ML20202F160: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:.
A,j . g.m a,je,v%
$  . e x. t        .
                  .w; e,          .
IAEA-Cl-36/484(111A)
REGULATORY REQUIREi4Ei;TS FOR RADIAT10M PROTECTION E. A. MASOM, R. E. CUMt;It:GHAM, J. E. HARD, R. J. MATTSON R. U. SN itt, ano n. 7. PET ERSON, JR.
U.S. Iluclear Regulatory Cor. mission Us'.k p r , D. C.
20555 United States of America
        . ABSTRACT diation have evolved and
        ' Regulatory requirements for protecting man from raDue to the wide adoption of reccmen natured over several decades.
the International Commi,ssion on Raciacion Prou mt: ('''M , there is inter-This national consistency in tne principles followed for radiation protection.
foundation will be increasingly important due to the growing need for inter-national agreements and stendards for radiation protection and radioactive materials management 25 the nuclear industry develops.
During the early years of the commercial nuclear industry, primary reliance was placed on the protection                                                                  of the individual, both in the work farce and as Uith the grcuth of nuclear power in the 1960's and a member of the public.
1970's, environmental impct assessments and expert reviews of bio-effects data have focused a~ttention on stati.stical risks to large population groups and the use of the collective dose commitment concept to estimate potential ef fects.#
The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the                                                                              l international d have          1cvel.
            .The initial development efforts for addressing these concerns a rea yHowever, f
        . been instituted by the ERP and the IAEA.
ment and a unified set of international standards may be required the recommendations of these groups.
of radiation protection are also called for in developing uaste                                                                              for fuel managemen tices and radioactive effluent control technology,                                                                                          hips and port of high-level wastes in various forms.
will be involved, it will be useful to reexamine dose-ef fect relationsImprov d
to develop explicit societal goals for health protection.
DENC              PDR a..      . - .
 
ra j
          .                                                                                                j
    '.                                                                                                    l l
I l
                                                                      .I AEA-CN-35/484 (IIIA)
REGULATO?.X REQUIREMEliTS FOR RADIATION PROTECTION                            I
                                .                                                                          i E. A. MASON, R. E. CU!211NGHAA, J. E. HARD, R. J. MATTSON R. D. SMITH, and H. T. PETERSON, JR.
i
                                                                                                          ~
U.S. Nuclent Regulatory Commission                                    l Washington, D. C. 20555                                          j United States of America l
INTP.00UCTION The application of r.eclear energy as an important source of elec is beccming a reality.
concerns no longer are restricted to a few localized developmental facilities but are international in scope. This scope is particularly appropriate for dis-l j
cussions of the nuclear fuel cycle,                                                              i l
Some of the radioactive materials associated with nuclear fuel cycle opera-            !
tions tend to be longer lived than the radionuclides of primary concern at power                i reactors (short-lived noble gases and radioiodines) and several o truly global pcilutants.ated fuel cycle and waste disposal operations              requires con Effluents lative and additive nature of releases from multiple source locations.
can move beyond national boundaries so that interna bodies of water which cross national boundaries.
These two f actors, the release of global pollutants, and the potentially cumulative and additive nature of releases from a multiplicity of sources, sug-gest that further international cooperation and agreement are needed on the f
p O
G
 
r
    . . .:. M. .
:.2 p'rinciple's for setting regulatory requirements for restrics.ng ef fluents from
    -      nuclear fuel cycleThis    facilities and for the siting of reprocessing and caste dis-need is further strengthened by the need for attention posal facilities.                                                                                    l to the statistical effects of radiation on large population groups.
l The developrent of standards for radiation protection traditionally has                    l evolved through internatier.al consensus.        This consensus has been achieved through multinational groups of experts such as the International Comission                          !
on Radiological Protection (ICRP) and througn the er. change of technical informa-tion at conferences sponsored by the IAEA and          Theother  organizations, fundarental approachessuch and as the      ;
International Radiction Protection Association.
reco=endations issued by the ICRP. have been employed in the develop :ent of                '
l '
national standards, such as the recommendations of the U.S. fiational Council on Radiation Protection and reasurements (UCRP), and for regulatiens The            issued by governmental agencies, such cs the U.S.' Muclear Regulatol
                                                                      ~
i mendations of the ICRP has resulted in a beneficial                international This uniformity can becomeuniformi'cy the        in the basic principles for radiation protection.                            l
          . foundation for further international agrecrents for radiation natro .
TliE EVOLUTION OF THE FA.GICAL BASIS FOR RADIATION PROTECT The earliest raditMu standards tere based upon acute observable injury, such as the recomendation of A. Mutscheller in 1925 [1] for a maximu.n doseA level based upon a fraction of the erythena dose.                                        ~
lation was limited to only a few researchers, this appeared to be a satisfactorv basis for protection. h ever, as more use was made of X-rays and radium in                  d medical treatment, research, and industrial applicctions, the size of the expose i
population grew and, consavently, the association bet                                              .
I protection.                                                                                        I The confirmation of the mutagenic properties of radiation by R. 4. Muller
[2] in 1927 added concern for protection against the production                  This        of mutj in order in the gene pool as a basis for the development of ra                                              I to limit the damage to future generations.                                                        l Ep'idemiological studies have given emphasis to the importance d i t of any              l tistical risks from radiation which, although small from the stan po n individml, are ex ., sed.
may result in potential health effects if large                h              ;
of Atomic Radiation (UNSEE',R), ilthe                                        British have been hs effects.
par-  U,e the U.S. Hational Acacemy of Sciences - National                                        i Re The growing body of information on radiation                  basis bioeffects for pro-        con that the current ICRP recer.mendations Despite the fact[3]  provide that        a satisfactory the hazards    of radiation and tection of the individual.
e O
 
_ _ _ __ R
                                                                      ,1..- ;;  .ca-7------------------~______
    - _ - _ _ _ _ _ - _ _ _ _ rad ioac th t*E'sn i i, c ri . i. , G-,,                                rid at loa doses agent or pollutant, that.                cill is uncertainty regarding Recent assessments [a,o] have cast doubt cn and its dependence uocn dose-rate.
the validity of linear cytrapolations of the dose-ef f :t colationships cbserved at high doses. Ho.,ever, in the absence of unequivocal evidence that a threshold dose exists below ..hich there is no biological damage, these low-level, low-dose-rate exposures still must be considered in setting regulatory requirements for radioactive material releases into the environment if large population groups would be expos 2d. Global physical dispersion processes prodre extreccly low radionuclide concentrations and, consequently, this will result in small individual cm delivered at very lou dose rates to large population groups. Thus, consideration of low-level doses is par:icularly important for those impacts of the re. dear fuel cycle which transcend national boundaries.                                                    1 This, however, is rot to say that the assumption of dose-effect linearity should                                                f be used to obtain realistic estimates of the p'ot:ntial biological damage to                                                    l 1
large population groups.                      .
l RECENT U.S. EXPERIEi!CE IT DEVELOPII;G REGULATORY REQUIRE:iEriTS FOR RAD DISCHARGES TO THE EfWIRDTOT Concurrent with the growing body of knowledge on radiation bioeffects, there has been a corres onding evolution of the methodology for setting radia ,_
tion protection criteria. Traditionally, basic radiation protection                        standards to individuals or have been expressed in terms of " maximum permissible doses"1Although "maximun permissible cenctntrations."                                                                                          !
the terminology "Radh.t%n Protection Guides" (as these dose levels are not always permissible nor are they "maxicum" doses for all circumstances), we do agree with the concept of setting upper exposure levels f : indiv                                              -
so.      The basic foundation for regulatory requirements specifying the upper                                      f bounds for individual ex nsures would, of course,'.S.                            be Hational the recommendations Cauncil._i              o ICRP [3] and those of related nationa' todies sr on Radiation Protectico. and P.easurements (i;CRP) [6].
14ethodology is evo'ivirig for imolementing the ICRP guidance that ex be kept as low as is readily achievable.ICRP Report No. 22 As{7] c: tails l
for noted,  further both in reductions ICRP Report            in radiation flo. 9 [3] and doce    below by the  !;CRPthe  [8],ICRP  there is recenend consicer difficulty in applying this approach in practice because                                of the uncertainties Considerable        further inherent in attempting to quantify the risks and benefits.
                  -    development is required in this area and should entail international                                          -
ef f experts in scientific and social disciplines.
ALARA, (or "as low as practicable", ALAP) has                                                                      }    b I
                          !!ote:    In the precise terminology of ICRP Report IJo. 9, the term " maximum                                d missible dose" is reserved for application of limits for ing routine exposures cf individual mecters of the public and population
                                                                                    -  3-b
                                  'wN -.  ,_
e
 
n U.S. tiuclear RegulatoryThe                  Cc=ission      andof itsthispredecessor concept followedagency', the U.
incorporation Energy Commission, since 1970.                                                                                                      l guidance issued by the former federal Radiation Council [9] (whose                                                I fun, are now carried out by the U.S. Environmental Protection Agency) mendations of the fiCRP.                        Specific design and operating requirements                                          l performed on a case-by-c3Se basis.for                                      meeting 3, 1970  [10].        the criterion "as lo water-reactors were initially publi~shed on December                                                              ,
ments did not specify numerical criteria defining ALAP.                                                          D The development of generic numerical criteria for levels                                    of radioactive to co=ents                r material in light-water rector effluents was initiated                                                The                in resp    '
conservation groups that farored9,1971                                        more    [11], definitive pro-issu-qua starting with the publication                                  of awhich, 1975[12],        proposedincidentally,rule        was on July
            ' ance of a final regulation in the Spring of                  l      Regulatory Commission
        ' ~ one of the first major decisions of the              new 19, 1975.t;uc    ear following its formation on January                                                                                                r The proposed critdrfa changed'several times in the                                    dropped course of th making proceeding as shown in Table I.                                                          i tions as being unnecessary for the implementation of individualwater on  radionuclide        cencentrations                in      air  and              dose restric      which Similarly, restrictions on the total quantity                                          dditional the of rad were dropped in favor of a cost-benefit analysis of the need for a controls to reduce populatica doses beyond the controls require individual of    effluent        dose limitations.
controls    until the incremental cost per 00                unitper reduction man-rem tive dose to the population within 50 miles (80 km) exceeds                                            d is                  $1,0T or $1,000 per man-thyroid-ren.                                                        f radiation balance point is an interin value which is believed                                                to be conserv slightly higher than previously published values                                          lower value    for the wor sures.
exposure reductions. dose is also an interim measure                                  i      f        as biological reducing for the worth of reductions in the thyroid dose                                          thanthefor whole b iterion than At present, we are attempting to define better                                              the monetary radiation exposures in order to provide a better decision cr                                                                    !
somewhat arbitrary $1,000 per man-rem valuei presently                                    d imple- used.
We have gained useful experience inperience                    the course  both for of develop      i menting these ALARA guidelines.                                i                                                              ,
What is "as low                        ,
point out the need for definitive                                l data from operat As major effluent se points become signifi-as practicable" cannot be determined without prac t be well characteri:cd.                                    l cant contributors to the estimated dose.not been
                                                                                                .i
                                                                                                    ?
* 4                                                            .
                      .ae..._
l l
v
 
e Evolution of NRC Guidelines' ft - "As low As is Reasonably Achievable" Levels of Radioactive                                                                                                                                j Table I. materials in Light-Water-CoolcJ fluclear Power Reactor Effluents, Commission Staff Concluding                                      Occision and                              -
Proposed Rule              S ta tement                                      Effective Rule
        -                    Publication                                                                                                                                      June 9,1971 [11]        February 20, 1974 [13]                                flay 5, 1975 [12]
Date                                                                                                                                                                    .
Annual Destbn Objectives Total Activity Released per reactor liquids (exclusive of                                                                                                                        5 curies per year      5 curies per year                                      deleted in lieu of tri tium)                                                                                                                                                                                                    requirement for cost-benefit evaluation radiciodine - 131                                                                                                                          Ho restriction          1 curie per year (airborne)                                                                                                                                                                                                                                a
                      .        Concentrations of                                                                                                                                                                                                                                    "
Radionuclides in                                                                                                                3          20 pCi per liter              deleted                                                              "
                              ,                    water (total less H)                                                                                                      5,000 pCi per liter (tritium)                                                                                            ,
Air: radiciodines and                                                                                                                        10-5 of 10 CFR Part 20 particulates                                                                            Appendix B, Table II, Column I concentrations see below                                                          see below 10 millirem per year noble gases S
(Continued)
 
t e
Evolution of NRC GuideTir es for "As low As-is Reasonably Achievable" Le'vels of R Table I. materials in Light-Water-Cooled Nuclear Power Reactor Effluents.                                                                                                                                          .
  !                                                                                                                                                                                      Commission                  , ,
Staff Concluding          Decision and l                                                                                                                                                              Statement            Effective Rule              ,
i                                                  proposed Rule                                                                                                                    May 5,1975 [12]
June 9, 1971 [11]                                                                        February 20, 1974 [13]                                                      ,
Publication                            -
Date                                                                                                                                                                                                  .
Annual Design Objectives _
Individual Doses from                                                                                                                                      5 millirem por      3 millirem per Liquid Effluents                          5 millirem per year                                                                                                                  reactor-year (total body)                                (site)                                                                                              year (site)      10 nillirem per 5 millirem per 5 millirem per year                                                                                                                  reactor-year (organ)                                                                                                                                          year (site) 10 millirad per      10 millirad per Noble gases                                                                                                                                                                    reactor-year year (site)
(ganna air dose)            .
20 millirad per 20 millirad per year (site)          reactor-year (beta air dose)                                                                                                                                5 millirem per      5 millirem per 5 millirem per year                                                                                                              reactor-year (total body dose)                                                                                                                                year (site)
(site)                                                                                        15 millirem per      15 millirem per reactor-year year (site)
(skin dose) 15 millirem per        15 millirem per Radiciodines & Parti-                        5 millirem per year year (site)            reactor-year
                      .culates (organ dose)                            (site)
Limiting Conditions for Operation                                                                                                                                                  one-half of the 2 times annual Design                                                                                  one-half of the            annual design annual design Licensee Action                                      objective                                                                                          objective in any      objective in any (one-half of the annual                                                                              calendar quarter      calendar quarter design objective in any calendar quarter)                                                                                              ,
4 times annual        not specified      ~
4-8 times annual                                                                                      design objective NRC Action                                        design objective
 
ertainties in the cost and performance                        ;
~. There of unproven are numerous  other ef fluent  sources ofsyste:r.s; treatment    u.          in the radionuclide composition,              maf tude, and physiochemical form of the fffluents; in the environmental transport models; and in the parcmeters for predicting dose that must be allowed for in establishing regulatory requirements based upon cost-effectiveness analyses.
Several approaches have been umployd in recent U.S. regulations to allow for the uncertainties in the theoretical        cost-effectiveness analyses of radio-In the MRC's development of ALARA effluent active waste treatment rfstems. limitations, we have specified the numerical guide and permit operating fitwibility above the annual dose des one-half of the annual design objective in a calendar quarter.
The cost-effectiveness of radioactive effluent control systems was also considered during the 6mlopme'nt                                    of the generally ap The EPA standards set forth by the U.S. Environractal Protection Agency [14].d l            in contrast to the
    . environmentally acceptable dose limits for indivi ua s,The annual dose limitt design objectives of Twendix I of 10 CFR Part 50.
established are were 25 millirem to the whole body, 75 millirem to the thy                          '
gland, and 25 millirem to any other organ from all operations                        l      (except m  ,
transportation, and waste disposal) in the light-water-reactor uranium fuej                            !
cycle. Departures frc'm theoretical predictions of effluent control system ef fectiveness and unex;ected operational difficuities in reaching or maint                            !
ing the required levels are accounted for by a variance provision                                  wh h
the regulatory agency (2C) to issue a temporary variance to operate abo                      ,
standards for limited periods of time necessary to correct the deficienci system operation.
We have had apprcximately two years experience in the implementatil the design objectives of Appendix I to 10 CFR Part 50.
by effluent measurements                combined This calculational approach          withbecause is used      environmental the radionuclidedispersii lation    models.
concentrations        in the environment which correspond to the design obje doses are so low that taasurements are difficult.                                                    l developed that describe the                              NRC License          staff's applicants may use models f fic site-and human intake, and equipment costs [15-19).other mod
      ' related conditions if they realistically depict actual physical processes.                            I t
resulted in major equipment additions                                                  beyond This is despite            !
systems required to meet the individual dose design                          id-rem h objectives.
the presumably conservative                                            but it can be Thisvalue was not oftotally
                                                                $1,000    per man-rem, expected                  or man-t y used as the balancing criterion.
explained.
The cost-benefit analysis is based upon population dose an fore, the value of effluent reductions is related to the lpopulation                Sites        d Population densities are generally low in the vicinity                            efflu-of reactor sit are rare that have a sufficient population density ito warrant                few miles addition ent limitations and that do not have any individual or farm with n a
 
        ..,    . a'..
      .of the ficility. Thus, ivr most situations, the design osaectives based upon
                ~
individual dose limitations will be the governing restriction.
Our experience in formulating and implementing regulatory requirements                              1 based on the principle of "as low as readily achievable" silows that such require-                          !
ments can be successfully errployed.        The primary lesson that we have learned from the Appendix I rule making proceeding is that suf ficient allowance must be made for departures from the predicted operation of unproven effluent treatment systems.        Therefore, some operatirig flexibility cust be permitted between the theoretical cost-benefit cptimum and the control level set forth in regulations.
1 1
l CONSIDERATIONS FOR FUTURE STANDARDS DEVELOPMENT EFFORTS Adoption of tile ICRP dose limits for individual protection and the ALARA concept for monitoring unnecessary radiation exposure provides a' foundation for the development of future international agreements. In the introduction of this paper, several areas were identified where further international standards development efforts are desirable. These areas were:
: 1. limitation of global radioactive containments;
: 2. protection of communal natural resources;
: 3. development of consistent principles and procedares for risk estimation and regulation; and
: 4.      development of c:nsistent siting policies for nuclear fuel cycle facilities, it is appropriate at this point to elaborate on these concerns and provide examples of ongoing ef forts to resolve them.
Of primary concern is the need for uniform control over the long-lived radioactive emissions frcm nuclear fuel cycle cperations that are potential global pollutants. Several radionuclides can be identified            which, by nature Krypton-85, tritium cf their persistence and mobility, have this potential.
(hydrogen-3), and carbon-14 are of primary interest because of their dispersi bility, production yields, and half-lives. Radionuclides such as iodine-129 and plutonium-239 presently                            are more of local and reg The uncertainty in the long-term behavior of widely.over thousands of years.such radionuclides in itself suggests that prec the accumulation of such caterials in the environment.
In the United States, we have made a national commitment to the institutio of further controls on releases of krypton-85, iodine-129 and alpha-emitting transuranic elements. General environmental radiation standards for uranium fuel cycle operations were issued in the beginning of this year byl                                      l Environmental Protection Agency [14).
tion of discharges of these materials to 50,000 curies of krypton-85, 5 milli                            ;
curies of iodine-129, and 0.5 millicuries of alpha-emitting The standard for transuranic the transu- eleme l
per gigawatt-year of electrical energy production.ranic emissions I
                                                                                                                  )
4 de .
l                                                                                                            . I l
l
 
  ~
4                                                          f all fuel fuel krypton-85 and iodine-129 mill be required for the reprocessing                                          o irradiated on or af ter Jmuary 1,1933Studies                          if a are    decision also          is mad in the U.S.                                                              b      14 and
    ' testing of the required advanced effluent control system tritium.
The concern for the restriction            of global      radioactive            pollutants.is Many other countries are instituting i      con-trictions means unique to the United States.
trols on these emissions or are formulating standards                  diation Protec-which conta n res f Denmark, on the global collective dose commitment, such as the flordic Ra tion Standards recommended by the Radiation Pr.otection these                            Institutes oHow Finland Iceland, i?arwy and Sweden [20).needed to broaden emissions.
A second area where further international                The standards limitation of developm ll warranted is the protection of communal naturald resources.            between nations i
radioactive material levels in bodies of water                                      d ies, the that are resources from ocean disposal of radioactive waste.                        t be controlled several countries or le.se seas or lakes                                  i t d areby priorlocated o additive contributions frcm facilities in different countries m                                            l to insure that downstream f acilities arehave                              not      unnecessar been  or are contamination.
several nations has, of course, been recognized and agreements being developed to deal with this general problem.                                          i              '
Examples of international cooperation to                            limit tion of radionuclide Marine Canadian 1972 c
in  communal Pollution              waters by Dumping    Wastes are the and International Other Matter [21]            Convention and the U.S.on      -T Agreement on Great Lakes Water Quality [22]. d other toxic material-prohibits the dumping      of high-level A system    of permitsradioactive is set up for wastescontrollingan the ocean            i into the world oceans.                      The convention parallels in manythe Federal disposal of low-level radioactive wastes. respects                        d Sanctuariesthe provi
          ' Pollution Control Act and in the ! brine Protection, Research, an Act of 1972.                                                                        from a l
dian Boundary The U.S. - Canadiaa Agreement on Great Lakes Mater Qu                                            l long-standing agreement The Wateron        sharing Quality        common Agreement                waters, provides d monitoring        ofthe for      U.S.L a Great Waters Treaty of 1909.                                                                                  ;
Water Quality Board to establish objectives for fthe                        l      radio-  control a pollution in the lakes.is in the process offordeveloping        the Great Lakes.        water qual  .
activity in water and a radioactivity surveillance plan                            i      t The third area for future joint efforts is the              i      development aterials to          of principles and approaches for regulating releases of radioact ve m f
l
 
on-going efforts by the ICRP        cugh its Subcom-the environment. Tr.ere i mittee fiumber 4 to provide additional guidante on implemeution o re:rmendations.
Advisory          Groups to prepare technical guidance          forreports
: r. ember Draft        havestates  on developing been pre-regulations for radioattive ef fluent limitation. pared by I AEA Ad active Discharges to the Environment from Discharges to the Environment frem fluclear Facilities, on the Assessment of Collective Dose to Populations, and on the Principles of Establishing Limits for the Release of Radioactive Mate-These and other efforts by the IAEA and the ICRP rials to the Environment.
should provide valuam technical guidance on consistent methods which can be used in develcping national regulations and international agreements for con-trolling radioactive pollutants.
International ' agreement would be beneficial in defining the geographic scope of consideration to be uscd for evaluating the costs and the benefits of nuclear porter. It is difficult to argue against the position that the proper This scope of consideration is particularly apprcpriate for radioactive pollutants from the nuclear fuel cycle which are capable of woric-wide dispersion.        It is now U.S. policy that, for environmental impact assess-ments performed under the !;ational Environn. ental Policy Act ofA1969,              more the " human environment" is not to te restricted to U.S. territorial boundar t
the inpacts or costs 'are        primarily confined to a small region.
poier reactor licensing has been to require detailed data su calculations for the dose celivered to the U.S. and world populations for the environment impact assessrent.
One additional area where a need for international consensus can be clearly seen is the development of radiation protection re;&: ions which affect the siting of nuclear fuel cycle facilities and radioactive waste disposal sites.
Experience with Eurochemic shows that multinational spent fue centers are feasible.
[23] and liRC's f;uclear Energy Center Site Survey [24] show that encrgy or centers containing nuclear power plants and reprocessing f acilities and, perhaps, fuel fabrication plants,                are viable from the standpoint of public The localized concentration of several health and safety considerations.
nuclear fuel cycle facilities with possible inequitie
        ' effluent limitation be developed.
C0i!CLUSIOUS Prototypica1 international agreements already exist which can be used cornerstone for the development of further international controls on rad pollutants.
The international standards for the transportation of radioactive    d materials      developed by the 11EA provide a well recognized and widely adop basis for uniform international regulation that aids in ensuring safety of
      ~              .nm
 
r
      ' f _ '.,        -
thereby promotes international .rade. Similar agree-
            ;nternati.onal shipments anu
    -      ments for the control of pollutants from nuclear fuel cycle facilities also sh          ;
be beneficial _                                                                          l
          -    We believe that there is a need for reaching international agrcement on            l the development of requirements for controlling radioactive emissions fr                l nuclear fuel cycle operations.                                                  In        f j
        . protection set forth by the ICRP provide a foundation for suc                      ,
together with the Energy ?.esearch and Development Administration, the Environ-          l mental Protection Agency, the Ocpartment of State, and the Department of .rans-          l portation have agreed to ur.dertake the following actions:                                i l
: 1. intensify U.S. tiforts and participation in international ef forts to      >
develop codes and standards for envi'ronmental protection and to assess the environmental impact of alternative energy sources;
: 2. advocate futher international cooperative efforts along these lines;
: 3. continue support of IAEA and NEA activities to develop uniform stan-dards for the transportation of radioactive materials and guidance to IAEA member states on the procedures for developing regulatory requirements for radioactive emissions; and                                ,
: 4. encourage adoption of the provisions of the Convention on the Pre-        !
vention of tiarine Pollution as an international standard for the control of ocean disposal of radioactive wastes.
He urge that others intensify their efforts in support and refinement of taese objectives.
I i
l 1
                                                                                                    )
l l
                                                        - - 11 4                .
g s
a .
 
' ,~ -                g s..{f. .7 ~ .),?-:-
                                                                ' REFERENCES 14UTSCHELLER, A.,
Ta. J. Roentgenol. Radium Therapy, 13 (1925) 65-70.
          - [I]
14ULLER, H. J.,
                                              " Artificial transmutation of the gene," Science, ~66~~
[2]
(1927) 84-87.
INTERNAT!0t;AL COl1".'J510ll ON RADIOLOGICAL PROTECTIO!!, Reconcendations
[3] adopted September 17, 1965 ICRP Publication 9, Pergamon Press, Oxford (1965).
* U.S. NUCLEAR REGULATORY COMMISS10tl, Reactor Safety Study, NRC Report
[4]        WASH-1400 (f!U, REG-75/014) (October 1975).                  Volume VI.
NATI0t AL COUNCIL ON RADIATION PROTECTION                                    ANDforMEASUREMENTS, Implications        Esti-
[S]
Dose Rate and LET cn Dose-Effect Relationships: Draft Report of NCRP Scientific nation of Risks of Lcw-Level Irradiation.
Congnittee 40, f!CRP, Washington, D.C. (April 1976).
fiat!0"AL COUNCIL ON RADIATION PROTECTION AND MEASUREMEf;TS,
_.. [6]          Protection Criteria, NCRP Report No. 39, NCRP, Washington, r).C. (1971).
It:TERilATIONAL 'C0iC41SSION ON RADIOLOGICAL PROTECTION, Implica
[7] Commission Recom andations that Doses be Kept As Low As Readily Achiev-able, ICRP Publication 22, Pergamon Press, Oxford (1973).
UATIOT AL COUtiCIL ON RADIATION PROTECTI0tl AND MEASUREMENT
[8] Current State of ?.adiation Protection Philosophy,1 CRP Report !!o. 43,
                            !;CRP, Washington, D.C. (1975).
[9]        FEDERAL RA01ATION CO'JUCIL, Background M Printing Office, Washington, D.C. (1960).                                                            !
U.S. ATOMIC ENERGY COP 4ISSION, 3,                                Control      of Releases of Radioa 1970) 18385.
[10]            Environment Federal Register, 35 234 (December U.S. ATOMIC ENERGY Ct>'. MISSION, Light-Water-Cooled Nuclear Pow                                  l
[11]            Federal Register, 36111 (June 9,1971) 11113.                                                      ;
l U.S. NUCLEAR REGULATORY COMMISSION, Radioactive Material in                                        l
[12] Cooled fluclear Power Reactor Effluents, Sections 50.34a, 50.36a, an Appendix I to Title 10. Chapter I, Part 50 of the Code of Federa tions. Federal Register, 40 87 (May S, 1975) 19439.
l U.S. ATOMIC ENERGY C0FJ41SSION, Concluding Statement of Po
[13] Regulatory Staf f. D::Let RM-50-2, U.S. Atomic Energy Co:anission, l Washington, D.C. (February            20,1974).
1 l
j l
                                                            'ye= gg. @ e w m.w. g
                            --          'WN*
__                      .l
 
    .    . - .                . .            =.                        . - .        -
It                  ,
s
; i.
l                      ,
MEilTAL PROTECTIOil AGENCY, Environmental Rediatien Protection l          [y]        U.S. ENVIRO::
Standards for Nuclear Power Operations, Part 190  Fedof2ralTitle  40, Chapter I, Register, l
'                      Subchapter F of the Code of Federal Regulations.
42 9 (January 13, 1977) 2853.
!                      ~~
I U.S. NUCLEAR REGULATORY COMMISSIO:1, Calculation of Annual Doses to Man
[15]        from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix 1. USNRC Regulatory Guide 1.109, USNRC, Washington, D.C. (March 1976).    '
U.S. flUCLEAR REGULATCRY COMMISSION, Cost-Benefit Analysi: for Radwaste
[16] Systems for Light-Water-Cooled Nuclear Power Stations, U$ttRC Regula-
'                        tory Guide 1.110. USNRC, Washington,D.C.(March 1976).
U.S. NUCLEAR REGULATORY COMMISSION, Methods for Est'itating Atmospheric l          [17] Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Mater-Cooled Reactors, USNRC i.egulatory Guide 1.111. USNRC, Washington, D.C.
U.S. NUCLEAR REGULATORY COMMISSION, Calculation of Releases of Radio-
[18]          active Materials in Gaseous and Liquid Effluents from Light-Water-Cooled l                        Power Reactors, ilSNRC Regulatory Guide 1.112 and MRC R:-ports NUREG-0016 (BWR-GALE Code) and f:UREG-0017 (PWR-G.tE Code), USNRC, Washingto l                        (April 1975).
l U.S. NUCLEAR REGULATCRY COMMISSION, Estimating Aauatic Dispersion of l            [19] Effluents from Accidental and Routine F.eactor Releases for the Purpose l
'                        of Implementing Appendix I, USt;RC Regulatory Guide 1.113. UStiRC, Washington, D.C.
l RADIATION PROTECTI0tl INSTITUTES OF DENMARK, FINLAND, ICELAND, l l            [20] SWEDEN, Basic. Principles for the Limitation of Releases of Radioactive                '
l Substances from Nuclear Power Stations, Chapter 19 of the A;plicability          l of  Current International Radiation Protection Recommendations in l Nordic Countries, National Institute of Radiation Protection, Stockholm        l l
(1974).                                                                        '
INTERNATIONAL CONFEREtiCE ON THE CONVENTION ON DUMPING G
(
[21)        vention on the Prevention of Marine Pollution by Dumping of Wastes and i
Other Matter, London (30 October - 13 November 1972).
UNITED STATES OF AMERICA and CAf!ADA, Great Lakes Water Pality-Agre
[22] with Annexes and Texts and Terms of Reference, Between the United States I
and Canada.
Treaty Signed at Ottawa, Canada (April Ib M72).
INTERNATIONAL ATOMIC ENERGY AGE!!CY, IAEA Study Project on
[23] fuel Cycle Centres, Status Report, I AEA-RFCC/3 (September 1976).
i U.S. NUCLEAR REGULATORY COMMISSION, Nuclear Energy Center Site Sur              '
[24] 1975, USNRC, NUREG-0001, Washington, D.C. (January 1976).
6 13 -
: y.    .
                                                                                    ./. .: . .:
i}}

Latest revision as of 21:21, 1 January 2021

Speech Entitled, Regulatory Requirements for Radiation Protection, IAEA-CN-36/484(IIIA)
ML20202F160
Person / Time
Issue date: 03/30/1977
From: Cunningham R, Hard J, Mason E
NRC COMMISSION (OCM), NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
To:
Shared Package
ML20202F147 List:
References
IAEA-CN-36-484(, IAEA-CN-36-484(IIIA), NUDOCS 9902030339
Download: ML20202F160 (14)


Text

.

A,j . g.m a,je,v%

$ . e x. t .

.w; e, .

IAEA-Cl-36/484(111A)

REGULATORY REQUIREi4Ei;TS FOR RADIAT10M PROTECTION E. A. MASOM, R. E. CUMt;It:GHAM, J. E. HARD, R. J. MATTSON R. U. SN itt, ano n. 7. PET ERSON, JR.

U.S. Iluclear Regulatory Cor. mission Us'.k p r , D. C.

20555 United States of America

. ABSTRACT diation have evolved and

' Regulatory requirements for protecting man from raDue to the wide adoption of reccmen natured over several decades.

the International Commi,ssion on Raciacion Prou mt: (M , there is inter-This national consistency in tne principles followed for radiation protection.

foundation will be increasingly important due to the growing need for inter-national agreements and stendards for radiation protection and radioactive materials management 25 the nuclear industry develops.

During the early years of the commercial nuclear industry, primary reliance was placed on the protection of the individual, both in the work farce and as Uith the grcuth of nuclear power in the 1960's and a member of the public.

1970's, environmental impct assessments and expert reviews of bio-effects data have focused a~ttention on stati.stical risks to large population groups and the use of the collective dose commitment concept to estimate potential ef fects.#

The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the l international d have 1cvel.

.The initial development efforts for addressing these concerns a rea yHowever, f

. been instituted by the ERP and the IAEA.

ment and a unified set of international standards may be required the recommendations of these groups.

of radiation protection are also called for in developing uaste for fuel managemen tices and radioactive effluent control technology, hips and port of high-level wastes in various forms.

will be involved, it will be useful to reexamine dose-ef fect relationsImprov d

to develop explicit societal goals for health protection.

DENC PDR a.. . - .

ra j

. j

'. l l

I l

.I AEA-CN-35/484 (IIIA)

REGULATO?.X REQUIREMEliTS FOR RADIATION PROTECTION I

. i E. A. MASON, R. E. CU!211NGHAA, J. E. HARD, R. J. MATTSON R. D. SMITH, and H. T. PETERSON, JR.

i

~

U.S. Nuclent Regulatory Commission l Washington, D. C. 20555 j United States of America l

INTP.00UCTION The application of r.eclear energy as an important source of elec is beccming a reality.

concerns no longer are restricted to a few localized developmental facilities but are international in scope. This scope is particularly appropriate for dis-l j

cussions of the nuclear fuel cycle, i l

Some of the radioactive materials associated with nuclear fuel cycle opera-  !

tions tend to be longer lived than the radionuclides of primary concern at power i reactors (short-lived noble gases and radioiodines) and several o truly global pcilutants.ated fuel cycle and waste disposal operations requires con Effluents lative and additive nature of releases from multiple source locations.

can move beyond national boundaries so that interna bodies of water which cross national boundaries.

These two f actors, the release of global pollutants, and the potentially cumulative and additive nature of releases from a multiplicity of sources, sug-gest that further international cooperation and agreement are needed on the f

p O

G

r

. . .:. M. .

.2 p'rinciple's for setting regulatory requirements for restrics.ng ef fluents from

- nuclear fuel cycleThis facilities and for the siting of reprocessing and caste dis-need is further strengthened by the need for attention posal facilities. l to the statistical effects of radiation on large population groups.

l The developrent of standards for radiation protection traditionally has l evolved through internatier.al consensus. This consensus has been achieved through multinational groups of experts such as the International Comission  !

on Radiological Protection (ICRP) and througn the er. change of technical informa-tion at conferences sponsored by the IAEA and Theother organizations, fundarental approachessuch and as the  ;

International Radiction Protection Association.

reco=endations issued by the ICRP. have been employed in the develop :ent of '

l '

national standards, such as the recommendations of the U.S. fiational Council on Radiation Protection and reasurements (UCRP), and for regulatiens The issued by governmental agencies, such cs the U.S.' Muclear Regulatol

~

i mendations of the ICRP has resulted in a beneficial international This uniformity can becomeuniformi'cy the in the basic principles for radiation protection. l

. foundation for further international agrecrents for radiation natro .

TliE EVOLUTION OF THE FA.GICAL BASIS FOR RADIATION PROTECT The earliest raditMu standards tere based upon acute observable injury, such as the recomendation of A. Mutscheller in 1925 [1] for a maximu.n doseA level based upon a fraction of the erythena dose. ~

lation was limited to only a few researchers, this appeared to be a satisfactorv basis for protection. h ever, as more use was made of X-rays and radium in d medical treatment, research, and industrial applicctions, the size of the expose i

population grew and, consavently, the association bet .

I protection. I The confirmation of the mutagenic properties of radiation by R. 4. Muller

[2] in 1927 added concern for protection against the production This of mutj in order in the gene pool as a basis for the development of ra I to limit the damage to future generations. l Ep'idemiological studies have given emphasis to the importance d i t of any l tistical risks from radiation which, although small from the stan po n individml, are ex ., sed.

may result in potential health effects if large h  ;

of Atomic Radiation (UNSEE',R), ilthe British have been hs effects.

par- U,e the U.S. Hational Acacemy of Sciences - National i Re The growing body of information on radiation basis bioeffects for pro- con that the current ICRP recer.mendations Despite the fact[3] provide that a satisfactory the hazards of radiation and tection of the individual.

e O

_ _ _ __ R

,1..- ;; .ca-7------------------~______

- _ - _ _ _ _ _ - _ _ _ _ rad ioac th t*E'sn i i, c ri . i. , G-,, rid at loa doses agent or pollutant, that. cill is uncertainty regarding Recent assessments [a,o] have cast doubt cn and its dependence uocn dose-rate.

the validity of linear cytrapolations of the dose-ef f :t colationships cbserved at high doses. Ho.,ever, in the absence of unequivocal evidence that a threshold dose exists below ..hich there is no biological damage, these low-level, low-dose-rate exposures still must be considered in setting regulatory requirements for radioactive material releases into the environment if large population groups would be expos 2d. Global physical dispersion processes prodre extreccly low radionuclide concentrations and, consequently, this will result in small individual cm delivered at very lou dose rates to large population groups. Thus, consideration of low-level doses is par:icularly important for those impacts of the re. dear fuel cycle which transcend national boundaries. 1 This, however, is rot to say that the assumption of dose-effect linearity should f be used to obtain realistic estimates of the p'ot:ntial biological damage to l 1

large population groups. .

l RECENT U.S. EXPERIEi!CE IT DEVELOPII;G REGULATORY REQUIRE:iEriTS FOR RAD DISCHARGES TO THE EfWIRDTOT Concurrent with the growing body of knowledge on radiation bioeffects, there has been a corres onding evolution of the methodology for setting radia ,_

tion protection criteria. Traditionally, basic radiation protection standards to individuals or have been expressed in terms of " maximum permissible doses"1Although "maximun permissible cenctntrations."  !

the terminology "Radh.t%n Protection Guides" (as these dose levels are not always permissible nor are they "maxicum" doses for all circumstances), we do agree with the concept of setting upper exposure levels f : indiv -

so. The basic foundation for regulatory requirements specifying the upper f bounds for individual ex nsures would, of course,'.S. be Hational the recommendations Cauncil._i o ICRP [3] and those of related nationa' todies sr on Radiation Protectico. and P.easurements (i;CRP) [6].

14ethodology is evo'ivirig for imolementing the ICRP guidance that ex be kept as low as is readily achievable.ICRP Report No. 22 As{7] c: tails l

for noted, further both in reductions ICRP Report in radiation flo. 9 [3] and doce below by the  !;CRPthe [8],ICRP there is recenend consicer difficulty in applying this approach in practice because of the uncertainties Considerable further inherent in attempting to quantify the risks and benefits.

- development is required in this area and should entail international -

ef f experts in scientific and social disciplines.

ALARA, (or "as low as practicable", ALAP) has } b I

!!ote: In the precise terminology of ICRP Report IJo. 9, the term " maximum d missible dose" is reserved for application of limits for ing routine exposures cf individual mecters of the public and population

- 3-b

'wN -. ,_

e

n U.S. tiuclear RegulatoryThe Cc=ission andof itsthispredecessor concept followedagency', the U.

incorporation Energy Commission, since 1970. l guidance issued by the former federal Radiation Council [9] (whose I fun, are now carried out by the U.S. Environmental Protection Agency) mendations of the fiCRP. Specific design and operating requirements l performed on a case-by-c3Se basis.for meeting 3, 1970 [10]. the criterion "as lo water-reactors were initially publi~shed on December ,

ments did not specify numerical criteria defining ALAP. D The development of generic numerical criteria for levels of radioactive to co=ents r material in light-water rector effluents was initiated The in resp '

conservation groups that farored9,1971 more [11], definitive pro-issu-qua starting with the publication of awhich, 1975[12], proposedincidentally,rule was on July

' ance of a final regulation in the Spring of l Regulatory Commission

' ~ one of the first major decisions of the new 19, 1975.t;uc ear following its formation on January r The proposed critdrfa changed'several times in the dropped course of th making proceeding as shown in Table I. i tions as being unnecessary for the implementation of individualwater on radionuclide cencentrations in air and dose restric which Similarly, restrictions on the total quantity dditional the of rad were dropped in favor of a cost-benefit analysis of the need for a controls to reduce populatica doses beyond the controls require individual of effluent dose limitations.

controls until the incremental cost per 00 unitper reduction man-rem tive dose to the population within 50 miles (80 km) exceeds d is $1,0T or $1,000 per man-thyroid-ren. f radiation balance point is an interin value which is believed to be conserv slightly higher than previously published values lower value for the wor sures.

exposure reductions. dose is also an interim measure i f as biological reducing for the worth of reductions in the thyroid dose thanthefor whole b iterion than At present, we are attempting to define better the monetary radiation exposures in order to provide a better decision cr  !

somewhat arbitrary $1,000 per man-rem valuei presently d imple- used.

We have gained useful experience inperience the course both for of develop i menting these ALARA guidelines. i ,

What is "as low ,

point out the need for definitive l data from operat As major effluent se points become signifi-as practicable" cannot be determined without prac t be well characteri:cd. l cant contributors to the estimated dose.not been

.i

?

  • 4 .

.ae..._

l l

v

e Evolution of NRC Guidelines' ft - "As low As is Reasonably Achievable" Levels of Radioactive j Table I. materials in Light-Water-CoolcJ fluclear Power Reactor Effluents, Commission Staff Concluding Occision and -

Proposed Rule S ta tement Effective Rule

- Publication June 9,1971 [11] February 20, 1974 [13] flay 5, 1975 [12]

Date .

Annual Destbn Objectives Total Activity Released per reactor liquids (exclusive of 5 curies per year 5 curies per year deleted in lieu of tri tium) requirement for cost-benefit evaluation radiciodine - 131 Ho restriction 1 curie per year (airborne) a

. Concentrations of "

Radionuclides in 3 20 pCi per liter deleted "

, water (total less H) 5,000 pCi per liter (tritium) ,

Air: radiciodines and 10-5 of 10 CFR Part 20 particulates Appendix B, Table II, Column I concentrations see below see below 10 millirem per year noble gases S

(Continued)

t e

Evolution of NRC GuideTir es for "As low As-is Reasonably Achievable" Le'vels of R Table I. materials in Light-Water-Cooled Nuclear Power Reactor Effluents. .

! Commission , ,

Staff Concluding Decision and l Statement Effective Rule ,

i proposed Rule May 5,1975 [12]

June 9, 1971 [11] February 20, 1974 [13] ,

Publication -

Date .

Annual Design Objectives _

Individual Doses from 5 millirem por 3 millirem per Liquid Effluents 5 millirem per year reactor-year (total body) (site) year (site) 10 nillirem per 5 millirem per 5 millirem per year reactor-year (organ) year (site) 10 millirad per 10 millirad per Noble gases reactor-year year (site)

(ganna air dose) .

20 millirad per 20 millirad per year (site) reactor-year (beta air dose) 5 millirem per 5 millirem per 5 millirem per year reactor-year (total body dose) year (site)

(site) 15 millirem per 15 millirem per reactor-year year (site)

(skin dose) 15 millirem per 15 millirem per Radiciodines & Parti- 5 millirem per year year (site) reactor-year

.culates (organ dose) (site)

Limiting Conditions for Operation one-half of the 2 times annual Design one-half of the annual design annual design Licensee Action objective objective in any objective in any (one-half of the annual calendar quarter calendar quarter design objective in any calendar quarter) ,

4 times annual not specified ~

4-8 times annual design objective NRC Action design objective

ertainties in the cost and performance  ;

~. There of unproven are numerous other ef fluent sources ofsyste:r.s; treatment u. in the radionuclide composition, maf tude, and physiochemical form of the fffluents; in the environmental transport models; and in the parcmeters for predicting dose that must be allowed for in establishing regulatory requirements based upon cost-effectiveness analyses.

Several approaches have been umployd in recent U.S. regulations to allow for the uncertainties in the theoretical cost-effectiveness analyses of radio-In the MRC's development of ALARA effluent active waste treatment rfstems. limitations, we have specified the numerical guide and permit operating fitwibility above the annual dose des one-half of the annual design objective in a calendar quarter.

The cost-effectiveness of radioactive effluent control systems was also considered during the 6mlopme'nt of the generally ap The EPA standards set forth by the U.S. Environractal Protection Agency [14].d l in contrast to the

. environmentally acceptable dose limits for indivi ua s,The annual dose limitt design objectives of Twendix I of 10 CFR Part 50.

established are were 25 millirem to the whole body, 75 millirem to the thy '

gland, and 25 millirem to any other organ from all operations l (except m ,

transportation, and waste disposal) in the light-water-reactor uranium fuej  !

cycle. Departures frc'm theoretical predictions of effluent control system ef fectiveness and unex;ected operational difficuities in reaching or maint  !

ing the required levels are accounted for by a variance provision wh h

the regulatory agency (2C) to issue a temporary variance to operate abo ,

standards for limited periods of time necessary to correct the deficienci system operation.

We have had apprcximately two years experience in the implementatil the design objectives of Appendix I to 10 CFR Part 50.

by effluent measurements combined This calculational approach withbecause is used environmental the radionuclidedispersii lation models.

concentrations in the environment which correspond to the design obje doses are so low that taasurements are difficult. l developed that describe the NRC License staff's applicants may use models f fic site-and human intake, and equipment costs [15-19).other mod

' related conditions if they realistically depict actual physical processes. I t

resulted in major equipment additions beyond This is despite  !

systems required to meet the individual dose design id-rem h objectives.

the presumably conservative but it can be Thisvalue was not oftotally

$1,000 per man-rem, expected or man-t y used as the balancing criterion.

explained.

The cost-benefit analysis is based upon population dose an fore, the value of effluent reductions is related to the lpopulation Sites d Population densities are generally low in the vicinity efflu-of reactor sit are rare that have a sufficient population density ito warrant few miles addition ent limitations and that do not have any individual or farm with n a

.., . a'..

.of the ficility. Thus, ivr most situations, the design osaectives based upon

~

individual dose limitations will be the governing restriction.

Our experience in formulating and implementing regulatory requirements 1 based on the principle of "as low as readily achievable" silows that such require-  !

ments can be successfully errployed. The primary lesson that we have learned from the Appendix I rule making proceeding is that suf ficient allowance must be made for departures from the predicted operation of unproven effluent treatment systems. Therefore, some operatirig flexibility cust be permitted between the theoretical cost-benefit cptimum and the control level set forth in regulations.

1 1

l CONSIDERATIONS FOR FUTURE STANDARDS DEVELOPMENT EFFORTS Adoption of tile ICRP dose limits for individual protection and the ALARA concept for monitoring unnecessary radiation exposure provides a' foundation for the development of future international agreements. In the introduction of this paper, several areas were identified where further international standards development efforts are desirable. These areas were:

1. limitation of global radioactive containments;
2. protection of communal natural resources;
3. development of consistent principles and procedares for risk estimation and regulation; and
4. development of c:nsistent siting policies for nuclear fuel cycle facilities, it is appropriate at this point to elaborate on these concerns and provide examples of ongoing ef forts to resolve them.

Of primary concern is the need for uniform control over the long-lived radioactive emissions frcm nuclear fuel cycle cperations that are potential global pollutants. Several radionuclides can be identified which, by nature Krypton-85, tritium cf their persistence and mobility, have this potential.

(hydrogen-3), and carbon-14 are of primary interest because of their dispersi bility, production yields, and half-lives. Radionuclides such as iodine-129 and plutonium-239 presently are more of local and reg The uncertainty in the long-term behavior of widely.over thousands of years.such radionuclides in itself suggests that prec the accumulation of such caterials in the environment.

In the United States, we have made a national commitment to the institutio of further controls on releases of krypton-85, iodine-129 and alpha-emitting transuranic elements. General environmental radiation standards for uranium fuel cycle operations were issued in the beginning of this year byl l Environmental Protection Agency [14).

tion of discharges of these materials to 50,000 curies of krypton-85, 5 milli  ;

curies of iodine-129, and 0.5 millicuries of alpha-emitting The standard for transuranic the transu- eleme l

per gigawatt-year of electrical energy production.ranic emissions I

)

4 de .

l . I l

l

~

4 f all fuel fuel krypton-85 and iodine-129 mill be required for the reprocessing o irradiated on or af ter Jmuary 1,1933Studies if a are decision also is mad in the U.S. b 14 and

' testing of the required advanced effluent control system tritium.

The concern for the restriction of global radioactive pollutants.is Many other countries are instituting i con-trictions means unique to the United States.

trols on these emissions or are formulating standards diation Protec-which conta n res f Denmark, on the global collective dose commitment, such as the flordic Ra tion Standards recommended by the Radiation Pr.otection these Institutes oHow Finland Iceland, i?arwy and Sweden [20).needed to broaden emissions.

A second area where further international The standards limitation of developm ll warranted is the protection of communal naturald resources. between nations i

radioactive material levels in bodies of water d ies, the that are resources from ocean disposal of radioactive waste. t be controlled several countries or le.se seas or lakes i t d areby priorlocated o additive contributions frcm facilities in different countries m l to insure that downstream f acilities arehave not unnecessar been or are contamination.

several nations has, of course, been recognized and agreements being developed to deal with this general problem. i '

Examples of international cooperation to limit tion of radionuclide Marine Canadian 1972 c

in communal Pollution waters by Dumping Wastes are the and International Other Matter [21] Convention and the U.S.on -T Agreement on Great Lakes Water Quality [22]. d other toxic material-prohibits the dumping of high-level A system of permitsradioactive is set up for wastescontrollingan the ocean i into the world oceans. The convention parallels in manythe Federal disposal of low-level radioactive wastes. respects d Sanctuariesthe provi

' Pollution Control Act and in the ! brine Protection, Research, an Act of 1972. from a l

dian Boundary The U.S. - Canadiaa Agreement on Great Lakes Mater Qu l long-standing agreement The Wateron sharing Quality common Agreement waters, provides d monitoring ofthe for U.S.L a Great Waters Treaty of 1909.  ;

Water Quality Board to establish objectives for fthe l radio- control a pollution in the lakes.is in the process offordeveloping the Great Lakes. water qual .

activity in water and a radioactivity surveillance plan i t The third area for future joint efforts is the i development aterials to of principles and approaches for regulating releases of radioact ve m f

l

on-going efforts by the ICRP cugh its Subcom-the environment. Tr.ere i mittee fiumber 4 to provide additional guidante on implemeution o re:rmendations.

Advisory Groups to prepare technical guidance forreports

r. ember Draft havestates on developing been pre-regulations for radioattive ef fluent limitation. pared by I AEA Ad active Discharges to the Environment from Discharges to the Environment frem fluclear Facilities, on the Assessment of Collective Dose to Populations, and on the Principles of Establishing Limits for the Release of Radioactive Mate-These and other efforts by the IAEA and the ICRP rials to the Environment.

should provide valuam technical guidance on consistent methods which can be used in develcping national regulations and international agreements for con-trolling radioactive pollutants.

International ' agreement would be beneficial in defining the geographic scope of consideration to be uscd for evaluating the costs and the benefits of nuclear porter. It is difficult to argue against the position that the proper This scope of consideration is particularly apprcpriate for radioactive pollutants from the nuclear fuel cycle which are capable of woric-wide dispersion. It is now U.S. policy that, for environmental impact assess-ments performed under the !;ational Environn. ental Policy Act ofA1969, more the " human environment" is not to te restricted to U.S. territorial boundar t

the inpacts or costs 'are primarily confined to a small region.

poier reactor licensing has been to require detailed data su calculations for the dose celivered to the U.S. and world populations for the environment impact assessrent.

One additional area where a need for international consensus can be clearly seen is the development of radiation protection re;&: ions which affect the siting of nuclear fuel cycle facilities and radioactive waste disposal sites.

Experience with Eurochemic shows that multinational spent fue centers are feasible.

[23] and liRC's f;uclear Energy Center Site Survey [24] show that encrgy or centers containing nuclear power plants and reprocessing f acilities and, perhaps, fuel fabrication plants, are viable from the standpoint of public The localized concentration of several health and safety considerations.

nuclear fuel cycle facilities with possible inequitie

' effluent limitation be developed.

C0i!CLUSIOUS Prototypica1 international agreements already exist which can be used cornerstone for the development of further international controls on rad pollutants.

The international standards for the transportation of radioactive d materials developed by the 11EA provide a well recognized and widely adop basis for uniform international regulation that aids in ensuring safety of

~ .nm

r

' f _ '., -

thereby promotes international .rade. Similar agree-

nternati.onal shipments anu

- ments for the control of pollutants from nuclear fuel cycle facilities also sh  ;

be beneficial _ l

- We believe that there is a need for reaching international agrcement on l the development of requirements for controlling radioactive emissions fr l nuclear fuel cycle operations. In f j

. protection set forth by the ICRP provide a foundation for suc ,

together with the Energy ?.esearch and Development Administration, the Environ- l mental Protection Agency, the Ocpartment of State, and the Department of .rans- l portation have agreed to ur.dertake the following actions: i l

1. intensify U.S. tiforts and participation in international ef forts to >

develop codes and standards for envi'ronmental protection and to assess the environmental impact of alternative energy sources;

2. advocate futher international cooperative efforts along these lines;
3. continue support of IAEA and NEA activities to develop uniform stan-dards for the transportation of radioactive materials and guidance to IAEA member states on the procedures for developing regulatory requirements for radioactive emissions; and ,
4. encourage adoption of the provisions of the Convention on the Pre-  !

vention of tiarine Pollution as an international standard for the control of ocean disposal of radioactive wastes.

He urge that others intensify their efforts in support and refinement of taese objectives.

I i

l 1

)

l l

- - 11 4 .

g s

a .

' ,~ - g s..{f. .7 ~ .),?-:-

' REFERENCES 14UTSCHELLER, A.,

Ta. J. Roentgenol. Radium Therapy, 13 (1925) 65-70.

- [I]

14ULLER, H. J.,

" Artificial transmutation of the gene," Science, ~66~~

[2]

(1927) 84-87.

INTERNAT!0t;AL COl1".'J510ll ON RADIOLOGICAL PROTECTIO!!, Reconcendations

[3] adopted September 17, 1965 ICRP Publication 9, Pergamon Press, Oxford (1965).

  • U.S. NUCLEAR REGULATORY COMMISS10tl, Reactor Safety Study, NRC Report

[4] WASH-1400 (f!U, REG-75/014) (October 1975). Volume VI.

NATI0t AL COUNCIL ON RADIATION PROTECTION ANDforMEASUREMENTS, Implications Esti-

[S]

Dose Rate and LET cn Dose-Effect Relationships: Draft Report of NCRP Scientific nation of Risks of Lcw-Level Irradiation.

Congnittee 40, f!CRP, Washington, D.C. (April 1976).

fiat!0"AL COUNCIL ON RADIATION PROTECTION AND MEASUREMEf;TS,

_.. [6] Protection Criteria, NCRP Report No. 39, NCRP, Washington, r).C. (1971).

It:TERilATIONAL 'C0iC41SSION ON RADIOLOGICAL PROTECTION, Implica

[7] Commission Recom andations that Doses be Kept As Low As Readily Achiev-able, ICRP Publication 22, Pergamon Press, Oxford (1973).

UATIOT AL COUtiCIL ON RADIATION PROTECTI0tl AND MEASUREMENT

[8] Current State of ?.adiation Protection Philosophy,1 CRP Report !!o. 43,

!;CRP, Washington, D.C. (1975).

[9] FEDERAL RA01ATION CO'JUCIL, Background M Printing Office, Washington, D.C. (1960).  !

U.S. ATOMIC ENERGY COP 4ISSION, 3, Control of Releases of Radioa 1970) 18385.

[10] Environment Federal Register, 35 234 (December U.S. ATOMIC ENERGY Ct>'. MISSION, Light-Water-Cooled Nuclear Pow l

[11] Federal Register, 36111 (June 9,1971) 11113.  ;

l U.S. NUCLEAR REGULATORY COMMISSION, Radioactive Material in l

[12] Cooled fluclear Power Reactor Effluents, Sections 50.34a, 50.36a, an Appendix I to Title 10. Chapter I, Part 50 of the Code of Federa tions. Federal Register, 40 87 (May S, 1975) 19439.

l U.S. ATOMIC ENERGY C0FJ41SSION, Concluding Statement of Po

[13] Regulatory Staf f. D::Let RM-50-2, U.S. Atomic Energy Co:anission, l Washington, D.C. (February 20,1974).

1 l

j l

'ye= gg. @ e w m.w. g

-- 'WN*

__ .l

. . - . . . =. . - . -

It ,

s

i.

l ,

MEilTAL PROTECTIOil AGENCY, Environmental Rediatien Protection l [y] U.S. ENVIRO::

Standards for Nuclear Power Operations, Part 190 Fedof2ralTitle 40, Chapter I, Register, l

' Subchapter F of the Code of Federal Regulations.

42 9 (January 13, 1977) 2853.

! ~~

I U.S. NUCLEAR REGULATORY COMMISSIO:1, Calculation of Annual Doses to Man

[15] from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix 1. USNRC Regulatory Guide 1.109, USNRC, Washington, D.C. (March 1976). '

U.S. flUCLEAR REGULATCRY COMMISSION, Cost-Benefit Analysi: for Radwaste

[16] Systems for Light-Water-Cooled Nuclear Power Stations, U$ttRC Regula-

' tory Guide 1.110. USNRC, Washington,D.C.(March 1976).

U.S. NUCLEAR REGULATORY COMMISSION, Methods for Est'itating Atmospheric l [17] Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Mater-Cooled Reactors, USNRC i.egulatory Guide 1.111. USNRC, Washington, D.C.

U.S. NUCLEAR REGULATORY COMMISSION, Calculation of Releases of Radio-

[18] active Materials in Gaseous and Liquid Effluents from Light-Water-Cooled l Power Reactors, ilSNRC Regulatory Guide 1.112 and MRC R:-ports NUREG-0016 (BWR-GALE Code) and f:UREG-0017 (PWR-G.tE Code), USNRC, Washingto l (April 1975).

l U.S. NUCLEAR REGULATCRY COMMISSION, Estimating Aauatic Dispersion of l [19] Effluents from Accidental and Routine F.eactor Releases for the Purpose l

' of Implementing Appendix I, USt;RC Regulatory Guide 1.113. UStiRC, Washington, D.C.

l RADIATION PROTECTI0tl INSTITUTES OF DENMARK, FINLAND, ICELAND, l l [20] SWEDEN, Basic. Principles for the Limitation of Releases of Radioactive '

l Substances from Nuclear Power Stations, Chapter 19 of the A;plicability l of Current International Radiation Protection Recommendations in l Nordic Countries, National Institute of Radiation Protection, Stockholm l l

(1974). '

INTERNATIONAL CONFEREtiCE ON THE CONVENTION ON DUMPING G

(

[21) vention on the Prevention of Marine Pollution by Dumping of Wastes and i

Other Matter, London (30 October - 13 November 1972).

UNITED STATES OF AMERICA and CAf!ADA, Great Lakes Water Pality-Agre

[22] with Annexes and Texts and Terms of Reference, Between the United States I

and Canada.

Treaty Signed at Ottawa, Canada (April Ib M72).

INTERNATIONAL ATOMIC ENERGY AGE!!CY, IAEA Study Project on

[23] fuel Cycle Centres, Status Report, I AEA-RFCC/3 (September 1976).

i U.S. NUCLEAR REGULATORY COMMISSION, Nuclear Energy Center Site Sur '

[24] 1975, USNRC, NUREG-0001, Washington, D.C. (January 1976).

6 13 -

y. .

./. .: . .:

i