ML17229A177: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
| Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:Page i AL L I N VER HEET Calculation No: P L- F - - 1 Title: | {{#Wiki_filter:Page i AL L I N VER HEET Calculation No: P L- F - - 1 | ||
==Title:== | |||
A E RATI I N T I FIR BA Rl ATI Revision for Heat Load I Z-/7- f4 Is l106 0 INITIALISSUE K R 8-1 2-96 WL 8-1 2-96 ARD/ 8-14-96 WAB | |||
. No. Description By REVISIONS Date Chkd Date Appr Date 9b122b0322 9bi219 ~>tc.iZ>~6 PDR ADGCK 05000335 P PDR | . No. Description By REVISIONS Date Chkd Date Appr Date 9b122b0322 9bi219 ~>tc.iZ>~6 PDR ADGCK 05000335 P PDR | ||
Revision as of 05:31, 4 December 2019
| ML17229A177 | |
| Person / Time | |
|---|---|
| Site: | Saint Lucie |
| Issue date: | 12/18/1996 |
| From: | FLORIDA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML17229A176 | List: |
| References | |
| PSL-OFJE-96-001, PSL-OFJE-96-001-R01, PSL-OFJE-96-1, PSL-OFJE-96-1-R1, NUDOCS 9612260322 | |
| Download: ML17229A177 (38) | |
Text
Page i AL L I N VER HEET Calculation No: P L- F - - 1
Title:
A E RATI I N T I FIR BA Rl ATI Revision for Heat Load I Z-/7- f4 Is l106 0 INITIALISSUE K R 8-1 2-96 WL 8-1 2-96 ARD/ 8-14-96 WAB
. No. Description By REVISIONS Date Chkd Date Appr Date 9b122b0322 9bi219 ~>tc.iZ>~6 PDR ADGCK 05000335 P PDR
Page ii Calculation No. FE- - 1 Rev. 1 Title IR AR I
,Page Section Rev. Page Section Rev.
Cover, List of Effective Pages Table of Contents 1.0 Purpose 2.0 References 2.0 References 2.0 References 0 2.0 References 8 2.0 References 2.0 References 0 10 2.0 References 2.0 References 3.0 Methodology 12 3.0 Methodology 13 4,0 Assumptions/Bases 14 4.0 Assumptions/Bases 15 5.0 Calculation 0 5.0 Calculation 17 5.0 Calculation 18 5.0 Calculation 0 19 5.0 Calculation 20 5.0 Calculation 1 21 5.0 Calculation '1 22 5.0 Calculation 23 6.0 Results nmpca I c.12/96
't I
Page iii BL F NTEN CALCULATION NUMBER F - - 1 REV.
2!LEIGH ~A~E
.Cover Sheet List of Effective Pages Table of Contents 1.0 Purpose/Scope 2.0 References 3.0 Methodology 4.0 Assumptions/Bases 13 5.0 Calculation 14 6.0 Results 23 TTA H N TITLE PA(~E ICEA Pub. No. S-66-524 5. NEMA Std WC7-88, Excerpt Table 2-4 5, 6-1 NUCON International, Inc "Pyrolysis Gas Chromatography Analysis of 9 Thermo-Lag Fire Barrier Samples",
P.O. No. LJ950 WP-006, 12 May 1995 aspen l c.12/96
A ATI CALCULATIONNO. 1 REV. 1 SHEET NO. ~
1 0 68KQSR The purpose of this calculation is to determine or update ampacity values for power cables routed in St. Lucie Unit 1 and Unit 2 conduits wrapped with Thermo-Lag fire barrier systems as listed in previous calculations (Ref. 2.3). This document outlines the methodology used to determine power cable ampacity including derating factors. Wrapped conduit derating factors are determined for existing fire barriers and for upgraded systems.
Existing cable protection will be upgraded on certain conduits to maintain required levels of protection. The cables in the conduits have been evaluated to require protection because no redundant functions or alternate conduit routes exist to eliminate the need for protection (Ref, 2.76-2.88). By performing an evaluation with upgraded conduit wrap, cable ampacity margins may be verified to ensure adequate capabilities exist for providing power to affected electrical toads.
Revision 1 to this calculation adds a discussion of the operating heat loads (Watts per foot) for the wrapped cables and a comparison of the cables at St. Lucie plant to the cables tested at Omega Laboratories for Texas Utilities'omanche Peak Plant (Ref. 2,26) Heat load factors provide an
~
additional assurance that cables installed at St. Lucie are enveloped by the test configuration.
2.
2.1 Florida Power & Light Company, St. Lucis Plant Unit No. 1, Appendix "R" Safe Shutdown Analysis, 8770-B-048, Revision 2.
2.2 Florida Power & Light Company, St. Lucie Plant Unit No. 2, Appendix "R" Safe Shutdown Analysis, 2998-B-048, Revision 1.
2.3 FPL Calculation PSL-BFJE-93-002, Revision 1, "Ampacity Derating Response to NRC GL 92-08 for Cable Routed in Conduits with Thermo-Lag 330-1 Fire Barrier System Coating" 2.4 FPL Calculation PSL-O-F-J-E-90-011, Revision 2, "Station Blackout Hot Standby Loads".
2.5 FPL Calculation PSL-O-F-J-E-90-012, Revision 1, "Station Blackout Cold Shutdown Loads".
2.6 FPL Calculation PSL-1-F-J-E-90-015, Revision 0, "Safety Related Batteries 1A and 1B".
2.7 FPL Calculation PSL-2-F-J-E-90-016, Revision 0, "Safety Related Batteries 2A and 2B".
2.8 FPL Calculation PSL-1-F-J-E-90-017, Revision 0, "Battery Chargers 1A, 1AA, 1B, 1BB, 1AB Kilowatt Input Demand".
FPL Calculation PSL-2-F-J-E-90-018, Revision 0, "Battery Chargers 2A,
'rrpca 2.9 2AA, 2B, 2BB, 2AB Kilowatt Input Demand".
2.10 FPL Calculation PSL-'2-F-J-E-90-019, Revision 0, "Unit 2 Battery Chargers 2A, 2AA, 2B, 2BB and 2AB Sizing".
L c. 12/96
L N HE CALCULATIONNO.
'
F - - 1 REV. ~ SHEET NO. ~
2.0 tcont'd) 2.11 FPL Calculation PSL-2-FJE-90-020, Revision 4, "St. Lucie Unit 2 Emergency Diesel Generator 2A and 2B Electrical Loads".
2.12 FPL Calculation PSL-2-F-J-E-90-025, Revision 0, "Evaluation of Calculation WHL-39, Rev. 0".
2.13 FPL Calculation PSL-2-FJE-90-028, Revision 1, "Unit 2 Low DC System Voltage Calculation".
2.14 FPL Calculation PSL-1-F-J-E-91-002, Revision 0, "Instrument Inverters 1A, 1B, 1C & 1D AC Output Loading".
2.15 FPL Calculation PSL-1-F-J-E-91-004, Revision 0, "Unit 1 High DC System Voltage Analysis".
2.16 FPL Calculation PSL2-FJE-91-007, Revision 0, "PSL2 - Comparison of Anticipated Electrical Loading Conditions to Equipment Ratings".
2.17 FPL Evaluation JPN-PSL-SEMP-92-039, Revision 1, "Operability Assessment of Thermo-Lag 330-1".
2.18 FPL Calculation PSL-2FJE-93-001, Revision 1, "St. Lucie - Unit 2 Short Circuit, Voltage Drop and PSB-1 Analysis Calculation.",
2.19 FPL Calculation PSL-OFJE-93-004, Revision 0, "St. Lucia Station Blackout Emergency Diesel Generator Transient Analysis".
2.20 FPL Calculation PTN-BFJM-96-005, Revision 0, "Fire Barrier Ampacity Correction Factors-Extrapolation of Test Results for 3 Hour Barrier".
2.21 EBASCO Services, Incorporated, Calculation EC-100, Revision 1; "Fire Wrapped Conduits Cable Ampacity Document for St. Lucie Units 1 and 2".
2.22 EBASCO Services, Incorporated, Calculation EC-192, Revision 2, "MOVTOL Heater Selection Calculation".
2.23 EBASCO Services, Incorporated, Calculation WHL-8, Revision 7, "Power Cable Ampacity Document for St. Lucie ¹2".
2.24 EBASCO Services, Incorporated, Calculation WHL-25, Revision 2, "Instrument Inverters AC Output Loading".
2.25 Industrial Testing Laboratories (ITL) Report No. 84-10-5, Dated October, 1984, "Ampacity Test for 600 Volt Power Cables Installed in a Five Foot Length of Two Inch Conduit Protected with Three Hour Fire Rated Design of Thermo-Lag 330-1 Fire Barrier System."
aapca l c.12/96
LATI HEE CALCULATIONNO. F - - 1 REV ~ SHEET NO. ~
2.0 aEFIMKER i 2.26 Omega Point Laboratories, "Ampacity Derating of Fire Protected Cables", Project No. 12340-94583,95165-95168,95246, Electrical Test to Determine the Ampacity Derating of a Protective Envelope for Class 1E Electrical Circuits, dated March 19, 1993; Prepared for: TU Electric - Comanche Peak Steam Electric Station.
2.27 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-366, Revision 34, Reactor Containment Bldg El. 45'-0 Conduit, Trays & Grounding Plans.
2.28 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-375, Sheet 1, Revision 22, Reactor Containment Bldg Penetration Details.
2.29 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-390, Revision 20, Reactor Auxiliary Building El -0.50',Conduit, Trays and Grounding Sh. 1.
2.30 Florida Power & Light Company, St. Lucie.Plant Unit 1, Drawing 8770-G-391, Revision 27, Reactor Auxiliary Bldg El -0.50'onduit, Trays & Grounding-Sh. 2.
2.31 Florida Power & Light Company, St. Lucia Plant Unit 1, Drawing 8770-G-392, Revision 35, Reactor Auxiliary Building El. 19'-6 Conduit, Trays & Grounding - Sh. 1.
~ ~
2.32 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-393, Revision 30, Reactor Auxiliary Building El. 19'-6 Conduit, Trays & Grounding - Sh. 2.
2.33 Florida Power & Light Company, St. Lucia Plant Unit 1, Drawing 8770-G-395, Revision 20, Reactor Auxiliary Building, El. 43'-0, 62'-0 Conduit, Trays & Grounding.
2.34 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S01, Revision 6, Fire Protection Reactor Auxiliary Building El -0.50'.
2.35 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S02, Revision',
Fire Protection Reactor Auxiliary Building El. 19.50'.
2.36 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S03, Revision 7, Fire Protection Reactor Auxiliary Building El. 43.00'.
2.37 Florida Power & Light Company, St. Lucie Plant Unit 1, Drawing 8770-G-424 S04, Revision 4, Fire Protection Reactor Auxiliary Building El. 19.50'nd EI. 43.00'.
2.38 Florida Power & Light Company, St.'Lucie Plant Unit 2, Drawing 2998-G-366, Revision 14, Reactor Containment Bldg. El. 45'-0 Conduit, Trays & Grounding Plan.
2.39 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-375, Sheet 1,
~
Revision 13, Reactor Containment Bldg. Penetration Details.
~ ~
anpcalc.12/96
AT N ET CALCULATIONNO. - F - - 1 REV ~ SHEET NO. ~
2.0 (cont'd) 2.40 Florida Power & Light Company, St. Lucre Plant Unit 2, Drawing 2998-G-390, Revision 16, Reactor Auxiliary Building El. (-)0.50' Conduit, Trays & Grounding Sh. 1.
241 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-391, Revision 17, Reactor Auxiliary Building EI. (-)0.50' Conduit, Trays & Grounding Sh. 2.
2.42 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-392, Revision 15, Reactor Auxiliary Building El. 19'-6 Conduit Trays & Grounding-Sh. 1.
2.43 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-393, Revision 14, Reactor Auxiliary Building El. 19'-6 Conduit, Tray & Grounding-Sh. 2.
2.44 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-395, Revision 14, Reactor Auxiliary Building El. 43'-0, 62'-0 Conduit, Trays & Grounding Sh. 2.
2.45 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 2, Revision 4, RAB El. 19.50'onduit Layout.
2.46 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 3, Revision 4, RAB El. 19.50'onduit Layout.
2.47 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 4, Revision 4, RAB El. 19.50'onduit Layout 2.48 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 6J, Revision 1, R.A.B. and R,C.B. Appendix 'R'rapped Conduit Summary.
2.49 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 7, Revision 7, RAB EI. 19,50'onduit Layout.
2.50 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 8, Revision 5, RAB El. 19.50'onduit Layout.
2.51 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 9, Revision 5, RAB El, 19.50'onduit Layout.
2.52 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 10, Revision 4, RAB El. 19.50'onduit Layout.
2.53 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 13, Revision 3, RAB El. 19.50'onduit Layout.
2.54 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 14, Revision 5, RAB El. 19.50'onduit Layout.
anpcs l c. 12/96
T N HE CALCULATIONNO. F SHEET NO. ~
2.0 (cont'd) 2.55 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 15, Revision 3, RAB El. 19.50'onduit Layout.
2.56 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 16, Revision 2, RAB El. 19.50'onduit Layout Sh. 16.
2.57 Rorida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 17, Revision 3, RAB El. 19.50'onduit Layout Sh. 17.
2.58 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 18, Revision 2, RAB El. 19.50'onduit Layout Sh. 18.
2.59 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 19,
'Revision 4, RAB El. 19.50'onduit Layout Sh. 19.
2.60 Florida Power & Light Company, St. Lucia Plant Unit 2, Drawing 2998-G-411, Sheet 20, Revision 7, Reactor Auxiliary Building Electrical Penetration Area Conduit Layout Sh. 20.
2.61 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 22, Revision 9, RAB El. 43.00'onduit Layout.
2.62 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 23, Revision 6, RAB El. 43.00'onduit Layout Sh. 23.
2.63 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 29, Revision 9, RAB El. 43.00'onduit Layout Sh. 29.
2.64 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 30, Revision 7, RAB El. 43.00'onduit Layout.
2.65 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 34, Revision 12, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 34.
2.66 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 35, Revision 9, RAB El. 43.00 Conduit Layout.
2.67 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 36, Revision 7, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 36.
2.68 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 37, Revision 6, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 37.
2.69 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 38, Revision 7, Reactor Auxiliary Building El. 43.00'onduit Layout Sh. 38.
arpc ale.12/96
CALCULATIONNO. 1 REV. ~ SHEET NO. ~
2.0 (cont'd) 2.70 Florida Power & Light Company, St. Lucie Plant Unit 2, Drawing 2998-G-411, Sheet 39, Revision 8, RAB El. 43.00'onduit Layout.
2.71 Florida Power & Light Company, St. Lucie Plant Unit 1, Cable and Conduit Lists, 8770-A-328.
2.72 Florida Power & Light Company, St. Lucie Plant Unit 2, Cable and Conduit Lists, 2998-A-328.
2.73 Florida Power & Light Company, St. Lucia Plant Unit No. 1, Control Wiring Diagrams (CWD),
8770-B-327 series, 2.74 Florida Power & Light Company, St. Lucie Plant Unit No. 2, Control Wiring Diagrams (CWD),
2998-B-327 series.
2.75 IEEE Standard Power Cable Ampacity Tables, IEEE Std. 835-1994, Approved Date September 22, 1994.
2.76 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-052, "Review of Appendix of Thermo-Lag Protected Conduits in Fire Area A." 'R'ualification Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-053, "Review of Thermo-Lag Protected Conduits in Fire Area B."
2.78 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-054, "Review of Thermo-Lag Protected Conduits in Fire Area C."
2.79 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-055, "Review of Appendix of Thermo-Lag Protected Conduits in Fire Area E." 'R'ualification 2.80 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-056, "Review of Thermo-Lag Protected Conduits in Fire Area N."
2.81 Engineering Evaluation St. Lucie Unit 1, JPN-PSL-SEMP-94-064, "Review of Thermo-Lag Protected Conduits in Fire Area O."
2.82 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-057, "Review of Appendix of Thermo-Lag Protected Conduits in Fire'Area A." 'R'ualification 2,83 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-058, "Review of Appendix of Thermo-Lag Protected Conduits in Fire Area B." 'R'ualification 2.84 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-059, "Review of Appendix of Thermo-Lag Protected Conduits in Fire Area C." 'R'ualification 2.85, Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-060, "Review of Appendix of Thermo-Lag Protected Conduits in Fire Area H." 'R'ualification ampca l c.12/96
L L I N HE ET CALCULATIONNO. SHEET NO. ~1 2.0 (cont'd) 2.86 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-061, "Review of Appendix of Thermo-Lag Protected Conduits in Fire Area I." 'R'ualification 2.87 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-062, "Review of Appendix of Thermo-Lag Protected Conduits in Fire Area M." 'R'ualification 2.88 Engineering Evaluation St. Lucie Unit 2, JPN-PSL-SEMP-94-063, "Review of Appendix of Thermo-Lag Protected Conduits in Fire Area O." 'R'ualification 2.89 Standard Handbook for Electrical Engineers, 11th Edition.
2.90 Westinghouse Electric Corporation Drawing 4'9552D65, Sheet 3, "St. Lucie Unit No. 2 Electric Hydrogen Recombiner Solid State Power Controller Schem", EMDRAC No. 2998-3031, Revision 1.
2.91. St. Lucia Unit No. 1, Cable 5 Conduit List 8770-B-328, Installation Notes, Sh. 12, Rev, 9.
2.92 FPL St. Lucie Unit 1 Drawing 8770-G-275 Sh, 1, Revision 12, "6.9kV Swgr 5 4.16kV Swgr One Line Wiring Diagram Sh. 1".
2.93 FPL St. Lucie Unit 1 Drawing 8770-G-275 Sh.7, Revision 12, "480V Motor Control Centers One Line Wiring Diagram Sh. 7".
2.94 FPL St. Lucia Unit 2 Drawing 2998-G-275 Sh. 18, Revision 5, "4.16kV Switchgear No. 2A3 and 2B3 One Line Diagrams",
2.95 FPL St. Lucia Unit 2 Drawing 2998-G-275 Sh. 19, Revision 3, "4.16kV Switchgear No. 2AB, No. 2A4 and No. 2B4 One Line Diagrams".
2.96 FPL St. Lucie Unit 2 Drawing 2998-G-275 Sh. 35, Revision 8, "480V Motor Control Center No. 2B5 (Sh. 1) One Line Diagram".
,2.97 FPL St. Lucie Unit 2 Drawing 2998-G-275 Sh. 41, Revision 7, "480V Motor Control Center No. 2B6 Sh. 2 One Line Diagram".
2.98 ICEA Publication No. S-19-81, NEMA Standards Publications No. WC3-1980, Approved September 19, 1979, " Rubber-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy", Table 2-4.
"
2.99 ICEA Publication No. S-66-524, NEMA Standards Publication No. WC7-1988, Cross-Linked Thermosetting-Polyethylene-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy ".
aepca l c.12/96
F - - 1 REV. 1 SHEET NO. ~
2.0 (cont'd) 2.100 ICEA Publication No. S-68-516, NEMA Standards Publication No. WC8-1988. " Ethylene-Propylene-Rubber-Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy ".
2.101 Engineering Evaluation St. Lucie Units 1 & 2, JPN-PSL-SEEP-94-108, Revision 1, "Evaluation of Existing Thermo-Lag Fire Barriers"
'2.102 Engineering Evaluation JPN-PSL-SENP-95-030, "Response to. NRC Request for Additional Information Dated 12/28/94".
2.103 NUCON International, Inc., "Pyrolysis Gas Chromatography Analysis of 9 Thermo-Lag Fire Barrier Samples, Performed for Florida Power & Light Company" (Attachment 2).
2.104 EPRI Power Plant Electrical Reference Series, Volume 4, "Wire and Cable", Section 4.4.
3.0 D L Y Review the Appendix 'R'afe Shutdown Analysis (SSA) for cables identified as requiring protection and conduits identified with fire barriers (Ref. 2.1 & 2.2).
3.2 Review Unit 1 Fire Protection drawings, 8770-G-424 S01, S02, S03 and S04 (Ref. 2.34-2.37) for conduits shown and listed as protected or shown as 6 protection not required by further evaluation. Fire barriers were installed on the 6 conduits prior to the re-evaluation which removed protection requirements (Ref. Table 5.2).
3.3 Review Unit 2 Appendix 'R'rapped summary drawing, 2998-G-411, Sheet 6J (Ref, 2.48) for conduits shown and listed as protected or shown as 8 protection not required by further evaluation. Fire barriers were installed on the 8 conduits prior to the re-evaluation which removed protection requirements (Ref. Table 5.3 & 5.4).
3.4 Review Unit 2 raceway and conduit layout drawings for conduits wrapped with Thermo-Lag 330-1 fire barriers for RG 1.75 separation (Ref 2.38-2.47, 2 49-2.70).
3.5 Identify cables in conduits covered with Thermo-Lag 330-1 fire barrier systems not previously identified in SSAs; i.e., RG 1.75 and cables in conduits designated S.
3.6 Determine cable function from review of associated control wiring diagrams and compile listings of power cables affected. Signal and control cables do not carry sufficient current to generate heat in the cable and reduce ampacity. Power cables to valves are excluded due to the short duration of valve operation, 3.7 Review calculations issued by EBASCO, Services, Inc. and FPL Engineering to determine loads and currents used for affected power cables. Select worst case loading from background information and determine which loads will be applied to the cables continuously or longer than the time which will heat the cable from the load current (Ref. 2.3-2.16, 2.18-2.24).
arpcal c.12/96
CALCULATIONSHEET CALCULATIONNO. PSL-OFJE 001 REV. 1 SHEET NO. 12 3.0 METHODOLOGY 3.8 For motors, determine kilovolt-amperes (KVA) rating from horsepower rating and then calculate current based on line voltage (480 or 4160 volts) to device. Motor kilovolt-amp and efficiencies are discussed in Assumption 4.10 and 4.11.
%%d 3.9 Determine derating factor for multiple power cable installed in the same conduit, the number of current carrying conductors in the conduit (C/C) and the Ampacity Correction Factor (ACF) calculated in PTN-BFJM-96-005 (Ref. 2.20),
Cable manufacturers and IEEE gives ampacities for cables up to one three conductor (3/c) or triplex cable in a conduit in air. The cable ampacities are derated when the number of conductors in a conduit exceeds three (3). Cable ampacity is multiplied by the following correction factor (Ref. 2.104):
Total Number Ampacity of Conductors Correction Factor 3 1.00 4-6 0.80 7-9 0.70 3.10 Calculate derated ampacity (I') for each power cable.
(I') = lc x (ACF) x (C/C Derating %)
3.11 Determine margin percent (%) between rated cable capacity and the derated ampacity (I'):
C
% -1 ) x100
< Load Amps Required(l) 3.12 Operating heat loads (Watts per foot) are calculated as follows:
Watts/foot = ( 0'f conductors) ( resistance per 1000 ft)(load current)~ /1000 The heat loads for the derated current load on a cable type is compared to the operating heat load for the actual current load on a cable to assure cable design is not exceeded.
3.13 Cable resistance values are given at a temperature of 25 degree C. Table 6-1 (attached) provides the following conversion equation:
= R2 259.5/[234.5 + T2]);,where; = resistance at 25 degree C
'2 R1 ( R1 R2 = resistance at operating temperature R2 = R1 ([234.5 + T2] /259.5) = cable temperature; i.e., 90 degree C or R2 = R1 ([234.5 + 90] /259.5) = R1 (1.2505) aepca l c. 12/96
- I HE CALCULATIONNO. - F - - 1 REV. 1 SHEET NO. ~
4.0 4.1 Fire protection wrap used at St. Lucie station is the Thermal Science, Inc. (TSI) Thermo-lag Fire Barrier System. Typically, the half-round "clamshell" covers applied over conduits have a nominal thickness of 5/8" for one (1) hour ratings and one (1) inch for three (3) hour ratings.
4.2 The original design calculations for derating factors determined that Thermo-Lag barriers reduced ampacity by approximately 12%, however, for conservatism, a derating factor of 15% was selected for power cable sizing (Ref. 2.21).
4,,3 Control and instrumentation cables are not subject to ampacity limits due to the small levels of current used. Voltage drop in the control circuit is usually the limiting factor for cable design and normally requires the installation of larger cables to perform required functions.
4.4 The continuous device current load was used as a basis for this calculation. Momentary load requirements, i.e., those lasting less than 1 minute, are not considered. Loads of this duration are not sustained long enough to induce heat in the affected power cables. Abnormally high levels of current for devices are detected by protective devices and the component is designed to be separated from the power source before the condition damages the component or cable.
4.5 Fire protection barriers in St. Lucie Unit 1 and Unit 2 are installed on cable conduits and conduit boxes only. There are no cable trays wrapped with fire barriers at the St. Lucie station. However, sections of conduits 21001F-4" and 21001H-4" are routed in a "banked" configuration. There were no tested configurations for banked conduit runs; therefore, the ampacity correction factor for cable tray were used. The banked conduits are in a single plane and the conduit size of 4 inches is similar to the depth of cable tray used at St. Lucie. Using the cable tray derating factor gives a more conservative estimate of the current carrying margin for the affected cables in these conduits (21801W, 21801X, 21801Y and 21801Z).
4.6 This calculation applies to cables in protected conduits inside and outside containment of both St. Lucie units. The ambient temperature for cables inside containment is assumed to be 50'C. Outside of the containment buildings, ambient temperatures are assumed to be 40'C (104'F). Operating temperatures in the RAB are normally closer to 30'C; however, for conservatism, the higher temperature will be used.
4.7 Power cables utilized in St. Lucie'station are rated for operation at 90'C conductor temperature. The higher the insulation temperature rating, the greater the allowable ampacity for a given conductor size.
4.8 Conduits protected in St. Lucie Unit ¹1 use (3) hour barrier one (1) inch nominal thickness material. Conduits protected in St. Lucia Unit ¹2 may be protected with one (1) hour 5/8" nominal thickness material or three (3) hour one (1) inch nominal thickness material. This calculation assumes three (3) hour protection will be upgraded by using layers of Thermo-Lag 770-1 wrap and trowel grade materials. One (1) hour barriers will be upgraded with overlays of (1/4") nominal thickness curved sections of Thermo-Lag 330-1. These assumptions are based on currently available upgrade systems that are cost effective for use at St. Lucia.
ampca l c. 12/96
L T CALCULATION,NO. - F - - 1 REV. 1 SHEET NO. ~4 4.0 N A 4.9 Conductor current values for 600 volt cables are based on IEEE standard values (Ref. 2.75) for conductors rated 600 to 5000 volts, 90'C (194'F) ambient temperature with no solar heating and 2 FT/s wind/ventilation.
4.10 Where load values are known in kilovolt-amperes (KVAs), the current is determined by; h C Ci:
=V I= V 1 amps (three phase AC) 3xV 4.11 The ampacity testing performed for Comanche Peak Plant was performed for conduits ranging in size from 3/4 inches to 5 inches. Conduits covered with Thermo-Lag 330-1 fire barriers at St. Lucie plant range from 1-1/2" to 5". The heat load (I'R loss) from each cable section is included in Tables 5.5a, 5.5b. 5 5.5c. These heat loads were compared to the tables/charts used by Turkey Point where heat loads were compared to the Omega Point Laboratory test for Texas Utilities Comanche Peak Plant (Ref. 2.20). From this it is concluded that the test samples utilized are representative of the configuration at St. Lucie.
4.12 There are'no installed cable tray sections at St. Lucie protected by Thermo-Lag fire barriers.
However, there is a large pull box installed in St. Lucie Unit 2 elevation (-) 0.50', box B2431-SA which was reviewed due to size. The box is a 42" x 42" x 12" enclosure used as a pullbox for the power cables to AFW pump 2A. The horizontal surface on the bottom of the enclosure is expected to be most affected by fires in the 12" box depth. Because the original test performed by TSI included a 12" cable tray section and the Comanche Peak test included a 24" cable tray section, the large enclosure in St. Lucie Unit 2 is considered bounded by the previous tests.
4.13 ln accordance with Reference 2.101, the thickness of the Thermo-Lag and the gaps within the Thermo-Lag, found during the inspection of the correctly installed configurations for'the Unit 1 8c 2 one hour and three hour barriers, were in accordance with the installation instructions of TSI. Therefore, the configuration of the Thermo-Lag barriers at St. Lucie are bounded by the TSI installation instructions.
4.14 FPL participated in a generic industry test program managed by the. Nuclear Energy Institute (NEI) which included verification of the chemical composition of Thermo-Lag material. As part of the NEI test program, a pyrolysis gas chromatographic analysis was used to qualitatively compare the organic constituents of various Thermo-Lag samples. St. Lucia provided (9) samples from installed and warehouse Thermo-Lag materials. All of the samples tested at NUCON Laboratory in Columbus, Ohio were found consistent in terms of chemical composition (Ref. 2.103). Results of the testing program were sent directly to the NRC by NEI letter dated October 3, 1995. Per Reference 2.102, the NRC stated that there was essentially no differences between the samples for different lots, areas of the country and the year the material was purchased.
anpc ale. 12/96
CALCULATIONNO. 1 REV. 1 SHEET NO. ~
5.0 5.1 The documents listed in Section 2.0 of this calculation were reviewed to identify the cables wrapped with Thermo-Lag which must be considered for ampacity derating factors.
6.2 Bills of Material were reviewed for cables identified in 5.1 to determine insulation voltage rating and intended generic use, i.e., power or control and tabulated in Table 5.1.
5.3 From information listed in documents of Section 2.0 and appropriate bills of material, Tables 5.2, 5.3 and 5.4 were generated to identify affected cables in wrapped conduits. These tables identify cable types, usage voltage class, insulation voltage rating, a description of the cable load for power cables and the number of current carrying conductors in each conduit.
5.4 Motor load kilowatt and current ratings vary in prior documents depending on base values used. For this calculation, current values for motors were determined from nameplate listings on referenced One-Line List drawings.
5.5 From this information and Section 2.0; Tables 5.5.a, 5.5.b. and 5.5.c were created.
e aapcatc.12/96
A LATI N HEE CALCULATIONNO. - F - - 1 REV. ~ SHEET NO. ~
5.0 (cont'd)
QLI~IQJ St. Lucia Plant Cable Types St. Lucie Unit 1: Reference Unit 1 Bill of Materials, 8770-B-325 BOM Cable Identification BOM Sheet Revision Description No.
D022 Sht. D2-1 Power Cable, 600V Crosslinked Polyethylene PVC Jacket for Overall Jacket (Type XLPP)
D0343, D03-06, D03- Sht. D3-1 Control Cable, 600V, Crosslinked Polyethylene 07, D03-08 PVC Jacket for Overall Jacket (Type XLPPP)
D03-12 Sht. D3-9 Control Cable, 600V, Crosslinked Polyethylene PVC Jacket for Overall Jacket (Type XLPPP)
D156 Power Cable, 5000V (Re. CARS)
D26-02, D26-06 SIlt. D26-01 Power Cable, 600V, HT Kerite Insulation, FR Overall Jacket (Type HT) 52-08 Sht. D52-01 Control Cable, 600V, FR Kerite Insulation, FR Overall Jacket (Type MCCC)
St. Lucia Unit 2: Reference Unit 2 Bill of Materials, 2998-8-325 BOM Cable Identification BOM Sheet Revision Description No.
D1 541, D15-02, D1 5- Sht. D11-01 Power Cable, 5000V, Crosslinked Polyethylene, 03 Lead Sheath L Neoprene Overall (Type XLPSLN)
D26-02, D26-03, D26- SILt. D26-01 Power Cable, 600V, HT Kerite Insulation, FR 04, D26-06, D26%7, Overall Jacket (Type HT)
D26-08 D26-10 Sht. D26-09 Power Cable, 600V, HT Kerite Insulation, FR Overall Jacket (Type LVPC)
D52-03, D52-08 Sht. D52-01 Control Cable, 600V, FR Kerite Insulation, FR Overall Jacket (Type MCCC)
D54-05, D54-06, D54- Sht. D54-01 Power Cable, 600V, Non-shielded, HT, Kerite 07 Insulation FR Jacket (Type LVPC)
D61-05, D61-06 Sht. D61-01 Signal D98 Re: D26, D52, D54 99 Re: D26 sapca1 c. 12/96
LATI CALCULATIONNO. - F 1 REV. ~ SHEET NO. ~7 5.0 (cont'd)
T BLE .2 St. Lucie Unit 1 Cables in Conduits with (3) Hour-Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUIT BM/Id Type Volt Insulation Device c/c Class Rating 404.&h 4S44VK 9$ 2-98 4-Re-¹2 C 699 2 10504A 10504A D2646 3-1/c ¹2 M 600 HVE-9B 3 496QSB -102R- 903-98 4-2A.'~ 6 6QQ $9 496Q66 -40i54- 993-Q6 4-WWQS C 699 $0 496969 -Hh54- 903-93 4-Se-4%0 6 6QQ $0 407448 ~54- 903-42 4-2'-4t46 C 6QO
'0
$9 408448 -%2$ 4- 903-03 4 'Ve AO 6 6QO 40844F -402$ 4- 903-Q6 4-7/e-¹42 C 6QO $Q 40Q$ 6 -402$ 4 993-(P 4-Ske-¹42 C 6QQ $0 408468 -402$ 4- 903-Q3 4 Ve,AO 6 699 $0 40846F -402$ 4- 903-96 4-VMAQ C 6QQ $0 40$ RG -492$ 4- 993-OV 4-$ /e-¹42 6 6QQ $0 408268 -492$ 4- 9Q3-Q6 4-Vke-¹42 C 699 $9 408266 -402$ 4- 903-93 4 Ve.AO C 690, $9 10&32A 11552 D1546 3-1/c ¹4/0 V 5000 ICWP A 3 11001F 11001F
" D2642 1-1/c ¹500 M 600 125VDC 2 11001G 11001F
" D2642 1-1/c ¹500 M 600 Load Test 2 11001H 11001H
" D26-02 1-1/c ¹500 M 600 Panel 2 11001J 11001H
" D2642 1-1/c ¹500 M 600 1A 2 11002B 11002B
" D02M 2-1/c ¹500 M 600 Batt Chltr 1B 2 11002F 11002F
" D0242 1-1/c ¹500 M 600 125VDC 2
~ 148&5 Load Test.
11002G 11002F
" 1-1/c ¹500 M Panel
~ 14885 1B 11002H 11002H
" 1-1/c ¹500 M
~ 14886 00 11002J 11002H
" 1-1/c ¹500 1~ '2
- 14886 0~
11002M 11002M " D0242 1-1/c ¹500 M 125VDC 11002N 11002M " D0242 1-1/c ¹500 M Bus 1B 11002P 11002P " D0242 1-1/c ¹500 M 11002Q 11002P
" D0242 1-1/c ¹500 M 1C 11009G 11009G D26-06 2-1/c ¹2 M Invert 1A Out 11009 J 11009 J D2646 2-1/c ¹2 M Invert 1A In 11009Q 11009 Q D26-06 2-1/c ¹2 M Inst Bus MA (AC)
Qg~: Reference 8770-B-328, Sheet 9A, Revision 2, "Cable and Conduit List Installation Notes".
C - control or low voltage power (i.e., 120 volt to ground)
~ ~
M - medium voltage (i.e., 480 volt nominal)
~ ~
c/c - number of current carrying conductors in same conduit xxxx" - conduits identified as not requiring protection
~ ~
anycalc.12/96
L LA I NS EE CALCULATIONNO. F - - 1 REV ~ SHEET NO. ~1 5.0 (cont'd)
XhRU~
St. Lucia Unit 2 Cables in Conduits with (3) Hour Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUH'M/Id Type Volt Insulation c/c Class Rating 20251A 25071 P D1543 3-1/c ¹4/0 V 5000 LPSI P2A 3 20504A 20504A " D9841 3-1/c ¹4/0 P 600 (D26-03) 2HVE-9B 3 20629 A 20336 D1546 3-1/c ¹4/0 V 5000 AFW P2A 3 2064$ C 22@RP- KHQ-4$ 6 6QQ g)$ 4-0$ ) R-'MB-20$ 4 20646A 220249- 998-4$ 2-h/e-¹6 C 6QQ +$ 4-0$ ) kAQB-206 4 20&34A 21696 D1543 3-1/c ¹4/0 V 5000 ICW P2C 3 20931A 25019 Y D26-06 2-1/c ¹2 P 600 Swgr 2A3-5 4 2094&F 20948F D1541 3-1/c V 5000 Xfmr 2B2/2B5 3 20956 H 22020Q D9841 2-1/c ¹4/0 P 600 (D26-03) DG 2A Exc Cub 6 20990 H 25019 Y D2644 2-1/c ¹2/0 P 600 Swgr 2A24 4 21001A 21001A D2644 3-1/c ¹2/0 P 600 Bat Ch r 2A 3 8@726- K@4-Q6 4-Re-¹89 C 6QQ I 21009G D26-04 2-1/c ¹2/0 P 600 Inst Bus 2MA 2 21009 J D2644 2-1/c ¹2/0 P 600 Inv 2A 2 21009K 28161 J D9944 2-1/c ¹2/0 P 600 (D26-04) Inv 2C 2 21009U 21009H D2644 2-1/c ¹2/0 P 600 Inst Bus 2MC 2 2160& B 22020Q D9841 2-1/c ¹4/0 P 600 (D2643) DG 2A CP 6 21801A 21801A D2644 3-1/c ¹2/0 P 600 Bat Chgr 2AA 4 21801W 21001F
" D2642 2-1/c P 600 DC Bus 2AA 4
- 28058J DC Bus 2AA 21801Y 21001H " D26-02 2-1/c P 600 DC Bus 2AA 28058D" DC Bus 2AA 21801Z 21001H D26-02 2-1/c P 600 DC Bus 2AA 2805&D DC Bus 2AA 593~ Reference 2998-B-271, Sheet 2-14, Revision 2, "Electrical General Installation Notes".
L - low level signal, not power C - control or low voltage power (i.e., 120 volt to ground)
P - medium voltage power (i.e., 480 volt nominal)
V - high voltage (i.e., 4160 volt nominal) c/c - number of current carrying conductors in same conduit
¹
()D - (cable size) duplex construction
()T - ¹(cable size) triplexed construction
()STP - ¹(cable size) shielded twisted-pair xxxx" - conduits identified as not requiring protection
- cable also in other protected conduit empca l c.12/96
CALCULATIONNO. F SHEET NO. ~1 5.0 LCulAMlM 1 ABLE .4 St. Lucie Unit 2 Cables in Conduits with (1) Hour Thermo-Lag 330-1 Fire Barrier System Protection CABLE CONDUIT BM/Id T+e Volt Insulation c/c Class Rating 2044@A 998-08 4-8k~ V 600 V44VV 4-V 8HS)A 998-08 4-3/e~F P 600 Vk+% 4 20292 A D264& 1-3/c ¹12T P 600 1-T QL'89A 924i-%. 4-3/e-¹8T- 6QQ 3 20344A 926-QV 4-3/e-A%7- P 6QQ hid-08-k8 8 204663 9$ 2-Q8 4-Q/e-A%2 6 600 2 2046&4 9$ 2-08 4-QIe-tAQ 6 600 2 20$ 2$ 6 K@4-0V 4-2/'e-tAQB C 600 QBVB-SB 2 20$ 2$ 8 20$ 2$ 6- 9$ 4-0V k4/e-A%:& 6 600 QRV8-BB 2 20597 J 20597N D2643 4-1/c ¹4/0 P 600 H2 Recomb 7 20597N D99-01 3-1/c ¹4/0 P 600 (D2643) H2 Recomb 7 220208- %88-03 4-3/e-¹IÃ 6QO (92&&) MV-694 4-7
%20289-20328- B26-0V 4-3/e-¹8V P 6OQ MV49-10 8 20328- 926-06 4-Qe-¹2 6OQ 449-0&4 8 20630 A 28093C DISS 3-1/c ¹4/0 V 5000 AFW P2B 3 20833 A 21553 D1543 3-1/c ¹4/0 V 5000 ICW P2B 3 QOA4F 20944F- 964-Q$ 4-2/e¹44RF 4 600 2 20946F 22006S D1541 3-1/c ¹500 V 5000 Xfmr 2AS 3 20948A 20948A D1541 3-1/c ¹500 V 5000 Xfmr 2B2/2BS 3 210 10U 21010H D26-04 2-1/c ¹2/0 P 600 Inst Bus 2MD 2 21118A 2202 0Q D98-10 2-1/c ¹4 P 600 {D26-10) DG 2A Ann 6 24$ 04A 2$ 0$ 2J " 926-0V 4-3/e-¹SV 600 V3$4$ 4-7.
24$ 44A 220209- 998-'08 4-3/e~F 6QO RCV36$ V Q-V 2462 VA 203iN- 926-04 9-8e-¹2/0 6OQ RV-08-t98 8 246296 220226- 99&4$ 2-Qe-¹6 6 600 V-4474 3 RQI298 220226- 998-30 4-9/e-¹46 C 600 V-14V4 3 24642A 246428- 9$ 4-06 4-Se-¹89 6 60Q Redwea 2 244'429 246QS- 9$ 4-06 4-2 ~89 C 600 Redwea 2 246 QS 9$ 4-06 4-Se-¹89 C 600 Radwea 2 246'1643 9$ 4-06 4-Se489 6 600 Ra&tea 2 G 22016 H D26-10 2-1/c ¹4 P 600 RM/RS26-1 2 21643 R 21643R D26-10 2-1/c ¹4 P 600 RM/RS26-18 2 246496 2464tM- 964-6 4-ReAt46STP 4 60Q 2 246 I99 246496- 964-6 4-2/e¹44STP 4 2 RkRi4A 24VSD& 9$ 4-Q$ 2-Qe-¹6 6 600 ~%49) 8 24VRS 24VSQ- 9$ 4-0$ 2-Qe-¹6 6 6QO (926-0+ 4 24V$ 48 V24VSB 9$ 4-Q$ 2-hh&5 6 8 24V$QV- 9$ $ -0$ 2-4,fe-N 6 4 24V$ 4- 9$ 4-0$ 2-Pe-¹6 6 600 8 X247$ - 9$ 4-0$ 2-t4e-¹6 6 600 8 25050 W 25067M D26-04 2-1/c ¹2/0 P 600 125V Bus MD 3 aapca tc.12/96
dl CALCULATlONNO. P SHEET NO. ~
5.0 A (cont'd)
St. Lucie Unit 1 (3) Hour Thermo-Lag 330-1 Fire Barrier System Wrap AIrcctcd Cable Hp/ Load ACF CIC Cable Dcratod Maximum Actual Heat Cable Device Cable Size Reeietance KVA Amp e (Rof. C/C Derating Ampacity Ampacity Derated Heat Load Ref. I loooh (it) 2.20) (Ic)IEEB 9') Load (Watts/h)
(Rcf 2.98- (Waaa/h) 2.100) 2.93 IOS04h HVE-9B 3-1/C t2 0.2113 40 49 .80 3 none 117 93.6 S.S$ 36 13220 91.02 2.92 10832A ICW PIA 3-1/C I4/0 0.06SS 600 81 .80 3 none 247 197.6 7.672$ 143.9$
2.6 I lool F 12SVDC TEST l-l/C t500 0.0278 310 .$ 0 2 none 416x2 66S.6 24.6321 S3432 114.7 I 1oolo PNL I A l-l/C I500 2.6 I IOOIH 12SVDC TEST l-l/C I500 0.0278 310 .80 2 none 416x2 66$ .6 24.6321 $ 3432 114.7 11001 J PNL IA l-l/C ISOO 2.8 11002B CHRGR I B 2-1/C ISOO 0.0278 68 8315 .80 2 none 416x2 66S.6 24.6321 S.S 169 111.30 KVA
- 2. 6 11002F 12$ VDC TEST l-l/C ISOO 0.0278 310 .80 2 none 416x2 665.6 24.6321 S3432 114.7 11002G PNL IB l-l/C t500 2.6 11002H 125VDC TEST I-I/C ISOO 0.027$ 310 .80 2 none 416 x2 66$ .6 24.6321 S3432 114.7 11002J PNL I B I-I/C I500 2.6 11002M 12SVDC 1-1/C ISOO 0.0278 310 .80 2 none 416x2 66$ .6 24.6321 $ 3432 114.7 11002 N BUS IB l-l/C ISOO
- 2. 6 11002P 12SVDC I-I/C l500 0.027$ 310 .So 2 none 416x2 665.6 24.6321 S3432 114.7 11002Q BUS IB 1-1/C l500 2.14 11009G INVTR lb 2-1/C I2 0.2113 lo ~
30.7 .$ 0 2 none 117 93.6 3.7024 0.3983 204.89 (AC Out) KVA 2.1$ 11009 J INVTR IA 2-1/C l2 0.2113 lo 37 .So 2 none 117 93.6 O.S7$ $ IS 2.97 (DC In) KVA 2.14 11009Q INST BUS Mh 2-1/C I2 0.2113 4.2 .80 2 oooo 117 93.6 0.007S 212$
Note: t battery chargers are current-limited to 315 amps output aepca I c. 12/96
CALCULATIONNO. SHEET NO. ~
5.0 (cont'd)
St. Lucia Unit 2 (3) Hour Thermo-Lag 330-1 Fire Barrier System Wrap Cablo Affected Cable Sixo Cable Hp/ ACF C/C C/C Dcratlng Cable Deratcd Maxinxtnt Actttal Heat % Margin Device Rosistance KVA (Rcr. Ampacity Ampecity Dcratcd Heat Load
/ 2.20 ) (Q IEEE G') Load (Watts/It)
Rcr. 1000'Rcr 2.98- (Watts/It) 2.100) 3-1/C l4/0 '3 247 197.6 7.672S 0.4913 29$ .2 2.94 202S Ih LPSI P2A 0.06$ $ 400 $0 2.97 20504 h 2HVF 9B 3-1/C l4/0 0.06SS 60 6$ .80 247 197.6 7.672S AFW P2A 3-1/C l4/0 0.06$ $ 3SO 47 247 197.6 7.672$ OA341 320.43 2.94 20629h 20834A ICW P2C 3-1/C l4/0 0.065$ 600 82.4 .80 247 197.6 7.672S 13342 139.81 2.95 2.7 2093 lb SWGR 2A3 2-1/C l2 0.2113 0.$ 0.80 117 74.$ 84.7390 0.0002 14876 2.19 20948F STA SVC Xrmr 3-1/C lSOO 0.027$ '933 268 .80- 416 332.8 9.2370 S.990 24.1$
2.94 2B2/2BS KVA 2.7 209S6H DG 2A 2-1/C l4/0 0.06SS 50.0 .$ 0 0.80 247'58.08 9.8208 0.9825216.16
'21118 A EXC CUB 2-1/C l4 negligible 2-1/Cl4/0 6.0 0.0141 21608 B 2.13 20990H SWGR 2A2 2-1/C l4/0 0.06$ S 03 0.80 247 158.08 63472 0.0006 31S16 3-1/C l2/0 104.2 181 144.8 6.623$ 3A299 38.96 2.9 21001A CHRGR 2A O.IOS3 SO (AC In) KW 2-1/C t2/0 0.1053 24.7 181 144.8 4.4151 0.128S 486.23 2.24 21009E INST BUS 2MA 2-1/C l2/0 37 1$ 1 144.$ 4A1$ 1 0.2883 291.3S 2.6 21009 J INVIR 2A 0.10$ 3 10 (DC In) KVA 21009K INVIR 2C 2-1/C l2/0 0.1053 10 37 1$ 1 144.$ 4A 157 0~ 2913$
(DC In) KVA 2.24 21009U INST BUS 2MC 2-1/C l2/0 O. IOS3 28A 1$ 1 I44.8 4 AIS7 0.1699 48.86 3-1/C l2/0 50 104.2 1$ 1 161 A8 $ .1976 3.4299 54.S9 2.10 2180 I h CHRGR 2AA 0.1053 KW 21801W 125VDC BUS 2AA 2-1/C ISOO 0.027$ .69 0.80 416x2 459.26 23.4S47 $ 3940 6S.20 2.13 2.13 21$ 0IX 21801Y 2180IZ 2-1/C ISOO 12SVDC BUS 2AA 2-1/C ISOO 2-1/C ISOO 0.0278 27$ 0.$ 0 416x2 45926 23AS41 $ ~ 6S.20 ngpcnic.12 /96
CALCULATlONNO. SHEET NO. ~
5.0 (cont'd)
St. Lucie Unit 2 (t) Hour Thermo-Lag 330-1 Fire Barrier System Wrap hfrcctcd Cable Site Cabbt HP/ Load AClt C/C Cable Detated Maximum hcntaI Heat Load Cable Device Rcaittance KVA Amp a (Ref. C/C Dc rating Ampacity Ampacity Derated Heat (Wattt/h)
Rcf. /1000h (Re (it) 2.20) (Ic) IEEE (I') Load 2.9$ -2.100) (Watta/h) 2.96 20292 A HYDRAZINE 1-3/C I12T 2.1058 3 4.6 .89 3 29 2S.81 4.2084 0. 1337 PUMP 2.17 205971 H2 RECOMB 4-1/C I4/0 0.06SS 7S 90 .89 7 0.70 247 IS3.8810.8568 3.7139 2.90 20S97N 3-1/C I4/0 KVA 2.94 2063 0A AFW P2B 3-1/C I4/0 0.065S 350 47 .89 3 none 247 219.83 9.49S9 0.4341 367.72 2.94 20833 A ICW P2B 3-1/C I4/0 0.06$ S 600 82.4 .&9 3 none 247 219.83 9.49S9 13342 166.7$
2.19 STA. SVC Xfmr 3-1/C ISOO 0.0278 1933 268 .89 3 none 416 370.24 11 4323 38.1S 2.94 2AS KVA 2.19 20948A STA SVC Xfmr 3-1/C ISOO 0.02781933 -
268 .89 3 none 416 370.24 I I 4323 38.15 2.94 2B2/2BS KVA 2.24 21010 U 120VAC INST BUS 2-1/C l2/0 0.1053 10 28.4 .89 2 none 1$ 1 161 09 $ 4651 0.1699 467.22 2MD KVA 2.13 2111$ A DG 2h hnn 2-1/C l4 0.3364 1.0 .89 6 0.80 88 62.66 7.9248 0.0020 6165.6 2.22 21643 G RM/RS-26-1 2-1/C I4 0.3364 2.S .89 2 none 88 7$ .32 4.1269 0.0042 3032.8 2.22 21643 R RM/RS-26-18 2-1/C l4 03364 2.S .89 2 none 7832 4.1269 0.0042 3032.$
2.7 2SOSOW 125VDC BUS MD 2-1/C l2/0 0.1053 I.S .89 3 none 181 161.09 $ .1976 0.0007 10639 2.24 ceqca lc. I2/96
L Al N HE CALCULATIONNO. 1 REV. 1 SHEET NO. ~
6.0 REHEAR The results shown in Tables 5.5.a., 5.5.b. and 5.5.c. indicate that when using newer ampacity correction factor (ACF) as determined in the Turkey Point calculation, PTN-BFJM-96-005, for upgraded Thermo-Lag fire barrier installations, sufficient margin exists between operating cable loads and cable cuirent carrying capacity (ampacity).
This calculation revisited prior calculations-, and Appendix R and RG 1.75 documents to eliminate the conservatism that existed in the earlier calculations when considering the load on a specific cable.
Ampacity values used in this calculation are loads that exist longer than 60 seconds; i.e., do not include the battery or valve loads during the first minute which are reduce significantly for longer operation.
As listed above, the smallest margin for St. Lucie Unit No. 1 Thermo-Lag (3) hour upgraded wrapped conduits is ~1 4 7 . This margin is for the 125 volt DC power cables from Battery lA to Battery Test Panel lA for supplying 125 volt DC bus lA. Loads on these cables are steady state loads after the first minute of operation when the cable is subjected to continuous loads. Loads on the battery cable are higher in the first minute due to cycling of valves and other motors.
The smallest Unit No. 2 margin for (3) hour upgraded wrapped conduits is ~~1+ for the 4160 volt power feeder cables to Station Services Transformers 2B2/2B5. This value contains some conservatism since it assumes 100%
conduits in St. Lucie Unit 2, the smallest margin is ~~
transformer loading. For (1) hour upgraded wrapped for the 4160 volt feed to Station Services Transformer 2A5. This value includes conservatism, similar to the margin to Transformers 2B2/2B5, since it assumes 1004 transformer loading.
The original calculations for cable derating in St.'Lucie Unit 1 and Unit 2 used a value considered conservative at 154. This calculation has determined that acceptable power cable margins exist for installed cables in St. Lucie Plant Unit 1 and Unit 2 when using derating values of 114 for (1) hour fire barriers and 204 for (3) hour fire barriers assuming the installation of Thermo-Lag 330-1 and Thermo-Lag 770-1 upgrade fire barrier systems.
A revision to the cables in conduits 21001F-4" and 21001H-4" was included in Revision 1 to this calculation. These conduits were found to be in a banked configuration for part of their route; For conservatism, the ampacity derating factor for cable trays was applied to these conduit sections. The r'esultant ampacity margin changed from 91.534 to 65.204 using the cable tray derating factor of 314. Revision 1 also concluded that installed conduit configurations at St Lucie plant are bounded by test performed at Omega laboratories for Texas Utilities'omanche Peak Nuclear Plant.
sap'c.12/96
ICBM S46424
%bee M hTrhCHMHYI' I
Nominal DC Raafotance in ohma Par 1NN Featt at SIC prFj
= Qealiaw of Sottd and Concont& Lay4trandad Conductor aaaa a 27.1 1ILS 172 DA W.7 17$
169 1L3 SL7 173 105 111 13$ t% L52 13.7 L33 LI3 1L7 451 6.76 lLf 4C7 7'82 IAS 5.15 535 L54 %21 an 4X 4%, 6IS 410 4
$ 38 337 5A1 AS 422 L$7 l67 431 263 275 2N 204 2.12 3A1 lM 2N m 222 266 L62 Lli 27l L66 L72 L75 1.'8 2.11 L2f L34 215 L31 LX 139 L67 UO L06 L70 L04 IJS LIB L11 L32 LRN 0031 L35 LI25 I@56 0056 LI74 LOS L6 4659 107 LN2 44% LSR 7 LC33 LS 0522 IU51 L519 05$ L$% t5%
6 L661 L403 IL414 OCl5 OA11 L427 L427 OA27 L3lf
)
IL534 L329 L534 4325 L3% L339 03%
OA15 4253 4361 OA24 L&l CXO lQQ L329 CKl 4377 0336 485 L213 IL2D 0213 L261 4377 0,1S9 L126 0.164 am L266 4211 L142 L129 Lll L134 L1 L134 L169 L134 L164 IL1N L102 L16I L102 LN6 4106 LNS 0.130 OAI13 4/$ 42 Ii%42 Ii QAP94 OASlO Ll03 40630 40645 L105 00642 40669 44669 9 OA5N OA511 OAI36 OA510, OA524 405% OASR 00694 ~~~ 4Ã07 40431 004% OAN4! L04 40570 40590 40360 00374 Ol874 00374 40495
)
OAN5 OASR 40320 40331 OASN L0433 IL0442 Ol069 L0277 402$ LlQ OHMS 40393 OAOC1 OAO46 OAO49 OAO49 L0347 ILC54 Ol016 L0224 00224 LIB21 40196 L0204 403N LCN4
~ Cl L0295 LOLSl OO1$ 7 401N7 04107 CN 00272 00166 LI171 4017l L0123 ml OlQQ L0154 40159 LOMO LOl OAQ36 00144 401% 00149 001%
IO L0221 L0135 40139 Ol54l LOiCl
%$ 40196 0012I DNA 1OS ~~ L0177 0058 '00111 OOl ll 40112 LN41 LOÃ41 ONO1 L0102 OOIO2 IX% ~0 L0147 OAX199 LN925 OAXRN LORN
~0~ Ol541 ERIES EOWJ OOL36 OAX8% OAXRS4 oasQ HM LN26 OAN771 ONlRI ILIXP%5 15M 401Q LN719 40840 LN740 ILC947 AM 40111 LN674 LN694 LONM OAXQXl 17M L00634 LN659 ON659 D50 40101 LN616 LN640 LN640 1IXI OAXSC1 OlX599 OAX516 ON616 LN622 19M OAX831 OAX568 OAX5$4 OAX509
~ ~ OOXh5 OAX539 OIX55S OAX5SS OAX560 2$ M ON715 LN436 SXO OAX596 LN363 35M ONSLS LN314 400323 40$ L0045l LN275 ON?83 4$ M LN405 0AXQ47 ON2$ 4 50M
'Coeoeatae l~ttaadcd induce amptesacd aad compact coadactocL tlLesias~ vaioca ia mil6obma pcs atctcr shah be obtaiacd by saeltipiyiag thc above valises by 32L
ATI'hCEB4ENT ~
NS524 RBV SHEET
~g ~F C-OF WC 7.1988 Page 37
~ Methods for l Area '%St 6-1 Fectore for Converting Meeeured DC I'!II I Aaaa sv D~cmR Reeletinca to @PC pPF)
! kdlh h~10
~ R III Teasyccet>>ce, tlccreee C 0
5 Mciltly~eTeclw Maltletrtcie Fecrer lcc Coquet L107 Ll84 lcr Al~hc>>eei 1.110 LN5 l~t 10 LO61 ~
U5$
15 L041 1'020 L020
.~ diasactcr at thc ith me in mils determined 25 LOOO 1ASO mxeeing to 633.1 fatal smabcr attires m condoctor 30 0981 0981 0963 E4 I! I 35 0945 0962 0944 kdl & '4S 0928 0927 CoNImce vvith ASTM B 263. 50 0912 0910
.EL1 I! ad I S SS %56 0894 Sa, 4q 444.i Oewraa Iv Naaeama Mueurastacr 60 0~ OSN 65 0866 0863 XHamctcr
~
mcasarcmcnts shall be made mth a
~ ~
%52 0849 fornctcf oc other Qntabic mstrImlcnt readable to at
~ 75 OES OE35
~
MN01 inch. Rocmd wires shall bc measured at each
~ 80 0%5 0821 ead af the sample and near tbc middle of tbe sample. &5 R812 0808 Tbc average of thc three mcasurcmcnts shall be taken a the dlaxnctcr. le 0~ 0.796 Stranded coodnctors shall bc measured arormd tbe Tbe correction factors arc based upon copper havmg 100 percent conductivity and ahminna having 61 per-r'ide ot the condector and ~ the extensions at a lme cent axIdnctivity. Tbc hctacs arc deriIved &oaa the thcoiih tbc center at the c rhetor and tbroogh the center ot tvvo mrna in the outcr layer that are 180 I
be taken the diaslctcr.
as kI! )
formulae:
Rg
~~
259't 253 T farcoppcr far Si!!Iiaa!n I I!
RS RS 228+ Tg A diaster tape readable to at least OlCS inch shaQ be wrapIpcd oae tax (38K) around tbe ciramIfcrcnce
%bere Rl ~ Resistance at
~ Mcasnred 2'
resistance at test temperature Tg ot the coaIhlctor, tigjklyaad perpendicular to tbc axis of the cocx}octm. The aver~ diamctcr of thc oocldnc- Por mare accurate dctcrmiaatian of resistance, amovr tor sha5 be read dirccdy &ocn the cBamctcr tape. fac diScrcat condrxtivitics, ace Copper %ire 'hblcs,
¹tfoeel Burcmc of Steirdenh HeIrdbook NO or hhminum %irc 'IhScs, ¹noeal Bunaau of Bandit Wbla 54 Number of Samples Qsaaacr KCec>>plcccL Cetic Octaves Nemabcr er 5am'>>
Less Qua 2mi Less than 610 610-3048 Each 10PS or &action tbamf from 10PS-50PN Each 3048 or fraction thereof &ocn 3048-15/40 Each additional 50,000 or fraction thereof Each additional 15/40 or fraction thereof
PHONE. i6141 846-5710 NUCON Internationai. Inc. OUTSIQE OHIO: 800-992 5192 1
P O SQX 29151 7000 HUNTLEY RQAO TELEX: 6974415 COLUM8US. OHIO 43229 U S.A. FAX: 1614I 431.0858 hTI'h 2 I
PYROLYSIS GAS CHROMATOGRAPHY ANALYSIS OF 9 THERMO-LAG HRE BARR Performed For:
Horida Power 4 Light 700 Universe Blvd.
P.O. Box 11,000 Juno Beach, $ L 34408 P.O. No. LJ950 %P406 12 May 1995 PPL: K A..Dunlea (1)
NEI: BN Bradley (1)
NUCON: 06FL826 Master FBe (1)
Lab (1)
NUCON 06FL826/01
NU CON 06FL826/0 l NUt".ON TELEPHONE. <51i) $45 Si'0 lnternationai, Inc. OUTSIDE OHIO: l4-992 5I92 P O BOX 29151 7000 HUNTLEY ROAD TELEX: 59744 I S COLUMBUS. OHIO 43229 U.S.A. FAX: (51l) 4314858 hYThCHMERT jg RBV ~
QHKTg OP3 PrqIIared By Reviewed By Original hague 4<-
W. P. Frmnan T. eller
ATI'hCHMZWP ~
NUCON 06FL826/01 r.
Inspection of the pyrograms of 9 Thermo-La'g fire barrier samples indicated that they are all similar in chemical composition.
OBEKTNE Pyrolysis Gas y (PGC) with Mass Selective Detection (MSD) was used to qmlitatively compare nine Tlecmo-Lag the barrier saaq~.
DESCRIFI'ION OF MEI$HOD Tbe mnpies were compared by pyrolysis gas y using hSTM D3452 as Ceasel guide. h Hewlett-Padard model 5890 series II gas chromatograph equi@ed with a Hewlett Packard modd 5972 mass selectrve detector was used to generate
'
$$ $$ $ $ 1 $ PYRIC
'
$ $ $ '$ Ul $$$
heated interface attadwd performed with a CDS py~ be memtcd in an to the injection port of the GC. Analysis involved weighing 1-3 mgs. of sample in a quartt tube and piaceaent of the tube in the platinum coB cleaxat of the probe. The probe is then placed in the interhce and pyroiysed ballistically far 2 sexxxh. Pyrolytic products are then swept by the cmrier gas onto the fueed sBica ancillary column where they are separated and detected with a MSD. 'nd pyrolysis conditions are Quota in Table 1. Prior to each analysis, the column is heated to 250'C to elute any voiatlles which were not entrained in the polymer.
'RESKHThTION OF RESULTS, The nine pymgrams 5or each of the nine Therapy-Lag sanpies are slewn in Figures 1, 3, S, 7, 9, 11, 13,' 15, 17. Fiyuts 2,' 4, 6, 8, 10, 12, 14, 16, 18 are extracted ion
$ ~$ $ $ t$$ h$ $ ~$ $ $ $ $$ ~
a m/e of 69 comma lo metltyl (MMh). The area ratios of these two peaks
<<re shown in VaMe 2 5oc each sanpie. Foilowhg these two 6gures is attacled a 1ibrary search whkh identifies one of the moor peaks Sr each sample tested and a sumnary arch percent reps.
V. DISCUSSION OF RESULTS The average extracted ion area ratio of 1.41 JO.QS (k e) for EA/M'~ shown in Table 2 is consistent with the average ratio of 1 4 +0.1 (J e) obtained from other TlM:rmo-Lag salnlks,
ATI'hCHMENT ~
NUCON 06FL82'6tOL The extracted ion chromatograms (Figure 2) for sample, 0395-20h, a trowel grade sample, have an EAIMMh ratio of 1.36. Pyridine compounds idcntificd in the pyrogram
{Figure 1) are pyridine, 3-methyl pyridine, 3, dimethyl pyridinc, 3~yl-5-methyl pyridine and 5~yl-2-methyl pyridine. Other key components identified are pentanedioic acid, diethyl ettet, triphenyl phonate and octicizer. This sample contains corisiderably more octicizet than found in other Therino-Lag sampleL This may be due to the satrqHe site sleeted for pyrolysia. Otherwise this sample is consistent with other Imples in terms of chemical cotnpositioa.
The extr<<cted ion (Hgure 4) 5'ampie 0395-2, a 1 bout rated panel sa spic, have an EAfMMhratio of 1AS. Pyridhe compoaxh idcrefied ln the pyrogram
{Figure 3) are 3-methyl pyridine, 3, 5&methyl pyridine, 2, 3, &triaethyi pyridine and
~hyi-5-tnethyl pyridine. Other key coaqenents identified are pentaedioic <<cM diethyl cNK, tQglhlyl phosphate, ocMxcf and tfhBcthyi phenyl ptxNpbate.
The extrmcted ion chromatogmns {Hgure 5) for sample 039S-20C, a 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> rated conduit samtple, have an RA/bMh ratio of lA6. Pyridine compounds identified in the pyrograrn (Figure 5) are Wedtyl pyridua. Other key comporents identi5ed are 'cttd diethyl ester, tripbcayi phosphate and octicizet.
Sh
'ante, 00
'
tlISI Sl I ~0 0393 00. 33 I have an EhlMMAratio of 1.i2. Pyridine coaqxmids identified in the pyrograrn 03 (Figure 7) are pyridine, 3-methyl pyridine, 2, MhMthyl pyridine, ~y1 geidine, 3, S~hmethyk pyridine, 3, SWmethyi @sidhe, 2, 3, S~ethyl pyridine and ~yl tnethyi pyridine. Other bey com~xxxats identi6ed are 2 ikenoxy ethaiml, pentane 'oic 03'04
<<cid diethyl ester, trimethyl phenyl pbosplete and octicizer.
30&4
~
09 ISIS II 03933t03 3I sante, have an EMMMh ratio of lA3. Pyridine coaipourxh idcnti6cd in the pyrogram (Hgure 9) are 3-methyl pyri80ne, 3, ~rnedryl pyridine, and 2, 3, &tmmethyi pyridine.
Other ltey cotnponents ideatr8ed are 2+eaoxy ethare4 pcntancdioic acid diethyl ester, trirncthyi pimps ihospbate, triphay} pbospbate, and octicizer.
Sb 03 9 SW ISS It Sl ISIS 309 samph, have an EhlMMh mtio of 1.37. The pyridine axnyo ds identified in the mgram {Figure lI) are 3-methyl pyridine, 2, Minediyl pyridine,
~yi-5
~yl pyridine, 3, 5&aWtyi pyridine, 2, 3, S~iethyl pyridine, methyl pyrwline and 5-ethenyl-2-methyl pyridine. Other key compooents identi6ed arepentanedioic acid diethyl ester, tripbenyl phosphate and ocdcizer.
TrwCHMSYr
-Rl NUCON 06FL826/Ol The extracted ion chromatograms (Figure 14) for sample 0395-20G, a 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> rated conduit sample, have an EA/MMh ratio of 1.34. Pyridine compounds identified in the pyrogram (Figure 13) are 3-methyl pyridine, 3~yl pyridine, 3, Mimethyl pyridine, 3&yl-5-methyl pyridine and Scthenyl-2-methyl pyridine. Other Key components Tb I'tFw identified are pentanedioic acid diethyl ester, and octicizer.
lSf phWN2DH, 3I sample, have an Eh/M MA ratio A 1A9. Pyridine compoutxh identihcd in the pyrogratn
~
(Figure 0) axe py6dine, 3-metltyl pyridine, 24Wjmethyl pyridine, phenyl pytMine, 3, 5<iNMthyl pyridine, 2, 3, 5-trimethyl pyridine, ~yl-5 methyl pyridine and 5-ethenyl-2~yl pyrwline. Other hey coatpooents identihad are pentanedioic acid diethyl ester, tripbenyl pbospliate, and octicizer.
Tb saatple, hd I have an EA/MMh ratio 0"4 III( IUWI OlÃ.Ãl, 3 b of 1.39. Pyridine compounds identified in the hd ~
pyrogratn (Figure 17) are 3-methyl pyrichne and 3, Sditnethyl pyridine. Other key components
- identified are pentanedicic acid diethyl ester, tripbenyl phosphate and octicizer.
In conclusioa, inspection of the pyrograms for these nine Thermo-Lag samples indicates that they are consistent with other Thermo-Lag samples in terms of chemical cotnposition.
ATl'ACHMBN7~
NUCON 06FL826/01 RBV ~ ~
sazsr Q Op TABLE 1 Chroamtographk CondMons:
column.
30 meter 0.25 mm narrcw bore fused silica HP-5 CS capillary Carrier Gac HcBum, 0.9 mLlmin, spHt ratio 35: l Column Conditions:
Initial Temperature: 50'C for 1 minute hoM Tenqerature Ramp: 8'Clmin to 250 C Final Temperature: HoM at 250'C for 10 minutes Injector Temperature: 250'C Detector Temperature: 280'C Detector was an HP MSD in scan mode (30-550 amu)
~ysh Cood36oas:
Pyrolysis Tem~etauue: 650'C Intenral: 2 seconds Ratnp: 2 ClmBHsacoad Probe Type: Phtimun Coil Interhce Temperance: 205 C
hlTACHMENT ~
~ . I NUCON 06FL826/Ol ThBLE 2 NUCON Lab Log f 0395-20h 1.36 Samph: tl, LOC. VS 1%, fairway eall Tlowcl gtade t
NUCON Lab Log 0395-208 Samyh A, LOC f/51W, 22020@
1 bour panel f
NUCON Lab Log 0395-20C 1.46 Samp& H, LOC. VS1W, 22020Q 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> caxfuit f
NUCON Lab Log 0395-200 1.42 Sampk f4; LOC. C/34, 21810h 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> )duit NUCON Lab Log N895-20K lA3 Sample f5, LOC. 'C/34, 21810h 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> panel NUCON Lab Log N395-20P 1.37 Sample 6, LOC. Bl57, Inverted toom wall Tf0%Cl g&dO NUCON Lab Log N695-200 1.34 Sampie 7, LOC. N$7, 110IH 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> caafuit NUCOH Lab Log %395-208 1.49 Sandie 8, LOC. N57, 110028 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> panel NUCON Lab Log %395-2N Sample 9, LOC. wuehatae sck Basch P9-106N5 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> panel hver age: 141 a O.GS