ML18043A593: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(6 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:* 1978 Nonradiological Environmental Monitoring Report Palisades Nuclear Plant Consumers Power Company March, 1979 7 9 0 4 0 5 0 25i 
{{#Wiki_filter:}}
* *
* PALISADES NUCLEAR PLANT ENVIRONMENTAL MONITORING PROGRAM -TECHNICAL SPECIFICATIONS 1978 ANNUAL REPORT 1. METEOROLOGICAL NETWORK OBSERVATIONS (4.11.6) Thirteen meteorological stations were established, as scribed in Amendment 6 to Facility Operating License DPR-20 (Change 10 to Appendix A) to document effects of cooling tower operation on meteorological variables.
The stations were established by and are serviced under contract with the Department of Atmospheric and Oceanic Science, The University of Michigan.
In December 1978, a summary of meteorological measurements for the period January 1977 through December 1977 was as Data Report No 6, which is included as Appendix A. Quarterly progress reports for the periods April 1 through June 30, 1978, July 1 through September 30, 1978 and October 1 through December 31, 1978 are included as Appendix B. The sixth annual report for the period of April 1, 1977 through March 31, 1978 is included as Appendix C. 2. NOISE SURVEY (4.11.6) No additional noise surveys were conducted during the porting period . 
* *
* 3. COOLING TOWER DRIFT STUDY (4.11.6) (1) Introduction Many portions of the cooling tower drift study at the Palisades Nuclear Plant, initiated in January of 1973, were terminated at the end of 1977. The only section that was continued during 1978 is Section 4.ll.6b (vegetation composition).
Vegetation composition data for 1977 and 1978 are presented in this report. Additionally, an analysis of the data collected per Section 4.ll.6a (precipitation collection and analysis) from 1973-1976 has been presented in a paper that is attached as Appendix D . 4.ll.6b -Vegetation Composition Summer Flora Tables 1 and 2 list the densities of plant species that were observed in the m 2 quadrats during the summers of 1977 and 1978, respectively (l) The densities given in Tables 1 & 2 indicate the average number of times a given species was 2 identified in the four m quadrats on each plot. For a description of the sampling methodology see: Rochow, J. J. 1975. Palisades Nuclear Plant Cooling Tower Drift Study: Preoperational Study Report. Consumers Power Co submittal with letter of Jan 31, 1975 to Directorate of Licensing, NRC. 2 
*
* The vegetation on Plots 1, 2, 5, 8 and 9 have received the (2,3) greatest impact resulting from cooling tower operation On these plots there is a general density increase in those species which require abundant sunlight.
Removal of much of the forest canopy, by chemical or ice impaction, has created more favorable conditions for these species (eg. Aster cordifolius, Solidago caesia) (Table 1 & 2). Addition-ally, during 1978 several new species were recorded on the severely impacted plots due to favorable conditions for early successional stage species (Table 2). A graph (Figure l) of diversity indices (Shannon Index) for the sample plots throughout the study period shows that for the plots closest to the cooling towers plant species diversity decreases the first three years (1975-77) of cooling tower operation.
The introduction of early successional stage species in 1978 causes plant diversity to increase for those same plots. The more distant plots (60-85m) show plant diversity lowest during the first year of the cooling tower operation (1975) with a gradual increase back to original preoperational conditions.
However, the floral components present during preoperational (1973) and post-operational (1978) have changed. The most distant plots have remained stable during the study period. (2) Rochow, J. J. 19/8. Compositional, Structural and Chemical Changes to Forest Vegetation from Fresh Water Wet Cooling 3 Tower Drift. In: Cooling Tower Environmental
-1978
-------------( 3) Rochow, J. J. 19/8. Measurements and Vegetational Impact of Chemical Drift from Mechanical Draft Cooling Towers. Environmental Science and Technology 12: 1379-83. 
* *
* Tables 3 and 4 list the plant species that occurred on the 1/50 acre plots which were not observed and counted in any 2 of the four m quadrats during 1977 and 1978, respectively.
Again, especially for the 1978 data, previously unrecorded species have been identified as occurring on those plots most severely disturbed.
Tables 5 and 6 list the mean percent cover of moss species 2 that were identified in the four m quadrats for 1977 and 1978, respectively.
Figure 2 is a summary of moss cover throughout the study period. For all plot groupings there is a general decrease in mean percentage moss cover through time. The greatest decrease is seen in those plots that are less than 85m from the cooling towers. This decrease is .caused by a reduction, or elimination, of the canopy layer allowing environmental conditions unfavorable to mosses. Considerable fluctuation in percentage moss cover on those plots greater than 85m from the cooling towers is caused by natural variation in annual climatic conditions.
For example, the average precipitation for the months of April -July was considerably higher during 1975 and 1976 than in 1974 and 1977. Hence conditions were more favorable for mosses . 4
* II arum l\cer r*uurw f\ce1* sacL:11 A'}ui
/\eabis Jae l\r*aLh: .!yr llt"uliu nud Aster cord CtU't::X llCliH Carex :;pee Cat*1.:x L!himaphJ Lu. 1>1*yoptc:1*is l*'t:.igt-'l'(Hl 8
rn l 1'1'ttXiH1lU
<ti l:a.1 L tuu Jan Other CJr-aG JJ,Ll1E!r11uri.a I lruuu we lj s JlcpaLicu ru Loni ceru c Maiauthemu M:itcliella MoJJardu pu Ostrya vir ra11j cum np j c 11J.ari l'o.l.y1'.011utu Pol.ypocli tun Pr*euan Lhes i'l't!ll<UltlteLl J1t'll!lLU:i 8Cl' Pruuu:..;
vir Jd i Ulll i*u !' species canaclensis vigutu al.a icaulis lf.'olius ylva1dca ies i.es uml.Jellata murgiualis pccics nerieuuus 11e1*icaua ceu.lu:trnn ses vlride8 nerieana auuLleu::>is Ill cunadense re1,ens nctata giuianu ecies !l cauadensis tr! puliescens vulgure a.Luu ultissima otina giniuua u.quilinum Lra 1.00 0.75 o.5u 3.00 l.25 * 'l'A1lLE l PALISADES rn'UDY -OPFJ1A'I'lONAL
!JA'l'A: Mt;:AN SPECIES DENSI'.l'Y IN NUMBEnt; PER MF.'l'ER SQUAHE --SUMMER FLORA 1977 Plot Number 2 3 5 6 8 9 0.25 0.25 0.25 1.25 l. 75 1. 25 11. 75 J.. 50 o. *15 2.00 9.25 0.25 *r. 75 0.50 1.00 1.00 0.75 2.75 0.25 1.00 1. *75 J..00 0.75 0.50 2.00 1. 75 9.00 0.50 .1. '15 11.50 0.25 0.50 1. 25 3.00 0.25 1.00 0.50 10.50 18.oo 5.25 6.25 2. '(5 0.25 0.25 0.50 .l. 25 0.25 .l. 75 .1. 75 0.25 0. '75 5.50 15.25 6.25 11. 50 0.75 .l. 00 0.25 0.25 u.25 0.25 lli. '15 7.00 0. 75 3.50 0.25 2.50 0.25 1.25 0.75 0.50 0.25 0.50 0.25 0.25 0.5U 0
* cl5 0.50 .l. 75 2.25 0.25 0.25 .l. 00 3.00 0.50 0. '15
* 5 10 12 13 15 0.25 2.50 0.2) 0.75 0.25 1.00 1.25 3.25 l. 75 'T .50 0.50 1.50 2.50 1.00 0.50 0.25
: l. 75 0.25 0.75 1.00 2.25 .1. 00 0.75 0.50 27.75 25.00 0.25 1.25 0.25 811. 25 2.25 0.50 3.25 0.50 l. 50 3.00 0.25 .l. 50 0.25 .l. 50 0.25 1.50 5,50 
* * 'J'AllLJo:
1 (Contd) PALISADES lJIUF''.l' S'l'UDY -OPF.HA'J'IONAL DA'l'A: MEAN spgcrES DENSITY pgn ME'l'F.R
--SUMMim FI.OHi\ 1977 Plot N1.u11lit:r 1 2 3 5 6 9 Hliu:; radica11s 0.25 llulnrn aJ.lee;neniensis 0.50 0.25 fju:jsaf:n1s al bi cl tun 2.25 0.25 2.50 9.00 3.75 1.25 Smi l.uciua raccmosa 0.25 timi-1acintt steJlata 1.00 0.75 6.50 Srnl.lu.x herlH1C'.ea 0.25 2.00 Simlux hispidu 0.25 0.75 0.25 0.50 Sul.i<l.ueo 0.75 2.00 0.25 l.50 11.00 J.'7.25 3l1.00 rt 1 ar1.txaewu o J' fi c i rmle 0.75 1.)0 1 l 1 ax11:J cunudensi:J 0.25 0.25 0.75 '!1.il ia wnericauu 0.25 0.25 0.50 0.25 0.75 LI/
0.25 0.25 V.i.lJUJ"llUllL acerifolium 6.oo '(. 50 Vitus uestivalis 0.25 Vitus vulpina 0.25 0. '15 0.50
* 6 10 12 13 15 0.25 11.50 8.'(5 0.50 0.50 0.50 1.00 30.00 2.'(5 0.75 0.50 2.75 3.25 16.50 6. 50 0.25 0.50 0.'(5 0.25 1.50 1. 75
* ruJ,rwn J\cc:!r* Ac:e..:r llme.lt /\qni 1 l\1*ub1 llrubi llru.I i llGL.::1 I\:; Let Car*ex Ca1*cx Car ex Cut*ex Ch.i.rna succharwn uiehier species .egla cu1H.t.densis s Juevii.;utu s .Lyruta u H"wUcauli.s cn1*d ifolius mri.c rophyllus gri>ieu pcnsylvanica species plillu umbel.lo.tu -x*c1rsi *1luuc1 llt'.YO! tun apecies IH cu rota >tei*i::i marginal is .. ron species lllW.'.J americanus nu8 ;uuericu11a l*:uouy f*'t*axi Ga.I iL Utl J uuceolutwn lill *Gu] it nen.u Uth<.!l llabe1 lla111e11 llepaL li.1011 11u.1culu.ttun 10.riu viridl.s 1elis virginirrna ica wne.ricaua ICU lCU species 'era '.!anuciensis tLhemtun **1.actt ;;;:.Lactt Luutc Muiui 1*1i Lei Mo nm 1htr*y !'edit.: holyi. cauadense 1e.l..l. t*epe11u *fl&. punctatu a virginiLl!Hl
*uluris cuuudensis pulJescens l 0.75 2.50 0.50 0.50 0.25 0.50 3.00 0.25 2.25 0.25 2.'(5 * * 'rABl.E 2 7 PllLIGllllEfl
])IU!i"l' S'I'UDY -OPE:Hll'l'IONllL DA'l'll: ME:AN SPE:CIE:S D!o:NSI'l'Y IN MJo:'rE:R SQLlllHE --SUMMl':H !'LORA 19'(8 Plot Number 2 3 5 6 (l 9 10 12 13 15 0.25 2.00 0.25 0.25 2.00 1.00 0.50 0.25 l.00 l. *75 1.00 l. '(5 l. 25 6. '(5 0. '15 11.25 0.25 0.25 l.'15 0.50 3.50 l. 75 3. '(5 0.25 3.00 2.25 5.50 1. 50 0.25 0."(5 0.75 3.25 0.'15 U.25 1.00 0. '15 0.25 2.75 l. 75 6.75 0.25 0.50 5.00 0.50 3.25 0.75 0.50 0.75 2.00 0.50 0.25 0.25 1.00 2.00 0.50 1.00 1.00 1. '15 0.25 2.75 0.50 7.25 12.00 15.50 21. 75 0.25 21.50 16.50 0.'(5 3.25 1. 50 0.25 0. '15 0.50 2.00 1.25 0.50 1.00 0.25 o.*15 0.25 0.)0 9.25 22.50 6.00 113. 75 2.*75 1.25 8.50 2.75 0.25 0.25 0.50 0.25 0.25 50 '(. '15 1. '15 6.'(5 0.75 1. 50 0.50 l1,00 0.50
* L*:&#xa3;: Pol P1*e P1*c Pru Pru PLe <iu*_* Hub )'put.ii mu vulgure *Hub *>t0wu !:irni Smi Smi Sud f:)c,l
'l'ut* 'l 1 ux 1'il 'l':Jll Vc1* Vih Vit V.i t 11anlhes a.I.ha n<1nl.lleu altissima JIUS uerotina nus virginiana dtliw11 11quiliHw11 rcus rub1*a ll!J ullegnenieusis Uti species UUC\lS canudensis
::n1fras albid1un ladna t*ucemosa lac:iua stellata lax l1erbacea lux his pi du ldugo cueHia species axacwn officinale us cana.densis t&. 1uue1*icana canurlensis Ui.LSCUUI tttapsus ur*11urn acerirolium 11S nest.ivo.lis LIS vul pirm *Species uot p1ev1ously recorded 1 2.00 0.25 2.00 1.00 0.75 0.50 0.25 0.50 l.25 0.25 * * 'l'AllLE 2 (Contd) 8 PALlfJADES llRU"r S'l'UDY -
DA'l'A: MEAN SPECIES DENSI'l'Y IN NUMBERS !'EH ME'l'Eil SQUME --HUMMJ.:H i"LOHA 1978 Plot Number 2 3 5 6 (J 9 10 12 13 15 0.25 o.;:>5 0.25 l.00 0.50 0.50 0.25 0.50 0.50 l.00 0.25 2.00 2.75 1.00 1.25 0.25 1. 75 0.25 0.75 1.25 2.50 0.25 1.25 3.25 0.50 1.00 1. 25 0.25 l.00 3.50 1.00 0.50 0.25 2.00 0.25 3.00 2,c{5 8.75 5.75 2.00 I. 50 5.00 8.75 0.50 0.75 0.25 0.25 0.50 1. 75 5.75 9.50 22.75 0.25 l. 75 0.25 3.50 0.25 0
* c{5 0.25 0
* cl5 0.25 l.00 0.50 11. *75 0.25 0.25 3.25 20.75 8.00 5.50 5.50 19-75 5 *c{5 0.25 11.00 0.25 1.25 l.00 0.25 0.25 0.25 0.75 0. c{5 0.50 0.25 0.25 1.00 0.25 0.25 0.25 7.2) 6.25 2.00 1.25 0.25 0.50 l.00 0.75 
* * * 'rABLE 3 9 PALlLlADES DHII*''l 1 S'l'UDY -OPEHA'J'IONAL Di\'l'A: OCCUHANCE 01? PLANT SPECIES Ji'J 1/50 ACHE PLO'l' -SUMMEH F'LOHA 19TI P:tot Number l 2 3 l1 5 6 8 9 10 12 13 14 15 /leer l*ubrrnu x i\cer siiechu.rwn x x x x /\rnclunchi.er species x x x /\t*abLi At*utii:;
Jyratu x x /\t'uU.a uull.i.caulis x J\!.)pJt:1d Ulll pJatyneuron x M;t<:r cor<Ji ro.Lius x x f'l.sLt.=r mucropbyllus x HuLryeld um virginianwn x x* Curex u..lbtu*sina x x Cu1*ex. l:';.L'iuea x Ca1*ex pensylvunica x x x Can:x species (red) x x Ci1i111<1pldla umheJluta x x . Cll'niwn :;p. x x Co1*11u:.>
stoloui1'eru x Dryopteris rnargirw.lis x x E;riger*on species x 1,;uphot'.i.ua corolla ta Eup1Ior*iln1 species x x l*'vgu8 g!*artcli1'olia x x x x I 1'1*uxinLt::>
wuericunu.
x Gali tun *1 a11ceolatw11 x Gall urn spt*cies x Gerauium maculatwn x x x Uru.sses x }l:.1111arneli:.;
virglu:iaua x x JIL;trix prttula x .lu1i.ipcru!:;
c:ouuuunis x x Lycopodium luddulum x MILcheJl re:: pens x Mun;11*da puucto.tu x x Monott'upu uuit'lora x Ostryu v x x x x I I 
* * * 'l'ABLE 3 (Contd) 10 PALISADES DHIFT S'l'UDY -OPEllA'fIONAL DA'l'A i OCCURANC1':
OF PLANT SPECIES 1N 1/50 ACHE PLO'I' -SUMMEH FLOllA 19TI Plot N1u11ber SPECIES 1 2 3 !1 5 6 u 9 10 12 13 lli 15 Pu1*tl1e11ocissus quinquefoliu x x Pin us struuus x x x x pubt:seens x x P0Jypodi11111 vulgure x x Pr<.:11uuLh0s u.ltissima x x x x
:.;erotina x x Pcunus virginiana x x PLelea Lri fol.iuta x Que re us rulira x x x Hilles cynosbuti x x x x Hubu:; species x x ulbidwn x x x Srni.lu.cina racemosu x x x x x x Srnilacina
>itellata x x SmiJux he:rbucea x x x x Grni.lc1x hispida x x x spec.ies x 1 l 1 ura.x.ucurn oi'f icinule x x 1.l't1 Nu:.; <.:t111udcns:is x x 'L 1 ili.a rn11e1*.icu.nu.
x C:hHuUeusj s x x Uvu.lariu (c'.randifloru x Vibunu1111 acerifoliwn x x x x* x x Vi Lu:; Ul!8 ti vulis x x x x Vi tu:.; vulpi na x x I 
* * * 'l'AllLE 11 11 PALISADES llRU''J' S'l'UDY -OPEHA'l'IONAL DA'l'A; OCCUHANCE OF PLAN'f SPECIES IN l/50 ACHE PLO'r -SUMJ.JTo:R F'LOHA 19'(8 Plot Nwnber fll*ECU:fl l 2 3 1, 5 6 8 9 10 12 13 111 15 /\.<..:er ruLrrnn x fleer sac:eharwn x x x x x x Am<!] uuehier species x x x x x flquj lei:;ht c.anadensis x
lyrutu x x Aruliu uullicuulis x Ac:pJ.erd.urn platyneur*m1 x Car ex x x x Car ex p,,nsylvanica x x Carex species x x x Iluucun earota x x Dryopt0ris rnarginalis x Epif'ugus virginiuna x Eupho1*iba species x x granllifolia x x x l*'caxinus species x Culiurn lanceolatmn x G1tlj IUH species x (i(:.ra11i.um 111uculatIBn x x x (;
x ll:unnrnelis virginiana x x x J11niperus conununis x x Lnctuca cauadensis x x Luctueu species x Mitcliella rep ens x Mon11rda punctata x Ocnothera biennis x llfitrya virginiana x Pinuu strobus x x x x Polygonatum pubescens x x l)renantlLes altissima x x Pr*uuus :-ierotiua x x x Pt"llllU::>
x l'teriditm1 aquilinu111 x x Que1*cus nil.Jr a x x x x Hhu,; rl:ltf-ieuu:..i x Hi lie,;
x x x x -----------------------------------'
'---------------------------------------
-----------
* * * 'l'AllLE !1 (Contd) 12 Pl\LIS/\DES DHH''l' S'l'UDY -OPJ,HA'l'IONllL D/\'1'11:
OCCUHl\NCE OF' PLl\N'l' SPECIES IN 1/50 /\CHE Pf.O'J' -
_________
_ Plot t-JPECil!!S l 2 :) 11 5 6 8 9 10 12 13 14 15 al bid LUii x x x fiuii lacina racemosu.
x x x x x :J111:i J.acino stelluta x x ,, x flrniJ ax herbaeea x x X: x fJnd lax hispidu x x x Done bus urvensis x oft'ici nale x 1 J 1.uxns canude11sis x x '1'.i.J j [L 1u11er icunu x x 'Jlsu1:.a cunadensis x x Uvuln.l'i u granui flora x x Vec1Jasct1111 tltapsus x Vibucuurn ucerif'oliurn
\ x x x x x Vitus ue8tivalis x x x x
* Species 1 2 Atrichum angustatum Aulacomnium heterostichum o.48 Bryum capillare Campylium hispidulum 0.18 Dicranum muehlenbeckki Mnium affine var. ciliare 0.23 Plagiothecium cavifolium 0.15 0.69 Pleurizium schreberi Rhynchostegium serrulatum
: 1. 58 0.26 Thuidium recognitum 0.03 Total Moss Cover (%) 1. 73 1. 87
* TABLE 5 PALISADES DRIFT STUDY -OPERATIONAL DATA: MOSS COVER DATA -SUMMER 1977 3 4 5 0.05 0.03 0.39 4.87 0.19 0.39 08 o.63 o.o 9.37 Mean Percent Cover Plot Number 6 8 9 0.08 0.06 0.03 0.16 0.03 0.84 0.26 0.10 0.23 0.32 0.05 8.39 8.92 0. 51 1.12
* 13 10 11 12 13 14 15 0.03 0.08 0.08 1.64 0.03 0.05 0.08 0.24 0.03 0.16 0.0 2.04 0.0
* Species 1 2 Bryum capillare Mnium affine var. ciliare 0.32 o.49 Plagiothecium cavifolium Pleurizium schreberi Rhynchostegium serrulatum 2.42 o.44 Thuidium recognitum 0.08 Total Moss Cover (%) 1.01
* TABLE 6 PALISADES DRIFT STUDY -OPERATIONAL DATA: MOSS COVER DATA -SUMMER 1978 3 5 0.58 4.19 0.16 4. . 0.74 o.o 9.03 Mean Percent Cover Plot Number 6 8 9 0.02 o.4o 0.19 4.84 o.o 0.0
* 14 10 11 12 13 14 15 3.32 0.19 o.o 0.0 0.0 0.0 3.51 0.0
* 1. 1 ,......_ 1. 0 :::r: ....__,, >< w* D :z: >-.9 I-Cl) 0::: UJ > CJ .8 :z: 0 z z <l: :::r: Cl) .7 .6 **** FIGURE 1 1973 74 75 76 YEAR MEAN DIVERSITY INDEX FOR PLOTS: 0 < 60m 60-85m , 0 > 85m 77 78
* 15 
' * **
* 16 FIGURE 2 MEAN PERCENTAGE MOSS COVER FOR PLOTS: 0 < 60m 6 &#xa3; 60-85m 0 > 85m 5 ,.-... "-./ a:: w 4 > 0 c..:> V) V) 0 :::?:: 3 ::z: <( w 2 1974 75 76 77 7.8 . VEAR __ J 
* *
* 17 4. Aauatic The aquatic environmental moni taring program is designed to fulfill two separate regulatory requirements.
The NPDES Permit specifies ent limitations and moni taring requirements under the Federal Water Pollution Control Act. Technical Specifications contain limitations and monitoring requirements also. There.is some overlap between the IU'DES Permit and our Technical Specifications.
Therefore, in an attempt to reduce the amount of dual reporting per the Declaration of Goals and Policy (Section 1011( F) of the FWPCA) , the following information, which has been submitted in the NPDES Monthly Operating Reports, is not ed in this annual report: Technical ppecification 4.11.4 a ) Dilution water temp b ) Dis charge water temp d1) Cooling tower pump suction basin overflar ( gpd) Cooling tower blowdown ( gpd) d3) Discharge water flow (gpd) e ) Cooling tower blowdown conductivity g ) pH of discharge water Technical Specification 6 .9. 3 .1. D provides for the reporting of IU'DES Permit violations to the NRC. Therefore, when any of the above parameters were violated in 1978, a report was issued to the state and to the NRC . In addition, the I:IPDES Monthly Operating Reports are available for your review at the Plant. The remaining Technical Specification monitoring requirements are ed below: a) Thermal Surveys No thermal plume study was conducted in 1978 (T.S.4.ll.4(c)).
b) Heat Rejection Heat rejection data is provided in Appendix E. c) Chlorine Residual Chlorination data is provided in Appendix F. d) Heavy Metals There was no suspected discharge of heavy metals in 1978 (T.S.4.ll.4(h)).
e) Fish in Discharge No dead or distressed fish were observed at the discharge during or after chlorination in 1978 (T.S.4.ll.4(j)) . 
* * * 
* ! . ,--: l . i \ ' -1 l. 1. I __
* i . I -I [__
* I I I I I I i 3 20158 An Investigation of the Meteorological Impact of Mechanical-Draft Cooling Towers at the Palisades Nuclear Plant Data Report No.6 Summary of Meteorological Measurements for the Period January 1977 through December 1977 Preoa red with contributions from: MICHAEL R. WEBER DENNIS F. KAHLBAUM ' MICHAEL J. ST. PETER WILLIAM W. BEATON JAMES N. DEACONSON EDWARD RYZNAR, Project Director December 1978 Under contract with: Consumers Power Company Jackson, M1chiga n Department of Atmospheric and Oceanic Science College of Engineering 
* *
* AN INVESTIGATION OF THE METEOROLOGICAL IMPACT OF MECHANICAL-DRAFT COOLING TOWERS AT THE PALISADES NUCLEAR PLANT Data Report No. 6 Summary of Meteorological Measurements for the Period January 1977 through December 1977 Prepared with Contributions from Michael R. Weber Dennis F. Kahlbaum Michael J. St. Peter William W. Beaton James N. Deaconson Edward Ryznar, Project Director Department of Atmospheric and Oceanic Science College of Engineering The University of Michigan Ann Arbor, Michigan 48109 administered through: The Division of Research Development and Administration DRDA Project 320158 under contract.with:
CONSUMERS POWER COMPANY Jackson, Michigan December 1978 ACKNOWLEDGEMENTS Special appreciation is expressed to Dr. Dennis Baker who is principal investigator for the project and to Dr. Harry Moses for his ideas and suggestions pertaining to preparation of this report. Network data collection was maintained by our man in the field, Donald Pearson. Randy Bliss, Dennis Hodges, Ken Kurdziel, Gary Rizzo, Tom.Tharp, and Gordon Urquhart put in many hours of chart scanning,_
digitizing and initial computer processing of the data. The measurements program would not have been possible without the cooperation of the property owners listed in this-report, who permitted us to locate meteorological equipment on their property.
Our sincere appreciation is extended to them. Appreciation is also extended to Ms. Bobbi Walunas for typing the-manuscript.
Computations were performed on the Amdahl 470V/6 computer at the University of Michigan Computing Center. ii \ * -1 .l I I . _( *-, (
* i _;
* CONTENTS
* Page Acknowledgements ii List of Figures iv List of Tables v I. Introduction 1 II. Description of Meteorological Network 4 III. Precipitation 11 I\7 ' . Temperature 48 v. Humidity 85 VI. Wind Speed and Direction 122 VII. Visibility 172 VIII. Total Solar Radiation 211
* IX
* Summary 218
* iii LIST OF FIGURES 1
* Page 2.1 Location of Palisades and Donald c. Cook meteorological networks 5 2.2 Topography in the vicinity of the Palisades
-\ and Cook networks 6 I .1 6.1 Wind roses for station P03A for 'l 6.lA January 1977 126 6.lB February 1977 130 1 6.lC March 1977 134 l 6.lD April 1977 138 6.lE May 1977 142 6.lF June 1977 146 6.lG July 1977 150 J 6.lH August 1977 154 6.lI September 1977 158 \ 6.lJ October 1977 162 *r 6.lK November 1977 166 6.lL December 1977 170 6.2 Wind roses for station P07A for 6.2A January 1977 127
* 6.2B February 1977 131 6.2C March 1977 135 6.2D April 1977 139 6.2E May 1977 143 6.2F June 1977 147 6.2G July 1977 151 I 6.2H Augus.t 1977 155 I 6.2I September 1977 159 ) 6.2J October 1977 163 6.2K November 1977 167 6.2L December 1977 171
* iv 
* ,', ' ' *
* LIST OF TABLES Page 2.1 Locations of stations and variables measured 7 2.2 Network instrumentation 10 3.1 Daily total precipitation by station for 3.lA 3.lB 3.lC 3.lD 3.lE 3.lF 3.lG 3.lH 3.lI 3.lJ 3.lK 3.lL January 1977 February 1977 March 1977 April 1977 May 1977 June 1977 July 1977 August 1977 September 19 7 7 October 1977 November 1977 December 1977 3.2 Maximum precipitation in given periods by station for 3.2A 3.2B 3.2C 3.2D 3.2E 3.2F 3.2G 3.2H 3.2I 3.2J 3.2K 3.2L January 1977 February 19 7 7 March 1977 19 7 7 May 1977 June 1977 July 1977 August 1977 Septenber 19 7 7 Octobe:::-
1977 November 19 7 7 December 19 7 7 3.3 Total precipitation by the hour for each station for 3.3A 3.3B 3.3C 3.3D 3.3E 3.3F 3.3G 3.3H 3.3I 3.3J 3.3K 3.3L January 1977 February 1977 March 1977
* April 1977 May 1977 June 1977 July 1977 August 197 September 1977 October 1977 November 1977 December 1977 v 12 15 18 21 24 27 30 33 36 39 42 45 13 16 19 22 25 28 31 34 37 40 43 46 14 17 20 23 26 29 32 35 38 41 44 47 I I --..... \ LIST OF TABLES (CONTINUED)
Page ** 4.1 Daily maximum temperatures by station for \'. 4.lA January 1977 49 ,) 4.lB February 19 7 7 52 '\ 4.lC March I977 55 4.lD April 1977 58 4.lE May 1977 61 4.lF June 1977 64 r 4.lG 1977 67 *4.lH August 1977 70 4.lI September 1977 73 *1 4.lJ October 1977 76 I 4.lK November 1977 79 ) 4.lL December 1977 82 ; 4.2 Daily minimum temperatures by station for J 4. 2A Januarv 1977 50 4.2B February 1977 53 -; 4.2C March 1977 56 4.2D April 1977. 59 ' ! 4.2E May 1977 62 4.2F June 1977 65 4.2G July 1977 68
* 4.2H l'mgust 1977 71 4.2I September 1977 74 .) 4.2J October 1977 77 4.2K November 1977 80 4.2L December 1977 83 4.3 Daily average temperatures b" station for \ J 1 4.3A January 1977 51 4.3B February 1977 54 4.3C March 1977 57 4.3D April 1977' 60 i 4.3E May 1977 63 4.3F June 1977 66 4.3G July 1977 69 _j 4.3H August 1977 72 4.3I September 1977 75 \ 1. 4.3J October 1977 78 4.3K November 1977' 81 4.3L J:)ecember 19 77 84 vi * 
,-'
* I C-.* I '** * .! ___ \
* LIST OF TABLES (CONTINUED)
 
===5.1 Relative===
humidity for P03A and*P07A at six-hour intervals for 5.lA 5.lB 5.lC 5.lD 5.lE 5.lF 5.lG 5.lH 5.lI 5.lJ 5.lK 5.lL January 1977 Feb_ruary 1977 March 1977 April 1977 May 1977 June 1977 July 19n August 1977 September 1977 October 1977 November 1977 December 1977 5.2 Temperature for P03A and P07A at six-hour for 5.2A 5.2B 5.2C 5.2D 5.2E 5.2F 5.2G 5.2H 5.2I 5.2J 5.2K 5.2L January 19 77 -February 1977 March 1977 April 1977 May 1977 June 1977 July 1977 August 1977 September 19 77 October 19 77 November 1977 December 1977 5.3 Dew point for P03A and P07A at six-hour intervals for 5.3A 5.3B 5.3C 5.3D 5.3E 5.3F 5.3G 5.3H 5.3I 5.3J 5.3K 5.3L January 1977 February 19 77 March 1977 April 1977 May 1977 June 1977 July 1977= August 1977 September 19 77 October 19 77 November 19 77 December 19 77 vii Page 86 89 92 95 98 101 104 107 110 113 116 119 87 90 93 96 99 102 105 108 111 114 117 120 88 91 94 97 100 103 106 109 112 115 118 121 LIST OF TABLES (CONTINUED)
 
===6.1 Percentage===
 
frequency of wind direction and speed for station P03A for 6.lA 6.lB 6.lC 6.lD 6.lE 6.lF 6.lG 6.lH 6.lI 6.lJ 6.lK 6.lL January 1977 February 1977 March 1977 _April 1977 May 1977 Jurie 1977 July 1977 August 1977 September 1977 October 19 77 November 19 77 December 1977 6.2 Percentage frequency of wind direction and speed for station P07A for 6.2A 6.2B 6.2C 6.2D 6.2E 6.2F 6.2G 6.2H 6.2I 6.2J 6. 2K 6.2L January 1977 February 1977 March 1977 April 1977 May 1977 June 1977 July* 1977 August 1977 September 1977 October 1977 November 1977 December 19 77 7.1 Visibility data for station P03A for 7.lA 7.lB 7.lC 7.lD 7.lE 7.lF 7.lG 7.lH 7.lI 7.lJ 7.lK 7.lL January 1977 February 1977 March 1977 April 1977 May 1977 June 1977 July 1977 August 1977 September 19 77 October 19 77 November 1977 December 1977 viii Page 124. 128 132 136 140 144 148 152 156 160 164 168 125 129 133 137 141 145 149 153 157 161 165 169 174 177 180 182 184 187 191 194 198 202 204 208 \ *.I i i < ... * 
** I II ' . ' \_ .
* LIST OF TABLES (CONTINUED)
 
===7.2 Visibility===
 
data for station P07A for 7.2A 7.2B 7.2C 7.2D 7.2E 7.2F 7.2G 7.2H 7.2I 7.2J 7.2K 7.2L January 1977 February 1977 March 1977 April 1977 May 1976 June 1977 July 1977 August 1977 September 1977 October 1977 November 1977 December 1977 8.1 Daily-totals of incident solar radiation for 8.lA 8.lB 8 .1c 8. lD 8.lE 8.lF January and February 1977 March and April 1977 May and June 1977 July August 1977 September and October 1977 November and December 1977 9.1 Summary Tables 9.lA 9.lB 9.lC 9. lD Monthly total precipitation Monthly mean wind speeds and directions Monthly visibility percentages Monthly averages of daily total solar radiation ix Page 175 178 181 183 186 189 193 196 200 203 206 210 212 213 214 215 216 217 219 220 221 222
* r" *
* I. INTRODUCTION This report summarizes meteorological measurements made at 13 stations in the vicinity of the Palisades Nuclear Plant located on the shoreline of Lake Michigan near Covert, Michigan.
Data in this report are for the period January December, 1977, and supplement those in the first data report, which was for the period October 1972 through June 1973; the second data report, for the period July -December 1973; the third data report and supplement, for the period January -December 19741 the fourth data report, for the period January -December 1975; and the fifth data report, for the period January -December 1976. The meteorological stations were established in 1972 as part of a study of the meteorological impact of the cooling towers the Palisades plant. The cooling towers began operation on 31 March, 1975. Data 1 obtained until then, together with climatological information for stations in the region nearby, have been analyzed to natural meteorological conditions near shoreline and their variations with distance inland. As additional data are obtained from the stations with the cooling towers in operation, the analysis is being extended to include a* comparison of conditions prior to and during cooling tower operation.
A similar investigation is underway in the vicinity of the Donald C. Cook Nuclear Plant, which is utilizing a once-through cooling system. The Cook Nuclear Plant is located about 40 km south-southwest of Palisades.
2 Measurements from a network of 12 stations in the vicinity of the Cook Plant supplement those for the Palisades study and are summarized in a companion report. Only brief descriptions of the instrumentation, calibration procedures, machine digitization and data processing methods are given here. Detailed information on above is provided in the First and Second Annual Progress Reports listed below. The Third Annual Report describes fog and visibility computations with a cooling tower plume model in addition to analyses*of shoreline meteorological.events which affect the cooling tower plume. The Fourth Annual Report contains analyses of network data from the pre-operational period, summaries of initial plume observations and description of a time-lapse camera system for continuous daylight monitoring of plume behavior and effects. The Fifth and Sixth Annual Reports discuss plume behavior and observed effects such as icing and enhancement of total solar radiation, and include analyses of oper-ational vs. pre-operational data. Ryznar, E. and D.G. Baker, 1973: An Investigation of the Meteorological Impact of Mechanical-Draft Cooling Towers at the Palisades Nuclear Plant. First Annual Progress Report, ORA Project 320158, The University of Michigan, 42 pp. , and , 1974: An Investigation of the Meteorolog-
---ical Impact of Mechanical-Draft Cooling Towers at the Palisades Nuclear Plant. Second Annual Progress Report, DRDA Project 320158, The University of Michigan, 78 pp. ,M.R. Weber, and D.G. Baker, 1975: An Investi--------,--
gation of the Meteorological Impact of Mechanical-Draft Cooling Towers at the Palisades Nuclear Plant . Third Annual Progress Report, DRDA Project 320158, The University of Michigan, 58 pp. i * \ I -J ,-1 I --1 I, * \ J* \ ' .. ! * 
* * ** and , 1976: An Investigation of the Meteorological Impact of Mechanical-Draft Cooling Towers at the Palisades Nuclear Plant. Fourth Annual Progress Report, DRDA Project 320158, The University of Michigan 102 pp. , , D.F. Kahlbaum, and W.G. Snell, 1977: An Inves----tigation of the Meteorological Impact of Draft Cooling Towers at the Palisades Nuclear Plant. Fifth Annual Report, Project 320158, The University of Michigan, 103 pp. , D.G. Baker, M.R. Weber, and D.F. Kahlbaum, 1978: An -,.--Investigation of the Meteorological Impact of Draft Cooling Towers at the Palisades Nuclear Plant. Sixth Annual Report, DRDA Project 320158, The University of Michigan, 106 pp. Most tabulations presented here were designed to be similar in form to standard National Weather Service tabulations of climatological data. Although alternative forms of tabulation and more detailed analyses were con-sidered, it was felt that presenting the data in the form of basic tabulations and summaries would be most useful. It is hoped that these data may be useful to other investigators needing meteorological information taken near the Lake Michigan.shoreline.
Hourly values of all meteorological variables presented in this report, covering the period from the time of installation of each instru-ment through 31 December 1977 for all stations, are stored on magnetic tape and can be made available.
Inquires should be directed to the authors . 3 4 II. DESCRIPTION OF METEOROLOGICAL NETWORK Location and Nature of Stations Figure 2.1 shows the locations of the Palisades and Donald c. Cook meteorological networks in relation to the nuclear plants, Lake Michigan, and several cities in southwestern Michigan.
The topography of the area is shown in Figure 2.2. Shown in both figures are the locations of the climatological stations for which various data are available.
Temperature and precipitation data for South Haven, Benton Harbor, Eau Claire and Dowagiac for the period 1940-1969, for example, are in the Climate of Michigan, a publication available f.rom the Michigan Service, East Lansing, Michigan.
Daily precipitation totals are available for all the stations.
In addition, hourly precipitation totals are available for Covert for winter-time, Sodus, Berrien Springs, and Coloma. Daily maximum and minimum temperatures are available for all stations except Covert and Coloma. The nearest reporting station which has hourly weather observations (temperature, cloudiness, wind, etc.) which are also representative of shoreline weather conditions is Benton Harbor Airport, located about 30 km SSW of Palisades and about 4 km from Lake Michigan.
Hourly weather observations are taken daily between about 0645 to 2045 local time. TGble 2.1 is a listing of the latitude, longitude and elevation of each station, the name and address of the property owner and the variables measured.
-i --' -) \ -*' (
* 1* .J I I j __ ) I *_f ' J * 
*** ' * .. I l. * ' '* * *6 ** A;rpc" (BEH) . '
tt,i.RBOR SAINT JOSEPH *B *7 OSODUS *11 0 SPRINGS *10 *9 OGLENDORA SOUTH HAVEN *9 *B *5 *11 *12 *13 0 COLOMA 0 WATERVLIET OEAU CLAIRE 0 0 *6 *7 "BANGOR STATION TYPES
* REGULAl STATION .
* MAIN STATION* 0 NWS CO-OPERATIVE 0 MICHIGAN AGRICULTURE
@ FAA NUCLEAR POWER PLANT X WATER INTAKE TEMPERATURE ODOWAGIAC
*Miles 5 10 .s.o. 16J Ki1on1elers
 
===2.1 Location===
of Palisades and Donald c. Cook meteorological networks 5 6 NORTH I MILES 0 1 2 3 4 s Ej10 fy 0 1 2 3 4 s 10 KILOMETERS l 2 COOK . f*' 3 NHWORK t 6 *i' ' I HEIGHTS ABOVE SEA LEVEL 9 a* 1000 FT I 304.8 MI 900 FT 1274.3 Ml 800 FT 1243.8 Ml 700 FT 1213.4 Ml 600 FT 1182.9M l LAKE LEVEl 2 580FT !176.SMl Fig. 2 .. 2. PALISADES NETWORK SOUTH BH -BENTON HARBOR AIRPORT BS -BERRIEN SPRING< CM-COLOMA DW-DOWAGIAC EC -EAU CLAIRE .dJ "' 6 ' '@. 1l la _ffe> GN -GLENDORA SD -SODUS *-SH -SOUTH HAVEN SJ -SAINT JOSEPH WV-WATERVLIET Topography in the vicinity of the Donald C. Cook and Palisades Nuclear Plants. Network sites are given by numbers. Other data sources are with letters. -1 i J --( _j ] -\ ' j *' _--\
* ___ ) * 
* ***
* Table 2.1 Locations of Stations and Variables Measured (Variables measured: T = temperature, H = relative humidity, p = precipitation, W = wind, V =visibility, R solar radiation.)
Station POlA P02A P03A P04A POSA P06A P07A. P08JI. P09A Land Owner Consumers Power Company Consumers Power Company Consumers Power Compar.y Leroy Nalls 30th A venue. Covert, Mich. 49043 Paul Rood 30th Avenue Covert, Mich. 49043 Mr. and Mrs. Schwer 30th Avenue Covert, Mich. 49043 USDA Off ice Bangor, Mich. Mrs. Edith Livingstone 7555 24th Avenue Covert, Mich. 49043 Mr. Don Grier Airport Manager South Haven Airport South Haven, Mich. 49043 North Latitude 42&deg;19' 42&deg;19' 42&deg;19'* 42&deg;18' 42&deg;18' 42&deg;18' 42&deg;18' 42&deg;20' 42&deg;21 1 West Longitude 86&deg;19 1 86&deg;18Q 86&deg;17 1 86&deg;15 1 86&deg;11' 86&deg;06' 86&deg;17' 86&deg;15 1 Elevation, meters above sea level 187 212 194 202 217 212 220 201 207 Variables Measured T,H,P T,H,P T,H,P,W,V,R T,H,P T,H,P T,H,P T,H,P,W,V,H T,H,P T,H,P 00 Table 2.1 (continued)
Elevation, North West meters above Station Land Owner Latitude Longitude sea level Variables Measured PlOA Mr. Harry Sarno 42&deg;18' 86&deg;18' 198 T,H,P 32nd Avenue Covert, Mich.
PllA Mr. and Mrs. Neal 42&deg;1a 1 86&deg;17 1 208 T,H,P 3'1th !\venue Covert. Mich. 49043 Pl2A Mr. Je:r;-ry Sarno '12&deg;17'. 86&deg;15' 227 J T,H,P R. No. 1, Box 10 Covert, Mich. 49043 Pl3A Mr. Otto Watkins 42&deg;16 1 86&deg;12' 220 T,H,P R. No. 1, 44th Avenue Covert, Mich. 49043 -*'** ' ---\,_ __ _ * . ___ ! ' .... _-1 , ___ ) ---J ._) 
* *
* It can be noted that there are 13 stations comprising the Palisades network. The labeling of each station as POlA through Pl3A is for identification by computer in data processing.
All stations have a recording precipitation gage and a Belfort Hygrothermograph.
The precipitation gages are calibrated semi-annually.
The hygrothermcgraph recordings are compared weekly in the field with an Assman psychrometer.
In addition, beginning in December, 1973, the graphs have been calibrated in controlled humidity chambers at least once every 6 months. Stations P03A and P07A contain, in addition to the above, sensing and recording equipment for measuring total solar radiation, wind sp2ed and *direction, and visibility.
A summary of the instrumentation used in the meteorological networks to record the data tabulated in this report is found in Table 2.2 9 Variable Precipitation Temperature Rel. Hum. Wind Speed Wind Direction Visibility Solar Rad. Table 2.2 Network Instrumentation Instrument and manufacturer Weighing gauge Belfort Inst. Co. Hygrothermograph Model 5-594 Belfort Inst. Co. Gill 3-cup l\.nemometer Model 12101 R.M. Young Co. Wind Vane Model 104 WeatherMeasure Corp. Visiometer Model 1580 Meteorology Research Inc. Pyranometer Model R411 WeatherMeasure Corp. Height above grou.nd (m) 1 1. 5 3 3 1. 5 1 Date installed (mo/yr) 10/72 2/73 2/73 2/73 10/72 (P-3)
* 3/73 (C-3) 5/73 (P-7) 10/72 (P-3) 12/72 3/73 (P-7) 12/72 (C-10) Calibration frequency (mo) 6 6 6 6 12-18 12 Calibration technique Static weights Calibration chamber Wind tunnel Circular linearity Manufacturer Comparison with standard 
* ',-... L.
* III . PRECIPITATION Precipitation is measured with a Belfort Recording Pre-cipitation Gage. It is recorded and digitized to the nearest hundredth of an inch. For tabulation digitized data are reduced_ to hourly totals of precipitation.
The data are then tabulated in sets of three tables for each month. The first table gives the total precipitation by day for each station. An M missing data. A series of asterisks indicates that the total amount of precipitation which fell during that period is known and indicated as a number in parentheses at the end of the period. The exact time of occurrence during the period, however, is unknown. The second table gives the greatest 1-, 3-, 6-, 12-, and 24-hour totals and the third gives hourly totals for each month. The last two tables contain data only for those stations which had uninterrupted records of precipitation for all times during which precipitation was occurring in that month. If data were missing for any hour during which precipitation was occurring, an M is listed for that station . 11 Table 3.1A Palisades Network: Daily Total Precipitation CAY PO 1 A P02A P03A P04A POSA P06A P07A POBA 1 0.06 0.03 o.oo 0.03 0.01 0.03 0.03 0.05 2 0.03 0.04 0.02 0.02 0.02 0.01 0.02 0.01 3 0.02 0.03 0.01 <L 01 0.03 0.01 0.02 0.04 4 0.00 0.00 0.00 o.oo o.oo o.oo 0.00 o.oo 5 o.oo o.oo 0.00 0.00 o.oo o.oo o.oo 0.00 6 0. 12 o. 13 0.05 0. 10 0.10 0.07 0.08 0.06 1 0.05 0.04 o. 01 o .. 02 0.02 0.01 0.04 0.00 8 0.21 0. 18 o. 11 0.16 0 -12 o. *14 0. 11 o. 18 9 0.05 0.06 0.04 0.05 O.CJ 0. OIJ 0.05 0.05 10 0. 15
* 0.06 0. 11 0.09 0. 11 0. 11 0.20 11 0.06
* 0.00 0.03 0.04 0.03 0.03 0.03 12 0. 12
* o. 0 1 0.05 o. 0 5 o. 04 0.06 0.02 13 0.03
* o. 01 0.04 0.02 0.03 0.03
* 14 0.03 (0.35) 0.02 0.02 0.01 0.01 0.03
* 1 5 0.06 0.04 o. 04. 0.04 0.03 0.03 0.01
* 16 0. 11 0.07 0.04 o. 06 0.06 0.04 0:.07
* 17 0.07 0.05 0.03 *
* 0.02 0.05
* 1 8 0. 18 0.15 o. 13 (0.18) ( c
* 1 5) o. 13 0.08 (0.34) 1<) 0.00 o.oo o.oo 0.00 0.00 o.oo o.oo o.oo. 20 0.00 0.02 0.00 0.01 0.00 ' 0.00 0.00 0.02 21 0. 0 1 0.01 0.01 0.01 0.02 0.01 0.00 0.03 22 O. OJ 0.03 0.01 0.03 0.03 0.02 o.oo 0.01 23 o.oo 0.00 o.oo .o.oo 0.00 0.00 0.00 o.oo 24 0.01 0.01 0.01 0.01 0.00 0.00 o.oo 0.03 25 M 0.08 0.06 0.07 0.09 0.06 0."05 0.05 26 M o. 14 0.05 0.07 0.07 0.07 0.09 0.06 27 M 0.08 0.05 0.05 0.06 0.0) 0.06 0.06 28 l1 0.25 o. 16 0.15 0.15 0.13 0.17 o. 16 29 M 0.27 o. 13 0. 15
* 0. 11 0.17 0.10 30 M M 0.06 0.07
* 0.02 0.06 0.05 31 M M 0.00 0.00 (0. 15) 0.03 0.05 0.01 ---------------Tot M M 1. 12 (1.35) 1.23 1. 4 7 ( 1
* 56) *** . -. . -.
*___) (Inches) for January 1977 P09A O.OJ 0.03 0.03 o. 00 o.oo 0. 11 0.02 0.13 0.03 * * * * (0. 18) 0.03 0.05 0.06 o. 11 0.00 0.01 o.oo 0.02 0.00 0.01 0.07 0. 13 0.05 0.19 M M M M , I ...,______, PlOA p 1 ll\ 0.03 M 0.03 /1 0.01 M o.oo o.oo 0.00 o.oo 0.09 M 0.04 M o. 18 0.04 M 0.12 ['f 0.03 M o. 02 M 0.03 !1 o. 01 ['f 0.06 '1
* 11
* M (0.21) 11 o.oo o.oo 0.01 0.00 0.01 o.oo 0.02 o.o 3 0.00 0.00 0.01 0.02 o. 02-0.02 0.08 0.00 0.05 M 0.16 r1 o. 14' M o. 06 :'I 0.03 M (1.49) M ' ----' I ___ ___,
P12A P13A 0. 01
* 0.01
* 0.02 (0.05) o. 00. 0.00 o.oo 0.00 0.08 0. 06 0. 01 0.01 0. 11 0.12 o. 04 0.03 o. 10 o. 1.3 o. 01 0.01 0. 0.3 0.03 o. 01 o. 04 0.01 0.01 o. 03 0.03 0.04
* o. 04
* 0. 13 (0. 14) o.oo 0.00 0.00 0.01 0.00 0.01 0. 01 0.01 0.00 0.00 0.02 0.01 0.04 0.06 0.08 0.01 0.04 0.05 0. 11 0.16 0. 0 <J o. 13 0.07 0.05 o.oo 0.00 1. 14 (1.22) -*. ' i -*'----..' I--' N I , I J 
.,,.. --,... ____ .. ,-*---_,,, -. ' Table 3.2A Network Greatest precipitation received in a given period for January 1977 Station 1-Hour 3-Hour 6-Houi:-12-Houi:-amt. day time amt. day time amt. day time amt. day time (in.) began (in.) began 0.11., began (in.) began P01A M M M -M M 11 M M M M M M P02A M M M M M M &#xa3;1 M M M M M PO 3 A 0.02 18 0800 0.07 .10 0100 0.09 18 0400 0.12 28 0100 P04A M M M M M M M M M M M M POSA M i1 H M M 11 M M M M M M P06A 0. 02 18 0900 0.05 18 0700 0.09 27 2300 o. 12 8 0400 P07 A 0.02 10 1600 0.06 26 1300 0.08 6 1700 0.12 28 0100 P08A M M M M M M M M M . !1 M M P09A M H M M M l1 M M M M M M P10 A M M M M M M M M M M M M P11 A M M M M M M M M M M .M M P12A M M M M M M M M M M M M P13A .M M M M M M l1 M {1 M M M . .
.* Hour amt. day time (in.) began M M M M M M \). 17 27 210) M M M M M M 0 .15 9 1600 0.19 28 2100 M M M M M M M M M H M M M M M M M M ... -.. '1 ...... w 
* ( ! 1 L l __ _ \ : !_ __ _ I L L I I I_ hZ "I .II w II II w II hh *1 ftZ"I II II 01 "I II II Tt!+OJ. hO" so* go* II II R II II II II II w
* II II II II II w II w so* go* LO" hO" EO
* so. II II II II II II hO" 90. LO" II II II II II II OObZ COE!: OO!:Z go* bO" hO
* so* EO" II w II II II II w w ii II II II II Ii w II w II w II II II II w ii II II II w II go* 90" hO
* so* hO" so* co* so. hO" zo* II II II II II II II II w II 90. no* zo* hO" hO" II Ii II w II II II II II II OOIZ oooz 0061 0081 OOLI bu1pua so* so* 90. so* hO" go* LO" 90" 90" 90" 90* 90" so* hO
* so. II II II II R II II II II ii II w II II II w Y(ld II
* II II W* hO
* so* 60" 90* hO" 90. so* so* hO. ED* hO
* vz 1 a II II w w II w II ii II II II II II II II II Ylld II w II II R II II II II i II II II II II II YO Id R II w ii II II II II II ii
* II II II .. II V60d II II II II II II II ii II II II II w II II II VBOd go* so. so* LO" ftO" 90" LO" 90. go* LD" LO* LO. 01* LO" go. 90* YLOd so. 50. LO" 90" so* so. go* 9J" 90* 90. 90" LO" 90" so. so* LD" Y90d II II w w II II II II II II II w II II II w YSOd II Ii II II II II II i II ii w II II II II A YhOd so* hO" co* so* 90* ED" 90. BJ" eo* go* co. so* ro* hO
* hO" &#xa3;0" VEDd A II w w II II II II II i II II w II II II HOd II II II II II w II II 'II i II w II II
* II YIOd 0 og1 OOSI OOhl OOCI OOZl ODI I 0001 0060 0080 COLO 0090 oo;o ODhO 00&#xa3;0 oozo 0010 us tt?A.la+u1
.:Inoq q::>l!'0 01 pa+l!'tnmn::>:H? (saq::>UT)
Ll6 A:nmut?r
:rnoq u1 pa+-etn11n::>:>t?
uo1+t?:i:rd1::>a.:Ia sapl!S'!Tt?d YE *r v1 
---. ** ..---*-.
* table J.la Network: Daily Total Precipitation D 1\ y PO 1fl P02A P031\ P1)41\ PC 5 A POGA P07A POOA 1 0. 00. 0.00 0.00 o.oo o.oo. 0.00 0. (J 0 0.00 2 M M 0. 011 0.06 (). c 7 0.06 iJ.07 0.06 J M 0. 0 () 0.00 0.00
* 0.01 0.01 11 d M 0.09 0. 17 0. 13 ( 0. 19) 0. 13 0. 17 5 :1 M 0.02 0. 011 0.02 0.05 0.02 * {j M 0.00 0.03 0. 0 1 0.02 0.01
* 7 !1 M l). 0 1 0. 0 1 0.01 0.03 0. L) 3 (0. 05) 8 0.00 \). 0 0 0.00 0. O*J 0.00 0.00 0.00 0.00 q 0.00 0. 1)0 o.oo o.oo 0.00 0. 0*1 0.00 (). 0 0 1 .) 0.00 (). 0 0 0.00 0.00 ')
* 0 0 o.oo o.oo 0.00 1 1 (). 0 0 0.00 0.00 o.oo 0.00 0.00 *0.00 0.00 1 2 0.28 J.20 0.20 0.20 0.20 0.20 0. 16 0. 16 1 .1 0. 0 3 O.OJ 0. 0 1 O.OJ O.C2 0. 01 0. I) 5 0.01 11i 0.00 0 ** 0 0 0.00 O.OJ 0.00 o.oo 0.00 0.00 15 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 1 6 0.00 0. ll 0 0.00 0.00 . 0. 00 O.Ou o.uo 0.00 1 7 J. 0 0 0.00 0 *. 00 0.00 0.00 0. 0 Q o.oo o.oo 18 0. 0 0 J.00 0.00 0.00 0.00 0.00 0. 00* 0.00 1 () 0.00 0.00 0.02 0.01 0.01 0. 01 0.00 0.03 20 0. 0;) 0.00 0.00 O.OJ 0.00 0.00 o.uo 0.00 2 1 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 l). 0 0 22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 23 0.07 0. 10 0.08 0.08 0.10 0. 1 J 0. 12
* 2lJ 0. J 7 0.09 0.09 (). 10 O.C6 0.07 (J. J 7
* 25 0.00 0. Ou 0.00 0.00 O.Ou 0.00 0.00 (0. Hi) 26 0. 0 *) O.JO o.oo 0.00 0.00 0.00 0.00 0.00 27 0. 1 ll (). 12 0.05 0.08 0.06 0. 11 0.06 M 2 fl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -----------*-----------'[ 0 t. !1 0. 6 1 0. 81 0.69 (0.8B) 0.73 M . ---. .,,, -* -' ---*-' -------.. --*** (Inches) foL 1977 P091\ 1?101\ p 11 A P12A P13A 0.00 0. I) 0 0. 0 (I 0.00 0.00 M 0.04 1'1
* 0.06 M 0. 01 '.1
* 0.00 .'l o. 17 r1
* 0.13 0.02 0.03 0. 0 .3
* 0.03 0. 011 0.01 0.02
* 0.01 0.01 0. 01 u.01 (0. 16) 0.01 0.00 0.00 o.oo 0.00 0.00 o.oo 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 o. 0 0 0.00 0.00 0.00 0.24 0.23 0.21
* 0. 16 0.03 0.01 0.01
* 0. 0 1 0.00 0.00 0.00
* 0.00 0.00 0. 1) 0 o.oo ( 0. 23) 0.00 o.oo 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.01 0. 01 0.02 0. 01 0.01 0.00 0.00 0.00 0.00 o*. oo o.oo o.oo 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 0.09 0.08 0.07
* 0. 10 0.07 0.09 0.09
* 0.07 0.00 o.oo 0.00 (0. 16) o.oo 0.00 0.00 0.00 0.00 0.00 0.05 0. 1 0 0.09 0.06 0.06 0. 0 Ll 0.00 0.00 0.00 o.oo --------------------M 0.79 M {0.62) 0.65 I-' lJl Table 3.2B NetwoLk I-' Greatest precipitation received in a given period for O'\ FebruaLy 1977 Station 1-Hour 3-Hour: 6-Hour 12-Hour 2 4-HOU[' amt. day time amt. day time amt. day time amt. day time amt. day time (in.) began Ci n.) began (in.) began (in.) began (in.) began p) 1A M M M M M ti M M M M M M l1 M M P02A M M M M M M l1 M M M M M M M M p*)JA i)
* 04 12 1500 u. 10 12 150 l) 0.18 12 1400 0. 20 12 121)0 0.21 12 1200 P04A 0.07 12 1500 0. 14 12 140 0 0. 18 12 1400 0. 20 12 1200 Cl. 23 12 1200 POSA 0.08 12 1500 o. 14 12 1500 0.19 12 1400 0.20 12 1200 0.22 12 12 00 Pu 6 A M M M M M M M M M M M M M M M P07A 0. 06 12 1600 o. 12 12 1500 0.13 12 1500 0.16 12 1 500 0.20 12 1500 P08A M M M M M M 11 M M M M M M M M P09A M *M M M M M M* M M M M M M M P10A M M M M 11 M M M M M M M M M M P11A M M M M M M M M M M M l'1 M M M P12A M M M M M M M M M !"] M M M M M P13A l). 05 12 1600 J. 11 12 150() 0. 15 .12 1300 0. 16 12 1200 0. 17 -12 110'.) , ____ _; (__j c__j
__ __j ._i 
---------------------------17 ** Table 3.JB Palisades Network: Precipitation in each hour (EST) for February 1977 Precipitation (inches) accumulated in each hour interval ending at St* 0100 0200 0300 0400 0!00 0600 0700 0800 09CO 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 Total P01A M H " " M " " ! " H ! H " ! H H ! ! ! a ! ! ! P02A H " M " M M M . " " a " " " ! " ! ! " ! H ! ! ! P03A . 01 .oo
* 00 .01 .02 .01
* 02 .02 .C4 .04
* OJ .01 .02 .02
* OJ .04 .07 .07
* 06 .05
* 01 .oo .oo .oo .60 P04A .02 .02 .01
* 0 1 .02 .02 .OJ .OJ
* c 4 .07
* 05 .OJ .04 .02 .03 .OB
* 06 .06
* 06 .OS
* OJ .02 .01 .00
* BO POSA . 01
* 01
* 01 .00
* 0 1
* 02 . 03 .02 .C4 . 04 . 02 .04
* 02 .
* 02
* 02 .OB .OS .07 .06 .06 .02 .01 .02 .01 .68 P06A M ! a H M " P. r. H H " H " ! ! ! ! a ! ! ! ! ! P07h . 01 .01 .oo
* 01 .02 .02 .01 . 01
* 03 .OJ .04 .04 .04 .OJ .il2 .OS
* 09 .10 .os .04 .04 .02 .02 .02 .73 20BA " " " " " H " " M ! " " M ! " ! ! ! ! ! ! ! t109A H M M H " " ! H ! M H H H M ! M M ! ! ! ! ! ! ! ! P10A .01 .oo .00 .o 1 .02 .04 .04 .04 . C6 .07 .os .03 M ! M .03 .11 .07 .os .02 .03 .02
* 01 .01 ! P11A . ! " " " " M M H H " " H ! H ! ! ! ! ! ! ! ! P1n " H M M " H ! H M " a M M ! ! ! ! ! H ! ! ! ! ! P 1JA .OD
* DO .DO
* 01 .D1
* 01 .oo .01 .c2
* 01 .OS .04 .05 .04
* 03 .06 .07
* 07
* OS .02 .03 .02 .02 .oo .64 ------------------*---------------------------------------------------------ave
* 01
* 01 .oo .01 .02 .02
* 02 .02 .C4 .as
* 04 .OJ .OJ .03 .03 .06 .OB .07
* OS .04 .02 .02
* 01 .01 .n *
* I-' CX) Table 3. 1 c PalisadPs Network: Daily Total Precip i. tat ion (Tnchesl foe March 1977 DAY P01A P02t\ P03A PO 4A PO')A P06A P071\ POSA P09A P10A P11 .I.\ P12A p 1 ,\ 1 O.Q!) O.JO 0.00 0.00 1).()0 .). 00 o.oo (). 0 0 0 *. )0 0. 0 :) :)
* 00 0. 0 i) *).OJ 2 0.00 0.00 o.oo 0.00 o.oo 0.00 o.oo o.oo o.oo 0.00 0.00 0.00 0.00 3 ()
* IJ 1 0. 41 0.43 )
* 3 C) 0.31 !). .39 0.35 0.43 0.42 0.40 0. 39 1). 3 8 11 0.46 0.48 0.45 0.53 0. 52 0.52 0.48 0. 118 ( 0. 7 7) 0.50 0.42 0.4g n."so 5 0. !) 0 O.OJ 0. () 0 0.00 J.00 0.00 0.00 0. Ji) 0. 01) 0.00 0.00 0. Qi) !)
* 0 0 6 (). 0 0 0.00 0.00 0.00 0.00 o.oo o.oo o.oo 0.00 0.00 0.00 0.00 0.00 7 0. () 0 :). () 0 0.00 ). 0!) 0.00 0.00 Q.00 0.00 0. Ot) 0.00 0.00 '.). 0 :) .)
* 0) 8 I). 0 0 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 0.00 o.oo o.oo 0. 0 () o.oo 9 0. '.) ') 0. 0 i) o.oo 0. *.) 0 *J.00 ).00 0. 'JO ).00 (). 0 0 0.00 0.00 o.oo I)
* 0 '.) 1 n 0.00 0.00 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 o.oo 1 1 0 . :) :) 0. 00 . 0.00 o.oo 0.00 )
* 0 i) (). 0 0 O.JO 0.00 C). 0 J O.OJ 0. 0') *). 0 *) 12 0. <) 8 0.60 0. 5 C) 0.57 0. 511 0. '11 0.59 0. 5 C) 0.55 0.62 0.56 0. 56 0. ') 2 11 ,) . J9 (}.')9 0.08 0.08 !)
* 14 i). 14 '.}. 17 O.OB 0. 10 ).07 *)
* 11 0. 111 :)
* 15 14 o.oo o.oo 0.00 0.00 0.00 0.00 (). 0 0 0.00 0.00 0.00 0.00 o.oo 0.00 15 ;). 110 o.oo J.00 0.00 r'). 00 J.00 0. () 0 o.oo 0.00 :)
* 0 J 0
* I) 0 0.00 0.00 1 6 o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 (). 00 o.oo 17 0. ?. 6 0.23 0.24 0.24 0. 19 ).27 0.22 '). 28 0.2J 0.28 0.27 0.22 I). 2 2 1fl (). 3 9 0.37 0.32 0.29 0.32 0. 41 0. 4 LI 0.38 0.35 I)
* 3 LI 0. 38 0.30 0.23 19 r). 0 1 0. !) 2 O.J1 0. *)0 l). 0 1 :). 0 1 !)
* 0 2 0 * () 1 0.03 0.03 0.01 0.01 '.) * () 1 20 0.28 0.23 0.22 0.20 0.26 0.21 0. 2 ') 0. 1 9 0.27 0.26 0.23 (). 1 7 21 0.01 o.oo 0.03 0.02 0. !) 0 ')
* 0 1 0.00 0.01 0.03 0. 0 1 0.00 0.01 '.). 01 22 0.01 0.04 o.oo 0.02 0.01 0.02 0.02 o.oo 0.00 o.oo 0.01 0. 0] 0.02 71 I). 0 0 0. 0 :) (). J 0 f). 00 o.oo )
* 0 ') '..). () 0 o. 01) i'J.00 o.oo O.OJ 0.00 o.oo ? 'I 0. () 0 0.00 0.00 o.oo 0.00 o.oo o.oo o.oo o.oo o.oo 0.00 0.00 0.00 25 J.01) 0. ();) o.oo o.oo o.oo J.00 0. 1)0 0.')') O.OJ o.oo 0.00 0.00 f).00 ?6 0. 0 () 0.00 o.oo o .. oo o.oo I). 00 0.00 0.00 o.oo 0.00 o.oo 0.00 27 0. :)CJ 0. 12 0. 13 '). 1 2 ;)
* 14 t). 1) 0. 12 0. 1 J O.OCJ 0.12 0. 13 0. 12 ()
* 1 3 2B 0.72 0.68 0. 7 3 0.72 0.70 0.72
* 0.73 0. 6ti 0. 7 IJ 0.70 0. 6 g 0.67 2g I). 1 4 0. 15 J.08 0.10 1. 10 } * '.)8
* 0. 1 IJ 0. 10 0. 14 0. 111 0. I) g o. n <() ().00 0.00 0.00 0.00 o.oo 0.00
* 0.00 0.00 0.00 0.00 0.00 0.00 11 f). ') 0 O.OJ 0.00 0.01 ').OD !). 0 () (L 81) 0.00 0.00 O *. '.)O D.00 f). 0 0 0.02 'l':Jt l. LI 8 )
* ll 1 3.32 3. ) 1 3. 1 B 1. 4 7 ( J. 4 3) 1.48 (J.05) 3.54 3. 3g 3.36 1. 15 **
* __ J _ _, ._ _ ___!
._} 
--:. ** ; Ta'bl e J.2C Palisades Network Greatest received in a given period for March* 1977 Station 1-HOUI:' 3-Hour: 6-Hour 12-Hour 24-Hour amt. day time amt. day ti we amt .. day time amt. day time amt. day time (in.) began {in.) began (in.) began {in. ) began {in.) began P01A 0.25 28 1300 0.42 28 1100 o. 4 7 28 0900 0.58 28 1200 0.85 28 0200 P02A 0. 17 28 1300 0. 40 28 1200 0. 4 7 28 0900 0.55 28 1200 0.84 *3 160J P03A 0.17 28 1200 0.38 28 1200 o .. 4 7 28 0900 0.59 28 1200 0.84 3 1600 PO 4A 0. 22 28 1300 0. /.J4 28 1 lOJ 0.46 28 0900 0.60 28 1200 0.87 3 1600 P05A 0.21 28 1300 0.39 28 1100 0.47 4 1000 0.54 28 1200 0.81 3 160*) P06A 0 .19 28 1200 0.38 28 1100 o. 4 6 1000 0.53 2 8 0 500 0.87 3 1700 PO 7 A M M M M M M M M M M M M M M M POSA 0.22 28 1300 0.39 28 1200 0.48 28 0900 0.57 28 1200 0.85 28 0200 P09A M M 11 M M M M M C1 M M M M M M P10A 0 16 4 1100 0.31 28 1200 0.44 28 1000 0.61 28 1200 0.86 28 020') P11A M M M M l1 M M M M M M M M M M P12A 0. 23 28 1300 o. 43 28 1100 0 .4 8 28 10*)0 0.54 28 1200 0.03 3 160;) P1JA 0.15 28 1200 0.36 28 1100 0.43 28 1000 0.50 28 0400 0.85 3 160J 20 Table 3.3C Network: Precipitation accumulated in each hour (EST) for 1977 Precipit:atioa (inches) accumulated in each hour interval ending at Sta 0100 0200 0300 ouoo 0500 06 00 0700 0800 0900 1000 1 00 1200 1300 1UOO 1500 1600 1700 1800 P01A
* 15
* 12
* 11
* 10 .09 .09
* 1 5
* 16 .22 .11
* 13 .15 .2u .JU .10 .02 .03
* 11 P02A
* 16 .11 .10
* 10
* 08 .OS
* 12 .16 .22 .17
* 19
* 20
* 25 .23 .12 .02 .02 .10 P03A .1 5
* 08 .08
* 09 .06
* 06 .11 .1U .16
* 1 4
* 18
* 28
* 21 .10
* 01 .01 .08 P04A
* 1q .06 .09 .18 .09 .07 .13
* 26
* 12 .11 .25 .2U .29 .06
* 02 .02 .OS POSA *' 9 .06 .07
* 06 .06
* 12 . ,,
* 13 .17
* iu
* 1U
* 25
* 2U
* 29
* 10 .03 .02 .06 ?06& * , 6
* 06 .10
* 10 .10
* 10
* 10 .12
* 21
* 17 .1 s
* 33
* 1 u .07 .07 .os
* 06 M7A " " " ., " " " " M M M M M " M M " M P08'
* 17
* 16 .08
* 08 .08 .10 . 13 .1*
* 22
* 12
* 17
* 21
* 21 .30 .12 .03 .02 .07 P09A M. M " M " " M M " " M ' " " " M M M P10A
* 17 .11 .OR
* 08
* 08 .10 .10
* 1*
* 20
* 18
* 12 .25
* 21 .18
* 16
* 08 . .02 .au P11A .19
* OR .10
* 10 .00 .11 , ' M " M .. .2R .29 .10 .02
* 02 .10 P12!
* 10 .07 .13 .07 .07
* 10
* 07 .13
* 19
* 18
* 22
* 27
* 27 .07 .02 .01 .08 P13A .17
* 08 .03
* 06 .00
* 06 . ,, .11
* 19 .13
* 17 .27
* 27
* 19
* 08
* 04 .01 .07 ave
* 16 .09 .09
* 08 .08 .09 .11 .14
* 21 .15
* 16
* 24
* 26
* 25
* 10 .03 .02 .08 1900 2000 2100 2200 .OU .22 .23 .16
* 09 .15 .30 .21
* 10
* 13
* 23 .27
* 08 .13 .28 .21 .08
* 12
* 22 .22 .08
* 12 .17 .28 M M " "
* 10
* 1 *
* 27 .23 M M M M .11 .16 .31
* 24 .09 .11 .33 .22 .09 .08
* 27' .25
* 09 .10
* 19
* 28
* 09 .13
* 26 .23 2300 2UOO .18 .21 .12 .16 .23 .21 .19
* 20 .12 .20 .20
* 19 " M' .16 .19 M M
* 21 .19
* 13 .19 .13 .17 .18 .17 .17 .19 Total 3.46 3.U7 3.32 3.33 3. 1S 3.ue " 3.U9 " 3.53 M 3 .37 3.13 3. 39 }
* l I I ]
* I J I I _) I .J *
* D.l'tY 1 2 3 4 5 f) 7 A 9 10 11 12 13 1 'l 15 16 17 10 1 9 20 21 22 23 24 25 26 27 28 29 30 'I'ot ---------.* --* ----, --*... . ___ ..,. -** r ----...,_
-,. r* Table 3 .. 1D Palisades Network: Daily Total Precipitation (Inches) f oi-April 1977 P01A P02A P03A P04A POSA P06A P07A POSA P09A PlOA . p 11A P12A P13A 0.00 o.oo 0.00 o.oo 0.00 o.oo o.oo 0.00 0.00 o .. oo 0.00 0.00 0. 00 1. 3 1 1.29 1. 33 1.48 l. 27 1. 22 0.77 1. 35 1. 36 1.1'7 1.43 1. 13 0.72 o.oo o.oo o.oo o.oo o.oo o.oo 0.00 0.00 0.00 o.oo o.oo o. 00 0.00 0.22 0.22 0.23 0.23 0.23 0.25 0.22 0.23 o .. 1 a o .. 21 0.25 0.24 0.19 0.05 0.05 0.02 0.03 0.06 0.05 0.10 0;.07 0.07 0 .. 05 0.08 0.02 0.05 0.00 0.00 o.oo o.oo 0.00 o.oo o.oo o .. 00 0.00 0.00 o.oo o.oo 0.00 0.06 0.07 O.OB 0 .. 08 o.oa 0.06 0.02 o .. 06 0.06 0.07 0.00 0.06 0.05 0.00 o.oo o.oo o.oo 0.00 0.00 0.00 0 .. 00 0.00 o.oo 0."00 o.oo o.oo 0.00 0.00 o.oo 0.00 0.00 o.oo 0.00 o.oo o.oo o.oo o.oo 0.00 0.00 o.oo o.oo 0 .. 00 o.oo o.oo o .. 00 o.oo o.oo o.oo o.oo 0.00 o.oo o. 00 0.00 0.00 o.oo o.oo 0.00 o.oo o.oo o.oo 0.00 o.oo o.oo o.oo o. 00 0.00 0.00 o.oo 0.00 o.oo o.*oo o.oo 0.00 o.oo 0.00 o.oo 0.00 o.oo 0.04 0.01 o .. 01 0.03 0.02 0.01 0.02 0.03 0.02 0.01 0.00 o .. 00 o.oo 0.00 O'. 00 o.oo o .. 00 o.oo 0.00 0.00 0.00 o .. 00 o.oo 0.00 o.oo o.oo 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 o.oo o.oo o.oo 0.00 0.00 o.oo 0.00 0.00 o.oo o.oo o.oo o .. 01 o. 01 0.01 o. 0 0 o.oo o.oo 0.01 0.00 0.00 o.oo 0.00 o .. oo 0.00 O.OQ 0.01 0.01 o. 01 . 0.00 o.oo o.oo o.oo 0.00 o .. 00 o.oo o.oo 0.00 0.06 0.00 o.oo o.oo o.oo o.oo o.oo 0. OIJ 0.04 0.05 0. OJ. 0.04 0.0) 0.00 0.03 0.05 0.04 o. 05 0.05 0.07 0.45 0. '*4 0.40 0.43 0. 6 4 o. 41 0.63 o. 4.5 0.38 o. 39 0.60 o. 11 o. 54 0. OIJ 0.04 o. 04 0.04 0.05 0.0] 0.09 0.03 0.04 0.03 o. 0 5 0.04 0.04 0.22 0.22 0.20 0.24 0.28 0.34 0.24 o. 22 0.25 0.24 o. 27 0.28 0.24 0.02 0.03 0.01 0.02 0.01 . o. 02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.04 "* 0.02 0.01 0.04 0.01 o .. 02 o. 01 o .. os 0.02 o.oo 0.02 0.05 0.26
* O.JO 0.27 0 .. 33 0.25 0.36 Oe33 0.32 0.28 o. 25 o. 30 0.33 0.00 (0.33) 0.00 0.00 o.oo o.oo 0.00 o.oo o.oo o.oo 0.02 o.oo 0.01 0.05 0 .. 03 0.05 0.05 0.04 0.04 0.03 0.;. 01 0.03 0.03 0.04 o. 06 0.08 0.51 0.50 o*. 4 9 0.49 0.44 0.45 0.4 7 0.49 0.45 o. 49 0.49 o .. 49 0.49 0.00 0.00 o.oo 0.00 o.oo o.oo o .. oo 0.00 0 .. 00 o .. oo 0.00 o .. 00 0.00 0.00 0.00 o.oo 0.00 o.oo o.oo 0.00 o.oo o.oo 0.00 0.00 0.00 o.oo -----------------------------------3. 31 ( 3. 21) 3.23 3.43 3.53 3.17 3 .. 06 3.35 3.30 3. 3 6 3.64 3.42 2 .. 89 N I-'
Table 3.2D Pali sades Networ:k Gr:eatest precipitation received in given pe['iod for N a N Ap['il 1977 Station 1-Hour: 3-Hour 6-Hour: 12-Uour 2 4-Hour: amt. day time amt. day time aw t. day time amt. day time amt. day time (in.) began (in.) began (in.) began (in.) began (in.) began P01A 0.77 2 1.30 0 0.97 2 1100 o. 98 2 0800 1. 21 2 0200 1. 31 2 0000 PO 2A M M M M M a M 11 M M M M M M M PJJA 0. 55 2 1300 1. 01 2 110 0 1. 02 2 0800 1. 21 2 0 21)0 1. ]] 2 0000 P04A 0. 85 2 1.300 1. 15 2 1200 1. 16 2 1200 1.40 2 0200 1.48 2 0000 POSA 0.91 2 1300 0.96 2 110 0 0.96 2 0800 1. 17 2 0200 1. 27 2 OJOO P06A 0.71 2 1300 o. 80 2 1200 o. 81 2 1200 1.06 2 0200 1. 22 2 0000 PJ7A 0.38 20 1900 0. 49 20 18ll i) 0.54 20 1500 0.64 2 0200 0.77 2 01)00 POSA 1.02 2 1]00 1. 04 2 1100 1. 04 2 9800 1.29 2 0200 1.35 2 0000 P09A M M M M M N Ci M M M M M M M M P10A 1.11 2 1300 1. 11 2 1100 1. 1 2 2 0800 1. 40 2 0200 1.47 2 0000 P11A 0. 74 2 1300 1. a 1 2 120 () 1. 01 2 1200 1. 17 2 0200 1. 4 3 2 001):) P12A o. sii 2 1300 0.72 2 12 00 0.73 2 0900 0.90 2 0200 1
* 13 2 0000 P13A 0.23 20 1900 0.37 20 1700 0.46 20 1500 0.58 2 0200 0.72 2 0000 **'-**--L----. * ,__. *-* -.l *_J . __ I __ ) ._) __ _J 23
* Table 3.30 Palisades Retvork: Precipitation accumulated in each boar (EST) for April 1977 Precipitation (inches) accuaulated in each hour interYal endinq at Sta 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 HOO 1500 160 0 1700 1BOO 1900 2000 2100 2200 2JOO 2400 Toto.l PO IA .os .10 .16 .17 .1S .24 .20 .13
* 09
* OJ .07 .OB .22 .BJ .06 .12 .07 .OS .27 .OQ .OQ .03
* 02 .06 J.31 : -. P02A 8 8 a ! B* 8 ! 8 8 8 ft 8 8 8 ! 8 8 8 8 8 ! ! ll ! ! P03A .09 .10 .14
* 12 .12 .19 .2J .20 .12 .03 .04 .09 .so
* SB .03 .OB .11 .09
* 07 .17 .02 .02 .02 .06 J. 22 P04A
* 06 .07 .20 .12 .14 .23 .21 .13
* 10
* 03
* 06 .01 .37
* 93 .OS .16 .07 .11 .11 .10 ... 02 .02 .03 .04 J.42 POSA .11
* 12 .14 .15 .16 .17 .22 .17
* 11
* 03
* 04 .06 .10
* 96 .21 .26 .09 .13
* OS .13 .02 .02 .02 ,06 3. 54 P06A .02 .09 .14
* 16 .1J .14
* 14 .lJ .13
* OS
* 03 .OB .12 .79 .12 .19
* OB
* 1S .14 .19 .06 .04 .02 .OS 3. 1B P07A .06 .10 .13 .21 .OQ .10 .Ji .11
* 12
* 04
* 04 .OB .14 .35
* 06 .OQ .09 .09 .19 .QS .13 .03 .OJ .10 3.05 POBA .OB .OB .1s
* 13 .13 .25
* 19 .17 .10
* OQ .06 .06 .07 1.0B .OB .OS .01
* 10 .1B .14
* OB .02 .01 .02 3 *. )4 P09A .10 .09 .14 .12 .13 '! ! 8 !, ! ! !. B ft ! !I ! ! ! ! ! ! ! ! ! P101 .os
* 07 .12 .17
* IS .1 s .21 .17
* 14
* 03
* 06
* I 0 .OB 1.16 .OS
* 06 .10 .07 .13 .17 .06 .02 .02 .02 3. 35 P11A .07
* 09 .17
* 11 .14 .JO .19 .17 .17 .02 .07 .07 .19 .B1 .2B .20 .OB .07 .17 .11 .09 .04 .02 .04 3. 64 P121
* OB .11 .1S .1S .12 .21
* 24 .13 .1S
* OQ
* OS .OB .1s .S7 .22 .09 .44 .09 .12 .08 .OS
* 02 .OJ .OQ 3. 41 P1JA .OB .14 .17 .13 .12 .10 .16 .20 .16 .06 .OJ .09 .16 .25 .01 .08
* 08 .10 .15 .29 .06 .04 .04
* 11 2. as ave
* 01 .10 .1s .14 .13 ,19 .21 .15
* 13
* 04
* 05 .08 .19
* 7S
* 11 .12 .12 .. n .17 .06 .OJ .02 .06 3 * .JO * * 
""" Table 3. 1 E .Palisades Network: Daily Total Precipitation (Inches) for May 1977 DAY PO 1A P02A P03A PD4A POSA P06A P07A P08A P091't P10A P1 H P12A P13A 1 0.00 0.00 0 .. 00 . 0.00 0.00 o.oo 0.00 0.00 o.oo 0.00 0.00 *o. oo o.oo 2 0. 01 0.01 0.01 0.00 0.01 o.oo 0.01 0.02 0.01 0.02 0.01 o. 01 0.02 3 0.00 0.00 0 .. 00 0 .. 00 0.00 o.oo *O. 00 0.00 0.00 0.00 0.00 0.00 0.00 ii 0.03 0.04 0.02 . o. 07 0.06 0 .. 03 0.03 0.04 o. 12 0.04 0.07 0.07 0.03 5 0.35 0 .. 37 0.38 0.40 0.36 0.40 0.51 0.41 0.39 o. J 7 0.43 0.39 0.50 6 0.00 o.oo 0.00 o .. oo 0.00 o.oo o.oo 0.00 o. 00 . 0.00 0.00 0.00 0.00 7 0.02 0.00 0.01 0.02 0 .. 02 0.01 0 .. 00 0.01 0.00 0.01 0.00 0.00 o. 01 8 0.00 0 .. 01 0.01 0.00 0.00 o.oo 0.01 0 .. 01 0.00 0.00 0.01 o. 00 0.01 9 0.00
: o. 00 0.00 o.oo 0.00 0.01 o.oo 0.01 0.00 0 .. 01 0.00 0.00 10 0.00 0.00 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 1 1 o.oo o.oo o.oo 0.00 0.00 0. 00* 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 12 0.00 o .. 00 . o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 o.oo 0.00 1J 0. 00 0.00 a .. oo 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 14 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 o. 00 . 0.00 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o .. 00 0.00 0 .. OD 0.00 16 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17 0. 11 0.09 0.07 0 .. 05 0.06 0.04 0.00 0. 13 0. 10 0.07 0.05 0.04 0.04 18 o. 00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0. 0 0 0.00 0.00 0.00 19 o .. 00 0.00 0.00 0.00 0.00 0.00 o .. 00 o.oo 0.00 0.00 0.00 0.00 0.00 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o .. 00
* 0.00 0.00 o.oo 0.05 21 0.01 o.oo 0.08 0.12 0. 11 o .. 00 o.oo 0.00
* 0.08 0.10 0 .. 1 9 0.01 22 0.01 0.04 0.01 0.04 0.13 0.30 0 .. 12 0.04
* 0.05 0.04 o. 13 0.27 23 0.00 0.00 0.00 0.00 o.oo o. 00 0.00 0.00
* 0.00 0.00 0.00 0. 00 24 0.00 0 .. 00 0.00 0.09 0 .. 05 0.05 0.00 0.03 ( 0. 10) 0.02 0.03 0.06 0. 00 25 0.00 0.00 o. 00 0.00 0 .. 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 26 0.00 0.00 0 .. OD o.oo 0.00 0.00 0.00 0.00 0.00 o .. 00 0.00 0.00 0.00 27 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 o.oo 0.00 28 0.00 0.00 0.00 0.00 o.oo* o.oo 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 29 0.06 0.04 0.03 0.01 0.01 0.04 o.oo 0.03 0.03 0.01 0.01 0.00 0.00 JO 0.00 0.00 0.00 0.00 0 .. 00 0.00 o .. 00 0.00 0.00 o .. 00 0.00 o. 00 0.00 31 . 0.87 0.82 o. 81 0.79 0.81 0.60 0.41 0.93 1. 00 0.87 0.70 0.70 0. 16 Tot 1.47 1. 112 1. IJ) 1. 59 1 .. 6 2 1 .. 47 1. 10 1.73 (1. 76) 1. 5 4 1. 4 6 1. 59 1. 10 -, __ _ . __ ; , __ ._! ____ _J 
*** --..... . ---* ** Table 3.2E Palisades Network Greatest precipitation received in a given period for Hay 1977 Station 1-Hour 3-Hour 6-Hour 12-Hour amt. day time amt. day time amt. day time amt. *day time (in.) began (in.) began (in.) began (in.) began P01A 0.39 31 0500 0.87 31 050 0 0.87 31 0400 0.87 31 2300 P02A M M M 11 M I1 M M M M M M P03A 0.38 31 0600 0.01 31 0500 0.81 31 0500 0.81 31 2300 0.32 31 0500 0.75 31 0 50 0 o. 79 31 0400 0.79 31 2300 POSA 0. JO 31 0600 0.01 31 0500 0.81 31 0400 0.81 31 2300 P06A 0.32 31 0600 o. 59 31 0500. 0.60 31 0500 0.60 31 2300 P07 A 0.35 5 0200 O. l44 5 0000 o. 4 8 5 0000 D. 50 5 0000 POSA 0. 41 31 0600 0.93 31 0 50 0 0.93 31 0400 0.93 31 2300 P09 A M M M M M M M M M M M M P10A 0.36 31 0700 0.79 31 0500 31 0400 0.87 31 2 300 P11A 0.28 31 0600 0.70 31 0500 0.70 31 0500 0.70 31 2300 P12A 0. 34 31 0600 0.69 31 0500 0.70 31. 050(). 0.70 31 2300 P13A 0.32 5 0200 0.47 5 0100 0.49 5 0000 0.50 5 0000
* 24-Hour-amt. day time (in.) began 0.87 . ]1 2300 M M M 0.81 3 1 2300 0.79 31 2300 0.81 31 2300 0.60 31 2300 0.51 5 0000 0.93 31 2300 M M M 0.87 31 2300 0.70 31 2300 0.70 31 0800 0.51 4 0500 N U1 26 Table 3.JE Palisades Hetvork: Precipitation accumulated in each hour (EST) for May 1977 Precipitation
{inches) in each hour interval ending at sta 0100 0200 0300 oqoo osoo 06oo 0100 0500 0900 1000 1100 1200 1300 HOO 1SOO 1600 1700 1800 1900 2000 2100 2200 2300 2qoo Total P01A
* oq .17 .11 .02 .01 .q1 .30 .* 20
* Qq .11 .00 .oo .oo .oo .00 .oo .oo .oo
* 00 .oo .oo .00 .01 .01 1.q1 P02A .oo
* 06 .1q .13 .02 .39
* 31 .21
* oq M M M M M M M M " M M " M M M M P03A
* 03 .07 .27 .oo .00 .1s .39 .29 .OS
* 06 .oo .oo .oo .00 .oo .oo .00 .oo
* oq .oq .oo .oo .00 .00 1. 42 POU .03 .19 .23 .02 .oq .3S .29 .20 .* 02 .OS
* 00 .oo .00 .* 00 .oo .oo .oo .03
* 09 .01
* 01 .01
* 01 .01 1. 60 POSA .OS .16 .16 .oo .oo .37 .38 .2S .02 .OS
* 00 .oo .DO .oo .* oo .oq .01 .oo .* 07 .01 .01 .01 .01 .o 1 1. 61 P06A .oq .16 .21 .01 .01 .33
* q9 .10 .03
* OS
* 01 .oo .oo .00 .00 .00 .00 .oo .oo .00 .oo
* 01 * .01 .01 1. 48 P07A .oq .os .36 .03 .01 .16 .31 .08
* 02 .01
* 01 .01 .00 .00 .00 .00 .00 .oo .oo .oo
* 00
* 00 .oo .oo 1.10 POSA
* 03 .06 .28 .07 .oo .26
* q1 .30
* 02 .09
* OS .oo .oo. .oo .oo .oo .oo .oo
* 08 .oo
* 00 .oo .01 .oo 1. 73 P09A M M M M e. M M e* M M M M M M M M M " M M M " M M " P10A .02
* OS .19 .08 .03 .1s .36 .38
* 09 .OS
* 03 .00 .QO .00 .00 .oo .oo
* 00
* OS .03 .01
* 00 .00 .00 1. 5q P111 -03 .18 .19 .OS .01 .22 .32 .22
* 02
* 03
* 03 .01 .oo .oo .oo .oo .00 .00
* 06 .OS
* 00 .oo .oo .02 1. 46 P121 .00 .H .26 .01 .01 .32
* q1 .06
* o 1
* oq
* 00 .00 .01. .01 . 01
* o 1 .05 .oq .03 .04
* 03 .01 .00 .oo 1. S8 P13A .02 .08
* 33 . ,, .06 .31 .09 .03
* 01
* 03 .01 .00 .00 .oo .00 .oo .oo .oo
* 00 .oo .00 .00 .oo .01 1.11 ave .03 .12 .23 .04 .02 .29 .JS .19 .03 .OS .01 .00 .00 .00 .00 .01 .01 .01 .04' .02 .01 .00 .00 .01 1.47 --i I * -] ., .! *1 I j -1 j ] *1 .J
* l I ! __ _) I J _J * 
' .* ** '.
* Table 3. 1 F Palisades Netwock: Daily Total PI:'ecipitation (Inches) for June 1.977 DAY PO 1A P02A P03A P04A POSA P06A P07A POSA P09A P10A P11A P12A P13A 1 0.09 0. 10 o. 11 0.12 0.14 0.14 0.16 0. 11 o. 11 o. 11 o. 15 o. 15 0.26 2 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 o.oo 3 o. 00 0.00 o. 00 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo 0.00 o.oo 0.00 4 o. 00 0.00 0.00 0.00 0.00 o.oo 0.00 o.oo o. 00 0.00 0.00 o.oo 0.00 5 1. 02 0.87 o. 83 0.74 0.89 0.66 0.70 o. 92 0.85
* 0.76 0 .. 66 0.69 6 0.04 0.03 0.04 0.04 0.04 o. 05 . 0 .. 04 o. 06 o. 04 (0. 92) 0.04 o. 06 0.09 7 0.00 o.oo 0.00 0.00 0.00 0.00 o.oo 0.00 o. 00 o.oo o.oo o.oo o.oo 8 0.29 o. 3 c 0.28 o. 30 0.30 0.26 0.28 0. 25 0.25 0.28 0.29 0.28 0.28 9 0.00 0.00 o.oo o.oo o.oo 0.00 0.00 0.00 o.oo o.oo o.oo o. 00 0.00 10 0.02 0.02 0.01 0.01 o.cs 0.04 0.01 o. 04 o. 01 o. 0 0 0.00 o. 01 0.05 1 1 0.44 0.47 0.46 0.45 0.40 o. 37 0.37 0.44 0.44 o. 51 0.48 0.45 0.46 12 0.02 0.01 0.03 0.02 0.02 o. 02 0.01 o.oo 0.00 0.02 0.00 o. 01 0.00 13 0.00 o.oo o. 00 0.00 o.oo 0.00 0.00 o.oo o. 00 o.oo o.oo 0.00 0.00 14 o.oo o.oo 0.00 0.00 0.00 0.00 o.oo o.oo 0.00 o*. oo 0.00 0.00 o. 00 15 0.00 0.00 0.00 o.oo o.oo 'O. 00 o.oo 0.00 . o. 00 0.00 o.oo o. 00 0.00 16 0.07 0.06 0.06 0.05 0.12 0.05 0.01 0.06 o. 14 0.07 0.06 o. 12
* 17 1. 30 1.27 1. 12 1. 51 1. 15 0.79 0.93 1. 19 1-13 1-50 1. 54 1.08
* 10 0.05 0.05 0. 19 0.09 0.17 0.12 o .. 11 0.01 o. 11 0. 13 o. 11 o. 17 ( 1. 2 9) 19 0.00 0.00 0.00 0.00 0.00 0.00 o.oo o. oo* o.oo o.oo o.oo o.oo o.oo 20 o .. 00 0.00 o.oo o.o o.oo 0.00 o.oo 0.00 o. 00 o.oo o.oo 0.00 0.00 21 o. 00 o.oo o.oo 0.00 o.oo 0.00 0.00 o.oo 0.00 o. 0 0 o.oo 0.00 0.00 22 0.00 0.00 o .. oo o.oo 0.00 0 .. 00 0.00 O.QO 0.00 o. 00 o.oo o. 00 0.00 23 0.00 0.00 o.oo o. 00. 0.00 0.00 o.oo 0.00 o.oo o.oo o.oo 0.00 0.00 24 0.08 0.10 o. 10 0 -11 0.14 o. 15 0.16 0.01 o. 17 o. 19 0. 19 o. 24 0.15 25 0.00
* 0.02 0.03 0.00 0.08 0.04 0.07 0.04 *' 0.00 o. 04 o. 05 26 0.00
* o .. 00 o.oo 0.00 0.00 o ... oo o.oo 0.00
* o.oo 0.00 o.oo 27 0.00
* o. 00 0.00 0.00 o.oo o .. oo o.oo
* o.oo o. 00 0.00 28 o. 12 (0.11) o. 10 0.22 o. 17 o. 21 0.31 0. 14 o. 17 (0.15) 0.22 o .. 35 H 29 0.00 0.00 0.00 0.00 o.oo o. 00 0 .. 00 o. 00 o.oo 0.00 0.00 o.oo M' 30 1. 14 1. 15 1. 11 1.22 1 .. 26 l.22 1. 27 1. 07 0.94 H 1. 30 1. 19 11 Tot 4.60 (4.54) 4.46 4.91 4.85 4.16 4.40 4 .. 43 4.40 M 5. 14 4.81 H Table 3.2F Palisades Net WOI:" k Greatest precipitation received in a given period .for N 00 June 1977 Stat.ion 1-Hour 3-Hour 6-Hour 12-Hour 211-HOUI:" . amt. day time amt. day time amt. day time amt. day time amt. day time (in.) began (.in. ) began (in.) began (in.) began (in.) began p() 1A M 11 M M M l1 li M !1 M M M M M M P02A M M M M M M M M M M M M M M PJJA 0.47 17 2100 1. 09 17 2100 1. 29 17 2000 1. 31 17 2000 1.31 17 200*) P04A o. 73 17 2100 1. 32 17 2000 1. 5 7 17 200J 1.58 17 2000 1.59 17 1500 POSA 0.52 17 2200 1. 16 17 2100 17 2100 1. 32 1 7 2100 1. 32 17 2100 PJ6A 0.47 17 2200 0.82 30 0900 1. 13 30 0800 1. 21 30 0800 1. 22 30 130;) P07A 0.59 17 2200 1. 00 30 0900 1. 21 .30 0900 1. 27 30 0900 1.27 30 1400 P08A M M H M M M I1 M M M M M M M M P09A 0.59 17 2200 1.12 17 2100 1.21 17 *2000 1.23 17 2000 1.24 17 1500 P10 A M M M l1 M M M M M M M M M M M P11A o. 7.9 17 2200 1.43 17 2100 1.60 17 2000 1. 63 17 2000 1.65 17 1500 Pl 2A 0.41 17 2200 1.08 17 2100 1. 23 17 2100 1.24 17 2100 1.24 17 2100 P13A M M M M M l1 M M M M M M H M M ,_. L_ ___ i : ____ _j __ ___j . , *. ____ .) ' ) 
* *
* Table 3.JP Palisades Network: Precipitation accumulated in each hour (RST) for June 1977 Precipitation (incbes) accumulated in each hour interTal endinq at Sta 0100 0200 0300 0400 0500 0600 0700 OSOO 0900 1000 1100 1200 1300 1400 1SOO 1600 1700 lSOO 1900 2000 2100 2200 2300 2400 P01A ! ! K a K K a a ff ! ! .22 .16 .OS .OS
* 08 .11
* 07
* 06 .OS
* 06 .14
* 43 .S9 ! P02A ! ! K ! ! ! ! ! ! ! ! ! ! ! ! ! !I ! ! ! s ! ! s !I P03A
* 16 .06 .03 .02 .03 .72
* 42 .10
* 06 .32 .32 .26 .13 .07
* 07 .09 .07 .04
* 07 .OS .06 .47
* 4S .30 4. 4S P04A .10 .os
* 03 .o 1 .07
* 71
* 29 .OS
* 04 .47 .30 .2s .22 .07 .OS .OS
* OS .09
* OS .OS .26
* 74 .43 .31 4. 91 . POSA .16
* 02 .02 .00 .31
* 72 .13 .13 .11
* 43 .31 .23
* 11 .13 .10
* OS .08 .10
* 10 .11
* 06 .39
* 78 .2s 4. 86 P06A .15
* 06 .02 .01 .26
* 44
* 21 .11
* 20 .39
* 28 .20 .17 .08
* 06 .06 .06
* IQ .09 .11 .06 .1s .SS .26 4. 1S P07A .13 .02
* 02 .02 .34
* 34
* 27 .13
* 02 .39
* 4S .28 .20 .09 .09 .07 .OS .OS .07 .16
* 13 *JO .64 .1s 4. 39 POSA ! ! ! ! ! ! ! ! e ! ! ! ! !
* 07 .07 .06 .OS
* 06 .17 .05 .49 .49 .27 ! P09A .13
* 02 .01 .01 .37
* 66
* 14 .07
* 20 .24 .24 .16 .14 .09 .07 .05
* 06 .06 .05 .17 .02 .31
* 78 .34 4. 41 P10A ! ! ! ! ! ! e ! !I ! ! !I !I ! ! ! !I ! !I ! ! ! ! ! ! P11A .OS
* 03 .04 .03 .01 .31
* 62 .17
* OB
* 64
* 33 .24 .14 .07 .09 .08 .10
* 09
* 10 .08 .15 .43 .93 .32 s. J 4 P12A
* 21
* 04 .03 .01 .42 .36
* 22 .10
* 10 .39 .34 .20 .13 .09 .06 .08 .09 .31 .07 .OS .13
* 44 .* 49 .44 4. 81 P13A ! ! ff ! ! ! ! e ! e e ! ! ! ! ! ! a ! ! ! ! ! ! ! ------------------------------------------------------------------ave
* 14
* 04
* 03 .01 .23 .S3
* 29 .11
* 10
* 41 .32 .23 .1s
* OB .07 .07
* OS .10 -* 08 .11
* 10 ".39
* 60 .35 4: 61 29 w 0 Table 3.1G Palisad"es Network: Daily Total Pr-ecipitation (Inches) for July 1977 OA Y PO 1A P02A P03A P04A POSA P06l\ P07l\ P08A P09A P 10A P11A P 12A P13A 1 0.00 0.00 0.00 0.00 0.00 0. 00 OaOO o.oo 0.00 o.oo 0.00 0.00 0.00 2 0.00 0.00 o.oo 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 3 0.08
* 0.03 0.02 0. 011 0.09 0.07 0.07 0.06
* 0.01 0.02 M 4 0.00 (0.05) 0. l) 0 o.oo 0.00 o.oo o.oo 0.00 0.00 (0.03) 0.00 0.00 M 5 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo o.oo 6 o. 00 0.00 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 7 0.00 0.00 o.oo 0.00 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 o.oo 0.00 R 0.00 0.00 0.00 o.oo o.oo o.oo o.oo 0.00 0.00
* 0.00 0.00 0.00 9 0.00 0.00 o.oo 0.00 0.00 o.oo 0.00 0.00 0.00
* o.oo 0.00 0.00 10 0.00 0.00 0.00 o.oo 0.00 0.00 o.oo o.oo 0.00
* 0.00 o.oo 0.00 11 0.06 0.06 0.06 0. 03 0.05 (). 0 3 0.02 0.05 0.04 ** 0.07 0.02 0.05 12 0.74 0.66 0.56 0.39 0"36 0.59 0.34 0.83 0.65 ( 0. 0 7) 0. 15 0. 11 0. 12 13 o. 00 0.00 o.oo 0.00 0.00 0.00 0.00 o.oo o.oo o.oo 0.00 0.00 o.oo 14 o.oo o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo o. 0 () 15 O*. 00 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo o.oo o .. 00 o.oo 0.00 0.00 16 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 o.oo 17 0.74 0.70 0.86 0.91 1. OB 0 .. 56 0 * .36
* 0.82 O.A9 0.92 o. 82 0.50 18 0.25 0.32 0.23 0.29 0.29 0.25 0.30 ( 1. 1 2) 0.43 O.JO* 0.26 0. 37 0.25 19 o.oo 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 20 0.00 l). 0 0 o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 o.oo 21 o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 22 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 o .. oo 0.00 0.00 23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 .0.00 24 0.52 0.53 0.55 0.5] 0.54 0.59 0.53 0.47 0.39 0.41 0.46 0.43 0.49 25 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo 0.00 o.oo 0.00 26 o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 27 0.00 0.00 o.oo 0.00 o.oo 0.00 0.00 o.oo o.oo o.oo 0.00 0.00 0.00 28 0.00 o.oo 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 2g 0.80 0.82 0.80 0.75 0.70 0.85 0.50 0.72 0.60 0.86 0.78 1.01 0.59 JO 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 o.oo o.oo 0.00 0.00 0.00 31 0.01 0.01 0.02 0.02 0.02 0.01 0.03 0.01 0.03 0.01 0.01 0.02 0.04 Tot 3. 20 (3. 23) 3. 11 2.94 ). 08 2.97 2. 15 (3.27) 3.02 (2.57) 2.66 2.80 M ** L _______ _ l__ __
* __ i '--' _j ____ J __J 
* ** i
* Table 3,2G Palisades Network precipitation received in a given period for July 1977 Station 1-Houi: 3-Houc 6-Hour _12-Hour 24-Hour amt. day time amt. day ti we amt. day tiine amt. day time amt. day time (in.) began (in. ) began (in.) began (in.) began (in.) began P*:> 1 A 0. 74 12 1000 0.79 29 080J l). 8 0 29 0800 0.80 29 0700 0.80 29 0700 P02A M M M M f! M M M M M M M M M M P03A 0.79 17 0300 o. 86 17 0300 0.86 17 0300 0.86 17 0300 0.86 17 0300 P04A 0.83 17 0300 0.91 17 0200 0.91 17 0200 0.91 17 0200 0.91 17 0200 POSA 0.89 17 0300 1. 08 17 0200 1 .. 0 8 1 7 0200 1. 08 17 0200 1. 08 17 0200 P:J 6 A .0. 60 29 0900 0.85 29 0800 0.85 29 0800 0.05 29 0700 0.85 29 0700 P07A 0.44 29 0900 0. 50 29 01300 I). 5 3 24 1100 0. 53 24 1100 0.53 24 1100 P08A M M M M M l1 M M M M M M M M M P09A 0.52 12 1000 0.82 17 020J 0.82 17 0100 0.82 17 0100 (). 82 17 O 1 OQ P10A M M M M M M M M M M M M l1 M M P11A 0. 76 17 0200 0.92 17 0200 0.92 17 0100 0.92 17 0100 (). 92 17 0100 P12A 0.82 17 0300 1. 01 29 0800 1.* 01 29 0800 1.01 29 0800 1.01 29 0800 P13A M M M M M M M M M M M M M M M 32 . *1 * . . , Table 3.3G Palisades Retvork: I I Precipitation accumulated in each hour (EST) for I JUlf 1977 Precipitation (inches) accqnalated in each hour interval endinq at Sta 0100 0200 0300 oqoo osoo 0600 0100 oaoo 0900 1000 1100 1200 1300 1qoo 1soo 1600 1100 1000 1900 2000 2100 2200 2300 2400 Total i POU .oo .oo .36 .28 .35
* 00 .* 00 .oq .71 .10
* 80 .17 .15 .11 .11 .03
* 00 .* oo
* 00 .00 .oo .00 .oo .oo 3.21 I P02! ! ft ft ft ! ! ! ! ! ft ! ! ! ft ! ! l! ! ! ft ! ft ! ft ! l POJA .oo .oo .oo .79 .21
* 10
* 00 .02 .09 .68 .65
* 18
* 19 .15 .06 .01 .oo .oo .oo .00 .oo .oo .oo .oo 3.13 POQA .oo .oo .08 .83 .13 .10 .oo .02 .2q
* 63 .35 .12 .15
* 18 .10 .01 .01
* 00 00
* 00 .oo .oo .oo .oo 2.95 POSA .oo .00 .13
* 89 .33 .03 .00 .02
* 46
* 29 .32 .25 .12 .15 .07 .02 .oo .00
* 00 .00 .oo .oo .00 .oo 3.08 P06! .oo .oo .oo .56 .10
* 16 .oo .01 .21 .61
* 52 .17
* 19 ;17 .21 .OS .01 .oo .00 .oo
* 00
* 00 .00 .oo 2.97 P07A .oo .oo .00 .36 .oo .30 .oo .03 .06 .45 .27 .10 .19 .19
* 16 .03 .01 .00 .oo .00
* 00 .oo .oo .oo 2.16 POSA ! ! ft ! ! ft ft l! ! ! l! ! ft l! l! ! ! ! a a ! ! ! ! ! P09A .00 .oo .52
* 28 .23 .23
* 00
* 03 .43 .22
* 58 .10 .18 .11 .oa
* 02
* 01 .oo .oo .oo
* 00 ..* 00 .oo .00 3.02 P10l ! ft ! ft ! ! ! ft ! ! ft ! ft ! ft ft ft l! l! ! ! ! ! ! R P11l .00 00 .76 .14 .07 .21 .01
* 02
* 50 .30 .11 .12 .15 .15 .10 .03 .oo
* 00 .oo .00 .oo
* 00
* 00 .oo 2.67 P12A .oo 00 .oo .82 .01
* 22 .1Q .02 .48 .53 .10 .09 .15 .18 .07 .01 .oo
* 00 .oo .* 00
* 00 .oo .oo .oo 2.81 P13A ! ! ft ft ft ! ! ! ! ! ! ! ! ft ! ! ! ! ! ! ! ft l! ! ! --] ------*-------------------------------------------------------------------ave .oo .oo .21
* 55 .16 .15 .02 .02 .35 .Q2 : Q1 .14* .16 .15 .10 .02 .oo .00 .oo .oo
* 00 .oo *.oo .oo 2. 89
* 1 ,1 * * 
** ** :-* -****-\ Table 3. 1 H Palisades Network: Daily Total tat ion DAY P01A P02A P03A P04A P05A P06A P07A POSA 1 o.oo 0.00 o.oo .b. 00 o.oo o.oo o.oo 0.00 2 0.00 o.oo o. oo_ 0.01 o.oo 0.00 o.oo 0.00 3 0.00 o.oo o.oo 0.00 o.oo o.oo 0.00 0.00 4 0.36 0.35 o. 33 0.39 0.35 0.24 0.16 0.39 5 1.27 1.25 1. 18 0.99 0.90 0.73 0.66 1. 41 6 0.06 0.05 0.07 0.04 O.C6. 0.07
* 0.05 *7 0.02 0.01 0.01 0.02 0.03 o.oo
* 0.01 8 0.56 0.51 0.53 0.40 0.44 0.46
* 0.53 9 0.09 0.09 0. 10 0.08 o. 08' 0.07
* 0.08 10 0.20 0.23 0.24 0.33 0.30 0.35
* 0.26 1 1 0.33 0.32 0.28 0.31 0.34 0.34
* 0.30 12 0.00 o.oo o. oo. 0.00 0.00 o.oo (1.32) o.oo 13 0. 01, 0.04 O.OJ 0.04 0.02 0.01 0.01 0.03 1 4 0.04 0.07 0.03 0.03 0.02 0.04 o.oo 0.08 15 0.00 0.00 o.oo o.oo 0.00 o.oo 0.00 0.00 16 0.07 0.07 0.06 0.05 0.05 . o. 05 0.02 o.os 17 o.oo o.oo o.oo o.oo 0.00 0.00 0.00 o.oo 18 o.oo o.oo o.oo o.oo o.oo 0.00 o.oo o.oo 19 0.00 o.oo o.oo o.oo o .. oo. o.oo o.oo o.oo 20 0.00 o.oo o.oo o.oo o.oo o.oo 0.00 o.oo 21 0.09 0.08 o. 10 0.09 0. 16 0. 12 0.17 o. 10 22 o.oo o.oo o.oo 0.00 o.oo o.oo o.oo o.oo 23 o. 13 0. 13 o. 12 0.09 0.10 0.12 0.10 . 0. 13 24 o.oo o.oo o.oo o.oo o.oo o.oo 0.00 0.00 25 0.00 o.oo -0. 00 o.oo o.oo 0.00 o.oo o.oo 26 0.24 0.21 0.23 0.23 0.22 0.22 0.29 0.24 21 0.00 o.oo o.oo 0.00 o.oo 0.00 o.oo o.oo 28 1. 42 1. 40 1. 19 1. 24 1.35 1.27 . 1. 4 5 1. 18 29 0.28 0.33 o. 35 0.36 0.45 0.26 0.21 0.44 30 o.oo 0.00 o.oo 0.00 o.oo 0.00 o.oo o.oo 31 0. oo. o.oo 0.00 0.00 o.oo o.oo o.oo 0.00 Tot 5.20 5.14 4.85 4.70 4.87 4.35 ( 4. 3 9) 5.28 (Inches) for P09A P10A 0.00 o.oo o.oo 0.00 o.oo 0.00 o. 54 0.32 1.40 0.89 0.05 0.07 0.01 0.01 1.00 0.31 0.07 0.09 0.24 0.48 0.25 0.32 o.oo o.oo 0.05 0.04 0.07 o.oo 0.00 o.oo 0.06 0.06 o.oo o.oo 0.00 o.oo o.oo o.oo o.oo
* 0.09
* o.oo
* 0.13
* o.oo ** *o. oo
* 0.19
* o.oo
* 1.24
* 0.34 (2.01) 0.00 o.oo o.oo 0.00 5.73 (4.60) -** I August P11A o.oo o.oo o.oo 0.33 0.67 0.05 o.oo 0.36 0.09 0.51 0.34 0.00 0.03 o.oo o.oo 0.05 0.00 o. 00 ' o.oo 0.00 o. 10 0.00 0. 11 0.00 o. 00' 0.22 0.00 .1. 37 0.29 0.00 0.00 4.52 *1* 1977 P12A P13A 0.00 0.00 0.00 0.00 o.oo o.oo 0.27 0.21 o'!' 74 0.49 0.05 0.03 0.01 o.oo o. 33 0.43 0.05 0.06 0.49 0.51 0.33 0.32 o.oo 0.00 o. 02 o. 01 0.00 0.00 o. 00 o.oo 0.05 0.03 0.00 0.00 0.00 o.oo o.oo 0.00. o.oo o.oo o. 10 0.07 o.oo o.oo o. 10 0. 11 0.00 0.00 o.oo o.oo
: o. 27 o. 38 0.00 0.00 1. 60 1. 15 0.32 0.28 0.00 o.oo o. 00 o.oo 4.73 4.08 (,,.J w Table J.2H Palisades Network Gr-ea test precipitation received in a given period w for ,J::>. August 1977 Station 1-Hour 3-Hour-6-Hour 12-Hour 24-Hour:-amt. day time amt. day time amt. day time amt. day time amt. day time (in.) began (in.) began (in.) began (in.) began (in.) began P01A 0.75 5 1500 1. 19 5 1400 1. 2 5 5 1400 1.59 28 1500 1. 7 0 28 1500 PJ 2 A i}. 6 5 5 1600 1. 16 5 1400 1. 28 28 1800 1. 61 28 1600 1. 7 3 28 1600 P03A o. 56 5 1500 1. 10 5 1400 1. 17 5 1400 1. 41 28 1600 1. 55 28 16 00 P:l4 A 0. 56 5 1600 0.92 i:: 1400 1.u4 28 1800 1.44 28 1600 1.59 28 1600 -POSA 0.75 5 1600 0.86 28 2200 1. 19 28 1800 1. 68 28 1700 1.80 *20 170'.) P06A 0.59 28 2200 0.95 28 2000 1. 18 28 1800 1.40 28 1600 1.53 28 1600 P07 A M M M H M M L1 .M M M M M M M M P08A 0.97 5 1600 1.33 5 1400 1.39 5 1400 1. 47 28 1600 1. 64 4 1800 P09A 0.73 5 1600 1. 34 5 1400 1.39 5 1400 1.47 28 1600 1.67 4 1700 P10A M M M M M M M M M M M M M M M P11A 0.51 5 1600 o. 74 28 2100 1. 16 28 1800 1. 48 28 1500 1.66 28 1400 P12A 0.79 28 2200 1. 08 28 2100 1.43 28 1800 1. 7 4 28 1600 1. 9 1 28 1400 P13A 0.47 28 2200 0.87 28 2000 1.07 28 1900 1. 30 28 1600 1.42 28 1600 ..* ---... :
* --_J ----J 
*
* 1 L-* 35 3.3H Palisades Network: Precipitation accumulated in each hour (!S?) for August 1977 Precipitation (inches) accumulated in each hour interval ending at Sta 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 ?otal P01A .11
* 06 .OS .oa .08 .40
* 22 .2s
* 16
* 01
* 01 .06 .13 .04 .06 .87 .53 .06
* 91 .24 .17 .45
* 18 .09 s. 22 P02A .13 .07
* 04 .oa .10
* 31
* 30 .23
* 20 .oo
* 01 .OB
* 08
* 05
* 07 .s1 .76 .09
* 66 .4S .16 .19
* 41 .18 5.1S P03A .11 .09 .04 .04 .08 .41 ;29 .24
* 21 .03 .oo .OS
* 09 .07 .os .S9 .61 .OS .S1 .44 .23
* 20
* 32
* 11 4. 86 POU .08 .06 .os .04 .16 .20 .36 .28 . io
* OS
* 00 .04 .09 .06 .06 .JS .72
* 11
* 26 .so .JO .19 .22 .32 4.70 POSA .14 .01 .06 .06 .20
* 32 .3S .19
* 18
* 04
* 00 .OS .16 .06
* 07 .09
* 77 .17
* 42 .2s .17 .17 .69 .21 4. as P06A .07 .04 .08 .07 .21
* 28 .J4 .19 .18 .02 .03 .06 .06
* 10 .07 .24 .S3 .OJ
* 22 .22
* 27 .24 .71 .10 4.36 P07A ! ! ! ! ! ! ! ! ! ! ! ! B ! ! ! ! ! ! ! ! ! ! B ! POSA .16 .12
* OS .oa .11 .43
* 20 .24
* 19 .04 .01 .01 .08 .06 .07 .36 1.os .oa .28 .as .19 .22
* 17 .13 s. 21 P09A .1J .11 .46 .11 .oa
* so
* 29 .21 .18
* 01
* 01 .os .09 .OS .07 .S9
* 83 .13
* 24
* 73 .22 .19 .JO .20 S.7S P10A ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! P11A .OS
* 03 .OJ .07 .2J
* 30 .36 .22 .19
* 03 .01 .08 .07
* 03 .09 .22 .62 .02
* 54 .21
* 15
* J9 .49 .12 4. SS P12A
* 04 .os .02 .04
* 26 .J6 .30 .10 .22 .04
* 01 .10
* 08 .OS .10 .2a .S2 .03
* 26 .u .13 .17
* 91 .22 4. 73 P1JA .OS .04 .OJ .03 .22 .JO .40 .19 .1s .OS .02 .OJ .01 .04 .13 .13 .31
* 06 .JO .24
* 23 .37 .S6 .10 4.08 ---------------------------------------------------------------------------ave .10 .07
* 08 .06 .16 .JS
* 31 .21 .19 .03
* 01 .06 .09 .OS
* 08 .JS .66 .07
* 42 .41
* 20
* 2S
* 4S .16 4. 87 Table 3. 1I D.H P01A P02A 1 0.75 0.80 2 0.28 0.35 3 o.oo 0.00 4 0.02 0.01 5 0.00 0.00 6 0.00 o.oo 7 0.00 0.00 n 0.00 0.00 9 o.oo 0.00 10 0.00 0.00 1 1 o.oo 0.00 12 0.35 0.36 13 1.45 1. 42 1 Li 0.00 0.00 15 0. 119 0.49 16 0. 10 0.08 17 0. 15 0. 15 1 B 0.33 0.33 19 o.oo o.oo 20 o.oo 0.00 21 o.oo 0.00 22 0.00 0.00 23 0.00 0.00 24 1. 66 1.60 25 0. 16 0. 15 26 0.01 o. 0 1 27 0.00 o.oo -2 8 0.00 0.00 2S 0.00 0.00 30 0.27 0.27 Tot. 6.02 6.02 -* Palisades P03A. 0.85 0.29 0.00 0.01 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.34 1. 2 9 0.00 0. 5 0 0.08 0. 15 o. 3 2 0.01 0.00 0.00 0.00 1. 0. 10 o. 01 0.00
* 0.00 0.00 0.23 5.64 \...--:::..---
Network: Daily P04A 0.79 0. 31 o.oo 0. 02 O.OJ o.oo o.oo o.oo o.oo 0.00 o.oo 0.33 1. 16 0.00 0. L! 5 0. 111 0. 18 0.33 0.02 o.oo 0.00 0.00 o.oo 1
* 51! 0. 12 0. 01 o.oo 0.00 0.02 0.21 5.63 *-----PC5A 1. 00 0.30 0.00 0.01 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.38 1
* 1 6 0.00 0.46 o. 17 0.15 0.33 0.02 0.00 o.oo 0. oo. 0.00 1. 5 8 0. 15 0.00 0.00 0.00 0.02 0.25 5.98 I L w 0\ '.rot al Precipitation (Inches) for Sept 1977 P06A P07 A. P08A P09A PlOA P11A P12A P13A 0.95 0.95 0.83 0.68 0.86 0.84 1. 22 1
* 21 0.24 0.24 0.26 0. 14 0.25 0.28 0.30 0.56 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0. 01 o.oii I). 0 0 0.00 o. 01 0.03 0.00 0.00 0.00 o.oo o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo o. 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 o. 00 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o. 00 o.oo o.oo 0.00 o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.29 o.] 5 0.31 0. 3 5' 0.39 0.37 0.37 1. 14 1.23 1. 4 9 1.40 1. 15 1. 17 1. 07 1. 11 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.56 0.60 0.48 0.43 *O. 4 9 0.53 0. 51 0.62 0. 18 0.04 0.09 0. 12 0. 14 0.17 0. 19 0.03 0. 13 0. 15 0. 14 0. 19 0. 18 0. 14 0. 11 0.08 0.32 0. 3 1 0.32 0.30 0.) Ll 0.33 0. 33 0. J 1 o.oo o.oo 0.00 0.00 0.03 0.07 0. 01 0. Oil 0.00 0.00 0.00 0.00 0. 00 o.oo 0. 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.02
* 0.00 0.00 0.00 o.oo 0.00 0.00 o.oo
* 1. 8 7 1. 15 1.52 1. 56 1.45 1. 36 1. 62
* 0. 12 0. 18 0. 15 0.12 0. 16 0. 14 0. 14
* 0.01 0.06 0.01 o.oo 0.02 0.01 0.00 ( 1. 99) 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo 0.00 o.oo o.oo o.oo o.oo 0.00 o.oo O.OJ 0.00 0.04 0.01 0. 04 0.03 0. 3 1 0.37 0.34 0. 18 0.24 0.28 0.32 0.36 6. 19 5. 6 1 6.02 s. in 5. 70 . 5.72 6.26 {6.74)
* ___ _f.: _. __ J __ _J ___ j 
* --*---, ** -. Table 3.2I Palisades Ne twor-k Greatest pr-ecipita tion received in a given period for Sept. 1977 Station* 1-Hour 3-Hour 6-Hour 12-Hour amt. day time amt. day time amt. day time amt. day time {in.) began (in.) began (in.) began (in.) began PO 1A 0. 55 24 0400 1.47 2 Lf 0400 1. 60 24 0100 . 1. 66 23 2200 P02A 0.45 24 0600 1.31 24 0400 1.45 24 0100 1.60 23 2200 PO 3A 0.43 24 0500 1. 18 24 0400 1. 31 24 0100 1. 46 2.3 2200 P04A 0.37 24 0600 1. 12 2Q 0400 1.42 24 0100 1.54 23 2200 POSA 0.39 24 0500 1.18 24 0400 1.50 24 0100 1.58 23 2200 P06A 0. 42 24 0500 1. 18 24 0500 1. 70 24 0200 1.87 23 2200 P07A 0.54 24 0600 0.92 24 0400 1. lll 24 0100 1. 18 13 0100 PJ8A 0. 40 24 0600 1.02 24 0400 1. 32 24 0100 1. 52 24 0100 P09A 0.42 24 0500 1. 25 24 0400 1. 40 24 0100 1.56 23 2200 P10A 0. 53 24 0400 1. 11 . 24 0300 1. 37 24 0000 *1. 45 24 0000 P 11A 0.45 24 0500 1.09 24 0400 1.28 24 0100 1. 36 24 0000 P12A 0.44 24 0500 1.30 24 0400 1.53 24 0'100 1.62 23 2200 P13A 11 M M M M M M M M M M M _ ... __ ; *:* 2 4-Hour-amt. day time (in.) began 1.80 12 1600 1. 77 12 1600 1. 6 3 12 1600 1.54 23 2200 1.58 23 2200 1.87 23 2200 1.52 12 1600 1. 84 12 1700 1. 71 *12 no;J 1.50 12 1600 1.56 12 1600 1.62 23 2200 M M M w -..J _J 38 Table 3.3I Palisades
.! Network: Precipitation accumulated in each b.oar (EST) foe --*-r Sept. 1977 \ Precipitation (inches) accumulated in each hoar interval ending at Sta 0100 0200 0300 0400 0500 0600 0700 0800 09CO 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 Total POU .16 .31
* 31 .53 1.0B
* 72
* 45
* 03 .C4 .14 .38 .46 .27 .1 B .02 .04 .08 .10 .17 .04 .13 .11 .12 .19 6.04 P02A .10 .39 .30 .33
* 90
* 77
* 59
* 14 .cs
* 08 .32 .4S .38 .14 .OS .03 .OS
* 06 .13 .1s
* 08 .17
* 18 .16 6. 02 P03A
* 1S
* 36 .32 .44
* 71 .70
* 54 .11 .C4 .11 .J1 .42 .J2 .1s
* 06 .02 .04
* 10
* 21
* 06 .07 .1s .16
* 10 5.65 P04A .20 .36 .17 .so .82 .67
* 46 .06 .as
* 10 .20 .61 .27 .13 .02 .02 .06 .09 .26 .07 .10 .lJ .18
* 09 S.63 POSA
* 19 .29 .25 .60 .as .68 .46 .08 .04 .10 .27 .46 .2B .13
* 03 .02 .04 .19 .29 .10
* 11 .17 .19 .15 s. 98 P06A .17
* 31 .37 .22 .82
* 72 .62 .39
* 04 .06 .16 .41
* 42
* 15 .os .03 .02 .OB .29 .24 .10 .17 .19 .15 6. 19 P07A .07 .15 .39 .38 .72 .51
* 65
* C7 .CB .08
* 23 .37 .44
* 20
* 03 .06 .oo .OS
* 33 .06 .09 .17
* 20 .29 s. 64 POBA .OB .56 .29 .41 .73 .66
* 56 .25 .C4 .09 .20 .57
* 36 .12 .02 .01 .03 .06
* 17 .14
* OB
* 22
* 16
* 23 6.05 P09A .19
* 30 .23 .3S 1. 04 .62
* SS .12 .C6 .OB .21 .so .23 .13
* 04 .01 .02 .09 .18 .06 .* 02
* 14 .19. .11 S.4B "\\ P10A .21
* 23 .22 .49
* 98 .76 .22 .o 8
* 09
* 10
* 23 .49 .31 .14
* 03 .02 .02 .07
* 24 .14 .04 .19
* 2S .15 . s. 70 P11A .23 .17 .24 .S4 .89 .69 *JO .os
* cs
* 08 .21 .57 .29 .17
* OS .01 .OS .00
* 37 .05
* 09 .19 .19 .15 s. 72 I I P12A .25 .16 .23 .60 .95 .71
* 51 .03
* 05 .11
* 31 .53 .19 .15
* 01 .01 .03 .19
* 3B .15
* 10 .24
* 22 .14 6.26 ... } P13A e e B B B B e B e e B e e B B e B B B B B B B ave .17 .30 .2B .45 .B7
* 6B
* 49 .12
* cs
* 09 .25 .49 .31 .15
* 03
* 02 .04
* 10 .25 .10 .00 .17 .19 .16 S.B6 /1 . _! ) ,. j \ . * 
---. -*-* . -, __ .. _ .--*---** 1 -----*--* \ * ". c-' ' ; . ' -'--** Table 3.1J Palisades Network: Daily Total Precipitation (Inches) for October 1977 DAY PO 1 A Pu2A P03A P04A POSA 1?06A P07A POSA P09A P10A 1?11A* P12A P13A 1 0.52 u.51 0.-51-0.54. 0.52 0.48 0.47 .o. 53 --0.52 .. o. 53 . o. 52 0.54 0.52 2 .o. 00 o.oo o.oo .o .* 00 0.00 0. o.o o.oo o.oo o.oo 0 *. oo o.oo 0. 00 . 0.00 J o.oo 0.00 . o. 00 o.oo 0.00 0.00 o.oo o.oo o.oo O.QO. .o. oo. o.oo 0.00 4 o. 00 .. o.oo o.oo o *. oo 0.00 o.oo Q .* 00 0.00 o.oo o.oo o.oo 0. 00. o.oo 5 0.02 . 0. 0 .1 . o. 04-. 0.04 0.03 0.01 0. 00 .. 0.03 0.03 0. 01 0.01 o.oo o.oo 6. *-* .o.oo -. o.oo o.oo . 0. 00 . o.oo .o.oo o.oo o .* oo o.oo .. o .* oo o.oo o.oo o.oo 7 0.35 (1 .* 33 0.32 o.J2. .. 0. 31 0.3LJ 0.27 0.30 0.28*
0.35 0.33 0.30 8 0 *. 12. -. 0.16 0. 11 o. 14 0. 14 . 0.18 0 *. 10 o. 17 0. 15 . 0. 14. 0.14 0.14 0.22 9 o. 00 . o.oo o.oo o.oo 0.01 0. ()1 0.04 0.01 0.01 0.01 0.01 0.01 0.02 10 0 *. 06 O. OJ. o. 03-0.06 0. 04 . 0.04 0.02 0.06 o. 04* 0.04 0.06 0.03 0.05* 11 0.21 0.20 9.21 0. 21 0.19 0.21.: 0.20. 0.21 0 .2.1 0.22 0. 20 0.17 12 o. oo. o.oo o.oo .o*.o.o 0. 00 . o.oo o.oo. o.oo o.oo o.oo o.oo o.oo 0.00 13 .. o.oo . o.oo 0.00 0.00 .. o.oo .. 0. 00 .. 0.00 o.oo o.oo o.oo . o. 00 o.oo 0.00 14 0.00 o.oo. o. oo .. o ... 00. 0.00 -* o. oo. o.oo I 0 o 00 o.oo o.oo o.oo o.oo 0.00 15 o.oo o .* o 1 0.02 o. 02 . o.oo o.oo o.oo 0.01 0.01 0.01 0.01 0.01 16 . 0.17 . 0 *. :) 4 0.14 o. 11 0.03 0.01 0.01 0.10 o. 02* 0. 11 0 .. 09 o .. os. o.oo 17 0.00 . o *. o.o 0.00 o.oo. o.oo o.oo o.oo o.oo O.QO. o.oo o.oo o.oo o.oo 18 o. -15 .. o. 16. . 0. 16 0.20 0 .32 *-0.32 .0.21 .. 0.26 0.22 o* ... 16 0.14 0.17 0.21 19 -* 0. -10 11 .. o. 10 o. 10 .. 0.06' . 0. 01 0. 00 . 0.08 0.05 0.09 0.09 0.05 0.04 20 0 *. oo 0. oo. -o. 00 ,0. 00 . o.oo o. oo .. o.oo 0.00 o.oo o.oo o. 00 . o.oo "0.00 21 .o *. oo o .* 00 o.ou .o.oo .o.oo o.oo o.oo o.oo 0.00 o.oo o .. oo o.oo o.oo 22. o .* 12 0 .13 .. 0. ll 0. 11 0. 14 0. 12 . 0.19 0.19-0.10 0.08 0.06 0.04 23 o .* 00 .o. 00 0. oo. ,..0.00 ... 0.00 o.oo 0.00 o.oo 0.00 0. oo . o.oo 0.00 o.oo 24 .. o. oo. o.oo . 0 .00 o.oo o.oo o.oo o.oo 0.00 0.00 0.00: o.oo 0.00 0.00* :lS 0. 14 0.13 0. 15 0. 0. 15 . 0. 11 0.08 0 .14 0 .-14' 0 *. 1 s 0. 13 0.12 0. 11 26 o.oo o.oo o.oo. o. o.o o.oo 0.00 o.oo. 0.00 o.oo o. 00' o.oo 0.00 0.00 27-.o.oo . u. 00 0. oo. o.oo o.oo o.oo o.oo 0 .00 o.oo o.oo o.oo. 0.00.,0.00 28 0.00 0.00 o.oo o.oo .o. 00 o.oo o.oo 0.00 o.oo o.oo 0.00 0.00 o.oo 2-9 ..... o.oo . o .* oo . 0. o.o. o.oo o.oo o.oo o.oo o.oo 0.00 0. 00 . 0.00 o.oo 0.00 30 o.oo o.oo o. 00 .... 0.00 . 0. 00 o.oo o .* 00 0 .oo . o.oo o.oo. 0.00 0.00 0.00* 31 o. 17 . o. 18 . 0. 16-o .* 16 0.21 0.20 0. 16 0.18 0 .17 0. -16 0. 20 0. 21 0.16 . . ---------. . .
Tot 2 *. 13 .. 2. 10 2.01 2. l7 2 .14 2.04 l.03 2.26 2.04 2.06 2.05 1. 92 1. 85 w Table 3.2J Palisades Network Greatest precipitation received in a given period for ""' 0 October 1977 Station 1-Hour 3-Hour 6-Hour 12-Hour 2 4-Hour day time amt. day tillle amt *. time amt. day time amt. day time (in.) began began (in.). began (in.) began (in.) began 1 A 0.25 1 0000 o. 45 1 ouu0 iJ. 49 1 0000 0.52 1 0000 0.52 1 *):) 00 P02A 0.21 1 0000 o. 43 1 0000 o. 48 1 0000 0.51 1 0000 0.51 1 0000 PO 3 A 0. 19 1 0100 0.45 1 0000 0.48 . 1 0000 0.51 1 0000 0.51 1 0000 P04A 0. 18 1 0100 i). 49 1 0000 0.52 1 0000 0.54 1 0000 0.54 1 OJOO POSA 0.18 1 0100 0.47 1 0000 o.so 1 0000 0.52 1 0000 0.52 1 0000 P')6A 0. 16 1 0100 0.41 1 0000 0.42 1 0000 0.52 7 1800 0.52 7 1800 P07A 0.16 1 0100 0.30 1 0000 o. 41 1 0000 0.47 1 0000 0.47 1 0000 POO A . M M M* M M H M M M M M M M M M P09A 0 .17 1 0100 0.45 1 JOOJ o. 4 8 1 0000 0.52 1 0000 0.52 1 OJOO P10A 0.18 1 0100 o. 49 1 0000 0.51 1 0000 0.53 1 0000 0.53 1 0000 P 11 A 0. 18 1 0100 0.45 1 OOOu 0.48 1 0000 0.52 1 0000 0.52 1 0000 P12A 0. 18 1 0100 0. q4 1 0000 0.48 1 0000 0.54 1 0000 0.54 1 0'100 P13A 0. 18 1 0100 O.!O 1 0000 0.4<:} 1 0000 0.52 1 0000 0.52 1 0000 --* ---L.---*--.* -----.. --*
'--.-_.:..* 
* . , I* ) *11 *
* 3.3J Palisades Hetvork: Precipitation accnaulated in each bonr (gST) for OCtober .1977 Precipitation (inc bes) accumulated in each hour. interval endin9 at sta alaa a2aa a3aa a4oo.osoo a6oo 01oa .a8oo.a9oo 1000 1100. 1200 1300 .1400 1500 *1600 1100 1800 1900 2000 2100 2200 2300 2400 Total P01A. .30 *. 23 ,.a4 .13 .. p .* 10. .04 .*. 06 . *. 10 .15 .09 .OJ. .* 01. .04 .01 ' .* oo .a2
* 05 .09 ..* 09
* 11 .11 .12
* as . 2.13 P02A .29 .23-.04 .. .111. .14. .10 .04 . ..
* ll
* 14 .* a6 .01 .oo .06 .02 .oo .02 .06 .10 .10 .** 10 .11 ..* oa .09 2. \0 POJ& .21 .22 .1.1. * \3 .11 .12
* 01 ..* os .as .16 .09 .0.2 .00 .04
* 02 .* oo .02
* 10
* 1a .09 .12 .OS .OS .06 2.06 Pa4& .24 .22 .* IQ .1J .12 *. 1.1. .03 .OJ .12 .* 16 .os .03 .oo .OS
* OJ. .oo *. 02 .07 .10 . .07 .14 .09 .10 .a9 2.16 POSl
* 24
* 23 .
* 12 .a9 .11. .12 ..06 .03 .* a9 *. 10 .o.s
* as.
* a2. .os .06 .a1 .* Q3 .09 .11 .os .14 .a6 .06 .os . 2. 13 P06l .1s .20 -*15 .14 .12 .09. ..*. 06 * .05 .OJ .07 .OS .04 .OJ .01 .OS .03 .a2 .a6 .11 .09
* 1S .0'6 .a6 .a9 2.as P07&.
* 20 ..J9 .10 .13 . .17 . ll aq. .a4 .02 .03 *. 04 .04 .01 .a3 .OJ. .OJ. .oo * .as .* 12 .10 .u .10 .06 .a6 1. 82 POSA ll . .!I .e ll .!I -ll ll. .a ll ll ! . .a ll *ll *ll !I., ll ll ll ll ll *ll ll !* ! P09A .1S
* 22 *. 16 .14 .1s *. 10 .os .a6 .06 .10 .06 .* Qq.
* a 1 .03 .as .02 .02 .as .* 09 .aa
* 1J .07 .06 .os 2.os P10A .22 .23 .* r6 ..*. 1a * .13 *. oa
* 03 ,.os .09 .12 .os .OJ. .o 1 .03 .a2 ..oo .02 .as .10 *. 12 .13* .09 .as . .09 2.a6* P.11.\.
* 21
* 24.
* 1a .a7 .11
* 10 .04 .as .01 . .14 .* a7 .04 .01 .a2 .a2 .oa
* al .as .10 .01 .12 .09 .12 .1s .i.a6 P.121 .24 .21 .1a. .1a .11 .*. 1 a .as .* as .a6 .10 .07 .a2
* a 1 .04 .01 .ao .03 .06 .09 .* 10 ..* 12 .09 *. 10 .06 1.92 PllA. .2a *. 21 .11 .12 ..* Q9 .as. .04 ** as .os.
* a1 .* os .OJ. .oo .03 .011-.oo .* 02
* a6 .10 .10 .14 .a6. .-07 .as 1.ss -.--"':"--.
-..--
--.--___ .,._ ,_,.._ -----------------------------------------. ------ne .23 .22 *. 12 . *. 12 ..* 13 .* lll .* as *. 05 .07 .11 .07
* 03 .a1 .a4 .a3 .a1 .a2 .06 .1a .* a9 .13 .* as .
* as .OS* 2.a3 41*
Table 3. 1K Palisades Network: Daily Total Precipitation . DAY P01 A P02 A P03A POIJA POSA P06A P07A
* POSA 1 0.45 0. 4 6 0.42 0.49 0.45 0.30 0.28
* 2 0.02 o.oo o.oo 0.02 O.OQ 0.00 0. l) 1
* 3 0.02 0.02 0.03 0.01 o.oo 0.00 0.01
* 4 0.00 o.oo o.oo 0. OJ o.oo J. 1) 0 0.00 * ,-J 0.00 o.oo o.oo 0.00 0.00 0.00 o.oo
* 6 0. 00 0. 0 () o.oo 0.00 0.00 o.oo 0.00
* 7 0.05 0.02 0.03 0.02 0.02 0.02 0.01 (0. 5 0) 8 00 0. I) 0 J.00 0. 00 o.oo o.oo 0. i) 0 o.oo 9 0. 14 0.14 o. 17 0.17 0. 13 0.12 0. 13 0 ** 1 9 10 o. 17 0. 19 0. 10 0. 18 0.21 0.22 0.22 0. 14 1 1 0.23 0.22 0. 17 0. 19 0.20 0.20 0.28 0. 1 7 12 )
* 11 0. 12 0. 10 0.13 0. 11 f). 15 0.07 0. 15 1 3 0.00 o.oo 0.00 o.oo o.oo o.oo 0.00 o.oo 14 J.00 o.oo o.oo 0.00 o.oo o.oo o.oo o.oo 1 5 0.07 0.06 0.09 0.08 0. 13 0 .*i 2 0.26 0.09 16 o.oo o.oo o.oo 0.00 i). 00 0.00 0.00 o.oo 17
* 0.08
* 0.08 0.13 0.10 0.10 0.07 18
* 0.04 ( 0. 0 8) 0.04 J.04 0. :)2 0.03 0.02 19
* 0.19 0. 19 0.21 0.20 0.19 0.18 0. 19 20
: 63) 0.27 0.36 0.31 0.29 0.32 0.26 0.36 21 o.oo o.oo 0.00 o.oo 0.00 o.oo o.oo o.oo 22 0. 00 0.00 o.oo o.oo o.oo o.oo o.oo o.oo 23 0. 15 0. 1 5 0. 13 0.13 0. 13 0.13 0.06 0. 13 2'* o.oo o.oo o.oo 0.00 o.oo 0. oo o.oo o.oo 25 0.72 0.68 0.56 0.56 0.51 0.48 0.23 0.65 26 0.09 0. 11 0. 0 ll 0.08 u.04 0. 10 0. 16 '.). 0 4 27 0.23 o. 2 4 o. 16 0.17 0. 11 0.21 0. 11 0.24 28 0.00 o.oo o.oo 0.00 o.oo o.oo o.oo 0. Qi) 29 0.00 o.oo . 0. 00 0.00 0.00 o.oo 0.00 o.oo 30 0.35 M 0.35 0.35 u.35 0.36 0.28 0.36 --------------------------------Tot ( 3. 4 J) M ( 2. 9 8) 3.22 3.05 3.D4 2.68 (3.3:)) *
* (Inches) for November P09A P 1'.) A 0.44 0, LJ 6 o.oo 0.0) o.oo 0.02 O.OJ 0. 0 '.) o.oo o.oo O.OJ 0. *) J 0.02 0.02 o.oo O.JO 0.15 0.15 0.21 0. 16 0.17 0. 2 0
* 0. 12
* o.oo
* O.OJ (0.09) 0. 1 0 0.00 o. o*o 0.10 0.09 0.03 0. 0 4 0.18 0. 2 0 0.27 0.31 o.oo 0.00 0.0) o.oo 0.12 0. 1 Ll 0. 01) 0. () 0 0, Ll 6 0.65 0.06 0 * !) h O.OH 0. 2 5 o.oo o.oo 0.00 0.00 M 0.36 --------M )
* 3 3 :*, ;; *-..-:::...-.--
P11A 0.50 1). OJ 0.00 0.0) 0.00 :_},QJ o .* 02 o.oo o. 13 ;) . 18 0.22 . 0. 11 0.00 O.Ou 0.1Q 0.0J 0.10 0 3 0.25 0.28 0.00 0. 0;) 0.14 o.oo 0.65 0.05 0.21 0. 0') 0.00 0.35 ----3.32 ,.. ,. _...--::::-
...... 1977 P12A p 1 3 i\ 0.37 0.32 o.oo 0.02 0.00 0.00 J. 10 0. Jfj o.oo 0.00 *,). 00 0. -')() 0.04 0.02 o.oo 0. 00 0. 11 0. i 1 0. 17 0. 13 0.20 0. 16 0. 10 0. 10 o.oo 0.00 O. JO O.OJ 0. 14 0. 18 0.00 0. 0() 0. 11 0. 12 1.05 J.01 0.23 0. 16 0.39 0.32 0.00 o.oo o.oo 0. 0'.) 0. 1 4 0. 11 o.oo :)
* 0 ;) 0.48 0. 4 3 i),()8 0. 11 0. 19 0. 13 :)
* 00 o.oo 0.00 o.oo 0.33 0. 32 --------3. 13 2.75 , * ' . ! *--... *"'-N I
_J 
* ' .* '. ---..* t . . Table 3.2K Palisades Net WOI:-k Greatest precipitation received in a given period for November 1977 Sta. tion 1-Hour 3-Hour 6-Hour 12-Hour 24-Hour:-amt. day time amt. day time amt. day time amt. day time amt. day time (in.) beqan (in.) began (in.) began (in.) began (in.) began Pu1A M M M M M M M M M M M M M M P02A M M M M N M M M M M I1 M M M M P) 3A M M M M M 11 L'1 M M M M M I1 M M P04A 0.25 1 1400 0.34 1 1300 0.41 1 11'00 0.49 1 1300 0.63 25 0300 POSA i)
* 14 1 1400 (). 2 5 JO 2100 o. 3 3 30 1800 0.45 1 1100 0.55 25 0300 P06A 0. 16 20 0600 0.26 30 2100 0.36 30 1.800 0.38 19 2000 iL 58 25 0400 P07A 0.13 30 2300 0.25 15 0700 o. 28 30 1800 o. 32 . 19 1900 0.40 1 9 1500 POSA H M M M M M M M M M M M M M M P09A M M M M H M M M M M M M M M M P 10A 0.20 1 1400 0.32 1 1300 0.34 JO 1800 0.46 1 1300 0.10 25 J30J P11A 0.22 1 1400 0.31 1 1400 0.38 1 1400 0.50 1 1300 0.70 25 0300 P12A 0.12 19 2200 o. 25 30 2100 0.32 30 1800 0.43 19 1900 0.58 19 1400 P.13A 0. 11 30 2300 0.23 30 2100 0.31 30 1800 0. 32 1 1000 0.54 25 0300 
--, 44 9! Table 3. 3K Palisades Network: -1 Precipitation in each hour (EST) for \ Noveaber 1977 Precipitation (inches) accumulated in each hour interTal ending at Sta 0100 0200 0300 0400 0500 0600 0700 0800 090 0 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 Total PO.U !I !I !I I! ! !I !I !I !I ! !I !I !I !I ! !I I! I! !I I! l! I! I! I! I! --1 -P02.l I! l! I! l! I! I! I! !I I! I! !I I! I! !I I! !I I! I! I! I! I! I! I! I! I! P03.l I! I! I! I! I! I! I! a l! I! I! I! I! I! I!. ll I! I! !I I! !I I! !I I! .. l! ( .PO.JI& .11
* 03 .02 .04 .13 .16
* 25 .11 .14 .10 .09 .04 .07 .07 .36 .1B
* 10
* 13
* 08
* 18 .21 ,*19 .21 . .21 J. I POSl .os
* 03 .oo .06 .14 .04 .28 .11 .15 .18 .06 .oa .07
* 07 .2s .19 .09 .09 .12 .14 .22 .18 .21 .23 3. 04 P06A .13
* 09 .os .04 .11 .OB .26 .15 .10 .13 .13 .07 .07 .09 .16
* 22 .12
* 13
* 08 .13 .13
* 18 .20 .18 J.03 P07.l .06 .09 .07 .OS .13 .OB .17 .11 .17 .1S
* 04 .OS *.OS .17 .13 .10 .08
* 06 .09 .16 .26 .07 .17 .18 2. 68 POSA !I ll I! !I !I I! ll !I I! I! I! I! I! !I !I B !I !I !I !I I! I! a I! !I -1 P09& I! I! I! I! !I !I I! !I I! I! I! !I I! !I !I I! !I I! I! I! !I I! I! !I .. !!. \ .P101 .01 *. 04
* 02 .06 .14 .14*
* 28 .13 .14 .11 .09 .09 .09 .10 .29 .27 .12 .09
* OB .10 .17
* 22 .24
* 26 3 * .JS Pl.U. .08 .03 .oo .03 .16
* ti .26 .10
* 18 .11 .07 .OS .06 .OS .34 .24 .16 .11
* 13 .09 .21
* 20
* 22
* 33 . J *. .;!4 P12A .09
* 07
* 04 .01 .14 .ts .24 .13 .19
* 09 .as .06 .as .20 .2S .1B .13
* 10
* OB
* la .14
* 18 .28 ."21 3.14 P13l .a9 .06 .04 .08
* 10 .13 .12 .14 .1s
* 07
* 04 .OS .ta .13 .14 .22 .oa .a7 .12 .1S .oa
* 21
* 19 .1B . 2.74 a<re .08 .os .03 .OS .13 _.11 .23 .12 .1S .12 .07 .a6 .a7 .11 .24 .20 .11 .1 a .1a .13 .18
* 18 .22 .22 *a7 '! *-i* I .I I . J I ) I I i -**' * 
** -----...:...---" :-c*r* .. -* ) l __ ; ' .. Table 3. 1L Palisades Hetwork: Daily Total Precipitation (Inches) for December 1977 DAY PO 1 A P02A P03A . P04A-P05A P06A P07A P08A P09A P10A P 11A P12A P13A 1 0.56 M 0.49 0.51 0.51 0.53 0.47 0.50 M 0. 50 . 0.48 0.47 0.47 2 0. 00. M. o.oo o.oo o.oo o.oo o.oo 0.00 M 0.00 0.00 o.oo o.oo 3 0.00 M 0.00 o.oo o.oo o.oo 0.00 0.00 M o.oo 0.00 0.00 o.oo 4 o.oo M o.oo o.oo o.oo o.oo 0.00 0.00 M 0.00 o. 00 . 0.00 o.oo .5 o.oo M o.oo 0.03 0. 03 0.02 0.01 o.oo M 0.01
* 0.02 0.02 6 0.06 M 0. 15 0.20 0 .22 0.27 0. 13 0. 2LJ M 0.20 (0.16) 0. 17 -0. 17 7 0.01 M 0.02 0 ._02 . 0.01 ' '* 0. 01 . 0.00 0.00 0.00 0.01 0.03 0.01 0.01 8
* M 0.30 0.32 -0.27 0.42 . 0. 30 0.31
* 0.35 0.37 0.39 0.32 9
* M 0.05 o.oo 0.07 0. 12 0.23 0.07
* 0.05 0.08 0.05 0.07 10
* M 0.36 0.45 0.45 0.38 0.29 0.57
* 0.34 0.40 0.34 0.26 11
* M 0.10 0. 14 0. 10 0.07 0.07 0.12
* 0.15 0.13 0. 11 0.09 12
* M o.oo o.oo o.oo o.oo o.oo o.oo
* o.oo o.oo o.oo o.oo . 13 (1.16) l1 o.oo 0.01 0.00 o.oo o.oo o.oo (0.88) 0.00 0.02 o.oo o.oo 14 o.oo i1 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 0.00 o.oo 0.00 o.oo 15 0.00 11 o.oo 0.00 o.oo o.oo 0.00 0.00 o.oo o.oo 0.00 0.00 o.oo 16 o.oo M o.oo o.oo o.oo 0.00 o.oo o.oo o.oo o.oo 0.00 o.oo o.oo 17 o.oo M o.oo o.oo o.oo o.oo 0.04 0.02
* o.oo 0.00 0.00 o.oo 18 0.03 M 0.05 o.oo -0.04 0. 0.1 0.04 0.04
* 0.04 0.00 0.02 0.00 19 o.oo M o.oo 0.00 o.oo o.oo o.oo 0.00
* o.oo o.oo 0.00 0.00 20 0.42 M 0.54 0.55 0.59 o.s4 0.58 0.60 ( 0. 86) 0.60 0.81 o. 53 0.42 21 (). 4 9 M 0.28 0.41 0.37 0.30 0.23 0.40 0.49 0.31 0.46 0.25 0.21 22 0.00 M o.oo 0.00 o.oo o.oo o.oo 0.05 0. 0 7 0.00 0.00 o.oo o.oo 2] 0. 04 l1 o.oo (). 00 o.oo o.oo o.oo o.oo o.oo-0.04 0.05 o.oo o.oo 24 0.02 M 0.01 0.02 0.04 0.03 0.04 0.03 0.02 0.04 0.03 0.01 0.04 25 0.10 I1 0. 0 6 0.07 o.os 0. 11 0. 12 0.06 0.06 0.07 0.05 0.06 0.04 26 D. 10 i'l 0.04 0.04 0.07 0.09 0. 11 D. 07 0.06 o.os 0.07 0.05 0.06 27 0.06 M 0.01 0.07 0.03 0.07 0.03 0.06 0.02 0.06 0.04 ** 0.05 28 0. 11 i1 0.04 0.03 0.05 0.02 0.07 0.06 0
* 1 1 0.06 0.05 (0.05) 0.06 29 o.oo M o.oo 0.00 o.oo 0.02 0.01 o.oo 0.02 o.oo o.oo o.oo o.oo 30 o.oo o. 00 . o.oo 0.00 0.00 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 31 o.oo M 0.01 0.00 o.oo o.oo o.oo 0.01 . 0. 02 0.00 o.oo 0.01 0.01 Tot (3.16) M 2.51 2.96 2.93 3.01 2.85 3.27 M 2.88 (3.23) (2. 54) 2.30 Table J.2L Palisades Network Greatest precipitation received in a given period for """ 0\ December 1977 Station 1-Hour 3-Hour 6-Hour 12-Hour 24-Hour amt. day time amt. day time amt. day time amt. day time amt. day time ( :!-n.) began began (in.) began (in.) began (in.) began P01A [1 M M M M M l1 M M H M M M l1 M P02A M M M M M N M M M M M M M M M P03A 0 .19 1 0000 0.39 1 0000 0.40 1 0000 0.46 20 0300 0.56 20 0300 P04A l1 M M M M .M M M 11 M M M M M M PJSA 0. 16 1 0100 0.37 1 0000 0.38 1 0000 0.47 1 0000 0.62 20 0300 P06A 0.14 1 0100 o. 31 1 0000 0.34 *20 0300 0.48 1 0000 0.55 20 0300 P07A 0.13 1 0000 0.31 20 0300 o. 38* 20 0300 0.43 20 0300 0.59 20 0300 POSA 0. 15 1 0100 o. 1 0000 0.39 1 0000 0.49 1 !) 1300 0.65 10 0400 P09A M M M M M M M Ii M M M M M M M P 10 A (). 19 1 0000 o. 38 1 0000 0.40 1 0000 0.48 1 0000 0.62 20 0300 P11A M H M M M l1 M M M M M M M M M P12A M M M M M M M M M M M M M t1 M P13A 0. 14 1 O*JOO 0.28 . 1 0000 0.31 20 0300 0.41 1 0000 0.47 1 0001) * \_. ____ . ----------C __ _J* *t.---.--.i . I ! "'---*--'-" ___ ___J 47
* Table 3.3L Palisades Ketvork: \. Precipitation accumulated in each hour (EST) for oece*ber 1977 Precipitation (inches) accu11u.lated in each hour interval ending at Sta 0100 0200 0 300 0400 osoo 0600 0700 0800 0900 1000 1100 1200 1300 1400 lSOO 1600 1700 1800 1900' 2000 2100 2200 2300 2400 Total POlA !I ft !I II II ft II !I ! ! ! !I ! ! II ! ! ! ! ! ! ! ! ! ! P02A ft ft II ! ! !I s s ft ! II ft !I !I ! ! ! 8 *! ! !I ! ! ! ! P03A
* 23
* 23 .06 .13 .14 .17 .07 .11 .07 .08 .10 .09 .09 .16
* 16
* 13 .07 .07
* 09 .. 09 .08 **.04 *.04 .as 2.51 POU .21 .21 .09 .06 .17 .16
* 10 .09 .11 !I ! ! !I ,19 .19 .17 .14 .12
* 09 .09
* 20 .06 .04 .IJ-4 ! POSA
* 20 .20 .08 .13 .14 .10 .OB .09 .11
* 09 .14 .12 .08 .16 .21 .19 .19 .1S .11 .07 .13 .07 .OS .04 2.94 P06A .20 .20
* o 9 .14 .14 .10 .07 .09. .14
* 14 .
* 14 .12 .10 .12
* 20
* 20 .18 .17
* 09 .oa .-07 .13 .07 .06 3.03 POH .19 .15 .OS .10 .18
* 19
* 1S .11 .09 .11
* 06 .09 .14 .12 .16 .22 .20 .oa .*OB .09
* OB .11 .06 .07 2.B7 POSA .21 .21 .10 .14
* 14
* 14 .OB .09 .11 .11
* 18
* 12
* 1S
* 2B .22 .15 .14 .11
.-09 .11 .1s .oa .oa .07 3.26 P09l ! ft !I ! !I !I !I ! s !I ! ! ! !I ! ! ! ! !I II ! ! !I ! ! P 10 A .24 .23 .07 .oa .16 .1s .10 .14 .11 *. 15
* 13 .oa .12 .1 B .17 .16 .12
* 10 .*08 .07 .08 .06 .OS .-OS 2. 86 P11A ! s !I ! !I II ! !I !* II !-!I II !I ! ! !I ! *! ! II !I II !I ! P12A s !I ! II !I ! !I s s !I s ! .oa .12 .17 .16 .15 .10 .09 .07
* 12 .04 !I !I s P13A
* 16 .1s .03 .10 .14 .08 .08 .OS .09
* 14
* 16 .oa .OS .07 .12 .n
* 13 .13 .11 .00 .07 .06 .OS .04 2. 31 ave ; 20 .20 .07 .11
* lS .14 .09
* 10 .10 . .12 .13 .10 .10 -.16 .18 .17 .1s .11
* 09 .OS .11 .07 .OS .as 2.83 *
* 48 IV. TEMPERATURE Air temperature is measured with a hygrothermograph located in a standard instrument shelter. It is recorded in degrees Fahrenheit and reported to the nearest whole degree. The data are given in 3 tables for each month. The first table gives the daily maximum (midnight to midnight) for each station; the second gives the daily minimum; and the third gives the daily average temperature.
Since a continuous record of temperature is obtained, the daily average temperature (T)is calculated using a difference approximation to the equation I 204 T = 1/24 T(t) dt, where T(t) is the variation of temperature with time and is assumed linear between data points. This method is used instead of the average of daily maximum and minimum temperatures normally listed in climatological summaries, since it is more accurate for comparing temperature data among stations.
At the bottom of. each table, two sets of averages .are given for each station. The top set of ni.;unbers is based on all data available for each station for that month. The bottom set is based on data only for days for which temperatures were recorded at all stations in operation during the month. l --' * . I __ I; J _j * 
-----* Table 4. 1A --.. ----' -**--, *.. i f O[' .January 1977 DAY P01A .P02A P04A POSA P06A P07A POBA P09A P10A P11A P12A P13A 1 21 23 23 22 21 21 ' 21 21 23 22 22 22 20 2 22 23 22 21 20 21 19 20 24 21 21 20 19 3 26 27 27 25 26 26 24 25 . 27 26 26 26 25 4 26 33 33 .31 30 33 32 31 33 29 30 31 32 5 21 29 28 27 26 27 25 27 27 27 25 26 25 6 23 25 25 23 23 23 22 23 23 22 22 23 21 7 19 21 21 20 19 21 19 19 20 20 18 19 19 0 20 20 20 19 20 20 19 19 21 19 18 20 19 9 12 13 13 11 11 13 11 10 13 12 11 12 1 1 10 18 19 19 18 17 19 16 1 a. '18 18 18 17 17 11 15
* 17 17 15 16 16 14 15 16 15 15 15 14 12 10 12 12 1 1 11 1 1 10 11 12 10 10 1 0 10 13 22 2ti 22 26 24 22 21 M 24 23 22 22 22 14 25 27 27 M M 27 24 M 26 M 25 25 M 15 19 19 19 M M 20 19 M 19 M 19 20 M 16 6 6 7 M M 8 6 M 6 M 6 7 M 17 14 12 12 M M 12 11 M 12 M M 12 M 18 22 21 23 M M 23 22 M 22 M M 22 M 19 22 24 24 23 23 23 23 23 23 23 24 22 21 20 22 22 22 23 23 25 22 21 22 23 23 23 22 21 26 26 24 27 25 26 26 27 24 29 28 26 25 22 21 24 25 25 26 26 24 25 28 27 26 26 26 23 23 22 24 25 24 24 23 23 23 25 23 23 23 24 28 27 28 28 29 29 29 27 28 29 29 28 27 25 27 26 28 27 27 28 28 27 27 28 28 27 27 26 28 26 26 27 27 27 25 26 27 27 26 26 26 27 11 12 10 12 11 1 1 10 10 11 1 1 10 10 9 28 18 17 18 17 18 19 17 17 17 17 17 17 16 29 7 6 u 10 8 8 *7 7 7 9* 7 8 1 30 10 -9 1 1 11 1 1 . 10 10 10 10 9 1 1 10 9 , 31 18 18 18 19 17 18 17 18 18 18 19 17 17 Averages and extremes for all data Ave 19.4 20.3 20.5 20.9 20. 5 20.5 19.2 20.0 20.4 20.7 20.0 19. 7 19.6 Max 28 33 33 31 30 3) 32 31 33 29 30 31 32 Min 6 6 7' 10 (! 8 6 7 6 8 6 7 7 Cases 31 31 31 26 26 31 31 25 31 26 29 31 26 Averages and extl"emes for days with data from all stations having data for this month Ave 19.8 20. B 21.0 2 o. 7 20 .. 4 21.0 19.7 20. 0 20.9 20.6 20.3 20.2 19.5 Max 28 33 33 31 30 33 32 31 )] 29 30 31 32 """ Min 1 6 0 10 8 8 1 7 7 8 7 8 7 \.0 Cases 25 25 '25 25 25 25 25 25 25 25 25 25 25 Table 4.2A Palisades Network: Daily Minimum Temperatures (F) for January 1977 DAY 1 2 3 4 5 6 7 8 9 10 , 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 P01A 14 1J 15 3 1 6 5 -3 6 0 J -9 16 2 -3 5 -2 1 1 18 12 10 23 21 7 4 -2 3 3 10 Averages and Ave 5. 8 Max 23 Min -9 Cases 31 Averages and Ave 6 .. 8 Max 23 Min. -3 Ca 25 P02A 15 15 16 14 6 5 7 8 -1 7 3 4 -5 17 3 -2 4 8 5 4 17 12 10 22 21 6 4 -2 2 3 9 extremes 7.6 22 -5 31 extremes 8. 5 22 -2 25 POJA 15 15 17 6 2 7 7 -1 9 3 5 -4 17 1 -2 5 2 4 3 17 13 12 24 21 5 3 -1 3 4 11 P04A 15 15 16 5 2 6 7 -6 7 2 0 -6 M M M M M 5 4 18 13 14 25 21 6 4 -2 3 5 11 for all data 1.0 7.1 24 25 6 31 26 for days with 8.0 7.6 24 25 6 POSA 14 13 16 11 2 6 6 -J 7 2 1 -6 M M M M M 4 2 18 13 12 24 21 6 4 -1 3 5 11 7.2 24 -6 26 P06A 13 . 13 16 1 4 1 7 -6 8 3 1 -6. 16 3 -1 6 -2 5 4 18 11 14 23 22 .1 5 -1 2 5 10 6. 5 23 -6 31 data from all 7.7 7.4 24 23 6 25 ?.5 25 . 25. \_. ---... P07A 12 12 15 12 0 -1 5 5 -4 6 0 0 -6 17 3 -1 4 4 5 4 15 8 13 23 19 5 3 -2 1 2 9 6. 1 23 -6 31 POSA .13 13 15 5 4 6 6 -6 1 1 -2 M M M M M M 4 ) 17 11 12 23 21 5 3 ,..3 2 4 10 6.5 23 -6 25 P09 A 15 15 17 13 0 0 7 6 -2 1 2 2 -4 16 0 -2 4 1 4 4 17 12 1 1 23 22 5 4 -2 4 4 . 10 6.9 23 -4 31 PlOA 14 13 15 4 4 6 6 -8 6 1 1 -8 M M M M M 4 2 19 14 13 25 22 6 3 -2 3 5 9 6. 4 25 -8 26 P 11A 14 14 15 9 2 6 6 -3 7 2 1 -6 16 1 -1 M M 4 3 18 13 13 23 21 4 3 -3 2 5 1 1 6. 7 23 -6 29 P 12A 14 14 15 13 5 3 6 6 -3 1 1 1 -7 17 2 -1 5 8 5 4 18 13 12 23 21 6 4 -2 2 5 10 7.3 23 -7 31 Pl3A 14 13 15 13 4 4 5 5 -2 6 1 6 [1 M M M i'l 3 2 16 10 l1 23 20 5 2 -3 1 4 7 6.6 23 -6 26 stations having data for this month 6.7 6.5 8.0 7.0 7.4 23 23 23 25 23 6 8 -3 . 25 . ..____; ___ J . __ J :___J ? i;
: o. 1 23 7.1 23 -3 .-3 ""! U1 0 
.. . -.. ... ,.. ...-..... ..... . .. , ---* ,______ r* -** ... ,. .. ... -*, .----,., --..... , *.
* Table q. JA Palisades Network: Daily Temperatures, (F) for January 1977 .. DAY 1 2 3 4 5 6 7 0 9 10 .11 12 13 14 15 16 17 18 19 20 21 22 23 24 2-5 26 27 28 29 30 31 P01 A 18 16 21 20 10 16 13 12 4 13 10 8 7 20 12 2 8 12 16 14 22 17 18 25 25 19 7 4 5 6 13 Averages and Ave 13. 4 Max 25 Min 2 Cases 31 Averages and Ave 14.1 Max 25 Min 4 Cases 25 P02A 19 10 22 25 16 18 14 13 6 15 11 10 8 21 13 2 8 14 17 14 *22 17 17 25 24 17 6 3 4 5 13 extremes 14.1 25 2 31 ex tr-em es 14.8 25 J 25 P03A 19 17 22 24 12 16 15 13 5 15 11 10 0 22 12 3 9 14 17 13 21 18, 18 26 25 18 6 4 6 8 15 P04A 18 17 21 23 11 16 13 12 4 13 10 8 9 M M M M M 18 13 22 19 20 26 25 18 7 4 6 8 14 for all data 14.3 14.4 26 26 3 4 31 26 for days with 15.0 14. 7 26 26 4 4 25 25 POSA 10 16 21 23 13 16. 13 12 4 13 9 9 8 M M M M M 17 13 22 19 19 26 25 19 7 4 6 7 14 14.5 26 4 26 data 26 4 25 P07A 17 15 20 22 12 16 P06A 17 16 21 23 10 16 15 1) 6 13 10 9 8 22
* 13 1 1 4 P08A 17 16 20 21 10 16 13 12 4 13 10 8 M M M M M M P09A 20 18 22 24 13 19 15 13 5 14 10 9 8 21 13* 4 9 12 18 13 22 19 19 27 26 19 8 5 6 7 14 14. 2 27 4 31 from all 14. 9 27 5 25 11 7 7 7 21 / 13 3 1 11 10 12 20 17 1.9 26 25 17 6 3 4 6 12 13.0 26 3 31 17 12 22 18 18 25 24 17 6 3 5 6 14 13.9 25 J 25 1 1 2 8 12 17 13 22 18 18 26 25 18 7 4 6 7 14 14.2 26 2 31 stations having data 13.7 13.9 15.1 26 25 26 ) 3 . 4 25 25 25 PlOA 18 16 21 21 9 16 13 12 4 13 9 8 7 M M M M M. 18 13 23 19 20 27 26 18 7 3 6 7 14 14. 2 27 3 26 P 11 A 18 16 21 12 16 13 12 4 13 9 9 7 21 12 2 l1 M 18 13 23 19 19 26 25 18 6 3 5 7 15 13. 9 26 2 29 P12A 18 16 21 23 14 17 14 12 5 13 9 7* 7 21 13 3 8 13 18 13 22 19 18 25 25 18 7 4 5 7 13 13.8 25 3 31 for this month 14.5 14.4 14.5 27 ,26 25 3 3 4 25 25 25 P 13A 17 16 20 22 12 16 13 12 4 12 7 7 7 M M M M M 16 11 20 17 17 25 24 17 5 2 4. 6 12 13.3 25 2 26 13. 5 25 2 25 Ul 1-4 Ul N Table 4.1n Palisades Network: Daily Maximum Temperatures (F) for Febr.ua.ry 19 77 DAY PO 1.!'\ P021\ P03A P04A PO 5 A l?O 6 A P07A P08A P09A p 1 0 I\ P 11 A P12A P13A 1 22 11 [1 22 23 23 21 24 23 23 25 2 1 22 2 i1 M f1 26 26 26 25 27 M 26 26 !1 24 J M M 28 28 28 11 27 !1 M 28 28 11 28 4 :1 27 28 27 1'l 26 '1 M 27 27 ['j 27 5 f1 M 17 16 16 . 17 16 M 15 16 16 17 16 ., 6 M 11 14 17 15 16 . 17 11 14 ., 17 18 1 5 1 11 l1 16 19 19 18 18 M 19 17 20 17 M 8 19 23 21 23 23 22 20 23 22 21 23 20 21 9 35 35 35 37 38 38 39 36 36 36 38 37 110 10 42 45 45 1!4 45 46 45 45 44 45 46 42 44 11 41j 111 42 44 44 112 44 43 45 44 44 43 12 4J 42 44 44 45 43 42 44 43 45 45 43 43 13 33 31 33 34 34 33 32 .3 4 34 35 35 33 33 ' 14 .29 28 30 29 31 29 29 JO 30 30 29 30 30 15 17 19 18 1,8 19 19 18 1 9 18 19 18 1 8 1 9 1 6 21 25 22 23 M. 22 23 21 23 23 23 21 24 17 31 30 29 29 M 29 28 29 29 30 30 28 JO 18 34 36 35 36 M 35 36 34 35 35 36 35 36 19 29 29 29 JO. 31 28 30 30 29 29 29 29 29 20 2 f3 28 27 28 30 30 29 27 26 28 27 27 30 21 27 28 28 28 28 27 27 28 28 29 27 27 28 22 41 42 41 43 47 45 46 42 41 43 43 44 44 23 52 51 54 54 54 51 50 54 51 54 52 50 52 24 47 44 49 48 48 45 47 46 47 48 46 46 47 25 36 34 36 35 37 35 36 35 36 36 36 35 36 26 32 31 33 33 34 32 32 33 33 33 33 32 33 27 29 28 28 27 29 27 27 29 27 28 27 26 27 28 32 . 34 32 ]1 3 1 29 32 32 30 31 32 30 30 Averaqes and extremes for all data Ave 3 2. 7 33.5 31. J 31. 2 3 2 .. 1 31. 0 30.8 3 3. 3 31. 0 31 .. 3 31.4 30. 7 32.2 Max 52 51 54 54 54 51 5() 54 51 54 52 50 52 '.1in '17 19 14 16 15 16 16 19 14 16 16 1 5 16 Cases 22 21 26 25 26 28 23 25 28 28 25 26 and extremes for days with data from all stations having data this moqth Ave 33.9 3 4. 1 34.7 35.0 36.0 3 4. 5 34. 7 35. 1 34.3 35. 3 35.0 3 4. 1 34.9 Max 52 51 54 54 54 51 5*J 54 51 54 52 50 52 Min 17 19 18 10 19 19 18 19 18 1 <) 18 1 8 19 Cases 18 18 1u 18 18 18 18 1 8 18 18 18 18 i .8 ** ' ' I ___J i :. ' I .* --J ...... _ ___, -------1 --__ _, ' "--* L----...__ ........ --* **--*-*-
r-** *"
* --** .... ----_.--. ' . -.. . ___ _..,, ---:* ! *** Table 4.28 Palisades Network: Daily Temperatures ( F) for :E'ebruary 1'-J77 01\ y PO 1r1 P02A. P03A PO 5A P06A P07A Pil8A P 09A P10A P1H P 1 2 A P13A 1 16 11 N 17 16 16 15 17 16 16 16 16 17 2 !1 r1 M 3 4 1 d 4 M 1 3 M 5 3 M M 25 lb 25 M 24 M M 26 26 M 24 4 11 M 17 16 16 M 15 M t-1 16 16 M 16 5 l1 M 9 9 9 8 7 M 8 9 9 9 8 6 M t1 3 0 2 4 H -1 2 5 5 M 7 *M M 2 0 -9 2 M 4 0 6 M-f.l 6 5 . 8 7 8 8 7 7 7 6 8 8 6 9 17 16 19 19 1 9 20 18 19 18 19 19 18 18 1 0 18 24 27 24 24 19 23 21 24 25 22 25 23 11 25 31 26 28 29 26 31 27 29 28 28 JJ 3) 12 25 30 25 28 29 28 32 27 33 26 30 32 33 13 29 28 29 2-9 31 29 29' 30 30 30 29 . 30 29 14 17 15 18 17 18 16 15 17 18 19 18 1 8 17 1 5 3 3 1 -1 . 7 -1 0 3 7 2 -1 6 -1 16 2 4 M 5 1 5 0 -4 17 1 3 2 M -1 7 -4 1 1 5 3 18 23 24 22 22 M 21 22 1 9 20 21 21 24 24 19 16 15 16 16 17 16 14 15 15 16 15 16 17 20 1 1 12 i 4 13 13 9 8 1 1 13 13 10 12 10 21 1 3 6 6 4 -5 2 -1 22 24 26 28 28 28 25 27 28 28 29 27 27 28 23 38 38 .38 4u 4 (j 37 38 38 38 40 38 38 40 24 31 29 31 31 33 JO 31 3 1 31 31 31 31) 30 25 30 29 31 29 32 30 ]!J 31 29 31 30 3:) 30 26 27 25 26 26 26 24 25 26 26 26 26 26 27 24 23 24 24 23 23 2) 23 . 23 22 23 22 23 28 20 24 25 22 25 17 21 23 23 1 9 22 24 24 Averaqes and extremes for all data Ave 1fj.0 18.9 17. 2 1 b. 5 18.9 14. 5 16.4 17. 4 17. 1 16. 3 16. 4 18. 5 1tl. 4 Max 38 38 3d 40 40 37 38 3 8* 38 40 38 38 40 in 2 4 9 6 -It 5 ,) -4 Cases 22 21 26 28 25 26 2B 23 25 "2d 28 . 2 5 26 Averages and for days witb data from all stdtions hdving data for this month Ave 19.9 20.7 21.2 2 Ll. 9 22. 2 19. 4 2i). 4 2 i). 6 2.1. 6 21.0 20.6 2 2. 1 21. 4 Max 3 fl 38 38 40 40 37 38 38 38 40 38 38 40 11 in 1 ] 6 _,, 4 -ti -5 2 -1 Cases 18 1H 18 18 18 18 18 18 18 1 i3 18 1 8 1a Ul w Ul .i:::. Table 4.38 Palisades Network: Daily Average Temperatures ( F) for February 1977 DAY P01A P02A POJA PO 4A i!O 5 A P06A P .)7A P08A pij9A P10A P1H P 12A P13A 1 18 i1 H 19 19 19_ 18 20 19 1 9 20 1 CJ 19 2 !'l l1 M 17 17 17 17 17 M 16 17 M 17 3 M r1 26 27 27 !'l 26 [1 M 27 27 t1 26 4 M M 23 23 23 M 22 M M 23 23 M 23 5 t1 M 12 12 12 12 11 M 11 12 12 1 1 1 1 6 M M 11 11 11 10 9 M 10 11 12 1 1 M 7 l1 !1 11 1 1 1 1 10 10 M 11 1 1 12 1 1 M 8 13 13 15 14 15 15 14 15 14 15 15 14 14 9 27 28 30 30 31 30 29 30 30 30 31 30 30 10 32 36 38 36 J7 35 35 36 36 37 37 36 35 11 34 3 ') 37 37 39 37 38 37 38 38 ]8 38 39 12 34 35 36 36 J7 36 36 36 37 37 37 37 37 13 31 30 31 31 32 31 30 31 32 32 32 3 1 31 14 :.:!4 23 24 :n 25 23 23, 24 25 25 24 24 24 15 11i 13 14 14 16 14 13 1 5 15 16 14 15 111 16 9 ') 8 9. M 1 7 1 10 B 9 1 0 8 17 17 17 16 17 l1 18 19 16 19 16 19 18 19 1 8 28 28 29 29 M 29 2q 28 29 29 29 30 30 19 23 22 22 23 24 22 22 22 22 23 22 22 23 20 20 2 L) 20 20 21 19 20 20 20 21 20 1 9 20 21 16 17 15 15 16 13 15 15 15 16 15 17 16 22 33 35 36 36 38 35 37 35 35 36 36 36 37 23 45 43 46 46 46 43 44 45 44 46 45 45 46. 24 37 35 39 39 39 37 38 37 38 38 38 37 38 25 33 32 . 34 33 34 33 33 33 33 33 33 33 34 26 2a 27 29 29 30 28 29 29 29 29 29 28 29 27 26 25 26 26 2 f. 25 25 26 25 25 25 25 25 28 27 27 28 27 28 25 27 27 27 27 27 26 27 Averages and extremes for all data i', ve 2 5. 9 26.J 2 5.J 24.7 2 6. 1 24.0 24. 1 26.2 25.0 24.8 24.9 24.9 25.8 Max 45 43 46 46 46 43 44 Lt 5 44 46 45 45 46 t1in 9 9 8 9 11 7 7 1 10 8 9 10 8 c cl ses 22 21 26 28 25 *r -D 28 23 25 28 28 25 26 extremes foe data from all stations having data for this month fl ve 27.6 27.6 28.9 28.7 .2 9. 6 27.9 28.2 28.6 28.6 2 9. 1 28.7 2 8. 5 2 B. 7 Max 45 . 43 IJ 6 46 46 43 IJ4 45 44 46 45 lJ 5 46 Min 13 13 14 1 IJ 15 13 13 15 14 15 14 14 14 cases HJ 18 18 18 1 8 18 18 18 18 18 18 18 18 ** ** **' :._.-...---
-----
.____) __ _1 __ J -_.) --*------
.*
Ma.nm for ----
DAY P01A P02A P03A P04A P05A P06A P07A POOA P09A P10A P11A P12A P13A 1 26 27 27 28 2S 27 26 28 27 28 27 27 27 2 36 39 39 40 39 40 40 39 38 40 40 39 40 3 41 40 42 41 M 40 42 41 40 41 41 41 41 4 4 1 4 2 4 3 4 2 M 4 2 44 4 3 41 4 3 4 3 4 3 4 2 5 34 33 34 35 36 34 35 34 34 35 34 35 35 6 34 36 35 35 36 35 35 34 34 ' 36 ]5 35 34 1 38 40 39 41 40 41 39 39 41 41 39 40 8 61 62 62 64 65 61 62 63 62 64 64 62 62 9 57 59 60 63 f3 60 61 62 60 62 61 61 62 10 62 66 65 66 67 64 64 66 64 66 66 65 65 11 69 70 68 69 69 68 69 68 68 69 70 67 68 12 68 67 68 69 67 67 68 67 68 68 68 67 67 13. 46 l!6 47 49 q7 47 47 47 47 48 48 qg 47 14 52 55 54 55 53 52 52 53 53 54 53 52 15 69 71 71 72 11 71 72 71 70 71 73 70 71 16 45 48 46 48 47 47 48 45 45 46 46 46 48 17' 43 44 43 43 ti2 43 42 43 42 44 44 4j 43 33 34 34 35 34 35 34 35 34 34 34 34 35 19 *40 41 39 40 40 40 40 40 39 40 39 39 40 20_ 37 qo *37 38 30 30 37 39 37 JB 38 38 11 21 40 42 41 40 40 41 39 40 40 39 40 41 40 22 35 38 36 37 36 37 37 38 36 36 38 37 37 2 3 . 31 3 8 3 8 3 9 3 8, J 8 3 8 3 9 3 8 3 7 3 7 ] 8 3 7 24 38 39 37 39 39 42 40 38 38 38 38 39 41 2 5 5 0 5 2 5 0 51 0 51 50 51 5 0 5 1 5 l 4 9 5 0 26 62 63 61 62 62 61 60 62 60 62 62 60 60 27 68 67 66 67 65 66 65 66 65 66 67 66 66 28 64 64 64 65 64 64 64 65 64 64 63 6] 64 29 62 63 64 66 66 66 66 65 65 65 68 66 65 30 60 60 61 63 62 62 62 61 61 61 63 61 62 31 41 40 41 41 Q2 42 44 41 42 42 41 42 42 Averages and extremes for all data Ave 48.0 49.2 48.8 49.8 49.9 49.1 q9.2 49.1 48.4 49.3 49.5 48.9 49.0 f".ax 69 71 71 72 71 71 72 71 70 71 73 70 71 Min 26 27 27 28 28 27 26 28 27 28 27 27 27 Cases 31 31 31 31 29 31 31 31 31 31 31 31 31 Averages and extremes for with aata from all stations having data for this month Ave 48.5 49.8 49.2 50.3 49.9* 49.7 49.6 49.6 *49.0 49.8 50.0 49.3 49.6 Max 69 .71 71 72 11 71 72 71 70 71 73 70 71 Min 26 27 27 28 20 27 26 28 27 28 27 27 27 t:: Cases 29 29 29 29 29 29 29 29 29 29 29 29 
-----------------------------. Table 4.2C Palisades Daily Minimim Temperatures ( F) for March 1977 Ul O'\ DAY P01A P02A P03A P04A PCSA P06A P07A POOA P09A P10A P 11 A P12A P13A 1 13 13 13 9 15 11 9 8 1 1 7 7 15 14 2 18 24 18 14 14 10 14 18 17 14 13 16 12 3 29 29 32 31 M 30 31 30 ] 1 31 ) 1 32 30 4 33 33 33 34 M 34 33 34 ]] 34 )4 34 33 5 30 30 31 32 32 31 31 31 31 32 31 3 1 31 6 31 31 30 31 32 30 31 31 30 ) 1 .) 1 30 31 7 24 28 25 29 31 30 29 26 30 26 28 29 29 8 24 29 32 34 3 1 34 33 33 32 31 34 34 J] 9. 43 48 50 . 50 50 48 . 48 50 48 49 49 50 49 10 33 39 ]8 40 ll2 43 43 37 40 36 40 43 44 1 1 36 44 47 47 44 46 49 47 48 45 46 46 46 12 44 45 46 46 46 46 47 46 45 46 45 47 47 13 38 39 41 42 lj 2 41 . 42 40 41 41 42 41 4 1 14 40 38 39 41 tj 1 42 42 40 41 41 41 42 42 15 39 39 4 1 42 ll2 43 43 39* 42 40 41 41 43 16 25 30 24 25 26 30 26 23 25 23 24 30 29 17 23 27 21 22 22 25 23 22 24 19 22 26 26 18 31 32 31 32 3 1 32 31 32 31 31 31 29 32 19 30 31 30 31 30 31 31 31 31 JO 30 29 31 20 29 3*1 29 29 29 29 29 30 29 29 30 29 28 21 31 33 30 31 :: 1 31 31 32 33 29 30 31 31 22 25 29 27 29 28 29 27 30 30 27 28 29 28 23 18 22 19 21 :.22 23 19 20 22 18 20 23 22 24 15 19 14 16 20 22 18 17 21 15 16 21 20 25 21 25 23 24 27 27 25 24 27 23 23 26 26 26 31 32 32 34 32 33 32 31 33 32 J2 32 31 27 47 47 47 48 47 47 45 47 47 47 47 47 47 28 46 50 53 54 !: 4 55 53 53 54 53* 53 54 53 29 44 50 45 45 46 47 49 45 47 44 45 49 49 30 41 40 41 4 1 lJ2 42 44 41 42 42 I! 1 42 42 31 32 33 3q 33 33 35 33 J] 34 33 33 33 3] Averages and extremes for all data Ave ) 1. 1 33.5 32.8 33.5 33 .. 9 3 4. 1 33.6 32.9 33.9 32.2 32.8 34.2 34.0 Max 47 50 53 54 54 55 53 53 54 53 53 54 53 Min 13 13 13 9 14 10 9 *0 1 1 7 7 15 12 Cases 31 31 31 31 29 31 31 31 31 31 31 31 31 Averages and extremes for days with rlata from all stations having data for this mdnth Ave 31. 1 33.7 32 .. 8 33.5 33.9 34.2 33.7 33.0 34.0 32.2 32.'l 34.3 3 4. 1 Max 47 50 53 54 !:4. 55 53 53 54 53 53 54 53 Min 13 13 13 9 14 10 9 8 1 1 1 7 15 12 ... 29 29 29 29 29. 29 29 29 29 29 29 .29 ' ' -.J ;-
' . *----* 1 **.** -
*------\ __ --*---
**-------'
-_J -
* Table 4. JC ;alisades Network; Daily-(F) fol:" Macch
:
* DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 1 22 23 24 25 26 27 28 29 30 31 P01A 20 28 36 36 33 32 32 44 51 48 56 58 42 45 49 36 34 32 35 33 35 31 30 25 36 46 55 55 56 50 36 P02A 23 30 35 31. 32 32 33 47 53 52 57 58 42 44 51 39 35 33 36 35 36 33 31 28 38 47 56 56 59 51 36 AveJ:"ages and.extcemes Ave 39.8 41.1 Max 58 59 Min 20 23 Cases 31 31 Avecages and Ave 40.1 Max 58 Min 20 Cases 29 extt:"emes
: 41. 5 59 23 29 P03A 23 3 1 38 39 32 32 33 49 55 53 58 59 43 45 52 38 33 32 34 33 34 32 31 26 37 47 55 57 59 *51 37 P04A 21 30 37 39 33 32 34 50 57 55 59 60 44 46 52 40 32 ]] 36 34 35 33 32 27 38 47 56 57 60 52 37 foe all data 41.2 41.9 59 60 23 21 31 31 for days with 41.4 42.1 59 60 23 21 29 29 PC5A 23 30 M M 34 33 35 49 56 59 59 44 46 !: 2 39 33 33 35 33 35 32 3 1 29 38 46 55 57 60 37 li2. 0 60 23 29 data lj 2. 0 6C 23 29 P06A 21 25 36 38 32 32 35 48 53 53 57 59 44 46 52 40 34 33 35 33 35 32 31 30 )*8 47 56 58 60 53 38 41. 4 60 21 31 from all 41.7 60 21 29 P07l\ 21 28 37 39 32 32 31* 48 54 53. 59 59 44 45 52 40 32 32 35 33 34 32 30 29 37 46 54 57 60 51, 38 41. 3 60 21 31 P08A
* 22 30 31 38 33 32 33 49 55 53 58 57 42 44 50 37 33 33 36 34 36 33 32 28 37 47 55 57 60 51 37 41 G 3 60 22 31 P09A 21 30 36 38 32 32 33 48 54 53 58 58 43 45 51 38 34 32 35 33 35 33 31 28 38 46 55 57 59 *52 37 41.2 59 21 31 P 10 A 22 30 37 39 33 33 33 ti .9 55 53 59 59 43 45 51 37 32 33 35 33. 34 32 31 25 37 47 56 57 59 51 37 41.2 59 22 31 p 1 lA 21 29 )7 39 33 32 ] 1, 49 55 5) 58 59 44 1i6 52 39 33 ]) 35 34 34 32 31 27 38 47 55 56 59 52 37 41.3' 59* 21 31 P12A 22 30 37 39 33 32 34 49 54 54 57 58 44 46 51 -3 9 34 32 34 33 35 32 ] 1 29 37 47 55 57 60 53 37 41.4 60 22 31 stations having data foe this month 41.5 41.5 41.5 . 41.4 41.6 41.7 60 60 59 59 59 60 21 22 21 22 21 22 29 29 . 29 29 29 29 P13A 22 27 3., 3A 32 32 34 I. 8 55 54 57 59 41! 45 52 40 35 3] 35 33 35 32 3 1 29 31 46 55 56 60 54 37 4 1. 3 60 22 31 41.6 60 22 29 Ul -....J 
,------'1'1ible 4. 1D Palisades Network: Daily Maximum TemperatuLes ( F) fOL ApLil 1977 U1 co DAY P01A P02A PO 3A PO 4A PC5A P06A P07A P08A P09A P10A P11A P12A P13A 1 57 '5 7 55 56 55 55 55 56 54 56 56 54 55 2 63 64 65 68 (; 7 66, 69 65 66 65 67 66 68 3 1.a 50 50 52 c _L Sil 54 52 52 51 52 52' 54 ,, 50 50 51 5J 5 1 51 52 51 51 51 51 51 52 5 37 36 38 37 36 37 31 37 36 37 36 36 37 f) 39 38 35 38 36 35 35 37 35 37 35 35 35 7 1, 9 51 51 53 53 53 53 51 53 53 52 53 8 35 37 36 37 37 39 40 36 34 36 37 36 38 q 58 59 55 57 56 56 56 57 56 58 58 55 57 10 77 79 79 81 80 78 80 80 79 80 80 79 80 11 75 Tl 78 81 E 1 79 82 78 78 7q 01 80 81 12 81 81 80 8 1 80 79 80 79 79 81 ao 00 79 13 69 70 72 70 71 70 72 70 71 70 70 70 72 14 64 63 64 63 t3 64 63 63 63 65 63 63 64 15 73 75 74 76 15 75 75 73 73 76 76 75 76 1 6 73 76 75 76 78 78 78 75 75 76 77 77 79 17 82 83 81 84 83 83 82 81 80 84 84 82 811 18 85 84 03 84 E5 84 ii 4 84 82 85 85 83 84 19 75 75 74 75 13 ., 3 74 74 74 75 73* 71 72 20 77 77 77 79 17 78 70 78 77 78 79 77 77 2 1 70 71 70 71 10 69 71 70 69 72 10 69 70 22 62 62 62 62 61 61 62 62 62 62 61 62 62 23 63 6 lJ 63 65 65 65 64 64 65 65 65 65 65 24 51 5 1 50 50 50 52 56 51 50 51 50 50 51 25 44 46 45 45 45 47 49 M 46 46 lt6 45 47 26 51 53 51 5 1 53 55 M 50 52 52 51 52 27 74 77 76 77 77 76 78 76 75 77 79 76 77 20 52 51 51 50 1 50 52 51 51 ') 1 51 50 50 29 52 57 54 54 54 56 59 56 52 55 55 54 57 ] I) 62 t6 64 66 66 69 69 64 64 65 66 67 69 Averages and extremes for all data Ave 61.6 62.7 62.0 6 3. 1 *2.7 62.8 63.8 63.3 61.7 63.0 62. 9 62.1 6.3. 2 85 84 OJ 84 E .5 84 84 84 82 85 85 83 811 Min 35 36 35 37 36 35 35 36 34 36 35 35 35 Cases 30 30 JO 30 30 30 30 28 JO 30 30 30 30 Averages and extLemes for with data from all stations having data foL this month Ave 62.6 63.6 63.0 6 4. 1 f3.7 63.8 64.6 63.3 62.6 64.0 63.9 64a2 Max 85 84 83 84 ES 84 84 84 82 85 85 03 84 Min 35 36 35 37 36 35 35 36 34 36 35 35 35 Cai. 28 20 28 28 28 28 28 28 28 28 28 28 28 __ , * . __ J ._j _;
'---..) ; -*----* -*-* -----
--' --.* * ---' -. Daily M.mum. . . ' Table 4.2D Palisades Networ-k: ( F) for April 1977 I) A y 1?01A P02A P03A PO 4A PC5A P06A P07A POOA P091\ P10 A P11A P12A P13A l 29 29 28 30 30 31 29 30 31 28 29 31 31 2 )6 37 . J7 38 36 37 37 37 37 36 36 36 36 3 37 36 36 36 34 34 JS 35 34 34 34 34 34 4 37 36 38 36 36 17 37 36 36 36 36 36 31 5 32 30 JO 32 29 JO 29 31 JO 30 JO* 31 JO 6 22 25 22 24 24 26 24 24 27 21 2J 27 25 7 2J 25 24 27 25 28 29 24 29 22 27 29 28 fj 19 22 20 .. 19 21 22 21 21 23 19 19 22 22 9 18 20 16 19 19 22 20 1 gi 23 17 19 24 21 10 40 41 45 IJ6 45 44 44 44 46 45 45 44 44 1 1 57 62 59 61 58 58 61 60 60 60 50 58 6 1 12 57 62 64 60 56 50 60 60 58 60 59 58 59 13 41 40 40 41 Lj 0 LjJ 44 40 41 42. 41 41 42 1 4. 42 4 1 ''&deg; 41 L'. 1 43 44 41 42 42 IJO 42 42 15 47 47 49 49 49 49 49 48 49 50 49 4 8 .-48 16 4.4 50 46 50 48 49 50 48 53 47 51 . 52 51 17 56 59 55 57 57 58 60 55 59 56 56 60 60 18 56 62 62 65 EO 56 62 59 63 62 62 63 60 1 g 55 58 55 55 56 56 57 54 56 54 55 59 58 20 59 59 61 61 60 60 60 *59 60 61 60 6_0 60 21 59 60 62 61 60 60 61 60 61 62 60 61 61 22 43 1'2 42 43 II 3 45 49 43 43 44 43 44 46 23 39 q2 40 39 40 43 44 38. 42 40 39 43 43 24 36 38 35 36 37 38 39 35 39 35 36 39 38 2*5 39 38 39 38 18 38 40 11 39 39 38 38 36 26 33 37 30 29 31 31 31 M 29 29 27 33 32 21 32 36 31 34 36 37 40 32 39 32 33 39 39 28 29 31 27 30 )0 32 32 30 32 29 28 33 31 2q 26 29 24 26 26 29 29 24 27 25 24 29 30 30 28 32 27 29 30 . 33. 32 29 32 28* 28 ]J 34, Aver-ages and extr-emes for all data /\ ve 39.0 40.9 39.5 40.4 39.8 40.6 41.6 39.9 41.J 39.5 39.5 41.6 41. 3 Max 59 62 64 65 60 60 62 60 63 62 62 63 61 l'lin 18 20 -16 19 19 22 20 19 23 17 19 22 21 Cases 30 30 30 30 30 JO 30 28 30 30 30 30 30 Ayerages and extremes for-days with data from all stations having data for this month 42.0 Ave 39.3 41. 1 39.8 40.9 ,, 0. 2 41. 1 42.1 39.9 41.9 39.9 40.0 f1 ax 59 62 *64 65 60 60 62 60 63 62 62 6J 61 . Mi II 18 20 16 19 19 22 20 19 23 17 19 22 21 . Cases 28 28 28 28 28 28 28 28 28 28 28 28 28 Table 4.3D Palisades Network: Daily Average Temperatures (F) for April 1977 CT\ 0 DA 'l PO 1A P02A P0.3A P04A PC5A P06A P07A P08A P09.\ P10 A p 11A p 12A 1?13A 1 44 113 42 44 43 4) 44 44 43 43 43 43 43 2 49 50 50 51 50 50 52 50 50 49 49 49 51 3 42 42 42 43 42 43 44 42 42 42 42 42 43 4 43 lj 4 4 IJ lj 4 ll3 43 44 4q 43 43 43 43 44 5 34 33 33 ]4 33 33 33 34 33 33 33 33 33 6 31 31 30 32 30 31 )0 32 31 31 30 31 30 7 38 38 38 40 39 39' 39 39 )9 38 39 39 39 8 29 30 28 30 29 31 30 29 29 29 29 30 30 9 J9 40 38 38 40 40 41 39 41 39 41 40 41 10 6 1 63 63 64 E3 61 64 64 64 65 64 63 63 11 66 69 10 73 70 68 71 70 70 71 70 10 71 12 68 70 71 71 f5 66 69 10 69 71 69 68 {j 9 13 58 58 60 61 (j 1 61 61 59 60 62 60 61 62 14 56 55 54 55 54 55 55 54 55 56 54 55 55 15 59 61 60 6 1 61 61 61 59 60 61 60 61 61 16 60 _62 62 63 (3 64 64 61 63 63 63 64 64 17 66 69 67 69 69 10 7o 67 69 68 69 10 70 18 69 7 1 71 72 '12 71 72 70. 71 72 72 12 72 19 64 65 65 -65 E4 65 64 64 64 65 64 65 64 20 65 ES 65 65 f4 65 66 65 65 66 65 64 66 21 63 64 65 65 64 64 64 64 64 65 64 64 64 22 50 49 50 50 50 52 53 50 50 51 50 51 52 2J 51 52 52 52 53 54 52 53 53 52 53 54 24 43 43 42 Ll2 43 46 42 43 43 42 43 44 25 42 42 42 42 ll2 42 44 M 42 43 42 42 42 26 42 44 42 lj 1 llJ IU 44 M IJ2 42 41 44 44 27 54 57 56 57 57 58 59 56 57 57 58 58 59 28 41 41 41 q 1 1 42 43 42 41 42 41 41 41 29 40 tf2 40 41 . LI 1 43 44 41 11 1 41 41 43 44 30 47 51 4-7 48 lj g 51 51 48 50 48 qa 52 53 Averages and extremes for all data 1\ve 50. 11 51. 5 51.0 51.8 51.6 52. 5 51.8 51.5 51. 7 51.] 51. 8 52.J Max 69 7 'f 71 13 12 71 72 70 71 72 72 72 72 Min 29 30 28 30 29 ' 31 30 29 ' 29 29 29 30 30 Cases ]0 30 30 30 30 30 30 28 30 30 30 30 30 Averages and extremes f6c days with data from all stations having foe this month Ave 51. 0 5 2. 1 51. 7 52.5 52.3 53.2 51. 0 52.2 52.4 52.0 52.4 52.9 !-lax 69 11 71 73 72 71 72 70 ' 71 72 72 72 72 Min 29 30 28 30 29 31 30 29 29 29 29 30 30 Cases 28 28 28 28 28 28 28 28 28 28 28 28 28 __ .[ _____ ' * ' :.___j i __j ._I .* ; _ ___ ! ---------.)
:..__ .----1 ----1 ------.---------*---*----*----* 
. .., --r.*---. -. . ----* .-*---,,--__ ...,, .. .-, . --*----***
* Table 4. lE Palisades Network: Daily Maximum (f) f oc-May 1977 DAY PO 1A P02 A l!OJ A POllA POSA P06A PO.IA POBA
* 1:109A P10A PllA P12A PlJA 1 72 13 72 75 75 75 76 75 13 7q 75 74 76 2 65 65 65 64 64 66 68 65 65 65 62 63 65 3 73 73 71 72 70 72 71 13 72 72 -, 2 70 71 4 62 62 63 63 63 65 6J 63 62 63 63 62 65 5 75 76 77 11 78 78 79 11 77 77 78 71 79 6 67 13 69 71 74 74 75 70 68 13 75 73 76 1 59 60 59 59 60 61 64 60 58 59 59 59 62 8 58 59 55 58 58 60 61 56 55 57 58 57 60 9 50 53 48 48. 48 49 50 49 47 50 49 48 51 10 53 58 55 56 58 60 61 56 55 57 59 58 59 11 67 b7 67 69 69 69 70 69 67 67 69 69 70 12 73 73 72 74 73 73 13 73 72 73 74 73 74 13 75 79 79 81 81 81 81 79 80 80 81 80 82 14 66 72 72 71.l 78 79 83 72 71 74 76 77 81 15 87 89 84 86 84 84 83 85 83 87 86 84 84 16 85 91 87 88 89 88 88 87 87 89 88 87 88 17 86 91 88 88 88 86 87 88 87 89 8 9 86 86 18 80 86 BJ 83 82 8'3 83 83 81 8] 84 83 83 19 82 91 87 87 88 88 89 87 86 87 88 87 89 20 87 93 89 M 91 92 92 89 88 9 1 92 91 91 21 88 92 89 H 90 90 89 89 88 90 90 90 90 22 87 89 88 M 88 87 88 89 88 89 89 07 07 23 81! 91 86 H 86 85 87 87 85 88 88 85 tI 21l 80 87 82 l1 83 84 84 82 80 84 84 83 M 25 82 88 89 M 88 89 92 87 87 87 89 89 90 26 82 86 8.3 H 81 82 83 83 02 84 83 82 82 27 81 83 81 M 83 84 85 81 79 82 82 83 84 28 83 92 87 87 06 87 88 86 84 89 88 86 08 29 78 82 80 M 77 78 78 78 78 80 79 79 79 30 83 87 83 M 83 82 82 M 81 83 04 83 83 31 81 113 81 M 82 81 82 M 80 81 83 81 81 Averages and extremes for all data Ave 75.2 7B.8 76.5 73.0 77.4 77.8 78.5 -76. 5 75.7 77.5 77.9 77.0 77.8 Max 88 93 89 88 91 92 92 89 88 91 92 91 91 Min 50 SJ 4B . 48 48 49 50 49 47 50 49 48 51 Cases 31 J1 31 20 31 31 3 1 29 31 31 Jl 31 29 Averages and extremes for days with data from all stations having data for this month Ave 70.9 74. 1 12.0 13.0 13.3 73.9 74.6 72.6 71.5 13.3 73.6 72.6 74.4 Max 87 n 88 88 89 88 89 88 87 89 89 87 89 O'I Min 50 53 48 40 40 49 50 49 47 50 49 48 51 I-' Cases 20 20 20 20 20 20 20 20 20 20 20 20 -----------------
Table IJ.2E Palisad.es Network: Daily Minimum Temperatures ( F) for May 1977 (J) l'...l DAY PO 1 A P0.2A P03A P04A POSA P06A P07A POSA P09A PlOA P11A P12A P13A 1 36 ,, 1 34 J7 )8 40 42 36 41 35 36 46 46 2 40 43 JU 39 42 44 45 38 41 39 38 45 47 3 46 46 JS 43 47 44 47 40 49 40 38 40 4U 4 50 51 51 50 50 51 50 50 51 50 51 50 51 5 50 59 59 59 .60 60 60 59 60 60 60 60 61 6 51 51 50 51 53 53 54 48 52 50 51 53 56 7 32 35 30 30 31 33 33 28 31 30 29 35 35 u 28 31 25 28 30 Jl 30 27 29 27 26 34 33 9 27 32 27 29 29 31 28 27 31 26 26 32 32 10 25 28 24 26 27 30 29 25 28 25 25 30 32 11 26 26 26 28 28 30 30 26 29 26 27 30 32 12 40 43 38 39 39 40 42 ]8 40 37 38 46 44 13 54 56 57. 57 57 55 56 58 57 57 58 58 59 14 52 56 52 52 53 50 51 50 51 52 51 55 56 15 52 Sit 55 54 51 53 57 54 56 5.2 52 57 55 16 55 . 57 58 59 59 57 59 56. 59 56 55 59 61 17 58 62 58 60 60 60 62 58 60 59 59 63 67 18 60 65 60 61 62 60 62 61 61 61 60 65 62 19 56 60 56 57 57 59 60 57 58 56 57 60 62 20 57 60* 57 M 58 60 60 56 58 56 57 61 62 21 58 61 57 M 58 f) 1 64 57 63 57 59 62 64 22 58 61
* 59 M 61 65 68 60 65 59 62 64 64 23 60 64 58 H 60 63 65 59 63 59 60 63 l1 24 59 63 60 M 61 62 62 60 60 60 58 63 M 25 56 59 55 M 58 59 58 55 57 55 55 60 60 26 54 58 52 H 56 58 59 53 51 52 53 59 60 27 40 SJ 46 M 49 50 53 49 55 47 47 55 55 28 49 53 48 51 49 52 54 49 57 48 51 55 57 29 58 58 SU M 50 50 57 57 57 58. 58 57 60 30 59 58 Sb M 58 59 58 11 59 57 58 59 60 3 1 50 50 58 M 59 58 50 M 58 58 58 50 59 Avecages and extremes for all data Ave 49.0 51. 7 48.4 45.5 50.3 51.2 52.0 48.0 51. 4 48.5 48.8 53.0 53. 1 l1a x 60 65 60 61 62 65 68 61 65 6 1 62 65 67 Min 25 28 24 26 21 30 28 25 28 25 25 30 32 Cases 31 Jl 31 20 31 31 31 29 31 31 31 31 29 Averages and extremes for days with data fcom all stations having data for this month Ave 44.0 47.5 44.2 45.5 46. 1 46.6 47.5 44.J 1n.o 4LLJ 44.4 ,,9. 0 49.8 Max 60 65 60 6 1 62 60 62. 61 61 61 60 65 67 Min 25 :.rn 24 26 27 30 28 25 28 25 25 30 32 -
-20 20 20 20 20 20. 20 20 20 20 20 20: L-..: '-..-.J __j i *--* L----* \_! ._, ;..__) , _ __J ----* __ J '*-----.-.--
** . *--' --.. -.... ....... --* . ..
* ,.._ .-. . . -----:* Table 4.JE Network: Daily Average TemperatulC'e-s ( F) for May 1977 DAY P01A P02A P03A P04A POSA P06A P07A P08A P09A P10A P 11 A P12A P13A 1 58 60 58 59 60 61 62 59 61 59 59 61 63 2 55 56 55 56 57 58 50 56 56 56 55 57 58 3 60 59 58 59 59 60 59 59 59 59 59 58 60 4 57 57 58 57 57 58 58 57 58 50 50 57 59 5 65 66 67 67 68 67 68 61 67 67 68 67 69 6 59 62 61 62 63 63 64 61 62 63 63 63 65 7 48 48 47 47 48 50 51 47 47 47 47 49 51 8 44 ili7 43 44 45 46 46 43 44 44 43 LJ 6 47 9 40 42 30 39 39 40 40 39 40 39 39 40 41 10 40 43 40 42 42 45 44 41 42 41 42 44 46 11 48 50 48 49 50 51 51 48 49 49 49 52 52 12 58 62 59 56 59 58 60 57 58 57 58 61 61 13 64 67 67 69 69 67 68 68 68 69 70 69 69 14 59 63 62 64 65 64 67 61 63 63 63 66 67 15 69 71 71 71 70 70 70 69 71 71 71 71 71 16 72 75 75 76 74 74 75 73 75 74 75 75 75 17 71 75 13 74 73 13 74 73 73 74 74 74 75 11.1 69 74 13 73 73 72 72 72 72 73 13 73 13 19 68 73 70 71 72 73 75 70 71 71 71 13 74 20 72 77 74 H 75 76 76 13 75 74 74 76 77 21 71 74 72 H 72 74 76 71 73 72 73 74 75 22 72 75 75 M 75 76 77 74 76 75 75 76 76 23 72 77 74 M 74 74 76 74 75 75 75 75 M. 211 70 74 72 M 72 13 74 71 72 72 72 73 M 25 60 72 70 M 72 72 75 69 71 70 71 13 75 26 67 70 67 M 69 -70 70 67 68 60 68 70 71 27 65 69 64 H 66 66 69 64 67 65 66 60 69 20 69 13 10 10 71 71 72 69 72 70 70 71 74 29 68 69 69 M 68 68 68 68 60 69 69 69 70 30 67 69 68 H 69 70 71 M 68 68 69 70 71 31 68 68 68 M 68 68 69 M 67 68 69 68 69 Averages and extcemes foe all data Ave 62.3 65. 1 63.4 60.3 64.3 64.8 6 5. tl 62.9 64.1 64.0 64.0 65.2 65.6 Max: 72 77 75 76 75 16 77 74 76 75 75 76 77 Min 40 42 38 39 39 40 40 39 40 39 39 40 41 Cases 31 31 31 20 31 31 31 29 31 31 J1 31 29 Averages and extremes for days with data from all stations having data for this month Ave 50.6 61. 2 59.7 60.3 60.7 61. 1 61.0 59.6 60.J 60.3 60.3 61.4 62.5 Max 72 75 75 76 74 74 75 13 75 74 75 75 75 Min 40 42 38 39 39 40 40 39 40 39 39 40 41 ()) w Cases 20 20 20 20 20 20 20 . 20 20 20 20 20 20 Table 4. 1F Palisades Network: Daily Maximum Temperatures ( F) for June 1977 O"I "'" DAY PO 1A P02A P03A P04A POSA P06A P07A P08A P09A P10A P11A P 12A P13A 1 60 61 61 60 61 61 62 61 61 61 61 62 63 2 54 61 S4 56 54 57 59 55 54 56 56 55 57 3 65 74 68 69 69 70 71 68 67 68 70 68 70 4 85 90 87. H9 88 80 88 87 85 88 89 87 88 5 74 77 76 77 76 78 77 75 75 76 77 75 77 6 69 70 71 68 70 71 70 70 7 1 71 70 11 71 7 58 64 59 61 60 60 61 59 59 59 61 M 61 8 58 60 61 62 62 61 63 61 61 61 62 6 1 62 9 SJ 61 56 57 58 61 62 57 56 . 57 57 58 60 11) 65 . 67 61 68 66 67 67 67 67 66 66 66 67 11 6.9 71 70 71 70 69 68 71 69 71 70 69 70 12 61 62 62 64-63 63 63 63 63 6.3 62 62 63 13 64 69 67 69 69 69 69 68 67 68 68 68 69 14 68 75 '7 3 74 75 75 77 71 72 13 74 75 76 15 71 81 76 79 79 79 81 77 76 79 78 79 81 16 84 89 87 89 87 86 86 87 87 88 88 86 87 17 84 89 87 88 87 87 87 87 87 80 as 86 88 18 72 77 75 77 76 78 78 75 75 75 76 76 77 1 9 78 81 78 80 77 79 78 78 77 78 79 78 79 20 71 76 69 69 69 69 70 68 67 69 69 67 69 21 10 78 70 72 13 73 74 72 71 73 75 73 75 22 8 () 85 79 83 81 81 81 02 80 81 82 82 81) 23 81 83 80 81 80 80 80 *81 79 82 82 81 81 24 M M 83 84 84 84 85 83 82 84 85 83 84 25 l'1 M 72 74 -73 75 77 72 71 73 75 74 76 26 11 M 84 86 85 85 86 84 82 85 84 83 85 27 M M 88 88 87 88 88 88 88 89 89 87 87 28 11 11 86 88 06 86 86 88 86 88 87 85 87 29 74 81 75 77 75 76 77 76 76 76 76 76 77 30 73 74 73 74 73 73 73 74 74 74 73 73 73 Averages and extremes for all data Ave 69.6 74.2 7 3. 1 74.5 73.8 74.3 74.8 73.5 72.8 74.0 711. 3 711. 1 74. 7 Max 85 90 88 89 88 88 88 88 88 89 89 87 88
* Min 53 60 54 56 54 57 59 55 54 56 56 55 57 Cases 25 :2 5 30 3\) 30 30 30 30 30 30 30 28 30 Averages and extremes for: days with data ft'OUI all stations having data for th is wont h Ave 70.2 74.9 11. a 73.3 72.5 73.0 73.5 72.2 71.6 72._ 7 7 3. u 72.3 73.4 Max 85 90 87 89 88 88 88 87 87 88 89 87 88 Hin 53 60 54 56 54 57 59 55 54 56 56 55 57 Cases 23 :2] 23 23 23 23 23 23 23 23 23 23' 23 --* '
* L--....: L__ __ j '
I ._j j l--*----
-
'-* ' , _ __, ..__---1 
**
* r** ----. ; :
* Table 4.2F Palisades Network: Daily Temperatures ( F) foe June 1977 DAY PO 1 A P02A PO 3!1 P04A POSA P06A P07A P08A Pl}9A P10A P 11A P 12A P 13A 1 51 51 51 50 51 52 51 51 51 52 51 52 52 2 ll3 45 38 38 40 ll2 40 38 41 38 39 q4 44 3 36 36 32 34 35 36 31 33 38 32 33 38 39 4 44 48 42 45 44 46 52 43 52 42 44 49 52 5 63 64 63 66 63 63 64 63 62 61l 63 62 62 6 49 lj 8 ll8 46 46 1,5 45 46 46 48 48 M 47 1 42 44 42 40 41 40 37 ll1 40 41 40 M 44 8 40 Ll2 37 39 39 41 41 38 42 37 37 q3 46 9 37 39 36 34 39 38 39 36 38 35 34 41 41 10 ]3 35 32 34 35 37 37 32 35 32 32 38 40 1 1 54 55 55 55 55 55 56 56 55 56 55 55 56 12 48 52 51 52' 51 54 56 51 51 52 50 51 53 13 49 49 48 50 49 q9 49 49 50 50 49 49 50 14 49 52 44 46 50 50 51 47 50 46 46 53 54 15 44 4S 43 46 *45 Q7 47 43 46 43 43 48 50 16 51 53 50 53 51 54 57 50 53 50 50 55 58 17 61 64 6 ll 64 65 65 66 61 65 63 62 66 67 18 59 63 60 58 56 57 59 56 58 58 55 57 62 19 56 60 58 57 56 57 56 57 60 56 55 58 62 20 55 56 55 50 53 50 50 53 51, 55 50 55 55 21 47 51 42 44 46 44 44 43 46 43 43 49 51 22 45 47 42 46 45 45 45 42 46 43 44 48 50 23 50 52 48 51 49 51 53 47 51 48 49 54 55 24 M M 65 65 63 63 64 64 66 65 64 65 66 25 M H 52 55 56 55 55 50 54 52 52 60 59 26 11 M 46 so 50 50 51 46 50 47 47 54 53 27 M M 53 55 53 56 59 53 59 52 55 59 62 28 11 M 60 63 60 63 64 59 63 59 60 65 61 ' 2 C) 55 57 56 56 56 57 59 55 59 56 55 60 62 ]0 55 56 53 56 56 57 59 54 61 54 55 62 63 Averages and extremes for all data Ave 40.6 50.6 48.Y 49.9 49.9 50.6 51. 4 48.6 51.4 49.0 48.7 53.2 54. 1 Max 63 64 65 66 65 65 66 64 66 65 64 66 67 Min 33 35 32 34 35 36 37 32 35 32 32 3B 39 Cases 25 25 30 30 30 30 30 30 30 30 39 28 30 Averages and extremes for days with data from all stations having data for this month Ave 48.9 51. 0 47.0 40.9 49. 1 49.9 50.8 47.7 50.6 48;0 47.6 51.6 53.2 Max 6J 64 64 66 65 65 66 63 65 64 63 66 67 11 in 33 35 32 34 35 36 37 32 35 32 32 38 39 ()) Cases 23 23 23 23 23 23 23 23 23 23 23 23 23 Ul Table 4.3F Palisad*s Network: Daily Average Temperatures ( F) foi-June 1977 (J'\ (J'\ . DAY P01A P02A P03A P04A P05A P06A P07A P08A P09A P10A P11A P12A P1JA 1 56 57 56 57 55 56 57 56 56 57 56 56 57 2 49 52 50 50 49 51 51 50 49 50 50 50 51 3 52 57 53 55 54 55 56 53 55 53 54 56 57 4 67 71 68 72 70 70 72 68 71 69 69 72 72 5 67 69 68 71 69 70 70 68 68 70 69 69 70 6 55 56 55 55 54 56 57 55 55 56 56 M 56 7 51 53 51 51 51 51 51 51 51 52 52 M 53 8 48 5 1 49 50 50 51 52 50 51 . 49 49 5 1 53 9 51 48 48 50 50 51 48 49 48 48 50 51 10 5 .2 54 53 54 54 55 56 53 54 53 53 55 56 1 1 61 63 62 63 62 62 62 63 62 63 62 62 63 12 54 56 56 58 58 59 60 57 57 57 57 59 , 3 56 58 57 58 58 59 60 58 58 59 58 58 bO 14 58 62 58 61 6 1 62 64 59 61 60 60 63 64 15 60 64 62 64 64 65 65 62 62 63 62 65 66 16 10 73 71 13 72 73 74 71 73 72 72 73 74 17 72 74 711 75 75 74 75 73 74 74 74 74 75 18 67 69 69 7u 70 70 71 69 69 69 69 7 G 7 1 1 9 66 70 68 70 69 69 68 68 68 68 68 69 70 20 61 66 62 63 62 63 63 61 62 62 61 63 '64 21 59 63 58 59 60 59 59 58 60 59 59 61 63 *22 62 65 61 63 62 63 63 6 1 62 61 62 64 65 23 67 68 66 67 67 67 68 66 67 67 66 68 70 24 11 M 73 74 73 73 74 73 73 74 73 73 75 25 M M. 66 67 67 68 70 66 66 67 67 68 69 26 M M 6 7 68 68 68 69 66 68 67 66 70 71 27 M M 72 73 72 73 74 71 74 72 72 74 76 28 M M 72. . 73 72 72 73 72 73 73 72 73 75 29 67 68 67 68 67 68 68 67 68 68 68 68 70 3') 64 66 65 67 65 66. 67 65 67 66 65 66 68 Averages and extremes far all data Ave 59.5 62.2 62.0 63.2 62.6 63.J 64.0 61.9 62.7 62. 5 62.1 64.2 6 4. ti Max 72 74 74 75 75 74 75 73 *74 74 74 74 76 Min 47 51 48 48 49 50 51 48 49 48 48 50 51 Cases 25 25 30 30 30 30 30 30 30 JO 30 28 30 Averages and extremes for days wit.h data fi-om all stations having data for this month Ave 6 v. 1 62.9 61. J 62.3 61. 8 62.4 63.2 61.0 61. 8 61. 6 61.3* 62.6 63.9 Max 72 711 74 75 75 74 75 73 74 74 74 74 75 11 in 47 51 48 48 49 50. 51 48 49 48 48 50 51 Cases 23 .i 3 23 23 23 23 23 23 23 23 23* 23 23 * *-*-----'-**-* ----.. -* ------\ _____ j _, __ _] L __ 1 *-j ---:_J ._j ---
:** ---.---*----. * ----* . ---, ---. ) ** Table 4. lG Palisades Network: Daily Maximum Temperatures (F) for July 1977 DAY PO 11\ P02A PO 31\ P04A POSA P06A P07A P08A P09.\ PlOA P11A P12A P13A 1 75 78 74 74 74 75 76 73 73 74 74 73 75 2 78 8) 80 Ul 80 19 80 79 80 ao 80. 79 80 3 79 85 84 05 84 83 83 84 82 84 84 83 84 4 88 93 91 91 93 92 . 92 91 92 92 93 91 92 5 89 94 92 91 92 91 93 91 92 93 93 H 92 6 81 92 91 91 92 92 93 89 91 92 92 I'! 93 7 11 86 81 80 81 BJ 84 80 81 81 82 H 82 8 A2 88 85 86 87 86 87 85 86 87 87 M 87 9 81 85 82 80 80 83 83 81 79 8() 81 M 80 10 86 88 87 84 84 86 83 85 83 86 86 84 11 80 82 78 80 81 81 78 81 81 83 82 M 80 12 84 81 85 86* 87 86 87 86 85 86 87 H 87 13 78 85 8 1 80 02 81 82 81 80 81 82 82 82 14 92 97 94 94 94 92 92 94 94 97 95 94 92 15 83 91 86 86 87 89 91 86 86 87 89 88 89 16 80 82 81 82 82 82 84 81 82 82 8] 83 84 17 82 ea M 85 86 87 88 84 84 84 86 87 86 18 80 e2 82 82 82 82 84 92 82 83 83 M 83 19 88 93 91 91 94 91 94 M 91 92 93 M 93 20 87 92 90 90. 92 91 92 91 90 91 92 M 91 21 78 83 81 80 82 82 82 80 80 82 82 11 81 22 83 88 83 84 04 85 85 83 83 83 85 11 85 23 79 88 80 81 83 83 87 82 81 82 83 M 84 24 78 79 78 78 79 79 80 79 79 78 80 H 00 25 74 78 74 13 76 74 77 75 75 76 75 M 75 26 73 81 72 72 72 72 74 72 71 72 7 't M 70 27 71 80 M 74 75 78 78 74 73 74 76 M 75 28 79 82 77 79 80 81 82 78 80 80 80 M 82 29 75 78 76 77 77 77 77 75 75 77 *77 M 76 JO 79 88 84 85 t:l7 86 87 86 86 87 86 M 87 11 80 84 82 83 84 83 83 01 82 83 84 M 82 Averages and for all data Ave 80.8 85.8 82.8 82.7 83.6 83.6 84.5 82.3 82.5 83.!) 84.1 84. 4 83.6 Max 92 97 94 94 94 92 94 94 94 97 q5 94 93 Min 71 78 72 72 72 72 74 72 71 72 74 73 70 Cases 31 31 29 31 31 31 31 30 31 31 31 9 31 l\verages and extremes for days with data from all stations having data for this month Ave 0 1. 6 86.8 83.9 84. 1 84.5 84. 1 85.0 83.6 83.6 84.6 85.0 8 4. 1 84.8 Max 92 97 94 94 94 92 92 94 94 97 95 94 92 (j\ -....) Min 75 78 74 74 74 75 . 76 73 73 74 74 73 75 Cases 0 8 8 8 8 0 8 8 8 8 8 a a Table 4.2G Palisades Network: Daily Minimum Temperatures (F) fOI" July 1977 O'I co DAY !?O 1A P02A P03A P04A POSA P06A P07A P08A P09A P10A P 11A P12A P13A 1 60 61 61 59 60 58 55 60 61 63 60 60 60 2 50 48 49 49 50 49 48 50 48 47 53 54 ] 51 54 51 511 54 57 61 52 58 51 54 58 59 4 13 76 76 75 76 76 76 74 77 75 74 76 77 5 68 72 68 68 68 69 72 67 71 67 68 M 72 6 71 13 70 70 70 70 11 69 73 70 69 H 74 1 65 66 67 63 64 63 64 64 66 65 64 M 65 8 63 64 64 61 62 61 62 61 64 62 59 M 63 9 60 61 57 58 59 60 61 58 60 ;:59 se M 63 10 62 *1 61 59 61 62 61 58 62 58 58 I'! 62 11 64 E4 65 63 65 64 64 64 65 65 64 M 65 12 66. 67 67 67 64 65 67 65 66 68 66 M 68 1 3 54 52 53 54 51, 55 51 54 54 52 58 50 14 56 57 52 54 54 54 57 53 58 53 52 59 60 15 70 74 72 72 72 73 73 70 72 73 71 74 74 16 67 69 70 70 71 69 71 67 70 68 68 71 71 17 66 69 M 69 69 69 69 67 69 68 68 70 69 18 68 69 6 t1 70 68 68 69 68 69 69 68 11 70 19 70 74 75 72 75 75 74 M 75 75 73 M 76 20 75 77 78 77 1B 71 75 11 78 . '79 77 f! 74 21 64 65 62 62 65 62 64 61 65 61 64 H 65 22 58 57 53 55 55 54 58 55 58 55 57 M 58 23 51 52 48 51 51 SJ 53 .50 53 50 51 ff 56 24 56 58 55 55 57 57 59 54 59 55 55 M 61 25 52 !: 5 51 49 55 54 56 48 52 49 50 M 58 26 45 49 41 42 48 47 46 42 115 42 43 M 52 27 43 46 M 42 44 44 44 41 44 41 42 11 45 28 49 51 47 so 5 1 52 55 48. 52 .40 50 l'I 55 29 60 62 58 61 61 61 62 60 62 61 60 M 62 30 56 57 59 58 60 61 56 *59 58 59 l'I 60 31 67 67 68 67 67 68 65 68 68 70 68 M 67 Averages and extremes for all data l\ve 60.6 62.4 60.8 60.5 61. 5 61 3 62.2 59.2 62.4 60.6 60.3 64.3 63.6 Max 75 '11 78 77 78 76 76 77 78 79 11 76 77 Min 43 46 41 42 44 44 44 41 44 41 42 53 45 Cases 31 31 29 31 31 31 31 30 31 31 31 9 31 Averages and extremes for days with data from all stations having data for this month Ave 60. 1 60.3 60.8 61. 3
: 62. 1 5.9. 4 62.5 60.6 59.8 63. 6 64.1 Max 73 76 76 75 76 76 76 74 71 75 74 76 77 Min 50 52 48 49 49 50 49 48 50 48 47 53 54 .s __ 8 8 8 8 8 8. 8 8 8 8 8 8 .8 L_ __ (__ ____ [ ____ _j / ;__ _ _) _, _ _J __ ; . *------'-*--------
**----i.__ ___ -*-* -1 ___ .1 __1 
:. ** -., , * , 'I able 4.3G Palisades Networ:k:
Daily Aver:age Temper:atur:es (F) for: July 1977 DAY PO 1A P02l\ P03A P04A POSA P06A P07A
* P08A P09A PlOA P11A P12A P13A 1 67 E9 69 68 68 60 68 68 68 68 68 67 2 65 68 66 66 67 67 67 65 66 66 66 67 68 3 68 72 71 71 71 72 72 70 72 71 71 72 73 4 80 82 82 83 84 82 82 82 82 82 83 82 84 5 78 82 81 80 81 81 82 80 81 81 80 M 82 6 00 82 82 83 83 82 83 81 83 83 83 H 84 7 71 75 7q 73 75 75 76 73 75 75 75 M 76 8 71 73 72 71 72 72 72 72 13 73 72 e 72 CJ 70 72 70 () 9 71 71 71 69 70 70 70 M 72 10 73 74 74 72 13 73 72 72 73 73 73 M 74 11 71 71 71 70 71 71 71 70 72 72 71 M 12 12 74 77 76 76 77 76 77 76 11 77 76 " 77 13 67 71 68 68 69 68 70 67 68 69 68 71 71 1 4 75 78 76 76 76 75 77 76 77 77 76 78 15 79 8] 82 81 02 81 83 80 81 82 81 82 83 16 74 76 76 75 76 75 76 75 76 76 75 76 77 17 73 76 M 76 75 76 76 75 75 76 75 77 76 18 73 75 75 75 75 76 76 75 76 76 75 M 7.6 1 CJ 80 84 84 83 84 aj 84 M 84 84 84 M 84 20 80 83 83 83 84 81 84 83 83 84 84 M 83 21 73 76 74 74 75 75 76 75 75 75 75. M 75 22 69 72 69 69 71 71 71 70 70 70 71 M 72 23 67 70 67 67 69 69 71 67 0 69 67 68 M 11 2 '* 68 70 69 69 70 70 71 69 71 70 10 M 71 25 69 71 69 67 70 69 71 69 69 69 69 M JO 26 60 6 It 58 59 61 61 61 58 60 59 59 M 6:2 27 59 64 M 61 62 62 63 59 61 60 61 M 63 28 64 68 65 67 67 60 70 66 68 67 67 H 69 29 66 69 66 68 68 60. 69 67 68 ()8 68 M ,6,9 30 68 73 71 72 73 73 74 72 72 73 73 H 7.3 31 72 75 74 74 75 75 75 74 74 75 75 M 1:4 Averages and extremes for all data Ave 7 1. 1 74.0 72.9 12.4 73.J 7 3. 1 74.0 71. 7 73. 2 13. 1 72. 9 74.7 7.4. 2 Max 80 sq 84 83 84 83 84 83 84 84 84 82 84 Min 59 6 [J 58 59 6 1 61 61 58 60 59 59 67 6,2 Cases 31 ] 1 29 31 31 31 31 30 31 31 31 9 3:1 Aver:ages and extremes f ot: days with data fr:om all stations having data for this month Ave 71.6 71,. 8 73.7 73.6 74.0 73.5 74.4 72.8 73.7 73.9 73.5 74.5 75.2 Max 00 83 82 83 84 02 83 82 82 82 83 82 84 m Min 65 68 66. 66 67 6 ., 67 65 66 66 66 67 6.8 IJ) Cases A B 8 8 8 B 8 8 8 8 8 8 0 
-..] 0 Table 4.1H Daily i1aximum Temperatures ( F) for l'\u9ust 1977 DAY PO 1A P02A PO 31\ PO 4A P\) 5 A P:) 6A P07A P08A P*)9A PlO A.. P11A p 1 21\ P13A 1 74 82 75 76 78 77 77 75 76 78 78 M 77 2 75 78 76 77 78 7U 80 7 B 78 77 77 M 79 3 76 84 18 dO dO Al 81 79 79 79 80 11 81 4 85 89 88 87 88 87 88 88 88 8() 89 88 5 1a 82 82 84 ti 4 84 83 83 82 82 84 M 13 4 6 7 'i 79 77 77 78 78 78 78 78 78 77 M 79 7 76 80 79 79 BO 7 ') 81 BO 8() 81 'J 2 i1 81 8 74 78 77 76 74 77 77 76 76 78 76 M 76 g 76 77 77 76 75 76 76 77 M 77 77 M 76 1 i) 79 84 79 79 d1 82 81 80 M 81 82 80 81 11 71 71 70 6':.l 68 68 67 70 M 69 68 68 68 12 73 75 73 74 74 74 74 74 11 74 74 72 74 13 7 ') 82 80 8 1 82 81 81 82 M 81 83 8 i) 82 , ,, M 79 71 73 72 73 74 73 M 72 73 M 74 15 M 83 79 80 80 80 80 Bl 11 83 M 81 16 M 79 78 80 bO Bu 80 80 r1 79 80 t1 80 17 75 79 M 72 72 73 72 72 70 7] 73 12 72 18 71 77 7{) 6.8 68 68 68 6 9 66 69 70 66 68 1 9 72 76 71 7 1 71 70 71 71 70 72 71 68 71 2.) 75 75 73 74 71 73 71 73 71 7 il 74 7 i) 71 21 68 68 68 6B 68 68 67 67 68 67 11 68 22 72 76 74 76 76 75 75 76 75 75 77 11 76 23 72 74 72 72 70 71 71 72 71 73 73 M 72 24 7'J 75 69 70 69 69 7Q 70 68 70 69 69 69 25 74 77 75 76 74 77 76 76 75 76 77 13 75 26 84 86 85 us 84 84 85 85 84 85 86 84 84 27 91 92 90 91 89 90 91 91 90 92 91 8 A 91 2 ll BB 91 89 89 8B 88 9) 9 () 89 9] 89 86 89 29 72 76 75 74 74 75 75 73 72 74 73 M 74 30 74 81 77 78 7 l) 79 79 78 11 7 ') 80 l1 SJ 31 87 89 BB d9 89 88 89 q () 88 89 90 87 89 Avcraqes and extremes for all data Ave 76.3 79. 8 77.5 77. 5 77.2 77. 5 77. 7 77.6 77.0 77.9 78.2 7 5. 9 77.7 Max 9 1 92 90 9 1 89 90 91 g 1 90 92 91 BB 91 Min 6B 68 69 08 6 t1 68 67 67 66 68 67 66 68 Cases 2 fl J 1 29 31 31 31 31 31 22 J 1 31 1 4 31 Averages and extremes for witt data from all stations having data for this month Ave 7CJ.1 82.0 78.9 7 9. '2 7 8. 1 78. 6 79. 0 19. 4 77.9 7 9. 7 79. 7 76. 8 78. 6 Max 91 92 9,') 9 1 89 90 91 91 90 92 91 88 * :. 70 75 69 68 6H 68. 68 69 66 69 69 66 .s g s "j -. , 9 ,__ _J < __ ,.. -___ J L___j [ ____ Jg g _ _j ' . : ..
*-.J __ ; -. -**--*---.-----------*-*----*-*----
* . -----.* ;
* 1'ablP-4.211 Palisades tktwoi::k:
Daily ( F) for Aug II St 1977 D.a.&#xa5; p J 1 )\ P*12A PO 3 l\
P05,\
p () 7 Ii. PO 8A P09\ P 1 O/l p 111\. P12A P1J A 1 51, 57 53 5J 55 54 54 '.12 54 54 53 M 59 2 51 53 49 52 52 54 5J 49 54 50 51 11 57 3 61 61 S9 bu bO 60 62 59 62 6) 59 !1 62 4 65 68 68 68 [; (i 65 66 68 6"8 69 66 M 69 ,-66 () 8 68 67 67 66 67 67 67 68 66 ilJ 68 ::> 6 69 7 () 69 7 J 70 69 70 69 70 70 69 i'l 71 7 68 69 68 (j 7 67 68 70 69 69 68 67 -11 71 8 65 68 65 64 65 65 67 6 4. 67 66 64 66 l) 62 63 60 61 60 62 65 6J M 61 61 [1 63 10 67 66 63 0 ij 64 64 64 63 11 64 63 66 67 11 50 61 54 52 52 53 54 53 M 51 51) 54 56 12 54 54 51 51 49 51 52 M 51 40 52 53 13 53 SJ 4<:l 52 51 55 58 51 H 49 51 56 58 111 11 54 51 5J 53 SJ 53 5 1 M 51 51 M 56 1 5 M 50 45 47 48 48 51 46 M ,_46 46 M 52 16 M 66 -66 66 65 66 65 66 i1 61 66 M 67 17 51 52 M 47 48 49 49 46 48 49 48 5,) 50 18 46 46 4 1 4J 45 43 42 44 43 4 1 46 48 19 I!) 43 39 4v 4 () 41 41 39 43 4J 19 43 45 20 53 51 46 50 49 50 52 47 53 1+8 49 -51 52 21 58 57 M 56 55 55 58 57 57 5G 55 M 59 22 5 6 57 51 52 51 51 52 52 52 53 51 M 53 23 57 57 57 56 56 56 57 57 56 57 56 M 58 52 4g 45 45 46 46 48 45 49 45 44 49 49 L5 47 46 40 44 4 i 43 45 42 47 4J 42 46 48 26 57 57 53 57 57 57 58 57 58 53 57 57 58 27 71 71 74 73 73 73 74 72 73 111 72 73 74 28 69 68 69 69 6B 69 71 69 68 69 68 6B 71 29 5 ti 56 52 53 , .. ,. 55 55 52 54 53 52 M 58 :JO 30 50 50 1rn 48 48 50 51 47 n 4B 47 M 54 31 6J 61 59 64 60 64 66 61 65 59 62 65 65 Averaqes and extremes for all ddtd ve 57.8 58. 1 5 5. fj 56.3 Sf\.\i 56.6 57. 7 55._6 58. 1 5 6. {) 5 5. _] ') 5. 4 5 g. 3 Mu x 71 71 74 13 73 73 74 72 73 74 72 73 74 Min 43 4J 39 4 ll 40 41 41 39 43 40 39 43 45 Cases 2a 31 2 ') 31 J1 J1 31 31 22 31 31 1 4 31 Averc1qes and extremes for dilys with data from all stiitior1s having data for this month !\ve 55.3 Sil. 7 52.3 53. 9 53. 1 5 4. 2 55.3 52.7 55.6 52.1 5 2. 7 5 5. 3 56.7 ('!Cl x 71 71 74 73 73 73 74 72 73 74 72 73 74 Min 43 43 39 4 U 40 41 41 39 43 40 39 43 45 -J I-' Cases 9 9 9 9 9 9 9 9 9 9 9 9 9 Table 4.3H Palisades Daily Average Temperatures ( I") for Auqust 1977 -.) N DhY PO 1 !\ P02A P03l\ Pd llA PO 5 A P06A P07h P03A P09A I? 1 OA P 11 A P12A P13A 1 67 7*.) 68 68 69 68 f, 7 67 69 69 68 M 69 2 64 67 65 06 67 66 6H 65 68 66 65 11 69 ] 69 72 71 72 71 71 71 7 {) 71 71 70 H 73 4 72 75 75 75 74 73 74 75 75 76 74 I"! 75 5 71 72 72 7 L. 72 72 72 73 72 73 72 l1 73 6 71 72 72 72 72 72 73 ., ) 72 73 72 ;'1 73 7 72 71! 74 74 74 74 75 73 71! 74 74 i'I 75 B 71 7] 73 73 72 72 74 72 73 74 72 ,'! 73 g 69 7J 69 69 69 7J 71 70 M 7J 70 M 70 10 72 74 72 72 73 74 73 73 M 13 73 12 74 11 64 65 611 62 63 63 . 63 64 M 63 62 63 64 1 2 65 66 65 b3 63 62 63 65 '.1 63 62 63 65 13 68 68 66 67 68 69 70 68 M 61 68 6q 70 14 !1 6B 65 1:.10 66 66 66 66 M 66 66 !1 67 15 M 6B 65 66 b6 66 67 66 M 65 66 M 67 16 M 72 72 72 72 72 72 12 f'l 72 72 !:1 72 17 66 68 11 65 li 4 64 63 65 65 66 65 fi 4 65 18 58 60 56 56 57 57 56 56 56 57 57 57 59 19 59 60 57 57 57 57 57 57 58 57 56 58 59 20 64 64 62 63 62 62 62 62 62 63 62 62 63 21 63 63 '.'1 b3 63 62 63 63 63 63 62 M 63 22 67 68 67 67 66 65 65 67 61 67 66 f1 67 23 66 66 66 66 65 66 fi 6 66 66 67 66 M 66 24 60 61 58. Su 58 59 59 59 SB 58 57 5':l 60 25 61 62 59 6G 60 60 62 6 i) 62 6 t) 60 61 62 26 7J 71 71 71 70 7J 71 70 70 71 70 70 71 27 80 81 '82 82 81 31 82 82 82 83 02 81 83 28 78 78 79 79 18 18 79 7B 78 1 '1 7d 77 79 29 67 68 67 67 67 67 68 67 67 6 7. 66 M 68 30 63 66 64 64 65 65* 66 63 ""! 64 65 N 67 31 74 75 75 76 75 76 77 75 76 74 75 76 77 Averages 1nrl extremes for all Ave 67.5 68.9 6 7. ') 67.8 67.7 67.7 6fL2 67.7 68.4 68.2 67.5 66. 5 69.1 '.-!d x ao 81 82 B2 U1 d1 82 8 2 82 83 82 81 83 Min 58 60 56 56 57 57 56 56 '16 57 56 57 59 Cases 28 31 29 J1 31 31 .31 31 22 31 31 1 4 31 Averages and extremes for days with data from all stations having data foe this month Ave 67.1 68.0 66.5 66. ':) 66.4 66.7 67.3 6 6. ii 66.9 -*66. 8 66.J 66. 7 6 8. 2 Max 80 81 02 1:12 8 1 01 82 82 82 83 82 81 83 Min 58 6 () 56 56 57 57 56 56 56 57 56 5_7 59 Cases 9 9 g 9 9 9 9 9 9 g* 9 9 9
* I L_j '_ __ 1 *** I L..--L----** :__,__J *-__ ._. *-*---1 ____ __) __ , '---*-*--* --
.i .---* * -*** . ---.. --* -) ***----i *. I --_; " Table 4.11 Palisades U0twork: Uaily 1aximum Temperatures ( F) for Septe:nbe:::-
1977 n I\ Y PO 1A. P02A P03A t'U4A fl05A PJ6A P 07 A PORA P09Fl P10A P11A p 1 2 i\ P13A 1 74 77 77 76 77 78 7'.J 1a 78 76 78 77 78 2 75 77 76 76 77 78 77 77 77 77 78 77 77 3 75 80 76 75 76 76 77 76 75 75 77 76 76 4 79 81 M 82 81 81 82 83 81 81 83 82 82 5 7') 75 t1 7U 72 71 72 73 l1 71 72 73 72 6 79 80 76 11 78 77 76 78 r1 79 79 78 77 7 75 79 71! 74 76 76 76 74 M 76 76 76 76 8 76 79 77 76 77 17 77 76 11 78 79 78 78 9 77 79 M 75 77 77 76 76 11 76 78 76 76 1 0 67 75 67 66 66 66 66 f, 7 t-l 68 68 68 66 11 7] 77 11 73 73 73 74 72 M 73 75 74 74 12 66 67 66 66 66 67 66 67 r1 67 68 68 67 1 _3 63 61 61 60 61 61
* 61 6J &#xa3;1 62 62 61 61 1 4 68 71 68 68 70 71 70 69 67 69 70 69 69 15 61 59 60 60 59 6J 60 59 59 61 60 59 60 16 12 71 71 72 72 72 73 71 70 72 73 72 13 17 75 75 75 76 75 76 75 76 75 76 78 76 76 1B 73 73 73 74 74 75 75 73 73 74 7 fi 75 74 19 7:) 7,J 71 71 69 70 71 7 CJ 71 70 71 71 71 2 l) 65 64 64 63 62 63 63 63 63 63 64 64 63 2 1 61 65 6;} 61 63 63 63 62 61 62 63 62 63 22 71 72 69 70 70 71 69 70 69 71 73 69 71 23 67 64 64 64 65 65 65 65 64 65 65 65 65 24 70 . 12 71 ['l 73 73 74 72 71 72 74 74 73 25 74 73 74 tl 73 73 73 74 73 75 76 74 7 (i 26 71 71 70 M 69 70 70 7 1 69 70 71 7 l) 70 27 63 64 64 l1 62 63 61 62 63 64 64 63 62 2B 67 70 63 G3 63 64 I) 4 63 61 65 66 64 64 29 67 67 65 65 65 67 66 66 65 67 68 66 65 JO 64 63 63 64 64 64 63 63 63 64 65 65 64 Averages and extremes for all data Ave 70.3 71. 8 69.u b 9. (j 70.2 70. 6 70.5 7 i). 2 69. 0 70 .. 6 71. 7 7 ;). 7 7<). 6 Max 79 81 77 82 8 1 81 B2 83 81 B1 33 82 82 Min 61 59 60 60 6;) 60 59 59 61 60 59 60 cases JO 30 26 26 3u 30 30 30 21 30 30 JO 30 .!\veraqe'.>
and for days with Jata rrom all stations having ddta for month Ave 6 9. 1 70.0 68.4 ti tl. 6 &B.8 6 9. 6 69. 4 68.n 68.2 6 <}. 2 70.3 6 9. 2 69. 3 Max 75 80 77 76 77 78 79 78 78 77 78 77 78 -...) w Min 61 59 60 bU 59 60 6:) 59 59 6 1 60 59 6J c,tses 16 16 16 16 16 16 16 16 16 16 16 16 16 I ------
-J Table 4.2I Palisades Network: Oaily Miuimum Temperatures (F) for September 197 D /\ y PO 1 A P02A POJA P04A P 0 5 A P06A P07A PORA P 09A ?10A P 11A P12A P13A 1 67 66 67 bb 6r:: 65 66 (j 6 66 66 65 68 66 .) 2 64* 63 64 62 60 6,. 64 63 62 63 59 62 62 3 58 58 57 S7 57 56 57 57 58 57 58 58 58 4 60 59 M 59 60 60 61 59 60 58 59 61 61 5 56 58 !1 52 54 53 55 5.1 l1 52 51 59 56 6 52 53 46 48 50 49 51 48 i1 47 47 53 52 7 58 58 55 55 57 56 56 55 M 56 56 6*) 59 a 60 58 55 52 5 ti 54 54 54 ;1 55 53 60 58 9 62 65 f1 65 65 63 64 65 M 65 65 66 65 10 49 50 44 46 47 47 47 45 11 46 46 51 49 11 50 50 M LJ.5 45 43 ljlJ 46 M 46 45 Su 46 12 9 49 45 49 40 49 54 47 M 45 49 54 54 13 57 57 56 56 56 56 55 56 M 57 58 57 58 14 46 lJ 6 39 4 (J 43 4 1 42 39 42 40 40 47 46 1 5 52 52 48 51 52 52 53 49 53 50 52 54 54 16 61 59 60 6 () 59 60 60 59 59 61 60 59 6 () 17 62 60 60 6 0 ()0 61 61 59 61' 6.) 6 1 62 62 18 64 64 63 64 63 64 65 i) 2 64 63 65 66 66 1 !) 65 64 64 63 62 .62 62 63 63 63 64 6 ,, 63 2l) 55 55 5 Ll 54 5 It 53 53 54 53 '55 55 55 54 21 53 53 53 52 52 52 53 53 52 54 54 54 53 22 55 55 53 54 54 5 IJ 55 54 54 54 54 55 56 23 58 56 53 52 52 53 53 53 53 53 52 55 54 24 56 57 53 M 56 55 5B 53 57 54 54 60 59 25 52 511 51 M 54 56 56 50 55 51) 52 55 57 26 5 t1 60 59 a 56 56 57 56 57 58 58 59 59 27 fi,) 58 58 i1 56 52 49 58 59 59 58 59 53 2 fl 1.n 46 42 44 43 44 44 *42 4 IJ 43 43 47 46 29 45 /J 5 4ii 42 42 43 112 40 43 40 42 46 46 30 57 57 56 57 56 57 .57 56 56 55 57 58 57 anrl extremes for all ddtd Ave 56.3 56.2 53.7 54. J 54. 5 54.? 54.9 53. 8 55.8 54. 2 54.4 s 7. 1 56.3 Mil x 67 66 67 6 (j 65 65 66 f; 6 66 66 65 68 66 i1 in 45 4 ') 39 40 42 lj 1 42 39 42 lj !) 40 46 46 C11ses 31) 30 26 .i 6 30 30 JO 30 21 30 30 30 3 ()
and extremes for ddys with data from all stdtions having diit:1 for this month Ave '>6. 8 5 (). 2 54.b 5 4. tj 5 4. fi 54. 9 55. 4 5 4. 3 55.2 54. a 55.1 5 6. 9 56. 4 !1 ax: b7 66 67 66 65 65 6 f) 66 66 66 65 fi 8 66 Il 115 45 39 4 CJ 42 41 42 39 112 4:) 40 46 .cs_ 16 16 16 16 16 16 16 16 16 16 16 : ; ____ __) -___ _j -_ _j ' --'----------*
-----, . ___ __; --*--* ___ ___) J 
* ** i ; * ' Table 4. JI ra lis.1.des Network:.:
Daily Average Temper::i.
tures ( f) for Sep tern her 1977 DAY Pll11\ P02A POJ I\ J:>v4A P05A PO 6A P07A POSA P 1)9A p 10 !\ P11A l? 1 2 P13A 1 71 72 71 71 72 71 73 72 72 72 72 72 72 2 70 70 70 70 70 70 70 70 70 7'.) 70 7 1 71 3 65 67 65 64 b5 65 66 65 65 64 65 65 66 4 69 71 M 7 iJ 71 70 71 70 71 7 ') 7 1 71 71 5 67 69 M b6 67 67 68 68 !'1 67 66 68 6A 6 64 64 60 61 b3 62 63 61 M 62 61 64 63 7 66 66 65 64 65 64 65 65 M 64 65 66 66 8 66 66 65 65 66 66 66 65 M 66 66 67 67 9 70 71 M 70 70 69 71) 69 f1 70 71 71 70 1\) 61 64 60 61 61 61 6:) 6 1 M 62 62 62 61 11 61 64 r1 58 59 58 59 58 M 60 60 61 60 12 58 59 57 58 57 58 59 57 !1 57 59 6J 60 1] 61 59 59 59 58 59 5q 59 M 60 60 60 60 1 4 58 59 56 55 57 56 57 55 57 56 57 59 58 15 57 55 55 55 55 56 56 55 55 56 56 56 57 16 66 65 65 65 65 66 67 65 65 66 67 66 66 1 7 68 67 67 67 67 67 6B 66 67 67 69 68 68 18 69 68 69 69 68 69 70 68 69 69 70 69 70 19 68 67 67 66 66 66 67 66 66 66 67 67 67 20 58 58 57 56 56 56 57 57 56 57 58 58 $7 21 57 57 56 56 57 57 58 57 56 57 57 57 57 22 63 62 61 01 61 61 62 61 61 62 63 62 62 23 63 62 61 61 b 1 60 61 {i 1 61 62 62 62 61 24 65 65 64 M 65 65 66 65 64 65 65 67 66 63 63 62 i'l 63 64 64 62 64 63 63 64 65 26 65 65 65 11 64 64 64 64 64 65 65 65 64 27 61 61 61 c'l 59 59 57 60 59 6 1 61 61 59 2B 6J 61 58 50 5&#xa3;1 58 57 58 57 59 59 59 59 29 55 55 54 54 54 55 54 54 55 54 55 56 56 :rn 61) 59 59 bu 59 59 59 59 59 59 60 60 60 A verayes and extremes for all datd !\.ve 63.4 63.7 62.0 o2.4 62.6 62. 6 63.') 62.4 62.6 6 2. 9 63.4 63 .. 8 63.6 f1 it x 71 72 71 71 72 71 73 72 72 72 72 72 72 Min 55 55 54 54 54 55 54 54 55 54 55 56 56 Cases 3*) 3i) 26 26 3\.1 JJ 31) 30 21 3) ]t) 30 30 Av P.r ages and extremes for days . with uata from all stations having data for this month ri.ve 63. i) 62.7 62.J 6 1. ti 61. 9 6 2. 1 62.5 61.7 62. ') 62.3 62.9 6 3. 0 63.0 '1a x 7 1 72 71 71 72 71 73 72 72 72 72 72 72 ....... Ul i1 i II 55 55 54 54 s ii 55 54 54 55 54 55 56 56 Ci1S8S 16 16 16 16 Hi 16 16 16 16 16 16 16 16 Table 4. 1J Pali sades Network: Daily Maximum Temper'.l tuces. {F) fO[" Octo bei:--19 77 -..J (J\ DAY PO 1A PO 2A P03l\ PL: 4A P05A P06A P07A pQ 8A P09A P1}A P11A P12l\. P1J11. 1 58 58 57 57 50 SU 57 56 56 58 58 58 58 2 59 62 59 58 58 59 58 58 55 59 59 58 59 ] 58 66 60 60 60 61 62 6 1 58 61 62 60 60 4 63 65 63 64 63 66 65 64 62 . 6J 65 63 64 5 60 64 61 62 62 61 61 6 1 60 62 63 61 62 6 56 63 57 57 56 57 56 57 55 58 58 55 57 7 52 53 53 53 52 53 53 52 52 53 53 52 52 8 63 63 63 64 63 64 6IJ 62 63 63 64 63 62 g 53 5 .3 52 52 51 51 51 52 51 52 52 50 51 10 63 66 63 63 63 64 6] 6 4 62 65 65 62 64 11 53 511 54 5 4 Si+ 53 53 54 53 54 55 53 55 12 48 51 .47 48 47 48 47 49 4 6 ll 8 49 48 48 13 51, 59 54 56 M 58 57 57 55 56 58 56 57 14 58 61 60 61 M . 65 64 61 60 61 62 61 62 15 54 56 54 55 M 55 56 56 53 55 55 54 55 16 44 49 46 46 M 49 48 47 45 47 47 47 47 17 50 6'3 60 60 M 61 61 63 5<) 62 62 61 60. 18 53 56 55 53 M 52 50 55 53 511 54 53 53 19 54 58 55 55 55 56 56 57 5] 55 55 55 56 2:) 56 60 59 61 61 62 62 6 1 59 60 62 62 62 21 69 73 70 70 71 71 71 72 70 72 73 71 71 22 54 57 56 57 56 57 54 57 . 511 57 56 57 56 23 52 51 51 51 50 52 50 52 49 51 52 51 51 211 71 76 73 72 72 73 72 74 71 74 74 72 72 25 6 ll 66 65 65 64 65 65 66 64 66 65 65 65 26 56 59 58 59 57 57 58 57 57 58 58 58 59 27 511 59 56 59 60 62 62 58 56 SU 60 59 61 28 6:1 65 62 l1 611 66 66 611 62 64 65 64 65 2 <) SJ 58 56 M 55 55 55 56 55 57 58 55 56 30 5 fl 60 59 11 59 6i) 61 60 58 59 60 59 59 3 1 6 ') 61 66 l1 65 66 65 66 6 Li 6p 67 65 65 A vei:-aqes and ext r:emes fOL" all data Ave 51.2 60.4 58.2 58. 2 5<). 0 59. 3 58.8 59. 0 57. 1 59.0 ')9.'} 5 8. 3 58.8 Max 11 76 73 72 72 13 72 74 71 74 74 72 72 Min 411 49 46 46 47 48 1n 47 45 47 47 47 47 cases 31 3 1 3 1 27 25 31 31 3 1 31 31 31 31 31 Aver:aqes a11d exti:-emes for <lays with data fi:-om all stations having data for: this month Ave 57.9 60.8 58.7 59. 1 58.7 59.5 59. 0 5 9. 2 57.4 5 9. 11 59.9 58. 7 59. 3 Max 71 76 73 72 72 73 72 74 71 74 74 72 72 l1 in 48 51 47 48 47 48 47 ,, 9 46 48 1t9 48 118
__ 21 21 21 21 21 21 .* 21 21 21 21 21 ' i _,_j ! I ' ' L----* L__.-------* .---' *-----' ---
** **-* . ---'*-.., _*!*
* J _, Table 4.2J Palisades Network: Daily Minimum Temperatures ( P) for October 1977 DAY P*) 11\ P02A P03A PO 4A POSA P06A P07l\ PO 8A P09A P10A p 111\ P12A p 131\ 1 5) 50 48 49 50 49 49 49 IH) 50 49 49 49 2 411 44 41 42 43 42 42 40 43 39 42 44 44 3 43 43 37 38 4*} 40 36 34 37 36 37 42 40 4 36 36 33 35 35 36 35 32 35 34 35 39 37 ') 46 52 52 47 46 41 4] 47 51 47 47 119 45 6 112 41 39 39 30 37 36 38 39 36 40 39 4i) 1 34 35 29 34 3 1 3 1 33 3 1 33 2 f3 32 33 34 8 48 48 40 48 47 48 48 46 46 48 48 47 47 9 47 47 47 47 46 42 42 46 46 47 47 45 43 10 41) 40 39 39 39 39 41) 38 40 38 38 40 41 11 411 45 45 44 411 43 44 44 44 45 44 43 44 1 2 3 1 32 27 28 30 30 30 29 29 29 28 31 31 1] 29 29 211 27 l'1 27 28 27 28 211 27 10 31 1 4 31 34 27 30 M 32 35 30 34 27 31 34 3,5 15 42 41 42 41 M 39 40 40 LIO 42 41 43 42 16 30 32 28 JO M 29 28 29 31 29 28 13 33 11 27 20 24 26 11 27 27 26 26 25 26 28 29 18 47 48 47 46 M 46 46 47 46 47 47 48 46 19 40 43 35 34 34 J3 35 35 35 36 34 37 38 20 36 35 32 31 31 32 32 3 i) 31 32 10 34 34 2 1 . 37 40 34 41 3 6 42 1n 31 43 35 39 42 45 22 45 45 45 44 44 45 45 44 43 45 115 116 45 23 46 46 46 46 45 46 45 46 45 46 46 46 1i6 24 45 46 47 46 45 45 47 45 46 45 116 46 25 54 56 56 56 55 56 56 5{i 54 56 ') 5 57 55 26 4U 48 48 50 47 48 48 48 48 50 49 49 49 27 45 47 43 43 44 44 45 44 45 43 114 46 46 28 36 11) 33 M 4 () 38 39 34 39 35 35 41 41 29 33 36 30 M 33 34 37 )J 35 )1 33 37 38 30 34 36 28 11 32 32 35 3 1 34 29 32 311 37 31 45 47 48 M 46 47 49 46 47 ,, 6 47 47 47 Averages and extremes for all data Ave 40.5 41.7 38.8 40.0 40.8 39.4 J <J. 9 38. 8 40.0 J 8. 7 3 9. 4 41.) 41.2 Max 54 56 56 56 55 56 56 56 54 56 55 57 55 Min 27 28 24 . 26 30 27 27 26 26 24 26 2A 29 Cases 31 3 1 31 27 25 31 31 31 31 31 31 31 31 Averages and extremes for days with data from all stations having data for this month Ave 42.9 43.8 41.5 42.J 41. 11 41. 4 41.6 4'.). 9 42.;) 41. 2 41. 6 4 3. !) 42.8 Max 54 56 56 56 55 56 56 56 54 56 55 57 55 -..J Min 31 32 27 28 30 30 30 29 29 28 28 31 31 .._J Cases 21 2 1 21 21 21 21 21 21 21 21 21 21 21 I Table 4.3J Palisades Network: Daily Temperatures ( P) for: October 1977 -...) co DAY P01A P02A POJ i\ P04A POSA P06A P07A PO BA f?09A PlOA P 11 A I? 1 2 A P13A 1 ') 3 53 52 52 53 52 52 5 1 51 53 53 52 52 2 52 52 51 51 51 51 50 50 50 51 51 51 51 .1 51 SJ 52 51 51 5l.) 40 50 49 52 51 52 51 4 49 52 48 49 49 50 51 49 50 48 49 52 51 5 54 57 57 56 55 55 54 55 55 56 56 56 55 6 51 51 51 51 49 49 ''6 50 50 51 51 50 50 1 45 45 43 45 43 43 44 43 44 43 45 44 45 A 53 53 53 54 52 53 53 52 52 53 53 52 52 9 50 50 50 50 48 47 47 48 48 50 49 48 48 10 51 53 52 52 51 51 51 52 51 52 52 51 52 11 48 48 48 47 47 47 47 48 47 47 48 47 48 12 44 45 43 43 43 43 42 44 42 44 44 44 44 13 39 42 38 4 (I M 40 41 40 41 38 40 41 42 1 ll 43 47 43 46 M 48 48 ,, 5 47 43 IJ6 48 IJ9 1 c:; 51 52 51 Sll M 50 49 51 50 51 51 51 5;) 16 41 41 40 40 M 39 39 IJ 1 39 41 40 41 4 () 17 43 46 45 45 M 46 46 47 IJ6 IJ 5 46 46 46 18 50 51 50 4.9 M 49 48 50 49 50 50 51 49 19 49 50 49 48 47 47 47 49 47 49 48 49 4 fl 2) 45 47 44 45 45 45 46 44 45 45 45 48 47 21 51 57 55 57 56 58 56 55 56 55 57 58 57 22 50 51 50 50 50 51 50 51 49 51 51 52 51 23 48 48 48 48 47 48 40 48 47 48 48 48 48 24 57 60 59 58 58 59 59 59 58 59 59 59 58 25 58 59 59 59 59 59 60 59 50 59 60 60 59 26 52 53 52 53 51 53 53 52 52 53 53 53 SJ 27 50 51 49 51 50 51 51 50 49 50 51 51 52 28 49 52 48 M 50 51 52 50 50 50 50 51 52 29 43 46 41 M 43 4) 44 42 45 42 IJ 4 44 46 )1) 45 ll] 44 M 46 46 48 45 46 45 47 46 48 3 1 56 57 57 M 56 57 57 57 56 57 57 57 57 Averaqes and extremes for all data Ave 49.1 50.6 49.1 4 9. 7 50.0 49. 4 4 C}. 4 4 9. 2 49.0 IJ 9. 5 49.C) 5 o. 1 50.0 Max 58 60 59 59 59 59 60 59 58 59 60 60 59 Min JC) 41 38 40 43 39 39 40 39 38 40 4 1 4 0 Cases 31 31 31 27 25 31 31 31 31 31 31 31 31 Averaqes and extremes for days with data from all stations having data for this month J\ ve 5).5 51. 9 50.7 51. (J 50. J 50. 6 50.4 50.4 50. () 51. 0 51.2 51. 2 51.0 Max 58 51) 59 59 59 59 60 59 58 59 60 60 59 Min 41* ll5 43 43 43 43 42 43 42 43 44 IJ 4 44 ,.s 21 21 21 :n 21 ____ 21. -* 21 21 21 21 21_ .1' ' ---j *-------*-*-* ---. ---.__ __ _... --:-:-::--'
-. ___ J --. _j --------------
I I I. * ** Table 4. 1K Palisades Network: Daily Maximum Temper:itllres (F) for November 1977 DAY 1 2 ) 4 5 6 7 8 9 10 1 1 12 13 1 4 15 16 17 18 19 20 21 22 23 21! 2S 26 27 28 29 3,) P) 1A 62 71 71 6 1 6 .1 69 65 64 67 47 39 36 38 45 55 54 46 41 41 58 49 35 39 3 fl 34 26 31 ) 1 J 1 34 Averages and Ave 4B.O Ma lC 7 1 !1in 26 Cases JO A veraqes and Ave 'H1.0 Max 67 Min 26 Cases 19 P02A 63 75 71 63 64 70 66 67 67 46 39 40 40 57 55 46 40 4 1 57 48 36 39 3 9 3 L! 25 J 1 30 3 ll 34 extremes 48.9 75 25 30 P03A 63 72 70 (j 2 64 68 64 66 66 47 38 37 38 47 58 55 LJ1 41 41 58 48 36 40 39 34 26 3 1 31 33 35 P .i 4A M ['] M M M M M M 66 46 38 37 39 47 59 56 117 40 41 58 49 35 39 37 33 25 JO 3 1 32 34 for all data 48.5 41.8. 72 66 26 25 30 22 extremes for days with 40.5 40.J 39.B 67 66 66 2 5 26 2 5 19 19 19 Pu5A 62 73 70 62 63 69 65 66 66 46 3 I) 37 38 46 58 54 44 39 40 58 48 35 38 38 33 25 28 30 30 35 1n. 8 73 25 3.0 data 39.4 66 25 19 P06A 62 73 72 65 63 69 64 67 66 47 38 38 38 46 58 5 It 44 39 4 1 56 47 35 39 37 33 25 30 30 34 35 48.2 73 25 3 (J from all 39. 7 66 25 19 P07A 64 74 72 67 63 67 64 66 66 48 37 37 37 45 57 53 lt4 39 39 56 45 35 38 37 33 23 28 29 32 31t 47. 6. 74 23 JO* P08A 611 74 71 63 64 70 65 67 66 47 39 38 4 1 47 58 54 45 39 41 57 48 35 39 38 33 25 31 31 34 34 48.6 7 It 25 JD P09A 63 72 71 61 61 68 64 66 67 llB 39 31 39 46 58 55 46 40 41 58 47 35 39 31 33 24 30 29 31 33 47.9 72 24 30 stations havinq data 38.0 40.2 39.6 66 66 67 23 25 21t 19 19 19 P.10A 62 74 72 64 65 70 64 69 67 49 39 39 40 49 11 M M 41 42 58 49 36 39 38 35 27 30 31 33 36 48.8 74 27 27 p 11A 63 75 71 65 65 70 66 68 66 47 39 37 llQ 48 58 55 46 40 41 57 46 36 39 37 ]) 25 30 29 3] 34 48.6 75 25 JO P 12A 63 74 7 IJ 63 63 69 6 It 66 66 47 38 36 39 47 57 5 It 44 39 41 57 47 36 40 38 33 26 3 1 3 1 33 35 48.2 7 ll 26 30 for this month 40.9 39.A 40.0 67 66 66 27 25 2 6 19 19 19 p 13A 62 73 71 65 64 67 64 66 67 49 38 38 38 46 57 54 44 40 4 1 57 47 35 38 38 33 24 31 31 33 35 48.2 73 211 30 39.9 67 24 19 CXl 0 Table 4.2K Palisades NetwoEk: Ddily Minimum
{F) Eoc NovemlHH" 19 77 DAY PO 1A PO 21\ P031\ P04A Pu5A P06A P07A PG BA pl) 9 .I\ P10 A P111\ P12A P13A 1 58 57 58 M 56 57 58 58 57 57 57 57 58 2 54 54 57 M 56 56 56 54 56 56 56 57 56 J 57 56 57 M 58 59 60 58 58 57 *59 59 58 4 48 49 48 M 47 48 48 48 47 ii 9 48 48 47 5 45 46 46 M 45 1!6 46 46 45 47 46 I! 6 46 6 53 52 51 M 51 52 53 52 50 53 52 51 52 1 57 57 56 M 55 56 56 57 55 57 56 57 57 A 56 56 56 M 55 56 56 57 55 56 56 56 57 9 47 46 47 46 46 47 48 47 48 49 47 47 49 10 16 36 34 JS 34 33 32 35 34 36 36 35 34 11 33 33 33 32 J 1 32 31 32 33 34 33 34 33 12 28 29 28 27 27 28 26 26 28 27 27 28 29 13 26 27 26 27 26 26 21! 26 26 26 26 28 28 14 31 33 32 J3 33 33 32 33 32 34 33 33 ]J 15 36 39 41 42 39 37 41 39 41 M 41 4 .J 40 16 44 45 46 46 44 41 38 44 45 ti 45 44 43 17 40 38 40 39 38 ]7 37 3B JB t1 39 38 39 18 31 37 38 38 36 27 25 )7 37 3 ') 37 37 31 19 30 30 29 27 24 23 23 27 27 29 26 26 27 2) 39 38 39 39 38 37 38 38 39 4 () 39 39 38 21 33 33 34 33 31 30 30 31 34 33 32 32 )3 22 29 29 30 29 27 26 26 27 28 29 28 28 29 23 30 30 3 1 30 29 29 29 29 29 3J 30 31 30 24 33 33 34 32 33 32 31 32 31 34 32 .n 33 25 22 22 24 22 23 21 20 22 22 24 22 21 23 26 18 16 19 10 17 15 13 18 17 18 16 16 15 27 12 15 17 15 13 13 13 15 15 16 14 15 14 28 2 <) 18 20 20 19 19 19 1 8 18 2i) 19 20 20 29 9 13 9 9 8 9 11 8 14 5 9 12 12 30 9 1A 9 1{j 1 1 12 18 1 1 18 9 13 17 19 Averaqes and extremes for all data Ave 35.7 36.2 36.) 29. 5 3 5. 0 34.6 34.6 35.4 35.9 ) 5. 7 35.8 36.2 36. 1 Max 58 57 58 46 58 59 60 58 58 57 59 59 58 Min q 13 9 9 8 9 11 8 14 5 9 12 12
* Cases )!) 3 f) 30 22 30 30 30 30 30 27 30 JO 30 Averages and extremes for days with data from all stations data foE this month Ave 27.5 28.2 28. 1 27.5 26.6 25.9 25.7 26.9 27.9 28.0 27.3 2 8. 0 27.9 Max 47 IJ6 47 46 46 47 48 47 48 49 47 47 49 Min 9 1] 9 9 8 9 11 8 14 5 9 12 12 19 19 19 19 19 19. 19 1 9 1'9 19 19 19 .9 --*-\;___ ___ I; *i . ' L-:-.::_.; . ' -. *---------:... ---...------_, -*----:....____
_ _. --...* ....-
____ _.. 0 --* 
* /..:.:.......
* -.. \,** ' --*** . ' Table 4.JK Palisades Network: Daily Avet:'age Temper-a tu res ( F) for November 1977 DAY PO 1 A P02A P03A P04A POSA P06A P07A PQ 8A P09A P10A p 11A P 12A P 13A 1 6:) 59 60 M 59 59 61 60 59 6*J 60 59 60 2 62 6] 63 M 63 63 64 63 63 6 ij 64 64 63 3 63 63 63 M 63 63 64 64 63 64 64 64 6] 4 56 56 56 M 56 57 58 56 .5 5 57 57 57* 57 5 54 54 53 M 53 54 54 54 52 54 54 53 53 6 59 59 58 M 59 .59 59 60 58 59 60 59 59 7 60 6'.) 59 M 59 59 59 60 59 60 60 59 60 8 59 59 59 11 60 60 60 60 60 61 61 60 61 9 61 61 61 6 1 60 62 61 (j 1 62 62 62 62 62 11) 39 39 38 38 37 37 37 38 39 39 39 38 38 11 37 37 36 36 36 36 35 36 37 37 37 31 36 12 32 34 32 32 31 32 31 32 32 33 32 32 33 13 32 33 32 32 32 32 31 32 33 33 33 32 33 1 '* 37 38 38 38 31 37 38 37 38 39 39 38 38 15 48 50 51 52 50 SQ 50 50 51 M 51 51 51 16 48 49 49 50 48 49 47 48 49 i1 49 48 49 17 43 42 43 42 41 40 40 4 1 41 11 ,_. 1 4 1 41 1B 39 38 40 38 37 36 36 38 38 4 () 38 38 36 19 37 38 38 37 35 33 ]] 36 37 38 36 36 34 20 49 48 . 50 49 48 '* 8 1'8 1'8 49 5!) 48 49 4q 21 37 36 37 37 35 )5 34 35 36 36 35 36 36 22 32 32 33 32 31 30 30 31 31 32 32 32 31 23 35 36 36 35 34 35 34 3{5 34 35 35 36 35 24 36 36 31 )6 35 35 35 35 35 37 35 36 35 25 30 30 31 29 JO 29 29 29 29 31 29 29 29 26 24 24 25 23 23 22 20 23 23 25 23 23 23 27 21 22 22 21 20 20 20 21 20 22 21 2 1 2 1 28 28 27 . 28 26 26 26 26 27 26 27 26 27 26 29 18 22 19 19 1 'J 20 21 18 20 18 19 22 22 Ji) 27 28 27 28 20 27 29 25 28 29 28 29 29 Averages and ext rem es for all data Ave ,, 2. 0 42.5 42.5 36.G 41. 5 41. 6 41.4 41. 8 41.9 4 2. 3 42.3 42.2 4 2. 1 Max 63 63 63 61 63 63 64 64 63 64 64 64 63 '1 in 1 fl 22 19 19 19 20 20 18 20 18 19 21 21 Cases 30 30 30 22 JO 30 30 30 JO 27 30 30 30 A vet:'aqes and extremes for dcl ys with data from all stations data for this month Ave 3 4. 3 34.7 34.8 3 4. 1 33.4 3 3. ) 33. 1 3 3. 7 3 4. 1 34.9 3 4. 1 3 4. 3 34.0 Max 61 6 1 6 1 6 1 60 62 61 6 1 62 62 62 62 62 00 I-' Min 18 22 1 ') 19 19. 20 20 10 20 1 IJ 19 2 1 21 Cases 19 19 19 1 9 19 19 19 19 19 19 19 1 9 19 Table 4. 1L Palisades Network: Daily Temporituras (F) for 1977 ro N D r1 Y PO 1h P02A POJA Pv 4A PC 5A P06A P07A P:J8A P("9 A P1 ')A P11A P 12A p 1 JI\ 1 39 3q 40 38 37 37 J7 37 37 3 CJ 18 38 3 f3 2 JB 31 39 36 35 34 36 36 34 37 36 l7 36 3 33 32 34 32 32 32 32 33 30 32 31 32 32 4 J] 38 36 34 34 34 33 35 33 33 35 36 36 5 31 31 31 29 29 29 29 29 30 29 3 () Jr) 30 6 29 28 28 28 27 27 27 28 27 28 27 28 21 7 26 26 28 .26 25 25 25 25 25 25 26 25 26 8 29 28 31 27 26 26 26 28 27 27 28 27 27 9 28 26 27 26 25 25 25 25 25 24 26 26 26 10 23 22 23 22 20 21) 21 21 21 21 21 22 21 11 1 9 19 18 18 16 17 16 18 15 1 8 17 1 6 11 12 39 39 39 39 39 "38 39 39 39 38 40 .3g 39 13 39 *39 40 39 38 39 39 39 39 40 39 39 39 1 4 36 36 37 35 34 35 35 36 35 37 36 37 36 15 39 38 38 37 37 37 37 38 36 38 38 38 38 16 47 It 9 48 49 48 49 119 50 1rn 50 49 50 49 1 7 50 51 49 . 50 49 48 47 49 48 51) lt9 50 49 18 41 41 42 41 42 42 42 4 1 40 40 111 42 42 19 40 40 liQ 40 40 39 39 40 39 irn 39 39 4 (I 2ll 4:) 40 40 39 39 40 39 39 38 40 39 ]9 4 0 21 34 3 .J 34 33 33 32 32 32 32 33 33 32 33 22 33 32 33 32 31 32 33 31 31 32 32 .12 32 23 37 39 . 37 37 37 )7 39 37 36 39 40 38 37 24 42 40 40 40 39 40 39 40 39 4 0 40 41 25 26 25 27 23 25 25 26 24 23 25 24 24 25 26 18 16 18 15 16 15 15 M 15 17 17 16 16 27 1 9 19 18 17 17 1 13 17 l'1 17 1 9 19 20 1'J 28 26 25 25 25 24 24 23 M 24 25 25 24 25 29 J 1 31 31 JO 29 ) 1 31 J 1 29 ] 1 31 3 () JO ].J JC JJ 32 31 30 30 31) 3 1 29 31 32 29 30 31 3*) 29 30 29 29 2*9 28 29 29 3J 3'' 29 3.,' l.J Averages and fdr all datd /\ ve 3 3. 1 32.9 33.3 32. 2 3 1. 1 31. 8 31. 8 33.6 31. 3 32.5 32.5 32.4 32.5 'lax 5 *.) 51 49 50 49 49 4q 50 48 50 4g 51) 49 Min rn 16 18 15 16 15 1S 18 15 17 17 16 16 Cases 3 1 31 31 31 3 1 ) 1 3 1 28 31 31 31 3 1 31 Averages and extremes for ddys with Jatd from all stations having data for this Ave J 4
* IJ 34. 3 34. 7 33. i.) 33.0 3). 2 33. 3 33.6 32.6 33. 8 ]]. B 13. 7 33. 8 Max 5*j 51 49 Su 49 49 49 5 () 48 5:) 49 5.j 119 :-lin 19 19 18 1 u 16 17 16 18 15 18 17 16 17 C.s.
28 28 28 28 28. 28 28 20 28 28 ., *-. 't
.... i ____ _j
-=-* *-. __ _;* :..._ -----.:--*
------=-..:..*
--:-::-.
---.-* .. -* ... ---
** . -.-,
,*_ . , ___ .... .-, ..... --.---' ,,..--*-..... *--*, --...... I *--,.-I r \ ' ' --Table 4.2L Palisades Netwo[k: Daily Minimum Temperaturas ( F) for-DGcomber 1'-.171 D 71 Y PO 1 A. P02A P03A [>() 4A PO 5A P06A l?07A POUA P O'lA P10A P1H P12A P13A 1 33 3] 35 32 -3 1 31 32 33 31 32 33 32 32 2 33 32 34 30 30 31 32 32 30 32 31 ] 1 31 3 28 29 30 28 27 26 27 27 27 29 28 28 2R It 27 26 27 24 21 21 23 23 24 25 23 211 23 5 28 27 28 27 26 26 26 25 26 26 26 2 fl 27 6 2 i) 18 19 19 17 16 16 17 17 17 1B 1 8 18 7 5 5 6 5 2 2 3 4 4 4 5 4 lj 8 3 lt 5 4 1 1 ) 3 2 ') 3 2 1 '-9 11 11 10 9 7 u 8 8 g 8 8 9 9 1') 11 11 11 10 8 6 7 1 () 9 0 9 9 8 11 1 .... 10 1 1 9 8 u 8 8 8 8 9 9 10 12 15 15 16 14 13 1J 15 14 14 14 14 16 14 13 34 36 36 35 33 35 35 35 34 35 35 35 35 14 34 34 35 34 32-33 33 34 33 34 33 34 34 1S 32 32 34 32 31 32 32 32 32 32 32 32 32 16 30 32 34 34 32 32 33 JO 33 33 ]3 3 4 33 17 4J 40 41 4 1 40 39 40 39 39 40 39 41) lj i) 18 37 38 39 ]8 37 . 37 37 38 31 38 31 39 38 19 36 35 38 36 36 37 36 36 35 37 36 37 36 2-) 25 25 25 21 21 20 19 23 22 22 20 2 ') 2*i 21 21 20 20 19 18 19 19 1 9 18 2*) 19 1 9 19 22 2) 211 23 22 21 22 23 22 22 23 2] 22 22 23 24 27 29 24 26 26 27 25 25 27 26 26 26 24 21 23 23 22 21 22 22 21 22 21 23 23 23 25 1;) 9 10 9 7 8 8 8 7 10 8 8 9 26 10 9 10 9 7 8 6 M 7 1 () 9 8 9 27 9 8 8 7 7 5 6 M 7 8 6 7 5 28 g. 8 8 7 7 6 5 M 6 8 7 6 6 29 17 17 18 17 16 15 16 18 17 15 17 1 7 16 30 7 16 8 7 11 5 12 8 11 8 9 16 1ll 31 6 llJ 8 7 7 4 10 7 13 7 8 1] 11 Averages and extremes for all data Ave 20.9 21. 5 21.9 20.4 19. 4 19,; 2 20. 0 2 1. 4 20. 0 2 o. 4 20.2 2 o. 8 20.5 Max 4 (j 40 41 4 1 41) 39 40 39 39 4 !) 39 40 40 Min 3 4 5 4 1 1 3 3 2 2 3 2 3 Cases 31 31 31 31 31 )1 J1 28 31 3 1 31 3 1 3 1 Aver-aqcs and extremes for days wit:.11 data fr-om all stations having data for this month Ave 22.2 23.0 23.3 21. 8 20.7 20.5 21. 5 21. 4 21. 5. 21. 7 21. 6 2 2. _) 2 2. :) 'lax 4t_} 40 41 41 40 39 40 39 39 4 ') 19 40 4(: 00 l.f in 3 4 5 4 1 1 3 3 2 2 3 2 3 w Cases 28 28 28 28 28 20 28 28 28 2 fJ 28 20 28 Table 4.31 Palisades Network: Daily Average Temperatures ( F) for December 1977 00 """ fiAY P01A P02A P03A P04A PU51\ PlJ6A P07A P 0 8 A p 09i\ P10A P1 U p P13A 1 36 36 37 35 34 34 35 35 ]4 36 35 )6 35 2 35 34 36 33 33 33 33 3 It 33 34 33 35 33 3 )*"'! JI) 32 29 29 29 29 29 29 3 ') 29 3 l) 30 29 JO 31 29 28 28 28 29 28 28 29 3i) 29 5 29 29 30 28 28 28 28 27 27 28 28 29 2CJ 6 24 24 24 23 22 22 22 23 22 22 23 23 2] 7 19 19 20 18 17 16 17 1 8 18 17 18 17 17 8 Hi 16 17 16 14 14 15 15 15 1 5 15 1 6 16 9 17 1 8 17 16 14 15 16 16 16 1 5 15 1 6 Hi 1J 19 18 19 18 16 14 14 17 16 16 17 1 6 1 5 11 13 13 13 13 11 11 12 12 11 =12 12 12 13 1 2 32 32 33 32 31 31 32 32 32 *'3 2 33 33 32 11 36 37 38 37 . 35 36 36 36 36 37 37 37 37 111 35 35 36 35 34 34 34 34 34 35 J4 35 35 15 35 35 35 34 34 34 34 34 34 35 34 34 35 16 38 40 41 40 39 40 40 ''&deg; 40 41 40 4 1 40 17 44 114 45 44 43 43 ILJ 44 44 45 44 45 44 18 39 40 40 39 39 40 39 39 39 39 39 40 40 19 38 38 39 38 38 38 37 38 37 JO 18 38 3B r* 34 )It 35 33 J2 33 32 33 33 33 33 34 33 ,, 21 27 26 26 24 23 24 23 24 24 25 24 24 24 22 28 28 28 27 26 27 27 26 26 27 27 27 27 23 33 34 34 33 33 33 33 33 32 34 34 ] ,, 33 2 !t 31 31 32 3 1 30 31 31 30 30 ] 1 3 1 3 1 ] 1 25 14 14 14 12 13 13 13 12 11 14 13 1 3 13 26 14 13 14 12 12 12 11 M 12 14 13 1 3 13 27 16 15 16 14 14 14 14 M 14 16 15 1 5 1s 28 19 19 18 17 1 6 15 15 M 17 18 17 1 6 lfi 2q 2 IJ 24 24 24 23 22 24 24 23 23 24 23 23 30 21 211 21 21 21 19 23 22 23 2:) 22 23 24 31 20 22 20 20 20 19 22 21 21 2 () 21 22 23 Averaqes and extremes for all data Ave 27.3 27.5 27.9 26. 6 25. 9 25. 8 26.2 27.7 26. 1 26. 8 26.6 2 7. 0 26.9 Max 44 44 45 44 43 43 43 44 44 45 44 It 5 4 Min 13 13 13 12 11 11 11 12 11 12 12 12 13 Cases 31 31 31 31 31 31 31 28 31 ] 1 31 3 1 31 Averages and extremes for days with data from all stations having data for *this m9nth I\ VO 2B.5 28.8 29. 2 27.9 2 7. 1 27. 1 27.6 2 7. 7 27.3 2 8
* IJ 27. 9 2 f], 3 28.2 Max 44 44 45 44 43 43 43 44 44 45 It '* 45 44 Min 1J 13 13 12 11 1 1 12 12 11 12. 12 1 2 1] c***-2 a-28 28 28 28 ;--28 ;. 28 28 28 20 28 28 * ., *---) .\ '*-.____;/ L
**.___ ..... _...; '* ... -;:::;-.:-.../
.----j .-*---
,__ ' ... , ________ ,. 
* \ .. *
* V. HUMIDITY Relative humidity is measured with the hair hygrometer of a hygrothermograph located in a standard instrument shelter. It is recorded on a scale of 0-100% and reported to the nearest whole percent. Since *relative humidity is a function of temperature, the data are given in three tables for each month. The first gives the relative humidity for standard National Weather Service reporting times, for each day of the month. The second gives the temperature reported at the same six-hour intervals.
The third gives the dew point, defined as the temperature which saturation occurs. It is calculated from the correspor.ding values of temperature and relative humidity.
The significance of dew point as a moisture variable is that it is a function of the actual amount of water vapor in the air rather than the amount relative to saturation, as is relative humidity.
The data contained in this report are only for the two main stations.
Hourly values of temperature and relative humidity as well as calculated values of dew point and specific humidity for all network stations will be used in analyses, however, and are stored at the University of Michigan Computing Center on magnetic tape. Discussions of hygrometer calibration procedures and the general accuracy of the humidity data may be found in annual reports for this project. 85 86 Day 0100 1 82 2 87 3 89 4 68 5 90 6 88 7 74 8 65 9 64 1 0 81 1 1 71 12 87 13 68 14 92 15 82 16 81 17 86 1 8 91 19 79 20 86 21 88 22 92 23 83 24 97 25 80 26 79 27 83 28 88 29 86 30 88 31 90 POJA _Table 5.1A Relative Humidity (3) January *197i P07A Time (EST) Time {EST) 0700 1300 1900 0100 0700 1300 79 87 85 90 87 89 90 76 78 89 91 78 95 8 1 87 89 96 83 67 50 76 78 79 56 90 60 as* 90 92 74 91 79 92 95 92 83 69 7J 80 82 85 67 85 89 87 72 88 88 72 56 72 77 79 62 84 73 77 87 89 88 76 75 6 i) 84 83 82 75 74 74 92 89 85 75 76 86 74 77 SJ 88 81 81 96 94 83 77 78 72 r 87 83 77 83 79 86 87 87 85 89 81 88 88 89 80 93 69 76 93 91 69 90 77 77 86 91 79 86 81 84 88 86 78 61 71 69 91 79 82 73 58 81 87 76 63 75 65 81 89 79 65 97 91 90 98 97 90 87 69 69 g 1 96 8 J. 76 91 75 90 88 95 84 76 75 89 87 74 83 86 86 90* 84 85 88 88 88 87 86 88 87 87 90 89 87 88 90 93 94 91 91 83 Averages for all days *ith data Ave 8 2. 8 82.5 76.3 80.8 87.6 87.0 79.3 Cases 31 31 31 31 3 1 31 3 1 1900 91 83 9 1 74 90 94 85 92 77 84 68 88 90 85 8 1 91 92 76 77 87 78 84 86 91 79 75 7 1 85 88 89 80 83.9 31 Averages for only those days vith data foL both stations Ave 82.8 82.5 76.J 80.8 87.6 87. 0 79.3 83.9 Cases 31 31 .3 1 31 31 31 31 31 *-; 9t ,<, f c.::I I i *.,) *--. ( I . ..i --) ) ) ,* .. 1 ( ') !
*. i I I l . .J i ')
* 87
* Ta:Ole 5. 2A Temperature (F) : January 1977 P03A P07 A Time (EST} Time (EST) Day 0100 0700 1300 1900 0100 0700 1300 1900 1 16 18 21 21 14 16 21 18 2 16 18 21 16 13 15 18 15 3 17 19 23 24 15 17 22 22 4 25 25 33 20 24 23 30 18 5 6 8 25 14 11 9 22 12 6 -1 16 2.3 22 1 15 21 21 7 20 14 16 13 19 11 16 11 8 7 9 18 18 5 7 15 16 9 12 0 s 6 10 -3 5 4 .* '* . 1 0 9 13 18 17 6 8 13 15 11 17 13 13 3 14 12 7 0 12 12 9 10 11 ,.. 7. 8 8 0 13 3 -2 8 17 0 0 9 17 14 24 26 20 17 22 22 21 19 15 19 15 11 8 17 16 13 8 16 0 -1 4 7 2 0 5 2 I 17 6 7 1 1 11 6 6 10 9
* 18 12 11 18 1.0 6 1 6 5 19 23 21 22 10 23 22 23 12 / 20 3 7 16 1 6 4 7 17 15 21 19 22 23 20 18 19 24 20 22 16 14 21 19 15 1 , 21 1 8 23 12 15 21 22 13 l6 23 22 24 24 25 27 27 24 24 27 28 25 27 27 25 21 27 27 26 21 26 22 19 24 14 21 16 24 13 27 5 3 7 10 5 3 8 8 28 11 1 1 .3 11 0 0 1 ' .. 29 4 6 6 8 2 2 6 s 30 7 6 9 9 6 3 7 6 31 11 13 18 15 10 9 17 13 Averages for all days with data Ave 13.0 12.8 16. 7 14. 4 12. 0 11. 1 16.0 13.0 Cases 31 31 3 1 31 31 31 31 31 Averages for only those days with data for both stations Ave 13.0 12. 8 16. 7 1 4. 4 12.0 11. 1 16.0 13.0 Cases 31 31 31 31 31 31 31 31
* 88 Table 5.3A
* Dew Point (F) __ , January 1977 -( P03A P07A j Time (EST} Time (EST) Day 0100 0700 1300 1900 0 10 0 0700 1300 1900 -i i 1 12 13 18 17 12 13 18 16 :; 2 13 16 14 10 11 13 13 10 3 15 18 18 20 13 16 17 20 *-{ 4 16 16 16 14 18 17 16 1 1 5 3 6 13 1 1 9 7 15 10 6 -4 14 17 20 0 1 3 17 20 --) 7 13 6 8 8 14 8 7 8 .. J 8 -1 6 15 15 -1 5 12 1 4 9 2 6 0 4 5 -1 10 4 9 11 11 3 6 10 1 1 11 9 7 7 -6 10 8 3 -7 12 9 3 3 4 4 4 5 5 13 8 2 14 5 4 15 ") 14 22 23 15 12 21 21 17 15 *, 15 14 9 6 I) 14 12 7 4 i 16 5 0 4 0 -3 1 0 17 3 4 1 8 3 4 5 7
* 18 10 1 0 9 -1 9 4 8 0 19 18 19 16 5 19 20 17 6 20 0 4 11 12 1 4 11 12 21 16 11 15 11 16 1 4 19 14 I i I 22 14 7 8 15 12 5 11 1 4 23 8 9 1 1 17 11 10 13 19 24 23 24 25 24 23 23 25 26 25 21 21.J 17 13 25 26 21 15 . __ j 26 17 13 22 7 18 13 23 6 27 1 0 1 4 2 0 2 1 I 28 9 1 0 9 2 -2 1 29 1 3 3 5 O" -1 3 3 30 4 3 6 6 3 0 5 3 31 8 10 16 1 Lt 8 7 13 a Averages for all days data Ave 8.6 8.4 10. 3 9. 5 8.9 8.0 10.5 9.0 Cases 31 31 3 1 31 31 31 31 31 *-'
Averages for only those days with data for both stations Ave 8.6 8.4 10. 3 9. 5 8.9 8. 0 10. 5 9.0 Cases 31 31 31 3 1 31 31 31 31
* 89 Table 5 .. 1 B Relative
(;1)
* February 1977 \ \, \ I p1JJA P07A Time (EST) Time (EST) Day 0100 r) 700 130'.j 19*) 0 -;; 100 O 7 t:O 130 >J 1900 1 94 :1 M :1 37 90 78 87 ..*. 2 11 i1 11 91 87 97 76 91 3 95 92 75 83 94 92 77 85 4 88 97 89 74 85 96 93 73 j 86 77 79 82 89 85 79 as 6 79 88 74 76 g2 *:i 2 80 33 7 82 78 71 81 93 94 73 76 8 73 71 46 55 75 75 55 62 9 62 79 72 76 66 85 i:.,.. v;) 87 10 87 97 61 78 98 98 70 85 1 1 85 95 64 79 90 96 62 31 1 2 9.8 89 78 91 90 93 78 94 1 3 85 . 86 70 7:) 92 92 84 74 1 4 81 77 74 80 as 83 80 80 1 5 74 79 61 63 75 93 62 56 16 84 33 56 75 39 9 1 ,.. ? '.)_ 71 17 87 91 52 61 93 94 54 65 1 8 77 82 88 90 81 as 86 90 1 9 94 93 68 76 97 95 7J 80 . ,. 20 83 90 f:,7 81 89 95 62 82 2 1 80 87 50 64 93 94 52 69 22 66 69 66 78 73 75 51 72 I 23 76 92 67 SJ 83 95 79 92 I 24 84 95 83 80 93 96 9 !) 89 ! * .. 25 69 67 67 73 71 72 69 72 26 74 33 60 7 1 75 38 72 63 27 86 96 84 89 97 96 85 93 ';. 28 92 10* 64 64 96 80 . 6*J 63 Averages for all days with data Ave 82.3 84. 8 68.7 76.4 36.6 89.9 7 1. '.+ 7 9. 1 Cases 27 26 26 27 28 28 28 28 Averages for only those days with data both stations !\ ve 81.8 84. 8 68.7 75.8 86.6 8 9. 6 71.0 7 a. J Cases 26 26 26 26 26 26 26 26
* 90 Table 5.28 Tern per a tu re ( E') *1 Fe br ua :ry 1977 ** --, ! P03A PJ7:\ Ti!lle (EST) Time (EST) -; Day v 100 :) 7'J 0 1300 19!) 0 0100 070l) 130.) 190 (l -) 1 18 M M i:'l 16 16 21 19 .. 2 M M i.i 21 15 10 18 21 3 28 26 27 26 27 26 25 *1 4 26 23 25 20 26 22 24 17 5 16 9 13 11 15 8 12 1 '"' . .} 6 12 7 1 4 12 a 0 14 12 '( 7 '11:) 13 15 4 6 9 18 5 8 8 10 20 18 7 9 18 17 9 19 26 34 35 19 23 37 33 ---, 1 \) 34 28 45 43 26 27 42 40 _) 1 1 40 36 39 35 40 36 43 34 1 2 27 33 43 33 33 37 42 33 13 32 31 3 1 31 31 Jv 29 29 --.,I I 1 4 30 26 25 18 29 25 24 17 ' '_) 15 17 17 16 13 1 6 1 4 17 9 1 6 -1 2 22 14 -2 0 2 1 1J i' 17 -1 ,') 27 27 7 8 27 26 _) 1 3 26 29 34 30 25 27 36 31) 1 9 20 17 29 23 23 15 28 24 20 22 21 23 17 22 19 26 1 8
* 2 1 3 24 25 6 -2 23 23 22 29 30 39 35 2,8 30 43 39 23 39 38 51 49 39 38 50 47 I 24 48 44 35 32 43 37 32 I 25 34 33 35 ' 34 32 32 3 !.+ 34 -_J -2 6 33 27 29 27 32 26 3() 27 27 27 24 26 26 26 25 25 25 __] 28 26 25 30 28 26 25 31 27 Averages for all days with data Ave 23.2 22.2 28.9 25.3 2 2. 3 20. 5 28. 4 24.3 Cases 27 26 2E 27 28 28 23 28 lverages for only those days with data for both stations :a.ve 23.4 22.2 28.9 25 .. 5 22.8 2 1. 1 29. 1 2 4. 6 _,/ Cases 26 26 26 26 26 2b 26 26 -*
91 Table 5 *. 3B Deli Point (F)
* February 1977 P03A P07A Time (EST) :rime {EST) Day J100 1j?:)Q 1300 1900 c 1 oc 0700 1300 1 9 ;) C' 1 16 :1 13 13 15 15 2 11 11 M 19 12 9 12 1 9 3 27 24 20 21 25 24 20 21 4 23 22 22 13 22 21 22 10 5 12 3 8 6 12 4 6 6 6 6 4 7 6 6 -1 '.1 7 7 6 8 7 0 4 7 1 1 ;') 8 1 2 2 5 1 3 5 6 9 8 21 26 28 9 1 9 27 30 10 31 27 32 36 26 26 33 36 11 36 34 28 29 37 35 3 1 29 12 27 35 37 31 30 35 36 31 1 3 28 28 22 23 29 28 25 22 1 4 25 20 18 13 25 2G 19 12 15 10 11 5 3 9 12 6 0 16 1 8 7 2 6 2 I 1 7 3 12 15 6 6 12 16 ( r 18 20 24 31 28 20 23 32 27 1 9 18 1 6 20 16 22 1 4 19 18
* 20 17 19 13 12 1 9 18 15 13 21 5 -6 8 14 5 -3 8 1 4 22 19 21 29 28 21 23 29 3J 23 32 36 41 44 34 37 44 45 24 44 43 31 26 45 3!4 29 25 25 24 25 26 24 24 25 26 26 25 23 17 19 25 23 22 1 8 27 23 23 22 23 25 24 21 23 28 24 17 19 17 25 2 ... 19 16 !\.ve::-ages for all days with data Ave 18.5 18. 2 19.6 18.8 1 a. s 1 8. 0 2:). 1 18.6 Cases 27 26 26 27 28 28 28 28 Averages for only those days with data for both stations Ave 18.5 18.2 1 g_ 6 18. 8 19. 3 18. 5 20. 6 1 8. 7 Cases 26 26 26 26 '),. _o 26 26 26 * 
' )
* Table 5.2 c 93 Temperature (I)
* March 1977 P03A P07A Tirae {EST) Time (EST) Day 0100 0 700 1300 1900 0100 0700 1300 1900 1 25 14 25 23 23 11 25 23 2 27 21 36 32 18 1 4 38 34 3 33 35 40 39 31 35 39 40 4 42 42 37 36 42 42 38 37 5 33 32 32 32 35 32 32 32 6 34 31 32 30 33 3 1 32 32 7 31 31 36 32 32 29 38 34 8 34 37 55 60 34 37 55 59 9 55 50 57 58 53 48 58 58 10 52 39 61 58 50 43 60 57 11 54 48 67 61 53 49 67 62 12 56 58 63 62 57 57 61 62 13 45 42 46 42 46 42 44 44 14 41 40 46 50 43 42 45 49 15 48 48 70 42 45 47 67 44 16 40 35 45 38 43 36 46 38 17 25 22 41 34. 26 25 39 34 18 34 32 34 31 33 33 33 31 19 31 30 36 37 31 32 37 38
* 20 34 29 34 35 34 29 3'3 35 21 33 32 40 34 32 3 1 39 34 22 32 30 35 31 30 29 36 31 23 .33 33 32 28 31 32 33 27 24 17 20 36 30 18 2 1 36 33 25 28 26 46 46 29 27 44 45 26 36 33 57 56 35 33 54 54 27 48 51 65 56 45 47 63 55 2B 54 56 58 59 54 54 57 58 29 55 6 1 64 59 55 6 1 66 60 30 45 57 58 48 50 57 59 55 3 1 40 36 38 35 42 38 41 36 Averages for all days with data 11.ve 38.5 37.2 45.8 42.4 38.2 37.G 45.9 42.9 Cases 31 31 31 31 31 3 1 31 31 Averages for only those days with data for both stations Ave 38. 5 37.2 45.8 42.4 38.2 37.C 45. 9 42.9 Cases 31 31 31 31 31 3 1 31 31
* 94 *-* Table 5.3 C Dew Point (F) **1 !!arch 1977 * -*1 P03A P07A Time {EST) Time (EST) ] Day 0 100 0700 1300 1900 0100 0700 1300 1900 1 18 7 11 10 19 9 13 10 2 16 13 17 15 13 13 17 17 3 21 26 37 38 22 25 37 39 *1 4 40 41 35 32 40 41 36 33 I ) 5 28 26 25 27 29 27 24 26 6 26 24 21 24 24 26 21 27 -*1 7 25 26 25 14 25 21* 24 21 8 25 24 31 36 23 23 29 34 I 9 34 35 37 41 32 33 36 41 10 39 34 40 35 39 35 38 37 . \ 11 42 40 41 37 41 37 41 37 -12 37 55 56 54 38 53. 55 55 13 40 38 43 40 40 38 42 41 ] 14 38 38 42 42 41 40 41 41 15 43 40 45 39 41 39 44 40 16 32 29 27 21 31 29 23 22 17 24 21 23 33 24 23 23 33 ( 18 32 30 3C 29 32 32 28 29 _) 19 28 29 29 26 29 30 27 27 *20 26 26 29 30 25 27 28 30
* 21 30 30 32 30 30 30 31 30 22 27 20 22 22 28 .17 22 18 23 24 28 17 12 21 -29 20 11 ( 24 16 10 11 21 16 13 13 12 25 15 17 21 25 17 15 21 25 26 27 26 30 34 29 23 28 32 27 34 34 44 53 34 41 53 _J 28 51 53 54 ) 43 51 52 54 45 29 52 46 JS 32 52 45 35 33 30 38 48 43 28 34 47 43 26 ( 31 36 34 31 30 33 36 33 31 I --Averages for all days with data Ave 31. 1 30.6 31.8 30. 8 30.8 30. 5 31.3 30. 8 Cases 31 31 31 31 31 3 1 3.1 31 .. Averages for only those days with data both stations Ave 31. 1 30.6 3,. 8 *30. 8 30.8 *30. 5 31.3 3 o. 8 Cases 31 31 3.1 31 31 3 1 31 31 ) I, . I
* I I L 95 Table 5. 1D Relative Humidity (%) * .1\.pril 1977 (, -PO 31\ P07A Time ( E S'I) Time (EST) Day 0100 J 70 0 1300 1900 0100 OiCC 1300 1900 1 87 90 4g 49 89 90 49 50 2 65 90 81 79 72 9 1 83 70 3 85 69 40 48 89 79 38 42 4 64 68 88 87 65 71 90 91 5 82 r -86 73 70 84 89 87 72 6 79 47 43 41 71 54 48 52 7 73 89 53 64 62 89 53 55 8 66 59 49 58 71 64 44 60 9 92 90 35 37 79 78 42 43 10 50 58 38 30 56 . 62 40 41 1 1 38 51 37 JS 51 63 40 46 1 2 43 51 42 37 59 68 44 41 1 3 46 54 65 86 54 64 59 74 14 90 73 56 58 86 7 1 59 58 1 5 51 50 34 46 s 1 52 40 50 1 6 78 48 46 64 59 53 49 59 17 86 72 46 49 79 72 48 52 1 8 69 56 54 42 72 7 1 47 47 19 77 66 58 . 64 . 81 80 57 64
* 20 83 88 75 90 77 85 63 82 2 1 83 69 71 89 77 69 70 86
'-"-89 91 89 87 87 88 86 85 23 74 68 62 61 77 6* 61 59 24 92 93 71. 84 84 88 71 73 25 94 93 87 69 89 87 83 63 26 74 83 51 46 78 9 1 43 46 27 93 42 40 35 60 49 43 38 28 91 92 59 78 86 88 66 69 29 93 93 40 57 9 1 9 1 41 46 30 93 a2 42 54 90 83 40 53 Averages for all days with data Ave 76.0 72.0 55.7 60.0 74.2 7 5. 0 56.2 59.0 Cases 30 30 JC 30 30 30 30 30 Averages for only those days with data fer toth stations Ave 76.0 72.0 55.7 60.0 74.2 7 5. c 56.2 59. 0 Cases 30 30 30 JO 30 JC 30 30
* 96 Table 5.2D Temperature
{F) i April 1977 .\ **1 l P03A P07A Time (EST) 'I ime (EST) -1 Day 0100 0700 1300 1900 0100 0700 1300 1900 \ _, 1 32 32 49 52 33 33 51 52 2 *4 7 47 63 48 48 48 63 53 .-, 3 38 36 49 50 37 35 49 51 I I 4 U1 41 47 51 41 4 1 48 52 5 37 33 3 1 34 36 32 . 30 33 6 30 28 35 31 30 26 34 30 I. 7 24 33 47 39 JO 33 49 40 8 29 23 35 29 30 24 39 31 9 19 20 5 1 52 24 2S 52 51 .. i 10 45 48 73 74 us 49 78 74 \ 11 70 63 76 72 63 E 3 80 75 1 2 69 '64 74 75 6 1 60 79 74 13 70 65 62 52 64 62 67 57 l I 14 41 51 6C 60 44 50 -60 58 .I 15 54 51 7 i 70 53 52 69 69 1 6 51 52 73 66 53 54 77 69 i 17 59 60 81 74 6 1 E4 80 72 18 67 68 70 78 66 63 83 75 19 65 62 *74 67 64 59 72 66
* 20 63 6 1 68 67 63 6 1 74 67 2 1 63 66 67 62 63 66 67 61 22 60 43 54 53 62 50 55 51 23 50 50 62 49 49 50 62 58 ! ( 24 33 42 46 42 44 43 48 44 -c; 39 41 44 44 40 42 48 46 .t. -26 40 35 49 46 39 JE 54 49 27 32 52 6S 66 40 5 1 71 71 28 41 39 48 39 44 40 46 42 29 27 34 53 47 32 33 56 51 30 30 36 60 58 34 39 66 62 ( 'verages for all days ftith data .. ! Ave 45.6 45.9 58.C 54.8 46.4 46.3 60.3 56.2 Cases 30 30 30 30 30 30 30 30 Averages for cnly those days with data for toth stations Ave 45.6 45.9 58.0 54.8 46.4 46.3 60. 3 56.2 Cases 30 30 30 30 30 3C -)Q. 30
* 97 Table 5.3D Dew Point ( F)
* April 1977 P03A P07A Time (EST) 'I ime (EST) ' \ . Day 0100 0 700 1300 190 0 0100 OICO 1300 1900 1 29 29 31 34 30 30 32 34 2 36 45 56 42 39 45 58 43 3 34 27 ""C ,_ JO 34 29 24 28 4 30 31 43 48 30 32 46 49 5 32 29 23 25 32 ... c 26 25 r* ,(. J 6 24 10 14 10 22 1 1 16 15 7 17 30 30 28 19 30 33 25 8 19 10 17 15 21 1 4 19 1g 9 17 18 24 26 19 . 2J 30 29 10 27 34 46 41 30 37 52 48 11 43 45 48 45 45 SC 53 53 12 45 46 49 46 46 50 55 49 i 13 48 48 51 48 47 50 52 48 \,\. 14 38 42 44 45 40 4 1 46 43 15 36 33 4 1 47 35 35 44 49 16 44 33 5 1 54 39 3* 56 54 17 55 51 58 53 54 c;c 58 53 1 8 57 52 53 53 57 53 60 53
* 19 57 50 58 55 58 52 56 54 20 58 58 60 64 56 56 61 61 2 1 57 56 57 58 56 55 57 57 22 57 41 51 4g 58 47 5 1 47 23 42 40 49 36 42 40 48 43 24 36 40 37 37 39 40 39 36 25 37 40 40 34 37 39 44 34 26 32 JO 32 26 32 34 32 29 27 30 30 44 37 28 32 47 44 28 39 37 33 33 40 36 35 33 29 25 33 30 33 30 3 1 33 31 JO 28 31 37 41 3 1 34 41 45 Averages for all days *ith data Ave 37.6 36.6 41. 0 39.8 38.2 38. 3 43.4 41.1 Cases 30 30 JC 30 JO 30 30 30 Averages for cnly those days with data fer both stations i'\ve 37.6 36.6. 41.C 39.8 38.2 .3 8. 3 43.4 4L1 Cases JO 30 30 30 30 30 30 30 * 
--, 98 I Table 5. lE I ) Relative Humidity (3) --1 .\ May 1977 -1 P03A P07A Time (EST) Time (EST) *1 Day 0100 0700 1'.300 1900 0100 0700 1300 1900 ) 1 92 77 53 54 81 64 54 59 2 78 90 50 85 90 61 47 -1 3 54 50 45 61 52 54 47 58 4 58 89 86 8.4 56 86 84 83 :\ 5 90 89 65 65 87 86 66 61 6 70 85 46 b3 71 84 41 54 -'? 7 77" 77 66 68 68 78 50 52 I 8 97 66 52 57 91 87 43 33 9 69 73 56 75 68 73 56 67 --i 10 95 94 57 72 93 92 47 50 11 -.,* 93_ 86 35 36 90 93 43 41 _/ *-12 91 74 46 40 85 76 44 45 13 59 67 50 44 67 69 47 47 '\ 14 59 71 58 74 83 76 50 65 15 73 44 33 40 69 [J 7 38 44 16 48 61 46 .46 48 62 48 52 17 62 66 55 49 62 72 62 71 18 70 78 67 58 78 85 64 59 19 91 88 61 62 92 90 56 60 20 90 85 42 50 82 80 43 51 .i. 21 89 87 49 85 64 76 48 71 22 90 88 49 38 67 87 52 39 23 73 85 45 66 75 84 50 57 _J 24 90 90 57 5 <j 87 83 50 57 25 89 88 60 57 91 82 44 61 26 75 64 43 70 71 67 49 53 I 27 90 72 43 49 82 13 43 58 28 91 56 43 48 71 62 39 52 .1 29 62 78 60 62 64 83 73 62 JO 65 63 48 63 69 65 49 54 J 31 61 91 58 69 62 94 60 63 Averages for all days with data J Ave 77.1 76.4 52. 5 58.4 74.6 77.4 51. 7 55.6 Cases 31 31 31 31 31 3 1 31 31 Averages for only those days data for both stations Ave
* 77.1 76.4 52.5 58.4 74.6 77.4 51.7 55.6 I _ _) Cases 31 31 31 31 31 31 31 31
* 99 *rable 5.2E. Tempe x:a t ure (P)
* May 1977 POJA P07A Time (EST) Time (EST) Day* 0100 0 700 1300 1900 0100 0700 1300 1900 1 35 47 72 69 43 53 74 71 2 64 53 61 51 62 60 61 57 3 43 51 68 65 50 52 68 64 4 57 51 59 62 55 51 59 62 5 62 60 73 71 62 62 75 75 6 65 56 67 62 65 57 74 64 7 48 49 52 43 51 49 63 48 8 29 41 53 47 32 38 59 51 9 35 36 46 39 36 36 50 43 10 28 36 52 45 32 36 59 50 11 28 38 63 60 32 35 67 66 12 39 53 68 66 42 49 71 70 13 61 59 72 75 57 60 77 76 14 64 60 67 62 54 58 80 71 15 60 62 81 77 61 6 1 80 76 16 66 65 85 81 65 64 86 83 17 70 67 SJ 77 71 69. 81 77 18 70 70 79 80 66 66 80 82
* 19 58 65 77 7 'd 62 69 87 79 20 62 65 86 84 67 68 89 82 21 60 69 87 68 72 71 87 74 22 60 68 85 79 68 69 84 81 23 72 67 85 75 69 70 84 82 24 66 64 80 79 68 68 83 79 25 59 64 80 76 62 65 90 78 26 '.63 63 81 ' 66 68 64 79 77 27 52 57 80 73 59 62 83 75 28 so 6 1 83 83 57 64 87 80 29 65 61 77 73 65 61 75 73 JO 65 63 81 68 64 62 80 76 31 65 58 78 67 66 59 82 72 for all days with data Ave 55.6 57 * .5 73.1 67.7 57.6 58.4 75.9 70.9 Cases 31 31 31 31 31 31 31 31 Averages for only those days with data for both stations A. ve 55.6 57.5 7 3. 1 67.7 57.6 58.4 75.9 70.9 Cases 31 31 31 31 31 31 31 31
* 100 i Table 5.3E I Dew Point ( F) ") .\ May 1977 ] POJA P07A Time (EST} Time (EST) --, Day 0100 0700 1300 1900 0100 0700 1300 1900 I 1 33 40 54 51 37 41 56 55 ) 2 57 so 42 30 57 57 47 37 *-1 3 27 33 46 51 33 36 47 49 4 42. 48 55 57 40 47 54 57 ) 5 59 57 61 59 58 58 63 61 6 55 51 46 49 55 S3 49 47 . '\ 7 4 1 42 41 33 41 42 44 31 .J 8 28 31 36 32 30 35 36 22 9 26 28 32 32 26 28 34 32 ---, 10 26 34 38 36 30 34 39 32 ..\ 11 27 34 35 33 30 . 33 44 42 12 37 45 46 41 38 42 48 47 13 47 48 53 s 1 46 50 56 54 *1 1 lt 49 51 5.2 54 49 5 1 59 59 15 51 40 49 51 51 lt 1 52 53 16 46 51 61 58 44 51 64 64 i 17 56 55 65 57 57 60 67 67 18 59 63 67 61+ 59 6 1 67 66 i .. J 19 55 62 62 63 60 65 69 64 20 59 60 60 6.2 61 61 63 62. .i 21 S7 65 65 64 60 63 65 64 22 57 65 64 51 57 65 64 54 23 63 63 62 63 61 65 63 65 ( 24 63 60 63 63 64 63 63 62 25 56 61 65 60 59 59 65 63 26 55* 51 56 56 58 SJ 58 59 27 lt 9 48 55 52 53 53 58 59 28 48 lt s 58 61 48 51 59 61 29 52 54 62 59 S3 55 66 59 30 SJ 50 60 SS 54 so S9 58 _( 3 1 S1 S6 62 S6 52 S7 66 58 Averages for all days with data .I Ave 47.9 49.7 54.0 51. 7 49. 1 50.9 56.3 53.6 Cases 31 31 31 31 31 31 31 31 , Averages for only those days with data for both stations ) Ave lt 7. 9 49.7 54.0 51.7 49. 1 50.9 56.J 53.6 ! Cases 31 31 31 31 31 J1 31 31 _ _)
* c-* 101 Table 5. 1F Relative Humidity (%) * ------------June 1977 I I \ .. P03A P07 A Time iEST) Time (EST) i Day 0100 0700 1300 1-900 0100 0700 1300 1900 \ 1 88 88 89 92 87 92 93 91 2 84 85 72 7 '5 89 89 73 65 3 93 87 46 50 .94 78 49 51 4 93 81 42 47 76 59 44 55 5 81 90 79 75 81 92 73 80 6 89 90 81 . 60 88 91 75 62 7 72 75 66 57 82 83 52 58 8 92 87 88 87 92 80 90 90 , . 9 80 74 69 70 85 76 59 61 I 10 91 *as 60 75 94 82 52 69 i \ . 11 68 87 78 81 70 90 82 81 12 90 90 89 81 91 94 89 80 I .. 13 87 86 72 71 87 87 66 81 -! 14 92 90 61 65 95 91 54 60 15 90 83 SS 56 92 83 48 57 16 90 79 55 57 91 76 54 55 i 17 89 84 76 79 87 a8 61 78 \. 18 90 87 69 65 92 89 64 55 1 9 77 76 63 55 86 74 54 51 ,. 20 84 80 69 84 71 81 71 76 21 89 89 49 56 95 93 48 58 22 90 86 45 59 90 84 45 53 r . 23 90 89 48 67 85 86 49 64 24 89 89 79 75 90 93 68 78 25 90 86 81 75 95 93 74 63 26 92 90 47 44 96 96 48 48 27 90 90 52 61 . 92 79 46 60 28 88 84 68 88 93 88 74 89 29 80 75 67 53 79 69 57 53 30 90 73 89 88 71 77 91 91 Averages for all days with data 86.9 84.6 66.E 68.2 87. 2 84.4 63.5 67.2 Cases 30 30 30 30 30 30 30 30 Averages for only those days with data for both stations Ave 86.9 84.6 66 .. 8 6 B. 2 87.2 84. 4 63.S
* 67.2 \. .* Cases 30 30 30 30 30 30 30 30 * 
----102 [ Table 5. 2F ., Tempetature (F} .. -1 .\ June 1977 *-1 .J P03A P07 A Time (EST) Time (EST) --, Day 0100 0700 1300 1900 0100 0700 130 0 1900 I 1 60 56 57 56 62 56 57 56 2 50 48 53 53 50 49 55 57 .... , 3 36 40 66 67 39 45 70 67 \ 4 44 53 81 85 52 62 83 84 5 66 64 69 73 69 65 74 72 6 70 so 57 55 69 54 61 56 . -, I I 7 47 47 55 58 44 43 59 59 J 8 41 47 56 49 43 51 58 53 9 ti6 q5 5q 52 44 1+6 61 56 .. , 10 35 41 6 1 62 39 48 66 63 .\ 11 59 55 65 68 60 56 62 66 12 60 51 54 61 62 57 62 61 13 56 52 65 61 55 55 68 65 **1 14 50 53 67 62 56 57 75 70 1 5 47 52 75 71 51 57 80 72 16 52 66 83 82 57 67 83 83 -I 17 70 72 78 76 73 70 84 75 18 67 69 74 68 67' 70 76 74 19 65 64 72 77 59 . 64 75 77 20 59 63 68 60 65 63 68 62 .) 21 52 56 69 65 48 51 73 66 22 43 54 79 67 48 52 78 72 23 51 59 77 71 55 61 77 76 I 24 66 70 79 79 67 67 82 79 25 65 66 70 68 66 67 77 72 .I 26 50 54 s :2 81 54 56 83 82 27 57 59 84 81 62 66 87 83 I 28 62 73 80 7 1 65 71 80 72 ..\ 29 67 65 71 *75 65 65 72 76 3.0 55 65 67 71 61 64 68 70 I I *i Averages for all days with data ... Ave 54.9 57.0 68.8 67.4 57.0 sa.5 71. 8 69.2 Cases 30 30 30 30 30 30 30 30 Averages for only those days with data for both stations Ave 54.9 57.0 68. 8 67.4 57.0 58.5 71.8 69.2* Cases 30 30 30 30 30 30 30 30 i * .J I I \ .. I * 
( -103 Table 5. 3F Dew Point (F) ** June 1977 P03A P07A ,. -' Time (EST) Time (EST) ' : Day 0100 0700 1300 1900 0100 0700 1300 1900 .. 1 56 53 53 53 58 53 55 53 2 46 43 44 46 47 45 46 45 3 34 36 44 47 38 39 so. 48 4 42 47 55 62 45 47 59 67 5 60 61 62 64 63 62 64 65 6 66 48 51 41 66 51 53 43 ' 7 38 40 44 42 38 38 42 43 ' . 8 39 44 52 45 41 45 55 50 9 40 37 44 42 40 39 47 42 . 10 33 37 47 54 38 43 48 53 11 49 51 57 62 51 53 57 60 12 57 49 5 1 55 60 55 58 55 13 53 48 55 51 51 51 56 59 ' '. 14 48 50 5:: 50 55 53 57 55 1 5 44 47 57 54 49 52 58 56 16 49 59 65 65 54 59 65 65 17 66 67 70 69 69 67 69 68 18 64 65 63 56 65 67 63 57 1 9 57 56 59 59 55 55 58 58 ** 20 54 57 57 55 55 57 58 55 21 49 53 49 48 47 49 51 s1
* 22 41 50 55 52 . 46 48 55 54 r . 23 48 56 56 60 50 57 56 63 24 62 67 72 70 64 65 71 71 25 62 .62 64 60 65 64 68 59 26 47 5 1 60 57 53 55 61 60 27 54 56 64 67 59 59 64 67 28 59 67 69 67 63 68 71 68 29 60 57 59 57 58 SS 56 57 30 52 56 64 67 52 56 65 67 Averages for all days with data Ave 50.9 52. 3 56.5 55.9 53. 1 53. 6 57.8 57.2 Cases 30 30 30 30 30 30 30 30 Averages for only those days with data for both stations Ave 50.9 52.3 56.5 55. 9 53. 1 53. 6 57.8 57.2 -*-Cases 30 30 30 30 30 30 30 30 * 
------, *-* 104 \ Table 5.1G Relative Humidity (%) '*? July 1977 .! ""l j P03A P07A --1 Time (EST) Time {EST} \ Day 0100 0700 1300 19..J 0 0100 0700 1300 1900 ) 1 76 70 56 58 71 71 47 48 2 93 87 57 52 89 85 50 48 *-1 3 92 68 64 63 77 71 63 62 \ 4 80 88 71 65 75 84 69 65 5 91 84 56 54 90 83 56 55 'j 6 70 78 63 66 82 75 58 58 7 87 86 80 9g 84 76 72 80 8 92 87 57 88 91 9 1 58 79 9 88 85 65 73 89 92 54 56 *1 10 86 69 53 68 76 64 54 60 .. ) 11 78 72 80 75 69 74 81 78 12* 93 89 66 59 91 91 75 60 J 13 89 84 54 56 . 87 89 54 57 14 94 82 66 70 89 76 64 77 15 81 80 65 73 85 78 58 73 16 84 90 74 78 83 9 1 69 75 17 90 89 63 73 90 9 1 61 60 18 91 89 71 70 87 90 63 68 19 83 79 62 58 83 79 56 62 .! 20 78 80 6 4* 60 87 91 55 58 21 87 87 82 70 8.3 89 75 56 22 67 79 41 68 74 69 42 45 23 91 93 47 52 66 88 37 49 I 24 90 91 87 84 85 8 1 92 91 \ 25 88 88 68 55 92 89 64 52 26 91 94 53 54 75 92 42 51 27 92 92 44 52 84 93 42 48 28 90 73 50 51 91 73 49 53 29 80 86 79 82 71 82 78 80 ' 3-0 90 89 56 53 92 92 56 63 I 31 67 67 60 67 68 8 1 61 60 J Averages for all days with data j Ave 85.4 83.0 62.9 65.7 82.5 83.0 59.9 62.2 Cases 31 31 31 31 31 3 1 31 31 lvecages for only those days with data for both stations J Ave 85.4 83.0 62.9 65.7 82.S 83.0 59. 9 62.2 Cases 31 31 3 1 31 31 3 1 31 31 I ..l
* 105 Table S.2G Temperature (F)
* July 1977 P03A P07A Time (EST) Time {EST) Day 0100 0700 1300 1900 0100 0700 1300 1900 1 65 67 73 71 64 65 75 71 2 56 58 74 77 54 59 78 78 3 54 64 77 84 61 64 77 82 4 78 77 87 89 77 77 87 89 s 74 76 ee 89 75 77 89 90 6 78 78 87 86 73 78 90 89 7 73 77 77 69 72 79 81 75 8 66 67 82 73 63 65 84 75 9 70 64 7E 69 68 64 81 74_ 10 61 65 83 81 62 62 81 79 11 69 67 73 77 68 65 73 77 12 69 73 80 83 71 73 81 85 ( . 1 3 62 57 78 78 63 60 80 79 I 14 52 67 8E 90 59 68 85 89 15 84 8 1 84 82 81 80 90 83 16 74 73 8 1 77 7J 72 81 78 17 70 71 11 70 7 1 83 82 1 8 69 71 77 81 69 71 81 82
* 19 75 .8 0 87 89 75 79 91 90 20 83 78 85 87 79* 78 90 88 21 77 73 76 76" 78 75 80 79 22 64 58 83 77 62 63 83 79 23 58 S1 79 74 65 63 83 75 24 58 59 71 77 60 67 73 77 25 74 71 72 69 74 72 77 69 26 . 49 47 71 65 S6 53 73 66 27 45 47 71 ti 49 50 76 72 28 48 59 75 74 SS 63 80 77 29 62 64 71 70 67 67 73 73 30 57 6 1 79 81 . 62 65 83 83 3 1 74 71 78 74 7-4 71 80 75 Averages for all days with data Ave 66.0 66.8 78. 7 78.2 67.1 68. 3 8 1. 2 79. 4 Cases 31 31 JC 29 31 3 1 31 31 Averages for only th-0se days with data for both stations Ave 6 6. 6 67.J 78.9 78.2 67.6 68. 8 81.3 79. 6 Cases 29 29 29 29 29 29 29 29
* 106 Table 5.3G Dew Faint (F) el July 1977 *-1 ) P03A P07A Time (E . Time (EST) -( Day 0 100 0700 1300 190 0 0100 0700 1300 1900 I 1 57 56 57 55 54 55 53 50 2 54 54 58 57 50 54 57 57 .. l 3 52 53 64 70 54 54 63 68 Q 71 73 76 75 68 72 75 76 5 71 71 7 1 10 72 71 71 71 6 67 70 73 73 67 69 *73 72 l 7 69 72 71 66 67 70 71 68 8 64 63 65 69 61 62 67 69 9 66 60 64 60 64 62 63 57 J 10 57 54 64 69 54 50 62 64 11 6"2 58 67 69 57 57 67 70 1 2 . 67 69 67 67 68 70 72 69 ] 13 59 53 60 6 1 59 57 61 62 1 4 51 61 73 78 56 60 72 81 15 78 75 70 73 76 72 73 74 16 69 70 71 70 68 70 70 70 *--1 I 17 67 68 M M 67 68 69 66 .) 18 66 68 67 70 65 68 67 70 19 70 73 72 72 69 72 73 75 e; 20 75 71 72 71 75 75 72 71 21 73 . 69 70 66 72 71 72 62 22 53 52 Su 65 54 . 52 58 56 23 55 49 57 55 53 60 54 5!J _( 24 55 . 57 67 72 56 61 70 74 25 70 67 6 1 52 72 68 63 51 26 46 45 53 48 48 5 1 48 48 j 27 43 45 48 .11 44 48 51 51 28 45 51 55 54 52 54 59 58 29 56 59 64 64 58 6 1 66 67 30 54 58 62 62 59 63 66 69 j 31 62 59 63 61 63 65 66 60 Averages for all days with data i Ave 61. 4 61. 3 6 4. 5 6 5. 4 61. 4 62.7 65.3 64 *. 8 I I Cases 31 31 30 29 31 31 31 31 .. ..J Averages for only those days with data for both stations Ave 61.8 61.7 6 5. 1 65.4 61.. 8 6 3. 0 65.7 65.2 Cases 29 29 29 29 29 29 29 29
* 107 'I'a:Olc 5. 1 H Relative Buui<lity
(;;)
* August 1977 ( . i ' P03A P07A Time (EST) Time (EST) ' . Jay 0100 0 700 1300 1900 :) 100 \) 700 1300 1900 1 76 76 66 58 86 76 44 47 2 94 78 62 82 9" *J 73 53 73 3 89 91.l 72 80 91 9 1 6 1 68 4 65 84 48 92 76 9 1 49 83 5 87 33 63 gg 9 1 93 6 1 92 6 91 92 90 88 92 91 89 86 7 92 90 77 82 93 \j 3 7() 79 8 89 93 82 89 92 74 87 9 95 96 77 88 94 94 8') 91 10 90 90 79 73 92 93 75 74 1 1 92 82 83 80 94 9 .2 86 84 r* 1 2 83 92 50 65 93 93 52 55 13 93 85 65 83 32 82 6 1 77 14 88 74 51 58 90 g;j 43 58 1 5 93 92 44 74 S6 :3 6 42 64 1 6 70 85 83 85 79 88 80 83 17 76 67 60 Ii 0 84 95 59 53 1 8 94 89 52 65 95 93 48 49 1 '9 95 93 54 67 95 95 53 62
* 20 91 94 59 74 93 94 56 71 2 1 91 94 87 81 88 93 92 87 22 82 89 62 58 94 94 50 59 23 82 81 56 *93 77 8 1 59 79 24 93 94 47 60 95 95 55 66 ., -<.::;, 92 94 61 63 96 30 53 62 26 81 8:) 65 93 82 82 66 85 27 86 84 63 64 aa 86 64 67 28 78 80 59 94 77 82 57 92 29 93 91 81 75 94 95 70 77 30 93 94 54 71 95 96 5) 71 31 92 82 58 76 86 88 62 78 Averages for all days with data Ave 87.3 86.8 64.8 75.7 89.3 89.2 6 1. 8 7 3. 1 cases 31 31 31 31 31 3 1 3 1 31 Averages for only those days with data for stations A.ve 87.3 86.8 64.8 75.7 89.3 89.2 61. 8 7 3. 1 Cases 31 31 31 31 31 3 1 31 31
* 108 Tabl-= 5. 2H I'e m pe r:a t ur:e ( f} .Ii August 1977 -1 I .l P03A i?O 7 A* Time (EST} Time (EST) *1 \ Day 0100 0 700 1300 191) 0 0100 0700 130 0 1900 1 67 65 73 74 62 62 76 75 2 52 60 75 71 53 63 73 74 "l 3 65 62 76 74 64 63 80 75 \ 4 75 69 87 71 71 67 87 72 5 70 72 81 72 67 70 82 72 . -\ 6 71 7,j 72 72 71 70 7.3 74 \ 7 68 71 76 73 70 72 78 73 .. ! 8 74 72 75 74 75 *7 2 77 74 9 64 62 75 72 66 68 76 72 ] 11'\ 71 70 76 76 71 70 79 77 I*, 1 1 63 66 63 62 64 66 63 63 12 63 56 72 71 54 58 73 65 'l 13 50 55 77 75 59 .-..., 79 74 b L. 14 69 62 70 64 69 61 74 65 1 5 50 48 77 74 52 57 76 75 16 7*) 72 77 70 69 73 79 7 .'J 17 66 63 71 66 65 54 72 66 18 45 4g 70 62 48 Sij 68 64 1 9 41 42 70 66 43 45 70 63
* 20 55 48 72 '68 54 54 70 67 21 60 60 11 67 60 6 1 67 65 22 65 53 71 72 57 55 73 70 23 70 64 72 59 65 64 7 1 61 'I I 24 58 50 69 61 56 49 71' 63 I '.J I 25 44 43 73 68 47 s 1 73 69* 26 60 61 83 71 59 6 1 82 77 I 27 75 78 89 86 . 74 76 89 84 ( 28 80 79 88 73 79 76 89 75 ---) 29 68 67 73 67 70 66 74 66 30 50 50 76 74 54 53 77 74 I I 31 60 67 86 79 66 67 35 82 .I Averages for all days with data 1\.ve 6 2. 5 61. 5 75.4 70.5 62.S 62.7 76. 2 71.0 Cases 31 31 30 31 31 31 31 31 Averages for only those days with data for both stations a.ve 6 2. 6 61. 6 75.4 70.7 62.5 6 2. 7 76.5 71. 2 Cases 30 3*'.) 30 30 3J 3G 30 3J
* 109 Table Jl:i ** Dew Point (f) August. 1977 P03A P07 A Time (EST) Time (SST) Day 0100 0700 1300 190 0 0100 0700 1300 1900 1 59 57 61 58 58 54 52 53 2 50 53 61 65 50 54 60 65 3 61 60 66 68 61 60 65 63 4 63 64 6*5 68 63 64 65 67 ' . 5 66 67 67 68 65 68 68 69 I 6 68 68 68 63 68 68 70 69 7 66 68 69 72 68 70 68 71 8 71 7 'J 69 70 72 69 69 70 I . 9 63 61 67 68 64 66 69 69 1 i) 68 67 69 67 69 68 71 68 1 1 60 60 58 55 62 64 59 5a (""-1 2 58 54 52 58 52 56 54 49 .! 1 3 48 51 64 70 53 56 64 . 66 1 4 65 54 51 48 66 58 .5 2 49 1 5 48 46 54 65 51 53 52 63 16 60 67 71 65 62 69 72 64 1 7 58 52 56 52 60 53 56 50 18 43 46 51 5'' *,J 47 48 43 44
* 1 g 39 41) 52 55 4 1 44 52 SJ 20 52 46 57 59 52 52 53 58 21 57 58 '.'! 61 57 59 64 61 22 59 SD 58 56 56 54 53 56 23 64. 58 55 54 58 58 56 55 24 55 48 47 47 55 48 53 52 25 42 41 58 55 46 45 55 56 26 54 55 70 69 54 56 69 72 27 70 73 74 72 70 73 75 72 28 73 72 72 71 71 70 72 72 29 66 64 66 5g 68 65 64 58 3 ;) 49 4:3 58 64 52 52-56 65 3 1 58 6 1 69 71 62 63 71 74 lverages for all days with data Ave 58.5 57.4 61. 9 62. 2 59.2 59. 4 6 1. 4 61, 6 Cases 31 31 30 31 31 3 1 31 31 for only those days data for both stations !\.ve 5a.5 57.4 6 1. 9 6 2. 3 59.3 59.4 6 1. 4 6 1 .. 6 Cases 3'' *,; 30 Ji) 3') 3() 3 ;J J*J 3 C> * 
---110 -; Table 5. 1I Relative (3} ***1 .: Sept. 1977 -i !?03A P'J7A Time (EST) Time (EST) -i Jay 1j 1'J0 'J 700 13'JO 190 0 ,:; 1 Cu 0700 13JiJ 1900 l 1 78 92 86 95 d8 93 86 88 2 96 95 87 94 94 93 86 90 -, 3 88 95 56 79 92 96 57 79 I 4 91 90 64 81 85 94 63 81 I :::> 84 97 81 81 d9 93 90 84 6 97 99 58 87 97 96 58 71 7 96 97 85 89 94 94 ,.-,-38 00 8 96 95 73 86 95 93 73 79 9 73 74 82 62 7 'd 72 74 57 1-J 59 67 63 83 57 06 62 82 l 1 1 96 88 47 88 90 95 43 77 1 2 97 78 78 97 76 77 69 95 13 97 97 95 91 95 94 94 92 J 14 85 98 59 83 -94 96 54 78 15 96 80 95 96 8(.) 75 94 96 1 6 97 96 80 91 95 9 i.+ 75 86 *1 17 96 97 93 93 95 94 95 89 1 3 92 98 84 92 86 93 78 93 1 9 . 91 95 85 79 90 95 87 79
* 20 82 93 82 76 80 S4 90 85 21 93 96 80 86 96 96 76 85 22 94 97 65 80 94 94 64 81 23 88 97 87 91 92 96 88 89 24 92 95 80 85 91 96 76 34 25 gg 35 62 89 86 90 61 78 26 94 79 65 65 96 94 56 60 __j 27 69 75 71 73 75 95 69 81 2-9 78 86 75 95 d8 97 67 88 29 1 00 99 70 79 97 87 66 73 3 .... -v 92 9 1 90 96 81 88 8} 95 I _) Avera]es for all days data I\.ve 89.6 90. 7 76.0 85.5 88.3 91. \) 73.6 82.3 cases 30 *30 30 30 30 30 3.} 3 :J i I Averages for only those days data for both stations !\. ve 89.6 90. 7 76.0 85.5 88.3 9 1. 0 73. 6 82.3 i :as es 30 30 30 30 30 30 30 30 -) I I
* 111 Table= 5.21
* Tern pe ra "Cure (P) 1977 P03 f1 20 7A Time (EST) Time (EST} Day 0100 0 700 1300 190 0 0 1 0 (J 0700 1300 19t) 0 1 76 7) 74 69 76 7 1 74 72 2 67 68 75 70 67 69 74 71 3 63 57 74 67 63 57 73 7J 4 59 62 11 1:1 62 62 79 79 5 '"' 69 68 66 70 70 69 67 ' 6 49 46 73 66 54 52 73 70 7 55 58 72 66 57 59 76 65 8 57 60 71 71 54 6 1 71 70 9 68 69 72 70 67 69 73 67 1 '.) 66 61 65 58 64 60 64 55 1 1 47 53 70 59 52 46 72 60 1 2 46 56 64 57 56 57 66 56 1 3 56 57 59 60 57 59 6 1 59 1 4 56 39 67 6 r) 54 43 66 61 15 48 54 56 57 55 55 56 57 1 6 61 66 71 65 61 67 73 67 17 62 6D 68 73 62 62 68 72 1 8 67 67 72 68 69 67 74 61
* 19 71 69 66 64 7'' 7C 6.3 63 v 20 64 57 56 56 63 57 55 56 2 1 54 53 58 59 53 53 63 60 22 56 53 65 65 57 56 67 64 1* 23 62 54 62 62 61 56 63 63 24 63 64 68 66 64 65 70 65 25 53 56 72 61 58 58 72 63 26 59 63 68 66 61 57 69 65 27 64 59 61 61 59 5 1 61) 58 2'3 62 60 63 58 5d 5 1 64 55 29 41 47 60 61 43 49 60 59 30 56 58 63 60 57 58 62 57 \verages for all days with data Ave 58.9 58.9 66.6 63.5 6J. l 55. 67.9 6 3. 9 Cases 29 3) 29 29 3 i) 30 30 30 for only those days with data &#xa3;oz both stations \ ve 58.9 58. 4 66.6 63.4 59.7 58.4 67.4 6 3. 2 ( -Cases 28 28 28 28 28 28 28 28 *
* 113 Table 5. 1 J Relative Humidity (3)
* October 1977 P03A P)7A Time (EST) Time (EST) Day 0100 0 700 1300 1900 0 100 0700 130*J 1900 1 1 00 96 84 93 95 94 85 95 2 82 9*1 51 69 84 9 1 46 66 3 76 81 57 87 81 99 5 1 85 4 100 10') 66 89 100 99 48 82 5 70 94 80 75 66 9 1 77 93 6 65 59 69 72 86 100 59 75 7 1 00 1 0 I) 69 85 98 97 67 84 8 98 96 72 69 97 93 70 70 9 72 76 70 68 73 85 69 76 10 82 89 54 61 91 95 55 57 11 85 77 58 66 82 87 54 63 12 66 67 67 81 64 . 72 67 86 13 1 00 100 51 91 100 10 0 54 -94 14 100 99 51 82 90 -93 44 75 1 5 87 79 74 74 73 88 71 8 ') 16 75 84 78 62 84 90 56 64 1 7 100 93 48 53 99 84 47 52 18 75 74 81 84 82 80 90 93 1 9 83 85 78 90 92 , 9 4 . 63 94
* 20 100 10 ') 68 92 '100 99 6 1 85 2 1 85 96 48 . 73 76 91 49 59 22 97 88 45 81 95 8 1 45 78 23 71 69 73 78 68 70 74 76 24 84 96 52 68 84 93 54 70 25 76 97 73 99 75 95 73 95 26 98 97 97 92 98 99 93 91 27 100 99 85 92 97 98 76 88 28 98 95 68 95 99 96 48 83 29 100 99 75 87 99 99 85 81 30 1 00 99 81 74 100 10 0 77 65 31 87 78 69 96 83 77 71 94 Averages for all days data ve 87.4 88.9 67.4 79.9 87.S 90.9 63.9 78.8 Cases 31 3 1 31 31 31 3 1 31 31 Averages for only those days with data for both stations Ave 87.4 88.9 67.4 79.9 87.5 90.9 6 3. 9 7 8. 8 Cases 31 31 31 31 31 J 1 3 1 31
* 114 **1 ! Table 5.2J I Tempe r:-a tu re { f) October 1977 .i l PIJ 3 P<')7A Time (EST) Time (EST) *-1 Day 0100 0 700 1300 1900 u 100 0700 1300 190 () 1 57 5 1 53 50 57 5 1 53 51 2 49 42 57 52 48 42 58 51 *-1 3 47 48 60 54 43 36 60 51 I 4 36 33 62 51 37 40 65 53 ) 5 53 53 6 1 57 53 52 60 54 6 55 52 54 50 46 39 56 47 **i 7 37 31 51 49 36 34 52 50 8 49 55 57 50 48 56 57 50 9 48 48 50 52 47 47 49 48 1 ri 48 42 61 59 43 42 6 1 57 , 1 53 45 47 47 52 45 47 47 , 2 46 46 IP 40 46 43 47 38 1 3 26 24 53 43 30 28 55 44 -*1 1 4 30 27 57 49 37 38 6 1 ,49 ) . 1 5 53 51 54 49 49 48 55 48 1 6 40 49 44 43 38 36 46 39 17 27 26 57 56 28 33 57 57 1 8 54 51 49 50 47 48 46 48 1 9 50 48 53 48 48 44 54 44 2 0 34 34 57 45 34 35 59 47 e1 2 1 45 41 68 59 46 43 6 7-62 22 53 50 53 46 51 49 53 47. 23 46 46 50 48 46 45 50 48 24 48 47 72 65 48 47 7, 64 25 61 57 64 58 61 57 64 6 1 26 58 51 50 49 57 55 53 49 27 48 46 55 51 48 48 58 54 28 50 46 57 46 so 48 63 50 _j 29 33 31 51 44 39 37 5, 48 3 !) 31 32 52 49 40 39 54 56 l 3 1 49 48 64 61 49 SC 63 62 A ver:-ages for all days with data l'\ve 45.5 43. 3 55.5 50.7 45.3 43.7 56.3 50.7 Cases 31 31 3, 31 31 31 31 31 Averages for only those days with data for both stations Ave 45.5 43. 3 55.5 5 *). 7 45.3 43.7 56. 3 50.7 Cases 31 3 1 3 1 31 31 3 1 3 1 31 I _J
* 115 Table 5. JJ Dew Point (F)
* October 1977 P03A P07 A Time (EST) Time (EST) Day 0100 I) 70 0 1300 190 0 0 100 0 700 1300 1900 1 57 50 49 48 55 49 49 49 2 43 39 39 43 44 40 37 40 3 4'J 42 44 50 37 36 42 46 4 36 33 50 413 37 40 44 48 5 43 52 55 49 42 50 53 51 6 44 38 44 42 42 39 42 39 7 37 3 1 41 45 35 33 41 46 8 49 54 48 41 47 54 48 41 9 39 4 1 41 42 39 42 39 41 1 Q 42 39 44 45 40 40 44 42 11 49 39 33 36 47 4 1 31 35 [" 1 2 35 35 37 34 34 35 37 34 1 3 26 24 35 4*) 30 28 38 40 14 JG 26 39 45 34 33 39 41 1 5 49 45 46 41 41 44 45 42 1 6 33 36 37 31 34 34 3 1 28 1 7 27 24 37 39 27 28 37 39 18 46 43 44 45 42 42 43 46 . 19 45 44 46 45 46 42 44 43 (. 20 34 .34 46 43 34 35 45 42 21 40 4i') I+ 8 51 39 4 1 48 48 22 52 47 32 40 50 43 32 4.J 23 37 37 42 42 36 36 42 41 24 44 46 53 55 43 45 53 54 25 54 56 55 58 SJ 55 55 60 26 57 50 49 47 57 55 51 47 27 48 46 51 I+ g 48 48 50 50 28 49 45 47 45 50 47 43 45 29 33 )1) 44 4 IJ 39 37 46 43 30 31 32 47 41 40 39 46 44 3 1 45 42 54 60 44 43 54 60 for all days with data Ave 41.7 39.9 44.3 44.5 41. 5 41. 1 4 3. 5 4 4. 1 Cases 31 31 31 31 31 3 1 31 31 Averages for only those days data for both stations Ave 41. 7 39. 9 44.J 44.5 41. 5 4 1. 1 43.5 4 4. 1 Cases 31 31 31 31 ]1 3 1 3 1 31
* 116 -1. i Table 5. 1 K ! Relative Humidity (%) .i November 1977 -.l P03A P07 A Time (EST) rime {EST) *-1 Day 'J 10 0 ) 700 1 30C . 190.0 0 100 0700 1300 1900 I 1 86 84 71 87 95 89 77 94 2 78 67 52 65 79 75 57 66 .-. 3 69 73 68 84 77 8 1 74 90 4 92 84 44 41 97 8 9' . 45 44 5 59 79' 67 73 70 83 73 81 6 gt\ 89 10*. 85 93 87 76* 94 ] *-7 92 92 77 86 93 93 91) 91 8 92 93 76 86 94 94 74 80 9 86 86 80 77 90 9 1 77 88 10 73 6 \) 88 82 85 62 95 88 1 1 74 58 85 68 70 65 65 74 1 2 81 9 7' 52 56 9 1 79 49 53 :*1 1 3 63 82 56 56 72 87 55 66 1 4 71 36 63 77 74 88 65 77 1 5 76 76 69 66 75 74 69 57 1 6 85 75 64 63 86 77 53 63 17 68 82 61 69 80 95 6 1 76 18 78 69 66 64 75 66 66 69 1 9 63 .g 9 66 91 . 96 97 67 91
* 20 87 83 79 79 82 89 76 83 2 1 58 69 71 66 55 7 1 69 66 22 65 78 64 61 70. 84 62 6 1 23 68 89 98 77 72 "86 96 82 24 75 69 70 67 78 71 68 78 25 74 95 69 74 80 95 77 72 26 84 79 59 55 92 9 \) 57 82 1 27 72 61.t 84 89 72 68 82 86 I .J 28 73 72 69 70 78 73 71 70. 29 79. g 1 65 87 78 89 68 81 JG 95 95 92 98 91 96 96 96 Averaqes for all days with data Ave 76.9 80. 4 69.8 73. 6 81. 4 8 2. 9 70.0 7 6. 8 Cases 30 30 30 30 JO 30 30 30 Averages for only those days with data for 'both stations A. ve 76.9 s.:). 4 69.8 73.6
: 81. 4 82.9 70.0 76.8 Cases 30 3J 30 3J 30 30 3') 30
* 117 Tahle 5.2K 1'emper:ature (f)
* November 1977 PO:) 3A P17A* 1-Time (EST) Time (EST.) ' ! Day 0100 I) 70 0 1300 190 0 0 100 0700 130*J 19.J 0 1 61 58 63 59 6 1 58 63 60 2 59 57 69 63 61 57 7 1 66 3 60 62 69 64 6 1 62 69 65 4 57 SJ 59 55 60 56 65 55 5 47 48 58 57 47 48 60 57 6 52 53 65 6 1 SJ 55 64 61 7 58 57 63 60 57 57 6 3 60 8 57 56 62 59 56 56 64 62 9 61 5g 65 64 6 iJ 60 65 63 1C 44 38 36 37 45 39 33 34 1 1 37 37 3] 36 37 36 34 35 1 2 33 28 35 32 3 1 27 36 JJ 1 3 30 26 36 34 26 25 36 34 1 4 34 34 42 37 34 34 4 1 39 15 c.+4 47 56 53 43 48 54 53 16 53 48 49 48 52 46 49 45 17 47 4 1 44 42 39 37 43 38 1 8 40 40 39 40 38 37 37 34 1 9 40 31 4 1 39 25 24 39 38
* 20 40 44 53 58 38 43 53 56 2 1 45 3 4* 36 37 42 32 34 32 22 34 3 1 34 33 29 27 33 32 23 32 34 36 39 JU 33 35 38 24 39 38 37 37 37 37 35 33 25 34 31 34 28 3 1 30 32 26 26 24 25 26* 25, 21 22 23 15 27 18 18 26 25 1 4 16 24 24 28 3" .J 28 29 27 29 2.6 27 24 29 19 9 32 22 18 1 2 31) 24 .10 10 18 33 34 21 24 32 33 Averaqes for all days with data Ave 41.J 39.5 4 5. 4 43.5 39.9 3 8. 8 c.+ 4. 8 4 2. 1 Cases 30 30 30 3*] 30 30 30 30 Averages foe only those days data for *both stations .a.ve 41. 3 39. 5 45.4 43. 5 39.9 38.8 44.8 4 2. 1 Cases 30 3J 3 ') 3J 3 (: 30 30 3J *-*. I -! I ....
* 118 Table 5. 3K Dew Point (F) November 1977 P03A P07 A Time (EST) Time (EST) 1Jay J 10 0 on') 1300 19:) 0 0 100 0700 1300 190 0 1 57 54 53 55 59 55 56 58 2 53 47 51 51 54 49 55 54 3 50 53 58 59 54 56 6:) 61 4 55 49 36 31 59 53 43 33 5 33 42 47 49 38 44 5 1 52 6 49 5) 55 57 51 52 57 59 7 56 54 56 56 55 55 57 57 8 55 54 54 55 55 54 55 56 9 57 55 58 56 57 57 58 59 10 36 25 33 32 41 27 32 31 1 1 30 24 29 27 28 26 23 28 12 28 28 2:') 19 28 22 19 17 1 3 19 22 22 24 18 2 1 21 24 1 4 25 30 3 0 31 26 31 30 32 1 5 37 40 46 42 36 40 44 38 16 48 41 37 36 48 40 32 33 17 37 36 31 32 34 36 30 31 r 18 34 30 28 29 31 27 27 25 19 28 28 30 38 24 23 29 36 20 36 40 47 51 33 40 45 51 21 31 25 28 26 27 24 25 22 22 24 25 23 21 21 23 22 21) 23 23 3 1 35 33 22 29 34 33 24 32 29 28 27 JO 28 26 27 25 26 3:) 24 22 26 29 26 18 26 19 1 9 13 11 19 1 9 10 11 27 10 8 22 22 7 7 19 20 28 22 20 20 19 23 18 19 1 6 29 13 7 21 18 1 2 1 0 21 19 3G 9 17 Jr) 33 19 .23 3 1 32 for all days with data !\ ve 34.4 33.8 35.6 35.3 34.5 33.9 .3 5. 2 3 5. J Cases ]'.) 3*) ]!J J;') 30 30 3 ') 30 Averages for only those days with data for both stations Ave 34.4 33.8 35.6 3 5. 3 34.5 . 3 3. 9 35. 2 35.0 C:ases 30 30 30 30 30 JO JO 3;) -1 I
* l i 1 \ ! l ' j 1\ I I I .. I ] * ! 1. _J j
* 119 Table 5.11
* Relative Humidity December:
1977 PO P07A Time (EST) Time (EST) Day 0 10 !) \) 70 0 1300 1goo G 1 OJ 0700 130:') 191C 1 96 89 84 82 95 95 91 87 2 67 63 69 65 67 68 78 65 3 72 69 69 65 76 77 70 69 4 69 69 52 59 72 9 1 54 63 ' 0 5 72 71 71 66 75 77 86 72 6 72 74 86 88 75 73 92 91 7 80 62 84 75 84 66 86 79 8 82 75 82 91 82 77 85 93 9 84 82 8 1 92 87 87 90 92 1 f' '* 88 84 87 90 93 89 94 93 1 1 89 88 84 70 91 9 1 82 75 1 2 68 64 61 71 70 66 62 72 1 3 77 32 80 96 78 89 82 96 -** 14 94 93 87 84 96 ? 95 88 92 15 83 89 73 87 85 89 78 86 1 6 87 79 57 72 87 SU 60 73 17 83 78 76 85 84 76 84 85 1 8 97 96 85 84 92 92 87 87 :e 19 85 86 74 81 87 9C 79 84 . 20 86 95 92 94 89 96 91 94 21 89 86 90 8 ;J 86 82 83 93 22 87 81 76 . 59 90 87 74 57 23 55 54 66 73 52 55 60 79 24 92 88 90 9:) 94 89 89 86 25 75 69 79 78 b9 78 75. 80 26 79 81 78 77 85 82 85 90 27 68 72 64 66 84 83 72 72 28 76 75 91 . 63 8 1 85 90 75 2g 69 88 71 76 79 89 75 82 3 \..! 96 95 73 82 93 97 77 85 \' 31 91 90 75 76 93 9 () 71 79 .. Averages for all days with data Ave 80.8 79.6 77.0 78. 1 82.8 8 3. 3 79.6 81. 4 Cases 31 31 31 31 31 3 1 3 1 31 Averages for only those days vith data for both stations Ave 80.8 79.6 77.0 78. 1 82.8 83.3 79.6 81.4 Cases 31 31 31 31 31 31 31 31 * 
-*--, 120 I Table 5.21 Temperature ( F) .... i .,! December 1977 ,: 1 I P0.3A P*J7A Time (EST) :rime (EST) -\ Day 1 J 100 0 700 1300 190 0 \.i 100 G70'J 13 )') 19) c, I 1 36 39 38 38 .3 4 36 36 35 2 34 36 37 3T 32. 33 33 35 3 33 31 32 32 3 1 28 31 30 4 29 29 34 3:) 28 23 32 28 5 JC 3 30 30 27 27 28 28 *) r*' 6 28 24 25 20 26 22 24 17 . II 7 25 28 22 13 22 24 20 11 . _J 8 5 12 18 22 4 1 1 1S 21 9 25 14 11 19 24 1 1 10 17 _J 10 22 18 23 17 20 10 18 t3 1 1 11 1 1 18 13 9 9 15 13 1 2 18 31 39 39 17 3 1 33 37 -*-, 1 3 38 37 40 36 36 36 38 35 \ 1 4 36 36 35 35 35 35 34 33 15 36 34 36 35 34 32 35 34 16 35 34 45 44 34 34 4 .5 43 17 42 44 48 *48 41 42 45 45 . .I 1 8 40 4 1 42 39 40 39 41 4*J 1 9 39 38 39 . 39 37 36 39 37 *1 2'.) 39 37 38 29 38 36 36 26 2 1 25 21 24 33 19 20 23 27 .I 22 32 28 24 27 31 27 23 27 23 33 33 37 35 33 32 39 33 24 27 26 38 37 26 26 39 37 i --' 25 25 1 6 12 10 24 15 11 3 26 10 12 1 4 17 8 1 1 1D 11 l 27 16 16 18 . 15 15 1 5 17 14 l 28 8 1 3 19 24 5 9 18 22 . ,! 29 26 . 20 27 26 21 1 9 28 25 30 18 23 31 21 20 23 29 21 : 'i 3 1 8 9 26 28 10 1 9 27 28 Ave.rages foi: all days with data i ,\ ve 26.7 26.5 29.7 28.7 2 5. J 24.8 28.4 26.3 ) Cases 31 3 1 31 31 31 3 1 31 31 Averages for only those days with data foi: both stations Ave 26.7 26.5 29.7 23.7 25.0 24.8 2a. 4 2 6. 8 Cases 31 31 31 31 31 3 1 3 1 31
* 121 Table 5.JL De"' Paint (F)
* Dece.mber 1977 P03A P07A ("'*. Time (EST) Time (EST) i. ! Day 0100 0 70 0 1300 1900 010J 0 70( 1 J!)i) 1900 1 34 36 34 33 32 34 34 32 2 24 24 28 26 22 24 27 24 3 25 22 23 21 24 21 22 21 4 2*j 19 18 17 20 2 1 17 16 5 22 21 22 2;') 2J 2 1 24 21 6 20 17 22 17 1 9 1 5 23 15 7 19 16 18 6 18 15 16 6 8 1 5 14 19 -J 5 14 19 9 20 9 6 17 2 1 8 8 15 10 19 13 19 14 19 8 16 11 1 1 8 8 14 5 6 7 11 7 12 9 20 27 30 8 2 1 26 29 1 3 31 32 35 35 30 33 33 34 14 35 34 32 31 34 33 3 1 31 15 31 31 28 32 31.) 29 29 3*) 1 6 32 28 31 35 30 28 32 34 1 7 37 38 40 43 36 35 4*) 41 1 8 40 40 37 35 J7 36 36 36 1 9 35 35 31 34 33 33 32 32
* 2i} JS 36 36 28 35 35 34 25 2 1 22 17 22. 28 15 1 5 19 26 22 28 23 17 15 28 24 16 1 4 *1 23 18 1 8 27 28 1 7 1 8 26 27 24 25 23 35 34 24 23 36 33 25 18 8 7 5 15 9 5 3 26 5 7 9 11 4 7 6 9 27 7 9 8 5 11 10 1') 6 28 2 7 17 14 1 5 15 16 29 17 1 7 19 . 19 16 16 21 20 30 17 22 23 16 19 22 22 1 8 3 1 5 7 20 21 8 17 19 22 Averages for all days '1'ith data Ave 21.4 20. 8 23.2 22.5 2::;. 4 20. 3 22.6 2,. 7 Cases 31 31 31 31 31 3 1 31 31 Averages for only those days with data f8r both stations !'!. ve 21.4 20. 8 23. 2 22.s 20.4 2 o. ,3 22. 6 21. 7 Cases 31 31 31 31 31 3 1 31 31
* 122 VI. WIND SPEED .AND DIRECTION Wind speed and direction are measured at a height of about 3 met::e:r:;s with an R. M. Young Co. Model 1201 3-cup. anemometer and a WeatherMeasure Model 104 wind vane, respectively, and re.corded on twin Esterline-Angus recorders.
Wind speed is reported to the nearest mile per hour and wind direction is reported to the nearest degree. For tabulation, digitized data are reduced to hourly averages of wind speed and direction.
The tabulated wind data are given in terms of percentage frequencies of joint occurrences of wind speed and direction in assigned categories.
The categories for wind speed are in miles per hour and are: calm (less than 1 mph), 1-3, 4-7, 8-12, 13-18, and 19+. Wind direction is tabulated in 10-degree categories and in 22.5-degree The 10-degree categories are used in the tabulated data and the 22.5-degree categories are used in the wind roses. There is also a category for a variable direction, the criterion for which is that the range of wind direction during an hour equal or exceed 180 degrees. Joint percentage frequencies are determined by dividing the number of joint occurrences in each pair of categories by the total number of hours of data listed at the bottom of each table. The average speed for each direction is determined by adding all wind speeds for a particular direction category and dividing by the number of occurrences.
.;__:_\ i ' i '_,/
* r . _, * 
* ,, ' ' *, ...
* 123 The average overall speed is the average of the speeds fGr all directions (weighted by frequency of occurrence) and zero mph (weighted by the frequency of calms). For months with a large amount of missing wind direction data and much more complete wind speed data, a second listing of percent calm and overall average speed is given, based on all wind speed data for the month. A graphical portrayal of wind data is also shown for each month in the form of a wind rose graphed by ccmputer.
In the wind rcses, the length of each line extending from the circumference of the center circle is proportional to the percent of time that the wind was from the directior:..
The lines are 22.5 degrees apart, and the lengths of alter-nating black and white sections of each line are proportional to the percent of tine the speed was in a particular category as given in the legend at the bottom o= each figure. The percent of calms is also shown .
124 --1 Table 6. H Palisades Network Percentage Frequency of li ind Direction and Wind Speed ti* at Station !? 0 3 for January 1977 '.1 l qind f 11i n d Speed, miles hour f
,, ;'. per I' !J ir::ection I 1-3 4-7 8-12 13-18 19+ Total I Speed j + 010 l o .. 9 0.2 o. 0 o.o o.o 1. 1 I 3.4 t 020 I. 0.2 0.5 0.8 0.4 o.o 1.9 I 7. 1l rno I D.6 D.O o.o o.o o.o 0.6 , . 1. 2 o I 0.9 o. 6 o .. () o. 0 o.o ,
* 5 I 2.7 050 l 0.6 0.4 o. 0 n.o 0.0 o.q ! ::i. 0 O?O I 0.4 0.4 o. 0 o.o I). 0 0.8 l 2.7 I 070 I i). 4 o.o o.o o.o o.o o. 4 l 2. 0 , 0 g (') I 0.2 0.4 o.o (). 0 o.o 0.6 I 3.0 i oqo 1 O.A 0.0 0.0 (). 0 o.o o.g I 1.7 i . , 100 I o.o o.o o. 0 o. 0 o.o 0.0 I o.o 110 I O.? I}. 0 O.D o. 0 o.o 0.2 I 1. 2 -1 120 I 0. 6 0.0 o. 0 I). 0 0.0 I). 6 I ?.4 130 I o.o o.o o. 0 o. 0 o.o o.o I o. 0 '.) 140 I 0. F. 0. '2 OeO o. 0 o.o o. 8 I 2.8 1 c; 0 (). 8 0. '2 0. 0 o. 0 o.o o.q 1 2. 2 160 I o.o '). g o. 0 o.n o.o 0.9 I 5.8 170 ' 0.6 5. 3 2.3 0.6 !1. 0 8. 7 I 6. q 1'30 J o.o 3.6 4. 0 0.2 o.o 7.7 I q.1
* 1-<lO I 0.2 ,
* 1 1.5 o.o o.o 2.8 I 7.7 ?00 I o.o 0.4 o. 8 o.o o. 2 1.3 I 9.q 210 t 0 * .2 0.2 2
* fi o.o ' 0. /. 3.2 1 q.9 ?20 I 0.0 0.8 2.3 o. 2 o. 0 3. ?. I g_g ' '230 ' 0.0 0. 2 .,
* 5 1.3 O.B 1.8 1 1 3. 6 ' . _; 248 I o.o 0 .. fi . 1. a 5. 3 o.u 8. , I 1 4. 0 2 50 I o.o O.A 0 .. 6 6.2 0.8 8.3 l 14.6 I 260 I 0.4 0.6 1. 1 5.7 1., 8. q ! 13.8 I 2 "?I) I o.o 0 .. g 1. 7 3.2 .. ., 6.A I 13. g .. 2 l o.o o. 2 1. 9 o.g o. 0 3.0 l 11.? 2qo l o.o 0.6 O.B 2.R o .. 4 4.5 1 ., 3.? ) I 0.2 0.9 2. 1 4.3 o. '2 7. ., l , 2. 1 */ . , 310 1 o.o 0. '2 2.5 0.8 o.o 3.4 l 1 o. 3 3 7. 0 I 0.0 0.6 ,
* 3 0.6 o.o 2.5 ' 1 0. () 3.'30 t 0.2 0.0 .,
* 1 o.o o.o 1.3 I 'l.5 340 I o.o 0.2 o. 4 o. 0 o.o 0.6 J g. , 350 1 o.o o. 0 0.0 o. 0 o.o o.o 1 o 360 I 0.2 0.0 o. 0 o .. 0 o .. 0 0.2 l '2. 11 Variable I o. 4 0.0 o. 0 o.o 0 .. 0 0.4 I 1. 2 Tot;:i l 9.2 20.6 3 Co 9 32.5 5.1 98.3 1 0. 3 Percent Calm: 1. 7 ----100.0 Note: Sensor height is 1 0 feet. Tabulated
* values are percent Of 530 hours of data.
125 'rable 6.2A Palisades Network
* Percentage T:'requency o'f Wind Direction and Wind Speed at Station P07A for January 1977 " wind I Wind Speed, miles per hour f i'\.verage Direction I 1-3 4-7 8-12 13-18 19+ Total I Speed + 010 I o.o 0.4 o. 0 o.o 0.0 o. ! 4. 8 020 I 0.5 o.o o. 0 o. 0 o.o o. 5 I 1. !l 1)1 0 I 0.4 0.,4 0.2 o .. 0 o.o O.Q f. 4. 2 __ _.. __ 0 4 0 I 0.7 0.4 0.2 0" 0 o.o 1.* 3 I 3. !l l 050 I o.g 0.0 ('). () 0.0 0.0 o. 9 I 1. '2 0 'i 0 I 0.0 o.o o. 0 o.o o. 0 0.0 I o. 0 G70 I 0.2 (). 0 0.0 o.o n.o o. '.2 I 3. 0 OR 0 I o.o o.o o. 0 o. 0 o .. 0 o.o I o.o '* 090 I 0.0 I) .. 0 o. 0 o.o (). 0 o.o I o.o 100 I 0.2 o.o o. 0 o .. 0 o. 0 o. 2 I 1. R ''; 1 1 0 I 0.7 o.o o.o o. 0 (). 0 0.7 I 1. 8 120 I 0. L1 o.o 0.0 o .. 0 o. 0 0.4 I 1
* ll 130 I 0.4 o.o o.o o.o o.n 0. 4 I ?. 9 140 I 0.4 0.0 o. 2 o. 0 o. 0 0.5 1 s. '3 '1 150 I 0.9 o.o 0.2 O .. '.' o.o 1. 3 I 4.9 l ' , Ii 0 J 0. 11 :J. 0 o. 0 o. 0 o.o 0.4 I 2. 1 170 I 0.2 ., * '3 o. 9 0.:? o.n 3. 1 I f... 7
* no l 0.2 4.9 2. 2 o .. 4 o.o 7.6 I 7 .. 0 1qo I ().?. 4.7 1. 6 () .. 0 o.o 6. 5 I 6.0 2 00 I 0.7 s .. 1 1.3 0.2 o. 0 7.2 I 5 *. g 2" 0 1 0.5 1. 6 0.7 0 .. 2 n.o 3., I 6.6 2?.0 I , . , 0.9 0.5 o.o o.o 2. 5 I 5 .. 5 ? 0 I 0 .. 0 1
* 1 1.4 (') ... 0 o.o 2. 5 I A.,4 240 I o.u ,
* 4 2.7 0.4 0.0 4. 9 I 9.6 250 I 0.7 1.3 2.7 1.3 o.o 6. 0 l 9.0 ?. 6 0 I 0.2 1. 3 2. 7 0.9 0 .. 0 s .. , I q.6 270 I 0.9 3.1 6.7 2.7 o.o 13. 6 I 0
* 4 2qo I 0.2 2.0 6.5 1. 3 0 .. 5 , 1. 0 r 10.2 2qo I 0.2 0.J 1.6 ..,
* 4 o.o 3.c:i 1 1 o. 5 *. 300 I (). 2 0.4 o.s 9 0.0 2.0 I 11. l 310 I o.o 0.4 1. 3 o.u o.o 2.0 I 9.9 320 I o .. 2 0.9 1.4 0.4 o.o 2.9 l 9.3 310 I 0.5 1
* 1 0 .. 2 o .. 0 o.o 1. 8 I ti. :::! 340 I 0.5 0.7 0.2 o. 0 o. 0 1 .. 4 5.1 350 1 o.o 0.4 0.0 o.o o. 0 0.4 9 160 I o.o 0.2 o.o o.o o. 0 0.2 5.7 Variable 1 4 o.o o.o o .. 0 o.o 1. 4 ".3 Total 14. 3 34.9 36.0 ., 1. 2 o. 5 96.9 7.5 .i Percent Calli: 3.1 *.*-10 0. 0
* Note: Sen.sor height is 10 feet. Tabulated values a ,..o percent of 553 hours of data.
126 Fig. 6.lA WIND ROSE -JANUARY 1977. PALISADES NUCLEAR PLANT -STATION P03R -N UINO SPEED IN MILES PER HOUR (;:'\ 1-3 a-12 19+ --, . \ * . ..J *:. l ""\ I ..! ' \ \ I _; ' ! ' _j E .} [ \ ' *, .. [' ' I I ' * 
' . ' . "" * ,-.... ,, ,,,...* .. i . l . i " j
* Fig. 6. 2A_ 127 WIND ROSE JANUARY 1977 PALISADES NUCLEAR PLANT -STATION P07R N E \lIND SPEED IN MILES PER HOUR (;:'\ 1-s a-12 19+
128 Table 6. 1B Palisades Netwock ,--1 Percentage Frequency of wind Direction and Wind Speed
* at Station P03A for February 1977 Wind I Speed, miles per hour I Average Dicection I 1-3 4-7 8-12 13-18 19 + Total J Speed -1 010 I 0.2 o.s 0.7 o.o o.o 1. 4 I 6.8 --, I 020 I o.o 0.7 0.2 0.0 0.0 o. 9 I 6.2 I I 030 I 0.3 0.2 o.o o.o 0.0 0.5 I 3.2 040 I 0.3 0.2 o.o o.o o.o 0.5 I 2.7 "1 0 50 J 0.7 0.2 0.0 o.o o.o 0.9 l 2. 1 I 060 J 0.9 o.o o.o o.o o.o 0.9 I 2.4 ./ 070 I 0.2 0.2 0.0 o.o 0.0 0.3 I 3.9 080 I 0.2 0.7 0.3 0.0 o.o 1. 2 I 5.9 (*:*" 090 J 0.3 0.3 0.5 o.o 0.0 1. 2 I 5.4 100 I 0 * .3 0.0 0.2 0.0 o.o 5 l 4.0 110 l O.J o.o 0.3 0.0 o.o 0. 7* i 5.6 .:'-\ 1.20 I o.o o.o o. 0 0.2 0.2 0.3 l 17.1 ' l 130 I 0.3 0.2 0.5 0.3 o.o 1. 4 I 7.8 --> 140 J u.O 0.5 0.7 0.5 o.o 1. 7 I 9.9 150 I 0.3 o. 3 0.2 0.3 o.o 1. 2 l 7.0 160 I o.s o.s Oa7 0.0 0.0 1. 7 J 6.0 '*--*; 170 J 0.7 1. 4 3.5 o.o o.o 5.5 I 8. 1 180 l 0.5 2.8 3.6 0. 2 o. 0 7. 1* I 7.7 .\ 190 I 042 0.7 1. 2 0.2 0.0 2.3 I 8.3 200 I o.o 0.9 o. 5 3.5 0.2 5.0 I 13. 4 *' 210 I 0.2 lo 0 1. 2 2. 8 o.o 5.2 J 11. 2 220 I o.o 0.5 1.6 2.4 0.0 4.5 I 12.1 I I 230 l 0.0 o. 9 5.2 2. L 0.3 8.5 J 11.3 _) ./ 240 j o.o 0.5 2. 9 1. 9 0.3 5.7 I 11.9 250 I 0.2 0.5 1. 7 1. 7 0.2 4.3 l 11. 6 ,*,*,, I 260 I 0.2 o. 3 . 0.2 1. 0 o.o 1. 7 I 10.9 I 270 I o.o 0.3 o.o 0.5 0.0 0.9 I 10.0 280 I 0.2 0.2 0. 9 0.5 o.o 1. 7 I 9.9 290 l u.o 0.2 2. 1 1.0 o. 0 3.3 I 11. 1 i l 300 l 0.3 LO 3. 1 0.3 o.o 4. 9 I 9.1 J 310 I o.o 1. 7 1.2 0.0 o.o 2.9 I 7.1 320 I 0.2 1."' 1o 9 0.5 OeO 3.8 I 8.3 330 I 0.3 0.2 1.9 o.o o.o 2.4 I 8.3 340 I o.o 0.2 2 .. 1 0.2 o.o 2. 4 I 10.6 350 I 0.5 0.7 10 7 O.J o .. 0 3. 3 j 8.0 360 I 0.3 0.7 o. 3 0.0 o.o 1. 4 I 5. 3 Variable I .2. J 0.2 o.o o.o o.o 2 .. 4 I 1. 5 --Total I l l .. 1 20 .. 6 41. 2 20.6 1. 2 94.8 I 8.7 . I I Percent Calm: 5.2 -100.0 Note: Sensor height is 10 feet. Tabulated
* values ace percent of 577 hours of data. l 129 . Table 6. 2B Palisades Network .
* Percentage Frequency of Wind Direction and Wind Speed ( at Station P07d for February 1977 ! \ . **-\. 'ilind I Speed, miles per hour !Average Direction l 1-3 4-7 8-12 13-18 19 + Total l Speed (* 010 I o.o 0.3 o. 9 o.o 0.0 1.2 J 8.7 020 l o.o 0.6 0.0 o.o o.o 0.6 I 5.4 030 I 0.2 0.2 o.o 0.0 0.0 0.3 I 2.9 r."" 040 l 0.2 o.o o.o 0.0 0.0 0.2 I l. 0 I 0 50 I 0.8 0.2 0.0 o.o 0.0 0.9 I 2. 2 060 l o.o 0.0 0.0 0.0 0.0 o.o I o.o .... -', 070 I 0.2 o.o o. 0 o.o 0.0 o. 2 I 1. 6 ' 080 I 0.2 o.s 0.0 o.o 0.0 0.6 l 4.0 ! 1 ** ; 090 I 0.3 1. 1 o. 0 0.0 o.o 1. 4 I LJ.. 2 100 I O.J 0.5 o.o o .. 0 o.o 0.8 l 3.7 r* . 110 l 0.2 o. 0 0.0 0.0 o.o 0.2 I 1. J i 120 l 0.2 0.2 0.3-0.2 0.0 0.8 I 8. 6 130 I 0.8 0.5 0.0 0.2 1.4 I 4. 7 140 I 1
* 14 0.5 0.9 0.3 o. 0 3. 1 l 6.4 150 I 0.5 1. 7 0.8 0.6 0.0 3.6 I 7.3 160 I 0.2 1. 1 o. 8 0.0 o.o 2.0 l 6.8 170 l O.o 0.9 1. 4 o.o 0.0 J.O I 6.7
* 180 l 0.5 L.2 3. 3 . 0.0 0.0 5.9 l 7.9 190 I 3.0 2.2 0.0 o.o 5. 6 l 6.6 200 I 0.6 0.5 2.0 0.2 o.o 3.3 l 7.7 ( ,. 210 I 0.0 1
* 1 0.6 0.3 o.o 2.0 l 8.0 220 I 1
* 1 0.6 0.6 0.2 0.0 2.5 I 5.9 230 I 0.6 1. 1 o. 8 0.0 o.o 2.5 I 6 1 240 I O.J 1. 4 1. 6 0.2 0.0 3.4 I 7.8 250 I 0.3 2.0 3.3 0.2 0.0 5.7 l 8.0 260 I o.o 2.2 1. 9 1. 2 o.o 5. 3 I 9. 1 I 27 0 l o.s 1. 4 L1 1. 2 0.0 4. 2 I 8.9 280 I 0.2 1. 7 2. 6 1. 1 o.o 5.6 l 9.5 290 I 0 .. 2 1. 4 1.6 0.2 0. 0 3.3 I 8.0 300 I 0.2 0.6 1.4 0.3 0.0 2.5 l 8.8 310 I 0.3 1.9 3.1 1. 1 o.o 6. 4 1 8.9 320 I o.s 1. 2 2.0 0.3 0.0 4.0 I 7.8 330 I 0.6 0.5 0.6 0.0 o.o 1. 7 I 6. 1 340 I 0.2 1. 1 1 D 1 0 .. 0 o.o 2.3 I 7.6 350 I O.J 0.3 0.0 o.o 0.0 0.6 J 3 .. 5 !_ 360 I (). 6 O.J 0.8 0.0 0.0 1. 7 I 5.8 Variable!
0 .. 9 0.2 0.0 0. 0 . o.o 1. 1 I 1. 5 Tota.l I 14.0 32. 6 3 5. 6 7.6 o.o 39.8 I 6.7 Pe . .ccent Calm: 10.2 --100.0
* Note: Sensor height i.s 10 feet. Tabulated values are percent of 644 hours of data. 
----*-*--*--------130 Fig. 6.lB -WIND ROSE -FEBRUARY 1977 PALISADES NUCLEAR PLANT -STATION* P03A N WIND SPEED IN MILES PER HOUR g .1-3 *s-12 ,. . ------====--===-
CALM 4-7 13-18 19+ 1-\ . I --, 'J ') .) . l / -1 . *' **'\ i ..i ( I . I E .: 1* \ . ,; ) i \ . ,
* _J Fig. 6.2B 131 WIND AOSE -FEBRUARY 1977 *. PALISADES NUCLEAR PLANT -STATION P07A I ,, I '* . , . *, '* . \ . *
* N E WIND SPEED IN MILES PER HOUR (";"\ 1-3 s-12 19+
132 .,, I Table E.1C Palisades Network Percentage Frequency of Hind Directicn and Wind Speed 9f at Station P03A fer 1977 r Wind l '11ind Speed, per hour I Avera:;e **-1 Direction I 1-3 4-7 8-12 13-18 19+ Total I Speed '. ; +--------010 I o.o 0. 1 0. 1 0.0 o.o 0.3 I 8.5 I 020 l 0.3 0. 1 o. 3 0.0 o. 0 o. 7 I 5. 1 ( 030 I 0.0 0. 3 0.3 0.3 o.o 0.8 I 9.8 040 I 0.3 0.3 o. 7 0. 1 o.o 1 .. 3 I 7.8 ] 050 I o.o 0.3 c.s o.o o.o 0.8 J 7.8 060 I 0. 1 0.4 0.4 o.o o.o 0. 9 I 6.5 c 70 I 0.3 0. 4 . 0. 1 o.o o.o 0.8 I 4.4 080 I 0.4 0.4 o. 3 o. 0 o. 0 1. .1 I 4.9 -, oso I 0.0 o.s 0.9 0.3 o.o 1. 8 I 100 I 0. 5 1. 1 0.5 a.o o.o 2. 6 I 6.7 110 I 1. 1 2.7 3.4 0.4 o.o 7.6 l 7.3 __ , 120 I 0.4 2.3 2. 0 o. 8 o.o 5.5 I 8.2 . \ 130 I 0.5 1. 6 1.J 1.3 0.0 4.9 I 8.8 140 I c .. 8 o. 9 1. 6 o. 8 0.5 4. 7 I 10.0 150 I 0.4 1. 1 O.E 0.3 o.o 2. 6 I 7.7 . **1 160 l 0.5 0. 1 0. 8 0.3 o.o 1. 8 l 8.0 170 l 0.7 0.7 a. 7 0. 1 0.0 2. 2 I 6.6 180 l 0. 1 2.6 2. E G. 8 0.4 6.7 l 9.6 .i. 190 l 0.3 O. E a .. 9 1. 2 o.o 3.2 l 9.7 200 l 0. 1 0.5 0.3 0.1 o. 5 1.6 I 12.5 210 I 0. , 1
* 1 1. e ,
* 5 0.5 5.0 I 11. 5 I 220 I 0. 1 o. 9 1. 9 4.0 0.3 7.3 I 11. 8 I 230 I 0. 1 1.: 2.J 2.6 o.o 6.5 I 10.5 ,) 240 I 0. 1 0. s 2.0 0. 3 o. 0 3. 4 I 8.7 250 I o.o 0.5 1. 2 o. 0 o.o 1. 8 I 8.4 I 260 I 0.5 0.8 a. e o. 0 o.o 2.2 I 5. 9 I '..) 270 J C.4 0.5 0 0.0 o.o 1. 2 I =* 1 . -280 I 0.3 0.3 0.8 a. o o.o 1. 3 I 7.0 290 J o.o a.a 0.9 a.a o.o 0. 9 J 9.3 300 I o.o o. 5 o.e o.o o.o 1. 3 I 8.4 310 J 0. 1 0.5 c. 1 0. 1 0.0 0. 9 l 7.4 320 I o. 4 o. 4 o. 4 a.a o.o 2.0 J 9.2 330 I 0.4 0.3 o. 7 a. 4 o.o 1.8 J 8.7 . I 340 I 0.3 1. 1 1. 1 1. 2 o. 0 3. 6 I 9.8 350 I 0. 1 0.4 C.5 o.o 1. 3 I 10. 7 360 I 0.4 0.3 o. 1 o. 1 o. 0 0. 9 I 5.5 Varia:CleJ 0.9 0. 1 o.o o.o o.o 1
* 1 I 1. 8 +--'Iotal I 11
* 3 27.4 3 5. 0 18.5 2.3 94.5 I 8.4 i Percent Calm: 5.5 I .. / ---100. 0 Note: Sensor height is 10 feEt. Tat:ulatea
* values are fercent of 741 cf data.
133 Table E. 2C Ealisades Net*ork
* Percentage Frequency of Directicn and Wind Speed at Station P07A fer 1977 I I / I '* .. , 1il ind I Wind per hour I Average Direction I 1-3 4-7 8-12 l 3..:.1 e 19+ Total l Speed ------+-----
010 I " 0. 1 0.4 0. 1 0.0 0.9 I 8. 1 i v.j I' 020 I 0.0 o. 5 0. 1 0.3 0.0 0. 9 I 8.4 ! 030 l *O. 1 0. 8 0. 1 o.o o.o ,
* 1 I 5.4 040 I 0. 1 0.7 0. 1 o.o 0.0 0.9 I 5.6 050 J 0. , 1. , o.o 0.0 0.0 1. 2 I 4.7 \. 06.0 l 0.0 0. , o.o 0.0 o.o Q. 1 I 4. 1 070 I 0.7 IJ
* 1 o. 0 o.o o.o 0.8 I 2.*J I 080 I 0.7 0.0 o. 0 o. 0 o.o 0.7 I , "3 ( 090 I C.5 0. 1 0.3 o.o o.o 0. 9 I L+. 1 100 l Oe7 o. 9 0.3 o.o o. 0 1. 9 I 5.2 1 10 l 0.5 3.0 c.s 0. 1 0. 0. 4.6 I 5.9 ! 120 I 1. 2 3.5 2.3 0. 1 0.0 7. 1 I 6.4 \ .. 130 I 1
* 1 2.8 3.4 C.8 0. 1 8.2 I 8.0 140 I 1. 1 1. 9 1. 8 1. 1 0.0 5. 8 I 8.1 150 I 0.4 1. 1 0.9 0. 1 o.o 2 .. 6 I 7.0 *l 160 .. I 0. 4 0. 1 0.9 o. 5 o.o 2. 0 I 9. 1 170 l 0.4 1. 3 c.s o.o o.o 2.7 I 6.6 ' 180 I 0.5 2.4 1. 3 0.3 (). 0 4.6 I 7.5
* 190 I 1
* 6 1. E 3.4 0.5 o.o 7. 1 I 7.4 200 I 0. 5 0.4 1. 5 o. 3 0.0 2a 7 I 8. 7 210 I 0.4 0.9 0.7 0.5 0.0 2. 6 I 8.6 220 I 0.3 0.8 1. 1 0. , o.o 2. 3 I 7. 9 230 I 0.3 0.4 1
* 2 0.3 o.o 2.2 I 8.6 240 I 0.7 0. 5 2.3 o.o 0. Q, *J. 5 I 7.6 250 I G. 3 0.8 1. 2 o.o o.o 2.3 I 7.5 260 I o. 5 1. 8 1. 2 0. 3 o.o 3.8 I 7. 1 270 I 0.4 1. 3 1. 1 0. 1 o.o 3.0 I 6.8 280 I 0.8 0.8 o. 7 0. 1 0.0 2.4 I 602 ' 290 I 0.7 0.4 1. 1 0.8 o.o J.O I 8.5 ! 300 I o. 3 0. 1 0.9 1. 6 0.0 3.0 I 11. 9 310 I C.7 0.4 C.J 0.9 o.o 2.3 I 9. 3 320 I 0. LI 0.7 o. 8 o. 5 0.3 2.7 I 1 o. 0 330 I 0.3 0.7 0.5 0.3 o.o 1. 8 I 340 I 0.4 o.o 0.3 o. 4 o.o 1. 1 l 8.3 350 1 0.0 0. , c. 3 o.o o.o 0.4 I 9.5 I 360 I 0. 1 0.3 0. 1 0.0 o.o 0.5 I 5o,. I Variable I 0. 5 0. 1 c.c o.o 0.0 0.7 I 1. 8 '* . -------+-------------------
'Iotal I 1 8. 1 33.0 3 2 .. : 10.4 0.4 9 4. 3 I 7. 0. Percent Calm: 5.7 * .. / ---100.0 Note: Sensor height is 10 fe*t.. Tal:ulated
* values are rercent of 742 hcurs cf data.
134 Fig. 6. lC WIND ROSE -MARCH 1977 PALISADES NUCLEAR PLANT -STATION P03A N Y:rNO SPE2D I'N MILES PER HOUR 0\
ts+ .I. i *1 I . ) I __ _y ) I \ ___ ,. ' \ .. }
* Fig. 6. 2C 135 WTND ROSE -MARCH 1977
* PALISADES NUCLEAR PLANT -STAT ION. P07A I , \ I . ' N , . 1 {. __ ,; ,* *-E i ( ; i. ..
* SPEED !N MILES P&#xa3;R HOUR (';:"\ 1-3.. .
=---. 19+
136 'I able 6.1D PalisadeE Percentage Freguetcy of wind Cirecticn and Wind Speed -1 .l at Staticn fer A t:ril 1977 ---, I _), wind I Wind Sfeed, per hour JAverage -_j Cirection I. 1-3 4-7 e-12 1 J-18 19+ Total J Speed ------+-0 10 I 0.1 0.7 o. 7 o.o o. 0 1. 5 I 7.2 -1 020 J c.o 0.3 o. 0 o.o o.o 0.3 I 5.2 030 I o.o 1.0 o. 3 o. 0 o.o 1. 3 I 6.6 0 40 I a.a 1
* 1 o. 6 o.o o.o 1. 7 I 7.5 050 I 0.3 0.8 1. 0 o. 0 o.o 2. 1 I 6.4 -1 I 060 I 0. 1 o. 1 0.1 o.o o.o o. 4 I 5.4 .) Ci 0 I 0.8 0.3 o. 0 o. 0 o.o 1. 1 I 3.0 080 I 0. 1 0.4 0.0 o.o o.o 0.6 l 4 *. 9 --1 090 I C.3 0.6 1. 4 o. 0 0.0 2. 2 j 6. 9 ii 100 0.3 0. 4 1.3 a.a o.o 1. 9 7. 6 . --1 I I 1 1 a I 0. 1 a.7 a.6 a.a 1. 4 I 6. 3 12a I c.o 1. 4 1. 4 c. 1 0.0 2.9 I 7.9 130 I o.e 0.8 a.3 o. 7 o.o 2.6 j 6.8 140 l 0.8 1. 4 o. 4 0.4 o.o 3. 1 I 6.2 150 I C.7 1
* 4 1. 1 0.0 o.o 3. 2 j 6.0 l 160 I C.3 2.5 1. a 0.0 o.o 3.8 I 6.4 .. 1 170 I 0.1 0.8 1. 1 0.0 o.o 2. 1 I 7. 1 180 j 0.3 1. s 1 .* 1 a. 1 0.0 3.5 I 6.9 *; 190 I a.6 0.6 1. 0 o. 0 a.o 2. 1 I 6.6 200 I o.o 0.4 1. 7 1.5 0.1 3.8 I 1 2. 1 2 1 0 I a.a o.a 1. 8 3. 6 a. 3 5.7 I 13. 6 220 I 0.0 a. Lj" 1. a 1. 7 0.3 J.3 I 12.6 230 j a.a 0.6 1. 1 1. a a. 1 2. 8 J 1 a. 9 240 I 0.3 1. 1 1.4 a.7 o.o 3.5 l 8.6 2.: a } 0.1 1.0 a.6 o. 6 o. 0 2. 2 I 8.7 i 2*0 j 0. 1 1. 1 o.c 0.3 0.0 1. 5 I 6.8 ., 27a ) a.a . a. 1 0. 1 o.o o.a 0.3 l ' 9. 3 --* \ 280 I 0. 1 0. 1 0. 1 0. 1 0. 1 0.7 I 10.6 I 2Sa 1 . 0. 1 0.3 o. 1 1. 4 o. 0 1
* 9 l 12.7 r 300 l a. 1 1. 0 0.6 0.6 0.0 2.2 J 9.2 __ J .; 1 a I 0.7 1. 4 1. 8 0.6 o.o 4. 4 I 8. 3 J 0. 1 1. 3 2.2 0.6 a.a 4.2 I 8.6 .3 3 0 I 0.6 1
* 0 1. 1 o. 7 0.0 3. 3 I 8.3 i 340 I 0.7 0.6 1. 8 C.8 o.o 3. 9 I 8.9 _j 350 l a.a 0.7 o. 6 0. 1 o .. 0 1. 4 j 7.6 JEO I 0.3 0.4 c. 1 0 1 *a. o 1. 0 I 5.9 Varia.l:le)
: 1. 7 0.4 0.4 o.o o.o 2. 5 I 3.8 +-'Io tal I 10.8 29.0 29. 7 15.7 1. 0 86.3 I 7. 2 1' Percent Calm: 13.8 I .i 100.0 Note: Sensor heigct is 10 feet. 'Ial:ulated
* are fEicent of i2G bcurs cf data.
137 'Iable 6.2D
* Percentage Frequency of iind Cirecticn and Wind Speed at Staticn P07A fer A.p:il 1977 \.I ind I Wind Sfeed, per hour !Average Direction I 1-3 4-7 8-12 13-18 19+ Total l Speed +---------
C10 l o. 1 0.6 o. 0 0.0 o. 0 0.7 I 4.8 020 I c.o o.e 0. 4 o.o o.o L3 I 6.2 030 I C.4 1.9 0. c 0.0 0.0 2. 4 I 5.3 040 I 0.3 L5 c. 1 o.o o.o L9 I 5.0 050 I c .. 3 0.8 o. 1 o. 0 o.o 1. 3 j 5.0 060 I 0.6 0. 6 0.0 0.0 o.o 1
* 1 I 3.6 C70 I G.3 0.3 0. 0 o. 0 o.o 0.6 l 2.2 \ CEO I c. 3 G.7 0.0 a. o 0.0 1. 0 I 3.6 I cso I 0.6 0. 1 o. 0 o. 0 O.J . o. 7 I 2. 8 i . 100 l 0.7 0. E 0. 1 o.o o.o 1. 7 J 4.3 ' 1 1 0 I 0.7 1
* 9 ' o. 6 o. 0 o. 0 3e 2 l 5.5 I I 1
* c 1
* c O. E 0.0 o.o 2.5 I 5.0 I ( .. 130 I 1. 7 2.2 0.8 o. 0 o. 0 4.7 l 4.7 140 I c. 6 1. 8 0.3 0. c o.o 2.6 I 5. 2 150 I 0.4 2.4 LO 0.3 o.o 4.0 I 7.0 160 I c. 1 2.: 1. 3 c. 1 0.0 4.0 I 6.7 170 j 0.4 1. 1 1. c o. 0 0.0 2.5 l 6. 1 180
* J c 1 1
* s 1. c o. o o.o 3.2 I 6 *. 3 .
* 190 I 1. 4 2. 5 1;. c o. 0 o.o 4 .. 9 l 5. 1 200 l 0.4 *1. E c. 4 0.0 o.o 2.6 I 5.2 210 I 0.4 0.7 o. 8 0.3 0. 0 2.2 I 7.2 220 l 0.3 1. :: 1. 1 c. 1 o.o 2.8 I 7.3 230 I o. 4 0.7 o .. 6 o.o o.o 1. 7 I 6.2 240 i a. 1 O.E C.7 o.o 1. tj. l 7.3 2:0 I o. 0 0.6 1. 1 0.0 o. 0 1. 7 I 8. 2 260 J C.3 0.6 1.7 0. 0 o.o 2. 5 I 8. 1 270 ! 0.1 o .. 7 1. 0 o.o o.o 1. 8 l ' 6. 9 280 j c.o O.E C.E 008 OoO 2.2 I 10.2 290 I 1. 1 1.3 o .. 1 1. 7 o. 0 4. 2 J 8. 7 300 I 0.3 1. : 1.3 1. 0 o.o 4.0 I 9.0 3 10 I 1.0 1. 3 1. : Q.,, 8 o.o 4. 6 I 8. 1 320 I 1.0 1. 1 C.E C.6 o.o 3.2 J 7.0 .3 :: 0 I 0 1 . -0.4 0.4 o. 1 o.o 1. 3 t 6. 9 340 I 0. 1 0. 3 C.3 a.a 0 .. 0 0.7 I 5.7 350 I o.3 0.7 o. 3 o. 0 0.0 l.,, 3 I 6.0 3t0 j C.4 0.8 0.3 o.c 0.0 1. 5 I 5.4 Variat:lel 1.8 0.4 0.0 0.0 o.o 2. 2 l 1. 4 --------+
+----'Iotal J 1E.3 41.0 20.8 5.8 o.o 86.0 I :
* 4 Percent Calm: 14.0 100.0
* Note: Sensor heigrt is 10 feet. Tal:ulated values are FEicent cf 120 bcrrs cf data. 
 
Fig. 6.lD WIND ROSE -APRIL 1977 *1 . \ I ' PALISADES NUCLEAR PLANT -STATION P03A * -1 N J \JINO SPEED IN MILES PER HOUR 4-7 13-18 ] J E* ] *. -.J'' _J ( _J *
* r. ' . ' I I \ ... ' I I \ .... .. * * , r Fig. 6.2D *WIND ROSE -APRIL 1977 PALISADES NUCLEAR PLANT -STATION P07R N \JIND SPEED IN MILES PER HOUR * (!) __
__ 4-7 13-18 139 E 
' I ' 140 ! Table 6. 1E Palisades Network *--, Percentage Frequency of Direction and Speed
* at Station POJA for May 1977 **-\ I \ It ind l Wind Speed, miles per hour JAverage -1 Direction I 1-J 4-7 8-12 13-18 19+ Total I Speed .\ -------+ 010 I. 0. 1 O.J 0.4 o.o o.o J.8 I 7.2 --( 020 I 0.6 0.4 0. 1 o.o o.o 1. 1 I 4.5 ( 1) 30 I 0.4 (). 6 o. u 0. !) o.o 1. J I 3. 5 040 I 0.6 0.8 o.o o. 0 o.o 1. 4 I 4.2 :) 5:) I 0.3 0.6 J.J O.J :)
* J 0.8 I 4.6 **-( 060 I 0.6 1. 0 o. 1 o.o o.o 1. 7 I 4.6 .J 070 I 0.4 1
* 1 o.o o.o 0.-J 1. 5 I 5. 1 080 I 0.8 o. 0 o.o o.o 2.2 I 3.8 -, () 90 I 0.6 1 * 'J 0.7 o.o 0. *J 2. 2 I 5.3 j 1 00 I o. 3 1. 2 1. 5 0.1 o.o 3.2 I 7.6 110 I 0. 1 1. : ;J. 8 o.o 0. *J 2.5 . I 6.7 120 I 0.3 1.8 0.3 o.o o.o 2.4 I 5. 6 _,l 130 l 0. 1 1. J 0.3 o.o O.J 1. 4 I 6. 1 -) j 4 0 I 0.0 0.7 0.7 o. 1 o.o 1. 5 I 8.0 150 l 1. 0 1. J 0. 1 0.1 O.J 2.2 I 4.6 J 160 J 0.4 0.7 0.3 0.1 0.0 1. 5 I 5.7 17:) I 0.7 1. 0 0.3 0. 1 *). :) 2. 1 I 5.4 180 I 1.2 0.8 0. 1 o.o o.o 2. 2 I 4. 1
* 190 I 0.4 0.8 0. 1 o.o 0.0 1. 4 I 4.5 2 00 I a. 3 0.4 0.6 o. 1 o.o 1. 4 l 7.0 210 I 0.4 0. 3 1. 4 1
* 1 o.o 3.2 I 9.7 220 I 0.3 1. 5 1. 8 0.7 o.o 4. 3 I 8.5 J 230 I o .. 1 0.8 1.9 0. 1 o.o 3. 1 I 8.3 2 40 I 0. 1 2. 1 2. 1 o.o O.J 4. 3 .f 7.4 2 50 I o.o 2. 1 2.8 o.o o.o 4. 9 I 7.8 *1 260 I 0. 3 2. 6 L4 o.o o.o 4.3 I 6.7 I 270 I 0 .. 1 1
* 1 O.J o.o o.o 1. 5 I 6.1 _, 280 I 0
* 1 1. 1 0. 1 o.o o.o 1. 4 I 5.8 2 90 I 0.6 1
* 1 o.o o.o o.o 1. 7 I' 4.4 ..J *300 J 0. 1 0.6 0.1 0. 1 J.O 1 * :) I 6.4 J 0 I 0 J!l 3 0. 1 0.3 0.1 o.o . 0. 8 I 6.8 320 I 0.3 0.7 0.6 0. 1 o.o 1. 7 l 7.7 I 0.1 ,_ 0 0.7 0.3 o.o 2. 1 I 8.3 I 34,; l 0. 1 006 1.8 0.7 o.o 3.2 I 9.8 _J 3 50 I 0.4 0.6 o. 4 0.3 o.o 1.7 I 8.1 360 I o.o 0.4 1.1 o.o o.o 1. 5 I 8 *. 7 Varial:lej
": ., 1. 2 0.1 o. 0 o.o 4.7 I 2.6 -.. _, -+ Total l 16. 0 35.9 23.4 4.4 o.o 79.8 I 5. 2 t Percent Calm: 2.j. 2 .J 100.0 ,. I _J Note: Sensoc is 10 Tabulated
* values are percent of 721 hours of data.
141 T.:ible 6.2E Palis ad.es tie t war k ,. Percentage Frequency of Wind Direction and iind Speed at Station f?07!\ for day 1977 Wind I Wind Speedr miles per hour !Average Direction l 1-3 4-7 8-12 13-18 19+ Total I Speed -----+-'.) 10 l !J
* 2 0.7 0.3 0.2 o.o 1. 3 I 7. 8 '; 21J I C.7 0. 7 0. iJ 0. :) 'J. 0 1. 3 I 3.3 " 3 :') l 0.5 1. !) 0.0 J.O !)
* 0 1. 5 I 4.2 040 I 0.8 0.7 C.J o.o ;J. J 1. 5 I 3.5 !) 5 0 l 1
* 0 1. 5. o. 0 0.0 (). 0 2. 5 I 3. :) F 0 I 1. R 1. 7 o.o o.o :)
* 0 3. 5 I 2 .. 7 ")70 I 1. 7 0. 3 o. 0 o.o 0. ') 2. 0 I 2.9 ) 8.:1 I 0.8 1.0 J. 0 0. *) 0.0 1. 8 l 3.3 '.) 9'.) I 1. 0 ,J. 5 0.j 1). ') o.o 1. 5 I 3. 1 10 0 I !)
* 5 0. 3 C.0 a. :J o.o 0.8 I 3.0 11 0 I 0.5 0.2 o.o 0.0 o.o 0.7 I 2.5 120 I o. 8 1. 0 o. 0 o. 0 iJ. 0 1
* 8 l 3.6 13 <1 I 1
* c:; 1. 0 o.o o. 1) o.o 2. 5 I 2.4 140 I 2. 3 1. 5 0. (J :'). 0 o.o ).8 I 3.5 150 I 2.3 1. 5 0.7 0.) o.o 4. 5 I 3.8 1 6 I) I 1. 3 1. 2 0.2 0. ) :)
* i) 2. 7 I 3.6 170 I 1. 0 3 * ;) 1 ') . 0.0 *J. *) 5.2 I 5.4 180 I (). 7 1. 5 o. 2 o. 2 i). () 2.5 I 5.4
* 1 g *') I o. 2 0.7 o. 0 o. 2 (,) e *) 1. 0 I 6.0 2 ') f) I 0. 3 1. 2 Vo 2 0. ,J IJ. 0 1. 7 l 5. 2 21 <) I ('
* 5 !) I 5 0.J J.2 0. () 1. 5 I 6.6 220 I. 1. 2 !)
* 5 (). (j 0 * .) i). J 1
* 7 I 2.9 230 I O.J 0. 2 0. t) *'). 0 J.J 0. 5 I 2.9 240 l I). 5 o .. 2 o.o o.o ') m 0 0.7 l 3.2 2 50 I 0. 3 1. Q o.s o.o o.o 1. 8 l 5.7 2 6:j I I)
* 3 1. 7 o. J o.o o.o 2. 3 I 5.4 270 I 0. 3 1
* 3 *=. 7 1). I) *J. :'.) 2 .. 3 I 6. 1 280 I G. 3 2. 5 1,). 7 o.o o.o 3. 5 I 5.9 2 g \) I 0.7 1.'5 1. 0 !)
* 0 O.J 3. 2 I 6.2 JOO I Cl. 2 o.s o. 8 0. 2 o.o 1. 7 I 7.8 310 I 0.2 1
* 5 1. 2 o. 3 o.o 3. 2 j 7. 9 3 2 () I C.2 i). 5 o. 7 (). 7 o.o 2.0 I 9.7 3 3 !) 1 0. 3 *J. 3 0.3 ,J. a o.o 1. 0 I 5. 3 34') I c.2 0. 5 (). 0 0.3 o.o 1
* I) I 7. 1 3 50 I G.2 0. 3 l). c 0. !) '). J 0. 5 I 3.8 360 I 0.2 0.5 0 ,,
* v 0.2 o.o 0.8 l 6.8 Variable!
2.8 0.7 o.o o.o o.o 3. 5 l 2.2 ------+--+ Total I 28.8 3 5. 3 9. 2 2. 3 o. 0 75. 6 I 3. 6 Percent Calm! 24. 4 -10').0 Sensor is 10 feet. Ta:rnlated
* values are percent of 598 hou=s of data
* 142 Fig. 6.lE WIND ROSE -MRI i977 PALISADES NUCLEAR PLANT -STATION P03R N SPEED IN MILES PER HOUR (;:"\ 1-3 s-12 . 19+ l
* Fig. 6.2E WIND ROSE MAY 1977
* PALISADES NUCLEAR PLANT'-STATION P07A ' .. l '* .. , N '! ' " I \. ,. l ** * \JIND SPEED IN MILES PER HOUR
__ \.5) 4-7 13-18 143 E
* I I I 144 .. i I \ I Table 6.1F Network Percentage Frequency of Wind Direction and Wind Speed
* at Station P03A for June 1977 -1 ind
* I Hind Speed, miles per nour !Average -*1 Direction l 1-3 4-7 8-12 13-18 19+ Total I Speed + 010 I 0.6 o. 4 0.2 o.o 3.6 I 6.3 ..J J20 I 0.2 0.2 0. j o.o 0,J J.4 I 3.2 -i 030 I o.o 0.2 o .. 0 o.o o.o o .. 2 I 3.7 I *J 4') I 0.4 0. 6 0.2 o.o o.o 1. 2 I 4.0 050 I 0.6 o .. 6 o.o o.o o.o 1. 2 I 3.5 *1 J 6*'.) I 0.6 0.2 O.J O.J 0.0 0.8 I 2.9 . .\ 070 I 0.4 0.2 o.o 0. '.) o.o 0.6 I 2.7 I 080 I 1. 0 0.4 o .. 0 o.o o.o 1. 3 I 3.0 _] 0 9J I c. 2 0.2 o.o o.o 0.0 0.4 I 2.2 100 l 0.6 0.2 o. 0 o.o o.o 0.8 I 2.2 110 I o .. 2 0.2 O.J o.o o.o 0.4 I 4. 1 120 I 1.0 o .. 2 o. 0 o.o o.o 1. 2 l 3.3 -1 130 I 0.2 0.8 o.o /). 0 o.o 1. 0 I '4. 8 140 l 0.2 o .. 8 0.2 o.o o.o i. 2 I 5.8 1 Si) I 0.2 0.6 0. i) 0.2 o.o 1. 0 I 6.9 -.-i 60 I 0.6 0.6 o. 4 o.o o.o 1. 5 I 4.9 170 I 0.2 0.8 0.4 0.2 0. :J 1. 5 I 7.3 180 l 0.4 o .. 4 o.o o.o o.o 0.8 I 4.9
* 190 I 1. 0 1 .. '] 0.4 0. *J o.o 2. 3 I 4.7 2 00 I 0.8 o. 4 0.6 o.o o.o 1.7 I 5. 1 2 1 'J I 0.6 0.8 1.0 Q. *) o.o 2.3 I 6.2 220 I 0.6 1.2 a.a 0.2 o .. 0 2. 7 I 7.2 . ' ! 230 I 0. 4 1. 3 1 I 0 0.4 o.o 3. 1 I 7. 1 i 240 I 0.6 1 .. 5 1 .. 9 0.2 o.o 4. 2 . 7.6 . l 250 I 0.6 2 I 9* 2.3 0. :) o.o 5.8 7.0 260 I 0.4 1. 3 3.3 a.a o.o 5. 0 8.2 I 270 I 1 !'I 0. 4 0.6 o.o O.J 1. 9 5.0 . -.) __ ) 280 I 0.4 0.8 0 ) . -o.o o.o 1. 3 5.6 290 I o.o 0.6 \). 4 o.o J.O 1.J 6.9 3 00 I o.o 0.2 0.6 o.o o.o 0.8 8.6 310 I o.o 0.8 1. 0 o.o 0.) . 1. 7 7.3 320 I a. o 0.8 1.5 o.o o. 0 2.3 8.3 330 l o.o 1. 2 1.7 o.o o.o 2.9 8.0 f 340 l 0.4 1.5 3. 1 0.2 o.o 5.2 8.1 I **' 350 I o.a 2.9 4.4 0.4 o.o 8.4 8. 1 3 60 I 0.6 2. 1 2. 3 0.2 0.2 5. 4 7.9 Varial:le I 2.3 0.8 o *. ) o.o o.o 3. 1 2. 4 i + *-I Tctal I 17. 5 31. 7 2 8.4 2. 1 0.2 79.8 I 5. 2 Percent Calm: 20.2 100.0 Note:
height is 10 feet. Tabulated
* values are of 521 hour!::i of data. 
--145 Table 6. 2F Palisades Network
* Percentage Freguency of Wind Directicn and Wind Speed at Station P07A fer Jur:e 1977 Wind l Wina miles per hour !Average ( : Direction I 1-3 4-7 8-12 13-18 19+ Total *I Speed --------+--
010 I c. 1 0. 1 0. 1 o.o o.o 0.4 I 5.3 020 I 0.4 o. 3 o. 0 o.o o.o 0.7 I 3. 1 030 I 0.9 0.6 o.o a.o o.o 1. 5 I 3. 1 040 I O.J 0. 1 o.o 0.0 o.o 0.4 I 2.a 050 I 1. 2. a. 1 o. 0 a.a o.a 1. 3 I 2.3 060 I 0.9 a. 0 a. 0 a.a a.a 0. 9 I 1. 4 C70 I 1. 0 o.c a.a 0.0 a.a 1
* 0 I 1. 7 aso I 0.6 o. 0 o. 0 a. 0 o.o 0.6 I 1. 7 I osa I 0. 1 o.o o.o a.o a.o 0. 1 I 1. 7 ! . \ . 10 a I 0.4 o.a o. 0 a. a 0.4 I 1. 1 110 I 1. 0 0.4 o. a a.o a.o 1
* 5 l 206 I 120 I 1. 0 0.3 a. 0 o. 0 o.o 1. 3 I 2. 1 ' . -130 I 0.3 a.7 0. 1 a.a a.a 1. 2 J 4.7 140 J 0. 9 a .. 7 o. 0 a. o o.o 1. 6 I 3.4 150 I 1. 2 0.7 0.4 o.o o.a 2. 4 I 4.5 160 I 1. 2 1. 3 0. 1 0. 1 a.o 2. 8 I 4.3 170 I 0. 6 0.7 a.4 o.o a.o 1. 8 I 5. 5 180 .I 0. 1 1. 2 o.c o.a a.o 1. 3 I 4.7
* 19a I Oc7 1. 0 o*. 1 a.o a.o 1. 9 I 4.5 200 l 0.4
* 1. 0 o. 1 o.o 0.0 1. 6 I 4.5 210 I 0.4 0.6 0. 1 o.o o.o 1. 2 I 4.7 220 I o. 1 0.4 0. 1 a. o o.a 0. 7 I 6.0 230 I 0.6 0. 4 a.c o.o o.o 1. 0 I 2. 5 240 I 1. 2 1
* 3 0.4 a.b o.o 2.9 I 4. 1) 25 0 I 0.6 0.7 O.J a.o 0.0 1. 6 I s.o 260 l G.7 1. 0 0. c 0.0 o.a 1. 8 I 4. 1 ; 270 I 0.3 2. 1 0.6 o. a a.o 2.9 I s. 8 "*. 280 I 0.7 2. 1 C.7 0. 1 o.o J.7 I 5.8 290 I a.4 1. 6 1. : o. a o.o 3. 5 J 7.0 30a I 0.4 1
* 3 2.4 0. 1 o.o 4.3 I 7.8 3 10 I 1. 2 2.9 1. g 0. 1 o.o 6.2 I 6.5 320 I 0.7 3. 1 2.5 O.J 0.0 6. 6 I 7. 1 330 I 0. 9 1. a o. 4 o. 0 o.o 2.4 I 5.0 34a I 1.a 1. 0 a. 1 a.o o.a 2.2 I 3.8 350 I 1. 2 o. 7 o. 3 a. o o.o 2.2 I Jo 9 360 I 0.6 0. 1 C.3 0.0 o.a 1. 0 I 4.7 " -Variable!
: 1. 0 O.J o. c a. a o.o 1. 3 l 2.4 + Total I 25.8 30.5 13.4 0.9 0.0 70.6 l 3.5 Percent Calm: 29.4 -100.0
* Note: Sensoc height is 10 feet. Tatulated values ace FErcent of E78 hours of data.
146 Fig. 6.lF WIND ROSE -JUNE 1977 PALISADES NUCLEAR PLANT -STATION P03R
* N UINO SPEED IN MILES PER HOUR 1-3 a-12 .
=---==13=-1=a
==---19+ l \ _! _I I _) I i . .J ... * *
* r' -. I ( r . I .
' I \ . '
* I '
* Fig. 6.2F 147 -WIND ROSE -JUNE 1977 PALISADES NUCLEAR PLANT -STATION P07R N E . UIND SPEED IN MILES PER HOUR (';:'\ 1-3 a-12
==---==13=-1=8
==---1S+
148 l I Table 6. 1G Palisades Network Percentaqe Frequency of Wind Direction and Wind Speed e1 at P03A for July 1977 . ...._ I ) Wind I miles per (Average 'l Direction I 1-3 4-7 8-12 '1 J-18 19 + *Total I Speed _I ------+-+-J 1 (\ I <}. 1 '.). 7 *J. 1 .'). ') ;)
* J 1. 0 I 4.5 -1 020 I 0. 3 0.6 0. 1 o.o* o.o 1. 0 I 4.9 ( :)30 l 0. 3 Q
* 1 (.). J a. *J O.J 0.4 I 3. 2 , 040 I o. 3 0.6 o. 1 o.o o.o 1.0 l 5.2 050 I 0.3 J. 4 J.J 0.:.) -) . ') ij. 7 I 3.9 '\ 060 I 0.7 0. 1 o. 0 o.o o.o o. 9 I 1.8 )70 I 0.4 Q. ) O.J o.o O.J 0.4 I 1.6 080 I 0.3 0.4 o.o o. 0 o.o o. 7 I 3. 4 --,I 1) 90 I 0. 1 i). 7 0.J O.J ') .. 0 0. 9 I 4.0 ..\ 1 00 I 0. 3 0.6 0.3 o. 0 o.o 1.2 I s .. 2 1 1:J l 0. 1 0.7 0. 1 0.0 l). J LJ I s. 0 120 I 0.3 1. 2 o. 4 o. 0 o.o 1. 9 I 5. 7 1 JQ I 1J. 6 0. 6 0. 1 0. ') J.O 1. 3 I J.8 1 40 I 0.4 0. 3 o. 0 0.0 o.o o. 7 I 3.4 1 50 I iJ. 1 Q. 3 0. i.) 0. *J O.J 0.4 I 2. 6 _ _\ 1 60 I 1. 2 0.7 o. 0 o. 0 0.0 1. 9 I 2.3 1 7 .') I 0.4 1. 0 0,J J.J 1. 6 I 4.9 1 80 I 1. 3 1
* 9 'j a 4 o. 0 o.o 4. 6 I 5. 7 *i 190 I . '}. 3 1. 4 :J.3 o.o 0.0 2.J I 5.6 200 I 0.4 1
* 4 1. 4 o.o o.o 3.3 l 6.7 ,,/ 210 ., :J
* 6 0. 9 2.j 1
* 0 *J. *J 4.5 I 8.8 220 I 0. 1 2.7 4,, 0 1.3 o.o 8.2 I 9.2 i 23') I *J. 4 1
* 7 5.8 1.6 :). 0 9.5 I 9.7 _l 240 I 0.3 J. 3 1. 1+ a. 1 o.o 5.2 I 7.3 25J I 0 1 1. 9 1. 2 0. 1 J.O 3.5 I 6.9 . -I 2 60 I 0.4 2.2 0.6 o.o o.o 3. 2 I 5. 9 J 270 l 0.4 L4 o. 1 o.o ).0 2.0 I 5. 1 280 I 0.4 0.9 o. 1 o.o o.o 1. 4 l 4.7 29) I ::;
* 4 0. 7 c.o o.o o.o 1. 2 I 4.2 3 00 I 0. 1 0. !+ o.o o.o o.o 0.6 I 4.0 31) I ')
* 1 1
* J u. 1 . *) J.) 1. 6 I 5. 8 320 I 0.3 1. 3 0.6 o.o o.o 2.2 I 6.2 l 330 I 0.3 1. 2 1. 0 O.J o.o 2.4 I 6.6 340 I 0.0 0.7 0.6 o.o o.o 1.3 I 6.8 _) 3 50 I 0.3 I)
* 3 1. 9 C.9 0. 1 3.5 I 10.2 360 I 0.3 0.6 1. 3 0.9 o.o .3. 0 I 9. 8 Variable]
1.9 0.4 J.O 0. 1) J.J 2.3 I 2. 1 +-Total I 1 35.7 25.5 5.9 0. 1 82.4 I 5.6 Percent Calm: 17.6 -* .100.0 Note: Sensor height is 10 fE::E:t. Tabulated
* values are FErcent of hours of data.
149 Table 6. 2G Falisades
* FreguEncy of Wind Direction and Wind Speed at Station P07A for July 1977 r Wind I Wind Speed, miles per hour I Average Direction I 1-] 4-7 8-12 13-18 19+ Tota*l I Speed + ' . 010 I 1.2 0. 4 o. 0 o.o 0.0 1.6 I 1. 9 0 2') I 0.6 0.6 0 * .J 0 *. ) o.o 1. 2 I 3.9 030 I 1. 0 o.o o. 2. o. 0 o.o 1. 2 I 2.1 0 40 I 0.6 0.2 :}
* J 0 * .) o.o 0.8 I 2 .. 6 050 J 1 * .) *.L 0 4 Cl. ) 0. '.] ). 0 1. 4 I 2.0 060
* 1
* 0.4 0.4 o.o o.o o.o 0.8 I 3. 0 'J70 I v. 2 !J
* 6 0. J :'). J :J * .j 0.8 I 3.2 080 I 0.2 0.6 o. 0 o.o o.o 0.8 I 4.2 0 90 l 0.6 O.J O.J o.o 0. <) 0.6 I 0.7 \ . 100 I 1. 4 0.0 o. 0 d.O o.o 1
* LJ I 1.5 110 I 1 * ) J. 2 O.J ;J * ;) ') . *) 1. 2 I 1. 9 120 I 1. 2 0.4 o. 0 o.o o.o 1. 6 I 2 .. 1 ' . 1 JO I c.s 0. 2 0.0 o.o ).0 1 * *') I 2.9 140 I 1
* 0 0.2 0.0 o. 0 o.o 1
* 2 I 2.5 1 5;) I 3
* 1 1. 2 0. ;j 0
* i) J.0 4. 3 I 3.0 160 I 1.0 2.7 0.2 o. 0 o.o 3. 9 I 5. 2 170 I 1. 4 2.9 0.2 o.o *). 0 4.5 I 3.8 180 I 2*. 7 .2.7 o. 4 o.o o.o 5. 8 I 4.2
* 19'J I 1.2 3. 1 1. 2 o.o 0. ') 5,6 I 5.5 2 00 I 1. 4 o. 0 o. 0 o.o 1. 9 I 4.5 210 I 0.6 1. 4 C.0 o.o J. ') 2. 1 I 4.2 220 I 0.6 1.0 o. 0 o.o o.o 1. 6 I 3.8 2 30 I 0. 4 1. 0 C.2 '). 0 '). J 1. 6 I 5.2 2 !.10 I o .. 8 3. 3 o. o.o o.o 4.5 I 5. 25J l 0.8 1. 6 0.4 0. i) J.O 2.9 I 5.0 2 60 I 0.4 1. 4 o * .:t o.o o.o 2.3 l 5.5 I 27) l .J. 4 2. 1 0,4 c. :) O.J 2.9 I 4.9 '*. 2 80 I 0.6 2. 1 0.2 o.o OoO 2. 9 I 5.2 290 J 0. 2 1.2 I). 8 0 * :J *). 0 2.3 I 6.4 3 00 I 0.4 2.5 o. 0 o. 0 o.o 2.9 I 5.2 31J I *' v. I!. 1. 2 0.8 0,8 J.J 3. 1 I 8.6 3'2 0 l 0.4 o .. 0 o. 2 0.4 o.o 1. 0 I 8. 7 330 I 0.6 1. 2 1. 2 o.o J.O 3. 1 I 6.0 > .* 340 I 0.6 0. 4 0.8 o. 2 o.o 2.1 I 7.3 350 I 0.6 o.o 0.2 0. *J 0.0 0.8 I 4. 2 r . 360 I 0.4 o .. 2 o. 2 o.o o.o 0.8 I 4.5 Varia1lel 4.9 0.8 O.J o.o u.O 5.8 I 2. 3 I-Total I 3 4. 6 39.9 8.6 1. 4 o.o 84.6 I 3.7 Percent Calm: 15. 4 -100.0
* Note: Sensor heiqht is 1<)
Tdbulated values are fercent cf 486 hours of data.
150 Fig. 6.lG WIND* ROSE -JULY 1977 PALISADES NUCLEAR PLANT -STATION P03A N SPEED IN MILES PER HOUR . f;:'\CALMi .
_ 4-7 13-18 -( * *1 1 .-1 J l
* i __j I , J J *-* .: I I I 
::"iq. 6.2G 151 WINO ROSE -JULY 1977 ..
* PALISADES NUCLEAR PLANT -STATION P07R \ N , . I \
* E { . I * \JIND SPEED IN MILES PER HOUR @ . l-3 .. . . 4=7 . 8""'.12 13-18 152 Table 6. 1H Palisades Network Percentage Frequency of Wind Direction and Wi.nd Speed iind Direction at Station P03A for August 1977 Wind Speed, miles per hour 1-3 4-7 8-12 13-18 19+ I -------------
--
01 o I O 20 I 030 I I 040 I 050 I *J 60 I 070 I 080 I 090 I 100 I 110 I 120 J 130 I 140 I 150 I 160 I 170 I 180 I 1 90 l *200 I 210 I 220 I 230 I 240 I 250 I 26a I 270 I 280 I 29a I 3 oo I 310 I 32a I 330 J 340 I 350 I 3 6a I V arial::le I Total a.a 0.4 a.s 0.3 0.8 0.5 0.3 0.4 0.3 0.3 0.4 0.7 0.4 0.7 1.1 o.s o.o 1. 3 ,
* 6 0.9 a.a 0 .1 0.3 o.o 0 *. , 0.4 o.4 o.s 0.4 0.4 0.4 0.3 o.o 0.3 0.4 0.5 1.5 18.3 0.4 0.4 0. 4 0.7 0.4 0.4 0.3 0.3 o.o 0.3 0.1 0.4 0.1 0.9 1.3 1. 6 1. 1 1.5 1.2 2.0 2.0 1. 6 1. 2 2.3 0.9 1.5 1
* 3 1.2 0.3 o. 8 1. 6 0.9 0.9 0.8 1.3 0.8 0.0 34.3 o.o o.o o. a o.o o. a o.a a. 0 o. a o. 0 o. 0 o. 0 o.o a. 0 o.o o. 1 o. 0 a. 7 0.9 3. 0 2.0 1. 6 3.1 2.8 1.6 1 .. 1 0.8 a.4 a.3 o. 1 o. 1 0.4 0.7 1. 1 o. 9 o. 9 1. 3 o.o 24.1 o.o o.o a.o o.o .o.o o.o o.o o.o o.o o.o o.o o.o o. 0 o.o o. 0 o.o o.o o.a a.3 0.3 o.s a. 3 0.3 o.o o. 1 a.o o.o a.a o.o o.o o.o o. 0 o.o o. 0 o.o o. 0 o.o o. a o.o . o. 0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.a a.a a.o o.o o. 0 o.o a.a o.o o.a a.a o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 1.7 o.a Percent Calm: Note: Sensor height is 10 feet. Tabulated values are percent of 744 hours of data. I Average Total I Speed '-o. 4 1 o.a 1 o. 9 I 0.9 I 1. 2 I 0.9 I o. 5 I 0.7 I o. 3 I o.s I o.s I 1. 1 . J o. 5 I 1. 6 I 2. 6 I 2.2 I 1.7 I 3.8 I 6.0 I 5. 2 I s. o I 5.1 I 4. 6 I 3.9 I 2.3 I 2. 7 t 2. 2 I 2. o I
* a.a 1 1. 3 I 2. 4 I 1. 9 I 2 .. o I 2.0 I 2. 7 I 2.7 I 2.3 I 78.4 21. 6 100.0 5. a 3. 4 3.0 4. 6 2.9 3. , 3.0 3. 4 1.3 3 .. 2 1. 9 3.2 2.7 3 .. 9 4. 1 4.3 7. 0 4 .. 8 6.7 7.5 7.5 8.1 8.9 7.3 7.7 5.8 5.6 s. 0 3. 8 4.9 5.5 s. a 8.0 6.4 6.4 6.6 . 2 .. 8 . 4. 7 *-, i I .l *1 ] -1 . ) J "") \ __ I l 'J *: _J I i _j ( ) I I __ _)
* 153 . Table 6. 2H Palisades Network
* Percentage Frequency of Wind Direction and Wind Speed at Station P07A for August 1977 L .. \ . Ii ind I Wind Speed, miles per hour I Average l ' Direction I 1-3 4-7 8-12 13-18 19+ Total I Speed +--0 11) t 0.1 0.7 a.a o.o o.o o.a I 4.7 I 020 .. I o. 9 0.4 o. 0 o. 0 o.o 1. 3 I 2.9 0 30 I o.s o.o o.o o.o o.o 0.5 I 1 .. 7 040 l 0 .. 3 0.4 o. 0 o.o o.o 0.7 I 3. 1 0 50 J o.s o.o o.o o.o o.o 0.5 I 1. , 060 I 0.3 o*. 3 o. 0 o .* 0 o. 0 o.s I 2.5 070 I 0.5 0. 1 o.o o .. o o.o 0.7 I 2. 2 ' 080 I 0.3 o.o o. 0 o. 0 o.o 0.3 I 1.6 ! 0 90 I 0.7 o.o o.o o.o o.o 0.7 I 2. 4 ( . 100 I o. 8 o.o o. 0 a. o o.o 0.8 I 1. 4 1 10 I 1 c: 0.3 o.o o.o o.o
: 1. 7 I 1. 9 '. i 120 I 2.0 0.8 . o. 0 o.o o.o 2. a I 2.8 \. 1 30 I 1.5 1. 2 o.o o.o o.o 2.7 I 3.6 , &#xa3;t 0 I 0.7 2.7 o. 1 o. 0 o.o 3.5 l 4. 6 r 150 I 1.9 2.3 0.3 a.a o.o 4. 4 4. , 1 60 l o .. 8 2.4 0.9 o. 0 o.o 4. 2 5 .. 8 170 I o.s 2.6 1. 5 o.o o .. 0 4.6 6. 4
* 1 80 I 0.7 1 .. 3 . 2. 3 a. 3 o. 0 . 4.6 7.5 . 190 I 1. 3 2.0 1.3 o.o o.o 4.7 s. 3 2 00 I 0.7 2.0 1. 7 o.o o .. 0 lJ. lJ 6.2 210 I o .. 3 0.8 0.3 o.o o.o 1. 3 fl. 9 220 I 0.7 1. 1 o. 1 o.o o.o ,
* 9 4 .. 6 230 I 0.3 1.9 0.1 o.o o.o 2.8 5.4 2 40 l 0.3 1.6 0.1 o.o o.o 2.0 5 .. 3 250 I 0.9 0.8 0.1 o.o o.o 1. 9 3.9 260 I 0.4 ,
* 6 0.7 o.o o. 0 2.7 s. 9 270 I o.s 0.9 0.7 o.o o.o 2. 2 6.2 280 I 0.0 1. 3 0.3 o.o o.o 2. 4 I 4.7 290 I o.s 1. 1 1.s o.o o.o 3. 1 I 6.8 \ . 3 00 I 0.4 o. 9 o. 7 0.3 o.o 2.3 I 6.9 310 I 0.3 1.5 0.7 o.o o.o 2. LJ I 5.7 320 I 0.5 1. 2 0.3 o.o o.o 2. 0 I 4.9 330 I 0.7 0.4 o.o o.o o.o 1. 1 I 3.3 340 I a.a 0.1. o. 0 o. 0 o.o 0.9 I 2.5 350 l 0.4 0.4 o.o o.o o.o o.s I 3.7 3 60 I 0.9 0.3 o. 0 o.o o.o 1. 2 I 2.0 Variable I 4.7 0.5 o.o o.o o.o 5.2 I 1. 9 Total I 30.0 36.0 14.2 o.s o.o 80.8 I 3.8 Percent Calm: 19. 2 100.0
* Note: Sensor height 10 feet. Tabulated values are fercent cf 7&#xa3;tij hours of data.
154 Fig. 6.lH WIND ROSE -AUGUST 1977 PALISADES NUCLEAR PLANT -STATION P03A N \JINO SPEED IN MILES PER HOUR 0\ 1-3 a-12
==-----==1s=-1=a
=---19+ 1 l I ' l ] l I _J *1 E __ ; , __l '! \ '
Fig. 6.2H 155 w*IND ROSE -AUGUST 1977 !
* I PALISADES NUCLEAR PLANT -STATION P07R [ ., N ( \ ., I, *, I * .. \ ( : (
* E \ !. . * \JIND SPEED IN MILES PER HOUR @ l-a. . . 4-7 .. a-12 ..
* 1a-1a 1S+
156 Table 6. n Palisades Network Frequency of Wind Direction and Wind Speed .: at Station POJA for SE:p t. 1977 l Wind I Wind Speed, miles per hour !Average ') Direction I 1-3 4-7 8-12 13-18 19+ Total I Speed ,/ + 010 I 0.3 1
* 7 o.o o. 0 o.o 1. 9 I 4.8 020 I (J. 6 0.8 J.J '.). 0 o.o 1. 4 I 3.8 -1 03 0 I 0.6 0. 4 u. 1 c.o o.o 1
* 1 I 3.3 ) 040 I 0.6 0. 1 o. 0 o. 0 o.o 0.7 I 2.0 0 5) j iJ
* 4 0.3 0.:) 0.,) :) * :J 0.7 I 3.2 l 060 I 0.8 0.8 o.o o.o o.o 1. 7 I 3. 5 ) J 7J I c . 1 0.6 O.J 0. :J o.o :)
* 7 I 3.8 080 I o. 3 0.7 0. 1 o. 0 o.o 1
* 1 I 5.4 *J 90 I 0
* 1 0
* 1 0.3 *J. 0 0 * :) :J. 6 I 6. 1 1 00 I 0.7 1. 1 o. 8 o. 0 . o.o 2.6 I s. 5 110 I G.8 1. 7 0.8 O.J *). 0 3.3 J 5.2 120 j 0.4 1
* 1 0.3 o.o o.o 1.8 I s. 2 'l 1 ]l) I 1. 1 J.6 0.4 0.:) O.J 2 .. 1 I 4.0 -140 I 0.6 0.8 o. 3 o. 0 o.o 1. 7 I 5.1 15) I 0.4 1. 0 0.4 0. ') o.o 1. 8 I s. 4 '160 I 0.8 i.7 o. 1 o. 0 o.o 2. 6 I 4.2 170 I 1
* 3 1. 8 o. 3 o. 0 J .. O 3.3 I 4.3 -: :so I 0.6 1
* 4 0.6 o.o o.o 2.5 I 5.1 19'.J I 1. 1 2. 4 C.8 0.) J.O 4. 3 I 5. 1
* 200 I 0.7 1. 4 o. J 0.1 o.o 2. 5 l 5.6 ... J 2.1 o* I 0. 1 1
* 0 0.7 0.3 o.o 2. 1 I s.o 220 l o.o 0.8 1. 4 0.3 o.o 2.5 I 9.0 23) I 0.4 1
* 3 1. 1 0.3 0.:) 3 .. 1 I 7.0 ..) 240 I o.o 1. 5 1. 0 o. 0 o.o 2. 5 I 7.5 2 50 I 0. 1 0. 8 G.8 0. ,J 0. i) 1. 8 I 7. 3 260 I 0.3 0.4 1. 0 a.a o.o 1. 7 I 7. 9 I 270 ,..., *"I 0.6 0.3 o.o ') . () 0.8 7.4 I I v. J I _ __) 2 80 I o .. 1 0.8 o. 1 o. 1 o.o 1. 3 I 6.6 29) I f)
* 0 1. 1 0.6 0.4 o.o 2. 1 I 8. 2 300 I 0.1 0.6 1. 4 0.3 o.o 2. 4 I 8.8 i 310 j 0. 1 0. 6 2.4 c. 1 O.J 3.2 I 8.4 J 320 I c . :) 1. 1 J.J 0. 1 o.o 4.6 I 8.4 330 I 0.3 1
* 7 2.4 c.o a.o 4.J I 7.8 340 I 0. 4* 1. 3 o. 8 o.o o.o 2. 5 I 6.7 35') I 0.3 o.e 1
* 3 :)
* 1 o.o 2.5 I 7.7 3 60 I o.o 0.6 0.7 o.o 0.0 1. 3 I 7.8 Va:ciatlel 1
* 1 0. 4 0.J o.o 0.:,) 1. 5 I 3.J ---+ +----Total I 15. 7 35.7 24.9 2.2 O.Q 78.5 I 4.9 Percent Calm: 21. 5 100.0 Note: Sensor height is 10 feet. Tabulated values are fercent cf 720 hours of data.
* 157 6 .. 2I Falisades Network
* Percentage Frequency of Wind Direction and Wind Speed at Station P07A for S*:pt. 1977 , . Wind Wind Speed, miles per hour i I I Average Direction J 1-3 4-7 8-12 13-18 19+ Total I Speed -------+ +----r-010 I 1.0 ;)
* 4 0. i,) o.o o.o L q. I 2.2 020 I 0.7 0. 1 o. 0 o.o o.o o .. 8 l 1.8 030 I 0.8 0. 1 c.o o.o :)
* 0 1. 0 I 1. 8 040 I o .. 8 0. 4 o. 0 o.o o.o 1.3 I 3.2 0 5) I 1
* 0 0.6 0. iJ 0. *) iJ. 0 1. 5 I 2. 4 '. 060 I 0.4 0.3 o. 0 o.o o. o* o. 7 I 2.5 J 71) J 1. 5 0.6 O.J o.o ).J 2. 1 I 2.4 , . 080 I 1. 7 0. 3 o. 0 o.o o.o 1. 9 I 2 .. 1 I !) 9D I 2. 1 J. 8 J.O 0 ... ) o.o 2. 9 I 2.6 1 00 I 0.7 1
* 5 o.o o.o o.o 2.2 I 4. 1 11 a I 1.3 L5 0. i) Q. *J ') . ') 2.8 I 3.8 120 I 1 .. 1 0.8 o . .J o.o o.o 2. 2 I 3.8 1 30 I 1. 9 1. e o. 4 G.0 o.o 4.2 I 4. 1 140 I 1. 0 1
* 1 o. 0 o. 0 o.o 2 .. 1 I 4.2 1 S*J J 0.7 2. 1 u. 1 o.o O.J 2.9 I 4.9 160 I 1
* 1 3.8 o. 6 o.o o.o 5. 4 J 5 .. 0 170 l :')
* 7 3. 2 C.6 o.o* o.o 4.5 I 5.2
* 1 80 I 0.4 1
* 3 o. 6 0.0 o .. 0 2. 2. I 5.8 19) I ). 4 1
* 5 c.3 0. -J .J .. J 2. 2 I 5. 3 200 J 0.4 1. 1 o.o o .. 0 o.o 1. 5 I 4.3 21 '.) I C.7 O.J C.6 0.1 o.o 1., 3 I 4.9 i 220 I 0.3 0.8 0.6 o.o o.o 1.. 7 I 6.3 i I 2 30 J 0. 3 J.4 0. 1 ']. :) J.O *')
* 8 l 4.4 240 I o .. 3 0. 4 o. 0 o .. 0 o.o 0.7 I 4.9 2 St) I .J. 1 1. 1 . 0. 4 o.o o.o 1. 7 . I 6.2 260 I 0.6 1
* 1 o. 7 o .. 0 o.o 2 .. 4 I s.s 27') I 0.6 0.6 0. 1 0. ') '.). ) 1. 3 I 4.5 2 80 I 0.3 2.6 o .. :.+ o. 0 o.o 3. 3 I s .. 8 290 I 0
* 1 1. e 1. 5 'J. J O.J 3.5 I 7.2 300 J o. 4 1. 9 0 & i o.o 5. 8 I 7.7 .... .J 310 I 0.8 1
* 7 1. 0 0.3 o.o 3.8 J 6.8 320 l 0.6 1. 1 u. 1 o.o t) * ') 1.8 I 4. 1 330 l 1. 0 1. 1 o. \) o. 0 o.o 2. ! I 3.7 3 40 ! 0.8 0. 1 0 .'j 0 . ') o.o 1e 0 I 2.2 350 I 1
* 1 1o 0 o.o o.o o.o 2. 1 I 3.0 360 I 1. 3 0. 1 0.0 o.o :'.). 0 1. 4 I 2.5 Variable]
2.6 o. 7 0.0 o .. 0 o.o 3 .. 3 I 2.2 -+ Total I 31.6 4 0. 1 11. 7 o. 4 o .. 0 83.7 I 3.8 :. -Percent Calm: 16. 3 -10'J.:)
* Note: SEnsor height is 10 feet. Tabulated values are fErcent of 719 hoars Of data, 158 6.lI WIND ROSE SEPTEMBER 1977 PALISADES NUCLEAR PLANT -STATION P03A N UIND SPEED IN MILES PER HOUR 1-3 a-12
=---1S+ l ---, i I , *1 i ! . ___ , ! _J l J I ' ' i .J
* Fig. 6.2I 159 WIND ROSE SEPTEMBER 1977 * .
* PAL I SADES NUCLEAR PLANT _:. STAT I ON P07A N j (
* E * \JIND SPEED IN MILES PER HOUR @ ,. J-3 4-7., s-12 . . . 1s-1a . l9i: .
160 Table 6. 1J Palisades Netvork Percentage Frequency of Wind Direction and Wind Speed II ind Direction I at Station P03A for October 1977 iind Speed, per hour 1-3 4-7 8-12 13-18 19+
010 I --c.u 0.1 0.4 0.9 0.3 o.o o.s 0.1 0.4 o. 0 o.o 0.3 0.3 0.4 0.4 o. 7 0.9 o. 8 o.s o. s 0.1 o.o 0.3 0.1 0. 1 o.o 0. 1 o. 1 0. 1 o.o o.o 0.1 o. 1 0.4 0.4 0.4 0. 1 1.5 1.9 1. 5 0.4 o.o 0.3 0.4 0.9 o.s 1.2 0.9 0.8 0.7 a.a 0.4 1. 1 1. 1 2.0 1.3 0.8 0. 1 0.5 0.7 o.s 0.8 0.5 o.s 0.1 0.1 o.o 0.3 0.9 0.8 o.a I Average Total I Speed 020 I 030 I 040 I 050 I 060 I 070 1 080 I 090 I 1 oo I 11 o I 120 I 1 30 I 140 J 1 so I 160 I 170 I 1 80 I 190 I 2 oo I 210 I 22 o I 230 I 2 40 I 2 50 I 260 I 270 I 280 I 290 J 3 00 J 310 I 3 2.0. I 330 l 340 l 350 I 3 60 . I Varial:le I Total 10.3 0. 1 1. 1 0.3 27.2 0.9 1. 1 0.7 0.8 o.s o.8 o. 1 o.s 2.0 1. 5 0.4 o. 5 0.3 o. 4 1. 3 1. 3 1. 5 1.1 1. 3 s 0.7 o. 9 1.7 1. 6 2.0 1.1 0.4 0.4 0.1 0.7 1. 2 1. 1 1.5 1. 9 2.3 0.7 o.o 36.0 0.1 o. 0 o.o o.o o.o o.o o.o o. 0 o.o o. 0 o.o o.o o .. o 0.3 o.o o.o o.s 0.1 o.o o.o o.o 0.3 0.3 o.*9 1. 2 o. 4 0.1 o. 1 0.5 o. 5 o.o o. 1 o.s o. 8 1. 1 o. 4 o.o o.o o.o o .. 0 o.o o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o. 0 o.s o. 5 o. 1 o.o o.o o.o o.o o.o O.J o.o o.o o.o o.o o.o o.o 8.5 1.2 Percent Calm: Note: Sensor height is 10 feet. Tabulated values are percent -0f 744 hours of data. 2. 6 I 3. 1 I 2. 6 . I 2.2 I o. 8 I 1. 1 I 1. 1 1 1. 6 ' 3.2 I 2.7 I 1. 3 I 1.6 I 1. 2 I 1. 9 I 2.2 I 3.1 I 4. O I 4. O I 3.2 I 1. 9 I 0.9 I 1. 7 I 3.5 I 3. 8 I 4.3 I 2.0 I 1. 2 I 0.8 I o
* 9 I 1. 2 I 1. 5 I 2. 3 I 3.0 I 3. 9 I 3. 9 I 2.6 I 0. 4 l 83.2 16. 8 100.0 7.9 6.5 6. 1 5.1 6.4 a .. o 4. 2 6.3 7.7 7.5 6. 3 6. 3 5.4 6.3 7.8 6.5 7.3 6.3 6.6 6.1 8. 1 9. 7 10.2 11.7 11. 0 9.6 7.8 8.3 10. 2 11.6 9.4 8.2 8.4 9.4 10.6 7.5 3.5 6.7 --1 -, e: l *1 j .... ., I ] l .J -i-J *1* _) j i J l .. J
* 161 Table 6. 2J Palisades Network
* Percentage Frequency of Hind Direction and Wind Speed at Station P07A foe October 1977 Wind I Wind Speed, miles per hour !Average Direction I 1-3 4-7 8-12 13-18 19+ Total I Speed +-0 10 I 0.7 0.7 o .. 8 o.o o.o 2.2 I 5.5 020 J o.s o .. 9 . o. 1 o.o o.o 1. 6 I 4. 6 0 30 l 0.4 0.9 0.3 o .. o J.O 1. 6 I 4.8 040 I 0.3 0.8 o. 5 o. 0 o.o 1 .. 6 I s. 6 050 I 0.4 o.s o.o o.o o.o 0.9 I 3.7 060 I o. 9 o.o o. 0 o.o o.o o. 9 I 1.9 0 7i) I 0.8 0.4 o.o o.o o.o 1. 2 I 2.8 080 I 0.5 0.8 o.o o. 0 o.o 1.3 I 3.9 0 90 I o.s 1. 3 o.o o.o J.O 1. 9 I 3.-6 1 00 I o .. 5 2 .. 2 o. 0 o.o o. 0 2.7 I 4.6 110 I 0
* 1 2.4 0.4 o.o o.o 3.0 I 6.2 I 120 I 1. 1 0.9 o .. 3 o. 1 o.o 2.4 I 4.7 130 J 1.2 0. 1 0.9 0. 1 o.o 2.4 I 5.9 140 I 0.9 1.2 1.1 o.o o.o 3.2 I 5.8 150 I 0.8 1. 5 o .. 9 o.o o.o 3. 2 I 5.6 160 I o.8 3. 1 1. 5 o. 0 o.o 5. 1+ I 5.9 170 I 1 .. 1 1
* 6 0.8 0.3 o.o 3.8 I 6. 1 180 I 0 .. 1+ 1. 3 1 .. 9 0.0 o. 0 3.6 I
* 190 I 0.5 0.7 0.7 o). 1 o.o 2.0 I 5. 8 200 l 0.7 0.7 o. 1 OG 0 a .. o 1. 5 I 1+. 5 210 l 0.1 0.5 0.4 . 0.3 o.o 1.3 I 8.0 220 I o. 4 0.7 o. 1 0.3 o.o 1. 5 I 6 .. 8 230 I 0. 1 0.9 1. 2 a.o o.o 2.3 I 7.0 240 I 0.4 1
* 1 o. 7 o.o o.o 2.2 I 6.4 2 50 I 0. 1 1. 1 0.3 o.o o.o 1. 5 I 5. 9 2 60 I 0.4 1.3 o.s o.o o.o 2.3 I 6. 1 270 l 0. 1 0.8 o .. s o.o o.o 1.5 I 6.2 280 J o. 1 0.3 1. 1 0.1 o.o 1. 6 l 8.2 290 l 0. 1 0.9 1.J 0.3 o.o 2. 7 I 8.9 3 00 I o .. 1 0.5 1.6 o.o o.o " . "'* .... I 8.2 310 I 0. 1 0.4 1.3 1.2 o.o 3. 1 I 11. 2 320 I o. 1 1.5 0.9 0.4 o. 0 3.0 I 7.6 330 J 1. 1 1. 2 0.9 0.1 o.o 3.4 I s. 8 340 I 1.2 0.9 o. 7 0.1 o. 0 3.0 I 5.3 350 I 0.4 1. 2 o.s o.o o.a 2.2 I 5.9 360 I 0.4 0.8 0.1 o.o o.o 1. 3 I s. 1 Va:tia.ble]
0.8 0.5 o.o o.o o.o 1. 3 l 2.9 Total I 19 .. 6 37.G 22.7 3.5 o.o 82.8 I 5.0 Percent Calm: 17.2 -100.0 Note: Sensor height is 10 feet. Tabu.lated
* values are Fercent of 744 hours of data.
162 Fig. 6.lJ WINO ROSE -OCTOBER 1977 PALISADES NUCLEAR PLANT -STATION P03R N E*.l . .I i SPEED IN MILES PER HOUR (x\ 1-3 a-12 J
* 19+
Fig. 6.2J 163 WIND ROSE -OCTOBER 1977
* PALISADES NUCLEAR PLANT -STATION P07R I I . ' . 1-* ! I I : .. \ . ,-* ; ' . I I i -*
* N E SPEED IN MILES PER HOUR Q 1-3 a-12 * . CALM ,. -====--====--
4-7 13-18 19+
164 Table 6. 1K Palisades Network Percentage Frequency of Hind Direction and Wind Speed at Station P03A for November 1977 ilind I Wind Speed, miles per hour !Average Direction I 1-3
* 4-7 8-12 13-18 19+ Total I Speed 010 l 0.2 0.2 0.2 0.2 o.o 0.6 I 020 J o.o 0.3 0.5 o.o o.o 0.8 I 030 I o.o 0.2 o.o 0.0 1.6 I 040 *I 0.3 0.8 0.6 a.a o.o 1.7 I oso I o.s 1.7 0.3 o.o a.a 2.5 I 060 I 0.2 1.7 0.5 0.0 O.O 2.4 I 070 I o.s 3.9 0.8 o.o o.o 5.2 I 080 I a.6 2.1 1.1 o.o o.o 3.8 I 090 l 0.2 1.6 1.1 o.o
* o.o 2 .. 8 I iOO I 0.8 0.6 0.2 O.O O.O 1.6 I 110 I 0.6 1.1 0.2 a.o o.o I 120 I 0 *. 8 1.4 0.8 a.2 0.0 3.2 I 130 1 o.3 2.4 o .. 8 o.s o.a 3.9 1 140 1 a.2 2.0 a.3 a.a o.o 3.3 1 150 I c.s 2.1 1.9 0.2 o.o 4.9 I 160 I 0.6 2.2 2.7 a.2 O.O 5.7 I 170 I 0.0 1.6 1.7 0.2 O.O 3.5 I 180 I o.o 0.9 1.4 0.9 o.o 3.3 I 190 I o.o 0.2 0.9 0.5 o.o 1.6 *I 200 1 0.2 o.J 0.2 0.2 o.o a.a 1 210 I 0.2 o.o 0.3 0.6 o.o 1.1 J 220 1 a.a a.J o.6 1.1 o.o , 2.1 1 230 I 0.2 Q.S 0.2 0.6 0.0 1.4 I 24a I 0.2 0.3 0.2 0.9 0.0 1.6 I 2so 1 a.a 1.9 o.9 0.2 3.3 1 260 I 0.2. 0.3 1.6 . 1.3 0.3 3.6 I 270 J o.o 0.2 2.8 2.4 o.o 5.4. I 280 I o.o 0.2 0.9 1.4 o.o 2.5 I 290 I o.o 0.5 0.8 0.9 o.o 2.2 I 300 I o.o 0.3 1.1 0.3 o.a 2.5 I 310 l o.o 0.6 0.9 0.9 0.2 2.7 I 320 I 0.3 0.3 0.5 0.9 o.o 2.1 I 330 t o.o o.o o.3 a.a o.o 1. 1 1 340 I 0.3 0.3 0.5 0.9 o.o 2.1 I 350 J o.o 0.6 0.5 o.o o.o 1.1 I 360 I o.o o.o 0.2 o.o 0.6 I Varial::leJ 0.6 0.5 0.0 0.0 O.O 1.1 I Total 8 c:;. *-33.8 30.6 17.S l.4 Percent Calm: Note: Sensor height is 10 feet. Tabulated values are fercent cf 634 hours of data. 92. 1 7. 9 100. 0 7.7 7.2 a.a . 6. 3 5.3 6.5 6.0 5.9 6.7 4. 5 4. 9 . 6.1 6.7 5.6 7. 1 7. 6 7.4 9.5 11. 4 7.5 12. 1 ., 3.1 9.5 1*0. 8 11.7 12. 0 12.0 12.8 11. 7 13. 4 12. 6 11. 0 13.4 9.7 8.4 8.3 2. 6 8.0 , ** -] -1 ) I I .\ J -J .: ... 1 i -_I I I .-1 I I --,
* 165 Table 6.2K Ealisades Network
* Percentage Frequency of Rind Direction and Wind Speed at Station P07A for November 1977 r-' -Ii ind I . Wind Speed, miles per hour !Average Direction I 1-3 4-7 8-12 13-18 19+ Total I Speed t r**-0 1;J J C.6 0. , 0.3 o.o o.o 1. 0 I q_3 020 I 0. 1 0.4 0.1 o. 0 o.o 0.7 I 5.6 OJ:) I 1. 1 0.3 0.3 o.o o.o 1. 7 I 3. 6 040 I 0.8 0.6 0.1 o.o o.o 1.5 I 3.7 r) 50 I 0.8 2.2 o.o o.o o.o 3. 1 I 3.9 060 I 1. 4 2.6 o.o o. 0 o.o 4.0 I 3 .. 9 070 J 1. 0 1.5 o.o o,.o o.o 2.5 I 3.7 r-080 I 1. 0 0.4 o.o o. 0 o.o 1. 4 I 2.8 i I) 90 l 2. 1 o.c o.o o.o o.o 2.-1 I 1. 8 I '* 100 I 1.3 0.3 0.1 o.o o.o 1. 7 I 3.2 11 o* I 1.0 1. 5 0.4 o.o o.o 2.9 I 4.9 120 I 1. 7 2.1 o .. 7 o. 0 o.o 4.5 I 4.6 130 I 0.8 2.6 1. 1 O.J o.o 4.6 I s. 3 1 40 I 1. 7 2.1 2. 1 0.3 o.o 6. 1 I 6.6 I -150 I 0. 1 2.8 2.2 0.3 o .* 0 5. 11 I 7.5 I . 160 I 1.0 1.4 0.7 0.1 o. 0 3. 2 I 5. 8 \ r l _, 170 I 0.6 0.4 0.7 0.1 o.o 1. 8 I 7. 1 1 80 I o. 7 0.6 0.6 1.0 o.o 2. 8 I 8.3
* 190 I 0.3 0.7 o.a 1. 0 o.o 2.8 I 9. 1 2 00 I 0.3 0.3 0.7 o.o o. 0 1.3 I 6., 9 210 I o.o o .. 4 0.3 0.1 o.o 0.0 I a. *1 220 I 0.3 0.3 0.1 o. 0 o.o 0.7 I s. 2 230 I o.o 0.1 0. 1 o.o o.o 0.3 J 8.7 24a I a.a 0.7 0.3 o. 0 o.o 1. 0. I 6.8 ' 250 r 0.4 1. 9 1. 1 o.o o.o 3.5 I 6.5 ! I 26a I o.o 1.3 1. 5 0.1 o.o 2.9 I 8. 1 270 I 0.6 1. 4 4.0 0.3 o.o 6.3 I *8. 4 2 aa I 0.3 1.3 2.2 1.4 0.0 5.2 I 9.7 290 I o.o 0.1 0.3 1.3 0.1 1.8 I 14.7 3 00 I o. 0 0.1 o. 1 0.8 o.o 1.1 I 13. 4 310 I 0. 1 o.o 0.4 . 0. 3 o.o a.a I 10. 3 32a I 0.3 o. 4 o. 7 o.o o.o 1. 4 I 7.0 330 j 0.4 0.3 o.o o.o o.o 0.7 I 3. 8 340 I 0.4 o.o 0.6 o. a o.o 1.0 I 6.6 350 I 0.4 1. 0 0.1 o.o o.o 1. 5 I 4. 6 3 60 I o. 0 0.6 a.1 o.a o. 0 1.3 I 7.5 Varial:le1
: o. 1 o.o o.o 0. ') o.a 0. 1 I 1. 5 ; f, Total I 21.6 32.9 23.7 7. 1 0.1 85.4 I s. s { j Percent Calm: 14. 6 -. --100.0 Note: Sensor height is 10 Tabulated
** values are percent cf 718 hours of data.
166 Fig. 6.lK --,_ 1, WIND ROSE -NOVEMBER 1977* PALISADES NUCLEAR PLANT -STATION P03A
* N SPEED IN MILES PER HOUR (;:"'\ 1-3 9-12
=---==1=3-=18==---
19+ ,\_ * .. { i .. ! : i \ : ( ! -_j \ .I ; I* I
* Fig. 6.2K 167 WINO ROSE -NOVEMBER 1977
* PALISADES NUCLEAR PLANT -STATION P07A ,-. *, ! i.\ . N I ' I . I
* E i . **
SPEED IN MILES PER HOUR (';\ 1-3 s-12 .
' 19+ 
---168 Table 6.11 Palisades Network
* Percentage Frequency of Wind Direction and Wind Speed .I, at Station P03A for December 1977 *; ' \\ Hind I Wind Speed, miles per hour I Average Direction I 1-3 4-7 8-12 13-18 19+ Total I Speed +-010 I 0.2 0.4 0.6 o.o o.o 1. 2 I 6. 6 J 20 I 0.2 1. 8 0.8 o.o o.o 2. 8 I 5. 6 r' .. \ 030 I o .. 6 1. 0 o. 4 o.o o.o 2.0 s. l.J I I ) ') 40 I 0.4 1.0 0.4 o.o o.o 1. 8 I 5.7 050 I 0.2 o.o o. 4 o.o o.o o. 6 I 8. 1 J 6,) I 0.4 0.4 1. u o.o 0 .1.) 1.8 I 7.3 01a I o. 6 1. 4 1. 6 a.a o.o 3.6 J 6. 3 080 I 1. 2 0.8 1. 2 o.o o.o 3.2 I 5.6 090 L 0.6 0.4 o. 4 o.o o.o J.4 I 4. 9 \ ; 'I 100 I 0.8 1.0 O.J 0.2 J.O 2 .. 0 I s.o \I 110 I 0.2 1.4 1. 8 o.o o. 0 3.4 I 7.4 120 I 0.4 0.8 4.2 o.o o.o 5.4 I 8. 1 -") 130 I 0.4 0.2 1. 4 o.o o.o 2.0 I 7.9 I 1 40 I 0.8 o.s 0.2 o.o o.o 1. 8 I 3.8 I 1 50 J o.o 1.6 1.8 a.2 o.o 3.6 I 8.2 160 I o.o 1.0 0.8 o.o o.o 1.8 I 6.7 170 I 0.2 1.0 o. 8 0.6 o.o 2. 6 l 8. 0 180 I 1.0 1. 8 1.6 0.2 o.o -4.6 I 6.7 1 90 I 0.2 1. 6 4. 0 a.a o.o . 5. 8 I 8.1 *; 200 I o.o 0. 6 3.2 0.6 o.o 4.4 I 10. 3 21a I 0.2 1. 4 1. 6 1. 4 o. 0 4.6 I 10.-0 220 I o.o 1. 2 0.6 0.4 o.o 2.2 I 8.7 23 0 I o.o 0.6 1. 0 1. 4 o.o 3.0 I 11.5 2 40 J o.o o.o 0.6 1.2 0.6 2.4 I 16.0 250 I o.o o.o 0. 4 2.0 o. 6 3.a I i 5. 8 260 I o.o 0 * :) 1. 2 2.0 1. 0 4.2 I 15.0 2 70 I o.o 1.2 1.0 3.0 1. 4 6.5 I 14.5 .. _; 280 I 0.2 o.o 0.6 1.2 0.2 2.2 I 12. 2 2 90 I o.o o.o-Q.2 0.8 0.2 1.2 I 1 s. 4 300 I o.o 0.4 0.6 2.2 o.o 3. 2 I 1 3 .. 2 310 I 0.2 1.2 1.2 1.2 o. 0 3.8 I 9. 7 320 I o.o 0.2 o.o o.o o.o 0.2 I 4. 7 330 I o.o 1.2 0.2 o.o o. 0 1. 4 I 5.7 340 I 0. ') 0.6 0.2 o.o o.o o.s I 6.3 2 50 I 0.2 0.4 o.o o.o o.o 0.6 I 3 .. 6 360 I 1. 0 0.6 0.4 o.o o.o 2. () I 4. 4 ( \ Variatlel
: 1. 2 0.2 o. 2 o.o O;. 0 1.6 I 3.0 ,* ( -+ Total I 11. 3 28.0 3 6 * .3 18.5 4.0 98.0 I 8. 9 Percent Calm: 2. !) 100.0 Note: Sensor height is 10 feet. Tabulated values are percent of 504 hours of data.
* 170 Fig. 6.lL WIND ROSE -DECEMBER 1977 ., I ' ! PALISADES NUCLEAR PLANT -STATION P03A
* N SPEED IN MILES PER HOUR r:;:'\ 1-3 s-12 1S+
* 1'. ,I *--\ \ "' ---.. J : J * ...... _,, . j
* 1 . J __ _) *' __ I **
Fig. 6.2L 171. WIND ROSE -DECEMBER 1977
* PALISADES NUCLEAR PLANT -STATION P07A r' ** . t I . ! . .. .--._ I I ' . t! . \ *' ,** .
* t ' .
* N E 1S+
172 VII. VISIBILITY Visibility is measured at stations P03A and P07A with visiometer systems manufactured by Meteorology Research Incorporated, Palo Alto, California.
Visibility data are recorded as voltages, converted to distances, and reported to the nearest 0.1 km. Digitized data are processed in terms of hourly values for tabulation.
The data are classified by episodes during which an obstruction to occurred . I and are summarized for each month. Visibilities of 3 km, 1 km, and 0.5 km were used as critical distances for determining episodes for the following reasons: 1) The visiometer system was not sensitive to visibility changes which occurred at ilities greater than about 3 km. In addition, the operational significance of visibilities greater than 3 km is small. 2) As visibility decreases to 1 km or less, its operational significance increases markedly.
If the obstruction is caused by fog, visibilities of 0.5 km or less are classified as heavy fog at National Weather Service Stations.
In the data tabulations, the "onset" of an episode is the time at which the visibility decreased below 3, 1, or 0.5 km, having remained greater than that distance for at least 1/2 hour prev.iously.
The "end" of an episode is the time at which the visibility increased above 3, or 0.5 km and remained greater than that distance for at least 1/2 hour. "Duration" is defined as the total I I \ I *-I 'time elapsed between "onset" and "end". I; ___ / * 
"Accumulated time" is the total time during which the
* visibility was actually below that distance during a given episode. It can be noted that "duration" and "accumulated time" may differ significantly during periods of highly \i . i. ' .I . variable visibility.
The type of visibility obstruction is given for each episode of visibility less than 3 km, along with the minimum visibility and its time of occurrence.
A preliminary analysis of visibility data obtained during snow has shown occasional episodes with significant reductions in visibility but no measured precipitation associated with them. Possible reasons for this behavior, which occurs mainly during gusty winds, are.that (1) the visibility may indeed be reduced, but sufficient snow has not entered the precipita-173 tion gage because of the gusty wind and/or (2) the water equivalent of the snow did not exceed the 0.01 inch sensitivity of the -* gage and/or (3) the actual visibility is greater than that ' \ -* indicated by the visiometer, which may over-respond to snow. The type of obstruction to visibility was determined on the basis of (1) hourly weather observations made at Benton Harbor Airport between 0630 and 2030 each day and at Muskegon, Grand and South Bend on a 24-hour basis and (2) ments of precipitation and other variables within the ical network. The visiometer at P07A was out of service in January and February 197*6*
174 DAY OBSTR TYPE ONSET END (EST) 21 SNOW 2255 2359 22 SNOW 0000 0004 23 SNOW 1033 1037 TABLE 7. 1A VISIBILITY OBSTRUCTION
.\T STATION POJA JANUARY 1977 INSTROl!EMT IN OPERATION:
1200 21 1700 2 6 2005 26 2350 26 0500 27 0635 27 1100 27 1500 27 233 5 27 'IOTAL HOURS OF OPERATION:
'S 1 Kl'I JAN-1635 JAN-1930 JAN-2J05 J AN-0425 JA N-0605 JAN-1025 JAN-1310 JAN-2235 JAN-0100 150.6 ACCOlHJLATED EPIS_9DE ACCUMULATED 26.JAN 26 JAN 26 JAN 27 JAN 27 JAN 27 JAN 27 JAN 27 JAN 28 JAN SJ. Kn EPISODE DORATIOH (BR)
SJ Kl! OHSET END DURATION Til'tE .:!'.;1 Kl! ONSET END (HR) (EST) (BR) (HR) (EST)* . 1. 07 o. 40 NONE 1. 07 o. 40 0.06 o. 06 NONE 0.06 o. 06 o. 06 o. 06 NOHE 0.06 0.06 '.S'.045 K!'I. EPISODE ACCUftULATED DURATION TirtE SO. SKl'I (HR) (HR) NONE NONE NONE MIR. VIS FOR DAY (KMl 1.1 2.9 2. 1 TIME OF !IN (EST) 2349 0000 1034. ______________
.;. ______________
-:"-------------------------------------------------------------------------------------------------
..... -25 SMOV 0339 0356 0.28 0.10 MONE NONE o. 7 2036 SNOV 0708 0745 0.61 o, 27 NOHE NONE SNOW 0951 1054 1.06 0.63 NOYE MONE SNOW 1126 1159 0.55. o. 55 NOHE NONE SYOV 2004 2046 o. 70 o. 25 2035 2037 o. 03 0.03 NONE 3.20 1.80 o. 03 o. 03 --------------------------------------------------------------------------------------------------------------------------------
26 SHOi 1101 1634 5.54 4. 64 1203 1222 0.33 0.07 NONE o. 2 1629 1423 1527 1.07 1. 07 1459 1512 o. 22 0.22 1610 1634 a. 40 a. 40 1613 1633 0.33 o. 33 SNOW 1703 1927
: 2. 41 2.09 NONE MONE SNO!I 2006 2305 2.99 2. 88 2039 2305 2. 43 1. 67 NONE SHOW 2347 2400 0.22 o. 22 2347 HOO o. 22 0.22 NOME 11.16 9. 83 4.45 3. 43 0.56 o. 56 -------------------------------------------------------------------------------------------------------------------------------
27 SNOW 0000 0423 4.39 4. 39 0000 0423 SHOW 0458 0807 3.14 J. 14 0458 0603 0644 0759 SNOW 0835 1022 1. 79 1. 79 0835 1022 SNOW 1101 1313 2.19 2. 05 1101 1258 SNOV 2123 2239 1.26 o. 86 SHOii 2337 2400 0.38 o. 38 13. 15 12. 60 28 SHOii 0000 0100 1.00 1. 00 0030 0100 1. 00 1. 00 29. 68 25. 73 PERCENT OF TOTAL HOO BS OP OAT! J KM l'OG (P) o. 0 HAZE (H) o.o DRIZZLE (L) o.o BAIN (R) o.o SNOW (S) 17.1 F&B o.o F&L o.o F&R o.o F&S o.o TOTAL 17. 1 4. 39 1.07 1. 25 1. 79 1. 94 NOHE NOHE 10. 43 o. so o. 50 15. 41 WITH 4.28 1. 07 1.25 1. 25 a. 96 0. 01 o. 50 a. 50 12. 78 VISIBII.:tTl 1 o.o o. 0 o.o o. 0 0. 5 o.o o.o o.o o. 0 8.5 0006 0107 1.03 o. 55 0.3 0019 0143 0218 o. 59 o. 19 0256 0317 0.34 0.34 NOME NONE NONE NONE NOM'E NOHE 1. 95 1.08 0057 0100 o. 05 0.05 o. 4 0100 o. 05 o. 05 2. 56 1.68 EQOAL TO oa LESS THAN O. 5 o. 0 o.o o. 0 o.o 1.1 o. 0 o.o o. 0 o.o 1.1 I l1 __ , I I ! ... _! .I ! _I, __ / *
* i '-\_. *
* DAY OBSTP. TYPE SNOW SNOW SNOSl SNOR SNO'il F /H F/S 7 SNOW 10 11 SNOW SNOi' SNOW SNOW SNOi SNOR SNOW SNOW SNOW SNOW SNOW SNOW SNOW SNO\l SNOll 12 SNOW SNOW 13 SNOW 11& F/S F/S P/_S 15 SNO'W 16 SNOW SNOi' SNOW SNOR SNOW SNOW 17 5 NOW SNOW snow SNO!t 18 ONSET Imo (EST) 0013 a 130 0 S13 1309 0043 01SS OS31 1 342 1749 17S4 1046 1104 1418 2400 0000 0409 07S9 09SS 1259 1417 1507 0422 16S8 0430 1218 14S6 0004 C808 1007 2243 0214 0722 0914 120 1 1347 1437 1606 1210 1912 0446 1258 23S3 0149 0848 1138 230S 0826 170S 2009 2400 0000 082) 0118 0944 11S4 0631 093S 1229 1357 1711 18*2 0000 0328 10S1 1313 1 06SO 1116 123 9 i 4JO 17"0 2400 1812 0913 0834 10 16 110 3 , , 1&4 12, 7 1404 1637 0812 1109 2107 2136 T .\84..E 7. 2.\ VISIBILITY OBSTRUCTION AT STATION P071 JA'llJARY 1q77 OPEnATION:
0000 , JAN-1210 a JAN 1700 8 JAN-1135 11 JAN 1700 11' JA tl-230S 11 J AK 0825 12 JAN-1810 16 JAN 0810 17 JAN-1635 17 JAN 0810 18 JAN-0035 28 JAN TOTAL H0UUS OF OPERATION:
S99-S ACCU!'!:ULATED SJ KM EPISODE DURATION (HR) 'IIME .$3 OUSET rrno (HR) (ESI) a.so a. 42 o. 30 O. SS 1. 76 a. 18 0. 42 a. 14 o. 22 o. 95 o. 08 0.00 a. 08 0-29 9.10 9.98 2. 24 J ** u 1. 2S 2. 11 0. 79 o. 32 o. 98 10. 9 1 1. 80 2. 24 10. 0) o. 28 0.67 8. 9 5 9.90 1. 76 0.67 1. s 1 o. 38 4. 32 8. 6S 3. as 12. so 8. 38 8. 38 2. 1 s 1. 11 1. 32 o. 29 9.67 9.95 1. 74 1. 74 1. 14 1.39 o. SJ o. 21 o. 49 7. 25 6. 7S 2. 24 e. 99 0.20 o. ss 8. )8 9.21 o. 69 o. 2S 1. 1 S o. 38 2.47 8. S8 ). SS 12. 42 8. 38 8. 38 2.1 S 1. 02 0. 38 :t.56 3.55 0. 32 1. 69 0.17 o. 56 0-48 5. 31 s. S3 18. 19 1d. 19 o. J6 o. 1 a o. SS 2 .. so o. 30 o_ 8] 0.17 o. 47 o. 48 4. 1 S 6.41 16. 9S 16. 9S a .. J6 o. 37 o. 21 1. 9S 2. 96 o. 1 6 3. 43 J .12 0040 0041 1928 1HO 2044 2346 0810 1101 0644 091) 1036 1508 2142 oes1 1144 0807 0955 1210 210S 0007 0024 1108 1138 1011 1 306 203S 2400 0000 OOS7 1011 1042 13S9 1417 1941 2128 2333 2400 0000 0301 0601 0733 OR2B 1138 0143 J327 0637 J753 1107 1812 1S2'J 1622 1637 S 1 K:1 P.P!SODE DURATION (HR) a. o 1 NONE NONE NONE NONE NONE o. 20 3.0J 3. 22 NOHE NONE o. 6e o. 72 NONE NOHE NONE 1. 39 1. 39 o. 11 1. S6 NONE 3. 6S NONP. NONE s. 9S 2.02 1. 91 o. 29 NO!IE o. S1 NONE o. 79 2. 9 3 3.41 6. 34 0. 9 1 J o. 94 NONE MONE NONE
: o. s2 NON:: a .. 30 NONE 1. 78 o. 45 3. OS 1. 71 o. J4 o. S9 Q. 34 2 .. 6!J 6 .. SS 12.17 o. 72
:-IONE ACCO,"!ULATEO Tl11F. S 1 KM ONSET ENO (HR) (ESI) o. 01 o. 01 o. 09 2. 6S 2. 74 0.46 o. 20 0-66 0. 74 a. 11 1. S6 3. 00 3. 31 1. 07 4. 39 a. 04 a. 51 . O. SS 1. JS ).41 4. 77 o. 94 o. 94 0.07 o. 05 0. 74 o. 24 1.11 o. 43 a. 11 o. 2" a. 34 1. 27 5. 78 a. 19 o. OJ 0.26 o. 29 2147 2236 0819 0922 1040 1510 18S6 2033 2220 1122 0829 09SO 1210 17S2 1 9S) 2102 2300 1138 2136 21S7 1942 0919 1021 1 224 1111:i 1943 0927 1106 1627 1812 1630 1037 'S:O. 5 Kl'! F:P!.SODE ACCUrtULATED TirtE SO .. SKrt (HR) (HR) NORE NONE NONE NONE NONE NONE NONE 0.82 o. 82 NONE NONE 0.11 NONE NONE NORE NONE o. 11 NONE o. 46 1. 49 NONE 1. 95 NONE NONE 2. 70 o. 94 o. 49 o *. 68 82 NONE NONE o. 26 NONE o. 26 NONE 0.34 o. 34 NONE NONE NONE NONE NONE NOHE !JONE NONE NONE o. 02 NONE NONE NONF. NONE NONE o. 13 o. 75 4. OS 0-46 s. 40 NONE NCNF: NOf:E NC.!IE 0. 13 o. 1) NC?IE !lONE o. s2 o. s2 0.17 o. 11 1. 9S 1.2Q o. oa o. 19 o. 18 1. 64 b. 26 o. 26 o. 34 0.02 o. 02 a. 1J o. 10 2. 12 o. 08 o. 13 o. 13 l'IIN VIS FOR OU (K"J o. 8 2. 4 o. 3 0.) 0.) 0.1 0.1 o.s 0.8 1. 6 o. 1 0.1 1. 2 TI"E OF "IR vrs (EST) 0041 17S2 2227 0821 1042 1632 , 138 2144 0000 1012 1942 0922 1637 0812 175 176 DAY OBS TB TYPE 19 SHOW SHOW 2D P/S 21 F/S ssov SNOW SNOW 23 F/H 24 l'/L F/S ONSET END (EST) 0149 D155 1622 1703 1253 1321 1639 1645 03D4 0925 1053 03:!6 D951 1350 0000 1125 1603 1623 TABLE 7.2A (CONT.) ACCO l'IULAT ED :!:3 KH EPISODE DURATION (HR) Til'IE S3 Ktt ONSET END (RR) (EST) D.11 a. 66 o. 11 o. 68 o. 79 o. 79 0.46 o. 09 o. 46 o. 09 0.56 o. 56 0.36 o. 43 2.96 3. 74 0.56 0.18 0.32 1.33 1. 83 o. 56 0.56 0.56 11. 41 0.33 11. Jij 11.39 a. 33 11. 72 0933 1203 0949 1223 51 Kl'! EPISODE DURATION (HR) NOHE NONE HONE NOHE NONE o. 26 D.34 o. 62 NONE NONE NONE ACCU3ULATED Til'.IE S1 Kl! ONSET END (HR) (ES'I) o. 06 0.14 o. 19 1206 1207 5 K!l EPISODE ACCU DURATION T:I3E 5K3 (HR) (BB) NONE. NORE NOHE NONE NOHE NORE 0.02 o. 02 . NOBE BONE BOBE 0.02 nu VIS FOR DAI (K3) 2. 6 1. 5 o *. 4 2.8 TI3 E OF !IN VIS (ES'r) D152 1641 1207 2400 0759 ----------------------------------------------------------------------------.-;--------------------------------------------------
25 SNOW SNOW SBOV SBOll 26 SN011 ssov 0357 0716 0936 1956 0434 0755 1241 2033 0713 D943 1049 2400 0.62 0.65 3. 08 o. 62 4. 97 2. 49 13. 19 o. 46 o. 51 2.27 0.30 3.55 1.90 13.19 1044 1055 12 lQ 2400 NONE NORE o. 18 NOHE o. 18 NONE 11. 76 o. 08 o. 08 10. 55 1228 1332 1431 1806 2012. 2209 2242 240D NOSE HONE. NONE NOHE HONE 1. 07 3. 58 1. 95 1.3D o. 44 2.37 o. 96 D. 79 15.68 15.08 11.76 10.55 7.90 4.56 0.9 1054 0.1 1517 ----------------------------------------------------------------------------------------------------------------------------------
27 SHOW OODO 1457 SHOW 2122 2400 28 SHOW OODO 0039 14. 9 4 2. 63 17.58 0.64 0.64 163. 09 14. 94 2. 63 17.58 0.64 D. 64 144.92 0000 1312 2336 2400 DODD 0039 13. 2D 11. 71 o. 40 o. 40 13. 60 12. lD o. 64 o. 64 o. 64 o. 64 67. 06 so. 22 0003 0047 0124 D409 0018 0039 D.*n 2. 76 NONE 3. 48 0.34 25. 66 PERCENT OP TOTAL HOOBS OF DATA WITH VISIBILITY EQUAL TO OB LESS TBAN FOG (F) HAZE (B) DRIZZLE (L) RAIN (B) SNOV (SI P&H P&L F&R P&S TOTAL 3 K! o.o D.D o.o 0.0 19.B 0.1 '* 9 o.o 2. 4 24.2 1 KR o. o. 0 o.o o.o 7. 9 O.D D.O D.O o.s B. 4 0.5 K8 o. D o. 0 O.D o.o 2. 2 o.o D.O o.o 0.1 2.J D. 43 1.DB 1.52 D.34 0.34 13. 92 D.1 0026 0.3 0033 -.) i i \ .,/ -, ( * -I . l i , _ _J
* r I* * ) \. r ! ( ) * -* DAY *oaSTR TYPE SNOV SHOW S3 K!I EPISODE ONSET END DURATION (EST) (HB) 1225 1514 2.82 2327 2400 o. 55 3.37 TABLE 7. 1B VISIBILITY OBSTRUCTION AT STATION P03A FEBRUARY 1977 IHSTBOKEBT IM OPERATION:
1225 4 PEB-2400 9 PEB 1200 10 FEB-0625 16 PEB HOURS 07 OPERATION:
270.0 S1 Kl'l ACCUKULATED EPISODE ACCUKOLATED SJ KM ONSET END DURATION TIRE S 1 KR OMS ET END (HR) (EST) (RB) (HR) (EST) 2. E4 1225 1249 a. 40 0.18 1343 1353 o. 15
* O. IS 1345 1345 0.28 NOBE 2.92 o. 56 o. 33 so .. s P::l'I EPISODE DDRATIOH (RR} HORE o. 01 NOHE 0.0 I ACCOKOLUED KIH VIS
* TUB OP TIB E SO. 5Kft
* FOR DAY KIH VIS (RR) (KS) (EST} 0.5 1345 0.01 0.01 ---.. -------------------------=-------------------------------------------------------------------------------------------------
----SHOW S!IOV SNO'il SHOV 11 P/H 12 P/R P/R P/B 13 SNOV 14 SHOV SNOW 15 SNOV 0000 0022 0339 0356 1136 1309 1646 1700 0939 1040 1905 2108 0101 1638 2204 a114 1721 223 9 1156 1217 1134 1154 1500 1514 0750 0755 0.37 o. J7 0.29 o. 29 1.57 o. 54 o. 24 o. 05 . 2. 46 1.26 1. 02 o. 45 1. 02 o. 45 2.04 2. aq 2.04 2.04 0.22 0.72 0.58 o. 22 a.29 a. 12 1. 52 0.63 a.36 o. 22 0.36 a.22 0.33 o. 24 o. 57 o. 09 o. 17 o. 24 a. 41 o. 09 o.a9 o.a9 11. 42 8.02 PERCENT OP TOTAL FOG (P} HAZE (B) DRIZZLE (LJ BHH (R) SHOV (SJ F&H P&L F&R F&S TOTAL 0008 0014 1149 1239 1005 1ao6 1509 1510 RO URS OF DATA J KH 0.0 o.o o.o a .a 2.0 0.9 o.o a. 1 o. 0 3.0 o. 09 HONE a. 83 HONE o. 93 a. a2 o. 02 HONE NONE HORE NONE NOH& 0.01 o. 01 NORE 1. llITH o. 09 o. 08 0.18 o. 02 a. a2 o. 01 o. 01 o. 54 VISIBILITY 1 Ka o.o o.o o.o o.o o. 2 a.o o.o o.o o.o o. 2 0010 P!QOAL TO 0012 o. 04 HON& HORE HONE o. 04 HONE NORE HO!IE RONE BONE NOHE RONE Non: MONE o. 04 OR LESS TSAR 0.5 K! o.o o. 0 o.o a.a o. 1 o. 0 o.o o. 0 o. 0 < a. 1 0.04 0.2 0011 a. 04 0.8 1ao6 1. 6 1956 1. 4 1651 1.7 1212 0.8 1510 2.0 0752 o. 0 4 177 178 DAY OBSTR TYPE ONSET END SNOW SNOW F/S 4 F /S F/S SNOW SROV SROll (EST) 2J42 2400 0000 0056 09JJ 1043 1001 U13 1451 1626 0113 03J2 1304 0134 0351 1102 SJ KM EPlSODE DUBA.TION (HR) 0.30 TABLE 7. 28 VISIBILITY OBSTRUCTION AT STATION P07A FEBRUARY 1911 INSTRUMENT IN OPERATION:
1520 2 FEB-0605 10 FEB 1310 10 FEB-2400 28 FEB TOTAL HOURS OP OPERATION:
625.6 :S 1 KH ACCO!'tDLATED EPISODE ACCUMULATED TI?'!E SJ Kl'! ORSE'r END DUR ATIOlf TI!tE :S1 Kl! OH SET END (HF) (EST) (HR) (H BJ (EST) Q. 30 NONE O.JO 0. 30 0.9 3 1.11 0-93 a. 47 2.10 1.40 ** 19 1.60 5. 79 0.35 Q. 31 3.95 4. 61 2. 66 o.59 J .. 25 o. 35 0.2J 3. 21 3. 79 1604 1612 1309 1527 NONE NONE NONE o. 12 0.12 NONE NONE 1. 69 0. 56 2.24 0.02 0.02 o. 49 o. 18 0.67 1529 1547 S0. 5 KM EPISODE DURATION (HBJ NONE HONE NONE NONE NONE HOBE NONE NONE o. 29 Q.29 ACCOMULATED TI.HE SO.SK.! (HR) 0.02 0.02 MIN iIS FOB DA t (KM) 2.6 1.7 o. 7 TaE OP !!IH VIS (EST) 2400 1003 1611 1529 SNOW SNOW SNOW 10 POG 12 F/R 1J F/R P/R F/S F/S F/S F/S SHOW 5110'11 SNOW 14 SNOW SNOll 15 SNOW SNOW 18 F/H 19 P/H F/S F/S 20 SHOR 23 fOG 24 F/S F/S F/S 25 F/S 27 SNOW SNOW 28 SNOW 1128 1227 H17 1149 1315 1430 0040 0604 0250 15S4 1810 2147 0001 0331 0 441 0925 .1045 1407 0745 1734 1859 2400 0014 0341 0605 100 1 1311 1505 1149 1349 1459 1539 0558 0627 0734 0805 2114 2400 0000 1308 1511 0619 1417 1529 0642 0716 0559 0738 1719 2146 2351 1835 2247 2400 0000 0019 0540 1321 1552 1727 0501 0508 0.34 o. 81 0.22 1.37 5. 39 0.09 0.16 o. 12 o. 37 5.39 5. 39 5.39 4.93 1.68 0.82 2. 21 9. 63 0.21 o. 17 1.29 o. 59 2-42 0.96 5. 65 2. 00 0. 67 2. 66 o. 47 0.53 2. 76 ** 93 1. 68 0.82 1. 73 9.15 o. 21 0.17 o. 90 O.J1 1. 32 0.21 3.17 o. 67 o. 23 o. 90 o. 11 0.53 2. 76 2.76 2.76 6. 32 1. 14 0.31 7. 76 0.56 6. 26 o. 66 O. 1 B 1.1 o o. 14 o. 56 0.14 1.66 1. 66 1.66 1. 66 1.21 1. 00 o. 14 2. 42 o. 32 1. 16 o. 72 o. 1* 2. 02 0.10 0.32 0.10 7. 69 7. 69 1. 59 0.67 9. 27 8. 36 0.11 o. 11 o. 11 o. 11 63. 37 so. 61 1145 1146 1714 1717 0531 0548 1112 1131 1210 1211 0118 05*6 2353 23 54 0707 10*8 1122 11 36 0.01 NONE NOHE o.o 1 NONE NONE 0.05 NONE NONE o. 05 NONE NONE o. 29 NONE 0.31 MONE o. 60 o. 02 NONE NONE NONE NONE 4. 46 NONE NONE NONE NONE NONE NONE o. 01 NONE 3. 68 o. 23 NONE 3. 91 NONE 11. 41 o. 01 o. 01 o. 05 o. 05 0.10 o. 01 0.11 0.02 o. 02 3. 9 3 3. 93 o. 01 0-01 2. 99 o. 23 3.22 e. o3 0120 0507 0908 1015 NOSE HONE HONE HOHll NOHE HONE NONE NOHE NONE NONE NONE NONE HONE HONE NONE NONE NONE NONE NORE 3. 78 NONE NONE 3. 78 NONE HONE NOHE NONE NONE NONE o_ "" NONE NONE o. *4 NONE :&. 5, 3.00 3.00 o. 26 o. 26 3. 2 B O. B 1. 0 021" o. 7 1716 OSQ6 0.1 1211 1.0 0749 1.9 2*00 0.1 0121 1.3 0700 2. 5 0702 o. 9 1. 6 0017 0.3 1000 2.4 0502 l, ( / . ) *i ' J -/ i i .i
* 179
* TABLE 7.2B (CORT.) PERCENr OP TOTAL BOURS OP DATA WITH VISIBILITY EQUAL TO OB LESS TBA! J 1 xe o. 5 xe FOG (F) 1.1 o. 0 0.0 HAZE (B) o.o o.o O. D DRIZZLE (L) 0.0 o. 0 o. 0 BAIN (R) o. 0 o.o o.o SN Qi (S) 2.8 o. 6 < 0.1 i F&H 2.2 0.6 o. 5 I, F&L o.o o. 0 o. 0 P&R
< o. I o. 0 F&S 1. 6 < 0.1 o.o TOTAL 8.1 1. 3 o.s , *
* 180 DAY OBSTR TYPE OKSJ!'! END 17 SNOW SNOW 18 F/S "F/S 20 P/S 28 l'/R (EST) 1751 1755 1852 1930 0037 0102 0719 0946 0133 0737 1257 1305 TABLE 7. lC VISIBILITY OBSTRUCTION AT STATION P03A OARCH 1977 lNSTBU!EHT IN OPERATION:
1240 M&R-1800 UR 0650 10 "AB-2400 31 aAR TOTAL HOURS OF OPERATION:
5H.5 K.tl EUSOOB OURAUON (HR) ACCUMULATED TIME OHSEX END KH EPISODE DURATION (HR) !.CCU i!'!ULATED TIME :S1 gM ONSET END 50.5 Kl! EPISODE DURATION (HR) (EST) 0.06 0.64 o. 06 o. 2U 0.70 0.26 2. 87 6. 05 6.05 0.13 2. 65 5. 77 5. 77 o. 13 o. 13 o. 1 J 9. 75 8. 61 PEBCEHT O"F TOTAL l'OG (Pl HAZE (BJ DRIZZLE (LJ RAIK (B) SKOV (SJ F&H F&L P&R P&S TOTAL 0728 0935 0340 0713 HOURS OF DATA 3 u o. 0 o.o o.o o.o < 0.1 o.o o.o < o., 1. 5 1.5 NOHE NONE NOBE 2.12 2. 12 3. 54 3.54 NONE 5.67 WITH (BR) (EST) (HB) 2.12 3.48 5. 60 VISIBILITY 1 K" o. 0 o. 0 o.o o.o o. 0 o. 0 o. 0 o.o 1.0 1. 0 0737 0752 0839 0933 0351 0700 NONE NORE HONE o. 24 o. 91 1. 16 3. 1Q 3.14 NONE 4.30 EQUAL TO OB LESS THAN 0. 5 K! o.o o. 0 o. 0 o. 0 o. 0 o.o o.o o.o o. 7 o. 7 ACCU!IJLATED TI!E S:O. SK!t (HR) 0.16 o. 74 o. 90 3.01 3.01 l. 91 HIN VIS P'OB DAY (g!J. 2.0 0.1 0.1 1. 6 TI"B OP !rK VIS (EST) 1752 0905 0620 1259 --, 1,' I ,) 1, ] J * --) _\ I l } I I { i J *
* DAI OBSTB TYPE P/R SJ Kl! EPISODE OHSE'f END DURATION (ESTJ (BB) 0916 1127 2.18 2. 18 TABLE 7.2C VISIBILITY OBSTROCTION AT STATION P07A "ABCR (977 IRSTRU"ENT IN OPERATIOH:
0000 1 SAa-2qoo 31 SAB TOTAL BOOBS OP OPERATION:
7qq. 0 ACCU"ULlTED TiftE SJ KS ONSET END (RBI (ESTJ 2. 18 2.18 0953 1108 S1 Klt EPISODE DORATIOR (HBJ 1.25 1. 25 ACCU SU LATED TI!!E :S 1 Kll ONSET !HD (RBI (ES?) 1.H 1019 lOQO 1. )q so. 5 !t!'I EPISODE DURATION (RBI 0. 36 o. 36 ACCU!ULATED Tl!E SO. SK!! (BB) 0.36 o. 36 SIM VIS TI8B OP FOB DAI !IJ:U VIS (Kl!). (EST) o.q 1021 -------------------------.------------------------------------------------------------------------------------------:-----------
17 P/S 1858 200 1 1.05 0.96 NOHE NOHE 1.05 0.96 .:.----------------------------------------------------------------------------------------------------------------------------'!"!'-
18 P/S 20 P/S P/S P/S P/S 0006 0725 1602 0137 1017 0056 1012. 1613 0826 1033 o.au 2. 78 o. 18 3. 80 6.80 o. 2s* 7.06 o. n 2.78 0.18 J. 13 6. 80 0.25 7.06 0733 1006 OH2 0209 0253 oq22 0529 0619 0757 0806 HOME 2. 54 NOHE 2. 5q O. qS 1.q8 0. 83 0.1 q NOHE 2.91 2. 54 0.12 0. 96 o. 1q 0. IQ 1.37 0735 1002 0802 0806 0.1 1. 76 1. 76 BOBE 0.1 0806 NOHE HORE 0.06 0.06 NOHE 0. 06 0.06 22 FOG 0200 0329 0.58 HORE HOBE 1. 7 0205 1.49 o.sa 27 P/R 2313 2335 0.37 0.37 HORE !Ol1E 2.8 2315 0.31 0.31 28 F/R oq53 0021 J. 46 3.11 MORE HOBR 1.8 0508 3. 46 3.11 29 P/R DO 12 0032 0.33 O.JJ NOBE RONE 0015 0.33 0.33 19.13 17.73. 6. 70 5. 05 2.87 2. 18 PEBCEHT OP TOTAL BOOBS OP DATA WITR VISIBILITY EQUAL TO OR LESS TBAB J K! 1 K! 0.5 K! FOG (Pl 0.1 o. o o. 0 BAZE (BJ o.o o. o o. o DR.IZZLE (L) o.o 0.0 o. o BUB (R) o.o o.o o.o SBOV (SJ o.o o. o o.o F&H o.o o.o o.o P&L o. o o.o o.o P&R 0.8 0.2 < 0.1 F&s 1. 5 o.s o. 2 TOTAL 2.4 o. 7 0 * .3 181 182 DAY OBS TB TYPE SNOW SRO'li' FOG 7 FOG 15 FOG 19 RAIN 0 20 BAIN RAIN 22 FOG F/R 23 FOG 24 FOG ONSET END (EST) 1050 1134 2141 2145 0519 0607 1939 201J OB20 0824 1625 1628 1916 1929 0105 0222 0719 0744 2351 2J54 OOJ2 0246 TABLE 7.1D VISIBILITl OBSTRUCTION AT STATION P03A APRIL 1977 INSTBO"ENT IN OPERATION:
0000 1 APR-1530 1 APR 1050 5 APR-2400 30 APR TOTAL ROURS OF OPERATION:
626.7 ACCUMULATED
.$3 KH EPISODE DO RATION (RB) TI" E SJ KM ONSET END (HR) (EST) 0-74 D-07 O. J2 0.07 a.so o.39 0-H o. 14 a. so O. BO 0.55 0-14 o. 14 o. 56 0.56 o. 49 0.55 0.49 0. 07 o. 07 0.07 0.07 0.06 o. 20 0.26 1.26 o. 42 1. 69 O. OJ o. 06 0.20 o. 26 1. 2B o. 42 1.69 0.03 0.03 0.03 o. B9 o. 99 OJSO OJ52 .0521 0525 0108 0159 0109 0110 K!'t EPISODE ACCO MU LATED DURATION TU'IE 1 Kl'! ONSET END (RR) (HR) (EST) NONE NOHE O. OJ o. 0 3 0.06 o. 06 NONE HONE NONE NONE o. BS NONE O. BS NONE 0.01 o. 01 O. OJ o. 03 o. 06 o. 06 o. B5 o. 85 o. 01 o. 01 0522 0524 0115 0120 :SO. 5 KH EPISODE DURATION (HR) HONE NONE NONE o. 03 O. OJ NOBE NOSE NONE NONE o. OB NONE o. OB NOHE NO!IE ACCUMUtATED T.Il'l. E SO. SK.!! (HR) Q.03 O. OJ O. OB O.OB HN VIS FOR" DU (KH) 1.2 0.5 0.1 1.0 1.9 1.J o. 5 2.6 0-9 TIME OF UN VIS (EST) 2143 0351 0523 2000 OB22 1626 0118 2353 0109 __ ... ___________________
:., ___________________________________________________________________________________________
.. __________
_ 29 FOG 30 FOG FOG 2352 2355 0326 ' 0350 2146 2400 a.a* o. 04 0.04 0.04 o. 40 2.24 2. 64 9. 26 0.12 1. 26 1. 39 5. 94 2214 2400 NONE NONE 1. 77 1.77 2.:11 o. 39 o. 39 1.J3 NOBE HOBE NONE o. 11 PERCENT OF TOTAL ROUBS OF DATA WITS VISIBILITY EQOAL TO OB LESS THAN FOG (F) HAZE (H) DBlZZLE (L) RAIN (B) SNOW (S) F&H F&L F&B F&S TOTAL 0.8 o.o o. 0 0.1 o., o.o a.a o. 1 a.a o. 9 0.2 o.o o.o o. 0 o.o o. 0 o.o o.o o.o 0.2 O.S KS o. 1 o.o o. 0 o. 0 o. o o. 0 o. 0 o. 0 o.o < o. 1 2 *. 3 2353 Q.6 2249 o. 11 ] * ( __ ) ; .. ** * ' .*. I ----., I
* I. -* 1. *,
* DAY OBSTB. T!PE ORSET END (EST) S3 Kl! EPISODE DURATION (HBJ TABLE 7.2D VISIBILITY OBSTRUCTION AT STATION P07 A APRIL 1977 INSTRO!ENT IN OPERATION:
0000 1230 0740 TOTAL BOORS OF OP!!BATION:
APB-11 SS S APR APB-OSS5 7 APB APR-2400 JO APB 717.6 ACCO !ULA TED 'Sl 1il'l EPISODE OORAT:ION (HR) ACC:U!'!OLl.TED
'.rIHE :SJ P::H ONSET END TIP!E S1 !\!! OlfSET E'RD (H RJ ( EStJ (HR) (EST) SO .. 5 KPI EPISODE ACCU!OLATED DURATION T:I!E SO. SU (HR) (BB) BIN VIS TI!E Ol FOB DU l!IN *VIS (lt!) (EST) 2 l/R P/R BAIN 4 SROW F/S 5 P/S P/S P/S SIOW SNOW 0335 0431 13S6 0400 0811 1411 1129 1305 1752 1851 0233 0620 074 I 1043 2204 0252 0638 0951 1135 2252 o. 42 3. 66 0.23 4.31 l.S9 o. 99 2.S8 O.J3 Q.29 2. 16 o. B6 a.Ba o. 42 3.66 o. 23 4. 31 1. SB 0.9S 2. 54 0.33 0.29 1. 73 Q.64 o. 31 140S 1409 1B*13 1842 1048 1129 HONE NORE o.os o .* o5 NONE a.so o. so NONE HONE KONE 0.10 HORE o. 05 o. 05 o. 02 o. 02 0.30 1408 1.408 1114 1128 RONE RONE o. 01 o. 01 SORE NOHE NONE KORE NOME o. 24 ROBE 0.01 o. 01 0.19 0.4 1406 0.11 1841 0.2 1127 _______ .,: __________________
___
FOG 20 RAIN 22 F/R F/B F/R 24 FOG 26 POG 0429 043S 1911 2005 0204 065S OB03 0618 0720 083B 0348 0641 0510 OS22 0.10 o. 10 o. 10 0.10 o. 90 o. 90 4.23 o. 42 o.sa 5. 23 2.B7 2. B7 o. 20 o. 47. 4. 23 0.42 O. SB s.2J 2. q4 o. 20 0.20 0.20 :<O. 65 18.60 1915 191B 0232 0341 0451 0509 0547 0616 PERCENT OF TOTAL HOUBS OP DAT& 3 KB FOG (F) o. 4 HAZE (HJ o.o OBIZZLE (L) o.o BUH (R) o. 1 SNOW (S) 0.4 F&H o.o F&L o.o F&R 1. 3 F&S o. 5 TOTAL 2. 6 NONE o. 05 a. o5 1.16 NOHE HORE 1.16 0.30 o. qB o. 78 BONE 3. 24 WITH O. OS o.os 1.16 1. 16 o. 05 o.qa o. 54 2.12 VISIBILI'!I 1 K! 0.1 . o.o o.o < 0.1 < o. 1 o.o o.o 0.2 < 0.1 o.J 0551 0604 HONE ROBE NORE BOMB HONE !ONE 0.22 0.22 BOBE EQUAL TO OB LESS THAM o.s < 0.1 o.o o.o < o. 1 < 0.1 o.o o. 0 o.o o.o 0.1 1.0 oq33 o.s . 1916 o. 6 0250 Q.J 0602 0.22 o. 22 t. 4 051S 0.42 183 84 DAY 10 OBSTR TYPE ONSET EHD FOG P/L FOG F/H BAIN F/B. FOG. FOG POG (EST) 0000 0133 0541 0757 1045 1121 2020 2042 0000 0341. 0019 0023 0501 2049 2326 0558 2202 2400 Kii EPISODE DOUTION (BB) 1.55 1. 55 0.60 0.35 TABLE 7. lE v:ISIBILITY OBSTROCTION AT STATION POJA MAY 1977 INSTRUMENT IN OPERATION:
0000 1 MAY-2400 31 au TOTAL HOURS OF OPERATION:
744.0 ACCUr!ULATED TIME SJ XB ONSET END (HB) (EST). o. 73 o. 73 2.26 2.26 0. 60 0. 35 0000 0034 0653 0733 S1 Kl! EnSODE DURATION (HR) 0-57 0.57 o. 67 o. 67 NOBE NOBE, ACCO MULlTED TUE S 1 KM OMS ET END (HB) (EST) 0.22 0.22 0.67 0. 67 0723 0727 o. 96 o. 96 3.69 3.22 3-69 3. 22 0.06 0. 06 0.06 0.06 0.96 1.23 0.54 2. 72 0.56 o. 86 0. 35 1. 77 0150 0209 2054 2156 O.J1 o.*31 NOBE NONE 1. 04 NONE 1-04 0.31 0.31 0.19 0.19 0154 0156 2123 2123 S0. 5 KM EPISODE DOBATIOH (BB) HONE* 0-06 o. 06 NOHE HORE 0.02 o. 02 90Hll NOHE o. 01 BONE o. 01 lCCOM11LATED T.Il!E SO .. SKI! (HB) 0.06 0.06 o. 02 0.02 o. 01 o. 01 MIR VIS TIME OP POB DAY MIH VIS (KM) (EST) o. 7 0033 0. 4 0726 2.0. 1103* 0.5. 0154 2..0 0020 0. 5 2123 ----------------------------------------------------------:-----------------------------:----------------------------:-----------
11 FOG FOG 15 FOG 17 FOG RAIN 18 FOG 19 20 21 FOG FOG FOG FOG FOG POG FOG FOG F/H FOG 22 FOG F/B 23 FOG 24 FOG FOG 25 POG 26 FOG 27 FOG FOG 28 FOG 0000 0050 0608 0633 2358 2400 0000 0001 0657 0707 0938 0948 2139 2400 0000 0142 0444 2033 0049 0502 2335 0345 0501 1956 0050 0258 0518 2227 0431 0532 2348 0421 0545 2325 0018 0246 0608 0629 0512 0557 0313 0520 2136 2400 0000 0645 2232 2354 0015 0044 0125 0601 0309 0311 0. 83. o. 42 O. OJ 0.29 o. 42 o. 71 0.03 0.03 0.03 o. 02 o. 02 0.02 0.02 0.17 0.18 o. 36 2 *. 34 2.34 o. 84 1.27 o. 57 1. 91 4. 58 J. 70 0.51 o. 21 0. 59 o. 72 3.49 4.81 2.46 0.35 2.80 0. 76 0:16 2. 13 2.40 *-53 6. 75 6. 75 1. 37 . 1. 37 0.49 4.60 5. 09 0.03 0.17 0.18 0.36 1. 54 1. 54 0. 62 0.68 0. 57 1. 20 3. 08 2. 46 o. 51 0.21 3.18 0. 28 o. 72 2. 89 3. 69 2-10 0.14 2. 23 0.55 o. 55 2. 02 1. 74 3. 76 6.05 6. 05 o. 31 0.31 o. 1
* 2.12 2. 86 o. 03 o. o J o. 03 0611 0618 0659 0702 2218 2246 2317 2359 0011 0043 2101 2203 0156 0309 2224 2301 0154 0206 0515 0549 0344 0511 2233 2303 0004 0153 0437 0110 0209 0457 2351 2351 0226 0255 0332 0526 HONE 0.11 o. 11 RONE NOME 0. 04 NONE D. 04 o. 46 0.69 1-15 0. 54 ROHE NONE 1.03 1.56 1-22 NONE NONE 1.22 NONE NORE 0. 61 0.61 o. 20 NORE 0.20 0.57 0. 57 1. 45 0.49 1. 94 1. 09 o. 26 O.J3 1. 69 o. o 1 NONE 0.*7 1. 90 2.37 NONE o. 11 0.11 o. 04 o. 04 0.22 0.29 0. 51 0.11 O.JO 0. 41 0.68 0.68 0.36 o. 36 0.10 0.10 0.15 o. 15 1.14 0. OB 1.22 o. 52 0.06 o. 21 o. 79 o. 01 o. 01 o. 12 0.82 o. 93 0612 0614 0700 0700 2222 2244 2321 2331 0013 00*2 2104 21j5 0228 0237 2240 2255 0516 0547 0347 0509 0027 0032 0 442 0456 0227 0253 0334 0425 RONE 0.03. 0.03 NOHE NOHE o. 01 RONE .. o. o 1 O.J8 0.17 o. s4 a. 48 NORE NOBE 0.19 0.67 o. 15 NOHE NOHE o. 15 SORE NOSE 0.25 0. 25 HONE HONE o. 52 0.52 1. 37 XOME 1.37 o. 10 HONE 0.23 0. 32 HONE NONE o. 44 o.a5 1.29 ROHE 0.03 0. 03 0.01 0.01 O.OJ. o. 17 0.20 o.o 1 0.19 o. 20 o.1s. 0.15 0.09 0. 09 0.05 0. 05 0. 76 o. 76 o. 10 0.05 o. 15 0. 03 0.38 o. 41 0.3 0613 3. 0 2359 2.9 0000 a. 3 0700 0.3 0.2 2105 O.J 0229 0.2 2252 0.5 0205 0.2 0546 o. 2 0348 o. 2 0031. a. a 2351 0.2 0 424 2. 7 0310 -, i -, ( J .'. ... __ .} J ( --' ( J _ j * 
* *
* DAY OBSTR T!PE ONSET END 31 RAIN RUN (ES't) 0533 0601 0642 0719 TABLE 7. 1E (CORT. I Kl! EPISODZ DDRATIOK (RBI o. Q6 0.62 1. 08 51. 47 ACCOl!OLATED TISE SJ Kft ONSET END (BR) (EST) 0.*28 o. 44 o. 72 38.31 06U 0712 S 1 Kft EPISODE DURATIOR (BR) NORE o. Q6 lQ.52 PERCE BT OF TOTAL HOU BS OP DATA llITB 3 Kft FOG !Fl Q. 1 HAZE (HJ o.o DRIZZLE (LJ o.o BUN IHI 0.6 SHOii (SJ o.o P&H o. 1 F&L 0.3 F&R 0.1 P&S o.o TOTAL s.1 SO. 5 K! lCCO!DLATBD EPISODE ACCO!OL!TED TUIE S1 !tft ONSET E?iD. DUB.A.TI.OW TI?IP: (HBJ (EST) (BR) (BR) 0.10 0.10 6.79 VISIBILITY 1 Kft a.a o. 0 o. 0 0.1 o.o o.o 0.1 o.o o. 0 0.9 0709 0710 EQUAL TO 08 LESS O. 5 K! o. 3 o. 0 o.o < o. 1 o.o o.o < 0.1 o. 0 o.o 0.3 BORE o. 02 0.02 5.*26 THAB o. 02 0.02 2.16 UH 'i'IS POB DU (Kft) 0.3 TIU OP UH VIS (EST) 0710 185 186 DAY OBSTB TYPE SJ KM EPISODE ONSET END DURATION (EST) (HR) TABLE 7. 2E VISIBILITY OBSTRUCTION AT STATION P07A MY 1977 INSTRUMENT n O?EBATION:
0000 1 MAY-1040 31 TOTAL HOURS OF OPERATION:
730. 7 S1 K!'! ACCUMULATED EPISODE ACCUMULATED TIME .SJ ONSET END DURAUOM TIME S 1 KM ORS ET l!ND (HR) (EST) (HR) (H BJ (EST) S0. 5 Kft EPISODE DURATION (HR) ACCUMULATED TIME S0.5K8 (HBJ MIR VIS FOB DAI (Kn) TUE OF. UN VIS (EST) ----------------------------------------------------------:9--------------------------------------------------------------------
2 F/t FOG F/H BAIR 0631 0916 1126 11"5 2152 2210 0129 0403 2. 75 2. 75 0.32 0.31 2. 75 2. 75 0.32 o. )1 o. 6 2 o. 62 2. 58 2. 5e 2. 58 2. 58 0731 0747 0215 0247 033] 0358 0.27 o. 27 NONE NONE o. 55 0.41 o. 95 o. 27 0.27 0-55 o. 41 o. 95 0216 0218 MONE NOME MONE O. OJ NONE O.OJ a.a .. 0744 2.7 1128* 0. OJ 0216 o. 03 F/H 10 FOG 11 FOG FOG 17 !'OG 19 FOG POG 22 F/R 24 FOG 25 FOG 27 FOG 31 RAIN 0442 0529 0447 0515 0211 0227 0318 0400 0415 0426 0038 0325 0503 0553 0612 0623 0501 0516 0036 0616 0705 0707 0609 0703 o. 79 o. 79 o. 47 0-47 0.27 a. 69 o. 79 o. 79 0.26 o. 26 o. 27 0.36 0.96 Q.63 0.18 o. i,a 0.18 0.18 2. 78 0.8) J. 61 0.20 o. 20 o. 25 2. 68 0.83 J. 51. o. 20 o. 20 0-25 0.25 0.25 5. 68 5.)7 5. 68 5.37 o.o 4 o. 04 0.04 0.04 o. 90 o. 90 19. 04 o. 54 o. 54 17. 72 0445 0525 0509 0510 C210 0215 0614 0621 0612 0639 o. 66 o. 66 o. 02 o. 02 NONE NONE NONE o.oa RONE o. 08 0.13 o. 1J NORE RONE NONE 0.44 o. 44 2. 54 0.14 o. 14 o. 02 o. 02 o. 08 o. 08 o. 04 o. 04 o. 0 4 0.04 1. 55 0446 0454 o. 13 o. 13 NOBE NORE NONE NONE NONE BONE NOHE HORE RONE. NONE NONE o. 16 PERCENT OF TOTAL HOURS OP DATA WITH VISIBILITY EQUAL TO OB LESS THAN FOG (F) HAZE (H) D)UZZLE (L) RAIN (B) SNOW (S) F&H F&I. P&B F&S TOTAL 1. 4 o. o o. 0 0.4 o. 0 0.1 0.4 < o. 1 o.o 2. 4 1 KB < 0.1 o.o o.o 0.1 o.o < 0. 1 < o. 1 < o. 1 o.o o. 2 0.5 Kn o.o o. 0 o.o < 0.1 o. o < o. 1 o. o o.o o. 0 < o. 1 o. 02 0.4 o. 02 0.0 0509 1. 2 0220 1. 8 0420 0.5 0214 0.6 0621 2. 8 0505 1.2 0531 2. 7 0706 o. s 0613 o. 05 -1 ) ---i-*1 --i ) ., I .! ( . _; l I __ , ** 
* ....... *
* DAY 08STR TTI?E FOG FOG FOG FOG F/R F/R F/R F/R FOG FOG FOG FOG POG 11 RAIN 12 P/R P/R fOG '14 POG P/B 15 FOG FOG 16 FOG 17 RAIN 21 POG POG 22 FOG 23 F/B H FOG F/H RAIN 25 FOG FOG 26 FOG FOG 27 FOG 28 FOG FOG FOG RAIN TABLE 7.1F VISIBILITY OBSTROCTj;CH AT STATION P03A . JUNE 1977 INSTRUMENT IN OPERATION:
0000 1 JUH-1730 19 JON 2050 20 JU!l-2400 30 JUN :B Kft EPISODE ONSET END . DURAXION TJ:!'!E SJ Kl1 (HR) (EST) (HR) 2305 2355, OOQ7 2120 2303 0107 2228 2356 OQ46 0546 0728 0805 0002 0038 0155 OHB 2220 2232 2328 2335 0103 0158 0510 0605 0235 0501 0549 0641 08!12 0925 0031 0204 0329 0544 0203 0217 0 310 0402 0043 0248 2120 2318 0109 0300 2149 2330 0007 0045 0531 0532 0016 0821 2300 0045 0937 2334 2220 2242 2313 2352
\ 0008 0124 0354 OQ17 0143 0241 0001 0126 0321 1933 0049 0235 0626 1943 o. 83 o. 45 o.83 o. 45 o.33 1.13 o.87 2.33 1.00 a. 61 o. 08 o. 60 0.24 0.92 1. 00 o. 61 1. 61 1. 61 0.59 1.88 1. 35 3. 83 o. 19 Q.13 0.15 1. 88 1. 35 3.38 o. 19 o. 13 0.32 0.32 o. 91 o. 32 o. 91 Q.32 0.05 o. 05 0.05 0.05 . 0.9 1 o. 76 o. 9 l o. 76 2. 42 o. 86 o. 72 4.00 4.00 1. 55 2. 25 3.80 o. 23 0.87 1. 10 2. OB 2. 00 1. 96 1. 96 1.86 l. 68 3. SS o. 62 o. 62 o. 01 0. B 2 1. 62 2. 5q 0.23 O.B7 1.10 o. 96 o. 96 o. 82 o. B2 1.06 o. 54 1.60 0.25 o. 25 0.01 0.01 o. 4B 1.26 o. 57 o. 34 1.20 o. 32 2.30 l.B6 0.37 o. 65 1. 0 2 1. 26 0.39 1. 65 0.98 o. 79 1.16 3. OB o. 17 5. 20 o. 22 O. JO o. 53 o. 57 0.2B o. 85 o .. o. 4* 0.54 2.26 o. 17 3. 42 TOTAL ACORS OF OPERATION:
692. 7 S1 KM EPISODE ACCOMOLATED ONSET END
* DCRATION TIP!E S1 KB (EST) (HR) (HR) 2123 21 "7 0201 0337 0504 05 27 0113 .0149 0332 0 424 0518 0532 0045 0101 2127 2130 0 111 02 00 2312 2325 0038 0040 2319 2320 0026 00 26 1935 1937 NONE RONE O.QO HONE o. 40 HONE ROHE NORE 1.59 o. 40 1.99 SONE NOHE NOHE HONE NOHE HONE NOHE NOHE 0.61 0.87 0.22 1. 70 RONE NOHE o. 21 o. 27 o. 05 O. OS 0.81 o. 21 1. 03 o. 03 o. 03 HONE NONE NONE NONE NCNE 0.03 0.03 0.01 NONE 0. 01 NONE NONE NONE NONE O. OJ O. OJ o.o3 Q.03 1. 15 1.5* o. 02 o. so o. 22 o. 74 0.02 o. 02 o.os o. 05 o. 11 o. 03 o. 14 o. 03 0.03 o. 03 o. 03 o. 01 o. o 1 0.03 o. 03 ONSET . ENO (EST) 0203 0208 0322 0334 0332 QQ15 .. 5 Kl! EPISODE ACCO MO LATED DURATION TI!E SO.SK! (HR) (HB) NORE NONE HONE HORE NONE RONE HONE 0.09 0.20 NOHE o. 30 NONE NOHE NOHE RONE NOME NONE HONE NONE NOHE o. 70 HORE o. 70 ROHE HORE RONE HCHE HONE HONE HONE HONE NOHE HONE NOHE NONE NOHE NONE NONE NONE NOHE NONE NOHE NONE o. 09 o. 11 0.21 o. 29 0.29 !IH 1IS POR DA! (K") 1. 0 0.1.
OF eu VIS (EST) 2350 2123 0521 0.3 . 0203 1.2 2331 -1.5 0106 2. 5 210 1. 6 0533 1.5 060Q o. 3 0358 1.1 0211 a.a 0101 0.5 2128 0. 6 0159 0.6 0039 2. g 0532 1. 7 0029 o. 7 2319 0.0 0026 1. 0 0207 o. 5 1936 187 188 DAY OBSTR TYeE SJ K.!S EPISODE ONSET EHD .DURATION (EST) (HR) ACCU.l'IULAT!D Til'!E S3 Kl'I (HR) ONSET END (EST) TABLE 7.1F (CORT.) .S 1 Kl'! EPISODE ACCUP!UI.AT ED DURATION Til'!E 'Sl Kl't ONSET END (RR) (HR) (EST) :SO. S Kl'! EPISODE DURATION (HR) !CCU!ULATED
!IS VIS TUE 5Kft FOR DAY (HR) (KB) TIBE OF !IN VIS (EST) ----------------------------------------------------------------------------------------------------------------------------------
29 FOG 0.21 0.21 30 RAIN 0855 1010 1.26 RAIN 1056 1212 1. 27 2. 53 41. 86 PERCENT FOG (F) HAZE (HI DRIZZLE RAIN (RI SNOW (S) F&H P&L F&B P&S TOTAL 0.27 o. 21 o.a3 o. 74 1.57 28.16 OP TOHL (L) 2235 2235 0903 0908 HOURS OP DATA 3 KB 2.1 o. 0 o.o o. 5 o.o o. 4 o.o 1.0 o.o 4.1 o. 01 o. 01 0.09 NONE 0.09 5.64 WITH 0.01 o. 01 o. 09 o. 09 2. 73 VISIBILITY , o. 1 o. 0 o. 0 0.1 o. 0 0.1 o. 0 a. 2 o.o a. 4 0906 0907 EQUAL TO OR LESS O. 5 KB o.o o.o o.o o. 1 o. 0 o., o. 0 < 0.1 o. o 0.1 RORE o. 01 NORE o. 01 1.01 THAN 0.9 2235 o. o 1 0906 o. 01 0.51
* l I ._ _, ( j . l * 
* *
* DU OBSTR TYPE ONSET END P/R P/R FOG 10 FOG 11 RAIN 12 P/L POG 15 FOG 16 P/L 17 F/H RAIN 1 B RAIN 21 FOG FOG FOG FOG FOG 23 P/H H F/R RAIN 25 POG 26 P/H 28 P/H RAIN RAIN JO RAIN RAIN RUN (EST) 0456 0704 0228 OJ50 0S29 0617 0511 0516 0604 0632 01S9 1143 0012 0613 I 0413 0524 222J 2239 OJ47 0612 2131 2228 0019 0021 0030 0213 0J07 0126 0226 0323 0356 0416 OSJ7 0633 0424 OS45 0419 0830 2J28 233 9 OS22 0608 0S14 0520 OS 10 094S 2001 0910 1003 1148 0722 09S9 2014 092S 1026 1202 TA:JLE 7.2F 'IISIEILIT'f OBSTRUCTION AT STATION P07A JONE 1977 OPE!i.\TION:
0940 3 30 JUN TOTAL HOURS OF onaaION: 662.3 ACCU:1ULA!ED SJ EPISODE DURATION (HR) TIHE SJ KM ONSET END (HR) (EST) 2. 1J 2. 13 1.J7 O. BO 2.17 0.08 1. as 1. as 1. 28 a.so 2. 09 0. 08 0.08 o. cs o. 47 0.4 7 0.47 0.47 9. 73 9.63 9.73 9.63 6.02 S. Bl 0500 OS03 0332 0343 0038 020S S 1 KM EPISODE OU!U.tION (HR) o. OS o. OS o. 18 NONE 0.18 NONE NONE NONE 1. 45 0246 OS40 . 2. 91 6. 0 2 s. 81 1. 19 1.19 1. 19 1.19 0.26 o. 26 0.26 o. 26 2.41 o. 9S 3. J6 2. 41 o. 9S 3.36 o. 04 0.04 0.04 o. 94 o. 21 0.27 o. 32 o. 94 2. 68 1.36 o. 49 0.21 o. 20 0.19 o. 91 2-01 1 .36 1.J6 1.36 4.18 o. 18 4. J7 o. 76 o. 76 o. o9 4. 10 o. 18 4. 37 o. 76 o. 76 o. 09 o. 09 o. 09 2.21 o. 23 0.22 2. 66 o. 26 O.J7 o. 23 o. 86 JS. 23 2. 21 0.23 o. 22 2. 66 o. 26 o. 27 o. 19 o. 72 36. 73 2139 2224 OS3B 0610 osos 060S OS33 OSJS 2003 2011 0917 0921 4. 36 NONE NONE NONE o. 7S o. 75 NONE NONE NONE NONE NONE 0.52 o. S2 NONE 1.0 1 NONE NON'E NONE o. 13 0.13 o. 06 NONE NONE o. 06 1. 1 o ACCU l'!UL ATED TIME S 1 K!1 ONSET END (HR) (EST) O. OS O. OS o. 18 o. 18 o. 83 2. 04 2. 87 o. 25 o. 25 o. 86 o. 86 o. 04 o. 04 a.as o. OS o. 06 o. 06 4.58 0501 OS02 0335 0341 0040 0126 OJS7 0052 0204 0449 2140 2142 OSS7 0607 OSJS OS41 0919 0920 s Ka EPISODE DURATIO?I' (RR) o. 01 o. 0 1 o. 11 NONE o. 11 NONE RONE NONE o. 20* o. 63 o. 87 1. 69 NONE NONE NONE O. OJ O. OJ NONE NON.E NONE NONE NONE o. 16 o. 16 NONE o. 10 NONE o. 10 NONE NONE NONE NONE NORE o. 01 NONE NONE 2. 12
'!II! E SO .. 5Kl"I (HR) o.o 1 o. 01 o. 11 o. 11 o. 03 o. 07 o. S7 o. 67 o. 03 O.OJ o; 16 o. 16 o. 10 o. 10 o. 0 1 o. 01 1. 10 "1N VIS POB DAY (Ka) o. 3 o. 2. 0 2.5 1.0 o. 2 1.4 o. J 2. 9 o. 2 1. 9 0.2 o. 9 2. 7 o. s 0.3 OP UN VIS (ES7) 0501 0335 OS12 0609 0SJ5 0407 .2226 2141 0020 osse . 0S01 0540 OSH OS 16 20, 1 0920 189 190 TABLE 7. 2P (CONT.) PERCENT OP TOTAL ROUBS 01' DATA iUB VISIBILITY EQUAL TO O& LESS THAN 3 K8 1 KM 0.5 KB FOG (P) 1.6 o.5 o. 1 HAZE (B) D.O o.o o.o DRIZZLE (I.) o. 0 o. a o. 0 --, BAIN (R) o.q 0.1 < o. 1 SNOW (S) o.o o.o a. o I F&H 1.5 0.1 < o. 1 P&I. 1.5 o.o o. 0 P&B 0.5 < o. 1 < o. 1 P&S o.o 0.0 a. o TOTAL 5.5 0.7 o. 2 I _I ! ! . -' I j *
* DAY OBSTR TYPE FOG FOG FOG FOG FOG FOG FOG PIH F/H 9 F/H 12 FOG F/B ONSET END (EST) o 101 0248 2155 0136 0608 2*00 0000 0208 0*21 o*51 OJ 15 0334 0417 0*28 0411 0423 0 538. 0546 0400 0602 0142 0156 1024 1047 KM EPlSOOF. DU8ATION (HH) o_s0 3-J4 2. 08 6.00 2. 1
* o. 51 2. 64 o. 31 o. 19 o. 50 o. 20 0-14 TABLE 7. lG VISIBILITY OBSTRUCTION AT STATION POJA JULY 1977 !NSTRUaENT IN OPERATION:
ODDO 1 .JUL-2*00 31 JUL TOTAL HOURS OF. OP!::BATION:
744.0 ACCIJ !'IU l.1.T ED
:S3 Kl! ONSET ENO (RB) (EST) 0.36 1. *5 1. *2 J_ 23 1. *O 0.32 1-72 o. 22 o. 19 0-40 o. 09 o. 1* 0*2s 2239 o*52 23*6 0012 0035 0112 0203 0421 0*22 1 K!I EPISODE DURATION (HR) NONE o. ** 1.12 1. 56 0.38 0-86 NONE 1. 24 NOKE 0.02 o. 0 2 NONE NONE TIHE S1 KM ONSET END (HB) (EST) o_ 05 o. 32 o. 37 o. 08 o. 12 0-20 o. 02 o. 02 22*1 2317 0201 0202 0-J.j o. 23 2.. o* 2. O* 0.22 o. 38 o. 60 1-27 1. 27 o. 22 0.38 o. 60 0*07 0*22 0503 0557 o. 25 0.89 1.14 NONE o. 06 0-06 0-12 o. 08 o. 20 0-06 o. 06 0*09 0*21 0 504 0506 SO. 5 Kl'I EPISODE DURATION (HR) NONE NONE o. 6D o. 60 NONE 0-01 NONE 0-01 NONE NOHE NONE NONE o. 21 o_ 02 o. 23 NONE NONE ACCU l!ULATED TI!E SO-SK! (HR) o. 13 0-13 0-01 0.01 o. 01. 0.02 o. 03 !UN VIS FOR DAI (U) 0.3 D-* a.a 1.2 o. 3 o. 7 TIM !i OP !IN VIS (EST) 2316 0201 0421 0540 0505 1040 13 POG POG 14 FOG FOG 17 BAIR FOG FOG 18 FOG RAIN 21 FOG 22 POG 23 FOG 24 POG F/R 25 F /H F/H 26 FOG 27 FOG 28 F/H 29 HAZE RAIN F /H 30 FOG POG . 31 RAIN 0119 2Q38 0437 2351 0004 00 13 2219 2239 0254 2021 2324 0314 2151 2348 0010 0227 0452 05 28 2103 2153 2049 2313 0334 0556 0328 0357 1131 1529 0049 0211 0350 0441 2034 2036 2213 2222 2245 2341 0523 0835 1944 0618 1003 2400 0000 0832 2039 2113 0709 0712 3.30 3. 22 6-52 o. 15 0.32 1. 64 1. 43 3. 07 0.15 o. 32 O. H O. 47 o. 34 1.*9 o. 40 2. 23 2.28 o. 59 0. 84 o. 84 2.* 1 2. 41 2.36 i. 36 0. 48 3.96 4. *S 1. 37 o. 84 o. 34 1. 49 0.40 2. 23 2. 28 0.36 o. 64 o. 64 1. 56 1. 56 1. JO 0.48 J. 64 4. 32 1.37 o. 84 2.21 2.21 O. OJ o. 03 Q.03 0.03 o. 14 o. 14 0.14 0.14 o. 93 o. 76 o.93 o. 76 0.91 1. 47 4.26 6. 6 5 8.SJ o. 57 9. 11 o. 05 o. 37 1. 47 ii .. 26 6. 11 8. 53 o. 57 9. 11 o. 05 0.05 o.os 53. 38 42. OB 0154 2045 2142 0300 0252 2107 2145 0304 2128 21Q5 2121 2308 G459 0503 1342 . 1346 0837 2016 0854 0000 0620 0.97 o. 37 o.os 1. JS NONE NOHE 0. 07 NONE NOHE o. 07 NONE NONE 0.29 0.29 1. 79 1. 79 o. 06 o. 06 NOHE 0.11 o. 11 NONE NONE NONE NOHE NONE NONE o. 28 3. 74 4. 02 NONE a. 3* NCNE 20. 07 o. 19 o. 02 . o. 0 5 0.26 o. 07 0.07 0.29 0.29 o. 43 o. 43 o. 06 o. 06 o. 11 o. 11 o. 26 3. 74 4. 02 8. 13 6. 13 14 *. 21 2134 2143 2121 2256 0501 0502 0837 2016 0849 2400 0000 0543 0640 0745 NOHE l'i'OHE son NONE NONE NONE NONE NONE NONE o. 16 o. 16 1. 57 1.57 o. 01 o. 01 NORE NONE NONE NONE NONE NONE NONE NONE o. 19 3. 70 J. 89 s. 72 1. 09 1\0NE 6. 01 NONE 13.26 o. 16. 0.16 o. 15 o. 15 o. 0 1 o. 0, o. 06 3 .. J5 3. 41 5. 37 1. 09 6. 46 10. 3E o. 5 2144 1. 1 000& o.s OJ01 1. 0 0520 0.4 2143 o. 2 2147 o. 4 0502 o. 5 1JQ4 2.5 0200 2. 7 2035 1. 1 2216 2.3 2321 o. 1 2202 0.1 0445 2. 2 0710 191 192 TABLE 7. JG PERCENT OF TOTAL BOOBS OP DAU VITB 3 l!OG (F) J. 6 HAZE (H) 0 *. 1 DRIZZLE (L) o.o BAIH (RJ 0.3 SHOll (SJ o.o P&H 1.2 F&L o.o P&B o. 6 P&S o.o TO:rAL 5. 7 (CORT.) VISIBILITY EQUlL TO 1 1.J o.o o.o < 0.1 o. 0 0.5 o.o 0.1 o. 0 1.9 OB LESS TBll.B o. 5 ltll o. 9 o.o o.o < o. 1 o.o o.s o.o o. 0 o. 0 . .., ( i l *1 I )
* I _l I * .J * 
* *
* TABLE 7.2G VlSIBIL.ITY OBS'l'BaCTI.OB AT STATIOH P07l JULY 1977 INSTBUSENT IS oeEBATION:
0000 1 JUL-21SO 29 JUL 222S 29 JUL-22SS 29 JUL 06SS 30 JUL-2400 31 JUL TOTAL BOOBS OP OPEBATION:
73S.4 ------------------------------------------------------*
_________________________________________________
,:. ________________________
_ DAI OBSTR TYPE ORSET ENO 3 RAIR POG POG POG l'OG POG 12 17 RAIN 18 POG 2Q l'/B P/B P/B 29 R!IR P/9 P/B 30 l'OG {EST) 1353 1409 01Q2 0733 1736 0208 0911 17Q6 0339 0750 0310 0505 10QO 1059 0113 012Q 0322 0326 o 539 0546 121Q 1403 14S3 0859 2025 2224 1313 1421 1S29 0912 2H8 225Q 0654 0836 ACCO SU LAT EU SJ KH EPISODE DO BAT ION {HR) Til!E S3 KM ONSET END S1 KN EPISODE DURATION (HR) . (HR) (EST) 0.26 o. 26 0.26 0.26 0.43 1. 63 0.17 2. 23 4. 18 1.91 1.91 0.31 a. 31 0.18 o. 43 o. 49 o. 17 *1.10 4.18 Q. 18 1. 79 1. 79 o. 31 0.31 o. 18 0.18 0.18 a. 06 o. 06 o. 06 o. 06 0.12 o. 12 0.12 0.12 0.98 0.30 0.60 o. 68 0.30 0.19 1. 88 1.17 0.21 1.38 a.so 2.10 1. 70 1. 70 o. 21 1.38 a.so 2. 10 1. 70 1. 70 0751 0752 0348 0130 0319 03SO 1051 1 OS7 NORE NONE o. 03 NOSE 0.03 3. 69 3. 69 o. 51 o. 51 0.10 o. 10 BONE NOHE NONE NORE NORE NONE NONE 2139 2148
* 0.16 2224 22S4 o. so 0654 0739 o. 66 o. 7q o. 7q ACCUNULUED.
T.IrtE 'S1 Krt ONSET END (HB) (EST) 0.03 0.03 3. 69 3. 69 0.14 0.14 o. 10 o. 10 u. 16 0.34 o. so o. 7q 0. 74 0751 07S2 0400 06 44 0321 0323 10S4 1056 2141 222Q 2148 2254 0654 06S8 S0.5 KN EPISODE DURATIOB (RR) BOSB NONE o. 01 NONE o. 01 o. 03 o. 03 o. oJ o. 03 RONE ROBB NONE RONE BOMB RONE 0.12 o. 50 o. 62 o. 07 o. 07 ACCUSULATBD . 8IB VIS TI!S OP TI8B SO. SU 1'08 DAY NU VIS {BB) {K8) (BST) 0.01 o.o 1 2. 74* 2.14 *a.OJ 0.03 O. OJ o. 03 0.12 0.13 0.2Q 0.07 0.07 1.8 o. q 0.1 0.2 0.3 1.2 2. 5 1.1 0.3 o. 2 1356
* 0751 0405 0323 1056 0118 0324 '0542 152Q 2142 lij. 9q 12. 98 s. 73 s. 20 3.50 PERCENT OF TOTAL BOOBS OP DATA iITH VISIBILITI EQUAL TO oa LESS THAN POG (F) HAZE {H) DBIZZLE {L) BAIN {R) SHOii {S) P&H P&L F&R ,F&S TOTAL J K8 1. 2 o.o o. 0 0.1 o. 0 0.3 o.o o-. 2 o.o 1.8 1 K! o. 6 o.o o.o o.o o. 0 0.1 o.o < 0.1 o.o o. 7 0.5 o.o o. 0 o.o o. 0 < 0.1 o. 0 < 0.1 o.o o. q 3.12 193 194 DU OBSTR TYPE SJ Kl! EPISODE ONSET END DORAT.ION (EST) (BB) TABLE 7-lH VISIBILITY OBSTROCTION AT STATION P031 AOGUST 1977 INSTBOHEMT IN O?ERATION:
0000 1 AOG-122S 27 AOG 1130 30 AOG-2400 31 AOG TOTAL HOOBS OP OPERATION:
672.9 ACCU MOLA TED Til'!E SJ Kl! ONSET END (RB) (EST) :S:1 KB EPISODE DURATION (BB) ACCOBOLATED TIME KH ONSET END (HB) (EST)
Ka EPISODE DURATION (HR) ACCOHOLATED Tl! E SU (BB) HIH VIS POB DU (KS) TISH OP HIN VIS (EST)
.1 FOG POG POG FOG POG P/B RUN RAIN BAlN 2115 2250 0020 0024 0121 0338 053S 2040 2007 204S 2217 0246 0433 0619 2117 2010 2109 2227 l.S9 1. 59 o. 07 o. 69 o. 69 o. 07 0.01 0.07 1.40 o. 92 o. 73 0.62 3.67 0.06 o. 40 0.1B 0.6 4. 0.84 o. 74 o. 6B o. 62 2-B8 o. 06 0.09 o. 18 0.33 014B 0402 0541 0234 0427 0610 0.26 o. 26 NONE o. 76 o. 42 0.47 NOBE 1. 65 MONE HORE NOHE a. as 0.05 a. 20 0.32 o. 17 0.69 0404 0543 041B 0609 HORE HORE NOHE a. 24 o. 43 MORE o. 67 NONE NONE NONE 0.04 0.03 0.07 0.5 2244 1.9 0022 0.3 0417 2009
_____________________________
:,. __________________________________________
-:----.-.. ---------.-
RAill RAIN 1412 1422 1527 15S4 a. 11 0.4S 0.62 a.OS a. 45 a. so 1532 1S47 NONE 0.25 0.2S a. 11 1S33 1545 o. 17 NOHE 0.20 a. 20 o.os a.as 0.3 1S44 P/B P/H P/B P/R P/R POG l'OG FOG 9 POG FOG POG 211S 2400 0000 OS43 0000 0552 2023 2118 2301 OOQ8 0612 2039 2158 2QOO 0000 ooss 0139 0453 0527 0650 2. 76 2. 76 5. 72 1.03 6. 7 4 O. BO a. 34 0.27 a. 66 0.98 3.04 0.92 3.23 1.37 5. 53 2. 76 2. 76 5.30 1. 01 6.31 O.BO a. 24 0.17 a. 66 a. 90 2. 77 0.51 2.13 0.68 3.32 2352 2400 0000 a 118 0207 2315 0044 0131 OJOB 23Q8 2309. 2400 0347 0420 OS31 0542 a. 13 o. 13 o. 73 0.21 1. 02 a.SS 2. S1 NONE NOHH NONE NOHE 0.85 o.8s BONE 0.56 a. 1B 0.74 0.13 0.13 o. 64 0.07 O.JO o. 24 1. 25 0.1S 0.15 o. 10 0.18 0.27 2JSS 23S6 0003 QOJj 2323. 232S 0532 OS40 0.02 0.02 0-49 NOHB NOHE 0.04 O.S2 NOHE HOBB ROHE NOHE BOU NONE NOBE a. 13 a. 13 0.02 0.02 o. 01 a. 04 a.as 0.01 0.01 a. 4-o.s. 0-5 23S6 2323 2325 OS40 10 POG P/R P/R P/B 0107 0404 OS36 2027 0208 OUJ 0547 2328 1.02 a. 49 a. 1a 3. 02 4. 70 0.90 o. 39 0.18 2.75 4. 23 2047 2230 NOHE NOSE HONE 1.71 1. 71 a. 67 a. 67 20SO 2150 2101 2152 HONE NOHE HONE Q.19 a. 03 0.22 0.02 a.OJ a. OS 0.4 21S1 ----------
11 F/R BUB 12" P/B FOG 13 FOG FOG P/R P/H 0000 0057 07S8 OBIS OS31 0624 21S9 2JQ8 0021 0324 2014 2113 0102 0332 2029 2138 0.9 4 o. 28 a. 66 0.01 1.22 o.73 a.as 1.81 2. 69 0.69 a. 12 0.25 a. 41 a. 34 a. 63 o. 98 0.47 0.12 0.2S 0.41 1. 46 1.25 2207 2207 NONE NORE NONE a. a 1 a. 01 RONE NONE NONE NONE o. 01 a. 01 NOBE HOSE NOHE NOHE ROME NOBE ROBE NONE 2.2 0020 o.9 2207 1.0 0328 14 POG 15 POG 16 l'/R 17 POG 18 POG POG 0010 001S 0329 0457 0750 0807 2223 2JQ8 0013 0104 22Q9 2357 0.01 a. 01 0.01 0.01 1. 46 1. 46 a. 29 o.s 1 a. 51 a. 16 0.29 0.16 I. 41 0.46 1. 41 0.46 a. 85 1.14 o. 40 a. 16 0404 0405 0040 0041 NONE o.o 1 o. 01 NOHE NOHE a. 02 HONE a. 01 *a. 01 0.02 1. 99 a. 56 a. a 2 a. 02 HONE HORE BOBE NONE MONE HONE 1.7 o *. 9 1. 6 1.1 a. 1 0012 0405-0801 2344. OOQO --------------------------------,-------------------------------------------------------------------------------------------------
20 POG 0230 0650 4.34 J. 00 0313 0647 J. 57 1.12 0415 0436 0.3S Q.10 0.2 OSS4 oss2 0616 o.39 0.16 4.34 3. 00 3.57 1. 12 o.H a. 26
* l l J
* J I I __ , .l * 
* :e
* DAY OBSTB TYPE 21 P/L F/R 22 FOG 23 BAIN 24 POG FOG 25 FOG FOG 26 RAIH 27 FOG 30 FOG FOG ONSET END (EST) 0306 1019 1218 1245 0427 06JJ 1940 1942 0145 0234 0308 0731 0005 0058 0 U6 0505 1818 1828 0250 0251 1953 2149 2241 2348 TABLE 7. 1H (CORT.) ACCU!"IULATEO SJ KH EPISODE DUBATIOH (HR) Til'!E ::SJ Kl'! ONSET END (HR) (EST) 7. 23 0.45 *1. 68 2.11 i. 11 0.82 4. 38 s. 20 o. 88 0.47 s. 92 o. 13 6. 05 1. 80 1. 80 0.82 4. 38 s. 20 0.28 o. 22 1.36 o. 50 o. 17 0.17 0.17 0.17 o. 02 o. 02 o. 02 0.02 1.94 1. 10 3.()4 1.3Q 0.67 2. 02 0325 0335 0443 0626 0149 0225 0319 0119 2018 2119 S1 K:t EPISODE DURATION (RR) o. 18 ROHE o. 18 1. 73 1. 73 NONE o. 60 4.00 4. 60 NOBE NOR! NONE NOBE 1.02 NONE 1. 02 ACCO"-ULATED TI?'IE S1 Kl! OHSE'l' END (HR) (EST) 0.18 o. 18 o. 72 0.72 o. 19 3. 69 3. 89 o. 25 0.25 0327 Q330 0451 0502 0343 0711 2115 2111*
!t.!! EPISODE ACCUl'!OLATED DOBATIOH TUE SO. SK! (RR) (HB) o. 05 NORE D. 05 D. 19 o. 19 NONE HOME 3. 47 3. 47 NORE RONB NORE HORE D.02 NOBE o. 02 o. 05 o. 0 5 0.07 o. 01 2.89 2. 89 0.02 0.02 !IN VIS POB DAY (K!) 0.3 o. 4 2.5 0.2 1. 4 1.6 2.8 o. 4 TISE OP !UH VIS (EST) 0328 0502 1941 0508 0027 1823 0250 2116 ------------------------------------------.-----
.. *----------------------------------------------------------------:----------
31 POG P/H P/H 0006 1838 2056 0045 1922 2119 0. 6q 0.1.3 0.39 1. 75 65.69 PERCE BT FOG (FJ HAZE (HI DRIZZLE RUH (BJ SHOil (S) F&H P&L F&B F&S TOTAL 0.32 o. 73 0.39 1. *3 48.80 1841 OF TOTAL HOURS (L) 1856 OF DATA 3 KM 3. 7 o.o o.o ' o. 2 o.o 2. 1 0.9 0.4 o.o 7.3 NONE 0.24 NONE 0.24 19.48 WITB o. 15 o. 15 . 9.12 VISIBILITY 1 K! 1.1 o.o o. 0 < 0.1 o.o 0.3 < 0.1 o. 1 o.o 1. 4 EQUAL TO !ONE HONE NORE 6. 23 OR LESS TRAN 0.5 K! o. s o. 0 o. 0 < o. 1 o. 0 < o. 1 < 0.1 < o. 1 o. 0 o.s 0.1 18Q8 3. 54 195 OBSTR TYPE POG RAIN RAIN P/L F/B P/H P/R P/H F/H P/B P/R F/R FOG FOG 10 F/B 11 P/B P/H F/H FOG 12 P/H 13 RAIN 17 FOG 20 POG 21 F/L F/R FOG POG 22 FOG 26 RAIN 28 P /R 29 POG 30 FOG POG ONSET END (EST) 0433 0441 2226 2241 1555 1612 2137 2241 0222 0437 2045 2337 0250 0646 2107 2400 0007 0802 2022 2034 0055 0516 2305 0316 0642 0000 0704 0055 0241 0344 0555 0006 0217 2035 0106 0646 2051 0331 0654 2001 2040 0600 0610 0152 0417 0346 1226 2158 2321 0000 1107 1340 2227 2400 0824 0250 0351 0424 0727 1841 1857 2 059 2223 2306 2311 0036 0123 0250 033 6 HBLE 7. 2H VISIDILI'IY OBSTRUCTION AT STATION ?07 A 1977 !NS'l'RUi1ENT IN OPERATION:
0000 1 .\DG-2400 31 AUG IOT!L HOURS OF OPEBATION:
74Q. .. 0 :$3 K!"l lCCOHOLATED EPISODE DUBA1'10N (HB) TIH.E S3 Kl1 ONSBT END (HR) (ES'rJ O.H o. 14 o. 14 o. 14 o. 24 o. 24 0.24 0.24 o. 28 1. 07 1.35 o. 47 2. 15 0.36 0.38 0.28 1.07 1. 35 o. 47 2. 15 0-36 o. 38 3.36 3.36 7.91 o. 20 8.11 2.34 1. 42 0.91 4. 68 7. 07 7. 07 1. 76 2. 18 J. 94 1.00 4. 49 o. 26 5. 76 3.39 J.39 0.64 7. 91 o. 20 0. 11 2. 29 1. 16 o. 53 3. 98 6.66 6. 68 1. 76 2. 04 3. 79 o. 73 4. 24 0.26 5. 24 3. 27 0.64 0.64 o. 64 o. 16 o. 16 0.16 0.16 2.43 1.44 7.36 1. 24 o. 48 0.64 9. 72 8. 40 1. 02 3. 05 o. 26 0.26 1. 40 1. 40 o. 09 7.36 1. 24 o. 48 0.64 9.72 0. 01 6.07 1. 02 2. 95 3. 97 o. 26 o. 26 o. 87 o. 87 0.09 0.09 0.09 o. 79 o. 76 o. 19 o. 49 1.55 0.68 66. 76 62.06 1601 1606 0214 02'52 2025 2031 0300 0302 0054 0100 0446 0447 0306 0530 0405 0541 2216 2221 0030 0211 0305 0815 0306 0336 0429 0722 1646 1648 2102 2203 S 1 K11 El?ISOOE (HR) NONE JONE o. 12 NONE o. 12 NONE NONE NONE NONE o. 64 o. 10 0-74 o. 03 NONE NONE 0.03 o. 10 o. 10 llONE o. 02 0.02 NONE 2.40 NONE 2. 00 1. 60 1. 60 NONE NONE NONE NONE NONE o. 06 NONE 0.06 1. 69 5.17 6. 86 o. 49 2. 86 3. 36 0.05 o. 05 1. 0 1 1. 0 1 NONE NONE NONE 16.36 ACCrJl'HJLATEO TIME $1 Kft ONSET END (HR) (EST) o. 12 o. 12 o. 51 0.10 o. 61 o. 03 o. 03 0.10 o. 10 o. 02 o. 02 1. 79 1. 79 0.67 0.67 o. 06 0.06 1.24 4. 63 5. 67 o. 40 2.50 2. 89 o. 05 o. 0 5 o. 29 o. 29 12. 51 1603 1607 0058 0056 0411 0526 Q053 0521 0119 0313 Oo36 0208 0406 0810 0431 0615 2110 2157 S.O .. 5 Kl'I EPISODE DURATION TI.HE SO.SK!t (HR) (KR) NONE NONE o. 07 NONE o. 07 NONE HONE NONE NONE NONE NONE NONE NONE NONE o. 01 o. 0 l NONE NOHE NONE 1 .2* NOHE 1.24 o. 47 NONE NONE NONE NORE NONE NONE NONE o. 82 0.69 J. 53 5. 24 NONE 1. 73 1. 73 RONE o. 78 o. 76 NOHE NONE NONE 9. 55 0.01 0.07 o. 01 0.01 o. 91 0.91 0.16 o. 16 0.26 o. 42 2. 70 3. 37 o. 96 o. 96 0.05 o. 05 5. 53 VIS FOR DAY 2 *. 9 2. 7 0.3 1. 3 o. 7 o. 5 o. 5 0.9 O. l o. 1 2. 5 2. 7 1. 4 0.6 0.1 o. 3 0.6 o. 3 0.9 1. 3 TJ:H E QF HIN VIS (EST) 0436 2229 1604 2052 2031 0301 0058 0406 0036 0453 2032 0602 2220 0737 0525 -1846 2126 2309 0333 l l ] J J I J.
197
* TABLE 7. 2H (COST.) eERCENT OF TOTAL BOOBS OF DATA WITB VISIBILITY EQUAL TO OB LESS THAH 3 I Ke 0.5 Kn FOG (Fl 3.1 1.2 o. 6 HAZE (B) o.o o.o D. 0 r DRIZZLE (L) o.o o.o o. 0 RAIH (B) 0.2 o. 1 < *o. 1 SHOW (S) o.o o.o o. 0 F&H 2.6 o. q 0.1 F&L 1.1 o. a o. a F&B 1.3 a.1 < a. I F&S a.a o. a a.o TOTAL 8.3 1. 7 o. 7
* 198 DAI OBSTR TYPE F/R F/R F/R F/R FOG FOG FOG F/R F/R FOG FOG FOG FOG FOG. 7 FOG FOG F/H FOG FOG P/R F/& 10 FOG 11 FOG FOG 12 F/B F/R 13 F/R F/R F/R 14 FOG FOG 15 P/B F/R 16 F/H F/B 17 F/H F/R F/R F/B 18 F/R 19 FOG F/R F/R F/R F/H 23 FOG ONSET END (EST) 0102 OJ56 1016 1746 0222 0335 0458 092J 1057 0110 0455 1049 1849 0301 0006 0607 09J6 1120 2040 2115 0647 0938 2111 2356 000. 0803 2025 2354 0000 0301 0550 0103 0307 0706 1940 0049 0316 0723 0231 0503 0810 2H5
* 1948 2151 0001 0049 1934 2117 1810 19H 2050 2218 0015 0915 1102 0830 OH6 1350 0219 0758 1951 2101 1032 1047 1125 1132 2055 2239 2313 2400 0007 0326 1131 2141 0255 0727 1306 2242 0352 0551 1854 2247 0333 .. 0610 0653 0812 0517 0622 0704 0829 0419 0736 TABLE 7. U VISIBILITY OBSTRUCTION AT STATION P03A SEPTE11BER 197'1 INSTBO*ENT IN OPERATIOB:
0000 1 SEP-2400 JO SEP TOTAL BOORS OF OPERArION:
720-0 ACCUMULATED SJ KM EPISODE DDBAUON (RR) TIHE SJ Ktt ONSET END (HR) (EST) 0.14 0.99 0.55 1. 05 2. 74 0.64 o. 52 1 .. 116 o. 23 0.38 2. 91 0.59 o. 14 o. 75 o. 1B o. 86 1. 93 o. 16 o. 16 1. 14 0.23 o. 38 2. 07 0.17 0.59 0.17 2. 85 2. 74 5. 59 7.98 3.48 11.47 0.82 o. 25 1.55 2.63 1.47 1.94 1.07 2.07 6.55 2.05 2. 0 5 o. 80 1. 71 2-51 1-40 1. 46 2.21 2.16 4. J8 6. 68 o. 65 0.22 1. 34 2. 20 1. 07 1. 94 1.07 1. 22 5. 30 o. 68 o. 68 0.32 0.98 1. 30 o. 76 o.59 2.87 1.35 8.24 o. 52 2.80 11. 56 5.66 1.17 6.BJ o. 24 0.12 6. 47 0.31 o. 77 7.55 5.H o. 59 5. 9J o. 06 o. 10 o. 36 o. 15 1.H o. 77 o. 86 0.19 2.51 1.06 2. 79 4-01 1.58 1.02 9. 40 1. 98 J.89 5. 87 1. 74 0.19 o. 18 0.28 2. 1 e J. iq 1. 58 o. 83 7. 72 1. 59 J. 56 5. 15 1. 74 0.19 0.18 o. 28 2. 3 8 2. 38 3.29 3.29 J. 17 J. 17 0105 11 co 0700 0850 2112 0012 0155 2058 0558 0113 0401 2013 0106 , 111 0746 0911 2J5J 0108 0755 2J44 064J 0142 0432 2114 2034 2 048 2020 2112 1117 1119 D22E 0636 2015 2029 0624 2200 0655 2211 1914 2140 0436 0724 S 1 Kl'I EPISODE DaRATION (BR) a. 02 NONE NONE NOHE HONE NONE NOHE NONE 0.18 0.18 NOHE o. 77 O.J4 2.67 J. 78 D.94 6. 00 2. 77 9. 71 NONE NOBE o. 76 o. 76 0.47 a.SJ NONE 1.01 2.00 o. 23 o. 2J NOBE 0.88 0.88 NORE NORE NONE NORE 0.04 o. 04 4.16 0.23 4. J9 NONE NONE NONE RONE ROYE o. 53 BOSE o. 11 o. 70 RONE 2. 43 2. 43 HONB NONE NONE HONE 2.80 2. SD ACCUPICJLAT ED TI!!.E :S1 ONSET !ND (HR) (EST) 0.02 o. 06 0. 06 o. 77 o. J4 0.9J 2.04 o. 30 5. 42 1. lJ 6.85 o. 72 o. 72 o. 47 0.40 a. 11 1. OJ o. 02 o. 02 o. 19 o. 19 o. 04 0.04 1.JJ 0.07 1. 41 o. 42 0.11 o. 53 2.11 2.11 i .. 1. 51 070J 0107 0237 210J 2252 a 600 0117 2014 0740 0107 ans 2214 2304 0628 0136 2049 0228 0324 0627 0638 1934 2134 0529 0635 so. 5 K" EPISODE DUBAT.IO!f (RR) RONE NONE NONE NOSE NOBE NOBE NOSE NOSE HONE NORE . o. 61 RONE NOBE a. 61 o. 01 5. 18 1.19 0.19 6.57 NOBE ROHE 0.47 0.47 0.32 HONE NONE 0.58 o. 90 HORE NORE BONE NOHE SOllB HORE ROHE NOHE o. 94 NOHE o. 94 BORE NOHl! NONE NOHE HONE 0.19 ROHE HOSE 0.19 NOHE 99 1. 99 NORE NOBE NONE NONE 1.10 1. 10 ACCU"ULATED TIHE :SO .. S!lt:ll (HR) o. 61 0.61 o. 01 4.67 0.35 a.11 5.13 o. 47 a. 47 0.22 a.OJ o. 2s o. 01 o. 07 o. 19 o. 19 1. 70 1. 70 o. 41 o. 41 "IN VIS POB DAI (Kft) 0.6 o.5 0.2 0.1 o. 2 0.2 o. 7 0.5 1.2 a.1 0.3 1.4 D.1 2.0 0.2 TJ:ftE OP SIR YIS (!ST) 0105 1109 0716 0107 0624 0132 2034 2020 1902 1117 0228 1129 2J14 063J 2018 0816 a 55J --, l l *1 l I I .. _/ I .} I .J *
* f ' *
* DAY OBSTR TYPE 24 P/R FOG 25 FOG 26 FOG 28 FOG 29 FOG 30 P/R ONSET END (EST) 0116 0705 2020 2227 0012 01SS 0120 0123 19S3 222S 0042 0048' 2131 2132 TADLE 7. II (CONT.) .l.CCTJ!'!'ULATED
:SJ KH EPISOD& DU BAT.ION (HR) TIHE SJ ONSET ENO (HR) (EST) S.81 2.10 7.9 1 1.72 1.12 o. 0 s 5. 25 1.00 6.2S 1 .. 25 1. 2S a.as a.as a.as 2. SJ 1. 04 2. SJ 1. 04 o. 09 0. 09 o. 09 o. 09 0.02 0.02 0.02 70. 33 0506 0608 20S4 214J OC15 0143 19S6 2015 2136 2206 S 1 K?I EPISODP. DURATION (HB) 1.0 4 0.82 1.86 NONE 0.32 o. 49 o. 80 , NONE NONE PERCE UT OF 'IOTAL BOU RS OF DATA 'ilITR 3 POG (FJ s.1 HAZE (H) o.o DRIZZLE (L) o.o RAIN (B) 0 .o SNOW (S) o.o F&H 1.8 F&L o.o F&B 2.8 F&S o. 0 TOTAL 9.8 ACCTl!'tOLA'IED TIHE :51 KP! ONSET END SO. S Ktt EPISODE DURATION (HR) (EST) (HR) o. 48 o. 10 o. S9 o. 42 o. 42 a.as o. 07 0.11 17. 65 VISIBILITY 1 2.2 o. 0 o. 0 o.o o.o o. 2 o. 0 0.1 o. 0 2.s OS47 OSSO 0026 0039 a.as NONE o. os o. 21 o. 21 NONE NONE NONE NONE NONE 13. 04 EQUAL TO OB LESS THAN O. S 1.1 o. 0 o. 0 o. 0 o.o o. 1 o. 0 < o. 1 o. 0 1. 2 TI"E :SO .. (HB) . o.os o.o s 0.05 0.05 8. 93 l'IIN VIS PCR DAY (Ke) 0-2 0.4 2. 7 o.s 1.5 2. 6 TleE OF HN VIS (EST) 0548 0039 0122 201S 2131 199 200 DAY OBSTB TYPE ONSET END F/R P/R POG FOG POG P/H P/B POG POG FOG POG FOG F/H FOG FOG POG POG F/B P /H 11 FOG 12 RAIS (EST) 0402 1837 22J8 0239 0350 0813 1116 0513 1906 2252 0317 0632 0846 1145 0512 0637 2210 2242 OOS6 06SO 2129 2400 0000 os1 a 20S8 2142 0000 0206 0644 0756 0108 0723 2112 2400 0129 0424 0702 0833 OJ39 0632 2102 2105 SJ Kl! EPISODE DOBATION (HR) 1. 19 o. 4 9 0.22 1. 90 o. 63 2.69 o. 55 o. 49 4.J5 1.40 0.52 1. 93 5. 90 2. 51 0. 41 1.13 2.09 0.24 2. 30 s. 7S 1. 48 2.29 o. 30 o. 6J 4. 70 2.00 2. 88 o. 05 o.os TABLE 7.2I VISIBILHY OBSTRUCTION AT STATION P07A SE 1 977 INSTSUKENT IN OPERATION:
0000 1 SEP-2400 30 SEP
* TOTAL HOURS OP OPERAT.ION:
120.0 ACCUMULATED TIHE SJ Kl't ONSET END (BR) (EST) o. 86 o. 42 0.22 1.50 o. 63 2. 69 0.55 0.29 4.16 1.22 o. 52 1. 74 5. 01 2.46 7.47 1.13 2. 09 0.24 2.22 s. 68 1. 48 2. 29 0.30 o. 63 4. 70 2. 5S 2.5S o. OS O. OS 0416 0421 0555 2214 2239 0224 OS1S 0607 0644 21 SO 2307 0018 0346 2236 2334 0122 OJ59 0429 0610 S1 KM EPISODE DUB ATION (HR) 0.03 NONE NOHE 0.03 YOHE 1. 55 !iO?i'E NONE 1. 5S YOHE 0.42 2. 8S o. 62 NORE 3. 46 NONE NONE NONE il. 76 0.46 1. 22 1.06 0.22 RONE NONE 1. 28 1.68 1. 68 RONE ACCUKULATED TIHB S1 Kn. ONSET BND (HR) (EST) O. OJ o. 03 1.21 1.21 o. 20 o. 20 1. 66 0.16 1. 82 o. 19 o. 32 o.S1 0.27 o. 22 o. 49 o. 69 o. 69 2237 2238 0226 0237 0320 0426 2233 004S 0348 2234 011 a 0349 0443 0513 .. 5 K:t EPISODE DURATION (HR) NONE NORE NOHE RONE NONE NONE NORE NORE o. 03 0.03 o. 18 1.10 RONE NORE 1. 28 BONE HONE NORE Q.03 NORE 0.03 o. 55 o. 02 HONE NOHE o.S7 a.so a.so NOHE ACCU!ULATED TIPIE :SO .. SKZI (HR) 0.03 o. 03 0.07 o. 62 0.69 O.OJ O. OJ 0.00 0.02 o. 10 o. 2J 0.23 KIN VIS FOR DA! (KK) o. 6 o.a o.* 0.3 0.3 o. 4 0.2 TIKE OP !IN VIS (EST) 0415 0432 2238 22J4 0348 0507 2103 ------------------------------------------------------------------------------------------------------------------------------------
13 P/R 0141 0817 6.61 6.61 NONE 80HE 0.8 2os8 P /H 2028 2107 O. 6 4 O. 64 2056 20 S8
* O. 0 4 O. 04 NONE 14 FOG 1S P/R 16 F /H 17 P/R F/B 18 F/B POG 19 F/S 21 F/H 23 POG 24 P/R F/R 2S F/B 26 P /B FOG 29 FOG 0140 0650 11S5 1203 OS37 06H 0523 073S 1149 1228 0406 0617 2004 21J6 0824 08S7 0603 0823 0236 0711 0002 0333 044S 0715 2319 2400 0000 0016 0158 0209 0139 014S 7. 25 7.2S 5.18 s. 18 S.18 S.18 0.13 O. OS 0.13 0.05 o. 95 o. 95 0.9S 0.95 2. 20 0.65 2.20 o. 6S 2.85 2.8S 2. 18 1. 54 2. OS 1. S4 3. 72 3. S9 o. S6 o. S6 O.S6 O.S6 2. 33 2. JJ 4. S9 4. 59 3.SJ 2.51 6. 04 o. 69 o. 69 o. 27 o. 20 1. 03 1. 03 4 *. 41 4. 41 3. 53 2. s 1 o. 2S 0.25 o. 27 o. 20 0.46 0.46 o. 11 0.11 0.11 o. 11 01S7 0646 07 00 0718 0752 0821 041S 0630 0619 0642 2323 2326 4. 81 4. 81 NONE NONE NOHE NONE NONE NOHE KONE o. 30 0.48 o. 78 2. 25 2. 2S NONE 0.38 0.38 0.04 o. 04 NONE NOKE NONE o. 04 o. 09 o. 11 0.20 1. S3 1. SJ o. 23 o. 23 o. 04 o. 04 0201 0531 0820 0820 0419 0626 0622 0624 3. 49 3. 49 NONE NONE NONE NONE NONE HONE ROHE NONE o. 01 o.o 1 2. 11 2. 11 NONE O. OJ o. 03 HONE HONE 9'0NE NONE 2. 82 2.82 o.o 1 o. 01 o. Sl 0.51 o. 03 O. OJ 0_2 2. s 2. 3 1.1 1.S 1-7 o. 4 0.2 0.4 o. 8 1.1 2. 7 0348 1157 0602 1200 0447 0849 0820 0552 0623 2J24 0202 0140 l I l --) \ I . .I *
* r' **
* DAI OBSTB TYPE
* 30 HAZE F/R TABLE 7.2I (CONT.) SJ KS EPISODE ORSET END DURATION (EST) (HB) 1116 1201 1452 2400 o. 75 9-13 9.B8 74. 71 ACCUSULUED TIS B SJ K8 OHS ET BRD (BB) (EST) o. 75 9. 13 9. BB 70. 47 2301 2303 S1 IU! BPISODB DURATION (HB) ROHE o. 02 o. 02 17.98 PEHCEHT OF TOTAL HOURS OF DATA llUH 3 KH POG (F) 4.7 HAZE (H) 0.1 DRIZZLE (L) o.o BAIM (B) < 0.1 SHOii (S) o.o F&H 1.2 F&L o.o F&B 3.7 F&S u. o TOTU, 9.8 ACCU SULA'!: RD TIU S1 U ORSET END SO-5 P\l'I EPISODE DUBATIOS (HB) (EST) o. 02 11. 18 iISIBILITY EQUAL TO OB LESS 1 K8 0.5 KS 1.5 0.6 o. 0 o.o o.o o. 0 o.o o.o o. 0 o.o o. 1 0.1 o.o o. 0 < 0.1 o. 1 o.o o. 0 1.6 0.6 (HB) ROHE ROSE a. 05 THU ACCUS ULA TED TIPIE SO. SKB (HB) 4. 45 SIN v:IS FOB DU (KS) 1. O* TUE OP !IH ns (EST) 2302 201 202 DAI OBSTR TYPE P/R FOG FOG FOG F/R ?OG FOG RAIN 13 FOG 1* FOG 20 FOG 21 FOG FOG 22 F/B 25 F/R 28 FOG 29 FOG FOG ONSET END (EST) 0055 0 156 2102 2138 2208 2257 1938 2030 051* 0522 ouo 0346 0448 0550 0342 0347 1922 2208 0244 0256 0346 0800 . 02*1 0524 0 605 0623 o*o5 0429 0835 0852 1921 2356 0003 0025 2006 2400 TABLE 7.1J VISIBILITY OBSTRUCTION AT STATION ?03A OCTOBER 1977 IN OPERATION:
0000 1 OCT-11*0 11 OCT 1550 13 OCT-1235 25 OCT 1120 28 OCT-2*00 31 OCT TOTAL HOORS OP OPERATION:
621. 2 ACCUftULATED EPISODE DURATION (HR) T.Il'!E K!'I ONSET EB D (HR) (EST) . ,_ 0 1 o. 52 1.01 0.52 o. 60 o.80 O. JO o. 43 1. *o o. 73 0.87 o. 32 o. 87 o. 32 o. 14 o. 14 0.14 0.1* 2.10 1. 04 0.08 o. 90 o. 60 1. 49 0.08 0.08 0.08 2. 77 1. 65 2. 77 1. 65 o. 19 0.19 0.19 0.19 "* 23 *.17 *.17 2. 72 1. 34 2025 2026 0242 0313 0514 0547 , 930 2038 0354* 0738 S1 Kn EPISODE DURATION (HR) NONE NONE NONE o. 01 o. 01 NONE o. 51 o. 55 1. 06 NONE *1.14 NORE J. 73 3. 73 ACCUftULATED TinE S1 ONSET END (HR) (EST) o. 01 o. 01 o. 03 0.07 0.10 0.19 0.19 3.20 3.20 2007 20J7 0556 0731 50.5 Kl'! EPISODE ACCUMULArED DURATION Til'fE SO. Sltl! (RR) (RR) NONE NONE NOKE NONE NONE NONE NONE NONE o. 51 0.51 NONE 1. 59 1. 59 RONE o. 02 0.02 1.59 1. 59 0315 OJ38 0435 0517 0.38 o. 70 NONE 0.12 o. 09 0515 0515 0.01 0.01 O.JO 3. 02 0. 39 o. 16 1. 50 o. 39 0. 39 0.39 o. 29 0.29 o. 29 0.29 "* 58 "* 58 o. 37 3.89 4. 28 ** 28 0.37 3. 21 3.58 1930 1957 2043 2351 2132 2400 1. OB RONE NONE o. "" 3. 14 3. 58 NONE 2.46 o. 21 0.36 1. 81 2.17 1. 23 1.23 1951 1956 2104 2158 2136 2239 2313 2400 HONE o.o 1 NONE NONE o. 08 o. 90 o. 98 NONE 1 .06 o. 78 1. 84 o.o 1 0.08 o. 18 o. 26 o. 25 O.JS 0.59 MIN VIS FOB DAI (KM) 1.2 1.0 0.8 2.3 o. 7 2. 1 o. 4 1.3 0.3 a *. 4 2.0 1.7 0.3 0.2 TIME OP UN VIS (EST) 0152 2253. 2026 0518 0542 OJ44 2008 0252 0601 0515 0411 0843 1955 2324 ---------------------
--------------------------------------___ :... ---------------------
---------------:-------------------------------.-30 FOG POG 9COO 0138 0103 1015 . 1.06 8. 62 9.68 1. 06 0. 26 9. 31 0000 0059 0204 0653 a. 98 4. 82 5.00 a. 96 4. 65 5. 60 0000 0205 0424 0058 0317 0649 o. 96 1. 19 2. 42 4.57 0.45 1.05 1. 58 J. 07 0.2 0625 ----------------------------------------------------------------------------------------------------------.:.-----------------------
: 36. 04 28. 64 18. 87 12. 71 9. 50 PERCENT OF TOTAL BOURS OF DATA \IITH VISIBILITY EQUAL TO OR LESS TBAN FOG (P) HAZE (B) DRIZZLE (L) SAIN (ll) SNOi (S) F&B F&L F&R F&S TOTAL 3 4. 4 o.a o.a < o. 1 o.o o.a o.a 0.2 a.o 4. 6 2.0 o.o a.o a.o o.a o.o a.o o.a o. 0 2. a a. 5 0.9 o. 0 a.o a.o a. a a. a a. a o. a o. a a. 9 5.54 .*1 l -*i .. l *
* T.\BLE 1:2J vrsrnILI TY OBSTRactION AT STATION ?07 A OCTOB:;R 1977 INSTRUl'!ErlT IN OPERATION:
0000 1 OCT-2400 31 OCT 'IOTlL HOUE!S OP OPP.BATION:
71Hl,.0 ---------------------------------------------
-----------------------+--------------------------------------------------------------DAY OBS TR TYPE F/R P/R F/B POG FOG
* F /H FOG RAIN 14 POG 18 RAIN 19 POG 20 FOG F/H ONSET ENO (EST) 0000 0601 0744 0305 0619 0829 0614 06?3 2225 2231 0603 07J2 1938 2041 0357 0405 0519 0537 1510 1511 2021 2*00 0000 0512 0602 0818 .\CCU !10 LAT ED K/'5 EPISODE DURATION (HR) TI11E .SJ Kl'! ONSET ENO (H (EST) J. 09 o. 29 o. 75 ** 13 o.65 0.10 3. 09 o. 29 0. 75 ** 13 o. 65 o. 10 o. 7 5 o. 75 1. *8 1. :is 1.05 l. 0 5 o. 13 1. 32 1. 32 1. 05 1.05 o. 13 0.13 0.13 0.30 o. JO 0.30 O. 30 0.03 O. OJ O.OJ 0.03 3. 66 3. 66 5. 19 2.21 7. *6 3.65 3. 65 s. 19 2. 0 3 7. 22 021 6 021.8 0624 0712 1946 2039 2033 2129 2214 2400 0000 0437 0633 0802 :S 1 KH EPISODE DURATION (RR) o. 02 NONE NONE 0.02 NONE NONE o. 79 o. 79 o. 88 o. 88 NONE NONE NONE o. 93 1. 77 2. 70 *-62 6-11 ACCUMIJL.\TED THIE S1 KP!. ONSET END (HR) (ES!) o. 02 o. 02 o. 53 o. 53 0.58 0.58 0646 0652 19*7 2007 0.57 20l6 2127 1-17
* 2300 2329 1. 74 3. 82 1. 23 5. OS 0045 0200 0328 0635 0114 025* 03"3 0758 SO .. 5 KH EPISODE DORAT.ION (HR) NONE NONZ NONE NONE NONE 0.10 o. 10 O.JJ o. 33 BONE NONE NOHE o. 84 o. 49
: o. 49 o. 90 o. 2* 1.38 3. 01 .\CCU MU LATED TIME S0.5KM (HR) o. 10 . 0-10 o. 09 0. 09 0.20 0.27 o. *7 o. 23 0.51 o. 2* o. 99 1-98 i!!:IN VIS FOB CAI (KM) 1.8 0.4 0.3 1.1 1. 6 2. 8 O.J. 0.2 E OF MIN VIS (EST) 0217 2227 0652 1959 0400 0534 1510 2038 --------------------------------------------------------------------------------------------------------------------------------.----22 FOG 0129 0252 1.39 1.JS NONE NONE 1.4 0412 F/R 0*09 0539 1.*9 1. *9 NONE NONE 25 F/R 26 FOG FOG 27 FOG FOG 28 FOG FOG 29 FOG JO FOG 1946 2202 0057 0758 2310 HOO 0000 1042 2120 2*00 0000 0930 1525 2*00 0000 2*00 0000 11 *1 2.88 2.88 2.27 2. 27 2.27 2. 27 7. 85 lo*. 10 2. 67 13. 37 9. 50 8. 58 18. 08 2*. 00 2*. 00 11. 68 11. 68 99. 11 7. 01 O. 8* 7. 85 10. 70 2. 67 13. 37 9.50 8. 58 10. oe 24. 00 2*. 00 11. 69 11. 68 98. 70 04** 0630 0052 0944 2225 2400 0000 0 202 1631 1728 0935 1032 02.32 0503 0713 0358 0520 101" 1-76 NONE 1-76 6.87 1. 59 10. 46 2. 03 0.95 2. 98 o. 95 o. 95 1. 42 o. 28 3.02 4. 72 31. 38 1. 71 1. 71 8. 87 1-38 l 0.25 2.0J O. S* 2.57 o. 95 o. 95 1.37 0.29 3. 02 ** 67 28. 07 0115 0359 0012 0139 0258 0327 NONE NOHE NONE 2-1* NONE 2. 74 1-4* NONE 1-*4 NONE o. 49 MONE NONE 9. 45 PERCENT OF TOTAL HOURS OF DATA 'lil'ITH VISIBILITY EQUAL TO OH LESS THAN FOG (F) HAZE (H) OS!ZZLE (L} RAIN (R) SNO * (S) F&H F&L HS IOTAL 11. 7 o. 0 o.o < 0.1 o. 0 o.* o.o 1.1 o.o l J.J 3.5 o.o o. 0 o.o o.o 0. 2 o.o 0. 1 o. 0 3. 8 0.5 KM 0.8 o. 0 o. 0 o. 0 o.o 0. 1 o. 0 0 .0 o. 0 1. 0 1. 5 2015 o. 5 0535 2. 74 o. 3 0153 2-74 1 *** o.3 0115 0.8 0956 O.J8 0.2 OJ25 o. 38 7. 20 203 204 DAY OBSTR TYPE ORSET END F/B F/B BAIN FOG FOG POG BAU 10 SHOii SROV 11 SHOii BAZE 12 SNOll (EST) 1401 1*52 2000 20*3 0718 0721 2353 2J 56 0003 0047 0416 0856 2059 2101 0924 1030 12J1 12*2 1119 1J39 2028 204J 0513 0846 SJ Kl! EPISODE DUBUIOH (HR) o. 85 o. 71 TABlE 7 .. 1K VISIBILITY OBSTRUCTIOB AT STATIOH P03A NOVE"BER 1977 INSTBO"EHT IN OPERATION:
0000 1 ROV-0600 25 NOV 1040 25 NOV-0120 26 NOV OQ35 26 NOV-1535 27 NOV 0700 28 NOV-2QOO JO NOV TOTAL BOURS Of OPERATION:
696.6 S1 ACCO"DLATED EPISODE T.I?!E :S3 Kl! ONSET END. DCRATIOH (HR) (EST) (HR) a. 61 a. 15 MOYE BONE ACCU l!ULAT ED T'Il'!.:E S1 Kl't ONSET ZHD (HR) (EST) 1.56 0.76 0.06 0.06 0.06 0.06 o. 05 O. OS O. 0 5 O. 05 a. 7J *.68 5. 41 O.OJ 0.1J J. 70 J. 8J a. 03 o.oJ o.oJ 1. 09 0.19 2.3" 0.25 2.59 3. 54 3.54 0.29 o. 12 1.01 a. 19 1. 20 3.12 J.12 0630 06J8 11J2 1154 osss on9 NONE BONE !OBE 0.13 o. 13 NOBE NORE NOHE 0.35 ROBE 0.35 1. 91 1.91 o. 13 o. 13 0.16 o. 16 1. 82 1. 82 0556 0723 5 K! EPISODE ACCOftOLUED DORAUOB TI!E (HB) (BR) HONE HOSE HOKE NOYE YOHE HOYE ROHE HOBE HORE 0.03 NOBE 0.03 1. 46 1. *6 0.03 0.03 1. 22 1. 22 UH VIS FOR DU (KB) 1.1 2.4 2.5 1.5 UBE OP . !IR VIS 1416 0719 2355-0634 2100* 1240 1n9 0616*
15 P/R 19 RAIN 20 RAIH 2J P/L 25 P/S 26 SNOll SHOii S!Oll SNOW 27 SROV SHOW 29 FOG JO P/R P/R F/R f/R P/R 0846 0850 2222 2233 0609 0619 10QJ 1050 0403 1406 16*9 0602 1607 2400 0000* 0117 0517 0745 09J7. 1147 1233 1537 025J 0258 142* 1504 1746 2236 23*9 1433 1541 204 1 2255 2000 o. 0 7 0.07 0.07 0.07 0.17 o. 10 a. 11 0.10 0.18 o. 18 o. 11 o. 11 1. 96 2. 02 7. 18 11.18 1.29 2. *6 J. 74 2. 17 3.07 5. 23 o. 09 0.18 o. 18 o. 11 o. 11 1. 98 1. JO 7.18 10. 45 1.29 1. 47 2. 76 0.59 2.32 2. 91 a. 09 0.09 o.o9 o. 15 0.61 2. 91 a. 33 0.16 0.15 o. 61 2.*7 a. 2* a. 18 ** 17 J. 65 J9.Q5 29. 77 0613 0613 0409 1427 1656 2136 2_228 0000 0520 0616 0602 H59 1917 21.47 2400 01 lJ 0531 06S.9 1458 1537 NOBE ROHE o. 01 o. 01 RORE 1. 87 0.5J 2.35 0.20 1.54 6. 49 1.22 o. 18 o. 71 2. 10 NORE 0.65 0.65 NORE NONE NONE NOHE NONE RONE 11. 65 a. 01 a. a 1 1. 47 a. 14 2.29 0.07 1. 39 5.36 1. 22 o. 02 o. 06 1.J 0 a. 65 a. 65 9. 44 0538 1658 230J 0000 0602 1819 2*00 0110 150J 1537 HOBE ROHE HORE BO!E 0.39 NOHB 1. 35 HOME o. 95 2. 70 1.11 llOBB NOBE 1. 17 ROHE 0.56 0.56 !O!E NONE . HORE SOBE HORE ROME s. 92 0.39 1.13 0.82 2.34 a. 73 a. 73 o. 56 o. 56 2.2 2225. o. 9 0613 2.1 1047 0.1 1717 0.2 0009 . 0.1 1529* 2.2 0256 -1.1 1U7 l -\
* 205 * '?ABLE 7. 1K (CONT.J PEBCENT OF TOTAL BOOBS 07 DATA llITH VISIBILITY EQUAL TO OB LESS THlM 3 K* 1 KR 0.5 KS POG (FJ o. 6 < 0.1 o. 0 HAZE (BJ < o. 1 o.o o.o DRIZZLE (L) o.o a. a o.o BAIM (R) a., < 0.1 o. 0 SNOll (S) 2. 7 1.1 0.6 F&H o. 1 o.o o.o F&L < o., o.o o.o F&B o. 5 o.o o.o F&S 0. 3 0.2 o. 1 TOTAL 4.3 1.4 0. 7 l ..
* 206 OBSTR TYPE P/R F/R RAIN 7 FOG POG FOG FOG F/H RAIN 10 SNOW 11 SNOW SNO.V SHOR SNOW SNO'il SNO'll SNOW SNOW 12 SNOW SNOW 1ll FOG 15 P/R 17 RAIN 19 RUN 20 RAIN 23 P/L DRIZ DRIZ 25 F/S SNOW 26 SNOW SNOW 27 S!fOll SNOW SMOW 30 HAZE F/R SJ KH EPI.SODE THLE 7. 2K VISIBILITY OBSTRUCTION AT STATION P07! NOVEMBER 1977 INSTROMENT IN OPERATION:
0000 1 NOV-13SO 10 NOV 2010 10 NOV-0825 2S NOV 1110 25 NOV-0235 26 NOV 063S 26 NOV-1S40 27 NOV 0800 28 NOV-2400 30 NOV TOTAL HOORS OF OPERATION:
690 .. 5 :S1 Kt! ACCUHUL lCCOMOLATEO*
ONSE'I END DURATION TIHE SJ KM ONSE'I EN 0 EPISODE DURATION (HR) TI!1E S1 IOI ONSET END (EST) (HR) (HR) (EST) 1515 1549 1854 192* 1138 12"0 2251 2400 0000 0121 0527 0938 00 *1 0334 0720 1007 2156 21S8 1138 1205 1240 13*7 0818 1000 1117 1257 1415 2001 2105 0925 1038 1207 1344 1516 20 14 2303. 00*6 02S1 03*7 O*S9 03*8 0353 0902 0907 17"2 1748 2243 2250 1332 134S 091S 1136 1436 0940 1331 1 458 0*21 0823 1113 1137 0000 0637 09S9 1135 1321 0234 0930 1055 1215 1540 0549 0622 1307 2400 0.5& a.so o. 13 o. 50 1.06 o. 62 1. 04 1_ 14 1. 14 0.68 2.21 1-88 o. 47 5. 25 O. O* o. 91 o. 91 1. 14 o.68 2. 21 1.30 o. 47 4.67 o. 04 O-O* o.o* 0.45 1. 10 1.55 1.11 0.63 o. 83 o_ 79 1. 02 o. 21 1_97 6.5S 2-08 1_20 3. 28 o. 08 o. 26 1. 10 1. 36 o. 21 o. 43 o. 27 0.37 o. 41 o. 18 1. 97 3. 84 o. 88 0. 65 1. 53 o. oe o.oa o.oa 0. 09 o. 09 o. 09 0.09 o. 10 o. 10 0.12 0-12 0-22 o. 10 o. 10 0-12 0.12 o. 22 0.22 o. 22 Q.41 1. 92 o. 36 o. 41 1. 49 o. 36 2. 69 2.26 4. 03 o.4 1 2. 56 2. 88 s. 4* 0.9 3 o. 67 l.31 3. 91 o. 54 10.98 11. 4 2 48.
* 1 4. OJ o. 41 4. 44 2. 43 2.88 5. 31 o. 63 o. 31 1. 82 2. 81 O. SL& 10. 88 11. 42 40. 95 11** 1233 2300 2356 0136 0646 0318 0704 1257 1347 2109 2248 *0122 0126 1744 1745 2246 2246 0428 0823 0043 0205 0637 0759 0115 0234 070U 0913 1 540 NONE NORE 0. 82 0.82 0.94 o. 9* NONE 1_ 70 0-31 NONE 2. 01 NONE NONE o. 83 o. 83 NONE NONE NONE NONE: NONE NONE 1. 66 1. 66 o.o5 NONE 0-OS NONE NONE o. 01 0.01 o. 01 0-01 NONE NONE SQNP. NONE 3. 91 NONE 3.91 o_ 53 o. 48 o. 45 1. 23 2.69 NONE NONE o.n o. 92 1 3. 84 (HR) (EST) 0-34 0-34 o. 94 1. 70 0.31 2. 01 o. 70 o. 70 .1. 32 1.32" o. 05 o. 0 5 o. 01 o. 01 o. 01 0. 01 3. S2 3. 52 o. 53 o. 48 a ... !45 1; 23 2.. 69 o. 92 0.92 12. 51 2308 2317 0228 030S 1328 1347 2133 2226 0123 0124 0430 0546 0736 0823 0213 0637 0806 1052 0234 0701 0854 .. 5 Kl! EPISODE OORATION (HR) NONE NONE NONE o. 14 o. 14 NONE o. 62 NONE NONE o. 62 NONE NONE O.J1 o. 31 NONE NORE NONE NONE NOHE NONE o. 87 o. 87 o. 01 NONE o. 01 NONE NONE NONE NONE NONE NONE NOHE NONE 1-27 0-77 NONE 2. 04 NONE 0-34 o. 40 o.so 1. 55 NONE NONE O. BO o. 80 6. 34 ACCUMULATED TIHE SO. SKM (HR) o. 14 o_ 14 o. 46 0.46 i.24 0.2* 0.87 0-87 o. 0 1 0-01 0. 26 o. 77 1. 0 3 0.17 0-40 o. 80 1. 3 B o. 69 o. 5q 4. B 1 HIN VIS FOR DAY (KM) 1-5 o. s 0-4 2.9 D-3 0.2 2. 7 1.6 0.9 o. 8 1-1 1-8 0-1 0.1 0. 1 1.1 TIME OF !UH VIS (EST) 1901 1146 2314 0238 2157 1330 2134 0124 0350 0905 2246 1334 1316 0823 0234 1540 1956
* l I .J l i .1 *
* 207
* TABLE 7. 2K (CORT. ) PERCENT OF TOTAL HOURS OF DATA WITH VISIBILITY EQUAL TO OR L!SS THAR 3 K" 1 Kn o.s FOG (Fl o.a o.* 0.1 BAZE (HI 0.1 o. 0 o. 0 DRIZZLE (L) o. 3 o.o o. 0 BUY !Bl 0.2 o. 1 o. 0 SHO'i' (S) 2. 2 o. a o. 5 F6B 0.1 o.o o.o P6L 0.1 o.o o. 0 P6B 1. 7 o. 0 o.o r-P&S o. 6 o.s 0.1 TOTAL s. 9 1. a o. 7 *
* 208 TAP.LC: 7,. 1L VISIBilIT'!
OBSTRUCTION
.\T ST.\T!ON POH+. DECF:i1Bf.R 1977 IH OPERATION:
0000 1 0800 12 0900 23 1455 28 TOTAL RO URS OF OP FRAT ION: OEC-1310 DEC-1535 DEC-1130 DEC-2400 5**." B *oEc 20 OEC 28 DEC 3 l DEC ---------------------------------------------------------. ----------------------------------------------------------------------DAY OBSTR 'l'YPE ONSET END (EST) SJ KM EPISODE DUliA'llOX (HR)
TIME Sl KM ONSET END (HR) (EST) s 1 !(j EPISODE DURATION (HF)
Sl KM ONSET END (RR) (EST) S0.5 KM DORAT'.ION (HR) ACC011UL.\TED T.I!'!E SO-SKM (H8) aw VIS FCB DAY (Ka) TIME OF aIN VIS (EST) ---------*-----------------------------------------------------------------------------------------------_:_ _ -------------------------F/R F/R SNOW SNOW SNOW SNOW 7 F/S SRO'll SNOi SNOi SNOV 13 F/R
* 14 F/B 18 FOG FOG FOG 20 F /S 24 F/L 2 5 SNO ll SNOll SNOV 2 6 SNOW SNOW SNOW SNOW 27 SNOi SNOW SNOW SNOW SNOW SNOW SNOW SNOW 29 FOG 30 FOG F/H 0000 . 0 120 19. 1" 004 1 0138 1945 0208 0219 0933 2022 2205 2315 1035 1220 0822 0928 1021 1208 0832 0950 1117 1313 1541 2400 0000 0235 0358 054 7 0811 0505 0559 1058 1411 1533 1726 1759 0302 0322 0529 1825 1856 2346 0000 0429 0510 0528 0811 2209 2249 2336 0007 0204 0313 0409 06Dl 0656 1002 1135 0122 0217 0325 0433 0620 0809 1050 1"21 22** 2256 0454 0540 0739 0846 o. 68 0.30 o. 52 o. 10 o. 18 0.21 1.50 o. 49 o. 18 l0.82 1. l7 12. 1 B l. 75 1. 75 o. 18 o. 38 o. 95 1. 10 2. 60 8. 31 B.31 2.59 2. 59 1-12 o. 20 2. 77 o. 1" 7.57 o. 81 8.51 1. 26 l.26 o. 13 O. 38 o. 35 1. lO 1-96 8. 31 8. 31 2. 59 2. 59 1. 12 o. 20 2. 36 4.10 3.69 1.37 0-69 1. 37 0-69 o. 53 o. 25 o. 53 0.25 0.32 12.93 4.84 18. 09 4. 49 0-30 13.98 o. 79 19. 55 1. 26 0-21 o. 20 0.40 o. 32 1. 21 *o. so 2. 78 7. 17 o. 20 o. 20 0. 21 3. 23 11. 70 3. 04 o. 11 B. 13 o. 29 11. 56 o. "1 o. 08 o. 20 o. *o 0.18 o. 52 o. 37 1. 27 3. 43 0.20 0.20 0.20 o. 7o 1.11 o. 76 1.11 1.86 1.86 91. 8 l 56. 51 1002 1035 1244 l 256 1327 1513 1050 1051 1223 1313 1802 2 400 0000 0227 1514 1533 0806 0957 l 103 1251 1518 l 744 1903 0925 1022 1217 1346 1701 1821 2123 0042 0102 0140 0323 1039 1840 0415 0428 1253 lJSS NONE NONE NONE NONE 0-55 0-19 1-76 NONE 2. 50 0.02 0.02 SONE NONE NONE O. 84 0.84 5_ 96 5. 2.45 2. 45 NONE NONE NONE 0-3 l o. 31 NONE NONE 1.32 0-41 1. 24 0.91 1. 71 0-60 2.3* 8. 54 o. 33 1. 71 NONE 8. 01 NONE 10.06 NONE NONE NONE o. 23 HONE NONE NONE 1.02 1. 25 NONE !iCNF:
: o. 55 o. 0 5 o. 74 1. 34 o. 02 0.02 o. 84 0-84 5-96 5. 96 2. 45 0-06 o. 06 o. 56 o. 32 o. 37 o. 18 o. 1D 0-11 o. 42 2. 06 0-16 o. 09 2. 52 ?... 77 o. 02 o. 07 0-09 15.59 1002 1033 1416 1433 1249 1313 2141 2400 0039 0102 0142 0207 0842 1115 1055 1200 1342 1550 1803 084 7 1137 ,, 08 1312 1518 1616 1831 NONE NONE NONE NONE o. 51 NONE o. 29 NONE 0.00 NONE NONE NONE NONE o. 41 o. 41 2.32 2.32 o. 38 0-42 o. 79 NONE NONE NONE NONE NONE NONE O.OB NONE 0-37 NONE NONE NONE NONE o. 45 NONE NONE NONE o_ 22 1. 19 1-60 o. "" o. 48 NONE 3. 94 NONE NONE NONE NONE NONE NO!fE !IONE N'ONE NONE NONE NONE 8. 72 0-38 o. 03 o. 40 0-"1 0.41 2-31 2.31 0-13 o. 42 o. 55 0-08 o. 12 o. 19 o.oo 0-06 0-87 0.04 0.05 1-02 4.89 1.3 1917 o. 2 1019 o. 9 1050 0.1 1313 0.3 2356 o." 0204 1.1 0431 0.5 1533 2." 0.3 0-2 1351 o.6 1354 2. 1 2249 2. 1 0502 *
* 209
* TABLE 7. 1L (CONT.) PERCENT OF TOTAL ROUBS OF DATA WITII VISIBILITY EQUAL TO OB LESS TRAN 3 '" I '" o.s '" I FOG (F) o.a o.o o. 0 I HAZE (H) o.o o.o o.o DRIZZLE {L) o. 0 o.o o. 0 BAIM {B) o.o o.o o.o SHOli (S) 6. q 1.2 0.3 F&H 2. 1 1. q o.s F&L < o. 1 o. 0 o. 0 F&B < o. 1 o. 0 o.o F&S 0.3 < o. 1 o.o
: 9. 7 2.7 o. a *
* 210 DAI OBSTR TYPE P/R P/L F/ll SNO'll SHOii l!/S 6 SHOii SHOW SHOii 1 F/S P/S SBO'll SBO'll J!/S ONSET ERO (EST) 0000 0428 1JqJ 1931 OT40 04q9 T354 1955 1311 1331 T322 15T9 T043 1916 2052 2106 2T56 2357 093T 1120 1320 T549 0825 o9qs 1236 0913 T054 2400 :SJ Kl! EPISODE DDBATION (HR) T .67 0.34 0 .. 18 0. 40 TABLE 7.2L VISIBILITY OBSTRUCTION AT STATION P07A DECEl!BER 1977 INSTRU!IEMT IN OPERATION:
0000 T DEC*TT25 1 DEC T320 7 DEC-0810 9 DEC 0920 12 DEC-1825 20 DEC 0935 23 DEC-0935 26 DEC 1340 29 DEc-2qoo 31 DEC TOTAL HOURS OP OPERATION:
529.7 !CCU l!OL!TED TI!IE :SJ Kl! ONSET END (HR) (EST) T. 59 0.34 O. T8 o. 40 ST Kl! *EP'.ISODE DURATION (BR) NONE NONE NOHE HONE ACCO !IULATED TI!IE ST Kl! ONSET END (BR) (ES'.!:) SO. 5 Kl! EPISODE DURATION (BR) BOBE ROHE HOBB MOllE 2.60 2.5T 0.33 0.33 O.JJ 0.33 T.96 T.96 a.ss 0. 23 2.02 10. 80 1.8 T 2.48 4.29 o.ao T. TO 11.40 T3.30 8.17 0.23 1. 95 T0. 35 1. 78 2. qa Q. 26 o. 73 0. 67 11. qo 12. 80 1T33 1650 1725 1757 230T 2315 1052 TT20 1320 1qq5 1302 2400 HONE BORE 5. 29 o.53 BONE 0.23 6.05 0.46 T. qT 1.87 RONE NOHE 10. 97 T0.97 0.20 o. 1 T o. 19 T .41 T.60 TO. 97 10. 97 T145 1238 T343 1452 T320 1414 BOBE NOHE a.as T.16 BOBE HOSE HONE 2.04 HONE o. 91 0. 91 . TJ28 MOSE SOBE 2QOO ' T0.54 Ta.sq ACCU!IDLATED TI!IE :SO.SK!! (HR) 0. 6T o. 27 a. ea 0. 91 0.91 10.54 10. 54 SIB 'I.IS FOR DAY (Kl!) 1-5 1. q 1. a. 0.3 0.2 0.2 TI!!E OP. l!IB VIS (EST). T939. 1325 T332 1219 1320 1601 ------------------------------------------------------------------------------------------------------------------------------------
1! /S 0000 0001 0.oT 0.01 oDoo 0001 a.OT a.01 ooDo 0403 q.o5 q.o5 0.2 0755 0522 OBOT 2. 65 t. 95 a.OT 8. 0 T 8. 0T 8. 0 T 6.70 6.0 T T3 P/B T659 T720 P/B T8T5 2400 n P/B 0000 0754 20 SHO'll TQ24 T821 0.34 5. 75 6.09 7.90 7.90 3.95 J. 9 5 0. 34 5. 75 223T 2400 6. 09 1. T9 0008 OH2 7. T9 3. 50 T546 1821 3. 50 NONE T.Q9 T.57 1.57 2. 59 2. 59 1_ q9 1. 49 T. 57 1. 57 2-25 2. 25 1750 1821 NOHE ROBE NOSE O.ST 0. 5 T 0. 51 o. 5T 0.9 a.a 0.2 2310 0132 T821 25 SSO'll 26 SIOli SllOV SllOV ssow SNO'll 511011 SHOW SHOW SIOB S!OV SHOii SIO'll 0339 07TJ 0914 1054 1309 T555 1745 T839 2159 233Q 0009 0700 0917 0402 07q7 TO 17 1208 T521 T608 T 807 T917 2228 2356 0102 0723 0933 0.31 0.51 T. 0 q T. 25 2.21 0. 23 0.37 0.63 0.48 0.36 7.51 0.89 0.37 0.21 T. 53 0.37 O. T5 0.68 1. 06 T.29 o. 23 o.34 O. QT o. 48 0.36 5.38 o. 57 0.37 0.27 1.20 TT16 0929 1200 0933 NOHE ROHE HOME 0.12 BOSE NOHE HONE BO!E HOHB BONE 0.12 HO!IB NOHE 0.01 0.07 o. 34 0.34 0.07 0. 07 SOBE HO!IE HONE HO!IB BOSE HOSE NOSE NOHE HONE SOBE HORE NOHE NOHE 0.5 1129 o.s. 0933
: 68. 28 63. T6 33. 35 31. 20 20.70 PERCENT OP TOTAL BOUBS OP DATA llITB VISIBILITY EQOAL TO*OR LBSS TBAS FOG (P) BAZB (B) DRIZZLE (L) BAIH (B) SMOll (S) P&B F&L P& B F&S TOTAL o. o 0.0 o.o o.o 4.3 2.5 o. T 0-3 TT. 9 T o. 0 o.o o.o o. 0 T. 4 0. 6 o.o o.o 3. 9 5.9 0. 5 Kl! o. a 0.0 0.0 o. o 0.3 O.D o.o o.o 3.3 3. 6 18.85 J * 
* *
* VIII. TOTAL SOLAR RADIATION Total solar radiation (direct plus diffuse on a horizontal surface) is measured with a WeatherMeasure Model R411 pyranometer at the two main stations of each network. Data from the pyranometers in both the Cook and Palisades networks arc in this report for completeness.
Data are reported in Langleys (Ly), where 1 Ly 1 g* cal *cm-2 Data are tabulated by month, showing the daily totals of total solar radiation received.
To allow for chart changes, calibration and routine maintenance, a daily total is not considered missing if 1) the instrument was out of operation for only a few hours at most, and 2) an accurate estimate of the incident radiation received at the station dur;Lng the down-time c.ar.. be made from the data at the other stations.
Totals for *such days are listed within parentheses.
An earlier analysis of measured values of solar radiation compared to reference values for clear days (see Third Annual Report) showed that the data from the WeatherMeasure pyranometers were 5% to 15% low. A side-by-side comparison of each of the WeatherMeasure pyranometers to a calibrated Eppley pyranometer confirmed that the output from the weatherMeasure pyranometers was low. The comparisons, however, did not cover a wide enough range of conditions to determine the magnitude of new correction factors. Until such comparisons can be made, the previously-computed correction factor for each instrument will continue to be used. 211 212 *1 TABi:.E 8.lA; Daily totals of incident solar radiation (direct plus diffuse) on a horizontal
.:_ surface at the ground . Jan I 77 Feb '77 Day Station Day Station C03A ClOA P03A P07A -*-C03A ClOA P03A P07A 1 66 111 44 74 1 185 204 129 178 *-1 2 147 144 109 127 2 213 19.8 3 89 99 76 93 3 135 125 125 125 4 156 152 139 156 4 101 109 97 107. 5 198 187 M 190 5 284 283 213 177 6 84 96 M 89 6 211 193 163 194 7 126 147 M 158 7 267 254 245 219 -*1 8 67 76 M 88 8 276 259 248 256 __l 9 121 l16 M 126 9 260 (227) 238 228 10 99 111 M 124 10 276 259 247 (251) 11 162 173 123 11 286 259 265 265 *-1 M i 12 123 136 75 125 12 109 M 87 90 13 55 55 46 57 13 M M l.25 124 14 l13 127 95 119 14 M M 179 196 15 l17 l16 88 112 15 309 273 234 274 __ J 16 (142) 152 122 145 16 295 M M 304 17 219 187 138 127 17 322 289 M 284 .I 18 210 116 160 160 18 205 M M 164 19 168 157 139 143 19 133 M 169 181 20 124 139 118 126 20 291 M 225 283 21 189 172 150 176 21 262 M 241 251 22 195 187 172 194 22 M 258 263 i _J 23 86 95 . 77 88 23 155 M 128 123 24 71 85 51 70 24 41 M 53 55 25 105 l15 115 124 25 279 269' 201 196 26 119 106 79 94 26 128 128 121 137 27 230 M 197 203 27 188 184 . 193 200 28 150 M 120 161 28 315 304 330 304 29 167 M 167 177 30 225 M 178 192 31 250 245 200 208 Montnly Totals (4373) M M 4149 M M M (5633) *
* Monthly Totals (8570)* M (8299) 7991 M (12024) M 11236 *The pyranometer at station C03A was slightly out-of-level during the period 7 March -2 May 1977. For a clear day the recorded total daily insolation value is estimated to be 12% high .
Monthly Totals M 16192 (16035) 15360 M M 14190 M * 
* *
* Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Monthly Totals 215 TABLE 8.10: Daily totals of incident solar radiation (direct plus diffuse) on a horizontal surface at the ground (Langleys/day) . July '77 August '77 Station Day Station C03A ClOA P03A P07A C03A ClOA P03A P07A ----692 665 644 633 1 M (603) 581 626 668 651 640 382 2 M 333 378 M 418 416 358 M 3 M 478 502 565 5 36' 531 536 495 4 M 363 337 423 647 625 605 611 5 270 297 308 M 642 617 592 578 6 172 165 213 M 470 451 394 446 7 385 344 354 M 355 407 405 388 8 287 278 278 M 661 599 590 M 9 150 167 179 177 566 555 497 M 10 473 414 404 386 289 304 322 214 11 139 138 111 115 485 434 440 381 12 602 592 563 534 673 M 634 M 13 524 430 507 M 433 M 388 386 14 565 553 535 .M 612 586 565 M 15 573 564 539 M 307 304 320 311 16 201 193 200 186 627 587 554 573 17 583 512 535 M 319 385 391 M 18 584 499 533 498 600 569 543 M 19 366 344 457 M 582 541 526 561 20 329 330 367 M 404 386 365 (352} 21 151 133 132 111 668 636 614 624 22 530 506 509 M 641 624 586 621 23 290 269 236 M 217 232 181 M 24 557 524 511 M 615 563 585 (581) 25 437 454 423 M 557 528 513 M 26 407 414 371 M 613 608 569 (605) 27 415 399 369 M 547 510 459 M 28 413 406 338 M 370 335 253 242 29 442* 388 324 M M M 540 (555) 30 493 490 494 M M M 516 M 31 434 420 397 M M M 15125 M M (12000) 11985 M 216 Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Monthly Totals TABLE 8.lE: Daily totals of incident solar radiation (direct plus diffuse) on a horizontal surface at the ground (Langleys/day).
September
'77 October '77 Station C03A ClOA P03A P07A 212 295 442 409 290 480 399 303 340 422 481 109 55 431 43 238 206 253 167 40 139 275 180 272 293 363 179 351 188 162 8017 230 187 282 212 425 448 375 395 276 250 460 452 403 . 327 304 278 281 321 379 395 464 449 117 112 57 62 418 410 54 58 180 240 187 192 246 281 166 88 43 129 282 157 208 277 343 142 307 195 160 52 192 250 107 186 238 329 118 290 155 88 7547 7162 176 . 198 M M 203 M M M M M M M M M M M M M 80 86 190 271 94 M M 349 136 319 153 89 M Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Station C03A ClOA P03A 54 349 322 378 199 315 105 229 77 250 191 175 311 322 211 170 300 87 209 296 274 173 67 213 125 58 1.94 255 252 147 117 6425 59 319 304 360 178 278 113 194 55 267 169 133 328 319 208 175 303 97 145 294 277 187 89 220 116 71 204 258 229 144 117 6210 47 3.27 361 348 134 225 111 166 50 245 157 122 294 301 205 177 277 92 177 272 255 142 62 217 99 66 176 247 237 168 118 5875 P07A 55 (316) ( 33'5) 364 120 266 121 177 41 248 158 122 313 318 231 240 307 79 230 265 270 M 66 M 103 76 194 258 172 158 135 M -, e: --) .. , I ... I ] i _I e: i f .* .! * 
* !-' I --*
* Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Monthly Totals TABLE 8.lF: Daily totals of incident solar radiation (direct plus diffuse) on a horizontal surface at the ground_ (Langleys/day) . November '77 December '77 Station Day Station C03A ClOA P03A P07A C03A ClOA P03A P07A 50 235 126 238 134 171 74 94 89 44 60 129 181 194 151 197 147 60 59 53 154 82 15 40 35 166 60 134 160 31 3363 69 227 M M 128 158 83 137 92 69 64 203 181 191 142 185 127 55 62 68 210 118 153 139 145 87 108 86 18 101 199 171 148 113 175 121 36 78 47 39 153 141 84 85 25 16 50 30 40 47 157 141 85 53 130 78 153 134 55 34 87 221 104 242 131 (143) 86 109 68 20 96 222 155 135 92 177 122 22 79 38 121 80 16 26 46 14G 63 58 147 28 M 3072 (3079) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 52 64 27 163 36 48 83 28 56 54 158 51 18 21 135 156 60 85 45 8 59 144 150 48 63 59 94 53 105 72 52 2247 67 104 56 161 61 79 124 49 96 102 156 71 33 42 143 158 69 96 55 21 87 116 145 59 87 107 122 71 104 99 65 2805 52 3i 31 153 42 27 37 29 39 47 64 47 22 30 114 145 65 73 35 11 36 118 129 63 54 37 68 41 86 106 56 20_88 40 22 . 66 163 37 52 80 24 65 82 93 46 21 37 109 147 52 56 27 8 55 119 M 57 69 74 111 61 86 78 61 M 217 218 IX.
This section summarizes the data presented in this report. Monthly totals or averages for all stations are presented for data from January 1977 through December 1977. Table 9.lA shows monthly totals of throughout the !'letwork.
Table 9.lB gives the prevailing wind dirc::ction
{&#xa2;1.ef ined as the wind direction which occurs most frequently during the month), the average wind speed, and the percentage of onshore (SW through N) and offshore (NE through S) winds for each month at the two main stations.
Table 9.lC summarizes the percentage of time visibility was reduced to or below given distances, by month for the two main stations.
Table 9.lD gives the monthly average of daily total solar radiation only for stations which had no missing data during a given month.
* 1 J ' i .J I J * . I _J __ J ' _1 * 
* ' -*
* Table 9.lA Monthly Total Precipitation (inches) Month POlA P02A P03A P04A POSA P06A P07A POSA P09A PlOA PllA Pl2A Pl3A JAN 77 M M 1.12 (1. 54) (1.35) 1. 23 l.47 (1.56) M (1.49) M 1.14 (1.22) FEB 77 M M 0.61 0.81 0.69, (0.88) 0.73 M M 0.79 M (O. 62) 0.65 MAR 77 3.48 3.47 3.32 3.31 3.18 3.47 (3.43) 3.48 (3.05) 3.54 3.39 3.36 3.15 APR 77 3.31 ( 3. 27) 3.23 3.43 3.53 3.17 3.06 3.35 3.30 3.36 3.64 3.42 2.89 MAY 77 1.47 1.42 1.43 1.59 1.62 1.47 1.10 1. 73 (1. 76) 1.54 1.46 1. 59 1.10 JUN 77 4.68 ( 4. 54) 4.46 4.91 4.85 4.16 4.40 4.43 4.40 M 5.14 4.81 M JUL 77 3.20 (3.23) 3.11 2.94 3.08 2.97 2.15 ( 3. 27) 3.02 (2.57) 2;66 2.80 M AUG. 77 5.20 5.14 4.85 4.70 4.87 4.35 (4.39) 5.28 5.73 ( 4. 60) 4.52 4.73 4.08 SEP 77 6.02 6.02 5.64 5.63 5.98 6.19 5.61 6.02 5.47 5.70 5.72 6.26 (6.74) OCT 77 2.13 2.10 2.07 2.17 2.14 2.04 1.83 2.26 2.04 2.06 2.05 1.92 1. 85 NOV 77 (3.43) M (2.98) 3.22 3.05 3.04 2.68 (3.30) M 3.33 3.32 3.13 2.75 DEC 77 (3.16) M 2.51 2.96 2.93 3.01 2.85 3.27 M 2.88 (3.23) (2.54) 2.30 ----------------------------------
1977 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
* hours of data/hours in month 530/744 577/672 741/744 720/720 721/744 521/720 694/744 744/744 720/720 744/744 634/720 504/744 P03A prevailing direction WSW SW SW SSW WSW N SW SSW NW s SSE SSW l 1...---Table 9.lB MONTHLY MEAN WIND SPEEDS AND DIRECTIONS average speed (mph) 10. 3 8.7 8.4 7.2 5.2 5.2 4.7 4.9 6.7 8.0 8.9 *._ ----% onshore 63.5 53.6 37.3 37.9 38.6 55.2 50.1 39.7 38.3 38.4 35.5 37.4 L _____ % offshore 26.9 26.8 47.5 34.4 29.7 16.1 20.5 22.7 30.3 34.3 50.7 42.7
* hours of data/hours in month 553/744 644/672 742/744 720/720 598/744 678/720 486/744 744/744 719/720 744/744 718/720 310/744 -*--' prevailing direction w w SE SSE SSE NW s SSE WNW SSE SE ESE :_j P07A average % speed onshore (mph) 7.5 60.3 6.7 52.4 7.0 34.9 *5 .4 35.6 3.6 27.9 3.5 43.6 3.7 36.2 3.8 30.5 3.8 34.3 5.0 35.0 5.5 30.2 5.9 32.1 % offshore 21. 3 27.5 48.9 37.8 38.5 20.1 35.3 35.0 40.7 38.7 50.l 46.7 i _ __; __ J
* .J (\J (\J 0 J 
* *
* Table 9.lC MONTHLY VISIBILITY PERCENTAGES P03A P07A hours of hours of 1977 operation 3 km 1 km 0.5 km operation 3 km 1 km 0.5 km JAN 150.8 17.1 8.5 1.1 599.5 24.2 8.4 2.3 FEB 270.0 3.0 0.2 <O.l 625.6 8.1 1.3 0.5 MAR 574.5 1. 5 1.0 0.7 744.0 2.4 0.7 0.3 APR 628.7 0.2 <0.1 717.6 2.6 0.3 0.1 MAY 744.0 5.1 0.9 0.3 730.7 2.4 0.2 <O.l JUN 692.7 4.1 0.4 0.1 662.3 5.5 0.7 0.2 JUL 744.0 5.7 1.9 1.4 735.4 1.8 0.7 0.4 AUG 672.9 7.3 1.4 0.5 744.0 8.3 1. 7 0.7 SEP 720.0 9.8 2.5 1.2 720.0 9.8 1.6 0.6 OCT 621.2 4.6 2.0 0.9 744.0 13.3 3.8 1.0 NOV 696.6 4.3 1.4 0.7 690.5 5.9 1.8 0.7 DEC 584.4 9.7 2.7 0.8 529.7 11.9 5.9 3.6 Note: Entries in this table are percent of total hours of operation for the given month with visibility equal to or less than the given distance.
N N I-'
222 Table 9.lD: C03A 1977 January (141) February March (276) April May June July August September 267 October 207 November 112 December 72 Monthly Averages of Daily Total Solar Radiation for Stations with Complete Data for Entire Month (Langleys/day)
ClOA P03A (268) (401) 522 (517) 473 488 (387) 387 252 239 200 190 *102 90 67 P07A 134 (201) 258 375 495 (103) * -;. i I --1 --] -1 I -I .1 i I __ J I I _J **
* APPENDIX B * * 
... r. .... .. _ 0 DEPARTMENT OF ATMOSPHERIC
& OCEANIC SCIENCE The University of Michigan College of Engineering Space ReAearch Building 2455 Hayward * * * :*; ...
August 3, 1978 Report No. 320158-18-L Consumers Power Company 1945 W. Parnall Road Jackson, Michigan 49201 Attention:
Mr. Jawad S. Touma Meteorologist Ann Arbor, Michigan 48109 313/ 764-3335
 
==Subject:==
Quarterly Progress Letter Report for DRDA Contract Number 72-1221-KB2 11 Meterological Impact of Cooling Towers at the Palisades Nuclear Plant.11
 
==Dear Sir:==
The following is a brief surmnary of work performed on subject contract for the period 1 April through 30 June . (1) Papers and reports (a) Most of the effort in the last quarter has been devoted to organizing and writing the text the. Sixth Annual Report*--.A draft _o..f the text was near;ty completed.
It *will be -submitted for your approval early in August and published in final form after it is reviewed and any suggested changes and/or additions are incorporated. (b) The Sixth Data Report (containing meteorological network data for 1977) was nearly completed and will also be submitted in final form*in.the next quarter. (2) Plume photographs and observations As determined by the presence of a plume in the time lapse photographs from the turbine building, the cooling towers began operation on 21 April 1978 and were in operation for approximately 55 days in the quarter. A delay in restarting the plume observation program-occurred, causing the first plume questionnaires not to be completed until 31 May. Of the 59 questionnaires received since then, 
* *
* J.S. Touma August 3, 1978 (a) *15 (25%) reported observations of downwash and . 29 (49%) reported observations of plume fog on site. At least 5 of these were associated with the simultaneous occurrence of natural fog. (b) 9 reported plume lengths greater than 2 miles and 2 reported plumes longer than 4 miles. In the reportinq period, no fog associated with downwash was reported off-site.
(31 operations (a) Hygrotherrnographs and precipitation gages at all stations except for P03A and P07A were decommissioned on 1 and 2 April 1978. All hygrothermographs were returned to the University of Michigan for calibration checks in humidity _chambers.
Work began on cleaning and lubricating their linkage mechanisms to insure optimum performance when the.units are returned to the field in late au.tumn for measurements through 31 March 1979. The wind vane potentiometer at station P03A burned out in February.
Delays were experienced in obtaining a replacement, causing loss of wind data at that station until 13 April. (c) Tl_le pyranometer used as a secondary standard was -instal:led--in -the field-for-comparison -with the units at stations-P03A and P07A. Cd) Plans were made to calibrate both wind systems in .the UM wind tunnel in July. (e) The table.below summarizes the percent possible data recorded at stations P03A and P07A in the last quarter April May June Solar Rad P03A 100 100 97 P07A 100 91 97 Wind Dir P03A 58 100 96 P07a 100 100 97 Wind Speed P 0 3A 58 100 97 P07A 100 *100 97 Visibility P03A 100 100 94 P07A 0 95 73 
* *
* J.S. Touma . August 3, 1978 (4) Data processing and analysis (a) Digitizing of all 1977 data was completed and temperature and humidity data through March 1978 were digitized. (b) .
of digitized data was at various stages, but for most variables the many steps necessary to achieve the final accepted values were being completed on schedule. (c) The data analysis effort concentrated on the topics to be reported on in the Sixth Annual Report. (5) Pl.ans for the next quarter (a) The Sixth Annual Report and the Sixth Data Report will be completed and submitted. (b) Analysis of operational data obtained in 1977 will.begin. (c) Work will continue on a paper describing findings regarding lake breeze occurrences and behavior based on wind, temperature and humidity data from the Palisades network obtained from 1973 through 1977. Respectfully submitted, Project Director Distribution:
Addressee (0+4) Dr. Harry Moses Dr. Fred Nurnberger Mr. Thomas Miskimen ) 
*-* ___ ... ,DEPARTMENT OF ATMOSPHERIC
& OCEANIC SCIENCE <" 0 The University of Michi*:an College .of Engineering Space Re..earch 2455 Hayward * *
* i I
----Ann Arbor, Michigan 4!ll09 313/ 764-3335 November 9, 1978 Report No. 320158-19-L Consumers Power Company 1945 W. Parnall Road Jackson, Michigan 49201 Attention:
Mr. Jawad s. Touma Meteorologist
 
==Subject:==
Quarterly Progress Letter Report for DRDA Contract Number 72-1221-KB2 "Meteorological Impact of Cooling Towers at the Palisades Nuclear Plant.**
 
==Dear Sir:==
The following is a brief summary of work performed on subject contract for the period 1 July through 30 September.
(1) Papers and reports (a) A draft of the text of the Sixth Annual Report was submitted in August for review, comments and suggestions.
Several were received which were incorporated into the final text. The report in final form was submitted in October. (b) The final version of the Sixth Data Report containing summaries and tabulations of 1977 data was nearly completed.
A delay was countered because of questionable performance of the digitizer for some data. The end result was its return to the manufacturer for repair. Following its return in October these data were redigitized for final processing.
(2) Plume observations and photographs As determined by time-lapse photographs of the plume and observations by security and engineering personnel, the cooling towers were in operation mately 60 days in the quarter. A total of 119 plume questionnaires were completed.
Of the 119 questionnaires, a) 39 (33%) reported observations of plume downwash and 63 (53%) reported observations of plume fog. Of the 63 cases, 21 were associated with the simultaneous occurrence of natural fog. l 
* *
* J.S. Touma November 9, 1978 b) 30 reported plume lengths exceeding 2 miles and 3 reported plume lengths longer than 4 miles. In observations reported at 0700 EDT, 15 July and on 14 August, the plume was causing fog and wet roads as far inland as the Blue Star Highway. Meteorological observations accompanying both reports showed that high humidities, patchy ground fog and light and variable winds were common to both. They are being studied in greater detail to determine if these effects would have occurred naturally.
(3) Field Operations a) Wind systems from stations P03A and P07A were returned from the field, calibrated in the UM wind tunnel and returned to the field between 6 and 10 July. b) Calibrations of hygrothermographs were carried out in preparation for their return to field operation at all stations in early December . c) The table below summarizes the percent possible data recorded at stations P03A and P07A in the last quarter. July August September Solar Rad P03A 100 100 100 P07A 100 100 100 Wind Dir P03A 86 100 100 P07A 87 100 100 Wind Speed P03A 78 100 100 P07A 87 99 100 Visibility P03A 100 63 32 P07A 100 100 100 (4) Data processing and analysis a) The main effort in data processing was devoted to the limited redigitizing and final computer processing of 1977 data for the Sixth Data Report. Data for the month of December are nearly completed.
With the return of the repaired digitizer, processing of 1978 data has resumed. 
* *
* J.S. Touma November 9, 1978 b) Distributions of humidity by season for operational and non-operational conditions as well as for onshore and offshore winds were plotted and are being analyzed.
In addition, several cases of plume downwash with onshore winds are being analyzed in terms of possible humidity increases downwind.
c) Occurrences of true lake breezes for 1978 were determined through August, based on analysis of data from station P03A, hourly observations for Benton Harbor Airport and synoptic weather maps. (5) Plans for the next quarter a) The Sixth Data Report will be b) Complete field operations at all stations will be resumed. c) Analysis of 1977 operational data will continue d) Processing of 1978 data will continue.
It is hoped that data from the Palisades logical tower may be made available for specific case studies. It is expected that such data could provide valuable information for interpreting the behavior as well as surface effects of the cooling tower plume. Respecfully sumbitted, Project Director Distribution:
Addressee (0+4) Dr. Harry Moses Dr. Fred Nurnberger Mr. Thomas Miskimen DEPARTMENT OF ATMOSPHERIC
& OCEA.1\IC SCIENCE* 0 The of Miehi::<:.ir.
(..<,llc:!e of En:!ineerin::<
Resear<'.h Building 2455 Haywnrd * *
* Ann Arbor, Michii:an 48109 313/ i64-3335 February 6, 1979 Report No. 320158-20-L Consumers Power Company 1945 W. Parnall Road Jackson, Michigan 49201 Attention:
Mr. Jawad s. Touma Meteorologist
 
==Subject:==
Quarterly Progress Letter Report for DRDA Contract Number 72-1221-KB2 "Meteorological*
Impact of Cooling Towers at the Palisades Nuclear Plant."
 
==Dear Sir:==
The following is a brief summary of work performed on subject contract for the period 1 October through 31 December . 1) Papers and reports The Sixth Data Report was submitted.
It sisted of 222 pages of tabulations and summaries of 1977 temperature, humidity and precipitation data for all 13 network stations and wind, solar tion and visibility data for the 2 main stations.
Monthly wind roses for the two main stations were also included.
: 2) Plume observations and photographs As determined by the presence of a plume in the time lapse photographs from the turbine building camera, the cooling towers were in operation for approximately 63 days in the quarter. A total of 71 questionnaires was completed by security and engineering personnel.
Of the 71 naires, a) 36 (51%) reported observations of plume downwash and 55 (78%) reported observations of plume fog on site. Of the 55 cases, 25 were associated with the natural occurrence of fog. The rences of downwash and plume fog are much higher than those reported in the su::nmer quarter and are du2 to higher average wind speeds and ties observed in the winter quarter . 
* *
* J.S. Touma February 6, 1979 b) 25 questionnaires reported plume lengths exceeding 2 miles and 5 reported plumes longer than 4 miles, both of which are larger than those reported in the summer quarter. c) The first icing caused by the plume was reported on 21 December.
Although 2 tional reports of icing were received in the quarter, there was no prolonged period of low temperatures to cause ficant accumulations.
: 3) Field operations a) Equipment was prepared and calibrated for the resumption of measurements at all stations.
b) By 14 December hygrothermographs and tation gages were placed into operation at all stations.
c) The table below summarizes the percent possible data recorded at* stations P03A and P07A in the last quarter . October November December Solar Rad P03A 87 100 100 P07A 95 91 100 Wind Dir P03A 87 100 77 P07A 100 97 80 Wind Speed P03A 87 100 95 P07A 100 81 86 Visibility P03A 87 100 94 4) P07A 100 100 90 Data Processing and analysis a) Digitizing and processing 1978 data continued throughout the quarter. Data for several variables were digitized through August 1978. b) Analysis of temperature and humidity data to determine true lake breeze occurrences and characteristics was completed for 1978. The results remain to be corroborated by an analysis of wind direction data for stations P03A and P07A, but they indicate that about 43 true lake breezes occurred between March and December. 
* *
* J.S. Touma February 6, 1979 The largest previous number that had occurred since the project began was 35 in 1974. c) Work continued on the other topics of analysis listed in Quarterly Report 320158-19-L.
: 5) Administrative A meeting was held with Mr. Jawad Touma and Dr. John Rochow of Consumers Power Company to discuss the final year of work on the project. As a result of the discussion, a proposal was subsequently drafted outlining analysis topics and schedules for reporting of results for the contract year 1 April 1979 -31 March 1980. 6) Plans for the next quarter a) Data collection, processing and analysis will continue.
Data collection will end on about 26, March, at which time equipment will begin to be removed from the field, a task expected to take about 3 days . b) A tentative outline for the text of the final report will be completed.
Respectfully submitted, M11:l-&#xa2;)1ff71.,,t;?./l/
Edward Ryznar/ p Project Director Distribution:
Addressee (0+4) Dr. Harry Moses Dr. Fred Nurnberger Mr. Thomas Miskimen 
\ 0 * * * 
[ ' 1:" ' ! I -r -i I .. I -: -I ! -I . I l -! -* I i. -* 320158 Sixth Annual Report -An Investigation of the Meteorological Impact of Mechanical-Draft Cooling Towers at the Palisades Nuclear Plant by EDWA:RD RYZNAR DENNIS G. BAKER MICHAEL R. WEBER DENNIS F. KAHLBAUM August 1978 Under contract Consumers Power Company Jackson, Michigan College of Engineering Department of Atmospheric and Oceanic Science 
* \ ..
* i*
* THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING Department of Atmospheric and Oceanic Science Sixth Annual Report AN INVESTIGATION OF THE METEOROLOGICAL IMPACT OF MECHANICAL-DRAFT COOLING TOWERS AT THE PALISADES NUCLEAR PLANT by Edward Ry.znar. Dennis G. Baker Michael R. Weber Dennis F. Kahlbaum DRDA Project 320158 under contract with: CONSUMERS POWER COMPANY JACKSON, MICHIGAN administered through: The Division of Research Development and Administration August 1978 PREFACE This is the sixth annual report on the investigation of the meteorological impact of mechanical-draft cooling towers at the Palisades Nuclear Plant. It elaborates on aspects of the work discussed briefly in quarterly letter reports issued in the past project year which ended 31 March 1978. The report also supplements five annual reports submitted in May 1973, June 1974, June 1975, May 1976 and June 1977, respectively.
The first report describes the meteorological network and the equipment installed.
The second interprets work by others on the meteorological effects of cooling towers and discusses natural meteorological variability near Lake Michigan, data processing procedures and hygrothermograph calibration methods. The third discusses results of improving and applying a cooling tower plume model to compute fog occurrences and reductions to visibility, the results of lake breeze analyses and preparations for plume observations.
The fourth discusses analyses of preoperational data and plume observations and graphs obtained in 1975. The fifth describes plume observations and effects on solar radiation using 1977 data; precipitation and temperature fields; occurrences and behavior of true lake breezes and advection-radiation fog; and occurrences of apple scab infection conditions, including a preliminary assessment of cooling tower effects. Meteorological data from the 13-station network since 1972 are published in five data reports. They include summaries and tabulations of temperature, humidity, precipitation, wind velocity, visibility and solar radiation data through 1976. -1 I \ I J _/ ,_ ) __ j / I The authors would like to thank a number of people who helped in the work in the past year. Those who made important contributions to data ii are Robert Kessler, Gary Rizzo, Michael St.Peter, Dennis Hodges, Randy .* Bliss, Will Beaton and Tom Tharp. Michael St.Peter also capably handled much of the equipment calibration and repair Donald maintained the collection of data and monitored equipment performance twice weekly r * ,* ..
* I. ' ;
* in the field. Personnel at the Palisades Nuclear Plant also deserve special thanks. These include Larry Kenaga, for overseeing the plume observation program, Tim McBride, for maintaining the Turbine Building time lapse system, and the security and engineering personnel who took time to observe the plume and complete 612 questionnaires in about 246 days of cooling tower operation.
Our special appreciation is expressed to Dr. Harry Moses of the U.S. Department of Energy for providing valuable consultation in tasks involving data processing, analysis and interpretation.
His constructive ideas, suggestions, and inspiration on his monthly visits were always welcome . Ms. Barbara Walunas typed this and other reports, memoranda, and correspondence and capably handled many administrative details. Her is sincerely appreciated. i i i ABSTRACT The sixth year of work on a study of the meteorological impact of mechanical-draft cooling towers at the Palisades Nuclear Plant is described.
It consists of analyses and comparisons of results using both pre-operational and operational network data and climatological data, summaries of observa-tions of cooling tower plume behavior and effects for the 1976-77 operational period and brief descriptions of the status of netwo*rk data collection and equipment performance in the 1976-77 project year. Results of each of these efforts are presented and discussed.
iv ! \ ., I I . \ I, J ( .I , I I ._) *
* I ." '* , i i. --* .,*' i' ,/
* PREFACE ABSTRACT LIST OF FIGURES LIST OF TABLES I. INTRODUCTION.
CONTENTS COOLING TOWER PLUME EFFECTS Edward Ryznar II. PLUME OBSERVATIONS AND PHOTOGRAPHS' III. PLUME EFFECTS ON FOG IV. PLUME EFFECTS ON TOTAL SOLAR RADIATION ANALYSES OF NETWORK DATA V. OCCURRENCES OF APPLE SCAB INFECTION CONDITIONS
-Edward Ryznar page ii iv vi viii 1 10 17 30 34 VI. TRUE LAKE BREEZE OCCURRENCES AND CHARACTERISTICS
-Edward Ryznar 39 VI I. SEASONAL VARIATIONS IN AIR TEMPERATURE:
A COMPARISON OF OPERATIONAL AND PREOPERATIONAL DATA -Michael R. Weber VIII. SEASONAL VARIATIONS IN RELATIVE HUMIDITY AND DEW P'JINT: A COMPARISON OF OPERATIONAL AND PREOPERATIONAL DATA -Michael R. Weber IX. PRECIPITATION IN 1976 COMPARED WITH CLIMATOLOGICAL NORMALS -48 61 Dennis F. Kahlbaum 75 X. A PRELIMINARY ANALYSIS OF OPERATIONAL AND NON-OPERATIONAL PRECIPITATION DATA THROUGH 1976 -Dennis F. Kahlbaum 86 XI. DIURNAL VARIABILITY OF PRECIPITATION
-Dennis G. Baker REFERENCES APPENDIX A. Network Data Collection APPENDIX B. Project Publications and Reports -v 94 101 103 105 L____ ___ _ LIST OF FIGURES l. l Aerial photograph of Palisades cooling towers prior to operation.
 
===1.2 Aerial===
photograph of Palisades cooling towers during operation on 23 December 1977. 1.3 Locations of meteorological stations in the Palisades and Cook networks.
page 2 3 6 l .4 Locations of meteorological stations in the Palisades network. 7 2.1 Example of completed plume questionnaire.
 
===3.1 Pressure===
ratio contours around mechanical draft cooling towers. 4.1 Recording of global solar radiation at P03A for 7 March 1977. 11 18 31 4.2 Recording of global solar radiation at P03A for l March 1977. 33 7.1 Diurnal variation of the temperature difference between coastal and inland stations for spring. 54 7.2 Diurnal variation of the temperature difference between coastal and inland stations for summer. 7.3 Diurnal variation of the temperature difference between coastal and inland stations for*autumn.
 
===8.1 Diurnal===
variation of the humidity difference between 57 59 coastal and inland stations for spring. 63 8.2 Diurnal variation of the dew point difference between coastal and inland stations for spring. 8.3 Diarnal variation of the relative humidity difference between 64 coastal and inland stations for summer. 66 8.4 Diurnal variation of the dew point difference between coastal and inland stations for summer. 67 8.5 Diurnal variation of the relative humidity difference between coastal and inland stations for autumn. 69 8.6 Diurnal variation of the dew point difference between coastal and inland stations for autumn. 70 9.1 rJetwork.atid
*climatolbg1caJ
:stations used in precipitation analysis.
76 9.2 Isohyets for winter 1975-76 and a climatological winter. 78 vi I. ' .J ] i: I LIST OF FIGURES (cont.) page
* 9.3 Isohyets for spring 1976 and a climatological spring. 79 9.4 Isohyets for summer 1976 and a climatological summer. 81 9.5 Isohyets for autumn 1976 and a climatological autumn. 82 9.6 Isohyets for the year 1976 and a climatological year. 84 i 10. l Percent probability that winter mean daily precipitation differs *i between non-operational and operational periods. 89 \ ... 1o.2 Percent probability that spring mean daily precipitation differs between non-operational and operational periods. 90 , .. 10.3 Percent probability that summer mean daily precipitation differs \ _i between non-opera ti ona 1 and operationa 1 periods. 92 , .. 10.4 Percent probability that autumn mean daily precipitation differs between non-operational and operational periods. 93 11. 1 Average hourly precipitation.
96
* vii 
..... LIST OF TABLES 1.1 Network instrumentation and calibration schedules.
 
===2.1 Summary===
of plume questionnaire reports. 3.1 Visibility data for P03A, PO?A and C03A for 1975 and 1976. 3.2 Contingency table for hours of advection-radiation fog for P03A and P07A. Ratios of hours of fog at P03A and P07A. 5.1 Occurrences of apple scab infection conditions.
 
===6.1 Occurrences===
 
of true lake breezes for 1973 through 1977. 6.2 Comparison of climatological data and 1977 data for Muskegon County Airport. 6.3 Number of true lake breezes reaching various distances inland. 6.4 Values of r 55-r 9 for true lake breezes. page 8 14 23 25 27 37 40 41 43 46 6.5 Changes in r 55-T 9 with passage and retreat of true lake breezes. 46 7.1 Computations of increases in temperature due to cooling tower operation.
 
===8.1 Average===
magnitudes of statistically significant increases in temperature, relative humidity and dew point near the Palisades 49 Nuclear Plant. 72 8.2 Average magnitudes of statistically significant increases in temperature, relative humidity and dew point near the Palisades Nuclear Plant. 8.3 Computations of increases in relative humidity due to cooling 72 tower operation.
74 9.1 Total precipitation and departure from normal for the Palisades network and South Haven. 85 11.1 Harmonic analysis of average hourly precipitation.
A.l Percent possible data recorded in 1977-78. viii 97 104 I_,) 1, '.) .-) .. l :" ! .---.., I . ,/ I -I * 
*"'* )
* I. INTRODUCTION Background The investigation was initiated in 1971 by a request from the NOAA State Climatologist for Michigan in cooperation with Consumers Power Company and Indiana & Michigan Power Company for a study of meteorological effects of cooling systems at two nuclear power plants in southwestern Lower Michigan.
The investigation was to be concerned with Consumers Power Company's Palisades Nuclear Plant, which was to use mechanical-draft cooling towers, and Indiana & Michigan Power Company's Donald C. Cook Nuclear Plant, which was to use a once-through cooling system. Water from Lake was to be used in the cooling systems, both of which were under construction at the time. plume, injected directly into the atmosphere at a height of about 20 meters. If the plant has an average generator load at its full capacity of about 700 megawatts, a maximum amount of cooling is required and as many as 12,000 gallons per minute may enter the atmosphere directly (USAEC, 1972). Aerial photographs showing the cooling towers prior to and during their operation are given in Fig. 1.1 and 1 .2. In the operation of the once-through system at the Cook Nuclear.Plant, water is taken from Lake Michigan at a projected rate of about l ,645,000 gallons per minute (USAEC, 1973). It becomes heated in cooling the condensers, 
 
Figure 1.1 Aerial photograph of Palisades cooling towers prior to L_ i..._ __ **
** ---J -----/ _ _J
* Fig. 1. 2 .-Aerial photograph of the Palisades cooling towers during operation on 23 December 1977. w 4 and the heated water is returned to Lake Michigan.
An area of warm water, or thermal plume, spreads out from the discharge point and heat and moisture are lost to the atmosphere by conductive, radiative and turbulent transfer processes as the air passes over it. According to Carson (1976) the energy flux per unit area into the atmosphere with a lake cooling method is about 3 orders of magnitude less than the energy flux from the top of a cooling tower. The planning of the study took into account the fact that even though the meteorological effects of the two methods of cooling were expected to be different in degree, a study of the effects of one system could supplement the other in many ways, since both nuclear plants were located on the Lake Michigan shoreline and separated by a distance of about 33 km. The two / investigations were set up as similar 5-year projects, therefore, and work on them began in April, 1972, when orders for equipment were placed and for meteorological stations were chosen. Purpose and Approach The goal of the cooling tower investigation is to determine (1) if they significantly affect meteorological conditions inland from the nuclear certain conditions, increase atmospheric moisture near the ground for prolonged periods and, in addition, cause or enhance not only fog and/or icing at the surface, but also cloud growth and precipitation.
These effects could impact spraying operations for disease prevention in the fruit belt inland from the cooling towers, for example, and the trafficability of the Interstate 196 Freeway located about 0.8 km from them. . ) ( .-' 
*.,,.* ,-. \_ -' I l ! l_ -I '* :. An observational approach was taken, therefore, which was designed to provide basic informat1on on possible cooling tower effects on fog, solar radiation, cloudiness, precipitation, temperature, humidity and to 5 the extent possible, icing. The nearest National Weather Service Station which could provide adequate and somewhat representative information on most ' of these variables, however,.
was at Muskegon County Airport located about 112 km north of Palisades and out of range of cooling tower influence.
To obtain information closer to the towers a special network of 13 logical stations extending from near the tower site to about 19 km inland was established (Ryznar, et.al., 1976). A map showing locations of the stations comprising both the Palisades and Cook networks and stations having other types of meteorological data is shown in Fig. 1 .. 3. Most of the open-circled stations have valuable term temperature and precipitation data that have been used to determine natural variability.
Of particular relevance to the Palisades study is the station at South Haven, for example, which is only about 9 km north of the network and has over 40 years of data representative of near-shore conditions.
A map showing locations of the Palisades network stations on a larger scale is given in Fig. 1 .4. Temperature, relative humidity and precipitation are measured at all stations.
At the two main stations, #3 and #7 (called P03A and P07A in this report), wind velocity, visibility, and global solar radiation, consisting of direct plus diffuse solar on a horizontal surface are also measured.
The network instrumentation and calibration schedules are given in Table 1 .1. Station P03A is located in a flat field about 1 km ESE of the cooling towers and near the Interstate 196 Freeway. Time lapse photographs of the plume are made from this station as well as from the roof of the turbine building on-site. Together with measurements of visibility and the other 6 *9 *B 810 cu *5 *11 *12 OCOLOMA 0 WATERVLIET OSODUS OEAU CLAIRE *7 *11 *6 0 BERRIEN SPRINGS ea *10 *9 *12 0 OGLENDORA a *6 *13 *7 "BANGOR STATION TYPES e REGULAR STATION .
* MAIN STATION* 0 NWS CO-OPERATIVE 0 MICHIGAN AGRICULTURE Ii) FAA '8) NUCLEAR POWER PLANT X WATER INTAKE TEMPERATURE ODOWAGIAC Miles 5 .a.a Kilonreters 10 16J Fig. 1.3 Locations of meteorological stations in the Palisades and Cook networks.
' l l / * *" " ; f \ .... I ! Ii * 
:. N r PLANT SITE LAKE MICHIGAN &#xa9; 11
* 30th AVE. .. COVERT M, 1.40 &#xa9; 12 0 13 Figure 1.4 Locations of meteorological stations in the Palisades network. _____ \. c*-_" ____ ; ' . ' MILES 8 Variable Precipitation Temperature Rel. Hum. Wind Speed Wind Direction Solar Rad. L_ Table 1. 1: Network Instrumentation and calibration schedule Height above Months Instrument and ground Date between manufacturer (meters) installed c.alib. Weighing gauge 1 10/72 6 Belfort Inst. Co. Hygrothermograph Model 5-594 Belfort Inst. Co. Gill 3-cup Anemometer Model 12101 R.M. Young Co. Wind Vane Model 104 WeatherMeasure Corp. 1.5 3 3 Visiometer
 
===1.5 Model===
1580 Meteorology Research Inc. Pyranometer 1 Model R411 WeatherMeasure Corp. 2/73 2/73 2/73 10/72 (P-3) 3/73 (C.-3) 5/73 (P-7) 10/72 (P-3) 12/72 (C-3) 3/73 (P-7) . 12/72 (C-10) 6 6 6 12-18 12 Calib. technique Static weights Calib. chamber Wind tunnel Circular linearity Manufact._
J .( . __ ) -*./ Comparison with . " standard ( __, _j i I 
* ,.. -. ,i \ * . i I .
* 9 variables, the time lapse photographs are especially significant for determining if cooling tower downwash occurs, its downwind extent and its possible effects on freeway trafficability.
Station P07A has the same equipment as P03A except for the time lapse camera,' but because it is about 19 km inland, it is assumed to be out of range of direct cooling tower effects. In this way, its measurements act as "control station 11 measurements with which those made at station P03A can be compared.
The nuclear plant began test operations on April 1975 and gradually increased to 80% load later that month. Outages lasting from a few hours to a few days were experienced, but the plant remained on line until 20 December 1975, when it was shut down for about five months for refueling and steam generator eddy current testing. It resumed continuous operation on 18 May 1976 and except for occasional outages lasting from several hours to several days, it maintained an average ganerator load of about 700 MW(e) until 6 January 1978 when it was shut down for refueling.
As determined by a plume in the photographs from the turbine building camera, the cooling towers resumed operation 21 April 1978. In keeping with the original plan of the investigation, the final evaluation of the meteorological impact of the cooling towers will be based on (1) an analysis and statistical comparison of all pre-operational and operational meteorological data and (2) case studies, observations, and photographs of plume behavior and effects. As with past annual reports, the present report is structured according to this plan in that it contains analyses of both pre-operational and operational network data and a summary of plume observations made in the operational period between 1 April 1977 and 5 January 1978 .
10 II. PLUME OBSERVATIONS AND PHOTOGRAPHS by Edward Ryznar Throughout the past year, observations of plume behavior and effects were made both visually and photographically.
Most of the visual observations were made on site within about 300 meters of the cooling towers by plant security and engineering personnel.
They made observations of both plume behavior, such as downwash and length of plume and plume effects, such as drift, icing and entered their observations onto questionnaires.
In the plume program, time lapse photographs were taken.simultaneously from station P03A with a camera facing lakeward in the direction of the cooling towers and from the roof of the turbine building with a camera facing inland. Their locations are shown in Fig. 1 .1. Results of the two programs for the operational periods of 1977-78 are discussed below. From the beginning of the 1977-78 contract year on 1 April 1977 until 5 January when the nuclear plant was taken off line for refueling, the cooling towers were in operation for about 246 days as determined by a visible plume in the time lapse photographs from the turbine building.
In that time period a total of 612 questionnaires was completed.
About one quarter of these were *nighttime observations of the plume and its effects. An example of a completed questionnaire is shown in Fig. 2.1. It was completed by a member of the security staff at 0615 EST on 29 December 1977. Information derivable from the questionnaire is that 1) it was cloudy and snowing; 2) the plume was moving north and ended on site; --*1 .I .***i -*-r \ I . I -_) *, J : . ' -_f * 
. I r '. ** ! \ '
* Fig. 2.1 11 Cooling Tower Plume Questionnaire (Revised 5/18/76) TI n11 r P Name (i. -l Date ;y./z-c;J77*
Time7Cb/..5-
/ I 1. In the list of types of weather given below, encircle one or more which best describe the general weather during your observation of the plume. clear partly @i fog rain cloudy
* 2. Was there a visible No 3. If you passed near the end of plant would you estimate that site to 2 miles it, how far from the power it ended? 2-4 miles more than 4 miles 4. If it ended at a location on the map, place a &#xa9; at that location.
: 5. Was the wind strong enough to bring the plume to the ground? <&sect;) No 6. 7. 8. 9. 10. If it was, place a (6) on the map where you saw the plume contacting the groun'cr'.
Did you pass through the No If you did, place a (j) at that location.
Did you pass under the No If you did, place an @ at that location.
If you passed through, n.ear the plume, did you observe drizzle from No If you observed fog, do you think it was natural fog or fog caused by the plume? Natural fo'=! D plume fog IZJ bothD If the fog was caused by the plume, place a q]} at that location .
12 11. 12. 13. Did you observe from the plume only and not from clouds? Yes If you did, place an at that location.
Did you on objects in the vicinity of the plume? es No
* If you observed icing caused by the plume, check one or more of the types of surfaces on which you observed it. trees and other vegetation utility lines and towers d. others, please list: 14. Place a on the map where you observed icing. 15. If you drove to or from the plant, did you rnotice changes in road If yes, please briefly describe what they were and where. 16. On the map, please sketch the plume as you saw it. Thanks for your help! -.... \ \ ) ) ') . l ) i .J ( _} \ 1
* J I ***" _j **
l l ' ' '*--*' t.' ) (
* 13 14 3) downwash to ground level was occurring which obscured visibilities at distances up to 200 meters north of the cooling towers and was accompanied by drift and freezing
: 4) the snow observed was natural snow and not caused by the plume; 5) icing was occurring on most surfaces downwind, but was concentrated in the area of drift near the towers and 6) other than for the icY roads on site in the vicinity of the plume, no changes in road conditions were observed which were attributable to icing caused by the plume. Meteorological conditions which accompanied this observation were that 1 ight snow was occurring along nearly the entire eastern shore .of Lake Michigan, the temperature was -7&deg;C, the dew point was -l0&deg;C and the wind velocity was from the south at 5 meters per second. A summary of the 612 questionnairesaccording to the number that reported observations of downwash, plume fog and icing and plume length is given in Table 2.1. The three time periods listed are the first three* . quarters of the year beginning 1 April. The third quarter is extended to include 5 January 1978, the last day of cooling tower operation prior to plant refueling.
Table 2. 1 _SumiTiaryofthe
*p1ume Questionnare Reports* #Down--#Plume Time Period # Quest. wash fog #Icing 4/1 /77-6/30/77 . 271 73(27%) 68(25%) 6 7 /1 /77-9/30/77 161 47(29%) 57(35%) 0 10/1 /77-1 /5/78 180 95{53%) 113{ 63%) 38 Total 612 215(35%) 237(39%) 44 #Pl urile > 2 miles 34 18 67 119 --, I . I -) I .. -' ( ... ! . I I 
* /' -. I \ . ' . * (" I i
* 15 Features of Table 2J are that 1) The percentage of questionnaires which reported affirmative answers to the question "did the plume contact the ground" approximately doubled from summer to winter. In summer, approximately 28% reported observations of downwash compared to 53% in winter, which is in keeping with the increase in average wind speeds from summer to winter. 2) The percentage of questionnaires which reported affirmative answers to the question 11 if you observed fog, do you think it was due to the plume 11 also nearly doubled from summer when it was near 30%,to winter when it was near 60%. Of the 237 reports of plume fog,87, or 37% of them, also had natural fog occurring at the time of the observation.
No cases of plume.fog were observed off-site, but several cases of drift off-site were observed.
One observation made at 0800 EDT on 7 July reported drift under the plume about 1200 meters southeast oi the cool}ng towers on the Blue Star Highway. No unusual meteorological conditions were present which could account for the large downwind transport of drift. There were high broken clouds, the relative humidity was 87%, the temperature 76&deg;F and the wind velocity at station P03A was from the NNW at 5 meters per second. 3) Icing due to the cooling tower plume was last reported in the spring of 1977 on 9 April and first reported in the autumn on 12 November.
Of the 103 questionnaires received between 12 November 1977 and 5 January 1978, 38, or 31% of them reported icing on-site. On 20-23 December there were several reports of freezing,drift at various locations on the access road on site which caused slippery driving conditions in those areas. As was observed in the wintertime data obtained previously, the icing taking place near the towers was primarily the dense type of glaze 16 ice caused by freezing drift. As the distance from the towers increased, the type of icing changed from glaze ice to a less dense type of rime ice caused by freezing of the plume rather than of the droplets comprising drift. No cases of icing caused by the plume were reported .! ,-*1 off-site.
J 4) The number of reports of the plume length exceeding 2 miles varied with season. Of the total of 119 reports of long plume lengths, 29% occurred in spring, 15% in summer and 56% in autumn to winter. This is a result of the fact that in the cold seasons not only do the lower average temperatures cause more rapid and complete condensation of the plume, but also the higher average relative humidities retard its evaporation.
* 1 ( ( .. ! ** 
* .. -.:.. . ' I " ) l .. r \ ! ** r \ I i '*
* tr I. Aerodynamic Downwash PLUME EFFECTS ON FOG by Edward Ryznar Fog caused by aerodynamic downwash of the cooling tower plume is a common occurrence near the towers. In conditions with wind -1 speeds exceeding about 3-4 m sec , the plume is swept to the ground immediately downwind of the towers and in high wind speeds and relative humidities exceeding about 70%, it may remain in contact with the ground for several hundred meters. As long as it remains in contact with the ground and is dense enough to obstruct horizontal visibility, the plume is actually fog. In spite of its being at ground level, however, the plume retains its positive buoyancy and at some distance downwind it lifts off the ground either in its condensed visible phase or, if enough evaporation and diffusion have taken place, in its invisible vapor phase. Downwash *results from the distribution of pressure around the tower structure -induced by the wind field. Distributions of pressure ratios for three wind directions for a structure with geometrical proportions similar to the cooling towers are shown in Fig, 3.1. The figure was taken from a report by Ovard and Reisman for the Ecodyne Cooling Products Division, Santa Rosa, California.
The numbered contours are dimensionless pressure ratios (P.R.) obtained from the equation P.R. =
where = wind-induced difference across the towers, P =air density, and v 0 =wind velccity arriving at cooling towers . 17 18 -0.61 TO -0.69 -
/.-0.7 '--::-0.8 r __,/ \ .... tvo -0.1 ) -0.1 . . f . ) l -0.24 \ -0.1 J Fig. 3.1 Pressure ratio contours around draft cooling towers. .; l ) --; I i .( *1 . , . . J ( ,.,/ \ __ ) r . I ,J **
The pressure ratio can be either positive, implying a region ,. of upward moving air, or negative, which is a region of downward ..---. _,.-*. moving air. In Fig.3.1, the walls of the structure are shown folded out, with the long wall sections representing the intake louvers of the cooling towers. The longitudinal axis of the towers is the horizontal axis. The distribution of pressure ratios for a wind normal to the longitudinal axis is shown at the top of Fig.3.1. Because the Palisades towers are oriented east-west, similar distributions 19 but with opposite signs are produced by north or south winds. The largest positive ratios are on the upwind side. The largest negative ratios, implying descending motion are on top and on the downwind side. The distribution corresponding to a wind direction 45&deg; from
* the orientation of the longitudinal axis or, for the Palisades towers, for a southwest wind, is shown in the middle of Fig.3.1. The large negative ratios which.occur along the entire top of the main tower structure as well as on its leeward (north) side, indicate a strong tendency for descending motion there. Corresponding distributions for northwest, northeast, and southeast winds can also be deduced. The distribution corresponding to a wind direction parallel to the longitudinal axis or, for the Palisades towers, to an east or west wind, is shown at the bottom of Fig. 3.1. The smallest average negative ratios are produced by this wind direction, indicating that for the Palisades towers, if the wind is from the east or west, a higher speed than for any other direction is required for downwash to occur. .* rn addition, for these wind directions, plumes from individual cells ' combine to form one large plume and enhance plume rise by a cumulative buoyancy effect.
20 Advection
-radiation fog In addition to direct plume effects on fog near the towers caused by downwash, other more subtle. effects on fog at larger distances are possible and are being studied. For example, according to the results using the Gaussian plume model, increases of relative humidity up to 15 percent can be caused by the plume at the location of station P03A. These may lead to an increase in occurrences of the advection-radiation type of fog. Ryznar et . .91., (1977) compared occurrences of this type of fog at stations P03A and P07A using 1973-74 (preoperational) and 1975 (operational) data and found no effect attributable to the cooling towers. The work described below extends the analysis to include 1976 data. A limited comparison is also made with data obtained from the visiometer within about 1 km of the Donald C. Cook nuclear plant located about 40 km south of the Palisades plant. Conditions for formation Advection-radiation fog (hereafter referred to as a-r fog) is caused by the advection onshore of lake air in daytime followed by nocturnal cooling of the air to saturation by radiative heat losses from the land surface. As discussed in detail in the Fourth Annual Report, meteorological conditions conducive to its formation on a given night are (1) a high relative humidity (>70%) in the evening, (2) a light wind speed (l-3 mph) and (3) a cloudless or nearly cloudless sky (scattered cirrus at most).
* The reason that a thermal plume such as that from the once-through system at the Cook Nuclear Plant may affect fog formation is that if it is warmer than the air passing over it, turbulent transfer processes between water and air are enhanced by the unstable vertical temperature gradient, .resulting in an increased transfer of heat and moisture .. , I . j ( I .. l l I .J i I . . i I .J
* 21
* from water to air. The greater the gradient, the greater the transfer, \. ,.,, .. *
* as illustrated by steam fog over a thermal plume in wintertime.
The air with greater humidity can move inland either with lake breezes (which are most frequent in the warm months when a-r fog is most frequent) or with an onshore gradient wind, fulfilling condition (1) above. Near Lake Michigan, conditions favorable for a-r fog formation by natural processes occur most frequently in June through October. They are infrequent in the other months because of higher average wind speeds and greater cloudiness.
In the cold months, for example, considered here to include November through February, fogs are associated directly with various types of fronts and/or the advection of very cold air following a cold frontal passage. In the latter case fog, clouds and snow commonly occur together and may extend far inland . Measurements and results. All obstructions to visibility such as fog, rain, haze and any combinations have been measured with visiometer systems which provide a measure of sensor-equivalent visibility.
In the processing of visiometer data, each reduction in visibility to 3 km or less is assigned a cause which is determined from daytime hourly weather observations at Benton Harbor Airport, measurements of other meteorological variables from the 13-station network and weather maps. For those visibility reductions attributable to fog, it was possible to determine whether the fog was caused by frontal activity, advective processes, radiation losses or some combination.
Only cases of a-r fog are treated quantitatively in the discussion below .
22 A tabulation of the percent of recorded data for visibilities equal to or less than 3 km by month for 1975 and 1976 is given in Table lJ for station C03A in the Cook network and stations P03A and P07A in the Palisades network. Visibility reductions due to a-r fog only are shown on the left and those due to all causes are shown on the right. The numbers in parentheses are the percent possible data recorded.
A double asterisk by a month means that at least 85% of the month had acceptable data at all stations.
Comparisons among stations.
A comparison of a-r fog occurrences among the three stations shows marked differences.
For the warm months of both 1975 and 1976, station P03A had the most a-rfog, followed by P07A and then C03A. A similar difference qetween P03A, which is 1.3 km inland, and P07A which is 19 .km inland, also occurred in prior years arid was described in the Fifth Annual Report. The difference was attributed mainly to an average increase in temperature and an accompanying decrease in relative humidity with distance inland. Such a condition occurs frequently, especially in the warm months on sunny days with onshore winds. In addition, because both stations are on level fields and in similar terrain, effects of local terrain differences on these results were considered to be minor. By means of 2 x 2 contingency tables comparing a-r fog at P03A and P07A it was shown that occurrences of a-r fog at P03A in 1975, during which the cooling towers were in operation from April though 19 December, were not increased above those which occurred naturally.
The larger number of fog occurrences at P03A than at C03A, even though both stations are nearly equidistant from Lake Michigan and in similar meteorological regimes is believed due mainly to terrain l .! \ I ( J J i I .. ) i
* I * 
*------* --23 Table 3.1 *.:* Percent of Recorded Visibility Data 3 km for Stations P03A, P07A, and C03A for 1975 and 1976 ( -* 1975 Advection-radiation fog All causes P03A P07A C03A P03A P07A C03A ' . J none ( 99)
* no data none (99) 9.9 18 ' *-. F none (9 9) none (34) None ( 97.) 16.5 8.7 22.4 **M 2.6 (100) none(lOO)
: 1. 2 (98) 24.4 5.0 15.2 ,_ . A 1. 3 (100) 0.01 (7 3) 0. 5. (100) 7.9 5.2 6.3 M 4*. *6. ( 78) 1.6 (100) 0.9 ( 9 3) 21.5 4. 7 . 14 ' I **J 11.0(94) 4.5(100) 4.2 (100) 19.4 6.3. 7.5 ' '-J 19.9(81) *4.2(100) 1.9:(98) 29.2 5.4 6.1 r* I **A I 8.4 (96) 4.8 *(89) 2. 4.' ( 90) 12.9 5.9 7.2 ' -**S 8.2 (87) 6.3 (95) 1. 5 (100) 12.6 11.6 4.7 I -**O 6.1 (100) 3.8(100) 1. 9 (100) 6.6 3.9 2.2 1 N 3.9 ( 8 8) 5.5 (68) 3.4 (99) 7.7 8.3 9. 8
* D none ( 87) no data none (100) 5.4 10.1 1976 (, I J none (100)* no data none (100) 11.1 14.5 . -F none (100) no data none (100) 4.2 10.4 I **M 1. 4 (93) none (85) none(lOO) 2.0 2.2 3.6 (_ . 4.6 **A. 2.6 (89) 0.7 (99) 0.01 ( 91) 2.3 2.1 **M 3.0 ( 91) 2.9 (100) none ( 90) 8.2 6.5 *, J 6.0 ( 9 8) 3.1 (100) 0.01(78) 7.9 9.2 2.9 J 4.3 (81) 4.5 (89) 0.6 ( 6 6) 7.3 9.8 3.7 **A 15.2(100) 9.1 (100) 4.3 (92) 18.2 12.2 5.2 **S 5.3(100) 5. 4. ( 90) 0.8 (8 7) 8.4 8.3 4.9 **O 3.0 (90) 1.7 (100) 1. 9 ( 100) 3.0 3.2 4.1 **N none (97) none ( 9 8) none ( 100) 5.9 10.8 5.8 D none (21) none (84) none (100) 22.9 13.1 ** *%possible data recorded ** >'85% data recovered at all stations 24 effects. Visiometers at both stations are at a height of 1.5 meters above ground, but whereas the unit at P03A is on a flat grassy field, the unit at C03A is on top of a north-south berm, which is sandy except for scattered clusters of dune grass. The berm slopes steeply downward about 4 meters in 10 meters eastward and 2 meters in 2 meters westward.
Even with similar radiative cooling processes at both stations, the air cooling to saturation and resulting in fog at C03A settles in the lowest elevations, which are east of the visiometer.
Unless the fog thickness is sufficient to reach the height of the visiometer, no decrease in visibility is recorded.
It was determined that the visiometer performance was not responsible for the differences described above. From the data on the right side of Table 3.1, it can be noted that for December through February, when fog is infrequent but other types of fog are common in addition to visibility obstructions caused by snow, rain, haze, the percent of recorded data for visibilities
<3 km at C03A significantly exceeds that for P03A and P07A except for December, 1976, when data recovery for P03A was only 21%. This. result indicates that the visiometer was responding accurately to a decrease in visibility to 3 km or less, that the difference in fog occurrences is real and that it is most likely due to the terrain differences described above. Comparison of preoperational and operational results. Table3.2 shows a breakdown of hours with a-r fog for the preoperational years of 1973-74 and the operational years of 1975 and 1976 in the form of a . 2 x 2 contingency table for stations P03A and P07A. Including only those hours (or fractions thereof) in the analysis when a determination
*1 ) l \ --i I **, I .J ; j ** 
** ... --.. P07A* ( ** P07A P07A
* Table 3.2 Contingency table of hours of advection-radiation fog at P03A and P07A for visibility
-2_3 km. fog fog 158. 9 no fog 337.8 Total 496.7 fog fog 150.9 no fog 287.6 Total 438.5 fog fog 108. 6 no fog 164.8 Total 273.4 1973-1974 P03A no fog 44.3 2579 2623.3 1975 P03A no fog 54.6 1954.9 2009.5 1976 P03A no fog 67.9 1674.7 1742.6 Total 203.2 2916.8 3120 Total 205.5 2242.5 2448 Total 176.5 1839.5 2016 25 26 could be made that there was a-r fog at one or both stations provides significant information not only on the simultaneity of fog occurrences but also on their variation with distance inland from the cooling towers. In addition, the requirement that data must be available for both stations even though only one may have had fog eliminates uncertainties caused by any missing data. Even though the results of similaranalyses for 1973-74 and 1975 were discussed in previous reports, their significant features are summarized here for comparison with results for 1976. From Table 3.2 it can be noted that for 1976 there were (1) 108.6 hours when there was fog simultaneously at P03A and P07A, compared to 150.9 and 158.9 hours in 1975 and 1973-74, respectively; (2) 67.9 hours when there was fog at P07A but not at P03A, compared to 54.6 and 44.3 hours in 1975 and 1973-74, respectively; (3) 164.8 hours when there was fog at P03A but not at P07A, compared to 287.6 and 337.8 hours in 1975 and 1973-74, respectively, and (4) no fog at either station for 1742.6 hours, or 86% of the 2016 possible hours which could have had fog on those days. In 1975 there was no fog for 82% of the possible hours, and in 1973-74 there was none for 84% of them. I .. 1 ( .J I I i ) ., . * 
\' i \ ... . I ,* *, r* \. , ' 27 In the comparison of results for P03A and P07A in terms of possible cooling tower effects, the important assumption is made that occurrences of a-r fog at P07A, because that station is 19 km inland from the cooling towers, are due to natural processes only. Treseare considered to represent "control 11 data. Occurrences at P03A, on the other hand, because that station is only about 1 km from the cooling towers and downwind, on the average, are assumed to be caused not only by natural processes, but also could be caused or enhanced by moisture from the cooling towers. If a significant increase in a-r fog occurrences from preoperational to operational conditions is found at P03A without a corresponding increase at P07A, a possible cause is the cooling towers. Changes in fog occurrences at the two stations from pre-operational to operational conditions can be seen more clearly by incorporating the results of Table3.2in terms of ratios. Table 3.3shows the ratios ( r* \_
* of hours of fog at one station alone to the total hours of fog at one or both stations.
For example, the number 541 in the denominator for 1973-74 is the sum of 44.3, 158.9 and 337.8 hours from Table 3.2. P07A P03A Table 3.3:Ratios of hours of fog at one station alone to total hours of fog at one or both stations 1973-1974 1975 1976 alone 44.3/541 = 8% 54.6/493.
l = 11% 67.9/341 .3 alone 337.8/541
= 62% 287.6/493.l
= 58% 164.8/341
.3 = = 19% 48%
28 The feature of Table 13is that the percentages of 11 fog alone" for 1973-74, 1975 and 1976 increase from the preoperational to the operational years at P07A and decrease at P03A. Specifically, it can be noted that even though P03A has much more frequent a-r fog than P07A, ( l ) the percentages that PO? A had fog a 1 one were 8%, 11 % and 19% of the total fog hours for 1973-74, 1975 and 1976, respectively, and * (2) the percentages that P03A had fog alone were 62%, 58% and 48% of the total fog hours for 1973-74, 1975 and 1976, respectively.
A complete explanation of these trends is not possible at this time, but tentative reasons can be given. It can be stated with for example, that because moisture from the cooling towers can only r increase the humidity and possibly fog, decreasing trend at P03A is due to natural causes only. The increase observed at P07.A, on the other hand, could be caused by natural processes and/or cooling tower moisture; a possibility which seems to contradict the assumption that P07A provides control data uninfluenced by the cooling towers. No direct information on this possible contradiction is available, but as Carson (1976) points out, many of the models for predicting plume dimensions and surface fogging from mechanical-draft towers predict frequent fogging at some distance (l to 10 km) from them due to downward dispersion of the plume after an initial rise. Near large bodies of water, such a condition can winds by a process similar to that for particulate plumes described by Van der Hoven (1967) and by Lyons and Olsson (1972). Carson stresses, however, that such fogging has not been observed or reported and that the main cause of fog is aerodynamic downwash near the towers, .! j ( .. I
* c* i i**-, i \ . .r--,. *, . i \ .. I ', . I . 1 \. -29 a condition not simulated by most models. At this point in the analysis it is considered premature to attribute the increase at P07A to cooling tower moisture.
If this moisture were responsible, a greater increase in average humidities should also be observed at P07A than at P03A. A comparison of humidity data for the two stations for the months of most frequent a-r fog, however, does not show such an increase.
Analysis of these results is continuing, with the expectation thata more detailed examination of specific fog occurrences using both past data and those to be obtained in 1978-79 will provide additional information necessary for a more complete explanation .
30 IV. PLUME EFFECTS ON SOLAR RADIATION by Edward Ryznar In the study of plume effects on incident solar radiation thus far, it has been found that at a point in the plume 1 s shadow, the reduction in solar radiation is similar to that produced by broken (6/10-9/10 sky coverage) stratocumulus clouds. This is the case if the plume is dense and continuous enough over the observation point and if it maintains an average position between the sun and that point as it moves downwind.
On the other hand, it . has also been found that for a cloudless sky and an observation point close to either side of the average position of a plume 1 s shadow it is possible for that point to receive more solar radiation than it would if there were no plume (Ryznar, 1978). In other words, with certain orientations of sun, plume and observation point, it is possible for incident solar radiation at the observation point to be greater than it.would be without a plume even though occasional shadowing of the point by the plume may take place .. An example of such a condition was discussed briefly in the Fifth Annual Report, using a pyranometer recording of global solar radiation (direct plus diffuse on a horizontal surface).
For comparison with other examples, the recording is shown again in Fig.4.1. It was obtained at station P03A on the cloudless morning of 7 March 1977 when a wind direction of 290 degrees caused the average position of a fragmenting plume to be between the sun and the pyranometer from 0830 until 1300 EDT. After 1300 the wind direction gradually shifted to 270 degrees, carrying the plume north of an imaginary sun-pyranometer line. The smooth solid curve in Fig.4.1 is the curve of global solar radiation for a cloudless sky for that station for 7 March. It is based on data from a nearby pyranometer uninfluenced
**: ) I I . j I J by the plume as well as on symmetry of the afternoon and morning recordings solar noon. Symmetry could be assumed because winds remained on shore and there was no noticeable change in air mass from morning to afternoon.
I' .I 7 j / j *! 2: :"i l. 0. a. 0. r.. u) q <I) ,, Fig. 4.1 Recording of global solar radiation at P03A for 7 March 1977. ( \ __ _ * **
32 It can be noted that in the morning the plume caused frequent variations of solar radiation, many of which exceeded clear sky values. For the period 1130 to 1230, they occurred frequently enough and with sufficient amplitudes to cause the average to exceed that observed with a cloudless sky. The reason is that the solar radiation reaching the pyranometer during the large positive variations consisted of not only that received directly from the sun but also that reflected from the sides of the plume. As long as the average position of the fragmenting plume shadowed the pyranometer occasionally, the large downward variations were observed.
From 1300 to 1400, however, t when the plume gradually moved north of the sun-pyranometer line, all variations were above the clear sky curve because solar radiation continued to reflect from the south side of the plume but there was no shadowing of the pyranometer.
Finally, after 1400, the plume position moved too far north of the pyranometer to cause significant additive effects, and the normal clear sky radiation was received.
A second example is shown in Fig.4.2. Again, the sky was cloudless except for the plume. In this case, however, the plume was more dense and continuous than in the first example and a shift in wind direction caused it to move quite rapidly between the sun and pyranometer at 1130, remain oriented in the WSW to ESE shadowing position until about 1415 and change rapidly to a northeasterly direction after that time. The two examples given above illustrate types of effects the plume may have on solar radiation measured at the 1-km distance of station P03A. As implied in the discussion, the effects can range from an average ment to a diminution of solar* radiation.
The type of effect depends not only on the characteristics of the plume but also where the observation point is located in relation to the plume and the sun. -, \ l *I .I I j l .J l .. , j *!* J ! ! J \ j .. I t * 
,... ... I ( . ,. I l r r [ _* * .. * ''. 'fl ; )' ': i' 'i ; ' :j
-*--.; :i* fjl Fig. 4.2 ... / ... : *. Recording of total solar radiation for 1 March 1977 at station P03A. The smooth curve drawn through the recording is for a cloudless sky. 33 34 V. OCCURRENCES OF APPLE SCAB INFECTION CONDITIONS by Edward Ryznar Apple scab is a parasitic fungus disease which can cause major damage to both leaves and fruit of apple orchards.
Because the raising of apples and other fruit is one of the main industries in southwestern lower Mich*igan and there is a possibility that cooling tower moisture may cause an increase in the frequency of occurrence of certain combinations of temperature, humidity and precipitation conditions conducive to apple scab infections, a study of occurrences of these conditions before and during cooling tower operation is being carried out. The work described below is an extension of the preliminary study. described in the Fifth Annual Report. The preliminary study used 1974 (preoperational}
and 1975 (operational) meteorological data. It compared occurrences of meteorological conditions which met certain criteria for several Palisades network stations with those for Muskegon County Airport, 1vhich served as a representative control station. It is near Lake Michigan like the Palisades network, but it is out of range of cooling tower effects. Results of the study indicated that an increase in apple scab infection conditions observed between 1974 and 1975 was due to natural meteorological processes and not to the operation of the cooling *towers. The analysis described below extends the study to include meteorological data for 1976. Germination leading to apple scab infections begins as soon as disease-carrying spores, released from perithecia on dead wet leaves on the orchard floor during temperatures abov.e freezing, land on new green leaves or fruit which are also wet (JJnes, 1971). The meteorological . r I J l ) *1 .. I '1 . .1 .J ' . I i .,) * 
** ( i . ( . r ( . I . \.
* conditions most conducive to apple scab germination and infection are temperatures between 63&deg;F and 75&deg;F accompanied by or following rain with high humidities.
For example, at an average temperature of about 63&deg;F, it takes only 9 hours for a primary infection and 18 hours for a severe infection to take place after* the start of a rain. If a protective spray is not applied before or within this critical 9-hour period, a spray with eradicative properties must be used. At colder temperatures longer times are required for infections to occur. None can occur at temperatures below freezing.
Since an infection period begins with the start of rain, the criteria used in this study to determine its severity were that the 35 temperature remain above freezing during precipitation and that the relative humidity remain at least 85% following the end of precipitation . . The precipitation criterion was that it must exceed 0.005 inch per hour. The reason for choosing the relative humidity criterion is that for the temperature range conducive to infections leaves, bark and fruit which are wet from rain are likely to remain wet as long as the relative humidity is at least 85% even though the rain has ended, thus adding to the period of infection.
* A computer program was written which totaled the number of hours fulfilling these criteria for several network stations and for Muskegon (1948-1952) for each occurrence of precipitation in each month from February through August. In addition, each occurrence categorized as being conducive to light, moderate or heavy infection according to data from a table given in Jones (1971) which shows degrees of infections in terms of durations of wet conditions for various Finally, the number of occurrences of each degree of infection was totaled by month. Equivalent information 36 for natural occurrences at Muskegon for 1974 through 1976 was obtained by manually screening hourly weather observations and tabulating durations of conditions which fulfilled the criteria given above. Results of the work are given in Table il. The number of of light, moderate and heavy degrees of infection are given for 1974, 1975 and 1976 for Muskegon and for network stations P03A, P04A, P06A and P07A. In addition, occurrences by month are given for station P05A and for Muskegon together with the average number of occurrences for Muskegon for the period 1948 through 1952. This 5-year period was chosen on the basis of completeness of hourly weather observations available on magnetic tape. Significant features of Table 5.1 are the following:
: 1) In general, the year 1976 had fewer total occurrences of all infection conditions than either 1974 or 1975 both at Muskegon and within the Palisades meteorological network. The total occurrences (16) for 1976 for Muskegon were 2 fewer than the climatological (1948-52) average for that station, 4 fewer than for 1974 and 7 fewer than for 1975. As described in the Fifth Annual Report, the -large number of occurrences in 1975 was caused mainly by much above normal precipitation in the spring and summer months throughout southwestern lower Michigan.
: 2) Within the Palisades network itself, the total number of occurrences for 1976 varied from 14 at P06A to 17 at P03A. The overall average of slightly less than 16 is the same as that obtained for Muskegon.
ei I .1 I I . .! I i '
---------------------------------** *-
r -, -----; ----j. **1 Number of Occurrences of Apole Scab Infection Conditions Muskegon County Airport (MKG) LIGHT(L) MODERATE(M)
UEAVY(H) F M A M J J A TOT F M A M J J A TOT F M A M J J A TOT 1974 0 0 l 0 5 l 0 7 0 0 l 2 3 l l 8 0 l 2 0 1 0 5 1975 0 0 l 2 3 l 8 0 0 3 3 2 2 11 0 0 0 0 0 3 4 1976 0 l 0 0 l 2 0 4 0 l 0 2 2 0 6 0 0 0 2 2 l 1 6 AVE (1948-1952) 7 8 3 Stat ion P05A 1974 0 0 l 2 0 1 2 6 0 0 l 0 5 0 2 8 0 0 0 1 l 2 5 1975 0 0 l 3 3 4 l 12 0 0 0 3 3 l 3 10 0 0 0 2 0 0 2 4 1976 0 0 2 0 0 0 0 2 0 0 0 l 2 6 0 9 0 0 0 2 2 0 0 4 Totals Station 1974 1975 1976 L M H TOT L M H TOT L M H TOT MKG 7 8 5 20 8 11 4 23 4 6 6 .16 P03A 4 9 2 15' 4 15 3 22 4 10 3 17 w ........ P04A 3 12 3 i's 3 15 3 21 4 8 4 16 P05A 6 8 5 19 12 l 0 4 26 2 9 4 15 P06/\ 4 ll 5 20 7 13 5 25 5 6 5. 14 P07A 5 10 3 18 9 12 3 24 5 6 5 16 38 These results indicate that moisture from the cooling towers is apparently not great enough to alter significantly occurrences of apple scab infection cond1tions from those which occur as a result of natural meteorological processes.
Similar analyses of 1977 data will be conducted to determine the consistency of these results. . ) . ) .\ *; . ) ) I . I -, \ I . I eJ . __ ; . _j *
* 1* I l . { . { .. ( . * \ .. r .
* VI .. TRUE LAKE BREEZE OCCURRENCES AND CHARACTERISTICS by Edward Ryznar The importance of the lake breeze to studies of shoreline meteorology in general and diffusion processes in particular has resulted in a continuing effort since 1973 to obtain information on lake breezes near Lake Michigan and how they affect the cooling tower plume. Lake breeze effects result from changes in temperature, humidity, wind velocity and thermal stability which accompany the abrupt change from land air t6 lake air and produce changes in atmospheric diffusion characteristics.
Meteorological data from the Palisades and Cook networks have been analyzed to determine true lake breeze occurrences, penetration inland and surface changes in temperature and humidity accompanying the passage of a lake breeze front. In addition, temperature data from the Cook meteorological tower have been analyzed to determine changes in thermal stability.
The work described below extends the results in each annual report to include results obtained from an analysis of 1977 data. A lake breeze is an onshore wind generated by the difference in temperature between the lake surface and the adjacent land surface, the land being warmer than the water. There are two general types of lake breezes. A true lake breeze is defined here as one 39 consisting of lake air moving onshore against an offshore gradient The Lake Michigan shoreline in the vicinity of the meteorological networks is oriented approximately NNE-SSW, so a true lake breeze is one that moves inland against a wind from any direction between northeast clockwise through south. At the network station locations, *a *gradient wind is determined mainly by the horizontal gradient of atmospheric pressure. 
-------40 its passage is detected most reliably by a shift in wind direction from east to west. A temperature decrease and a humidity increase also occur. Although it is not considered here, a type of lake breeze also forms which enhances an existing onshore gradient wind .. Because onshore (west) gradient winds are more common than offshore winds in the vicinity of the meteorological networks, this type occurs more frequently than a true lake breeze. In this case, an impetus is added to the onshore gradient wind which is detectable mainly as an increase in wind speed. Changes in temperature, humidity, wind direction and thermal stability are generally less than those caused by a true lake breeze front. Occurrences for 1973 through 1977. As discussed in previous annual reports, for the years 1973 through 1976, the months of March through September have had the largest number of true lake In 1977 there were 33 occurrences.
The 149 total occur-rences between 1973 and 1977 are listed for March through November by year in Table 6.1. Mar 1973 5 1974 3 1975 1 1976 2 1977 1 Tot;il 12 *Table 6.1 Monthly Occurrences of True Lake Breezes for 1973 through 1977 Apr 3 3 2 6 15 May 2 4 4 5 6 21 Jun 2 5 4 4 6 21 Jul Aug 2 3 7 10 5 7 4 8 4 5 22 33 Sep 1 5 3 4 3 16 Oct 3 0 2 7 Nov Total 0 21 0 35 2 30 0 30 0 33 2 149 .i ( .. , I I ) -1 \ I -' .! I _j * 
* ( . i \ -* ** ** The results in show a monthly distribution of true lake breeze occurrences which is slightly different for 1977 than for the other years. For 1973 through 1976,for example, July and August had the largest number of occurrences, but for 1977 April, and 41 June with 6 each outnumbered July (with 4) and August (with 5). Recalling that the least daytime cloudiness, the greatest warm land -cold water temperature difference and the lightest gradient wind speeds are factors* most conducive to true lake breeze formation (Ryznar ..e.:t . ...al., 1975), it is possible to explain these results by referring to Table The table gives monthly averages of hourly observations for the National Weather Service Station at Muskegon County Airport. They are considered representative of average conditions near Palisades.
The averages are for 1977 and for climatological (1940-1976) data . Table 6.2 Comparison of Climatological and 1977 Meteorological Data Muskegon County Airport I Mar I Apr I May i Jun Jul I Aug 1 Sep I Oct Nov 8.4 sky c 0 v er c 1 i m. I 7 . 4 I 6 . 5 i 6 . 1 I 5 . 7 4 . 9 5 .
0 I 5 . 6 6 . 2
; (tenths) 1977 , 6.3 5.9 4.9 [ 5.8 4.9 6.71. 7.6, 6.8 M Wind speed clim. ! 12.2 12.2 10.4 I 9.4 8.6 8.5 9.2 /10.9 11.8 I i I i (mph) 1977 1 12.8 \11.5 9.7,11.3 12.2 11.7 jll.6 12.8 Precip clim. I 2.39! 3.16 2.711 2.64 2.51 2.561 3.36 2.7 (inches) 1977 I 3.48: 1.71. 1.51! 2.52 2.41 2.481 4.4 1 2.46 I ! I I I l clim.140.5
\54.9 65.9176.2 80.4179.2 71.4 \60.7 Ave. max. temp. 3.04 45.7 M M (&deg;F) 1977 I 46.4, 61.1 I 75.7 r 72.6 81.2 / 75.9 169.o : 56.7 M 42 Compared to the climatological data, the 1977 data show that in April and May Muskegon had less daytime cloudiness, lighter average wind speeds, much above normal average maximum temperatures and much below normal precipitation, all of which are in the right sense for more* than normal lake breeze occurrences.
The higher than normal frequencies in June are more difficult to explain because that month had normal cloudiness, higher than normal wind speeds and below normal maximum temperatures.
July was near normal except for wind speed, which averaged 4 mph above normal. August, because of its greater than normal cloudiness, higher than average wind speed, and below normal temperatures could be expected to have the fewer true lake breeze occurrences observed.
Penetration inland. Once a true lake breeze forms, the distance that it moves inland depends on the velocity of the offshore wind against which it is moving as well as on cloudiness.
It has been found for example, that an offshore.wind of about 6 meters per second* is a critical speed which determines whether a true lake breeze will form and its behavior if it does. Even during cloudless conditions, if the offshore wind speed exceeds about 6 meters per second it is likely to inhibit true lake breeze formation completely, or at least not allow one to form until after midday, when sufficient heating of the land surface can occur. If it does form, it usually moves less than 3 km inland and is often forced to retreat lakeward, sometimes back to the lake itself.
* measured at a height of 3 meters I _J * 
,.. \ . * ** Cloudiness produces similar effects on lake breeze circulations.
I If there is sufficient morning cloudiness, a true lake breeze will not form because heating of the land surface is inhibited.
If cloudiness increases sufficiently after onset of a true lake breeze, the lake breeze circulation will be weakened because the land-water temperature difference necessary to sustain it decreases.
Not only does this limit the distance inland which the true lake breeze can move but it also decreases meteorological changes caused by the lake breeze front. Table &3 shows the 149 occurrences of true lakebreezes in terms of those that reached various maximum distances inland. Table 6.3 Number of True Lake Breezes Reaching Maximum Distances Inland 1 km 1-5 km 5-11 km 11-19 km >19 km 1973 4 2 4 3 8 1974 3 3 6 10 13 1975 2 7 7 5 9 1976 3 7 7 12 1977 2 .1 10 5 15 Total 12 16 34 30 57 Of the 149 true lake breezes listed, it can be noted that 57, or nearly one out of three moved at least as far inland as the farthest station, which was P07A at 19 km. In these results, if a lake breeze passed the farthest inland station of the Cook network, which was 12 km, and station P07A in the Palisades network, which was 19 km*, it was assumed that it reached at least 19 km along the coastline in general. 43 44 Vertical structure.
Two sources of information were used to determine how lake breeze frontal passages affect wind and temperature structure in the vertical near the eastern shoreline of Lake Michigan.
One source was the hourly values of data from the Cook meteorological tower. These data were obtained from Meteorological Evaluation Services, Inc. ,Amityville, New York, which has the responsibility for processing and tabulating tower wind and temperature data and for diffusion categories.
Hourly values of temperature differences between 9 meters and 55 meters were analyzed to determine lake breeze effects on thermal stability.
The second source was the measurements of lake breeze structure through and above the layer of onshore wind made by Olsson et.al. (1968) near Grand Haven, Michigan.
Results of the latter study were described in the*fifth annual report. A total of 91 occurrences of true lake breezes for 1975, 1976, and 1977 were analyzed to determine their effects on thermal stability using the Cook meteorological tower data. Because the typical behavior of wind direction near the shoreline on a true lake breeze day is a wind shift from offshore to onshore near 1000 local time and back to offshore near 1900, it was possible*
to obtain information on average temperature differences between 9 and 55 meters (1) prior to lake breeze frontal passage, (2) with its passage, (3) for the duration of the lake breeze and (4) with the return of land air toward the lake in the evening. ** . ) I i ei i I .)
* i . *
* Results of the analysis are shown in Tables 6.4 a_nd 6"5 . Table 6.4 lists the average temperature differences and the number of cases for 45 1) the hour prior to the passage of the lake.breeze front, 2) the period of onshore wind during the lake breeze and 3) the hour after the evening wind shift from onshore to offshore.
It can be noted that in 80 of the 89 cases, the temperature difference for the hour prior to lake breeze passage was substantially negative (lapse) with an average of -1.5 &deg;F, which is equivalent to -1.81 &deg;C/1DO m, or nearly twice the adiabatic lapse rate (neutral stability).
Also, during the period of onshore wind it remained predominantly negative, but one hour after the wind shifted from onshore td offshore, 55 of the 86 cases showed a substantial inversion.
The effects of the passage and retreat of the lake breeze front on the temperature difference are shown in Table 6.5. If a change in the temperature difference is positive, it could have been caused either by an increasing inversion or a decreasing lapse, both of which signify a change toward thermal stability between 55 and 9 meters. Contrarily, a negative change could have been caused either by a decreasing inversion or an increasing lapse and signifies a change toward thermal instability.
It can be noted that with the passage of a lake breeze front the trend is toward thermal stability in 47 cases.
a change would be expected because the colder heavier air which was over the lake displaces the warmer lighter land air, producing a decrease in the temperature lapse which existed for the hour prior to lake breeze passage. It is significant, however, that 42 cases were negative or zero changes. With the retreat of the lake breeze in the evening, a similar but more prevalent change toward stability occurs. This may be explained by the land-air cooling due to radiative losses as 46 Neg. Pas. Z2ro Is; gn I ! Table 6.4 Values of T 55-T 9 for True Lake Breezes T55-T9 ., During I Hour Prior Onshore Winds I Hour After ! i# Cases Ave. &deg;F I# Cases Ave.&deg;F : #Cases Ave. &deg; F (lapse) l i 80 -1.5 80 -1.2 i 21 -1.0 I ! (inversion)
I 5 +2.9 5 +0.8 \ 55 I I I 4 0 I l 0 10 Table 6.5 Change in T 55-T 9 with and Retreat of True Lake Breezes +l.6 0 of Change I \i/ith Passaqe With Retreat I #Cases Ave. OF Cases Ave. OF 7T \Pos. (incr. inversion 41' +0.8 77 +l.3 or deer. lapse) I (deer. inversion 20 -0.9 5 -0.7 ;Neg. 1 or i ner. lapse) !
22 0 4 0 \ --** I i J
* r . I l ** **
the now warmer lake air as the wind shifts from onshore to offshore.
It can be noted that the total humber of cases not always equal 91, the total number of lake breezes. Reasons for this include missing 47 data, the lake breeze did not always reach the meteorological tower, there was not always a well-defined evening wind shift from onshore to offshore and some lake breezes formed in the Palisades network but not in the Cook network. In summary, the results show that 1) for the hour prior to lake breeze passage, there is usually a lapse in temperature which averages about 1. 5&deg; F, 2) as the lake breeze front passes, there is *a trend toward increasing thermal stability, 3) during the daytime period of onshore wind there is usually a temperature lapse which averages abuut l.2&deg;F, 4) as the wind shifts from onshore to offshore in the evening, the temperature difference changes from lapse to inversion and the change averages about 1 .3&deg;F and 5) for the hour after the evening wind shift an inversion averaging about 1.6&deg;F is most common. Usually, the magnitude of the inversion continues to increase after the wind shift occurs .
48 VII. SEASONAL VARIATIONS IN AIR TEMPERATURE:
A COMP ... HSON OF OPERATIONAL AND PREOPERATIONAL DATA Introduction by Michael R. Weber In the Third Annual Report a diffusion model for computing the average annual number of hours of fog that would occur annually if the Palisades coolin9 towers were operated at full design capacity was described and applied. The basis for the diffusion calculations was the standard Gaussian diffusion equations.
Although there are questions concerning the applicability of these equations to modeling the diffusion of water vapor in a cooling tower plume, work by Hanna (1974) and others indicates that they may provide reasonable diffusion estimates.
With this in mind, the model mentioned above was modified to provide estimates of the increases in temperature and relative humidity that would be expected directly beneath the plume at a distance of 1 km, from the towers. One kilometer is the approximate distance of station P03A from the towers.I:1clude9in the modifications were the following simplifying assumptions:
(1) ambient pressure of 1000 mb (2) "very unstable 11 stability class, which gives the highest ground-level concentrations; (3) plume height of 400 m and (4) the combined output of both towers treated as a single point source. The computer program for the model was run for various combinations of temperature, relative humidity and wind speed. The predicted temperature increase for a 2 m/s wind is shown in Table 7.1 as a function of ambient temperature and relative humidity.
The table shows that the lower the ambient temperature, the larger the predicted temperature increase . The effects* of ambient relative humidity on the predicted temperature
*-, I I I ... J * 
*
... HUt1IDITY
: o. 10.00 0.07 20.00 0.87 30.00 0.07 40.0() 0. f.17
* () 0 0. OEI l.iO. 00 o.oo 70.00 O.IW [)(),00 o.oa '}(). ()() O.ElO 100.00 O.B9 .-. Table 7.1 Gaussian Diffusion Estimates of Increase in Temperature
(&deg;F} at l km Due to Cooling Tower Operation Wind Speed.; 2 m/s T E M p F A T u E , F 10. 20. 30. 40.
0.79 0.70 0.1.11 0 ** ,., * ...... 0.41 0.79 0.71 0.62 0.52 0. 0.79 0.71 0.63 0.44 o.oo 0.72 0 **
0.45 o.oo 0.72 0 .. -!>4 0 ,,,....,.
* w .. J 0.46 o.ao 0.73 0. /.14 0. 5{1 0.47 0.81 0.73 (). {1:'.'i o.57 0.40 O.El1 0.73 0.
: 0. 5*7 0.49 0.81 0.74 0.6!.1
().
0.81 0.74 o.t.i7 (). 5'} 0. 60. 70. BO
* 0.31 0.20 0. OB 0. (). 22 () .. 1 :I. (). 34 (). 24 0.14 o.:*u, ()
* l.1 (). t 7 0.37 (). 2f:l 0. :I. 9 (). 39 o. :rn () '"l'"I . **-.* .. 0.40 0.32 (). 0. 41 (),33 o. :n 0. *13 () * :*5 !'.) 0. 2'} 0.44 (). 37 o.:H 50 increase range from negligible at low temperatures to a slight positive change at high temperatures.
The magnitude of the temperature increase predicted for low temperatures is about 0.7 to 0.9&deg;F (0.4 to 0.5&deg;C). Although these are only estimates, it will be shown below that their magni-tudes are very similar to the magnitude of the minimum detectable change in temperature required to be statistically significant.
Evaluation of Temperature Data The use of statistical measures to determine whether there are significant differences between preoperational and operational temperature data for stations near the Palisades plant was discussed in the Fifth Annual Report. Lowry (1977) has shown that such a before/after study is an ideal method for determining the existence of localized effects on climate. The analysis has been recently extended and revised, as discussed below, to include data through November 1976 for both the Cook and Palisades meteorological networks.
Both cooling systems began operation in Spring 1975 and were shut down ' in December 1975 for at least six weeks. The Cook plant resumed operation in late February 1976 and the Palisades plant resumed operation in May 1976. Since the data available for this analysis cover the period February 1973 -November 1976, there are two years of preoperational and two years of operational data for the summer (June, July, August) and autumn (September, October, November) seasons for both plants, as well as the spring (March, April, May) season for the Cook Plant. There are only limited operational data available for the winter (December, January, February) season. Data recorded while a plant was temporarily shut down are included in the preoperational data set. -1 I \ J I --J I i I *-.J I -I I . __ l * 
* '** *
* 51 The basic data u:ed in the following analysis are hourly air temperatures for the network stations.
Details on instrumentation, calibrations, and data processing are given in Ryznar et.&#xa3;.]_., (1976). Method The approach takeri in determining a possible temperature effect due to the cooling systems is to compare the operational and preoperational temperature data for stations near the shoreline.
Since, however, the seasonal average temperature at those stations can vary greatly from year to year due to natural causes, it is necessary to incorporate additional data into the analysis to take into account such natural variability.
The network stations 10-20 km inland, for example, are affected by the same large-scale weather patterns as those near the lake but are far enough away so that the chances that their temperatures are affected by the cooling systems are remote. Data from these inland stations are used as controls, therefore, to accommodate natural temperature variations.
For each hour, the average temperatures for the Cook inland stations (C-10, 11, 12) and for the Palisades inland stations (P-6, 7, 13) were subtracted from the corresponding average temperatures for the shoreline stations in each network (C-1, 3, 4, 5) and (P-1, 2, 3, 8, 10). After stations were grouped and temperature differences (6T) calculated, the data were sorted by wind direction measured at P03A and by the hour of day. The* wind direction (WO) sorting is into two categories:
offshore (45&deg; < 180&deg;) and onshore (225&deg; 360&deg;). Hours with alongshore winds (0&deg; < 45&deg;) and (180&deg; < 225&deg;) were not used in the analysis.
The data were sorted by wind direction because 52 if there is an increase in temperature near the plant, the possibility of detecting it in the station data exists only during periods of onshore winds. In addition, the 6T data for offshore winds provide a which may be compared to the 6T data for onshore winds. The data were finally sorted by hour of day. Plots of the average diurnal variation of the shoreline minus inland 6T for each season and wind direction category were made to be able to compare visually the operational curves with the preoperational curves. If there is a detectable cooling system effect, one would expect the onshore (wind direction) operational 6T curves to be displaced upward (i.e., more positive 6T) from the preoperational curves, with no corresponding displacement of* the offshore operational curves. To evaluate the statistical significance of any observed differences, 11 Student 1 s 11-t test was applied. The test requires that the observations in the data sample be independent and approximately normally distributed.
Hourly observations of most meteorological variables, however, are generally not independent, since the value of a variable for one hour is usually dependent on the value for the previous hour. To avoid the problem of dependence within a sample, the data were sorted by hour of the day so the observations grouped for any particular hour were separated by at least 24 hours (and often longer, due to the wind direction restriction).
The t-test was then applied for each hour of the day. Although the results for any particular hour are closely related to the results for the hours immediately preceding and following it, significant results are separable from the natural diurnal variability in the temperature field. .. i I \ I I
* J Cl ' e! .l ** 
* ' / *.,' \ .
* Discussion The method described above was used to analyze temperature data for March 1973 -November 1976. Results for spring are shown in Fig. 7.1 53 In this and the following figures, dashed lines and open circles represent preoperational data. Vertical lines show the 99% confidence interval given by the t-distribution.
Operational data are plotted as solid circles and solid lines. The numbers shown at the points plotted at 0600, 1200, 1800, and 2400 EST are the number of observations in each of those data points. In Fig. 7.1, the moderating effect of the lake on shoreline temperatures is clearly seen in the Cook curves for onshore winds. Inland temperatures are higher during the day and lower at night than those near the shore. With offshore winds, on the other hand, there is little diurnal variation.
It is also apparent that there is little difference between operational and preoperational data for offshore winds, while for onshore winds, the operationa 1 curve is consistently lower than the preoperational curve. The operational data, in fact,
* fa 11 outside the 99% confidence limits (+0.5 &deg;C) throughout the a f te rno_on. Similar characteristics are also apparent in the Palisades curves for the spring season. There are, however, some differences.
The most evident of these is that the operational curve for offshore winds is at or near the confidence limit for preoperational data for most of the day. Since, with offshore winds; there is no meteorological reason for differences in between the two data periods, it is assumed that the difference observed is an indication of a systematic difference between the data sets. It could for example, be caused by one or more of the instruments responding nonlinearly between semi-annual calibrations.
54 1 (.) 0 w (.) z-1 II.I a: II.I u. LI. -Q 1 II.I a: :::> ... < a: 0 !..I a. LLI t--2 onshore *offshore coast warmer r1t Palisades 48 inland warmer 00 04 08 12 16 20 2400 04 08 12 ' 16 20 24 HOUR, EST Fig. 7.1 Diurnal variation of the difference in temperature between coastal and inland stations at both Cook and Palisades, with onshore and offshore winds, for the spring season. Vertical lines show 99% confidence interval on preoperational data. Number of observations shown every six hours. " 1, j ; \ '., j -I *,,_) *? : J -} I _I I __ J 55 For purposes *of this analysis, it is assumed that both the offshore and
* onshore operational curves may be displaced toward the correspondi-ng pre-\ . * ** operational curves by an amount that would make the two offshore curves have the same daily mean value. This moves the Palisades operational curves of Fig.7.1 up by 0.4&deg;C for all hours. Such an adjustment makes the operational/preoperational comparison for Palisades very similar to that for the Cook network. The sign of the observed differences between preoperational and operational data in the onshore curves of Fig. 7.1 is opposite to that expected if there were a cooling system effect. The differences appear to be caused by natural differences in cloudiness between the preoperational and operational years. For example, average daytime cloudiness at Muskegon, the nearest tative first-order weather station ('Vl00 km north of Palisades), was 9% higher in spring of 1973 and 1974 than in the two operational years. The effects of these differences are apparent in the Muskegon temperature data. In the preoperational
: period, mean temperatures averaged 0.3&deg;C above normal, but the 1600 EST temperatures averaged 1 .0&deg;C below normal. In the operational period, daily means were O.l&deg;C above normal, while 1600 EST temperatures averaged exactly normal. It is likely that the larger number of cloudy days during the two preoperational springs resulted in weaker average shoreline/inland temperature gradients and the flatter daytime curve. So even though natura1 variability was taken into account, significant differences between operational and preoperational data still occurred.
There is no doubt that a larger preoperational data base would have tended to average the effects of these anomalies .
56 Diurnal plots of .6.T for the summer season are shown in Fig.7.2. Immediately apparent is the fact that the operational data fall within the confidence limits on all of the graphs. As in spring, the Cook offshore curves show little diurnal variation.
An effect of the lake being warmer than in spring is seen in the more positive nighttime onshore .6.T's. During daytime, the higher lake temperatures are apparently offset by increased temperatures inland, so that the .6.T is about the same as that for spring. The Palisades offshore curves exhibit an unexpected diurnal variation which is, in fact, just the opposite of the onshore variation.
The portions of the curves between 1000 and 1900 EST are similar to their Cook counter-parts, but the surprising result is the negative .6.T at night. It is believed that this is due to station locations, since, of the five Palisades shoreline stations, four are located in low-lying terrain. Station 1 is located in a depression among sand dunes, and stations 3, 8, and 10 are all located in a large low-lying area which rises gradually to the east and is bounded sharply on the west by sand dunes. The terrain farther inland, on the other hand, is higher and more rolling. It is likely that temperatures of the shoreline stations are affected .' '\ i . I { r ,_I . I I /1 .I I ! *: ' . ,, to a greater degree by local air drainage processes by \<Jhich, in the absence of otht forces, cool air tends to settle into low-lying areas at night. This process has been observed to cause large differences in temperature over short distances and could reasonably account for not only the offshore negative .6.T's observed at night, but also the less positive (compared to Cook) onshore nighttime
.6.T's. An additional characteristic of station locations which may be responsible for differences between the daytime portions of the Cook and Palisades onshore .6.T curves is the distance of each set of shoreline stations from I *. J * 
\. r*'., ' ' 0 0 0 !!! 0 i. --z w -1 a:: Ii.I : u. -c ** Ii.I r:c ::> I r:c &LI a. :E Ii.I t-1 -1 .. /
* onshore 0. 04 08 12 16 coasiarmer Cook coast warmer +-Palisades offshore 08 12 16 20 24 7.2 As in Fig. 7.1, for the summer season . 57 58 Lake Michigan.
Three of the four Cook shoreline stations are within 0.5 km of the shoreline, while three of the five Palisades stations are more than 1.5 km inland. Since the Palisades shoreline stations are more spread out, shoreline-inland temperature gradients are less well-defined, and the daytime portions of the curves are flatter. Autumn curves are shown in Fig.7.3. The Cook onshore operational curve, which is at or near the preoperational confidence limit, is the type of result expected if, indeed, the cooling system did raise shoreline temperatures.
Since, the offshore operational curve shows a similar shift, the effect appears to be systematic.
A downward shift of the 0.4&deg;C by which the offshore curves differ brings the onshore operational curve well within the confidence limits. The effect of the relatively warm lake is then seen, for both Cook and Palisades, in the fact that shoreline temperatures are higher than inland temperatures throughout almost the entire day. Since there are very few operational data available for winter at this time, the curves have not been included.
Conclusions Based on the data available and analyses made at this time, there is no detectable average increase in temperature at stations near either the Donald C. Cook or Palisades Nuclear Plants due to operation of their respective cooling systems. The magnitude of a statistically significant difference between operational and preoperational temperatures varies only slightly with season, but more strongly with time of day. At the 1% level, e: l I ' I .-1 . i I * . . I i ./ .-*' __ J . I . J ! . 1 * 
** .. , * ** LLi' 0 0 2 w a: LU I.I.. u. Q LLI a: a: LU a. LU t-onshore offshore coast warmer -!-Cook coast warmer Pantades inland warmer 00 04 08 12 16 20 2400 04 08 12 16 20 24 HOUR, EST Fig. 7.3 As in Fig. 7.1, for the autumn season . 59 60 such a difference is about 0.5&deg;C in the daytime, and between 1 .0 and l.5&deg;C at night. As described above calculations with the Gaussian diffusion equations show that it is reasonable to be searching for a temperature change of that magnitude, especially in the winter season. When sufficient wintertime meteorological measurements have been obtained with the cooling . towers operating, such an analysis will be performed.
'-f: \ } .** J ( -I ** ,I , \ _J ! *
* I I ( t *' -<--I ,**-' \ .
* I I \ I . ---* VIII. SEASONAL VARIATIONS IN RELATIVE HUMIDITY AND DEW POINT: A COMPARISON OF OPERATIONAL AND PREOPERATIONAL DATA by Michael R. Weber Introduction A statistical analysis of differences in air temperature between the preoperational and operational data periods at stations near both the Donald C. Cook and Palisades Nuclear Plants was described in the previous section. The discussion below extends the analysis to include the moisture variables relative humidity and dew point. Relative humidity and temperature are measured directly at each of the network stations, while dew point is derived from the concurrent values of temperature and relative humidity . The method used in this analysis ts identical to that described above except that 1) humidity data begin in January 1974, whereas temperature data begin in February 1973, and 2) the wind direction criteria for determining onshore and offshore winds have been changed to offshore (55&deg; _:::.WO < 170&deg;) and onshore (235&deg; _:::.WO< 350&deg;). The first of these differences was necessitated by the lack of reliable calibrations of the humidity sensors in 1973. It resu'lts in less preoperational data being included in the humidity analysis than in the temperature analysis.
The second change was made to be consistent with other analyses in this report. It results in somewhat fewer cases being included in each '.'!ind direction category in the humidity analysis than in the temperature analysis.
61 62 Discussion The diurnal variation of the difference in relative humidity (6RH) between coastal and inland stations at both Cook and Palisades, with onshore and offshore winds, is shown in Fig. 8.1 for the spring season. The corresponding dew point difference (6DP) graphs are shown I in Fig. 8.2. The Cook 6RH curves for onshore winds show a distinct diurnal cycle, which is exactly opposite to the diurnal 6T cycle shown in the previous section. At night, when it is warmer near the coast than it is inland, the relative humidity is lower near the coast. The daytime relative humidity, on the other hand, is higher near the coast because the temperature is lower than it is* inland. The combina-tion of these effects is shown in the 6DP curves. It can be noted that the diurnal cycle of 6DP is small, implying thqt there is little diurnal change in the coastal/inland absolute moisture gradient in
* spring. The Cook onshore 6DP curves also show little difference between operational and preoperational data. Therefore, the apparently ficant differences in daytime 6RH between the two periods are directly related to the significant 6T differences discussed previously.
Those differences were attributed to naturally-occurring differences in cloudiness between the preoperational and operational periods. The Palisades 6RH curves for onshore winds show a diurnal cycle similar to that for Cook. However, the difference between the daytime operational and preoperational curves is not as large. This j' *--1 I I 'l I I '_ .i I I . . , ) *
* I ', ,i \ , .........
{r , l ' ., /
* ONSHORE OFFSHORE . 12 16 24 0 12 16 24 'o a 12 1a 20 2* 'o-1-----+----+----+12
__ ___,1a>----20+-----l24 HOUR. EST HOUR, EST' Fig. 8.1 Diurnal variation of the difference in relative humidity between coastal and inland stations at both Cook and Palisades, with onshore and offshore winds, for the spring season. Shaded area shows 99% confidence interval on preoperational data. Positive differences indicate relative humidity . higher at coast than inland. Number of observations shown every six hours. 63 64 q N s u w u z LJJ a::o LL H 0 f-ZLO H* 00 c... I ::x LJJ 0 3 I "! I q N 10 Q N "'! u ONSHORE OFFSHORE q N q I *99 "! I q N 12 16 20 24 10 8 12 16 20 C/ N +99 Fig. 8.2 Diurnal variation of the difference in dew point between coastal and inland stations at both Cook and Palisades, with onshore and offshore winds, for the spring season. Shaded area shows 99% confidence interval on preoperational data. Positive differences indicate dew point higher at coast than inland. Number of observations shown every six hours. 24 ,_. I i . I ei '1 \_., I >\. .. ( .-, '/ I I \ ( .. _; .. I I *: i . _\ I ! . / ' \ _) ** 
' *. r /' I, i . / . *:* \ . i ! I \ \ .... ,. 65 feature, combined with the larger difference in daytime 6T at Palisades, contributes to 6DP curves which show significant differences throughout the afternoon.
A major portion of these differences, however, is due to systematically higher dew points inland. This is also apparent in the displacement of the offshore 6DP curves from one another; It is probably due to the systematic error in the temperature data discussed previously.
A feature of the operational Palisades 6RH curve for offshore winds which also is evident in the corresponding 6DP curve is the higher inland relative humidity from 0600-1200.
There is no apparent meteorological explanation for this behavior.
It may result from the small size of the operational data set, and the fact that due to the operating schedule of the Palisades plant, most of the springtime operational data come from late in the season . The suinmer 6RH and 6DP curves are shown in Figs. 8.3 and 8.4, respectively.
In all of the took graphs, there is little difference between operational and preoperational data for either onshore or offshore winds. As in spring, the diurnal cycle of 6RH with onshore winds is the inverse of the 6T cycle. There is also a diurnal cycle of which indicates that the absolute amount of moisture in the air increases at the shoreline to inland afternoon.
This may be partly due to those lake breezes which pass the coastal stations but do not penetrate as far as the inland stations.
In such situations the coastal stations will be in the cooler and more moist lake air while the inland stations will be in warmer and drier land air. Sudden increases in dew point temperature associated with passage of lake breezes have been observed near Grand Haven, Michigan, by Ollson, et al. (1968).
REL HUMIDITY DIFFERENCE, PER CENT -12.00 -s.oo -e.oo -aoo D.lMI ,., --'* lO OJ ::r: 0 c: w :Oi3 rn Ul )::> -t Vl --'* a; ::l ,., --'* lO OJ 0-IB.llll -15.00 -12.00 -S.00 -ti 0 -s rt ::T" ro Vl c 3 3 ro -s ::r: 0 c: Vl ::o-ro
* N PJ rn Ul Vl -t 0 ::l Cii REL HUMIDITY DIFFERENCE, PER CENT -12.llO -alllJ -e.ao -aoo a.oo 3.00 11.00 9.00 i3 Cii 'Cii *
--CJ'\ CJ'\ 0 :z (f) I 0 :JJ m 0 .,, .,, (f) I 0 :JJ m l ONSHORE OFFSHORE 67 0 N 0*1 * .. ..,,, . +99 ) ?\ ,,, \I :::: j 3 :!\. 3 1 t I I I u (!)LI') UJ * >" cio \' ::: lo:'<. ,c ::::::. w u ;'.::;: :::: z UJ f:i]Q .. *.:** :.:::':' *1 Tur u.O ::;:; '"' u. H a I-;:;:;:
V* :::! LI') oO . :;:: :*:*: d c.. I I I I ? ii!! 7 \ UJ Cl 'I q q .* I *:l J I -99 '..'} . '..'} I q q N 1.0 4 8 12 16 2ll N 24 IQ 4 8 12 16 20 24 \. q N +99 :'1 3 I u LI') d 0 d LI') d I UJ Cl q I "'! "'? I -99 I ** q 0 N N IO 8 12 16 20 24 ID 4 8 12 16 24. HOUR, EST HOUR, EST Fig. 8.4 As in Fig. 8. 2' for the summer season.
68 The Palisades summer 6RH curves for both onshore and offshore winds have diurnal cycles which are inverses of the corresponding 6T curves. Although the onshore and offshore opera.tiona..1-*
6RH curves generally fall within the 99% confidence limits, they both have an average relative humidity which is about 0.8% higher inland than that for the corresponding preoperational curves. This systematic shift is also seen in the 6DP curves, where both operational curves are at or near their respective limits for most of the day. Since both onshore and offshore operational 6DP curves differ by about 0.5&deg;C from the respective preoperational curves, no meteorological signifi-cance is attached.
The autumn 6RH and 6DP curves are shown in Figs. 8.5 and 8.6, respectively.
The diurnal cycle of RH for onshore winds is pronounced again in this season. With* the lake keeping the coastal stations generally warmer than the inland stations in autumR.,..the curves are shifted towards higher inland RH compared to the other seasons. For both Cook and Palisades there is little or no difference between the operational and preoperational 6RH data for either onshore or offshore winds. Coupled with a corresponding similarity of 6T data, the Palisades 6DP data show no significant differences for onshore winds. The differences shown for Cook onshore 6DP, on the other hand, are apparently related to the systematic difference in 6T between the operational and preoperational data sets discussed previously.
Due to the lack of sufficient operational wintertime data, no comparisons have yet been made for that season. I . .f -, ' _). *' ,-I i -.I ' . __ ! * *** 
 
0 d ; _, 2 I ::i: UJ CJ o. Q T T "' If"? T T __ '/ 0. Q N N . 'o 8 12 16 20 24 'o 12 16 HOUR. EST HOUR, EST 24 Fig. 8.6 As in Fig. 8.2, for the autumn season. ** 
:* I -J * ' l -71 Conclusions Based on the data available and analyses made at this time, there have been no detectable average increases in temperature, relative humidity, or de*tJ point at stations near either the Donald C. Cook or Palisades Nuclear Plants caused by operation of their respective cooling systems. The magnitudes of statistically significant increases in temperature, relative humidity and dew point are given by season and time of day for Cook and Palisades in Tables 8.1 and 8.2, respectively.
It can be seen from these data that there is more consistency in the . daytime values of these variables.
than in the nighttime values. Thus an temperature increase of a.S&deg;C, an average relative humidity increase of or an average dew point increase of a.7&deg;C at the stations near either plant should be detectable during periods of onshore winds in these seasons by this method . As indicated in the previous section, a temperature increase of a.S&deg;C is the same order of magnitude as that predicted by the Gaussian.
diffusion equations.
The increase in relative humidity dicted by them is shown in Table 8.3 as a function of ambient temperature and relative humidity.
Except at very low temperatures, there is little dependence on ambient relative humidity.
As with temperature, however, the largest predicted increases in relative humidity are at low temperatures.
It thus appears that winter is the most likely season to detect either a temperature or a moisture effect by this statistical approach.
It is also evident that the magnitude of 
----72 ( Table 8.1 Average magnitude of a statistically 5ignificant .I (99% confidence level) increase in temperature, relative humidity and dew point near the Donald C. Cook Nuclear Plant. ,*-*1 Spring I. t:iT(&deg;C) t:iRH(%) 6DP(&deg;C) -i, J Day 0.5 2.8 0.7 Night 0.7 3.7 0.7 Summer --( ' Day 0.4 2.9 0.7 Night 1.1 5.9 1.0 -1 Autumn ---\ Day 0.4 3. 1 0.6 Night 0.9 6. 1 0.9 Table 8.2 Average magnitude of a statistically significant e; (99% confidence level) increase in temperature, relative humidity and dew point near the Palisades Nuclear Plant ) Spring __ ! Day 0.5 2.8 0.7 \ Night 1.1 6.9 1. 1 Summer i Day 0.4 2.2 0.6 I Night 1.3 7.0 1. 2 j Autumn Day 0.4 2.7 0.5 I Night 1. 0 6.7 0.8 I! __ / 
* * ,* --
' ' Table 8.3 Gaussian Diffusion Estimates of Increase in Realtive Humidity (%) at l km Due to Cooling Tower Operation Wind Speed = 2 m/s llUMIDITY T .. r M p E" . A T u . E v r-.. () . 1 (). 20. 30. 40. . l.1 () * /0. DO. l0.00 ll.1. 07 11.69 B.63 l.1.44 4. fl/ 3,73 2.90 2.30 l
* flf.1 20.00 1 77 11.45 U.43 6.30 4.77 3 ** 2. f:l9 2.33 :L. 92 30. ()()
11.20 f:l. 24 6
* 1 4.6? 3 ** 2.BB 2.
:I.. 9/ 40.00 J.().95 El. 04 6. ()() 4. ::'i6 3.
2.Bf:i *
:I.. 99 :=rn. oo :l.4.E1c1 10.70 7. 1:14 5.04 4.44 3.47 2. f:I 1 2.34 2. ():I. f.10.00 14.55 10.45 7 * .!1:3 f.'i. 6f:l 4.
3,39 2. lt.1 2. 3:1.
* 70.00 14.24 10.1 1 7 7.42 *
:L 4 .19 3.30 2. 70 2.20 no.oo .t 93 9.93 7. 21.
34 *1 * (),11 t
2 t
:*5 2. 00 lj> 0
* 0 () :to.oo* 'J. 67 /. ()()
:I. *7 3.92 3. :t:L 2. !:5!:_:j 2. :I. 'I l. "i7 *saturated a statistically significant increase in relative humidity detectable by this method is consistent with that predicted by the diffusion model. 74 J *\ j 
;. I ' I I \ _, I I '-*. \ .... I * . . ! i \ . Introduction IX* PRECIPHATION IN 1976 COMPARED WiTH CLIMATOLOGICAL NORMALS by Dennis F. Kahlbaum A concern in the operation of the large number of mechanical-draft cooling towers at Palisades is that the addition of 1 arge amounts of heat 75 and moisture into the atmosphere by them may increase cloudiness and precipitatior
.. As Carson (1976) points out in his review of recent findings, both natural -and mechanical-draft cooling towe.rs may cause such effects, but they are difficult to separate from natural variabilities.
The cooling towers, because.of their location near Lake Michigan, are in a region where natural precipitation patterns and types are significantly affected by the ** lake itself,. particularly in late autumn and winter. A large natural variability in cloudiness and precipitation is the result . ' '* .
* To obtatn information on precipitation patterns and their natural. variability in the Palisades area, long-term precipitation data from representative i 1 lational Weather Service stations and* data from the .Pali sades network were analyzed both by season and by year. The analyses for 1976 discussed below supplement those fon 1973, 1974, and 1975 discussed in previous annual Fig. 9. 1 shows the 1 ocati ans of the network stations (numbered 1 through 13) and climatological stations used in the analysis.
Shown beside each climatological station is the span of years for which it has precipitation data. It can be noted that record 1 engths range from 14 years for Watervliet and Grand Junction to thirty years for most other stations.
Those stations 11Jith record 1 engths exceeding 30 yeq.rs have s ubstanti a 1 di sconti nui ti es in but data from these stations are considered sufficiently accurate for qualitative Fig. 9. 1 * .1924-1975 COLOMA  01962-1975 WATERVltfT
@ &#xa9; GRANO JUNCTION C!J 01924-1975 llANGOR 01946-1975 BlOOMlNGOAlE 01946-1975 AllEGAH 0 01946-1975 l'AW PAW PAW PAW IN'WS) (AG/2EJ Network artd cltmatolb9ital
*stations used in precipitation analysis.
76 * '----
: __ ..J '
--.-...)
* i ' \ .. .. ( . **
* 77 comparisons with network data for 1975 and l976 . Seasonal and Annual Distributions Winter. Precipitation for the winter of is shown at the bottom of Fig. 9.2. Generally, it in.creased from the shoreline inland. In addition, large variability is evident. For *example, there is about one inch more cipitation at stations #.1 and #2 than the average of stations #3, #10 and #4 even though they are separated by short distances.
A comparison of the distribution of precipitation for the winter 1975-76 \vith that based on climatology, which is shown at the top of Fig. 9.2, reveals good agreement.
Both show an increase from the shoreline inland and a comparable degree of spatial variability along the shoreline.
However, the actual amounts of precipitation are quite different, as expected, because the 1975-76 winter had a much above normal amount of precipitation as discussed below. Spring. The precipitation pattern for the spring of 1976 is shown in Fig. 9.3 It is primarily the result of several thunderstorms which passed over the area. According to cooperative observers at several stations in the region, 14 thunderstorm days occurred during this season. Of these storms, 6 produced rainfall amounts in excess of 1.0 11* One storm, on May 20th, also produced hail . Due to these storms, neither the distribution nor the quantity of cipitation agrees with climatography.
Whereas climatography shows an increase from the* coastline inland, the 1976 spring pattern decreases from the shore-line inland. In addition, the region in general received a much above normal amount of precipitation.
Summer. The convective activity which occurred during the spring season carried over into s urrmer. According to cooperative observers, 15 thunderstorm*:
days occurred during season. Of these storms, 4 produced precipitation amounts in excess of 1.0 11* A storm on July 26th caused over 2.5 11 of rain in 78 Fig. 9.2 e_.s 08.25 W4TU't'l.ltT ... 01.87 8.0 I ..
"&deg;&deg;"""""" ....... 8.5 9.0 Oa.99 7.0
/"' v 8.5 o.o Isohyets for winter 1975-76 and a climatological winter. . -, i *-.l .** *) ) "\ I J I ) ** 
* '.*o; .*, '' ,. ! -* L, *
.. '. ;> ,. ' '': SPRiNG .*' .. @ Jo 9.05:.71 (2) 00*) """&deg;' 14.0 9.90:!;50 10.0 013.87 '"*-... 10.0 --------13,5 013-27 12.92 o o*
13.0 Fig. 9.3 As in Fig. 9.2, for the spring season . 79 i I 80 one hour at station #7. The effects of this activity are evident in the pattern shown in Fig. 9.4. The maximum precipitation area around #13 is noteworthy.
A review of the rainfall records indicates that this maximum was not the re---i I -1 sult of just one storm, but of 3 very local storms. On June 12th, for example, 1 this station received 1.30 11 of rain while station #12, about 2.9 miles away, received only 0.21 11
* Another interesting feature of the distribution is the rapid decrease of precipitation toward the north. Cooperative observer records indicate that relatively little. convective activity occurred over that portion of the region. As a result of this irregular degree of convective activity, the tation pattern for the summer of 1976 bears little resemblance to climaiJO:graphy.
In addition, due to the spatial variability produced by the storms, some areas received much above normal rainfall, while other *areas received below normal amounts, a type of pattern which is typical of summer precipitation.
Autumn. The thunderstorm activity present during the spring and surrimer seasons subsided rapidly during the pa.rt of autumn. In all, only two thunderstorm days were reported.
Nonetheless, their effects are readily apparent in the pattern shown in Fig. 9.5. The maximum precipitation area around Bloomingdale was caused bya*stonn on September 9th which produced nearly 1.5 11 of rain. Aside from the Bloomingdale area, the region recieved uniform precipitation.
Such uniformity-is also evident in the climatography.
However, it can be noted that the amounts of precipitation during season are significantly less than climatography.
-I I 
' .* ',' *'t' Ml\.f$,. ' .. ... ; o llMlONM.UIOI I. ** Fig. 9.4
* 9.66=68 Q (14) I WAHM.llT @ .0 10.16:..61 9.99:.67 0 10.0 ... *.. .. 10.D '\
As in Fig. 9.2, for the summer season. 81 82 9.0 2 b Fig. 9.5 As U.5r.62 0 (30) COLOM.A 0 0 (14) WATHVU!T ... / 0 @ 10.0 OM """"""""""
0 *)(1B) """"' 9.5 9.5 9.0 0 (30) ""&deg;"'.._..
a.s a45:!;.53
\ 0 (30) ........ ,s>,!!.
-"""" 9.0
.... 06.94 """'" .... fj 60
* 3(1)61}4
@0.0 7 05.02"\ &#xa3; 06.60 WAT(Ml!T 3 in Fig. 05.77 9.2, ... 6.0 06.00 o::.w . .. for the autumn season. -;! ! .l *--, t l -1 ! *.-i -, I I /, _l ") I el I __l \ __\ I ;. i .! **
83 Annual. The precipitation distribution for the year 1976 is shown in Fig. g_,6:. Interestingly, even though the year had 31 thunderstorm days, the general pattern is similar to climatography not only in distribution but !.__ also in the quantity of precipitation.
Both show an increase from the coastline to near the Bloomingdale/Bangor region, then a gradual decrease further inland. , In addition, mast stations had precipitation amounts nearly equaling their tological counterparts.
Hm1'ever, due the convective activity, large spatial variations are still evident. The 3.14 11 less precipitation at station #3 than c ( '** at station #2, even though they are separated by only 1.4 km, is notable. Departures from Normal Table 9.1 summarizes the seasonal and annual totals for the Palisades network area for 1976. The totals for the Palisades network were obtained by averaging the seasonal totals for each station. The totals for South j. Haven, the nearest representative NWS cooperative station, .are taken from Climatological Data (U.S. Environmental Data Service, 1976). Climatologically, according to data from South Haven.winter is the driest season and summer is the wettes:t.
In the period from December 1975, through November 1976, however, spring was the wettest season and autumn was the driest for both South Haven and the Palisades network. Since only a limited number of seasons of data can be obtained from the network, it is important to know how representative the seasons of operation are of average long-term conditions.
The probability of occurrence method *used by Baker and Ryznar (1974), was used here to determine the significance of 1976 departures from normal. The departure classes into which the seasonal and annual totals fell are given in Table 9.1 . All in all, 1976 received near normal precipitation.
The much above normal amounts of precipitation
* in winter and spring were balanced by the below normal amounts in summer and autumn. A preliminary assessment of some differences among stations in terms of possible cooling tower effects is given in the next section.
84 < .* '* Fig. 9.6 As in Fig. 9.2, 3 7.:za:.us 0 c 37 3l 035.46 """"'"""" for th e calendar year. 034.17 """"' I ... \ 37 -, .\ I _l J I ..I l .J i' _) *
* Palisades Season Winter 1975-76 Spring 1976 Summer. 1976 Autumn 1976 Annual 1976 / *----....
* TABLE 9.1 Total Precipitation and Departure from Normal for the Palisades Network and South Haven Network South Average Total Climatolorical for Network 1976 Norma {inches) (inches} {inches) 7 .18 8.26 6.48 13.93 12.78 8.85 9.75 7.75 9.65 6.38 6.24 8.74 35.55 32.75 33.82 Haven Departure
+l.78 +3.93 -1.90 -2.50
-1.07 Depai:-ture Class Much Above Much Above Below Below Normal 00 01 86 x. A PRELIMINARY ANALY.SIS OF OPERATIONAL ANO NON-OPERATIONAL PRECIPITATION DATA THROUGH 1976 by Dennis F. Kahlbaum Introduction Of the possible meteorological effects due to the mechanical draft cooling towers at the Palisades.Plant, a modification
*of the precipitation is, perhaps, the most difficult to detect because of the already high natural variability of precipitation.
Such natural variability was discussed in the pre.vious tion. Detection of any modification is further hampered by the fact that, like other meteorological variables, precipitation is not normally distributed.
According to Huff (1971) and Brooks and Carruthers (1953), the lower boundary ] of zero gives it an approximate log-norma 1 or a gamma di stri buti on. Thus, be-. --] cause of this non-normality, classical statistical methods which assume nor-ma 1 ity (such as the "Student 1 s 11 t-te.st) cannot be used on preci pi tati on. N ous techniques have been applied in order to normalize precipitation data, but all have failed, (see Hess, 1974 for a listing).
Therefore, a statistical test which is independent of the sample distribution is required.
The Wilcoxin-_{ Mann-Whitney statistical test was chosen here because it: 1) is independent of the sample distribution
__ J 2) can be used on samples of unequal sizes \ i .* J 3) abstractly uses magnitude by its utilization of ranks 4) is as. powerful as the t-test when dealing with non-normal distributions
_J (Lehmann, 1975). Other researchers are currently employing the Wilcoxin-Mann-Whitney statistic in precipitation modification experiments (Patrinious, 1978 and Vogel, 1978, sonal communications).
In this study, daily precipitation data from the period October, 1972 through November, 1976 inclusive for both the Palisades Network and surrounding National 
! ( r '*.-r I t [ . I . 87 Weather Service Stations were used.
* To obtain the Wilcoxin-Mann-Whitney statistic from this data set, the following steps were applied to each station individually in order to eliminate any raingage exposure effects: 1) All days with zero precipitation are ignored.(This removes the obvious bias of no effect, since precipitation must be available in order to be modified.)
: 2) The precipitation days are grouped by season. 3) The precipitation days are* either coded 11 operational 11 or 11 non-operational 11 depending on the plant 1 s status. 4) The precipitation days are then ranked in order of increasing amount without regard to plant status. 5) The ranked data are then separated according to the operational status of the plant. 6) *The number of observations in each group is counted and the ranks summed. 7) The Wilcoxin-Mann-Whitney statistic is then computed from the following formula: WMWS= N N + Nl(Nl+l) 1 2 2 -I Rl where: WMWS is the Wilcoxin-Mann-Whitney statistic N 1 is the size of sample 1 N 2 is the size of sample 2 E R 1 is the summation of the ranks pertaining to sample 1 Packard, 1975). 8) A significance is then determined from this statistic and compared to a predetermined confidence level after which a decision is made. The null hypothesis tested by the Wilcoxin-Mann-Whitney statistic is: Ho: The mean daily operational precipitation equals the mean daily non-operational precipitation. (EG. Ho: U 1=U 2) 88 This hypothesis can be rejected if either of the following conditions occurs: WMWS (Sample) > WMWS (1-a/2) or WMWS (Sample) < WMWS (a/2) Recent research has shown that this classical use of the statistic is not always required to determine a modification.
Instead, the relative magnitude of the significance level can be interpreted as an indicator of a possible difference (Lindmann, 1974). Both of these interpretations will be employed in the following discussion.
To aid in showing the results, the significance level a is given as a age. This percentage refers to the probability of rejecting the null hypo the-sis. Moreover, a difference is considered significant whenever this probability is 90% or greater. Discussion Winter. The fQr the winter season are shown in Fig. 10:1. They display an increase in the rejection probability toward South Haven. However, the 84% level at that site is too low to cause rejection of the null hypothesis.
Thus, at this time, no significant differences can be found between operational and non-operational precipitation for this season. However, this conclusion is based on only 14 operational precipitation days,,which are considered too few to enable a valid conclusion to be drawn. Spring. The probability pattern for the spring season is quite variable as shown in Fig. 10.2. Significant differences in daily precipitation can be found at South Haven and Bloomingdale.
Elsewhere, low probability levels prevail, especially at station PlOA. The high values at South Haven and Bloomingdale correspond to differences of 0.23 and 0.36 inch per. precipitation day, respectively.
Such large increases for the operational period are probably the result of the very heavy thunderstorms which occurred during 1975. e: I J ' ) _( ) _j i \ ) J. *: 
* '* 40 0 WATERVLIET 0 316 311 315 0 0 * @45 046 40 0 0 PAW PAW PAW PAW (NWS) (AG/lE) 10.l Percent probability that winter mean daily precipitation differs between non-operational and operational periods. 
,_.
----------
&#xa3; 060 BENTON HARBOR 315 0 0 GRAND JUNCTION G99 BLOOMINGDALE Fig. 10.2 As in Fig. 10.l, for the spring season. \ ___ _ ' . '--*-l--'
*, __ ) { _____ .J l.-' 082 ALLEGAN 0 0 PAW PAW PAW PAW (NWS) . (AG/2E) 90 J ,-' ,___ ___ ) ** ---__ ) ID 0 
} ' -'.* \ I . '-c---) ( c. ) '-,. -91 Summer. The statistics obtained for the summer months reveal a highly ordered pattern.as shown in Fig.10.3.The highest probabilities for rejecting the hypothesis of equal means are in an arc surrounding the Palisades Plant. The magnitudes of these probabilities
(>95%), as well as the fact that the differences are positive, indicate that the precipitation in the operational period is approximately 0.16-:inches per precipitation day more than in the operational period. Although it indicates a significant change, the Mann-Whitney statistic does not provide the reason for this increase.
One possible explaination is that the injection of heat and moisture from the cooling towers is enhancing precipitation downwind, but natural causes could ) be responsible.
A better understanding of the reasons for the increase will result from an analysis of the 1977 summer precipitation characteristics.
Autumn. The pattern obtained for this season is extremely variable as shown in Fig.10.4.As found in the winter season, the magnitude of the probabilities is too low to cause rejection of the null hypotheses.
Thus statistically, no significant differences can be found for this season. Conclusions The Wilcoxi n-Mann-Whi tney statistic has been applied to daily preci pi tat ion data from both network and National Weather Service stations in an attempt to determine if any significant differences occur between operational and non-operational periods. For the winter, spring and autumn seasons, some stations indicated differences, but no consistent pattern was discernible.
However, *-during the summer season, significant differences occurred in an orderly l.__. ** pattern around the Palisades Plant. At this time, it is uncertain if the heat and moisture emitted by the cooling towers is the cause of the observed increase.
Analysis of additional operational data will aid in -determing the cause .
30 BENTON HARBOR ----40" 30 311 0 315 0 Fig. 10.3 As in Fig. 10.1, for the summer season . ** \ ___ _ '--* * ' ..._ ___ ) ) 026 Allro>.N ** _) . -l..O N
* 0 312 0 WATERVLIET 0 316 311 315 0 0 Fig. 10.4 As in Fig. 10.l, for the autumn season.
0 b PAW PAW PAW PAW INWS) (AG/2E)
* u:> w r--94 XI. DIURNAL VARIABILITY OF PRECIPITATION by Dennis G. Baker The study of climatological and statistical characteristics of precipitation discussed in the preceding sections has been extended to include a study of the diurnal variability of precipitation.
It is similar to that reported in Baker & Ryznar (1976), which determined the diurnal precipitation variations at Coloma, Berrien Springs, and Muskegon ten years of hourly precipitation reports. A harmonic analysis of these data revealed that for all three stations and all seasons, except summer, a 24-hour period predominated with maximum accumulation around 0300 EST. No predominant period was evident in summer. In addition, in summer the patterns for Coloma and Berrien Springs were alike, but Muskegon departed significantly, especially in the afternoon.
However, since Muskegon is quite far north of the works, the Muskegon results may not be valid for the Cook or Palisades areas. Also in this previous study, one year of network data was examined but found to be insufficient to determine any diurnal periodicity.
This section updates the previous study by -examining the four years of network data now available.
The four-year data period extends from December 1972 through November 1976 using amounts of precipitation for hourly intervals categorized by season. If data are missing at a particular station, data from the nearest station with good data are used. Since very little I precipitation data are missing, this procedure is probably justified.
The data for all stations in each network are averaged to obtain a network .i __ ; I J 
\ . 1* L. 1.. .. -l I l .. I \. average. The individual station results were also examined for changes in the diurnal variations from the coast inland, but no such variations were found. A three-point smoother was applied to the data to reduce the high frequency variability of the results. For each season the total precipitation amount for each hour of the day was calculated.
Also calculated was the total precipitation resulting from adding together only those hours with hourly amounts of ..::_.10 inches and hours with >.25 inches. These total*s were then divided by the number . of days in the sample to give the average daily precipitation amounts. Plots of these values are given in Figure 11.1. The curve for <. l0.11 represents contributions from light rain situations while the >.25 11 curve represents contributions from heavy rain. Since heavy rains are almost always associated with convective activity, the latter curve is a measure of the importance of convective activity in enhancing tion. A harmonic analysis of the total precipitation is summarized in Table 11.1. Only the most important period is given. For this period, its length, amplitude, percent of the variance explained, and the of maximum are given. The results for each season are discussed separately below. Winter: The diurnal precipitation variations for the Cook and Palisades networks are very similar except for a small decrease lasting several hours around 1700 EST in the Cook network which does not appear for the Palisades network. Both networks have their maximum hourly precipitation at 0600 EST and minima in the late morning. A secondary maximum is evident around 1800 EST, especially for the Palisades network. The diurnal pre-** ci pi tati on curve for hours with >. 25 11 or more of preci pita ti on indicates 95 96 ,90 ,80 ,70 ,60 .so ,40 ,30 ,20 k ::I 0 .<::: k,10 <V 0. UJ <V 0 .<::: 0 <:: *.-1* .... 0 &sect; .BO *.-1 .j.l C1l .j.l *.-1 .70 0 <V k p., >< .60 .... k ;:l 0 :i:: ,50 <V O' "' k ,40 ..: ,30 ,20 ,10 ,,
\ I ' " O mid WINTER ' .........
,, \ ,' \ \ __ ', ,,,--\/,'
06 12 ' \ , ,, ,-, I I I I I I I I I \ I 1 I ' I \ ' \ ' , \ , ' , \ . \ 18 mid 06 Hour (EST) ' ' \ SPRING '' ....... , I v AU'IW1N i2 l Fig. 11. 1 Average hourly precipitation. , ' / .I \ -..I I .J ** 
 
------------
---97 Table 11. 1 Harmonic Analysis of Average Hourly Precipitation ( . ;. Cook Palisades Berrien Network Network MKG Springs Winter --* Predominant Period (hr) 12 12 24 24 explained variance (%) 43 67 47-62 ( . amplitude I (. 01 inch) .050 .069 .042 .049 l . c* time of max (EST) (first max after \ . midnight 0415 0440 0400 0350 Predominant
(. Period (hr) 24 24 24 24 l ! explained
:e variance (%) 58 70 89 64 amplitude ( . 01 inch) .112 .148 . 103 .069 time of max (EST) (first max after midnight) 2020 1910 0105 *0255 I \ . Summer Predominant Period (hr) 24 24 24 12 ( . explained variance (%) 45 46 50 41 amplitude
(. 01 inch) .088 .118 .074 .071 time of max (EST) (first max after* midnight) 2220 2130 0245 0605
* 98 Table 11. 1 (Continued)
Cook Palisades Network Network MKG Autumn Predominant
* Period (hr) 12 24 24 explained variance (%) 44 44 42 amplitude
(. 01 inch) -. 041 .054 .037 time of max (EST) (first max after midnight) 0350 0330 0010 Berrien Springs 24 53 .082 0550 *1 1 *" ] --i .! *1 _, --, _l I .\ -1 _J -,_ eJ _j I __\
* r . that the primary nocturnal precipitation maximum results mostly from increased convection during these hours. The harmonic analysis shows that a 12-hour period predominates.
The results for the 10-year data period for Muskegon and Berrien Springs have a predominant 24-hour period. The curves for these stations, corresponding to Figure 11.1 (given in Baker & Ryznar, 1976), have the primary, nocturnal peak, but do not have the secondary afternoon peak. These differences probably result from only four years of data being used in this analysis.
:
* Spring: I -' The shapes and magnitudes of the curves for the Cook and Palisades areas are very similar. The major peak in precipitation is in the late afternoon with a minimum around noon. There is a minor secondary maximum i. around 0600 EST. The curve for >. 25" of preci pita ti on stJggests most of .. -the observed diurnal variation results from convective activity.
The harmonic analysis shows that a 24-hour period predominates.
The for the Cook and Palisades networks are similar to the 10-year averages for Muskegon and Berrien Springs except for the time of maximum. The '*. maximum for the long-term stations is around 6 hours later in the evening. r
* The reason for these differences is not clear, but probably relates to the length of the sampling period. Summer: The curves for the Cook and Palisades networks are*again similar, although the precipitation in the Cook network is less than in the sades network for almost every hour. A substantial amount of the diurnal
* variation is evident in the >.25 11 contribution implying that 99 1--1 166 convective activity is the major contributing factor. The harmonic analysis shows that the results for the Cook and Pa 1 i sades networks agree. better with Muskegon than with Berrien Springs even though Berrien*Springs is within the Cook network. However, as was found for springtime, the times of the maxima are much later in the evening for Muskegon than for the two networks.
Autumn: The curves for the Cook and Palisades networks differ more in autumn than in the other seasons. Although both have maxima around 0200 EST, Cook has a secondary maximum at 1600 EST while Palisades has two maxima, one at 1000 EST and the other at 1600 EST. The Cook secondary maxima is evident in the .:_.25 11 curve, but the primary maximum appears to come from hours with precipitation totals between .10 11 and .25". The harmonic analysis shows a predominant 12-hour period for the Cook network and a predominant 24-hour period for the Palisades network. In summary, although four years is too short to be representative of long-term conditions, some features are similar to the 10-year averages for Muskegon.
Much of the observed diurnal variation to result from convective activity regardless of season. -, ( I .l *1 *. J I _I I J I I _j * 
** * ' -* REFERENCES Baker, D.G., and E. Ryznar, Coastal Meteorology in the Vicinity of the Donald C. Cook Nuclear Plant: A Preliminary Analysis.
Department of Atmospheric and Oceanic Science, University of Michigan, *68 pp. Baker, D.G. and E. Ryznar, 1974: An investigation of the meteorological impact of a once-through cooling system at the Donald C. Cook Nuclear Plant. Second Annual Report, DRDA Project 320157, The University of Michigan, 68 pp. Brooks, C.E.P. and N. Carruthers, 1953. Handbook of Statistical Methods in Meteorology.
Her Majesty 1 s Stationery Office, London. Carson, J.E., 1976: Atmospheric impacts of evaporative cooling systems, Argonne National Laboratory Report ANL/ES-53, 48 pp. Hanna, S.R., 1974: Meteorological effects of the mechanical-draft cooling towers at .the Oak Ridge Gaseous Diffusion Plant. Air Resources Atmospheric Turbulence and Diffusion Laboratory, Oak Ridge, Tennessee, 39 pp.
* Hess, W.N. 1974: Weather and Climate Modification, John Wilcox & Sons, New York. Hewlett-Packard Co., 1975: Statistical Applications; from J.L. Freund, 1962, Mathematical Statistics*, Prentice-Hall . Huff, F.A. 1971: Evaluation of Precipitation Records in.Weather Modification Experiments, Advances in Geophysics, V. 15, *Academic Press, New York. Jones, A.L.,* 1971: Diseases of tree fruits in Michigan, Michigan State University Extension Bulletin E-i14, 31 pp. Lehmann, E.L., 1975: Nonparametrics:
Statistical Methods Based on Ranks, Holden-Day, Inc., San Francisco.
Lindman, H.R., 1974: Analysis of Variance in Complex Designs, W.H. Freeman & Company, San Francisco.
Lowry, W.P., 1977: Empirical estimation of urban effects on climate: a problem analysis.
J. Appl.
129-135. Lyons, W.A. and L.E. Ollson, 1972: Mesoscale Air Pollution Transport in the Chicago Lake Breeze. J. Air Poll. Control Assoc., 22, 876-881. Olsson, L.E., A.L. Cole and E.W. Hewson, 1968: Observed land and lake breeze circulation on the eastern shore of Lake Michigan, 25 June 1965. Tech. Report, ORA Project 08650, The University of Michigan, 93 pp. Patrinous, A., 1978. Personal Communication Ryznar, E., 1978: An observation of cooling to11Jer plume effects on total solar radiation, Atmos. Env.,g, 1223-1224.
l 01 102 Ryznar, E., D.G. Baker, and H. Moses, 1976: Coastal meteorological works to determine effects of nuclear plant cooling systems. Bull. Am. Meteor. Soc.,.&sect;_&sect;_, 1441-1446.
Ryznar, E., M.R. Weber, and D.G. Baker, 1975: An investigation of the meteorological impact of mechanical-draft cooling towers at the Palisades Nuclear Plant. Third Annual Reoort, DRDA Project 320158, University of Michigan, 59 pp. Ryznar, E., M.R. Weber, O.F. Kahlbaum, and W.G. Snell, 1977: An investigation of the meteorological impact of draft cooling towers at the Palisades Nuclear Plant. Fifth Annual Report, DRDA Project'320158, University of Michigan, 103 pp. U..S. Atomic Energy Commission, 1972: Environmental Statement for Palisades Nuclear Generating Plant. Docket No. 50-255. U.S. Atomic Energy Commission, 1973: Environmental Statement for Donald C. Cook Nuclear Generating Plant. Docket Nos. 50-315 and S0-316. U.S. Environmental Data Service: Climatological Data from 1976. Van der Hoven, I., 1967: Atmospheric transport and diffusion at coastal sites. Proceedings of the USAEC Meteorological Meeting, Atomtc Energy of Canada Limited, Chalk River, Ontario, 229-237. Voge 1 , J. , 1978. Per*sona 1 Commun i ca ti on. .: -1 *1 ,\ . l J -,, ' i ' . _) * 
[ **
* APPENDIX A NETWORK DATA COLLECTION Percentages of possible data recorded for each month between April 1977 and 31 March 1978 are given in Table lA. The percentages listed for precipitation, temperature and relative humidity are monthly averages for the 13 network stations, and those listed for solar radiation, wind speed, wind direction and visibility are for each of the two main stations.
* The general pattern of data recovery experienced in past years was repeated in 1977-78 in that recovery was excellent in the warm months and deteriorated in the coldest months. Several heavy snowstorms, for example, not only did not allow the network to be serviced on schedule, but led to measurement problems such as frozen wind sensors.
* A calibration schedule was maintained throughout the year. Each hygrothermograph was calibrated in a humidity chamber at least twice and weekly checks with a psychrometer were made at each station. Humidity adjustments were not made in the field, however. Twice during the year the wind speed recording systems were returned for calibration in the University of Michigan wind tunnel used for l 03 testing and calibrating micrometeorological instrumentation.
Linearity checks were performed on the wind direction systems semi-annually.
At the end of the 1977-78 contract year all equipment was de-commissioned except for that at the two main stations.
It \'lill be activated by 1 November 1978 so that one more winter of measurements can be obtained with the cooling towers operating .
Table A.l Percent Possible Data Recorded in 1977-78 1977' 1978 Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Precipitation 99 98 93 93 96 93 98 93 86 85 66 93 Temperature 99 97 98 93 95 97 98 98 99 93 94 100 Rel. Hum. 99 97 97 91 94 97 98 98 99 93 94 100 Solar Rad. P03A 100 99 100 100 100 100 100 100 100 97 100 100 P07A 100 100 67 96 99 100 100 100 98 100 20 59 Wind Dir. P03A 100 97 100 94 100 100 100 100 100 60 0 0 P07A 100 100 100 94 100 100 100 100 90 15 84 100 Wind Speed P03A 100 100 73 94 100 100 100 88 73 80 6 0 P07A 100 100 93 94 100 100 100 100 41 13 73 96 . Visibility P03A 100 100 100 100 100 100 84 98 79 34 76 100 P07A 100 100 100 100 100 100 92 98 90 18 0 0 *** t_ __ _ l __ ** '*.--* : ____ J ..___ ____ i __ ) **: _._, ___ ) ' .______) 
* , .. I \ ' (. i l .
* i I l I ! . * * .... --APPENDIX 8 PROJECT PUBLICATIONS AND REPORTS Journal Articles and Papers Ryznar, E., D.G. Baker and H. Moses, 1976:* JICoastal meteorological' networks to determine effects of nuclear plant cooling systemsJI.
Bull. Amer. Meteor. Soc., 2.Z_, 1441-1446. , 1977: JIAdvection-radiation fog near Lake Michigan.JI Atmos. Env., l!_, 427-730. , 1978: JIAn observation of cooling tower plume effects -----=-on total solar radiation.JI Atmos. Env., J1., 1223-1224.
Weber, M.R., 11 Average diurnal wind variation in southwestern Lower Michigan.11 J. Appl. Meteor.; (in press). Weber, M.R., 11 Seasonal variations in temperature in the vicinity of two nuclear power plants: a compariso'n of operational and preoperational data.11 Presented at the American Meteorological Society Conference on Climate and Energy, May 1978, and published in proceedings.
Moses, H., D.G. Baker, E. Ryznar, and D. Young: 11 A the amounts of solar and wind energy available.
11 at the American Meteorological Society Conference Energy, May 1978, and published in proceedings.
Annual Reports comparison of Presented on Climate and 105 All annual reports come under the general heading of JIAn investigation of the meteorological impact of mechanical-draft cooling towers at the Palisades Nuclear PlantJI, DRDA Project 320158, University of Michigan.
1973 Ryznar, E. and D.G. Baker: First Annual Progress Report, 42 pp. 1974 ----and D.G. Baker: Second Annual Report, 78 pp. 1975 ----M.R. Weber, and D.G. Baker: Third Annual Reoort, 59 pp. 1976 , M.R. Weber, D.G. Baker and D.F. Kahlbaum, Fourth Annual Reoort, 102 pp. 1977 , M.R. Weber, D.F. Kahlbaum and W.G. Snell, Fifth Annual Report, 103 pp . Data Reports 1975 Ryznar, E., D.G. Baker, M.R. \>/eber, R. Kessler, and J.A. Baron: Data Report No. 1: Summary of Meteorological Measurements for the Period October 1972 through June 1973. 99 pp.
106 . 1975 Weber, M.R., R. Kessler, W.G. Snell, D.C. Dismachek, and D.F. Kahlbaum:
Data Report No. 2: Summary of Meteorological Measurements for the Period July 1973 through December 1973. 100 pp. 1976 Weber, M.R., R. Kessler, W.G. Snell, D.F. Kahlbaum:
Data Report No. 3: Summary of Meteorological Measurements for the Period 1974 through December 1974. 172 pp. 1976 Snell, W.G. and D.F. Kahlbaum:
Data Report No. 3.1: Summary of Temperature and Humidity Measurements for the Period January 1974 through December 1974. 37 pp. 1977 Weber, M.R., D.F. Kahlbaum, R. Kessler and C.R. Wilkes: Data Report No. 4: Summary of Meteorological Measurements.
for the Period January 1975 through December 1975. 215 pp. 1977 Weber, M.R., D.F. Kahlbaum, R. Kessler, G.J. Rizza*, M. St. Peter and C.R. Wilkes: Data Report No. 5: Summary of Meteorological Measurements for the Period January 1976 through December 1976. 220 pp. l .. J ' _J _i * 
* * * 
* -* * .. ii II Science & Technology Measurements and Vegetational Impact of Chemical*
Drift from Mechanical Draft Cooling Towers John J. Rochow Department of Environmental Services, Consumers Power Co., Jackson, Mich. 49201 Volume 12, Number 13 Pages 1379-1383 December 1978 Copyright&#xa9; 1978 by the American Chemical Society and reprinted by permission of the copyright owner I . . ' 
* *
* Measurements and Vegetational Impact of Chemical Drift from Mechanical Draft Cooling Towers John J. Rochow Department of Environmental Services, Consumers Power Co., Jackson, Mich. 49201
* Collection and analyses of precipitation prior to and after cooling tower operation at the Palisades Plant in southwestern Michigan resulted in high deposition rates of sulfate and calcium up to 92 m from the towers. Sulfate deposition rates during operation averaged up to 9.0 g m-2 month-1 in areas within 50 m of the cooling towers and decreased to 0.61 g m-2 month-1 between 700 an.cl 1609 m. Calcium deposition rates during operation averaged up to 4.5 g m-2 month-1 in areas within 50 m of the cooling towers and decreased to 0.57 g m-2 month-1 between 700 m and 1609 m. The high sulfate sition rates were assumed to be responsible for severe tation damage within 92 m of the cooling towers. Examination of chloride deposition rates showed that most affected areas did not receive sufficient amounts to cause vegetation damage. Sulfate and calcium deposition rates were fitted to a multiple regression equation using several independent variables.
Plotted regression lines showed that 64% of the sulfate and 47% of the calcium fell out within the first 92 m. The quantity and extent of drift from wet cooling towers have been addressed and modeled by several investigators.
Chen (1) has recently reviewed 10 of these models. However, a few investigations have encompassed actual.field ments of drift and assessed the resultant effect of drift chemicals on the terrestrial environment (2). The present study was designed to measure the quantities of drift chemicals (calcium, sulfate, and chloride), assess their effects on vegetation, and model their deposition terns around the mechanical draft cooling towers at the isades Nuclear Plant site (Consumers Power Co.) on Lake Michigan in southwestern Michigan.
Two cooling towers each with 18 cells were constructed during 1972-73 as a retrofit to the plant, which was initially designed and operated with once-through cooling using Lake Michigan water. Each cooling tower is 198 m long, 15.2 m wide, and 19.8 m high and is designed to cool 757 000 L min-1 of condenser cooling water. The design drift rate is estimated to be between 0.005 and 0.2% (3). Sand dunes that rise up to 61 m above Lake Michigan round the cooling towers. These dunes are classified as the coastal blowout type that is generally aligned at right angles to the shoreline often with very steep slopes. The cooling towers were constructed in interdunal depressions; quently, much of the surrounding terrain is at a higher vation than the top of the cooling towers. The dominant forest community at the Palisades site is *comprised of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.), and beech (Fagus grandifolia Ehrh.), typical of much of the successionally advanced sand dune communities along the eastern shores of Lake Michigan.
However, the forests surrounding the cooling towers are dominated by red oak, white pine (Pinus strobus L.), sassafras (Sassafras albidum [Nutt.] Nees.), and white ash (Fraxinus americana L.), typical of earlier successional communities on stabilized sand dunes. Experimental Twenty-seven Tru-Chek (Tru-Chek, Rain Gauge Div., Edwards Mfg. Co., Albert Lea, Minn.) rain gauges (stations) were installed on 1.5-rri posts at various distances from the cooling towers (Table I). Twenty-three experimental gauges were located from 30.5 to 183 m from the cooling towers and four control gauges ranged from 670 to 1609 m from the towers (Table I). Fourteen of the experimental gauges were located under the forest canopy, and nine in the open. Two control gauges were located under the forest canopy, and two in the open. During the months when temperatures were below freezing (November-April), 82 mL of a 50% ethylene glycol-50% methanol (by volume) solution was added to the gauges. The solution approximated the density of rain water, and as precipitation was added, self-mixing occurred to prevent stratification and subsequent freezing.
To prevent insects and other detritus from entering the gauges during the summer months, a cone was fabricated from fiberglass screen and serted into the gauge. During all months, 5 mL of mineral oil was added to the gauges to prevent evaporation.
mental tests showed that 5 mL of mineral oil reduced ration from the gauges to about 1 % of the average monthly precipitation.
Monthly collection of precipitation was conducted from January 1973 through December 1976. The precipitate from each gauge was recorded and poured into polyethylene bottles and transported to the Consumers Power Co. laboratory for analysis.
At the laboratory each water sample was measured for volume and analyzed for calcium, sulfate, and chloride content. Calcium was determined by atomic absorption with 0.5% lanthanum oxide added to a 10-mL sample. Sulfate was determined using the methylthymol blue method described by McSwain et al. (4). Chloride was determined by the curic thiocyanate-ferric nitrate method (5). Sulfate and chloride were selected for analyses because sulfuric acid and sodium hypochlorite, respectively, were to be added in substantial amounts to the cooling water. Calcium was selected for analysis to serve as an indicator of the relative increase in concentration of all natural Lake Michigan water chemicals due to cooling tower evaporation and their subse-Volume 12, Number 13, December 1978 1379 Table I. Palisades Cooling Tower Drift: Monthly Mean Deposition Rates shortest distance from (g M-2 month-1) coollng tower sulfate: calcium (m) (+/-95% Cl) (+/-95% Cl) nonoperational period (all stations) 0.29 (0.20) 0.17 (0.12) operational period station no. 31 6.62 (1.78) 1.94 (0.57) 2 61 4.51 (1.53) 1.60 (0.74) 3 122 1.14 (0.27) 0.86 (0.79) 4 183 0.72 (0.20) 0.44 (0.44) 5 61 1.90 (0.36) 0.77 (0.58) 6 183 0.71 (0.20) 0.50 (0.54) 7 31 6.64 (1.84) 1.99 (0.61) 8 56 3.28 (1.20) 0.87 (0.43) 9 46 8.96 (2.40) 2.77 (0.66) 10 84 2.96 (1.14) 1.00 (0.38) 11 37 9.34 (3.17) 2.62 (0.76) 12 61 1.04 (0.23) 0.77 (0.68) 13 143 0.68 (0.21) 0.56 (0.58) 14a 670 0.57 (0.15) 0.42 (0.50) 15a 823 0.74 (0.26) 0.34 (0.34) 16 98 0.84 (0.23) 0.51 (0.42) 17 107 0.97 (0.17) 0.82 (0.78) 18 61 1.53 (0.28) 0.58 (0.30) 19 38 3.11 (0.97) 1.16 (0.61) 20 76 3.20 (1.24) 1.06 (0.48) 53 7.43 (4.28) 4.45 (2.05) 22 122 1.05 (0.28) 0.43 (0.42) 23 38 1.83 (0.60) 0.93 (0.62) 24 31 2.91 (0.79) 1.23 (0.66) 25 76 2.39 (1.09) 1.02 (0.57) 25a.b 793 0.57 (0.49) 0.22 (0.40) 27a.b 1609 0.54 (0.58) 0.57 (0.86) *controls.
bSix months data only. quent deposition and impact on the surrounding terrain. Monthly calcium, sulfate, and chloride deposition rates were calculated from the total amount of precipitate collected and the concentration of each element in the precipitate.
Monthly mean deposition rates and confidence intervals were calculated for all monthly data. The monthly sulfate and calcium deposition rates were fitted to a multiple regression equation using distance, multiples of distance, wind direction, plant load, and H 2 S0 4 rate of addition to the cooling towers as independent variables.
On-site wind data collected in a separate study (6) and plant operating data were used in the regression equation.
Results and Discussion Only detailed results for calcium and sulfate are presented.
Some of the chloride results are used for discussion poses. Nonoperational Deposition Rates. Due to extended outages at the Palisades Plant, nonoperational data were collected for 32 months from January 1973 to March 1975 and from January 1976 to May 1976. During this 32-month period, the mean sulfate and calcium deposition rates for all stations were 0.29 and 0.17 g m-2 month-1 , respectively (Table I). The sulfate deposition rate based on annual precipitation cided closely with that reported by Pearson and Fisher (7). They reported a sulfate deposition rate of 0.40 g m-2 month-1 at 114 cm aJinual precipitation for 18 stations in northeastern 1380 Environmental Science & Technology United States. In the vicinity of the Palisades site, natural precipitation totaled 221 cm for the 32-month nonoperational period, or an average of 83 cm per 12 months (6). Calcium deposition measurements at the Palisades site, on the other hand, show a rate over three times that reported for stations in northeastern United States (7), 0.17 g m-2 month-1 vs. 0.056 g m-2 month-1* The higher rate for the Palisades site, however, is most likely due to the effect of foliar leaching of calcium into the gauges positioned under the forest canopy. Calcium concentrations of precipitation under trees have been shown to be up to 15 times greater than the concentration in precipitation collected in the open (8, 9). Operational Deposition Rates. The Palisades Plant cooling towers became operational in April 1975 and ued into December 1975 at which time the plant was shut down for repairs. During June 1976 the plant resumed ation and continued through December 1976. These periods provided a total of 16 months operational data. During this period, sulfuric acid (H 2 S0 4) (97% pure) was added to the cooling water at an average rate of 2620 L day-1 to maintain suitable pH to inhibit scaling in the condensers and cooling towers. Also, 16% sodium hypochlorite (NaOCI) was added at an average rate of about 375 L day-1 to control biological . growth in the condensers and cooling towers. Although the plant is currently rated at 675 MWe, the average monthly output was 475 MWe during the operational period. During the operational period, sulfate was deposited at rates 20-30 times those measured when the plant was not in ation for those stations that are within 50 m of the cooling towers, whereas calcium was deposited at rates 10-25 times the nonoperational rates for these same stations (Table I). Average concentrations of sulfate and calcium in Lake Michigan water are 22.2 and 33.6 ppm, respectively.
Average concentrations for sulfate and calcium in the cooling tower basin water were 435 and 100 ppm, respectively, during the period of operation.
Increase in the sulfate concentration in the cooling water is due to both the addition of sulfuric acid and cooling water evaporation.
Increase in calcium tration is due to cooling water evaporation only. Consequently, sulfate deposition rates are much higher in proportion than calcium deposition rates. The highest monthly mean sulfate deposition rates were calculated for Stations 9 and 11 (Table I) which are located on opposite sides of one of the cooling towers. However, the highest individual monthly sulfate deposition rate of 27.1 g m-2 month-1 was calculated for Station 21. There did not appear to b.e any seasonal trend in sulfate deposition rates at any station, except for a slight decrease during the colder months. For calcium the highest monthly mean deposition rate occurred for Station 21 which was distinctly higher than any other st11tion that is close to the towers (Table I). During seven of the 16 months of operation, this Station had sition rates over 5 g m-2 month-1* All stations except those within 50 m of the cooling towers showed higher average cium deposition rates during the summer months September).
Those stations located in the open showed summer calcium deposition rates two to three times that of winter deposition rates. On the other hand, those stations located under the canopy showed summer calcium deposition three to eight times that of winter deposition rates resulting partially from canopy leaching.
It is also noteworthy that mean deposition rates for both sulfate and calcium for the control stations ( # 14, 15, 26, 27) under operating conditions are at least twice those under nonoperational conditions (Table I). The portion of drift chemicals that are carried out to the control stations is sumably those particles that are less than 450 .um and are dispersed by the vapor plume (JO). Isopleths connecting stations of equal ranges of sulfate and * * * 
* *
* Figure 1. Isopleths of equal ranges of sulfate deposition rates (g m-2 month-1) under cooling tower operational conditions
<!> Figure 2. Isopleths of equal ranges of calcium deposition rates (g m-2 month-1) under cooling tower operational conditions calcium deposition rates are plotted in Figures 1 and 2, spectively.
Within the area enclosed by the isopleth of heaviest deposition, vegetation has suffered severe chemically induced damage, so that the tree canopy has been completely iated. The area enclosed by the isopleth of next heaviest position (2-5 g m-2 month-1 for sulfate and 1-2 g m-2 month-1 for calcium) also received chemically induced etation damage. However, the more severe damage is stricted to those areas that are south and southeast of the cooling towers. The area enclosed by the third isopleth (1-2 g m-2 month-1 for sulfate and 0.5-1.0 g m-2 month-1 for calcium) received vegetation damage, primarily to the upper portions of the trees, to the southeast of the cooling towers. A greater frequency of onshore winds and winds from the north is a contributing factor to intensifying vegetation damage to the south and southeast of the cooling towers. Vegetation damage around the cooling towers at the sades Plant has progressed from early visible signs on the sensitive white pine (Pinus strobus) to complete defoliation of all tree species in the area of severest impact (Figures 1 and 2). Near the end of the first period of cooling tower operation (April-December 1975), white pine leaves began to display signs of severe necrosis.
During the second period of operation (June-December 1976), the deciduous tree species began to display signs of injury. Typically, leaves displayed a mottled necrotic appearance, often displaying total collapse of the leaf tissue. All tree species in the area of maximum impact, and some areas of the next highest impact area (Figures 1 and 2) were nearly defoliated by August 1976 (Figure 3). Ice mulation on vegetation from the plume and drift during the Figure 3. Sulfate induced defoliation of deciduous tree species within 50 m of cooling towers Figure 4. Sulfate and ice induced vegetation damage resulting in total canopy removal within 50 m of cooling towers severe winter of 1976-77 added to vegetation damage by physically breaking of branches and entire trees. Normal leaf emergence during the spring of 1977 did not take place for most of the arborescent vegetation in these two areas, so that vegetation consisted primarily of woody sprouts and ceous vegetation, less than 1.5 m high (Figure 4). The extremely high sulfate deposition rate is presumed to be responsible for the vegetation damage around the cooling towers. Typical leaf damage is quite similar to that described for acute doses of sulfur oxides (11, 12). At this time the cise sulfate compound responsible for the damage has not been identified.
It is known, however, that the pH of the cooling water is maintained around 6.0-6.5. Therefor.e, acidic damage is not likely unless chemical transformations take place from the time when the drift leaves the cooling towers to the time when it enters the leaf stomata. It is possible that chlorine as HOC!-or chloride salts could be responsible for some of the vegetation damage close to the towers. For example, the highest monthly mean deposition rate for chloride (1.38 g m*-2 month-1 , not shown) was at Station 21. Sodium chloride deposition rates of 1.45 g m-2 month-1* on corn and soybeans produced little visual evidence of growth Volume 12, Number 13, December 1978 1381 Table II. Palisades Cooling Tower Drift: Multiple Regression Analysis for Sulfate and Calcium Deposition Rates sulfate calcium ell ' *' .c c * *" _&sect; 7 .; w < a: z 0 ;:: 5 iii 0 0. w . 0 w ** l .,. ..J :J Ill z *" < w ::; 1 slgnlllcant covariates constant distance X plant load distance X wind distance 3 wind plant load constant distance 3 distance 2 distance 4 distance 64r. *' i 20 * *" * *' 25 *" o" ,)6 .17 l n regression coefl (+/-SE) -1.08 (0.816) -0.008 (0.002) -0.105 (0.034) 0.868 (0.226) 0.133 (0.031) 0.010 (0.002) -1.80 (1.98) 29.84 (13.99) -41.77 (19.46) -7.13 (3.42) 21.40 (10.77) 741. i OISTANCE FROM COOLING TOWERS (meters) Figure 5. Monthly mean sulfate deposition rates vs. distance under cooling tower operational conditions Regression line c;ilculated from equation given in text. Dashed line: sulfate deposition under nonoperational conditions reduction and changes in plant color (13). Although McCune et al. (14) showed that under controlled conditions certain woody plant species sustained injury at doses as low as 7.2 &#xb5;g Cl cm-2 (0.072 g m-2), other woody species showed varying degrees of injury up to 264 &#xb5;g Cl cm-2. Curtis et al. (15) and his students showed that when simulated drift was sprayed on certain tree species foliar injury symptoms developed after spraying for 43 days with 15.4 mL m-2 of saline cooling tower basin water (6365 ppm Cl-). This is equivalent to about 2.2 g m-2 month-1. Therefore, it is possible that vegetation at the Station with the highest monthly mean chloride deposition rate could have sustained injury by chloride salts. However, this does not account for the extensive areas of vegetation damage where chloride deposition rates ranged from 0.5 to 1.0 g m-2 month. -1 Nonoperational chloride deposition rate eraged about 0.35 g m-2 month-1. Modeling Chemical Deposition Rates. By fitting the individual monthly deposition rates for sulfate and calcium (dependent variables) to multiple regression analyses, models predicting deposition rates were constructed.
Several binations of independent variables were examined which cluded, distance from towers, distance 2 , distance3, distance4, percent of time that wind was from opposite 90&deg; sector of in-1382 Environmental Science & Technology beta wt (+/-SE) -0.513 (0.146) -0.422 (0.137) 0.403 (0.105) 0.401 (0.093) 0.329 (0.072) 32.35 (15.17) -24.52 (11.43) -14.08 (6.77) 6.02 (3.03) significance (P) <0.0005 0.002 <0.0005 <0.0005 <0.0005 0.034 0.033 0.038 0.048 squared multiple correlation coeH deletions total (R2), % R 2 , o/o 26.56 24.05 24.63 23.59 22.81 22.37 10.15 9.02 9.01 9.08 9.17 dividual stations, plant load (MWe), and H 2 S0 4 rate of dition to cooling towers. As a result, the least-squares deletion analysis for sulfate indicated that distance X plant load, tance X wind, distance 3 , wind, and plant load are the major covariates that affect sulfate deposition rate (Table II). By examining the beta weights, it appears that the interaction of distance and plant load has, relatively, the greatest impact on sulfate' deposition rate. The interaction of distance and the percentage of time the wind is from the opposite 90&deg; sector also has a relatively large influence on sulfate deposition rate . Beta weights are unitless values that permit the comparison of the impact of the significant on the dependent variable (deposition rate), utilizing a uniform and absolute magnitude.
However, the squared multiple correlation ficient deletions (R 2) are similar so that the total proportion of the variation accounted for by each independent variable is approximately the same (Table II). For calcium, only the variables-distance, distance 2 , tance3, and distance 4-were significant at P :S ,0.05 and were retained for the multiple regression analysis (Table II). In general, distance 3 and distance 2 appear to be relatively portant in expressing calcium deposition rate as shown by their beta weights, but the squared multiple correlation coefficient deletions (R 2) show little difference among all four variables.
Figures 5 and 6 show the monthly mean sulfate and calcium deposition rates for all experimental stations plotted against distance.
The regression lines shown in Figures 5 and.6 were computed at various distances using the mean plant load and mean percent of time that the wind was from opposite 90&deg; sector from the following regression equations (Table II). S0 4 2-deposition rate= 1.08 -0.008 (D)(L) -0.105 (D)(W) + 0.868 (D 3) + 0.133 (W) + 0.0103 (L) Ca 2+ deposition rate = -1.80 + 29.84 (D3) -41.77 (D 2) -7.13 (D4) + 21.4 (D) where D = distance in meters, L = mean plant load in MWe, and W = mean percentage of time wind is from opposite 90&deg; sector. The curve for calcium shows higher deposition rates at 40-50 m than at 30 m due to the influence of Station 21. As *
* stated earlier, this station had calcium deposition rates over. 5 g m-2 month-1 for seven of the 16 months of operation.
No explanation can be offered for this high deposition rate. Canopy leaching is not a reasonable explanation as this station 
* * * .r; c 0 e
* 2 w J c:: z 0 ;:: ;;; z :l1 :::> 91 (3 w :l1 ll ** * *' *1 " * *" 477. L " 677. 10 i
* s
* 17 *' .
* " 22 13 ... DISTANCE FROM COOLING TOWERS (meters) Figure 6. Monthly mean calcium deposition rates vs. distance under cooling tower operational conditions Regression line calculated from equation given in text. Dashed line: calcium deposition under nonoperational conditions is more exposed than other stations close to the towers. Whether the curve in reality continues to dip within 30 m cannot be verified as no measurements were made in this terval. By planimetering the areas under the two curves, it is mated that 64 and 47% of the sulfate and calcium, respectively, fall out in the first 92 m. Wistrom and Ovard (10) predicted that 68. 7% of the drift mass falls out in the first 122 m. At 145 m, where the curve for sulfate flattens out, about 74% of the sulfate has fallen out. Beyond 145 m, the deposition is tively uniform up to 1609 m which is the most distant station. The curve for calcium levels off between 100 and 200 m where another 20% of the total calcium load is deposited.
Beyond 200 m, the deposition rate drops to a mean of 0.39 g m-2 month-1 out to 1609 m. Both sulfate and calcium have nearly equal deposition rates at 1609 as at 200 m; thus, the curves were extrapolated out to 1609 m to calculate the areas under the curves. In conclusion, deposition of chemicals, especially sulfate, on the surrounding terrain by fresh water wet mechanical draft cooling towers can be substantial, especially within 92 m of the towers. The ecological impact on vegetation from these high sulfate deposition rates can also be highly negative.
Although similar studies are lacking to substantiate the sulfate hypothesis, sulfur oxides of much lower concentrations have been known to cause to plant tissue. The lower toxicity of sulfate as compared to sulfite, for example, may be shadowed by the much higher sulfate deposition rates. Chloride salts are not likely causing the vegetation damage when the present chloride deposition rates are compared with chloride applications to plants reported in the literature and with the chloride deposition rates at other stations where vegetation damage has been extensive.
Additional studies are now in progress to specifically identify the chemical(s) that is responsible for the vegetation damage. A model depicting sulfate deposition rate is greatly fluenced by distance in combination with plant load and wind direction.
A model depicting calcium deposition rate, on the other hand, is more influenced by distance 3 and distance2.
The plotted regression curves show that 64 and 47% of the sulfate and calcium fall out within 92 m of the cooling towers. These cumulative deposition rates are similar to what was predicted by models of drift deposition for at least one model. Acknowledgment Thanks are extended to the Consumers Power Co. neering and Research Lab, especially J. A. Wildern and C.R . Snow, for the sample analysis; to R. A. Kleinert and M. P. Bombery for the graphical preparations; to J. L. Gill and R. R. Neitzel of Michigan State University for their assistance on the statistical analysis; to J. G. Peck and M. L. Pahl for typing the manuscript; and to J. Z. Reynolds, I. H. Zeitoun, and R. F. Green for their review of the manuscript.
Literature Cited (1) Chen, N.C.J., "A Review of Cooling Tower Drift Deposition Models", Oak Ridge National Labs, ORNL/TM-5357, 1977. (2) Taylor, G. G. Jr., Mann, L. K., Dahlmann, R. C., Miller, F. L., "Environmental Effects of Chromium and Zinc in Cooling-Water Drift", in "Cooling Tower Environment", S. R. Hanna and J. Pell, Eds., ERDA Symp. Ser., CONF-740302, pp 408-26, 1975. (3) U.S. Atomic Energy Commission, "Final Environmental ment: Palisades Nuclear Generating Plant", Doc. No. 50-255, 1972. (4) McSwain, M. R., Watrous, R. J., Douglass, J.E., Anal. Chem., 4, 1329 (1974). (5) Technician Auto Analyzer II, Chloride in Water and Seawater, Industrial Method No. 217
* 72 WI A, Technician Industrial Systems, Tarrytown, N.Y., 1977. (6) Ryznar, E., Baker, D. G., Weber, M. R., Kessler, R., Snell, W. G., Kahlbaum, D. F., Baron, J. A., Dismachek, D. C., Wilkes, C.R., "An Investigation of the Meteorological Impact of Mechanical-Draft Cooling Towers at the Palisades Nuclear Plant", Data Rep. 1-4, University of Michigan, Ann Arbor, Mich.,.1975-77.
(7) Pearson, F. J. Jr., Fisher, D. W., "Chemical Composition of mospheric Precipitation in the Northeastern United States", Geo!. Surv. Water-Supply Paper 1535-P, GPO, Washington, D.C., 1971. (8) Will, G. M., Nature, 176, 1180 (1975). (9) Tamm, C. 0., Physiol. Plant, 4, 184 (1951). (10) Wistrom, G. K., Ovard, J. C., "Cooling Tower Drift, Its surement, Control and Environmental Effects", Presentation Cooling Tower Institute Annual Meeting, Houston, Tex., 1973. (11) Barrett, T. W., Benedict, H. M., "Sulfur Dioxide", in "Recog-nition of Air Pollution Injury to Vegetation:
A Pictorial Atlas", Air Pollution Control Assoc., Pittsburgh, Pa., 1970. (12) USDA Forest Service, "Air Pollution Damage Trees", 1973. (13) Mule hi, C. L., Armbruster, J. A., "Effects of Salt Sprays on the Yield and Nutrient Balance of Corn and Soybeans", in "Cooling Tower Environment", S. R. Hanna and J. Pell, Eds., ERDA Symp. Ser. CONF-740302, pp 379-92, 1975. (14) McCune, D. C., Silberman, D. H., Mandi, R.H., Weinstein, L. H., Freudenthal, P. C., Giardina, P.A., J. Air Pollut. Control Assoc., 27, 319 (1977). (15) Curtis, C.R., Lauver, T. L., Francis, B. A., Mulchi, C. L., lass, L. W., "Potential Cooling Tower Drift Effects on Native Vegetation", in Proc. Cottrell Centennial Symp. on Air Pollution and Its Impact on Agriculture, 1977. Received for review December 19, 1977. Accepted June 26, 1978 . Volume 12, Number 13, December 1978 1383 
* * * 
* *
* DAILY AVERAGE HEAT REJECTION Btu/h x io6 Day Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec --------1 91.0 !::d 15.9 45.8 75.6 109.3 125.7 109.7 63.4 42.6 0 (I) 2 113.0 H, () 19.1 19.6 40.2 15.6 71.2 139.6 93.5 23.2 0 3 109.9 (f)f1 19.1 3.3 30 .9 56.2 76.7 1.44 100.8 106.7 0 (I) p.. 4 100.5 f1 (I) 22.2 3.3 30.9 45.3 88.4 6.43 53.3 106.7 0 <: f1 5 78.5 I-'* 31. 8 26.2 30.9 62.5 130.2 105.6 15.42 64.6 53.4 35.0 () 0 6 96.1 (I) 15.9 26.2 30.9 78.1 74.4 39.8 25.2 55.3 31. 8 68.9 c+ 7 127.0 31. 5 13.1 45.9 91. 5 30. 3 109.2 25.0 55.7 31. 3 99.5 8 90.3 25.1 22.3 71.9 30.9 . 28.1 18.6 72.7 31. 3 64.9 31. 5 136.o 9 53.7 25.1 22.3 91. 5 62.5 112.4 103.8 34.4 56.6 20.1 100.8 10 25.1 19.1 75.2 71.6 9 44.3 102.3 31.0 49.9 70.1 63.8 11 18.8 10.8 94.8 77.1 37.5 22.8 87.7 66.2 68.8 66.8 55.7 12 1-3 18.8 15.2 101.4 110.6 G 52.2 114.3 95.6 74.4 66.8 66.8 13 (I) 25.1 11. 8 101.4 102.8 27.5 14.9 89.5 84.1 62.2 63.4 81.9 .&sect; 14 (I) 21.9 25.7 107.9 86.8 88.2 41.1 99.0 40.2 13.5 71.1 47.7 15 f1 !::d 22.3 124.2 111.4 G 16.2 102.5 43.2 12.5 73. 5 185.6 Pl 0 (I) 16 c+ H, () 19.1 117.7 128.6 62.5 96.9 58.7 56.4 10.4 71.0 128.4 0 17 (/) f1 19.1 114.4 123.2 31. 8 86.2 56.0 77.2 12.6 61. 7 116.0 (I) (I) p.. 18 f1 (I) 28.7 171.0 123.5 6o.4 70.2 55.6 126.9 10.9 49.5 183.5 !::d <: f1 19 (I) I-'* 14.5 111.2 108.2 46.8 79.6 62.0 154.6 10.7 1,0.1 324.1 () () 0 20 0 (I) 15.9 111.2 98.8 46.8 19.6 66.3 53.6 10.5 33.1 154.4 f1 c+ 21 p.. 29.9 19.1 160.2 192.8 *30. 0 67.1 49.9 107.9 44.o 9.3 129.6 (I) 22 f1 26.2 16.o 71.9 126.4 45.9 73.4 59.1 68.o 18.7 66.8 132.8 23 0 22.9 17.1 114.4 114.2 31.2 44.7 58.7 40.5 62.0 30.9 132.8 24 c+ 19.1 22.3 46.2 l,6.8 52.7 55.5 59.9 49.5 16.7 129.7 25 0 15.9 22.3 114.8 112.9 31. 2 36.2 52.0 87.9 43.4 30.9 154.1 H, 26 (/) 18.9 19.1 123.1 129.6 46.8 63.7 70.8 65.9 44.o 10.1 142.1 27 (I) 15.9 50.6 121.4 89.2 93.7 l,o. 8 71.0 79.6 9.5 12.6 119.4 f1 28 <: 19.1 12.6 118.1 86.5 93.7 39.1 65.9 121.3 6.2 27.8 134.5 I-'* 29 () 9.9 111. 5 77.4 78.1 123.5 63.6 131.6 27.9 57.3 138.9 (I) 30 o.o 89.9 64.3 62.5 49.3 32.9 111.2 43.4 52.4 256.0 31 19.8 48.3 109.2 69.0 53.6 138.7
* APPENDIX F * *
* PALISADES NUCLEAR PLANT CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR JANUARY 1978 "N" Weir "S" Weir "'"' +' (]) Total (]) Total ::::: 0 i:: Cll +' (]) Cll +' (]) 0 (]) ;:j cd Residual s ;:j cd .Residual s rl (]) s '"d 0 p:; *ri 0 p:; *ri s +' (]) (]) Chlorine 8-(]) Chlorine 8--*ri cd -Cll-i:: i::-i:: i:: i::-i:: i:: s 8 (]) i:: :::i rl cd ::::: s (ppm) p.. *ri cd ::::: rl (ppm) p.. .,..., 0 p.. ;.; .,..., cd +' 0 p.. ;:j s +' 0 cd ;:i s .,..., OD s rl OD 3 '"d OD '"d ..__. rl '"d OD '"d ..__. +' ..__. ill ..__. u ..__. ::::: ..__. rl ;:j ::::: ..__. rl ;:j +' +' C\J 0 s 0 0 s 0 0 rl ' cd 0 rl cd .,..., rl .,..., rl .,..., Q 80 :;;::; r:r.J i:q 1 2 3 r:r.J i:q 1 2 3 Q NO CHLORINATION DUE TO COOLING TOWERS OUT OF SERVICE * * 
** * * <d Cl) Cll-:::i rl td rl bD u ..._, 0 td :;;::: PALISADES NUCLEAR PLANT CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR FEBRUARY 1978 "N" Weir Total Residual Chlorine (ppm) 1 2 3 "S" Weir Total Residual*
Chlorine (ppm) 1 2 NO CHLORINATION COOLING TOWERS OUT OF SERVICE 3 
* *
* PALISADES NUCLEAR PLANT CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR MARCH 1978 "N" Weir Total Residual Chlorine (ppm) 1 2 3 "S" Weir Total Residual Chlorine (ppm) 1 2 NO CHLORINATION COOLING TOWERS OUT OF SERVICE 3 
* * !2: 0 () t:1 0 !:d H H 0 !2: Date 'rotal ;rime of Cl 2 Treatment (min) NaOCl Used (gal) Simultaneous Blowdown Rate (gpm) 1--' () !:d ::r (j) ..----.I--'
Ill 8 'd 0 I-'* 0 'd 'i p.. c+ I\) 13 I-'* s::: Ill (j) 1--' w Holdup Time (min) Simultaneous Blowdown Rate (gal) 1--' () p' (j) ..----.f--'
Ill 8 'd 0 I-'* 0 'd Ii p.. c+ 13 I-'* s::: Ill I\) Ill 1--' <D 1--' w Holdup Time (min) Dilution Flow (gpm) ** () H !:d () !2: 8 ::q H ..........
!2: :: K Q 1-\j :::<::: !I> H :::<::: (j) I-'* 'i 8 (/) M E; !:d M (/) (/) K (/) 2l H 8 c: t:-J M 0 ::;:: t"l 1--' () \0 -.:i 8 CX> 0 1-\j 121 8 H 0 2: t=J !I> 8 !I> (/) :: :::<::: (j) I-'* 'i
* PALISADES NUCLEAR PLANT CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR MAY 19T8 "N" Weir "s" Weir '""' +-' <]) Total <]) Total 0 i:::: Cl'.l +> <]) Cl'.l +-' <]) 0 <]) ;:J ctl Residual s ;:J ctl Residual s r-1 <]) s 'Cl 0 p:; . ..., 0 p:; *r-i i=.. s +> <]) <]) Chlorine 8 .........
<]) Chlorine 8 .........
.........
*r-i ctl .........
o:i ...--.. i:::: i:::: i:::: i:::: .........
i:::: i:::: s 8 <]) i:::: 0 r-1 ctl (ppm) P< *r-i (1j r-1 (ppm) p., *r-i 0 p., ;.; *r-i (1j +-' 0 p., ;:J s +-' 0 (1j ;:J s *r-i OJ) r-1 8 s r-1 OJ) r-1 'Cl OJ) 'Cl .........
r-1 'Cl 00 'Cl .........
+-' .__, <]) (1j -u-;:J r-1 ;:J r-1 ;:J +-' +> C\J 0 s 0 0 s 0 0 r-1 (1j 0 r-1 rn *r-i r-1 :=: *r-i r-1 :::i:: *r-i A 8U 12; er.! i:Q l 2 3 er.! i:Q 1 2 3 A 24 175 0 .58 <.05 <.05 35 0 <.05 <.05 <.05 92 60K 26 6 0 <. 05 r <.05 <.05 40 0 <.05 <.05 <.05 20 60K 27 175 250 0 <.05 .07 .15 95 0 <.05 .10 .48 60 60K
* 160
* 40 .42 .53 . 35 .30 .32 30 445 330 0 .* 32 .47 .52 437 0 .25 .58 .98 28 60K 31 175 200 0 . 35 . 39 20 0 .29 .34 .47 155 60K
* PALISADES NUCLEAR PL.ANT CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR JUNE 1978 "N" Weir "S" Weir G-i +' Q) Total Q) Q) Total 0 i:::: OJ +' OJ +' Q) 0 Q) ;::l al Residual s ;::l al Residual E ,..., Q) s 'CJ 0 IZ *rl O IZ *rl r:. s +' Q) Q) Chlorine 8-Q) Chlorine 8-........ *rl al ........ OJ ........ i:::: 5---i:::: i:::: s:: ........ s:: s:: s 8 Q) s:: :::::i,..., al s (ppm) i:i.. .,.., al ,..., (ppm) p., ..... 0 p., '"' .,.., al +' 0 i:i.. ;:::l s +' 0 al ;::l s .,.., QO ,_., E-1 S* ,..., QO ,..., 'CJ 00 *"CJ .._, ,..., 'CJ 00 'CJ.._, +' .._, (IJ al .._, u .._, ;::l .._, ,..., ;::l ...__.. ,..., ;:::l +' +' (\J 0 s 0 0 .S o 0 ,..., al 0,..., al .,.., ,..., ::c: .,.., ,..., ::c: .,.., Q E-IU UJ. iJ=l 1 2 3 UJ. iJ=l 1 2 3 Q 1 15 125 0 .29 .35 .54 203 55K 2 17 175 0 . 32 . 34 .90 0 . 34 . 35 .37 55K 3 25 115 100 . 30 . 38 .60 0 55K
* 20 215 100 .15 .25 50 0 .25 . 72 .85 68 55K ) 25 85 450 .15 .10 .05 0 55K 14 25 300 100 .05 .12 .13 0 100 .05 .05 .09 0 55K 15 25 100 .46 1.15 .71 0 19 18 185 1250 .05 .05 .05 0 1550 .05 1. 66 1. 51 0 55K* 20 50 150 1250 .05 .05 .25 0 1250 .05 . 3 .2 0 55K 23 20 100 450 .05 .05 .1 0 100 .05 .15 .25 0 55K 24 50 125 250 .05 .1 .05 0 325 .05 .2 .2 0 55K 25 25 100 450 .05 .24 0 450 .05 .05 0 55K 26 20 185 925 .05 .2 0 925 .05 .05 0 55K 27 75 450 .05 0 250 . 3 0 55K *No limit exceeded c1 2 demand 0.3 . * ,.
* PALISADES NUCLEAR PLANT CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR JULY 1978 "N" Weir "S" Weir G-< +' <!) Total <!) <!) Total 0 c CJJ +' CJJ +' <!) 0 <!) ;::l '&deg; Residual =: ;::l '&deg; Residual s rl <!) s <d 0 p:; *.-! 0 p:; *.-! ""' s +' <!) <!) Chlorine 8 ........ <!) Chlorine 8 ........ .........
*.-1 ro ...--.. CJJ .........
c s .........
c c c .........
>:: I:: s 8 <!) c ::=> rl m s (ppm) P; *.-{ m rl {ppm) P; *.-! 0 P; >-t *.-! m +' 0 P; ;::l s +' o m ;::l s *.-! bO rl 8 s rl bO 3 <d bO <d -rl <d tlO <d-+' .__.. a.1 m .._, u .__.. rl ;::l rl ;::l +' +' (\j 0 s 0 :&sect; s 0 0 rl m 0 rl '&deg; *.-{ ,...., *r:-i rl ::r:: *.-{ A 8U 12: c.a i:Q 1 2 3 c.a i:Q 1 2 3 A 5 12 125 450 .05 .05 0 325 .05 .15 0 55K 6 17 120 450 .05 .05 0 r 100 .07 0 55K 7 9 100 625 .05 .05 0 100 .05 .05 0 55K -60 100 1250 .05 .12 .05 0 .625 .05 .54 . 53 0 55K 11 60 100 625 .05 .17 .05 0 250 .05 . 78 .65 55K 13 60 100 1250 .05 .05 .05 0 0 .05 .40 .26 65 55K 14 60 100 1250 .05 .12 .32 0 625 .05 .23 .20 0 55K 24 60 150 250 .05 .15 0 100 .68 90 55K 25 120 150 450 .2 .17 .10 0 100 .05 . 31 . 39 0 55K . 27 120 150 450 .05 .1 .17 0 100 .23 .15 .15 0 55K 28 120 150 450 .22 .12 .10 0 100 .17 .05 .05 0 55K 29 120 150 100 .05 .12 .08 0 250 .05 .25 .27 0 55K 30 120 125 250 .15 .10 . 83 0 100 . 85 1. 48 -0 55K .,.
* P_l\LISADES NUCLEAR CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR AUGUST 1978 "N" Weir "S" Weir +' (!) Total (!) (!) Total ::;: 0 i::: C/l +' C/l +' .(!) 0 (!) ;:j ell Residual s ;:j ell Residual s rl (!) s rd 'M . .., s +' (!) (!) Chlorine 8 -(!) Chlorine 8 --*r-l ell -.C/l-i::: i:::-i::: i::: i:::-i::: i::: s !:-; (!) i::: ::i .-I ell ::;: s (ppm) p.. *r-l ell ::;: rl (ppm) p.. *r-l 0 p.. ;.... . .., ell +' 0 p.. ;j s +' 0 ell ;j s *r-l b.O rl 8 s rl b.O ,.., rd b.O 'd ........ rl 'd b.O rd......., +' ........ (]) ell ......., u ........ ;:j ::;: ......., ,.., ;j ::;: ........ ,.., ;j +' +' C\J 0 s 0 0 s 0 0 rl ell 0,.., ell *r-l rl ::i:: . .., rl ,..... *r-l >-< 8U :;;::; Cl) i:Q l 2 3 Cl) i:Q l 2 3 2 45 100 625 .05 .06 .06 0 0 .05 .06 .08 100 55K 9 45 100 1250 .05 .05 .07 0 0 .05 .05 .05 80 55K 50 175 0 .05 .42 .16 60 0 .05 .16 .10 60 55K 14 90 125 250 .05 .45 10.3 0 250 .11 6.7 5,9 0 55K* 15 90 75 0 .05 .05 .10 90 -17 50 150 0 .05 .15 .05 50 0 .05 .05 .10 50 55K 20 80 150 100 .11 .10 .08 0 100 .11 .24 .20 0 55K 22 90 150 0 .21 .1. .09 90 0 .26 .16 .10 90 55K 24 33 75 100 .25 .14 -0 55K 26 15 150 0 .05 .05 -160 0 .05 .10 .21 160 55K *No limit exceeded c1 2 demand 0.3 ppm . * 
* [\) co &deg;' 0 b--' 0 0 0 I-' 0 [\) Vl I-' w &deg;' 0 0 0 Vl I-' 0 [\) 0 &deg;' 0 V1 V1 -i::--&deg;' Vl 0 I-' Vl 0 0 0 I-' 0 0 0 I-' Vl I-' --:] [\) -i::--0 [\) [\) Vl Vl 0 0 0 I-' Vl 0 [\) [\) 0 w I-' V1 V1 0 0 V1 V1 V1 Vl I-' I [\) I-' &deg;' V1 co 0 &deg;' [\) Vl 0 Vl 0 Vl 0 Vl 0 [\) Vl 0 0 Vl I-' Vl w [\) 0 V1 V1 Date
* Total Time of Cl 2 Treatment (min) NaOCl Used (gal) Simultaneous 0 Blowdown Rate H (gpm) 0 0 !21 1-3 1-3 I-' P' ro ,-.. I-' Ul 1-3 t*d 0 I-'* 0 'd Ii P. CT [\) 13 I-'* i::
[ll ro ro I-' I-'* Ii w Holdup Time (min) Simultaneous p:j H ...____ <--<: 0 '-cl f:; H 1-3 (/) ttj (; ttj (/) (/) (/) <--<: (/) !21 1-3 1-3 c: ttj ttj 0 Li ttj 0 8 I-' 0 '-cl \() -----1 H co !21 1-3 Blow down Rate H 0 (gal) !21 t:J ;i> 1-3 I-' 0 !:ll p' ro :i:. ,-.. I-' Ul 1-3 (/) 'd 0 I-'* 0 'd Ii P. CT 13 I-'* i:: [ll [\) 1:1 [ll I-' ro ro I-' I-'* Ii w ' Holdup Time (min) -Dilution Flow (gpm) 
** PALISADES NUCLEAR CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR OCTOBER 1978 "N" Weir "S" Weir '+-! +' Q) Total Q) Total 0 s:: C/J +' Q) C/J +' Q) 0 Q) ;:l al Residual s ;:l al Residual s .-I Q) s <rj 0 p:: .,., 0 p:: .,., Ii. s +' Q) Q) Chlorine 8,......, Q) Chlorine 8,......, ,......, .,., al ........ C/J ........ s:: s:: ........ s:: s:: s:: ........ s:: s:: s 8 Q) s:: ;::i r-1 al s (ppm) A *.-i al r-1 (ppm) A*.-i O A ;... .,., al +' O A ;:l s +' 0 al ;:l s .,., bO r-1 8 s r-1 QO r-1 <rj QO <rj -r-1 <rj QO <rj -.&#xb5; -<l.l al -u '-" ;:l r-1 ;:l r-1 ;:l +' +' C\J 0 a o 0 a o :2 r-1 Cti 0 r-1 Cti .,., r-1 .,., r-1 .,., A 8U z CJ) l::Q 1 2 3 CJ) l::Q 1 2 3 q 8 87 100 0 .05 .20 .10 60 0 .05 . 30 .22 55K
* 60 110 0 <.05 .12 .33 60 0 <.05 .15 . 30 60 55K 17 60 100 0 <.05 .29 .15 60 0 <.05 .25 .24 60 55K 19 70 100 0 <.05 <.05 .15 0 0 <.05 .15 <.05 0 55K 21 73 100 0 . 25 .16 .13 0 0 .13 . 32 .29 0 55K 23 60 100 0 .02 .16 .16 0 0 .09 .2 .13 0 55K 25 60 100 0 <.05 *.08 .15 0 0 <.05 .10 .07 0 55K 27 60 75 0 <.05 .07 .10 0 0 <.05 <.05 .70 0 55K 29 160 145 0 <.05 .18 .05 0 0 <.05 .23 .17 0 55K ***
* PALISADES NUCLEAR PLANT CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR*
NOVEMBER 1978 "N" Weir "S" Weir ..... +> <IJ Total <IJ Total ::;: 0 s:: Cll +> <IJ Cll +> <IJ 0 <IJ ;:l '&deg; Residual s ;:l '&deg; Residual s rl <IJ s 'Ci O IZ *ri 0 IZ *ri >:. s +> <IJ <IJ Chlorine E-i -<IJ Chlorine E-i --*ri ro-Cll-s:: s::-s:: s:: s::-s:: s:: s 8 <IJ s:: :::i rl '&deg; :;:: s (ppm) Pl *ri '&deg; ::;: rl (ppm) p. *ri 0 Pl ;.., *ri '&deg; +> 0 Pl ;:l s +> 0 '&deg; ;:l s *.-i OD E-i s rl OD 3 'Ci OD 'Ci ..__.. rl 'Ci OD 'Ci..__..
+> ..__.. <l.l ..__.. u ..__. ::;: ....... r-i ;:l ::;: ....... rl ;:l +> +> (\J 0 s 0 0 s 0 0 rl '&deg; 0 rl '&deg; *.-i rl ::i::: *r-i rl ::r:: *.-i Q E-i u CJ) P'.l l 2 3 CJ) P'.l 1 2 3 Q 13 30 27 0 <.05 <.05 <.05 30 55K 15 60 105 0 .4 .55 .23 30 0 .32 .37 .42 30 55K * . 60 80 0 .20 . 30 .55 30 0 .22 .35 .47 30 55K 19 60 70 0 . 3 . 38 .55 30 0 .33 . 30 . 70 30 55K 23 80 100 0 .10 .36 .12 30 0 .12 .27 .15 50 55K 26 60 110 0 <.05 .09 .07 30 0 <.05 <.05 <.05 30 55K *--
PALISADES NUCLEAR PLANT CIRCULATING WATER SYSTEM CHLORINATION DATA MONTH/YEAR DECEMBER 1978 "N" Weir "S" Weir '+-l +> <I! Total <I! Total :::: 0 i:: C/l +> <I! C/l +> <I! 0 <I! ;:::l al Residual s ;:::l al Residual s ,..., <I! s 'CJ 0 p::; *r-i 0 p::; *r-i F.. . s +> <I! <I! Chlorine 8-<I! Chlorine 8--*r-1 al-C/l-i:: i:: i:: i::-i:: i:: s 8 <I! i:: ::::i,..., cd (ppm) p.; *r-1 cd :::: ,..., (ppm) p.. *r-i 0 p.. ;... *r-1 al +> 0 p.. ;:::l s +> 0 cd ;:::l s *r-1 bO ,..., 8 s ,..., bO ,..., 'CJ bO 'CJ'--' ,..., 'CJ bO 'CJ'--' +> '--' <l.l al '--' u-;:::l :::: '--' ,..., ;:::l ::::: '--' ,..., ;:::l +> +' C\J 0 s 0 0 s 0 0 ,..., al 0,..., cd *r-1,..., ::r:: *r-1,..., ;I:: *r-i A 8U C!.l l 2 3 C!.l 1 2 3 Q 1-12 SHUT DOWN FOR OUTAGE 13 60 155 0 <.05 .65 .10 30 0 <.05 .75 <.05 30 55K
* 55 150 0 <.05 <.05 <.05 34 0 <.05 .15 <.05 21 55K 21 50 150 0 <.05 <.06 <.05 32 0 <.05 .35 <.05 15 55K 25 34 120 0 <.05 .05 <,05 60 0 <,05 <.05 .05 24 55K 28 71 130 0 .05 .1 .05 24 0 .05 ,3 .1 30 55K *-**}}

Latest revision as of 11:52, 6 January 2025

Nonradiological Environ Monitoring Rept 1978. Supporting Data Encl
ML18043A593
Person / Time
Site: Palisades Entergy icon.png
Issue date: 03/31/1979
From:
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML18043A591 List:
References
NUDOCS 7904050254
Download: ML18043A593 (399)


Text