ML17290A437: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
| number = ML17290A437
| number = ML17290A437
| issue date = 06/30/1993
| issue date = 06/30/1993
| title = WNP-2,Cycle 9 Colr.
| title = WNP-2,Cycle 9 Colr
| author name =  
| author name =  
| author affiliation = WASHINGTON PUBLIC POWER SUPPLY SYSTEM
| author affiliation = WASHINGTON PUBLIC POWER SUPPLY SYSTEM
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter::a
{{#Wiki_filter::a 930603 l3:47 COLR 93-9 Rev. 0 Controlled Copy No.
'
930603 l3:47 COLR 93-9 Rev. 0 Controlled Copy No.
WNP-2
WNP-2
                                'ycle 9 Core Operating Limits Report June 1993 Washington Public Power Supply System I'>aai70aa4 PDR        9SOS>,
'ycle 9 Core Operating Limits Report June 1993 Washington Public Power Supply System I'>aai70aa4 9SOS>,
ADOCK 05000397 P
PDR ADOCK 05000397 P
PDR
PDR


08:33, 05/l3/93 WNP-2 Cycle 9 Core Operating Limits Report List of Effective Pages
WNP-2 Cycle 9 Core Operating Limits Report 08:33, 05/l3/93 List of Effective Pages
~Pa e                               Revision 1                                    0 1                                    0 2                                    0 3                                  0 4                                  0 5                                  0 6                                  0 7                                  0 8                                  0 9                                  0 10                                  0 11                                  0 12                                  0 13                                  0 14                                  0 15                                  0 16                                  0 17                                  0 18                                  0 19                                  0 20                                    0 21                                    0 22                                    0 23                                    0 24                                    0 25                                    0 26                                    0 27                                    0 28                                    0 29                                    0 30                                    0 31                                    0 32                                    0 33                                    0 34                                    0 35                                    0
~Pa e 1
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Revision 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0


II f
II f
r
r


930520 l7:34 WNP-2 Cycle 9 Core Operating Limits Report List of Effective   Pages (cont.)
WNP-2 Cycle 9 Core Operating Limits Report 930520 l7:34 List of Effective Pages (cont.)
~Pa e                                   , Revi<jiiq 36                                         0 37                                        0 38                                        0 LEP-2
~Pa e
,Revi<jiiq 36 37 38 0
0 0
LEP-2


~ ~>>
. ~
cw 930S18 !2:56 WNP-2 Cycle 9 Core Operating Limits Report 4 ~
Table of Contents Pa~e 1.0 Introduction and Summary.....,.............................
1 2.0 Average Planar Linear Heat Generation Rate (APLHGR) Limits for Use in Technical Specification 3.2.1......,..........................
2 3.0 Minimum Critical Power Ratio (MCPR) Limitfor Use in Technical Specification 3.2.3
~
~
cw
~
    ~>> .~
~ t 8
930S18 !2:56 WNP-2 Cycle 9 Core Operating Limits Report 4~                    Table of Contents Pa~e 1.0  Introduction and Summary    .....,.............................                    1 2.0    Average Planar Linear Heat Generation Rate (APLHGR) Limits for Use in Technical Specification 3.2.1......,..........................                      2 3.0    Minimum Critical Power Ratio (MCPR) Limit for Use in Technical S pecification 3.2.3                                                  ~ ~ ~ t     8 4.0   Linear Heat Generation Rate (LHGR) Limit for Use in Technical Specification 3.2.4 .......................................                     29 5 .0   References...,...............           ~.....................         ~... 35 Washington Nuclear-Unit 2                                           COLR 93-9 Rev. 0
4.0 Linear Heat Generation Rate (LHGR) Limitfor Use in Technical Specification 3.2.4.......................................
 
29 5.0 References...,............... ~.....................
930SIS 13:01 1.0    Introduction and Summary This report provides the Average Planar Linear Heat Generation Rate (APLHGR) limits, the Minimum Critical Power Ratio (MCPR) limits, and the Linear Heat Generation Rate (LHGR) limits for WNP-2, Cycle 9 as required by Technical Specification 6.9.3.1. As required by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and are established so that all applicable limits of the plant safety analysis are met. The thermal limits for SPC fuel given in this report are documented in the Cycle 9 Plant Transient Analysis Report (Reference 5.1) and the Cycle 9 Reload Analysis Report (Reference 5.2). The thermal limits determined through the approved methodology are modified for the GE11 and SVEA-96 LFA's as discussed below.
~... 35 Washington Nuclear-Unit 2 COLR 93-9 Rev. 0
The WNP-2 Cycle 9 reload includes four Siemens Power Corporation (SPC), four General Electric (GE), and four ABB Atom (ABB) Lead Fuel Assemblies (LFA's). The SPC LFA's were inserted during the reload for Cycle 5. The GE and ABB LFA's were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle
: 6. The LFA's are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFA's are not expected to be the most limiting fuel assemblies on either a nodal or an assembly power basis. The GE11 LFA is described in the GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6 (Reference 5.3). This reference describes the design goals of the GE11 LFA's and provides support for monitoring the GE11 LFA's at thermal limits based on the SPC 8x8 reload fuel thermal limits. The SVEA-96 LFA's is described in the Supplemental LFA Licensing


Repon S VE'A-96 LFA 's for WNP-2 (Reference 5.4). The process for developing thermal limits for the SVEA-96 LFA's based upon the SPC 8x8 reload fuel thermal limits is described in References 5.4 and 5.5.
930SIS 13:01 1.0 Introduction and Summary This report provides the Average Planar Linear Heat Generation Rate (APLHGR) limits, the Minimum Critical Power Ratio (MCPR) limits, and the Linear Heat Generation Rate (LHGR) limits for WNP-2, Cycle 9 as required by Technical Specification 6.9.3.1.
The MAPLHGR limits for the GE11 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[81-7]) is applied to account for the different number of fuel pins in the two designs. The MAPLHGR limits for the SVEA-96 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[100-4]) is applied to account for the different number of fuel pins in the two designs. Furthermore, the MAPLHGR limits for the SVEA-96 LFA's are multiplied by the following constants: (a) 1.04 to account for a different estimation of the local power in the output from POWERPLEX compared to ABB Atom methods and (b) 1.02 to account for a different estimation of exposure in the output from POWERPLEX compared to ABB Atom methods.
As required by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and are established so that all applicable limits of the plant safety analysis are met.
The MCPR limit is the maximum of (a) the applicable exposure dependent, full power and full flow MCPR limit, (b) the applicable exposure and power dependent MCPR limit, and (c) the flow dependent MCPR limit specified in this report. This stipulation assures that the safety limit MCPR will not be violated throughout the WNP-2 operating regime. Full power MCPR limits are specified to define operating limits at rated power and flow conditions from 85% to 106%
The thermal limits for SPC fuel given in this report are documented in the Cycle 9 Plant Transient Analysis Report (Reference 5.1) and the Cycle 9 Reload Analysis Report (Reference 5.2). The thermal limits determined through the approved methodology are modified for the GE11 and SVEA-96 LFA's as discussed below.
flow. For the WNP-2 core, the Load Rejection without Bypass transient is limiting for operation at rated power and flow. Power dependent MCPR limits are specified to define operating limits at other than rated power conditions. For the WNP-2 core, feedwater-controller-failure transients from reduced power are calculated to be more severe than from full power conditions. A flow Washington Nuclear-Unit 2                                                       COLR 93-9 Rev. 0
The WNP-2 Cycle 9 reload includes four Siemens Power Corporation (SPC), four General Electric (GE), and four ABB Atom (ABB) Lead Fuel Assemblies (LFA's). The SPC LFA's were inserted during the reload for Cycle 5.
The GE and ABB LFA's were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle
: 6. The LFA's are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFA's are not expected to be the most limiting fuel assemblies on either a nodal or an assembly power basis.
The GE11 LFA is described in the GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6 (Reference 5.3).
This reference describes the design goals of the GE11 LFA's and provides support for monitoring the GE11 LFA's at thermal limits based on the SPC 8x8 reload fuel thermal limits.
The SVEA-96 LFA's is described in the Supplemental LFA Licensing Repon S VE'A-96LFA'sfor WNP-2 (Reference 5.4). The process for developing thermal limits for the SVEA-96 LFA's based upon the SPC 8x8 reload fuel thermal limits is described in References 5.4 and 5.5.
The MAPLHGRlimits for the GE11 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[81-7]) is applied to account for the different number of fuel pins in the two designs.
The MAPLHGR limits for the SVEA-96 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[100-4]) is applied to account for the different number of fuel pins in the two designs.
Furthermore, the MAPLHGR limits for the SVEA-96 LFA's are multiplied by the following constants:
(a) 1.04 to account for a different estimation of the local power in the output from POWERPLEX compared to ABB Atom methods and (b) 1.02 to account for a different estimation of exposure in the output from POWERPLEX compared to ABB Atom methods.
The MCPR limitis the maximum of (a) the applicable exposure dependent, fullpower and full flow MCPR limit, (b) the applicable exposure and power dependent MCPR limit, and (c) the flow dependent MCPR limitspecified in this report. This stipulation assures that the safety limit MCPR willnot be violated throughout the WNP-2 operating regime. Full power MCPR limits are specified to define operating limits at rated power and flow conditions from 85% to 106%
flow. For the WNP-2 core, the Load Rejection without Bypass transient is limitingfor operation at rated power and flow. Power dependent MCPR limits are specified to define operating limits at other than rated power conditions. For the WNP-2 core, feedwater-controller-failure transients from reduced power are calculated to be more severe than from fullpower conditions. A flow Washington Nuclear-Unit 2 COLR 93-9 Rev. 0


                                                                                      ~ 930601 1S:15 dependent MCPR is specified to define operating limits at other than rated flow conditions. The reduced flow MCPR limit provides bounding protection for the limiting recirculation flow increase transient.
~ 930601 1S:15 dependent MCPR is specified to define operating limits at other than rated flowconditions.
The reduced flow MCPR limit provides bounding protection for the limiting recirculation flow increase transient.
The LHGR limits for the GE11 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[81-7]) is applied to account for the different number of fuel pins in the two designs. The LHGR limits for the SVEA-96 LFA's are taken directly from Reference 5.4.
The LHGR limits for the GE11 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[81-7]) is applied to account for the different number of fuel pins in the two designs. The LHGR limits for the SVEA-96 LFA's are taken directly from Reference 5.4.
The reload licensing analyses for this cycle provide operating limits for Extended Load Line (ELLLA) operation which extends the power and flow operating regime for WNP-2 up to the 109% rod line which at full power corresponds to 87% of rated flow. The MCPR limits defined in this report are applicable up to 100% of rated thermal power along and below the 109% rod line. The minimum flow for operation at rated power is 87% of rated flow. References 5.1, 5.2 and 5.35 through 5.43 document the analyses in support of ELLLA operation.
The reload licensing analyses for this cycle provide operating limits for Extended Load Line (ELLLA)operation which extends the power and flow operating regime for WNP-2 up to the 109% rod line which at fullpower corresponds to 87% of rated flow. The MCPR limits defined in this report are applicable up to 100% of rated thermal power along and below the 109% rod line. The minimum flow for operation at rated power is 87% of rated flow. References 5.1, 5.2 and 5.35 through 5.43 document the analyses in support of ELLLAoperation.
Preparation, review and approval of this report were performed in accordance with applicable Supply System procedures. The specific topical report revisions and supplements which describe the methodology utilized in this cycle specific analysis are referenced in Section 5.0 2.0     Average Planar Linear Heat Generation Rate (APLHGR) Limits for Vse in Technical Specification 3.2.1 The APLHGR's for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop operation and in Figures 2.1, 2.3, 2.4, and 2.5 when in single loop operation. The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFA's, the SVEA-96 LFA's, and the GE11 LFA's.
Preparation, review and approval of this report were performed in accordance with applicable Supply System procedures.
Washington Nuclear-Unit 2                                               COLR 93-9 Rev. 0
The specific topical report revisions and supplements which describe the methodology utilized in this cycle specific analysis are referenced in Section 5.0 2.0 Average Planar Linear Heat Generation Rate (APLHGR) Limits for Vse in Technical Specification 3.2.1 The APLHGR's for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop operation and in Figures 2.1, 2.3, 2.4, and 2.5 when in single loop operation.
The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFA's, the SVEA-96 LFA's, and the GE11 LFA's.
Washington Nuclear-Unit 2 COLR 93-9 Rev. 0


,
sll555555515555555515555~~lillllllllllllllllll III55155,'55-~55=1155,='~lh~~= I CCC~C R~
  ,
CR C~~k.
IIIIIII IIIIIII
gg w
CwwL w
'IIIIIII-=55=i:=55=:11I '=-:55==.:
'~==:51:===III II
, I I.II.. 51=-:=-=-Ilillli.',:-==-=:-=:-5l==-.='551-=.-:-515515
,'llllll
'Illiill==-:55-
'>h'Il>5555511 IIIIIII Illllllei:-Ill5illke55lllll
. IIIIIII Illlll~':Illlllllh5llllll
., IIIIIII:
., IIIIIII:
.
Illlllli>515>lll>IINIIII
CCC~C
,'L'IIR....,
:
11-=====-=5=*-====1 =-=55=-:=-I sill
gg R~
, II Il ll = I==--=55-=='=11==--=55 585 II III=I~MPaHEm51==III===::=II=-===IIIRIllllh
  'IIIIIII-=55=i:=55=:11 I CR w
C~~k.
CwwL
                              '=-:55==.:
                                        'I sll555555515555555515555~~lillllllllllllllllll III55155,'55-~55=1155,='~lh~~=
w
                                            '~==:51:===III      II I I.II.. 51=-:=-=-Ilillli.',:- ==-=:-=:-5l==-.='551-=.-:-515515
  'llllll              'Illiill==-:55-      '>h'Il>5555511 Illllllei:-Ill5illke55lllll Illlll~':Illlllllh5llllll Illlllli>515>lll>IINIIII
,'L'I
,  II Il IR....,         11-=====-=5=*-====1 =-=55=-:=-I sill ll = I ==--=55-=='=11==--=55 585 II III=I~MPaHEm51 ==III===::=II=-===IIIRIllllh


    ~ I       RNP   m         m15     rmr ir I ~rarr RQRossRQSRSNLNQOQQQ QQR   QLQORR sowoRRNCRSORSRssQsosRR                     8 im, ima, Imlaliia             lklllai= a.i             e 3 mrr rrr~rrarra5 ha~ r r Clrg rrrrIRrrmi )fLI)g              I hrlelmmrgg rmggCrrrp5rrirrrRMIIa I I liiamlrl RSmlIIIIaalirICIIIalllR I 5 I   I     I t~I         I              t~I
~I RNP m
~ ~       ~ ~         ~ ~ ~       ~ ~ ~  ~      ~ ~ ~ ~
m15 rmr ir I ~rarr RQRossRQSRSNLNQOQQQ QQR QLQORR sowoRRNCRSORSRssQsosRR 8
                                                        ~ ~ ~ I ~
im, ima, Imlaliia lklllai= a.i e 3 mrr rrr~rrarra5 ha~
                                                                  ~ ~ ~
r r Clrg rrrrIRrrmi )fLI)gI hrlelmmrgg rmggCrrrp5rrirrrRMIIa I I liiamlrl RSmlIIIIaalirICIIIalllR I 5
~ ~ I I
~ ~ I t ~ I
~
~ ~ I
~ ~ ~
~ t ~ I
~ ~ ~
~ ~
~ ~ I
~
~ ~ ~


6666666666666666666 KKRKKKKHKKKKHWRK&i                             f66
f66 6666666666666666666 KKRKKKKHKKKKHWRK&i
          ~6       Q       /~~M/
~6 Q g
g                                ~ s I
/~~M/
                                                            '
I
                                                                ~ ~
~
~
~
~
s '
s
s
                                                                    ~
~a. ~~
:, IIIII, ll I::.              5:=:-55==6=-RI='==.ll:a a=i aRaa LE~a. 6
:,IIIII,5:=:-55==6=-RI='==.ll:a m
                                                  ~a. ~~
llI::.
m 66           H6             6 h
a=i aRaa LE~a.
        &L=
6 66 H6 6
h RR 15
&L=
 
m mme mme RR~~&mmCNNNN1C I'
I I ~ ~
~ ~ ~
~ II ~
I'
I'
~
~I''
~ 1
~
~
~
I


RR~~&mmCNNNN I I ~ ~
I I
1C
II II
                        ~ ~ ~
., llllllllllI 1I 51 l551 h.lllll5
RR m
                                  ~    II 15 mme
                                          ~      I' mme
                                                              ~  ~  I''
                                  ~ 1
                                        ~  ~ ~ I
 
I      I
., llllllllll I
II  II 1I 51 l551 h.lllll5
,'5 l III I II I S~III18 II II I IIII
,'5 l III I II I S~III18 II II I IIII


3J15115551 I IIIIIIIIIII I 155111IIIR5555155         I
3J15115551 I
  ,
, IIIIIIIIIII I 155111IIIR5555155 I I
I I          I 55llhl I I
I I 55llhl I IIllI s
Ill ""
~
  'l '"    I            s ~ ~ I ~
~ I
III             +me milli   '.
~
III       '55  111111 15111111         I
III " "
',, I I         '
+me milli III 111111 15111111 I
Ill 1555 55 1   111 I IS             I 55111         I 1511
',, I I
    ,
'55 Ill 1 111 I
5555   n nm 5 55555555555515 1 1%555NN11158
'l 1555 55
  ., 5155 1  1m Nm5                            1
, IS '"
I 55111 I 1511 5555 n nm 5 55555555555515 5155 1 1m Nm5 1 1%555NN11158 1


930S17 I?:30 3.0   Minimum Critical Power Ratio (MCPR) Limit for Use in Technical Specification 3.2.3 The MCPR limit for use in Technical Specification 3.2.3 shall be:
930S17 I?:30 3.0 Minimum Critical Power Ratio (MCPR) Limit for Use in Technical Specification 3.2.3 The MCPR limitfor use in Technical Specification 3.2.3 shall be:
Greater than or equal to the greater of the limits determined from Tables 3.1a and 3.1b and Figures 3.1 and 3.2a through 3. lib.
Greater than or equal to the greater of the limits determined from Tables 3.1a and 3.1b and Figures 3.1 and 3.2a through 3. lib.
Washington Nuclear-Unit 2                                             COLR 93-9 Rev. 0
Washington Nuclear-Unit 2 COLR 93-9 Rev. 0


qC 1
qC 1
08:53, 0$ /13/93 Table 3.1a WNP-2 Cycle 9 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR ~ 1.07.'"
08:53, 0$/13/93 Table 3.1a WNP-2 Cycle 9 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR ~ 1.07.'"
SPC gx8   SPC 9x9   SPC 9x9   SVEA-96 Condition Limit            GE11 LFA             LFA NSS~u Full Power        1.25+     1.25       1.27       1.39+
Condition Limit NSS~u Full Power Flow Dependent Power Dependen&#xc3; TSSS~n Full Power Flow Dependent Power Dependent NSSro RPT Full Power Inoperable Flow Dependent Power Dependen&#xc3; SLY NSS Full Power Flow Dependent Power Dependents SL~SSS Full Power Flow Dependent Power Dependent SLY NSS RPT Full Power Inoperablc Flow Dependent Power Dependent+
Flow Dependent                    Figure 3.1 Power Dependen&#xc3; Fig. 3.2a   Fig. 39a Fig. 3.3a   Fig. 3.2a TSSS~n Full Power        1.27     1.27       1.33     1.42 Flow Dependent                    Figure 3.1 Power Dependent  Fig. 3.4a Fig. 3.$ a Fig. 3.5a Fig. 3.4a NSSro RPT        Full Power      1.29       1.29       1.39       1.45 Inoperable Flow Dependent                    Figure 3.1 Power Dependen&#xc3; Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a SLY NSS Full Power      186       136       1.36       1.85 Flow Dependent                      None Power Dependents Fig. 3.2a Fig. 3.3a Fig. 3.3a   Fig. 3.2a SL~SSS Full Power      1.$ 6     1.36       1.36       1.85 Flow Dependent                      None Power Dependent  Fig. 3.4a Fig. 3.5a Fig. 3.5a   Fig. 3.4a SLY NSS RPT        Full Power      1.56       136       1.36     . 1.85 Inoperablc Flow Dependent                      None Power Dependent+ Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a W'ashington Nuclear-Unit 2                                                         COLR 93-9 Rev. 0
SPC gx8 SPC 9x9 SPC 9x9 SVEA-96 GE11 LFA LFA 1.25+
1.25 1.27 1.39+
Figure 3.1 Fig. 3.2a Fig. 39a Fig. 3.3a Fig. 3.2a 1.27 1.27 1.33 1.42 Figure 3.1 Fig. 3.4a Fig. 3.$a Fig. 3.5a Fig. 3.4a 1.29 1.29 1.39 1.45 Figure 3.1 Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a 186 136 1.36 1.85 None Fig. 3.2a Fig. 3.3a Fig. 3.3a Fig. 3.2a 1.$6 1.36 1.36 1.85 None Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3.4a 1.56 136 1.36 1.85 None Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a W'ashington Nuclear-Unit 2 COLR 93-9 Rev. 0


930317 11:33 Table 3.1b WNP-2'ycle             9 MCPR Operating Conditions Cycle Exposures             ) 4500 MWd/MTU SLMCPR ~ 1.0'P"                         SLMCPR ~ 1.07'n FFTR SPC Sxg         'PC   9x9     SPC 9x9   SVEA-96   SPC 8xS SPC 9x9SPC 9x9 SVEA-96 Condition Limit            . GE11 LFA                  ,    LFA  ~              GE11              LFA LFA NSSn>>
930317 11:33 Table 3.1b WNP-2'ycle 9 MCPR Operating Conditions Cycle Exposures ) 4500 MWd/MTU SLMCPR ~ 1.0'P" SLMCPR ~ 1.07'n FFTR Condition Limit NSSn>>
Full Power         1.31         . 1.29         1.39     1.48       1.33    1.31      1.41    1.51 Flow Dcpcndent                              Figure 3.1                               Figurc 3.1 Power Dependen&#xc3; Fig. 3.2b           Fig. 3.3b     Fig. 3.3b Fig. 3.2b Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 TSSSn>>
SPC Sxg 'PC 9x9 SPC 9x9 SVEA-96
Full Power        1.34;,            1.33         1.43      1.52      1.36    1.35      1.45    1.55 Flow Dcpcndent                              Figure 3.1                              Figure 3.1 Power Dependent+ Fig. 3.4b          Fig. 3.5b    Fig. 3.5b Fig. 3.4b  Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 NSSn>>
. GE11 LFA LFA ~
RPT        Full Power        129               1.38         182       1.60                   Not Analyzed Inoperable Flow Dependent                              Figure 3.1 Power Dependent e Fig. 3.10b Fig. 3.11b           Fig. 3.11b Fig. 3.10b SLO+ NSS Full Power        1.56       I 136           1.36     1.85       1.56    1.36    1.36    1.85
SPC 8xS SPC 9x9SPC 9x9 SVEA-96 GE11 LFA LFA TSSSn>>
                                        >>
NSSn>>
Flow Dependent                                  None                                    None 1
Full Power Flow Dcpcndent Power Dependen&#xc3; Full Power Flow Dcpcndent Power Dependent+
Power Dependent    Fig. 3.2b         Fig. 3.3b   Fig. 3.3b Fig. 3.2b Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 SLO'SSS Full Power        1.56     I      1.36         136      1.85      1.56    1.36     1.36    1.85 Flow Dependent              h                  None                                   None Power Dependent    Fig. 3.4b        Fig. 3.5b    Fig. 3.5b  Fig. 3.4b  Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 SLOn>> NSS RFI'ull Power                1.56 i
1.31 1.29 1.39 1.48 Figure 3.1 Fig. 3.2b Fig. 3.3b Fig. 3.3b Fig. 3.2b 1.34;,
1.36         1.36     1.85                   Not Analyzed Inoperable Flow Dependent                                  None Power Dependent+ Fig. 3.10b Fig. 3.11b            Fig. 3.11b Fig. 3.10b Washington Nuclear-Unit 2                                                                   COLR 93-9 Rey. 0
1.33 1.43 1.52 Figure 3.1 Fig. 3.4b Fig. 3.5b Fig. 3.5b Fig. 3.4b 1.33 1.31 1.41 1.51 Figurc 3.1 Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 1.36 1.35 1.45 1.55 Figure 3.1 Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RPT Full Power Inoperable Flow Dependent Power Dependent e SLO+ NSS Full Power Flow Dependent Power Dependent SLO'SSS Full Power Flow Dependent Power Dependent SLOn>> NSS RFI'ullPower Inoperable Flow Dependent Power Dependent+
129 1.38 182 1.60 Figure 3.1 Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b 1.56 I
136 1.36 1.85 None 1
Fig. 3.2b Fig. 3.3b Fig. 3.3b Fig. 3.2b 1.56 I
1.36 136 1.85 None h
Fig. 3.4b Fig. 3.5b Fig. 3.5b Fig. 3.4b 1.56 i
1.36 1.36 1.85 None Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed 1.56 1.36 1.36 1.85 None Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 1.56 1.36 1.36 1.85 None Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 Not Analyzed Washington Nuclear-Unit 2 COLR 93-9 Rey. 0


93060l l4:5i Notes for Tables 3.1a and 3.1b Note 1: The scram insertion times must meet the requirements of Technical Specification 3.1.3.4. The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed:
93060l l4:5i Notes for Tables 3.1a and 3.1b Note 1: The scram insertion times must meet the requirements of Technical Specification 3.1.3.4. The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed:
NSS). In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shall be determined from the applicable Technical Specification Scram Speed (TSSS) MCPR limits in Tables 3.1a and b.
NSS).
Slowest measured average control rod insertion times t Position Inserted      specified notches for all operable control rods for each grou From Fully Withdrawn      of four control rods arranged in a two-by-two array (seconds)
In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shall be determined from the applicable Technical Specification Scram Speed (TSSS) MCPR limits in Tables 3.1a and b.
Notch 45                                        0.380 Notch 39                                        0.720 Notch 25                                        1.600 Notch 5                                        2.950 Note 2: For Single Loop Operation (SLO), the SLMCPR increases by 0.01. The increase is included in the MCPR limits for SLO.
Position Inserted From Fully Withdrawn Notch 45 Notch 39 Notch 25 Notch 5
Note 3: For the noted full power MCPR limits, the control rod withdrawal error (CRWE) event is limiting. The load rejection without bypass (LRNB) event is limiting for the remaining full power limits. CRWE analysis was performed with a nominal rod block
Slowest measured average control rod insertion times t
      'onitor (RBM) setpoint of 1.06. Use of the nominal setpoint is in accordance with the methodology described in Reference 5.11, consistent with approved industry practice.
specified notches for all operable control rods for each grou of four control rods arranged in a two-by-two array (seconds) 0.380 0.720 1.600 2.950 Note 2: For Single Loop Operation (SLO), the SLMCPR increases by 0.01. The increase is included in the MCPR limits for SLO.
LRNB analysis was performed at 100% power/106% flow, 104% power/106% flow and 104% power/85% flow. The more limiting results are used for full power limits in Tables 3.1a and b.
Note 3: For the noted fullpower MCPR limits, the control rod withdrawal error (CRWE) event is limiting. The load rejection without bypass (LRNB) event is limiting for the remaining fullpower limits. CRWE analysis was performed with a nominal rod block
'onitor (RBM) setpoint of 1.06. Use of the nominal setpoint is in accordance with the methodology described in Reference 5.11, consistent with approved industry practice.
LRNB analysis was performed at 100% power/106% flow, 104% power/106% flow and 104% power/85% flow. The more limiting results are used for fullpower limits in Tables 3.1a and b.
Note 4: Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25%'f rated power at all core flows. However, the power dependent MCPR limits for core thermal powers less than or equal to 30% of rated power are subdivided by core flow. Limits are provided for core flows greater than 50% of rated flow and less than or equal to 50% of rated flow, respectively. A step change in the power dependent MCPR limits occurs at 30% of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.
Note 4: Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25%'f rated power at all core flows. However, the power dependent MCPR limits for core thermal powers less than or equal to 30% of rated power are subdivided by core flow. Limits are provided for core flows greater than 50% of rated flow and less than or equal to 50% of rated flow, respectively. A step change in the power dependent MCPR limits occurs at 30% of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.
Washington Nuclear-Unit 2                                                   COLR 93-9 Rev. 0
Washington Nuclear-Unit 2 COLR 93-9 Rev. 0


gmQg k58888888888l59           8
gg k58888888888l59 mQ 8
                                                    '' i'' '
. haaF
. haaF
  %gg
~
                    ~
a,.:
I ~ ~
55 am
                                                                  '
                                                                        .:'    5555m
                                                                                -a  a RB                                  ea    a g'. 55C    5 5            g g g  L /CD    g5g 3gLg                  ~
                      )lh          I                                o i
  ~8~    ~-m~ h~-~e~H~                                                          =ii 5
gg      gQ    gpmg@5gg5g Wp    g%%    QWHWWAQW WH WR    CAW CAW%    WC%
QRR %%%%    WRRRR 5  ea      SawaRC 5                  I E5      a=5 la=lRRLE gR gH                    55
              ~
I
I
                            ~ 'e     ~ ~ 'e I ~  'i Pal 00'I HEI
~
                                                                        '   'o 58 I~ 'a
~
%gg a,.:
g'.
55C 5 5 g g g
L /CD g5g 3gLg
)lh I
~8~
~-m~ h~-~e~H~
gg gQ gpmg@5gg5g Wp g%%
QWHWWAQW WH CAW WC%
WR CAW% QRR WRRRR 5
ea SawaRC 5
55
'' i'' '
5555m am
.: -a a RB
~
ea a
o i
=ii 5
I E a=5 la=lRRLE I
Pal HEI 58 5
gR gH 55
~ I I ~ 'a
~ 'e
~ ~ 'e
~ 'i 00'I
'o


                                                            -         i 5IL~IIISE415l ha.                                                                       ~     II ~ . I     ~
~
Q             ~    ~
~
                      ~
~
                          ~
~
                          ~
~
RR~~~~RRK~~m&KKKKHK!5% cl aa       I           I
~
                                              ,
~
RCI i',       ~   i
~
                        ~       0 8
~
                                    ~
~
                'I           I 's 8                       ~  ~
~
a 4
- i 5IL~IIISE415l ha.
~
II ~
I
~
Q
, RR~~~~RRK~~m&KKKKHK!5% cl aa I
I RCI i',
~ i
~
0
~
8
'I I 's 8
sg
sg
                                                                            ~  ~
~
                                                                                                  ~  ~
~
                                                                                                    ~
~
Rii                 ~
Rii I
a
                          ~
4 I
i
i
                                                            ==:"--Eggllm~iEEERH
~Q~
8 8 R~K~HR ~aR~~~~~~~~RC5                      M~~~~~&~~~Cas~~~~H~K~~~K I I'                      ~ ~
                                          '                            ~
                                                                          ~  ~
g
                                                                                  ~
                                                                                              ~ ~ 'o
                                                    ~      ~
I      ~  I            ~  ~
                                                ~              I    ~
                                                  ~  ~    I  I
                                  ~  ~                          ~ ~
                                  ~  ~
                                                    ~    ii


o:               ',                  mWgMMMW~~~~WWWM&WW'M RHR~
==:"--Eggllm~iEEERH
~~Pl o  I
~Q~
                                                                                          ~ ~   ~ ~ I IMAM I:aPs Icg                                                 I
8 8 R~K~HR ~aR~~~~~~~~RC5 M~~~~~&~~~Cas~~~~H~K~~~K I I'
                                                                                      ~      ~
~ ~ '
I WWMW         I ',                                                                I          I 'o
~ ~
                    ~
~ g
                        '        I   '.
~
~ ~ 'o
~
~
I
~
I
~
~
~
~
~
~
~
I
~
~
~
I I
~
~
~ ii
 
mWgMMMW~~~~WWWM&WW'M
~
~
~
~
I
~
~
RHR~
o:
o I ',
~~Pl I:aPs Icg IMAM I
I WWMW I
I 'o I ',
~
I '.
Se=a8
Se=a8
+MMMM
+MMMM
                      '
~
                          ~    ~
~
SRH         I                             4 ggHg R~RRRICRIR~RIWRp <<88%~~&Q~RQ
SRH I
                                                                                                        "
4 ggHg R~RRRICRIR~RIWRp <<88%~~&Q~RQ
Nag           I=g&#xc3;RSIINggIII
%King Nag I=g&#xc3;RSIINggIII
  ........
........il liligi Illlliill
        ~
~ I
~ ~ 'i 0 ~
~ ~
~ I 'o
~
~
I
~
~
I
I
                    %King il                  ~ ~ 'i lil igi Illlliill      0
~
                                                                                  ~    ~
~
                                                                                          ~           ~ I 'o
~
                                                    ~    ~    I      ~
~
                                    ~      I     ~              I  s I             I   ~
~
                                                            ~ ~   . s
I s
                                        ~    ~                            a ~
I I
                                        ~    ~
~
~
~
s a
~
II
II


I                                   ~RC5KK%RK~R
~ )
              ~                 I
~
                )    ~
I
I~   I
~RC5KK%RK~R
                                                                            ~      ~ ~ 0     ~
~
8                                         WWM W&W                       ~ ~ ~   ~   o .    ~
I I
gWW QWMW                                                                 ~
I
                                                                                  -
~
mme QwmC                                                           ~
~
                                                                                          ~
~ 0
R~Ls. MWM NMWWW                            I'I                        ~             ~     ~             ~    ~
~
a==
WWM 8
                                                                                                        ~
W&W
S~S
~
/gism   g 8   RREI                                 Sg           II '.
~
gag                                 g I             I R~~~~~~K~KRRR~K~~~N~HB~~~~H~~~~~~~~KM~K~~
~
                ~ 'I       ~   I 'I                           ~
~
                                                                ~       ~
o
                                                                            ~
~
gWW QWMW
~
~
mme QwmC
~
~
~
~
~
~
~
NR~Ls.
I'I MWWW MWM S~S a==
/gism g 8 RREI Sg I I '. gag g
I I
R~~~~~~K~KRRR~K~~~N~HB~~~~H~~~~~~~~KM~K~~
~ 'I
~ I 'I
~ ~
~ ~
0 I ~ 'I
0 I ~ 'I
                                            ~     ~
~
                      ~ ~                     ~ ~       . e
~
                                        ~             ~
~
                                          ~ ~
~
                                              -  .  ~
~
~
e
~
~
~
~ -
~


                                                                                  %% l%k%MMk%WMMMMMIIIW I     I ~ ~     ~       I WM I
%%l%k%MMk%WMMMMMIIIW I
8
I ~
        ~
~
            ~
~
0     ~   ~     ~     ~     ~
I WM
                                                                                                ~ AS    ~ I   .  ~
~ AS
8                          I                       I                                      ~         ~
~ I
I B~U~               I       ~         I '<
~
                                                            .5                         ~   ~     ~             ~   ~   ~
~
~
I 0
~
~
~
~
~
88 I
I
~
~
I B~U~
I
~
I '<
.5
~
~
~
~
~
~
RR==
RR==
IRI                 ~   ~       ~     ~     ~     ~
~
II~
~
I                         I                   I I ',
~
Ia       '
~
                                  =             "= i I=-==II=====IIIi-=IliI Kg/ 12EI IIKKK p~~gII&lmmI                                                               .
~
Jim M II=SIShhi=K==~8                                       =aERSHIall=e I=I I 8
~
+IIIII=-=ma RSSSRR 1 IRIIRI-:=la a aR-::-mm I
IRI I
              ' '<                            ~ I'                             ~ ~           ~
~
                                                                                                  ~               ~ ~   '<
~
                                                        ~       ~    ~
~
                                    ~     I     ~             ~ I I
~
I..
~
                                                          ~            ~
~
                                                            ~        S
I~
I I
I I ',
Ia
=
"= i I=-==II=====IIIi-=IliI Kg/ 12EI IIKKK p~~gII&lmmI Jim M
II=SIShhi=K==~8 =aERSHIall=e I=I I 8
+IIIII=-=ma RSSSRR 1
IRIIRI-:=la a aR-::-mm I
~ I'
~
~
~
~ ~
~ ~
~ ~ '<
~
I
~
~ I
~
~
I
~ I..
S


Rg Q~.
+HE gWWW H~L.
MWWR.
RQR B=B RBR
~
~
~
~
~
~
s
~
~~~+/~~~~ ~~~~~gg~~~~
I
~
~
~
~
~
g~~~~~~~ggF~~~~P~~
g~~~~~~~ggF~~~~P~~
Rg Q~.
8
8
                                                                                            ~       ~ s ~   ~       s g
~
+HE                                                                                          ~ ~ ~    ~ ~  .  ~
~
gWWW                ~
s
                    ~
~
                        ~
~
                        ~
s g
                                      ~    ~
~
s                                                   .
~
        ~~~+/ ~~~~ ~ ~~~~gg~~~~
~
                                                ~                                          s            ~
~
H~L.
~
MWWR.                      I ~
~
RQR                                                                                    ~
s
                                                                                        ~
~
                                                                                              ~
~
0 B=B              ~
~
                  ~
~
                      ~
0 s
                      ~
~
~
~
                                                                                                                      ~
~
RBR                                                                        ~
~
                                                                      ~              ~
~
                                                                                          ~
~
I      I I
I I
l   I 's I       I I                     I wmmmRmmRmmRmmRRRmRm ~~~~~~~~~~~~~~~Qgef o                              ~
l I 's I
RmmmSHmmRmRRmRRRNR58 Wgggmm/ jw=
I o
                              $                    1 =                             ~8               8:
I I I
                                                    =
~
                                                              =~ =-<<glmmmg g                                                                                $ 5I, a55555115          1                      1m              l15&#xc3;~llla~=a
~~~~~~~~~~~~~~~Qgef wmmmRmmRmmRmmRRRmRm RmmmSHmmRmRRmRRRNR58 Wgggmm/
                                    ~  I  'e                                  ~
jw=
I s      ~
1
=
~8 8:
g
g
                                                                                                  ~
= =~ =-<<glmmmg
II   ss   I ss
$5I, a55555115 1
                                              ~   ~     ~       ~
1m l15&#xc3;~llla~=a
s     ~     ~                   I ~
~ I 'e
                                                    ~             ~   ~
~ I s
                                                        ~   ~     . s 0~
~ g
                                ~                     I
~
                                ~
II ss I ss
                                                          ~
~
ll         s
~
~
~
s
~
~
~
~
~
0 I
~
~
~
~
~
~
s I
~ ll s


2.6 Core Flow ) 50%
00 O
00                            Power s 30%                                     Two Loop and Single O
C,o I
2.4                                                                      Loop Operation SPC 8x8
OOI 2.6 2.4 2.2 E
,oC                Power  GE11 LFA     SVEA-96 LFA 25%        2.50           2.60 2.2                                                                  All Core Flows 30%        2.40          2.50                           Power > 30%
c 2.0
E Core Flow x 50%
+J 0$
c 2.0                  Power s 30%                                   SPC 8x8
L tD CL O 1.8 K
      +J 0$                                                            Power  GE11 LFA   SVEA-96 LFA L
0O 1.6 Power 25%
tD CL                    SPC 8x8                                   30%    1.54           1.64 O 1.8        Power    GE11 LFA      SVEA-96 LFA                   47%    1.46          1.56 K              25%      2.10          2.20                    1 00%    1.34          1.44 I  0 OO O              30%      2.00          2.10 I
30%
1.6                    ~ I hi                           SVEA-96 LFA
Power 25%
                                                        ~y 1.4 SPC 8x8 GE11 LFA 1.2 20% 30%     40%         50%         60%         70%       80%      90%      100%    1 10%
30%
A                                        Percent of Rated Power 0
Core Flow ) 50%
f'd                                  Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures   ) 4500 MWd/MT CD Figure 3.4b h
Power s 30%
SPC 8x8 GE11 LFA SVEA-96 LFA 2.50 2.40 2.60 2.50 Core Flow x 50%
Power s 30%
2.10 2.00 2.20 2.10 SPC 8x8 GE11 LFA SVEA-96 LFA Power 30%
47%
1 00%
All Core Flows Power > 30%
SPC 8x8 GE11 LFA 1.54 1.46 1.34 SVEA-96 LFA 1.64 1.56 1.44 Two Loop and Single Loop Operation
~I hi
~y SVEA-96 LFA 1.4 SPC 8x8 GE11 LFA A0 f'd CD 1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures ) 4500 MWd/MT Figure 3.4b 90%
100%
1 10%
h


8885858%Hl%ll5l%5%5WS                  MME N
                                                                                          ~      ~ ~ ~  .    ~    ~
                                                                                              ~  ~  ~  ~ ~
Q 8
Q 8
l5
~
              ~   ~   ~       ~     ~    ~
~
mm          mp15555m3                          Emps          I5 RR
~
          %%&#xc3;RRWkfHNKRRHRN 8            g                  's    -            I '<
~
$ p           ';          I   '.
~
RB    g~(
~
                                                                        ~       .      ~    ~    ~          ~  ~
l5 RR
                                                                                                                    ~
$p I '.
                                                                                                                      ~
eBB
I eBB            ~  ~  ~        ~    ~    ~
~
QR                                         I         Sla-=.L fgg~             II                     I I                                 'WM WWWWWWMWWW
~
~
~
~
~
QR I
fgg~
II I I
~~~RRR~R~~~~~~~~~R~~~
~~~RRR~R~~~~~~~~~R~~~
QQ~PQ N IH =Km81HRIRRNI                                                         BQ~R~                     Qg~gp
QQ~PQ N
    ~ '<                 ~ '<                 ~ ~
IH
                                                    '                      ~
=Km81HRIRRNI 8885858%Hl%ll5l%5%5WS MME N
                                                                              ~
~
                                                                                          ~
~
                                                                                              ~                  ~ I '>>
~
                                                                  ~
~
                            ~
~
                                  ~         ~    I           ~ s
~
                                                        ~     ~     >>
~
                                                          ~ a..s
~
~
~
~
mm mp15555m3 Emps I 5 8
g
's I '<
%%&#xc3;RRWkfHNKRRHRN RB g~(
~
~
~
~
~
~
~
~ I Sla-=.L
'WM WWWWWWMWWW BQ~R~
Qg~gp
~ '<
~ '<
~ ~ '
~
~ ~
~ ~
~ I '>>
~
~
~
I
~
s
~
~
~ a..s


Rg~       ~
I
                '        I 'a
~ I
                                                                            ~       ~ I ~,     ~       I i5~h a                                   ===IS=:====                         I  ~ I    ~  ~    .  ~
~
N                                               g             gR:mlSRSR                           mRRR R>>>>g                                    WWWMWM&                       ~
~
m            ~
~
I            I MWMWMMW                                ~          ~
Rg~
W MME
~
                              ~
I 'a
I                           ~M~WMMM                         ~     ~   ~         ~     ~ ~
~
  =SR,,
~ I ~,
                                                                  ~
~
I i5~h a
 
===IS=:====
N g
g gR:mlSRSR mRRR R>>>>
WWWMWM&
~
~
~
m MWMWMMW
~ I
~ I WMME I
~M~WMMM
~
~
~
~
~
~
~
QW
QW
                                    ~                                         ~
~
                                          ~g 8~m                     .
~
Qgg
=SR,,
    ~Q g>>NQRRlppgpgg>> g                     g>>>>gR>>>>CJK>>p>>                             ...,   a          am g m I ~
~g 8~m
                                  ~ ~ 's           I ~
. Qgg
                                                              ~ ~ 'e     ~
~Q a
                                                                            ~
am g>>NQRRlppgpgg>>
g g>>>>gR>>>>CJK>>p>>...,
g m
I
~
~ ~ 's I
~
~
~
~ ~ 'e
~ ~
I
I
                                                                                                    ~ I 'o     ~ '.
~ I 'o
                                                  ~     ~
~ '.
                                              ~ 0
~ 0
                                                      ~
~
                                            ~            ~ ~
~
                                                ~   I.
~
~
~ I.


2.6 Core Flow > 50%
2.6 2.4 Power SPC 8x8, GE11 LFA SVEA-96 LFA Core Flow > 50%
Power s 30%                                 Two Loop and Single Loop Operation 2.4              SPC 8x8, Power  GE11 LFA    SVEA-96 LFA 25%     2.50         2.59 2.2        30%     2.40         2.49                           All Core Flows E                  Core Flow s 50%
Power s 30%
Power  ) 30%
Two Loop and Single Loop Operation 2.2 E
Power s 30%
~c 2.0 te Cl CL O 1.8 K
~
fL U
c 2.0                                                      Power SPC Sx8, GE11.LFA    SVEA-96 LFA te                  SPC 8x8, Power GE11 LFA     SVEA-96 LFA                 309o  1.62            1.71 Cl CL 25%     2.10         2.19                     479o   1.52            1.61 O 1.8                                                        1009o    1.33           1.42 K              30%    2.00          2.09 fL U
1.6 25%
1.6 SVEA-96 LFA 1.4 SPC SxS GE11 LFA 1.2 20% 30% 40%       50%         60%         70%     80%     90%       I 00%     1 1 0%
2.50 30%
2.40 2.59 2.49 Core Flow s 50%
Power s 30%
SPC 8x8, Power GE11 LFA SVEA-96 LFA 25%
2.10 2.19 30%
2.00 2.09 Power 309o 479o 1009o SPC Sx8, GE11.LFA 1.62 1.52 1.33 SVEA-96 LFA 1.71 1.61 1.42 SVEA-96 LFA AllCore Flows Power ) 30%
1.4 SPC SxS GE11 LFA 1.2 20%
30%
40%
50%
60%
70%
80%
90%
I00%
1 1 0%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.6
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.6


2.6 Core Flow ) 50%
2.6 2.4 Power Core Flow ) 50%
Power s 30%                                       Two Loop and Single Loop Operation 2.4 Power  SPC 9x9      SPC 9x9 LFA 25%     2.50           2.50 2.2       30%     2AO           2.40                               All Cora Flows Power > 309o E
Power s 30%
Core Flow c 50%
SPC 9x9 SPC 9x9 LFA Two Loop and Single Loop Operation 25%
Power s 30%
2.50 2.50 2.2 E
< 2.0                                                              Power SPC 9x9     SPC 9x9 LFA 30%   1.62           1.68 l            Power  SPC 9x9      SPC 9x9 LFA Ql                                                                  47%  1.52          1.58 O.
< 2.0 l
O 1.8        25%      2.10          2.10                        100%    1.31          1.41 0            30%      2.00          2.00 U
QlO.
1.6 SPC 9X9 LFA 1.4         SPC 9x9 1.2 20% 30%       40%         50%         60%       70%       80%      90%        100%      1 10%
O 1.8 0U 1.6 30%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC 9x9, SPC 9x9 LFA FFTR Operation Figure 3.7
Power 25%
30%
2AO 2.40 Core Flow c 50%
Power s 30%
2.10 2.00 2.10 2.00 SPC 9x9 SPC 9x9 LFA Power 30%
47%
100%
All Cora Flows Power > 309o SPC 9x9 1.62 1.52 1.31 SPC 9x9 LFA 1.68 1.58 1.41 SPC 9X9 LFA 1.4 SPC 9x9 1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC 9x9, SPC 9x9 LFA FFTR Operation Figure 3.7 90%
100%
1 10%


2.6             Core Flow ) 50%
2.6 Core Flow ) 50%
Power c 30%                                   Two Loop and Single Loop Operation 2.4             SPC 8x8, Power  GE11 LFA   SVEA-96 LFA 25%    2.50          2.61 30%     2.40         2.51                           All Core Flows
Power c 30%
  .+
Two Loop and Single Loop Operation 2.4 Power 25%
E 2.2                                                             Power  ) 30%
SPC 8x8, GE11 LFA 2.50 SVEA-96 LFA 2.61
Core Flow c 50%
.+
tD Power c 30%                                                       '
2.2 E
SPC Sx8, 2.0                                                      Power  GE11 LFA     SVEA-96 LFA Q                  SPC 8x8, L                                                          309o    1.63           1.74 Q            Power GE11 LFA    SVEA-96 LFA O.                                                          479o    1.53          1.64 0              25%    2.10          2.21 1009o      .36          1.47
tD2.0 Q
  ~  1.8        30%     2.00          2.11 Q
LQ O.0~ 1.8 QO 30%
O 1.6                                                                   SVEA-96 LFA 1.4 SPC 8x8 GE11 LFA 1.2 20% 30% 40%       50%         60%         70%       80%       90%      100%    1 10%
Power 25%
A
30%
'0                                  Percent of Rated Power Reduced Power IVlCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable cg                                SPC 8x8, GE11 LFA, SVEA-96 LFA FFTR Operation O
2.40 2.51 SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.21 2.11 Core Flow c 50%
Figure 3.8
Power c 30%
Power 309o 479o 1009o SPC Sx8, GE11 LFA 1.63 1.53
.36 SVEA-96 LFA 1.74 1.64 1.47 All Core Flows Power ) 30%
1.6 SVEA-96 LFA 1.4 SPC 8x8 GE11 LFA A'0 cg O
1.2 20%
30%
40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power IVlCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.8 90%
100%
1 10%


2.6 Core Flow > 50%
2.6 2.4 Core Flow > 50%
Power s 30%                                     Two Loop and Single Loop Operation 2.4 Power  SPC 9x9      SPC 9x9 LFA 25%       2.50         2.50 30%      2AO          2.40                               All Core Flows 2.2                                                                    Power > 309o E
Power s 30%
Power SPC 9x9 SPC 9x9 LFA Two Loop and Single Loop Operation 2.2 25%
30%
2.50 2AO 2.50 2.40 All Core Flows Power > 309o E
c 2.0 CL O 1.8 CL 0O 1.6 Power 25%
30%
Core Flow a 50%
Core Flow a 50%
Power s 30%                               Power  SPC 9x9      SPC 9x9 LFA c 2.0 30%    1.62          1.68 Power  SPC 9x9     SPC 9x9 LFA                       47%   1.52           1.59 CL O 1.8                                                              100%    1.35          1.45 25%      2.10          2.10 CL 0              30%      2.00          2.00 O
Power s 30%
1.6 SPC 9X9 LFA SPC 9x9 1.4 1.2 20% 30%       40%         50%         60%       70%       80%       90%         1 00%     1 1 0%
2.10 2.00 2.10 2.00 SPC 9x9 SPC 9x9 LFA Power 30%
47%
100%
1.62 1.52 1.35 1.68 1.59 1.45 SPC 9X9 LFA SPC 9x9 SPC 9x9 LFA 1.4 SPC 9x9 1.2 20%
30%
40%
50%
60%
70%
80%
90%
1 00%
1 1 0%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC 9x9, SPC 9x9 LFA FFTR Operation Figure 3.9
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC 9x9, SPC 9x9 LFA FFTR Operation Figure 3.9


                          ~
I
I ~
~
I~gII            I~I        'es MMM5%5555~8%585555555%
~
                                                                                            ~  ~ .    ~
~
              ~
~
                ~
gag
HNWI
="5
    ="5                 gag      ~O I i RWWC5                                i
~O i
                                                                                                    ~
I
                                                                                                      '
=aS i
gg
I',
  =aS WWW~
gg WWW~
                        '  i I',                 WWWWWWW WWWWWWWW                              ~  ~  ~
WWCC Wg He pSI i
WWCC                                                                                                       ~
. Qgiig I
                                                                                                              ~
P~W&RK~K~C!%%%%%
Wg                                             CCaWW          WWW WWW            I '.
IIS IaaSIRIa~~~=ll SS SI RB Bcthh MMM5%5555~8%585555555%
He IpSI              i Qgiig WWW            WWW
I~gII I~I'es
                                                                                                            .
~
                    .
~
P~W&RK~K~C!%%%%%.l==a                          ---=-==is-=i.Ill::=l IIS IaaSIRIa~~~=ll                           IIgg            RRRR          N
~
                                                                %NCllgml& 1&55%pg maam SS RB SI Bcthh
RWWC5 HNWI i
        ~ 'i        > I'i    I  'i      ~ I'                           ~
~ '
g i      ~
WWWWWWW WWWWWWWW
                                                                                        ~             I~ 'i
~
                                                ~       I      ~
~
                                      ~ I  ~              ~  ~:    ~
~
                                                      ~            ~ I
CCaWW WWW I '.
                                                        ~  ~
WWW WWW WWW
                                                              '
.l==a ---=-==is-=i.Ill::=l.
                                                        ~      li      I
I RRRR N


DNRKC50,                                      S~~RR~~~~~~~~f Ilhl,,
maam Igg
mgg g5pigI:'XBR pH-Sg
%NCllgml& 1&55%pg
            ~
~
              ~
~
                                    '           =II+III I~RQ~~~QI
~ 'i
                                                =ay==7
> I'i I 'i
                                                                    .
~ I'
i ~  ~
~ g i
                                                                      ~~II~~~Ig~gmg
~ ~
                                                                              ~
I ~ 'i
                                                                                    ~ ~
~
                                                                                        ~
                                                ~~~~~I                 i mmmm'CQ~BK 8
                    'I
                      ~ ~
                        ~
I
I
                            ~
~
                            ~
~
I
~
~ ~:
~
~
~
I
~
~ '
~ li I
 
i ~
~
~
~
~
~
~
~
: DNRKC50, S~~RR~~~~~~~~f mggIlhl,,
=II+III g5pigI:
I~RQ~~~QI ~~II~~~Ig~gmg pH-Sg
'XBR
=ay==7
~
~
~~~~~I i
'I I
I '.
I '.
WWMMM gWgWW                                         ~ ~
mmmm'CQ~BK 8
I             I I                     ~~~K~
WWMMM gWgWW
WWM                                           WMWWC I
~
HmCCel RCmmFelH8%ngwmmmmHmmmwCmmmi~alCmmmmI                                            I ~
~
                                                                                              ~     ~
~
I 8 ~~~gg ~~~~~~~~~~~~~                           ~~~       ~~~~RCe~~~CW~~~R
~
~%~~M      ~~~~~HR~~~~K~~~~~~                   ~~~K ~~~~~~~~~ggR~~~lg K~~~~~~~~~~~~KK~~~                         BK
~
      ~ 'I     i                       ~ I 'I                                             ~ ~ 'I I              ~     I                          I
I I
                  ~ I                                ~         ~ ~     ~                           ~
I
                                              ~   ~ ~
~~~K~
                                                          ~ ~
WWM WMWWC I
                                                              ~ ~
I HmCCel RCmmFelH8%ngwmmmmHmmmwCmmmi~alCmmmm I
                                                    ~ i'
~
                                      ~ ~
~
                                      ~ ~
~
                                          ~ ~
8 g
I
~~~g
~~~~RCe~~~CW~~~R
~~~g ~~~~~~~~~~~~~
~~~ ~~~~~~~~~ggR~~~lg
~%~~M
~~~~~HR~~~~K~~~~~~
~~~K K~~~~~~~~~~~~KK~~~
BK
~ 'I i ~
I
~ I 'I
~ I
~ ~
~ ~ I
~ ~ 'I
~ I
~
~
~
~
~
~
~
~
~
~
~
~
~
~ i '


    <<Q                                                                                                                   'C.
<<Q RRR
                                                                    <<H~ 8                  ~  ~  ~ ~ ~ ~        ~
<<<<W 8
                                                                              ''
~RS kHIVfSS 8%I~IS%88~ ~kH8%5 C<<g I
ERR            RSE RRR
I
  <<<<W                                             NE=5            gL~gM=RRRENHE 8                                                 <<<<<<<<<<<<<<<<5 I 'e C<<g  ~RS kHIVfSS 8%I ~IS%88   ~ ~kH8%5         ~H<<<<ce<<<<<<
~
  <<<<<<a.
~ I '.
I I        ~
<<<<<<a.
                    '          ~ I '.
I
  <<NM%  I I
<<NM%
I          I          I 'o
I I
                                                                                          ~ ~     ~     ~   ~   ~ ~
I I 'o
  <<<<<<
<<<<g<<
<<<<g<<                                               <<<<<<<<W<<<<<<
I RRg 8-gilaagRgggaR
                                              +<<<<<<+P<<<<<<                           I I ~       ~                   ~
~
I RRg  8-gilaagRgggaR                              RRg-:aKRgPH                               RH:-
~
                      ~  ~ ~
~
                                      <<gg 8<<                                            <<<<<<W<<<<<<MM<<<<W<<<<Ma R====a 5-=RRTIR a
<<gg 8<<
                                          ~ I'                             ~ ~
'C.
                                                                                '      ~
8
                                                                                            ~              ~ ~   's
<<H~
                                                          ~       ~
~
I             ~ ~
~
                                              ~               ~ ~
~
                                                      ~             ~   I
~
                                                            ~ ~       ~
~
                                                      ~       ~     ~
~
                                            ~  I                I I
~
ERR RSE NE=5 gL~gM=RRRENHE
<<<<<<<<<<<<<<<<5 I 'e
~H<<<<ce<<<<<<
~
~
~
~
~
~
~
<<<<<<<<W<<<<<<
+<<<<<<+P<<<<<<
I I
~
~
~
RRg-:aKRgPH RH:-
<<<<<<W<<<<<<MM<<<<W<<<<Ma R====a 5-=RRTIR a
~ I'
~ ~ '
~ ~
~ ~ 's
~
~
I
~
~ I
~ ~
~
~
~
~
I
~
~
~
~
~
~
I I


2.6 Core Flow ) 509o Power a 30%                                     Two Loop and Single Loop Operation 2.4 Power  SPC 9x9    SPC 9x9 LFA 259o   '.50           2.50 All Core Flows 309o    2AO          2AO                                  Power > 30%
2.6 2.4 Power Core Flow ) 509o Power a 30%
Core Flow s 50%
SPC 9x9 SPC 9x9 LFA Two Loop and Single Loop Operation 259o 309o
Power s 30%                                 Power   SPC 9x9 SPC 9x9 LFA 309o     1.56       1.67 479o    1.49        1.60 Power  SPC 9x9    SPC 9x9 LFA 859o    1.40        1.54 259o     2.10         2.10                           1009o     1.38       1.52 309o    2.00          2.00 00 I
'.50 2AO 2.50 2AO All Core Flows Power > 30%
SPC 9X9 LFA 1.6 1.4 SPC 9x9
Core Flow s 50%
    '1.2 20% 30%     '40%       50%         60%         70%       80%      90%      100%      1 10%
Power s 30%
A                                      Percent of Rated Power 0t Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT inoperable SPC 9x9, SPC 9x9 LFA C                                    Cycle Exposures > 4500 MWd/MT C)
Power SPC 9x9 SPC 9x9 LFA Power SPC 9x9 SPC 9x9 LFA 309o 479o 859o 1.56 1.49 1.40 1.67 1.60 1.54 00I 1.6 259o 309o 2.10 2.00 2.10 2.00 1009o 1.38 SPC 9X9 LFA 1.52 1.4 SPC 9x9 A0 t
Figure 3.11b
C C)
'1.2 20%
30%
'40%
50%
60%
70%
80%
Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT inoperable SPC 9x9, SPC 9x9 LFA Cycle Exposures > 4500 MWd/MT Figure 3.11b 90%
100%
1 10%


08:53, 05/13/93 4.0   Linear Heat Generation Rate (LHGR) Limit for Use in Technical Specification 3.2.4 The LHGR limit for use in Technical Specification 3.2.4 shall not exceed the values shown in Figures 4.1 through 4.5.
08:53, 05/13/93 4.0 Linear Heat Generation Rate (LHGR) Limit for Use in Technical Specification 3.2.4 The LHGR limitfor use in Technical Specification 3.2.4 shall not exceed the values shown in Figures 4.1 through 4.5.
Washington Nuclear-Unit 2                                         , COLR 93-9 Rev. 0
Washington Nuclear-Unit 2, COLR 93-9 Rev. 0


17.0 0
0 17.0 1 6.0 1 5.0 ItA CDI p 14.0 13.0 E
1 6.0 1 5.0 p 14.0 13.0 E
1 2.0 U
Average Planar tA I    1 2.0               LHGR          Exposure CD I  U                       16.0                0
~ >>.0 10.0 LHGR 16.0 14.1 9.0 84 Average Planar Exposure 0
    ~ >>.0                   14.1           25,400 9.0          43,200 10.0                  84            48,100 9.0 A      8.0 0t"        0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 Average Planar Exposure (MWd/MT)
25,400 43,200 48,100 9.0 A0t" CD 8.0 0
Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure SPC Sx8 Reload Fuel CD                                                                                OO r
5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 Average Planar Exposure (MWd/MT)
Figure 4.1
Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure SPC Sx8 Reload Fuel Figure 4.1 OO r


LIONS   5 AIR     1   E     151   E   I EkA
I II I
    ~ = e Q
h.
I== ls"'%
I LIONS 5 AIR 1
                      >>> I.. <I!I>.>-II!:
E 151 E I EkA
5 5 %55         5 I 6:    0
~ = e I== ls >>> I.. <I!I>.>-II!:I 6:
  , ~.I. I I ie I h.. i I       Ihii, ii               Ii IIII I   II     III RmllslsIIINI h~..   ~l)
Q 5 5 %55 5
                                    '<lgi I
0
                                      ~ Shk~       I II     ~
, ~.I. I I ie I h.. i I Ihii, ii Ii IIII I II III h~.. ~l)
                                                '0/I
I RmllslsIIINI
                                      ~ II 1L.a Rr I                            PIRP
'<lgi
, ~ I Slaarnannnaaa II        I Immi II      ' ~
~Shk~
I hler..
I II
                                                                  ~I/
~
: h.        I                ~       ER
'0/I
~II a 1L.
PIRP Rr
~
I Slaarnannnaaa Immi
~
hler..
II '
I
~I/
~
ER


14.0 13.0 Average Planar LHGR   Exposure 13.7           0 13.7   15,000 8.0        7.0   60,000 7.0 6.0 0 10,000       20,000           30,000           40,000  60,000 Average Planar Exposure (MWd/MT)
14.0 13.0 Average Planar LHGR Exposure 13.7 0
Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure SPC 9x9-IX LFA Fuel Figure 4.3
8.0 13.7 15,000 7.0 60,000 7.0 6.0 0
10,000 20,000 30,000 40,000 Average Planar Exposure (MWd/MT)
Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure SPC 9x9-IX LFA Fuel 60,000 Figure 4.3


a aaai
aaaai I ai p i ii aa aa Faaa
  ~ a aa   I  ai aa       a i  ii p a Iaaamaimaa aa  Faaa mi a
~
a aa aa a a Iaaamaim mi a
'aaaaa aaaa,aaaaaaaaaaa:aaaaaaaaaaaaaaaa
'aaaaa aaaa,aaaaaaaaaaa:aaaaaaaaaaaaaaaa
, Iliiliiiilliilillllilaliliiiilliiliill a   li . I .Ill OOOSOSQSO                 g~
, Iliiliiiilliilillllilaliliiiilliiliill a li.
55                               5 88 8
I
              ~ I o aaaaaaaaa
.Ill
                      ~ I III Ia    I
~
        ~ Ia     a lal     I
OOOSOSQSO g
55 5
88 8
~
I o
~ I I I I I
I aaaaaaaaa a
~Ia a
lal I


14.0 13.0 1 2.0 Average Planar LHGR     Exposure 13.4           0 11.8     25,400 7.5    43,200 7.0    48,100 8.0 7.0 6.0 0 10,000           20,000               30,000        50,000 Average Planar Exposure (lVIWd/MTj Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure GE11 LFA Fuel Figure 4.5
14.0 13.0 1 2.0 Average Planar LHGR Exposure 8.0 13.4 11.8 7.5 7.0 0
25,400 43,200 48,100 7.0 6.0 0
10,000 20,000 30,000 Average Planar Exposure (lVIWd/MTj Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure GE11 LFA Fuel 50,000 Figure 4.5


93060l 14:49 5.0   References 5.1 EMF-93-047, WNP-2 Cycle 9 Plant Transient Analysis,           Siemens   Power Corporatiori May 1993.
93060l 14:49 5.0 References 5.1 EMF-93-047, WNP-2 Cycle 9 Plant Transient
5.2 EMF-93-048, WNP-2 Cycle 9 Reload Analysis, Siemens Power Corporation, May 1993.
: Analysis, Siemens Power Corporatiori May 1993.
5.3 GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6, General Electric Company, December 1989 (Proprietary).
5.2 EMF-93-048, WNP-2 Cycle 9 Reload Analysis, Siemens Power Corporation, May 1993.
5.4 UK 90-126, Supplemental Lead Fuel Assembly Licensing Report    SVEA-96 LFA 's for WNP-2,   ABB Atom, January 1990 (Proprietary).
5.3 GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6, General Electric Company, December 1989 (Proprietary).
5.5 ATOF-91-120, W. R. Harris, ABB Atom, to D, L, Whitcomb, Supply System, Assembly Treatment in WNP-2 Cycle 7 Core Operating Limits Report, May 1, 1991.
5.4 UK 90-126, Supplemental Lead Fuel Assembly Licensing ReportSVEA-96 LFA's for WNP-2, ABB Atom, January 1990 (Proprietary).
5.6 SPCWP-93-0077, Udell Fresk, Siemens Power Corporation, to R. A. Vopalensky, Supply System, SPC Comments on WNP-2 Cycle 9 Draft COLR Report, May 21, 1992.
5.5 ATOF-91-120, W. R. Harris, ABB Atom, to D, L, Whitcomb, Supply System, Assembly Treatment in WNP-2 Cycle 7 Core Operating Limits Report, May 1, 1991.
5.7 JTW:93-073, J. T. Worthington, General Electric Company, to D. L. Whitcomb, Supply System, WNP-2 Cycle 9 Core Operating Limits Report, Contract No.
5.6 SPCWP-93-0077, Udell Fresk, Siemens Power Corporation, to R. A. Vopalensky, Supply System, SPC Comments on WNP-2 Cycle 9 Draft COLR Report, May 21, 1992.
5.7 JTW:93-073, J. T. Worthington, General Electric Company, to D. L. Whitcomb, Supply System, WNP-2 Cycle 9 Core Operating Limits Report, Contract No.
C-21099, GEll Lead Fuel Assemblies, May 22, 1992.
C-21099, GEll Lead Fuel Assemblies, May 22, 1992.
5.8 ATOF-93-059, W. R. Harris, ABB Atom, to D. L. Whitcomb, Supply System, SV&l-96 Lead Fuel Assembly Treatment in WNP-2 Cycle 9 Core Operari ng Limits Report, May 15, 1992.
5.8 5.9 ATOF-93-059, W. R. Harris, ABB Atom, to D. L. Whitcomb, Supply System, SV&l-96Lead Fuel Assembly Treatment in WNP-2 Cycle 9 Core Operari ng Limits Report, May 15, 1992.
5.9  ANF-89-014(P)(A),.Revision 1 and Supplements 1 & 2, Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 5xx9-9X Reload Fuel, Advanced Nuclear Fuels Corporation, October 1991.
ANF-89-014(P)(A),.Revision 1 and Supplements 1 & 2, Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 5xx9-9X Reload Fuel, Advanced Nuclear Fuels Corporation, October 1991.
5.10   XN-NF-79-71(P), Revision 2, including Supplements 1, 2 and 3(A), Exxon Nuclear Plant Transient Methodology for Boiling Water Reactors, Exxon Nuclear Company, Inc., November 1981.
5.10 5.11 XN-NF-79-71(P), Revision 2, including Supplements 1,
I 5.11  XN-NF-80-19(P)(A), Volume 1 and Supplements 1 and 2, Exxon Nuclear Methodology for Boiling Water Reactors Neutronic Methods for Design Analysis, March 1983.
2 and 3(A), Exxon Nuclear Plant Transient MethodologyforBoiling Water Reactors, Exxon Nuclear Company, Inc., November 1981.
Washington Nuclear-Unit 2                                           COLR 93-9 Rev. 0
I XN-NF-80-19(P)(A), Volume 1
and Supplements 1
and 2,
Exxon Nuclear Methodology for Boiling Water Reactors Neutronic Methods forDesign Analysis, March 1983.
Washington Nuclear-Unit 2 COLR 93-9 Rev. 0
 
93060 l 14:49 5.12 XN-NF-80-19(P)(A), Volume 1 Supplements 3 and 4, Advanced Nuclear Fuels Methodology for Boiling Water Reactors:
Benchmark Results for the CASMO-3G/MICROBURN-B Calculation Methodology, Advanced Nuclear Fuels Corporation, November 1990.
5.13 XN-NF-80-19(P)(A), Volume 3, Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, Inc., January 1987.
5.14 XN-NF-80-19(P)(A), Volume 4, Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application ofthe ENC Methodology to BWR Reloads, Exxon Nuclear Company, Inc., June 1986.
5.15 ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4, COTRANSA2: A Computer Program forBoiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
5.16 ANF-524(P)(A), Revision 2 and Supplements 1 and 2, Advanced Nuclear Fuels Critical Power MethodologyforBoiling Water Reactors, Advanced Nuclear Fuels Corporation, November 1990.
5.17 ANF-1125(P)(A) and Supplements 1 and 2, ANFB Critical Power Correlarion, Advanced Nuclear Fuels Corporation, April 1990 5.18 Letter, R. C. Jones (NRC) to R. A. Copeland (ANF), NRC Approval ofANFB Additive Constants for 9x9-9X BWR Fuel, November 14, 1990.
5.19 Letter ENWB-86-0067, J. B. Edgar (ANF) to Supply System, Supplemental Licensing Analysis Results, April 15, 1986.
5.20 ANF-90-01, WNP-2 Cycle 6 Plant Transient Analysis, Advanced Nuclear Fuels Corporation, January 1990.
5.21 XN-NF-84-105(P)(A), Volume 1 and Supplements 1, 2, & 4, XCOBRA-T: A Computer Code for BWR Transient Thermal Hydraulic Core Analysis, Exxon Nuclear Company, Inc., February 1987.
5.22 XN-NF-81-21(P)(A), Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, Inc., September 1982, and Supplement 1, March 1985.
5,23 XN-NF-85-67(P)(A), Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, Inc., September 1986.
5.24 XN-NF-81-58(P)(A), Revision 2, RODEX2; Fuel Rod Mechanical


93060 l 14:49 5.12  XN-NF-80-19(P)(A), Volume 1 Supplements 3 and 4, Advanced Nuclear Fuels Methodology for Boiling Water Reactors: Benchmark Results for the CASMO-3G/MICROB URN-B Calculation Methodology, Advanced Nuclear Fuels Corporation, November 1990.
===Response===
5.13  XN-NF-80-19(P)(A), Volume 3, Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, Inc., January 1987.
Evaluarion Model, Exxon Nuclear Company, Inc., March 1984.
5.14  XN-NF-80-19(P)(A), Volume 4, Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, Inc., June 1986.
Washington Nuclear-Unit 2 COLR 93-9 Rev. 0
5.15  ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
5.16  ANF-524(P)(A), Revision 2 and Supplements 1 and 2, Advanced Nuclear Fuels Critical Power Methodology for Boiling Water Reactors, Advanced Nuclear Fuels Corporation, November 1990.
5.17  ANF-1125(P)(A) and Supplements 1 and 2, ANFB Critical Power Correlarion, Advanced Nuclear Fuels Corporation, April 1990 5.18  Letter, R. C. Jones (NRC) to R. A. Copeland (ANF), NRC Approval      of ANFB Additive Constants for 9x9-9X BWR Fuel, November 14, 1990.
5.19  Letter ENWB-86-0067, J. B. Edgar (ANF) to Supply System, Supplemental Licensing Analysis Results, April 15, 1986.
5.20  ANF-90-01, WNP-2 Cycle 6 Plant Transient Analysis, Advanced Nuclear Fuels Corporation, January 1990.
5.21  XN-NF-84-105(P)(A), Volume      1 and Supplements    1, 2, & 4, XCOBRA-T: A Computer Code for BWR Transient Thermal Hydraulic Core Analysis, Exxon Nuclear Company, Inc., February 1987.
5.22  XN-NF-81-21(P)(A), Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, Inc., September 1982, and Supplement 1, March 1985.
5,23  XN-NF-85-67(P)(A), Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, Inc., September 1986.
5.24  XN-NF-81-58(P)(A), Revision 2, RODEX2; Fuel Rod Mechanical Response Evaluarion Model, Exxon Nuclear Company, Inc., March 1984.
Washington Nuclear-Unit 2                                         COLR 93-9 Rev. 0


930603 13:47 5.25 XN-NF-87-92 and Supplement     1, WNP-2 Plant Transient Analysis With Final Feedwater Temperature Reduction, Advanced Nuclear Fuels Corporation, June 1987 and May 1988.
930603 13:47 5.25 XN-NF-87-92 and Supplement 1, WNP-2 Plant Transient Analysis With Final Feedwater Temperature Reduction, Advanced Nuclear Fuels Corporation, June 1987 and May 1988.
5.26 ANF-87-119, WNP-2 Single Loop Operation Analysis, Advanced Nuclear Fuels Corporation, September 1987.
5.26 ANF-87-119, WNP-2 Single Loop Operation Analysis, Advanced Nuclear Fuels Corporation, September 1987.
5.27 XN-NF-79-59(P)(A), Methodology for Calculation ofPressure Drop in BWR Fuel Assemblies, Exxon Nuclear Company, Inc., November 1983.
5.27 XN-NF-79-59(P)(A), Methodologyfor Calculation ofPressure Drop in BWR Fuel Assemblies, Exxon Nuclear Company, Inc., November 1983.
5.28 ANF-87-118, WNP-2 LOCA Analysis For Single Loop Operarion, Advanced Nuclear Fuels Corporation, September 1987.
5.28 ANF-87-118, WNP-2 LOCA Analysis For Single Loop Operarion, Advanced Nuclear Fuels Corporation, September 1987.
5.29 Letter, R. B. Samworth, USNRC, to G. C. Sorensen, Supply System, Issuance ofAmendment No. 62 to Facility Operating License No. NPF-21-WPPSS Nuclear Project 2 PAC No. 67538), August 5, 1988.
5.29 Letter, R. B. Samworth, USNRC, to G. C. Sorensen, Supply System, Issuance ofAmendment No. 62 to Facility Operating License No. NPF-21-WPPSS Nuclear Project 2 PAC No. 67538), August 5, 1988.
5.30 XN-NF-85-138(P), LOCA Break Spectrum for a BWR5, Exxon Nuclear Company, Inc., December 1985.
5.30 XN-NF-85-138(P), LOCA Break Spectrum fora BWR5, Exxon Nuclear Company, Inc., December 1985.
5.31 XN-NF-85-139, WNP-2 LOCA-ECCS Analysis, MAPLHGR Results,             Exxon Nuclear Company, Inc., December 1984.
5.31 XN-NF-85-139, WNP-2 LOCA-ECCS Analysis, MAPLHGR Results, Exxon Nuclear Company, Inc., December 1984.
5.32 ANF-CC-33(P)(A), Supplement 2, HUV: A Generalized Multirod Heatup Code with 10 CFR 50Appendix K Heatup Option, Advanced Nuclear Fuels Corporation, January 1991.
5.32 ANF-CC-33(P)(A), Supplement 2, HUV: A Generalized Multirod Heatup Code with 10 CFR 50Appendix KHeatup Option, Advanced Nuclear Fuels Corporation, January 1991.
5.33 XN-NF-81-22(P)(A), Generic Statisrical Uncertainty Analysis Methodology, November 1983.
5.33 XN-NF-81-22(P)(A), Generic Statisrical Uncertainty Analysis Methodology, November 1983.
5.34 NEDE-24011-P-A-6, General Electric Standard Applicarion for Reactor Fuel, April 1983.
5.34 NEDE-24011-P-A-6, General Electric Standard Applicarion for Reactor Fuel, April 1983.
5.35 "Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT).
5.35 "Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT).
5.36   "WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).
5.36 "WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).
5.37   GE-NE-189-69-1092, "Effects of Adjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.
5.37 GE-NE-189-69-1092, "Effects of Adjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.
5.38   GE-NE-189-34-0392, "Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.
5.38 GE-NE-189-34-0392, "Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.
Washington Nuclear-Unit 2                                       COLR 93-9 Rev. 0
Washington Nuclear-Unit 2 COLR 93-9 Rev. 0


0 930605 l3:47 5.39 NEDE-24222, "Assessment of BWR Mitigation of ATWS, Vol. II (NUREG 0460 Alternate No, 3)," General Electric Company, December 1979.
0 930605 l3:47 5.39 NEDE-24222, "Assessment ofBWR Mitigation of ATWS, Vol. II(NUREG 0460 Alternate No, 3)," General Electric Company, December 1979.
5.40 "Washington Nuclear Project Unit 2 System Evaluation Report for Power Uprate  Reactor Recirculation Control System," GE Nuclear Energy,   February',
5.40 "Washington Nuclear Project Unit 2 System Evaluation Report for Power UprateReactor Recirculation Control System," GE Nuclear Energy, February',
1993.
1993.
5.41 GE Report 22A7104, Revision 0, "Dynamic Load Report  Fuel Vertical Support,"
5.41 GE Report 22A7104, Revision 0, "Dynamic Load ReportFuel Vertical Support,"
GE Nuclear Energy, June 30, 1982.
GE Nuclear Energy, June 30, 1982.
5.42 "Fuel LiftNon-Proprietary Letter," Letter, DM Kelly (GE) to WC Wolkenhauer (SS); February 15, 1993.
5.42 "Fuel LiftNon-Proprietary Letter," Letter, DM Kelly (GE) to WC Wolkenhauer (SS); February 15, 1993.
5,43 93-PU-0054, "ELLLARelated Power Uprate Task Reports," Letter, DM Kelly (GE) to WC Wolkenhauer (SS), June 3, 1993.
5,43 93-PU-0054, "ELLLARelated Power Uprate Task Reports," Letter, DM Kelly (GE) to WC Wolkenhauer (SS), June 3, 1993.
Washington Nuclear-Unit 2                                       COLR 93-9 Rev. 0}}
Washington Nuclear-Unit 2 COLR 93-9 Rev. 0}}

Latest revision as of 05:13, 8 January 2025

WNP-2,Cycle 9 Colr
ML17290A437
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 06/30/1993
From:
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To:
Shared Package
ML17290A435 List:
References
COLR-93-9, COLR-93-9-R, COLR-93-9-R00, NUDOCS 9306170334
Download: ML17290A437 (43)


Text

a 930603 l3:47 COLR 93-9 Rev. 0 Controlled Copy No.

WNP-2

'ycle 9 Core Operating Limits Report June 1993 Washington Public Power Supply System I'>aai70aa4 9SOS>,

PDR ADOCK 05000397 P

PDR

WNP-2 Cycle 9 Core Operating Limits Report 08:33, 05/l3/93 List of Effective Pages

~Pa e 1

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Revision 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

II f

r

WNP-2 Cycle 9 Core Operating Limits Report 930520 l7:34 List of Effective Pages (cont.)

~Pa e

,Revi<jiiq 36 37 38 0

0 0

LEP-2

~ ~>>

. ~

cw 930S18 !2:56 WNP-2 Cycle 9 Core Operating Limits Report 4 ~

Table of Contents Pa~e 1.0 Introduction and Summary.....,.............................

1 2.0 Average Planar Linear Heat Generation Rate (APLHGR) Limits for Use in Technical Specification 3.2.1......,..........................

2 3.0 Minimum Critical Power Ratio (MCPR) Limitfor Use in Technical Specification 3.2.3

~

~

~ t 8

4.0 Linear Heat Generation Rate (LHGR) Limitfor Use in Technical Specification 3.2.4.......................................

29 5.0 References...,............... ~.....................

~... 35 Washington Nuclear-Unit 2 COLR 93-9 Rev. 0

930SIS 13:01 1.0 Introduction and Summary This report provides the Average Planar Linear Heat Generation Rate (APLHGR) limits, the Minimum Critical Power Ratio (MCPR) limits, and the Linear Heat Generation Rate (LHGR) limits for WNP-2, Cycle 9 as required by Technical Specification 6.9.3.1.

As required by Technical Specifications 6.9.3.2 and 6.9.3.3, these limits were determined using NRC-approved methodology and are established so that all applicable limits of the plant safety analysis are met.

The thermal limits for SPC fuel given in this report are documented in the Cycle 9 Plant Transient Analysis Report (Reference 5.1) and the Cycle 9 Reload Analysis Report (Reference 5.2). The thermal limits determined through the approved methodology are modified for the GE11 and SVEA-96 LFA's as discussed below.

The WNP-2 Cycle 9 reload includes four Siemens Power Corporation (SPC), four General Electric (GE), and four ABB Atom (ABB) Lead Fuel Assemblies (LFA's). The SPC LFA's were inserted during the reload for Cycle 5.

The GE and ABB LFA's were inserted at the beginning of Cycle 6 and were designed to be compatible with the reload fuel utilized in Cycle

6. The LFA's are loaded in core locations which analysis has shown to have sufficient thermal margin such that the LFA's are not expected to be the most limiting fuel assemblies on either a nodal or an assembly power basis.

The GE11 LFA is described in the GE11 Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6 (Reference 5.3).

This reference describes the design goals of the GE11 LFA's and provides support for monitoring the GE11 LFA's at thermal limits based on the SPC 8x8 reload fuel thermal limits.

The SVEA-96 LFA's is described in the Supplemental LFA Licensing Repon S VE'A-96LFA'sfor WNP-2 (Reference 5.4). The process for developing thermal limits for the SVEA-96 LFA's based upon the SPC 8x8 reload fuel thermal limits is described in References 5.4 and 5.5.

The MAPLHGRlimits for the GE11 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[81-7]) is applied to account for the different number of fuel pins in the two designs.

The MAPLHGR limits for the SVEA-96 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[100-4]) is applied to account for the different number of fuel pins in the two designs.

Furthermore, the MAPLHGR limits for the SVEA-96 LFA's are multiplied by the following constants:

(a) 1.04 to account for a different estimation of the local power in the output from POWERPLEX compared to ABB Atom methods and (b) 1.02 to account for a different estimation of exposure in the output from POWERPLEX compared to ABB Atom methods.

The MCPR limitis the maximum of (a) the applicable exposure dependent, fullpower and full flow MCPR limit, (b) the applicable exposure and power dependent MCPR limit, and (c) the flow dependent MCPR limitspecified in this report. This stipulation assures that the safety limit MCPR willnot be violated throughout the WNP-2 operating regime. Full power MCPR limits are specified to define operating limits at rated power and flow conditions from 85% to 106%

flow. For the WNP-2 core, the Load Rejection without Bypass transient is limitingfor operation at rated power and flow. Power dependent MCPR limits are specified to define operating limits at other than rated power conditions. For the WNP-2 core, feedwater-controller-failure transients from reduced power are calculated to be more severe than from fullpower conditions. A flow Washington Nuclear-Unit 2 COLR 93-9 Rev. 0

~ 930601 1S:15 dependent MCPR is specified to define operating limits at other than rated flowconditions.

The reduced flow MCPR limit provides bounding protection for the limiting recirculation flow increase transient.

The LHGR limits for the GE11 LFA's are the same as for the SPC 8x8 reload fuel, except that a ratio ([64-2]/[81-7]) is applied to account for the different number of fuel pins in the two designs. The LHGR limits for the SVEA-96 LFA's are taken directly from Reference 5.4.

The reload licensing analyses for this cycle provide operating limits for Extended Load Line (ELLLA)operation which extends the power and flow operating regime for WNP-2 up to the 109% rod line which at fullpower corresponds to 87% of rated flow. The MCPR limits defined in this report are applicable up to 100% of rated thermal power along and below the 109% rod line. The minimum flow for operation at rated power is 87% of rated flow. References 5.1, 5.2 and 5.35 through 5.43 document the analyses in support of ELLLAoperation.

Preparation, review and approval of this report were performed in accordance with applicable Supply System procedures.

The specific topical report revisions and supplements which describe the methodology utilized in this cycle specific analysis are referenced in Section 5.0 2.0 Average Planar Linear Heat Generation Rate (APLHGR) Limits for Vse in Technical Specification 3.2.1 The APLHGR's for use in Technical Specification 3.2.1 shall not exceed the limits shown in Figures 2.1, 2.2, 2.4, and 2.5 when in two-loop operation and in Figures 2.1, 2.3, 2.4, and 2.5 when in single loop operation.

The limits for each fuel type as a function of Average Planar Exposure are provided for the SPC reload fuel, the SPC LFA's, the SVEA-96 LFA's, and the GE11 LFA's.

Washington Nuclear-Unit 2 COLR 93-9 Rev. 0

sll555555515555555515555~~lillllllllllllllllll III55155,'55-~55=1155,='~lh~~= I CCC~C R~

CR C~~k.

gg w

CwwL w

'IIIIIII-=55=i:=55=:11I '=-:55==.:

'~==:51:===III II

, I I.II.. 51=-:=-=-Ilillli.',:-==-=:-=:-5l==-.='551-=.-:-515515

,'llllll

'Illiill==-:55-

'>h'Il>5555511 IIIIIII Illllllei:-Ill5illke55lllll

. IIIIIII Illlll~':Illlllllh5llllll

., IIIIIII:

Illlllli>515>lll>IINIIII

,'L'IIR....,

11-=====-=5=*-====1 =-=55=-:=-I sill

, II Il ll = I==--=55-=='=11==--=55 585 II III=I~MPaHEm51==III===::=II=-===IIIRIllllh

~I RNP m

m15 rmr ir I ~rarr RQRossRQSRSNLNQOQQQ QQR QLQORR sowoRRNCRSORSRssQsosRR 8

im, ima, Imlaliia lklllai= a.i e 3 mrr rrr~rrarra5 ha~

r r Clrg rrrrIRrrmi )fLI)gI hrlelmmrgg rmggCrrrp5rrirrrRMIIa I I liiamlrl RSmlIIIIaalirICIIIalllR I 5

~ ~ I I

~ ~ I t ~ I

~

~ ~ I

~ ~ ~

~ t ~ I

~ ~ ~

~ ~

~ ~ I

~

~ ~ ~

f66 6666666666666666666 KKRKKKKHKKKKHWRK&i

~6 Q g

/~~M/

I

~

~

~

~

s '

s

~a. ~~

,IIIII,5:=:-55==6=-RI='==.ll:a m

llI::.

a=i aRaa LE~a.

6 66 H6 6

h RR 15

&L=

m mme mme RR~~&mmCNNNN1C I'

I I ~ ~

~ ~ ~

~ II ~

I'

~

~I

~ 1

~

~

~

I

I I

II II

., llllllllllI 1I 51 l551 h.lllll5

,'5 l III I II I S~III18 II II I IIII

3J15115551 I

, IIIIIIIIIII I 155111IIIR5555155 I I

I I 55llhl I IIllI s

~

~ I

~

III " "

+me milli III 111111 15111111 I

',, I I

'55 Ill 1 111 I

'l 1555 55

, IS '"

I 55111 I 1511 5555 n nm 5 55555555555515 5155 1 1m Nm5 1 1%555NN11158 1

930S17 I?:30 3.0 Minimum Critical Power Ratio (MCPR) Limit for Use in Technical Specification 3.2.3 The MCPR limitfor use in Technical Specification 3.2.3 shall be:

Greater than or equal to the greater of the limits determined from Tables 3.1a and 3.1b and Figures 3.1 and 3.2a through 3. lib.

Washington Nuclear-Unit 2 COLR 93-9 Rev. 0

qC 1

08:53, 0$/13/93 Table 3.1a WNP-2 Cycle 9 MCPR Operating Conditions Cycle Exposures s 4500 MWd/MTU SLMCPR ~ 1.07.'"

Condition Limit NSS~u Full Power Flow Dependent Power Dependenà TSSS~n Full Power Flow Dependent Power Dependent NSSro RPT Full Power Inoperable Flow Dependent Power Dependenà SLY NSS Full Power Flow Dependent Power Dependents SL~SSS Full Power Flow Dependent Power Dependent SLY NSS RPT Full Power Inoperablc Flow Dependent Power Dependent+

SPC gx8 SPC 9x9 SPC 9x9 SVEA-96 GE11 LFA LFA 1.25+

1.25 1.27 1.39+

Figure 3.1 Fig. 3.2a Fig. 39a Fig. 3.3a Fig. 3.2a 1.27 1.27 1.33 1.42 Figure 3.1 Fig. 3.4a Fig. 3.$a Fig. 3.5a Fig. 3.4a 1.29 1.29 1.39 1.45 Figure 3.1 Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a 186 136 1.36 1.85 None Fig. 3.2a Fig. 3.3a Fig. 3.3a Fig. 3.2a 1.$6 1.36 1.36 1.85 None Fig. 3.4a Fig. 3.5a Fig. 3.5a Fig. 3.4a 1.56 136 1.36 1.85 None Fig. 3.10a Fig. 3.11a Fig. 3.11a Fig. 3.10a W'ashington Nuclear-Unit 2 COLR 93-9 Rev. 0

930317 11:33 Table 3.1b WNP-2'ycle 9 MCPR Operating Conditions Cycle Exposures ) 4500 MWd/MTU SLMCPR ~ 1.0'P" SLMCPR ~ 1.07'n FFTR Condition Limit NSSn>>

SPC Sxg 'PC 9x9 SPC 9x9 SVEA-96

. GE11 LFA LFA ~

SPC 8xS SPC 9x9SPC 9x9 SVEA-96 GE11 LFA LFA TSSSn>>

NSSn>>

Full Power Flow Dcpcndent Power Dependenà Full Power Flow Dcpcndent Power Dependent+

1.31 1.29 1.39 1.48 Figure 3.1 Fig. 3.2b Fig. 3.3b Fig. 3.3b Fig. 3.2b 1.34;,

1.33 1.43 1.52 Figure 3.1 Fig. 3.4b Fig. 3.5b Fig. 3.5b Fig. 3.4b 1.33 1.31 1.41 1.51 Figurc 3.1 Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 1.36 1.35 1.45 1.55 Figure 3.1 Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 RPT Full Power Inoperable Flow Dependent Power Dependent e SLO+ NSS Full Power Flow Dependent Power Dependent SLO'SSS Full Power Flow Dependent Power Dependent SLOn>> NSS RFI'ullPower Inoperable Flow Dependent Power Dependent+

129 1.38 182 1.60 Figure 3.1 Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b 1.56 I

136 1.36 1.85 None 1

Fig. 3.2b Fig. 3.3b Fig. 3.3b Fig. 3.2b 1.56 I

1.36 136 1.85 None h

Fig. 3.4b Fig. 3.5b Fig. 3.5b Fig. 3.4b 1.56 i

1.36 1.36 1.85 None Fig. 3.10b Fig. 3.11b Fig. 3.11b Fig. 3.10b Not Analyzed 1.56 1.36 1.36 1.85 None Fig. 3.6 Fig. 3.7 Fig. 3.7 Fig. 3.6 1.56 1.36 1.36 1.85 None Fig. 3.8 Fig. 3.9 Fig. 3.9 Fig. 3.8 Not Analyzed Washington Nuclear-Unit 2 COLR 93-9 Rey. 0

93060l l4:5i Notes for Tables 3.1a and 3.1b Note 1: The scram insertion times must meet the requirements of Technical Specification 3.1.3.4. The NSS MCPR values are based on the SPC transient analysis performed using the control rod insertion times shown below (defined as normal scram speed:

NSS).

In the event that Surveillance 4.1.3.2 shows these scram insertion times have been exceeded, the MCPR limit shall be determined from the applicable Technical Specification Scram Speed (TSSS) MCPR limits in Tables 3.1a and b.

Position Inserted From Fully Withdrawn Notch 45 Notch 39 Notch 25 Notch 5

Slowest measured average control rod insertion times t

specified notches for all operable control rods for each grou of four control rods arranged in a two-by-two array (seconds) 0.380 0.720 1.600 2.950 Note 2: For Single Loop Operation (SLO), the SLMCPR increases by 0.01. The increase is included in the MCPR limits for SLO.

Note 3: For the noted fullpower MCPR limits, the control rod withdrawal error (CRWE) event is limiting. The load rejection without bypass (LRNB) event is limiting for the remaining fullpower limits. CRWE analysis was performed with a nominal rod block

'onitor (RBM) setpoint of 1.06. Use of the nominal setpoint is in accordance with the methodology described in Reference 5.11, consistent with approved industry practice.

LRNB analysis was performed at 100% power/106% flow, 104% power/106% flow and 104% power/85% flow. The more limiting results are used for fullpower limits in Tables 3.1a and b.

Note 4: Power dependent MCPR limits are provided for core thermal powers greater than or equal to 25%'f rated power at all core flows. However, the power dependent MCPR limits for core thermal powers less than or equal to 30% of rated power are subdivided by core flow. Limits are provided for core flows greater than 50% of rated flow and less than or equal to 50% of rated flow, respectively. A step change in the power dependent MCPR limits occurs at 30% of rated power because direct scram on turbine throttle valve closure is automatically bypassed per Technical Specification 3.3.1.

Washington Nuclear-Unit 2 COLR 93-9 Rev. 0

gg k58888888888l59 mQ 8

. haaF

~

I

~

~

%gg a,.:

g'.

55C 5 5 g g g

L /CD g5g 3gLg

)lh I

~8~

~-m~ h~-~e~H~

gg gQ gpmg@5gg5g Wp g%%

QWHWWAQW WH CAW WC%

WR CAW% QRR WRRRR 5

ea SawaRC 5

55

i '

5555m am

.: -a a RB

~

ea a

o i

=ii 5

I E a=5 la=lRRLE I

Pal HEI 58 5

gR gH 55

~ I I ~ 'a

~ 'e

~ ~ 'e

~ 'i 00'I

'o

~

~

~

~

~

~

~

~

~

~

~

a 4

- i 5IL~IIISE415l ha.

~

II ~

I

~

Q

, RR~~~~RRK~~m&KKKKHK!5% cl aa I

I RCI i',

~ i

~

0

~

8

'I I 's 8

sg

~

~

~

Rii I

i

==:"--Eggllm~iEEERH

~Q~

8 8 R~K~HR ~aR~~~~~~~~RC5 M~~~~~&~~~Cas~~~~H~K~~~K I I'

~ ~ '

~ ~

~ g

~

~ ~ 'o

~

~

I

~

I

~

~

~

~

~

~

~

I

~

~

~

I I

~

~

~ ii

mWgMMMW~~~~WWWM&WW'M

~

~

~

~

I

~

~

RHR~

o:

o I ',

~~Pl I:aPs Icg IMAM I

I WWMW I

I 'o I ',

~

I '.

Se=a8

+MMMM

~

~

SRH I

4 ggHg R~RRRICRIR~RIWRp <<88%~~&Q~RQ

%King Nag I=gÃRSIINggIII

........il liligi Illlliill

~ I

~ ~ 'i 0 ~

~ ~

~ I 'o

~

~

I

~

~

I

~

~

~

~

~

I s

I I

~

~

~

s a

~

II

~ )

~

I

~RC5KK%RK~R

~

I I

I

~

~

~ 0

~

WWM 8

W&W

~

~

~

~

o

~

gWW QWMW

~

~

mme QwmC

~

~

~

~

~

~

~

NR~Ls.

I'I MWWW MWM S~S a==

/gism g 8 RREI Sg I I '. gag g

I I

R~~~~~~K~KRRR~K~~~N~HB~~~~H~~~~~~~~KM~K~~

~ 'I

~ I 'I

~ ~

~ ~

0 I ~ 'I

~

~

~

~

~

~

e

~

~

~

~ -

~

%%l%k%MMk%WMMMMMIIIW I

I ~

~

~

I WM

~ AS

~ I

~

~

~

I 0

~

~

~

~

~

88 I

I

~

~

I B~U~

I

~

I '<

.5

~

~

~

~

~

~

RR==

~

~

~

~

~

~

IRI I

~

~

~

~

~

~

I~

I I

I I ',

Ia

=

"= i I=-==II=====IIIi-=IliI Kg/ 12EI IIKKK p~~gII&lmmI Jim M

II=SIShhi=K==~8 =aERSHIall=e I=I I 8

+IIIII=-=ma RSSSRR 1

IRIIRI-:=la a aR-::-mm I

~ I'

~

~

~

~ ~

~ ~

~ ~ '<

~

I

~

~ I

~

~

I

~ I..

S

Rg Q~.

+HE gWWW H~L.

MWWR.

RQR B=B RBR

~

~

~

~

~

~

s

~

~~~+/~~~~ ~~~~~gg~~~~

I

~

~

~

~

~

g~~~~~~~ggF~~~~P~~

8

~

~

s

~

~

s g

~

~

~

~

~

~

s

~

~

~

~

0 s

~

~

~

~

~

~

I I

l I 's I

I o

I I I

~

~~~~~~~~~~~~~~~Qgef wmmmRmmRmmRmmRRRmRm RmmmSHmmRmRRmRRRNR58 Wgggmm/

jw=

1

=

~8 8:

g

= =~ =-<<glmmmg

$5I, a55555115 1

1m l15Ã~llla~=a

~ I 'e

~ I s

~ g

~

II ss I ss

~

~

~

~

s

~

~

~

~

~

0 I

~

~

~

~

~

~

s I

~ ll s

00 O

C,o I

OOI 2.6 2.4 2.2 E

c 2.0

+J 0$

L tD CL O 1.8 K

0O 1.6 Power 25%

30%

Power 25%

30%

Core Flow ) 50%

Power s 30%

SPC 8x8 GE11 LFA SVEA-96 LFA 2.50 2.40 2.60 2.50 Core Flow x 50%

Power s 30%

2.10 2.00 2.20 2.10 SPC 8x8 GE11 LFA SVEA-96 LFA Power 30%

47%

1 00%

All Core Flows Power > 30%

SPC 8x8 GE11 LFA 1.54 1.46 1.34 SVEA-96 LFA 1.64 1.56 1.44 Two Loop and Single Loop Operation

~I hi

~y SVEA-96 LFA 1.4 SPC 8x8 GE11 LFA A0 f'd CD 1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA Cycle Exposures ) 4500 MWd/MT Figure 3.4b 90%

100%

1 10%

h

Q 8

~

~

~

~

~

~

l5 RR

$p I '.

eBB

~

~

~

~

~

~

QR I

fgg~

II I I

~~~RRR~R~~~~~~~~~R~~~

QQ~PQ N

IH

=Km81HRIRRNI 8885858%Hl%ll5l%5%5WS MME N

~

~

~

~

~

~

~

~

~

~

~

mm mp15555m3 Emps I 5 8

g

's I '<

%%ÃRRWkfHNKRRHRN RB g~(

~

~

~

~

~

~

~

~ I Sla-=.L

'WM WWWWWWMWWW BQ~R~

Qg~gp

~ '<

~ '<

~ ~ '

~

~ ~

~ ~

~ I '>>

~

~

~

I

~

s

~

~

~ a..s

I

~ I

~

~

~

Rg~

~

I 'a

~

~ I ~,

~

I i5~h a

IS=:=

N g

g gR:mlSRSR mRRR R>>>>

WWWMWM&

~

~

~

m MWMWMMW

~ I

~ I WMME I

~M~WMMM

~

~

~

~

~

~

~

QW

~

~

=SR,,

~g 8~m

. Qgg

~Q a

am g>>NQRRlppgpgg>>

g g>>>>gR>>>>CJK>>p>>...,

g m

I

~

~ ~ 's I

~

~

~

~ ~ 'e

~ ~

I

~ I 'o

~ '.

~ 0

~

~

~

~

~ I.

2.6 2.4 Power SPC 8x8, GE11 LFA SVEA-96 LFA Core Flow > 50%

Power s 30%

Two Loop and Single Loop Operation 2.2 E

~c 2.0 te Cl CL O 1.8 K

fL U

1.6 25%

2.50 30%

2.40 2.59 2.49 Core Flow s 50%

Power s 30%

SPC 8x8, Power GE11 LFA SVEA-96 LFA 25%

2.10 2.19 30%

2.00 2.09 Power 309o 479o 1009o SPC Sx8, GE11.LFA 1.62 1.52 1.33 SVEA-96 LFA 1.71 1.61 1.42 SVEA-96 LFA AllCore Flows Power ) 30%

1.4 SPC SxS GE11 LFA 1.2 20%

30%

40%

50%

60%

70%

80%

90%

I00%

1 1 0%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC SxS, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.6

2.6 2.4 Power Core Flow ) 50%

Power s 30%

SPC 9x9 SPC 9x9 LFA Two Loop and Single Loop Operation 25%

2.50 2.50 2.2 E

< 2.0 l

QlO.

O 1.8 0U 1.6 30%

Power 25%

30%

2AO 2.40 Core Flow c 50%

Power s 30%

2.10 2.00 2.10 2.00 SPC 9x9 SPC 9x9 LFA Power 30%

47%

100%

All Cora Flows Power > 309o SPC 9x9 1.62 1.52 1.31 SPC 9x9 LFA 1.68 1.58 1.41 SPC 9X9 LFA 1.4 SPC 9x9 1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT Operable SPC 9x9, SPC 9x9 LFA FFTR Operation Figure 3.7 90%

100%

1 10%

2.6 Core Flow ) 50%

Power c 30%

Two Loop and Single Loop Operation 2.4 Power 25%

SPC 8x8, GE11 LFA 2.50 SVEA-96 LFA 2.61

.+

2.2 E

tD2.0 Q

LQ O.0~ 1.8 QO 30%

Power 25%

30%

2.40 2.51 SPC 8x8, GE11 LFA 2.10 2.00 SVEA-96 LFA 2.21 2.11 Core Flow c 50%

Power c 30%

Power 309o 479o 1009o SPC Sx8, GE11 LFA 1.63 1.53

.36 SVEA-96 LFA 1.74 1.64 1.47 All Core Flows Power ) 30%

1.6 SVEA-96 LFA 1.4 SPC 8x8 GE11 LFA A'0 cg O

1.2 20%

30%

40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power IVlCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC 8x8, GE11 LFA, SVEA-96 LFA FFTR Operation Figure 3.8 90%

100%

1 10%

2.6 2.4 Core Flow > 50%

Power s 30%

Power SPC 9x9 SPC 9x9 LFA Two Loop and Single Loop Operation 2.2 25%

30%

2.50 2AO 2.50 2.40 All Core Flows Power > 309o E

c 2.0 CL O 1.8 CL 0O 1.6 Power 25%

30%

Core Flow a 50%

Power s 30%

2.10 2.00 2.10 2.00 SPC 9x9 SPC 9x9 LFA Power 30%

47%

100%

1.62 1.52 1.35 1.68 1.59 1.45 SPC 9X9 LFA SPC 9x9 SPC 9x9 LFA 1.4 SPC 9x9 1.2 20%

30%

40%

50%

60%

70%

80%

90%

1 00%

1 1 0%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power TSSS, RPT Operable SPC 9x9, SPC 9x9 LFA FFTR Operation Figure 3.9

I

~

~

~

~

gag

="5

~O i

I

=aS i

I',

gg WWW~

WWCC Wg He pSI i

. Qgiig I

P~W&RK~K~C!%%%%%

IIS IaaSIRIa~~~=ll SS SI RB Bcthh MMM5%5555~8%585555555%

I~gII I~I'es

~

~

~

RWWC5 HNWI i

~ '

WWWWWWW WWWWWWWW

~

~

~

CCaWW WWW I '.

WWW WWW WWW

.l==a ---=-==is-=i.Ill::=l.

I RRRR N

maam Igg

%NCllgml& 1&55%pg

~

~

~ 'i

> I'i I 'i

~ I'

~ g i

~ ~

I ~ 'i

~

I

~

~

I

~

~ ~:

~

~

~

I

~

~ '

~ li I

i ~

~

~

~

~

~

~

~

DNRKC50, S~~RR~~~~~~~~f mggIlhl,,

=II+III g5pigI:

I~RQ~~~QI ~~II~~~Ig~gmg pH-Sg

'XBR

=ay==7

~

~

~~~~~I i

'I I

I '.

mmmm'CQ~BK 8

WWMMM gWgWW

~

~

~

~

~

I I

I

~~~K~

WWM WMWWC I

I HmCCel RCmmFelH8%ngwmmmmHmmmwCmmmi~alCmmmm I

~

~

~

8 g

I

~~~g

~~~~RCe~~~CW~~~R

~~~g ~~~~~~~~~~~~~

~~~ ~~~~~~~~~ggR~~~lg

~%~~M

~~~~~HR~~~~K~~~~~~

~~~K K~~~~~~~~~~~~KK~~~

BK

~ 'I i ~

I

~ I 'I

~ I

~ ~

~ ~ I

~ ~ 'I

~ I

~

~

~

~

~

~

~

~

~

~

~

~

~

~ i '

<<Q RRR

<<<<W 8

~RS kHIVfSS 8%I~IS%88~ ~kH8%5 C<<g I

I

~

~ I '.

<<<<<<a.

I

<<NM%

I I

I I 'o

<<<<g<<

I RRg 8-gilaagRgggaR

~

~

~

<<gg 8<<

'C.

8

<<H~

~

~

~

~

~

~

~

ERR RSE NE=5 gL~gM=RRRENHE

<<<<<<<<<<<<<<<<5 I 'e

~H<<<<ce<<<<<<

~

~

~

~

~

~

~

<<<<<<<<W<<<<<<

+<<<<<<+P<<<<<<

I I

~

~

~

RRg-:aKRgPH RH:-

<<<<<<W<<<<<<MM<<<<W<<<<Ma R====a 5-=RRTIR a

~ I'

~ ~ '

~ ~

~ ~ 's

~

~

I

~

~ I

~ ~

~

~

~

~

I

~

~

~

~

~

~

I I

2.6 2.4 Power Core Flow ) 509o Power a 30%

SPC 9x9 SPC 9x9 LFA Two Loop and Single Loop Operation 259o 309o

'.50 2AO 2.50 2AO All Core Flows Power > 30%

Core Flow s 50%

Power s 30%

Power SPC 9x9 SPC 9x9 LFA Power SPC 9x9 SPC 9x9 LFA 309o 479o 859o 1.56 1.49 1.40 1.67 1.60 1.54 00I 1.6 259o 309o 2.10 2.00 2.10 2.00 1009o 1.38 SPC 9X9 LFA 1.52 1.4 SPC 9x9 A0 t

C C)

'1.2 20%

30%

'40%

50%

60%

70%

80%

Percent of Rated Power Reduced Power MCPR Operating Limit Versus Percent of Rated Power NSS, RPT inoperable SPC 9x9, SPC 9x9 LFA Cycle Exposures > 4500 MWd/MT Figure 3.11b 90%

100%

1 10%

08:53, 05/13/93 4.0 Linear Heat Generation Rate (LHGR) Limit for Use in Technical Specification 3.2.4 The LHGR limitfor use in Technical Specification 3.2.4 shall not exceed the values shown in Figures 4.1 through 4.5.

Washington Nuclear-Unit 2, COLR 93-9 Rev. 0

0 17.0 1 6.0 1 5.0 ItA CDI p 14.0 13.0 E

1 2.0 U

~ >>.0 10.0 LHGR 16.0 14.1 9.0 84 Average Planar Exposure 0

25,400 43,200 48,100 9.0 A0t" CD 8.0 0

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 Average Planar Exposure (MWd/MT)

Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure SPC Sx8 Reload Fuel Figure 4.1 OO r

I II I

h.

I LIONS 5 AIR 1

E 151 E I EkA

~ = e I== ls >>> I.. <I!I>.>-II!:I 6:

Q 5 5 %55 5

0

, ~.I. I I ie I h.. i I Ihii, ii Ii IIII I II III h~.. ~l)

I RmllslsIIINI

'<lgi

~Shk~

I II

~

'0/I

~II a 1L.

PIRP Rr

~

I Slaarnannnaaa Immi

~

hler..

II '

I

~I/

~

ER

14.0 13.0 Average Planar LHGR Exposure 13.7 0

8.0 13.7 15,000 7.0 60,000 7.0 6.0 0

10,000 20,000 30,000 40,000 Average Planar Exposure (MWd/MT)

Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure SPC 9x9-IX LFA Fuel 60,000 Figure 4.3

aaaai I ai p i ii aa aa Faaa

~

a aa aa a a Iaaamaim mi a

'aaaaa aaaa,aaaaaaaaaaa:aaaaaaaaaaaaaaaa

, Iliiliiiilliilillllilaliliiiilliiliill a li.

I

.Ill

~

OOOSOSQSO g

55 5

88 8

~

I o

~ I I I I I

I aaaaaaaaa a

~Ia a

lal I

14.0 13.0 1 2.0 Average Planar LHGR Exposure 8.0 13.4 11.8 7.5 7.0 0

25,400 43,200 48,100 7.0 6.0 0

10,000 20,000 30,000 Average Planar Exposure (lVIWd/MTj Linear Heat Generation Rate (LHGR) Limit Versus Average Planar Exposure GE11 LFA Fuel 50,000 Figure 4.5

93060l 14:49 5.0 References 5.1 EMF-93-047, WNP-2 Cycle 9 Plant Transient

Analysis, Siemens Power Corporatiori May 1993.

5.2 EMF-93-048, WNP-2 Cycle 9 Reload Analysis, Siemens Power Corporation, May 1993.

5.3 GEll Lead Fuel Assembly Report for Washington Public Power Supply System Nuclear Project No. 2, Reload 5, Cycle 6, General Electric Company, December 1989 (Proprietary).

5.4 UK 90-126, Supplemental Lead Fuel Assembly Licensing ReportSVEA-96 LFA's for WNP-2, ABB Atom, January 1990 (Proprietary).

5.5 ATOF-91-120, W. R. Harris, ABB Atom, to D, L, Whitcomb, Supply System, Assembly Treatment in WNP-2 Cycle 7 Core Operating Limits Report, May 1, 1991.

5.6 SPCWP-93-0077, Udell Fresk, Siemens Power Corporation, to R. A. Vopalensky, Supply System, SPC Comments on WNP-2 Cycle 9 Draft COLR Report, May 21, 1992.

5.7 JTW:93-073, J. T. Worthington, General Electric Company, to D. L. Whitcomb, Supply System, WNP-2 Cycle 9 Core Operating Limits Report, Contract No.

C-21099, GEll Lead Fuel Assemblies, May 22, 1992.

5.8 5.9 ATOF-93-059, W. R. Harris, ABB Atom, to D. L. Whitcomb, Supply System, SV&l-96Lead Fuel Assembly Treatment in WNP-2 Cycle 9 Core Operari ng Limits Report, May 15, 1992.

ANF-89-014(P)(A),.Revision 1 and Supplements 1 & 2, Generic Mechanical Design for Advanced Nuclear Fuels 9x9-IX and 5xx9-9X Reload Fuel, Advanced Nuclear Fuels Corporation, October 1991.

5.10 5.11 XN-NF-79-71(P), Revision 2, including Supplements 1,

2 and 3(A), Exxon Nuclear Plant Transient MethodologyforBoiling Water Reactors, Exxon Nuclear Company, Inc., November 1981.

I XN-NF-80-19(P)(A), Volume 1

and Supplements 1

and 2,

Exxon Nuclear Methodology for Boiling Water Reactors Neutronic Methods forDesign Analysis, March 1983.

Washington Nuclear-Unit 2 COLR 93-9 Rev. 0

93060 l 14:49 5.12 XN-NF-80-19(P)(A), Volume 1 Supplements 3 and 4, Advanced Nuclear Fuels Methodology for Boiling Water Reactors:

Benchmark Results for the CASMO-3G/MICROBURN-B Calculation Methodology, Advanced Nuclear Fuels Corporation, November 1990.

5.13 XN-NF-80-19(P)(A), Volume 3, Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, Inc., January 1987.

5.14 XN-NF-80-19(P)(A), Volume 4, Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application ofthe ENC Methodology to BWR Reloads, Exxon Nuclear Company, Inc., June 1986.

5.15 ANF-913(P)(A), Volume 1, Revision 1 and Volume 1, Supplements 2, 3, and 4, COTRANSA2: A Computer Program forBoiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.

5.16 ANF-524(P)(A), Revision 2 and Supplements 1 and 2, Advanced Nuclear Fuels Critical Power MethodologyforBoiling Water Reactors, Advanced Nuclear Fuels Corporation, November 1990.

5.17 ANF-1125(P)(A) and Supplements 1 and 2, ANFB Critical Power Correlarion, Advanced Nuclear Fuels Corporation, April 1990 5.18 Letter, R. C. Jones (NRC) to R. A. Copeland (ANF), NRC Approval ofANFB Additive Constants for 9x9-9X BWR Fuel, November 14, 1990.

5.19 Letter ENWB-86-0067, J. B. Edgar (ANF) to Supply System, Supplemental Licensing Analysis Results, April 15, 1986.

5.20 ANF-90-01, WNP-2 Cycle 6 Plant Transient Analysis, Advanced Nuclear Fuels Corporation, January 1990.

5.21 XN-NF-84-105(P)(A), Volume 1 and Supplements 1, 2, & 4, XCOBRA-T: A Computer Code for BWR Transient Thermal Hydraulic Core Analysis, Exxon Nuclear Company, Inc., February 1987.

5.22 XN-NF-81-21(P)(A), Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, Inc., September 1982, and Supplement 1, March 1985.

5,23 XN-NF-85-67(P)(A), Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, Inc., September 1986.

5.24 XN-NF-81-58(P)(A), Revision 2, RODEX2; Fuel Rod Mechanical

Response

Evaluarion Model, Exxon Nuclear Company, Inc., March 1984.

Washington Nuclear-Unit 2 COLR 93-9 Rev. 0

930603 13:47 5.25 XN-NF-87-92 and Supplement 1, WNP-2 Plant Transient Analysis With Final Feedwater Temperature Reduction, Advanced Nuclear Fuels Corporation, June 1987 and May 1988.

5.26 ANF-87-119, WNP-2 Single Loop Operation Analysis, Advanced Nuclear Fuels Corporation, September 1987.

5.27 XN-NF-79-59(P)(A), Methodologyfor Calculation ofPressure Drop in BWR Fuel Assemblies, Exxon Nuclear Company, Inc., November 1983.

5.28 ANF-87-118, WNP-2 LOCA Analysis For Single Loop Operarion, Advanced Nuclear Fuels Corporation, September 1987.

5.29 Letter, R. B. Samworth, USNRC, to G. C. Sorensen, Supply System, Issuance ofAmendment No. 62 to Facility Operating License No. NPF-21-WPPSS Nuclear Project 2 PAC No. 67538), August 5, 1988.

5.30 XN-NF-85-138(P), LOCA Break Spectrum fora BWR5, Exxon Nuclear Company, Inc., December 1985.

5.31 XN-NF-85-139, WNP-2 LOCA-ECCS Analysis, MAPLHGR Results, Exxon Nuclear Company, Inc., December 1984.

5.32 ANF-CC-33(P)(A), Supplement 2, HUV: A Generalized Multirod Heatup Code with 10 CFR 50Appendix KHeatup Option, Advanced Nuclear Fuels Corporation, January 1991.

5.33 XN-NF-81-22(P)(A), Generic Statisrical Uncertainty Analysis Methodology, November 1983.

5.34 NEDE-24011-P-A-6, General Electric Standard Applicarion for Reactor Fuel, April 1983.

5.35 "Reactor Vessel Internals Evaluation Task Report for WNP-2 Power Uprate Project," GE Nuclear Energy, April 1993 (DRAFT).

5.36 "WNP-2 Power Uprate Containment Response Evaluation Input to Engineering Report," GE Nuclear Energy, January 19, 1993 (DRAFT).

5.37 GE-NE-189-69-1092, "Effects of Adjustable Speed Drive on Reactor Internal Vibration at the WNP-2 Nuclear Power Plant," GE Nuclear Energy, October 1992.

5.38 GE-NE-189-34-0392, "Jet Pump Sensing Line Vibration Test for Washington Nuclear Project 2," GE Nuclear Energy, March 1992.

Washington Nuclear-Unit 2 COLR 93-9 Rev. 0

0 930605 l3:47 5.39 NEDE-24222, "Assessment ofBWR Mitigation of ATWS, Vol. II(NUREG 0460 Alternate No, 3)," General Electric Company, December 1979.

5.40 "Washington Nuclear Project Unit 2 System Evaluation Report for Power UprateReactor Recirculation Control System," GE Nuclear Energy, February',

1993.

5.41 GE Report 22A7104, Revision 0, "Dynamic Load ReportFuel Vertical Support,"

GE Nuclear Energy, June 30, 1982.

5.42 "Fuel LiftNon-Proprietary Letter," Letter, DM Kelly (GE) to WC Wolkenhauer (SS); February 15, 1993.

5,43 93-PU-0054, "ELLLARelated Power Uprate Task Reports," Letter, DM Kelly (GE) to WC Wolkenhauer (SS), June 3, 1993.

Washington Nuclear-Unit 2 COLR 93-9 Rev. 0