ML17229A177: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(10 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML17229A177
| number = ML17229A177
| issue date = 12/18/1996
| issue date = 12/18/1996
| title = Rev 1 to Cable Derating in Conduits W/Fire Barrier Coatings.
| title = Rev 1 to Cable Derating in Conduits W/Fire Barrier Coatings
| author name =  
| author name =  
| author affiliation = FLORIDA POWER & LIGHT CO.
| author affiliation = FLORIDA POWER & LIGHT CO.
Line 15: Line 15:
| page count = 38
| page count = 38
}}
}}
=Text=
{{#Wiki_filter:Page i
AL L
I N
VER HEET Calculation No:
P L -
F 1
==Title:==
A E
RATI I
N T
I FIR BA Rl ATI 0
No.
Revision for Heat Load INITIALISSUE Description K
R By IZ-/7-f4 Is l106 8-1 2-96 WL 8-1 2-96 Date Chkd Date ARD/
WAB Appr 8-14-96 Date REVISIONS 9b122b0322 9bi219 PDR ADGCK 05000335 P
PDR
~>tc.iZ>~6
Page ii Calculation No.
FE-1 Rev.
1 Title IR AR I
,Page 8
10 12 13 14 15 17 18 19 20 21 22 23 Section
: Cover, List of Effective Pages Table of Contents 1.0 Purpose 2.0 References 2.0 References 2.0 References 2.0 References 2.0 References 2.0 References 2.0 References 2.0 References 3.0 Methodology 3.0 Methodology 4,0 Assumptions/Bases 4.0 Assumptions/Bases 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 6.0 Results Rev.
0 0
0 0
1
'1 Page Section Rev.
nmpca Ic.12/96
't I
Page iii BL F
NTEN CALCULATIONNUMBER F
1 REV.
2!LEIGH 1.0 2.0 3.0 4.0 5.0 6.0
.Cover Sheet List of Effective Pages Table of Contents Purpose/Scope References Methodology Assumptions/Bases Calculation Results
~A~E 13 14 23 TTA H N TITLE PA(~E ICEA Pub. No. S-66-524
: 5. NEMA Std WC7-88, Excerpt Table 2-4 5, 6-1 NUCON International, Inc "Pyrolysis Gas Chromatography Analysis of 9 Thermo-Lag Fire Barrier Samples",
P.O. No. LJ950 WP-006, 12 May 1995 aspen lc.12/96
A ATI CALCULATIONNO.
1 REV.
1 SHEET NO.~
1 0 68KQSR The purpose of this calculation is to determine or update ampacity values for power cables routed in St. Lucie Unit 1 and Unit 2 conduits wrapped with Thermo-Lag fire barrier systems as listed in previous calculations (Ref. 2.3). This document outlines the methodology used to determine power cable ampacity including derating factors. Wrapped conduit derating factors are determined for existing fire barriers and for upgraded systems.
Existing cable protection will be upgraded on certain conduits to maintain required levels of protection.
The cables in the conduits have been evaluated to require protection because no redundant functions or alternate conduit routes exist to eliminate the need for protection (Ref, 2.76-2.88).
By performing an evaluation with upgraded conduit wrap, cable ampacity margins may be verified to ensure adequate capabilities exist for providing power to affected electrical toads.
Revision 1 to this calculation adds a discussion of the operating heat loads (Watts per foot) for the wrapped cables and a comparison of the cables at St. Lucie plant to the cables tested at Omega Laboratories for Texas Utilities'omanche Peak Plant (Ref. 2,26) ~
Heat load factors provide an additional assurance that cables installed at St. Lucie are enveloped by the test configuration.
2.
2.1 Florida Power & Light Company, St. Lucis Plant Unit No. 1, Appendix "R" Safe Shutdown Analysis, 8770-B-048, Revision 2.
2.2 Florida Power & Light Company, St. Lucie Plant Unit No. 2, Appendix "R" Safe Shutdown Analysis, 2998-B-048, Revision 1.
2.3 FPL Calculation PSL-BFJE-93-002, Revision 1, "Ampacity Derating Response to NRC GL 92-08 for Cable Routed in Conduits with Thermo-Lag 330-1 Fire Barrier System Coating" 2.4 FPL Calculation PSL-O-F-J-E-90-011, Revision 2, "Station Blackout Hot Standby Loads".
2.5 FPL Calculation PSL-O-F-J-E-90-012, Revision 1, "Station Blackout Cold Shutdown Loads".
2.6 2.7 FPL Calculation PSL-1-F-J-E-90-015, FPL Calculation PSL-2-F-J-E-90-016, Revision 0, "Safety Related Batteries 1A and 1B".
Revision 0, "Safety Related Batteries 2A and 2B".
2.8 FPL Calculation PSL-1-F-J-E-90-017, Revision 0, "Battery Chargers 1A, 1AA, 1B, 1BB, 1AB Kilowatt Input Demand".
2.9 FPL Calculation PSL-2-F-J-E-90-018, Revision 0, "Battery Chargers 2A, 2AA, 2B, 2BB, 2AB Kilowatt Input Demand".
2.10 FPL Calculation PSL-'2-F-J-E-90-019, Revision 0, "Unit 2 Battery Chargers 2A, 2AA, 2B, 2BB and 2AB Sizing".'rrpca Lc. 12/96
L N
HE CALCULATIONNO.
F 1
REV.~
SHEET NO.~
2.0 tcont'd) 2.11 FPL Calculation PSL-2-FJE-90-020, Revision 4, "St. Lucie Unit 2 Emergency Diesel Generator 2A and 2B Electrical Loads".
2.12 FPL Calculation PSL-2-F-J-E-90-025, Revision 0, "Evaluation of Calculation WHL-39, Rev. 0".
2.13 FPL Calculation PSL-2-FJE-90-028, Revision 1, "Unit2 Low DC System Voltage Calculation".
2.14 FPL Calculation PSL-1-F-J-E-91-002, Revision 0, "Instrument Inverters 1A, 1B, 1C & 1D AC Output Loading".
2.15 FPL Calculation PSL-1-F-J-E-91-004, Revision 0, "Unit 1 High DC System Voltage Analysis".
2.16 FPL Calculation PSL2-FJE-91-007, Revision 0, "PSL2 - Comparison of Anticipated Electrical Loading Conditions to Equipment Ratings".
2.17 FPL Evaluation JPN-PSL-SEMP-92-039, Revision 1, "Operability Assessment of Thermo-Lag 330-1".
2.18 FPL Calculation PSL-2FJE-93-001, Revision 1, "St. Lucie - Unit 2 Short Circuit, Voltage Drop and PSB-1 Analysis Calculation.",
2.19 FPL Calculation PSL-OFJE-93-004, Revision 0, "St. Lucia Station Blackout Emergency Diesel Generator Transient Analysis".
2.20 FPL Calculation PTN-BFJM-96-005, Revision 0, "Fire Barrier Ampacity Correction Factors-Extrapolation of Test Results for 3 Hour Barrier".
2.21 EBASCO Services, Incorporated, Calculation EC-100, Revision 1; "Fire Wrapped Conduits Cable Ampacity Document for St. Lucie Units 1 and 2".
2.22 EBASCO Services, Incorporated, Calculation EC-192, Revision 2, "MOVTOL Heater Selection Calculation".
2.23 EBASCO Services, Incorporated, Calculation WHL-8, Revision 7, "Power Cable Ampacity Document for St. Lucie ¹2".
2.24 EBASCO Services, Incorporated, Calculation WHL-25, Revision 2, "Instrument Inverters AC Output Loading".
2.25 Industrial Testing Laboratories (ITL) Report No. 84-10-5, Dated October, 1984, "Ampacity Test for 600 Volt Power Cables Installed in a Five Foot Length of Two Inch Conduit Protected with Three Hour Fire Rated Design of Thermo-Lag 330-1 Fire Barrier System."
aapca lc.12/96
LATI HEE CALCULATIONNO.
F 1
REV ~
SHEET NO.~
2.0 aEFIMKER i 2.26 Omega Point Laboratories, "Ampacity Derating of Fire Protected Cables", Project No. 12340-94583,95165-95168,95246, Electrical Test to Determine the Ampacity Derating of a Protective Envelope for Class 1E Electrical Circuits, dated March 19, 1993; Prepared for: TU Electric - Comanche Peak Steam Electric Station.
2.27 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-366, Revision 34, Reactor Containment Bldg El. 45'-0 Conduit, Trays & Grounding Plans.
2.28 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-375, Sheet 1,
Revision 22, Reactor Containment Bldg Penetration Details.
2.29 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-390, Revision 20, Reactor Auxiliary Building El -0.50',Conduit, Trays and Grounding Sh. 1.
2.30 Florida Power & Light Company, St. Lucie.Plant Unit 1, Drawing 8770-G-391, Revision 27, Reactor Auxiliary Bldg El -0.50'onduit, Trays & Grounding-Sh. 2.
2.31 Florida Power & Light Company, St. Lucia Plant Unit 1, Drawing 8770-G-392, Revision 35,
~
~
Reactor Auxiliary Building El. 19'-6 Conduit, Trays & Grounding - Sh. 1.
2.32 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-393, Revision 30, Reactor Auxiliary Building El. 19'-6 Conduit, Trays & Grounding - Sh. 2.
2.33 Florida Power & Light Company, St. Lucia Plant Unit 1, Drawing 8770-G-395, Revision 20, Reactor Auxiliary Building, El. 43'-0, 62'-0 Conduit, Trays & Grounding.
2.34 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S01, Revision 6, Fire Protection Reactor Auxiliary Building El -0.50'.
2.35 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S02, Revision',
Fire Protection Reactor Auxiliary Building El. 19.50'.
2.36 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S03, Revision 7, Fire Protection Reactor Auxiliary Building El. 43.00'.
2.37 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S04, Revision 4, Fire Protection Reactor Auxiliary Building El. 19.50'nd EI. 43.00'.
2.38 Florida Power & Light Company, St.'Lucie Plant Unit 2, Drawing 2998-G-366, Revision 14, Reactor Containment Bldg. El. 45'-0 Conduit, Trays & Grounding Plan.
~
~
~
2.39 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-375, Sheet 1,
Revision 13, Reactor Containment Bldg. Penetration Details.
anpcalc.12/96
AT N
ET CALCULATIONNO.
F 1
REV ~
SHEET NO.~
2.0 2.40 241 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 (cont'd)
Florida Power & Light Company, St. Lucre Plant Unit 2, Drawing 2998-G-390, Revision 16, Reactor Auxiliary Building El. (-)0.50' Conduit, Trays & Grounding Sh. 1.
Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-391, Revision 17, Reactor Auxiliary Building EI. (-)0.50' Conduit, Trays & Grounding Sh. 2.
Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-392, Revision 15, Reactor Auxiliary Building El. 19'-6 Conduit Trays & Grounding-Sh.
1.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-393, Revision 14, Reactor Auxiliary Building El. 19'-6 Conduit, Tray & Grounding-Sh. 2.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-395, Revision 14, Reactor Auxiliary Building El. 43'-0, 62'-0 Conduit, Trays & Grounding Sh. 2.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 2, Revision 4, RAB El. 19.50'onduit Layout.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 3,
Revision 4, RAB El. 19.50'onduit Layout.
Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 4, Revision 4, RAB El. 19.50'onduit Layout Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 6J, Revision 1, R.A.B. and R,C.B. Appendix 'R'rapped Conduit Summary.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 7, Revision 7, RAB EI. 19,50'onduit Layout.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 8, Revision 5, RAB El. 19.50'onduit Layout.
2.51 2.52 Florida Power &
Revision 5, RAB Florida Power &
Revision 4, RAB Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 9, El, 19.50'onduit Layout.
Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 10, El. 19.50'onduit Layout.
2.53 Florida Power &
Revision 3, RAB Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 13, El. 19.50'onduit Layout.
2.54 Florida Power &
Revision 5, RAB Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 14, El. 19.50'onduit Layout.
anpcs lc. 12/96
T N
HE CALCULATIONNO.
F SHEET NO.~
2.0 2.55 2.56 2.57 2.58 (cont'd)
Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Revision 3, RAB El. 19.50'onduit Layout.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 2, RAB El. 19.50'onduit Layout Sh. 16.
Rorida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 3, RAB El. 19.50'onduit Layout Sh. 17.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 2, RAB El. 19.50'onduit Layout Sh. 18.
Sheet 15, Sheet 16, Sheet 17, Sheet 18, 2.59 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 19,
'Revision 4, RAB El. 19.50'onduit Layout Sh. 19.
2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Revision 7, Reactor Auxiliary Building Electrical Penetration Area Conduit Layout Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 9, RAB El. 43.00'onduit Layout.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 6, RAB El. 43.00'onduit Layout Sh. 23.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 9, RAB El. 43.00'onduit Layout Sh. 29.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 7, RAB El. 43.00'onduit Layout.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 12, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 34.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 9, RAB El. 43.00 Conduit Layout.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 7, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 36.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 6, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 37.
Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 7, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 38.
Sheet 20, Sh. 20.
Sheet 22, Sheet 23, Sheet 29, Sheet 30, Sheet 34, Sheet 35, Sheet 36, Sheet 37, Sheet 38, arpc ale.12/96
CALCULATIONNO.
1 REV.~
SHEET NO.~
2.0 (cont'd) 2.70 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 39, Revision 8, RAB El. 43.00'onduit Layout.
2.71 Florida Power & Light Company, St. Lucie Plant Unit 1, Cable and Conduit Lists, 8770-A-328.
2.72 2.73 Florida Power & Light Company, St. Lucie Plant Unit 2, Cable and Conduit Lists, 2998-A-328.
Florida Power & Light Company, St. Lucia Plant Unit No. 1, Control Wiring Diagrams (CWD),
8770-B-327 series, 2.74 Florida Power & Light Company, St. Lucie Plant Unit No. 2, Control Wiring Diagrams (CWD),
2998-B-327 series.
2.75 IEEE Standard Power Cable Ampacity Tables, IEEE Std. 835-1994, Approved Date September 22, 1994.
2.76 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-052, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire Area A."
Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-053, "Review of Thermo-Lag Protected Conduits in Fire Area B."
2.78 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-054, "Review of Thermo-Lag Protected Conduits in Fire Area C."
2.79 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-055, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire Area E."
2.80 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-056, "Review of Thermo-Lag Protected Conduits in Fire Area N."
2.81 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-064, "Review of Thermo-Lag Protected Conduits in Fire Area O."
2.82 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-057, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire'Area A."
2,83 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-058, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire Area B."
2.84 2.85, Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-059, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire Area C."
Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-060, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire Area H."
ampca lc.12/96
L L
I N
HEET CALCULATIONNO.
SHEET NO. ~1 2.0 (cont'd) 2.86 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-061, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire Area I."
2.87 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-062, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire Area M."
2.88 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-063, "Review of Appendix
'R'ualification of Thermo-Lag Protected Conduits in Fire Area O."
2.89 Standard Handbook for Electrical Engineers, 11th Edition.
2.90 Westinghouse Electric Corporation Drawing 4'9552D65, Sheet 3, "St. Lucie Unit No. 2 Electric Hydrogen Recombiner Solid State Power Controller Schem",
EMDRAC No. 2998-3031, Revision 1.
2.91.
St. Lucia Unit No. 1, Cable 5 Conduit List 8770-B-328, Installation Notes, Sh. 12, Rev, 9.
2.92 FPL St. Lucie Unit 1 Drawing 8770-G-275 Sh, 1, Revision 12, "6.9kV Swgr 5 4.16kV Swgr One Line Wiring Diagram Sh. 1".
2.93 2.94 FPL St. Lucie Unit 1 Drawing 8770-G-275 Sh.7, Revision 12, "480V Motor Control Centers One Line Wiring Diagram Sh. 7".
FPL St. Lucia Unit 2 Drawing 2998-G-275 Sh. 18, Revision 5, "4.16kV Switchgear No. 2A3 and 2B3 One Line Diagrams",
2.95 FPL St. Lucia Unit 2 Drawing 2998-G-275 Sh. 19, Revision 3, "4.16kV Switchgear No. 2AB, No. 2A4 and No. 2B4 One Line Diagrams".
2.96 FPL St. Lucie Unit 2 Drawing 2998-G-275 Sh. 35, Revision 8, "480V Motor Control Center No. 2B5 (Sh. 1) One Line Diagram".
,2.97 FPL St. Lucie Unit 2 Drawing 2998-G-275 Sh. 41, Revision 7, "480V Motor Control Center No. 2B6 Sh. 2 One Line Diagram".
2.98 ICEA Publication No. S-19-81, NEMA Standards Publications No. WC3-1980, Approved September 19, 1979, " Rubber-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy", Table 2-4.
2.99 ICEA Publication No. S-66-524, NEMA Standards Publication No. WC7-1988, " Cross-Linked Thermosetting-Polyethylene-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy ".
aepca lc.12/96
F 1
REV.
1 SHEET NO.~
2.0 (cont'd) 2.100 ICEA Publication No. S-68-516, NEMA Standards Publication No. WC8-1988. " Ethylene-Propylene-Rubber-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy ".
2.101 Engineering Evaluation St. Lucie Units 1 & 2, JPN-PSL-SEEP-94-108, Revision 1, "Evaluation of Existing Thermo-Lag Fire Barriers"
'2.102 Engineering Evaluation JPN-PSL-SENP-95-030, "Response to. NRC Request for Additional Information Dated 12/28/94".
2.103 NUCON International, Inc., "Pyrolysis Gas Chromatography Analysis of 9 Thermo-Lag Fire Barrier Samples, Performed for Florida Power & Light Company" (Attachment 2).
2.104 EPRI Power Plant Electrical Reference Series, Volume 4, "Wire and Cable", Section 4.4.
3.0 D
L Y
Review the Appendix 'R'afe Shutdown Analysis (SSA) for cables identified as requiring protection and conduits identified with fire barriers (Ref. 2.1 & 2.2).
3.2 Review Unit 1 Fire Protection drawings, 8770-G-424 S01, S02, S03 and S04 (Ref. 2.34-2.37) for conduits shown and listed as protected or shown as 6 protection not required by further evaluation.
Fire barriers were installed on the 6 conduits prior to the re-evaluation which removed protection requirements (Ref. Table 5.2).
3.3 Review Unit 2 Appendix 'R'rapped summary drawing, 2998-G-411, Sheet 6J (Ref, 2.48) for conduits shown and listed as protected or shown as 8 protection not required by further evaluation.
Fire barriers were installed on the 8 conduits prior to the re-evaluation which removed protection requirements (Ref. Table 5.3 & 5.4).
3.4 Review Unit 2 raceway and conduit layout drawings for conduits wrapped with Thermo-Lag 330-1 fire barriers for RG 1.75 separation (Ref 2.38-2.47, 2 49-2.70).
3.5 Identify cables in conduits covered with Thermo-Lag 330-1 fire barrier systems not previously identified in SSAs; i.e., RG 1.75 and cables in conduits designated S.
3.6 Determine cable function from review of associated control wiring diagrams and compile listings of power cables affected.
Signal and control cables do not carry sufficient current to generate heat in the cable and reduce ampacity.
Power cables to valves are excluded due to the short duration of valve operation, 3.7 Review calculations issued by EBASCO, Services, Inc. and FPL Engineering to determine loads and currents used for affected power cables.
Select worst case loading from background information and determine which loads will be applied to the cables continuously or longer than the time which will heat the cable from the load current (Ref. 2.3-2.16, 2.18-2.24).
arpcal c.12/96
CALCULATIONSHEET CALCULATIONNO. PSL-OFJE 001 REV.
1 SHEET NO.
12 3.0 METHODOLOGY 3.8 For motors, determine kilovolt-amperes (KVA) rating from horsepower rating and then calculate current based on line voltage (480 or 4160 volts) to device. Motor kilovolt-amp and efficiencies are discussed in Assumption 4.10 and 4.11.
%%d 3.9 Determine derating factor for multiple power cable installed in the same conduit, the number of current carrying conductors in the conduit (C/C) and the Ampacity Correction Factor (ACF) calculated in PTN-BFJM-96-005 (Ref. 2.20),
Total Number of Conductors Cable manufacturers and IEEE gives ampacities for cables up to one three conductor (3/c) or triplex cable in a conduit in air.
The cable ampacities are derated when the number of conductors in a conduit exceeds three (3).
Cable ampacity is multiplied by the following correction factor (Ref. 2.104):
Ampacity Correction Factor 34-6 7-9 1.00 0.80 0.70 3.10 Calculate derated ampacity (I') for each power cable.
(I') = lc x (ACF) x (C/C Derating %)
3.11 Determine margin percent (%) between rated cable capacity and the derated ampacity (I'):
C
-1
) x100
< Load Amps Required(l) 3.12 Operating heat loads (Watts per foot) are calculated as follows:
Watts/foot =
( 0'f conductors)
( resistance per 1000 ft)(load current)~ /1000 The heat loads for the derated current load on a cable type is compared to the operating heat load for the actual current load on a cable to assure cable design is not exceeded.
3.13 Cable resistance values are given at a temperature of 25 degree C. Table 6-1 (attached) provides the following conversion equation:
R1 = R2
( 259.5/[234.5
+ T2]);,where; R1 = resistance at 25 degree C
R2 = resistance at operating temperature R2 = R1 ([234.5 + T2] /259.5) '2 = cable temperature; i.e., 90 degree C
or R2 = R1 ([234.5 + 90] /259.5) = R1 (1.2505) aepca lc. 12/96
I HE CALCULATIONNO.
F 1
REV.
1 SHEET NO.~
4.0 4.1 Fire protection wrap used at St. Lucie station is the Thermal Science, Inc. (TSI) Thermo-lag Fire Barrier System.
Typically, the half-round "clamshell" covers applied over conduits have a nominal thickness of 5/8" for one (1) hour ratings and one (1) inch for three (3) hour ratings.
4.2 The original design calculations for derating factors determined that Thermo-Lag barriers reduced ampacity by approximately 12%, however, for conservatism, a derating factor of 15% was selected for power cable sizing (Ref. 2.21).
4,,3 Control and instrumentation cables are not subject to ampacity limits due to the small levels of current used.
Voltage drop in the control circuit is usually the limiting factor for cable design and normally requires the installation of larger cables to perform required functions.
4.4 The continuous device current load was used as a basis for this calculation. Momentary load requirements, i.e., those lasting less than 1 minute, are not considered.
Loads of this duration are not sustained long enough to induce heat in the affected power cables.
Abnormally high levels of current for devices are detected by protective devices and the component is designed to be separated from the power source before the condition damages the component or cable.
4.5 Fire protection barriers in St. Lucie Unit 1 and Unit 2 are installed on cable conduits and conduit boxes only.
There are no cable trays wrapped with fire barriers at the St. Lucie station. However, sections of conduits 21001F-4" and 21001H-4" are routed in a "banked" configuration.
There were no tested configurations for banked conduit runs; therefore, the ampacity correction factor for cable tray were used. The banked conduits are in a single plane and the conduit size of 4 inches is similar to the depth of cable tray used at St. Lucie. Using the cable tray derating factor gives a more conservative estimate of the current carrying margin for the affected cables in these conduits (21801W, 21801X, 21801Y and 21801Z).
4.6 This calculation applies to cables in protected conduits inside and outside containment of both St. Lucie units.
The ambient temperature for cables inside containment is assumed to be 50'C. Outside of the containment buildings, ambient temperatures are assumed to be 40'C (104'F).
Operating temperatures in the RAB are normally closer to 30'C; however, for conservatism, the higher temperature will be used.
4.7 Power cables utilized in St. Lucie'station are rated for operation at 90'C conductor temperature.
The higher the insulation temperature rating, the greater the allowable ampacity for a given conductor size.
4.8 Conduits protected in St. Lucie Unit &#xb9;1 use (3) hour barrier one (1) inch nominal thickness material.
Conduits protected in St. Lucia Unit &#xb9;2 may be protected with one (1) hour 5/8" nominal thickness material or three (3) hour one (1) inch nominal thickness material.
This calculation assumes three (3) hour protection will be upgraded by using layers of Thermo-Lag 770-1 wrap and trowel grade materials.
One (1) hour barriers will be upgraded with overlays of (1/4") nominal thickness curved sections of Thermo-Lag 330-1.
These assumptions are based on currently available upgrade systems that are cost effective for use at St. Lucia.
ampca lc. 12/96
L T
CALCULATION,NO.
F 1
REV.
1 SHEET NO. ~4 4.0 N
A 4.9 Conductor current values for 600 volt cables are based on IEEE standard values (Ref. 2.75) for conductors rated 600 to 5000 volts, 90'C (194'F) ambient temperature with no solar heating and 2 FT/s wind/ventilation.
4.10 Where load values are known in kilovolt-amperes (KVAs), the current is determined by; h
C Ci:
=V I= V 1
amps (three phase AC) 3xV 4.11 The ampacity testing performed for Comanche Peak Plant was performed for conduits ranging in size from 3/4 inches to 5 inches.
Conduits covered with Thermo-Lag 330-1 fire barriers at St. Lucie plant range from 1-1/2" to 5". The heat load (I'R loss) from each cable section is included in Tables 5.5a, 5.5b. 5 5.5c.
These heat loads were compared to the tables/charts used by Turkey Point where heat loads were compared to the Omega Point Laboratory test for Texas Utilities Comanche Peak Plant (Ref. 2.20). From this it is concluded that the test samples utilized are representative of the configuration at St. Lucie.
4.12 There are'no installed cable tray sections at St. Lucie protected by Thermo-Lag fire barriers.
However, there is a large pull box installed in St. Lucie Unit 2 elevation (-) 0.50', box B2431-SA which was reviewed due to size.
The box is a 42" x 42" x 12" enclosure used as a pullbox for the power cables to AFW pump 2A. The horizontal surface on the bottom of the enclosure is expected to be most affected by fires in the 12" box depth.
Because the original test performed by TSI included a 12" cable tray section and the Comanche Peak test included a 24" cable tray section, the large enclosure in St. Lucie Unit 2 is considered bounded by the previous tests.
4.13 ln accordance with Reference 2.101, the thickness of the Thermo-Lag and the gaps within the Thermo-Lag, found during the inspection of the correctly installed configurations for'the Unit 1
8c 2 one hour and three hour barriers, were in accordance with the installation instructions of TSI. Therefore, the configuration of the Thermo-Lag barriers at St. Lucie are bounded by the TSI installation instructions.
4.14 FPL participated in a generic industry test program managed by the. Nuclear Energy Institute (NEI) which included verification of the chemical composition of Thermo-Lag material. As part of the NEI test program, a pyrolysis gas chromatographic analysis was used to qualitatively compare the organic constituents of various Thermo-Lag samples.
St. Lucia provided (9) samples from installed and warehouse Thermo-Lag materials.
All of the samples tested at NUCON Laboratory in Columbus, Ohio were found consistent in terms of chemical composition (Ref. 2.103).
Results of the testing program were sent directly to the NRC by NEI {{letter dated|date=October 3, 1995|text=letter dated October 3, 1995}}.
Per Reference 2.102, the NRC stated that there was essentially no differences between the samples for different lots, areas of the country and the year the material was purchased.
anpc ale. 12/96
CALCULATIONNO.
1 REV.
1 SHEET NO.~
5.0 5.1 The documents listed in Section 2.0 of this calculation were reviewed to identify the cables wrapped with Thermo-Lag which must be considered for ampacity derating factors.
6.2 Bills of Material were reviewed for cables identified in 5.1 to determine insulation voltage rating and intended generic use, i.e., power or control and tabulated in Table 5.1.
5.3 From information listed in documents of Section 2.0 and appropriate bills of material, Tables 5.2, 5.3 and 5.4 were generated to identify affected cables in wrapped conduits.
These tables identify cable types, usage voltage class, insulation voltage rating, a description of the cable load for power cables and the number of current carrying conductors in each conduit.
5.4 Motor load kilowatt and current ratings vary in prior documents depending on base values used. For this calculation, current values for motors were determined from nameplate listings on referenced One-Line List drawings.
5.5 From this information and Section 2.0; Tables 5.5.a, 5.5.b. and 5.5.c were created.
e aapcatc.12/96
A LATI N HEE CALCULATIONNO.
F 1
REV.~
SHEET NO.~
5.0 (cont'd)
QLI~IQJ St. Lucia Plant Cable Types St. Lucie Unit 1: Reference Unit 1 Bill of Materials, 8770-B-325 BOM Cable Identification D022 D0343, D03-06, D03-07, D03-08 D03-12 D156 D26-02, D26-06 52-08 BOM Sheet Sht. D2-1 Sht. D3-1 Sht. D3-9 SIlt. D26-01 Sht. D52-01 Revision No.
Description Power Cable, 600V Crosslinked Polyethylene PVC Jacket for Overall Jacket (Type XLPP)
Control Cable, 600V, Crosslinked Polyethylene PVC Jacket for Overall Jacket (Type XLPPP)
Control Cable, 600V, Crosslinked Polyethylene PVC Jacket for Overall Jacket (Type XLPPP)
Power Cable, 5000V (Re. CARS)
Power Cable, 600V, HT Kerite Insulation, FR Overall Jacket (Type HT)
Control Cable, 600V, FR Kerite Insulation, FR Overall Jacket (Type MCCC)
St. Lucia Unit 2: Reference Unit 2 Bill of Materials, 2998-8-325 BOM Cable Identification BOM Sheet Revision No.
Description D1 541, D15-02, D1 5-03 D26-02, D26-03, D26-04, D26-06, D26%7, D26-08 D26-10 D52-03, D52-08 D54-05, D54-06, D54-07 D61-05, D61-06 D98 99 Sht. D11-01 SILt. D26-01 Sht. D26-09 Sht. D52-01 Sht. D54-01 Sht. D61-01 Power Cable, 5000V, Crosslinked Polyethylene, Lead Sheath L Neoprene Overall (Type XLPSLN)
Power Cable, 600V, HT Kerite Insulation, FR Overall Jacket (Type HT)
Power Cable, 600V, HT Kerite Insulation, FR Overall Jacket (Type LVPC)
Control Cable, 600V, FR Kerite Insulation, FR Overall Jacket (Type MCCC)
Power Cable, 600V, Non-shielded, HT, Kerite Insulation FR Jacket (Type LVPC)
Signal Re: D26, D52, D54 Re: D26 sapca1 c. 12/96
LATI CALCULATIONNO.
F 1
REV.~
SHEET NO. ~7 5.0 (cont'd)
T BLE
.2 St. Lucie Unit 1 Cables in Conduits with (3) Hour-Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUIT BM/Id Type Volt Insulation Device c/c 404.&h 10504A 496QSB 496Q66 496969 407448 408448 40844F 40Q$6 408468 40846F 40$RG 408268 408266 10&32A 11001F 11001G 11001H 11001J 11002B 11002F 11002G 11002H 11002J 11002M 11002N 11002P 11002Q 11009G 11009 J 11009Q 4S44VK 10504A
-102R-
-40i54-
-Hh54-
~54-
-%2$4-
-402$4-
-402$ 4
-402$4-
-402$4-
-492$4-
-492$4-
-402$4-11552 11001F "
11001F "
11001H "
11001H "
11002B "
11002F "
~ 148&5 11002F "
~ 14885 11002H "
~ 14886 11002H "
* 14886 11002M "
11002M "
11002P "
11002P "
11009G 11009 J 11009 Q 9$2-98 D2646 903-98 993-Q6 903-93 903-42 903-03 903-Q6 993-(P 903-Q3 903-96 993-OV 9Q3-Q6 903-93 D1546 D2642 D2642 D26-02 D2642 D02M D0242 D0242 D0242 D0242 D0242 D26-06 D2646 D26-06 4-Re-&#xb9;2 3-1/c &#xb9;2 4-2A.'~
4-WWQS 4-Se-4%0 4-2'-4t46 4 'Ve AO 4-7/e-&#xb9;42 4-Ske-&#xb9;42 4 Ve,AO 4-VMAQ 4-$/e-&#xb9;42 4-Vke-&#xb9;42 4 Ve.AO 3-1/c &#xb9;4/0 1-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 2-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 1-1/c &#xb9;500 2-1/c &#xb9;2 2-1/c &#xb9;2 2-1/c &#xb9;2 Class C
M6 C6 C6 C
C6 C6 C
C V
M M
M M
M M
M M
M M
M M
M M
M Rating 699 600 6QQ 699 6QQ 6QO 6QO 6QO 6QQ 699 6QQ 6QQ 699
: 690, 5000 600 600 600 600 600 600 HVE-9B ICWP A 125VDC Load Test Panel 1A Batt Chltr 1B 125VDC Load Test.
Panel 1B 0 0 1 ~
0 ~
125VDC Bus 1B 1C Invert 1A Out Invert 1A In Inst Bus MA (AC) 2 3
$9
$0
$0
$9'0
$Q
$0
$0
$0
$0
$9
$9 3
2 2
2 2
2 2
'2 Qg~: Reference 8770-B-328, Sheet 9A, Revision 2, "Cable and Conduit Notes".
C - control or low voltage power (i.e., 120 volt to ground)
~
~
~
~
~
~
M - medium voltage (i.e., 480 volt nominal) c/c - number of current carrying conductors in same conduit xxxx" - conduits identified as not requiring protection List Installation anycalc.12/96
L LA I NS EE CALCULATIONNO.
F 1
REV ~
SHEET NO. ~1 5.0 (cont'd)
XhRU~
St. Lucia Unit 2 Cables in Conduits with (3) Hour Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUH'M/Id Type Volt Insulation c/c 20251A 20504A 20629 A 2064$ C 20646A 20&34A 20931A 2094&F 20956 H 20990 H 21001A 21009K 21009U 2160&B 21801A 21801W 21801X 21801Y 21801Z 25071 P 20504A "
20336 22@RP-220249-21696 25019 Y 20948F 22020Q 25019 Y 21001A 8@726-21009G 21009 J 28161 J 21009H 22020Q 21801A 21001F "
* 2805&J 21001F "
* 28058J 21001H "
28058D 21001H "
2805&D D1543 D9841 D1546 KHQ-4$
998-4$
D1543 D26-06 D1541 D9841 D2644 D2644 K@4-Q6 D26-04 D2644 D9944 D2644 D9841 D2644 D2642 3-1/c &#xb9;4/0 3-1/c &#xb9;4/0 3-1/c &#xb9;4/0 2-h/e-&#xb9;6 3-1/c &#xb9;4/0 2-1/c &#xb9;2 3-1/c 2-1/c &#xb9;4/0 2-1/c &#xb9;2/0 3-1/c &#xb9;2/0 4-Re-&#xb9;89 2-1/c &#xb9;2/0 2-1/c &#xb9;2/0 2-1/c &#xb9;2/0 2-1/c &#xb9;2/0 2-1/c &#xb9;4/0 3-1/c &#xb9;2/0 2-1/c D2642 2-1/c D26-02 2-1/c D26-02 2-1/c Class Rating V
5000 P
600 V
5000 6
6QQ C
6QQ V
5000 P
600 V
5000 P
600 P
600 P
600 C
6QQ P
600 P
600 P
600 P
600 P
600 P
600 P
600 P
600 P
600 P
600 LPSI P2A (D26-03) 2HVE-9B AFW P2A g)$4-0$) R-'MB-20$
+$4-0$) kAQB-206 ICW P2C Swgr 2A3-5 Xfmr 2B2/2B5 (D26-03) DG 2A Exc Cub Swgr 2A24 Bat Ch r 2A I
Inst Bus 2MA Inv 2A (D26-04) Inv 2C Inst Bus 2MC (D2643) DG 2A CP Bat Chgr 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA 3
3 3
4 4
3 4
3 6
4 3
2 2
2 2
6 4
4 593~ Reference 2998-B-271, Sheet 2-14, Revision 2, "Electrical General Installation Notes".
L - low level signal, not power C - control or low voltage power (i.e., 120 volt to ground)
P - medium voltage power (i.e., 480 volt nominal)
V - high voltage (i.e., 4160 volt nominal) c/c - number of current carrying conductors in same conduit
()D - &#xb9; (cable size) duplex construction
()T - &#xb9;(cable size) triplexed construction
()STP - &#xb9;(cable size) shielded twisted-pair xxxx" - conduits identified as not requiring protection
- cable also in other protected conduit empca lc.12/96
CALCULATIONNO.
F SHEET NO. ~1 5.0 LCulAMlM1 ABLE
.4 St. Lucie Unit 2 Cables in Conduits with (1) Hour Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUIT BM/Id T+e Volt Insulation c/c 2044@A 8HS)A 20292 A QL'89A 20344A 204663 2046&4 20$2$6 20$2$8 20597 J 20630 A 20833 A QOA4F 20946F 20948A 210 10U 21118A 24$04A 24$44A 2462 VA 246296 RQI298 24642A 244'429 246 QS 246'1643 G 21643 R 246496 246 I99 RkRi4A 24VRS 24V$48 25050 W 20$2$6-20597N 20597N 220208-
%20289-20328-20328-28093C 21553 20944F-22006S 20948A 21010H 2202 0Q 2$0$2J" 220209-203iN-220226-220226-246428-246QS-22016 H 21643R 2464tM-246496-24VSD&
24VSQ-V24VSB 24V$QV-24V$4-X247$-
25067M 998-08 998-08 D264&
924i-%.
926-QV 9$2-Q8 9$2-08 K@4-0V 9$4-0V D2643 D99-01
%88-03 B26-0V 926-06 DISS D1543 964-Q$
D1541 D1541 D26-04 D98-10 926-0V 998-'08 926-04 99&4$
998-30 9$4-06 9$4-06 9$4-06 9$4-06 D26-10 D26-10 964-6 964-6 9$4-Q$
9$4-0$
9$4-Q$
9$ $-0$
9$4-0$
9$4-0$
D26-04 4-8k~V 4-3/e~F 1-3/c &#xb9;12T 4-3/e-&#xb9;8T-4-3/e-A%7-4-Q/e-A%2 4-QIe-tAQ 4-2/'e-tAQB k4/e-A%:&
4-1/c &#xb9;4/0 3-1/c &#xb9;4/0 4-3/e-&#xb9;I&#xc3; 4-3/e-&#xb9;8V 4-Qe-&#xb9;2 3-1/c &#xb9;4/0 3-1/c &#xb9;4/0 4-2/e&#xb9;44RF 3-1/c &#xb9;500 3-1/c &#xb9;500 2-1/c &#xb9;2/0 2-1/c &#xb9;4 4-3/e-&#xb9;SV 4-3/e~F 9-8e-&#xb9;2/0 2-Qe-&#xb9;6 4-9/e-&#xb9;46 4-Se-&#xb9;89 4-2~89 4-Se-&#xb9;89 4-Se489 2-1/c &#xb9;4 2-1/c &#xb9;4 4-ReAt46STP 4-2/e&#xb9;44STP 2-Qe-&#xb9;6 2-Qe-&#xb9;6 2-hh&5 2-4,fe-N 2-Pe-&#xb9;6 2-t4e-&#xb9;6 2-1/c &#xb9;2/0 Class P
P P66 C6 P
P P
V V
4 V
V P
P 6
C6 C
C6 P
P44666666 P
Rating 600 600 600 6QQ 6QQ 600 600 600 600 600 600 6QO 6OQ 6OQ 5000 5000 600 5000 5000 600 600 600 6QO 6OQ 600 600 60Q 600 600 600 600 600 60Q 600 6QO 600 600 600 (D2643)
(92&&)
{D26-10)
~%49)
(926-0+
V44VV Vk+%
hid-08-k8 QBVB-SB QRV8-BB H2 Recomb H2 Recomb MV-694 MV49-10 449-0&4 AFW P2B ICW P2B Xfmr 2AS Xfmr 2B2/2BS Inst Bus 2MD DG 2A Ann V3$4$
RCV36$V RV-08-t98 V-4474 V-14V4 Redwea Redwea Radwea Ra&tea RM/RS26-1 RM/RS26-18 125V Bus MD 4-V 4 1-T 3
8 2
2 2
2 7
7 4-7 8
8 3
3 2
3 3
2 6
4-7.
Q-V 8
3 3
2 2
2 2
2 2
2 2
8 4
8 4
8 8
3 aapca tc.12/96
dl
CALCULATlONNO.
P SHEET NO.~
5.0 A
(cont'd)
St. Lucie Unit 1 (3) Hour Thermo-Lag 330-1 Fire Barrier System Wrap Ref.
Cable AIrcctcd Device Cable Size Cable Hp/
Load ACF Reeietance KVA Ampe (Rof.
C/C I loooh (it) 2.20)
(Rcf2.98-2.100)
CIC Cable Dcratod Maximum Derating Ampacity Ampacity Derated Heat (Ic)IEEB 9')
Load (Waaa/h)
Actual Heat Load (Watts/h) 2.93 2.92 2.6 IOS04h HVE-9B 10832A ICW PIA I loolF 12SVDC TEST I 1oolo PNL IA 3-1/C t2 3-1/C I4/0 l-l/C t500 l-l/C I500 0.0278 310
.$0 2
none 416x2 66S.6 24.6321 0.2113 40 49
.80 3
none 117 93.6 S.S$ 36 0.06SS 600 81
.80 3
none 247 197.6 7.672$
13220 S3432 91.02 143.9$
114.7 2.6 I IOOIH 11001 J 12SVDC TEST PNL IA l-l/CI500 l-l/C ISOO 0.0278 310
.80 2
none 416x2 66$.6 24.6321
$3432 114.7 2.8 11002B CHRGR IB 2-1/C ISOO 0.0278 68 8315
.80 2
none 416x2 66S.6 24.6321 KVA S.S 169 111.30
: 2. 6 11002F 11002G 12$VDCTEST PNL IB l-l/C ISOO l-l/C t500 0.0278 310
.80 2
none 416x2 665.6 24.6321 S3432 114.7 2.6 11002H 125VDC TEST 11002J PNL IB I-I/C ISOO I-I/C I500 0.027$
310
.80 2
none 416 x2 66$.6 24.6321 S3432 114.7 2.6 11002M 11002 N 12SVDC BUS IB 1-1/C ISOO l-l/C ISOO 0.0278 310
.80 2
none 416x2 66$.6 24.6321
$3432 114.7
: 2. 6 2.14 11002P 11002Q 11009G 12SVDC BUS IB INVTR lb (AC Out)
I-I/Cl500 1-1/C l500 2-1/C I2 0.2113 lo
~ 30.7
.$0 2
none 117 93.6 KVA 3.7024 0.027$
310
.So 2
none 416x2 665.6 24.6321 S3432 0.3983 114.7 204.89 2.1$
2.14 11009 J INVTR IA (DC In) 11009Q INST BUS Mh 2-1/C l2 2-1/C I2 0.2113 lo 37
.So 2
none 117 93.6 KVA 0.2113 4.2
.80 2
oooo 117 93.6 O.S7$ $
0.007S IS2.97 212$
Note: t battery chargers are current-limited to 315 amps output aepca Ic. 12/96
CALCULATIONNO.
SHEET NO.~
5.0 (cont'd)
St. Lucia Unit 2 (3) Hour Thermo-Lag 330-1 Fire Barrier System Wrap Rcr.
Cablo Affected Device Cable Sixo Cable Hp/
Rosistance KVA
/
1000'Rcr 2.98-2.100)
ACF (Rcr.
2.20 )
C/C C/C Dcratlng Cable Deratcd Maxinxtnt Actttal Heat
% Margin Ampacity Ampecity Dcratcd Heat Load (Q IEEE G')
Load (Watts/It)
(Watts/It) 2.94 2.97 2.94 202S Ih 20504 h 20629h LPSI P2A 2HVF 9B AFW P2A 3-1/C l4/0 0.06$ $
400 3-1/C l4/0 0.06SS 60 3-1/C l4/0 0.06$ $
3SO
$0 6$
47
.80
'3 247 197.6 7.672S 247 197.6 7.672S 247 197.6 7.672$
0.4913 29$.2 OA341 320.43 2.95 2.7 2.19 2.94 20834A ICW P2C 20948F STA SVC Xrmr 2B2/2BS 2093 lb SWGR 2A3 3-1/C l4/0 0.065$
600 2-1/C l2 0.2113 3-1/C lSOO 0.027$ '933 KVA 82.4 0.$
268
.80
.80-0.80 247 197.6 7.672S 117 74.$84.7390 416 332.8 9.2370 13342 139.81 0.0002 14876 S.990 24.1$
2.7 209S6H
'21118 A 21608 B DG 2A EXC CUB 2-1/C l4/0 0.06SS 2-1/C l4 2-1/Cl4/0 50.0 negligible 6.0
.$0 0.80 247'58.08 9.8208 0.9825216.16 0.0141 2.13 2.9 2.24 20990H SWGR 2A2 21001A CHRGR 2A (AC In) 21009E INST BUS 2MA 2-1/C l4/0 0.06$ S 3-1/C l2/0 O.IOS3 SO KW 2-1/C t2/0 0.1053 03 104.2 24.7 0.80 247 158.08 63472 181 144.8 6.623$
181 144.8 4.4151 0.0006 31S16 3A299 38.96 0.128S 486.23 2.6 21009 J 21009K INVIR2A (DC In)
INVIR2C (DC In) 2-1/C l2/0 0.10$ 3 10 KVA 2-1/C l2/0 0.1053 10 KVA 37 37 1$ 1 144.$
4A1$1 1$ 1 144.$
4A157 0.2883 291.3S 0~
2913$
2.24 2.10 2.13 2.13 21009U INST BUS 2MC 2180 Ih CHRGR 2AA 21801W 125VDC BUS 2AA 21$0IX 21801Y 12SVDC BUS 2AA 2180IZ 2-1/C l2/0 O. IOS3 3-1/C l2/0 0.1053 50 KW 2-1/C ISOO 0.027$
2-1/C ISOO 2-1/C ISOO 0.0278 2-1/C ISOO 28A 104.2 27$
.69 0.80 0.$0 1$ 1 I44.8 4AIS7 0.1699 48.86 1$ 1 161 A8
$.1976 3.4299 54.S9 416x2 459.26 23.4S47
$3940 6S.20 416x2 45926 23AS41
$~
6S.20 ngpcnic.12 /96
CALCULATlONNO.
SHEET NO.~
5.0 (cont'd)
St. Lucie Unit 2 (t) Hour Thermo-Lag 330-1 Fire Barrier System Wrap Rcf.
Cable hfrcctcd Device Cable Site Cabbt HP/
Load AClt Rcaittance KVA Ampa (Ref.
C/C
/1000h (Re (it) 2.20) 2.9$-2.100)
C/C Dcrating Cable Ampacity (Ic) IEEE Detated Maximum hcntaI Heat Load Ampacity Derated Heat (Wattt/h)
(I')
Load (Watta/h) 2.96 20292 A 2.17 205971 2.90 20S97N 2.94 2063 0A 2.94 20833 A 2.19 2.94 2.19 20948A 2.94 2.24 21010 U 2.13 2111$ A 2.22 21643 G 2.22 21643 R 2.7 2SOSOW 2.24 HYDRAZINE PUMP H2 RECOMB AFW P2B ICW P2B STA. SVC Xfmr 2AS STA SVC Xfmr 2B2/2BS 120VAC INST BUS 2MD DG 2h hnn RM/RS-26-1 RM/RS-26-18 125VDC BUS MD 1-3/C I12T 2.1058 3
4.6
.89 3
2-1/C l4 0.3364 1.0
.89 6
0.80 2-1/C I4 0.3364 2.S
.89 2
none 2-1/C l4 03364 2.S
.89 2
none 2-1/C l2/0 0.1053 I.S
.89 3
none 4-1/C I4/0 0.06SS 7S 90
.89 7
0.70 3-1/C I4/0 KVA 3-1/C I4/0 0.065S 350 47
.89 3
none 3-1/C I4/0 0.06$ S 600 82.4
.&9 3
none 3-1/C ISOO 0.0278 1933 268
.89 3
none KVA 3-1/C ISOO 0.02781933
- 268
.89 3
none KVA 2-1/C l2/0 0.1053 10 28.4
.89 2
none KVA 29 247 247 247 416 416 1$ 1 88 88 181 2S.81 4.2084 IS3.8810.8568 219.83 9.49S9 219.83 9.49S9 370.24 11 4323 370.24 II 4323 161 09
$ 4651 62.66 7.9248 7$.32 4.1269 7832 4.1269 161.09
$.1976
: 0. 1337 3.7139 0.4341 13342 0.1699 0.0020 0.0042 0.0042 0.0007 367.72 166.7$
38.1S 38.15 467.22 6165.6 3032.8 3032.$
10639 ceqca lc. I2/96
L Al N HE CALCULATIONNO.
1 REV.
1 SHEET NO.~
6.0 REHEAR The results shown in Tables 5.5.a.,
5.5.b.
and 5.5.c. indicate that when using newer ampacity correction factor (ACF) as determined in the Turkey Point calculation, PTN-BFJM-96-005, for upgraded Thermo-Lag fire barrier installations, sufficient margin exists between operating cable loads and cable cuirent carrying capacity (ampacity).
This calculation revisited prior calculations-,
and Appendix R and RG 1.75 documents to eliminate the conservatism that existed in the earlier calculations when considering the load on a specific cable.
Ampacity values used in this calculation are loads that exist longer than 60 seconds; i.e.,
do not include the battery or valve loads during the first minute which are reduce significantly for longer operation.
As listed above, the smallest margin for St. Lucie Unit No.
1 Thermo-Lag (3) hour upgraded wrapped conduits is
~1 4
7 This margin is for the 125 volt DC power cables from Battery lA to Battery Test Panel lA for supplying 125 volt DC bus lA.
Loads on these cables are steady state loads after the first minute of operation when the cable is subjected to continuous loads.
Loads on the battery cable are higher in the first minute due to cycling of valves and other motors.
The smallest Unit No.
2 margin for (3) hour upgraded wrapped conduits is ~~1+ for the 4160 volt power feeder cables to Station Services Transformers 2B2/2B5.
This value contains some conservatism since it assumes 100% transformer loading.
For (1) hour upgraded wrapped conduits in St. Lucie Unit 2, the smallest margin is ~~ for the 4160 volt feed to Station Services Transformer 2A5.
This value includes conservatism, similar to the margin to Transformers 2B2/2B5, since it assumes 1004 transformer loading.
The original calculations for cable derating in St.'Lucie Unit 1 and Unit 2 used a value considered conservative at 154.
This calculation has determined that acceptable power cable margins exist for installed cables in St.
Lucie Plant Unit 1 and Unit 2 when using derating values of 114 for (1) hour fire barriers and 204 for (3) hour fire barriers assuming the installation of Thermo-Lag 330-1 and Thermo-Lag 770-1 upgrade fire barrier systems.
A revision to the cables in conduits 21001F-4" and 21001H-4" was included in Revision 1 to this calculation.
These conduits were found to be in a banked configuration for part of their route; For conservatism, the ampacity derating factor for cable trays was applied to these conduit sections.
The r'esultant ampacity margin changed from 91.534 to 65.204 using the cable tray derating factor of 314.
Revision 1
also concluded that installed conduit configurations at St Lucie plant are bounded by test performed at Omega laboratories for Texas Utilities'omanche Peak Nuclear Plant.
sap'c.12/96
ICBM S46424
=
%bee M Nominal DC Raafotance in ohma Par 1NN Featt at SIC prFj of Sottd and Concont& Lay4trandad Conductor Qealiaw hTrhCHMHYI' I
7
)
6
)
~Cl CN ml IO 1OS IX%
HM 15M AM 17M D50 1IXI 19M 2$M SXO 35M 40$
4$M 50M 27.1 169 13$
1L7 IAS an
$38 422 266 2.11 L67 L32 LOS LC33 L661 IL534 OA15 L329 L261 4377 L164 0.130 Ll03Ii9 00694 40570 40495 L0433 OHMS L0347 1ILS 1L3 t%
451 5.15 4X L$7 204 L62 L2f UO LRN L6 LS L403 L3lf 4253 CKl 0,1S9 L126 IL1N QAP94 40630 OA5N
~ ~ ~
~
~
172 SL7 L52 6.76 535 4%,
337 l67 2.12 Lli L34 L06 0031 4659 0522 IL414 L329 4361 4377 0.164 am L102 OAI13 40645 OA511
~ ~
~ 0
~ 0 ~
DA 173 13.7 lLf L54 6IS 5A1 431 3A1 27l 215 L70 L35 107 IU51 OCl5 L534 OA24 0336 L266 4211 L16I L105 OAI36 4&#xc3;07 40590 OAN5 IL0442 40393 ILC54 LIB21 L0295 00272 OlQQ OAQ36 L0221 40196 L0177 LN41 L0147 Ol541 OOL36 LN26 401Q 40111 40101 OAXSC1 OAX831 OOXh5 ON715 OAX596 ONSLS L0045l LN405 W.7 105 L33 4C7
%21 410 263 lM L66 L31 L04 LI25 LN2 L519 OA11 4325 485 L142 L129 L102 OASlO 00642
: OA510, 40431 40360 OASR Ol069 OAOC1 Ol016 40196 LOLSl 00166 L0154 00144 L0135 0012I 0058 LO&#xc3;41 OAX199 ERIES OAX8%
OAN771 LN719 LN674 L00634 LN616 OlX599 OAX568 OAX539 LN436 LN363 LN314 LN275 0AXQ47 aaaa a 17$
111LI3 7'82 4
AS 275 2N L72 IJS I@56 44%
05$
L427 L3%
L&l L213 Lll L134 LN6 OA524 004%
00374 40320 L0277 OAO46 L0204 OO1$7 LI171 40159 401%
40139
'00111 ONO1 LN925 OAXRS4 ONlRI 40840 LN694 OAX516 OIX55S 400323 ON?83 ON2$4 m
L75 LX LIB 0056 L$%
L427 L339 CXO IL2D L1 L134 4106 4/$42 40669 405%
OAN4!
Ol874 40331 402$
OAO49 L0224 403N 401N7 4017l LOMO 00149 Ol54l DNA OOlll L0102 OAXRN EOWJ ILIXP%5 LN740 LONM LN659 LN640 ON616 OAX5$4 OAX5SS 2N 222 1.'8 139 L11 LI74 LSR t5%
OA27 03%
lQQ 0213 L169 L134 LNS Ii%42 44669 OASR L04 00374 OASN LlQ OAO49 00224 LCN4 04107 L0123 LOl 001%
LOiCl 40112 OOIO2 LORN oasQ ILC947 OAXQXl ON659 LN640 LN622 OAX509 OAX560
'Coeoeatae l~ttaadcd induce amptesacd aad compact coadactocL tlLesias~ vaioca ia mil6obma pcs atctcr shah be obtaiacd by saeltipiyiag thc above valises by 32L
NS524 ATI'hCEB4ENT~
F C-RBV~
SHEET g OF~
WC 7.1988 Page 37
~
Methods for I'!II I l Area Aaaa sv D~cmR Sa, 4q kdlh ~ R III h~10 l~t
.~ diasactcr at thc ith me in mils determined mxeeing to 633.1 fatal smabcr attires m condoctor E4 I!
I kdl CoNImce vvithASTMB 263.
.EL1 I!ad I S 444.i Oewraa IvNaaeama Mueurastacr XHamctcr mcasarcmcnts shall be made mth a
~
~
~
~
~
~
fornctcf oc other Qntabic mstrImlcnt readable to at MN01 inch. Rocmd wires shall bc measured at each ead af the sample and near tbc middle of tbe sample.
Tbc average ofthc three mcasurcmcnts shall be taken a the dlaxnctcr.
Stranded coodnctors shall bc measured arormd tbe r'ide ot the condector and ~ the extensions at a lme thcoiih tbc center at the c rhetor and tbroogh the center ot tvvo mrna in the outcr layer that are 180 I
kI!
be taken as the diaslctcr.
I I!
Adiaster tape readable to at least OlCS inch shaQ be wrapIpcd oae tax (38K) around tbe ciramIfcrcnce ot the coaIhlctor, tigjklyaad perpendicular to tbc axis ofthe cocx}octm. The aver~ diamctcr ofthc oocldnc-tor sha5 be read dirccdy &ocn the cBamctcr tape.
'%St 6-1 Fectore for Converting Meeeured DC Reeletinca to @PC pPF)
Teasyccet>>ce, Mciltly~eTeclw Maltletrtcie Fecrer tlccreee C lcc Coquet lcrAl~hc>>eei 0
5 10 15 25 30 35
'4S 50 SS 60 65 75 80
&5 le L107 Ll84 LO61 1'020 LOOO 0981 0963 0945 0928 0912
%56 0~
0866
%52 OES 0%5 R812 0~
1.110 LN5
~
U5$
L041 L020 1ASO 0981 0962 0944 0927 0910 0894 OSN 0863 0849 OE35 0821 0808 0.796 Tbe correction factors arc based upon copper havmg 100 percent conductivity and ahminna having 61 per-cent axIdnctivity. Tbc hctacs arc deriIved &oaa the formulae:)
259't Rg ~~
T farcoppcr RS RS far Si!!Iiaa!n 253 228+ Tg
%bere Rl ~ Resistance at2'
~ Mcasnred resistance at test temperature Tg Por mare accurate dctcrmiaatian ofresistance, amovr fac diScrcat condrxtivitics, ace Copper %ire 'hblcs,
&#xb9;tfoeel Burcmc of Steirdenh HeIrdbook NO or hhminum %irc 'IhScs, &#xb9;noeal Bunaau ofBandit Less Qua 2mi Wbla 54 Number of Samples Qsaaacr KCec>>plcccL Cetic Octaves Less than 610 610-3048 Nemabcr er 5am'>>
Each 10PS or &actiontbamf from 10PS-50PN Each 3048 or fraction thereof &ocn 3048-15/40 Each additional 50,000 or fraction thereof Each additional 15/40 or fraction thereof
NUCON Internationai.
Inc.
P O SQX 29151 7000 HUNTLEY RQAO COLUM8US. OHIO 43229 U S.A.
PYROLYSIS GAS CHROMATOGRAPHY PHONE. i6141 846-5710 OUTSIQE OHIO:
1 800-992 5192 TELEX: 6974415 FAX: 1614I 431.0858 hTI'h 2
I ANALYSISOF 9 THERMO-LAG HRE BARR Performed For:
Horida Power 4 Light 700 Universe Blvd.
P.O. Box 11,000 Juno Beach, $L 34408 P.O. No. LJ950 %P406 12 May 1995 PPL:
K A..Dunlea (1)
NEI:
BN Bradley (1)
NUCON:
06FL826 Master FBe (1)
Lab (1)
NUCON 06FL826/01
NUCON 06FL826/0 l NUt".ON lnternationai, Inc.
P O BOX 29151 7000 HUNTLEY ROAD COLUMBUS. OHIO 43229 U.S.A.
TELEPHONE. <51i) $45 Si'0 OUTSIDE OHIO: l4-992 5I92 TELEX: 59744 I S FAX: (51l) 4314858 hYThCHMERTjg RBV~
QHKTg OP3 PrqIIared By Reviewed By Original hague W. P. Frmnan 4<-
T.
eller
NUCON 06FL826/01 ATI'hCHMZWP~
r.
Inspection ofthe pyrograms of9 Thermo-La'g fire barrier samples indicated that they are all similar in chemical composition.
OBEKTNE Pyrolysis Gas y (PGC) with Mass Selective Detection (MSD) was used to qmlitatively compare nine Tlecmo-Lag the barrier saaq~.
DESCRIFI'ION OF MEI$HOD Tbe mnpies were compared by pyrolysis gas y using hSTM D3452 as Ceasel guide. h Hewlett-Padard model 5890 series II gas chromatograph equi@ed with a Hewlett Packard modd 5972 mass selectrve detector was used to generate
$$$$1 PYRIC Ul performed with a CDS py~
be memtcd in an '
heated interface attadwd to the injection port of the GC.
Analysis involved weighing 1-3 mgs. of sample in a quartt tube and piaceaent of the tube in the platinum coB cleaxat of the probe.
The probe is then placed in the interhce and pyroiysed ballistically far 2 sexxxh.
Pyrolytic products are then swept by the cmrier gas onto the fueed sBica ancillary column where they are separated and detected with a MSD.
'nd pyrolysis conditions are Quota in Table 1. Prior to each analysis, the column is heated to 250'C to elute any voiatlles which were not entrained in the polymer.
'RESKHThTION OF RESULTS, V.
The nine pymgrams 5or each of the nine Therapy-Lag sanpies are slewn in Figures 1, 3, S, 7, 9, 11, 13, 15, 17. Fiyuts 2, 4, 6, 8, 10, 12, 14, 16, 18 are extracted ion
$ ~$ $
t$$
h$ $~$ $ $ $$$~
a m/e of69 comma lo metltyl (MMh). The area ratios ofthese two peaks
<<re shown in VaMe 2 5oc each sanpie.
Foilowhg these two 6gures is attacled a 1ibrary search whkh identifies one of the moor peaks Sr each sample tested and a sumnary arch percent reps.
DISCUSSION OF RESULTS The average extracted ion area ratio of 1.41 JO.QS (k e) for EA/M'~ shown in Table 2 is consistent with the average ratio of 1 4 +0.1 (J e) obtained from other TlM:rmo-Lag
: salnlks,
NUCON 06FL82'6tOL ATI'hCHMENT~
The extracted ion chromatograms (Figure 2) for sample, 0395-20h, a trowel grade sample, have an EAIMMhratio of 1.36. Pyridine compounds idcntificd in the pyrogram
{Figure 1) are pyridine, 3-methyl pyridine, 3, dimethyl pyridinc, 3~yl-5-methyl pyridine and 5~yl-2-methyl pyridine.
Other key components identified are pentanedioic acid, diethyl ettet, triphenyl phonate and octicizer. This sample contains corisiderably more octicizet than found in other Therino-Lag sampleL This may be due to the satrqHe site sleeted for pyrolysia.
Otherwise this sample is consistent with other Imples in terms of chemical cotnpositioa.
The extr<<cted ion (Hgure 4) 5'ampie 0395-2, a 1 bout rated panel sa spic, have an EAfMMhratio of 1AS. Pyridhe compoaxh idcrefied ln the pyrogram
{Figure 3) are 3-methyl pyridine, 3, 5&methyl pyridine, 2, 3, &triaethyi pyridine and
~hyi-5-tnethyl pyridine. Other key coaqenents identified are pentaedioic <<cM diethyl cNK, tQglhlyl phosphate, ocMxcf and tfhBcthyi phenyl ptxNpbate.
The extrmcted ion chromatogmns {Hgure 5) for sample 039S-20C, a 1 hour rated conduit samtple, have an RA/bMh ratio of lA6. Pyridine compounds identified in the pyrograrn (Figure 5) are Wedtyl pyridua. Other key comporents identi5ed are
'cttd diethyl ester, tripbcayi phosphate and octicizet.
Sh 00 '
tlISI Sl I ~0 0393 00.
33 I
03
'ante, have an EhlMMAratio of 1.i2. Pyridine coaqxmids identified in the pyrograrn (Figure 7) are pyridine, 3-methyl pyridine, 2, MhMthylpyridine, ~y1 geidine, 3, S~hmethyk pyridine, 3, SWmethyi @sidhe, 2, 3, S~ethyl pyridine and ~yl tnethyi pyridine. Other bey com~xxxats identi6ed are 2 ikenoxy ethaiml, pentane
'oic
<<cid diethyl ester, trimethyl phenyl pbosplete and octicizer.
09 03'04 ISIS II 03933t03 3I 30&4 sante, have an EMMMhratio oflA3. Pyridine coaipourxh idcnti6cd in the pyrogram (Hgure 9) are 3-methyl pyri80ne, 3, ~rnedryl pyridine, and 2, 3, &tmmethyi pyridine.
Other ltey cotnponents ideatr8ed are 2+eaoxy ethare4 pcntancdioic acid diethyl ester, trirncthyi pimps ihospbate, triphay} pbospbate, and octicizer.
Sb 03 9~ SW ISS It Sl ISIS 309
: samph, have an EhlMMh mtio of 1.37.
The pyridine axnyo ds identified in the mgram {Figure lI) are 3-methyl pyridine, 2, Minediyl pyridine, ~yl pyridine, 3, 5&aWtyi pyridine, 2, 3, S~iethyl pyridine, ~yi-5 methyl pyrwline and 5-ethenyl-2-methyl pyridine. Other key compooents identi6ed arepentanedioic acid diethyl ester, tripbenyl phosphate and ocdcizer.
NUCON 06FL826/Ol TrwCHMSYr -Rl The extracted ion chromatograms (Figure
: 14) for sample 0395-20G, a 3 hour rated conduit sample, have an EA/MMh ratio of 1.34. Pyridine compounds identified in the pyrogram (Figure 13) are 3-methyl pyridine, 3~yl pyridine, 3, Mimethyl pyridine, 3&yl-5-methyl pyridine and Scthenyl-2-methyl pyridine.
Other Key components identified are pentanedioic acid diethyl ester, and octicizer.
Tb I'tFw lSf
: phWN2DH, 3I sample, have an Eh/MMAratio A1A9. Pyridine compoutxh identihcd in the pyrogratn (Figure 0) axe py6dine, 3-metltyl pyridine, 24Wjmethyl pyridine, phenyl pytMine, 3, 5<iNMthyl pyridine, 2, 3, 5-trimethyl pyridine, ~yl-5 methyl pyridine and 5-ethenyl-2~yl pyrwline. Other hey coatpooents identihad are pentanedioic acid diethyl ester, tripbenyl pbospliate, and octicizer.
Tb hd I~ 0"4 III(
IUWI Ol&#xc3;.&#xc3;l, 3 b hd~
saatple, have an EA/MMhratio of 1.39. Pyridine compounds identified in the pyrogratn (Figure 17) are 3-methyl pyrichne and 3, Sditnethyl pyridine.
Other key components
: identified are pentanedicic acid diethyl ester, tripbenyl phosphate and octicizer.
In conclusioa, inspection of the pyrograms for these nine Thermo-Lag samples indicates that they are consistent with other Thermo-Lag samples in terms of chemical cotnposition.
NUCON 06FL826/01 ATl'ACHMBN7~
RBV~
sazsr Q Op~
TABLE 1 Chroamtographk CondMons:
30 meter 0.25 mm narrcw bore fused silica HP-5 CS capillary column.
Carrier Gac HcBum, 0.9 mLlmin, spHt ratio 35: l Column Conditions:
InitialTemperature:
50'C for 1 minute hoM Tenqerature Ramp:
8'Clmin to 250 C Final Temperature:
HoM at 250'C for 10 minutes Injector Temperature:
250'C Detector Temperature:
280'C Detector was an HP MSD in scan mode (30-550 amu)
~ysh Cood36oas:
Pyrolysis Tem~etauue:
650'C Intenral:
2 seconds Ratnp:
2 ClmBHsacoad Probe Type: Phtimun Coil Interhce Temperance:
205 C
NUCON 06FL826/Ol ThBLE 2 hlTACHMENT ~
~
I NUCON Lab Log f 0395-20h Samph: tl, LOC. VS 1%, fairway eall Tlowcl gtade NUCON Lab Log t 0395-208 Samyh A, LOC f/51W, 22020@
1 bour panel NUCON Lab Log f 0395-20C Samp& H, LOC. VS1W, 22020Q 1 hour caxfuit NUCON Lab Log f 0395-200 Sampk f4; LOC. C/34, 21810h 3 hour
)duit NUCON Lab Log N895-20K Sample f5, LOC. 'C/34, 21810h 3 hour panel NUCON Lab Log N395-20P Sample 6, LOC. Bl57, Inverted toom wall Tf0%Cl g&dO NUCON Lab Log N695-200 Sampie 7, LOC. N$7, 110IH 3 hour caafuit NUCOH Lab Log %395-208 Sandie 8, LOC. N57, 110028 3 hour panel NUCON Lab Log %395-2N Sample 9, LOC. wuehatae sck Basch P9-106N5 3 hour panel hverage:
1.36 1.46 1.42 lA3 1.37 1.34 1.49 141 a O.GS}}

Latest revision as of 13:24, 8 January 2025

Rev 1 to Cable Derating in Conduits W/Fire Barrier Coatings
ML17229A177
Person / Time
Site: Saint Lucie  NextEra Energy icon.png
Issue date: 12/18/1996
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17229A176 List:
References
PSL-OFJE-96-001, PSL-OFJE-96-001-R01, PSL-OFJE-96-1, PSL-OFJE-96-1-R1, NUDOCS 9612260322
Download: ML17229A177 (38)


Text

Page i

AL L

I N

VER HEET Calculation No:

P L -

F 1

Title:

A E

RATI I

N T

I FIR BA Rl ATI 0

No.

Revision for Heat Load INITIALISSUE Description K

R By IZ-/7-f4 Is l106 8-1 2-96 WL 8-1 2-96 Date Chkd Date ARD/

WAB Appr 8-14-96 Date REVISIONS 9b122b0322 9bi219 PDR ADGCK 05000335 P

PDR

~>tc.iZ>~6

Page ii Calculation No.

FE-1 Rev.

1 Title IR AR I

,Page 8

10 12 13 14 15 17 18 19 20 21 22 23 Section

Cover, List of Effective Pages Table of Contents 1.0 Purpose 2.0 References 2.0 References 2.0 References 2.0 References 2.0 References 2.0 References 2.0 References 2.0 References 3.0 Methodology 3.0 Methodology 4,0 Assumptions/Bases 4.0 Assumptions/Bases 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 5.0 Calculation 6.0 Results Rev.

0 0

0 0

1

'1 Page Section Rev.

nmpca Ic.12/96

't I

Page iii BL F

NTEN CALCULATIONNUMBER F

1 REV.

2!LEIGH 1.0 2.0 3.0 4.0 5.0 6.0

.Cover Sheet List of Effective Pages Table of Contents Purpose/Scope References Methodology Assumptions/Bases Calculation Results

~A~E 13 14 23 TTA H N TITLE PA(~E ICEA Pub. No. S-66-524

5. NEMA Std WC7-88, Excerpt Table 2-4 5, 6-1 NUCON International, Inc "Pyrolysis Gas Chromatography Analysis of 9 Thermo-Lag Fire Barrier Samples",

P.O. No. LJ950 WP-006, 12 May 1995 aspen lc.12/96

A ATI CALCULATIONNO.

1 REV.

1 SHEET NO.~

1 0 68KQSR The purpose of this calculation is to determine or update ampacity values for power cables routed in St. Lucie Unit 1 and Unit 2 conduits wrapped with Thermo-Lag fire barrier systems as listed in previous calculations (Ref. 2.3). This document outlines the methodology used to determine power cable ampacity including derating factors. Wrapped conduit derating factors are determined for existing fire barriers and for upgraded systems.

Existing cable protection will be upgraded on certain conduits to maintain required levels of protection.

The cables in the conduits have been evaluated to require protection because no redundant functions or alternate conduit routes exist to eliminate the need for protection (Ref, 2.76-2.88).

By performing an evaluation with upgraded conduit wrap, cable ampacity margins may be verified to ensure adequate capabilities exist for providing power to affected electrical toads.

Revision 1 to this calculation adds a discussion of the operating heat loads (Watts per foot) for the wrapped cables and a comparison of the cables at St. Lucie plant to the cables tested at Omega Laboratories for Texas Utilities'omanche Peak Plant (Ref. 2,26) ~

Heat load factors provide an additional assurance that cables installed at St. Lucie are enveloped by the test configuration.

2.

2.1 Florida Power & Light Company, St. Lucis Plant Unit No. 1, Appendix "R" Safe Shutdown Analysis, 8770-B-048, Revision 2.

2.2 Florida Power & Light Company, St. Lucie Plant Unit No. 2, Appendix "R" Safe Shutdown Analysis, 2998-B-048, Revision 1.

2.3 FPL Calculation PSL-BFJE-93-002, Revision 1, "Ampacity Derating Response to NRC GL 92-08 for Cable Routed in Conduits with Thermo-Lag 330-1 Fire Barrier System Coating" 2.4 FPL Calculation PSL-O-F-J-E-90-011, Revision 2, "Station Blackout Hot Standby Loads".

2.5 FPL Calculation PSL-O-F-J-E-90-012, Revision 1, "Station Blackout Cold Shutdown Loads".

2.6 2.7 FPL Calculation PSL-1-F-J-E-90-015, FPL Calculation PSL-2-F-J-E-90-016, Revision 0, "Safety Related Batteries 1A and 1B".

Revision 0, "Safety Related Batteries 2A and 2B".

2.8 FPL Calculation PSL-1-F-J-E-90-017, Revision 0, "Battery Chargers 1A, 1AA, 1B, 1BB, 1AB Kilowatt Input Demand".

2.9 FPL Calculation PSL-2-F-J-E-90-018, Revision 0, "Battery Chargers 2A, 2AA, 2B, 2BB, 2AB Kilowatt Input Demand".

2.10 FPL Calculation PSL-'2-F-J-E-90-019, Revision 0, "Unit 2 Battery Chargers 2A, 2AA, 2B, 2BB and 2AB Sizing".'rrpca Lc. 12/96

L N

HE CALCULATIONNO.

F 1

REV.~

SHEET NO.~

2.0 tcont'd) 2.11 FPL Calculation PSL-2-FJE-90-020, Revision 4, "St. Lucie Unit 2 Emergency Diesel Generator 2A and 2B Electrical Loads".

2.12 FPL Calculation PSL-2-F-J-E-90-025, Revision 0, "Evaluation of Calculation WHL-39, Rev. 0".

2.13 FPL Calculation PSL-2-FJE-90-028, Revision 1, "Unit2 Low DC System Voltage Calculation".

2.14 FPL Calculation PSL-1-F-J-E-91-002, Revision 0, "Instrument Inverters 1A, 1B, 1C & 1D AC Output Loading".

2.15 FPL Calculation PSL-1-F-J-E-91-004, Revision 0, "Unit 1 High DC System Voltage Analysis".

2.16 FPL Calculation PSL2-FJE-91-007, Revision 0, "PSL2 - Comparison of Anticipated Electrical Loading Conditions to Equipment Ratings".

2.17 FPL Evaluation JPN-PSL-SEMP-92-039, Revision 1, "Operability Assessment of Thermo-Lag 330-1".

2.18 FPL Calculation PSL-2FJE-93-001, Revision 1, "St. Lucie - Unit 2 Short Circuit, Voltage Drop and PSB-1 Analysis Calculation.",

2.19 FPL Calculation PSL-OFJE-93-004, Revision 0, "St. Lucia Station Blackout Emergency Diesel Generator Transient Analysis".

2.20 FPL Calculation PTN-BFJM-96-005, Revision 0, "Fire Barrier Ampacity Correction Factors-Extrapolation of Test Results for 3 Hour Barrier".

2.21 EBASCO Services, Incorporated, Calculation EC-100, Revision 1; "Fire Wrapped Conduits Cable Ampacity Document for St. Lucie Units 1 and 2".

2.22 EBASCO Services, Incorporated, Calculation EC-192, Revision 2, "MOVTOL Heater Selection Calculation".

2.23 EBASCO Services, Incorporated, Calculation WHL-8, Revision 7, "Power Cable Ampacity Document for St. Lucie ¹2".

2.24 EBASCO Services, Incorporated, Calculation WHL-25, Revision 2, "Instrument Inverters AC Output Loading".

2.25 Industrial Testing Laboratories (ITL) Report No. 84-10-5, Dated October, 1984, "Ampacity Test for 600 Volt Power Cables Installed in a Five Foot Length of Two Inch Conduit Protected with Three Hour Fire Rated Design of Thermo-Lag 330-1 Fire Barrier System."

aapca lc.12/96

LATI HEE CALCULATIONNO.

F 1

REV ~

SHEET NO.~

2.0 aEFIMKER i 2.26 Omega Point Laboratories, "Ampacity Derating of Fire Protected Cables", Project No. 12340-94583,95165-95168,95246, Electrical Test to Determine the Ampacity Derating of a Protective Envelope for Class 1E Electrical Circuits, dated March 19, 1993; Prepared for: TU Electric - Comanche Peak Steam Electric Station.

2.27 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-366, Revision 34, Reactor Containment Bldg El. 45'-0 Conduit, Trays & Grounding Plans.

2.28 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-375, Sheet 1,

Revision 22, Reactor Containment Bldg Penetration Details.

2.29 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-390, Revision 20, Reactor Auxiliary Building El -0.50',Conduit, Trays and Grounding Sh. 1.

2.30 Florida Power & Light Company, St. Lucie.Plant Unit 1, Drawing 8770-G-391, Revision 27, Reactor Auxiliary Bldg El -0.50'onduit, Trays & Grounding-Sh. 2.

2.31 Florida Power & Light Company, St. Lucia Plant Unit 1, Drawing 8770-G-392, Revision 35,

~

~

Reactor Auxiliary Building El. 19'-6 Conduit, Trays & Grounding - Sh. 1.

2.32 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-393, Revision 30, Reactor Auxiliary Building El. 19'-6 Conduit, Trays & Grounding - Sh. 2.

2.33 Florida Power & Light Company, St. Lucia Plant Unit 1, Drawing 8770-G-395, Revision 20, Reactor Auxiliary Building, El. 43'-0, 62'-0 Conduit, Trays & Grounding.

2.34 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S01, Revision 6, Fire Protection Reactor Auxiliary Building El -0.50'.

2.35 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S02, Revision',

Fire Protection Reactor Auxiliary Building El. 19.50'.

2.36 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S03, Revision 7, Fire Protection Reactor Auxiliary Building El. 43.00'.

2.37 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S04, Revision 4, Fire Protection Reactor Auxiliary Building El. 19.50'nd EI. 43.00'.

2.38 Florida Power & Light Company, St.'Lucie Plant Unit 2, Drawing 2998-G-366, Revision 14, Reactor Containment Bldg. El. 45'-0 Conduit, Trays & Grounding Plan.

~

~

~

2.39 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-375, Sheet 1,

Revision 13, Reactor Containment Bldg. Penetration Details.

anpcalc.12/96

AT N

ET CALCULATIONNO.

F 1

REV ~

SHEET NO.~

2.0 2.40 241 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 (cont'd)

Florida Power & Light Company, St. Lucre Plant Unit 2, Drawing 2998-G-390, Revision 16, Reactor Auxiliary Building El. (-)0.50' Conduit, Trays & Grounding Sh. 1.

Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-391, Revision 17, Reactor Auxiliary Building EI. (-)0.50' Conduit, Trays & Grounding Sh. 2.

Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-392, Revision 15, Reactor Auxiliary Building El. 19'-6 Conduit Trays & Grounding-Sh.

1.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-393, Revision 14, Reactor Auxiliary Building El. 19'-6 Conduit, Tray & Grounding-Sh. 2.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-395, Revision 14, Reactor Auxiliary Building El. 43'-0, 62'-0 Conduit, Trays & Grounding Sh. 2.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 2, Revision 4, RAB El. 19.50'onduit Layout.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 3,

Revision 4, RAB El. 19.50'onduit Layout.

Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 4, Revision 4, RAB El. 19.50'onduit Layout Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 6J, Revision 1, R.A.B. and R,C.B. Appendix 'R'rapped Conduit Summary.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 7, Revision 7, RAB EI. 19,50'onduit Layout.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 8, Revision 5, RAB El. 19.50'onduit Layout.

2.51 2.52 Florida Power &

Revision 5, RAB Florida Power &

Revision 4, RAB Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 9, El, 19.50'onduit Layout.

Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 10, El. 19.50'onduit Layout.

2.53 Florida Power &

Revision 3, RAB Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 13, El. 19.50'onduit Layout.

2.54 Florida Power &

Revision 5, RAB Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 14, El. 19.50'onduit Layout.

anpcs lc. 12/96

T N

HE CALCULATIONNO.

F SHEET NO.~

2.0 2.55 2.56 2.57 2.58 (cont'd)

Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Revision 3, RAB El. 19.50'onduit Layout.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 2, RAB El. 19.50'onduit Layout Sh. 16.

Rorida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 3, RAB El. 19.50'onduit Layout Sh. 17.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 2, RAB El. 19.50'onduit Layout Sh. 18.

Sheet 15, Sheet 16, Sheet 17, Sheet 18, 2.59 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 19,

'Revision 4, RAB El. 19.50'onduit Layout Sh. 19.

2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Revision 7, Reactor Auxiliary Building Electrical Penetration Area Conduit Layout Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 9, RAB El. 43.00'onduit Layout.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 6, RAB El. 43.00'onduit Layout Sh. 23.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 9, RAB El. 43.00'onduit Layout Sh. 29.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 7, RAB El. 43.00'onduit Layout.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 12, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 34.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 9, RAB El. 43.00 Conduit Layout.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 7, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 36.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 6, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 37.

Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Revision 7, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 38.

Sheet 20, Sh. 20.

Sheet 22, Sheet 23, Sheet 29, Sheet 30, Sheet 34, Sheet 35, Sheet 36, Sheet 37, Sheet 38, arpc ale.12/96

CALCULATIONNO.

1 REV.~

SHEET NO.~

2.0 (cont'd) 2.70 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 39, Revision 8, RAB El. 43.00'onduit Layout.

2.71 Florida Power & Light Company, St. Lucie Plant Unit 1, Cable and Conduit Lists, 8770-A-328.

2.72 2.73 Florida Power & Light Company, St. Lucie Plant Unit 2, Cable and Conduit Lists, 2998-A-328.

Florida Power & Light Company, St. Lucia Plant Unit No. 1, Control Wiring Diagrams (CWD),

8770-B-327 series, 2.74 Florida Power & Light Company, St. Lucie Plant Unit No. 2, Control Wiring Diagrams (CWD),

2998-B-327 series.

2.75 IEEE Standard Power Cable Ampacity Tables, IEEE Std. 835-1994, Approved Date September 22, 1994.

2.76 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-052, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire Area A."

Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-053, "Review of Thermo-Lag Protected Conduits in Fire Area B."

2.78 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-054, "Review of Thermo-Lag Protected Conduits in Fire Area C."

2.79 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-055, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire Area E."

2.80 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-056, "Review of Thermo-Lag Protected Conduits in Fire Area N."

2.81 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-064, "Review of Thermo-Lag Protected Conduits in Fire Area O."

2.82 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-057, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire'Area A."

2,83 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-058, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire Area B."

2.84 2.85, Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-059, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire Area C."

Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-060, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire Area H."

ampca lc.12/96

L L

I N

HEET CALCULATIONNO.

SHEET NO. ~1 2.0 (cont'd) 2.86 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-061, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire Area I."

2.87 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-062, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire Area M."

2.88 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-063, "Review of Appendix

'R'ualification of Thermo-Lag Protected Conduits in Fire Area O."

2.89 Standard Handbook for Electrical Engineers, 11th Edition.

2.90 Westinghouse Electric Corporation Drawing 4'9552D65, Sheet 3, "St. Lucie Unit No. 2 Electric Hydrogen Recombiner Solid State Power Controller Schem",

EMDRAC No. 2998-3031, Revision 1.

2.91.

St. Lucia Unit No. 1, Cable 5 Conduit List 8770-B-328, Installation Notes, Sh. 12, Rev, 9.

2.92 FPL St. Lucie Unit 1 Drawing 8770-G-275 Sh, 1, Revision 12, "6.9kV Swgr 5 4.16kV Swgr One Line Wiring Diagram Sh. 1".

2.93 2.94 FPL St. Lucie Unit 1 Drawing 8770-G-275 Sh.7, Revision 12, "480V Motor Control Centers One Line Wiring Diagram Sh. 7".

FPL St. Lucia Unit 2 Drawing 2998-G-275 Sh. 18, Revision 5, "4.16kV Switchgear No. 2A3 and 2B3 One Line Diagrams",

2.95 FPL St. Lucia Unit 2 Drawing 2998-G-275 Sh. 19, Revision 3, "4.16kV Switchgear No. 2AB, No. 2A4 and No. 2B4 One Line Diagrams".

2.96 FPL St. Lucie Unit 2 Drawing 2998-G-275 Sh. 35, Revision 8, "480V Motor Control Center No. 2B5 (Sh. 1) One Line Diagram".

,2.97 FPL St. Lucie Unit 2 Drawing 2998-G-275 Sh. 41, Revision 7, "480V Motor Control Center No. 2B6 Sh. 2 One Line Diagram".

2.98 ICEA Publication No. S-19-81, NEMA Standards Publications No. WC3-1980, Approved September 19, 1979, " Rubber-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy", Table 2-4.

2.99 ICEA Publication No. S-66-524, NEMA Standards Publication No. WC7-1988, " Cross-Linked Thermosetting-Polyethylene-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy ".

aepca lc.12/96

F 1

REV.

1 SHEET NO.~

2.0 (cont'd) 2.100 ICEA Publication No. S-68-516, NEMA Standards Publication No. WC8-1988. " Ethylene-Propylene-Rubber-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy ".

2.101 Engineering Evaluation St. Lucie Units 1 & 2, JPN-PSL-SEEP-94-108, Revision 1, "Evaluation of Existing Thermo-Lag Fire Barriers"

'2.102 Engineering Evaluation JPN-PSL-SENP-95-030, "Response to. NRC Request for Additional Information Dated 12/28/94".

2.103 NUCON International, Inc., "Pyrolysis Gas Chromatography Analysis of 9 Thermo-Lag Fire Barrier Samples, Performed for Florida Power & Light Company" (Attachment 2).

2.104 EPRI Power Plant Electrical Reference Series, Volume 4, "Wire and Cable", Section 4.4.

3.0 D

L Y

Review the Appendix 'R'afe Shutdown Analysis (SSA) for cables identified as requiring protection and conduits identified with fire barriers (Ref. 2.1 & 2.2).

3.2 Review Unit 1 Fire Protection drawings, 8770-G-424 S01, S02, S03 and S04 (Ref. 2.34-2.37) for conduits shown and listed as protected or shown as 6 protection not required by further evaluation.

Fire barriers were installed on the 6 conduits prior to the re-evaluation which removed protection requirements (Ref. Table 5.2).

3.3 Review Unit 2 Appendix 'R'rapped summary drawing, 2998-G-411, Sheet 6J (Ref, 2.48) for conduits shown and listed as protected or shown as 8 protection not required by further evaluation.

Fire barriers were installed on the 8 conduits prior to the re-evaluation which removed protection requirements (Ref. Table 5.3 & 5.4).

3.4 Review Unit 2 raceway and conduit layout drawings for conduits wrapped with Thermo-Lag 330-1 fire barriers for RG 1.75 separation (Ref 2.38-2.47, 2 49-2.70).

3.5 Identify cables in conduits covered with Thermo-Lag 330-1 fire barrier systems not previously identified in SSAs; i.e., RG 1.75 and cables in conduits designated S.

3.6 Determine cable function from review of associated control wiring diagrams and compile listings of power cables affected.

Signal and control cables do not carry sufficient current to generate heat in the cable and reduce ampacity.

Power cables to valves are excluded due to the short duration of valve operation, 3.7 Review calculations issued by EBASCO, Services, Inc. and FPL Engineering to determine loads and currents used for affected power cables.

Select worst case loading from background information and determine which loads will be applied to the cables continuously or longer than the time which will heat the cable from the load current (Ref. 2.3-2.16, 2.18-2.24).

arpcal c.12/96

CALCULATIONSHEET CALCULATIONNO. PSL-OFJE 001 REV.

1 SHEET NO.

12 3.0 METHODOLOGY 3.8 For motors, determine kilovolt-amperes (KVA) rating from horsepower rating and then calculate current based on line voltage (480 or 4160 volts) to device. Motor kilovolt-amp and efficiencies are discussed in Assumption 4.10 and 4.11.

%%d 3.9 Determine derating factor for multiple power cable installed in the same conduit, the number of current carrying conductors in the conduit (C/C) and the Ampacity Correction Factor (ACF) calculated in PTN-BFJM-96-005 (Ref. 2.20),

Total Number of Conductors Cable manufacturers and IEEE gives ampacities for cables up to one three conductor (3/c) or triplex cable in a conduit in air.

The cable ampacities are derated when the number of conductors in a conduit exceeds three (3).

Cable ampacity is multiplied by the following correction factor (Ref. 2.104):

Ampacity Correction Factor 34-6 7-9 1.00 0.80 0.70 3.10 Calculate derated ampacity (I') for each power cable.

(I') = lc x (ACF) x (C/C Derating %)

3.11 Determine margin percent (%) between rated cable capacity and the derated ampacity (I'):

C

-1

) x100

< Load Amps Required(l) 3.12 Operating heat loads (Watts per foot) are calculated as follows:

Watts/foot =

( 0'f conductors)

( resistance per 1000 ft)(load current)~ /1000 The heat loads for the derated current load on a cable type is compared to the operating heat load for the actual current load on a cable to assure cable design is not exceeded.

3.13 Cable resistance values are given at a temperature of 25 degree C. Table 6-1 (attached) provides the following conversion equation:

R1 = R2

( 259.5/[234.5

+ T2]);,where; R1 = resistance at 25 degree C

R2 = resistance at operating temperature R2 = R1 ([234.5 + T2] /259.5) '2 = cable temperature; i.e., 90 degree C

or R2 = R1 ([234.5 + 90] /259.5) = R1 (1.2505) aepca lc. 12/96

I HE CALCULATIONNO.

F 1

REV.

1 SHEET NO.~

4.0 4.1 Fire protection wrap used at St. Lucie station is the Thermal Science, Inc. (TSI) Thermo-lag Fire Barrier System.

Typically, the half-round "clamshell" covers applied over conduits have a nominal thickness of 5/8" for one (1) hour ratings and one (1) inch for three (3) hour ratings.

4.2 The original design calculations for derating factors determined that Thermo-Lag barriers reduced ampacity by approximately 12%, however, for conservatism, a derating factor of 15% was selected for power cable sizing (Ref. 2.21).

4,,3 Control and instrumentation cables are not subject to ampacity limits due to the small levels of current used.

Voltage drop in the control circuit is usually the limiting factor for cable design and normally requires the installation of larger cables to perform required functions.

4.4 The continuous device current load was used as a basis for this calculation. Momentary load requirements, i.e., those lasting less than 1 minute, are not considered.

Loads of this duration are not sustained long enough to induce heat in the affected power cables.

Abnormally high levels of current for devices are detected by protective devices and the component is designed to be separated from the power source before the condition damages the component or cable.

4.5 Fire protection barriers in St. Lucie Unit 1 and Unit 2 are installed on cable conduits and conduit boxes only.

There are no cable trays wrapped with fire barriers at the St. Lucie station. However, sections of conduits 21001F-4" and 21001H-4" are routed in a "banked" configuration.

There were no tested configurations for banked conduit runs; therefore, the ampacity correction factor for cable tray were used. The banked conduits are in a single plane and the conduit size of 4 inches is similar to the depth of cable tray used at St. Lucie. Using the cable tray derating factor gives a more conservative estimate of the current carrying margin for the affected cables in these conduits (21801W, 21801X, 21801Y and 21801Z).

4.6 This calculation applies to cables in protected conduits inside and outside containment of both St. Lucie units.

The ambient temperature for cables inside containment is assumed to be 50'C. Outside of the containment buildings, ambient temperatures are assumed to be 40'C (104'F).

Operating temperatures in the RAB are normally closer to 30'C; however, for conservatism, the higher temperature will be used.

4.7 Power cables utilized in St. Lucie'station are rated for operation at 90'C conductor temperature.

The higher the insulation temperature rating, the greater the allowable ampacity for a given conductor size.

4.8 Conduits protected in St. Lucie Unit ¹1 use (3) hour barrier one (1) inch nominal thickness material.

Conduits protected in St. Lucia Unit ¹2 may be protected with one (1) hour 5/8" nominal thickness material or three (3) hour one (1) inch nominal thickness material.

This calculation assumes three (3) hour protection will be upgraded by using layers of Thermo-Lag 770-1 wrap and trowel grade materials.

One (1) hour barriers will be upgraded with overlays of (1/4") nominal thickness curved sections of Thermo-Lag 330-1.

These assumptions are based on currently available upgrade systems that are cost effective for use at St. Lucia.

ampca lc. 12/96

L T

CALCULATION,NO.

F 1

REV.

1 SHEET NO. ~4 4.0 N

A 4.9 Conductor current values for 600 volt cables are based on IEEE standard values (Ref. 2.75) for conductors rated 600 to 5000 volts, 90'C (194'F) ambient temperature with no solar heating and 2 FT/s wind/ventilation.

4.10 Where load values are known in kilovolt-amperes (KVAs), the current is determined by; h

C Ci:

=V I= V 1

amps (three phase AC) 3xV 4.11 The ampacity testing performed for Comanche Peak Plant was performed for conduits ranging in size from 3/4 inches to 5 inches.

Conduits covered with Thermo-Lag 330-1 fire barriers at St. Lucie plant range from 1-1/2" to 5". The heat load (I'R loss) from each cable section is included in Tables 5.5a, 5.5b. 5 5.5c.

These heat loads were compared to the tables/charts used by Turkey Point where heat loads were compared to the Omega Point Laboratory test for Texas Utilities Comanche Peak Plant (Ref. 2.20). From this it is concluded that the test samples utilized are representative of the configuration at St. Lucie.

4.12 There are'no installed cable tray sections at St. Lucie protected by Thermo-Lag fire barriers.

However, there is a large pull box installed in St. Lucie Unit 2 elevation (-) 0.50', box B2431-SA which was reviewed due to size.

The box is a 42" x 42" x 12" enclosure used as a pullbox for the power cables to AFW pump 2A. The horizontal surface on the bottom of the enclosure is expected to be most affected by fires in the 12" box depth.

Because the original test performed by TSI included a 12" cable tray section and the Comanche Peak test included a 24" cable tray section, the large enclosure in St. Lucie Unit 2 is considered bounded by the previous tests.

4.13 ln accordance with Reference 2.101, the thickness of the Thermo-Lag and the gaps within the Thermo-Lag, found during the inspection of the correctly installed configurations for'the Unit 1

8c 2 one hour and three hour barriers, were in accordance with the installation instructions of TSI. Therefore, the configuration of the Thermo-Lag barriers at St. Lucie are bounded by the TSI installation instructions.

4.14 FPL participated in a generic industry test program managed by the. Nuclear Energy Institute (NEI) which included verification of the chemical composition of Thermo-Lag material. As part of the NEI test program, a pyrolysis gas chromatographic analysis was used to qualitatively compare the organic constituents of various Thermo-Lag samples.

St. Lucia provided (9) samples from installed and warehouse Thermo-Lag materials.

All of the samples tested at NUCON Laboratory in Columbus, Ohio were found consistent in terms of chemical composition (Ref. 2.103).

Results of the testing program were sent directly to the NRC by NEI letter dated October 3, 1995.

Per Reference 2.102, the NRC stated that there was essentially no differences between the samples for different lots, areas of the country and the year the material was purchased.

anpc ale. 12/96

CALCULATIONNO.

1 REV.

1 SHEET NO.~

5.0 5.1 The documents listed in Section 2.0 of this calculation were reviewed to identify the cables wrapped with Thermo-Lag which must be considered for ampacity derating factors.

6.2 Bills of Material were reviewed for cables identified in 5.1 to determine insulation voltage rating and intended generic use, i.e., power or control and tabulated in Table 5.1.

5.3 From information listed in documents of Section 2.0 and appropriate bills of material, Tables 5.2, 5.3 and 5.4 were generated to identify affected cables in wrapped conduits.

These tables identify cable types, usage voltage class, insulation voltage rating, a description of the cable load for power cables and the number of current carrying conductors in each conduit.

5.4 Motor load kilowatt and current ratings vary in prior documents depending on base values used. For this calculation, current values for motors were determined from nameplate listings on referenced One-Line List drawings.

5.5 From this information and Section 2.0; Tables 5.5.a, 5.5.b. and 5.5.c were created.

e aapcatc.12/96

A LATI N HEE CALCULATIONNO.

F 1

REV.~

SHEET NO.~

5.0 (cont'd)

QLI~IQJ St. Lucia Plant Cable Types St. Lucie Unit 1: Reference Unit 1 Bill of Materials, 8770-B-325 BOM Cable Identification D022 D0343, D03-06, D03-07, D03-08 D03-12 D156 D26-02, D26-06 52-08 BOM Sheet Sht. D2-1 Sht. D3-1 Sht. D3-9 SIlt. D26-01 Sht. D52-01 Revision No.

Description Power Cable, 600V Crosslinked Polyethylene PVC Jacket for Overall Jacket (Type XLPP)

Control Cable, 600V, Crosslinked Polyethylene PVC Jacket for Overall Jacket (Type XLPPP)

Control Cable, 600V, Crosslinked Polyethylene PVC Jacket for Overall Jacket (Type XLPPP)

Power Cable, 5000V (Re. CARS)

Power Cable, 600V, HT Kerite Insulation, FR Overall Jacket (Type HT)

Control Cable, 600V, FR Kerite Insulation, FR Overall Jacket (Type MCCC)

St. Lucia Unit 2: Reference Unit 2 Bill of Materials, 2998-8-325 BOM Cable Identification BOM Sheet Revision No.

Description D1 541, D15-02, D1 5-03 D26-02, D26-03, D26-04, D26-06, D26%7, D26-08 D26-10 D52-03, D52-08 D54-05, D54-06, D54-07 D61-05, D61-06 D98 99 Sht. D11-01 SILt. D26-01 Sht. D26-09 Sht. D52-01 Sht. D54-01 Sht. D61-01 Power Cable, 5000V, Crosslinked Polyethylene, Lead Sheath L Neoprene Overall (Type XLPSLN)

Power Cable, 600V, HT Kerite Insulation, FR Overall Jacket (Type HT)

Power Cable, 600V, HT Kerite Insulation, FR Overall Jacket (Type LVPC)

Control Cable, 600V, FR Kerite Insulation, FR Overall Jacket (Type MCCC)

Power Cable, 600V, Non-shielded, HT, Kerite Insulation FR Jacket (Type LVPC)

Signal Re: D26, D52, D54 Re: D26 sapca1 c. 12/96

LATI CALCULATIONNO.

F 1

REV.~

SHEET NO. ~7 5.0 (cont'd)

T BLE

.2 St. Lucie Unit 1 Cables in Conduits with (3) Hour-Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUIT BM/Id Type Volt Insulation Device c/c 404.&h 10504A 496QSB 496Q66 496969 407448 408448 40844F 40Q$6 408468 40846F 40$RG 408268 408266 10&32A 11001F 11001G 11001H 11001J 11002B 11002F 11002G 11002H 11002J 11002M 11002N 11002P 11002Q 11009G 11009 J 11009Q 4S44VK 10504A

-102R-

-40i54-

-Hh54-

~54-

-%2$4-

-402$4-

-402$ 4

-402$4-

-402$4-

-492$4-

-492$4-

-402$4-11552 11001F "

11001F "

11001H "

11001H "

11002B "

11002F "

~ 148&5 11002F "

~ 14885 11002H "

~ 14886 11002H "

  • 14886 11002M "

11002M "

11002P "

11002P "

11009G 11009 J 11009 Q 9$2-98 D2646 903-98 993-Q6 903-93 903-42 903-03 903-Q6 993-(P 903-Q3 903-96 993-OV 9Q3-Q6 903-93 D1546 D2642 D2642 D26-02 D2642 D02M D0242 D0242 D0242 D0242 D0242 D26-06 D2646 D26-06 4-Re-¹2 3-1/c ¹2 4-2A.'~

4-WWQS 4-Se-4%0 4-2'-4t46 4 'Ve AO 4-7/e-¹42 4-Ske-¹42 4 Ve,AO 4-VMAQ 4-$/e-¹42 4-Vke-¹42 4 Ve.AO 3-1/c ¹4/0 1-1/c ¹500 1-1/c ¹500 1-1/c ¹500 1-1/c ¹500 2-1/c ¹500 1-1/c ¹500 1-1/c ¹500 1-1/c ¹500 1-1/c ¹500 1-1/c ¹500 1-1/c ¹500 1-1/c ¹500 1-1/c ¹500 2-1/c ¹2 2-1/c ¹2 2-1/c ¹2 Class C

M6 C6 C6 C

C6 C6 C

C V

M M

M M

M M

M M

M M

M M

M M

M Rating 699 600 6QQ 699 6QQ 6QO 6QO 6QO 6QQ 699 6QQ 6QQ 699

690, 5000 600 600 600 600 600 600 HVE-9B ICWP A 125VDC Load Test Panel 1A Batt Chltr 1B 125VDC Load Test.

Panel 1B 0 0 1 ~

0 ~

125VDC Bus 1B 1C Invert 1A Out Invert 1A In Inst Bus MA (AC) 2 3

$9

$0

$0

$9'0

$Q

$0

$0

$0

$0

$9

$9 3

2 2

2 2

2 2

'2 Qg~: Reference 8770-B-328, Sheet 9A, Revision 2, "Cable and Conduit Notes".

C - control or low voltage power (i.e., 120 volt to ground)

~

~

~

~

~

~

M - medium voltage (i.e., 480 volt nominal) c/c - number of current carrying conductors in same conduit xxxx" - conduits identified as not requiring protection List Installation anycalc.12/96

L LA I NS EE CALCULATIONNO.

F 1

REV ~

SHEET NO. ~1 5.0 (cont'd)

XhRU~

St. Lucia Unit 2 Cables in Conduits with (3) Hour Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUH'M/Id Type Volt Insulation c/c 20251A 20504A 20629 A 2064$ C 20646A 20&34A 20931A 2094&F 20956 H 20990 H 21001A 21009K 21009U 2160&B 21801A 21801W 21801X 21801Y 21801Z 25071 P 20504A "

20336 22@RP-220249-21696 25019 Y 20948F 22020Q 25019 Y 21001A 8@726-21009G 21009 J 28161 J 21009H 22020Q 21801A 21001F "

  • 2805&J 21001F "
  • 28058J 21001H "

28058D 21001H "

2805&D D1543 D9841 D1546 KHQ-4$

998-4$

D1543 D26-06 D1541 D9841 D2644 D2644 K@4-Q6 D26-04 D2644 D9944 D2644 D9841 D2644 D2642 3-1/c ¹4/0 3-1/c ¹4/0 3-1/c ¹4/0 2-h/e-¹6 3-1/c ¹4/0 2-1/c ¹2 3-1/c 2-1/c ¹4/0 2-1/c ¹2/0 3-1/c ¹2/0 4-Re-¹89 2-1/c ¹2/0 2-1/c ¹2/0 2-1/c ¹2/0 2-1/c ¹2/0 2-1/c ¹4/0 3-1/c ¹2/0 2-1/c D2642 2-1/c D26-02 2-1/c D26-02 2-1/c Class Rating V

5000 P

600 V

5000 6

6QQ C

6QQ V

5000 P

600 V

5000 P

600 P

600 P

600 C

6QQ P

600 P

600 P

600 P

600 P

600 P

600 P

600 P

600 P

600 P

600 LPSI P2A (D26-03) 2HVE-9B AFW P2A g)$4-0$) R-'MB-20$

+$4-0$) kAQB-206 ICW P2C Swgr 2A3-5 Xfmr 2B2/2B5 (D26-03) DG 2A Exc Cub Swgr 2A24 Bat Ch r 2A I

Inst Bus 2MA Inv 2A (D26-04) Inv 2C Inst Bus 2MC (D2643) DG 2A CP Bat Chgr 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA DC Bus 2AA 3

3 3

4 4

3 4

3 6

4 3

2 2

2 2

6 4

4 593~ Reference 2998-B-271, Sheet 2-14, Revision 2, "Electrical General Installation Notes".

L - low level signal, not power C - control or low voltage power (i.e., 120 volt to ground)

P - medium voltage power (i.e., 480 volt nominal)

V - high voltage (i.e., 4160 volt nominal) c/c - number of current carrying conductors in same conduit

()D - ¹ (cable size) duplex construction

()T - ¹(cable size) triplexed construction

()STP - ¹(cable size) shielded twisted-pair xxxx" - conduits identified as not requiring protection

- cable also in other protected conduit empca lc.12/96

CALCULATIONNO.

F SHEET NO. ~1 5.0 LCulAMlM1 ABLE

.4 St. Lucie Unit 2 Cables in Conduits with (1) Hour Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUIT BM/Id T+e Volt Insulation c/c 2044@A 8HS)A 20292 A QL'89A 20344A 204663 2046&4 20$2$6 20$2$8 20597 J 20630 A 20833 A QOA4F 20946F 20948A 210 10U 21118A 24$04A 24$44A 2462 VA 246296 RQI298 24642A 244'429 246 QS 246'1643 G 21643 R 246496 246 I99 RkRi4A 24VRS 24V$48 25050 W 20$2$6-20597N 20597N 220208-

%20289-20328-20328-28093C 21553 20944F-22006S 20948A 21010H 2202 0Q 2$0$2J" 220209-203iN-220226-220226-246428-246QS-22016 H 21643R 2464tM-246496-24VSD&

24VSQ-V24VSB 24V$QV-24V$4-X247$-

25067M 998-08 998-08 D264&

924i-%.

926-QV 9$2-Q8 9$2-08 K@4-0V 9$4-0V D2643 D99-01

%88-03 B26-0V 926-06 DISS D1543 964-Q$

D1541 D1541 D26-04 D98-10 926-0V 998-'08 926-04 99&4$

998-30 9$4-06 9$4-06 9$4-06 9$4-06 D26-10 D26-10 964-6 964-6 9$4-Q$

9$4-0$

9$4-Q$

9$ $-0$

9$4-0$

9$4-0$

D26-04 4-8k~V 4-3/e~F 1-3/c ¹12T 4-3/e-¹8T-4-3/e-A%7-4-Q/e-A%2 4-QIe-tAQ 4-2/'e-tAQB k4/e-A%:&

4-1/c ¹4/0 3-1/c ¹4/0 4-3/e-¹IÃ 4-3/e-¹8V 4-Qe-¹2 3-1/c ¹4/0 3-1/c ¹4/0 4-2/e¹44RF 3-1/c ¹500 3-1/c ¹500 2-1/c ¹2/0 2-1/c ¹4 4-3/e-¹SV 4-3/e~F 9-8e-¹2/0 2-Qe-¹6 4-9/e-¹46 4-Se-¹89 4-2~89 4-Se-¹89 4-Se489 2-1/c ¹4 2-1/c ¹4 4-ReAt46STP 4-2/e¹44STP 2-Qe-¹6 2-Qe-¹6 2-hh&5 2-4,fe-N 2-Pe-¹6 2-t4e-¹6 2-1/c ¹2/0 Class P

P P66 C6 P

P P

V V

4 V

V P

P 6

C6 C

C6 P

P44666666 P

Rating 600 600 600 6QQ 6QQ 600 600 600 600 600 600 6QO 6OQ 6OQ 5000 5000 600 5000 5000 600 600 600 6QO 6OQ 600 600 60Q 600 600 600 600 600 60Q 600 6QO 600 600 600 (D2643)

(92&&)

{D26-10)

~%49)

(926-0+

V44VV Vk+%

hid-08-k8 QBVB-SB QRV8-BB H2 Recomb H2 Recomb MV-694 MV49-10 449-0&4 AFW P2B ICW P2B Xfmr 2AS Xfmr 2B2/2BS Inst Bus 2MD DG 2A Ann V3$4$

RCV36$V RV-08-t98 V-4474 V-14V4 Redwea Redwea Radwea Ra&tea RM/RS26-1 RM/RS26-18 125V Bus MD 4-V 4 1-T 3

8 2

2 2

2 7

7 4-7 8

8 3

3 2

3 3

2 6

4-7.

Q-V 8

3 3

2 2

2 2

2 2

2 2

8 4

8 4

8 8

3 aapca tc.12/96

dl

CALCULATlONNO.

P SHEET NO.~

5.0 A

(cont'd)

St. Lucie Unit 1 (3) Hour Thermo-Lag 330-1 Fire Barrier System Wrap Ref.

Cable AIrcctcd Device Cable Size Cable Hp/

Load ACF Reeietance KVA Ampe (Rof.

C/C I loooh (it) 2.20)

(Rcf2.98-2.100)

CIC Cable Dcratod Maximum Derating Ampacity Ampacity Derated Heat (Ic)IEEB 9')

Load (Waaa/h)

Actual Heat Load (Watts/h) 2.93 2.92 2.6 IOS04h HVE-9B 10832A ICW PIA I loolF 12SVDC TEST I 1oolo PNL IA 3-1/C t2 3-1/C I4/0 l-l/C t500 l-l/C I500 0.0278 310

.$0 2

none 416x2 66S.6 24.6321 0.2113 40 49

.80 3

none 117 93.6 S.S$ 36 0.06SS 600 81

.80 3

none 247 197.6 7.672$

13220 S3432 91.02 143.9$

114.7 2.6 I IOOIH 11001 J 12SVDC TEST PNL IA l-l/CI500 l-l/C ISOO 0.0278 310

.80 2

none 416x2 66$.6 24.6321

$3432 114.7 2.8 11002B CHRGR IB 2-1/C ISOO 0.0278 68 8315

.80 2

none 416x2 66S.6 24.6321 KVA S.S 169 111.30

2. 6 11002F 11002G 12$VDCTEST PNL IB l-l/C ISOO l-l/C t500 0.0278 310

.80 2

none 416x2 665.6 24.6321 S3432 114.7 2.6 11002H 125VDC TEST 11002J PNL IB I-I/C ISOO I-I/C I500 0.027$

310

.80 2

none 416 x2 66$.6 24.6321 S3432 114.7 2.6 11002M 11002 N 12SVDC BUS IB 1-1/C ISOO l-l/C ISOO 0.0278 310

.80 2

none 416x2 66$.6 24.6321

$3432 114.7

2. 6 2.14 11002P 11002Q 11009G 12SVDC BUS IB INVTR lb (AC Out)

I-I/Cl500 1-1/C l500 2-1/C I2 0.2113 lo

~ 30.7

.$0 2

none 117 93.6 KVA 3.7024 0.027$

310

.So 2

none 416x2 665.6 24.6321 S3432 0.3983 114.7 204.89 2.1$

2.14 11009 J INVTR IA (DC In) 11009Q INST BUS Mh 2-1/C l2 2-1/C I2 0.2113 lo 37

.So 2

none 117 93.6 KVA 0.2113 4.2

.80 2

oooo 117 93.6 O.S7$ $

0.007S IS2.97 212$

Note: t battery chargers are current-limited to 315 amps output aepca Ic. 12/96

CALCULATIONNO.

SHEET NO.~

5.0 (cont'd)

St. Lucia Unit 2 (3) Hour Thermo-Lag 330-1 Fire Barrier System Wrap Rcr.

Cablo Affected Device Cable Sixo Cable Hp/

Rosistance KVA

/

1000'Rcr 2.98-2.100)

ACF (Rcr.

2.20 )

C/C C/C Dcratlng Cable Deratcd Maxinxtnt Actttal Heat

% Margin Ampacity Ampecity Dcratcd Heat Load (Q IEEE G')

Load (Watts/It)

(Watts/It) 2.94 2.97 2.94 202S Ih 20504 h 20629h LPSI P2A 2HVF 9B AFW P2A 3-1/C l4/0 0.06$ $

400 3-1/C l4/0 0.06SS 60 3-1/C l4/0 0.06$ $

3SO

$0 6$

47

.80

'3 247 197.6 7.672S 247 197.6 7.672S 247 197.6 7.672$

0.4913 29$.2 OA341 320.43 2.95 2.7 2.19 2.94 20834A ICW P2C 20948F STA SVC Xrmr 2B2/2BS 2093 lb SWGR 2A3 3-1/C l4/0 0.065$

600 2-1/C l2 0.2113 3-1/C lSOO 0.027$ '933 KVA 82.4 0.$

268

.80

.80-0.80 247 197.6 7.672S 117 74.$84.7390 416 332.8 9.2370 13342 139.81 0.0002 14876 S.990 24.1$

2.7 209S6H

'21118 A 21608 B DG 2A EXC CUB 2-1/C l4/0 0.06SS 2-1/C l4 2-1/Cl4/0 50.0 negligible 6.0

.$0 0.80 247'58.08 9.8208 0.9825216.16 0.0141 2.13 2.9 2.24 20990H SWGR 2A2 21001A CHRGR 2A (AC In) 21009E INST BUS 2MA 2-1/C l4/0 0.06$ S 3-1/C l2/0 O.IOS3 SO KW 2-1/C t2/0 0.1053 03 104.2 24.7 0.80 247 158.08 63472 181 144.8 6.623$

181 144.8 4.4151 0.0006 31S16 3A299 38.96 0.128S 486.23 2.6 21009 J 21009K INVIR2A (DC In)

INVIR2C (DC In) 2-1/C l2/0 0.10$ 3 10 KVA 2-1/C l2/0 0.1053 10 KVA 37 37 1$ 1 144.$

4A1$1 1$ 1 144.$

4A157 0.2883 291.3S 0~

2913$

2.24 2.10 2.13 2.13 21009U INST BUS 2MC 2180 Ih CHRGR 2AA 21801W 125VDC BUS 2AA 21$0IX 21801Y 12SVDC BUS 2AA 2180IZ 2-1/C l2/0 O. IOS3 3-1/C l2/0 0.1053 50 KW 2-1/C ISOO 0.027$

2-1/C ISOO 2-1/C ISOO 0.0278 2-1/C ISOO 28A 104.2 27$

.69 0.80 0.$0 1$ 1 I44.8 4AIS7 0.1699 48.86 1$ 1 161 A8

$.1976 3.4299 54.S9 416x2 459.26 23.4S47

$3940 6S.20 416x2 45926 23AS41

$~

6S.20 ngpcnic.12 /96

CALCULATlONNO.

SHEET NO.~

5.0 (cont'd)

St. Lucie Unit 2 (t) Hour Thermo-Lag 330-1 Fire Barrier System Wrap Rcf.

Cable hfrcctcd Device Cable Site Cabbt HP/

Load AClt Rcaittance KVA Ampa (Ref.

C/C

/1000h (Re (it) 2.20) 2.9$-2.100)

C/C Dcrating Cable Ampacity (Ic) IEEE Detated Maximum hcntaI Heat Load Ampacity Derated Heat (Wattt/h)

(I')

Load (Watta/h) 2.96 20292 A 2.17 205971 2.90 20S97N 2.94 2063 0A 2.94 20833 A 2.19 2.94 2.19 20948A 2.94 2.24 21010 U 2.13 2111$ A 2.22 21643 G 2.22 21643 R 2.7 2SOSOW 2.24 HYDRAZINE PUMP H2 RECOMB AFW P2B ICW P2B STA. SVC Xfmr 2AS STA SVC Xfmr 2B2/2BS 120VAC INST BUS 2MD DG 2h hnn RM/RS-26-1 RM/RS-26-18 125VDC BUS MD 1-3/C I12T 2.1058 3

4.6

.89 3

2-1/C l4 0.3364 1.0

.89 6

0.80 2-1/C I4 0.3364 2.S

.89 2

none 2-1/C l4 03364 2.S

.89 2

none 2-1/C l2/0 0.1053 I.S

.89 3

none 4-1/C I4/0 0.06SS 7S 90

.89 7

0.70 3-1/C I4/0 KVA 3-1/C I4/0 0.065S 350 47

.89 3

none 3-1/C I4/0 0.06$ S 600 82.4

.&9 3

none 3-1/C ISOO 0.0278 1933 268

.89 3

none KVA 3-1/C ISOO 0.02781933

- 268

.89 3

none KVA 2-1/C l2/0 0.1053 10 28.4

.89 2

none KVA 29 247 247 247 416 416 1$ 1 88 88 181 2S.81 4.2084 IS3.8810.8568 219.83 9.49S9 219.83 9.49S9 370.24 11 4323 370.24 II 4323 161 09

$ 4651 62.66 7.9248 7$.32 4.1269 7832 4.1269 161.09

$.1976

0. 1337 3.7139 0.4341 13342 0.1699 0.0020 0.0042 0.0042 0.0007 367.72 166.7$

38.1S 38.15 467.22 6165.6 3032.8 3032.$

10639 ceqca lc. I2/96

L Al N HE CALCULATIONNO.

1 REV.

1 SHEET NO.~

6.0 REHEAR The results shown in Tables 5.5.a.,

5.5.b.

and 5.5.c. indicate that when using newer ampacity correction factor (ACF) as determined in the Turkey Point calculation, PTN-BFJM-96-005, for upgraded Thermo-Lag fire barrier installations, sufficient margin exists between operating cable loads and cable cuirent carrying capacity (ampacity).

This calculation revisited prior calculations-,

and Appendix R and RG 1.75 documents to eliminate the conservatism that existed in the earlier calculations when considering the load on a specific cable.

Ampacity values used in this calculation are loads that exist longer than 60 seconds; i.e.,

do not include the battery or valve loads during the first minute which are reduce significantly for longer operation.

As listed above, the smallest margin for St. Lucie Unit No.

1 Thermo-Lag (3) hour upgraded wrapped conduits is

~1 4

7 This margin is for the 125 volt DC power cables from Battery lA to Battery Test Panel lA for supplying 125 volt DC bus lA.

Loads on these cables are steady state loads after the first minute of operation when the cable is subjected to continuous loads.

Loads on the battery cable are higher in the first minute due to cycling of valves and other motors.

The smallest Unit No.

2 margin for (3) hour upgraded wrapped conduits is ~~1+ for the 4160 volt power feeder cables to Station Services Transformers 2B2/2B5.

This value contains some conservatism since it assumes 100% transformer loading.

For (1) hour upgraded wrapped conduits in St. Lucie Unit 2, the smallest margin is ~~ for the 4160 volt feed to Station Services Transformer 2A5.

This value includes conservatism, similar to the margin to Transformers 2B2/2B5, since it assumes 1004 transformer loading.

The original calculations for cable derating in St.'Lucie Unit 1 and Unit 2 used a value considered conservative at 154.

This calculation has determined that acceptable power cable margins exist for installed cables in St.

Lucie Plant Unit 1 and Unit 2 when using derating values of 114 for (1) hour fire barriers and 204 for (3) hour fire barriers assuming the installation of Thermo-Lag 330-1 and Thermo-Lag 770-1 upgrade fire barrier systems.

A revision to the cables in conduits 21001F-4" and 21001H-4" was included in Revision 1 to this calculation.

These conduits were found to be in a banked configuration for part of their route; For conservatism, the ampacity derating factor for cable trays was applied to these conduit sections.

The r'esultant ampacity margin changed from 91.534 to 65.204 using the cable tray derating factor of 314.

Revision 1

also concluded that installed conduit configurations at St Lucie plant are bounded by test performed at Omega laboratories for Texas Utilities'omanche Peak Nuclear Plant.

sap'c.12/96

ICBM S46424

=

%bee M Nominal DC Raafotance in ohma Par 1NN Featt at SIC prFj of Sottd and Concont& Lay4trandad Conductor Qealiaw hTrhCHMHYI' I

7

)

6

)

~Cl CN ml IO 1OS IX%

HM 15M AM 17M D50 1IXI 19M 2$M SXO 35M 40$

4$M 50M 27.1 169 13$

1L7 IAS an

$38 422 266 2.11 L67 L32 LOS LC33 L661 IL534 OA15 L329 L261 4377 L164 0.130 Ll03Ii9 00694 40570 40495 L0433 OHMS L0347 1ILS 1L3 t%

451 5.15 4X L$7 204 L62 L2f UO LRN L6 LS L403 L3lf 4253 CKl 0,1S9 L126 IL1N QAP94 40630 OA5N

~ ~ ~

~

~

172 SL7 L52 6.76 535 4%,

337 l67 2.12 Lli L34 L06 0031 4659 0522 IL414 L329 4361 4377 0.164 am L102 OAI13 40645 OA511

~ ~

~ 0

~ 0 ~

DA 173 13.7 lLf L54 6IS 5A1 431 3A1 27l 215 L70 L35 107 IU51 OCl5 L534 OA24 0336 L266 4211 L16I L105 OAI36 4Ã07 40590 OAN5 IL0442 40393 ILC54 LIB21 L0295 00272 OlQQ OAQ36 L0221 40196 L0177 LN41 L0147 Ol541 OOL36 LN26 401Q 40111 40101 OAXSC1 OAX831 OOXh5 ON715 OAX596 ONSLS L0045l LN405 W.7 105 L33 4C7

%21 410 263 lM L66 L31 L04 LI25 LN2 L519 OA11 4325 485 L142 L129 L102 OASlO 00642

OA510, 40431 40360 OASR Ol069 OAOC1 Ol016 40196 LOLSl 00166 L0154 00144 L0135 0012I 0058 LOÃ41 OAX199 ERIES OAX8%

OAN771 LN719 LN674 L00634 LN616 OlX599 OAX568 OAX539 LN436 LN363 LN314 LN275 0AXQ47 aaaa a 17$

111LI3 7'82 4

AS 275 2N L72 IJS I@56 44%

05$

L427 L3%

L&l L213 Lll L134 LN6 OA524 004%

00374 40320 L0277 OAO46 L0204 OO1$7 LI171 40159 401%

40139

'00111 ONO1 LN925 OAXRS4 ONlRI 40840 LN694 OAX516 OIX55S 400323 ON?83 ON2$4 m

L75 LX LIB 0056 L$%

L427 L339 CXO IL2D L1 L134 4106 4/$42 40669 405%

OAN4!

Ol874 40331 402$

OAO49 L0224 403N 401N7 4017l LOMO 00149 Ol54l DNA OOlll L0102 OAXRN EOWJ ILIXP%5 LN740 LONM LN659 LN640 ON616 OAX5$4 OAX5SS 2N 222 1.'8 139 L11 LI74 LSR t5%

OA27 03%

lQQ 0213 L169 L134 LNS Ii%42 44669 OASR L04 00374 OASN LlQ OAO49 00224 LCN4 04107 L0123 LOl 001%

LOiCl 40112 OOIO2 LORN oasQ ILC947 OAXQXl ON659 LN640 LN622 OAX509 OAX560

'Coeoeatae l~ttaadcd induce amptesacd aad compact coadactocL tlLesias~ vaioca ia mil6obma pcs atctcr shah be obtaiacd by saeltipiyiag thc above valises by 32L

NS524 ATI'hCEB4ENT~

F C-RBV~

SHEET g OF~

WC 7.1988 Page 37

~

Methods for I'!II I l Area Aaaa sv D~cmR Sa, 4q kdlh ~ R III h~10 l~t

.~ diasactcr at thc ith me in mils determined mxeeing to 633.1 fatal smabcr attires m condoctor E4 I!

I kdl CoNImce vvithASTMB 263.

.EL1 I!ad I S 444.i Oewraa IvNaaeama Mueurastacr XHamctcr mcasarcmcnts shall be made mth a

~

~

~

~

~

~

fornctcf oc other Qntabic mstrImlcnt readable to at MN01 inch. Rocmd wires shall bc measured at each ead af the sample and near tbc middle of tbe sample.

Tbc average ofthc three mcasurcmcnts shall be taken a the dlaxnctcr.

Stranded coodnctors shall bc measured arormd tbe r'ide ot the condector and ~ the extensions at a lme thcoiih tbc center at the c rhetor and tbroogh the center ot tvvo mrna in the outcr layer that are 180 I

kI!

be taken as the diaslctcr.

I I!

Adiaster tape readable to at least OlCS inch shaQ be wrapIpcd oae tax (38K) around tbe ciramIfcrcnce ot the coaIhlctor, tigjklyaad perpendicular to tbc axis ofthe cocx}octm. The aver~ diamctcr ofthc oocldnc-tor sha5 be read dirccdy &ocn the cBamctcr tape.

'%St 6-1 Fectore for Converting Meeeured DC Reeletinca to @PC pPF)

Teasyccet>>ce, Mciltly~eTeclw Maltletrtcie Fecrer tlccreee C lcc Coquet lcrAl~hc>>eei 0

5 10 15 25 30 35

'4S 50 SS 60 65 75 80

&5 le L107 Ll84 LO61 1'020 LOOO 0981 0963 0945 0928 0912

%56 0~

0866

%52 OES 0%5 R812 0~

1.110 LN5

~

U5$

L041 L020 1ASO 0981 0962 0944 0927 0910 0894 OSN 0863 0849 OE35 0821 0808 0.796 Tbe correction factors arc based upon copper havmg 100 percent conductivity and ahminna having 61 per-cent axIdnctivity. Tbc hctacs arc deriIved &oaa the formulae:)

259't Rg ~~

T farcoppcr RS RS far Si!!Iiaa!n 253 228+ Tg

%bere Rl ~ Resistance at2'

~ Mcasnred resistance at test temperature Tg Por mare accurate dctcrmiaatian ofresistance, amovr fac diScrcat condrxtivitics, ace Copper %ire 'hblcs,

¹tfoeel Burcmc of Steirdenh HeIrdbook NO or hhminum %irc 'IhScs, ¹noeal Bunaau ofBandit Less Qua 2mi Wbla 54 Number of Samples Qsaaacr KCec>>plcccL Cetic Octaves Less than 610 610-3048 Nemabcr er 5am'>>

Each 10PS or &actiontbamf from 10PS-50PN Each 3048 or fraction thereof &ocn 3048-15/40 Each additional 50,000 or fraction thereof Each additional 15/40 or fraction thereof

NUCON Internationai.

Inc.

P O SQX 29151 7000 HUNTLEY RQAO COLUM8US. OHIO 43229 U S.A.

PYROLYSIS GAS CHROMATOGRAPHY PHONE. i6141 846-5710 OUTSIQE OHIO:

1 800-992 5192 TELEX: 6974415 FAX: 1614I 431.0858 hTI'h 2

I ANALYSISOF 9 THERMO-LAG HRE BARR Performed For:

Horida Power 4 Light 700 Universe Blvd.

P.O. Box 11,000 Juno Beach, $L 34408 P.O. No. LJ950 %P406 12 May 1995 PPL:

K A..Dunlea (1)

NEI:

BN Bradley (1)

NUCON:

06FL826 Master FBe (1)

Lab (1)

NUCON 06FL826/01

NUCON 06FL826/0 l NUt".ON lnternationai, Inc.

P O BOX 29151 7000 HUNTLEY ROAD COLUMBUS. OHIO 43229 U.S.A.

TELEPHONE. <51i) $45 Si'0 OUTSIDE OHIO: l4-992 5I92 TELEX: 59744 I S FAX: (51l) 4314858 hYThCHMERTjg RBV~

QHKTg OP3 PrqIIared By Reviewed By Original hague W. P. Frmnan 4<-

T.

eller

NUCON 06FL826/01 ATI'hCHMZWP~

r.

Inspection ofthe pyrograms of9 Thermo-La'g fire barrier samples indicated that they are all similar in chemical composition.

OBEKTNE Pyrolysis Gas y (PGC) with Mass Selective Detection (MSD) was used to qmlitatively compare nine Tlecmo-Lag the barrier saaq~.

DESCRIFI'ION OF MEI$HOD Tbe mnpies were compared by pyrolysis gas y using hSTM D3452 as Ceasel guide. h Hewlett-Padard model 5890 series II gas chromatograph equi@ed with a Hewlett Packard modd 5972 mass selectrve detector was used to generate

$$$$1 PYRIC Ul performed with a CDS py~

be memtcd in an '

heated interface attadwd to the injection port of the GC.

Analysis involved weighing 1-3 mgs. of sample in a quartt tube and piaceaent of the tube in the platinum coB cleaxat of the probe.

The probe is then placed in the interhce and pyroiysed ballistically far 2 sexxxh.

Pyrolytic products are then swept by the cmrier gas onto the fueed sBica ancillary column where they are separated and detected with a MSD.

'nd pyrolysis conditions are Quota in Table 1. Prior to each analysis, the column is heated to 250'C to elute any voiatlles which were not entrained in the polymer.

'RESKHThTION OF RESULTS, V.

The nine pymgrams 5or each of the nine Therapy-Lag sanpies are slewn in Figures 1, 3, S, 7, 9, 11, 13, 15, 17. Fiyuts 2, 4, 6, 8, 10, 12, 14, 16, 18 are extracted ion

$ ~$ $

t$$

h$ $~$ $ $ $$$~

a m/e of69 comma lo metltyl (MMh). The area ratios ofthese two peaks

<<re shown in VaMe 2 5oc each sanpie.

Foilowhg these two 6gures is attacled a 1ibrary search whkh identifies one of the moor peaks Sr each sample tested and a sumnary arch percent reps.

DISCUSSION OF RESULTS The average extracted ion area ratio of 1.41 JO.QS (k e) for EA/M'~ shown in Table 2 is consistent with the average ratio of 1 4 +0.1 (J e) obtained from other TlM:rmo-Lag

salnlks,

NUCON 06FL82'6tOL ATI'hCHMENT~

The extracted ion chromatograms (Figure 2) for sample, 0395-20h, a trowel grade sample, have an EAIMMhratio of 1.36. Pyridine compounds idcntificd in the pyrogram

{Figure 1) are pyridine, 3-methyl pyridine, 3, dimethyl pyridinc, 3~yl-5-methyl pyridine and 5~yl-2-methyl pyridine.

Other key components identified are pentanedioic acid, diethyl ettet, triphenyl phonate and octicizer. This sample contains corisiderably more octicizet than found in other Therino-Lag sampleL This may be due to the satrqHe site sleeted for pyrolysia.

Otherwise this sample is consistent with other Imples in terms of chemical cotnpositioa.

The extr<<cted ion (Hgure 4) 5'ampie 0395-2, a 1 bout rated panel sa spic, have an EAfMMhratio of 1AS. Pyridhe compoaxh idcrefied ln the pyrogram

{Figure 3) are 3-methyl pyridine, 3, 5&methyl pyridine, 2, 3, &triaethyi pyridine and

~hyi-5-tnethyl pyridine. Other key coaqenents identified are pentaedioic <<cM diethyl cNK, tQglhlyl phosphate, ocMxcf and tfhBcthyi phenyl ptxNpbate.

The extrmcted ion chromatogmns {Hgure 5) for sample 039S-20C, a 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> rated conduit samtple, have an RA/bMh ratio of lA6. Pyridine compounds identified in the pyrograrn (Figure 5) are Wedtyl pyridua. Other key comporents identi5ed are

'cttd diethyl ester, tripbcayi phosphate and octicizet.

Sh 00 '

tlISI Sl I ~0 0393 00.

33 I

03

'ante, have an EhlMMAratio of 1.i2. Pyridine coaqxmids identified in the pyrograrn (Figure 7) are pyridine, 3-methyl pyridine, 2, MhMthylpyridine, ~y1 geidine, 3, S~hmethyk pyridine, 3, SWmethyi @sidhe, 2, 3, S~ethyl pyridine and ~yl tnethyi pyridine. Other bey com~xxxats identi6ed are 2 ikenoxy ethaiml, pentane

'oic

<<cid diethyl ester, trimethyl phenyl pbosplete and octicizer.

09 03'04 ISIS II 03933t03 3I 30&4 sante, have an EMMMhratio oflA3. Pyridine coaipourxh idcnti6cd in the pyrogram (Hgure 9) are 3-methyl pyri80ne, 3, ~rnedryl pyridine, and 2, 3, &tmmethyi pyridine.

Other ltey cotnponents ideatr8ed are 2+eaoxy ethare4 pcntancdioic acid diethyl ester, trirncthyi pimps ihospbate, triphay} pbospbate, and octicizer.

Sb 03 9~ SW ISS It Sl ISIS 309

samph, have an EhlMMh mtio of 1.37.

The pyridine axnyo ds identified in the mgram {Figure lI) are 3-methyl pyridine, 2, Minediyl pyridine, ~yl pyridine, 3, 5&aWtyi pyridine, 2, 3, S~iethyl pyridine, ~yi-5 methyl pyrwline and 5-ethenyl-2-methyl pyridine. Other key compooents identi6ed arepentanedioic acid diethyl ester, tripbenyl phosphate and ocdcizer.

NUCON 06FL826/Ol TrwCHMSYr -Rl The extracted ion chromatograms (Figure

14) for sample 0395-20G, a 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> rated conduit sample, have an EA/MMh ratio of 1.34. Pyridine compounds identified in the pyrogram (Figure 13) are 3-methyl pyridine, 3~yl pyridine, 3, Mimethyl pyridine, 3&yl-5-methyl pyridine and Scthenyl-2-methyl pyridine.

Other Key components identified are pentanedioic acid diethyl ester, and octicizer.

Tb I'tFw lSf

phWN2DH, 3I sample, have an Eh/MMAratio A1A9. Pyridine compoutxh identihcd in the pyrogratn (Figure 0) axe py6dine, 3-metltyl pyridine, 24Wjmethyl pyridine, phenyl pytMine, 3, 5<iNMthyl pyridine, 2, 3, 5-trimethyl pyridine, ~yl-5 methyl pyridine and 5-ethenyl-2~yl pyrwline. Other hey coatpooents identihad are pentanedioic acid diethyl ester, tripbenyl pbospliate, and octicizer.

Tb hd I~ 0"4 III(

IUWI OlÃ.Ãl, 3 b hd~

saatple, have an EA/MMhratio of 1.39. Pyridine compounds identified in the pyrogratn (Figure 17) are 3-methyl pyrichne and 3, Sditnethyl pyridine.

Other key components

identified are pentanedicic acid diethyl ester, tripbenyl phosphate and octicizer.

In conclusioa, inspection of the pyrograms for these nine Thermo-Lag samples indicates that they are consistent with other Thermo-Lag samples in terms of chemical cotnposition.

NUCON 06FL826/01 ATl'ACHMBN7~

RBV~

sazsr Q Op~

TABLE 1 Chroamtographk CondMons:

30 meter 0.25 mm narrcw bore fused silica HP-5 CS capillary column.

Carrier Gac HcBum, 0.9 mLlmin, spHt ratio 35: l Column Conditions:

InitialTemperature:

50'C for 1 minute hoM Tenqerature Ramp:

8'Clmin to 250 C Final Temperature:

HoM at 250'C for 10 minutes Injector Temperature:

250'C Detector Temperature:

280'C Detector was an HP MSD in scan mode (30-550 amu)

~ysh Cood36oas:

Pyrolysis Tem~etauue:

650'C Intenral:

2 seconds Ratnp:

2 ClmBHsacoad Probe Type: Phtimun Coil Interhce Temperance:

205 C

NUCON 06FL826/Ol ThBLE 2 hlTACHMENT ~

~

I NUCON Lab Log f 0395-20h Samph: tl, LOC. VS 1%, fairway eall Tlowcl gtade NUCON Lab Log t 0395-208 Samyh A, LOC f/51W, 22020@

1 bour panel NUCON Lab Log f 0395-20C Samp& H, LOC. VS1W, 22020Q 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> caxfuit NUCON Lab Log f 0395-200 Sampk f4; LOC. C/34, 21810h 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />

)duit NUCON Lab Log N895-20K Sample f5, LOC. 'C/34, 21810h 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> panel NUCON Lab Log N395-20P Sample 6, LOC. Bl57, Inverted toom wall Tf0%Cl g&dO NUCON Lab Log N695-200 Sampie 7, LOC. N$7, 110IH 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> caafuit NUCOH Lab Log %395-208 Sandie 8, LOC. N57, 110028 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> panel NUCON Lab Log %395-2N Sample 9, LOC. wuehatae sck Basch P9-106N5 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> panel hverage:

1.36 1.46 1.42 lA3 1.37 1.34 1.49 141 a O.GS