ML22269A410: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:Robert E. Ginna Nuclear Power Plant Development of Evacuation Time Estimates Work performed for Constellation , by:
{{#Wiki_filter:}}
KLD Engineering, P.C.
1601 Veterans Memorial Highway, Suite 340 Islandia, NY 11749 Email: kweinisch@kldcompanies.com August 22, 2022                Final Report, Rev. 0        KLD TR - 1261
 
Table of Contents 1    INTRODUCTION .................................................................................................................................. 11 1.1    Overview of the ETE Process...................................................................................................... 11 1.2    The Robert E. Ginna Nuclear Power Plant Location................................................................... 13 1.3    Preliminary Activities ................................................................................................................. 13 1.4    Comparison with Prior ETE Study .............................................................................................. 16 2 STUDY ESTIMATES AND ASSUMPTIONS............................................................................................. 21 2.1    Data Estimates ........................................................................................................................... 21 2.2    Methodological Assumptions .................................................................................................... 22 2.3    Assumptions on Mobilization Times .......................................................................................... 23 2.4    Transit Dependent Assumptions ................................................................................................ 23 2.5    Traffic and Access Control Assumptions .................................................................................... 25 2.6    Scenarios and Regions ............................................................................................................... 26 3 DEMAND ESTIMATION ....................................................................................................................... 31 3.1    Permanent Residents ................................................................................................................. 32 3.2    Shadow Population .................................................................................................................... 32 3.3    Transient Population .................................................................................................................. 33 3.4    Employees .................................................................................................................................. 33 3.5    Medical Facilities ........................................................................................................................ 34 3.6    Transit Dependent Population ................................................................................................... 34 3.7    School Population Demand........................................................................................................ 37 3.8    Special Event .............................................................................................................................. 37 3.9    Access and/or Functional Needs Population ............................................................................. 38 3.10 External Traffic ........................................................................................................................... 38 3.11 Background Traffic ..................................................................................................................... 39 3.12 Summary of Demand ................................................................................................................. 39 4 ESTIMATION OF HIGHWAY CAPACITY................................................................................................ 41 4.1    Capacity Estimations on Approaches to Intersections .............................................................. 42 4.2    Capacity Estimation along Sections of Highway ........................................................................ 44 4.3    Application to the Ginna Study Area.......................................................................................... 46 4.3.1    TwoLane Roads ................................................................................................................. 46 4.3.2    Multilane Highway ............................................................................................................. 46 4.3.3    Freeways ............................................................................................................................ 47 4.3.4    Intersections ...................................................................................................................... 48 4.4    Simulation and Capacity Estimation .......................................................................................... 48 4.5    Boundary Conditions .................................................................................................................. 49 5 ESTIMATION OF TRIP GENERATION TIME .......................................................................................... 51 5.1    Background ................................................................................................................................ 51 5.2    Fundamental Considerations ..................................................................................................... 52 5.3    Estimated Time Distributions of Activities Preceding Event 5 ................................................... 54 5.4    Calculation of Trip Generation Time Distribution ...................................................................... 55 5.4.1    Statistical Outliers .............................................................................................................. 55 5.4.2    Staged Evacuation Trip Generation ................................................................................... 57 Robert E. Ginna Nuclear Power Plant                                    i                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                          Rev. 0
 
5.4.3      Evacuation of Waterways .................................................................................................. 59 6    EVACUATION SCENARIOS .................................................................................................................. 61 7    GENERAL POPULATION EVACUATION TIME ESTIMATES (ETE) .......................................................... 71 7.1      Voluntary Evacuation and Shadow Evacuation ......................................................................... 71 7.2      Staged Evacuation ...................................................................................................................... 72 7.3      Patterns of Traffic Congestion during Evacuation ..................................................................... 72 7.4      Evacuation Rates ........................................................................................................................ 74 7.5      Evacuation Time Estimate (ETE) Results .................................................................................... 74 7.6      Staged Evacuation Results ......................................................................................................... 76 7.7      Guidance on Using ETE Tables ................................................................................................... 77 8 TRANSITDEPENDENT AND SPECIAL FACILITY EVACUATION TIME ESTIMATES ................................. 81 8.1      ETEs for Schools, Transit Dependent People, and Medical Facilities......................................... 82 8.2      ETE for Access and/or Functional Needs Population ................................................................. 89 9 TRAFFIC MANAGEMENT STRATEGY ................................................................................................... 91 9.1      Assumptions ............................................................................................................................... 92 9.2      Additional Considerations .......................................................................................................... 92 10 EVACUATION ROUTES AND RECEPTION CENTERS ........................................................................... 101 10.1 Evacuation Routes.................................................................................................................... 101 10.2 Reception Centers and School Receiving Locations................................................................. 101 List of Appendices A. GLOSSARY OF TRAFFIC ENGINEERING TERMS .................................................................................. A1 B. DYNAMIC TRAFFIC ASSIGNMENT AND DISTRIBUTION MODEL ......................................................... B1 C. DYNEV TRAFFIC SIMULATION MODEL ............................................................................................... C1 C.1      Methodology .............................................................................................................................. C2 C.1.1      The Fundamental Diagram ................................................................................................. C2 C.1.2      The Simulation Model ........................................................................................................ C2 C.1.3      Lane Assignment ................................................................................................................ C6 C.2      Implementation ......................................................................................................................... C6 C.2.1      Computational Procedure .................................................................................................. C6 C.2.2      Interfacing with Dynamic Traffic Assignment (DTRAD) ..................................................... C7 D. DETAILED DESCRIPTION OF STUDY PROCEDURE .............................................................................. D1 E. SPECIAL FACILITY DATA ...................................................................................................................... E1 F. DEMOGRAPHIC SURVEY ..................................................................................................................... F1 F.1      Introduction ............................................................................................................................... F1 F.2      Survey Instrument and Sampling Plan ....................................................................................... F1 F.3      Survey Results ............................................................................................................................ F2 F.3.1 Household Demographic Results ........................................................................................... F2 F.3.2    Evacuation Response ............................................................................................................. F3 F.3.3    Time Distribution Results ....................................................................................................... F4 Robert E. Ginna Nuclear Power Plant                                    ii                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                            Rev. 0
 
G. TRAFFIC MANAGEMENT PLAN .......................................................................................................... G1 G.1    Manual Traffic Control .............................................................................................................. G1 G.2    Analysis of Key TCP /ACP Locations .......................................................................................... G1 H EVACUATION REGIONS ..................................................................................................................... H1 J. REPRESENTATIVE INPUTS TO AND OUTPUTS FROM THE DYNEV II SYSTEM ..................................... J1 K. EVACUATION ROADWAY NETWORK .................................................................................................. K1 L. ERPA BOUNDARIES ............................................................................................................................ L1 M. EVACUATION SENSITIVITY STUDIES ................................................................................................. M1 M.1 Effect of Changes in Trip Generation Times ............................................................................ M1 M.2 Effect of Changes in the Number of People in the Shadow Region Who Relocate ................. M1 M.3 Effect of Changes in the Permanent Resident Population ....................................................... M2 M.4 Effect of Changes in Average Household Size .......................................................................... M3 M.5 Enhancements in Evacuation Time .......................................................................................... M3 N. ETE CRITERIA CHECKLIST ................................................................................................................... N1 Note: Appendix I intentionally skipped Robert E. Ginna Nuclear Power Plant                            iii                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
List of Figures Figure 11. Ginna Location ....................................................................................................................... 113 Figure 12. Ginna LinkNode Analysis Network ....................................................................................... 114 Figure 21. Voluntary Evacuation Methodology ..................................................................................... 210 Figure 31. ERPAs Comprising the Ginna EPZ........................................................................................... 319 Figure 32. Permanent Resident Population by Sector ............................................................................ 320 Figure 33. Permanent Resident Vehicles by Sector ................................................................................ 321 Figure 34. Shadow Population by Sector ................................................................................................ 322 Figure 35. Shadow Vehicles by Sector .................................................................................................... 323 Figure 36. Transient Population by Sector.............................................................................................. 324 Figure 37. Transient Vehicles by Sector .................................................................................................. 325 Figure 38. Employee Population by Sector ............................................................................................. 326 Figure 39. Employee Vehicles by Sector ................................................................................................. 327 Figure 41. Fundamental Diagrams ............................................................................................................ 49 Figure 51. Events and Activities Preceding the Evacuation Trip ............................................................. 516 Figure 52. Time Distributions for Evacuation Mobilization Activities .................................................... 517 Figure 53. Comparison of Data Distribution and Normal Distribution ................................................... 518 Figure 54. Comparison of Trip Generation Distributions ....................................................................... 519 Figure 55. Comparison of Staged and Unstaged Trip Generation Distributions in the 2 to 5 Mile Region .......................................................................................................................... 520 Figure 61. ERPAs Comprising the Ginna EPZ............................................................................................. 69 Figure 71. Voluntary Evacuation Methodology ...................................................................................... 718 Figure 72. Ginna Shadow Region ............................................................................................................ 719 Figure 73. Congestion Patterns at 30 Minutes after the Advisory to Evacuate ..................................... 720 Figure 74. Congestion Patterns at 1 Hour after the Advisory to Evacuate ............................................. 721 Figure 75. Congestion Patterns at 2 Hours after the Advisory to Evacuate ........................................... 722 Figure 76. Congestion Patterns at 3 Hours after the Advisory to Evacuate ........................................... 723 Figure 77. Congestion Patterns at 3 Hours and 25 Minutes after the Advisory to Evacuate ................. 724 Figure 78. Evacuation Time Estimates  Scenario 1 for Region R03 ....................................................... 725 Figure 79. Evacuation Time Estimates  Scenario 2 for Region R03 ....................................................... 725 Figure 710. Evacuation Time Estimates  Scenario 3 for Region R03 ..................................................... 726 Figure 711. Evacuation Time Estimates  Scenario 4 for Region R03 ..................................................... 726 Figure 712. Evacuation Time Estimates  Scenario 5 for Region R03 ..................................................... 727 Figure 713. Evacuation Time Estimates  Scenario 6 for Region R03 ..................................................... 727 Figure 714. Evacuation Time Estimates  Scenario 7 for Region R03 ..................................................... 728 Figure 715. Evacuation Time Estimates  Scenario 8 for Region R03 ..................................................... 728 Figure 716. Evacuation Time Estimates  Scenario 9 for Region R03 ..................................................... 729 Figure 717. Evacuation Time Estimates  Scenario 10 for Region R03 ................................................... 729 Figure 718. Evacuation Time Estimates  Scenario 11 for Region R03 ................................................... 730 Figure 719. Evacuation Time Estimates  Scenario 12 for Region R03 ................................................... 730 Figure 720. Evacuation Time Estimates  Scenario 13 for Region R03 ................................................... 731 Figure 721. Evacuation Time Estimates  Scenario 14 for Region R03 ................................................... 731 Figure 81. Chronology of Transit Evacuation Operations ....................................................................... 828 Figure 101. Evacuation Routes ............................................................................................................... 107 Figure 102. Monroe County TransitDependent Bus Routes ................................................................. 108 Figure 103. Wayne County TransitDependent Bus Routes ................................................................... 109 Robert E. Ginna Nuclear Power Plant                                  iv                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                          Rev. 0
 
Figure 104. Reception Centers and School Receiving Locations .......................................................... 1010 Figure B1. Flow Diagram of SimulationDTRAD Interface........................................................................ B4 Figure C1. Representative Analysis Network ......................................................................................... C12 Figure C2. Fundamental Diagrams ......................................................................................................... C13 Figure C3. A UNIT Problem Configuration with t1 > 0 ............................................................................ C13 Figure C4. Flow of Simulation Processing (See Glossary: Table C3) .................................................... C14 Figure D1. Flow Diagram of Activities ..................................................................................................... D5 Figure E1. Overview of Schools within the Study Area............................................................................. E8 Figure E2. Monroe County Schools within the Study Area ....................................................................... E9 Figure E3. Wayne County Schools within the Study Area ...................................................................... E10 Figure E4. Overview of Preschools/Day Care Centers and Day Camps within the EPZ .......................... E11 Figure E5. Monroe Preschools/Day Care Centers and Day Camps within the EPZ................................. E12 Figure E6. Wayne County Preschools/Day Care Centers within the EPZ ................................................ E13 Figure E7. Medical Facilities within the EPZ ........................................................................................... E14 Figure E8. Major Employers within the EPZ............................................................................................ E15 Figure E9. Transient Attractions within the EPZ ..................................................................................... E16 Figure E10. Lodging Facilities within the EPZ .......................................................................................... E17 Figure F1. Household Size in the EPZ ........................................................................................................ F6 Figure F2. Household Vehicle Availability ................................................................................................. F7 Figure F3. Vehicle Availability  1 to 3 Person Households ....................................................................... F7 Figure F4. Vehicle Availability  4 to 7 Person Households ....................................................................... F8 Figure F5. Household Ridesharing Preference ......................................................................................... F8 Figure F6. Commuters per Households in the EPZ ................................................................................... F9 Figure F7. Modes of Travel in the EPZ ...................................................................................................... F9 Figure F8. Impact to Commuters due to the COVID19 Pandemic ......................................................... F10 Figure F9. Households with Functional or Transportation Needs .......................................................... F10 Figure F10. Number of Vehicles Used for Evacuation ............................................................................ F11 Figure F11. Percent of Households that Await Returning Commuter Before Leaving ........................... F11 Figure F12. Households Evacuating with Pets/Animals .......................................................................... F12 Figure F13. Shelter in Place Characteristics ............................................................................................ F12 Figure F14. Shelter Then Evacuate Characteristics ................................................................................. F13 Figure F15. Study Area Evacuation Destinations .................................................................................... F13 Figure F16. Time Required to Prepare to Leave Work/College .............................................................. F14 Figure F17. Time to Commute Home from Work/College...................................................................... F14 Figure F18. Time to Prepare Home for Evacuation ................................................................................ F15 Figure F19. Time to Remove 68 of Snow from Driveway .................................................................... F15 Figure G1. Traffic Control Points and Access Control Points for the Ginna EPZ ...................................... G5 Figure H1. Region R01.............................................................................................................................. H4 Figure H2. Region R02.............................................................................................................................. H5 Figure H3. Region R03.............................................................................................................................. H6 Figure H4. Region R04.............................................................................................................................. H7 Figure H5. Region R05.............................................................................................................................. H8 Figure H6. Region R06.............................................................................................................................. H9 Figure H7. Region R07............................................................................................................................ H10 Figure H8. Region R08............................................................................................................................ H11 Figure H9. Region R09............................................................................................................................ H12 Figure H10. Region R10.......................................................................................................................... H13 Robert E. Ginna Nuclear Power Plant                                  v                                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                          Rev. 0
 
Figure H11. Region R11.......................................................................................................................... H14 Figure H12. Region R12.......................................................................................................................... H15 Figure H13. Region R13.......................................................................................................................... H16 Figure H14. Region R14.......................................................................................................................... H17 Figure H15. Region R15.......................................................................................................................... H18 Figure H16. Region R16.......................................................................................................................... H19 Figure H17. Region R17.......................................................................................................................... H20 Figure H18. Region R18.......................................................................................................................... H21 Figure H19. Region R19.......................................................................................................................... H22 Figure H20. Region R20.......................................................................................................................... H23 Figure H21. Region R21.......................................................................................................................... H24 Figure H22. Region R22.......................................................................................................................... H25 Figure H23. Region R23.......................................................................................................................... H26 Figure H24. Region R24.......................................................................................................................... H27 Figure H25. Region 25 ............................................................................................................................ H28 Figure H26. Region 26 ............................................................................................................................ H29 Figure H27. Region 27 ............................................................................................................................ H30 Figure H28. Region 28 ............................................................................................................................ H31 Figure H29. Region 29 ............................................................................................................................ H32 Figure H30. Region 30 ............................................................................................................................ H33 Figure J1. Network Sources/Origins.......................................................................................................... J5 Figure J2. ETE and Trip Generation: Summer, Midweek, Midday, Good Weather (Scenario 1) .............. J6 Figure J3. ETE and Trip Generation: Summer, Midweek, Midday, Rain (Scenario 2) ............................. J6 Figure J4. ETE and Trip Generation: Summer, Weekend, Midday, Good Weather (Scenario 3).............. J7 Figure J5. ETE and Trip Generation: Summer, Weekend, Midday, Rain (Scenario 4) ............................. J7 Figure J6. ETE and Trip Generation: Summer, Midweek, Weekend, Evening, Good Weather (Scenario 5) ....................................................................................... J8 Figure J7. ETE and Trip Generation: Winter, Midweek, Midday, Good Weather (Scenario 6) ................ J8 Figure J8. ETE and Trip Generation: Winter, Midweek, Midday, Rain/Light Snow (Scenario 7) .............. J9 Figure J9. ETE and Trip Generation: Winter, Midweek, Midday, Heavy Snow (Scenario 8) ..................... J9 Figure J10. ETE and Trip Generation: Winter, Weekend, Midday, Good Weather (Scenario 9) ............ J10 Figure J11. ETE and Trip Generation: Winter, Weekend, Midday, Rain/Light Snow (Scenario 10) ....... J10 Figure J12. ETE and Trip Generation: Winter, Weekend, Midday, Heavy Snow (Scenario 11) .............. J11 Figure J13. ETE and Trip Generation: Winter, Midweek, Weekend, Evening, Good Weather (Scenario 12) ................................................................................... J11 Figure J14. ETE and Trip Generation: Summer, Weekend, Midday, Good Weather, Special Event (Scenario 13)............................................................. J12 Figure J15. ETE and Trip Generation: Summer, Midweek, Midday, Good Weather, Roadway Impact (Scenario 14) ....................................................... J12 Figure K1. Ginna LinkNode Analysis Network ......................................................................................... K2 Figure K2. LinkNode Analysis Network - Grid 1 ..................................................................................... K3 Figure K3. LinkNode Analysis Network - Grid 2 ..................................................................................... K4 Figure K4. LinkNode Analysis Network - Grid 3 ..................................................................................... K5 Figure K5. LinkNode Analysis Network - Grid 4 ..................................................................................... K6 Figure K6. LinkNode Analysis Network - Grid 5 ..................................................................................... K7 Figure K7. LinkNode Analysis Network - Grid 6 ..................................................................................... K8 Figure K8. LinkNode Analysis Network - Grid 7 ..................................................................................... K9 Robert E. Ginna Nuclear Power Plant                                  vi                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                          Rev. 0
 
Figure K9. LinkNode Analysis Network - Grid 8 ................................................................................... K10 Figure K10. LinkNode Analysis Network - Grid 9 ................................................................................. K11 Figure K11. LinkNode Analysis Network - Grid 10 ............................................................................... K12 Figure K12. LinkNode Analysis Network - Grid 11 ............................................................................... K13 Figure K13. LinkNode Analysis Network - Grid 12 ............................................................................... K14 Figure K14. LinkNode Analysis Network - Grid 13 ............................................................................... K15 Figure K15. LinkNode Analysis Network - Grid 14 ............................................................................... K16 Figure K16. LinkNode Analysis Network - Grid 15 ............................................................................... K17 Figure K17. LinkNode Analysis Network - Grid 16 ............................................................................... K18 Figure K18. LinkNode Analysis Network - Grid 17 ............................................................................... K19 Figure K19. LinkNode Analysis Network - Grid 18 ............................................................................... K20 Figure K20. LinkNode Analysis Network - Grid 19 ............................................................................... K21 Figure K21. LinkNode Analysis Network - Grid 20 ............................................................................... K22 Figure K22. LinkNode Analysis Network - Grid 21 ............................................................................... K23 Figure K23. LinkNode Analysis Network - Grid 22 ............................................................................... K24 Figure K24. LinkNode Analysis Network - Grid 23 ............................................................................... K25 Figure K25. LinkNode Analysis Network - Grid 24 ............................................................................... K26 Figure K26. LinkNode Analysis Network - Grid 25 ............................................................................... K27 Figure K27. LinkNode Analysis Network - Grid 26 ............................................................................... K28 Figure K28. LinkNode Analysis Network - Grid 27 ............................................................................... K29 Figure K29. LinkNode Analysis Network - Grid 28 ............................................................................... K30 Figure K30. LinkNode Analysis Network - Grid 29 ............................................................................... K31 Figure K31. LinkNode Analysis Network - Grid 30 ............................................................................... K32 Figure K32. LinkNode Analysis Network - Grid 31 ............................................................................... K33 Figure K33. LinkNode Analysis Network - Grid 32 ............................................................................... K34 Figure K34. LinkNode Analysis Network - Grid 33 ............................................................................... K35 Figure K35. LinkNode Analysis Network - Grid 34 ............................................................................... K36 Figure K36. LinkNode Analysis Network - Grid 35 ............................................................................... K37 Figure K37. LinkNode Analysis Network - Grid 36 ............................................................................... K38 Figure K38. LinkNode Analysis Network - Grid 37 ............................................................................... K39 Figure K39. LinkNode Analysis Network - Grid 38 ............................................................................... K40 Figure K40. LinkNode Analysis Network - Grid 39 ............................................................................... K41 Figure K41. LinkNode Analysis Network - Grid 40 ............................................................................... K42 Figure K42. LinkNode Analysis Network - Grid 41 ............................................................................... K43 Figure K43. LinkNode Analysis Network - Grid 42 ............................................................................... K44 Figure K44. LinkNode Analysis Network - Grid 43 ............................................................................... K45 Figure K45. LinkNode Analysis Network - Grid 44 ............................................................................... K46 Figure K46. LinkNode Analysis Network - Grid 45 ............................................................................... K47 Figure K47. LinkNode Analysis Network - Grid 46 ............................................................................... K48 Figure K48. LinkNode Analysis Network - Grid 47 ............................................................................... K49 Figure K49. LinkNode Analysis Network - Grid 48 ............................................................................... K50 Figure K50. LinkNode Analysis Network - Grid 49 ............................................................................... K51 Figure K51. LinkNode Analysis Network - Grid 50 ............................................................................... K52 Figure K52. LinkNode Analysis Network - Grid 51 ............................................................................... K53 Figure K53. LinkNode Analysis Network - Grid 52 ............................................................................... K54 Figure K54. LinkNode Analysis Network - Grid 53 ............................................................................... K55 Figure K55. LinkNode Analysis Network - Grid 54 ............................................................................... K56 Robert E. Ginna Nuclear Power Plant                vii                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Figure K56. LinkNode Analysis Network - Grid 55 ............................................................................... K57 Figure K57. LinkNode Analysis Network - Grid 56 ............................................................................... K58 Figure K58. LinkNode Analysis Network - Grid 57 ............................................................................... K59 Figure K59. LinkNode Analysis Network - Grid 58 ............................................................................... K60 Figure K60. LinkNode Analysis Network - Grid 59 ............................................................................... K61 Figure K61. LinkNode Analysis Network - Grid 60 ............................................................................... K62 Figure K62. LinkNode Analysis Network - Grid 61 ............................................................................... K63 Figure K63. LinkNode Analysis Network - Grid 62 ............................................................................... K64 Figure K64. LinkNode Analysis Network - Grid 63 ............................................................................... K65 Figure K65. LinkNode Analysis Network - Grid 64 ............................................................................... K66 List of Tables Table 11. Stakeholder Interaction ............................................................................................................ 18 Table 12. Highway Characteristics ............................................................................................................ 18 Table 13. ETE Study Comparisons ............................................................................................................. 19 Table 21. Evacuation Scenario Definitions ............................................................................................... 28 Table 22. Model Adjustment for Adverse Weather................................................................................. 29 Table 31. EPZ Permanent Resident Population ...................................................................................... 310 Table 32. Permanent Resident Population and Vehicles by ERPA ......................................................... 310 Table 33. Shadow Population and Vehicles by Sector ............................................................................ 311 Table 34. Summary of Transients and Transient Vehicles ...................................................................... 311 Table 35. Summary of Employees and Employee Vehicles Commuting into the EPZ ............................ 312 Table 36. Medical Facility Transit Demand ............................................................................................. 313 Table 37. Transit Dependent Population Estimates .............................................................................. 313 Table 38. School Population Demand Estimates .................................................................................... 314 Table 39. Access and/or Functional Needs Demand Summary .............................................................. 316 Table 310. Ginna EPZ External Traffic ..................................................................................................... 316 Table 311. Summary of Population Demand ......................................................................................... 317 Table 312. Summary of Vehicle Demand ............................................................................................... 318 Table 51. Event Sequence for Evacuation Activities ............................................................................... 510 Table 52. Time Distribution for Notifying the Public .............................................................................. 510 Table 53. Time Distribution for Employees to Prepare to Leave Work .................................................. 510 Table 54. Time Distribution for Commuters to Travel Home ................................................................. 511 Table 55. Time Distribution for Population to Prepare to Evacuate ...................................................... 511 Table 56. Time Distribution for Population to Clear 6 - 8 of Snow ..................................................... 512 Table 57. Mapping Distributions to Events............................................................................................. 512 Table 58. Description of the Distributions .............................................................................................. 513 Table 59. Trip Generation Histograms for the EPZ Population for Unstaged Evacuation ...................... 514 Table 510. Trip Generation Histograms for the EPZ Population for Staged Evacuation ........................ 515 Table 61. Description of Evacuation Regions........................................................................................... 64 Table 62. Evacuation Scenario Definitions............................................................................................... 66 Table 63. Percent of Population Groups Evacuating for Various Scenarios ............................................ 67 Table 64. Vehicle Estimates by Scenario .................................................................................................. 68 Table 71. Time to Clear the Indicated Area of 90 Percent of the Affected Population .......................... 710 Table 72. Time to Clear the Indicated Area of 100 Percent of the Affected Population ........................ 712 Robert E. Ginna Nuclear Power Plant                          viii                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
Table 73. Time to Clear 90 Percent of the 2Mile Region within the Indicated Region.......................... 714 Table 74. Time to Clear 100 Percent of the 2Mile Region within the Indicated Region ....................... 715 Table 75. Description of Evacuation Regions ......................................................................................... 716 Table 81. Summary of Transportation Resources .................................................................................. 811 Table 82. School Evacuation Time Estimates - Good Weather .............................................................. 812 Table 83. School Evacuation Time Estimates - Rain/Light Snow ........................................................... 814 Table 84. School Evacuation Time Estimates - Heavy Snow .................................................................. 816 Table 85. TransitDependent Evacuation Time Estimates - Good Weather .......................................... 818 Table 86. TransitDependent Evacuation Time Estimates - Rain/Light Snow ........................................ 820 Table 87. Transit Dependent Evacuation Time Estimates - Heavy Snow............................................... 822 Table 88. Medical Facility Evacuation Time Estimates - Good Weather ............................................... 824 Table 89. Medical Facility Evacuation Time Estimates - Rain/Light Snow ............................................. 825 Table 810. Medical Facility Evacuation Time Estimates - Heavy Snow.................................................. 826 Table 811. Evacuation Time Estimates for Access and/or Functional Needs Population ...................... 827 Table 101. Summary of TransitDependent Bus Routes ......................................................................... 102 Table 102. Bus Route Descriptions ......................................................................................................... 103 Table 103. Reception Centers/School Receiving Locations for Schools ................................................. 106 Table A1. Glossary of Traffic Engineering Terms .................................................................................... A1 Table C1. Selected Measures of Effectiveness Output by DYNEV II ........................................................ C8 Table C2. Input Requirements for the DYNEV II Model ........................................................................... C9 Table C3. Glossary ..................................................................................................................................C10 Table E1. Schools within the Study Area .................................................................................................. E2 Table E2. Preschools/Day Care Centers and Day Camps within the EPZ .................................................. E3 Table E3. Medical Facilities within the EPZ............................................................................................... E4 Table E4. Major Employers within the EPZ ............................................................................................... E5 Table E5. Transient Attractions within the EPZ ........................................................................................ E6 Table E6. Lodging Facilities within the EPZ ............................................................................................... E7 Table F1. Ginna Demographic Survey Sampling Plan ............................................................................... F6 Table G1. List of Manual Traffic Control Locations at intersections without Actuated Signals .............. G3 Table G2. ETE with and without Modification to TMP .......................................................................... G4 Table H1. Percent of ERPA Population Evacuating for Each Region ........................................................ H2 Table J1. Sample Simulation Model Input ................................................................................................ J2 Table J2. Selected Model Outputs for the Evacuation of the Entire EPZ (Region R03) ............................ J3 Table J3. Average Speed (mph) and Travel Time (min) for Major Evacuation Routes (Region R03, Scenario 1)................................................................................... J3 Table J4. Simulation Model Outputs at Network Exit Links for Region R03, Scenario 1 .......................... J4 Table K1. Summary of Nodes by the Type of Control ............................................................................... K1 Table M1. Evacuation Time Estimates for Trip Generation Sensitivity Study ........................................ M5 Table M2. Evacuation Time Estimates for Shadow Sensitivity Study ..................................................... M5 Table M3. Evacuation Time Estimates for Variation with Population Change ....................................... M5 Table M4. Evacuation Time Estimates for Change in Average Household Size ...................................... M6 Table N1. ETE Review Criteria Checklist ................................................................................................. N1 Robert E. Ginna Nuclear Power Plant                                    ix                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                            Rev. 0
 
EXECUTIVE
 
==SUMMARY==
 
This report describes the analyses undertaken and the results obtained by a study to develop Evacuation Time Estimates (ETE) for the R.E. Ginna Nuclear Power Plant (Ginna) located in Wayne County, New York. ETE are part of the required planning basis and provide Constellation Energy Generation, LLC (Constellation) and state and county governments with sitespecific information needed for Protective Action Decisionmaking.
In the performance of this effort, guidance is provided by documents published by Federal Governmental agencies. Most important of these are:
Title 10, Code of Federal Regulations, Appendix E to Part 50 (10CFR50), Emergency Planning and Preparedness for Production and Utilization Facilities, NRC, 2011.
Revision 1 of the Criteria for Development of Evacuation Time Estimate Studies, NUREG/CR7002, February 2021.
FEMA, Radiological Emergency Preparedness Program Manual (FEMA P1028),
December 2019.
Overview of Project Activities This project began in October, 2020 and extended over twenty months. The major activities performed are briefly described in chronological sequence:
Attended kickoff meetings with Constellation personnel and emergency management personnel representing state and county governments.
Accessed the 2020 U.S. Census Bureau data files.
Employment data was obtained from Constellation and the EPZ county emergency management agencies, supplemented by Census data.
Studied Geographic Information Systems (GIS) maps of the area in the vicinity of the plant, then conducted a detailed field survey of the highway network to observe any roadway changes relative to the previous ETE study done in 2012.
Updated the analysis network representing the highway system topology and capacities within the entire Emergency Planning Zone (EPZ), plus a Shadow Region covering the region between the EPZ boundary and approximately 15 miles radially from the plant.
Conducted an online demographic survey of residents within the study area, to gather focused data needed for this ETE study that were not contained within the census database.
Special facility data was requested from the counties at the kickoff meeting. If updated information was not provided and data could not be obtained from online sources, the data gathered in the 2012 ETE study was utilized, supplemented by internet searches and aerial imagery.
Robert E. Ginna Nuclear Power Plant            ES1                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
The traffic demand and tripgeneration rates of evacuating vehicles were estimated from the gathered data. The trip generation rates reflect the estimated mobilization time (i.e., the time required by evacuees to prepare for the evacuation trip) computed using the results of the demographic survey.
Following federal guidelines, the EPZ is subdivided into 18 Emergency Response Planning Areas (ERPA). These ERPA are then grouped within circular areas or keyhole configurations (circles plus radial sectors) that define a total of 30 Evacuation Regions.
The timevarying external circumstances are represented as Evacuation Scenarios, each described in terms of the following factors: (1) Season (Summer, Winter); (2) Day of Week (Midweek, Weekend); (3) Time of Day (Midday, Evening); and (4) Weather (Good, Rain/Light Snow, Heavy Snow). One special event scenario - the Webster Fathers Day Soccer Tournament - was considered. One roadway impact scenario was considered wherein State Route 104 (SR104) was closed from the intersection with Ontario Center Rd to the interchange with SR590 (Exits 10A and 10B).
Staged evacuation was considered for those regions wherein the 2Mile Region and sectors downwind to 5 miles were evacuated.
As per NUREG/CR7002 Rev. 1, the Planning Basis for the calculation of ETE is:
A rapidly escalating accident at the plant that quickly assumes the status of General Emergency such that the Advisory to Evacuate (ATE) is virtually coincident with the siren alert, and no early protective actions have been implemented.
While an unlikely accident scenario, this planning basis will yield ETE, measured as the elapsed time from the ATE until the stated percentage of the population exits the impacted Region, that represent upper bound estimates. This conservative Planning Basis is applicable for all initiating events.
If the emergency occurs while schools are in session, the ETE study assumes that the children will be evacuated by bus directly to reception centers or school receiving locations located outside the EPZ. Parents, relatives, and neighbors are advised to not pick up their children at school prior to the arrival of the buses dispatched for that purpose. The ETE for schoolchildren are calculated separately.
Attended final meeting with Constellation personnel and county and state representatives to present results from the study.
Computation of ETE A total of 420 ETE were computed for the evacuation of the general public. Each ETE quantifies the aggregate evacuation time estimated for the population within one of the 30 Evacuation Regions to evacuate from that Region, under the circumstances defined for one of the 14 Evacuation Scenarios (30 x 14 = 420). Separate ETE are calculated for transitdependent evacuees, including schoolchildren for applicable scenarios.
Robert E. Ginna Nuclear Power Plant              ES2                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Except for Region R03, which is the evacuation of the entire EPZ, only a portion of the people within the EPZ would be advised to evacuate. That is, the ATE applies only to those people occupying the specified impacted region. It is assumed that 100% of the people within the impacted region will evacuate in response to this Advisory. The people occupying the remainder of the EPZ outside the impacted region may be advised to take shelter.
The computation of ETE assumes that 20% of the population within the EPZ but outside the impacted region, will elect to voluntarily evacuate. In addition, 20% of the population in the Shadow Region will also elect to evacuate. These voluntary evacuees could impede those who are evacuating from within the impacted region. The impedance that could be caused by voluntary evacuees is considered in the computation of ETE for the impacted region.
Staged evacuation is considered wherein those people within the 2Mile Region evacuate immediately, while those beyond 2 miles, but within the EPZ, shelterinplace. Once 90% of the 2Mile Region is evacuated, those people beyond 2 miles begin to evacuate. As per federal guidance, 20% of people beyond 2 miles will evacuate (noncompliance) even though they are advised to shelterinplace during a staged evacuation.
The computational procedure is outlined as follows:
A linknode representation of the highway network is coded. Each link represents a unidirectional length of highway; each node usually represents an intersection or merge point. The capacity of each link is estimated based on the field survey observations and on established traffic engineering procedures.
The evacuation trips are generated at locations called zonal centroids located within the EPZ and Shadow Region. The trip generation rates vary over time reflecting the mobilization process, and from one location (centroid) to another depending on population density and on whether a centroid is within, or outside, the impacted area.
The evacuation model computes the routing patterns for evacuating vehicles that are compliant with federal guidelines (outbound relative to the location of the plant), then simulates the traffic flow movements over space and time. This simulation process estimates the rate that traffic flow exits the impacted region.
The ETE statistics provide the elapsed times for 90% and 100%, respectively, of the population within the impacted region, to evacuate from within the impacted region. These statistics are presented in tabular and graphical formats. The 90th percentile ETE have been identified as the values that should be considered when making protective action decisions because the 100th percentile ETE are prolonged by those relatively few people who take longer to mobilize. This is referred to as the evacuation tail in Section 4.0 of NUREG/CR7002, Rev. 1. The 100th percentile ETE is when the last vehicle to evacuate crosses the boundary of the area being evacuated.
Traffic Management This study references the comprehensive traffic management plans provided by Wayne and Monroe Counties in their Radiological Emergency Response Plans. Due to the detailed plans Robert E. Ginna Nuclear Power Plant              ES3                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
already in place and the limited traffic congestion within the EPZ, no additional traffic or access control measures have been identified as a result of this study.
Selected Results A compilation of selected information is presented on the following pages in the form of figures and tables extracted from the body of the report; these are described below.
Table 31 presents the estimates of permanent resident population in each ERPA based on the 2020 Census data.
Table 61 defines each of the 30 Evacuation Regions in terms of their respective groups of evacuating ERPAs.
Table 62 lists the Evacuation Scenarios.
Tables 71 and 72 are compilations of ETE. These data are the times needed to clear the indicated regions of 90% and 100% of the population occupying these regions, respectively. These computed ETE include consideration of mobilization time and of estimated voluntary evacuations from other regions within the EPZ and from the Shadow Region.
Tables 73 and 74 present ETE for the 2Mile Region when evacuating additional ERPAs downwind to 5 miles for unstaged and staged evacuations for the 90th and 100th percentiles, respectively.
Table 82 presents ETE for the children at schools in good weather.
Table 85 presents ETE for the transitdependent population in good weather.
Table 88 presents ETE for medical facilities in good weather.
Figure 61 displays a map of the Ginna EPZ showing the layout of the 18 ERPAs that comprise, in aggregate, the EPZ.
Figure H8 presents an example of an Evacuation Region (Region R08) to be evacuated under the circumstances defined in Table 61. Maps of all regions are provided in Appendix H.
Conclusions General population ETE were computed for 420 unique cases - a combination of 30 unique Evacuation Regions and 14 unique Evacuation Scenarios. Table 71 and Table 72 document these ETE for the 90th and 100th percentiles. These ETE range from 2:05 (hr:min) to 3:30 at the 90th percentile and 3:45 to 5:10 at the 100th percentile.
Inspection of Table 71 and Table 72 indicates that the ETE for the 100th percentile are significantly longer than those for the 90th percentile. This is the result of the relatively long mobilization time of a small proportion of the resident population and some isolated traffic congestion within the EPZ. When the system becomes congested, traffic exits the EPZ at rates somewhat below capacity until some evacuation routes have cleared. As more routes clear, the aggregate rate of egress slows since many vehicles have already left the EPZ. Towards the end of the process, relatively few evacuees (those with the longest mobilization times) travel freely out of the EPZ. See Figures 78 through 721.
Inspection of Table 73 and Table 74 indicates that a staged evacuation provides no Robert E. Ginna Nuclear Power Plant              ES4                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
benefit to evacuees from within the 2Mile Region and adversely impacts evacuees located beyond 2 miles from the plant (compare Regions R23 through R30 and Regions R02 and R04 through R10, respectively, in Tables 71 and 72). See Section 7.6 for additional discussion.
Comparison of Scenarios 3 and 13 in Table 71 indicates that the Special Event - the Fathers Day Soccer Tournament in Webster - does not have a significant impact on the ETE for the 90th or 100th percentiles. See Section 7.5 for additional discussion.
Comparison of Scenarios 1 and 14 in Table 71 indicates that the roadway closure - one lane on SR104 westbound from the interchange with Ontario Center Rd to the interchange with SR590 - does not significantly change the ETE for some regions. The only regions wherein 90th percentile ETE are impacted (up to 20 minute increases) by the roadway closure are those regions wherein much of the Monroe County portion of the EPZ is evacuating - Regions R03, and R11 through R15. See Section 7.5.
Most of the congestion in the EPZ is along the SR104 corridor, eastbound and westbound. The western half of the EPZ is more congested as the population is higher and the traffic shares the roadways with shadow evacuees in the densely populated suburbs of Rochester. All links within the EPZ are at LOS A (freeflowing traffic conditions) at 3 hours after the ATE. See Section 7.3 and Figures 73 through 77.
Separate ETE were computed for schools, medical facilities, transitdependent persons, and access and/or functional needs persons. The average singlewave ETE for some of these population groups exceed the 90th percentile general population ETE and could impact Protective Action Decision making. See Section 8.
Table 81 indicates that there are enough transportation resources to evacuate schools, medical facilities, transitdependent persons, and access and/or functional needs persons in a single wave. See Section 8.1 and 8.2, and Table 81.
Compressing the mobilization time of evacuees by one hour reduces the general population ETE at the 90th percentile by 25 minutes. An increase in mobilization time by one hour increases the ETE by 10 minutes at the 90th. Neither of these are significant changes. See Table M1.
The 90th and 100th percentile ETE for the general population is insensitive to increases in the number of voluntary evacuees in the Shadow Region. When the shadow percent is increased to 100%, the 90th and 100th percentile ETE increases by 5 minutes. Although the Shadow Region to the west of the EPZ is densely populated, the roadway system is robust with several highcapacity interstates which can accommodate the evacuation demand. See Table M2.
An increase in permanent resident population (EPZ plus Shadow Region) of 53% or greater results in an increase in the longest 90th percentile ETE of 30 minutes, which meets the federal criterion for performing a fully updated ETE study between decennial censuses. See Section M.3.
A decrease in the average household size from 3.03 people per household to 2.41 people per household will result in 26% more evacuating vehicles and minimally impacts ETE with an increase of at most 5 minutes at the 90th percentile and no impact to the 100th percentile ETE. See Section M.4.
Robert E. Ginna Nuclear Power Plant            ES5                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Table 31. EPZ Permanent Resident Population ERPA            2010 Population      2020 Population M1                  4,721                4,824 M2                    666                  915 M3                  1,039                1,029 M4                  8,088                8,691 M5                  1,323                1,423 M6                  7,088                8,412 M7                  9,525                10,827 M8                  3,151                3,085 M9                  3,931                3,835 MLake                    0                    0 W1                  4,197                4,439 W2                  5,939                6,007 W3                  1,168                1,187 W4                  2,117                2,163 W5                  4,232                4,021 W6                  2,189                2,120 W7                  4,575                4,590 WLake                    0                    0 EPZ TOTAL:          63,949                67,568 EPZ Population Growth (20102020):            5.66%
Robert E. Ginna Nuclear Power Plant                ES6                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Table 61. Description of Evacuation Regions Radial Regions Emergency Response Planning Area Wind From Region    Description                                                              W                        M  M                          M (in Degrees) W1 W2    W3 W4 W5 W6 W7                      M1 M2 M3              M6 M7  M8    M9 Lake                        4 5                        Lake R01      2Mile Region        N/A      X                                            X R02      5Mile Region        N/A      X  X      X                                  X      X                                                X R03        Full EPZ          N/A      X  X      X      X      X      X      X      X      X      X    X    X X  X  X    X      X      X Evacuate 2Mile Region and Downwind to 5 Miles Emergency Response Planning Area Wind Direction    Wind From Region                                                                              W                        M  M                          M From        (in Degrees) W1 W2    W3 W4 W5 W6 W7                      M1 M2 M3              M6 M7  M8    M9 Lake                        4 5                        Lake R04            N          34911    X  X      X                                  X      X R05          NNE            1233    X  X                                        X      X R06        NE, ENE, E      34101    X  X                                        X      X                                                X R07        ESE, SE        102146    X                                            X      X                                                X R08          SSE, S        147191    X                                            X                                                        X N/A          SSW          192214                                                  Refer to Region R01 R09        SW, WSW          215258    X          X                                  X W, WNW, NW, R10                        259348    X  X      X                                  X NNW Evacuate 2Mile Region and Downwind to the EPZ Boundary Emergency Response Planning Area Wind Direction    Wind From Region                                                                              W                        M  M                          M From        (in Degrees) W1 W2 W3 W4 W5 W6 W7                          M1 M2 M3              M6 M7  M8    M9 Lake                        4 5                        Lake R11            N          34911    X  X      X            X      X      X      X      X      X    X    X X      X R12          NNE            1233    X  X                    X      X      X      X      X      X    X    X X  X  X    X      X R13        NE, ENE          3478    X  X                                  X      X      X      X    X    X X  X  X    X      X      X R14            E          79101    X  X                                        X      X      X    X    X X  X  X    X      X      X R15          ESE          102124    X                                            X      X            X    X    X  X    X      X      X R16            SE          125146    X                                            X      X                        X        X            X R17      SSE, S, SSW      147214    X                                            X                                                        X R18            SW          215236    X          X      X                          X R19          WSW            237258    X          X      X      X                    X R20            W            259281    X  X      X      X      X      X            X R21      WNW, NW          282326    X  X      X      X      X      X      X      X R22          NNW            327348    X  X      X      X      X      X      X      X              X            X Robert E. Ginna Nuclear Power Plant                                    ES7                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
Staged Evacuation  2Mile Region Evacuates, then Evacuate Downwind to 5 Miles Emergency Response Planning Area Wind Direction      Wind From Region                                                                                      W                            M    M                                  M From          (in Degrees)  W1 W2 W3 W4 W5 W6 W7                              M1 M2 M3                        M6    M7    M8    M9 Lake                            4    5                                  Lake R23          N/A        5Mile Region    X      X    X                                    X      X                                                                X R24            N              34911      X      X    X                                    X      X R25          NNE              1233      X      X                                          X      X R26        NE, ENE, E        34101      X      X                                          X      X                                                                X R27        ESE, SE          102146    X                                                X      X                                                                X R28          SSE, S          147191    X                                                X                                                                        X N/A          SSW            192214                                                        Refer to Region R01 R29        SW, WSW            215258    X            X                                    X W, WNW, NW, R30                          259348    X      X    X                                    X NNW ERPA(s) Evacuate                              ERPA(s) ShelterinPlace                      ERPA(s) ShelterinPlace until 90% ETE for R01, then Evacuate Robert E. Ginna Nuclear Power Plant                                            ES8                                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                          Rev. 0
 
Table 62. Evacuation Scenario Definitions Scenario              Season1        Day of Week          Time of Day          Weather                    Special 1                Summer          Midweek              Midday              Good                      None 2                Summer          Midweek              Midday              Rain                      None 3                Summer          Weekend              Midday              Good                      None 4                Summer          Weekend              Midday              Rain                      None Midweek, 5                Summer                                Evening            Good                      None Weekend 6                Winter          Midweek              Midday              Good                      None Rain/Light 7                Winter          Midweek              Midday                                        None Snow 8                Winter          Midweek              Midday          Heavy Snow                    None 9                Winter          Weekend              Midday              Good                      None Rain/Light 10                  Winter          Weekend              Midday                                        None Snow 11                  Winter          Weekend              Midday          Heavy Snow                    None Midweek, 12                  Winter                                Evening            Good                      None Weekend Webster Fathers Day 13                Summer          Weekend              Midday              Good Soccer Tournament Roadway Impact - Lane 14                Summer          Midweek              Midday              Good Closure on SR 104 WB 1
Winter assumes that school is in session at normal enrollment levels (also applies to spring and autumn). Summer means that school is in session at summer school enrollment levels (lower than normal enrollment).
Robert E. Ginna Nuclear Power Plant                            ES9                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                              Rev. 0
 
Table 71. Time to Clear the Indicated Area of 90 Percent of the Affected Population Summer            Summer        Summer                Winter                        Winter            Winter Summer    Summer Midweek                                                              Midweek Midweek            Weekend                              Midweek                      Weekend                    Weekend  Midweek Weekend                                                              Weekend Scenario:      (1)      (2)      (3)      (4)        (5)        (6)        (7)    (8)      (9)      (10)    (11)    (12)    (13)      (14)
Midday            Midday          Evening              Midday                        Midday          Evening Midday    Midday Rain/                        Rain/
Region      Good              Good                Good        Good              Heavy    Good              Heavy    Good    Special  Roadway Rain                Rain                            Light                        Light Weather            Weather            Weather Weather                  Snow Weather                Snow  Weather  Event    Impact Snow                        Snow Entire 2Mile Region, 5Mile Region, and EPZ R01        2:30    2:30      2:10      2:10      2:10        2:30      2:30    3:15      2:10      2:10    2:55    2:10    2:10      2:30 R02        2:30    2:30      2:10      2:15      2:10        2:30      2:30    3:15      2:10      2:15    2:55    2:10    2:10      2:30 R03        2:35    2:35      2:15      2:20      2:15        2:35      2:35    3:20      2:15      2:20    3:00    2:15    2:15      2:45 2Mile Region and Keyhole to 5 Miles R04        2:30    2:30      2:10      2:15      2:10        2:30      2:30    3:15      2:10      2:15    2:55    2:10    2:10      2:30 R05        2:25    2:25      2:10      2:10      2:10        2:25      2:25    3:10      2:10      2:10    2:45    2:10    2:10      2:25 R06        2:25    2:25      2:10      2:10      2:10        2:25      2:25    3:10      2:10      2:10    2:45    2:10    2:10      2:25 R07        2:25    2:25      2:10      2:10      2:10        2:25      2:25    3:10      2:10      2:10    2:50    2:10    2:10      2:25 R08        2:30    2:30      2:10      2:10      2:10        2:30      2:30    3:15      2:10      2:10    2:55    2:10    2:10      2:30 R09        2:15    2:20      2:05      2:10      2:10        2:15      2:20    2:55      2:05      2:10    2:35    2:10    2:05      2:15 R10        2:25    2:25      2:10      2:15      2:10        2:25      2:25    3:05      2:10      2:15    2:45    2:10    2:10      2:25 2Mile Region and Keyhole to EPZ Boundary R11        2:30    2:35      2:15      2:15      2:15        2:30      2:35    3:15      2:15      2:20    2:55    2:15    2:15      2:40 R12        2:30    2:35      2:15      2:20      2:15        2:30      2:35    3:20      2:15      2:20    3:00    2:15    2:15      2:45 R13        2:30    2:30      2:15      2:20      2:10        2:30      2:35    3:15      2:15      2:20    2:55    2:10    2:15      2:50 R14        2:30    2:30      2:15      2:20      2:15        2:30      2:35    3:15      2:15      2:20    2:55    2:15    2:15      2:45 R15        2:30    2:30      2:15      2:20      2:15        2:30      2:30    3:15      2:15      2:20    2:55    2:15    2:15      2:40 R16        2:30    2:30      2:10      2:15      2:10        2:30      2:30    3:10      2:10      2:15    2:50    2:15    2:10      2:30 R17        2:30    2:30      2:10      2:10      2:10        2:30      2:30    3:15      2:10      2:10    2:55    2:10    2:10      2:30 R18        2:25    2:25      2:15      2:15      2:10        2:25      2:25    3:00      2:10      2:15    2:45    2:10    2:15      2:25 R19        2:25    2:30      2:15      2:20      2:10        2:25      2:30    3:05      2:15      2:20    2:50    2:10    2:15      2:25 R20        2:30    2:30      2:15      2:20      2:15        2:30      2:35    3:15      2:20      2:20    2:55    2:15    2:15      2:30 R21        2:30    2:35      2:15      2:20      2:15        2:30      2:35    3:15      2:15      2:20    2:55    2:15    2:15      2:30 R22        2:30    2:35      2:15      2:20      2:15        2:30      2:35    3:15      2:20      2:20    2:55    2:15    2:15      2:30 Robert E. Ginna Nuclear Power Plant                                        ES10                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Summer            Summer        Summer              Winter                      Winter          Winter Summer    Summer Midweek                                                        Midweek Midweek            Weekend                            Midweek                    Weekend                Weekend  Midweek Weekend                                                        Weekend Scenario:      (1)      (2)      (3)      (4)        (5)      (6)        (7)      (8)    (9)      (10)  (11)  (12)    (13)      (14)
Midday            Midday        Evening            Midday                      Midday        Evening Midday    Midday Rain/                      Rain/
Region      Good              Good                Good      Good              Heavy    Good            Heavy  Good    Special  Roadway Rain              Rain                            Light                      Light Weather            Weather            Weather Weather                Snow Weather              Snow  Weather  Event    Impact Snow                        Snow Staged Evacuation  2Mile Region and Keyhole to 5 Miles R23        2:35    2:35      2:35    2:35      2:35      2:35      2:35    3:30    2:35      2:35  3:30  2:35    2:35      2:35 R24        2:35    2:35      2:35    2:35      2:35      2:35      2:35    3:30    2:35      2:35  3:30  2:35    2:35      2:35 R25        2:35    2:35      2:30    2:35      2:35      2:35      2:35    3:30    2:35      2:35  3:30  2:35    2:30      2:35 R26        2:35    2:35      2:30    2:35      2:35      2:35      2:35    3:30    2:35      2:35  3:30  2:35    2:30      2:35 R27        2:35    2:40      2:35    2:35      2:35      2:35      2:40    3:30    2:35      2:35  3:30  2:35    2:35      2:35 R28        2:30    2:30      2:10    2:10      2:10      2:30      2:30    3:15    2:10      2:10  2:55  2:10    2:10      2:30 R29        2:25    2:25      2:20    2:20      2:25      2:25      2:25    3:15    2:20      2:20  3:10  2:25    2:20      2:25 R30        2:35    2:35      2:30    2:30      2:35      2:35      2:35    3:30    2:30      2:30  3:25  2:35    2:30      2:35 Robert E. Ginna Nuclear Power Plant                                    ES11                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                Rev. 0
 
Table 72. Time to Clear the Indicated Area of 100 Percent of the Affected Population Summer            Summer        Summer                Winter                      Winter            Winter Summer    Summer Midweek                                                              Midweek Midweek            Weekend                              Midweek                      Weekend                    Weekend  Midweek Weekend                                                              Weekend Scenario:      (1)      (2)      (3)      (4)      (5)          (6)      (7)      (8)      (9)      (10)    (11)    (12)    (13)      (14)
Midday            Midday        Evening              Midday                      Midday            Evening Midday    Midday Region                                                                    Rain/                        Rain/
Good              Good                Good        Good              Heavy      Good              Heavy    Good    Special  Roadway Rain                Rain                            Light                        Light Weather            Weather            Weather      Weather            Snow Weather                Snow    Weather  Event    Impact Snow                        Snow Entire 2Mile Region, 5Mile Region, and EPZ R01        3:45    3:45      3:45      3:45      3:45        3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R02        3:50    3:50      3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50    5:05    3:50    3:50      3:50 R03        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 2Mile Region and Keyhole to 5 Miles R04        3:50    3:50      3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50    5:05    3:50    3:50      3:50 R05        3:50    3:50      3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50    5:05    3:50    3:50      3:50 R06        3:50    3:50      3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50    5:05    3:50    3:50      3:50 R07        3:50    3:50      3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50    5:05    3:50    3:50      3:50 R08        3:45    3:45      3:45      3:45      3:45        3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R09        3:50    3:50      3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50    5:05    3:50    3:50      3:50 R10        3:50    3:50      3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50    5:05    3:50    3:50      3:50 2Mile Region and Keyhole to EPZ Boundary R11        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R12        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R13        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R14        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R15        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R16        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R17        3:45    3:45      3:45      3:45      3:45        3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R18        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R19        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R20        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R21        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 R22        3:55    3:55      3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55    5:10    3:55    3:55      3:55 Robert E. Ginna Nuclear Power Plant                                      ES12                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Summer            Summer        Summer              Winter                      Winter          Winter Summer    Summer Midweek                                                        Midweek Midweek            Weekend                            Midweek                    Weekend                Weekend  Midweek Weekend                                                        Weekend Scenario:      (1)      (2)      (3)      (4)        (5)      (6)        (7)      (8)    (9)      (10)  (11)  (12)    (13)      (14)
Midday            Midday        Evening            Midday                      Midday        Evening Midday    Midday Region                                                                  Rain/                      Rain/
Good              Good                Good      Good              Heavy    Good            Heavy  Good    Special  Roadway Rain              Rain                            Light                      Light Weather            Weather            Weather    Weather              Snow Weather              Snow  Weather  Event    Impact Snow                        Snow Staged Evacuation  2Mile Region and Keyhole to 5 Miles R23        3:50    3:50      3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R24        3:50    3:50      3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R25        3:50    3:50      3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R26        3:50    3:50      3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R27        3:50    3:50      3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R28        3:45    3:45      3:45    3:45      3:45      3:45      3:45    5:00    3:45      3:45  5:00  3:45    3:45      3:45 R29        3:50    3:50      3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R30        3:50    3:50      3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 Robert E. Ginna Nuclear Power Plant                                    ES13                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                Rev. 0
 
Table 73. Time to Clear 90 Percent of the 2Mile Region within the Indicated Region Summer            Summer          Summer                Winter                      Winter            Winter Summer    Summer Midweek                                                              Midweek Midweek            Weekend                                Midweek                    Weekend                    Weekend  Midweek Weekend                                                              Weekend Scenario:      (1)      (2)      (3)      (4)        (5)          (6)      (7)    (8)      (9)      (10)    (11)  (12)    (13)      (14)
Midday            Midday          Evening              Midday                      Midday            Evening Midday    Midday Rain/                      Rain/
Region      Good              Good                Good          Good              Heavy    Good              Heavy  Good    Special  Roadway Rain                Rain                              Light                      Light Weather            Weather              Weather Weather                  Snow Weather                Snow  Weather  Event    Impact Snow                        Snow Entire 2Mile Region and 5Mile Region R01        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R02        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 Unstaged Evacuation  2Mile Region and Keyhole to 5Miles R04        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R05        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R06        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R07        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R08        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R09        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R10        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 Staged Evacuation  2Mile Region and Keyhole to 5Miles R23        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R24        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R25        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R26        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R27        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R28        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R29        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 R30        2:30    2:30      2:10      2:10      2:10          2:30      2:30    3:15    2:10      2:10    2:55  2:10    2:10      2:30 Robert E. Ginna Nuclear Power Plant                                        ES14                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Table 74. Time to Clear 100 Percent of the 2Mile Region within the Indicated Region Summer            Summer          Summer                  Winter                    Winter            Winter Summer    Summer Midweek                                                              Midweek Midweek            Weekend                                Midweek                    Weekend                    Weekend  Midweek Weekend                                                              Weekend Scenario:      (1)      (2)      (3)        (4)        (5)          (6)      (7)    (8)      (9)      (10)    (11)    (12)    (13)      (14)
Midday            Midday          Evening              Midday                      Midday            Evening Midday    Midday Rain/                      Rain/
Region      Good              Good                  Good          Good                        Good              Heavy  Good    Special  Roadway Rain                Rain                              Light Snow                  Light Weather            Weather              Weather Weather                          Weather            Snow  Weather  Event    Impact Snow                      Snow Entire 2Mile Region and 5Mile Region R01        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R02        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 Unstaged Evacuation  2Mile Region and Keyhole to 5Miles R04        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R05        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R06        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R07        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R08        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R09        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R10        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 Staged Evacuation  2Mile Region and Keyhole to 5Miles R23        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R24        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R25        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R26        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R27        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R28        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R29        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 R30        3:45    3:45      3:45      3:45      3:45          3:45      3:45    5:00    3:45      3:45    5:00    3:45    3:45      3:45 Robert E. Ginna Nuclear Power Plant                                          ES15                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Table 82. School Evacuation Time Estimates - Good Weather Travel Time Travel          Dist. EPZ from EPZ Driver      Loading    Dist. To  Average    Time to          Bdry to    Bdry to    ETA to Mobilization    Time      EPZ Bdry    Speed      EPZ Bdry  ETE      R.C.      R.C.      R.C.
School            Time (min)      (min)      (mi)      (mph)      (min)  (hr:min)  (mi.)    (min)    (hr:min)
Monroe County Schools Schlegel Road Elementary School        90            15        6.6        50.6        8      1:55    14.0        15        2:10 State Road Elementary School            90            15        3.3        21.6        9      1:55    13.5        15        2:10 Spry Middle School                      90            15        4.3        45.0        6      1:55    14.0        15        2:10 Webster Christian School                90            15        3.9        46.3        5      1:50    14.0        15        2:05 Klem Road North Elementary School      90            15        3.5        41.9        5      1:50    14.0        15        2:05 Klem Road South Elementary School      90            15        3.5        41.9        5      1:50    14.0        15        2:05 Webster Schroeder High School          90            15        3.5        42.5        5      1:50    14.0        15        2:05 Webster Montessori School              90            15        0.7        21.1        2      1:50    12.8        14        2:05 Willink Middle School                  90            15        2.3        37.2        4      1:50    14.0        15        2:05 Webster Thomas High School              90            15        2.3        37.2        4      1:50    14.0        15        2:05 Dewitt Road Elementary School          90            15        0.1        25.1        0      1:45    14.5        16        2:05 St Rita's School                        90            15        0.1        17.5        0      1:45    14.5        16        2:05 Plank Road North Elementary School      90            15        0.1        36.8        0      1:45    12.9        14        2:00 Plank Road South Elementary School      90            15        0.1        36.8        0      1:45    12.9        14        2:00 Rochester Christian School              90            15        0.1        35.7        0      1:45    10.9        12        2:00 Wayne County Schools Wayne Central High School              90            15        6.1        52.2        7      1:55      7.9        9        2:05 Wayne Central Elementary School        90            15        6.8        48.5        8      1:55      6.4        7        2:05 Wayne Central Primary School            90            15        6.8        48.5        8      1:55      6.4        7        2:05 Wayne Central Middle School            90            15        6.1        52.2        7      1:55      7.9        9        2:05 Williamson Senior High School          90            15        5.1        47.9        6      1:55    10.9        12        2:10 Williamson Middle School                90            15        5.1        47.9        6      1:55    10.9        12        2:10 Williamson Elementary School            90            15        5.1        47.9        6      1:55    10.9        12        2:10 Wayne Finger Lake BOCES                90            15        4.5        50.7        5      1:50    12.7        14        2:05 Robert E. Ginna Nuclear Power Plant                            ES16                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Travel Time Travel            Dist. EPZ  from EPZ Driver    Loading  Dist. To Average    Time to            Bdry to    Bdry to    ETA to Mobilization  Time  EPZ Bdry  Speed    EPZ Bdry    ETE      R.C.        R.C.      R.C.
School            Time (min)    (min)    (mi)    (mph)        (min)  (hr:min)  (mi.)      (min)    (hr:min)
Wayne Education Center                  90        15      4.5      50.7          5      1:50    12.7        14        2:05 Wayne Technical & Career Center        90        15      4.5      50.7          5      1:50    12.7        14        2:05 Marion Junior/Senior High School        90        15      2.4      43.1          3      1:50    10.9        12        2:05 Marion Elementary School                90        15      0.1      31.2          0      1:45    10.7        12        2:00 Maximum for EPZ:    1:55            Maximum:      2:10 Average for EPZ:  1:50              Average:      2:05 Robert E. Ginna Nuclear Power Plant                      ES17                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                    Rev. 0
 
Table 85. TransitDependent Evacuation Time Estimates - Good Weather OneWave                                                      TwoWave Travel Route                                  Time                Route UNITES                              Route            Travel  Pickup            Distance    to R.        Driver Travel  Pickup Route      Route      ERPA(s)    Mobilization  Length    Speed    Time    Time      ETE      to R. C. C. Unload  Rest  Time    Time      ETE Number        #2      Serviced    (min)      (miles)  (mph)    (min)  (min)  (hr:min)  (miles)  (min)  (min) (min)  (min)  (min)  (hr:min) 1        51        M1        120          16.3    54.6    18      30      2:50      10.7      12      5    10    47      30      4:35 2        52        M1        120          16.7    52.4    19      30      2:50      10.7      12      5    10    48      30      4:35 3        53        M2        120          15.6    53.6    17      30      2:50      10.7      12      5    10    46      30      4:35 4        54        M3        120          14.0    49.3    17      30      2:50      10.7      12      5    10    42      30      4:30 5        55        M4        120          12.5    28.5    26      30      3:00      9.4      10      5    10    40      30      4:35 6        56        M4        120          14.5    31.0    28      30      3:00      9.4      10      5    10    46      30      4:45 7        57        M4        120          12.1    28.0    26      30      3:00      9.4      10      5    10    40      30      4:35 8        58        M5        120          13.2    43.1    18      30      2:50      9.4      10      5    10    39      30      4:25 9        59        M5        120          18.5    44.2    25      30      2:55      9.4      10      5    10    52      30      4:45 10        60        M6        120          10.1    49.1    12      30      2:45      10.7      12      5    10    34      30      4:20 11        61        M6        120          13.4    46.6    17      30      2:50      10.7      12      5    10    44      30      4:35 12        62        M6        120          9.6      45.0    13      30      2:45      10.7      12      5    10    34      30      4:20 13        63        M7        120          7.1      42.9    10      30      2:40      15.3      17      5    10    32      30      4:15 14        64        M7        120          9.9      31.3    19      30      2:50      15.3      17      5    10    42      30      4:35 15        67        M8        120          4.0      32.5      7      30      2:40      10.7      12      5    10    21      30      4:00 16        66        M8        120          4.4      43.8      6      30      2:40      10.7      12      5    10    22      30      4:00 17        68        M9        120          7.1      17.3    25      30      2:55      10.7      12      5    10    28      30      4:20 18        30        W1        120          18.7    52.5    21      30      2:55      8.2        9      5    10    50      30      4:40 19        31        W1        120          16.2    49.9    19      30      2:50      8.4        9      5    10    46      30      4:30 20        32        W1        120          14.9    48.9    18      30      2:50      7.7        8      5    10    42      30      4:25 21        33        W2        120          11.3    45.8    15      30      2:45      8.4        9      5    10    35      30      4:15 2
See Table 10-2 and Appendix K.
Robert E. Ginna Nuclear Power Plant                                        ES18                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
OneWave                                                  TwoWave Travel Route                              Time                Route UNITES                            Route        Travel  Pickup            Distance  to R.        Driver Travel  Pickup Route    Route    ERPA(s)  Mobilization Length  Speed  Time    Time      ETE    to R. C. C. Unload  Rest  Time    Time      ETE Number      #2    Serviced      (min)    (miles) (mph)  (min)    (min)  (hr:min)  (miles) (min)  (min) (min)  (min)  (min)  (hr:min) 22        34        W2          120      16.1  51.6    19      30      2:50      8.4      9      5    10    45      30      4:30 23        35        W2          120      16.4  46.5    21      30      2:55      7.7      8      5    10    46      30      4:35 24        36        W3          120      15.9  39.6    24      30      2:55    17.5    19      5    10    54      30      4:55 25        37        W3          120      7.8    50.7    9      30      2:40    20.6    22      5    10    40      30      4:30 26        38        W4          120      6.5    24.8    16      30      2:50    17.2    19      5    10    33      30      4:30 27        39        W4          120      10.1  47.3    13      30      2:45    17.2    19      5    10    42      30      4:35 28        40        W5          120      8.9    33.1    16      30      2:50    17.2    19      5    10    38      30      4:35 29        41        W5          120      6.4    52.0    7      30      2:40    14.5    16      5    10    30      30      4:15 30        42        W5          120      7.0    47.4    9      30      2:40    14.5    16      5    10    32      30      4:15 31        43        W6          120      7.8    52.0    9      30      2:40    14.5    16      5    10    33      30      4:15 32        45        W6          120      6.5    48.7    8      30      2:40    14.1    15      5    10    30      30      4:10 33        46        W6          120      10.0  45.2    13      30      2:45    14.1    15      5    10    39      30      4:25 34        47        W6          120      7.7    46.2    10      30      2:40    14.2    15      5    10    34      30      4:15 35        48        W7          120      13.3  48.9    16      30      2:50      8.4      9      5    10    39      30      4:25 36        49        W7          120      10.8  52.4    12      30      2:45      8.4      9      5    10    33      30      4:15 37        50        W7          120      9.9    45.5    13      30      2:45      8.4      9      5    10    32      30      4:15 Maximum ETE:      3:00                                  Maximum ETE:      4:55 Average ETE:    2:50                                    Average ETE:    4:30 Robert E. Ginna Nuclear Power Plant                                ES19                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Table 88. Medical Facility Evacuation Time Estimates - Good Weather Loading                                              Travel Time Rate                                                  to EPZ Mobilization        (min per                Total Loading  Dist. To EPZ    Boundary        ETE Medical Facility            Patient              (min)            person)      People      Time (min)    Bdry (mi)        (min)      (hr:min)
Maplewood Nursing      Ambulatory                    90                  1          10            10            4.0            6          1:50 Home            Wheelchair bound              90                  5          63            75            4.0            5          2:50 Ambulatory                    90                  1          45            30            3.5            5          2:05 Ahepa 67 Apartments Wheelchair bound              90                  5            5            20            3.5            5          1:55 Quinby Park Senior    Ambulatory                    90                  1          45            30            2.8            4          2:05 Apartments        Wheelchair bound              90                  5            4            20            2.8            4          1:55 Ambulatory                    90                  1          206            30            2.4            5          2:05 St Ann's Care Center at Wheelchair bound              90                  5          64            75            2.4            3          2:50 Cherry Ridge Bedridden                    90                15            3            30            2.4            5          2:05 Ontario Community      Ambulatory                    90                  1            7            7            8.4            10          1:50 Residence        Wheelchair bound              90                  5            3            15            8.4            10          1:55 Ambulatory                    90                  1            4            4            7.5            10          1:45 Slocum Road IRA Wheelchair bound              90                  5            2            10            7.5            10          1:50 Pines of Peace Hospice  Ambulatory                    90                  1            1            1            7.0            9          1:40 Center          Wheelchair bound              90                  5            1            5            7.0            9          1:45 Williamson Group      Ambulatory                    90                  1            6            6            6.9            9          1:45 Home St. Joseph's Villa  Wheelchair bound              90                  5            2            10            6.9            9          1:50 Williamson Community    Ambulatory                    90                  1            5            5            6.9            9          1:45 Residence        Wheelchair bound              90                  5            2            10            6.9            9          1:50 Williamson Group      Ambulatory                    90                  1            6            6            6.9            9          1:45 Home St. Joseph's Villa  Wheelchair bound              90                  5            2            10            6.9            9          1:50 Ambulatory                    90                  1            5            5            1.9            2          1:40 Walworth IRA Wheelchair bound              90                  5            2            10            1.9            2          1:45 Maximum ETE:        2:50 Average ETE:      2:00 Robert E. Ginna Nuclear Power Plant                                        ES20                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
Figure 61. ERPAs Comprising the Ginna EPZ Robert E. Ginna Nuclear Power Plant                    ES21                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure H8. Region R08 Robert E. Ginna Nuclear Power Plant          ES22        KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
1    INTRODUCTION This report describes the analyses undertaken and the results obtained by a study to develop Evacuation Time Estimates (ETE) for the R.E. Ginna Nuclear Power Plant (Ginna), located in Ontario, Wayne County, New York. This ETE study provides Constellation and state and county governments with sitespecific information needed for Protective Action Decisionmaking.
In the performance of this effort, guidance is provided by documents published by Federal Governmental agencies. Most important of these are:
* Title 10, Code of Federal Regulations, Appendix E to Part 50 (10CFR50), Emergency Planning and Preparedness for Production and Utilization Facilities, NRC, 2011.
* Revision 1 of the Criteria for Development of Evacuation Time Estimate Studies, NUREG/CR7002, February 2021.
* FEMA, Radiological Emergency Preparedness Program Manual (FEMA P1028),
December 2019.
The work effort reported herein was supported and guided by local stakeholders who contributed suggestions, critiques, and the local knowledge base required. Table 11 presents a summary of stakeholders and interactions.
1.1    Overview of the ETE Process The following outline presents a brief description of the work effort in chronological sequence:
: 1. Information Gathering:
: a. Defined the scope of work in discussions with representatives from Constellation.
: b. Attended meetings with emergency planners from Monroe and Wayne County Emergency Management and New York State Emergency Management to discuss methodology and project assumptions.
: c. Conducted a detailed field survey of the highway system and of area traffic conditions within the Emergency Planning Zone (EPZ) and Shadow Region (area between the EPZ boundary and 15 miles radially from the plants).
: d. Obtained demographic data from the 2020 census (see Section 3.1).
: e. Conducted an online demographic survey of EPZ residents.
: f. Conducted a data collection effort to identify and describe schools, special facilities, major employers, transportation providers, and other important information.
Robert E. Ginna Nuclear Power Plant            11                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
: 2. Estimated distributions of Trip Generation times representing the time required by various population groups (permanent residents, employees, and transients) to prepare (mobilize) for the evacuation trip. These estimates are primarily based upon the responses to the online demographic survey.
: 3. Defined Evacuation Scenarios which reflect the variation in demand, in trip generation distribution and in highway capacities associated with different seasons, day of week, time of day and weather conditions.
: 4. Reviewed the existing Traffic Management Plan (TMP) to be implemented by local and state police in the event of an incident at the plant. Traffic control is applied at specified Traffic Control Points (TCP) and Access Control Points (ACP) located within the study area.
: 5. Used existing Emergency Response Planning Areas (ERPA) to define Evacuation Regions.
The EPZ is partitioned into 18 ERPA along jurisdictional and geographic boundaries.
Regions are groups of contiguous ERPA for which ETE are calculated. The configurations of these Regions reflect wind direction and the radial extent of the impacted area. Each Region, other than those that approximate circular areas, approximates a keyhole section within the EPZ as recommended by NUREG/CR7002, Rev. 1.
: 6. Estimated demand for transit services for persons at special facilities (schools, childcare centers, day camps, and medical facilities), for transitdependent persons at home, and for people with access and/or functional needs at home.
: 7. Prepared the input streams for the DYNEV II system:
: a. Estimated the evacuation traffic demand, based on the available information derived from Census data, and from data provided by county and state agencies, Constellation and from the demographic survey.
: b. Applied the procedures specified in the 2016 Highway Capacity Manual (HCM1) to the data acquired during the field survey to estimate the capacity of all highway segments comprising the evacuation routes.
: c. Updated the linknode representation of the evacuation network, which is used as the basis for the computer analysis that calculates the ETE.
: d. Calculated the evacuating traffic demand for each Region and for each Scenario.
: e. Specified selected candidate destinations for each origin (location of each source where evacuation trips are generated over the mobilization time) to support evacuation travel consistent with outbound movement relative to the location of the plant.
: 8. Executed the DYNEV II system to determine optimal evacuation routing and compute 1
Highway Capacity Manual (HCM 2016), Transportation Research Board, National Research Council, 2016.
Robert E. Ginna Nuclear Power Plant                        12                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                          Rev. 0
 
ETE for all residents, transients and employees (general population) with access to private vehicles. Generated a complete set of ETE for all specified Regions and Scenarios.
: 9. Documented ETE in formats in accordance with NUREG/CR7002, Rev. 1.
: 10. Calculated the ETE for all transit activities including those for special facilities, for the transitdependent population and for the access and/or functional needs population.
1.2    The Robert E. Ginna Nuclear Power Plant Location Ginna is located along the shores of Lake Ontario in Ontario, Wayne County, New York. The site is approximately 25 miles northeast of Rochester, NY. The EPZ consists of parts of Wayne and Monroe Counties in New York. Figure 11 displays the area surrounding Ginna, identifying the communities in the area and the major roads.
1.3    Preliminary Activities These activities are described below.
Field Surveys of the Highway Network In November 2020, KLD personnel drove the entire highway system within the EPZ and the Shadow Region. The characteristics of each section of highway were recorded. These characteristics are listed in Table 12.
Video and audio recording equipment were used to capture a permanent record of the highway infrastructure. No attempt was made to meticulously measure such attributes as lane width and shoulder width; estimates of these measures based on visual observation and recorded images were considered appropriate for the purpose of estimating the capacity of highway sections. For example, Exhibit 157 in the HCM 2016 indicates that a reduction in lane width from 12 feet (the base value) to 10 feet can reduce free flow speed (FFS) by 1.1 mph - not a material difference - for twolane highways. Exhibit 1546 in the HCM 2016 shows little sensitivity for the estimates of Service Volumes at Level of Service (LOS) E (near capacity), with respect to FFS, for twolane highways.
The data from the audio and video recordings were used to create detailed geographic information systems (GIS) shapefiles and databases of the roadway characteristics and of the traffic control devices observed during the road survey; this information was referenced while preparing the input stream for the DYNEV II System. Roadway types were assigned based on the following criteria:
Freeway: limited access highway, 2 or more lanes in each direction, high free flow speeds Freeway ramp: ramp on to or off of a limited access highway Major arterial: 3 or more lanes in each direction Minor arterial: 2 or more lanes in each direction Collector: single lane in each direction Robert E. Ginna Nuclear Power Plant              13                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Local roadway: single lane in each direction, local road with low free flow speeds As documented on page 156 of the HCM 2016, the capacity of a twolane highway is 1,700 passenger cars per hour in one direction. For freeway sections, a value of 2,250 vehicles per hour per lane is assigned, as per Exhibit 1237 of the HCM 2016. The road survey has identified several segments which are characterized by adverse geometrics on twolane highways which are reflected in reduced values for both capacity and speed. These estimates are consistent with the service volumes for LOS E presented in HCM Exhibit 1546. Link capacity is an input to DYNEV II which computes the ETE. Further discussion of roadway capacity is provided in Section 4 of this report.
Traffic signals are either pretimed (signal timings are fixed over time and do not change with the traffic volume on competing approaches) or are actuated (signal timings vary over time based on the changing traffic volumes on competing approaches). Actuated signals require detectors to provide the traffic data used by the signal controller to adjust the signal timings.
These detectors are typically magnetic loops in the roadway, or video cameras mounted on the signal masts and pointed toward the intersection approaches. If detectors were observed on the approaches to a signalized intersection during the road survey, detailed signal timings were not collected as the timings vary with traffic volume. TCPs and ACPs at locations which have control devices are represented as actuated signals in the DYNEV II system.
If no detectors were observed, the signal control at the intersection was considered pretimed, and detailed signal timings were gathered for several signal cycles. These signal timings were input to the DYNEV II system used to compute ETE, as per NUREG/CR7002, Rev. 1 guidance.
Figure 12 presents the linknode analysis network that was constructed to model the evacuation roadway network in the EPZ and Shadow Region. The directional arrows on the links and the node numbers have been removed from Figure 12 to clarify the figure. The detailed figures provided in Appendix K depict the analysis network with directional arrows shown and node numbers provided. The observations made during the field survey were used to calibrate the analysis network.
Demographic Survey An online demographic survey was performed to gather information needed for the ETE study.
Appendix F presents the survey instrument, the procedures used, and tabulations of data compiled from the survey responses along with discussion validating the use of the survey results in this study.
These data were utilized to develop estimates of vehicle occupancy to estimate the number of evacuating vehicles during an evacuation and to estimate elements of the mobilization process.
This database was also referenced to estimate the number of transitdependent residents.
Computing the Evacuation Time Estimates The overall study procedure is outlined in Appendix D. Demographic data were obtained from several sources, as detailed later in this report. These data were analyzed and converted into vehicle demand data. The vehicle demand was loaded onto appropriate source links of the analysis network using GIS mapping software. The DYNEV II system was then used to compute Robert E. Ginna Nuclear Power Plant            14                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
ETE for all Regions and Scenarios.
Analytical Tools The DYNEV II System that was employed for this study is comprised of several integrated computer models. One of these is the DYNEV (DYnamic Network EVacuation) macroscopic simulation model, a new version of the IDYNEV model that was developed by KLD under contract with the Federal Emergency Management Agency (FEMA).
DYNEV II consists of four submodels:
A macroscopic traffic simulation model (for details, see Appendix C).
A Trip Distribution (TD), model that assigns a set of candidate destination (D) nodes for each origin (O) located within the analysis network, where evacuation trips are generated over time. This establishes a set of OD tables.
A Dynamic Traffic Assignment (DTA), model which assigns trips to paths of travel (routes) which satisfy the OD tables, over time. The TD and DTA models are integrated to form the DTRAD (Dynamic Traffic Assignment and Distribution) model, as described in Appendix B.
A Myopic Traffic Diversion model which diverts traffic to avoid intense, local congestion, if possible.
Another software product developed by KLD, named UNITES (UNIfied Transportation Engineering System) was used to expedite data entry and to automate the production of output tables.
The dynamics of traffic flow over the network are graphically animated using the software product, EVAN (EVacuation ANimator), developed by KLD. EVAN is GIS based, and displays statistics such as LOS, vehicles discharged, average speed, and percent of vehicles evacuated, output by the DYNEV II System. The use of a GIS framework enables the user to zoom in on areas of congestion and query road name, town name and other geographical information.
The procedure for applying the DYNEV II System within the framework of developing ETE is outlined in Appendix D. Appendix A is a glossary of terms.
For the reader interested in an evaluation of the original model, IDYNEV, the following references are suggested:
NUREG/CR4873 - Benchmark Study of the IDYNEV Evacuation Time Estimate Computer Code NUREG/CR4874 - The Sensitivity of Evacuation Time Estimates to Changes in Input Parameters for the IDYNEV Computer Code The evacuation analysis procedures are based upon the need to:
Route traffic along paths of travel that will expedite their travel from their respective points of origin to points outside the EPZ.
Restrict movement toward the plant to the extent practicable and disperse traffic Robert E. Ginna Nuclear Power Plant              15                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
demand so as to avoid focusing demand on a limited number of highways.
Move traffic in directions that are generally outbound, relative to the location of the plant.
DYNEV II provides a detailed description of traffic operations on the evacuation network. This description enables the analyst to identify bottlenecks and to develop countermeasures that are designed to represent the behavioral responses of evacuees. The effects of these countermeasures may then be tested with the model.
1.4  Comparison with Prior ETE Study Table 13 presents a comparison of the present ETE study with the previous ETE study (KLD TR 518, dated November 2012). The 90th percentile ETE for the full EPZ increased by 20 minutes for both a winter, midweek, midday, good weather scenario and a summer, weekend, midday, good weather scenario when compared with the 2012 study. The 100th percentile ETE remained the same. The major factors contributing to the similarities and differences between the ETE values obtained in this study and those of the previous study are:
The permanent resident population increased by 5.7%; however, the number of evacuating vehicles for the permanent resident population decreased by 1.6% as the vehicle occupancy increased (higher vehicle occupancy results in fewer vehicles). Fewer permanent resident evacuating vehicles could cause ETE to decrease.
The number of employees commuting into the EPZ decreased by 64.2% and the number of employee vehicles decreased by 62.8%. (This significant decrease was a result of the change in federal guidance between Rev. 0 and Rev. 1 of NUREG/CR7002 wherein 50 or more employees working in a single shift was deemed a major employer in Rev. 0 versus 200 or more employees in Rev. 1.) Fewer evacuating employee vehicles could cause 100th percentile ETE to decrease. However, because employee vehicles mobilize much more quickly than resident vehicles, fewer employee vehicles could actually increase 90th percentile ETE as there will be a higher percentage of resident vehicles in an Evacuation Region, which take longer to mobilize.
The number of transient vehicles nearly doubled. This could cause ETE to increase.
The percentage of households with commuters significantly increased in this study (49%
versus 22% in 2012). Households with commuters take up to an additional hour to mobilize versus households without commuters. Thus, a significantly higher percentage of households with commuters could significantly increase ETE.
The time to mobilize (trip generation time) 100% of households with commuters and households without commuters remained the same, while the time to mobilize employees and transients increased by 15 minutes. The 100th percentile mobilization time for the full EPZ is dictated by the time to mobilize households with commuters as they take the longest of any population group to mobilize. Thus, the time to mobilize the evacuee in the 2012 study is equal to the time to mobilize the last evacuee in this Robert E. Ginna Nuclear Power Plant            16                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
study. Traffic congestion in the EPZ clears prior to the end of mobilization time (see Section 7.3) in this study and in the 2012 study. Thus, 100th percentile ETE is dictated by mobilization time in both studies. This explains why the 100th percentile ETE remained the same.
Ultimately, the significant decrease in the number of employee vehicles evacuating and the significant increase in the percentage of households with commuters are responsible for the 20minute increase in 90th percentile ETE. The 100th percentile ETE were not impacted because the endpoint of mobilization time was the same in the 2012 study and the current study.
Robert E. Ginna Nuclear Power Plant            17                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Table 11. Stakeholder Interaction Stakeholder                                  Nature of Stakeholder Interaction Meetings to define data requirements and set up contacts with county and state agencies. Reviewed Constellation Energy emergency planning and approved all project assumptions. Attended personnel final meeting where the ETE study results were presented.
Met to discuss project methodology, key project assumptions and to define data needs. Provided county emergency plans, special facility data and Monroe and Wayne County Emergency existing traffic management plans. Reviewed and Management Departments approved all project assumptions. Attended final meeting where the ETE study results were presented.
Met to discuss project methodology, key project assumptions and to define data needs. Provided New York State Office of Emergency Management            state emergency plan. Reviewed and approved all project assumptions. Attended final meeting where the ETE study results were presented.
Table 12. Highway Characteristics Number of lanes                                  Posted speed Lane width                                      Actual free speed Shoulder type & width                            Abutting land use Interchange geometries                          Control devices Lane channelization & queuing                    Intersection configuration (including capacity (including turn bays/lanes)              roundabouts where applicable)
Geometrics: curves, grades (>4%)                Traffic signal type Unusual characteristics: Narrow bridges, sharp curves, poor pavement, flood warning signs, inadequate delineations, toll booths, etc.
Robert E. Ginna Nuclear Power Plant                  18                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                Rev. 0
 
Table 13. ETE Study Comparisons Topic                      Previous ETE Study                          Current ETE Study ArcGIS Software using 2010 US Census        ArcGIS Software using 2020 US Census Resident Population      blocks; area ratio method used.            blocks; area ratio method used.
Basis                    Population = 63,949                        Population = 67,568 Vehicles = 33,253                          Vehicles = 32,734 2.56 persons/household, 1.33                3.03 persons/household, 1.48 Resident Population evacuating vehicles/household              evacuating vehicles/household Vehicle Occupancy yielding: 1.92 persons/vehicle.            yielding: 2.05 persons/vehicle.
ArcGIS Software using 2010 US Census        ArcGIS software using 2020 US Census blocks; area ratio method used.            blocks; area ratio method used.
Shadow Population Population = 153,317                        Population = 153,567 Vehicles = 79,677                          Vehicles = 73,851 Based on responses to the random            Based on responses to the online sample telephone survey.                    demographic survey.
65% of households have at least 1          86% of households have at least 1 commuter. 34% of those households          commuter. 57% of those households with commuters will await the return        with commuters will await the return Commuters                of a commuter before beginning their        of a commuter before beginning their evacuation trip. Therefore, 22% (65% x      evacuation trip. Therefore, 49% (86% x 34% = 22%) of EPZ households will          57% = 49%) of EPZ households will mobilize according to the households        mobilize according to the households with returning commuters mobilization      with returning commuters mobilization time distribution.                          time distribution.
Employee estimates based on Employee estimates based on                information obtained from information provided about major            Constellation, Monroe County and employers in EPZ. 1.08 employees per        Wayne County for major employers in Employee                vehicle based on telephone survey          EPZ supplemented by Census data.
Population              results.                                    1.04 employees per vehicle based on Employees = 8,417                          demographic survey results.
Vehicles = 7,800                            Employees = 3,015 Vehicles = 2,899 Robert E. Ginna Nuclear Power Plant                    19                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                              Rev. 0
 
Topic                      Previous ETE Study                    Current ETE Study Transient estimates based upon information provided by the counties, Transient estimates based upon        internet searches, and satellite information provided about transient  imagery, supplemented by data from Transient                attractions in EPZ.                  the previous ETE study (confirmed Population                                                    by the counties).
Transients = 2,102 Vehicles = 886                        Transients = 4,065 Vehicles = 1,552 Estimates based upon U.S. Census data Estimates based upon U.S. Census data and the results of the telephone      and the results of the 2020 online Transit Dependent      survey.                              demographic survey.
Population Population = 2,043                    Population = 457 Buses = 69                            Buses = 38 Information provided by the counties Information provided by the counties  within the EPZ within the EPZ Population with                                                Population = 118 Population = 222 Access and/or Vans = 29 Functional Needs                                              Vans = 11 Wheelchair Vans = 16 Wheelchair Vans = 11 Ambulances = 31 Ambulances = 15 Medical facility population based on information provided by the counties, Medical facility population based on  internet searches, and satellite information provided by each county  imagery, supplemented by data from within the EPZ.                      the previous ETE study (confirmed by Medical Facility Population = 492    the counties).
Medical Facility Vans Required = 32                    Medical Facility Population = 493 Population Wheelchair Bus Required = 16          Buses = 11 Ambulances Required = 2              Vans = 8 Wheelchair buses = 8 Wheelchair vans = 12 Ambulances Required = 2 Information provided by the counties School population based on            and internet searches, supplemented School, Day Care,        information provided by each county  by data from the previous ETE study and Nursery School      within the EPZ.                      (confirmed by the counties).
Population              School enrollment = 15,033            School enrollment = 15,114 Buses = 284                          Buses = 250 Robert E. Ginna Nuclear Power Plant                  110                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Topic                        Previous ETE Study                        Current ETE Study External traffic considered on SR104, I External traffic considered on SR104, I External Traffic        590, and I490.                          390, and I490.
Total vehicles = 17,134                  Total vehicles = 16,602 Voluntary evacuation from 20% of the population within the EPZ,    20% of the population within the EPZ, within EPZ in areas but not within the Evacuation Region      but not within the Evacuation Region outside region to be evacuated 20% of people outside of the EPZ          20% of people outside of the EPZ Shadow Evacuation within the Shadow Region                  within the Shadow Region Network Size            1,539 links; 1,049 nodes                  2,260 Links; 1,499 Nodes Field surveys conducted in February      Field surveys conducted in November Roadway Geometric        2012. Roads and intersections were        2020. Roads and intersections were Data                    video archived.                          video archived.
Road capacities based on 2010 HCM.        Road capacities based on 2016 HCM.
Direct evacuation to designated          Direct evacuation to designated School Evacuation Reception Center/Receiving Location.      Reception Center/Receiving Location.
50% of transitdependent persons will    81% of transitdependent persons will Ridesharing              evacuate with a neighbor or friend as    evacuate with a neighbor or friend as per federal guidance.                    per the demographic survey results.
Based on residential telephone survey Based on residential online of specific pretrip mobilization demographic survey of specific pretrip activities:
mobilization activities:
Residents with commuters returning        Residents with commuters returning leave between 30 and 225 minutes.        leave between 30 and 225 minutes.
Trip Generation for      Residents without commuters              Residents without commuters Evacuation              returning leave between 0 and 165        returning leave between 15 and 165 minutes.                                  minutes.
Employees and transients leave            Employees and transients leave between 0 and 105 minutes.                between 0 and 90 minutes.
All times measured from the Advisory All times measured from the Advisory to Evacuate.
to Evacuate.
Normal, Rain, or Snow. The capacity of all links in the network is reduced by Good, Rain, or Snow. The capacity and    10% in the event of rain/light snow and free flow speed of all links in the      25% for heavy snow. The free flow Weather network are reduced by 10% in the        speed of all links in the network is event of rain and 20% for snow.          reduced by 10% in the event of rain/light snow and 15% for heavy snow.
Modeling                DYNEV II System - Version 4.0.8.0        DYNEV II System - Version 4.0.21.0 Robert E. Ginna Nuclear Power Plant                  111                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                              Rev. 0
 
Topic                      Previous ETE Study                Current ETE Study Webster Fathers Day Soccer        Webster Fathers Day Soccer Tournament                        Tournament Special Events          Special Event Population = 2,500  Special Event Population = 2,500 additional transients              additional transients Vehicles = 977                    Vehicles = 826 25 Regions (central sector wind    30 Regions (central sector wind direction and each adjacent sector direction and two adjacent sectors on Evacuation Cases technique used) and 14 Scenarios  each side technique used) and 14 producing 350 unique cases.        Scenarios producing 420 unique cases.
ETE reported for 90th and 100th    ETE reported for 90th and 100th Evacuation Time percentiles. Results presented by  percentiles. Results presented by Estimates Reporting Region and Scenario.              Region and Scenario.
Evacuation Time          Winter Midweek Midday,            Winter Midweek Midday, Estimates for the        Good Weather (Scenario 6): 2:15    Good Weather (Scenario 6): 2:35 entire EPZ, 90th        Summer Weekend, Midday,            Summer Weekend, Midday, percentile              Good Weather (Scenario 3): 1:55    Good Weather (Scenario 3): 2:15 Evacuation Time          Winter Midweek Midday,            Winter Midweek Midday, Estimates for the        Good Weather (Scenario 6): 3:55    Good Weather (Scenario 6): 3:55 entire EPZ, 100th        Summer Weekend, Midday,            Summer Weekend, Midday, percentile              Good Weather (Scenario 3): 3:55    Good Weather (Scenario 3): 3:55 Robert E. Ginna Nuclear Power Plant                112                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Figure 11. Ginna Location Robert E. Ginna Nuclear Power Plant          113            KLD Engineering, P.C.
Evacuation Time Estimate                                                    Rev. 0
 
Figure 12. Ginna LinkNode Analysis Network Robert E. Ginna Nuclear Power Plant                      114                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
2      STUDY ESTIMATES AND ASSUMPTIONS This section presents the estimates and assumptions utilized in the development of the ETE.
2.1      Data Estimates
: 1. The permanent resident population is based on the 2020 U.S. Census population from the Census Bureau website1. A methodology, referred to as the area ratio method, was employed to estimate the population within portions of census blocks that are divided by ERPA boundaries. It is assumed that the population is evenly distributed across a census block in order to employ the area ratio method. (See Section 3.1.)
: 2. Estimates of employees who reside outside the EPZ and commute to work within the EPZ are based on data provided by Constellation, both EPZ county emergency management agencies, and supplemented by the U.S. Census Bureaus OnTheMap Census analysis tool2. (See Section 3.4.)
: 3. Population estimates at transient and medical facilities is based on data received from the county emergency management agencies within the EPZ, the New York State Division of Child Development and Early Education3 and from the previous ETE study, supplemented by aerial imagery and internet searches where data is missing.
: 4. The relationship between permanent resident population and evacuating vehicles is based on the results of the demographic survey (see Appendix F, subsections F.3.1 and F.3.2). Values of 3.03 persons per household and 1.48 evacuating vehicles per household are used for the permanent resident population.
: 5. Where data was not provided, the average household size was assumed to be the vehicle occupancy rate for transient facilities and for the special event.
: 6. Employee vehicle occupancies are based on the results of the demographic survey; 1.04 employees per vehicle is used in the study. In addition, it is assumed there are two people per carpool, on average. (See Appendix F, subsection F.3.1 and Figure F7.)
: 7. The maximum bus speed assumed within the EPZ is 55 mph based on New York state laws for buses and average posted speed limits on major roadways within the EPZ.
: 8. Roadway capacity estimates are based on field surveys performed in November 2020 (verified by aerial imagery) and the application of the Highway Capacity Manual 2016.
1 www.census.gov 2
http://onthemap.ces.census.gov/ OnTheMap is an interactive map displaying workplace and residential distributions by user-defined geographies at census block level detail.
3 https://ocfs.ny.gov/programs/childcare/looking/ccfs-search.php Robert E. Ginna Nuclear Power Plant                              21                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                            Rev. 0
 
2.2        Methodological Assumptions
: 1. The Planning Basis Assumption for the calculation of ETE is a rapidly escalating accident that requires evacuation, and includes the following4 (as per NRC guidance):
: a. Advisory to Evacuate (ATE) is announced coincident with the siren notification.
: b. Mobilization of the general population will commence within 15 minutes after the siren notification.
: c. ETE are measured relative to the ATE.
: 2. The centerpoint of the plant is located at the center of the containment building at 43.277675°N, 77.308865°W.
: 3. The DYNEV II5 system is used to compute ETE in this study.
: 4. Evacuees will drive safely, travel radially away from the plant to the extent practicable given the highway network, and obey all traffic control devices and traffic guides. All major evacuation routes are used in the analysis.
: 5. The existing EPZ and Emergency Response Planning Area (ERPA) boundaries are used.
(See Figure 31.)
: 6. The Shadow Region extends to 15 miles radially from the plant or approximately 5 miles radially from the EPZ boundary, as per NRC guidance. See Figure 72.
: 7. Shadow population characteristics (household size, evacuating vehicles per household, and mobilization time) are assumed to be the same as that of the permanent resident population within the EPZ.
: 8. ETE are presented at the 90th and 100th percentiles in graphical and tabular format, as per NRC guidance. The percentile ETE is defined as the elapsed time from the ATE issued to a specific Region of the EPZ, to the time that Region is clear of the indicated percentile of evacuees.
: 9. One hundred percent (100%) of the people within the impacted keyhole will evacuate.
Twenty percent (20%) of the population within the Shadow Region and within ERPAs of the EPZ not advised to evacuate will voluntarily evacuate, as shown in Figure 21, as per NRC guidance. Sensitivity studies explore the effect on ETE of increasing the percentage of voluntary evacuees in the Shadow Region (See Appendix M).
: 10. This study does not assume that roadways are empty at the start of the evacuation.
Rather, there is an initialization period (often referred to as fill time in traffic 4
We emphasize that the adoption of this planning basis is not a representation that these events will occur within the indicated time frame. Rather, these assumptions are necessary in order to:
: 1. Establish a temporal framework for estimating the Trip Generation distribution in the format recommended in Section 2.13 of NUREG/CR-6863.
: 2. Identify temporal points of reference that uniquely define "Clear Time" and ETE.
It is likely that a longer time will elapse between the various stages of an emergency. See Section 5.1 for more detail.
5 The models of the I-DYNEV System were recognized as state of the art by the Atomic Safety & Licensing Board (ASLB) in past hearings. (Sources: Atomic Safety & Licensing Board Hearings on Seabrook and Shoreham; Urbanik). The models have continuously been refined and extended since those hearings and were independently validated by a consultant retained by the NRC. The DYNEV II model incorporates the latest technology in traffic simulation and in dynamic traffic assignment.
Robert E. Ginna Nuclear Power Plant                                22                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                      Rev. 0
 
simulation) wherein the anticipated traffic volumes from the beginning of the evacuation are loaded onto roadways in the study area. The amount of initialization/fill traffic that is on the roadways in the study area at the start of the evacuation depends on the scenario and the region being evacuated. (See Section 3.11).
: 11. To account for boundary conditions (roadway conditions outside the study area that are not specifically modeled due to the limited radius of the study area) beyond the study area, this study assumes a 25% reduction in capacity on twolane roads and multilane highways for roadways that have traffic signals downstream. The 25% reduction in capacity is based on the prevalence of actuated traffic signals in the study area and the fact that the evacuating (main street) traffic volume will be more significant than the competing (side street) traffic volume at any downstream signalized intersections, thereby warranting a more significant percentage (75% in this case) of the signal green time. There is no reduction in capacity for freeways due to boundary conditions.
: 12. The ETE also includes consideration of through (ExternalExternal traffic that originates its trip outside of the study area and has its destination outside of the study area) trips during the time that such traffic is permitted to enter the evacuated Region. (See Section 3.10).
2.3  Assumptions on Mobilization Times
: 1. Trip generation time (also known as mobilization time, or the time required by evacuees to prepare for the evacuation) is based upon the results of the online demographic survey. It is assumed that stated events take place in sequence such that all preceding events must be completed before the current event can occur.
: 2. One hundred percent (100%) of the EPZ population can be notified within 45 minutes, in accordance with the 2019 Federal Emergency Management Agency (FEMA) Radiological Emergency Preparedness Program Manual.
: 3. Commuter percentages (and percentage of residents awaiting the return of a commuter) are based on the results of the demographic survey. According to the survey results, 86%
of the households in the EPZ have at least 1 commuter (see Appendix F, subsection F.3.1.); 57% of those households with commuters will await the return of a commuter before beginning their evacuation trip (see Appendix F, subsection F.3.2.). Therefore, 49% (86% x 57% = 49%) of EPZ households will await the return of a commuter, prior to beginning their evacuation trip.
2.4  Transit Dependent Assumptions
: 1. The percentage of transitdependent people (permanent residents who do not own or have access to a private vehicle) who will rideshare with a neighbor or friend are based on the results of the demographic survey. According to the survey results, 81% of the transitdependent population will rideshare (see Appendix F, subsection F.3.1).
Robert E. Ginna Nuclear Power Plant            23                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
: 2. Transit vehicles are used to transport those without access to private vehicles:
: a. Schools, day care centers, preschools/nursery schools, and day camps:
: i. If schools are in session, buses will evacuate students directly to the reception centers.
ii. Day care centers, preschools/nursery schools, and day camps will follow their own emergency procedures for contacting parents to pick up their children, as per the public information. Thus, it is assumed that parents will pick up children at day care centers, preschools/nursery schools and day camps prior to evacuation.
iii. For the schools that are evacuated via buses, it is assumed no school children are picked up by their parents prior to the arrival of the buses.
iv. Schoolchildren, if school is in session, are given priority in assigning transit vehicles.
: b. Medical Facilities
: i. Vans, wheelchair buses, wheelchair vans and ambulances will evacuate patients at medical facilities and at any senior facilities within the EPZ, as needed.
ii. The percent breakdown of ambulatory, wheelchair bound and bedridden patients from the 2012 ETE study was used to determine the number of ambulatory (68.7%), wheelchair bound (30.7%) and bedridden patients (0.6%) at the medical facilities wherein updated data was not provided.
: c. Transitdependent (do not own or have access to a private vehicle) permanent residents:
: i. Transitdependent general population are evacuated to reception centers.
ii. Access and/or functional needs population may require county assistance (ambulance, bus or wheelchair transport) to evacuate. This is considered separately from the general population ETE, as per NRC guidance.
iii. Households with 3 or more vehicles were assumed to have no need for transit vehicles.
: d. Analysis of the number of required roundtrips (waves) of evacuating transit vehicles is presented.
: e. Transport of transitdependent evacuees from reception centers to congregate care centers is not considered in this study.
: 3. Transit vehicle capacities:
: a. School buses = 70 students per bus for elementary schools and 50 students per bus for middle/high schools Robert E. Ginna Nuclear Power Plant                24                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
: b. Ambulatory transitdependent persons and medical facility patients = 30 persons per bus
: c. Vans = 12 persons per van
: d. Ambulances = 2 bedridden persons (includes advanced and basic life support)
: e. Wheelchair vans = 4 wheelchair bound persons
: f. Wheelchair buses = 15 wheelchair bound persons
: 4. Transit vehicle mobilization times:
: a. School buses will arrive at schools to be evacuated within 90 minutes of the ATE.
: b. Transit dependent buses are mobilized when approximately 90% of residents with no commuters have completed their mobilization. If necessary, multiple waves of buses will be utilized to gather transit dependent people who mobilize more slowly.
: c. Vehicles will arrive at medical facilities and senior living facilities to be evacuated within 90 minutes of the ATE.
: 5. Transit Vehicle loading times:
: a. Concurrent loading on multiple buses/transit vehicles is assumed.
: b. School buses are loaded in 15 minutes.
: c. Transit Dependent buses will require 1 minute of loading time per passenger.
: d. Buses for medical facilities and senior living facilities will require 1 minute of loading time per ambulatory passenger.
: e. Wheelchair transport vehicles will require 5 minutes of loading time per passenger.
: f. Ambulances are loaded in 15 minutes per bedridden passenger.
: 6. Drivers for all transit vehicles are available.
2.5  Traffic and Access Control Assumptions
: 1. Traffic Control Points (TCP) and Access Control Points (ACP) as defined in the approved county and state emergency plans are considered in the ETE analysis, as per NRC guidance. (See Appendix G.)
: 2. TCP and ACP are assumed to be staffed approximately 120 minutes after the ATE, as per NRC guidance. It is assumed that no through traffic will enter the EPZ after this 120 minute time period.
: 3. All transit vehicles and other responders entering the EPZ to support the evacuation are unhindered by personnel manning TCPs and ACPs.
Robert E. Ginna Nuclear Power Plant              25                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                            Rev. 0
 
2.6  Scenarios and Regions
: 1. A total of 14 Scenarios representing different temporal variations (season, time of day, day of week) and weather conditions are considered. Scenarios to be considered are defined in Table 21:
: a. The Webster Fathers Day Soccer Tournament, located at the Lakefront Soccer Complex on Publishers Pkwy (ERPA M9), is considered as the special event (single or multiday event that attracts a significant population into the EPZ; recommended by NRC guidance) for Scenario 13. There are 5,000 people at the tournament at peak times, with half of those people being local residents and the other half traveling to the tournament from outside of the EPZ.
: b. As per NRC guidance, one segment of one of the highest volume roadways will be out of service or one lane outbound on a freeway must be closed for a roadway impact scenario. This study will consider the closure of one lane westbound on State Route (SR) 104 from the intersection with Ontario Center Rd to the interchange with SR 590 (Exits 10A and 10B) for the roadway impact scenario - Scenario 14.
: 2. Two types of adverse weather scenarios are considered. Rain may occur for either winter or summer scenarios; snow occurs in winter scenarios only. It is assumed that the rain or snow begins at about the same time the evacuation advisory is issued. Thus, no weather related reduction in the number of transients who may be present in the EPZ is assumed.
It is further assumed that snow removal equipment is available, the appropriate agencies are clearing/treating the roads as they would normally during snow, and the roads are passable albeit at lower speeds and capacities.
: 3. Adverse weather affects roadway capacity and free flow speeds. Transportation research indicates capacity and speed reductions of about 10% for rain and a range of 10% to 25%
for snow. In accordance with Table 31 of Revision 1 to NUREG/CR7002, this study assumes a 10% reduction in speed and capacity for rain and light snow and a speed and capacity reduction of 15% and 25%, respectively, for heavy snow. The factors are shown in Table 22.
: 4. Some evacuees will need additional time to clear their driveways and access the public roadway system. The distribution of time for this activity was gathered through a demographic survey of the public and takes up to 135 minutes (see Appendix F, Figure F 19). It is assumed that the time needed by evacuees to remove snow from their driveways is sufficient time for snow removal crews to mobilize and clear/treat the public roadway system.
: 5. Employment is reduced slightly in the summer for vacations.
: 6. The mobilization and loading times for transit vehicles are slightly longer in adverse weather. It is assumed that mobilization times are 10 minutes and 20 minutes longer in Robert E. Ginna Nuclear Power Plant                26                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
rain/light snow and heavy snow, respectively. It is assumed that loading times for school buses are 5 minutes and 10 minutes longer in rain/light snow and heavy snow, respectively. It is assumed that loading times for transit buses are 10 minutes and 20 minutes longer in rain/light snow and heavy snow, respectively. Refer to Table 22.
: 7. Regions are defined by the underlying keyhole or circular configurations as specified in Section 1.4 of NUREG/CR7002, Rev. 1. These Regions, as defined, display irregular boundaries reflecting the geography of the ERPAs included within these underlying configurations. All 16 cardinal and intercardinal wind direction keyhole configurations are considered. Regions to be considered are defined in Table 61. It is assumed that everyone within the group of ERPAs forming a Region that is issued an ATE will, in fact, respond and evacuate in general accord with the planned routes.
: 8. Due to the irregular shapes of the ERPAs, there are instances where a small portion of an ERPA (a sliver) is within the keyhole and the population within that small portion is low (less than 500 people or 10% of the ERPA population, whichever is less). Under those circumstances, the ERPA is not included in the Region so as to not evacuate large numbers of people outside of the keyhole for a small number of people that are actually in the keyhole, unless otherwise stated in the PAR document.
: 9. Staged evacuation is considered as defined in NUREG/CR7002, Rev. 1 - those people between 2 and 5 miles will shelterinplace until 90% of the 2mile region has evacuated, then they will evacuate. See Regions R23 through R30 in Table 61.
Robert E. Ginna Nuclear Power Plant              27                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Table 21. Evacuation Scenario Definitions Day of            Time of 6
Scenario              Season            Week                Day          Weather                  Special 1              Summer          Midweek            Midday              Good                    None 2              Summer          Midweek            Midday              Rain                  None 3              Summer          Weekend            Midday              Good                    None 4              Summer          Weekend            Midday              Rain                  None Midweek, 5              Summer                              Evening            Good                    None Weekend 6                Winter        Midweek            Midday              Good                    None 7                Winter        Midweek            Midday              Rain                  None 8                Winter        Midweek            Midday              Snow                    None 9                Winter        Weekend            Midday              Good                    None 10                Winter        Weekend            Midday              Rain                  None 11                Winter        Weekend            Midday              Snow                    None Midweek, 12                Winter                            Evening            Good                    None Weekend Webster Fathers Day 13              Summer          Weekend            Midday              Good Soccer Tournament Roadway Impact - Lane 14              Summer          Midweek            Midday              Good Closure on SR104 WB 6
Winter assumes that school is in session at normal enrollment levels (also applies to spring and autumn). Summer means that school is in session at summer school enrollment levels (lower than normal enrollment).
Robert E. Ginna Nuclear Power Plant                              28                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                              Rev. 0
 
Table 22. Model Adjustment for Adverse Weather Free          Mobilization        Mobilization Time Highway        Flow        Time for General          for Transit        Loading Time for        Loading Time for Scenario    Capacity*      Speed*          Population              Vehicles            School Buses          Transit Buses7 Rain/Light                                                            10minute              5minute                10minute 90%          90%            No Effect Snow                                                                increase                increase                increase Heavy                                                              20minute              10minute              20minute 75%          85%          See Section 5 Snow                                                                increase                increase                increase
  *Adverse weather capacity and speed values are given as a percentage of good weather conditions. Roads are assumed to be passable.
7 Does not apply to medical facilities and those with access and/or functional needs as loading times for these people are already conservative.
Robert E. Ginna Nuclear Power Plant                            29                                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Figure 21. Voluntary Evacuation Methodology Robert E. Ginna Nuclear Power Plant                      210                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
3    DEMAND ESTIMATION The estimates of demand, expressed in terms of people and vehicles, constitute a critical element in developing an evacuation plan. These estimates consist of three components:
: 1. An estimate of population within the EPZ, stratified into groups (resident, employee, transient).
: 2. An estimate, for each population group, of mean occupancy per evacuating vehicle. This estimate is used to determine the number of evacuating vehicles.
: 3. An estimate of potential doublecounting of vehicles.
Appendix E presents much of the source material for the population estimates. Our primary source of population data, the 2020 Census, is not adequate for directly estimating some transient groups.
Throughout the year, vacationers and tourists enter the EPZ. These nonresidents may dwell within the EPZ for a short period (e.g., a few days or one or two weeks), or may enter and leave within one day. Estimates of the size of these population components must be obtained, so that the associated number of evacuating vehicles can be ascertained.
The potential for doublecounting people and vehicles must be addressed. For example:
A resident who works and camps within the EPZ could be counted as a resident, again as an employee and once again as a transient.
A visitor who stays at a hotel and spends time at a park, then goes to a marina could be counted three times.
Furthermore, the number of vehicles at a location depends on time of day. For example, motel parking lots may be full at dawn and empty at noon. Similarly, parking lots at area parks, which are full at noon, may be almost empty at dawn. Estimating counts of vehicles by simply adding up the capacities of different types of parking facilities could overestimate the number of transients and can lead to ETE that are too conservative.
Analysis of the population characteristics of the Ginna EPZ indicates the need to identify three distinct groups:
Permanent residents - people who are yearround residents of the EPZ.
Transients - people who reside outside of the EPZ who enter the area for a specific purpose (camping, recreation) and then leave the area.
Employees - people who reside outside of the EPZ and commute to work within the EPZ on a daily basis.
Estimates of the population and number of evacuating vehicles for each of the population groups are presented for each ERPA and by polar coordinate representation (population rose).
The Ginna EPZ is subdivided into 18 ERPAs. The ERPAs comprising the EPZ are shown in Figure 31.
Robert E. Ginna Nuclear Power Plant            31                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
3.1    Permanent Residents The primary source for estimating permanent population is the 2020 U.S. Census data with an availability date of September 16, 2021. The average household size (3.03 persons/household -
See Appendix F, subsection F.3.1) and the number of evacuating vehicles per household (1.48 vehicles/household - See Appendix F, subsection F.3.2) were adapted from the demographic survey.
The permanent resident population is estimated by cutting the census block polygons by ERPA and EPZ boundaries using GIS software. A ratio of the original area of each census block and the updated area (after cutting) is multiplied by the total block population to estimate the population within the EPZ. This methodology (referred to as the area ratio method) assumes that the population is evenly distributed across a census block. Table 31 provides the permanent resident population within the EPZ, by ERPA, for 2010 and 2020 (based on the methodology above). As indicated, the permanent resident population within the EPZ has increased by 5.66% since the 2010 Census.
To estimate the number of evacuating vehicles, the 2020 Census permanent resident population is divided by the average household size and then multiplied by the average number of evacuating vehicles per household. Permanent resident population and vehicle estimates are presented in Table 32. Figure 32 and Figure 33 present the permanent resident population and permanent resident vehicle estimates by sector and distance from Ginna. This rose was constructed using GIS software. Note, the 2020 Census includes residents living in group quarters, such as skilled nursing facilities, group homes, etc. These people are transit dependent (will not evacuate in personal vehicles) and are included in the special facility evacuation demand estimates. To avoid double counting vehicles, the vehicle estimates for these people have been removed. The resident vehicles in Table 32 and Figure 33 have been adjusted accordingly.
3.2    Shadow Population A portion of the population living outside the evacuation area extending to 15 miles radially from the Ginna Plant may elect to evacuate without having been instructed to do so. This area is called the Shadow Region. Based upon NUREG/CR7002, Rev. 1 guidance, it is assumed that 20% of the permanent resident population, based on U.S. Census Bureau data, in the Shadow Region will elect to evacuate.
Shadow population characteristics (household size, evacuating vehicles per household, mobilization time) are assumed to be the same as that for the EPZ permanent resident population. Table 33, Figure 34, and Figure 35 present estimates of the shadow population and vehicles, by sector. Similar to the EPZ resident vehicle estimates, resident vehicles at group quarters have been removed from the shadow population vehicle demand in Table 33 and Figure 35.
Robert E. Ginna Nuclear Power Plant            32                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
3.3    Transient Population Transient population groups are defined as those people (who are not permanent residents, nor commuting employees) who enter the EPZ for a specific purpose (camping, recreation).
Transients may spend less than one day or stay overnight at lodging facilities. Data for these facilities were provided by Monroe County and by Wayne County. When data was not provided, the number of transient vehicles was estimated based on the parking lot capacity of the facilities obtained from aerial imagery. It is assumed that transients would travel to the recreational areas as a family/household. As such, the average household size (3.03 people -
See Section 3.1) was used to estimate the transient population. The transient attractions within the Ginna EPZ are summarized as follows:
Campgrounds - 87 transients and 69 vehicles; 1.26 transients per vehicle (NOTE:
Recreational Vehicles (RVs) are modeled as 2 vehicles in DYNEV due to their larger size and more sluggish operating characteristics.)
Golf Courses - 240 transients and 95 vehicles; 2.53 transients per vehicle Marinas - 318 transients and 131 vehicles; 2.43 transients per vehicle Parks - 1,231 transients and 420 vehicles; 2.93 transients per vehicle Spencer Speedway - 1,515 transients and 500 vehicles; 3.03 transients per vehicle Lodging Facilities - 674 transients and 337 vehicles; 2.00 transients per vehicle Spencer Speedway is the largest transient attraction within the Ginna EPZ. According to the facility operator, their parking lots can accommodate up to 1,000 cars. To avoid double counting vehicles of the residents who live within the EPZ, data collected for the special event (see Section 3.8 below) was used, assuming 50% of the attendees travel from outside of the EPZ. As such, there would be 500 nonresident vehicles when the parking lots are fully occupied during peak times. Applying the average household size discussed above, 1,515 (500 x 3.03) transients were assigned to the speedway.
Appendix E summarizes the transient data that was estimated for the EPZ. Table E5 presents the number of transients visiting recreational areas, while Table E6 presents the number of transients at lodging facilities within the EPZ.
In total, there are 4,065 transients in the EPZ at peak times, evacuating in 1,552 vehicles (an average vehicle occupancy of 2.62 transients per vehicle). Table 34 presents transient population and transient vehicle estimates by ERPA. Figure 36 and Figure 37 present these data by sector and distance from the plant.
3.4    Employees Employees who work within the EPZ fall into two categories:
Those who live and work in the EPZ Those who live outside of the EPZ and commute to jobs within the EPZ.
Those of the first category are already counted as part of the permanent resident population. To avoid double counting, we focus only on those employees commuting from Robert E. Ginna Nuclear Power Plant              33                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
outside the EPZ who will evacuate along with the permanent resident population.
The number of employees commuting into the EPZ is estimated based on data provided by Constellation and by Wayne and Monroe Counties, supplemented by data obtained from the U.S. Census Bureaus OnTheMap Census analysis tool1 where data was not provided. Data collected for this study includes the maximum shift employment and percent of employees living outside of the EPZ for each major employer. As per the NUREG/CR7002, Rev. 1, employers with 200 or more employees working in a single shift are considered to be major employers. As such, the employers not meeting this criterion are not considered in this study.
There are a total of 3,015 employees commuting into the EPZ on a daily basis. To estimate the number of evacuating employee vehicles, a vehicle occupancy of 1.04 employees per vehicle obtained from the demographic survey (see Appendix F, subsection F.3.1) was used for the major employers. The detailed information of each major employer is included in Appendix E, Table E4. Table 35 presents the estimates of employees and vehicles commuting into the EPZ by ERPA. Figure 38 and Figure 39 present these data by sector.
3.5      Medical Facilities Data from the previous ETE study were confirmed to be accurate by the EPZ county emergency management agencies. Internet searches were utilized for the new facilities identified in the EPZ wherein data was not provided. Table E3 in Appendix E and Table 36 present the census of medical facilities in the EPZ. A total of 493 persons have been identified as living in, or being treated in, these facilities. The percent breakdown of ambulatory (68.7%), wheelchair bound (30.7%), and bedridden patients (0.6%) from the previous ETE study was used to estimate the number of ambulatory, wheelchair bound and bedridden patients at the newly identified medical facilities wherein updated data was not provided.
The transportation requirements for the medical facility population are also presented in Table
: 36. The number of ambulance runs is determined by assuming that 2 patients can be accommodated per ambulance trip; the number of wheelchair bus runs assumes 15 wheelchairs per trip; the number of wheelchair van runs assumes 4 wheelchairs per trip; the number of vans assumes 12 persons per van; and the number of bus runs estimated assumes 30 ambulatory patients per trip. Buses and wheelchair buses evacuating medical facilities are modeled as 2 vehicles in DYNEV due to their larger size and more sluggish operating characteristics.
3.6      Transit Dependent Population The demographic survey (see Appendix F) results were used to estimate the portion of the population requiring transit service:
* Those persons in households that do not have a vehicle available.
* Those persons in households that do have vehicle(s) that would not be available at 1
http://onthemap.ces.census.gov/ OnTheMap is an interactive map displaying workplace and residential distributions by user-defined geographies at census block level detail.
Robert E. Ginna Nuclear Power Plant                        34                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                            Rev. 0
 
the time the evacuation is advised.
In the latter group, the vehicle(s) may be used by a commuter(s) who does not return (or is not expected to return) home to evacuate the household.
Table 37 presents estimates of transitdependent people. Note:
* Estimates of persons requiring transit vehicles include schoolchildren. For those evacuation scenarios where children are at school when an evacuation is ordered, separate transportation is provided for the schoolchildren. The actual need for transit vehicles by residents is thereby less than the given estimates. However, estimates of transit vehicles are not reduced when schools are in session.
* It is reasonable and appropriate to consider that many transitdependent persons will evacuate by ridesharing with neighbors, friends or family. For example, nearly 80% of those who evacuated from Mississauga, Ontario2 who did not use their own cars, shared a ride with neighbors or friends. Other documents report that approximately 70% of transit dependent persons were evacuated via ride sharing.
Based on the results of the demographic survey, approximately 81% of the transit dependent population will rideshare (see Appendix F, subsection F.3.1).
The estimated number of bus trips needed to service transitdependent persons is based on an estimate of average bus occupancy of 30 persons at the conclusion of the bus run. Transit vehicle seating capacities typically equal or exceed 60 children on average (roughly equivalent to 40 adults). If transit vehicle evacuees are two thirds adults and one third children, then the number of adult seats taken by 30 persons is 20 + (2/3 x10) = 27. On this basis, the average load factor anticipated is (27/40) x 100 = 68%. Thus, if the actual demand for service exceeds the estimates of Table 37 by 50%, the demand for service can still be accommodated by the available bus seating capacity.
2 20            10        40 1.5 1.00 3
Table 37 indicates that transportation must be provided for 457 people. Therefore, a total of 16 bus runs are required from a capacity standpoint. In order to service all of the transit dependent population and have at least one bus drive through each of the ERPAs, the annual public information brochure supplied by both counties identifies 37 bus routes to pick up transit dependent people. All but one route (M7 Route M requires 2 buses) require only 1 bus to service all of the estimated transit dependent population (see Table 101). Thus, 38 buses are used in the ETE calculations. See Section 8.1 for further discussion.
To illustrate this estimation procedure, we calculate the number of persons, P, requiring public transit or rideshare, and the number of buses, B, required for the EPZ:
2 Institute for Environmental Studies, University of Toronto, THE MISSISSAUGA EVACUATION FINAL REPORT, June 1981. The report indicates that 6,600 people of a transit-dependent population of 8,600 people shared rides with other residents; a ride share rate of 77% (Page 5-10).
Robert E. Ginna Nuclear Power Plant                            35                                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                      Rev. 0
 
Where:
A = Percent of households with commuters C = Percent of households who will not await the return of a commuter 22,300      0.00 0.108        1.62    1    0.858 0.434 0.617    2.95 2        0.858 0.434          2,366 1    0.807          30    0.193    2,366      30    16 (rounded up to the nearest bus)
These calculations, based on the demographic survey results, are explained as follows:
* The total number of persons requiring public transit is the sum of such people in HH with no vehicles, or with 1 or 2 vehicles that are away from home.
* The number of households (HH) is computed by dividing the EPZ population by the average household size (67,568 3.03) and is 22,300.
* There were no households with no vehicles, so the term 0.00 represents those who do not have access to a vehicle.
* The members of HH with 1 vehicle away (10.8%), who are at home, equal (1.62 - 1).
The number of HH where the commuter will not return home is equal to (22,300 x 0.108 x 0.62 x 0.858 x 0.434), as 85.8% of EPZ households have a commuter, 43.4%
of which would not return home in the event of an emergency. The number of persons who will evacuate by public transit or rideshare is equal to the product of these two terms.
* The members of HH with 2 vehicles that are away (61.7%), who are at home, equal (2.95 - 2). The number of HH where neither commuter will return home is equal to 22,300 x 0.617 x 0.95 x (0.858 x 0.434)2. The number of persons who will evacuate by public transit or rideshare is equal to the product of these two terms (the last term is squared to represent the probability that neither commuter will return).
* Households with 3 or more vehicles are assumed to have no need for transit vehicles.
* The number of buses is computed based on 80.7% of the transitdependent population ridesharing with a neighbor or friend and a capacity of 30 people per bus.
Buses evacuating the transitdependent population are modeled as 2 vehicles in DYNEV due to their larger size and more sluggish operating characteristics.
The estimate of transitdependent population in Table 37 exceeds the number of registered transitdependent persons in the EPZ as provided by the counties (discussed below in Section 3.9). This is consistent with the findings of NUREG/CR6953, Volume 2, in that a large majority of the transitdependent population within the EPZs of U.S. nuclear plants does not register with their local emergency response agency.
Robert E. Ginna Nuclear Power Plant              36                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
3.7    School Population Demand Table 38 presents the school, preschool, day care, and day camp population and transportation requirements for the direct evacuation of all schools within the EPZ for the 2020 to 2021 school year. The column in Table 38 entitled Buses Required specifies the number of buses required for each school under the following set of assumptions and estimates:
* No students will be picked up by their parents prior to the arrival of the buses.
* Parents will pick up their children at preschools, day cares, and day camps.
Therefore, no buses are required for these facilities.
* While many high school students commute to school using private automobiles (as discussed in Section 2.4 of NUREG/CR7002, Rev. 1), the estimate of buses required for school evacuation does not consider the use of these private vehicles.
* Bus capacity, expressed in students per bus, is set to 70 for elementary schools and 50 for middle and high schools.
* Those staff members who do not accompany the students will evacuate in their private vehicles.
* No allowance is made for student absenteeism, which is typically 3% daily.
Implementation of a process to confirm individual school transportation needs prior to bus dispatch may improve bus utilization. In this way, the number of buses dispatched to the schools will reflect the actual number needed. The need for buses would be reduced by any high school students who have evacuated using private automobiles (if permitted by school authorities). Those buses originally allocated to evacuate schoolchildren that are not needed due to children being picked up by their parents, can be gainfully assigned to service other facilities or those persons who do not have access to private vehicles or to ridesharing.
Buses evacuating schoolchildren are modeled as 2 vehicles in DYNEV due to their larger size and more sluggish operating characteristics.
Table 103 presents a list of the reception centers and school receiving location for each school in the EPZ. Students will be transported to these schools where they will be subsequently retrieved by their respective families.
3.8    Special Event A special event can attract large numbers of transients to the EPZ for short periods of time, creating a temporary surge in demand as per Section 2.5.1 of NUREG/CR7002, Rev. 1. The county and state emergency management agencies were polled regarding the potential special events in the EPZ. The only potential special event identified by the county and state agencies that attracts transients from outside the EPZ is the Webster Fathers Day Soccer Tournament (Scenario 13), which is held at the Lakefront Soccer Complex on Publishers Pkwy (ERPA M9).
Data were obtained from the county indicating that 5,000 people typically attend the event, 50% of which traveled from beyond the EPZ boundary resulting in 2,500 transients. Using the average household size of 3.03 as the estimated vehicle occupancy rate yields a total of 826 additional transient vehicles (2,500 ÷ 3.03) that were incorporated at various parking locations Robert E. Ginna Nuclear Power Plant            37                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
around the event. The special event vehicle trips were generated utilizing the same mobilization distributions as transients. Public transportation is not provided for this event and was not considered in the special event analysis.
3.9    Access and/or Functional Needs Population The county emergency management agencies have a registration for access and/or functional needs persons. The current number of access and/or functional needs people was provided by the counties. There are an estimated 19 access and/or functional needs people (6 ambulatory, 11 wheelchairbound, and 2 bedridden) within the Wayne County portion of the EPZ and 99 access and/or functional needs people (50 ambulatory, 21 wheelchairbound, and 28 bedridden) within the Monroe County portion of the EPZ. This results in 56 ambulatory persons, 32 wheelchairbound persons, and 30 bedridden persons for a total access and/or functional needs population of 118 people. Table 39 summarizes the total number of people registered for access and/or functional needs by type of vehicle needed assuming 4 wheelchairbound persons per wheelchair van, 12 ambulatory people per van, and 2 bedridden persons per ambulance (additional vans and wheelchair vans are assumed to be dispatched to gather these people in a shorter period of time - see Section 8.2).
3.10 External Traffic Vehicles will be traveling through the EPZ (externalexternal trips) at the time of an emergency event. After the Advisory to Evacuate (ATE) is announced, these throughtravelers will also evacuate. These through vehicles are assumed to travel on the major routes traversing the study area - SR104, I390, and I490. Emergency management agencies indicated that this traffic will continue to enter the study during the first 120 minutes following the ATE.
Average Annual Daily Traffic (AADT) data was obtained from the New York State Department of Transportation (NYSDOT) to estimate the number of vehicles per hour on the aforementioned route. The AADT was multiplied by the KFactor, which is the proportion of the AADT on a roadway segment or link during the design hour, resulting in the design hour volume (DHV). The design hour is usually the 30th highest hourly traffic volume of the year, measured in vehicles per hour (vph). The DHV is then multiplied by the DFactor, which is the proportion of the DHV occurring in the peak direction of travel (also known as the directional split). The resulting values are the directional design hourly volumes (DDHV) and are presented in Table 310, for the route considered. The DDHV is then multiplied by 2 hours (Access Control Points - ACP -
are activated at 120 minutes after the ATE) to estimate the total number of external vehicles loaded on the analysis network. The external traffic volume on SR104 eastbound entering the EPZ is distorted by the amount of local traffic in the suburbs of Rochester. As such, the external traffic volume on SR104 eastbound entering the EPZ was assumed to be equal to the external traffic volume on SR104 westbound entering the EPZ. It was further assumed that the external traffic volume on SR104 eastbound was evenly split between SR104 eastbound and I390 northbound. Given that I90 is south of the study area and connects nearby major cities Robert E. Ginna Nuclear Power Plant              38                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
(Rochester and Syracuse), it is anticipated that external traffic volume on SR104 through the study area will be relatively low.
As indicated in Table 310, there are 16,602 vehicles entering the study area as external external trips prior to the activation of the ACP and the diversion of this traffic. This number is reduced by 60% for evening scenarios (Scenarios 5 and 12) as discussed in Section 6.
3.11 Background Traffic Section 5 discusses the time needed for the people in the EPZ to mobilize and begin their evacuation trips. As shown in Table 59, there are 15 time periods during which traffic is loaded on to roadways in the study area to model the mobilization time of people in the EPZ. Note, there is no traffic generated during the 15th time period, as this time period is intended to allow traffic that has already begun evacuating to clear the study area boundaries.
This study does not assume that roadways are empty at the start of the evacuation. Rather, there is an initialization time period (often referred to as fill time in traffic simulation) wherein the anticipated traffic volumes at the start of the evacuation (Time Period 1) are loaded onto roadways in the study area. The amount of initialization/fill traffic that is on the roadways in the study area at the start of the evacuation depends on the scenario and the region being evacuated (see Section 6). There are approximately 2,100 vehicles on the roadways in the study area at the end of fill time for an evacuation of the entire EPZ (Region R03) under Scenario 6 (winter, midweek, midday, good weather) conditions.
3.12 Summary of Demand A summary of the population and vehicle demand in the study area is provided in Table 311 and Table 312, respectively. This summary includes all population groups described in this section. A total of 123,925 people and 70,019 vehicles are considered in this study.
Robert E. Ginna Nuclear Power Plant              39                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Table 31. EPZ Permanent Resident Population ERPA              2010 Population      2020 Population M1                    4,721                4,824 M2                      666                  915 M3                    1,039                1,029 M4                    8,088                8,691 M5                    1,323                1,423 M6                    7,088                8,412 M7                    9,525              10,827 M8                    3,151                3,085 M9                    3,931                3,835 MLake                      0                    0 W1                    4,197                4,439 W2                    5,939                6,007 W3                    1,168                1,187 W4                    2,117                2,163 W5                    4,232                4,021 W6                    2,189                2,120 W7                    4,575                4,590 WLake                      0                    0 EPZ TOTAL:            63,949              67,568 EPZ Population Growth (20102020):              5.66%
Table 32. Permanent Resident Population and Vehicles by ERPA ERPA            2020 Population        2020 Resident Vehicles M1                    4,824                    2,349 M2                    915                      446 M3                    1,029                      501 M4                    8,691                    4,186 M5                    1,423                      674 M6                    8,412                    4,079 M7                  10,827                    5,211 M8                    3,085                    1,504 M9                    3,835                    1,874 MLake                      0                        0 W1                    4,439                    2,162 W2                    6,007                    2,924 W3                    1,187                      554 W4                    2,163                    1,053 W5                    4,021                    1,951 W6                    2,120                    1,035 W7                    4,590                    2,231 WLake                      0                        0 EPZ TOTAL:            67,568                    32,734 Robert E. Ginna Nuclear Power Plant                  310                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Table 33. Shadow Population and Vehicles by Sector Evacuating Sector          2020 Population            Vehicles N                    0                      0 NNE                    0                      0 NE                    0                      0 ENE                    0                      0 E                    780                    330 ESE                  3,657                  1,777 SE                  2,280                  1,105 SSE                  3,839                  1,863 S                  8,608                  4,171 SSW                  31,016                15,019 SW                  42,560                20,455 WSW                    56,050                26,804 W                  4,777                  2,327 WNW                      0                      0 NW                      0                      0 NNW                      0                      0 TOTAL:          153,567                73,851 Table 34. Summary of Transients and Transient Vehicles ERPA                Transients        Transient Vehicles M1                    20                      8 M2                    0                      0 M3                    114                      45 M4                    0                      0 M5                    0                      0 M6                    739                    351 M7                    126                      63 M8                    75                      30 M9                    0                      0 MLake                    0                      0 W1                    39                      20 W2                    868                    320 W3                  1,515                    500 W4                    439                    164 W5                    0                      0 W6                    0                      0 W7                    130                      51 WLake                    0                      0 EPZ TOTAL:          4,065                  1,552 Robert E. Ginna Nuclear Power Plant                311                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                            Rev. 0
 
Table 35. Summary of Employees and Employee Vehicles Commuting into the EPZ ERPA              Employees        Employee Vehicles M1                  275                  264 M2                    0                    0 M3                  2,240                2,154 M4                    25                  24 M5                    0                    0 M6                    0                    0 M7                    0                    0 M8                    0                    0 M9                    0                    0 MLake                  0                    0 W1                    320                  308 W2                    0                    0 W3                    0                    0 W4                    155                  149 W5                    0                    0 W6                    0                    0 W7                    0                    0 WLake                  0                    0 EPZ TOTAL:          3,015                2,899 Robert E. Ginna Nuclear Power Plant              312                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Table 36. Medical Facility Transit Demand Wheel  Wheel Wheel                              chair    chair Current Ambu        chair      Bed    Bus    Van      Bus      Van    Ambulance ERPA                    Facility Name                  Capacity    Census latory      Bound      ridden  Runs    Runs    Runs    Runs      Runs Monroe County M4    Maplewood Nursing Home                          74          73        10        63        0      0      1        4        1          0 M7    Ahepa 67 Apartments                              50          50        45        5        0      2      0        0        2          0 M7    Quinby Park Senior Apartments                    49          49        45        4        0      2      0        0        1          0 M7    St Ann's Care Center at Cherry Ridge            273          273      206        64        3      7      0        4        1          2 Monroe County Subtotal:      446          445      306      136        3      11      1        8        5          2 Wayne County W1    Ontario Community Residence                      10          10        7        3        0      0      1        0        1          0 W2    Slocum Road IRA                                  6          6          4        2        0      0      1        0        1          0 W2    Pines of Peace Hospice Center                    2          2          1        1        0      0      1        0        1          0 W5    Williamson Group Home St. Joseph's Villa          8          8          6        2        0      0      1        0        1          0 W5    Williamson Community Residence                    7          7          5        2        0      0      1        0        1          0 W5    Williamson Group Home St. Joseph's Villa          8          8          6        2        0      0      1        0        1          0 W7    Walworth IRA                                      7          7          5        2        0      0      1        0        1          0 Wayne County Subtotal:        48          48        34        14        0      0      7        0        7          0 EPZ TOTAL:      494          493      340      150        3      11      8        8        12          2 Table 37. Transit Dependent Population Estimates Survey Average HH                                                                Survey                                          Percent 2020                Size                          Survey Percent HH          Survey      Percent HH    Total                  People    Population Study      with Indicated No. of    Estimated  with Indicated No. of    Percent HH      with Non    People    Estimated    Requiring  Requiring Area              Vehicles            No. of            Vehicles              with        Returning  Requiring  Ridesharing    Public      Public Population      0      1        2    Households    0        1        2    Commuters      Commuters    Transport  Percentage    Transit    Transit 67,568      0.00    1.62      2.95    22,300    0.0%    10.8%  61.7%      85.8%          43.4%        2,366      80.7%        457        0.7%
Robert E. Ginna Nuclear Power Plant                                        313                                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                            Rev. 0
 
Table 38. School Population Demand Estimates Buses ERPA                            School Name                        Enrollment  Required M1                Schlegel Road Elementary School                  512          8 M4                  State Road Elementary School                    536          8 M4                        Spry Middle School                        1,048        21 M6                      Webster Christian School                    220          4 M6              Klem Road North Elementary School                  534          8 M6              Klem Road South Elementary School                  533          8 M7                  Webster Schroeder High School                  1,504        31 M7                    Webster Montessori School                      118          2 M9                      Willink Middle School                      977        20 M9                  Webster Thomas High School                    1,388        28 W2                    Wayne Central High School                      759        16 W2                Wayne Central Elementary School                    384          6 W2                  Wayne Central Primary School                    314          5 W2                  Wayne Central Middle School                    517        11 W5                  Williamson Senior High School                    296          6 W5                    Williamson Middle School                      302          7 W5                  Williamson Elementary School                    437          7 W5                    Wayne Finger Lake BOCES                      16          1 W5                      Wayne Education Center                      70          2 W5                Wayne Technical & Career Center                    253          6 W6                Marion Junior/Senior High School                  339          7 Shadow Dewitt Road Elementary School                    517          8 Region Shadow St Rita's School                        332          5 Region Shadow Plank Road North Elementary School                  576          9 Region Shadow Plank Road South Elementary School                  557          8 Region Shadow Rochester Christian School                    106          2 Region Shadow Marion Elementary School                      357          6 Region School Subtotal:    13,502      250 Robert E. Ginna Nuclear Power Plant                  314                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                            Rev. 0
 
Buses ERPA                    Preschool/Day Care/Day Camp Name                      Enrollment Required3 M1                                    Maria Derks                                  14              0 M1                          Kiddie Academy of Webster                              82              0 M2                                Shontell Jackson                                8              0 M3                  Webster Presbyterian Church Preschool                        21              0 Expressive Beginnings Child Care at Toddler's M3                                                                                149            0 Workshop M3                    Railroad Junction Summer Day Camp                          156            0 M4                              Lucy's Day Care Inc.                              8              0 M4                                Positive Preschool                              28              0 M4                                Gale Montgomery                                  8              0 M4                            Webster Nursery School                              43              0 M6                              Webster KinderCare                                140            0 YMCA of Greater Rochester at Klem Road South M6                                                                                80              0 School M7                      Doodle Bugs! Children's Centers                          176            0 M7                              M. Maneiro Child Care                              16              0 M8                          Woodside Nursery School                              20              0 M9                                    Rita De Cann                                  8              0 W1                                Designs by Nanny                                16              0 W2                            Home Grown Beginnings                                16              0 W2                      The Tot Spot II Child Care Center                        155            0 W2                        Rhyme Tyme Child Care Center                            74              0 W2            YMCA of Greater Rochester at Wayne Elementary                      107            0 W2                          Hop Skip & Jump Preschool                            89              0 W2                          Little Tyke's Family Day Care                          16              0 W2                                  Jessica Thrash                                8              0 W2                                  Nicole Suwyn                                  8              0 W4                    Raggedy Ann & Andy Day Care Center                          22              0 W5                              Anna's little bananas                            16              0 W5                      Lake Ontario Child Development                            78              0 W5                                  Crystal Wachter                                8              0 W6                            All My Children Day Care                              8              0 W7                                  Nancy Casella                                16              0 W7                          Wee People Nursery School                              18              0 Day Care/Nursery School Subtotal:            1,612            0 TOTAL:      15,114            250 3
It is assumed parents will pick up children at preschools, day cares, and day camps. Therefore, no buses are required for these facilities. Refer to Section 2.4.
Robert E. Ginna Nuclear Power Plant                            315                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Table 39. Access and/or Functional Needs Demand Summary Population Group          Transportation Needed              Population      Vehicles deployed Ambulatory                        Van                          56                11 Wheelchair bound              Wheelchair Van                      32                11 Bedridden                    Ambulance                        30                15 Total:          118                37 Table 310. Ginna EPZ External Traffic Upstream          Downstream                                                                                          Hourly          External Node                Node        Road Name          Direction          AADT4            KFactor5    DFactor5    Volume            Traffic 8049                  49          SR104          Westbound            13,811              0.116        0.5          801              1,602 8020                1501          SR104          Eastbound            6,906              0.116        0.5          401              802 8006                1484          I390        Northbound            6,906              0.116        0.5          401              802 8010                1221          I490        Southbound            73,600              0.091        0.5        3,349            6,698 8185                185          I490        Northbound            73,600              0.091        0.5        3,349            6,698 TOTAL        16,602 4
NYSDOT Traffic Data Viewer Map 5
HCM 2016 Robert E. Ginna Nuclear Power Plant                                        316                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
Table 311. Summary of Population Demand6 Transit                                        Medical                                Special Shadow      External ERPA              Residents                        Transients Employees                          Schools/Preschools                        7                Total Dependent                                        Facilities                              Event Population    Traffic M1                4,824              33                20            275              0                  608              0        0            0        5,760 M2                  915              6                0              0              0                    8              0        0            0          929 M3                1,029              7              114            2,240            0                  326              0        0            0        3,716 M4                8,691              59                0              25            73                1,671              0        0            0        10,519 M5                1,423              10                0              0              0                    0              0      0            0        1,433 M6                8,412              57              739              0              0                1,507              0        0            0        10,715 M7                10,827              72              126              0            372                1,814              0        0            0        13,211 M8                3,085              21                75              0              0                    20              0      0            0        3,201 M9                3,835              26                0              0              0                2,373            2,500      0            0        8,734 MLake                    0                0                0              0              0                    0              0        0            0          0 W1                  4,439              30                39            320            10                    16              0        0            0        4,854 W2                  6,007              41              868              0              8                2,447              0        0            0        9,371 W3                  1,187              8            1,515              0              0                    0              0      0            0        2,710 W4                  2,163              15              439              155              0                    22              0        0            0        2,794 W5                  4,021              27                0              0              23                1,476              0        0            0        5,547 W6                  2,120              14                0              0              0                  347              0        0            0        2,481 W7                  4,590              31              130              0              7                    34              0        0            0        4,792 WLake                    0                0                0              0              0                    0              0        0            0          0 Shadow Region                  0                0                0              0              0                2,445              0    30,713          0        33,158 TOTAL:          67,568            457            4,065            3,015          493                15,114            2,500  30,713          0      123,925 6
Since the spatial distribution of the access and/or functional needs population is unknown, they are not included in this table.
7 Shadow population has been reduced to 20%. Refer to Figure 2-1 for additional information.
Robert E. Ginna Nuclear Power Plant                                                        317                                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                            Rev. 0
 
Table 312. Summary of Vehicle Demand Schools/Preschools/
Transit                                          Medical          Day Cares/ Day          Special      Shadow          External ERPA          Residents      Dependent8 Transients            Employees        Facilities8            Camps8              Event    Population9          Traffic          Total M1            2,349              4              8            264                0                      16                  0              0              0              2,641 M2              446              2              0              0                0                      0                  0              0              0              448 M3              501              2              45            2,154                0                      0                  0              0              0              2,702 M4            4,186              6              0              24                10                    58                  0              0              0              4,284 M5              674              4              0              0                0                      0                  0              0              0              678 M6            4,079              6            351              0                0                      40                  0              0              0              4,476 M7            5,211              6              63              0                36                    66                  0              0              0              5,382 M8            1,504              4              30              0                0                      0                  0              0              0              1,538 M9            1,874              2              0              0                0                      96                826            0              0              2,798 MLake                0              0              0              0                0                      0                  0              0              0                0 W1              2,162              6              20            308                2                      0                  0              0              0              2,498 W2              2,924              6            320              0                4                      76                  0              0              0              3,330 W3                554              4            500              0                0                      0                  0              0              0              1,058 W4              1,053              4            164            149                0                      0                  0              0              0              1,370 W5              1,951              6              0              0                6                      58                  0              0              0              2,021 W6              1,035              8              0              0                0                      14                  0              0              0              1,057 W7              2,231              6              51              0                2                      0                  0              0              0              2,290 WLake                0              0              0              0                0                      0                  0              0              0                0 Shadow 0              0              0              0                0                      76                  0          14,770          16,602          31,448 Region TOTAL:        32,734            76            1,552          2,899                60                    500                826        14,770          16,602          70,019 8
Buses and wheelchair buses for the transit-dependent population, medical facility population, and schools are represented as two passenger vehicles. Refer to Sections 3.5, 3.6, 3.7 and 8 for additional information.
9 Shadow vehicles have been reduced to 20%. Refer to Figure 2-1 for additional information.
Robert E. Ginna Nuclear Power Plant                                                      318                                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                                      Rev. 0
 
Figure 31. ERPAs Comprising the Ginna EPZ Robert E. Ginna Nuclear Power Plant                    319                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure 32. Permanent Resident Population by Sector Robert E. Ginna Nuclear Power Plant                320                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Figure 33. Permanent Resident Vehicles by Sector Robert E. Ginna Nuclear Power Plant                321                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Figure 34. Shadow Population by Sector Robert E. Ginna Nuclear Power Plant                322                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                Rev. 0
 
Figure 35. Shadow Vehicles by Sector Robert E. Ginna Nuclear Power Plant                  323                KLD Engineering, P.C.
Evacuation Time Estimate                                                                Rev. 0
 
Figure 36. Transient Population by Sector Robert E. Ginna Nuclear Power Plant                  324                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                  Rev. 0
 
Figure 37. Transient Vehicles by Sector Robert E. Ginna Nuclear Power Plant                  325                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                  Rev. 0
 
Figure 38. Employee Population by Sector Robert E. Ginna Nuclear Power Plant                326                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                  Rev. 0
 
Figure 39. Employee Vehicles by Sector Robert E. Ginna Nuclear Power Plant                  327                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                  Rev. 0
 
4    ESTIMATION OF HIGHWAY CAPACITY The ability of the road network to service vehicle demand is a major factor in determining how rapidly an evacuation can be completed. The capacity of a road is defined as the maximum hourly rate at which persons or vehicles can reasonably be expected to traverse a point or uniform section of a lane of roadway during a given time period under prevailing roadway, traffic and control conditions, as stated in the 2016 Highway Capacity Manual (HCM 2016).
In discussing capacity, different operating conditions have been assigned alphabetical designations, A through F, to reflect the range of traffic operational characteristics. These designations have been termed "Levels of Service" (LOS). For example, LOS A connotes freeflow and highspeed operating conditions; LOS F represents a forced flow condition. LOS E describes traffic operating at or near capacity.
Another concept, closely associated with capacity, is Service Volume (SV). Service volume is defined as The maximum hourly rate at which vehicles, bicycles or persons reasonably can be expected to traverse a point or uniform section of a roadway during an hour under specific assumed conditions while maintaining a designated level of service. This definition is similar to that for capacity. The major distinction is that values of SV vary from one LOS to another, while capacity is the service volume at the upper bound of LOS E, only.
Thus, in simple terms, SV is the maximum traffic that can travel on a road and still maintain a certain perceived level of quality to a driver based on the A, B, C, rating system (LOS). Any additional vehicles above the SV would drop the rating to a lower letter grade.
This distinction is illustrated in Exhibit 1237 of the HCM 2016. As indicated there, the SV varies with Free Flow Speed (FFS), and LOS. The SV is calculated by the DYNEV II simulation model, based on the specified link attributes, FFS, capacity, control device and traffic demand.
Other factors also influence capacity. These include, but are not limited to:
Lane width Shoulder width Pavement condition Horizontal and vertical alignment (curvature and grade)
Percent truck traffic Control device (and timing, if it is a signal)
Weather conditions (rain, snow, fog, wind speed, ice)
These factors are considered during the road survey and in the capacity estimation process; some factors have greater influence on capacity than others. For example, lane and shoulder width have only a limited influence on Base Free Flow Speed (BFFS1) according to Exhibit 157 of the HCM. Consequently, lane and shoulder widths at the narrowest points were observed during the road survey and these observations were recorded, but no detailed measurements of lane or shoulder width were taken. Horizontal and vertical alignment can influence both FFS 1
A very rough estimate of BFFS might be taken as the posted speed limit plus 10 mph (HCM 2016 Page 15-15).
Robert E. Ginna Nuclear Power Plant                          41                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                            Rev. 0
 
and capacity. The estimated FFS were measured using the survey vehicles speedometer and observing local traffic, under free flow conditions. Free flow speeds ranged from 15 to 75 mph in the study area. Capacity is estimated from the procedures of the 2016 HCM. For example, HCM Exhibit 71(b) shows the sensitivity of Service Volume at the upper bound of LOS D to grade (capacity is the Service Volume at the upper bound of LOS E).
As discussed in Section 2.6, it is necessary to adjust capacity figures to represent the prevailing conditions during inclement weather. Based on limited empirical data, weather conditions such as rain reduce the values of freeflow speed and of highway capacity by approximately 10%. Over the last decade new studies have been made on the effects of rain and snow on traffic capacity. These studies indicate a range of effects between 10% and 25% depending on wind speed and precipitation rates. As indicated in Section 2.6, we employ a reduction in free speed and in highway capacity of 10% for rain/light snow and a 15% reduction in free speed and 25% reduction in highway capacity for heavy snow.
Since congestion arising from evacuation may be significant, estimates of roadway capacity must be determined with great care. Because of its importance, a brief discussion of the major factors that influence highway capacity is presented in this section.
Rural highways generally consist of: (1) one or more uniform sections with limited access (driveways, parking areas) characterized by uninterrupted flow; and (2) approaches to at grade intersections where flow can be interrupted by a control device or by turning or crossing traffic at the intersection. Due to these differences, separate estimates of capacity must be made for each section. Often, the approach to the intersection is widened by the addition of one or more lanes (turn pockets or turn bays), to compensate for the lower capacity of the approach due to the factors there that can interrupt the flow of traffic. These additional lanes are recorded during the field survey and later entered as input to the DYNEV II system.
4.1    Capacity Estimations on Approaches to Intersections Atgrade intersections are apt to become the first bottleneck locations under local heavy traffic volume conditions. This characteristic reflects the need to allocate access time to the respective competing traffic streams by exerting some form of control. During evacuation, control at critical intersections will often be provided by traffic control personnel assigned for that purpose, whose directions may supersede traffic control devices. See Appendix G for more information.
The perlane capacity of an approach to a signalized intersection can be expressed (simplistically) in the following form:
3600                  3600 Robert E. Ginna Nuclear Power Plant              42                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
where:
Qcap,m            =        Capacity of a single lane of traffic on an approach, which executes movement, m, upon entering the intersection; vehicles per hour (vph) hm                =        Mean queue discharge headway of vehicles on this lane that are executing movement, m; seconds per vehicle G                  =        Mean duration of GREEN time servicing vehicles that are executing movement, m, for each signal cycle; seconds L                  =        Mean "lost time" for each signal phase servicing movement, m; seconds C                  =        Duration of each signal cycle; seconds Pm                =        Proportion of GREEN time allocated for vehicles executing movement, m, from this lane. This value is specified as part of the control treatment.
m                  =        The movement executed by vehicles after they enter the intersection: through, leftturn, rightturn, and diagonal.
The turnmovementspecific mean discharge headway hm, depends in a complex way upon many factors: roadway geometrics, turn percentages, the extent of conflicting traffic streams, the control treatment, and others. A primary factor is the value of "saturation queue discharge headway", hsat, which applies to through vehicles that are not impeded by other conflicting traffic streams. This value, itself, depends upon many factors including motorist behavior.
Formally, we can write, where:
hsat              =        Saturation discharge headway for through vehicles; seconds per vehicle F1,F2              =        The various known factors influencing hm fm( )              =        Complex function relating hm to the known (or estimated) values of hsat, F1, F2, The estimation of hm for specified values of hsat, F1, F2, ... is undertaken within the DYNEV II simulation model by a mathematical model2. The resulting values for hm always satisfy the condition:
2 Lieberman, E., "Determining Lateral Deployment of Traffic on an Approach to an Intersection", McShane, W. & Lieberman, E.,
"Service Rates of Mixed Traffic on the far Left Lane of an Approach". Both papers appear in Transportation Research Record 772, 1980. Lieberman, E., Xin, W., Macroscopic Traffic Modeling For Large-Scale Evacuation Planning, presented at the TRB 2012 Annual Meeting, January 22-26, 2012.
Robert E. Ginna Nuclear Power Plant                            43                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                Rev. 0
 
That is, the turnmovementspecific discharge headways are always greater than, or equal to the saturation discharge headway for through vehicles. These headways (or its inverse equivalent, saturation flow rate), may be determined by observation or using the procedures of the HCM 2016.
The above discussion is necessarily brief given the scope of this ETE report and the complexity of the subject of intersection capacity. In fact, Chapters 19, 20 and 21 in the HCM 2016 address this topic. The factors, F1, F2, , influencing saturation flow rate are identified in equation (198) of the HCM 2016.
The traffic signals within the EPZ and Shadow Region are modeled using representative phasing plans and phase durations obtained as part of the field data collection. Traffic responsive signal installations allow the proportion of green time allocated (Pm) for each approach to each intersection to be determined by the expected traffic volumes on each approach during evacuation circumstances. The amount of green time (G) allocated is subject to maximum and minimum phase duration constraints; 2 seconds of yellow time are indicated for each signal phase and 1 second of allred time is assigned between signal phases, typically. If a signal is pre timed, the yellow and allred times observed during the road survey are used. A lost time (L) of 2.0 seconds is used for each signal phase in the analysis.
4.2    Capacity Estimation along Sections of Highway The capacity of highway sections  as distinct from approaches to intersections  is a function of roadway geometrics, traffic composition (e.g., percent heavy trucks and buses in the traffic stream) and, of course, motorist behavior. There is a fundamental relationship which relates service volume (i.e., the number of vehicles serviced within a uniform highway section in a given time period) to traffic density. The top curve in Figure 41 illustrates this relationship.
As indicated, there are two flow regimes: (1) Free Flow (left side of curve); and (2) Forced Flow (right side). In the Free Flow regime, the traffic demand is fully serviced; the service volume increases as demand volume and density increase, until the service volume attains its maximum value, which is the capacity of the highway section. As traffic demand and the resulting highway density increase beyond this "critical" value, the rate at which traffic can be serviced (i.e., the service volume) can actually decline below capacity (capacity drop). Therefore, in order to realistically represent traffic performance during congested conditions (i.e., when demand exceeds capacity), it is necessary to estimate the service volume, VF, under congested conditions.
The value of VF can be expressed as:
where:
R              =      Reduction factor which is less than unity Robert E. Ginna Nuclear Power Plant                44                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
We have employed a value of R=0.90. The advisability of such a capacity reduction factor is based upon empirical studies that identified a falloff in the service flow rate when congestion occurs at bottlenecks or choke points on a freeway system. Zhang and Levinson3 describe a research program that collected data from a computerbased surveillance system (loop detectors) installed on the Interstate Highway System, at 27 active bottlenecks in the twin cities metro area in Minnesota over a 7week period. When flow breakdown occurs, queues are formed which discharge at lower flow rates than the maximum capacity prior to observed breakdown. These queue discharge flow (QDF) rates vary from one location to the next and also vary by day of week and time of day based upon local circumstances. The cited reference presents a mean QDF of 2,016 passenger cars per hour per lane (pcphpl). This figure compares with the nominal capacity estimate of 2,250 pcphpl estimated for the ETE for freeway links. The ratio of these two numbers is 0.896 which translates into a capacity reduction factor of 0.90.
Since the principal objective of evacuation time estimate analyses is to develop a realistic estimate of evacuation times, use of the representative value for this capacity reduction factor (R=0.90) is justified. This factor is applied only when flow breaks down, as determined by the simulation model.
Rural roads, like freeways, are classified as uninterrupted flow facilities. (This is in contrast with urban street systems which have closely spaced signalized intersections and are classified as interrupted flow facilities.) As such, traffic flow along rural roads is subject to the same effects as freeways in the event traffic demand exceeds the nominal capacity, resulting in queuing and lower QDF rates. As a practical matter, rural roads rarely break down at locations away from intersections. Any breakdowns on rural roads are generally experienced at intersections where other model logic applies, or at lane drops which reduce capacity there.
Therefore, the application of a factor of 0.90 is appropriate on rural roads, but rarely, if ever, activated.
The estimated value of capacity is based primarily upon the type of facility and on roadway geometrics. Sections of roadway with adverse geometrics are characterized by lower freeflow speeds and lane capacity. Exhibit 1546 in the Highway Capacity Manual was referenced to estimate saturation flow rates. The impact of narrow lanes and shoulders on freeflow speed and on capacity is not material, particularly when flow is predominantly in one direction as is the case during an evacuation.
The procedure used here was to estimate "section" capacity, VE, based on observations made traveling over each section of the evacuation network, based on the posted speed limits and travel behavior of other motorists and by reference to the 2016 HCM. The DYNEV II simulation model determines for each highway section, represented as a network link, whether its capacity would be limited by the "sectionspecific" service volume, VE, or by the intersectionspecific capacity. For each link, the model selects the lower value of capacity.
3 Lei Zhang and David Levinson, Some Properties of Flows at Freeway Bottlenecks, Transportation Research Record 1883, 2004.
Robert E. Ginna Nuclear Power Plant                          45                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                              Rev. 0
 
4.3  Application to the Ginna Study Area As part of the development of the linknode analysis network for the study area, an estimate of roadway capacity is required. The source material for the capacity estimates presented herein is contained in:
2016 Highway Capacity Manual (HCM)
Transportation Research Board National Research Council Washington, D.C.
The highway system in the study area consists primarily of three categories of roads and, of course, intersections:
TwoLane roads: Local, State Multilane Highways (atgrade)
Freeways Each of these classifications will be discussed.
4.3.1 TwoLane Roads Ref: HCM Chapter 15 Two lane roads comprise the majority of highways within the EPZ. The perlane capacity of a twolane highway is estimated at 1,700 passenger cars per hour (pc/h). This estimate is essentially independent of the directional distribution of traffic volume except that, for extended distances, the twoway capacity will not exceed 3,200 pc/h. The HCM procedures then estimate LOS and Average Travel Speed. The DYNEV II simulation model accepts the specified value of capacity as input and computes average speed based on the timevarying demand: capacity relations.
Based on the field survey and on expected traffic operations associated with evacuation scenarios:
Most sections of twolane roads within the EPZ are classified as Class I, with "level terrain"; some are rolling terrain.
Class II highways are mostly those within urban and suburban centers.
4.3.2 Multilane Highway Ref: HCM Chapter 12 Exhibit 128 of the HCM 2016 presents a set of curves that indicate a perlane capacity ranging from approximately 1,900 to 2,200 pc/h, for freespeeds of 45 to 60 mph, respectively. Based on observation, the multilane highways outside of urban areas within the EPZ service traffic with freespeeds in this range. The actual timevarying speeds computed by the simulation model reflect the demand: capacity relationship and the impact of control at intersections. A Robert E. Ginna Nuclear Power Plant              46                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
conservative estimate of perlane capacity of 1,900 pc/h is adopted for this study for multilane highways outside of urban areas.
4.3.3 Freeways Ref: HCM Chapters 10, 12, 13, 14 Chapter 10 of the HCM 2016 describes a procedure for integrating the results obtained in Chapters 12, 13 and 14, which compute capacity and LOS for freeway components. Chapter 10 also presents a discussion of simulation models. The DYNEV II simulation model automatically performs this integration process.
Chapter 12 of the HCM 2016 presents procedures for estimating capacity and LOS for Basic Freeway Segments". Exhibit 1237 of the HCM 2016 presents capacity vs. free speed estimates, which are provided below.
Free Speed (mph):                  55      60      65      70+
PerLane Capacity (pc/h):        2,250    2,300    2,350    2,400 The inputs to the simulation model are highway geometrics, freespeeds and capacity based on field observations. The simulation logic calculates actual timevarying speeds based on demand:
capacity relationships. A conservative estimate of perlane capacity of 2,250 pc/h is adopted for this study for freeways.
Chapter 13 of the HCM 2016 presents procedures for estimating capacity, speed, density and LOS for freeway weaving sections. The simulation model contains logic that relates speed to demand volume: capacity ratio. The value of capacity obtained from the computational procedures detailed in Chapter 13 depends on the "Type" and geometrics of the weaving segment and on the "Volume Ratio" (ratio of weaving volume to total volume).
Chapter 14 of the HCM 2016 presents procedures for estimating capacities of ramps and of "merge" areas. There are three significant factors to the determination of capacity of a ramp freeway junction: The capacity of the freeway immediately downstream of an onramp or immediately upstream of an offramp; the capacity of the ramp roadway; and the maximum flow rate entering the ramp influence area. In most cases, the freeway capacity is the controlling factor. Values of this merge area capacity are presented in Exhibit 1410 of the HCM 2016 and depend on the number of freeway lanes and on the freeway free speed. Ramp capacity is presented in Exhibit 1412 and is a function of the ramp FFS. The DYNEV II simulation model logic simulates the merging operations of the ramp and freeway traffic in accord with the procedures in Chapter 14 of the HCM 2016. If congestion results from an excess of demand relative to capacity, then the model allocates service appropriately to the two entering traffic streams and produces LOS F conditions (The HCM does not address LOS F explicitly).
Robert E. Ginna Nuclear Power Plant              47                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
4.3.4 Intersections Ref: HCM Chapters 19, 20, 21, 22 Procedures for estimating capacity and LOS for approaches to intersections are presented in Chapter 19 (signalized intersections), Chapters 20, 21 (unsignalized intersections) and Chapter 22 (roundabouts). The complexity of these computations is indicated by the aggregate length of these chapters. The DYNEV II simulation logic is likewise complex.
The simulation model explicitly models intersections: Stop/yield controlled intersections (both 2way and allway) and traffic signal controlled intersections. Where intersections are controlled by fixed time controllers, traffic signal timings are set to reflect average (non evacuation) traffic conditions. Actuated traffic signal settings respond to the timevarying demands of evacuation traffic to adjust the relative capacities of the competing intersection approaches.
The model is also capable of modeling the presence of manned traffic control. At specific locations where it is advisable or where existing plans call for overriding existing traffic control to implement manned control, the model will use actuated signal timings that reflect the presence of traffic guides. At locations where a special traffic control strategy (continuous left turns, contraflow lanes) is used, the strategy is modeled explicitly. A list that includes the total number of intersections modeled that are unsignalized, signalized, or manned by response personnel is included in Appendix K.
4.4  Simulation and Capacity Estimation Chapter 6 of the HCM is entitled, HCM and Alternative Analysis Tools. The chapter discusses the use of alternative tools such as simulation modeling to evaluate the operational performance of highway networks. Among the reasons cited in Chapter 6 to consider using simulation as an alternative analysis tool is:
The system under study involves a group of different facilities or travel modes with mutual interactions involving several HCM chapters. Alternative tools are able to analyze these facilities as a single system.
This statement succinctly describes the analyses required to determine traffic operations across an area encompassing an EPZ operating under evacuation conditions. The model utilized for this study, DYNEV II, is further described in Appendix C. It is essential to recognize that simulation models do not replicate the methodology and procedures of the HCM - they replace these procedures by describing the complex interactions of traffic flow and computing Measures of Effectiveness (MOE) detailing the operational performance of traffic over time and by location. The DYNEV II simulation model includes some HCM 2016 procedures only for the purpose of estimating capacity.
All simulation models must be calibrated properly with field observations that quantify the performance parameters applicable to the analysis network. Two of the most important of these are: (1) FFS; and (2) saturation headway, hsat. The first of these is estimated by direct Robert E. Ginna Nuclear Power Plant              48                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
observation during the road survey; the second is estimated using the concepts of the HCM 2016, as described earlier.
4.5    Boundary Conditions As illustrated in Figure 12 and in Appendix K, the linknode analysis network used for this study is finite. The analysis network extends well beyond the 15mile radial study area in some locations in order to model intersections with other major evacuation routes beyond the study area. However, the network does have an end at the destination (exit) nodes as discussed in Appendix C. Beyond these destination nodes, there may be signalized intersections or merge points that impact the capacity of the evacuation routes leaving the study area. Rather than neglect these boundary conditions, this study assumes a 25% reduction in capacity on two lane roads (Section 4.3.1 above) and multilane highways (Section 4.3.2 above). There is no reduction in capacity for freeways due to boundary conditions. The 25% reduction in capacity is based on the prevalence of actuated traffic signals in the study area (see Table K1) and the fact that the evacuating traffic volume will be more significant than the competing traffic volume at any downstream signalized intersections, thereby warranting a more significant percentage (75% in this case) of the signal green time.
Volume, vph Capacity Drop Qmax R Qmax Qs Density, vpm Flow Regimes Speed, mph Free      Forced vf R vc Density, vpm kf          kopt                            kj ks Figure 41. Fundamental Diagrams Robert E. Ginna Nuclear Power Plant                  49                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
5      ESTIMATION OF TRIP GENERATION TIME Federal guidelines (see NUREG/CR7002, Rev. 1) specify that the planner estimate the distributions of elapsed times associated with mobilization activities undertaken by the public to prepare for the evacuation trip. The elapsed time associated with each activity is represented as a statistical distribution reflecting differences between members of the public.
The quantification of these activitybased distributions relies largely on the results of the demographic survey. We define the sum of these distributions of elapsed times as the Trip Generation Time Distribution.
 
===5.1      Background===
In general, an accident at a nuclear power plant is characterized by the following Emergency Classification Levels (see Section C of Part IV of Appendix E of 10 CFR 50 for details):
: 1. Unusual Event
: 2. Alert
: 3. Site Area Emergency
: 4. General Emergency At each level, the Federal guidelines specify a set of Actions to be undertaken by the licensee and by the state and local offsite authorities. As a Planning Basis, we will adopt a conservative posture, in accordance with Section 1.2 of NUREG/CR7002, Rev. 1, that a rapidly escalating accident at the plant wherein evacuation is ordered promptly, and no early protective actions have been implemented will be considered in calculating the Trip Generation Time. We will assume:
: 1. The Advisory to Evacuate (ATE) will be announced coincident with the siren notification.
: 2. Mobilization of the general population will commence within 15 minutes after the siren notification.
: 3. ETE are measured relative to the ATE.
We emphasize that the adoption of this planning basis is not a representation that these events will occur within the indicated time frame. Rather, these assumptions are necessary in order to:
: 1. Establish a temporal framework for estimating the Trip Generation distribution in the format recommended in Section 2.13 of NUREG/CR6863.
: 2. Identify temporal points of reference that uniquely define "Clear Time" and ETE.
It is likely that a longer time will elapse between the various classes of an emergency.
For example, suppose onehour elapses from the siren alert to the ATE. In this case, it is reasonable to expect some degree of spontaneous evacuation by the public during this one hour period. As a result, the population within the EPZ will be lower when the ATE is announced, than at the time of the siren alert. In addition, many will engage in preparation activities to evacuate, in anticipation that an Advisory will be broadcasted. Thus, the time needed to complete the mobilization activities and the number of people remaining to evacuate the EPZ after the ATE, will both be somewhat less than the estimates presented in this Robert E. Ginna Nuclear Power Plant                51                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
report. Consequently, the ETE presented in this report are higher than the actual evacuation time, if this hypothetical situation were to take place.
The notification process consists of two events:
: 1. Transmitting information using the alert and notification systems (ANS) available within the EPZ (e.g. sirens, tone alerts, EAS broadcasts, loud speakers).
: 2. Receiving and correctly interpreting the information that is transmitted.
The population within the EPZ is dispersed over an area of approximately 160 square miles and is engaged in a wide variety of activities. It must be anticipated that some time will elapse between the transmission and receipt of the information advising the public of an accident.
The amount of elapsed time will vary from one individual to the next depending on where that person is, what that person is doing, and related factors. Furthermore, some persons who will be directly involved with the evacuation process may be outside the EPZ at the time the emergency is declared. These people may be commuters, shoppers and other travelers who reside within the EPZ and who will return to join the other household members upon receiving notification of an emergency.
As indicated in Section 2.13 of NUREG/CR6863, the estimated elapsed times for the receipt of notification can be expressed as a distribution reflecting the different notification times for different people within, and outside, the EPZ. By using time distributions, it is also possible to distinguish between different population groups and different dayofweek and timeofday scenarios, so that accurate ETE may be computed.
For example, people at home or at work within the EPZ will be notified by siren, and/or tone alert and/or radio (if available). Those well outside the EPZ will be notified by telephone, radio, TV and wordofmouth, with potentially longer time lags. Furthermore, the spatial distribution of the EPZ population will differ with time of day  families will be united in the evenings but dispersed during the day. In this respect, weekends will differ from weekdays.
As indicated in Section 4.3 of NUREG/CR7002, Rev. 1, the information required to compute trip generation times is typically obtained from a demographic survey of EPZ residents. Such a survey was conducted in support of this ETE study. Appendix F discusses the survey sampling plan and number of samples obtained, and the survey results, as well as documents the survey instrument utilized. The remaining discussion will focus on the application of the trip generation data obtained from the demographic survey to the development of the ETE documented in this report.
5.2    Fundamental Considerations The environment leading up to the time that people begin their evacuation trips consists of a sequence of events and activities. Each event (other than the first) occurs at an instant in time and is the outcome of an activity.
Activities are undertaken over a period of time. Activities may be in "series" (i.e., to undertake an activity implies the completion of all preceding events) or may be in parallel (two or more Robert E. Ginna Nuclear Power Plant                52                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
activities may take place over the same period of time). Activities conducted in series are functionally dependent on the completion of prior activities; activities conducted in parallel are functionally independent of one another. The relevant events associated with the public's preparation for evacuation are:
Event Number        Event Description 1            Notification 2            Awareness of Situation 3            Depart Work 4            Arrive Home 5            Depart on Evacuation Trip Associated with each sequence of events are one or more activities, as outlined in Table 51.
These relationships are shown graphically in Figure 51.
An Event is a state that exists at a point in time (e.g., depart work, arrive home)
An Activity is a process that takes place over some elapsed time (e.g., prepare to leave work, travel home)
As such, a completed Activity changes the state of an individual (i.e., the activity, travel home changes the state from depart work to arrive home). Therefore, an Activity can be described as an Event Sequence; the elapsed times to perform an event sequence vary from one person to the next and are described as statistical distributions on the following pages.
An employee who lives outside the EPZ will follow sequence (c) of Figure 51. A household within the EPZ that has one or more commuters at work and will await their return before beginning the evacuation trip will follow the first sequence of Figure 51(a). A household within the EPZ that has no commuters at work, or that will not await the return of any commuters, will follow the second sequence of Figure 51(a), regardless of day of week or time of day.
Households with no commuters on weekends or in the evening/nighttime, will follow the applicable sequence in Figure 51(b). Transients will always follow one of the sequences of Figure 51(b). Some transients away from their residence could elect to evacuate immediately without returning to the residence, as indicated in the second sequence.
It is seen from Figure 51, that the Trip Generation time (the total elapsed time from Event 1 to Event 5) depends on the scenario and will vary from one household to the next. Furthermore, Event 5 depends, in a complicated way, on the time distributions of all activities preceding that event. That is, to estimate the time distribution of Event 5, we must obtain estimates of the time distributions of all preceding events. For this study, we adopt the conservative posture that all activities will occur in sequence.
In some cases, assuming certain events occur strictly sequential (for instance, commuter returning home before beginning preparation to leave) can result in rather conservative (that is, longer) estimates of mobilization times. It is reasonable to expect that at least some parts of these events will overlap for many households, but that assumption is not made in this study.
Robert E. Ginna Nuclear Power Plant                  53                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                              Rev. 0
 
5.3    Estimated Time Distributions of Activities Preceding Event 5 The time distribution of an event is obtained by "summing" the time distributions of all prior contributing activities. (This "summing" process is quite different than an algebraic sum since it is performed on distributions - not scalar numbers).
Time Distribution No. 1, Notification Process: Activity 1  2 Federal regulations (10CFR50 Appendix E, Item IV.D.3) stipulate, [t]he design objective of the prompt public alert and notification system shall be to have the capability to essentially complete the initial alerting and initiate notification of the public within the plume exposure pathway EPZ within about 15 minutes. Furthermore, FEMA REP Program Manual Part V Section B.1 Bullet 3 states that arrangements will be made to assure 100% coverage within 45 minutes of the population who may not have received the initial notification within the entire plume exposure EPZ."
Given the federal regulations and guidance, and the assumed presence of sirens within the EPZ, it is assumed that 100% of those within the EPZ will be aware of the accident within 45 minutes. The assumed distribution for notifying the EPZ population is provided in Table 52. The distribution is plotted in Figure 52.
Distribution No. 2, Prepare to Leave Work: Activity 2  3 It is reasonable to expect that the vast majority of business enterprises within the EPZ will elect to shut down following notification and most employees would leave work quickly. Commuters, who work outside the EPZ could, in all probability, also leave quickly since facilities outside the EPZ would remain open and other personnel would remain. Personnel or farmers responsible for equipment/livestock would require additional time to secure their facility. The distribution of Activity 2  3 shown in Table 53 reflects data obtained by the demographic survey for employees working inside or outside of the EPZ who returns home prior to evacuating. This distribution is also applicable for residents to leave stores, restaurants, parks and other locations within the EPZ. This distribution is plotted in Figure 52.
Distribution No. 3, Travel Home: Activity 3  4 These data are provided directly by those households which responded to the demographic survey. This distribution is plotted in Figure 52 and listed in Table 54.
Distribution No. 4, Prepare to Leave Home:      Activity 2, 4  5 These data are provided directly by those households which responded to the demographic survey. This distribution is plotted in Figure 52 and listed in Table 55.
Distribution No. 5, Snow Clearance Time Distribution Inclement weather scenarios involving snowfall must address the time lags associated with snow clearance. It is assumed that snow equipment is mobilized and deployed during the snowfall to maintain passable roads. The general consensus is that the snowplowing efforts are generally successful for all but the most extreme blizzards when the rate of snow accumulation Robert E. Ginna Nuclear Power Plant                54                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
exceeds that of snow clearance over a period of many hours (Note - evacuation may not be a prudent protective action under such blizzard conditions).
Consequently, it is reasonable to assume that the highway system will remain passable - albeit at a lower capacity - under the vast majority of snow conditions. Nevertheless, for the vehicles to gain access to the highway system, it may be necessary for driveways and employee parking lots to be cleared to the extent needed to permit vehicles to gain access to the roadways. These clearance activities take time; this time must be incorporated into the trip generation time distributions. This distribution is plotted in Figure 52 and listed in Table 56.
5.4    Calculation of Trip Generation Time Distribution The time distributions for each of the mobilization activities presented herein must be combined to form the appropriate Trip Generation Distributions. As discussed above, this study assumes that the stated events take place in sequence such that all preceding events must be completed before the current event can occur. For example, if a household awaits the return of a commuter, the worktohome trip (Activity 3  4) must precede Activity 4  5.
To calculate the time distribution of an event that is dependent on two sequential activities, it is necessary to sum the distributions associated with these prior activities. The distribution summing algorithm is applied repeatedly to form the required distribution. As an outcome of this procedure, new time distributions are formed; we assign letter designations to these intermediate distributions to describe the procedure. Table 57 presents the summing procedure to arrive at each designated distribution.
Table 58 presents a description of each of the final trip generation distributions achieved after the summing process is completed.
5.4.1 Statistical Outliers As already mentioned, some portion of the survey respondents answer dont know to some questions or choose to not respond to a question. The mobilization activity distributions are based upon actual responses. But, it is the nature of surveys that a few numeric responses are inconsistent with the overall pattern of results. An example would be a case in which for 500 responses, almost all of them estimate less than two hours for a given answer, but 3 say four hours and 4 say six or more hours.
These outliers must be considered: are they valid responses, or so atypical that they should be dropped from the sample?
In assessing outliers, there are three alternatives to consider:
: 1) Some responses with very long times may be valid but reflect the reality that the respondent really needs to be classified in a different population subgroup, based upon access and/or functional needs for example.
: 2) Other responses may be unrealistic (6 hours to return home from commuting distance, or 2 days to prepare the home for departure).
Robert E. Ginna Nuclear Power Plant                55                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
: 3) Some high values are representative and plausible, and one must not cut them as part of the consideration of outliers.
The issue of course is how to make the decision that a given response or set of responses are to be considered outliers for the component mobilization activities, using a method that objectively quantifies the process.
There is considerable statistical literature on the identification and treatment of outliers singly or in groups, much of which assumes the data is normally distributed and some of which uses non parametric methods to avoid that assumption. The literature cites that limited work has been done directly on outliers in sample survey responses.
In establishing the overall mobilization time/trip generation distributions, the following principles are used:
: 1) It is recognized that the overall trip generation distributions are conservative estimates, because they assume a household will do the mobilization activities sequentially, with no overlap of activities;
: 2) The individual mobilization activities (prepare to leave work, travel home, prepare home, clear light snow/ice) are reviewed for outliers, and then the overall trip generation distributions are created (see Figure 51, Table 57, Table 58);
: 3) Outliers can be eliminated either because the response reflects a special population (e.g.,
access and/or functional needs, transit dependent) or lack of realism, because the purpose is to estimate trip generation patterns for personal vehicles;
: 4) To eliminate outliers, a) the mean and standard deviation of the specific activity are estimated from the responses, b) the median of the same data is estimated, with its position relative to the mean noted, c) the histogram of the data is inspected, and d) all values greater than 3.5 standard deviations are flagged for attention, taking special note of whether there are gaps (categories with zero entries) in the histogram display.
In general, only flagged values more than 4 standard deviations from the mean are allowed to be considered outliers, with small gaps in the histogram expected. Due to large gaps in the dataset, the distribution of time to prepare to leave home was truncated for values more than 3.5 standard deviations from the mean.
When flagged values are classified as outliers and dropped, steps a to d are repeated.
: 5) As a practical matter, even with outliers eliminated by the above, the resultant histogram, viewed as a cumulative distribution, is not a normal distribution. A typical situation that results is shown in Figure 53.
: 6) In particular, the cumulative distribution differs from the normal distribution in two key aspects, both very important in loading a network to estimate evacuation times:
Robert E. Ginna Nuclear Power Plant              56                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Most of the real data is to the left of the normal curve above, indicating that the network loads faster for the first 8085% of the vehicles, potentially causing more (and earlier) congestion than otherwise modeled; The last 1015% of the real data tails off slower than the comparable normal curve, indicating that there is significant traffic still loading at later times.
Because these two features are important to preserve, it is the histogram of the data that is used to describe the mobilization activities, not a normal curve fit to the data. One could consider other distributions, but using the shape of the actual data curve is unambiguous and preserves these important features;
: 7) With the mobilization activities each modeled according to Steps 16, including preserving the features cited in Step 6, the overall (or total) mobilization times are constructed.
This is done by using the data sets and distributions under different scenarios (e.g., commuter returning, no commuter returning). In general, these are additive, using weighting based upon the probability distributions of each element; Figure 54 presents the combined trip generation distributions for each population group considered. These distributions are presented on the same time scale. (As discussed earlier, the use of strictly additive activities is a conservative approach, because it makes all activities sequential - preparation for departure follows the return of the commuter, and so forth. In practice, it is reasonable that some of these activities are done in parallel, at least to some extent - for instance, preparation to depart begins by a household member at home while the commuter is still on the road.)
The mobilization distributions that result are used in their tabular/graphical form as direct inputs to later computations that lead to the ETE.
The DYNEV II simulation model is designed to accept varying rates of vehicle trip generation for each origin centroid, expressed in the form of histograms. These histograms, which represent Distributions A, C, D, E and F, properly displaced with respect to one another, are tabulated in Table 59 (Distribution B, Arrive Home, omitted for clarity).
The final time period (15) is 600 minutes long. This time period is added to allow the analysis network to clear, in the event congestion persists beyond the trip generation period. Note that there are no trips generated during this final time period.
5.4.2 Staged Evacuation Trip Generation As defined in NUREG/CR7002, Rev. 1, staged evacuation consists of the following:
: 1. ERPAs comprising the 2mile region are advised to evacuate immediately
: 2. ERPAs comprising regions extending from 2 to 5 miles downwind are advised to shelter inplace while the 2mile region is cleared
: 3. As vehicles evacuate the 2mile region, sheltered people from 2 to 5 miles downwind continue preparation for evacuation Robert E. Ginna Nuclear Power Plant                  57                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                              Rev. 0
: 4. The population sheltering in the 2 to 5mile region are advised to begin evacuating when approximately 90% of those originally within the 2mile region evacuate across the 2mile region boundary
: 5. Noncompliance with the shelter recommendation is the same as the shadow evacuation percentage of 20%
Assumptions
: 1. The EPZ population in ERPAs beyond 5 miles will shelterinplace. A noncompliance voluntary evacuation percentage of 20% is assumed for this population.
: 2. The population in the shadow region beyond the EPZ boundary, extending to approximately 15 miles radially from the plant, will react as they do for all nonstaged evacuation scenarios. That is 20% of these households will elect to evacuate with no shelter delay.
: 3. The transient population will not be expected to stage their evacuation because of the limited sheltering options available to people who may be at parks, on a beach, or at other venues. Also, notifying the transient population of a staged evacuation would prove difficult.
: 4. Employees will also be assumed to evacuate without first sheltering.
Procedure
: 1. Trip generation for population groups in the 2mile region will be as computed based upon the results of the demographic survey and analysis.
: 2. Trip generation for the population subject to staged evacuation will be formulated as follows:
: a. Identify the 90th percentile evacuation time for the ERPAs comprising the two mile region. This value, TScen*, obtained from simulation results. It will become the time at which the region being sheltered will be told to evacuate for each scenario.
: b. The resultant trip generation curves for staging are then formed as follows:
: i. The nonshelter trip generation curve is followed until a maximum of 20%
of the total trips are generated (to account for shelter noncompliance).
ii. No additional trips are generated until time TScen*
iii. Following time TScen*, the balance of trips are generated:
: 1. by stepping up and then following the nonshelter trip generation curve (if TScen* is < max trip generation time) or
: 2. by stepping up to 100% (if TScen* is > max trip generation time)
: c. Note: This procedure implies that there may be different staged trip generation distributions for different scenarios. NUREG/CR7002, Rev. 1 uses the statement approximately 90th percentile as the time to end staging and begin evacuating.
The value of TScen* is 2:15 in good weather/rain/light snow and 3:00 in heavy snow.
: 3. Staged trip generation distributions are created for the following population groups:
Robert E. Ginna Nuclear Power Plant                  58                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
: a. Residents with returning commuters
: b. Residents without returning commuters
: c. Residents with returning commuters with heavy snow
: d. Residents without returning commuters with heavy snow Figure 55 and Table 510 presents the staged trip generation distributions for both residents with and without returning commuters and employees. At TScen*, 20% of the permanent resident population (who normally would have completed their mobilization activities for an unstaged evacuation) advised to shelter has nevertheless departed the area. These people do not comply with the shelter advisory. Also included on the plot are the trip generation distributions for these groups as applied to the regions advised to evacuate immediately.
Since the 90th percentile evacuation time occurs before the end of the trip generation time, after the sheltered region is advised to evacuate, the shelter trip generation distribution rises to meet the balance of the nonstaged trip generation distribution. Following time TScen*, the balance of staged evacuation trips that are ready to depart are released within the next time interval. After TScen*+ 15 minutes, the remainder of evacuation trips are generated in accordance with the unstaged trip generation distribution.
5.4.3 Evacuation of Waterways The Wayne County Radiological Emergency Preparedness Response Plan, dated January 2, 2017 states that the Wayne County Sheriffs Office is responsible for notifying boaters on Lake Ontario. This will be accomplished by broadcasting messages over National Oceanic and Atmospheric Administration (NOAA) and marine radio frequencies. Marine patrols will also be launched if necessary. The Monroe County Radiological Emergency Preparedness Plan, dated May 2019, lists the clearing of boats in Lake Ontario as an Initial Precautionary Operation. The Monroe County Sheriffs department, with assistance from the United States Coast Guard, will notify boaters over NOAA and marine radio frequencies.
As discussed in Section 2.2 this study assumes a rapidly escalating general emergency. As indicated in Table 52, this study assumes 100% notification in 45 minutes. Table 59 indicates that all transients will have mobilized within 90 minutes. It is assumed that this timeframe is sufficient time for boaters, campers and other transients to return to their vehicles or lodging facilities, pack their belongings and begin their evacuation trip.
Robert E. Ginna Nuclear Power Plant              59                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Table 51. Event Sequence for Evacuation Activities Event Sequence                    Activity                Distribution 12            Receive Notification                        1 23            Prepare to Leave Work                      2 2,3  4          Travel Home                                3 2,4  5          Prepare to Leave to Evacuate                4 N/A            Snow Clearance                              5 Table 52. Time Distribution for Notifying the Public Elapsed Time                Percent of (Minutes)            Population Notified 0                        0.0%
5                        7.1%
10                        13.3%
15                        26.5%
20                        46.9%
25                        66.3%
30                        86.7%
35                        91.8%
40                        96.9%
45                        100%
Table 53. Time Distribution for Employees to Prepare to Leave Work Cumulative                                    Cumulative Elapsed Time        Percent Employees          Elapsed Time        Percent Employees (Minutes)            Leaving Work              (Minutes)            Leaving Work 0                      0.0%                    35                    94.4%
5                    32.4%                    40                    95.0%
10                    55.3%                    45                    96.6%
15                    72.1%                    50                    97.2%
20                    77.1%                    55                    97.2%
25                    82.1%                    60                    100%
30                    93.3%
NOTE: The survey data was normalized to distribute the "Decline to State" response. That is, the sample was reduced in size to include only those households who responded to this question. The underlying assumption is that the distribution of this activity for the Dont know responders, if the event takes place, would be the same as those responders who provided estimates.
Robert E. Ginna Nuclear Power Plant                        510                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                      Rev. 0
 
Table 54. Time Distribution for Commuters to Travel Home Cumulative                                    Cumulative Elapsed Time            Percent            Elapsed Time              Percent (Minutes)        Returning Home            (Minutes)          Returning Home 0                    0.0%                  40                    89.9%
5                    8.0%                  45                    93.6%
10                  24.5%                  50                    96.8%
15                  41.0%                  55                    96.8%
20                  56.9%                  60                    98.4%
25                  69.1%                  65                    98.9%
30                  80.9%                  70                    99.5%
35                  86.2%                  75                    100%
NOTE: The survey data was normalized to distribute the "Decline to State" response Table 55. Time Distribution for Population to Prepare to Evacuate Cumulative Elapsed Time        Percent Ready to (Minutes)              Evacuate 0                  0.0%
15                  4.4%
30                  30.1%
45                  44.2%
60                  61.1%
75                  74.3%
90                  86.7%
105                  92.0%
120                  94.7%
135                  100%
NOTE: The survey data was normalized to distribute the "Decline to State" response Robert E. Ginna Nuclear Power Plant                  511                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                    Rev. 0
 
Table 56. Time Distribution for Population to Clear 6 - 8 of Snow Cumulative Percent Ready Elapsed Time (Minutes) to Evacuate 0                              21.7%
15                              40.4%
30                              57.5%
45                              70.2%
60                              88.8%
75                              92.5%
90                              94.8%
105                              95.5%
120                              97.8%
135                              100%
NOTE: The survey data was normalized to distribute the "Decline to State" response Table 57. Mapping Distributions to Events Apply Summing Algorithm To:                    Distribution Obtained          Event Defined Distributions 1 and 2                          Distribution A                Event 3 Distributions A and 3                          Distribution B                Event 4 Distributions B and 4                          Distribution C                Event 5 Distributions 1 and 4                          Distribution D                Event 5 Distributions C and 5                          Distribution E                Event 5 Distributions D and 5                          Distribution F                Event 5 Robert E. Ginna Nuclear Power Plant                                        512                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
Table 58. Description of the Distributions Distribution Description Time distribution of commuters departing place of work (Event 3). Also applies A    to employees who work within the EPZ who live outside, and to Transients within the EPZ.
B    Time distribution of commuters arriving home (Event 4).
Time distribution of residents with commuters who return home, leaving home C
to begin the evacuation trip (Event 5).
Time distribution of residents without commuters returning home, leaving home D
to begin the evacuation trip (Event 5).
Time distribution of residents with commuters who return home, leaving home E
to begin the evacuation trip, after snow clearance activities (Event 5).
Time distribution of residents with no commuters returning home, leaving to F
begin the evacuation trip, after snow clearance activities (Event 5).
Robert E. Ginna Nuclear Power Plant                                513                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Table 59. Trip Generation Histograms for the EPZ Population for Unstaged Evacuation Percent of Total Trips Generated Within Indicated Time Period Duration                                                                          Residents          Residents with      Residents without Time                                                                Residents with Employees              Transients                                Without            Commuters              Commuters Period        (Min)                                                    Commuters (Distribution A)        (Distribution A)                          Commuters                (Snow)                (Snow)
(Distribution C)
(Distribution D)      (Distribution E)      (Distribution F) 1            15              6%                      6%                  0%                  0%                  0%                    0%
2            15              32%                    32%                  0%                  4%                  0%                    1%
3            30              55%                    55%                  5%                  32%                  1%                    13%
4            30              7%                      7%                  23%                  31%                  10%                  23%
5            30              0%                      0%                  30%                  21%                  20%                  26%
6            15              0%                      0%                  13%                  5%                  12%                  10%
7            15              0%                      0%                  10%                  4%                  12%                    8%
8            15              0%                      0%                  8%                  3%                  11%                    7%
9            15              0%                      0%                  5%                  0%                  9%                    4%
10            30              0%                      0%                  5%                  0%                  14%                    5%
11            15              0%                      0%                  1%                  0%                  4%                    2%
12            30              0%                      0%                  0%                  0%                  4%                    1%
13            30              0%                      0%                  0%                  0%                  2%                    0%
14            15              0%                      0%                  0%                  0%                  1%                    0%
15          600              0%                      0%                  0%                  0%                  0%                    0%
NOTE:
Shadow vehicles are loaded onto the analysis network (Figure 12) using Distribution C and E for good weather/rain/light snow and heavy snow, respectively.
Special event vehicles are loaded using Distribution A.
Robert E. Ginna Nuclear Power Plant                                      514                                                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                            Rev. 0
 
Table 510. Trip Generation Histograms for the EPZ Population for Staged Evacuation Percent of Total Trips Generated Within Indicated Time Period*
Residents without Time        Duration      Residents with Commuters              Residents Without              Residents with Commuters        Commuters (Snow)
Period        (Min)            (Distribution C)            Commuters (Distribution D)            (Snow) (Distribution E)          (Distribution F) 1            15                      0%                              0%                                  0%                          0%
2            15                      0%                              1%                                  0%                          0%
3            30                      1%                              6%                                  0%                          3%
4            30                      5%                              6%                                  2%                          4%
5            30                      6%                              5%                                  4%                          6%
6            15                      2%                              1%                                  3%                          2%
7            15                      67%                              78%                                  2%                          1%
8            15                      8%                              3%                                  2%                          2%
9            15                      5%                              0%                                  2%                          0%
10            30                      5%                              0%                                74%                          79%
11            15                      1%                              0%                                  4%                          2%
12            30                      0%                              0%                                  4%                          1%
13            30                      0%                              0%                                  2%                          0%
14            15                      0%                              0%                                  1%                          0%
15            600                      0%                              0%                                  0%                          0%
                    *Trip Generation for Employees and Transients (see Table 59) is the same for Unstaged and Staged Evacuation.
Robert E. Ginna Nuclear Power Plant                                        515                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
1          2            3                  4                5 Residents                                                                                Households wait 1
for Commuters Households without Residents 1          2          5                                            Commuters and households who do not wait for Commuters (a) Accident occurs during midweek, at midday; year round Residents, Transients 1          2          4            5 Return to residence, away from                                                                                then evacuate Residence Residents,            1          2          5                                            Residents at home; Transients at                                                                            transients evacuate directly Residence (b) Accident occurs during weekend or during the evening2 1          2          3, 5 (c) Employees who live outside the EPZ ACTIVITIES                                              EVENTS 1      2 Receive Notification                              1. Notification 2    3 Prepare to Leave Work                              2. Aware of situation 2, 3      4 Travel Home                                        3. Depart work 2, 4      5 Prepare to Leave to Evacuate                      4. Arrive home
: 5. Depart on evacuation trip Activities Consume Time 1
Applies for evening and weekends also if commuters are at work.
2 Applies throughout the year for transients.
Figure 51. Events and Activities Preceding the Evacuation Trip Robert E. Ginna Nuclear Power Plant                      516                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                        Rev. 0
 
Mobilization Activities 100%
80%
60%
Notification Prepare to Leave Work Travel Home 40%                                                                                              Prepare Home Time to Clear Snow 20%
Percent of Population Completing Mobilization Activity 0%
0  30                  60                  90                  120              150 Elapsed Time from Start of Mobilization Activity (min)
Figure 52. Time Distributions for Evacuation Mobilization Activities Robert E. Ginna Nuclear Power Plant                                                                              517                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                                            Rev. 0
 
100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
Cumulative Percentage (%)
30.0%
20.0%
10.0%
0.0%
2.5  7.5  12.5    17.5    22.5      27.5    32.5      37.5    42.5    47.5      52.5  57.5  67.5  82.5      97.5    112.5 Center of Interval (minutes)
Cumulative Data            Cumulative Normal Figure 53. Comparison of Data Distribution and Normal Distribution Robert E. Ginna Nuclear Power Plant                                                          518                                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                            Rev. 0
 
Trip Generation Distributions Employees/Transients              Residents with Commuters          Residents with no Commuters Res with Comm and Snow            Res no Comm with Snow 100 80 60 40 20 Percent of Population Beginning Evacuation Trip 0
0      60                    120                      180                240                300                  360 Elapsed Time from Evacuation Advisory (min)
Figure 54. Comparison of Trip Generation Distributions Robert E. Ginna Nuclear Power Plant                                                                        519                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                                        Rev. 0
 
Staged and Unstaged Evacuation Trip Generation Employees / Transients                                        Residents with Commuters Residents with no Commuters                                  Res with Comm and Snow Res no Comm with Snow                                        Staged Residents with Commuters Staged Residents with no Commuters                            Staged Residents with Commuters (Snow)
Staged Residents with no Commuters (Snow) 100 80 60 40 20 Percent of Population Beginning Evacuating Trip 0
0  30        60          90          120        150          180        210          240        270        300        330 Elapsed Time from Evacuation Advisory (min)
Figure 55. Comparison of Staged and Unstaged Trip Generation Distributions in the 2 to 5 Mile Region Robert E. Ginna Nuclear Power Plant                                                                              520                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                                              Rev. 0
 
6    EVACUATION SCENARIOS An evacuation case defines a combination of Evacuation Region and Evacuation Scenario. The definitions of Region and Scenario are as follows:
Region            A grouping of contiguous evacuating ERPAs that forms either a keyhole sectorbased area, or a circular area within the EPZ, that must be evacuated in response to a radiological emergency.
Scenario          A combination of circumstances, including time of day, day of week, season, and weather conditions. Scenarios define the number of people in each of the affected population groups and their respective mobilization time distributions.
A total of 30 Regions were defined which encompass all the groupings of ERPAs considered.
These Regions are defined in Table 61. The ERPA configurations are identified in Figure 61.
Each keyhole sectorbased area consists of a central circle centered at the power plant, and five adjoining sectors (the federal guidance suggests three adjoining sectors, however, wind persistence studies at this site indicate a fivesector keyhole is more appropriate), each with a central angle of 22.5 degrees, as per NUREG/CR7002, Rev. 1 guidance. The central sector coincides with the wind direction. These sectors extend to 5 miles from the plant (Regions R04 through R10) or to the EPZ boundary (Regions R11 through R22).
Regions R01, R02 and R03 represent evacuations of circular areas with radii of 2, 5 and 10 miles, respectively. Regions R23 through R30 are identical to Regions R02 and R04 through R10, respectively; however, those ERPAs between 2 miles and 5 miles are staged until 90% of the 2 mile region (Region R01) has evacuated.
Each ERPA that intersects the keyhole is included in the Region; however, there are instances wherein a small portion (a sliver) of an ERPA is within the keyhole and the population within that small portion is low (500 people or 10% of the ERPA population, whichever is less). Under those circumstances, the ERPA would not be included in the Region so as to not evacuate large numbers of people outside of the keyhole for a small number of people that are actually in the keyhole. For example, in Region R11, there is a very small area (about 0.01 square miles) of ERPA W4 within the keyhole with wind from the north. There are no residents within the small area of ERPA W4 within the keyhole, versus 2,163 residents living in all of ERPA W4. ERPA W4 is not included in Region R11 because it would not be prudent to evacuate 2,163 residents of ERPA W4 that are not within the keyhole.
A total of 14 Scenarios were evaluated for all Regions. Thus, there are a total of 14 x 30 = 420 evacuation cases. Table 62 provides a description of all Scenarios.
Each combination of region and scenario implies a specific population to be evacuated. The population and vehicle estimates presented in Section 3 and in Appendix E are peak values.
These peak values are adjusted depending on the scenario and region being considered, using scenario and regionspecific percentages, such that the average population is considered for each evacuation case. The scenario percentages are presented in Table 63, while the regional Robert E. Ginna Nuclear Power Plant              61                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
percentages are provided in Table H1. The percentages presented in Table 63 were determined as follows:
The number of residents with commuters during the week (when the workforce is at its peak) is equal to 49%, which is the product of 86% (the number of households with at least one commuter) and 57% (the number of households with a commuter that would await the return of the commuter prior to evacuating). See assumption 3 in Section 2.3. It is estimated for weekend and evening scenarios that 10% of households with returning commuters will have a commuter at work during those times.
It can be argued that the estimate of permanent residents overstates, somewhat, the number of evacuating vehicles, especially during the summer. It is certainly reasonable to assert that some portion of the population would be on vacation during the summer and would travel elsewhere. A rough estimate of this reduction can be obtained as follows:
Assume 50% of all households vacation for a period over the summer.
Assume these vacations, in aggregate, are uniformly dispersed over 10 weeks, i.e., 10%
of the population is on vacation during each twoweek interval.
Assume half of these vacationers leave the area.
On this basis, the permanent resident population would be reduced by 5% in the summer and by a lesser amount in the offseason. Given the uncertainty in this estimate, we elected to apply no reductions in permanent resident population for the summer scenarios to account for residents who may be out of the area.
Employment is assumed to be at its peak (100%) during the winter, midweek, midday scenarios.
Employment is reduced slightly (96%) for summer, midweek, midday scenarios. This is based on the estimation that 50% of the employees commuting into the EPZ will be on vacation for a week during the approximate 12 weeks of summer. It is further estimated that those taking vacation will be uniformly dispersed throughout the summer with approximately 4% of employees vacationing each week. It is further estimated that only 10% of the employees are working in the evenings and during the weekends.
Transient activity is estimated to be at its peak (70%) during summer evenings (the Spencer Speedway is the largest transient attraction in the EPZ and events there are held on Friday and Saturday evenings in the summer) and less during the weekend days (60%) and weekdays (40%). Transient activity during winter evenings is estimated to be 35% due to the lodging facilities in the EPZ, and less during weekend days (25%) and weekdays (15%).
As noted in the shadow footnote to Table 63, the shadow percentages are computed using a base of 20% (see assumption 9 in Section 2.2); to include the employees within the Shadow Region who may choose to evacuate, the voluntary evacuation is multiplied by a scenario specific proportion of employees to permanent residents in the Shadow Region. For example, using the values provided in Table 64 for Scenario 6, the shadow percentage is computed as follows:
2,899 20%  1                      22%
15,913  16,821 Robert E. Ginna Nuclear Power Plant              62                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
One special event - the Webster Fathers Day Soccer Tournament - was considered as Scenario
: 13. Thus, the special event traffic is 100% evacuated for Scenario 13, and 0% for all other scenarios.
As discussed in the footnote to Table 21, schools are in session during the winter season, midweek, midday and 100% of buses will be needed under those circumstances. It is estimated that summer school enrollment is approximately 10% of enrollment during the regular school year for summer, midweek, midday scenarios. School is not in session during weekends and evenings, thus no buses (0%) for school children are needed under those circumstances.
Transit buses, wheelchair transport vehicles, and ambulances for the transitdependent population and medical facility population are set to 100% for all scenarios as it is assumed that the transitdependent and medical facility population are present in the EPZ at all times.
External traffic is estimated to be 40% during evening scenarios and is 100% for all other scenarios.
Robert E. Ginna Nuclear Power Plant            63                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Table 61. Description of Evacuation Regions Radial Regions Emergency Response Planning Area Wind From Region      Description                                                                  W                                                          M (in Degrees) W1  W2 W3 W4 W5 W6 W7                        M1 M2 M3 M4      M5 M6  M7  M8    M9 Lake                                                        Lake R01      2Mile Region          N/A      X                                              X R02      5Mile Region          N/A      X      X    X                                X      X                                                  X R03          Full EPZ            N/A      X      X    X      X      X      X    X      X      X      X    X    X  X  X    X      X    X        X Evacuate 2Mile Region and Downwind to 5 Miles Emergency Response Planning Area Wind Direction      Wind From Region                                                                                    W                                                          M From          (in Degrees) W1  W2 W3 W4 W5 W6 W7                        M1 M2 M3 M4      M5 M6  M7  M8    M9 Lake                                                        Lake R04              N            34911    X      X    X                                X      X R05            NNE              1233    X      X                                      X      X R06        NE, ENE, E          34101    X      X                                      X      X                                                  X R07          ESE, SE          102146    X                                              X      X                                                  X R08            SSE, S          147191    X                                              X                                                          X N/A            SSW            192214                                                    Refer to Region R01 R09          SW, WSW          215258    X            X                                X W, WNW, NW, R10                            259348    X      X    X                                X NNW Evacuate 2Mile Region and Downwind to the EPZ Boundary Emergency Response Planning Area Wind Direction      Wind From Region                                                                                    W                                                          M From          (in Degrees) W1  W2 W3 W4 W5 W6 W7                        M1 M2 M3 M4      M5 M6  M7  M8    M9 Lake                                                        Lake R11              N            34911    X      X    X            X      X    X      X      X      X    X    X  X        X R12            NNE              1233    X      X                  X      X    X      X      X      X    X    X  X  X    X      X    X R13          NE, ENE            3478    X      X                                X      X      X      X    X    X  X  X    X      X    X        X R14              E            79101    X      X                                      X      X      X    X    X  X  X    X      X    X        X R15            ESE            102124    X                                              X      X            X    X      X    X      X    X        X R16              SE            125146    X                                              X      X                        X          X              X R17        SSE, S, SSW        147214    X                                              X                                                          X R18              SW            215236    X            X      X                          X R19            WSW            237258    X            X      X      X                  X R20              W            259281    X      X    X      X      X      X            X R21        WNW, NW            282326    X      X    X      X      X      X    X      X R22            NNW            327348    X      X    X      X      X      X    X      X              X            X Robert E. Ginna Nuclear Power Plant                                  64                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                Rev. 0
 
Staged Evacuation  2Mile Region Evacuates, then Evacuate Downwind to 5 Miles Emergency Response Planning Area Wind Direction          Wind From Region                                                                                                W                                                                        M From              (in Degrees)      W1    W2    W3    W4    W5    W6    W7            M1    M2    M3    M4    M5    M6    M7    M8    M9 Lake                                                                      Lake R23            N/A              5Mile Region      X      X      X                                  X      X                                                                X R24            N                  34911          X      X      X                                  X      X R25            NNE                  1233          X      X                                          X      X R26        NE, ENE, E              34101          X      X                                          X      X                                                                X R27          ESE, SE              102146          X                                                  X      X                                                                X R28          SSE, S              147191          X                                                  X                                                                        X N/A            SSW                192214                                                              Refer to Region R01 R29        SW, WSW                215258          X              X                                  X W, WNW, NW, R30                                259348          X      X      X                                  X NNW ERPA(s) Evacuate                                ERPA(s) ShelterinPlace                        ERPA(s) ShelterinPlace until 90% ETE for R01, then Evacuate Robert E. Ginna Nuclear Power Plant                                              65                                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                            Rev. 0
 
Table 62. Evacuation Scenario Definitions Day of            Time of Scenario            Season1          Week                  Day          Weather                Special 1              Summer          Midweek            Midday            Good                    None 2              Summer          Midweek            Midday            Rain                    None 3              Summer          Weekend            Midday            Good                    None 4              Summer          Weekend            Midday            Rain                    None Midweek, 5              Summer                              Evening            Good                    None Weekend 6              Winter          Midweek            Midday            Good                    None Rain/Light 7              Winter          Midweek            Midday                                    None Snow 8              Winter          Midweek            Midday        Heavy Snow                  None 9              Winter          Weekend            Midday            Good                    None Rain/Light 10              Winter          Weekend            Midday                                    None Snow 11              Winter          Weekend            Midday        Heavy Snow                  None Midweek, 12              Winter                              Evening            Good                    None Weekend Webster Fathers Day 13              Summer          Weekend            Midday            Good Soccer Tournament Roadway Impact - Lane 14              Summer          Midweek            Midday            Good Closure on SR 104 WB 1
Winter assumes that school is in session at normal enrollment levels (also applies to spring and autumn). Summer means that school is in session at summer school enrollment levels (lower than normal enrollment).
Robert E. Ginna Nuclear Power Plant                              66                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                              Rev. 0
 
Table 63. Percent of Population Groups Evacuating for Various Scenarios Households                      Households With                        Without                                                                                                                                        External Returning                      Returning                                                                    Special        Medical          School        Transit            Through Scenario              Commuters                      Commuters              Employees          Transients        Shadow            Event          Vehicles            Buses        Buses              Traffic 1                        49%                              51%                96%              40%              22%              0%            100%              10%          100%                100%
2                        49%                              51%                96%              40%              22%              0%            100%              10%          100%                100%
3                          5%                            95%                10%              60%              20%              0%            100%              0%            100%                100%
4                          5%                            95%                10%              60%              20%              0%            100%              0%            100%                100%
5                          5%                            95%                10%              70%              20%              0%            100%              0%            100%                40%
6                        49%                              51%                100%              15%              22%              0%            100%              100%          100%                100%
7                        49%                              51%                100%              15%              22%              0%            100%              100%          100%                100%
8                        49%                              51%                100%              15%              22%              0%            100%              100%          100%                100%
9                          5%                            95%                10%              25%              20%              0%            100%              0%            100%                100%
10                          5%                            95%                10%              25%              20%              0%            100%              0%            100%                100%
11                          5%                            95%                10%              25%              20%              0%            100%              0%            100%                100%
12                          5%                            95%                10%              35%              20%              0%            100%              0%            100%                40%
13                          5%                            95%                10%              60%              20%            100%            100%              0%            100%                100%
14                        49%                              51%                96%              40%              22%              0%            100%              10%          100%                100%
Households with Returning Commuters .......... Households of EPZ residents who await the return of commuters prior to beginning the evacuation trip.
Households without Returning Commuters .... Households of EPZ residents who do not have commuters or will not await the return of commuters prior to beginning the evacuation trip.
Employees...................................................... EPZ employees who live outside the EPZ.
Transients ...................................................... People who are in the EPZ at the time of an accident for recreational or other (nonemployment) purposes.
Shadow ......................................................Residents and employees in the shadow region (outside of the EPZ) who will spontaneously decide to relocate during the evacuation. The basis for the values shown is a 20% relocation of shadow residents along with a proportional percentage of shadow employees.
Special Event ..............................................Additional vehicles in the EPZ due to the identified special event.
Medical Vehicles, School, and Transit Buses .......................................Vehicleequivalents present on the road during evacuation servicing schools and transitdependent people (1 bus is equivalent to 2 passenger vehicles).
External Through Traffic .............................Traffic on interstates/freeways and major arterial roads at the start of the evacuation. This traffic is stopped by ACPs approximately 2 hours after the evacuation begins.
Robert E. Ginna Nuclear Power Plant                                                                                67                                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                                                                  Rev. 0
 
Table 64. Vehicle Estimates by Scenario Households        Households With            Without                                                                                                              Total Returning          Returning                                                    Special    Medical School Transit    External        Scenario Scenario      Commuters          Commuters          Employees        Transients    Shadow      Events    Vehicles Buses  Buses  Through Traffic    Vehicles2 1            15,913            16,821              2,783          621        16,026                  60    50    76        16,602            68,952 2            15,913            16,821              2,783          621        16,026                  60    50    76        16,602            68,952 3              1,591            31,143                290            931        14,901                  60          76        16,602            65,594 4              1,591            31,143                290            931        14,901                  60          76        16,602            65,594 5              1,591            31,143                290          1,086        14,901                  60          76        6,641            55,788 6            15,913            16,821              2,899          233        16,078                  60    500    76        16,602            69,182 7            15,913            16,821              2,899          233        16,078                  60    500    76        16,602            69,182 8            15,913            16,821              2,899          233        16,078                  60    500    76        16,602            69,182 9              1,591            31,143                290            388        14,901                  60          76        16,602            65,051 10              1,591            31,143                290            388        14,901                  60          76        16,602            65,051 11              1,591            31,143                290            388        14,901                  60          76        16,602            65,051 12              1,591            31,143                290            543        14,901                  60          76        6,641            55,245 13              1,591            31,143                290            931        14,901      826        60          76        16,602            66,420 14            15,913            16,821              2,783          621        16,026                  60    50    76        16,602            68,952 2
Vehicle estimates are for an evacuation of the entire EPZ (Region R03)
Robert E. Ginna Nuclear Power Plant                                                    68                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                            Rev. 0
 
Figure 61. ERPAs Comprising the Ginna EPZ Robert E. Ginna Nuclear Power Plant                    69                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
7    GENERAL POPULATION EVACUATION TIME ESTIMATES (ETE)
This section presents the ETE results of the computer analyses using the DYNEV II System described in Appendices B, C and D. These results cover the 30 Evacuation Regions within the Ginna EPZ and the 14 Evacuation Scenarios discussed in Section 6.
The ETE for all evacuation cases are presented in Table 71 and Table 72. These tables present the estimated times to clear the indicated population percentages from the Evacuation Regions for all Evacuation Scenarios. The ETE for the 2mile region in both staged and unstaged regions are presented in Table 73 and Table 74. Table 75 defines the Evacuation Regions considered.
The tabulated values of ETE are obtained from the DYNEV II System outputs which are generated at 5minute intervals.
7.1    Voluntary Evacuation and Shadow Evacuation Voluntary evacuees are permanent residents within the EPZ in ERPAs for which an Advisory to Evacuate (ATE) has not been issued, yet who elect to evacuate. Shadow evacuation is the voluntary outward movement of some permanent residents and employees from the Shadow Region (outside the EPZ) for whom no protective action recommendation has been issued. Both voluntary and shadow evacuations are assumed to take place over the same time frame as the evacuation from within the impacted Evacuation Region.
The ETE for the Ginna EPZ addresses the issue of voluntary evacuees in the manner shown in Figure 71. Within the EPZ, 20% of permanent residents located in ERPAs outside of the evacuation region who are not advised to evacuate, are assumed to elect to evacuate. Similarly, it is assumed that 20% of those permanent residents in the Shadow Region will choose to leave the area.
Figure 72 presents the area identified as the Shadow Region. This region extends radially from the plant to cover a region between the EPZ boundary and 15 miles radially from Ginna. The population and number of evacuating vehicles in the Shadow Region were estimated using the same methodology that was used for permanent residents within the EPZ (see Section 3.1). As discussed in Section 3.2 (and shown in Table 33), it is estimated that 153,567 people reside in the Shadow Region; 20% of them would evacuate. See Table 64 for the number of evacuating vehicles from the Shadow Region.
Traffic generated within this Shadow Region (including externalexternal traffic), traveling away from Ginna, has the potential for impeding evacuating vehicles from within the Evacuation Region. All ETE calculations include this shadow traffic movement.
Robert E. Ginna Nuclear Power Plant            71                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
7.2    Staged Evacuation As defined in NUREG/CR7002 Rev. 1, staged evacuation consists of the following:
: 1. ERPAs comprising the 2mile region are advised to evacuate immediately.
: 2. ERPAs comprising regions extending from 2 to 5 miles downwind are advised to shelter inplace while the 2mile region is cleared.
: 3. As vehicles evacuate the 2mile region, people from 2 to 5 miles downwind continue preparation for evacuation while they shelter.
: 4. The populations sheltering in the 2 to 5mile region are advised to begin evacuating when approximately 90% of those originally within the 2mile region evacuate across the 2mile region boundary.
: 5. The population in the 5 to 10Mile Region (to the EPZ boundary) shelters in place.
: 6. Noncompliance with the shelter recommendation is the same as the shadow evacuation percentage of 20%.
See Section 5.4.2 for additional information on staged evacuation.
7.3    Patterns of Traffic Congestion during Evacuation Figure 73 through Figure 77 illustrate the patterns of traffic congestion that arise for the case when the entire EPZ (Region R03) is advised to evacuate during the winter, midweek, midday period under good weather conditions (Scenario 6).
Traffic congestion, as the term is used here, is defined as Level of Service (LOS) F. LOS F is defined as follows (HCM 2016, page 55):
The HCM uses LOS F to define operations that have either broken down (i.e., demand exceeds capacity) or have reached a point that most users would consider unsatisfactory, as described by a specified service measure value (or combination of service measure values). However, analysts may be interested in knowing just how bad the LOS F condition is, particularly for planning applications where different alternatives may be compared.
Several measures are available for describing individually, or in combination, the severity of a LOS F condition:
* Demandtocapacity ratios describe the extent to which demand exceeds capacity during the analysis period (e.g., by 1%, 15%).
* Duration of LOS F describes how long the condition persists (e.g., 15 min, 1 h, 3 h).
* Spatial extent measures describe the areas affected by LOS F conditions. They include measures such as the back of queue and the identification of the specific intersection approaches or system elements experiencing LOS F conditions.
Robert E. Ginna Nuclear Power Plant                72                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
All highway "links" which experience LOS F are delineated in these figures by a thick red line; all others are lightly indicated. Congestion develops rapidly around population centers and traffic bottlenecks.
Figure 73 displays traffic congestion patterns within the study area at 30 minutes after the ATE.
Traffic volume can be seen leaving the EPZ eastbound on SR104 (LOS B), westbound on SR104 (LOS C) and SR350 southbound (LOS C, D and E). The only congested (LOS F) links in the EPZ at this time are in ERPA M3 as the many employees from Xerox have mobilized and are causing significant congestion at the exits from the company and the surrounding roadways. I490 is operating at LOS D near Rochester as external traffic flows through the study area. Much of the volume on SR104 eastbound and westbound is also from external traffic flowing through the area. There is no congestion with the 2mile or 5mile radius of the plant.
At 1 hour after the ATE, Figure 74 indicates that traffic congestion within the study area has intensified. SR104 eastbound is congested from Sodus in the Shadow Region to Williamson.
Ridge Rd is also congested leaving the EPZ eastbound. There is pronounced congestion in ERPAs M7 and M9 as evacuees from Webster - the most populated Town in the EPZ - leave the EPZ westbound and southbound to access the interstates near Rochester. Traffic volume persists near Xerox in ERPA M3. SR250 southbound is operating at LOS F in ERPA M5. There is considerable traffic volume in Rochester as evacuees from the EPZ and from the Shadow Region evacuate towards the interstates leaving the area. I490 is operating at LOS F at its northern terminus and southern terminus in the evacuation model as evacuees mix with external traffic.
Figure 75 displays peak traffic congestion within the EPZ at 2 hours after the ATE. SR104 and Ridge Rd eastbound are highly congested from Sodus to Williamson as evacuees from Williamson and external traffic exceed the capacity of these roadways. County Route 210 (CR210) southbound towards Palmyra is congested in the Shadow Region. Most of the evacuation routes leaving the western half of the EPZ are highly congested southbound and westbound, especially SR104, SR250 and Creek St, as evacuees from Webster and the more densely populated ERPAs west of the plant try to leave the area. Congestion in ERPA M3 has cleared as employee vehicles have departed the parking lots at Xerox. Rochester in the Shadow Region and beyond the study area is also highly congested. I490 is congested northbound and southbound, and congestion is exhibited at each of the ramps to access this road. SR104 westbound is also highly congested through the Shadow Region and beyond the study area. At this time, during peak congestion, there is still no congestion with the 2mile or 5mile radius of the plant.
Figure 76 displays the congestion patterns at 3 hours after the ATE. Congestion has dissipated in the EPZ as all roadways are operating at LOS A. External traffic flowing through the EPZ along SR104 was stopped at 2 hours after the ATE by activation of the ACPs. Once this flow of external traffic stopped, additional capacity was available to EPZ evacuees, helping to flush the congested routes. The last roadway to exhibit LOS F conditions in the EPZ is Gravel Rd leaving ERPA M7 at 2 hours and 35 minutes after the ATE. There is still traffic congestion in Newark southeast of the plant beyond the study area as many evacuees diverted south along SR88 earlier due to the congestion along SR104 and Ridge Rd eastbound through Sodus. I490 is still highly congested Robert E. Ginna Nuclear Power Plant              73                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
northbound and southbound in Rochester beyond the study area. SR31 is also congested westbound as evacuees try to access I490 southbound.
Figure 77 displays the traffic congestion patterns at 3 hours and 25 minutes after the ATE. I490 northbound and southbound are the only remaining areas of congestion in the analysis network.
All other roads are operating at LOS A. The congestion on I490 southbound and northbound clears 5 minutes and 10 minutes later, respectively.
7.4    Evacuation Rates Evacuation is a continuous process, as implied by Figure 78 through Figure 721. These figures display the rate at which traffic flows out of the indicated areas for the case of an evacuation of the full EPZ (Region R03) under the indicated conditions. One figure is presented for each scenario considered.
As indicated in Figure 78, there is typically a long "tail" to these distributions. Vehicles begin to evacuate an area slowly at first, as people respond to the ATE at different rates. Then traffic demand builds rapidly (slopes of curves increase). When the system becomes congested, traffic exits the EPZ at rates somewhat below capacity until some evacuation routes have cleared. As more routes clear, the aggregate rate of egress slows since many vehicles have already left the EPZ. Towards the end of the process, relatively few evacuation routes service the remaining demand.
This decline in aggregate flow rate, towards the end of the process, is characterized by these curves flattening and gradually becoming horizontal. Ideally, it would be desirable to fully saturate all evacuation routes equally so that all will service traffic near capacity levels and all will clear at the same time. For this ideal situation, all curves would retain the same slope until the end of mobilization time - thus minimizing evacuation time. In reality, this ideal is generally unattainable reflecting the spatial variation in population density, mobilization rates and in highway capacity over the EPZ.
7.5    Evacuation Time Estimate (ETE) Results Table 71 through Table 72 present the ETE values for all 30 Evacuation Regions and all 14 Evacuation Scenarios. Table 73 through Table 74 present the ETE values for the 2mile region for both staged and unstaged keyhole regions downwind to 5 miles. They are organized as follows:
Table                                            Contents ETE represents the elapsed time required for 90% of the population within a Region, to 71      evacuate from that Region. All Scenarios are considered, as well as Staged Evacuation scenarios.
ETE represents the elapsed time required for 100% of the population within a Region, to 72      evacuate from that Region. All Scenarios are considered, as well as Staged Evacuation scenarios.
Robert E. Ginna Nuclear Power Plant              74                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
ETE represents the elapsed time required for 90% of the population within the 2mile 73      Region, to evacuate from the 2mile Region with both Concurrent and Staged Evacuations of additional ERPAs downwind in the keyhole Region.
ETE represents the elapsed time required for 100% of the population within the 2mile 74      Region, to evacuate from the 2mile Region with both Concurrent and Staged Evacuations of additional ERPAs downwind in the keyhole Region.
The animation snapshots described above reflect the ETE statistics for the concurrent (unstaged) evacuation scenarios and regions, which are displayed in Figure 73 through Figure 77. While there is traffic congestion beyond 5 miles from the plant, this congestion clears prior to the time needed to mobilize 90% and 100% of population. Thus, 90th percentile and 100th percentile ETE closely parallel mobilization time. 75his is reflected in the ETE statistics:
Using the vehicle data in Table 312, the mobilization times in Table 59 and Figure 54, and the scenario percentages in Table 63, it takes about 2 hours and 30 minutes to mobilize 90% of the evacuees during the week, and about 2 hours and 10 minutes during weekends (less commuters are at work and households mobilize more quickly).
Mobilization time in snow is about 40 minutes longer for weekdays and weekends due to the snow removal activity. The 90th percentile ETE in Table 71 closely parallel these mobilization times.
At the 90th percentile, rain increases the ETE by up to 5 minutes due to reduced roadway capacity and reduced free speeds; snow by 45 minutes (most of this increase is due to aforementioned snow removal activity, but some of the increase is also due to reduced roadway capacity and reduced free speeds).
Note, the 90th percentile ETE for Region R09 is 10 to 15 minutes less than other regions for midweek scenarios. The southern portion of ERPA W3 in Region R09 (see Figure H9) has SR104 traveling through it eastbound and westbound. External traffic flows through this region for the first 2 hours on SR104 eastbound and westbound. These vehicles mobilize quickly (they are already on the road when the evacuation starts) and they comprise a significant portion of the evacuating vehicles for this region. Thus, with a significant percentage of quickly mobilizing vehicles, the 90th percentile ETE is less compared to other regions.
The 100th percentile ETE for all regions and scenarios reflects the mobilization time (plus 5 minutes travel time to the 5mile boundary and 10 minutes travel time to the EPZ boundary) of residents with commuters, due to the fact that the congestion within the EPZ clears nearly an hour before the last residents have left their homes.
Comparison of Scenarios 3 and 13 in Table 71 and Table 72 indicates that the Special Event -
the Fathers Day Soccer Tournament in Webster - has no impact on the 90th and 100th percentile ETE. Although there is congestion in Webster, this congestion clears prior to the time needed to evacuate 90% of evacuees such that the 90th and 100th percentiles are dictated by mobilization time rather than traffic congestion. While there are an additional 826 vehicles in Webster for the tournament, there are many ramps to access SR104 in Webster and these ramps have sufficient Robert E. Ginna Nuclear Power Plant                75                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
capacity to handle the additional traffic without intensifying traffic congestion and prolonging ETE.
Comparison of Scenarios 1 and 14 in Table 71 and Table 72 indicates that the roadway closure
- one lane on SR104 westbound from the interchange with Ontario Center Rd to the interchange with SR590 - increases the 90th percentile ETE by up to 20 minutes (not a significant change) and has no impact on the 100th percentile ETE. The only regions that are impacted by the roadway closures are those regions wherein much of the Monroe County portion of the EPZ is evacuating
- Regions R03, and R11 through R15. As shown in Figure 74 and Figure 75, and discussed in Section 7.3, SR104 westbound is heavily congested (LOS F) for most of Monroe County for the first 2 hours of the evacuation. Closing a lane on SR104 westbound significantly reduces the capacity of this roadway, forcing evacuees to seek alternate (less desirable) routes southbound out of the EPZ. This rerouting intensifies congestion in ERPAs M4, M7 and M9 specifically and prolongs ETE.
7.6    Staged Evacuation Results Table 73 and Table 74 present a comparison of the ETE compiled for the concurrent (unstaged) and staged evacuation cases. Note that Regions R23 through R30 are the same geographic areas as Regions R02 and R04 through R10, respectively. The times shown in Table 73 and Table 74 are when the 2mile region is 90% clear and 100% clear, respectively.
The objective of a staged evacuation strategy is to ensure the ETE for the 2mile region is not significantly increased (30 minutes or 25%, whichever is less) when evacuating areas beyond 2 miles. Additionally, staged evacuation should not significantly increase the ETE for people evacuating beyond 2miles. In all cases, as shown in these tables, the ETE for the 2mile region is unchanged at the 90th and 100th percentiles when a staged evacuation is implemented for all scenarios.
As discussed in Section 7.3, there is no congestion within the 2mile region or the 5mile region.
In addition, the congestion beyond 5 miles does not extend upstream to the extent that it penetrates within 2 miles of Ginna, such that evacuees from within the 2mile region are not impeded. Therefore, staging the evacuation provides no benefits to evacuees from within the 2 mile region, as evidenced by the lack of change in ETE.
To determine the effect of staged evacuation on residents beyond the 2mile region, the ETE for Regions R02 and R04 through R10 are compared to Regions R23 through R30, respectively, in Table 71 and Table 72. A comparison of ETE between these similar regions reveals that staging increases the 90th percentile ETE for those in the 2 to 5mile area by up to 45 minutes (see Table 71). Staging has no impact on 100th percentile ETE for those evacuees beyond the 2mile region.
The increase in the 90th percentile ETE is due to evacuating vehicles, beyond the 2mile region, sheltering and delaying the start of their evacuation. As shown in Figure 55, staging the evacuation causes a significant spike (sharp increase) in mobilization (tripgeneration rate) of evacuating vehicles.
Robert E. Ginna Nuclear Power Plant              76                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
In summary, the staged evacuation option provides no benefit to evacuees from within the 2 mile region, and adversely impacts some evacuees located beyond 2 miles from the plant. Staged evacuation is not beneficial for this plant.
7.7  Guidance on Using ETE Tables The user first determines the percentile of population for which the ETE is sought (the NRC guidance calls for the 90th percentile). The applicable value of ETE within the chosen table may then be identified using the following procedure:
: 1. Identify the applicable Scenario:
* Season Summer Winter (also Autumn and Spring)
* Day of Week Midweek Weekend
* Time of Day Midday Evening
* Weather Condition Good Weather Rain/Light Snow Heavy Snow
* Special Event Webster Fathers Day Soccer Tournament
* Roadway Impact
* Lane Closure on SR104 westbound
* Evacuation Staging No, Staged Evacuation is not considered Yes, Staged Evacuation is considered While these Scenarios are designed, in aggregate, to represent conditions throughout the year, some further clarification is warranted:
* The conditions of a summer evening (either midweek or weekend) and rain are not explicitly identified in the tables. For these conditions, Scenarios (2) and (4) apply.
* The conditions of a winter evening (either midweek or weekend) and rain/light snow are not explicitly identified in the tables. For these conditions, Scenarios (7) and (10) for rain/light snow apply.
* The conditions of a winter evening (either midweek or weekend) and heavy snow are not explicitly identified in the tables. For these conditions, Scenarios (8) and (11) for heavy snow apply.
* The seasons are defined as follows:
Summer assumes school is in session at summer school enrollment levels (lower than normal enrollment).
Robert E. Ginna Nuclear Power Plant                77                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Winter (includes Spring and Autumn) considers that public schools are in session at normal enrollment levels.
* Time of Day: Midday implies the time over which most commuters are at work or are travelling to/from work.
: 2. With the desired percentile ETE and Scenario identified, now identify the Evacuation Region:
* Determine the projected azimuth direction of the plume (coincident with the wind direction). This direction is expressed in terms of compass orientation - from N, NNE, NE - or in degrees.
* Determine the distance that the Evacuation Region will extend from the nuclear power plant. The applicable distances and their associated candidate Regions are given below:
2 Miles (Region R01)
To 5 Miles (Region R02, R04 through R10 and R23 through R30 for staged evacuation)
To EPZ Boundary (Regions R03, R11 through R22)
* Enter Table 75 and identify the applicable group of candidate Regions based on the distance that the selected Region extends from Ginna. Select the Evacuation Region identifier in that row, based on the azimuth direction of the plume, from the first column of the Table.
: 3. Determine the ETE Table based on the percentile selected. Then, for the Scenario identified in Step 1 and the Region identified in Step 2, proceed as follows:
* The columns of Table 71 through Table 74 are labeled with the Scenario numbers.
Identify the proper column in the selected Table using the Scenario number defined in Step 1.
* Identify the row in this table that provides ETE values for the Region identified in Step 2.
* The unique data cell defined by the column and row so determined contains the desired value of ETE expressed in Hours:Minutes.
Example It is desired to identify the ETE for the following conditions:
* Sunday, August 10th at 10:00 PM.
* It is raining.
* Wind direction is from the NE.
* Wind speed is such that the distance to be evacuated is judged to be the 2Mile Region and downwind to 10 miles (to the EPZ boundary).
* The desired ETE is the value needed to evacuate 90% of the population from within the impacted Region.
* A staged evacuation is not desired.
Table 71 is applicable because the 90th percentile ETE is desired. Proceed as follows:
: 1. Identify the Scenario as summer, weekend, evening and raining. Entering Table 71, it is seen that there is no match for these descriptors. However, the clarification given above assigns this combination of circumstances to Scenario 4.
Robert E. Ginna Nuclear Power Plant                78                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
: 2. Enter Table 75 and locate the Region described as Evacuate 2Mile Region and Downwind to the EPZ Boundary for wind direction from NE and read Region R13 in the first column of that row.
: 3. Enter Table 71 to locate the data cell containing the value of ETE for Scenario 4 and Region R13. This data cell is in column (4) and in the row for Region R13; it contains the ETE value of 2:20.
Robert E. Ginna Nuclear Power Plant            79                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Table 71. Time to Clear the Indicated Area of 90 Percent of the Affected Population Summer            Summer          Summer              Winter                      Winter            Winter Summer      Summer Midweek                                                              Midweek Midweek          Weekend                              Midweek                      Weekend                    Weekend    Midweek Weekend                                                              Weekend Scenario:      (1)      (2)    (3)      (4)        (5)        (6)      (7)      (8)      (9)      (10)    (11)    (12)    (13)      (14)
Midday            Midday          Evening              Midday                      Midday            Evening Midday      Midday Rain/                        Rain/
Region      Good              Good                Good        Good            Heavy      Good              Heavy    Good    Special  Roadway Rain              Rain                            Light                        Light Weather          Weather              Weather    Weather            Snow    Weather            Snow    Weather  Event      Impact Snow                        Snow Entire 2Mile Region, 5Mile Region, and EPZ R01        2:30      2:30    2:10      2:10      2:10        2:30      2:30    3:15    2:10      2:10    2:55    2:10    2:10      2:30 R02        2:30      2:30    2:10      2:15      2:10        2:30      2:30    3:15    2:10      2:15    2:55    2:10    2:10      2:30 R03        2:35      2:35    2:15      2:20      2:15        2:35      2:35    3:20    2:15      2:20    3:00    2:15    2:15      2:45 2Mile Region and Keyhole to 5 Miles R04        2:30      2:30    2:10      2:15      2:10        2:30      2:30    3:15    2:10      2:15    2:55    2:10    2:10      2:30 R05        2:25      2:25    2:10      2:10      2:10        2:25      2:25    3:10    2:10      2:10    2:45    2:10    2:10      2:25 R06        2:25      2:25    2:10      2:10      2:10        2:25      2:25    3:10    2:10      2:10    2:45    2:10    2:10      2:25 R07        2:25      2:25    2:10      2:10      2:10        2:25      2:25    3:10    2:10      2:10    2:50    2:10    2:10      2:25 R08        2:30      2:30    2:10      2:10      2:10        2:30      2:30    3:15    2:10      2:10    2:55    2:10    2:10      2:30 R09        2:15      2:20    2:05      2:10      2:10        2:15      2:20    2:55    2:05      2:10    2:35    2:10    2:05      2:15 R10        2:25      2:25    2:10      2:15      2:10        2:25      2:25    3:05    2:10      2:15    2:45    2:10    2:10      2:25 2Mile Region and Keyhole to EPZ Boundary R11        2:30      2:35    2:15      2:15      2:15        2:30      2:35    3:15    2:15      2:20    2:55    2:15    2:15      2:40 R12        2:30      2:35    2:15      2:20      2:15        2:30      2:35    3:20    2:15      2:20    3:00    2:15    2:15      2:45 R13        2:30      2:30    2:15      2:20      2:10        2:30      2:35    3:15    2:15      2:20    2:55    2:10    2:15      2:50 R14        2:30      2:30    2:15      2:20      2:15        2:30      2:35    3:15    2:15      2:20    2:55    2:15    2:15      2:45 R15        2:30      2:30    2:15      2:20      2:15        2:30      2:30    3:15    2:15      2:20    2:55    2:15    2:15      2:40 R16        2:30      2:30    2:10      2:15      2:10        2:30      2:30    3:10    2:10      2:15    2:50    2:15    2:10      2:30 R17        2:30      2:30    2:10      2:10      2:10        2:30      2:30    3:15    2:10      2:10    2:55    2:10    2:10      2:30 R18        2:25      2:25    2:15      2:15      2:10        2:25      2:25    3:00    2:10      2:15    2:45    2:10    2:15      2:25 R19        2:25      2:30    2:15      2:20      2:10        2:25      2:30    3:05    2:15      2:20    2:50    2:10    2:15      2:25 R20        2:30      2:30    2:15      2:20      2:15        2:30      2:35    3:15    2:20      2:20    2:55    2:15    2:15      2:30 R21        2:30      2:35    2:15      2:20      2:15        2:30      2:35    3:15    2:15      2:20    2:55    2:15    2:15      2:30 R22        2:30      2:35    2:15      2:20      2:15        2:30      2:35    3:15    2:20      2:20    2:55    2:15    2:15      2:30 Robert E. Ginna Nuclear Power Plant                                        710                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
Summer            Summer        Summer              Winter                    Winter          Winter Summer      Summer Midweek                                                        Midweek Midweek          Weekend                            Midweek                    Weekend                Weekend    Midweek Weekend                                                        Weekend Scenario:      (1)      (2)    (3)      (4)        (5)      (6)        (7)    (8)      (9)      (10)  (11)  (12)    (13)      (14)
Midday            Midday        Evening            Midday                      Midday        Evening Midday      Midday Rain/                      Rain/
Region      Good              Good              Good      Good              Heavy    Good            Heavy  Good    Special  Roadway Rain              Rain                          Light                      Light Weather          Weather            Weather Weather                Snow Weather              Snow  Weather  Event      Impact Snow                      Snow Staged Evacuation  2Mile Region and Keyhole to 5 Miles R23        2:35      2:35    2:35    2:35      2:35      2:35      2:35    3:30    2:35      2:35  3:30  2:35    2:35      2:35 R24        2:35      2:35    2:35    2:35      2:35      2:35      2:35    3:30    2:35      2:35  3:30  2:35    2:35      2:35 R25        2:35      2:35    2:30    2:35      2:35      2:35      2:35    3:30    2:35      2:35  3:30  2:35    2:30      2:35 R26        2:35      2:35    2:30    2:35      2:35      2:35      2:35    3:30    2:35      2:35  3:30  2:35    2:30      2:35 R27        2:35      2:40    2:35    2:35      2:35      2:35      2:40    3:30    2:35      2:35  3:30  2:35    2:35      2:35 R28        2:30      2:30    2:10    2:10      2:10      2:30      2:30    3:15    2:10      2:10  2:55  2:10    2:10      2:30 R29        2:25      2:25    2:20    2:20      2:25      2:25      2:25    3:15    2:20      2:20  3:10  2:25    2:20      2:25 R30        2:35      2:35    2:30    2:30      2:35      2:35      2:35    3:30    2:30      2:30  3:25  2:35    2:30      2:35 Robert E. Ginna Nuclear Power Plant                                      711                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                Rev. 0
 
Table 72. Time to Clear the Indicated Area of 100 Percent of the Affected Population Summer            Summer        Summer                Winter                      Winter              Winter Summer      Summer Midweek                                                              Midweek Midweek          Weekend                              Midweek                    Weekend                    Weekend    Midweek Weekend                                                              Weekend Scenario:      (1)      (2)    (3)      (4)        (5)        (6)      (7)      (8)      (9)      (10)  (11)      (12)    (13)      (14)
Midday            Midday          Evening              Midday                      Midday            Evening Midday      Midday Region                                                                  Rain/                        Rain/
Good              Good                Good        Good              Heavy      Good            Heavy    Good    Special  Roadway Rain              Rain                            Light                        Light Weather          Weather            Weather      Weather            Snow    Weather            Snow    Weather  Event      Impact Snow                        Snow Entire 2Mile Region, 5Mile Region, and EPZ R01        3:45      3:45    3:45      3:45      3:45        3:45      3:45    5:00    3:45      3:45  5:00      3:45    3:45      3:45 R02        3:50      3:50    3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50  5:05      3:50    3:50      3:50 R03        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 2Mile Region and Keyhole to 5 Miles R04        3:50      3:50    3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50  5:05      3:50    3:50      3:50 R05        3:50      3:50    3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50  5:05      3:50    3:50      3:50 R06        3:50      3:50    3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50  5:05      3:50    3:50      3:50 R07        3:50      3:50    3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50  5:05      3:50    3:50      3:50 R08        3:45      3:45    3:45      3:45      3:45        3:45      3:45    5:00    3:45      3:45  5:00      3:45    3:45      3:45 R09        3:50      3:50    3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50  5:05      3:50    3:50      3:50 R10        3:50      3:50    3:50      3:50      3:50        3:50      3:50    5:05    3:50      3:50  5:05      3:50    3:50      3:50 2Mile Region and Keyhole to EPZ Boundary R11        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R12        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R13        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R14        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R15        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R16        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R17        3:45      3:45    3:45      3:45      3:45        3:45      3:45    5:00    3:45      3:45  5:00      3:45    3:45      3:45 R18        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R19        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R20        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R21        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 R22        3:55      3:55    3:55      3:55      3:55        3:55      3:55    5:10    3:55      3:55  5:10      3:55    3:55      3:55 Robert E. Ginna Nuclear Power Plant                                        712                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
Summer            Summer        Summer              Winter                    Winter          Winter Summer      Summer Midweek                                                        Midweek Midweek          Weekend                            Midweek                    Weekend                Weekend    Midweek Weekend                                                        Weekend Scenario:      (1)      (2)    (3)      (4)        (5)      (6)        (7)    (8)      (9)      (10)  (11)  (12)    (13)      (14)
Midday            Midday        Evening            Midday                      Midday        Evening Midday      Midday Region                                                                Rain/                      Rain/
Good              Good              Good      Good              Heavy    Good            Heavy  Good    Special  Roadway Rain              Rain                          Light                      Light Weather          Weather            Weather    Weather            Snow Weather              Snow  Weather  Event      Impact Snow                      Snow Staged Evacuation  2Mile Region and Keyhole to 5 Miles R23        3:50      3:50    3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R24        3:50      3:50    3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R25        3:50      3:50    3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R26        3:50      3:50    3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R27        3:50      3:50    3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R28        3:45      3:45    3:45    3:45      3:45      3:45      3:45    5:00    3:45      3:45  5:00  3:45    3:45      3:45 R29        3:50      3:50    3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 R30        3:50      3:50    3:50    3:50      3:50      3:50      3:50    5:05    3:50      3:50  5:05  3:50    3:50      3:50 Robert E. Ginna Nuclear Power Plant                                      713                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                Rev. 0
 
Table 73. Time to Clear 90 Percent of the 2Mile Region within the Indicated Region Summer            Summer          Summer                Winter                    Winter            Winter Summer      Summer Midweek                                                            Midweek Midweek          Weekend                                Midweek                    Weekend                    Weekend    Midweek Weekend                                                            Weekend Scenario:      (1)      (2)    (3)        (4)        (5)          (6)      (7)    (8)      (9)    (10)    (11)    (12)    (13)      (14)
Midday            Midday          Evening              Midday                    Midday            Evening Midday      Midday Rain/                      Rain/
Region      Good              Good                Good          Good            Heavy    Good            Heavy    Good    Special  Roadway Rain              Rain                              Light                    Light Weather          Weather              Weather Weather                  Snow Weather              Snow    Weather  Event      Impact Snow                      Snow Entire 2Mile Region and 5Mile Region R01        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R02        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 Unstaged Evacuation  2Mile Region and Keyhole to 5Miles R04        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R05        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R06        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R07        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R08        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R09        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R10        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 Staged Evacuation  2Mile Region and Keyhole to 5Miles R23        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R24        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R25        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R26        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R27        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R28        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R29        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 R30        2:30      2:30    2:10      2:10      2:10          2:30    2:30    3:15      2:10    2:10    2:55    2:10    2:10      2:30 Robert E. Ginna Nuclear Power Plant                                          714                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
Table 74. Time to Clear 100 Percent of the 2Mile Region within the Indicated Region Summer            Summer        Summer                Winter                    Winter              Winter Summer      Summer Midweek                                                              Midweek Midweek          Weekend                              Midweek                    Weekend                    Weekend    Midweek Weekend                                                              Weekend Scenario:      (1)      (2)    (3)      (4)        (5)          (6)      (7)    (8)      (9)    (10)    (11)    (12)    (13)      (14)
Midday            Midday          Evening              Midday                    Midday            Evening Midday      Midday Rain/                      Rain/
Region      Good              Good                Good          Good            Heavy    Good            Heavy    Good    Special  Roadway Rain              Rain                              Light                      Light Weather          Weather            Weather Weather                  Snow Weather                Snow    Weather  Event      Impact Snow                      Snow Entire 2Mile Region and 5Mile Region R01        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R02        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 Unstaged Evacuation  2Mile Region and Keyhole to 5Miles R04        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R05        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R06        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R07        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R08        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R09        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R10        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 Staged Evacuation  2Mile Region and Keyhole to 5Miles R23        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R24        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R25        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R26        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R27        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R28        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R29        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 R30        3:45      3:45    3:45      3:45      3:45          3:45    3:45    5:00      3:45    3:45    5:00    3:45    3:45      3:45 Robert E. Ginna Nuclear Power Plant                                        715                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
Table 75. Description of Evacuation Regions Radial Regions Emergency Response Planning Area Wind From Region      Description                                                                      W                                                          M (in Degrees) W1  W2 W3 W4 W5 W6 W7                          M1 M2 M3 M4        M5 M6  M7  M8    M9 Lake                                                        Lake R01      2Mile Region              N/A      X                                              X R02      5Mile Region              N/A      X    X      X                                  X      X                                                    X R03          Full EPZ                N/A      X    X      X      X      X      X      X      X      X      X      X    X  X  X    X    X      X      X Evacuate 2Mile Region and Downwind to 5 Miles Emergency Response Planning Area Wind Direction        Wind From Region                                                                                        W                                                          M From              (in Degrees) W1  W2    W3    W4    W5    W6    W7          M1    M2    M3  M4 M5 M6  M7  M8    M9 Lake                                                        Lake R04              N                34911    X    X      X                                  X      X R05            NNE                  1233    X    X                                          X      X R06        NE, ENE, E            34101    X    X                                          X      X                                                    X R07          ESE, SE              102146    X                                              X      X                                                    X R08          SSE, S              147191    X                                              X                                                          X N/A            SSW                192214                                                      Refer to Region R01 R09        SW, WSW              215258    X          X                                  X W, WNW, NW, R10                              259348    X    X      X                                  X NNW Evacuate 2Mile Region and Downwind to the EPZ Boundary Emergency Response Planning Area Wind Direction        Wind From Region                                                                                        W                                                          M From              (in Degrees) W1  W2    W3    W4    W5    W6    W7          M1    M2    M3  M4 M5 M6  M7  M8    M9 Lake                                                        Lake R11              N                34911    X    X      X              X      X      X      X      X      X      X    X  X        X R12            NNE                  1233    X    X                    X      X      X      X      X      X      X    X  X  X    X    X      X R13          NE, ENE                3478    X    X                                  X      X      X      X      X    X  X  X    X    X      X      X R14              E                79101    X    X                                          X      X      X      X    X  X  X    X    X      X      X R15            ESE                102124    X                                              X      X              X    X      X    X    X      X      X R16            SE                125146    X                                              X      X                          X          X            X R17        SSE, S, SSW            147214    X                                              X                                                          X R18            SW                215236    X          X      X                          X R19          WSW                237258    X          X      X      X                    X R20            W                259281    X    X      X      X      X      X            X R21        WNW, NW                282326    X    X      X      X      X      X      X      X R22          NNW                327348    X    X      X      X      X      X      X      X            X              X Robert E. Ginna Nuclear Power Plant                                  716                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                  Rev. 0
 
Staged Evacuation  2Mile Region Evacuates, then Evacuate Downwind to 5 Miles Emergency Response Planning Area Wind Direction          Wind From Region                                                                                                  W                                                                        M From                (in Degrees)      W1 W2 W3 W4 W5 W6 W7                              M1 M2 M3 M4                M5    M6    M7    M8    M9 Lake                                                                      Lake R23            N/A              5Mile Region      X    X        X                                  X      X                                                                  X R24            N                    34911          X    X        X                                  X      X R25            NNE                    1233          X    X                                            X      X R26        NE, ENE, E              34101          X    X                                            X      X                                                                  X R27          ESE, SE                102146          X                                                  X      X                                                                  X R28          SSE, S                147191          X                                                  X                                                                        X N/A            SSW                  192214                                                              Refer to Region R01 R29        SW, WSW                215258          X              X                                  X W, WNW, NW, R30                                259348          X    X        X                                  X NNW ERPA(s) Evacuate                                  ERPA(s) ShelterinPlace                        ERPA(s) ShelterinPlace until 90% ETE for R01, then Evacuate Robert E. Ginna Nuclear Power Plant                                            717                                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                          Rev. 0
 
Figure 71. Voluntary Evacuation Methodology Robert E. Ginna Nuclear Power Plant                      718                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Figure 72. Ginna Shadow Region Robert E. Ginna Nuclear Power Plant                719            KLD Engineering, P.C.
Evacuation Time Estimate                                                          Rev. 0
 
Figure 73. Congestion Patterns at 30 Minutes after the Advisory to Evacuate Robert E. Ginna Nuclear Power Plant                                    720                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                      Rev. 0
 
Figure 74. Congestion Patterns at 1 Hour after the Advisory to Evacuate Robert E. Ginna Nuclear Power Plant                                  721                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Figure 75. Congestion Patterns at 2 Hours after the Advisory to Evacuate Robert E. Ginna Nuclear Power Plant                                    722                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                    Rev. 0
 
Figure 76. Congestion Patterns at 3 Hours after the Advisory to Evacuate Robert E. Ginna Nuclear Power Plant                                    723                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                    Rev. 0
 
Figure 77. Congestion Patterns at 3 Hours and 25 Minutes after the Advisory to Evacuate Robert E. Ginna Nuclear Power Plant                                      724                                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                              Rev. 0
 
Evacuation Time Estimates Summer, Midweek, Midday, Good (Scenario 1) 2Mile Region        5Mile Region        Entire EPZ          90%      100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30      1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 78. Evacuation Time Estimates  Scenario 1 for Region R03 Evacuation Time Estimates Summer, Midweek, Midday, Rain (Scenario 2) 2Mile Region        5Mile Region        Entire EPZ          90%      100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30      1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 79. Evacuation Time Estimates  Scenario 2 for Region R03 Robert E. Ginna Nuclear Power Plant                                    725                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Evacuation Time Estimates Summer, Weekend, Midday, Good (Scenario 3) 2Mile Region        5Mile Region        Entire EPZ          90%        100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30    1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 710. Evacuation Time Estimates  Scenario 3 for Region R03 Evacuation Time Estimates Summer, Weekend, Midday, Rain (Scenario 4) 2Mile Region        5Mile Region        Entire EPZ          90%        100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30    1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 711. Evacuation Time Estimates  Scenario 4 for Region R03 Robert E. Ginna Nuclear Power Plant                                  726                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Evacuation Time Estimates Summer, Midweek, Weekend, Evening, Good (Scenario 5) 2Mile Region        5Mile Region        Entire EPZ          90%        100%
40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30    1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 712. Evacuation Time Estimates  Scenario 5 for Region R03 Evacuation Time Estimates Winter, Midweek, Midday, Good (Scenario 6) 2Mile Region        5Mile Region        Entire EPZ          90%        100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30    1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 713. Evacuation Time Estimates  Scenario 6 for Region R03 Robert E. Ginna Nuclear Power Plant                                  727                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Evacuation Time Estimates Winter, Midweek, Midday, Rain/Light Snow (Scenario 7) 2Mile Region          5Mile Region      Entire EPZ          90%            100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30      1:00          1:30    2:00  2:30        3:00          3:30      4:00    4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 714. Evacuation Time Estimates  Scenario 7 for Region R03 Evacuation Time Estimates Winter, Midweek, Midday, Heavy Snow (Scenario 8) 2Mile Region          5Mile Region      Entire EPZ          90%            100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00    0:30    1:00      1:30    2:00  2:30  3:00    3:30        4:00      4:30    5:00    5:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 715. Evacuation Time Estimates  Scenario 8 for Region R03 Robert E. Ginna Nuclear Power Plant                                      728                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
Evacuation Time Estimates Winter, Weekend, Midday, Good (Scenario 9) 2Mile Region        5Mile Region        Entire EPZ        90%          100%
40 35 30 Vehicles Evacuating 25 20 (Thousands) 15 10 5
0 5 0:00      0:30    1:00      1:30      2:00      2:30    3:00      3:30          4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 716. Evacuation Time Estimates  Scenario 9 for Region R03 Evacuation Time Estimates Winter, Weekend, Midday, Rain/Light Snow (Scenario 10) 2Mile Region        5Mile Region        Entire EPZ        90%          100%
40 35 30 Vehicles Evacuating 25 20 (Thousands) 15 10 5
0 5 0:00      0:30    1:00      1:30      2:00      2:30    3:00      3:30          4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 717. Evacuation Time Estimates  Scenario 10 for Region R03 Robert E. Ginna Nuclear Power Plant                                729                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                Rev. 0
 
Evacuation Time Estimates Winter, Weekend, Midday, Heavy Snow (Scenario 11) 2Mile Region        5Mile Region        Entire EPZ          90%        100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 5 0:00      0:30    1:00    1:30  2:00    2:30    3:00  3:30  4:00  4:30          5:00    5:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 718. Evacuation Time Estimates  Scenario 11 for Region R03 Evacuation Time Estimates Winter, Midweek, Weekend, Evening, Good (Scenario 12) 2Mile Region        5Mile Region        Entire EPZ          90%        100%
40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30      1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 719. Evacuation Time Estimates  Scenario 12 for Region R03 Robert E. Ginna Nuclear Power Plant                                    730                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                    Rev. 0
 
Evacuation Time Estimates Summer, Weekend, Midday, Good, Special Event (Scenario 13) 2Mile Region      5Mile Region        Entire EPZ          90%        100%
45 40 35 Vehicles Evacuating 30 25 20 (Thousands) 15 10 5
0 0:00      0:30    1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 720. Evacuation Time Estimates  Scenario 13 for Region R03 Evacuation Time Estimates Summer, Midweek, Midday, Good, Roadway Impact (Scenario 14) 2Mile Region      5Mile Region        Entire EPZ          90%        100%
45 40 Vehicles Evacuating 35 30 25 20 (Thousands) 15 10 5
0 0:00      0:30    1:00      1:30      2:00      2:30        3:00    3:30      4:00      4:30 Elapsed Time After Evacuation Recommendation (h:mm)
Figure 721. Evacuation Time Estimates  Scenario 14 for Region R03 Robert E. Ginna Nuclear Power Plant                                  731                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
8    TRANSITDEPENDENT AND SPECIAL FACILITY EVACUATION TIME ESTIMATES This section details the analyses applied and the results obtained in the form of evacuation time estimates for transit vehicles (buses, ambulances, and wheelchair transport vehicles). The demand for transit service reflects the needs of three population groups: (1) residents with no vehicles available; (2) residents of special facilities such as schools and medical facilities; and (3) access and/or functional needs population.
These transit vehicles mix with the general evacuation traffic that is comprised mostly of passenger cars (pcs). The presence of each transit vehicle in the evacuating traffic stream is represented within the modeling paradigm described in Appendix D as equivalent to two pcs.
This equivalence factor represents the larger size and more sluggish operating characteristics of a transit vehicle, relative to those of a pc.
Transit vehicles must be mobilized in preparation for their respective evacuation missions.
Specifically:
* Bus drivers must be alerted
* They must travel to the bus depot
* They must be briefed there and assigned to a route or facility These activities consume time. The location of bus depots impacts the time to travel from the bus depots to the facilities being evacuated. Locations of bus depots were not identified in this study. Rather, the offsite agencies were asked to factor the location of the depots and the distance to the EPZ into the estimate of mobilization time.
During this mobilization period, other mobilization activities are taking place. One of these is the action taken by parents, neighbors, relatives and friends to pick up children from school or childcare prior to the arrival of buses, so that they may join their families. Virtually all studies of evacuations have concluded that this bonding process of uniting families is universally prevalent during emergencies and should be anticipated in the planning process. The current public information disseminated to residents of the Ginna EPZ indicates that schoolchildren will be evacuated to the reception centers/school receiving locations where they can be picked up by their parents. As such, it is assumed no schoolchildren will be picked up by their parents prior to the arrival of the buses. It is assumed that children at preschools, day cares, and day camps will be picked up by their parents and the time needed to do so is included in the time for residents to mobilize.
As discussed in Section 2, this study assumes a rapidly escalating event at the plant wherein evacuation is ordered promptly and no early protective actions have been implemented.
Therefore, children are evacuated to reception centers/school receiving locations. Picking up children at school could add to traffic congestion at the schools, delaying the departure of the buses evacuating schoolchildren, which may have to return in a subsequent wave to the EPZ to evacuate the transitdependent population. This report provides estimates of buses under the assumption that no students will be picked up by their parents (in accordance with NUREG/CR 7002, Rev. 1), to present an upper bound estimate of buses required.
Robert E. Ginna Nuclear Power Plant                81                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
The procedure for computing transitdependent ETE is to:
* Estimate demand for transit service (discussed in Section 3)
* Estimate time to perform all transit functions
* Estimate route travel times to the EPZ boundary and to the reception centers/school receiving locations 8.1    ETEs for Schools, Transit Dependent People, and Medical Facilities EPZ bus resources are assigned to evacuating schoolchildren (if school is in session at the time of the ATE) as the first priority in the event of an emergency. In the event that the allocation of buses dispatched from the depots to the various facilities and to the bus routes is somewhat inefficient, or if there is a shortfall of available drivers, then there may be a need for some buses to return to the EPZ from the reception centers after completing their first evacuation trip, to complete a second wave of providing transport service to evacuees. For this reason, the ETE for the transitdependent population will be calculated for both a one wave transit evacuation and for two waves. Of course, if the impacted Evacuation Region is other than R03 (the entire EPZ), then there will likely be ample transit resources relative to demand in the impacted Region and this discussion of a second wave would likely not apply. A list of available transportation resources was provided by the counties within the EPZ and is shown in Table 81. Also included in the table are the number of buses needed to evacuate schools, medical facilities, transit dependent population and access and/or functional needs persons (discussed below in Section 8.2). These numbers indicate there are sufficient resources to evacuate everyone in a single wave. As discussed in Section 2, it is assumed that there are enough drivers available to man all resources listed in Table 81.
When school evacuation needs are satisfied, subsequent assignments of buses to service the transitdependent should be sensitive to their mobilization time. Clearly, the buses should be dispatched after people have completed their mobilization activities and are in a position to board the buses when they arrive at the various routes described in Table 101.
ETE for transit trips were developed using both good weather and adverse weather conditions.
Figure 81 presents the chronology of events relevant to transit operations. The elapsed time for each activity will now be discussed with reference to Figure 81.
School Evacuation Activity: Mobilize Drivers (ABC)
Mobilization is the elapsed time from the ATE until the time the buses arrive at the school to be evacuated. It is assumed school bus drivers would require 90 minutes to be contacted, to travel to the depot, be briefed, and to travel to the schools for a rapidly escalating radiological emergency with no observable indication before the fact. Mobilization time is slightly longer in adverse weather - 100 minutes in rain/light snow, 110 minutes in heavy snow.
Robert E. Ginna Nuclear Power Plant                  82                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Activity: Board Passengers (CD)
As discussed in Section 2.4 and shown in Table 22, a loading time of 15 minutes (20 minutes for rain/light snow and 25 minutes for heavy snow) for school buses is assumed.
Activity: Travel to EPZ Boundary (DE)
The buses servicing the schools are ready to begin their evacuation trips at 105 minutes after the advisory to evacuate - 90 minutes mobilization time plus 15 minutes loading time - in good weather. The UNITES software discussed in Section 1.3 was used to define bus routes along the most likely path from a school being evacuated to the EPZ boundary, traveling toward the appropriate reception centers/school receiving locations. This is done in UNITES by interactively selecting the series of nodes from the school to the EPZ boundary. Each bus route is given an identification number and is written to the DYNEV II input stream. DYNEV computes the route length and outputs the average speed for each 5minute interval, for each bus route. The specified bus routes are documented in Table 102 (refer to the maps of the linknode analysis network in Appendix K for node locations). Data provided by DYNEV during the appropriate timeframe depending on the mobilization and loading times (i.e., 100 to 105 minutes after the advisory to evacuate for good weather) were used to compute the average speed for each route, as follows:
60 .
1 .
                                              .            60 .
              .                                  .      1 .
The average speed computed (using this methodology) for the buses servicing each of the schools in the EPZ is shown in Table 82 through Table 84 for good weather, rain/light snow and heavy snow, respectively. The travel time to the EPZ boundary was computed for each bus using the computed average speed and the distance to the EPZ boundary along the most likely route out of the EPZ. The travel time from the EPZ boundary to the reception centers/school receiving locations was computed assuming an average speed of 55 mph for good weather, 50 mph for rain/light snow (10% decrease), and 47 mph for heavy snow (15% decrease). Speeds were reduced in Table 82 through Table 84 to 55 mph (50 mph for rain/light snow - 10% decrease, rounded - and 47 mph for heavy snow - 15% decrease, rounded) for those calculated bus speeds which exceed 55 mph, as the school bus speed limit in New York is 55 mph.
Table 82 (good weather), Table 83 (rain/light snow) and Table 84 (heavy snow) present the following ETE (rounded up to the nearest 5 minutes) for schools in the EPZ: (1) The elapsed time Robert E. Ginna Nuclear Power Plant            83                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
from the ATE until the bus exits the EPZ; and (2) The elapsed time until the bus reaches the reception centers (R.C.)/school receiving locations.
The evacuation time out of the EPZ can be computed as the sum of times associated with Activities ABC, CD, and DE (for example: 90 min. + 15 + 8 = 1:53, rounded up to 1:55 for Schlegel Road Elementary School in good weather). The average single wave ETE for schools is 45 minutes less than the 90th percentile ETE for Region R03 for the general population during Scenario 6 conditions (2:35 - 1:50 = 0:45). All school ETE are rounded up to the nearest 5 minutes.
The evacuation time to the reception centers/school receiving locations is determined by adding the time associated with Activity EF (discussed below), to this EPZ evacua on me.
Activity: Travel to Reception Centers/School Receiving Locations (EF)
The distances from the EPZ boundary to the reception centers/school receiving locations are measured using GIS software along the most likely route from the EPZ exit point to the facility.
The reception centers/school receiving locations are mapped in Figure 104. For a onewave evacuation, this travel time outside the EPZ does not contribute to the ETE. Assumed bus speeds of 55 mph, 50 mph, and 47 mph for good weather, rain/light snow, and heavy snow, respectively, will be applied for this activity for buses servicing the schools in the EPZ. Table 82 (good weather), Table 83 (rain/light snow) and Table 84 (heavy snow) present the elapsed time until the bus reaches the reception centers/school receiving locations.
Activity: Passengers Leave Bus (FG)
A bus can empty within 5 minutes. The driver takes a 10minute break.
Activity: Bus Returns to Route for Second Wave Evacuation (GC)
As shown in Table 81, there are a sufficient number of buses available for evacuation of schoolchildren in a single wave if the entire EPZ is evacuated at once (a highly unlikely event).
However, if some drivers fail to report, a twowave evacuation may be needed for some schools.
A second wave ETE was not computed for each school. Rather, the following representative ETE is provided to estimate the additional time needed for a second wave evacuation of schools. The travel time from the reception centers/school receiving locations back to the EPZ boundary and then back to the school was computed assuming an average speed of 55 mph (good weather),
50 mph (rain - 10% reduction) and 47 mph (snow - 15% reduction) as buses will be traveling counter to evacuating traffic. Times and distances are based on averages for all schools in the EPZ for good weather:
* Buses arrive at the reception centers/school receiving locations at 2:05 (see average value in Table 82)
* Bus discharges passengers (5 minutes) and driver takes a 10minute rest: 15 minutes
* Bus returns to facility: 17 minutes (average distance to reception centers/school receiving locations (12.0 miles) + average distance to EPZ boundary (3.4 miles) at 55 mph)
* Loading Time: 15 minutes
* Bus completes second wave of service along route: 11 minutes (average distance to Robert E. Ginna Nuclear Power Plant              84                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
EPZ boundary (3.4 miles) at network wide average speed at 2:55 (19.4 mph))
* Bus exits EPZ at time 2:05 + 0:15 + 0:17 + 0:15 + 0:11 = 3:05 (rounded up to nearest 5 minutes) after the ATE.
Given the average singlewave ETE for schools is 1:50 (see Table 82); a second wave evacuation would require an additional 1 hour and 15 minutes, on average. The average twowave ETE of schools is 30 minutes longer than the 90th percentile ETE (2:35) of the full EPZ during a winter, midweek, midday (Scenario 6) evacuation, and could impact protective action decision making.
Evacuation of TransitDependent Population (Residents without access to a vehicle)
A detailed computation of transitdependent population was done and is discussed in Section 3.6. The current public information disseminated to residents of the EPZ identifies 37 bus routes to pick up transitdependent individuals. All but one route (M7 Route M requires 2 buses) require only 1 bus to service all of the estimated transit dependent population. Therefore, the ETE was computed for the 38 bus routes needed to evacuate the transitdependent population.
The predefined bus routes (as discussed in Section 10) are shown graphically in Figures 102 and 103 and described in Table 101. Those buses servicing the transitdependent evacuees will first travel along these routes, then proceed out of the EPZ.
Activity: Mobilize Drivers (ABC)
The buses dispatched from the depots to service the transitdependent evacuees will be scheduled so that they arrive at their respective routes after their passengers have completed their mobilization. As shown in Figure 54 (Residents with no Commuters), approximately 90% of the evacuees will complete their mobilization at 120 minutes after the ATE. As such, mobilization time for the first buses to arrive at each route will be 120 minutes during good weather, 130 minutes in rain/light snow and 140 minutes in heavy snow, to account for slower travel speeds and reduced roadway capacity in adverse weather.
Activity: Board Passengers (CD)
For multiple stops along a pickup route (transitdependent bus routes) estimation of travel time must allow for the delay associated with stopping and starting at each pickup point. The time, t, required for a bus to decelerate at a rate, a, expressed in ft/sec/sec, from a speed, v, expressed in ft/sec, to a stop, is t = v/a. Assuming the same acceleration rate and final speed following the stop yields a total time, T, to service boarding passengers:
2          ,
Where B = Dwell time to service passengers. The total distance, s in feet, travelled during the deceleration and acceleration activities is: s = v2/a. If the bus had not stopped to service passengers, but had continued to travel at speed, v, then its travel time over the distance, s, would be: s/v = v/a. Then the total delay (i.e., pickup time, P) to service passengers is:
Assigning reasonable estimates:
Robert E. Ginna Nuclear Power Plant              85                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
* B = 50 seconds: a generous value for a single passenger, carrying personal items, to board per stop
* v = 25 mph = 37 ft/sec
* a = 4 ft/sec/sec, a moderate average rate Then, P  1 minute per stop. Allowing 30 minutes pickup time per bus run implies 30 stops per run, for good weather. It is assumed that bus acceleration and speed will be less in rain and snow; total loading time is 40 minutes per bus in rain/light snow, 50 minutes in heavy snow.
Activity: Travel to EPZ Boundary (DE)
The travel distance along the respective pickup routes within the EPZ is estimated using the UNITES software. Bus travel times within the EPZ are computed using average speeds computed by DYNEV, using the aforementioned methodology that was used for school evacuation.
Table 85 through Table 87 present the transitdependent population evacuation time estimates for each bus route calculated using the above procedures for good weather, rain/light snow and heavy snow, respectively.
For example, the ETE for the bus servicing ERPA M1 (Route A) is computed as 120 + 18 + 30 =
2:50 for good weather (rounded up to nearest 5 minutes). Here, 18 minutes is the time to travel 16.3 miles at 54.6 mph, the average speed output by the model for this route starting at 120 minutes.
The average single wave ETE for the transit dependent population is 15 minutes longer (2:50 minus 2:35) than the 90th percentile ETE for the general population for a winter, midweek, midday, good weather scenario (Scenario 6), and could impact protective action decision making.
The ETE for a second wave (discussed below) is presented in the event there is a shortfall of available buses or bus drivers.
Activity: Travel to Reception Centers (EF)
The distances from the EPZ boundary to the reception centers are measured using GIS software along the most likely route from the EPZ exit point to the facility. The reception centers are mapped in Figure 104. For a onewave evacuation, this travel time outside the EPZ does not contribute to the ETE. For a twowave evacuation, the ETE for buses must be considered separately, since it could exceed the ETE for the general population. Similar to schools, assumed bus speeds of 55 mph, 50 mph, and 47 mph for good weather, rain/light snow, and heavy snow, respectively, will be applied for this activity for buses servicing the transitdependent population.
Activity: Passengers Leave Bus (FG)
A bus can empty within 5 minutes. The driver takes a 10minute break.
Activity: Bus Returns to Route for Second Wave Evacuation (GC)
The buses assigned to return to the EPZ to perform a second wave evacuation of transit dependent evacuees will be those that have already evacuated transitdependent people who mobilized more quickly. The first wave of transitdependent people depart the bus, and the bus then returns to the EPZ, travels to its route and proceeds to pick up more transitdependent Robert E. Ginna Nuclear Power Plant                86                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
evacuees along the route. Similar to schools, assumed speeds of 55 mph, 50 mph and 47 mph are used to estimate the travel time back to the EPZ in good weather, rain/light snow, and heavy snow, respectively, as buses are traveling counter to evacuating traffic.
The secondwave ETE for the bus servicing ERPA M1 (Route A) is computed as follows for good weather:
* Bus arrives at reception center at 3:02 in good weather (2:50 to exit EPZ + 12 minute travel time to reception center).
* Bus discharges passengers (5 minutes) and driver takes a 10minute rest: 15 minutes.
* Bus returns to EPZ, drives to the start of the route and completes second route: 12 minutes (10.7 miles back to the EPZ @ 55 mph) + 18 minutes (equal to travel time to start of route, i.e., 16.3 miles @ 55 mph) + 18 minutes (equal to travel time for second route, i.e., 16.3 miles @ 55 mph - route will be free flowing as congestion in the EPZ has cleared at the time the bus returns for its second wave of service) = 48 minutes
* Bus completes pickups along route: 30 minutes.
* Bus exits EPZ at time 2:50 + 0:12 + 0:15 + 0:48 + 0:30 = 4:35 after the ATE.
The ETE for the completion of the second wave for all transitdependent bus routes are provided in Table 85 through Table 87.
The average ETE for a twowave evacuation of transitdependent people exceeds the ETE for the general population at the 90th percentile (2:35) by 1 hour and 55 minutes and could impact protective action decision making.
Evacuation of Medical Facilities Activity: Mobilize Drivers (ABC)
As is done for the schools, it is estimated that mobilization time averages 90 minutes in good weather (100 minutes in rain/light snow, 110 in heavy snow). Specially trained medical support staff (working their regular shift) will be on site to assist in the evacuation of patients. Additional staff (if needed) could be mobilized over this same 90minute timeframe.
Activity: Board Passengers (CD)
Item 5 of Section 2.4 discusses transit vehicle loading times for medical facilities. Loading times are assumed to be 1 minute per ambulatory passenger in buses and vans, 5 minutes per wheelchair bound passenger in wheelchair buses and wheelchair vans, and 15 minutes per bedridden passenger in ambulances, respectively. No reduction was made to loading times for adverse weather as these loading times are already conservative. Item 3 of Section 2.4 discusses transit vehicle capacities to cap loading times per vehicle type.
As shown in Table 81, there are a sufficient number of buses, vans, wheelchair buses, wheelchair vans, and ambulances in the EPZ to evacuate the medical facilities in a single wave. However, if drivers fail to report, two waves may be needed to evacuate the population at medical facilities within the EPZ in the event of a full EPZ evacuation.
Activity: Travel to EPZ Boundary (DE)
Robert E. Ginna Nuclear Power Plant                87                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
The travel distance along the respective pickup routes within the EPZ is estimated using the UNITES software. Transit vehicle travel times within the EPZ are computed using average speeds computed by DYNEV, using the aforementioned methodology that was used for school evacuation.
Table 88 through Table 810 summarize the ETE for medical facilities within the EPZ for good weather, rain/light snow, and heavy snow, respectively. The distances from the medical facilities to the EPZ boundary were estimated using GIS software. Average speeds output by the model for Scenario 6 (Scenario 7 for rain/light snow and Scenario 8 for heavy snow) Region 3, capped at 55 mph (50 mph for rain and 47 mph for snow), are used to compute travel time to the EPZ boundary. The travel time to the EPZ boundary is computed by dividing the distance to the EPZ boundary by the average travel speed. The ETE is the sum of the mobilization time, total passenger loading time, and travel time out of the EPZ. Concurrent loading on multiple buses, vans, wheelchair buses, wheelchair vans, and ambulances at capacity is assumed such that the maximum loading times for buses (maximum capacity of 30 times 1 minute per passenger), vans (maximum capacity of 12 times 1 minute per passenger), wheelchair buses (maximum capacity of 15 passengers times 5 minutes per passenger), wheelchair vans (maximum capacity of 4 passengers times 5 minutes per passenger and ambulances (2 passenger times 15 minutes per passenger) are 30, 12, 75, 20, and 30 minutes, respectively. All ETE are rounded to the nearest 5 minutes.
For example, the calculation of ETE for Ahepa 67 Apartments with 45 ambulatory residents during good weather is:
ETE:      90 + 30 (max capacity per bus with concurrent loading on multiple buses) x 1 + 5 = 125 minutes or 2:05.
It is assumed that the medical facility population is directly evacuated to reception centers or appropriate host medical facilities that are at approximately the same distances to the EPZ boundary as the reception centers.
Average single wave ETE for medical facilities are 35 minutes less than the 90th percentile ETE (2:35) for the evacuation of the general population from Region R03 during Scenario 6 conditions and should not impact protective action decision making.
Activity: Travel to Reception Center (EF), Passengers Leave Bus (FG), Bus Returns to Route for Second Wave Evacuation (GC)
A second wave ETE was not computed for each medical facility. Rather, the following representative ETE is provided to estimate the additional time needed for a second wave evacuation using school buses after the schools have been evacuated. Times and distances are based on facilitywide averages:
* Buses arrive at reception center at 2:05 (average arrival time at reception centers/school receiving locations in Table 821) 1 In the absence of data on the location and capacity of host medical facilities, the average arrival time at reception centers/school receiving locations was utilized as an estimate of the time required to arrive at a host facility prior to returning for a second wave of Robert E. Ginna Nuclear Power Plant                              88                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
* Bus discharges passengers 12 minutes (average bus/van loading time from Table 88) and driver takes a 10minute rest: 22 minutes.
* Bus returns to EPZ and completes second wave of service along the route: 13 minutes to travel back to the EPZ boundary (equal to average distance to reception centers/school receiving locations in Table 82 - 12.0 miles @ 55 mph as buses are traveling counter to evacuating traffic) + 6 minutes to travel back to the facility (average Dist. to EPZ Boundary in Table 88 - 5.2 miles @ 55 mph) and then back to the EPZ boundary (5.2 miles @ 21.9 mph = 14 minutes) = 33 minutes. The average distance to EPZ boundary is approximately 5.2 miles in Table 88. 21.9 mph is the network wide average speed at 2:30 for Scenario 6.
* Loading Time: 12 minutes (average from Table 88)
Bus exits EPZ at time 2:05 + 0:22 + 0:33 + 0:12 = 3:15 (rounded up to nearest 5 minutes) after the ATE.
Thus, the second wave evacuation requires an additional 1 hour and 10 minutes (3:15 minus 2:05), on average. The average ETE for a twowave evacuation of medical facilities exceeds the ETE for the general population at the 90th percentile (2:35) and could impact protective action decision making.
8.2    ETE for Access and/or Functional Needs Population Section 3.9 and Table 39 summarize the access and/or functional needs population registered with the county emergency management agencies in the EPZ. Table 811 summarizes the ETE for access and/or functional needs population. The table is categorized by type of vehicle required and then broken down by weather condition. The table takes into consideration the deployment of multiple vehicles (not filled to capacity) to reduce the number of stops per vehicle. Due to the potential mobility limitations for access and/or functional needs persons, it assumed they will be picked up from their homes. Furthermore, it is conservatively assumed that access and/or functional needs households are spaced 3 miles apart. Bus speeds approximate 20 mph between households in good weather (10% slower in rain/light snow, 15% slower in heavy snow).
Mobilization times of 120 minutes were used (130 minutes for rain, and 140 minutes for snow),
similar to the transit dependent population as evacuees will need time to mobilize. Loading times of 1 minute per person are assumed for ambulatory people, 5 minutes for wheelchair bound people, and 15 minutes per person for bedridden people. The last household is assumed to be 5 miles from the EPZ boundary, and the networkwide average speed, capped at 55 mph (50 mph for rain/light snow and 47 mph for heavy snow), after the last pickup is used to compute travel time. ETE is computed by summing mobilization time, loading time at the first household, travel to subsequent households, loading time at subsequent households, and travel time to EPZ boundary. All ETE are rounded up to the nearest 5 minutes.
For example, assuming no more than one access and/or functional needs person per household implies that 56 ambulatory households need to be serviced. While only 5 vans are needed from evacuation.
Robert E. Ginna Nuclear Power Plant                89                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
a capacity perspective (12 persons per van), if 11 vans are deployed to service these households, then each bus would require about 5 stops. The following outlines the ETE calculations:
: 1. Assume 11 buses are deployed, each with about 5 stops, to service a total of 56 households.
: 2. The ETE is calculated as follows for vans in good weather:
: a. Vans arrive at the first pickup location: 120 minutes
: b. Load household members at first pickup: 1 minute
: c. Travel to subsequent pickup locations: 4 @ 9 minutes (3 miles @ 20 mph) = 36 minutes
: d. Load household members at subsequent pickup locations: 4 @ 1 minute = 4 minutes
: e. Travel to EPZ boundary: 15 minutes (5 miles @ 20 mph - network wide average speed at this time).
ETE: 120 + 1 + 36 + 4 + 15 = 3:00 rounded up to the nearest 5 minutes.
The average ETE for a single wave evacuation of the access and/or functional needs population is 40 minutes longer than the general population ETE at the 90th percentile (2:35) for an evacuation of the entire EPZ (Region R03), during Scenario 6 conditions. Therefore, the evacuation of access and/or functional needs population could impact protective action decision making.
The following outlines the ETE calculations if a second wave is needed using vans after the medical facilities have been evacuated (see Table 88):
: a. Vans arrive at reception centers: 1:50 on average (average of ambulatory ETE in Table 88)
: b. Unload at reception centers: 12 minutes (average loading time for ambulatory in Table 88).
: c. Driver takes 10minute rest: 10 minutes.
: d. Travel time back to EPZ: 6 minutes (equal to average distance to reception centers in Table 88 - 5.2 miles @ 55 mph)
: e. Travel to first household: 9 minutes (3 miles @ 20 mph)
: f. Loading time at first household: 1 minute
: g. Travel to subsequent pickup locations: 4 @ 9 minutes = 36 minutes
: h. Loading time at subsequent households: 4 stops @ 1 minutes = 4 minutes
: i. Travel time to EPZ boundary at 5 miles @ 18 mph (network wide average speed at 3:10)
        = 17 minutes Good Weather ETE: 1:50 + 12 + 10 + 6 + 9 + 1 + 36 + 4 + 17 = 3:25 rounded up to the nearest 5 minutes.
Rain/Light Snow ETE: 2:05 + 12 + 10 + 6 + 10 + 1 + 40 + 4 + 20 = 3:50 rounded up to the nearest 5 minutes.
Heavy Snow ETE: 2:20 + 12 + 10 + 7 + 11 + 1 + 44 + 4 + 25 = 4:15 rounded up to the nearest 5 minutes.
Robert E. Ginna Nuclear Power Plant              810                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Table 81. Summary of Transportation Resources Transportation                                    Wheelchair Wheelchair Provider                      Buses Vans        Buses    Vans      Ambulances Resources Available Regional Transit Service Inc.                    250      0          0        0              0 Monroe County EMS Coordinator                      0      0        10        0              0 Medical Motor Services                            14    30          0        40            0 Rochester Medical Transport                        0      0          0        0              0 Genesee Transportation                            0      0          0        0              0 Paratransit                                      0      48          0        0              0 A&E Medical Transport                              0      0        10        0              0 Wayne Area Transportation Services (WATS)          12      0          0        0              0 Wayne Central School District                      17      0          0        0              0 Gananda Central School District                    17      0          0        0              0 Penfield Central School District                  5      0          0        0              0 Marion Central School District                    6      0          0        0              0 Lyons Central School District                      12      0          0        0              0 Sodus Central School District                      20      0          0        0              0 Newark School District                            4      0          0        0              0 PalmyraMacedon School District                    3      0          0        0              0 Wayne County Nursing Home                          0      2          1        0              0 Local Fire Departments and Towns                  0      0          0        0            26 TOTAL RESOURCES AVAILABLE: 360              80        21        40            26 Resources Needed Medical Facilities (Table 36):    11      8          8        12            2 TransitDependent Population (Table 101):        38      0          0        0              0 Schools (Table 38): 250          0          0        0              0 Access and/or Functional Needs 0      11          0        11            15 Population (Table 39):
TOTAL RESOURCES NEEDED: 299              19          8        23            17 Robert E. Ginna Nuclear Power Plant                811                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Table 82. School Evacuation Time Estimates - Good Weather Travel Time Dist. To                Travel          Dist. EPZ from EPZ Driver      Loading      EPZ      Average    Time to          Bdry to    Bdry to    ETA to Mobilization    Time      Bdry        Speed    EPZ Bdry    ETE      R.C.      R.C.      R.C.
School          Time (min)      (min)        (mi)      (mph)      (min)  (hr:min)  (mi.)    (min)    (hr:min)
Monroe County Schools Schlegel Road Elementary School        90            15        6.6        50.6        8      1:55    14.0        15        2:10 State Road Elementary School          90            15        3.3        21.6        9      1:55    13.5        15        2:10 Spry Middle School                    90            15        4.3        45.0        6      1:55    14.0        15        2:10 Webster Christian School              90            15        3.9        46.3        5      1:50    14.0        15        2:05 Klem Road North Elementary School      90            15        3.5        41.9        5      1:50    14.0        15        2:05 Klem Road South Elementary School      90            15        3.5        41.9        5      1:50    14.0        15        2:05 Webster Schroeder High School          90            15        3.5        42.5        5      1:50    14.0        15        2:05 Webster Montessori School              90            15        0.7        21.1        2      1:50    12.8        14        2:05 Willink Middle School                  90            15        2.3        37.2        4      1:50    14.0        15        2:05 Webster Thomas High School            90            15        2.3        37.2        4      1:50    14.0        15        2:05 Dewitt Road Elementary School          90            15        0.1        25.1        0      1:45    14.5        16        2:05 St Rita's School                      90            15        0.1        17.5        0      1:45    14.5        16        2:05 Plank Road North Elementary School    90            15        0.1        36.8        0      1:45    12.9        14        2:00 Plank Road South Elementary School    90            15        0.1        36.8        0      1:45    12.9        14        2:00 Rochester Christian School            90            15        0.1        35.7        0      1:45    10.9        12        2:00 Wayne County Schools Wayne Central High School              90            15        6.1        52.2        7      1:55      7.9        9        2:05 Wayne Central Elementary School        90            15        6.8        48.5        8      1:55      6.4        7        2:05 Wayne Central Primary School          90            15        6.8        48.5        8      1:55      6.4        7        2:05 Wayne Central Middle School            90            15        6.1        52.2        7      1:55      7.9        9        2:05 Williamson Senior High School          90            15        5.1        47.9        6      1:55    10.9        12        2:10 Williamson Middle School              90            15        5.1        47.9        6      1:55    10.9        12        2:10 Williamson Elementary School          90            15        5.1        47.9        6      1:55    10.9        12        2:10 Wayne Finger Lake BOCES                90            15        4.5        50.7        5      1:50    12.7        14        2:05 Robert E. Ginna Nuclear Power Plant                            812                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Travel Time Dist. To            Travel            Dist. EPZ  from EPZ Driver    Loading  EPZ    Average    Time to            Bdry to    Bdry to    ETA to Mobilization  Time    Bdry    Speed    EPZ Bdry    ETE      R.C.      R.C.      R.C.
School            Time (min)    (min)  (mi)    (mph)      (min)  (hr:min)  (mi.)      (min)    (hr:min)
Wayne Education Center                90        15      4.5      50.7        5      1:50    12.7        14        2:05 Wayne Technical & Career Center        90        15      4.5      50.7        5      1:50    12.7        14        2:05 Marion Junior/Senior High School      90        15      2.4      43.1        3      1:50    10.9        12        2:05 Marion Elementary School              90        15      0.1      31.2        0      1:45    10.7        12        2:00 Maximum for EPZ:    1:55            Maximum:      2:10 Average for EPZ:  1:50              Average:      2:05 Robert E. Ginna Nuclear Power Plant                      813                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Table 83. School Evacuation Time Estimates - Rain/Light Snow Travel Time Dist. To                Travel            Dist. EPZ from EPZ Driver      Loading      EPZ      Average      Time to            Bdry to    Bdry to    ETA to Mobilization      Time      Bdry      Speed      EPZ Bdry    ETE      R.C.      R.C.      R.C.
School            Time (min)      (min)      (mi)      (mph)        (min)    (hr:min)  (mi.)    (min)    (hr:min)
Monroe County Schools Schlegel Road Elementary School        100            20          6.6      25.6          15      2:15    14.0        17        2:35 State Road Elementary School          100            20          3.3      17.7          11      2:15    13.5        16        2:35 Spry Middle School                    100            20          4.3      20.1          13      2:15    14.0        17        2:35 Webster Christian School              100            20          3.9      19.4          12      2:15    14.0        17        2:35 Klem Road North Elementary School      100            20          3.5      16.1          13      2:15    14.0        17        2:35 Klem Road South Elementary School      100            20          3.5      16.1          13      2:15    14.0        17        2:35 Webster Schroeder High School          100            20          3.5      15.5          14      2:15    14.0        17        2:35 Webster Montessori School              100            20          0.7      10.2          4        2:05    12.8        15        2:20 Willink Middle School                  100            20          2.3      11.0          13      2:15    14.0        17        2:35 Webster Thomas High School            100            20          2.3      11.0          13      2:15    14.0        17        2:35 Dewitt Road Elementary School          100            20          0.1      22.6          0        2:00    14.5        17        2:20 St Rita's School                      100            20          0.1      13.5          0        2:00    14.5        17        2:20 Plank Road North Elementary School    100            20          0.1      31.6          0        2:00    12.9        15        2:15 Plank Road South Elementary School    100            20          0.1      31.6          0        2:00    12.9        15        2:15 Rochester Christian School            100            20          0.1      39.2          0        2:00    10.9        13        2:15 Wayne County Schools Wayne Central High School              100            20          6.1      43.4          8        2:10      0.0        0        2:10 Wayne Central Elementary School        100            20          6.8      43.0          9        2:10    14.0        17        2:30 Wayne Central Primary School          100            20          6.8      43.0          9        2:10    13.5        17        2:30 Wayne Central Middle School            100            20          6.1      43.4          8        2:10    14.0        17        2:30 Williamson Senior High School          100            20          5.1      42.4          7        2:10    14.0        17        2:30 Williamson Middle School              100            20          5.1      42.4          7        2:10    14.0        17        2:30 Williamson Elementary School          100            20          5.1      42.4          7        2:10    14.0        17        2:30 Wayne Finger Lake BOCES                100            20          4.5      47.1          6        2:10    14.0        17        2:30 Robert E. Ginna Nuclear Power Plant                              814                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                            Rev. 0
 
Travel Time Dist. To            Travel            Dist. EPZ  from EPZ Driver    Loading  EPZ    Average    Time to            Bdry to    Bdry to    ETA to Mobilization  Time    Bdry    Speed    EPZ Bdry    ETE      R.C.      R.C.      R.C.
School            Time (min)    (min)  (mi)    (mph)      (min)  (hr:min)  (mi.)      (min)    (hr:min)
Wayne Education Center                100        20      4.5      47.1        6      2:10    14.0        17        2:30 Wayne Technical & Career Center      100        20      4.5      47.1        6      2:10    12.8        15        2:25 Marion Junior/Senior High School      100        20      2.4      38.7        4      2:05    14.0        17        2:25 Marion Elementary School              100        20      0.1      27.5        0      2:00    14.0        17        2:20 Maximum for EPZ:    2:15            Maximum:      2:35 Average for EPZ:  2:10              Average:      2:30 Robert E. Ginna Nuclear Power Plant                      815                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Table 84. School Evacuation Time Estimates - Heavy Snow Travel Time Dist. To                Travel          Dist. EPZ from EPZ Driver      Loading      EPZ      Average    Time to          Bdry to    Bdry to    ETA to Mobilization    Time        Bdry        Speed    EPZ Bdry  ETE      R.C.      R.C.      R.C.
School          Time (min)      (min)      (mi)        (mph)      (min)  (hr:min)  (mi.)    (min)    (hr:min)
Monroe County Schools Schlegel Road Elementary School      110            25        6.6        19.3        21      2:40    14.0        18        3:00 State Road Elementary School          110            25        3.3        14.5        14      2:30    13.5        17        2:50 Spry Middle School                    110            25        4.3        15.9        16      2:35    14.0        18        2:55 Webster Christian School              110            25        3.9        15.2        15      2:30    14.0        18        2:50 Klem Road North Elementary School    110            25        3.5        16.9        12      2:30    14.0        18        2:50 Klem Road South Elementary School    110            25        3.5        16.9        12      2:30    14.0        18        2:50 Webster Schroeder High School        110            25        3.5        14.8        14      2:30    14.0        18        2:50 Webster Montessori School            110            25        0.7        30.3        1      2:20    12.8        16        2:40 Willink Middle School                110            25        2.3        12.3        11      2:30    14.0        18        2:50 Webster Thomas High School            110            25        2.3        12.3        11      2:30    14.0        18        2:50 Dewitt Road Elementary School        110            25        0.1        14.7        0      2:15    14.5        19        2:35 St Rita's School                      110            25        0.1        7.5        1      2:20    14.5        19        2:40 Plank Road North Elementary School    110            25        0.1        35.9        0      2:15    12.9        16        2:35 Plank Road South Elementary School    110            25        0.1        35.9        0      2:15    12.9        16        2:35 Rochester Christian School            110            25        0.1        24.6        0      2:15    10.9        14        2:30 Wayne County Schools Wayne Central High School            110            25        6.1        38.7        9      2:25      0.0        0        2:25 Wayne Central Elementary School      110            25        6.8        39.8        10      2:25    14.0        18        2:45 Wayne Central Primary School          110            25        6.8        39.8        10      2:25    13.5        18        2:45 Wayne Central Middle School          110            25        6.1        38.7        9      2:25    14.0        18        2:45 Williamson Senior High School        110            25        5.1        39.4        8      2:25    14.0        18        2:45 Williamson Middle School              110            25        5.1        39.4        8      2:25    14.0        18        2:45 Williamson Elementary School          110            25        5.1        39.4        8      2:25    14.0        18        2:45 Wayne Finger Lake BOCES              110            25        4.5        30.7        9      2:25    14.0        18        2:45 Robert E. Ginna Nuclear Power Plant                            816                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Travel Time Dist. To            Travel            Dist. EPZ  from EPZ Driver    Loading  EPZ    Average    Time to            Bdry to    Bdry to    ETA to Mobilization  Time    Bdry    Speed    EPZ Bdry    ETE      R.C.      R.C.      R.C.
School            Time (min)    (min)  (mi)    (mph)      (min)  (hr:min)  (mi.)      (min)    (hr:min)
Wayne Education Center                110        25      4.5      30.7        9      2:25    14.0        18        2:45 Wayne Technical & Career Center      110        25      4.5      30.7        9      2:25    12.8        16        2:45 Marion Junior/Senior High School      110        25      2.4      35.9        4      2:20    14.0        18        2:40 Marion Elementary School              110        25      0.1      26.1        0      2:15    14.0        18        2:35 Maximum for EPZ:    2:40            Maximum:      3:00 Average for EPZ:  2:25              Average:      2:45 Robert E. Ginna Nuclear Power Plant                      817                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Table 85. TransitDependent Evacuation Time Estimates - Good Weather OneWave                                                      TwoWave Travel Route                                Time                Route UNITES                            Route            Travel  Pickup            Distance  to R.        Driver Travel  Pickup Route      Route    ERPA(s)  Mobilization  Length    Speed    Time    Time      ETE    to R. C. C. Unload  Rest  Time    Time      ETE Number        #2    Serviced    (min)      (miles)  (mph)  (min)  (min)    (hr:min)  (miles)  (min)    (min) (min)  (min)  (min)    (hr:min) 1        51        M1        120          16.3    54.6    18      30      2:50      10.7      12      5    10    47      30      4:35 2        52        M1        120          16.7    52.4    19      30      2:50      10.7      12      5    10    48      30      4:35 3        53        M2        120          15.6    53.6    17      30      2:50      10.7      12      5    10    46      30      4:35 4        54        M3        120          14.0    49.3    17      30      2:50      10.7      12      5    10    42      30      4:30 5        55        M4        120          12.5    28.5    26      30      3:00      9.4      10      5    10    40      30      4:35 6        56        M4        120          14.5    31.0    28      30      3:00      9.4      10      5    10    46      30      4:45 7        57        M4        120          12.1    28.0    26      30      3:00      9.4      10      5    10    40      30      4:35 8        58        M5        120          13.2    43.1    18      30      2:50      9.4      10      5    10    39      30      4:25 9        59        M5        120          18.5    44.2    25      30      2:55      9.4      10      5    10    52      30      4:45 10        60        M6        120          10.1    49.1    12      30      2:45      10.7      12      5    10    34      30      4:20 11        61        M6        120          13.4    46.6    17      30      2:50      10.7      12      5    10    44      30      4:35 12        62        M6        120          9.6      45.0    13      30      2:45      10.7      12      5    10    34      30      4:20 13        63        M7        120          7.1      42.9    10      30      2:40      15.3      17      5    10    32      30      4:15 14        64        M7        120          9.9      31.3    19      30      2:50      15.3      17      5    10    42      30      4:35 15        67        M8        120          4.0      32.5      7      30      2:40      10.7      12      5    10    21      30      4:00 16        66        M8        120          4.4      43.8      6      30      2:40      10.7      12      5    10    22      30      4:00 17        68        M9        120          7.1      17.3    25      30      2:55      10.7      12      5    10    28      30      4:20 18        30        W1        120          18.7    52.5    21      30      2:55      8.2      9      5    10    50      30      4:40 19        31        W1        120          16.2    49.9    19      30      2:50      8.4      9      5    10    46      30      4:30 20        32        W1        120          14.9    48.9    18      30      2:50      7.7      8      5    10    42      30      4:25 21        33        W2        120          11.3    45.8    15      30      2:45      8.4      9      5    10    35      30      4:15 2
See Table 10-2 and Appendix K.
Robert E. Ginna Nuclear Power Plant                                      818                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
OneWave                                                  TwoWave Travel Route                              Time                Route UNITES                            Route        Travel  Pickup          Distance  to R.        Driver Travel  Pickup Route      Route  ERPA(s)    Mobilization Length  Speed  Time    Time    ETE    to R. C. C. Unload  Rest  Time    Time      ETE Number      #2    Serviced      (min)    (miles) (mph)  (min)    (min)  (hr:min)  (miles) (min)  (min) (min)  (min)  (min)    (hr:min) 22        34      W2          120      16.1  51.6    19      30      2:50      8.4      9      5    10    45      30      4:30 23        35      W2          120      16.4  46.5    21      30      2:55      7.7      8      5    10    46      30      4:35 24        36      W3          120      15.9  39.6    24      30      2:55    17.5    19      5    10    54      30      4:55 25        37      W3          120      7.8    50.7    9      30      2:40    20.6    22      5    10    40      30      4:30 26        38      W4          120      6.5    24.8    16      30      2:50    17.2    19      5    10    33      30      4:30 27        39      W4          120      10.1  47.3    13      30      2:45    17.2    19      5    10    42      30      4:35 28        40      W5          120      8.9    33.1    16      30      2:50    17.2    19      5    10    38      30      4:35 29        41      W5          120      6.4    52.0    7      30      2:40    14.5    16      5    10    30      30      4:15 30        42      W5          120      7.0    47.4    9      30      2:40    14.5    16      5    10    32      30      4:15 31        43      W6          120      7.8    52.0    9      30      2:40    14.5    16      5    10    33      30      4:15 32        45      W6          120      6.5    48.7    8      30      2:40    14.1    15      5    10    30      30      4:10 33        46      W6          120      10.0  45.2    13      30      2:45    14.1    15      5    10    39      30      4:25 34        47      W6          120      7.7    46.2    10      30      2:40    14.2    15      5    10    34      30      4:15 35        48      W7          120      13.3  48.9    16      30      2:50      8.4      9      5    10    39      30      4:25 36        49      W7          120      10.8  52.4    12      30      2:45      8.4      9      5    10    33      30      4:15 37        50      W7          120      9.9    45.5    13      30      2:45      8.4      9      5    10    32      30      4:15 Maximum ETE:      3:00                                  Maximum ETE:      4:55 Average ETE:  2:50                                    Average ETE:    4:30 Robert E. Ginna Nuclear Power Plant                                  819                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Table 86. TransitDependent Evacuation Time Estimates - Rain/Light Snow OneWave                                                        TwoWave Travel Route                                  Time                Route UNITES                              Route          Travel  Pickup            Distance    to R.        Driver Travel  Pickup Route      Route  ERPA(s)    Mobilization  Length    Speed  Time    Time      ETE    to R. C.      C. Unload  Rest  Time    Time      ETE Number      #2    Serviced      (min)      (miles)  (mph)  (min)  (min)    (hr:min)  (miles)    (min)  (min) (min)  (min)  (min)    (hr:min) 1        51      M1          130        16.3    40.2    24      40        3:15      10.7      13      5    10    52      40      5:15 2        52      M1          130        16.7    40.1    25      40        3:15      10.7      13      5    10    53      40      5:20 3        53      M2          130        15.6    37.7    25      40        3:15      10.7      13      5    10    50      40      5:15 4        54      M3          130        14.0    34.1    25      40        3:15      10.7      13      5    10    46      40      5:10 5        55      M4          130        12.5    29.1    26      40        3:20      9.4      11      5    10    43      40      5:10 6        56      M4          130        14.5    30.7    28      40        3:20      9.4      11      5    10    48      40      5:15 7        57      M4          130        12.1    28.7    25      40        3:15      9.4      11      5    10    42      40      5:05 8        58      M5          130        13.2    42.2    19      40        3:10      9.4      11      5    10    43      40      5:00 9        59      M5          130        18.5    41.4    27      40        3:20      9.4      11      5    10    56      40      5:25 10        60      M6          130        10.1    30.7    20      40        3:10      10.7      13      5    10    37      40      4:55 11        61      M6          130        13.4    42.0    19      40        3:10      10.7      13      5    10    48      40      5:10 12        62      M6          130        9.6      30.7    19      40        3:10      10.7      13      5    10    36      40      4:55 13        63      M7          130        7.1      23.8    18      40        3:10      15.3      18      5    10    35      40      5:00 14        64      M7          130        9.9      20.0    30      40        3:20      15.3      18      5    10    44      40      5:20 15        67      M8          130        4.0      9.2    26      40        3:20      10.7      13      5    10    23      40      4:55 16        66      M8          130        4.4      39.4    7      40        3:00      10.7      13      5    10    25      40      4:35 17        68      M9          130        7.1      19.0    22      40        3:15      10.7      13      5    10    30      40      4:55 18        30      W1          130        18.7    48.4    23      40        3:15      8.2      10      5    10    55      40      5:15 19        31      W1          130        16.2    45.3    21      40        3:15      8.4      10      5    10    49      40      5:10 20        32      W1          130        14.9    44.2    20      40        3:10      7.7        9      5    10    46      40      5:00 21        33      W2          130        11.3    42.0    16      40        3:10      8.4      10      5    10    38      40      4:55 22        34      W2          130        16.1    46.4    21      40        3:15      8.4      10      5    10    49      40      5:10 23        35      W2          130        16.4    42.6    23      40        3:15      7.7        9      5    10    50      40      5:10 Robert E. Ginna Nuclear Power Plant                                      820                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
OneWave                                                  TwoWave Travel Route                              Time                Route UNITES                            Route        Travel  Pickup          Distance  to R.        Driver Travel  Pickup Route      Route  ERPA(s)    Mobilization Length  Speed  Time    Time    ETE    to R. C. C. Unload  Rest  Time    Time      ETE Number      #2    Serviced      (min)    (miles) (mph)  (min)    (min)  (hr:min)  (miles) (min)  (min) (min)  (min)  (min)    (hr:min) 24        36      W3          130      15.9  42.0    23      40      3:15    17.5    21      5    10    59      40      5:30 25        37      W3          130      7.8    46.1    10      40      3:00    20.6    25      5    10    44      40      5:05 26        38      W4          130      6.5    29.3    13      40      3:05    17.2    21      5    10    36      40      5:00 27        39      W4          130      10.1  43.0    14      40      3:05    17.2    21      5    10    45      40      5:10 28        40      W5          130      8.9    37.0    14      40      3:05    17.2    21      5    10    42      40      5:05 29        41      W5          130      6.4    47.6    8      40      3:00    14.5    17      5    10    33      40      4:45 30        42      W5          130      7.0    39.4    11      40      3:05    14.5    17      5    10    35      40      4:55 31        43      W6          130      7.8    47.6    10      40      3:00    14.5    17      5    10    36      40      4:50 32        45      W6          130      6.5    44.8    9      40      3:00    14.1    17      5    10    33      40      4:45 33        46      W6          130      10.0  41.4    15      40      3:05    14.1    17      5    10    42      40      5:00 34        47      W6          130      7.7    42.1    11      40      3:05    14.2    17      5    10    37      40      4:55 35        48      W7          130      13.3  44.6    18      40      3:10      8.4    10      5    10    42      40      5:00 36        49      W7          130      10.8  47.8    14      40      3:05      8.4    10      5    10    37      40      4:50 37        50      W7          130      9.9    41.7    14      40      3:05      8.4    10      5    10    35      40      4:45 Maximum ETE:      3:20                                  Maximum ETE:      5:30 Average ETE:  3:10                                    Average ETE:    5:05 Robert E. Ginna Nuclear Power Plant                                  821                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Table 87. Transit Dependent Evacuation Time Estimates - Heavy Snow OneWave                                                      TwoWave Travel Route                                Time                Route UNITES                              Route            Travel  Pickup            Distance  to R.        Driver Travel  Pickup Route      Route  ERPA(s)    Mobilization    Length  Speed    Time    Time      ETE    to R. C. C. Unload  Rest  Time    Time      ETE Number      #2    Serviced      (min)      (miles)  (mph)    (min)  (min)    (hr:min)  (miles)  (min)  (min) (min)  (min)  (min)    (hr:min) 1        51      M1          140          16.3    25.2      39      50      3:50      10.7      14      5    10    55      50      6:05 2        52      M1          140          16.7    25.3      40      50      3:50      10.7      14      5    10    56      50      6:05 3        53      M2          140          15.6    21.6      43      50      3:55      10.7      14      5    10    53      50      6:10 4        54      M3          140          14.0    20.4      41      50      3:55      10.7      14      5    10    49      50      6:05 5        55      M4          140          12.5    21.5      35      50      3:45      9.4      12      5    10    47      50      5:50 6        56      M4          140          14.5    24.5      36      50      3:50      9.4      12      5    10    53      50      6:00 7        57      M4          140          12.1    21.2      34      50      3:45      9.4      12      5    10    45      50      5:50 8        58      M5          140          13.2    38.6      20      50      3:30      9.4      12      5    10    46      50      5:35 9        59      M5          140          18.5    38.9      29      50      3:40      9.4      12      5    10    61      50      6:00 10        60      M6          140          10.1    18.8      32      50      3:45      10.7      14      5    10    39      50      5:45 11        61      M6          140          13.4    39.4      20      50      3:30      10.7      14      5    10    51      50      5:40 12        62      M6          140          9.6    16.5      35      50      3:45      10.7      14      5    10    39      50      5:45 13        63      M7          140          7.1    13.4      32      50      3:45      15.3      20      5    10    38      50      5:50 14        64      M7          140          9.9    19.5      30      50      3:40      15.3      20      5    10    50      50      5:55 15        67      M8          140          4.0    20.6      12      50      3:25      10.7      14      5    10    25      50      5:10 16        66      M8          140          4.4    37.0      7      50      3:20      10.7      14      5    10    26      50      5:05 17        68      M9          140          7.1    25.2      17      50      3:30      10.7      14      5    10    33      50      5:25 18        30      W1          140          18.7    43.9      26      50      3:40      8.2      10      5    10    59      50      5:55 19        31      W1          140          16.2    40.7      24      50      3:35      8.4      11      5    10    53      50      5:45 20        32      W1          140          14.9    39.7      22      50      3:35      7.7      10      5    10    49      50      5:40 21        33      W2          140          11.3    39.2      17      50      3:30      8.4      11      5    10    41      50      5:30 22        34      W2          140          16.1    42.0      23      50      3:35      8.4      11      5    10    53      50      5:45 23        35      W2          140          16.4    39.3      25      50      3:35      7.7      10      5    10    54      50      5:45 Robert E. Ginna Nuclear Power Plant                                      822                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
OneWave                                                  TwoWave Travel Route                              Time                Route UNITES                            Route        Travel  Pickup          Distance  to R.        Driver Travel  Pickup Route      Route  ERPA(s)    Mobilization Length  Speed  Time    Time    ETE    to R. C. C. Unload  Rest  Time    Time      ETE Number      #2    Serviced      (min)    (miles) (mph)  (min)    (min)  (hr:min)  (miles) (min)  (min) (min)  (min)  (min)    (hr:min) 24        36      W3          140      15.9  30.0    32      50      3:45    17.5    22      5    10    63      50      6:15 25        37      W3          140      7.8    42.3    11      50      3:25    20.6    26      5    10    47      50      5:45 26        38      W4          140      6.5    17.0    23      50      3:35    17.2    22      5    10    38      50      5:40 27        39      W4          140      10.1  43.0    14      50      3:25    17.2    22      5    10    49      50      5:45 28        40      W5          140      8.9    22.0    24      50      3:35    17.2    22      5    10    45      50      5:50 29        41      W5          140      6.4    41.6    9      50      3:20    14.5    19      5    10    35      50      5:20 30        42      W5          140      7.0    38.2    11      50      3:25    14.5    19      5    10    38      50      5:30 31        43      W6          140      7.8    42.3    11      50      3:25    14.5    19      5    10    39      50      5:30 32        45      W6          140      6.5    40.2    10      50      3:20    14.1    18      5    10    36      50      5:20 33        46      W6          140      10.0  39.2    15      50      3:25    14.1    18      5    10    45      50      5:35 34        47      W6          140      7.7    39.0    12      50      3:25    14.2    18      5    10    40      50      5:30 35        48      W7          140      13.3  39.3    20      50      3:30      8.4    11      5    10    46      50      5:35 36        49      W7          140      10.8  44.0    15      50      3:25      8.4    11      5    10    38      50      5:20 37        50      W7          140      9.9    38.9    15      50      3:25      8.4    11      5    10    38      50      5:20 Maximum ETE:      3:55                                  Maximum ETE:      6:15 Average ETE:  3:35                                    Average ETE:    5:45 Robert E. Ginna Nuclear Power Plant                                  823                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Table 88. Medical Facility Evacuation Time Estimates - Good Weather Loading                                              Travel Time Rate                                                  to EPZ Mobilization      (min per                Total Loading  Dist. To EPZ    Boundary        ETE Medical Facility            Patient              (min)            person)      People      Time (min)    Bdry (mi)        (min)      (hr:min)
Maplewood Nursing      Ambulatory                    90                1          10            10            4.0            6          1:50 Home            Wheelchair bound              90                5          63            75            4.0            5          2:50 Ambulatory                    90                1          45            30            3.5            5          2:05 Ahepa 67 Apartments Wheelchair bound              90                5            5            20            3.5            5          1:55 Quinby Park Senior    Ambulatory                    90                1          45            30            2.8            4          2:05 Apartments        Wheelchair bound              90                5            4            20            2.8            4          1:55 Ambulatory                    90                1          206            30            2.4            5          2:05 St Ann's Care Center at Wheelchair bound              90                5          64            75            2.4            3          2:50 Cherry Ridge Bedridden                    90                15            3            30            2.4            5          2:05 Ontario Community      Ambulatory                    90                1            7            7            8.4            10          1:50 Residence        Wheelchair bound              90                5            3            15            8.4            10          1:55 Ambulatory                    90                1            4            4            7.5            10          1:45 Slocum Road IRA Wheelchair bound              90                5            2            10            7.5            10          1:50 Pines of Peace Hospice  Ambulatory                    90                1            1            1            7.0            9          1:40 Center          Wheelchair bound              90                5            1            5            7.0            9          1:45 Williamson Group      Ambulatory                    90                1            6            6            6.9            9          1:45 Home St. Joseph's Villa  Wheelchair bound              90                5            2            10            6.9            9          1:50 Williamson Community    Ambulatory                    90                1            5            5            6.9            9          1:45 Residence        Wheelchair bound              90                5            2            10            6.9            9          1:50 Williamson Group      Ambulatory                    90                1            6            6            6.9            9          1:45 Home St. Joseph's Villa  Wheelchair bound              90                5            2            10            6.9            9          1:50 Ambulatory                    90                1            5            5            1.9            2          1:40 Walworth IRA Wheelchair bound              90                5            2            10            1.9            2          1:45 Maximum ETE:      2:50 Average ETE:      2:00 Robert E. Ginna Nuclear Power Plant                                        824                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
Table 89. Medical Facility Evacuation Time Estimates - Rain/Light Snow Loading                                              Travel Time Rate                                                  to EPZ Mobilization        (min per                Total Loading  Dist. To EPZ  Boundary          ETE Medical Facility            Patient              (min)              person)      People      Time (min)    Bdry (mi)        (min)        (hr:min)
Maplewood Nursing          Ambulatory              100                  1          10            10            4.0          12            2:05 Home            Wheelchair bound            100                  5          63            75            4.0            5            3:00 Ambulatory              100                  1          45            30            3.5          11            2:25 Ahepa 67 Apartments Wheelchair bound            100                  5            5            20            3.5          14            2:15 Quinby Park Senior        Ambulatory              100                  1          45            30            2.8          10            2:20 Apartments          Wheelchair bound            100                  5            4            20            2.8          11            2:15 Ambulatory              100                  1          206            30            2.4          10            2:20 St Ann's Care Center at Wheelchair bound            100                  5          64            75            2.4            3            3:00 Cherry Ridge Bedridden              100                15            3            30            2.4          10            2:20 Ontario Community          Ambulatory              100                  1            7              7            8.4          11            2:00 Residence          Wheelchair bound            100                  5            3            15            8.4          11            2:10 Ambulatory              100                  1            4              4            7.5          11            1:55 Slocum Road IRA Wheelchair bound            100                  5            2            10            7.5          10            2:00 Pines of Peace Hospice      Ambulatory              100                  1            1              1            7.0          10            1:55 Center          Wheelchair bound            100                  5            1              5            7.0          10            1:55 Williamson Group          Ambulatory              100                  1            6              6            6.9          10            2:00 Home St. Joseph's Villa  Wheelchair bound            100                  5            2            10            6.9          10            2:00 Williamson Community          Ambulatory              100                  1            5              5            6.9          10            1:55 Residence          Wheelchair bound            100                  5            2            10            6.9          10            2:00 Williamson Group          Ambulatory              100                  1            6              6            6.9          10            2:00 Home St. Joseph's Villa  Wheelchair bound            100                  5            2            10            6.9          10            2:00 Ambulatory              100                  1            5              5            1.9            3            1:50 Walworth IRA Wheelchair bound            100                  5            2            10            1.9            2            1:55 Maximum ETE:        3:00 Average ETE:      2:10 Robert E. Ginna Nuclear Power Plant                                        825                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
Table 810. Medical Facility Evacuation Time Estimates - Heavy Snow Loading                                            Travel Time Rate                                                to EPZ Mobilization        (min per                Total Loading Dist. To EPZ  Boundary        ETE Medical Facility            Patient              (min)              person)      People      Time (min)  Bdry (mi)        (min)      (hr:min)
Maplewood Nursing          Ambulatory              110                  1          10            10          4.0          16          2:20 Home            Wheelchair bound            110                  5          63            75          4.0            6          3:15 Ambulatory              110                  1          45            30          3.5          16          2:40 Ahepa 67 Apartments Wheelchair bound            110                  5            5            20          3.5          14          2:25 Quinby Park Senior          Ambulatory              110                  1          45            30          2.8          12          2:35 Apartments          Wheelchair bound            110                  5            4            20          2.8          11          2:25 Ambulatory              110                  1          206            30          2.4          12          2:35 St Ann's Care Center at Wheelchair bound            110                  5          64            75          2.4            4          3:10 Cherry Ridge Bedridden              110                15            3            30          2.4          12          2:35 Ontario Community          Ambulatory              110                  1            7            7            8.4          12          2:10 Residence          Wheelchair bound            110                  5            3            15          8.4          12          2:20 Ambulatory              110                  1            4            4            7.5          12          2:10 Slocum Road IRA Wheelchair bound            110                  5            2            10          7.5          12          2:15 Pines of Peace Hospice        Ambulatory              110                  1            1            1            7.0          11          2:05 Center          Wheelchair bound            110                  5            1            5            7.0          11          2:10 Williamson Group          Ambulatory              110                  1            6            6            6.9          11          2:10 Home St. Joseph's Villa  Wheelchair bound            110                  5            2            10          6.9          11          2:15 Williamson Community          Ambulatory              110                  1            5            5            6.9          11          2:10 Residence          Wheelchair bound            110                  5            2            10          6.9          11          2:15 Williamson Group          Ambulatory              110                  1            6            6            6.9          11          2:10 Home St. Joseph's Villa  Wheelchair bound            110                  5            2            10          6.9          11          2:15 Ambulatory              110                  1            5            5            1.9            3          2:00 Walworth IRA Wheelchair bound            110                  5            2            10          1.9            3          2:05 Maximum ETE:      3:15 Average ETE:      2:25 Robert E. Ginna Nuclear Power Plant                                        826                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Table 811. Evacuation Time Estimates for Access and/or Functional Needs Population Total      Travel Mobiliza  Loading                    Loading      Time to People                                                    tion    Time at      Travel to    Time at        EPZ Requiring    Vehicles                      Weather        Time      1st Stop  Subsequent    Subsequent    Boundary        ETE Vehicle Type    Vehicle    deployed          Stops      Conditions      (min)      (min)      Stops (min)  Stops (min)    (min)      (hr:min)
Good            120                      36                        15          3:00 Van            56          11              5        Rain            130          1          40            4          23          3:20 Snow            140                      44                        22          3:35 Good            120                      18                        15          2:50 Wheelchair                                                                130                      20                                    3:10 32          11              3        Rain                          5                        10          22 Van Snow            140                      22                        21          3:20 Good            120                      10                        15          2:55 Ambulance        30          15              2        Rain            130        15          11            15          23          3:15 Snow            140                      13                        22          3:25 Maximum ETE:        3:35 Average ETE:      3:15 Robert E. Ginna Nuclear Power Plant                                      827                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                        Rev. 0
 
(Subsequent Wave)
A              B                  C              D                E          F            G Time Event A        Advisory to Evacuate B        Bus Dispatched from Depot C        Bus Arrives at Facility/Pickup Route D        Bus Departs for Reception Centers/School Receiving Locations E        Bus Exits Region F        Bus Arrives at Reception Centers/School Receiving Locations G        Bus Available for Second Wave Evacuation Service Activity AB      Driver Mobilization BC      Travel to Facility or to Pickup Route CD      Passengers Board the Bus DE      Bus Travels Towards Region Boundary EF      Bus Travels Towards Reception Centers/School Receiving Locations Outside the EPZ FG      Passengers Leave Bus; Driver Takes a Break Figure 81. Chronology of Transit Evacuation Operations Robert E. Ginna Nuclear Power Plant                                      828                                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                            Rev. 0
 
9    TRAFFIC MANAGEMENT STRATEGY This section discusses the suggested traffic management strategy that is designed to expedite the movement of evacuating traffic. The resources required to implement this strategy include:
* Personnel with the capabilities of performing the planned control functions of traffic guides (preferably, not necessarily, law enforcement officers).
* The Manual on Uniform Traffic Control Devices (MUTCD) published by the Federal Highway Administration (FHWA) of the U.S.D.O.T. provides guidance for Traffic Control Devices to assist these personnel in the performance of their tasks. All state and most county transportation agencies have access to the MUTCD, which is available online:
http://mutcd.fhwa.dot.gov which provides access to the official PDF version.
* A plan that defines all locations, provides necessary details and is documented in a format that is readily understood by those assigned to perform traffic control.
The functions to be performed in the field are:
: 1. Facilitate evacuating traffic movements that safely expedite travel out of the EPZ.
: 2. Discourage traffic movements that move evacuating vehicles in a direction which takes them significantly closer to the power plant, or which interferes with the efficient flow of other evacuees.
We employ the terms "facilitate" and "discourage" rather than "enforce" and "prohibit" to indicate the need for flexibility in performing the traffic control function. There are always legitimate reasons for a driver to prefer a direction other than that indicated. For example:
* A driver may be traveling home from work or from another location to join other family members prior to evacuating.
* An evacuating driver may be travelling to pick up a relative or other evacuees.
* The driver may be an emergency worker en route to perform an important activity.
The implementation of a plan must also be flexible enough for the application of sound judgment by the traffic guide.
The traffic management plan is the outcome of the following process:
: 1. The detailed traffic control tactics discussed in the Monroe County Radiological Emergency Preparedness Plan, dated May 2019, and the Wayne County Radiological Emergency Preparedness Plan, dated January 2, 2017 served as the basis of the traffic management plan, as per NUREG/CR7002, Rev. 1. The ETE analysis treated all controlled intersections that are existing ACP or TCP locations in the county plan as being controlled by actuated signals. Appendix K identifies the number of intersections that were modeled as TCPs and ACPs.
: 2. Evacuation simulations were run using DYNEV II to predict traffic congestion during an evacuation (see Section 7.3 and Figures 73 through 77. These simulations help to identify the best routing and critical intersections that experience pronounced congestion during evacuation. Any critical intersections that would benefit from traffic Robert E. Ginna Nuclear Power Plant              91                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
or access control which are not already identified in the existing county plans are examined. No additional TCPs or ACPs were identified as part of this study.
: 3. Prioritization of TCPs and ACPs. Application of traffic and access control at some TCPs and ACPs will have a more pronounced influence on expediting traffic movements than at other TCPs and ACPs. For example, TCPs controlling traffic originating from areas in close proximity to the power plant could have a more beneficial effect on minimizing potential exposure to radioactivity than those TCPs located far from the power plant.
Key locations for manual traffic control (MTC) were analyzed and their impact to ETE was quantified, as per NUREG/CR7002, Rev. 1. These priorities have been reviewed and approved by state and county emergency management representatives and by law enforcement personnel. See Appendix G for more detail.
Appendix G documents the existing TMP and provides a list of potential priority TCPs and ACPs using the process enumerated above.
9.1  Assumptions The ETE calculations documented in Sections 7 and 8 assume that the TMP is implemented during evacuation.
The ETE calculations reflect the assumption that all externalexternal trips are interdicted and diverted after 2 hours have elapsed from the ATE.
All transit vehicles and other responders entering the EPZ to support the evacuation are assumed to be unhindered by personnel manning TCPs and ACPs.
Section 2.5 discusses TCP and ACP operations.
9.2  Additional Considerations The use of Intelligent Transportation Systems (ITS) technologies can reduce the manpower and equipment needs for MTC, while still facilitating the evacuation process. Dynamic Message Signs (DMS) can be placed within the EPZ to provide information to travelers regarding traffic conditions, route selection, and reception center information. DMS placed outside of the EPZ will warn motorists to avoid using routes that may conflict with the flow of evacuees away from the power plant. Highway Advisory Radio (HAR) can be used to broadcast information to evacuees during egress through their vehicles stereo systems. Automated Travel Information Systems (ATIS) can also be used to provide evacuees with information. Internet websites can provide traffic and evacuation route information before the evacuee begins their trip, while the onboard navigation systems (GPS units) and smartphones can be used to provide information during the evacuation trip.
These are only a few examples of how ITS technologies can benefit the evacuation process.
Consideration should be given that ITS technologies be used to facilitate the evacuation process, and any additional signage placed should consider evacuation needs.
Robert E. Ginna Nuclear Power Plant            92                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
10 EVACUATION ROUTES AND RECEPTION CENTERS 10.1 Evacuation Routes Evacuation routes are comprised of two distinct components:
* Routing from an ERPA being evacuated to the boundary of the Evacuation Region and thence out of the EPZ.
* Routing of transitdependent evacuees from the EPZ boundary to reception centers.
Evacuees will select routes within the EPZ in such a way as to minimize their exposure to risk.
This expectation is met by the DYNEV II model routing traffic away from the location of the plants to the extent practicable. The DTRAD model satisfies this behavior by routing traffic to balance traffic demand relative to the available highway capacity to the extent possible. See Appendices B through D for further discussion. The major evacuation routes for the EPZ are presented in Figure 101. These routes will be used by the general population evacuating in private vehicles, and by the transitdependent population evacuating in buses, wheelchair transport vehicles, and ambulances. Transitdependent evacuees will be routed to reception centers. The general population may evacuate to a reception center or some alternate destination (e.g., lodging facilities, relatives home, campgrounds) outside the EPZ.
The routing of transitdependent evacuees from the EPZ boundary to the reception centers is designed to minimize the amount of travel outside the EPZ from the points where these routes cross the EPZ boundary. The 37 bus routes described in Table 101 and shown in Figure 102 and Figure 103 are based on the transit dependent bus routes detailed in the Public Information Brochures for both Monroe County and Wayne County. It is assumed that residents will walk to and congregate at these predesignated pickup locations, and that they can arrive at the stops within the 120minute bus mobilization time (good weather) - see Section 8.
The specified bus routes for all the transitdependent population are documented in Table 102 (refer to maps of the linknode analysis network in Appendix K for node locations).
Representative routes were developed for all schools and medical facilities within each ERPA.
This study does not consider the transport of evacuees from the reception center to congregate care centers if the counties make the decision to relocate evacuees.
10.2 Reception Centers and School Receiving Locations Figure 104 maps the general population reception centers and school receiving locations for schools relative to the EPZ. Table 103 lists the reception centers and school receiving locations for each evacuating school in the EPZ. Children will be transported to these facilities where they will be subsequently retrieved by their respective families.
Robert E. Ginna Nuclear Power Plant            101                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Table 101. Summary of TransitDependent Bus Routes UNITES    No. of                                                              Length Route          Route #    Buses                          Route Description                      (mi.)
M1 Route A        51          1      Services half of ERPA M1                                  16.3 M1 Route B        52          1      Services half of ERPA M1                                  16.7 M2 Route C        53          1      Services ERPA M2                                          15.6 M3 Route D        54          1      Services ERPA M3                                          14.0 M4 Route E        55          1      Services half of the eastern portion of ERPA M4            12.5 M4 Route F        56          1      Services half of the eastern portion of ERPA M4            14.5 M4 Route G        57          1      Services the western portion of ERPA M4                    12.1 M5 Route H        58          1      Services the northern portion ERPA M5                      13.2 M5 Route I        59          1      Services the southern portion ERPA M5                      18.5 M6 Route J        60          1      Services the eastern portion of ERPA M6                    10.1 M6 Route K        61          1      Services the northern portion of ERPA M6                  13.4 M6 Route L        62          1      Services the southern portion of ERPA M6                    9.6 M7 Route M        63          2      Services the eastern portion of ERPA M7                    7.1 M7 Route N        64          1      Services the western portion of ERPA M7                    9.9 M8 Route P        67          1      Services the eastern portion of ERPA M8                    4.0 M8 Route Q        66          1      Services the western portion of ERPA M8                    4.4 M9 Route R        68          1      Services ERPA M9                                            7.1 W1 Route 1        30          1      Services the western portion of ERPA W1                    18.7 W1 Route 2        31          1      Services the central portion of ERPA W1                    16.2 W1 Route 3        32          1      Services the eastern portion of ERPA W1                    14.9 W2 Route 1        33          1      Services the southern portion of ERPA W2                  11.3 W2 Route 2        34          1      Services ERPA W2 along Route 104                          16.1 W2 Route 3        35          1      Services ERPA W2 along Ridge Road                          16.4 W3 Route 1        36          1      Services the western portion of ERPA W3                    15.9 W3 Route 2        37          1      Services the eastern portion of ERPA W3                    7.8 W4 Route 1        38          1      Services the southern portion of ERPA W4                    6.5 W4 Route 2        39          1      Services the northern portion of ERPA W4                  10.1 W5 Route 1        40          1      Services the northern portion of ERPA W5                    8.9 W5 Route 2        41          1      Services the southern portion of ERPA W5                    6.4 W5 Route 3        42          1      Services the central portion of ERPA W5                    7.0 W6 Route 1        43          1      Services the eastern portion of ERPA W6                    7.8 W6 Route 2        45          1      Services the central portion of ERPA W6                    6.5 W6 Route 3        46          1      Services the centralwestern portion of ERPA W6            10.0 W6 Route 4        47          1      Services the western portion of ERPA W6                    7.7 W7 Route 1        48          1      Services the western portion of ERPA W7                    13.3 W7 Route 2        49          1      Services the central portion of ERPA W7                    10.8 W7 Route 3        50          1      Services the eastern portion of ERPA W7                    9.9 Total:    38 Robert E. Ginna Nuclear Power Plant                  102                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                Rev. 0
 
Table 102. Bus Route Descriptions DYNEV Bus Route #                  Description                            Nodes Traversed from Route Start to EPZ Boundary Transit Dependent Routes 30      W1 Rt 1                  341, 136, 137, 138, 1490, 886, 25, 26, 27, 28, 29, 30, 74, 903, 75, 76, 77, 78, 1025, 79 31      W1 Rt 2                  954, 209, 71, 211, 773, 772, 891, 31, 30, 74, 903, 75, 76, 77, 78, 1025, 79 32      W1 Rt 3                  95, 96, 97, 98, 99, 892, 32, 1449, 31, 30, 74, 903, 75, 76, 77, 78, 1025, 79 33      W2 Rt 1                  903, 101, 102, 103, 654, 655, 656, 657, 658, 659, 1026, 660 34      W2 Rt 2                  27, 28, 29, 30, 74, 903, 75, 76, 77, 78, 1025, 79 35      W2 Rt 3                  93, 349, 74, 774, 100, 112, 113, 114, 776, 115, 116, 187, 188, 189, 190, 191, 192, 193 36      W3 Rt 1                  212, 636, 637, 893, 34, 112, 113, 114, 776, 115, 116, 186, 38, 39, 928, 40, 778, 793, 41, 42 37      W3 Rt 2                  791, 790, 216, 111, 217, 218, 219, 220, 221, 222 38      W4 Rt 1                  641, 897, 39, 928, 40, 778, 793, 41, 42 39      W4 Rt 2                  218, 219, 220, 221, 683, 899, 41, 42 40      W5 Rt 1                  112, 113, 114, 36, 37, 38, 39, 928, 40, 778, 793, 41, 42 41      W5 Rt 2                  187, 188, 189, 190, 197, 649 42      W5 Rt 3                  114, 776, 115, 116, 117, 118, 119, 120, 121, 122, 123 43      W6 Rt 1                  187, 188, 189, 190, 197, 649 45      W6 Rt 2                  188, 189, 190, 191, 192, 193 46      W6 Rt 3                  799, 798, 998, 797, 796, 192, 193 47      W6 Rt 4                  656, 657, 658, 659, 664, 665, 666, 796, 192, 193 48      W7 Rt 1                  144, 145, 146, 77, 78, 1025, 79 49      W7 Rt 2                  75, 76, 77, 146, 147, 986, 148, 1459, 149, 782, 78, 1025, 79 50      W7 Rt 3                  103, 654, 655, 656, 657, 658, 659, 1026, 660 51      M1 Rt A                  136, 137, 138, 1490, 886, 25, 24, 749, 23, 22, 21, 20, 19, 18, 920 136, 225, 228, 239, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 926, 262, 1471, 757, 21, 20, 52      M1 Rt B 19, 18, 920 53      M2 Rt C                  233, 232, 231, 23, 22, 21, 20, 19, 18, 920 54      M3 Rt D                  230, 242, 256, 257, 258, 259, 260, 261, 926, 262, 1471, 757, 21, 20, 19, 18, 920 55      M4 Rt E                  246, 883, 261, 926, 262, 263, 1473, 927, 264, 770, 265, 266, 267, 268, 269, 270 Robert E. Ginna Nuclear Power Plant                      103                                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                              Rev. 0
 
DYNEV Bus Route #                    Description                                          Nodes Traversed from Route Start to EPZ Boundary 56      M4 Rt F                                  758, 760, 750, 231, 232, 233, 357, 249, 264, 770, 265, 266, 267, 268, 269, 270 57      M4 Rt G                                  926, 262, 263, 1473, 927, 264, 770, 265, 266, 267, 268, 269, 270 58      M5 Rt H                                  404, 406, 407, 1020, 237, 336, 269, 270 59      M5 Rt I                                  406, 407, 1020, 1021, 238, 337, 270 60      M6 Rt J                                  251, 287, 288, 289, 923, 290, 755, 20, 19, 18, 920 61      M6 Rt K                                  251, 287, 342, 300, 343, 344, 345, 346, 347, 332, 333, 312 62      M6 Rt L                                  258, 951, 634, 289, 295, 1500, 296, 922, 297, 753, 19, 18, 920 63      M7 Rt M                                  766, 294, 359, 299, 298, 751, 297, 753, 19, 18, 920 64      M7 Rt N                                  418, 981, 419, 362, 363, 364, 365 67      M8 Rt P                                  348, 306, 307, 308, 309, 310, 311, 312 66      M8 Rt Q                                  300, 343, 344, 345, 346, 347, 332, 333, 312 68      M9 Rt R                                  295, 303, 304, 305, 306, 307, 369, 370, 1018, 365 School Routes 7      Webster Christian School                  289, 923, 290, 755, 20, 19, 18, 920, 747 10      Webster Montessori School                422, 375, 376, 318 3      Marion Junior & Senior High School        189, 190, 191, 192, 199, 200, 201 4      Wayne Central Elementary & Primary School 774, 100, 101, 102, 103, 104, 105, 667 2      Wayne Central Middle & High School        74, 903, 75, 76, 77, 78, 1025 Williamson Senior High School, Middle 5                                                187, 188, 189, 190, 191, 192, 199, 200, 201 School, & Elementary School Wayne Finger Lake BOCES, Wayne Education 12                                                118, 119, 643, 644, 645, 646, 1006 Center, & Wayne Technical & Career Center 6      Webster Schroeder High School            635, 299, 298, 751, 297, 753, 19, 18, 920, 747 8      Klem Road North & South Elementary School 295, 303, 304, 305, 416, 921, 1455, 417, 1456, 18, 920, 747 Webster Thomas High School & Willink 13                                                416, 921, 1455, 1456, 18, 920, 747 Middle School 11      Plank Rd North & South Elementary School  376, 318, 377 9      Schlegel Road Elementary School          242, 243, 244, 245, 246, 247, 902, 22, 21, 20, 19, 18, 920, 747 14      State Road Elementary School              250, 266, 267, 268, 269, 408 15      Spry Middle School                        770, 264, 927, 1473, 263, 262, 1471, 757, 21, 20, 19, 18, 920, 747 16      Dewitt Rd Elementary School              312, 313, 1448, 1447, 17 Robert E. Ginna Nuclear Power Plant                                    104                                                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                          Rev. 0
 
DYNEV Bus Route #                    Description                                        Nodes Traversed from Route Start to EPZ Boundary 17      St Rita's School                        365, 316, 315, 314, 1447, 17 18      Rochester Christian School              319, 320, 321 1      Marion Elementary School                198, 199, 200, 201 Medical Facility Routes 20      Maplewood Nursing Home                  264, 358, 766, 294, 293, 292, 291, 290, 755, 20, 19, 18, 920, 747 22      AHEPA 67 & Quimby Park Senior Apartments 635, 299, 298, 751, 297, 753, 19, 18, 920, 747 21      St Ann's Care Center at Cherry Ridge    761, 361, 362, 419, 981, 418, 417, 1456, 18, 920, 747 23      Ontario Community Residence              637, 893, 34, 112, 651, 652, 653, 654, 655, 656, 657, 658, 659, 1026 19      Slocum Road IRA                          93, 1492, 94, 904, 905, 75, 76, 77, 78, 1025 24      Pines of Peace Hospice Center            112, 651, 652, 653, 654, 655, 656, 657, 658, 659, 1026 Williamson Community Residence & Group 25                                              116, 187, 188, 189, 190, 191, 192, 199, 200, 201 Homes 27      Walworth IRA                            77, 78, 1025 Robert E. Ginna Nuclear Power Plant                                  105                                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Table 103. Reception Centers/School Receiving Locations for Schools School                            Reception Center/School Receiving Location Schlegel Road Elementary School State Road Elementary School Webster Christian School Spry Middle School Klem Road North Elementary School Klem Road South Elementary School Webster Schroeder High School Webster Montessori School                              Monroe Community College Willink Middle School Webster Thomas High School Dewitt Road Elementary School St Rita's School Plank Road North Elementary School Plank Road South Elementary School Rochester Christian School Wayne Central High School Wayne Central Elementary School PalmyraMacedon High School Wayne Central Primary School Wayne Central Middle School Williamson Senior High School Williamson Middle School Williamson Elementary School Wayne Finger Lake BOCES Newark High School Wayne Education Center Wayne Technical & Career Center Marion Junior/Senior High School Marion Elementary School Robert E. Ginna Nuclear Power Plant                  106                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                  Rev. 0
 
Figure 101. Evacuation Routes Robert E. Ginna Nuclear Power Plant              107            KLD Engineering, P.C.
Evacuation Time Estimate                                                        Rev. 0
 
Figure 102. Monroe County TransitDependent Bus Routes Robert E. Ginna Nuclear Power Plant                          108                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                                  Rev. 0
 
Figure 103. Wayne County TransitDependent Bus Routes Robert E. Ginna Nuclear Power Plant                          109                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                                Rev. 0
 
Figure 104. Reception Centers and School Receiving Locations Robert E. Ginna Nuclear Power Plant                            1010                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                        Rev. 0
 
APPENDIX A Glossary of Traffic Engineering Terms
 
A. GLOSSARY OF TRAFFIC ENGINEERING TERMS Table A1. Glossary of Traffic Engineering Terms Term                                Definition Analysis Network                    A graphical representation of the geometric topology of a physical roadway system, which is comprised of directional links and nodes.
Link                                A network link represents a specific, onedirectional section of roadway. A link has both physical (length, number of lanes, topology, etc.) and operational (turn movement percentages, service rate, freeflow speed) characteristics.
Measures of Effectiveness          Statistics describing traffic operations on a roadway network.
Node                                A network node generally represents an intersection of network links. A node has control characteristics, i.e., the allocation of service time to each approach link.
Origin                              A location attached to a network link, within the EPZ or Shadow Region, where trips are generated at a specified rate in vehicles per hour (vph). These trips enter the roadway system to travel to their respective destinations.
Prevailing Roadway and              Relates to the physical features of the roadway, the nature (e.g.,
Traffic Conditions                  composition) of traffic on the roadway and the ambient conditions (weather, visibility, pavement conditions, etc.).
Service Rate                        Maximum rate at which vehicles, executing a specific turn maneuver, can be discharged from a section of roadway at the prevailing conditions, expressed in vehicles per second (vps) or vehicles per hour (vph).
Service Volume                      Maximum number of vehicles which can pass over a section of roadway in one direction during a specified time period with operating conditions at a specified Level of Service (The Service Volume at the upper bound of Level of Service, E, equals Capacity).
Service Volume is usually expressed as vehicles per hour (vph).
Signal Cycle Length                The total elapsed time to display all signal indications, in sequence.
The cycle length is expressed in seconds.
Signal Interval                    A single combination of signal indications. The interval duration is expressed in seconds. A signal phase is comprised of a sequence of signal intervals, usually green, yellow, red.
Robert E. Ginna Nuclear Power Plant                  A1                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                            Rev. 0
 
Term                              Definition Signal Phase                      A set of signal indications (and intervals) which services a particular combination of traffic movements on selected approaches to the intersection. The phase duration is expressed in seconds.
Traffic (Trip) Assignment          A process of assigning traffic to paths of travel in such a way as to satisfy all trip objectives (i.e., the desire of each vehicle to travel from a specified origin in the network to a specified destination) and to optimize some stated objective or combination of objectives. In general, the objective is stated in terms of minimizing a generalized "cost". For example, "cost" may be expressed in terms of travel time.
Traffic Density                    The number of vehicles that occupy one lane of a roadway section of specified length at a point in time, expressed as vehicles per mile (vpm).
Traffic (Trip) Distribution        A process for determining the destinations of all traffic generated at the origins. The result often takes the form of a Trip Table, which is a matrix of origindestination traffic volumes.
Traffic Simulation                A computer model designed to replicate the realworld operation of vehicles on a roadway network, so as to provide statistics describing traffic performance. These statistics are called Measures of Effectiveness.
Traffic Volume                    The number of vehicles that pass over a section of roadway in one direction, expressed in vehicles per hour (vph). Where applicable, traffic volume may be stratified by turn movement.
Travel Mode                        Distinguishes between private auto, bus, rail, pedestrian and air travel modes.
Trip Table or Origin              A rectangular matrix or table, whose entries contain the number of Destination Matrix                trips generated at each specified origin, during a specified time period, that are attracted to (and travel toward) each of its specified destinations. These values are expressed in vehicles per hour (vph) or in vehicles.
Turning Capacity                  The capacity associated with that component of the traffic stream which executes a specified turn maneuver from an approach at an intersection.
Robert E. Ginna Nuclear Power Plant                A2                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                            Rev. 0
 
APPENDIX B DTRAD: Dynamic Traffic Assignment and Distribution Model
 
B. DYNAMIC TRAFFIC ASSIGNMENT AND DISTRIBUTION MODEL This section describes the integrated dynamic trip assignment and distribution model named DTRAD (Dynamic Traffic Assignment and Distribution) that is expressly designed for use in analyzing evacuation scenarios. DTRAD employs logitbased pathchoice principles and is one of the models of the DYNEV II System. The DTRAD module implements pathbased Dynamic Traffic Assignment (DTA) so that time dependent OriginDestination (OD) trips are assigned to routes over the network based on prevailing traffic conditions.
To apply the DYNEV II System, the analyst must specify the highway network, link capacity information, the timevarying volume of traffic generated at all origin centroids and, optionally, a set of accessible candidate destination nodes on the periphery of the EPZ for selected origins.
DTRAD calculates the optimal dynamic trip distribution (i.e., trip destinations) and the optimal dynamic trip assignment (i.e., trip routing) of the traffic generated at each origin node traveling to its set of candidate destination nodes, so as to minimize evacuee travel cost.
Overview of Integrated Distribution and Assignment Model The underlying premise is that the selection of destinations and routes is intrinsically coupled in an evacuation scenario. That is, people in vehicles seek to travel out of an area of potential risk as rapidly as possible by selecting the best routes. The model is designed to identify these best routes in a manner that realistically distributes vehicles from origins to destinations and routes them over the highway network, in a consistent and optimal manner, reflecting evacuee behavior.
For each origin, a set of candidate destination nodes is selected by the software logic and by the analyst to reflect the desire by evacuees to travel away from the power plant and to access major highways. The specific destination nodes within this set that are selected by travelers and the selection of the connecting paths of travel, are both determined by DTRAD. This determination is made by a logitbased path choice model in DTRAD, so as to minimize the trip cost, as discussed later.
The traffic loading on the network and the consequent operational traffic environment of the network (density, speed, throughput on each link) vary over time as the evacuation takes place.
The DTRAD model, which is interfaced with the DYNEV simulation model, executes a succession of sessions wherein it computes the optimal routing and selection of destination nodes for the conditions that exist at that time.
Interfacing the DYNEV Simulation Model with DTRAD The DYNEV II system reflects NRC guidance that evacuees will seek to travel in a general direction away from the location of the hazardous event. An algorithm was developed to support the DTRAD model in dynamically varying the Trip Table (OD matrix) over time from one DTRAD session to the next. Another algorithm executes a mapping from the specified geometric network (linknode analysis network) that represents the physical highway system, to a path network that represents the vehicle [turn] movements. DTRAD computations are performed on the path network: DYNEV simulation model, on the geometric network.
Robert E. Ginna Nuclear Power Plant              B1                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
DTRAD Description DTRAD is the DTA module for the DYNEV II System.
When the road network under study is large, multiple routing options are usually available between trip origins and destinations. The problem of loading traffic demands and propagating them over the network links is called Network Loading and is addressed by DYNEV II using macroscopic traffic simulation modeling. Traffic assignment deals with computing the distribution of the traffic over the road network for given OD demands and is a model of the route choice of the drivers. Travel demand changes significantly over time, and the road network may have time dependent characteristics, e.g., timevarying signal timing or reduced road capacity because of lane closure, or traffic congestion. To consider these time dependencies, DTA procedures are required.
The DTRAD DTA module represents the dynamic route choice behavior of drivers, using the specification of dynamic origindestination matrices as flow input. Drivers choose their routes through the network based on the travel cost they experience (as determined by the simulation model). This allows traffic to be distributed over the network according to the timedependent conditions. The modeling principles of DTRAD include:
It is assumed that drivers not only select the best route (i.e., lowest cost path) but some also select less attractive routes. The algorithm implemented by DTRAD archives several efficient routes for each OD pair from which the drivers choose.
The choice of one route out of a set of possible routes is an outcome of discrete choice modeling. Given a set of routes and their generalized costs, the percentages of drivers that choose each route is computed. The most prevalent model for discrete choice modeling is the logit model. DTRAD uses a variant of PathSizeLogit model (PSL). PSL overcomes the drawback of the traditional multinomial logit model by incorporating an additional deterministic path size correction term to address path overlapping in the random utility expression.
DTRAD executes the traffic assignment (TA) algorithm on an abstract network representation called "the path network" which is built from the actual physical linknode analysis network. This execution continues until a stable situation is reached: the volumes and travel times on the edges of the path network do not change significantly from one iteration to the next. The criteria for this convergence are defined by the user.
Travel cost plays a crucial role in route choice. In DTRAD, path cost is a linear summation of the generalized cost of each link that comprises the path. The generalized cost for a link, a, is expressed as ca  ta  la  sa ,
where ca is the generalized cost for link a, and  ,  , and  are cost coefficients for link travel time, distance, and supplemental cost, respectively. Distance and supplemental costs are defined as invariant properties of the network model, while travel time is a dynamic property dictated by prevailing traffic conditions. The DYNEV simulation model Robert E. Ginna Nuclear Power Plant                B2                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
computes travel times on all edges in the network and DTRAD uses that information to constantly update the costs of paths. The route choice decision model in the next simulation iteration uses these updated values to adjust the route choice behavior. This way, traffic demands are dynamically reassigned based on time dependent conditions.
The interaction between the DTRAD traffic assignment and DYNEV II simulation models is depicted in Figure B1. Each round of interaction is called a Traffic Assignment Session (TA session). A TA session is composed of multiple iterations, marked as loop B in the figure.
The supplemental cost is based on the survival distribution (a variation of the exponential distribution). The Inverse Survival Function is a cost term in DTRAD to represent the potential risk of travel toward the plant:
sa =  ln (p), 0  p  l ;  0 p=
dn = Distance of node, n, from the plant d0 = Distance from the plant where there is zero risk
            = Scaling factor The value of do = 10 miles, the outer distance of the EPZ. Note that the supplemental cost, sa, of link, a, is (high, low), if its downstream node, n, is (near, far from) the power plant.
Network Equilibrium In 1952, John Wardrop wrote:
Under equilibrium conditions traffic arranges itself in congested networks in such a way that no individual tripmaker can reduce his path costs by switching routes.
The above statement describes the User Equilibrium definition, also called the Selfish Driver Equilibrium. It is a hypothesis that represents a [hopeful] condition that evolves over time as drivers search out alternative routes to identify those routes that minimize their respective costs. It has been found that this equilibrium objective to minimize costs is largely realized by most drivers who routinely take the same trip over the same network at the same time (i.e.,
commuters). Effectively, such drivers learn which routes are best for them over time. Thus, the traffic environment settles down to a nearequilibrium state.
Clearly, since an emergency evacuation is a sudden, unique event, it does not constitute a long term learning experience which can achieve an equilibrium state. Consequently, DTRAD was not designed as an equilibrium solution, but to represent drivers in a new and unfamiliar situation, who respond in a flexible manner to realtime information (either broadcast or observed) in such a way as to minimize their respective costs of travel.
Robert E. Ginna Nuclear Power Plant                B3                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Start of next DTRAD Session A
Set T0  Clock time.
Archive System State at T0 Define latest Link Turn Percentages Execute Simulation Model from B                    time, T0 to T1 (burn time)
Provide DTRAD with link MOE at time, T1 Execute DTRAD iteration; Get new Turn Percentages Retrieve System State at T0 ;
Apply new Link Turn Percents DTRAD iteration converges?
No                        Yes Next iteration            Simulate from T0 to T2 (DTA session duration)
Set Clock to T2 B                          A Figure B1. Flow Diagram of SimulationDTRAD Interface Robert E. Ginna Nuclear Power Plant                    B4                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                              Rev. 0
 
APPENDIX C DYNEV Traffic Simulation Model
 
C. DYNEV TRAFFIC SIMULATION MODEL The DYNEV traffic simulation model is a macroscopic model that describes the operations of traffic flow in terms of aggregate variables: vehicles, flow rate, mean speed, volume, density, queue length, on each link, for each turn movement, during each Time Interval (simulation time step). The model generates trips from sources and from Entry Links and introduces them onto the analysis network at rates specified by the analyst based on the mobilization time distributions. The model simulates the movements of all vehicles on all network links over time until the network is empty. At intervals, the model outputs Measures of Effectiveness (MOE) such as those listed in Table C1.
Model Features Include:
Explicit consideration is taken of the variation in density over the time step; an iterative procedure is employed to calculate an average density over the simulation time step for the purpose of computing a mean speed for moving vehicles.
Multiple turn movements can be serviced on one link; a separate algorithm is used to estimate the number of (fractional) lanes assigned to the vehicles performing each turn movement, based, in part, on the turn percentages provided by the DTRAD model.
At any point in time, traffic flow on a link is subdivided into two classifications: queued and moving vehicles. The number of vehicles in each classification is computed. Vehicle spillback, stratified by turn movement for each network link, is explicitly considered and quantified. The propagation of stopping waves from link to link is computed within each time step of the simulation. There is no vertical stacking of queues on a link.
Any link can accommodate source flow from zones via side streets and parking facilities that are not explicitly represented. This flow represents the evacuating trips that are generated at the source.
The relation between the number of vehicles occupying the link and its storage capacity is monitored every time step for every link and for every turn movement. If the available storage capacity on a link is exceeded by the demand for service, then the simulator applies a metering rate to the entering traffic from both the upstream feeders and source node to ensure that the available storage capacity is not exceeded.
A path network that represents the specified traffic movements from each network link is constructed by the model; this path network is utilized by the DTRAD model.
A twoway interface with DTRAD: (1) provides link travel times; (2) receives data that translates into link turn percentages.
Provides MOE to animation software, EVAN Calculates ETE statistics All traffic simulation models are dataintensive. Table C2 outlines the necessary input data elements.
Robert E. Ginna Nuclear Power Plant              C1                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
To provide an efficient framework for defining these specifications, the physical highway environment is represented as a network. The unidirectional links of the network represent roadway sections: rural, multilane, urban streets or freeways. The nodes of the network generally represent intersections or points along a section where a geometric property changes (e.g. a lane drop, change in grade or free flow speed).
Figure C1 is an example of a small network representation. The freeway is defined by the sequence of links, (20,21), (21,22), and (22,23). Links (8001, 19) and (3, 8011) are Entry and Exit links, respectively. An arterial extends from node 3 to node 19 and is partially subsumed within a grid network. Note that links (21,22) and (17,19) are gradeseparated.
C.1    Methodology C.1.1 The Fundamental Diagram It is necessary to define the fundamental diagram describing flowdensity and speeddensity relationships. Rather than settling for a triangular representation, a more realistic representation that includes a capacity drop, (IR)Qmax, at the critical density when flow conditions enter the forced flow regime, is developed and calibrated for each link. This representation, shown in Figure C2, asserts a constant free speed up to a density, k , and then a linear reduction in speed in the range, k        k k        45 vpm, the density at capacity. In the flowdensity plane, a quadratic relationship is prescribed in the range, k          k        95 vpm which roughly represents the stopandgo condition of severe congestion. The value of flow rate, Q , corresponding to k , is approximated at 0.7 RQ                      . A linear relationship between k and k completes the diagram shown in Figure C2. Table C3 is a glossary of terms.
The fundamental diagram is applied to moving traffic on every link. The specified calibration values for each link are: (1) Free speed, v ; (2) Capacity, Q            ; (3) Critical density, k 45 vpm ; (4) Capacity Drop Factor, R = 0.9 ; (5) Jam density, k . Then, v                  , k    k
          . Setting k    k    k , then Q      RQ              k for 0      k  k    50 . It can be shown that Q        0.98    0.0056 k RQ        for k    k    k , where k      50 and k      175.
C.1.2 The Simulation Model The simulation model solves a sequence of unit problems. Each unit problem computes the movement of traffic on a link, for each specified turn movement, over a specified time interval (TI) which serves as the simulation time step for all links. Figure C3 is a representation of the unit problem in the timedistance plane. Table C3 is a glossary of terms that are referenced in the following description of the unit problem procedure.
The formulation and the associated logic presented below are designed to solve the unit problem for each sweep over the network (discussed below), for each turn movement serviced on each link that comprises the evacuation network, and for each TI over the duration of the evacuation.
Given      Q , M , L , TI , E , LN , G C , h , L , R , L , E , M Robert E. Ginna Nuclear Power Plant                C2                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Compute        O ,Q ,M Define O        O      O      O ; E        E    E
: 1. For the first sweep, s = 1, of this TI, get initial estimates of mean density, k , the R - factor, R and entering traffic, E , using the values computed for the final sweep of the prior TI.
For each subsequent sweep, s 1 , calculate E  P O S where P , O are the relevant turn percentages from feeder link, i, and its total outflow (possibly metered) over this TI; S is the total source flow (possibly metered) during the current TI.
Set iteration counter, n = 0, k k , and E E .
: 2. Calculate v k such that k 130 using the analytical representations of the fundamental diagram.
Q      TI G Calculate Cap                          C LN , in vehicles, this value may be reduced 3600 due to metering Set R 1.0 if G C 1 or if k k ; Set R 0.9 only if G C 1 and k k L
Calculate queue length,              L    Q LN
: 3. Calculate t          TI      . If t  0 , set t    E      O    0 ; Else, E    E    .
: 4. Then E          E    E ; t        TI    t
: 5. If Q        Cap , then O      Cap , O        O      0 If t      0 , then Q      Q      M      E      Cap Else Q      Q      Cap End if Calculate Q and M using Algorithm A below
: 6. Else Q  Cap O      Q ,        RCap      Cap      O
: 7.      If M        RCap , then t Cap
: 8.                If t      0,      O      M ,O      min RCap      M ,          0 TI Q      E      O If Q      0 , then Calculate Q , M with Algorithm A Else Robert E. Ginna Nuclear Power Plant                    C3                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                            Rev. 0
 
Q    0, M      E End if Else t      0 O                M and O      0 M      M    O      E; Q    0 End if
: 9.      Else M O      0 If t    0 , then O      RCap , Q      M      O    E Calculate Q and M using Algorithm A
: 10.              Else t      0 M                  M If M        ,
O      RCap Q    M    O Apply Algorithm A to calculate Q and M Else O      M M      M    O      E and Q    0 End if End if End if End if
: 11. Calculate a new estimate of average density, k            k    2k      k  ,
where k = density at the beginning of the TI k = density at the end of the TI k = density at the midpoint of the TI All values of density apply only to the moving vehicles.
If k      k          and n N where N      max number of iterations, and  is a convergence criterion, then
: 12. set n    n    1 , and return to step 2 to perform iteration, n, using k    k .
End if Computation of unit problem is now complete. Check for excessive inflow causing spillback.
Robert E. Ginna Nuclear Power Plant                C4                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
: 13. If Q      M                  ,  then The number of excess vehicles that cause spillback is: SB            Q    M                  ,
where W is the width of the upstream intersection. To prevent spillback, meter the outflow from the feeder approaches and from the source flow, S, during this TI by the amount, SB. That is, set SB M 1                      0 , where M is the metering factor over all movements .
E S This metering factor is assigned appropriately to all feeder links and to the source flow, to be applied during the next network sweep, discussed later.
Algorithm A This analysis addresses the flow environment over a TI during which moving vehicles can join a standing or discharging queue. For the case shown, Qb      vQ                                    Q      Cap, with t    0 and a queue of length, Q ,
Q Qe    formed by that portion of M and E that reaches the stopbar within the TI, but could not discharge due to v                              inadequate capacity. That is, Q      M    E      .
Mb                                            This queue length, Q      Q    M    E    Cap can be v        L3            extended to Q by traffic entering the approach during the current TI, traveling at speed, v, and t1 t3                                  reaching the rear of the queue within the TI. A portion T                              of the entering vehicles, E    E , will likely join the queue. This analysis calculates t , Q and M for the input values of L, TI, v, E, t, L , LN, Q .
When t        0 and Q        Cap:
L                                                                      L Define: L      Q      . From the sketch,          L    v TI t    t    L    Q    E          .
LN                                                                      LN Substituting E          E yields: vt              E        L v TI t      L . Recognizing that the first two terms on the right hand side cancel, solve for t to obtain:
L t                                      such that 0        t  TI  t E L v
TI LN If the denominator, v                  0, set t      TI t .
t                          t    t Then, Q      Q    E        ,      M    E 1 TI                            TI The complete Algorithm A considers all flow scenarios; space limitation precludes its inclusion, here.
Robert E. Ginna Nuclear Power Plant                  C5                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
C.1.3 Lane Assignment The unit problem is solved for each turn movement on each link. Therefore it is necessary to calculate a value, LN , of allocated lanes for each movement, x. If in fact all lanes are specified by, say, arrows painted on the pavement, either as full lanes or as lanes within a turn bay, then the problem is fully defined. If however there remain unchannelized lanes on a link, then an analysis is undertaken to subdivide the number of these physical lanes into turn movement specific virtual lanes, LNx.
C.2    Implementation C.2.1 Computational Procedure The computational procedure for this model is shown in the form of a flow diagram as Figure C4.
As discussed earlier, the simulation model processes traffic flow for each link independently over TI that the analyst specifies; it is usually 60 seconds or longer. The first step is to execute an algorithm to define the sequence in which the network links are processed so that as many links as possible are processed after their feeder links are processed, within the same network sweep.
Since a general network will have many closed loops, it is not possible to guarantee that every link processed will have all of its feeder links processed earlier.
The processing then continues as a succession of time steps of duration, TI, until the simulation is completed. Within each time step, the processing performs a series of sweeps over all network links; this is necessary to ensure that the traffic flow is synchronous over the entire network. Specifically, the sweep ensures continuity of flow among all the network links; in the context of this model, this means that the values of E, M, and S are all defined for each link such that they represent the synchronous movement of traffic from each link to all of its outbound links. These sweeps also serve to compute the metering rates that control spillback.
Within each sweep, processing solves the unit problem for each turn movement on each link.
With the turn movement percentages for each link provided by the DTRAD model, an algorithm allocates the number of lanes to each movement serviced on each link. The timing at a signal, if any, applied at the downstream end of the link, is expressed as a G/C ratio, the signal timing needed to define this ratio is an input requirement for the model. The model also has the capability of representing, with macroscopic fidelity, the actions of actuated signals responding to the timevarying competing demands on the approaches to the intersection.
The solution of the unit problem yields the values of the number of vehicles, O, that discharge from the link over the time interval and the number of vehicles that remain on the link at the end of the time interval as stratified by queued and moving vehicles: Q and M . The procedure considers each movement separately (multipiping). After all network links are processed for a given network sweep, the updated consistent values of entering flows, E; metering rates, M; and source flows, S are defined so as to satisfy the no spillback condition. The procedure then performs the unit problem solutions for all network links during the following sweep.
Robert E. Ginna Nuclear Power Plant                C6                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Experience has shown that the system converges (i.e., the values of E, M and S settle down for all network links) in just two sweeps if the network is entirely undersaturated or in four sweeps in the presence of extensive congestion with link spillback. (The initial sweep over each link uses the final values of E and M, of the prior TI). At the completion of the final sweep for a TI, the procedure computes and stores all measures of effectiveness for each link and turn movement for output purposes. It then prepares for the following time interval by defining the values of Q and M for the start of the next TI as being those values of Q and M at the end of the prior TI. In this manner, the simulation model processes the traffic flow over time until the end of the run. Note that there is no spacediscretization other than the specification of network links.
C.2.2 Interfacing with Dynamic Traffic Assignment (DTRAD)
The DYNEV II system reflects NRC guidance that evacuees will seek to travel in a general direction away from the location of the hazardous event. Thus, an algorithm was developed to identify an appropriate set of destination nodes for each origin based on its location and on the expected direction of travel. This algorithm also supports the DTRAD model in dynamically varying the Trip Table (OD matrix) over time from one DTRAD session to the next.
Figure B1 depicts the interaction of the simulation model with the DTRAD model in the DYNEV II system. As indicated, DYNEV II performs a succession of DTRAD sessions; each such session computes the turn link percentages for each link that remain constant for the session duration, T , T , specified by the analyst. The end product is the assignment of traffic volumes from each origin to paths connecting it with its destinations in such a way as to minimize the network wide cost function. The output of the DTRAD model is a set of updated link turn percentages which represent this assignment of traffic.
As indicated in Figure B1, the simulation model supports the DTRAD session by providing it with operational link MOE that are needed by the path choice model and included in the DTRAD cost function. These MOE represent the operational state of the network at a time, T          T , which lies within the session duration, T , T . This burn time, T        T , is selected by the analyst.
For each DTRAD iteration, the simulation model computes the change in network operations over this burn time using the latest set of link turn percentages computed by the DTRAD model. Upon convergence of the DTRAD iterative procedure, the simulation model accepts the latest turn percentages provided by the Dynamic Traffic Assignment (DTA) model, returns to the origin time, T , and executes until it arrives at the end of the DTRAD session duration at time, T . At this time the next DTA session is launched and the whole process repeats until the end of the DYNEV II run.
Additional details are presented in Appendix B.
Robert E. Ginna Nuclear Power Plant              C7                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Table C1. Selected Measures of Effectiveness Output by DYNEV II Measure                                Units                                  Applies To Vehicles Discharged          Vehicles                                        Link, Network, Exit Link Speed                        Miles/Hours (mph)                              Link, Network Density                      Vehicles/Mile/Lane                              Link Level of Service            LOS                                            Link Content                      Vehicles                                        Network Travel Time                  Vehiclehours                                  Network Evacuated Vehicles          Vehicles                                        Network, Exit Link Trip Travel Time            Vehicleminutes/trip                            Network Capacity Utilization        Percent                                        Exit Link Attraction                  Percent of total evacuating vehicles            Exit Link Max Queue                    Vehicles                                        Node, Approach Time of Max Queue            Hours:minutes                                  Node, Approach Length (mi); Mean Speed (mph); Travel Route Statistics                                                            Route Time (min)
Mean Travel Time            Minutes                                        Evacuation Trips; Network Robert E. Ginna Nuclear Power Plant                C8                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                              Rev. 0
 
Table C2. Input Requirements for the DYNEV II Model HIGHWAY NETWORK Links defined by upstream and downstream node numbers Link lengths Number of lanes (up to 9) and channelization Turn bays (1 to 3 lanes)
Destination (exit) nodes Network topology defined in terms of downstream nodes for each receiving link Node Coordinates (X,Y)
Nuclear Power Plant Coordinates (X,Y)
GENERATED TRAFFIC VOLUMES On all entry links and source nodes (origins), by Time Period TRAFFIC CONTROL SPECIFICATIONS Traffic signals: linkspecific, turn movement specific Signal control treated as fixed time or actuated Location of traffic control points (these are represented as actuated signals)
Stop and Yield signs Rightturnonred (RTOR)
Route diversion specifications Turn restrictions Lane control (e.g. lane closure, movementspecific)
DRIVERS AND OPERATIONAL CHARACTERISTICS Drivers (vehiclespecific) response mechanisms: freeflow speed, discharge headway Bus route designation.
DYNAMIC TRAFFIC ASSIGNMENT Candidate destination nodes for each origin (optional)
Duration of DTA sessions Duration of simulation burn time Desired number of destination nodes per origin INCIDENTS Identify and Schedule of closed lanes Identify and Schedule of closed links Robert E. Ginna Nuclear Power Plant                C9                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Table C3. Glossary The maximum number of vehicles, of a particular movement, that can discharge Cap from a link within a time interval.
The number of vehicles, of a particular movement, that enter the link over the E
time interval. The portion, ETI, can reach the stopbar within the TI.
The green time: cycle time ratio that services the vehicles of a particular turn G/C movement on a link.
h        The mean queue discharge headway, seconds.
k        Density in vehicles per lane per mile.
The average density of moving vehicles of a particular movement over a TI, on a k
link.
L        The length of the link in feet.
The queue length in feet of a particular movement, at the [beginning, end] of a L ,L time interval.
The number of lanes, expressed as a floating point number, allocated to service LN a particular movement on a link.
L          The mean effective length of a queued vehicle including the vehicle spacing, feet.
M          Metering factor (Multiplier): 1.
The number of moving vehicles on the link, of a particular movement, that are M ,M          moving at the [beginning, end] of the time interval. These vehicles are assumed to be of equal spacing, over the length of link upstream of the queue.
The total number of vehicles of a particular movement that are discharged from O
a link over a time interval.
The components of the vehicles of a particular movement that are discharged from a link within a time interval: vehicles that were Queued at the beginning of O ,O ,O the TI; vehicles that were Moving within the link at the beginning of the TI; vehicles that Entered the link during the TI.
The percentage, expressed as a fraction, of the total flow on the link that P
executes a particular turn movement, x.
Robert E. Ginna Nuclear Power Plant              C10                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
The number of queued vehicles on the link, of a particular turn movement, at Q ,Q the [beginning, end] of the time interval.
The maximum flow rate that can be serviced by a link for a particular movement Q          in the absence of a control device. It is specified by the analyst as an estimate of link capacity, based upon a field survey, with reference to the HCM 2016.
R        The factor that is applied to the capacity of a link to represent the capacity drop when the flow condition moves into the forced flow regime. The lower capacity at that point is equal to RQ      .
RCap        The remaining capacity available to service vehicles of a particular movement after that queue has been completely serviced, within a time interval, expressed as vehicles.
S          Service rate for movement x, vehicles per hour (vph).
t        Vehicles of a particular turn movement that enter a link over the first t seconds of a time interval, can reach the stopbar (in the absence of a queue down stream) within the same time interval.
TI        The time interval, in seconds, which is used as the simulation time step.
v        The mean speed of travel, in feet per second (fps) or miles per hour (mph), of moving vehicles on the link.
v          The mean speed of the last vehicle in a queue that discharges from the link within the TI. This speed differs from the mean speed of moving vehicles, v.
W          The width of the intersection in feet. This is the difference between the link length which extends from stopbar to stopbar and the block length.
Robert E. Ginna Nuclear Power Plant              C11                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
8011 8009              2            3                8104 8107            6                5          8008 8010              8            9                10          8007 8012            12                11          8006 8005              13            14              8014 15                25          8004 16                24          8024 17 8003      23              22                              21          20    8002 Entry, Exit Nodes are                    19 numbered 8xxx 8001 Figure C1. Representative Analysis Network Robert E. Ginna Nuclear Power Plant                C12                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Volume, vph Capacity Drop Qmax R Qmax Qs Density, vpm Flow Regimes Speed, mph Free      Forced vf R vc Density, vpm kf          kc                              kj ks Figure C2. Fundamental Diagrams Distance OQ      OM        OE Down Qb          vQ                Qe v
v L
Mb                            Me Up t1        t2 Time E1            E2 TI Figure C3. A UNIT Problem Configuration with t1 > 0 Robert E. Ginna Nuclear Power Plant                  C13                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                            Rev. 0
 
Sequence Network Links Next Timestep, of duration, TI A
Next sweep; Define E, M, S for all B
Links C                            Next Link D                  Next Turn Movement, x Get lanes, LNx Service Rate, Sx ; G/Cx Get inputs to Unit Problem:
Q b , Mb , E Solve Unit Problem: Q e , Me , O No      D Last Movement ?
Yes No Last Link ?                    C Yes No      B Last Sweep ?
Yes Calc., store all Link MOE Set up next TI :
No      A Last Time - step ?
Yes DONE Figure C4. Flow of Simulation Processing (See Glossary: Table C3)
Robert E. Ginna Nuclear Power Plant                  C14                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                Rev. 0
 
APPENDIX D Detailed Description of Study Procedure
 
D. DETAILED DESCRIPTION OF STUDY PROCEDURE This appendix describes the activities that were performed to compute ETE. The individual steps of this effort are represented as a flow diagram in Figure D1. Each numbered step in the description that follows corresponds to the numbered element in the flow diagram.
Step 1 The first activity was to obtain EPZ boundary information and create a GIS base map. The base map extends beyond the Shadow Region which extends approximately 15 miles (radially) from the power plant location. The base map incorporates the local roadway topology, a suitable topographic background and the EPZ boundary.
Step 2 2020 Census block information was obtained in GIS format. This information was used to estimate the resident population within the EPZ and Shadow Region and to define the spatial distribution and demographic characteristics of the population within the study area. Employee data was provided by Constellation, county emergency management officials and was supplemented with estimations made using the US Census Longitudinal EmployerHousehold Dynamics from the OnTheMap Census analysis tool1. Data for transients, schools, and other facilities were obtained from county emergency management agencies.
Step 3 A kickoff meeting was conducted with major stakeholders (county and state emergency managers, onsite and offsite utility emergency managers). The purpose of the kickoff meeting was to present an overview of the work effort, identify key agency personnel, and indicate the data requirements for the study. Specific requests for information were presented to county and state emergency managers. Unique features of the study area were discussed to identify the local concerns that should be addressed by the ETE study.
Step 4 Next, a physical survey of the roadway system in the study area was conducted to determine the geometric properties of the highway sections, the channelization of lanes on each section of roadway, whether there are any turn restrictions or special treatment of traffic at intersections, the type and functioning of traffic control devices, gathering signal timings for pretimed traffic signals (if any exist within the study area), and to make the necessary observations needed to estimate realistic values of roadway capacity. Roadway characteristics were also verified using aerial imagery.
1 https://onthemap.ces.census.gov/
Robert E. Ginna Nuclear Power Plant            D1                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Step 5 A demographic survey of households within the EPZ was conducted to identify household dynamics, trip generation characteristics, and evacuationrelated demographic information of the EPZ population for this study. This information was used to determine important study factors including the average number of evacuating vehicles used by each household, and the time required to perform preevacuation mobilization activities.
Step 6 A computerized representation of the physical roadway system, called a linknode analysis network, was developed using the most recent UNITES software (see Section 1.3) developed by KLD. Once the geometry of the network was completed, the network was calibrated using the information gathered during the road survey (Step 4) and information obtained from aerial imagery. Estimates of highway capacity for each link and other linkspecific characteristics were introduced to the network description. Traffic signal timings were input accordingly. The link node analysis network was imported into a GIS map. The 2020 permanent resident population estimates (Step 2) were overlaid in the map, and origin centroids where trips would be generated during the evacuation process were assigned to appropriate links.
Step 7 The EPZ is subdivided into 18 ERPAs. Based on wind direction and speed, Regions (groupings of ERPAs) that may be advised to evacuate, were developed.
The need for evacuation can occur over a range of timeofday, dayofweek, seasonal and weatherrelated conditions. Scenarios were developed to capture the variation in evacuation demand, highway capacity and mobilization time, for different time of day, day of the week, time of year, and weather conditions.
Step 8 The input stream for the DYNEV II model, which integrates the dynamic traffic assignment and distribution model, DTRAD, with the evacuation simulation model, was created for a prototype evacuation case - the evacuation of the entire EPZ for a representative scenario.
Step 9 After creating this input stream, the DYNEV II System was executed on the prototype evacuation case to compute evacuating traffic routing patterns consistent with the appropriate NRC guidelines. DYNEV II contains an extensive suite of data diagnostics which check the completeness and consistency of the input data specified. The analyst reviews all warning and error messages produced by the model and then corrects the database to create an input stream that properly executes to completion.
The model assigns destinations to all origin centroids consistent with a (general) radial evacuation of the EPZ and Shadow Region. The analyst may optionally supplement and/or replace these modelassigned destinations, based on professional judgment, after studying the topology of the analysis highway network. The model produces link and networkwide measures of effectiveness as well as estimates of evacuation time.
Robert E. Ginna Nuclear Power Plant              D2                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Step 10 The results generated by the prototype evacuation case are critically examined. The examination includes observing the animated graphics (using the EVAN software - see Section 1.3) and reviewing the statistics output by the model. This is a laborintensive activity, requiring the direct participation of skilled engineers who possess the necessary practical experience to interpret the results and to determine the causes of any problems reflected in the results.
Essentially, the approach is to identify those bottlenecks in the network that represent locations where congested conditions are pronounced and to identify the cause of this congestion. This cause can take many forms, either as excess demand due to high rates of trip generation, improper routing, a shortfall of capacity, or as a quantitative flaw in the way the physical system was represented in the input stream. This examination leads to one of two conclusions:
The results are satisfactory; or The input stream must be modified accordingly.
This decision requires, of course, the application of the user's judgment and experience based upon the results obtained in previous applications of the model and a comparison of the results of the latest prototype evacuation case iteration with the previous ones. If the results are satisfactory in the opinion of the user, then the process continues with Step 13. Otherwise, proceed to Step 11.
Step 11 There are many "treatments" available to the user in resolving apparent problems. These treatments range from decisions to reroute the traffic by assigning additional evacuation destinations for one or more sources, imposing turn restrictions where they can produce significant improvements in capacity, changing the control treatment at critical intersections so as to provide improved service for one or more movements, adding routes (which are paved and traversable) that were not previously modelled but may assist in an evacuation and increase the available roadway network capacity, or in prescribing specific treatments for channelizing the flow so as to expedite the movement of traffic along major roadway systems. Such "treatments" take the form of modifications to the original prototype evacuation case input stream. All treatments are designed to improve the representation of evacuation behavior.
Step 12 As noted above, the changes to the input stream must be implemented to reflect the modifications undertaken in Step 11. At the completion of this activity, the process returns to Step 9 where the DYNEV II model is again executed.
Step 13 Evacuation of transitdependent evacuees and special facilities are included in the evacuation analysis. Fixed routing for transit buses, school buses, ambulances, and other transit vehicles are introduced into the final prototype evacuation case data set. DYNEV II generates routespecific speeds over time for use in the estimation of evacuation times for the transit dependent and special facility population groups.
Robert E. Ginna Nuclear Power Plant              D3                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Step 14 The prototype evacuation case was used as the basis for generating all region and scenario specific evacuation cases to be simulated. This process was automated through the UNITES user interface. For each specific case, the population to be evacuated, the trip generation distributions, the highway capacity and speeds, and other factors are adjusted to produce a customized casespecific data set.
Step 15 All evacuation cases were executed using the DYNEV II model to compute ETE. Once results were available, quality control procedures were used to assure the results were consistent, dynamic routing was reasonable, and traffic congestion/bottlenecks were addressed properly. Traffic management plans were analyzed, and traffic control points were prioritized, if applicable.
Additional analysis is conducted to identify the sensitivity of the ETE to changes in some base evacuation conditions and model assumptions.
Step 16 Once vehicular evacuation results are accepted, average travel speeds for transit and special facility routes are used to compute ETE for transitdependent permanent residents, schools, hospitals, and other special facilities.
Step 17 The simulation results are analyzed, tabulated, and graphed. The results are then documented, as required by NUREG/CR7002, Rev. 1.
Step 18 Following the completion of documentation activities, the ETE criteria checklist (see Appendix N) is completed. An appropriate report reference is provided for each criterion provided in the checklist.
Robert E. Ginna Nuclear Power Plant            D4                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
A Step 1 Step 10 Create GIS Base Map                  Examine Prototype Evacuation Case using EVAN and DYNEV II Output Step 2 Gather Census Block and Demographic Data for                                          Results Satisfactory Study Area. Project population to 2019.
Step 11 Step 3 Modify Evacuation Destinations and/or Develop Conduct Kickoff Meeting with Stakeholders                    Traffic Control Treatments Step 4                                              Step 12 Field Survey of Roadways within Study Area        Modify Database to Reflect Changes to Prototype Evacuation Case Step 5 Analyze Demographic Survey and Develop Trip Generation Characteristics B
Step 13 Step 6 Establish Transit and Special Facility Evacuation Review and Update LinkNode Analysis Network            Routes and Update DYNEV II Database Step 14 Step 7 Generate DYNEV II Input Streams for All Evacuation Cases Develop Evacuation Regions and Scenarios Step 15 Step 8 Execute DYNEV II to Compute ETE for All Create and Debug DYNEV II Input Stream                          Evacuation Cases Step 16 Step 9 Use DYNEV II Average Speed Output to Compute ETE for Transit and Special Facility Routes B        Execute DYNEV II for Prototype Evacuation Case Step 17 Documentation A                                                                  Step 18 Complete ETE Criteria Checklist Figure D1. Flow Diagram of Activities Robert E. Ginna Nuclear Power Plant                        D5                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
APPENDIX E Special Facility Data
 
E. SPECIAL FACILITY DATA The following tables list population information, as of June 2022, for special facilities that are located within the Ginna EPZ. Special facilities are defined as schools, preschools/day care centers, day camps and medical facilities. Transient population data is included in the tables for transient attractions (campgrounds, golf courses, marinas, parks, speedway) and lodging facilities. Employment data is included in the table for major employers. Each table is grouped by county. The location of the facility is defined by its straightline distance (miles) and direction (magnetic bearing) from the center point of the plant. Maps of each school, preschool/day care center, day camp, medical facility, major employer, transient attraction (campground, golf course, marina, park, speedway) and lodging facility are also provided.
Robert E. Ginna Nuclear Power Plant            E1                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Table E1. Schools within the Study Area Distance    Dire                                                                                              Enroll ERPA      (miles)    ction                    School Name                        Street Address        Municipality      ment MONROE COUNTY, NY M1        5.6      WSW        Schlegel Road Elementary School            1548 Schlegel Rd          Webster            512 M4        7.7        SW        State Road Elementary School                1401 State Rd            Webster            536 M4        7.9        SW        Spry Middle School                          119 S Ave                Webster            1,048 M6        7.8      WSW        Webster Christian School                    675 Holt Rd              Webster            220 M6        8.2      WSW        Klem Road North Elementary School          1015 Klem Rd              Webster            534 M6        8.2      WSW        Klem Road South Elementary School          1025 Klem Rd              Webster            533 M7        9.5      WSW        Webster Schroeder High School              875 Ridge Rd              Webster            1,504 M7        10.5        SW        Webster Montessori School                  1310 Five Mile Line Rd    Webster            118 M9        8.8      WSW        Willink Middle School                      900 Publishers Pkwy      Webster            977 M9        9.2      WSW        Webster Thomas High School                  800 Five Mile Line Rd    Webster            1,388 S.R.      10.9      WSW        Dewitt Road Elementary School1              722 Dewitt Rd            Webster            517 S.R.      11.0      WSW        St Rita's School1                          1008 Maple Dr            Webster            332 S.R.      11.0        SW        Plank Road North Elementary School1 705 Plank Rd                      Penfield            576 S.R.      11.1        SW        Plank Road South Elementary School1 715 Plank Rd                      Webster            557 S.R.      12.3        SW        Rochester Christian School1                260 Embury Rd            Rochester          106 Monroe County Subtotal:    9,458 WAYNE COUNTY, NY W2          3.8          S      Wayne Central High School                  6200 Ontario Center Rd Ontario Center        759 W2          3.8          S      Wayne Central Elementary School            1784 Ridge Rd            Ontario Center      384 W2          3.8          S      Wayne Central Primary School                1730 Ridge Rd            Ontario Center      314 W2          3.9          S      Wayne Central Middle School                6076 Ontario Center Rd Ontario                517 W5          7.3        SE      Williamson Senior High School              5891 SR 21                Williamson          296 W5          7.5        ESE      Williamson Middle School                    4184 Miller St            Williamson          302 W5          7.6        ESE      Williamson Elementary School                6036 Highland Ave        Williamson          437 W5          7.8        ESE      Wayne Finger Lake BOCES                    4440 Ridge Rd            Williamson          16 W5          7.9        ESE      Wayne Education Center                      4440 Ridge Rd            Williamson          70 W5          7.9        ESE      Wayne Technical & Career Center            4440 Ridge Rd            Williamson          253 W6          9.5        SE      Marion Junior/Senior High School            4034 Warner Rd            Marion              339 S.R.      11.0        SSE      Marion Elementary School1                  3863 N Main St            Marion              357 Wayne County Subtotal:    4,044 STUDY AREA TOTAL:    13,502 1
These schools are located in the Shadow Region (S.R.). According to the 2021/2022 Important Information Brochure, these schools would evacuate in the event of an emergency at Robert E. Ginna Nuclear Power Plant.
Robert E. Ginna Nuclear Power Plant                          E2                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                          Rev. 0
 
Table E2. Preschools/Day Care Centers and Day Camps within the EPZ Distance    Dire                                                                                          Enroll ERPA    (miles)    ction                  School Name                      Street Address        Municipality    ment MONROE COUNTY, NY M1      3.8    WSW      Maria Derks                              1870 Woodard Rd              Webster            14 M1      6.0    WSW      Kiddie Academy of Webster                369 Phillips Rd              Webster            82 M2      5.6      SW    Shontell Jackson                          1816 Halesworth Ln          Ontario            8 M3      6.5    WSW      Webster Presbyterian Church Preschool    550 Webster Rd              Webster            21 Expressive Beginnings Child Care at M3      7.3      SW    Toddler's Workshop                        12 May St                    Webster          149 M3      7.3      SW    Railroad Junction Summer Day Camp        10 May St                    Webster          156 M4      7.3      SW    Lucy's Day Care Inc.                      1043 Beaver Creek Dr        Webster            8 M4      7.3      SW    Positive Preschool                        169 E Main St                Webster            28 M4      7.4      SW    Gale Montgomery                          69 Kircher Park              Webster            8 M4      7.7      SW    Webster Nursery School                    59 S Ave                    Webster            43 M6      8.1    WSW      Webster KinderCare                        856 Holt Rd                  Webster          140 YMCA of Greater Rochester at Klem M6      8.1    WSW      Road South School                        1025 Klem Rd                Webster            80 M7      8.3      SW    Doodle Bugs! Children's Centers          979 Jackson Rd              Webster          176 M7      9.1      SW    M.Maneiro Child Care                      925 Pondbrook Point          Webster            16 M8    10.0    WSW      Woodside Nursery School                  570 Klem Rd                  Webster            20 M9      8.7    WSW      Rita De Cann                              927 Little Bardfield Rd      Webster            8 Monroe County Subtotal:    957 WAYNE COUNTY, NY W1      2.7      SW    Designs by Nanny                          532 Boston Rd                Ontario            16 W2      2.9      SSW    Home Grown Beginnings                    6596 Slocum Rd              Ontario            16 W2      3.8      SSW    The Tot Spot II Child Care Center        6225 Slocum Rd              Ontario          155 W2      3.8      SSW    Rhyme Tyme Child Care Center              944 SR 104                  Ontario            74 YMCA of Greater Rochester at Wayne W2      3.8        S    Elementary                                1784 Ridge Rd                Ontario          107 W2      4.1      SSE    Hop Skip & Jump Preschool                6341 Ontario Center Rd #5 Ontario              89 W2      4.8      SW    Little Tyke's Family Day Care            222 Ridge Rd                Ontario            16 W2      5.5      SSW    Jessica Thrash                            719 Whitney Rd              Ontario            8 W2      5.5      SSW    Nicole Suwyn                              659 Whitney Rd              Ontario            8 W4      6.6      ESE    Raggedy Ann & Andy Day Care Center        3955 SR 104                  Williamson        22 W5      6.2        SE    Anna's little bananas                    3609 Ridge Rd                Williamson        16 W5      6.2      ESE    Lake Ontario Child Development            6395 Tuckahoe Rd            Williamson        78 W5      7.4      ESE    Crystal Wachter                          4173 Ridge Rd                Williamson        8 W6      9.8        SE    All My Children Day Care                  4614 Williamson Rd          Marion            8 W7      7.5      SSW    Nancy Casella                            4711 Lincoln Rd              Macedon            16 W7      9.8        S    Wee People Nursery School                2248 WalworthMarion Rd Walworth                18 Wayne County Subtotal:    655 EPZ TOTAL:    1,612 Robert E. Ginna Nuclear Power Plant                    E3                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                Rev. 0
 
Table E3. Medical Facilities within the EPZ Ambul    Wheel      Bed Distance    Dire                                                                                      Cap  Current  atory      chair    ridden ERPA    (miles)    ction                Facility Name                    Street Address        Municipality acity Census  Patients  Patients  Patients MONROE COUNTY, NY M4      7.7      SW    Maplewood Nursing Home                      100 Daniel Dr              Webster      74    73      10        63          0 M7      9.0      SW    Ahepa 67 Apartments                        100 Ahepa Cir              Webster      50    50      45          5          0 M7      9.2    WSW    Quinby Park Senior Apartments              1030 Shoecraft Rd          Webster      49    49      45          4          0 M7      9.4    WSW    St Ann's Care Center at Cherry Ridge        920 Cherry Ridge Blvd      Webster      273    273    206        64          3 Monroe County Subtotal:  446    445    306        136        3 WAYNE COUNTY, NY W1      2.9      SE    Ontario Community Residence                2420 Trimble Rd            Ontario      10    10      7          3          0 W2      4.0      SSW    Slocum Road IRA                            6121 Slocum Rd            Ontario        6      6      4          2          0 W2      4.5      SSE  Pines of Peace Hospice Center              2378 Ridge Rd              Ontario        2      2      1          1          0 W5      6.4      ESE  Williamson Group Home St. Joseph's Villa 6313 Tuckahoe Rd              Williamson    8      8      6          2          0 W5      7.1      ESE  Williamson Community Residence              4080 Circle Dr            Williamson    7      7      5          2          0 W5      7.2      ESE  Williamson Group Home St. Joseph's Villa 6228 Lake Ave                Williamson    8      8      6          2          0 W7      7.8        S    Walworth IRA                                4500 Ontario Center Rd Walworth          7      7      5          2          0 Wayne County Subtotal:  48    48      34        14          0 EPZ TOTAL:  494    493    340        150        3 Robert E. Ginna Nuclear Power Plant                                        E4                                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Table E4. Major Employers within the EPZ
                                                                                                                %                      Employee Employees    Employees      Vehicles Distance  Dire                                                                    Employees  Commuting    Commuting      Commuting ERPA      (miles)  ction            Facility Name          Street Address Municipality    (Max Shift) into the EPZ into the EPZ  into the EPZ MONROE COUNTY, NY M1        5.4      SW    Paychex Inc.                    675 Basket Rd    Webster          550        50.0%        275            264 M3        6.5      SW    Xerox Headquarters              800 Phillips Rd Webster          3,200        70.0%        2,240          2,154 M4        8.1    WSW    Wegmans                          900 Holt Rd      Webster          250        10.0%          25            24 Monroe County Subtotal:      4,000                    2,540          2,442 WAYNE COUNTY, NY W1                      R.E. Ginna Nuclear Power Plant  1503 Lake Rd    Ontario          450        71.0%        320            308 W4        7.3      ESE    Dr Pepper Snapple Group          4363 SR 104      Williamson        353        44.0%        155            149 Wayne County Subtotal:      803                      475            457 EPZ TOTAL:      4,803                    3,015          2,899 Robert E. Ginna Nuclear Power Plant                                        E5                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
Table E5. Transient Attractions within the EPZ Distance  Dire ERPA    (miles)  ction          Facility Name                  Street Address      Municipality  Facility Type Transients    Vehicles MONROE COUNTY, NY M1      4.9    WSW    Webster Golf Club                  440 Salt Rd              Webster      Golf Course      20            8 M3      6.7    WSW    Webster Recreation Center          1350 Chiyoda Dr          Webster      Park            114          45 M6      7.3      W    Webster County Park                255 Holt Rd              Webster      Park            272          91 M6      7.6    WSW    Webster Park Campgrounds          999 Lake Rd              Webster      Campground        79          66 M8      8.3    WSW    Whiting Road Nature Preserve 403 Whiting Rd                  Webster      Park              45          18 M8      9.5    WSW    Gosnell Big Woods Preserve        Pellett Rd                Webster      Park              30          12 Monroe County Subtotal:    560          240 WAYNE COUNTY, NY W1      1.7      E    Bear Creek Park                    Lake Rd                  Ontario      Marina            39          20 W2      3.1      SSE  Earl Casey Park                    6551 Knickerbocker Rd    Ontario      Park            618          204 W2      4.7      SSE  Ontario Country Club              2101 Country Club Ln      Ontario      Golf Course      90            36 W3      5.0      SE    Spencer Speedway                  3011 Ridge Rd            Williamson    Speedway        1,515          500 W4      6.2      E    Pultneyville Yacht Club            Hamilton St              Pultneyville  Marina            20          10 W4      6.3      E    Pultneyville Mariners Inc          4161 Mill St              Pultneyville  Marina          259          101 W4      7.1      E    B. Forman Park                    4507 Lake Rd              Williamson    Park            152          50 W4      8.3      E    Hughes Marina & Campground        5003 Lake Rd              Williamson    Campground        8            3 W7      7.9      S    The Links at Greystone            1400 Atlantic Ave        Walworth      Golf Course      130            51 Wayne County Subtotal:  2,831          975 EPZ TOTAL:    3,391        1,215 Robert E. Ginna Nuclear Power Plant                                          E6                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                          Rev. 0
 
Table E6. Lodging Facilities within the EPZ Distance  Dire ERPA    (miles)  ction                        Facility Name                      Street Address Municipality    Transients  Vehicles MONROE COUNTY, NY M6      8.1    WSW      Holiday Inn Express Hotel & Suites Webster              860 Holt Rd      Webster          208        104 M6      8.8    WSW      Hampton Inn  Rochester/Webster                        878 Hard Rd      Webster          180        90 M7      8.9    WSW      Fairfield Inn and Suites by Marriott Rochester East 915 Hard Rd          Webster          126        63 Monroe County Subtotal:    514        257 WAYNE COUNTY, NY W2      3.5    SSE    The Twin Rock Motel                                    1785 SR 104      Ontario          40        20 W2      4.4    SW      Budget Inn                                              440 SR 104      Ontario          120        60 Wayne County Subtotal:    160        80 EPZ TOTAL:      674        337 Robert E. Ginna Nuclear Power Plant                                          E7                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                            Rev. 0
 
Figure E1. Overview of Schools within the Study Area Robert E. Ginna Nuclear Power Plant                          E8                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                                Rev. 0
 
Figure E2. Monroe County Schools within the Study Area Robert E. Ginna Nuclear Power Plant                          E9                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                  Rev. 0
 
Figure E3. Wayne County Schools within the Study Area Robert E. Ginna Nuclear Power Plant                        E10                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                                Rev. 0
 
Figure E4. Overview of Preschools/Day Care Centers and Day Camps within the EPZ Robert E. Ginna Nuclear Power Plant                                      E11                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Figure E5. Monroe Preschools/Day Care Centers and Day Camps within the EPZ Robert E. Ginna Nuclear Power Plant                                    E12                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                      Rev. 0
 
Figure E6. Wayne County Preschools/Day Care Centers within the EPZ Robert E. Ginna Nuclear Power Plant                                E13                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                              Rev. 0
 
Figure E7. Medical Facilities within the EPZ Robert E. Ginna Nuclear Power Plant                    E14                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Figure E8. Major Employers within the EPZ Robert E. Ginna Nuclear Power Plant                    E15                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure E9. Transient Attractions within the EPZ Robert E. Ginna Nuclear Power Plant                      E16                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Figure E10. Lodging Facilities within the EPZ Robert E. Ginna Nuclear Power Plant                    E17                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
APPENDIX F Demographic Survey
 
F. DEMOGRAPHIC SURVEY F.1      Introduction The development of evacuation time estimates for the Ginna EPZ requires the identification of travel patterns, car ownership and household size of the population within the EPZ.
Demographic information can be obtained from Census data. The use of this data has several limitations when applied to emergency planning. First, the Census data do not encompass the range of information needed to identify the time required for preliminary activities (mobilization) that must be undertaken prior to evacuating the area. Secondly, Census data do not contain attitudinal responses needed from the population of the EPZ and consequently may not accurately represent the anticipated behavioral characteristics of the evacuating populace.
These concerns are addressed by conducting a demographic survey of a representative sample of the EPZ population. The survey is designed to elicit information from the public concerning family demographics and estimates of response times to well defined events. The design of the survey includes a limited number of questions of the form What would you do if ? and other questions regarding activities with which the respondent is familiar (How long does it take you to ?)
F.2      Survey Instrument and Sampling Plan Attachment A presents the final survey instrument used for the demographic survey. A draft of the instrument was submitted to stakeholders for comment. Comments were received and the survey instrument was modified accordingly, prior to conducting the survey. Questions 8 through 10 are repeated in the survey instrument for each potential commuter in the household up to four commuters.
Following the completion of the instrument, a sampling plan was developed. Since the demographic survey discussed herein was performed prior to the release of the 2020 Census data, the 2010 Census data was used to develop the sampling plan.
A sample size of approximately 467 completed survey forms yields results with a sampling error of +/-4.5% at the 95% confidence level. The sample must be drawn from the EPZ population.
Consequently, a list of zip codes in the EPZ was developed using GIS software. This list is shown in Table F1. Along with each zip code, an estimate of the population and number of households in each area was determined by overlaying Census data and the EPZ boundary, again using GIS software. The proportional number of desired completed survey interviews for each zip code was identified, as shown in Table F1. Note that the average household size computed in Table F1 was an estimate for sampling purposes and was not used in the ETE study.
The number of samples obtained was less than the sampling plan. A total of 119 completed surveys from within the EPZ1 were obtained corresponding to a sampling error of +/-8.96% at the 1
There was an additional 2 samples from zip codes within the Shadow Region. These samples were included in the analysis due to their proximity to the EPZ (zip codes 14425 and 14622). In addition, the responses from these samples were in line with the other 119 survey results supporting their inclusion in the study.
Robert E. Ginna Nuclear Power Plant                            F1                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
95% confidence level based on the 2010 Census data. Table F1 also shows the number of samples obtained within each zip code. Despite the desired sample size not being achieved, the distribution of samples (majority of samples should be from zip codes 14580, 14519, and 14589) was achieved.
F.3    Survey Results The results of the survey fall into two categories. First, the household demographics of the area can be identified. Demographic information includes such factors as household size, automobile ownership, and automobile availability. The distributions of the time to perform certain pre evacuation activities are the second category of survey results. These data are processed to develop the trip generation distributions used in the evacuation modeling effort, as discussed in Section 5.
A review of the survey instrument reveals that several questions have a decline to state entry for a response. It is accepted practice in conducting surveys of this type to accept the answers of a respondent who offers a decline to state response for a few questions or who refuses to answer a few questions. To address the issue of occasional decline to state responses from a large sample, the practice is to assume that the distribution of these responses is the same as the underlying distribution of the positive responses. In effect, the decline to state responses are ignored and the distributions are based upon the positive data that is acquired.
F.3.1  Household Demographic Results Household Size Figure F1 presents the distribution of household size within the study area (EPZ and Shadow Region) based on the responses to the demographic survey. The average household contains 3.03 people. The estimated household size from the 2020 Census data is 2.41 people. The difference between the Census data and survey data is 26%, which exceeds the sampling error of 8.96%. It was decided that the demographic survey value of 3.03 people per household should be used for this study. A sensitivity study was conducted to determine the impact of the average household size on ETE, see Appendix M.
Seasonal Residents Only one (1) household within the EPZ contain seasonal residents according to the survey results, which only have one seasonal resident. When asked what season they reside within the EPZ, the response received was Decline to State.
Vehicle Availability The average number of automobiles available per household in the study area is 2.31. It should be noted that all households have access to an automobile according to the demographic survey. The distribution of automobile ownership is presented in Figure F2. Figure F3 and Figure F4 present the automobile availability by household size.
Robert E. Ginna Nuclear Power Plant              F2                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Ridesharing Approximately 81% of the households surveyed responded that they would share a ride with a neighbor, relative, or friend if a car was not available to them when advised to evacuate in the event of an emergency, as shown in Figure F5.
Commuters Figure F6 presents the distribution of the number of commuters in each household.
Commuters are defined as household members who travel to work or college on a daily basis.
The data shows an average of 1.58 commuters in each household in the study area, and about 86% of households have at least one commuter.
Commuter Travel Modes Figure F7 presents the mode of travel that commuters use on a daily basis. The vast majority (92%) of commuters use their private automobiles to travel to work or college. The data shows an average of 1.04 commuters per vehicle, assuming 2 people per vehicle - on average - for carpools.
Impact of COVID19 on Commuters Figure F8 presents the distribution of the number of commuters in each household that were temporarily impacted by the COVID19 pandemic. Approximately 39% of households indicated someone in their household had a work and/or school commute that was temporarily impacted by the COVID19 pandemic.
Functional or Transportation Needs Figure F9 presents the distribution of the number of individuals with functional or transportation need. The data shows that approximately 2.5% of households have an individual that requires functional or transportation needs. Of those with functional or transportation needs, 2 households (67%) require a bus and 1 household (33%) requires a medical bus/van.
F.3.2  Evacuation Response Several questions were asked to gauge the populations response to an emergency. These are now discussed:
How many of the vehicles would your household use during an evacuation? The response is shown in Figure F10. On average, evacuating households would use 1.48 vehicles.
Would your family await the return of other family members prior to evacuating the area?
Of the survey participants who responded, 57% said they would await the return of other family members before evacuating and 43% indicated that they would not await the return of other family members before evacuating, as shown in Figure F11.
If you had a household pet, would you take your pet with you if you were asked to evacuate the area? Based on responses from the survey, 76% of households have a family pet. Of the households with pets, about 27% indicated that they would take their pets with them to a shelter, about 70% indicated that they would take their pets somewhere else and about 3%
Robert E. Ginna Nuclear Power Plant              F3                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
would leave their pet at home, as shown in Figure F12. Of the households that would evacuate with their pets, 100% indicated that they have sufficient room in their vehicle to evacuate with their pet(s)/animal(s).
What type of pet(s) and/or animal(s) do you have? Based on responses from the survey, about 85% of households have a household pet (dog, cat, bird, reptile, or fish), about 9% of households have farm animals (horse, chicken, goat, pig, etc.), and about 6% have other small pets/animals.
Emergency officials advise you to shelterinplace in an emergency because you are not in the area of risk. Would you? This question is designed to elicit information regarding compliance with instructions to shelter in place. As shown in Figure F13, the results indicate that 87% of households who are advised to shelter in place would do so; the remaining 13%
would choose to evacuate the area.
Note the baseline ETE study assumes 20 percent of households will not comply with the shelter advisory, as per Section 2.5.2 of NUREG/CR7002, Rev. 1. Thus, the compliance rate data obtained above is significantly higher than the federal guidance. A sensitivity study was conducted to estimate the impact of shadow evacuation noncompliance of shelter advisory on ETE - see Table M2 in Appendix M.
Emergency officials advise you to shelterinplace now in an emergency and possibly evacuate later while people in other areas are advised to evacuate now. Would you? This question is designed to elicit information specifically related to the possibility of a staged evacuation. That is, asking a population to shelter in place now and then to evacuate after a specified period of time. As shown in Figure F14, 76% of households would follow instructions and delay the start of evacuation until so advised, while the other 24% would choose to begin evacuating immediately.
Emergency officials advise you to evacuate due to an emergency. Where would you evacuate to? This question is designed to elicit information regarding the destination of evacuees in case of an evacuation.
Approximately 58% of households indicated that they would evacuate to a friend or relatives home, 7% to a reception center, 13% to a hotel, motel or campground, 5% to a second or seasonal home, 1% indicated they would not evacuate and the remaining 16% answered other/dont know to this question, as shown in Figure F15.
F.3.3  Time Distribution Results The survey asked several questions about the amount of time it takes to perform certain pre evacuation activities. These activities involve actions taken by residents during the course of their daytoday lives. Thus, the answers fall within the realm of the responders experience.
As discussed in Section F.3.1 and shown in Figure F8, the majority (61%) of respondents indicated no commuters were impacted by the COVID19 pandemic; therefore the results for Robert E. Ginna Nuclear Power Plant              F4                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
the time distribution of commuters (time to prepare to leave work and time to travel home from work) were used, as is, in this study.
The mobilization distributions provided below are the result of having applied the analysis described in Section 5.4.1 on the component activities of the mobilization.
How long does it take the commuter to complete preparation for leaving work? Figure F16 presents the cumulative distribution. In all cases, the activity is completed within 60 minutes.
Approximately 93% can leave within 30 minutes.
How long would it take the commuter to travel home? Figure F17 presents the work to home travel time for the EPZ. In all cases, the activity is completed by 75 minutes.
Approximately 94% can arrive home within 45 minutes.
How long would it take the family to pack clothing, secure the house, and load the car?
Figure F18 presents the time required to prepare for leaving on an evacuation trip. In many ways this activity mimics a familys preparation for a short holiday or weekend away from home. Hence, the responses represent the experience of the responder in performing similar activities.
How long would it take you to clear 6 to 8 inches of snow from your driveway? During adverse, snowy weather conditions, an additional activity must be performed before residents can depart on the evacuation trip. Although snow scenarios assume that the roads and highways have been plowed and are passable (albeit at lower speeds and capacities), it may be necessary to clear a private driveway prior to leaving the home so that the vehicle can access the street.
Figure F19 presents the time distribution for removing 6 to 8 inches of snow from a driveway.
The time distribution for clearing the driveway has a long tail; about 89% of driveways are passable within 60 minutes; the remaining households (11%) would require up to an addition 2 hours and 15 minutes to begin their evacuation trip.
Note that those respondents (22%) who answered that they would not take time to clear their driveway were assumed to be ready immediately at the start of this activity. Essentially, they would drive through the snow on the driveway to access the roadway and begin their evacuation trip.
Robert E. Ginna Nuclear Power Plant            F5                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Table F1. Ginna Demographic Survey Sampling Plan Zip Code    POP2010      HH 2010      Desired Samples      Responses Obtained 14450        243            80                1                    1 14502        1,399          530              10                    3 14505        2,029          747              14                    12 14519      11,581        4,503              84                    30 14526        776          287                5                    0 14551          78            29                2                    1 14568        2,283          874              16                    18 14580      38,317        15,139            281                    25 14589        7,243        2,885              54                    29 Total EPZ    63,949        25,074            467                    119 Average HH Size:                    2.55 Household Size 40%
30%
Percent of Households 20%
10%
0%
1            2                3                  4            5              6+
People Figure F1. Household Size in the EPZ Robert E. Ginna Nuclear Power Plant                                      F6                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                Rev. 0
 
Vehicle Availability 70%
60%
50%
Percent of Households 40%
30%
20%
10%
0%
0                  1                    2                  3            4+
Vehicles Figure F2. Household Vehicle Availability Distribution of Vehicles by HH Size 13 Person Households 1 Person    2 People          3 People 100%
80%
Percent of Households 60%
40%
20%
0%
0                  1                    2                  3            4+
Vehicles Figure F3. Vehicle Availability  1 to 3 Person Households Robert E. Ginna Nuclear Power Plant                              F7                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                          Rev. 0
 
Distribution of Vehicles by HH Size 47 Person Households 4 People    5 People      6 People    7 People 100%
80%
Percent of Households 60%
40%
20%
0%
0                  1                    2                3              4+
Vehicles Figure F4. Vehicle Availability  4 to 7 Person Households Rideshare with Neighbor/Friend 100%
80%
Percent of Households 60%
40%
20%
0%
Yes                                              No Figure F5. Household Ridesharing Preference Robert E. Ginna Nuclear Power Plant                              F8                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                            Rev. 0
 
Commuters per Household 50%
40%
Percent of Households 30%
20%
10%
0%
0              1                  2                3              4+
Commuters Figure F6. Commuters per Households in the EPZ Travel Mode to Work 100%
80%
Percent of Commuters 60%
40%
20%
0%
Bus                        Drive Alone              Carpool (2+)
Mode of Travel Figure F7. Modes of Travel in the EPZ Robert E. Ginna Nuclear Power Plant                                F9                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                        Rev. 0
 
COVID19 Impact to Commuters 70%
60%
50%
Percent of Households 40%
30%
20%
10%
0%
0                  1                  2                  3                4+
Commuters Figure F8. Impact to Commuters due to the COVID19 Pandemic Functional Vehicle Transportation Needs 3
Number of Households 2
1 0
Bus                            Medical Bus/Van Figure F9. Households with Functional or Transportation Needs Robert E. Ginna Nuclear Power Plant                                                        F10                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Evacuating Vehicles Per Household 100%
80%
Percent of Households 60%
40%
20%
0%
0                      1                      2                        3+
Vehicles Figure F10. Number of Vehicles Used for Evacuation Await Returning Commuter 100%
80%
Percent of Households 60%
40%
20%
0%
Yes, would await return                          No, would evacuate Figure F11. Percent of Households that Await Returning Commuter Before Leaving Robert E. Ginna Nuclear Power Plant                                          F11                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
Households Evacuating with Pets/Animals 80%
60%
Percent of Households 40%
20%
0%
Take with me to a Shelter      Take with me to Somewhere            Leave Pet at Home Else Figure F12. Households Evacuating with Pets/Animals Shelter in Place Characteristics 100%
Percent of Households 80%
60%
40%
20%
0%
Shelter                                        Evacuate Figure F13. Shelter in Place Characteristics Robert E. Ginna Nuclear Power Plant                                          F12                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Shelter then Evacuate Characteristics 100%
80%
Percent of Households 60%
40%
20%
0%
Shelter, then Evacuate                          Evacuate Immediately Figure F14. Shelter Then Evacuate Characteristics Shelter Locations 60%
50%
Percent of Households 40%
30%
20%
10%
0%
Friend/Relative's    Reception        Hotel,          A              Would not      Other/Don't Home            Center          Motel,    Second/Seasonal      Evacuate          Know or Campground      Home Figure F15. Study Area Evacuation Destinations Robert E. Ginna Nuclear Power Plant                                        F13                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Time to Prepare to Leave Work/College 100%
80%
Percent of Commuters 60%
40%
20%
0%
0        10          20          30          40        50        60          70 Preparation Time (min)
Figure F16. Time Required to Prepare to Leave Work/College Time to Commute Home From Work/College 100%
80%
Percent of Commuters 60%
40%
20%
0%
0        10          20        30          40          50        60        70      80 Travel Time (min)
Figure F17. Time to Commute Home from Work/College Robert E. Ginna Nuclear Power Plant                                                      F14                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                  Rev. 0
 
Time to Prepare to Leave Home 100%
80%
Percent of Households 60%
40%
20%
0%
0                      60                            120                      180 Preparation Time (min)
Figure F18. Time to Prepare Home for Evacuation Time to Remove Snow from Driveway 100%
80%
Percent of Households 60%
40%
20%
0%
0    20          40          60                80        100    120          140 Time (min)
Figure F19. Time to Remove 68 of Snow from Driveway Robert E. Ginna Nuclear Power Plant                              F15                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                          Rev. 0
 
ATTACHMENT A Demographic Survey Instrument Robert E. Ginna Nuclear Power Plant            F16              KLD Engineering, P.C.
Evacuation Time Estimate                                                        Rev. 0
 
Robert E. Ginna Nuclear Power Plant Demographic Survey
* Required Purpose The purpose of this survey is to identify local behavior during emergency situations. The information gathered in this survey will be shared with Exelon Generation to enhance emergency response plans in your area. Your responses will greatly contribute to local emergency preparedness.      .
(  )  . Please do not provide your name or any personal information, and the survey will take less than 5 minutes to complete.
All participants of this survey are strongly encouraged to register for Smart911 to receive emergency alerts along with other benefits. This service is completely free for the user. To learn more about Smart911 and to sign up for emergency alerts, visit www.smart911.com and click the "SIGN UP TODAY" banner.
: 1. 1. Are you the head of the household and at least 18 years old?
* Mark only one oval.
Yes No      Skip to section 23 (Thank You)
Vehicle Information
: 2. 2. What is your home zip code? *
: 3. 3A. In total, how many running cars, or other vehicles are usually available to the household?
Mark only one oval.
ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE OR MORE ZERO (NONE)
DECLINE TO STATE
: 4. 3B. In an emergency, could you get a ride out of the area with a neighbor or friend?
Mark only one oval.
YES NO DECLINE TO STATE
: 5. 4. How many vehicles would your household use during an evacuation?
Mark only one oval.
ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE OR MORE ZERO (NONE)
I WOULD EVACUATE BY BICYCLE I WOULD EVACUATE BY BUS DECLINE TO STATE
: 6. 5A. How many people usually live in this household?
Mark only one oval.
ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE TEN ELEVEN TWELVE THIRTEEN FOURTEEN FIFTEEN SIXTEEN SEVENTEEN EIGHTEEN NINETEEN OR MORE DECLINE TO STATE
: 7. 5B. Of these people that live in this household, are any of them seasonal residents?
seasonal residents refers to the residents who do not reside in the household the majority of the year.
Mark only one oval.
Yes No    Skip to question 10 Decline to State    Skip to question 10 Skip to question 10 Seasonal Population
: 8. 5C. How many of the household residents are seasonal?
Mark only one oval.
ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE TEN ELEVEN TWELVE THIRTEEN FOURTEEN FIFTEEN SIXTEEN SEVENTEEN EIGHTEEN NINETEEN OR MORE DECLINE TO STATE
: 9. 5D. What season do the seasonal residents live in this home?
Mark only one oval.
Summer Fall Winter Spring Decline to State COVID-19
: 10. 6. How many people in your household have a work and/or school commute that has been temporarily impacted due to the COVID-19 pandemic?
Mark only one oval.
ZERO ONE TWO THREE FOUR OR MORE DECLINE TO STATE Skip to question 11 Commuters
: 11. 7. How many people in the household normally (non-Covid conditions) commute
* to a job, or to college on a daily basis?
Mark only one oval.
ZERO      Skip to question 56 ONE      Skip to question 12 TWO      Skip to question 13 THREE      Skip to question 14 FOUR OR MORE        Skip to question 15 DECLINE TO STATE        Skip to question 56 Mode of Travel
: 12. 8. Thinking about each commuter, how does each person usually travel to work or college?
Mark only one oval per row.
Drive Carpool-2 or  Dont Rail      Bus      Walk/Bicycle Alone more people    know Commuter 1
Skip to question 16 Mode of Travel
: 13. 8. Thinking about each commuter, how does each person usually travel to work or college?
Mark only one oval per row.
Drive    Carpool-2 or      Dont Rail        Bus Walk/Bicycle Alone    more people      know Commuter 1
Commuter 2
Skip to question 18 Mode of Travel
: 14. 8. Thinking about each commuter, how does each person usually travel to work or college?
Mark only one oval per row.
Drive    Carpool-2 or      Dont Rail        Bus Walk/Bicycle Alone    more people      know Commuter 1
Commuter 2
Commuter 3
Skip to question 22 Mode of Travel
: 15. 8. Thinking about each commuter, how does each person usually travel to work or college?
Mark only one oval per row.
Drive    Carpool-2 or      Dont Rail        Bus Walk/Bicycle Alone    more people      know Commuter 1
Commuter 2
Commuter 3
Commuter 4
Skip to question 28 Travel Home From Work/College
: 16. 9-1. How much time on average, would it take Commuter #1 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 17. If Over 2 Hours for Question 9-1, Specify Here leave blank if your answer for Question 9-1, is under 2 hours.
Skip to question 36 Travel Home From Work/College
: 18. 9-1. How much time on average, would it take Commuter #1 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 19. If Over 2 Hours for Question 9-1, Specify Here leave blank if your answer for Question 9-1, is under 2 hours.
: 20. 9-2. How much time on average, would it take Commuter #2 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 21. If Over 2 Hours for Question 9-2, Specify Here leave blank if your answer for Question 9-2, is under 2 hours.
Skip to question 38 Travel Home From Work/College
: 22. 9-1. How much time on average, would it take Commuter #1 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 23. If Over 2 Hours for Question 9-1, Specify Here leave blank if your answer for Question 9-1, is under 2 hours.
: 24. 9-2. How much time on average, would it take Commuter #2 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 25. If Over 2 Hours for Question 9-2, Specify Here leave blank if your answer for Question 9-2, is under 2 hours.
: 26. 9-3. How much time on average, would it take Commuter #3 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 27. If Over 2 Hours for Question 9-3, Specify Here leave blank if your answer for Question 9-3, is under 2 hours.
Skip to question 42 Travel Home From Work/College
: 28. 9-1. How much time on average, would it take Commuter #1 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 29. If Over 2 Hours for Question 9-1, Specify Here leave blank if your answer for Question 9-1, is under 2 hours.
: 30. 9-2. How much time on average, would it take Commuter #2 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 31. If Over 2 Hours for Question 9-2, Specify Here leave blank if your answer for Question 9-2, is under 2 hours.
: 32. 9-3. How much time on average, would it take Commuter #3 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 33. If Over 2 Hours for Question 9-3, Specify Here leave blank if your answer for Question 9-3, is under 2 hours.
: 34. 9-4. How much time on average, would it take Commuter #4 to travel home from work or college?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 35. If Over 2 Hours for Question 9-4, Specify Here leave blank if your answer for Question 9-4, is under 2 hours.
Skip to question 48 Preparation to leave Work/College
: 36. 10-1. Approximately how much time would it take Commuter #1 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 37. If Over 2 Hours for Question 10-1, Specify Here leave blank if your answer for Question 10-1, is under 2 hours.
Skip to question 56 Preparation to leave Work/College
: 38. 10-1. Approximately how much time would it take Commuter #1 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 39. If Over 2 Hours for Question 10-1, Specify Here leave blank if your answer for Question 10-1, is under 2 hours.
: 40. 10-2. Approximately how much time would it take Commuter #2 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 41. If Over 2 Hours for Question 10-2, Specify Here leave blank if your answer for Question 10-2, is under 2 hours.
Skip to question 56 Preparation to leave Work/College
: 42. 10-1. Approximately how much time would it take Commuter #1 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 43. If Over 2 Hours for Question 10-1, Specify Here leave blank if your answer for Question 10-1, is under 2 hours.
: 44. 10-2. Approximately how much time would it take Commuter #2 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 45. If Over 2 Hours for Question 10-2, Specify Here leave blank if your answer for Question 10-2, is under 2 hours.
: 46. 10-3. Approximately how much time would it take Commuter #3 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 47. If Over 2 Hours for Question 10-3, Specify Here leave blank if your answer for Question 10-3, is under 2 hours.
Skip to question 56 Preparation to leave Work/College
: 48. 10-1. Approximately how much time would it take Commuter #1 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 49. If Over 2 Hours for Question 10-1, Specify Here leave blank if your answer for Question 10-1, is under 2 hours.
: 50. 10-2. Approximately how much time would it take Commuter #2 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 51. If Over 2 Hours for Question 10-2, Specify Here leave blank if your answer for Question 10-2, is under 2 hours.
: 52. 10-3. Approximately how much time would it take Commuter #3 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 53. If Over 2 Hours for Question 10-3, Specify Here leave blank if your answer for Question 10-3, is under 2 hours.
: 54. 10-4. Approximately how much time would it take Commuter #4 to complete preparation for leaving work or college prior to starting the trip home?
Mark only one oval.
5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS DECLINE TO STATE
: 55. If Over 2 Hours for Question 10-4, Specify Here leave blank if your answer for Question 10-4, is under 2 hours.
Skip to question 56 Additional Questions
: 56. 11. If you were advised by local authorities to evacuate, how much time would it take the household to pack clothing, medications, secure the house, load the car, and complete preparations prior to evacuating the area?
Mark only one oval.
LESS THAN 15 MINUTES 15-30 MINUTES 31-45 MINUTES 46 MINUTES - 1 HOUR 1 HOUR TO 1 HOUR 15 MINUTES 1 HOUR 16 MINUTES TO 1 HOUR 30 MINUTES 1 HOUR 31 MINUTES TO 1 HOUR 45 MINUTES 1 HOUR 46 MINUTES TO 2 HOURS 2 HOURS TO 2 HOURS 15 MINUTES 2 HOURS 16 MINUTES TO 2 HOURS 30 MINUTES 2 HOURS 31 MINUTES TO 2 HOURS 45 MINUTES 2 HOURS 46 MINUTES TO 3 HOURS 3 HOURS TO 3 HOURS 15 MINUTES 3 HOURS 16 MINUTES TO 3 HOURS 30 MINUTES 3 HOURS 31 MINUTES TO 3 HOURS 45 MINUTES 3 HOURS 46 MINUTES TO 4 HOURS 4 HOURS TO 4 HOURS 15 MINUTES 4 HOURS 16 MINUTES TO 4 HOURS 30 MINUTES 4 HOURS 31 MINUTES TO 4 HOURS 45 MINUTES 4 HOURS 46 MINUTES TO 5 HOURS 5 HOURS TO 5 HOURS 30 MINUTES 5 HOURS 31 MINUTES TO 6 HOURS OVER 6 HOURS WILL NOT EVACUATE DECLINE TO STATE
: 57. If Over 6 Hours for Question 11, Specify Here leave blank if your answer for Question 11, is under 6 hours.
: 58. 12. If there are 6-8 inches of snow on your driveway or curb, would you need to shovel out to evacuate? If yes, how much time, on average, would it take you to clear the 6-8 inches of snow to move the car from the driveway or curb to begin the evacuation trip? Assume the roads are passable.
Mark only one oval.
LESS THAN 15 MINUTES 15-30 MINUTES 31-45 MINUTES 46 MINUTES - 1 HOUR 1 HOUR TO 1 HOUR 15 MINUTES 1 HOUR 16 MINUTES TO 1 HOUR 30 MINUTES 1 HOUR 31 MINUTES TO 1 HOUR 45 MINUTES 1 HOUR 46 MINUTES TO 2 HOURS 2 HOURS TO 2 HOURS 15 MINUTES 2 HOURS 16 MINUTES TO 2 HOURS 30 MINUTES 2 HOURS 31 MINUTES TO 2 HOURS 45 MINUTES 2 HOURS 46 MINUTES TO 3 HOURS NO, WILL NOT SHOVEL OUT OVER 3 HOURS DECLINE TO STATE
: 59. If Over 3 Hours for Question 12, Specify Here leave blank if your answer for Question 12, is under 3 hours.
: 60. 13. Please specify the number of people in your household who require Functional or Transportation needs in an evacuation:
Mark only one oval per row.
More than 0        1      2          3        4 4
Bus Medical Bus/Van Wheelchair Accessible Vehicle Ambulance Other
: 61. Specify "Other" Transportation Need Below
: 62. 14. Please choose one of the following:
Mark only one oval.
I would await the return of household members to evacuate together.
I would evacuate independently and meet other household members later.
Decline to State
: 63. 15A. Emergency officials advise you to shelter-in-place in an emergency because you are not in the area of risk. Would you:
Mark only one oval.
SHELTER-IN-PLACE EVACUATE DECLINE TO STATE
: 64. 15B. Emergency officials advise you to shelter-in-place now in an emergency and possibly evacuate later while people in other areas are advised to evacuate now.
Would you:
Mark only one oval.
SHELTER-IN-PLACE EVACUATE DECLINE TO STATE
: 65. 15C. Emergency officials advise you to evacuate due to an emergency. Where would you evacuate to?
Mark only one oval.
A RELATIVES OR FRIENDS HOME A RECEPTION CENTER A HOTEL, MOTEL OR CAMPGROUND A SECOND/SEASONAL HOME WOULD NOT EVACUATE DON'T KNOW OTHER (Specify Below)
DECLINE TO STATE
: 66. Fill in OTHER answers for question 15C Pet Questions
: 67. 16A. Do you have any pet(s) and/or animal(s)?
Mark only one oval.
YES NO DECLINE TO STATE Pet Questions
: 68. 16B. What type of pet(s) and/or animal(s) do you have?
Check all that apply.
DOG CAT BIRD REPTILE HORSE FISH CHICKEN GOAT PIG OTHER SMALL PETS/ANIMALS (Specify Below)
OTHER LARGE PETS/ANIMALS (Specify Below)
Other:
 
69.
Mark only one oval.
DECLINE TO STATE Pet Questions
: 70. 16C. What would you do with your pet(s) and/or animal(s) if you had to evacuate?
Mark only one oval.
TAKE PET WITH ME TO A SHELTER TAKE PET WITH ME SOMEWHERE ELSE LEAVE PET AT HOME DECLINE TO STATE Pet Questions
: 71. 16D. Do you have sufficient room in your vehicle(s) to evacuate with your pet(s) and/or animal(s)?
Mark only one oval.
YES NO WILL USE A TRAILER DECLINE TO STATE Other:
Thank you for your time. However, since you are not the head of household Thank and not at least 18 years old, you cannot participate in this survey.
You
 
APPENDIX G Traffic Management Plan
 
G. TRAFFIC MANAGEMENT PLAN NUREG/CR7002, Rev. 1 indicates that the existing Traffic Control Points (TCPs) and Access Control Points (ACPs) identified by the offsite agencies should be used in the evacuation simulation modeling. The traffic control plans for the EPZ were provided by the county emergency management agencies. These plans were reviewed, and the TCPs and ACPs were modeled in the ETE simulations accordingly.
G.1 Manual Traffic Control TCPs and ACPs are forms of manual traffic control (MTC). As discussed in Section 9, MTC at intersections (which are controlled) are modeled as actuated signals. If an intersection has a pretimed signal, stop, or yield control, and the intersection is identified as a TCP (or ACP), the control type was changed to an actuated signal in the DYNEV II system, in accordance with Section 3.3 of NUREG/CR7002, Rev. 1. MTC at existing actuated traffic signalized intersections were essentially left alone.
Table K1 provides the control type and number of nodes with each control type in the analysis network. If the existing control was changed due to the point being a TCP or ACP, the control type is indicated as TCP/ACP in Table K1. These MTC locations are mapped as blue dots (TCP) and red squares (ACP) in Figure G1. No additional locations for MTC are suggested as a result of the ETE simulations in this study.
It is assumed that the ACPs will be established within 120 minutes of the ATE to discourage through travelers from using major through routes which traverse the EPZ. As discussed in Section 3.10, external traffic was considered on Interstate 490 (I490), I390, and State Route 104 (SR104) in this analysis.
G.2 Analysis of Key TCP /ACP Locations As discussed in Section 5.2 of NUREG/CR7002, Rev. 1, MTC at intersections could benefit from the ETE analysis. The MTC locations contained within the traffic management plans (TMPs) were analyzed to determine key locations where MTC would be most useful and can be readily implemented. As previously mentioned, signalized intersections that were actuated based on field data collection were essentially left as actuated traffic signals in the model, with modifications to green time allocation as needed. Other controlled intersections (pretimed signals, stop signs and yield signs) were changed to actuated traffic signals to represent the MTC that would be implemented according to the TMPs.
Table G1 shows a list of the controlled intersections that were identified as MTC points in the TMPs that were not previously actuated signals, including the type of control that currently exists at each location. To determine the impact of MTC at these locations, a winter, midweek, midday, with good weather (Scenario 6) evacuation of the 2Mile Region, 5Mile Region and the entire EPZ (Region R01, R02, R03) were simulated wherein these intersections were left as is (without MTC). The results shown in Table G2 were compared to the results presented in Robert E. Ginna Nuclear Power Plant            G1                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Section 7. The ETE were not impacted at the 90th or 100th percentile. The remaining TCPs/ACPs at controlled intersections were left as actuated signals in the model and, therefore, had no material impact on ETE.
As shown in Figure 73 through Figure 77, there is no congestion (LOS B or better) within the 2 Mile Radius and LOS E or better inside the 5Mile Radius for the first 30 minutes after the ATE.
The congestion within the EPZ clears at 2 hours and 35 minutes after the ATE. Most of the bottlenecks in the study area are at intersections and ramps to limited access highways that already have actuated traffic signals. As a result, MTC within the EPZ does little to reduce the ETE.
Although there is no material reduction in ETE when MTC is implemented, traffic and access control can be beneficial in the reduction of localized congestion and driver confusion and can be extremely helpful for fixed point surveillance, amongst other things. Should there be a shortfall of personnel to staff the TCPs/ACPs, the list of locations provided in Table G1 could be considered as priority locations when implementing the TMP.
Robert E. Ginna Nuclear Power Plant            G2                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Table G1. List of Manual Traffic Control Locations at intersections without Actuated Signals Type of Control TCP/ACP          Node Number (Prior to being a Number          (See Appendix K)
TCP/ACP)
TCP2                  92                Stop Control TCP3                  71                Stop Control TCP4                  73                Stop Control TCP7                  74                Stop Control TCP10                216                Stop Control TCP13/ACP16            192                Stop Control TCP14/ACP10              77                Stop Control TCP17/ACP17            124                Stop Control TCP18/ACP18              43                Stop Control ACP2                137                Stop Control ACP6                772                Stop Control ACP15                640                Stop Control MACP2                256                Stop Control MACP6                337                Stop Control MACP12                238                Stop Control Robert E. Ginna Nuclear Power Plant                    G3                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                    Rev. 0
 
Table G2. ETE with and without Modification to TMP Scenario 6 90th Percentile ETE                                        100th Percentile ETE Region                ETE without            ETE with                            ETE without            ETE with Modification to      Modifications to      Difference      Modification to      Modifications to    Difference TMP                    TMP                                  TMP                  TMP R01 (2Mile)                  2:30                  2:30              0:00                3:45                3:45            0:00 R02 (5Mile)                  2:30                  2:30              0:00                3:50                3:50            0:00 R03 (Full EPZ)                2:35                  2:35              0:00                3:55                3:55            0:00 Robert E. Ginna Nuclear Power Plant                                      G4                                                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                      Rev. 0
 
Figure G1. Traffic Control Points and Access Control Points for the Ginna EPZ Robert E. Ginna Nuclear Power Plant                                      G5                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
APPENDIX H Evacuation Regions
 
H EVACUATION REGIONS This appendix presents the evacuation percentages for each Evacuation Region (Table H1) and maps of all Evacuation Regions (Figure H1 through Figure H30). The percentages presented in Table H1 are based on the methodology discussed in assumption 9 of Section 2.2 and shown in Figure 21.
Note the baseline ETE study assumes 20% of households will not comply with the shelter advisory, as per Section 2.5.2 of NUREG/CR7002, Rev. 1.
Robert E. Ginna Nuclear Power Plant          H1                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                  Rev. 0
 
Table H1. Percent of ERPA Population Evacuating for Each Region Radial Regions Wind From                                            Emergency Response Planning Area Region Description      (in Degrees)  W1  W2    W3 W4 W5 W6 W7 WLake M1 M2 M3 M4                    M5  M6  M7  M8    M9 MLake R01    2Mile Region        N/A    100%  20%    20% 20% 20% 20% 20% 100% 20% 20% 20% 20%                      20%  20%  20%  20%    20% 20%
R02    5Mile Region        N/A    100% 100%  100% 20% 20% 20% 20% 100% 100% 20% 20% 20%                    20%  20%  20%  20%    20% 100%
R03        Full EPZ        N/A    100% 100%  100% 100% 100% 100% 100% 100% 100% 100% 100% 100%            100% 100% 100%  100%  100% 100%
Evacuate 2Mile Region and Downwind to 5 Miles Wind Direction  Wind From                                            Emergency Response Planning Area Region      From      (in Degrees)  W1  W2    W3 W4 W5 W6 W7 WLake M1 M2 M3 M4                    M5  M6  M7  M8    M9 MLake R04            N          34911  100% 100%  100% 20% 20% 20% 20% 100% 100% 20% 20% 20%                    20%  20%  20%  20%    20% 20%
R05          NNE          1233    100% 100%    20% 20% 20% 20% 20% 100% 100% 20% 20% 20%                    20%  20%  20%  20%    20% 20%
R06      NE, ENE, E        34101  100% 100%    20% 20% 20% 20% 20% 100% 100% 20% 20% 20%                    20%  20%  20%  20%    20% 100%
R07        ESE, SE        102146  100%  20%    20% 20% 20% 20% 20% 100% 100% 20% 20% 20%                    20%  20%  20%  20%    20% 100%
R08        SSE, S        147191  100%  20%    20% 20% 20% 20% 20% 100% 20% 20% 20% 20%                      20%  20%  20%  20%    20% 100%
N/A          SSW          192214                                                  Refer to Region R01 R09      SW, WSW        215258  100% 20%    100% 20% 20% 20% 20% 100% 20% 20% 20% 20%                      20% 20% 20% 20% 20%          20%
W, WNW, NW, R10        NNW          259348  100% 100% 100% 20% 20% 20% 20% 100% 20% 20% 20% 20%                        20% 20% 20% 20% 20%          20%
Evacuate 2Mile Region and Downwind to the EPZ Boundary Wind Direction  Wind From                                            Emergency Response Planning Area Region      From      (in Degrees)  W1 W2 W3 W4 W5 W6 W7 WLake M1 M2 M3 M4                        M5  M6  M7  M8    M9  MLake R11            N          34911  100% 100% 100% 20% 100% 100% 100% 100% 100% 100% 100% 100%                100%  20% 100%  20%    20%    20%
R12          NNE          1233    100% 100% 20% 20% 100% 100% 100% 100% 100% 100% 100% 100%                100% 100% 100%  100%  100%    20%
R13        NE, ENE        3478    100% 100% 20% 20% 20% 20% 100% 100% 100% 100% 100% 100%                  100% 100% 100%  100%  100%    100%
R14            E          79101  100% 100% 20% 20% 20% 20% 20% 100% 100% 100% 100% 100%                    100% 100% 100%  100%  100%    100%
R15          ESE          102124  100% 20% 20% 20% 20% 20% 20% 100% 100% 20% 100% 100%                      20% 100% 100%  100%  100%    100%
R16          SE          125146  100% 20% 20% 20% 20% 20% 20% 100% 100% 20% 20% 20%                        20% 100%  20%  100%    20%    100%
R17      SSE, S, SSW      147214  100% 20% 20% 20% 20% 20% 20% 100% 20% 20% 20% 20%                          20%  20%  20%  20%    20%    100%
R18          SW          215236  100% 20% 100% 100% 20% 20% 20% 100% 20% 20% 20% 20%                        20%  20%  20%  20%    20%    20%
R19        WSW          237258  100% 20% 100% 100% 100% 20% 20% 100% 20% 20% 20% 20%                      20%  20%  20%  20%    20%    20%
R20          W          259281  100% 100% 100% 100% 100% 100% 20% 100% 20% 20% 20% 20%                    20%  20%  20%  20%    20%    20%
R21      WNW, NW          282326  100% 100% 100% 100% 100% 100% 100% 100% 20% 20% 20% 20%                    20%  20%  20%  20%    20%    20%
R22        NNW          327348  100% 100% 100% 100% 100% 100% 100% 100% 20% 100% 20% 20%                  100%  20%  20%  20%    20%    20%
Robert E. Ginna Nuclear Power Plant                                      H2                                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                  Rev. 0
 
Staged Evacuation  2Mile Region Evacuates, then Evacuate Downwind to 5 Miles Wind Direction Wind From                                              Emergency Response Planning Area Region      From        (in Degrees)  W1 W2 W3 W4 W5 W6 W7 WLake M1 M2 M3 M4 M5                                  M6  M7    M8    M9 MLake R23          N/A      5Mile Region  100% 100% 100% 20% 20% 20% 20% 100% 100% 20% 20% 20% 20%                                20%  20%    20%    20% 100%
R24          N            34911    100% 100% 100% 20% 20% 20% 20% 100% 100% 20% 20% 20% 20%                                20%  20%    20%    20% 20%
R25          NNE            1233    100% 100% 20% 20% 20% 20% 20% 100% 100% 20% 20% 20% 20%                                  20%  20%    20%    20% 20%
R26      NE, ENE, E        34101    100% 100% 20% 20% 20% 20% 20% 100% 100% 20% 20% 20% 20%                                  20%  20%    20%    20% 100%
R27        ESE, SE        102146    100% 20% 20% 20% 20% 20% 20% 100% 100% 20% 20% 20% 20%                                  20%  20%    20%    20% 100%
R28        SSE, S        147191    100% 20% 20% 20% 20% 20% 20% 100% 20% 20% 20% 20% 20%                                    20%  20%    20%    20% 100%
N/A          SSW          192214                                                    Refer to Region R01 R29      SW, WSW          215258    100% 20% 100% 20% 20% 20% 20% 100% 20% 20% 20% 20% 20%                                  20% 20% 20% 20%            20%
W, WNW, NW, R30        NNW            259348    100% 100% 100% 20% 20% 20% 20%                100%  20% 20% 20% 20% 20% 20% 20% 20% 20% 20%
ERPA(s) Evacuate                          ERPA(s) ShelterinPlace                  ERPA(s) ShelterinPlace until 90% ETE for R01, then Evacuate Robert E. Ginna Nuclear Power Plant                                        H3                                                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                                Rev. 0
 
Figure H1. Region R01 Robert E. Ginna Nuclear Power Plant          H4          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H2. Region R02 Robert E. Ginna Nuclear Power Plant          H5          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H3. Region R03 Robert E. Ginna Nuclear Power Plant          H6          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H4. Region R04 Robert E. Ginna Nuclear Power Plant          H7          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H5. Region R05 Robert E. Ginna Nuclear Power Plant          H8          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H6. Region R06 Robert E. Ginna Nuclear Power Plant          H9          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H7. Region R07 Robert E. Ginna Nuclear Power Plant          H10          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H8. Region R08 Robert E. Ginna Nuclear Power Plant          H11          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H9. Region R09 Robert E. Ginna Nuclear Power Plant          H12          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H10. Region R10 Robert E. Ginna Nuclear Power Plant          H13          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H11. Region R11 Robert E. Ginna Nuclear Power Plant          H14          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H12. Region R12 Robert E. Ginna Nuclear Power Plant          H15          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H13. Region R13 Robert E. Ginna Nuclear Power Plant          H16          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H14. Region R14 Robert E. Ginna Nuclear Power Plant          H17          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H15. Region R15 Robert E. Ginna Nuclear Power Plant          H18          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H16. Region R16 Robert E. Ginna Nuclear Power Plant          H19          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H17. Region R17 Robert E. Ginna Nuclear Power Plant          H20          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H18. Region R18 Robert E. Ginna Nuclear Power Plant          H21          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H19. Region R19 Robert E. Ginna Nuclear Power Plant          H22          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H20. Region R20 Robert E. Ginna Nuclear Power Plant          H23          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H21. Region R21 Robert E. Ginna Nuclear Power Plant          H24          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H22. Region R22 Robert E. Ginna Nuclear Power Plant          H25          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H23. Region R23 Robert E. Ginna Nuclear Power Plant          H26          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H24. Region R24 Robert E. Ginna Nuclear Power Plant          H27          KLD Engineering, P.C.
Evacuation Time Estimate                                                  Rev. 0
 
Figure H25. Region 25 Robert E. Ginna Nuclear Power Plant          H28          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H26. Region 26 Robert E. Ginna Nuclear Power Plant          H29          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H27. Region 27 Robert E. Ginna Nuclear Power Plant          H30          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H28. Region 28 Robert E. Ginna Nuclear Power Plant          H31          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H29. Region 29 Robert E. Ginna Nuclear Power Plant          H32          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
Figure H30. Region 30 Robert E. Ginna Nuclear Power Plant          H33          KLD Engineering, P.C.
Evacuation Time Estimate                                                Rev. 0
 
APPENDIX J Representative Inputs to and Outputs from the DYNEV II System
 
J. REPRESENTATIVE INPUTS TO AND OUTPUTS FROM THE DYNEV II SYSTEM This appendix presents data input to and output from the DYNEV II System.
Table J1 provides source (vehicle loading) and destination information for several roadway segments (links) in the analysis network. In total, there are a total of 526 source links (origins) in the model. The source links are shown as centroid points in Figure J1. On average, evacuees travel a straightline distance of 7.65 miles to exit the network.
Table J2 provides network-wide statistics (average travel time, average delay time1, average speed and number of vehicles) for an evacuation of the entire EPZ (Region R03) for each scenario. Adverse weather scenarios (Scenarios 2, 4, 7, 8, 10, and 11) exhibit slower average speeds, higher delays, and longer average travel times than comparable good weather scenarios. When comparing Scenario 13 (special event) and Scenario 3, the additional vehicles from the special event slightly lower the average speeds, cause longer delays and increase the travel time. When comparing Scenario 14 (roadway closure) and Scenario 1, the lane closure on SR104 westbound lowers the average speeds, cause longer delays and increases the travel time.
Table J3 provided statistics (average speed and travel time) for the major evacuation routes -
SR104, SR250, and SR350, SR21, SR286 - for an evacuation of the entire EPZ (Region R03) under Scenario 1 conditions. As discussed in Section 7.3 and shown in Figures 73 through 77, SR250 experiences significant congestion within the EPZ. As such, the average speeds are comparably slower (and travel times longer) on these roads traveling in these directions than other major evacuation routes.
Table J4 provides the number of vehicles discharged and the cumulative percent of total vehicles discharged for each link exiting the analysis network for an evacuation of the entire EPZ (Region R03) under Scenario 1 conditions. Refer to the figures in Appendix K for maps showing the geographic location of each link.
Figure J2 through Figure J15 plot the trip generation time versus the ETE for each of the 14 Scenarios considered. The distance between the trip generation and ETE curves is the travel time. Plots of trip generation versus ETE are indicative of the level of traffic congestion during evacuation. For low population density sites, the curves are close together, indicating short travel times and minimal traffic congestion. For higher population density sites, the curves are farther apart indicating longer travel times and the presence of traffic congestion. As seen in Figure J2 through Figure J15, the curves are spatially separated as a result of the traffic congestion in the EPZ, specifically in and surrounding the town of Webster as well as on SR104 in both directions near the EPZ boundary, which was discussed in detail in Section 7.3.
1 Computed as the difference of the average travel time and the average ideal travel time under free flow conditions.
Robert E. Ginna Nuclear Power Plant                            J1                                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Table J1. Sample Simulation Model Input Vehicles Entering Link        Upstream      Downstream        Network      Directional Destination  Destination Number            Node          Node        on this Link  Preference    Nodes        Capacity 8185          4,500 3              3            953              308            SW        8006          6,750 8543          2,800 256            129            130              14            SE        8135          1,700 8135          1,700 409            219            642              99            E        8021          1,700 8049          1,700 8006          6,750 513            282            274              34            SW        8185          4,500 8543          2,800 8185          4,500 628            352            356              41            SW        8010          6,750 8006          6,750 8010          6,750 800            463            464              102            SW        8006          6,750 8011          1,275 8630          1,700 960            569            628              31            S 8801          1,700 8135          1,700 1100            672            673                6            E        8630          1,700 8801          1,700 1267            800            206              72            SE        8135          1,700 8006          6,750 1482            968            966              105            SW        8010          6,750 8185          4,500 Robert E. Ginna Nuclear Power Plant                  J2                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
Table J2. Selected Model Outputs for the Evacuation of the Entire EPZ (Region R03)
Scenario                                1        2          3          4          5          6          7 NetworkWide Average                  2.0      2.5        2.0        2.6        1.6        1.9        2.5 Travel Time (Min/VehMi)
NetworkWide Delay                    0.8      1.4        0.9        1.4        0.4        0.8        1.4 Time (Min/VehMi)
NetworkWide Average                  30.5      23.9      29.9      23.4        38.3      31.1      23.7 Speed (mph)
Total Vehicles                      72,267  72,354      68,613    68,583      57,492    72,171    72,414 Exiting Network Scenario                                8        9        10        11          12        13        14 NetworkWide Average                  2.9      1.9        2.5        2.8        1.5        2.1        2.3 Travel Time (Min/VehMi)
NetworkWide Delay                    1.7      0.8        1.4        1.6        0.4        1.0        1.1 Time (Min/VehMi)
NetworkWide Average                  20.8      31.0      23.9      21.5        39.5      28.4      26.2 Speed (mph)
Total Vehicles                      72,769  68,089      67,956    68,639      56,714    69,160    72,753 Exiting Network Table J3. Average Speed (mph) and Travel Time (min) for Major Evacuation Routes (Region R03, Scenario 1)
Elapsed Time (hours) 1:00              2:00              3:00              3:55 Travel Length Speed      Time              Travel              Travel          Travel Route Name            (miles) (mph)    (min) Speed Time Speed Time Speed Time SR 104 Eastbound          20.4    52.2      23.4      45.1    27.1      61.4      19.9    69.6    17.6 SR 104 Westbound          20.4    50.4      24.3      52.1    23.5      66.2      18.5    69.6    17.6 SR 250 Southbound            4.6    39.4      7.1      22.2    12.5      45.7      6.1    49.9    5.6 SR 350 Southbound            6.2    55.6      6.7      52.6    7.1      53.0      7.0    57.7    6.4 SR 21 Southbound            6.4    48.1      8.0      47.5    8.1      48.4      7.9    50.5    7.6 SR 286 Westbound            7.2    49.3      8.8      49.4    8.8      56.6      7.7    58.6    7.4 Robert E. Ginna Nuclear Power Plant                    J3                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                    Rev. 0
 
Table J4. Simulation Model Outputs at Network Exit Links for Region R03, Scenario 1 Elapsed Time (hours)
Network            Upstream    Downstream          1:00          2:00            3:00            3:55 Exit Link            Node          Node          Cumulative Vehicles Discharged by the Indicated Time Cumulative Percent of Vehicles Discharged by the Indicated Time Interval CR312                                            179            837            1,259            1,305 85          630 Southbound                                            1%            2%              2%              2%
268          1,065          1,785            1,882 SR21 Southbound              87          801 2%            3%              3%              3%
Victor Rd                                            95          1,382          2,956            3,590 575          627 Southbound                                            1%            4%              5%              5%
Canandaigua Rd                                          145            511            776              816 628          629 Southbound                                            1%            1%              1%              1%
SR250                                            154            811            1,762            2,089 937          279 Southbound                                            1%            2%              3%              3%
1,922          5,799          9,641          11,025 SR104 Westbound              1118          1501 15%            15%            15%              15%
Lake Ontario State                                          26            311            532              575 1164          1163 Pkwy Westbound                                              0%            1%              1%              1%
3,906          8,733          13,428          15,924 I490 Westbound            1219          1221 30%            23%            21%              22%
Lyell Ave                                            21            250            446              494 1302          1303 Westbound                                              0%            1%              1%              1%
34            377            594              646 SR31 Westbound              1331          1332 0%            1%              1%              1%
Clover St                                            12            196            408              439 1485          1103 Southbound                                            0%            1%              1%              1%
273          1,652          3,313            3,998 SR88 Southbound            1523          1525 2%            4%              5%              6%
736          2,011          3,187            3,433 SR104 Eastbound            1530          49 6%            5%              5%              5%
166            553            826              848 SR14 Southbound            1530          1536 1%            1%              1%              1%
Ridge Rd                                            149            852            1,218            1,232 1531          679 Eastbound                                            1%            2%              2%              2%
802          4,119          7,943            8,796 I390 Westbound            1539          1484 6%            11%            13%              12%
Winton Rd                                            92            731            1,220            1,296 1542          1543 Southbound                                            1%            2%              2%              2%
3,909          8,011          12,061          13,881 I490 Eastbound            1556          185 30%            21%            19%              19%
Robert E. Ginna Nuclear Power Plant                    J4                                  KLD Engineering, P.C.
Evacuation Time Estimate                                                                                  Rev. 0
 
Figure J1. Network Sources/Origins Robert E. Ginna Nuclear Power Plant                J5                KLD Engineering, P.C.
Evacuation Time Estimate                                                              Rev. 0
 
ETE and Trip Generation Summer, Midweek, Midday, Good (Scenario 1)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30      1:00      1:30      2:00      2:30        3:00  3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J2. ETE and Trip Generation: Summer, Midweek, Midday, Good Weather (Scenario 1)
ETE and Trip Generation Summer, Midweek, Midday, Rain (Scenario 2)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30      1:00      1:30      2:00      2:30        3:00  3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J3. ETE and Trip Generation: Summer, Midweek, Midday, Rain (Scenario 2)
Robert E. Ginna Nuclear Power Plant                                            J6                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
ETE and Trip Generation Summer, Weekend, Midday, Good (Scenario 3)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30      1:00      1:30      2:00      2:30        3:00  3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J4. ETE and Trip Generation: Summer, Weekend, Midday, Good Weather (Scenario 3)
ETE and Trip Generation Summer, Weekend, Midday, Rain (Scenario 4)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30      1:00      1:30      2:00      2:30        3:00  3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J5. ETE and Trip Generation: Summer, Weekend, Midday, Rain (Scenario 4)
Robert E. Ginna Nuclear Power Plant                                          J7                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
ETE and Trip Generation Summer, Midweek, Weekend, Evening, Good (Scenario 5)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00  0:30      1:00      1:30    2:00      2:30        3:00  3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J6. ETE and Trip Generation: Summer, Midweek, Weekend, Evening, Good Weather (Scenario 5)
ETE and Trip Generation Winter, Midweek, Midday, Good (Scenario 6)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00  0:30      1:00      1:30    2:00      2:30        3:00  3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J7. ETE and Trip Generation: Winter, Midweek, Midday, Good Weather (Scenario 6)
Robert E. Ginna Nuclear Power Plant                                        J8                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                      Rev. 0
 
ETE and Trip Generation Winter, Midweek, Midday, Rain/Light Snow (Scenario 7)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30      1:00          1:30      2:00      2:30        3:00          3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J8. ETE and Trip Generation: Winter, Midweek, Midday, Rain/Light Snow (Scenario 7)
ETE and Trip Generation Winter, Midweek, Midday, Heavy Snow (Scenario 8)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30    1:00      1:30    2:00      2:30    3:00      3:30      4:00      4:30    5:00    5:30 Elapsed Time (h:mm)
Figure J9. ETE and Trip Generation: Winter, Midweek, Midday, Heavy Snow (Scenario 8)
Robert E. Ginna Nuclear Power Plant                                                  J9                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
ETE and Trip Generation Winter, Weekend, Midday, Good (Scenario 9)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00  0:30      1:00      1:30      2:00      2:30        3:00  3:30      4:00        4:30 Elapsed Time (h:mm)
Figure J10. ETE and Trip Generation: Winter, Weekend, Midday, Good Weather (Scenario 9)
ETE and Trip Generation Winter, Weekend, Midday, Rain/Light Snow (Scenario 10)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00  0:30      1:00      1:30      2:00      2:30        3:00  3:30      4:00        4:30 Elapsed Time (h:mm)
Figure J11. ETE and Trip Generation: Winter, Weekend, Midday, Rain/Light Snow (Scenario 10)
Robert E. Ginna Nuclear Power Plant                                        J10                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                      Rev. 0
 
ETE and Trip Generation Winter, Weekend, Midday, Heavy Snow (Scenario 11)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00  0:30    1:00      1:30    2:00      2:30    3:00      3:30      4:00      4:30    5:00    5:30 Elapsed Time (h:mm)
Figure J12. ETE and Trip Generation: Winter, Weekend, Midday, Heavy Snow (Scenario 11)
ETE and Trip Generation Winter, Midweek, Weekend, Evening, Good (Scenario 12)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30      1:00          1:30      2:00      2:30        3:00          3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J13. ETE and Trip Generation: Winter, Midweek, Weekend, Evening, Good Weather (Scenario 12)
Robert E. Ginna Nuclear Power Plant                                                J11                                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                                    Rev. 0
 
ETE and Trip Generation Summer, Weekend, Midday, Good, Special Event (Scenario 13)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30  1:00  1:30    2:00      2:30        3:00  3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J14. ETE and Trip Generation: Summer, Weekend, Midday, Good Weather, Special Event (Scenario 13)
ETE and Trip Generation Summer, Midweek, Midday, Good, Roadway Impact (Scenario 14)
Trip Generation          ETE 100%
Percent of Total Vehicles 80%
60%
40%
20%
0%
0:00    0:30  1:00  1:30    2:00      2:30        3:00  3:30      4:00      4:30 Elapsed Time (h:mm)
Figure J15. ETE and Trip Generation: Summer, Midweek, Midday, Good Weather, Roadway Impact (Scenario 14)
Robert E. Ginna Nuclear Power Plant                                  J12                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                Rev. 0
 
APPENDIX K Evacuation Roadway Network
 
K. EVACUATION ROADWAY NETWORK As discussed in Section 1.3, a linknode analysis network was constructed to model the roadway network within the study area. Figure K1 provides an overview of the linknode analysis network. The figure has been divided up into 64 more detailed figures (Figure K2 through Figure K65) which show each of the links and nodes in the network.
The analysis network was calibrated using the observations made during the field surveys conducted in November 2020.
Table K1 summarizes the number of nodes by the type of control (stop sign, yield sign, pre timed signal, actuated signal, Traffic Control Point [TCP]/Access Control Point [ACP] and uncontrolled).
Table K1. Summary of Nodes by the Type of Control Number of Control Type        Nodes Uncontrolled        844 Pretimed          1 Actuated        430 Stop        150 TCP/ACP          50 Yield        24 Total:      1,499 Robert E. Ginna Nuclear Power Plant                K1                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K1. Ginna LinkNode Analysis Network Robert E. Ginna Nuclear Power Plant                      K2                    KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Figure K2. LinkNode Analysis Network - Grid 1 Robert E. Ginna Nuclear Power Plant                  K3                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K3. LinkNode Analysis Network - Grid 2 Robert E. Ginna Nuclear Power Plant                  K4                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K4. LinkNode Analysis Network - Grid 3 Robert E. Ginna Nuclear Power Plant                  K5                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K5. LinkNode Analysis Network - Grid 4 Robert E. Ginna Nuclear Power Plant                  K6                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K6. LinkNode Analysis Network - Grid 5 Robert E. Ginna Nuclear Power Plant                  K7                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K7. LinkNode Analysis Network - Grid 6 Robert E. Ginna Nuclear Power Plant                  K8                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K8. LinkNode Analysis Network - Grid 7 Robert E. Ginna Nuclear Power Plant                  K9                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K9. LinkNode Analysis Network - Grid 8 Robert E. Ginna Nuclear Power Plant                K10                      KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K10. LinkNode Analysis Network - Grid 9 Robert E. Ginna Nuclear Power Plant                K11                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K11. LinkNode Analysis Network - Grid 10 Robert E. Ginna Nuclear Power Plant                K12                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K12. LinkNode Analysis Network - Grid 11 Robert E. Ginna Nuclear Power Plant                K13                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K13. LinkNode Analysis Network - Grid 12 Robert E. Ginna Nuclear Power Plant                K14                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K14. LinkNode Analysis Network - Grid 13 Robert E. Ginna Nuclear Power Plant                K15                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K15. LinkNode Analysis Network - Grid 14 Robert E. Ginna Nuclear Power Plant                K16                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K16. LinkNode Analysis Network - Grid 15 Robert E. Ginna Nuclear Power Plant                K17                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K17. LinkNode Analysis Network - Grid 16 Robert E. Ginna Nuclear Power Plant                K18                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K18. LinkNode Analysis Network - Grid 17 Robert E. Ginna Nuclear Power Plant                K19                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K19. LinkNode Analysis Network - Grid 18 Robert E. Ginna Nuclear Power Plant                K20                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K20. LinkNode Analysis Network - Grid 19 Robert E. Ginna Nuclear Power Plant                K21                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K21. LinkNode Analysis Network - Grid 20 Robert E. Ginna Nuclear Power Plant                K22                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K22. LinkNode Analysis Network - Grid 21 Robert E. Ginna Nuclear Power Plant                K23                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K23. LinkNode Analysis Network - Grid 22 Robert E. Ginna Nuclear Power Plant                K24                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K24. LinkNode Analysis Network - Grid 23 Robert E. Ginna Nuclear Power Plant                K25                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K25. LinkNode Analysis Network - Grid 24 Robert E. Ginna Nuclear Power Plant                K26                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K26. LinkNode Analysis Network - Grid 25 Robert E. Ginna Nuclear Power Plant                K27                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K27. LinkNode Analysis Network - Grid 26 Robert E. Ginna Nuclear Power Plant                K28                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K28. LinkNode Analysis Network - Grid 27 Robert E. Ginna Nuclear Power Plant                K29                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K29. LinkNode Analysis Network - Grid 28 Robert E. Ginna Nuclear Power Plant                K30                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K30. LinkNode Analysis Network - Grid 29 Robert E. Ginna Nuclear Power Plant                K31                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K31. LinkNode Analysis Network - Grid 30 Robert E. Ginna Nuclear Power Plant                K32                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K32. LinkNode Analysis Network - Grid 31 Robert E. Ginna Nuclear Power Plant                K33                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K33. LinkNode Analysis Network - Grid 32 Robert E. Ginna Nuclear Power Plant                K34                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K34. LinkNode Analysis Network - Grid 33 Robert E. Ginna Nuclear Power Plant                K35                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K35. LinkNode Analysis Network - Grid 34 Robert E. Ginna Nuclear Power Plant                K36                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K36. LinkNode Analysis Network - Grid 35 Robert E. Ginna Nuclear Power Plant                K37                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K37. LinkNode Analysis Network - Grid 36 Robert E. Ginna Nuclear Power Plant                K38                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K38. LinkNode Analysis Network - Grid 37 Robert E. Ginna Nuclear Power Plant                K39                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K39. LinkNode Analysis Network - Grid 38 Robert E. Ginna Nuclear Power Plant                K40                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K40. LinkNode Analysis Network - Grid 39 Robert E. Ginna Nuclear Power Plant                K41                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K41. LinkNode Analysis Network - Grid 40 Robert E. Ginna Nuclear Power Plant                K42                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K42. LinkNode Analysis Network - Grid 41 Robert E. Ginna Nuclear Power Plant                K43                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K43. LinkNode Analysis Network - Grid 42 Robert E. Ginna Nuclear Power Plant                K44                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K44. LinkNode Analysis Network - Grid 43 Robert E. Ginna Nuclear Power Plant                K45                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K45. LinkNode Analysis Network - Grid 44 Robert E. Ginna Nuclear Power Plant                K46                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K46. LinkNode Analysis Network - Grid 45 Robert E. Ginna Nuclear Power Plant                K47                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K47. LinkNode Analysis Network - Grid 46 Robert E. Ginna Nuclear Power Plant                K48                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K48. LinkNode Analysis Network - Grid 47 Robert E. Ginna Nuclear Power Plant                K49                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K49. LinkNode Analysis Network - Grid 48 Robert E. Ginna Nuclear Power Plant                K50                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K50. LinkNode Analysis Network - Grid 49 Robert E. Ginna Nuclear Power Plant                K51                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K51. LinkNode Analysis Network - Grid 50 Robert E. Ginna Nuclear Power Plant                K52                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K52. LinkNode Analysis Network - Grid 51 Robert E. Ginna Nuclear Power Plant                K53                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K53. LinkNode Analysis Network - Grid 52 Robert E. Ginna Nuclear Power Plant                K54                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K54. LinkNode Analysis Network - Grid 53 Robert E. Ginna Nuclear Power Plant                K55                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K55. LinkNode Analysis Network - Grid 54 Robert E. Ginna Nuclear Power Plant                K56                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K56. LinkNode Analysis Network - Grid 55 Robert E. Ginna Nuclear Power Plant                K57                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K57. LinkNode Analysis Network - Grid 56 Robert E. Ginna Nuclear Power Plant                K58                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K58. LinkNode Analysis Network - Grid 57 Robert E. Ginna Nuclear Power Plant                K59                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K59. LinkNode Analysis Network - Grid 58 Robert E. Ginna Nuclear Power Plant                K60                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K60. LinkNode Analysis Network - Grid 59 Robert E. Ginna Nuclear Power Plant                K61                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K61. LinkNode Analysis Network - Grid 60 Robert E. Ginna Nuclear Power Plant                K62                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K62. LinkNode Analysis Network - Grid 61 Robert E. Ginna Nuclear Power Plant                K63                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K63. LinkNode Analysis Network - Grid 62 Robert E. Ginna Nuclear Power Plant                K64                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K64. LinkNode Analysis Network - Grid 63 Robert E. Ginna Nuclear Power Plant                K65                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
Figure K65. LinkNode Analysis Network - Grid 64 Robert E. Ginna Nuclear Power Plant                K66                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                    Rev. 0
 
APPENDIX L ERPA Boundaries
 
L. ERPA BOUNDARIES ERPA M1            County: Monroe Defined as the area within the following boundary: The section of the Town of Webster bounded on the north by Lake Ontario, on the east by the Monroe Wayne County Line, to Route 104 on the south; to Salt Road north to Schlegel Road west to Route 250, north to Lake Ontario.
ERPA M2            County: Monroe Defined as the area within the following boundary: The section of the Town of Webster and the Town of Penfield bounded on the north by Route 104, on the east by the MonroeWayne County Line, on the south by Plank Road, and on the west by Salt Road.
ERPA M3            County: Monroe Defined as the area within the following boundary: The section of the Town of Webster bounded on the north by Schlegel Road, on the east by Salt Road, on the south by Route 104, and on the west by Route 250.
ERPA M4            County: Monroe Defined as the area within the following boundary: The section of the Town of Webster and the Town of Penfield bounded on the north by Route 104, on the east by Salt Road, on the south by Plank Road, and on the west by both Jackson and Holt Roads.
ERPA M5            County: Monroe Defined as the area within the following boundary: The section of the Town of Penfield bounded on the north by Plank Road, on the east by the MonroeWayne County Line, on the south by Sweets Corners Road, and on the west by Route 250, Penfield Center Road and Jackson Road to Plank Road.
ERPA M6            County: Monroe Defined as the area within the following boundary: The section of the Town of Webster bounded on the north by Lake Ontario, on the east by Route 250, on the south by Route 104, and on the west by Hard, Klem and Whiting Roads.
ERPA M7            County: Monroe Defined as the area within the following boundary: The section of the Town of Webster and the Town of Penfield bounded on the north by Route 104, on the east by both Jackson and Holt Roads, on the south by Plank Road and on the west by Hatch Road to Ridge Road to Gravel Road.
Robert E. Ginna Nuclear Power Plant              L1                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
ERPA M8            County: Monroe Defined as the area within the following boundary: The section of the Town of Webster bounded on the north by Lake Ontario, on the east by Whiting Road, on the south by Klem Road, and on the west by Bay Road.
ERPA M9            County: Monroe Defined as the area within the following boundary: The section of the Town of Webster bounded on the north by Klem Road, on the east by Hard Road, on the south by Route 104, and on the west by Maple Drive.
ERPA MLake        County: Monroe Defined as the area within the following boundary: The section of Lake Ontario bounded in the water by a 10mile radius from the R.E. Ginna Nuclear Power Plant and west of the MonroeWayne County Line Road, which is extended north to the intersection point with the 10mile radius.
ERPA W1            County: Wayne Defined as the area within the following boundary: The section of the Town of Ontario north of Berg Road and Kenyon Road.
ERPA W2            County: Wayne Defined as the area within the following boundary: The section of the Town of Ontario south of Berg Road and Kenyon Road.
ERPA W3            County: Wayne Defined as the area within the following boundary: The northwest section of the Town of Williamson west of Salmon Creek Road and north of Ridge Road.
ERPA W4            County: Wayne Defined as the area within the following boundary: The northeast section of the Town of Williamson east of Salmon Creek Road and north of the OntarioMidland Railroad (along Route 104), and the Town of Sodus west of North Centenary Road and north of the OntarioMidland Railroad (along Route 104).
ERPA W5            County: Wayne Defined as the area within the following boundary: The Town of Williamson south of the Ontario Midland Railroad (along Route 104), and a small part of the Town of Sodus south of the Ontario Midland Railroad and west of Richardson Road.
Robert E. Ginna Nuclear Power Plant              L2                          KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
ERPA W6            County: Wayne Defined as the area within the following boundary: The northwest portion of the Town of Marion north of WalworthMarion Road and west of MarionEast Williamson Road.
ERPA W7            County: Wayne Defined as the area within the following boundary: All of the Town of Walworth north of Route 441 and PenfieldWalworth Road, including the Hamlet of Walworth. except for a small part north of Route 441 south of Bills Road and west of Stalker Road.
ERPA WLake        County: Wayne Defined as the area within the following boundary: The section of the Lake 10 miles around Ginna on the Lake Ontario side of the plant. The Easternmost border follows an arc starting in the vicinity of North Centenary Road and extends to a point in the arc that is roughly in line with County Line Road in Ontario.
Robert E. Ginna Nuclear Power Plant                L3                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
APPENDIX M Evacuation Sensitivity Studies
 
M. EVACUATION SENSITIVITY STUDIES This appendix presents the results of a series of sensitivity analyses. These analyses are designed to identify the sensitivity of the ETE to changes in some base evacuation conditions.
M.1 Effect of Changes in Trip Generation Times A sensitivity study was performed to determine whether changes in the estimated trip generation time have an effect on the ETE for the EPZ. Specifically, if the tail of the mobilization distribution were truncated (i.e., if those who responded most slowly to the Advisory to Evacuate (ATE), could be persuaded to respond much more rapidly) or if the tail were elongated (i.e., spreading out the departure of evacuees to limit the demand during peak times), how would the ETE be affected?
The case considered was Scenario 6, Region 3; a winter, midweek, midday, with good weather evacuation of the entire EPZ. Table M1 presents the results of this study.
If evacuees mobilize one hour quicker, the 90th percentile ETE is reduced by 25 minutes (a moderate change) and the 100th percentile ETE is reduced by 45 minutes (a significant change),
respectively. If evacuees mobilize one hour slower, the 90th and 100th percentile ETE are increased by 10 minutes (a slight change) and 1 hour (a significant change), respectively.
As discussed in Section 7.3, traffic congestion persists within the EPZ for about 3 hours after the ATE. As such, the ETE at the 100th percentile ETE are dictated by congestion instead of mobilization time when the trip generation is less 3 hours. However, when increasing the trip generation time, the 100th percentile ETE is again dictated by the increase in mobilization time and not by traffic congestion. In this case, the compression of trip generation time to 2 hours and 45 minutes reduces the 100th percentile ETE until the time that congestion clears as 2 hours and 45 minutes is less than 3 hours. The 90th percentile ETE, however, are relatively insensitive to truncating the tail of the mobilization time distribution.
M.2 Effect of Changes in the Number of People in the Shadow Region Who Relocate A sensitivity study was conducted to determine the effect on ETE of changes in the percentage of people who decide to relocate from the Shadow Region. The case considered was Scenario 6, Region 3; a winter, midweek, midday, with good weather evacuation for the entire EPZ. The movement of people in the Shadow Region has the potential to impede vehicles evacuating from an Evacuation Region within the EPZ. Refer to Section 3.2 and Section 7.1 for additional information on population within the Shadow Region.
Table M2 presents the ETE for each of the cases considered. The results show that eliminating (0%)
shadow evacuation reduces the 90th percentile ETE by 5 minutes and has no effect on the 100th percentile ETE. Doubling (40%), tripling (60%), and quadrupling (80%) the shadow evacuation has no effect on the 90th and 100th percentile ETE. A full shadow evacuation (100%) increases both the 90th and 100th percentile ETEs by 5 minutes.
Note the demographic survey results presented in Appendix F indicate that 13% of households would elect to evacuate if advised to shelter, which differs from the base assumption of 20% non Robert E. Ginna Nuclear Power Plant              M1                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                          Rev. 0
 
compliance suggested in the NUREG/CR7002, Rev. 1. A sensitivity study was run using 13% shadow evacuation and the 90th and 100th percentile ETE were not impacted.
The Shadow Region for Ginna Nuclear Plant includes suburbs of Rochester, East Rochester and Fairport. The roadway network to the west of the EPZ is extensive with several highcapacity interstate highways which can handle any additional demand from an increase in the number of residents that decide to voluntarily evacuate in the Shadow Region. The additional traffic demand and resultant queuing in the Shadow Region does not penetrate the EPZ boundary and does not significantly impact the ETE for the EPZ.
M.3 Effect of Changes in the Permanent Resident Population A sensitivity study was conducted to determine the effect on ETE due to changes in the permanent resident population within the study area (EPZ plus Shadow Region). As population in the study area changes over time, the time required to evacuate the public may increase, decrease, or remain the same. Since the ETE is related to the demand to capacity ratio present within the study area, changes in population will cause the demand side of the equation to change and could impact ETE.
As per the NRCs response to the Emergency Planning Frequently Asked Question (EPFAQ) 2013 001, the ETE population sensitivity study must be conducted to determine what percentage increase in permanent resident population causes an increase in the 90th percentile ETE of 25%
or 30 minutes, whichever is less. The sensitivity study must use the scenario with the longest 90th percentile ETE (excluding the roadway impact scenario and the special event scenario if it is a one day per year special event).
Thus, the sensitivity study was conducted using the following planning assumptions:
: 1. The percent change in population within the study area was increased by up to 53%.
Changes in population were applied to permanent residents only (as per federal guidance), in both the EPZ and the Shadow Region.
: 2. The transportation infrastructure (as presented in Appendix K) remained fixed; the presence of future proposed roadway changes and/or highway capacity improvements were not considered.
: 3. The study was performed for the 2Mile Region (R01), 5Mile Region (R02) and the Entire EPZ (R03).
The scenario (excluding roadway impact and special event) which yielded the longest 90th percentile ETE values was selected as the case to be considered in this sensitivity study (Scenario 8 - Winter, Midweek, Midday with Heavy Snow).
Table M3 presents the results of the sensitivity study. Section IV of Appendix E to 10 CFR Part 50, and NUREG/CR7002, Rev. 1, Section 5.4, require licensees to provide an updated ETE analysis to the NRC when a population increase within the EPZ causes the longest 90th percentile ETE values (for the 2Mile, 5Mile Region or entire EPZ) to increase by 25% or 30 minutes, whichever is less. The base ETE for the 2Mile Region (R01), 5Mile Region (R02) and for the Entire EPZ (R03) are greater than 2 hours; thus, 25% of these base ETE is always greater than 30 minutes.
Robert E. Ginna Nuclear Power Plant              M2                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                      Rev. 0
 
Therefore, the R01, R02, and R03 criterion for updating is 30 minutes.
Those percent population changes which result in changes to the longest 90th percentile ETE greater than or equal to 30 minutes are highlighted in red in Table M3 - a 53% or greater increase in the Entire EPZ permanent resident population (includes 20% of the Shadow Region permanent resident population). Constellation will have to estimate the full EPZ population on an annual basis. If the EPZ population increases by 53% or more, an updated ETE analysis will be needed.
M.4 Effect of Changes in Average Household Size As discussed in Appendix F, the average household size obtained from the results of the demographic survey is 3.03 persons per household. The 2020 Census indicates an average household size of 2.41 persons per household. The difference between the Census data and survey data is 26%, which exceeds the survey sampling error of 8.96%. It was decided that the estimated household size (3.03 persons per household) from the demographic survey results would be used in the ETE study. A sensitivity study was performed to determine how sensitive the ETE is to changes in the average household size. It should be noted that only permanent resident and shadow vehicles were changed for this sensitivity study. The case considered was Scenario 6 - a winter, midweek, midday, with good weather evacuation of the 2Mile Region (R01), 5Mile Region (R02), and the Entire EPZ (R03). Table M4 presents the results of this study.
As discussed in Sections 3.1 and 3.2, the permanent resident evacuating vehicles in the EPZ and in the Shadow Region are determined by dividing the 2020 Census population by the average household size, then multiplying by the average evacuating vehicles per household obtained from the demographic survey. Given that household size is in the denominator of the equation used to compute evacuating vehicles, decreasing the average household size by 26% increases the total number of permanent resident evacuating vehicles in the EPZ and in the Shadow Region by 26%.
The change in average household size increases the 90th percentile ETE by 5 minutes for the Entire EPZ (R03). This change is not significant, which is defined in the federal regulations as 25% or 30 minutes, whichever is less. The change in average household size does not impact ETE at the 100th percentile as the traffic congestion in the major population centers within the EPZ clears within about 3 hours and trip generation time dictates the ETE. The ETE for the 2Mile Region (R01) and 5 Mile Region (R02) are not impacted by the change in average household size.
M.5 Enhancements in Evacuation Time This appendix documents sensitivity studies on critical variables that could potentially impact ETE.
Possible improvements to ETE are further discussed below:
Compressing or prolonging the trip generation time by an hour significantly impacts the 100th percentile ETE since the trip generation time dictates ETE (Section M.1). Public outreach encouraging evacuees to mobilize more quickly or in a timely manner could decrease ETE.
Robert E. Ginna Nuclear Power Plant            M3                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Increasing the shadow evacuation percent has minimal impact on ETE (Section M.2).
Nonetheless, public outreach could be considered to inform those people within the EPZ (and potentially beyond the EPZ) that if they are not advised to evacuate, they should not.
Population growth results in more evacuating vehicles, which could significantly increase ETE (Section M.3). Decreasing the average household size (increasing the total number of evacuating vehicles) increases the 90th percentile ETE by up to 5 minutes (Section M.4).
Public outreach to encourage EPZ residents to carpool and evacuate as a family in a single vehicle could reduce the number of evacuating vehicles and could reduce ETE or offset the impact of population growth.
Robert E. Ginna Nuclear Power Plant            M4                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                        Rev. 0
 
Table M1. Evacuation Time Estimates for Trip Generation Sensitivity Study Trip Generation                                  Evacuation Time Estimate for Entire EPZ Period                              th 90 Percentile                              100th Percentile 2 Hours and 45 Minutes                              2:10                                        3:10 3 Hours and 45 Minutes (Base)                          2:35                                        3:55 4 Hours and 45 Minutes                              2:45                                        4:55 Table M2. Evacuation Time Estimates for Shadow Sensitivity Study Percent Shadow              Evacuating Shadow                      Evacuation Time Estimate for Entire EPZ Evacuation                      Vehicles1                    90th Percentile                  100th Percentile 0                              0                              2:30                            3:55 13 (Survey)                      10,451                            2:35                            3:55 20 (Base)                        16,078                            2:35                            3:55 40                          32,156                            2:35                            3:55 60                          64,312                            2:35                            3:55 80                          128,624                            2:35                            3:55 100                          257,248                            2:40                            4:00 Table M3. Evacuation Time Estimates for Variation with Population Change EPZ and 20%                                        Population Change Shadow Permanent            Base 51%                52%              53%
Resident Population          98,281          148,404          149,387          150,370 ETE (hrs:mins) for the 90th Percentile Population Change Region              Base 51%                52%              53%
2Mile radius (R01)        3:15            3:20              3:20              3:20 5Mile radius (R02)        3:15            3:15              3:15              3:15 Entire EPZ (R03)          3:20            3:45              3:45              3:50 th ETE (hrs:mins) for the 100 Percentile Population Change Region              Base 51%                52%              53%
2Mile radius (R01)        5:00            5:00              5:00              5:00 5Mile radius (R02)        5:05            5:05              5:05              5:05 Entire EPZ (R03)          5:10            5:20              5:25              5:25 1
The Evacuating Shadow Vehicles in Table M-2 represent the residents and employees who will spontaneously decide to relocate from the Shadow Region during the evacuation. The basis for the values shown is a 20% relocation of shadow residents along with a proportional percentage of shadow employees. See Section 6 for further discussion.
Robert E. Ginna Nuclear Power Plant                          M5                                        KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                  Rev. 0
 
Table M4. Evacuation Time Estimates for Change in Average Household Size Base Case Average          Sensitivity Case Household Size (3.03      Average Household EPZ and Shadow Evacuating people per          Size (2.41 people per Vehicles household)              household) 47,504      vehicles    59,725      vehicles th ETE (hrs:mins) for the 90 Percentile 2Mile Radius (R01)                      2:30                    2:30 5Mile Radius (R02)                      2:30                    2:30 Entire EPZ (R03)                      2:35                    2:40 th ETE (hrs:mins) for the 100 Percentile 2Mile Radius (R01)                      3:45                    3:45 5Mile Radius (R02)                      3:50                    3:50 Entire EPZ (R03)                      3:55                    3:55 Robert E. Ginna Nuclear Power Plant                  M6                                KLD Engineering, P.C.
Evacuation Time Estimate                                                                              Rev. 0
 
APPENDIX N ETE Criteria Checklist
 
N. ETE CRITERIA CHECKLIST Table N1. ETE Review Criteria Checklist Addressed in ETE NRC Review Criteria                                                                Comments Analysis (Yes/No/NA) 1.0 Introduction
: a. The emergency planning zone (EPZ) and surrounding area is                        Yes      Section 1 described.
: b. A map is included that identifies primary features of the site                  Yes      Figures 11, 31, 61 including major roadways, significant topographical features, boundaries of counties, and population centers within the EPZ.
: c. A comparison of the current and previous ETE is provided                        Yes      Table 13 including information similar to that identified in Table 11, ETE Comparison.
1.1 Approach
: a. The general approach is described in the report as outlined                      Yes      Section 1.1, Section 1.3, Appendix D, in Section 1.1, Approach.                                                              Table 11 1.2 Assumptions
: a. Assumptions consistent with Table 12, General                                  Yes      Section 2 Assumptions, of NUREG/CR7002 are provided and include the basis to support use.
1.3 Scenario Development
: a. The scenarios in Table 13, Evacuation Scenarios, are                          Yes      Section 6, Table 62 developed for the ETE analysis. A reason is provided for use of other scenarios or for not evaluating specific scenarios.
Robert E. Ginna Nuclear Power Plant                                  N1                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Addressed in ETE NRC Review Criteria                                                            Comments Analysis (Yes/No/NA) 1.4 Evacuation Planning Areas
: a. A map of the EPZ with emergency response planning areas                    Yes        Figure 31, Figure 61 (ERPAs) is included.
1.4.1 Keyhole Evacuation
: a. A table similar to Table 14 Evacuation Areas for a Keyhole              Yes        Table 61, Table 75, Table H1 Evacuation, is provided identifying the ERPAs considered for each ETE calculation by downwind direction.
1.4.2 Staged Evacuation
: a. The approach used in development of a staged evacuation is                Yes        Section 7.2 discussed.
: b. A table similar to Table 15, Evacuation Areas for a Staged              Yes        Table 61, Table 75, Table H1 Evacuation, is provided for staged evacuations identifying the ERPAs considered for each ETE calculation by downwind direction.
2.0 Demand Estimation
: a. Demand estimation is developed for the four population                    Yes        Section 3 groups (permanent residents of the EPZ, transients, special facilities, and schools).
2.1 Permanent Residents and Transient Population
: a. The U.S. Census is the source of the population values, or                Yes        Section 3.1 another credible source is provided.
: b. The availability date of the census data is provided.                      Yes        Section 3.1
: c. Population values are adjusted as necessary for growth to                  Yes        N/A  2020 used as the base year of the reflect population estimates to the year of the ETE.                                analysis Robert E. Ginna Nuclear Power Plant                              N2                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                      Rev. 0
 
Addressed in ETE NRC Review Criteria                                                              Comments Analysis (Yes/No/NA)
: d. A sector diagram, similar to Figure 21, Population by                      Yes        Figure 32 Sector, is included showing the population distribution for permanent residents.
2.1.1 Permanent Residents with Vehicles
: a. The persons per vehicle value is between 1 and 3 or                          Yes        Section 3.1 justification is provided for other values.
2.1.2 Transient Population
: a. A list of facilities that attract transient populations is                    Yes        Section 3.3, Table E5 and Table E6 included, and peak and average attendance for these facilities is listed. The source of information used to develop attendance values is provided.
: b. Major employers are listed.                                                  Yes        Section 3.4, Table E4
: c. The average population during the season is used, itemized                    Yes        Table 34, Table 35 and Appendix E and totaled for each scenario.                                                          itemize the peak transient population and employee estimates. These estimates are multiplied by the scenario specific percentages provided in Table 63 to estimate average transient population by scenario - see Table 64.
: d. The percentage of permanent residents assumed to be at                        Yes        Section 3.3 and Section 3.4 facilities is estimated.
: e. The number of people per vehicle is provided. Numbers may                    Yes        Section 3.3 and Section 3.4 vary by scenario, and if so, reasons for the variation are discussed.
Robert E. Ginna Nuclear Power Plant                                N3                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Addressed in ETE NRC Review Criteria                                                            Comments Analysis (Yes/No/NA)
: f. A sector diagram is included, similar to Figure 21,                        Yes        Figure 36 (transients) and Figure 38 Population by Sector, is included showing the population                            (employees) distribution for the transient population.
2.2 Transit Dependent Permanent Residents
: a. The methodology (e.g., surveys, registration programs) used                Yes        Section 3.6 to determine the number of transit dependent residents is discussed.
: b. The State and local evacuation plans for transit dependent                  Yes        Section 8.1 residents are used in the analysis.
: c. The methodology used to determine the number of people                      Yes        Section 3.9 with disabilities and those with access and functional needs who may need assistance and do not reside in special facilities is provided. Data from local/county registration programs are used in the estimate.
: d. Capacities are provided for all types of transportation                    Yes        Item 3 of Section 2.4 resources. Bus seating capacity of 50 percent is used or justification is provided for higher values.
: e. An estimate of the transit dependent population is provided.                Yes        Section 3.6, Table 37, Table 311
: f. A summary table showing the total number of buses,                          Yes        Table 312, Table 81 ambulances, or other transport assumed available to support evacuation is provided. The quantification of resources is detailed enough to ensure that double counting has not occurred.
Robert E. Ginna Nuclear Power Plant                              N4                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
Addressed in ETE NRC Review Criteria                                                                  Comments Analysis (Yes/No/NA) 2.3 Special Facility Residents
: a. Special facilities, including the type of facility, location, and              Yes        Table E3 lists all medical facilities by average population, are listed. Special facility staff is                                facility name, location, and average included in the total special facility population.                                        population. Staff estimates were not provided.
: b. The method of obtaining special facility data is discussed.                    Yes        Section 3.5
: c. An estimate of the number and capacity of vehicles assumed                      Yes        Table 36 available to support the evacuation of the facility is provided.
: d. The logistics for mobilizing specially trained staff (e.g.,                    Yes        Section 8.1 - under Evacuation of medical support or security support for prisons, jails, and                              Medical Facilities other correctional facilities) are discussed when appropriate.
There are no Correctional Facilities within the EPZ 2.4 Schools
: a. A list of schools including name, location, student                            Yes        Table 38, Table E1, Section 3.7 population, and transportation resources required to support the evacuation, is provided. The source of this information should be identified.
: b. Transportation resources for elementary and middle schools                      Yes        Section 3.7 are based on 100 percent of the school capacity.
: c. The estimate of high school students who will use personal                      Yes        Section 3.7 vehicle to evacuate is provided and a basis for the values used is given.
: d. The need for return trips is identified.                                        Yes        Section 8.1 Robert E. Ginna Nuclear Power Plant                                  N5                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                              Rev. 0
 
Addressed in ETE NRC Review Criteria                                                            Comments Analysis (Yes/No/NA) 2.5 Other Demand Estimate Considerations 2.5.1 Special Events
: a. A complete list of special events is provided including                    Yes        Section 3.8 information on the population, estimated duration, and season of the event.
: b. The special event that encompasses the peak transient                      Yes        Section 3.8 population is analyzed in the ETE.
: c. The percentage of permanent residents attending the event                  Yes        Section 3.8 is estimated.
2.5.2 Shadow Evacuation
: a. A shadow evacuation of 20 percent is included consistent                  Yes        Item 7 of Section 2.2, Figure 21 and with the approach outlined in Section 2.5.2, Shadow                                Figure 71, Section 3.2 Evacuation.
: b. Population estimates for the shadow evacuation in the                      Yes        Section 3.2, Table 33, Figure 34 shadow region beyond the EPZ are provided by sector.
: c. The loading of the shadow evacuation onto the roadway                      Yes        Section 5 - Table 59 (footnote) network is consistent with the trip generation time generated for the permanent resident population.
2.5.3 Background and Pass Through Traffic
: a. The volume of background traffic and passthrough traffic is              Yes        Section 3.10 and Section 3.11 based on the average daytime traffic. Values may be reduced for nighttime scenarios.
Robert E. Ginna Nuclear Power Plant                              N6                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
Addressed in ETE NRC Review Criteria                                                              Comments Analysis (Yes/No/NA)
: b. The method of reducing background and passthrough traffic                    Yes        Section 2.2 - Assumptions 10 and 12 is described.                                                                          Section 2.5 Section 3.10 and Section 3.11 Table 63 - External Through Traffic footnote
: c. Passthrough traffic is assumed to have stopped entering the                  Yes        Section 2.5 EPZ about two (2) hours after the initial notification.
2.6 Summary of Demand Estimation
: a. A summary table is provided that identifies the total                        Yes        Table 311, Table 312, and Table 64 populations and total vehicles used in the analysis for permanent residents, transients, transit dependent residents, special facilities, schools, shadow population, and passthrough demand in each scenario.
3.0 Roadway Capacity
: a. The method(s) used to assess roadway capacity is discussed.                  Yes        Section 4 3.1 Roadway Characteristics
: a. The process for gathering roadway characteristic data is                      Yes        Section 1.3, Appendix D described including the types of information gathered and how it is used in the analysis.
: b. Legible maps are provided that identify nodes and links of                    Yes        Appendix K the modeled roadway network similar to Figure A1, Roadway Network Identifying Nodes and Links, and Figure A2, Grid Map Showing Detailed Nodes and Links.
Robert E. Ginna Nuclear Power Plant                                N7                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Addressed in ETE NRC Review Criteria                                                              Comments Analysis (Yes/No/NA) 3.2 Model Approach
: a. The approach used to calculate the roadway capacity for the                  Yes        Section 4 transportation network is described in detail, and the description identifies factors that are expressly used in the modeling.
: b. Route assignment follows expected evacuation routes and                      Yes        Appendix B and Appendix C traffic volumes.
: c. A basis is provided for static route choices if used to assign              N/A        Static route choices are not used to evacuation routes.                                                                    assign evacuation routes. Dynamic traffic assignment is used.
: d. Dynamic traffic assignment models are described including                    Yes        Appendix B and Appendix C calibration of the route assignment.
3.3 Intersection Control
: a. A list that includes the total numbers of intersections                      Yes        Table K1 modeled that are unsignalized, signalized, or manned by response personnel is provided.
: b. The use of signal cycle timing, including adjustments for                    Yes        Section 4, Appendix G manned traffic control, is discussed.
3.4 Adverse Weather
: a. The adverse weather conditions are identified.                              Yes        Assumption 2 and 3 of Section 2.6
: b. The speed and capacity reduction factors identified in Table                Yes        Table 22 31, Weather Capacity Factors, are used or a basis is provided for other values, as applicable to the model.
: c. The calibration and adjustment of driver behavior models for                N/A        Driver behavior is not adjusted for adverse weather conditions are described, if applicable.                              adverse weather conditions.
Robert E. Ginna Nuclear Power Plant                                N8                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Addressed in ETE NRC Review Criteria                                                              Comments Analysis (Yes/No/NA)
: d. The effect of adverse weather on mobilization is considered                  Yes        Table 22 and assumptions for snow removal on streets and driveways are identified, when applicable.
4.0 Development of Evacuation Times 4.1 Traffic Simulation Models
: a. General information about the traffic simulation model used                  Yes        Section 1.3, Table 13, Appendix B, in the analysis is provided.                                                          Appendix C
: b. If a traffic simulation model is not used to perform the ETE                N/A        Not applicable since a traffic simulation calculation, sufficient detail is provided to validate the                            model was used.
analytical approach used.
4.2 Traffic Simulation Model Input
: a. Traffic simulation model assumptions and a representative                    Yes        Section 2, Appendix J set of model inputs are provided.
: b. The number of origin nodes and method for distributing                      Yes        Appendix J, Appendix C vehicles among the origin nodes are described.
: c. A glossary of terms is provided for the key performance                      Yes        Appendix A measures and parameters used in the analysis.
4.3 Trip Generation Time
: a. The process used to develop trip generation times is                        Yes        Section 5 identified.
: b. When surveys are used, the scope of the survey, area of the                  Yes        Appendix F survey, number of participants, and statistical relevance are provided.
: c. Data used to develop trip generation times are summarized.                  Yes        Appendix F, Section 5 Robert E. Ginna Nuclear Power Plant                                N9                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Addressed in ETE NRC Review Criteria                                                            Comments Analysis (Yes/No/NA)
: d. The trip generation time for each population group is                      Yes        Section 5 developed from sitespecific information.
: e. The methods used to reduce uncertainty when developing                    Yes        Appendix F trip generation times are discussed, if applicable.
4.3.1 Permanent Residents and Transient Population
: a. Permanent residents are assumed to evacuate from their                    Yes        Section 5 discusses trip generation for homes but are not assumed to be at home at all times. Trip                          households with and without returning generation time includes the assumption that a percentage                            commuters. Table 63 presents the of residents will need to return home before evacuating.                            percentage of households with returning commuters and the percentage of households either without returning commuters or with no commuters. Appendix F presents the percent households who will await the return of commuters. Section 2.3, Assumption 3
: b. The trip generation time accounts for the time and method                  Yes        Section 5 to notify transients at various locations.
: c. The trip generation time accounts for transients potentially              Yes        Section 5, Figure 51 returning to hotels before evacuating.
: d. The effect of public transportation resources used during                  Yes        Section 3.8 special events where a large number of transients are                                Public Transportation is not provided expected is considered.                                                              for the special event and was therefore not considered.
Robert E. Ginna Nuclear Power Plant                              N10                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
Addressed in ETE NRC Review Criteria                                                              Comments Analysis (Yes/No/NA) 4.3.2 Transit Dependent Permanent Residents
: a. If available, existing and approved plans and bus routes are              N/A        Established bus routes do not exist.
used in the ETE analysis.                                                            Section 8.1 under Evacuation of Transit Dependent Population
: b. The means of evacuating ambulatory and nonambulatory                      Yes        Section 8.1 under Evacuation of Transit residents are discussed.                                                              Dependent Population, Section 8.2
: c. Logistical details, such as the time to obtain buses, brief                Yes        Section 8.1, Figure 81 drivers and initiate the bus route are used in the analysis.
: d. The estimated time for transit dependent residents to                      Yes        Section 8.1 under Evacuation of Transit prepare and then travel to a bus pickup point, including the                          Dependent Population expected means of travel to the pickup point, is described.
: e. The number of bus stops and time needed to load                            Yes        Section 8.1, Table 85 though Table 87 passengers are discussed.
: f. A map of bus routes is included.                                            Yes        Figure 102 and Figure 103
: g. The trip generation time for nonambulatory persons                        Yes        Section 8.2 including the time to mobilize ambulances or special vehicles, time to drive to the home of residents, time to load, and time to drive out of the EPZ, is provided.
: h. Information is provided to support analysis of return trips, if            Yes        Section 8.1 and 8.2 necessary.
4.3.3 Special Facilities
: a. Information on evacuation logistics and mobilization times is              Yes        Section 2.4, Section 8.1, Table 88 provided.                                                                            through Table 810 Robert E. Ginna Nuclear Power Plant                              N11                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0
 
Addressed in ETE NRC Review Criteria                                                              Comments Analysis (Yes/No/NA)
: b. The logistics of evacuating wheelchair and bed bound                          Yes        Section 8.1, Table 88 through Table 8 residents are discussed.                                                                10
: c. Time for loading of residents is provided.                                    Yes        Section 2.4, Section 8.1,Table 88 through Table 810
: d. Information is provided that indicates whether the                            Yes        Section 8.1 evacuation can be completed in a single trip or if additional trips are needed.
: e. Discussion is provided on whether special facility residents                  Yes        Section 8.1 are expected to pass through the reception center before being evacuated to their final destination.
: f. Supporting information is provided to quantify the time                      Yes        Section 8.1 elements for each trip, including destinations if return trips are needed.
4.3.4 Schools
: a. Information on evacuation logistics and mobilization times is                Yes        Section 2.4, Section 8.1, Table 82 provided.                                                                              through Table 84
: b. Time for loading of students is provided.                                    Yes        Section 2.4, Section 8.1, Table 82 through Table 84
: c. Information is provided that indicates whether the                            Yes        Section 8.1 evacuation can be completed in a single trip or if additional trips are needed.
: d. If used, reception centers should be identified. A discussion                Yes        Section 8.1, Table 104 is provided on whether students are expected to pass through the reception center before being evacuated to their final destination.
Robert E. Ginna Nuclear Power Plant                                N12                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Addressed in ETE NRC Review Criteria                                                                Comments Analysis (Yes/No/NA)
: e. Supporting information is provided to quantify the time                      Yes        Section 8.1, Table 82 through Table 84 elements for each trip, including destinations if return trips are needed.
4.4 Stochastic Model Runs
: a. The number of simulation runs needed to produce average                      N/A        DYNEV does not rely on simulation results is discussed.                                                                  averages or random seeds for statistical
: b. If one run of a single random seed is used to produce each                  N/A        confidence. For DYNEV/DTRAD, it is a ETE result, the report includes a sensitivity study on the 90                          mesoscopic simulation and uses percent and 100 percent ETE using 10 different random                                  dynamic traffic assignment model to seeds for evacuation of the full EPZ under Summer,                                      obtain the "average" (stable) network Midweek, Daytime, Normal Weather conditions.                                            work flow distribution. This is different from microscopic simulation, which is montecarlo random sampling by nature relying on different seeds to establish statistical confidence. Refer to Appendix B for more details.
4.5 Model Boundaries
: a. The method used to establish the simulation model                            Yes        Section 4.5 boundaries is discussed.
: b. Significant capacity reductions or population centers that                    Yes        Section 4.5 may influence the ETE and that are located beyond the evacuation area or shadow region are identified and included in the model, if needed.
Robert E. Ginna Nuclear Power Plant                                N13                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                            Rev. 0
 
Addressed in ETE NRC Review Criteria                                                              Comments Analysis (Yes/No/NA) 4.6 Traffic Simulation Model Output
: a. A discussion of whether the traffic simulation model used                    Yes        Appendix B must be in equilibration prior to calculating the ETE is provided.
: b. The minimum following model outputs for evacuation of the                    Yes            1. Appendix J, Table J2 entire EPZ are provided to support review:                                                  2. Table J2
: 1. Evacuee average travel distance and time.                                                3. Table J4
: 2. Evacuee average delay time.                                                              4. None and 0%. 100 percent ETE is
: 3. Number of vehicles arriving at each destination node.                                        based on the time the last
: 4. Total number and percentage of evacuee vehicles not                                          vehicle exits the evacuation exiting the EPZ.                                                                          zone
: 5. A plot that provides both the mobilization curve and                                    5. Figures J2 through J15 (one evacuation curve identifying the cumulative percentage                                    plot for each scenario of evacuees who have mobilized and exited the EPZ.                                        considered)
: 6. Average speed for each major evacuation route that exits                                6. Table J3 the EPZ.
: c. Color coded roadway maps are provided for various times                      Yes        Figure 73 through Figure 77 (e.g., at 2, 4, 6 hrs.) during a full EPZ evacuation scenario, identifying areas where congestion exists.
4.7 Evacuation Time Estimates for the General Public
: a. The ETE includes the time to evacuate 90 percent and 100                      Yes        Table 71 and Table 72 percent of the total permanent resident and transient population.
: b. Termination criteria for the 100 percent ETE are discussed, if              N/A        100 percent ETE is based on the time not based on the time the last vehicle exits the evacuation                            the last vehicle exits the evacuation zone.                                                                                  zone.
Robert E. Ginna Nuclear Power Plant                                N14                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                            Rev. 0
 
Addressed in ETE NRC Review Criteria                                                            Comments Analysis (Yes/No/NA)
: c. The ETE for 100 percent of the general public includes all                  Yes        Section 5.4.1 - truncating survey data members of the general public. Any reductions or truncated                            to eliminate statistical outliers data is explained.                                                                    Table 72 - 100th percentile ETE for general population
: d. Tables are provided for the 90 and 100 percent ETEs similar                Yes        Table 73 and Table 74 to Table 43, ETEs for a Staged Evacuation, and Table 44, ETEs for a Keyhole Evacuation.
: e. ETEs are provided for the 100 percent evacuation of special                Yes        Section 8 facilities, transit dependent, and school populations.
5.0 Other Considerations 5.1 Development of Traffic Control Plans
: a. Information that responsible authorities have approved the                  Yes        Section 9, Appendix G traffic control plan used in the analysis are discussed.
: b. Adjustments or additions to the traffic control plan that                  Yes        Section 9, Appendix G affect the ETE is provided.
5.2 Enhancements in Evacuation Time
: a. The results of assessments for enhancing evacuations are                    Yes        Appendix M provided.
5.3 State and Local Review
: a. A list of agencies contacted is provided and the extent of                  Yes        Table 11 interaction with these agencies is discussed.
Robert E. Ginna Nuclear Power Plant                              N15                                              KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                          Rev. 0
 
Addressed in ETE NRC Review Criteria                                                            Comments Analysis (Yes/No/NA)
: b. Information is provided on any unresolved issues that may                  Yes        Results of the ETE study were formally affect the ETE.                                                                      presented to state and local agencies at the final project meeting. Comments on the draft report were provided and were addressed in the final report.
There are no unresolved issues.
5.4 Reviews and Updates
: a. The criteria for when an updated ETE analysis is required to              Yes        Appendix M, Section M.3 be performed and submitted to the NRC is discussed.
5.4.1 Extreme Conditions
: a. The updated ETE analysis reflects the impact of EPZ                      N/A        This ETE is being updated as a result of conditions not adequately reflected in the scenario                                  the availability of US Census Bureau variations.                                                                          decennial census data.
5.5 Reception Centers and Congregate Care Center
: a. A map of congregate care centers and reception centers is                  Yes        Figure 104 provided.
Robert E. Ginna Nuclear Power Plant                              N16                                            KLD Engineering, P.C.
Evacuation Time Estimate                                                                                                        Rev. 0}}

Latest revision as of 03:45, 16 November 2024