ML20199F132: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:_ _ _  . _ _ _ _ _ _
{{#Wiki_filter:9
9
[
[
l l
l l
Line 24: Line 23:
1 l
1 l
l l
l l
QUAD-CITIES NUCLEAR POWER STATION UNIT 1 CYCLE 9 STARTUP TEST RESULTS 8606240198 860617 PDR ADOCK 05000254 P             PDR
QUAD-CITIES NUCLEAR POWER STATION UNIT 1 CYCLE 9 STARTUP TEST RESULTS 8606240198 860617 PDR ADOCK 05000254 P
PDR


TABLE OF CONTENTS Test No.         Title             Page 1           Scram Timing           1 2           Shutdown Margin         3 3           Initial Critical       4 4           TIP Reproducibility and Core Power Symmetry     4 L_______--_-----------_. -
TABLE OF CONTENTS Test No.
Title Page 1
Scram Timing 1
2 Shutdown Margin 3
3 Initial Critical 4
4 TIP Reproducibility and Core Power Symmetry 4
L


F
F 1.
: 1. Control Rod Scram Timing Purpose The purpose of this test is to demonstrate the scram capability of all of the operable control rods in ccmpilance with Technical Specifications 4.3.C.1 and 4.3.C.2.
Control Rod Scram Timing Purpose The purpose of this test is to demonstrate the scram capability of all of the operable control rods in ccmpilance with Technical Specifications 4.3.C.1 and 4.3.C.2.
Criteria A. The average scram insertion time, based on the de-energization of the scram pilot valve solenoids as time zero, of all operable control rods during reactor power operation shall be no greater than:
Criteria A.
                            % INSERTED FROM                 AVG. SCRAM INSERTION FULLY WITHDRAWN                       TIMES (sec) 5                             0.375 20                             0.900 TO                             2.000 90                             3.500 The average of the scram insertion times for the three fastest control rods of all groups of four rods in a two by two array shall be no greater than:
The average scram insertion time, based on the de-energization of the scram pilot valve solenoids as time zero, of all operable control rods during reactor power operation shall be no greater than:
                            % INSERTED FROM                 AVG. SCRAM INSERTION EULLY WITHDRAWN                       TIMES (sec) 5                             0.398 20                             0.954 50                             2.120 90                             3.800 If these times cannot be met, the reactor shall not be made supercritical; if operating, the reactor shall be shutdown immediately upon determination that average scram time is deficient.
% INSERTED FROM AVG. SCRAM INSERTION FULLY WITHDRAWN TIMES (sec) 5 0.375 20 0.900 TO 2.000 90 3.500 The average of the scram insertion times for the three fastest control rods of all groups of four rods in a two by two array shall be no greater than:
B. The maximum insertion time for 90% Insertion of any operable control rod shall not exceed 7.00 seconds. If this requirement cannot be met, the deficient control rods shall be considered inoperable, fully inserted into the core, and electrically disarmed.
% INSERTED FROM AVG. SCRAM INSERTION EULLY WITHDRAWN TIMES (sec) 5 0.398 20 0.954 50 2.120 90 3.800 If these times cannot be met, the reactor shall not be made supercritical; if operating, the reactor shall be shutdown immediately upon determination that average scram time is deficient.
Results and Discussion All 177 control rods were scram tested. The results are presented in Table
B.
: 1. The maximum 90% insertion time was 2.95 seconds for control rod J-10(34-39). Both criteria A and B were met.
The maximum insertion time for 90% Insertion of any operable control rod shall not exceed 7.00 seconds.
0034H/0062Z L                                                                                             m
If this requirement cannot be met, the deficient control rods shall be considered inoperable, fully inserted into the core, and electrically disarmed.
Results and Discussion All 177 control rods were scram tested.
The results are presented in Table 1.
The maximum 90% insertion time was 2.95 seconds for control rod J-10(34-39).
Both criteria A and B were met. 0034H/0062Z L
m


c a
a c
Table 1.
Table 1.
Control Rod Scram Results NUMBER REACTOR       AVERAGE TIMES FOR % INSERTED, SEC OF RODS CONDITIONS     5%         20%       50%     90%
Control Rod Scram Results NUMBER REACTOR AVERAGE TIMES FOR % INSERTED, SEC OF RODS CONDITIONS 5%
177     Cold           0.26       0.49     0.96     1.66 177     Hot           0.29       0.68     1.46     2.58 l
20%
l 0034H/0062Z
50%
\
90%
177 Cold 0.26 0.49 0.96 1.66 177 Hot 0.29 0.68 1.46 2.58 l 0034H/0062Z
\\


r                                                                                                 7 Results and Discussion Core power symmetry calculations were performed based upon computer program 00-1 data runs on April 11, 1986, at 98.5% power, and May 12, 1986, at 99.5% power. The average total TIP uncertainty from the two TIP sets was 4.312%. The random noise uncertainty was 3.181%.       This yields a geometrical uncertainty of 2.911%.         The total TIP uncertainty was well within the 9% limit.
r 7
Table 2 lists the symmetrical TIP pairs and their respective average deviations. Figure I shows the core location of the TIP pairs and the average TIP readings. The maximum deviation between symmetrical TIP pairs was 12.698% for pair 3-19. Thus, the second criterion, mentioned above, was also met.
Results and Discussion Core power symmetry calculations were performed based upon computer program 00-1 data runs on April 11, 1986, at 98.5% power, and May 12, 1986, at 99.5% power.
The average total TIP uncertainty from the two TIP sets was 4.312%.
The random noise uncertainty was 3.181%.
This yields a geometrical uncertainty of 2.911%.
The total TIP uncertainty was well within the 9% limit.
Table 2 lists the symmetrical TIP pairs and their respective average deviations.
Figure I shows the core location of the TIP pairs and the average TIP readings.
The maximum deviation between symmetrical TIP pairs was 12.698% for pair 3-19.
Thus, the second criterion, mentioned above, was also met.
The method used to obtain the uncertainties consisted of calculating the average of the nodal ratio of TIP pairs by:
The method used to obtain the uncertainties consisted of calculating the average of the nodal ratio of TIP pairs by:
n       22 l@     E       I     Rij
n 22 l@
_R = 18n     j-1     1-5 where Rij is the ratio for the ith node of TIP pair j, there being n such pairs, where n=18.
E I
Rij
_R = 18n j-1 1-5 where Rij is the ratio for the ith node of TIP pair j, there being n such pairs, where n=18.
Next the standard deviation of the ratios is calculated by:
Next the standard deviation of the ratios is calculated by:
                        ~                                 -
~
n       22 I       E         (Rij - R)2     1/2 o_-   j-1   1-5 R           (18n - 1) oR is multiplied by 100 to express oR as a percentage of the ideal value of oR of 1.0.
n 22 I
                    % oR " OR x 100 The total TIP uncertainty is calculated by dividing % oR by / 2 in order to account for data being taken at 3 inch intervals and analyzed on a 6 inch nodal basis.
E (Rij - R)2 1/2 o_-
j-1 1-5 R
(18n - 1) oR is multiplied by 100 to express oR as a percentage of the ideal value of oR of 1.0.
% oR " OR x 100 The total TIP uncertainty is calculated by dividing % oR by / 2 in order to account for data being taken at 3 inch intervals and analyzed on a 6 inch nodal basis.
In order to calculate random noise uncertainty the average reading at each node for nodes 5 through 22 is calculated by_:
In order to calculate random noise uncertainty the average reading at each node for nodes 5 through 22 is calculated by_:
MT     NT I     I       I   BASE (N, M, K)
MT NT I
BASE (K) - NT . MT       ,M- 1   N1                 ,
I I
where NT - number of runs per machine - 4 MT - number of machines - 5 BASE (K) - average reading at nodal level K, K = 5 through 22 0034H/0062Z k
BASE (N, M, K)
: 2. Shutdown Margin Demonstration and Control Rod Functional Checks Purpose The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subtritical with the strongest control rod full out and all other rods fully inserted.
BASE (K) - NT. MT
Criteria If a shutdown margin of 1.143% aK (-0.25% + R + 4B C settling penalty) cannot be demonstrated with the strongest control rod fully withdrawn, the core loading must be altered to achieve this margin. The core reactivity has been calculated to be at a maximum 6000 mwd /t into the cycle and R is given as 0.853% AK. The control rod 84C settling penalty for Unit One is 0.04% AK.
,M-1 N1 where NT - number of runs per machine - 4 MT - number of machines - 5 BASE (K) - average reading at nodal level K, K = 5 through 22 0034H/0062Z k
Results and Discussion On February 25, 1986, control rod E-5 (the rod which was calculated by General Electric to be of the highest worth) was fully withdrawn to demonstrate that the reactor would remain subtritical with the strongest rod full out. This maneuver was performed to allow cold control rod testing prior to the shutdown margin demonstration.
 
2.
Shutdown Margin Demonstration and Control Rod Functional Checks Purpose The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subtritical with the strongest control rod full out and all other rods fully inserted.
Criteria If a shutdown margin of 1.143% aK (-0.25% + R + B C settling penalty) 4 cannot be demonstrated with the strongest control rod fully withdrawn, the core loading must be altered to achieve this margin.
The core reactivity has been calculated to be at a maximum 6000 mwd /t into the cycle and R is The control rod 8 C settling penalty for Unit One given as 0.853% AK.
4 is 0.04% AK.
Results and Discussion On February 25, 1986, control rod E-5 (the rod which was calculated by General Electric to be of the highest worth) was fully withdrawn to demonstrate that the reactor would remain subtritical with the strongest rod full out.
This maneuver was performed to allow cold control rod testing prior to the shutdown margin demonstration.
Control Rod functional subcritical checks were performed as part of the cold scram timing and control rod friction testing. No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn.
Control Rod functional subcritical checks were performed as part of the cold scram timing and control rod friction testing. No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn.
General Electric provided rod worth information for the two strongest diagonally adjacent rods F-6 and D-6 with rod E-5 full out. This method provided an adequate reactivity insertion to demonstrate the desired shutdown margin. On April 3, 1986, a diagonally adjacent shutdown margin demonstration was successfully' performed. Using the G.E. supplied rod worth for E-5 (the strongest rod) and diagonally adjacent rods F-6 and D-6, it was determined that with E-5 and F-6 at position 48, and D-6 at position 20, a moderator temperature of 154*F, and the reactor subcritical, a shutdown margin of 1.380% AK was demonstrated. The G.E. calculated shutdown margin with E-5 withdrawn and 68*F reactor water temperature was 2.342% AK at the beginning of cycle 9.
General Electric provided rod worth information for the two strongest diagonally adjacent rods F-6 and D-6 with rod E-5 full out.
At approximately 6000 MHd/t into cycle 9 a minimum calculated shutdown margin of 1.489% AK will occur with N-10 fully withdrawn. Note that the minimum shutdown margin shifts from rod E-5 at beginning of cycle to rod N-10 at 6000 mwd /t.      .
This method provided an adequate reactivity insertion to demonstrate the desired shutdown margin. On April 3, 1986, a diagonally adjacent shutdown margin demonstration was successfully' performed. Using the G.E. supplied rod worth for E-5 (the strongest rod) and diagonally adjacent rods F-6 and D-6, it was determined that with E-5 and F-6 at position 48, and D-6 at position 20, a moderator temperature of 154*F, and the reactor subcritical, a shutdown margin of 1.380% AK was demonstrated.
The G.E. calculated shutdown margin with E-5 withdrawn and 68*F reactor water temperature was 2.342% AK at the beginning of cycle 9.
At approximately 6000 MHd/t into cycle 9 a minimum calculated shutdown margin of 1.489% AK will occur with N-10 fully withdrawn.
Note that the minimum shutdown margin shifts from rod E-5 at beginning of cycle to rod N-10 at 6000 mwd /t.
l l
l l
i                                                 '
i '
0034H/0062Z i
0034H/0062Z i
f                                                                     r
f r


G.E.'s ability to determine rod worth was demonstrated by the accuracy of their in-sequence criticality prediction. The aK difference between the expected critical rod pattern and the actual critical rod pattern was determined to be 0.121% AK. This initial critical demonstrated that the actual shutdown margin at the beginning of cycle 9 was 2.463% AK and that 1.610% AK at 6000 mwd /t into cycle 9.
G.E.'s ability to determine rod worth was demonstrated by the accuracy of their in-sequence criticality prediction.
: 3. Initial Critical Prediction Purpose The purpose of this test is to demonstrate General Electric's ability to calculate control rod worths and shutdown margin by predicting the insequence critical.
The aK difference between the expected critical rod pattern and the actual critical rod pattern was determined to be 0.121% AK.
Criteria l                  General Electric's prediction for the critical rod pattern must agree within 11 AK to actual rod pattern. A discrepancy greater than 1% AK in the non-conservative direction will be cause for an On-Site Review and
This initial critical demonstrated that the actual shutdown margin at the beginning of cycle 9 was 2.463% AK and that 1.610% AK at 6000 mwd /t into cycle 9.
!                  investigation by Nuclear Fuel Services.
3.
Results and Discussion 1
Initial Critical Prediction Purpose The purpose of this test is to demonstrate General Electric's ability to calculate control rod worths and shutdown margin by predicting the insequence critical.
On April 4,1986, at 1013 hours the reactor was brought critical with a
Criteria General Electric's prediction for the critical rod pattern must agree l
;                  reactor water temperature at the time of criticality of 162*F. The AK difference between the expected critical rod pattern at 68*F and the actual critical rod pattern at 162*F was 0.00331 from rod worth tables supplied by General Electric. The temperature effect was -0.0017 AK from General Electric-supplied corrections. The excess reactivity yielding the 156 second positive period was 0.0004 AK. These reactivities result in a 0.00121 aK difference (0.121% AK) between the expected critical rod pattern and the actual rod pattern. This is within the 1% AK required in the criteria of this test, and General Electric's ability to predict control rod worths is, therefore, successfully demonstrated.
within 11 AK to actual rod pattern. A discrepancy greater than 1% AK in the non-conservative direction will be cause for an On-Site Review and investigation by Nuclear Fuel Services.
: 4. Core Power Distribution Symmetry Analysis Purpose The purpose of this test was to determine the magnitude of indicated core power distribution asymmetries using data (TIP traces and 00-1) collected in conjunction with the P-1 update.
Results and Discussion On April 4,1986, at 1013 hours the reactor was brought critical with a 1
Criteria A. The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the uncertainties for all data sets) must be less than 9%.
reactor water temperature at the time of criticality of 162*F.
B. The gross check of TIP signal symmetry should yield a maximum deviation between symmetrically located pairs of less than 25%.
The AK difference between the expected critical rod pattern at 68*F and the actual critical rod pattern at 162*F was 0.00331 from rod worth tables supplied by General Electric.
l I
The temperature effect was -0.0017 AK from General Electric-supplied corrections.
1 1
The excess reactivity yielding the 156 second positive period was 0.0004 AK.
0034H/0062Z
These reactivities result in a 0.00121 aK difference (0.121% AK) between the expected critical rod pattern and the actual rod pattern.
This is within the 1% AK required in the criteria of this test, and General Electric's ability to predict control rod worths is, therefore, successfully demonstrated.
4.
Core Power Distribution Symmetry Analysis Purpose The purpose of this test was to determine the magnitude of indicated core power distribution asymmetries using data (TIP traces and 00-1) collected in conjunction with the P-1 update.
Criteria A.
The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the uncertainties for all data sets) must be less than 9%.
B.
The gross check of TIP signal symmetry should yield a maximum deviation between symmetrically located pairs of less than 25%.
l 1
1 0034H/0062Z


The random Qoise is derived from the average of the noda] variances by:
The random Qoise is derived from the average of the noda] variances by:
22 MT     NT   -                          -2   1/2 I   E   I       BASE (N, M, K) - BASE'(K)
22 MT NT
                        %o noise =   K-5 M-1   N-1           BASE (K)                 x 100
-2 1/2 I
_                18 (NT x MT -1)                 _
E I
BASE (N, M, K) - BASE'(K)
%o noise =
K-5 M-1 N-1 BASE (K) x 100 18 (NT x MT -1)
Finhlly the TIP geometric uncertainty can be calculated by:
Finhlly the TIP geometric uncertainty can be calculated by:
                        % o geometric = (% o to'al2t  - % e noise 2)1/2 f
% o geometric = (% o to'al2 - % e noise 2)1/2 t
i i
f i
r s
i r
4 i
s 4
I!
i I!
i 0034H/0062Z 1
i 0034H/0062Z 1


1 Table 2 CORE SYMMETRY Based on 00-l's From 04-11-86 (98.5% power) and 05-12-86 (99.5% power)
1 Table 2 CORE SYMMETRY Based on 00-l's From 04-11-86 (98.5% power) and 05-12-86 (99.5% power)
SYMMETRICAL TIP PAIR NUMBERS         ABSOLUTE DIFFERENCE                   % DEVIATION a-b               T=     Ta - Tb                 % = 100 x T/ Ia + Tb 2
SYMMETRICAL TIP PAIR NUMBERS ABSOLUTE DIFFERENCE
1-6                       1.443                         1.468 2-12                     2.564                         2.158 3-19                     16.948                       12.698 4-26                     4.484                         4.207 5-33                     0.690                         1.162 8-13                     6.336                         5.248 9-20                     4.178                         3.080 10-27                     6.228                         5.088
% DEVIATION a-b T=
,                  11-34                     1.262                         1.155 15-21                     4.310                         3.751
Ta - Tb
  ,                16-28                     6.937                         5.800 17-35                     10.224                         8.354 18-39                     3.724         '
% = 100 x T/ Ia + Tb 2
4.242 23-29                     0.673                         O.578 t
1-6 1.443 1.468 2-12 2.564 2.158 3-19 16.948 12.698 4-26 4.484 4.207 5-33 0.690 1.162 8-13 6.336 5.248 9-20 4.178 3.080 10-27 6.228 5.088 11-34 1.262 1.155 15-21 4.310 3.751 16-28 6.937 5.800 17-35 10.224 8.354 18-39 3.724 4.242 23-29 0.673 O.578 t
24-36                     0.530                         0.430 25-40                     6.366                         6.917 31-37                     11.067                         9.404 32-41                     5.454                         7.896 22                         Average Deviation - 5.191 i
24-36 0.530 0.430 25-40 6.366 6.917 31-37 11.067 9.404 32-41 5.454 7.896 22 Average Deviation - 5.191 i
~
~
Tj= I Tj(K)       /18 i=5 i
Tj= I Tj(K)
,                                                      _7_
/18 i=5 i
_7_
0034H/0062Z 1
0034H/0062Z 1


FIGURE             1 i       ,            i to                                                                   e       i            i i
FIGURE 1
Tie / tens i
i i
i to e
i i
i i
                                                                                                                      .                                                  Tie / tens              .
i i
e                                                                                    95..s2 i g
Avis
i 11.l85, Avis
* Sveva7af 95..s2 11.l85, 96L25, lI e
* Sveva7af          '
i g
l 31 4o I
411 l
55 l
55 l
96L25l  31
P_ ____i__o l
                                                                                      , lI !        4o              I   411            l 56 l           l     -!            l           l         l         l         I        l
l l
    *                                                                                                                                    !e' P_ ____i__oi                                l      l            l        l          l          l so N.lT0                /Q. > l lel                                      /l7,'%o l s t22,'.93o!         ,        123l,             l   9o.h9 68                                                                                                                                                                                            '
l l
_ _ _ _  _Sa_i__    __l    __  _s<
I l
_      i_ _ _ i_ ._s_s_ i_._ _ i_ __a_l                     !  a1             l     3s1         :
56 l
46                     i                   i           8                    I                     8                     s        i           i                                             '
i l
: e.                                   i                    l                                                            e 44 i
l l
                          ,      i
l l
                                                . 3      '
l
!e' N.lT0lel
/Q.
> l
/l7,'%o l s t22,'.93o!
: 123l, l
9o.h9 so
_Sa_i____l
_s< i_ __ _ i_._s_s i_._ _ i_ __a_l a1 l
3s1 68 46 i
l i
I e.
8 i
i
: i. 3 8
s i
i e
i i
i i
                                                                                  .            8 i
i i l 3
: i. 3       i i
i i
i i
i l    .
8 i
e i
i i
44 i
i
i
                                  '           '            '          '        i           '        i e
__i__ __'
____i_.                                                                                       __i__ __'                  i                  i b* *"~                                                          llSI,95 lot.l66         l     125l.             l             g    l       Il6l.13g      l   ll8.l7$         e    ll2]l$g l           %)40
i i
__'i  ,          l 26               l       21l             l   2si               l   2il             l   3ol             l     Sa i         !  3__2 __ l i       i            ,            i          e                                i          i         .                    .
____i_.
3          i                  i                                             i,            i,                                        .,                  .,
lot.l66 l
i                    i            e           i   ,                           i                    i                                     .,
125l.
                                                                                                  ,               e                                e 3        i i
l llSI,95 l
i           i          i        i                      i          i          i        .          .i      .        .
Il6l.13 l
* lit,j6 l      14I.l93, l          133'6 g      l      It6j96, l            la9]rv          ,                    l    ml.g l                re.!96 g    ;
ll8.l7$
* l            l  19 :            l      2ol            i    2ti              l    22l____lg            241            l 24'_i . l    2s!                        -
b* *"~
5 1
ll2]l$g l
l          1 i
%)40 e
i l
g g
l 26 l
21l l
2si l
2il l
3ol l
Sa i 3__2 l 3
i i
i i
e i,
i, i
i i
e i
i i
i i
l o -l /ilo l i        l l          l        !        l          !      l        l l        l        i          I      l        l    -                .
26                                    117360            I      12df                  //2365 lel l                                                                                                                                                                                    '
127](.9el 19j99el 122172 lif.!O6ol a
a6        i          l i
Ili i
i    e!13 i
I      i4:
i 15l
                                                                                                      .          i l  oH. l!          l      17 1        l    ig i
  ,,        i, i      i            .i          .
i        e          i        i        ,
                                                                      .        .            .        i          i        ,        i i        i        i 3
  =-    -
l l          l            l            :          :        i            l        l          l3 l                1          i        !
18                97.l90      l        130 20          g      (23l.94      l      137.' 19        l    t/9jy(          l    fo7j3;          l        l 1s                    !    (e i            i        7:            l      Si              i      9l          l      to!          l        il l        l
                        .      i                                    ,        ,
i i
i i
is
_i                                                        i            .i        i ,        .i i,_,
                                                                      ,                                                    .i        ,
g    .        .
12 i
                                                          ,          a        l            i        i          i        .          .          i lo                            i        99. N            ,
120i.6 g i          12V}if ,!            tofif          l                      l 8
j        ql                    l'            l      2i            l      sl          l      3:            l        5 06 I .i                        e        a i
e i
e i
e 3
i i
i i
i i
i i
i
.i l
14I.l93, l 133'6 l
It6j96, l la9]rv lit,j6 l
22l____lg ml.g l re.!96 g
g l
l 19 :
l 2ol i
2ti l
241 l
24'_.
l 2s!
i 5
1 i
l l o -l /i l
l l
l l
l 1
i i
i i
l lo l l
l i
I l
l 26 l
lif.!O6ol 117360 I
12df lel o l!
//2365 122172 127](.9el 19j99el a
e!
I i4:
a6 i
l Ili i
15l l
H.
l 17 1 l
ig i 13 i,
.i i
i i
i i
i e
i e
i i
i i
i i
i i i
i 3
l l l
l i
l l
l3 l 1
i
=-
18 97.l90 l
130 20 g
(23l.94 l
137.' 19 l
t/9jy(
l fo7j3; l
l 1s (e i i
7:
l Si 9l l
to!
l il l l
i i
i
i
                                                                                                                            ,         ,e   I I
.i
02 l_' __ :   i
.i i
:            l 8
.i i,
l 8          '
is
_]l                                                                       \
_i i
l     e        .i           I         I         i       l 01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 17 39 41 43 45 47 49 51 51 55 57 59                                                                                                   i
i,_,
                @ IJIui location (Letter indicates TIP machtae)
g 12 i
                                                                                                                                                                                                  )
a l
i i
i i
: 99. N 120i.6 g i 12V}if tofif l
l lo i
8 j
ql l'
l 2i l
sl l
3:
l 5
06 e
a e
i I
I.i
,e I
i i
e i
l_ __ :
l l
_]
\\
8 8
l 02 i
l
.i e
I I
i l
01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 17 39 41 43 45 47 49 51 51 55 57 59 i
@ IJIui location (Letter indicates TIP machtae)
)
9 !#Isi tocation (Comnee locattas for all TIP anettase)
9 !#Isi tocation (Comnee locattas for all TIP anettase)
* l''''********
* l''''********
AVERAGE o snm toesttaa.
AVERAGE o snm toesttaa.
O         STRNG NUMBER 1
O STRNG NUMBER
                                                                                                                                                                                              .}}
.}}

Latest revision as of 07:50, 10 December 2024

Quad-Cities Nuclear Power Station Unit 1 Cycle 9 Startup Test Results
ML20199F132
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 06/17/1986
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20199F054 List:
References
NUDOCS 8606240198
Download: ML20199F132 (10)


Text

9

[

l l

1 f

1 l

l l

QUAD-CITIES NUCLEAR POWER STATION UNIT 1 CYCLE 9 STARTUP TEST RESULTS 8606240198 860617 PDR ADOCK 05000254 P

PDR

TABLE OF CONTENTS Test No.

Title Page 1

Scram Timing 1

2 Shutdown Margin 3

3 Initial Critical 4

4 TIP Reproducibility and Core Power Symmetry 4

L

F 1.

Control Rod Scram Timing Purpose The purpose of this test is to demonstrate the scram capability of all of the operable control rods in ccmpilance with Technical Specifications 4.3.C.1 and 4.3.C.2.

Criteria A.

The average scram insertion time, based on the de-energization of the scram pilot valve solenoids as time zero, of all operable control rods during reactor power operation shall be no greater than:

% INSERTED FROM AVG. SCRAM INSERTION FULLY WITHDRAWN TIMES (sec) 5 0.375 20 0.900 TO 2.000 90 3.500 The average of the scram insertion times for the three fastest control rods of all groups of four rods in a two by two array shall be no greater than:

% INSERTED FROM AVG. SCRAM INSERTION EULLY WITHDRAWN TIMES (sec) 5 0.398 20 0.954 50 2.120 90 3.800 If these times cannot be met, the reactor shall not be made supercritical; if operating, the reactor shall be shutdown immediately upon determination that average scram time is deficient.

B.

The maximum insertion time for 90% Insertion of any operable control rod shall not exceed 7.00 seconds.

If this requirement cannot be met, the deficient control rods shall be considered inoperable, fully inserted into the core, and electrically disarmed.

Results and Discussion All 177 control rods were scram tested.

The results are presented in Table 1.

The maximum 90% insertion time was 2.95 seconds for control rod J-10(34-39).

Both criteria A and B were met. 0034H/0062Z L

m

a c

Table 1.

Control Rod Scram Results NUMBER REACTOR AVERAGE TIMES FOR % INSERTED, SEC OF RODS CONDITIONS 5%

20%

50%

90%

177 Cold 0.26 0.49 0.96 1.66 177 Hot 0.29 0.68 1.46 2.58 l 0034H/0062Z

\\

r 7

Results and Discussion Core power symmetry calculations were performed based upon computer program 00-1 data runs on April 11, 1986, at 98.5% power, and May 12, 1986, at 99.5% power.

The average total TIP uncertainty from the two TIP sets was 4.312%.

The random noise uncertainty was 3.181%.

This yields a geometrical uncertainty of 2.911%.

The total TIP uncertainty was well within the 9% limit.

Table 2 lists the symmetrical TIP pairs and their respective average deviations.

Figure I shows the core location of the TIP pairs and the average TIP readings.

The maximum deviation between symmetrical TIP pairs was 12.698% for pair 3-19.

Thus, the second criterion, mentioned above, was also met.

The method used to obtain the uncertainties consisted of calculating the average of the nodal ratio of TIP pairs by:

n 22 l@

E I

Rij

_R = 18n j-1 1-5 where Rij is the ratio for the ith node of TIP pair j, there being n such pairs, where n=18.

Next the standard deviation of the ratios is calculated by:

~

n 22 I

E (Rij - R)2 1/2 o_-

j-1 1-5 R

(18n - 1) oR is multiplied by 100 to express oR as a percentage of the ideal value of oR of 1.0.

% oR " OR x 100 The total TIP uncertainty is calculated by dividing % oR by / 2 in order to account for data being taken at 3 inch intervals and analyzed on a 6 inch nodal basis.

In order to calculate random noise uncertainty the average reading at each node for nodes 5 through 22 is calculated by_:

MT NT I

I I

BASE (N, M, K)

BASE (K) - NT. MT

,M-1 N1 where NT - number of runs per machine - 4 MT - number of machines - 5 BASE (K) - average reading at nodal level K, K = 5 through 22 0034H/0062Z k

2.

Shutdown Margin Demonstration and Control Rod Functional Checks Purpose The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subtritical with the strongest control rod full out and all other rods fully inserted.

Criteria If a shutdown margin of 1.143% aK (-0.25% + R + B C settling penalty) 4 cannot be demonstrated with the strongest control rod fully withdrawn, the core loading must be altered to achieve this margin.

The core reactivity has been calculated to be at a maximum 6000 mwd /t into the cycle and R is The control rod 8 C settling penalty for Unit One given as 0.853% AK.

4 is 0.04% AK.

Results and Discussion On February 25, 1986, control rod E-5 (the rod which was calculated by General Electric to be of the highest worth) was fully withdrawn to demonstrate that the reactor would remain subtritical with the strongest rod full out.

This maneuver was performed to allow cold control rod testing prior to the shutdown margin demonstration.

Control Rod functional subcritical checks were performed as part of the cold scram timing and control rod friction testing. No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn.

General Electric provided rod worth information for the two strongest diagonally adjacent rods F-6 and D-6 with rod E-5 full out.

This method provided an adequate reactivity insertion to demonstrate the desired shutdown margin. On April 3, 1986, a diagonally adjacent shutdown margin demonstration was successfully' performed. Using the G.E. supplied rod worth for E-5 (the strongest rod) and diagonally adjacent rods F-6 and D-6, it was determined that with E-5 and F-6 at position 48, and D-6 at position 20, a moderator temperature of 154*F, and the reactor subcritical, a shutdown margin of 1.380% AK was demonstrated.

The G.E. calculated shutdown margin with E-5 withdrawn and 68*F reactor water temperature was 2.342% AK at the beginning of cycle 9.

At approximately 6000 MHd/t into cycle 9 a minimum calculated shutdown margin of 1.489% AK will occur with N-10 fully withdrawn.

Note that the minimum shutdown margin shifts from rod E-5 at beginning of cycle to rod N-10 at 6000 mwd /t.

l l

i '

0034H/0062Z i

f r

G.E.'s ability to determine rod worth was demonstrated by the accuracy of their in-sequence criticality prediction.

The aK difference between the expected critical rod pattern and the actual critical rod pattern was determined to be 0.121% AK.

This initial critical demonstrated that the actual shutdown margin at the beginning of cycle 9 was 2.463% AK and that 1.610% AK at 6000 mwd /t into cycle 9.

3.

Initial Critical Prediction Purpose The purpose of this test is to demonstrate General Electric's ability to calculate control rod worths and shutdown margin by predicting the insequence critical.

Criteria General Electric's prediction for the critical rod pattern must agree l

within 11 AK to actual rod pattern. A discrepancy greater than 1% AK in the non-conservative direction will be cause for an On-Site Review and investigation by Nuclear Fuel Services.

Results and Discussion On April 4,1986, at 1013 hours0.0117 days <br />0.281 hours <br />0.00167 weeks <br />3.854465e-4 months <br /> the reactor was brought critical with a 1

reactor water temperature at the time of criticality of 162*F.

The AK difference between the expected critical rod pattern at 68*F and the actual critical rod pattern at 162*F was 0.00331 from rod worth tables supplied by General Electric.

The temperature effect was -0.0017 AK from General Electric-supplied corrections.

The excess reactivity yielding the 156 second positive period was 0.0004 AK.

These reactivities result in a 0.00121 aK difference (0.121% AK) between the expected critical rod pattern and the actual rod pattern.

This is within the 1% AK required in the criteria of this test, and General Electric's ability to predict control rod worths is, therefore, successfully demonstrated.

4.

Core Power Distribution Symmetry Analysis Purpose The purpose of this test was to determine the magnitude of indicated core power distribution asymmetries using data (TIP traces and 00-1) collected in conjunction with the P-1 update.

Criteria A.

The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the uncertainties for all data sets) must be less than 9%.

B.

The gross check of TIP signal symmetry should yield a maximum deviation between symmetrically located pairs of less than 25%.

l 1

1 0034H/0062Z

The random Qoise is derived from the average of the noda] variances by:

22 MT NT

-2 1/2 I

E I

BASE (N, M, K) - BASE'(K)

%o noise =

K-5 M-1 N-1 BASE (K) x 100 18 (NT x MT -1)

Finhlly the TIP geometric uncertainty can be calculated by:

% o geometric = (% o to'al2 - % e noise 2)1/2 t

f i

i r

s 4

i I!

i 0034H/0062Z 1

1 Table 2 CORE SYMMETRY Based on 00-l's From 04-11-86 (98.5% power) and 05-12-86 (99.5% power)

SYMMETRICAL TIP PAIR NUMBERS ABSOLUTE DIFFERENCE

% DEVIATION a-b T=

Ta - Tb

% = 100 x T/ Ia + Tb 2

1-6 1.443 1.468 2-12 2.564 2.158 3-19 16.948 12.698 4-26 4.484 4.207 5-33 0.690 1.162 8-13 6.336 5.248 9-20 4.178 3.080 10-27 6.228 5.088 11-34 1.262 1.155 15-21 4.310 3.751 16-28 6.937 5.800 17-35 10.224 8.354 18-39 3.724 4.242 23-29 0.673 O.578 t

24-36 0.530 0.430 25-40 6.366 6.917 31-37 11.067 9.404 32-41 5.454 7.896 22 Average Deviation - 5.191 i

~

Tj= I Tj(K)

/18 i=5 i

_7_

0034H/0062Z 1

FIGURE 1

Tie / tens i

i i

i to e

i i

i i

Avis

  • Sveva7af 95..s2 11.l85, 96L25, lI e

i g

l 31 4o I

411 l

55 l

P_ ____i__o l

l l

l l

I l

56 l

i l

l l

l l

l

!e' N.lT0lel

/Q.

> l

/l7,'%o l s t22,'.93o!

123l, l

9o.h9 so

_Sa_i____l

_s< i_ __ _ i_._s_s i_._ _ i_ __a_l a1 l

3s1 68 46 i

l i

I e.

8 i

i

i. 3 8

s i

i e

i i

i i l 3

i i

8 i

e i

i i

44 i

i

__i__ __'

i i

____i_.

lot.l66 l

125l.

l llSI,95 l

Il6l.13 l

ll8.l7$

b* *"~

ll2]l$g l

%)40 e

g g

l 26 l

21l l

2si l

2il l

3ol l

Sa i 3__2 l 3

i i

i i

e i,

i, i

i i

e i

i i

i i

e i

e 3

i i

i i

i i

i i

i

.i l

14I.l93, l 133'6 l

It6j96, l la9]rv lit,j6 l

22l____lg ml.g l re.!96 g

g l

l 19 :

l 2ol i

2ti l

241 l

24'_.

l 2s!

i 5

1 i

l l o -l /i l

l l

l l

l 1

i i

i i

l lo l l

l i

I l

l 26 l

lif.!O6ol 117360 I

12df lel o l!

//2365 122172 127](.9el 19j99el a

e!

I i4:

a6 i

l Ili i

15l l

H.

l 17 1 l

ig i 13 i,

.i i

i i

i i

i e

i i

i i

i i

i i i

i 3

l l l

l i

l l

l3 l 1

i

=-

18 97.l90 l

130 20 g

(23l.94 l

137.' 19 l

t/9jy(

l fo7j3; l

l 1s (e i i

7:

l Si 9l l

to!

l il l l

i i

i

.i

.i i

.i i,

is

_i i

i,_,

g 12 i

a l

i i

i i

99. N 120i.6 g i 12V}if tofif l

l lo i

8 j

ql l'

l 2i l

sl l

3:

l 5

06 e

a e

i I

I.i

,e I

i i

e i

l_ __ :

l l

_]

\\

8 8

l 02 i

l

.i e

I I

i l

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 17 39 41 43 45 47 49 51 51 55 57 59 i

@ IJIui location (Letter indicates TIP machtae)

)

9 !#Isi tocation (Comnee locattas for all TIP anettase)

  • l'********

AVERAGE o snm toesttaa.

O STRNG NUMBER

.