ML16271A451: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 591: Line 591:
The future projections are based on the uprated reactor power level of 3658 MWt. The calculated fast neutron exposures for all six surveillance capsules withdrawn from the Braidwood Unit 1 reactor are provided in Table 6-9. These neutron exposure levels are based on the plant-and fuel cycle-specific neutron transport calculations performed for the Braidwood Unit 1 reactor. From the data provided in Table 6-9, Capsule V received a fast neutron fluence (E > 1.0 MeV) of 3.71E+19 n/cm 2 after exposure through the end of the 14th fuel cycle (i.e., after 17 .69 EFPY). Updated lead factors for the Braidwood Unit 1 surveillance capsules are provided in Table 6-10. The capsule lead factor is defined as the ratio of the calculated fast neutron fluence (E > 1.0 MeV) at the geometric radial and azimuthal center of the surveillance capsule to the corresponding maximum calculated fast neutron fluence at the pressure vessel clad/base metal interface.
The future projections are based on the uprated reactor power level of 3658 MWt. The calculated fast neutron exposures for all six surveillance capsules withdrawn from the Braidwood Unit 1 reactor are provided in Table 6-9. These neutron exposure levels are based on the plant-and fuel cycle-specific neutron transport calculations performed for the Braidwood Unit 1 reactor. From the data provided in Table 6-9, Capsule V received a fast neutron fluence (E > 1.0 MeV) of 3.71E+19 n/cm 2 after exposure through the end of the 14th fuel cycle (i.e., after 17 .69 EFPY). Updated lead factors for the Braidwood Unit 1 surveillance capsules are provided in Table 6-10. The capsule lead factor is defined as the ratio of the calculated fast neutron fluence (E > 1.0 MeV) at the geometric radial and azimuthal center of the surveillance capsule to the corresponding maximum calculated fast neutron fluence at the pressure vessel clad/base metal interface.
In Table 6-10, the lead factors for capsules that have been withdrawn from the reactor (Capsules U, X, W, V, Y, and Z) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules.
In Table 6-10, the lead factors for capsules that have been withdrawn from the reactor (Capsules U, X, W, V, Y, and Z) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules.
Table 6-11 presents the maximum fast neutron fluences (E > 1.0 MeV) and Table 6-12 presents the maximum iron atom displacements for pressure vessel materials.  
Table 6-11 presents the maximum fast neutron fluences (E > 1.0 MeV) and Table 6-12 presents the maximum iron atom displacements for pressure vessel materials.
 
6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least-squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-5 serve to validate the calculated results , only the direct comparison of measured-to-calculated results for the most recent surveillance capsule analyzed is provided in this section. For completeness, the assessment of all measured dosimetry removed to date , based on both direct and least-squares evaluation comparisons is documented in Appendix A. The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule V, which was withdrawn from Braidwood Unit 1 at the end of the 14th fuel cycle, is summarized below. Reaction Reaction Rate (rps/atom)
===6.3 NEUTRON===
DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least-squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-5 serve to validate the calculated results , only the direct comparison of measured-to-calculated results for the most recent surveillance capsule analyzed is provided in this section. For completeness, the assessment of all measured dosimetry removed to date , based on both direct and least-squares evaluation comparisons is documented in Appendix A. The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule V, which was withdrawn from Braidwood Unit 1 at the end of the 14th fuel cycle, is summarized below. Reaction Reaction Rate (rps/atom)
Measured (M) Calculated (C) MIC Cu-63(n,a)Co-60 4.02E-17 3.66E-17 1.10 Fe-54(n , p )Mn-54 3.81E-15 3.97E-15 0.96 U-23 8( Cd)(n,f)Cs-13 7 2.37E-14 2.12E-14 1.12 Np-237(Cd)(n,f)Cs-l 37 l.99E-13 2.06E-13 0.97 Average 1.04 % standard deviation 8.1 The measured-to-calculated (M/C) reaction rate ratios for the Capsule V threshold reactions range from 0.96 to 1.12, and the average M/C ratio is 1.04 +/- 8.1% (lcr). This direct comparison falls within the +/- 20% criterion specified in U.S. NRC Regulatory Guide 1.190. This comparison validates the current analytical results described in Section 6.2; therefore , the calculations are deemed applicable for Braidwood Unit 1. 6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Braidwood Unit 1 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in U.S. NRC Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages: 1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL). 2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H.B. Robinson power reactor benchmark experiment.
Measured (M) Calculated (C) MIC Cu-63(n,a)Co-60 4.02E-17 3.66E-17 1.10 Fe-54(n , p )Mn-54 3.81E-15 3.97E-15 0.96 U-23 8( Cd)(n,f)Cs-13 7 2.37E-14 2.12E-14 1.12 Np-237(Cd)(n,f)Cs-l 37 l.99E-13 2.06E-13 0.97 Average 1.04 % standard deviation 8.1 The measured-to-calculated (M/C) reaction rate ratios for the Capsule V threshold reactions range from 0.96 to 1.12, and the average M/C ratio is 1.04 +/- 8.1% (lcr). This direct comparison falls within the +/- 20% criterion specified in U.S. NRC Regulatory Guide 1.190. This comparison validates the current analytical results described in Section 6.2; therefore , the calculations are deemed applicable for Braidwood Unit 1. 6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Braidwood Unit 1 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in U.S. NRC Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages: 1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL). 2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H.B. Robinson power reactor benchmark experiment.
: 3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments. 4. Comparisons of the plant-specific calculations with all available dosimetry results from the Braidwood Unit 1 surveillance program. WCAP-18092
: 3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments. 4. Comparisons of the plant-specific calculations with all available dosimetry results from the Braidwood Unit 1 surveillance program. WCAP-18092

Revision as of 19:33, 6 May 2019

WCAP-18092-NP, Revision 1, Analysis of Capsule V from the Exelon Generation Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program.
ML16271A451
Person / Time
Site: Braidwood  Constellation icon.png
Issue date: 05/31/2016
From: Mays B E, Mohamed A B
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
BW160072 WCAP-18092-NP, Rev 1
Download: ML16271A451 (295)


Text

{{#Wiki_filter:' WCAP-18092-NP Revision 1 Westinghouse Non-Proprietary Class 3 Analysis of Capsule V from the Exelon Generation Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program May 2016 . . @Westinghouse Westinghouse Non-Proprietary Class .3 WCAP-18092-NP Revision 1 Analysis of Capsule V from the Exelon Generation Braidwood Unit 1 Reactor _Vessel Radiation Surveillance Program Benjamin E. Mays* Materials Center of Excellence Ali B. Mohamed* Nuclear Operations and Radiation Analysis May2016 Reviewers: Elliot J. Long* Materials Center of Excellence ArzuAlpan* Nuclear Operations and Radiation Analysis Approved: DavidB. Love*, Manager Materials Center of Excellence Laurent P. Houssay*, Manager Nuclear Operations and Radiation Analysis *Electronically approved records are authenticated in the electronic document management system. Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066, USA © 2016 Westinghouse Electric Company LLC All Rights Reserved Rev. 0 1 Westinghouse Non-Proprietary Class 3 Record of Revisions D ate Revision Description Febru ary 2016 Original Issue May In order to address the typographical error documented in Corrective Actions, Prevention, and Learning (CAPAL) # 100381356, footnote (b) 2016 of Table 6-10 was updated to indicate the proper version of RadTrack. Thus, "RadTrack Version 1.1.1" is now listed, instead of "RadTrack Version 1.1". This change was made without the use of a change bar. ii WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 iii TABLE OF CONTENTS LIST OF TABLES************************************************************************************************************************************* iv LIST OF FIGURES ..........................................................

................................................................
........ vii EXECUTIVE

SUMMARY

..........................................................................................................................

ix 1

SUMMARY

OF RESULTS .......................................................................................................... 1-1 2 INTRODUCTION ........................................................................................................................ 2-1 3 BACKGROUND .......................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM .................................................................................................. 4-1 5 TESTING OF SPECIMENS FROM CAPSULE V ................................. , .................................... 5-1 5.1 OVERVIEW .................................................................................................................... 5-1 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS ........................................................... 5-2 5.3 TENSILE TESTRESULTS ............................................................................................. 5-4 5.4 1/2T COMPACT TENSION SPECIMEN TESTS ........................................................... 5-4 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ....................................................... 6-1

6.1 INTRODUCTION

........................................................................................................... 6-1 6.2 DISCRETE ORDINATES ANALYSIS ........................................................................... 6-2 6.3 NEUTRON DOSIMETRY .............................................................................................. 6-4 6.4 CALCULATIONAL UNCERTAINTIES ........................................................................ 6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ............................................................ 7-1 8 REFERENCES ........................................................

....................................................................

8-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS ............................................................................................. A-1 APPENDIX B . LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS .................................... B-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ........................................................ C-1 APPENDIX D BRAIDWOOD UNIT 1 UPPER-SHELF ENERGY EVALUATION ............................ D-1 WCAP-18092-NP May2016 Revision 1 Table 4-1 Table 4-2 Table 5-1 Table 5-2 Table 5-3 Table 5-4 Table 5-5 Table 5-6 Table 5-7 Table 5-8 Table 5-9 Table 5-10 Table 5-11 Table 6-1 Table 6-2 Table 6-3 Table 6-4 Westiilgho'use Non-Proprietary Class 3 iv LIST OF TABLES Chemical Composition (wt. %) of the Braidwood Unit 1 Reactor Vessel Surveillance Materials (Unirradiated) ................................................................................................... 4-3 Heat Treatment History of the Braidwood Unit 1 Reactor Vessel.Surveillance Materials ... ......................................................................................................................................... 4-4 Charpy V-notch Data for the Braidwood Unit 1 Lower Shell Forging Irradiated to a Fluence of 3.71x10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation) ............................ 5-5 Charpy V-notch Data for the Braidwood Unit 1 Lower Shell Forging Irradiated to a Fluence of 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation) .................................... 5-6 Charpy V-notch Data for the Braidwood Unit 1 Surveillance Program Weld Material

  1. M201l)_Irra<l!ateg to a FJuence of 3.71x10 19 n/cm 2 (E > l.O _MeV) .................

5-7 Cliarpy V-notch Data for the Braidwood Unit. 1 Heat-Affected Zone (RAZ) Material Irradiated to a Fluence of 3;71 x 10 19 n/cm 2 (E > 1.0 MeV) ............................................ Instrumented Charpy Impact Test Results for the Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-1-1 Irradiated to a Fluence of 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation) ................................................................................................... 5-9 Instrumented Charpy Impact Test Results for the Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-1-1 Irradiated to a Fiuence -of 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation) ......................................................................................................... 5-10 Instrumented Charpy Impact Test Results for the Braidwood Unit 1 Surveillance Program Weld Material (Heat # 442011) Irradiated to a Fluence of 3.71 x 10 19 n/crrr (E > 1.0 MeV) .............................................................................................................................. 5-ll Insµutnented Charpy Impact Test Results for the Braidwood Unit 1 Heat-Affected Zone (RAZ) Material Irradiated to a Fluence of 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) ................ 5-12 Effect of Irradiation to 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughiless Properties of the Braidwood Unit l Reactor Vessel Surveillance Capsule V Materials ...........................................................

............................................................

5-13 of the . Braidwo9d _ Unit 1 Surveillance Material 30 ft-lb Transition Temperatiire ShiftS a.lid Upper-Shelf Energy Decreases with Regulatory Guide 1.99, ReVisiori-2, Predictioris .................

.. :: ..... : ............ ..... : ...... : ...........................................

5-14 Tensile Properties of the Braidwood Unit 1 Capsule V Reactor Vessel Surveillance Materials Irradiated to 3.71x10 19 n/cm 2 (E > 1.0 MeV) .............................................. 5-15 Fast Neutron Fluence Rate (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 .................................................................................... 6-7 Calculated Fast Neutron Fluence (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 ........................................................................................ 6-8 Calculated Iron Atom Displacement Rate at the Swveillance Capsule Center at Core Midplane for Cycles 1-14 ................................................................................................ 6-9 Calculated Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 .............................................................................................. 6-10 WCAP-18092-NP May2016 Revision 1 Table 6-5 Table 6-6 Table 6-7 Table 6-8 Table 6-9 Table 6-10 Table 6-11

  • Table 6-12 Table 7-1 TableA-1 Table A-2 TableA-3 TableA-4 TableA-5 TableA-6 TableA-7 TableA-8 TableA-9 TableA-10 Table A-11 TableA-12 Table A-13 Table A-14 Table A-15 Westinghouse Non-Proprietary Class 3 v Calculated Azimuthal Variation of Maximum Fast Neutron Fhience Rates** (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface

........................................................... 6-11 Calculated Azimuthal Variation of Maximum Fast Neutron (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-12 Calculated Azimuthal Variation of Maximum Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-13 Calculated Azimuthal Variation of Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface .................................................................................. 6-14 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Braidwood Unit 1 ............................................................................................................................. 6-15 Calculated Surveillance Capsule Lead Factors .............................................................. 6-15 Calculated Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Pressure Vessel Welds and Shells ....................................................................................................................... 6-16 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Welds and Shells ....................................................................................................................................... 6-17 Surveillance Capsule Withdrawal Schedule .................................................................... 7-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors .................................. A-11 Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 1 Reactor ................... _ ................................................................. , ..................................... A-12 Surveillance Capsules U, X, W, and V Fast Neutron Fluence Rates for Cj Calculation, Core Midplane Elevation ............................................................................................. A-16 Surveillance Capsules U, X, W, and V Cj Factors, Core Midplane Elevation .............. A-17 Measured Sensor Activities and Reaction Rates for Surveillance Capsule U .............. A-18 Measured Sensor Activities and Reaction Rates for Surveillance Capsule X .............. A-19 Measured Sensor Activities and Reaction Rates for Surveillance Capsule W .............. A-20 Measured Sensor Activities and Reaction Rates for Surveillance Capsule V ............... A-21 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule A ....... A-22 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule B ....... A-22 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule C ....... A-23 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule E ....... A-23 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule D ........ ........................ ............................................................................................................. A-24 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule F ......... ....................................................................................................................................... A-24 Least-Squares Evaluation of Dosimetry in Surveillance Capsule U (31.5° Azimuth, Core Midplane -Dual Capsule Holder) Cycle 1 Irradiation ................................................. A-25 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 vi TableA-16 Least-Squares Evaluation of Dosimetry in Surveillance Capsule X (31.5° Azimuth, Core Midplane-Dual Capsule Holder) Cycles 1through4 Irradiation ............................... A-26 Table A-17 Least-Squares Evaluation of Dosimetry in Surveillance Capsule W (31.5° Azimuth, Core Midplane -Single Capsule Holder) Cycles 1 through 7 Irradiation ............................. A-27 Table A-18 Least-Squares Evaluation of Dosimetry in Surveillance Capsule V (29 .0° Azimuth, Core Midplane-Dual Capsule Holder) Cycles I Through 14 Irradi.ation ............................ A-28 Table A-19 Least-Squares Evaluation of Dosimetry in EVND Capsule A (0.5° Azimuth, Core Midplane) Cycle 14 Irradiation ..................................................................................... A-29 Table A-20 Least-Squares Evaluation of Dosimetry in EVND Capsule B (14.5° Azimuth, Core Midplane) Cycle 14 Irradiation ........................................................................... , ......... A-30 Table A-21 Least-Squares Evaluation of Dosimetry in EVND Capsule C (29.5° Azimuth, Core Mtdplane) Cycle 14 Irradiation ..................................................................................... A-31 Table A-22 Least-Squares Evaluation of Dosiinetry in EVND Capsule E (44.5° Azimuth, Core Midplane) Cycle 14 Irradiation ..................................................................................... A-32 Table A-23 Least-Squares Evaluation of Dosimetry in EVND Capsule D (44.5° Azimuth, Top of Active Core) Cycle 14 Irradiation ................................................................................. A-33 Table A-24 Least-Squares Evaluation of Dosimetry in EVND Capsule F ( 44.5° Azimuth, Bottom of Active Core) Cycle 14 Irradiation ................................................................................. A-34 Table A-25 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions-In-Vessel Surveillance Capsules .............................................. A-35 Table A-26 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -Ex-Vessel Midplane Capsules .................................................. A-35 Table A-27 Comparison of Measured/Calculated (MIC) Sensor Rate Ratios for Fast Neutron Threshold Reactions -Ex-Vessel O:ff-Midplane Capsules ........................................... A-35 Table A-28 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -In-Vessel Surveillance Capsules ........................................................... ....................................... A-36 Table A-29 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -Ex-Vessel Midplane Capsules ...............................

...................................................... , .................

A-36 TableA-30

  • Sunii:Ilary.ofMeasiired/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules .................................................................................... .................................................

A-36 Table A-31 Summary of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules ............................................ A-37 Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH ................................................ C-1 Table D-1 Braidwood Unit 1 Pressure Vessel 1/4T Fast Neutron Fluence Calculation .................... D-2 Table D-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY ....................... D-4 WCAP-18092-NP May2016 Revision 1 Figure 4-1 Figure4-2 Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 5-5 Figure 5-6 Figure 5-7 Figure 5-8 Figure 5-9 Figure 5-10 Figure 5-11 Figure 5-12 Figure 5-13 Figure 5-14 Figure 5-15 Figure 5-16 Figure 5-17 Figure 5-18 Westinghouse Non-Proprietary Class 3 vii LIST OF FIGURES Arrangement of Surveillance Capsules in the Braidwood Unit 1 Reactor Vessel ........... 4-5 Capsule V Diagram Showing the Location of Thermal Monitors, and Dosimeters ................................................................................................................ 4-6 Charpy V-Notch hnpact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Tangential Orientation) .......................... 5-16 Charpy V-Notch Laterl.ll Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Tangential Orientation) .......................... 5-18 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Tangential Orientation) .......................... 5-20 Charpy V-Notch hnpact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation) .................................. 5-22 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation) .................................. 5-24 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation) .................................. 5-26 Charpy V-Notch hnpact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) .................................................. 5-28 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) .................................................. 5-30 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) .................................................. 5-32 Charpy V-Notch hnpact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-34 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-36 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-38 Charpy Impact Specimen Fracture Surfaces for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Tangential Orientation) ..................................... 5-40 Charpy Impact Specimen Fracture Surfaces for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation) ............................................. 5-41 Charpy Impact Specimen Fracture Surfaces for the Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) .................................................. 5-42 Charpy hnpact Specimen Fracture Surfaces for the Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-43 Tensile Properties for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [ 49D867 /49C813 ]-1-1 (Tangential Orientation) ............................................................ 5-44 Tensile Properties for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [ 490867 /49C813]-1-1 (Axial Orientation) .................................................................... 5-45 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 viii Figure 5-19 Tensile Properties for the Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (IIeat # 442011) ............................................................................................... 5-46 Figure 5-20 Fractured Tensile Specimens from Braidwood Unit 1 Reactor Vessel Lower Shell Forging [ 49D867 /49C8 l 3]-l-1 (Tangential Orientation) ............................................................ 5-47 Figure 5-21 Fractured Tensile Specimens from Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-l-1 (Axial Orientation) .................................................................... 5-48 Figure 5-22 Fractured Tensile Specimens from the Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) ....................................................................... 5-49 Figure 5-23 Engineering Stress-Strain Curves for Braidwood Unit 1 Lower Shell Forging [ 49D867 /49C813]-1-1 Tensile Specimens EL4 and ELS (Tangential Orientation) ....... 5-50 Figure 5-24 Engineering Stress-Strain Curve for Braidwood Unit 1 Lower Shell Forging [ 49D867 /49C813]-1-1 Tensile Specimen EL6 (Tangential Orientation) ....................... 5-51 Figure 5-25 Engineering Stress-Strain Curves for Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-1-1 Tensile Specimens ET4 and ET5 (Axial Orientation) ............... 5-52 Figure 5-26 Engineering Stress-Strain Curve for Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-1-1 Tensile Specimen ET6 (Axial Orientation) ............................... 5-53 Figure 5-27 Engineering

  • Stress-Strain Curves for Braidwood Unit 1 Surveillance Weld Material . Tensile Specimens EW4 and EW5 ................................................

'. .......... '. .................... 5-54 Figure 5-28 Engineering Stress-Strain Curve for Braidwood. Unit 1 Surveillance Weld Material Tensile Specimen EW6 .................................................................................................. 5-55 Figure 6-1 Braidwood Unit 1 r,0 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules and 12.5° Neutron Pad Configuration ....................................... 6-18 Figure 6-2 Braidwood Unit 1 r,0 Reactor Geometry Plan View at the Core Midplane with a Single Capsule Holder and 20.0° Neutron Pad Configuration .................................................. 6-19 Figure 6-3 Braidwood Unit 1 r,0 Reactor Geometry Plan View at the Core Midplane with a Dual Capsule Holder and 22.5° Neutron Pad Configuration .................................................. 6-20 Figure 6-4 Braidwood Unit 1 r,z Reactor Geometry Elevation View .............................................. 6-21 Figure D-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence ..................................................................................... D-3 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 ix EXECUTIVE

SUMMARY

The purpose of this report is to document the testing results of surveillance Capsule V from Braidwood Unit 1. Capsule V was removed at 17.69 effective full-power years (EFPY) and stored in the spent fuel pool. Post-irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed during Cycle 19 to satisfy license renewal commitments. A fluence evaluation utilizing the neutron transport and dosimetry cross-section libraries was derived from the Evaluated Nuclear Data File (ENDF) database (specifically, ENDF/B-VI). Capsule V received a fluence of 3.71 x 10 19 n/crrl (E > 1.0 MeV) after irradiation to 17 .69 EFPY. The peak clad/base metal interface vessel fluence after 57 EFPY license extension) of plant operation is projected to be 3.22 x 10 19 n/cm 2 (E > 1.0 MeV). This evaluation led to the following conclusions:.

1) The measured percent decreases in upper-shelf energy for the surveillance forging and weld materials contained in Braidwood Unit 1 Capsule V are less than the U.S. NRC Regulatory Guide 1.99, Revision 2 [Ref. 1] predictions.
2) With consideration of surveillance data, all beltline and extended beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 lb through end-of-license extension (57 EFPY) as required by 10 .CFR 50, Appendix G [Ref. 2]. The upper-shelf energy evaluation is presented in Appendix D. Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve-fitting program. WCAP-18092-NP May2016 Revision 1

. Westinghouse Non-Proprietary Class 3 1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance Capsule V, the fourth capsule removed and tested from the Braidwood Unit 1 reactor pressure vessel, led to the following conclusions:

  • Charpy V-notch test data were plotted using a symmetric hyperbolic tangent curve-fitting program. Appendix C presents the CVGRAPH, Version 6.02, Charpy V-notch plots for Capsule V and previous capsules, along with the program input data.
  • Capsule V received an average fast neutron fluence (E > 1.0 MeV) of 3.71 x 10 19 n/cm 2 after 17 .69 effective full-power .years (EFPY) of plant operation.
  • Irradiation of the reactor vessel Lower Shell-Forging

[49D867/49C813]-1-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of -24.6°F and an irradiated 50 ft-lb transition temperature of 6.7°F. This results in a 30 ft-lb transition temperature increase of 5L3°F and a 50 ft-lb transition temperature increase of 47.8°F for the tangentially oriented specimens.

  • Irradiation of the reactor vessel Lower Shell Forging [49D867/49C813]-1-1 Charpy specimens, oriented with the longitudinal l:J.Xis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of -8.0°F and an irradiated 50 ft-lb transition temperature of 26.9°F. This results in a 30 ft-lb transition temperature increase of 39.7°F and a 50 ft-lb transition temperature increase of 42.7°F for the axially oriented specimens.
  • Irradiation of the Surveillance Program Weld Material (Heat# 442011) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 36.7°F and an irradiated 50 ft-lb transition temperature of 104.3°F. This results in a 30 ft-lb transition temperature increase of 62.8°F and a 50 ft-lb transition temperature increase of79.1°F.
  • Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -66.0°F and an irradiated 50 ft-lb transition temperature of -16.6°F. This results in a 30 ft-lb transition temperature increase of l 71.0°F and a 50 ft-lb transition temperature increase of 119 .1°F.
  • The average upper-shelf energy .of Lower Shell Forging [49D867/49C813]-1-1 (tangential orientation) resulted in an average energy decrease of 3 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 163 ft-lb for the tangentially oriented specimens.

  • The average upper-shelf energy of Lower Shell Forging [49D867/49C813]-1-1 (axial orientation) resulted in an average energy decrease of 26 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 126 ft-lb for the axially oriented specimens.

  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat # 442011) Charpy specimens resulted in an average energy increase of 1 ft-lb after irradiation.

Although physically WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 1-2 unreasonable, this increase results in an irradiated average upper-shelf energy of 70 ft-lb for the weld metal specimens.

  • The average upper-shelf energy of the HAZ material Charpy specimens resulted in an average energy decrease of 3 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 125 ft-lb for the HAZ material.

  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by U.S. NRC Regulatory Guide 1.99, Revision 2 [Re£ 1] for the Braidwood Unit 1 reactor vessel surveillance materials are presented in Table 5-10.
  • Based on the upper-shelf energy evaluation in Appendix D, all beltline and extended beltline materials contained in the Braidwood Unit 1 reactor vessel exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2].
  • The maximum calculated 57 EFPY (end-of-license extension) neutron fluence (E > 1.0 MeV) for the Braidwood Unit 1 reactor vessel beltline using the U.S. NRC Regulatory Guide 1.99, Revision 2 attenuation formula (i.e., Equation#

3 in the Guide) is as follows: Calculated (57 EFPY): WCAP-18092-NP Vessel peak clad/base metal interface fluence* = 3.22 x 10 19 n/cm 2 Vessel peak quarter-thickness (1/4T) fluence = 1.93 x 10 19 n/cm 2 *This fluence value is documented in Table 6-6 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 2-1 2 INTRODUCTION This report presents the results of the examination of Capsule V, the fourth capsule removed and tested in the continuing surveillance program, which monitors the effects of neutron irradiation on the Exelon Generation (Exelon) Braidwood Unit 1 reactor pressure vessel materials under actual operating conditions. The surveillance program for the Braidwood Unit 1 reactor pressure vessel materials was designed and recommended by Westinghouse Electric Company, LLC. A detailed description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-9807 [Ref. 3], "Commonwealth Edison Company Braidwood Station Unit No. 1 Reactor Vessel Radiation Surveillance Program." The surveillance program was originally planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-73 [Ref. 4], "Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels." Capsule V was removed from the reactor after 17.69 EFPY of exposure and stored in the spent fuel_ pool. During Cycle 19, it was shipped to the Westinghouse Materials Center of Excellence Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed. This report summarizes the testing and post-irradiation data obtained from surveillance Capsule V removed from the Braidwood Unit 1 reactor vessel and discusses the analysis of the data. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of alloy, ferritic pressure vessel steels such as SA508 Class 3 (base material of the Braidwood Unit 1 reactor pressure vessel beltline) are well documented in the literature. Generally, low-alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during energy irradiation. A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [Ref. 5]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT)* RTNDT is defined as the greater of either the drop-weight nil-ductility transition temperature (NDTT per ASTM E208 [Ref. 6]) or the temperature 60°F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (axial) to the major working direction of the forging. The RT NDT of a given materfar kiised to index thaf materiaffo a reference stress intensity factor curve (Krc curve) that appears in Appendix G to Section XI of the ASME Code [Ref. 5]. The Krc curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the Kic curve, allowable stress intensity factors can be obtained for this m11terial as a function of temperature. Then, allowable operating limits can be determined using these allowable stress intensity factors. RTNDr and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Braidwood Unit 1 reactor vessel radiation surveillance program, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens are tested. The increase in the average Charpy V-notch 30 ft-lb temperature (Lill.TNDr) due to irradiation is added to the initial RTNDT, along with a margin (M) to cover uncertainties, to adjust the RTNDr (ART) for radiation embrittlement. This ART (initial RTNDT + M + Lill.TNDT) is used to index the material to the Kic curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the.effects of neutron exposure on the Braidwood Unit 1 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant startup. The six capsules were positioned in the reactor vessel, as shown in Figure 4-1, between the core barrel and the vessel wall, at various azimuthal locations. The vertical center of the capsules is opposite the vertical center of the core. The capsules contain specimens made from the following:

  • Lower Shell Forging [49D867/49C813]-l-1 (tangential orientation)
  • Lower Shell Forging [49D867/49C813]-l-1 (axial orientation)
  • Weld metal fabricated with weld wire Heat Number 442011, Linde Type 80 flux, which is equivalent to the .heat number and Flux Type used in the actual fabrication of the intermediate shell to lower shell circumferential weld seam
  • Weld heat-affected zone (HAZ) material of Lower Shell Forging [49D867/49C813]-l-l Test material obtained from the lower shell forging (after thermal heat treatment and. forming of the forging) was taken at least one forging thickness from the quenched edges of the forging. All test specimens were machined from the Y4 thickness location of the forging after performing a simulated weld stress-relieving treatment on the test material.

Weld test specimens were removed from the weld metal of a stress.:.relieved weldment joining Lower Shell Forging [49D867/49C813]-1-l and adjacent Intermediate Shell Forging [49D383/49C344]-l-1. All heat-affected zone specimens were obtained from the weld heat-affected zone of Lower Shell Forging [49D867/49C813]-1-1. Charpy V-notch impact specimens from Lower Shell Forging [49D867/49C813]-1-1 were machined in the tangential orientation (longitudinal axis of the specimen parallel to the major working direction) and also in the axial orlentltlon-(longitudinal a.Xis of the specifilen perpendicular to the major working direction).

  • The weld Charpy impact specimens were machined from the weldment such that the long dimension of each Ch.3.rpy 8pecimen was perpendicular (normal) to the weld direction.

The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction. Tensile specimens from Lower Shell Forging [49D867/49C813]-J.,.1 were machined both in the tangential and axial orientation. Tensile specimens from the weld metal were oriented perpendicular to the welding direction. Compact tension test specimens (1/2T) from forging [49D867/49C813]-1-l were machined in both the tangential and axial orientations. Compact tension test specimens from the weld metal were machined perpendicular to the weld direction with the notch oriented in the direction of the weld. All specimens were fatigue precracked according to ASTM E399 [Ref. 7]. All six capsules contain dosimeter wires of pure iron, copper, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). Additionally, cadmium-shielded dosimeters of neptunium {2 37 Np) and uranium (2 38 U) were placed in the capsules to measure the integrated flux at specific neutron energy levels. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 . 4-2 The capsules contain thermal monitors made from two low-melting-point eutectic alloys, which were sealed in Pyrex1 tubes. These thermal monitors were located in three different positions in the capsule. These thermal monitors are used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are: 2.5% Ag, 97 .5% Pb 1.75% Ag, 0.75% Sn, 97.5% Pb Melting Point: 579°F (304°C) Melting Point: 590°F (310°C) The chemical composition and the heat treatment of the various mechanical specimens in Capsule V are presented in Tables 4-1 and 4-2, respectively. The data in Tables 4-1 and 4-2 was obtained from the original surveillance program report, WCAP-9807 [Ref. 3], Appendix A. Capsule V was removed after 17 .69 EFPY of plant operation. This capsule contained Charpy V-notch specimens, tensile specimens, compact tension specimens, dosimeters, and thermal monitors. The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule V is shown in Figure 4-2. 1 Pyrex is a registered trademark of Corning Incorporated. WCAP-18092-NP May2016 Revision 1 Table 4-1 Westinghouse Non-Proprietary Class 3 4-3 Chemical Composition (wt.%) of the Braidwood Unit 1 Reactor Vessel Surveillance Materials (U nirradiatedia> Element Lower Shell Forging Surveillance Weld [ 490867 /49C813 ]-1-1 Metal(b) c 0.20 0.066 Mn 1.33 1.44 p 0.007 0.015 s 0.006 0.012 Si 0.28 0.48 Ni 0.73 0.67 Mo 0.52 0.44 Cr 0.11 0.10 Cu 0.03 0.04 Al O.Q18 0.004 Co O.Qll 0.011 Pb 0.0003 0.0006 w 0.005 0.010 Ti 0.005 0.007 Zr 0.005 0.003 v O.Ql 0.005 Sn 0.008 0.005 As 0.008 0.004 Cb 0.005 0.004 Nz 0.0096 0.013 B 0.0001 0.0007 Notes: (a) Data obtained from WCAP-9807, Table A-2 [Ref. 3] (b) The surveillance weld is identical to that used in the intermediate to lower shell circumferential weld seam. The weld wire is heat number 442011, with a Linde 80 type flux, Lot Number 8061. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 4-4 Table 4-2 Heat Treatment History of the Braidwood Unit 1 Reactor Vessel Surveillance Materials Cal Material Temperature(0 F) Tilne (hours) Austenitizing: 8.6(b) 1598 to 1648 Lower Shell Forging Tempered: 7.4(b) [ 49D867 /49C813]-1-1 1202 to 1229 Stress Relief: 51.17(b) 1099 to 1148 Intermediate to Lower Shell Stress Relief: 11.S(c) Circumferential Weld Seam 1099 to 1150 Surveillance Program Test Material(d) Surveillance Program Test Post-Weld Stress Relief: Forging [49D867/49C813]-l-l 1100 to 1150 Surveillance Program Test Post-Weld Stress Relief: Weldment (Heat# 442011) 1100 to 1150 Notes: (a) Data obtained from WCAP-15316, Table 4-1 [Ref. 16]. (b) Data obtained from Japan Steel Works, Ltd. Material Test Reports. ( c) Data from Babcock and Wilcox, Co. Certifications. 12.25 12.25 Cooling Water Quenched Air Cooled Furnace Cooled Furnace Cooled Furnace Cooled Furnace Cooled (d) Surveillance program test material heat treatment information obtained from WCAP-9807 [Ref. 3]. The stress relief heat treatments received by the surveillance test forging and weldment have been simulated. WCAP-18092-NP May2016 Revision 1 {301:5 .. ) z (241 .. , y !238.5°) x Westinghouse Non-Proprietary Class 3 REACTOR VESSEL CORE BARREL NEUTRON PAD (58.5 ") 90° w (121.5"J 1801> PLAN VfEW 4-5 Figure 4-1 Arrangement of Surveillance Capsules in the Braidwood Unit 1 Reactor Vessel [Ref. 16] WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 LEGEND: EL -LOWERSHELLFORGING [49D867/49C813]-1-1 (TANGENTIAL) ET -LOWER SHELL FORGING [49D867/49C813]-1-1 (AXIAL) EW -WELD METAL (HEAT# 442011) EH -HEAT-AFFECTED ZONE MATERIAL Large Spacer Tensiles Compacts Compacts [!] EW6 IEW81Eml I EW6 I EWS I EW5 EW29 EH29 EW4 EW28 EH28 TOP OF VESSEL EW26 EW25 Np231 u23s cu 579°F lllNITOR EH26 EH25 Compacts Compacts Charpys Charpys Dosimeter Tensiles EB CENTER Charpys ET27 EL27 ET26 EL26 ET25 EL25 CENTER EB S79°F rtlNITOR Charpys ET24 EL24 ET23 EL23 ET22 EL22 EW21 EH21 EW18 EH18 EL6 EW20 EH20 EW17 433 ELS EW19 EH19 EW16 EL4 Al-.15%Co (Cd) Al-.15SCo (Cd) Charpys Compacts EB ET21 EL21 ET20 EL20 ET19 EL19 EL16 ET16* 4-6 Al-.151Co A1-.l5%Co (Cd) Charpys EW24 EH24 EW23 EH23 EW22 EH22 CENTER Charpys ET30 EL30 ET29 EL29 ET28 EL28 BOTTOM OF VESSEL Figure 4-2 Capsule V Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-1 5

  • TESTING OF SPECIMENS FROM CAPSULE V 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed at the Westinghouse Materials Center of Excellence Hot Cell Facility.

Testing was performed in accordance with 10 CFR 50, Appendix H [Ref. 2] and ASTM Specification E185-82 [Re£ 8]. Capsule V was opened upon receipt at the hot cell laboratory. The specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-9807 [Ref. 3]. All of the items were in their proper locations. Examination of the thermal monitors indicated that at least two of the three temperature monitors had melted. The third temperature monitor could not be properly examined due to the opacity of the Pyrex tube. Based on this examination, the maximum temperature to which the specimens were exposed was greater than 590°F (310°C). The Charpy impact tests were performed per ASTM Specification El85-82 [Ref. 8] and E23-12c [Ref. 9] on a Tinius-Olsen Model 74, 358J machine. The Charpy machine striker was instrumented with an lnstron1 Impulse Instrumented testing and calibration were performed to ASTM E2298-13a [Ref. 10]. The instrumented striker load signal data acquisition rate was 819 kHz with data acquired for 10 ms. From the load-time cm-Ve, the load of general yielding (Fgy), the maximum load (Fm) and the time to maximum load were determined.

  • Under some test conditions, a sharp drop in load indicative of fast fracture was observed.

The load at which fast :fracture was initiated is identified as the brittle fracture initiation/load at initiation of unstable crack propagation (Fbr). The termination load after the fast load drop is identified as the arrest load/load at. end of wistable crack propagation (Fa). Fgy, Fm, Fbr. and Fa were determined per the guidance in ASTM Standard E2298-13a [Re£ 10]. The pre-maximum load energy (Wm) was determined by integrating the load-time record to the maximum load point via the instrumented Charpy software. The pre-maximum load energy is approximately equivalent the reqttlre{i_ to icl.tiate a era.Ck: in the specinlen'. Therefore, the propagation energy for the (Wp) is the -difference betWeen -the totai inipict energy CWt) and the pre-maximum ioad energy (Wm). Wt is compared to the absorbed energy measured from the dial energy (KV). Percent shear was determined from post-fracture photographs using the ratio-of-areas method in compliance with ASTM E23-12c [Ref. 9] and A370-14 [Ref. 11]. The lateral expansion was measured using a dial gage rig similar to that shown in the same ASTM Standards. Tens.ile tests were performed on a 250 kN Instron screw driven tensile machine (Model 5985) per ASTM E185-82 [Re£ 8]. Testing met ASTM Specifications E8/E8M-15a [Re£ 12] for room temperature or met ASTM Specification E21-09 [Ref. 13] for elevated temperatures. 1 Instron is a registered trademark of lnstron* Corporation. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-2 The tensile specimens were, nominally, 4.230 inches long with a 1.000 inch gage length and 0.250 inch in diameter, per WCAP-9807 [Ref. 3]. Strain measurements were made using an extensometer, which was attached to the 1.00 inch gage section of the tensile specimen. The strain rate obtained met the requirements of ASTM E8/E8M-15a [Ref. 12] and ASTM E21-09 [Ref. 13]. Elevated test temperatures were obtained with a three-zone electric resistance split-tube Instron SF-16 furnace with an 11-inch hot zone. For the elevated tests, temperature was measured by two Type N thermocouples in contact with the gage section of the specimen per ASTM E21-09 [Ref. 13]. Tensile specimens were soaked at temperature (+/-5°F) for a minimum of 20 minutes before testing. All tests were conducted in air. The yield load, ultimate load, fracture load, uniform elongation, and elongation at fracture were determined directly from the load-extension curve. The yield strength (0.2% offset method), ultimate tensile strength and fracture strength were calculated using the original cross-sectional area. Yield point elongation (YPE) was calculated as the difference in strain between the upper yield strength and the onset of uniform strain hardening using the methodology described inASTM E8/E8M-15a [Ref. 12]. The final . . diameter and final gage length were determined from post-fracture photographs. This final diameter measurement was used to calculate the fracture stress (fracture true stress) and the percent reduction in area. The final and original gage lengths were used to calculate total elongation after fracture. 5.2 CHARPYV-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule V, which received a fluence of 3.71 x 10 19 Dlcm 2 (E > 1.0 MeV) in 17.69 EFPY of operation, are presented in Table 5-1 through 5-8 and are compared with the unirradiated and previously withdrawn capsule results as shown in Figures 5-1 through 5-12. The unirradiated and previously withdrawn capsule results were taken from WCAP-9807 [Ref. 3], WCAP-12685 [Ref. 14], WCAP-14241 [Ref. 15], and WCAP-15316, Revision 1 [Ref. 16] .. The previous capsules, along with the original program unirradiated material input data, were updated using CVGRAPH, Version 6.02. The transition temperature increases and decreases in upper-shelf energies for the Capsule V materials are summarized in Table 5-9 and led to the following results:

  • Irradiation of the reactor vessel Lower Shell Forging [49D867/49C813]-1-1 Charpy specimens, oriented with the longittidinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of -24.6°F and an irradiated 50 ft-lb transition temperature of 6. 7°F. This results in a 30 ft-lb transition temperature increase of 51.3°F and a 50 ft-lb transition temperature increase of 47.8°F for the tangentially oriented specimens.
  • Irradiation of the reactor vessel Lower Shell Forging [49D867/49C813]-1-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of -8.0°F and an irradiated 50 ft-lb transition temperature of 26.9°F. This results in a 30 ft-lb transition temperature increase of 39.7°F and a 50 ft-lb transition temperature increase of 42.7°F for the axially oriented specimens.

WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-3

  • Irradiation of the Surveillance Program Weld Material (Heat # 442011) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 36.7°F and an irradiated 50 ft-lb transition temperature of 104.3°F. This results in a 30 ft-lb transition temperature increase of 62.8°F and a 50 ft-lb transition temperature increase of 79 .1°F.
  • Irradiation of the HAZ material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -66.0°F and an irradiated 50 ft-lb transition temperature of -16.6°F. This decrease results in a 30 ft-lb transition temperature increase of 171.0°F and a 50 ft-lb transition temperature increase of 119.1°F.
  • The irradiated upper-shelf energy of Lower Shell Forging [49D867/49C813]-l-1 (tangential orientation) resulted in an average energy decrease of 3 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 163 ft-lb for the tangentially oriented specimens.

  • The average upper-shelf energy of Lower Shell Forging [49D867/49C813]-1-1 (axial orientation) resulted in an average energy decrease of 26 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 126 ft-lb for the axially oriented specimens.

  • The average-upper--shelf energy of the Surveillance Program Weld Material (Heat # 442011) Charpy specimens resulted in an average energy increase of 1 ft-lb after irradiation.

Although physically unreasonable, this increase results in an irradiated average upper-shelf energy of 70 ft-lb for the weld metal specimens.

  • TJ:te ayerage upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy decrease of 3 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 125 ft-lb for the HAZ Material.

  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by U.S. NRC Regulatory Guide 1.99, Revision 2 [Ref. 1] for the Braidwood Unit 1 reactor slirveillance materials are presented in Table 5-10. The fracture appearances of each irradiated Charpy specimen from the various materials are shown in Figures 5-13 through 5-16. The :fractures show an increasingly ductile or tougher appearance with increasing test temperature.

Load-time records for the individual instrumented Charpy specimens are contained in Appendix B. With consideration of the surveillance data, all beltline and extended beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY), as required by 10 CFR 50, Appendix G [Ref. 2]. This evaluation is contained in Appendix D. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-4 5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in Capsule V irradiated to 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated results as shown in Figures 5-17 through 5-19. The results of the tensile tests performed on the Lower Shell Forging [49D867/49C813]-1-1 (tangential orientation) indicated that irradiation to 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2% offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-17 and Table 5-11. The results of the tensile tests performed on the Lower Shell Forging [49D867/49C813]-l-1 (axial orientation) indicated that irradiation to 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2% offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-18 and Table 5-11. The results of the tensile tests performed on the Surveillance Program Weld Material (Heat # 442011) indicated that irradiation to 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2% offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-19 and Table 5-11. The fractured tensile specimens for the Lower Shell Forging [49D867/49C813]-1-1 (tangential orientation) material are shown in Figure 5-20, the fractured tensile specimens for the Lower Shell Forging [49D867/49C813]-1-1 (axial orientation) are shown in Figure 5-21, and the fracture tensile specimens for the Surveillance Program Weld Material (Heat# 442011) are shown in Figure 5-22. The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-28. 5.4 1/2T COMPACT TENSION SPECIMEN TESTS Per the surveillance capsule testing contract, the 1/2T Compact Tension Specimens were not tested and are being stored at the Westinghouse Materials Center of Excellence Hot Cell Facility. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-5 Table 5-1 Charpy V-notch Data for the Braidwood Unit 1 Lower Shell Forging Irradiated to a Fluence of 3.71x10 19 n/cm 2 (E>1.0 MeV) (Tangential Orientation) Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm % EL27 59 2 2.7 0.5 0.01 5 EL18 46 36 48.8 26 0.66 10 EL26 34 40 54.2 31 0.79 15 EL22 29 28 38.0 21 0.53 15 EL29 23 19 25.8 14 0.36 15 EL21 5 -15 25 33.9 16 0.41 15 EL16 15 -9 61 82.7 43 1.09 35 EL25 30 -1 100 135.6 66 1.68 60 EL19 60 16 88 119.3 57 1.45 50 EL28 72 22 109 147.8 70 1.78 60 EL23 125 52 139 188.5 82 2.08 80 EL24 160 ,, 71 140 189.8 90 2.29 85 EL17 183 84 152 206.1 85 2.16 100 EL20 210 99 171 231.8 87 2.21 100 EL30 250 121 167 226.4 87 2.21 100 WCAP-18092-NP May 2016 Revision 1 Table 5-2 Sample Number ET26 ET28 ET24 ET29 ET21 ET17 ET23 ET22 ET19 ET30 ET27 ET20 ET16 ET18 ET25 Westirighouse Non-Proprietary Class 3 5-6 Charpy V-notch Data for the Braidwood Unit 1 Lower Shell Forging Irradiated to a Fluence of3.71x10 19 n/cm 2 (E>1.0 MeV) (Axial Orientation) Temperature Impact Energy Lateral Expansion Shear OF oc ft-lbs Joules mils mm o/o 59 11 14.9 6 0.15 5 46 7 9.5 4 0.10 5 34 23 31.2 15 0.38 10 23 25 33.9 19 0.48 10 0 -18 42 56.9 29 0.74 20 5 -15 46 62.4 30 0.76 25 15 -9 48 65.1 30 0.76 30 30 -1 54 73.2 38 0.97 30 50 10 28 38.0 20 0.51 30 50 10 75 101.7 50 1.27 40 72 22 91 123.4 50 1.27 50 125 52 108 146.4 62 1.57 60 160 71 124 168.1 79 2.01 95 187 86 117 158.6 80 2.03 100 250 121 137 185.7 81 2.06 100 WCAP-18092-NP May2016 Revision 1 ----I Table 5-3 Sample Number EW25 EW30 EW18 EW27 EW20 EW24 EW17 EW26 EW29 EW22 EW16 EW21 EW23 EW28 EW19 Westinghouse Non-Proprietary Class 3 5-7 Charpy V-notch Data for the Braidwood Unit 1 Surveillance Program Weld Material (Heat# 442011) Irradiated to a Fluence of3.71x10 19 n/cm 2 (E>1.0 MeV) Temperature Impact Energy Lateral Expansion Shear OF oc ft-lbs Joules mils mm % 34 8 10.8 7 0.18 20 23 17 23.0 15 0.38 20 5 -15 14 19.0 10 0.25 25 15 -9 30 40.7 22 0.56 35 25 -4 23 31.2 20 0.51 40 35 2 40 54.2 35 0.89 45 50 10 31 42.0 25 0.64 40 72 22 44 59.7 33 0.84 50 100 38 55 74.6 46 1.17 75 125 52 51 69.l 41 1.04 75 150 66 48 65.1 42 1.07 75 185 85 62 84.1 53 1.35 90 210 99 71 96.3 60 1.52 100 220 104 70 94.9 64 1.63 100 250 121 68 92.2 59 1.50 100 WCAP-18092-NP May2016 Revision 1 Table 5-4 Sample Number EH25 EH24 EH22 EH16 EH23. EH19 EH17 EH21 EH20 EH29 EH28 EH30 EH26 EH18 EH27 Westinghouse Non-Proprietary Class 3 5-8 Charpy V-notch Data for the Braidwood Unit 1 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 3.71x10 19 n/cm 2 (E>1.0 MeV) Temperature Impact Energy Lateral Expansion Shear OF oc ft-lbs Joules mils mm % -110 -79 3.5 4.7 2 0.05 10 68 25 33.9 20 0.51 15 59 37 50.2 20 0.51 25 46 38 51.5 26 0.66 25 34 45 61.0 29 0.74 30 5 -15 46 62.4 31 0.79 30 50 10 113 153.2 63 1.60 65 72 22 72 97.6 46 1.17 60 100 38 104 141.0 66 1.68 80 125 52 98 132.9 59 1.50 75 183 84 99 134.2 65 1.65 95 210 99 91 123.4 63 1.60 100 220 104 122 165.4 68 1.73 100 220 104 146 197.9 71 1.80 100 250 121 167 226.4 74 1.88 100 WCAP-18092-NP May2016 Revision 1 Table 5-5 Sample Number EL27 ELIS EL26 EL22 EL29 EL21 EL16 EL25 EL19 EL28 EL23 EL24 EL17 EL20 EL30 Note: Westinghouse Non-Proprietary Class 3 5-9 Instrumented Charpy Impact Test Results for the Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-1-1 Irradiated to a Fluence of 3. 71 x 10 19 n/cm 2 (E > 1.0 Me V) (Tangential Orientation) Total Dial Total Energy to General Test Energy, Instrumented Difference, Max Maximum Time to Yield Fracture Arrest Temp KV Energy, (KV-Wt)IKV Load, Load, Fm Fm Load, F2Y Load, Fhr Load, Fa {°F) Wt (%) Wm (lb) (msec) (lb) (lb) (ft-lb) (ft-lb) (ft-lb) (lb) -75 2 2.00 0.00 1.41 2400 0.06 2300 2400 0 -50 36 32.43 9.92 29.02 4200 0.51 3300 4100 0 -30 40 37.05 7.38 35.96 4300 0.63 3100 4300 0 -20 28 25.91 7.46 23.68 4000 0.43 3200 4000 0 -10 19 16.23 14.58 14.73 3900 0.29 3200 3800 0 5 25 22.34 10.64 5.87 4300 0.16 3100 3600 0 15 61 53:86 11.70 33.83 4200 0.6 3000 3900 200 30 100 89.48 10.52 35.31 4400 0.6 3100 3500 2100 60 88 74.00(a) 15.91 (a) 32.75(a) 4100(a) 0.6(a) 2700(a) 3700(a) 900(a) 72 109 100.93 7.40 32.67 4100 0.6 2700 3300 1400 125 139 128.94 7.24 41.81 4100 0.77 2600 2100 1200 160 140 128.16 8.46 52.03 4000 0.95 2500 2000 1200 183 152 139.22 8.41 53.90 4000 0.99 2500 0 0 210 171 156.19 8.66 46.96 4000 0.91 2500 0 0 250 167 155.10 7.13 50.88 3900 0.95 2500 0 0 (a) The difference between instrumented Charpy and dial values was greater than 15%, but the values were not adjusted as required by Reference 10 since this data is not required and is presented for informational purposes only. WCAP-18092-NP May2016 Revision 1 Table5-6 Sample Number ET26 ET28 ET24 ET29 ET21 ET17 ET23 ET22 ET19 ET30 ET27 ET20 ET16 ET18 ET25 Note: Westinghouse Non-Proprietary Class 3 5-10 Instrumented Charpy Impact Test Results for the Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-l-1 Irradiated to a Fluence of3.71x10 19 n/cm 2 (E>1.0 MeV) (Axial Orientation) Total Dial Total Energy to Time General Test Energy, Instrumented Difference, Max Maximum to Yield Fracture Arrest Temp KV Energy, (KV-Wt)IKV Load, Load, Fm Fm Load, Fl!Y Load, Fhr Load, Fa {°F) (ft-lb) Wt (%) Wm (lb) (msec) (lb) (lb) (lb) (ft-lb) (ft-lb) -75 11 10.56 4.00 3.41 4100 0.10 3300 3700 0 -50 7 6.29 10.14 3.22 3900 0.09 3200 3400 0 -30 23 20.65 10.22 19.13 4000 0.36 3100 4000 0 -10 25 23.26 6.96 18.52 3900 0.36 3000 3900 0 0 42 38.69 7.88 34.24 4200 0.60 3100 4100 0 5 46 41.82 9.09 34.98 4200 0.64 3000 4200 0 15 48 41.70 13.13 33.85 4200 0.60 3000 4000 100 30 54 48.73 9.76 33.51 4200 0.60 2900 4000 0 50 28 19.45(a) 30.54(a) 3.51 (a) 4400(a) 0.17Ca) 2700(a) 3900(a) oCa) 50 75 65.65 12.47 43.54 4200 0.77 2900 3800 400 72 91 75.45(a) 17.09(a) 3354(a) 4200(a) 0.61 (a) 28oo<a> 3900(a) 1400(a) 125 108 99.35 8.01 43.80 4100 0.79 2900 3000 1500 160 124 112.43 9.33 42.03 4100 0.80 2700 2000 1600 187 117 107.09 8.47 41.77 3900 0.79 2600 0 0 250 137 125.13 8.66 40.82 3900 0.79 2500 0 0 (a) The difference between instrumented Charpy and dial values was greater than .15% and 25% for specimens ET27 and ET19, respectively, but the values were neither adjusted nor discarded as required by Reference 10 since this data is not required and is presented for informational purposes only. WCAP-18092-NP May2016 Revision 1 Table 5-7 Sample Number EW25 EW30 EW18 EW27 EW20 EW24 EW17 EW26 EW29* EW22 EW16 EW21 EW23 EW28 EW19 Note: Westinghouse Non-Proprietary Class 3 5-11 Instrumented Charpy Impact Test Results for the Braidwood Unit 1 Surveillance Program Weld Material (Heat# 442011) Irradiated to a Fluence of3.71x10 19 n/cm 2 (E>1.0 MeV) Total Dial Total ,, Energy to General Arrest Test Energy, Instrumented .Difference, Max Maximum Time to Yield Fracture Load, Temp KV Energy, (KV-Wt)IKV Load, Load, Fm Fm Load, FIO' Load, Fhr Fa {°F) (ft-lb) Wt (%) Wm (lb) (msec) (lb) (lb) (lb) (ft-lb) (ft-lb) -30 8 6.87 14.13 3.21 3800 0.09 3100 3300 0 -10 17 13.86(a) 18.4?<aJ 3.25(a) 3700(a) 0.09(a) 3100(a) 3600(a) o<aJ 5 14 10.41 (a) 25.64(a) 2.99(a) 3600(a) 0.09(a) 3100(a) 3400(a) 5oo<a> 15 30 23.75(a) 20.83(a) l 7.97(a) 3800(a) 0.36(a) 29oo<a> 3800(a} 700(a) 25 23 20.53 10.74 14.1 3700 0.29 3000 3400 1100 35 40 35.34 11.65 17.6 3700 0.36 2900 3400 1200 50 31 27.08 12.65 17.54 3700 0.36 2900 3500 1400 72 44 39.52 10.18 22.38 3800 0.43 2900 3600 1800 100 55 49.6 9.82 22.24 3900 0.46 2900 2200 1100 125 51 . 45.51 10.76 22.65 4000 0.47 2800 3300 2500 150 48 43.66 9.04 16.94 3600 0.36 2600 3300 2400 185 62 56.18 9.39 11.32 3700 0.27 2700 2800 2200 210 71 64.83 8.69 30.48 3600 0.60 2600 0 0 220 70 62.37 10.90 29.52 3500 0.60 2300 0 0 250 68 61.19 10.01 20.22 3700 0.46 2400 0 0 (a) The difference between instrumented Charpy and dial values was greaterthan 15% for specimens EW27 and EW30 and greater than 25% for specimen EW18. The values were neither adjusted nor discarded as required by Reference 10 since this data is not required and is presented for informational purposes only. WCAP-18092-NP May2016 Revision 1 Table 5-8 Sample Number EH25 EH24 EH22 EH16 EH23 EH19 EH17 EH21 EH20 EH29 EH28 EH30 EH26 EH18 EH27 Note: Westinghouse Non-Proprietary Class 3 5-12 Instrumented Charpy Impact Test Results for the Braidwood Unit 1 Heat-Mfected Zone (HAZ) Material Irradiated to a Fluence of3.71x10 19 n/cm 2 (E>1.0 MeV) Total Dial Total Energy to General Arrest Test Energy, Instrumented Difference, Max Maximum Time to Yield Fracture Load, Temp KV Energy, (KV-Wt)IKV Load, Load, Fm . Fm Load, Fl!.V Load, Fbr Fa {°F) (ft-lb) Wt (%) Wm (lb) (msec) (lb) (lb) (lb) (ft-lb) (ft-lb) -110 3.5 3.57* -2.00 2.92 3900 0.09 3300 3900 0 -90 25 24.34 2.64 20.57 4300 0.36 3400 4100 0 -75 37 32.78 11.41 30.70 4500 0.51 3500 4500 0 -50 38 31.82(a) 16.26(a) 30.22(a) 4400(a) o.so<a) 3400(a) 4400(a) 9oo<a> -30 45 37.32(a) 17.0J<a) 29.25(a) 4200(a) o.so<a) 3200(a) 4200(a) 1500(a) 5 46 41.38 10.04 35.32 4300 0.60 3200 4100 0 50 113 102.91 8.93 58.53 4300 0.99 3100 2600 1500 72 72 65.82 8.58 44.92 4300 0.77 2900 3800 2600 100 104 94.51 9.13 33.22 4100 0.61 3000 3000 1400 125 98 90.97 7.17 44.65 4300 0.80 2800 2500 1600 183 99 89.42 9.68 56.24 4100 0.99 2700 3400 2600 210 91 83.37 8.38 41.47 4000 0.77 2600 0 0 220 122 109.52 10.23 42.12 4100 0.79 2500 0 0 220 146 132.52 9.23 51.85 4000 0.95 2600 0 0 250 167 153.67 7.98 47.71 4100 0.91 2500 .o 0 (a) The difference between instrumented Charpy and dial values was greater than 15%, but the values were not adjusted as required by Reference 10 since this data is not required and is presented for infonnational purposes only. WCAP-18092-NP May2016 Revision 1 Table 5-9 Westinghouse Non-Proprietary Class 3 5-13 Effect of Irradiation to 3.71 x 10 19 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Braidwood Unit 1 Reactor Vessel Surveillance Capsule V Materials Average 30 ft-lb Transition Average 35 mil Lateral Expansion Average 50 ft-lb Transition Average Energy Absorption Material Temperature<*> (°F) Temperature<*> (0 F) Temperature<*> (°F) 95% ShearCb> (ft-lb) Un irradiated Irradiated AT Unirradiated Irradiated AT U nirradiated Irradiated AT Unirradiated Irradiated AE Lower Shell Forging [ 490867 /49C8 l 3 ]-1-1 -75.9 -24.6 51.3 -37.5 6.3 43.8 -41.l 6.7 47.8 166 163 -3 (Tangential) Lower Shell Forging [ 490867 /4 9C8 l 3 ]-1-1 -47.7 -8.0 39.7 -14.5 35.5 50.0 -15.8 26.9 42.7 152 126 -26 (Axial) Surveillance Weld Material -26.1 36.7 62.8 9.6 81.5 71.9 25.2 104.3 79.l 69 70 I (Heat# 442011) Heat-Affected Zone (HAZ) Material -237.0 -66.0 171.0 -82.2 -8.2 74.0 -135.7 -16.6 119.1 128(c) 125 -3 Notes: (a) Average value is determined by CVGRAPH, Version 6.02 (see Appendix C). (b) Upper-shelf Energy (USE) values are a calculated average from unirradiated and Capsule V Charpy test results for specimens that achieved greater than or equal to 95% shear, unless otherwise noted. (c) Two greater than or equal to 95% shear unirradiated data points were deemed " out of family" and were excluded from the upper-shelf energy determination for the HAZ material. WCAP-18092-NP May 2016 Revision I Westinghouse Non-Proprietary Class 3 5-14 Ta b le 5-10 C o mp ar i so n of t h e B rai d w ood U n it 1 S u rveillance Material 30 ft-lb Tr a nsiti on Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions C a p su le 30 ft-lb Transiti o n Up p er-S heH E n ergy Fl ue nce Tem p erature Shift Decrease Material Capsule (x 10 19 n/c m 2 , Predicted<*> Measured(b l Predicted<*> Measured(bl E> 1.0MeV) (°F) (°F) (%) (%) u 0.388 22.9 5.6 15 o<<n Lower Shell Forging x 1.17 32.4 37.9 20 0 [ 49D867 /49C813 ]-1-1 (Tangential) w 1.98 36.8 24.0 22.5 4 v 3.71 41.5 51.3 26 2 u 0.388 22.9 0.0 (c) 15 10 Lower Shell Forging x 1.17 32.4 29.3 20 7 [ 49D867/49C813]-l-1 (Axial) w 1.98 36.8 37.1 22.5 5 v 3.71 41.5 26 17 u 0.388 30.3 17.4 15 o<<n Surveillance Weld Material x 1.17 42.8 29.8 20 1 (Heat# 442011) w 1.98 48.6 49.0 22.5 10 v 3.71 5 4.9 6 2.8 26 o (d) u 0.388 ---84.3 ---13 x 1.17 ---119.6 ---o<d) Heat-Affected Zone Material w 1.98 ---113.3 ---27 v 3.71 ---17LO ---2 Notes: (a) Based on U.S. NRC Regulatory Guide 1.99, Revision 2, methodology using the capsule fluence and mean weight percent values of copper and nickel of the surveillance material. (b) Calculated by CVGRAPH, Version 6.02 using measured Charpy data (See Appendix C). (c) A negative LIB.TNDT value (-15.8°F) was calculated. Physically, this should not occur; therefore , a conservative value of zero is shown in this table. ( d) An increase in USE values was calculated. Physically , this should not occur; therefore , conservative values of 0% are shown in this table. WCAP-18092-NP May 2 0 16 Revision 1 Westinghouse Non-Proprietary Class 3 5-15 Table 5-11 Tensile Properties of the Braidwood Unit 1 Capsule V Reactor Vessel Surveillance Materials Irradiated to 3.71x10 19 n/cm 2 (E>1.0 MeV) Test 0.2% Ultimate Material Sample Temp. Yield Strength Number (oF) Strength (ksi) (ksi) EL4 75 73.6 94.0 Lower Shell Forging [ 49D867 /49C813)-1-1 ELS 150 71.0 89.9 (Tangential) EL6 550 63.6 86.0 ET4 76 74.0 94.7 Lower Shell Forging [ 490867 /49C813 )-1-1 ET5 150 71.4 90.1 (Axial) ET6 550 62.3 87.3 Surveillance Weld EW4 76 80.9 95.7 Material EW5 150 78.2 91.8 (Heat# 442011) EW6 550 74.8 90.6 WCAP-18092-NP Fracture Fracture Fracture Load Strength True (kip) (ksi) Stress (ksi) 2.74 55.8 186 2.62 53.3 183 2.64 53.8 190 3.24 66.0 217 2.85 58.2 191 3.19 65.0 159 3.21 65.5 162 3.12 63.6 184 3.32 67.7 161 Uniform Total Elongation Elongation (%) (%) 11.3 27.2 10.6 26.3 9.4 22.7 10.7 23.4 10.1 23.9 8.9 19.4 9.1 22.5 8.2 20.6 7.3 18.0 Reduction inArea (%) 70.2 71.1 71.5 69.3 69.3 59.4 59.2 65.7 58.3 May2016 Revision 1 Curve I 2 3 4 5 We s tinghouse N on-Proprietary Class 3 Lower Shell Forging [49D867/49C813]-1-1 (Tangential) CVGra p h 6.02: Hy p er b o li c Ta n gen t C u rve P rint e d o n 10/16/20 15 1: 02 PM P l ant Cap s ule M a t eria l Ori. Hea t# Braidwood I I UN IRR SA508CL3 T i mge nt ial [4 9D867/49C8 13]-1-1 I Braidwood I I u S A 508CLJ Tange nt ial [49D86 7/49C813]-I 1-1 Braidwoo d l I x S A 508CL3 Tange nt ial [ 49D86 7/49C813]-1-1 Braidwood I w SA508CL3 T a ngen t ial [49D867/49C813]-1-1 Braidwood l v S A 508CL3 Ta n gential [49D867/49C813]-1-1 5-1 6 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Tangential Orientation) WCAP-18092-NP May 20 1 6 Revis i o n 1 W es tinghouse Non-Proprietary Clas s 3 5-17 Lo w er S hell F orgin g 149D867/49 C 8131-1-l (Tangential) CV Gr aph 6.02: H y p e r bo l ic Tange nt Curve Prin ted on 1 0/16/20 1 5 I :02 P M 180 ------------------------------------------------------ 160 140 -I ¢:: -100 ;;i.., OJ) ,_ = z > u 80 60 40 20 0 1 A 2 8 3 $ 4 I ---' j I L I i 0 ...___.___. __ _._ __ ..__ ________ _._ __ ..___... __ ,.___... __ ..___... __ ..___... __ ..___.___. -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) C ur v e Flu e nce L S E U S E d-USE T (ty 30 d-T@30 T@SO d-T I ---2.2 166 0 -7 5.9 0 -4 1.1 0 2 ---2.2 168 2 -70.3 5.60 -39.5 1.6 ' ---2.2 1 66 0 -38 37.9 -7.1 34 _, 4 ---2.2 1 60 51.9 24 -17.2 23.9 5 ---2.2 1 63 24.6 51.3 6.7 47.8 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Tangential Orientation)- Continued WCAP-18092-NP May2016 Revision 1 l Curve 1 2 3 4 5 Wes tin ghou s e Non-Proprietary Class 3 Lo w er She)] For g ing [49D867/49C813] 1 (Tangential) CV G ra ph 6.02: Hyper b olic Ta n gent Cu rve P rinte d o n 10/1 6/20 1 5 1: 10 PM P lant Capsule Ma t er i a l O r i. Heat# Braidwood l UNlRR SA508CL3 Tangential [ 49D867 / 49C8 l3 ]-1-1 Braidwood l u SA508CL3 Tangential [49D867/49C813]-1-1 Brai d woo d l x SA508CL3 Ta n ge nt ial [49D867/49C813]-1-1 Braidwood 1 w SA 5 08CL3 Tangen t ial [49D867/49C813]-1-1 Braidwood 1 v SA508CL3 T a.ngential 1[49D867/49C813]-1-1 5-1 8 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-l-1 (fangential Orientation) WCAP-18092-NP May2016 Re vi sion 1 Westinghouse Non-Proprietary Class 3 5-19 Lower S hell Forging 149D867/49 C8 131-l-l (Tangential) CV Graph 6.02: H y perbolic Tange n t Curve Printed on I 0/16/20 1 5 I: I 0 P M 100 ---+------!---e 1 ! I I i i 9 I I I 90 A 2 I I 8 3 "' e 4 a I 80 + ----* --. --fl.) -.,.. I s 70 _ _.i -* I -* -r. --T -= I I I f 0 60 . *-+ --. -t . -J..-*-fl.) I I = I = I Q. 50 --------* ___._.. _______ --+----l-ii< I I , I -40 J -t -:i... ' I I I ...... l -l-I = 30 --r ..J -*----....


+--+----* -+-I I I ! i I 20 l i i I I I 10 .. -t r---t-' 0 -300 -200 -100 0 IOO 200 300 400 500 600 Temperature

(° F) C ur v e Fhll'llCl' LSE U S E d-l SE T la'35 d-T fa\35 I ---I 90.46 0 -37. -0 2 ---I 85.71 -4.75 -36 5 1 3 ---I 88.71 -1.75 -11.2 26.3 4 ---I 85.18 -5.28 -8.7 28.8 s ---I 88.44 -2.02 63 43.8 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 {Tangential Orientation) -Continued WCAP-18092-NP May2016 Revision 1 Curve I 2 3 4 5 We s tinghouse Non-Proprietary Cl as s 3 Lo w e r Sh e ll F orging [49D867/49C813]-l-l (Tangential) CVGra ph 6.02: Hyper b o li c Tangent Curve Pri nt ed on 10/16/2015 1: 1 0 PM Pl a nt Cap s ul e Material Or i. H e at# Braidwood 1 UN JRR S A 508CL3 Tangen t ial [ 49D867/49C813]-1-1 Braidwood l u S A 508CL3 T a n g en t ial [49D8 6 7/49C813)-1-l Braidwood 1 x SA508CL3 Tan g en ti a l [4 9 D867/49C813]-1-1 Braidwo od 1 w S A 508C L 3 T an ge n t ial [49D867/4 9 C813]-1-1 B rai d woo d 1 v SA508CL3 T angential [49D867/49C813]-1-1 5-20 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813] 1 (Tangential Orientation) WCAP-1 8092-NP May 20 1 6 Re vi sion 1 Westinghouse Non-Proprietary Class 3 5-21 Lower Shell Forging 149D867/49C8131-1-1 (Tangential) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 1 0/16/2015 I : 10 PM 90 80 70 .. -*-, J_ _ I I ---+--1 30 I 20 10 -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) Curve Fluence LSE USE d-"SE 1 ---0 100 0 20 0 2 ---0 100 0 -8.8 -28.8 3 ---0 1 00 0 52.7 32.7 4 ---0 100 0 15.2 -4.8 5 ---0 100 0 50.9 30.9 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Tangential Orientation)-Continued WCAP-18092 -NP May2016 Revision 1 Curve l 2 3 4 5 Westinghouse Non-Proprietary Class 3 Lower Shell Forging [49D867/49C8 1 3]-1-1 (A x ial) CVGra ph 6.02: Hy p erbolic T an g e nt C u rve P ri n te d o n 10/16/2015 1: 12 PM Plant Capsule Ma te r i a l Ol'i. Braidwood 1 UNIRR SA508CL3 Axia l Bra i dwood l u SA508CL3 Axia l Braidwoo d l x SA 5 08CL3 Axial Braidwood 1 I w SA508CL3 Ax i a l Braidwood 1 v SA508CL3 Axia l 5-22 Heat# [4 9 D 867/4 9C8 l3]-1-1 [ 49D867 I 49C8 l 3 ]-1-1 [49 D 867/49C813]-1-1 [49D867/49C8 1 3]-1-1 [49D867/49C813]-1-1 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation) WCAP-18092-NP May 2016 Re vi s i on 1 -Cl!l .c -140 120 100 -80 Westinghouse Non-Proprietary Class 3 L ow er S hell F orgin g f49D867/49 C 813J-l-1 (A xial) CVGra ph 6.02: Hy p e r bo l ic Ta n ge n t C u rve P ri n te d on 1 0/16/20 1 5 1: 1 2 PM 0 A a I -+---! I 5-23 ' 60 **--r---.. --r*-*----** 1 40 I I --1 -I 20 0 -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) C ur v e Fl ue nee LS E U S E d-U S E d-T (a?3 0 d-T@,,5 0 I ---2.2 1 52 0 -4 7.7 0 -15.8 0 2 ---2.2 137 63.5 -1 5.8 -25.9 -IO. I 3 ---2.2 1 42 -IO -1 8.4 29.3 16.9 32.7 4 ---2.2 1 44 10.6 37.1 27.1 4 2.9 5 ---2.2 1 26 8 39.7 26.9 42.7 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation)- Continued WCAP-18092-NP May2016 Revision 1 Curve 1 2 3 4 5 Westinghouse Non-Proprietary Class 3 Lo we r Sh e ll Fo r ging [49D86 7/49C813]-1 -1 (A x i a l) CV Gra ph 6.02: Hyperbo l ic Tangent C urve P r inte d on 1 0/16/20 1 S 1 :13 PM Plant Capsule Ma t e r ia l Ori. Braidwood 1 UNIRR SA508CL3 Ax i a l Braidwood 1 u SA508CL3 Axial Braidwoo d 1 I x SA508CL3 Axial Braidwood 1 w SA508CL3 Axia l Brai d wood 1 \I SA508CL3 Axial 5-2 4 Heat# [49D867/49C813]-1-1 [49D867/49C813)-1-1 [49D867/49C813]-1-1 [49D867/49C813)-1-1 [49D867/49C813)-1-1 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation) WCAP-1809 2-NP May 2016 Re vi sion 1 80 70 -..... e -60 = 0 ..... Cl} = 50 0... 40 20 C ur ve I 2 3 4 5 We s tinghouse Non-Proprietary C las s 3 L o w e r S h e ll Forgin g [490867/49 C 813J-l-l (A x ial) CVGraph 6.02: Hype r bo l ic Tangent C u rve P rinte d on 10/16/2015 1: 13 P M -200 -100 0 100 200 300 400 Temperature{° F) F luenc e L SE U S E d-USE ---I 89.06 0 -14.5 ---I 8 3.23 -5.8 3 -24.9 ---I 79.99 -9.07 13.2 ---I 7 6.09 -1 2.9 7 34.9 ---1 85.81 -3.25 35.5 5-2 5 500 600 d-T fa).3 5 0 -1 0.4 27.7 49.4 50 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation) -Continued WCAP-18092-NP May2016 Re vi sion 1 C u rve l 2 3 4 5 Westinghouse Non-Proprietary Class 3 Lo we r Sh e ll Forging [49D867/49C813]-1-1 (A x ial) CVGra ph 6.0 2: H yper b o li c Ta n ge n t Cu rve Pr i n te d o n 10/1 6/2015 1:13 PM Pla n t Caps ul e Ma te ria l Or i. Braidwoo d 1 UNIRR SA508CL3 A x i a l Braidwood l u SA508CL3 A xia l B rai d wood 1 x SA508CL3 Axia l Braidwood 1 w SA508CL3 A xia l Braidwood 1 v SA508CL3 Axial 5-26 Heat# i[49 D 867/49C813]-I 1-1 [49D867/49C8 1 3]-1-1 [49 D 867/4 9C813]-1-1 [49D867/49C813]-1-1 [49D867/4 9C813]-1-1 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-l-1 (Axial Orientation) WCAP-18092-NP May2016 Re vi s i on 1 90 80 70 :s.. W e stinghou s e Non-Proprietary Class 3 Lo w er S h e ll F or g in g 149D867/49 C 813J-1-1 (Axi al) CV G rap h 6.02: H y p e r bo li c Ta n ge nt C u rv e Prin te d on I Oil 6/2015 I: 13 P M 0 1 A 2 8 3

  • 4 I i ---

j ----1 I -t---1 I I r--t---+-- 5-27 60 ----;.-----1 I 1 I I .c 00 .... 50 i::: 40 Q.. I ---t----1--l--4-----+----+------t------t-- -- ___ L____ --: -I I I -t-t 30 20 10 -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) C ur ve F luence LSE USE d-U S E T (t!), 50 d-T@SO I ---0 1 00 0 40.6 0 2 ---0 100 0 4.3 -36.3 3 ---0 1 00 0 93.I 52.5 4 ---0 JOO 0 66.3 25.7 5 ---0 1 00 0 7 4.1 33.5 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Lower S h ell Forging [49D867/49C813]-1-1 (Axial Orientation) -Continued WCAP-18092-NP May 2016 Re vi sion 1 Curve 70 60 -r;I} ..c "'i' 50 ¢:: .._ ;;;... 40 Cl z 30 > u 20 10 I 2 3 4 5 Westinghouse Non-Proprietary Class 3 Surveillance Program Weld Metal CVG r aph 6 02: H y perbolic Ta n gent Curve Printed on 1 0/16/20 15 l:l5 PM Plant Capsule Material Ori. Heat# Braid wood I UN IRR WELD /A 44201 1 Braid wood I u WEL D N I A 44201 I B raidwood I x WELD I A 4420 1 1 B raidwood I w WELD I A 442011 Braid wood I v WELD I A 442011 o t I -... A.--2 -t--t;;ia---3 , -.... $--4 I I ----+ I --0 ...__._ __ _._ __ ...__._ __ .i.....___. __ _,_ __ ..__---i., __ _,_ __ ..___._ __ ...___. __ _._ __ -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) 5-28 Figure 5-7 Charpy V-Notcb Impact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-29 Surveillance Program Weld Metal C V Graph 6.02: H y p e rbolic Tang e nt Curv e Printed on 10/16/2015 1: 15 PM Cun'e Fluence LSE USE d-USE T@3 0 d-T@JO T@50 d-T@50 1 I ---2.2 69 0 -26.1 0 25.2 0 2 I ---2.2 70 1 -8.7 17.4 31 5.8 3 ---2.2 68 -1 3.7 29.8 70.5 45.3 4 ---2.2 62 -7 22.9 49 90.5 65.3 5 ---2.2 7 0 1 36.7 6 2.8 10 4.3 79.l Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) -Continued WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-30 Surveillance Program Weld Metal CVG raph 6.02: H y p e rbol ic Ta n g en t C ur v e P rin ted o n 10 1 1 6 1 20 1 5 I: 1 6 P M Curve Pl a nt Ca p s ul e M at e rial Ori. Heat# 1 Br ai d woo d I UN lRR WE L D NI A 44 20 11 2 B r aid woo d I u W E LD N I A 4 4 20 11 3 Braid woo d I x WELD N I A 44 2 0 11 4 B raidwoo d I w WELD N I A 4420 11 5 B rai d woo d I v W E LD N I A 4420 11 70 0 1 60 A 2 a 3 $ 4 -A t-------rll 50 -.... = I ._. I I = I I J. 0 40 ---*-l-----**--1-*-I rll = = c.. -------j___ ___ 30 -= ""' ...... = 20 --------I 10 i -300 -200 -JOO 0 100 200 300 400 500 600 Temperature (° F) Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-31 Surveillance Program Weld Metal C V Graph 6.02: Hyperbolic Tangent Curve Printed on 10/16/2015 1:16 PM Curve Fluence LSE USE d-USE T@35 d-T@35 1 ---1 63.91 0 9.6 0 2 ---1 59.57 -4.34 16.8 7.2 3 ---1 64.68 0.77 37.9 28.3 4 ---l 53.15 -10.7 6 65.6 56 5 ---1 64.0 6 0.15 81.5 71.9 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) -Continued WCAP-1 8092-NP May2016 Revision 1 C u rve I 2 3 4 5 100 90 80 70 i.. ci: 60 .c rJ1 ..... 50 c r.I i.. 40 Q.. 30 20 10 Westinghouse Non-Proprietary Class 3 Surveillance Program Weld Metal CV Graph 6.02: H y perbol i c Tan g ent C u rv e Printed o n 1 0116/20 15 I: 17 PM Pl a nt Ca p s ul e Bra i d wood l UN lRR B ra id woo d I u B rai d wo od I x B ra i dwoo d I w B rai d wood I v j --+0--1 +-*---L _ _,6--2 1 i I I : ! a *-------r--I M at e r ia l Ori. WELD N/A W E LD N/A WELD N I A WELD N/A WELD N/A 5-32 H ea t# 4 420 11 442011 44 20 11 4420 11 4420 11 -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-33 Surveillance Program Weld Metal CV Graph 6.02: Hyperbolic Tang e nt Curve Printed on 10/16/2015 l: 17 PM Curve Fluence LSE USE d-USE T@50 d-T@50 1 . --0 100 0 2.2 0 2 ---0 100 0 29.8 27.6 3 ---0 100 0 27.5 25.3 4 ---0 100 0 40.9 38.7 5 ---0 100 0 58.4 56.2 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011)-Continued WCAP-18092-NP May2016 Revision 1 Westinghouse N on-Proprietary Clas s 3 5-3 4 Heat-Affec t ed Zone CVGra ph 6.02: Hy p e rb o l ic Tangent Cu rve Printe d on 11/5/20 1 5 1 1: 09 AM C urv e Pl a n t Cap s ul e Ma t e rial Ori. Htiat # 1 Braid w ood I UNT RR S A 508C L3 N/A [4 9D867/49C813]-1-1 2 Braid w ood l u S A 508C L 3 N I A [49D867/49C813]-1-1 3 Braid wo od l x S A 5 08CL3 N I A [4 9 D867/49C813]-1-1 4 Bra i dw o od 1 w S A 508CL3 N I A [49D867 1 49C813]-1-1 5 Braidwood 1 v S A5 08CL3 N I A [49D867 1 49C813]-1-1 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material W C AP-18092-NP May 20 1 6 R evi s i on 1 W es tinghou s e N on-Proprietary C las s 3 5-35 He a t-Aff ected Zon e 180 CVGraph 6.02: Hype r bo l ic Tange nt C u rve P rinte d on 1 1/5/20 1 5 1 1 : 09 AM 160 140 -f.fJ 120 -I ,_, 100 CJ) -s::: 80 r;i;;J z > 60 u 40 20 0 ..._ ........ ........ ........ ........ -300 -200 -100 0 100 200 300 400 500 600 Temperature (° F) C ur v e F lu e n c e LS E U S E d-USE T!a?30 d-T@.3 0 T (@.50 d-T@,5 0 I ---2.2 1 28 0 -237 0 -135.7 0 2 ---2.2 11 2 -1 6 -152.7 84.3 -93.2 42.5 3 ---2.2 130 2 -117.4 119.6 -50.2 8 5.5 4 ---2.2 93 123.7 1 13.3 -72.7 63 5 ---2.2 125 66 1 71 -1 6.6 1 1 9.l Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material -Continued WCAP-18092 -NP May2016 Revision 1 We s tinghouse Non-Proprietary Cl ass 3 5-36 Heat-Affected Zon e CVGra ph 6.02: Hyper b olic Tangent Cu rve Pr i nt e d on 10/16/2015 1 : 1 9 PM Curve Plant Capsule Ma t erial Oti. Heat# I Braidwood I I UNTRR SA508CL3 N I A I[ 49D867/ 4 9C8 l3]-1-1 2 Braidwood l u SA508CL3 N I A [49D867/49C813]-1-1 3 Brai d woo d l x SA 5 08CL3 N I A [49D867/49C813]-1-1 4 Braidwood 1 w SA508CL3 N I A [49D867/49C8l3]-1-1 5 Braidwood 1 v SA508CL3 N I A [49D867/49C813]-1-1 Figure 5-11 Cbarpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material WCAP-1809 2-NP May 2016 Re vi s i on 1 Westinghouse N on-Proprietary Class 3 H ea t-A ffected Zone CV G raph 6.02: H y p e r bo li c Ta n ge nt C u rve P ri n te d on I 0/16/20 1 5 I: 1 9 P M 90 ........ ........ .... o 1 I : ;I $ 4 -, -----1----- _o I i " : i i I I I 70 a 80 t-* -o I A 0 -r i *------t--t----J-1 I l I * ..L --1 -r -r---10 t------i 0 -300 -200 -100 0 100 200 300 400 500 600 Temperature{° F) C ur v e Fluence L S E U S E d-USE TJ S d-T@.3 5 I ---I 69.52 0 -8 2.2 0 2 ---I 70.16 0.64 -64.2 18 3 ---I 72.6 8 3.16 -35.8 46.4 4 ---I 6 1.9 1 -7.61 -31.1 5 I.I 5 ---I 69.8 0.28 -8.2 74 5-37 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material -Continued WCAP-18092-NP May2016 Revision I We stin ghou s e N o n-Proprietary C la ss 3 5-38 H ea t-Aff e ct e d Zon e CVGra ph 6.02: H y perbo l ic Tangent Curve P rinted on 1 0/1 6/2015 1: 20 PM C urv e Pl a nt Cap s ul e M at erial Ori. Heat# l Braidwood 1 UNIRR S A 508CL3 N I A [49D867/49C813]-1-1 2 Braid w ood l u S A 508CL3 N I A 1[49D867/49C813]-1-1 3 Braidwoo d l x S A 508CL3 N I A [49D867/4 9C813]-1-1 4 Braidwood 1 w S A 508CL3 N I A (49D867/49C813]-1-1 5 Braidwood 1 v SA508CL3 N I A [49D867/49C813]-1-1 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material WCAP-18092-NP May 2016 R evis ion 1 Westinghouse Non-Proprietary Class 3 5-39 Heat-Affected Zone CVGraph 6.02: Hyperbolic Tangent Curve Printed on 1O il6/2015 I : 20 PM 100 *' 90 80 ----r--, --!-------4--- 1 I l i 70 -e-= 60 .c fLl ;..-50 i::: QJ CJ -40 Q.. 30 20 10 I ! --l------+-- 1 I -200 -100 0 100 200 300 400 500 600 Temperature (° F) Curve Fluence LSE USE d-USE T@SO d-T@SO I ---0 100 0 -7.9 0 2 ---0 100 0 -19_4 -11.5 3 ---0 100 0 25.5 33.4 4 ---0 100 0 -15.3 -7.4 5 ---0 100 0 27.7 35.6 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material -Continued WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-40 EL27, -75°F EL18, -50°F EL26, -30°F EL22, -20°F EL29, -10°F EL21, 5°F EL16, 15°F EL25, 30°F EL19, 60°F EL28, 72°F EL23, 125°F EL24, 160°F EL17, 183°F EL20, 210°F EL30, 250°F Figure S-13 Charpy Impact Specimen Fracture Surfaces for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Tangential Orientation) WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-41 ET26, -75°F ET28, -50°F ET24, -30°F ET29, -10°F ET21, 0°F ET17, 5°F ET23, 15°F ET22, 30°F ET19, 50°F ET30, 50°F ET27, 72°F ET20, 125°F ET16, 160°F ET18, 187°F ET25, 250°F Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-1-1 (Axial Orientation) WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-42 EW25, -30°F EW30 , -l0°F EW18, 5°F EW27, 15°F EW20,25°F EW24, 35°F EW17, 50°F EW26, 72°F EW29, 100°F EW22, 125°F EW16, 150°F EW21, 185°F EW23 , 210°F EW28, 220°F EW19,250°F Figure 5-15 Charpy Impact Specimen Fracture Surfaces for the Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-43 EH25, -ll0°F EH24, -90°F EH22, -75°F EH16, -50°F EH23, -30°F EH19, 5°F EH17, 50°F EH21, 72°F EH20, 100°F EH29, 125°F EH28, 183°F EH30, 210°F EH26, 220°F EH18, 220°F EH27, 250°F Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the Braidwood Unit 1 Reactor Vessel Heat-Affected Zone Material WCAP-18092-NP May 2016 Revision 1 Ui :.. .. .. e Ui >-... :I c Figure 5-17 Westinghouse Non-Proprietary Class 3 5-44 100.0 0 Ultimate Tensile Strength 90.0 8 0.0 --------------0 ... __ _ ------. 70.0 60.0 0.2% Yield S trength

  • 50.0 40.0 30.0 20.0 10.0 0.0 0 100 200 3 0 0 400 50 0 60 0 Tem p erature (°F) L egend: A , *, and
  • are u nirr ad i ated o, and o a r e i rr a d i ated to 3.71 x 10 1 9 n/cm 2 (E > 1.0 MeV) 80.0 Area R eduction 70.0
  • 6 0.0 50.0 40.0 30.0 Tota l E longation 20.0 10.0 Uniform E longation 0.0 0 100 200 300 400 500 600 Temperature

(°F) Tensile Properties for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C8 1 3]-l-1 (Tangential Orientation) WCAP-1 809 2-NP May 2 0 1 6 R evisi o n 1 Figure 5-18 Westinghouse Non-P ro p rietary C l ass 3 5-45 100.0 Ultimate T ens i le Strength 90.0 ---c 80.0


* 70.0 6 0.0 -o; 0.2% Yield Strength "' 50.0 "' f 40.0 30.0 20.0 10.0 o.o 0 100 200 300 400 500 600 Tem erature 'F Legend: A, *, and

  • are unirradiated

!!., o, and o a r e irr ad i a ted to 3.71 x1 0 1 9 n/c m 2 (E > 1.0 MeV) 80.0 -*--* -*-. --* -.. Area Red uc tion 70.0


*--------* --------.

60.0 +--------------------------'====--.,,.,- --40.0 +-------------------------------"' c 30.0 +-------------------------------Total E l o nga ti on *-er -. ---==.--==--- 20.0 10.0 Un i fonn E l onga ti on 0.0 0 1 0 0 200 300 400 500 600 Temperature ('F l Tensile Properties for Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813)-l-1 (Axial Orientation) W C AP-1 809 2-NP May 2 0 1 6 R evisi on 1

  • .. .. tn Westinghouse N on-Proprietary Class 3 120.0 -----------* -----. -----100.0 +-------------------------------

U ltim a te Ten s i l e S tr e n gt h -80.0 ---...--.---------.. 0.2% Yi e l d S trength ...... 6 0.0 40.0 20.0 +------------------------------- 0 70.0 100 200 300 400 500 T em pe rature (°F) Legend: A ,*, and

  • are un i rradiated

..1 , o, and o are irradia t ed to 3.71 x 10 1 9 n/cm 2 (E > 1.0 MeV) ,<r ... -..L-.. Ar e a R ed uc t io n 6 00 _,/ --==----=..,..,._. 60.0 __ __ "===:g 40.0 +-----------


ti :I c 30.0 +-------------------------------,._ __ 0 ---Total E l ongation 20.0 Un i form E lo n ga ti on 0 100 200 300 400 500 600 Temperature

(°F) 5-46 Figure 5-19 Tensile Properties for the Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-1 809 2-NP May20 1 6 Revis i on 1 Westinghouse Non-Proprietary Class 3 5-47 EL4 -Tested at 75°F ELS -Tested at 150°F EL6 -Tested at 550°F Figure 5-20 Fractured Tensile Specimens from Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867 /49C813]-1-1 (Tangential Orientation) WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-48 ET4 -Tested at 76°F ETS-Tested at 150°F ET6 -Tested at SS0°F Figure 5-21 Fractured Tensile Specimens from Braidwood Unit 1 Reactor Vessel Lower Shell Forging [49D867/49C813]-l-1 (Axial Orientation) WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5-49 EW4-Tested at 76°F EW5 -Tested at 150°F EW6 -Tested at 550°F Figure 5-22 Fractured Tensile Specimens from the Braidwood Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442011) WCAP-18092-NP May2016 Revision 1 VI I.... +-J (j) ,......., V> VI <U L +-J Vl Westinghouse Non-Proprietary Class 3 5-50 100 ****-************* -********. *--***** .................................... ................ ************

    • *** 70 '******** *********

.......... -****** ; ............................. ******:-** .................. -********* ... . 60 .................................. ;. **************************

              • <************
                    • ........... . s o !**-*--*********** --** ***--*******:* *-*********-*-**
                • -******-*-:**-****-****************--* *****-*-. . 40 **-********-***********-************* **--*-** -**--*--*-

-******----****:--*---* .......................... . 30 20 ,******************************

                    • -***
          • -***-***************
    • -*-******** . . 10 ......................... . ********'* ............. ***------****-* ------*---****-***** **-**********--****----0 0 . . . . . ' . . 1 0 2 0 St r a in [0/o] Tensile Specimen EL4 Tested at 7S°F 30 90 ****************
                                                                            • -* **** ****-*-*** ---------------------. . ' ' **---------*--
  • -*** .... --------:---------********-* --...... -*****:* -----------*-* . ' . . ' . ' . so ***********************************:******************
                                                                            • -* *-*-**** ... ' . . . 40 ,**-*************************
              • '.**
                                                    • -*****
      • -*********-************* ... ' . ' . 30 ;**-* ................ *-** ... : ..............

.............

              • ... . ' 20 :***-************
                                        • *******************
                  • 10 **-****** .........................

,. ****-**** **-******* ......... ******.*** ................... *************- 0 10 20 3 0 St r ai n [0/o] Tensile Specimen ELS Tested at 1S0°F Figure S-23 Engineering Stress-Strain Curves for Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-l-1 Tensile Specimens EL4 and ELS (Tangential Orientation) WCAP-18092-NP May2016 Revision 1 Westinghou se N on-Proprietary C l ass 3 5-5 1 1 00 . . 90 ................................... , ... , ................... ..........

            • ... * .......................

..................... . . . . . 80 70 ,..-., ..........

  • ..
    ... .-.. -_ ::-:-:,.._, .............. .................

.................. . J . /r : 7********************************:***

  • . . (/) 60 .......................................
.....................

............... *> ............ -.......................... . . . . . ...._, . . . . (/) 50 (/) .................. ................ .... , ...................

            • ****** ...... * ....................................

... . . . . . Q) . . . . I._ 4 0 "'""' (./) . . ................ ......................

............... ***.*** ................................... . . ' ' . . . 30 ************

                                              • =************
                                                                          • . ' . . . . 20 . **********************************:***************************
  • .....................

........... . ' ' . . . . 10 ................ *******************'.

                                  • ............... ***:*** ............................

.... . . . ' ' . . 0 10 20 30 S tra i n [%] T ensile Specimen EL6 Tested at 550°F Figure 5-24 Engineering Stress-Strain Curve for Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-1-1 Tensile Specimen EL6 (Tangential Orientation) WCAP-18092-NP May2016 Re vi sio n 1 If) l!l L .µ (j) (/) V) <lJ ..... (j) Westinghouse Non-Proprietary Class 3 5-52 100 . -*--*. -. *-** .. *-* ... -----....... ----.... -.... *-. ---.. ---...... -.. , ... -. ---*-.... ---*--.. *-*-** .. . . . 5 0 ............................

4 0 ., ...... ***************************:******************** 30' --***-*-*****--***-*******--* -****------------------------2 0 , ........ *********

                                    • ............................
        • ........ . . . 1 0 .........................................................................................

............ . 0 10 20 3 0 St r a in [0/o] Tensile Specimen ET4 Tested at 76°F 9 0 i ............... .. :_:,.:.:.:: ._,_,_. -* *:*-* .-:.:..:..* **************** *:* ********************************* ; : --.........

0 . -. ,*z::::::::::::::::
.. :i::::::::::::*::*::::
.::::::r:*:*
    • . . . . . ' 6 0 ***********************************'.******************************** ***:************
  • ..................... . . . . . . . 5 0 *******************************

.................. . . . . . . . 40 ................................ -* ...................... ... *:*** .......... *****-................ . . . . . . . 30 ....... *************

                                                                  • . . . . 20 *****************************
                        • . . . . 1 0 ................

........... ....... *:***************** .......... ...... ***:*** ................................. . . . . . . . 0 1 0 20 30 S tra i n [%] Tensile Specimen ET5 Tested at 150°F Figure 5-25 Engineering Stress-Strain Curves for Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-1-1 Tensile Specimens ET4 and ET5 (Axial Orientation) WCAP-18092-NP May2016 Revision 1 Vl (J) QJ I... .j...I I./) Westinghouse Non-Proprietary Class 3 5-53 90 ................ ****************. ............................... **:*** ..............

-__ _.,.,. -----: ------. ::

  • .::: .:*.:: .* I ::. ::::::. :.:::::: ::::.::::.: . . . . 60 ................................... , ...................................
. .................................. . 5 0 ************
        • ................

................ . . . . . 40 ***********************************'.**************

                                                      • ............................ . . . . . . . 30 ***********************************:*****
                                                      • ***:*******************************
          • . . . . . . 20 .........

........................ ..................... . . . . . 1 0 ,* ............... *******************:***************

          • ............
            • *****************
                                • . . . . . .

0 10 20 30 S train [%] Tensile Specimen ET6 Tested at 550°F Figure 5-26 Engineering Stress-Strain Curve for Braidwood Unit 1 Lower Shell Forging [49D867/49C813]-1-1 Tensile Specimen ET6 (Axial Orientation) WCAP-18092-NP May2016 Revision 1 V') V') Q) L _µ (j) Ill U) Q) L _µ (j) Westinghouse Non-Proprietary Class 3 5-54 100 -----------------------*----------:-----------------*----------------.--------------*----------------*---90 ' __ --..... ---...... -* --*** .:. -------.. ---........ -*-----... -----. . . . ....... -******** ********* ********r* ......... ********** .......... ***,*** .......... *--****-* *--******* ... . . . . . 80 . . . . . . 70 ********************---**-**-*-*--*****-*--------*--------*---*--*-----.--------*--*-------------------*---60 *---*--------------*-----*------*--:--------*------------------------:-*-----*--\-* ***--*-*-------**** ----**************************** ********* ****** ****** r***** \********************* 30 ,*-------------***------------------*---*----* ----*--------------------*----------------------------------20 *--------****------*---------******:* ---**--*-******--*---****---*-****:********-**** ***-*-**-*-***-**** ----. . . . 10 0 10 20 3 0 St r a i n [0/o] Tensile Specimen EW4 Tested at 76°F 9 0 ....... --.... ..... --*--........... -.......... ; ............. *--. ----*-------. -. -. -. -----. / ; --: ao v*------*-*--*----*---------*-**:*-**********-** -*-*-*-----*-*----.----*----*******--------*--*--*****-7 0 --*--**------*--*********-*---**-*:***-*--**--*--*--*************** *-:-***-----*************************** 6 0 . **-...... -*. **-......... -*-................ -* ...... *-* ... ***:*** ................................ . . . . . s o " ...... -.............. -........... ........................... -* ..... *'.** .... -.......... *-........ -* .. -.. -. . . . 40 ***********************************i***********************************i******\***************************** . . . . 30 **-********************************:***********************************:************-***

    • -***************** . . . -. . 20 *********************************-*:*********************** ************:*******************************-**** 10 ................ ****-***-**********:*****************-***** ......... ***:*** ................................ . . .

0 1 0 20 30 St rain [%] Tensile Specimen EWS Tested at 150°F Figure 5-27 Engineering Stress-Strain Curves for Braidwood Unit 1 Surveillance Weld Material Tensile Specimens EW4 and EW5 WCAP-18092-NP May2016 Re v ision 1 Westinghouse Non-Proprietary Clas s 3 5-55 100 90 80 ***********

          • ,.;...._._

.................... ....... r--..r** -: ................................... , ................... ............ ...................................... .. . . . . . . . 70 . . ............................................... ............................................................ ..... . . . . ,.--, . . . . (/) 6 0 '----' . . . . . . . . . . . . . . . . . .. -........... ....... : ........... -. . . . . . . . . . . . . . . . . . . ..... . . . -. . ........ -.................... . . \ . . . . . . . (/) 5 0 (/) Q) I... 40 .j...I I.fl ************************-*********r*******************************\**T********* ........................ . .............................. .... ; .................. .............. \* .; ............................. ...... . : \ : . . 30 . . ............................................... ................................ ...................................... . . . . . . . . 20 ....................................... , ........................... ................................................ . . . . . 10 .................. .................... , .................................. ***-*** .................................. . . . . . 0 0 10 20 3 0 S tra i n [%] Tensile Specimen EW6 Tested at 550°F Figure 5-28 Engineering Stress-Strain Curve for Braidwood Unit 1 Surveillance Weld Material Tensile Specimen EW6 WCAP-18092-NP May2016 Re vi sion 1 Westinghouse Non-Proprietary Class 3 6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

This section describes a discrete ordinates (S 0) transport analysis performed for the Braidwood Unit 1 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules. In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant-and fuel-cycle-specific basis. An evaluation of the most recent dosimetry sensor set from Capsule V, withdrawn at the end of the 14th plant operating cycle , is provided. In addition, the sensor sets from the previously withdrawn and analyzed capsules (U, X, and W) were re-analyzed and are presented. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant-specific neutron transport calculations. These validated calculations subsequently form the basis for projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 60 EFPY. The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves, as well as for the implementation of trend curve data to assess the condition of the vessel. However , in recent years, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall. Because of this potential shift away from a threshold fluence toward an energy-dependent damage function for data correlation, ASTM Standard Practice E853-13, "Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results," [Ref. 17] recommends reporting displacements per iron atom (dpa) along with tluence (E > 1.0 MeV) to provide a database for future reference. The energy-dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693-94, "Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom" [Ref. 18]. The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to U.S. NRC Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials" [Ref. l]. All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on nuclear cross-section data derived from ENDF/B-VI and used the latest available calculational tools. Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance of U.S. NRC Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. 19]. Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC-approved methodology described in WCAP-14040-A , Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" [Ref. 20]. WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-2 6.2 DISCRETE ORDINATES ANALYSIS The arrangement of the surveillance capsules in the Braidwood Unit 1 reactor vessel is shown in Figure 4-1. Six irradiation capsules attached to the neutron pad are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 58.5°, 61.0°, 121.5°, 238.5°, 241.0°, and 301.5°, as shown in Figure 4-1. These full-core positions correspond to the octant symmetric locations shown in Figures 6-2 and 6-3: 29.0° from the core cardinal axes (for the 61.0° and 241.0° capsules) and 31.5° from the core cardinal axes (for the 58.5°, 121.5°, 238.5°, and 301.5° capsules). The stainless steel specimen containers are 1.63-inch by 1.25-inch and are approximately 60 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the approximate central 5 feet of the 12-foot-high reactor core. From a neutronic standpoint, the surveillance capsules and associated support structures are significant. The presence of these materials has a significant effect on both the spatial distribution of neutron fluence rate and the neutron spectrum in the vicinity of the capsules. However, the capsules are far enough apart that they do not interfere with one another. To determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model. In performing the fast neutron exposure evaluations for the Braidwood Unit 1 reactor vessel and surveillance capsules , a series of fuel cycle-specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique: cp(r, 0, z) = cp(r, 0) * (Equation. 6-1) where cj>(r,9,z) is the synthesized three-dimensional neutron flux distribution, cj>(r,9) is the transport solution in r,9 geometry, cj>(r,z) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and cj>(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r,9 two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Braidwood Unit I. For the Braidwood Unit I transport calculations, the r,0 models depicted in Figures 6-1 through 6-3 were utilized because, with the exception of the neutron pads, the reactor is octant symmetric. These r,0 models include the core, the reactor internals, the neutron pads (including explicit representations of octants not containing surveillance capsules and octants with surveillance capsules at 29° and 31.5°), the pressure vessel cladding and vessel wall, the insulation external to the pressure vessel, and the primary biological shield wall. These models formed the basis for the calculated results and enabled making comparisons to the surveillance capsule dosimetry evaluations. In developing these analytical models, nominal design dimensions were employed for the various structural components. Likewise, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The coolant densities were treated on a specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures, such as fuel assembly grids, guide tubes, etc. The geometric mesh description of the r,9 reactor model in Figure 6-1 consisted of 257 radial by 131 azimuthal intervals. The geometric mesh description of the r,0 reactor models in Figure 6-2 and Figure 6-3 consisted of 255 radial WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-3 by 143 azimuthal intervals. Mesh sizes were chosen to ensure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,9 calculations was set at a value of 0.001. The r , z model used for the Braidwood Unit 1 calculations, shown in Figure 6-4, extends radially from the centerline of the reactor core out to the primary biological shield and over an axial span from an elevation below the lower core support to several feet above the upper core plate. As in the case of the r,9 models, nominal design dimensions and full power coolant densities were employed in the calculations. In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The r ,z geometric mesh description of these reactor models consisted of 153 radial by 216 axial intervals. As in the case of the r,9 calculations, mesh sizes were chosen to ensure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,z calculations was also set at a value of 0.001. The one-dimensional radial model used in the synthesis procedure consisted of the same 153 radial mesh intervals included in the r,z model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry. The core power distributions used in the plant-specific transport analysis for each of the first 19 fuel cycles at Braidwood Unit 1 included cycle-dependent fuel assembly initial enrichments, burnups, and axial power distributions (note that Cycles 1 through 18 have been completed; Cycle 19 is based on the expected core design for this cycle and an assumed cycle length of 1.5 EFPY). This information was used to develop spatial-and energy-dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of the fuel cycle-averaged neutron fluence rate, which, when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial 235 U enrichment and burnup history of individual fuel assemblies. From these assembly-dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined. All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code [Ref. 23] and the BUGLE-96 cross-section library [Ref. 22]. The BUGLE-96 library provides a coupled 47-neutron, 20-gamma-group cross-section data set produced specifically for water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a P 5 Legendre expansion, and angular discretization was modeled with an S 16 order of angular quadrature. Energy-and space-dependent core power distributions, as well as system operating temperatures, were treated on a fuel-cycle-specific basis. Selected results from the neutron transport analyses are provided in Table 6-1 through Table 6-12. In Table 6-1 and Table 6-2, the calculated exposure rates and integral exposures expressed in terms of fast neutron fluence rate (E > 1.0 MeV) and fast neutron fluence (E > 1.0 MeV), respectively, are given at the radial and azimuthal center of the surveillance capsule positions (i.e., for the 29 .0° and 31.5° dual capsule holder locations and 31.5° single capsule holder location). In Table 6-3 and Table 6-4, the calculated WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-4 exposure rates and integral exposures expressed in terms of iron atom displacement rate (dpa/s) and iron atom displacements (dpa), respectively , are given at the radial and azimuthal center of the surveillance capsule positions (i.e., for the 29.0° and 31.5° dual capsule holder locations and 31.5° single capsule holder location). All surveillance capsules have been removed from Braidwood Unit l; therefore, results are not presented beyond Cycle 14 (as there are no capsules receiving fluence). These results, representative of the average axial exposure of the material specimens, establish the calculated exposure of the surveillance capsules. Similar information in terms of calculated fast neutron fluence rate (E > 1.0 MeV), fast neutron fluence (E > 1.0 MeV), dpa/s, and dpa, are provided in Table 6-5 through Table 6-8, for the reactor vessel inner radius at four azimuthal locations , as well as for the maximum exposure observed within the octant. The vessel data given in Table 6-5 through Table 6-8 were taken at the clad/base metal interface and represent maximum calculated exposure levels on the vessel. From the data provided in Table 6-6, it is noted that the peak clad/base metal interface vessel fluence (E > 1.0 MeV) at the end of the 18th fuel cycle (i.e., after 23.33 EFPY of plant operation) was 1.26E+19 n/cm 2* Table 6-6 and Table 6-8 include both plant-and fuel-cycle-specific calculated neutron exposures at the end of the 18 th fuel cycle, at the end of projected Cycle 19, and further projections to 60 EFPY. The calculations account for the uprate from 3411 MWt to 3586.6 MWt that occurred during Cycle 9, and incorporate an uprate from 3586.6 MWt to 3658 MWt that occurred during Cycle 18. The projections are based on the assumption that the core power distributions and associated plant operating characteristics from the design of Cycle 19 are representative of future plant operation. The future projections are based on the uprated reactor power level of 3658 MWt. The calculated fast neutron exposures for all six surveillance capsules withdrawn from the Braidwood Unit 1 reactor are provided in Table 6-9. These neutron exposure levels are based on the plant-and fuel cycle-specific neutron transport calculations performed for the Braidwood Unit 1 reactor. From the data provided in Table 6-9, Capsule V received a fast neutron fluence (E > 1.0 MeV) of 3.71E+19 n/cm 2 after exposure through the end of the 14th fuel cycle (i.e., after 17 .69 EFPY). Updated lead factors for the Braidwood Unit 1 surveillance capsules are provided in Table 6-10. The capsule lead factor is defined as the ratio of the calculated fast neutron fluence (E > 1.0 MeV) at the geometric radial and azimuthal center of the surveillance capsule to the corresponding maximum calculated fast neutron fluence at the pressure vessel clad/base metal interface. In Table 6-10, the lead factors for capsules that have been withdrawn from the reactor (Capsules U, X, W, V, Y, and Z) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules. Table 6-11 presents the maximum fast neutron fluences (E > 1.0 MeV) and Table 6-12 presents the maximum iron atom displacements for pressure vessel materials. 6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least-squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-5 serve to validate the calculated results , only the direct comparison of measured-to-calculated results for the most recent surveillance capsule analyzed is provided in this section. For completeness, the assessment of all measured dosimetry removed to date , based on both direct and least-squares evaluation comparisons is documented in Appendix A. The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule V, which was withdrawn from Braidwood Unit 1 at the end of the 14th fuel cycle, is summarized below. Reaction Reaction Rate (rps/atom) Measured (M) Calculated (C) MIC Cu-63(n,a)Co-60 4.02E-17 3.66E-17 1.10 Fe-54(n , p )Mn-54 3.81E-15 3.97E-15 0.96 U-23 8( Cd)(n,f)Cs-13 7 2.37E-14 2.12E-14 1.12 Np-237(Cd)(n,f)Cs-l 37 l.99E-13 2.06E-13 0.97 Average 1.04 % standard deviation 8.1 The measured-to-calculated (M/C) reaction rate ratios for the Capsule V threshold reactions range from 0.96 to 1.12, and the average M/C ratio is 1.04 +/- 8.1% (lcr). This direct comparison falls within the +/- 20% criterion specified in U.S. NRC Regulatory Guide 1.190. This comparison validates the current analytical results described in Section 6.2; therefore , the calculations are deemed applicable for Braidwood Unit 1. 6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Braidwood Unit 1 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in U.S. NRC Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages: 1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL). 2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H.B. Robinson power reactor benchmark experiment.

3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments. 4. Comparisons of the plant-specific calculations with all available dosimetry results from the Braidwood Unit 1 surveillance program. WCAP-18092

-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-6 The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross-sections. This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H.B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods-related and would tend to apply generically to all fast neutron exposure evaluations. The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations, as well as to a lack of knowledge relative to various plant-specific input parameters. The overall calculational uncertainty applicable to the Braidwood Unit 1 analysis was established from results of these three phases of the methods qualification. The fourth phase of the uncertainty assessment (comparisons with Braidwood Unit 1 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures described in Section 6.2. As such, the validation of the Braidwood Unit 1 analytical model based on the measured plant dosimetry is completely described in Appendix A. The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference

21. Description Capsule and Vessel IR PCA Comparisons 3% H. B. Robinson Comparisons 3% Analytical Sensitivity Studies 11% Additional Uncertainty for Factors not Explicitly 5% Net Calculational Uncertainty 13% The net calculational uncertainty was determined by combining the individual components in quadrature.

Therefore, the resultant uncertainty was treated as random, and no systematic bias was applied to the analytical results. The plant-specific measurement comparisons described in Appendix A support these uncertainty assessments for Braidwood Unit 1. WCAP-18092-NP May2016 Revision 1 Table 6-1 Westinghouse Non-Proprietary Class 3 6-7 Calculated Fast Neutron Fluence Rate (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 Cycle Total Fluence Rate (n/cm 2-s) Cycle Length Time (EFPY) (EFPY) Dual 29° Dual 31.5° Single 31.5° 1 1.16 1.16 9.76E+10 l.06E+l 1 l.04E+l l 2 0.86 2.02 6.77E+10 7.39E+10 7.29E+10 3 1.13 3.15 7.92E+l0 8.83E+10 8.72E+l0 4 1.15 4.3 7.0lE+lO 7.47E+l0 7.37E+10 5 1.22 5.52 7.18E+l0 7.87E+10 7.77E+10 6 1.04 6.55 6.58E+10 6.82E+l0 6.72E+l0 7 1.24 7.79 7.02E+l0 7.93E+l0 7.83E+10 8 1.29 9.08 5.14E+10 5.55E+l0 5.48E+l0 9 1.44 10.52 5.56E+l0 6.25E+10 6.17E+10 10 1.49 12.01 6.30E+10 6.60E+l0 6.50E+10 11 1.42 13.43 6.43E+ 10 6.78E+l0 6.68E+l0 12 1.45 14.88 6.36E+10 6.72E+l0 6.62E+10 13 1.4 16.28 5.73E+10 6.16E+l0 6.07E+l0 14 1.41 17.69 6.33E+10 6.74E+10 6.64E+10 WCAP-18092-NP May 2016 Revision 1 Table 6-2 Westinghouse Non-Proprietary Class 3 6-8 Calculated Fa s t Neutr o n Fluence (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 Cycle Total Fluence (n/cm 2) Cycle Length Time (EFPY) (EFPY) Dual 29° Dual 31.5° Single 31.5° 1 1.16 1.16 3.58E+l8 3.88E+l8 3.82E+l8 2 0.86 2.02 5.41E+18 5.89E+18 5.80E+18 3 1.13 3.15 8.24E+18 9.04E+18 8.92E+18 4 1.15 4.3 1.08E+ 19 1.17E+19 1.16E+19 5 1.22 5.52 1.35E+19 1.48E+19 1.46E+1 9 6 1.04 6.55 1.57E+19 1.70E+19 1.68E+19 7 1.24 7.79 1.84E+19 2.01E+19 1.98E+19 8 1.29 9.08 2.05E+19 2.24E+19 2.20E+19 9 1.44 10.52 2.30E+19 2.52E+19 2.49E+19 10 1.49 12.01 2.60E+19 2.83E+19 2.79E+19 11 1.42 13.43 2.89E+19 3.13E+19 3.09E+19 12 1.45 14.88 3.18E+19 3.44E+19 3.39E+19 13 1.4 16.28 3.43E+19 3.71E+19 3.66E+19 14 1.41 17.69 3.71E+19 4.01E+19 3.96E+19 WCAP-18092-NP May 2016 Revision 1 Table 6-3 Westinghouse Non-Proprietary Class 3 6-9 Calculated Iron Atom Displacement Rate at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 Cycle Total Displacement Rate (dpa/s) Cycle Length Time (EFPY) (EFPY) Dual 29° Dual 31.5° Single 31.5° 1 1.16 1.16 1.93E-10 2.09E-10 2.06E-10 2 0.86 2.02 1.33E-10 1.45E-10 1.43E-10 3 1.13 3.15 1.55E-10 1.73E-10 1.71E-10 4 1.15 4.3 1.37E-10 1.46E-10 1.44E-10 5 1.22 5.52 1.41E-10 1.54E-10 1.52E-10 6 1.04 6.55 l.29E-10 1.34E-10 1.31E-10 7 1.24 7.79 1.37E-10 1.55E-10 1.53E-10 8 1.29 9.08 1.00E-10 1.08E-10 1.07E-10 9 1.44 10.52 1.09E-10 l.22E-10 1.21E-10 10 1.49 12.01 1.23E-10 1.29E-10 1.27E-10 11 1.42 13.43 l.26E-10 1.32E-10 1.30E-10 12 1.45 14.88 1.24E-10 1.31E-10 1.29E-10 13 1.4 16.28 1.12E-10 l.20E-10 1.18E-10 14 1.41 17.69 1.24E-10 1.32E-10 1.29E-10 WCAP-18092-NP May2016 Revision 1 Table 6-4 Westinghouse Non-Proprietary Class 3 6-10 Calculated Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane for Cycles 1-14 Cycle Total Displacements (dpa) Cycle Length Time (EFPY) (EFPY) Dual 29° Dual 31.5° Single 31.5° 1 1.16 1.16 7.07E-03 7.66E-03 7.54E-03 2 0.86 2.02 1.07E-02 1.16E-02 l.14E-02 3 1.13 3.15 l.62E-02 l.78E-02 l.75E-02 4 1.15 4.3 2.12E-02 2.31E-02 2.27E-02 5 1.22 5.52 2.66E-02 2.90E-02 2.86E-02 6 1.04 6.55 3.08E-02 3.34E-02 3.29E-02 7 1.24 7.79 3.62E-02 3.94E-02 3.88E-02 8 1.29 9.08 4.03E-02 4.38E-02 4.32E-02 9 1.44 10.52 4.52E-02 4.94E-02 4.87E-02 10 1.49 12.01 5.lOE-02 5.54E-02 5.46E-02 11 1.42 13.43 5.66E-02 6.14E-02 6.04E-02 12 1.45 14.88 6.23E-02 6.74E-02 6.63E-02 13 1.4 16.28 6.72E-02 7.27E-02 7.15E-02 14 1.41 17.69 7.27E-02 7.85E-02 7.73E-02 WCAP-18092-NP May2016 Revision 1 Table 6-5 Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19(a) Note: Westinghouse Non-Proprietary Class 3 6-11 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence Rates (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface Cycle Total Fluence Rate (n/cm 2-s) Length Time 15° 30° Maximum ffiFPY) <EFPY) oo 45° 1.16 1.16 1.30E+10 2.lOE+lO 2.37E+10 2.64E+10 2.64E+10 0.86 2.02 l.19E+10 l.67E+10 l.65E+10 l.83E+10 1.83E+10 1.13 3.15 9.73E+09 l.58E+10 l.93E+10 2.28E+10 2.28E+10 1.15 4.3 9.96E+09 1.53E+l0 l.68E+10 1.73E+10 1.80E+l0 1.22 5.52 9.99E+09 1.51E+10 l.74E+l0 1.98E+10 1.98E+10 1.04 6.55 1.06E+10 1.60E+10 1.67E+10 1.53E+10 1.86E+10 1.24 7.7 9 9.25E+09 1.36E+ 10 1.76E+10 2.04E+10 2.04E+10 1.29 9.08 7.35E+09 1.12E+10 1.31E+10 1.38E+10 1.38E+10 1.44 10.52 8.62E+09 1.22E+ 10 1.39E+10 1.65E+10 1.65E+10 1.49 12.01 1.04E+ 10 1.53E+ 10 1.63E+ 10 1.49E+10 1.77E+10 1.42 13.43 1.0lE+lO 1.47E+10 l.59E+ 10 1.46E+10 1.70E+10 1.45 14.88 l.OOE+lO 1.46E+ 10 1.58E+10 1.45E+10 1.68E+10 1.40 16.28 9.84E+09 1.38E+10 1.43E+10 1.43E+10 1.53E+10 1.41 17.69 1.03E+10 1.45E+10 1.57E+l0 l.51E+l0 1.66E+10 1.43 19.11 9.68E+09 1.47E+10 1.62E+10 1.58E+10 1.72E+10 1.43 20.55 9.88E+09 1.55E+10 1.68E+10 1.55E+10 1.82E+10 1.30 21.84 1.07E+10 1.56E+10 l.66E+10 l.56E+10 1.78E+10 1.49 23.33 l.OlE+lO 1.60E+10 1.74E+10 1.62E+10 1.89E+10 1.50 24.83 1.02E+10 l.59E+10 l.77E+10 1.63E+10 1.89E+10 (a) Values beyond end of cycle (EOC) 18 are projected. Cycle 19 is based on the core design for this cycle and an assumed cycle length of 1.5 EFPY. WCAP-18092-NP May2016 Revision 1 Table 6-6 Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19(a) Note: Westinghouse Non-Proprietary Class 3 6-12 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface Cycle Total Fluence (n/cm 2) Length Time oo 15° 30° 45° Maximum <EFPY) <EFPY) 1.16 1.16 4.77E+17 7.70E+17 8.70E+17 9.67E+17 9.67E+17 0.86 2.02 8.00E+l7 1.22E+18 1.32E+18 1.46E+18 1.46E+18 1.13 3.15 1.14E+18 1.77E+1 8 1.99E+18 2.26E+18 2.26E+18 1.15 4.30 1.50E+l8 2.33E+ 18 2.60E+18 2.88E+18 2.88E+l8 1.22 5.52 1.88E+18 2.90E+1 8 3.26E+18 3.64E+l8 3.64E+l8 1.04 6.55 2.22E+18 3.41E+18 3.80E+18 4.13E+18 4.13E+18 1.24 7.79 2.56E+18 3.92 E+18 4.45E+l8 4.89E+18 4.89E+18 1.29 9.08 2.86E+18 4.37E+1 8 4.98E+18 5.44E+18 5.44E+18 1.44 10.52 3.23E+18 4.89E+18 5.58E+18 6.16E+18 6.16E+18 1.49 12.01 3.69E+l8 5.57E+18 6.29E+l8 6.81E+l8 6.81E+l8 1.42 13.43 4.14E+18 6.23E+18 7.01E+18 7.47E+ 18 7.47E+18 1.45 14.88 4.60E+18 6.90E+l8 7.73E+18 8.13E+l8 8.13E+l8 1.40 16.28 5.03E+18 7.50E+18 8.36E+18 8.76E+18 8.76E+1 8 1.41 17.69 5.49E+l8 8.15E+18 9.06E+18 9.43E+18 9.47E+ 18 1.43 19.11 5.93E+18 8.80E+l8 9.78E+18 1.01E+19 1.02E+ 19 1.43 20.55 6.37E+18 9.49E+18 1.05E+19 1.08E+19 1.10E+l9 1.30 21.84 6.80E+18 l.01E+19 1.12E+19 1.15E+19 l.18E+19 1.49 23.33 7.26E+l8 l.09E+19 l.20E+l9 l.22E+l9 l.26E+19 1.50 24.83 7.73E+18 l.16E+19 l.28E+19 1.29E+19 l.35E+19 32.00 9.96E+18 l.51E+19 l.67E+19 1.65E+19 1.77E+19 36.00 1.12E+19 l.71E+19 1.88E+19 1.85E+19 2.00E+19 40.00 1.25E+19 1.90E+19 2.10E+19 2.05E+19 2.23E+19 44.00 1.37E+19 2.10E+19 2.32E+19 2.25E+19 2.47E+19 48.00 1.50E+19 2.30E+19 2.53E+l9 2.45E+l9 2.70E+19 52.00 l.62E+19 2.49E+l9 2.75E+l9 2.65E+l9 2.93E+l9 54.00 1.68E+l9 2.59E+l9 2.86E+19 2.75E+19 3.05E+19 57.00 1.78E+19 2.74E+l9 3.02E+l9 2.90E+l9 3.22E+19 60.00 1.87E+19 2.89E+1 9 3.18E+l9 3.05E+19 3.40E+19 (a) V a lues beyond end of cycle (EOC) 18 are projected. Cycle 19 is based on the core design for this cycle and an assumed cycle length of 1.5 EFPY. WCAP-1 8092-NP May2016 Revision 1 Table 6-7 Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19(a) Note: Westinghouse Non-Proprietary Class 3 6-13 Calculated Azimuthal Variation of Maximum Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface Cycle Total Displacement Rate (dpa/s) Length Time oo 15° 30° 45° Maximum (EFPY) <EFPY) 1.16 1.16 2.03E-11 3.23E-11 3.67E-11 4.18E-11 4.18E-11 0.86 2.02 1.85E-11 2.57E-11 2.55E-11 2.89E-11 2.89E-11 1.13 3.15 1.52E-11 2.44E-11 2.99E-11 3.61E-11 3.61E-11 1.15 4.30 1.55E-11 2.36E-11 2.59E-ll 2.74E-11 2.76E-11 1.22 5.52 1.55E-11 2.32E-11 2.69E-11 3.13E-11 3.13E-11 1.04 6.55 1.64E-11 2.45E-11 2.57E-11 2.43E-11 2.85E-11 1.24 7.79 l.44E-11 2.lOE-11 2.73E-11 3.22E-ll 3.22£-11 1.29 9.08 1.15E-11 1.73E-11 2.02E-11 2.18E-11 2.18E-11 1.44 10.52 1.34E-11 l.87E-11 2.14E-11 2.62E-11 2.62E-11 1.49 12.01 1.62E-11 2.36E-11 2.51E-11 2.35E-11 2.71E-11 1.42 13.43 l.56E-11 2.27E-11 2.45E-11 2.31E-11 2.60£-11 1.45 14.88 1.56£-11 2.25E-11 2.43E-11 2.29E-11 2.57E-11 1.40 16.28 l.53E-11 2.12E-11 2.22E-11 2.26E-11 2.34E-11 1.41 17.69 l.61E-11 2.24£-11 2.42£-11 2.39£-11 2.55£-11 1.43 19.11 1.51E-11 2.26E-11 2.50£-11 2.51E-11 2.63E-11 1.43 20.55 1.54£-11 2.38E-11 2.60E-11 2.45E-11 2.79E-11 1.30 21.84 1.66£-11 2.40E-11 2.56E-11 2.47E-11 2.73E-11 1.49 23.33 1.57E-11 2.47E-11 2.69E-ll 2.56E-11 2.90E-11 1.50 24.83 1.59E-11 2.44E-11 2.73E-11 2.58E-11 2.90E-11 (a) Values beyond end of cycle (EOC) 18 are projected. Cycle 19 is based on the core design for this cycle and an assumed cycle length of 1.5 EFPY. WCAP-18092-NP l May 2016 Revision 1 Table 6-8 Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19(a) Note: Westinghouse Non-Proprietary Class 3 6-14 Calculated Azimuthal Variation of Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface Cycle Total Displacements (dpa) Length Time oo 15° 30° 45° Maximum <EFPY) <EFPY) 1.16 1.16 7.42E-04 1.18E-03 1.34E-03 1.53E-03 l.53E-03 0.8 6 2.02 1.24E-03 1.88E-03 2.04E-03 2.32E-03 2.32E-03 1.13 3.15 l.77E-03 2.73E-03 3.08E-03 3.58E-03 3.58E-03 1.15 4.30 2.33E-03 3.58E-03 4.0lE-03 4.56E-03 4.56E-03 1.22 5.52 2.93E-03 4.47E-03 5.05E-03 5.76E-03 5.76E-03 1.04 6.55 3.45E-03 5.25E-03 5.86E-03 6.53E-03 6.53E-03 1.24 7.79 3.98E-03 6.03E-03 6.88E-03 7.74E-03 7.74E-03 1.29 9.08 4.45E-03 6.73E-03 7.70E-03 8.61E-03 8.61E-03 1.44 10.52 5.02E-03 7.54E-03 8.62E-03 9.75E-03 9.75E-03 1.49 12.01 5.74E-03 8.58E-03 9.73E-03 1.08E-02 1.08E-02 1.42 13.43 6.44E-03 9.59E-03 l.08E-02 1.18E-02 1.18E-02 1.45 14.88 7.16E-03 l.06E-02 l.19E-02 l.29E-02 l.29E-02 1.40 16.28 7.83E-03 1.16E-02 1.29E-02 l.39E-02 l.39E-02 1.41 17.69 8.55E-03 1.26E-02 1.40E-02 1.49E-02 1.49E-02 1.43 19.11 9.22E-03 l.36E-02 l.51E-02 1.61E-02 l.61E-02 1.43 20.55 9.90E-03 1.46E-02 l.63E-02 1.71E-02 1.71E-02 1.30 21.84 l.06E-02 1.56E-02 l.73E-02 1.81E-02 l.81E-02 1.49 23.33 1.13E-02 1.67E-02 1.86E-02 1.93E-02 1.94E-02 1.50 24.83 1.20E-02 1.79E-02 1.98E-02 2.05E-02 2.07E-02 32.00 l.55E-02 2.33E-02 2.58E-02 2.62E-02 2.71E-02 36.00 l.74E-02 2.63E-02 2.91E-02 2.93E-02 3.07E-02 40.00 l.94E-02 2.93E-02 3.24E-02 3.25E-02 3.43E-02 44.00 2.13E-02 3.24E-02 3.58E-02 3.57E-02 3.78E-02 48.00 2.33E-02 3.54E-02 3.91E-02 3.88E-02 4.14E-02 52.00 2.52E-02 3.84E-02 4.25E-02 4.20E-02 4.50E-02 54.00 2.62E-02 3.99E-02 4.41E-02 4.36E-02 4.68E-02 57.00 2.77E-02 4.22E-02 4.66E-02 4.60E-02 4.94E-02 60.00 2.91E-02 4.45E-02 4.91E-02 4.84E-02 5.21E-02 (a) Values beyond end of cycle (EOC) 18 are projected. Cycle 19 is based on the core design for this cycle and an assumed cycle length of 1.5 EFPY. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-15 Table 6-9 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Braidwood Unit 1 Irradiation Cumulative Fluence Iron Atom Capsule Irradiation Time (E > 1.0 MeV) Displacements Cycle(s) lEFPY) (n/cm 2) (dpa) u 1 1.16 3.88E+18 7.66E-03 x 1-4 4.30 l.17E+19 2.31E-02 w 1-7 7.79 1.98E+19 3.88E-02 v 1-14 17.69 3.71E+19 7.27E-02 yCa) 1-10 12.01 2.60E+19 5.lOE-02 zCal 1-10 12.01 2.79E+l9 5.46E-02 Note: (a) Capsules Y and Z were removed and placed in the spent fuel pool. No testing or analysis has been performed on these capsules. Table 6-10 Calculated Surveillance Capsule Lead Factors Capsule Location Status Lead FactorCb> 58.5° (Capsule U) Withdrawn EOC 1 4.01 238.5° (Capsule X) Withdrawn EOC 4 4.07 121.5° (Capsule W) Withdrawn EOC 7 4.06 61° (Capsule V) Withdrawn EOC 14 3.92 241° (Capsule Y) ta> Withdrawn EOC 10 3.82 301.5° (Capsule z)ta> Withdrawn EOC 10 4.10 Notes: (a) Capsules Y and Z were removed and placed in the spent fuel pool. No testing or analysis has been performed on these capsules. (b) The capsule lead factors are slightly different from those determined in Reference 24 (for example, 4.01 vs 4.02 for Capsule U). These differences could be attributed to the change from RadTrack Version 1.1.1 to 2.0 or some input data may now carry more significant figures. RadTrack is a graphical user interface (GUI) that encompasses Westinghouse's currently-approved fluence calculation and dosimetry analysis methodology. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-16 Table 6-11 Calculated Maximum Fast Neutron Fluence (E > 1.0 MeV) at the P ressure Vessel Welds and Shells Material 23.33 EFPY Outlet Nozzle Forging to 3.55E+16 Vessel Shell Welds (WR-20) Inlet Nozzle Forging to 4.71E+16 Vessel Shell Welds (WR-19) Nozzle Shell 4.35E+18 Nozzle Shell to Intermediate Shell 4.35E+18 Circumferential Weld (WR-34) Intermediate Shell l.26E+19 Intermediate Shell to Lower Shell l.21E+19 Circumferential Weld (WR-18) Lower Shell 1.24E+19 Lower Shell to Lower Vessel Head 5.59E+15 Circumferential Weld (WR-29) Material 48EFPY Outlet Nozzle Forging to 7.74E+16 Vessel Shell Welds (WR-20) Inlet Nozzle Forging to l.03E+17 Vessel Shell Welds (WR-19) Nozzle Shell 9.40E+l8 Nozzle Shell to Intermediate Shell 9.40E+18 Circumferential Weld (WR-34) Intermediate Shell 2.70E+l9 Intermediate Shell to Lower Shell 2.60E+19 Circumferential Weld (WR-18) Lower Shell 2.69E+19 Lower Shell to Lower Vessel Head l.22E+16 Circumferential Weld (WR-29) WCAP-18092-NP Fast Fluence (n/cm 2) 24.83 EFPY 32EFPY 3.80E+16 5.02E+16 5.04E+l6 6.65E+l6 4.64E+18 6.11E+18 4.64E+18 6.11E+18 l.35E+19 l.77E+19 l.30E+19 l.70E+19 l.33E+19 1.75E+ 19 6.01E+l5 7.92E+l5 Fast Fluence (n/cm 2) 54EFPY 57EFPY 8.77E+16 9.28E+16 l.16E+17 l.23E+17 l.06E+19 l.12E+19 1.06E+19 1.12E+19 3.05E+19 3.22E+19 2.94E+19 3.11E+l9 3.04E+19 3.21E+19 1.38E+16 1.46E+ 16 36EFPY 5.70E+16 7.56E+16 6.94E+18 6.94E+18 2.00E+19 l.93E+19 l.99E+19 8.99E+15 60EFPY 9.79E+16 l.30E+17 l.19E+19 l.19E+l9 3.40E+l9 3.28E+19 3.39E+19 1.54E+16 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 6-17 Table 6-12 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Welds and Shells Material 23.33 EFPY Outlet Nozzle Forging to 9.13E-05 Vessel Shell Welds (WR-20) Inlet Nozzle Forging to 1.0lE-04 Vessel Shell Welds (WR-19) Nozzle Shell 6.66E-03 Nozzle Shell to Intermediate Shell 6.66E-03 Circumferential Weld (WR-34) Intermediate Shell l.94E-02 Intermediate Shell to Lower Shell 1.86E-02 Circumferential Weld (WR-18) Lower Shell 1.91E-02 Lower Shell to Lower Vessel Head 3.56E-05 Circumferential Weld (WR-29) Material 48EFPY Outlet Nozzle Forging to 1.93E-04 Vessel Shell Welds (WR-20) Inlet Nozzle Forging to 2.14E-04 Vessel Shell Welds (WR-19) Nozzle Shell 1.44E-02 Nozzle Shell to Intermediate Shell 1.44E-02 Circumferential Weld (WR-34) Intermediate Shell 4.1 4E-02 Intermediate Shell to Lower Shell 4.00E-02 Circumferential Weld (WR-18) Lower Shell 4.12E-02 Lower Shell to Lower Vessel Head 7.SSE-05 Circumferential Weld (WR-29) WCAP-18092-NP Displacements (dpa) 24.83 EFPY 32EFPY 9.70E-05 1.26E-04 1.08E-04 1.40E-04 7.1 lE-03 9.37E-03 7.l lE-03 9.37E-03 2.07E-02 2.71E-02 2.00E-02 2.62E-02 2.04E-02 2.68E-02 3.80E-05 4.92E-05 Displacements (dpa) 54EFPY 57EFPY 2.18E-04 2.30E-04 2.42E-04 2.SSE-04 1.63E-02 1.72E-02 1.63E-02 1.72E-02 4.68E-02 4.94E-02 4.52E-02 4.78E-02 4.66E-02 4.92E-02 8.53E-05 9.03E-05 36EFPY 1.43E-04 1.58E-04 1.06E-02 1.06E-02 3.07E-02 2.96E-02 3.04E-02 5.58E-05 60EFPY 2.43E-04 2.69E-04 l.82E-02 1.82E-02 5.21E-02 5.04E-02 5.1 9E-02 9.52E-05 May2016 Revision 1 N ,..:_ If) N 00 .n-00 Figure 6-1 W es tinghouse Non-Proprietary Clas s 3 1 71.5 [c m l 2 5 7.2 6-18 Braidwood Unit 1 r,9 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules and 12.5° Neutron Pad Configuration WCAP-18092-NP May 2016 R evi sion 1 -I N ,....:_ "' N 00 .,.;-'° Figure 6-2 85.8 Westinghouse Non-Proprietary Class 3 0 II 17l5 f c m l 2 5 7.2 Braidwood Unit 1 r,9 Reactor Geometry Plan View at the Core Midplane with a Single Capsule Holder and 20.0° Neutron Pad Configuration 6-19 WCAP-18092-NP May 2016 Revision 1 ro ... ..;<() Figure 6-3 85.8 Westinghouse Non-Proprietary Class 3 171.5 [cm l 257.2 Braidwood Unit 1 r,9 Reactor Geometry Plan View at the Core Midplane with a Dual Capsule Holder and 22.5° Neutron Pad Configuration 6-20 WCAP-18092-NP May 2016 Revision l 'E () Westinghouse N o n-Proprietary Clas s 3 ) ...... a) ..j GO N 'f---------- ...... .,; s s.a 1n s [cm] 257.2 3 43.o R Figure 6-4 Braidwood Unit 1 r,z Reactor Geometry Elevation View WCAP-18092-NP 6-21 May20 1 6 Revis i on 1 Westinghouse Non-Proprietary Class 3 7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule (Table 7-1) meets the requirements of ASTM E185-82 [Ref. 8]. Table 7-1 Surveillance Capsule Withdrawal Schedule Capsule ID and Status Capsule Lead Location Factor<a> u (58.5°) Withdrawn (BOC 1) 4.01 x (238.5°) Withdrawn (EOC 4) 4.07 w (121.5°) Withdrawn (BOC 7) 4.06 zCd) (301.5°) Withdrawn (BOC 10) 4.10 y(*) (241.0°) Withdrawn (BOC 10) 3.82 v<f> (61.0°) Withdrawn (BOC 14) 3.92 Notes: (a)-Updated in Capsule V dosimetry analysis; see Table 6-lQ. (b) EFPY from plant startup. (c) Updated in Capsule V dosimetry analysis; see Table 6-9. Withdrawal EFPY(b,c) 1.16 4.30 7.79 12.01 12.01 17.69 Capsule Fluence (n/cm 2 , E > 1.0 MeV)<c> 3.88E+18 l.17E+19 l.98E+19 2.79E+19 2.60E+19 3.71E+19 ( d) Capsule Z was removed and placed in the spent fuel pool. Capsule Z could be reinserted into the Braidwood Uajt 1 :i;eaj:of _ to provide meairingful metallurgical data for 80 years of plant operation. If Capsule Z were reinserted either it would receive the projected 80-year (76 EFPY)_ fluence_of 4.36_x 10 19 6.8 EFPY. Capsu1e Z would exceed two times the projected 80-year (76 EFPY) fluence of 8.72 x 10 19 n/cm 2 in 25.7 EFPY. However, since the Braidwood Unit 1 surveillance capsule positions have relatively high fast flux, reinsertion of this capsule can be revisited at a later date if an additional 20-year license extension is sought (e) Capsule Y should remain in the spent fuel pool. Potential reinsertion and/or testing of this capsule can be revisited at a later date if additional metallurgical data are needed for Braidwood Unit 1. (f) The neutron fluence exposure of Capsule V is greater than once, but less than twice the peak vessel fluence (3.22 x 10 19 n/cm.2) at 57 EFPY; therefore, Capsule V satisfies the requirements for a license renewal capsule for 60 years of plant operation. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 8-1 8 REFERENCES

1. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, May 1988. 2. Code of Federal Regulations, 10 CFR 50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, Federal Register, Volume 60, No. 243, December 19, 1995. 3. Westinghouse Report WCAP-9807, Revision 0, Commonwealth Edison Company Braidwood Station Unit No. 1 Reactor Vessel Radiation Surveillance Program, February 1981. 4. ASTM El85-73, Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels, ASTM, 1973. 5. Appendix G of the ASME Boiler and Pressure Vessel (B&PV) Code, Section XI, Division 1, Fracture Toughness Criteria for Protection Against Failure. 6. ASTM E208, Standard Test Method for Conducting Drop-Weight Testto Determine Nil-Ductility Transition Temperature of Ferritic Steels, ASTM. 7. ASTM E399, Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM. 8. ASTM El85-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), ASTM, 1982. 9. ASTM E23-12c, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM,2012.
10. ASTM E2298-13a, Standard Test Method for Instrumented Impai:t Testing of Metallic Materials, ASTM,2013.
11. ASTM A370-14, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, 2014. 12. ASTM E8/E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, 2015. 13. ASTM E21-09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM, 2009. 14. Westinghouse Report WCAP-12685, Revision 0, Analysis of Capsule U from the Commonwealth Edison Company Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program, August 1990. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 8-2 15. Westingh,ouse Report WCAP-14241, Revision 0, Analysis of Capsule Xfrom the Commonwealth Edison Company Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program, March 1995. 16. Westinghouse Report, WCAP-15316, Rev. 1, Analysis of Capsule Wfrom Commonwealth Edison Company Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program, November 1999. 17. ASTM E853-13, Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, ASTM, 2013. 18. ASTM E693-94, Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E706 (ID), ASTM, 1994. 19. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U.S. Nuclear Regulatory Commission, Office ofNudear Regulatory Research, March 2001. 20. Westinghouse Report WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves, May 2004. 21. Westinghouse Report WCAP-16083-NP, Revision 1, Benchmark Testing of the FERRET Code for Least Squares Evaluation of Light Water Reactor Dosimetry, April 2013. 22. RSICC Data Library Collection DLC-185, Revision 1, BUGLE-96, Coupled 47 Neutron, 20 _Ga1!1ma-R<l)l

_Group Cross_ Se_ctjq_n Librqry D_erived from l}NJ?FIB-VI for f:WR Shielding and Pressure Vessel Dosimetry Applications, March 1996. 23. RSICC Computer-Code Collection CCC-650, DOORS 3.2: One, 1Wo-and Three Dimensional Discrete Ordinates Neutron!Photo_n Tra(ISport Code System, April 1998. 24. Exelon Nuclear Report MUR Technical Evaluation, (Non-Proprietary Version), Attachment 7 to Braidwood Station, Units 1 & 2, Byron Station, Unit 1 & 2, Request for License Amendment Regarding Measurement Uncertainty Recapture (MUR) Power Uprate, June 2011 (ADAMS Accession No. MLl 11790042). WCAP-18092-NP May2016 Revision 1 APPENDIX A Westinghouse Non-Proprietary Class 3 VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.1 NEUTRON DOSIMETRY , A-1 Comparisons of measured dosimetry results to both the calculated and least-squares adjusted values for all surveillance capsules and ex-vessel neutron dosimetry (EVND) withdrawn and analyzed to date at Braidwood Unit 1 are described herein. The sensor sets have been analyzed in accordance with the current dosimetry evaluation methodology described in U.S. NRC Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. A-1]. One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least-squares adjusted values to within +/- 20% as specified by U.S. NRC Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of the four surveillance capsules analyzed to date as part of the Braidwood Unit 1 Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows: Capsule Azimuthal Location Surveillance Capsule U 58.5° Surveillance Capsule X 238.5° Surveillance Capsule W 121.5° Surveillance Capsule V 61° WCAP-18092-NP Withdrawal Time End of Cycle 1 End of Cycle 4 End of Cycle 7 End of Cycle 14 Irradiation Time (EFPY) 1.16 4.30 7.79 17.69 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-2 The passive neutron sensors included in the evaluations of surveillance Capsules U, X, W, and V are summarized as follows: Sensor Material Reaction of Interest Capsule u Capsule x Capsule w CapsuleV Copper 63 Cu(n,a.)6°Co x x x x Iron S4Fe(n,p)S4Mn x x x x Nickel 5 8Ni(n,p )58 Co x x x Note (a) Uranium-238(Cd) 238 U(n,t)FP x x x x Neptunium-237 Np(n,t)FP x x x x 237(Cd) Cobalt-s9Co(n,y)60Co x x x x Aluminum.Cb) Notes: (a) The nickel monitors were not considered for Capsule V. The reaction product has a relatively short half-life (70.82 days, see Table A-1), and decayed beyond utility in the intervening period between when Capsule V was pulled (March 2009) and when it was counted (September 2015). (b) The cobalt-aluminum monitors for this plant include both bare and cadmium-covered sensors. This section also includes the results of the evaluations of the four midplane EVND capsules and two midplane EVND capsules analyzed to date. The EVND was irradiated during Cycle l4, then removed and analy2:ed. The capsule designation, aznnuthal location outside the vessel, and axial location were as follows: Capsule EVND Capsule A EVND Capsule B EVND Capsule C EVND Capsule E EVND Capsule D EVND Capsule F WCAP-18092-NP Azilnuthal Location from Cardinal Axis 050 14.5° 29.5° 445° 44.5° 445° Axial Location Core Midplane Core Midplane Core Midplane Core Midplane Top of Active Core Bottom of Active Core May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-3 The passive neutron sensors included in the evaluations of EVND Capsules A, B, C, D, E, and F are summarized as follows: Sensor Reaction Of Capsule Capsule Capsule Capsule Capsule Capsule Material Interest A B c D E F Copper 63 Cu(n,a )6°Co x x x x x x Titanium 46 Ti(n,p )4 6 Sc x x x x x x Iron 54 Fe(n,p )5 4 Mn x x x x x x Nickel 58 Ni(n,p )58 Co x x x x x x Niobium x x x x x x Cobalt-59 Co(n,y)6°Co x x x x x x Aluminum(a) Note: (a) The cobalt-aluminum monitors for this plant include both bare and cadmium-covered sensors. Pertinent physical and nuclear characteristics of the passive neutron sensors analyzed are listed in Table A-1. The use of passive monitors such as those listed above do not yield a direct measure of the dependent neutron fluence rate at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time-and energy-dependent neutron fluence rate has on the target material over the course of the irradiation. period. An accurate assessment of the average neutron fluence rate level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

  • the measured specific activity of each monitor,
  • the physical characteristics of each monitor,
  • the operating history of the reactor,
  • the energy response of each monitor, and
  • the neutron energy spectrum at the monitor location..

Results from the radiometric counting of the neutron sensors from Capsules U, X, and W are documented in References A-2, A-3, and A-4, respectively. The radiometric counting of the sensors from Capsule V was carried out by Pace Analytical Services, Inc. The radiometric counting followed established ASTM procedures. Results from the radiometric counting of EVND irradiated during Cycle 14 are documented in Reference A-5. The irradiation history of the reactor over the irradiation periods experienced by Capsules U, X, Wand V was based on the monthly thermal power generation of Braidwood Unit 1 from initial reactor criticality through the end of the dosimetry evaluation period. Analysis of the EVND used Cycle 14 monthly thermal generation data. For the sensor sets utilized in the surveillance capsules and EVND, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation. has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-4 exposure evaluations. The irradiation history applicable to surveillance Capsules U, X, W, and V and EVND irradiated during Cycle 14 is given in TableA-2. Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation: where: A R =------------ N0FYL: pj Cj[l-e-).ti][e-M11,i] Pref R Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus). A Measured specific activity (dps/g). N 0 = Number of target element atoms per gram of sensor. F Atom fraction of the target isotope in the target element. Y Number of product atoms produced per reaction. Pj = Average core power level during irradiation period j (MW). Pref Maximum or reference power level of the reactor (MW). c; Calculated ratio of cl> (E > 1.0 MeV) during irradiation period j to the time weighted average cl> (E > 1.0 MeV) over the entire irradiation period. A. Decay constant of the product isotope (I/sec). tj Length of irradiation periodj (sec). 1cl,j = Decay time following irradiation period j (sec). The summation is carried out over the total number of monthly intervals comprising the irradiation period. In the equation describing the reaction rate calculation, the ratio [Pj]l[Pred accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which was calculated for each fuel cycle using the transport* methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in fluence rate level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-5 irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, the additional q term should be employed. The impact of changing tluence rate levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another. The fuel cycle-specific neutron tluence rates and the computed values for Cj are listed in Tables A-3 and A-4, respectively, for Capsules U, X, W, and V. These tluence rates represent the capsule-and dependent results at the radial and azimuthal center of the respective capsules at core midplane. Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 238 U cadmium-covered measurements to account for the presence of 235 U impurities in the sensors, as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation. Corrections were also made to the 238 U and 237 Np sensor reaction rates to account for gamma ray-induced fission reactions that occurred over the course of the surveillance capsule irradiations. The correction factors corresponding to the Braidwood Unit 1 fission sensor reaction rates are summarized as follows: Correction Capsule U CapsuleX CapsuleW CapsuleV 235 U Impurity/Pu Build-in 0.869 0.839 0.810 0.752 23sU(y,f) 0.966 0.967 0.970 0.968 Net 238 U Correction 0.839 0.811 0.786 0.728 238 Np(y,f) Correction 0.990 0.990 0.991 0.991 The correction factors for surveillance Capsules U, X, W, and V were applied in a multiplicative fashion to the decay-corrected cadmium-covered uranium and neptunium fission sensor reaction rates. Results of the sensor reaction rate determinations for surveillance Capsules U, X, W, and V are given in Tables A-5 through A-8. In Tables A-5 through A-8, the measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed. The cadmium-covered fission sensor reaction rates are listed both with and without the applied corrections for 235 U impurities, plutonium build-in, and gamma ray-induced fission effects. Results of the sensor reaction rate determinations for midplane EVND Capsules A, B, C, and E are given in Tables A-9 through A-12. Results of the sensor reaction rate determinations for off-midplane EVND Capsules D and F are given in TaJ>les A-13 and A-14, respectively. In Tables A-9 through A-14, the measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed. A.1.2 Least-Squares Evaluation of Sensor Sets Least-squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a best-estimate neutron energy spectrum with WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-6 associated uncertainties. Best-estimates for key exposure parameters such as fluence rate (E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least-squares methods, as applied to dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, Ri +/-oR; = :LCuig +/-oa;,)(cpg +/-ocp.) g relates a set of measured reaction rates, Rt, to a single neutron spectrum, through the multigroup dosimeter reaction cross-sections, O"ig, each with an uncertainty

o. The primary objective of the squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least-squares evaluation of the Braidwood Unit 1 dosimetry, the FERRET code [Ref. A-6] was employed to combine the results of the plant-specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure paranieters [fast neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate] along with associated uncertainties for the four in-vessel capsules and six ex-vessel capsules analyzed to date. The application of the least-squares methodology requires the following input: 1. The calculated neutron energy spectrum and associated uncertainties at the measurement location.

2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set. 3. The energy-dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set. For the Braidwood UniU application, the. calculated neutron spectrum was obtained from the results of plant-specific neutron described in Section 6.2 of thls report. The sensor reaction rates were derived from nieasure<;i specific activities usfug the procedures described in Section A.1.1. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross-section library [Ref. A-7]. The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least-squares procedure in the form of variances and covariances.

The assignment of the input uncertainties followed the guidance provided in AS1M Standard E944, "Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance" [Ref. A-8]. The following provides a summary of the uncertainties associated with the least-squares evaluation of the Braidwood Unit 1 surveillance capsule and EVND sensor sets. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 . A-7 Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is ensured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type. After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least-squares evaluation: Reaction Uncertainty 63 Cu(n,a.)6°co 5% 46 Ti(n,p )46 Sc 5% s4Fe(n,p )s4Mn 5% 58 Ni(n,p )5 8 Co 5% 93Nb(n,n')93°Nb 5% 238 U(n,t)FP 10% 237 Np(n,t)FP 10% 59 Co(n,y)6°Co 5% These uncertainties are given at the lcr level. Dosimetry Cross-section Uncertainties The reaction rate cross-sections used in the least-squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least-squares adjustment applications. These cross-sections were compiled from recent cross-section evaluations, and they have been tested for accuracy and consistency for least-squares evaluations. Further, the library has been empirically tested for use in fission spectra determination, as well as in the fluence and energy characterization of 14 MeV neutron sources. For sensors included in the Braidwood Unit 1 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-8 Reaction Uncertainty 63Cu(n,a.)6oCo 4.08-4.16% 46 Ti(n,p )46 Sc 4.50-4.87% s4Fe(n,p)s4Mn 3.05-3.11% 5 8Ni{n,p )58 Co 4.49-4.56% 6.96-7.23% 238u ( n,f) 131 Cs 0.54-0.64% 237Np(n,f)131Cs 10.32-10.97% s9Co(n,y)6oCo 0.79-3.59% These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations. Calculated Neutron Spectrum The neutron spectra inputs to the least-squares adjustment procedure were obtained directly from the results of plant-specific transport calculations for each surveillance capsule and EVND capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements. While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship: where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg* specify additional random groupwise uncertainties that are correlated with a correlation matrix given by: Where: WCAP-18092-NP



(g-g')2 H=--2y2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-9 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (9 specifies the strength of the latter term). The value of C5 is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Braidwood Unit 1 calculated spectra was as follows: Fluence Rate Normalization Uncertainty (Rn) Fluence Rate Group Uncertainties (Rg, Rg-) (E > 0.0055 MeV) (0.68 eV < E < 0.0055 MeV) (E< 0.68 eV) Short Range Correlation (9) (E > 0.0055 MeV) (0.68 eV < E < 0.0055 MeV) (E < 0.68 eV) Fluence Rate Group Correlation Range (y) (E > 0.0055 MeV) (0.68 eV < E < 0.0055 MeV) (E< 0.68 eV) A.1.3 Comparisons of Measurements and Calculations 15% 15% 25% 50% 0.9 0.5 0.5 6 3 2 Results of the least-squares evaluations of the dosimetry from the Braidwood Unit 1 surveillance capsules withdrawn to date are provided in Tables A-15, A-16, A-17, andA-18 for surveillance Capsules U, X, W, and V, respectively. Results of the least-squares evaluations of the EVND midplane capsules withdrawn to date are provided in 1'.ables A-19, A-20, A-21, and A-22 for EVND Capsules A, B, C, and E, respectively. Results of the least-squares evaluations of the EVND off-midplane capsules withdrawn to date are provided in Tables A-23 and A-24 for EVND Capsules D and F, respectively. In these tables, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in these tabulations are ratios of the measured reaction rates to both the calculated and squares adjusted reaction rates. These ratios of MIC and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. Additionally, comparisons of the calculated and best-estimate values of neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules. Note that for surveillance Capsule V, nickel foils were omitted due to their lack of meaningful information. The reaction product has a relatively short half-life (70.82 days, see Table A-1 ), and decayed beyond utility in the intervening period between when Capsule V was pulled (March 2009) and when it was counted (September 2015). The data comparisons provided in Tables A-15 through A-22 show that the adjustIDents to the calculated spectra are relatively small and within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Furthermore, these results indicate that the WCAP-18092-NP May2016 Revision 1 -_J Westinghouse Non-Proprietary Class 3 A-10 use of the least-squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, the calculational uncertainty is specified as 13% at the lcr level. Further comparisons of the measurement results with calculations are given in Tables A-25 through A-27 for in-vessel surveillance capsules, EVND midplane capsules, and EVND o:ff-midplane capsules. In these tables, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy Calculations of fast neutron exposure rates in terms of fast neutron fluence rate (E > 1.0 MeV) and dpa/s are compared with the estimate results obtained from the least-squares evaluation of the capsule dosimetry results in Tables A-28 and A-29 for in-vessel surveillance capsules and EVND midplane capsules, respectively. These comparisons yield consistent and similar results with all measurement-to-calculation comparisons falling within the 20% limits specified as the acceptance criteria in U.S. NRC Regulatory Guide 1.190 [Ref. l]. The measurement-to-calculation comparisons based on individual sensor reactions without recourse to the least-squares adjustment procedure are summarized in Table A-30. A similar comparison for exposure rates expressed in terms of fast neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate is summarized in Table A-31. These data comparisons show similar and consistent results with the linear average MIC ratio of 0.99 in excellent agreement with the resultant least-squares BE/C ratios of 0.97 and 0.99 for fast neutron fluence rate (E > 1.0 Me V) and iron atom displacement rate, respectively. The comparisons demonstrate that the calculated results are validated within the context of the assigned 13% (lcr) uncertainty. Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report--are -validated for -lise in the assessment of the condition of the materials comprising the beltline region of the Braidwood Unit 1 reactor pressure vessel. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-11 TableA-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors Surveillance Capsules Reaction of Product Target Atom 90o/o Response Fission Half-life(a) Yield Interest <Days) Fraction<0> RangeCb> (MeV) (o/o) 63 Cu (n,a) 6°Co 1925.5 0.6917 5.0-11.9 NIA 5"Fe(n,p)5 4 Mn 312.11 0.0585 2.1-8.5 NIA ssNi(n,p)ssco 70.82 0.6808 1.5 -8.3 NIA 238u (n,f) mes 10983.07 1.0000 1.3-6.9 6.02 237Np (n,f) 137Cs 10983.07 1.0000 0.3-3.8 6.17 s9Co (n,y) 6oco 1925.5 0.0015 non-threshold NIA Ex-Vessel Neutron Dosimetry Reaction of Product Target Atom 90o/o Response Fission Half-life Ca) Yield Interest (Days) Fraction(a) RangeCc> (MeV) (o/o) 63 Cu (n,a) 6°Co 1925.5 0.6917 5.2-12.6 NIA 46 Ti(n,p )46 Sc 83.79 0.0825 4.1-11.2 NIA 54Fe(n,p)s4Mn 312.11 0.0585 2.0-9.3 NIA ssNi(n,p )ssco 70.82 0.6808 1.3 -9.l NIA 5890.0 1.000 0.3-4.6 NIA s9co (n,y) 6oco 1925.5 0.0044 non-threshold NIA Notes: (a) Half-life data are from ASTM E1005-10 [Ref. A-9]; target atom :fraction data are from ASTM E1005-10 [Ref. A-9], with the exception of 59 Co, which is from the materials specification for the cobalt foils. (b) The 90% response range is defined such that, in the neutron spectrum characteristic of the Braidwood Unit 1 surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit. All surveillance capsules exhibit a similar response range with minor variations; the listed values are for surveillance Capsule V (with the exception of 58 Ni, which was not used for Capsule V -in this case Capsule W was used). ( c) The 90% response range is defined such that, in the neutron spectrum characteristic of the Braidwood Unit 1 EVND capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit. All EVND capsules exhibit a similar response range with minor variations; the listed values are for EVND Capsule E. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-12 TableA-2 Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 1 Reactor Cyclel Cycle2 Month MWt-h Month MWt-h Jul-87 64085 Dec-89 858637 Aug-87 212624 Jan-90 2247211 Sep-87 409163 Feb-90 2220237 Oct-87 933567 Mar-90 2470608 Nov-87 1500761 Aor-90 2355442 Dec-87 1895472 Mav-90 2401030 Jan-88 47283 Jun-90 2057969 Feb-88 0 Jul-90 2294767 Mar-88 49033 Aug-90 1452506 Aor-88 154593 Sep-90 2196142 Mav-88" 1639119 Oct-90 724077 Jun-88 1692368 Nov-90 2371174 Jul-88 183082 Dec-90 2058699 Aug-88 2172541 Jan-91 0 Sep-88 1728640 Feb-91 0 Oct-88 2012005 Mar-91 0 Nov-88 1945924 Apr-91 0 Dec-88 2328270 Jan-89 1365771 Feb-89 1857081 Mar-89 2079158 Apr-89 1276516 Mav-89 2136401 Jun-89 2135869 Jul-89 1675787 Aug-89 1376959 Seo-89 36341 Oct-89 0 Nov-89 0 WCAP-18092-NP Cycle 3 Month MWt-h May-91 535841 Jun-91 2237555 Jul-91 1885021 Aug-91 2092857 Sep-91 2240283 Oct-91 2050703 Nov-91 1879611 Dec-91 2409575 Jan-92 2442760 Feb-92 1985147 Mar-92 2389597 Apr-92 2412147 May-92 2490903 Jun-92 1966107 Jul-92 2511721 Aug-92 2086628 Seo-92 219819 Oct-92 0 Cycle4 MQnth Nov-92 Dec-92 Jan-93 Feb-93 Mar-93 Apr-93 May-93 Jun-93 Jul-93 Aug-93 Sep-93 Oct-93 Nov-93 Dec-93 Jan-94 Feb-94 Mar-94 MWt-h 1017061 2395235 1810443 2221506 2479616 2373639 2139318 1827065 2438336 2426067 2362387 1863511 1501832 2492837 2476832 2135231 200276 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-13 Table A-2 (cont.) Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 1 Reactor Cycles Cycle 6 Month MWt-h Month MWt-h Apr-94 0 Dec-95 1004550 May-94 200277 Jan-96 2507423 Jun-94 1094300 Feb-96 2356506 Jul-94 2420492 Mar-96 769364 Aug-94 2508352 Apr-96 .2438749 Sep-94 1807796 May-96 2420575 Oct-94 2385155 Jun-96 2307030 Nov-94 2491961 Jul-96 2526279 Dec-94 2352867. Aug-96 2524529 Jan-95 2508279 Sep-96 2196496 Feb-95 1458015 Oct-96 876160 Mar-95 1351530 Nov-96 0 Apr-95 1598986 Dec-96 2050323 May-95 2509594 Jan-97 2509198 Jun-95 2435625 Feb-97 2267732 Jul-95 2510547 Mar-97 2230572 Aug-95 2523717 Apr-97 0 Sep-95 2140126 Oct-95 0 Nov-95 0 WCAP-18092-NP Cycle 7 Month MWt-h Mav-97 122666 Jun-97 2276143 Jul-97 2524597 Aug-97 1292817 Sep-97 2437913 Oct..:97 2528145 Nov-97 2434195 Dec-97 2519972 Jan-98 2513955 Feb-98 2268810 Mar-98 2510714 Apr-98 2430818 Mav-98 2515292 Jun-98 2444800 Jul-98 2520657 Aug-98 2102196 Sep-98 225242 Cycle8 Month Oct-98 Nov-98 Dec-98 Jan-99 Feb-99 Mar-99 Apr-99 Mav-99 Jun-99 Jul-99 Aug-99 Sep-99 Oct-99 Nov-99 Dec-99 Jan-2000 Feb-2000 Mar-2000 MWt-h 0 1057297 2287062 2531198 2281499 2516399 2111911 2512128 2411261 2492332 2492344 2441014 2549102 2459315 2536731 2625754 2279473 1041277 May2016 Revision 1 . Westinghouse Non-Proprietary Class 3 A-14 Table A-2 (cont.) Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 1 Reactor Cycle9 Cycle 10 Cycle ll(a) Cycle 12 Month MWt-h Month MWt-h Month MWt-h Month MWt-h Aor-2000 1939486 Oct-2001 1603325 May-2003 2521448 Nov-2004 2560563 May-2000 2573679 Nov-2001 2577854 Jun-2003 2576348 Dec-2004 2660531 Jun-2000 2479742 Dec-2001 2658768 Jul-2003 2666662 Jan-2005 2656015 Jul-2000 2540013 Jan-200.2 2651111 Aug-2003 2666469 Feb-2005 2408246 Aug-2000 2540057 Feb-2002 2402376 Sep-2003 2574279 Mar-2005 2666153 Sep-2000 2477338 Mar-2002 2662706 Oct-2003 2666203 Aor-2005 2572756 Oct-2000 2580745 Aor-2002 -2573296 Nov-2003 2580534 Mav-2005 2666114 Nov-2000 2500855 May-2002 2663610 Dec-2003 2632650 Jun-2005 2580086 Dec-2000 2582185 2541493 Jan-2004 2588459 Jul-2005 2662388 Jan-2001 2592308 Jul-2002 2659166 Feb-2004 2482036 Aug-2005 2666190 Feb-2001 2342480 Au2-2002 2655662 Mar-2004 2666360 Seo-2005 2037971 Mar-2001 2533885 Sep-2002 2570193 Apr-2004 2562279 Oct-2005 2669997 Apr-2001 2432063 Oct-'2002 2657527 May-2004 2666429 Nov-2005 2579967 Mav-2001 2613200 Nov-2002 2570968 Jun-2004 2580403 Dec-2005 2665893 ---Jun-2001 2501162 Dec-2002 2643722 Jul-2004 2660422 Jan-2006 2659180 Jul-2001 2593105 Jan-2003. 2652882 Aug-2004 2666332 Feb-2006 2407729 Aug-2001 2587323 Feb-2003 2398298 Sep-2004 2666332 Mar-2006 2665721 Sep-2001 1620340 Mar-2003 2613505 Oct-2004 312656 Apr-2006 1330741 ------Apr-2003 --1087077 Note: (a) Monthly thermal generation data for September 2004 of Cycle 11 were not available; as such August data is assumed. Any short-lived nuclides that would have been affected by month-to-month power variations power decayed away (beyond utility for dosimetry puq>oses) in the intervening period between when Capsule V was pulled (March 2009) and when it was analyzed (September 2015) .. WCAP-18092-NP May2016 Revision 1 Westinghouse_ Non-Proprietary Class 3 A-15 Table A-2 (cont.) Monthly Thermal Generation during the First 14 Fuel Cycles of the Braidwood Unit 1 Reactor Cycle 13 Month MWt-h May-2006 2318297 Jun-2006 2578956 Jul-2006 2665182 Aug-2006 2664473 Sep-2006 2578837 Oct-2006 2668514 Nov-2006 2574156 Dec-2006 2662093 Jan-2007 2664266 Feb-2007 2403869 Mar-2007 2653535 Apr-2007 2577489 Mav-2007 2661212 Jun-2007 2385357 Jul-2007 2664046 Aug-2007 2664664 Sep-2007 2530312 WCAP-18092-NP Cycle 14 Month MWt-h Oct-2007 312696 Nov-2007 2431233 Dec-2007 2660746 Jan-2008 2S47515 Feb-2008 2440086 Mar-2008 2660905 Apr-2008 2578147 Mav-2008 2665860 Jun-2008 2579737 Jul-2008 2665372 Aug-2008 2665926 Sep-2008 2574451 -Oct-2008 2665077 Nov-2008 2581979 Dec-2008 2664317 Jan-2009 2665855 Feb-2009 2408048 Mar-2009 2475413 May2016 Revision 1 TableA-3 Westinghouse Non-Proprietary Class 3 A-16 Surveillance Capsules U, X, W, and V Fast Neutron Fluence Rates for q Calculation, Core Midplane Elevation cp{E > 1.0 MeV) [n/cm 2-s] Cycle Cycle Length (EFPY) . Capsule U CapsuleX CapsuleW CapsuleV 1 1.16 l.06E+ll l.06E+ll l.04E+ll 9.76E+10 2 0.86 7.39E+10 7.29E+l0 6.77E+10 3 1.13 8.83E+10 8.72E+10 7.92E+10 4 1.15 7.47E+10 7.37E+l0 7.0lE+lO 5 1.22 7.77E+10 7.18E+10 6 1.04 6.72E+10 6.58E+l0 7 1.24 7.83E+10 7.02E+10 8 1.29 5.14E+10 9 1.44 5.56E+l0 10 1.49 6.30E+10 11 1.42 6.43E+l0 12 1.45 6.36E+l0 13 1.4 5.73E+l0 14 1.41 6.33E+10 Average -l.06E+ll 8.65E+10 8.06E+l0 6.65E+10 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 TableA-4 Surveillance Capsules U, X, W, and V CJ Factors, Core Midplane Elevation C; Cycle Cycle Length (EFPY) Capsule U CapsuleX CapsuleW CapsuleV 1 1.16 1.00 1.22 1.29 1.47 2 0.86 0.85 0.91 1.02 3 1.13 1.02 1.08 1.19 4 1.15 0.86 0.91 1.05 5 1.22 0.96 1.08 6 1.04 0.83 0.99 7 1.24 0.97 1.06 8 1.29 0.77 9 1.44 0.84 10 1.49 0.95 11 1.42 0.97 12 1.45 0.96 13 1.4 0.86 14 1.41 0.95 WCAP-18092-NP A-17 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-18 TableA-5 Measured Sensor Activities and Reaction Rates for Surveillance Capsule U Measured Saturated Target Activity Activity Isotope (dpslgia) (dps/g) 63 Cu (n,a) 6°Co 5.16E+04 4.38E+05 63Cu (n,a) 6oCo 4.53E+04 3.84E+05 63 Cu (n,a) 6°Co 4.50E+04 3.82E+05 s4Fe (n,p) s4Mn 1.08E+o6 3.98E+06 54Fe (n,p) 54Mn 9.89E+05 3.65E+06 s4Fe (n,p) s4Mn 9.74E+05 3.59E+06 58 Ni (n,p) 58 Co 2.65E+O(> 5.58E+07 58 Ni (n,p) 58 Co 2.43E+06 5.12E+07 58 Ni(n,p) 58 Co 2.42E+06 5.09E+07 59 Co (n;y) 6°Co l.06E+07 8.99E+07 59 Co (n;y) 6°Co 1.05E+07 8.91E+07 59 Co (n;y) 6°Co 1.08E+07 9.16E+07 s9Co (n;y) 6oCo l.04E+07. 8.82E+07 -59 Co (n;y) 6°Co l.06E+o7 8.99E+07 59 Co(Cd) (n,y) 6°Co 5.43E+o6 4.61E+07 238 U (n,t) 137 Cs l.53E+o5 6.25E+06 231Np {n,t) 137Cs 1.32E+o6 5.40E+07 Note: (a) Measured activity decay corrected to May 31, 1990 WCAP-18092-NP Average Reaction Rate Reaction (rps/atom) Rate (rps/atom) 6.68E-17 5.86E-17 5.82E-17 6.12E-17 6.32E-15 5.79E-15 5.70E-15 5.93E-15 7.99E-15 7.32E-15 7.29E-15 7.53E-15 5.87E-12 . 5.81E-12 5.98E-12 5.76E-12 5.87E-12 5.86E-12 3.0lE-12 3.0lE-12 4.llE-14 4.llE-14 3.44E-13 3.44E-13 Corrected Average Reaction Rate (rps/atom) 6.12E-17 5.93E-15 7.53E-15 5.86E-12 3.0lE-12 3.45E-14 3.41E-13 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-19 TableA-6 Measured Sensor Activities and Reaction Rates for Surveillance Capsule X Measured Saturated Target Activity Activity Isotope (dps/g}'a) (dps/g) 63Cu (n,a.) 6oco l.36E+05 3.79E+05 -63Cu (n,a.) 60Co l.25E+05 3.48E+05 63Cu (n,a.) 60Co l.22E+05 3.40E+o5 54 Fe (n,p) 54 Mn l.66E+06 3.38E+06 54Fe (n,p) 54Mn 1.49E+06 3.03E+06 54Fe (n,p) s4Mn l.48E+06 3.01E+o6 58 Ni (n,p) 58 Co 7.37E+06 5.02E+o7 58 Ni (n,p) 58 Co 6.73E+06 4.58E+07 . ssNi (n,p) ssco 6.56E+06 4.47E+07 59 Co (n,y) 6°Co 2.49E+07 6.94E+07 59 Co (n,y) 6°Co 2.57E+07 7.16E+07 59 Co (n,y) 60 Co 2.45E+07 6.83E+07 59 Co(Cd) (n,y) 6°Co l.26E+07 3.51E+o7 238 U (n,f) 137 Cs 5.00E+05 5.57E+06 237Np (n,f) mes 3.27E+06 3.64E+o7 Note: (a) Measured activity decay corrected to August 19, 1994 WCAP-18092-NP Average Reaction Rate Reaction (rps/atom) Rate (rps/atom) 5.78E-17 5.31E-17 5.19E-17 5.43E-17 5.35E-15 4.81E-15 4.77E-15 4.98E-15 7.18E-15 6.56E-15 6.39E-15 6.71E-15 4.53E-12 4.67E-12 4.45E-12 4.55E-12 2.29E-12 2.29E-12 3.66E-14 3.66E-14 2.32E-13 2.32E-13 Corrected Average Reaction Rate (rps/atom) 5.43E-17 4.98E-15 6.71E-15 4.55E-12 2.29E-12 2.97E-14 2.30E-13 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-20 TableA-7 Measured Sensor Activities and Reaction Rates for Surveillance Capsule W Measured Saturated Target Activity Activity Isotope (dpslgia) (dps/g) 63 Cu (n,a.) 60 Co l.70E+05 3.53E+05 63Cu (n,a.) 6oco l.53E+05 3.18E+05 63Cu (n,a.) 60Co l.49E+05 3.10E+05 54 Fe (n,p) 54 Mn l.33E+06 3.44E+06 s4Fe (n,p) 54Mn. 1.21E+06 3.13E+06 s4Fe (n,p) 54Mn 1.18E+06 3.05E+06 58 Ni (n,p) 58 Co 2.02E+06 5.39E+07 58 Ni (n,p) 58 Co 1.86E+06 4.96E+07 58 Ni (n,p) 58 Co l.76E+06 4.69E+07 59 Co (n,y) 6°Co 3.01E+07 6.25E+07 59 Co (n,y) 60 Co 3.09E+07 6.42E+07 59 Co (n,y) 60 Co 3.06E+07 6.36E+07 59 Co(Cd) (n;y) 6°Co 2.46E+07 5.11E+07 .. 59 Co(Cd) (n,y) 6°Co 2.67E+o1 . 5.55E+o7 -238u (n,f) mes 9.50E+05 6.24E+o6 231Np (n,f) mes 6.30E+06 4.14E+o7 Note: (a) Measured activity decay corrected to July 26, 1999 WCAP-18092-NP Average Reaction Rate Reaction (rps/atom) Rate (rps/atom) 5.39E-17 4.85E-17 4.72E-17 4.99E-17 5.46E-15 4.96E-15 4.84E-15 5.09E-15 7.71E-15 7.lOE-15 6.72E-15 7.18E-15 4:08E-12 4.19E-12 4.15E-12 . 4.14E-12 3.34E-12 3.62E-12 . 3A8E-12 4.lOE-14 4.lOE-14 2.64E-13 2.64E-13 Corrected Average Reaction Rate (rps/atom) 4.99E-17 5.09E-15 7.18E-15 4.14E-12 3.48E-12 3.22E-14 i.62E-13 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-21 TableA-8 Measured Sensor Activities and Reaction Rates for Surveillance Capsule V Measured Saturated Reaction Target Activity Activity Rate Isotope (dps/g)(a) (dps/g) (rps/atom) 63 Cu (n,a) 6°Co 9.70E+o4 2.85E+05 4.35E-17 63 Cu (n,a) 6°Co 8.67E+04 2.55E+05 3.88E-17 63 Cu (n,a}6°Co 8.58E+04 2.52E+05 3.84E-17 54Fe (n,p) S4Mn 1.15E+o4 2.50E+06 3.96E-15 S4Fe (n,p) S4Mn l.09E+04 2.37E+06 3.76E-15 S4Fe (n,p) s4Mn 1.08E+o4 2.35E+o6 3.72E-15 59 Co (n,y) 6°Co l.58E+07 4.64E+07 3.03E-12 s9Co (n,y) 60Co 1.46E+07 4.29E+07 2.SOE-12 59 Co (n,y) 6°Co 1.61E+07 4.73E+07 3.09E-12 59 Co (n,y) 6°Co l.52E+07 4.46E+o7 2.91E-12 59 Co (n,y) 60 Co(b> 1.43E+07 4.20E+07 2.74E-12 59 Co(Cd) (n,y) 60 Co 8.19E+06 2.41E+o7 l.57E-12 238U (n,:t) 131 Cs l.37E+o6 4.97E+o6 3.26E-14 237 Np (n,:t) 137 Cs 8.67E+o6 3.14E+o7 2.0IE-13 Note: (a) Measured activity decay corrected to October 1, 2015 (b) Partially cadmium-covered; treated as bare WCAP-18092-NP Average Reaction Rate (rps/atom) 4.03E-17 3.82E-15 2.91E-12 l.57E-12 3.26E-14 2.0IE-13 Corrected Average Reaction Rate (rps/atom) 4.03E-17 3.82E-15 2.91E-12 1.57E-12 2.38E-14 l.99E-13 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-22 TableA-9 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule A Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dps/gia) (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a) 6°Co 4.29E+02 2.70E+03 4.12E-19 4.12E-19 46 Ti (n,p) 46 Sc 1.31E+03 5.53E+03 5.33E-18 5.33E-18 54Fe (n,p) 54Mn 8.81E+03 1.90E+04 3.0lE-17 54Fe (n,p) 54Mn 8.63E+03 1.86E+04 2.95E-17 2.98E-17 58 Ni (n,p) 58 Co 4.78E+04 2.60E+05 3.72E-17 3.72E-17 93Nb (n,n') 93°'Nb 4.88E+04 8.49E+05 1.31E-16 l.31E-16 59 Co (n,y) 6°Co 3.52E+05 2.22E+06 4.96E-14 4.96E-14 59 Co(Cd) (n,y) 60 Co l.78E+05 l.12E+06 2.SlE-14 2.SlE-14 Note: (a) Measured activity decay corrected to September 17, 2009 TableA-10 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule B Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dpstgia) (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a) 6°Co 5.46E+02 3.44E+03 5.25E-19 5.25E-19 46 Ti (n,p) 46 Sc l.90E+03 8.02E+03 7.73E-18 7.73E-18 s4Fe (n,p) s4Mn l.20E+04 2.59E+o4 4.llE-17 s4Fe (n,p) s4Mn l.16E+04 2.50E+04 3.97E-17 4.04E-17 58Ni (n,p) ssco 6.46E+04 3.51E+05 5.03E-17 5.03E-17 93NIJ (n,n') 93°'Nb 6.06E+04 l.05E+06 l.63E-16 l.63E-16 s9Co (n,y) 6oco 6.28E+05 3.96E+06 8.84E-14 8.84E-14 59 Co(Cd) (n,y) 6°Co 2.62E+05 l.65E+06 3.69E-14 3.69E-14 Note: (a) Measured activity decay corrected to September 17, 2009 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 __ A-23 Table A-11 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule C Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dps/gia) (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a.) 6°Co 5.22E+02 3.29E+03 5.02E-19 5.02E-19 46 Ti (n,p) 46 Sc l.77E+03 7.47E+03 7.20E-18 7.20E-18 54Fe (n,p) 54Mn l.10E+04 2.37E+04 3.76E-17 54Fe (n,p) 54Mn l.09E+04 2.35E+04 3.73E-17 3.75E-17 58 Ni (n,p) 58 Co 6.73E+04 3.66E+05 5.24E-17 5.24E-17 93Nb (n,n') 6.86E+04 1.19E+06 1.84E-16 1.84E-16 59 Co (n,y) 6°Co 6.79E+05 4.28E+06 9.56E-14 9.56E-14 59 Co(Cd) (n,y) 6°Co 3.10E+05 1.95E+06 4.36E-14 4.36E-14 Note: (a) Measured activity decay corrected to September 17, 2009 Table A-12 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule E Measured Saturated Reaction Target Activity Activity Rate Isotope (dps/g)(a) (dps/g) (rps/atom) 63Cu {n,a.) 6oCo 3.64E+02 2.29E+03 3.SOE-19 46Ti (n,p) 46Sc l.19E+03 5.02E+03 4.84E-18 54 Fe {n,p) 54 Mn 8.76E+03 l.89E+04 3.00E-17 54 Fe (n,p) 54Mn 8.78E+03 l.89E+04 3.00E-17 5 8Ni {n,p) 58 Co 5.07E+04 2.76E+05 3.95E-17 93Nb 6.57E+04 l.14E+06 l.76E-16 59 Co (n,y) 60 Co 3.79E+05 2.39E+06 5.34E-14 59 Co(Cd) (n,y) 6°Co 2.27E+05 l.43E+06 3.20E-14 Note: (a) Measured activity decay corrected to September 17, 2009 WCAP-18092-NP Average Reaction Rate (rps/atom) 3.SOE-19 4.84E-18 3.00E-17 3.95E-17 l.76E-16 5.34E-14 3.20E-14 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-24 TableA-13 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule D Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dps/gia> (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a.) 60 Co 1.11E+02 6.99E+02 1.07E-19 l.07E-19 46 Ti (n,p) 46 Sc 4.42E+02 l.87E+03 1.80E-18 l.80E-18 s4Fe (n,p) 54Mn 2.70E+03 5.82E+03 9.24E-18 S4Fe (n,p) S4Mn 2.89E+03 6.23E+03 9.89E-18 9.56E-18 ssNi (n,p) sseo 1.95E+04 1.06E+05 1.52E-17 1.52E-17 93Nb (n,n193mm 2.26E+04 3.93E+05 6.06E-17 6.06E-17 59 Co (n,y) 60 Co l.62E+05 l.02E+06 2.28E-14 2.28E-14 59 Co(Cd) (n,y) 6°Co 9.84E+04 6.20E+05 1.39E-14 1.39E-14 Note: (a) Measured activity decay corrected to September 17, 2009 TableA-14 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule F Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dps/gia) (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a) 6°Co 1.49E+02 9.39E+o2 l.43E-19 l.43E-19 4 6Ti (n,p) 46 Sc 5.64E+02 2.38E+03 2.29E-18 2.29E-18 s4Fe (n,p) s4Mn 4.20E+03 9.06E+03 l.44E-17 s4Fe {n,p) s4Mn 3.78E+03 8.15E+03 l.29E-17 l.37E-17 ssNi (n,p) ssco 2.46E+04 1.34E+05 1.92E-17 l.92E-17 93Nb Cn.n 1 93mm 2.62E+04 4.56E+o5 7.03E-17 7.03E-17 s9co (n,y) 6oco 2.15E+05 l.36E+06 3.03E-14 3.03E-14 59 Co(Cd) (n,y) 6°Co l.24E+05 7.81E+05 l.75E-14 1.75E-14 Note: (a) Measured activity decay corrected to September 17, 2009 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-25 Table A-15 Least-Squares Evaluation of Dosimetry in Surveillance Capsule U (31.5° Azimuth, Core Midplane -Dual Capsule Holder) Cycle 1 Irradiation I Reaction Rate (rps/atom) Reaction Measured Calculated .Best-(M) (C) Estimate (BE) 63 eu (n,a) 60 eo 6.12E-17 5.32E-17 5.79E-17 s4Fe (n,p) S4Mn 5.93E-15 6.08E-15 5.98E-15 58 Ni (n,p) 58 eo 7.53E-15 8.56E-15 8.15E-15 59 eo (n,y) 60 eo 5.85E-12 5.17E-12 5.80E-12 59 Co(Cd) (n,y) 60 Co 3.00E-12 3.33E-12 3.04E-12 238 U(Cd) (n,f) 137 es 3.45E-14 3.33E-14 3.20E-14 237 Np(ed) (n,f) 137 es 3.41E-13 3.31E-13 3.29E-13 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence Rate E> l.OMeV l.06E+ll 13 l.OlE+ll (n/cm 2-s) Fluence Rate E>0.1 MeV 4.77E+ll -4.69E+ll (n/cm 2-s) dpa/s 2.06E-10 13 2.0lE-10 WCAP-18092-NP MIC 1.15 0.98 0.88 1.13 0.90 1.03 1.03 1.01 9.6% %Unc. 6 10 8 M/BE 1.05 0.99 0.93 1.01 0.99 1.08 1.04 l.Oi 5.8% BE/C 0.95 0.98 0.97 BE/C 1.09 0.98 0.95 1.12 0.91 0.96 0.99 0.99 5.6% May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-26 TableA-16 Least-Squares Evaluation of Dosimetry in Surveillance Capsule X (31.5° Azimuth, Core Midplane -Dual Capsule Holder) Cycles 1 through 4 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-Estimate (M) (C) (BE) 63 Cu (n,a.) 6°Co 5.42E-17 4.54E-17 5.13E-17 S4Fe (n,p) S4Mn 4.98E-15 5.07E-15 5.llE-15 s8Ni (n,p) sseo 6.71E-15 7.12E-15 7.04E-15 59 Co (n,y) 6°Co 4.55E-12 4.16E-12 4.51E-12 59 Co(Cd) (n,y) 6°Co 2.29E-12 2.68E-12 2.32E-12 238 U(Cd) (n,f) 137 Cs 2.97E-14 2.74E-14 2.66E-14 237 Np(Cd) (n,f) 137 Cs 2.30E-13 2.69E-13 . 2.41E-13 Average of Past Energy Threshold Reactions Standard Deviation Integral Quantity Calculated %UD.c. Best-Estimate (C) (BE) Fluence Rate E> 1.0MeV 8.69E+l0 13 8.23E+l0 (n/cm 2-s) Fluence Rate E>O.lMeV 3.86E+ll -3.62E+ll (n/cm 2-s) dpa/s 1.67E-10 13 1.59E-10 WCAP-18092-NP MIC 1.19 0.98 0.94 1.09 0.86 1.08 0.86 1.01 12.7% %Unc. 6 10 7 M/BE 1.05 0.97 0.95 1.01 0.99 1.11 0.95 1.01 7.1% BE/C 0.94 0.93 0.94 BE/C 1.13 1.01 0.99 1.08 0.87 0.97 0.90 1.00 8.4% May2016 Revision 1 Westinghouse Non-Proprietary Class 3 _ A-27 Table A-17 Least-Squares Evaluation of Dosimetry in Surveillance Capsule.W (31.5° Azimuth, Core Midplane -Single Capsule Holder) Cycles 1 through 7 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(C) Estimate (M) (BE) 63 Cu (n,a) 6°Co 4.99E-17 4.27E-17 4.87E-17 s4Fe (n,p) 54Mn 5.09E-15 4.73E-15 5.22E-15 58 Ni (n,p) 58 Co 7.18E-15 6.64E-15 7.32E-15 59 Co (n,y) 60 Co 4.14E-12 3.53E-12 4.17E-12 59 Co(Cd) (n;y) 6°Co 3.03E-12 2.30E-12 3.00E-12 238 U(Cd) (n,f) 137 Cs 3.22E-14 2.55E-14 2.83E-14 237 Np(Cd) (n,f) 137 Cs 2.62E-13 2.50E-13 2.69E-13 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence Rate E> l.OMeV 8.lOE+lO 13 8.95E+10 (n/cm 2-s) Fluence Rate E>O.lMeV 3.59E+ll -3.94E+ll (n/cm 2-s) dpa/s l.55E-10 13 1.71E-10 WCAP-18092-NP


MIC 1.17 1.08 1.08 1.17 1.32 1.26 1.05 1.13 7.7% %Unc. 6 10 8 M/BE 1.02 0.97 0.98 0.99 1.01 1.14 0.97 1.02 7.1% BE/C 1.10 1.09 1.10 BE/C 1.14 1.10 1.10 1.18 1.30. 1.11 1.08 1.11 2.0% May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-28 Table A-18

  • Least-Squares Evaluation of Dosimetry in Surveillance Capsule V (29.0° Azimuth, Core Midplane -Dual Capsule Holder) Cycles 1 Through 14 Irradiation Reaction Rate (rps/atom)

Reaction Measured Calculated Best-Estimate (M) (C) (BE) 63 Cu (n,a) 60 Co 4.02E-17 3.66E-17 3.90E-17 S4Fe (n,p) S4Mn 3.81E-15 3.97E-15 4.0lE-15 59 Co (n,y) 6°Co 2.95E-12 3.lOE-12 2.94E-12 59 Co(Cd) (n,y) l.57E-12 2.0lE-12 l.59E-12 238 U(Cd) (n,f) 137 Cs 2.37E-14 2.12E-14 2.14E-14 237 Np(Cd) (n,f) 137 Cs l.99E-13 2.06E-13 2.02E-13 Average of Fast Energy Threshold Reactions Standard Deviation -Integral Quantity Calculated %Unc. Best-Estimate ' (C) (BE) Fluence Rate E> 1.0MeV 6.68E+l0 13 6.72E+l0 (n/cm 2-s) Fluence Rate E>O.l MeV 2.94E+ll -2.94E+ll (n/cm 2-s) dpa/s l.28E-10 13 l.29E-10 WCAP-18092-NP MIC 1.10 0.96 0.95 0.78 1.12 0.97 1.04 8.1% %Unc. 6 10 8 M/BE BE/C 1.03 1.06 0.95 1.01 1.01 0.95 0.99 0.79 1.11 1.01 0.98 0.98 1.02 1.02 6.9% 3.3% BE/C 1.00 0.99 1.00 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-29 Table A-19 Least-Squares Evaluation of Dosimetry in EVND Capsule A (0.5° Azimuth, Core Midplane) Cycle 14 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-Estimate (M) (C) (BE) 63 Cu (n,a) 6°Co 4.12E-19 4.66E-19 4.07E-19 46 Ti (n,p) 46 Sc 5.33E-18 6.26E-18 5.38E-18 54 Fe (n,p) 54 Mn 2.98E-17 3.32E-17 2.91E-17 58 Ni (n,p) 58 Co 3.72E-17 4.64E-17 3.97E-17 93Nb (n,n') l.31E-16 1.31E-16 1.28E-16 59Co (n,y) 6oCo 4.95E-14 4.19E-14 4.92E-14 59 Co(Cd) (n,y) 60 Co 2.51E-14 2.39E-14 2.51E-14 Average of Past Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence Rate E>l.OMeV 5.61E+08 13 5.20E+08 (n/cm 2-s) Fluence Rate E>0.1 MeV 5.21E+09 -5.23E+09 (n/cm 2-s) dpa/s 1.78E-12 13 1.76E-12 WCAP-18092-NP MIC 0.88 0.85 0.90 0.80 1.00 1.18 1.05 0.89 8.4% %Unc. 6 10 8 M/BE 1.01 0.99 1.03 0.93 1.02 1.01 1.00 1.00 4.0% BE/C 0.92 1.00 0.98 BE/C 0.87 0.86 0.88 0.86 0.97 1.17 1.05 0.89 5.2% May2016 Revision 1 Westinghouse Noli-Proprietary Class 3 A-30 Table A-20 Least-Squares Evaluation of Dosimetry in EVND Capsule B (14.5° Azimuth, Core Midplane) Cycle 14 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(C) Estimate (M) (BE) 63 Cu (n,a.) 60 Co 5.25E-19 5.52E-19 5.30E-19 46 Ti (n,p) 46 Sc 7.73E-18 7.60E-18 7.40E-18 54Fe {n,p) s4Mn 4.04E-17 4.21E-17 3.96E-17 58 Ni {n,p) 58 Co 5.03E-17 5.91E-17 5.38E-17 93Nb {n,n') 93°Nb 1.63E-16 1.73E-16 1.61E-16 59 Co (n,y) 6°Co 8.84E-14 7.68E-14 8.80E-14 59 Co (Cd) {n,y) 6°Co 3.69E-14 3.73E-14 3.70E-14 of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence Rate E> l.OMeV 7.35E+08 13 6.74E+08 (n/cm 2-s) Fluence Rate E>O.lMeV 7.06E+09 -6.67E+o9 (n/cm 2-s) dpa/s 2.42E-12 13 2.28E-12 WCAP-18092-NP MIC 0.95 1.02 0.96 0.85 0.94 1.15 0.99 0.94 6.5% %Unc. 6 10 8 M/BE 0.99 1.04 1.02 0.93 1.01 1.01 1.00 LOO 4.2% BE/C 0.91 0.94 0.94 BE/C 0.96 0.97 0.94 0.91 0.93 1.15 0.99 0.94 2.5% May2016 Revision 1 --J Westinghouse Non-Proprietary Class 3 A-31 Table A-21 Least-Squares Evaluation of Dosimetry in EVND Capsule C (29.5° Azimuth, Core Midplane) Cycle 14 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-Estimate (M) (C) (BE) 63 Cu (n,a) 60 Co 5.02E-19 5.33E-19 5.0lE-19 46 Ti (n,p) 46 Sc 7.20E-18 7.39E-18 6.98E-18 54Fe (n,p) 54Mn 3.75E-17 4.19E-17 3.83E-17 58 Ni (n,p) 58 Co 5.24E-17 5.94E-17 5.41E-17 93Nb (n,n') l.84E-16 l.86E-16 l.81E-16 59 Co (n,y) 6°Co 9.56E-14 8.69E-14 9.53E-14 59 Co(Cd) (n,y) 6°Co 4.36E-14 4.23E-14 4.36E-14 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence Rate E> l.OMeV 7.81E+o8 .. 13 7.32E+08 (n/cm.2-s) Fluence Rate E>O.l MeV 7.91E+o9 -7.84E+o9 (n/cm 2-s) dpa/s 2.67E-12 13 2.62E-12 WCAP-18092-NP MIC 0.94 0.97 0.89 0.88 0.99 1.10 1.03 0.93 5.2% % Unc. 6 10 8 M/BE 1.00 1.03 0.98 0.97 1.02 1.00 1.00 1.00 2.5% BE/C 0.93 0.99 0.97 BE/C 0.94 0.-94 0.92 0.91 0.97 1.10 1.03 0.94 2.5% May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-32 Table A-22 Least-Squares Evaluation of Dosimetry in EVND Capsule E (44.5° Azimuth, Core Midplane) Cycle 14 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(C) Estimate (M) (BE) 63 Cu (n,a) 60 Co 3.50E-19 3.79E-19 3.48E-19 46 Ti (n,p) 46 Sc 4.84E-18 5.31E-18 4.84E-18 54Fe (n,p) 54Mn 3.00E-17 3.17E-17 2.94E-17 58 Ni (n,p) 58 Co 3.95E-17 4.59E-17 4.18E-17 93Nb (n,n') 93mm 1.76E-16 1.66E-16 1.72E-16 59 Co (n,y) 6°Co 5.34E-14 5.53E-14 5.35E-14 59 Co(Cd) (n,y) 6°Co 3.20E-14 3.19E-14 3.19E-14 Avera$e of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence Rate E>l.OMeV 6.93E+o8 13 6.79E+08 (nlcm 2-s) Fluence Rate E>0.1 MeV

  • 7.20E+o9 -7.50E+o9 (n/cm 2-s) dpa/s 2.38E-12 13 2.44E-12 WCAP-18092-NP MIC 0.92 0.91 0.95 0.86 1.06 0.96 1.00 0.94 7.9% %Unc. 6 10 8 M/BE 1.01 1.00 1.02 0.94 1.03 1.00 1.00 1.00 3.5% BE/C 0.97. 1.04 1.02 BE/C 0.92 0.91 0.93 0.91 1.03 0.97 1.00 0.94 5.4% May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-33 TableA-23 Least-Squares Evaluation of Dosimetry in EVND Capsule D (44.5° Azimuth, Top of Active Core) Cycle 14 Irradiation Reaction Rate (rps/atom)

Reaction Measured Calculated Best-Estimate (M) (C) (BE) 63 Cu (n,a) 6°Co 1.07E-19 l.66E-19 1.13E-19 46 Ti (n,p) 46 Sc 1.80E-18 2.33E-18 1.70E-18 54 Fe (n,p) 54 Mn 9.56E-18 l.39E-17 1.00E-17 58 Ni (n,p) 58 Co 1.52E-17 2.02E-17 l.SOE-17 93Nb (n,n') 93°Nb 6.06E-17 7.27E-17 6.00E-17 59 Co (n,y) 6°Co 2.28E-14 2.57E-14 2.28E-14 59 Co(Cd) (n,y) _6°Co 1.38E-14 l.48E-14 1.38E-14 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence Rate E>l.OMeV 3.03E+08 13 2.41E+o8 (n/cm 2-s) Fluence Rate E>0.1 MeV 3.17E+09 -2.73E+09 (n/cm 2-s) dpa/s 1.0SE-12 13 8.85E-13 WCAP-18092-NP MIC 0.64 0.77 0.69 0.75 0.83 0.89 0.94 0.74 10.0% %Unc. 6 10 8 M/BE 0.94 1.06 0.95 1.01 1.01 1.00 1.00 0.99 5.0% BE/C 0.79 0.86 0.84 BE/C 0.68 0.73 0.72 0.74 0.82 0.89 0.93 0.74 6.9% May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-34 TableA-24 Least-Squares Evaluation of Dosimetry in EVND Capsule F (44.5° Azimuth, Bottom of Active Core) Cycle 14 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-Estimate (M) (C) (BE) 63 Cu (n,a) 6°Co l.43E-19 1.48E-19 1.50E-19 46 Ti (n,p) 46 Sc 2.29E-18 2.08E-18 2.22E-18 s4Fe (n,p) 54Mn l.36E-17 l.25E-17 1.34E-17 58 Ni (n,p) 58 Co 1.91E-17 l.81E-17 l.93E-17 93Nb 7.03E-17 6.62E-17 7.06E-17 59 Co (n,y) 6°Co 3.03E-14 2.40E-14 3.0lE-14 59 Co(Cd) (n,y) 6°Co l.75E-14 l.37E-14 l.74E-14 Average_ of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence Rate E>l.OMeV 2.75E+08 13 2.97E+08 (n/crrl-s) -Fluence Rate E>0.1 MeV 2.92E+09 -3.09E+o9 (n/cm 2-s) dpa/s 9.59E-13 13 l.02E-12 WCAP-18092-NP MIC 0.97 1.10 1.09 1.06 1.06 1.26 1.27 1.06 4.9% %Unc. 6 10 8 M/BE 0.95 1.03 1.02 0.99 1.00 1.00 1.00 1.00 3.1% BE/C 1.07 1.05 1.06 BE/C 1.01 1.07 1.07 1.06 1.07 1.26 1.27 1.06 2.5% May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-35 Table A-25 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -In-Vessel Surveillance Capsules Reaction Capsule Average Std. Dev. u x w v 63 Cu {n,a) 60 Co 1.15 1.19 1.17 1.10 1.15 3.4% 54 Fe (n,p) 54 Mn 0.98 0.98 1.08 0.96 1.00 5.4% 58 Ni (n,p) 58 eo 0.88 0.94 1.08 -0.97 10.6% 238 U(ed) (n,f) 137 es 1.03 1.08 1.26 1.12 1.12 8.8% 237 Np(ed) (n,f) 137 es 1.03 0.86 1.05 0.97 0.98 8.7% Average ofM/C Results 1.05 10.1% Table A-26 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -Ex-Vessel Midplane Capsules Capsule ---------------Reaction Average Std. Dev. A B c E 63 eu (n,a) 60 eo 0.88 0.95 0.94 0.92 0.92 3.4% 46 Ti (n,p) 46 Sc 0.85 1.02 0.97 0.91 0.94 7.9% S4Fe (n,p) S4Mn 0.90 0.96 0.89 0.95 0.93 3.8% 58 Ni {n,p) 58 eo 0.80 0.85 0.88 0.86 0.85 4.0% 93NlJ (n,n') 93uw, 1.00 0.94 0.99 1.06 1.00 4.9% Average of MIC Results 0.93 7.0% Table A-27 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -Ex-Vessel Off-Midplane Capsules Reaction 63 eu {n,a) 6°Co 46 Ti {n,p) 46 Sc s4Fe {n,p) S4Mn 58 Ni {n,p) 58 Co 93Nb {n,n') WCAP-18092-NP Capsule D F 0.64 0.97 0.77 1.10 0.69 1.09 0.75 1.06 0.83 1.06 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-36 Table A-28

  • Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -In-Vessel.

Surveillance Capsules Capsule Fast Neutron Fluence Rate (E > 1.0 MeV) Iron Atom Displacement Rate BE/C Std. Dev. BE/C Std. Dev. u 0.95 6.0% 0.97 8.0% x 0.94 6.0% 0.94 7.0% w 1.10 6.0% 1.10 8.0% v 1.00 6.0% 1.00 8.0% Average 1.00 7.3% 1.00 6.9% Table A-29 Comparison of Best-Estimate/Calculated {BE/C) Exposure Rate Ratios -Ex-Vessel Midplane Capsules Capsule Fast Neutron Fluence Rate (E > 1.0 MeV) Iron Atom Displacement Rate BE/C Std. Dev. BE/C Std. Dev. A 0.92 6.0% 0.98 8.0% B 0.91 6.0% 0.94 8.0% e 0.93 6.0% 0.97 8.0% E 0.97 6.0% 1.02 8.0% Average 0.93 2.8% 0.98 3.4% Table A-30 Summary of Measured/Calculated {MIC) Sensor Reaction Rate Ratios for Fast Neutron -Threshold Reactions -ID-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules In-Vessel Reaction Avg.MIC, Std.Dev. 63 Cu (n,a) 60 eo 1.15 3.4% 46 Ti (n,p) 46 Sc --S4Fe (n,p) S4Mn 1.00 5.4% 58 Ni (n,p) 58 eo 0.97 10.6% 93Nb (n,n') --238 U(ed) (n,t) mes 1.12 8.8% 237 Np(ed) (n,t) mes 0.98 8.7% Average 1.05 10.1% WCAP-18092-NP Ex-Vessel Midplane Avg.MIC Std.Dev. 0.92 3.4% 0.94 7.9% 0.93 3.8% 0.85 4.0% 1.00 4.9% ----0.93 7.0% Combined Avg.MIC 1.04 0.94 0.96 0.91 1.00 1.12 0.98 0.99 Std. Dev. 3.4% 7.9% 4.7% 8.4% 4.9% 8.8% 8.7% 6.3% May2016 Revision 1 Westinghouse Non-Proprietary Class 3 A-37 TableA-31 Summary of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules In-Vessel Reaction Avg.MIC Std.Dev. Fast Neutron Fluence Rate (E > 1.0 MeV) 1.00 7.3% Iron Atom Displacement Rate 1.00 6.9% WCAP-18092-NP Ex-Vessel Midplane Avg; Std. MIC Dev. 0.93 2.8% 0.98 3.4% Combined Avg. MIC 0.97 0.99 Std. Dev. 4.0% 3.9% May2016 Revision 1 I Westinghouse Non-Proprietary Class 3 A-38 A.2 REFERENCES A-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, March 2001. A-2 Westinghouse Report, WCAP-12685, Rev. 0, Analysis of Capsule U from the Commonwealth Edison Company Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program, August 1990. A-3 Westinghouse Report, WCAP-14241, Rev. 0, Analysis of Capsule X from the Commonwealth Edison Company Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program, March 1995. A-4 Westinghouse Report, WCAP-15316, Rev. 1, Analysis of Capsule W from Commonwealth Edison Company Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program, November 1999. A-5 Westinghouse Report, WCAP-17194-NP, Rev. 1, Ex-Vessel Neutron Dosimetry Program for Braidwood Unit 1 Cycle 14, October 2012. A-6 A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979. A-7 RSICC Data Library Collection DLC-178, SNLRML Recommended Dosimetry Cross-Section Compendium, July 1994. A-8 ASTM Standard E944-13, Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA), 2013. A-9 ASTM Standard E1005-10, Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Su_rveillance, E 706 (IlIA), 2010. WCAP-18092-NP May2016 Revision 1 APPENDIXB Westinghouse Non-Proprietary Class 3 LOAD-TIME RECORDS FOR. C:QARPY SPECIMEN TESTS * "ELXX" denotes Lower Shell Forging [49D867/49C813]-l-1, tangential orientation

  • "ETXX" denotes Lower Shell Forging [49D867/49C813]-l-1, axial orientation
  • "EWXX" denotes weld material * "EHXX" denotes heat-affected zone material Note that the instrumented Charpy data is not required per ASTM Standards E185-82 or E23-12c. B-1 WCAP-18092-NP May2016 Revision 1 j Westinghouse Non-Proprietary Class 3 B-2 -6n!I0..00l.cd-1 13.SSlll Tuia--1 e.11ae 5Gl1ll.GO 1000.00 EL27: Tested at-75°F sooo.oolo&d-1 S.941b 'imo-t 6.07 mo 5000.DQ 20110.00 fOG0.00

..... -A...o.....u.i .... 1.00 WCAP-18092-NP 2.00 3.00 Tan&-l{ms) EL18: Tested at -50°F *.oo 5.00 .... May2016 Revision 1 SllOD.!Jtl 4000.00 e i 3000.00 2000.00 1000.00 6000.00lood*110D.751b SOOD.Oii e 13000.00 2!!00,Qij 10110.011 WCAP-18092-NP

  • Westinghouse Non-Proprietary Class 3 -EL26: Tested at -30°F Time-1 6.11ms EL22: Tested at -20°F B-3 May2016 Revision 1 6000.00Wd-1 69.*tl?I 50110.00 4000.IJIJ 20G0.00 1000.00 eooo.oo LGad-1 176.741> soao.oo 4000.0D s: j 20111J.DO 1QllOJIO O.Ql! 0.00 1.QQ WCAP-18092-NP Westinghouse Non-Proprietary Class 3 EL29: Tested at-10°F Tlflll5-1 8.10ms 200 3.00 4.llO T11:1e-1(im)

EL21: Tested at 5°F 5.DO B-4 8.00 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-5 6nll0..!KI lczsd-1 20.93 lb Tan&-16JJSms 5000.IHI '201lD.OO 1000.00 0.00 1.00 2.00 soao.oo Loal3-1 31.22 lb SOOD.OD 2000.00 tQOO.DO 3.110 rant-1(ms) EL16: Tested at 15°F 4.00 500 6.00 ..... ...._ ___ .._. __ .... .-l a.co 1.00 2ll0 WCAP-18092-NP '*" nme.1 (ms) EL25: Tested at 30°F 4.00 5.00 May2016 Revision 1 6400.UOL.c;ad-16.9511> suoo.oo "°""*"' e: ! 31)00.00 2000.0D 101J0.00 o.oo 0.00 1.00 60.110 loM-1 0.00 Ill 5000.00 4000.00 ! 3000.00 2000.00 10G0.GO ... ... 1.DD WCAP-18092-NP Westinghouse Non-Proprietary Class 3 'llmll-1 6.0Sms 2.00 3.00 4.00 Tll!ll!!-f(lllS} EL19: Tested at 60°F. Tm!-1 B.111115 T!lll&of{lm} EL28: Tested at 72°F s.oo B-6 6.00 .... May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-7 eooo.ooLi:.i:id-1 31A2tb Thna*16.111Jl9 51100.DO 4000.00 e ! '2000.00 1000.00 _ _, 0.00 1.00 OOGO.OllLoM-1 H8lb 5001).0() 2.00 3.00 Tim.e.1{mt) EL23: Tested at 125°F Time-I 8.09ms 4.00 500 6.00 0.00 1.QO WCAP-18092-NP 2.00 3.00 EL24: Tested at 160°F 400 5.00 May2016 Revision 1 J Westinghouse Non-Proprietary Class 3 B-8 6000.00 Lca0.1 D.tltllb 11rno-16.10fll3 5000.DO .., ... ! :!>UG0.00 2000.00 1000.00 D.DO 0.00 1.0\l 3.00 4.GO s.oo 6.00 nms.1{tl!S} EL17: Tested at 183°F 6000.00LGGd-1 2.c.26ftl Tmo-t 6.10ms sooo.oo 40110.00 ] 3000.00 2000.00 10GO.OO aoo 1.00 WCAP-18092-NP 3.00 Tlme-1(1111) EL20: Tested at 210°F .... . ... May2016 Revision 1 5000.00 4000.0U MO 000 UIO eooo.oo Load-1 38.!Slb 50.00 40CIQ,OO 8 3000.00 2DQQ.OO f000.00 ,.., 0.011 1.00 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 Thno-16.09111!1 2.00 3.00 *1.00 Tlme-1 (ms} EL30: Tested at 250°F Tme-1 S.09ms 200 100 4.QO Tim&-1(1M} ET26: Tested at-75°F sao .. , B-9 6.00 ... , May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-10 nno-1 ti.OTPIS 5000.00 4000.GO s: ! :!000.otl ,,,._,. 10.Cll 0.GO o.ao 1.00 3.00 4.00 5.00 8.QD TllM-l(ms) ET28: Tested at -50°F eooo.aoLaad-1f7.411b Trme-1 8.011113 5000.00 s: j JQ00.00 1001100 0.001.l---'-.IJl!O"'-'""-'JOU..u...JJILJ..OL.ll; .............

>.D..>ll...Jll!L[....._JWU

...... -""-"" ...........

1..J! ...... ...O......O.....Q..-"L..._,Ll...ol"'-'"--""--"--"'...Ll.--"-

__ "'-'.._., .. O.QQ 1..00 2.00 3.ao 00 S.00 6..00 ET24: Tested at -30°F WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-11 61Hl0.00loltd-1 l!Mi.OlDI 8.Q9n:s SOOD.DO 2000.fiO 1000.00 0.00 1.GO 2.00 uoo.ool08d-127.B11b saoo.ao """"' 10QG.OO WCAP-18092-NP 3.00 Time-1(1!1!) ET29: Tested at-10°F Time-16.0S!ml ET21: Tested at 0°F 4.00 S.GO S.00 May2016 Revision 1 60110.DO 65.l81b 50110.00 4000.0lJ e !'""" '2000.00 1000.00 0.00 0.00 1.00 6000.00LO&d-18J.S4111 SOOD.DO 1000.DO WCAP-18092-NP Westinghouse Non-Proprietary Class 3 T£1&.16.1tm!I ioo 3.00 4.00 rane-l(m.s) ET17: Tested at 5°F a.oem1 ET23: Tested at 15°F 5.00 B-12 6.00 May2016 Revision 1 6000.GOLl!d-1 55."421b sooo.oa 3000.00 '21l00.00 1000,00 0.00 0.00 1.00 6llOO.OOlo11d'-113.881b 5000,00 4000.00 @: 300000 2000.QQ 1DGG.OO *oo '-" 1.00 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 'llm6-1 e.10rrt!I 2.00 3.00 4.00 Tlll\e-1{ms} ET22: Tested at 30°F Tme-1 6.07msi '-" 3.110 4.00 T!l!l9-1(ms} ET19: Tested at S0°F S.GO 5.00 B-13 *no 6.00 May2016 Revision 1 saoo.ootud-1 24.321b 5000..GO 20aG.GO 10-00.00 6000.GO lcad-1 41.9011> 5000.00 __ ,, WCAP-18092-NP Westinghouse Non-Proprietary Class 3 Tino-16.11ms ET30: Tested at 50°F T119-1 6.11ms ET27: Tested at 72°F B-14 May2016 Revision 1

50110.00 4000.00 e j 30110.00 2000.00 1000.ao o.ao .... 1.CIO OOOO.OOLoltd-1 24321!1 5000.00 4000.00 g 3000.00 """' 1QCIO.Oll ,.., WCAP-18092-NP Westinghouse Non-Proprietary Class 3 llrn&-.1 e.urm 200 3.00 4.GO rime.t(msJ ET20: Tested at 125°F Timo-1 6.08ms 200 3.00 4.00 Tun&-1{ms) ET16: Tested at 160°F S.00 S.00 B-15 600 May2016 Revision 1 .saoo.ao 1.00 6000.00 Load-1 34.Be!D 5000.00 4000.00 § JOG0.00 *20ao.oo 1tl00.00 1.00 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 2.00 3.00 TimM(ms) ET18: Tested at 187°F 2.00 Tul&-t 6.07111!1

t.00 Tll!ll!--1{ms)

ET25: Tested at 250°F 4.00 5.00 .... B-16 600 6.00 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-17 'Thne-1 B.C5aa SUDO.GO @: ! <l000.00 1000.00 o.ool---1ll<JAIJW.ULIWlLLl--'l,!JLI'1"--<'-"41l!U""""-.L.U>..,Ll!il....aiJ"--"'"*"!>....<,.._..,.....Ll!l._u."-"'"-""'--'"--'.,,.._ ...... _...._...,....._,,,._....__.,..__.""-'...,,"""-....L!..-"-' 0.00 t.00 ,., 4.00 S.00 6.00 EW25: Tested at -30°F SOOQ.OOLGad-1 3&.lol-lb 'Tima-1 B.11rm 5000.00 4000.0Q j JOOO.ao 2000.110 1ooa.1KJ o.ool--l..l..!.:ll:LLlLLJ!l-U-.lll<!JIL.J.21...!!1.iWll!U.JW...IL.oJl..Nb.'-""'-'!"-'!,,._,...._.u_.ll..6o.JJJ.L"1"-"'-'l..oo...LL...,_..&........,.'--"l"-"..._,,._........_...._.._--I '*"" t.OD WCAP-18092-NP 200 3.00 EW30: Tested at-10°F 4.00 500 6.00 May2016 Revision 1 5000.DO ..... ,. 1.110 6QOD.OOL1111d.t 121.831l sooo.oo 4000.00 e: ! 3000.00 2000.00 1oao.oo aoo .... 1.00 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 Tim&-16.tOms 3.IJO 4.00 Time.-t(m!) EW18: Tested at 5°F Tl'llD-o1 6.01rM 200 3.00 '"' EW27: Tested at15°F SOD ... B-18 6.00 6.llD May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-19 0000.00 lca0-1 41.711b Tune-1 6.10ms StlDOJJtl 4.00 5.00 600 EW20: Tested at 2S°F eGOO.OOloDd-1 24.331b SOOOJIO 41100.00 1000.llQ o.ao,l------_.:,!..._.:JL.lLlll..,l.LlllUJ""'....,"-'"""-..oll'l...JJ.1.""-' ...... .n.... ..... ..,,..i...o...A.&..\11-.-._,......,._.._.._ __ _... __ ....,J.1 a.GO '-" 2.00 '-"' TDM-l(m) EW24: Tested at 3S°F 4.00 500 6.00 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-20 Tun&-16.llSU19 51300.00 4000.au 1000.00 ..... ..... ......... ...,,, ........ __. ................... .,,,.__ ............... w g 6GOO.OOload-1 B.9Blb 5000.00 '000.00 B: j 30Q0.00 2000.00 1000.00 0.00 D.!10 1.00 WCAP-18092-NP rane-1(ms) EW17: Tested at 50°F r--1 B.ttnn 2.00 3.00 TIM-1{ms) EW26: Tested at 72°F 4.00 .... 6.00 May2016 Revision 1 SIJOIUIO 4000.00 1.00 6tlOO.OOLoed--159.291b SllOQ.OD 4000.00 13000.00 2000.00 tCOOllD Westinghouse Non-Proprietary Class 3 2.00 lime-1 e.osOl9 3.00 Tll!l!-l(m.s) EW29: Tested at 100°F nne.1 6JJ7rm 4.00 B-21 S.00 6.00 ...... .... too WCAP-18092-NP 200 100 EW22: Tested at 125°F 4.00 500 e.oo May2016 Revision 1 60QOJJO '31251!> 5000.00 """'-"' 6000.00 Lol)d..1 20.S.C.lb 5000.00 .cooo.oo a i J000.00 2000.00 1000.00 t.00 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 ThJlo.-1 6.11Cll3 EW16: Tested at 150°F 200 "Jkne..16.09rrn 3.00 Time-1(rm) EW21: Tested at 185°F '-"' 5.CU B-22 6.00 May2016 Revision 1 5000.GO 4f.100.0D t\OilO.OOlo8d-11J.871b 5000.00 olOIJ0.00 e; JOQ0.00 ... WCAP-18092-NP Westinghouse Non-Proprietary Class 3 llm6-1e.11ms 4.00 EW23: Tested at 210°F rime-1 s.11ms 200 ,_ .. .... Time-1(ms.) EW28: Tested at 220°F s.ao S.llO B-23 8.00 .. , May2016 Revision 1 60DO.ll0lca4-1 62.7RI]:) SIJ00.00 """*" e ] :3000.00 """*°' 1000.00 0.00 0.00 1.(10 6000.GOl.o8d'*1 O.CO!b 5000.00 4000.00 e j 30110.00 211110.DO 1000.llO 1.00 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 '111m-16.10ins 2.00 l.00 4.00 iane-1 (ms) EW19: Tested at 250°F Dne-1 8.11an 2.00 3.00 4.00 Tam-1 (ms) EH25: Tested at -110°F S.00 ... B-24 6.00 6.DD May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-25 -SallO.GOl.ca:l-1 Tuno-1 !J.091113 5000.GO 4000.QO e ! 2001J.00 tQ00.00 0.00 0.00 1.00 2.00 3.00 uo 5,00 6.00 Tl!l\l!-1(1115) EH24: Tested at -90°F 6001J.00lat.d-13.471b Tiire.t 6.IJS!ll!I 5000.00 3000.00 20CO.llO 1llOO.OO ..... ...,_,,.._.J:.>.J._..,._.,..._.,,.__.._..,_.......,......,.......,.......,......_...,....,,._...__.._..., a.co ,., WCAP-18092-NP 2.00 ::J.00 i--1(1115) EH22: Tested at -75°F .... S.00 6.00 May2016 Revision 1 SQD0.00 2000.VO GOOQ.OOloacM 65.97111 5000.00 1.00 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 EH16: Tested at -50°F "-" Tan&-t 8.11m:1 '*" Tllne-1(ms) EH23: Tested at -30°F 4.D<I .... B-26 6.00 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-27 6tl!I0.!19lc!l6-1 24.251)) Tme-1 e.11ms 5000.00 201JO.OO tlJOQ.00 ....... 0.00 1.00 2.00 5000.00 2000.llO WCAP-18092-NP 3.00 rme-1(ms} EH19: Tested at 5°F Tl'l!0-1 G.11ms EH17: Tested at 50°F 4.CIO 500 6.00 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 B-28 60110.00 l.cM-1 '211.9'41b snoo.oo 40.00 ! 3000.0D 21lOU.OO 1000.00 ...... ..,,_,, ...... ...._..,.___,,...._ ............ __ ..... 0.00 1.00 eaca.ao Lood-1 21.82 lb saao.oo """*" WCAP-18092-NP 200 3.00 Tirne-!(lllS] EH21: Tested at 72°F Tmi-1 6.05m:J EH20: Tested at 100°F 4.00 5.00 6.00 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 5000.0Q <1000.00 B j 2GQO.OO 1.00 GOOO.OOload-10.00lb sooo.ao 4000.00 B 3.00 nrm.1 (ms} EH29: Tested at 125°F Tme-1 -0.43111S 4.00 5.00 6.00 j 3000.DO 20aODD 1coa.ao ODO 1.00 2.00 :1.00 4.00 S.00 6.00 TaM-1(ms) EH28: Tested at 183°F B-29 WCAP-18092-NP May2016 Revision 1 sooo.oa 1.00 eooo.oololld-1

  • 1.83111 5000.00 .-000.00 s ] .uioa.oo -*" 1000,0ll WCAP-18092-NP Westinghouse Non-Proprietary Class 3 2.00 3.00 (1115) EH30: Tested at 210°F "Jm&..t B.IDirL'I EH26: Tested at 220°F 4.00 500 5.00 B-30 6.00 6.00 May2016 Revision 1 aooo.oo\.aa6.1 o.noll) SOOD.GO -'000.00 B i !000..00 .!l 2000.00 10110.00 a.co 0.00 1.00 Gt!OO.OOLoad-152.241)

SQ00.00 4000.00 j 3.000.00 2ml0.DO 1000.GO ... , WCAP-18092-NP Westinghouse Non-Proprietary Class 3 llmo-1 e.07ms 200 3.00 4.00 rane-1 (ms} EH18: Tested at 220°F TllTl(l-16.0811'13

rn 3.00 4.00 Time-1{1M)

EH27: Tested at 250°F 5.00 5.00 B-31 t.00 aoo May2016 Revision 1 APPENDIXC Westinghouse Non-Proprietary Class 3 CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING l\'IETHOD C.1 METHODOLOGY C-1 Contained in Table C-1 are the upper-shelf energy (USE) values that are used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 6.02. The definition for USE is given in ASTM E185-82 [Ref. C-1], Section 4.18, and reads as follows: "upper shelf energy level -the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy." Westinghouse reports the average of all Charpy data (2: 95% shear) as the USE, excluding any values that are deemed outliers using engineering judgment. Hence, the Capsule V USE values reported in Table C-1 were deterinined by applying this methodology to the Charpy data tabulated in Tables 5-1 through 5-4 of this report. USE values documented in Table C-1 for the uni.rfadiated material, as well as Capsules U, X, and W, were also determined by applying the methodology described above to the Charpy impact data reported in WCAP-9807 [Ref. C-2], WCAP-12685 [Ref. C-3], WCAP-14241 [Ref. C-4], and WCAP-15316, Revision 1 [Ref. C-5]. The USE values reported in Table C-1 were used in generation of the Charpy V-notch curves. The lower-shelf energy values were fixed at 2.2 ft-lb for all cases. The lower-shelf lateral expansion values were fixed at 1.0 mil in order to be consistent with the previous capsule analysis [Ref. C-5]. TableC-1 Upper-Shelf Energy Values (ft-lb) Fixed in CV GRAPH Capsule Material Unirradiated u x w v (ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs) Lower Shell Forging [49D867/49C813]-1-1 166 168 166 160 163 Orientation) Lower Shell Forging [49D867/49C813]-l-l 152 137 142 144 126 (Axial Orientation) Surveillance Weld Metal 69 70 68 62 70 meat # 442011) Heat-Affected Zone (HAZ) 128 112 130 93 125 Material CVGRAPH, Version 6.02 plots of all surveillance data are provided in this appendix, on the pages following the reference list. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-2 C.2 REFERENCES C-1 ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706(IF), ASTM, 1982. C-2 Westinghouse Report WCAP-9807, Revision 0, Commonwealth Edison Company Braidwood Station Unit No. 1 Reactor Vessel Radiation Surveillance Program, February 1981. C-3 Westinghouse Report WCAP-12685, Revision 0, Analysis of Capsule U from the Commonwealth Edison Company Braidwood Unit I Reactor Vessel Radiation Surveillance Program, August 1990. C-4 Westinghouse Report WCAP-14241, Revision 0, Analysis of Capsule Xfrom the Commonwealth Edison Company Braidwood Unit I Reactor Vessel Radiation Surveillance Program, March 1995. C-5 Westinghouse Report WCAP-15316, Revision 1, Analysis of Capsule W from Commonwealth Edison Company Braidwood Unit I Reactor Vessel Radiation Surveillance Program, December 1999. WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C.3 CVGRAPH VERSION 6.02 INDIVIDUAL PLOTS BRAIDWOOD UNIT 1 UNIRRADIA TED (TANGENTIAL) CVGraph 6.02: Hypcrllolic Tangent Curve Primed on 10/1612015 10:01 AM A= 8.UO B =.81.90 C = 99.17 TO= 2.81 D = 0.00 Corrclatio1i Coeffident = 0.961 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf Energy = 166.00 (Fixed) Lower Sl1elfEncrgy = 2.20 (Fixed) Temp;f!1.JO It-lbs=-75.90° F Tcmp@35 It-lbs=-65.80° F Te1nprg;50 ft-lbs=-41.10° F Plant: Braidwood t Orientation: Tangential Ma!erial: SA508CL3 Capsule: :UNIRR Heat (49D867/49C813)-1-l ,-. rl.l .c -I ¢: -i.. = z > u 180 <) -* .-.--t---1'"----r----t 160 ---4---140 l ******* ......... . 120 , ..... 100 ********** ,-.. CI ' 'o 9 --**:******** -*'*:*****-- 80 200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 10/1612015 Page 112 C-3 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-4 Plant: Braidwood 1 Orientation: Tangential Material: SA508CLJ Capsule: UNIRR Heat: f49D867/49C813J-1-1 BRAIDWOOD UNIT 1 UNIRRADIATED (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential -200 2.5 4.9 -2.40 -150 6.0 9.4 -3.39 -100 17.0 20.5 -3.50 -100 26.0 20.5 5.50 -50 16.5 442 -27.69 -50 35.0 44.2 -9.19 -30 30.5 58.0 -27.45 -30 73.5 58.0 15.55 -30 93.0 58.0 35.05 -10 80.0 73.6 6.42 -* -JO 97.0 73.6 23.42 -* 40 94.5 113.5 -18.95 40 I lO.O 113.5 -3.45 70 120.0 132.4 -12.41 150 165.0 158.0 7.01 150 167.0 158.0 9.01 150 173.0 158.0 15.01 210 160.0 163.5 -3.53 CVGraph 6.02 1011612015 WCAP-18092-NP Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIATED (TANGENTIAL) CVGrap116.02: Hypeibolic Tangent Cu"*e Prinled on 10/16/2015 10:02 AM A = 45. 73 B = 44.73 C = 56.40 TO = -23.80 D = 0.00 Correlalion Coefficient= 0.951 Equation is A+ B * [Tanh((T-TO)/(C+DT))] Upper S1JC!fL.E. = 90.46 Lower ShelfL.E. = LOO (Fixed) Temp@iJ5 mils=-3750°F C-5 Plant: Braidwood 1 Orientation; Tangential Material: SA508CL3 Capsule: UNIRR Heat: [49D867/49C813]-1-1 100 ...... 90 f-' 80 ...... -Cl.l 70 -.... e ._, c 60 Q .... Cl.l .... -. c = 50 -40 = :i. .... .... 30 = >---20 .... 10 ..... 0 -300 CVGraph 6.02 WCAP-18092-NP . _*,, ... ,, .. ****/d* . .. : __ o __ /__ t'I **-.o1---*

  • j -: **-.. * /-... *""""'" .. *l* -200 I * . 0 -100 I 0 100 200 300 Temperature

{° F) 10/16/2015 400 500 600 Page 112 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-6 Plant: Braidwood 1 Material: SA508CL3 Heat: f49D867/49C813]-l-l Orientation: Tangential Capsule: UMRR BRAIDWOOD UNIT 1 UNIRRADIATED (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) InputlhE. Computed L. E. -200 0.0 1.2 -150 0.0 2.0 -100 11.5 6.6 -100 15.0 6.6 -50 7.0 26.3 -50 20.0 26.3 -30 18.0 40.8 -30 54.0 40.8 -30 68.0 40.8 -10 57.0 56.5 -10 61.0 56.5 40 79.0 82.0 40 74.0 82.0 70 83.0 87.4 150 93.0 90.3 150 95.0 90.3 150 94.0 90.3 210 89.0 90.4 CVGraph 6.02 10/16/2015 WCAP-18092-NP Differential -l.17 -2.01 4.88 8.38 -19.33 -6.33 -22.83 13.17 27.17 0.54 4.54 -3.02 -8.02 -4.36 2.73 4.73 3.73 -1.44 -Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIA TED (TANGENTIAL) CVGrapl16.02: Hypedlolic Tangent Cul'Ve Printed on I0/16/2015 10:03 AM A = 50.00 B = 50.00 C = 94.17 TO = 19.92 D = 0.00 Correlation Coefficient= 0.986 Equation is A+ B * (Tanh((f-TO)/(C+D1))) Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf 'JI.Shear= 0,00 (Fixed) Temperature at 50% Shear= 20.00 C-7 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule: UNIRR Heat: (49D867/49C813)-1-1 100 -.. 90 .... 80 .. 70 ... -= 60 ..c 00 ;..i 50 s: (j Po-.*. -40 ... 30 .. 20 ,__ 10 0 -300 -200 CVGraph 6.02 WCAP-18092-NP -100 -. ;,_ I *--I 0 100 200 300 Temperature {° F) 10/16/2015 . I . i 400 500 ' 600 Page 112 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-8 Plant: Braidwood 1 Material: SA508CL3 Heat: [49D867/49C813)-1-1 Orientation: Tangential Capsule: UNIRR BRAIDWOOD UNIT 1 UNIRRADIATED (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential -200 9.0 0.9 8.01 -150 9.0 2.6 6.36 -100 14.0 7.3 6.74 -100 14.0 7.3 6.74 -50 14.0 18.5 -4.47 -50 14.0 18.5 -4.47 -30 20.0 25.7 -5.73 -30 27.0 25.7 1.27 -30 33.0 25.7 7.27 -10 29.0 34.6 -5.63 -10 40.0 34.6 5.37 40 68.0 60.5 7.50 40 51.0 60.5 -9.50 70 70.0 74.3 -4.34 150 100.0 94.1 5.94 150 100.0 94.1 5.94 150 100.0 94.l 5.94 210 100.0 98.3 1.73 CVGraph 6.02 10/16/2015 WCAP-18092-NP Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIATED (AXIAL) CVGraph 6.02: Hypelbolic Tangent Cul'\'e Printed oiil0/16/201.5 10:04 AM A= 77.10 B= 74.90 C'=88.62 TO =t7.75D =0.00 Correla lion Coefficient=

0. 974 Equation is A + B * [Tanh((f-TO)/(C

+DT))] Upper Sheif Energy = 152.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed) Temp@30 ft-lbs=-47.70° F Temp@i35 ft-lbs=-38.60° F Temp@50 ft-lbs=-15.80° F C-9 Plant: Braidwood I Material: SA508CL3 Capsule: UNIRR Heat: (49D867/49C813]-1*1 Orientation: Axial 160 I--' , ' 140 ..__, 120 ,,-... 1:1.l ..... ' ,.Q too -I 4: -..... 80 -= fi;l;l ...... ...... , '° u ..... 40 ,__ 20 -200 -100 CVGr.1ph 6.02 WCAP-18092-NP or . a '" 0 100 200 300 Temperature {° F) 10/16/2015 400 500 600 Page 112 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-10 Plant: Braidwood 1 Orientation: A.xial Material: SA508CL3 Capsule: UNIRR Heat: I49D867/49C813]-1-1 BRAIDWOOD UNIT 1 UNIRRADIATED (AXIAL) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential -150 3.0 5.5 -2.52 -100 7.0 12.0 -5.02 -30 38.5 40.2 -1.74 -30 36.5 40.2 -3.74 -25 42.5 43.5 -1.03 -25 56.0 43.5 12.47 0 41.0 62.3 -21.30 0 70.0 62.3 7.70 0 71.5 62.3 9.20 40 79.5 95.5 -16.02 40 92.S 95.5 -3.02 40 123.0 95.5 27.48 70 110.0 116.8 -6.77 100 118.0 131.8 -13.76 150 150.0 144.8 5.21 150 153.0 144.8 8.21 150 153.0 144.8 8.21 210 152.0 150.l 1.93 CVGraph 6.02 10/1612015 WCAP-18092-NP Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIATED (AXIAL) CVGrnph 6.02: HypeJbolic Tangerit Curve Printed on l0/16/2015 IO: 18 AM A= 45.03 B = 44.03 C = 86.42 TO = 5.53 D = 0.00 Correlation Coefficient= 0.981 Equation is A + B * (Tanh((T-TO)/(C+D1))) Upper ShelfL.E. = 89.06 Lower ShelfL.E. = LOO (Fixed) Temp@35 rnils=-14.50° F C-11 Plant: Braidwood 1 Orientation: Axial Material: SA508CL3 Capsule: UNIRR Heat: (49D867/49C813]-1-1 90 80 -fl} 70 = -s ..._ 60 = Q ... " ... fl} = 50 = c. ;i.i'l 40 -= i..c 30 ..... = -*** 20 CVGntph 6.02 WCAP-18092-NP -v--(/o** , .... , ... -200 -100 0 100 200 300 Temperature {° F) 10/16/2015 400 500 600 Page 112 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-12 Plant: Braidwood 1 Material: SA508CL3 Heat: [49D867/49C813]-l-l Orientation: Axial U.NiRR BRAIDWOOD UNIT 1 UNIRRADIATED (AXIAL) Temperature (0 F) -150 -100 30 25 0 0 f---* 0 40 ----40 -----40 70 100 150 150 150 210 CVGraph 6.02 WCAP-18092-NP Charpy V-Notch Data Input L. .E. Computed L. E. 0.0 3 ., . .;) 4.0 8.0 27.0 27.9 25.0 27.9 30.0 30.1 35.0 30.1 27.0 42.2 50.0 42.2 52.0 42.2 57.0 61.7 66.0 61.7 63.0 61.7 71.0 72.9 74.0 80.2 87.0 86.1 87.0 86.1 90.0 86.1 88.0 88.3 10/1612015 Differential -3.34 -4.05 -0.88 -2.88 -0.09 4.91 -15.22 7.78 9.78 -4.71 4.29 1.29 -1.89 -6.16 0.95 0.95 3.95 -0.29 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-13 BRAIDWOOD UNIT 1 UNIRRADIATED (AXIAL) Plant: Braidwood 1 Orientation: A11:ial 100 90 80 70 -= 60 ..c ..... 00 ......,, 50 = lo-., ...... : (.J -40 ... 30 ...... 20 ... ' 10 ... 0 ; -300 CVGraph 6.02 WCAP-18092-NP CVGrapl16.02: Hypelbolic Tangerit Curve Printed on I0/16/2015 10:19 AM A = 50.00 B = 50.00 C = 75.81 TO = 40.59 D = 0.00 Correlation Coefficient = 0.986 Equation is A+ B * [Tanh((T-TO)/{C+D'l))) UpperShelf%Sbear=; 100.00 (Fixed) Lower Shelf o/..Sbear = 0.00 (Fixed) Temperature al 50% Sl1ear = 40.60 Material: SA508CL3 Capsule: UNIRR Heat: [49D867f;,9C813]-1-1 -.... . -I ' .. --: j l .:, ,_ ,-:, ' ' ' ' ; -: -, .. ' . J I I -200 -100 0 100 200 300 Temperature {° F) 10/16/2015 '* -..... ; I 400 500 I 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-14 Plant: Braidwood 1 Orientation: A.xi al Material: SA508CL3 Capsule: UNIRR Heat: f49D867/49C813)-1-1 BRAIDWOOD UNIT 1 UNIRRADIATED (AXIAL) Charpy V-N otch Data Temperature (0 F) Input %Shear Computed %Shear Differential -150 0.(1 0.7 -0.65 -100 0.0 2.4 -2.39 -30 13.0 13.4 -0.44 -30 14.0 13.4 0.56 -25 9.0 15.1 -6.05 -25 30.0 15.1 14.95 0 23.0 25.5 -2.52 0 25.0 25.5 -0.52 0 27.0 25.5 1.48 40 40.0 49.6 -9.61 40 43.0 49.6 -6.61 40 62.0 49.6 12.39 70 68.0 68.5 -0.48 100 79.0 82.7 -3.74 150 100.0 94.7 5.28 150 100.0 94.7 5.28 150 100.0 94.7 5.28 2!0 100.0 98.9 l.13 CVGraph 6.02 I0/16/2015 WCAP-18092-NP Page 2/2 May2016 Revision 1 -1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIA TED (WELD) CVGraph 6.02: Hypeibolic Tangent Cuive Printed on lll/16/2015 lll:33 AM A= 35.60 B = 33.40 C = 81.35 TO = -12.38 D = 0.00 Correlation Coefficient= 0.989 Equation is A+ B * (Tanh((f-TO)/(C+D1))) Upper ShelfEnergy = 69.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed) C-15 Temp@J30 fi-lbs=-26.10° F Temp@35 ft-lbs=-13.80° F Temp@.50 ft-lbs= 25.20° F Plant Br.Udwood 1 Orientation: N/A -. 50 -* 40 -.. ,. 30 -. 20 CVGniph 6.02 WCAP-18092-NP c .... ) -200 -100 Material: WELD Capsule: UNIRR . "'"**::*** 0 100 200 300 Temperature {° F) 10/1612015 400 Hcat:442011 500 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-16 Plant: Braidwood 1 Orientation: NIA Material: WEID Capsule: UNIRR Heat: 442011 BRAIDWOOD UNIT 1 UNIRRADIATED (WELD) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential -100 3.0 9.1 -6.14 -100 5.5 9.1 -3.64 -50 24.5 21.2 3.33 -50 26.0 21.2 4.83 -10 38.5 36.6 1.92 . 0 40.0 40.6 -0.65 0 41.0 40.6 0.35 25 425 50.0 -7.45 50 55.0 57.1 -2.15 50 57.0 57.l -0.15 ---* 70 63.5 61.2 2.29 70 65.5 61.2 4.29 150 66.0 67.8 -1.79 150 70.0 67.8 2.21 210 67.0 68.7 -1.72 210 68.0 68.7 -0.72 210 71.0 68.7 2.28 210 72.0 68.7 3.28 CVGraph 6.02 10/16/2015 WCAP-18092-NP Page 2/2 May2016 Revision 1 Westinghoilse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIA TED (WELD) Plaut: Braidwood 1 Orientation: NIA -................. . ... . -200 CVGmph6.02 WCAP-18092-NP CVGraplJ 6.02: l:lype!bolic Tangent Curve Printed on I0/16/2015 10:34 AM A= 32.45 B = JUS C = 85.38 TO = 2.63 D = 0.00 Conelation Coefficient= 0.983 Equation is A+ B * [Tan!J((l"-TO)/(C+D1))] Upper ShelfL.E. = 63.91 Lower ShelfL.E =LOO (Fi.xed) -100 Temp@35 mils= 9.60° F Material: WELD Capsule: UNIRR .; .. 0 .. ... ,... 0 100 200 300 Temperature {° F) 10/1612015 400 C-17 Hcat:-142011 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 JvJaterial: "'EID Capsule: UNIRR BRAIDWOOD UNIT 1 UNIRRADIATED (WELD) Charpy V-Notch Data C-18 Heat: 442011 Temperature (0 .F) InputL.E. Computed L E. Differential -100 0.0 -100 1.0 -50 19.0 -50 18.0 -10 27.0 0 32.5 0 37.0 25 35.5 50 45.0 50 41.5 I-* 70 57.0 70 59.0 150 61.0 150 62.0 210 61.0 210 64.0 210 67.0 210 62.0 CVGraph 6.02 WCAP-18092-NP 6.2 6.2 15.2 15.2 27.8 31.5 31.5 40.5 48.3 48.3 ,_____. 53.l 53.l 62.0 62.0 63.4 63.4 63.4 63.4 10/1612015 -6.21 -5.21 3.80 2.80 -0.84 1.01 5.51 -5.01 -3.31 -6.81 3.85 5.85 -0.98 0.02 -2.42 0.58 3.58 -1.42 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIATED (WELD) Plant: Braidwood 1 Orientation: N/A 100 I-... 90 .... . : 80 ... ... 70 ;.. = 60 .c .... 00 .... 50 = ... CJ .;.. 40 .... 30 .... 20 10 0 -300 CVGmph6.02 WCAP-18092-NP CVGrapl! 6.02: Hypelbolic Tangerit Curve Prii1ted on I0/16/2015 10:34 AM A= 50.00 B = 50.00 C = 73.64 TO= 2.17 D = 0.00 Correlation Coefficient= 0.988 Equation is A+ B * [Tanh((f-TO)/(C+Dn>J Upper Shelf%Shcar= 100.00 (Fixed) Lower Shclf'YoShear= 0.00 (Fixed) ... /* -200 -100 Temperature at 50% Shear= 2.20 0 Material: WELD Capsule: UNIRR ;; ... ; /l. *9**** i 0 100 200 300 Temperature {° F) 10/16/2015 J . I 400 C-19 Heat: 442011 500 600 Page 112 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 :Material: WEID Capsule: UNIRR BRAIDWOOD UNIT 1 UNIRRADIATED (WELD) Charpy V-N otch Data C-20 Heat: 442011 Temperature (0 F) Input %Shear Computed %Shear Differential -100 0.0 -100 5.0 -50 25.0 -50 23.0 -10 43.0 0 51.0 0 48.0 25 52.0 50 73.0 50 77.0 70 92.0 ---70 100.0 150 100.0 150 100.0 210 100.0 210 100.0 210 100.0 210 100.0 CVGraph 6.02 WCAP-18092-NP 5.9 5.9 19.5 19.5 41.8 48.5 48.5 65.0 78.6 78.6 86.3 86.3 98.2 98.2 99.6 99.6 99.6 99.6 10/16/2015 -5.87 -0.87 5.49 3.49 1.19 2.47 -0.53 -13.02 -5.57 -1.57 5.68 13.68 l.77 l.77 0.35 0.35 0.35 0.35 Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) CVGrapli 6.02: Hyperbolic Tangent Cwve Printed on 1l/5/2015l1:04 AM A= 65.10 B = 62.90 C = 262.90 TO= -71.39 D = 0.00 Correlalion Coefficient= 0.785 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf Energy = 128.00 (FLxed) Lower ShelfEnergy = 2.20 (Fixed) Tcmp:'g!30 ft-lbs=-237.00° F Temp@.35 ft-lbs=-20.8.30° F Temp'.@50 ft-lbs=-l35.70°F Plant: Braidwood 1 Orientation: N/ A Material: SA508CL3 Capsule: UNIRR Heat: [49D867/49C813}-1-1 140 -------------------------------------------------------- 0 0 .... C) 0 ............ ............ ............ ............ ........... ....... __. -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrnpb6.02 11/05/2015 Page 1/2 C-21 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 :Material: SA508CL3 Capsule: UNIRR C-22 Heat: [49D867/49C813]-1-1 BRAIDWOOD UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) Input CVN -200 4.0 -175 24.0 -175 43.0 -150 47.0 -150 88.0 -100 49.0 -100 80.0 -50 55.0 -50 81.0 20 82.0 20 83.0 70 118.0 70 77.0 ]JO 82.0 110 134.5 210 72.0 210 121.0 250 134.0 CVGraph 6.02 11105/2015 WCM-18092-NP Computed CVN 36.6 41.5 41.5 46.8 46.8 58.3 58.3 70.2 70.2 86.l 86.l 96.0 96.0 102.7 102.7 114.8 114.8 118.0 Differential -32.57 -17.52 1.48 0.17 41.17 -9.28 21.72 -15.21 10.79 -4.13 -3.13 21.99 -19.01 -20.71 31.79 -42.77 6.23 16.04 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIA TED (HEAT-AFFECTED ZONE) Plant: Braidwood 1 Orientation: NIA 10 / 0 CVGrapl16.02: Hypetbolic Tangerit Curve Printed on 10/16/2015 10:22 AM A= 35.26B=34.26C=163.94 TO= -81.02 D = 0.00 Correlation Coefficient= 0.908 Equation is A+ B * (Tanh((f-TO)/(C+Dn)J Upper ShelfL.E. = 69.52 Lower ShelfL.E. = LOO (Fixed) Temp@35 mils=-8220° F Material: SA5Q8CL3 Capsule: UNIRR *O** Heat: (49D861/49C813J-1-1 I I I I I : I 0 ...... -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGmph6.02 10/16/2015 Page 1/2 C-23 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: UNIRR C-24 Heat: [49D867/49C813)-1-1 BRAIDWOOD UNIT 1 UNIRRADIA TED (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) InputL.E. -201) 2.0 -175 8.0 -175 15.0 -150 25.0 -150 43.0 -100 25.0 -100 39.0 -50 31.0 -50 49.0 20 50.0 >---** 20 51.0 70 7l.O 70 52.0 110 55.5 110 75.0 210 58.0 210 73.5 250 71.0 CVGraph 6.02 10/16/2015 WCAP-18092-NP Computed L. E. 14.0 17.5 17.5 21.6 21.6 31.3 31.3 41.7 41.7 54.1 54.1 60.2 60.2 63.4 63.4 67.6 67.6 68.3 Dimrential -12.00 -9.52 -2.52 3.36 21.36 -6.31 7.69 -10.67 7.33 -4.05 -3.05 10.85 -8.15 -7.95 11.55 -9.61 5.89 2.66 Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UNIRRADIA TED (HEAT-AFFECTED ZONE) CVGrapl16.02: _Hypelbolic Tangent Curve Printed on 10/16/2015 10:23 AM A = 50.00 B = 50.00 C = 131.27 TO = -7.92 D = 0.00 Correlation Coefficient= 0.965 Equation is A +B * (Tanh((T-TO)/(C+D1))] UpperShelf%Shear= 100.00 (FLxed) Lower Shelfo/.Shear= 0.00 (Fixed) Temperature at 50% Shear= -7.90 Plant: Braidwood 1 Orientation: N/A Material: SA508CL3 Capsule: UNIRR Heat: (49D867/49C813]-1-1 ... .. ...... __ -_,-.-,_. 90 ,?: 60 .. -----I-""-!--'" ---!----l--- .... ---1 ... , .... ; --/_ so j .... ----....... -t---. -,----;---,--; _ !? __ ,_ ... 20" :vo 10 * "i --300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGn1ph 6.02 10/16/2015 Page 1/2 C-25 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-26 Plant: Braidwood 1 Material: SA508CL3 Heat: £49D867/49C813J-l-1 Orientation: NIA Capsule: UNIRR BRAIDWOOD UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) Temperature (0 F) -200 -175 -175 -150 -150 -100 -100 50 20 20 70 70 110 110 210 210 250 CVGraph 6.02 WCAP-18092-NP Charpy V-Notch Data Input %Shear Computed %Shear 0.0 5.1 0.0 7.3 0.0 7.3 10.0 10.3 36.0 10.3 23.0 19.7 27.0 19.7 27.0 34.5 36.0 34.S 48.0 60.5 50.0 60.5 74.0 76.6 98.0 76.6 84.0 85.8 91.0 85.8 100.0 96.5 100.0 96.5 100.0 98.l 10/16/2015 Differential -5.09 -7.27 -7.27 -0.30 25.70 3.26 7.26 -7.50 1.50 -12.48 -10.48 -2.62 21.38 -1.77 5.23 3.49 3.49 1.93 Page2/2 May2016 Revision 1


Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (TANGENTIAL)

CVGrapli 6.02: HypeJbolic Tangent Curve Printed on I0/16/2015 10:27 AM A= 85.10 B = 82.90 C = 88.14 TO= 0.30 D = 0.00 Correlalion Coefficient= 0.964 Equation is A+ B * (Tanh((I-TO)/(C+DT))] Upper Shelf Energy = 168.00 (Fixed) Lower ShelfEne1gy = 2.20 (Fixed) Temp@JO F Temp@35ft-lbs=-<i1.30° F Temp@50 ft-lbs=-39.50° F C-27 Plant: Braidwood 1 Orientation: Tangential Ma1crial: SA508CL3 Capsule:U Heat: (49D867/49C813)-l-1 180 .... 160 ... 140 ... ,,-.. l'l.l 120 ,Q "'i' -100 a.. s: 80 r.rol -.. 60 u t-*** 40 ..... 20 CVGr.iph 6.02 WCAP-18092-NP .. l. . .. **********I -200 -100 0 100 200 300 Temperature {° F) 10/l6/201J 400 500 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-28 Plant: Braidwood 1 Orientation: Tangential 11.1aterial: SAS08CL3 Capsule: tJ Heat: f49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE U (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential -150 12.0 7.5 4.50 -100 23.0 17.6 5.36 -85 18.0 23.1 -5.11 -50 11.0 42.3 -31.33 0 79.0 84.8 -5.81 0 116.0 84.8 31.19 25 130.0 107.7 22.26 50 113.0 127.4 -14.44 50 124.0 127.4 -3.44 100 122.0 152.4 -30.36 150 162.0 162.6 -0.63 150 163.0 162.6 0.37 200 171.0 166.2 4.77 200 172.0 166.2 5.77 250 174.0 167.4 6.57 CVGraph 6.02 1011612015 WCAP-18092-NP Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (TANGENTIAL) CVGraph 6.02: Hypelbolic Tangent Curve Printed on 10/16/2015 10:27 AM A = 43.36 B = 42.36 C = 75. 79 TO = -21.39 D = 0.00 Correlation Coefficient= 0.965 Equation is A+ B * (Tanh((T-TO)/(C+Dn>J Upper Shelf L.E. = 85.71 Lower Shelf LE.= 1.00 (Fi-.,;ed) Temp'.{!!35 mils=-36.50° F C-29 Plaut: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule:U Heat: (49D867/.t9C813)-1-1 90 80 -.,.. *,** ,.-_ fl.I 70 = s -60 = = ,, . ., .... fl.I = 50 = r;i;;l 40 -= .. 30 = 20 i-, .. , 10 ... 0 -300 CVGraph 6.02 WCAP-18092-NP . I 0. ' : -/ .,7_*_** ,. . 8 n ..... y_-. i . -200 -100 0 100 200 300 Temperature {° F) 10n6/2015



. . 400 500 . 600 Page 112 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-30 Plant: Braidwood 1 Orientation:

Tangential Material: SA508CL3 Capsule:U Heat: [49D867/49C813]-l-l BRAIDWOOD UNIT 1 CAPSULE U (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential -150 10.0 3.8 6.25 -100 16.0 10.5 5.55 -85 20.0 14.3 5.68 -50 9.0 28.l -19.08 0 55.0 55.0 0.00 0 68.0 55.0 13.00 25 73.0 66.5 6.54 50 67.0 74.5 -7.53 50 72.0 74.5 -2.53 100 71.0 82.4 -11.40 150 87.0 84.8 2.20 150 89.0 84.8 4.20 200 87.0 85.5 1.53 200 88.0 85.5 2.53 250 86.0 85.6 0.35 CVGraph 6.02 10/16/2015 WCAP-18092-NP Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (TANGENTIAL) CVGraph 6.02: Hyperllolic Tangent Cnt\;e Primed on I0/16/2015 10:28 AM A = 50.00 B = 50.0.0 C = 71.61 TO= -8.87 D = 0.00 Correlation Coefficient= 0.981 Equation is A+ B * [Tanh((f-TO)/(C+DT))] UpperShelf%Shcar= 100.00 (Fixed) Lower Shelf o/.Sbear = 0.00 (Fixed) Temperature at 50% Shear= -8.80 C-31 Plant: Braidwood l Orientation: Tangential Material: SA508CL3 Capsule:U Heat: (49D867/49C813]-1-1 100 90 80 70 -60 ..c 00 ...., 50 = u loo 40 30 20 10 0 ; -300 -200 -100 CVGraph 6.02 WCAP-18092-NP

* * * * --. *I **-
-.I I I 0 100 200 300 Temperature

{° F) 10/16/2015 I i 400 500 ; 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-32 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule: U Heat: [49D867/49C813]-l-l BRAIDWOOD UNIT 1 CAPSULE U (TANGENTIAL) Charpy V-Notch Data Temperature C° F) Input %Shear Computed %Shear Differential -150 10.0 1.9 8.10 -100 15.0 7.3 7.72 -85 15.0 10.7 4.34 -50 10.0 24.l -14.07 0 50.0 56.2 -6.16 0 65.0 56.2 8.84 25 80.0 72.0 7.97 50 75.0 83.8 -8.81 50 90.0 83.8 6.19 100 85.0 95.4 -10.44 150 100.0 98.8 1.17 150 100.0 98.8 J.17 200 100.0 99.7 0.29 200 100.0 99.7 0.29 250 100.0 99.9 0.07 CVGraph 6.02 J0/16/2015 WCAP-18092-NP


Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (AXIAL) CVGraph 6.02: Hypelbolic Tangent Cu"'e Printed on I0/16/2015 10:29 AM A= 69.60B=67.40C=100.46 TO=' 4.14 D = 0.00 Correlation Coefficient=

0.980 Equation is A+ B * [Tanh((I'-TO)/(C+D1))] Upper ShelfEnergy = 137.00 (Fixed) Lower Shelf Energy= 2.20 (Fi'l:ed) C-33 Temp@.30 ft-lbs=-63.50° F Temp@35 ft-lbs=-52.80° F Temp@}O ft-lbs=-25. 90° F Plant: Braidwood 1 Orientation: Axial :tvlaterial: SA508CL3 Capsnle: U Heat: (49D867/49C813]-1-1 160 -------------.------..-------------------..------------------.-. 60 1--*' 40 I-"" 20 -200 CVGraph 6.02 WCAP-18092-NP ni -100 0 100 200 300 Temperature {° F) 10/16/2015 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: Axial Westinghouse Non-Proprietary Class 3 Material: SA508CLJ Capsule: U Heat: [49D867/49C813)-1-l BRAIDWOOD UNIT 1 CAPSULE U (AXIAL) Charpy V-Notch Data C-34 Temperature (0 F) Input CVN Computed CVN Differential -80 19.0 -80 42.0 -50 24.0 -50 34.0 -20 50.0 0 75.0 50 98.0 50 102.0 100 104.0 150 135.0 150 142.0 --200 136.0 225 136.0 CVGraph 6.02 J0/1612015 WCAP-18092-NP 23.5 23.5 36.4 36.4 53.7 66.8 98.4 98.4 119.6 130.0 130.0 134.3 135.4 -4.46 18.54 -12.43 -2.43 -3.71 8.18 -0.40 3.60 -15.59 5.00 12.00 l.68 0.64 Page 2/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: Axial Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (AXIAL) CVGraph 6.02: Hypelbolic Tangent Curve Printed, on I0/16/2015 10:29 AM A=42.11 B=41.11C=101.02 T0=-7.34D=O.OO Correlation Coefficient= 0.973 Equation is A+ B * (Tanh((f-TO)/(C+D'I))) Upper Sl1clfL.E. = 83.23 Lower ShelfL.E. = 1.00 (Fixed) Temp@35 mils=-24.90° F Material: SA508CL3 Capsule:U Heat: (49D867/49C813]-1-1 . . ' . . ... 0 ., CL)-* *_.* 80

) . 0 70 ---.. ..

.. ! 60 50 .. c I = 1--*** a-xlo* 30 20 10 . 0 -300 -200 -100 CVGmpl16.02 ' . . . 0 100 200 300 Temperature {° F) 10/16/2015 400 500 600 Page 1/2 C-35 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: Axial Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:U Heat [49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE U (AXIAL) Charpy V-Notch Data C-36 Temperature (0 F) Input L.E. Computed L. E. Differential -80 13.0 -80 27.0 -50 15.0 -50 31.0 -20 32.0 0 51.0 50 63.0 50 64.0 100 69.0 150 84.0 150 84.0 200 85.0 225 75.0 CVGrnph 6.02 10/16/2015 WCAP-18092-NP 16.8 16.8 25.7 25.7 37.0 45.1 63.2 63.2 74.5 79.7 79.7 81.9 82.4 -3.77 10.23 -10.72 5.28 -4.99 5.90 -0.23 0.77 -5.46 4.27 4.27 3.11 -7.41 Page2/2 May2016 Revision 1 Plant: Braidwood l Orientation: A'\;ial 100 90 80 70 .. , .. -= 60 ..c ...... 00. 50 = .... tJ -40 I-30 .... 20 .... 10 0 -300 CVGraph 6.02 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (AXIAL) CV Graph 6.02: Hypeibolic Tailgerit Cnive Printed on I 0/16/2015 10:30 AM A= 50.00 B = 50.00 C = .85. 76 TO = 4.29 D = 0.00 Correlation Coefficient= 0.989 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf %Shear= 100.00 (Fixed) Lower Shclfo/oShear = 0.00 (Fixed) Temperatnrc at 50% Shear= 4.30 C-37 Material: SA508CL3 Capsule:U Heat: [49D867/49C813]-1-1 0¥0 -200 -100 */:** I k "i .. -0 100 200 300 Temperature {° F) 10/16/2015 ' 400 ' --; ; 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: A.xi al Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: U Heat: [49D867/49C813)-1-1 BRAIDWOOD UNIT 1 CAPSULE U (AXIAL) Charpy V-Notch Data C-38 Temperature (0 F) Input %Shear Computed %Shear Differential -80 15.0 -80 25.0 -50 20.0 -50 25.0 -20 25.0 0 45.0 50 75.0 50 80.0 100 90.0 150 100.0 150 100.0 -*--200 100.0 225 100.0 CVGraph 6.02 10/1612015 WCAP-18092-NP 12.3 12.3 22.0 22.0 36.2 47.5 74.4 74.4 90.3 96.8 96.8 99.0 99.4 2.71 12.71 -1.99 3.01 -11.21 -2.50 0.62 5.62 -0.31 3.24 3.24 1.03 0.58 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (WELD) CVGniph 6.02: Hyperllolic Tangerit Cun'e Printed on 10/16/2015 10:36 AM A= 36.10 B = 33.90 C = 64.29 TO= 2.97 D = 0.00 Correlation Coefficient = .0.970 Equation is A+ B * (Tanh((f-TO)/(C+D1))] Upper Shelf Energy= 70.00 (Fi.'i:ed) Lower ShelfEnergy = 2.20 (Fixed) C-39 Temp@JO ft-lbs= -8.70° F Temp'g;35 ft-lbs= 0.90° F Temp@50 3 Ul0° F Plant: Braidwood l Orientation: NIA 60 -fl.) ,.Q -50 I ¢:: .._, ........ >. t:lJl 40 1-oi = roi;1 .... 30 u .... 20 ... . , -. 10 ..... ... : /: 0 I .... ........... _ _. __ "."",. -300 ..;200 -100 CVGr.iph6.02 WCAP-18092-NP \.l I Material: WELD Capsule:U .. 8 0 100 200 300 Temperature {° F) 10/16/2015 400 Heat: 4.42011 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: WlUD Capsule: tr BRAIDWOOD UNIT 1 CAPSULE U (WELD) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN -55 16.0 11.8 -25 14.0 22.2 -10 28.0 29.4 -10 39.0 29.4 25 43.0 47.3 25 46.0 47.3 75 64.0 63.5 75 67.0 63.5 100 63.0 66.8 100 73.0 66.8 150 64.0 69.3 150 72.0 69.3 175 69.0 69.7 215 76.0 69.9 215 78.0 69.9 CVGraph 6.02 10/1612015 WCAP-18092-NP C-40 Heat: 442011 Differential 4.21 -8.22 -1.35 9.65 -4.28 -1.28 0.52 3.52 -3.84 6.16 -5.31 2.69 -0.68 6.09 8.09 Page212 May2016 Revision 1 Plant: -Braidwood 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (WELD) CVGraph 6.02: llypetbolic Tangent Curl'e Primed on 10/16/2015 10:36 AM A= 30.29 B = 29.29 C = 74.23 TO= 4. 71 D = 0.00 Correlation Coefficient= 0.974 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper ShelfL.E. = 59.57 Lower Shelf LE.= LOO (Fixed) Temp:@35 mils= 16.80° F Material: WELD Capsule:U Hcat:442011 70 ------------------------------------------------------...----- .... :o 0 = a ._ -* = 40 ' ****.***** ,} 10 r;)l

  • -{ -.. -300 -200 -100 0 100 200 300 400 500 600 Temperature

{° F) CVGr.1ph 6.02 10/16/2015 Page 1/2 C-41 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Iviatcrial: WEID Capsule: U BRAIDWOOD UNIT 1 CAPSULE U (WELD) Charpy V-Notch Data Temperature{° F) Input Ih .E. Computed L. E. -55 14.0 10.8 -25 13.0 19.2 -10 22.0 24.6 -10 31.0 24.6 25 35.0 38.l 25 40.0 38.1 75 52.0 51.9 75 55.0 51.9 100 51.0 55.4 100 59.0 55.4 150 51.0 58.4 --150 59.0 58.4 175 61.0 59.0 215 61.0 59.4 215 61.0 59.4 CVGraph 6.02 10/16/2015 WCAP-18092-NP C-42 Heat: 442011 Differential 3.23 -6.15 -2.56 6.44 -3.10 1.90 0.09 3.09 -4.40 3.60 -7.43 0.57 2.02 1.63 1.63 Page2/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: N/A 100 .. 90 , ... 80 ... 70 "" 0: 60 .c Cl) 50 = CJ .. 40 30 . 20 .... ... , ... 10 0 I Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (WELD) CVGrapl16.02: Hypelbolic Tangent Cmve Printed on 10/16/201510:37 AM A=S0.00 B=S0.011 C=43.89 TO =29.72D =0.00 Correlalion Coefficient= 0.988 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf%Shear= 100.00 (Fixed) Lower Slielf o/.Sliear = 0.00 (Fixed) . -.. Temperature at 50% Sl1ear= 29.80 Material: WELD Capsule:U . / . .. 0 ;. :. 0 -... . . '0, ... I . . -300 -200 -100 0 100 200 300 400 Temperature {° F) CVGraph 6.02 10/16/2015 WCAP-18092-NP C-43 Heat: 442011 500 600 Page 112 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: WEID Capsule:U BRAIDWOOD UNIT 1 CAPSULE U (WELD) Charpy V-Notch Data Temperature (OF) Input %Shear Computed %Shear -55 10.0 2.1 -25 15.0 7.6 -10 20.0 14.1 -10 25.0 14.l 25 35.0 44.6 25 35.0 44.6 75 95.0 88.7 75 100.0 .88.7 100 100.0 96.1 JOO 100.0 96.1 150 100.0 99.6 150 100.0 99.6 175 100.0 99.9 215 100.0 100.0 215 100.0 100.0 CVGraph 6.02 10/16/2015 WCAP-18092-NP C-44 Heat: 442011 Differential 7.94 7.37 5.93 10.93 -9.65 -9.65 6.27 11.27 3.91 3.91 0.41 0.41 0.13 0.02 0.02 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) CVGraph 6.02: Hypetbolic Tangerit Cun;e Printed on 10/16/2015 10:38 AM A= 57.10 B = 54.90 C = 14-t.90 TO= -7U3 D = 0.00 Correlation Coefficient= 0.765 Equation is A+ B * (Tanh((T-TO)/(C+D1))] Upper Shelf Energy = 112.00 (Fi.xed) Lower ShelfEnergy = 2.20 (Fixed) Temp@JO ft-lbs=-152. 70° F Tcmp@;.*5 F Tcmp@SO.ft-lbs=-93.20° F Plant: Braidwood 1 Orientation: NIA Material: SA508CL3 Capsule: U* Heat: (49D867/49C813]-1-1 6 120 0 0 *****:******. (),/ 80

              • f' 0 60

_? __ ;;** ,_. I-,_, .. 6 20 v 0 ............ -300 -200 -100 0 100 200 300 400 500 600 '(emperature {° F) CVGmph6.02 10/16/2015 Page 1/2 C-45 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: U C-46 Heat: [49D867/49C813]-l-1 BRAIDWOOD UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) Input CVN -150 23.0 -150 56.0 -100 26.0 -50 32.0 -50 85.0 0 78.0 0 144.0 50 72.0 50 72.0 100 102.0 JOO 116.0 175 94.0 200 113.0 250 118.0 250 126.0 CVGraph 6.(12 10/16/2015 WCAP-18092-NP Computed CVN 30.8 30.8 47.5 66.3 66.3 83.1 83.1 95.3 95.3 102.9 102.9 108.6 109.6 110.8 110.8 Diffl.'rential -7.81 25.19 -21.51 -34.27 18.73 -5.06 60.94 -23.29 -23.29 -0.93 13.07 -14.60 3.43 7.23 15.23 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-47 BRAIDWOOD UNIT t CAPSULE U (HEAT-AFFECTED ZONE) Plant: Braidwood 1 Orientation: N/A 80 -.. 70 -* --* 60 CVGrapli 6.02: HypeJbolic Tangent Curve Printed on ltl/16/2015 10:38 AM A= 35.58 B = 34.58 C = 165.63 TO= -61.46 D = 0.00 Correlation Coefficient = 0.850 Equation is A + B * [Tanh((f-TO)/(C+D1))] Upper Shelf LE.= 70.16 Lower ShelfL.E. = 1.00 (Fixed) Temp@t.15 mils=-6420° F Material: SA508CL3 Capsule: U C) Heat: [49D867/49C813]-1-1 0 .... ... -300 -200 -100 0 100 200 300 Temperature {° F) CVGraph 6.02 10/16/2015 WCAP-18092-NP 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: U C-48 Heat: [49D867/49C813)-1-1 BRAIDWOOD UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Charpy V-Notch Data Tern perature (0 F) Input LE. -150 10.0 -150 30.0 -100 20.0 -50 26.0 -50 46.0 0 47.0 0 76.0 50 44.0 50 44.0 100 59.0 100 65.0 175 62.0 200 77.0 250 65.0 250 71.0 CVGraph 6.02 10/16/2015 WCAP-18092-NP Computed L. E. 18.7 18.7 27.7 38.0 38.0 47.9 47.9 55.9 55.9 61.5 61.5 66.4 67.3 68.6 68.6 Differential -8.68 IL32 -7.68 -11.97 8.03 -0.85 28.15 -11.88 -11.88 -2.55 3.45 -4.40 9.66 -3.59 2.41 Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-49 BRAIDWOOD UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Plant: Braidwood 1 Orientation: NIA 100 I-90 * * -;* H.

  • 80 ,.. 70 ,... O:I '° cu ..c 00 .._i 50 c cu p... ....*. CJ 40 cu 30 CVGmph6.02 WCAP-18092-NP CVGrapl16.02:

Hypeibolic Tangent Curve Primed on 10/16/2015 10:39 AM A = 50.00 B = 50.00 C = 128.08 TO= -19.50 D = 0.00 Correlation Coefficient = 0.9_49 Equation is A+ B * [Tanh((f-TO)/(C+DT))) Upper Shelf %Shear= l 00.00 (Fixed) Lower Shelf o/.Shear = O.QO (Fb:ed) Temperature at 50% Shear= -19.40 Material: SA508CL3 Capsule: U Heat: (49D867/49C813)-1-1

    • -,,,,,,--;

-*()/**-: . -.; .. .. , --If--0 0 100 200 300 Temperature{° F) 10/16/2015 400 500 600 Page 112 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:U C-50 Heat: J49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature{° F) Input %Shear --150 10.0 -150 25.0 -100 15.0 -50 20.0 -50 50.0 0 60.0 0 75.0 50 60.0 50 60.0 100 95.0 --100 95.0 175 100.0 200 100.0 250 100.0 250 100.0 CVGraph6.02 1011612015 WCAP-18092-NP Computed %Shear 11.5 11.5 22.1 38.3 38.3 57.6 57.6 74.7 74.7 86.6 86.6 4 96.9 98.5 98.5 Differential -1.53 13.47 -7.15 -18.31 11.69 2.45 17.45 -14.75 -14.75 8.40 8.40 4.58 3.14 l.47 1.47 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (TANGENTIAL) CVGraph 6.02: HypedJolic Tangem Curve Primed on 10/16/2015 10:40 AM A= 84.10 B = 81.90 C = 88.17 TO= 31.91D=0.00 Conelalion Coeflicienl = 0.993 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf Energy = 166.00 (Fixed) Lower ShelfEncrgy = 2.20 (Fixed) Temp@30 ft-lbs=-38.00° F Temp',@,35 ft-lbs=-29.10° F Temp@50 ft-lbs= -7.10° F Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule:X Heat: [49D867/49C813]-1-1 180 --------------------------------------------------..------ 0 0 160 140 ... /" -. ,-, fl.l 120 .c ""i' ct: -100 """ . . = 80 ri10l 60 u I 40 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 10/1612015 Page 1/2 C-51 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 Plant: Braidwood 1 Orientation: Tangential l'v1aterial: SA508CL3 Heat: [49D867/49C813)-1-1 Capsule:X BRAIDWOOD UNIT 1 CAPSULE X (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential --100 8.0 10.0 -2.03 -75 13.0 15.5 -2.51 -50 21.0 24.3 -3.30 -35 20.0 31.6 -11.65 -30 35.0 34.5 0.51 -25 42.0 37.5 4.47 -15 54.0 44.2 9.78 0 57.0 55_7 l.31 50 98.0 100.7 -2.67 75. 125.0 121.2 3.78 r 100 138.0 137.2 0.81 -125 134.0 148.3 -14.31 150 165.0 155.S 9.52 200 158.0 162.5 -4.46 250 174.0 164.8 9.16 CVGraph 6.02 10/16/2015 WCAP-18092-NP --Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-53 BRAIDWOOD UNIT 1 CAPSULE X (TANGENTIAL) Plant: Braidwood l Orientation: Tangential -rlJ -.... e 70 ..._,, = Q 60 .... rlJ = = Ci! 50 ........ -40 = ""' ...... .... = 30 .... 20 10 0 -300 -200 CVGr.tph 6.02 WCAP-18092-NP CVGrapli 6.02: Hypeibolic Tangent Cuive Primed on I0/16/2015 10:41 AM A= 44.86 B = 43.86 C = 65.95 TO = 3.88 D = 0.00 Correlation Coefficient= 0.992 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf LE.= 88.71 Lower ShelfL.E. =LOO (Fixed) Temp@J5 mils=-11.20° F Material: SA508CL3 Capsule:X /* .. I--. 0 .. .: .. , *J'* .. ,. Heat: [49D867/49C813]-1-1 -.; I I I I I I -100 0 100 200 300 400 Temperature {° F) 10/16/2015 500 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-54 Plant: Bmidwood 1 Orientation: Tangential Material: SA508CL3 Capsule:X Heat: [49D867/49C813)-1-1 BRAIDWOOD UNIT 1 CAPSULE X (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) InputL.E. Computed L E. Differential -100 5.0 4.6 0.40 -75 8.0 8.3 -0.35 -50 13.0 15.3 -2.32 -35 17.0 21.6 -4.63 -30 24.0 24.1 -0.12 -25 29.0 26.8 2.21 -15 38.0 32.6 5.37 0 42.0 42.3 -0.28 50 68.0 71.3 -3.34 75 81.0 79.6 1.39 100 81.0 84.2 -3.20 125 86.0 86.5 -0.54 150 99.0 87.7 11.32 200 87.0 88.5 -1.48 250 83.0 88.7 -5.66 CVGraph 6.02 10116/2015 WCAP-18092-NP Page 212 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (TANGENTIAL) CVGraph 6.02: Hypeibolic Tangent Cnn*e Prinled on I0/16/2015 10:42 AM* A= 50.0_0 B = 50.0_0 C = 72.63 TO = 52.60 D = 0.00 Correlation Coefficient = 0.998 Equation is A + B * (Tanll((f-TO)/(C+DT))] Upper Shelf %Shear= 100.00 (Fi.xed) Lower Shelf o/.Shear = 0.00 (Fixed) Temperature al50% Shear= 52.70 C-55 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule:X Heat (49D867/49C813)-1-1 100 90 80 70 -= 60 cu .c 00 ;..i 50 = cu u ** ,., > -40 cu 30 20 10 .... 0 -300 -200 CVGrnph6.02 WCAP-18092-NP --/: -l'.-*j***-,*** -100 0 100 200 300 Temperature {° F) 10/16/2015 400 500 ; 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-56 Plant: Braidwood 1 Orientation: Tangential

t\.1aterial:

SA508CL3 Capsule:X Heat: f49D867/49C813]-l-1 BRAIDWOOD UNIT 1 CAPSULE X (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential -10(1 0.0 1.5 -1.47 -75 2.0 2.9 -0.89 -50 5.0 5.6 -0.60 -35 5.0 8.2 -3.22 -30 10.0 9.3 0.67 -25 10.0 10.6 -0.56 -15 15.0 13.5 1.55 0 25.0 19.0 5.98 50 45.0 48.2 -3.21 75 65.0 65.0 0.05 100 75.0 78.7 -3.67 125 90.0 88.0 l.99 150 100.0 93.6 6.40 200 100.0 98.3 1.70 250 100.0 99.6 0.43 CVGraph 6.02 10/16/2015 WCAP-18092-NP Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (AXIAL) CVGrapll 6.02: Hypetbolic Tangent Cu"ie Pri111ed OU 10/16/201510:42 AM A = 72.10 B = 69.90 C = 95.52 TO = 48.09 D = 0.00 Correlation Coefficient= 0.984 Equation is A+ B * [Tanh((f-TO)/(C+D1))) Upper ShelfEnergy = 142.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed) C-57 Tem1x@JO ft-lbs=-18.40° F TemP'.@35 ft-lbs= -8.30° F Temp@SO ft-lbs= 16.90° F Plalll: Braidwood 1 Orientation: CVGraph 6.02 WCAP-18092-NP -200 Material: SA508CL3 Capsule:X -100 0 100 200 300 Temperature {° F) 10/16/2015 '.,,., Heat: f490867/49C813]-1-1 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: Axial Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: X Heat: [49D867/49C813J-1-l BRAIDWOOD UNIT 1 CAPSULE X (AXIAL) Charpy V-Notch Data C-58 Temperature (0 F) Input CVN Computed CVN Differential -75 23.0 -65 9.0 -35 20.0 -25 14.0 -15 35.0 0 47.0 25 45.0 35 74.0 50 85.0 75 80.0 100 102.0 150 126.0 200 140.0 250 158.0 300 145.0 CVGraph 6.02 10/16/2015 WCAP-18092-NP 12.l 14.2 23.l 27.l 31.7 39.6 55.5 62.6 73.5 91.3 106.7 127.2 136.4 140.0 141.3 10.93 -5.17 -3.08 -13.08 3-35 7.39 -10.53 11.42 11.50 -11.29 -4.74 -1.20 3.58 JS.01 3.71 Page 212 May2016 Revision 1 Plant: Braidwood 1 Orientation: Axial CVGraph 6.02 WCAP'-18092-NP Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (AXIAL) CVGrapli 6.02: Hy)iedJolic Tangent Cun'e Printed on I0/16/201510:43 AM A= 40.50.B= 39.50 C=Sl.27 TO =24.51D=0.00 Correlation Coefficient= 0.976 Equation is A +B * (Tanh((T-TO)/(C+D1))] Upper SlielfL.E. = 79.99 Lower ShelfL.E. =LOO (Fixed) Ternp@35 mils= 13.20° F C-59 Material: SA508CL3 Capsnle:X Heat: (49D867/49C813]-1-1 o** .... o -200 -100 0 100 200 300 Temperature {° F) 10/16/2015 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: A."dal Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:X Heat: £49D867/49C813]-l-1 BRAIDWOOD UNIT 1 CAPSULE X (AXIAL) Charpy V-Notch Data C-60 Temperature (0 F) Input L. E. Computed L. E. Differential -75 15.0 -65 6.0 -35 13.0 -25 10.0 -15 26.0 0 34.0 25 35.0 35 52.0 50 59.0 75 51.0 100 69.0 150 84.0 200 75.0 250 83.0 300 77.0 CVGraph 6.02 10/16/2015 WCAP-18092-NP 7.3 8.9 15.8 19.0 22.7 28.9 40.7 45.6 52.5 62.3 69.3 76.5 79.0 79.7 79.9 7.72 -2.86 -2.83 -9.03 3.32 5.07 -5.73 6.44 6.51 -11.30 -0.33 7.45 -3.96 3.31 -2.90 *-Page 2/2 May2016 Revision 1 Plant: Braidwood l Orientation: Axial 100 ...... 90 .... 80 ...... 70 ,_ ... -= 60 .c: 00. ..._i 50 c .... CJ .. 40 ... 30 20 .... 10 ... " 0 -300 CVGmph6.02 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (AXIAL) CVGrapli 6.02: HypeJbolic Taitgeni Curve Pri11ted on I0/16/2015 10:44 AM A= 50.00 B = 50.00 C =' 69.42 TO = 93.01 D = 0,00 Correlation Coeflicie11t = 0.988 Equation is A+ B * [Tanh((f-TO)/(C+D1))] UpperShelf%Shear= 100.00 (Fixed) Lower Shelf o/.Shear = 0.00 (Fixed) Temperature al 50% Shear= 93. Io C-61 Material: SA508CL3 Capsule:X Heat: (49D867/49C813]-1-1

      • Y* ' J *; l I ; --200 -100 0 100 200 300 Temperature

{° F) 10/16/2015 I 400 500 I 600 Page 112 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-62 Plant: Braidwood 1 Orientation: Axial Material: SA508CL3 Heat: £49D867/49C813)-1-1 Capsule:X BRAIDWOOD UNIT 1 CAPSULE X (AXIAL) Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential -75 0.0 0.8 -0.78 -65 2.0 1.0 0.96 -35 5.0 2.4 2.56 -25 5.0 3.2 1.77 -15 10.0 4.3 5.74 0 10.0 6.4 3.58 25 15.0 12.4 2.65 35 20.0 15.8 4.18 50 25.0 22.5 2.54 75 35.0 37.3 -2.31 100 40.0 55.0 -15.01 -*-------- -* 150 100.0 83.8 16.22 200 100.0 95.6 4.38 250 100.0 98.9 1.07 300 100.0 99.7 0.26 CVGraph 6.02 10/1612015 WCAP-18092-NP --Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (WELD) CVGraph 6.02: Hypelbolic Tangent Curve Priilled on.I0/16/2015 10:45 AM A= 35.10B=32.90C=103.63TO=19.84 D = 0.00 Correlalion Coefficient= 0.975 Equation is A+ B * [Tanh((f-TO)/(C+DT))] Upper Shelf Energy = 68.00 (Fi,,;ed) Lm,'cr Shelf Energy = 2.20 (Fixed) Tcmp@30 ft-lbs= 3. 70° F Temp@35 ft-lbs= 19.60° F Temp@!SO ft-lbs= 70.50° F Plant: Braidwood 1 Orientation: N/A Material: WELD Capsule:X Hcat:442011 .. 0 50 /o ......... . 40 ........... ,? .... . z 30 ;;-.. : )> u P/ 2100 ... . 0 ...... __ ...... __ ...___. -300 .;200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraplt 6.02 10/16/2015 Page 1/2 C-63 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: WEID Capsule: X BRAIDWOOD UNIT 1 CAPSULE X (WELD) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN -* -75 17.0 11.3 -65 10.0 12.9 -45 24.0 16.8 -25 17.0 21.7 0 27.0 28.9 IO 33.0 32.0 25 38.0 36.7 50 38.0 44.4 65 43.0 48.6 75 58.0 51.1 115 63.0 . 59.0 r--150 63.0 63.l 200 70.0 66.0 250 74.0 67.2 CVGraph 6.02 10/16/2015 WCAP-18092-NP C-64 Heat: 442011 Differential 5.71 -2.91 7.16 -4.69 *l.88 1.02 1.26 -6.41 -5.59 6.87 4.05 -0.06 3.97 6.77 Page 2/2 May2016 Revision 1 Plant: Braidwood l Orientation: NIA 60 -. ". -50 fl.! = s .._ = Q 40 ... fl.! = = .... ..... , c. ' ii'!! r;;i;l 30 -= 1-o --* -..... = 20 .. 10 ....... Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (WELD) CVGraph 6.02: Hypetbolic Tilitgerit Curve Printed on I0/16/2015 10:45 AM A= 32.84 B = 31.84 C = 115.15 TO= 30.00 D = 0.00 Correlalion Coefficient= 0.979 Equation is A+ B * (Tanh((T-TO)/(C+D1))] Upper SbclfL.E. = 64.68 Lower ShelfL.E. = LOO (Fixed) : / Temp@J35 mils= 37.90° F Material: WELD Capsule:X . ... °/: -.... **;***-. Heat: 442011 ' .. *' -. -* ' -. ' ... -' .. C-65 ._y.o .

0 -300 -200 -100 0 100 200 300 Temperature

{° F) CVGr.lplt 6.02 10/16/2015 WCAP-18092-NP 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: WEID Capsule:X BRAIDWOOD UNIT 1 CAPSULE X (WELD) Charpy V-Notch Data Temperature (0 F) Input L.E. Computed L. E. -75 14.0 9.9 -65 6.0 11.3 -45 18.0 14.6 -25 17.0 18.7 0 24.0 24.7 10 26.0 27.4 25 37.0 31.5 50 32.0 38.3 65 39.0 42.2 75 50.0 44.7 ]]5 56.0 52.8 150 56.0 57.6 200 59.0 61.5 250 65.0 63.3 CVGraph 6.02 10/16/2015 WCAP-18092-NP C-66 Heat: 442011 Differential 4.15 -5.26 3.39 -1.69 -0.73 -1.37 5.54 -6.32 -3.23 5.31 3.16 -1.64 -2.52 1.68 --Page 2/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (WELD) CVGrapl16.02: HypeJbolic Tangent Curve Printed oµI0/16/2015 10:46 AM A= 50.00.B = 50.00 C = 70. 72 TO= 27.48 D = 0.00 Correlation Coefficient = O. 998 Equation is A+ B * (Tanh((T-JO)/(C+DT))] Upper Shelf %Shear= I 00.00 (Fixed) Lower Shelf o/oShtmr = 0.00 (Fixed) Temperature at 50% Sl1ear = 27.50 Material: WELD Capsule:X Hcat:442011 .. ij ., 80 fll-+-* . -----'--!- .. *'--' -!-*----* --l-----'-1----'--I 50 l----'---+----+--!--'----+-G-JT..;..._'--1-----+-----'--+----,--+--"----+---'---I r: .. j '.: 40 r ..

  • iJ 20 ' ' ..

0 L-......1; __ _. __ .. __ -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGmpl16.02 10/1612015 Page 1/2 C-67 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: WEID Capsule: X BRAIDWOOD UNIT 1 CAPSULE X (WELD) Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear -75 2.0 5.2 -65 10.0 6.8 -45 10.0 11.4 -25 20.0 18.5 0 30.0 31.5 10 40.0 37.9 25 50.0 48.2 50 60.0 65.4 65 75.0 74.3 75 80.0 79.3 ] 15 95.0 92.2 150 98.0 97.0 200 100.0 99.2 250 100.0 99.8 CVGmph6.02 10/1612015 WCAP-18092-NP C-68 Heat: 442011 DilTerential -3.22 3.18 -1.41 1.52 -1.50 2.11 1.75 -5.41 0.71 0.69 2.76 l.03 0.75 0.18 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) CVGrapl16.02: HypeJbolic Tangent CmYe Printed on I0/16/2015 10:47 AM A= 66.10B=63.90C=175.76 TO= -4.97 D = 0.00 Correlation Coefficient= 0.882 Equation is A+ B * {Tanh((f-TO)/(C+D1))] Upper Shelf Energy= 130.00 (fL'\ed) Lower Shelf Energy= 2.20 (Fixed) Temp@30 ft-lbs=-11 H0° F Temp@35 ft-lbs=-98.40° F Temp@50 ft-lbs=-50.20° F Plant: Braidwood 1 Orientation: NIA Material: SA508CL3 Capsule:X Heat: [49D867/49C813)-1-1 0 0 ............. ...... ..... -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrnph 6.02 10/16/2015 Page 1/2 C-69 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:X C-70 Heat: [49D867/49C813]-l-1 BRAIDWOOD UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) Charpy V-N otch Data Tcmpcrnture {° F) Input CVN -175 21.0 -150 15.0 -125 31.0 -100 42.0 -75 50.0 -50 28.0 -50 46.0 -25 81.0 0 81.0 35 70.0 65 64.0 100 90.0 150 142.0 250 156.0 300 93.0 CVGroph 6.02 10/1612015 WCAP-18092-NP Computed C.'VN 18.3 22.8 28.2 34.6 41.9 50.1 50.1 58.8 67.9 80.4 90.3 100.3 I 11.3 123.3 126.1 Differential 2.67 -7.78 2.82 7.44 8.09 -22.08 -4.08 22.15 13.10 -10.38 -26.'?:7 -10.29 30.71 32.66 -33.14 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-71 BRAIDWOOD UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) Plant: Braidwood l Orientation: N/A 70 -r;I} = 5 60 .._ = Q .... 50 r;I} = = Q,, 40 -= :s. 30 .... = 20 10 CVGraph 6.02: Hypeibolic Tangent Curve Printed on 10/16/2015 10:47 AM A= J6.84B=35.8-tC=164.37 TO= -27.40 D = 0.00 Correlation Coefficient= 0.922 Equation is A+ B * (Tanh((f-TO)/(C+D1))] Upper Sliclf L.E. = 72.6!! Lower ShelfL.E. = 1.00 (Fixed) Temp@35 mils=-35.80° F Material: SA508CL3 Capsule:X 0-Heat: (49DS61/49C813]-1-1 ' <' 0 ...... ....... ...... ........... ...... .. -300 -200 -100 0 100 200 300 Temperature {° F) CVGrapl16.02 10/16/2015 WCAP-18092-NP 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:X C-72 Heat: [49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) InputL.E. -175 12.o -150 8.0 -125 15.0 -100 25.0 -75 31.0 -50 23.0 -50 33.0 -25 44.0 0 58.0 35 42.0 65 40.0 100 55.0 150 83.0 250 67.0 300 70.0 CVGraph 6.02 1011612015 WCAP-18092-NP Computed L. E. 11.2 14.2 17.8 22.0 26.7 31.9 31.9 37.4 42.8 49.8 55.1 60.l 65.3 70.3 71.4 Differential 0.80 -6.16 -2.75 3.04 4.26 -8.94 1.06 6.64 15.24 -7.83 -15.10 -5.13 17.74 -3.31 -1.37 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-73 BRAIDWOOD UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) CVGrapli 6.02: Hypelbolic Tailgerit Cuffe Printed on 10/16/2015 10:48 AM A= 50.00 B = 50. C = 129.06 TO = 25.47 D = 0.00 Correlation Coefficient = 0.962 Equation is A+ B * (Tanh((f-TO)/(C+DT))] Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf o/.Shcar = 0.00 (Fixed) Temperature al 50% Sl1ear= 25.50 Plaut: Braidwood l Orientation: N/A Material: SA508CL3 Capsulc:X Heat: (49D867/49C813)-1-1 100 ... .. 90 .... 80 ..... 70 .... 60 ..... 50 .... 40 30 ..... 20 .... 10 ... 0 -300 CVGmph6.02 WCAP-18092-NP .r.7 .. :/ . . . --/* I : ) -:7. ... _f : .. 7 . :__.. : I -200 -100 0 100 200 300 Temperature{° F) 10/16/2015 400 500 ; 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsu!e:X C-74 Heat: [49D867/49C813)-1-1 BRAIDWOOD UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) Input %Shear -175 10.0 -150 10.0 -125 10.0 -100 15.0 -75 20.0 -50 40.0 -50 20.0 -25 40.0 0 20.0 35 40.0 65 60.0 100 90.0 150 100.0 250 100.0 300 100.0 CVGraph 6.02 10/1612015 WCAP-18092-NP Computed %Shear 4.3 6.2 8.9 12.5 17.4 23.7 23.7 31.4 40.3 53.7 64.9 76.0 87.3 97.0 98.6 5.72 3.81 1.15 2.48 2.59 16.31 -3.69 8.61 -20.26 -13.68 -4.85 13.96 12.68 2.99 1.40 *-Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (TANGENTIAL) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 11/6/2015 3:28 PM A= 81.10 B = 78.90C=98.151'0=23.70 D = 0.00 Correlation Coefficient= 0.970 Equation is A+ B * (Tanh((f-TO)/(C+D1))] Upper Shelf Energy= 160.00 (Fi.'>ed) Lower ShelfEnergy = 2.20 (Fixed) Temp@GO F Temp@35 ft-lbs=-'11.90° F Temp@50 ft-lbs=-17.20° F Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule: W Heat: [49D867/49C813)-1-1 -. -.. 160 ,;... .. ... ... 140 ... ,,,-.._ fl.I 120 .c -I .... . . . ¢:: ._. 100 =.o :i.. .. c: 80 r""1 I-... ;.. 60 u ****** i ... ..... *******o ./. *-'.* --** . : /.v* 0 40 ... 20 ****!" -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 11/06/2015 Page 1/2 C-75 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-76 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule:W-Heat: £49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE W (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential -125 7.0 9.5 -2.47 -100 12.0 13.9 -1.95 -90 12.0 16.4 -4.36 -75 12.0 20.8 -8.83 -65 18.0 24.4 -6.44 -50 68.0 30.9 37.05 -35 37.0 38.8 -1.84 -15 57.0 51.5 5.49 0 38.0 62.4 -24.41 25 83.0 82.1 0.85 50 108.0 101.8 6.25 >---* *----75 124.0 119.0 5.05 100 120.0 132.5 -12.48 150 160.0 148.8 1 J.18 200 160.0 155.8 4.23 CVGraph 6.02 11106/2015 WCAP-18092-NP Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (TANGENTIAL) CVGraph6.02: Hypelbolic Tangent Cui:Ve Printed on I0/16/2015 10:49 AM A= 43.09 B = 42.09 C = 76.18 TO = 6.04 D = 0,00 Correlation Coefficient= 0.960 is A+ B * [Tanh((f-TO)/(C+D1))] Upper ShclfL.E. = 85.18 Lower ShelfL.E. = 1.00 (Fixed) Temp!'jjl.15 mils= -8.70° F C-77 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule:W Heat: (49D867/49C813)-1-1 90 --------------..----- ....... --------------------..------------------- ...... .... . 40 -* .. " 30 -* 20 -*-,,. 10 0 -300 CVGraph 6.02 WCAP-18092-NP

    • '** ** de,* I . .. . /J .
n<P'

-100 0 100 200 300 Temperature {° F) 10/16/2015 I 400 500 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-78 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule: "' Heat: [49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE W (TANGENTIAL) Charpy V-Notch Data Tempcruture {° F) lnputL..E. Computed L. E. Diffcrentiul -125 1.0 3.6 -2.61 -100 2.0 5.9 -3.90 -90 3.0 7.3 -4.26 -75 5.0 10.0 -4.96 -65 7.0 12.3 -5.29 -50 43.0 16.7 26.28 -35 21.0 22.4 -1.38 -15 36.0 31.8 4.25 0 22.0 39.8 -17.76 25 54.0 53.4 0.64 50 70.0 65.0 5.00 75 76.0 73.3 2.65 100 78.0 78.6 -0.60 150 86.0 83.3 2.70 200 80.0 84.7 -4.67 CVGraph 6.02 10/16/2015 WCAP-18092-NP Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (TANGENTIAL) CVGraph 6.02: Hypeibolic Tangent Cutve Printed on 10/16/2015 10:50 AM A = 50.00 B = 50.00 C = 97. 75 TO = 15.10 D = 0.00 Correlalion Coefficient

0.960 Equation is A+ B * (Tanh((f-TO)/(C+DnJJ UpperShelf%Sbear

100.00 (Fixed) Lower Shelfo/oSbear= 0.00 (Fixed) Temperature al 50% Sl1ear = 15.20 C-79 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule: W Heat: (49D867/49C813)-1-1 100 90 80 70 ;.. = 60 ..c 00 ;.i 50 = : u ;.. 40 30 20 10 0 -300 -200 CVGmph6.02 WCAP-18092-NP -/!-*

  • lo ' -L** ; . ; I -100 0 100 200 300 Temperature

{° F) 10/16/2015 .... , I 400 500 ; 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-80 Plant: Braidwood 1 Material: SA508CL3 Heat: {49D867/49C813)-1-1 Orientation: Tangential Capsule: W BRAIDWOOD UNIT 1 CAPSULE W (TANGENTIAL) Charpy V-N otch Data Temperature C° F) Input %Shear Computed %Shear -125 2.0 5.4 -100 5.0 8.7 -90 5.0 10.4 -75 5.0 13.7 -65 10.0 16.3 -50 50.0 20.9 -35 30.0 26.4 -15 40.0 35.1 0 30.0 42.3 25 45.0 55.0 50 75.0 67.1 75 75.0 77.3 JOO 85.0 85.0 150 100.0 94.0 200 100.0 97.8 CVGraph 6.02 10/1612015 WCAP-18092-NP Differential -3.38 -3.67 -5.43 -8.66 -6.26 29.12 3.60 4.93 -12.34 -10.05 7.87 -2.30 -0.03 5.95 2.22 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (AXIAL) CVGrapl16.02: Hypelbolic Tangent Curve Printed on 10/16/2015 10:53 AM A= 73.lOB= 70.90C=102.57 T0=61.76 D =0.00 Correlalion Coefficient= 0.971 Equation is A+ B * (Tanh((f-TO)/(C+DT))] Upper Shelf Energy= 144.00 (H1:ed) Lower Shelf Energy= 2.20 (Fi.1:ed) Temp@:JO ft-lbs=-10.60° F Temp@35 fl-lbs= 0.20° F Temp@!50 ft-lbs= 27.10° F Plant: Braidwood 1 Orieniation: Axial Material: SA508CL3 Capsule:W Heat: (49D867/49C813)-1-1 -) .*. .. .. ... .. -.. -.. r.-.-... 100 '/ 80 .. -:.. I--.--"-----_, * --+----,-.... -.* 60

    • dt 40

-200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 10/1612015 Page 1/2 C-81 WCAP-18092-NP May2016 Revision I Plant: Braidwood 1 Orientation: A.tjal Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:W Heat: [49D867/49C813)-1-1 BRAIDWOOD UNIT 1 CAPSULE W (AXIAL) Charpy V-N otch Data

  • C-82 Temperature (0 F) InputCVN Computed CVN Differential

-80 7.0 -50 9.0 -35 12.0 -30 12.0 -25 32.0 -15 45.0 0 47.0 15 55.0 25 17.0 50 74.0 100 102.0 150 112.0 200 136.0 250 152.0 300 145.0 CVGraph 6.02 WCAP-18092-NP 10.6 16.6 20.9 22.5 24.3 28.l 34.9 42.8 48.7 65.0 98.4 122.5 135.0 140.5 142.7 10/16/2015 -3.61 -7.61 -8.86 -10.50 7.74 16.86 12.09 12.16 -31.72 9.00 3.63 -10.47 0.97 11.52 2.35 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (AXIAL) CVGraph 6.02: Hypetbolic Tangent Curve Printed on I0/16/2015 }9:53 AM A =38.54 B= 37.54 c= 79.53 TO =42.34 D = 0.00 Correlation Coefficient = 0.957 Equation is A+ B * (Tanh((f-TO)/(C+D1))] Upper ShelfL.E. = 76.09 Lower ShelfL.E. = 1.00 (Fixed) Temp@35 mils= 34. 90° F Plant: Braidwood l Orientation: Axial Material: SA508CL3 Capsule:W Heat: [49D867/49C813]-1-l /-y 70 -... , * ** *cf o" -.. s 60 511 a ' *r ..... 40 __ i

  • 0/i 30 ..

20

  • </ /.

o I *. . ** '* I -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrapl1 6.02 10/16/2015 Page 112 C-83 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: Westinghouse Non-Proprietary Class 3 Material: SA508CLJ Capsule: Heat: [49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE W (AXIAL) Charpy V-Notch Data C-84 Temperature (0 F) InputL.E. Computed L. E. Differential -80 o.o -50 2.0 -35 2.0 -30 4.0 -25 15.0 -15 29.0 0 30.0 15 34.0 25 10.0 50 48.0 -* 100 64.0 150 63.0 200 76.0 250 75.0 301) 81.0 CVGrnph 6.02 10/16/2015 WCAP-18092-NP -4.3 7.7 10.4 11.5 12.7 15.4 20.3 26.l 30.5 42.1 61.8 71.4 74.7 75.7 76.0 -4.31 -5.71 -8.39 -7.48 234 13.64 9.75 7.88 -20.49 5.85 2.18 -8.39 1.31 -0.68 5.03 --Page2/2 May2016 Revision 1 Plant: Braidwood l Orientation: Axial 100 *---90 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (AXIAL) CVGrapll 6.02: Hypeibolic Tangent Curve Prinled on 10/16/2015 10:54 AM A= 50.00 B = 50.00 C = 90.34 TO = 66.29 D = 0.00 Correlalion Coefficient= 0.994 Equation is A + B "' {Tanh((f-TO)/(C+DT))] Upper Shelf %Shear= I 00.00 (Fixed) Lower Shclf%Shear= 0.00 (Fixed) Temperature at 50% Shear= 66.30 Material: SA508CL3 Capsule: W Heat: (49D867/49C813)-1-1 C-85 .... --'. ---**i 80 70 -= 60 cu .c 00 ..... 50 c cu u -40 cu 30 20 10 -200 CVGraph 6-02 WCAP-18092-NP

  • !**** -100 0 100 200 300 400 Temperature

{° F) 10/16/2015 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: A_tjaJ Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:W Heat: [49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE W (AXIAL) Charpy V-Notch Data C-86 Temperature<° F) Input %Shear Computed %Shear Differential -80 2.0 -50 5.0 -35 10.0 -30 10.0 -25 15.0 -15 20.0 0 20.0 15 25.0 25 25.0 50 35.0 JOO 75.0 150 80.0 200 100.0 251) 100.0 300 100.0 CVGraph 6.02 WCAP-18092-NP 3.8 7.1 9.6 10.6 11.7 14.2 18.7 24.3 28.6 41.1 67.8 86.5 95.l 98.3 99.4 10/1612015 -l.77 -2.08 0.40 -0.61 3.30 5.81 1.27 0.68 -3.62 -6.08 7.16 -6.45 4.93 l.68 0.56 Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (WELD) CVGraph 6.02: Hypeibolic Tangent Cur\ie Printed on 10/16/2015 10:55 AM A = 32.10 B = 29.90 C = 88.82 TO = 29.08 D = 0.00 Correlation Coefficient= 0.962 Equation is A +B * (Tanh((f-TO)/(C+D1))] Upper Shelf Energy = 62.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed) C-87 Ternp@:!30 ft-lbs= 22.90° F Temp@35 ft-lbs= 37.80° F Temp@50 ft-lbs= 90.50° F Plant: Braidwood 1 Orientation: N/A 80 ... 70 ..... .. 60 -. rl.l ... .. =9 50 I ¢:: -.... 40 = .... 30 u ...... .. 20 ..... 10 ...... ,, ... . .. *+/-;/ Material: WELD Capsule: W Oc) -. '(

  • I }

q 7 /c: .0 Heat: 442011 0 . 0 ..... ..... -300 -200 -100 0 100 200 300 Temperature {° F) CVGr.iph 6.02 10/16/2015 WCAP-18092-NP 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: "WELD Capsule:W C-88 Heat: 442011 BRAIDWOOD UNIT 1 CAPSULE W (WELD) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN -50 6.0 1o.s -30 19.0 14.7 -15 22.0 18.4 0 29.0 22.6 15 27.0 27.4 25 30.0 30.7 30 27.0 32.4 40 39.0 35.8 50 28.0 39.0 72 46.0 45.5 100 54.0 51.9 125 62.0 55.8 150 61.0 58.3 200 60.0 60.8 250 73.0 61.6 CVGraph 6.02 10/16/2015 WCAP-18092-NP Differential -4.82 4.30 3.63 6.35 -0.40 -0.73 -5.41 3.24 -11.01 0.48 2.07 6.18 2.69 -0.75 ] 1.41 Page 2/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA CVGraph 6.02 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (WELD) CVGraph 6.02: Hypelbolic Tangent Curve Printed on I0/16/2015 11:02 AM A= 27.08 B= 26.08 C=82.40 1'0=39.70 D = 0.00 Correlation Coefficient= 0.979 Equation is A + B * (Tanh((f-TO)/(C+D1))] Upper SlielfL.E. = 53.15 Lower ShelfL.E. =LOO (Fixed) Ternp@',35 mils= 65.60° F Material: WELD Capsule: W 10/16/2015 C-89 Heat: 442011 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: "'EID Capsule: W C-90 Heat: 442011 BRAIDWOOD UNIT 1 CAPSULE W (WELD) Charpy V-Notch Data Temperalure (0 F) lnputL.E. Computed L E. -50 2.0 6.3 -30 9.0 9.1 -15 15.0 IL9 0 20.0 15.4 15 20.0 19.5 25 22.0 22.5 30 21.0 24.0 40 31.0 27.2 50 24.0 30.3 72 35.0 36.8 100 45.0 43.4 125 52.0 47.3 150 51.0 49.8 200 48.0 52.1 251) 53.0 52.8 CVGraph 6.02 10116/2015 WCAP-18092-NP Differential -4.31 -OJ I 3.07 4.60 0.51 -0.47 -3.02 3.83 -6.32 -1.80 1.65 4.69 1.20 -4.11 0.16 ." Page 212 May2016 Revision 1 Plant: Braidwood 1 Orientation: N/A 100 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (WELD) CVGraph 6.02: Hypelbolic Tangent Curve Prinled on I0/16/201511:03 AM A = 50.00 B = 50.00 C = 55.58 TO = 40.85 D = 0.00 Correlation Coefficient= 0.993 Equation is A+ B * [Tanh((f-TO)/(C+DT))] Upper Shelf %Shear= I 00.00 (Fixed) Lower Shelf o/..Shear = 0.00 (Fixed) Temperature al 50% Sl1ear= 40.90 Material: WELD Capsule:W -,.. . .. ... 90 ,.. . .' .. ,. _:_ ****I-80 ,.. 70 ----;--= 60 .c 00. ;..i 50 = ,.. --.: CJ .. -*-' -40 ,.. --. -* . i) '* 30 20 10 0 *-J-__ )* -300 -200 -100 0 100 200 300 400 Temperature {° F) CVGmph6.02 10/16/2015 WCAP-18092-NP C-91 Hcat:442011 500 I 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: WEID Capsule:W C-92 Heat: 442011 BRAIDWOOD UNIT 1 CAPSULE W (WELD) Temperature (0 F) 30 -15 0 15 25 30 40 50 72 -* 100 125 150 200 250 CVGraph 6.02 WCAP-18092-NP Charpy V-Notch Data Input %Shear Computed %Shear 10.0 3.7 10.0 7.2 20.0 11.8 20.0 18.7 25.0 28.3 35.0 36.l 40.0 40.4 40.0 49.2 60.0 58.2 80.0 75.4 95.0 89.4 95.0 95.4 100.0 98.1 100.0 99.7 100.0 99.9 1011612015 Differential 6.34 2.76 8.18 1.31 -3.28 -1. ll -0.36 -9.23 1.84 4.59 5.64 -0.38 1.93 0.32 0.05 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class. 3 C-93 BRAIDWOOD UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) CVGrapl16.02: Hyperllolic Tangent Cul\'e Printed on 10/16/2015 11:03 AM A = 47.60 B = 45.40 C = 110.52 TO= -78.59 ]) = 0.00 Correlation Coefficient = 0.838 Equation is A+ B * (Tanh((T*TO)/(C+D1))] Upper Shelf Energy= 93.00 {Fixed) Lower ShelfEnergy = 2.20 (Fixed) Temp@GO ft-lbs=-123.70° F F Temp@50 ft-lbs=-72. 70° F Plant: Braidwood 1 Orientation: NIA Material: SA508CL3 Capsule: W Heat: [49D867/49C813]-1-1 110 *_.* --' . 100 90 80 70 60 *,* 50 40 I-*". -200 CVGmph6.02 WCAP-18092-NP v ) o.,.. . ... :*o -100 0 100 200 300 Temperature {° F) 10/16/2015 .. ' ' . ' 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood I Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: W C-94 Heat: [49D867/49C813]-l-l BRAIDWOOD UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature C° F) Input CVN -200 2.0 -150 18.0 -135 15.0 -125 32.0 -125 2.0 -115 58.0 -100 46.0 -75 83.0 -50 58.0 -25 24.0 -* 0 89.0 72 94.0 125 83.0 130 84.0 201) 101.0 CVGraph 6.02 10/1612015 WCAP-18092-NP Computed CVN 11.3 21.8 26.2 29.6 29.6 33.2 38.9 49.1 59.l 68.0 75.4 87.4 90.8 91.0 92.4 Differential -9.28 -3.76 -11.25 2.42 -27.58 24.84 7.09 33.93 -1.09 -44.04 13.65 6.59 -7.77 -6.96 8.58 --Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-95 BRAIDWOOD UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) Plant: Braidwood 1 Orientation: NIA CVGr.iph 6.02 WCAP-18092-NP -200 CVGraph 6.02: HypeJbolic Tangent Cuive Printed on 10116/2015 11:04 AM A =Jl.45B=30.45C=122.47 T0=-45.46 D =0.00 Correlation Coefficient= 0.908 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper ShelfL.E. = 61.91 Lower ShelfL.E. = 1.00 (Fb:ed) Temp@35 mils=-3l.l0° F Material: SA508CL3 Capsule:W ...... C)-Heat: f49D867/49C813)-1-1 .. . ..... -. . . ' ;. . ' .. -100 0 100 200 300 400 500 600 Temperature {° F) 10/16/2015 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:W C-96 Heat: f49D867/49C813)-1-1 BRAIDWOOD-UNIT 1 CAPSULE W (BEAT-AFFECTED ZONE) Charpy V-Notch Data Te1n perature {° F) InputL.E. -200 0.0 -150 4.0 -135 8.0 -125 13.0 -125 1.0 -115 28.0 -100 24.0 -75 40_0 -50 33.0 -25 16.0 0 52.0 72 48.0 125 60.0 130 57.0 200 65.0 CVGraph 6.02 10/1612015 WCAP-18092-NP Computed L. E. ---5.5 10.4 12.5 14.l 14.l 15.8 18.7 24.2 30.3 36.5 42-3 54-1 58.4 58.6 60.8 Differential -5.52 -6.35 46 -1.05 -13.05 12.19 5.28 15.75 2.68 49 9_74 -6.11 1.64 -1.62 4-18 --Page 2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) CVGraph 6.02: Hypelbolic Tangent Cun;e Priilled on I0/16/2015 11:04 AM A =50.00B=50.00c=117.24 T0=-15.37 D =o.oo Correlation Coefficient= 0.964 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf%Sbear

100.00 (Fixed) LowerShelfo/.Shear

0.00 (Fixed) Temperature at 50% Sl1ear =

  • 15.30 Plant: Braidwood 1 Orientation:

NIA Material: SA508CLJ Capsule: W Heat: [49D867/49C813)-1-l J 50 1----_ -'----+----'----+- .... -0 :,.----j:-/rm-* --'--.j-;.- .... ---+.' ' --'------+---;...--+-----;..' '**, ---4-" -.. --'--. -'* .--1 40

    • O lo*

-;t 10 --300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGmph6.02 10/1612015 Page 112 C-97 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: "' C-98 Heat: f49D867/49C813)-1-1 BRAIDWOOD UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) Input %Shear -200 2.0 -150 5.0 -135 5.0 -125 10.0 -125 5.0 -115 35.0 -100 20.0 -75 45.0 -50 30.0 -25 35.0 0 50.0 72 95.0 125 85.0 130 95.0 200 100.0 CVGraph 6JJ2 WCAP-18092-NP Computed %Shear 4.l 9.1 11.5 13.4 13.4 15.5 19.l 26.6 35.6 45.9 56.5 81.6 91.6 92.3 97.5 10/16/2015 Differential -2.ll -4.14 -6.50 -3.35 -8.35 19.55 0.90 18.44 -5.65 -10.90 -6.52 13.39 -6.64 2.73 2.48 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE V (TANGENTIAL) CVGrapl16.02: Hype!bolic Tai1gerit Curve Pri111ed on 10/16/2015 11:06 AM A= 82.60 B = 80.40 C = 88.82 TO = 44.87 D = 0.00 Correlation Coefficient = 0.970 Equation is A+ B * (Tanh((T-TO)/(C+DT)J] Upper Shelf Energy = 163.00 (Fi.,.ed) Lower SheifEnergy = 2.20 (Fixed) Temp:@JO fl-lbs=-24.60° F Ternp@i35 F Ternp@.50 ft-lbs= 6. 70° F Plant: Braidwood 1 Orientation: Tan gen ti al Material: SA508CL3 Capsule:V Heat: (49D867/49C813)-1-1 p * .. 0 140 .re. 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 10/16/2015 Page 1/2 C-99 WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-100 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule: V Heat: [49D867/49C813]-l-1 BRAIDWOOD UNIT 1 CAPSULE V (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN DilTcrcntial 2.0 12.3 -10.33 -50 36.0 19.2 16.81 -30 40.0 27.3 12.66 -20 28.0 32.5 -4.49 -10 19.0 38.4 -19.42 5 25.0 48.8 -23.76 15 61.0 56.5 4.46 30 100.0 69.3 30.73 60 88.0 96.2 -8.17 72 109.0 106.4 2.58 125 139.0 140.3 -1.28 160 140.0 151.8 -11.81 183 152.0 156.1 -4.14 210 171.0 159.2 11.81 250 167.0 161.4 5.57 CVGraph 6.02 1011612015 WCAP-18092-NP --Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-101 BRAIDWOOD UNIT 1 CAP.SULE V (TANGENTIAL) Plant: Braidwood 1 Orientation: Tangential 90 "9*** 80 -* . -70 rll == -.. e .._ 60 = = .... rll = 50 = Q. 40 -:r.. 30 .....,, = i-:1 -* . 20 10 ... ' 0 -300 -200 CVGraph 6.02 WCAP-18092-NP CVGraph 6.02: Hypeibolic Tangent Cul"Ve Prii1ted on I0/16/2015 11:07 AM A= 44.72 B = 43.72 C '= 78.18 TO= 23.93 D = 0.00 Correlalion Coefficient = 0.953 Equation is A+ B * (Tanh((f-TO)/(C+D1))] Upper Shelf LE.= 88.44 Lower Shelf LE.= 1.00 (Fixed) Temp@J5 mils= 6.30° F Material: SA508CL3 Capsule:V , I *-' .! ,. Heat: (49D867/49C813)-1-1 I I -100 0 100 200 300 400 500 600 Temperature {° F) 10/16/2015 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-102 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Heat: [49D867/49C813]-1-l Capsule: V BRAIDWOOD UNIT 1 CAPSULE V (TANGENTIAL) Charpy V ... Notch Data Temperature (0 F) Input LE. Computed L. E. Differential -75 0.5 7.4 -6.95 -50 26.0 12.5 13.54 -30 31.0 18.6 12.42 -20 21.0 22.4 -1.45 -10 14.0 26.9 -12.85 5 16.0 34.3 -18.33 15 43.0 39.7 3.25 30 66.0 48.1 17.89 60 57.0 63.6 -6.57 72 70.0 68.7 1.34 125 82.0 82.3 -0.31 160 90.0 85.8 4.17 183 85.0 87.0 -1.97 210 87.0 87.7 -0.70 250 87.0 88.2 -1.17 CVGraph 6.02 10/16/2015 WCAP-18092-NP Page 212 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT l CAPSULE V (TANGENTIAL) CVGraph 6.02: Hypemolic Tangent Cun'e Printed on I0/16/2015 l l :07 AM A = 50.00 B = C = 91.32 TO = 50.85 D = 0.00 Correlation Coefficient = 0.979 Equation is A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf %Shear= I 00.00 (Fixed) Lower Shclfo/oShear= 0.00 (Fixed) Temperature at 50% Shear= 50.90 C-103 Plant: Braidwood 1 Orientation: Tangential Material: SA508CL3 Capsule:V Heat: (49D867/49C813]-1-1 100 .... 90 .... **. 80 .... ....... _ 70 ..... ;... = 60 ..c 00 so = (J -;... 40 .... 30 ***** 20 10 0 -300 CVGmpl16.02 WCAP-18092-NP

  • -*/o* ,-

... "[**** I -200 -100 0 100 200 300 Temperature {° F) 10/16/2015

  • >>*-:' 400 500 600 Page 1/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-104 Plant: Braidwood 1 Orientation:

Tangential Material: SA508CL3 Heat: [49D867/49C813)-1-1 Capsule:V BRAIDWOOD UNIT 1 CAPSULE V (TANGENTIAL) Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential -75 5.0 6.0 -0.97 -SO 10.0 9.9 0.10 -30 15.0 14.5 0.46 -20 15.0 17.5 -2.48 -10 15.0 20.9 -5.87 5 15.0 26.8 -11.81 15 35.0 31.3 3.68 30 60.0 38.8 21.22 60 50.0 55.0 -4.99 72 60.0 61.4 -1.38 125 80.0 83.5 -3.53 160 85.0 91.6 -6.61 183 JOO.CJ 94.8 5.24 210 100.0 97.0 2.97 250 100.0 98.7 1.26 CVGraph 6.02 1011612015 WCAP-18092-NP Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE V (AXIAL) CVGraph 6.02: Hypeibolic Tangent Curve Printed on I0/16/2015 11:08 AM A= 64.10 B= 61.90 C=90.071'0

47,75 D =0.00 Correlation Coefficient

0.960 Equation is A+ B * [Tanh((T-TO)/(C+DT))] Upper Shelf Energy = 126.00 (FL,.ed) Lower ShelfEnergy = 2.20 (Fixed) Temp@JO ft-lbs= -8.00° F Temp@.35 ft-lbs= 1.80° F Temp@50 ft-lbs= 26.90° F Plant: Braidwood 1 Orientation: AXial Material: SA508CL3 Capsule:V Heat: (49D867/.&9C813]-1-1 0 --+-----M-----;---; -BO J w ---t----'--t--*--,.... .. _t--- _- ---t----'---I . ***'.***' ", ,, ' ** . u ,.'. C-105 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 IOn6/2015 WCAP-18092-NP Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: A_tja) Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: V Heat: f49D867/49C813]-l-1 BRAIDWOOD UNIT 1 CAPSULE V (AXIAL) Charpy V-Notch Data C-106 Temperature (0 F) Input CVN Computed CVN Differential -75 11.0 -50 7.0 -30 23.0 -10 25.0 0 42.0 5 46.0 15 48.0 30 54.0 50 28.0 50 75.0 72 91.0 125 108.0 160 124.0 187 117.0 250 137.0 CVGraph 6.02 10/1612015 WCAP-18092-NP 9.8 14.9 20.9 29.l 34.0 36.7 42.5 52.1 65.6 65.6 80.4 107.1 116.5 120.6 124.6 1.19 -7.88 2.10 -4.08 7.95 9.26 5.47 1.95 -37.64 9.36 10.63 0.88 7.46 -3.62 12.37 Page2/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: A.'\;ial 90 80 70 -rl.I = = 60 ._ = Q *-50 rl.I = = 40 r.l -= --. "' , ... , :i.c 30 ....., = ' ,, 20 --10 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE V (AXIAL) CVGraph 6.02: Hyperllolic Tangent Cui"l;e Printed OU I0/16/201.5 J 1 :09 AM A= TO= 57.80 D = 0.00 Correlation Coefficient = 0.962 Equation is A+ B * [Tanh((T-TO)/(C+DT))] Upper SlielfL.E. = 85.81 Lower ShelfL.E. = 1.00 (Fixed) Ternp:@35 mils= 35.50° F Material: SA508CL3 Capsule:V £*** ****** 7 ***J : -' -.. -*-' -Heat: (49D867/49C813)-1-1 C-107 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 10/16/2015 WCAP-18092-NP Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: A"<ial Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Heat: f49D867/49C813)-1-1 Capsule:V BRAIDWOOD UNIT 1 CAPSULE V (AXIAL) Charpy V-Notch Data C-108 Tern perature (0 F) InputL.E. Computed L. E. Differential --'--* -75 6.0 -50 4.0 -30 15.0 -10 19.0 0 29.0 5 30.0 15 30.0 30 38.0 50 20.0 50 50.0 72 50.0 125 62.0 160 79.0 187 80.0 250 81.0 CVGraph 6.02 10/16/2015 WCAP-18092-NP 8.1 11.7 15.5 20.4 23.2 24.7 27.9 33.0 40.4 40.4 48.8 66.3 74.2 78.2 83.2 -2.14 -7.68 -0.51 -1.35 5.83 5.33 2.15 4.98 -20.44 9.56 1.21 -4.29 4.85 1.77 -2.21 Page 2/2 May2016 Revision 1 Plant: Braidwood l Orientation: A.'!:ial 100 I-... 90 ..... .. *, .. 80 .... .. 70 ,_ = 60 ..c 00. -..i 50 = ..... u ... .. 40 ...... 30 ...... 20 ...... 10 . **>-* 0 -300 CVGraph 6.02 WCAP-18092-NP Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE V (AXIAL) CVGrapli 6.02: Hypelbolic Tangerit Curve Printed on 10/16/2015 11:12 AM A = 50.0.0 B = 50.00 C = 97.30 TO = 74.00 D = 0.00 Correlation Coefficient= 0.983 Equation is A+ B * (Tanh((f-TO)/(C+DT))] Upper Shelf%Sbear= 100.00 (Fixed) Lower Shelf o/.Shear = 0.00 (Fixed) Temperature at 50% Shear= 74 . .10 C-109 Material: SA508CL3 Capsule:V Heat (49D867/49C813)-l-1

        • Y* /'. :J*-* 1 . -200 -100 0 100 200 300 Temperature

{° F) 10/16/2015 ._*,, .. , .... I 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: A.xi al Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:V Heat: [49D867/49C813]-l-1 BRAIDWOOD UNIT 1 CAPSULE V (AXIAL) Charpy V-Notch Data C-110 Temperahlre (0 F) Input %Shear Computed %Shear Differential -75 5.0 -50 5.0 -30 10.0 -JO 10.0 0 20.0 5 25.0 15 30.0 30 30.0 50 30.0 50 40.0 -72 50.0 125 60.0 160 95.0 187 100.0 250 100.0 CVGraph 6.02 10/16/2015 WCAP-18092-NP 4.5 7.3 10.5 15.1 17.9 19.5 22.9 28.8 37.9 37.9 49.0 74.0 85.4 91.l 97.4 0.53 -2.25 -0.55 -5.10 2.07 5.51 7.08 1.19 -7.91 2.09_ *---*-1.03 -14.05 9.58 8.92 2.61 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT l CAPSULE V (WELD) CVGrapl16.02: HypeJbolic Tangerit Cul'\ie Printed on 10/16/2015 11:14 AM A= 36.10 B = 33.90 C = 109,48 TO= 56.52 D = 0.00 Conclation Coefficient = 0.960 Equation is A+ B * (Tanh((f-TO)/(C+D1))] µpper ShelfEnergy = 70.00 (Fh:ed) Lower SheifEnei"gy = 2.20 (Fixed) C-111 Temp@*JO ft-lbs= 36.70° F Temp@i35 ft-lbs= 53.00° F TempSO ft-lbs=l04.30° F Plant: Braidwood 1 Orientation: NIA Material: WELD Capsule:V Hcat:442011 80 ------------------------------------------------------------ ..... r-' 50 ...... 40 I'-.

  • 30 ,... ' 20 ,... 10 ,... , 0 ; I -300 -200 CVGraph 6.02 WCAP-18092-NP 0 *******

I I -100 0 100 200 300 Temperature {° F) 10/1612015 I I 400 500 600 Page 112 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 :Material: WEID Capsule: V BRAIDWOOD UNIT 1 CAPSULE V (WELD) Charpy V-Notch Data Temperature{° F) Input CVN Computed CVN -30 8.0 13.8 -10 17.0 17.7 5 14.0 21.2 15 30.0 23.8 25 23.0 26.6 35 40.0 29.5 50 31.0 . 34.l 72 44.0 40.9 100 55.0 48.9 125 51.0 54.9 150 . 48.0 59.6 185 62.0 64.1 210 71.0 66.l 220 70.0 66.7 250 68.0 68.1 CVGraph 6.02 1011612015 WCAP-18092-NP C-112 Heat: 442011 Diffrrcntial -5.77 -0.71 -7.23 6.17 -3.60 10.48 -3.08 3.14 6.10 -3.91 -11.60 -2.08 4.87 3.26 -0.08 Page 212 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE V (WELD) CVGraph 6.02: Hypelbolic Tangerit Curve Printed 0"'110116/2015 11:14 AM A= 32.53B=31.53C=127.03 TO =.71.50 D = 0.00 Correlation Coefficient = 0.960 Equation is A+ B * (Tanh((T-TO)/(C+D1))] Upper ShelfL.E. = 64.06 Lower ShelfL.E. = LOO (Fixed) Temp@35 mils= 81.50° F Material: WELD Capsule:V C-113 Hcat:442011 70 ____________________________________________ .,..... __________ _ '** .. -**--*:-,- ..;200 -100 0 100 200 300 Temperature {° F) CVGraph 6.02 10/16/2015 WCAP-18092-NP 400 500 600 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 lvfaterial: "\\'EID Capsule: V BRAIDWOOD UNIT 1 CAPSULE V (WELD) Charpy V-Notch Data Temperature (0 F) InputL.E. Computed L. E. -30 7.0 11.6 -10 15.0 14.7 5 10.0 17.4 15 22.0 19.4 25 20.0 21.5 35 35.0 23.7 50 25.0 27.2 72 33.0 32.7 100 46.0 39.5 125 41.0 45.l 150 42.0 49.9 185 . 53.0 55.0 210 60.0 57.7 220 64.0 58.5 250 59.0 60.5 CVGraph 6.02 10/1612015 WCAP-18092-NP C-114 Heat: 442011 Differential -4.61 0.32 -7.38 2.64 -1.48 11.29 -2.24 0.35 6.51 -4.07 -7.86 -2.01 2.34 5.49 -1.48 Page2/2 May2016 Revision 1 Plaut: Braidwood 1 Orientation: N/A 50 -.. 40 '*' 30 20 10 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE V (WELD) CVGrapl16.02: Hype!bolic Tangent Cun'e Printecl on I0/16/2015 11:15 AM A = 50.00 B = 50.00 C = 113.26 TO = 58.30 D = 0.00 Correlation Coefficient= 0.986 Equation is A+ B * [Tanh((T-TO)/(C+D1))] Upper Shelf%Shear= 100.00 (Fixed) Lower Slielf o/..Shear = 0.00 (Fixed) Temperature al 50% shear= 58.40 , *: Material: WELD Capsule:V C-115 Hcat:442011 . v 0 -300 -200 -100 CVGraph 6.02 WCAP-18092-NP 0 100 200 300 400 500 Temperature {° F) 10/16/2015 600 Page 1/2 May2016 Revision 1 Plant: Brnidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 :Material: WEID Capsule:V BRAIDWOOD UNIT 1 CAPSULE V (WELD) Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear -* -30 20.0 17.4 -10 20.0 23.0 5 25.0 28.l 15 35.0 31.8 25 40.0 35.7 35 45.0 39.9 50 40.0 46.3 72 50.0 56.0 100 75.0 67.6 125 75.0 76.5 150 75.0 83.5 185 90.0 90.4 210 100.0 93.6 220 100.0 94.6 250 100.0 96.7 CVGraph 6.02 10/1612015 WCAP-18092-NP C-116 Heat: 442011 DilTl'rential 2.62 -3.04 -3.07 3.23 4.29 5.14 -6.34 -6.02 7.38 -1.46 -8.47 -0.36 6.42 5.44 3.28 Page2/2 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE V (HEAT-AFFECTED ZONE) CVGraph 6.02: Hypetbolic Tangent Curve Printed on I0/16/2015 11 :16 AM A= 63.60 B = 61.40 C = 126.92 TO = 11.95 D = 0.00 Correlalion Coefficient= 0.904 Equalionis A+ B * [Tanh((f-TO)/(C+D1))] Upper Shelf Energy = 125.00 (Fi.,,;cd) Lower ShelfEnergy = 2.20 (Fi.,,;ed) Temp@.30 ft-lbs=-66.00° F Temp@.i5 ft-lbs=-52.10° F Temp@50 ft-lbs=-16.60°.F Plant: Braidwood 1 Orientation: N/A Material: SA508CL3 Capsulc:V Heat: (49D867/49C813)-1-1 180 ....... ------....... o** .. ,. ,.,,, 0 120 .c ; t -*

  • 9 -c? * -_

eo -I. : .... 0-, -. .. -.... .. -.... u 60 *'./1p* 40

      • .*********
x 20 o .........
  • _-_

.. ____ ;_*-_** ...... ___ ; ______ ._: _______

  • _______ . ______ -_;_*------**_--_._**--

... -C-117 _300 -200 -100 0 100 200 300 400 soo 600 Temperature {° F) CVGraph 6.02 10/16/2015 WCAP-18092-NP Page 112 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:V C-118 Heat: £49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE V (BEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) Input CVN -110 3.5 -90 25.0 -75 37.0 -50 38.0 -30 45.0 5 46.0 50 113.0 72 72.0 100 104.0 125 98.0 183 99.0 -* 210 91.0 220 1220 220 146.0 250 167.0 CVGraph 6.02 10/16/2015 WCAP-18092-NP Computed CVN 17.9 22.7 27.1 35.8 44.0 60.2 81.5 90.7 100.5 107.3 117.2 ll9.8 120.5 120.5 122.2 Differential -14.38 2.28 9.92 2.20 0.99 -14.24 31.52 -18.66 3.54 -9.30 -18.23 -28.81 1.46 25.46 44.82 --Page 212 May2016 Revision 1 Westinghouse Non-Proprietary Class 3 C-119 BRAIDWOOD UNIT 1 CAPSULE V (HEAT-AFFECTED ZONE) Plant: Braidwood l Orieniation: NIA 80 ..... 70 * -* I 60 ... " 50 .... --*-* 40 -200 CVGr.iph6.02 WCAP-18092-NP 'CVGraph 6.02: J::lypelbolic Tangent Cu"'e Ptjnted on 10/16/2015 11:16 AM A = 35.40 B = 34.40 C = 118.31 TO = -6.84 D = 0.00 Conelation Coefficient= 0.964 Equation is A+ B * (Tanh((T*TO)/(C+Dl))] Upper ShclfL.E. = 69.80 Lower ShelfL.E. = 1.00 (Fb:ed) Tempf@35 mils= .s.20° F Material: SA508CL3 Capsule:V

    • I 0 ........ . , .. "\' Heat: {49D867/49C813]-1-1 I -100 0 100 200 300 400 500 600 Temperature

{° F) 10/16/2015 Page 1/2 May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule: V C-120 Heat: f49D867/49C813]-1-l BRAIDWOOD UNIT 1 CAPSULE V (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature {° F) Input L. E. -110 2.0 -90 20.0 -75 20.0 -50 26.0 -30 29.0 5 31.0 50 63.0 72 46.0 100 66.0 125 59.0 183 65.0 210 63.0 220 68.0 220 71.0 250 74.0 CVGraph 6.02 WCAP-18092-NP Computed L. E. 11.2 14.5 17.5 23.4 28.7 38.8 50.8 55.4 60.1 63.1 67.1 68.l 68.3 68.3 68.9 10/16/2015 Differential -9.24 5.45 2.48 2.62 0.25 -7.83 12.24 -9.44 5.91 -4.11 -2.12 -5.08 -0.34 2.66 5.09 Page2/2 May2016 Revision 1 ,-1 Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 CAPSULE V (HEAT ZONE) Plant: Braidwood 1 Orieniation: N/A 100 .. 90 . 80 .. 70 ;;.. = 60 ..c 00 50 = . (J .. 40 ... 30 20 ... CVGrapl! 6.02: Hypeibolic Tangent Curve Printed on 10/16/2015 11:17 AM A= 50.00B=50.00C=127.8.2 TO= 27.67 D = 0.00 Correlation Coefficient= 0.988 Equation is A+ B * (Tanh((I'-TO)/(C+D1))] Upper Shelf%Shear= 100.00 (Fixed) Lower Shelf o/oSbear = 0.00 (Fixed) Temperature at 50% Sl1ear= 27.70 Material: SA508CL3 Capsule:V

      • ! ., ... 0 ..
  • I : Heat: (49D867/49C813]-1-1

'; . .-. 10 ; 0 I I I I C-121 -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGmpl! 6.02 10/16/2015 Page 112 WCAP-18092-NP May2016 Revision 1 Plant: Braidwood 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL3 Capsule:V C-122 Heat: f49D867/49C813]-1-1 BRAIDWOOD UNIT 1 CAPSULE V (BEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) Input %Shear -110 10.0 -90 15.0 -75 25.0 -50 25.0 -30 30.0 5 30.0 50 65.0 72 60.0 100 80.0 125 75.0 183 95.0 210 100.0 220 100.0 220 100.0 250 100.0 CVGraph 6.02 10/1612015 WCAP-18092-NP Computed %Shear 10.4 13.7 16.7 22.9 28.9 41.2 58.6 66.7 75.6 82-1 91.9 94.5 95.3 95.3 97.0 Differential -0.39 1.31 8-29 2.12 1-14 -11.23 6.35 -6.68 4.38 *_7_10 3.09 5.45 4.70 4.70 2.99 --Page 2/2 May2016 Revision 1 _ _J APPENDIXD Westinghouse Non-Proprietary Class 3 BRAIDWOOD UNIT 1 UPPER-SHELF ENERGY EVALUATION D.1 EVALUATION D-1 Per U.S. NRC Regulatory Guide 1.99, Revision 2 [Ref. D-1], the Charpy upper-shelf energy (USE) is assumed to decrease as a function of fluence and copper content as indicated in Figure 2 of the Guide (Figure D-1 of this appendix) when surveillance data is not used. Linear interpolation is permitted. In addition, if surveillance data is to be used, the decrease in USE may be obtained by plotting the reduced plant surveillance data on Figure 2 of the Guide (Figure D-1 of this appendix) and fitting the data with a line drawn parallel to the existing lines as the upper bound of all the data. This line should be used in preference to the existing graph. The end-of-license extension (57 effective full-power years [EFPY]) USE of the vessel materials can be predicted using the corresponding quarter-thickness (1/4T) fluence projection, the copper content of the beltline materials and/or the results of the capsules tested to date using Figure 2 in U.S. NRC Regulatory Guide 1.99, Revision 2 [Re£ D-1]. The Braidwood Unit I reactor vessel beltline region thickness is 8.5 inches per Reference D-3. Calculation of the 1/4T vessel fluence values at 57 EFPY for the beltline and extended beltline materials is shown in Table D-1. The following pages present the Braidwood Unit 1 USE evaluation. Figure D-1, as indicated above, is used in making predictions in accordance with U.S. NRC Regulatory Guide 1.99, Revision 2 [Ref. D-1 ]. Table D-2 provides the predicted USE values for 57 EFPY (end-of-license extension). WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 D-2 TableD-1 Braidwood Unit 1 Pressure Vessel 1/4T Fast Neutron Fluence Calculation 57 EFPY Fluence(x 10 19 n/cm 2 , Material E> 1.0MeV) Surface 1/4Tca> Beltline Materials Nozzle Shell Forlrin!!: 1.12 0.673 Intermediate Shell Forl!in!!: 3.22 1.93 Lower Shell Forlrin!!: 3.21 1.93 Nozzle to Intermediate Shell Forging 1.12 0.673 Circumferential (Circ.) Weld Seam Intermediate to Lower Shell Forging Circ. 3.11 1.87 Weld Seam Extended Beltline Materials Inlet Nozzle Forgings 0.0123 Note (b) Outlet Nozzle Forgings 0.00928 Note (b) Inlet Nozzle to Nozzle Shell Forging Circ. 0.0123 Note (b) Weld Seams Outlet Nozzle to Nozzle Shell Forging Circ. 0.00928 Note (b) Weld Seams Notes: (a) l/4T fluence values were calculated from the surface fluence, the reactor vessel beltline thickness (8.5 inches) and f

  • e-0*24 (xl from U.S. NRC Regulatory Guide 1.99, Revision 2, where x =the depth into the vessel wall (inches). (b) Consistent with the time-limited aging analysis (TLAA) evaluation as documented in Reference D-3, the maximum fluence values for the extended beltline materials at 57 EFPY were less than the minimum fluence value displayed on Figure 2 of U.S. NRC Regulatory Guide 1.99, Revision 2. The minimum fluence value (2 x 10 17 n/cm 2) displayed on Figure 2 of U.S. NRC Regulatory Guide 1.99, Revision 2 was conservatively used to determine the projected USE decrease; see Table D-2. WCAP-18092-NP May2016 Revision 1 w .5 c. 0 a.. 1 0 c Q) 1 Cl J9 c: Q) u a.. Q) c.. Westingh ou se N o n-Proprietary Class 3 D-3 Limiting Forging Percent USE Decrease 17% from Capsule V I Li miting W eld Percent U SE Decrease I (a xi al-orientation) 10% from Capsule W 0.0 '---*---1--. -----. -

-,__ "lo Copper '-,__ Bi!H M1 l a l W!!.st ...... I !"-. I .,__ 0.35 0.30 ' 1-..... I 0.30 I I .,__ 0.25 Uppe r Limit I I 0.25 0.20 --.,__ 1 '-r 0.20 0.15 \ -I 0.1 5 I 0.10 -----..-.,__ -I o.o5 -.... -..-0.10 1--' -i---:::;;;;..- -_... ... i-.-\ --"'rsl-F orging t --::::::::-.


... -i----.... i.--... / L ine i-.... ----_... ... .... v -.... =---------,._I' -fr ---i--____. i.-.... " ... .-.;--_.--..........

--t -:_ ----.... ... ---I lo"' i..-.... ,,.._...--i.--::.-:: -.... ,,,,,,,,,,_ i---i-i.-i----i.-.... ------... ... -----.... ...---__.. ._ i--.... ,_ ..... r---W eld I ... i-------... ---i-i--i-Line 0.0 -----* ,....... -----I __,.._ --.._ ----i--------i-....... --------I ntermedi a te and L ower Sh e ll -----------Forgings 57 EFPY 1/4T -----i-i--Fluen c e = 1.93 x 10 1 9 n/cm 2 -------i---*surve ill ance M a t e r i a l: No zz l e Shell Forging an d Nozzle to --L ower She ll Fo rging Intermedi at e Shell Forgi n g Circ. Weld ............... i-..... 57 EFPY 1/4 T Fluence = 0.673 x 10 1 8 n/cm 2 *Surve ill ance M a t e ri a l* I I I I -W e l d Heat# 4420 11 1-1... -Ou tl et No zzle s a n d Ou t let N oz zl e to No z zl e Shell F orgi n g Gire. We l ds ill 57 EFPY 1/4T F l uence < 0.020 x 10 1 9 n/cm 2 ...... J 1.0 ,. 1.00E+17 I 1.00E+18 1.0 0E+1 9 / 1.0 0E+2 0 Inlet Nozzles a nd Inl et N o zzl e to Intermediate to L ower Shell Fo rging G i r e. No zzle Sh ell Forging Gire. W elds Neutron Fluence, n/cm2 (E > 1 MeV} W eld 57 E F PY 1/4T 57 EFPY 1/4 T Flu en c e < 0.0 2 0 x 10 1 9 n/c m 2 F lu ence = 1.87 x 1 0 1 9 n/cm 2 Figure D-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence WCAP-18092-NP May2016 Revision 1 Westinghouse Non-Proprietary Class 3 D-4 TableD-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY Weight l/4T EOLE Fluence U nirradiated Projected Projected Material (x 10 19 n/cm 2 , USE Decrease EOLE %Cu E > 1.0MeV) USE (ft-lb) (%) USE (ft-lb) Position i.2t*> Beltline Materials Nozzle Shell Forging 0.04 0.673 155 17.5 128 Intermediate Shell Forging 0.05 1.93 122 22.0 95 Lower Shell Forging 0.05 1.93 135 22.0 105 Nozzle to Intermediate Shell Forging Circ. 0.04 0.673 90 17.5 74 Weld Seam WF-645 (Heat# H4498) Intermediate to Lower Shell Forging Circ. 0.03 1.87 80 22.0 62 Weld Seam WF-562 (Heat# 442011) Extended Beltline Materials Inlet Nozzle 01-001 0.09 Note (c) 141 7.5 130 Inlet Nozzle 01-002 0.09 Note (c) 144 7.5 133 Inlet Nozzle 02-001 0.07 Note (c) 130 7.5 120 Inlet Nozzle 02-002 0.07 Note (c) 115 7.5 106 Outlet Nozzle 01-001 0.13 Note (c) 121 10.0 109 Outlet Nozzle 01-003 0.09 Note (c) 125 7.5 116 Outlet Nozzle 02-001 0.08 Note (c) 147 7.5 136 Outlet Nozzle 02-002 0.08 Note (c) 143 7.5 132 Inlet Nozzle to Nozzle Shell Forging Circ. 0.29 Note (c) 72 18.0 59 Weld Seams WF-598 <Heat# 41403) Outlet Nozzle to Nozzle Shell Forging Circ. 0.29 Note (c) 72 18.0 59 Weld Seams WF-598 <Heat# 41403) Outlet Nozzle to Nozzle Shell Forging Circ. 0.29 Note (c) 73 18.0 60 Weld Seams WF-588 <Heat# 41403) Outlet Nozzle to Nozzle Shell Forging Circ. 0.25 Note (c) 85 16.0 71 Weld Seams WF-579 <Heat# 442010) Position 2.2(b> Lower Shell Forging 0.05 1.93 135 15.0 115 Intermediate to Lower Shell Forging Circ. 0.03 1.87 80 10.0 72 Weld Seam WF-562 ffieat # 442011) Notes: (a) Calculated using the Cu wt. % values and 1/4T fluence value for each material and U.S. NRC Regulatory Guide l.99, Revision 2, Position 1.2. In calculating Position 1.2 percent USE decreases, the base metal and weld Cu weight percentages were conservatively rounded up to the nearest line in U.S. NRC Regulatory Guide l.99, Revision 2 , Figure 2. (b) Calculated using surveillance capsule measured percent decrease in USE from Table 5-10 and U.S. NRC Regulatory Guide 1.99, Revision 2, Position 2.2; see Figure D-1. (c) The minimum fluence value (2 x 10 17 n/cm 2) displayed on Figure 2 of U.S. NRC Regulatory Guide l.99, Revision 2 was conservatively used to determine the projected USE decrease. WCAP-18092-NP May 2016 Revision 1 Westinghouse Non-Proprietary Class 3 D-5 USE Conclusion As shown in Table D-2, all of the Braidwood Unit 1 reactor vessel beltline and extended beltline materials are projected to remain above the USE screening criterion of 50 ft-lbs (per 10 CFR 50, Appendix G [Ref. D-2]) at 57 EFPY. D.2 REFERENCES D-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1. 99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, May 1988. D-2 Code of Federal Regulations, 10 CFR 50, Appendix G, Fracture Toughness Requirements, Federal Register, Volume 60, No. 243, December 19, 1995. D-3 Westinghouse Report WCAP-17607-NP, Revision 0, Braidwood Station Units 1 and 2 Reactor Vessel Integrity Evaluation to Support License Renewal Time-Limited Aging Analysis, December 2012. WCAP-18092-NP May2016 Revision 1}}