L-15-202, Response to Request for Additional Information on Expedited Seismic Evaluation Process (ESEP) Reports and Seismic Hazard and Screening Reports Submitted, Per 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term
| ML15181A085 | |
| Person / Time | |
|---|---|
| Site: | Beaver Valley |
| Issue date: | 06/29/2015 |
| From: | Emily Larson FirstEnergy Nuclear Operating Co |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| L-15-202, TAC MF3726, TAC MF3727, TAC MF5223, TAC MF5224 | |
| Download: ML15181A085 (42) | |
Text
{{#Wiki_filter:FE NOC' ~ FirstEnergy Nuclear Operating Company Eric A. Larson Site Vice President June 29, 2015 L-15-202 A TIN: Document Control Desk U.S. Nuclear Regulatory Commission 11555 Rockville Pike Rockville, MD 20852
SUBJECT:
Beaver Valley Power Station, Unit Nos. 1 and 2 Docket No. 50-334, License No. DPR-66 Docket No. 50-412, License No. NPF-73 Beaver Valley Power Station P.O. Box 4 Shippingport, PA 15077 724-682-5234 Fax: 724-643-8069 10 CFR 50.54(f) Response to Request for Additional Information on Expedited Seismic Evaluation Process (ESEP) Reports and Seismic Hazard and Screening Reports Submitted Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force (NTIF) Review of Insights from the Fukushima Dai-ichi Accident (TAC Nos. MF5223, MF5224, MF3726, and MF3727) On March 12, 2012, the Nuclear Regulatory Commission (NRC) issued Reference 1 to all power reactor licensees and holders of construction permits in active or deferred status. Enclosure 1 of Reference 1 requested each addressee to reevaluate the site seismic hazard using updated seismic information and present-day regulatory guidance and methodologies and, if necessary, to perform a risk evaluation. In Reference 2, the Nuclear Energy Institute (NEI) requested NRC agreement to a path forward to complete the seismic reevaluations. This path forward included an augmented approach to responding to Reference 1. In Reference 3, the NRC agreed with the path forward and the augmented approach presented in the Electric Power Research Institute (EPRI) report that was subsequently issued as EPRI Report 3002000704 (Reference 4). By letters dated March 31, 2014 and December 19, 2014 (respectively), FirstEnergy Nuclear Operating Company (FENOC) submitted the seismic hazard and screening reports and ESEP reports for Beaver Valley Power Station (BVPS), Unit No. 1, BVPS Unit No. 2, Davis-Besse Nuclear Power Station, and Perry Nuclear Power Plant.
Beaver Valley Power Station, Unit Nos. 1 and 2 L-15-202 Page 2 By electronic mail dated May 1, 2015 and May 12, 2015, the NRC staff requested additional information to complete its review of the ESEP reports and seismic hazard and screening reports for BVPS Unit No. 1 and BVPS Unit No. 2. A teleconference was held on May 20, 2015 between FENOC and NRC staff to obtain clarification on the requested information. During this teleconference, FENOC agreed to provide the response to the requests for additional information (RAls) in one submittal. The RAI responses are attached. There are no new regulatory commitments contained in this letter. If there are any questions or if additional information is required, please contact Mr. Thomas A. Lentz, Manager - Fleet Licensing, at 330-315-6810. I declare under penalty of perjury that the foregoing is true and correct. Executed on June ;>Cf, 2015. Respectfully, zrc,'1-- z_ Eric A. Larson Attachment Response to Request for Additional Information
Enclosure:
Response to NRC RAI Control Point GMRS and Control Point Hazard CuNes Beaver Valley Power Station
References:
- 1.
NRC Letter, Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3, and 9.3, of the Near-Term Task force Review of Insights from the Fukushima Dai-ichi Accident, dated March 12, 2012, Agencywide Documents Access and Management System (ADAMS) Accession No. ML12053A340
- 2.
NEI Letter, Proposed Path Forward for NTTF Recommendation 2. 1: Seismic Reevaluations, dated April 9, 2013, ADAMS Accession No. ML13101A379
- 3.
NRC Letter, Electric Power Research Institute Final Draft Report XXXXXX, "Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic," as an Acceptable Alternative to the March 12, 2012, Information Request for Seismic Reevaluations, dated May 7, 2013, ADAMS Accession No. ML13106A331
Beaver Valley Power Station, Unit Nos. 1 and 2 L-15-202 Page 3
- 4.
EPRI Report 3002000704, Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic, dated April 2013, ADAMS Accession No. ML13107B387 cc: Director, Office of Nuclear Reactor Regulation (NRR) NRC Region I Administrator NRC Resident Inspector NRR Project Manager Director BRP/DEP (without Enclosure) Site BRP/DEP Representative (without Enclosure)
Attachment L-15-202 Response to Request for Additional Information Page 1 of 7 By letters dated March 31, 2014 and December 19, 2014, FirstEnergy Nuclear Operating Company (FENOC) submitted the seismic hazard and screening reports and Expedited Seismic Evaluation Process (ESEP) reports (respectively) for Beaver Valley Power Station (BVPS), Unit No. 1, BVPS Unit No. 2, Davis-Besse Nuclear Power Station, and Perry Nuclear Power Plant. By electronic mail dated May 1, 2015 and May 12, 2015, the Nuclear Regulatory Commission (NRC) staff requested additional information to complete its review of the ESEP reports and seismic hazard and screening reports for BVPS Unit No. 1 and BVPS Unit No. 2. The NRC requests are provided in bold type, followed by the FENOC response. ESEP Clarification Question 1: Section 3.1.5 of the ESEP Reports states: Critical indicators and recorders are typically physically located on panels/cabinets and are included as separate components; however, seismic evaluation of the instrument indication may be included in the panel/cabinet seismic evaluation (rule-of-the-box). Section 6.1 of the ESEP Reports states: A number of components on the ESEL are breakers and switches that are housed in a parent component, such as a motor control center (MCC) or switchgear. For the purpose of this evaluation, calculations are not explicitly performed for these housed components. Instead, their HCLPF is assigned based on the parent component. The information provided in both paragraphs is not clear. Please provide a more detailed description of both approaches, how they are different, when would each approach be applied, and examples for both approaches to show how the HCLPF values of the devices were determined, including consideration of cabinet amplification, if applicable. Also, describe whether any of these devices are sensitive to vibration as are relays and other devices with contacts, and if so, how they were evaluated. Lastly, if the qualification of the devices is based on the cabinet/panel they are housed in, which have been previously qualified as part of an equipment class (parent component), how is it known/confirmed that the parent component normally contains the particular device.
Attachment L-15-202 Page 2 of 7 FENOC Response: The above referenced sections of the ESEP Report describe the approach to the rule-of-the-box. Section 3.1.5 states that indicators and recorders are listed on the expedited seismic equipment list (ESEL) as distinct items, but that their seismic evaluation is based on the evaluation of the parent component. Section 6.1 reiterates that when an ESEL item is identified to be mounted on a parent component, the high confidence of low probability of failure (HCLPF) of the parent component is assigned to the item. With the exception of the BVPS Unit No. 2 relays that automatically start the turbine driven auxiliary feed water pump (TDAFWP) (housed in Panel RK-2RC-PRT-A), no equipment or devices on the ESEL that are possibly sensitive to vibration, are identified as critical such that their spurious change of state affects the FLEX strategy. The HCLPF for this specific relay (Relay Model AR440AR) is calculated using the applicable test response spectrum (TRS) and includes cabinet amplification. No specific relay evaluation is required for BVPS Unit No. 1 since the relay included in the Unit No. 1 ESEL is a slave relay in the solid state protection system and has no lockout function. This solid state relay is not prone to chatter in a seismic event, and the capacity of the relay is governed by the seismic capacity of the housed panel, as documented in Attachment B. The other housed items on the ESEL are addressed on the basis of the rule-of-the-box. The HCLPF calculations are based on the guidance provided in Electric Power Research Institute (EPRI) TR-1002988, in which a generic capacity of 1.8g or use of generic equipment ruggedness data (GERS) is endorsed. The HCLPF developed for the parent component is assigned as the HCLPF value to all ESEL components housed therein, as documented in Attachment B. For example, Unit No. 1 indicators TI-1RC-412A and LI-1RC-459A were walked down to confirm their location and mounting on the Control Room Vertical Board VB-B. These indicators are therefore assigned the HCLPF of VB-B. Similarly, a walkdown confirmed that the Terry Turbine FW-T-2 is mounted on the same skid as Feedwater Pump FW-P-2. As the HCLPF calculation for FW-P-2 considers everything within the boundary of the skid, FW-T-2 is assigned the HCLPF of FW-P-2. ESEP Clarification Question 2: Table 7-1 identifies seven (7) inaccessible items. Table 7-1 states that six of these items were resolved by calculating fragilities based on design documentation and installation drawings. One item is resolved by reviewing plant drawings to obtain information for structural/anchorage evaluation. The ESEP Reports indicate that no walk-down was planned because of high radioactive environments. The sentence prior to Table 7-1 states:
Attachment L-15-202 Page 3 of 7 The criteria implemented to confirm the installed condition follows EPRI NP 6041, where a number of ways of confirming the installed condition of equipment, including follow up walkdowns, photographic or other confirmatory evidence is provided. The licensee is requested to clarify the difference between the statements in Table 7-1, wherein it is stated that the inaccessible item is resolved through review of design documentation and installation drawings, and the statement in the sentence prior to the table, quoted above. Please confirm that the installed condition of the equipment has been confirmed in accordance with the criteria in EPRI 6041. If not, since many inaccessible items were installed many years ago, the licensee is requested to clarify whether design documentation and installation drawings can reflect current conditions of those inaccessible items, and therefore ensure realistic fragility calculations. FENOC Response: Seismic walkdowns were performed in support of seismic probabilistic risk assessment (SPRA) evaluations in addition to ESEP evaluations as stated in Section 6.1 of the ESEP Report. Combining the scope of the SPRA and ESEP, more than 700 components per Unit were walked down, and the same Seismic Review Team (SRT) performed both walkdowns. The current condition of the inaccessible items is assessed on the basis of the familiarity with the plant conditions and utilizing one or more of the following methods to ensure that the fragility calculations reflect the current plant conditions:
- 1. Similarity to other components - Most of the inaccessible ESEL items are similar to components that are found throughout the plant. For example, level transmitters were identified to have similar manufacturers and mounting configurations no matter which system they serve or in which structure they are located. The plant drawings show the inaccessible level transmitters to be consistent with the other observed level transmitters, so the SRT is confident that the drawings accurately reflect the plant conditions.
- 2. Mounting configuration from drawings - The SRT found that plant drawings for accessible components accurately reflect the as-installed conditions in the plant.
Furthermore, the mounting configurations shown on drawings for inaccessible components were consistent with mounting configurations observed elsewhere in the plant.
- 3. Identification of plant modifications or seismic evaluations - For inaccessible components, the SRT performed a search of the plant file system for
Attachment L-15-202 Page 4 of 7 modifications or previous seismic evaluations associated with the component. Examples of these types of files include seismic reevaluations performed in support of individual plant examination of external events (IPEEE) and A-46 programs. These files, when available, provide more detailed information about the component than is shown on plant design drawings. These above methods were used as the basis to confirm the installed conditions of the inaccessible components consistent with the recommendation of EPRI 6041. The fragility calculations and anchorage evaluation relied on the design information such as drawings and design basis analysis. ESEP Clarification Question 3: Section 5.2 of the ESEP Reports for Beaver Valley Power Station states the following: Subsequent equipment HCLPF calculations and fragility evaluations are based on the conservative deterministic failure margin (CDFM) approach. In accordance with EPRI 1019200 [10] Seismic Fragility Applications Guide Update, the seismic analyses are performed using BE structure stiffness, mass and damping characteristics, and the BE subsurface Vs profile compatible with the expected seismic shear strains. The resulting ISRS approximately represent the 84th percentile response suitable for use in the CDFM calculations. Section 4 of the Seismic Evaluation Guidance, Augmented Approach (EPRI 3002000704) allows the development of ISRS [in-structure response spectrum] calculated from new SSI [soil structure interaction] models. The guidance document indicates that: EPRI 1025287 (SPID) and the ASME/ANS PRA Standard give guidance on acceptable methods to compute both the GMRS [ground motion response spectra] and the associated ISRS. Table 6-5 in the SPID document, under the SFR-C6 entry, indicates that ASME/ANS PRA Standard (Addendums A and B) requires consideration of the variation of soil properties (Vs profile). Also, the SFR-C5 entry indicates that if the median-centered response analysis is performed, the evaluation should estimate the median response (i.e., structural loads and ISRS) and variability in the response using established methods. Based on EPRI 1019200, which was referenced by the ESEP Reports, parameter variation should be incorporated into SSI analyses in order to characterize the uncertainty in the SSI demands. EPRI 1019200 indicates that the SSI analyses in ASCE 4 be followed, which require that SSI evaluations include lower bound and upper bound soil profiles to account for parameter variation in SSI. EPRI 1019200
Attachment L-15-202 Page 5 of 7 also indicates that for the structural model, the best estimate (median) and uncertainty variation in the frequency should be considered. Therefore, please describe how parameter variation is incorporated into the SSI analyses for the structural model and subsurface while using only the best estimate (BE) structure stiffness, mass and damping characteristics, and the BE subsurface Vs profile. Related to the above discussion, if only the BE is used for the structural model and soil profile, explain how the ISRS would approximately represent the 84th percentile response, as stated in the ESEP report. FENOC Response: The recommended guidelines (EPRI 1019200) are used to obtain a deterministic response for the given shape of the foundation input response spectrum (FIRS), and using best estimate structure and soil stiffness and conservative estimate of median damping. This response approximates the 84th percentile relative to the statistical distribution that would result from, for example, a set of 30 calculations randomly varying stiffness and damping parameters and using a set of 30 time histories. The deterministic response is suitable for use in the CDFM calculation of fragilities of plant structures, systems, and components (SSCs). EPRI 1019200 further states that the SSI analysis should address best estimate plus parameter variation, and that the peak shifting should be used instead of peak broadening recommended in ASCE 4-98. However, the reported analysis uses only the result from the BE soil column (stiffness and damping), and median structure stiffness and damping. The effects of variability of the soil column stiffness and damping are considered using the approach in EPRI 6041. This approach estimates the upper and lower bound SSI frequencies based on the fixed base frequency, the best estimate SSI frequency and a Cv factor in the soil column stiffness. Considering the depth to rock and the overlying basal gravel and engineered fill, the upper and lower bound SSI frequencies are estimated to be in the range of +/- 15 percent of the best estimate SSI frequency. Therefore, the upper and lower bound seismic responses are not expected to be significantly different from the best estimate response. Nevertheless, the variability in the SSI stiffness is accommodated in the CDFM method for calculating fragilities by peak shifting of at least +/- 20 percent. ESEP Clarification Question 4: Section 6.4 of the ESEP Reports states that all HCLPF calculations were performed using the CDFM methodology. Table 7-1 states that Fragility is calculated. In addition, Appendix B provides information for C, R, and U, which would indicate that a fragility analyses has been performed.
Attachment L-15-202 Page 6 of 7 The licensee is requested to confirm that only the CDFM methodology has been used, or to identify that fragility analysis has also been performed. If fragility analyses have been performed, then the description of the methods used to estimate HCLPF values should be updated to include a description of the fragility analyses methods used. FENOC Response: CDFM methodology has been used for the calculations as stated in Section 6.4 of the ESEP Report. The use of the word fragility in this context refers to the hybrid approach for fragilities where the HCLPF capacity is calculated first using CDFM methodology and the median capacity is then determined with an assumed composite variability (C). The hybrid approach to fragilities and the associated variabilities are described in Section 6.4.1 of EPRI 1025287. ESEP Clarification Question 5: Section 6.3.1 of the ESEP Reports states that The similarity basis was planned to be confirmed during walk-bys, which would also record anomalies in installation or presence of seismic interaction, if any. It is not clear from the discussion provided that these walk-bys have in fact been completed. The licensee is requested to confirm that the planned walk-bys have been completed, or provide a schedule for completion. FENOC Response: The similarity basis walk-bys have been completed. As mentioned in Section 6.3.1 of the ESEP Report, all representative and walk-by items are fully documented on Seismic Evaluation Work Sheets (SEWS). ESEP Clarification Question 6: Section 6.6 of the ESEP Report for Unit 1 states that Attachment B tabulates the HCLPF values for all components on the ESEL. Attachment A, the ESEL, contains 263 items while Attachment B provides HCLPF values for 63 items. Since Section 6.2 states that no screening was performed, it is not clear how the additional 200 items are evaluated. The licensee is requested to describe the process used to evaluate the 200 items listed in the ESEL (Attachment A) that are not addressed in Attachment B. This issue is also applicable for Unit 2.
Attachment L-15-202 Page 7 of 7 FENOC Response: Based on the guidance in EPRI 3002000704, 263 items in Unit No. 1 were identified as potential ESEL items. Following the EPRI screening process, described in Section 3.1 of the ESEP Report, 200 of these items were screened out. The final ESEL contains 63 screened in components. Attachment A summarizes and documents this screening process. No further screening was performed based on ruggedness, and all 63 items on the final ESEL were evaluated to obtain HCLPF values. Similarly for Unit No. 2, 256 of the 313 potential ESEL items were screened out based on the guidance in EPRI 3002000704, resulting in 57 items on the final ESEL. No further screening was performed based on ruggedness, and all 57 items on the final ESEL were evaluated to obtain HCLPF values. NRC Request Regarding Seismic Hazard and Screening Report: Provide: Control point hazard curves at the Ground Motion Response Spectrum (GMRS) level and the GMRS itself. FENOC Response: The requested information is provided in the enclosed report, Response to NRC RAI Control Point GMRS and Control Point Hazard Curves Beaver Valley Power Station.
Enclosure L-15-202 Response to NRC RAI Control Point GMRS and Control Point Hazard Curves Beaver Valley Power Station (31 pages follow)
3523003-R-002 Revision 0 (}RlnE,",g Response to NRG RAI Control Point GMRS and Control Point Hazard Curves Beaver Valley Power Station June 5, 2015 Prepored for: FENOC -T-fircEnxgy Nt*te* Operafng ABSG Consulting Inc. o 300 Commerce Drlve, Suite 20(l r lrvine, Califomia 926O2
Iting {}RtEm Response to NRC RAI Gontrol Point GMRS and Control Point Hazard Curves Beaver Valley Power Station June 5, 2015 Prcparcd by: ABSG Gonsulting lnc. Preparcd for FirstEnergy Nuclear Operating Company Beaver Valley Power Station Route 168 Shippingport, PA 15077 3523003-R-002 Revision 0 lFSCOrsaSSng ?!Rrzzo t - r 9 f i - r ! r r. r.
3523003-R402 Rwtsiat 0 lune 5,2075 Pase 3 of37 Report Name: Date: i{$lsion No.: Approval by the responsible manager signifies that the document is complete, all required reviews are complete, and the document is roleased for use. Originator: .}.J,*d^ rt*+r HngHffir:i*o*o, u RlZZOAssodates 06/05/15 APPROVALS Response to NRC RAf Control Point GMRS and Control Point Hazard Gurues Beaver Valley Power Station June 5, 2015 0 Independent Technical Revlewer: Approver: FENOC Approver: Nish Vaidya, Ph.D., P.E. Principal Fazin R. Beigi, P.E. Senior Consultant Thomas R. Roche, P.E. Vice President Eugene Ebeck Supervisor Nuc. CiviUStructural Engineering Carmen Mancuso Manager Design Engineering 7a*% Date 06/05/15 06/05/15 t:,,W" Revierver; Date 6/s/r 6 tf lBEConnrltilg ?SFrzup
35nAffi-R-002 Revisinn 0 lune 5,2415 Table of Revisions Revision No. Date Description of Revision 0 June 5, 2015 Initial submittal. fmQgnrnnng tl8ta1e
3523ffi3-R-W2 Rwisiwt 0 lutw 5,201"5 RESPONSE TO NRC RAI CONTROL POINT GMRS AI\\D CONTROL POINT HAZARD CUR\\'ES BEAVER VALLEY POWER STATION BACKGROUNI) U'S. Nuclear Regulatory Commission's (NRC) Request for Additional Information (RAD of October 3l,2A14, related to the March 2Ol4 submittal rcquested "...the basis for total kappa values of 21.3 msec for Pl, 23.7 msec,forPl,and 19.3 msec for P3 calculated for the Beaver Valley Powsr Station." In response to the above request, FirstEnergy Nuclear Operating Company (FENOC) provided a response dated November 5, z}l4,which clarified that as part of developing the foundation input response specfia (FIRS) for use in the seismic probabilistic risk assessment (SPRA), "...The kappa values estirnated for the Beaver Valley Probabilistic Seismic Hazard Analysis (PSHA) used for the Seismic Probabilistic Risk Assessment (SPRA) have been revised relative to the kappa values listed in the March submittal to NRC. The revised GMRS are being used in the BVPS SPRA as well as the ESEP Report." In addition to revised kappa values, the updated PSHA/ground motion respnse spectra (GMRS) calculation completed for the SPRA incorporated (l) modified damping values for the top 500 ft of the Paleozoic rock section and (2) the soil above the foundation levels in the soil column analyzed to obtain the FIRS. In a subsequent phone call of M ay 20, 2015, the NRC further requested the GMRS and hazafi curves at the outcropping reactor building (RB) foundation level; i.e., without the pressnco of soil layer above this level, In response to this request, the Calculation presented here develops the hazard curves and the GMRS at the RB outcropping foundation level. The RB bottom of foundation is taken asthe Control PointElevation. At the Beaver Valley Power Station (BVPS) this level corresponds to EL 581.0. $nm7-.
35XAffi-R-0A2 Rsoision 0 lunc 5, 20L5 6 af37 SUBSURFACE SOIL COLUMN Table 2-3 of Ref IJ, shown below as Table 1 describes thc subsurface column underlying the site grade. TABLE I GEr I1l) CHARACTERISTICS OF SUBSURFACE STRATIGRAPHIC UNITS _ BVP$I SITE Emvatrox IftI Laynn No. Sor/Rocr Drscnrrrron Tmf locfl Vs^ Iff/sl PE Plant G ndeJSurface Elevetion) 73s Sfuctural FilVNatural and Densified Soil 136 730*lE3 0.35 720 Structrnal FilV Nafiral and Deirsified Soil t36 1015*254 0.35' 680.9 1(d) Plef$qqene Upper and Lower Terrace 125 r 100*275 0,28 " 680.9 GMR^S Elevation - SSE Control Point rtBase of Nuclear Island Foundation 665 Grcund Water Elevation 665 1(e) Pleistocene Upper and Lower Terrace 136 1200+300 0.48 625 2 Middle Pemnsylvanian AlleeheNrv Shale 160 5000j1000' 0.39' 550c 3 Lower Pennsylvanian Pottsville Sandstoneo conglornerate 160 6,026 0.30 3s0 4 Upper Mississippian Mauch Chtrrrk Shale 155 6.744 0.30 300 5 Lower Mississippian Pocono Sandstone conglomerate 155 6,744 0.30 -120 6 Upper Devonian Interbedded Shale, Sandstone, Siltstone 155 7,112 0.30 -2.994 155 6.416 0.30 -3.700 7 Middle Devonian Tully Limestone 168 9.856 0.30 -3,820 I giddle Devonian Matrantaneo Shale 157 9.856 0.30 -3,900 I Middle Devonian Marcellus Shale r57 9.856 0.30 -3,935 10 Middle Dwonian Onondaga Limestone, Dolomite r70 9,956 0.30 -4.150 l t Lower Devonian Ridselev Sandstone 160 9.856 0.30 -42s0 12 Lower Devonian Helderberg Limestone, Shale 170 9,856 0.30 4,450 l3 Upper Silurian Bass Island Dolomite, Limestone r70 8,352 0.30 4.540 r4 Upper Sihnian Salina Dolomite, Limestone 170 8.352 0.30 -5,034 170 9.547 0.30 -5,330 l5 Upper Silurian Wells Creek Shale r63 11.534 0.30 -5,550 l6 Middle Silurian Lockport Dolomite r70 9.01s 0.30 -5,900 17 Middle Silurian Rochester Shale 163 9,015 0.30 -5,980 l 8 Middle Silurian Rose Hill Shale 163 9"015 0.30 {,170 t9 Lower Silurian Tuscarora Sandstone r63 8"588 0.30 -6,390 20 Upper Ordovician Queenston Shale, Siltstone, Sandstone 163 8.588 0.30 -7.123 2l r63 ?.835 0.30 -7Ass 2l(a) Uppq Ordovician Reedsville Shale 163 7835 0.30 -7,698 2rft 163 6834 0.30 ABECsultring ffiB,lt4-?.
3,fi1ffi-R-M2 Rmision 0 lune 5,2AL5 CHARACTERISTICS OF SUBST]RFACE STRATIGRAPIilC UNITS - BVPS-I SITE (coNrrNrrED) Notes: A-Variability in Vs of soil is based on SPT-V, corrclations (COV:25 percent). COV is assumed 20 percent ,!s average of soil and rock for the rock at the top and for deoper rock units COV = l l percent is assumed. based on the information fiom deep wells; B. Appendix 2D, 2G, and 2H of B\\IPS-I IFSAR; C. From this elevation down" soil parameters are estimates fiom sonic velocities of deep wells except unit weight. Unit weights are typical values fiom the literature. Poisson's ratio is calculated by following formula:- Poisson's Ratio : [(vpA/s)t - z] /[2(vpfl/s)2 -zl;o. unit weight; E. poisson's rario. With reference to the Tsble f, *ree Base Case profiles are considered in the development of the GMRS and the hazard curres at the control point elevation as described in Ref [l]. Howevero in contrast to Ref F], the nonlinear characteristics of the subsurface materials are as follows. NON.LINEAR CHARACTERISTICS OF SITBSURFACE MATERIALS For the lower Pleistocene Upper and Middle Terrace: Middle Unit lD and Lower Unit lE) which have Vs values for the randomized soil profiles generally exceeding 1,000 ff/s, the dynamic properties are based on the Electric Power Research Institute (EPRI) ( 1993, Ref [2]) soil curve s for the appropriate depth range. The dynamic properties for these two layers are displayed in Table 2. IES'G ultim
- ffiEleAg ELnvarror,t tftl Le,vnR No.
SonRocK DEScRIPTIoN ?ror"i f ocfl Vs^ Iff/sl PB -826s 22 Middle Ordovician Utica Shale r63 6834 0.30 -9,565 23 Middle Ordovician Trenton Limestone t7s 10.520 0.30 -9,305 24 Middle Ordovician Gull River Limestone, Dolomite 175 10,520 0.30 -9.455 25 Lower Ordovician Beelonantown Dolomite 175 10.520 0.30 -9,645 26 Upper Cambrian Gatesbury Dolomite Sandstone 170 10,520 0.30 -9.995 27 Middle Cambrian Rome Dolomite 175 10.520 0.30 -10.695 z8 Lower Cambrian Mt. Simon Sandstone r70 10.s20 0.30 -10.865 29 Precambrian Granite 175 10,520 0.30
3523003-R-AAz Rmision A lune 5,2015 DYNAIVIIC PROPERTIES USED FOR TIIE PLEISTOCENE UPPER/lVIIDDLE TERRACE: UPPER UNIT FOR PROFILE PT AT TIIE B\\IPS SITE Srnrw (%) G/Guax IEPRI Soru 21-$ ftl Pnonlr Pl IIAMPTNG (%) IEPRI Son,21-50 ftl PR TII,E PI 1.00E-04 1.000 1.142 1.788-04 r.000 1.196 3.16E-04 1.000 1.250 s.628-04 0.999 1.304 1.008-03 0.993 1.469 1.78E-03 0.979 t.670 3.16E-03 0.9s2 2.474 5.62F-03 0.903 2.658 1.00E-02 0.830 3.62? r.78E-A2 0.733 5.066 3.rcF.-Az 0.617 7.069 5.62F-02 0.4t8 9.569 1.008-01 0.366 12.500 1.78E-01 0.258 15.688 3.168-0t 0.173 19.004 5.628-0r 0.108 22.022 SrnArN (%) G/Guax [Bnlr Bnnol Pnornn P2 Daupnc ("/") [BnuBrnul Pnoru,nHl G/Gulx IPuxuvsuranl PROULE P3 DAMPTNG(9/c) IPENINSUIARI Pnorrr,nP3 1.00E-04 0.9800 1.26000 1.00000 1.00000 3.r6E-03 0.9564 t.26960 1.00000 0.97800 1.008-03 0.8766 r.48239 0.99800 r.16500 2.008-03 0.7972 l.847tl 0.98435 1.4t953 3.00E-03 0.7479 2.08253 0,97163 1.58836 5.00F03 0.6656 2.70751 0.94131 1.95748 7.00E-03 0.6095 3.15046 0.91256 2.3M74 1.00E 02 0.5500 3.62000 0.87800 2.83000 2.00F'02 0.4343 5.7W49 0.77548 4.22423 3.00E-02 0.3665 6.93177 0.70060 5.34888 5.00E-02 0.2867 9.17047 0.59218 7.22154 7.OAE-02 0.2345 r0.6833 0.52013 8.69806 1.00E-01 0.1794 t2.2950 0.44400 10.3810 2.00E-01 0.1076 16.3206 0.30709 14.0/,49 3.00E-01 0.0656 t8.67s4 0.23432 16.3479 1.00E-00 0.0200 24.7100 0.09200 22.s800 Note: The dynamic properties forProfilcs P2 and P3 are as shown above but with the damping curye scaled to low-sfain damping value based on the EPRr soil (21-50 ft). R:1Z26 r i 6 g C. d. !. A : 1 e t tI3
ss23003-R-042 Ratision 0 lutu 5,2075 Page 9 of 37. For the rock material, uncertainty is represented by modeling the material as either linear ornon-linear in its dynamic behavioroverthe top 500 ft of rock. This material primarily consists of shale and sandstone. The use of the EPRI rock curyes, which exhibit a relatively high amount of low,strain damping ?3.2 percent), is limited to the upper 100 ft where the rock is considered as weathered and fractured-For the alternative linear analyses, the low-strain damping from the EPRI rock curves was used as the constant value of damping in the upper 100 ft. The EPRI rock dynamic properties are shown n Table 3. Within the depth range of I00 ft to 500 ft, non-linear dynamic behavior is based on the unweathered shale dynamic properties from Stokoe et al., (2003) {Ref [3J) for the Y-12 Site at Oak Ridge, Tennessee. For these curves the low-strain damping is about I percent. For the alternative linear analyses, the low strain damping from the Stokoe et al.o (2003) (Ref [3]) unweathered shale curyes was used as the constant damping value from 100 ft to 500 ft. The Stokoe et al., (2003) (Ref [3]) unwearhered shale dynamic properties are displayed in Tahle 4. Given that there is no preference between the two degradation cuwes shown in Tabte 3 and 1, and given the lack of direct laboratory testing for the Paleozoic rocks, these two curves are modeled with equal weight (0.5). Epistemic uncertainty in damping also considers linear damping assumptions using the low strain damping from either. EPRI ( 1993) (Ref [2]) or DOE y -12. There is also no preference between linear versus equivalent-linear assumptions, and as a result these two assumptions arc modeled with equal weight. Below a depth of 500 ft, linear material behavior is adopted, with the damping value specified consistent with the kappa estimate for the Site.
ss23003-R-002 Rwision 0 lune 5,2075 TABLE 3 ROCK DYNAIIIIC PROPERTIES FROM EpRr (1993) Strain (%) EPRI Rock 0-20 ft EPRI Rock 21-5t) ft EPRI Rock 51-120 ft EPRI Rock 121-250 ft EPRI Rock 251-500 fr G/Gmax G/Gmax G/Gmax G/Gmax G/Gmax 1.00E-04 1.0000 1.0000 1.0m0 1.0000 r.0000 3.00E 04 1.0000 r.0000 r.0000 1.0000 t.0000 t.00E-03 4.9716 0.9801 0.9898 0.9997 1.0000 3.00E-03 0.86r4 0.8844 0.9121 0.9417 0.9668 r.00E-02 0.6294 0.6653 0.71t8 0.7667 0.8324 3.00E-02 0.3830 0.4177 0.4655 0.5264 0.6119 1.008-01 0.1747 0.1967 0.229 0.2735 0.3454 3.00E-01 0.0714 0.0821 0.0984 0.T224 0.r649 1.00E-00 0.0238 0.02t7 0.0338 0.0431 0.0608 3.00E-00 0.0084 0.0098 0.0r2 0.0154 0.4222 Strain (%) Dampine (7o) Dampine (%) Dampine (%) Damoine (%) Damoins f%) 1.00E-04 3.263 3.24s 3-225 3.206 3.r86 3.00E-04 3.390 3.339 3.282 3.227 3.167 1.00E-03 4.017 3.869 3.70r 3.534 3.348 3.00E-03 5.580 5,250 4.865 4.463 3.995 1.00E-02 9,191 8.550 7.t73 6.926 5.881 3.00E-02 14.397 r3.s32 12.429 l 1.140 9.398 1.00E-01 21.091 20.178 18.960 17.459 15.272 3.008-01 26.578 25.853 24.838 23.s09 21.4r3 1.00E-00 30.601 30.180 29.564 28.7tl 27.248 3.00E-m 32.530 32.3r7 3 r.998 31.540 3A.7n
3523003-R-0A2 Revision 0 June 5,2015 1.1. of 31. TABLE 4 I]NWEATIIERED STIALE DYNAN{IC PROPERTIES FROM STOKOE ET AL,, (200s) STrn Rrspoxsu INPUT Consislent with the guidance from EPRI (2013, Ref [4]), uncertainty and variability in material dynamic properties ane included in the site response analysis. Tabte Spresents the fulI set of par:rmeters used in the site response analysis. Strain (o/o) G/Gmax Mean G/Gmax Plus I Stendard Deviation G/Gmex Minus 1 Standard Deviation Damping (%) Mean Damping (%) Plus I Standard Deviation Damping (%) Minus 1 Standard Deviation r.00E-06 r.00 1.01 0.99 1.00 1.79 0.2r 1.00E-05 1.00 r.02 0.98 1.00 r.79 a.2l 1.00E-04 r.00 t.02 0.98 1.01 r.79 0.22 1.00E-03 1.00 r.02 0.97 1.06 1.87 0.25 3.00E-03 0.99 1.02 0.95 r.19 2.04 0.33 5.00E-03 0.98 t.02 0.94 l.3 r 2.21 0.41 1.00E-02 0.95 t.00 0.90 t,61 2.61 0.62 2.00E-02 0.91 0.97 0.85 2.19 3.35 1.03 3.00E-02 0.87 0.94 0.80 2.73 4.03 1.44 4.00E-02 0.83 0.91 0.76 3.25 4.66 1.84 s.00E-02 0.80 0.88 0.72 3.74 5.26 2.23 6.00E-02 o,77 0.85 0.69 4.21 5.82 2.61 7.00E-02 0.74 0.83 0.65 4.66 6.34 2.97 8.00E-02 0.71 0.80 0.63 5.08 6.84 3.32 8.508-02 4.70 0.79 0.6r 5.29 7.08 3.49 1.008-01 0.67 o.76 0.57 5.88 7.77 3.98 1.50E-01 0.57 0.67 0.48 7.s9 9.75 5.44 2.008-01 0.50 0.60 0.40 9.02 11.36 6.67
TABLE 5 SITE RESPONSE INPUT BVPS SITE NUCLEAR ISLAFTD B i.ifl ',$F Inout Prremcter Value Scisrric Source Inptrt M = 6.5 with distrnes srd dcpths resulting in at l l EA values Aom 0.01 e to 1.5 g at the SG Singlc-comer Trble B-4 SPID Double-o(xncf Tablc B-6 SPID Single-corner Table B*4 SP]D Double-omer Table B-6 SPID Single'corner Tablc B-4SPID Double-comer Table8-6 SPID Source Mo&l Additional prramacrs uscd in the point sour@ model foundbelow Tabtc B-4 Profile Bst Estimate fPl) LowcrRanse fP2) Upper Rance {P3) Vs Table 2-4, Ref [] (Pl) W = 0.40 30 Randomizcd Rcalizations Table 2-4, Ref [l] (P2) BE dividedby 1.15 W:0.30 30 Rardomiztd Realizations Table24,Ref [] (H]) BE multipliedb$, l.l5 W = 0.30 30 Randomized Realiz*irms Site Kappa (kl) Total Thiolcncss,f435 fi (kt) = 0'0167s W= 1.0 Total Thickness 4435 ft (kl): o'ol91s W - 0.60 Total Thickncss /1435 fr (k1): 0'0146 s W = 0.60 (}J('r t s N i$s ilF: F S : S u t o t 9 Nq (t
TABLE 5 SITE RESPONSE INPUT BVPS SITE NUCLEAR ISLAFTD (coNrrNI,ED) Innut Parameter Vrluc Shea Modulus and Dmping wih (kl) Pleistoccne Uppcr/Ivliddle Tcrrace: Middle Unit 16ft EPRI Soil2I-50 ft Plsisto{i,[e Upperfr4iddle Terrace: Lower Unit40 t EPRI Soil5l-120 ft Rock Top l@ft EPRI Roclr 3.ZYo Linear damoinc EPRI Rock 3.2o/oLiregr damping EPRI Rock 3.2YoLrrtear dmping Rock 101 to 500 ft Y-12 Rock 1.0 o/o Liner damins Y-12 Rock 1.0 % Linear damping Y-12 Rock 1.0 % Linear damning Rock 501 fr to orofile base 0.52o/o Liner demninq 0.52o/o Linetr darroinc 0.58 o/o Linear damping 0.5E % Liner damping 0.44%Linear danping 0.M% Linear dampr43 Weight W= 0.50 w-0.50 W:0.50 W= 0.50 W = 0.50 w- 0.50 Site Kappa (k2) Not Apdicable Total Thiokness 4435 fr (k2) = 0'0286s W = 0.40 Total Thickness,{435 ft (r):0.0097s W= 0.40 rt 5/,'fr fr 1N Ur 9l ! t r JtcF I $'e d;s (r) q, (n
TABLE 5 SITE RESPONSE INPUT BVPS SITE NUCLEAR ISLAND ,.H HI st (coNTTNUED) Input Psremeter Vrluc Sheu Modulus and Damping with (le) Pleistocene Upperilvliddle Terrace: Middlc Unit 16fi Not Applicable EPRI Soil2l-50 ft Pleistocene Upper/Iv{iddle Terrace:Lowe unit4o ft NotApplicable EPRI Soil51-120 ft Rock Top 100 ft l.Iot Applicable EPRIRock soalcd up to gct low stsain damping of 4.Io/a 4.8% Lines Drnping EPRI Rock scaled down to get low shain darnping of 7.6o/a l.OYoLnear damping Rock l0l to 500 ft NotApplioable Y-12 Rodc+l STD 1.79%Linsr dcnnins Y-12 Rock-l STD 0.2% Linear. damoinc Rock 501 fr to Drofile base Not Applicable l.l2% Liner drmping l.lT%Linw asmfing 0.15% Lincar damping 0.15o/oLiner damping Weis.ht Not Amlicablc W = 0.50 W:0.50 lV - 0.50 W-0.50 x*H A tr, l-{
3s23003-R-402 Rwieion A June 5,201.5 L5 of3L RESULTS Table 6 presents the statistics of the site amplification functions (AF) for seven frequencies at which the rock hazard is developed. B\\aPS Conrnol, Porhrr H.lznnn Cunvns (EL 6El) The site AFs obtained from the site response analysis, and the hard-rock PSHA curyes are used to develop ttre seismic hazard curves and GMRS at the Control Point. The procedure to develop the seismic hazard curves follows the methodology described in McGuire et al., (2001) and EPRI Q0l3b). This procedureo referred to as Approach 3, computes a site-specific control point hazardcurre for a broad range of Sa given the site-specific bedrock hazard curve and site-specific estimates of soil or soft-rock response and associated uncertainties. The above procedure is executed to generate the mean hazard curye and the fractiles at EL 681. Figures I through Tpresent the mean and fractile hazard curves atEL6Sl for specftal frequencies of 0.5 Hz, I Hz 2.5 H1 5 llz,l 0 Hz, zs llz, and 100 Hz, respectively. Tables 7 through f3 present numerical values of the mean huz*rdcurve and the fractiles of the hazard distribution. The entries, which are labeled as " ----'e represent ground motions that are not realizable for a given fractile. AESC$rpq],fqg {},H1AF-9
TABLE 6 AMPLIFICATION FT]NCTIONS FOR BVPS SITE AT EL 6EI lffi Hz SA lsl ]VIEDIAN AF Srcu,l Ln(AF) 25lla S^ lsl ItsorAN AF Srcu.r I.n(An l0 Hz S^ lcl lUEDrril AT' $rcue Ln(AFl 5 H z SA tsl NdEDIAN AF SIGMA Ln{AF} 1.02E 02 2.43E+00 l.25E4l l.3lE42 2.128+00 l.29E4l 2.WE.V} t.9lE+00 l.72E4l 2.35W2 3.63E+00 2.3r8{l 5.458{)2 1.gtE+{n l.3tE{l t.07E4r 1.528+00 2.49E41
- r. r3E-0t 1.72E{-00 2.158{1 f.i[18-02 3.59E+002.32Mr
.l5E-0t 1.65E((0 r.508-01 2.2684r 1.35E+002.83E41 2.t0F.or 1.66E{0 2.33E-01 l.64B0l 3.50E{0 2.44F,41 2.'ZE.Ar 1.348+00 1.66b-01 4.738{l t.t7E+00 3.108-01 4.0/.E4l 1.60E+002.44841 3:U2841 2.68841 3.97E4t 1.18E{S 1.74F-01 7.19E-01 1.05E+00 3.t6E{l 5.93841 1.55E+00 2.46E.,0l 4.35E4r 3.068((0 2.7tE4l 5.4EE4l I.07Ei{0 1.798-0t 9.70841 9.47E41 3.21E{l 7.13E-01 l.5lE+00 2.39841 5.68Eir 2.87E+002.87F,01 7.03841 9.81E-01 l.85E4r 1.228+00 8.66841 3.3lE4t 9.75E{l 1.47E+002.Z2E-ol 7.WE4l 2.688+00 3.03E-01 1.10E+00 8.32E{l 1.97841 Lt6E+00 7.l6E4l 3.54E41 1.45E+00 1.368+00 2.05E41 1.038+002.26E+m 3.43E-01 l.51Er{0 7.35E4t 2.0484t 2.538((0 6.14E{l 3.6sE-01 l.95Er{0 1.24E+00 2.18E{t t.38Ei{0 1.96E+00 3.s9E-01 1.95E+00 6.57E-01 2.16E{l 3.23E+00 5.32E41 3.7E8{t 2.47E+O0l.l2E+00 2.53E41 1.74E{0 l.?3E+00 3.808-01 2.37E+00 5.9EE41 2.258{r 3.89E+00 4.69E 01 3.86EJr 2.97E+& 1.038+00 2.70841 2.09E+00 l.54Er{0 4.058-01 Hfig LSHz Sr lcl Mrnrlr AF StcMA Ln(AF) r rlr, SA lcl lllronn AF Srcur Ln(AF) 0.5 Hz Sr lgl IT4EDIAN AF SIGilA r,lt(An Ol Hz Sr lel Mcdian AF $igme Ln{AF) 2.16F42 1.69E+002.3lE 0l 1,46F-02 l.30Er{0 1.73E{t 8./+48-031.23E+00 7.WF0/2 3.66ES4 1.13E+006.41E{2 6.8sE42 i.75E+m 2.568-01 3.72F,02 l.3lEr{o l.75E4t 1.87E42 1.25E+00 7.28r.42 6.86F04 1.19E{0 7.91E-02 l.t4E14l 1.81E+0027gHAtl s.86E-02 l.32Er{0 l.77FAl 2.81E,{. 1.25E{0 7.ME-42 1.04F.-03 1.228+& 8.568-02 2.03E-01 1.90E{s 3.20841 l.0lE 0r 1.34Er.00 t.808{ 1.7TE4 1.26E+00 7.s8E42 1.77E43 1.2481{0 E.9lE-02 2.EEE4I l.gtE+m 3.40E{t l.4lE-0r r.358+00 I.E4EJ 6.598-1.27E+O0 7,66'L42 2.48E43 t.25E+00 9.01E42 3.?3841 2.06E+00 3.47E4r r.8tE{r 1.368+00 l.87E4l E.39E{2 1.278J{0 7.7tF-4.2 3.r8E-03 1.26E*O09.m802 4.598-01 2.13E+00 3.47E-0t 2.2tE4r 1.37E+00 l.9lE{l 1.028{l 1.278140 7.75E-O2 3.89E 03 t.26E+00 8.nwz 6.7rB0l 2.30E+00 3.4rE-013.20E{l 1.39E+002.0rE{l l,47E4l t.28E{0 7.8?E-U2 5.648-03 t.26E+00 8.71E42 892fy81 2.428+0A 3.t7E-01 4.23E-01 1.42E+00 2.15E{l t.938-01 1.29E$0 7.WE.0.2 7.4?E,-03 1.27E+00 E.54E42 l.l2E+00 2.47E+ffi 2,84E-015.3lE4l t.45F.+{fO 2.4?:0r 2.42E41 1.29E+00 8.05E42 9.38843 1.27E+008.38E{2 1.34E+{0 2.46E+00 2.64F.gl 6.34E{l 1.49E+00 2.74F41 2.rtE-01 1.30E+00 E.32H2 .l2E-02 1.278+00 8.318-02 trFnE $H IH
35?3043-R-002 Revision0 lutu 5,2A15 Page 77 of 37 1.E-02 1.E-03 1.E-04 1.E-05 1,8-05 1.E-07 1.E-08 0.10 1.00 0.5 Hr Spectral Aeeleration [g] -ffis3n sth_fdn r lSthjfdn r.50d1 fdn .g4th fdn . g5th fdn FIGURE 1 O.s.HZ SA MEAN AND FRACTILE IIAZARI} CURVES F'OR B\\IPS SITE AT EL 681 (BASE OF BVPS-I AND BVPS-2 REACTOR BUILDING FOUNDATTON) Note: _frrd indicates the seismic }nzslrd at the RB foundation level. b= o5ttg a! u Itr F Eoo 1'xul l! 5c t \\ r'N ' S I t-\\ s \\-\\ '*l \\- ,\\\\ s \\ \\ I a I N\\ \\ \\ t. ta\\ \\ a \\ \\ \\ r\\ t \\ I \\ l33Aeneu-ltiru {i*,RL41g
Sss t a \\ S \\.\\ \\ \\ I \\ \\ i l \\ I a - \\ r..\\ lS\\ N T tl \\ \\ t \\\\ I \\\\ \\\\ \\ J. \\ \\ t I \\ a t { \\ \\ 3523003-R402 Rwisian 0 lutu 5,2015 Pnge 78 of 3'1. 7.E-OZ 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 0.01 0.10 1.00 10.00 1 Hr SpectralAcceleration {g} -Mean SthJdn 15th_fdn .50th fdn og4th fdn . gsth fdn FIGURE 2 I.HZ SA MEA}.{ AND FRACTILE IIAZARD CURVES FOR BVPS SITE AT EL 681 (BASE OF BVPS-I AND B\\rpS-2 REACTOR BUILDTNG FOUNDATTON) 1.E-02 1.E-03 1.E-04 1.E-0s 1.E-06 1.E-07 1.E-08 0.10 1.0t) 2.5 Hz Spectral Acceleration {g} -Mean sth_fdn 16th_fdn ..50th fdn .g4th fdn . gsth fdn FIGURE 3 2.3-WL SA MEAN AND F"RACTILE IIAZARD CURVES FOR BVPS SITE AT EL 681 (BASE OF REACTOR BUILDING FOUNDATION) a totgo Ltt 3tttro !touxlr' .!= cc E g o q a, lt ot,CB Eoog lrl E g E C 0.01 at\\ s\\ \\: t.l\\r\\ l.]i i.\\ \\ ' \\ I \\ \\ l 'l: rl b\\ !\\ i I t \\t-.- \\ T { 's \\ \\N 'a- \\ \\ l \\\\ \\ \\ \\\\ trg
s5naa3-R-402 Rsuisisn 0 lune 5,201,5 Page 19 of 31. a ss S\\ J a\\ Sss I rl rl i a\\ tls N \\\\ .\\ I I \\\\ l' N t\\ \\ rt 1.E-02 1.E{3 1.8-04 1.E-05 1.E-05 1.E-07 1.E-08 0.01 0.10 1.00 5 Ht SpectralAcceleration (g) -Mean rro Sth_fdn 16th_fdn , rs0th_fdn .${tl-f611 -.gsth_fdn FIGT]RE 4 s.WZ SA MEAI{ AND FRACTILE HAZARD CI]R\\MS FOR BVPS SITE AT EL 68r (BASE oF B\\/PS-I AND BVPS-2 REACTOR BtrrLDrNG F'OUNDATTON) 1.E-02 1.E-03 1.E-04 1,E-05 1.E-06 1.E-07 1.E-08 0.10 1.00 10 lk Spectrel lcccleration (gl -Mean Sth_fdn - - l6thjdn
- r.
r$Qth_fdn - r${lhjdn -.gsth_fdn 10.00 FIGT]RE 5 TO-IJ'Z SA MEAN AND FRACTILE HAZARD CURVES FOR B\\IPS SITE AT EL 681 (BASE OF BVPS-T AIYD B\\IPS-2 REACTOR BUILDING T'OUNDATION) tEottto It o, I E t!?a, ot,x lrt E3trtr{ (, g o3rE t! o ttea ?to Ittx lll t! 3cc 0.01 'rE G t: ,a t TFs \\ \\r T Irl I I a i \\ N S ta\\ rii\\s \\,\\\\ I \\ \\\\ a lf$ ulling {}Bl=7-9..
35fi043-R4A2 Rmisiwt 0 luru 5,2075 Pase 20 of37 t,e{, 3uo lr orJ co !oo Ixul Etct 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 r.E-07 1.E-08 0.01 0.10 1.00 25 Hr Spectnl Acceleration (gf -'Mean Sth_fdn 15th_fdn ..50th-fdn og{tfu fdn .9sth_fdn 10.00 FIGURE 6 25.H2 SA MEAN AND F'RACTILEIdAZARD CURVES FOR BVPS SITE AT EL 681 (BASE OF'BVPS-I AI{D B\\1PS-2 REACTOR BUILDING FOUNDATION) .-!E q s I
- \\
S { - \\ t.s \\ ,\\\\ l\\ rl \\sil \\ i \\ \\ tl 'i.t' I t \\ \\ il r \\\\t' I t\\\\
3s23003-R-002 Rwision 0 lutrc 5,20L5 Page 27 of 37 1.E-02 1.E-03 1.8.04 1.E-05 1..E-05 1.E-07 1.E-08 0.01 0.10 100 Hz Spectral Acceleration (el -,Mean -r-sth_fdn 16th_fdn r ..soth_fdn .g4th_fdn r ,95th fdn F'IGURE 7 IOO-HZ SA MEAN AT'{D FRACTILE IIAZARD CUR\\IES FOR BVPS SITE AT EL 681 BASE OF BVPS.I ADID B\\IPS-2 REACTOR BUILDING FOIINDATION) Note: _frd indicates the seismic hazad at the RB foundation level. tJg otrg lr o Ie l! !oo Ix EI t!= cg ".N FN \\'\\ \\ S \\ \\ rt S a \\ J r\\'t \\ r ' \\ \\\\\\ I i r t ri a i\\ \\\\ I $$ I) \\ { \\ \\ r\\ \\r .. \\ '
- \\
\\ .t
3s23003-R-Mz Rwision A lune 5,2075 TABLE 7 0.5-HZ SA MEA}[ AIYD F'RACTILEEAZARD FOR BVPS SITE AT EL 681 (BASE OF BVPS-I At{D BVPS-2 REACTOR BIILI}ING FOUNDATTON) Spuc'rnaL ACEELERATION lql Arurgu.Il, FT,EQIIENCY or ExcE,E,nA\\cr MEAN 5TH 16tu SOTH 84rs 95ru 0.0r 1.57803 4.258-04 6.22E-44 1.358-03 2.678-A3 3.42F.-03 0.02 3.9sE-04 6.74Y05 r.07E-04 2.768-04 7.r4F!a4 r.09E-03 0.03 1.59E-04 2.098-05 3.50E-05 9.958-05 2.938-04 4.96E-44 0.04 ?,55E-058.29E 06 1.448-05 4.38E-0s 1.388-04 2.498-A4 0.0s 4.00s0s 3.88806 6.89E-06 2.208-05 7.34E-05 1.36E-04 0.06 2.33V0s 2.03E{6 3.69F.-A6 1.228-As 4.30E-0s 8.06F0s 0.07 1.458-05 l.l5E-06 2.15E-06 7.31E-06 2.71F.-0s 5.r 5E-05 0.08 9.53F06 6.94F-07 t.32E-06 4.678-06 1.80E-05 3.48E-05 0.09 6.57E-A6 4.4tE-07 8.51E-07 3.12E-06 1.25E-05 2.468-05 0.10 4.7tE.-A6 2.928-A7 5.75E-47 2,178-06 8.93E-06 r.80E-05 0.20 6.328-07 l.5lE-08 3.6s8-08 t.948-07 1.06E-06 2.748-06 0.25 3.438-07 5.648-09 1.46E-08 9.00E-08 5.40E,07 1.568-06 0.30 2.r88-07 2.4rE-09 6.66E-09 4.83E-08 3.278-07 1.00E-06 0.40 1.118-075.62E-10 l.8rE-09 1.76E-08 1.538-07 5.t7F.-07 0.50 6.55E-08 1.628-l0 5.99E-10 7.668-49 8.27E-08 3.078-07 0.60 4.26E-08s.49F1l 2.36F.-10 3.89E-09 4.99E-08 1.998-07 0.70 2.95E-08 2.08E-l I 1.03E-10 2.r9E-09 3.238-08 r.37F-07 0.80 2.r3E-08 8.69E-r2 4.89E-1r 1.31E 09 2.18808 9.778-08 0.90 1.608-08 3.948-12 2.488-rr 8.13E-10 1.51E-08 7.15E-08 r.00 1.23E-081.88E-12 1.3lE l I 5.24E-10 I.07808 5.39E-08 2.00 1.89E-09 l.39Ft3 2.tzf.Et1 9.WE-10 6.64E-09 3.00 5.85E-10 6.40e15 2.75E.-12 1.85E-10 1.70E-09 s.00 1.r28-10 1.488-13 1.888-11 2.18E-10 6.00 6.00E-l 1 4.90E-r4 7.968-12 9.868-t I 7.00 3.49E-l I 1.85E-14 3.80E-12 4.998-11 8.00 2.tsF.tl 7.428-15 r.95E-r2 2.72F.-11 9.00 1.388-l I 3.1lE-15 1.07E-12 1.57E-l 1 10.00 9.258-t2 1.29E-15 6.18E-r3 9.648-t2 12.00 4.54F.-12 2.378-t3 4.raB-n 15.00 1.86E-12 6.998-14 1.368-t2 20.00 5.68E-13 r.338-14 3.198-13 25.00 2.228-13 3.48E-15 9.918-14 30.00 1.02E-13 l.0lE-15 3.768-14 40.00 2.948-14 7.948-15 6 ' 1 7 =, ff I z,- z-\\ 1 5 9 9 r. ) i A i E
35nA0s-R-0a2 REuisiw A June 5,20115 TABLE 8 I.HZ SA MEAN AI\\D FRACTILE IIAZARD FOR BVPS SITE AT EL 681 (BASE OF BVPS-I AIYD BVPS-2 REACTOR BUILDING T'OUNDATIOI$ Sppcrnq,L ACCELERATION lsl AFrlruAr FneQusncy oF Excnnoruvcu IVIEA}I 5rn l6rrr 5{ffir 84rn 95rH 0.0r 3.538-03 1.55E-03 2.048-03 3.428 43 5.10E-03 s.98F03 0.02 9.39E-04 2.96E-44 4.t9F.-04 8.028-04 1.49E-03 2.00E-03 0.03 4,10E-04 1.078-04 r.58E-04 3.288-04 6.828-04 9.838-04 0.04 2.07E-04 4.EtE-05 7.25E-05 1.59E-04 3.slE-04 s.298-04 0.05 I.17E-04 2.478-05 3.81E-05 8.68E-0s 2.00E-04 3.10E-04 0.06 7.15E-05 1.40E-05 2.20E-05 5.20E-0s r.24F,-04 r.958-04 0.07 4.68E-05 8.49E-06 r.36E-05 3.348-05 8.228-05 1.31E-04 0.08 3.228-05 5.478-06 8.90806 2.26F-0s 5.73E-05 9.20E-05 0.09 2328-As 3.698-06 6.088-06 1.59E-05 4J7E-45 6.75E-0s 0,10 r.738-05 2,58E-06 4.32E-06 1.16E-05 3.t48-05 5.13E-05 0.2a 2.86E-06 2.10F-07 4.278-07 1.51E-06 5.298-06 1.00E-05 0.2s l.6TE-06 9.10E-08 2.018-07 7.97F.-07 3.078-06 6.19E-06 0.30 1.08E-06 4.56E-08 1.08E-07 4.778-07 r.99E-06 4.20E-A6 0.40 5.65E-07 1.47E-08 3.96E-08 2.17E-07 1.03E-06 2.33E-06 0.50 3.448-07 5.87E-09 1.808-08 1.19E-07 6.228-07 r.478-06 0.60 231F.07 2.76E-09 9.38E-09 7.25E-08 4.l4E-47 1.00E-06 0.70 1.65E-07 1.46F.-09 5.42E-09 4.78F08 2.94F-07 7.268-07 0.80 1.248-07 E.45E-10 3.398-09 3.34E-08 2.20E.07 5.52E-07 0.90 9.69E 09 5.24E-10 2.25E-09 2.43E-08 1.69*07 4.348-07 1.00 7.73E-A8 3.4IE-10 1.55E-09 1.82E-08 1.33E 07 3.49E-07 2.00 1.388-08 1.28E-1 I 8.90E-l I 1.81E-09 2.008-08 6.31E-08 3.00 4.31E-09 1.228-12 1.14E-1 1 3,47F-r0 5.338-09 1.898-08 s.00 8.82E-10 6.58E-r3 3.41E-11 8.31E-10 3.448-09 6.00 4.808-r0 2.r78-t3 1.36E-t I 4.00E-10 t.76iE-09 7.00 2.83E-10 E.l2E-14 6.07E-t2 2.10E-10 9.728-10 8.00 r.77E.-t0 2.948-t2 1.18E-10 5.74E-10 9.00 t.t6E-r0 1,53E-12 7.05E-1r 3.56E-10 r0.00 7.86E-11 8.39E-13 4.408-11 2.31E-10 12.00 3.968-11 2.88E-13 1.90E-1 I r.06E-l0 15.00 1.67E-l I 7.328-14 6.548 12 3.99E-l I 20.00 5,238-12 r.53E-12 1.08E-11 2s.00 2.07F.-12 4.678-13 3.878-12 30.00 9.62E.-13 1.698-13 1.65E-12 40.00 2.E28-13 3.13E-14 4.248-13 f,ISGmqulting {}R,!et'.
35230ffi-R-002 Reoision 0 lune 5,201"5 Pase 24 of37 2.5.H2 SA MEAIY AI.[D FRACTILEIIAZARD FOR BVPS SITE AT EL 687 (BASE OF BVPS-T AND B\\IPS-2 REACTOR BUTLDING FOUNDATIOT9 SPECTRAL Accrr,gRAuoN lql ANnuaT, FSEQUENCY oF ExcsrnANcr It{saN 5mr l6ru 50ru 84rn 95rrr 0.01 r.268-02 8.06E-03 9.53E-03 1.258-02 l.5sE-02 1.778-02 0.02 3.66E-031.93E-03z.4QE-03 3.51E-03 4.96WO3 5.92E-03 0.03 t.778-03 8.30E-04 1.06E-03 1.668-03 2.50E-03 3.09E-03 0.04 1.038-034.45E-04 5.858-04 9.48E-04 r.49F,o3 1.90E-03 0.05 6.64E-04 2.68E-04 3.60E-04 6.02F.-04 9.82E-04 t.278-03 0.06 4.s98-04 t.l4E-04 2.398-M 4.1tE-04 6.9rE-04 9.03E,-04 0.07 3.34E-04Lr9E-04 1.678-04 2.968-04 5.118-04 6.75F.-44 0.08 2.538-04 8.538-05 1.21E-04 2.228-04 3.93E-04 5.23F-A4 0.09 1.98E-04 6.328-0s 9.10E-05 1.728-04 3.12E-04 4.19F.44 0.10 1.59E-04 4,82E-05 7.02E-05 1.36804 2.s48-04 3.44E.-A4 0.2a 3.86E 05 8.15E-06 1.31E-05 2.978-05 6.60E-05 9.898-05 0.2s 2.508-05 4.65E-06 7.748-46 1.86E-05 4.34E-0s 6.688-05 0.30 1.76E-05 2.9T8-06 5.068-06 r.28E-05 3.r0E-05 4.86E-05 0.40 1.03E-051.48806 2.628-06 7.1.3E-45 I.85E-05 2.96E-05 0.50 6.82E-06 8.628-07 1.58E-06 4.588-06 1.24E-05 2.038-05 0.60 4.88E-06 5.528-07 1.04E-06 3.20F-06 8.97E-06 1.49E-05 0.70 3.68E-06 3.778-07 7.33F.-07 2.368-06 6.80E-06 l.l5E-05 0.80 2.8?F06 2.69F-07 s.39E-07 l.8rF06 5.358-06 9.148 06 0.90 231F-06 t.998-07 4.1tF-07 t.428-A6 4.33E-06 7.46F.06 r.00 1.90806 r.5lE-07 3.218-07 t.l5E-06 3.58E-06 6.21E-06 2.00 4.86E-072.loE 0E 5.50E-08 2.478-07 9.498-07 I.76E-06 3.00 1.878-075.068-09 1.498-08 8.348-08 3.62F.07 7.158-07 5.00 4.28F-08 4.85E-10 1.74E-49 1.45E-08 7.978-08 1,.778-07 6.00 2.47F-09 1.94E-10 7.54E-10 7.33E-09 4.49F--48 1.04E-07 7.00 1.53E-08 8.8tE lI 3.66E-10 4.06E-09 2.73E-08 6.60E-08 8.00 1.00808 4.388-r l r.92E-10 2.388-09 1.75E-08 4,36E-08 9.00 6.84E-09 2.33r'-.tl 1.07E-10 1.46E-09 t.l6E-08 2.99E-08 10.00 4.82E-09 1.308-1r 6.ztE-tl 9.3lE-t0 7.96E-09 2.72F,-08 12.00 2.s88-09 4.538-12 2.35E-l l 4.128-10 4.038-09 l.r3E-08 1s.00 l.l7E-09 6,7T8-t2 1.44F-l0 1.68F09 5.11E-09 20.00 4.00E-10 3.4lE-l r 5.01810 1.728-09 25.00 1.67E-10 1.038-11 r.858-10 6.98E-10 30.00 8.04E-ll 3.648-12 7.848-tl 3.268-10 40.00 2.458-tl 1.878-1r 9.43E-l I lFGqng$lting (inlFrg
3523Ws-R-002 Reoisian 0 lune 5,201.5 Page 25 of 3L t*"", s.HZ SA MEAFT AND FRACTILEHAZARD FOR B\\TPS SITE AT EL 681 (BASE OF BVPS-I AI{D B\\IPS-2 REACTOR BUILDING FOUITDATION) SpBcrnar AccBr,unartor.t lsl ANNUAL RBQUSUCY oF ExcEEDANcE MBltr 5mr 16rs 50rn &{ru 95rs 0.01 4.s8E-02 3.42E-A2 3.758-02 4.648-02 5.48E'-02 5.91E42 0.02 1.658-02 1.06E-021.238-02 1.63E-02 2.08F02 234F-A2 0.03 9.06E-03 5.318-03 6.39E-03 E.82F03 r.r8E-021.36E-02 0.04 5.92E-03 3.26E.-034.02E-03 5.71E-03 7.87E-03 9.24E-A3 0.05 4.268-03 2.23F-03 2.80E-03 4.08E-03 5.758-03 6.85E-03 0.06 3.258{3 1.64E-03 2.08E-03 3.08E-03 4.45E-03 5.3sE-03 0.0? 2.578-03 1.25E-03 l.6lE-03 2.438-03 3.568-03 4.33E-03 0.08 2.08E-03 9.82bO4 1.28E-031.96E-032.93E-03 3.59E-03 0.09 r.728-03 7.88E-04 1.038-03 t.6lE-03 2.45bA3 3.02E-03 0.10 l.4sE-03 6.44F.04 8.48E-04 1.34803 2.08E-03 2.588-03 0.20 4.258-04 r.52E.44 2.r38-04 3.14F-046.5tE-04 8.59E-04 0.25 2.81E-04 9.1lE-05 1.328-04 2.438-04 4.4tF.-04 5.958-04 0.30 2.00E-04 s.92E-0s8.72E-05 r.708-04 3.208-04 4.408-04 0.40 1.158-04 2.968-05 4.50E-05 9.52E-05 1.908-04 2.68F-04 0.50 7.44E-05 r.73F-0s2.708-A5 6.028-05 1.26E-04 1.808-04 0.60 5.17E-05 r.r lE-05 1.77E-054.10E-05 8.8sE-0s1.29E-04 0.70 3.78E-05 7.568-A6 1.23E-0s2.95F0s 6.54805 9.598-05 0.80 2.86E-05 5.40E-06 8.90E-06 2.20F.-As5.008-05 7.39F.-0s 0.90 2.228-0s 3.99E-06 6.668-06 r.708-05 3.92E-0s5.83E-0s 1.00 1.76E-05 3.03E'-06 s.l0E-06 1.338-053.14E-05 4.68E-05 2.00 2.82E-06 3.54E-07 6.56E-07 r.978-06 5.228-06 Ll5E-06 3.00 7.08E-07 6.83E-08 r.37F-074.58E-07 132F'a5 2.18E 06 5,00 1.068-07 6.028-A9 I.38E-08 5.72F08 2.42F.07 3.708-07 6.00 s.s9E-082.468-09 6.00E-092.768-08 1.06E-07 2.04F-A7 7.00 3.32E-08 1. r 8E-09 3.00E-09 r.51E-086.278-08 r.258-07 8.00 2.13E-086.26E-r0 t.668-09 9.04E-09 3.998-08 8.238-08 9.00 1.44E-08 3.60E-10 9.83F10 5.7 4E-09 2.688-08 5.688-08 r0.00 1.01E-08 2.18E-l0 6.14E-10 3.80E-09 1.86E-08 4.068-08 12.00 5.46F09 9.02E-112.67F-rc 1.83E-09 9.78E-09 2.248-08 15.00 2.498-09 2.91E-119.208-11 7.19F10 4.298-09 t.05E-08 20.m 8.68E-10 6.1 8E-l 2 2.14E-ll 1.99E-r01.39E-09 3.nE-49 25.00 3.70E-r0 6.438-12 6.89E-11 5.47E-10 r.608-09 30.00 1.80E-r0 2.28E-12 2.768-t1 2.47E.-10 7.82E-1o 40,00 5.628-l I 5.968-12 6.638-t 1 2.4tE4A
3523003-R-002 Reoision A lune 5,2A1.5 IO-IJ.Z SA MEAI\\T AIYD FRACTILE IIAZARD FOR B\\TPS SITE AT EL 681 (BASE OF B\\'PS-T A}ID BVPS-2 REACTOR BUILI}ING FOUF{DATION)
- Srocrnar, AccaI,gRATI0N tel Axm-nl, FnpougxcY oF ExcnguANcn Mrax 5rH 16ur 50rH 84rs 95rH 0.01 L68r-02 1.08E-02 r.27E-42 1.65E-02 2.WE-02 2.43F.02 0.02 7.14b03 3.98E-03 4.89E-03 6.818-03 9.40E-03 1.14F.-02 0.03 4.32F.-032.228-03 2.79E-03 4.05E-03 5.888-03 7.318-03 0.04 2,96E-03 t.428-03 r.83E-03 2.748-A3 4,12F.43 5.238-03 0.05 2.158-03 9.71E-04 1.27E43 r.97F'A3 3.04E-03 3.93E-03 0.06 1.63E-03 6.99E-04 9.2s8-M r.48E-03 2.358-03 3.09E-03 0.07 1.28E-03 5.268-44 7.01E-04 1.158-03 1.88E-03 2.51E-03 0.08 r.04803 4.09E,-045.48E-04 9.178-04 1.548-03 2.09E-03 0.09 8.558-04 3.26b04 4.398-04 7.48E-04 1.28E-03 r.77F-03 0.10 7.18E-04 2.648-04 3.59E-04 6.21E-04 r.09E-03 1.52E-03 0.20 2.rTE-04 5.86E-05 8.66E-05 1.75E-44 3.55E-04 5.18E-04 0.25 1,46804 3.558-0s 5.35E-05 1.15E-04 2.468-A4 3.6tE-04 0.30 r.06E-042,36E.45 3.6rE-0s 8.14E-05 1.828-04 2.68E-04 0.40 6.32805 1.26E-05 1.98E-05 4.76E-05
- 1. t rE-04 1.66E-04 0.50 4.22E,-Q5 7.t3E.-06 r.25E-05 3.15E-05 7.45E-05 r.13E-04 0.60 3.018-05 5.18E-06 8.61E-06 2.248-05 s.328-05 8.12E-05 0.70 2.25F.-A5 3.69E-06 6.23E-06 1.66E-05 3.99E-05 6.098-05 0.80 1.73E-052.748-06 4.68E-06 l.2TE-A5 3.098-05 4.73E-05 0.90 1.37E-05 2.108-06 3.63E-06 9.978-06 2.46E.-05 3.76E-05 r.00 1.10E-0s1.64E-06 2.878-M 7.96E-06 1.998-05 3.05E-05 2.00 1.81&06 2.008-07 3.918-07 1.21E-06 3.348-06 5.46E,06 3.00 437F-A7 3.56E-08 7.658-08 2.68E-07 8.188-07 l.4lE-06 5.00 8.23E-084.128-09 9.97E-09 4.298-08 1.56E-07 2.978-07 6.00 4.60E-08 1.91E-09 4.82E-09 2.238-08 8.71E-08 r.738-07 7.04 2.78E-089.70E-10 2.55E-09 r.26E-08 5.218-08 t.088-07 8.00 1.778-085.28E-10 r.43E-09 7.53E-09 3.28E-08 7.05E-08 9.00 1.17E-083.02E-10 E.43E-10 4.70E-09 2.15E-08 4.788-08 10.00 8.03E-09 1.808-10 5.16E-10 3.048-09 r.46E-08 3.34E-08 12.00 4.09E-09 7.1 lE-l I 2.1 lE-r 0 r.388-09 7.2sF-A9 1.768-08 15.00 r.748-09 2.128-ll 6.59E-l l 4.998-10 2.968-09 7.728-09 20.00 s.478-1A3.948-12 1.328-lr 1.218-10 8.70E-10 2.508-09 25.W 2.t6F-rc 9.64E-13 3.45E-t2 3.71E-]t 3.19E-10 9.98E-10 30.00 9.98E-l I 2.84F.-13 1.098-12 1.338-11 1.368-10 4.59E-10 40.00 2.89E-11 3.50E-14 1.56E-13 2.36F-r2 3.31E-l I
1.30E-10 lFiF'fttcuEittg []8t7-?
3s23ffi3-R-W2 Reaision 0 lune 5,20L5 D'se 27 of 3L T 5 TABLE 12 }S-WL SA MEAN AND FRACTILE IIAZARD FOR BVPS SITE AT EL 68I (BASE OF B\\TPS-I AND BVPS.2 REACTOR BTIILI}ING FOUNI}ATION)
- SpBcrnar, ACCELEnATIoN Igl ANNUAL trhgQUgNCY OF EXCNNUMCT MneN 5rn 16ru 50Trl 84ru 95rn 0.01 1.42F-92 8.64E-03 1.428-02 1.36E-02 1.83802 2.l9]-A2 0.02 6.53E-033.428 03 4.26b03 6.048-03 8.81E-03 t.t2E-02 0.03 4.00E-03 1.91E-03 2.45E-03 3.63E-03 5.558-03 7.378-03 0.04 2.728-03 1.20E-03 r.57E-03 2.42F.-A3 3.85E43 5.29E-03 0.05 r.98E-038.14E-04 1.08E-03 r.74F.-03 2.84E-03 4.04E-03 0_06 l.5lE-03 5.858-04 7.85E-04 t.30E-03 2.20F.-A3 3,21E-03 0.07 r.l9B03 4.38E-04 5.93F04 1.008-03 1.778-03 2,62E'A3 0,08 9.s8E-04 3.39E-04 4.628-04 7.988-04 1.45E-03 2.19E-03 0.09 7.91E-04 2.69E-04 3.68E-04 6.518-04 l.2tE-03 1.86E-03 0.r0 6.65E-M 2.r7E-04 2.998-04 5.428-04 r.03E-03 1.608-03 0.20 2.03F-04 4.81E-05 7.16E-05 1.558-04 3.3T8-04 5.34E-04 0.25 t.37E-04 2.958-05 4.50E-05 1.03E-04 2.34F,-04 3.678-04 0.30 9.908-0s r.99E-05 3.09E 05 7.328-05 t.728-04 2.678-04 0.40 5.82E-0s 1.078{5 r.728-0s 4.278-05 1.03E-04 t.58E-04 0.50 3.778-05 6.58E46 1.09E-05 2.78W05 6.68E-0s t.azB-04 0.60 2.59E-05 4.34E-06 7.30E-06 l.9lE-0s 4.58E-05 6.97E-05 0.70 1.84E 05 3.00E-06 5.098-06 r.36E-05 3.268-05 4.958-0s 0.80 r.348-05 2.128-06 3.64E-06 9.868-06 2.38E-05 3.61F05 0.90 9.88E-06 1.538-06 2.6sE-06 7.28E-06 1.768-05 2.698-05 1.00 7.41E.-46 1.128-06 1.968-06 5.448-06 r.33E-05 2.038-05 2.40 7.418-07 8.32E-08 r.60E-0?
5.04E-07 1.37E-06 2.228-06 3.00 1.61E-07 1.26E-08 2.70E-08 9.74E-08 3.02F'07 5.298-07 5.00 2.14E-08 1.16E-09 2.91E-09 1.33E-08 5.13E-08 r.02E-07 6,00 1.48F-08 5.06E-10 1.338-09 6.58E-09 2.75E-08 s.728-08 7.00 8.75809 2.478-r0 6.70E-10 3.58E-09 r.60E-08 3.47E-08 8.00 s.47E-09 1.30E-10 3.648-10 2.08E-09 9.88E-09 2.22F'48 9.00 3.s8E-09 7.268-tl 2.098-10 1.278-09 6.398-09 1.49E 09 10.00 2.44E-09 4.258-t1 1.25E-10 8.04E-10 4.298-09 1.03F08 r2.00 r.238-09 r.628-rr 5.00E-1r 3.558-10 2.11E-09 5.398-09 15.00 s.2tE-104.7tE-12 1.538-r I 1.248-10 8.578-r0 2.378-09 20.00 r.66E-108.6r8-13 3.02F-12 2.9AE4l 2.53E-10 7.88E-10 25.00 6.728-tt 2.128-13 7.94F-13 8.78E-12 9.42F-11 3.25E-10 30.00 3.16E-116.35E-14 2.53E-t 3 3.t6E-t2 4.0881 1 1.54E-10 40.00 9.08E-12 8.48E-15 3.828-14 5.848-13 1.02E-1 1 4.43E-11 lFFGsnsu],tins {}RtFe9"
3523ffi3..R402 Rwision 0 lune S,20LS 100-H7' SA MEAN AND FRACTILE IHZARD FOR BVPS S[IE AT EL 681 (BASE OF B\\TPS.I AND BVPS-2 REACTOR BTIILDING FOUNDATION)
- Spncrnnr, ACCELERATION Isl Arvxu.u FT,EeuENcy oF Excnnu$lce MraN 5rs 16rn 5OTH 84ru 95TH 0.01 1.03F02 6.308-03 7.938-03 1.05E-02 1.34F-02 1.54802 0.02 3.91E-03 1.80803 2.368-03 3.578-03 5.448 03 7.378-03 0.03 2.12E.-03 8.20E-04 l.l0E-03 1.818-03 3.08E-03 4.63E-03 0.04 1.348 03 4.54E-04 6.20E-04 r.09E-03 2.018-03 3.268-03 0.05 9.33F--04 2.83F.44 3.918-04 7.288-04 1.43E-03 2.48E-03 0.06 6.9rE.a4 1.89E-04 2.65E.-04 5.20E-04 1.078-03 1.97E-03 0.07 5.35E-04 1.32E-04 1.90E-04 3.90E-04 8.468-04 1.618-03 0.08 4.28E.-049.66E-05 l.4rE-04 3.048-04 6.898-04 1.33E-03 0.09 3.51E-047.29F-05 1.07E-04 2.448-04 s.748-04 t.l 1E-03 0.10 2.918-04 5.66E-05 8.38E-0s 1.998-04 4.858-04 9.26E-04 0.20 7.45b05 r.05E-05 r.728-05 4.748-05 1.328-04 2.42F.-M 0.25 4.65F05 6.17E-06 1.04E-05 2.99E-05 8.258-0s 1.50E-o4 0.30 3.12E-053.9EE-06 6.84E-06 2.0rE-05 5.55E-05 9.858-05 0.40 1.598-05 l.9lE 06 3.39E-06 t.02E-05 2.84E-05 4.86E-05 0.50 8,90E-06 9.95E-07 1.85E-06 5.638-06 1.62E-05 2.?48-05 0.60 5.30E-06 5.42b07 1.05E-06 3.32F_-46 9.65E-06 1.66E-05 4.70 3.29E-06 3.058-07 6.08E-07 2.03E-06 6.00E-06 1.04E-05 0.80 2.10E-06 1.76E-07 3.62E.-07 r.278-06 3.848-06 6.738-06 0.90 1.37806 1.04E-07 2.208-07 8.02E'-07 2.52V46 4.458-06 1.00 9.r38-07 6.19E-08 1.35E-07 5.16E-07 1.68E-06 3.02E-06 2.00 5.88E-08 r.368-09 3.788-09 2.328-08 1.06F-07 2.358-07 3.00 1.42E-08 1.63E-10 5.19E-10 4.298-49 2.48&08 6.15E-08 5.00 2.068-09 8.13E-12 3.15E-11 3.918-10 3.22E-.49 9.698-A9 6.00 9.838-10 2.458-t2 l.OlE,l l r.50E-10 1.45E-09 4.688-09 7.00 5.16E-10 8.388-13 3.678-12 6.42F.-tl 7.r8E-10 2.48E-09 8.00 2.93E-r03.15E-r3 t.46F.-t2 2.97F-tl 3.858-10 L418-09 9.00 t.77E-10 1.27F-13 6.298-13 1.468-tl 2.2tE-r0 8.s6E-10 10.00 1.12E-10537;-14 2.888-13 7.628-12 1.33E-10 5.46E-10 12.00 5.12F-11 1.05P-14 6.91E-r4 2.358-12 5.43E-l I 2.51E-10 15.00 2.008-11 9.75E-16 1.028-14 5.18E-13 t.77E-tl 9.66E-t I 20.00 6.31E-12 2.14E-17 5.83E-16 6.348-14 4.05E-12 2.798-11 25.00 2.748-12 4.35E-17 1.07E-14 1.258-12 r.07E-l I 30.00 l.4rbt2 2.23E-r5 4.65E-13 4.898-12 40.00 4.798-13 1.638-r6 9.39E-r4 1.38F 12 rlRtzzo
\\ i -
- 5 t : ) C r r ' 5 5
3523W3-R&2 Rmision 0 lune 5,2075 Page 29 of 37 CoNTnoI,PorI{T GMRTT Thc Confrol Point GMRS is do'elopod following the performance-based approach described in Rgulatory Guide 1.208. Ftguretpresents the perfonnancc-based GMRS at EL 681, and the lE-4 and lF5 uniform hazard ncsponse specfia (Ufns). Tabtc 11 presents numcrioal values of thc Sr for the GMRti at EL 581. 1.400 1.200 1.00 10.00 Frrquency (Hzl FIGIIRE 8 T]IIRSl ANII GMRSI AT THE BVPS SITE AT Et 5tT A!9 Looo Co-}l $ o.8oo E r, S 0.600 EEo E 0.400
3523003-R402 Reoision 0 lune 5,2015 FnEQUENCY (Hz) Ironrzouru,r" srpcrnAl. AccmpnETtoN (s) lr rnB Founrnarrox ELEvATIoN 1X10. MAFE TIHRS 1x10o MAFE UIIRS GMRS 0.10 0.0027 0.0067 0.0034 0.r3 0.0039 0.0097 0.0048 0.16 0.005? 0.0t42 0.0071 0.20 0.0087 0.0212 0.0106 0.26 0.0135 0.0322 0.0162 0.33 0.4204 0.0474 0-0240 0.42 0.0287 0.0647 0.0330 0.50 0.0358 0.0?89 0.0404 0.53 0.0357 0.0792 0.0405 0.67 0.0373 0.0839 0.0428 0.85 0.0455 0.t047 0.0532 1.00 0.0529 4.n26 0.0622 1.08 0.0575 0.r360 0.0687 t.37 0.0669 0.1704 0.0848 r.74 0.0809 0.2246 0.1099 2,Zl 0.r061 0.3249 0.r559 2.50 0.1253 4.4071 0.r930 2.81 0.r 545 0.5264 4,2472 3.56 4.2633 0.8939 0.4200 4,52 0.3941 1.1839 0.570t s.00 0.4303 1.2364 0.6007 5.74 0.M3r 1.2103 0.s940 7.28 4s676 1.0567 0.5133 9.24 0.3086 0.9959 0.4727 10.00 0.3094 r.0463 0.4920 lt.72 0.3434 t.n27 0.5277 14.87 0.3762 l.1868 0.5659 r8.87 0.3s73 1.05s9 0.5101 23.9s 0.2998 0.9175 0.4401 25.00 0.2960 0.8924 0.4294 30.39 0.2729 0.7944 0.3849 38.57 0.2534 0.7094 0.3464 48.94 0.2364 0.6436 0.3161 62.r0 0.2123 0.5653 0.2789 78.80 0.1841 0.4895 0,2415 100.00 0.1723 4.4782 0.2339 TABLE 14 UHRS AND GMRS AT THE B\\'PS SITE AT EL 68I Note: I\\,IAFE = mean annual frequency of exceedance. lSCo'ltgslffng {}8111,o.
s\\xaffi-R-002 Reuisisn 0 June 5,20115 Page 31 of37 REFERENCES Ul FENOC,}0L4, 'NTTF 2.1 Seismic Hazard Screening Report, Beaver Valley Station Unit 1," ABSG Consulting Inc. (ABS Consulting) Report No. 2?34 294-P*-017 [2] EPRI,1993, "Guidelines for Determining Design Basis Ground Motions," Electric Power Research lnstitute, Vol. 1-5, EPRI TR-l 02293,Electric Power Research Institute, 1993. [3] Stokon K. H., w. K. choi, and F-y Menq, 2003, "summary Report: Dynamic Laboratory Tests: Unweathered and Weathered Shale Proposed Site of Building 9720-82 Y'12 National Security Complex, Oak Ridge, 1'ennessee,'o Deparfinent of Civil Engineering, The University of Texas at Austin, Austin, Texas, 2003. [4] EPRI,2013 "seismic Evaluation Guidance, Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic," Electric Power Research Institute, February 2013.}}