ML18023B081: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:SUSQUEHANNASES-ER-OLSECTIONTITLEVOLUMEAPPENDX'XZS....~.............~XIIB1ANEVALUAONOFTHECOSTOFSF.VICEIMPACTOFADELAYNTHEIN-SERVICEDTESOFSUSQUEHANNAES(JANUARY1978............IXICURRENTLONG-RAGEFORECASENERGYSALES6PEAKLOAD1976-10....................~~IXIAPPLICANT'SFORECASNGMETHODOLOGYKMHSALESANDPEAKLOADSCE!1BER,1976.........IXINATXONMIDEFUELEilZGENCYZSPONSZTOFPCORDERNO496..............~XIISUSQUEHANNARIVEMATERANALYSZSUMMARY..IIIEQUATIONSANDSSUMPTIONSUTILIZEDNTHECALCULATION0INDIVIDUALANDPOPULAONDOSESTOMAN.'IXENVIRON%ENALTECHNXCALSPECIFXCATIONS..XII SUSQUEHANNASES-ER-OLTABLE1.1-31977PROJECTIONOFAPPLICAN'ALOADS-CAPACITY-RESERVES(HIGHLOADPROJECTIONYearWinterPeakMWe1978496019795320198056701981610019826480198368401984720019857570CapacityChangesFossil(Oil)NuclearHydroReratings945(')945(l)63(2)TotalCapacitiesFossil(Coal)Fossil(Oil)CT6(j~selHydroNuclearFirmPurchaseCapacityTransactions4145164053914676(41)4145164053914676(50)4145164053914676414516405391461890764145414541454145164016401640164053953953953914614614620994518901890189076767676TotalMWe65056496643674268405837483438374Reserveoverwinterpeak:WithSusquehannaMWeCapacityXofLoad132622192530153411432216804llWithoutSusquehannaMWeCapacity%ofLoad154531117622766143265(65)(436)(807)(1126)(1)(6)(ll)(15)WithSusquehannaButWithoutOilSHydroGenerationWithoutSusquehanna~Oil8HydroGenerationHweCapacity(856)(1225)(17)(23)(1075)(476)(867)(1258)(1660)(18)(7)(13)(17)(22)(1635)(2075)(2466)(2837)(3208)(3590)(29)(34)(38)(41)(45)(47)Note:SeeFootnotesFollowingTable1.1-6.
{{#Wiki_filter:SUSQUEHANNA SES-ER-OL SECTIONTITLEVOLUMEAPPENDX'XZS....~.............
SUSQUEHANNASES"ER-OLTABLE1.1-41977PROJECTIONOFAPPLICAFALOADS-CAPACITY-RESERVESMID-RANGELOADPROJECTION)YearWinterPeakMWeCapacityChangesFossil(Oil)NuclearHydroReratings19784820197950501980531019815690945(l)19825990945"'9836280198465601985685063(2)TotalCapacitiesFossil(Coal)Fossil(Oil)CT6(j~selHydroNuclearFirmPurchaseCapacityTransactionsTotalMWe4145164053914676(41)65054145164053914676(50)64964145164053914676~(11064364145164053914694576(65)742641451640539146189076(31)840541451640539146189076(62)83744145164053914618907641451640539209189076~(93(125)83438374Reserveoverwinterpeak:WithSusquehannaMWeCapacitygofLoad17362415314020943317831524'2722WithoutSusquehannaMWeCapacity$ofLoad1685144635291126217361342571242(167)(406)(3)(6)WithSusquehannaButWithoutOil6HydroGeneration(665)(12)14(307)(618)(940)1(5)(9)(14)WithoutSusquehanna~Oil6HydroGeneration(716)(955)(1275)(1665)(1976)MweCapacity(15)(19)(24)(29)(33)NOTE:SeeFootnotesFollowingTable1.1-6(2277)(2568)(2870)(36),(39)(42)  
~XIIB1ANEVALUAONOFTHECOSTOFSF.VICEIMPACTOFADELAYNTHEIN-SERVICE DTESOFSUSQUEHANNA ES(JANUARY1978............IXI CURRENTLONG-RAGEFORECASENERGYSALES6PEAKLOAD1976-10....................
~~IXIAPPLICANT'S FORECASNGMETHODOLOGY KMHSALESANDPEAKLOADSCE!1BER,1976.........IXI NATXONMIDE FUELEilZGENCYZSPONSZTOFPCORDERNO496..............
~XIISUSQUEHANNA RIVEMATERANALYSZSUMMARY..IIIEQUATIONS ANDSSUMPTIONS UTILIZEDNTHECALCULATION 0INDIVIDUAL ANDPOPULAONDOSESTOMAN.'IXENVIRON%EN ALTECHNXCALSPECIFXCATIONS..XII SUSQUEHANNA SES-ER-OL TABLE1.1-31977PROJECTION OFAPPLICAN'A LOADS-CAPACITY-RESERVES (HIGHLOADPROJECTION YearWinterPeakMWe1978496019795320198056701981610019826480198368401984720019857570CapacityChangesFossil(Oil)NuclearHydroReratings 945(')945(l)63(2)TotalCapacities Fossil(Coal)Fossil(Oil)CT6(j~selHydroNuclearFirmPurchaseCapacityTransactions 4145164053914676(41)4145164053914676(50)4145164053914676414516405391461890764145414541454145164016401640164053953953953914614614620994518901890189076767676TotalMWe65056496643674268405837483438374Reserveoverwinterpeak:WithSusquehanna MWeCapacityXofLoad132622192530153411432216804llWithoutSusquehanna MWeCapacity%ofLoad154531117622766143265(65)(436)(807)(1126)(1)(6)(ll)(15)WithSusquehanna ButWithoutOilSHydroGeneration WithoutSusquehanna~
Oil8HydroGeneration HweCapacity(856)(1225)(17)(23)(1075)(476)(867)(1258)(1660)(18)(7)(13)(17)(22)(1635)(2075)(2466)(2837)(3208)(3590)(29)(34)(38)(41)(45)(47)Note:SeeFootnotes Following Table1.1-6.
SUSQUEHANNA SES"ER-OL TABLE1.1-41977PROJECTION OFAPPLICAFA LOADS-CAPACITY-RESERVES MID-RANGE LOADPROJECTION)
YearWinterPeakMWeCapacityChangesFossil(Oil)NuclearHydroReratings 19784820197950501980531019815690945(l)19825990945"'9836280198465601985685063(2)TotalCapacities Fossil(Coal)Fossil(Oil)CT6(j~selHydroNuclearFirmPurchaseCapacityTransactions TotalMWe4145164053914676(41)65054145164053914676(50)64964145164053914676~(11064364145164053914694576(65)742641451640539146189076(31)840541451640539146189076(62)83744145164053914618907641451640539209189076~(93(125)83438374Reserveoverwinterpeak:WithSusquehanna MWeCapacitygofLoad17362415314020943317831524'2722WithoutSusquehanna MWeCapacity$ofLoad1685144635291126217361342571242(167)(406)(3)(6)WithSusquehanna ButWithoutOil6HydroGeneration (665)(12)14(307)(618)(940)1(5)(9)(14)WithoutSusquehanna~
Oil6HydroGeneration (716)(955)(1275)(1665)(1976)MweCapacity(15)(19)(24)(29)(33)NOTE:SeeFootnotes Following Table1.1-6(2277)(2568)(2870)(36),(39)(42)  


SUS(UEHANNASES-ER-OLTABLE1.1-51977PROJECTIONOFAPPLICANTLOADS-CAPACITY"RESERVES(IOWIOADPROJECTIONYearWinterPeakMWeCapacityChangesFossil(Oil)NuclearHydroReratings19784650197947201980491019815170945"'9825390945("19835650198459201985605063(2)TotalCapacitiesFossil(Coal)Fossil(Oil)CT8(j~selHydroNuclearFirmPurchaseCapacityTransactionsTotalMwe4145164053914676414516405391467641451640539146764145164053914694576414541454145164016401640539539539146146146189018901890767676650564966436742684058374834341451640539146189076(125)8374Reserveoverwinterpeak:WithSusquehannaMWeCapacity~ofLoad225630154456272448242323244138WithoutSusquehannaMWeCapacity4ofLoadWithSusquehannaButWithoutOil6HydroGenerationMWeCapacitygofLoad185517761526403831(145)(3)6141112561025241975413323647382213947(140)(2)WithoutSusquehanna>Oil8HydroGeneration(546)(625)MWeCapacity(12)(13)gofLoadNOTE:SeeFootnotesFollowingTable1.1-6.(875)(1145)(1376)(1647)(18)(22)(26)(29)(1928)(2070)(33)i(34)
SUS(UEHANNA SES-ER-OL TABLE1.1-51977PROJECTION OFAPPLICANT LOADS-CAPACITY"RESERVES (IOWIOADPROJECTION YearWinterPeakMWeCapacityChangesFossil(Oil)NuclearHydroReratings 19784650197947201980491019815170945"'9825390945("19835650198459201985605063(2)TotalCapacities Fossil(Coal)Fossil(Oil)CT8(j~selHydroNuclearFirmPurchaseCapacityTransactions TotalMwe4145164053914676414516405391467641451640539146764145164053914694576414541454145164016401640539539539146146146189018901890767676650564966436742684058374834341451640539146189076(125)8374Reserveoverwinterpeak:WithSusquehanna MWeCapacity~ofLoad225630154456272448242323244138WithoutSusquehanna MWeCapacity4ofLoadWithSusquehanna ButWithoutOil6HydroGeneration MWeCapacitygofLoad185517761526403831(145)(3)6141112561025241975413323647382213947(140)(2)WithoutSusquehanna>
SUSQUEHANNASES-ER-OLTABLE1.1-61977PROJECTIONOFAPPLICAN'8LOADS-CAPACITY-RESERVES(LOW-LOWLOADPROJECTION)YearWinterPeakHWeCapacityChangesFossil(Oil)NuclearHydroReratings19784530197945801980472019814890945(l)19825050945()19835230198454201985550063(2)TotalCapacitiesFossil(Coal)Fossil(Oil)CT8(j~selHydroNuclearFixmPurchaseCapacityTransactionsTotalHWe4145164053914676(41)65054145164053914676(50)64964145164053914676~llO6436(65)7426(31)8405(62)8374(93)8343(125)8374414541454145414541451640164016401640164053953953953953914614614614620994518901890189018907676767676Reserveoverwinterpeak:WithSusquehannaNWeCapacity$ofLoad253652335531442923666054287452WithoutSusquehannaMWeCapacitygofLoad1975441916421716153636311365271174229731894417WithSusquehannaButWithoutOil6HydroGenerationMWeCapacitygofLoadWithoutSusquehanna,Oil6HydroGeneration(426)MWeCapacity(9)gofLoad1353(485)(685)(865)(11)(15)(18)9541974314(1036)(1227)(21)(23)522104107(1428)(1520)(26)(28)NOTE:SeeFootnotesFollowingTable1.1-6 SUSQUEHANNASES-ER-OL23.12.2TornadoesTheincidenceoftornadoesinthesiteareaisverylow.Betweentheyears1950and1973only38tornadoeswerereportedwithin50milesofthesite.Tornadoactivityisatamaximumduringthesummermonthswithmosttornadoesoccurringinthelateafternoonorevening.Figure2.3-1,TornadoOccurrence<<ndIntensityintheSusquehannaSZSReqion,isahistogramfortheyears1953-1962showingtornadofrequencybymonth,hourandintensitywithina3by3~squarewhichiscenteredonthesite.TheintensitycateqoriesarebasedontheFujitatornadointensityclassification(Ref.2.3-5).PromFigure2.3-1itcanbeseenthatmaximumtornadooccurrenceisinthesummer.Diurnally,tornadofrequencyreachesamaximumduringlateafternoon,shortlyaftertheperiodofgreatestinstability23.1.23Th>>ndecstormsThunderstormsintheareaareusuallyofbriefdurationandconcentratedinthewarmmonths.Theyareresponsiblefocmostofthesummertimerainfallwhichnormallyavecaqesaround3.7inchespermonthatAvoca.Basedona19yearaverageatAvocathemeannumberof"dayswiththunderheard"is30(Ref2.3-3).AmonthlybreakdownofthemeannumberofthunderstormdaysthatisrepresentativeofthesiteisshowninTable2.3-2,ThunderstocmDaysforAvoca.2.3.12.4L~ihtningThereisneitherdocumentationnordirectmeasurementoftheoccurrenceoflightningotherthantheobservationofassociatedthunder.LocalclimatologicaldatatabulatedbytheNationalWeatherService(Ref.2.3-3)doesnotprovideinformationreqardinqtheincidence,severity.orfrequencyoflightningoccurrencesA.thunderstocmcanusuallybeheardunlesstheliqhtningcausingthethunderismorethan15milesaway;therefore,thunderincidencecanpresumablybeusedtoconfirmthepresenceofsomelightningThenumberoflightningstrikespersquaremileperyearhasbeenestablishedby,Uman(Ref.2.3-6).ThecombinedresultsofseveralstudiessummarizednyUmanindicatethatthenumberofflashestotheqroundpecsquaremileperyearisbetween005and0.80timesthenumberofthunderstormdayspecyear.Themeannumberofdayswiththunderstormsprobablyoverestimatestheactualoccurrenceofcloud-to-groundlightningsincesomethunderstocmsprobablycontainonlycloud-to-cloudlightning.2~33 SUSQUEHANNASES-ER-OLTherefore.iftheannualthunderstormfrequencyatAvocaisused(30days),thenumberof:groundlightningstrikesisbetweentwoand24.23125HailHailinthesiteregionsometimesfallsfromseverethunderstorms.Becausehailfallsinnarrowswaths,onlyasmallfractionofoccurrencesisrecordedatregularreportingstationsTheaverageannualnumberofdayswithhailatapointintheareais23.Theoccurrenceoflargehail(greaterthan0.75inchesdiameter)averaqesoneortwooccurrencesannuallyAccordinqtoPautz(Ref.2.3-7)thenumberofhailstormswithhail0.75inchorgreaterinaone-degreelongitude-latitudesquareareainthevicinityofthesitefortheperiod1955-1967wasaboutfiveForAvocafrom1973-75therewasonehailstorminJuneandoneinJulyof1973and1974.Xn1975therewasalsoonehailstorminAugustandoneinOctoberTherewerenooccurrencesofhailrecordedin1976atAvoca(Ref.2.3-3)23.126ExtremeMindsStrongwindsoccurinPennsylvaniaasaresultofoccasionalhurricanes,thunderstorms,tornadoesandtropicalstorms.Thefollowinqisthefastestmileofwindanditsassociateddirection,bymonth,atAvoca(1955-1976)(Ref.2.3-3).FastestMileofWindMonthmphDirectionMonthmphDirectionJanuaryFebruaryMarchAprilMayJune436049474043SEWSNWNWWJuly42NWAuqust50NESeptember38SMOctober38ENovember45SDecember47SMThe50-yearand100-yearmeanfastestmilewindspeedsforthesiteareaare75milesperhourand80milesperhour,respectively(Ref.2.3-8).AccordinqtoPautz,therewereeightwindstorms50knotsandqreaterfortheonedegreelatitude-longitudesquarethatincludestheSusquehannaSESfortheperiod1955-1967(Ref.23-7).23-4 SUSQUEHANNASES-ER-G'i.TABLE2.3-33LONG-TERMTEMPERATURE(F)ATAVOCA(PeriodofRecord:1956-1974)MonthJanuaryFebruaryMarchAprilJuneJulyAugustSeptemberOctoberNovemberDecember33.518.435.344.758.970.019.327.238.047.879.083.056.861.380.759.273.652.163.048.836.142.232.822.0~DailMax~DailMiaMean26.027.336.048.558.967.972.270.062.952.640.829.167-10627889159327973410145944395308419771065ExtremeHicihestlowestAnnual58.939.849.4101Ref.2.3-3 SUSQUEHANNASES-ER-OLTABLE2.3-49PRECIPITATIONDATAFORAVOCA(PeriodofRecord:1956-1974)MonthJanuaryFebruaryMarchAprilMayTotal(ininches)2.041.962.503.063.50Greatest24-Hour(ininches)1.521.602.201.592.58JuneJulyAugustSeptemberOctoberNovemberDecember3.404.093.212.822.713.012.513.612.333.183.092.612.912.30Annual34.813.61Ref.2.3-3 SUSQUEHANNASES-ER-OL.TABLE2.3-81JOINTFREUENCY(%)OFWINDDIRECTION,WINDSPEEDANDSTABILITYFORAVOCA(PeriodofRecord:1971-1975)StabilityClassBWindSpeed(kts)Se'ctorNNENEENEESESESSESSWSWWSWNWNNWTotal0-38989756544-6.1507.0548.05487-10.1164.0548.061642416758989911773.0137.0890.1507.2055.2877.0137.0205.0959.1507.21232118.2493.13011449.19181449.1986748.109665071.9726.1164.0890.10271.21921112.0411.0137768.0274.0342516.02050528.0274.006811-1617-21>21Total.3569.2071.1819.1660.1385.0721.0870.0698.2771.3364.4553~6773.6913.4531.3856.2871RelativefrequencyofoccurrencesofBStability=4.8425Ref.2.3-4 SUSQUEHANNASES-ER-OLSECTIONTITLEVOLUMEAPPENDICIESoorooooooeo~ooooooooorooroooooooooooIIIB1ANEVALUATIONOFTHECOSTOFSERVICE.IMPACTOFADELAYINTHEIN-SERVICEDATESOFSUSQUEHANNASES(JANUARY1978).......IIICURRENTLONG-RANGEFORECASTENERGYSALES6PEAKLOAD1976-1990.................IIIB2APPLICANT'FORECASTINGMETHODOLOGYKWHSALESANDPEAKLOADSDECEMBER,1976..IIINATIONWIDEFUELEMERGENCYRESPONSETOFPCORDERNO496.............~IIISUSQUEHANNARIVERWATERANALYSESSUMMARY...IIIEQUATIONSANDASSUMPTIONSUTXLIZEDINTHECALCULATIONOFINDIVIDUALANDPOPULATIONDOSESTOMANoorooooo~oreooeoooooooooor~ooocoro~IIIENVIRONMENTALTECHNICALSPECIFICATIONS...~III Pit~PE'I SUSQUEHANNASES-ER-OLsite)andatDanville(about31miles(49.9km)downstream.TheCorpsofEngineershascompiledfloodstageanddischarge.informationfortheSusquehannaRiveratWilkes-Barre(Ref.2.4-7).Thesedataarebasedonrecordsoffloodstagesdatingfrom1991DataforthefourmostseverefloodsofrecordarepresentedinTable2.4-5,HistoricFloodsintheVicinityoftheSusquehannaSESTable2.4-5alsoincludesthestagesanddischargesforfloodsatthesiteandatDanville.ThefloodfrequencycharacteristicsoftheSusquehannaasmeasuredatDanvilleareillustratedinFigure2.4-6,FloodDischargeFrequency.ThepassaqeofTropicalStormAgnesthrough.PennsylvaniaonJune22and23,1972resultedinrecordfloodlevelsintheSusquehannaRiverBasinFloodcrestsexceededthepreviousrecordfloodlevel.of1936atWilkes-Barreby75feet(2.3m).AtDanville,alocalmaximumqaqelevelresultingfroma1904icejamwasexceededby1.6feet(0.5m).PeakdischarqeatWilkes-Barrewasanestimated345,000cfs(9,770m~/sec)oraunitdischargeof34.5cubicfeetpersecondpersguaremile(cfsm)(04m~/sec/km~).AccumulatedrunoffforthedrainageareaaboveWilkes-Barrefortheperiodof0000hours,June21,1972through2200hours,June27,1972totaled4.32inches(11.0cm)(Ref.24-13).24.25LowPlowsLongtermrecordsfromtheUSGSgagingstationsatDanvilleandWilkes-BarreprovidethedatabaseforthelowflewfrequencyanalysespresentedinthisSubsection.LongdurationlowflowfrequencyanalysishasbeenperformedbythePennsylvaniaDepartmentofEnvironmentalResources(DER).Theresultingcurvesforlowf3.owdurationsoftwoto60monthsandrecurrenceintervalsupto100yearsforDanvilleandWilkes-BarreareprovidedinFigures2.4-7,LowFlowDurationatDanvilleand2.4-8~LowFlowDurationatWilkes-Barre,respectively.Tables2.4-6and2.4-7,MaqnitudeandFrequencyofAnnualLowFlowoftheSusquehannaRiveratDanvilleandWilkes-Barre,Pa.respectively,discussthedischargefordifferentrecurrenceintervals.Tables2.4-8and2.4-9,DurationTableofDailyFlowoftheSusquehannaRiveratDanvilleandWilkes-Barre,Pa.respectivelyindicatetheriverdischarge(Ref.2.4-14).Themostextendeddroughtperiodoccurredinthe1960's.Thelowestconsecutivedayflowsforperiodsof183daysandlesshavealsooccurredinthisperiodThemeanmonthlyflowsatDanvilleandWilkes-BarreareprovidedinTable2.4-10a,MeanMonthlyDroughtYearFlowSequences.MeanDailyFlowsDuring1964Drought,Table2.4-10bforthesetwostationsareprovidedforthefourlowestflowmonthsofthisyear24-5 SUSQUEHANNASES-ER-OLApolicydecision'oftheSusquehannaRiverBasinCommissionreqardinqconsumptivewithdrawalsduringlowflowperiodsprovidesthatnaturalflowsduringdroughtswillnothediminishedbyfuturewaterusers.OnSeptember301976,thispolicydecisionwasimplementedasanAmendmentto18CFRPart80'3(SusquehannaRiverBasinCommission,SubpartD-StandardsforReview,Section803.61,ConsumptiveUsesofMater)(Ref.2.4-15).Compensationshallbereguiredforconsumptiveusesofwaterduringperiodsoflowflow.TheprovisionsofthisregulationapplytoconsumptiveusesinitiatedsinceJanuary23,19712426SedimentationAnnualsedimentyieldsinthereqionsurroundingthesitearespaciallyuniform.NeasurementsatTowanda,Pa.about105miles(169km)abovethestation,indicateonannua'edimentyieldof150tons/sqmi(52.5metrictons/km~)fromadrainaqeareaof7797sqmi(20,194km~).AnnualyieldsatDanville,11,220sqmi(29,060km~)drainageareaareestimatedtobe140tons/sqmi(49.0metrictons/km~)(Ref24-8).DailysedimentdischargesatindividualstationsarehighlyvariableThedailysedimentdischarqeatDanvilleranqesfromahighof556,000tons/day(504,400metrictons/day)toalowof18tons/day(16.3metrictons/day).MaterqualitysamplinqatthesiteincludedmeasurementoftotalsuspendedsolidsArangeofvaluesfrom1.6mg/1to912.6mq/1withanaveraqevalueof57.0mg/1wasfound.TheseresultsarefurtherreportedinSubsection2.43.Grainsizeanalysiswasperformedonwatersamplestakenin1974usinqanautomaticimageanalyzer.Thegrainsizedeterminationwasperformedontreatedanduntreatedriverwatersamples.TheresultsfortheuntreatedsamplesarereportedinTable24-11,SedimentGrainSizeDistribution.2427MaterImpoundmentsTheSusquehannaRiversuppliesallthewaterrequiredfornormalstationoperation.Aseven-acre(2.8ha.)spray'ondislocatedonsitetosupplywatertoemergencyheatdissipationsystems.Thewarmedwaterfromthereactorsiscooledviathepond'sspraysystemandthenrecirculatedthrouqhtheemergencycoolingsystems.Thisspraypondhasarelativelyimperviousliner.Itisfree-forminshapetoconformtothenaturaltopographyofthearea.Embankmentsandditchesareprovidedtodirectsurfacewater2.4-6 SUS(}UEHANNASES-ER-OLTABLE2.4-2MONTHLYAVERAGERIVERCONDITIONSSTAGE,VEIOCITYANDDISCHARGEOCTOBERSTATION(RiverMile)~Sunbury(122.0)STAGEVELOCITYDIS(HARGE(Ft.msl)(Ft/sec)(Ft/sec)PresentProectedPresentProectedPresentProected420.9420.92.01.991648631Northumberland(123.5)VolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Mapwallopen(163.9)PlantSite(165;5)Shickshinny(169.5)422.9427.8434.6447.9453.5457.4476.4477.6483.0483.3484.7487.9422.8427.6434.4447.7453.3'57.2476.3477.4482.9483.1484.5487.70.83.01.81.61.01.61.91.61.51.02'0.73.31.81.61.01.51.01.91.51.40.92.75144512250834939474947494623462346234623459545704761474247074590440814408429042904290429042804270  
Oil8HydroGeneration (546)(625)MWeCapacity(12)(13)gofLoadNOTE:SeeFootnotes Following Table1.1-6.(875)(1145)(1376)(1647)(18)(22)(26)(29)(1928)(2070)(33)i(34)
SUSQUEHANNA SES-ER-OL TABLE1.1-61977PROJECTION OFAPPLICAN'8 LOADS-CAPACITY-RESERVES (LOW-LOWLOADPROJECTION)
YearWinterPeakHWeCapacityChangesFossil(Oil)NuclearHydroReratings 19784530197945801980472019814890945(l)19825050945()19835230198454201985550063(2)TotalCapacities Fossil(Coal)Fossil(Oil)CT8(j~selHydroNuclearFixmPurchaseCapacityTransactions TotalHWe4145164053914676(41)65054145164053914676(50)64964145164053914676~llO6436(65)7426(31)8405(62)8374(93)8343(125)8374414541454145414541451640164016401640164053953953953953914614614614620994518901890189018907676767676Reserveoverwinterpeak:WithSusquehanna NWeCapacity$ofLoad253652335531442923666054287452WithoutSusquehanna MWeCapacitygofLoad1975441916421716153636311365271174229731894417WithSusquehanna ButWithoutOil6HydroGeneration MWeCapacitygofLoadWithoutSusquehanna, Oil6HydroGeneration (426)MWeCapacity(9)gofLoad1353(485)(685)(865)(11)(15)(18)9541974314(1036)(1227)(21)(23)522104107(1428)(1520)(26)(28)NOTE:SeeFootnotes Following Table1.1-6 SUSQUEHANNASES-ER-OL23.12.2Tornadoes Theincidence oftornadoes inthesiteareaisverylow.Betweentheyears1950and1973only38tornadoes werereportedwithin50milesofthesite.Tornadoactivityisatamaximumduringthesummermonthswithmosttornadoes occurring inthelateafternoon orevening.Figure2.3-1,TornadoOccurrence
<<ndIntensity intheSusquehanna SZSReqion,isahistogram fortheyears1953-1962showingtornadofrequency bymonth,hourandintensity withina3by3~squarewhichiscenteredonthesite.Theintensity cateqories arebasedontheFujitatornadointensity classification (Ref.2.3-5).PromFigure2.3-1itcanbeseenthatmaximumtornadooccurrence isinthesummer.Diurnally, tornadofrequency reachesamaximumduringlateafternoon, shortlyaftertheperiodofgreatestinstability 23.1.23Th>>ndecstormsThunderstorms intheareaareusuallyofbriefdurationandconcentrated inthewarmmonths.Theyareresponsible focmostofthesummertime rainfallwhichnormallyavecaqesaround3.7inchespermonthatAvoca.Basedona19yearaverageatAvocathemeannumberof"dayswiththunderheard"is30(Ref2.3-3).Amonthlybreakdown ofthemeannumberofthunderstorm daysthatisrepresentative ofthesiteisshowninTable2.3-2,Thunderstocm DaysforAvoca.2.3.12.4L~ihtningThereisneitherdocumentation nordirectmeasurement oftheoccurrence oflightning otherthantheobservation ofassociated thunder.Localclimatological datatabulated bytheNationalWeatherService(Ref.2.3-3)doesnotprovideinformation reqardinq theincidence, severity.
orfrequency oflightning occurrences A.thunderstocm canusuallybeheardunlesstheliqhtning causingthethunderismorethan15milesaway;therefore, thunderincidence canpresumably beusedtoconfirmthepresenceofsomelightning Thenumberoflightning strikespersquaremileperyearhasbeenestablished by,Uman(Ref.2.3-6).Thecombinedresultsofseveralstudiessummarized nyUmanindicatethatthenumberofflashestotheqroundpecsquaremileperyearisbetween005and0.80timesthenumberofthunderstorm dayspecyear.Themeannumberofdayswiththunderstorms probablyoverestimates theactualoccurrence ofcloud-to-ground lightning sincesomethunderstocms probablycontainonlycloud-to-cloud lightning.
2~33 SUSQUEHANNA SES-ER-OLTherefore.
iftheannualthunderstorm frequency atAvocaisused(30days),thenumberof:groundlightning strikesisbetweentwoand24.23125HailHailinthesiteregionsometimes fallsfromseverethunderstorms.
Becausehailfallsinnarrowswaths,onlyasmallfractionofoccurrences isrecordedatregularreporting stationsTheaverageannualnumberofdayswithhailatapointintheareais23.Theoccurrence oflargehail(greaterthan0.75inchesdiameter) averaqesoneortwooccurrences annuallyAccordinq toPautz(Ref.2.3-7)thenumberofhailstorms withhail0.75inchorgreaterinaone-degree longitude-latitude squareareainthevicinityofthesitefortheperiod1955-1967 wasaboutfiveForAvocafrom1973-75therewasonehailstorm inJuneandoneinJulyof1973and1974.Xn1975therewasalsoonehailstorm inAugustandoneinOctoberTherewerenooccurrences ofhailrecordedin1976atAvoca(Ref.2.3-3)23.126ExtremeMindsStrongwindsoccurinPennsylvania asaresultofoccasional hurricanes, thunderstorms, tornadoes andtropicalstorms.Thefollowinq isthefastestmileofwindanditsassociated direction, bymonth,atAvoca(1955-1976)
(Ref.2.3-3).FastestMileofWindMonthmphDirection MonthmphDirection JanuaryFebruaryMarchAprilMayJune436049474043SEWSNWNWWJuly42NWAuqust50NESeptember 38SMOctober38ENovember45SDecember47SMThe50-yearand100-yearmeanfastestmilewindspeedsforthesiteareaare75milesperhourand80milesperhour,respectively (Ref.2.3-8).Accordinq toPautz,therewereeightwindstorms 50knotsandqreaterfortheonedegreelatitude-longitude squarethatincludestheSusquehanna SESfortheperiod1955-1967 (Ref.23-7).23-4 SUSQUEHANNA SES-ER-G'i.
TABLE2.3-33LONG-TERM TEMPERATURE (F)ATAVOCA(PeriodofRecord:1956-1974)
MonthJanuaryFebruaryMarchAprilJuneJulyAugustSeptember OctoberNovemberDecember33.518.435.344.758.970.019.327.238.047.879.083.056.861.380.759.273.652.163.048.836.142.232.822.0~DailMax~DailMiaMean26.027.336.048.558.967.972.270.062.952.640.829.167-10627889159327973410145944395308419771065ExtremeHicihestlowestAnnual58.939.849.4101Ref.2.3-3 SUSQUEHANNA SES-ER-OL TABLE2.3-49PRECIPITATION DATAFORAVOCA(PeriodofRecord:1956-1974)
MonthJanuaryFebruaryMarchAprilMayTotal(ininches)2.041.962.503.063.50Greatest24-Hour(ininches)1.521.602.201.592.58JuneJulyAugustSeptember OctoberNovemberDecember3.404.093.212.822.713.012.513.612.333.183.092.612.912.30Annual34.813.61Ref.2.3-3 SUSQUEHANNA SES-ER-OL.
TABLE2.3-81JOINTFREUENCY(%)OFWINDDIRECTION, WINDSPEEDANDSTABILITY FORAVOCA(PeriodofRecord:1971-1975)
Stability ClassBWindSpeed(kts)Se'ctorNNENEENEESESESSESSWSWWSWNWNNWTotal0-38989756544-6.1507.0548.05487-10.1164.0548.061642416758989911773.0137.0890.1507.2055.2877.0137.0205.0959.1507.21232118.2493.13011449.19181449.1986748.109665071.9726.1164.0890.10271.21921112.0411.0137768.0274.0342516.02050528.0274.006811-1617-21>21Total.3569.2071.1819.1660.1385.0721.0870.0698.2771.3364.4553~6773.6913.4531.3856.2871Relativefrequency ofoccurrences ofBStability
=4.8425Ref.2.3-4 SUSQUEHANNA SES-ER-OL SECTIONTITLEVOLUMEAPPENDICIESo orooooooeo~ooooooooorooroooooooooooIIIB1ANEVALUATION OFTHECOSTOFSERVICE.IMPACTOFADELAYINTHEIN-SERVICE DATESOFSUSQUEHANNA SES(JANUARY1978).......IIICURRENTLONG-RANGE FORECASTENERGYSALES6PEAKLOAD1976-1990.................
IIIB2APPLICANT' FORECASTING METHODOLOGY KWHSALESANDPEAKLOADSDECEMBER, 1976..IIINATIONWIDE FUELEMERGENCY RESPONSETOFPCORDERNO496.............
~IIISUSQUEHANNA RIVERWATERANALYSESSUMMARY...IIIEQUATIONS ANDASSUMPTIONS UTXLIZEDINTHECALCULATION OFINDIVIDUALANDPOPULATION DOSESTOMANoorooooo
~oreooeoooooooooor
~ooocoro~IIIENVIRONMENTAL TECHNICALSPECIFICATIONS...
~III Pit~PE'I SUSQUEHANNASES-ER-OLsite)andatDanville(about31miles(49.9km)downstream.
TheCorpsofEngineers hascompiledfloodstageanddischarge
.information fortheSusquehanna RiveratWilkes-Barre (Ref.2.4-7).Thesedataarebasedonrecordsoffloodstagesdatingfrom1991Dataforthefourmostseverefloodsofrecordarepresented inTable2.4-5,HistoricFloodsintheVicinityoftheSusquehanna SESTable2.4-5alsoincludesthestagesanddischarges forfloodsatthesiteandatDanville.
Thefloodfrequency characteristics oftheSusquehanna asmeasuredatDanvilleareillustrated inFigure2.4-6,FloodDischarge Frequency.
ThepassaqeofTropicalStormAgnesthrough.Pennsylvania onJune22and23,1972resultedinrecordfloodlevelsintheSusquehanna RiverBasinFloodcrestsexceededthepreviousrecordfloodlevel.of1936atWilkes-Barre by75feet(2.3m).AtDanville, alocalmaximumqaqelevelresulting froma1904icejamwasexceededby1.6feet(0.5m).Peakdischarqe atWilkes-Barrewasanestimated 345,000cfs(9,770m~/sec)oraunitdischarge of34.5cubicfeetpersecondpersguaremile(cfsm)(04m~/sec/km~)
.Accumulated runoffforthedrainageareaaboveWilkes-Barre fortheperiodof0000hours,June21,1972through2200hours,June27,1972totaled4.32inches(11.0cm)(Ref.24-13).24.25LowPlowsLongtermrecordsfromtheUSGSgagingstationsatDanvilleandWilkes-Barre providethedatabaseforthelowflewfrequencyanalysespresented inthisSubsection.
Longdurationlowflowfrequencyanalysishasbeenperformed bythePennsylvania Department ofEnvironmental Resources (DER).Theresulting curvesforlowf3.owdurations oftwoto60monthsandrecurrence intervals upto100yearsforDanvilleandWilkes-Barre areprovidedinFigures2.4-7,LowFlowDurationatDanvilleand2.4-8~LowFlowDurationatWilkes-Barre, respectively.
Tables2.4-6and2.4-7,Maqnitude andFrequency ofAnnualLowFlowoftheSusquehanna RiveratDanvilleandWilkes-Barre, Pa.respectively, discussthedischarge fordifferent recurrence intervals.
Tables2.4-8and2.4-9,DurationTableofDailyFlowoftheSusquehanna RiveratDanvilleandWilkes-Barre, Pa.respectively indicatetheriverdischarge (Ref.2.4-14).Themostextendeddroughtperiodoccurredinthe1960's.Thelowestconsecutive dayflowsforperiodsof183daysandlesshavealsooccurredinthisperiodThemeanmonthlyflowsatDanvilleandWilkes-Barre areprovidedinTable2.4-10a,MeanMonthlyDroughtYearFlowSequences.
MeanDailyFlowsDuring1964Drought,Table2.4-10bforthesetwostationsareprovidedforthefourlowestflowmonthsofthisyear24-5 SUSQUEHANNASES-ER-OLApolicydecision'oftheSusquehanna RiverBasinCommission reqardinq consumptive withdrawals duringlowflowperiodsprovidesthatnaturalflowsduringdroughtswillnothediminished byfuturewaterusers.OnSeptember 301976,thispolicydecisionwasimplemented asanAmendment to18CFRPart80'3(Susquehanna RiverBasinCommission, SubpartD-Standards forReview,Section803.61,Consumptive UsesofMater)(Ref.2.4-15).Compensation shallbereguiredforconsumptive usesofwaterduringperiodsoflowflow.Theprovisions ofthisregulation applytoconsumptive usesinitiated sinceJanuary23,19712426Sedimentation Annualsedimentyieldsinthereqionsurrounding thesitearespacially uniform.Neasurements atTowanda,Pa.about105miles(169km)abovethestation,indicateonannua'ediment yieldof150tons/sqmi(52.5metrictons/km~)
fromadrainaqeareaof7797sqmi(20,194km~).AnnualyieldsatDanville, 11,220sqmi(29,060km~)drainageareaareestimated tobe140tons/sqmi(49.0metrictons/km~)
(Ref24-8).Dailysedimentdischarges atindividual stationsarehighlyvariableThedailysedimentdischarqe atDanvilleranqesfromahighof556,000tons/day(504,400metrictons/day) toalowof18tons/day(16.3metrictons/day)
.Materqualitysamplinqatthesiteincludedmeasurement oftotalsuspended solidsArangeofvaluesfrom1.6mg/1to912.6mq/1withanaveraqevalueof57.0mg/1wasfound.TheseresultsarefurtherreportedinSubsection 2.43.Grainsizeanalysiswasperformed onwatersamplestakenin1974usinqanautomatic imageanalyzer.
Thegrainsizedetermination wasperformed ontreatedanduntreated riverwatersamples.Theresultsfortheuntreated samplesarereportedinTable24-11,SedimentGrainSizeDistribution.
2427MaterImpoundments TheSusquehanna Riversuppliesallthewaterrequiredfornormalstationoperation.
Aseven-acre (2.8ha.)spray'ond islocatedonsitetosupplywatertoemergency heatdissipation systems.Thewarmedwaterfromthereactorsiscooledviathepond'sspraysystemandthenrecirculated throuqhtheemergency coolingsystems.Thisspraypondhasarelatively impervious liner.Itisfree-forminshapetoconformtothenaturaltopography ofthearea.Embankments andditchesareprovidedtodirectsurfacewater2.4-6 SUS(}UEHANNA SES-ER-OL TABLE2.4-2MONTHLYAVERAGERIVERCONDITIONS STAGE,VEIOCITYANDDISCHARGE OCTOBERSTATION(RiverMile)~Sunbury(122.0)STAGEVELOCITYDIS(HARGE (Ft.msl)(Ft/sec)(Ft/sec)PresentProectedPresentProectedPresentProected420.9420.92.01.991648631Northumberland (123.5)Volverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Mapwallopen (163.9)PlantSite(165;5)Shickshinny (169.5)422.9427.8434.6447.9453.5457.4476.4477.6483.0483.3484.7487.9422.8427.6434.4447.7453.3'57.
2476.3477.4482.9483.1484.5487.70.83.01.81.61.01.61.91.61.51.02'0.73.31.81.61.01.51.01.91.51.40.92.75144512250834939474947494623462346234623459545704761474247074590440814408429042904290429042804270  


SUS(}UEHANNASES-ER-OLTABLE2.4-2(Continued)STATION(RiverMile)Sunbury(122.0)Northumberland(123.5)WolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Wapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)425.0429.8437.1451.2456.2460.0478.9479.8484.8485.5487.4490.8424.9429.7437.0451.1456.159.9478.8479.7484.8485.4487.3490.71.02.42.21.91.52.21.62.02.12.41.63.91.02.42.21.91.52.11.52.02'2.31.63.9124781209512457120771242112045120901174111648113071164811307113561102311356110231135611023113561102311291109761123210932STAGEVELOCITYDIS(HARGE(Ft.msl)(Ft/sec)(Ft/sec)PresentProectedPresentProectedPresentProected422.0421.93.43.42114620613 SUSQUEHANNASES-ER-OLTABLE2.4-2(Continued)STATION(RiverMile)STAGEVELOCITYDIS(HARGE(Ft.msl)(Ft/sec)(Pt/sec)PresentProectedPresentProectedPresentPro'ectedSunbury(122.0)Northumberland(123.5)WolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162')Wapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)426.2426.1431.0430.9438.5438.4453.2453.0457.5457.4461.4461.3480.2480.10481.1481.0485'485.7-486.7486.6488.8488.7492.4492.3422.6422.64.22.52.42.01.82.51.82.22.32.92.04.24.22.52.42.01.72.51.82.22.32.81.94.22984218028179581783517348166981669816270162701627016270161751608929309176451757817459169991635716357159371593715937159371586015789  
SUS(}UEHANNA SES-ER-OL TABLE2.4-2(Continued)
STATION(RiverMile)Sunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)425.0429.8437.1451.2456.2460.0478.9479.8484.8485.5487.4490.8424.9429.7437.0451.1456.159.9478.8479.7484.8485.4487.3490.71.02.42.21.91.52.21.62.02.12.41.63.91.02.42.21.91.52.11.52.02'2.31.63.9124781209512457120771242112045120901174111648113071164811307113561102311356110231135611023113561102311291109761123210932STAGEVELOCITYDIS(HARGE (Ft.msl)(Ft/sec)(Ft/sec)PresentProectedPresentProectedPresentProected422.0421.93.43.42114620613 SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)
STATION(RiverMile)STAGEVELOCITYDIS(HARGE (Ft.msl)(Ft/sec)(Pt/sec)PresentProectedPresentProectedPresentPro'ected Sunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162')Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)426.2426.1431.0430.9438.5438.4453.2453.0457.5457.4461.4461.3480.2480.10481.1481.0485'485.7-486.7486.6488.8488.7492.4492.3422.6422.64.22.52.42.01.82.51.82.22.32.92.04.24.22.52.42.01.72.51.82.22.32.81.94.22984218028179581783517348166981669816270162701627016270161751608929309176451757817459169991635716357159371593715937159371586015789  


SUSQUEHANNASES-ER-OLTABLE2.4-2(Continued)STATION(RiverMile)STAGE(Ft.msl)PresentPro'ectedVELOCITY(Ft/sec)PresentProectedDIS(HARGE(Ft/sec)PresentProectedSunbury(122.0)Northumberland(123.5)VolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Mapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)425.6425.6430.4430.3437.7437.6452.0451.9456.7456.6460.6460.5479.5479.4480.4480.3485.2485.2486.0485.9488.0487.9491.5491.4422.3422.33.92.42.31.91.62.3-l.72.12.22.61.84.03.81.02.42.31.91.62.31.72.12.22.51.74.02585214978149081478514349137681376813384133841338413384132991322225319145951452814409140001342713427130511305113051130511298412922  
SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)
)0 SUSQUEHANNASES-ER-OLTABLE2.4-2(Continued)STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY*(Ft/sec)PresentProectedDIS(HARGE(Ft/sec)PresentProectedSunbury(122.0)Northumberland(123.5)WolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Wapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)422.7426.2430.9438.3453.0457.5461.4480.1481.0485.8486.7488.7492.3422.6426.2430.8438.3452.9457.4461.3480.1481.0485.7486.6488.6492.24.32.52.42.01.82.51.82.22.32.81.94.24.32.52.42.01.82.51.82.12.32.81.94.21757617193174791709917308169321692016571166851634416685163441607115738160711573816071157381607115738158281551315759154593070430171 SUSQUEHANNASES-ER-OLTABLE2.4-2(Continued)STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS)HARGE(Ft/sec)PresentProectedSunbury(122.0)Northumberland(123.5)WolvertonSta.(128.5)Danville(134.7)428.7428.7433.4433.4441.2441.1424.4424.45.61.32.72.85.61.32.72.85542031852317323152154887314693135231143Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(164.2)Wapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)456.7460.4464.4482.9483.8488.0489.4491.9495.9456.7460.3464.4482.8483.7488.0489.4491.8495.92.42.33.12.52.62.93.82.75.02.42.33.12.52.62.93.82.75.0310653045830458300583005830058300582996929888307163011730117297252972529725297252965429588  
STATION(RiverMile)STAGE(Ft.msl)PresentPro'ected VELOCITY(Ft/sec)PresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Volverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Mapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)425.6425.6430.4430.3437.7437.6452.0451.9456.7456.6460.6460.5479.5479.4480.4480.3485.2485.2486.0485.9488.0487.9491.5491.4422.3422.33.92.42.31.91.62.3-l.72.12.22.61.84.03.81.02.42.31.91.62.31.72.12.22.51.74.02585214978149081478514349137681376813384133841338413384132991322225319145951452814409140001342713427130511305113051130511298412922  
)0 SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)
STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY*(Ft/sec)PresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)422.7426.2430.9438.3453.0457.5461.4480.1481.0485.8486.7488.7492.3422.6426.2430.8438.3452.9457.4461.3480.1481.0485.7486.6488.6492.24.32.52.42.01.82.51.82.22.32.81.94.24.32.52.42.01.82.51.82.12.32.81.94.21757617193174791709917308169321692016571166851634416685163441607115738160711573816071157381607115738158281551315759154593070430171 SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)
STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS)HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)428.7428.7433.4433.4441.2441.1424.4424.45.61.32.72.85.61.32.72.85542031852317323152154887314693135231143Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(164.2)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)456.7460.4464.4482.9483.8488.0489.4491.9495.9456.7460.3464.4482.8483.7488.0489.4491.8495.92.42.33.12.52.62.93.82.75.02.42.33.12.52.62.93.82.75.0310653045830458300583005830058300582996929888307163011730117297252972529725297252965429588  


SUSQUEHANNASES-ER-OLTABLE2.4-2(Continued)STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS(HARGE(Ft/sec)PresentProectedSunbury(122.0)Northumberland(123.5)Wolverton'Sta.(128')Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Mapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)424.8429.2434.2442.1457.9461.3465.3483.6484.6488.7490.2492.8497.0424.7429.2434.2442.0457.8461;2465.3483.6484.6488.7490.2492.8496.95.85.91.41.437415370322.82.837256368762.92.936978366022.52.536331359822.52.535469351283.33-335469351282.72.734900345672.72.734900345673.03.034900345674.14.134900345672.92.934774344595.35.334659343596135460821 0
SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)
STATION(RiverMile)SUSQUEHANNASES-ER-OLTABLE2.4-2(Continued)STAGEVELOCITY(Ft.msl)(Ft/sec)PresentProectedPresentProectedDIS(HARGE(Ft/sec)PresentProectedSunbury(122.0)Northumberland(123.5)WolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Wapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)423.0426.7431.3438.7453.5457.8461.7480.4481.4486.0487.0489.1492.8423.0426.7431.2438.7453.4457.7461.7480.4481.3486.0486.9489.0492.74.62.52.42.01.82.61.92.22.43.02.04.34.52.52.42.01.82.51.92.22.42.92.04'350153488219326189431922918849190601868418567.1821817909175681790917568174751714217475171421745717142174751714217379170641729116991 SUSQUEHANNASES-ER-OLTABLE2.4-2(Continued)STATION()(RiverMile)Sunbury(122.0)Northumberland(123.5)WolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Wapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)424.8424;7429.5429.4436.7436.6450.6450.5455.7455.6459.5459.447.8.5478.3479.4484.5479.3484.5485.1485.0486.9486.8490.3490.2STAGE(Ft.msl)PresentProected421.8421.83.43.30.90.92.42.42.22.11.81.81.41.42.12.01.51.42.02.0~2.02.02.22.21.51.53.83.7VELOCITY(Ft/sec)PresentPro'ected1110810725110541067410959105831063810289102119870102119870993095979930959799309597993095979868955398119511DIS(HARGE(Ft/sec)PresentProected1991519382 SUS(}UEHANNASES-ER-OITABLE2.4-2(Continued)STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS(HARGE(Zt/sec)PresentProectedSunbury(122.0)Northumberland(123.5)VolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Mapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)421.0423.0427.8434.7448.0453.6457.5476.6477.7483.2483.5484.9488.1420.9422.9427.7434.5447.8453.4457.3476.4.477.5483.0483.3484.7487.92.00.73.01.81.61.61.91.61.51.02.92.00.73.21.81.61.01.61.91.61.41.02.852774894524748675194481851164767501246715012467149444611494446114944461149444611492946144915461597349201  
STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton
'Sta.(128')Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Mapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)424.8429.2434.2442.1457.9461.3465.3483.6484.6488.7490.2492.8497.0424.7429.2434.2442.0457.8461;2465.3483.6484.6488.7490.2492.8496.95.85.91.41.437415370322.82.837256368762.92.936978366022.52.536331359822.52.535469351283.33-335469351282.72.734900345672.72.734900345673.03.034900345674.14.134900345672.92.934774344595.35.334659343596135460821 0
STATION(RiverMile)SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)
STAGEVELOCITY(Ft.msl)(Ft/sec)PresentProectedPresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)423.0426.7431.3438.7453.5457.8461.7480.4481.4486.0487.0489.1492.8423.0426.7431.2438.7453.4457.7461.7480.4481.3486.0486.9489.0492.74.62.52.42.01.82.61.92.22.43.02.04.34.52.52.42.01.82.51.92.22.42.92.04'350153488219326189431922918849190601868418567.1821817909175681790917568174751714217475171421745717142174751714217379170641729116991 SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)
STATION()(RiverMile)Sunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)424.8424;7429.5429.4436.7436.6450.6450.5455.7455.6459.5459.447.8.5478.3479.4484.5479.3484.5485.1485.0486.9486.8490.3490.2STAGE(Ft.msl)PresentProected421.8421.83.43.30.90.92.42.42.22.11.81.81.41.42.12.01.51.42.02.0~2.02.02.22.21.51.53.83.7VELOCITY(Ft/sec)PresentPro'ected1110810725110541067410959105831063810289102119870102119870993095979930959799309597993095979868955398119511DIS(HARGE (Ft/sec)PresentProected1991519382 SUS(}UEHANNA SES-ER-OI TABLE2.4-2(Continued)
STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS(HARGE (Zt/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Volverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Mapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)421.0423.0427.8434.7448.0453.6457.5476.6477.7483.2483.5484.9488.1420.9422.9427.7434.5447.8453.4457.3476.4.477.5483.0483.3484.7487.92.00.73.01.81.61.61.91.61.51.02.92.00.73.21.81.61.01.61.91.61.41.02.852774894524748675194481851164767501246715012467149444611494446114944461149444611492946144915461597349201  


SUS(}UEHANNASES-ER-OLTABLE2.4-2(Continued)STATION()(RiverMile)STAGE(Ft.msl)PresentProectedVELOCI1Y(Ft/sec)PresentProectedDIS(HARGE(Ft/sec)PresentProectedSunbury(122.0)Northumberland(123.5)WolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Wapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)422.2422.1427.2427.1433.8433.6446.7446.2452.5452.2456.5.456.3475.6475.5476.7476.5482.2482.0482.4482.2483.6483.4487.5487.1420.6420.51.50.74.41.71.70.91.30.92.11.41.20.82.01.50.64.21.61.90.91.30.8,2.31.30.71.965203480346034253278308230822953295329532953292428985987309730803049292927412741262026202620262026202598 STATION(RiverMile)SUSQUEHANNASES-ER-OLTABLE2.4-2(Continued)STAGEVELOCITY(Ft.msl)(Ft/sec)PresentProectedPresentProectedDIS(HARGE(Ft/sec)PresentProectedSunbury(122.O)Northumberland(123.5)WolvertonSta.(128.5)Danville(134.7)Catawissa(143.7)Bloomsburg(146.6)Almedia(150.4)Berwick(159.1)Nescopeck(160.0)BeachHaven(162.4)Wapwallopen(163.9)PlantSite(165.5)Shickshinny(169.5)42o.6422.2427.2433.8446.9452.5456.6475.7476.8482.2482.4483.7487.5420.5422.0427.2433.'6446.3452.3456.4475.5476.6482.1482.2483.5487.11.40.74.41.71.60.91.30.92.11.41.20.82.01.40.74.31.71.90.91.30.82.21.40.72.035823199356831883543316733833034317028293170282929532620303026973030269730302697299926842971267161375604 SUS(}UEHANNASES-ER-OLTABLE2.4-2(Continued)Stationlocationsareindicatedasthenearestmunicipalityorfeaturetotherivercross-sectionusedinthecomputations.Theexactcross-sectionlocationisindicatedbyrivermile.OneFoot=0.3048meterOneFootPerSecond=0.3048meterpersecondOneCubicFootPerSecond=0.0283cubicmeterspersecond.
SUS(}UEHANNA SES-ER-OL TABLE2.4-2(Continued)
SUSQUEHANNASES-ER-OLTABLE2.4"3MONTHLYPERCENTCHANCEOFFLOODINGSUSUEHANNARIVERUPSTREAMOFSUNBURYMonthJanPercentChanceofFloodin6.8FebMarAprMayJunJulAugSeptOctNovDec7.540.419.08.22,12.11.41.03.42.75.4(1)Sunburyis43miles(69km)downstreamofthesiteattheconfluenceoftheSusquehannaRiverandtheWestBranchSusquehannaRiver.
STATION()(RiverMile)STAGE(Ft.msl)PresentProectedVELOCI1Y(Ft/sec)PresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)422.2422.1427.2427.1433.8433.6446.7446.2452.5452.2456.5.456.3475.6475.5476.7476.5482.2482.0482.4482.2483.6483.4487.5487.1420.6420.51.50.74.41.71.70.91.30.92.11.41.20.82.01.50.64.21.61.90.91.30.8,2.31.30.71.965203480346034253278308230822953295329532953292428985987309730803049292927412741262026202620262026202598 STATION(RiverMile)SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)
SUSQUEHANNASES-ER-OLSECTIONTITLEVOLUMEAPPENDXCIESeesssseoeos~ee~eeeessssssss~seses~seIIIB1ANEVALUATIONOFTHECOSTOFSERVICEIMPACTOFADELAYINTHEIN-SERVICEDATESOFSUSQUEHANNASES(JANUARY1978).....IIICURRENTLONG-RANGEFORECASTENERGYSALESPEAKLOAD1976-1990......................IIIB2APPLICANT'FORECASTINGNETHODOLOGYKMHSALESANDPEAKLOADSDECEMBER,1976...IIINATXONMIDEFUELEilERGENCYRESPONSETOFPCORDERNO496....................~IIISUSQUEHANNARIVERMATERANALYSESSUNHARY..IIIEQUATIONSANDASSUMPTIONSUTXLIZEDINTHECALCULATIONOFINDIVIDUALANDPOPULATIONDOSESTOMAN....IIIENVIRONMENTALTECHNICALSPECIFICATIONS--III SUSgUEHAxfHASESEROLAccuracy1%fullscaleCurrentfull-scaledeflectionInputimpedenceResponseTime'RritingTypeChartSpeedChannels1.0milliamperes1400ohms0.5secondsCurvilinear3in/hour1oneachchart2charts/recorderAllrecordingdevices,translator=andthedigitizerarehousedinaweatherproofcinderblockbuilding.Thisbuildinghasthermistaticallycontrolledheatingandairconditioning.6..1.3.1.15CalibrationandYaintenanceoftheSystemAllcalibrationandmaintenanceispeformedatleastsemi-annuallyinaccordancewiththefrequenciesandproduceduresprescribedinthemanufacturer'soperatingandmaintenancemanual.61.3.1.1.6DataAnalysisTheanalogchartrecordsareremovedevery14daysforinspectionandanalysis.Eachchartisremovedseparatelyandplacedinindividualboxeslabeledwithdate,instrument'ndlevel.Thechartsareinspectedforbreaksinrecord,timeerrors,powerfailuresandotherindicationsofsystemmalfunctionandthenstored.Theinformationgainedfromthisinspectionisusedtoupdateandverifythedigitaldata,andtolocateanomalieswithanyparameter.Theanalogrecordingsystemprovidesaback-upincaseofdigitalsystemfailure,sothatahighdatarecoveryratecanbemaintained.Table6.1-2,DataRecoveryBates,givestherecoveryratesforeachyear.Digitalminutedataarerecordedatthesiteonmagneictapeforanalysis.Atthebegi.nningofeachscanofdataauniqueidentificationcode,thedate,'hourandminuteisrecorded.After14daysofrecording,thetapeisremoved,labeledwiththedataperiodandforwardedtotheApplicant,Thecomputer6.1-13 SUSQUEHANNASES-ER-OL/facilityprocessesthesetapesconvertingtherecordedmillivoltaqesintoenqineerinqunits.AnhourlyaveraqeforeachparameteriscomputedDatavalidity,rangeofhourlyaveragesandthenumberofvalidobservationscontributinqtotheaveragesaretabulatedtoassistinthedeterminationofdatareliability.Comparisonsbetweentheanaloganddiqitaldataareperformedwhenthebi-weeklyreviewofthedigitaldatarevealsqu'estionableorinvaliddata.Temperatureanddewpointhourlyaveragesarecomputedusingthefollowinqscalarequation:B.=1Zr.B..n.jjii=1where:theaveragehourlyvalueforthejthvariable(inphysicalunits);B..thetotalnumberofminuteobservationsduringthehour(normally60),butifnislessthan15forthathour,dataareconsideredtobemissing;thei"minuteobservationonthe3+"variable(millivolts):theconversionfactortochangethej<hvariablefrommillivoltsintophysicalunits.Afterwindspeed(WS)andwinddirection(WD)areconvertedfrommillivoltstheyarerelatedinthefollowinqmanner:IfWSisinvalid(999)thenWDismarkedinvalid(999)andviceversa.IfWS)threshold(non-calm)andWD=0(implyingcalm)thenWDissetto360~(North)IfWS(threshold(calm)andWD)0(implyingnon-calm)thenWDissetto0o(calm)Hourlyaveragesarecomputedasscalarsforwindspeed.Winddirectionaveragesare,determinedasfollows:Iftheassociatedaveraqewindspeedisgreaterthan1.34112meters/sec,(3mph),averageWDisdeterminedbyvectoranalysis(whereWSandWDforeachminutedeterminesavector).61-14 SUSQUEHANNASES-ER-OLAPPENDIXB2APPLICANT~SPORECASTINGMETHODOLOGYKMHSALESANDPEAKLOADSDecember,1976 INTRODUCTIONThePP&LenergymodelforecastsKWHconsumptionforeachofthemajorgroupsinthePP&LServiceArea;i.e.,oRESIDENTIALoCOMMERCIALoINDUSTRIALoRESALE,STREETLIGHTINGANDRAILROADAneconometricmodelisdevelopedbyconsideringthedeterminantsforeachofthesectors.Whilethemodel,bynecessity,isasimplification,itcapturesthecruciallinkagesbetweensectoractivityandKWHsales,providingtheuserwithastructuralframeworkforforecasting.Throughthemodelausercanproduceaforecastofsalesforeachofthesectorsconsistentwithaneconomicoutlook.Moreimportantlytheimpactofalternativeeconomicscenarioscanbetested.Inarrivingataforecast,themodelutilizesinformationandforecastsoftheU.S.economy,thenationalenergymarket,theCentralEasternPennsylvania(C.E.P.)economy,localweatherconditionsandcompanypolicy.ThisinformationisobtainedfromacombinationofexistingforecastingservicesandreviewswithPP&LEnergyConsultants.ThePP&Lmodelbuildsfromthatpoint,measuringtheimpactofthenationaleconomicoutlookontheC.E.P.region.Thisoutlookisthencombinedwithassumptionsaboutweatherconditionsandcompanypolicytoproduceaforecastofenergysalestoeachofthesectors.MODELSTRUCTUREIndevelopingamodelofelectricenergyconsumptionforaparticularregionitisimportantto,Qrst,definethedemandconditionspresentinthatservicearea,andsecond,measuretheirimpactonsalestoeachofthesectors.ThePP&Lenergymodelisdevelopedwithinthistwo-stageprocess.Inthefirststageofthemodel,demandconditionsaredefined,i.e.,climaticconditions,theeconomicenvironment,energyprices,andcompanypolicy.Weather,energy'costsandcompanypolicyareallexogenousinputstothemodel.Theeconomicconditionsaredevelopedendogenouslythroughan'conometricframe-work.Thesecondstagemeasurestheimpactofthesedemandconditionsoneachsectorthroughasetofeconometricequations,relatingsalestothosefactorsthatareknowntoaffectgrowth.Thegeneralflowofthemodelisgiven.inFigureI.
STAGEVELOCITY(Ft.msl)(Ft/sec)PresentProectedPresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.O)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)42o.6422.2427.2433.8446.9452.5456.6475.7476.8482.2482.4483.7487.5420.5422.0427.2433.'6446.3452.3456.4475.5476.6482.1482.2483.5487.11.40.74.41.71.60.91.30.92.11.41.20.82.01.40.74.31.71.90.91.30.82.21.40.72.035823199356831883543316733833034317028293170282929532620303026973030269730302697299926842971267161375604 SUS(}UEHANNA SES-ER-OL TABLE2.4-2(Continued)
TheserviceareaeconomicmodelislinkedtotheDRIMacroEconomicModel,bridgingthegapbetweenthenationaleconomyandlocalsalesbyhighlightingregionalcharacteristics(i.e.,industrialmix,growthtrends,demographicmix,etc.)andbyincludingexplicitlytheimpactofthenationaleconomyontheregion.Thislinkageisprimarilythroughtheindustrialsector.Forexample,thesteelindustryintheC.E.P.regionservesanationalmarket,therefore,theirsalesdependondemandconditionsinthenation.Indevelopingamodeltoforecastthegrowthofthesteelindustryintheregionitisnecessarytoincludenationaleconomy.Asanotherex-ample,thehousingindustryintheareaisheavilydependentonlocalwealthanddemographicmix,butadepressedsteelindustrywouldlowerlocalwealththerebyslowinghousinggrowth.Thefunctionoftheserviceareamodelistoliterthesenationalconditionssoastomeasuretheirimpactonthelocaleconomy.Thus,theelectricuseforecastisdevelopedinthefollowingway.Afore-castofthenationaleconomy,developedthroughtheDRIMacroModel,isacceptedoralteredtoreflectPP&L.'sthinking.ThatforecastisfQteredthroughtheserviceareaeconomicmodeltodeterminelocaleconomicconditions.Againtheuserhastheoptionofacceptingtheresultsoralteringthemwherehedeemsnecessary.Theeconomicsarecombinedwithassumptionsaboutenergyprices,expectedweatherconditionsandcompanypolicytodefinethelocaldemandconditions.Finally,thisinformationdeterminestheexpectedlevelofmegawatthoursales.Ateachstagetheforecasterhastheabilitytoadjusttheoutputofthemodelbeforegoingon.ItallowstheusertherequiredQexibilitytomakethemodelausefultool.Thenextthreesectionsdetailthemethodologyusedindevelopingtheeconomicandenergymodels.SERVICEAREAECONOMICMODELTheCentralEasternPennsylvania(C.E.P.)economicmodelisconstructedtohighlighttheregionaleconomywithinthePP&Lservicearea.Itprovidesinfor-mationaboutfourmajoreconomicareas:A.INDUSTRIALSECTORB.COMMERCIALSECTORC.WAGES&PERSONALINCOME.D.HOUSINGThegeneralQowofthemodelisdepictedinFigureII.Briefly,themodelunfoldsasfollows.Theindustrialsector,throughemployment,islinkedtothenationaleconomy.Thetightnessofthelocallabormarket,alongwithinflationaryconditions,determinethelevelofmanufacturingwages.Inthenextstage,employ-mentinthecommercialsectorandpercapitapersonalincomearesimultaneouslydetermined;theirlevelsaredependentonindustrialactivityandareinterdependentwitheachother.Finally,populationofthehouse-owningagegroupiscombinedwithlocalwealthandemploymentconditions,andnationalinformationontheQnancialmarketstodeterminethehousingmarketgrowth.Abriefdescriptionofeachareafollows.0 A.INDUSTRIALSECTORAregion'smanufacturingsector,primarilyitsexportingindustries,providethemajorlinkbetweenthenationalandregionaleconomies.Thus,wewouldexpectthissectortofollowthenationalpatternsgiventhatitservesanationalmarket.However,weexpectthelocalindustriestomaintainregionalcharacteristicsaswell,fromthestandpointoflocationaldecisionsonthepartofentering/exitingmanufacturingconcerns,Inmodellingmanu-facturingemploymentinthePP&Lserviceareaeveryattemptwasmadetoincludethesetwoaspects:linkagewiththenationaleconomyandregionallocationaldecisions.B.COMMERCIALSECTORThetypeofservicesprovidedandproductssoldwithinthecommercialsectorarequitesimilaracrossdifferentregionsofthecountry.However,thegrowthofthissectorwithinaregionisheavilydependentuponthelocaleconomy.Indevelopingthecommercialemploymentequations,thegrowthineachofthesesectorswascomparedtotheirbreakdownsnationally.TherelativegrowthoftheareawasthencomparedtotherelativeU.S.growthinpopulationandpercapitaincome.C.WAGES,PRICES,ANDPERSONALINCOMEManufacturingaveragehourlyearningsandtotalpersonalincomefortheserviceareaareforecastedwithintheC.E.P.economicmodel,buildingfromtheemploymentsituationinthemanufacturingandcommercialsectors.Inaddition,aforecastoflocalinflationconditionsisdevelopeddirectlyfromtheinflationconditionsofthenation.D.HOUSINGSECTORThegrowthinthehousingstockisanimportantdeterminantofresidentialsales.Therefore,intheeconomicmodel,weexplictlymodelhouseholdformationsintheservicearea.Indevelopingthissectorwehaveachoiceoftwoavailabledataseries,householdpermitsfromthefederalgovernmentandnewdwellingunitstatisticsfromPPaLrecords.Thedwellingunitdata,consideredmorereliableandeasiertomonitor,wasused.Thelong-rundemandforhousingishypothesizedtobea'unctionofthepopulationofthehouse-owningagegroupandthelevelofhouseholdwealth.IV.RESIDENTIALSECTORTheresidentialmodelhasbeendevelopedtoforecastsalestothetwomajorclassesofresidentialservice;viz.,electricallyheatedhomesandgeneralresidential.Indoingsothemodelisdividedintotwoblocks:oCUSTOMERBLOCKoUSAGEBLOCK Inthecustomerblockthenumber.ofresidentialcustomersundereachoftheservicesisdetermined.The'usageblockdeterminestheaveragekWhusagepercustomerundereachofthe,services.Totalresidentialusageisobtainedbysummingtheproductofcustomerstockandpercustomerusageineachofthegroups.CustomerBlockTotalresidentialcustomersinanyperiodisequaltothenumberinthepreviousperiod,plusthenewunitscomingon,lessthedepreciationoftheexistingstock.Inestimatingourusagepercustomerequations,theimpactofthefollowingdeterminantswasmeasured.oHOUSEHOLDINCOMEoPRICEOFELECTRICITYoPEOPLEPERHOUSEHOLDoWEATHERCONDITIONSoCONSERVATIONEFFORTSV.FigureIIIshowstherelationshipsthatareconsideredinmodellingthissector.COMMERCIALSECTORTheCommercialSectorpresentsadifficultmodellingtasktotheforecaster.Overthepast10to15yearsithasshownsteadygrowth,becominganincreasingportionoftotalsales;yetlittleinformationisavailableoverthisintervalonthetypeofloadserved.Thebestthatcanbedoneinlieuofcommercialsurveysandexpandeddatacollectionistoincludein,themodelthoseeconomicindicatorsthatbestdepictthegrowthofthesecustomers.Themodellingtaskisnotoneofobtainingsatisfactorysummarystatistics,theycomerathereasily,butrathertobesurethattherealdeterminantsandindicatorsofgrowthareinthe'model.Inadditiontotheoverallgrowth,thepriceofelectricity,weatherconditionsandconservationareconsideredimportantdeterminantsofsalesandareincluded.Salestothecommercialsectorarecollectedbyfourmajorclasses:oWholesaleandRetailTradeoFinancialandPersonalServicesoOtherCommercialoSmallCommercialThegeneraloutlineofestimatingthissectorisexhibitedinFigureIV.
Stationlocations areindicated asthenearestmunicipality orfeaturetotherivercross-section usedinthecomputations.
INDUSTRIALSECTORTheIndustrialModelwasdevelopedtoforecastKWHsalestofourteenmajorindustrialclasses.Thesalesforecastfortheindustrialsectoris'theaggregationofthesefourteencia'sses,thebreakdownofwhichisgiveninthetablebelowandtheflowdiagram.shownasExhibitV.INDUSTRIALSECTORBREAKDOWNOFINDUSTRIALCLASSESSICINDUSTRY202223272832433(less331)331353611512Food&KindredProductsTextileMillProductsApparelPrinting&PublishingChemicals&AlliedProductsCementPrimaryMetals(exceptSteel)SteelManufacturingNon-ElectricalMachineryElectricalRiachineryOtherMetalProducts>OtherGeneralIndustry2SmallIndustrialCoalMiningNote:l.IncludesMining(SIC10),Ordnance(SIC19),FabricatedMetals(SIC34),TransportationEquipment(SIC37)andInstruments(SIC38).2.IncludesOilaGasExtractions(SIC13),MiningaQuarrying(SIC14),TobaccoProducts(SIC21),LumberandWoodProducts(SIC24),FurnitureandFixtures(SIC25),PaperandAlliedProducts(SIC26),PetroleumRefining(SIC29),RubberandPlastics(SIC30),LeatherandProducts(SIC31),Stone,ClayandGlass,lessCement(SIC32.less324),MiscellaneousIndustries(SIC39).Intheindustrialmodel,fourmajorfactorswereconsidered:oProductionActivityoFactorSubstitutionoTechnologicalChangeoConservation VII.SUMMARYInsummary,thePP5LEconometricModelforecaststh'eshortandlong-termkWhconsumptionforthemajorconsumingsectors,inthe.PPaLServiceArea.ItutilizesforecastsfromtheDRIMacroModeltogetherwithregionaleconomic,demo-graphic,andclimaticconditions-todetermineascenariooftheserviceareaeconomy.Assumptionsaboutthepriceofelectricityandcompetingfuels,weatherexpectations,theworkingagepopulation,andtechnologicalchangesarethenmade,fromwhichpointthemodelproducesakWhforecast.OutlooksarealsopreparedbyPPaLEnergyConsultants.Intheresidentialsector,themodelforecastskWhsalesforElectricallyHeatedHomesandGeneralResidentialService.Forbothoftheseclasses,salesistheproductofthenumberofcustomersandusageper.customer.Thenumberofcustomersisafunctionofemploymentintheservicearea,realdisposableincome,newdwellingunits,thepriceofelectricityandcompetingfuels,andnewmortgagecommitments.Usagepercustomerisdetermined,forthemostpart,bytherealpriceofelectricity,realdisposableincome,andweather.Themodel,whichdevelopsthemathematicalrelationshipsamongthesevariables,thenfore-castsresidentialsales.Commercialsales,whicharesegregatedintofourcategories,areafunctionofcommercialemploymentintheservicearea,realdisposableincome,therealpriceofelectricity,andweather.Thegrowthincommercialdemandispositivelyrelatedtothefirsttwovariableswhilenegativelyrelatedtothethird.Bysolvingaseriesofequations,themodel'determinesthekWhconsumptioninthecommercialsector.Theforecastofindustrialsalesmakesuseofestimatesofindustrialoutput,whichinturnisafunctionofmanufacturingemployment.Manufacturingemployment,bytwo-digitSICCodesinthePPaLserviceareadependsuponcurrentlevelsofemploymentandthelevelofproductionforaparticularindustry.IndustrialoutputinourserviceareaisdefinedastheFederalReserveBoardProductionIndextimestheratioofPPSLemploymenttoU~S.employment.SalestothefourteenindustrialSICgroupsaremainlydeterminedbyfindingtherelationshipofkWhsalestoserviceareaindustrialoutput,therelativepriceofelectricitytofueloil,therelativepriceofelectricitytonaturalgas,andanytechnologicalchangesthatmightoccur.Nomodel,regardlessofhowwellitisspecified,willforecastperfectly.Therewillbeexogenousevents,suchaslargenewloadsorchangesincompanyorgovernmentpolicy,thatthemodelisunabletopickup.Inthesecases,theresultsofthemodelcanbemodifiedtothedesiredlevelbyjudgment.VIII.PEAKLOADFORECASTInordertoadequatelyprovideforourcustomers'emandsforelectricity,adequategeneratingcapacitymustbeavailable.Theamountofcapacityrequiredisdeterminedbyforecastingsummerandwintersystempeakloadsfortentofifteenyearsintothefuture.Summerandwintersystempeaksareforecastedbecauseitisduringtheseperiodsthatthegreatestdemandsaremadeonoursystem.Airconditioningloadcausesthesummerpeaks,andlightingandspaceheatingloadsareresponsibleforthoseinthewinter.
Theexactcross-section locationisindicated byrivermile.OneFoot=0.3048meterOneFootPerSecond=0.3048meterpersecondOneCubicFootPerSecond=0.0283cubicmeterspersecond.
PPEL'sestimatingprocedureproducessummerandwintersystempeakloadsbydevelopingthecontributionmadebyeachrateclass.Theterm"rateclass"meansallcustomersservedundersimilarrateschedules.Thesaleofenergyforecastdevelopedbyrevenueclassesisreallocatedtorateclassesusingobservedhistoricalrelationships.Loadstudydataisthenbroughtintotheestimationprocess.Ourloadstudiesaredesignedtodeterminetheloadcharacteristicsofaspecificclassofservice.Whenmetersareofthewatt-hourtype,stratifiedrandomsamplesofcustomerswithinkilowatt-hourrangesareused.Inthecaseofmostgeneralservicesamplecustomers(upto7000kwwithdemandmeterbilling),loadfactorrangeswithineachrateclassareused.Largercommercialandindustrialcustomersarestudiedindividually.Dailyloadcurvesforthedaysofsummerandwintersystempeakarederivedforeverystratumofeachrateclassforanaveragecustomer.Forcustomersstudiedbykilowatt-hourranges,demandpercustomerdataforeachstratumofeachrateclassaremultipliedbythenumberofcustomersintheuniverseofthatstratumtoobtainauniversedailyloadcurve.ThenumberofcustomersinastratumisobtainedfromtheCompany'sbillfrequencydistributions.ThiscanalsobedoneforyearsotherthantheloadstudytestyearbecausetheloadcharacteristicsofakWhorloadfactorstratumremainfairlyconstantwithonlythenumberofcustomersinastratumchangingfromyeartoyear.Dailyloadcurvesforloadfactorstratumarestatedasratiosofcustomermonthlymaximumdemand.Theseareappliedtothesumofcustomerdemandsineachloadfactorstratumasdeterminedfromanhours-usedistributiontoobtaintheuniversedailyloadcurve.Foranhistoricalyearthestrataofagivenrateclassareaddedtogethertoformthedailyloadcurvefortheuniverseofthatrateclass.Therateclassloadcurvesforthedaysofsummerandwintersystempeakofagivenyeararecorrectedforlossestothenetgenerationlevelandaddedtogethertoformthesummerandwinterloadcurvesforthesystem.Theresultischeckedagainstactualpeakloads.Usingthesetechniqueswehavedevelopedrateclasscontributionstosummerandwintersystempeakshistoricallyforselectedhoursoftheday.Theratiobetweenclasscontributiontosystempeakandannualsalestothatclassiscalculatedforeachrateclassatthetimeofsummerandwintersystempeak,foreveryhistoricalperiodanalyzed.Thetrendofthisratioforeitherasummerorawintersyst'mpeakisfairlyconstantovertime.Foragivenclassthetrendofthisratioforthetimeofbothsummerandwintersystempeakisprojectedthroughtime.Byapplyingtheappropriateratiostothepredictedannualsalesofanyfutureyear,thatclass'ontributiontosummerandwinterpeakisforecasted.Thesystempeakforaspecifictimeperiodisobtainedbyaddingtogethertheprojectedclasscontributionstosystempeak.
SUSQUEHANNA SES-ER-OL TABLE2.4"3MONTHLYPERCENTCHANCEOFFLOODINGSUSUEHANNARIVERUPSTREAMOFSUNBURYMonthJanPercentChanceofFloodin6.8FebMarAprMayJunJulAugSeptOctNovDec7.540.419.08.22,12.11.41.03.42.75.4(1)Sunburyis43miles(69km)downstream ofthesiteattheconfluence oftheSusquehanna RiverandtheWestBranchSusquehanna River.
SlRBHP/t7O~I/ADLi'm<CFUSECSVc3~&~/tHVTCCbvbmcvJSlfE~CF.MMES~EHE68RSl~MYE7ul6iA)L5522(rReru6~MFigureI DR'iNAt'RO50DELorU.S.EcoNoN''hf905%lhLs&c&#xc3;QA.'TcqhlEHPUHHE}4T{rue-otl.na~ooW~)'ERUIcEARgAiW~s~parce>c%QVICS~.QOQ-hQUCULTQMLplpUHHF-'AT~6ERVICRhRFACQcm6kclA~SECOR.TDTALEHPkMM~V~ciCg,~QUA~Tbspl4EVbQEUi'd&OgleicGfhlcfAAEA-~V/cEAQ69M~(MUpD~OF~BOO&oQLTS U.CI.ECONOMYILIMSMIALSc~~~KNFL'(HG4T'A405(T2AM~IXWQ)'ed(CKA~~WAQ5iJc(ce,5'5eRv(cjp((eAIPC(LCL(ALlt(COt((II'~(CE,POfA~I(OI(ACia(ClAL~~etlFL(t(t(KAli~ca~~1(7Th(EHrl(telD41SQvCE~.peaurerPRgNAIIH~~ICCWCCPgakoPOOVmITO(LI~~.IlAgtVl((M~5@V~rCEA~I'Sr'(lar.AKL.II~QxlCR$%%$IUNWONAP~V~SV.'b.STYX,OF5Ghl(C(KDg5QJt44tP4T4~5@)ICEAKANEu~MbLML~P4J-~LCS2AE~a6uu~~OlCtOLOPC46LuHOOQL~~55bllCE~et(WHP(LL.a+mt(e(LQ4eak.oem'(-0CMTlALtlunlVS@AAIL~~AL(RRT4C~kl((CDI$4'-OFQGO(L~<CeARK@IIRLCEOFIPhd(LPc,I~beni(ALIIP(bCZOS'~~I%-s~~(CSIIIPly@OS'IggCQQ&ILzprflJL,5Ept.'ce(It(KQAVLA1('OVg~~OldRLQK~~ICE1II(e(1(~CIocoaee~vsIIIrFQt(l0MIIJ6CC"~QTIAI+~MT'~AILILCLIIL,~RRBORATlhr5~O(eKRVATLON(ILIigureIII RrvezAav~vQR'IMACROMOOEIorU.S.ECOMOtf!IIIQQSMIAL~ItnAL~~~T.(TWO0&TQAMQCWAI)~gERVlCKAX~A'M~PelcaS'~ICSPagAISGhnCEPCXA-NONABACICIAJVlAL,WPlghfllCAIT'SCbnCt~>>r~~~~APL~CATSERuCC,A~i~CCC4CC~POPULUSTIClH~~~.ll~VlIImCChl45AREA.~u~Ka5,~~'Saeva~IEH~~'usus~+aeAlt'T$4DC'5$2llCEAQUA.N'AH~PllOKWACLESWC~WP4a~CEHDLCthHCIJTRIIAIICIAIPER&~~~CCl4bVAlPllgthPIP~'.AI4PtQ,~~le%HAHCOu~mOlltKP~EQ.CIAIIptICKcP~C~C~IL9+Rs~~o~I(@AMER.C&L"DECTCR.HwHICOIJIItT~IItHE&hk)A,TlICIIQ.CDt1HFQC;AlcE~~RIIIr~SeWWIII ll40lhMIALSECtCA.~TIDAL.EW~mur(~Ol&TSMAKQOWL))~5ERVICEAIL'QXKS~PILICI.S'QRVIC3PC@AIPueOuu-I~EIglgACCICV~aKRncaALKA.~m~mr'SEbnCE~v~PCR~IN~~~~+IPCPVIAr&NI~~-Ileal(gagLIIIQCpQUOITSeahICACTA.vam'55blICI'.Adrh-P4CL5aRIAI.5CILVICvihREA(~O<CgTCQEACOul)P7gltCl+Olc,QM'A.,EX'I+OCO~ttIdH~PPPAILEL,CXBRKPvL<<H~Kvu.S.(~~3~v)rLPITS~~IL3IPRa<>~W~IISCRICEH2CAHWHPdlDTIM&+PCS'~HIS+NalH'k@HIQKLStALLIS)PQg)~~H4H~CvHBThe%)PAC.TCILIWIPRIczcF~&cb~CCrIPhaCP~~I55bJICvI~H'g-I"~~ACTCC.i~IIIdHpIIIITACVI-EIpL5(,5;s,~3C%EL~'PCcCCC,5HulH~~+ICALr~luEAVCAr~lmmII43HcrHalLcm~~immikeAN~ImIHl5iiL~tCQ$5NATICNIIINcvsnu~cBmocIIIiIHCCRC.NISI~TOTAL~WAWHO@%.SALESIMDV5TTRIALScCTAExhibitV SUSQUEHANNASES-ER-OLcontaminatedbyairborneradioiodineisapotentialsourceofexposure.Samplesfrommilkanimalsareconsideredabetterindicatorofradioiodineintheenvironmentthanvegetation.Ifthecensusrevealsmilkanimalsarenotpresentorareunavailableforsampling,thenveqetationmaybesampled.The500-sq.ft.garden,considering20%usedforgrowinggreenleafyvegetablesandavegetationyieldof2kg/m>willproducethe26kq/yrassumedin~Reula~torGuide1.109(March1974)forchildconsumptionofleafyveqetation.Theoptiontoconsiderthegardentobeatthenearestresidenceisconservativeandthoselocationsmaybeusedtocalculatedosesduetoradioactiveeffluentreleasesinplaceoftheactuallocationswhichwouldbedeterminedbythecensus.Thepermissionofdeviationsfromthesamplingscheduleisbasedontherecognitionofunavoidablepracticaldifficultieswhichintheabsenceofthepermitteddeviationswouldresultinviolationofthespecifications.TherequirementfortheparticipationintheEPAcross-checkprogram,orsimilarprogram,isbasedontheneedforindependentchecksontheprecisionandaccuracyofthemeasurementsofradioactivematerialinenvironmentalmonitorinqinordertodemonstratethevalidityoftheresults.~ReoetingRequirementA.AnnualEnvironmentalOperatinqReport,PartB,Radiological.AreportontheradiologicalenvironmentalsurveillanceproqramforthepreviouscalenderyearshallbesubmittedtotheDirectoroftheNRCRegionalOffice(withacopytotheDirector,OfficeofNuclearReactorRequlation)asaseparatedocumentinMayofeachyear.TheperiodofthefirstreportshallbeginwiththedateofinitialcriticalityThereportshallincludea.summary(formatofTableF-1,EnvironmentalMonitoringProgramSummary)interpretations,andstatisticalevaluationoftheresultsoftheradiologicalenvironmentalsurveillanceactivitiesforthereportperiod,includinqacomparisonwithoperational,controls,preoperationalstudies(asappropriate)andpreviousenvironmentalsurveillancereportsandanassessmentoftheobservedimpactsofthestationoperationontheenvironment.Intheeventthatsomeresultsarenotavailablethereportshallbesubmittednotingandexplainingthereasonsforthemissinqresults.Themissingdatashallbesubmittedassoonaspossibleinasupplementaryreport.
SUSQUEHANNA SES-ER-OL SECTIONTITLEVOLUMEAPPENDXCIESeesssseoeos~ee~eeeessssssss~seses~seIIIB1ANEVALUATION OFTHECOSTOFSERVICEIMPACTOFADELAYINTHEIN-SERVICE DATESOFSUSQUEHANNA SES(JANUARY1978).....IIICURRENTLONG-RANGE FORECASTENERGYSALESPEAKLOAD1976-1990......................III B2APPLICANT' FORECASTING NETHODOLOGY KMHSALESANDPEAKLOADSDECEMBER, 1976...IIINATXONMIDEFUELEilERGENCYRESPONSETOFPCORDERNO496....................
SUSQUEHANNASES-ER-OLThereportsshallincludeeitherexplicitlyorbyreferencetootherdocumentation,thefollowing:asummarydescriptionoftheradiologicalenvironmentalmonitorinqprogramincludingsamplingmethodsforeachsampletype,sizeandphysicalcharacteristicsofeachsampletype,samplepreparationmethodsanalyticalmethods,andmeasurinqequipmentused;amapofallsamplinglocations..theresultsofthelandusecensusesandtheresultsoftheApplicant'sparticipationintheEnvironmentalProtectionAgency'sEnvironmentalRadioactivityLaboratoryIntercomparisonsStudies(Crosscheck)Proqram.B.Non-routineRadiologicalFnvironmentalOperatinqReportsIfaconfirmedmeasuredradionuclideconcentrationinanenvironmentalsamplingmediumaveragedoveranyquartersamplinqperiodexceedsthereportinglevelgiveninTableF-4,ReportinqLevels.forNon-RoutineOperation,awrittenreportshallbesubmittedtotheDirectoroftheNBCRegionalOffice(withacopytotheDirector,OfficeofNuclearReactorRegulation)within30daysfromtheendofthequarter.Aconfirmatoryreanalysisoftheoriginal,aduplicateoranewsamplemaybedesirable,asappropriate.Theresultsoftheconfirmatoryanalysisshallbecompletedattheearliesttimeconsistentwiththeanalysis,butinanycasewithin30daysexceptinthecaseofthestrontiumanalysis.Zfitcanbedemonstratedthatthelevelisnotaresultofstationeffluents(i.e.,bycomparisonwithcontrolstationorpreoperationaldata)areportneednotbesubmitted,butshallbediscussedintheannualreport.IfradionuclidesotherthanthoseinTable-F-4aredetectedandareduefromstationeffluents,areportinglevelisexceededifthepotentialannualdosetoanindividualisequaltoorgreaterthanthedesignobjectivedosesof10CFRPart50,AppendixIThisreportshallincludeanevaluationofareleaseconditions,environmentalfactorsorotheraspectsnecessarytoexplaintheanomalousresult SUSQUEHANNASFS-EROLTABLEF-2SUSQUEHANNASESOPERATIONALRADIOLOGICALENVIRONMENTALHONITORINGPROGRAHSam~leTpeAirParticulatesSS-AP-551SS-AP-1152SS-AP-9A1SS-AP-12E1SS-AP-7HlAirIodineSS-AI-551SS-AI-1152SS-AI-9A1SS-AI-12ElSS-AI-7H1SurfaceWaterSS-SW-5S2SS-SW-12F1Dr~inkinWaterSS-PWT-12F2SS-PWT-12H2Fish**SS-AQF-6AISS-AQF-2G1SedimentSS-AQS-llclMilkSS-H-5B1SS-M-12B1SS-H-1282SS-H-7H2Location++NorthofI.A.SWcornerofsiteNearTransmissionFieldBerwickHospitalPPEtLRoofNorthofI.A.SWcornerofsiteNearTransmissionFieldBerwickHospitalPPSLRoofAtI.A.BerwickBridgeBerwickWaterCo.(treated)DanvilieWaterCo.(treated)OutfallUpstreamHessIs,areaFarmSchultzFarmYoungFarmCrytalSpringsDairyCollectionF~PBUMC*SASA2/H~AnalsisGrossBetaGalenaEmittersI-131GamaEmittersH-3GrossBetaGammaEmittersH-3GamaEmittersGammaEmittersI-131GamaEmittersAnalyticalF~reCene*WQCHQCSASA2/H2/HUnitspCi/m3pCi/mpCi/mpCi/1pCi/1pCi/1pCi/1pCi/1pCi/g(wet)PCi/9(dry)pCi/1pCi/1 SUSQUEHANNASES-ER-OLTABLEF-2(cont.)SUSQUEHANNASESOPERATIONALRADIOLOGICALENVIRONMENTALHONITORINGPROGRAH~SamleTeFoodProductsSS-FP-5B1DirectRadiationSS-ID-3S2SS-ID-4S1SS-ID-551SS-ID-7S1SS-ID-11S2SS-ID-9AISS-ID-12E1SS-ID-7HILocation++FarmSusquehannaRiverSusquehannaRiverNorthofI.A.On230KVTowerOn230KVTowerNearTransmissionFieldBerwickHospitalPP&LRoofCollection~Feemene*~AnalsisGanmaEmittersGamaDoseAnalytical~Fremene*UnitspCi/g(wet)mrem/std.moFrequencyCodes:W=Weekly;H=Monthly;Q=Quarterly;SA=Semi-Annual;A=Annual;2/H=twiceeachmonth;CComposite.Importantclassesoffishwillbeanalyzedseparately.(bottomfeedersandgamefish)Hilkcollectedandanalyzedsemi-monthlyfromAprilthroughOctober-monthlyduringothermonths.ShowninFigure.
~IIISUSQUEHANNA RIVERMATERANALYSESSUNHARY..IIIEQUATIONS ANDASSUMPTIONS UTXLIZEDINTHECALCULATION OFINDIVIDUAL ANDPOPULATION DOSESTOMAN....IIIENVIRONMENTAL TECHNICAL SPECIFICATIONS-
SUSQUEHANNASESEROLTABLEF-3DETECTIONCAPABILITIESFORENVIRONMENTALSAMPLEANALYSISMINIMUMDETECTABLELEVEL(MDL)AnalysisWater(pCi/l)AirborneParticulateorGas(pCi/m')Fish(pCi/kg-wet)Mi1kFoodProductsSediment(pCi/1)(pCi/kg-wet)(pCi/kg-dry)GrossBetaH-3Mn-54Fe-59Co-58,60Zn-65ZrNb-95I-131Cs-134,137BaLa-140200102010200.310107x105x105x108517085170855c101016c,d50100 SUSQUEHANNASES-ER-OLTableF-3(Cont'd)~AcceptabledetectioncapabilitiesforthermoluminescentdosimetersusedforenvironmentalmeasurementsaregiveninRegulatoryGuide4.13,July1977.Indicatesacceptabledetectioncapabilitiesforradioactivematerialsinenvironmentalsamples.Thesedetectioncapabilitiesaretabulatedintermsoftheminimumdetectablelevel(MDLs).TheNOLisdefined,forpurposesofthisTable,asthatconcentrationofradioactivematerialinasamplethatwillyieldanetcountwhichisdifferentfromthebackgroundcountbythreetimesthestandarddeviationafterbackgroundcount.Foraparticularmeasurementsystem(whichmayincluderadiochemicalseparation):MDL=300SbExVx2.22xYxexp(-Xt)where,NOLisminimumdetectablelevelasdefinedabove(aspCiperunitmassorvolume)Sbisthestandarddeviationofthebackgroundcountingrateorofthecountingrateofablanksampleasappropriate(ascountsperminute)Eisthecountingefficiency(ascountsperdisintegration)Visthesamplesize(inunitsofmassofvolume)2e22isthenumberofdisintegrationsperminuteperpicocurieYisthefractionalradiochemicalyield(whenapplicable)istheradioactivedecayconstantfortheparticularradionuclideistheelapsedtimebetweensamplecollectionandcountingThevalueofSusedinthecalculationoftheNOLforaparticularmeasurementsystemshouldebasedontheactualobservedvarianceofthebackgroundcountingrateorofthecountingrateoftheblanksamples(asappropriate)ratherthanonanunverifiedtheoreticallypredicatedvariance.IncalculatingtheMDLforaradionuclidedeterminedbygama-rayspectrometry,thebackgroundshouldincludethetypicalcontributionsofotherradionuclidesnormallypresentinthesample(e.q.,potassium-40inmilksamples).TypicalvaluesofE,V,Y,andtshouldbeusedinthecalculation.ItshouldberecognizedthattheNOLisdefinedas~ariori(beforethefact)limitrepresentingthecapabilityofameasurementsystemandnotasftfillifp SUSQUEHANNASES-ER-OLTableF-3(Cont'd)c.MDLsforI-131inwater,milkandotherfoodproductscorrespondtoone-quarteroftheAppendixI(10CFRPart50)designobjectivedose-equivalentof15mrem/yearusingtheassumptionsgiveninRegulatoryGuide1.109exceptforaninfantconsuming3301/yrofdrinkwater.d.MDLforleafyvegetables.}}
-III SUSgUEHAxfHASESEROLAccuracy1%fullscaleCurrentfull-scale deflection Inputimpedence ResponseTime'RritingTypeChartSpeedChannels1.0milliampere s1400ohms0.5secondsCurvilinear 3in/hour1oneachchart2charts/recorder Allrecording devices,translator=
andthedigitizer arehousedinaweatherproof cinderblock building.
Thisbuildinghasthermistatically controlled heatingandairconditioning.
6..1.3.1.15Calibration andYaintenance oftheSystemAllcalibration andmaintenance ispeformedatleastsemi-annuallyinaccordance withthefrequencies andproducedures prescribed inthemanufacturer's operating andmaintenance manual.61.3.1.1.6 DataAnalysisTheanalogchartrecordsareremovedevery14daysforinspection andanalysis.
Eachchartisremovedseparately andplacedinindividual boxeslabeledwithdate,instrument'nd level.Thechartsareinspected forbreaksinrecord,timeerrors,powerfailuresandotherindications ofsystemmalfunction andthenstored.Theinformation gainedfromthisinspection isusedtoupdateandverifythedigitaldata,andtolocateanomalies withanyparameter.
Theanalogrecording systemprovidesaback-upincaseofdigitalsystemfailure,sothatahighdatarecoveryratecanbemaintained.
Table6.1-2,DataRecoveryBates,givestherecoveryratesforeachyear.Digitalminutedataarerecordedatthesiteonmagneictapeforanalysis.
Atthebegi.nning ofeachscanofdataauniqueidentification code,thedate,'hour andminuteisrecorded.
After14daysofrecording, thetapeisremoved,labeledwiththedataperiodandforwarded totheApplicant, Thecomputer6.1-13 SUSQUEHANNA SES-ER-OL/facilityprocesses thesetapesconverting therecordedmillivoltaqes intoenqineerinq units.Anhourlyaveraqeforeachparameter iscomputedDatavalidity, rangeofhourlyaveragesandthenumberofvalidobservations contributinq totheaveragesaretabulated toassistinthedetermination ofdatareliability.
Comparisons betweentheanaloganddiqitaldataareperformed whenthebi-weekly reviewofthedigitaldatarevealsqu'estionable orinvaliddata.Temperature anddewpointhourlyaveragesarecomputedusingthefollowinqscalarequation:
B.=1Zr.B..n.jjii=1where:theaveragehourlyvalueforthejthvariable(inphysicalunits);B..thetotalnumberofminuteobservations duringthehour(normally 60),butifnislessthan15forthathour,dataareconsidered tobemissing;thei"minuteobservation onthe3+"variable(millivolts):
theconversion factortochangethej<hvariable frommillivolts intophysicalunits.Afterwindspeed(WS)andwinddirection (WD)areconverted frommillivolts theyarerelatedinthefollowinq manner:IfWSisinvalid(999)thenWDismarkedinvalid(999)andviceversa.IfWS)threshold (non-calm) andWD=0(implying calm)thenWDissetto360~(North)IfWS(threshold (calm)andWD)0(implying non-calm) thenWDissetto0o(calm)Hourlyaveragesarecomputedasscalarsforwindspeed.Winddirection averagesare,determined asfollows:Iftheassociated averaqewindspeedisgreaterthan1.34112meters/sec, (3mph),averageWDisdetermined byvectoranalysis(whereWSandWDforeachminutedetermines avector).61-14 SUSQUEHANNASES-ER-OLAPPENDIXB2APPLICANT~S PORECASTING METHODOLOGY KMHSALESANDPEAKLOADSDecember, 1976 INTRODUCTION ThePP&Lenergymodelforecasts KWHconsumption foreachofthemajorgroupsinthePP&LServiceArea;i.e.,oRESIDENTIAL oCOMMERCIAL oINDUSTRIAL oRESALE,STREETLIGHTINGANDRAILROADAneconometric modelisdeveloped byconsidering thedeterminants foreachofthesectors.Whilethemodel,bynecessity, isasimplification, itcapturesthecruciallinkagesbetweensectoractivityandKWHsales,providing theuserwithastructural framework forforecasting.
Throughthemodelausercanproduceaforecastofsalesforeachofthesectorsconsistent withaneconomicoutlook.Moreimportantly theimpactofalternative economicscenarios canbetested.Inarrivingataforecast, themodelutilizesinformation andforecasts oftheU.S.economy,thenationalenergymarket,theCentralEasternPennsylvania (C.E.P.)economy,localweatherconditions andcompanypolicy.Thisinformation isobtainedfromacombination ofexistingforecasting servicesandreviewswithPP&LEnergyConsultants.
ThePP&Lmodelbuildsfromthatpoint,measuring theimpactofthenationaleconomicoutlookontheC.E.P.region.Thisoutlookisthencombinedwithassumptions aboutweatherconditions andcompanypolicytoproduceaforecastofenergysalestoeachofthesectors.MODELSTRUCTURE Indeveloping amodelofelectricenergyconsumption foraparticular regionitisimportant to,Qrst,definethedemandconditions presentinthatservicearea,andsecond,measuretheirimpactonsalestoeachofthesectors.ThePP&Lenergymodelisdeveloped withinthistwo-stage process.Inthefirststageofthemodel,demandconditions aredefined,i.e.,climaticconditions, theeconomicenvironment, energyprices,andcompanypolicy.Weather,energy'costs andcompanypolicyareallexogenous inputstothemodel.Theeconomicconditions aredeveloped endogenously throughan'conometric frame-work.Thesecondstagemeasurestheimpactofthesedemandconditions oneachsectorthroughasetofeconometric equations, relatingsalestothosefactorsthatareknowntoaffectgrowth.Thegeneralflowofthemodelisgiven.inFigureI.
TheserviceareaeconomicmodelislinkedtotheDRIMacroEconomicModel,bridgingthegapbetweenthenationaleconomyandlocalsalesbyhighlighting regionalcharacteristics (i.e.,industrial mix,growthtrends,demographic mix,etc.)andbyincluding explicitly theimpactofthenationaleconomyontheregion.Thislinkageisprimarily throughtheindustrial sector.Forexample,thesteelindustryintheC.E.P.regionservesanationalmarket,therefore, theirsalesdependondemandconditions inthenation.Indeveloping amodeltoforecastthegrowthofthesteelindustryintheregionitisnecessary toincludenationaleconomy.Asanotherex-ample,thehousingindustryintheareaisheavilydependent onlocalwealthanddemographic mix,butadepressed steelindustrywouldlowerlocalwealththerebyslowinghousinggrowth.Thefunctionoftheserviceareamodelistoliterthesenationalconditions soastomeasuretheirimpactonthelocaleconomy.Thus,theelectricuseforecastisdeveloped inthefollowing way.Afore-castofthenationaleconomy,developed throughtheDRIMacroModel,isacceptedoralteredtoreflectPP&L.'sthinking.
ThatforecastisfQteredthroughtheserviceareaeconomicmodeltodetermine localeconomicconditions.
Againtheuserhastheoptionofaccepting theresultsoralteringthemwherehedeemsnecessary.
Theeconomics arecombinedwithassumptions aboutenergyprices,expectedweatherconditions andcompanypolicytodefinethelocaldemandconditions.
Finally,thisinformation determines theexpectedlevelofmegawatthour sales.Ateachstagetheforecaster hastheabilitytoadjusttheoutputofthemodelbeforegoingon.ItallowstheusertherequiredQexibility tomakethemodelausefultool.Thenextthreesectionsdetailthemethodology usedindeveloping theeconomicandenergymodels.SERVICEAREAECONOMICMODELTheCentralEasternPennsylvania (C.E.P.)economicmodelisconstructed tohighlight theregionaleconomywithinthePP&Lservicearea.Itprovidesinfor-mationaboutfourmajoreconomicareas:A.INDUSTRIAL SECTORB.COMMERCIAL SECTORC.WAGES&PERSONALINCOME.D.HOUSINGThegeneralQowofthemodelisdepictedinFigureII.Briefly,themodelunfoldsasfollows.Theindustrial sector,throughemployment, islinkedtothenationaleconomy.Thetightness ofthelocallabormarket,alongwithinflationary conditions, determine thelevelofmanufacturing wages.Inthenextstage,employ-mentinthecommercial sectorandpercapitapersonalincomearesimultaneously determined; theirlevelsaredependent onindustrial activityandareinterdependent witheachother.Finally,population ofthehouse-owning agegroupiscombinedwithlocalwealthandemployment conditions, andnationalinformation ontheQnancialmarketstodetermine thehousingmarketgrowth.Abriefdescription ofeachareafollows.0 A.INDUSTRIAL SECTORAregion'smanufacturing sector,primarily itsexporting industries, providethemajorlinkbetweenthenationalandregionaleconomies.
Thus,wewouldexpectthissectortofollowthenationalpatternsgiventhatitservesanationalmarket.However,weexpectthelocalindustries tomaintainregionalcharacteristics aswell,fromthestandpoint oflocational decisions onthepartofentering/exiting manufacturing
: concerns, Inmodelling manu-facturing employment inthePP&Lserviceareaeveryattemptwasmadetoincludethesetwoaspects:linkagewiththenationaleconomyandregionallocational decisions
.B.COMMERCIAL SECTORThetypeofservicesprovidedandproductssoldwithinthecommercial sectorarequitesimilaracrossdifferent regionsofthecountry.However,thegrowthofthissectorwithinaregionisheavilydependent uponthelocaleconomy.Indeveloping thecommercial employment equations, thegrowthineachofthesesectorswascomparedtotheirbreakdowns nationally.
TherelativegrowthoftheareawasthencomparedtotherelativeU.S.growthinpopulation andpercapitaincome.C.WAGES,PRICES,ANDPERSONALINCOMEManufacturing averagehourlyearningsandtotalpersonalincomefortheserviceareaareforecasted withintheC.E.P.economicmodel,buildingfromtheemployment situation inthemanufacturing andcommercial sectors.Inaddition, aforecastoflocalinflation conditions isdeveloped directlyfromtheinflation conditions ofthenation.D.HOUSINGSECTORThegrowthinthehousingstockisanimportant determinant ofresidential sales.Therefore, intheeconomicmodel,weexplictly modelhousehold formations intheservicearea.Indeveloping thissectorwehaveachoiceoftwoavailable dataseries,household permitsfromthefederalgovernment andnewdwellingunitstatistics fromPPaLrecords.Thedwellingunitdata,considered morereliableandeasiertomonitor,wasused.Thelong-rundemandforhousingishypothesized tobea'unction ofthepopulation ofthehouse-owning agegroupandthelevelofhousehold wealth.IV.RESIDENTIAL SECTORTheresidential modelhasbeendeveloped toforecastsalestothetwomajorclassesofresidential service;viz.,electrically heatedhomesandgeneralresidential.
Indoingsothemodelisdividedintotwoblocks:oCUSTOMERBLOCKoUSAGEBLOCK Inthecustomerblockthenumber.ofresidential customers undereachoftheservicesisdetermined.
The'usage blockdetermines theaveragekWhusagepercustomerundereachofthe,services.
Totalresidential usageisobtainedbysummingtheproductofcustomerstockandpercustomerusageineachofthegroups.CustomerBlockTotalresidential customers inanyperiodisequaltothenumberinthepreviousperiod,plusthenewunitscomingon,lessthedepreciation oftheexistingstock.Inestimating ourusagepercustomerequations, theimpactofthefollowing determinants wasmeasured.
oHOUSEHOLD INCOMEoPRICEOFELECTRICITY oPEOPLEPERHOUSEHOLD oWEATHERCONDITIONS oCONSERVATION EFFORTSV.FigureIIIshowstherelationships thatareconsidered inmodelling thissector.COMMERCIAL SECTORTheCommercial Sectorpresentsadifficult modelling tasktotheforecaster.
Overthepast10to15yearsithasshownsteadygrowth,becominganincreasing portionoftotalsales;yetlittleinformation isavailable overthisintervalonthetypeofloadserved.Thebestthatcanbedoneinlieuofcommercial surveysandexpandeddatacollection istoincludein,themodelthoseeconomicindicators thatbestdepictthegrowthofthesecustomers.
Themodelling taskisnotoneofobtaining satisfactory summarystatistics, theycomerathereasily,butrathertobesurethattherealdeterminants andindicators ofgrowthareinthe'model.
Inadditiontotheoverallgrowth,thepriceofelectricity, weatherconditions andconservation areconsidered important determinants ofsalesandareincluded.
Salestothecommercial sectorarecollected byfourmajorclasses:oWholesale andRetailTradeoFinancial andPersonalServicesoOtherCommercial oSmallCommercial Thegeneraloutlineofestimating thissectorisexhibited inFigureIV.
INDUSTRIAL SECTORTheIndustrial Modelwasdeveloped toforecastKWHsalestofourteenmajorindustrial classes.Thesalesforecastfortheindustrial sectoris'theaggregation ofthesefourteencia'sses, thebreakdown ofwhichisgiveninthetablebelowandtheflowdiagram.shownasExhibitV.INDUSTRIAL SECTORBREAKDOWN OFINDUSTRIAL CLASSESSICINDUSTRY202223272832433(less331)331353611512Food&KindredProductsTextileMillProductsApparelPrinting&Publishing Chemicals
&AlliedProductsCementPrimaryMetals(exceptSteel)SteelManufacturing Non-Electrical Machinery Electrical Riachinery OtherMetalProducts>
OtherGeneralIndustry2 SmallIndustrial CoalMiningNote:l.IncludesMining(SIC10),Ordnance(SIC19),Fabricated Metals(SIC34),Transportation Equipment (SIC37)andInstruments (SIC38).2.IncludesOilaGasExtractions (SIC13),MiningaQuarrying (SIC14),TobaccoProducts(SIC21),LumberandWoodProducts(SIC24),Furniture andFixtures(SIC25),PaperandAlliedProducts(SIC26),Petroleum Refining(SIC29),RubberandPlastics(SIC30),LeatherandProducts(SIC31),Stone,ClayandGlass,lessCement(SIC32.less324),Miscellaneous Industries (SIC39).Intheindustrial model,fourmajorfactorswereconsidered:
oProduction ActivityoFactorSubstitution oTechnological ChangeoConservation VII.SUMMARYInsummary,thePP5LEconometric Modelforecasts th'eshortandlong-term kWhconsumption forthemajorconsuming sectors,inthe.PPaLServiceArea.Itutilizesforecasts fromtheDRIMacroModeltogetherwithregionaleconomic, demo-graphic,andclimaticconditions-to determine ascenariooftheserviceareaeconomy.Assumptions aboutthepriceofelectricity andcompeting fuels,weatherexpectations, theworkingagepopulation, andtechnological changesarethenmade,fromwhichpointthemodelproducesakWhforecast.
OutlooksarealsopreparedbyPPaLEnergyConsultants.
Intheresidential sector,themodelforecasts kWhsalesforElectrically HeatedHomesandGeneralResidential Service.Forbothoftheseclasses,salesistheproductofthenumberofcustomers andusageper.customer.
Thenumberofcustomers isafunctionofemployment intheservicearea,realdisposable income,newdwellingunits,thepriceofelectricity andcompeting fuels,andnewmortgagecommitments.
Usagepercustomerisdetermined, forthemostpart,bytherealpriceofelectricity, realdisposable income,andweather.Themodel,whichdevelopsthemathematical relationships amongthesevariables, thenfore-castsresidential sales.Commercial sales,whicharesegregated intofourcategories, areafunctionofcommercial employment intheservicearea,realdisposable income,therealpriceofelectricity, andweather.Thegrowthincommercial demandispositively relatedtothefirsttwovariables whilenegatively relatedtothethird.Bysolvingaseriesofequations, themodel'determines thekWhconsumption inthecommercial sector.Theforecastofindustrial salesmakesuseofestimates ofindustrial output,whichinturnisafunctionofmanufacturing employment.
Manufacturing employment, bytwo-digit SICCodesinthePPaLserviceareadependsuponcurrentlevelsofemployment andthelevelofproduction foraparticular industry.
Industrial outputinourserviceareaisdefinedastheFederalReserveBoardProduction IndextimestheratioofPPSLemployment toU~S.employment.
Salestothefourteenindustrial SICgroupsaremainlydetermined byfindingtherelationship ofkWhsalestoserviceareaindustrial output,therelativepriceofelectricity tofueloil,therelativepriceofelectricity tonaturalgas,andanytechnological changesthatmightoccur.Nomodel,regardless ofhowwellitisspecified, willforecastperfectly.
Therewillbeexogenous events,suchaslargenewloadsorchangesincompanyorgovernment policy,thatthemodelisunabletopickup.Inthesecases,theresultsofthemodelcanbemodifiedtothedesiredlevelbyjudgment.
VIII.PEAKLOADFORECASTInordertoadequately provideforourcustomers'emands forelectricity, adequategenerating capacitymustbeavailable.
Theamountofcapacityrequiredisdetermined byforecasting summerandwintersystempeakloadsfortentofifteenyearsintothefuture.Summerandwintersystempeaksareforecasted becauseitisduringtheseperiodsthatthegreatestdemandsaremadeonoursystem.Airconditioning loadcausesthesummerpeaks,andlightingandspaceheatingloadsareresponsible forthoseinthewinter.
PPEL'sestimating procedure producessummerandwintersystempeakloadsbydeveloping thecontribution madebyeachrateclass.Theterm"rateclass"meansallcustomers servedundersimilarrateschedules.
Thesaleofenergyforecastdeveloped byrevenueclassesisreallocated torateclassesusingobservedhistorical relationships.
Loadstudydataisthenbroughtintotheestimation process.Ourloadstudiesaredesignedtodetermine theloadcharacteristics ofaspecificclassofservice.Whenmetersareofthewatt-hour type,stratified randomsamplesofcustomers withinkilowatt-hour rangesareused.Inthecaseofmostgeneralservicesamplecustomers (upto7000kwwithdemandmeterbilling),
loadfactorrangeswithineachrateclassareused.Largercommercial andindustrial customers arestudiedindividually.
Dailyloadcurvesforthedaysofsummerandwintersystempeakarederivedforeverystratumofeachrateclassforanaveragecustomer.
Forcustomers studiedbykilowatt-hour ranges,demandpercustomerdataforeachstratumofeachrateclassaremultiplied bythenumberofcustomers intheuniverseofthatstratumtoobtainauniversedailyloadcurve.Thenumberofcustomers inastratumisobtainedfromtheCompany's billfrequency distributions.
Thiscanalsobedoneforyearsotherthantheloadstudytestyearbecausetheloadcharacteristics ofakWhorloadfactorstratumremainfairlyconstantwithonlythenumberofcustomers inastratumchangingfromyeartoyear.Dailyloadcurvesforloadfactorstratumarestatedasratiosofcustomermonthlymaximumdemand.Theseareappliedtothesumofcustomerdemandsineachloadfactorstratumasdetermined fromanhours-use distribution toobtaintheuniversedailyloadcurve.Foranhistorical yearthestrataofagivenrateclassareaddedtogethertoformthedailyloadcurvefortheuniverseofthatrateclass.Therateclassloadcurvesforthedaysofsummerandwintersystempeakofagivenyeararecorrected forlossestothenetgeneration levelandaddedtogethertoformthesummerandwinterloadcurvesforthesystem.Theresultischeckedagainstactualpeakloads.Usingthesetechniques wehavedeveloped rateclasscontributions tosummerandwintersystempeakshistorically forselectedhoursoftheday.Theratiobetweenclasscontribution tosystempeakandannualsalestothatclassiscalculated foreachrateclassatthetimeofsummerandwintersystempeak,foreveryhistorical periodanalyzed.
Thetrendofthisratioforeitherasummerorawintersyst'mpeakisfairlyconstantovertime.Foragivenclassthetrendofthisratioforthetimeofbothsummerandwintersystempeakisprojected throughtime.Byapplyingtheappropriate ratiostothepredicted annualsalesofanyfutureyear,thatclass'ontribution tosummerandwinterpeakisforecasted.
Thesystempeakforaspecifictimeperiodisobtainedbyaddingtogethertheprojected classcontributions tosystempeak.
SlRBHP/t7O~I/ADLi'm<CFUSECSVc3~&~/tHVTCCbvbmcvJS lfE~CF.MMES~EHE68RSl~MYE7ul6iA)L5522(rR eru6~MFigureI DR'iNAt'RO50DELorU.S.EcoNoN''hf905%lhL s&c&#xc3;QA.'TcqhlEHPUHHE}4T{rue-otl.na~ooW~)'ERUIcEARgAiW~s~parce>c%QVICS~.QOQ-hQUCULTQML plpUHHF-'AT
~6ERVICRhRFACQcm6kclA~
SECOR.TDTALEHPkMM~V~ciCg,~QUA~Tbspl4EVbQEUi'd&OgleicGfhlcfAAEA-~V/cEAQ69M~(MUpD~OF~BOO&oQLTS U.CI.ECONOMYILIMSMIAL Sc~~~KNFL'(HG4T'A405(T2AM~IXWQ)
'ed(CKA~~WAQ5iJc(ce,5'5eRv(cjp((eAIPC(LCL(AL lt(COt((II'~(CE,POfA~I(OI(ACia(ClAL~~
etlFL(t(t(KAl i~ca~~1(7Th(EHrl(telD41 SQvCE~.peaurerPRgNAIIH~~ICCWCCPgakoPOOVmITO(LI~~.IlAgtVl((M~5@V~rCEA~I'Sr'(lar.
AKL.II~QxlCR$%%$IUNWONAP~V~SV.'b.STYX,OF5Ghl(C(KDg5QJt44tP4T4~5@)ICEAKANEu~MbLML~P4J-~LCS2AE~a6uu~~OlCtOLOPC46LuHOOQL~~55bllCE~et(WHP(LL.a+mt(e(LQ4eak.oem'(-0CMTlALtlunlVS@AAIL~~AL(RRT4C~kl((CDI$4'-OFQGO(L~<CeARK@IIRLCEOFIPhd(LPc, I~beni(ALIIP(bCZOS'~~I%-s~~(CSIIIPly@OS'IggCQQ&ILzprflJL, 5Ept.'ce(It(KQAVLA1('OVg
~~OldRLQK~~ICE1II(e(1(~CIocoaee~vsIIIrFQt(l0MIIJ6CC"~QTIAI+~MT'~AIL ILCLIIL,~RRBORATlhr5~O(eKRVATLON (ILIigureIII RrvezAav~vQR'IMACROMOOEIorU.S.ECOMOtf!IIIQQSMIAL
~ItnAL~~~T.(TWO0&TQAMQCWAI)
~gERVlCKAX~A'M~PelcaS'~ICSPagAISGhnCEPCXA-NONABACICIAJVlAL,WPlghfllCAIT'SCbnCt~>>r~~~~APL~CATSERuCC,A~i~CCC4CC~POPULUSTIClH~~~.ll~VlIImCChl45AREA.~u~Ka5,~~'Saeva~IEH~~'usus~+aeAlt'T$4DC'5$2llCEAQUA.N'AH~PllOKWACLESWC~WP4a~CEHDLCthHCIJTRIIAIICIAI PER&~~~CCl4bVAlPllgth PIP~'.AI4PtQ,~~le%HAHCOu~mOlltKP~EQ.CIAIIptICKcP~C~C~IL9+Rs~~o~I(@AMER.C&L "DECTCR.HwHICOIJIItT~IItHE&hk)A,T lICIIQ.CDt1HFQC;Al cE~~RIIIr~SeWWIII ll40lhMIAL SECtCA.~TIDAL.EW~mur(~Ol&TSMAKQOWL))
~5ERVICEAIL'QXKS~PILICI.S'QRVIC3PC@AIPueOuu-I~EIglgACCICV~aKRncaALKA.~m~mr'SEbnCE~v~PCR~IN~~~~+IPCPVIAr&NI~~-Ileal(gagLIIIQCpQUOITSeahICACTA.vam'55blICI'.
Adrh-P4CL5aRIAI.5CILVICvi hREA(~O<CgTCQEACOul)
P7gltCl+Olc,QM'A.,EX'I+
OCO~ttIdH~PPPAILEL,CXBRKPvL<<H~Kvu.S.(~~3~v)rLPITS~~IL3IPRa<>~W~IISCRICEH2CAHWHPdlDTIM&+PCS'~HIS+
NalH'k@HIQKLS tALLIS)PQg)~~H4H~CvHBThe%)PAC.TCILIW IPRIczcF~&cb~CCrIPhaCP~~I55bJICvI~H'g-I"~~ACTCC.i~IIIdHpIIIITACV I-EIpL5(,5;s,~3C%EL~'PCcCCC,5HulH~~+ICALr~luEAVCAr~lmmII43HcrHalLcm~~immikeAN~ImIHl5iiL~
tCQ$5NATICNIIINcvsnu~cBmocIIIiIHCCRC.NISI~TOTAL~WAWHO@%.SALESIMDV5TTRIAL ScCTAExhibitV SUSQUEHANNASES-ER-OL contaminated byairborneradioiodine isapotential sourceofexposure.
Samplesfrommilkanimalsareconsidered abetterindicator ofradioiodine intheenvironment thanvegetation.
Ifthecensusrevealsmilkanimalsarenotpresentorareunavailable forsampling, thenveqetation maybesampled.The500-sq.ft.garden,considering 20%usedforgrowinggreenleafyvegetables andavegetation yieldof2kg/m>willproducethe26kq/yrassumedin~Reula~torGuide1.109(March1974)forchildconsumption ofleafyveqetation.
Theoptiontoconsiderthegardentobeatthenearestresidence isconservative andthoselocations maybeusedtocalculate dosesduetoradioactive effluentreleasesinplaceoftheactuallocations whichwouldbedetermined bythecensus.Thepermission ofdeviations fromthesamplingscheduleisbasedontherecognition ofunavoidable practical difficulties whichintheabsenceofthepermitted deviations wouldresultinviolation ofthespecifications.
Therequirement fortheparticipation intheEPAcross-check program,orsimilarprogram,isbasedontheneedforindependent checksontheprecision andaccuracyofthemeasurements ofradioactive materialinenvironmental monitorinq inordertodemonstrate thevalidityoftheresults.~ReoetingRequirement A.AnnualEnvironmental Operatinq Report,PartB,Radiological.
Areportontheradiological environmental surveillance proqramforthepreviouscalenderyearshallbesubmitted totheDirectoroftheNRCRegionalOffice(withacopytotheDirector, OfficeofNuclearReactorRequlation) asaseparatedocumentinMayofeachyear.Theperiodofthefirstreportshallbeginwiththedateofinitialcriticality Thereportshallincludea.summary(formatofTableF-1,Environmental Monitoring ProgramSummary)interpretations, andstatistical evaluation oftheresultsoftheradiological environmental surveillance activities forthereportperiod,includinq acomparison withoperational,
: controls, preoperational studies(asappropriate) andpreviousenvironmental surveillance reportsandanassessment oftheobservedimpactsofthestationoperation ontheenvironment.
Intheeventthatsomeresultsarenotavailable thereportshallbesubmitted notingandexplaining thereasonsforthemissinqresults.Themissingdatashallbesubmitted assoonaspossibleinasupplementary report.
SUSQUEHANNASES-ER-OLThereportsshallincludeeitherexplicitly orbyreference tootherdocumentation, thefollowing:
asummarydescription oftheradiological environmental monitorinq programincluding samplingmethodsforeachsampletype,sizeandphysicalcharacteristics ofeachsampletype,samplepreparation methodsanalytical methods,andmeasurinq equipment used;amapofallsamplinglocations.
.theresultsofthelandusecensusesandtheresultsoftheApplicant's participation intheEnvironmental Protection Agency'sEnvironmental Radioactivity Laboratory Intercomparisons Studies(Crosscheck)
Proqram.B.Non-routine Radiological Fnvironmental Operatinq ReportsIfaconfirmed measuredradionuclide concentration inanenvironmental samplingmediumaveragedoveranyquartersamplinqperiodexceedsthereporting levelgiveninTableF-4,Reportinq Levels.forNon-Routine Operation, awrittenreportshallbesubmitted totheDirectoroftheNBCRegionalOffice(withacopytotheDirector, OfficeofNuclearReactorRegulation) within30daysfromtheendofthequarter.Aconfirmatory reanalysis oftheoriginal, aduplicate oranewsamplemaybedesirable, asappropriate.
Theresultsoftheconfirmatory analysisshallbecompleted attheearliesttimeconsistent withtheanalysis, butinanycasewithin30daysexceptinthecaseofthestrontium analysis.
Zfitcanbedemonstrated thatthelevelisnotaresultofstationeffluents (i.e.,bycomparison withcontrolstationorpreoperational data)areportneednotbesubmitted, butshallbediscussed intheannualreport.Ifradionuclides otherthanthoseinTable-F-4aredetectedandareduefromstationeffluents, areporting levelisexceededifthepotential annualdosetoanindividual isequaltoorgreaterthanthedesignobjective dosesof10CFRPart50,AppendixIThisreportshallincludeanevaluation ofareleaseconditions, environmental factorsorotheraspectsnecessary toexplaintheanomalous result SUSQUEHANNA SFS-EROLTABLEF-2SUSQUEHANNA SESOPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAHSam~leTpeAirParticulates SS-AP-551 SS-AP-1152 SS-AP-9A1 SS-AP-12E1 SS-AP-7Hl AirIodineSS-AI-551 SS-AI-1152 SS-AI-9A1 SS-AI-12El SS-AI-7H1 SurfaceWaterSS-SW-5S2 SS-SW-12F1 Dr~inkinWaterSS-PWT-12F2SS-PWT-12H2 Fish**SS-AQF-6AI SS-AQF-2G1 SedimentSS-AQS-llcl MilkSS-H-5B1SS-M-12B1 SS-H-1282 SS-H-7H2Location++NorthofI.A.SWcornerofsiteNearTransmission FieldBerwickHospitalPPEtLRoofNorthofI.A.SWcornerofsiteNearTransmission FieldBerwickHospitalPPSLRoofAtI.A.BerwickBridgeBerwickWaterCo.(treated)
DanvilieWaterCo.(treated)
OutfallUpstreamHessIs,areaFarmSchultzFarmYoungFarmCrytalSpringsDairyCollection F~PBUMC*SASA2/H~AnalsisGrossBetaGalenaEmittersI-131GamaEmittersH-3GrossBetaGammaEmittersH-3GamaEmittersGammaEmittersI-131GamaEmittersAnalyticalF~reCene*WQCHQCSASA2/H2/HUnitspCi/m3pCi/mpCi/mpCi/1pCi/1pCi/1pCi/1pCi/1pCi/g(wet)
PCi/9(dry) pCi/1pCi/1 SUSQUEHANNA SES-ER-OL TABLEF-2(cont.)SUSQUEHANNA SESOPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAH~SamleTeFoodProductsSS-FP-5B1 DirectRadiation SS-ID-3S2 SS-ID-4S1SS-ID-551SS-ID-7S1 SS-ID-11S2 SS-ID-9AISS-ID-12E1SS-ID-7HILocation++FarmSusquehanna RiverSusquehanna RiverNorthofI.A.On230KVTowerOn230KVTowerNearTransmission FieldBerwickHospitalPP&LRoofCollection
~Feemene*~AnalsisGanmaEmittersGamaDoseAnalytical
~Fremene*UnitspCi/g(wet) mrem/std.mo Frequency Codes:W=Weekly;H=Monthly;Q=Quarterly; SA=Semi-Annual; A=Annual;2/H=twiceeachmonth;CComposite.
Important classesoffishwillbeanalyzedseparately.
(bottomfeedersandgamefish)Hilkcollected andanalyzedsemi-monthly fromAprilthroughOctober-monthlyduringothermonths.ShowninFigure.
SUSQUEHANNA SESEROLTABLEF-3DETECTION CAPABILITIES FORENVIRONMENTAL SAMPLEANALYSISMINIMUMDETECTABLE LEVEL(MDL)AnalysisWater(pCi/l)AirborneParticulate orGas(pCi/m')Fish(pCi/kg-wet)
Mi1kFoodProductsSediment(pCi/1)(pCi/kg-wet)
(pCi/kg-dry)
GrossBetaH-3Mn-54Fe-59Co-58,60Zn-65ZrNb-95I-131Cs-134,137 BaLa-140200102010200.310107x105x105x108517085170855c101016c,d50100 SUSQUEHANNA SES-ER-OL TableF-3(Cont'd)~Acceptable detection capabilities forthermoluminescent dosimeters usedforenvironmental measurements aregiveninRegulatory Guide4.13,July1977.Indicates acceptable detection capabilities forradioactive materials inenvironmental samples.Thesedetection capabilities aretabulated intermsoftheminimumdetectable level(MDLs).TheNOLisdefined,forpurposesofthisTable,asthatconcentration ofradioactive materialinasamplethatwillyieldanetcountwhichisdifferent fromthebackground countbythreetimesthestandarddeviation afterbackground count.Foraparticular measurement system(whichmayincluderadiochemical separation):
MDL=300SbExVx2.22xYxexp(-Xt)where,NOLisminimumdetectable levelasdefinedabove(aspCiperunitmassorvolume)Sbisthestandarddeviation ofthebackground countingrateorofthecountingrateofablanksampleasappropriate (ascountsperminute)Eisthecountingefficiency (ascountsperdisintegration)
Visthesamplesize(inunitsofmassofvolume)2e22isthenumberofdisintegrations perminuteperpicocurie Yisthefractional radiochemical yield(whenapplicable) istheradioactive decayconstantfortheparticular radionuclide istheelapsedtimebetweensamplecollection andcountingThevalueofSusedinthecalculation oftheNOLforaparticular measurement systemshouldebasedontheactualobservedvarianceofthebackground countingrateorofthecountingrateoftheblanksamples(asappropriate) ratherthanonanunverified theoretically predicated variance.
Incalculating theMDLforaradionuclide determined bygama-rayspectrometry, thebackground shouldincludethetypicalcontributions ofotherradionuclides normallypresentinthesample(e.q.,potassium-40 inmilksamples).
TypicalvaluesofE,V,Y,andtshouldbeusedinthecalculation.
Itshouldberecognized thattheNOLisdefinedas~ariori(beforethefact)limitrepresenting thecapability ofameasurement systemandnotasftfillifp SUSQUEHANNA SES-ER-OL TableF-3(Cont'd)c.MDLsforI-131inwater,milkandotherfoodproductscorrespond toone-quarter oftheAppendixI(10CFRPart50)designobjective dose-equivalent of15mrem/yearusingtheassumptions giveninRegulatory Guide1.109exceptforaninfantconsuming 3301/yrofdrinkwater.d.MDLforleafyvegetables.}}

Revision as of 04:19, 29 June 2018

Susquehanna Units 1 and 2 - Amendment No. 4 Rev. 1 to Environmental Report
ML18023B081
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 03/05/1979
From:
Pennsylvania Power & Light Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML18023B081 (58)


Text

SUSQUEHANNA SES-ER-OL SECTIONTITLEVOLUMEAPPENDX'XZS....~.............

~XIIB1ANEVALUAONOFTHECOSTOFSF.VICEIMPACTOFADELAYNTHEIN-SERVICE DTESOFSUSQUEHANNA ES(JANUARY1978............IXI CURRENTLONG-RAGEFORECASENERGYSALES6PEAKLOAD1976-10....................

~~IXIAPPLICANT'S FORECASNGMETHODOLOGY KMHSALESANDPEAKLOADSCE!1BER,1976.........IXI NATXONMIDE FUELEilZGENCYZSPONSZTOFPCORDERNO496..............

~XIISUSQUEHANNA RIVEMATERANALYSZSUMMARY..IIIEQUATIONS ANDSSUMPTIONS UTILIZEDNTHECALCULATION 0INDIVIDUAL ANDPOPULAONDOSESTOMAN.'IXENVIRON%EN ALTECHNXCALSPECIFXCATIONS..XII SUSQUEHANNA SES-ER-OL TABLE1.1-31977PROJECTION OFAPPLICAN'A LOADS-CAPACITY-RESERVES (HIGHLOADPROJECTION YearWinterPeakMWe1978496019795320198056701981610019826480198368401984720019857570CapacityChangesFossil(Oil)NuclearHydroReratings 945(')945(l)63(2)TotalCapacities Fossil(Coal)Fossil(Oil)CT6(j~selHydroNuclearFirmPurchaseCapacityTransactions 4145164053914676(41)4145164053914676(50)4145164053914676414516405391461890764145414541454145164016401640164053953953953914614614620994518901890189076767676TotalMWe65056496643674268405837483438374Reserveoverwinterpeak:WithSusquehanna MWeCapacityXofLoad132622192530153411432216804llWithoutSusquehanna MWeCapacity%ofLoad154531117622766143265(65)(436)(807)(1126)(1)(6)(ll)(15)WithSusquehanna ButWithoutOilSHydroGeneration WithoutSusquehanna~

Oil8HydroGeneration HweCapacity(856)(1225)(17)(23)(1075)(476)(867)(1258)(1660)(18)(7)(13)(17)(22)(1635)(2075)(2466)(2837)(3208)(3590)(29)(34)(38)(41)(45)(47)Note:SeeFootnotes Following Table1.1-6.

SUSQUEHANNA SES"ER-OL TABLE1.1-41977PROJECTION OFAPPLICAFA LOADS-CAPACITY-RESERVES MID-RANGE LOADPROJECTION)

YearWinterPeakMWeCapacityChangesFossil(Oil)NuclearHydroReratings 19784820197950501980531019815690945(l)19825990945"'9836280198465601985685063(2)TotalCapacities Fossil(Coal)Fossil(Oil)CT6(j~selHydroNuclearFirmPurchaseCapacityTransactions TotalMWe4145164053914676(41)65054145164053914676(50)64964145164053914676~(11064364145164053914694576(65)742641451640539146189076(31)840541451640539146189076(62)83744145164053914618907641451640539209189076~(93(125)83438374Reserveoverwinterpeak:WithSusquehanna MWeCapacitygofLoad17362415314020943317831524'2722WithoutSusquehanna MWeCapacity$ofLoad1685144635291126217361342571242(167)(406)(3)(6)WithSusquehanna ButWithoutOil6HydroGeneration (665)(12)14(307)(618)(940)1(5)(9)(14)WithoutSusquehanna~

Oil6HydroGeneration (716)(955)(1275)(1665)(1976)MweCapacity(15)(19)(24)(29)(33)NOTE:SeeFootnotes Following Table1.1-6(2277)(2568)(2870)(36),(39)(42)

SUS(UEHANNA SES-ER-OL TABLE1.1-51977PROJECTION OFAPPLICANT LOADS-CAPACITY"RESERVES (IOWIOADPROJECTION YearWinterPeakMWeCapacityChangesFossil(Oil)NuclearHydroReratings 19784650197947201980491019815170945"'9825390945("19835650198459201985605063(2)TotalCapacities Fossil(Coal)Fossil(Oil)CT8(j~selHydroNuclearFirmPurchaseCapacityTransactions TotalMwe4145164053914676414516405391467641451640539146764145164053914694576414541454145164016401640539539539146146146189018901890767676650564966436742684058374834341451640539146189076(125)8374Reserveoverwinterpeak:WithSusquehanna MWeCapacity~ofLoad225630154456272448242323244138WithoutSusquehanna MWeCapacity4ofLoadWithSusquehanna ButWithoutOil6HydroGeneration MWeCapacitygofLoad185517761526403831(145)(3)6141112561025241975413323647382213947(140)(2)WithoutSusquehanna>

Oil8HydroGeneration (546)(625)MWeCapacity(12)(13)gofLoadNOTE:SeeFootnotes Following Table1.1-6.(875)(1145)(1376)(1647)(18)(22)(26)(29)(1928)(2070)(33)i(34)

SUSQUEHANNA SES-ER-OL TABLE1.1-61977PROJECTION OFAPPLICAN'8 LOADS-CAPACITY-RESERVES (LOW-LOWLOADPROJECTION)

YearWinterPeakHWeCapacityChangesFossil(Oil)NuclearHydroReratings 19784530197945801980472019814890945(l)19825050945()19835230198454201985550063(2)TotalCapacities Fossil(Coal)Fossil(Oil)CT8(j~selHydroNuclearFixmPurchaseCapacityTransactions TotalHWe4145164053914676(41)65054145164053914676(50)64964145164053914676~llO6436(65)7426(31)8405(62)8374(93)8343(125)8374414541454145414541451640164016401640164053953953953953914614614614620994518901890189018907676767676Reserveoverwinterpeak:WithSusquehanna NWeCapacity$ofLoad253652335531442923666054287452WithoutSusquehanna MWeCapacitygofLoad1975441916421716153636311365271174229731894417WithSusquehanna ButWithoutOil6HydroGeneration MWeCapacitygofLoadWithoutSusquehanna, Oil6HydroGeneration (426)MWeCapacity(9)gofLoad1353(485)(685)(865)(11)(15)(18)9541974314(1036)(1227)(21)(23)522104107(1428)(1520)(26)(28)NOTE:SeeFootnotes Following Table1.1-6 SUSQUEHANNASES-ER-OL23.12.2Tornadoes Theincidence oftornadoes inthesiteareaisverylow.Betweentheyears1950and1973only38tornadoes werereportedwithin50milesofthesite.Tornadoactivityisatamaximumduringthesummermonthswithmosttornadoes occurring inthelateafternoon orevening.Figure2.3-1,TornadoOccurrence

<<ndIntensity intheSusquehanna SZSReqion,isahistogram fortheyears1953-1962showingtornadofrequency bymonth,hourandintensity withina3by3~squarewhichiscenteredonthesite.Theintensity cateqories arebasedontheFujitatornadointensity classification (Ref.2.3-5).PromFigure2.3-1itcanbeseenthatmaximumtornadooccurrence isinthesummer.Diurnally, tornadofrequency reachesamaximumduringlateafternoon, shortlyaftertheperiodofgreatestinstability 23.1.23Th>>ndecstormsThunderstorms intheareaareusuallyofbriefdurationandconcentrated inthewarmmonths.Theyareresponsible focmostofthesummertime rainfallwhichnormallyavecaqesaround3.7inchespermonthatAvoca.Basedona19yearaverageatAvocathemeannumberof"dayswiththunderheard"is30(Ref2.3-3).Amonthlybreakdown ofthemeannumberofthunderstorm daysthatisrepresentative ofthesiteisshowninTable2.3-2,Thunderstocm DaysforAvoca.2.3.12.4L~ihtningThereisneitherdocumentation nordirectmeasurement oftheoccurrence oflightning otherthantheobservation ofassociated thunder.Localclimatological datatabulated bytheNationalWeatherService(Ref.2.3-3)doesnotprovideinformation reqardinq theincidence, severity.

orfrequency oflightning occurrences A.thunderstocm canusuallybeheardunlesstheliqhtning causingthethunderismorethan15milesaway;therefore, thunderincidence canpresumably beusedtoconfirmthepresenceofsomelightning Thenumberoflightning strikespersquaremileperyearhasbeenestablished by,Uman(Ref.2.3-6).Thecombinedresultsofseveralstudiessummarized nyUmanindicatethatthenumberofflashestotheqroundpecsquaremileperyearisbetween005and0.80timesthenumberofthunderstorm dayspecyear.Themeannumberofdayswiththunderstorms probablyoverestimates theactualoccurrence ofcloud-to-ground lightning sincesomethunderstocms probablycontainonlycloud-to-cloud lightning.

2~33 SUSQUEHANNA SES-ER-OLTherefore.

iftheannualthunderstorm frequency atAvocaisused(30days),thenumberof:groundlightning strikesisbetweentwoand24.23125HailHailinthesiteregionsometimes fallsfromseverethunderstorms.

Becausehailfallsinnarrowswaths,onlyasmallfractionofoccurrences isrecordedatregularreporting stationsTheaverageannualnumberofdayswithhailatapointintheareais23.Theoccurrence oflargehail(greaterthan0.75inchesdiameter) averaqesoneortwooccurrences annuallyAccordinq toPautz(Ref.2.3-7)thenumberofhailstorms withhail0.75inchorgreaterinaone-degree longitude-latitude squareareainthevicinityofthesitefortheperiod1955-1967 wasaboutfiveForAvocafrom1973-75therewasonehailstorm inJuneandoneinJulyof1973and1974.Xn1975therewasalsoonehailstorm inAugustandoneinOctoberTherewerenooccurrences ofhailrecordedin1976atAvoca(Ref.2.3-3)23.126ExtremeMindsStrongwindsoccurinPennsylvania asaresultofoccasional hurricanes, thunderstorms, tornadoes andtropicalstorms.Thefollowinq isthefastestmileofwindanditsassociated direction, bymonth,atAvoca(1955-1976)

(Ref.2.3-3).FastestMileofWindMonthmphDirection MonthmphDirection JanuaryFebruaryMarchAprilMayJune436049474043SEWSNWNWWJuly42NWAuqust50NESeptember 38SMOctober38ENovember45SDecember47SMThe50-yearand100-yearmeanfastestmilewindspeedsforthesiteareaare75milesperhourand80milesperhour,respectively (Ref.2.3-8).Accordinq toPautz,therewereeightwindstorms 50knotsandqreaterfortheonedegreelatitude-longitude squarethatincludestheSusquehanna SESfortheperiod1955-1967 (Ref.23-7).23-4 SUSQUEHANNA SES-ER-G'i.

TABLE2.3-33LONG-TERM TEMPERATURE (F)ATAVOCA(PeriodofRecord:1956-1974)

MonthJanuaryFebruaryMarchAprilJuneJulyAugustSeptember OctoberNovemberDecember33.518.435.344.758.970.019.327.238.047.879.083.056.861.380.759.273.652.163.048.836.142.232.822.0~DailMax~DailMiaMean26.027.336.048.558.967.972.270.062.952.640.829.167-10627889159327973410145944395308419771065ExtremeHicihestlowestAnnual58.939.849.4101Ref.2.3-3 SUSQUEHANNA SES-ER-OL TABLE2.3-49PRECIPITATION DATAFORAVOCA(PeriodofRecord:1956-1974)

MonthJanuaryFebruaryMarchAprilMayTotal(ininches)2.041.962.503.063.50Greatest24-Hour(ininches)1.521.602.201.592.58JuneJulyAugustSeptember OctoberNovemberDecember3.404.093.212.822.713.012.513.612.333.183.092.612.912.30Annual34.813.61Ref.2.3-3 SUSQUEHANNA SES-ER-OL.

TABLE2.3-81JOINTFREUENCY(%)OFWINDDIRECTION, WINDSPEEDANDSTABILITY FORAVOCA(PeriodofRecord:1971-1975)

Stability ClassBWindSpeed(kts)Se'ctorNNENEENEESESESSESSWSWWSWNWNNWTotal0-38989756544-6.1507.0548.05487-10.1164.0548.061642416758989911773.0137.0890.1507.2055.2877.0137.0205.0959.1507.21232118.2493.13011449.19181449.1986748.109665071.9726.1164.0890.10271.21921112.0411.0137768.0274.0342516.02050528.0274.006811-1617-21>21Total.3569.2071.1819.1660.1385.0721.0870.0698.2771.3364.4553~6773.6913.4531.3856.2871Relativefrequency ofoccurrences ofBStability

=4.8425Ref.2.3-4 SUSQUEHANNA SES-ER-OL SECTIONTITLEVOLUMEAPPENDICIESo orooooooeo~ooooooooorooroooooooooooIIIB1ANEVALUATION OFTHECOSTOFSERVICE.IMPACTOFADELAYINTHEIN-SERVICE DATESOFSUSQUEHANNA SES(JANUARY1978).......IIICURRENTLONG-RANGE FORECASTENERGYSALES6PEAKLOAD1976-1990.................

IIIB2APPLICANT' FORECASTING METHODOLOGY KWHSALESANDPEAKLOADSDECEMBER, 1976..IIINATIONWIDE FUELEMERGENCY RESPONSETOFPCORDERNO496.............

~IIISUSQUEHANNA RIVERWATERANALYSESSUMMARY...IIIEQUATIONS ANDASSUMPTIONS UTXLIZEDINTHECALCULATION OFINDIVIDUALANDPOPULATION DOSESTOMANoorooooo

~oreooeoooooooooor

~ooocoro~IIIENVIRONMENTAL TECHNICALSPECIFICATIONS...

~III Pit~PE'I SUSQUEHANNASES-ER-OLsite)andatDanville(about31miles(49.9km)downstream.

TheCorpsofEngineers hascompiledfloodstageanddischarge

.information fortheSusquehanna RiveratWilkes-Barre (Ref.2.4-7).Thesedataarebasedonrecordsoffloodstagesdatingfrom1991Dataforthefourmostseverefloodsofrecordarepresented inTable2.4-5,HistoricFloodsintheVicinityoftheSusquehanna SESTable2.4-5alsoincludesthestagesanddischarges forfloodsatthesiteandatDanville.

Thefloodfrequency characteristics oftheSusquehanna asmeasuredatDanvilleareillustrated inFigure2.4-6,FloodDischarge Frequency.

ThepassaqeofTropicalStormAgnesthrough.Pennsylvania onJune22and23,1972resultedinrecordfloodlevelsintheSusquehanna RiverBasinFloodcrestsexceededthepreviousrecordfloodlevel.of1936atWilkes-Barre by75feet(2.3m).AtDanville, alocalmaximumqaqelevelresulting froma1904icejamwasexceededby1.6feet(0.5m).Peakdischarqe atWilkes-Barrewasanestimated 345,000cfs(9,770m~/sec)oraunitdischarge of34.5cubicfeetpersecondpersguaremile(cfsm)(04m~/sec/km~)

.Accumulated runoffforthedrainageareaaboveWilkes-Barre fortheperiodof0000hours,June21,1972through2200hours,June27,1972totaled4.32inches(11.0cm)(Ref.24-13).24.25LowPlowsLongtermrecordsfromtheUSGSgagingstationsatDanvilleandWilkes-Barre providethedatabaseforthelowflewfrequencyanalysespresented inthisSubsection.

Longdurationlowflowfrequencyanalysishasbeenperformed bythePennsylvania Department ofEnvironmental Resources (DER).Theresulting curvesforlowf3.owdurations oftwoto60monthsandrecurrence intervals upto100yearsforDanvilleandWilkes-Barre areprovidedinFigures2.4-7,LowFlowDurationatDanvilleand2.4-8~LowFlowDurationatWilkes-Barre, respectively.

Tables2.4-6and2.4-7,Maqnitude andFrequency ofAnnualLowFlowoftheSusquehanna RiveratDanvilleandWilkes-Barre, Pa.respectively, discussthedischarge fordifferent recurrence intervals.

Tables2.4-8and2.4-9,DurationTableofDailyFlowoftheSusquehanna RiveratDanvilleandWilkes-Barre, Pa.respectively indicatetheriverdischarge (Ref.2.4-14).Themostextendeddroughtperiodoccurredinthe1960's.Thelowestconsecutive dayflowsforperiodsof183daysandlesshavealsooccurredinthisperiodThemeanmonthlyflowsatDanvilleandWilkes-Barre areprovidedinTable2.4-10a,MeanMonthlyDroughtYearFlowSequences.

MeanDailyFlowsDuring1964Drought,Table2.4-10bforthesetwostationsareprovidedforthefourlowestflowmonthsofthisyear24-5 SUSQUEHANNASES-ER-OLApolicydecision'oftheSusquehanna RiverBasinCommission reqardinq consumptive withdrawals duringlowflowperiodsprovidesthatnaturalflowsduringdroughtswillnothediminished byfuturewaterusers.OnSeptember 301976,thispolicydecisionwasimplemented asanAmendment to18CFRPart80'3(Susquehanna RiverBasinCommission, SubpartD-Standards forReview,Section803.61,Consumptive UsesofMater)(Ref.2.4-15).Compensation shallbereguiredforconsumptive usesofwaterduringperiodsoflowflow.Theprovisions ofthisregulation applytoconsumptive usesinitiated sinceJanuary23,19712426Sedimentation Annualsedimentyieldsinthereqionsurrounding thesitearespacially uniform.Neasurements atTowanda,Pa.about105miles(169km)abovethestation,indicateonannua'ediment yieldof150tons/sqmi(52.5metrictons/km~)

fromadrainaqeareaof7797sqmi(20,194km~).AnnualyieldsatDanville, 11,220sqmi(29,060km~)drainageareaareestimated tobe140tons/sqmi(49.0metrictons/km~)

(Ref24-8).Dailysedimentdischarges atindividual stationsarehighlyvariableThedailysedimentdischarqe atDanvilleranqesfromahighof556,000tons/day(504,400metrictons/day) toalowof18tons/day(16.3metrictons/day)

.Materqualitysamplinqatthesiteincludedmeasurement oftotalsuspended solidsArangeofvaluesfrom1.6mg/1to912.6mq/1withanaveraqevalueof57.0mg/1wasfound.TheseresultsarefurtherreportedinSubsection 2.43.Grainsizeanalysiswasperformed onwatersamplestakenin1974usinqanautomatic imageanalyzer.

Thegrainsizedetermination wasperformed ontreatedanduntreated riverwatersamples.Theresultsfortheuntreated samplesarereportedinTable24-11,SedimentGrainSizeDistribution.

2427MaterImpoundments TheSusquehanna Riversuppliesallthewaterrequiredfornormalstationoperation.

Aseven-acre (2.8ha.)spray'ond islocatedonsitetosupplywatertoemergency heatdissipation systems.Thewarmedwaterfromthereactorsiscooledviathepond'sspraysystemandthenrecirculated throuqhtheemergency coolingsystems.Thisspraypondhasarelatively impervious liner.Itisfree-forminshapetoconformtothenaturaltopography ofthearea.Embankments andditchesareprovidedtodirectsurfacewater2.4-6 SUS(}UEHANNA SES-ER-OL TABLE2.4-2MONTHLYAVERAGERIVERCONDITIONS STAGE,VEIOCITYANDDISCHARGE OCTOBERSTATION(RiverMile)~Sunbury(122.0)STAGEVELOCITYDIS(HARGE (Ft.msl)(Ft/sec)(Ft/sec)PresentProectedPresentProectedPresentProected420.9420.92.01.991648631Northumberland (123.5)Volverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Mapwallopen (163.9)PlantSite(165;5)Shickshinny (169.5)422.9427.8434.6447.9453.5457.4476.4477.6483.0483.3484.7487.9422.8427.6434.4447.7453.3'57.

2476.3477.4482.9483.1484.5487.70.83.01.81.61.01.61.91.61.51.02'0.73.31.81.61.01.51.01.91.51.40.92.75144512250834939474947494623462346234623459545704761474247074590440814408429042904290429042804270

SUS(}UEHANNA SES-ER-OL TABLE2.4-2(Continued)

STATION(RiverMile)Sunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)425.0429.8437.1451.2456.2460.0478.9479.8484.8485.5487.4490.8424.9429.7437.0451.1456.159.9478.8479.7484.8485.4487.3490.71.02.42.21.91.52.21.62.02.12.41.63.91.02.42.21.91.52.11.52.02'2.31.63.9124781209512457120771242112045120901174111648113071164811307113561102311356110231135611023113561102311291109761123210932STAGEVELOCITYDIS(HARGE (Ft.msl)(Ft/sec)(Ft/sec)PresentProectedPresentProectedPresentProected422.0421.93.43.42114620613 SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)

STATION(RiverMile)STAGEVELOCITYDIS(HARGE (Ft.msl)(Ft/sec)(Pt/sec)PresentProectedPresentProectedPresentPro'ected Sunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162')Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)426.2426.1431.0430.9438.5438.4453.2453.0457.5457.4461.4461.3480.2480.10481.1481.0485'485.7-486.7486.6488.8488.7492.4492.3422.6422.64.22.52.42.01.82.51.82.22.32.92.04.24.22.52.42.01.72.51.82.22.32.81.94.22984218028179581783517348166981669816270162701627016270161751608929309176451757817459169991635716357159371593715937159371586015789

SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)

STATION(RiverMile)STAGE(Ft.msl)PresentPro'ected VELOCITY(Ft/sec)PresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Volverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Mapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)425.6425.6430.4430.3437.7437.6452.0451.9456.7456.6460.6460.5479.5479.4480.4480.3485.2485.2486.0485.9488.0487.9491.5491.4422.3422.33.92.42.31.91.62.3-l.72.12.22.61.84.03.81.02.42.31.91.62.31.72.12.22.51.74.02585214978149081478514349137681376813384133841338413384132991322225319145951452814409140001342713427130511305113051130511298412922

)0 SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)

STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY*(Ft/sec)PresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)422.7426.2430.9438.3453.0457.5461.4480.1481.0485.8486.7488.7492.3422.6426.2430.8438.3452.9457.4461.3480.1481.0485.7486.6488.6492.24.32.52.42.01.82.51.82.22.32.81.94.24.32.52.42.01.82.51.82.12.32.81.94.21757617193174791709917308169321692016571166851634416685163441607115738160711573816071157381607115738158281551315759154593070430171 SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)

STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS)HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)428.7428.7433.4433.4441.2441.1424.4424.45.61.32.72.85.61.32.72.85542031852317323152154887314693135231143Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(164.2)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)456.7460.4464.4482.9483.8488.0489.4491.9495.9456.7460.3464.4482.8483.7488.0489.4491.8495.92.42.33.12.52.62.93.82.75.02.42.33.12.52.62.93.82.75.0310653045830458300583005830058300582996929888307163011730117297252972529725297252965429588

SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)

STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton

'Sta.(128')Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Mapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)424.8429.2434.2442.1457.9461.3465.3483.6484.6488.7490.2492.8497.0424.7429.2434.2442.0457.8461;2465.3483.6484.6488.7490.2492.8496.95.85.91.41.437415370322.82.837256368762.92.936978366022.52.536331359822.52.535469351283.33-335469351282.72.734900345672.72.734900345673.03.034900345674.14.134900345672.92.934774344595.35.334659343596135460821 0

STATION(RiverMile)SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)

STAGEVELOCITY(Ft.msl)(Ft/sec)PresentProectedPresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)423.0426.7431.3438.7453.5457.8461.7480.4481.4486.0487.0489.1492.8423.0426.7431.2438.7453.4457.7461.7480.4481.3486.0486.9489.0492.74.62.52.42.01.82.61.92.22.43.02.04.34.52.52.42.01.82.51.92.22.42.92.04'350153488219326189431922918849190601868418567.1821817909175681790917568174751714217475171421745717142174751714217379170641729116991 SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)

STATION()(RiverMile)Sunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)424.8424;7429.5429.4436.7436.6450.6450.5455.7455.6459.5459.447.8.5478.3479.4484.5479.3484.5485.1485.0486.9486.8490.3490.2STAGE(Ft.msl)PresentProected421.8421.83.43.30.90.92.42.42.22.11.81.81.41.42.12.01.51.42.02.0~2.02.02.22.21.51.53.83.7VELOCITY(Ft/sec)PresentPro'ected1110810725110541067410959105831063810289102119870102119870993095979930959799309597993095979868955398119511DIS(HARGE (Ft/sec)PresentProected1991519382 SUS(}UEHANNA SES-ER-OI TABLE2.4-2(Continued)

STATION(RiverMile)STAGE(Ft.msl)PresentProectedVELOCITY(Ft/sec)PresentProectedDIS(HARGE (Zt/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Volverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Mapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)421.0423.0427.8434.7448.0453.6457.5476.6477.7483.2483.5484.9488.1420.9422.9427.7434.5447.8453.4457.3476.4.477.5483.0483.3484.7487.92.00.73.01.81.61.61.91.61.51.02.92.00.73.21.81.61.01.61.91.61.41.02.852774894524748675194481851164767501246715012467149444611494446114944461149444611492946144915461597349201

SUS(}UEHANNA SES-ER-OL TABLE2.4-2(Continued)

STATION()(RiverMile)STAGE(Ft.msl)PresentProectedVELOCI1Y(Ft/sec)PresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.0)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)422.2422.1427.2427.1433.8433.6446.7446.2452.5452.2456.5.456.3475.6475.5476.7476.5482.2482.0482.4482.2483.6483.4487.5487.1420.6420.51.50.74.41.71.70.91.30.92.11.41.20.82.01.50.64.21.61.90.91.30.8,2.31.30.71.965203480346034253278308230822953295329532953292428985987309730803049292927412741262026202620262026202598 STATION(RiverMile)SUSQUEHANNA SES-ER-OL TABLE2.4-2(Continued)

STAGEVELOCITY(Ft.msl)(Ft/sec)PresentProectedPresentProectedDIS(HARGE (Ft/sec)PresentProectedSunbury(122.O)Northumberland (123.5)Wolverton Sta.(128.5)Danville(134.7)Catawissa (143.7)Bloomsburg (146.6)Almedia(150.4)Berwick(159.1)Nescopeck (160.0)BeachHaven(162.4)Wapwallopen (163.9)PlantSite(165.5)Shickshinny (169.5)42o.6422.2427.2433.8446.9452.5456.6475.7476.8482.2482.4483.7487.5420.5422.0427.2433.'6446.3452.3456.4475.5476.6482.1482.2483.5487.11.40.74.41.71.60.91.30.92.11.41.20.82.01.40.74.31.71.90.91.30.82.21.40.72.035823199356831883543316733833034317028293170282929532620303026973030269730302697299926842971267161375604 SUS(}UEHANNA SES-ER-OL TABLE2.4-2(Continued)

Stationlocations areindicated asthenearestmunicipality orfeaturetotherivercross-section usedinthecomputations.

Theexactcross-section locationisindicated byrivermile.OneFoot=0.3048meterOneFootPerSecond=0.3048meterpersecondOneCubicFootPerSecond=0.0283cubicmeterspersecond.

SUSQUEHANNA SES-ER-OL TABLE2.4"3MONTHLYPERCENTCHANCEOFFLOODINGSUSUEHANNARIVERUPSTREAMOFSUNBURYMonthJanPercentChanceofFloodin6.8FebMarAprMayJunJulAugSeptOctNovDec7.540.419.08.22,12.11.41.03.42.75.4(1)Sunburyis43miles(69km)downstream ofthesiteattheconfluence oftheSusquehanna RiverandtheWestBranchSusquehanna River.

SUSQUEHANNA SES-ER-OL SECTIONTITLEVOLUMEAPPENDXCIESeesssseoeos~ee~eeeessssssss~seses~seIIIB1ANEVALUATION OFTHECOSTOFSERVICEIMPACTOFADELAYINTHEIN-SERVICE DATESOFSUSQUEHANNA SES(JANUARY1978).....IIICURRENTLONG-RANGE FORECASTENERGYSALESPEAKLOAD1976-1990......................III B2APPLICANT' FORECASTING NETHODOLOGY KMHSALESANDPEAKLOADSDECEMBER, 1976...IIINATXONMIDEFUELEilERGENCYRESPONSETOFPCORDERNO496....................

~IIISUSQUEHANNA RIVERMATERANALYSESSUNHARY..IIIEQUATIONS ANDASSUMPTIONS UTXLIZEDINTHECALCULATION OFINDIVIDUAL ANDPOPULATION DOSESTOMAN....IIIENVIRONMENTAL TECHNICAL SPECIFICATIONS-

-III SUSgUEHAxfHASESEROLAccuracy1%fullscaleCurrentfull-scale deflection Inputimpedence ResponseTime'RritingTypeChartSpeedChannels1.0milliampere s1400ohms0.5secondsCurvilinear 3in/hour1oneachchart2charts/recorder Allrecording devices,translator=

andthedigitizer arehousedinaweatherproof cinderblock building.

Thisbuildinghasthermistatically controlled heatingandairconditioning.

6..1.3.1.15Calibration andYaintenance oftheSystemAllcalibration andmaintenance ispeformedatleastsemi-annuallyinaccordance withthefrequencies andproducedures prescribed inthemanufacturer's operating andmaintenance manual.61.3.1.1.6 DataAnalysisTheanalogchartrecordsareremovedevery14daysforinspection andanalysis.

Eachchartisremovedseparately andplacedinindividual boxeslabeledwithdate,instrument'nd level.Thechartsareinspected forbreaksinrecord,timeerrors,powerfailuresandotherindications ofsystemmalfunction andthenstored.Theinformation gainedfromthisinspection isusedtoupdateandverifythedigitaldata,andtolocateanomalies withanyparameter.

Theanalogrecording systemprovidesaback-upincaseofdigitalsystemfailure,sothatahighdatarecoveryratecanbemaintained.

Table6.1-2,DataRecoveryBates,givestherecoveryratesforeachyear.Digitalminutedataarerecordedatthesiteonmagneictapeforanalysis.

Atthebegi.nning ofeachscanofdataauniqueidentification code,thedate,'hour andminuteisrecorded.

After14daysofrecording, thetapeisremoved,labeledwiththedataperiodandforwarded totheApplicant, Thecomputer6.1-13 SUSQUEHANNA SES-ER-OL/facilityprocesses thesetapesconverting therecordedmillivoltaqes intoenqineerinq units.Anhourlyaveraqeforeachparameter iscomputedDatavalidity, rangeofhourlyaveragesandthenumberofvalidobservations contributinq totheaveragesaretabulated toassistinthedetermination ofdatareliability.

Comparisons betweentheanaloganddiqitaldataareperformed whenthebi-weekly reviewofthedigitaldatarevealsqu'estionable orinvaliddata.Temperature anddewpointhourlyaveragesarecomputedusingthefollowinqscalarequation:

B.=1Zr.B..n.jjii=1where:theaveragehourlyvalueforthejthvariable(inphysicalunits);B..thetotalnumberofminuteobservations duringthehour(normally 60),butifnislessthan15forthathour,dataareconsidered tobemissing;thei"minuteobservation onthe3+"variable(millivolts):

theconversion factortochangethej<hvariable frommillivolts intophysicalunits.Afterwindspeed(WS)andwinddirection (WD)areconverted frommillivolts theyarerelatedinthefollowinq manner:IfWSisinvalid(999)thenWDismarkedinvalid(999)andviceversa.IfWS)threshold (non-calm) andWD=0(implying calm)thenWDissetto360~(North)IfWS(threshold (calm)andWD)0(implying non-calm) thenWDissetto0o(calm)Hourlyaveragesarecomputedasscalarsforwindspeed.Winddirection averagesare,determined asfollows:Iftheassociated averaqewindspeedisgreaterthan1.34112meters/sec, (3mph),averageWDisdetermined byvectoranalysis(whereWSandWDforeachminutedetermines avector).61-14 SUSQUEHANNASES-ER-OLAPPENDIXB2APPLICANT~S PORECASTING METHODOLOGY KMHSALESANDPEAKLOADSDecember, 1976 INTRODUCTION ThePP&Lenergymodelforecasts KWHconsumption foreachofthemajorgroupsinthePP&LServiceArea;i.e.,oRESIDENTIAL oCOMMERCIAL oINDUSTRIAL oRESALE,STREETLIGHTINGANDRAILROADAneconometric modelisdeveloped byconsidering thedeterminants foreachofthesectors.Whilethemodel,bynecessity, isasimplification, itcapturesthecruciallinkagesbetweensectoractivityandKWHsales,providing theuserwithastructural framework forforecasting.

Throughthemodelausercanproduceaforecastofsalesforeachofthesectorsconsistent withaneconomicoutlook.Moreimportantly theimpactofalternative economicscenarios canbetested.Inarrivingataforecast, themodelutilizesinformation andforecasts oftheU.S.economy,thenationalenergymarket,theCentralEasternPennsylvania (C.E.P.)economy,localweatherconditions andcompanypolicy.Thisinformation isobtainedfromacombination ofexistingforecasting servicesandreviewswithPP&LEnergyConsultants.

ThePP&Lmodelbuildsfromthatpoint,measuring theimpactofthenationaleconomicoutlookontheC.E.P.region.Thisoutlookisthencombinedwithassumptions aboutweatherconditions andcompanypolicytoproduceaforecastofenergysalestoeachofthesectors.MODELSTRUCTURE Indeveloping amodelofelectricenergyconsumption foraparticular regionitisimportant to,Qrst,definethedemandconditions presentinthatservicearea,andsecond,measuretheirimpactonsalestoeachofthesectors.ThePP&Lenergymodelisdeveloped withinthistwo-stage process.Inthefirststageofthemodel,demandconditions aredefined,i.e.,climaticconditions, theeconomicenvironment, energyprices,andcompanypolicy.Weather,energy'costs andcompanypolicyareallexogenous inputstothemodel.Theeconomicconditions aredeveloped endogenously throughan'conometric frame-work.Thesecondstagemeasurestheimpactofthesedemandconditions oneachsectorthroughasetofeconometric equations, relatingsalestothosefactorsthatareknowntoaffectgrowth.Thegeneralflowofthemodelisgiven.inFigureI.

TheserviceareaeconomicmodelislinkedtotheDRIMacroEconomicModel,bridgingthegapbetweenthenationaleconomyandlocalsalesbyhighlighting regionalcharacteristics (i.e.,industrial mix,growthtrends,demographic mix,etc.)andbyincluding explicitly theimpactofthenationaleconomyontheregion.Thislinkageisprimarily throughtheindustrial sector.Forexample,thesteelindustryintheC.E.P.regionservesanationalmarket,therefore, theirsalesdependondemandconditions inthenation.Indeveloping amodeltoforecastthegrowthofthesteelindustryintheregionitisnecessary toincludenationaleconomy.Asanotherex-ample,thehousingindustryintheareaisheavilydependent onlocalwealthanddemographic mix,butadepressed steelindustrywouldlowerlocalwealththerebyslowinghousinggrowth.Thefunctionoftheserviceareamodelistoliterthesenationalconditions soastomeasuretheirimpactonthelocaleconomy.Thus,theelectricuseforecastisdeveloped inthefollowing way.Afore-castofthenationaleconomy,developed throughtheDRIMacroModel,isacceptedoralteredtoreflectPP&L.'sthinking.

ThatforecastisfQteredthroughtheserviceareaeconomicmodeltodetermine localeconomicconditions.

Againtheuserhastheoptionofaccepting theresultsoralteringthemwherehedeemsnecessary.

Theeconomics arecombinedwithassumptions aboutenergyprices,expectedweatherconditions andcompanypolicytodefinethelocaldemandconditions.

Finally,thisinformation determines theexpectedlevelofmegawatthour sales.Ateachstagetheforecaster hastheabilitytoadjusttheoutputofthemodelbeforegoingon.ItallowstheusertherequiredQexibility tomakethemodelausefultool.Thenextthreesectionsdetailthemethodology usedindeveloping theeconomicandenergymodels.SERVICEAREAECONOMICMODELTheCentralEasternPennsylvania (C.E.P.)economicmodelisconstructed tohighlight theregionaleconomywithinthePP&Lservicearea.Itprovidesinfor-mationaboutfourmajoreconomicareas:A.INDUSTRIAL SECTORB.COMMERCIAL SECTORC.WAGES&PERSONALINCOME.D.HOUSINGThegeneralQowofthemodelisdepictedinFigureII.Briefly,themodelunfoldsasfollows.Theindustrial sector,throughemployment, islinkedtothenationaleconomy.Thetightness ofthelocallabormarket,alongwithinflationary conditions, determine thelevelofmanufacturing wages.Inthenextstage,employ-mentinthecommercial sectorandpercapitapersonalincomearesimultaneously determined; theirlevelsaredependent onindustrial activityandareinterdependent witheachother.Finally,population ofthehouse-owning agegroupiscombinedwithlocalwealthandemployment conditions, andnationalinformation ontheQnancialmarketstodetermine thehousingmarketgrowth.Abriefdescription ofeachareafollows.0 A.INDUSTRIAL SECTORAregion'smanufacturing sector,primarily itsexporting industries, providethemajorlinkbetweenthenationalandregionaleconomies.

Thus,wewouldexpectthissectortofollowthenationalpatternsgiventhatitservesanationalmarket.However,weexpectthelocalindustries tomaintainregionalcharacteristics aswell,fromthestandpoint oflocational decisions onthepartofentering/exiting manufacturing

concerns, Inmodelling manu-facturing employment inthePP&Lserviceareaeveryattemptwasmadetoincludethesetwoaspects:linkagewiththenationaleconomyandregionallocational decisions

.B.COMMERCIAL SECTORThetypeofservicesprovidedandproductssoldwithinthecommercial sectorarequitesimilaracrossdifferent regionsofthecountry.However,thegrowthofthissectorwithinaregionisheavilydependent uponthelocaleconomy.Indeveloping thecommercial employment equations, thegrowthineachofthesesectorswascomparedtotheirbreakdowns nationally.

TherelativegrowthoftheareawasthencomparedtotherelativeU.S.growthinpopulation andpercapitaincome.C.WAGES,PRICES,ANDPERSONALINCOMEManufacturing averagehourlyearningsandtotalpersonalincomefortheserviceareaareforecasted withintheC.E.P.economicmodel,buildingfromtheemployment situation inthemanufacturing andcommercial sectors.Inaddition, aforecastoflocalinflation conditions isdeveloped directlyfromtheinflation conditions ofthenation.D.HOUSINGSECTORThegrowthinthehousingstockisanimportant determinant ofresidential sales.Therefore, intheeconomicmodel,weexplictly modelhousehold formations intheservicearea.Indeveloping thissectorwehaveachoiceoftwoavailable dataseries,household permitsfromthefederalgovernment andnewdwellingunitstatistics fromPPaLrecords.Thedwellingunitdata,considered morereliableandeasiertomonitor,wasused.Thelong-rundemandforhousingishypothesized tobea'unction ofthepopulation ofthehouse-owning agegroupandthelevelofhousehold wealth.IV.RESIDENTIAL SECTORTheresidential modelhasbeendeveloped toforecastsalestothetwomajorclassesofresidential service;viz.,electrically heatedhomesandgeneralresidential.

Indoingsothemodelisdividedintotwoblocks:oCUSTOMERBLOCKoUSAGEBLOCK Inthecustomerblockthenumber.ofresidential customers undereachoftheservicesisdetermined.

The'usage blockdetermines theaveragekWhusagepercustomerundereachofthe,services.

Totalresidential usageisobtainedbysummingtheproductofcustomerstockandpercustomerusageineachofthegroups.CustomerBlockTotalresidential customers inanyperiodisequaltothenumberinthepreviousperiod,plusthenewunitscomingon,lessthedepreciation oftheexistingstock.Inestimating ourusagepercustomerequations, theimpactofthefollowing determinants wasmeasured.

oHOUSEHOLD INCOMEoPRICEOFELECTRICITY oPEOPLEPERHOUSEHOLD oWEATHERCONDITIONS oCONSERVATION EFFORTSV.FigureIIIshowstherelationships thatareconsidered inmodelling thissector.COMMERCIAL SECTORTheCommercial Sectorpresentsadifficult modelling tasktotheforecaster.

Overthepast10to15yearsithasshownsteadygrowth,becominganincreasing portionoftotalsales;yetlittleinformation isavailable overthisintervalonthetypeofloadserved.Thebestthatcanbedoneinlieuofcommercial surveysandexpandeddatacollection istoincludein,themodelthoseeconomicindicators thatbestdepictthegrowthofthesecustomers.

Themodelling taskisnotoneofobtaining satisfactory summarystatistics, theycomerathereasily,butrathertobesurethattherealdeterminants andindicators ofgrowthareinthe'model.

Inadditiontotheoverallgrowth,thepriceofelectricity, weatherconditions andconservation areconsidered important determinants ofsalesandareincluded.

Salestothecommercial sectorarecollected byfourmajorclasses:oWholesale andRetailTradeoFinancial andPersonalServicesoOtherCommercial oSmallCommercial Thegeneraloutlineofestimating thissectorisexhibited inFigureIV.

INDUSTRIAL SECTORTheIndustrial Modelwasdeveloped toforecastKWHsalestofourteenmajorindustrial classes.Thesalesforecastfortheindustrial sectoris'theaggregation ofthesefourteencia'sses, thebreakdown ofwhichisgiveninthetablebelowandtheflowdiagram.shownasExhibitV.INDUSTRIAL SECTORBREAKDOWN OFINDUSTRIAL CLASSESSICINDUSTRY202223272832433(less331)331353611512Food&KindredProductsTextileMillProductsApparelPrinting&Publishing Chemicals

&AlliedProductsCementPrimaryMetals(exceptSteel)SteelManufacturing Non-Electrical Machinery Electrical Riachinery OtherMetalProducts>

OtherGeneralIndustry2 SmallIndustrial CoalMiningNote:l.IncludesMining(SIC10),Ordnance(SIC19),Fabricated Metals(SIC34),Transportation Equipment (SIC37)andInstruments (SIC38).2.IncludesOilaGasExtractions (SIC13),MiningaQuarrying (SIC14),TobaccoProducts(SIC21),LumberandWoodProducts(SIC24),Furniture andFixtures(SIC25),PaperandAlliedProducts(SIC26),Petroleum Refining(SIC29),RubberandPlastics(SIC30),LeatherandProducts(SIC31),Stone,ClayandGlass,lessCement(SIC32.less324),Miscellaneous Industries (SIC39).Intheindustrial model,fourmajorfactorswereconsidered:

oProduction ActivityoFactorSubstitution oTechnological ChangeoConservation VII.SUMMARYInsummary,thePP5LEconometric Modelforecasts th'eshortandlong-term kWhconsumption forthemajorconsuming sectors,inthe.PPaLServiceArea.Itutilizesforecasts fromtheDRIMacroModeltogetherwithregionaleconomic, demo-graphic,andclimaticconditions-to determine ascenariooftheserviceareaeconomy.Assumptions aboutthepriceofelectricity andcompeting fuels,weatherexpectations, theworkingagepopulation, andtechnological changesarethenmade,fromwhichpointthemodelproducesakWhforecast.

OutlooksarealsopreparedbyPPaLEnergyConsultants.

Intheresidential sector,themodelforecasts kWhsalesforElectrically HeatedHomesandGeneralResidential Service.Forbothoftheseclasses,salesistheproductofthenumberofcustomers andusageper.customer.

Thenumberofcustomers isafunctionofemployment intheservicearea,realdisposable income,newdwellingunits,thepriceofelectricity andcompeting fuels,andnewmortgagecommitments.

Usagepercustomerisdetermined, forthemostpart,bytherealpriceofelectricity, realdisposable income,andweather.Themodel,whichdevelopsthemathematical relationships amongthesevariables, thenfore-castsresidential sales.Commercial sales,whicharesegregated intofourcategories, areafunctionofcommercial employment intheservicearea,realdisposable income,therealpriceofelectricity, andweather.Thegrowthincommercial demandispositively relatedtothefirsttwovariables whilenegatively relatedtothethird.Bysolvingaseriesofequations, themodel'determines thekWhconsumption inthecommercial sector.Theforecastofindustrial salesmakesuseofestimates ofindustrial output,whichinturnisafunctionofmanufacturing employment.

Manufacturing employment, bytwo-digit SICCodesinthePPaLserviceareadependsuponcurrentlevelsofemployment andthelevelofproduction foraparticular industry.

Industrial outputinourserviceareaisdefinedastheFederalReserveBoardProduction IndextimestheratioofPPSLemployment toU~S.employment.

Salestothefourteenindustrial SICgroupsaremainlydetermined byfindingtherelationship ofkWhsalestoserviceareaindustrial output,therelativepriceofelectricity tofueloil,therelativepriceofelectricity tonaturalgas,andanytechnological changesthatmightoccur.Nomodel,regardless ofhowwellitisspecified, willforecastperfectly.

Therewillbeexogenous events,suchaslargenewloadsorchangesincompanyorgovernment policy,thatthemodelisunabletopickup.Inthesecases,theresultsofthemodelcanbemodifiedtothedesiredlevelbyjudgment.

VIII.PEAKLOADFORECASTInordertoadequately provideforourcustomers'emands forelectricity, adequategenerating capacitymustbeavailable.

Theamountofcapacityrequiredisdetermined byforecasting summerandwintersystempeakloadsfortentofifteenyearsintothefuture.Summerandwintersystempeaksareforecasted becauseitisduringtheseperiodsthatthegreatestdemandsaremadeonoursystem.Airconditioning loadcausesthesummerpeaks,andlightingandspaceheatingloadsareresponsible forthoseinthewinter.

PPEL'sestimating procedure producessummerandwintersystempeakloadsbydeveloping thecontribution madebyeachrateclass.Theterm"rateclass"meansallcustomers servedundersimilarrateschedules.

Thesaleofenergyforecastdeveloped byrevenueclassesisreallocated torateclassesusingobservedhistorical relationships.

Loadstudydataisthenbroughtintotheestimation process.Ourloadstudiesaredesignedtodetermine theloadcharacteristics ofaspecificclassofservice.Whenmetersareofthewatt-hour type,stratified randomsamplesofcustomers withinkilowatt-hour rangesareused.Inthecaseofmostgeneralservicesamplecustomers (upto7000kwwithdemandmeterbilling),

loadfactorrangeswithineachrateclassareused.Largercommercial andindustrial customers arestudiedindividually.

Dailyloadcurvesforthedaysofsummerandwintersystempeakarederivedforeverystratumofeachrateclassforanaveragecustomer.

Forcustomers studiedbykilowatt-hour ranges,demandpercustomerdataforeachstratumofeachrateclassaremultiplied bythenumberofcustomers intheuniverseofthatstratumtoobtainauniversedailyloadcurve.Thenumberofcustomers inastratumisobtainedfromtheCompany's billfrequency distributions.

Thiscanalsobedoneforyearsotherthantheloadstudytestyearbecausetheloadcharacteristics ofakWhorloadfactorstratumremainfairlyconstantwithonlythenumberofcustomers inastratumchangingfromyeartoyear.Dailyloadcurvesforloadfactorstratumarestatedasratiosofcustomermonthlymaximumdemand.Theseareappliedtothesumofcustomerdemandsineachloadfactorstratumasdetermined fromanhours-use distribution toobtaintheuniversedailyloadcurve.Foranhistorical yearthestrataofagivenrateclassareaddedtogethertoformthedailyloadcurvefortheuniverseofthatrateclass.Therateclassloadcurvesforthedaysofsummerandwintersystempeakofagivenyeararecorrected forlossestothenetgeneration levelandaddedtogethertoformthesummerandwinterloadcurvesforthesystem.Theresultischeckedagainstactualpeakloads.Usingthesetechniques wehavedeveloped rateclasscontributions tosummerandwintersystempeakshistorically forselectedhoursoftheday.Theratiobetweenclasscontribution tosystempeakandannualsalestothatclassiscalculated foreachrateclassatthetimeofsummerandwintersystempeak,foreveryhistorical periodanalyzed.

Thetrendofthisratioforeitherasummerorawintersyst'mpeakisfairlyconstantovertime.Foragivenclassthetrendofthisratioforthetimeofbothsummerandwintersystempeakisprojected throughtime.Byapplyingtheappropriate ratiostothepredicted annualsalesofanyfutureyear,thatclass'ontribution tosummerandwinterpeakisforecasted.

Thesystempeakforaspecifictimeperiodisobtainedbyaddingtogethertheprojected classcontributions tosystempeak.

SlRBHP/t7O~I/ADLi'm<CFUSECSVc3~&~/tHVTCCbvbmcvJS lfE~CF.MMES~EHE68RSl~MYE7ul6iA)L5522(rR eru6~MFigureI DR'iNAt'RO50DELorU.S.EcoNoNhf905%lhL s&cÃQA.'TcqhlEHPUHHE}4T{rue-otl.na~ooW~)'ERUIcEARgAiW~s~parce>c%QVICS~.QOQ-hQUCULTQML plpUHHF-'AT

~6ERVICRhRFACQcm6kclA~

SECOR.TDTALEHPkMM~V~ciCg,~QUA~Tbspl4EVbQEUi'd&OgleicGfhlcfAAEA-~V/cEAQ69M~(MUpD~OF~BOO&oQLTS U.CI.ECONOMYILIMSMIAL Sc~~~KNFL'(HG4T'A405(T2AM~IXWQ)

'ed(CKA~~WAQ5iJc(ce,5'5eRv(cjp((eAIPC(LCL(AL lt(COt((II'~(CE,POfA~I(OI(ACia(ClAL~~

etlFL(t(t(KAl i~ca~~1(7Th(EHrl(telD41 SQvCE~.peaurerPRgNAIIH~~ICCWCCPgakoPOOVmITO(LI~~.IlAgtVl((M~5@V~rCEA~I'Sr'(lar.

AKL.II~QxlCR$%%$IUNWONAP~V~SV.'b.STYX,OF5Ghl(C(KDg5QJt44tP4T4~5@)ICEAKANEu~MbLML~P4J-~LCS2AE~a6uu~~OlCtOLOPC46LuHOOQL~~55bllCE~et(WHP(LL.a+mt(e(LQ4eak.oem'(-0CMTlALtlunlVS@AAIL~~AL(RRT4C~kl((CDI$4'-OFQGO(L~<CeARK@IIRLCEOFIPhd(LPc, I~beni(ALIIP(bCZOS'~~I%-s~~(CSIIIPly@OS'IggCQQ&ILzprflJL, 5Ept.'ce(It(KQAVLA1('OVg

~~OldRLQK~~ICE1II(e(1(~CIocoaee~vsIIIrFQt(l0MIIJ6CC"~QTIAI+~MT'~AIL ILCLIIL,~RRBORATlhr5~O(eKRVATLON (ILIigureIII RrvezAav~vQR'IMACROMOOEIorU.S.ECOMOtf!IIIQQSMIAL

~ItnAL~~~T.(TWO0&TQAMQCWAI)

~gERVlCKAX~A'M~PelcaS'~ICSPagAISGhnCEPCXA-NONABACICIAJVlAL,WPlghfllCAIT'SCbnCt~>>r~~~~APL~CATSERuCC,A~i~CCC4CC~POPULUSTIClH~~~.ll~VlIImCChl45AREA.~u~Ka5,~~'Saeva~IEH~~'usus~+aeAlt'T$4DC'5$2llCEAQUA.N'AH~PllOKWACLESWC~WP4a~CEHDLCthHCIJTRIIAIICIAI PER&~~~CCl4bVAlPllgth PIP~'.AI4PtQ,~~le%HAHCOu~mOlltKP~EQ.CIAIIptICKcP~C~C~IL9+Rs~~o~I(@AMER.C&L "DECTCR.HwHICOIJIItT~IItHE&hk)A,T lICIIQ.CDt1HFQC;Al cE~~RIIIr~SeWWIII ll40lhMIAL SECtCA.~TIDAL.EW~mur(~Ol&TSMAKQOWL))

~5ERVICEAIL'QXKS~PILICI.S'QRVIC3PC@AIPueOuu-I~EIglgACCICV~aKRncaALKA.~m~mr'SEbnCE~v~PCR~IN~~~~+IPCPVIAr&NI~~-Ileal(gagLIIIQCpQUOITSeahICACTA.vam'55blICI'.

Adrh-P4CL5aRIAI.5CILVICvi hREA(~O<CgTCQEACOul)

P7gltCl+Olc,QM'A.,EX'I+

OCO~ttIdH~PPPAILEL,CXBRKPvL<<H~Kvu.S.(~~3~v)rLPITS~~IL3IPRa<>~W~IISCRICEH2CAHWHPdlDTIM&+PCS'~HIS+

NalH'k@HIQKLS tALLIS)PQg)~~H4H~CvHBThe%)PAC.TCILIW IPRIczcF~&cb~CCrIPhaCP~~I55bJICvI~H'g-I"~~ACTCC.i~IIIdHpIIIITACV I-EIpL5(,5;s,~3C%EL~'PCcCCC,5HulH~~+ICALr~luEAVCAr~lmmII43HcrHalLcm~~immikeAN~ImIHl5iiL~

tCQ$5NATICNIIINcvsnu~cBmocIIIiIHCCRC.NISI~TOTAL~WAWHO@%.SALESIMDV5TTRIAL ScCTAExhibitV SUSQUEHANNASES-ER-OL contaminated byairborneradioiodine isapotential sourceofexposure.

Samplesfrommilkanimalsareconsidered abetterindicator ofradioiodine intheenvironment thanvegetation.

Ifthecensusrevealsmilkanimalsarenotpresentorareunavailable forsampling, thenveqetation maybesampled.The500-sq.ft.garden,considering 20%usedforgrowinggreenleafyvegetables andavegetation yieldof2kg/m>willproducethe26kq/yrassumedin~Reula~torGuide1.109(March1974)forchildconsumption ofleafyveqetation.

Theoptiontoconsiderthegardentobeatthenearestresidence isconservative andthoselocations maybeusedtocalculate dosesduetoradioactive effluentreleasesinplaceoftheactuallocations whichwouldbedetermined bythecensus.Thepermission ofdeviations fromthesamplingscheduleisbasedontherecognition ofunavoidable practical difficulties whichintheabsenceofthepermitted deviations wouldresultinviolation ofthespecifications.

Therequirement fortheparticipation intheEPAcross-check program,orsimilarprogram,isbasedontheneedforindependent checksontheprecision andaccuracyofthemeasurements ofradioactive materialinenvironmental monitorinq inordertodemonstrate thevalidityoftheresults.~ReoetingRequirement A.AnnualEnvironmental Operatinq Report,PartB,Radiological.

Areportontheradiological environmental surveillance proqramforthepreviouscalenderyearshallbesubmitted totheDirectoroftheNRCRegionalOffice(withacopytotheDirector, OfficeofNuclearReactorRequlation) asaseparatedocumentinMayofeachyear.Theperiodofthefirstreportshallbeginwiththedateofinitialcriticality Thereportshallincludea.summary(formatofTableF-1,Environmental Monitoring ProgramSummary)interpretations, andstatistical evaluation oftheresultsoftheradiological environmental surveillance activities forthereportperiod,includinq acomparison withoperational,

controls, preoperational studies(asappropriate) andpreviousenvironmental surveillance reportsandanassessment oftheobservedimpactsofthestationoperation ontheenvironment.

Intheeventthatsomeresultsarenotavailable thereportshallbesubmitted notingandexplaining thereasonsforthemissinqresults.Themissingdatashallbesubmitted assoonaspossibleinasupplementary report.

SUSQUEHANNASES-ER-OLThereportsshallincludeeitherexplicitly orbyreference tootherdocumentation, thefollowing:

asummarydescription oftheradiological environmental monitorinq programincluding samplingmethodsforeachsampletype,sizeandphysicalcharacteristics ofeachsampletype,samplepreparation methodsanalytical methods,andmeasurinq equipment used;amapofallsamplinglocations.

.theresultsofthelandusecensusesandtheresultsoftheApplicant's participation intheEnvironmental Protection Agency'sEnvironmental Radioactivity Laboratory Intercomparisons Studies(Crosscheck)

Proqram.B.Non-routine Radiological Fnvironmental Operatinq ReportsIfaconfirmed measuredradionuclide concentration inanenvironmental samplingmediumaveragedoveranyquartersamplinqperiodexceedsthereporting levelgiveninTableF-4,Reportinq Levels.forNon-Routine Operation, awrittenreportshallbesubmitted totheDirectoroftheNBCRegionalOffice(withacopytotheDirector, OfficeofNuclearReactorRegulation) within30daysfromtheendofthequarter.Aconfirmatory reanalysis oftheoriginal, aduplicate oranewsamplemaybedesirable, asappropriate.

Theresultsoftheconfirmatory analysisshallbecompleted attheearliesttimeconsistent withtheanalysis, butinanycasewithin30daysexceptinthecaseofthestrontium analysis.

Zfitcanbedemonstrated thatthelevelisnotaresultofstationeffluents (i.e.,bycomparison withcontrolstationorpreoperational data)areportneednotbesubmitted, butshallbediscussed intheannualreport.Ifradionuclides otherthanthoseinTable-F-4aredetectedandareduefromstationeffluents, areporting levelisexceededifthepotential annualdosetoanindividual isequaltoorgreaterthanthedesignobjective dosesof10CFRPart50,AppendixIThisreportshallincludeanevaluation ofareleaseconditions, environmental factorsorotheraspectsnecessary toexplaintheanomalous result SUSQUEHANNA SFS-EROLTABLEF-2SUSQUEHANNA SESOPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAHSam~leTpeAirParticulates SS-AP-551 SS-AP-1152 SS-AP-9A1 SS-AP-12E1 SS-AP-7Hl AirIodineSS-AI-551 SS-AI-1152 SS-AI-9A1 SS-AI-12El SS-AI-7H1 SurfaceWaterSS-SW-5S2 SS-SW-12F1 Dr~inkinWaterSS-PWT-12F2SS-PWT-12H2 Fish**SS-AQF-6AI SS-AQF-2G1 SedimentSS-AQS-llcl MilkSS-H-5B1SS-M-12B1 SS-H-1282 SS-H-7H2Location++NorthofI.A.SWcornerofsiteNearTransmission FieldBerwickHospitalPPEtLRoofNorthofI.A.SWcornerofsiteNearTransmission FieldBerwickHospitalPPSLRoofAtI.A.BerwickBridgeBerwickWaterCo.(treated)

DanvilieWaterCo.(treated)

OutfallUpstreamHessIs,areaFarmSchultzFarmYoungFarmCrytalSpringsDairyCollection F~PBUMC*SASA2/H~AnalsisGrossBetaGalenaEmittersI-131GamaEmittersH-3GrossBetaGammaEmittersH-3GamaEmittersGammaEmittersI-131GamaEmittersAnalyticalF~reCene*WQCHQCSASA2/H2/HUnitspCi/m3pCi/mpCi/mpCi/1pCi/1pCi/1pCi/1pCi/1pCi/g(wet)

PCi/9(dry) pCi/1pCi/1 SUSQUEHANNA SES-ER-OL TABLEF-2(cont.)SUSQUEHANNA SESOPERATIONAL RADIOLOGICAL ENVIRONMENTAL HONITORING PROGRAH~SamleTeFoodProductsSS-FP-5B1 DirectRadiation SS-ID-3S2 SS-ID-4S1SS-ID-551SS-ID-7S1 SS-ID-11S2 SS-ID-9AISS-ID-12E1SS-ID-7HILocation++FarmSusquehanna RiverSusquehanna RiverNorthofI.A.On230KVTowerOn230KVTowerNearTransmission FieldBerwickHospitalPP&LRoofCollection

~Feemene*~AnalsisGanmaEmittersGamaDoseAnalytical

~Fremene*UnitspCi/g(wet) mrem/std.mo Frequency Codes:W=Weekly;H=Monthly;Q=Quarterly; SA=Semi-Annual; A=Annual;2/H=twiceeachmonth;CComposite.

Important classesoffishwillbeanalyzedseparately.

(bottomfeedersandgamefish)Hilkcollected andanalyzedsemi-monthly fromAprilthroughOctober-monthlyduringothermonths.ShowninFigure.

SUSQUEHANNA SESEROLTABLEF-3DETECTION CAPABILITIES FORENVIRONMENTAL SAMPLEANALYSISMINIMUMDETECTABLE LEVEL(MDL)AnalysisWater(pCi/l)AirborneParticulate orGas(pCi/m')Fish(pCi/kg-wet)

Mi1kFoodProductsSediment(pCi/1)(pCi/kg-wet)

(pCi/kg-dry)

GrossBetaH-3Mn-54Fe-59Co-58,60Zn-65ZrNb-95I-131Cs-134,137 BaLa-140200102010200.310107x105x105x108517085170855c101016c,d50100 SUSQUEHANNA SES-ER-OL TableF-3(Cont'd)~Acceptable detection capabilities forthermoluminescent dosimeters usedforenvironmental measurements aregiveninRegulatory Guide4.13,July1977.Indicates acceptable detection capabilities forradioactive materials inenvironmental samples.Thesedetection capabilities aretabulated intermsoftheminimumdetectable level(MDLs).TheNOLisdefined,forpurposesofthisTable,asthatconcentration ofradioactive materialinasamplethatwillyieldanetcountwhichisdifferent fromthebackground countbythreetimesthestandarddeviation afterbackground count.Foraparticular measurement system(whichmayincluderadiochemical separation):

MDL=300SbExVx2.22xYxexp(-Xt)where,NOLisminimumdetectable levelasdefinedabove(aspCiperunitmassorvolume)Sbisthestandarddeviation ofthebackground countingrateorofthecountingrateofablanksampleasappropriate (ascountsperminute)Eisthecountingefficiency (ascountsperdisintegration)

Visthesamplesize(inunitsofmassofvolume)2e22isthenumberofdisintegrations perminuteperpicocurie Yisthefractional radiochemical yield(whenapplicable) istheradioactive decayconstantfortheparticular radionuclide istheelapsedtimebetweensamplecollection andcountingThevalueofSusedinthecalculation oftheNOLforaparticular measurement systemshouldebasedontheactualobservedvarianceofthebackground countingrateorofthecountingrateoftheblanksamples(asappropriate) ratherthanonanunverified theoretically predicated variance.

Incalculating theMDLforaradionuclide determined bygama-rayspectrometry, thebackground shouldincludethetypicalcontributions ofotherradionuclides normallypresentinthesample(e.q.,potassium-40 inmilksamples).

TypicalvaluesofE,V,Y,andtshouldbeusedinthecalculation.

Itshouldberecognized thattheNOLisdefinedas~ariori(beforethefact)limitrepresenting thecapability ofameasurement systemandnotasftfillifp SUSQUEHANNA SES-ER-OL TableF-3(Cont'd)c.MDLsforI-131inwater,milkandotherfoodproductscorrespond toone-quarter oftheAppendixI(10CFRPart50)designobjective dose-equivalent of15mrem/yearusingtheassumptions giveninRegulatory Guide1.109exceptforaninfantconsuming 3301/yrofdrinkwater.d.MDLforleafyvegetables.