIIJ'.IAJGICFAULTsSBJRIQJSF<<ODDROPEIGJIALREALORSIURIQJGOVIRPOLJEROROVERORLOSSDPAUIOSIOPPIJJIDNUCL<<INST<<SISTIIlRODPOSITIONINDICATION iFAIIJJREANTSJRBINETRIPSIGNALR.T.RKACIORTRIPK.C,-ST&QJJJP,S)1,SAINTINJECFICN I~SCFEJAnfSlsaaIIosIsolalloa | ||
~ISJ<<alIsalso~@castortcIPsISJnal.Theccfcea> | |||
ooIFloStoclccollfallllsshool4Lccoas14ctc4 | |||
~NIGHTAVNIGHATFIGURE5.5-1FAULTTREEIORINN0jllRDACCII<<ENI | |||
,5'~a~'11 FAULTTREEFORCOREDAMAGELOSSOFSTEAMLOADCONDITION ProbableGrossCoreDamageANDHighPressurize LevelR.T.CoreDesignLimitsExceededR.T.-REACTORTRIPS.D.-STEAMDUMPS.I.-SAFETYINJECTION Overtemperature ATR.T.iHighPrdssureRiTLossofLoad,NoSeD~orPOUerDecreaseEarlyinCoreLifeLossofLoad,NoDirectR.T.orS.D.,NoRodInsertion (SeeFigure5.5-1)FIGURE5.5-2 120010008006002600250024002300zzoo6zo600580560181.61.451.21.0.80LOSSOPLOADACCIDENT~~Il-~1-STEAMSYSTEMPRESSURE'-)~.':~te~~~II~I~~~~I~/~l".~I."REACTORCOOLANTSYSTEMPRESSUREI:-:~It~~I~~~~~~i~'OTRIP."'HIGHPRESSURE"REACTORTRIPJ'.'''l"''IGH LEVELREACTORTRIP~).'Il.'.!.(IIt'~Il'-i=(REACTORCOOLANTTVGI'~~).-.NO~~I~'t.TRIP(HIGHLEVEL-'EACTORTRIPf..~~~~~I~)~.HIGHPRESSURE. | |||
-'REACTORTRIP~~IHIGHPRESSURE".:-.EEACTORTRIP~I~~~gI.L.-~~II'VERHK'ERATURE | |||
.ATREACTORTRIPi'IGHLEVEL'EA,CTORTRIP-'~~~L.'UNBRATIO.NOL~4~~)2030405010SECONDSFIGURE5.5-3 0I, 5,6RODWITHDRAWAB DURINGSTARTUPNormalstartupprocedure isbycontrolrodwithdrawal undermanualcontrol.~function oftherodcontxolsystemoroperatorerrorcancauseareactivity excuxsion witharesultant rapidincreaseinpower.Rodwithdrawal accidents iathepowerrangeareevaluated inSection5.1.Fortheseaccidents, thepowerincreaseisapproximately linearforalinearincreaseinreactivity. | |||
Foraccidents startingfromvery,lowpower(staxtupx'ange),theneutronfluxmayincreasebymanydecadesbeforethereissignificant Dopplerfeedback.. | |||
Thenuclearpowerresponsetoacontinuous reactivity insertion fromthestartuprangeischaracterised byaveryfastriseterminated bythereac-tivityfeedbackeffectofthenegativefueltemperature coefficient (Dopplereffect).Thisselflimitiageffectisofprimeimportance duringastartupIaccidentsinceit.limitsthepowertoatolerable levelpriortoexternalprotective action.Aftertheinitialpowerburst,thenuclearpowerismomentarily xeducedaadtheniftheaccidentisnotterminated, thenucl'earpowerincreases againbutatamuchslowerrate.Protection againststartupaccidents isprovidedbydiversetypesofneutron-monitoring instrumentatioa: | |||
sourcerange,intermediate range,andpowerrangechannels. | |||
Ma)ordifferences intheionchamberandcixcuitdesignexistbetweentheintermediate andpowerrangechannels. | |||
Thesourcexaageusesaneutronsensorofadifferent principle: | |||
proportional counterratherthanionization chamber.5-6-L | |||
~'44Shouldcontinuous controlrodwithdrawal beinitiated andassumingthesourceandintermediate rangealarmsandindications areignored,thetransient willbeterminated byanyofthefollowing automatic protective actions.a)Sourcerangefluxleveltrip-actuatedwheneitheroftwoindependent. | |||
sourcerangechannelsindicates afluxlevelaboveapreselected, | |||
~g~<<manuallyad]ustable value..Thistripfunctionmaybemanuallybypassedwheneitherintermediate rangefluxchannelindicates afluxlevelabovethesourcerangecutoffpowerlevel.Itisautomatically rein-statedwhenbothintermediate rangechannelsindicateafluxlevelbelo~thesourcerangecutoffpowerlevel.~<<b)Intermediate rangerodstop-actuatedwheneitheroftwoindependent | |||
<<intermediate rangechannelsindicates afluxlevelaboveapreselected, manuallyad)ustable value.Thisrodstopmaybemanuallybypassedwhentwooutofthefourpowerrangechannelsindicateapowerlevelaboveapproximately tenpercentpower.Itisautomatically reinstated whenthreeofthefourpowerrangechannelsarebelowthisvalue.c)Intermediate rangefluxleveltrip-actuatedwheneitheroftwoindependent intermediate rangechannelsindicates afluxlevelaboveapreselected, manuallyad]ustable value.Thistripfunctionismanuallybypassedwhentwoofthefourpowerrangechannelsarereadingaboveapproximately tenpercentpowerandisautomatically reinstated whenthreeofthefourchannelsindicateapowerlevelbelowthisvalue.d)Powerrangefluxleveltrip(lowsetting)-actuatedwhentwooutofthefourpowerrangechannelsindicateapowerlevelaboveapproxima ytel25percent.Thistripfunctionmaybemanuallybypassedwhentwoofthe5.6>>2 II'0 fourpowerrangechannelsindicateapowerlevelaboveapproximately tenpercentpowerandisautomatically xeinstated whenthreeofthefourchannelsindicateapowerlevelbelowthisvalue.e)Powerrangefluxleveltrip(highsetting)-actuatedwhentwooutofthefourpowerrangechannelsindicatea'powerlevelaboveapresetsetpoint. | |||
Thistripfunctionisalwaysactive.Sinceallprotective actionsintheabovelistarebasedonlevelsetpoints,Iratherthanratesetpoints,protection isnotdependent uponhavingarapidrateofpowerincrease. | |||
ThestandardstartupaccidentanalysisreportedinSafetyAnalysisReportstakescreditfoxonlythepowerrangeprotection. | |||
Howevex,theintermediate rangehfghfluxreactortripisalwaysinservicebelowlOXpower,andwouldalsoservetoterminate theaccident. | |||
Further,. | |||
anyaccidentstartingfromasubcritical condition wouldbeterminated bythehighsourcerange'Ixeactortrip.Therefore, Protection Systemdeversity existsforstartupaccidents. | |||
Figures5.6-1and5.6-2showthecalculated transient responseofnuclearfluxandfueltemperatuxes forastartupaccidentwithahighrateofxeactivity insextion.5.6-3 0 | |||
~I1010'~III~~Uncontrolled RodQithdrawal PromaSubcritical Condition PractionofNuclearPowera~+1x106k/FW5oa<lxlp6k/PfReactivity Insertion Rate~8x106k/seck~1.00-1~t~I108W0gM10plillikoCoOe10g~~~I~~I~1080Wooo10-35oCl~u101001020251030Time,SecondsFlGVRE5.6-1 4~<<((I-"~(4<<<<.(.<<<<4V,~~I(areJ>~w<<(i'(<<<<M>>1000900PuelCladUncontrolled RodMithdraMal PromaSubcritical Condition Temperature 4ag<<+1x1056k/'Po=-1x106k/'PReactivitg Insertion Ratef<<8x10Lk/seck<<l.07065800700CoreMater14o(4l0ce'0oj605560050500456101.L18222630'Time,SecondsFIGURE5.6-2 57CONTROLRODDROPDe-energixing adrivemechanism causesafull>>length controlrodtofallintothecore.(Part-length rodsfail"as-is"whende-energized.) | |||
Thiscausesanimmediate decreaseincoxepower,mostnoticeable intheregionofthedroppedrod.Xftheaveragecozepowerisreturnedtoitsoriginalvalve,mostofthecorewouldbeatahigherpowerdensitybecauseofthelocaldepxession intheregionofthedroppedrod.Duringtheinitialdesignfoxthecurrentgeneration ofWestinghouse PWR's,theincreaseinhotchannelfactorsforadroppedzodwasnotknown.Ztwastherefore assumedthatDNBmightxesultifthecorewereallowedtoreturntofullpowerfollowing azoddrop.Protective circuitsweredesign-edaccordingly andclassified aspartoftheProtection System.Thedesignrequirement forthisprotective functionwastoinsurethat,follmrtng adynamicroddrop,thexeactorwouldnotzeturntoapowerleve3highenoughItocauseaDNBratiolessthan1.30.,Mechanisms whichwouldtendtorestorerinitialcorepowerare.noxmal automatic controlandplantcooldownwithanegativemoderator coefficient. | |||
However,recentphysicsanalysisformalpositioned controlrodshasshownthat,ineverycaseforaninseztedrod,fullpoweroperation wouldnotcauseaDNBratiolessthan1.30.Becausethelocalpowerdecreasecausesageneralpowerincreasethroughout therestofthecore,theincreaseinhotchannelfactorsisUstedtoapproximately 15'xless,depending oncoresize.Withx'especttoDNB,thisisequivalent to15Xoverpower. | |||
CoreDNB'esign 5.7-1 | |||
~~~Emarginsofthismagnitude mustexistatfullpowertoallowforoperational transients andinstrumentation errors.Inadditon,forplantspresently nearcompletion, ithasbeenfoundthatinsertedrodhotchannel.factorsdonotevenexceedthedesignhotchannelfactors.Sincetheconsequences ofadynamicroddroparetolerable, thefollowing ffdiscussion ofroddropprotection issomewhatacademic. | |||
Roddropprotection diversity hasbeenprovided, bothinthemeansofdetection andinthemeansofactuating protection. | |||
Redundancy. | |||
wasmorereadilyobtainedbydiverseinstrumentation thanbyindependent, butidentical, channels. | |||
Aroddropsignalisgenerated byeitherofthefollowing: | |||
a)A=rapiddecreaseinindicated nuclearfluxfromanyoneofthefourpowerrangenuclearinstrument channelsb)Rodbottomindication fromanyoneoftherodpositionindicators whentheassociated rodbankisnotonthebottom.One-out-of-four logicforthenuclearchannelsisused'because itwasnotknownwhethermorethanonechannelwouldrespondtothedroppedrod.Therefore, redundancy isnotclaimed.Protective actionisdirectedtowardinhibiting thosemechanisms whichwouldotherwise causethereactortoreturntoitsinitialpowerlevel,i..e.,automatic rodwithdrawal andloaddemandwithanegativemoderator temperature coefficient. | |||
Again,sincethemagnitude ofthehotchannelfactorincreasewasnotknown,itwasassumedthatbothmechanisms wouldhavetobeinhibited. | |||
5.7-2 Redundant rodstopcontactsareprovidedtoblocknormalautomatic controlrodwithdrawal. | |||
Manualrodwithdrawal isnotblockedsinceitisnecessary towithdrawthedroppedrod.Turbineloadreduction isaccomplished throughredundant channels. | |||
Mostplantsaresuppliedwithelectro-hydrauLLc (E-H)controlsystemsfortheturbine.Theturbinerunbackisactivated bythefollowing~ | |||
eitherofwhichreducesorrestricts turbinecontrolvalvepositionandsteamload.a)Reduction oftheloadrefezence setpointoftheturbine,E-H., | |||
controller byapresetamount.Thisisaccomplished byzeducingthesetpointatconstantrate(200X/min.) | |||
forapresettimewitha.timedelayrelay.b)Reduction oftheturbineload.limittoapresetvalue.Theloadlimit(aclamponthevoltagesignalcontrolling theturbinecontrolvalveposition) isreduceduntilturbinethermalloadasI)sensedbyeitheroftwoturbineimpulsepressure'channels isbelowapresetvalue.Following plantstartupteststoverifythattheDNBratioisgreaterthan1.30atfullpowerwithadroppedrod,itisintendedtoadjusttheturbinerunbackforoperational requirements. | |||
Thatis,theautomatic loadreduction wouldbelargeenoughsuchthat,withreasonable operatoraction,anorderlymanualplantshutdowncanbeaccomplished, ratherthanareactortriponlowpressurizer pressure. | |||
Fi.gures5.7-1and5.7-2showthetransient responseofnuclearplantvariables toaroddropwithturbinerunback.5.7-3 | |||
lllr1.U.9.8.7~t~~-I.I~~I.',.f=~CI~:I~-I.~~~t4~~~~~~:H'ResponsetoaDroppedRCCAof.North-2.3x,106kWithaPowerCutbackof25PercentofNominal~-3.5x10bk/7'-'~>>1.65x106k/Z'.~~II~~i:I~..l.,~~~~~t~t1.000CKheQE8.9.8'~~7~t>~tl~tttI~~~I'~':I-"'I~l~'t{~~~I~~ttI~I~~II24002300~pk~~~~~~~~~It~~-I~tt~~~'{::.-~II~~I~It~~~t22002100~~~"-I~I4080120160200 04~ | lllr1.U.9.8.7~t~~-I.I~~I.',.f=~CI~:I~-I.~~~t4~~~~~~:H'ResponsetoaDroppedRCCAof.North-2.3x,106kWithaPowerCutbackof25PercentofNominal~-3.5x10bk/7'-'~>>1.65x106k/Z'.~~II~~i:I~..l.,~~~~~t~t1.000CKheQE8.9.8'~~7~t>~tl~tttI~~~I'~':I-"'I~l~'t{~~~I~~ttI~I~~II24002300~pk~~~~~~~~~It~~-I~tt~~~'{::.-~II~~I~It~~~t22002100~~~"-I~I4080120160200 04~ | ||
~'III~~I~~0~~~~~~~~~~~0t~0'I.tt0~~~II0~I0~~--}t~*L0~>>0t'If0580578576IL00~IQ0Q~~~I0~r~0~~0<<I~000~0~I~~It~LL~00L0000~>>~>I~I0~~0I~~~lI~~-I'='~I~0:..00J~565IQ0~0I~ResponsetoaDroppedRCCAofWoph-203x106kwithaPowerCutbackof25PercentofNominal~~5604~~,004a0~t0't~'fQMC4o555550U~M~IJ0=I~I~~~I~~~~~~OH1.0~~0~~M00g,9~>>~~0I~~0,8L~~00'~0~~~~~~I~~.74080120160200TDK,SECONDS | ~'III~~I~~0~~~~~~~~~~~0t~0'I.tt0~~~II0~I0~~--}t~*L0~>>0t'If0580578576IL00~IQ0Q~~~I0~r~0~~0<<I~000~0~I~~It~LL~00L0000~>>~>I~I0~~0I~~~lI~~-I'='~I~0:..00J~565IQ0~0I~ResponsetoaDroppedRCCAofWoph-203x106kwithaPowerCutbackof25PercentofNominal~~5604~~,004a0~t0't~'fQMC4o555550U~M~IJ0=I~I~~~I~~~~~~OH1.0~~0~~M00g,9~>>~~0I~~0,8L~~00'~0~~~~~~I~~.74080120160200TDK,SECONDS | ||
5~ | 5~8ENGINEERED SAFEGUARDS ACTUATION Actuation ofauxiliary feedwater isdiscussed inSection5.2.Engineered safeguards forcontainment pressureprotection arediscussed inSection5.9.Actuation ofEmergency CoreCoolingforlossofcoolantprotection isdiscussed inthissection.Forlossofcoolantprotection, asafetyin]ection signalisgenerated byeitheroftwodiversesetsofautomatic signals:a)Coincident lowpzessureandwaterleve1inthepressurizer; b)Highcontainment pzessure. | ||
~V | Bothsetsofsignalsareredundant andmeetallprotection Systemdesigncriteria. | ||
Thesignalsderivedfromthepressurixer indicatethatreactorcoolantisbeinglostwellbeforethecoreisuncovered. | |||
Reactorcoolantblowdownalsoincreases containment pressure. | |||
Setpoints'for highcan-tainmentpressurearetypically about10Xofcontaiaamt designpressure. | |||
Thissetpointisreachedwellbeforethecoreuncovers. | |||
Figure5.8-1showstheresultsofacalculation forarepresentative plantforthecompleterangeofbreaksixes.Ztshowsthateitherthepressurixer orthecontainment signalinitiatesafetyin)ection l-l/2minutesormorebeforethecorewouldbeotherwise uncovered. | |||
(Forlargebreaks>passiveaccumulator systemsupplieswateranddelaysthetime.atwhichactivecorecoolingisrequired.) | |||
Thisanalysisincludedtheeffectsofcontainment heatsinksandfancoolersindelayingthetimeatwhichthecontainment highpressuresignalisreached.5.8>>1 SAFETYINJECTION ACTUATION SIG:NLVSBREAKAREA10004o~I+I'~'T~~~iI}.o~l<<~,~~IIIIl~~I~~<<~~}lero,one*oIrI~~~~~<<~t~~>>v~ttt~I~"ttrltt<<~~~I}'-:RangeofProtection ofI:.:PassiveAccumulator System-(;I~IaeI4V100~~ooo1}:<<II~I~~IPtl~~I'~I'<<~~>>:ii}'."~IIt~~I~II~''~~}I~~~~~I~~~v0~~r,~!Ia.~o~~~tt~\~v}'"--ttI~~~~\~~t<<to~o~to~~~I'I~~o~~~~~<<~~~~I<<.)~oIIOIhC10o~~t~<<'oo~I~~I~Itz~~<<'I''''I~'I.....~TimetoReachLouPres-I:-surizerPressureandLevelSignal7>>~~~~\~~~~~~>>~~~~I~I~~~~<<o~<<e~o<<vpttI:TI~I~~*~I~I~I~~~~I~~I"I~}~~~~~~~i-.',I~PI~'~I"I<<I~II~)}=.1-I:ilneceUncavelCaseNddPlaneLNeSadecvlneccdcn)j~o~~~\f<<~~~~~I~~ItI~lel~~~'I~~jjjr"~~iTimetoReachPighContainment PressureSignal'<<ll~~~vI<<j~0.01'iil\~40.1~6"10"DAUEa:.BREAKSIZE(Fi)FIGUPE5.8-1 | |||
~V 59CONTAINMENT PRESSUREPROTECTION Typicalwestinghouse dryconcaiament plantsareequippedwithfaacoolerunicsaadspraysystems.Theseareprovidedtoreducethecontaiamenc pressureeotoesseatially atmospheric following alossofcoolantaccidentorasteamlinebreakaccidentinsidethecontainmeac. | |||
Thecontainment isdesignedtowithstand theeoealblowdownoftheReactorCoolantSyscemorasteamgenerator wiehnodependence oneheaceivesafe-guards.Theactivesafeguards are,however,aueomatically actuatedfollowing cheaccident. | |||
Thepr9narycontainment safeguards arethefancoolerunitsandtheircoolingwatersupplywhichazeactuatedbythesafetyinjection signalwhichisgenerated by:a)Coincident lowpressurizer pzessureandwaeerlevelinthepressurizer b)Ri.ghcontainment pressure(approximately lOXofdesignpressure). | |||
Thebackupcontaiameac safeguard, ch'econeaiamene Spray9ystem,isaccuaeedbyahighcontainmenc pzessuresignalwhentheconcainmenc pressurereachesappxoximacely 50Xofchedesignvalue.Automatic sprayactuation usessixconcainmenc pressuzechannels, in2/32/3logic.TheSpxaySystemcanalsobeactuatedmanually. | |||
Only2oucof4fancooliagunitsfortwoorthreeloopplantsand3oucofScoolingunitsforfourloopplaacsarenecessary eolimitthecontainmene pressuxebelowdesignevenconsidering ehactheEmergency CoreCoolingSyseemis.unablecosuppxessboilinginehecore,andehecoredecayheacenergycontinues cobeaddedtoehecontainmenc intheformofsteam.5.9-1 | |||
Theoperation ofonlyoneofthespraypumpsisrequiredinorderfortheSpraySystemtosupplement theheatremovalcapabiU.ty ofthefancoolingunitstoprovideamarginforeffectsfrommetalmater orotherchemicalreactions thatcouldoccurasaconsequence offailureofEmergency CoreCoolingSystems.Sinceeitherfansorspraysareadequate, anddiversesignalsareusedtoactuatethefans,.the Protection Systemisdiverseforactuation ofcon-tainmentpressureprotection. | |||
'C5. | 5.9-2 5.3.0EXCESSIVE LOAD~rgb~a+&vf"f'>Excessive loadisonemeanswhichcouldcauseexcessive corepowergeneration. | ||
Asdistinctfromtheovezpower~vertemperature accidentdiscussed inSection5.3.(RodWithdrawal atPower),reactorcoolanttemperature, | |||
: pressuze, andpressurizer waterlevelwouldnotincrease. | |||
Reactorpowerfollowsturbineload,bothbycontxoldesignintentandtheinherently negativemoderator coefficient. | |||
Anincreaseinloadabovedesignistherefoxe ofpotential concern.Diverseoverpower protection isprovidedbyReactorProtection System.,Theseazetheovezpower delta-Tandthenuclearoverpower reactortxips-Sincetheaccidentisinitiated fromthesecondary plant,thereactorIcoolantlooptemperatures respondbeforethecorecoolanttemperature. | |||
!IPipinglagsapplicable totherodwithdrawal accidentaretherefore notapplicable toanexcessive loadaccident, andeitherthedelta-Tor-thenuclearoverpower tripprotectsthecoreforanyrateormagnitude loadincrease. | |||
5.10-1 pP | |||
'C5.11EXCESSXVE FEEDWATER FLOWAnexcessive feedwater flowaccidentisprimarily ofconcerntotheturbine(highwaterlevelXnthesteamgenerator leadstoexcessive moisturecarryover andpotentia1 turbinedamage).'ith respecttonuclearprotection, however,excessive feedwater flow(orfeedwater temperature decrease) isseenasanexcessive thermalload,andthediscussion inSection5.10isapplicable. | |||
512STATIONBLACKOUTAstationblackout,orlossofaU.a-cpowertothestationauxiliaries,resultsfromlossofincomingstationa~ | 512STATIONBLACKOUTAstationblackout, orlossofaU.a-cpowertothestationauxiliaries, resultsfromlossofincomingstationa~powercoincident withaplanttrip.Numerousreactortripsignalswouldbegenerated, suchasturbinetrip,lowcoolantflow,lowgpedwater flow,etc.Thisisnotimportant however,sincethelossofa-cpowerdeenezgizes thezodcontrolpower'upply,andthecontrolrodsfallintothecore,evenifnoreactortripsignalisgenerated. | ||
Naturalcirculation ofreactorcoolanttransfers reactordecayheatfromthecozetothesteamgenerators. | |||
Sincesteamgenerator steampressureisautomatically controlled bythepower-operated steamlinereliefvalves(withbackupfromthesteamlinesafetyvalves,ifnecessazy), | |||
theonlyrequirement formaintaining hotshutdownconditions istoApplyfeedwater tothesteamgeneratozs. | |||
TheauxiLiary feedwater systemisdiscussed inSection5.2,LossofFeedwater. | |||
Asnotedinthatsection,thelossofa~powerstartsalla~iazypumps-Adiverseautomatic actuation signal-steamgenerator lowwaterlevel-isalsoprovided. | |||
Further,theenergysourcesfortheauxiliary feedwater pumpsare.themselves diverse(steam-driven pumpsandmotor-driven pumpsenergized fromthediesel-generator), | |||
suchthatfaQ.uzetoactuateanenergysourcedoesnotpreventauxiliary feedwater. | |||
5.12-1 | |||
APPENDIXCONTROLANDPROTECTION FUNCTIONS reactorcon'tro1andprotection functions performedfromeachprocess~eterinthepresentWestinghouse designareMmlatedbelow.Pro-e~tionfunctions arelistedfirst,andcontrolfunctions listedlast.u~nyfunctions | |||
'.g-,indication, alarmsandinterlocks, arenotclearlyeithercontrolorprotection. | |||
~Theseareclassified as"supervisory" unctalons~Intheleftmargin,allfunctions arelistedasP,SorC,showingpro-tection,supervisory orcontrol;- | |||
i%JCLEARINSTRUMENTATION 1,.3.PowerRange1.2Intermediate Range1.3SourceRange'W~REACTORCOOLANTSYSTEMPARAMETERS Z.lReactorCoolanr,Temperature (4T,T)avg2-2Pressurizer Pressure2.3Pressurizer WaterLevel2.4ReactorCoolantFlow3~STEAMGENERATOR PARA%.'TERS 3.lSteamGenerator WaterLevel3.2Feedwater Flow3.3SteamPlow34SteamLinePressure3SSteamHeaderPressure VPARAMETERS TurbineFirstStageSteamPressureOomTurbineAutoStopOilPressureTurbineStopValvePosition~ASTROLRODPOSITION5.1BankPosition).ZIndividual RodPosition~.CONTAINMENT PRESSUREgZCZRICAL PARAMZERS 7'.1ReactorCoolantPumpBus7.2ReactorCoolantPumpBreakerPosition7.3FedwaterPumpPowerA-2 | |||
gJCLEARZNSTRUMENTATION SYSTBtpowerRange-(linearindication inpowerrangeofoperation). | |||
P1.Overpower reactortrip(highrange)-rapiddetection offastoverpower excursions duringpoweroperation. | |||
P2.Overpower reactortrip(lowrange)-protection duringlowpowerplantoperation. | |||
p3.Top-to-bottom fluxtiltbiasof4Treactortripsetpoints-reduceDNBprotection limitstooffseteffectsofhotchannelfactors.(BothhighdTreactortrips),see2.1,1&3P4.Reactortrippermissives a.Permitsinglelooplossofflowtripathighpower.b.Permitreactortriponturbinetripathighpower.c.Permit"at-power" tripsduringpoweroperation. | |||
d.Defeat,manualblockoflowrangeand&termediate rangeoverpower tripsatlowpower.e.Lockoutsourcerangehighvoltagesupplyduringpoweroperation. | |||
S5.Roddropdetection | |||
-rodstopandturbinerunbacktomaintainDNBmargins.6-Overpower rodstop.-stopapowerexcursion causedbyrodwithdrawal. | |||
7.Overpower alarm(forequipment | |||
: purposes, thisfunctioniscombinedwiththeoverpower rodstop).8.Controlroomindication andrecording (including top-tobottomdifference). | |||
Channeldeviation alarm-detectchannelfailure,detectfluxtilts.10.Top-to<<bottom fluxtiltbiasofdTrodstopandturbinerunbacksetpoints(see2-1,264).A3 | |||
Automatic controlrodmotion-providestablereactorcontrolandrapidresponse. | |||
gntermediate Rane-(Logarithmic scaleforpowerrangeandupperstartuprange)p'.Highlevelreactortrip-preventpowerincreaseintopowerrangeunlesspowerrangechannelsareindicating. | |||
p2.Defeatmanualblockofsourcerangehighleveltrip-lowintermediate rangeindication rearmssourcerangetrip.S3.Highleve1rodstop-preventsexcessive withdrawal ofcontrolrodsduringlowpoweroperation. | |||
S4.Controlroomindicating andrecording. | |||
S5.Startuprateindication. | |||
P.l.HighleveLreactortrip-preventstartupaccidentfromsourcerange;preventpowerincreaseintointermediate rangeunlessintermediate rangechannelsareindicating. | |||
S2.Highcountratealarms-warnofapproachtocripicality. | |||
S'.Controlroomindication andaudiblecount.range.S4..Startup rateindication. | |||
A-4 | |||
~Nc.sgP't"K5 | ~Nc.sgP't"K5 | ||
<<< | <<<CTORCOOLANTSYSTEMPARAMETER orCoolantTemeraeure(4T-T)avgOvereemperature high4Treactortrip-preventcoreDNB(setpointcalculated fromT,pressure, andnuclearavg'luxaxialtilt).2.Overtemperacure high4Trodstopandturbinecueback-maintainoperating margineoDNB(setpointisafixedmarginbelowreactortripsetpoint).3.Overpower high4Treactorezip>>preventhighpowerdensity(seepointcalculaeed fromnuclearfluxtile)i4.Overpower high4Trodscopandturbinerunback-maintainoperating powerdensity(seepointisafixedmarginbelowreactortripsetpoint).S5.Channeldeviation alarms-deeectchannelfailures, detectabnormalprocesscandieions. | ||
S6.Controlroomindication andrecording. | |||
S7.Controlrodinsertion limitalarm-maintainreactiviey shutdownmargin;maintainlowejectedrodworth;maintain,uniformcoreburnup.fr.8.LowTalarm(interlocked withhighscesmflowforsteamavglineisolation) | |||
-steambreakprotection. | |||
Inadditiontotheabovefunctions for4TandT,Tisalsoavg'vgused09.HighTalarm.avg10.Tchanneldeviation rodscop(ofautomatic motion)-avgpreventspuriousrodwithdrawal orinsertion. | |||
11.Tdeviation alarm-deviacion framprogrammed setpoinc. | |||
avg | |||
Automatic controlrodmotion-controlcorepowex'omain>>tainprogrammed tempex'ature. | |||
11. | 13~Steamdumpcontrol(condenser steamdump)-removeexcessenergyfromreactorcoolant.14.Feedwater valvecontrol-controladditiontosubcooled watertosteamgenerators following aplanttrip.15.Pressurizer levelprogramming | ||
3ST~ | -determine levelsetpointtominimizechargingandletdownchangesduringloadchanges.2.2Pressurizer Pressurep1.Highpressurereactortrip-maintainpressureinATprotection range;provideoverpressure backuptosafetyvalves.P2.Lowpressurereactortrip-maintainpressurein4Tprotection range.P3.Lowpressuresafeguax'ds actuation | ||
'tV4 S3~ | -actuatelossofcoolantprotection. | ||
,F | P4.Highpressuxedefeatofsafeguards actuation manualblock-I.automatically renavemanualblockasoperating pressureisapproached. | ||
CO~OLRODPOSITIONBankPosition-(StePcounters) | P5-Compensate overtemperature ATreactortripsetpoint-coreDNBpzotection. | ||
6.Compensate qvertemperature Trodstopand.turbinerunbacksetpoint-maintainoperating margintoDNB.Controlroomindication andrecording. | |||
8High-lowpressurealarms.Lowpressurereliefvalveinterlock | |||
-closereliefvalveson10.lowpressuretoavoidaccidental lossofcoolant./Pxessurecontrol(on-offheaters,vaziableheatexs,spray,andx'eliefvalveactuation) | |||
-maintainnormaloperating pressure. | |||
A-6 F | |||
11.Compensation signalforautomatic controlrodmotion-improvereactorcontrolresponse. | |||
2.3Pressurizer WaterLevel-(Thisvariablemeasuresreactorcoolantfluidinventory andmeantemperature). | |||
P1.Highlevelreactortrip-preventwaterdischarge (anreliefpipingdamage)throughsafetyvalvesfollowing rapidinsurge.P2.Lowlevelsafegnards actuation | |||
-indication oflossofreactorcoolant.S3.Controlroomindication andrecording. | |||
S4.High-lowlevelalarms.S5.Lowlevelheatercutoff-preventenergizing heaterswhenuncovered (equipment protection). | |||
S6.Lowlevelletdownisolation | |||
-preventlossofcoolantbyexcessive letdown.C8.High-lowleveldeviation alarm-deviation fromlevelset-point.Chargingpumpspeedcontrol-maintainprogranmN.d waterlevel.C9.Highleveldeviation heatera'ctuation | |||
-heatsubcooled waterinsurge.2.4ReactorCoolantFP1.Lowflowreactortrip-preventcoreDNB.S2.Controlroomindication-A-7 P | |||
3ST~GENERATOR PRtAK'.TERS SteamGenerator WaterLevel-(Thisvariableisameasureofwaterinventory insteamgenerators). | |||
pl.Low-lowwaterlevelreactortripandauxiliary feedwater pumpstart-protectsteamgenerators; preservenormalheatsinkforremovalofearlydecayheat.p2.Lowlevelreactortrip(coincident withlowfeedwater flow)-providerapidprotection againstacompletelossoffeedwaterflow.S3.Highlevelfeedwater controlvalveoverride-closefeed-watervalvetopreventexcessive moisturecarryover andturbinedamage.S4.High-lowlevel.alarms.S5.Controlroomindication andrecording. | |||
S6.Leveldeviation alarm-deviation fromprogrammed level.C7.Feedwater valvecontrol-maintaindesiredsteamgenerator level.l3.2Feedwater FlowP1.Lowfeedwater flowreactortrip(coincident withlowsteamgenerator waterlevel)-providerapidprotection againstcompletelossoffeedwater flow.S2.Controlroomindication andrecording. | |||
C3.Feedwater valvecontrol>>providestablecontrolofsteamgenerator level.3.3~Se~F1owP.1.Setpointforlowfeedwater flowreactortrip(see3.2.1above).P2.Highsteamflowsteamlineisolation | |||
-steambreakprotection. | |||
'tV4 S3~C4Controlroomindication andrecording. | |||
Feedwater valvecontrol-providerapidres'ponse gfcgntzotforsteamgenerator level.3.4SteamLinePressure>~,W/!-P1.Lowpressure(ortuicdifferential pressure) safe~dactuation | |||
-steambreakprotection P,C2.Compensation ofsteamflowchannels-provideaccuratesignalofsteamflow.S3~S4.C.5.Lowsteampressurealarm.Controlroomindication andrecording. | |||
Controlofsteamlinereliefvalves-minimizeactuation gfsafetyvalves.3.5SteamHeaderPressureC1.Contzolsteamdumptocondenser. | |||
S2.Controlzoomindication | |||
,F TUgBXNEPARAMETERS TurbineFirstStaeSteamPressure-(Thisvariableisproportional toturbinesteamload).pl.Reactortrippermissives | |||
-pexmits"at-power" reactortripsaboveminimumturbineload.p2.Steamlineisolation | |||
-determines setpointforhighsteamflowforsteambreakprotection. | |||
S3.Controlroomindication. | |||
S4.Lowpowerblockofautomatic controlrodwithdrawal-preventsunstablereactorcontrol.S5.Steamdumpinterlock | |||
-preventsoperation ofsteamdumptocondenser unlessarapidlossofloadhasoccurred. | |||
C6.Tprogram-determines setpointforTincontrolavgavgrodandsteambypasscontrolsystems.C7.Steamgenerator levelprogram-determine setpointforlevelinfeedwater controlsystem.4.2TurbineAuto-StoOilPressure-(Presence orabsenceofoilpressureindicates'trip ornon-tripcondition ofturbine). | |||
1.Reactortrip-preventtemperature-pressure excursion inreactorcoolantfromlossofsteamload.C2.Steambypasscontrol-selectsmodeofcontxol.3.Feedwater control-selectsmodeofcontrol,steamgenerator waterlevelorTavg4~3TurbineStoValvePosition-usedasbackuptoautostopoilpressurefoxreactortripsignal. | |||
CO~OLRODPOSITIONBankPosition-(StePcounters) | |||
Bankinsertion limitalarm(setpointdetermined fromand4T)-maintainreactivity shutdownmargins;avgmaintainacceptable corepowerdistribution. | |||
S2,Bankwithdrawal limf.talarm-warnoperatorthatcontrolrodsarenearingtheendoftheirusefultravel.S3,Controlzoomindication andrecording 5.ZIndividual RodPosition(LVDT)Sl.Rodposition'deviation alarm-warnofpossiblerodmalpositioning. | |||
SZ.Rodbottomroddropdetection | |||
-rodstopandturbinerunbacktomaintainDNBmargins.S3.Controlzoomindication andrecording= | |||
CPNTAZgKNT PRESSUREpl.Highcontainment pressuresafeguards actuation andreactortrip-protection againstsmallsteambreaks,backupprotection forlossofcoolantaccidents andlargesteambreaks.-P2.Highcontainment pressuresteamlineisolation p3.Highcontainment pressuresprayactuation. | |||
S4.Controlroomindication. | |||
A>>12 ELECTRICAL SYSTEMVARIABLES ResistorCoolantPumpBusPl.Underyoltage reactortrip-protection againstmulti-loop lossofflow.p2iUnderfrequency reactortripandRCPbreakeropening-preventrapidsystemfrequency opening-preventrapidsystem.fre-quencydecreasefrombrakingRCP.7.2ReactorCoolantPumpBreakerPosition(contacts) | |||
P1.Reactortriponbreakeropening-backup.to lowflowprotection forlossofflow.7.3Feedwater PowerPl.Auxiliary feedwater systemactuation (feedwater pumpbreakerpositionand/orbusvoltage)-backupfeedwater protection forlossoffeedwater. | |||
A-l3 ATTACHMENT 8TOAEP:NRC'1184H2 RESPONSETOITEM8DEFENSE-IN-DEPTH EVALUATION PERFORMED FORTHEREACTORPROTECTION ANDCONTROLPROCESSINSTRUMENTATION REPLACEMENT PROJECT}} | |||
Revision as of 07:01, 29 June 2018
| ML17332A851 | |
| Person / Time | |
|---|---|
| Site: | Cook |
| Issue date: | 04/30/1969 |
| From: | BURNETT T W, DORRYCOTT J W, RISHER D H WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML17332A849 | List: |
| References | |
| WCAP-7306, NUDOCS 9507180151 | |
| Download: ML17332A851 (276) | |
Text
{{#Wiki_filter:wnu-7306NUCLEARENERGYSYSTEMSCLASS3REACTORPROTECTION SYSTEMDIVERSITY ZNWESTINGHOUSE PRESSURIZED WATERREACTORSApril1969Author:T.Q.T.BurnettContributors: J.W.Dorrycott A.C.HallD.H.RisherAPPROVED: S.ore,ManagerCoreEngineering Westinghouse ElectricCorporation NuclearEnergySystemsDivisionP.O.Box355Pittsburgh, Pennsylvania 152309507180151 950707PDRADQCK050003159PDR<3RZRestintthouse ElectricCorp./ FOREWORDOverthepastfouryears,considerable attention hasbeenfocusedondesigncx'iteria andmethodsofimplementation fornuclearpowerplantprotection systems.Ofpaxticular difficulty hasbeenche"establishment ofsuitablecriteriatodealwiththeproblemsofsingleandmultiplefailures, channelindependence, ControlandProteccion Systemindependence, andthe'eviation ofProtection Systeminputs..Akeyfactorinthisdifficulty hasb'eentheconflictbetweenthegoaltominimizethenumberofredundant measurements fox'nysingleprocessvariable, withregaxdtotheoverallnuclearplanerequirements, andthegoaltoestablish aauucbnumdegreeofseparation betweentheProtection SystemandtheControlSystem.Obtaining anaccurateandreliablemeasuxement ofaparticular processvariableisoneofthemostdifficult aspectsofaninstrumentacdon system.Therearesignificant problemsassociated withthephysicalmountingofthemeasurement devicesincluding optimumlocation, supporting structuxes, accesstocheequipment formaintenance, andprotection againstadverseenvironmental factors.Inthecaseofnuclearpowerplants,thereisalsotheproblemoftransmitting thesignalsfxomthecontainment tothecontrolroomequipment. Allofthesefactorsprovidearguments forminimizing thenumberofseparatemeasuremencs. Mostofthefunctions performed bytheplantControlSystemrequirethesameprocessinformation astheProtection System.Inthesecases,Westinghouse providesControlSysteminputsfromProtection Systemchannels. The"Proposed IEEECriteriaforNuclearPowerPlantProtection Systems," IEEENo.279,permitsthisdesignapproach, sub)ecttocertainrestrictions. However,thisproposedresolution wasnotunanimously acceptedbymembersofotherUnitedStatesstandards andregulatory
- agencies, inparticular, USASXSectional Committee N3(N42),andtheAEC-ACRS.
Westinghouse heldmeetingswithmembersoftheAECtoclarifytheWestinghouse designapproachandtoidentifytheadditional designcriteriaappliedbyWestinghouse, whichgobeyondtheproposedIEEEcriteria. Theseadditional criteriarequireseparation andidentification ofcontrolandprotection equipment andtheuseofisolation devicestotransmitsignalsfromtheProtection SystemtotheControlSystem.ItisthepositionofWestinghouse thattheseadditional criteriaofferaresolution tothe'tated designconflict. Westinghouse hasdemonstrated byactualimplementation ofthesecriteriathatahighdegreeofseparation, including properidentification, canbeachievedbetweenProtection Systemequipment andControlSystemequipment. Morerecently, thequestionofthefailuremodechangedfromthatofasinglerandomfailuretocommon-mode failure-afailuremodewhichwouldadversely affectall,redundant channelsofaparticular protective functionintheProtection System.Itisgenerally recognized thatseparation ofcontrolandprotection doesnotprovidedefenseagainstthecommon-mode failures. ThenuclearpowerplantControlandProtection SystemdesignemployedbyWestinghouse wasevaluated indetailwithrespecttothecommonmode failureandpresented inaseriesofmeetingstomembersoftheAEC.Thisreportdocuments theinformation transmitted inthesemeetingsandprovidesatechnical basisforthedevelopment ofcriteriafordesignofProtection Systemswithadequateconsideration forcommon-mode failures. Theconclusion ofWestinghouse based>upon actualexperience, previouswork,andreinforced bytheresultspresented herein,isthatdesigncriteriafornuclearpowerplantprotection systemsshouldpermitmagnumeffective useofprocessmeasurements bothforcontrolandprotection functions including theuseofProtection Systemmeasurements intheControl.System.Suchcriteriasignificantly enhancethedesigner's capability toprovideasystemwithadequatecapability todealwiththemajorityofcommon~ode failurestaswellastoprovideredundancy forcriticalcontrolfunctions. J.M.Gallagher,'Jr. Consulting Engineer-ControlTechnology Vestinghouse designphilosophy forReactorProtection andControlSystemsistomakemaxiunaause,forbothprotection andcontrolfunctions, ofawiderangeofmeasurements. TheProtection andControlSystemsareseparateandidentifiable. Thedesignapproachpermitsnotonlyredundancy ofcontrol,providing itsowndesirable increment tooverallplantsafety,butalsoprovidesaProtection Systemwhichcontinuously monitorsnumeroussystemvariables bydifferent means;i.e.,protection systemdiversity. TheextentofProtection Systemdiversity hasbeenevaluated forawidevarietyofpostulated accidents. Inmostcases,twoormore=diversepro-tectivefunctions. wouldterminate anaccidentbeforeintolerable consequences couldoccur.
teetiee11.11.2233.13.1.13.1.23.1.33.1.43.1.53.23.2.3.,3.2.23.3TABLEOFCONTENTSTitleABSTRACTINTRODUCTION COMMONMODE FAILURESAND.DIVERSITY PROTECTION SYSTEMEVALUATION QjMMARYFUNCTIONAL DESCRIPTION, REACTORCONTROLANDPROTECTION SYSTEMREACTORPROTECTION SYSTEMGENERALREACTORTRIPSManualTripHighNuclearPower(PowerRange)HighNuclearPower(Intermediate Range)HighNuclearPower(SourceRange)Overtemperature 4TTripOverpower 4TTrip'LowPressureTripHighPressureTripHighPressurizer WaterLevelTripLowReactorCoolantFlowSafetyIn)ection SystemActuation Trip(SIS)TurbineTripLowFeedwater FlowReactorTripLowSteamGenerator WaterLevelTripPERMISSIVE CIRCUITSListofPermissive CircuitsRODSTOPSRodStopListINDICATION ControlBoardIndicators andRecorderCentralBoardAnnunciator PanelControlBoardStatusPanelSTEAMDUMPCONTROLSYSTEMCONDENSER STEAMDUMPSYSTEMSystemDesignControlSystemLoadRefection ControlTurbineTripControlPressureControlATMOSPHERIC STEAMRELIEFSYSTEMREACTORCONTROLTheTemperature ChanelThePowerMismatchChannelThePressureChannelTheRodSpeedProgram~Paeiv1>>1l-l1-5213.1-13.1-13.1>>13.1-13.1-13.1-13.1-23.1-23.1-33.1-33.1-43.1W3.1-53.1>>53.1-63.1-73.1-73.1-73.1-83.1-83.1-93.1-93.1-103.1-103.'1-103.1-113.2-13.2-13.2-13e2~33e2~33.2-43.2-53.2-63.3-13.3-13.3-13'~23~32 Seetiet3,4'.53.5.13.5.23.5.344.14.24.34.44.4.14.4.24.4.34.4.44.4.54.4.655.l.5.1.15.1.25.1.35.1.45.25.2.1~5.2.2.;:!.5.35.3-15-3.2TABLEOPCONTENTS(Cont'd)TitleSTEAMGENERATOR LEVELCONTROLSTEAMBREAKPROTECTION SYSTEMSAFETYINJECTION SYSTEMACTUATION FEEDWATER LINEXSOLATION STEAMLINEISOLATION PROTECTION ANDCONTROLSYSTEMSDESXGNPRINCIPLES PROTECTION SYSTEMFUNCTIONAL DESIGNCONTROLSYSTEMPJNCTIONAL DESXGNCONTROLANDPROTECTION INTERRELATION SPECIFICCONTROLANDPROTECTION INTERACTIONS NUCLEARFLUXCOOLANTTEMPERATURE PRESSURIZER PRESSUREControlofRodMotionPressureControlLowPressureHighPressurePRESSURIZER LEVELHighLevelLowLevelSTEAMGENERATOR WATERLEVELFEEDWATER PLO..Feedwater FlowSteamFlowLevelSTEAMLINEPRESSUREACCIDENTEVALUATXON RODWITHDRAWAL ACCIDENTIPROBABLECONSEOUENCES OFACCIDENTPROBABILITY OFACCIDENTMANUALINTERVENTION DIVERSXTY OFREACTORTRIPSLOSSOFFEEDWATER LOSSOFFEEDWATER -TRANSIENT ANALYSISTYPXCALSYSTEMDESIGNREOUIR1M2KS Auxiliary Feedwater SystemMainSteamandFeedwater PipingLOSSOFCOOLANTPLOWANALYSISZNTRODUCTION ANDSUMMARYPROTECTION SYSTEMDESCRIPTXON LowReactorCoolantPlowReactorCoolantPumpLowVoltageReactorCoolantPumpLowFrequency PumpCircuitBreakerPositionOverpower Delta-TReactorTripInterlocks ~Pae3.4-13.5-13.5-13-5-13.5-14.1<<14.1-14.2-14.3-14.4-14.4-14e4-24.4-34.4-34.M34.4-34.4-44.4-44.4-54.4-54.4>>64.4>>74.4-84.4-84.4-85.3.-15.1-15.1-25.1-45.1-45.1-65.2-15.2-25.2-45.2-45.2-65.3-15.3-15.3-15.3-25.3-25.3-25.3-35.3-35.3-4 14C Sectice5.3.35.3.45.3.55.45.4.15.4.25.4.35.55.5.15.5.25.5.35.5.45.65.75.85.95.10:5.115.12TABLEOFCONTENTS(Cont'd)TitleMULTILOOP LOSSOFFLOWSINGLELOOPLOSSOFFLOWLOCKEDROTORACCIDENTRODEJECTIONANALYSISINTRODUCTION ANDSUMMARYCASESCONSIDERED INDETAILZeroPowerCaseFullPowerEndofLifeCozeBACK-UPTRIPPROTECTION LOSSOFSTEAMLOADINTRODUCTION ANDSUMMARYLOSSOFLOADPROTECTION ANDDESIGNCRITERIASteamDumptoCondenser Pressurizer PressureReliefSteamSystemPressureReliefDirectReactorTripHighPressurizer PressureTripOvertemperature 4THighPressurizer LevelTripEVALUATION OF'PROTECTION SYSTEMFORLOSSOFLOADInitiation ofAccidentAnalysisandDiscussion CONCLUSIONS RODWITHDRAWAL DURINGSTARTUPCONTROLRODDROPENGINEERED SAFEGUARDS ACTUATION CONTAINMENT PRESSUREPROTECTION EXCESSIVE MADEXCESSZVE FEEDWATER PLOWSTATIONBLACKOUTCONTROLANDPROTECTION FUNCTIONS ~Pae5.3-45.3-65.3-75.4-15.4-15.4-15.415.4-25.4-35.5-15.5-15.5-25.5-25.5-35.5-35.5-35,5~45.5W5.5-45.5-55.5-55.5-75.5-95.615.7-15.8-15.9-15.10-15.11-15.12-1
LISTOFFIGURES~FgureNo.2-1Illustration ofControlandProtection Design3.1-13.1-23.2-13.3-23.3-1Overtemperature dTChannelOverpower dTChannelSteamCycleValveArrangement Condenser SteamDumpControlSchemeReactorControlSystem4.2-14.3-15.1-15.1-25.1-35.1-45.1-55.1-65.1-75.1-85.1-95.1-1052-1522.~5.2-35.2-45.2-55.2-65.2-75.2-85.2-95.3-I.5-3-25+335.3-45.3-55.3-6SteamGenerator LevelContxolandProtection SystemPressurizer PressureProtection andContxolSystemsDesignIFaultTreefoxRodWithdrawal AccidentFaultTreeforRodWithdrawal AccidentInsertedRodWox'thandReactivity RequiredtoReachDNBR~1.0inHotAssemblyVersusCoreLifeCompleteRodWithdrawal fromMaximumFullPowerCompleteRodWithdrawal fromMaximumFullPowerSteadyStateCoreLimitsandReactorTripandAlarmPointsBeginning ofLife,RodWithdrawal from102XPower,MinimumDNBRBeginning ofLife,RodWithdrawal from102XPower,TimeofEventBeginning ofLife,RodWithdrawal from80XPower,Resulting MinimumDNBRBeginning ofLife,RodWithdrawal from80XPower,TimeofEventFaultTreeforLossofFeedwater FlowFaultTreeforLossofFeedwater FlowFaultTreeforLossofFeedwater FlowLevelResponsetoLossofSteamFlowSignalLossofFeedwater FlowtoOneSteamGenerator atT~OneSecond,TypicalTwo-LoopPlantLossofFeedwater FlowtoOneSteamGenerator atT~OneSecond,TypicalTwo-LoopPlantCompleteLossofFeedwater CompleteLossofFeedwater Auxiliary Feedwater SystemSchematic, Two-LoopPlantFaultTreeforMulti-Loop LossofFlowFaultTreeforSingleLoopLossofFlowFaultTreeforLockedRotorAccidentMulti-Loop LossofFlow,TypicalPlantSingleLoopLossofFlow,TwoLoopPlantLockedRotorLossofFlow,TwoLoopPlant ~e+lyIA'I'I'lhPl0V0 LISTOFFIGURES(Cont'd)FiureNo-5.4-15.4-25.4-35.4-45.5-15.5>>25.5-35.6-15.6-25.7-1.5.725.8-1ZeroPowerEndofLifeRodEjection, NoTripFullPowerEndofLifeRodEjection, NoTripIllustration ofSafetyLimitsandTripPointsforRodEjectionAccidents, NoTripIllustration ofTransient Trajectories forRodEjectionAccidents, WithNoTripFaultTreeforLossofLoadAccidentFaultTreeforCoreDamage,LossofSteamLoadLossofLoadAccidentUncontrolled RodWithdrawal fromSubcritical, FractionofNuclearPowerUncontrolled RodWithdrawal fromSubcritical Condition, Temperature ResponsetoaDroppedControlRodResponsetoaDroppedControlRodSafetyInjection Actuation SignalvsBreakArea ~emme~e'~'%qelt*49~*t 1.INTRODUCTION poophyforReactorProtection andCooltomaemaxaumuseforbothprotection andcontrolfunctions ofawiderangeofmeasurements. Thisresultsinabroadspectrumofredundant protection andcontrolfunctions. Thedesignapproachusedpermitsallequipment components tobeidentified asprotection orcontrolandlocatedaccordingly, withelectrical isolation andphysicalseparation betweenthem.Thedesignapproachthuspermitsnotonlyreduncancy ofcontx'ol, providing asignificant anddesirable increment tooverallplantsafety,butalsoprovidesaProtection Systemwhichcontinuously monitorsnumeroussystemvax'iables bydifferent means;i.e.,Protection Systemdiversity. AlthoughtheProtection SystemdesignbasisrequiresonlythatrandomsinglefailuresnotnegatetheProtection System,aconsiderable depthofprotection IisachievedbytheWestinghouse designapproach. Systemsdesigners andre-viewershavexecentlyemphaaLzed theimportance ofachieving asuitablebalanceofdesignobfectives inregardtofunctional andequipment diversity. "'nteraction ofcontrolandprotection functions, testing,andsurveillance to~thieveaProtection Systemdesignthathasadequatecapability tocopewithbothrandomandsystematic failuremodes.(Systematic failuresarealsoknownascommon-mode, ornonrandom failures.) 1.1COMMONWODE FAILURESANDDIVERSITY Common-mode, orsystematic
- failures, arethosethatpartially orcompletely preventidentical, instrument channelsfromperforming theirfunction-p'~.4*/I dundancyisnotananswertothistyPeoffailure,sinceallchannelsareassume~edtobeaffected.
Further,thesefailurescannotbeevaluated byproao~bability analysisorreliability data;indeed,theyarecharacterized byoversights ordeficiencies whichpresumably wouldbecorrected whenfirstdetected. Thegeneralcategories ofcommon~ode failuresare:a)Functional deficiency -Thevariablebeingmonitored doesnotprovidetheinformation intendedduringthecourseofanaccident. Thisdeficiency couldbecausedbytheaccident's following adifferent course/thancalcu1ated bythedesigners, orbyachangeintheplantcharacteristics whichchangestherelationbetweenthepxocessandthevariablebeingmonitored. b)Maintenance error-Thisfailureincludesconsistent miscalibration ofallchannelsofatype,andalsocircuitmodification oxrepqirwhichinadvertently rendersthechannelsfunctionally inoperative.'esign deficiency -Pailuxeoftheequipment asinstalled tomeetfunctional requirements. Thiscouldarisethxoughunrecognized dependence onasingle,commonelement., suchasventilation; byanunexpected charpcteristic (suchassaturation orslowresponse) inallcontrollers ofatype;orbytheinstrumentation beingdisabledasaresultoftheaccident-d)~<<malcatastrophe -Withproperisolation andseparation betweenredundant
- channels, thisisconfinedtoma)ordisasters suchasflood,<<rthquake, fire,etc.Whereseparation isnotcomplete, lessdrastic~ventscanhavethesameresult.Forexample,afallingob)ectcouldconceivably severallcablesinasmallarea.1-2 t+J~~N Considerable effortisbeingmadeinReactorProtection Systemsdesignpreventthesecommon-mode
- failures, asillustrated bytheexamplesbelow.Howeverremote,thepossibility ofacommonmode failuremustnevertheless beconsidered.
Thelikelihood ofmaintenance errorscanbeminimized byproperadministrative procedures, identificationofProtection Systemcomponents, andcompletedocumentation oftheas-supplied Protection System,including thedesignbasis.Designdeficiencies canbelargely.eliminated byequipment qualification testingandbycaxefulreviewofallpotential commonelements. Redundancy isanaccepteddefenseagainstx'andomfailureswhichaffectonlyonecomponent orchannelatatime.Similarly, "cliversity isadefenseagainstcommon~de failureswhichcouldaffectmultiplechannels. Suchprotective diversity canbeachievedineitheroftwoways:equipment diversity, byproviding different typesofinstrumentat'ion'to monitorthesamevariable, orfunctional diversity, bymonitoring different plantvariables. Functional diversity entailssomedegreeofequipment diversity, P~rilywithrespecttosensorsandsetpoints. Moreimportantly, however,functional diversity isnotdependent onthecalculated respenseofanyone"ariableduringanaccident. Asaconvex'se ofthis,functional diversity ismorecomplextodemonstrate sincetheresponseofseveralvariables mustbeanalyzedforeachtypeofaccidentevaluated. TheWestinghouse Pxotection Systemistherefore evaluated inthisreportwithrespecttofunctional divexsity. Todemonstrate diversity whereprotective actionisneeded,itisnecessary toshowcombinations oftwoormoreofthe1-3 e4 fo1lowingbarriers" foreachaccident. Someoftheseareaddressed totheneedforprotective action,ratherthantotheInstrumentation Systemitself.Thisisconsidered areasonable approachtojudgingtheadequacyofaProtection System.a)Tolerable consequences forexpectedconditions -Althoughcase"analysismightfailtoprovethatprotection isnotvastmajorityofcasesmayhaveacceptable consequences. worstneeded,theWhetherornotthisisasuitablebarrierdependsontheprobability ofadverseconditions (suchasexcessive insertedrodworth)andthedesignandoperating precautions takentopreventthem.b)Lowprobability ofaccident-Probability oftheinitiating faultmightbeconsidered, butonlyinconjunction withtheprobableconsequences. Thatis,aloss-of-coolant accidentdoesnotrequirelessprotection tthanalossofflowaccidentsimplybecauseitislesslikelytooccur.c)Controlinterlocks -RodstopsorotherdeviceswhicharrestormodifyspuriouscontrolactionshortofreactortripcanbepartoftheProtection System.Protection Systemdesignstandards, equipment testing,andTechnical Specification limitswouldtherefore beapplied.nualaction-Manualactioncanbeconsidered areliablebackuptoautomatic protection, depending ontheaccidentrate,thecomplextytheproblemandcorrective action,andthealarmsandindication provided. 1-4
Automatic reactortrip-Eachaccidentmayhavea"principle" reactortripassociated withit..)BackuPreactortrip-Asecondreactortripfunctionofisanadditional barrier.InallbutafewcasesintheWestinghouse design,aspecificreactortripisnotcategorically either"principle" or"backup": itservesastheprinciple protection againstsomeaccidents, andasbackupprotection againstothers.1.ZPROTECTION SYSTEM-EVALUATION Anaccident-by>>accident evaluation hasbeenperformed inordertoevaluatethe"depth"ordegreeofdiversity providedbycurrentWestinghouse design.Asexpected, diversity couldnotbedemonstrated forallaccidents. Thexesultsingenex'al, however,indicateaconsiderable degreeofprotection Systemdivexsity. Theevaluation, reportedin-.Section 5ofthisreport,analyzedeachpostulated ~ccidentwithoutcreditforprotective actiontothepointatwhichoneofthethreefollowing eventsoccurs:Inherentplantcharactex'istics terminated theaccident; b)Theconsequences areclearlyintolex'able', orc)=<<<tinganalytical methodsarenolongervalid(forexample,systemalculations cannotbeperfoxmed withanydegx'eeofconfidence ifseverecoredamageoccurs).1-5 tyneofevaluation, theamountofanalytical rigormustbereducedKathistypeoascontonsbecomeincreasingly remoteandsafetylhaitsareexceededisbecausepresenttechnology cannotrigorously supportassumptions assystembehaviorfortheseremotecases.Inlargepart,thisfactexplainsthereasonwhysuchconservative safetylimitsareselectedfordesignpurposes. 1-6 I SL~5ARYIntheWestingoutinhouseReactorControlandProtectionSystemstheControlSystemisseoara'sseoarateanddistinctfromtheProtection SystP"orection Systemisindependent oftheContro]heProtectonS"ste-"Lishighlydependent uponsignalsderivedfromtheProtectio Sthroughisolation amplifiers; Thisinterre].ationship isillustdininure-1.hedesignoftheControlandProtection Syst~dthinteractions betweenthemarediscussed indetailiSectio'd4ofthisreport.Thedesignphilosophy istomakemaxianunusage,forbothcontrolandprotection
- purposes, ofallmeasurements ofplantvariables.
Foreachvariablemonitored, thebesttypeofequipment available isselectedasthevehicleofmeasurement. Clearly,therequirements formeasurements forcontrolorprotection purposessonearlyoverlapthattheoptimumequipment foronepurposeisalsotheoptimumfortheother,.It'srecognized bythoseresponsible forProtection Systemdesignandreviewthatlittleifanyadditional safetyisachievedbyutilizing independent, butidentical, measurements forcontrolandprotection. Infa<<,itisWestinghouse's positionthatadditional identical channelsareseriously disadvantageous jnthatmorepenetrations, maintenance, andcontrolroomreadoutsarerequired. porexample,operatorsurveiU.ance ofprotection channels'isnecessarily dilutedwhenplantoperation isdependent onotherindications.
pressurized waterreactorplant,itisalmostaxiomatic that-.naLargePresrturbation whichencroaches onsafetylimitssignificantly affects~vperturaForexample,areactivity excursion -suchasaccidental rodvt.thrawdrawal-causesnotonlyanincreaseinneutronfluxandcorepower,~soanincreaseincoolanttemperatures andinpressurizer pressurebutandlevel.Reliablecontrolisobviously'he bestapproachtoplantsafety.Theprime,purposeofacontrolsystemistolimitexcursions beforeprotective actionisnecessary. SincethecontroldevicesmustbecapableofLimitingexcursions, theyarealsocapableofcausinganexcursion -perhapsinthe,oppositedirection -ifspuriously actuated. FailureoftheControlSystem,eitherbynotactingwhenneeded,oractingwhennotneeded,decreases theleve1ofsafety.Redundancy-ofcontrol,whereapplicable, istherefore highlydesirable. Pressurizer pressurecontrolisaprimeexampleofefficient useofredundant measurements forsafeoperation viaareliableControlSystem.Twooower-operated pneumatic reliefvalvesareprovidedtolimitpressureexcursions withinthenormaloperating range.Althoughnotessential to-safety,thesevalvesincreasesafetymarginsforsystemoverpressure ~overpressure protection isprovidedbythehighpressurereactortrip~safetyvalves).Shouldeithervalvebeactuatedspuriously, however,p~tection againstthereduction inpressuremightalsoberequired. 2~2 'Ph contro3.channels, derivedformthefourpressureprotection ."-ourpressurecontnosing3.eins-hanne3.s, areuse-el'eiwhenneeded,norcananysingleiQt~tfailducepressuretothepointatwhichprotection wouldbeneededressurechannelsareusedtocontro1eachvalve.OnepressurechannelMopressureservesasaninterlock, blockingtheairsupplytothevalveonalowpressurea3.arm.Sincethepneumatic valverequiresairtoopen,thi'slowpressurealarmclosesthevalve(ifopen)andholdsitclosed.Intheabsenceofalowpressurealarmonthefirstchannel,ahighpressurealarmonthesecondchannelopensthevalve.."-romtheprotection Systemviewpoint, thecorollary tomaxbaumusageofallmeasurements isthatprotection againstanygivenaccidentisnotnecessarily confinedtomeasurement ofjustonevariable. Thusthereactivity excursion notedpreviously, thereactortriponhighpressurizer wagerleve3,alsoprovidesadegreeofprotection, eventhoughthebasicpurposeofthistripistoprotectthepressurizer reliefpipingfromwaterreliefsurge,throughthesafetyvalves.Sincecompletely different. typesofmeasurement areused<<rneutronfluxandpressurizer waterlevel,diversity doesexistintheProtection System.Lheextentofsuchdiversity isevaluated inSection5forawidevarietyotaccidents. Inmostcases,twoormorediversereactortripsterminate ~accidentbeforecatastrophic consequences canoccur.However,thesecondtripreached(the"backup")generally doesnotpreventthedesignsateylimitfrombeingexceeded. Inthiscontext,thedesignsaiety2-3 h hasaDNgratioof1.30,isitselfahighlyconservative such~,.exceeding thislimitdoesnotimplyintolerable consequences. ~onecaseevaluated -thehypothetical rodejectionaccident-protection systememdiversity couldnotbeadequately demonstrated fortheworstcase.~eyerarodejectionisconsidered tobeanextremely unlikelyaccidentonecausedbycompleteandinstantaneous mechanical failureofacontrolrodpressurehousing.Further,theprobableconsequences, asdistinctfromtheworstcase,aretolerable sincemostcontrolrodsarefullywithdrawn fromthecore.Eventhoserodsthatremaininsertedareseldominsertedtotheirinsertion limits.."-oranothertypeofaccident-completelossoffeedwater -diversity ofreactortripsdoesexist.Ho~ever,automatic actuation oftheauxiliary feedwater systemisnotdiverseforallof'hewaysinwhichfeedwater flowcouldbelost.Forthosecases,itisshownthatmanualactuation consti-rutesareliableback-uptoautomatic actuation. 2-4 'P7"IHtI0 ILLUSTRATION OFCONT."d)L 'lNDPROTECTION DESIGNCONTROLSYSTEMl(Signalcon~itionins, controllers, ~Iinterlocks, anddefeatswitches) t.otection {testsigna.ague)(testradout)~estCONTROLPROTECTION Channel'SensorI\ICablingandPenetrations ~I!PewerSuoply!Isolation I;ihmplifier IBistablelI(Fromotherprotection channels) ".harmelChannel23f"1IIn8icatio Channel4CCCJo4kIJCOCIHg~gOCl~+Icd0CcCCJPROTECTION LOGICa&CKSTRAINTOREACTORTRIPBREAKERSFIGURE2-l ~,'I1"k0P CTIONALDESCRIPTION REACTORCONTROLANDPROTECTION SYSTEH~~CTIONAL REACTORPROTECTION SYSTEH3.13.1.1GENERAL'r'1andProtection Szstmfuncti~di,,basedontheRobertEmmettGinnaNuclearStationoftheRochester GasandElectricCo.(RGBE).Itisrepresentative ofWestinghouse designpractice. Allreactortripsmeetthefollowing criteria: a)Asinglefai1ureshallnotnegateareactortripb)Allchannelsarecapableofcalibration andmaintenance atpower.3.1.2REACTORTRIPS4Aresumeofreactortrips,meansofactuation andcoincident circuitrequirements isgiveninTable3.1-1.i~fllnual TrigDepressing eitheroftwomanualpushbuttonsonthemaincontrolboardactuatesareactortrip.HihNuclearPower(PowerRane)Dualtripsettings= areprovided: 3.11 "ca.l\"1~ )Low(approximately 25X)b)High(approximately 110X).Thelowsettingcanbemanuallyblockedwhenpowerincreases aboveP-10*(approximately 10Xpower)andisautomatically reinstated whenpowerdecreases belowP-10.Thesecircuitstripthereactorwhentwoofthefourexternalionchamberaveragefluxsignalsareabovethetripsetpoint. HihNuclearPower(Intermediate Rane)Thiscircuittripsthereactorwheneitherofthetwointermediate channelsindicateabovethetripsetpoint, Etmaybemanual1yblockedwhenpowerisaboveP-10andisautomatically resetwhenpowerdecreases-below P-10.Expectedtripsetpointis25X.HLhNuclearPower(SourceRane)Thiscircuittripsthereactorwheneitherofthetwointermediate Prangechannelsindicateabovethetripsetpoint. Itmaybemanua11yblockedwhentwointermediate rangechannelsreadsavalueaboveP-6andisautomatically reinstated whenbothintermediate rangechannelsdecreasebelowP-6.TripsettingisbetweenP-6andthemaximumsourcerangepowerlevel.*P-()designates apermissive circuittoblockoractivateatripfunction. ThesecircuitsaredefinedinSection3.1.3. 4~I' ~Fjtyvertemoe temperature 4TTrioofthistripistoprotectthecorepurposeopo,pssure,temperature, 'cionTwoout~ffouroop~Foreachchannelpereactorclativemeasureofreactorpowerandiscomparedwithacontinuouslycalculated setpointoftheform:4T~K+KxPressure-K xT>>f(4I)setpointL2Javg~enthereactorcoolantloop4Texceedsthecalculated
- setpoint, theratfectedchannelistripped.Zntheaboveequation, 4Zisthedifference'between thetopandbottompower-range ionchambersignals..
Thiscompensation signalautomat-icallyreducesthetripsetpointifadverseaxialcorepowerIdistribution exists.Dynamiccompensation oftheTsignalisavgalsoprovidedtocompensate forinstrument andpipingdelaysbetweenthereactorcoreandthe'looptemperature sensors.. Aschematic representation ofthiscircuitisshownonFigure3.1-1.Anillustration ofthesetpointisshownonFigure5.1-6.Overoower 4TTriThepurposeofthistripistoprotectagainstexcessive power(fuel<<dpowerdensity). Two-out-of-four triplogicisused;therearetwochannelsperreactorcoolantloop.3.1-3 iforeachchanneliscalculated as:Nesetpointtore~K-K-T-K(T-T)-f(II)45dtavg6avgavg~'quation> f(41)isthesamefunctionasusedintheovertemperature equato-serpontetpointequation. ThetermK5compensates forthepipingandinstrument delay.ThetermK6compensates forthechangeindensityandheatt~actyoityofwaterwithtemperature (T'sthenominalTatfullpower).avgavg6~thKandKarelimitedsuchthattherateand/ormagnitude ofTcanavgonlydecreasethe4Ttripsetpointfromitsnormalvalueatfullpower.ectedsteady-state tripsetpointisllOXoftheindicated hTatfullpoMer;i.e.,llOXpower.Aschematic representation ofthiscricuitisshownonFigure3.1-2.~PressureTri.hepurposeof'thistripistoprotectagainstexcessive boilinginthecoreandtolimitthepressurerangeinwhichcozeDNBprotection isrequiredfortheovertempezature aTzeactortrip.Thiscircuittripsthe:eactoroncoincidence oftwmf-four channels. Itisautomatically blockedbelowP-7.Theexpectedsetpointis1715psig.-"-'-hPressureTri=hepurposeofthistripistoprotectagainstoverpressure andtolimitthees<<<<rangeinwhichcoreDNBprotection isrequiredoftheovertemperature Wectedsetpointis2385psig.-a<<circuittripsthereactoroncoincidence oftwo~f-three channels. 3.1-4 ~hPressurizer WaterLevelTritzipprovidesabackuptothehighpressuretripandalsopreventsthepzessuzzessuzizer safetyandreliefvalvesfromrelieving waterforcredibleaccidentconditions. Expectedsetpointis92Xofspan.Thiscircuittripsthereactoroncoincidence oftwo-of-three channels. Xtisautomatically blocked.belowP-7.LowReactorCoolantFlowThiscircuitisprovidedtoprotectthecorefromDUBfollowing alossofcoolantflowaccident. Themeansofsensingalossofcoolantflowaccidentazeasfollows:a)Measuredlowflowtnthereactorcoolantpipingb)Reactorcoolantpumpcircuitbreakeropenc)Undervoltage onreactorcoolantpumpbusd)Underfrequency onreactorcoolantpumpbusThelowflowtripsignalisactuatedbythecoincidence oftwo-of-three signalsperloop.AboveP-7,reactortripoccursforalossofflowinbothloops;aboveP-S,reactortripoccursforalossoffewineitherloop.Expectedsetpointis90Kofindicated fullflow.Thereactortripsignalderivedfromreactorcoolantpumpbreakerpositionisactuatedbyasingleauxiliary contact'or eachreactorcoolantpumpbreaker.Triplogicissimilartothelowflowtrip;aboveP-7reactortripoccursfora"breakeropen"signalfromanytwobreakers; aboveP8.asignalfzomanyonebreakeractuatesareactortrip. ~wga~~V~~tortripprovidesadditonal reactorprotection against~undervoltage reactorpowers4coapletelossoo~tpumpbusesas~dboaLcwvoltageonoectedsetpointis70Zof~crvoltage sea~tartjrapiddecreaseinelectrical frequency candecelerate th~principe,a~torcoolantpumpsfasterthanacompletelossofpower.Anunderfrequency condition onbothreactorcoolantbuses,assensedbyeitheroftwounder>>frequency relayson'achbus,tripsthereactorandopensbothreactorcoolantpumpcircuitbreakers. Expectedsetpointisapproximately 58cps.aSafetyXnectionSstemActuation Tri(SIS)"ponactuation oftheSafetyInfection System,thereactorfstrippedtodecreasetheseverityoftheaccidentcondition. Themeansofactuating theSafetyIn)ection Systemandthustrippingthereactorareasfollows:la)Lowpressurizer pressure(1715psig)incoincidence withlowpressurizer water.level(5Zspan).AnyoneofthethreecircuitsLaactuatestheSIS.Thisfunctionmaybemanuallybypassedbelow2000psig.~Pressure(500psig)inanysteamline.Acoincidence oftwo~f-three signalsforanysteamlineactuatesthisfunction. Thisfunctioncanbemanuallybypassedwhenreactorcoolantpr~ssureisbelow2000psig.c)"ighcontainment pressure(6psig).Acoincidence oftwo-of-three signalsactuatestheSIS.d)ManualActuatjon f~~ Trio~tripsensedbylossofautostopoi1pressureorbyturbinestopgturbinetrpslosureactuatesareactortripduringhighpoweroperation. Trip<s~o~r-three fortheautostopoilpressureswitchesandtwo~f-two picissorthestopvalvepositionswitches. Thistripisincoincidence with~r~sszveci~ssiyecircuitP-7(blockedbelow10Xpower)andpermissive circuitP-9~blockedbelow50Xpowerunlesscondenser steamdumpisblocked). Low."-eedvater PlowReactorTriForeithersteamgenerator, lowfeedwater flow(compared tosteamflow)incoincidence withlowsteamgenerator vaterlevelactuatesareactortrip.'Msprotectsthereactoragainstasuddenlossofheatsink.Thiscondition issensedforeithersteamgenerator ife'itherof:twosteamflow~feedvater flovchannelsindicateadifference greaterthanasetpointandeitheroftvosteamgenerator narrow-range levelchannelsindicateless6thanasetpoint. Expectedsetpoints are0.7x.10lbs/hrand30Xofspanrespectively. LowSteamGenerator WaterLevelTri~epurposeofthistripistoprotectthereactorfroma'1ossofheatsink-<<thecaseofasustained steam/feedwater flowmismatchwhichistooll<<actuatethelowfeedwater flowtrip.~h~s~~-stripisactuatedoncoincidence oftwo-of-three lov-lovlevelsignals~nsteamgenerator. Expectedsetpoint, is15Xofnarrowrangelevelspan-3.1-7 /t6.,.t;>)0C 3>MQSSIVECIRCUITS3.'.3pouslytopermissive circuitsReference hasbeenmaokcertainactivities aswell-~~itsareusetoac'vfties.tofPermissive CircuitsnunbncFunccfnnRodwithdrawal stoponoverpower (Automatic andmanual)~XnucOne~f-fourhighnuclearpower(powerrange)*;one-of-two highnuclearpower(intermediate range*l;one-of-four overtemperature AW;orone-of-four overpower AT*.Automatic rodwith-drawalstopatlowpower.Automatic rodwith-drawalstoponroddropSelection ofsteamdumpcontroller modePermitmanualblockofsourcerangehighnuclearpowertripOne-of-one turbinefirststagesteampressureIOneof-four rapiddecreaseofnuclearpowerorrodbottomindication hTurbinetripsignalOne~f-two highintermediate rangenuclearpowerallowsmanualblock,twomf-two lowintermediate rangenuclearpowerautomatically reinstates trip.~bypassonindividual channels. ."~ye~allyblockedifpeanissive circuitP-10iscleared. ~' ~ssiveCircuits(Cont'd)tofPessluabaapuaaaiaa~Xauapermissive power(blockvarioustripsatlowpower)BlocksingleprimarylooplossofflowtripBlockreactortriponturbinetripThreemf-four lownuclearpowerandonemf-two lowturbineimpulsestagepressureThreeof-four lownuclearpowerThree~f-four lownuclearpowerandcondenser steamdumpavaQ-able(notlockedoutbyhighcondenser pressureorbylossofbothcirculating waterpumps)103.1.>>RODSTOPSPermitmanualblockofintermediate rangepowerleveltripandrodstopandlowpowerrangetripTwo-of-four highnuclearpowerallowsmanualblock,thre~f-fourlownuclearpowerautomatically reinstates thetripsAcompletelistofrodstopsisnotedbelow.RdStopListFuaaataaa)Roddropb)NuclearOverpower Actuation SinalOne~f-four rapidpowerrangenuclearpowerdecreaseoranyrodbottomsignalOneof-four highpowerrangenuclearpowerorRodMotiontobeBlockedAutomatic withdrawal (redundant, contacts) Automatic andmanualwithdrawal one-of-two highintermediate rangenuclearpower3.1-9 t~g 4-top~st(Contd)UjjCj:Xjjn c)iU.gh4TActuation SinalOne-of-four overpower 4Torone-of-four RodMotiontobeBlockedAutomatic andmanualwithdrawal overtemperature 4T(Manualbypassonindi-vidual4Tchannels) (Actuation ofthisrodstopinitiates acontinuous turbineloadreduction untiltheactuation signalis'emoved) .d)Lowpowere)Tavgdeviation One-ofmne lowturbineimpulsestagepressureOne-of-four Tdevia-avgtionfromaverageTavgAutomatic withdrawal HAutomatic withdrawal andinsertion 3.1.5LQXCATION FControlBoardXndicators andRecorder-Alltransmitted analogsignalswhichactuatereactortrips,rodstops,ozpermissive circuitsareeitherindicated orrecordedforevery.channel-Also.variabletripsetpoints (overpower 4Tandovertemperature 4T)areicatedorrecordedforeverychannel.CentralBoardAnnunciator Panel~yofthefollowing conditions actuateanalarm:Reactortrip(firstoutannunciator) b).aztialreactortrip(anychannel)~wioz~i<<deviation ofanycontrolvariable(pressure, T,pressurizer levelavg'linuclearpower,andsteamgenerator level)foranychannel.3.1-10 ~>>~t'lvl%1~yWC~ns'r,zy~\~ ';t"o>.3oard StatusPm&statusofeachreactortrip'c"onthetripstatuspanel'-'. channeliscontinuously displayed Istatusofeachpermissive circuitiscontinuously displayed onthpe~sivestatpanel~~'reactor tripchannel;bypass is.continuously indicated onthehyposstatuspmn-'I17~a3.1-11 sPk .,yll+~~lIE~TgtpI.fluuual2.HighnuclearfluxCplHClUEHCY. ClRCULTRY blHTERIXKKS 1/2,nointerlocks 2/4,nointerlocks forhighsettingP-10forlowsettingl.'ON1kl)1SHighandlowsetttngs; manualblockandautomatic resetoflowsetting3.',llighnuclearflux(inter>>mediaterange)Highnuclearflux(sourcerange)1/2qP-10I2/4;nointerlocks 2/4,nointerlocks 2/4>blockedbyP-72/3>nointerlocks 2/3,blockedbyP-75,Overtemperature LiT6.Overpower hT7.Low'ressure 8.9.HighpressureHighpressurizer waterlevel10a.LowFlop10b.Pumpbreakertrip10c.Undervoltage 10d.Underfrequency SISactuation 12.Turbinetrip13,Lowfeedwater flow14.Low-lowS.G.waterlevel2/3perloop~p7~P>>S1/1perloop]P7)P+S1/2t'1/2~P-71/2+1/2P-71/3,.(lowpressurizer pressureandlowpressurizer level);2/3Lowpressureinanysteamline;or2/3highcontainment pressure2/3autostopoilor2/2stopvalves>P;7]P-91/2+1/2perloop,(flowmismatchincoincidence withlowleyel)2/3$perloop h0Taygn>AYOK4T388ATsetpoint1Comparator C3.C3C42/4ogichotTcComparator RodStop0~POWERATCHANNEL(ONECHANNELOFFOURSROHH)FIGURE3.1-2 l.l CONTROLSYSTEHtamdumPareavailable: condensex'umP andatmosPheric <clevalvearrangement isshownonFigure3-2-1-yqsteamcyC0gDENSER S~QUMPSYSTEMSvseaDesisteamlinesareinstalled todumpsteamfromthesteamgenerators directlycothecondenser, bypassing theturbine.Connections withthesteammainsaxedownstream ofthestea'mmainisolation valves.ralvesandLLnesaresizedtopass35Xofturbineauuctunan calculated steamflowatfullloadsteampressure. Condenser steamdumpperformsthreefunctions: Following asuddenlossofloadofupto210MRe{about45Xof=aximumcalculated turbineload),condenser dumpactsasanartificial loadremovingexcesspowerandstoredenergywhilethereactorpowerisdecreased tomatchthexeducedturbine\Inthismanner,thecondenser steamdumpactstopreventareactortrip.Condenser steamdump,togetherwithfeedwater
- addition, removesstoredenergyintheReactorCoolantSystemfollowing aplanttrip,bringingtheplantroequilibrium noloadcondition without3.2-1 rofthesteamgenerator safetyvalves.Italsomaintains
~tuationo1tathotshutdownbyremovingresidualheat.ggpJ.antatsersteamdumpisusedforplantcooldowntocoldshutdown. condenser ste~~ersteamdumpisusedtoimproveoperational flexibility. Foraplanttripmayoccurfollowing alargeloadreduction if~le,apan~4.usersteamdumpisnotavailable. ~condenser steamdumpsystemusesmodulating, Unear-characteristics, ~~cratedvalves(airtoopen).Theirstroketimeisapproximately 5aecaads.Xnaddition, theycanbetrippedfromthefullyclosedtotatefu11openpositionwithin3secondsafterreceiving aninputeLectrictripsignal.Whilethistripsignalexists,thevalvesarebahf~thefullyopenposition. Whenthetripsignaldoesnotexist,chevalvepositionisdetermined byavariableinputelectrical signal-Forcondenser protection, condenser steamdumpisblockedbyhigh~enserpressure. Otherinterlocks'described below)areused~~esamemannertoavoidspuriousoperation. ~pur'<<ous actuation ofsteamdumpmaycauseaplanttripInaddition, '-theralvesstayopen,anuncontrolled cooldownresults.Forthesethesteamdumpcontrolsystemisrequiredtomeetthecriterion signalfailureshallcausespuriousactuation-3~2~2
ControlSystemalblockdiagramfortheCondenser SteamDumpControl~efunctonSvstemisshownonFigure3.2-2.LoadReectionControl."-orpartiallossofturbineload,steamdumpiscontrolled bytheerrorsignalbetweenTandTf,whereTistheaverageoffouravgref'vgreactorcoolantaverage.temperatures and.T"istheprogz~ed, se~ref,pointforTasafunctionofturbineload.(ThesesignalsaretheavgsameasthoseusedintheReactorControlSystem.)Following aturbineloaddecrease, Tisimm'ediately resettoalowervalue,causinganreferrorsignal.Iftheerrorsignalexceedsthedeadbandfortheload.re)ection controller, thedumpvalvesaremodulated open.IftheerrorsignalexceedstheHIsetpoint, atrip.signalisgenerated whichrapidlyopensfouroftheeightvalvestotheirfully~~en position. At'heoccurrence ofaHZ-HItripsignal,alleightvalvestripopen.Thedistinction betweenmodulating andtrippingvalvesopenismadebecauseofthedifference inrequiredtimeforbothoftheseactions.Ifvalvesarealreadymodulated opencorresponding totheerrorsignal<<thetimeatripopensignalisgenerated, noadditional tripactiontakesplace.Sin~ethesteamdumpsystemrequiresafinitetimeto,act,anincreaseistobeexpected. Lead/lagcompensation forTincreases avgavg3~23 gfTontheerror,therebycompensating forthelegs~gcectoflresponseandvalvepositioning. sreactorpowerbycontrolrodinsertion. reducesreactpointsteamdumpisreduappx'oaches avgvalvesarefullyseatedMenoughtobehandledoontroLsystemalone.~~dcontratrolsystemalsoactingontheT-Tferrox'ignal ~avgrefLnordertopreventactuation ofsteamdumponsmallloadperturbations, ,rablockisprovidedwhichpreventsvalveresponsetoeitherthetrip~modulatesignalunlessaturbineloadreduction hasoccurred. AIlelcaentsofthischannel,including theturbineimpulsechamberpressuretap,areindependent ofthesteamdumpcontrolsystemdescribed above.4rate/lagunitinthischannelgenerates anoutputproportional to~rareofdecreaseinturbineload;Thisoutput,whenindicating aLoadrejection gxeaterthanlOXstepor5X/mLnute ramp,removestheOnceunblocked, thisblockismanuallyxeset.Minual-contxolof~teamdumpalsoremovesthisblock.7uxbincTriControl~~eofthelaxgeheatcapacityoftheReactoxCoolantSystemand~~highTatfullloadthesteamgenerator safetyvalveswouldavg~'~owingaturbinetripiftherewerenoothermeansofremovingedheat.'ondenser steamdumpandsubcooled feedwater flow3.2-4
planttothermalno-loadequilibrium without~~edtobring-leasetoatmosphere. eeaIetrip,monitored bylossofturbineautostopoilteoheloadre]ection steamdumpcontroller isdefeatedandplanttrptripcontroller becomesactive.IntheTcontrolmode,avgrsignalisT-Td'ndsteamdumpisproportional ~errorsgnavgno-Load'he sameerrorsignalisusedforon-offcontrolof~fe~>>tercontrolvalve,asdescribed in3.4,SteamGenerator ~LControl.AsT.isreducedtoitsno>>loadsetpoint, steam'vgreducedandfeedwater isshutoff.Asinthecaseofploadre)ection, iftheerrorsignalexceedstheHXsetpoint, atripasgaaLwgenerated whichtripsopenfouroftheeightvalvestotheiriull~penposition. Attheoccurrence ofaHI-Hltripsignal,all~ghtvalvestripopen.GeneraUy, thevalvesarenotclosedcompletely l~useofdecayheat.No-loadconditions areestablished withinmominutes.pressureControl'or><<gtermremovalofresidualheatathotshutdown, o~duringplantit>rtuporcooldown, theplantoperatorcanmanuallyswitchtosteamderpressurecontrol.Inthiscontrolmode,condenser steamdumpomaintainapresetpressureinthesteamheader.Amanual~tionisprovidedsothattheoperatorcanad)ustthesetpoint~<<ssureormanuallypositionthevalves.3.2-5 ~pbbsj, S>H~ZCS~RELIEFSYSTEHsteamreliefvalvesaremountedonthesteammainsupstreamuoayher'c steamves.Atthesetpre4g~>osteam(about1050psig),flowcalcu'chaveprovisgon feslessthanZ0Providedtoreducedtopermitaplantoolds'cediadumpisnotavailable. Thesefunctions areexplained below.a)Ifaplanttripiscausedbylossofcondenser vacuum,condenser dumpmbIocked.The'steamgenerator safetyvalvesareavailable toremovestoredenergyfromtheReactorCoolantSystem.Atmos-@heroicsteamreliefreducesthesteampressurebelowthesafetyvalvesetpressurewithintwominutesafterthetrip.Thisprevents'ontinuous chattering ofthesafetyvalvesasresidualbeatmremovedfromthereactor.Plantcoo]downisaccomplished bysteamdump.Ifcondens<<dump notavailable, theatmospheric reliefisadequatetocoold~tothetemperature andpressureatwhichtheresidualheatremovalsystemcanbeused.3.2-6
C)Zntheeventofaplanttripcausedbyanoverpower/overtemperature condition orbyafaU.ureinthefeedwater system,theatmospheric steamdumpprovidesadditidhal reliefcapacity, reducingthepro-babDityofsafetyvalveactuation. Separatecontrollers areprovidedfortheatmospheric dumpvalvesonthetwosteamgenerators, permitting independent pressureregu-lationifthesteamgenerators areisolated. 3e2~7 TcoldAVGT~at1V2SwlK3PK2ATsetpoitEComparator 22]4Logic3C4hotcold'/Comparator RodStop0$EBTEMPEBATURE ATCHANNEL(ONECHANNELOFPOURSHOWN)P1GVRE3.1-1 F~.~~'IrlEnMlEHEl/ATOR Nntrr.)VAlVNISAtIMYAllglJIOOla'nON VALVEBYPASS.VALVEHAINFEEDWATEE kLN.IQ'AI.VL IIA)IATIlNliOlla:KTOTURBINECON1'AINMENT AUXILIARY FEEUHATER +PgoIiCONDENSER STEAMDUMPVALVES<<TEAMIEHERATOR BMAINFEEWATERTOCONDENSER AUXILIARY FEEOHATER Figure3.2-1STEAMCYCLEVALVEARRAMEMENT Ii ~en/LAGCOMPENSATION STEAMDUMP)ERPRESSURECONTROLLER rRATE+RESETAUTO"MANSTATIONPROP.ANALOGSWITCHOPERA-TINGONTURBIHETRIPSIGHALSTEAMDUMPSELECTORSWITCHMODULATECOHDEHSER DUMPVALVESLEAD/LAGCOMPENSATION ((<>>s).IJf<Sgl+fg $)LTRZICOmZROLIhR Hi-TURBZHETRIPINTER-LOCKLOGICTURBINE-TRIP SIGNALTRIPOPEHGROUPAVALVESORTRIPOPENGROUPA8cBVAL~STEAMDUMPVALVES.TRIPOPEHONLYIFUHBLOCKSIGNALISPRESENT(SEEBELOW)HjELOSSOFLOADINTERLOCK r:J+A--ROPRIATEPOSITIONOHSKZCTORSWITCHZHTKGDCKFigure3.2-2CONDENSER STEAMEUMPCONTROLSC1HHEUHBLOCKSTEAMDUMPVALVESSIGHALTURBINETRIPSIGNALBYPASSESLOSSOFLOADINTERLOCK AHDUHBLOCKSSTEAMDUMPVALVES 1f'V(Y+gpQ+g+q+gl Yf"Al+J1l 33REACTORCONTROLThebasicReactorControlSystemconsistsofthreechannels, whichareretemperature (T),powez'ismatch (QT-Q)andreactorcoolantavg'x'essure (P)~Theoutput'ofthesethreechannelsisusedtodrivethecontrolrodsviatherodprogram.Aschematic representation ofthecontrolsystemisgiveninFigure3.3>>1.Thefunctions ofeachofthesechannelsareasfoU.ows:a)Tomaintaintheprogrammed Tasaccurately aspossibleavgb)Toberesponsive toloadperturbations withoutcausingunduemovementandreactortripsc)Totakecorrective actioninthecaseoflargeloadchangesifthepressureexceedsthelimitsofthenoxma1pressurecontrol.TheTeratureChannelThetemperature channelfunctions tomaintaintheprogrammed temperature -(T)asaccurately aspossible. Themainrequirements ofthischannelavgarethatitshouldbeaccuxate, stableandrepeatable. Thisisthedominantcontx'olchannelinsteady-state conditions.'he PowerMismatchChannelThepowermismatchchannelsprovidecontrolstability andfastresponset>>oadpertuxbations. Theoutputisproportional tothemismatchbetweenturbinepowerandnucleaxpower.Ahigh-pass filterinthischannelensuresthatsteady-state calibration errorsintheinputpowersignals"asnoeffectonsteady-state control.3.3-1 .atI,'gl~jl ~otherrequirement ofthischannelisthatitssteady-state outputshouldbezeroeventhoughaAxedoffsetinpowersignalsmayexist.ThePressureChannelThischannelisprovidedtopreventlargepressurechangesfoU.owing alargechangeinpower.Itretardstherateatwhichthecontroller changesTtoitsnewprogrammed setpoint.(IfTweretobechangedavgavgtoorapidly,pressurizer pressurecontxolmightnotbeabletomaintainpressurewithinthenormaloperating range.)Thepressurecontrolchannelhasanadjustable
- deadband, sothatonlylargepressurechangeshaveaneffectonrodmotion.Thischannelisnotrequiredforinitialplant.operation.
TheRodSeedProamTherodspeedprogramismadeupoffourparts:ariadjustable
- deadband, aminimumspeed,aproportional speed,andamaxLmumspeed.TheauucLannn speedisdictatedbythemechanism design.A11theothersettingsaread)ustable.
Expectedsetpointsare+1.5Fforthedeadband, and+5Fforamximumrodspeeddemand.Theoutputsfromthethreechanne1smentioned abovefeedintothesummingamplifier associated withtherodprogram.3a3~2 Ijgg~gi4t'~s~A)tl(~
- cce="aincases,however,thesegeneralprotection functions arenotrapidenough,orcompleteenough,toassureprotection againstaspecificaccident, suchaslossofcoo~~ntflow.Inthesecases,specifictripfunctions areorovidec, suchasreactorcoolantpumpbusundervoltage andreactorcoolant~orce""ainmorecre"'bletransients, suchasturbinetrip,areactortrip4-sderivedfromthe.nitiating event-eventhoughsafetylimf.tswouldnotoeexceededifareac"
- =tripweredelayeduntilanoverpressure orover-tempera=ure rri"oc""red.1nthismanner,undesirable excursions arepreven=ed, rathet"..scterminated.
- i.
- function, simultaneously causingspuriouscontrolactionthatmight,requireprotective actionfromthatsamefunctiontopreventtheexcursion fromexceeding designlimits.Suchpossiblefailureisdealtwithinaccordance withtheproposedstandard, "Criteria
- channels, istheattendant increaseinvisualdisplaysandinformation processing problemsofsignificant oroportions.
- channels, eachcontaining aTavganda4Tsignal,areusedforovertemperature-overpower protection.
- ailurecouldfilloremptythepressurizer atasLowrate(ontheorderOEfhalfanhourormore).Irggh18V81~reactortriponpressurizer highlevelisprovidedtopreventrapid4thermaLexpansions ofreactorcoolantfluidfromfiLLingthepressurizer; therapidchangefromhighratesofsteamrelieftowaterreliefcanbedamagingtothesafetyvalvesandthereLiefpipingandpressurerelieftank.However,aLevelcontrolfailurecannotactuatethesafetyvalvesbecausethehighpressurereactortripissetbelo~thesafetyvaLvesetpressure.
- pressure, andpressuri.e'er waterleveltriptheplantbeforethereisanydamagetothecoreorReactorCoolantSystem.However,residuaLheataftertripcausesthermalexpansion anddischarge ofthexeactorcoolanttocontainment throughthepressurizer reliefvalves.Thiswouldbxeachoneofthebarriers-.theReactorCooLantSystemtoreleaseoffissionproducts.
- pressure, andpressurizer Level,aswellasrodstopsandalarmsonhighfluxandhigh4T.Also,thesteamsafety.alveswouldbeactuated.
- accident, causefailureifanyothersteamorfeedwater line,resultinthecontainment pressureexceeding thedesignvalueorimpairitsimpermeability andintegrity.
- Pasadena, California.
- Analysis, madeonthebasisoftheGinnaNuclearPlantofRochester GasaElectricCo.(RGB),indicatethatinthemajorityofrodejectioncasesnoprotection isrequired(forexample,ejectionofazodfromitsnormally-expectedposition).
- pressure, generally setto2400psia,orslightlyabovethepressurizer poweroperatedreliefvalvesettingandbelowthepressurizer safetyvalveopeningpressure.
5.4CONCLUSION
S Thisaccidentisnotconsidered 1Qcelysinceinmostoftheincidents whichcouldcauseit,oneormoresimultaneous failuresofcontrolorprotection instrumentation mustalsooccur.Inaddition, atanytime.otherthanearlyin.coreLife,thelargenegativemoderator coefficient wouldcausetheaccidenttobeselflimitingandgivemuchbetterresultsthandepictedinthisanalysis. However,iftheaccidentweretooccur,diversity doesexistinthatthreedifferent levelsofprotection areavail,able. 5.5-9 ,Ih SJSNfs<<ls<<s<<<<<<<<<<<<u~<<"<<<<<<<<.<<<<<<NSJSSR<<j~R<<g@N<<'JJ@ "g<<<<j,,<<,lt,fIQJRS5.52OjRTsORSD<<sNORODJIFIONCFORNMANUALCONIIJOL<<<<4fTKAMLIbEISOIATION, NOTURRINECOÃIROLVALVESCLO.E,NOTURSINESTOPvvx.v""AIRSUPPLIAUTO.S,D,AUTO.S.D,LOADLIMITACIUALORSIUFIQJSLOSSOjEJECT~LOADSCOPVALVER<<T<<TURBINECONIROLIA3 .SREXCESSIVE RUNS'XIJJSSOFIIQiCENCV FIUIDNJRIQJFICOIATIONfIGNAI'<<ITNQJTREAClORTRIPIMISOPERCRTANDhlJTOGIOP R.T<<CONDITIOJI FAIJJJRIREACIORI%REC-TIONSISIIJ'.IAJGICFAULTsSBJRIQJSF<<ODDROPEIGJIALREALORSIURIQJGOVIRPOLJEROROVERORLOSSDPAUIOSIOPPIJJIDNUCL<<INST<<SISTIIlRODPOSITIONINDICATION iFAIIJJREANTSJRBINETRIPSIGNALR.T.RKACIORTRIPK.C,-ST&QJJJP,S)1,SAINTINJECFICN I~SCFEJAnfSlsaaIIosIsolalloa ~ISJ<<alIsalso~@castortcIPsISJnal.Theccfcea> ooIFloStoclccollfallllsshool4Lccoas14ctc4 ~NIGHTAVNIGHATFIGURE5.5-1FAULTTREEIORINN0jllRDACCII<<ENI ,5'~a~'11 FAULTTREEFORCOREDAMAGELOSSOFSTEAMLOADCONDITION ProbableGrossCoreDamageANDHighPressurize LevelR.T.CoreDesignLimitsExceededR.T.-REACTORTRIPS.D.-STEAMDUMPS.I.-SAFETYINJECTION Overtemperature ATR.T.iHighPrdssureRiTLossofLoad,NoSeD~orPOUerDecreaseEarlyinCoreLifeLossofLoad,NoDirectR.T.orS.D.,NoRodInsertion (SeeFigure5.5-1)FIGURE5.5-2 120010008006002600250024002300zzoo6zo600580560181.61.451.21.0.80LOSSOPLOADACCIDENT~~Il-~1-STEAMSYSTEMPRESSURE'-)~.':~te~~~II~I~~~~I~/~l".~I."REACTORCOOLANTSYSTEMPRESSUREI:-:~It~~I~~~~~~i~'OTRIP."'HIGHPRESSURE"REACTORTRIPJ'.'l"IGH LEVELREACTORTRIP~).'Il.'.!.(IIt'~Il'-i=(REACTORCOOLANTTVGI'~~).-.NO~~I~'t.TRIP(HIGHLEVEL-'EACTORTRIPf..~~~~~I~)~.HIGHPRESSURE. -'REACTORTRIP~~IHIGHPRESSURE".:-.EEACTORTRIP~I~~~gI.L.-~~II'VERHK'ERATURE .ATREACTORTRIPi'IGHLEVEL'EA,CTORTRIP-'~~~L.'UNBRATIO.NOL~4~~)2030405010SECONDSFIGURE5.5-3 0I, 5,6RODWITHDRAWAB DURINGSTARTUPNormalstartupprocedure isbycontrolrodwithdrawal undermanualcontrol.~function oftherodcontxolsystemoroperatorerrorcancauseareactivity excuxsion witharesultant rapidincreaseinpower.Rodwithdrawal accidents iathepowerrangeareevaluated inSection5.1.Fortheseaccidents, thepowerincreaseisapproximately linearforalinearincreaseinreactivity. Foraccidents startingfromvery,lowpower(staxtupx'ange),theneutronfluxmayincreasebymanydecadesbeforethereissignificant Dopplerfeedback.. Thenuclearpowerresponsetoacontinuous reactivity insertion fromthestartuprangeischaracterised byaveryfastriseterminated bythereac-tivityfeedbackeffectofthenegativefueltemperature coefficient (Dopplereffect).Thisselflimitiageffectisofprimeimportance duringastartupIaccidentsinceit.limitsthepowertoatolerable levelpriortoexternalprotective action.Aftertheinitialpowerburst,thenuclearpowerismomentarily xeducedaadtheniftheaccidentisnotterminated, thenucl'earpowerincreases againbutatamuchslowerrate.Protection againststartupaccidents isprovidedbydiversetypesofneutron-monitoring instrumentatioa: sourcerange,intermediate range,andpowerrangechannels. Ma)ordifferences intheionchamberandcixcuitdesignexistbetweentheintermediate andpowerrangechannels. Thesourcexaageusesaneutronsensorofadifferent principle: proportional counterratherthanionization chamber.5-6-L ~'44Shouldcontinuous controlrodwithdrawal beinitiated andassumingthesourceandintermediate rangealarmsandindications areignored,thetransient willbeterminated byanyofthefollowing automatic protective actions.a)Sourcerangefluxleveltrip-actuatedwheneitheroftwoindependent. sourcerangechannelsindicates afluxlevelaboveapreselected, ~g~<<manuallyad]ustable value..Thistripfunctionmaybemanuallybypassedwheneitherintermediate rangefluxchannelindicates afluxlevelabovethesourcerangecutoffpowerlevel.Itisautomatically rein-statedwhenbothintermediate rangechannelsindicateafluxlevelbelo~thesourcerangecutoffpowerlevel.~<<b)Intermediate rangerodstop-actuatedwheneitheroftwoindependent <<intermediate rangechannelsindicates afluxlevelaboveapreselected, manuallyad)ustable value.Thisrodstopmaybemanuallybypassedwhentwooutofthefourpowerrangechannelsindicateapowerlevelaboveapproximately tenpercentpower.Itisautomatically reinstated whenthreeofthefourpowerrangechannelsarebelowthisvalue.c)Intermediate rangefluxleveltrip-actuatedwheneitheroftwoindependent intermediate rangechannelsindicates afluxlevelaboveapreselected, manuallyad]ustable value.Thistripfunctionismanuallybypassedwhentwoofthefourpowerrangechannelsarereadingaboveapproximately tenpercentpowerandisautomatically reinstated whenthreeofthefourchannelsindicateapowerlevelbelowthisvalue.d)Powerrangefluxleveltrip(lowsetting)-actuatedwhentwooutofthefourpowerrangechannelsindicateapowerlevelaboveapproxima ytel25percent.Thistripfunctionmaybemanuallybypassedwhentwoofthe5.6>>2 II'0 fourpowerrangechannelsindicateapowerlevelaboveapproximately tenpercentpowerandisautomatically xeinstated whenthreeofthefourchannelsindicateapowerlevelbelowthisvalue.e)Powerrangefluxleveltrip(highsetting)-actuatedwhentwooutofthefourpowerrangechannelsindicatea'powerlevelaboveapresetsetpoint. Thistripfunctionisalwaysactive.Sinceallprotective actionsintheabovelistarebasedonlevelsetpoints,Iratherthanratesetpoints,protection isnotdependent uponhavingarapidrateofpowerincrease. ThestandardstartupaccidentanalysisreportedinSafetyAnalysisReportstakescreditfoxonlythepowerrangeprotection. Howevex,theintermediate rangehfghfluxreactortripisalwaysinservicebelowlOXpower,andwouldalsoservetoterminate theaccident. Further,. anyaccidentstartingfromasubcritical condition wouldbeterminated bythehighsourcerange'Ixeactortrip.Therefore, Protection Systemdeversity existsforstartupaccidents. Figures5.6-1and5.6-2showthecalculated transient responseofnuclearfluxandfueltemperatuxes forastartupaccidentwithahighrateofxeactivity insextion.5.6-3 0 ~I1010'~III~~Uncontrolled RodQithdrawal PromaSubcritical Condition PractionofNuclearPowera~+1x106k/FW5oa<lxlp6k/PfReactivity Insertion Rate~8x106k/seck~1.00-1~t~I108W0gM10plillikoCoOe10g~~~I~~I~1080Wooo10-35oCl~u101001020251030Time,SecondsFlGVRE5.6-1 4~<<((I-"~(4<<<<.(.<<<<4V,~~I(areJ>~w<<(i'(<<<<M>>1000900PuelCladUncontrolled RodMithdraMal PromaSubcritical Condition Temperature 4ag<<+1x1056k/'Po=-1x106k/'PReactivitg Insertion Ratef<<8x10Lk/seck<<l.07065800700CoreMater14o(4l0ce'0oj605560050500456101.L18222630'Time,SecondsFIGURE5.6-2 57CONTROLRODDROPDe-energixing adrivemechanism causesafull>>length controlrodtofallintothecore.(Part-length rodsfail"as-is"whende-energized.) Thiscausesanimmediate decreaseincoxepower,mostnoticeable intheregionofthedroppedrod.Xftheaveragecozepowerisreturnedtoitsoriginalvalve,mostofthecorewouldbeatahigherpowerdensitybecauseofthelocaldepxession intheregionofthedroppedrod.Duringtheinitialdesignfoxthecurrentgeneration ofWestinghouse PWR's,theincreaseinhotchannelfactorsforadroppedzodwasnotknown.Ztwastherefore assumedthatDNBmightxesultifthecorewereallowedtoreturntofullpowerfollowing azoddrop.Protective circuitsweredesign-edaccordingly andclassified aspartoftheProtection System.Thedesignrequirement forthisprotective functionwastoinsurethat,follmrtng adynamicroddrop,thexeactorwouldnotzeturntoapowerleve3highenoughItocauseaDNBratiolessthan1.30.,Mechanisms whichwouldtendtorestorerinitialcorepowerare.noxmal automatic controlandplantcooldownwithanegativemoderator coefficient. However,recentphysicsanalysisformalpositioned controlrodshasshownthat,ineverycaseforaninseztedrod,fullpoweroperation wouldnotcauseaDNBratiolessthan1.30.Becausethelocalpowerdecreasecausesageneralpowerincreasethroughout therestofthecore,theincreaseinhotchannelfactorsisUstedtoapproximately 15'xless,depending oncoresize.Withx'especttoDNB,thisisequivalent to15Xoverpower. CoreDNB'esign 5.7-1 ~~~Emarginsofthismagnitude mustexistatfullpowertoallowforoperational transients andinstrumentation errors.Inadditon,forplantspresently nearcompletion, ithasbeenfoundthatinsertedrodhotchannel.factorsdonotevenexceedthedesignhotchannelfactors.Sincetheconsequences ofadynamicroddroparetolerable, thefollowing ffdiscussion ofroddropprotection issomewhatacademic. Roddropprotection diversity hasbeenprovided, bothinthemeansofdetection andinthemeansofactuating protection. Redundancy. wasmorereadilyobtainedbydiverseinstrumentation thanbyindependent, butidentical, channels. Aroddropsignalisgenerated byeitherofthefollowing: a)A=rapiddecreaseinindicated nuclearfluxfromanyoneofthefourpowerrangenuclearinstrument channelsb)Rodbottomindication fromanyoneoftherodpositionindicators whentheassociated rodbankisnotonthebottom.One-out-of-four logicforthenuclearchannelsisused'because itwasnotknownwhethermorethanonechannelwouldrespondtothedroppedrod.Therefore, redundancy isnotclaimed.Protective actionisdirectedtowardinhibiting thosemechanisms whichwouldotherwise causethereactortoreturntoitsinitialpowerlevel,i..e.,automatic rodwithdrawal andloaddemandwithanegativemoderator temperature coefficient. Again,sincethemagnitude ofthehotchannelfactorincreasewasnotknown,itwasassumedthatbothmechanisms wouldhavetobeinhibited. 5.7-2 Redundant rodstopcontactsareprovidedtoblocknormalautomatic controlrodwithdrawal. Manualrodwithdrawal isnotblockedsinceitisnecessary towithdrawthedroppedrod.Turbineloadreduction isaccomplished throughredundant channels. Mostplantsaresuppliedwithelectro-hydrauLLc (E-H)controlsystemsfortheturbine.Theturbinerunbackisactivated bythefollowing~ eitherofwhichreducesorrestricts turbinecontrolvalvepositionandsteamload.a)Reduction oftheloadrefezence setpointoftheturbine,E-H., controller byapresetamount.Thisisaccomplished byzeducingthesetpointatconstantrate(200X/min.) forapresettimewitha.timedelayrelay.b)Reduction oftheturbineload.limittoapresetvalue.Theloadlimit(aclamponthevoltagesignalcontrolling theturbinecontrolvalveposition) isreduceduntilturbinethermalloadasI)sensedbyeitheroftwoturbineimpulsepressure'channels isbelowapresetvalue.Following plantstartupteststoverifythattheDNBratioisgreaterthan1.30atfullpowerwithadroppedrod,itisintendedtoadjusttheturbinerunbackforoperational requirements. Thatis,theautomatic loadreduction wouldbelargeenoughsuchthat,withreasonable operatoraction,anorderlymanualplantshutdowncanbeaccomplished, ratherthanareactortriponlowpressurizer pressure. Fi.gures5.7-1and5.7-2showthetransient responseofnuclearplantvariables toaroddropwithturbinerunback.5.7-3
lllr1.U.9.8.7~t~~-I.I~~I.',.f=~CI~:I~-I.~~~t4~~~~~~:H'ResponsetoaDroppedRCCAof.North-2.3x,106kWithaPowerCutbackof25PercentofNominal~-3.5x10bk/7'-'~>>1.65x106k/Z'.~~II~~i:I~..l.,~~~~~t~t1.000CKheQE8.9.8'~~7~t>~tl~tttI~~~I'~':I-"'I~l~'t{~~~I~~ttI~I~~II24002300~pk~~~~~~~~~It~~-I~tt~~~'{::.-~II~~I~It~~~t22002100~~~"-I~I4080120160200 04~ ~'III~~I~~0~~~~~~~~~~~0t~0'I.tt0~~~II0~I0~~--}t~*L0~>>0t'If0580578576IL00~IQ0Q~~~I0~r~0~~0<<I~000~0~I~~It~LL~00L0000~>>~>I~I0~~0I~~~lI~~-I'='~I~0:..00J~565IQ0~0I~ResponsetoaDroppedRCCAofWoph-203x106kwithaPowerCutbackof25PercentofNominal~~5604~~,004a0~t0't~'fQMC4o555550U~M~IJ0=I~I~~~I~~~~~~OH1.0~~0~~M00g,9~>>~~0I~~0,8L~~00'~0~~~~~~I~~.74080120160200TDK,SECONDS
5~8ENGINEERED SAFEGUARDS ACTUATION Actuation ofauxiliary feedwater isdiscussed inSection5.2.Engineered safeguards forcontainment pressureprotection arediscussed inSection5.9.Actuation ofEmergency CoreCoolingforlossofcoolantprotection isdiscussed inthissection.Forlossofcoolantprotection, asafetyin]ection signalisgenerated byeitheroftwodiversesetsofautomatic signals:a)Coincident lowpzessureandwaterleve1inthepressurizer; b)Highcontainment pzessure. Bothsetsofsignalsareredundant andmeetallprotection Systemdesigncriteria. Thesignalsderivedfromthepressurixer indicatethatreactorcoolantisbeinglostwellbeforethecoreisuncovered. Reactorcoolantblowdownalsoincreases containment pressure. Setpoints'for highcan-tainmentpressurearetypically about10Xofcontaiaamt designpressure. Thissetpointisreachedwellbeforethecoreuncovers. Figure5.8-1showstheresultsofacalculation forarepresentative plantforthecompleterangeofbreaksixes.Ztshowsthateitherthepressurixer orthecontainment signalinitiatesafetyin)ection l-l/2minutesormorebeforethecorewouldbeotherwise uncovered. (Forlargebreaks>passiveaccumulator systemsupplieswateranddelaysthetime.atwhichactivecorecoolingisrequired.) Thisanalysisincludedtheeffectsofcontainment heatsinksandfancoolersindelayingthetimeatwhichthecontainment highpressuresignalisreached.5.8>>1 SAFETYINJECTION ACTUATION SIG:NLVSBREAKAREA10004o~I+I'~'T~~~iI}.o~l<<~,~~IIIIl~~I~~<<~~}lero,one*oIrI~~~~~<<~t~~>>v~ttt~I~"ttrltt<<~~~I}'-:RangeofProtection ofI:.:PassiveAccumulator System-(;I~IaeI4V100~~ooo1}:<<II~I~~IPtl~~I'~I'<<~~>>:ii}'."~IIt~~I~II~~~}I~~~~~I~~~v0~~r,~!Ia.~o~~~tt~\~v}'"--ttI~~~~\~~t<<to~o~to~~~I'I~~o~~~~~<<~~~~I<<.)~oIIOIhC10o~~t~<<'oo~I~~I~Itz~~<<'I''I~'I.....~TimetoReachLouPres-I:-surizerPressureandLevelSignal7>>~~~~\~~~~~~>>~~~~I~I~~~~<<o~<<e~o<<vpttI:TI~I~~*~I~I~I~~~~I~~I"I~}~~~~~~~i-.',I~PI~'~I"I<<I~II~)}=.1-I:ilneceUncavelCaseNddPlaneLNeSadecvlneccdcn)j~o~~~\f<<~~~~~I~~ItI~lel~~~'I~~jjjr"~~iTimetoReachPighContainment PressureSignal'<<ll~~~vI<<j~0.01'iil\~40.1~6"10"DAUEa:.BREAKSIZE(Fi)FIGUPE5.8-1 ~V 59CONTAINMENT PRESSUREPROTECTION Typicalwestinghouse dryconcaiament plantsareequippedwithfaacoolerunicsaadspraysystems.Theseareprovidedtoreducethecontaiamenc pressureeotoesseatially atmospheric following alossofcoolantaccidentorasteamlinebreakaccidentinsidethecontainmeac. Thecontainment isdesignedtowithstand theeoealblowdownoftheReactorCoolantSyscemorasteamgenerator wiehnodependence oneheaceivesafe-guards.Theactivesafeguards are,however,aueomatically actuatedfollowing cheaccident. Thepr9narycontainment safeguards arethefancoolerunitsandtheircoolingwatersupplywhichazeactuatedbythesafetyinjection signalwhichisgenerated by:a)Coincident lowpressurizer pzessureandwaeerlevelinthepressurizer b)Ri.ghcontainment pressure(approximately lOXofdesignpressure). Thebackupcontaiameac safeguard, ch'econeaiamene Spray9ystem,isaccuaeedbyahighcontainmenc pzessuresignalwhentheconcainmenc pressurereachesappxoximacely 50Xofchedesignvalue.Automatic sprayactuation usessixconcainmenc pressuzechannels, in2/32/3logic.TheSpxaySystemcanalsobeactuatedmanually. Only2oucof4fancooliagunitsfortwoorthreeloopplantsand3oucofScoolingunitsforfourloopplaacsarenecessary eolimitthecontainmene pressuxebelowdesignevenconsidering ehactheEmergency CoreCoolingSyseemis.unablecosuppxessboilinginehecore,andehecoredecayheacenergycontinues cobeaddedtoehecontainmenc intheformofsteam.5.9-1
Theoperation ofonlyoneofthespraypumpsisrequiredinorderfortheSpraySystemtosupplement theheatremovalcapabiU.ty ofthefancoolingunitstoprovideamarginforeffectsfrommetalmater orotherchemicalreactions thatcouldoccurasaconsequence offailureofEmergency CoreCoolingSystems.Sinceeitherfansorspraysareadequate, anddiversesignalsareusedtoactuatethefans,.the Protection Systemisdiverseforactuation ofcon-tainmentpressureprotection. 5.9-2 5.3.0EXCESSIVE LOAD~rgb~a+&vf"f'>Excessive loadisonemeanswhichcouldcauseexcessive corepowergeneration. Asdistinctfromtheovezpower~vertemperature accidentdiscussed inSection5.3.(RodWithdrawal atPower),reactorcoolanttemperature,
- pressuze, andpressurizer waterlevelwouldnotincrease.
Reactorpowerfollowsturbineload,bothbycontxoldesignintentandtheinherently negativemoderator coefficient. Anincreaseinloadabovedesignistherefoxe ofpotential concern.Diverseoverpower protection isprovidedbyReactorProtection System.,Theseazetheovezpower delta-Tandthenuclearoverpower reactortxips-Sincetheaccidentisinitiated fromthesecondary plant,thereactorIcoolantlooptemperatures respondbeforethecorecoolanttemperature. !IPipinglagsapplicable totherodwithdrawal accidentaretherefore notapplicable toanexcessive loadaccident, andeitherthedelta-Tor-thenuclearoverpower tripprotectsthecoreforanyrateormagnitude loadincrease. 5.10-1 pP 'C5.11EXCESSXVE FEEDWATER FLOWAnexcessive feedwater flowaccidentisprimarily ofconcerntotheturbine(highwaterlevelXnthesteamgenerator leadstoexcessive moisturecarryover andpotentia1 turbinedamage).'ith respecttonuclearprotection, however,excessive feedwater flow(orfeedwater temperature decrease) isseenasanexcessive thermalload,andthediscussion inSection5.10isapplicable.
512STATIONBLACKOUTAstationblackout, orlossofaU.a-cpowertothestationauxiliaries, resultsfromlossofincomingstationa~powercoincident withaplanttrip.Numerousreactortripsignalswouldbegenerated, suchasturbinetrip,lowcoolantflow,lowgpedwater flow,etc.Thisisnotimportant however,sincethelossofa-cpowerdeenezgizes thezodcontrolpower'upply,andthecontrolrodsfallintothecore,evenifnoreactortripsignalisgenerated. Naturalcirculation ofreactorcoolanttransfers reactordecayheatfromthecozetothesteamgenerators. Sincesteamgenerator steampressureisautomatically controlled bythepower-operated steamlinereliefvalves(withbackupfromthesteamlinesafetyvalves,ifnecessazy), theonlyrequirement formaintaining hotshutdownconditions istoApplyfeedwater tothesteamgeneratozs. TheauxiLiary feedwater systemisdiscussed inSection5.2,LossofFeedwater. Asnotedinthatsection,thelossofa~powerstartsalla~iazypumps-Adiverseautomatic actuation signal-steamgenerator lowwaterlevel-isalsoprovided. Further,theenergysourcesfortheauxiliary feedwater pumpsare.themselves diverse(steam-driven pumpsandmotor-driven pumpsenergized fromthediesel-generator), suchthatfaQ.uzetoactuateanenergysourcedoesnotpreventauxiliary feedwater. 5.12-1
APPENDIXCONTROLANDPROTECTION FUNCTIONS reactorcon'tro1andprotection functions performedfromeachprocess~eterinthepresentWestinghouse designareMmlatedbelow.Pro-e~tionfunctions arelistedfirst,andcontrolfunctions listedlast.u~nyfunctions '.g-,indication, alarmsandinterlocks, arenotclearlyeithercontrolorprotection. ~Theseareclassified as"supervisory" unctalons~Intheleftmargin,allfunctions arelistedasP,SorC,showingpro-tection,supervisory orcontrol;- i%JCLEARINSTRUMENTATION 1,.3.PowerRange1.2Intermediate Range1.3SourceRange'W~REACTORCOOLANTSYSTEMPARAMETERS Z.lReactorCoolanr,Temperature (4T,T)avg2-2Pressurizer Pressure2.3Pressurizer WaterLevel2.4ReactorCoolantFlow3~STEAMGENERATOR PARA%.'TERS 3.lSteamGenerator WaterLevel3.2Feedwater Flow3.3SteamPlow34SteamLinePressure3SSteamHeaderPressure VPARAMETERS TurbineFirstStageSteamPressureOomTurbineAutoStopOilPressureTurbineStopValvePosition~ASTROLRODPOSITION5.1BankPosition).ZIndividual RodPosition~.CONTAINMENT PRESSUREgZCZRICAL PARAMZERS 7'.1ReactorCoolantPumpBus7.2ReactorCoolantPumpBreakerPosition7.3FedwaterPumpPowerA-2
gJCLEARZNSTRUMENTATION SYSTBtpowerRange-(linearindication inpowerrangeofoperation). P1.Overpower reactortrip(highrange)-rapiddetection offastoverpower excursions duringpoweroperation. P2.Overpower reactortrip(lowrange)-protection duringlowpowerplantoperation. p3.Top-to-bottom fluxtiltbiasof4Treactortripsetpoints-reduceDNBprotection limitstooffseteffectsofhotchannelfactors.(BothhighdTreactortrips),see2.1,1&3P4.Reactortrippermissives a.Permitsinglelooplossofflowtripathighpower.b.Permitreactortriponturbinetripathighpower.c.Permit"at-power" tripsduringpoweroperation. d.Defeat,manualblockoflowrangeand&termediate rangeoverpower tripsatlowpower.e.Lockoutsourcerangehighvoltagesupplyduringpoweroperation. S5.Roddropdetection -rodstopandturbinerunbacktomaintainDNBmargins.6-Overpower rodstop.-stopapowerexcursion causedbyrodwithdrawal. 7.Overpower alarm(forequipment
- purposes, thisfunctioniscombinedwiththeoverpower rodstop).8.Controlroomindication andrecording (including top-tobottomdifference).
Channeldeviation alarm-detectchannelfailure,detectfluxtilts.10.Top-to<<bottom fluxtiltbiasofdTrodstopandturbinerunbacksetpoints(see2-1,264).A3
Automatic controlrodmotion-providestablereactorcontrolandrapidresponse. gntermediate Rane-(Logarithmic scaleforpowerrangeandupperstartuprange)p'.Highlevelreactortrip-preventpowerincreaseintopowerrangeunlesspowerrangechannelsareindicating. p2.Defeatmanualblockofsourcerangehighleveltrip-lowintermediate rangeindication rearmssourcerangetrip.S3.Highleve1rodstop-preventsexcessive withdrawal ofcontrolrodsduringlowpoweroperation. S4.Controlroomindicating andrecording. S5.Startuprateindication. P.l.HighleveLreactortrip-preventstartupaccidentfromsourcerange;preventpowerincreaseintointermediate rangeunlessintermediate rangechannelsareindicating. S2.Highcountratealarms-warnofapproachtocripicality. S'.Controlroomindication andaudiblecount.range.S4..Startup rateindication. A-4 ~Nc.sgP't"K5 <<<CTORCOOLANTSYSTEMPARAMETER orCoolantTemeraeure(4T-T)avgOvereemperature high4Treactortrip-preventcoreDNB(setpointcalculated fromT,pressure, andnuclearavg'luxaxialtilt).2.Overtemperacure high4Trodstopandturbinecueback-maintainoperating margineoDNB(setpointisafixedmarginbelowreactortripsetpoint).3.Overpower high4Treactorezip>>preventhighpowerdensity(seepointcalculaeed fromnuclearfluxtile)i4.Overpower high4Trodscopandturbinerunback-maintainoperating powerdensity(seepointisafixedmarginbelowreactortripsetpoint).S5.Channeldeviation alarms-deeectchannelfailures, detectabnormalprocesscandieions. S6.Controlroomindication andrecording. S7.Controlrodinsertion limitalarm-maintainreactiviey shutdownmargin;maintainlowejectedrodworth;maintain,uniformcoreburnup.fr.8.LowTalarm(interlocked withhighscesmflowforsteamavglineisolation) -steambreakprotection. Inadditiontotheabovefunctions for4TandT,Tisalsoavg'vgused09.HighTalarm.avg10.Tchanneldeviation rodscop(ofautomatic motion)-avgpreventspuriousrodwithdrawal orinsertion. 11.Tdeviation alarm-deviacion framprogrammed setpoinc. avg
Automatic controlrodmotion-controlcorepowex'omain>>tainprogrammed tempex'ature. 13~Steamdumpcontrol(condenser steamdump)-removeexcessenergyfromreactorcoolant.14.Feedwater valvecontrol-controladditiontosubcooled watertosteamgenerators following aplanttrip.15.Pressurizer levelprogramming -determine levelsetpointtominimizechargingandletdownchangesduringloadchanges.2.2Pressurizer Pressurep1.Highpressurereactortrip-maintainpressureinATprotection range;provideoverpressure backuptosafetyvalves.P2.Lowpressurereactortrip-maintainpressurein4Tprotection range.P3.Lowpressuresafeguax'ds actuation -actuatelossofcoolantprotection. P4.Highpressuxedefeatofsafeguards actuation manualblock-I.automatically renavemanualblockasoperating pressureisapproached. P5-Compensate overtemperature ATreactortripsetpoint-coreDNBpzotection. 6.Compensate qvertemperature Trodstopand.turbinerunbacksetpoint-maintainoperating margintoDNB.Controlroomindication andrecording. 8High-lowpressurealarms.Lowpressurereliefvalveinterlock -closereliefvalveson10.lowpressuretoavoidaccidental lossofcoolant./Pxessurecontrol(on-offheaters,vaziableheatexs,spray,andx'eliefvalveactuation) -maintainnormaloperating pressure. A-6 F 11.Compensation signalforautomatic controlrodmotion-improvereactorcontrolresponse. 2.3Pressurizer WaterLevel-(Thisvariablemeasuresreactorcoolantfluidinventory andmeantemperature). P1.Highlevelreactortrip-preventwaterdischarge (anreliefpipingdamage)throughsafetyvalvesfollowing rapidinsurge.P2.Lowlevelsafegnards actuation -indication oflossofreactorcoolant.S3.Controlroomindication andrecording. S4.High-lowlevelalarms.S5.Lowlevelheatercutoff-preventenergizing heaterswhenuncovered (equipment protection). S6.Lowlevelletdownisolation -preventlossofcoolantbyexcessive letdown.C8.High-lowleveldeviation alarm-deviation fromlevelset-point.Chargingpumpspeedcontrol-maintainprogranmN.d waterlevel.C9.Highleveldeviation heatera'ctuation -heatsubcooled waterinsurge.2.4ReactorCoolantFP1.Lowflowreactortrip-preventcoreDNB.S2.Controlroomindication-A-7 P 3ST~GENERATOR PRtAK'.TERS SteamGenerator WaterLevel-(Thisvariableisameasureofwaterinventory insteamgenerators). pl.Low-lowwaterlevelreactortripandauxiliary feedwater pumpstart-protectsteamgenerators; preservenormalheatsinkforremovalofearlydecayheat.p2.Lowlevelreactortrip(coincident withlowfeedwater flow)-providerapidprotection againstacompletelossoffeedwaterflow.S3.Highlevelfeedwater controlvalveoverride-closefeed-watervalvetopreventexcessive moisturecarryover andturbinedamage.S4.High-lowlevel.alarms.S5.Controlroomindication andrecording. S6.Leveldeviation alarm-deviation fromprogrammed level.C7.Feedwater valvecontrol-maintaindesiredsteamgenerator level.l3.2Feedwater FlowP1.Lowfeedwater flowreactortrip(coincident withlowsteamgenerator waterlevel)-providerapidprotection againstcompletelossoffeedwater flow.S2.Controlroomindication andrecording. C3.Feedwater valvecontrol>>providestablecontrolofsteamgenerator level.3.3~Se~F1owP.1.Setpointforlowfeedwater flowreactortrip(see3.2.1above).P2.Highsteamflowsteamlineisolation -steambreakprotection. 'tV4 S3~C4Controlroomindication andrecording. Feedwater valvecontrol-providerapidres'ponse gfcgntzotforsteamgenerator level.3.4SteamLinePressure>~,W/!-P1.Lowpressure(ortuicdifferential pressure) safe~dactuation -steambreakprotection P,C2.Compensation ofsteamflowchannels-provideaccuratesignalofsteamflow.S3~S4.C.5.Lowsteampressurealarm.Controlroomindication andrecording. Controlofsteamlinereliefvalves-minimizeactuation gfsafetyvalves.3.5SteamHeaderPressureC1.Contzolsteamdumptocondenser. S2.Controlzoomindication ,F TUgBXNEPARAMETERS TurbineFirstStaeSteamPressure-(Thisvariableisproportional toturbinesteamload).pl.Reactortrippermissives -pexmits"at-power" reactortripsaboveminimumturbineload.p2.Steamlineisolation -determines setpointforhighsteamflowforsteambreakprotection. S3.Controlroomindication. S4.Lowpowerblockofautomatic controlrodwithdrawal-preventsunstablereactorcontrol.S5.Steamdumpinterlock -preventsoperation ofsteamdumptocondenser unlessarapidlossofloadhasoccurred. C6.Tprogram-determines setpointforTincontrolavgavgrodandsteambypasscontrolsystems.C7.Steamgenerator levelprogram-determine setpointforlevelinfeedwater controlsystem.4.2TurbineAuto-StoOilPressure-(Presence orabsenceofoilpressureindicates'trip ornon-tripcondition ofturbine). 1.Reactortrip-preventtemperature-pressure excursion inreactorcoolantfromlossofsteamload.C2.Steambypasscontrol-selectsmodeofcontxol.3.Feedwater control-selectsmodeofcontrol,steamgenerator waterlevelorTavg4~3TurbineStoValvePosition-usedasbackuptoautostopoilpressurefoxreactortripsignal. CO~OLRODPOSITIONBankPosition-(StePcounters) Bankinsertion limitalarm(setpointdetermined fromand4T)-maintainreactivity shutdownmargins;avgmaintainacceptable corepowerdistribution. S2,Bankwithdrawal limf.talarm-warnoperatorthatcontrolrodsarenearingtheendoftheirusefultravel.S3,Controlzoomindication andrecording 5.ZIndividual RodPosition(LVDT)Sl.Rodposition'deviation alarm-warnofpossiblerodmalpositioning. SZ.Rodbottomroddropdetection -rodstopandturbinerunbacktomaintainDNBmargins.S3.Controlzoomindication andrecording= CPNTAZgKNT PRESSUREpl.Highcontainment pressuresafeguards actuation andreactortrip-protection againstsmallsteambreaks,backupprotection forlossofcoolantaccidents andlargesteambreaks.-P2.Highcontainment pressuresteamlineisolation p3.Highcontainment pressuresprayactuation. S4.Controlroomindication. A>>12 ELECTRICAL SYSTEMVARIABLES ResistorCoolantPumpBusPl.Underyoltage reactortrip-protection againstmulti-loop lossofflow.p2iUnderfrequency reactortripandRCPbreakeropening-preventrapidsystemfrequency opening-preventrapidsystem.fre-quencydecreasefrombrakingRCP.7.2ReactorCoolantPumpBreakerPosition(contacts) P1.Reactortriponbreakeropening-backup.to lowflowprotection forlossofflow.7.3Feedwater PowerPl.Auxiliary feedwater systemactuation (feedwater pumpbreakerpositionand/orbusvoltage)-backupfeedwater protection forlossoffeedwater. A-l3 ATTACHMENT 8TOAEP:NRC'1184H2 RESPONSETOITEM8DEFENSE-IN-DEPTH EVALUATION PERFORMED FORTHEREACTORPROTECTION ANDCONTROLPROCESSINSTRUMENTATION REPLACEMENT PROJECT}}