ML17286A853: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 3: Line 3:
| issue date = 12/31/1990
| issue date = 12/31/1990
| title = Operational Ecological Monitoring Program for Nuclear Plant 2 - 1990 Annual Rept. W/910531 Ltr
| title = Operational Ecological Monitoring Program for Nuclear Plant 2 - 1990 Annual Rept. W/910531 Ltr
| author name = BELL J C
| author name = Bell J
| author affiliation = WASHINGTON PUBLIC POWER SUPPLY SYSTEM
| author affiliation = WASHINGTON PUBLIC POWER SUPPLY SYSTEM
| addressee name = ZELLER J J
| addressee name = Zeller J
| addressee affiliation = WASHINGTON, STATE OF
| addressee affiliation = WASHINGTON, STATE OF
| docket = 05000397
| docket = 05000397

Revision as of 00:07, 19 June 2019

Operational Ecological Monitoring Program for Nuclear Plant 2 - 1990 Annual Rept. W/910531 Ltr
ML17286A853
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 12/31/1990
From: Bell J
WASHINGTON PUBLIC POWER SUPPLY SYSTEM
To: Zeller J
WASHINGTON, STATE OF
References
NUDOCS 9106050251
Download: ML17286A853 (235)


Text

ACCELERATED DISTRIBUTION DEMONSTjRATION SYSTEM I~REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)ACCESSION NBR:9106050251 DOC.DATE: 90/12/31 NOTARIZED:

NO DOCKET FACIL:50-397 WPPSS Nuclear Project, Unit 2, Washington Public Powe 05000397 AUTH.NAME AUTHOR AFFILIATION BELL,J.C., Washington Public Power Supply System RECIP.NAME RECIPIENT AFFILIATION ZELLER,J.J.

Washington, State of

SUBJECT:

"Operational Ecological, Monitoring Program for Nuclear Plant 2-1990 Annual Rept." W/910531 Itr.DISTRIBUTION CODE: IE25D COPIES RECEIVED:LTR f ENCL Q SIZE: l5~TITLE: Environmental Monitoring Rept (per Tech Specs)NOTES: RECIPIENT ID CODE/NAME PD5 LA ENG,P.L.INTERNAL: ACRS NRR/DREP/PRPB1 1 RES RADDATZ,C.

RGN5 FILE 02 EXTERNAL: EG&G SIMPSON, F COPIES LTTR ENCL 3 3 1 1 1 1 2 2 1 1 1 1 2 2 RECIPIENT ID CODE/NAME PD5 PD P EOJ)/J3SPQTPAB L 01 S/RPB NRC PDR COPIES LTTR ENCL 1 1 1 1 1 1 1 1 1 1 D D D NOTE TO ALL"RIDS" RECIPIENTS:

A D D PLEASE HELP US TO REDUCE WASTEl CONTACT THE DOCUMENT CONTROL DESK ROOM P 1-37 (EXT.20079)TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENT YOU DON'T NEED!TOTAL NUMBER OF COPIES REQUIRED: LTTR 16 ENCL 16 I 1~1 f UNDERSIZED DOCUMENTS

WASHINGTON PUBLIC POWER SUPPLY SYSTEM P.O.Bax 968~3000 George Washtngton Way~Rtchland, Wasbtngton 993524968~(509)372-5000 May 31, 1991 Mr.Jason J.Zeller EFSEC Manager Mail Stop FA-11 Olympia, WA 98504-1211

SUBJECT:

TRANSMIITAL OF OPERATIONAL ECOLOGICAL MONITORING PROGR/IM NUCLEAR PLANT 2 ANNUAL REPORT

Dear Mr.Zeller:

Enclosed are five (5)copies of the subject report;Sincerely, J.C.Bell Manager Plant Services JCB:pg Enclosures cc: g3ocument Control Desk;HRC (w/enclosures)'g R.B.Samworth, NRC (w/enclosures)

C.D.Becker, Battelle (w/enclosures)

D.Geist, Washington Department of Fisheries (w/enclosures) 9/060 op@00397 5q 90i23t O-poR ADOCK PDR R 3'f t

//910605025 b g~~I 93.040 OAT%, OFFICIAL PHOTO.WASIIINCTOII PUBLIC POWEI'63i)SUPPLY SYSTEb/I P.O.80X 968 R1CHLAND)VIA 99352~g5544&C$CDIS QPO!I PVQLIC4T~

ABLE F NT~t~in ACKNOWLEDGEMENTS.

TABLES.F IGURES~~~~~~~~~~~~~~~~~~~~~~~~V

1.0 INTRODUCTION

~~~~~~~~~~~~~1 1

1.1 BACKGROUND

1.2 THE SITE 1.3 BIBLIOGRAPHY T-2 1-4 2.0 NOTABLE ENVIRONMENTAL OBSERVATIONS.

2-1

2.1 INTRODUCTION

.....................2-1~2.2 METHODS.2~3 RESULTS~~~~~~~~~~~~~~~~~~~~~~2-1 2-1 3.0 FISH BIOASSAYS...,...,...,.......,...

3-1

3.1 INTRODUCTION

3.2 METHODS AND MATERIALS.

3.3 RESULTS AND DISCUSSION

3.4 REFERENCES

~~~~~3-1 3-1 3-4 3-5 4.0 WATER QUALITY................~......4-1

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS.~~~~~~~~~~~~4 1~~~~~~~~~~~~4 1 4.2.1 4.2.2 4.2.3 SAMPLE COLLECTION.

.............4-2 FIELD EQUIPMENT 8(MEASUREMENTS

.......4-3 LABORATORY MEASUREMENTS.

..........4-3 T B F T T (Continued)

Law 4.3 RESULTS........................4-4 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 4.3.10 4.3.11 4'.12 TEMPERATURE.

DISSOLVED OXYGEN (DO).pH AND ALKALINITY.

CONDUCTIVITY TOTAL RESIDUAL.CHLORINE.,(TRC)

.METALS o~~~~~~~~~~~~~~~~~HARDNESS OIL AND GREASE AMMONIA-NITROGEN AND NITRATE-NITROGEN.

TOTAL PHOSPHORUS AND ORTHOPHOSPHORUS SULFATE.TOTAL DISSOLVED SOLIDS, TOTAL SUSPENDED SOLIDS AND TURBIDITY 4-4 4-4 4-4 4-5 4-5 4-6 4-8 4-8 4-9 4-9 4 9 4-10 4.4 DISCUSSION

.4.5 BIBLIOGRAPHY 4-11 4-11 5.0 COOLING TONER DRIFT STUDIES 5-1

5.1 INTRODUCTION

5.2 MATERIALS AND METHODS.5-1 5-1 5.2.1 5.2.2 5.2.3 5.2.4'.2.5 5.2.6 HERBACEOUS CANOPY COVER.HERBACEOUS PHYTOMASS SHRUB CANOPY COVER.SHRUB DENSITY.SOIL CHEMISTRY VEGETATION CHEMISTRY.5-1 5-2 5-2 5-3 5-4 TBE (Continued) 5, 3 RESULTS AND DISCUSSION,...............

5-4 5.3.1 5.3,2 5.3.3 5.3.4 5.3.5 HERBACEOUS COVER.HERBACEOUS PHYTOMASS SHRUB COVER AND DENSITY."SOIL CHEMISTRY VEGETATION CHEMISTRY.5-4 5-5.5-6 5-6 5-7 5.4

SUMMARY

AND CONCLUSIONS.

...............5-7 5,5 COOLING TONER DRIFT MODEL VALIDATION STUDY......

5-8 5.

5.1 INTRODUCTION

................

5-8 5.5.2 MATERIALS AND METHODS....

'........5-9 5.5.2.1 SAMPLE PLAN.....,......5-9 5.5.2.2 SAMPLE COLLECTION.

........'5-10 5.5.2.3 ANALYTICAL METHODS...,....5-11 5.5.3 5.5.4 5.5.5 5.5.6 SAMPLE PREPARATION AND COLLECTION.

.....5-11 SAMPLE MEASUREMENT AND ANALYSIS.......5-12 DATA ANALYSIS................

5-12 RESULTS...................

5-13 5.6 BIBLIOGRAPHY...........,.........

5-15 6.0 INTAKE STRUCTURE FOULING SURVEYS.~~~....~~.~~~6-1

6.1 INTRODUCTION

.....................6-1 B E (Continued) 7.0 AERIAL PHOTOGRAPHY.....................

7-1

7.1 INTRODUCTION

7.2 MATERIALS AND METHODS.7.3 RESULTS AND DISCUSSION 7.4 BIBLIOGRAPHY 7-1 7-1 7-3 7-5 APPENDIX A PLANT OPERATIONAL DATA APPENDIX B METEOROLOGICAL CONDITIONS APPENDIX C ANALYTICAL RESULTS FOR EACH SAMPLE STATION EXECUTIVE

SUMMARY

During 1990 there were no unusual events which resulted in significant environmental impacts from the operation of WNP.-2.0 There were no unanticipated or emergency discharges of water or wastewater during the reporting period.The first fish bioassay required by the HNP-2 NPDES Permit was performed in October, 1990.A 1001.survival rate was observed.Significant interstation differences could not be detected among any of the water quality parameters measured for'early all sampling periods.1990 marks the first year in which results of metals'analyses performed on plant dis-charge water are included in the report.It appears that during 1990, HNP-2 cooling water discharge had little effect upon Columbia River water quality.The cooling tower drift model verification study concluded sample collection in March 1990.Results indicated and further investigations proved that the~~model's isopleths incorrectly predict areas of maximum and minimum cooling tower drift.The isopleths, as drawn, predict maximum deposition along transects running in a northeasterly and nearly south-southwesterly direc-tion.This contradicts prevailing wind directions which are southerly (blowing north)and northeasterly (blowing southeast).

Total herbaceous cover decreased 38.011.in 1990.A corresponding decrease in herbaceous phytomass was also observed.Soil and vegetation analyte concen-trations were generally within the ranges observed in previous years.Changes in vegetation cover and density recorded in 1990 appear to be climatically induced and no signs of adverse impacts from the operation of WNP-2 cooling towers are evident.Color infrared aerial photographs along 5 flightlines were taken in June 1990.Because of the lateness in the season when the photographs were taken, most of the grasses were inactive and growth patterns could not be discerned.

The general health of those plants and shrubs that were active was good.No adverse impact was evident from Plant 2 operation.

D E This annual report, prepared by Washington Public Power Supply System, describes the aquatic, terrestrial and water quality programs for Nuclear Project No.2 (WNP-2).Joe Bell Manager, Plant Services Terry E.Northstrom Supervisor, Environmental Sciences Sara L.Lindberg Environmental Scientist I John E.McDonald Environmental Scientist I Deborah C, Singleton Environmental Scientist I Richard E.Welch Environmental Scientist I Todd A.Borak Environmental Scientist II Lana S, Schleder Environmental Scientist II Kathryn E.Humphreys Administrative Specialist

~u5yr 3-3 3-4 3-6 3-7 3-8 4-1 4-2 4-3 4-4 4-5 4-64-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 5-1 5-2~TQg, Size and Weight.of Fish Used in Bioassay Test Summary of Bioassay Parameters and Associated EPA Methods Temperature and pH Measurements Dissolved Oxygen and Conductivity Measurements Total Alkalinity and Total Hardness Measurements Magnesium and Calcium Measurements Total Copper Concentrations Total Zinc Concentrations Summary of Water Quality Parameters, Stations, and Sampling Frequencies, 1990 Summary of Water Quality Parameters EPA and ASTM Method Numbers Summary of Temperature Measurements for 1990 Summary of Dissolved Oxygen Measurements for 1990 Summary of pH Measurements for 1990 Summary of pH, Alkalinity and Hardness Measurements for 1990 Summary of Conductivity Measurements for 1990 Summary of Turbidity and Total Residual Chlorine Measurements for 1990 Summary of Copper Measurements for 1990 Summary of Nickel and Zinc Measurements for 1990 Summary of Iron and Lead Measurements for 1990 Summary of Cadmium and Chromium Measurements for 1990 Summary of Oil and Grease, and Ammonia Measurements for 1990 Summary of Nitrate and Total Phosphorus Measurements for 1990 Summary of Orthophosphate and Sulfate Measurements for 1990 Summary of Total Dissolved and Total Suspended Solids Measurements for 1990 Vascular Plants Observed During 1990 Field Work Vascular Plants Observed During 1975-1990 Field Work 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-13 4-14 4-15 4-16 4-17 4-18 4-19 4-20 4-21 4-22 4-23 4-24 4-25 4-26 4-27 4-28 5-16 5-19 (Continued) 5-3 5-4 5-6 5-7 5-8 5-10 5-11 5-12 5-13 Herbaceous Cover for Fifteen Sampling"Stations-1990 Mean Herbaceous Cover for 1975 Through 1990 Mean Frequency Values (L)by Species for Each Sampling Station-1990 Mean Terrestrial Phytomass for 1990 Comparison of Herbaceous Phytomass for 1975 Through 1990 Summary of Shrub Density for 1990 Summary of Shrub Cover,(1.)

at.Five Stations for 1990 Summary'of Soil Chemistry for 1990 Summaryof Vegetation Chemistry for 1990 Drift Sampler Locations in Reference to WNP-2 Cooling Towers Drift Deposition Rates (Gross and Background Corrected) 5-24 5-26 5-27 5-28 5-29 5-30 5-31 5-32 5-33 5-34A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-9 A-10 A-ll A-12 A-2 Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Plant Operational Data for Data for Data for Data'for Data for Data for Data for Data for Data for Data for Data for Data=for Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9 Period 10 Period ll Period 12 A-1 A-4 A-5 A-6 A-7 A-8 A-9 A-10 A-11 A-12 B-1 B-2 B-3 B-4 B-5 Meteorological Meteorological Meteorological Meteorological Meteorological Conditions for March 1989 Conditions for April 1989 Conditions for May 1989 Conditions for June 1989 Conditions for July 1989 B-l B-2 B-3 B-4 B-5 (Continued) 5yml~er e 8-6 B-7 B-8 B-9 B-10 B-ll B-12 B-13 Ti)~l Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions Meteorological Conditions for August 1989 for September 1989 for October 1989 for November 1989 for December 1989 for January 1990 for February 1990 for March 1990 B-6 B-7 8-8 B-9 B-10 B-ll B-12B-13~C-1 C-2 C-3 C-4 C-5 C-6 C-9 C-10 C-11 C-12 Analytical Results for Each Sample Location-Analytical Resul,ts for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-Analytical Results for Each Sample Location-April 1989 May 1989 June 1989 July 1989 August 1989 September 1989 October 1989 November 1989 December 1989 January 1990 February 1990 March 1990 C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-11 C-12 1-2 1-3 1-4 2-1 3-1 3-2 4-1 4-2 4-3 4 4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 Ii Qe.NNP-2 Gross Thermal Production for 1990 HNP-2 Days Per Month Discharging and Mean Monthly Discharge NNP-2 Location Map Columbia River Mean Monthly Flow for 1990 NNP-2 Property Boundary Attachment 1.0, Test Plan 27 Secondary Chemistry Report Attachment 2.0, Hater Chemistry Report Location~of Sampling Stations in the Columbia River Sampling, Station Locations for, Hater Chemistry Columbia'iver Temperature Measurements at Six Stations During 1990 Columbia River Dissolved Oxygen Measurements at Four Stations During 1990 Columbia River pH Measurements at Six Stations During 1990 Columbia River Total Alkalinity Measurements at Four Stations During 1990 Columbia River Conductivity Measurements at Six Stations During 1990 Columbia River Total Zinc Measurements at Four Stations During 1990 Columbia River Total Iron Measurements at Four Stations During~1990 Columbia River Total Hardness Measurements at Four Stations During, 1990 Columbia River Nitrate-Nitrogen Measurements at Four Stations During 1990 Columbia River Total Sulfate Measurements at Four Stations During 1990 Columb'ia River Total Dissolved Solids Measurements at Four Stations During 1990 1-9 1-10 2-3 3-15 3-16 4-29 4-30 4-31 4-32 4-33 4-34 4-35~4-36 4-37 4-38 4-39 4-40 4-41 (Continued)

NuZber 4-15 5-1 5-2 5-3 5-5 5-6 5-75-8 5-10 5-11 5-12 5-13 5-14 5-15 5-16 5-17 5-1.8 5-19 5-20 5-21 j'1 i~1 Columbia River Total Suspended Solids Measurements at Four Stations During 1990 Columbia River Turbidity Measurements at Four Stations During 1990 Soil and Vegetation Sampling Location Map Layout of Vegetation and Soil Sampling Plots Mean Herbaceous Cover for 1975 Through 1990 Mean Herbaceous Cover, Mean Dry Height (g/m), Total Precipitation, and Mean Temperature From 1982 Through 1990 Mean Herbaceous Phytomass at Grassland and Shrub Stations for 1975 Through 1990 Mean Herbaceous Cover and Phytomass for Stations G01 to G04 for 1980 Through 1990 Mean Herbaceous Cover and Phytomass for Stations G05 to G08 for 1980 Through 1990 Mean Herbaceous Cover and Phytomass for Stations S01 to S04 for 1980 Through 1990 Mean Herbaceous Cover and Phytomass for Stations S05 to S07 for 1980 Through 1990 Shrub Density at Five Stations for 1984 Through 1990 Mean Total Shrub Cover for 1975 Through 1990 Shrub Cover and Density for Five Stations for 1990 Soil pH and Conductivity for 1980 Through 1990 Soil Sulfate and Chloride for 1980 Through 1990 Soil Bicarbonate and Copper for 1980 Through 1990 Soil Lead and Nickel for 1980 Through 1990 Soil Cadmium and Zinc for 1980 Through 1990 Soil Chromium and Sodium for 1980 Through 1990 Soil Potassium and Calcium for 1980 Through 1990 Soil Magnesium for 1980 Through 1990 p t tl (I>I 8~il'I d~nrem by Station for 1984 Through 1990 vii (Continued) 2Qa PP 0 t ti I glg)1~~'J~d 580~C)dgJ559 by 5t tl f 195 Th gh 1990 0 PP 0 t tl (ig)\5)dgdg)88 aUdalJllm d~by yt 1 f 19 h h 1990 Chloride Concentration

('/.)in~B~~gzgm and 5JZ 1 ggjf~li by Station for 1984 Through 1990 Cll Id C 8 tl C)I ift JJ~d'J 1~,by 5t ti.I'98 Th gh 99 Chl Id C t tl (5)I P 50898CI)(d~by 5t tl I'984 Tl gh 1990 5 if t C 1 tl (5)I 9)I~d lyygdtJPP)JJJ by yt ti f 198 Th gh 990 If t t tl ('f)1 8J~J~d 555.'J'y Station for 1984 Through 1990 51 t t tl (9)1 958~d t~Zgm by Station for 1984 Through 1990 Total Vegetation Copper, Chloride and Sulfate for 1990 Predicted Salt Deposition Patterns Out to 0.5 Mile (0.8 km)(lb/acre/yr)

Predicted Salt Deposition Patterns Out to 6.9 Miles (11.1 km)(lb/acre/yr)

Location Map of Cooling Tower Drift Monitoring Sites Cooling Tower Drift Collection Vessel Cumulative Wind Rose April 1989 Through March 1990 WNP-2 Meteorological Station 33 Foot Level Cumulative Wind Rose 1984 Through 1989 WNP-2 Meterological Station 33 Foot Level Deposition'ate as a Function of Distance Aerial Photography Flightlines 5-57 5-58 5-59 5-60 5-61 5-62 5-63 S-6e5-65 5-66 5-67 5-68 5-69 5-70 5-71 7-6

.0 Washington Public Power Supply System (Supply System)began site prepa-ration for Nuclear Plant Number 2 (WNP-2)near Richland, Washington in March 1973.WNP-2 loaded fuel in December 1983, reached approximately 75 percent thermal load in November 1984, and began commercial opera-'ion in December 1984.The Site Certification Agreement (SCA)for WNP-2, executed on May 17, 1972, between the State of Washington and the Supply System requires that ecological monitoring be conducted during the preoperational and operational phases of site, development and use.The Washington State Energy Facility Site Evaluation Council (EFSEC)approved a change in 1978 to the technical scope of environmental monitoring required by the SCA (EFSEC Resolution No.132, January 23, 1978).In 1980, the.aquatic and water quality portions of the preoperational monitoring program were terminated (EFSEC Resolution No.166, March 24, 1980).The following year the preoperational and operational terrestrial monitoring program scope for WNP-2 was modified (EFSEC Resolution No.193, Hay 26, 1981).Prior to operation, the council reviewed the preoperational aquatic monitoring data and approved the operational monitoring program (EFSEC Resolution No.214, November 8, 1982).The Supply System in 1974 retained Battelle Pacific Northwest Labora-tories (BNW)to conduct the preoperational aquatic monitoring for WNP-2.The results of aquatic studies performed from September 1974 through August 1978 are presented in various reports (Battelle 1976, 1977, 1978, 1979a and 1979b).From August 1978 through March 1980 the aquatic studies were performed by Beak Consultants, Inc.(Beak 1980).In 1982 the Supply System analyzed the 1974-1980 aquatic data and presented the results and a recommended operational monitoring program to EFSEC (Mudge et.al., 1982).The operational program was accepted with minor modifications and initiated in March 1983.Due to.

operational conditions, the plant did not consistently discharge liquid effluents until the fall of 1984.Figures l-l and 1-2 present summaries'f electrical generation and monthly discharges for 1990.Terrestrial monitoring was initiated in 1974 and was conducted by BNW until 1979 (Rickard and Gano, 1976, 1977, 1979a, 1979b).Beak Consultants, Inc.performed the vegetation monitoring program from 1980-1982 (Beak 1981, 1982a, 1982b).Since 1983, Supply System scientists have been responsible for the vegetation aspects of the program (Northstrom et.al.1984;Supply System 1985, 1986, 1987, 1988, 1989).During 1981, the animal.studies program was taken over by Supply System scientists and results were reported annually (Schleder 1982, 1983, 1984;Supply System 1985, 1986, 1987, 1988, 1989).The first comprehensive operational environmental report was prepared by Supply.System scientists in 1984 (Supply System 1985).During their regular meeting of September 14, 1987 the Energy Facility Site Evaluation Council approved Resolution No.239 which adopted a long-term environmental monitoring program for WNP-2.This decision was based upon, the council's examination of the document titled 3gv1ew f nvi m n 1 M ni rin Pr r f WNP-wi h mm n r D n in in i (Davis and Northstrom, 1987).This report presents the results of the Ecological Monitoring Program (ENP)for the period January 1990 through December 1990.1.2 TffT'/TED., The WNP-2 plant site is located 19 km (12 miles)north of Richland, Washington in Benton County (Figure 1-3).The Supply System has leased 441 hectares (1089 acres)from the U.S.Department of Energy's Hanford Site for WNP-2.1-2 WNP-2 lies within the boundaries of the Columbia Basin, an extensive area south of the Columbia River between the Cascade Range and Blue Mountains in Oregon and approximately two thirds of the area lying east of the Cascades in Washington.

The plant communities within the region are described as shrub-steppe communities consisting of various layers of perennial grasses overlayed by a discontinuous layer of shrubs.In general, moisture relations do not support arborescent species except along streambanks.

Approximately 5 km (3.25 miles)to the east, the site is bounded by the Columbia River.In August of 1984 a range fire destroyed much of the shrub cover which occupied the site and temporarily modified the shrub-steppe associations which were formerly present.The aquatic and water quality sampling stations are located near the west bank of the Columbia River at mile 352.Sampling was limited to the main channel Benton County side which, near the site, averages 370 meters (1200 feet)wide at a river elevation of 105 meters (345 feet>above sea level and ranges to 7.3 meters (24 feet)deep.Sampling stations have been established in the river both upstream and down-stream from the plant intake and discharge structures, The river-level in this area fluctuates considerably diurnally and from day-to-day in response to release patterns at the Priest Rapids Dam (River Mile 397).These fluctuations cause large areas of river bottom to be alternately exposed and covered.The river bottom within the study area varies from exposed Ringold conglomerate to boulders, cobble, gravel, and sand.River velocities at the surface average approxi-mately 2 meters (5 to 6 feet)per second in this area of the river, and water temperature varies from approximately 0 to 22'C.The flow of the Columbia River at WNP-2 is controlled by releases from Priest Rapids Dam.The minimum flow, measured at the USGS stream-quality station located at river mile 388.1 near the Vernita bridge, was 58,400 cfs (cubic feet per second), while average and maximum flows in 1989 were 134,022 cfs and 322,000 cfs, respectively (Figure 1-4).

The terrestrial sampling locations are all within an 8 km (5 mile)radius from WNP-2.The topography is flat to gently rolling, gradually increasing from an elevation of 114 meters (375 feet)at the riparian sampling locations to approximately 152 meters (500 feet)at more distant shrubgrass sample stations..3 ILBLIGG Battelle Pacific Northwest Laboratories.

1976.Aquatic ecological studies conducted near WNP-1, 2, and 4, September 1974 through September 1975.'upply System Columbia River ecology studies Vol.2.Richland, WA.Battelle Pacific Northwest Laboratories.

1977.Aquatic ecological studies near WNP-l, 2, and 4, October 1975 through February 1976.Supply System Columbia River Ecology Studies Vol.3.Richland, WA.Battelle Pacific Northwest Laboratories.

1978.Aquatic ecological studies near WNP-1, 2, and 4, March through December 1976.Supply System Columbia River ecology studies Vol.4.Richland, WA.Battelle Pacific Northwest Laboratories.

1979a.Aquatic ecological studies near WNP-l, 2, and 4, March through December 1977.Supply System Columbia River ecology studies Vol.5.Richland, WA.Battelle Pacific Northwest Laboratories.

1979b.Aquatic ecological studies near WNP-l, 2, and 4, January through August 1978.Supply System Columbia River ecology studies Vol.6.Richland, WA.Beak Consultants, Inc.1980.Aquatic ecological studies near WNP-1, 2, and 4, August 1978 through March 1980.Supply System Columbia River ecology studies Vol.7.Portland, OR, Beak Consultants, Inc.1981.Terrestrial monitoring studies near WNP-1, 2, and 4, May through December 1980.Portland, OR.1-4 Beak Consultants, Inc.1982a.Terrestrial monitoring studies near WNP-1, 2, and 4, May through December 1981.Portland, OR.Beak Consultants, Inc.1982b.Preoperational terrestrial monitoring studies near WNP-l, 2, and 4, May through August 1982.Portland, OR.Davis, W.III and T.E.Northstrom.

1987.Review of the environmental monitoring program for WNP-1 with recommendations for design of con-tinuing studies.Washington Public Power Supply System, Richland, WA.Mudge, J.E., T,B.Stables, W.Davis III.1982.Technical review of the aquatic monitoring program of WNP-2.Washington Public Power Supply System, Richland WA.Northstrom, T.E, J.L.Hickam and T.B.Stables.1984.Terrestrial monitoring studies for 1983.Washington Public Power Supply System, Richland, WA.Rickard, W.H.and K.A.Gano.1976.Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4.Progress report for the period July 1974 to June 1975.Battelle Pacific Northwest Laboratories, Richland, WA.Rickard, W,H.and K.A.Gano.1977.Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4.Progress report for 1976.Battelle Pacific North-west Laboratories, Richland, WA.Rickard, W.H.and K.A.Gano.1979a.Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4.Progress report for 1977.Battelle Pacific Northwest Laboratories, Richland, WA.Rickard, W.H.and K.A.Gano.1979b.Terrestial ecology studies in the vicinity of Washington Public Power Supply System Nuclear Power Projects 1 and 4.Progress report for 1978.Battelle Pacific Northwest Laboratories, Richland, WA.1-5 Schleder, L.S.1982.Preoperational animal studies near WNP-1, 2 and 4.Annual report for 1981.Washington Public Power Supply System, Richland, HA.Schleder, L.S.1983.Preoperational animal studies near WNP-1, 2 and 4.Annual report for 1982.=-Washington Public Power Supply System, Richland, WA.Schleder, L.S.1984.Preoperational animal studies near HNP-l, 2 and 4.Annual report for 1983.Washington Public Power Supply System, Richland, WA.Washington Public Power Supply System.1985.Operational ecological monitoring program for Nuclear Plant 2.Annual report for 1984.Richland, WA.Washington Public Power Supply System.1986.Operational ecological

'monitoring program for Nuclear Plant 2.Annual report for 1985.Richland, HA.Washington Public Power Supply System.1987.Operational ecological monitoring program for Nuclear Plant 2.Annual report for 1986.Richland, WA.Washington Public Power Supply System.1988.Operational ecological monitoring program for Nuclear Plant 2.Annual Report for 1987.Richland, HA.'ashington Public Power Supply System.1989.Operational ecological monitoring program for Nuclear Plant 2.Annual Report for 1988.Richland, WA.Washington Public Power Supply System.1990.Operational ecological monitoring program for Nuclear Plant 2.Annual Report for 1989.Richland, HA, 1-6 MWH/MONTH THERMAL (MILLIONS) 3.00 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MONTH FIGURE 1-1 HNP-2 GROSS THERMAL PRODUCTION FOR 1990

35 DAYS/MONTH DISCHARGE M EAN Dl SCH ARG E GAL/DAY X 100000 36 30 30 25 25 20 20 15 10 JAN FEB IYIAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 RR DAYS m GPD\FIGURE 1-2 NNP-2 DAYS PER MONTH DISCHARGE AND MEAN MONTHLY DISCHARGE

5 311C 0 3110 5 311C o&313A 3110 0 3l30~wecsaw~w sal cc~as eeaa', I'1i rc rscre OO 0 aae~e~ass%5l Legend~~a D Pl Sl IO~le%~spraws I Qrasw lssal Casa iree ssswsac tewc Uas wsw Sssw Tenon ssrrsr Ure wss ssssc salas~ease Urw wsss waassa svss/sacs llse se acsscsac sclssstlrW 5sa ursa ascarcssa Sssa UWI IeWssel ssa Qsrs IlcsHcsall arcs slws Wscrs wancsl Slsrs Owl l4cosayss laresc 5IIO Osswsrc SCIW 11 WL 343e o 34ii FIGURE 1-3 NNP-2 LOCATION MAP 1-9

336 308 280 252 224 196 168 140 112 84 56 28 FLOW (KCFSj JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MONTH I MAX/MIN+MEAN FIGURE 1-4 COLUMBIA RIVER MEAN MONTHLY FLOH FOR 1990

2.0 N TAB E ENVI NNENTA B RVATI N~NT II Any occurrence of an unusual or notable event that indicates or could result in a significant environmental impact causally related to plant operation shall be recorded and reported to the NRC within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> followed by a written report.The following are examples: excessive bird impaction events, onsite plant or animal disease outbreaks, mortality or unusual occurrence of any species protected by the Endangered Species Act of 1973, fish kills, increase in nuisance organisms or conditions, and a significant, unanticipated or emergency discharge of waste w'ater or chemical substances.

2.2~)~D Weekly ground surveys were conducted from January 1st through December 31st to document the occurrence of unusual species or events within the property boundary of WNP-2 (Figure 2.1).Additional information was supplied by security and environmental personnel.

2.3 gQ~T There were no unusual or notable events which resulted in significant environmental impacts from the operation of WNP-2.There were, however, some'general observations worth noting.Tt I I-N111 d I (II, I)t t I resident during spring periods, with several nesting pairs sighted in the shrub-steppe communities surrounding WNP-2.2-1 hb\g l.lith~,>1plgtl fd t of the Hanford Reservation, with several sightings being reported from locations within WNP-2's site area boundary.Of particular note during 1990, was the establishment of a nesting pair at the edge of a gravel parking lot, immediately northeast of Plant 2.Although the pair was continuously subjected to disturbances from human activities (a major access road and railroad bordered the burrow on each side), their breeding attempt was successful.

On May 25, a total of four young were observed at the burrow entrance.Several more observations of the owls were reported in early June.Spring 1990 produced one'of the largest grasshopper hatches in recent memory, Vegetation in some areas was severely impacted.In late May, a large population of gulls were using the grasshoppers as a major food source.Feeding groups numbering from a few individuals to several dozen birds were routinely sighted at several locations near WNP-2.There were no unanticipated or emergency discharges of water or wastewater during the reporting period.2-2 ASHE SUBSTATION ROAD QN SECURITY FIRING RANGE RANGE ROAD H.J.ASHE SUBSTATION r I I I I PUMP-HOUSE ROAD PUMP HOUSE ROAD QO~OO WNP-2~0 SANITARY'OC WASTE FACILITY PROPERTY LINE I I I I I I I WNP-1 EMERGENCY RESPONSEI PLANT SUPPORT FACILITY O 0 K O 0 WNP-2 ACCESS ROAD FIGURE 2-1 WNP-2 PROPERTY BOUNDARY WNP-2 RIVER PUMP-HOUS n 0 BENTON SWITCHING STATION

3.0 FI H BI 3.1 A bioassay using chinook salmon (rh h)was per-formed from October 20 through October 24;1990, in compliance with Special Condition S4 of the WNP-2 National Pollutant Discharge Elimination System Waste Discharge Permit (NPDES No.WA-002515-1).

Specifically, the permit requires 96-hour flow-through testing in 01.(control)and 1001.effluent concentrations.

An 801.or greater survival rate in 1001.effluent is specified as the successful test criteria.At the time of the test, normal operating conditions for WNP-2 were characterized by 1001.power production and a recirculating cooling water system exhibiting 12 cycles of concentration.

Calgon PCL 8125 is added to the recirculating water to inhibit corrosion of the admiralty brass condenser tubes.In addition, chlorine and sulfuric acid are introduced to the system on a routine basis for biofouling treatment and pH adjustment, respectively.

Recirculating cooling water blowdown (effluent) is discharged on a continuous basis except during periods of biofouling treatment.

Following a treatment, discharge is resumed when total residual halogen concentration meets permit requirements (less than or equal to 0,1 mg/1).The discharge rate during the bioassay averaged 1350 gpm, ranging from a low of 1200 gpm on October 20 to a high of 1500 gpm on October 24, 1990.Secondary Chemistry Program Data (Attachment 1)includes information on the chemical composition of the recirculating water system (CW)for a sample taken on October 23, 1990.3.2 The bioassay generally adhered to the requirements set forth in EPA Publications"Methods for Measuring the Acute Toxicity of Effluents to 3-1 Freshwater and Marine Organisms," 1985, and"Quality Assurance Guide-lines for Biological Testing," 1978.Specific methodology is provided in Environmental Programs Instruction 13.2.11,"WNP-2 Aquatic Bio-assays" and"Environmental Sciences and Plant Support Chemistry Quality Assurance Manual," (Washington Public Power Supply System, 1990).The bioassay test facility is situated on the west bank of the Columbia River directly ad]acent to the WNP-2 makeup water pumphouse.

Effluent used for the test was diverted from the discharge pipe and.pumped to the test facility.Control (dilution) water was untreated Columbia River'water pumped from the makeup water pumphouse directly to the test facility.Water Quality Program data from a Columbia River monitoring station sample taken October 2, 1990 provides information as to the chemical makeup of the control (dilution) water (Attachment 2).Temperature control for the holding tank water and the 01.(control)and 1001.plant effluent solutions was provided by a 200,000 BTU capacity chiller and an in-house designed temperature conditioning unit.A system of heat exchangers, flow and temperature control valves, water heater, and controllers produced a test water temperature of 12 C, controllable to within+/-1 C.The chinook salmon juveniles utilized for the bioassay were obtained from the Washington Department of Fisheries, Ringold Hatchery on October 4, 1990, The fish were acclimatized in a 2000-liter capacity holding tank for 14 days.The water temperature of the holding tank was gradually.

reduced from an initial temperature of 15.9 C (which approximated the temperature of the hatchery holding pond)to the desired test,,temperature at 12'C four days prior to the start of the 96-hour test.At no time did the change in temperature exceed 3 C in a 12-hour period.A commercial fish food (Bio-Dry by Bioproducts) was utilized, with food size and feeding rates as used at the hatchery.Fish were not fed for 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> prior to handl'ing or during the 96-hour test.3-2 The flow-through system consisted of six 132.5-liter capacity'glass aquaria, each containing a volume of approximately 114 liters.The system included three control (1001.Columbia River water)and three toxicant (100'/.plant effluent)aquaria selected on a random basis.Aquaria flow rates were approximately 1.43 liters/minute/aquaria.

Water temperature in both the control and toxicant head boxes was monitored continuously by use of an Astro-Med Dash 2 recorder.Control water (Columbia River)flow to all six aquaria was initiated at 2400 hours0.0278 days <br />0.667 hours <br />0.00397 weeks <br />9.132e-4 months <br /> on October 6, 1990.At 1400 hours0.0162 days <br />0.389 hours <br />0.00231 weeks <br />5.327e-4 months <br /> on October 17, 1990, ten fish were distributed to each aquaria, two per tank, in a stratified random manner.The aquarium loading factor was-approximately 180 grams or 1.58 g/liter.Fish were acclimatized in the aquaria at 100'/.control water for 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> prior to toxicant (plant effluent)introduction.

The 96-hour test was begun by siphoning down the aquaria (including controls)until there was approximately 23 liters of water remaining, and then toxicant flow was initiated to,the test aquaria.Control aquaria were allowed to refill with river water.The aquaria were checked for mortalities twice per day.Fork lengths and wet weights were determined by anesthetizing and measuring control fish at the end of the test (Table 3-1).All fish surviving the test were released to the Columbia River.Temperature, dissolved oxygen, pH and conductivity were measured daily in the control and toxicant head boxes, and each aquaria.Grab water samples were collected daily from the control and toxicant head boxes and each aquaria, and analyzed for calcium, magnesium, alkalinity, total copper, and total zinc.l The pH and temperature measurements were made with an IBM Model EC105-2A portable pH meter.Prior to each use the instrument was 3-3 calibrated using pH standards of 4.0, 7.0, and 10.0.If necessary, the probes were'adjusted to within 0.1 unit of the standards.

The temperature probe was calibrated against an NBS-traceable thermometer.

Dissolved oxygen measurements were made using a Yellow Springs Instrument (YSI)Model 57 meter.The meter was air-calibrated prior to each use per manufacturer's instruction.

In addition, Hinkler D.O.measurements were made prior to the bioassay and results compared to the Model 57 meter.Conductivity measurements were made with a YSI Model 33 meter.Daily measurements using conductivity standards were performed.

Sample holding'times followed those recommended by the U.S.Environ-mental Protection Agency (USEPA 1983).Analyses were performed per USEPA (1983)approved methods (Table 3-2).3.3 ND No fish mortal,ities were observed in any of the control<0'/.effluent)or toxicant (1001.effluent)aquaria.This result is in agreement with several static bioassays conducted at NNP-2 during 1984 and 1985 (Supply System, 1986).Temperature measurements remained fairly constant throughout the test period.Only slight variations occurred between control and toxicant solutions.

All measurements were within the required range of 12 C+/-1'C (Table 3-3).The pH values are presented in Table 3-3.Discharge water (toxicant) exhibited a value about one unit higher than the control values.Dissolved oxygen measurements were fairly constant.Discharge aquaria averaged approximately 2 mg/1 less than control aquaria throughout the bioassay (Table 3-4).Conductivity measurements (Table 3-4)demon-strate the difference in concentration (cycles)between control (Columbia River)and toxicant<100/.effluent)water sources.3-4 Total alkalinity measurements for both the control and toxicant aquaria remained constant throughout the bioassay.Discharge values were approximately four times higher than control values (Table 3-5).Total hardness values given in Table 3-5 are indicative of the cycles of'oncentration.

Hardness was determined by calculation from magnesium and calcium measurements (Table 3-6).The number of cycles of concentration of discharge water ranged from approximately 11.6 at the start of the test to 10.1 at the end of the test period.This calculation is based on calcium levels recorded from control and toxicant head boxes.Copper and zinc concentrations are presented in Tables 3-7 and 3-8, respectively.

The elevated levels in the discharge water may be.attributed to corrosion of the condenser tubes and system piping as well as concentration of metals in the makeup water.These values are considerably lower than the concentrations observed during the static bioassays of 1984/1985.

A discussion of the chemical composition of Calgon PCL 8125 and its ability to chemically bind toxic metal forms is presented in the"Operational Ecological Monitoring Program for Nuclear Plant No.2, 1985 Annual Report" (Supply System, 1986).3.4~F~F~a f in r H w r, 16th Edition, APHA, AHWA, HPCF, Washington, D.C., 1985 f r h i A f W r W , EPA-0600/4-79-/020, Environmental Monitoring and Support Laboratory, Environmental.

Protection Agency, Cincinnati, Ohio 1983"Environmental and Plant Support Chemistry Laboratory Quality Assurance Manual," Washington Public Power Supply System, 1990 3-5 M rin March 1985 rin h A i f ff n F hw E il I-I.E I tt t tt 1 rBi Environmental Protection Agency, 1978 EPA/600/4-78/043, n vi W December 1985 im hw r r hr EPA/600/4-85/014,"Operational Ecological Monitoring Program for Nuclear Plant No.2, 1985 Annual Report," Washington Public Power Supply System, 1986"WNP-2 Aquatic Bioassays," Environmental Programs Instruction 13.2.11, Washington Public Power Supply System, 1990 3-6 Table 3-1.Size and Weight of Fish used in Bioassay Test.F r 5J~i'i~Av r~~an~vrk9R~~nC Chinook 30 11.0 8.9-16.2 15.6 8.5-50.8 3-7 Table 3-2.Summary of Bioassay Parameters and Associated EPA Methods.Hater Temperature (C)Conductivity (us/cm)at 25'C Dissolved Oxygen (mg/1)pH (su)Total Alkalinity (Mg/1 as CaC03)Total Hardness (mg/1 as CaC03)Calcium Magnesium Total Copper (ug/1 as Cu)Total Zinc(ug/1 as Zn)170.1 120.1 360.1 360.2 150.1 310.1 130.2 200.7 200.7 220.2 200.7 289.2 200.7 3-8 Table 3-3.Temperature and pH Measurements Temperature

('C)pH%Discharge Conc.@~I~i X Discharge Conc.Emily<%Discharge Conc.~~ri%Discharge Conc.Sample~D 10/20/90 10/21/90 10/22/90 10/23/90 10/24/90 11.4 11.7 12.3 12.0 11.8 11.6 12.1 12.1 12.5 12.1 11.7 11.7 11.7 11.9 11.9 12.0 12.7 12.7 12.7 11.9 11.9 11.9 12.0 12.0 11.9 11.9 11.8 11.9 12.4 12.5 12.5 13.0 13.0 13.0 12.3 12.3 12.3 12.5 12.3 12.2 7.91 7.87 7.88 7.95 7.95 8.63 8.67 8.69 8.65 8.60 7.71.7.74 7.81 7.82 7.81 7.84 7.87 7.90 7.89 7.95 7.91 7.92 7.93 7'2 7.93 8.57 8.62 8.62 8.61 8.67 8.66 8.64 8.67 8.66 8.63 8.66 8.65 8.55 8.61 8.57 Table 3-4.Dissolved Oxygen and Conductivity Measurements Dissolved Oxygen (mg/1)Conductivity (uS/cm)He ULCC mmar~X Discharge Conc.X Discharge Conc.'L Discharge Conc.4 Discharge Conc.Sample~D 10/20/90 10/21/90 10/22/90 10/23/90 10/24/90 10.2 9.8 10.0 10.2 9.9 8.5 7.8 7.7 8.0 7.8 10.5 10.2 10.4 9.4 9.5 9.6 9.5 9.5 9.5 9.9 9.9 9.9 9.6 9.5 9.6 8.9 9.9 9.3 7.8 7.8 7.9 7.7 7.8 7.8 8.2 8.2 8.2 7.8 7.9 7.8 98 100 100 90 1050 1050 970 890 790 100 99 103 99 99 100 100 100 100 97.97 98 99 98 100 900 900 890 1000 1020 1000 950 970 970 900 900 900 850 860 850 Table 3-5.Total Alkalinity and Total Hardness Measurements Total Alkalinity (mg/1)Total Hardness (mg/1)Sample~D'L Discharge Conc.kg~i'L Discharge Conc.'L Discharge Conc.4 Discharge Conc.10/20/90 10/21/90 10/22/90 54.0 54.0 54.0 197.0 194.0 190.0 53.0 54.0 55.0 55.0 54.0 54.0 54.0 54.0 54.0 177.0 180.0 176.0 196.0 197.0 197.0 191.0 192.0 188.0 65.2 63.7 64.0 768 735 678 64.7 64.0 64.2 64.1 62.1 62.9 62.3 61.6 63.3 689 656 666 595 717 740 683 670 665 10/23/9054.0 196.0 53.0 202.0 54.0 54.0 61.5 200.0 202.0 633 61.6 652 60.7 62.9 613 655 10/24/90 55.0 179.0 55.0 54.0 54.0 180.0 180.0 179.0 61.4 615 63.0 62.9 61.6 610 660 595 Table 3-6.Magnesium and Calcium Measurements

, Magnesium (mg/1)Calcium (mg/1)Hmf~B'4 Discharge Conc.'/.Discharge Conc.L Discharge Conc.'L Discharge Conc.Sample~D 10/20/90 10/21/90 10/22/90 10/23/90 4.2 4.3 4.2 4.0 52.0 50.0 46.0 42.0 4.2 4.2 4.2 , 4.3 4.1 4.1 4.2 4.1 4.2 4.1 4.0 4.1 46.0 44.0 44.0 42.0 48.0 50.0 46.0 44.0 44.0 42.0 48.0 44.0 19.2 18.4 18.7 18.0 222.0 212.0 196.0 184.0 19.0 18.7 18.8 18.6 18.1 18.4 18.0 17.9 18.4 17.9 17.7 18.4 200.0 190.0 194.0 169.0 208.0 214.0 198.0 196.0 194.0 192.0 167.0 190.0 10/24/90 4.1 40.0 4.2 40.0 4.1 4.1 17.8 44.0 40.0 180.0 18.3 178.0 18.4 17.9 192.0 172.0 Table 3-7.Total Copper Concentrations (ppb)1 D Sample L~tim Head Box Percent Discharge n 100 October 20~hr 0.3 81.0 October 21~4hr 0.8 78.0 October 22~4r)1.6 78.0 October 23~~h)1.3 75.0 October 24 hr 1.2 71.0 Aquaria (3)100 100 100 0.4 0.4 0.3 70.0 72.0 68.0 0.5 0.3 0.3 78.0 76.0 76.0 1.0 76.0 77.0 75.0 1.0 0.9 73.0 75.0 73.0 1.2 0.4 67.0 68.0 69.0 Table 3-8.Total 2inc Concentrations (ppb)1 D Sample Laa~n Head Box Percent Discharge n 2.0 2.0 2.0 3.0 October 20 October 21 October 22 October 23 October 24~LhcQ 100 87.0 64.0 59.0 64.0 60.0 Aquaria 0 100 100 100 4.0 4.0 4.0 59.0 62.0 55.0 4.0 4.0 2.0 61.0 63.0 62.0 2.0 1.0 63.0 61.0 58.0 4.0 3.0 1.0 62.0 62.0 61.0 55.0 57.0 57.0*Less than detection limit.

DATE-18/25/98 DIC: 1444.27 ENVIRONMENTAL AND PLANT SUPPORT CHEMISTRY LABORATORY TEST PLAN 27 SECONDARY CHEMISTRY REPORT TERRY NORTHSTROM EXT.8462 RICK WELCH EXT.8324 SAMPLE¹: 3197.DATE RECKIVED: 18/23/98 LOCATION: CW CUSTOMER: R.ED WELCH DATE COMPLET REVIEWED BY: T.NORTHSTROM 7 ANALY".'E G TOTAL-METALS (mg/1)B C CALCIUM MAGNESIUM SODIUM COPPER ZINC NICKEL IRON 198 48 F 1 45 8.863 8'52 8 83 8'3 91 91 84 83 ALUMINUM MANGANESE POTASSIUM CHROMIUM PHOSPHORUS SULFUR SILICON 8.12 8.818 7.8<8.886 4.2 149 24.3 89 88 89.CALCIUM.MAGNESIUM SODIUM COPPER ZINC NICKEL IRON 175 38.6 8.858 8.849 8'2 8'43 DISSOLVED METALS.(mg/1)ALUMINUM MANGANESE POTASSIUM CHROMIUM PHOSPHORUS SULFUR SILICON INORGANIC NON-METALS AND PHYSICAL PROPERTIES

<8.83 8 883 6+3<Q.QQ6 3.9 148 22.8 SULFATE CHLORIDE FLUORIDE NITRATE 418 22 8.82 1~2 PHOSPHATE Q.B6 pH 8.58 CONDUCTIVITY 113B B C uS CALCULATED RESULTS CYCLES (Ca)18.6 SI02 48 79 mg/1 LEGEND CALGON PCL-8125 (P BASIS)85.92 mg/1 COLUMN: A SAMPLE ANALYSIS RESULTS B SPIKE SAMPLE RESULTS (%RECOVERY)C OC SAMPLE RESULTS (%OF TRUE VALUE)3-1 Attachment 1.0 3-15 e.REPORT DATE:82/i2/9i ENVIRONMENTAL AND PLANT SUPPORT CHEM1STRY LABORATORY WATER CHEMISTRY REPORT TERRY NORTHSTROM EXT.8462 SARA LINDBERG EXT.8825 SAMPLE 8 2124.DESCRIPTION:

WATER QUALITY 9i-i CUSTOMER: RE WELCH ANALYST: DATE SAMPLE TAKEN: DATE RECEIVED: 18/82/98 DATE COMPLETED i2/87/98 REVIEWED BY: NALYSIS AMMONIA NITROGEN 8.8i6 SULFATE 8.97 DISSOLVED OXYGEN 18.8 TOTAL RESIDUAL CL<8.85 TOTAL PHOSPHORUS 8'16 TQT.DISSOLVED SLDS 7'9.8 TOT SUSPENDED SLDS 2.5 TURBIDITY 8.85 ALKALINITY 58.8 (mg/1)(mg/1)(mg/1)(ug/1)(mg/1)(mg/1)(mg/1)(NTU)((mg/1)NITRATE NITROGEN<d 1 TEMPERATURE 17.8 CONDUCTIVITY 1~4.1 OIL 5 GREASE<8.5 ORTHOPHOSPHORUS

CHROMIUM 8~28 (ug/1)CADMIUM<8.1 (ug/1)Z INC IRON~.9 (ug/1>58.8 (ug/1)NICKEL 8~2 (ug/1)LEAD 8.4 i (ug/1)3-2 Attachment 2.0 3-16 4.0 UUZJIKJL The water quality monitoring program documents the chemical character of the Columbia River in the vicinity of the WNP-2 discharge. The monitoring data is used to assess if chemical changes in the Columbia River result from WNP-2 cooling tower blowdown.The program is per-formed to comply with EFSEC Resolution No.239.4.2 M Columbia River surface water was sampled monthly January 1990 through December 1990.Samples were collected near River Mile 352 from four stations numbered 1, 7, ll, and 8 (Figures 4-1, 4-2).Station 1 is upstream of the WNP-2 intake and discharge and represents a control.Station 7 is in the center of the mixing zone approximately 45 meters (150 feet)downstream of the discharge and provides a measure of near-field discharge effects.Station 11, at 91 meters (300 feet)down-stream from the discharge, represents the extremity of the mixing zone allowed by WNP-2's National Pollutant Discharge Elimination System (NPDES)permit.Sub-stations 11M and 118 sample water from middle and bottom depths, respectively. Station 8 is approximately 568 meters (1870 feet)downstream from the discharge and represents a location where the discharge is well mixed in the Columbia River: Plant discharge water (P.H.Dis.) was sampled monthly during 1990.Samples were collected from the discharge pipe, at a sample point located in the WNP-2 makeup water pumphouse, immediately prior to its entering the Columbia River.The samples were analyzed for temperature, dissolved oxygen (DO), pH, conductivity, turbidity, total alkalinity, total hardness, filterable residue (total dissolved solids), nonfilterable residue (total sus-pended solids), ammonia-nitrogen, nitrate-nitrogen, total phosphorus, 4-1 orthophosphorus, sulfate, oil and grease, total residual chlorine, total copper, total iron, total zinc, total nickel, total lead, total cadmium and total chromium.A summary of water quality parameters, stations and sample frequencies is presented in Table 4-1.Discharge samples were analyzed for total copper, total iron, total zinc, total nickel, total lead, total cadmium and total chromium.4.2.1 m Columbia River samples were collected by boat approximately 300 feet from the Benton County shore.Temperature, conductivity, dissolved oxygen, and pH were determined in-situ with portable instruments. Water for total metal, conductivity, sulfate, orthophosphorus, ammonia-nitrogen, nitrate-nitrogen, turbidity, total alkalinity and total hardness analyses was collected in one-liter polypropylene cubitainers and kept on ice until delivered to the Supply System's Environmental Programs Laboratory (EPL).Hater for total copper analysis from Stations llM and 11B were collected in 125 ml nalgene bottles with an All-Teflon pump and Tygon tubing.In the laboratory the metals samples were acidified to 0.5'/with concentrated nitric acid.Determinations for filterable residue, non-filterable residue, total phosphorus, and total residual chlorine were made on water samples collected in 3.8-liter polypropylene cubitainers and kept on ice unti 1 delivered to the Supply System's Radiological Services Laboratory (RSL).Hater for oil and grease analysis was skimmed from the surface into solvent rinsed borosilicate glass bottles.After collection, samples were placed on ice and transported to the RSL for analysis.Discharge samples were collected in one-liter polypropylene cubi-tainers and kept on ice until delivered to the EPL for analysis.During the annual plant maintenance outage (May through July)only Station 1 (control)samples were collected. 4-2 4.2.2 Surface temperature and dissolved oxygen measurements were made using a Yellow Springs Instruments (YSI)Model 57 meter.Temperature was recorded to within 0.1 C after the probe had been allowed to equili-brate in the river for a minimum of one minute.The field probe was calibrated monthly, against an NBS-traceable thermometer in the laboratory. The DO meter was air-calibrated prior to each field sample date per manufacturer's instruction. In addition, Winkier DO measurements were made every month and results were compared to the field probe.Conductivity measurements were made with a YSI model 34 meter.Prior to each sample date, measurements of conductivity standards were performed. pH measurements were made with an IBM Model EC105-2A portable pH meter.Prior to each use the instrument was calibrated using pH standards of 4.0, 7.0, and 10.0.If necessary, the probes were adjusted to within 0.1 unit of the standards. 4.2.3 r r Total metals, sulfate, conductivity, orthophosphorus, ammonia-nitrogen, nitrate-nitrogen, turbidity, total alkalinity and total hardness were determined by Supply System Environmental Programs personnel. The remaining analyses were performed by Supply System's Radiological Services personnel. Sample holding times followed those recommended by the U.S.Environmental Protection Agency (USEPA 1983).Analyses were performed per USEPA (1983)and ASTM approved methods (Table 4-2).4 3 4 3 JK2KZS Data obtained during the annual maintenance period (May through July)is not included in table summaries. 4.3.1 Columbia River temperatures varied seasonally with a minimum tempera-ture of 3.3 C at Stations 1, 7, ll and 8 on February 15th and a maximum of 19.6'C at Stations llM and 11B on August 15 (Table 4-3).River temperatures measured in 1990 are presented graphically in Figure 4-3.4.3.2 D The mean and range of DO measurements for each sample station are presented in Table 4-4.Columbia River DO concentrations ranged from 9.3 mg/1 at Station 7 in September to 13.6 mg/1 at Station 7 in'pril.The mean DO concentrations ranged from 11.1 mg/1 at Stations 7 and 8 to 11.2 mg/1 at Stations 1 and 11.DO concentrations were inversely related to river temperature as would be expected from'solubility laws.DO levels were never below the 8 mg/1 water quality standard for Class A waters (NDOE 1988)indicating good water quality with respect to dissolved oxygen throughout the year..Dissolved oxygen measurements are presented graphically in Figure 4-4.4.3.3 Columbia River pH values ranged from 7.43 at Station 7 in January to 8.27 at Station 7 in March (Table 4-5).The variation in pH between sample stations is small.The largest difference of 0.44 standard units occurred between Station 7 (pH 8.27)and Station 11B (pH 7.83)in March.4-4 The pH water, quality standard for Class A waters is from 6.5 to 8.5 (WDOE 1988).Measurements for all stations throughout 1990 were within this range.pH measurements, presented graphically in Figure 4-5, generall'y agree with historical data for the Columbia River (Silker 1964).The alkalinity of a water is a measure of its capacity to neutralize acids and is generally due to the presence of carbonates, bicarbonates, phosphates, silicates, borates, and hydroxides. Columbia River alka-linities ranged from 49,0 to 63.0 mg/1 as calcium carbonate (Table 4-6).The alkalinity measurements are presented graphically in Figure 4-6.4.3.4 1t Conductivity is a measure of the ionic content of a solution.Columbia River conductivity measurements ranged from 118.5 uS/cm at 25 C at Station 11M in August to 162.0 uS/cm at 25'C at Station 7 in January (Table 4-7).Station mean conductivities ranged from 136.6 uS/cm at 25'C at Station 1 to 138.6 uS/cm at 25'C at Station ll.The conduc-tivity results are very comparable to those reported in earl'ier studies of the Columbia River.(Silker 1964).The measurements are presented graphically in Figure 4-7.4.3.5 1 R i 1 1 n Total residual chlorine (TRC)measurements for 1990 were less than the measured detection limit of 50 ug/1 (Table 4-8).TRC measurements were made using the Amperometric Titration Method.This method has a detection limit of 50 ug/1.4-5 4.3.6 Columbia River total copper values ranged from<1.2 ug/1 to 3.4 ug/1 (Table 4-9).The largest interstation difference in copper occurred between Station 1 (3.4 ug/1)and all other stations in April.However, the value of 3.4 is uncharacteristic and is probably an indication of a contaminated sample rather than an actual copper measurement. Our copper results show good agreement with earlier studies.In 1962, Silker (1964)analyzed 27 Columbia River samples collected upstream of WNP-2 and reported a mean copper concentration of 4.3 ug/1.Neutron activation analysis of Columbia River water was done in 1968-1969 by Cushing and Rancitelli (1972).They reported a mean copper concentration of 1.4 ug/1.Florence and Batley (1977)state that total copper concentrations in the range of 0.3-3.0 ug/1 are found in many unpolluted fresh-water rivers throughout the world.The Hanford reach of the Columbia River would generally be in that category.Plant discharge total copper concentrations ranged from 24.0 ug/1 in April to 209.0 ug/1 in August.~Tl~in Mean total zinc measurements ranged from 6.6 ug/1 at Station 11 to 7.0 ug/1 at Station 7 (Table 4-10).Individual zinc measurements ranged from 2.8 ug/1 at Station 1 to 12.4 ug/1 at Station 7.The greatest interstation difference (3.8 ug/1)occurred between Station 7 (12.4 ug/1)and Station 8 (8.6 (ug/1)in April.Discharge water total zinc measurements ranged from 26.0 ug/1 in August to 79.0 ug/1 in February.4-6 ~Tl~Ir n Columbia River mean iron concentrations ranged from 136.1 ug/1 at Station 8 to 154.9,ug/1 at Station 1 (Table 4-11).The greatest interstation difference in concentration of 176 ug/1 occurred between Station 8 (48.0 ug/1)and Station 7 (224.0 ug/1)in.February. However, measurements for Stations 1 and 7 for February are uncharacteristic and may represent contaminated sample containers rather than actual iron concentrations. Plant discharge total iron concentrations ranged from 180.0 ug/1-.in January to 1400.0 ug/1 in November.Total nickel concentrations were below the detection limit (2.6 ug/1)for nearly all periods, except November.The 5.8 ug/1 recorded for Station 7 in March is uncharacteristic and probably represents a contaminated sample rather than an actual Columbia River nickel measurement. Plant discharge total nickel concentrations ranged from<2.6 ug/1 in August to 14.2 ug/1 in October.~Tl~Total lead concentrations were low with nearly all stations recording levels below detection limits for most periods (Table 4-11).Discharge water total lead measurements ranged from<1.2 ug/1 in September to 6.8 ug/1 in August. Cadmium concentrations were below detection limits for all stations during all periods, Plant discharge total cadmium concentrations were below the detection limit (0.5 ug/1)for all periods except March, in which 1.1 ug/1 was recorded.T 1 hrm Chromium concentrations were below detection limits for all periods except November (Table 4-12).Plant discharge total chromium concentrations ranged from<1.9 ug/1 (January, March, August)to 32.0 ug/1 in October.Total zinc and total iron measurements are presented graphically in Figures 4-8 and 4-9, respectively. 4.3.7~rn~Hardness indicates the quantity of divalent metallic cations present in the system, principally calcium and magnesium ions.Hardness ranged from 58.0 to 71.3 mg/1 as calcium carbonate (Table 4-6).Mean hardness values ranged from 64.8 mg/1 at Station 7 to 65.2 mg/1 at Station 11.The hardness measurements are presented graphically in Figure 4-10.Oil and grease values were below the detection limit of 0.5 mg/1 for all stations and periods except December 1990.Oil and grease measurements are summarized in Table 4-13.4-8 4.3.9 Amm r-i r-Q~riÃQ Ammonia and nitrate are forms of nitrogen commonly found in water systems.Both nitrate and ammonia are assimilated by plants and con-verted to proteins.Common sources of nitrate and ammonia to the aquatic system are breakdown of organic matter in the soil, industrial discharges, fertilizers and septic tank leachate.Ammonia concentrations ranged from<0.01 to 0.04 mg-N/1 (Table 4-13).Nitrate concentrations ranged from<0.01 to 0.13 mg-N/1.The nitrate measurements are summarized in Table 4-14.The nitrate measurements are presented graphically in Figure 4-11.4.3.10 Phosphorus is a required nutrient for plant growth and, while found in certain minerals, is commonly added to streams through fertilizers, treated sewage, and septic tank leachate.Measured total phosphorus concentrations ranged from<0.1 to 0.19 mg-P/1.Orthophosphorus concentrations were below the detection limit of 0.01 mg/1 for all stations and periods (Table 4-15).4.3.11~f~Mean sulfate concentrations ranged from 9.16 mg/1 at Station 8 to 9.27 mg/1 at Station 11 (Table 4-15).Individual sulfate measurements ranged from 8.00 to 10.60 mg/1.Sulfuric acid is added at WNP-2 to control circulating water pH and a by-product is sulfate.Based on the river measurements, WNP-2 discharges are not appreciably altering river sulfate concentrations. Total sulfate measurements are presented graphically in Figure 4-12.4-9 4.3.12 T 1 Di v'i li n Tr i i Total dissolved solids or total filterable residue, TDS, is defined as that portion of the total residue that passes through a glass fiber filter and remains after ignition at 180'C for one hour.Total dissolved solids do not necessarily represent only the dissolved con-stituents but may also include colloidal materials and some small particulates. The mean TDS measured in the Columbia River varied from 77.7 mg/1 at Station 1 to 80.2 mg/1 at Station 7 (Table 4-16).There were no consistent differences in TDS concentrations between stations or through time, Total suspended solids (TSS)or total nonfilterable residue is the material retained on a standard glass fiber filter after filtration of a well-mixed sample.TSS concentrations were generally low and varied from<1.2 to 23.1 mg/1 (Table 4-16).Mean TSS concentrations ranged from 4.5 mg/1 at Station 7 to 4.8 mg/1 at Station 8.Turbidity is a measure of the suspended matter that interferes with the passage of light through water.In the Columbia River, measured turbidities were low and ranged from 0.80 nephelometric turbidity units (NTU)to 17.0 NTU (Table 4-8).Total dissolved solids, total suspended solids and turbidity data are presented graphically in Figures 4-13, 4-14, and 4-15.4-10 4.4~DI QgjLQN Unusually warm temperatures and heavy precipitation during November resulted in high flow rates for the Columbia River and a corresponding increase in the levels of several parameters. Turbidity values were the highest recorded since the water quality progam began in April, 1983.The figure of 17.0 NTUs for Stations 1, ll and 8 was greater than three times the previous maximum of 5.4 NTUs reported for Stations 7 and ll in June, 1983.Other parameters demonstrating seasonally uncharacteristic increases included copper, nickel, iron', lead, chromium and total suspended solids.Plant discharge data basically demonstrates the increase in certain constituents of the blowdown due mainly to concentrating the circu-lating cooling water (Columbia River water).Preferred operating conditions at WNP-2 are in part characterized by a circulating water concentration of 12 cycles.In comparing river and plant discharge data, it is evident that the impact on the Columbia River is minimal, with no significant inter-station differences being detected.Overall, it appears that, with respect to all the measured parameters sampled under the operating conditions prevailing during 1990, WNP-2 cooling water discharge had little effect upon Columbia River water qual i ty.4.5 Cushing, C.E., and L.A.Rancitelli. 1972.Trace element analyses of Columbia River water and phytoplankton. Northwest Science 46(2):115-121. 4-11 Florence, T.M.and G.E.Batley.1977.Determination of the chemical forms of trace metals in natural waters with special reference to copper, lead, cadmium and zinc.Talanta 24:151-158. Silker, H.B.1964.Variations in elemental concentrations in the Columbia River.Limnol.Oceanogr.9;540-545. Environmental Protection Agency.1983.'Methods for chemical analysis of water and wastes.Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH.Edition, APHA, AWHA, HPCF, Washington, D.C., 1985.r, 16th Washington Department of Ecology.1988.Water Quality Standards for Surface Waters of the State of Washington. Hater Quality Planning Office of Hater Programs.Olympia, HA.Washington Public Power Supply System.1987.Operational Ecological Monitoring Program for Nuclear Plant 2.Annual Report for 1986.Richland, WA.Washington Public Power Supply System.1988.Operational Ecological Monitoring Program for Nuclear Plant 2.Annual Report for 1987, Richland, WA.Washington Public Power Supply System.1989.Operational Ecological Monitoring Program for Nuclear Plant 2.Annual Report for 1988.Richland, HA.Washington Public Power Supply System.1990.Operational Ecological Monitoring Program for Nuclear Plant 2.Annual Report for 1989.Richland, WA.4-12 1 Table 4-1.Summary of Water ()vali ty Parameters, Stations, and Sampling Frequencies, 1990 Parameter Wells in Stations Vicinity of 7 11 11H 8 118 8 Plant Site Ouantity (flow)Temperature Oissolved Oxygen pH Turbidity Total Alkalinity Filterable Residue (Total Oissolved Solid)Nonfilterable Residue (Suspended Solids)Conductivity Iron (Total)Copper (Total)Nickel (Total)Zinc (Total)Lead (Total)Cadmium (Total)Chromium (Total)Sulfate Ammonia Nitrogen Nitrate Nitrogen Ortho Phosphorus Total Phosphorus Oil and Grease Chlorine, Total Residual Hardness Q~mb 1~K~~H=Honthly g=()uarterly +Samples wi 11 be collected if wells are being used for drinking water.-Analysis not required"" Samples taken in triplicate ++Samples collected only if the plant is operating. 4-13 Table 4-2.Summary of Water Quality Parameters, EPA and ASTM Method Number Bu~~Water Temperature ('C)Turbidity, (NTU)Conductivity (umhos/cm) at 25 C Dissolved Oxygen (mg/1)probe Dissolved Oxygen (mg/1)Modi'fied Winkler" pH (Standard Unit)Total Alkalinity (mg/1 as CaC03)Total Hardness (mg/1 as CaC03)Oil and Grease (mg/1)Nitrogen, Ammonia, Total (mg/1 as N)Nitrate Nitrogen, Total (mg/1 as N)Total Phosphorus (mg/1 as P)Ortho Phosphorus (mg/1 as P)Sulfate (mg/1 as S04)Total Copper (ug/1 as Cu)Total Iron (ug/1 as Fe)Total Nickel (ug/1 as Ni)Total Zinc (ug/1 as Zn)Total Lead (ug/1 as P6)Total Cadmium (ug/1 as Cd>'otal Chromium (ug/1 as Cr)Total Residual Chlorine (ug/1)Filterable Residue: Total Dissolved Solids (mg/1)Non-Filterable Residue: Total Suspended Solids (mg/1)EPA Method~her 170.1 180.1 120.1 360.1 360.2 150.1 310.1 130.2, 6010 413.2 350.3 352.1 365.2 365.2 375.4 220.1, 220.2, 200.7 236.1, 236.2, 200.7 249.1, 249.2 289.1, 289.2, 200.7 239.1, 239.2 213.1, 213.2 218.1, 218.2 330.1 160.1 160.2 ASTM Meth D4327-88 D4327-88 D4327-88 4-14 Table 4-3.Summary of Temperature Measurements for 1990.Temperature (Degrees C)Sample Date 11 11M 118 01/18/90 02/15/90 03/14/90 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 4.7 5.0 4.9 4.8 3.3 3.3 3.3 3.6 4.7 4.3 4.3 4.9 7.3 7.3 7.3 7.5 11.3 13.6 18.2 4.8 4.8 3.5 3.3 4.5 4.6 8.0 7.4 17.8 17.6 17.8 18.0 9.5 9.4 9.4 9.5 8.3 8.3 8.3 8.7 17.8, 17.9 9.5 9.4 8.2 8.3 19.3 19.4 19.3 19.6 19.6 19.3 19.0 19.2 19.0 18.9 18.6 19.3 Mean SD Maximum Minimum 10.4 10.4 10.4 10.6 10.5 10.5 6.5 6.5 6.5 6.5 6.5 6.5 19.3 19.4 19.3 19.6 19.6 19.3 3.3 3.3 3.3 3.6 3.5 3.3 4-15 Table 4-4.Summary of Dissolved Oxygen Measurements for 1990.Dissolved Oxygen (mg/1)Samp'le Date 01/18/90 02/15/90 03/14/90 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 9.5 9'10.0 9.6 9.3 9.5 9.5 9.4 9.8 9.7 9.4 9.4 Meter Breakdown in Field 12.8 12.7 12.7 12.8 12.1 12.0 12.0 12.0 13.4 13.6 13.5 13.5 12.7 12.3 10.8 11/28/90 11.2 11.2 11.2 11.1 12/12/90 11.2 11.2 11.2 11.2 Mean SD Maximum Minimum 11.2 11.1 11.2 11.1 1.5 1.6 1.5 1.6 13'13,6 13.5 13.5 9.4 9.3 9.4 9.4 4-16 Sample Date Table 4-5.Summary of pH Measurements for 1990.pH 11 llM 118 01/18/90 02/15/90 03/14/90 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 7.57 7.43 7.49 7.61 7.57 7.57 7.68 7.67 7.71 7.71 7.68 7.73 7.91 8.27 7.87 7.87 7.83 7.90 7.76 7.62 7.71 7.67 7.61 7.73 7.71 7.73 7.71 7.73 7.64 7.72 7.78 7.79 7.78 7.87 7.74 7.82 7.84 7.88 7.80 7.87 7.87 7.91 7.89 7.93 7.87 7.68 7.73 7.71 7.68 7.69 7.69 7.74 7.72 7.73 7.74 7.74 7.76 Mean SD Maximum Minimum 7.91 8.27 7.91 7.89 7.93 7.90 7.57 7.43 7.49 7.61 7.57 7.57 4-17 Table 4-6.Summary of Alkalinity and Hardness Measurements for 1990.Sample Date Total Alkalinity (mg/1)(as CaC03)7 ll 8 Sample Date Total Hardness (mg/1)(as CaCO~1 7 ll 8 01/18/90 63.0 63.0 62.5 61.0 02/15/90 59.0 59.0 58.0 60.0 03/14/90 59.5 59.5 59.0 60.0 04/11/90 57.5 58.0 60.0 59.0 05/16/90 65.0 06/13/90 54.0 07/18/90 51.0 08/15/90 54.0 55.0 54.0 54.0 09/13/90 54.0-55.0 55.0 54.0 10/02/90 58.0 58.0 59.0 57.0 11/28/90 49.0 50.0 51.0 50.0 12/12/90 58.5 60.0 60.0 59.0 05/16/90 06/13/90 07/18/90 08/15/90 58.6 0 60.4 54.7 58.5 58.0 58.7 58.3 09/13/90 63.3 63.9 62.9 61.6 10/02/90 61.6 61.8 61.6 62.0 11/28/90 12/12/90 58.9 60.1 59.9 60 69.3 69.0 69.8 69.01/18/90 71.0 70.0 71.2 71.3 02/15/90 68,5 65.6 69.9 69.4~03/14/90 68.1 68.4 67.6.67.7 04/11/90 64.9 66.2 65.1 64.9 Mean 56.9 57.5 57.6 57.1 SD 4.1 3.7 3.6 3.7 Maximum 63.0 63.0 62.5 61.0 Minimum 49.0 50.0 51.0 50.0 Mean SD 64.9 64.8 65.2 65.0 4.6 4.2 4.7 4.7Maximum 71.0 70.0 71.2 71.3 Minimum 58.5 58.0 58.7 58,3 4-18 Table 4-7.Summary of Conductivity Measurements for 1990.Conductivity at 25'C (uS/cm)Sample Date 01/18/90 02/15/90 11M 118 155.1 162.0 161,8 153.8 154.6 154.1 151.7 152.1 151.9 151.8 152.3 151.9 03/14/90 153.6 153.7 156.5 156.1 157.8 154.6 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 136.4 137.0 137.7 136.2 136.3 136.4 121.0 123'119.3 119.8 127.6 126.9 118.5 118.8 126.9 127.1 126.3 128.0 127.5 129.4 127.3 134.1 131.3 132.0 133.1 133.7 133.7 126.9 126.3 126.7 127.3 127.9 126.7 125.3 125.4 125.5 126.2 126.5 125.4 Mean SD Maximum Minimum 136.6 138.0 138.6 136.7 137.5 137.4 13.5 14.214.3 13,8 14.0 12.6 155.1 162.0 161.8 156.1 157.8'154.6 119'125.4 125.5 118.5 118.8 125.4 4-19 Table 4-8.Summary of Turbidity and Total Residual Chlorine Measurements for 1990.Turbidity (NTU)Total Residual Chlorine (mg~Sample Date Sample Date ll 8 01/18/90 1.0 02/15/90 1.2 1.3 1.2 1.2 01/18/90<0.05<0.05<0.05 02/15/90<0.05<0.05<0.05<0.05<0.05 03/14/90 1.1 1.2 1.2 1.2 04/11/90 1.1 05/16/90 2.2 06/13/90 2.0 07/18/90 1.2 08/15/90 0.9 09/13/90 0.8 10/02/90 0.9 1.0 0.8 0.8 1.5 1.0 0.9 0.8 0.9 0.9 0,8 11/28/90 17.0 16.0 17,0 17.0 03/14/90<0.05<0.05<0.05<0.05 04/11/90<0.05<0.05<0.05<0.05 05/16/90<0.05 06/13/90<0.05 07/18/90<0.05 08/15/90<0.05<0.05<0.05<0.05 10/02/90<0.05<0.05<0.05 11/28/90<0.05<0.05<0.05<0.05<0.009/13/90<0.05<0.05<0.05<0.05 12/12/90 1.5 1.4 1.7 1.7 12/12/90<0.05<0.05<0.05<0.05 Mean 2,8 2.7 2.9 2.9 SD 5.3 5.0 5.3 5.3 Maximum 17.0 16.0 17.0 17.0 Minimum 0.8 0.8 0.8 0.8 Mean SD Maximum Minimum 4-20 Table 4-9.Summary of Copper Measurements for 1990.Sample Date 01/18/90 02/15/90 03/14/90 04/'ll/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 Copper (ug/1)1 7 1 1 1 1M 11B 8 PH DIS 1.2<1.0<1.0 1.3<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0 1.2<1.0 30.0<1.0<1.0 42.0<1.0<1.0 48.0<1.0 1.3<1.0<1.0<1.0<1,0 209.0 1.3 1,3 1.5 1.5 1.2 1.2 104.0<1.0 2.6 1.5 1.3 1.2 1.2 1.2 1.2 64.0 2.6-3.3 2.7 2.6 82.0 2.8<1.0<1.0<1.0 2.4 60.0 3.4<1.0<1.0<1.0<1,0<1.0 24.0 1.2 1.7<1.0 Mean SD Maximum Minimum 73.7 53.4 3.4 2.8 1.5 3.3 2.7 2.6 209.0<1 0<1 0<1 0<1 0<1 0<1 0 24 0 4-21 Table 4-10.Summary of Nickel and Zinc Measurements for 1990.Nickel (ug/1)Zinc (ug/1)Sample Date 1 7 11 PH Ois.Sample Date 1 7 ll 8 PH Dis.01/18/90<3.0<3.0<3.0<3.0 4.7 02/15/90<3.0<3.0<3.0<3.0 5.8 03/14/90<3.0 5.8<3.0<3.0 5.5 01/18/90 02/15/90 3.4 3.8 4~1 5.1 33.0 8.1 7.3 9.5 7.4 79.0 03/14/90 10.4 8.0 9.7 10.3 59.0 04/11/90<3.0<3.0.<3.0<3.0 3.4 05/16/90<3.0 06/13/90<3.0 07/18/90<3'10/02/90<3.0<3.0<3.0<3.0 14.2 11/28/90 12.9 10.2 13.3 13.6 12.9 12/12/90<3.0<3.0<3.0<3.0 10.8 08/15/90<3.0<3.0<3.0<3,0<3.0 09/13/90<3.0<3.0<3.0<3.0 12.3 04/11/90 05/16/90 06/13/90 07/18/90 08/15/90 09/13/90 10/02/90 11/28/90 12/12/90 9.8 12.4 9.2 8.6 41.0 10.7 8.3 5.6 76 7~9 67 57 710 3.9 5.8 3.0 5,5 62.0 8.3 7.6 7.5 5.8 7.1 6.7 9.5 60.0 4.2 60.0 2.8 3.1 4.8 3.1 26.0 Hean 8.7" Hean 6.7 7.0 6.8 6.6 54.6 SD 4.0" SD 2.8 2.7 2.4 2.5 17.6 Haximum Hinimum 12.9 10.2 13.3 13,6 14.2<3.0<3.0<3.0<3.0<3.0 Haximum 10.4 12.4 9.7 10.3 79.0 Hinimum 2.8 3.1 3.0 3.1 26.0"Less-than values not included.4-22 Table 4-11.Summary of Iron and Lead Measurements for 1990.Iron(ug/1) Lead (ug/1)Sample Date 1 7 ll 8 PH Dis.Sample Date I 7 11 8 PN Ois.01/18/90 43.0 29.0 28.0 28.0 180.0 01/18/90<1.0<1.0<1.0<1.0 4.7 02/15/90 112.0 224~0 59.0 48.0 346.0 02/15/90<1.0<1.0<1.0 4.1 03/14/90 56.0 43.0 49.0 43.0 380.0 03/14/90<1~0<1.0<1.0<1.0 3.5 04/11/90 46.0 53.0 39.0 40.0 205.0 04/11/90 1.8<1.0<1.0<1.0 2.1 05/16/90 59.0 06/13/90 116.0 07/IB/90 30.0 05/16/90<1.0 06/13/90 1.9 07/18/90<1.0 08/15/90 39'34.0 35.0 34.0 198.0 08/15/90<1.0'1.0<1.0<1.0 6.8 09/13/90 42.0 50.0 46.0 47.0 385.0 09/13/90<1.0<1.0<1.0<1.0<1.?10/02/90 58.0 57.0 59.0 65.0 785.0 10/02/90<1.0<1 0<1.0<1 0 1 4 11/28/90 905.0 745.0 845.0 820.0 1400.0 11/28/90 1.9 1.5 1.2 1.7 2.2 12/12/90 93.0 94.0 93.0 100.0 1040.0 12/12/90<1.0<1.0<1.0<1~0 2.5 Hean SO Maximum Ninimum 154.9 147.7 139.2 136.1 546.6 Hean 282.4 231.9 265.3 257.3 432.3 SO 905.0 745.0 845.0 820.0 1400.0 Haximum 39.0 29.0 28.0 28.0 180.0 Ninimum 3 4A 1.7" 1.9 1.5'I.2 1.7 6.8<1.0<1.0<1.0<1.0<1.0"Less-than values not included.4-23 Table 4-12.Summary of Cadmium and Chromium Measurements for 1990.Cadmium (ug/1)Chromium (ug/1)Sample Date 1 7 ll 8 PH Dis.Sample Date 1 7 11 8 PH Dis.01/18/90<0.5<0.5<0.5<0.5<0.5 02/15/90<0.5<0~5<0.5<0.5<0.5 03/14/90<0.5<0.5<0.5<0.5 1~1 04/11/90<0.5<0.5<0.5<0.5<0.5 01/18/90<2.0<2.0<2.0<2.0<2.0 02/15/90<2.0<2.0<2.0<2.0 5.0 03/14/90<2,0<2.0<2.0<2.0 04/11/90<2.0<2.0<2.0<2.0 25.0 05/16/90 06/13/90<0.5<0.5 05/16/90'2.0 06/13/90<2,0 07/18/90<0.5 07/18/90<2.0 08/15/90<2.0<2.0<2.0<2.0<2.0 08/15/90<0.5<0.5<0.5<0.5<0.5 09/13/90<0.5<0.5<0.5<0.5<0.5 10/02/90<0.5<0.5<0/5<0/5<0.5 11/28/90<0.5<0.5<0.5<0.5<0.5 3.4 09/13/90<2.0<2.0<2.0<2.0 10/02/90<2.0<2.0<2.0<2.0 32.0 3'~2.0 2.1 3.6 4.0 ll/28/90 4.0 12/12/90<0.5<0.5<0.5<0'<0.5 12/12/90<2.0<2.0<2.0<2.0 Hean Hean 11.8" SD SD 12.0" Haximum<0.5<0.5<0.5<0.5 1.1 Haximum 4.0 2.1 3.6 4.0 32.0 Hinimum<0.5<0.5<0.5<0.5<0.5 Hinimum<2.0<2.0<2.0<2.0<2.0"Less-than values not included.4-24 Table 4-13.Summary of Oil and Grease, and Ammonia Measurements for 1990.Sample Date Oil 5 Grease (mg/1)7 11 8 Sample Date Ammonia (mg NH3-N/1)11 8 12/12/90 0.6 0.8 0'0.8 01/18/90<0.5<0.5<0.5<0.5 02/15/90<0.5<0.5<0.5<0.5 03/14/90<0.5<0.5<0.5<0.5 04/11/90<0.5<0.5<0.5<0.5 05/16/90<0.5<0.5<0.5<0.5 06/13/90<0.5 07/18/90<0.5 08/15/90<0.5<0,5<0.5<0.5 09/13/90<0.5<0.5<0.5<0.5 10/02/90<0.5<0.5<0.5<0.5 11/28/90<0.5<0.5<0.5<0.5 01/18/90<0.01<0.01<0.01<0.01 02/15/90<0.01<0.01<0.01<0.01 03/14/90<0.01<0.01<0.01<0.01 04/11/90 0.02<0.01<0.01<0.01 05/16/90 06/13/90<0.01<0.01 07/18/90<0.01 08/15/90 0.03 0.02 0.02 0.04 09/13/90 0.02 0.02 0.02 0.01 10/02/90 0.02 0.01 0.01 0.02 11/28/90<0.01<0.01<0.01<0.01 12/12/90<0.01<0.01<0.01<0.01 Mean SD Maximum 0.6 0.8 0.8 0.8 Minimum<0.5<0.5<0.5<0.5 Mean SD Maximum 0,03 0.02 0.02 0.04 Minimum<0.01<0.01<0.01<0.01 4-25 Table'4-14. Summary of Nitrate and Total Phosphorus Measurements for 1990.Sample Date Nitrate (mg/1)7 11 Sample Date Total Phosphorus (mg/1)0 7 ll 8 01/18/90 0.12 0.12 0.12 0.12 02/15/90 0.10 0.10 0.10 0.10 03/14/90 0.10 0.10 0.10 0.10 04/11/90 0.12 0.13 0.12 0.12 05/16/90 0.03 06/13/90 0.06 07/18/90<0.01 08/15/90<0.01<0.01<0.01<0.01 09/13/90 10/02/90<0.01<0.01<0.01<0.01 11/28/90 0.11 0.11 0.12 0.11 12/12/90 0.13 0.13 0.13 0.13 02/15/90 03/14/90 0.15 0.15 0.16 0.19<0.1<0.1<0.1<0.1 04/11/90<0.1<0.1<0.1<0.1 05/16/90<0~1 06/13/90<0.1 07/18/90<0.1 08/15/90<0.1<0.1<0.1<0.1 09/13/90<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1 10/02/90 11/28/90<0.1<0.1<0.1<0.1 0.1 12/12/90<0.1<0.1<0.1 01/18/90<0.1<0.12<0.1<0.10*Mean 0,11 0.12 0.12 O.ll*SD 0.01 0.01 0.01 0.01 Maximum 0.13 0.13 0.13 0.13 (-EAST-)<0.01<0.01<0.01<0.01 Mean SD Maximum 0.15 0.15 0.16 0.19 Minimum<0.1<0.1<0.1<0.1*Less-than values not included.4-26 Table 4-15.Summary for Orthophosphate and Sulfate Measurements for 1990.Sample Date Orthophosphate (mg/1)11 8 Sample Date Sulfate (mg/1)ll 8 01/18/90<0.01<0.01<0.01<0.01 02/15/90<0.01<0.01<0,01<0.01 03/14/90<0.01<0.01<0.01<0.01*04/11/90<0.01<0.01<0.01<0.01 05/16/90<0.01 06/13/90<0.01 07/18/90<0.01 08/15/90<0.01<0.01<0.01<0.01*09/13/90<0.01<0.01<0.01<0.01 10/02/90<0.01<0.01<0.01<0.01 11/28/90<0.01<0.01<0.01<0.01 12/12/90<0.01<0.01<0.01<0.01 01/18/90 9.63 9.72 9.94 9.64 02/15/90 10.10 10.20 10.10 10.10 03/14/90 10.20 10.40 10.60 10.30 04/11/90 9.60 9.50 9.20 9.40 05/16/90 8.85 06/13/90 8.60 07/18/90 7.55 08/15/90 8.04 8.03 8.15 8.00 09/13/90 10/02/90 8.97 9.02 9.09 8.97 11/28/90 7.66 7.76 7.81 7.66 12/12/90 9.16 9.20 9.29 9.20 Mean Mean 9.17 9.23 9.27 9.16 SD Maximum Minimum SD 0.92 0.95 0.95 0.93 Maximum 10.20 10.40 10.60 10.30 Minimum 8.04 8.03 8.15 8,00 4-27 Table 4-16.Summary of Total Dissolved and Total Suspended Solids Measurements for 1990.Total Dissolved Solids (mg/1)Total Suspended Solids (mg/1 Sample Date 1 7 ll 8 01/18/90 80.0 84.0 83.0 82.0 02/15/90 73.0 75,0 74.0 74.0 03/14/90 78.0 91.0 96.0 81.0 04/11/90 79.0 81.0 77.0 80.0 05/16/90 74.0 06/13/90 83.0 07/18/90 79.0 Sample Date 01/18/90 02/15/90 03/14/90 1 7 1.5 1.2 3.8 3.9 1.4 1.7 04/11/90 2.6 05/16/90 3.7 2.7 06/13/90 6.4 07/18/90 2.9-1.3 3.8 1.6 4.0 2.5 2.6 1.5 1.7 08/15/90 67.0 69.0 68.0 71.0 09/13/90 83.0 80,0'2.0 84.0 10/02/90 79.0 82.0 75.0 79.0 11/28/90 77.0 75.0 76.0 74.0 12/12/90 83,0 85.0 87.0 83.0 08/15/90 09/13/90 10/02/90 2,1 2.0 2.5 2.4 2.6 1.9 2.0 2.0 2.3 12/12/90 2.7 2.8 2.9 11/28/90 23.1 21.7 22.5 2.8 2.0 2.4 23.1 3.1 Mean 77.7 80.2 79,8 78.7 SD 5.0 6.5 8:3 4.6 Maximum 83.0 91.0 96.0 84.0 Minimum 67.0 69.0 68.0 71.0 Mean 4.6 4.5 4.6 4.8 SD 7.0 6.5 6.8 6.9 Maximum 23.1 21.7 22.5 23.1 Minimum 1.4 1.2 1.3 1.6 4-28 Plow Island WNP-2 Discharge Mes quit island~7~11 River Mile-352 a8 Power Lines Figure 4-1 Location of Sampling Stations in the Columbia River Station 1 River Flow+N WNP-2 intake Structures 555m (1822 feet)To Plant WNP-2 Olscharge 44m (146 feet)~Station 7 P Statlon11,11M,158 63m (208 feet)568m (187 feet)461m (1516 feet)(Not to scale)Station 8 Figure 4-2 Sampling Station Locations for Water Chemistry 4-30 s 25 20 15 TEMPERATURE (DEGREES C.j mm>I 7, m>>M EQ>>B&s 10 0 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-3 Columbia River Temperature Measure-ments at Six Stations During 1990 16 DISSOLVED OXYGEN MILLI GRAMS/LI TER 14 12 10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1SQQ Figure 4-4 Columbia River Dissolved Oxygen.Measurements at Four Stations During 1990 pH 8.5 RB 1 I 7 C3>>m>>M EQ>>B%8 7.5 6.5 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-5 Columbia River pH Measurements at Six Stations During 1990 80 TOTAL ALKALINITY (MG/LITER AS CaCO3)70 60 50 40 30 20 10 JAN FEB MAR APR MAY JUN JUL AUG SEP.OCT NOV DEC 1990 Figure 4-6 Columbia River Total Alkalinity Measurements at Four Stations During 1990 170 160 150 CONDUCTIVITY (AT 25 C)uS/CM RB 1 ES 7 C3<<II>>M KQ>>B W s 140 130 120 110 100 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-7 Columbia River Conductivity Measure-ments at Six Stations During 1990 0 II o 15 TOTAL Z I N C (MI CROGR AMS/L I T E R)10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-8 Columbia River Total Zinc Measurements at Four Stations During 1990 1000 TOTAL IRON (Ml CROGRAMSI LI TER)800 600 400 200 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-9 Columbia River Total Iron Measurements at Four Stations During 1990 90 80 TOTAL HARDNESS (MG/LITER AS CcICO3)I~I 7 C3~~I 8-70 60 50 40 30 JAN FEB MAR APR MAY JUN JUL AUG SEP OGT NOV DEG 1990 Figure 4-10 Columbia River Total Hardness Heasure-ments at Four Stations During 1990 . NITRATE-NITROGEN MG/LITER AS N 0.2 0.1 0.05 JAN FEB MAR APR MAY JUN JUL AUG SEP OOT NOV DEC 1990 Figure 4-11 Columbia River Nitrate-Nitrogen Measurements at Four Stations During 1990 15 TOTAL SULFATE MG/LITER 10 JAN f EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-12 Columbia River Total Sulfate Measure-ments at Four Stations During 1990 TOTAL DISSOLVED SOLIDS MG/LITER 140 120 100 80 60 40 20 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-13 Columbia River Total Dissolved Solids Heasurements at Four Stations During 1990 25 TOTAL SUSPENDED SOLIDS MG/LITER 20 15 10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-14 Columbia River Total Suspended Sol'ids Heasurements at Four Stations During 1990 s 20 TURBIDITY (NTU)10 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1990 Figure 4-15 Co1umbia River Turbidity Measurements at Four Stations.During 1990 5,0 LI D I T D The cooling tower drift studies were designed to identify any impact of cool-ing tower operation upon the surrounding plant communities, as well as any edaphic impacts.The program includes the measurement of herbaceous and shrub canopy cover, shrub density, herbaceous phytomass, vegetation chemistry and soil chemistry. Soil chemical parameters measured include pH, carbonate, bicarbonate, sulfate, chloride, sodium, potassium, calcium, magnesium, copper, zinc, lead, chromium, nickel, cadmium, and conductivity. Vegetation chemistry includes extractable sulfate, chloride and total copper.This study provides operational data for comparison with preoperational data and meets the requirements of Hashi ngton State Energy Facility Site Evaluation Council (EFSEC)Resolution 239 dated September 14, 1987.In past years, sampling was conducted in May at each of nine permanent stations, four grassland Stations GOl-G04, and five shrub Stations SOl-S05.In 1988, preliminary data was obtained for six additional stations.In 1989, the additional six stations were added to the sampling program, four grassland sites G05, G06, G07 and G08 and 2 shrub Stations S06 and S07.Two of these Stations, S06 and S07 are on the east side of the Columbia River in Franklin County.Figure 5-1 shows the location of each station.The orientation of the various components including transects and productivity plots within each community are depicted in Figure 5-2.5,2 T D 5.2.1 r Fifty microplots (20 cm x 50 cm)were placed at 1-m intervals on alternate sides of the herbaceous transect (Figure 5-2).Canopy cover was estimated for each species occurring within a microplot using Daubenmire's (1968)cover classes.Data were recorded on a standard data sheet. guality assurance was accomplished by twice sampling three randomly selected L microplots on each herbaceous transect.The entire transect was resampled if cover estimates for any major species (>50 percent frequency) differed by more than one cover class.All vegetation studies including cover, density, productivity, and chemistry were sampled, as in previous years, at the peak of the cheatgrass growth cycle known as the purple stage (Klemmedson and Smith 1964).5.2.2 H P m Phytomass sampling was conducted concurrently with cover sampling.Phytomass sampling plots were randomly located within an area adjacent to the permanent transects or plots (Figure 5-2).At each station, all live herbaceous vege-tation rooted in five randomly located microplots (20 x 50 cm)was clipped to ground level and placed in paper bags.Each bag was stapled shut and labeled with station code, plot number;date and personnel. Sample bags were transported to the laboratory, opened, and placed in a drying.oven until a consistent weight is obtained.Following drying, the bags were removed singly from the oven and their contents immediately weighed to the nearest F 1 g.Laboratory quality assurance consisted of independently reworking 10 percent of the phytomass samples to assess data validi,ty and reliability. 5.2.3 Five 50-m lines were used to measure shrub canopy cover in each of the seven shrub plots (Figure 5-2).Whenever a shrub was crossed by a tape stretched between the end posts, its species and the distance (cm)at which it inter-cepted the line were recorded.For each shrub plot, intercept distances of each species along all five lines were summed to give a total intercept distance.From this, a shrub canopy cover value (percent)was obtained by dividing total intercept distance by total line length. Quality assurance procedures consisted of twice sampling one major species along a randomly selected shrub transect.Resampling was conducted if intercept lengths differed by more than 10 percent.5.2.4 r Individual live shrubs were counted and recorded by species within each of the four strips delineated by shrub intercept transects (Figure 5-2).Number of V shrubs per strip were summed to obtain shrub density by species for the entire 1000 m2 plot.Sampling was concurrent with cover sampling.Quality assurance consisted of resampling one randomly selected species within one strip.Resampling was conducted if the count difference exceeded one individual. 5.2.5 At each of the fifteen grassland and shrub stations, five soil samples were collected from the top 15 cm of soil with a clean stainless steel trowel.The samples were placed in 250 ml sterile plastic cups with lids, labeled and refrigerated at 4'C.Sixteen parameters were analyzed in e'ach sample includ-ing pH, bicarbonate, carbonate, conductivity, sulfate, chloride, copper, zinc, nickel, cadmium, lead, chromium, calcium, magnesium, sodium and potassium. Samples were analyzed for pH, bicarbonate, carbonate, sulfate, chloride and conductivity according to 1 i (1965).Samples for chromium, cadmium and lead were analyzed by graphite furnace atomic absorption I'pectroscopy according to (USEPA 1983).The remaining elements were analyzed by inductively coupled plasma emission spectroscopy (ICPES)(USEPA 1983).Aliquots of soil for trace metal analyses were digested according to Gilman (1990).Preservation times and conditions, when utilized, were according to USEPA (1983).\Laboratory quality control comprised 10K-20%of the sample analysis load.Routine quality control samples included internal laboratory standards, reagent blanks, and prepared EPA or NIST controls.5-3 5.2.6 V Samples of~Br~~gzgm, gga~berg~,~zmj~~e~z, and~P~ri~~Z were collected at each station.Two species were substituted at some of the stations due to absence of one or more of those listed above.Substitute species were Hex~gjf~and~lhzjgm~j.'~ag.Samples were collected as close to the soil sampling station as possible.Sufficient quantities of leafy material of each species were collected to yield at least five grams of dry weight.The clipped material was sealed in a plastic bag, labeled and refrigerated at 4'C until sample preparation. In the laboratory, the clipped plant tissue was oven dried to a constant weight, ground in a Hi ley mi 1 1 and digested accord)ng to Gi lman (1990).Sulfate was analyzed by nephalometry and chloride by mercuric chloride titration according to USEPA (1983).Copper was analyzed by ICPES according to USEPA (1983).5.3 During the 1990 season, 58 plant taxa were observed in the study area.These are presented in Table 5-1.Table 5-2 lists by year the species of vascular plants observed during field activities from 1975-1990. Many of the graphs will depict a preoperational, operational and 1990 status.The preoperational data is that which was collected annually prior to NNP-2 becoming.fully operational (1980-1984). Operational data is that which is collected after 1984 but not including the current year which is listed separately (1990).5.3.1 Herbaceous cover data for 1990 are summarized in Tables 5-3 and 5-4.Figures 5-3 and 5-4 provide a comparison of shrub and grassland sites (annual grasses-AG, perennial grasses-PG, annual forbs-AF, and perennial forbs-PF)with the data of previous years.There is a noticable trend of the herbaceous cover reverting back to its original state prior to the fire of 1984.5-4 Total herbaceous cover averaged 45.56%in 1990 which represents a 38,01/decrease from 1989 (73.5'/).As in previous years, the dominant annual grass was~Br 1m~bZgg with 25.80%followed by~1~~gjlgZa with 0.25%.Perennial grasses averaged 11.73%in comparison to 32.5%in 1989.'ga~~r i (9.18%)was the dominant perennial grass at most stations followed by~~~(1.94%), Total annual forb cover averaged 5.8%down from the 11.3'/measured in 1989.~Hl~ZLug ggiJjj~g was the dominant component with 2.37'/followed by~D d~grat~;\th.t.'.Perennial forb cover decreased 63.3/from 1989 (1.98%vs.5.4%).The dominant CE'le (.84%)and (.48%).Species frequency values (%)for each station were similar to previous years and are summarized in Table 5-5.The greatest diversity of species was observed at Station S02 (17)while the smallest was observed at Station S07 (2).Due to misinterpretation of 1989 data, Station S02 was listed as having the greatest diversity of species, the text should have listed station G05(19)as having the greatest diversity. Growing season precipitation decreased 51%from 1989 (6.83 cm vs 13.97 cm), with the total precipitation for the 1990 growing season being 6.83 cm.December 1989 and March 1990 precipitation, 0.74 cm and 0.25 cm, respectively, were lower than all previously recorded data for those months.Mean temper-ature during the growing season was 6.4'C in 1990 vs.4.5 C in 1989.5 3 2 Harhamm RhXiatuu.Mean production of herbaceous phytomass in 1990 was 34.95 gm/m2.At grassland stations, phytomass production averaged 33.8 g/m2 while at shrub stations it was 36.2 g/m2.Production varied widely among stations from a low of 4.1 g/m2 at Station G02 to a high of 78.3 g/m2 at Station S02.Mean herbaceous phytomass production at grassland stations and at shrub stations for 1990 is shown graphically in Figure 5-5 (Stations GOS, G06, G07, G08, S06 and S07 were 5-5 not added until 1989)and is summarized in Table 5-6.Table 5-7 presents mean phytomass values for each station in each year since 1975.Mean herbaceous phytomass and percent herbaceous cover for each station from 1980 through 1990 are presented graphically in Figures 5-6 through 5-9.5.3.3 D i There are four shrub species in the study area:~dbd~" d~" Ldl bb bl dd tl present, however, they are not included in the cover data.During a 1984 August range fire, all viable shrubs were completely destroyed at Stations S02 and S04, while the only individuals surviving at Station SOl were isolated clumps of low growing~eggy~r~~g.Shrub density and cover data continue to reflect recovery from the 1984 fire.Percent cover measurements taken in 1990 are very similar to those measured in 1989 with an overall slight decrease in average cover (1,561.versus 1.631.).Shrub density increased slightly at Stations S02 and S05, and decreased slightly at Stations SOl, S03, and S04.Shrub density data for 1990 is summarized in Table 5-8, while shrub density data at each station from 1980 through 1990 is presented.in Figure 5-10.Shrub cover data for 1990 is summarized in Table 5-9, while Figure 5-11 presents mean shrub cover values measured from 1975 through 1990.Shrub cover and density at each station for 1990 are presented graphically in Figure 5-12.The results of the 1990 soil chemical analyses are presented in Table 5-10 and are shown graphically in Figures 5-13 through 5-20.Most metallic element concentrations were within the ranges observed in previous years.There is no concentration of carbonate, due to the pH level of the samples ((8.3).The pH value has to be above 8.3 in order for carbonate to be present.5-6 Bicarbonates was similarto that observed in past data.Conductivity was generally within range at all stations except G03 (96.8), where it increased markedly, as well as in 1985 and 1988 (98.0 and 125.6, respectively). The pH of station G03 increased slightly after a steady decrease for the past 5 years.Sulfate and chloride concentrations were generally higher than were observed in previous year's data.5.3.5 V The results of the 1990 vegetation chemical analyses are presented in Table 5-11 and shown graphically in Figures 5-21 through 5-30.Total vegetation copper concentrations were generally within the ranges previously observed in all of the species examined.Extractable chloride concentrations were generally within the ranges observed in previous years, while extractable sulfate concentrations were higher than in previous years except at Station G08 for Qg,~}pupil.5.4 A 51%decrease in precipitation during the 1989-90 growing season was associ-ated with a 38.011.decrease in mean herbaceous cover for 1990 (Figure 5-4).A corresponding decrease in herbaceous phytomass was observed at all Stations, except S02 and G04.The remaining analytes were generally within the ranges previously observed.Changes in vegetation cover and dens,ity.recorded in 1990 appear to be climatically induced and no signs of adverse impacts from the operation of WNP-2 cooling towers are evident.Shrub cover and density data continue to reflect recovery from the 1984 range fire with slight changes in cover an'd density evident at most stations.No adverse trends or impacts upon soil or vegetation chemistry are apparent from the six years of operational data.5-7 5.5 D V 5.5.1 This study was implemented in january 1989 and its intent was to measure the levels of and determine the rate of airborne salt deposition originating from the WNP-2 cooling tower steam condensate plume.The WNP-2 heat rejection system consists of a steam condenser, six mechanical draft cooling towers and the interconnecting piping.Operation of the cooling towers results in the emission of droplets of the circulating cooling water.These droplets are referred to as drift.e The differentiation between drift and the visible steam plume condensate is important. The drift droplets are produced mechanically within the towers whereas the visible plume condensate droplets are created by the cooling of the saturated tower exhaust air.The drift droplets contain similar, if not identical, concentrations of chemicals as the circulating cooling tower water.Depending upon the chemicals present in the circulating water, the drift may have an effect on the environment. In order to assess environmental impact, it is important that the amount of drift and its resulting distribu-tions be determined.(Laulainen, et al)This section reports the results of a year-long study designed-to verify the predicted areas of maximum and minimum deposition. This program was performed to comply with EFSEC Resolution No.239, dated September 14, 1987.5.5.2 5.5.2.1 An isopleth graphically depicting the predicted cooling tower drift deposition patterns was devised by Battelle in 1976.This prediction was based upon preliminary estimates of operative data and site specific meteorological data regarding predominant wind directions. A cooling tower drift deposition model devised by C.L.Hosier was used for the calculations (Droppo,-et al 1976);5-8 The resulting prediction of deposition patterns, as published by Battelle, is presented in figures 5-31 and 5-32.As shown in these figures, the predicted maximums of drift deposition lie in a northwesterly direction and a nearly south-southwesterly direction. These areas of predicted maximums were later revised by the Supply System.The final orientation was chosen in a north-westerly and a nearly south-southeasterly direction. The sampling stations were chosen to lie along a northwest radial transect and an approximately C south-southeast radial transect.Sixteen sample locations were initially included in this study.A map of these locations is shown in Figure 5-33.Directions and approximate distances from the center of the cooling towers are listed in Table 5-12 for each sampling station.The sixteen locations included a pair of collectors located in the center of the six cooling towers and a control pair of collectors located approximately seven miles north-northwest of WNP-2 at the old Hanford townsite.The remaining fourteen pairs of collectors were placed at equi-distant intervals out from the plant, seven pairs along each transect.Preliminary sampling was initiated in January 1989 and actual data collection began in April 1989.A separate program involving the determination of drift deposition rates in the transformer yards surrounding WNP-2 began sample collection in July 1989.This involved the placement of an additional eight pairs of collectors, five pairs in a transformer yard 0.25 miles north, one pair in a transformer yard 0.5 miles north, one pair in a transformer yard 0.5 miles east-southeast of the WNP-2 cooling towers., While the information was intended for another purpose, the sampling was performed in the same manner as the original sixteen samplers and the results provide additional data for drift deposition characterization. It should be noted, however, that the transformer yard sampling coincided with only nine of the twelve months of sampling for the original sixteen sites.5.5.2.2 Data gathered for this study involved surface deposition measurements. These measurements were used to determine bulk mineral mass deposition rates.5-9 Sample collection was based upon criteria set forth in the American Standard Test Method (ASTM)D1739-70 for the collection and analysis of dust fall.The sample collection vessel consisted of an open topped linear polyethylene cylinder with vertical sides and a flat bottom.The cylinder was six inches in diameter and eighteen inches high.A support stand positioned the cylinder such that its bottom was eighteen inches above grade.The top of the con-tainer was three feet above grade which deviates from the ASTM recommended minimum and maximum heights of eight and fifty feet.This was to more closely monitor drift deposition at the typical height of local vegetation. A metal bird ring was positioned above the cylinder to help prevent interference from birds.The cylinder was also covered with a screen'to prevent sample contami-nation from bird droppings and insects.Figure 5-34 illustrates a typical sample collector. A pair of collectors were placed at each sampling location.O Sample collection occurred monthly (every 30 z 2 days when possible). In the laboratory, the cylinders were-thoroughly washed and rinsed, filled with four liters of deionized water and covered.They were then transported to the field and placed in the support stands.During the summer months, the samplers were checked periodically and additional deionized water added when necessary to insure an adequate liquid level was maintained. An antifreeze, isopropyl alcohol, was initially used during the preliminary sampling months of February and March.This was discontinued, however, due to its general ineffectiveness and to eliminate a potential source of contamination. After approximately thirty days in the field, the cylinders were covered, exchanged with clean samplers, and transported back to the laboratory. Any evidence of contamination such as insects or bird droppings was noted and recorded.At the laboratory, the total volume of water was measured;a 500 milliliter aliquot was taken for sample analysis, and the remaining sample was discarded. 5.5.2,3 Sample analysis involved determination of five inorganic constituents normally found in high concentrations in the cooling tower circulating water.These analytes included calcium, magnesium, sodium, sulfate and chloride.5-10 Analytical techniques utilized ion chromatography for sulfate and chloride.A Dionex Series 4000i ion chromatograph equipped with an AS4A anion separation column was used.Calcium, magnesium and sodium were analyzed using inductively-coupled plasma (ICP)atomic emission techniques. Analyses were performed on a Perkin-Elmer P40 Model ICP.5.5.3 Pl During the sampling period from March 22, 1989 to March 20, 1990, NNP-2 operated for a total of 6826 hours0.079 days <br />1.896 hours <br />0.0113 weeks <br />0.0026 months <br /> or 284.4 days.Plant operational data for each sampling period is presented in Appendix A.Circulating water flow, estimated amount of drift release per day and concentrations of the tracer ions in the circulating water are listed.The plant normally operated with circulating water at approximately twelve cycles.In January 1990, however, a tube leak in a condenser was identified. As a result, the circulating water was kept at a maximum of five to six cycles until the annual maintenance outage.This reduced the circulating water ion concentrations by more than half for the remainder of the sampling period.Drift estimates were calculated using a drift rate of 0.05 percent of the circulating water'flow.Amounts of each ionic species released per month were calculated using the average concentration for each ion during the sampling period.Until July 1989, the circulating water was analyzed daily for calcium while the remaining ion concentrations were calculated based-on the calcium concentration and established ion ratios for sodium, magnesium, chloride and sulfate to calcium.Beginning in July, the circulating water was sampled weekly and each constituent was determined by direct analysis.5.5.4 The detailed meteorological conditions concerning the sampling period are contained in Appendix B.These data were obtained at the Hanford Meteorological Station in the 200 Area of the Hanford Site, located approximately 25 miles northwest of Richland, Hashington. Included in the 5-11 appendix are maximum, minimum and mean temperatures, prevailing wind directions, average wind speed and relative percent humidity for March 1989 through March 1990.A windrose generated from the onsite WNP-2 meteorological station at the 33 foot level is featured in Figure 5-35.This represents prevailing wind directions and percentages for the sampling period of April 1989 through March 1990.The predominant wind directions were from the south blowing north (13.4 percent)and from the northwest blowing southeast (11.2 percent).This correlates fairly well with a windrose generated from cumulative WNP-2 meteorological data gathered from 1984 through 1989, shown in Figure 5-36.For this six year period, the predominant wind directions were from the south (10.9 percent)and from the northwest (10.6 percent).Although the direction frequency percentages were somewhat higher for the sampling period, the prevailing directions were the same.5.5.5 The monthly raw analytical results for each sample location are located in Appendix C.Presented there is the average gross deposition mass in milligrams for each ion analyzed and the standard deviation between the duplicate collectors located at each site.The average ion masses for each of the analytes were summed to give a monthly bulk deposition for each of the sixteen sampling locations, The twelve monthly depositions for each station were then totaled to give a yearly bulk deposition in milligrams. Using the diameter of the collection vessel to determine the surface area of the sampler, this mass was converted to a value in units of pounds per acre year.The values for each station are tabulated in Table 5-13.Deposition rates were corrected for background deposition by subtracting the control site deposition rate from each drift sampler rate.5.5.6 On the basis of the predicted drift patterns, the greatest deposition is expected to occur adjacent to the cooling towers and to decrease as a function of distance from the towers.This is verified by the sampling program, showing a maximum deposition rate of 52 lbs/acre-year at 0.2 miles south from 5-12 the towers (Station 7), decreasing to a deposition rate not significantly higher than background deposition at a distance of 3 miles.This is graphically presented in Figure 5-37.The model also predicts deposition rates will be much higher during the winter months due to high humidities and lower temperatures which permit the larger diameter drift droplets to intersect the ground surface.As a result, the drift falls as wet deposition in more highly concentrated areas as opposed to undergoing evaporation and subsequently a wider dispersion. This prediction is verified by the study.At Station 7, as an example, the drift accumulated during November, December and February accounted for almost 70 percent of the w total drift mass deposited there during the twelve month sampling period.Significant increases of deposition rates were also noted during these three months for Station 8, located in the center of the towers.The drift deposited during the same three month period accounted for almost 60 percent of the total accumulated mass.In predicting the areas of maximum deposition, the maximum salt deposition will be directly proportional to the wind'direction frequency (Droppo).From this statement and the site-specific wind frequency percentages from the past six years, one would expect the maximum areas of deposition to be found to the north and southeast of the plant, correlating with the maximum wind direction frequencies of 10.9 percent from the south (drift to the north)and 10.6 percent from the northwest (drift to the southeast). This is in direct contradiction with the isopleths showing the predicted areas.of deposition. The figures show areas of maximum deposition to lie in a northwesterly and nearly southwesterly direction. Referencing the text of the Battelle document in which the isopleths are presented shows further contradictions between the expected areas of maximum deposition and the isopleths. From the document,"the maximum wind direction frequency at HNP-2 was 9 percent from the south (drift to the north).The measurement elevation was seven meters (23 feet).At an elevation of 122 meters (400 feet)at the Hanford Meteorological Station, the maximum direction frequency was 20 percent from the northwest (drift to the southeast)(Droppo).Further investigation confirmed that the isopleths, as originally presented, had been rotated a full 180', thus 5-13 incorrectly predicting the areas of maximum deposition. As a result, the monitoring stations, as placed for this study, are not in the expected areas of maximum deposition. This is substantiated by field data collected for the transformer yard sampling stations.At a transformer yard 0.25 miles north of the cooling towers, samplers experienced an average rate of 112 lbs/acre for a nine month period coinciding with the original sample collection. This rate is more than two times greater than the maximum twelve month rate determined by the samplers placed along the two radial transects. It is concluded that the isopleths, as presently drawn, do not accurately predict the areas of maximum and minimum deposition. Since the samplers were not placed along transects in line with the directions of maximum deposition, it is difficult to verify the predicted extent of the drift plume, or the distance at which the cooling tower drift deposition is no longer distinguishable from background drift.The isopleths predict that at approximately 0.5 miles from the towers, drift deposition wi 1 1 diminish to a rate of 1 lb/acre-year. The sampling at distances of approximately 0.5 miles from the towers determined rates ranging from 8 to 22 lbs/acre year, significantly higher than that predicted by the model.This indicates that appreciable amounts of drift may be deposited beyond the 0.5 mile radius at higher rates than predicted. The maximum rates predicted by the model were 400 lbs/acre-year and 300 lbs/acre-year, 0.25 miles from the towers.These estimates are high as compared to the highest rate of deposition determined by the field sampling which was 112 lbs/acre for a nine month period, in a transformer yard 0.25 miles north of the towers.The efficiency factor for the drift collectors used has not been determined, thus it is difficult to compare the predicted absolute rate with the experimentally determined relative rate of deposition. If an efficiency rate of 100 percent is assumed, however, the measured rates are still within the same order'f magnitude as those which were predicted. Sources of error which may have biased the experimental results low include the fact that only five constituents were analyzed to 5-14 determine the amount of drift deposited. The plant also operated at reduced cycles from mid-January through the end of the sampling period which also decreased the amount of drift which was actually released to the atmosphere. 5.6 BIBLI ASTM D1739-70, Standard Method for Collection and Analysis of Dustfall.Daubenmire, R.1968.Plant communities. Harper and Row, New York, NY.Droppo, J.G., C.E.Hane and R.K.Woodruff, Atmospheric Effects of Circular'Mechanical Draft Cooling Towers at Washington Public Power Supply System nuclear Power Plant Number Two, B2311200735, November 1976.Environmental Protection Agency.1983.Methods for Chemical Analysis of Water and Wastes.Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH.Gilman, Lee B.1989.Microwave Sample Preparation. CEM Corporation. Klemmedson, J.O.and J.G.Smith, 1964.Cheat Grass (gag~~grum L)Bot.Rev.30;226-262.%i'd 1979, Battelle PNL-3083.Laulainen, N.S., R.0.Webb, K.R.Wilber, and S.L.Ulanski, D 1 n , September, NUS Corporation, Annual Report for the PVNGS Salt Deposition Monitoring Program January-December 1986;April 1987.5-15 Table 5-1.Vascular Plants Observed During 1990 Field Nork APIACEAE CY.,t~~in h~i ASTERACEAE n (Hook,)T.&G.var.(Nutt.)Coult&Rose Parsley Family Turpentine cymopterus Large-fruit lomatium Aster Family 6K(.kDD~d]zazgha (Ptutt.)T&G~re~m<~~ri i~@Nutt..M.RRII19&iZR ~~Gl ay MQ~~(Pall.)Britt Ct~h.~(k.)Wtt~~~rf~Hel ler k~gl~n~(Hook.)H&A~rima~¹dub~Scop.A~r~~(Pursh)BORAGINACEAE /@~~i~Lehm.RS JU tt~~~imari~(Torr.)Greene BRASSICACEAE ~D[i~~i~gita (Halt.)Britt.~D~vrn L.KLKSUez mvZym (Nutt.)DC.~~~i'j'~ilJgg L.CACTACEAE QpyrLQR CARYOPHYLLACEAE A~rnaQa fzZ1JQ~Qj. Dougl.var.~~i~Ealmhmm~tZ1lahaa L.CHENOPODIACEAE RaLmla kaLi L.Yarrow Low pussy-toes Big sagebrush Carey's balsamroot Gray rabbitbrush Green rabbitbrush Slender hawksbeard Bur ragweed Hhite daisy tidytips Yellow salsify Hoary Aster Borage Family Tarweed fiddleneck Matted cryptantha Hinged cryptantha Mustard Family Hestern tansymustard Spring draba Prairie rocket Tumblemustard Cactus Family Starvation cactus Pink Family Franklin's sandwort Jagged chickweed Chenopod Family Russian thistle 5-16 FABACEAE~~rQyg ggr~hi i Dougl.P~rig, langg~l~Pursh Table 5-1.mm Pea Fami ly Wooly-pod milk-v'etch Stalked-pod milk-vetch Lance-leaf scurf-pea HYDROPHYLLACEAE ~P~ll~hm~a Dougl.HhKQlia~1~(Pursh)Holz.LILIACEAE~Br~l~1,~~Lii Wats.Ga.Lardurtua mu~r pm Doug 1.aulll tP h)Ep LOASACEA E~z~li~~i'oug 1.MALVACEAE l~~n (Dougl.)Spach ONAGRACEAE ~ni~1~11~1 Lindl.var.~11~1 PLANTAGINACEAE ~am mdaam~Lca Jacq.POACEAE 69ZQKLrrl~~vm (L.)Gaertn.S~(.b~rapper z~i Zm (Pursh)Scribn.&Smith B~]~~rig L.F~~~~Walt.KQklMrk$~~4 Pers.GCXZSKLi hKR~~(RKS)Ricker Waterl eaf Family Whi tel eaf phace1 i a Threadleaf phacelia Lily Family Douglas'rodiaea Sego 1 i ly Chocolate lily Blazing-star Family White-stemmed mentzelia Mallow Family White-stemmed globe-mallow Evening-primrose Family White-stemmed evening-primrose Plantain Family Indian-wheat Grass Family Crested wheatgrass Thick-spiked wheatgrass Bluebunch wheatgrass Cheatgrass Six-weeks fescue Prairie Junegrass Indian ricegrass 5-17 Table 5-1.RANUNCULACEAE -llLLU ttdll Pritz.ex Walpers ROSACEAE EUZ.'~XCldRQ~(Pursh)DC.SANTALACEAE ggmmn~r gpss~~(L.)Nutt.SAXIFRAGACEAE RiliR~age Pursh SCROPHULARIACEAE ~Pongy~~i~Doug 1.VALERIANACEAE Ply~<g m~~r TLG~P~g~r Vasey~i~ni~~<(Nutt.)Smith~m!~Trin 8 Rupr.POLEHONIACEAE g/]gg gln~if~r Benth.~1~~Dougl.J<<k)6 var.5~gQ llama (Hook.)Cronq.Lhhz~aifalia POLYGONACEAE KJ~iOMIB IUvvRm Doug 1.~R~vm Pursh Sandberg's bluegrass Bottlebrush squirreltail Needle-and-thread Phlox Family Gilia Shy gilia Pink microsteris Long-leaf phlox Buckwheat Family Snow buckwheat Wild begonia Buttercup Family Larkspur Rose Family Antelope bitterbursh I Sandalwood Family Bastard toad-flax Golden current Figwort Family Sand-dune penstemon Valerian Family Longhorn plectritis 5-18 Table 5-2.Vascular Plants Observed During 1975-1990 Field Mork Annual Grasses 199'l~177~17~7~l~~l~~4~l~~199@~l X X X X X X X X X X X X X X X Qaium~~@a~t~sp.X X X X X X X X X X Perennial Grasses$~r)~r~~~g)~r g~i~~i~ri~~db~i~~Lbbr,~ll~i.~~h~i~g~i~i~h~b~i X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Table 5-2.(Cont'd)Annual Forbs~Fyg~i~@~i~i~~Mi~~~i~m~i~jii~7~~7~17~17~l~ll~~l 19914~~~l~l~l X X X X X X X X X X X X X X X X X X X X X X X X X X"X X X~ggifjgg~lg~>~1~MatunUm~mama CQfU>hhk~i~O~RjQ iii QjQf~~b~v/~i'X X X X X X X X X X X X X X-X X X X X X X X X X X X X X X X X X X X X, X X X X X X X X X X X X X X X X X X X X X X X X Gilia~~Qara Glib amatol~mb~ll gg~pJ~~gc~ii X X l X X X X X X X X X X X X X X X X X X X X,X X X X X X X X X X X X X X X/~~i~bi~gJ ii~i~~~chili~rb~+g~if~rni phd~i]iip~i X X X'X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X P~h~sp.Pll'~~~i P~1~I~i 6hKDU~r X X X X X X X X X X X X X X X X X X X X Table 5-2.(Cont'd)~7~17 l99l.~l~17~l~l~~l~4~~1~17~lqql./~led@~~i'RaLi m~bri n}~li~imgg X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X~rgb@~~bi Perennial Forbs X X X X X X X X X X~A~ill'g gjl'~fili m X X X X X X X X X X X X X~n~n~di ash iLrra~i~fr kl'ni var.~fr nkli'i X X X X X X X X X X X X X X X X X X X X Q~~~l~l]1ii~r~l<<k~~i~A~~l sp.~ln chir@mmuna~ri ER Q~di Gem~i he~i" Qll/Hark mB JJKREElk X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Q}m~n~~ba~ll X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Table 5-2.(Cont'd)~17~17~177~7~17~~l~~l~~l 199'17~l~l QES~~RbhiQli rUlk~jiig sp.X X X X X X X X X X X X gr'LQRKQQ~vugg~Lrr,i>>via muLm~n~ig sp.X X X X X X X X X X X X X X X X X X ggggfJ>~~lli g mgn~mi~JP~~sp.~~m~f1 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Ra~rl~la3ata$ph<~r'~m~~Shrubs, subshrubs, cacti X X X X X X X X X X X X X X X X X X X X X X X X X X X X X=X X X PpJ>~i pJJp~X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Table 5-3 Herbaceous Cover for 1990 Fifteen Sampling Stations Annual Grasses Bronus tectorun Festuca octoflora Total Annual Grass Cover Perennial Grasses Agropyron splcatuu Oryzop>s hynenoides Poa sandbergii Stipa coaata Total Perennial Grass Cover Annual forbs Ansinckia lycopsoides Chenopod)un Ieptophyllun Cryptantha circunscissa Crypthantha pterocarya Oescurainsa pinnate Oraba verna Franserfa acanthacarpa Gilia sinuata Holosteun unbellatun tayia glandulosa Hentzelia albicaulis Hicrosterls gracilis Phacelia linearis Plantago pategonica Sa'Isola kali S)syubriuu a)ties lnun Tragopogon dubius Total Annual forb Cover Perennial forbs 18.60 0.00)8.60 0.00 0.00 18.70 0.00 18.70 0.00 0.00 0.00 0.00 0.00 3.20 0.00 0.00 2.95 0.00 0.00 0.35 0.00 1.15 o.'ao 0.10 0.00 7.75 7.75 0.00 7.75 0.00 0.00 0 F 00 0.00 0.00 0.00 0.00 0 F 00 0.00 0.00 1.25 D,DD 0.00 0.40 0.00 0.00 0.60 0 F 00 0.10 0.00 0.00 o'.oa 2'5 61.55 0.00 61.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75).15 0.00 9.35 0.00 0.00 2.65 0.00 0.00 0.00 0.80 0.00 15.70 13.65 0.00 13.65 0.00 0.00 13.15 16.85 30.00 0.00 0.00 0.00 0.00 0.15 1.70 0.00 0.00 0.30 0.00 0.00 0.00 0.00 1.20 0.00 0.00 0.00 3.35 22.)5 1.65 23.80 0.00 0.00 11.85 0.05 11.90 0.00 0.00 0.00 0.00 0.00 1.20 D.OD 0.00 1.15 0.00 0.00 0.30 0.00 0.00 0.05 0.05 0.00 2.75 35.30 0.15 35.45 0.00 0.00 1.50 9.20 10.70 0.00 0.00 0.00 0.00 0.00 1.70 0.30 0.00 3.65 0.00 0.00 1.05 0.00 0.00 0.10 0.10 0.00 6.90 35.55 0.00 35.55 0.00 0.00 9.30 0.00 9.30 0.00 0.00 0.00 0.00 0.00 1.70 0.00 0.00 4.90 0.00 0.00 0.60 0.55 0.00 0.00 1.15 0.05 8.95 19.75 0.00 19.75 0.00 0 F 00 11.65 0.45 12.10 0.00 0.00 0.00 0.00 0.00 2.15 0.00 0.00 2.'IS 0.00 0.00 1.75 0.00 0.40 0.00 0.55 0.00 7.00 36.80 0.00 36.80 0.00 0.00 3.30 0.00 3.30 0.30 0.00 0.00 0.00 0.00 3.00 0.00 0.00 1.25 0.00 0.00 3~10 0.00 0.00 0 F 00 0.30 0.00 7.95 16.80 0.00 16.80 2.90 2.30 5.15 2.50 12.85 0.05 0.00 0.05 0.00 0.05 0.15 0.25 0.00 0.95 0.00 0.35 0.10 0.55 0.00 0.10 0.00 0.00 2.60 17.05 0.00 17.05 0.00 0.00 18.35 0.00 18.35 0.00 0.00 0.00 0.00 0.00 2.60 0.00 0.00 2.05 0.00 0.00 1.00 0.00 2.45 0.00 0.05 0.00 8.15 30.40 2.00 32.40 0.00 1.25 11.45 0.00 12.70 0.00 0.00 0.00 0.00 0.00 1.10 0.00 0.00 0.45 0.00 0.00 1.80 0.00 0.00 O.IS 1.05 0.00 4.55 53.35 0.00 53.35 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 1.75 0.00 0.00 6.05 0.00 0.00 0.65 o'.ao 0.45 0.00 0.00 0.00 8.90 12.90 0.00 12.90 2.65 0.00 15.7$0.00 18.40 0.05 0.00 0.00 o.'ao 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.'ao 0.00 0.00 0.10 5.45 0.00 5.45 0.00 a.'ao 17.55 0.00 17.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0~aa AVERAGE RLSCZ 25.80 0.25 26.05 0.37 0.24 9.18 1.94 11.73 0.03 0.00 0.00 0.00 0.02 1.55 0.11 0.00 2.37 0.00 0.02 0.93 0.07 0.38 0.03 0.28 0.00 5.80 AVERAGE 25.39 0.00 25.39 0.00 0.00 7.96 4.21 12.18 0.00 0 F 00 0 F 00 a.'00 0.04 I~98 0.29 0.00 3.25 0.00 0.00 0.90 0.00 0.61 0.00 0.23 0.00 7.29 AVERAGE M5 30.88 0.40 31.28 0.59 0.71 7.65 0.50 9.45 0.07 0.00 0.01 0.'aa 0.01 I.72 0.05 0.00 2.15 0.00 0'7 I.33 0.11 0.58 0.05 0.28 0.00 6.43 AVG.Gal-G04 BLED 28.44 0.22 28.66 0.33 0.39 7.79 2.15 10.66 0.04 0.00 0.01 O.aa 0.02 1.83 0.16 0.00 2.64 0.00 0.04 1.14 0.06 0.59 0.03 0.26 0.00 6.81 Achil)ca nil 1efol iun Astragulus purshli Aster canescens Astragalus sclerocarpus Ba)sazorhiza careyana Brodiaea douglasii Conandra unbel)ata Crepis atrabarba Cynopterus terebinthinus Oenothera pallida Phlox longifolia Runex venosus Total Perennial Forb Cover Total Herbaceous Cover 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 45.05 0.00 0.00 0 F 00 0.00 0.00 0.00 o.'ao 0.00 0.00 0.00 0 F 05 0.00 0 F 05 10~'IS 0.00 0.00 0.00 0.00 0.00 0.00 O.DO 0.00 0.00 0.05 0.00 0.00 0.05 77.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.10 0.00 1.20 48.20 0.00 0.00 0.45 0.00 2.45 0.00 0.30 0.00 0.00 0.00 0.75 0.00 3.95 0.00 0.00 0.05 0.05 0.60 0.00 0.00 0.00 6.25 1.30 0.30 0.00 8.55 61.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.05 53.85 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.20 39.OS 0.00 o.oo 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D.30 0.00 0.40 48.45 3.10 0.00 0.10 0.00 0.00 0.00 0.00 0.00 6.35 0.00 O.DD 0.00 9.55 41.80 0.05 0.00 0.00 0.'ao 0.30 0.00 0.00 0.95 0.00 0.00 D.45 0.00 1.75 45.30 0.00 0.00 0.05 0.00 3.85 0.00 0.00 o.'aa 0.00 0.00 O.OD 0.00 3.90 53.55 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 62.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.40 0.00 0.00 0.00 o.oa 0.00 0.00 0.00 0.00 0.00 0.00 0.00~0.00 0 F 00 23.00 0.21 0.00 0.06 0.00 0.48 0.00 0.02 0.06 0.84 0.10 0.21 O.ao 1.98 45.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.29 0 F 00 0.33 0.63 0.00 0.06 0.00 0.83 0.00 0.00 O.i9 1.27 0.00 0.'IS 0.00 3.13 0.35 0.00 0.03 0.00 0.46 0.00 0.00 0.11 0.71 0.02 0.21 0.00 1.88 45.18 50~29 48.02 Table 5-4 HeaFI Herbaceous Cover for.1975 through 1990 CLASS 501 502 503 504 505 501-5 506 507 XS GO I G02 X G03 G04 GO 1-4 GOS G06 G07 GOB XG X G01-4, XSG 501-5 AG PG AF PF ALL AG PG AF PF ALL AG PG AF PF ALL 1975 1975 1975 1975 1975 1976 1976 1976 1976 1976 1977 1977 1977 1977 1977 49.90 0.60 14.60 4.30 69.40 50.70 0.40 5.50 0.00 56.60 1.35 0.35 0.25 0.55 2.50 35.30 2.00 11.70 0.90 49.90 40.90 10.50 5.30 0.50 57.20 0.65 11.30 0.05 0.60 12.60 43.80 4.50 11.70 1.80 61.80 34.30 10.30 7.20 0.20 52.00 1.90 8.28 0.90 1.47.12.50 43.00 43.90 2.37 3'0 12.67 29.50 2.33 1.50 60.37 78.60 41.97 7'1.20 7.07 4.40 6.00 11.90 0.23 0.00 55.27 87.50 1.30 5.20 6.64 3.25 0.40 2.40 0.86 0.05 9.20 10.90 43.00 5.50 13.00 2.10 63.60 51.60 3.IO 8.50 0.20 63.40 1.45 2.90 9.35 6.30 20.00 43.45 4.60 21.25 I.80 71.10 61.40 3.75 10.20 0.10 75.45 3.33 3.08 5.88 3.18 15.45 43.18 3.26 16.10 Z.12 64.66 49.74 5.74 7.68 0.18 63.34 2.11 5.22 2.59 1.78 11.70 43.18 3.26 16.10 2.12 64.66 49.74 5.74 7.68 0.18 63.34 2.11 5.22 2.59 1.78 11.70 AG PG AF PF ALL 51.00 3.00 38.00 8.00 1978 1978 1978 1978 1978 100.00 67.00 18.00 10.00 0.00 95.00 51.00 11.00 33.00 5.00 100.00 56.33 68.00 10.67 8.00 27.00 23.00 4.33 2.00 98.33 101.00 42.00 7.00 25.00 3.00 77.00 55.00 7.50 24.00 2.50 89.00 55.80 9.40 25.80 3.60 94.60 55.80 9'0 25.80 3.60 94.60 AG PG AF PF ALL 1979 1979 1979 1979 1979 25.00 1.00 2.00 11.00 39.00 29.00 18.00 4.00 0.00 51.00 9.00'11.00 10.00 3.00 33.00 21.00 31.00 10.00 7.00 5.33 43.00 4.67 0.00 41.00 81.00 10.00 5.00 33.00 7.00 55.00 20.50 6.00 38.00 3.50 68.00 20.80 8.40 18.40 4.20 51.80 20.80 8.40 18.40 4.20 51.80 AG PG AF PF ALL AG PG AF PF ALL 1980 1980 1980 1980 1980 1981 1981 1981 1981 1981 50.40 1.00 7.60 2.20 61.20 74.80 0.10 5.30 0.00 80.20 51.80 7.20 4.20 2.20 65.40 54.60 4.70 3.50 3.20 66.00 24.30 23.30 22.50 4.70 74.80 66.50 14.30'I8.20 0.70 99.70 56.20 56.40 47.82 10.90 0.10 8.50 3.40 14.10 10.36 4.60 1.80 3.10 75.10 72.40 69.78 49.80 76.20 64.38 5.80 0.00 4.98 1.20 12.50 8.14 4.90 0.50 1.86 61.70 89.20 79.36 47.82 64.30 8.50 28.30 10.36 7.30 3.10 0.40 77.80 64.00 5.00 0.00 69.78'100.30 146.80 64.38 77.40 84.00 4.98 19.60 25.90 8.14 15.90 11.90 1.86 0.20 0.00 79.36 113.10 121.80 73.80 0.10 28.70 0.00 102.60 ss.40 0.00 17.50 0.00 105.90 12.30 57.05 26.60 29.75 4.90'11.48 4.60 1.25 48.40 99.53 48.90 74.68 36.70 20.55 5.90 12.80 1.90 0.53 93.40 108.55 57.05*29.75 11.48 1.25 99.53 74.68 20.55 12.80 0.53 108.55 51.92 17.94 10.86 2.28 83.00 68.96 I'1.90 10.21 1.27 92.33 51;92 17.94 10.86 2.28 83.00 68.96 11.90 10.21 1.27 92.33 AG PG AF PF ALL 1982 1982 1982 1982 1982 51.50 0.40 4.60 0.20 56.70 25.80 6.40 4.20 4.30 40.70 36.60 17.90 7.50 0.70 62.70 32.70 20.00 33.32 4.30 0.80 5.96 1.60 17.30 7.04 6.20 1.00 2.48 44.80 39.10 48.80 33.32 42.20 5.96 I'1.20 7.04 9.70 2.48 0.30 48.80 63.40 45.50 11.60 4.60 0.00 61.70 51.00 0.10 4.60'1.30 57.00 22.90 40.40 31.30 13.55 4.10 5.75 3.80 1.35 62.10 6'I.05 40.40 13.55 5.75 1.35 61.05 36.47 9.33 6.47 1.98 54.24 36.47 9.33 6.47 1.98 54.24 Table 5-4 Mean Herbaceous Cover for 1975 through 1990 (continued) CLASS AG PG AF PF ALL AG PG AF PF ALL AG PG AF PF ALL I AG PG CA PF ALL AG PG AF PF ALL YEAR 1983 1983 1983 1983 1983 1984 1984 1984 1984 1984 1985 1985 1985 1985 1985 1986 1986 1986 1986 1986 1987 1987 1987 1987 1987 Sal 53.80 2.IS 8.20 0.70 64.85 41.50 1.85 12.35 0.30 56.00 2.10 1.05 0.70 0.00 3.85 17.45 2.20 25.40 1.15 46.20 28.90 3.60 12.56 5.00 50.06 502 37.60 7.70 7.85 3.10 56.25 32.75 8.80 8.10 4.00 53.65 2.15 4.70 1.35 1.35 9.55 1.95 10.75)6.65 5.35 34.70 9.95 21.90 8.50 6.00 46.35 503 33.65 14.45 12.55 I.05 61.70 39.35 11.55 11.10 0.75 62.75 14.60 17.85 9.40 1.15 43.00 7.20 17.25 38.Ia 2.30 64.85 7.80 42.65 10.80 2.00 63.25 504 36.75 6.40 3.45 4.40 51.00 36.30 8.55 4.00 6.55 55.40 4.95 2.40 2.30 3.00 12.65 11.45 9.85 10.25 9.15 40.'70 19.05 19.55 6.55 10.40 55.55 505 3'I.85 1.29 22.35 1.95 57.44 36.50 0.40 13.40 0.65 50.95 27.05 I.85 4.75 0.25 33.90 13.05 1.30 16.70 1.25 32.30 33.40 2.30 1).40 1.75 48'.85 501-5 38.73 6.40 10.88 2.24 58.25 37.28 6.23 9.79 2.45 55.75 10.17 5.57 3.70 1.15 20.59 10.22 8.27 21.42 3.84 43.75 19.82 18.00 9.96 5.03 52.81 506 507 XS 38.73 6.40 10.88 2.24 58.25 37.28 6.23 9.79 2.45 55.75 10.)7 5.57 3.70 I.IS 20.59 10.22 8.27 21.42 3.84 43.75 19.82'I8.00 9.96 5.03 52.8)49.50 2.10 18.70 0.65 70.95 60.85 1.20 20.65 0.70 83.40 8.00 9.20 18.20 0.80 36.20 9.40 19.85 27.65'1.80 58.70 23.85 32.45'I0.30 0.90 67.50 G02 39.55 15.75 8.85 0.05 64.20 71.30 4.45 9.70 0.20 85.65 8.10)7.95 8.15 0.10 34.30 4.65 38.65 34.15 1.95 79.40 9.45 58.79 11.32).90 81.46 62.75 0.00 8.65 2.10 73.50 60.85 19.45 I.')a 81.40 18.30 0.00 7.55 2.35 28.20 13.25 0.00 25.45 0.05 38.75 51.65 0.05 14.00 0.15 6S.'OS 604 17.55 25.50 6.65 4.00 53.70 9.60 25.00 7.95 1.25 43.80 7.25 13.90 3.05 0.90 25.10 7.35 26.00 8.70 2.55 44.60 4.65 45.95 3.25 1.55 55.40 X Gal-5 42.34 10.84 10.71 1.70 65.59 50.65 10.22 14.44 0.81 73.56'I0.41 10.26 9.24 I.04 30.95 8.66 21.13 23.99 1.59 55.36 22.40 34.31 9.72).13 67.55 G06 607 Gaa 42.34 10.84 10.71 1.70 65.59 50.65 10.22 14.44 0.81 73.56 10.41 10.26 9.24'1.04 30.95 8.66 21.13 23.99 1.59 55.36 22.40 34.31 9.72 I.13 67.55 XSG 40.33 8.37 10.81 2.00 61.51 43.22 6.87 11.86 1.72 63.67 10.28 7.66 6.16 I.10 25.19 9.53 13.98 22.56 2.84 48.91 20.97 25.25 9.85 3.29 59.36 Ga)-4~50)-5 40.33 8.37 10.8)2.00 61.5)43.22 7.73 11.86 1.72 63.67 10.28 7.66 6.16 I.10 25.19 9.53 13.98 22.56 2.84 48.91 20.97 25.25 9.85 3.29 59.36 AG PG AF PF ALL AG PG AF PF ALL AG PG AF PF ALL'I 988 1988 1988 1988 1988 1989 1989 1989 1989 1989 1990 1990 1990 1990 1990 13.80'I.75 6.08 I'I.SS 33.18 21.85 8.30 12.50 4.45 47.)0 36.80 3.30 7.95 0.40 48.45 5.05 8.40 5.25 15.75 34.45 12.50 29.55 6.95'14.50 63.50 16.80 12.85 2.60 9.55 41.80 8.10 11.95 3.60 2.10 25.75 12.45 64.00 13.05 4.40 93.90 17.50 18.35 8.15 1.75 45.30 13.80 9.40 3.10 4.85 31.IS'10.25)3.00 6.45 8.20 37.90 32.40'12.70 4.55 3.90 53.55 10.15 3.35 4.00 3.25 20.75 32.90 1.25 11.10 0.55 45.80 53.35 0.05 8.90 0.05 62.35 10.18 6.97 4.41 7.50 29.06)7.99 23.22 10.01 6.42 57.64 31.37 9.45 6.43 3.13 50.29 10.40 12.24 10.5'I 16.85 17.50 9~89 0.00 0.35 3.20 0.10 0.00 5.37 27.35 30.09 28.96 15.00 47.65 21.80 30.35 37.50 26.28 0.85 F 15 8.01 0.10 0.00 4.60 46.30 90.30 60.69 12.90 5.45 25.03 18.40)7.55 11.89 0.10 0.00 4.6'I 0.00 0.00 2.24 31.40 23.00 43.69 22.95 17.85 6.30 0.20 47.30 22.50 60.40 12.85 3.85 99.60 18.60 18.70 7.75 0.00 45.05 10.'Ia 2).70 16.IS 2.00 49.95 13.20 59.60 5.90 1.10 79.80 7.75 0.00 2.35 0.05 10.)5 16.75 0.05 7.55 0.00 24.35 65.85 0.05 42.20 0.05 108.15 61.55 0.00 15.70 0.05 77.30 4.80 30.20 1.80 4.40 41.20 3.05 49.55 2.85 3.00 58.45 13.65 30.00 3.35 1.20 48.20 13.65 17.45 7.95 1.65 40.70 26.15 42.40 15.95 2.00 86.50 25.39 12.18 7.29 0.33 45.18 11.95 19.20 F 50 12.05 1.20 1.45 15.25 8.70 37.90 41'0 22.35 35.10 36.75 16.20 8.85)3.55 6.45 10.40 74.40 75.25 23.80 35.45 I'1.90 10.70 2.75 6.90 3.95 8.55 42.40 61.60 15.85 10.40 10.45 14.30 12.35 6.12 2.45 4.34 41.10 32.52 38 F 05 12.05 32.05 48.95 13.05 13.95 12.9a 10.60 96.05 85.55 35.55 19.75 9.30 12.'Ia 8.95 7.00 0.05 0.20 53.85 39.05 14.00 14.51 6.61 4.34 39.47 26.52 37.94 14.15 6.04 84.66 27.01 I I.59 6.84 1.76 47.20 12.32 12.34 5.16 4.79 34.60 24.05 32.54 I'1.48 5.23 73.31 26.06)'1.73 5.80 I.98 45.56 11.72 11.63 5.98 4.90 34.23 2).62 3'I.74 12.65 4.46 70.47 28.71 Ia.66 6.81 l.88 48.02 Table 5-5 Mean Frequency Values (5)by Species of Each Sampling Station-1990 Annual Grasses Gol G02 G03 004 G05 G06 G07 G08 Sol S02 S03 S04 S05 S06 S07 Bromus tectorum Festuca octoflora 100 100 98 96 94 100 98.96 98 76 94 98 100 72 98 36 60 40 Perennial Grasses Agropyron spicatum Oryzopis hymenoides Poa sandbergii St,ipa comata 94 100 20 6 2 96 68 10 62 70 18 32 98 56 72 2 24 8 12 2 10 60 96 Annual Forbs Amsinckia lycopsoides Chenopodium Leptophyl1um Cryptantha circumscissa Cryptantha pterocarya Descurainia pinnata Draba verna Franseria acanthacarpa Gilia sinuata Holosteum umbellatum Layia glandulosa Mentzelia albicaulis Microsteris gracilis Phacelia linearls Plantago pategonica Salsola kali Sisymbrium altissimum Tragopogon dubius 2 2 6 78 50 60 48 48 68 8 12 2 58 86 90 6 10 84 44 60 14 24 86 12 42 38 46 4 2 4 4 2 4 4 24 50 84 4 22 22 16 4 46 22 12 2 40 72 26 78 18 6 2 42 68 16 96 12 26 86 76 66 40 28 52 18 92 Perennial Forbs Achil isa mi1 1 sf ol ium Aster canescens Astragulus purshii Ast,ragulus sclerocarpus Balsamorhiza careyana Brodiaea douglasii Comandra umbellata Crepls atrabarba Cynopterus tereblnthinus Oenothera pallida Phlox longifolia Rumex venosus 2 4 16 18 2 10 2'4 4 2 2 2 4 4 2 12 20 2 2 2 4 2 Total Species per Site 7 7 7 9 13 16 9 10 9 17 11 11 7 5 2 5"26 Table 5-6 Mean Terrestrial Phytomass for 1990 OATK SITE PLOT MT./Mf.(g)SQ.HETER DATE SITE PLOT MT./MT.(gl 59.HETER 05/18 05/18 05/18 05/18 05/18 G01 G01 G01 G01 G01 4-8 29-4 12-3 18-5 41-6 AVG STD 0.3 0.7 0.5 2.2 3.0 1.4 1.1 2.5 7'5.4 22.3 30.4 13.6 10.8 05/29 05/29 05/29 05/29 05/29$01$01$01$01$01 41-6 12-3 44 29-4 18-5 AVG STO 4,3 2.9 2.4 2.7 4.1 3.3 0.8 42.8 29.0 23.6 27.4 41.2 32.8 7.7 DATE SITE PLOT Mf./MT.(g)SQ.HETER DATE SITE PLOT Mf./Mf.(g)SQ.HETER 05/18 05/'I&05/18 05/18 05/18 G02 G02 602 G02 G02 12-3 29-4 18-5 41-6 AVG STO 0.2 0.2 0.5 0.3 0.9 0.4 0.3 2.1 1.8 5.3 2.7 8.5 4.1 2.5 05/29 05/29 05/29 05/29 05/29$02$02$02$02$02 41-6 29-4 44 18-5 12-3 AVG STO 0.5 3.9 3.6 3.7 27.4 7.8 9.9 5.3 39.4 35.8 36.5 274.3 78.3 98.8 DATE SITE PLOT N'./Mf.(g)SQ.HETER OA1'E SITE PLOT MT./MT.(g)SQ.HETER 05/18 05/18 05/18 05/18 05/18 G03 G03 G03 G03 G03 18-5 4-8 12-3 29-4 41-6 AVG STO 6.8 6.4 1.3 68.1 64.0 13.0 7.7 77.2 7.7 77.1 5.2 51.8 4.6 45.9 05/29 05/30 05/30 05/30 05/30$03$03$03$03$03 18-5 12-3 4-8 29-4 41-6 AVG STO 2.8 3.2 2.5 4.6 1.0 2.8 1.1 28.1 32'24.7 45.7 10.4 28.2 11.4 DATE SITE PLOT MT./MT.(g)SQ.HETER DATE SITE PLOT MT./N'.(g)SQ.HETER 05/18 05/IS 05/18 OSI18 05/18 604 G04 G04 604 G04 12-3 18-5 41-6 29-4 4-8 AVG STO 7.5 5.5 2.4 19.0 2.3 7.3 6.2 75.1 54.9 23.6 189.7 22.5 73.2 61.5 OSI29 05/29 05/29 05/29 05/29$04$04$04$04 S04 4-8 12-3 41%18-5 2~AVG STO 5.4 2.5 2.0 1.6 4.1 3.1 1.4 53.8 24.6 19.6 15.7 40.7 30.9 14.3 DATE SITK PLOT Mf./IP.(g)Sg.IIEfER DATE SITE PLOT MT./MT.(g)SQ.HETER 05/30 05/30 05/30 05/30 05/30 GOS GOS GOS GOS GOS 12 3 18 5 29-4 41-6 AVG STD 1.1 4.5 1.4 2.8 8.6 3.7 2.8 10.8 44.S 13.9 28.3 86.4 36.8 27'05/2905/29 05/29 05/29 05/29$05$05$05$05$05 12-3 41%4-8 29-4 18-5 AVG STO 3.5 4.5 4.3 3.7 5.7 4.3 0.8 34.5 45.4 43.0 36.9 57.3 43.4 8.0 DATE SITE P(.OT MT./MT.(g)SQ.HETER DATE SITE PLOT MT./N.(g)SQ.PZrER 05/31 05/31 05/31 05/31 05/31 G06 G06 G06 606 606 12-3 41-6 18-5 29-4 AVG STD 5.2 2.8.4.6 4,4 2.9 4.0 0.9 51.9 28.2 45.6 43.09 29.3 39.'8 9,4 05/31 05/31 05/31 05/31 0SI31$06$06$06$06$06 18-5 12-3 41M 29~AVG STO 4.4 4.4 3.8'.1 2.4 3.4 1.0 44.3 43.6 37.5 20.8 23'34.0 9'DATE SITE PLOT N'./MT.(g)SQ.HETER DATE SITE PLOT MT./N'.(g)SQ.HETER 05/30 05/30 05/30 05/30 05/30 G07 G07 G07 607 G07 18-5 41-6 12-3 29-4 AVG STO 3.6 1.4 2.5 6.2 0.9 2.9 1.9 36.1 14.1 25.1 61.7 8.7 29.1 18.8 05/31 05/31 05/31 05/3'I 05/31$07$07$07$07$07 4-8 29~12-3 18-5 41-6 AVG STO 0.2 0.1 0.7 1.3 0.7 0.6 0.4 2.4 1.0 6.9 13.3 6.9 6.1 4.3 DATE 05/30 05/30 05/30 05/30 05/30 SITE GOS G08 GOS 608 608 PLOT 18-5 41-6 12-3 29-4 4-8 AVG STD 0.2 0.8 0.3 1.5 2.3 1.0 0.8 1.6 7.8 2.7 15.Z 22.5 10.0 7.9 MT./Mf.(g)SQ.HETER HEAN 601-G08 HEAN$01-$07 MEAN 801%05 5"27 33.8 36.2 0.0 Phytamass Sugary Grams/sq.meter Grams/sq.meter Grams/sq.meter o Table 5-7 Comparison of Herbaceous Phytomass for 1975 through 1990~l~7~77~7~7~l~~~~14~l~l~17~l GO'1 359 108 21 166 64 160 200 90 77 94 70 50 83 34 174.3 13.6 G02 302 258 11 162 37 68 255 60 137 116 27 61 77 14 657 41 G03 G04 G05 G06 G07 G08 501 S02 S03 126 137 144 98 88 177 53 261 62 64 133 12 32 134 16 105.1 64.0 79 159 113 82 67 37 35 90 61 49.5 73.2 4 173 21 36 180 98'171 104 5 35 62 7 128 28 63 115 24 232 57 1 112 144 43.2 36.8 61.0 39.8 113.1 29.1 112.3 10.0 59 53.9 32.8 73 72.8 78.3 7 115 16 43 31 22 54 95 27 25 48 15 67.0 28.2 504 78 52 39 68 93 11 176 108 24 39.8 30.9 S05 S06 S07 71 81 184 136 43 61 42 145 19 103.7 43.4 72.7 34.0 149.5 6.1 Table 5-8 Summary of Shr ub Density for 1990 Station S01 Species Ar temi si a tri dentata Chrysothamnus nauseosus Chrysothamnus viscidiflorus Purshia tridentata 1 3 0 0 0 2 2 0 0 2 3 4 0 0 1 4 0 0 0 1 Total 9 0 0 4 13 S/Ha 90 0 0 40 130 S/a 36 0 0 16 52 S02 Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidi florus Purshia tridentata 503 Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidiflorus Purshia tridentata S04 Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidiflorus Purshia tridentata 505 Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidi florus Purshia tridentata 1 0 0 0 6 4 0 0 1 0 0 0 0 0 0 1 1 0 0 0 15 2 0 0 2 0 0 0 0 1 0 3 0 0 0 0 12 2 0 0 1 0 0 0 0 4 0 4 0 0 Q 0 15 1 0 0 5 0 0 0 0 2 1 0 Total 2 0 0 0 2 Total 48 9 0 0 57 Total 9 0 0 0 9 Total 0 7 1 8 16 5/Ha 20 0 0 0 20 S/Ha 480 90 0 0 570 S/Ha 90 0 0 0 90 S/Ha 0 70 10 80 160 S/a 8 0 0 0 8 S/a 192 36 0 Q 228 S/a 36 0 0 0 36 S/a 0 28 4 32 64 Table 5-9 Su@nary of Shrub Cover (X)at Five Stations for 1990 Shrub Cover (X)Shrubs Artemisia tridentata Chrysothamnus nauseosus Chrysothamnus viscidiflorus Purshia tridentata Total Shrub Cover Sol 0.00 0.00 0.00 0.76 0.76 S02 0'3 0.00 0.00 0.00 0.13 S03 5.65 0.89 0.00 0.00 6.54 S04 0.00 0.00 0.00 0.00 0.00 S05 0.00 0.23 0.13 0.00 0.36 1.16 0.22 0.03 0.15 1.56 Table 5-10 Su@nary of Soil Chemistry for 1990 G01 G02 G03 G04 G05 G06 G07 G08 S01 S02 S03 S04 S05 S06 S07 pH (1:2 soil-water )Conductivity (1:2 soil-water) microsiemens/cm Sulfate ug/gm Chloride ug/gm Copper ug/gm Lead ug/gm Cadmium ug/gm Chromium ug/gm Nickel ug/gm Zinc ug/gm Sodium/Potassium 5 Calcium'4 Bicarbonates (meq/HC03/gm) Hagnesium 4 6.62 1~12 11.10 6.04 0.014 8.2 11.93 40.59 0.037 0.191 0.273 0.0015 0.374 6.87 0.56 9.18 4.96 0.062 6.4 9.94 37.89 0'38 0.164 0.292 0.0020 0.391 14.29 1.76 9.61 3.10 0.072 5.1 8.94 37.32 0.033 0.124 0.351 0.0014 0.376 7.07 0.24 6.92 2.58 0.100 3.5 8.54 29.27 0.029 0.079 0.298 0.0009 0.321 6.8 1.04 7.42 2.3 0.120 5.6 9.54 26.51 0.026 0.087 0.261 0.0006 0.302 6.77 0.8 8.2 2.6 0.139 4.7 8.90 29.97 0.031 0.093 0.289 0.0008 0.339 5.77 1.12 8.54 3.92 0.062 4.8 7.28 38.38 0.035 0.137 0.319 0.0017 0.374 6.78 0.48 8.14 2.08 0.064 6.0 9.90 31.58 0.027 0.119 0.245 0.0015 0.365 6.78 1.44 7.64 1.14 0.118 6.8 9.78 33.51 0.028 0.125 0.282 0.0010 0.376 6.80 1.28 6.84 0.70 0.070 5.6 9.16 21.61 0.021 0.066 0.356 0.0013 0.302 6.88 1.04 8.82 1.26 0.058 5.0 9.72 37.93 0.033 0.132 0.309 0.0014 0.366 12.95 0.96 7.94 1.00 0.060 5.7 9.18 31.87 0.031 0.128 0.274 0.0009 0.355 6.78 0.32 7.20 1.53 0.080 3.9 8.36 30.42 0.033 0.085 0.306 0.0009 0.333 6.81 0.64 9.48 1.36 0.020 9.4 10.08 38.55 0.032 0.167 0.377 0.0023 0.420 6.62 0.88 13.14 1.71 0.030 12.5 15.42 47.31 0.042 0.216 0.434 0.0027 0.632 6.86 6.92 6.95 6.94 6.77 7.02 7.12, 7.07 7.19 7.65 6.78 6.93 7.00 7.13 7.20 46.3 54.6 96.8 28.8 14.4 19.0 53.2 38'27.8 32.2 39.4 29.9 21.9 55.2 65.8 e Table 5-11 Suranary of Vegetation Chemistry for 1990 SITE POSA BRTE SIAL PHLO PUTR ARTR CHVI GRSP Copper (ug/gm)Gp1 G02 G03 G04 GQS G06 G07 GOB Sol S02 S03 S04 S05 S06 S07 2.80 3.00 4.20 2.80 Z.'Zo 2.60 4.40 2.60 2.60 2.80 3.20 3.60 3.60 3.80 3.20 4.80 5.00 6.60 4.00 4.83 4.20 5.20 4.80 4.00 4.20 5.00 4.80 4.60 6.40 6.00 3.80 8.20 10.20 9.00 5.00 9.20 8.00 6.20 6.60 4.20 3.60 3.64 3.60 4.40 4.60 3.40 4.00 4.40 2.60 3.60 7.20 1Q.OO 8.20 3.40 4.00 9.20 3.20 3.40 4.00 4.20 3.40 3.60 3.20 6.00 10.20 7.80 4'0 5.00 Extractable Sulfate (1')Gpl G02 G03 G04 G05 G06 G07 GQB Spl S02 SD3 504 S05 S06 S07 0.020 0.019 0.023 0,020 0.019 0.018 0.018 O.OOQ 0.019 0.019 0.026 0.019 Q.019 0.024 0.018 0.041 D.029 0.036 0.021 0.018 0.018 0.023 0.022 0.020 0.019 0.027 0.017 0.030 O.OZ5 0.029 0.084 0.023 0.073 0.018 0.125 0'41 0.055 Q.Q15 0.023 0.097 0.025 0.063 0.021 018 0.019 0.026 0.049 0.018 0.047 0,018 0.02 0.018 0.022 P.P16 0.052 0.02 0.024 0.021 0.02 0.021 0.037 0.032 0.097 0.018 0.041 Extractable Chloride (/)Gp 1 G02 G03 G04 G05 G06 G07 G08 So 1 SO2 S03 S04 S05 S06 S07 Q.zl 0.21 0.29 0.32 0.25 0.22 O.24 0.28 D.25 0.25 0.30 0.32 0.32 0.16 0.17 0.29 O.Z4 0.29 0.14 0.18 O.Z6 0.24 0~12 0.21 0.19 0.19 0.18 0.16 0.10 0.20 0.57 0~12 0.78 0.07 0.62 0.08 0.43 0.06 0'9 0.05 0.04 0.08 0.68 0.08 0'9 0.10 0.38 0.07 0.34 0.17 0.11 0.14 0.92 e 0.90 0.23 0.'67 O'.48 0.63 0.10 0.95 0.78 0.91 0.18 0 F 89 0.73 0.49 2.11 0.59 1.85 5-32 h Table 5-12 Drift Sampler Locations in Reference to WNP-2 Cooling Towers 1 2 3 4 5 6'8 9 10 ll 12 13 14 15*16 3.1 miles 2.6 miles 2.1 miles 1.6 miles 1.15 miles 0.65 miles 0.2 miles Center of.Towers 0.4 miles 0.9 miles 1.33 miles 1.83 miles 2.35 miles 2.83 miles 3.36 miles 7 miles 165'67.5'70'72.5'75'80'05'94'06'12'14'15'14'12'87'Control Samplers 5"33 Table 5-13 Drift Deposition Rates (Gross and Background Corrected) Corrected for 1/r-r)o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 9 10 14 12 17 60 2998 16 11 9 9 8 8.8 8 3 1 2 6 4 9 52 2990 8 3 1 1 0 0 0*Control Site 5-34 '!~"""."'..I ROUTE 11A NE Iy~+I Pwwwwmwwm I SASti laL I I Le m a w w m w m w I BELAFLOWER RO I I r~r 3 W.KWlA ,;;>R170 g', Ah Drfr,,';",;.';;,,;ESTD IcsAPRV L,V y yl+r':+""ERE Cage:>>'AT%~V.~OL P mnwea i+srrr g+Ot DEWS WI IVJSSELL RO.I I r w WW\~l SNRWOOO I rrr~I rrrr I I IRSQOLO RO.LII 0 N IU 6 G08~02~++~LANT2, FACUfVPtO+OF GOZ I r>'R I".,>~.j,%.'5: 'j',"-:.'.:!gs03 a.TOPIA W'ESr EL I','+506~"";', MlZONE F:: ', T~....",'y""~WORVO OORCR I VOEL I WES'CFHROI I I GAA I I~AXVER I re~C III WWHWWWWWW DOOWOOD I I I I I I I~J~(1 L RIEL I rr'ga WWWWWWWW I.',':;~..'~IN CITS W~y,.:,'...~rrvo.I I wl I I II 0 p NXWWS O'91>>II HHWHWHWW WWWWW LEGEND~PAVED ROAD m a o REPROVED ROAD DR ORAVEL ROAD RARROAO DO%CARY laCS~OWER LSNS+SuEPORO PRES'":":t IACXNO RO.000410 tasoi 1 thru 8 60=Grassland Site 1 thru 7 SO Shrub Site Figure 5-1 Soil and Vegetation Sampling Location Hap 5-35 Shrub Community 50m Herbaceous transect Shrub intercept transect Shrub intercept transect Shrub intercept transect Shrublntercept transect 20m Shrub intercept transect PhytOmasS sampnng plot I tom Herbaceous Community Herbaceous transect I I t0m Phytomass sampling plot I Figure 5-2 Layout of Vegetation and Soil Sam lin Plots p ng 5"36 50 MEAN%COVER 40 30 20 10 PREOPERATIONAL OPERATIONAL ?C 1990~AG-G ER3 PG-G C3 AF-G RH PF-G 40 MEAN%COVER 30 20 10 PREOPERATIONAL OPERATIONAL 1990 W AG-S EKKI PG-S EQ AF-S'H PF-S F/gure 5-3 Mean herbaceous Cover for 1975 Through 1990 5"37 20 TOTAL PRECIP.icm)MEAN TEMP iC)MEAN%COVER/MEAN DRY WT.ig/m2)120 15 10 I I I I I l/\/\'I'I/l I\I l l 1'l\\100 80 60 40 20 0 1982 1983 1984 1985 1986 1987 1988 1989 1990 YEAR--Precipitation ~Temperature KQ Gover K9 Dry Weight Figure 5-4 Hean Herbaceous Cover, Hean Dry Hgt.(g/m2), Total Precip1tat1on, and Hean Temperature From 1982 Through 1990 160 140 130 120 110 100 90 80 70 80 60 40 30 20 10 0 GRAMS/SQ.METER PREOPERATIONAL OPERATIONAL SAMPLE PERIOD 1990~GRASSLAND EKI SHRUBS 150 140 130 120 110 100 90 80 70 DRY WEIGHT (G/M2)60 40 30 20 10 0 g?".', GOI GO2 G03 G04 G05 G08 G07 G08 SOI S02 S03 S04 S05 S08 S07 STATION Figure 5-5 Mean Herbaceous Phytomass at Grassland and Shrub Stations for 1975 Through 1990 5-39 1AO 100 120 110 100 00 80 10 80 80~0 00 20 10 0 GOI PHYTOMASS 6/M2 HERBACEOUS COVER MEAN I6 80 80 AO 20 lA0 100 120 110 100 00 80 To 80 eo<0 oo 20 10 0 G02 PHYTOMASS 6/M2 HERBACEOUS COVER MEAN%120 8O 80 lo 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C3DRY WOT.E3%COVER 1000 PR EOPERATI ORAL OPERATIONAL SAMPLE PERIOD C3DRY WOT.E9%COVER'l000 140 180 120 110 100 00 80 10 80 Ao 20'lo 0 603 PHYTOMASS 6/M2 HERBACEOUS COVER MEAN%80 ao Ao 20 140 120 110 00 80 To 80 80~0 80 20 10 G04 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD MDRY WOT.K3%COVER 1000 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD REDRY WQT.K3%COVER 1000 Figure 5-6 Mean Herbaceous Cover and Phytomass for Stations G01 to G04 for 1980 Through 1990 110 180 120 110 100 00 80 Tp 00 80 so 80 20 10 G05 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 40~0 20 Ilp 100 120 110 100 00 80 70 80 80+0 oo 20 10 0 G08 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 80 40 20 PAEOPEAATIONAL OPEAATIONAL SAMPLE PERIOD C3DAY WQT.E35 COYEA IOQO PAEOPEAATIONAL OPEAATIONAL SAMPLE PERIOD CD DAY WO'T.EBS COVE A 1080 140 100 120 110 100 00 80 70 00 80 40 80 20 10 G07 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 80 40 20 110 100 120 110 100 00 80 To 80 80 so 00 20 10 0 GOB PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 40 20 PAEOPEAATIOHAL OPEAATIONAL SAMPLE PERIOD MDAY wo'T.K3%coYEA IOOO PAEOPEAAIIONAL OPEAATIOHAL SAMPLE PERIOD CDDAY WOT.MBA COYEA 1000 Figure 5-7 Mean Herbaceous Cover and Phytomass for Stations G05 to G08 for 1989 Through 1990 110 100 120 110 100 00 80 To 80 80 io 80 20 10 S01 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%8O 80 Ao 20 Iio 100 120 110 100 00 80 To 80 80 lo oo 20 10 S02 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80<0 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C30RY WOT.E3%COVER 1000 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C30RY WOT.63%COVER 1000 SOS PHYTOMASS G/M2 HERBACEOUS COVER MEAN II S04 PHYTOMASS G/M2'HERBACEOUS COVER MEAN I6 To 80 80 00 80 To 80 80 80 io lo~0 lo 20 10 20 20 10 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C30RY WOT.K35 COVER 1000 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C3ORY WOT.K3%COVER 1000 F/gure 5-8 Mean Herbaceous Cover and Phytomass for Stations S01 to S04 for 1980 Through 1990 120 110 100 00 80 TO 80 80~0 20 10 S05 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%100 80 80~0 20 100 00 80 TO 80 80 Ao 30 20 10 SOO PHYTOMASS G/M2 HERBACEOUS COVER MEAN%80 AO 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD C30RY wOT.IZ38 covER 1000 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD CDORY WOT.EZIR covER 1000 120 110 100 00 80 10 80 80~0 30 20 10 S07 PHYTOMASS G/M2 HERBACEOUS COVER MEAN%100 80 80~0 20 PREOPERATIONAL OPERATIONAL SAMPLE PERIOD CDORY wOT.IZIR COVER 1000 Figure 5-9 Mean Herbaceous Cover and Phytomass for Stations S05 for 1980 through 1990 and Stations S06 and S07 for 1989 Through 1990 2500 DENSITY (shrubs/haj 2000 1500 1000 500 0 S01 S02 S03 STAT I ON S04 S05~PREOPERATIONAL EB OPERATIONAL EQ1990 Figure 5-10 Shrub Density at Five Stations for 1975 Through 1990 30 MEAN PERCENT COVER 25 20 15 10 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 YEAR F/gure 5-11 Hean Total Shrub Cover for 1975 Through 1990 PERCENT COVER DENSITY (shrubs/ha) 600 500%COVER I DENSITY 400 300 200 100 SO1 S02 S03 STAT I ON SO4 S05 Figure 5-12 Shrub Cover and Density for Five Stations for 1990 9.0 pH 8.0 7.5 7.0 6.0 I e G01 G02 G03 G04 G05 G06 G07 GOS S01 S02 S03 S04 S05 S06 S07 STATION M P REOP 8 RATIONAL EK3 OP 8 RATIONAL ED 1990 100 CONDUCTIVITY MICROSIEMENS/CM 90 80 70 60 50 40 30 20 10 GOI G02 G03 G04 G05 G08 G07 G08 SOI S02 S03 S04 S05 S06 S07 STATION CHPREOPERATIONAL EKIOPERATIONAL EZ 1990 Figure 5-13 Soi1 pH and Conductivity for 1980 Through 1990 5"47 CHLORIDE MICROGRAMS/GRAM 12 10 0 601 602 603 G04 G05 G08 607 608 SOI S02 S03 S04 S05 SOO S07 STATION C3 PREOPERATIONAI. EEI OPERATIONAL ~1990 SULFATE MICROGRAMS/GRAM 50 40 30 20 10 0 GOI 602 G03 604 605 GOS 607 608 SOI S02 S03 S04 S05 SOS S07 STATION CDPREOPERATIONAL EBOPERATIONAL C31990 F/gure 5-14 So/l Sulfate and Chlor)de for 1980 Through 1990 5-48 .o 70 MEQ.HCO3/GRAM X 10-4 60 50 40 30 20 10 0 GOI G02 G03 G04 G05 GOS G07 GOS SOI S02 S03 S04 S05 SOB S07 STATION MPREOPERATIONAI. EB OPERATIONAL E31990 COPPER MICROGRAMS/GRAM 15 14 13 12 10 G01 G02 G03 G04 G05 G06 607 GOB SOI S02 S03 S04 S05 SOS S07 STATION MPREOPERATIONAL EBOPERATIONAL E31990 Figure 5-15 Soil Bicarbonate and Copper for 1980 Through 1990 5-49 o LEAD MICROGRAMS/GRAM ?4 0 G01 G02 G03 G04 G05 G06 G07 GOB S01 S02 S03 S04 S05 S06 SOI STATION C3PREOPERATIONAL EB OPERATIONAL E31990 NICKEL MICROGRAMS/GRAM 20 15 10 n 4 G 0 G01 G02 G03 G04 G05 G06 G07 GOS SOI S02 S03 S04 S05 S06 S07 STATION MPREOPERATIQNAL RB OPERATIONAL E31990 F/gure 5-16 Soil Lead and N/ckel for 1980 Through 1990 0 5-50 0.8 CADMIUM MICROGRAMS/GRAM 0.5 0,4 0.3 0.2 0,1 0 Gp'I G02 G03 G04 G06 G08 G07 G08 S01 S02 S03 S04 S06 S08 S07 STATION CD PREOPERATI ONAL K3 OPERATIONAL E3 1990 80 ZINC MI CROGRAMS/GRAM 66 50 46 40 36 30 20 15 10 G01 G02 G03 G04 G05 G08 G07 GOS SOI S02 S03 S04 S05 S08 S07 STATION HPREOPERATIONAL EBOPERATIONAL ED1990 Figure 5-17 So/1 Cadm/um and Z1nc for 1980 Through 1990 5-51 20 CHROMIUM MICROGRAMS/GRAM 18 14 12 10 0 G01 G02 G03 G04 G05 GOS G07 GOS 801 S02 S03 S04 S05 S06 S07 STATION CDPREOPERATIONAL EEIOPERATIONAL E31990 0.10 SODIUM WEIGHT PERCENT 0.08 0.06 0.04 0.02 0.00 G01 G02 G03 G04 G05 G06 G07 G08 801 802 803 804 805 806 807 STATION MPREOPERATIONAL EKIOPERATIONAL E31990 Figure 5-18 Soil Chromium and Sodium for 1980 Through 1990 5"52 0.350 POTASSIUM WEIGHT PERCENT 0.300 0.250 0.200 0.160 0.100 0.050 0.000 GOI G02 G03 G04 G05 G06 GOT GOS SOI S02 S03 S04 S05 S06 SOT STATION~PREOPERATIONAL RB OPERATIONAL E31990 1.00 CALCIUM WEIGHT PERCENT 0.80 0.60 0.40 0.20 0,00 GOI G02 G03 G04 G05 G06 G07 GOS S01 S02 S03 S04 S05 S06 SOT STATION I WPREOPERATIONAL EB OPERATIONAL E31990 Figure 5-19 Soil Potassium and Calcium for 1980 Through 1990 5-53 MAGNESIUM WEIGHT PERCENT C??."?&?'.C'('?C;.':, g????.4'.;?C;;601 602 603 604 605 606 607 608 S01 S02 S03 S04 S05 S06 S07 STATION C3 PREOP E RATIONAL I OP E RATIONAL EQ 1990 F)gure 5-20 So/1 Hagnestum for 1980 Through 1990 o VEGETATION COPPER (saorcgrama/gram) ta 12 10 ps/os/orrgr/gris R 1080 EB 1081 CI 1082 KZI 1083 I~12 10 VEGETATION COPPER (sacrograma/gras) srcmrra loorcrrrm W 1080 EB 1081 C3 tos2 EEI 1083 8 OOI OO2 GOS GOa GOS GOS OOr GOS SOI SO2 SOS SOa SOS SOe SOr STATION GO1 GO2 GO3 Goa Goo Goe Gor GOS Sot SO2 SO3 Soa Soe Soe Sol STATION VEGETATION COPPER (mlcrograma/gram) 1a 12 10 Poler lcsgl/Or/a %108~IccI t088 C3 1088 I Iger E3 1088 CI 1080 IoI3)goo 18 12 10 VEGETATION COPPER (mlgrograma/gram) srcmrra Ioorcrslrl W 108a E3 1088 1088 EB)ocr E3 t088 C3 1080 K3 1000 GOI OO2 GOS GOa GOe OOS GOr GOS SOI SO2 SOS SOa SOa SOe SOT STATION GO1 GO2 GO3 Goa Goe Goe Gor GO8 Sol SO2 SO3 Soa Sos SOS Sor STATION F)gure S-21 Copper Concentrat)ons (ug/g)in~hl+~~1)and~rn~~~r~for 1980 Through 1990 VEGETITIOII COPPER (mrareorama/Oram) 30 Astern/ala rrrderrrera %1080 E3 losl CD 10S2 KI 1083 vEGETaTIOII COPPER (mlaroor~maloram)10 PrNaer~rrIderrtele W 1080 E9 los(CD los2 EiB 1083 20 18 10 G01 G02 G03 004 000 GOO G01 008 801 S02 SO3 SOI SOS SOO 801 STATION 001 002 003 GOa 008 GOS 001 008 301 802 SO3 SOa SOS SOO SO1 STATION VEGETa)ION COPPER (mlarearama/Qrarrl) 30 20 At(em/era Irrderrrata R IOSe E3 toss CD loss RES 1081 E3 1088 CD 1080 KB 1000 VEGETATIOII COPPER (mlerOOrama/Oram) 10 PrNaela trlderrtata 108~EB 1083 CD 1080 EEB 1081 H 1088~1080 K3 1000 10 001 GO2 003 GOa GOS GOO 001 GO8 SO1 802 803 SOe SOS SOO SO1 STATION GO1 002 003 GOa 003 GOO 001 GOO SO'I SO2 SOS SOe SOS SOO 801 STATION Figure 5-22 Copper Concentration (ug/g)1n~~~(fpnf~and~~h1~r(~g for 1980 Through 1990 'o VEGET4TIO/I COPPEA (mlC<OO<4ml/0<4m) 18 18 I~Slly<t<(rlvcl or/tool<<tot<< 1080 EB IQOI CD loa2 IZZ!1083 VEGET4(<O<t COP/'EA (mlC<OQ<4mo/0<4m) 10 PO4 444dOC<gt/ %loao EB IQSI CD loe2 I 1083 12 10 001 GO2 003 GO4 GOO GOO 007 008$0'I SO2 SO3$04 SOO$08 SO)STATION Gol 002 003 G04 Goa Goo Go/008$01 so2 sos so4 soo soo soy STATION vEGETITI0/I COPPEA (ogctootomo/atom) 18 18 14 12 10 Stoymort<rm ott/44/mom W IO84 E3 loss CD 1088 E3S Tost H IOSS CD loco H IOOO VEGET4210/I COPPEA (mtc<OQ<omo/0<4m) 10 PO4 44<<dOO<gl/ %108~K3 1083 CD 1088 E(3I IQS/H 1088 CD loao EB 1000 2 2 001 002 G03 G04 Goa Goo Goy 008 Sol so2$03 so4 Soa soo so/STATION GOI GO2 GO3 004 GOO GOO 007 008 SOL SO2$03 S04 SOO SOO SO)STATION Figure 5-23 Copper Concentration (ug/g)in m~iq~l<~Igg]and~P~~i for 1980 Through 1990 080 0&i D.is D.i2 038 EXT4ACTABLE CHLOHIDE (8)Bremvh toot+vm%1080 63'1081 CD 1082 EEI 1&83 XT4ACTABLE CHLO4IDE (8)E 0220 0.108 0.178 0.)&i 0.132 0.110 PA/ca tcooltctth !Xi 1081 CD los2 I lose 02i 0.18 0.12 008 000 001 002 003 GOi 00&008 007 008$01$02 SOS SOi SO&$08$07 STATION 0.088 0.0&s 0.0t h 0 022 0.000 001 G02 003 GOi GO5 GOS 007 GOB SOl$02 SO3 SOi SO&$08 SOT STATION 080 0&i D.i8 0.~2 EXTBACTABLE CHLO4IDE (8)Btomvc tcctotvm%108~K3 108&CD 1088 K3 los7 H 1&88 CD 1080 R3 1000 0 220 0.'I 08 0.178 0.15i 0.132 0.110 X)4ACTABLE CHLO4IDE (%)PAIOm tOhcttotth W 108~E3 108&CD 1088 EB los)H 1088 CD loco 69 1000 0.2~0 088 0.18 0058 0.12 0,0th 0.08 0 022 000 001 002 003 GOi GO&008 007 008 SO)$02 SOS SOi SO&SO&SOT STATION 0000 001 002 003 GOi GO5 GO&007 GO8 SO1$02 SO3 SOi SO&$08$07 STATION Figure 5-24 Chloride Concentration (1)ln~IZ~@gag and~l~n+~for 1980 Through 1990 '1.50 1.25 EXTRACTABLE CHLORIOE (8(ArlrrrdSI4 Irldknl~14 W 1080 EB 1081 C3 1082 I 1083 02'10 0.180 0.188 0.1~7 EXTRACTABLE CHLORIOE (sl PW4414 lfldcclclc 1080 Edl 1081 C)1082 IK!1083 0.128 0.15 0.50 0.084 0.083 025 0042 0021 000 001 002 003 004 005 008 GOT 008 301 302 503 504 S05 Sos 507 STATION 0.000 GO1 002 003 004 GO5 008 GOT 008 S01 S02 303$04 Sos SOO SOT STATION 1.50 1,25 1.00 0.15 0.50 025 000 EXTRACTABLE CHLORIDE (%(Arlccdrlc lrld441414 %108~EB 1085 C3 1088 EB (081 H (588 C3 1080 IEB 1000 0.231 0.210 0.180 0.188 0.141 0.128 0.105 0084 0083 0.042 0.021 0 000 EXTRACTABLE CHLORloE (5(Pvr4514 Irldccl~I4%1884 Icd(1085 C3 1088 EEI 1081 E3 1088 C)(OSO KS 1000 GOT OO2 003 GO4 OOS GOS GOT GOS SO(SO2 SOS SO4 SO5 SOS SOT STATION 001 002 003 004 005 008 GOT 008 SO1 SO2 303 SO4 SO5 Sos SOT STATION F1gure 5-25 Ch1or)de Concentration (X)1n~r)fggf~and Pg.~1 for 1980 Through 1990 080 0.~0 EXTRACTABLE CHLORIOB (8)Pee eeedsm'dll 1080 83 Ios)CD)082 IILI 1083 1.20 1.08 008 08~2 XTRACTABLK CHLORIOE (8)Slsymevlvm el Ilselmem%)080 69 1081 CD 1082 K3 1083 O.r 2 oso 0.20 0~8 0.10 0.2~0.12 000 001 002 003 Goe 005 Gos Gor GOB 50'I 502 503 Soe Sos 508 Sor STATION 0.00 001 G02 G03 Goe God 008 Gor 008 so)so2 so3 soe sos sos sor STATION 0.50 0eo 0.30 020 EXTRACTABLE CHLORIOE (5)4de eeedeeipll %188~E3 1088 CD 1088 EBI 1081~1088 CD)080 RS 1000 120 1.08 008 Ose 0.12 080 048 EXTRACTABLf CHLORIOE (5)Slerm(clem eltlsslmem W IOse EB 1085 CD)088 EB Iosr E3)088 CD 1888 K3 1080 0.10 0.38 02e 0.00 GOI GO2 GO3 Goe 005 008 Gor GOB 501 SO2 503 Soe 505 508 Sor STATION 0.12 001 002 GO3 Goe GOS 008 Gor 008 501 502 503 Soe 505 508 SOr STATION Figure 5-26 Chloride Concentration (X)in 52k~~r11 and/~mt'~1m q for 1980 Through 1990 0 220 0.108 0.118 0.154 Ex)4ACTABLE SULFATE (%)Phlh>>(aha((O(lo W 1080 69 108(CD 1082 K3 1083 1.20 1.08 0 as O.84 0.72 EXT4ACTABLE SULFATE (%)5loymh>>lorn 4UI54lmvm Ta so GB los(CD 1082 Im)'1083 0.110 0.088 0oaa 0044 0.022 0 000 GOT GO2 003 004 005 008 GOT 008$01 802 803 S04 805 SOS SOT STATION 080 0.48 0.38 024 0.12 000 Gol 002 003 004 005 ooa Got Gos sol 802 803 304 so5 soa sol STATION EXT((ACTABLE SULFATE (%)0220 0.108 0.118 0.1&4 Phla>>lhhOUOII4%1084 EB 1585 CD 1088 I TOST E3 1088 CD 1080 EB 1000 1.20 1.08 o.oa 084 012 EXTAACTASLE SULFATE (%)Slhymhvl>>NA oltlholmvm %1084 K3 1085 CD loss EB 1081 EB 1088 CI 1580 K9 1800 allo oao-0 088 0.48 ooas 004~0.38 0,24 0 022 0 000 001 002 003 004 005 008 GOT 008 Sol S02 SOS 304 SO5 SO&SOT STATION 001 002 G03 004 Go&Goa Gol 008 sol 302 sos so4 so&soa 801 STATION Figure 5-27 Su1fate Concentration (1.)in~h1 x~~fili and~~I)~r~~i~im for 1980 Through 1990 XTRACTABLE SULFATE (%l E 0.320 0288 0258 0.22~Ac%mille srlennlnln %1080 EB'1081 CD 1082 EK!1083 XTRACTABLE SULFArE (%)E 030 021 02n 021 pwhhr~lrlonnl~ln R 1080 63 1081 CD 1082 ES 1083 0.102 0.18 0-180 0.1 8 0.128 0.12 0.008 aoO 0084 008 0 032 0.03 0 000 001 002 003 GOA GOS 008 GOT 008 501 502 503 SOn 50&SOS SOT STATION 000 001 002 003 GOA GOd 008 OOT GOB S01 SO2 SO3 504 SOd SOS SOT STATION 0.320 0 288 0.288 0 224 0.102 EXTRACTABLE SULFATE (%)Allemlhrr Trlonnlnl~%Iden E3 1085 CD 1088 EEI loeT E3 1088~1080 EB 1000 0.30 02T 02n 021 0.18 EXTRACTABLE SULFATE I%1 Pnrehln trldnnlnln &108~EB 1osd CD loee EEEI 1081 K3 1oee CD 1080 K3 Tooo 0.180 0.15 0.128 0.12 0008 000 aoe<008 0 032 003 001 G02 003 004 005 GOS OOT GOB 501 502 SOS SOA SOS SOS SOT STATION 000 001 002 003 GOi GOd GOS GOT GOB 501 SO2 SO3 SOA SOd SOO 307 STATION Figure 5-28 Sulfate Concentration (1.)in~rmi~i~ri~n and~P~rhi~rt~g for 1980 Through 1990 020 0.18 0.)a 0.14 EX1RACTABLE SVLFATE (3)PDC CC+dD&dd W 1OS0 Ed)1081 C3 1082 EZI 1083 EXTRACTABLE SVLFATE (%)0.350 0315 0 280 0 215 BrOmvC TDC(mdm L880 EB 1081 CI 1882 ER!1883 0.12 0210 0.10 0.1)5 008 0.140 0.08 0.105 0 ac 0 010 0.02 0 035 0.00 001 002 003 Goi 005 Goa Gol 008 501 302 303 soi 305 soa sol STATION 0.000 001 002 003 Goc 005 Goa Gol Gos So'1 SO2 303 Soc Soe Soa Sol STATION X TRACTABLE SVLFATE (8)E 020 0.18 0.18 0.14 0.12 0,10 0.0a 0.08 RDC CCmFDmda%108~EB 1085 C3)osa I)eel H 108S u CD)580 IcxS)ooo 0.350 0.315 02eo 0.2ie 0210 0.1)5 0.1~0 EXTRACTABLE SVLFATE (8)Brymvc Tccavvm%108~E3)585)oea EB 10Sl EB)oes C)Toeo IEB 1000 00c 002 0.00 001 002 003 Goi 005 Goa Gol Gos SO1 SO2 303 Soc Soe Soa Sol STATION 0 0)0 0 035 0 000 001 002 003 Goc GOS Goa Gol GOS SO1 SO2 SO3 304 SO5 Soa Sol STATION Figure 5-29 Sulfate Concentration 0)ln~P~ggrEtil and gr~~~for 1980 Through 1990 EXTRACTABLE CHLORIDE (%)1.0 0.3&POSA E4I SATE CD SIAL EB PHLO E3 PUTA<<I AATA 020 O.la EXTRACTABLE SULFATE (%)0 POSA 63 SATE CD SIAL K3 PHLO E3 PUTA<<)AATA 03 0.10 0.4 ooa 0.0 Go1 Go2 Gos Go4 Goa Goo GoT Gos so1 so2 sos 304 soa soo soT STATION 0.00 001 002 003 004 Goa 003 007 GOS Sol S02 S03 304 Soa Sos SOT STATION VEGETATION COPPER MICROGRAMS/GRAM 12 10~POSA KB SATE CD SIAL EB PHLO<<I PUTA<<I AATA 001 002 G03 004 Goa God Gol Gos SOI S02 S03 S04 Soa Sos SOT STATION Figure 5-30 Total Vegetation Copper, Chloride and Sulfate for 1990 NW 1 10 100 NE I 200 300 (200 i 100 025 m).10 100 200 300 400 SW 300 200 100 10 SE figure 5-31 Predicted Salt Deposition Patterns Out to 0.5 Nile (0.8 km)(lb/acre/yr) 5-65 04 Oe 1.0 0.8 1.6 0.8 0.8 1.0 I I I'" I 1..1.O I o.s 0,6 I o.e 0.8 1.0 1.2 1.4'.6 I 1S 1.8 ml.o.4 NE 58 l 6.9 ml 5.0 ml.4.4 ml.3.6 mi.SW 1.0 1.0 1.2 SE 910370.2 Figure 5-32 Predicted Salt Deposition Patterns Out to 6.9 M11e (11.1 km)(1b/acre/yr) 5"66 Pg~o 4rp 0 CO CS I I lrl 0 8).///T.rs DOE)JAN: GRAVEL PIT r3$T.r8 0 rssT.r2 POWER UNE--WYE BARACADE//~/v+/@+/~O/'//rr rr rr PC Pe OO ACCESS RD.FFTF ST.2 ST.r r3~(BURIAL~GROUND r N rr r rrr rr r+sT.12 ST.rr sT.ro rs.w cc~ASHE SUBSTATION @ST 8/OO/~AA'T.7$O~/PSF I3)0+ST.5 4 e~O OO A O~~+(r)~V SST.2 55 41~4'D SCALE (MILES)1 1.5 5.5 Figure 5-33 Location Map of Cooling Tower Drift Monitoring Sites 880881 MARCH 1988 5-67 Collector Vessel 18" High 6" Diameter<<g+,-~?<18" 0 0 0 Cl O O O'U 0 Q CO C9 co<'oiing i ower Coiiecior'Vesseis'" 890317 Figure 5-34 Cooling Tower Drift Co11ection Vesse1 5-68 NW 11.2%NNW 9.8%N 9.1%NNE 5.9%WNW 6 5%NE2 9%W 4.2%ENE 0.7%E 0.5%ESE 0 9%WSW 4.7%SE 2.3%SW 75%SSE 9.1%SSW 11 4'/Figure 5-35 9102014 S 13.4%Cumulative Wind Rose April 1989 through March 1990 WNP-2 Meterological Station 33 Foot Level 5-69 NNW 9.4%NW 10.6%N 6.9%NNE 4.7%WNW 9 5%NE 3.0%W60/ENE 1.2%E 1.1%ESE 2.1%WSW 5 7%SE 4.5%SW68%SSW 8 8%SSE 9 4%S 10.9%Figure 5-36 Cumulative Hind Rose 1984 through 1989 HNP-2 Heterological Station 33 Foot Level 5-70 s SO DEPOSITION AS A FUNCTION OF DISTANCE STATIONS t-7 50 g 40~, 30 e z20 0 a 10 0 0 0.5 1 15 2 25 DISTANCE FROM COOLING TOWERS (miles)3.5 Figure 5-37 Deposition Rate as a Function of Distance 660 N T T N RV 6.1~T The regulatory commitment for this study has been satisfied and no further studies are planned.No fish were found impinged during any of the inspec-tions and algal growth was moderate.Incidental observations will be made when maintenance inspections of the intakes are conducted. 6-1 7.0 T R 7.1 I D The aerial photography program began in June of 1988 to monitor the vegetation surrounding WNP-2 for impact due to cooling tower operation. Aerial photo-graphs taken with color infrared (CIR)film, allow large areas to be monitored and to detect signs of possible stress before it becomes visible to the human eye.In addition to examination for stress, the photographs will be com-pared with those taken in following years to look for changes in vegetation patterns and evidence of cumulative damage.This program is performed to comply with Washington State Energy Facility Site Evaluation Council (EFSEC)Resolution No.239, dated September 14, 1987.7.2 This program was planned using guidelines published in NUREG/CR-1231 (NRC, 1980).This report outlined the basic requirements for an aerial monitoring program and suggested types of film, photograph scales, frequency of photo-graph acquisition and the size of prints.Five flightlines (Figure 7.1)were planned to cover the areas of greatest deposition according to the drift model constructed by Battelle Pacific Northwest Laboratories (PNL, 1976).Two flightlines, approximately 7 miles (11.2 Km)in length, run in a general north-south direction. These flight-lines run between the two areas of greatest deposition according to the model, The other three flightlines of approximately 5 miles (8.1 Km)in length, run in an east-west direction and were placed to cross gradients of deposition. The five flightlines were flown at an altitude of 1,550 feet (477m)above mean sea level.The flightline coordinates are stored in the long-range navigation (LORAN)system in the contractors airplane.This allows the same lines to be photographed in following years.7-1 The photographs were taken with Kodak-Aerochrome 2443 color infrared film in a Hasselblad ELM 70mm camera.A Planar lens with a 80mm focal length was used with a number 12 Wratten filter attached.The scale is 1:6,000 in a 70mm x 70mm format.The relatively large scale of 1:6,000 was chosen as being large enough to differentiate the types of shrubs in the areas surrounding WNP-2.The 70mm size was chosen over the larger nine inch by nine inch format for ease of handling and the storage of the nearly 300 photographs. Color infrared (CIR)film was chosen over natural color or black and white film because the symptoms of stress on vegetation may show in the infrared wavelengths before it becomes apparent in the visible wavelengths. CIR film is easier to interpret than black and white infrared because the shades of color are easier to differentiate than the subtler shades of gray in the mono-chromatic infrared.Healthy vegetation wi 11 show as a dark red or magenta color.Stressed vegetation will show lighter shades of red to white.Inter-pretation of the photographs is done on a light table and viewed with magni-fying glass or stereo microscope. A plastic sheet is put over the photographs to protect the film and to allow areas of interest to be marked with a grease pencil Each photograph is examined and signs of stress are noted by flight-line number and frame number.The photographs are taken with an overlap of 501.to make it possible to view them in stereo if desired.The 50/overlap was maintained during the acquisition by controlling the shutter with an intervelometer. o The photographs were used in the placing of the samplers for the cooling tower drift study.The samplers were placed on portions of the two north-south flightlines. In future overflights, the stations may be used to ground truth the photographs. Markers will be placed next to the samplers to make the stations easier to find on the photographs. The ground truthing will consist of a survey of an area or areas on a flightline and examination of the vegetation for other signs of stress.7-2 7.3 T N D The overflight was performed by the contractor, Photography Plus of Umatilla, Oregon on June 18 and the photographs received on July 6, 1990.The initial examination of the flightlines was to determine the quality of the photo-graphs, which was found to be generally good, except for a few frames that apparently had been exposed to light, These had a green tinge to them and made't impossible to determine the health of vegetation in the photographs. A second, more detailed examination followed for the purpose of interpretation. The acquisition of the photographs was late in the spring season and missed the period of peak photosynthesis. Because of this, it was only possible to d 1h h d I h.h~l'dhh 1 h I.~l I~~d Host of the smaller forbs such as~~~f i had become inactive as had the perennial and annual grasses.It is difficult to determine the activity of smaller plants because the dark red of a healthy, active plant and the dark green of a dead or inactive plant appear very close in the 1:6,000 scale of the photographs. The medium sized shrubs were more numerous than the larger shrubs, and more evenly distributed through the flightlines. These shrubs may be specimens of I.dd~11<<fd.d~UJ d P.~ri~n.Hany of the smaller shrubs noted on the northern half of flightline 2 were determined in 1989 to be immature~remi~.The large shrubs were mostly limited to isolated individuals or small clusters because the flightlines cover the area that had burned in the 1984 range fire.Hany small plants were noted along the edges of active dunes in the northern half of flightlines 1 and 2.These are most likely clumps of~~~r n~1~m,~~~m@, or Q~m~~v~.A large, healthy group of~l~l kali was found along the eastern side of the Ashe Substation, north of Plant 2.~l~is also seen along other disturbed area such as railroads, highways and gravel pits.7-3 The general health of those plants and shrubs that were active was good.Some small, localized area of stress may be seen on several flightlines but, due to the mixture of healthy vegetation to those exhibiting stress, it would seem better explained by disease or infestation. No adverse impact was evident from the operation of Plant 2.o 7-4 I Shipley, B.L., S.B.Pahwa, M.D.Thompson and R.B.Lantz.1980.NUREG/CR-1231. Remote sensing for detection and monitoring of salt stress on vegetation: Evaluation and guidelines. Final report, September 1976-March 1979.Nuclear Regulatory Commission, Washington, D.C.Droppo, J,G., C.E.Hane and R.K.Woodruff.1976.Atmospheric effects of circular mechanical draft cooling towers at Washington Public Power Supply System Nuclear Power Plant Number Two.Battelle Pacific Northwest Laboratories, Richland, WA.7-5 +o~Pg d~O~dO DOE GRAVEL PIT+p lL WYE BARACADE POWER LINE FLIGHTLINE 3 ASHE'UBSTATION 0 Q/~/V~c~/'//,///0 EOF PSF 0/./././+0~0~0 00'v FUGHTUNE 4 FUGHTLINE 5//,/ACCESS RD+0~o BURIAL 4 GROUND SCALE (MILES)I'I.S CIRCLE INDICATES PLIGNTLINE STAIITING POINT C.5 CIRCLE INDICATES FLIGHTLINES STARTING POINT F)gure 7-1.Aeria1 Photography Fl tght)tnes COLLECTILf PERIOD 1 e ,'Qi 22-Nar-89 23-Nar-S9 24-Nar-89 25-Nar-89 25-Nar-89 27-Nar-S9 2$-Nar-89 29-Nar-89 30-Nar-89 31-Nar-89 02"Apr-89 D2-Apr-89 03-Apr-89 04-Apr-S9 05-Apr-89 06-Apr-89 07-Apr-89 08"Apr-89 09-Apr-89 10-Apr-S9 11-Apr-89 12-Apr-S'9 13-Apr-89 14-Apr-89 15-Apr-89 16-Apr-89 17-Apr"89 1'-Apr-89 HOURS 24 24 14 24 24 24 24 14 24 24 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24 24 2 PUNP SPN 456736 456736 456736 456736 456736 4 5T36 455736 455736 456736 456736 45&T36 456736 456736 456736 456736 456736 456736 456736 4"6736 456736 456736 456736 45673&456736 456736 456736 455736 456736 3 PUNP GPN DRIFT GALS/OAY 328850 32S850 328850 328850 328850 328850 328S50 328850 318850 328850 328850 315148 328850 328850 328850 328850 328S50 328850 3288'0 328850 328850 328850 328850 328850 328850 328850 328850 328S50 S04~PN 508 506 555 532 538 516 590 354 344 278 250 217 280 245}98 250'37 225 208 245 230 242 269 264 251 214 215 Cl PPN 41 45 43 43 41 47 19}9 18 15 14 12 15 13 11}4 13 12 11 13}3 13 15 15 14 12 12 Ca PPN 204 203 223 214 216 207 237 177 172 166'39}25 109 140 222 99}25 119 112 104 122 115 121 134 132 126 107 208 le PPN 49 49 53 51 52 c0 57 42 4}40 33 30 26 34 29 24 3D 28 27 25 29 28 29 32 32 30 26 26 Na PPN 20 20 11 21 22 24 14 IO JM 17 17 14 12 14 12 10 12 12 11 10 12 11 22 23}3 13 11 1}TOTAL 671 HOURS 9194096 GALLONS AVERAGE CDHC, PER CGLLECTIGR PERIOD (PPN}=21 149 36 AVERAGE POUNDS P R COLLECTION PERIOD=24893 1629 1143 S 2745 2144 Ca-Circ Aater Analyses by Chen Lab S04-Used S04/Ca of 2.49 when Ca>200;2.0 when Ca<20D Cl-Used Cl/Ca of 0,20<<hen Ca>200;0, 11<<hen Ca<200 Ng-Used Ng/Ca of 0.24;.a-Used Na/Ca of 0, 10 Plant Operational Data for Collection Period l A-1 COLLECTION PERIOD 2 2?UNP HOURS GPN~UNP GPN DRIFT GALS/DAY SO4 C!Ca Ng lla ppv apN oaq ooq ooq!9"Apr-89 20-Apr"89 21-Apr-89 22-Apr-89 23-Apr-89 24-Apr-89 25-Apr-89 26-Apr-89 27-Apr-S9 2S-Apr-S9 29-Apr-89 30-Apr-89 01-Nay-89 02-Nay-89 03-Nay-89 04-Nay-89 05-Nay-89 06-Nay-89 07-Nay-89 08-Nay-89 09-Nay-89 10-Nay-89 11-Nay-89 12-Nay-89!3-Nay-89 14-Nay-89 15-Nay-89 16-Nay-89 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 22.S 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 4S6736 0 456736 0 456736 0 456736 0 456736 0 45673&328850 328S50 328S50 328S50 328850 3288SO 32S850 328850 328850 312407 245!3 122 29!2 232!3 116 2S 12 227!2!14 27 11 27S!5 139 33'34 13'i17 28 12 214 12 107 26 11 208 11 104 25 10 274!S 137 33 14 234 13 117 28 12 308 17 154 37 15 TOTAL 238.S HOURS 3272057 GALLONS AVERAGE CONC, PER COU.ECTION PER!OD (PPN!o AVERAGE POUNDS PER COLLECTION PERIODo 245!4 123 29 12 h 6696 368 3348 804 335 Ca-Circ Rater Analyses by Chen l.ab 804-Used SO4/Ca of 2.49 nhen Ca>200;2,0 when Ca<200 Cl-Used Cl/Ca of 0.20 shen Ca>200;0.11 shen Ca<200 Ng-Used Ng/Ca of 0.24 Na-Used lla/Ca of 0.10 Plant Operational Data for Collection Pertod 2 A-2 COLLECTION PERIOD 3~2 PUP GPN 15-Nay-89 17-Nay-89 18-Nay-89 19-Nay-89 20-Nay-89 21-Nay-89 22-Nay-89 23-Nay-89 24-Nay-89 25-Nay-89 26-Nay-89 27 Nay 89 28-Nay-89 29-Nay-89 30-Nay-89 31-Nay-89 01-Jun-89 02-Jun-S9 03-Jun-89 04-Jun-89 05-Jun-89 06-Jun-89 07-Jun-89 08-Jun-89 09-Jun-89 10-Jun-S9 11-Jun-89 12-Jun-89 13-Jun-89 14-Jun-89 15-Jun-89 1&-Jun-89 17-Jun-89 18-Jun-89 19-Jun-89 20-Jun-89 0 456736 0 455736 0 456736 0 456736 0 456736 0 4c&736 0 456736 0 456736 0 456736 0 455736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 455736 0 456736 0 456736 0 456736 0 456736 DATE HOURS 3 PUNP DRIFT GPN GALS/DAY&0 62 50 69 30.1 31.2 3 252 4 34,4 S04 Cl";a PPN FPN PPN Mg 0Dg Mi oo PPN TOTAL 0 HOURS 0 GALLONS AVERAGE CONC.PER COLLECTION PERIOD (PPN)c AVERAGE POUNDS PER COLLECTION PERIOD II Ca-Circ Mater Analyses by Chen Lab S04-Used SO4/Ca of 2.49 when Ca>200;2.0 when Ca<200 Cl-Used Cl/Ca of 0'0 Shen Ca>20D;0, 11 chen Ca<20D Ng-Used Ng/Ca of 0.24 Na-Used Ra/Ca of 0.10 II Plant Operatfonal Data for Collectfon Perfod 3 A"3 COLLECT ION PERIOD 4 DATE 2 PUNP HDURS GPN 3 PU"J'PN DRIFT SALS/DAY 804 PPN Cl ,PPN Ca"g Ha PPN PPN PPN 21-Jun-89 22-Jun-S9 23-Jun-89 24-Jun-89 25-Jun-89 26-Jun-89 27-Jun-89 28-Jun-S9 29-Jun-89 30-Jun-89 01-Jul-89 02-Jul-89 03-Jul-89 04-Jul-89 05-Jul-89 06-Jul-89 07-Jul-89 OS-Jul-89 09"Jul-89 10-Jul-89 11-Jul-89 12-Jul-89 13-Jul-89 14-Jul-89 15-Jul-89 16-Jul-89 17-Jul-89 18-Jul-89 0 0 0 0 0 0 0 S.43 0.05 10.23 0 20.53 24 24 24 24 24 24 24 24 24 24 24 24 14 24 24 24 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 45&736 456736 456736 45673&456736 456736 456736 456736 456736 456736 456736 0 0 0 0 0 0 0 115509&85 140172 0 281304 328850 32S850 328S50 328850 328S50 328850 328850 328850 328850 328850 328850 328S50 328850 328850 328850 328850 247 490 606 35 118 26 18 42 189 44 24 37 216 51 24 TOTAL 423.24 HOURS 5799268 GALLQHS AVERAGE CONC.PER COLLECTIOM PERIOD<PPN)"-AVERAGE POUNDS PER COLLECTIOH PERIOD 448 38 174 40 22 21644 1837 8429 1950 1064 Plant Operational Data for Collection-Period 4 A"4 COLLECTION PERIOD 5 DATE HOURS 2 PUNP 3 PUNP DRIFT GPN GFN GALSIW 884 PPN Cl PP" Ca Ng Na PPN PPN PPN e 19-Jul-89 20-Jul-89 21-Jul-S9 22-Jul-89 23-Jul-89 24-Jul-89 25-Jul-89 26-Jul-89 27-Jul-89 28-Jul-89 29-Jul-89 30-Jul-89 31-Jul-89 01-Aug-89 02-Aug-S9 03-Aug-89 04-Aug-89 05-Aug-89 06-Aug-89 07-Aug-89 08-Aug-89 09-Aug-89 10-Aug-89 11-Aug-89 12-Aug-89 13"Aug"89 14-Aug-89 15-Aug-89 TOTAL 24 24 24 24 14 24 24 24 24 24 24 24 24 24 24 24 24 24 20.45 0 0 15.95 24 1S.07 0 0 0 0 510.47 456736 4567 6 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 594 41 217 52 20 328850 328850 328850 328850 566 48 239 58 27 328850 328850 328850 328850 280208 0 0 218548 515 25 213 54 19 328850 247597 0 0 0 0 6'994501 AVERAGE CONC.PER CDLLECTION PERIOD (PPN1=AVERAGE POUNDS PER COL1.ECTION PERIOD=558 38 223 55 22 3255S 2216 13004 3188 12S3 Plant Operational Data for Collection Period 5 A-5 COLLECT'.GN PERIOD 6 DATE 2 PGNP HOURS SPN 3 P>>>>"Z SPN DRIFT GALS/ON S04 PPN>>']PPN Ca Ng Na PPN PPN PPN 16-Aug-89 17-Aug-89 18-Aug-89 19-Aug-89 20-Aug-89 21-Aug-89 22-Aug-89 23-Aug-89 24-Aug-89 25-Aug-89 26-Aug-89 27-Aug-89 28-Aug-89 29-Aug-89 30-Aug-89 31-Aug-89 0]-Sep-89 02-Sep"89 03-Sep-89 04"Sep-89 05-Sep-89 06-Sep-89 07-Sep-89 08-Sep-89 09-Sep-89 10"Sep-89 1]-Sep-89 12-Sep-89 13-Sep-89 14-Sep-89 15-Sep-89 16-Sep-89 17-Sep<<89 18-Sep-89 19-Sep-S9 TOTAL 10,9 8~32 22.37 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 809.59 456736 456736 45673&456736 456736 456736 456736 456736 456736 456736 45&736 456736 456736 456736 456736 456736 456736 456736 45673&456736 456736 456736 456736 45673&456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 149353 1]4001 306516 328850 328850 328850 328850 328850 328S50 328850 328850 328850 328S50 328850 328850 328850 328850 328850 328850 328850 328S50 328S50 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850]1093067 490 484 587 507 612 39 196 51 28 39 165 39 19 63 252 58.9 30 40 168 40 1S.4 54 246 55.3 27'AVERASE CONC.PER COLLECT]OH PERIOD (PPN]=AVERAGE POUNDS PER COLLECTION PERIOD 536 47 205 49 25 49571 4347 18'996 4517 2273 Plant Operationa1 Data for Co11ect]on Per]od 6 A-6 COLLECTION PERIOD 7~~'Oe DATE 20-Sep-89 21"Sep-89 22-Sep-89 23-Sep-89 24-Sep-89 25-Sep'-89 26-Sep-89 21-Sep-89 28-Sep-89 29-Sep-89 30-Sep-S9 01-Oct-89 02-Oct-89 03-Oct-S'9 04-Oct-89 05-Oct-89 06-Oct"S9 01-Oct-89 08-0[t-89 09-Oct-89 10-Oct-89 11-Oct-89 12-Oct-89 13-Oct-89 14-Oct-89 15-Oct-89 16"Oct-89 11-Oct-89 24 456736 17.27 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 0 456736 2,51 456736 24 456736 24 45673&24 456736 24 456736"4 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456136 24 456736 24 456736 328S50 236635 0 0 0 0 0 0 0 35214 328850 328850 328850 328850 328850 328850 32S85D 32885D 328850 328850 328850 328850 328850 328850 328SSD 328850 328850 328850" PU'ip 3 PU"P DRIFT HOURS GPN GPN GALS/DAY SO4 PPN Cl Ca Ng Ha opq oPH PP>>PP 520 57'251 61.3 29,9 614 37.9 230 56 23.5 TOTAL 475.84 6519998 NERAGE CONC PER COLLECTION PERIOD (PPN)=AVERAGE POUNDS PER COLLECTION PERIOD=567 48 241 59 27 30821 2601 13073 3188 1451 Plant Operational Data for Collection Period 7 A-7 CGLLECTIGH PERIOD S.DATE 2 PUNP 3 PUNP DRIFT HOURS SPN SPN GALS/DAY SG4 PPN Ct ODlf Ng Ha PPN PPN PPN 18-Oct-89 19"Dct-89 20-Oct-89 21-0(t-89 22-Oct-89 23-Oct-89 24-0't-89 25-Oct-89 26-Oct-89 27-Oct-89 2S-Oct-89 29-Gct-S9 30-Oct-S9 31-Gct-89 01-Hov-89 02-Hov-89 03-Hov-89 04-Hov-89 05-Hov-89 06"Hov-89 07-Hov-89 08-Hov-89 09-Hov-89 10-Hov-89 11-Hov-89 12-Hov-89 13-Hov-89 14-Hov-89 15-Hov-89 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 25 456736 24 456736 24 456736 24 456736 24 456736.24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 328S50 32S850 328850 32S850 328850 328850 328850 328850 328850 328850 32S850 342552 328850 32S850 328850 328850 328850 328850 32S850 328S50 328850 328850 328850 328850 328850 328850 328S50 32S850 328850 562 671 658 41 209 48.2 23.1 38 250 60.6 23 42 244 59.4 26.4 39 227 53.2 23.5 TOTAL 697 9550350 AVERAGE CDHC, PER CGLLECTIGH PERIOD (PPN)=AVERAGE POUHDS PER COLLECTIOH PERIOD=591 40 233 55 24 47056 31S5 18512 4407 1911 Plant Operational Data for Collection Period 8 A-8 COLLECTION PERIOD 9 2 PUHP GATE HOURS SPII 3 PUHP DRIFT SPA SALS/DAY SO4 PPH CI Ca H" Ha PPH PPH~o" op'I I!6-Hov-89 17-Hov-89 18-Hov-89 19-Hov-89 20-Hov-S9 21-Hov-89 22-Hov-89 23-Hov-89 24-Hov-89 25-Hov-89 26-Hov-S9 27-Hov-89 2S-Hov-89 29-Hov-S9 30-Hov-89 01-Dec-89 02-Dec-89 03-Dec-8'9 04-Dec-89 05-Dec-89 06-Dec-89 07-Dec-89 08-Dec-89 09-Dec-89 10-Dec-S9 ll-Dec-89 12-Dec-89 TOTAL 24 456736 24 456736 24 456736 24 456736 24 456736 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 32S850 32S850 328850~"~850 328850 328850 328850 32S850 328S50 328S50 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 32SS50 32S850 328850 328850 328S50 32S850 32o8850 8878948 723 555 321 516 40 266 65.2 25.5 26 232 55 17.9 18.5 178 41.5 14 14 178 39~I 12.7 AV RAGE CONC.PER CO'L CTIG'H PERIOD (PPH)=NERASE POUHDS PER COLLECTIOH PERIOD=529 25 214 50 18 39140 1823 15804 3716 1297 Plant Operational Data for Collection Period 9 A"9. COLLECTION PERIOD 10 2 PL'NP DATE HOURS GPN T PUNo GPN DRIFT GALS/DAY SO4 PPN CI PPN Ca,"9 Na PPN PPN PPN 13-Dec-89 14-Dec-S9 15-Dec-89 16-Dec-89 17-Dec-89 18-Dec-89 1't-Dec-89 20-Dac-89 21-Dec-89 22-Dec-89 23-Dec-89 24-Dec-89 25-Dec-S9 2b-Dec-89 27-Dec-89 28-Dec-89 29"Dec-89 30-Dec-89 31-Dec-89 01"Jan-90 02-Jan-90 03-Jan-90 04-Jan-90 05-Jan-90 06-Jan-90 07-Jan-90 08-Jan-90 09-Jan-90 10-Jan-90 11-Jan-90 12-Jan-90 13-Jan-90 14-Jan-'90 15-Jan-90 16-Jan-90 17-Jan-.90 1S-Jan-90 19-Jan-90 20-Jan-90 2t-Jan-%0 22-Jan-90 23-Jan-90 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 A4 24 24 24 24 24 24 24 24 24 24 24 24 24 24 14 24 24 24 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 4"6736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 456736 328850 328850 328850 328850 328850 328850 32SS50 328850 32S850 328850 328850 328850 328S50 328850 328850 328850 328850 328850 32SS'0 328850 328S50 328850 328850 328S50 328850 328850 328850 328850 328850 328850 328S50 328850 328850 328850 328850 328S50 328850 328S50 328850 328850 32S850 328850 644'6 195 46.1 14.2 427.27 241 59 14 564 163 15.3 138 35 13.5 138 12 95 24 8 5 24 199 50 16 1 TOTAL 1008 13811697 AVERAGE CONC PER COI.LECTION P RIOD (PPNI 387 19 174 43 13 AVERAGE POUNDS PER COLLECTION PERIOD=44585 2172 19990 4931 1527 Plant Operational Data for Collection Period l0 A"10 CDLLECTIDH PERIDD 11 2 PVNP HDVRS SPH PVHP SPN DRIFT GALS/DAY SD4 PPH Cl CaÃg Ha PPH PPN PPH PPH~24-Jan-9D 25-Jan-90 26-Jan-90 27-Jan-90 28-Jan-90 29-Jan-'90 30-Jan-90 31-Jan-90 01-Feb-90 02-Feb-90 03-Feb-90 04-Feb-90 05-Feb-'90 06-Feb-90 07-Feb-90 08-Feb-90 09-Feb-'90 10-Feb-90 11-Feb-90 12-Feb-90 13-Feb-90 14-Feb-90 15-Feb-90 16-Feb-9D 17-Feb-90 18-Feb-90 19-Feb-90 20-Feb-90 21-Feb-90 TDTAL 24 456736 24 456736 24%56736 24 456736 24 456136 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24'456136 24 456136 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 45673&696 328850 32SS50 32S85D 32SS50 328850 328S50 328S50 328850 32885D 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 328850 9536648 17D 8.7 122 30 10,1 330 15 135 33 11 126 9.2 97 22 8.8 204 10.1'96 24 10.9 AVERAGE CDHC, PER CDLLECTICH PERIDD (PPNI=AVERAGE POVHDS PER COLLECTIDH PERIDD=208 11 113 27 10 16498 855 8945 2167 811 Plant Operational Data for Collection. Period 11 GATE COLLECT!ON PERIOD 12 2 PUNP 3 PUNP DRIFT S04 HOURS SPN GPN GALS/DAY PPN C1 PPN Ca Ng Na PPN PPN PPN 22-Feb-90 23-Feb-90 24-Feb-90 25-Feb-90 26"Feb-90 27-Feb-90 28-Feb-90 01-Nar-90 02-Nar-'90 03-Nar-90 04-Nar-90 05-Nar-90 06-Nar-90 07-Nar-90 08-Nar-90 09-Nar-90 10-Nar-90 11-Nar-90 12-Nar-90 13-Nar-90 14-Nar-90 15-Nar-90 16-Nar-90 17-Nar-90 18-Nar-90 19-Nar-90 20-Nar-90 TOTAL 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456H6 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 24 456736 648 328850 32S850 328850 32S850 328850.328850 145 328850 328SS0 328850 328850 328850 328850 328850 145 328850 328850 32S850 328850 328850 328850, 328850 173 328850 328850 328850 328850 328S50 328850 328850 250 8878948 8.7 13.9 10.6 140 35 11 99 24 10~5 127 29 12.6 121 27 17.6 AVeRAGE CGNC PER COLLECTION PERIOD (PPN)AVERAGE POUNDS PER COLLECTION PERIOD=178 11 122 29 13 13195 81S 9012 2128 957 Plant Operational Data for Collect1on Period 12 A-12 0oaite!re~kv~sk CLIMATOLOGICAL DATA NAN(FO((D M(wr(FDRO! OCY STAT(ON 55 SSILCS 1, W OF SIOILAISO, UAMUSCTOH Harch 1989 LATITUoc lcs sl',~Loacllaloc>>ss 54 w cacTA(loa (Esovao)755 rect 5~I V s J 1 5'5 4%~4 4%1 OCCSCC OATS~ASC 45 TCMPCRATUAC (~P 1 FT.LCVCL)I J J I a V~I V J vv S a%4V J~v P II C(P~15 V J%a Ceo V4%CCf~v 1 V I v 5~~~v V 4 UIH0 (SO PT LCVCL(%CAN OUS~ss s J~V~~s~J I V I~~1 I I~~'s*~~~FRONTS ANO MI5C PHCNONCHA~OT~I Tlvaa Or Faeatkl 1~saki~I JJC~s'sta AFTCS TUC IOTkfsoas ICOLO t10%fl kaa V'%ra%Ivkkv~14%f 1 35 23129 5 4A 48-11 36 0.08.9 lo T IN ll I IS II 15 15 14 6.5!15 HW 85 I 61 10 F GL 5 130 5 135 l 133 20i26-14 I 39 01 18124 1-15 I 41 0 14:24 1-15 i 41 0.07 11.8 T T 2.11!IM 1.5 (E T INW 6.1 14 NH'WI 75 1254 I 7 I F 4.2116 SE 56 1379'0 I 6.2117 I NW 65!172 i 10 I$33~16Q 29 131 I-9 i 34 i 271441+3!21 0 0.23.4 T INW I 4.8 16 I NM 91 1 83 I 10 F GL KFR 2115 T IM 16.0 30!SSW 76 1358 I F 54 56 321431+1 s 22 38147 i+5 I 18 50!40145 I+3 I 20 Io 64 I 381511+8 I 141 0 0 0.31 (E i 3:8 18 WSW 60.335 iNW I 5.5 17;.NM 63!301 i 9!!NM I 7.9(29'SE 89'I:103 I 10 1 F IE I 5.0'125!SE I 77 1296 I 6!F KFR 1900 11 67 I 42154'N'll s (1!.24!(M i 6 1123 SHM s 70 (370 l 4 I OL KFR 0310 65 (44154!+11 I ll 0'5!55 i 41 1481+4 I 17 0 Il!56 34 i45 I+11 20 0 (s;50 I 29!40 I-4!25 0.08'02.02'.SE 1 4.6136 I SW I 74'310':M s10.5127 IWSMI 60'237;9:SW!6.9!24 (MSM.57:308!6!A AU!H!2.4110.H!77!199', 10 i KFR 0500 I~143 17'57 33i38!-7 27 0 27 (42 1-3 23 0.22 HM I 6.6120:HNWi 91.52!10 S!3.8(21 ISSXI 69:355 I 8 I t I~160 42 51+5 14 0 1.04 i (W 8.6!29 NH 63 380 I 8 I Is 160 co 160 51 164 36 48 I+2 17 0 28 44-2 21 0 1.05 39 52+6 13 0.01 iw IE iW 5.4 17!NK 2.7 14 SE 9.5 42 MSW 60~423 63'416 8 51'386 I 11 10 55 56 55 56 54 56 55'62 cs 57 35 46-1 19 0 34 45-2 20 0 37 46-1 19 0.05 38 l50+3 15 0.14 37 i47-1 18 I NM 4.2 23 WHM 50 ,285 HM 5.6 18 NM 4.1 14!MNM 55:348 9.2 I I I iK I 5.1123 (WSMI 7.310 10 KrR 00 57 60 46!53+5 12101 63!41 (52 s+4 131 0 (>>57!36'46!-2:19'! T s 10 ISX 114.4 141!SM I 52.245:X I 7.0!26 (NW I 46 467 5 I IM'.0:24 X I 46 280: 8 so 157~28 42!-7;23>>(60'0.50'.+1 i 15 0 I I 1 S.5.3'23 5 Mi 298 0 I.i M 9.33 M I 492!I'IVV>>I 153.933.7 58 0 11.5613.1 6.2~v (l(Halts~oraaawssc~Fatlnaa.Tac ekslr I%VV*IT rtas40 I~~aov lais%I~ssf To vl~ssltssT~J~ITIC~'tkssoka~TIVC 1(>>vws I~calvvas 7~~~a%orts*Takcc.~(11 TssC Lka~LtT IcoL 11)I~T1E valT 1st~(fo stssofc~ac~Ikv cAL41lc r tv 5 TCMPCAATURC I Fl 5 FT.Ltvtl.l IsACCIPITATION IINI feral raa TUC Ssoata~EFJJTlsac tsov a01vkL 1.56+1.16~ACJ TEST I~Sl aal 0.31 4%9~VSS~C1~I~ATS WS'till ra*et 0%vokc 19 ops 01 skeet~I~~Ls'Vla~Ovs't~I ILOVII~~IOW~L~latkaf LIS1111S~~I~I 1 IF, I I~I%4W lc.Iac carstkls ravs~lasfesss 1~ISJSI, Av kvaoak~~Ov sf~~reo~L~4lklC~I ve I c~AROMCTRIC PAC55URC ll~.I ss 1 WsscacssE.'I* slo Arl 11 vsco IN c lr kvlkkaa rea TV~vearv~CSJITUIC FIOV 101VJL~II%EST 67~I LOWEIT 14~1~vvsta or 4JT~wsTss~o.ol oa sssat 0.10 0%vekt T4TJL FI~TUE VI%TV~ackTtsr Ia ak ssovasl 3.1-0.6 o.lo 01 veac 5 I.oo ea ssokc p 5HOW.(CC PCLLC75 (SLCCTI (ISCHCSI JVESJ~E STJTI0%s 1savtat~EA LCTCL 3p 36 I~Le%Est Slk ltrtl 29.58 I~5OLAA RAOIATION ILksaltTSI JVEJJIC OJSLT T~TJL vks sa IA~clow VAS, SO~I ASOTE~ss1 sa 41~cLow VS~0~I SELOW HCAT(HC OCOACC OAY5 Isk~c OSor(~AEATEST 41~JOS 2%7 0%2 WINO lsa rr.Lcvcl.l 6.-2.4 AUEAAIE IFEE~lvsvl~trk1TUAE Faov 101VJL FEAI IIIT 42 raov'W W 0%~AEATCJT 4AII,T LEAST OAILT 492 52 0%CLEJS FAITLT CLOVIT too 9 Tavaoaa MISCCLLAHCOU5 HUMOCR OS OAY5 tarsi~01 Tvt VIVTss~EFAJTIIIC FIOV ls~IvkL 658 AVCRAOC P5YCHROMCTfllC OATA'2Q s oaf avis tert 43 war avis 14t(39 CLOV4T 17 ovsr RC(HUM.CXTACMC5 (1 SCJI~IJL TOTAL I~Satt JVLT II~CJIOUAL Ocrkatvac raoss aeasskl 152*~M (COO~Co ((751 ssosl svssksa avs,%EL 1VV ltl~cw FT Ios I+It%arcs LATEST Or ICTCSJL OATC~III 41E IT~I'7+LOWEST'2~Meteorological Conditions for March 1989 B"1 CBatIeIle~CLIMATOLOGICAL DATA ((AN(TORO (e(KTEOROLOGY STATION 25 eelLSS I, V, Ot SICILANO, VAsslsafos April 1989 LATITUOC Ato SA',~Colic!foot I (50 Sa'>>CLCYATIOO (CSOVNO(TSS TCCT TCMPCRATURC(4t 2 PT.LCVCL!oaaaac cATC~kst 45 J 4'52~~I s 0 I Ls I e~, J I t e g~~V~v<<V V 0 v J s P R CCI P Jvo JVO 14 v~e I 0~V V~~~V VINO (SO IeT I CYCI.!~CAN OUS V V~V 0 s~~SV 0~~~v~SeRONTS ANO MISC, IeNCNOMCNA Sorts fleets Ot tlosfkL aallklcl JNC leTCI ktTCI TeeC NOTATION~at~MOLS tsosrI kso>>ra Ir Jar tsosrl I 2 5 SA~8~0 I It I lt IS I Il is I lt I lv 56 6 I 46i-I 0 I 7.I KF!I 22 0 0 I 58 59 59 73 T I 75'!68 37148-!7I 0 I 35I 47i-i I I i4;-: i I 52 62!+47 63I+12!2 I 0 I 5 l63i+: IO I 44!55i+4I 9 I 0 I i I~o o!q I I<<dd!W!o 536WW I l!!~!55 I I i e 4 I!I M!op W 2 I i I Wl 6 IW!I 4 I I o!lid!4 I 5 I 67!39I 5 I+!I I Io 69 I4 I'+d!I I I 75 l36 I 56l+4i 9!0 I 77!41!59!'+7'I 0.'pi44I62!+0: 3 0 I!4!80!48 i 64!+12!1!0 is I 71 150!60I+8'.5!0!l4 6 I'5'I!73 46 160!+9I 5'.0 o\~~~I t (T el(5!'2!e I 7 I iH i".4:WNW!4!'5'5 40 I 506 4 IW i 4.6 3'WNWI38!54: NW'.6.0 30'NW!38: 368'NW'13.4 35 NW!40'77'.9!;5 iW I 6.2'27.W l26 i 602'I~77 e 54 66 I+14 0 So 75 50 62!+0 3 1 I.OZ 0 I.07 I!~79!41 60!+BI 5 I 0 I!NWI 5.8: 16 WSW I W I 6.9i 49 W I I o..'5%W 31'514 i 4 i OL 54!452'!OL 55 I 6 i!KF 55 2 47 54+1 11 22 65 140 52-1 13 67 138 52-2 13 72 l44 58+4 7 0.07 0 0 0 I W I 4.7i 15%5W I S I 6.4e 22 5E IH I 4.9;18;EHE IN!11.6'35 SNE 67 i 307 I 9 45'523 I 7!56 547 3 I 45.476 10 62 I46 154I-lill 0 I.35 Sa 60!4 l53!-2!12 l.04 66 l48 I 57lt 2: 8 I 0:.28 68 45',56:+1!9'0 72:41 l56.': 9'0 NW.o ll 43 SE 74'219 9 I A, T,OL 1: F I NWI 4.7'17 HNM 8 3 IN!3.5 14NW l74 391 9!: NE(7.5:24 ENE!52 438!8 e (N'.4 18 H 145 645 0 So 21~VV I~~j!!254l 1!0.84 I T II R (Jvl 69.7 I 43.7.4.IeRCCIP!TAT(ON IIN).4'll~elt Ives eeCNA'eoTATIO>>5 VSCO IN CQ lv (!!SNLclo ofeecarl~t satclteto Teat oaeLT OVV<<kIT tC~Ill IS TIOQ QIONIONT T4 Qll~IONT 0 JCITIC Sf kaok1~TIQC~I (2!<<v is COLN~0 5~scsorcl a vases.;(Sl fsa Laslaar lcoa.(~Ill fst Vair mete~To~CNOTc 1st laaee CAL41ec I cQ 2 vovka tos Tsc<<oars 0.84+0.4~C~JITIIIC r~Ov Noa<<JL~atkraar i~sl sss.I 0,37 os 25 26 NVVOCI Ot Okf~'>>ITNI J IJIL kv~Jvaoa~~~Ovlf t to~Q,~0Lk la I~lvaeC~0 OL0'seal 00~T~0~SLseees~ssor~L~llf JNT Llcsfseso~0 Olltfl~0 assr lc Ica cavsrJL~T~Tsvaltsaf01<< TCMPCRATURC lltl 5 rf, LavCI.I Takct 41 QOIC C i o.ts 01 eclat OARONCTRIC PRC55URC Ua I Illatlf 0 oee Jrtaklc roa vsc e lars~CtklTVIC talv NOJQJL 0 Ol 11<<lac!0.50 01 eclat 0,10 01 QOJC~.Oo 01 eeoaa 5NOW.!CC PCL'T5 (5LCCTI (lacs(S!Avt~Jlt'Jllre~I Ieelscsf~ck LcvtL l,l>>CST SCl Ll'etl, I~"I I~I Ls>>aor SVQOCI ot OATS>>ITNI Qkt 52~I~CLO>>beats 00 01 JOOTC Qe~, 55 01~CLor TOTAL tla TNC Vosfe~IcATtsf I~2~eeov10~~~I VINO ltl tT LCTCL I kvtaklc~rcco (Qasl 0~atkfclf ls~I~I~s SOLAIC RAO(AT!ON ILANSLCV~I kvtskct~JeLT for lL~ICkfllt SJILT LCJIT~JILT d I~.~1 MISCC(LANCOU5 NUMIICR Ot OATS Qe~, 4~I OCL0>>NCAT!NO OCORCC OAY5 IOJSC~Sot!TOTJL roa vsc eeosrs 4tt JITeelt~IOQ 101e k'Clc lellT TIoee I~I AVCRACC P5YCMROVtTR(C dATA CLtka tk~TLT CLOVST CLOVOT tos TNVsoCS Ovlf~tsklfvat TIOQ NOIQJL SCJJONJI TOTAL I~II~C JVLT II stkloeeAL~CSJATVIC tsoee NOIQAL OM I500425 (I TS)eesaaaee<<JJSve<<L Ssv svao i4ri~I!var Oval I4t!~ar tv Cori ICL IVQ III 00CSOTCS LkTtsf Ot SCTtllL OkTCO Ieceetlf Lo>>CST'RCL.NUM~CXTRCMC5 (!~I~s 17 Meteorological Conditions for April 1989 B-2 Qaarreae CLIMATOLOGICAL DATA HAS((TORO METEORO(OOY 5TAT(ON 15 SNLCS II, N Ot CICILAao Vksala<TOO Iia 1989 LAT(lvoc cca 1<N..Loac(fvoc 1150 so'CLCTAT(os (<aors ol Tss FCCT ay 4 5 I 1 1~V~~~va$54(c okfl HAEC$$TOIPCAATUAC(tf 1 f T.LCVC(.l p I 0 J~~I~a I~I 4 P 0 I V V~v J I r>>AC C(>>aa j rva V e 10 Vtr 1 v I v V~~~I 4 I~~V I~v V I!V VINO ($0 PT LCVCLl rc*IC Ouo~I 4 1 r 1 V J V 1 1 I r a e J~~P v Sv~,as gaea V~Ia~V~~~a~PAONTS ANO N(SC PHCHONCNA~OTCI IIUCS Ot Fkt@TAL FAII<<4 AIE~ITCI AFTCI II<IOTATIeea It~Ic<LS Faoafl kao rt1 Ivkav tetefl 4A~8 IS f 111 IS I~I 1$I~71 74 79 55 6 53 45+71 2 0+111 0+5!3 0 0.12 W 6.9 M 5.9 IM 7 301 WNW 47 4 2!NW 43 627 0 81$84 51 66+8 0 1 52 8+9i 0 3 3.5 21 W 9 67 I N 3.31 151 NE 45 I 543 OL 88 56 721+131 0 7 INW I 6.4 33!NW 50 I 523 9 OL 1 85 85 76 I 62 741+5i 0 57 711+111 0 6 58 671+71 0 2 INW 17 6 1 i 4 INW I 7.8 30!MN'10 I W i 4.3 17!MNW 37 i 630 3 I 10 O8 11 69 11 7 ls 76 1<77 44 561-4!42 56!-41 9 0 45 5'-I 47 621+!3 0 51 641+31 0'Wi I i4 I 1 I N 5 IN 65 51-dd i I I 4 (0 1$10 82 77 49 66+5!0 1 54 66+4 0 1 I INM 6.5 29!NW I 655 it!M 12.4 37iWNW 34 I 539110 I!4 i C Id I I!I 11 6~C 6-7 0 0 0 0 0 IW 1574 1$$$6 1$68'4 78 49 581-6 7 10 10.01 44 61-4 4 0 45 60-3 5 0 I 5 54-9!0 0.08 4 5-3 0 0.01!NM 7.0 361 NW 40 I 687 3 4 IW 152 5!NM~5 9 T IN I7.0 2 IN 65 3651 9 NW'5.0 19: SE 64'90~7 SE I3.9'9: SE 57 712 I 1~VU 88 50 I 69+3i 0 141 34 0.59 S 14.8 i 22 I NW 43.699 I 4'I"'94 548,5L~HI (11 VICES<~TIEIHI~c stc<IFIEV, TIE 0AILT~VAIUAIT a<Iles I~Faev Ul<<I<I~Te UI~II<IT<<<ITIC STAIOAAO TIVE (11 eTI~II c4Lvllaa 1~0~cIOTE~A Tak<E, (ll TIE LAN<LET (C<L,(of I~~Ic OIIT v<C~IO~CIt<C 41<<IAU CALtalC I CU 1 TCNPCRATUAC (<tl 5 n, I,EVIL(7.1 PRCCIPITATIOH (IH(I1TAL F41 TIC UtafN 4<kkaTVAC Fatv~01lkkL 0.59+.06~I<AT<sf Ia$<~11~0.37<<22-23 IVU~<1 tt Okf~lllTNI Tekcc 01 U<1c lp~,5'~I lk<1c 1 III L kaetek~ovaT F<4~l<lkcC~I ve 1 E~4~SLOHI~O<<ST~s el<<<I~<Seer~L~~I<TAIT LIIITIIN~~1~IIIIII<Sacr IC~I~E CIT~ILLS I Iaeael~Sf<kv~AAONCTRIC PAC$5VAC Il~.I 5.6 Il~H N 4CNA NOTATE Hs SCO IH CO II krlek<<tea Iac~tata 4.01~I ll~kC 4.so 01 roke 1 r\1<<E~I 1 TI~I~EFAITVIC~aev Itavkl el<I<ST Ltv<ST aav~Ca Ot OAT~HITNI vk<, SE 01 1<lor Uks, Io~I Aeovc Ula, I j~I~~L<r Ula, 0<1<<Ltr~I~I 0 0 0 0,10~I U~IC (,00 01 UOIC~ICAfCST Ia 1<NOVI~I~IEAIC~I<1~atl~I~I VINO ISO FT LEVEL I AVEIA<C SFCI~Fvkel~E~AITVAE tat<<IOIHAL SHOH, 1CC PCLLCT5 ISI.CCT1111<1($ 1 TOTAL Ft1 TIC UOITI al<IEIT SIA LITCL LOP<ST SEA LEVEL<~I~I 17 5OLAA AAO(AT(OH Ilka~LEIS(1'Eak<C 0~ILT TOTAL~1<SF<ST OAILT LCAST OAILT 534.9 0 50" 9 0 N($CCLLAHCOU5 HUNCCR Of OAY5 F4~ClCAI NCATINO OCOACC OAY5 Iek<C TOTAL t<1 TIC v<1TH~I FAATVIC F1<v 141UAI,<EAS<IIAL T<TAL IIII~c JOLT I'I~cks~IAL~ESAI'fva<taav atIUAL~set 1~-300 ecka<v<T 4~I~lk~I AVCAACC PSYCNAONCTR(C CATA~af eels(OF(rcT<vis)OF~Cr kf (451 GAEL avll (cl<~Ea~'IE~LATE<I~I~cTcakL OAT<1 tkaflf Clev<t CLteaf Iles<et'lav10 ca~Vk'I ACL HUN CXTRCHC5 ($1~I car<st" 14 ov 0 13~N ($00855 (1 111 kite<k<<alkaa, ella.Heteoro1ogica1 Conditions for May 1989 8"3 CBattelle ZLlhlATGLOGlCAL DATA HAN)TOAD)o(STTSTDROLOCY STATION 15 vlLcs N, w or otc>>LA>>e, wksNlscTos LATITVOC kca SC N LSOOC)TUOC ('ll SC W CLCYATIO>>(4OVAO)TSS IC CT HCHTN June 1989 TCVPCRATllRC (4P.S PT.LCVCL)CCCOCC CATS v ekcc 45 all 1 k~~I~o sal J s~1 4 v PRCC(P r 4 5 rva Jva:~t!~v~2~~~~Sv v~a'r E VINO (21 PT LCVCL)I PCAN CU5 oo V r a v J~~V v~~~ss~4~s~~~PROHT5 ANO M)5C, PNCNOMCNA~4TCE rooots~t taastkL oosskocs kac~ores ktTE>>Tsc sorkTIO<<s'to Ltoao taosrl A<<0 v>>o~lwkov ooo<<T1 1 1 2~(5 ECA 48 T 1 1 94 l57!76!+10!0 i ll i i 1!90 l69 l80i+13: 0 15!!lo'1 1~12 I 12)1~o Is 14)S'.2 27 I Wi!!T": 34!708 1!W I 7.0 23 I HHci 32 i 665 2'U 1 i86 l62!741+7.0 9!T I.)tif!13.9 43'NE I 3 I 41!3'0 4 (90 (59174.+6~0 9!I I.8 28:NE I 271734 i 1 5197)55!76!+8'.0:ll': M)6.33)NW i!736 i 0 i~195 66)80'+12!0 15!'.I: W'.6 39'NWI 22!740 I 0~T I I s o+'o 5~~NE~3.0 20 MNW'4.737 0 i I 4I'+'.I i o~~I 5 I+O'0 I lo(!I y4.'I ,'!I ic"4 I 4!4 i 11 I 1'>>~~o~r 11!!i 4.((i IS i j 1~1 4 4!+~1~15 0 i I~4~0 14 1~I 15 I 14~!i'o N: 2'70 4 W 5)67 6:!6 742 I KFR 2245'1*11)11)!0 14!0 i i4 1 I!I i!!op.': 3 3 Oi l I Sl'94'.67 80+i 0 5'4 1 i (1+-'I i M 5.7 22 W 1 27-620 6~o 4 o 1lo'4~7.0 WNW'2 52': 14: 1'y 4: M 6.>4 5'KFR 700 I>>I'62 i 0'0 5 T W 5.0 24 MNM" 46 367 10'4!80 58 69=.': SW 12.7 30 SW~37 575 6 21 1 o~-r;L!rr~6 l2 5, 0.0'r r r'.V'rr'rr"ri rr'oa~R 7 0///i/orr.4,6~T (1)v<<LEEO or<<tawosc sotcltocs. tac okoLT~Uvookal'caoso ls taov Woo%la%1 To HI4>>soar~oclolc OTkaoA>>4 To~4 (11 1 ls tsLVH<>~TCO A Takcl~(1)1st LksaLCT lCOL 1st 1~T<<E V<<IT UOE4 To~ts~Tc~sc~akoo c>>La%le I EH 1~%tartar O~tk'oaa,%swats\t okra>>oT<<o.0.01 PVCC(PETA OH 11,11 TOTAI, to~Tsc Has TN ocskarv oc taov~oavkL 0.01 14 I I-0.44 A~OOAOI AV~kasaak~~Ovor~~t04~L~OLAE~~S vs O E~4~LO>>O>>4 OVOT~0 OLO>>osa Ssow~L~Oo~Tsar Lo~%tao%~~0 oaotroso ssow I~oct E~r~TALi T T<<<<soo~Orsaoo OOI PV o V NA NOTATIONS O'SC IN C lr TCMPCRA,URC 1 Ol 1 tT, LEUtl.l k<<tarot oaa T<<t>>4<<Too 1'CtkaTUAC tsev Sao A oo 1, 97 I oola<<EST TAkcE 4%vooc 6 e,js 0%ooskc i p 8ARCHCTR(C PRCS5URCP<<.1 0.01 4%o<<4<<t): O.so 0%~oac I~ocak~c~rkrooa 0+7 e.leo%Hose p)T.oo Oa Hose I p%os<<Ear stkctotL i 30.3p ea 1 SHOW.)CX PCL'.S (SLCCT)((>>CA(S)Le>>tsr sta LEVEL 29.69 4~LS'NE~T a 4 oo~E a~o'A T~w I 1 oo I HAE~11~S~CL4>>~ks so as kaorc 4%0 T4TAL ts~Tac<<os%Too c>>EATtsT oa jk<<ovao~~AE>>rest 4%4%01~s 0%0 5OLAR RAO(AT(ON lcoaclcr~1 6 742 4%)>>ac>>oat okoLT TOTAL a>>CATEET CAILT o 4(HO O'lt OT LCSEL1 I LCkst OAILT I 294" 13 1 Ho~1 1 4%~EL4>>Hos~4 4%~Ecow 0 0 HCAT)HO OCORCC OAY5 14~St~asti A<<tak~E~otto lvo<<l 4!Cack>>tea 0 acaoaovat oooo<<so%HA'av<<OC ~ocAO avsr 43 rsao , H 4>>3~oatLT cLovs~7 9!SHSCCLLANCOU5 NUMCCR OP CAY5 I TOTAL t4%Tst Ho<<Tv~Eokalva~taov%a%oaks~AT ovLO 14<<1))>>tr sv 0 tat)AVCRACC PSYCNR HCTR(C OA,A CL4V~'~vsr 1 RC(.~HUM.CXTRCVCS l'1~tkao<<AL TOTkL 1~o<<CC JULT ll SCL IOVOO 1'El I~cw tr lot)<<O4<<COT~a stks4<<AL stoa>>TUA~tasv%4%HAL 4M (SCSASS ()TS)a<<oak>>oooo<<a.<<ooa. ooca~TC~LATCOT~t OCUCAAL OATC~L 0>>t S~~s Heteoro1ogical Conditions for June 1989 8"4 ---.CBattette CLIMATOLOGICAL DATA HAH)TORO MCTKOROl OCT KTATIO(C Ss IJILcs Ie, w ot A(oetkao,'VAsaleecroN July 1989 Lktlfvoc tsa 14 N..Lose(rvoc>>54 ss'cccvknoa (ctovaol 111 Fccf I v OCCNCC OATS~JSC C5 4 1 1 J 4 11 1~N~~4 si e I" TCNDCRATURC(ai )FT LCVCL)~1 t 4 J J I'I 4 v~~4 V PRCO)D s CC VO o~4 va i=J J~1 T 4'e v.I V I 1 ae t 4 1 V 4 V I'CAN OVS'0~v 1 VlNO (50 FT.LCVCL)s 0 s s I I~v\~~JV 1~1~4~s~v 1 I sv~C~~E4 FAUN'TS ANO IH5C PHCNONCHA NOTE I~tieet~or riosfki,~JENJ4ts Jkc~ceca krTEN Teec sofkfew~~r~kaLO riasf1 Jaa'ww'%IN%rsaatl I I 1 I 1~I 1 OA oe I T I 0\~lol>>~11(111 lk I Is I II i I 75154!'64-7!1 01 I 1 I 84!50!67i-5'2'i W I 7.5 25!MSMI 42 i 368: 9 i!WI 3.517i SW:42!659e 5 1 I 86161 74+2'!9!I I M I ll.3 iMNW!36 I, 1 I!!h-!i'!!4: 44 c I 4 i i;.::>>!!I NW!4.3 4:.29 I 736!0 1 j 4 I (: O.'I I I!".'5'I I~I I n.!"'We 0'35 i 0 NM e'4 i IO i iWI.3 If'IIW~39 i 605'OL>>i!'",".I, I,~!!N'rl 6.018-N~36'713'(1~<!+P'.:~NW 6.8 23 NE(29'93'6>>I i I+4: 0'.!N 4.6 20 WtIW'8 682 0 I~,)I~+NW 8.1,'7 NM'9'68'!64'-78i>'i 13'!NW 10.5 35 WNW: 33.705 4': 5!-2'I 0'0'SW 6.4 22 SM 56 283'>>I 87 (54:70:-8e 0: 5(e is!4 64: I+~0: 14i 15!00: 70'5i+7!0 I 20'o I 96 I 64.!80i+2I 0!15i 11 I'.!.j ss!a I I 4!11!: I:5 I i Sciaa I I+i I!15!!I.I]i SM 6.2 MSW I 44 716.3 W 3.16 SSE 3 43 7 e NM 6.5i.NW I 34!NWI 10.8 38 WNW i 3 A I 67 I W I 6~62 2 OL 15!a'.c.4'e I a)O;!'M 3 664 0 L)l'~r~r'rir r/See~r kvt ia a aerrrrerrrrrrr p r'r r er'A r:r'r'er r r~f (I)UNLEI~ofeIE1%IIE I~EEITIE~, T1E~JILT~vvvkiT rcieao Is f144 NI41I~eef T4 veoaet1f r JCITIC STJN4JIS TINE~(1)T I~ESLN41~r~~4c10fts k Tskcc~()1 Teec LkatLcT IESL IQ es Tele IINIT vsco fo~C10TC~1t like CkLONIC I Cv PRCC(P(TAT(ON UN)TatkL raa Teec IJONTN OENJitle~C riav NONVJL~Nc*Ttif Ia tk sii~p p svee~c1 or~JT~VITIII 0 I~WAIL W~JVJOIJ~over r~ra~~L~~LJit~~~~~~I~0~~Lowest SVST~I~Lave~4 I~Ow ol,~Olitkst Llssraeac~0~NIrTI1~Saaw I~~ICC ENTSTJLS T~fsv'esi1~T414 VIS~N'NONCNA NOTATI N5 Sco IN CO lf CNPC((A)'URC lari 1 rt LEVEL)ra ice 41 erase 4,11~1 NONC 4AAONCTA(C P(IC55VRC les.i~1 LSVE~T 4 41 svvet1 4r okf~wef1I vk~lt 01~CLO'W krt~Ja~F 4'sc 44srs~ESJNTV1t f104 1414ke, I~I~Ie I I t 0 O.oe 41 e oic O.SO Oi 44JC kvtakcc srkvas T0TJL raa Tsc NONTN cktkTIJT Is IJ await~ICJTIST as~sai~1 p SOLAR RAO(AT(OH ILJNJLCTSI I 648.I krtik AC~JILT TafkL~1 I~ICJTCST OJILT 744 4.10 ai ieait P 1,44~1 voic P I se~eetst stk LtftL 30.20I~I 5 5HO'V,)CK PK(LCTS (5LKCT)tlaCNCS)el L4%C~T SCJ LCTCL 29.69I O.l 29 eeki.~Il~1 kiOVC'VINO ISO rT I ETCLI I LEJ~t OJILT wI 16 e e~.St~1 stkaw kVCNJEE S~Ci~ivi ei P NISCKLLANCOVS HVNCCIC Oi OAV5 ve1 4 41~EL4%Oci~NTVIE~144<<aivkL I I ELEJN raa 0 HCAT(HO OCOACC OATS I~ksc TOTJI, ra~TNE 44NTV~ciki Tvsc f104 1414JL~Sor)01T avL~lail!wet JNL~lorj icka OVIT 4 t141e I as AVCRAOC PSVCNRONCTA(C OATA~JITLT CLOVST CLOIIIT vassals avsr RCL NUII~CXTRCNCS (,)0 SEJSONJL'T0TJL IIINCE JTLT II~tkiaeekL OEJJNTVNE ts44 141ee JL-3 NEL, IIVN, 1'Sl 3 Stw if 14e 1 4~ENOTC~I JTCST~r~EVCNJL SJTC~seteettf Law tif~1 9 a.~N (500415 (1 11)~I'I w evivwk sees~Meteorological Conditions for, July 1989 8-5 CBaveae CLIMATOLOGICAL DATA HA)C)TC)R() MCTCOROLOISY 5TAT(ON 55 QIL(5 N N Ot OICNLIOO, MINOOCTOI August 1989 LATITUOC EC 54'a~LONE)TOO!I IS 50'Q CLSTSTIOS NAOVVO)TSS FtCT V 0 v v~j5 4 1~4 1 TCIIPCAATUAC(OF )FTV I 1'v LCVCL)0(EACC SITS IIIC 55 1 1 J 1 5 4 v~v 4 PACCIP.vve SI J 4=;Cao va~"'.EC)-Cites 1~a 4 v~~~~1 v 5~~~v v v 0 V'V~5 4 v)NO (50 FT, LCVC),)~CAN OUCU~a v 4~I J~~~V~v 1 1 v~I 1~~~SAON TS ANO Il)SC, PMCNOM CNA SITC~hvcl ot tatafkL tallkccs aac~etta ltTE~'Ivt astafloas lta Nwo towf1 Qao'ta Iwaaaa tasarl 80 5 I I 5 I CA led I T I 0 I 1: 10'l I IS I Il'~I IS I IC)61!701-8!0 I 5l I i!Sri'.0 33 1 SW'7 I515)8 84I 56:70i-8i 0 I 51 I!IW)8.8I27.'SSWI 38 I 634 I 4: 84!58'71i-7I 0!61 I!)NW 4.'NW c I 89!55'72~-5'" 0 I 7)i I INW.'.7~24.'i 38!638 5 9 i 60I.'+la'13!)I:6:3.)1:!1 I 5!102I 67(84I+7!0 I19!i I!N.5:28 I W I 7 I I 1 (OL T;13;: I+:: 1)!NW.'.NW'l 95: 77'86'8'0 i 21 I T i!It!W.4'NNW'3!: 1!OL 91;57;74.-4'I 9a-I!IIN'.2:23 NW: 33 i64o i 0 AU 4,':-,'!IS!Q~I I I (SI)411 I I 4 i 4'4 4 IS I~~~I Ici!'i-!:!I'If i 1.I'i I 4~4 I~I I!+!I I I!~I~I OI I I+I i I I 50 I i I+15 I I I!i i I a!I 50!!I SSI l I i;I i (*.'(06 20)I ,'.a I i I I I'!I~C I a~~~I'I Ss I)0!64+6 5))54 4 9 45~4 I~a'I 4 I eaa vr r.rr 12/'krr ar JF/yr r'ter 4"~r.6i 4 6're'r'al OVC I VENA 1 T*TIOVI USCO Iv CO IT PACCIP)TAT)ON llMI (1)vaLcsl ofaEewlsc I~ccl~IEI Tvc sall,r~VHVkat t\also Is tlov QIIUI41T ro QI~tlear taCIFIC~T41~aao TIQC (5)vfv Ia I~Lova~T~~~C10TE~4 f tact 4())Tac LaaeLET Icol Isl ls Tac Usaf vsc~ro~ca~Ic Iac~aav EIL~SIE I EQ 5 feral toa hac aasarv octaafv~E tslla~c4>>aL~1Ekf tet Ia le<<ar P 4 Isa asaaoca at ears wnws~14IL kv aalsaa~Ivor~te~~L~CLICE~~I ve 4 I~I~~Ls>>I~l SUIT~I SLewaao Iaow OL~~Iltaaf LI~1 Ta lao~I IHFTI~I Iaow I~~IEC~ar0raLS t~rara~Iaotoav TCMPCAA'TUAC (otl I FT~LCrtLI lake~41 vial I 0,5I 01 veac (SAAONCTAIO PACSSUAC 0~.I art~alt to~ra~>>gatv~1141IUat taov aoavaL ales~~t 103 0.0~~1 Qoac)4 0.10~1 vok<<0,10~I I 011 I 0001>>0~c 5NON.ICC PCLLCT5 (5LCCT)(lrcaC51 lrtl~St~Iatloa VIlacsf~ck LEVEL tewel'ta LEVEL~4~4 (LO>>t~T 52~avaa~c1 4t olr~>>Ital aaal.)l oa sctow 25 ref lo tlk f1E HIST~~1C4TCIT Ia El\st~~I~<>Hla&01 IEL4'>>MCAT(NO OCOACC OATS Isaac~Ier)0 0 krtaalt~alto IHWI~EIISTUSE~ssv aoavaa, SE44 IUIT rasa~LEka t41TLT ELovof Fol)p Tavaotl 5 II15CSLLANCOU5 NUMSCIC OF OAYS ToT4L t44 TSE Ho~fa~Etaafvat ttev aoavaL~taloaaL TITIL I~I1E~JvL'I ll ltkalakL~Etlahllt tat>>aoovaL CQ ICOSA))S (1')))ala aatvavaavaaw -10 AVCAAOC PSYCMAOHCTAIC OATA~af wl~Iotl>>Ef OUL~1st!SEL avav Iol 4~Ert IT lot l Hstaofts Lkf Csf Ot~EVEOIL sifts ELsrsr~ala~Sf os>>Est~VST ACL, NUN CXTACVCS (5)~4~4 Meteoro1ogica1 Conditions for August 1989 B"6 QBaaetle CLIMATOLOGICAL DATA HAH)VOR))M)VTKO))O) O<$Y 5TATIOH$$HILCS 4, W 01 AIOILAso, WA51110$41 September 1989 lkfl)04$acs)O'LOIICI)UOC I>>4 50'>>EL!TAT<01 ICS44141$55 TCCT CCCSCC OATS Sale CS lt V v~1 1 s 4 k 4~~$$!a3s a>>11 E TCNPCRATURC<or 5 PT.LCVCL)1 V-3,I 4 s v v'~~v~v IVRCC<P st j vvs'vo I'I vl tv(I")$-4I'~v~v~~t~s 1 V 3~~4 v a~4 WINO 150 ST LCVCL)r CAN OUS IS v 5 V~1~'1 4 4~4 6~~"51~~~~~~4 PRON'TS ANO ll<5C, PNCVONCNA~OTCI<twas or raosTJL~s~~scca Jac~Ivies J~TE1 T1E sotattosa sv1 ICSLO raastl Jss>>rr~Iwsast raasrl I~5<)~a'I~A I~0'I 0 0 I 10'l I It I<5 I~'$~IS I is!5 l65l-5~0'I I IW l6 7:WNV 44i 5!8!5 i66l-4 0 I I i 1 IW I 84'28'HWI 4 l407: 3)47~64<-6~i 0: I 1}136: 6'42:~!89 l49<69-I)NW!5 8'32-HM<l5 Sl<6 70 Os<i I)NW 6'tM 3!5'l 5)82 l54)68."-: 0)3l'IN!9.0:28 H)33I55 I 0: 7<<7 I+ps 66<I N:58: N)35.50~l86)58 i72<+3'i 7<I):N)0.2'37 NE I 37 i 471<0 1~7~5~"5'-4lpi 0: I I'N'7 i: 0)4I80:45 62-6<3!0~!I N!437'478 I KFII 850~s'll I-I: 0>>'85 147 166!'-: 0I: "I 7~47)67l 0NW 5.3 16 HW 29'483 I 0 I 30'MM'4 0 8: 3:46 0-47!6'+'.4'I'4 4 NW)0 4 4 I 4:56'.5!+9'0: 0!i!IM': 4 M':46'I~', 6 s O I 9+;s 4!>>6'58!64'-:..0')NW'84 7~48NW'4'2'NM I 43<88~0 i~7)I 4)-I!Qi!I 6 I i4~is I!44~I-4!50 I 82 l52<67!+0 I 2 I I Si 83)46!64)Ol I 0 I 85!52 l68I+4!0 I 3 I 88'53 l70I+6 I 0 I 5 l 54 90 l51 l70)+6.0 I 5 I$586'<54!75!+12 I 0!10!O.OZ$5 79)5)6 1+3!Oi 8Q)47!64'+:!P'!87 51 169+7: 0'-'W)6 4 I!Si)')47 0: 36~40 I INW'.2!14 NM 39 410 I 0 IS I 3.5;10<ESE 39 398 2 I INW)49.NM 40 38 0 I I 4!14 8 W~4 2'H.57 3 9'NW-63'H'9 I INW 9.0i42 I SSEI 39.257 10'L>>l88 61:74+12 0 9':.I'!W 8.6 18 MNM 32 344 6'!76 58 67+6.0: 2~T'.'W 10.0 32 MNWV 46 140'~)1.'I SVss-83.2!52.<Jy'ri 12 i89 i 0.02 0 6.1'J N///tr 2.5'll 1 r~v II)vsLEJ~OT1I1rl~I saa~st<as, Tsc~JILT~vvvasT sea<os I~tsar HIS1<IJT to Hsossost aacartc~IJJSJ1~Tltsc , (5)tst ls coLvssss 1~~EsoTE~1 Tsac~s())Tssc LJJILET<IOL<H I~Tsc vs It vac4 14~E14TC~JE I~Jv CJLOJIC/Csa 5 TCNPCRATURC lors 5 rt.Latas1~NCC<PITAT<ON <INI TOTJS, toa TSC Voattt 0.2 Ts ace~1 Hose 4,51 41 voaa~Ea Ja TV1E~1ov 141V JL~~<atcsr ss Sa sa~.0,02 41 25 svvacs Ov~JT~VSTst 1 ssslL Js~asst~1~~CVIT 1~too OL~CLJ\E 1 as~at~~~~'saris~OVCT~1~ILOW<1~SSOW~L~I~Vast LICVTssso~o sasrtsso astr IC ICE~11sT JLS T~tso~4~1~141v SARONCTRIC PRC)5URC Is~I~v rv v v Nk NUTAT<os I 0<N C ST tv<1*at vo~1st vo 4.41 1~HOJE 4,SO 41 Haaa Jslaala ITJTI~1~I 1 1 1 Ts 1 C~1 4 H~O 1 H 1 L~sl I a 1 I I T isa>>car svvsas~1 sass rstsl staa.11 os JCLow Hal 14 41 JJO1E HSS 11~1~ELOW~1~1+1 4.14 O~vl~C 1.40 os s aac$NOW.ICC PCLLCT5 15LCCT))<SEVE)) ssasast~ck LatcL~Larcar~Ca SIVCL~1 0 oa 17 1~TJL 141 TSC Vo~TS I Saaktc~T SS SJ sask~I p I-Ektasr Os asal I 0~s I~1 5OLAR RAO<ATION ILJVILIT~<415.6 JVCJJIC SJILT TITJL~a 5+asc JIEST~LILT 3 I p Jvcaaac~Ja<~lssssi WINO Ito rt.Ltvtl, I~6.1 I'LEJIT SJILT I 4-I p Is<5CCLLANCOU5 NUN4CR Or OA't5 0 vss 4~1~CLOV NCATINO OCCRCC OAY5 Isaac~Sa~)TotsL aaa TVE Hosts~EsasTvsE fsosa stavaL 4~~JJTII~C raosa sssvsL 3 saks'Ivaf 42 raov i SS 41'25 12 AVCRACC P5YCNROSICTR<C OCTA 55 sar sos~Iarl 9 w>>svss Ios)5 0 ELC Js SJOTLV CLOT~1 to~111 1~I 1 RCL.NUN.CXTRCNCS<%)CLOVOV~01~1 0~EJJOVJL TOTAL IsssscE JVLT 11 JEkaos JL SC1111VJE rkav 141HJL~<I<500>>0$5 i<$$)ssssa awvv 1-65~aw rr c4V I JEL SVH I'l oscsotcs Lktcsr or OETIVJL oatcs 1lasaat LOVIST 6 15 Meteoro1og)ca1 Cond)t)ons for September 1989 B-7 OBaneue CLIMATOLOGICAL DATA HAH)tO)!5) METIC)ROI OCY STAT)O)4 55 QILCS a, r Ot SIOaLAIO,'>>A]II>>CTOI ctaber 1989 LAfltuoc aso)c'..Iosclluoc 115~)4'cccv>TIO>> lc>ou>ol]))tcCT v TCHPCRATURE IOF)FT.~l 1~,~as v s~4 a>LCVCL!CCCCEC CATS~L]C 45 PR v v 1 t"4~CIP~~v r ,v v C'av v~v r I<<4<<1 j v rvs r v<<>4 4 v i v V~~~v]t V a v v a a]>>IH0 150 FT LCVCL!>>CAR CUS v]t~I v J~I~t I~j"~~~1 v]>tee~4 t FRONT5 ANO H15C PNCNONCHA 101CI TIQES Or r>calf>L il>aut>AIE alvEI L>TC~Tlat Iof>floss>t>kou t>tati>so"vr><<I<<L>v raoefl I 2 5~A 4d t I IO II I]1$I~15 I~71 5 8 56 6 431+4 1<<4i 9 0 0 I 0.04 IN 9.26 N I 39 N 8.8 27i N I 41 I 4l-I la+I I i 4 I i 5 I I 10 14 I I~64 4 l41 4 I l4+I+I+I-6 NW I 46 l343 1'71 i I 4 I 5 I I I I~I'I 4 I I I 4 I 9!4 l 4 I-'I I'~4 l I 7 FR 55 l]5 14]0 51 5)4 I 4 I 4" 4 44 5 iW I 4 i4 I 94 I 4 0 i!'52 Oi!6 1 I I 4'F 4 FR 534>>62 4 56 0 00 46WW'.8'0 IO KFR 25 KF 702 SC 55 62 40151 I+2 14 0 SW 3.7 I 6'I 70:238 3!AU)4 I!46 I-I 0 9 136'4 i+: I)4 I 4!45 l I I I>>53'7!40 I-6 I 25'I 0~02 4 0 0 i.5'i6 48 6;F 0)0 48!28'38-8 i27!0 I I'W~3 4: 5'WNW 70 51~10>>I54!35'44I-2i '0!!!IW 143~N I60 239 I 0~al v LV~39IO I04 I 0 15 IIIRCCIPITATIOH 11>>l 5.6'Q]iv v v>>AQ TATI 1 Eccl>>co IT!II u>Lcs~0TIcsvl~c Liccltlt~TIE oalLT SVQQ>11>C>leo I~tIOQ Qi~II4>>T 14 Ql~11411,~Lalrl~STAIOLIO TIQE l)l QTQ Ql coLvval~1~~t>>41cs 1 T>>ct.I!)1 1'st LL>CLCT IEOL Itl I>Tst VIIT V>E~10~CSOT\OIC~>La>CALO>la I CQ 5 TOTAL tOA Tl>C Qo>T>~I~A>TV>C t>OQ 10>QAL 04~>ELTtlT ls CE I>~0 5l~.2-22 IVQOC>Ot~>10'Ill ill 1~SAIL>1~Le>~4>~Selt t tee~L~LL 1 C~~lvelc~0~>LO<<l>~SV0 1~0~Lo<<leo~Itv~I,~~I~TL>1 LIE>falls~~>~>l>1II~010<<Ia~lac C>101>LS 1~1 e V e 0 l~0 1 0~a>TRHPCRATURC Iorl 5 rf.Lcvtal~vf~Lec re~1st Q>>T>~C>A>TV>a tIOQ I~>QLL TILCC~I Q>IC 0.01~I Qe>C 9 o.lo oa~>et 0.]S 0>Qo>C e.sa ea I eac f,00 ti Qoit CAROQCTRIC PR555URE Ils I LvEI>ct 01>vie~Qesasr sca uvaL 29 la I~I t I 1 80 Os LO<<CSV 27~I IVQ>tA 4>Sais<<ITII QL>, 1]41~ELO<<QLE~0 41 Au>>~Qal~St 4~~EL~'<<QQQ o oa ecto<<10+29~It>TEST~I esol~I~I VINO 100 rf.LEVCLI~vts>at sites lv>sl~E~L>TV>t 110<<101QLL 5>>ON, ICC PCLLCTS (SLCCT)IIIC>>cll Tot>L re>1>C Q4>TI~>CATE>T I>1~laae~01 0 Leva>f~aa uvaL 5OI.AR RAOIATION IL>eCLCTSI LttiA4C 4>lLT TOTAL~>C>1CST~LILT LEAST~LILT~I H15CCLLANCOU5 NUHIICR OF OAY5 toc CLCAi 23 HCATIHO OCORCC OATS I~1st~Cori~CLI CVST>IOQ I oe iji1LT CLSVST Tsv>OCI Tet LL t41 flit Qe>TV~ltL>TV>C r14Q 10>vaL~u>0>AL 101>l I~l>at JVLT II~CAIOIAL~C>LITVI~~>OQ Ia>QLL~II I~OO 05)!I))l Laa>a>vw>a>aaa. oav aves cori ICL IVQ ICI vcf sec~Iovi 45~cv it IOrl ootsofa~LLTCST Or SavtIAL OLTCS AVCRACC P5YCNROQCTRIC CATA ELov>T IiaecsT LO<<EST~VST R!L NUH.CXTRCHCS I~s 4 Os Meteoro1ogica1 Conditions for October 1989 B-B QBal elle CLINATOLOG(CAL DATA NANSTORO SAS1TKOROLGG<<Y STATION 15 LHLCS N, W OI et%LA%4, W*SULVCTOE November 1989 LATIIUoc cse se'.~Loatllooc llse ss'lccfelloe (5444%01 Tss rccT v~v 455~4~v~~~%0 OCOI CC 44'll~JSC 45 TCNPCRATURC 1st 5 PT.LCVCL 1 a~1 C V~~~, oaa<<v J v 4 v 4v<<*v PR CIP<<~II 5<<v 4~4~l lN~1 4 4 v 1 v v 1 4 4 1 v 1'<<~~4 v V v E v 4<<3 WIND 154 P', LCVCLl PCAN 4US v 5<<~0 k v~~~~J<<N v~~<<~t<<55 la~1~~~4 PRONT5 AHO NI5C, PHCNONCNA%01~I TIVC~~1 110<<TJL~44~JCCS kkC~I'Ca krfCS f<<C 1~TJTI4%4 J11 NSLS 1141f1 4%~I%11 Iakkv rkosfl 44 5 CA~8 Io II I Is W 38 H 2ll 9 NW 9 331 Ie 15 68 236 HM I 80 142 MSM I 76 51 W 54 142 8 IF lp 6 I KFR 03 4 s I 10 4I+!++I+I+I 0 0 5 9!23 HWI56 I 133 I SW!13.3 38!SSW I 55 55 10 I I Wi 3125~W 149 184 i i I Wi 4 Zl 37!SMI 53 77 1P I'I7!M M'I'54'I'143 9 I Wl 2I32'WI 53 I 155 8 3.5 18 NNW I 70 i 152 10 KR14 KRI 15+4 NWI 55: 6iNWI85'9: 8 F IS+I IP M 8 li 37!W I 60 i 190: 4 KFR 13 0 10!+O i I W 8.0!22:WN'M!55 i 202 I l Is I 14 4 IT 4+I 0 0 4O'+~5 p 0 9 0.05 NM 5.5i 8: NM I 65 NW I 4.6 15 i NW 1 86 NW'.1!18 i NI I 91 107!10 82 I10'F 96 ilp iF ls 44 IS so 5 Sl 38 35 I+0 4 I+5 0 45+7 20 0 4+9 19 0 0 Ol 40 10 I 2.4i 141 NM I 91 88 10 I 89 8 iF NW 3.P1 16 I NW NM 4.5i 18 NE 91 80'76 0 IF N 1.6: 9l NW 94 ss 5p xs 48 ss 5 ss 5l 14 30 36 9+226 39+2 26 0 4+5 23 0 44.+8 21 0 0.14 O.lo I+6 0 008 N 3.6: '24 I 5 SW 5.3I 24 I SW HW 5.5!25 I SM I 8pi28:'ll 0 NW 6.3l 16!HM 73'l70 1 IF 91 I 83 8 69'10 6 72 i 125 7 141 pl I+I lp~ls i i: I Ip I ss p: I 6I-9I39 I p I so'.4 12 I-137 IO I Sl i%~W I 3.8l 12 WSW1 74: 147 10 NW 5'HW i 90 64 N C l 2'.W l96 65:10 IF!C 0.3 6 SE 1 97 43 I 10 I F~Vv 4%~621i 1 1.04 0 6.0 7.4~v 111 U<<LEOO ST%ca%I~c~stclrIE~1st~JILf~Vvvk1T rtalee I~111v vlOal~11 1~vl~sl~af~4~ITIC~Tk<<0410 Tlvt (11 4 T~la c4Mlv~4 7~otsofts 4 Ts set,%(sl Tat Lka~LCT ICOL 1~I I~TVE UalT Vlt~1~~EI~Tc~sc~OJV CJLO~IE I CV S TCNPCRATURC 14<<l 5 tT, l,tvELI 4%1~4~C 1~1 T<<E vesta~1~vvstk or ok%4'vlf%I TIJCC~1 V01C 4,4I~1 V41E~,Ss\1~41E 4.10 01 V414 PRCCIPCTATION UNI TOTJL 101 TUC ve AT%OESJJTV1C 114V 141VJI,~1EJTEST lll SJ 11~A JV~441414~0%41~~ro~~I,~Lk1t~vs 4 E~0~Le%la~OUST~4 Steals~I%ca~L~~ISfkaT LIE%I%la~~4~~slrfl~0 lac%IC ICt CJT~TJLS 1 Tsa~Otk~T41V OARONCTRIC PRCSSURC ua.l 1%tsket~Tkf le%vll pvcaovcak 1 Tktloal vlco Ia lf~CSJJTV1C 11~V 1~SVJL 4 Io 01 veaC 1,44 01 V41C Ill~<<EST~CJ\CTIL~1 3P~l41EST Low(ST~%alta Or 041~'vltl~I~1~1 9 0 TOTJL 101 Tat veaTP~ktkTCSt I~C~<<OV1~I 0 SNOW, SCC I'CLLCTS SSLCCTl DSCSCSl Le<<CSt ICE LCTEL 7" 25 192 SOLAR RAOIATIOH ILJ<<ELCT)l aft%Jet OklLT'TOT JL Vkc SS~1 OSLO%~sckftet 4%~104~1~1CJT CST OJILT~~l vks, 44~1 JSOTC Vla Sl~1~CL4<<VI1~0~1~ELOV WINO ISO rt.Lt%tt I kf ckkec sscto la<<%I~trkaT<<1C r<<ev~41vkL LCJST SJILT 40 0'8 Etcke ree ll NISCCLLAHCOU5 NUNOCR OP DAY5 HCATINO DCORCC DAY5 ISJSC 014~1~EJE OUST 1~Ov~41TLT cLS'lel 6'Tavaot1 TOTJI, 141 fs~4 411%~ErkatVSE raev 141vkL~tke~<<JL TOTJL I~I~EC SVLT ll~EJS~<<JL~E%41TVst raev 101vkL 44 CSOO<<OSS 11 Tsl lie v Jaskv4<<lla -239~<<T~44~I or I ktL avv 111~lct 0%41 Ieri~cv rf csrl 35+~E14TES LJTCST Or~Ef ESJ'L OJTCO AVCRAOC PSYCNRONCTRIC DATA ELOV\T~%11 0 RCL HUN.CXTRCVS5 151~le%EST pp 0+LV<<tef 32 4%Meteorological Conditions for November 1989 B-9 SEIOT DOIIClll ra<<V l~CLNATOLOGICAL DATA rthtspvrsak Ewaa~tkvravvvv I v~ra~rvla SS MILLS I'w Ot EIOlLAIO,'WJSIISCTON Oecember 198!LATITUOC JCI Sc'l,~LOI4TWOC>>$ 0 SC'CLCYJTION ICCOUIO5 TSS rCST V V 1<<J S SS k 4<<~~~<<I OCCSCC Oltl~JSC CS TCNPCAATUACEOP 5 PT LCVCL1 PR I~V J 1 I~g ClP I'C 1 4 v I 0<<15=C~0<<4I I I~~4 t I 4~v I v V a~I v 5~~V 1 P CAN 4~~v a<<OUSW~l'~~'VINO 1$0 PT LCVCLl V<<<<V 0 I~vo'<<~~0<<PAONTS ANO 415C PNCNOIECN* ~01CI TEQCI ot tso<<TJL rasskocs Asc~1151 JITCI TIC 101ktloas Itai ECOLI tstItl Aa~lats I<<kali~10<<tl 35 I 5~l33 5 CA-3 32 CO 0 110>>~$1$1 1~1$lc SW 181 6 SWI 91 28 I 10 37 6 44 5 I5 5 l3g 32 l34-21 31 32!34I-2i 3 0 I O.pll 0 I 0.07I 35!40 i+4 I 25 I 0 I 0.09!33 I42!+71 23I 0 I I 35 l37 I+3!28I 0 I SE 4.0111 I SEI 88 55 I 10 I F tl 2.5!15 I ESE'4 I 37 I 10 1 F IN 4.5i18 I NM!93 I 50 I 10 I F It!W 6.2!18 1 NWl 87 I 109 I 9 I F IS!3.8ilp!S I 98 I 36 I 10 I F KFR 1930 T 144 136 l40 I+7.'5 I 0 I O.pll l58 l35 l46 i+13!19I 0 I 0.01!I 5 l50 l35!42 I+9 I 23I 0 I I lo l48 l27 i38!+6 I 27l 0 I>>39!23!31 I-2 I 34I 0 I 38 20 l29 i-4 36 0 I 35 I19 l27-6 38 0!I ls!31!26!28 I-5 37 0 I I 40 I28!34I+3 I Oi 33 I30!32I-1 l33I 0 I 32 l25 128t SI37!Ol T INW I 4.4 13!NNWl 1 1 73 5 10 I ISWI 8.9 36!SMI 76 ll54 I 0 i F IW'!12.0 33 I WNW: 57 i 129 I 4 lW I 5.7i14'NW: 67 I152 I 0 l iW l 6.4!14 i SE 71'121 6 IW i 3.4!1 ISSW 84'126'1 ESM I 2.9:101!140'-6: F IS!32!2!S:96: 37 ilp!F'SE" 3.2i13.SSE 92'121!4 I F iSW'.6!ll 5 SM 89'5!10 i F IS l2 8i 9'1 88 i 29, 10 I F GL KFR 23 1~5 2 I I-5 37I Ol!I30l 8 5 89!.105 8 I F 10 7 4 I I-5 37 OI 24 I pi-35 0 sc I 4 LI.0 6 4 11 4 3 0>>I 4 21 33 0>>3 l27 30 I-3 35 0 iNW!2.3 8!t!W 95'0 10 I F INW I 3.2 14 I NW~92 71 9 I F INW 55 3 I I 85 36 7 I IN i2611 iSS 190'l 10 IF INW 3 2 12 INNEI 95 26 10 I F SW 4 0 IWNMi 94 34 0 F>>36 82 l34M 1 31 0 0.01 T SE 3.2 10 I SEI 92: 34 10 F SS I t" 01 3 0 00'0 T I l8!'92 6 0 F 0 I 0 l331 0 0 04lp 0'27!28'-3137l 0:0 03'0 4 T!5 i3.0l i SW 87 35 10 F M i 2.3!9 IWSW 98 27 10 F GL SVV J1438.'0 i28.rrr 85 i 0 I 0.29i 1.4 t 3.9 8.3'31'28 130!-1!35'1 T I O.g!M'3.4'NW'5 41 i 10 I F GL so 32'30:31'+1 i 34!0 I I;l0.6'SW'.6!10 WNWl 94 29 l 10 i F sl l37'26'32'+3 i 33 I 0 I T!T.0.115!3.0'12 SSSW 93'6 I 8 I F'rr'r'ill Vates~OYscswlst srccltlco Tvc~JILT Sall<<JIT ttsl04 I~110<<Qloslcst TO QI~VISIT IACltlC ITAaOJI~Tlvt, 1$1<<t ls CILVQIS 1~~OEIITCI A Take>>~ill TNC LAS~LCT'!COL 1~1 lo TSC Vair USE4 1~~CIOTC~SE~SJQ CJLIIIC I CQ S~ACClPITATION IINl TOTAL ros Tst Q41TI I 0.29-0.66~trksTVIC u4Q ISIQJL~ACJTtst l1 SJ 11~p.pg!II I 4<<vv>>1 ot~Jt~'<<ITIS I~I JIL JV AVI41k~OUST t~144 4L~ILA1C a svoat~I~ILIWISI OUST~I~Lo<<lso 510w~L~lstkat Llsstsls~~I~IsltTII~saow IC ltt CSTITALI Tata~E~IT41<<~NIS PNCNOVCVA NOTATIONS SCO IN CO IT TCNPCAATUAC 14rl S tt Lttcl,l Taste 01 QOIC o,ss 01 li~JE I 0 OARONCTAIC PACS5URC ll~,I~vtakor rss 1st~oat<<I~CrkATV~E 110<<IOIQAL IIIVCST LIVE~T~Vla~CI It 4AT~WITIE QAI>>41~EL4W Qkt 00 01 Akott~Qs, Ss 01~CLOW~scJTtst la s I vovssl~IEJTC~1 Oa~10l~I I~I WINO 100 tT ustl.l AVES JIE~IEEO liar<<1 I.ol 01 laoac 0.10 01<<oat I 4 10~I QIIC P 14001QIIC P 5NOW.!CC~CLLCT$1$LCCTl OICIC5)TOTAL to1 1st QIITN LO<<uT uk LEVEL~I 8 5OLAA AAOlATEON 1LJIILctsl JVEAJIC OJEIT TOTAL~IEATCIT I JILT LCJIT SJILT~a~I NI5CCLLANCOU5 NUNOCR OP OATS Jttakat Stktlo~IIIICST ICJ LE'ltL~I Qla.I Oa~CLOV HCATINO OCOACC OAY5 lSJSC~141 1 TITJL 141 TIC Q4<<TS~CIJATUIC tso<<101QAL 4E~JITVIC 114<<101VJL~CAJ IVST raov~I AVCAACC P5YCMAONCTAIC CATA 411 IVL~lorl 9 vcr SUL~to~I 3'2 CLC JS~AITLT CLISST CLOVST to~Tsvasca~VST ACL NUN.CXTACNCS I 1~CAIIV JL 10>>L (IIIEC JILT 11~CL IVQ ltl~CW rt 10tl slcatIT~EJIOIJI,~ESJITUI~uola 101QJL-244 0~EI~TCS LJTCIT 4t SCVEIAL OJTCS Lowcsr 39 Meteoro1ogica1 Conditions for December 1989 Mmlleile F<<W'HH CLlhlATOLOGICAL DATA RAN)TORO (t(CTKOROLOOY STAT(ON cs Iatacs N.w.Or slcsckso, waslt strew January 1990 LATITVOC 040 54'.~LONOTOOC)iso 24'v RCVahON (Ctatta)725 FCCT TCMPCRATUAC(4i 2 PT 1~, J~22~1 v 14~V 1 LCVCL)occAcc oars~LSC 4$PR 1 I 1 J~1~0~r 1 V J v V S~v 4 at J~v r r a 0 r~5 J ll 4 V JVO r~'4 V~1~O 0<<v V~1~1 v 2 V 1 v v r 0 V%1NO ISO PT LCVCL)PC*K 4US~I v 2 V~~V~r V 5 V r 1~av l,r 1~Crt va 51 1 Or~~r PROHT5 AHO IIISC.PHCHOMCHA~OTEI hvas 01 Fao<<TAL Fasskccs Aac~IVCV krTI1 TltC laOTJTIO<<s L11 IC4LS 114111 krs rro Iwakal 114<<rl 4A 48 7 la I I 12 IC IS'14 17 47 2 4 32 4+ll 8+pl 4a+0 0-W 96 29 W Ilp.p 29 SW 70 31 WNW SW 68 56 64 I 138 6 I 78 9 71 10 p 4 59 34 I 49+2 4'46+17 0 0 0 I 0 T SW 1 9 37 SW 54 68 65 SW I!6.7 57 SSW 63 SW 0.4 49ISSW S 9.3 44)S 115 6 61 9 61 10 8!9 I 55 60 lo 50 48+19 17 44l+4I2 0 0.2 0 T INW (NW 7.4 50 WSWI 79 41 10 I F 7.7 26'WSMI 56 l109 10 I WI16:5 61 W I 69 I 85 7 IF KFR 0130 KFR 0230 KFR 1950)I 4 Ic 4 IS ls 44 0 40+OI25 7+5 28 0 0 00 0 0.03 0 INW INW 2.6 ll!NM 4.4 12I SE 93(58!10 (F 86 I 83 10 I 7.9 15i NWI 58 I 48 10 5.3 7iWNWI 64!75)10 IS 14 4 1~15 20 21 22 22 5P 0 7+528 4+Z4!+4 9 4 7 I+4+3+2 4+23 40+Ip 25 0 T 0 0.02 0 0 0 0 INW INW 3.9 12!NW 8.0 16I NW 5.8 181 N 5 15I NW 4.3 12 NW 4.0 13 I SSE 23 9 NW 9.4 45 M 3.8 41 MNW 91 I'54 82 I 67 61 ll69 86 I 46 74 I 86 78 I 44 83 I 48 64'128 49'191 10 IF 9 I 0 9 F 10 10 I 10 KFR 0710 KFR 005 20 25 52 24 35+30 44+4+I 6 4+I 3 0 0 0 24 50 35 48+81 7 0 00 42!+12!23 I 0 0.13 24 50 34 42'12!23 0 3 1 8 WNW SW II4 9 52 SW W 4 2 32 WSW!SW Q.7 53 (WSW!SW 8 1 73!SW ISW 12.6 55: W.W 7 9 I 34 SW 67 I 97 57 I 60 47: 21 51'140 60 99 57 134 63 128 10 10 KFR 2100 KFR 1400 80 WFR 1210 KFR 173 8 KFR 2348!10 sl.42!28 35!+4 30 0 0'.05'0.6.S l6.6 I 32!SSW 71.55 10 F SVV 63 0 0.77 0.6-0 8.382.21QZXS~(I)IIVLCS~~TNC1WISC~FECIFIC~, TVE 4AILT~VNlaA1T FCOIOO I~114la lal411~VT TO HI~<<last 1LCI1IC STAIOJ14 TINE (2)'at~11 COLO 1~7~~StroVCS a tOACa.()l TVC LA1~Lcr (COL I~I IS TNC VVIT Vsts To OtroTC 41E 01Jla CAL11IC I CQ 2~9.2 PRCCIPITAT(OH OH>0.77'tOTAI, 101 TVC Nor TV 4CFAATVIC 111Q 101QJL-0 20~Aakvasr 11 sa 11~.0 39 41 7 8 OVNSC~11~JT~'WITVI A SNL Jr~LV 10 1 k~~OVST 1~104~L~LACE 1 Ivoat~4~~LOWIJC Star~1~~Lowl~0 srola~L~~I~Tkk 1 I I~1 Ts la S~1~~al~Tlat Lkow Ia~I~C CATSTAL~T vrra~I~LToala 8.4 NI5 PltCNOltCNA NOT*TIO115 5CO 11 CO lr CARONCTRIC PRCSSURC II~.I TCMPCAATUAC lsrl 2 Fr.Lcvacl Jrtaast 101 rvc Ho<<Tv~Craatvat FASH rtaaakt, 11~IIEST 41 LOWCST 22~lt VVILSCA~1 OATS Wlvlll T1ACC 01 NOAE 4 Ol 1a Hoot S.SS 01 N01C 4 14 01 Hoke JVC1LCC~TLTIOV+0.3 O.looa I~Ja 3 I.so~OHoac 0 1t~1ttr~CALCTCL 3p 47~1 11 LOWEST SCA LITCI, 9 8" 30+5OLAR AAOIATION ILaaaccvsl 5NOW,)CC~CLLCTS (5(.CCT)(ISCACS)18 T4TJL 101 TVC la01Tlt 0.6~AEJTCST 11 SC VNI1~I 0.6'" 31 kvt1LCE OAILT To'ILL tlat 22\1~EL4w HAC 44 41 AOOVE~at~sa~1 SCLOV Htr 4 01~CL4w 18 0 0 0~1EJTCST 41 Sat~I 0.6" 31~EFLATVJE FSOQ 141HJL 9.2+2.7 WINo Iso 1'r.LcvcL I kvcakst tact~IHrvl CSCATCIT OJILT LC ACT OJILT 191 41~1 N(5CCLLANCOU5 HUMCCR Oi OAY5 Cat AA F40 HCAT)HO OCOACC OAY5 isaac~Ctr)TSTLL 1~1 tvE laorT'1~CFJJT111C FaoN 101HJL~CLSSVLL TOTJL I~IVCE SVLT~I~CAS01AL~CFAATV1'C FASH 101NJI, 763-3-62~M IOOOASS (I 75)aaraa avaaaaL rata.~tks ovsT 73 raoaa SW 01 28 AVCRAOC PSYCHROMCTRIC CATA sav SOLO 14r I wcr SCL~141 36~aw rr ltr)9~CL.1st.(El 0~CVOTCS LATEST 01~CTCAAL VATES~lorcST LOWEST 9 01~aATLv Rovsv 5 v>>vrst1 CLOVSV 24 Ovsr ACL, HUM CXTACNC5 ()0 Meteorological Conditions for January 1990 QBallelle taH v sH CLIMATOLOGICAL DATA BAN)TORD)s(C'TKDRDt DQY 5TAT(ON 1$ISILCS A%Ot AICN<<kaos'WASNINCTON February 1990 LAtltusc l40 54'..LONCITUOC I lss$4'CLCYATION (CSOV>>0)7$$t(ct V s 4 5$1~~~4 0 s TCNPCAATVRC (4F 5 FT LCVCL)OCCECC (SETS~kit 4$PRC~~s 1 s V C)P~s'E 1~v 1 1 15=>,o v as s~"Esc)~v V 1 1~s 5 V v 4 v 4 v 1 1 e%)MO ($0 FT LCVCLI>>CAN CUS~l v 5 V~s J l a V 4 v V~~Sv~as~sa<<*4~~~e FAONT5 ANO NI5C, PHCNONCMA~01<><<1wlst 0~E~ltIC4, 11C~klLT'avssvklT tcalso I~taolJ Hl~ascat 10 His>>)411~k<<ltl~Stkaoka~TIH<<.(1)'(s IN~4LVssa~'7~ot1~Tts 1 111CE~()I T1C LkasLCT (C4L,I')I~11C VNIT VSE4 10 OCaotC 41C~skis CAL~1st I tls 1 TCNPCRATURC lots 5 tT.Lte<<LI PRCCIP(TAT)OH ((H)T411L 101 Tac HoaTss 4EtkaTVNC~10H LOWelL~1<<kt<<OT I~Sk lsk~1vvaca ot okl~'wlTNE T1kcE 01 Hc~E]0 o,ss 41 lsskc I P~0~LOWI~0 SV~'1~0~SLOWI~0~SSOW~L~ISTkat Ll~ls Tales~0~~eltTIN~sasw lc IEC C1TStkL~1 Tae~0E1~Tsav A~1 kl I, ke~ksksak~~0401 1 tss SL~ELEEC~~avast AAAONCTA(C PAC$5UAC lle I r>>C>>q>>C>>A>> I'ATIO>>5 USCO>>CO 17 as\1~4<<t41 el E H0111~CtkaTVNC tasse lssaHSL O,ol 01 Heat 4,14 01 asset 0.04~1 MsaE I I JSO 41 Hskl SVISSSE 011'II01 Nl~Il<<01~Ck LEVEL I ca ai~1~St Low<<~1 aevaE1 Ot 0110 Wltlsl~1 T4Tkl, tsa TNC Morta~1CSTEST la Sk NOV10l~1 5NON.(CC~CLLCTS (5LCC't)IINCNCS)Low EST~Ek LET CI 4 5OLAR RAOIATION nkaCL<<1~I ket1kst~SILT T011L Hk'E Si~1~E'L4W~1<<k1C~T sa<<10l~1~ktkt<<ST OSILT~a Hk~~04 01 kaovc~sla, ss oa~ELow~sH>>4 01 0<<LOV 20 0 VINO iso tT.LET<<I.I ke<<110E sat<<~lveal 8.9 4<<tk1TV1C tasas asevkL~+1.8 LEAST OHLT 46 NISCCLLAMCOU5 HUNSCR OF OAY$EL<<ka 5 tos HCAT(HO OCOACC OAY5 lsksc~Sstl TOTkL toa Tlsc aloa Tv 767~Cks 4401 55 114ss 5'M 01 7 AVCAAOC P5YCHAONCTAIC OATA 8 Tlvasta~ka TL T CL 0101 CLOSET]5 svst~EtkaTVNC t14as N41MSL sckaoakL TOTAL I~I~Cc kvLT II 0<<1101kl~E~11Tv1c taov 1~aaskL~N (40041$(I 7$)aas.aa~slasaaa.ease.-4-566 sat 1st~(41)i37.5 wtt 04Ls Istl 33 1EL, avv, (VI~tw tt Iot)os<<NOT<<0 LATEST Ot 0<<etakL SATCS lll~l~EST ACL HUN.CXTRCNCS I)~1 LOWC~T'26 o.25+13 Meteoro1og1ca1" Cond)t1o'ITS'or'ebruary 1990 Qsartette~k&~I>>CLNATOLOGICAL DATA HAN)>ORO METL>OROLOGY 5TATION 25 UILCS N W or AIOILJNO WJSNINCTC>l March 1990 Lktttooc cdo 24'., Losutvoc 1 too sd'cccvkrlos (Csooao)Tss tccr TCVPCAATUAC(4P 5 PT.LCVCt.l PRC C)P WINO (SO PT LCVCL)PAOHTS AHO NI5C, PN CROM CHA V 1~V 4 22 1~a as 1 1>Sect(c olr s~Jtc 45 a"v~4 1 I V V V~v>'I>v 4vv V V 1 VO VVO z vo V t.t f 5 1 5~V V 1 1 S v j~v V s PCAH OUS s j V V V~~1 V 1~~v>v>>s>t~1 V~~~V~OTCI Nvu or r>o>r>L ra>>>>t~kac~lvc>k>TC1 T>c sot>El>as Jrs>Nolo taearl J>e vwrav IN>all taearl I 2 4 5~5 CA 4$ia+i 41+i t I 441+41 1!1 I to IM I W 11 I 12 12 I 14.1 1 MNW)1!NW 1 I IW i IS I tc 4 I 0 I P I!I 0 I 5 4 4!+i I I I IW!M Wi I 4 I~!63 4 1481+7!1 01 I 4+I I ot ol 1 I.I I S I 62 I 90 I 0 I!I I I!4i oi I Wl I'4 1 751 41 KF!t 3 5 I i 4+41 1 1 Io!2 I 1451+I Ol 1 Ol 1!i O')a't.1 1 1 1 1 144'561 601 0'04 54 13 142 12 5 i 43 ls 8 1 44 6 136 48 6 19 46 P I 0 0 0+4 7 0+1 910!W 1!WNWt 41 4 1 4 4!4 1 54 1405 1 3 i 6!01 Wt 4'356 4(~i!4!4!I i 6 1'I44i td 1~IS 20 21 22 22 24 49 45 56+41 6!0 0 0!5!:!1010t 4.'1 i I 6 1 4~i 24 0 4 4-5 23 01 66101 NW 8 l440 2T I 14+I I+I i I i 1 i~4 25 I+4 i'I I 4:5 (46!oi 0'~4 4 i 0 8 1 A>>7:4'5!+i)0):4 1 pi pl 1 r r rrrr JV~rr 6r x 360'rx~NT (I)'UNLcss~TNE1wl~c s>tclrlE4, Tst eall v~VUUJJT tC1leo I~t14U UIONIONT Te Ule>I~Nr>~kclrl~~Tkso 114 TIUC,)(2)>T Nl COLU>>~1 T~4csetC~k T1>Ct~(2)TNC LJNSLCT (E>L I>>I~TNC V>lt U>t4 TO~C1OTC~St~1>U CJL411~I CU PACCIP(TATIOH (IH)T41>L rea TN~lko>TN 4trk>TV>t~>OU 1~>UJL~>CJTtsr I>tk 1>>p 4 oa 9 0<<vwus or~JTS wlrsl 1~WAIL Jv~JO>11>~~~V>T roe~I,~CL>t t~>walt~4~S LOW I1~OV>T~s>Lewis~~1ow~I,~~IST>aT LISNT1lsa~1~>lrTI>e>>os It ICC Ear>TJLS T~T>>V~E~STO>U~Nll PNC'lONCNA NOTATIONS VSCO IN CO lr TCNPCRATUAC ters 4 tv.Ltvcsl Taktt 41 U>1C 4&s sa~o>t~AAONCTAIC PRCSSUAC tl~.I~v~kat>4a Tst Us>ra~Ctkarvat t>OU 111UJL NI Sat~T 76 41+3 6 31 4,01 41 Uo>E 0.>o oa vo>c 0,10~1 Ns>t 0 I.oo oa~oac SNOW, ICC PCLLCT5 (5LCCT)(l>CJCS)JYE>kst STJTIS>1I~IE>r~ck LEVEL Lewtsr~lk LEVEL~1~1 p L>wt>T 24~N~UU~ca~r 4>T>wlTNI Ukt St 41~CLOU Uk~, so~1 J>OVE 25+0~<<1~1 WINO Ise>T, LtvtL I 14TJI>11 T1C UONTN 4>EJTEST IN l J No>1~I~It*TEST~1 O>4I kvtaklt OJILT TOT>I~>EJTE~r 4JILT Lck>T~LILT 0.1 i 41 7 I 4" 7 1 SCILAA RAO)AT)OH ELJ>>LCrtl Ula~tc~1~ctow Uls, 4 ea sctew HCATIHO OCORCC OAY5 lsk>C ster)TaTJL r~1 Tsc UONTN st>Jar>ac taoU s>1UJL 0 kvc1>oc srcca Iv>>>l 4E>k1TV1t r>OU 141Ukl,~t>1 CVJT~>OU~>wcr>vs>Ierj AVCAACC P5YCNAONCTAIC CATA oav lvl.~14>l~ANAT CLOU~T CLOVOT T>'Vsst1~1st ACL HU)l CXTRCVCS (51 0 0!N(SCCLLAHCOU5 HUNSCA OP OAYS CL~Ja>44 0~ckses>L ror>L lslacc JVLT II 40~tk>ONJL Ot>k>TVWE t>OU 14>UJL 674~ll laooASS tt T>>lle>l>N>U>N>JUL WEL NUU I'CI~tw>r tort woes~TES Lkrc>T ot>crt>>L OJTts 1lwlur LONCST~1~>Meteorological Cond'ions for.March.1990 8-13 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Hg STD DEV AVE Na STD DEV APRIL, 19891 0.3 0.022 O.l 0 0.27 0.057 0.05 0.022 0.04 0.014 BULK DEP (ag)0.76 0.42 0,078 0.12 0.036 0.32 0.071 0.06 0,014 0,07 0.028 0,99 0.31 0.01 0.09 0 0'6 0.064 0.06 0 0.05 0'7 0,26 0 0.11 0.028 0.21 0,057 0.03 0.01 0.3 0'9 0,91 0.32 0'28 0,12 0.022 0.24 0.064 0.04 0'14-0,05 0,01 0.77 0.29 0.014 O.l 0 0.28 0.036 0.05 0.01 O.ll 0.036 0.83 1.25 0.036 0,12 0.014 0.86 0.12 0.17 0,01 0,15 0.028 2.55 168.07 30.893 9,48 2:574 59.55 10'08 19.41 2,991 8.42 1.421 264'3~~0.39 0 0.07 0.028 0.33 0.01 0.09 0.014 0.09 0,022 0'7 10 0.55 0.276 0.22 0.149 0.28 0.085 O.ll 0.078 0.06 0.014 1,22 O.ll 0.149 0.03 0,036 0.21 0.042 0 F 05 0'22 0,09 0'22 0.49 0.31 0.05 0.12 0,036 0.21 0.042 0,08 0.042 0.14 0.036 0.86 13 0.1 0.141 0.05 0 0.32 0.085 0.06 0'22 0.1 0.63 14 0.26 0.01 0.1 0 0.2 0.014 0,06 0.01 0.09 0.014 0.71 0.23 0 0.07 0,014 0,41 0.085 0.07 0'22 0.06 0,01 0.84 16 0.19 0.014 0.08 0,022 0.23 0.028 0.04 0.014 0'7 0.028 0'1 BC 0 0 0 VALUES ARE IN HII I IGRAMS PER SAMPI ER BC=BUIIDING CONTROL SAHPt ERS 0 0.09 0 Analytical Results for Each Sample Location-April 1989 ,'I C-1 0.09 STATION AVB S04 STD DBV AVB Cl STD DEV AVE Ca STD DEV AVB Mg STD DBV AVE Na STD DEV HAT, 1989 0.7 0.12 0.17 0,042 0.61 0.304 0.06 0~014 0.3 0.01 SULK DEP (ag)1.84 0.66 0.064 0.18 0,042 0.98 0.523 0.09 0.042 0.26 0.01 F 17 0,73 0~028 0.16 0,01 0~3 0.05 0.05 0.01 0,24 0.01 1,48 0.59 0,042 0.15 0.014 1.01 0,53 0.1 0.057 0.2 0.014 o.77 o.o14 o,16 o.ol o.s6 o.3as o.o7 o.ol o.a6 o.oaa a.os.1.82 0,93 0.064 0.23 0 0~61 0.071 0,07 0 0.31 0.113 2.15 2.25 0,318 0.26 o l,al o,a4 o.al o.o14 o.a6 4.19 81.87 7.304 4.59 0.481 37,11 3,465 9.12 0.912 4'8 0.212 136.97 0.88 0.163 0.33 0.057 1.18 0.12 0.16 0.092 0,24 0~028 V 2.79 10 0.64 0.05 0.2 0.064 0.5 0.036 0,07 0.01 0.14 0.014 1,55 0.6 0.064 0.19 0.057 0.37 0,092 0.05 0.01 0.17 0,022 1.38 12 0.38 0.184 0.32 0.141 0.35 0.106 0.07 0.01 0.14 0.022 1.26 13 o.s3 o.os o.18 o.oa8 o.sa o.24 o.o6 o.oaa o.la o,oaa 1.41 14 0.47 0.022 0,14 0 0.42 0.078 0.05 0 0.11 0.022 1.19 15 o.sa o.o14 o,ls 0 0,27 0.05 0.04 0.014 0.09 0.014 1.07 16 0.41 0.014 0~14 0.01 0.32 0,042 0 F 04 0 0~06 0.014 0.97 0 0 0 0 0,08 0,071 0 0 0.08 VALUES ARB IN HILIIGRAHS PBR SAHPLER BC=BUILDING CONTROL SAHPLBRS Analytical Results for Each Sample Location-Nay 1989 C"2 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Mg STD DEV AVE Na STD DEV JUNE, 1989 1 1,02 0.615 0.75 0.636 0.65 0'97 0 F 08 0.042 0.15 0.036 BULK DEP (ug)2'5 0.58 0.01 0,27 0.106 0.5 0.191 0'6 0 F 014 0~14 1.55 0.72 0,071 0.22 0,028 0.64 0.127 0.06 0.01 0.12 0,014 1~76 0.44 0'78 0,18 0'1 0.3 0.071 0.04 0.022 0'5 0.022 0,49 0'56 0.37 0.311 0.52 0.127 0,06 0.01 0'4 0.028 1~58 0.45 0.184 0.19 0.057 0,42 0.028 0.06 0.01 O.l 0.014 1~22 0'0.064 0.21 0.022 0,52 0.135 0'7 0'14 0.13 0,022 1.63 2.42 0'33 0.23 0,028 2.03 0.127 0.25 0.014 0.21 0,028 5.14~'0 0.56 0.022 0.42 0.141 0.45 0.149 0.08 0.028 0.15 0.022 0,51 0.099 0,18 0.014 0.48 0.318 0,07 0.022 O.l 0.014 1.66 1.34 0.31 0,05 0.22 0.064 0.29 0.028 0,05 0.028 0~11 0'22 0.98 12 1.19 1,124 0.79 0,283 0,1 0.05 0,02 0 0'3 0'28 2,23 13 0.73 0,078 0.19 0.014 0,61.0.05 0.07 0,01 0.12 0.022 1.72 14 0.45 0.057 0.17 0.022 0.31 0.042 0,04 0.01 O.l 0,014 1.07 15 0,49 0.022 0.18 0.022 0.47 0.057 0.05 0 F 01 O.ll 1.3 0.6 0.12 0.24 0.064 0.48 0'14 0,05 0.014 0.12 0,022 1.49 BC 0 , 0 0.18 0.141 0.12 0'7 0 0 0,3 V hf,UES ARE IN Mff,LIGRAMS PER SAMPLER BC=BUILDiNG CONTROf SAMPf ERS Ana1ytfca1 Resu1ts for Each Sam I I.ocation-June lgfI9 C-3 STATION AVB S04 STD DEV AVB Cl STD DBV AVE Ca STD DEV AVB Hg STD DBV AVB Na STD DEV-JULY, 1989 1'2.32 1.124 1.21 0,127 0 F 08 0'14 0,08 0.01 0.44 0.022 BULK DBP (ag)4'3 0.26 0.028 0.17 0.022 0.35 0,141 0.12 0.085 0.13 0.064 1.03 0.38 0,283 0~11 0.01 0.35 0'85 0.05 0.028 0.08 0.01 0.97 0.3 0'42 0,13 0.01 0.21 0.014 0,05 0,01 0'6 0.022 0.75 0.29 0,036 0.11 0.01 0.28 0.099 0.05 0.01 0.05 0.014 0.78 o.as o.oaa o.o6 0 0.26 0.071 0.04 0.01 0.07 0.022 0,68 0.43 0.057 0.11 0.014 o,a9 o.oaa 0.07 0,01 0.08 0.01 45'4 2.291 6.52 0.17 14.64 1,131 5.05 0.233 4,46 0.057 0.98 75.81 0.25 0,036 0.11 0.05 0.53 0.014 0.1 0.036 0.05 0,01 1,04 10 0,26 0.01 0.1 0.042 0.65 0.325 0.06 0,028 0,06 0'14 1.13 0,31 0,156 0,13 0.014 0.29 0.05 0.04 0.014 0.04 0.014 0,81 0.27 0.036 0.13 0.028 0.24 0,022 0.03 0 0.05 0.01 0.72 13 o,aa 0.022 o,ll o,oaa o,4 o.248 o.o4 o.o14 o.o4 0,81 14 0.24 0.071 0,08 0,01 0.51 0.163 0.04 0.01 0.03 0,014 0,9 15 0.22 0.022 0.19 0.022 0.3 0.156 0.03 0 F 01 0.07 0.01 0.81 16 0.18 0.01 0.14 0.042 0.31 0.085 0.03 0 0.05 0.71 ac 0 0 0 0.18 0.106 0.01 0,01 0.02 0.022 0,21 VALUBS ARB IN HILIIGRAHS PBR SAHPLBR I BC=BUILDING CONTROL SAHPLBRS Analytical Results for Each Sample Location-July l989 C-4 STATION AVE S04 STD DBV AVB Cl STD DBV AVE Ca STD DEV AVB Mg STD DBV AVE Na.STD DEV AUGUST, 1989 1 0.89 0.05 0.21 0.014 0.36 0.163 0.07 0.036 0,14*0 BULR DEP 1,67 1.41 0.679 0.19 0.036 0.94 0.516 0.15 0.092 0.07 0.099 2.76 0.81 0.269 0.27 0.12 0.41 0.248 0.08 0.022 0.16 0.028 1.73 3.28 3.514 1.25 1,506 0.61 0'88 0.2 0.078 0'5 0.396 5.69 1.05 0.17 0.19 0.01 0.56 0,135 0.09 0 0.15 0.022 F 04 1.67 1.117 0,96 1.018 0.97 0.693 0,14 0,113 0,1 0.028 3.84 1.78 0.212 0.18 0,022 0.71 0.106 0.12 0.014 0.13 0.036 2.92 234.7 26.587 17,34 1.683 71.92 7.227 19.88 1.669 11.5 1.117 355.34 1.14 0.304 0,2 0.042 0.57 0.417 0.11 0.036 0.13 0.099 2.15 1.14 0.629 0,79 0,898 0.18 0.163 0.03 0.022 0.23 0,177 2.37 1.83 0.976 1.36 1.64 O.l 0.071 0.02 0,022 0.26 0.297 3.57 12 0.69 0.014 0.16 0.057 0.32 0 0.03 0.014 0 F 08 0.028 1.28 13 1,1 0.022 0.26 0.028 0.25 0.156 0.04 0,028 0.17'.127 1.82 14 0,8 0.085 0.3 0,191 0.41 0.057 0.04 0.022 0.09 0.042 1.64 0,78 0.078 0.15 0,01 0,35 0.057 0.05 0,014 0.14 0.071 1.47 16 1,01 0.127 0.21 0.01 0.41 0.014 0.04 0 0'3 0.036 1.8 BC 0 0.12 0 0.24 0.085 0.36 V ALUES ARE IN MILLIGRAMS PER SAMPI BR BC=BUILDING CONTROL SAMPLERS Analytical Results for Each Sample Location-August l989 C-5 SThTION hVE S04 STD DEV hVE Cl STD DBV hVB Ca STD DBV hVE Hg STD DBV hVB Na STD DEV SBPTEHBER, 1989 1 0.49 0.135 0.1 0.014 0'7 0.028 0.03 0.01 0.06 0.028 ilULE DEP 0.75 0.27 0.028 0.15 0,078 0.08 0.106 0.02 0.014 0.04 0,014 0.56 0.25 0.042 0.08 0.022 0.07 0.057 0.02 0 0.05 0'22 0.47 1,13 1.138 0.14 0.071 0.48 0'75 0.12 0.106 0.11 0.036 1.98 1.42 1,506 0.2 0.184 0,59 0.53 0.14 0.141 0.13 0.12 a~4s 0.36 0.05 0.09 0,01 0.06 0 0.03 0 0.07 0.01 0.61 2.78 0.424 0.27 0.014 1.02 0.099 0,27 0.022 0.2 0.01 4.54 115.27 22.5 16.82 3.543 32.38 5.89 12.66 2.298 9.61 1.937 186.74 0.48 0,028 0.12 0.014 0.37 0.184 0.09 0,057 0.08 0.014 1~14 10 0.59 0,219 0.23 0.141 0.04 0.028 0'4 0 0~1 0.028 0.29 0.057 0.25 0.01 0.02 0.028 0.03 0.01 0.05 0.014 0.64 12 0.33 0,01 0.12 0,01 0,13 0.184 0,03 0,028 0.05 0.014 0.66 13 0,56 0.01 0.13 0.01 0.51 0,036 0.09 0.022 0.06 0,028 1.35 14 0,29 0.014 0.09 0 0,19 0.141 0'3 0 F 01 0,05 0.022 0.65 0.4 0.014 0.1 0.01 0.09 0,07?0.04 0,022 0.04 0.042 0,67 16 0,2 0.014 O.l 0 0.06 o.os5 o,oa 0.014 0.04 o.oaa 0.42 BC 0 0 0.08 0 0 0 0.02 0.028 0,1 VhLUES hRE IN HILIIGRhHS PER ShHP?ER SC=BUILDING CONTROL ShHPi ERS Analytical Results for Each Sample Location-September 1989 C"6 S TATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DBV AVE Mg STD DBV AVE Na STD DEV OCTOBER, 1989 1 0.36 0,057 0.12 0.01 0.26 0.028 0.03 0 0.04 0 BUIK DEP ing)0.81 0.39 0.014 0,11 0,036 0.51 0.01 0,04 0 0.09 0.036 1.14 0.33 0.064 0.14 0.078 0.56 0.233 0.05 0.022 0.04 0 1.12 0.29 0,01 0.09 0.01 0.4 0.127 0.04 0,01 0.04 0'6 0.35 0'28 0,08 0.01 0.49 0.141 0.05 0.014 0.04 0 1.01 0,45 0,12 0.08 0 0,24 0.184 0,03 0.028 0,02 0,028 0,82 2.76 0.198 0.31 0.01 1.23 0.205 0.28 0.022 0.15 0.014 4.73 92.33 3.21 14'3 1.351 27,46 0'09 12.47 0.474 8.55 0.354 155.04~9 0.39 0.014 0.09 0,01 0.71 0.036 0.15 0.057 1.34 10 0.38 0 0.11 0.014 0.5 0 F 135 0.05 0.01 0.01 0,014 1.05 0.36 0.071 0.11 0.022 0.55 0'63 0.06 0.01 0.09 0.01 1.17 0.62 0.509 0.19 0.141 0,51 0.106 0.08 0.01 0.07 0.01 1,47 13 0.51 0.163 0'6 0.078 0.51 0.014 0.08 0 F 01 0.1 0.01 1.46 0.34 0,036 0'9 0.014 0.5 0'62 0.06 0.014 0.08 0.022 1.17 15 0.7 0.573 0.24 0.141 0.6 0.163 0.09 0.042 0.1 1.73 16 0.2 0.014 0.09 0.01 0,44 0.042 0.05 0.014 0,09 0.036 0,87 BC 0 0 0,08, 0 0,37 0.014 0.02 0 0.12 0'.59 VALUES ARB IN HILLIGRAMS PBR SAHPKBR BC=BUILDING CONTROL SAHPLERS Analytical Results for Each Sample Location-October 1989: C-7 STATION AVE S04 STD DBV AVB Cl STD DBV AVE Ca STD DBV AVB Mg STD DEV AVB Na STD DEV NOVEHBER, 1989 1 1~06 0.085 0.38 0.099 0.51 0.347 0.06 0'28 0.15 0'14 BULK DEP (ng)2.16 1,07 0.078 0.3 0 0.27 0.099 0.06 0.036 0.15 0.028 1~85 1,15 0.219 0.32 0,01 0.47 0,106 0.08 0,022 0,14 a.16 1.18 0,488 0.31 0 0.68 0.354 0.08 0,057 0.17 0 2,42 0.75 0,099 0.33 0.212 0.31 0.028 0,03 0.01 0,17 0.042 1.59 1.33 0.071 0'8 0.01 0,51 0.156 O.l 0.022 0.15 0.028 2,57 12.22 1,817 0.93 0.191 4.64 0.792 1.09 0.191 0.67 0.135 19.55 499,39 59.128 36.17 3.917 173'4 13.782 53.59 6.35 27.01 2.772 789 F 9 2.36 0.955 0.32 0.127 2.98 2,312 0.52 0,467 0.21 0.01 6'9 10 0.72 0.028 0.23 0 0.87 0.141 O,l 0.028 0.13 a.os 0.73 0.184 0,25 0.092 0.26 0.17 0.05 0,042 0~13 0'22 1.42 12 0.54 0.04'2 0.48 0.01 0.34 0.022 0.04 o o.l o,o4a 1.5 13 1.18 0.962 0.29 0.17 0.41 0.233 0.06 0,028 0'2 0'28 2.06 14 0.76 0,17 0.39 0.12 0,51 0.057 0.05 0 0.1 0.042 1.81 15 0.62 0.022 0'0.01 0.53 0'71 0.06 0.01 0.13 0.022 1.84 16 0.78 0.085 0.49 0 F 01 0,47 0.036 0.09 0.014 0.09 0.028 1.9a BC 0 0 0.08 VALUES ARE IN HILLIGRAHS PBR SAHPLER BC=BUILDING CONTROL SAHPI BRS 0 0.33 0,014 0.04 0.022 0.04 0.057 Analytical Results for Each Sample Location-November 1989 C"8 0.49 STATION AVE S04 STD DEV AVB Cl STD DEV AVE Ca STD DEV AVE Ng STD DEV AVE Ha STD DEV DECEMBER, 1989 1 0.97 0.198 0.2 0 0.95 0.057 0'0,113 0.48 0.672 BULK DBP lag)2.8 0.94 0.028 0.2 0 0.62 0,085 0~06 0.028 0.3 0,085 2.12).37 0,269 0.2.0 0.7 0.022 0.06 0'28 0.3 0.085 2.63 1.93 0.658 0,2&0 2.09 1.174 0,29 0'33 0.75 0.778 5,34 2.54 0.255 0.32 0,064 1,21 0.014 0.18 0.036 0.28 0,064 4.53 4.23 0.092 0.4 0,05 2.45 0.587 0.54 0.191 0~73 0.424 8.35 17.7 2.022 1.05 0.248 7.44 0.799 1.61 0.212 2.34 0.622 30 F 14 514 1.414 22.43 0.813 199.63 6,541 50.89 1,259 50.88 1.945 837,83 a.o6 o.oas o.as 0 1,57 0'33 0.26 0,078 0.3 0'35 4.47 10 1.84 1.202 0.16 0,01 2,2 2.029 0.2 0.17 0.23 0.156 4.63 0,94 0.424 0.16 0 1.54 1.16 0.3 0,311 0.18 0.085 3.12 12 l.a6 o.a55 o.a 0 0.67 0.269 0.08 0.057 0.3 0,036 2,51 13 0,66 0.099 0.24 0.057 0.31 0.092 0.01 0.014 0.23 0.092 1.45 14 1,14 0.262 0,27 0 0.54 0.01 0,04 0 0.35 0.163 2.34 15 0.74 0.022 0'2 0.191 0.38 0.028 0.02 0.01 0.4 1~96 16 0.74 0.248 0.18 0.141 0.32 0.057 0.01 0.014 0.22 0.198 1.47 BC 0 0 0,1 VALUES ARB IH NILLIGRAMS BC=BUILDIHG COHTROI SANPLBRS 0 0.16 0'5 C-9 0.141 0~14 0.036 0 Analytical Results for Each Sample Location-December l989 0,4 STATION AVE S04 STD DEV AVB Cl STD DEV AVE Ca STD DBV AVE Hg STD DBV AVB Na STD DEV JANUARY, 1990 1 1.01 0.248 0.15 0 0'5 0.283 0.03 0.014, 0~19 0.149 BULK DEP (ag)!~73 0.95 0 0.15 o o.aa 0 0.03 0 0.08 0.106 1.43 2'5 1.768 0.15 0 1.62 1.803 0.14 0.113 0,26 4.62 2.12 0.509 0.19 0 1.45 1.301 0.18 0.099 0~19 0.106 4.13 2.78 0.014 0,19 0 1,04 0.036 0.23 0.01 0.33 0.022 4.57 5.73 0.042 0.35 0,01 2.32 0.064 0.49 0.01 0.52 0,036 9.41 20.48 0.276 0.84 0 8.41 0.01 1~86 0.022 1,75 0.036 33.34 8 1127.5 0 44 0 511.5 0 NO Sh SAHPI E AVAILABLE--DOES NOT REPRBSENT AN AVERAGED VALUE 121 0 107.25 1911.25 9 3.3 0.113 0,21'.028 1.26 0.135 0.29 0.022 0.3 0.057 5,36 10 1.27 0,022 0.37 0.318 0.47 0.028 0.07 0 0,23 0,022 2.41 0.86 0.014 0.15 0 0,23 0.05 0.04 0 F 01 0.23 0'5 1.51 12 1.26 0,82 0.16 0.028 0.72 0.608 0.06 0.064 0.31 0.022 2'1 13 0,56 0.01 0.13 0,028 0,23 0,05 0.01 0.01 0,22 0.057 1.15 1.34 1,054 0.17 0.022 0.42 0'95 0.07 0,099 0'3 0.099 2.33 0,86 0.382 0,15 0 0.81 0.46 0.06 0.057 0.26 0 2.14 16 0.61 0.106 0,13 0.028 0.3 0.212 0.02 0.022 0.27 0.05 1.33 EC 0 O.ll 0.127 0 0 0.24 0.057 0,35 VALUES ARE IN HIILIGRAHS PBR SAHPIER BC=BUILDING CONTROL SAHPLERS Analytical Results for Each Sample Location-January 1990 C"10 STATION AVB S04 STD DBV AVB Cl STD DBV AVB Ca STD DBV AVB Mg STD DBV AVB Na STD DEV FBBRUARV, 199Q 1 0.53 0.099 0.24 0.036 0.39 0.106 0.05 0.014 0,19 0.057 BUIK DBP (ng)1.4 0.68 0'41 0.31 0.014.0.48 0.092 0,06 0.01 0.28 0.028 1,81 0.54 0.057 0.27 0.022 0,38 0.092 0'5 0.01 0.24 0.064 1.48 0.74 0,17 0.27 0.01 0.56 0.177 0.08 0.014 0.32 0.022 1.97 0.65 0.106 0.26 0,014 0,45 0.078 0'6 0.014 0.31 0.036 1.73 0,69 o.o9a o.a7 0.014 0,51 0.028 0.06 0.01 0.05 0.071 1.58 1~12 0.036 0.29 0.01 0,75 0.078 0,1 0.014 0.17 0,078 2.43 637.75 68,801 36.12 2.432 232,82 14,856 70.31 7.601 80.76 9.001 1057.76~'.9 0.092 0.24 0.028 1 0.092 0.15 0'42 0.13 0,042 2.42 10 o.7 o.aa6 o.aa 0 0.61 0,042 0,06 0.01 0,08 0,028'.67 0.44 0'99 0.2 0.078 0.38 0,01 0.05 0.01 0.23 0,036 1.3 12 Q,47 o.oaa o.aa o.o36 o,44 o.oaa o.o5 0 0.22 0.01 1,4 13 0,56 0.078 0.17 0.057 0'3 0.028 0,09 0.01.0,15 0.085 0.54 0.042 0.22 0.036 0.54 0.042 0,06 0.022 0.17 0,057 1.9 1.53 15 0.41 0.042 0.15 0.022 1.2 0.036 0.07 0.01 0.22 0.042 2.05 0,66 0.502 0.15 0,022 Q.61 0.297 0.06 0,042 0.19 0.022 1.67 BC VAIUES ARE IN HIIIIGRAHS PER SAHPIBR 8C=EUIIDING CONTROI SAMPLERS 0 0.14 0.028 0.01 0 0.2 0 Analyt/cal Results for Each Sample Location-February 1990 C-11 0.35 STATION AVE S04 STD DEV AVE Cl STD DEV AVE Ca STD DEV AVE Hg STD DEV AVE Na STD DEV HARCH, 1990 o.66 o,o36 o.ll o.oaa o.36 o.lo6 o.o3 o o,aa 0.042 BULK DEP (ngl 1.38 0.91 0.354 0.13 0 0,72 0.622 O.l 0.078 0.18 0.064 2,04 0.64 0.028 0.1 0.01 0.61 0.24 0,08 0.036 0,13 1.56 0'6 0.028 0.13 0 0.7 0,219 0.06 0.014 0.16 0.042 1.71 0.7 0.057 0,11 0.028 0.64 0.191 0.06 0.01 0.18 0.022 1,69 1.56 0,064 0.13 0 0,86 0,057 0.14 0,01 0,22 2,91 8.09 0.474 0.52 0 3.87 0'69 0.9 0.071 1.14 0'71 14.5a 197,25 12,092 10.67 0.438 98.31 4.554 26.59 0.764 33.44 0.976 366.26 0.79 0.05 0.12 o,oaa o.6a 0.042 0.09 0.022 0.17 0.05 1.79 10 0.58 0.12 0.12 0.022 0.61 0.022 0.05 0.014 0.18 0.028 1.54 0,49 0.036 0.1 0 0.4 0.127 0.04 0.01 0.09 0,022 I.la 12 0,47 0,028 0.13 0 0.37 0.113 0.04 0,01 0.16 0 1.17 13 0.58 0.078 0.12 0,022 0.73 0.191 0.07 0.014 0.18 0.071 1.68 0.5 0.099 0.12 0.022 0.58 0.339 0.05 0 0.15 0.071 1.4 15 0,5 0.05 0.21 0.106 0.43 0.092 0.03 0.014 0.19 0.028 1.36 16 0,65 0.212 0.16 0,085 1,21 0.863 O.ll 0.092 0.15 0.022 2.28 BC 0 0.0 0 0'8 0'98 0,01 0,01 0.22 0.028 0.41 VALUES ARE IN HILIIGRAHS PER SAHPIER BC.=BUIIDING CONTROL SAHPLERS Analytical Results for fach Sample Location-March 1990 C-12