NL-14-211, Sequoyah, Units 1 and 2 - Expedited Seismic Evaluation Process Report (CEUS Sites) Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fuk: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
Line 1: Line 1:
{{Adams
#REDIRECT [[CNL-14-211, Sequoyah, Units 1 and 2 - Expedited Seismic Evaluation Process Report (CEUS Sites) Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fu]]
| number = ML14365A055
| issue date = 12/22/2014
| title = Sequoyah, Units 1 and 2 - Expedited Seismic Evaluation Process Report (CEUS Sites) Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fuku
| author name = Shea J W
| author affiliation = Tennessee Valley Authority
| addressee name =
| addressee affiliation = NRC/Document Control Desk, NRC/NRR/DORL
| docket = 05000327, 05000328
| license number = DPR-077, DPR-079
| contact person =
| case reference number = CNL-14-211
| document type = Letter type:NL
| page count = 64
| project =
| stage = Response to RAI
}}
 
=Text=
{{#Wiki_filter:Tennessee Valley Authority, 1101 Market Street, Chattanooga, Tennessee 37402 CNL-14-211  
 
December 22, 2014
 
10 CFR 50.4 10 CFR 50.54(f)
 
Attn: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001  Sequoyah Nuclear Plant, Units 1 and 2 Facility Operating License Nos. DPR-77 and DPR-79 NRC Docket Nos. 50-327 and 50-328
 
==Subject:==
Tennessee Valley Authority's Sequoyah Nuclear Plant Expedited Seismic Evaluation Process Report (CEUS Sites) Response to NRC Request for  
 
Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi
 
Accident 
 
==References:==
NRC Letter, "Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3, and 9.3, of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident,"
dated March 12, 2012 (ML12056A046)
On March 12, 2012, the U.S. Nuclear Regulatory Commission (NRC) issued the referenced letter to all power reactor licensees and holders of construction permits in active or deferred status. Enclosure 1 of the referenced letter requested each addressee located in the Central and Eastern United States (CEUS) to submit a Seismic Hazard Evaluation that includes "an interim evaluation and actions taken or planned to address the higher seismic hazard relative to the design basis, as appropriate, prior to completion of the risk evaluation."
 
In accordance with the referenced letter above, TVA is enclosing the Expedited Seismic Evaluation Process (ESEP) Report for Sequoyah Nuclear Plant.
 
Enclosure 2 provides a list of new regulatory commitments as described in Section 8.0 of the enclosed ESEP Report.
 
ENCLOSURE 1 EXPEDITED SEISMIC EVALUATION PROCESS (ESEP) REPORT FOR SEQUOYAH NUCLEAR PLANT
 
Page1 EXPEDITED SEISMIC EVALUATION PROCESS (ESEP) REPORT FOR SEQUOYAH NUCLEAR PLANT SequoyahNuclearPlantESEPReport  Page2 TableofContents PageLISTOFTABLES............................................................................................................................................4LISTOFFIGURES..........................................................................................................................................51.0PURPOSEANDOBJECTIVE...............................................................................................................62.0BRIEF
 
==SUMMARY==
OFTHEFLEXSEISMICIMPLEMENTATIONSTRATEGIES......................................63.0EQUIPMENTSELECTIONPROCESSANDESEL..................................................................................83.1EquipmentSelectionProcessandESEL..............................................................................83.1.1ESELDevelopment...............................................................................................93.1.2PowerOperatedValves.....................................................................................103.1.3PullBoxes...........................................................................................................103.1.4TerminationCabinets.........................................................................................103.1.5CriticalInstrumentationIndicators....................................................................103.1.6Phase2and3PipingConnections.....................................................................103.2JustificationforUseofEquipmentThatisNotthePrimaryMeansforFLEXImplementation................................................................................................................114.0GROUNDMOTIONRESPONSESPECTRUM(GMRS)......................................................................114.1PlotofGMRSSubmittedbytheLicensee.........................................................................114.2ComparisontoSSE............................................................................................................135.0REVIEWLEVELGROUNDMOTION(RLGM)...................................................................................145.1DescriptionofRLGMSelected..........................................................................................145.2MethodtoEstimateIn StructureResponseSpectra(ISRS)..............................................156.0SEISMICMARGINEVALUATIONAPPROACH.................................................................................176.1SummaryofMethodologiesUsed....................................................................................176.2HCLPFScreeningProcess..................................................................................................186.3SeismicWalkdownApproach...........................................................................................196.3.1WalkdownApproach..........................................................................................196.3.2ApplicationofPreviousWalkdownInformation...............................................206.3.3SignificantWalkdownFindings..........................................................................206.4HCLPFCalculationProcess................................................................................................216.5FunctionalEvaluationsofRelays......................................................................................216.6TabulatedESELHCLPFValues(IncludingKeyFailureModes)..........................................227.0INACCESSIBLEITEMS.....................................................................................................................227.1IdentificationofESELItemInaccessibleforWalkdowns..................................................227.2PlannedWalkdown/EvaluationSchedule/CloseOut....................................................238.0ESEPCONCLUSIONSANDRESULTS...............................................................................................248.1SupportingInformation....................................................................................................24 SequoyahNuclearPlantESEPReport  TableofContents(continued)Page Page3 8.2IdentificationofPlannedModifications...........................................................................258.3ModificationImplementationSchedule...........................................................................258.4SummaryofRegulatoryCommitments............................................................................2
 
==69.0REFERENCES==
..................................................................................................................................27ATTACHMENTA-SEQUOYAHNUCLEARPLANTESEL.............................................................................A 1ATTACHMENTB-ESEPHCLPFVALUESANDFAILUREMODESTABULATIONFORSEQUOYAHNUCLEARPLANT.........................................................................................................B 1 SequoyahNuclearPlantESEPReport  Page4 List of Tables PageTABLE4 1:GMRSFORSEQUOYAHNUCLEARPLANT...............................................................................11TABLE4 2:SSEFORSEQUOYAHNUCLEARPLANT...................................................................................13TABLE5 1:2XSSEFORSEQUOYAHNUCLEARPLANT..............................................................................15TABLE8 1:
 
==SUMMARY==
OFREGULATORYCOMMITMENTS......................................................................26TABLEA 1:EXPEDITEDSEISMICEQUIPMENTLIST(ESEL)FORSEQUOYAHNUCLEARPLANT................A 2TABLEB 1:ESEPHCLPFVALUESANDFAILUREMODESFORSEQUOYAHNUCLEARPLANT...................B 2 SequoyahNuclearPlantESEPReport  Page5 List of Figures PageFIGURE4 1:GMRSFORSEQUOYAHNUCLEARPLANT.............................................................................12FIGURE4 2:GMRSTOSSECOMPARISONFORSEQUOYAHNUCLEARPLANT.........................................14FIGURE5 1:2XSSEFORSEQUOYAHNUCLEARPLANT............................................................................15FIGURE5 2:NUREG/CR 0098(0.3G)VERSUSSEQUOYAHNUCLEARPLANTSSE....................................16FIGURE6 1:84THPERCENTILEOFTHEENSEMBLEOFTHE30RESPONSESPECTRA..............................18FIGURE6 2:SEQUOYAHNUCLEARPLANTIPEEEADJUSTEDHCLPFVSESEPTARGETHCLPF..................18 SequoyahNuclearPlantESEPReport  Page6 1.0 PURPOSEANDOBJECTIVEFollowingtheaccidentattheFukushimaDai ichinuclearpowerplantresultingfromtheMarch11,2011,GreatTohokuEarthquakeandsubsequenttsunami,theNuclearRegulatoryCommission(NRC)establishedaNear TermTaskForce(NTTF)toconductasystematicreviewofNRCprocessesandregulationsandtodetermineiftheagencyshouldmakeadditionalimprovementstoitsregulatorysystem.TheNTTFdevelopedasetofrecommendationsintendedtoclarifyandstrengthentheregulatoryframeworkforprotectionagainstnaturalphenomena.Subsequently,theNRCissueda50.54(f)letteronMarch12,2012[1],requestinginformationtoassurethattheserecommendationsareaddressedbyallU.S.nuclearpowerplants.The50.54(f)letterrequeststhatlicenseesandholdersofconstructionpermitsunder10CFRPart50reevaluatetheseismichazardsattheirsitesagainstpresent dayNRCrequirementsandguidance.Dependingonthecomparis onbetweenthereevaluatedseismichazardandthecurrentdesignbasis,furtherriskassessmentmayberequired.Assessmentapproachesacceptabletothestaffincludeaseismicprobabilisticriskassessment(SPRA),oraseismicmarginassessment(SMA).Basedupontheassessmentresults,theNRCstaffwilldeterminewhetheradditionalregulatoryactionsarenecessary.ThisreportdescribestheExpeditedSeismicEvaluationProcess(ESEP)undertakenforSequoyahNuclearPlantUnits1and2.TheintentoftheESEPistoperformaninterimactioninresponsetotheNRC's50.54(f)lettertodemonstrateseismicmar ginthroughareviewofasubsetoftheplantequipmentthatcanbereliedupontoprotectthereactorcorefollowingbeyonddesignbasisseismicevents.TheESEPisimplemente dusingthemethodologiesintheNRCendorsedguidanceinElectricPowerResearchInstitute(EPRI)3002000704,SeismicEvaluationGuidance:AugmentedApproachfortheResolutionofFukushimaNear TermTaskForceRecommendation2.1:Seismic[2].TheobjectiveofthisreportistoprovidesummaryinformationdescribingtheESEPevaluationsandresults.ThelevelofdetailprovidedinthereportisintendedtoenabletheNRCtounderstandtheinputsused,theevaluationsperformed,andthedecisionsmadeasaresultoftheinterimevaluations.ThisESEPreportisforbothSequoyahUnit1andUnit2whichareidentical.Unlessnotedotherwise,alldescriptionsinthisreportapplytobothUnit1andUnit2structures,systems,andcomponents.Forthisreason,unitdesignationsarenotincludedonequipmentunitidentificationsintheFLEXstrategyorExpeditedSeismicEquipmentList(ESEL)descriptions.2.0 BRIEF
 
==SUMMARY==
OFTHEFLEXSEISMICIMPLEMENTATIONSTRATEGIESTheSequoyahFLEXstrategiesforReactorCoreCoolingandHeatRemoval,ReactorInventoryControl,andContainmentFunctionaresummarizedbelow.ThissummaryisderivedfromtheSequoyahOverallIntegratedPlan(OIP)inResponsetotheMarch12,2012,CommissionOrderEA 12 049submittedinFebruary2013[3][]andisconsistentwiththethirdsixmonthstatusreportissuedtotheNRCinAugust2014[5].ForAtPowerConditionsCoreCoolingandHeatRemovalReactorcorecoolingandheatremovalisachievedviasteamreleasefromtheSteamGenerators(SGs)withSGmakeupfromtheTurbineDrivenAuxiliaryFeedwaterPump(TDAFWP)duringFLEXPhase1withsuctionfromtheCondensateStorageTank(CST)[5].LocalcontrolandoperationoftheSG SequoyahNuclearPlantESEPReport  Page7 AtmosphericReliefValves(ARVs)andtheTDAFWPsystemisavailableandproceduralizedsothatoperationfromthemaincontrolroomisnotrequired.ToprovideanunlimitedsupplyofwaterforcorecoolingduringPhase2,lowpressureFLEXPumpswillbestagedattheIntakePumpStation(IPS)andtakesuctionfromtheintakechannelanddischargetofour,Emerge ncyRawCoolingWater(ERCW)FLEXconnectionsinsidetheIPS.TheywillbeusedtopressurizetheERCWheaders,whichcanthenbeusedfordirectsupplytotheTDAFWPsuction.WhentheTDAFWPbecomesunavailableduetoreductioninavailablesteampressure,aportableintermediatepressureFLEXpumpwillbeusedtocontinuetosupplyfeedwatertotheSGs.SuctionwouldbefromanERCWFLEXconnection.ThedischargeisroutedbyhosetotheTDAFWPdischargeFLEXconnectionsdownstreamofFlowElement3 142.ReactorInventoryControlForPhase1,ReactorCoolantSystem(RCS)makeupwillbeprovidedbythecoldlegaccumulators.RCSdepressurizationandcooldownwillbeinitiatedassoonaspossibletoreducetheReactorCoolantPump(RCP)sealleakagerate.InPhase2,RCSmakeupwillbeprovidedbyrepoweringexistingSafetyInjection(SI)pumpsandusingthepumpstoinjectboratedwaterasneededintotheRCS.TheSIpumpswillberepoweredwitha6.9kVAFLEXDieselGenerator.TheSIpumpscanbemanuallycontrolledwithhandswitchesonPanelM 6.ThesourceofRCSmakeupwillbetheRefuelingWaterStorageTank(RWST).LaterinPhase2,whentheRCSisdepressurizedsufficiently,ahigh pressureFLEXpumpwillbeusedtoinjectboratedwaterintotheRCSthroughSIpipi ng.ThesepumpswouldbealignedwithasuctionhosefromRWSTFLEXconnectionsandadischargehoseroutedtoaSIpumpdischargeFLEXheaderconnection.ThehighpressureFLEXpumpsarefedfromandoperatedfromthe480vControlandAuxiliaryBuilding(C&A)VentBoards1A1 Aand2A1 A.ContainmentFunctionTherearenoPhase1FLEXactionstomaintaincontainmentintegrity.TheprimaryPhase2FLEXstrategyforcontainmentintegrityentailsrepoweringonetrainofhydrogenigniters.Phase2mayentailrepoweringtheContainmentAirReturnFansinsideofcontainment.SupportSystemsKeyreactorparameterstobemonitoredduringFLEXimplementationaremeasuredandindicatedbyinstrumentationthatispoweredbythe125VDCvitalbattery.DuringPhase1,thevitalbatteriesprovidepowe rtoneededinstrumentationthroughthevitalbatteryboards,vitalinvertersandvitalinstrumentpowerboards.DuringPhase2,powertovitalinstrumentationwillbemaintainedbysupplying480VACpowertothevitalbatterychargersthroughnew,fused,FLEXdistributionpanels,whichwillbeconnecteddirectlytothebatterychargers.480VACpowerwillbesu ppliedtothedistributionpanelsbypre staged,480VACFLEXdieselgeneratorsthatwillbelocatedontheroofoftheauxiliarybuilding.DuringtheearlyportionofPhase2,the6.9kVswitchgearand6.9kVShutdownBoardswillbeenergizedwithapre staged6.9kVFLEXdieselgeneratorthatwillbelocatedintheadditionaldieselgeneratorbuilding.ThiswillallowreenergizingtheSIpumpsforinventorycontrol.
SequoyahNuclearPlantESEPReport  Page8 ForShutdownConditionsDuringshutdown,bothsafetyfunctions(maintainingcorecoolingandheatremovalandmaintainingRCSinventorycontrol)areaccomplishedbythesameFLEXstrategyandrelyonthesameFLEXequipmentneededfortheatpowercondition.Corecoolingandheatremovalisachievedbycoolantboiloff.InjectionofboratedwatertotheRCSisneededtoreplenishthecoolantlosttoboiling.ForshutdownconfigurationswheretheRCSisdepressurizedandopenbutthecavityisnotflooded,gravityfeedfromtheRWSTmaybeusedtomaintainRCSinventoryinPhase1.AflowpathfromtheRWSTtotheRCSwouldbeestablished.IfgravityfeedisnotsufficienttomakeupcoolanttotheRCS,apre staged,intermediatepressureFLEXpumpwillbeusedtomaintainRCSinventory(inPhase2).Sufficientflushingflowwillbeneededtopreventboronprecipitation.ConnectionoftheFLEXpumpdischargehoseswillbetothesafetyinjectionpipingusingth esameFLEXconnectionsplannedforRCSinventorycontrolunderatpowerconditions.TheFLEXconnectionsareshownin[]ForshutdownconfigurationswheretheRCSheadisoffandthecavityisfilled,therewillbesufficienttimetomobilizeportableFLEXpumpstoprovideRCSmakeupfromtheBATsoranalternateboratedwatersource.ThesameFLEXconnectionstothesafetyinjectionsystempipingwillbeusedinthismode.Inaccordancewith[7](footnotetoTableD 1),someshutdownconfigurationswheretheRCSisclos edorpressurizedsothatinjectionofboratedwatercannotbeaccomplishedareconsideredoutsideofESEPbecausetheseconfigurationshaveshortdurations.3.0 EQUIPMENTSELECTIONPROCESSANDESELTheselectionofequipmentfortheESELfollowedtheguidelinesofEPRI3002000704[2].TheESELforSequoyahUnits1and2ispresentedinAttachmentA.Inform ationpresentedinAttachmentAisdrawnfrom[8].3.1 EquipmentSelectionProcessandESELTheselectionofequipmenttobeincludedontheESELwasbasedoninstalledplantequipmentcreditedintheFLEXstrategiesduringPhase1,2and3mitigationofaBeyondDesignBasisExternalEvent(BDBEE),asoutlinedintheSequoyahOIPinResponsetotheMarch12,2012,CommissionOrderEA 12 049[3]andisconsistentwiththesecondandthirdsixmonthstatusreportsissuedtotheNRC[4][5].TheOIPprovidestheSequoyahFLEXmitigationstrategyandservesasthebasisforequipmentselectedfortheESEP.Thescopeof"installedplantequipment"includesequipmentrelieduponfortheFLEXstrategiestosustainthecriticalfunctionsofcorecoolingandcontainmentintegrityconsistentwiththeSequoyahOIP.FLEXrecoveryactionsareexcludedfromtheESEPscopeperEPRI3002000704[2].TheoveralllistofplannedFLEXmodificationsandthescopeforconsiderationhereinislimitedtothoserequiredtosupportcorecooling,reactorcoolantinventoryandsubcriticality,andcontainmentintegrityfunc tions.Portableandpre stagedFLEXequipment(notpermanentlyinstalled)areexcludedfromtheESELperEPRI3002000704.TheESELcomponentselectionfollowedtheEPRIguidanceoutlinedinSection3.2ofEPRI3002000704.1. ThescopeofcomponentsislimitedtothatrequiredtoaccomplishthecorecoolingandcontainmentsafetyfunctionsidentifiedinTable3 2ofEPRI3002000704.Theinstrumentationmonitoringrequirementsforcorecooling/containmentsafetyfunctions SequoyahNuclearPlantESEPReport  Page9 arelimitedtothoseoutlinedintheEPRI3002000704guidance,andareasubsetofthoseoutlinedintheSequoyahOIP.2. ThescopeofcomponentsislimitedtoinstalledplantequipmentandFLEXconnectionsnecessarytoimplementtheSequoyahOIP,asdescribedinSection2.3. ThescopeofcomponentsassumesthecreditedFLEXconnectionmodificationsareimplemented,andarelimitedtothoserequiredtosupportasingleFLEXsuccesspath(i.e.,either"Primary"or"Backup/Alternate").4. The"Primary"FLEXsuccesspathistobespecified.Selectionofthe"Backup/Alternate"FLEXsuccesspathmustbejustified.5. Phase3copingstrategiesareincludedintheESEPscope,whereasrecoverystrategiesareexcluded.6. Structures,systems,andcomponentsexcludedpertheEPRI3002000704guidanceare: Structures(e.g.containment,reactorbuilding,controlbuilding,auxiliarybuilding,etc.). Piping,cabling,conduit,HVAC,andtheirsupports. Manualvalvesandrupturedisks. Power operatedvalvesnotrequiredtochangestateaspartoftheFLEXmitigationstrategies. Nuclearsteamsupplysystemcomponents(e.g.RPVandinternals,reactorcoolantpumpsandseals,etc.).7. Forcasesinwhichneithertrainwasspecifiedasaprimaryorback upstrategy,thenonlyonetraincomponent(generally'A'train)isincludedintheESEL.3.1.1 ESELDevelopmentTheESELwasdevelopedbyreviewingtheSequoyahNuclearPlantOIP[3][4][5]todeterminethemajorequipmentinvolvedintheFLEXstrategies.Furtherreviewsofplantdrawings(e.g.,PipingandInstrumentationDiagrams(P&IDs)andElectricalSingleLineDiagrams)wereperformedtoidentifytheboundariesoftheflowpathstobeusedintheFLEXstrategiesandtoidentifyspecificcomponentsintheflowpathsneededtosupportimplementationoftheFLEXstrategies.Boundarieswereestablishedatanelectricalormechanicalisolationdevice(e.g.,isolationamplifier,valve,etc.)inbranchcirc uits/branchlinesoffthedefinedstrategyelectricalorfluidflowpath.P&IDsweretheprimaryreferencedocumentsusedtoidentifymechanicalcomponentsandinstrumentation.TheflowpathsusedforFLEXstrategieswereselectedandspecificcomponentswereidentifiedusingdetailedequipmentandinstrumentdrawings,pipingisometrics,electricalschematicsandone linedrawings,systemdescriptions,designbasisdocuments,etc.,asnecessary.Hostcomponentswereidentifiedforsub assemblies.Cabinetsandequipmentcontrolscontainingrelays,contactors,switches,potentiometers,circuitbreakersandotherelectricalandinstrumentationthatcouldbeaffectedbyhigh frequencyearthquakemotionsandthatimpacttheoperationofequipmentintheESELarerequ iredtobeontheESEL.ThesecabinetsandcomponentswereidentifiedintheESEL.ForeachparametermonitoredduringtheFLEXimplementation,asingleindicationwasselectedforinclusionintheESEL.Foreachparameterindication,thecomponentsalongtheflowpathfrom SequoyahNuclearPlantESEPReport  Page10 measurementtoindicationwereincluded,sinceanyfailurealongthepathwouldleadtofailureofthatindication.ComponentssuchasflowelementswereconsideredaspartofthepipingandwerenotincludedintheESEL.3.1.2 PowerOperatedValvesPage3 3ofEPRI3002000704[2]notesthatpoweroperatedvalvesnotre quiredtochangestateaspartoftheFLEXmitigationstrategiesareexcludedfromtheESEL.Page3 2alsonotesthat"functionalfailuremodesofelectricalandmechanicalportionsoftheinstalledPhase1equipmentshouldbeconsidered(e.g.AuxiliaryFeedwater(AFW)trips)."Toaddressthisconcern,thefollowingguidanceisappliedintheSequoyahESELforfunctionalfailuremodesassociatedwithpoweroperatedvalves: Poweroperatedvalvesthatremainenergize dduringtheELAPevents(suchasDCpoweredvalves),wereincludedontheESEL. PoweroperatedvalvesnotrequiredtochangestateaspartoftheFLEXmitigationstrategieswerenotincludedontheESEL.TheseismiceventalsocausestheELAPevent;therefore,thevalvesareincapableofspuriousoper ationastheywouldbedeenergized. PoweroperatedvalvesnotrequiredtochangestateaspartoftheFLEXmitigationstrategiesduringPhase1,andarere energizedandoperatedduringsubsequentPhase2and3strategies,werenotevaluatedforspuriousvalveoperationastheseismiceventthatcausedtheELAPhaspassedbeforethevalvesarere powered.3.1.3 PullBoxesPullboxesweredeemedunnecessarytobeaddedtotheESELsasthesecomponentsprovidecompletelypassivelocationsforpullingorinstallingcables.Nobreaksorconnectionsinthecablingwereincludedinpullboxes.Pullboxeswereconsideredpartofconduitandcabling,whichwereexcludedinaccordancewithEPRI3002000704[2].3.1.4 TerminationCabinetsTerminationcabinets,includingcabinetsnecessaryforFLEXPhase2andPhase3connections,provideconsolidatedlocationsforpermanentlyconnectingmultiplecables.Theterminationcabinetsandtheinternalconnectionsprovideacompletelypassivefunction;however,thecabinetsareincludedintheESELtoensureindustryknowle dgeonpanel/anchoragefailurevulnerabilitiesisaddressed.3.1.5 CriticalInstrumentationIndicatorsCriticalindicatorsandrecordersaretypicallyphysicallylocatedonpanels/cabinetsandareincludedasseparatecomponents;however,seismicevaluationoftheinstrumentindicationmaybeincludedinthepanel/cabinetseismicevaluation(rule of the box).3.1.6 Phase2and3PipingCo nnectionsItem2inSection3.1abovenotesthatthescopeofequipmentintheESELincludes"-FLEXconnectionsnecessarytoimplementtheSequoyahOIP[3][4][5]asdescribedinSection2."Item3inSection3.1alsonotesthat"Thescopeofcomponentsassumesthecredit edFLEXconnectionmodificationsareimplemented,andarelimitedtothoserequiredtosupportasingleFLEXsuccesspath(i.e.,either"Primary"or"Backup/Alternate")."
SequoyahNuclearPlantESEPReport  Page11 Item6inSection3.1abovegoesontoexplainthat"Piping,cabling,conduit,HVAC,andtheirsupports"areexcludedfromtheESELscopeinaccordancewithEPRI3002000704[2].Therefore,pipingandpipesupportsassociatedwithFLEXPhase2andPhase3connectionsareexcludedfromthescopeoftheESEPevaluation.However,anyactivevalvesinFLEXPhase2andPhase3connectionflowpathareincludedintheESEL.3.2 JustificationforUseofEquipmentThatisNotthePrimaryMeansforFLEXImplementationTheSequoyahNuclearPlantESELisbasedontheprimarymeansofimplementingtheFLEXstrategy.Therefore,noadditionaljustificationisrequired.4.0 GROUNDMOTIONRESPONSESPECTR UM(GMRS)4.1 PlotofGMRSSubmittedbytheLicenseeTheSafeShutdownEarthquake(SSE)controlpointelevationisdefinedatthebaseoftheContainmentStructures,whichcorrespondstoadepthof64ft.(Elevation641ft.)andisthedeepeststructurefoundationelevationcontrolpoint.Table4 1showstheGM RSaccelerationsforarangeoffrequencies.TheGMRSatthecontrolpointelevationisshowninFigure4 1[9].Table4 1:  GMRSforSequoyahNuclearPlantFrequency(Hz)GMRS(g)1003.79E 01903.83E 01803.89E 01703.98E 01604.18E 01504.65E 01405.54E 01356.14E 01306.72E 01257.41E 01207.59E 01157.57E 0112.57.49E 01107.06E 0196.82E 0186.53E 0176.11E 0165.58E 0155.00E 01 SequoyahNuclearPlantESEPReport  Page12 Table4 1:GMRSforSequoyahNuclearPlant(Continued)Frequency(Hz)GMRS(g)44.05E 013.53.78E 0133.13E 012.52.50E 0122.30E 011.51.92E 011.251.68E 0111.42E 010.91.36E 010.81.25E 010.71.14E 010.69.98E 020.58.34E 020.46.67E 020.355.84E 020.35.00E 020.254.17E 020.23.34E 020.152.50E 020.1252.08E 020.11.67E 02  Figure4 1:GMRSforSequoyahNuclearPlant SequoyahNuclearPlantESEPReport  Page13 4.2 ComparisontoSSETheSSEwasdevelopedinaccordancewith10CFRPart100AppendixAthroughanevaluationofthemaximumearthquakepotentialfortheregionsurroundingthesite.Consideringthehistoricseismicityofthesiteregion,themaximumpotentialearthquakewasdeterminedtobeanintensityVIIIontheModifiedMercalliIntensityScaleof1931.TheSSEisdefinedintermsofaPeakGroundAccele ration(PGA)andadesignresponsespectrum.ConsideringasiteintensityofVIII,aPGAof0.18gwasestimated.TobeconsistentwithEPRIReportNos.EPRI3002000704[2]andEPRI1025287[22]thesitelicensingbasisearthquakeisusedfortheSSEtoGMRScomparisoninthisreport.ThedesignbasisearthquakewasusedinthepriorTVAsubmittal[9]whichconcludedthatariskanalysiswouldbeperformed.However,theapplicationofeitherthedesignbasisorthelicensingbasisSSEcurvetothepriorevaluationwillnotaltertheconclusion.TheSequoyahlicensingbasisSSEisbasedonapeakgroundaccelerationof0.18gwithaHousnerspectralshape.Table4 2showsthespectralaccelerationvaluesasafunctionoffrequencyforthe5%dampedhorizontalSequoyahlicensingbasisSSE.Table4 2:SSEforSequoyahNuclearPlantFrequency(Hz)SpectralAcceleration (g)1000.18250.18100.1950.272.50.261.00.140.50.08
 
SequoyahNuclearPlantESEPReport  Page14 Figure4 2:  GMRStoSSEComparisonforSequoyahNuclearPlantTheSSEandtheGMRSinthelowfrequencyrangeuptoabout2.5Hzareessentiallythesameamplitude.TheGMRSexceedstheSequoyahNuclearPlantSSEbeyondabout2.5Hz.AstheGMRSexceedstheSSEinthe1to10Hzrange,theplantdoesnotscreenoutoftheESEPaccordingtoSection2.2ofEPRI3002000704[2].ThetwospecialscreeningconsiderationsasdescribedinSection2.2.1ofEPRI3002000704,namelya)LowSeismicHazardSiteandb)NarrowBandExceedancesinthe1to10HzrangedonotapplyforSequoyahNuclearPlantandhenceHighConfidenceofaLowProbabilityofFailure(HCLPF)evaluationsarerequired.5.0 REVIEWLEVELGROUNDMOTION(RLGM)5.1 DescriptionofRLGMSelectedSection4ofEPRI3002000704[2]presentstwoapproachesfordevelopingtheRLGMtobeusedintheESEP:1. TheRLGMmaybederivedbylinearlyscalingtheSSEbythemaximumratiooftheGMRS/SSEbetweenth e1and10Hzrange(nottoexceed2xSSE).InstructureRLGMseismicmotionswouldbederivedusingexistingSSEbasedin structureresponsespectra(ISRS)withthesamescalefactor.2. Alternately,licenseeswhohavedevelopedappropriatestructural/soil structureinteraction(SSI)modelscapableofcalculatingISRSbasedonsiteGMRS/uniformhazardresponsespectrum(UHRS)inputmayopttousetheseISRSinlieuofscaledSSEISRS.BasedonareviewoftabulateddatainTable4 1andtheSSEvaluesinTable4 2,intherangebetw een1and10HzthemaximumratioofGMRStotheSSEiscalculatedtobe:SF max=SA GMRS (10HZ)/SASSE10Hz)=0.71g/0.19g=3.7 SequoyahNuclearPlantESEPReport  Page15 Sincethecomputedscalefactorisgreaterthan2.0,theRLGMwouldbesetalevelof2xSSE.ThisisshowninTable5 1andFigure5 1.Table5 1:  2xSSEforSequoyahNuclearPlantFrequency(Hz)SpectralAcceleration(g)1000.36250.36100.3850.542.50.521.00.280.50.16Figure5 1:  2xSSEforSequoyahNuclearPlant 5.2 MethodtoEstimateIn StructureResponseSpectra(ISRS)AfullscopeSMAwasperformedtosupporttheIPEEEforSequoyahNuclearPlantUnits1and2[11].TheReviewLevelEarthquake(RLE)isdefinedastheNUREG/CR 0098[10]medianspectralshapeforrock,anchoredto0.3gPGA.TheRLEISRSweredefinedatthe84%NonExceedanceProbability(NEP).Todeterminethe84%NEPresponse,aprobabilisticmethodofgeneratingISRSwasusedwhichaccountsfortheuncertaintyinboththegroundmotiondescriptionandinthestructuralandsoilparameters.Uncertaintiesinthestructuralpropertiesareaccountedforbyrepresentingstructuralnaturalfrequenciesanddampingratiosasalog normallydistributedrandomvariablewithspecifiedmedianandCoefficientofVariation(COV)values.Atotalofthirty(30)earthquaketimehistories(eachwith0 0.1 0.2 0.3 0.4 0.5 0.60.1110100 Acceleration(g)Frequency(Hz)SQN2xSSEDesignSpectra,5%Damping 2xSSE SequoyahNuclearPlantESEPReport  Page16 threecomponents)weregeneratedsuchthatthespectralordinateswerelog normallydistributedwithaCOVequalto0.25,andthe84%NEPvaluematchestheNUREG/CR 0098medianrockshape.TheresultsoftheIPEEEforSequoyahNuclearPlantUnits1and2weresubmittedtotheNRC[11].ItshouldbenotedthattheNRC[12]tookexce ptiontotheapproachusedforSequoyahNuclearPlantinthatTennesseeValleyAuthority(TVA)definedtheRLEasbeinginthefree fieldatthetopofthesoilsurface,whereastheNRCconcludedtheRLEshouldhavebeendefinedonarock.TVAreviewedtheNRCRequ estforAdditionalInformation(RAI)andmadeadjustmentstotheoriginallydefiedHCLPFcapacityof0.3g.TheresultsoftheadjustmentsofthefullscopeseismicmarginassessmentweresubmittedtotheNRC[13],concludingthatSequoyahNuclearPlantUnits1and2hadaplantlevelHCLPFcapacityof0.23g.SubsequenttoTV A'sdocketedresponse[13]theNRCissuedtheirStaffEvaluationReport(SER)[14].IntheSER,theNRCrecognizedtheTVAHCLPFcapacityvalueof0.23gforSequoyahNuclearPlant,butalsoacknowledgedalowerHCLPFvalueof0.2gthatwasdevelopedbythestaffconsulta nt.DuringtheIPEEEadequacyreview,TVAreviewedtheNRCstaffconsultant'sopinionregardingalowerHCLPFcapacityof0.2gforSequoyahNuclearPlantandconcludedthatthetechnicalbasisdescribedbytheNRCstaffconsultantintheSERistechnicallycorrect.Consequently,TVAdecidedthattheassignmentof0.2gHCLPFcapacitywasappropriate.Becaus eofthesignificanteffortexpendedbyTVAtodevelopanupdateddynamicanalysisofthesafetyrelatedstructuresforSequoyahNuclearPlantdescribedaboveandintheIPEEEsubmittal[11],TVAfeltthismodelprovidedimproveddynamicbehaviorofSequoyahNuclearPlantstructures.Consequently,forthepurposeofevaluatingseismiccapa cityofESEPcomponents,TVAchosetoscalethe84thpercentilevaluesbyanincreasescalefactorof1.5(0.3g/0.2g)toachievearesponseequivalenttoa0.3gNUREG/CR 0098shapedresponse. Figure5 2demonstratesthattheuseofa0.3gNUREG/CR 0098shaperesponsebounds2xSSEforSequoyahNuclearPlantfrom1to10Hz. Figure5 2:NUREG/CR 0098(0.3g)versusSequoyahNuclearPlantSSE0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.010.1110100 Acceleration(g)Frequency(Hz)2xSSECR00980.3gSSE(.18g)
SequoyahNuclearPlantESEPReport  Page17 6.0 SEISMICMARGINEVALUATIONAPPROACHItisnecessarytodemonstratethatESELitemshavesufficientseismiccapacitytomeetorexceedthedemandcharacterizedbytheRLGM.TheseismiccapacityischaracterizedasthePGAforwhichthereisaHCLPF.ThePGAisassociatedwithaspecificspectralshape,inthiscasethe5% dampedRLGMspectralshape.TheHCLPFcapacitymustbeequaltoorgreaterthantheRLGMPGA.ThecriteriaforseismiccapacitydeterminationaregiveninSection5ofEPRI3002000704[2].TherearetwobasicapproachesfordevelopingHCLPFcapacities:1. Deterministicapproachusingtheconservativedeterministicfailuremargin(CDFM)methodolog yofEPRINP 6041 SL,AMethodologyforAssessmentofNuclearPowerPlantSeismicMargin(Revision1)[15].2. ProbabilisticapproachusingthefragilityanalysismethodologyofEPRITR 103959,MethodologyforDevelopingSeismicFragilities[16].6.1 SummaryofMethodologiesUsedSequoyahNuclearPlantcompletedSMAforUnits1and2in1995.TheSMAisdocumentedin[11]thatconsistedofdevelopmentofaSafeShutdownEquipmentList(SSEL),probabilisticapproachfordeterminingseismicdemandbasedon84%NEP,newbuildingmodels,associatedgenerationofISRS,screeningwalkdowns,andHCLPFcapacitycalculations.ThescreeningwalkdownsusedthescreeningtablesfromChapter2ofEPRINP 6041 SL[15].ThewalkdownswereconductedbyengineerstrainedinEPRINP 6041 SL(theengineersattendedtheEPRISMAAdd OncourseinadditiontotheSQUGWalkdownScreeningandSeismicEvaluationTrainingCourse),andweredocumentedonScreeningEvaluationWorkSheetsfromEPRINP 6041 SL.AnchoragecapacitycalculationsusedtheCDFMcriteriafromEPRINP 6041 SL.Theseismicdemandisbasedonaprobabilisticapproachthatinvolvesthegenerationofanensembleofartificialearthquake(groundmotion)timehistoriesaswellasstructuralandsoilparametersvalues.TheprobabilisticapproachofdeterminingseismicdemandisbasedonguidancefromEPRINP 6041 SL:"FortheSpecifiedSME,theelasticcomputedresponse(SMEdemand)ofstructuresandcomponentsmountedthereonshouldbedefinedatthe84%nonexceedanceprobability(NEP)."TheresultsoftheprobabilisticapproachfordevelopmentofseismicdemandforSequoyahNuclearplantisdocumentedin[11].Figure6 1showsthefitofthe84thpercentileoftheensembleofthe30responsespectra(ofthe30generatedtimehistories)tothetargetspectralshape(NUREG/CR 0098medianrockspectrum).Notethisfigurerepresentstheinputmotionassumingthetargetspectrumisatthetopoffreefieldonthesoilsurface.Figure6 2showstheadjustedSequoyahNuclearPlantIPEEEHCLPFRLEresponsespectrumadjustedto0.2g,comparedtotheESEPRLGMresponsespectrumusedfortheSequoyahNuclearPlantESEP.Notebothspectraarerockinputmotionsatthebaseofthecontainmentstructure.ThisdemonstratesthattheESEPRLGMenvelopestheRLGMusedforSMAatallfrequenciesbyanamplitudefactorof1.5.
SequoyahNuclearPlantESEPReport  Page18 Figure6 1:84thPercentileoftheEnsembleofthe30ResponseSpectraFigure6 2:SequoyahNuclearPlantIPEEEadjustedHCLPFvsESEPTargetHCLPF6.2 HCLPFScreeningProcessForESEP,thecomponentsarescreenedatRLGM(NUREG/CR 0098curve)anchoredat0.3gPGA.ThescreeningtablesinEPRINP 6041 SL[15]arebasedongroundpeakspectralaccelerationsof0.8gand1.2g.ThesebothexceedtheRLGMpeakspectralacceleration.Theanchoragecapacitycalculations SequoyahNuclearPlantESEPReport  Page19 wereonbasedfloorresponsespectradevelopedfortheSequoyahNuclearPlantIPEEEandscaledtotheadjustedRLGM.EquipmentforwhichthescreeningcaveatsweremetandforwhichtheanchoragecapacityexceededtheRLGMseismicdemand,canbescreenedoutfromESEPseismiccapacitydeterminationbecausetheHCLPFcapacityexceedstheRLGM.TheUnit1ESELcontains182items.Ofthese,27arevalves,bothpower operatedandrelief.InaccordancewithTable2 4ofEPRINP 6041 SL[15],activevalvesmaybeassignedafunctionalcapacityof0.8gpeakspectralaccelerationwithoutanyreviewotherthanlookingforvalveswithlargeextendedoperatorsonsmalldiameterpiping,andanchorageisnotafailuremode.Therefore,valvesontheESELmaybescreenedoutfromESEPseismiccapacitydetermination,subjecttothecaveatregardinglargeextendedoperatorsonsmalldiameterlines.ThenonvalvecomponentsintheESELaregenerallyscreenedbasedontheSMAmethodology.IftheSMAshowedthatthecomponentmettheEPRINP 6041 SLscreeningcaveatsandtheCDFMcapacityexceededtheRLEdemand,thenthecomponentcanbescreenedoutfromtheESEPcapacitydetermination.6.3 SeismicWalkdownApproach6.3.1 WalkdownApproachWalkdownswereperformedinaccordancewiththecriteriaprovidedinSection5ofEPRI3002000704[2],whichreferstoEPRINP 6041 SL[15]fortheSeismicMarginAssessmentprocess.Pages2 26through2 30ofEPRINP 6041 SLdescribetheseismicwalkdowncriteria,includingthefollowingkeycriteria."TheSRT[Sei smicReviewTeam]should"walkby"100%ofallcomponentswhicharereasonablyaccessibleandinnonradioactiveorlowradioactiveenvironments.Seismiccapabilityassessmentofcomponentswhichareinaccessible,inhighradioactiveenvironments,orpossiblywithincontaminatedcontainment,willhavetorelymoreonalternatemeanssuchasphotographicinspection,morerelianceonseismicreanalysis,andpossibly,smallerinspectionteamsandmorehurriedinspections.A100%"walkby"doesnotmeancompleteinspectionofeachcomponent,nordoesitmeanrequiringanelectricianorothertechniciantode energizeandopencabinetsorpanelsfordetailedinspectionofallcomponents.ThiswalkdownisnotintendedtobeaQAorQCrevieworarevi ewoftheadequacyofthecomponentattheSSElevel.IftheSRThasareasonablebasisforassumingthatthegroupofcomponentsaresimilarandaresimilarlyanchored,thenitisonlynecessarytoinspectonecomponentoutofthisgroup.The"similarity basis"shouldbedevelopedbeforethewalkdownduringtheseismiccapabilitypreparatorywork(Step3)byreferencetodrawings,calculationsorspecifications.Theonecomponentoreachtypewhichisselectedshouldbethoroughlyinspectedwhichprobablydoesmeande energizingandopeningcabinetsorpanelsforthisverylimitedsample.Generally,asparerepresentativecomponentcanbefoundsoastoenabletheinspectiontobeperformedwhiletheplantisinoperation.Atleastfortheonecomponentofeachtypewhichisselected,anchorageshouldbethoroughlyinspected.Thewalkdownprocedureshouldbeperformedinanadhocmanner.ForeachclassofcomponentstheSRTshouldlookcloselyatthefirstitemsandcomparethefieldconfigurationswiththeconstructiondrawingsand/orspecifications.Ifaone to onecorrespondenceisfound,thensubsequentitemsdonothavetobeinspecte dinasgreatadetail.Ultimatelythe SequoyahNuclearPlantESEPReport  Page20 walkdownbecomesa"walkby"ofthecomponentclassastheSRTbecomesconfidentthattheconstructionpatternistypical.Thisprocedureforinspectionshouldberepeatedforeachcomponentclass;although,duringtheactualwalkdowntheSRTmaybeinspectingseveralclassesofcomponentsinparallel.Ifseriousexceptionstothedrawingsorquestionableconstructionpracticesarefoundthenthesystemorcomponentclassmustbeinspectedincloserdetailuntilthesystematicdeficiencyisdefined.The100%"walkby"istolookforoutliers,lackofsimilarity,anchoragewhichisdifferentfromthatshownondrawingsorprescribedincriteriaforthatcomponent,pote ntialSI[SeismicInteraction]problems,situationsthatareatoddswiththeteammembers'pastexperience,andanyotherareasofseriousseismicconcern.Ifanysuchconcernssurface,thenthelimitedsamplesizeofonecomponentofeachtypeforthoroughinspectionwillhavetobeincreased.Theincreaseinsamplesi zewhichshouldbeinspectedwilldependuponthenumberofoutliersanddifferentanchorages,etc.,whichareobserved.ItisuptotheSRTtoultimatelyselectthesamplesizesincetheyaretheoneswhoareresponsiblefortheseismicadequacyofallelementswhichtheyscreenfro mthemarginreview.AppendixDgivesguidanceforsamplingselection."6.3.2 ApplicationofPreviousWalkdownInformationSeveralESELitemswerepreviouslywalkeddownduringtheSequoyahNuclearPlantUnits1and2seismicIPEEEprogram.Thosewalkdownresultswerereviewedandthefollowingstepsweretakentoconfirmthatthepreviouswalkdownconclusionsremainedvalid. Awalkbywasperformedtoconfirmthattheequipmentmaterialconditionandconfigurationisconsistentwiththewalkdownconclusionsandthatnonewsignificantinteractionsrelatedtoblockwallsorpipingattachedtotanksexist. IftheESELitemwasscreenedoutbasedontheprevio uswalkdown,thatscreeningevaluationwasreviewedandreconfirmedfortheESEP.ExceptforinaccessibleitemsasdescribedbelowinSection7,inallcasesitwasdeterminedthattheHCLPFcapacitiesestablishedfortheseitemsundertheseismicIPEEEprogramremainedvalid.Thus,allESELcomponentsthatwerepartoftheIPEEEprogramhaveaHCLPFcapacityof0.3gorgreaterandarethusadequateforESEP[9].6.3.3 SignificantWalkdownFindingsConsistentwiththeguidancefromEPRINP 6041 SL[15],nosignificantoutliersandonlyone(1)anchorageconcernwasidentifiedduringtheSequ oyahNuclearPlantseismicwalkdowns.Thefollowingfindingswerenotedduringthewalkdowns.OneanchorforSequoyahUnit2TDAFWPumpControlPanel2 L 381wasobservedtobesignificantlycorroded.Anevaluationwasperformedoftheconfigurationassumingthattheanchorwasinactive.Theevaluationdeterminedthattheconfiguration(using3of4anchors)satisfieddesignrequirements.ThecorrodedanchoredisscheduledtobereplacedinupcomingU2R20outage.Basedonwalkdownresults,HCLPFcapacityevaluationswererecommendedforthefollowingtwelve(12)components,onaboundingbasis: TurbineDrivenAuxiliaryFeedwaterPump InstrumentRack SequoyahNuclearPlantESEPReport  Page21  RPanels BenchboardMPanels VerticalMandLPanels MainControlRoomCeiling WallMountedPanel BoricAcidStorageTank TDAFWPControlPanel PHMSTransformersandDistributionPanel Valves BlockWalls6.4 HCLPFCalculationProcessESELitemsnotincludedinthepreviousIPEEEevaluationsatSe quoyahwereevaluatedusingthecriteriainEPRINP 6041[7].Thoseevaluationsincludedthefollowingsteps: Performingseismiccapabilitywalkdownsforequipmentnotincludedinpreviousseismicwalkdowns(SQUG,IPEEE,orNTTF2.3)toevaluatetheequipmentinstalledplantconditions PerformingscreeningevaluationsusingthescreeningtablesinEPRINP 6041asdescribedinSection6.2and PerformingHCLPFcalculationsconsideringvariousfailuremodesthatincludebothstructuralfailuremodes(e.g.anchorage,loadpathetc.)andfunctionalfailuremodes.AllHCLPFcalculationswereperformedusingtheCDFMmethodologyandaredocumentedinaTVACalculation:CDQ9992014000140"SQNExpeditedSeismicEvaluationProcess(ESEP)HCLPFCapacityCalculation"[17].6.5 FunctionalEvaluationsofRelaysESEPconsiderscabinetsandequipmentcontrolscontainingrelays,contactors,switches,circuitbreakersandotherelectricalandinstrumentationcomponentsthatcouldbeaffectedbyhigh frequencyearthquakemotionsandthatimpacttheoperationofequipmentintheESEL.AfullscopeSMAwasperformedtosupporttheIPEEEforSequ oyahNuclearPlantUnits1and2assummarizedintheIPEEEsubmittal[11].AslightlymodifiedversionoftheEPRINP 6041 SL[15]recommendedapproachwasimplementedfortheSequoyahNuclearPlantIPEEEinordertoincreaseefficiency.Allrelayswerescreenedoutby:(1)groundrulesandassumptions;(2)comparisonofdesignqualificationtestspectrum(orgenericequipmentruggednessspectra)withSeismicMarginEarthquake(SME)in cabinetresponsespectrum;or(3)analysisshowingthatrelaychatterdoesnotdisablesafeshutdownequipmentwithoutthepossibilityofrecovery.Inallcases,equipmentactuationwasdeterminedtonotaffectthesafeshutdowncapabilityoftheequipmentintheSSEL.Lowruggednessrelayswerescreenedoutonlyiftheeffectsofchattercouldberesetbyoperatoraction.Allbuttwolow ruggednessrelaysfellintothiscategory.TheremainingtworelayswerefoundtonotbeusedinsafeshutdownequipmentatSequoyahNuclearPlant.Theprincipalconclusionfromthe SequoyahNuclearPlantESEPReport  Page22 IPEEErelayevaluationwasthatsafeshutdownsystemswillnotbeadverselyaffectedbyrelaymalfunctionduringorafteranSME.FortheSequoyahNuclearPlantESEPanalysis,anevaluationwasperformedtoidentifycomponentsthatare(1)neededforFLEXimplementation,(2)notontheSequoyahIPEEESSEL,and(3)thathavethepotentialforrelaychatterissues.TheonlycasesidentifiedaretheFCV 1 17andFCV 1 18steamisolationvalv esthatcanisolatethesteamsupplytotheTDAFWpump.Intheeventofasteamlinebreak,bothofthesevalvescanreceiveaclosesignalifhightemperatureisdetectedintheTDAFWpumproom.However,becausethesevalvesaremotoroperatedvalves(MOVs),withaLossofOffsitePower(LOOP)thevalveswillnotisolateevenwithaspurious"close"signal.Therefore,thesevalvesdonotpresentaproblemforsuccessfulFLEXimplementation.Nootherrelaychatte rcaseswereidentified.NoseismiccapacitytodemandrelayevaluationswerenecessaryforESEP.6.6 TabulatedESELHCLPFValues(IncludingKeyFailureModes)TabulatedESELHCLPFvaluesareprovidedinAttachmentB.Thefollowingnotesapplytotheinformationinthetables. ItemspreviouslyincludedintheseismicIPEEEprogramsarenotlisted.Walk byverificationsre confirmedtheHCLPFcapacitiesfro mtheIPEEE,andtheIPEEE0.3gRLEHCLPFcapacityexceedstheRLGM[18]. HCLPFcapacityevaluationswereperformedforthenonIPEEEitemsontheESEL,addressingbothstructural/anchorageandfunctionalfailuremodes.TheHCLPFcapacityofeachite mislistedinthetables,withassociatedgoverningfailuremode. Ruggeditemsnotspecificallyevaluatedareconservativelyassigneda0.50gHCLPFcapacitybasedontheEPRIscreeningtablesorbyengineeringjudgment. Newpre stagedandpermanentlyinstalledFLEXitemsarenotlisted.TVAdesigncriteriaSQN DC V 48.0[19]requiresth atnewFLEXitemshaveHCLPFcapacityexceedingtheRLGM.AllESEPcomponentshaveaHCLPFcapacitygreaterthantheRLGMforthefrequencyrangeof1to10Hz.7.0 INACCESSIBLEITEMS7.1 IdentificationofESELItemInaccessibleforWalkdownsTherearefour(4)valvesandseven(7)instrumentracksthatcouldnotbewalkeddownsincetheyareintheUnit1ReactorBuilding(inaccessiblearea).Thesecomponents'Unit2counterpartswerewalkeddownduringtherecentUnit2outage.TheUnit2componentsweredeterminedtobeacceptable.ItisexpectedthatthesameconclusioncanbemadefortheUnit1components.ThefollowingisalistoftheUnit1componentslocatedintheReactorBuildingthatwerenotwalkeddown: 1 FCV63 118ColdlegAccumulatorIsolationValve#1 1 FVC63 67ColdlegAccumulatorIsolationValv e#4 1 FCV63 80ColdlegAccumulatorIsolationValve#3 1 FCV63 98ColdlegAccumulatorIsolationValve#2 InstrumentRack1 L 182locatedinFanRoom2 SequoyahNuclearPlantESEPReport  Page23  InstrumentRack1 L 183locatedinFanRoom1 InstrumentRack1 L 179 InstrumentRack1 L 185 InstrumentRack1 L 704 InstrumentRack1 L 706 InstrumentRack1 L 194Alsotherearetwo(2)panelsthatcouldnotbewalkeddownintheUnit1AuxiliaryBuildingbecausethecomponentsareinaContaminatedandRadiationArea.Theyare: InstrumentRack1 L 196 InstrumentRack1 L 216Inaddition,awalkbyinsideUnit1containmentwasnotpossible.7.2 PlannedWalkdown/EvaluationSchedule/CloseOutThefollowingUnit1componentswillbewalkeddowninupcomingUnit1outage: FCV63 118ColdLegAccumulatorIsolationValve#1 FVC63 67ColdLegAccumulatorIsolationValve#4 FCV63 80ColdLegAccumulatorIsolationValve#3 FCV63 98ColdLegAccumulatorIsolationValv e#2 InstrumentRack1 L182locatedinFanRoom2 InstrumentRack1 L183locatedinFanRoom1 InstrumentRack1 L 179 InstrumentRack1 L 185 InstrumentRack1 L 704 InstrumentRack1 L 706 InstrumentRack1 L 194 InstrumentRack1 L 196 InstrumentRack1 L 216Inaddition,asperformedinsidetheUnit2containment,awalkbywillbeconductedtoverifythatHCLPFcapacityofatleast0.3gismaintainedforIPEEEitemsontheESEL.ItisexpectedthatthesameconclusionswillbemadefortheUnit1componentsthatwerecompletedforthecounterpartcomponentsinUnit2.
SequoyahNuclearPlantESEPReport  Page24 8.0 ESEPCONCLUSIONSANDRESULTS8.1 SupportingInformationSequoyahNuclearPlantUnits1and2haveperformedtheESEPasaninterimactioninresponsetotheNRC's50.54(f)letter[1].ItwasperformedusingthemethodologiesintheNRCendorsedguidanceinEPRI3002000704[2].TheESEPprovidesanimportantdemonstrationofseismicmarginandexpeditesplantsafetyenhancementsthroughevaluationsandpotentialnear termmodificationsofplantequipmentthatcanbereliedupontoprotectthereactorcorefollowingbeyonddesignbasisseismicevents.TheESEPispartoftheoverallSequoyahNuclearPlantUnits1and2inresponsetotheNRC's50.54(f)letter.OnMarch12,2014,NEIsubmittedtotheNRCresultsofastu dy[21]ofseismiccoredamageriskestimatesbasedonupdatedseismichazardinformationasitappliestooperatingnuclearreactorsintheCentralandEasternUnitedStates(CEUS).Thestudyconcludedthat"site specificseismichazardsshowthattherehasnotbeenanoverallincreaseinseismicriskforthefleetofU.S.plants"basedonthereevaluatedseismichazards.Assuch,the"currentseismicdesignofoperatingreactorscontinuestoprovideasafetymargintowithstandpotentialearthquakesexceedingtheseismicdesignbasis."TheNRC'sMay9,2014NTTF2.1ScreeningandPrioritizationletter[20]concludedthatthe"fleetwideseismicriskestimatesareconsistentwiththeapproachandresultsusedintheGl 199safety/riskassessment."Theletteralsostatedthat"Asaresult,thestaffhasconfirmedthattheconclusionsreache dinGl 199safety/riskassessmentremainvalidandthattheplantscancontinuetooperatewhileadditionalevaluationsareconducted."AnassessmentofthechangeinseismicriskforSequoyahNuclearPlantUnits1and2wasincludedinthefleetriskevaluationsubmittedintheMarch12,2014NEIletter[21];therefore,theconclusionsintheNRC'sMay9letteralsoapplytoSequoyahNuclearPlantUnits1and2.Inaddition,theMarch12,2014NEIletterprovidedanattached"PerspectivesontheSeismicCapacityofOperatingPlants,"which(1)assessedanumberofqualitativereasonswhythedesignofSSCsinherentlycontainmarginbeyondtheirdesignleve l,(2)discussedindustrialseismicexperiencedatabasesofperformanceofindustryfacilitycomponentssimilartonuclearSSCs,and(3)discussedearthquakeexperienceatoperatingplants.Thefleetofcurrentlyoperatingnuclearpowerplantswasdesignedusingconservativepractices,suchthattheplantshavesignificantmargintowithstandlargegroundmotionssafely.Thishasbeenborneoutforthoseplantsthathaveactuallyexperiencedsignificantearthquakes.Theseismicdesignprocesshasinherent(andintentional)conservatismswhichresultinsignificantseismicmarginswithinSSCs.Theseconservatismsarereflectedinseveralkeyaspectsoftheseismicdesi gnprocess,including: Safetyfactorsappliedindesigncalculations DampingvaluesusedindynamicanalysisofSSCs BoundingsynthetictimehistoriesforISRScalculations BroadeningcriteriaforISRS ResponsespectraenvelopingcriteriatypicallyusedinSSCanalysisandtestingapplications SequoyahNuclearPlantESEPReport  Page25  Responsespectrabasedfrequencydomainanalysisratherthanexplicittimehistorybasedtimedomainanalysis Boundingrequirementsincodesandstandards Useofminimumstrengthrequirementsofstructuralcomponents(concreteandsteel) Boundingtestingrequirements Ductilebehavioroftheprimarymaterials(thatis,notcreditingtheadditionalcapacityofmaterialssuchassteelandreinforcedconcreteb eyondtheessentiallyelasticrange,etc.)ThesedesignpracticescombinetoresultinmarginssuchthattheSSCswillcontinuetofulfilltheirfunctionsatgroundmotionswellabovetheSSE.TheintentoftheESEPistoperformaninterimactioninresponsetotheNRC's50.54(f)lettertodemonstrateseismicmarginthroughareviewofasubsetoftheplantequipmentthatcanbereliedupontoprotectthereactorcorefollowingbeyonddesignbasisseismicevents.InordertocompletetheESEPinanexpeditedamountoftime,theRLGMusedfortheESEPevaluationisascaledversionoftheplant'sSSEratherthantheactualGMRS.TomorefullycharacterizetheriskimpactsoftheseismicgroundmotionrepresentedbytheGMRSonaplantspecificbasis,amoredetailedseismicriskassessment(SPRAorrisk basedSMA)istobeperformedinaccordancewithEPRI1025287[22].AsidentifiedintheSequoyahNuclearPlantUnits1and2SeismicHazardandGMRSsubmittal[9],SequoyahNuclearPlantUnits1and2screensinforariskevaluation.Thecompleteriskevaluationwillmorecompletelycharacterizetheprobabilisticseismicgroundmotioni nputintotheplant,theplantresponsetothatprobabilisticseismicgroundmotioninput,andtheresultingplantriskcharacterization.SequoyahNuclearPlantUnits1and2willcompletethatevaluationinaccordancewiththescheduleidentifiedinNEI'sletterdatedApril9,2013[23]andendorsedbytheNRCintheirMay7,2013letter[24].8.2 IdentificationofPlanne dModificationsOnemodificationwasidentifiedinunit2,torepairacorrodedanchorobservedforTDAFWpumpControlPanel2 L 381.8.3 ModificationImplementationSchedulePlantmodificationswillbeperformedinaccordancewiththescheduleidentifiedinNEIletterdatedApril9,2013[23],whichstatesthatplantmodificationsnotrequiringaplannedrefuelingoutagewillbecompletedbyDecember2016andmodificationsrequiringarefuelingoutagewillbecompletedwithintwoplannedrefuelingoutagesafterDecember31,2014.TheplantmodificationidentifiedinSection8.2re quiresarefuelingoutagethatwillbeperformedintheupcomingunit2refuelingoutage(U2R20)andwillbecompletedbytheendofDecember2015.
 
SequoyahNuclearPlantESEPReport  Page26 8.4 SummaryofRegulatoryCommitmentsThefollowingactionswillbeperformedasaresultoftheESEP.Table8 1:SummaryofRegulatoryCommitmentsAction#EquipmentIDEquipmentDescriptionActionDescriptionCompletionDate1NAN/APerformseismicwalkdowns,generateHCLPFcalculations,anddesignandimplementanynecessarymodificationsforUnit1inaccessibleitemslistedinSection7.1NolaterthantheendofthesecondplannedUnit1refuelingoutageafterDecember31,201422 L 381TDAFPControlPanelModifyanchoragetoreplacecorrodedanchorsuchthatHCLPF>RLGMNolaterthantheendofU2R20RefuelingOutage,December31,20153N/AN/ASubmitalettertoNRCsummarizingtheHCLPFresultsofItem1andconfirmingimplementationoftheplantmodificationsassociatedwithItem2Within60daysfollowingcompletionofESEPactivities,includingItems1through2 SequoyahNuclearPlantESEPReport  Page27
 
==9.0 REFERENCES==
1.NRC(ELeedsandMJohnson)LettertoAllPowerReactorLicenseesetal.,"RequestforInformationPursuanttoTitle10oftheCodeofFederalRegulations50.54(f)RegardingRecommendations2.1,2.3and9.3oftheNear TermTaskForceReviewofInsightsfromtheFukushimaDai IchiAccident,"March12,2012.2.EPRI3002000704,"SeismicEvaluationGuidance,AugmentedApproachfortheResolutionofFukushimaNear TermTaskForceRecommendation2.1:Seismic,"May2013.3.TVALettertoU.S.NRC,"TennesseeValleyAuthority-OverallIntegratedPlaninResponsetoMarch12,2012,CommissionOrderModifyingLicenseswithRegardtoRequirementsforMitigationStrategiesforBeyondDesignBasisExternalEvents(OrderNumberEA 12 049),"February28,2013.4.TVALettertoU.S.NRC,"SecondSix MonthStatusReportandRevisedOverallIntegratedPlaninResponsetotheMarch12,2012,CommissionOrderModifyingLicenseswithRegardtoRequirementsforMitigationStrategiesforBeyond Design BasisExternalEvents(OrderNumberEA 12 049)forSequoyahNuclearPlant,"February28,2014.5.TVALettertoU.S.NRC,"ThirdSix MonthStatusReportinResponsetotheMarch12,2012,CommissionOrderModifyingLicenseswithRegardtoRequirementsforMitigationStrategiesforBeyondDesignBasisExternalEvents(OrderNumberEA 12 049)forBrownsFerryNuclearPlant(TACNos.MF0864andMF0865),"August28,2014.6.TVADrawing1 47W811 1 FLEX,"FlowDiagramSafetyInjectionSystem,"Revision74(ModifiedforFLEX).7.NEI12 06,"DiverseandFlexibleCopingStrategies(FLEX)ImplementationGuide,"Revision0,August2012.8.AREVANPDocument51 9217523 005,"ESEPExpeditedSeismicEquipmentList(ESEL)-SequoyahNuclearPlant."9.TVALettertoU.S.NRC,letternumberCNL 14 038,"TennesseeValleyAuthority'sSeismicHazardandScreeningReport(CEUSSites),responsetoNRCRequestforInformationPursuantto10CFR50.54(f)regardingRecommendation2.1oftheNear TermTaskForceReviewofInsightsfromtheFukushimaDaiichiAccident",March31,201410.U.S.NRCNUREG/CR 0098,"DevelopmentofCriteriaforSeismicReviewofSelectedNuclearPowerPlants,"May1978.11.TVALetterfromR.H.ShelltoU.S.NRC,"SequoyahNuclearPlant(SQN)-GenericLetterGL88 20,SupplementNo.4,IndividualPlantExaminationofExternalEvents(IPEEE)forSevereAccidentVulnerabilities-10CFR50.54(f),"June29,1995.12.NRCLettertoTVA,"SequoyahNuclearPlant,Units1and2-RequestforAdditionalInformationonIndividualPlantExaminationofExternalEvents(TACNos.M86374andM86375),"August2,2000.13.LetterfromPedroSalastoNRC,"SequoyahNuclearPlantUnits1and2-ResponsetoRequestforAdditionalInformationoftheIndividualPlantExaminationofExternalEvents(IPEEE)(TACNos.M83674andM83675),"December5,2000.
SequoyahNuclearPlantESEPReport  Page28 14.LetterfromNRCtoJ.A.Scalice,"SequoyahNuclearPlant,Units1and2-ReviewofSequoyahIndividualPlantExaminationofExternalEventsSubmittal(TACNos.M83764andM83675),"February21,2001.15.EPRI NP 6041 SL,"MethodologyforAssessmentofNuclearPowerPlantSeismicMargin,"Revision1,August1991.16.EPRITR 103959,"MethodologyforDevelopingSeismicFragilities,"July1994.17.TVACalculationCDQ9992014000140,"SQNExpeditedSeismicEvaluationProcess(ESEP)HCLPFCapacityCalculation."18.TVAlettertoU.S.NRC,LetternumberCNL 14 013,"HighlightsofImprovementstotheSequoyahNuclearPlantIPEEESeismicAnalysisResultsandSupplementalResponsetoNRCRequestforInformationPursuanttoTitle10oftheCodeofFederalRegulations50.54(f)regardingtheSequoyahNuclearPlantUnit1SeismicWalkdownResultsofRecommendations2.3oftheNear TermTaskForceRevi ewofInsightsfromtheFukushimaDai ichiAccident",January31,2014.19.TVADesignCriteria,SQN DC V 48.0,Revision4,"FLEXResponseSystem."20.NRC(E.Leeds)LettertoAllPowerReactorLicenseesetal.,"ScreeningandPrioritizationResultsRegardingInformationPursuanttoTitle10oftheCodeofFederalRegulations50.54(F)RegardingSeismicHazardRe EvaluationsforRecommendation2.1oftheNear TermTaskForceReviewofInsightsFromtheFukushimaDai IchiAccident,"May9,2014.21.NuclearEnergyInstitute(NEI),A.Pietrangelo,LettertoD.SkeenoftheUSNRC,"SeismicCoreDamageRiskEstimatesUsingtheUpdatedSeismicHazardsfortheOperatingNuclearPlantsintheCentralandEasternUnitedStates,"March12,2014.22.EPRI1025287,"SeismicEvaluationGuidance:Screening,PrioritizationandImplementationDetails(SPID)fortheResolutionofFukushimaNear TermTaskForceRecommendation2.1:Seismic.ElectricPowerResearchInstitute,"February2013.23.NuclearEnergyInstitute(NEI),A.Pietrangelo,LettertoD.SkeenoftheUSNRC,"ProposedPathForwardforNTTFRecommendation2.1:SeismicReevaluations,"April9,2013.NRCAdamsAccessionNo.ML 13101A379.24.NRC(ELeeds)LettertoNEI(JPollock),"ElectricPowerResearchInstituteFinalDraftReportxxxxx,"SeismicEvaluationGuidance:AugmentedApproachfortheResolutionofFukushimaNear TermTaskForceRecommendation2.1:Seismic,"asanAcceptableAlternativetotheMarch12,2012,InformationRequestforSeismicReevaluations,"May7,2013.
SequoyahNuclearPlantESEPReport  PageA 1ATTACHMENTA-SEQUOYAHNUCLEARPLANTESEL SequoyahNuclearPlantESEPReport  PageA 2TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlantESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1VLV 1 512SteamGenerator#3MainSteamSafetyValveOperationalOperational2VLV 1 517SteamGenerator#2MainSteamSafetyValveOperationalOperational3VLV 1 522SteamGenerator#1MainSteamSafetyValveOperationalOperational4VLV 1 527SteamGenerator#4MainSteamSafetyValveOperationalOperational5PCV 1 5SteamGenerator#1ARV(SGPORV)OperationalOperationalFailclosedonlossofTrainAessentialair6PCV 1 12SteamGenerator#2ARV(SGPORV)OperationalOperationalFailclosedonlossofTrainBessentialair7PCV 1 23SteamGenerator#3ARV(SGPORV)OperationalOperationalFailclosedonlossofTrainAessentialair8PCV 1 30SteamGenerator#4ARV(SGPORV)OperationalOperationalFailclosedonlossofTrainBessentialair9PCV 1 5SteamGenerator#1ARV(SGPORV)Hand wheelOperationalOperationalLocalcontrolofsteamgeneratorPORVduringELAP10AirBottlesSteamGenerator#2ARV(SGPORV)LocalControlStationOperationalOperationalEmergencycontrolstationperEA 1 2FLEXcompressedaircylinders11AirBottlesSteamGenerator#3ARV(SGPORV)LocalControlStationOperationalOperationalEmergencycontrolstationperEA 1 2FLEXcompressedaircylinders12PCV 1 30SteamGenerator#4ARV(SGPORV)Hand wheelOperationalOperationalLocalcontrolofsteamgeneratorPORVduringELAP SequoyahNuclearPlantESEPReport  PageA 3 TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState13L 501PCV 1 12LocalControlStationOperationalOperationalEmergencycontrolstationperEA 1 214L 502PCV 1 23LocalControlStationOperationalOperationalEmergencycontrolstationperEA 1 215PMP 3 142TurbineDrivenAFWPumpStandbyOperatingAutomaticstartonLOOP16FCV 1 51TDAFWPumpTripandThrottleValveClosedOpenNormalpowersupplyisfrom125VVitalBatteryBoardIII17FCV 1 52TDAFWPumpGovernorValveClosedOpenFailsopenonlossofDCcontrolpower18XS 46 57AFWTA SBackupControlTransferSwitchOperationalOperationalThesecomponentsareontheESELifmanualoperationofTDAFWisimplemented19HS 1 51BTDAFWPumpTripandThrottleValveHandswitchOperationalOperational20SI 46 56BTDAFWPumpSpeedIndicatorOperationalOperational21FIC 46 57TDAFWPumpMasterSpeedControllerOperationalOperational22L 381TDAFWPumpControlPanelOperationalOperational23PI 3 138TDAFWPumpDischargePressureIndicatorOperationalOperational24L 215AFWFlowMonitoringPanelOperationalOperationalPortabledeltapressgaugecanbeusedforlocalmonitoringofAFWflow SequoyahNuclearPlantESEPReport  PageA 4TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState25FT 3 147AFWFlowtoSteamGenerator#3FlowTransmitterOperationalOperational26FT 3 155AFWFlowtoSteamGenerator#2FlowTransmitterOperationalOperational27FT 3 163AFWFlowtoSteamGenerator#1FlowTransmitterOperationalOperational28FT 3 170AFWFlowtoSteamGenerator#4FlowTransmitterOperationalOperational29FI 3 147BAFWFlowtoSteamGenerator#3FlowIndicationOperationalOperational30FI 3 155BAFWFlowtoSteamGenerator#2FlowIndicationOperationalOperational31FI 3 163BAFWFlowtoSteamGenerator#1FlowIndicationOperationalOperational32FI 3 170BAFWFlowtoSteamGenerator#4FlowIndicationOperationalOperational33L 341AFWFlowtoSteamGenerator#3FlowTransmitterRackOperationalOperational34L 217AFWFlowtoSteamGenerator#2FlowTransmitterRackOperationalOperational35L 216AFWFlowtoSteamGenerator#1FlowTransmitterRackOperationalOperational36L 703AFWFlowtoSteamGenerator#4FlowIndicationRackOperationalOperational SequoyahNuclearPlantESEPReport  PageA 5TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState37LCV 3 172SteamGenerator#3LevelControlValveClosedOpenFailsopenonlossofAXpowerorcontrolair.Backupairsupplybottlesavailable.Manualoperationwithhand wheelisavailable.38LCV 3 173SteamGenerator#2LevelControlValveClosedOpenFailsopenonlossofACpowerorcontrolair.Backupairsupplybottleavailable.Manualoperationwithhand wheelisavailable.39LCV 3 174SteamGenerator#1LevelControlValveClosedOpenFailsopenonlossofACpowerorcontrolair.Backupairsupplybottlesavailable.Manualoperationwithhand wheelisavailable.40LCV 3 175SteamGenerator#4LevelControlValveClosedOpenFailsopenonlossofACpowerorcontrolair.Backupairsupplybottlesavailable.Manualoperationwithhand wheelisavailable.41XS 3 172SteamGenerator#3LevelControlValveTransferSwitchOperationalOperational42XS 3 173SteamGenerator#2LevelControlValveTransferSwitchOperationalOperational43XS 3 174SteamGenerator#1LevelControlValveTransferSwitchOperationalOperational44XS 3 175SteamGenerator#4LevelControlValveTransferSwitchOperationalOperational45L 11ASteamGeneratorLevelControlPanelOperationalOperational46L 11BSteamGeneratorLevelControlPanelOperationalOperational47HS 3 172BSteamGenerator#3LevelControlValveHandSwitchOperationalOperational SequoyahNuclearPlantESEPReport  PageA 6TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState48HS 3 173BSteamGenerator#2LevelControlValveHandSwitchOperationalOperational49HS 3 174BSteamGenerator#1LevelControlValveHandSwitchOperationalOperational50HS 3 175BSteamGenerator#4LevelControlValveHandSwitchOperationalOperational51L 661SteamGenerator#2LevelControlValveFLEXBackupAirStationOperationalOperational52L 662SteamGenerator#1LevelControlValveFLEXBackupAirStationOperationalOperational53L 663SteamGenerator#3LevelControlValveFLEXBackupAirStationOperationalOperational54L 664SteamGenerator#4LevelControlValveFLEXBackupAirStationOperationalOperational55LT 3 43SteamGenerator#1WideRangeLevelTransmitterOperationalOperational561 LT 3 56SteamGenerator#2WideRangeLevelTransmitterOperationalOperational572 LT 3 56SteamGenerator#2WideRangeLevelTransmitterOperationalOperationalUnit2SG3LevelTransmitteronRackL 182Unit1SG3LevelTransmitteronRackL 70658LT 3 98SteamGenerator#3WideRangeLevelTransmitterOperationalOperational59LT 3 111SteamGenerator#4WideRangeLevelTransmitterOperationalOperational60L 183SteamGeneratorLevelTransmitterRackOperationalOperational SequoyahNuclearPlantESEPReport  PageA 7TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState61L 706SteamGeneratorLevelTransmitterRack(Unit1)OperationalOperational62L 704SteamGeneratorLevelTransmitterRackOperationalOperational63L 185SteamGeneratorLevelTransmitterRackOperationalOperational64L 182SteamGeneratorLevelTransmitterRack(Unit2)OperationalOperational65LI 3 43SteamGenerator#1WideRangeLevelIndicatorOperationalOperational66LI 3 56SteamGenerator#2WideRangeLevelIndicatorOperationalOperational67LI 3 98SteamGenerator#3WideRangeLevelIndicatorOperationalOperational68LI 3 111SteamGenerator#4WideRangeLevelIndicatorOperationalOperational69PT 1 2ASteamGenerator#1DischargePressureTransmitterOperationalOperational120VVIPBIRack370PT 1 9ASteamGenerator#2DischargePressureTransmitterOperationalOperational120VVIPBIRack371PT 1 20ASteamGenerator#3DischargePressureTransmitterOperationalOperational120VVIPBIRack472PT 1 27ASteamGenerator#4DischargePressureTransmitterOperationalOperational120VVIPBIRack473L 194SteamGeneratorDischargePressureTransmitterRackOperationalOperational SequoyahNuclearPlantESEPReport  PageA 8TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState74L 196SteamGeneratorDischargePressureTransmitterRackOperationalOperational75PI 1 2DSteamGenerator#1DischargePressureIndicatorOperationalOperationalChannelAinput76PI 1 9DSteamGenerator#2DischargePressureIndicatorOperationalOperationalChannelAinput77PI 1 20DSteamGenerator#3DischargePressureIndicationOperationalOperationalChannelAinput78PI 1 27DSteamGenerator#4DischargePressureIndicationOperationalOperationalChannelAinput791 TNK 0020229Unit1CondensateStorageTankOperationalOperationalDCN23191willseismicallyqualifyCSTto2xSSEHCLPF802 TNK 0020232Unit2CondensateStorageTankOperationalOperationalDCN23191willseismicallyqualifyCSTto2xSSEHCLPF81FCV 3 179AERCWHeaderBAFWSupplyValveClosedOpenSwitchovertoERCWheader480VMOVBoard1(2)B2 B/11Eorhandwheel82FCV 3 179BERCWHeaderBAFWSupplyValveClosedOpenSwitchovertoERCWheader480VMOVBoard1(2)B2 B/11Borhandwheel83FCV 3 136AERCWHeaderAAFWSupplyValveClosedOpenSwitchovertoERCWheader480VMOVBoard1(2)A2 A/2Eorhandwheel84FCV 3 136BERCWHeaderAAFWSupplyValveClosedOpenSwitchovertoERCWheader480VMOVBoard1(2)A2 A/2Borhandwheel85FCV 63 118ColdLegAccumulator#1IsolationValveOpenClosed86FCV 63 98ColdLegAccumulator#2IsolationValveOpenClosed SequoyahNuclearPlantESEPReport  PageA 9TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState87FCV 63 80ColdLegAccumulator#3IsolationValveOpenClosed88FCV 63 67ColdLegAccumulator#4IsolationValveOpenClosed891 PMP 63 10ASafetyInjectionPumpStandbyOperational902 PMP 63 10ASafetyInjectionPumpStandbyOperational91HS 63 10ASafetyInjectionPumpHandSwitchOperationalOperational92M 6PanelM 6OperationalOperational931 TNK 0620239BoricAcidTank(BAT)AAvailableAvailable942 TNK 0620239BoricAcidTank(BAT)BAvailableAvailable950 TNK 0620243BoricAcidTank(BAT)CAvailableAvailable96HEX 0740015RHRHeatExchanger1AIntactIntactRWSTgravityfeedpath97TNK 063 044RWSTOperationalOperational98PCV 0680340ARCSPressurizerPowerReliefValveOperationalOperational125VDCVitalBatteryBoardI99HS 68 340AAPressurizerPORVHandSwitchOperationalOperational SequoyahNuclearPlantESEPReport  PageA 10TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState100PDT 30 44ContainmentPressureDifferentialTransmitterOperationalOperational101PDI 30 44ContainmentPressureDifferentialIndicatorOperationalOperational1021 FAN 0300038Unit1ContainmentAirReturnFanAStandbyOperationalPoweredby480VSDB1A11032 FAN 0300038Unit2ContainmentAirReturnFanAStandbyOperationalPoweredby480VSDB2A1104HS 30 38AContainmentAirReturnFanAHandSwitchOperationalOperational105M 9PanelM 9OperationalOperational1061 XFA 268 1A APHMSXfrm1AOperationalOperationalPowersupplytohydrogenigniters1072 XFA 268 2A APHMSXfrm2AOperationalOperationalPowersupplytohydrogenigniters1081 PNL 268 YA120VACPHMSDistributionPanel1AOperationalOperationalPowersupplytohydrogenigniters1092 PNL 268 YC120VACPHMSDistributionPanel2AOperationalOperationalPowersupplytohydrogenigniters110TNK 018 381A A7 DayOilSupplyTankAvailableAvailableUsetosupplydieselpoweredFLEXequipment111TNK 018 401B B7 DayOilSupplyTankAvailableAvailableUsetosupplydieselpoweredFLEXequipment112TNK 018 392A A7 DayOilSupplyTankAvailableAvailableUsetosupplydieselpoweredFLEXequipment SequoyahNuclearPlantESEPReport  PageA 11TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState113TNK 018 412B B7 DayOilSupplyTankAvailableAvailableUsetosupplydieselpoweredFLEXequipment1141 BDB 201 DJ480VShutdownBoardA1 AOperationalOperational1151 BDB 201 DK480VShutdownBoardA2 AOperationalOperational1161 BDB 201 DL480VShutdownBoardB1 BOperationalOperational1171 BDB 201 DM480VShutdownBoardB2 BOperationalOperational1182 BDB 201 DN480VShutdownBoardA1 AOperationalOperational1192 BDB 201 DO480VShutdownBoardA2 AOperationalOperational1202 BDB 201 DP480VShutdownBoardB1 BOperationalOperational1212 BDB 201 DQ480VShutdownBoardB2 BOperationalOperational1221 BDC 201 GG480VReactorMOVBoard1A1 AOperationalOperationalPowertosafetyinjectionaccumulatorisolationMOVs1231 BDC 201 GJ480VReactorMOVBoard1B1 BOperationalOperationalPowertosafetyinjectionaccumulatorisolationMOVs1242 BDC 201 GL480VReactorMOVBoard2A1 AOperationalOperationalPowertosafetyinjectionaccumulatorisolationMOVs1252 BDC 201 GN480VReactorMOVBoard2B1 BOperationalOperationalPowertosafetyinjectionaccumulatorisolationMOVs SequoyahNuclearPlantESEPReport  PageA 12TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1261 BDC 201 JE480VC&AVentBoard1A1 AOperationalOperationalPowertohighpressureFLEXpumpRepoweredby6.9kVFLEXdieselgenerator1271 BDC 201 JF480VC&AVentBoard1A2 AOperationalOperationalPowertointermediatepressureFLEXpumpRepoweredby6.9kVFLEXdieselgenerator1282 BDC 201 JJ480VC&AVentBoard2A1 AOperationalOperationalPowertohighpressureFLEXpumpRepoweredby6.9kVFLEXdieselgenerator1292 BDC 201 JK480VC&AVentBoard2A2 AOperationalOperationalPowertointermediatepressureFLEXPumpRepoweredby6.9kVFLEXdieselgenerator130BDG 250 KE125VDCVitalBatteryBoardIOperationalOperational131BDG 250 KF125VDCVitalBatteryBoardIIOperationalOperational132BDG 250 KG125VDCVitalBatteryBoardIIIOperationalOperational133BDG 250 KH125VDCVitalBatteryBoardIVOperationalOperational1341 BDE 250 NC D120VACVitalInstrumentPowerBoard1 IOperationalOperational1351 BDE 250 NE E120VACVitalInstrumentPowerBoard1 IIOperationalOperational1361 BDE 250 NG F120VACVitalInstrumentPowerBoard1 IIIOperationalOperational1371 BDE 250 NJ G120VACVitalInstrumentPowerBoard1 IVOperationalOperational1382 BDE 250 ND D120VACVitalInstrumentPowerBoard2 IOperationalOperational SequoyahNuclearPlantESEPReport  PageA 13TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1392 BDE 250 NF E120VACVitalInstrumentPowerBoard2 IIOperationalOperational1402 BDE 250 NH F120VACVitalInstrumentPowerBoard2 IIIOperationalOperational1412 BDE 250 NK G120VACVitalInstrumentPowerBoard2 IVOperationalOperational1420 BATB 250 QV125VDCVitalBatteryIOperationalOperational1430 BATB 250 QW125VDCVitalBatteryIIOperationalOperational1440 BATB 250 QX125VDCVitalBatteryIIIOperationalOperational1450 BATB 250 QY125VDCVitalBatteryIVOperationalOperational1460 CHGB 250 QE125VDCVitalBatteryChargerIOperationalOperational1470 CHGB 250 QG125VDCVitalBatteryChargerIIOperationalOperational1480 CHGB 250 QH125VDCVitalBatteryChargerIIIOperationalOperational1490 CHGB 250 QJ125VDCVitalBatteryChargerIVOperationalOperational1501 INVB 250 QL120VACVitalInverter1 IOperationalOperational1511 INVB 250 QN120VACVitalInverter1 IIOperationalOperational SequoyahNuclearPlantESEPReport  PageA 14TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1521 INVB 250 QR120VACVitalInverter1 IIIOperationalOperational1531 INVB 250 QT120VACVitalInverter1 IVOperationalOperational1542 INVB 250 QM120VACVitalInverter2 IOperationalOperational1552 INVB 250 QP120VACVitalInverter2 IIOperationalOperational1562 INVB 250 QS120VACVitalInverter2 IIIOperationalOperational1572 INVB 250 QU120VACVitalInverter2 IVOperationalOperational1581 XE 92 5001N31NeutronDetectorOperationalOperationalUnit1NISChannel11591 XM 925001AN31NeutronSourceRangeAmplifierOperationalOperational1601 XM 925001BN31NeutronSourceRangeOpticalIsolatorOperationalOperational1611 XI 92 5N31SignalProcessorAppROperationalOperational1621 XX 92 5001N31SourceRangeIndicatorOperationalOperational1631 XI 92 5001AN31BSourceRangeIndicatorOperationalOperational1642 XE 92 5002N32NeutronDetectorOperationalOperationalUnit2NISChannel2 SequoyahNuclearPlantESEPReport  PageA 15TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState1652 XM 925002AN32NeutronSourceRangeAmplifierOperationalOperational1662 XE 92 5002BN32NeutronSourceRangeOpticalIsolatorOperationalOperational1672 XI 92 5N32SignalProcessorAppROperationalOperational1682 XX 92 5002N32SourceRangeIndicatorOperationalOperational1692 XI 92 5002BN32BSourceRangeIndicatorOperationalOperational170L 10InstrumentRackOperationalOperational171M 4InstrumentPanelOperationalOperational172M 13InstrumentPanelOperationalOperational173PT 68 69RCSLoopWRPressureTransmitterLoop1OperationalOperational174PT 68 66RCSLoopWRPressureTransmitterLoop3OperationalOperational175PI 68 69RCSLoopWRPressureIndicationLoop1OperationalOperational176PI 68 66ARCSLoopWRPressureIndicationLoop3OperationalOperational177L 388InstrumentpanelOperationalOperational SequoyahNuclearPlantESEPReport  PageA 16TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState178L 340InstrumentPanelOperationalOperational179L 649InstrumentPanelOperationalOperational180R 4InstrumentRackOperationalOperational181R 5InstrumentRackOperationalOperational182TE 68 18ColdLegWRTemperatureElementLoop1OperationalOperational183TE 68 41ColdLegWRTemperatureElementLoop2OperationalOperational184TE 68 60ColdLegWRTemperatureElementLoop3OperationalOperational185TE 68 83ColdLegWRTemperatureElementLoop4OperationalOperational186TI 68 18ColdLegWRTemperatureIndicationLoop1OperationalOperational187TI 68 41ColdLegWRTemperatureIndicationLoop2OperationalOperational188TI 68 60ColdLegWRTemperatureIndicationLoop3OperationalOperational189TI 68 83ColdLegWRTemperatureIndicationLoop4OperationalOperational190TE 68 1HotLegWRTemperatureElementLoop1OperationalOperational SequoyahNuclearPlantESEPReport  PageA 17TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState191TE 68 24HotLegWRTemperatureElementLoop2OperationalOperational192TE 68 43HotLegWRTemperatureElementLoop3OperationalOperational193TE 68 65HotLegWRTemperatureElementLoop4OperationalOperational194TI 68 1HotLegWRTemperatureIndicationLoop1OperationalOperational195TI 68 24HotLegWRTemperatureIndicationLoop2OperationalOperational196TI 68 43HotLegWRTemperatureIndicationLoop3OperationalOperational197TI 68 65HotLegWRTemperatureIndicationLoop4OperationalOperational198M 5InstrumentPanelOperationalOperational199R 2InstrumentRackOperationalOperational200R 6InstrumentRackOperationalOperational201LT 68 325CRCSPressurizerLevelTransmitterOperationalOperational202LI 68 325CRCSPressurizerLevelIndicationOperationalOperational203L 179InstrumentationPanelOperationalOperational SequoyahNuclearPlantESEPReport  PageA 18TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState2040 DG 360 000A480VFLEXDieselGeneratorStandbyOperational2050 DG 360 003A6.9kVFLEXDieselGeneratorStandbyOperational2061 PNLA 082 TUDieselGenerator1B BControlPanelStandbyOperational2071 PNLA 082 TTDieselGeneratorG1A AControlPanelStandbyOperational2082 PNLA 082 TVDieselGenerator2A AControlPanelStandbyOperational2092 PNLA 082 TWDieselGenerator2B BControlPanelStandbyOperational2100 BD 3600003AFLEXDieselGenerator3ASwitchgearStandbyOperational2110 BKR 360 0003A/1/A2FLEXDG3ASwitchgearBreakerA2StandbyOperationalDCN231972120TANK3601136900V3MWFLEXDGFuelOilStorageTank3AStandbyOperationalDCN231972130 SW3600003A/16900V3MWFLEXDieselGEN3AFusedDisconnectSwitchStandbyOperationalDCN231972140XFMR3603A/16900V 480V3MWFLEXDieselGEN3A20KVADryTypeTransformerStandbyOperationalDCN231972150XFMR3603A/2480V120/240V3MWFLEXDieselGEN3A5KVADryTypeTransformerStandbyOperationalDCN231972160 DPL3600003A/1480 VoltDistributionPanelwith100AMainCircuitBreakerStandbyOperationalDCN23197 SequoyahNuclearPlantESEPReport  PageA 19TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState2170 DPL3600003A/2120/240VACPanelboardStandbyOperationalDCN231972180FU1 3600103APrimaryCntrlFuseforFuelOilPumpAStarterStandbyOperationalDCN231972190FU1 3600103BSecondaryCntrlFuseforFuelOilPumpAStarterStandbyOperationalDCN231972200FU1 3600103CPrimaryCntrlFuseforFuelOilPumpAStarterStandbyOperationalDCN231972210 HS 360103CFuelOilTransferPmpAEmerStopSWStandbyOperationalDCN231972220 PMP360103FuelOilSystemTransferPump3AStandbyOperationalDCN231972230 RES360003A3MWFLEXDieselGeneratorANeutralGroundingResistorStandbyOperationalDCN231972240 STR 36001033MWFLEXDieselGeneratorFuelOilTransferPumpStarterStandbyOperationalDCN231972250 LS 36001033MWFLEXDieselGeneratorFuelOilFloatSwitch(FillPumpControl)StandbyOperationalDCN231972260 XSW 082 0001ATransferSwitch1AStandbyOperationalDCN231972270 XSW 082 0002ATransferSwitch2AStandbyOperationalDCN231972280 XSW 082 0003BTransferSwitch2BStandbyOperationalDCN231972290 XSW 082 0004BTransferSwitch1BStandbyOperationalDCN23197 SequoyahNuclearPlantESEPReport  PageA 20TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState2301BDA 202 CM A6.9kVShutdownBoard1A AOperationalOperational2312BDA 202 CO A6.9kVShutdownBoard2A AOperationalOperational2321BDA 202 CN6.9kVShutdownBoard1B BOperationalOperational2332BDA 202 CP6.9kVShutdownBoard2B BOperationalOperational2341 OXF 202 DL480VShutdownTransformer1B1OperationalOperationalListedas1 XFA 202 0317inIPEEE2351 OXF 202 DM480VShutdownTransformer1B2OperationalOperationalListedas1 XFA 202 0319inIPEEE2361 OXF 202 DJ480VShutdownTransformer1A1OperationalOperationalListedas1 XFA 202 0313inIPEEE2371 OXF 202 DK480VShutdownTransformer1A2OperationalOperationalListedas1 XFA 202 0315inIPEEE2382 OXF 202 DN480VShutdownTransformer2A1OperationalOperationalListedas2 XFA 202 0315inIPEEE2392 OXF 202 DO480VShutdownTransformer2A2OperationalOperationalListedas2 XFA 202 0313inIPEEE2402 OXF 202 DP480VShutdownTransformer2B1OperationalOperationalListedas2 XFA 202 0319inIPEEE2412 OXF 202 DQ480VShutdownTransformer2B2OperationalOperationalListedas2 XFA 202 0317inIPEEE2421 PMP 360 IP01U1IntermediatePressureFLEXPumpStandbyOperationalPoweredby480VC&AVentBD1A2,DCN23193 SequoyahNuclearPlantESEPReport  PageA 21TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState2432 PMP 360 IP01U2IntermediatePressureFLEXPumpStandbyOperationalPoweredby480VC&AVentBD2A2,DCN231932441 PMP 360 HPCSU1HighPressureFLEXPumpStandbyOperationalPoweredby480VC&AVentBD1A1,DCN231932452 PMP 360 HPCSU2HighPressureFLEXPumpStandbyOperationalPoweredby480VC&AVentBD2A1,DCN23193246SQN 1IGN268 0142 AUnit1TrainAHydrogenIgniterStandbyOperational247SQN 1IGN268 0130 AUnit1TrainAHydrogenIgniterStandbyOperational248SQN 1IGN268 0125 AUnit1TrainAHydrogenIgniterStandbyOperational249SQN 1IGN268 0123 AUnit1TrainAHydrogenIgniterStandbyOperational250SQN 1IGN268 0116 AUnit1TrainAHydrogenIgniterStandbyOperational251SQN 1IGN268 0128 AUnit1TrainAHydrogenIgniterStandbyOperational252SQN 1IGN268 0129 AUnit1TrainAHydrogenIgniterStandbyOperational253SQN 1IGN268 0114 AUnit1TrainAHydrogenIgniterStandbyOperational254SQN 1IGN268 0133 AUnit1TrainAHydrogenIgniterStandbyOperational255SQN 1IGN268 0102 AUnit1TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport  PageA 22TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState256SQN 1IGN268 0115 AUnit1TrainAHydrogenIgniterStandbyOperational257SQN 1IGN268 0132 AUnit1TrainAHydrogenIgniterStandbyOperational258SQN 1IGN268 0108 AUnit1TrainAHydrogenIgniterStandbyOperational259SQN 1IGN268 0127 AUnit1TrainAHydrogenIgniterStandbyOperational269SQN 1IGN268 0155 AUnit1TrainAHydrogenIgniterStandbyOperational270SQN 1IGN268 0136 AUnit1TrainAHydrogenIgniterStandbyOperational271SQN 1IGN268 0131 AUnit1TrainAHydrogenIgniterStandbyOperational272SQN 1IGN268 0121 AUnit1TrainAHydrogenIgniterStandbyOperational273SQN 1IGN268 0122 AUnit1TrainAHydrogenIgniterStandbyOperational274SQN 1IGN268 0135 AUnit1TrainAHydrogenIgniterStandbyOperational275SQN 1IGN268 0159 AUnit1TrainAHydrogenIgniterStandbyOperational276SQN 1IGN268 0126 AUnit1TrainAHydrogenIgniterStandbyOperational277SQN 1IGN268 0107 AUnit1TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport  PageA 23TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState278SQN 2IGN268 0226 AUnit2TrainAHydrogenIgniterStandbyOperational279SQN 2IGN268 0235 AUnit2TrainAHydrogenIgniterStandbyOperational280SQN 2IGN268 0202 AUnit2TrainAHydrogenIgniterStandbyOperational281SQN 2IGN268 0223 AUnit2TrainAHydrogenIgniterStandbyOperational282SQN 2IGN268 0222 AUnit2TrainAHydrogenIgniterStandbyOperational283SQN 2IGN268 0231 AUnit2TrainAHydrogenIgniterStandbyOperational284SQN 2IGN268 0206 AUnit2TrainAHydrogenIgniterStandbyOperational285SQN 2IGN268 0205 AUnit2TrainAHydrogenIgniterStandbyOperational286SQN 2IGN268 0234 AUnit2TrainAHydrogenIgniterStandbyOperational287SQN 2IGN268 0214 AUnit2TrainAHydrogenIgniterStandbyOperational288SQN 2IGN268 0208 AUnit2TrainAHydrogenIgniterStandbyOperational289SQN 2IGN268 0259 AUnit2TrainAHydrogenIgniterStandbyOperational290SQN 2IGN268 0250 AUnit2TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport  PageA 24TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState291SQN 2IGN268 0232 AUnit2TrainAHydrogenIgniterStandbyOperational292SQN 2IGN268 0201 AUnit2TrainAHydrogenIgniterStandbyOperational293SQN 2IGN268 0230 AUnit2TrainAHydrogenIgniterStandbyOperational294SQN 2IGN268 0249 AUnit2TrainAHydrogenIgniterStandbyOperational295SQN 2IGN268 0254 AUnit2TrainAHydrogenIgniterStandbyOperational296SQN 2IGN268 0224 AUnit2TrainAHydrogenIgniterStandbyOperational297SQN 2IGN268 0233 AUnit2TrainAHydrogenIgniterStandbyOperational298SQN 2IGN268 0255 AUnit2TrainAHydrogenIgniterStandbyOperational299SQN 2IGN268 0207 AUnit2TrainAHydrogenIgniterStandbyOperational300SQN 2IGN268 0236 AUnit2TrainAHydrogenIgniterStandbyOperational301SQN 2IGN268 0221 AUnit2TrainAHydrogenIgniterStandbyOperational302SQN 2IGN268 0213 AUnit2TrainAHydrogenIgniterStandbyOperational303SQN 2IGN268 0228 AUnit2TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport  PageA 25TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState304SQN 2IGN268 0216 AUnit2TrainAHydrogenIgniterStandbyOperational305SQN 2IGN268 0229 AUnit2TrainAHydrogenIgniterStandbyOperational306SQN 2IGN268 0242 AUnit2TrainAHydrogenIgniterStandbyOperational307SQN 2IGN268 0227 AUnit2TrainAHydrogenIgniterStandbyOperational308SQN 2IGN268 0215 AUnit2TrainAHydrogenIgniterStandbyOperational309SQN 2IGN268 0225 AUnit2TrainAHydrogenIgniterStandbyOperational310SQN 1IGN268 0105 AUnit1TrainAHydrogenIgniterStandbyOperational311SQN 1IGN268 0154 AUnit1TrainAHydrogenIgniterStandbyOperational312SQN 1IGN268 0106 AUnit1TrainAHydrogenIgniterStandbyOperational313SQN 1IGN268 0113 AUnit1TrainAHydrogenIgniterStandbyOperational314SQN 1IGN268 0149 AUnit1TrainAHydrogenIgniterStandbyOperational315SQN 1IGN268 0101 AUnit1TrainAHydrogenIgniterStandbyOperational316SQN 1IGN268 0150 AUnit1TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport  PageA 26TABLEA 1:ExpeditedSeismicEquipmentList(ESEL)forSequoyahNuclearPlant(Continued)ESELItemNumberEquipmentOperatingStateNotes/CommentsIDDescriptionNormalStateDesiredState317SQN 1IGN268 0124 AUnit1TrainAHydrogenIgniterStandbyOperational318SQN 1IGN268 0134 AUnit1TrainAHydrogenIgniterStandbyOperational SequoyahNuclearPlantESEPReport  PageB 1ATTACHMENTB-ESEPHCLPFVALUESANDFAILUREMODESTABULATIONFORSEQUOYAHNUCLEARPLANT SequoyahNuclearPlantESEPReport  PageB 2TABLEB 1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear PlantEquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)1 PCV 1 52 PCV 1 5SteamGenerator#1ARVHand wheel7ACB734Screen0.501 PCV 1 302 PCV 1 30SteamGenerator#4ARVHand wheel7ACB734Screen0.501 L 5012 L 501PCV 1 12LocalControlStation18ACB714Functional0.621 L 5022 L 502PCV 1 23LocalControlStation18ACB714Functional0.621 PMP 3 1422 PMP 3 142TDAFWPump5ACB669Functional1.011 FCV 1 512 FCV 1 51TDAFWPumpTripandThrottleValve8AACB669Screen0.501 FCV 1 522 FCV 1 52TDAFWPumpGovernorValve7ACB669Functional1.011 XS 46 572 XS 46 57AFWTA SBackupControlTransferServiceWater14ACB669Functional0.881 HS 1 51B2 HS 1 51BTDAFWPumpTripandThrottleValveHS20ACB669Functional0.881 L 3812 L 381TDAFWPumpControlPanel20ACB669Functional0.851 L 2152 L 215AFWFlowMonitoringPanel18ACB669Functional0.621 L 3412 L 341AFWFlowtoSteamGenerator#3FTRack18ACB714Functional0.621 L 2172 L 217AFWFlowtoSteamGenerator#2FTRack18ACB714Functional0.621 L 2162 L 216AFWFlowtoSteamGenerator#1FTRack18ACB690Functional0.621 L 7032 L 703AFWFlowtoSteamGenerator#4FlowIndicationRack18ACB690Functional0.621 L 11A2 L 11ASteamGeneratorLevelControlPanel20ACB734Functional0.751 L 11B2 L 11BSteamGeneratorLevelControlPanel20ACB734Functional0.75 SequoyahNuclearPlantESEPReport  PageB 3TABLEB 1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear Plant (Continued)EquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)1 L 1832 L 183SteamGeneratorLevelTransmitterRack18RB697Functional0.621 L 7062 L 182SteamGeneratorLevelTransmitterRack18RB697Functional0.621 L 7042 L 704SteamGeneratorLevelTransmitterRack18RB697Functional0.621 L 1852 L 185SteamGeneratorLevelTransmitterRack18RB697Functional0.621 L 1942 L 194SteamGeneratorDischargePressureTransmitterRack18ACB690Functional0.621 L 1962 L 196SteamGeneratorDischargePressureTransmitterRack18ACB690Functional0.621 TNK 002 0229Unit1CondensateStorageTank21YARD705DCN23191>2xSSE2 TNK 002 0232Unit2CondensateStorageTank21YARD705DCN23191>2xSSE1 FCV 63 1182 FCV 63 118ColdLegAccumulator#1IsolationValve8aRB693Screen0.501 FCV 63 982 FCV 63 98ColdLegAccumulator#2IsolationValve8aRB693Screen0.501 FCV 63 802 FCV 63 80ColdLegAccumulator#3IsolationValve8aRB693Screen0.501 FCV 63 672 FCV 63 67ColdLegAccumulator#4IsolationValve8aRB693Screen0.501 M 62 M 6MCRBenchboardM 620ACB732MainControlRoomCeiling0.4251 TNK 062 0239BoricAcidTank(BAT)A21ACB690OverturningMoment0.782 TNK 062 0239BoricAcidTank(BAT)B21ACB690OverturningMoment0.780 TNK 062 0243BoricAcidTank(BAT)C21ACB690OverturningMoment0.781 M 92 M 9MCRVerticalPanelM 920ACB732MainControlRoomCeiling0.425 SequoyahNuclearPlantESEPReport  PageB 4TABLEB 1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear Plant (Continued)EquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)SQN 1IGN 268(MANY)HydrogenIgniters0RBSCVScreen0.501 XFA 268 1A APHMSXfrm1A4ACB759Functional0.362 XFA 268 2A APHMSXfrm2A4ACB759Functional0.361 PNL 268 YA120VACPHMSDistributionPanel1A14ACB759Functional0.362 PNL 268 YC120VACPHMSDistributionPanel2A14ACB759Functional0.36TNK 018 381A A7 DayOilSupplyTank21DGB719Screen0.50TNK 018 401B B7 DayOilSupplyTank21DGB719Screen0.50TNK 018 392A A7 DayOilSupplyTank21DGB719Screen0.50TNK 018 412B B7 DayOilSupplyTank21DGB719Screen0.501 XE 92 5001N31NeutronDetector18RB697Screen0.501 XM 92 5001AN31NeutronSourceRangeAmplifier20ACB734Screen0.501 XM 92 5001BN31NeutronSourceRangeOpticalIsolation20ACB734Screen0.502 XE 92 5002N32NeutronDetector18RB697Screen0.502 XM 92 5002AN32NeutronSourceRangeAmplifier20ACB714Screen0.50 SequoyahNuclearPlantESEPReport  PageB 5TABLEB 1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear Plant (Continued)EquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)2 XM 92 5002BN32NeutronSourceRangeOpticalIsolation20ACB714Screen0.501 L 102 L 10RemoteControlPanelL 1020ACB734Functional0.4251 M 42 M 4MCRBenchboardM 420ACB732MainControlRoomCeiling0.4251 M 132 M 13MCRVerticalPanelM 1320ACB732MainControlRoomCeiling0.4251 L 3882 L 388RCSLoopWRPTLoop1InstrumentRack28ACB690Functional0.621 L 3402 L 340RCSLoopWRPTLoop3InstrumentRack28ACB690Functional0.621 R 42 R 4AIRPanelR 420ACB685Functional0.641 R 52 R 5AIRPanelR 520ACB685Functional0.641 TE 68 182 TE 68 18ColdLegWRTemperatureElementLoop119RB693Screen0.501 TE 68 412 TE 68 41ColdLegWRTemperatureElementLoop219RB693Screen0.501 TE 68 602 TE 68 60ColdLegWRTemperatureElementLoop319RB693Screen0.501 TE 68 832 TE 68 83ColdLegWRTemperatureElementLoop419RB693Screen0.501 TE 68 12 TE 68 1HotLegWRTemperatureElementLoop119RB679Screen0.501 TE 68 242 TE 68 24HotLegWRTemperatureElementLoop219RB679Screen0.501 TE 68 432 TE 68 43HotLegWRTemperatureElementLoop319RB679Screen0.501 TE 68 652 TE 68 65HotLegWRTemperatureElementLoop419RB679Screen0.501 M 52 M 5MCRBenchboardM 520ACB732MainControlRoomCeiling0.425 SequoyahNuclearPlantESEPReport  PageB 6TABLEB 1:ESEP HCLPF Values and Failure Modes for Sequoyah Nuclear Plant (Continued)EquipmentIDEquipmentDescriptionEquipmentClassBuildingFloorElevationFailureModeHCLPFCapacity(g)1 R 22 R 2AIRPanelR 220ACB685Functional0.641 R 62 R 6AIRPanelR 620ACB685Functional0.641 L 1792 L 179RCSPressurizerLevelTransmitterInstrumentRack18RBFunctional0.622 XM 92 5002BN32NeutronSourceRangeOpticalIso.20ACB714Screen0.501 M 2CabinetM 220ACB732MainControlRoomCeiling0.4251 FCV 3 136A2 FCV 3 136AERCWHeaderAAFWSupplyValve8aACB669Screen0.501 FCV 3 136B2 FCV 3 136BERCWHeaderAAFWSupplyValve8aACB669Screen0.501 FCV 3 179A2 FCV 3 179AERCWHeaderBAFWSupplyValve8aACB669Screen0.501 FCV 3 179B2 FCV 3 179BERCWHeaderBAFWSupplyValve8aACB669Screen0.50 E2-1 of 1 ENCLOSURE 2 LIST OF COMMITMENTS
: 1. Perform seismic walkdowns, generate HCLPF calculations, and design and implement any necessary modification for the following Unit 1 inaccessible items no later than the end of the second planned Unit 1 refueling outage after December 31, 2014:
: a. FCV 63-118 - Cold Leg Accumulator Isolation Valve #1
: b. FCV 63-067 - Cold Leg Accumulator Isolation Valve #4 c. FCV 63-080 - Cold Leg Accumulator Isolation Valve #3 d. FCV 63-098 - Cold Leg Accumulator Isolation Valve #2
: e. Instrument Rack 1 - L - 182 located in Fan Room 2
: f. Instrument Rack 1 - L - 183 located in Fan Room 1
: g. Instrument Rack 1 - L - 179 h. Instrument Rack 1 - L - 185 i. Instrument Rack 1 - L - 704
: j. Instrument Rack 1 - L - 706
: k. Instrument Rack 1 - L - 194
: l. Instrument Rack 1 - L - 196
: m. Instrument Rack 1 - L - 216
: 2. Modify TDAFP Control Panel 2-L-381 anchorage to replace the corroded anchor such that HCLPH > RLGM no later than the end of the U2 Cycle 20 refueling outage.
: 3. Submit a letter to NRC summarizing the HCLPF results of Commitment 1 and confirming implementation of the plant modifications associated with Commitment 2 within 60 days following completion of ESEP activities.}}

Latest revision as of 22:50, 21 January 2019