ML14071A436

From kanterella
Jump to navigation Jump to search
Enclosure 3 to AEP-NRC-2014-09, Calculation, PRA-ILRT, Rev. 2, Risk Impact Assessment for Permanently Extending Containment Type a Test Interval
ML14071A436
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 03/05/2014
From: Hawley J
AEP Indiana Michigan Power Co
To:
Office of Nuclear Reactor Regulation
References
AEP-NRC-2014-09
Download: ML14071A436 (221)


Text

Enclosure 3 to AEP-NRC-2014-09 Donald C. Cook Nuclear Plant Calculation, PRA-ILRT "Risk Impact Assessment For Permanently Extending Containment Type A Test Interval"

MEN D. C. COOK NUCLEAR PLANT CALCULATION/REPORT COVER SHEET DR Full Rev LI Addendum Document No. PRA-ILRT Rev No. 2 El Status Change

Title:

Risk Impact Assessment For Permanently Extending Containment Type A Test Interval STATUS: [ Approved [-]Superseded El Voided [1 Information Only Document Type/Class: Z Calculation El Report [] Class 1 D Class 2 0 Class 3 QUALITY SYSTEM UNIT COMPUTER REVIEW METHOD:

CLASSIFICATION: CODE: NO.: MEDIA: [] Detailed Review El Safety-Related El Yes El Alternate Calculation El Non-Safety-Related with 12 NAPL N No El Other Special Requirements El N/A- Status/Class Change Only

[ Non-Safety-Related I I I Do any assumptions require later verification? El Yes [ No If yes, AR No. N/A Revised to account for Level 1 Internal Events and Fire PRA changes required to address revisions of Test and Maintenance modeling and impacts on Level 2 STC frequencies, CDF and LERF values. The approver exempts this report from the requirements of 12-EHP-5040-DES-003, regarding content/organization, configuration management and design margin, as specified in paragraph 3.4.5 b.

If the Reviewer is the Preparer's supervisor, the supervisor review is needed and is approved: Z N/A Supervisor's Manager's Name Title Signature Date Qualification Matrix Verification

  • The responsible Engineering Supervisor/Manager approval signature also serves to signify that the qualifications of the individual(s) assigned as Preparer(s) and Reviewer(s) and Independent Design Verifier(s) were verified in the Plant Qualification Matrix.

Preparation & Review PREPARED BY: REVIEWED BY: *APPROVED BY:

Name: James T. Hawley Robert Bertucio Jeffrey A. Julius

Title:

Senior Engineer Consulting PRA Engineer Technical Manager Organization: Scientech Scientech Scientech Signature:

Date: 3/5/14 3/6/14 3/6/14 El Sign-offs for additional Preparer(s) and Reviewer(s) on next page This document includes the following pages: 1-158 Page 1 Non-AEP Preparation, Review & Approval If the Preparer, Reviewer and Approver are non-AEP individuals and the calculation was performed under the D. C. Cook QA program, the appropriate AEP Design Discipline Supervisor(s) approval is needed. El N/A AEP Design Discipline Supv: Stephen J. Cherba /j(.. ,3- .. )/

Print ddame/Signature Date

Calculation No. PRA-ILRT I RevisionNo. 2 [Page 2 of 158 Table of Contents 1.0 Introduction....................................................................................................................................................... 4 1 Purpose .........................................................................................................................................................

P 4 1.2 Background ................................................................................................................................................... 4 13 Objective ...................................................................................................................................................... 4

2. 0 Inputs ................................................................................................................................................................. 5 3.0 Assumptions ....................................................................................................................................................... 9 4.0 Computer Codes............................................................................................................................................. 11 5.0 Methodology.................................................................................................................................................... 12 5,1 General ....................................................................................................................................................... 12 5,2 D etailed Steps of the Method .................................................................................................................... 14 5.2.1 Step One: Base-line Risk D eterm ination ........................................................................................... 14 5.2.2 Step Two: D evelop the Baseline Population Dose Per Year ............................................................. 15 5,2.3 Step Three: Evaluate the Risk Impact ................................................................................................. 16 5.2.4 Step Four: Evaluate Change in LERF and CCFP ............................................................................. 18 5,2.5 Step Five: Evaluate Sensitivity of Results ......................................................................................... 19 5,2.6 Step Six: Evaluate External Events .................................................................................................... 22 6.0 Calculations..................................................................................................................................................... 23 6.1 Base-line Risk D etermination ..................................................................................................................... 23 6.2 Base-line Population D ose D eterm ination ............................................................................................ 26 63 Risk Impact Evaluation .............................................................................................................................. 27 64 LERF and CCFP Changes .......................................................................................................................... 30 6,5 Sensitivity of Results to Liner Corrosion .............................................................................................. 31 6.6 External Events ........................................................................................................................................... 38 67 Summ ary of Calculations ........................................................................................................................... 39 7.0 Results and Conclusions.................................................................................................................................. 42 7.1 Results ........................................................................................................................................................ 42 7,2 Conclusions ................................................................................................................................................ 43 7,2.1 Cook Nuclear Plant Risk Impact ........................................................................................................ 43 7.2.2 Com parison to Previous Assessm ents .............................................................................................. 44

8.0 REFERENCES

................................................................................................................................................ 46 ATTA CHMENTA File 201403034-CET-endpt.PRT........................................................................................ 48

Calculation No. PRA-ILRT I Revision No. 2 1 Page 3 of 158 List of Tables TABLE I - STC FREQUENCIES FROM THE LEVEL 2 PRA MODEL (REFERENCE [8-25]) ................................................... 5 TABLE 2 - STC DOSES USED IN REFERENCE [8-10] ....................................................................................................... 6 TABLE 3 - EPRI CLASS DOSES USED IN REFERENCE [8-4] ............................................................................................. 6 TABLE 4 - DETAILED DESCRIPTION FOR THE EIGHT ACCIDENT CLASSES AS DEFINED BY EPRI TR-104285 ................ 13 TABLE 5 - RELATIONSHIP BETWEEN EPRI ACCIDENT CLASSES AND LEVEL 2 MODEL STCS ...................................... 23 TABLE 6 - FREQUENCY OF PDSS WITH LONG-TERM CONTAINMENT SPRAY ................................................................. 25 TABLE 7 - CNP HISTORICAL POPULATION DOSE CALCULATION RESULTS [PERSON-REM] ........................................ 26 TABLE 8 - CALCULATED RESULTS FOR INTERNAL EVENTS PRA ................................................................................. 41 TABLE 9 - CALCULATED RESULTS FOR EXTERNAL EVENTS PRA ............................................................................... 41 TABLE 10 -

SUMMARY

OF CNP ILRT INTERVAL EXTENSION RISK METRICS ............................................................... 43 List of Effective Pages Page(s) Revision 1-158 2

[ Calculation No. PRA-ILRT I Revision No. 2 I Page 4 of 158

1.0 INTRODUCTION

1.1 PURPOSE The purpose of this calculation is to assess the risk impact for permanently extending the D.C.

Cook Nuclear Plant (CNP) containment Integrated Leak Rate Test (ILRT) interval from ten to fifteen years for both Units 1 and 2.

1.2 BACKGROUND

On October 26, 1995, changes announced by the Nuclear Regulatory Commission (NRC) in Reference [8-1] were officially incorporated into 10 CFR 50, Appendix J. The revision to Appendix J allowed individual plants to select containment leakage testing frequency under Option A "Prescriptive Requirements" or Option B "Performance-Based Requirements." CNP selected the requirements under Option B as its testing program.

The surveillance testing requirements (for Option B of Appendix J) as proposed in NEI 94-01, Revision 0, Reference [8-2], for Type A testing is at least once per 10 years based on an acceptable performance history (defined as two consecutive periodic Type A tests at least 24 months apart in which the calculated performance leakage was less than 1.OOLa. CNP previously used this analysis methodology in References [8-3] and [8-4] to obtain a one- time exemption from 1 in 10 years test interval to 1 in 15 years test interval.

The current analysis is similar to the previous analyses. The current analysis is based on the methodology provided in NEI 94-01, Revision 3A, Reference [8-5]. The starting point for the Revision 0 analysis [8-23] was the Internal Events PRA (IEPRA) model designated as 09MORW which is documented in Reference [8-6], and Revision 0 of the Level 2 PRA model, which is documented in Reference [8-7]. Revision 1 of this calculation accounts for changes in the Level 2 Model results [8-24] that were caused by an Internal Events PRA model update [8-23]1 and a Fire PRA model update [8-19] performed to address a Peer Review Finding regarding test and maintenance modeling. Revision 2 of this calculation accounts for changes in the Level 2 Model results [8-25] that were caused by an additional update to the Internal Events PRA model [8-23] to address a Peer Review Finding regarding test and maintenance modeling.

1.3 OBJECTIVE The results of this calculation will be used to support the effort to obtain NRC approval to extend the Integrated Leak Rate Test frequency to once every fifteen years.

' This calculation was approved but the need to revise that calculation was identified before it was entered into NDM.

Calculation No. PRA-ILRT Revision No. 2 Page 5 of 158 2.0 INPUTS 2.1 Source Term Category (STC) frequencies are obtained from Reference [8-25] and provided in the following table. The values were based on the Unit 1 IEPRA. The values are considered representative of Unit 2, since the Unit 1 and Unit 2 IEPRA models historically have been very similar (see for example, Reference 8-6).

Table 1 - STC Frequenciesfirom the Level 2 PRA Model (Reference [8-25])

STC STC Frequency [yr1] Description of Release Characteristics 1 5.011E-07 None - Leakage 2 7.116E-06 Leakage 3 O.OOOE+00 LER - Mitigated Onsite 4 2.694E-07 LER - Mitigated Offsite 5 1.155E-07 LER 6 5.026E-07 LLR - Mitigated Onsite 7 2.534E-06 LLR - Mitigated Offsite 8 1.015E-06 LLR 9 4.257E-07 LER - ECF - Mitigated Offsite 10 7.159E-07 LER - ECF 11 O.OOOE+00 LER - ISGTR - Mitigated Onsite 12 5.124E-08 LER - ISGTR - Mitigated Offsite 13 1.068E-07 LER - ISGTR 14 3.828E-08 LER - Isolation Fails - Mitigated Onsite 15 1.409E-08 LER - Isolation Fails - Mitigated Offsite 16 5.681E-09 LER - Isolation Fails 17 2.139E-09 LER - Isolation Fails & ECF - Mitigated Offsite 18 3.597E-09 LER - Isolation Fails & ECF 19 O.OOOE+00 LER - ISGTR & Isolation Fails - Mitigated Onsite 20 2.575E-10 LER - ISGTR & Isolation Fails - Mitigated Offsite 21 5.367E-10 LER - ISGTR & Isolation Fails 22 4.652E-07 LER - SGTR - Mitigated Offsite 23 1.085E-06 LER- SGTR 24 7.063E-08 LER - ISLOCA - Mitigated Onsite 25 1.907E-07 LER - ISLOCA - Mitigated Offsite 26 4.450E-07 LER - ISLOCA The sum of the STC frequencies is the CDF corresponding to the Containment Event Tree (CET)

End States (including intact case). Per Reference [8-25], this CDF value is 1.567E-5/yr. Also per Reference [8-25], the LERF value obtained from the table above is 4.006E-6/yr.

Calculation No. PRA-ILRT I Revision No. 2 Page 6 of 158 2.2 Dose estimates for the EPRI Classes were obtained from Reference [8-10]), and Reference

[8-4]. These inputs are provided in the following tables.

Table 2 - STC Doses used in Reference [8-10]

Description Person-Rem STC STC Desri(50-miles) 1 Containment bypassed with noble gases plus up to I% of the volatiles 3.7 1E+05 released 2 Containment bypassed with noble gases and more than 10% of the 9.67E+06 volatiles released 3 Containment failure prior to vessel failure with noble gases and less than 1.94E+04 1/10% of the volatiles released (containment isolation impaired) 4 Containment failure prior to vessel failure with noble gases and up to 8.39E+05 10% of the volatiles released (containment isolation impaired)

Containment failure prior to vessel failure with the noble gases and more 5 than 10% of the volatile fission products released (containment isolation 1.74E+06 impaired)

Early containment failure with noble gases and up to 10% of the volatiles 6 released (containment failure within six hours of vessel failure; 2.16E+06 containment not bypassed, isolation successful)

Late containment failure with noble gases and up to 10% of the volatiles 7 released (containment failure greater than six hours after vessel failure; 1.58E+06 containment not bypassed; isolation successful) 8 No containment failure (leakage only, successful maintenance of containment integrity; containment not bypassed; isolation successful)

Table 3 - EPRI Class Doses used in Reference [8-4]

Class Description Person-Rein Class De(50-miles) 1 No Containment Failure 1.01E+03 2 Large Containment Isolation Failure (Failure-To-Close) 3.84E+06 3a Small Isolation Failures (Liner Breach) 1.0 1E+04 3b Large Isolation Failures (Liner Breach) 3.54E+04 4 Small Isolation Failure- Failure-To-Seal (Type B test) N/A 5 Small Isolation Failure- Failure-To-Seal (Type C Test) N/A 6 Containment isolation Failures (Dependent failures, Personnel Errors) 3.84E+06 7 Severe Accident Phenomena Induced Failure (Early and Late Failures) 3.84E+06 8 Containment Bypassed (SGTR) 9.68E+06 2.3 While some liner corrosion has been observed at CNP (see the response to RAI #1 in Reference [8-4]) the through wall liner hole found was determined to be due to a plant construction error and not due to corrosion. For conservatism, the previous submittal used

Calculation No. PRA-ILRT I Revision No. 2 1 Page 7 of 158 ]

a value of 3 failures for the containment cylinder and dome rather than the generic value of 2 failures used in Reference [8-9], and adjusted the probability distribution function by multiplying it by the ratio of 3/2. This conservatism will be preserved and the generic values for the cylinder/dome liner failure probability will be increased by a factor of 3/2.

2.4 Consistent with Reference [8-9], a value of zero failures for the containment basemat will be used. Zero failures in a time period does not compute to a failure probability of 0.0. In accordance with standard practice, a bayesian update is performed using a Jeffrey's non-informative prior. This has the effect of assuming one-half failure in the time period.

2.5 Review of the Plant Damage State (PDS) diagram from the Level 2 PRA model documented in Reference [8-25] yields the following list of PDSs that have successful long-term operation of both containment sprays (CTS) and containment heat removal (CHR): 1, 7, 15, 23, 31, 38, 43, 52, 60, 65, 73, 81, 89, 96, 101, 105, 108, 110, 114, 123, 128, 134, 138, 144.

2.6 The CET Endpoint table file from the Level 2 PRA model documented in Reference [8-25]

provides a comprehensive listing of the frequency of each CET endpoint that contributes to each STC for each PDS. This file is provided on the CD attached to Reference [8-25] and is reproduced as Attachment A.

2.7 Per Reference [8-9], the probability of small pre-existing containment leakage in excess of design allowable but less than 10 La, PROBClass3a, is 0.0092.

2.8 Per Reference [8-9], the probability of large (100 La) pre-existing containment leakage, PROBClass3b, is 0.0023.

2.9 Per Reference [8-12], the population for each county surrounding CNP out to a 50-mile radius is as follows:

County 2000 Census Population 2010 Census Population Allegan (MI) 105665 111408 Berrien (MI) 162453 156813 Cass (MI) 51104 52293 Kalamazoo (MI) 238603 250331 St. Joseph (MI) 62422 61295 Van Buren (MI) 76263 76258 Elkhart (IN) 182791 197559 Lake (IN) 484564 496005 LaPorte (IN) 110106 111467 Marshall (IN) 45128 47051 Porter (IN) 146798 164343 St. Joseph (IN) 265559 266931 Starke (IN) 23556 23363 2.10 Per Reference [8-9], the time interval of data collection for liner flaws is 5.5 years and the number of plants performing an ILRT during this time interval is 70.

Calculation No. PRA-ILRT I Revision No. 2 T Page 8 of 158 2.11 Per Reference [8-9], the steel liner flaw likelihood is represented by the following probability distributions:

Containment Cylinder and Dome Liner Containment Basemat Liner Year Failure Rate Year Failure Rate 1 2.1E-3 1 5.0E-4 average 5-10 5.2E-3 average 5-10 1.3E-3 15 1.4E-2 15 3.5E-3 15-year average = 6.27E-3 15-year average = 1.57E-3 2.12 Per Reference [8-9], the steel liner flaw likelihood values at years 3, 10 and 15 are as follows for the preceding flaw probability distributions:

Containment Cylinder and Dome Liner Containment Basemat Liner Year Probability Year Probability 3 7.1E-3 3 1.8E-3 5 4.06E-2 5 1.02E-2 15 9.40E-2 15 2.35E-2 2.13 Per Reference [8-14], the containment failure pressure is 45.8 psig (60.5 psia).

2.14 Per References [8-15] and [8-16], the upper end of the containment pressure range used to conduct an ILRT is 12.0 psig (26.7 psia).

2.15 Per Reference [8-17], the fraction of the containment liner that cannot be inspected for Appendix J, ASME Section XI is 0.415.

2.16 The CDF for Seismic events was determined as part of the Individual Plant Examination -

External Events (IPEEE), Reference [8-18]. This PRA model has not been updated since that time. The CDF value reported in Reference [8-18] is 3.17E-6 yr1 . The LERF for external events was determined in Reference [8-20]. The seismic portion of LERF was presented in Reference [8-21] and reported as 9.82E-7/yr. These values are considered applicable to both CNP units.

2.17 The CDF for Internal Fires was determined in Reference [8-19] in support of an effort to transition the Fire Protection Licensing Basis from Appendix R to NFPA-805. The CDF /

LERF values reported in Reference [8-19] are 5.681E-5 yr-1 / 4.01E-6 yr-1 for Unit 1 and 5.24E-5 yr-1 / 3.479E-6 yr-' for Unit 2. These CDF values correspond to the post-transition plant, which does not include credit for low-leakage RCP seals.

I I Calculation No.

I PRA-ILRT 1 Revision No. 2 1 Pa2e 9 of 158 1 3.0 ASSUMPTIONS 3.1 Reference [8-13] estimates the likelihood of the liner flaw to grow over the extended period without examination by assuming that the historical liner flaw likelihood will double every 5 years. This assumption of Reference [8-13] is generic in nature, as it does not depend on any plant specific inputs, and is used in Reference [8-9]. As a result, this doubling of the liner flaw likelihood is judged to be reasonable to use for the CNP evaluation. Further, this implies that the shape of the distribution for the liner flaw is the same for CNP and the CNP-specific distribution may be obtained by multiplying the appropriate scale factor, which is the ratio of CNP-specific liner flaw failures to Reference

[8-9] liner flaw failures.

3.2 A total visual inspection failure likelihood of 10% for that fraction of the liner that is inspectable is assumed. This is consistent with the method used in Reference [8-9], which states: "Five percent failure to identify visual flaws plus 5% likelihood that the flaw is not visible (not through cylinder but could be detected by ILRT). All events have been detected through visual inspection. Five percent visible failure detection is a conservative assumption.

3.3 The interval between ILRTs at the original frequency of 3 tests in 10 years is taken to be 3 years. This value is consistent with Reference [8-9].

3.4 As in Reference [8-9], the likelihood of leakage escape, due to crack formation, in the basemat region is considered to be 10 times less likely than in the cylinder or dome regions. While the assessment in Reference [8-14] of containment failure pressure concludes that the most likely containment failure location is the basemat adjacent to the cylinder wall, for such a failure to lead to a LERF, there must be a pre-existing failure in the two-foot-thick bottom slab concrete which overlays the liner. Should that unlikely event happen, the flaw must align with a crack in the ten-foot thick basemat concrete. Even then, the release would need to penetrate the soil structure surrounding the concrete.

Therefore, any release through a pre-existing flaw in the basemat liner is unlikely to lead to a large release. Another mitigating feature for most sequences, given that ice from the ice condenser would melt is that water would cover the floor preventing direct release of fission products to the environment. Considering all the above, the assumption that the likelihood of leakage escape due to crack formation in the basemat region is 10 times less likely than in the cylinder or dome regions is retained.

3.5 The likelihood of the containment atmosphere reaching the outside environment given a liner flaw occurs is a function of containment pressure. Even without a liner, the containment is an excellent barrier. As the containment pressure increases, cracks in the concrete will form. If a crack occurs in the same region as a liner flaw then the containment atmosphere can communicate to the outside environment. At low pressures, crack formation is very unlikely. Near the failure point, crack formation is expected.

Consistent with the approach used in Reference [8-9], anchor points of 0.1% chance of cracking near the flaw at 20 psia and 100% chance at the failure pressure are assumed with logarithmic interpolation between these two points.

Calculation No. PRA-ILRT I Revision No. 2 1 Page 10 of 158 3.6 All non-detectable containment liner flaws are assumed to be large enough that leakage during overpressure events will contribute to the large early releases from containment.

3.7 The containment basemat liner is assumed to be uninspectable. This is consistent with the method used in Reference [8-9].

3.8 The Individual Plant Examination for External Events (IPEEE), Reference [8-18],

evaluated the required external events and concluded that only Internal Fires and Seismic events were significant; other external events such as high winds, external floods, transportation, and accidents at nearby facilities were considered and screened in the IPEEE. For the purposes of this calculation, these latter external events will be treated as negligible.

3.9 The use of the post-transition Internal Fire CDF values is considered reasonable since the transition to NFPA-805 must be completed within one year after the receipt of the Safety Evaluation (SE) from the NRC. The SE allowing transition to NFPA-805 was issued on October 24, 2013 by Reference [8-11]. Considering that the interval required by NRC to grant approval of the ILRT submittal is likely to be at least one year, the use of the post-transition Fire PRA model CDF values is considered reasonable.

3.10 Since a larger assumed ILRT pressure yields a worse result in the corrosion sensitivity analysis, an upper-bound for containment pressure during an ILRT will be used. Based on Input 2.14, ILRTS are performed at a containment pressure in the range of 11.8 psig to 12.0 psig. Accordingly, the upper-bound pressure selected will be taken to be slightly larger than this value, or 12.5 psig. This value is considered reasonable since the procedure prohibits containment pressure in excess of 12 psid, so test conduct must assure that this limit is not exceeded accounting for measurement uncertainty.

I Calculation No. PRA-ILRT I Revision No. 2 I Page 11 of 158 I 4.0 COMPUTER CODES No computer codes were used in the preparation of this calculation.

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 12 of 158 1 5.0 METHODOLOGY 5.1 GENERAL The methodology presented below is in accordance with NEI 94-01, Revision 3-A (Reference [8-5]), and the NRC regulatory guidance on the use of Probabilistic Risk Assessment (PRA) findings and risk insights in support of a licensee request for changes to a plant's licensing basis, Regulatory Guide RG 1.174 (Reference [8-8]). This methodology is similar to that presented in EPRI TR-1018243 (Reference [8-9]), as specified in Section 9.2.4.3 of Reference [8-5].

The methodology uses a simplified bounding analysis approach to evaluate the risk impact on increasing the ILRT Type A interval from 10 to 15 years by examining plant specific accident sequences in which the containment integrity remains intact or the containment is impaired.

Specifically, the following were considered:

Core damage sequences in which the containment remains intact initially and in the long term (Class 1 sequences).

Core damage sequences in which containment integrity is impaired due to random isolation failures of plant components other than those associated with Type B or Type C test components. For example, this includes sequences with pre-existing liner breach or steam generator man-way leakage (Class 3 sequences). Type B tests measure component leakage across pressure retaining boundaries (e.g., gaskets, expansion bellows and air locks). Type C tests measure component leakage rates across containment isolation valves.

Core damage sequences in which containment integrity is impaired due to containment isolation failures of pathways left 'open' following a plant post-maintenance test. For example, this includes situations in which a valve fails to close following a valve stroke test (Class 6 sequences).

Accident sequences involving containment failure induced by severe accident phenomena (Class 7 sequences), containment bypassed (Class 8 sequences), large containment isolation failures (Class 2 sequences) and small containment isolation

'failure-to-seal' events (Class 4 and 5 sequences). The sequences of these classes are impacted by changes in Type B and C test intervals, not changes in the Type A test interval (Type A test measures the containment air mass and calculates the leakage from the change in mass over time).

Detailed descriptions of Classes 1 through 8 are excerpted from Reference [8-9] and provided in the following table.

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 13 of 158 1 Table 4 - DetailedDescriptionfor the Eight Accident Classes as defined by EPRI TR-104285 Class Detailed Description 1 Containment remains intact including accident sequences that do not lead to containment failure in the long term. The release of fission products (and attendant consequences) is determined by the maximum allowable leakage rate values La. under Appendix J for that plant. The allowable leakage rates (La). are typically 0.1 weight percent of containment volume per day for PWRs .(all measured at Pa. calculated peak containment pressure related to the design basis accident). Changes to leak rate testing frequencies do not affect this lassification.

2 Containment isolation failures (as reported in the IPEs) include those accidents in which the pre-existing leakage is due to failure to isolate the contaimnent. These include those that are dependent on the core damage accident in progress (e. g., initiated by common cause failure or support system failure of power) and random failures to close a containment path. Changes in Appendix J testing requirements do not impact these accidents.

3 Independent (or random) isolation failures include those accidents in which the pre-existing isolation failure to seal (i. e., provide a leak-tight containment) is not dependent on the sequence in progress. This accident class is applicable to sequences involving ILRTs (Type A tests) and potential failures not detectable by LLRTs.

4 Independent (or random) isolation failures include those accidents in which the pre-existing isolation failure to seal is not dependent on the sequence in progress. This class is similar to Class 3 isolation failures, but is applicable to sequences involving Type B tests and their potential failures. These are the Type B- tested components that have isolated but exhibit excessive leakage.

5 Independent (or random) isolation failures include those accidents in which the pre-existing isolation failure to seal is not dependent on the sequence in progress. This class is similar to Class 4 isolation failures, but is applicable to sequences involving Type C tests and their potential failures.

6 Containment isolation failures include those leak paths not identified by the LLRTs. The type of penetration failures considered under this class includes those covered in the plant test and maintenance requirement or verified by in service inspection and testing (ISI/IST) program. This failure to isolate is not typically identified in LLRT. Changes in Appendix J

_LLRT test intervals do not impact this class of accidents.

7 Accidents involving containment failure induced by severe accident phenomena.

Changes in Appendix J testing requirements do not impact these accidents.

8 Accidents in which the containment is bypassed (either as an initial condition or induced by phenomena) are included in Class 8. Changes in Appendix J testing requirements do not Sypically impact these accidents, particularly for PWRs.

I Calculation No. PRA-ILRT . C Revision No. 2 1 Page 14 of 158 1 5.2 DETAILED STEPS OF THE METHOD 5.2.1 STEP ONE: BASE-LINE RISK DETERMINATION In this step, the baseline risk is determined in terms of core damage frequency (CDF) for the EPRI accident classes, excluding accident classes 4, 5, and 6. According to Reference [8-9], EPRI accident classes 4, 5, and 6 are excluded because ILRT Type B and C tests and multiple failures of redundant isolation valves to stroke closed are not impacted by changes in ILRT frequency, and their contribution to population dose is small. The baseline risk is determined as follows.

The plant-specific CNP Level 2 PRA Source Term Categories (STC) are mapped to EPRI accident Classes 2, 7, and 8. This is accomplished by relating the STC definitions to the definitions of the EPRI accident classes presented above. This activity requires the CDF values for the plant-specific STCs from Reference [8-25].

The plant-specific CNP Level 2 PRA STCs that represent an outcome with no containment failure are identified for use in evaluating EPRI accident Class 1. This activity also requires the CDF values for the plant-specific STCs from Reference [8-25]. Then, since some portion of the no containment failure outcomes may experience leakage due to the extended inspection interval, this new leakage contribution must be subtracted to obtain the expected no containment failure outcome frequency, as the following equation shows:

- Class 1 Frequency = CDF-intact - Class 3a Frequency - Class 3b Frequency Note that this adjustment to the Class 1 Frequency is necessary to maintain the sum of the frequencies of the accident classes equal to the CDF.

  • The frequencies for Class 3a and Class 3b are determined using the equations that follow.

- Class 3a Frequency = Type-A CDF

  • Class 3a leakage probability

- Class 3b Frequency = Type-A CDF

  • Class 3b leakage probability Class 3b represents the probability that a liner (or other leak path not monitored by local leak rate testing and/or alternate means) leak will be large. A value based on the Jeffreys Non-Informative Prior is used as the Class 3b Leakage Probability, as provided in Reference [8-9]. A similar approach is used for the Class 3a probability that a liner leak will be small; in this case, Reference [8-9] provides a value for the Class 3a Leakage Probability based on available data.

Reference [8-9] describes the Type-A CDF as follows:

"The methodology employed for determining LERF (Class 3b frequency) involves conservatively multiplying the CDF by the failure probability for this class (3b) of accident. This was done for simplicity and to maintain conservatism.

However, some plant-specific accident classes leading to core damage are likely to include individual sequences that either may already (independently) cause a

Calculation No. PRA-ILRT I Revision No. 2 1 Page 15 of 158 LERF or could never cause a LERF, and are thus not associated with the postulated large Type A containment leakage path (LERF). These contributors can be removed from class 3b in the evaluation of LERF by multiplying the class 3b probability by only that portion of CDF that may be impacted by Type A leakage.

- An example of the type of sequences that may independently cause LERF is a sequence associated with containment bypass events, such as steam generator tube rupture (SGTR) or interfacing system loss of coolant accidents (ISLOCA). Another example may include those accident sequences associated with anticipated transient without scram (ATWS) events.

- An example of the type of sequence that may never result in LERF is a sequence where containment sprays and containment heat removal are available. In these sequences, containment sprays and cooling reduce the fission products via scrubbing and rapidly reduce containment pressure. The basis for the removal of sequences to reduce conservatism is plant- and PRA-specific and should be documented by analysis in the risk impact assessment."

Based on the preceding discussion, determining the Type-A CDF involves identifying two very different types of scenarios: those corresponding to STCs which include unmitigated containment bypass or pre-existing large isolation failures and those corresponding to STC where there is no containment isolation failures prior to core damage combined with effective mitigation of fission product releases. This may be expressed by the following equation:

- Type-A CDF = Total CDF - (Sum of Bypass CDF + Sum of Large Containment Isolation Failure CDF + Sum of long-term CTS/CHR CDF)

Note that in the preceding equation, the value for "Sum of Large Containment Isolation Failure CDF" is equal to the value for "Class 2 CDF" defined above. In addition, values for the terms "Sum of Bypass CDF" and "Sum of Large Containment Isolation Failure CDF" may be determined in a straightforward manner as the sum of the CDF values for the appropriate STCs that represent large containment isolation failures, SGTR or ISLOCA.

Per input 2.1, large containment isolation STCs correspond to STC 14 through STC 21, the SGTR STCs correspond to STC 22 and STC 23, and the ISLOCA STCs correspond to STC 24, STC 25, and STC 26.

Determining a value for the term "Sum of long-term CTS/CHR CDF" in the preceding equation is not as straightforward. For this term, Input 2.6 (provided in Attachment A) must be reviewed and the CDF contributions for each of the PDSs and appropriate STC listed in Input 2.5 must be included in the sum.

5.2.2 STEP TWO: DEVELOP THE BASELINE POPULATION DOSE PER YEAR In this step, the baseline dose per year corresponding to the existing ILRT testing interval is estimated. The available plant-specific estimates for population dose have been developed for CNP in support of the Severe Accident Mitigation Alternatives (SAMAs) for License Renewal

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 16 of 158 ]

(Reference [8-10]), and the previous License Amendment Request (LAR) for a one-time extension of the ILRT interval (Reference [8-4]). Both of these sets of dose information will be used as inputs for this effort, with the higher estimated population dose value being selected for use as the starting point in this effort.

Both of these past dose estimates are based on the 2000 population census for the surrounding area. The 2010 census data shown in Input 2.9 indicates that although the population centers nearest to CNP (i.e., Berrien County) decreased over the decade, population centers located further away, but within a 50-mile radius increased. To account for changes in population since the last doses were determined, the doses will be adjusted by the ratio of the 2010-to-2000 total population for the counties.

The yearly population dose is estimated for each class by multiplying the dose estimate for a class by either the frequency estimated for the class in Step 1 or the La factor corresponding to the Class.

  • The offsite dose estimate for EPRI accident Class 1 is available from the data sources identified above. Note that in accordance with Reference [8-9], this value is taken to represent the dose for a release corresponding to 1.0 La.
  • The offsite doses for EPRI accident Classes 2, 7 and 8 are also available from the data sources identified above.
  • The offsite doses for EPRI accident Classes 3a and 3b are estimated as follows, in accordance with Reference [8-9]:

- Class 3a Dose = Class 1 Dose *10

- Class 3b Dose = Class 1 Dose *100

  • Following the approach in Reference [8-9], the population dose rates for the EPRI accident Classes are estimated by multiplying the frequency of a class by its corresponding dose, as the following equation shows:

- Class X Population Dose Rate, REM per Year = Class X Dose

  • Class X Frequency
  • Following the approach in Reference [8-9], the total population dose rate for the EPRI accident classes is obtained as follows:

- Total Population Dose Rate, REM per Year = * (Class X Population Dose Rate) 5.2.3 STEP THREE: EVALUATE THE RISK IMPACT In this step, the expected dose per year due to the increased ILRT testing interval is estimated.

The increase in the frequency values of Classes 3a and 3b are adjusted upward to account for the increased ILRT test interval. This is done by multiplying by the appropriate factor to represent the impact of the longer time between tests; the appropriate factors are provided in Reference [8-9]. Revised frequencies are determined for each class to represent

1 Calculation No. PRA-ILRT 1 Revision No. 2 1 Pan 17 of 158 the 1-in-10 year test frequency and the 1-in-15 year test frequency as follows. Note that the Class 1 Frequency must also be revised to account for the effects of the changes in Classes 3a and 3b:

- Class 3a Frequency [1 in 10 year] = Class 3a Frequency

  • 3.33

- Class 3b Frequency [1 in 10 year] = Class 3b Frequency

  • 3.33

- Class 3a Frequency [1 in 15 year] = Class 3a Frequency

  • 5.0

- Class 3b Frequency [1 in 15 year] = Class 3b Frequency

  • 5.0

- Class 1 Frequency [1 in 10 year] = CDF-Intact - Class 3a Frequency [1 in 10 year] -

Class 3b Frequency [1 in 10 year]

- Class 1 Frequency [1 in 15 year] = CDF-Intact - Class 3a Frequency [1 in 15 year] -

Class 3b Frequency [1 in 15 year]

  • The offsite dose rates for EPRI accident Classes 3a and 3b are estimated based on the increased ILRT interval. Since only the frequencies of these classes are changed by the ILRT interval, the offsite dose rates are estimated by multiplying the initial population dose rate estimate by the same factor:

- Class 3a Population Dose Rate [1 in 10 year] = Class 3a Population Dose Rate

  • 3.33

- Class 3b Population Dose Rate [1 in 10 year] = Class 3b Population Dose Rate

  • 3.33

- Class 3a Population Dose Rate [1 in 15 year] = Class 3a Population Dose Rate

  • 5.0

- Class 3b Population Dose Rate [1 in 15 year] = Class 3b Population Dose Rate

  • 5.0
  • The effect of the increased ILRT interval on the offsite dose rate for EPRI accident Class I is estimated using the revised frequency and the unchanged population dose.

- Class I Population Dose Rate [1 in 10 year] = Class 1 Frequency [1 in 10 year]

  • Class 1 Population Dose Rate

- Class I Population Dose Rate [1 in 15 year] = Class 1 Frequency [1 in 15 year]

  • Class 1 Population Dose Rate
  • The increase in population dose rate and its percentile increase for each extended interval for EPRI accident Classes 3a and 3b are estimated as follows:

- Increase in Class 3a Population Dose Rate [original interval to 1 in 10 years] =

Class 3a Population Dose Rate [1 in 10 years] - Class 3a Population Dose Rate

- Increase in Class 3b Population Dose Rate [original interval to I in 10 years] =

Class 3b Population Dose Rate [1 in 10 years] - Class 3b Population Dose Rate

- Increase in Class 3a Population Dose Rate [original interval to 1 in 15 years] =

Calculation No. PRA-ILRT I Revision No. 2 I Page 18 of 158 Class 3a Population Dose Rate [1 in 15 years] - Class 3a Population Dose Rate

- Increase in Class 3b Population Dose Rate [original interval to 1 in 15 years] =

Class 3b Population Dose Rate [1 in 15 years] - Class 3b Population Dose Rate

" The increase in population dose rate for each extended interval for EPRI accident Class 1 is estimated as follows:

- Increase in Class 1 Population Dose Rate [original interval to 1 in 10 years] =

Class 1 Population Dose Rate [1 in 10 years] - Class I Population Dose Rate

- Increase in Class 1 Population Dose Rate [original interval to 1 in 15 years] =

Class 1 Population Dose Rate [1 in 15 years] - Class 1 Population Dose Rate

  • The percentile increase in total population dose rate for each extended interval is estimated as follows:

Percentile Increase in Total Pop. Dose Rate [original interval to 1 in 10 years]

(Increase in Class 3a Population Dose Rate [original interval to 1 in 10 years] +

Increase in Class 3b Population Dose Rate [original interval to 1 in 10 years] +

Increase in Class 1 Population Dose Rate [original interval to 1 in 10 years]) / Class Total Population Dose Rate [original interval]

5.2.4 STEP FOUR: EVALUATE CHANGE IN LERF AND CCFP The risk impact in terms of change in LERF is evaluated in accordance with the guidance provided in Reference [8-9]. The risk associated with extending the ILRT interval involves a potential that a core damage event that normally would result in only a small radioactive release from containment could result in a large release due to an undetected leak path existing during the extended interval.

According to Reference [8-9], only Class 3 sequences have the potential to result in early releases if a pre-existing leak were present. Late releases are excluded regardless of the size of the leak because late releases are not, by definition, LERF events. Based on Reference [8-9], the frequency of Class 3b sequences is used as the measure of LERF, and, as a result, the change in LERF is determined by the change in Class 3b frequency associated with the ILRT interval extension. This is shown by the following equation taken from Reference [8-9]:

- ALERF [original interval to I in 10 years] = Class 3b Frequency [1 in 10 years] - Class 3b Frequency

- ALERF [original interval to 1 in 15 years] = Class 3b Frequency [1 in 15 years] - Class 3b Frequency The risk impact in terms of change in CCFP is also evaluated in accordance with the guidance provided in Reference [8-9]. The conditional containment failure probability is defined as the probability of containment failure given the occurrence of a core damage accident. Based on Reference [8-9], this can be expressed as follows:

Calculation No. PRA-ILRT I Revision No. 2 1 Page 19 of 158

- CCFP = [1 - (Class 1 Frequency + Class 3a Frequency)/Total CDF]

  • 100%

- CCFP [1 in 10 years] = [1 - (Class 1 Frequency [1 in 10 yr]+ Class 3a Frequency [1 in 10 yr])

/Total CDF]

  • 100%

- CCFP [1 in 15 years] = [1 - (Class 1 Frequency [1 in 15 yr]+ Class 3a Frequency [1 in 15 yr])

/ Total CDF]

  • 100%

- CCFP Increase [original interval to 1 in 10 years] = CCFP [1 in 10 years] - CCFP

- CCFP Increase [original interval to 1 in 15 years] = CCFP [1 in 15 years] - CCFP 5.2.5 STEP FIVE: EVALUATE SENSITIVITY OF RESULTS In this step, the sensitivity of the risk results to assumptions about liner corrosion is investigated.

In evaluating the impact of liner corrosion on the extension of ILRT testing intervals, the Calvert Cliffs methodology [8-13] is used, as provided in Reference [8-9]. This methodology investigates how an age-related degradation mechanism can be factored into the risk impact associated with longer ILRT testing intervals. The method proceeds as follows.

5.2.5.1 Determine a liner corrosion-related flaw likelihood As indicated in Reference [8-13], occurrences of through wall liner corrosion related defects had been found between the September 1996 implementation of the visual inspection requirements of 10 CFR 50.55a and that reference's submittal date. The defects found were in the cylinder region of the liner. None were found in the basemat region.

Reference [8-13] determined a point estimate for the likelihood of liner flaw due to corrosion using a simple average equation:

- P-corr = N-corr / (N-plants

  • At), where P-corr is the probability of a corrosion-induced liner failure, N-corr is the number of such failures, N-plants is the number of plants performing an ILRT during the time interval of interest, and At is the time period over which data was collected.

I II Revision No. 2 I1 Page 20 of 158 I II Calculation Calculation No.

No. PRA-ILRT PRA-ILRT Revision No. 2 Pape 20 of 158 1 5.2.5.2 Determine age-adjusted liner flaw likelihood probability distribution characteristics Per Assumption 3.1, the liner flaw occurrence rate without examination is assumed to double every 5 years. Accordingly, this value is assumed to increase by a factor of 1.149 per year. This ratio is independent of the specific average liner flaw likelihood determined from the available data. This means that the ratio of any pair of likelihood values on the CNP-specific liner flaw probability distribution must be the same as the ratio of the corresponding pair on the Reference

[8-9] probability distribution. This implies that CNP-specific values for age-adjusted liner flaw likelihoods and distribution behavior can be determined by multiplying the CNP-specific average liner flaw likelihood value by the appropriate ratio from the information provided in Reference [8-9]; that is:

- Age-Adjusted Steel Liner Flaw Likelihood, year 1 = P-corr * (Age-Adjusted Steel Liner Flaw Likelihood, year 1 from Reference [8-9] / P-corr from Reference [8-9])

- Age-Adjusted Steel Liner Flaw Likelihood, year 15 = P-corr * (Age-Adjusted Steel Liner Flaw Likelihood, year 15 from Reference [8-9] / P-corr from Reference [8-9])

- Age-Adjusted Steel Liner Flaw Likelihood, 15 year average = P-corr * (Age-Adjusted Steel Liner Flaw Likelihood, 15 year average from Reference [8-9] / P-corr from Reference [8-9])

5.2.5.3 Determine an age-adjusted liner flaw likelihood value for 3, 10 and 15 year intervals Similarly to the preceding section, the assumption of a constant value of the ratio of successive yearly liner flaw likelihood values also allows CNP-specific values for age-adjusted liner flaw likelihoods at various times to be determined by multiplying the CNP-specific average liner flaw likelihood value by the appropriate ratio from the information provided in Reference [8-9]; that is:

- Age-Adjusted Steel Liner Flaw Likelihood, 1-3 years = P-corr * (Age-Adjusted Steel Liner Flaw Likelihood, 1-3 years from Reference [8-9] / P-corr from Reference [8-9])

- Age-Adjusted Steel Liner Flaw Likelihood, 1-10 years = P-corr * (Age-Adjusted Steel Liner Flaw Likelihood, 1-10 years from Reference [8-9] / P-corr from Reference [8-9])

Age-Adjusted Steel Liner Flaw Likelihood, 1-15 years = P-corr * (Age-Adjusted Steel Liner Flaw Likelihood, 1-15 years from Reference [8-9] / P-corr from Reference [8-9])

5.2.5.4 Determine the change in flaw likelihood for an increase in inspection interval The change in flaw likelihood due to an increase in ILRT interval is simply the differences between pairs of values determined in the preceding step:

- Change in Age-Adjusted Steel Liner Flaw Likelihood by extending ILRT from 3 to 10 years =

Age-Adjusted Steel Liner Flaw Likelihood, 1-10 years -Age-Adjusted Steel Liner Flaw Likelihood, 1-3 years

- Change in Age-Adjusted Steel Liner Flaw Likelihood by extending ILRT from 3 to 15 years =

Age-Adjusted Steel Liner Flaw Likelihood, 1-15 years -Age-Adjusted Steel Liner Flaw Likelihood, 1-3 years

I Calculation No. PRA-ILRT I Revision No. 2 1 Papze 21 of 158 1 I Caclto o R-LTI Rvsno. 2 I Pag 21 o 5

- Change in Age-Adjusted Steel Liner Flaw Likelihood by extending ILRT from 10 to 15 years

= Age-Adjusted Steel Liner Flaw Likelihood, 1-15 years - Age-Adjusted Steel Liner Flaw Likelihood, 1-10 years 5.2.5.5 Determine likelihood of containment breach given a flaw The likelihood of a containment breach occurring as a function of pressure is estimated using the logarithmic interpolation method presented in References [8-9] and [8-13].

- Log(likelihood of breach) = m * (pressure) + a Where: m = slope a = intercept The values of m and a are determined from solution of the two versions of this equation, corresponding to the values of 0.1% at 20 psia and 100% at the containment failure pressure. Once values for a and m are determined, the upper end of the range of ILRT pressures is used to obtain the highest likelihood of containment breach.

5.2.5.6 Determine likelihood that flaw detection by visual inspection fails The likelihood that the visual inspection will fail to detect a liner flaw is given by the sum of the percentage of the liner that is uninspectable plus the product of an assumed inspection failure rate for the portion that is inspectable. The uninspectable percentage is determined as the ratio of the portion of the dome and cylinder that is obstructed and cannot be inspected, times 100%. The inspection failure rate is provided in Assumption 3.2. The total likelihood for failure to visually detect a flaw is determined using the following equation:

- P-fail = F-uninspectable + IFR * (1 - F-uninspectable) where: P-fail is the probability for failure to visually detect a flaw over the entire containment liner, IFR is the assumed failure rate for visual inspection, and F is the uninspectable split fraction of the containment surface area, i.e., the ratio of the portion of the dome and cylinder that is obstructed and cannot be inspected to the total surface area.

5.2.5.7 Determine likelihood of non-detected containment leakage due to ILRT interval increase The likelihood of non-detected containment leakage in each region due to age-related corrosion of the liner considering the increase in ILRT interval is then given by the product of The increased likelihood of an The likelihood of a The likelihood that undetected flaw containment breach visual inspection will because of the given a liner flaw not detect the flaw increased ILRT (5.2.5.5) (5.2.5.6) interval (5.2.5.4)

I Revision No. 2 I1 Page 22 of 158 I II Calculation Calculation No.

No. PRA-ILRT PRA-ILRT I Revision No. 2 Pave 22 of 158 1 This product is determined separately for the cylinder/dome and basemat portions of the liner, and the results are summed to obtain the total estimated non-detected containment leakage due to ILRT interval increase.

5.2.5.8 Determine change in Risk due to ILRT interval increase The effect on risk, of the increase in non-detected containment leakage due to age-related corrosion of the liner that occurs during the increase in ILRT interval, is estimated by increasing the probability of pre-existing containment leakage, PROB_Class3b from its default value of 0.0023. Specifically, PROB Class3b should be incremented by the total likelihood of non-detected containment leakage for each of the three time frames of interest. Then, the dose and LERF calculations should be repeated using these updated values for PROBClass3b.

5.2.6 STEP SIX: EVALUATE EXTERNAL EVENTS In this step, the potential contribution from external events is estimated. Due to lack of detailed Level 2 PRA modeling availability for external events, their potential contribution is limited to a conservative estimate of the change in LERF associated with the extension of the ILRT interval.

Specifically, for external events the LERF estimated for the ILRT interval extension will be represented by the following equations:

- Class 3b Frequency [3 in 10 year] (EE) = Total-EE CDF

  • PROBClass3b

- Class 3b Frequency [1 in 10 year] (EE) = Class 3b Frequency [3 in 10 year] (EE)

  • 3.33

- Class 3b Frequency [1 in 15 year] (EE) = Class 3b Frequency [3 in 10 year] (EE)

  • 5.0 In the equations above, Total-EE CDF is the sum of the CDF values for Seismic events and Internal Fires. These values are obtained from Inputs 2.16 and 2.17.

The increase in LERF attributable to the ILRT interval extension is then estimated as follows:

- ALERF-EE [3 in 10 to 1 in 10 yr] = Cl 3b Freq [1 in 10 yr] (EE) - Cl 3b Freq [1 in 3 yr] (EE)

- ALERF-EE [3 in 10 to 1 in 15 yr] = Cl 3b Freq [1 in 15 yr] (EE) - Cl 3b Freq [1 in 3 yr] (EE)

Calculation No. PRA-ILRT Revision No. 2 1 Page 23 of 158 6.0 CALCULATIONS 6.1 BASE-LINE RISK DETERMINATION In this,step, the baseline risk is determined in terms of core damage frequency (CDF) for the EPRI accident classes, excluding accident classes 4, 5, and 6.

The first step in the methodology requires mapping the CNP STCs to the EPRI Classes. This is accomplished by comparing the definitions of each and matching STCs to their corresponding EPRI accident Class. This is shown in the following table:

Table 5 - Relationship Between EPRIAccident Classes and Level 2 Model STCs Class Description of Class Description of Matching DC Cook STC Release Characteristics STC Release Characteristics 1 Containment remains intact including accident None- Leakage 1 sequences that do not lead to containment Leakage 2 failure in the long term.

2 Containment isolation failures include those LER - Isolation Fails - Mitigated Onsite 14 accidents in which the pre-existing leakage is LER - Isolation Fails - Mitigated Offsite 15 due to failure to isolate the containment. LER - Isolation Fails 16 LER - Isolation Fails & ECF - Mitigated Offsite 17 LER - Isolation Fails & ECF 18 LER - ISGTR & Isolation Fails - Mitigated Onsite 19 LER - ISGTR & Isolation Fails - Mitigated Offsite 20 LER - ISGTR & Isolation Fails 21 3 Independent (or random) isolation failures No Match NA include those accidents in which the pre-existing isolation failure to seal (i. e., provide a leak-tight containment) is not dependent on the sequence in progress.

7 Accidents involving containment failure LER - Mitigated Onsite 3 induced by severe accident phenomena. LER - Mitigated Offsite 4 LER 5 LLR - Mitigated Onsite 6 LLR - Mitigated Offsite 7 LLR 8 LER - ECF - Mitigated Offsite 9 LER - ECF 10 LER - ISGTR - Mitigated Onsite 11 LER - ISGTR - Mitigated Offsite 12 LER - ISGTR 13 8 Accidents in which the containment is bypassed LER - SGTR - Mitigated Offsite 22 (either as an initial condition or induced by LER - SGTR 23 phenomena) are included in Class 8. LER - ISLOCA - Mitigated Onsite 24 LER - ISLOCA - Mitigated Offsite 25 LER - ISLOCA 26

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 24 of 158 1 Based on the relationships shown in the table above, CDF values for Classes 2, 7 and 8 may be determined by summing the CDF for the group of STCs from Input 2.1 which correspond to each of these classes.

Class 2 Frequency = CDF-STC 14 + CDF-STC 15 + CDF-STC 16 + CDF-STC 17 +

CDF-STC 18 + CDF-STC 19 + CDF-STC 20 + CDF-STC 21

= 3.828E-08 + 1.409E-08 + 5.681E-09 + 2.139E-09 + 3.597E-09 +

0.OOOE+00 + 2.575E-10 + 5.367E-10

- 6.458E-8 yr-1 Class 7 Frequency = CDF-STC 3 + CDF-STC 4 + CDF-STC 5 + CDF-STC 6 + CDF-STC 7 +

CDF-STC 8 + CDF-STC 9 + CDF-STC 10 + CDF-STC 11 +

CDF-STC 12 + CDF-STC 13

= O.OOOE+00 + 2.694E-07 + 1.155E-07 + 5.026E-07 + 2.534E-06 +

1.015E-06 + 4.257E-07 + 7.159E-07 + 0.OOOE+00 + 5.124E-08 +

1.068E-07

= 5.736E-6 yr-1 Class 8 Frequency = CDF-STC 22 + CDF-STC 23 + CDF-STC 24 + CDF-STC 25 +

CDF-STC 26 4.652E-07 + 1.085E-06 + 7.063E-08 + 1.907E-07+ 4.450E-07

- 2.256E-6 yrl To obtain CDF values for classes 3a and 3b, the methodology described above requires two values that are derived from inputs provided in Section 2: Total CDF and Type-A CDF. Total CDF is simply the sum of the STC frequencies:

Total CDF = J(STC Frequencies from Input 2.1) = 1.567E-5 yr-1 Type-A CDF is defined in Section 5.2.1 as follows:

Type-A CDF = Total CDF - (Sum of Bypass CDF + Sum of Large Containment Isolation Failure CDF + Sum of long-term CTS/CHR CDF)

Following the approach discussed in Section 5.2.1, each of the terms in the equation above may be determined.

Sum of SGTR CDF = CDF-STC 22 + CDF-STC 23

= 4.652E-07 + 1.085E-06

= 1.550E-6 yr-1 Sum of ISLOCA CDF= CDF-STC 24 + CDF-STC 25 + CDF-STC 26

= 7.063E-08 + 1.907E-07+ 4.450E-07

= 7.063E-7 yr-1 Based on Input 2.6, the CDF contributions for the PDSs that have long-term successful operation of CTS and CHR may be determined as follows.

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 25 of 158 1 For each PDS listed in Input 2.5, locate the CET end-point entries for STCs that have an intact containment prior to core damage (STCs 1 through 13).

Sum the frequencies for each of these entries for each PDS.

Following these steps in a repetitive fashion yields the following results:

Table 6 - Frequency of PDSs with Long-Term Containment Spray PDS with long-term CTS/CHR CDF [yr']

1 4.781E-07 7 1.786E-07 15 5.304E-07 23 3.567E-08 31 2.654E-07 38 5.041-E-09 43 1.320E-07 52 0.000E+00 60 7.530E-08 65 1.638E-06 73 1.718E-08 81 0.000E+00 89 O.000E+00 96 1.181E-07 101 8.537E-08 105 1.313E-09 108 2.304E-08 110 0.000E+00 114 2.985E-07 123 6.792E-08 128 1.695E-06 134 2.297E-07 138 2.573E-06 144 0.000E+00 Sum of long-term CTS/CHR CDF 8.448E-6 Substituting the values for Sum of SGTR CDF, Sum of ISLOCA CDF, Containment Isolation Failure CDF, and Sum of long-term CTS/CHR CDF into the equation above, the value for Type-A CDF is then found as follows:

Type-A CDF = 1.567E (1.550E-6 + 7.063E-7 + 6.458E-8 + 8.448E-6) = 4.901E-6 yr-1 Given a value for Type-A CDF and the values for the probabilities that an undetected containment leak path, the CDF values for Classes 3a and 3b may be found as follows

I Calculation No. PRA-ILRT I Revision No. 2 1 Nee 26 of 158 1 Class 3a Frequency = Type-A CDF

  • Class 3a leakage probability = 4.90 1E-6 yr"1
  • 0.0092

= 4.509E-8 yr-'

Class 3b Frequency = Type-A CDF

  • Class 3b leakage probability = 4.901E-6 yr-1
  • 0.0023

= 1.127E-8yr1 Finally, given the relationships identified between the EPRI Classes and the Level 2 STCs, and the values determined for Classes 3a and 3b, a frequency value may be determined for Class 1 in accordance with the methodology described above. First, the frequency corresponding to intact containment scenarios must be determined.

CDF-Intact = CDF-STC 1 + CDF-STC 2

= 5.011E-7 + 7.116E-6

= 7.6171E-6yr1 Class I Frequency = CDF-Intact - Class 3a Frequency - Class 3b Frequency

= 7.6171E 4.509E 1.127E-8

= 7.561E-6 yr1 6.2 BASE-LINE POPULATION DOSE DETERMINATION To obtain a bounding set of unadjusted (i.e., based on 2000 census data) population doses, the data presented in Input 2.2 must be compared. However, since the data from Reference [8-10] are presented in terms of the STCs for the corresponding Level 2 PRA model-of-record, these STCs must first be related to the EPRI Classes. Noting that STCs 1 and 2 both describe containment bypass scenarios, these STCs correspond to Class 8. Noting that STCs 3, 4 and 5 describe containment isolation failure scenarios, these STCs correspond to Class 2. Noting that STCs 6 and 7 describe early and late containment failure scenarios caused by severe accident progression, these STCs correspond to Class 7. And, noting the STC 8 describes scenarios with no containment failure, this STC corresponds to Class 1. The following table presents the available population doses for the EPRI classes and shows the value selected for use.

Table 7 - CNP HistoricalPopulationDose CalculationResults [Person-REM]

Starting Point Class Ref. [8-4] Ref. [8-10] for This Effort (Maximum Value) 1 1.01E+03 0.OOE+00 1.01E+03 2 3.84E+06 1.94E+04 + 8.39E+05 + 1.74E+06 = 2.60E+06 3.84E+06 7 3.84E+06 2.16E+06 + 1.58E+06= 3.74E+06 3.84E+06 8 9.68E+06 9.67E+06 + 3.71E+05= 1.00E+07 1.00E+07 To determine the adjustment factor for the population dose, the data for each census presented in Input 2.9 are summed and the ratio obtained as follows:

Ratio-2010-to-2000-population = 2015117/1955012 = 1.031

CalculationNo. PRA-ILRT I RevisionNo. 2 I Page 27 of 158 Using this factor with the starting point population dose values in the table above allows the final class population dose vales to be determined as follows:

Class 1 Dose = 1.O1E+03

  • 1.031 = 1.04E+03 Person-REM Class 2 Dose = 3.84E+06
  • 1.031 = 3.96E+06 Person-REM Class 7 Dose = 3.84E+06
  • 1.031 = 3.96E+06 Person-REM Class 8 Dose = 1.00E+07
  • 1.031 = 1.03E+07 Person-REM The Class 3a and 3b doses are then obtained from the Class 1 dose as follows:

Class 3a Dose = 1.04E+03

  • 10 = 1.04E+04 Person-REM Class 3b Dose = 1.04E+03
  • 100 = 1.04E+05 Person-REM The population dose rate (PDR) for each class is determined by the product of the class frequency and population dose:

Class 1 Population Dose Rate = 1.04E+03

  • 7.561E-6 = 7.86344E-03 Person-REM/yr Class 2 Population Dose Rate = 3.96E+06
  • 6.458E-8 = 2.55737E-01 Person-REM/yr Class 3a Population Dose Rate = 1.04E+04
  • 4.509E-8 = 4.6894E-04 Person-REM/yr Class 3b Population Dose Rate = 1.04E+05
  • 1.127E-8 = 1.17208E-03 Person-REM/yr Class 7 Population Dose Rate = 3.96E+06
  • 5.736E-6 = 2.27146E+01 Person-REM/yr Class 8 Population Dose Rate = 1.03E+07.
  • 2.256E-6 = 2.32368E+0I Person-REM/yr The Total Population Baseline Dose Rate is the sum of these values, or 46.21664 Person-REM/yr.

6.3 RISK IMPACT EVALUATION To evaluate the risk impact of an increased ILRT interval, the Class 1, 3a and 3b frequencies and population dose rates are adjusted by applying the factors described in the methodology section to the baseline risk values.

Class 3a Frequency [1 in 10 year] = Class 3a Frequency

  • 3.33

= 4.509E-8

  • 3.33 1

= 1.5015E-07 yr

I Calculation No. PRA-ILRT I Revision No. 2 I Page 28 of 158 I Class 3b Frequency [1 in 10 year] = Class 3b Frequency

  • 3.33

= 1.127E-8

  • 3.331

= 3.7529E-08 yr-Class 3a Frequency [1 in 15 year] -- Class 3a Frequency

  • 5.0 4.509E-8
  • 5.0

= 2.2545E-07 yr1 Class 3b Frequency [1 in 15 year] = Class 3b Frequency

  • 5.0

= 1.127E-8

  • 5.0 1

= 5.6350E-08 yr-The Class I frequency must be revised to account for the above changed values:

Class 1 Freq. [1 in 10 yr] = CDF-Intact - Class 3a Freq. [1 in 10 yr] - Class 3b Freq. [I in 10 yr]

= 7.6171E 1.5015E 3.7529E-8

= 7.4294E-6 yrl Class 1 Freq. [1 in 15 yr] = CDF-Intact - Class 3a Freq. [1 in 15 yr] - Class 3b Freq. [1 in 15 yr]

= 7.6171E 2.2545E 5.6350E-8

= 7.3353E-6 yr-1 The Class 3a and 3b population dose rates must be revised to account for their above changed frequency values:

Class 3a Population Dose Rate [I in 10 year] = Class 3a Population Dose Rate

  • 3.33

= 4.6894E-04* 3.33

= 1.5616E-03 Person-REM/yr Class 3b Population Dose Rate [1 in 10 year] = Class 3b Population Dose Rate

  • 3.33

= 1.17208E-03

  • 3.33

= 3.90303E-03 Person-REM/yr Class 3a Population Dose Rate [1 in 15 year] = Class 3a Population Dose Rate

  • 5.0

= 4.6894E-04

  • 5.0

= 2.3447E-03 Person-REM/yr Class 3b Population Dose Rate [1 in 15 year] = Class 3b Population Dose Rate

  • 5.0

= 1.17208E-03 *5.0

= 5.86040E-03 Person-REM/yr The Class 1 population dose rate change is also calculated:

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 29 of 158 1 Class 1 Pop. Dose Rate [1 in 10 yr] = Class 1 Freq. [1 in 10 yr]

  • Class 1 Pop. Dose

= 7.4294E-06

  • 1.04E3

= 7.72658E-03 Person-REM/yr Class 1 Pop. Dose Rate [1 in 15 yr] = Class I Freq. [1 in 15 yr]

  • Class 1 Pop. Dose

= 7.3353E-06

  • 1.04E3

= 7.62871E-03 Person-REM/yr Given the above estimates, the total population dose rate for the EPRI classes is the sum of the population dose rates for the classes unchanged by the ILRT interval increase and the above changes applicable to each interval increase.

Total PDR [1 in 10] = 2.55737E-1+2.27146E+l+2.32368E+1+1.5616E-3+3.90303E-3

+7.72658E-3

= 46.220328_Person-REM/yr Total PDR [1 in 15] = 2.55737E- 1+2.27146E+l +2.32368E+ 1+2.3447E-3+5.86040E-3

+7.62871E-3

= 46.222971 Person-REM/yr Given the above estimates, the increases in population dose rate for each extended interval for EPRI accident Classes 1, 3a and 3b are estimated as follows:

Increase in Class 1 PDR [1 in 3 to 1 in 10 years] - 7.72658E 7.86344E-03

= -1.3686E-04 Person-REM/yr Increase in Class 1 PDR [1 in 3 to 1 in 15 years] - 7.62871E 7.86344E-03

= -2.3473E-04 Person-REM/yr Increase in Class 1 PDR [1 in 10 to I in 15 years] = 7.62871E 7.72658E-03

= -9.787E-05 Person-REM/yr Increase in Class 3a PDR [1 in 3 to 1 in 10 years] = 1.5616E 4.6894E-04

= 1.0927E-03 Person-REM/yr Increase in Class 3a PDR [1 in 3 to 1 in 15 years] = 2.3447E 4.6894E-04

= 1.8758E-03 Person-REM/yr Increase in Class 3a PDR [1 in 10 to 1 in 15 yrs] - 2.3447E 1.5616E-03

- 7.83 1E-04 Person-REM/yr Increase in Class 3b PDR [1 in 3 to 1 in 10 years] = 3.90303E 1.17208E-03

= 2.73095E-03 Person-REM/yr Increase in Class 3b PDR [1 in 3 to I in 15 years] = 5.86040E 1.17208E-03

= 4.68832E-03 Person-REM/yr

Calculation No. PRA-ILRT Revision No. 2 I Page 30 of 158 Increase in Class 3b PDR [1 in 10 to 1 in 15 yrs] = 5.86040E 3.90303E-03

= 1.95737E-03 Person-REM/yr The change in the total population dose rate for the EPRI classes is the sum of the above changes applicable to each interval increase.

Change in Total PDR [1 in 3 to 1 in 10 yrs] = -1.3686E-04 + 1.0927E-03 + 2.73095E-03

= 3.68679E-03 Person-REM/yr Change in Total PDR [1 in 3 to I in 15 yrs] = -2.3473E-04 + 1.8758E-03 + 4.68832E-03

= 6.3294E-03 Person-REM/yr Change in Total PDR [1 in 10 to 1 in 15 yrs] = -9.787E-05 + 7.831E-04 + 1.95737E-03

= 2.6426E-03 Person-REM/yr Given the above values, the percentile increases in total population dose rate for each extended interval are estimated as follows:

Percentile Increase in Total PDR [1 in 3 to 1 in 10 yrs] = 0.00368679 / 46.21664

= 0.007977%

Percentile Increase in Total PDR [1 in 3 to 1 in 15 yrs] = 0.0063294 /46.21664

= 0.01370%

Percentile Increase in Total PDR [1 in 10 to 1 in 15 yrs] = 0.0026426 /46.21664

= 0.005718%

6.4 LERF AND CCFP CHANGES In accordance with the methodology presented above, the change in LERF due to an ILRT interval extension is estimated as the difference in the Class 3b frequency values for the original and extended intervals.

ALERF [1 in 3 to 1 in 10 yr] = Class 3b Frequency [1 in 10 yr] - Class 3b Frequency [1 in 3 yr]

= 3.7529E 1.127E-08

= 2.6259E-08 yr 1 ALERF [1 in 3 to 1 in 15 yr] = Class 3b Frequency [1 in 15 yr] - Class 3b Frequency [1 in 3 yr]

= 5.6350E 1.127E-08

= 4.508E-08 yr1 ALERF [1 in 10 to 1 in 15 years] = Class 3b Freq. [1 in 15 yr] - Class 3b Freq. [1 in 10 yr]

= 5.6350E 3.7529E-08

= 1.8821E-08 yr-'

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 31 of 158 1 In accordance with the methodology presented above, the change in CCFP due to an ILRT interval extension is estimated as the difference in the CCFP values for the original and extended intervals.

CCFP = [1 - (Class 1 Frequency + Class 3a Frequency)/Total CDF]

  • 100%

= [1 - (7.561E-06 + 4.509E-08) / 1.567E-05]

  • 100%

+/- 51.4608%

CCFP [1 in 10 years] = [1 - (Class I Freq. + Class 3a Freq.)/Total CDF]

  • 100%

= [1 - (7.4294E-06 + 1.5015E-07) / 1.567E-05]

  • 100%

= 51.6302%

CCFP [1 in 15 years] = [1 - (Class 1 Freq. + Class 3a Freq.)/Total CDF]

  • 100%

= [1 - (7.3353E-06 + 2.2545E-07) / 1.567E-05]

  • 100%

= 51.7502%

CCFP Increase [original interval to 1 in 10 years] = CCFP [1 in 10 years] - CCFP

= 51.6302% - 51.4608%

= 0.1694%

CCFP Increase [original interval to 1 in 15 years] = CCFP [1 in 15 years] - CCFP

= 51.7502% - 51.4608%

= 0.2894%

6.5 SENSITIVITY OF RESULTS TO LINER CORROSION CNP-specific data for liner corrosion occurrences are used in the Calvert Cliffs methodology (Reference [8-13]) to estimate the potential effect of this issue on the results obtained above.

The CNP-specific likelihood of a cylinder/dome liner flaw due to corrosion is determined using Inputs 2.3 and 2.10, as follows:

P-liner = N-liner / (N-plants

  • At)

= 3/(70"5.5)

= 7.79E-03 The CNP-specific likelihood of a basemat liner flaw due to corrosion is determined using Inputs 2.4 and 2.10, as follows:

P-basemat = N-basemat / (N-plants

  • At)

= 0.5/(70 *5.5)

= 1.30E-03 The CNP-specific distribution for the likelihood of a liner flaw due to corrosion is determined using Inputs 2.3, 2.4 and 2.11, and Assumption 3.1, as follows:

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 32 of 158 1 Containment Cylinder and Dome Liner Containment Basemat Liner Year Failure Rate Year Failure Rate 1 2.1E-3 * (3/2) = 3.2E-3 1 5.0E-4 * (0.5/0.5) = 5.0E-4 avg 5-10 5.2E-3 * (3/2) = 7.8E-3 avg 5-10 1.3E-3 * (0.5/0.5) = 1.3E-3 15 1.4E-2 * (3/2) = 2.1E-2 15 3.5E-3 * (0.5/0.5) = 3.5E-3 15-year avg = 6.27E-3 * (3/2) = 9.41E-3 15-year avg = 1.57E-3 * (0.5/0.5) = 1.57E-3 The CNP-specific likelihood of a liner flaw due to corrosion at years 3, 10 and 15 is determined using Inputs 2.3, 2.4 and 2.12, and Assumption 3.1, as follows:

Containment Cylinder and Dome Liner Containment Basemat Liner Year Failure Probability Year Failure Probability 3 7.1E-3 * (3/2) = 1.07E-2 3 1.8E-3 * (0.5/0.5) = 1.8E-3 10 4.06E-2 * (3/2) = 6.09E-2 10 1.02E-2 * (0.5/0.5) = 1.02E-2 15 9.40E-2 * (3/2) = 1.41E-1 15 2.35E-2 * (0.5/0.5) = 2.35E-2 The change in likelihood of a flaw in the liner due to an increase in the ILRT interval is given as follows:

Change in Cylinder / Dome Liner Flaw Likelihood, 3 to 10 yrs = 6.09E-2 - 1.07E-2

= 5.02E-2 Change in Cylinder / Dome Liner Flaw Likelihood, 3 to 15 yrs = 1.41E 1.07E-2

- 1.30E-01 Change in Basemat Liner Flaw Likelihood, 3 to 10 yrs = 1.02E 1.8E-3

- 8.40E-3 Change in Basemat Liner Flaw Likelihood, 3 to 15 yrs = 2.35E 1.8E-3

= 2.17E-2 The CNP-specific likelihood of a breach existing in the containment liner in the containment cylinder or dome given that there is a flaw in the steel liner is determined using Inputs 2.13 and 2.14, and Assumption 3.5, as follows. First, the CNP-specific logarithmic approximation to the containment failure probability curve is determined by solving the following pair equations for the unknowns m and a.

Log(100) = m * (60.5 psia) + a Log(0.1) = m * (20 psia) + a By inspection,

Calculation No. PRA-ILRT I Revision No. 2 Page 33 of 158 m = (2 - -1) / (60.5 - 20) = 0.07407 [log Pct/psia]

a = 2 - 0.07407

  • 60.5 = -2.4812 [log Pct]

At the ILRT procedure pressure, 27.2 psia, the likelihood of a containment breach given a flaw is:

Log(Prob) = 0.07407 * (27.2) + -2.4812 = -0.4665, or Prob = 10^-0-4665 = 0.342 Pct This result states that there is a probability of 0.00342 that a flaw in the containment cylinder or dome steel liner will be a breach. For the containment basemat, per Assumption 3.4, the likelihood that a liner flaw will be a breach is one-tenth of the value for the cylinder/dome, 0.000342.

Using Input 2.15 and Assumption 3.2, the likelihood that a liner flaw in the containment cylinder or dome is not visually detected by an ILRT is estimated as follows:

P-fail = F-uninspectable + IFR * (1 - F-uninspectable)

= 0.415 + 0.1 * (1 - 0.415)

= 0.474 Note that per Assumption 3.7, the value of P-fail for the containment basemat is 1.00.

Finally, the value for the likelihood of non-detected containment leakage due to ILRT interval extension is estimated as follows:

Likelihood of undetected cylinder/dome liner leakage, at 3 years = 1.07E-2

  • 0.00342
  • 0.474

= 1.73E-5 Likelihood of undetected basemat liner leakage, at 3 years = 1.80E-3

  • 0.000342
  • 1.0

= 6.16E-7 Total likelihood of undetected containment liner leakage, at 3 years = 1.73E-5 + 6.16E-7

= 1.79E-5 Likelihood of undetected cylinder/dome liner leakage, at 10 years = 6.09E-2

  • 0.00342
  • 0.474

= 9.87E-5 Likelihood of undetected basemat liner leakage, at 10 years = 1.02E-2

  • 0.000342
  • 1.0

= 3.49E-6 Total likelihood of undetected containment liner leakage, at 10 years = 9.87E-5 + 3.49E-6

= 1.02E-4 Likelihood of undetected cylinder/dome liner leakage, at 15 years = 1.41E-1

  • 0.00342
  • 0.474

= 2.29E-4 Likelihood of undetected basemat liner leakage, at 15 years = 2.35E-2

  • 0.000342
  • 1.0

= 8.04E-6

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 34 of 158 I Total likelihood of undetected containment liner leakage, at 15 years = 2.29E-4 + 8.04E-6

= 2.37E-4 The final step in this sensitivity analysis is to factor the changes above into the risk impacts. The values above for total likelihood of undetected containment liner leakage at 3, 10 and 15 years directly add to the base value of PROBClass3b and provide the basis for the determining the expected risk impacts of corrosion-related failures. The revised values of PROBClass3b are shown below:

PROBClass3b with corrosion, 3 yr = PROBClass3b + Total likelihood of undetected lkg, 3 yr

= 0.0023 + 1.79E-5

= 0.0023179 PROBClass3b with corrosion, 10 yr = PROB_Class3b + Total likelihood of undetected lkg, 10 yr

= 0.0023 + 1.02E-4

= 0.002402 PROBClass3b with corrosion, 15 yr PROB_Class3b + Total likelihood of undetected lkg, 15 yr

= 0.0023 + 2.37E-4

= 0.002537 Then the corresponding Class 3b frequencies and updated Class 1 frequencies must be determined:

Class 3b Frequency w corrosion, 3 yr = Type-A CDF

  • PROBClass3b with corrosion, 3 yr

= 4.901E-6 yr1

  • 0.0023179

= 1.1360E-8yr' Class 1 Freq. w corr, 3 yr = CDF-Intact - Class 3a Freq., 3 yr - Class 3b Freq. w corr, 3 yr

= 7.6171E-6-4.509E 1.1360E-8

= 7.56065E-6 yr 1 Class 3b Frequency w corr, 10 yr = Type-A CDF

  • PROB Class3b with corr, 10 yr
  • 3.33

= 4.901E-6 yr-1

  • 0.002402
  • 3.33

= 3.92014E-8 yr"1 Class 1 Freq. w corr, 10 yr = CDF-Intact - Class 3a Freq., 10 yr - Class 3b Freq. w corr, 10 yr

= 7.6171E 1.5015E 3.92014E-8

= 7.42775E-6 yr-'

Class 3b Frequency w corrosion, 15 yr = Type-A CDF

  • PROBClass3b with corr, 15 yr
  • 5.0

= 4.901E-6 yr-

  • 0.002537
  • 5.0

= 6.21692E-8 yr-1 Class I Freq. w corr, 15 yr = CDF-Intact - Class 3a Freq., 15 yr - Class 3b Freq. w corr, 15 yr

= 7.6171E 2.2545E 6.21692E-8

= 7.32948E-6 yr'

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 35 of 158 1 Next, the corresponding Class 3b and Class 1 population dose rates must be determined:

Class 3b Pop. Dose Rate w corr, 3 yr = Class 3b Dose

  • Class 3b Frequency w corrosion, 3 yr

= 1.04E+5

  • 1.1360E-8

= 1.18144E-3 Person-REM/yr Class 1 Pop. Dose Rate w corr, 3 yr = Class 1 Dose

  • Class 1 Frequency w corrosion, 3 yr

= 1.04E+3

  • 7.56065E-6

= 7.86308E-3 Person-REM/yr Class 3b Pop. Dose Rate w corr, 10 yr= Class 3b Dose

  • Class 3b Frequency w corrosion, 10 yr

= 1.04E+5

  • 3.92014E-8

= 4.07695E-3 Person-REM/yr Class 1 Pop. Dose Rate w corr, 10 yr = Class 1 Dose

  • Class 1 Frequency w corrosion, 10 yr

= 1.04E+3

  • 7.42775E-6

= 7.72486E-3 Person-REM/yr Class 3b Pop. Dose Rate w corr, 15 yr= Class 3b Dose

  • Class 3b Frequency w corrosion, 15 yr

= 1.04E+5

  • 6.21692E-8

= 6.46560E-3 Person-REM/yr Class 1 Pop. Dose Rate w corr, 15 yr = Class 1 Dose

  • Class 1 Frequency w corrosion, 15 yr

= 1.04E+3

  • 7.32948E-6

= 7.62266E-3 Person-REM/yr Given the above estimates, the total frequency and population dose rate for the EPRI classes with consideration of corrosion is the sum of the population dose rates for the classes unchanged by the ILRT interval increase and the above changes applicable to each interval increase.

Total Freq., 3 yr w corr = 6.458E-8+5.736E-6+2.256E-6+4.509E-8+l.1360E-8+7.56065E-6

= 1.567368E-05 yr-Total Freq., 10 yr w corr = 6.458E-8+5.736E-6+2.256E-6+1.5015E-7+3.92014E-8+7.42775E-6

= 1.567368E-05 yr-'

Total Freq., 15 yr w corr = 6.458E-8+5.736E-6+2.256E-6+2.2545E-7+6.21692E-8+7.32948E-6

= 1.567368E-05 yr1 Tot PDR, 3 yr w corr = 2.55737E-1+2.27146E+l+2.32368E+l+4.6894E-4+l.18144E-3

+7.86308E-3

= 46.21665 Person-REM/yr Tot PDR, 10 yr w corr = 2.55737E-1+2.27146E+1+2.32368E+1 +1.5616E-3+4.07695E-3

+7.72486E-3

= 46.22050 Person-REM/yr Tot PDR, 15 yr w corr = 2.5573E-l+2.27146E+1+2.32368E+l +2.3447E-3+6.46560E-3

+7.62266E-3

= 46.22357 Person-REM/yr

Calculation No. PRA-ILRT I Revision No. 2 T Page 36 of 158 The change in the total population dose rate for EPRI classes 1 and 3b due to corrosion is the difference between the value above and its counterpart determined without corrosion.

AClass 1 Pop. Dose Rate due to corr, 3 yr = Cl. 1 Pop. Dose w corr, 3 yr - Cl. 1 Pop. Dose, 3 yr

= 7.86308E 7.86344E-03

= -3.60E-7 Person-REM/yr ACI. 1 Pop. Dose Rate due to corr, 10 yr = Cl. 1 Pop. Dose w corr, 10 yr - Cl. 1 Pop. Dose, 10 yr

= 7.72486E 7.72658E-03

= -1.72E-6 Person-REM/yr ACI. 1 Pop. Dose Rate due to corr, 15 yr = Cl. 1 Pop. Dose w corr, 15 yr - Cl. I Pop. Dose, 15 yr

= 7.62266E 7.62871E-03

= -6.05E-6 Person-REM/yr ACI 3b Pop. Dose Rate due to corr, 3 yr = Cl 3b Pop. Dose w corr, 3 yr - Cl 3b Pop. Dose, 3 yr

= 1.18144E 1.17208E-03

= 9.36E-6 Person-REM/yr ACI 3b Pop. Dose Rate due to corr, 10 yr= Cl 3b Pop. Dose w corr, 10 yr - Cl 3b Pop. Dose, 10 yr

= 4.07695E 3.90303E-03

= 1.7392E-4 Person-REM/yr ACI 3b Pop. Dose Rate due to corr, 15 yr= Cl 3b Pop. Dose w corr, 15 yr - Cl 3b Pop. Dose, 15 yr

= 6.46560E 5.86040E-03

= 6.052E-4 Person-REM/yr The change in the total population dose rate for the EPRI classes is the sum of the above changes applicable to each interval increase.

A Total Pop. Dose Rate due to corrosion, 3 yr = -3.60E-07 + 9.36E-06

= 9.OOE-06 Person-REM/yr A Total Pop. Dose Rate due to corrosion, 10 yr-= -1.72E-6 + 1.7392E-04

= 1.722E-04Person-REM/yr A Total Pop. Dose Rate due to corrosion, 15 yr= -6.05E-06 + 6.052E-04

= 5.9915E-04 Person-REM/yr The above values may be used with the previously determined changes in total population dose rates for the no-corrosion cases to determine the effects of liner corrosion on the total population doses due to ILRT interval extension using the following equations:

A Tot. Pop. Dose Rate w corr, 3 - 10 yr = Change in Total Pop. Dose Rate [ 1 in 3 to I in 10 yrs] +

A Total Pop. Dose Rate due to corr, 10 yr -

A Total Pop. Dose Rate due to corr, 3 yr

= 3.68679E-03 + 1.722E-4 -9.OOE-06

= 3.84999E-3 Person-REM/yr

I Calculation No. PRA-ILRT I Revision No. 2 I Page 37 of 158 I A Tot. Pop. Dose Rate w corr, 3 - 15 yr= Change in Total Pop. Dose Rate [1 in 3 to 1 in 15 yrs] +

A Total Pop. Dose Rate due to corr, 15 yr -

A Total Pop. Dose Rate due to corr, 3 yr)

= 6.3294E-03 + 5.9915E 9.00E-06

= 6.91955E-03 Person-REM/yr Given the above values, the percentile increases in total population dose rate for each extended interval are estimated as follows:

Percentile Increase in Total PDR, w corr [1/3 to 1/10 yrs] = 0.00384999 / 46.21664

= 0.0083303%

Percentile Increase in Total PDR, w corr [1/3 to 1/15 yrs] = 0.00691955 /46.21664

= 0.014972%

Following the "methodology for the no-corrosion cases, the change in LERF due to an ILRT interval extension considering the effects of liner corrosion is estimated as the difference in the Class 3b frequency values for the original and extended intervals.

ALERF with corr, 3 to 10 yrs = Class 3b Freq w corr, 10 yrs - Class 3b Freq w corr, 3 yrs

= 3.92014E 1.1360E-08

= 2.7841E-08 yr' ALERF with corr, 3 to 15 yrs = Class 3b Freq w corr, 15 yrs - Class 3b Freq w corr, 3 yrs

- 6.21692E 1.1360E-08

- 5.0809E-08 yr-'

ALERF with corr, 10 to 15 yrs = Class 3b Freq w corr, 15 yrs - Class 3b Freq w corr, 10 yrs

= 6.21692E 3.92014E-08

- 2.29678E-08 yrl Following the methodology for the no-corrosion cases, the CCFP for each corrosion case due to an ILRT interval extension is estimated using the following equation.

CCFP = [1 - (Class I Frequency + Class 3a Frequency)/Total CDF]

  • 100%

CCFP with corr, 3 yr = [1 - (Class 1 Freq w corr, 3yr + Class 3a Freq, 3yr)/Total CDF]

  • 100%

= [1 - (7.56065E-06 + 4.509E-08) / 1.567E-05]

  • 100%

= 51.4631%

CCFP with corr, 10 yr= [1 - (Class 1 Freq w corr, 1Oyr + Class 3a Freq, 1Oyr)/Total CDF]

  • 100%

= [1 - (7.42775E-06 + 1.5015E-07) / 1.567E-05]

  • 100%

= 51.6407%

CCFP with corr, 15 yr-= [1 - (Class 1 Freq w corr, 15yr + Class 3a Freq, 15yr)/Total CDF]

  • 100%

= [1 - (7.32948E-06 + 2.2545E-07) / 1.567E-05]

  • 100%

= 51.7873%

Calculation No. PRA-ILRT I Revision No. 2 1 Page 38 of 158 The difference in the CCFP values for the original and extended intervals showing the effects of corrosion are determined as before:

CCFP Increase with corr, [3 to 10 yrs] = CCFP w corr, 10 yrs - CCFP w corr, 3 yrs

= 51.6407%- 51.4631%

= 0.1776%

CCFP Increase with corr, [3 to 15 yrs] = CCFP w corr, 15 yrs - CCFP w corr, 3 yrs

= 51.7873%- 51.4631%

= 0.3242%

6.6 EXTERNAL EVENTS To estimate the risk contribution from external events, the total CDF values for each unit are first calculated:

Total-EE CDF [U1] = Seismic CDF + Fire CDF [Ul]

= 3.17E-6 + 5.681E-5

= 5.998E-5 yr-'

Total-EE CDF [U2] = Seismic CDF + Fire CDF [U2]

= 3.17E-6 + 5.24E-5

= 5.557E-5 yr-'

Then, the Class 3b frequency values must be determined:

Class 3b Frequency [3 in 10 year] (U1, EE) = Total-EE CDF [UI]* PROBClass3b

= 5.998E-5

  • 0.0023

= 1.37954E-7 yr-1 Class 3b Frequency [1 in 10 year] (U1, EE) = Class 3b Frequency [3 in 10 year] (EE, Ul)

  • 3.33

= 1.37954E-7* 3.33

= 4.59387E-7 yr1 Class 3b Frequency [1 in 15 year] (UI, EE) = Class 3b Frequency [3 in 10 year] (EE, Ul)

  • 5.0

- 1.37954E-7* 5.0

= 6.89770E-7 yr-1 Class 3b Frequency [3 in 10 year] (U2, EE) = Total-EE CDF [U2]* PROBClass3b

= 5.557E-5

  • 0.0023

= 1.27811E-7 yr"1 Class 3b Frequency [1 in 10 year] (U2, EE) = Class 3b Frequency [3 in 10 year] (EE, U2)

  • 3.33

= 1.27811E-7 *3.33

= 4.2561E-7 yr-'

Class 3b Frequency [1 in 15 year] (U2, EE) = Class 3b Frequency [3 in 10 year] (EE, U2)

  • 5.0

= 1.27811E-7 *5.0

= 6.39055E-7 yr'

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 39 of 158 1 Given these estimates, the LERF increase from external events due to ILRT interval extension is estimated as:

ALERF-EE [3/10 - 1/10 yr], UlI=Cl 3b Freq [1 / 10 yr] (EE, U1) - Cl 3b Freq [3 / 10 yr] (EE, U1)

= 4.59387E 1.37954E-7

= 3.214E-7 yr' ALERF-EE [3/10 - 1/15 yr], Ul = C1 3b Freq [1 / 15 yr] (EE, U1) - Cl 3b Freq [3 / 10 yr] (EE, U1)

= 6.89770E 1.37954E-7

= 5.5182E-7 yr-1 ALERF-EE [3/10 - 1/10 yr], U2 = Cl 3b Freq [1 / 10 yr] (EE, U2) - Cl 3b Freq [3 / 10 yr] (EE, U2)

= 4.2561E 1.27811E-7

= 2.97799E-7 yr1 ALERF-EE [3/10 - 1/15 yr], U2 = Cl 3b Freq [1 / 15 yr] (EE, U2) - Cl 3b Freq [3 / 10 yr] (EE, U2)

=6.39055E 1.27811E-7 5.11244E-7 yr1 6.7

SUMMARY

OF CALCULATIONS The results of the preceding calculations are presented in Tables 8 and 9. A brief discussion of these calculated results follows.

The base annual population dose (person-rem/yr) for CNP is determined to be 46.21664 person-rem/year. The annual population dose for a one-in-10-years ILRT testing frequency is 46.220328 person-rem/year and for a one-in-15-years ILRT testing frequency is 46.222971 person-rem/yr.

Both of these ILRT intervals result in an extremely small increase in the annual population dose.

The Conditional Containment Failure Probability for CNP is determined to be 0.514608. The Conditional Containment Failure Probability for a one-in-10-years ILRT testing frequency is 0.516302 and for a one-in-I5-years ILRT testing frequency is 0.517502. Both of these ILRT intervals result in an extremely small increase in the Conditional Containment Failure Probability.

The Large Early Release Frequency for undetected containment leakage for CNP for the internal events PRA model is determined to be 1.127E-8 per year. The Large Early Release Frequency for undetected containment leakage for a one-in-10-years ILRT testing frequency is 3.7529E-8 per-year and for a one-in-15-years ILRT testing frequency is 5.6350E-8 per-year. Both of these ILRT intervals result in an extremely small increase in the Large Early Release Frequency for undetected containment leakage.

The effect of corrosion on an undetected containment liner flaw has been considered. Assuming the corrosion causes the flaw to grow at a rate that size doubles its size every five years results in very small increases in the annual population dose, CCFP and Large Early Release Frequency for undetected containment leakage.

The Large Early Release Frequency for undetected containment leakage for CNP for external events is conservatively estimated as 1.37954E-7 per year for Unit 1 and 1.27811E-7 per year for Unit 2. The Large Early Release Frequency for undetected containment leakage for Unit 1 for a

Calculation No. PRA-ILRT I Revision No. 2 1 Page 40 of 158 one-in-10-years ILRT testing frequency is estimated as 4.59387E-7 per-year and for a one-in years ILRT testing frequency is estimated as 6.89770E-7 per-year. The Large Early Release Frequency for undetected containment leakage for Unit 2 for a one-in- 10-years ILRT testing frequency is estimated as 4.2561E-7 per-year and for a one-in-15-years ILRT testing frequency is estimated as 6.39055E-7 per-year. Both of these ILRT intervals result in small increases in the Large Early Release Frequency for undetected containment leakage at both units for external events.

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 41 of 158 Table 8 - CalculatedResults for InternalEvents PRA EPRI Base Case (3 per 10 years) I per 10 years I per 15 years Class Without Corrosion With Corrosion Without Corrosion With Corrosion3 Without Corrosion With Corrosion Frequency Dose Frequency Dose Delta Frequency Dose Frequency Dose Delta Frequency Dose Frequency Dose Delta (per year) (Person- (per year) (Person- Dose (per year) (Person- (per year) (Person- Dose (per year) (Person- (per year) (Person- Dose REM REM (Person- REM REM (Person- REM REM (Person-per per REM per per REM per per REM year) year) per yr) year) year) per yr) year) year) per yr)

I 7.561E-6 7.863E-3 7.561E-6 7.863E-3 -3.60E-7 7.429E-6 7.727E-3 7.428E-6 7.725E-3 -1.72E-6 7.335E-6 7.629E-3 7.329E-6 7.623E-3 -6.05E-6 2 6.458E-8 2.557E-1 6.458E-8 2.557E-1 0.OOE+0 6.458E-8 2.557E-1 6.458E-8 2.557E-1 0.OOE+0 6.458E-8 2.557E-1 6.458E-8 2.557E-1 0.OOE+0 3a 4.509E-8 4.689E-4 4.509E-8 4.689E-4 0.OOE+0 1.502E-7 1.562E-3 1.502E-7 1.562E-3 0.OOE+0 2.254E-7 2.345E-3 2.254E-7 2.345E-3 0.OOE+O 3b 1.127E-8 1.172E-3 1.136E-8 1.181E-3 9.36E-6 3.753E-8 3.903E-3 3.920E-8 4.077E-3 1.74E-4 5.635E-8 5.860E-3 6.217E-8 6.466E-3 6.05E-4 7 5.736E-6 2.271E+1 5.736E-6 2.271E+1 0.OOE+0 5.736E-6 2.271E+1 5.736E-6 2.271E+l 0.OOE+0 5.736E-6 2.271E+1 5.736E-6 2.2718E+l 0.OOE+0 8 2.256E-6 2.324E+1 2.256E-6 2.324E+1 0.OOE+0 2.256E-6 2.324E+1 2.256E-6 2.324E+l 0.OOE+0 2.256E-6 2.324E+1 2.256E-6 2.324E+I 0.OOE+0 Total 1.567E-5 46.217 1.567E-5 46.217 9.00E-6 1.567E-5 46.220 1.567E-5 46.221 1.72E-4 1.567E-5 46.223 1.567E-5 46.224 5.99E-4 A 3.687E-03 3.850E-03 6.329E-03 6.920E-03 Dose NA NA (0.0080%) (0.0083%) (0.014%) (0.015%)

CCFP 51.461% 51.463% 51.630% 51.641% 51.750% 51.787%

A C NA NA 0.169% 0.178% 0.289% 0.324%

CCFP Class 3b 1.127E-8 1.136E-8 3.753E-8 3.920E-8 5.635E-8 6.217E-8 LERF Delta LERF from Base Case (3 per 10 years) 2.626E-08 2.784E-08 4.508E-08 5.081E-08 Delta LERF from 1 per 10 years NA 1.882E-08 2.297E-08 Table 9 - CalculatedResults for External Events PRA Class 3b Class 3b Frequency (/yr) LERF Increase Initiating Event CDF (/yr) Probability 3 per 10 yr ILRT I per 10 yr ILRT 1 per 15 yr ILRT (/yr)

External Events -U1 5.998E-5 0.0023 1.380E-7 4.594E-7 6.898E-7 5.518E-7 External Events -U2 5.557E-5 0.0023 1.278E-7 4.256E-7 6.391E-7 5.112E-7

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 42 of 158 1 7.0 RESULTS AND CONCLUSIONS 7.1 RESULTS Table 10 provides a summary of the important risk metrics for the ILRT interval extension for CNP. The risk metric changes are presented for the base case and the sensitivity case performed.

Only EPRI Accident Classes 3a and 3b are presented in the summary table. This is due to the fact that these are the accident classes that significantly impact the changes in the risk metrics of interest, such as LERF and CCFP. However, the population dose figures are for all EPRI accident classes.

The table has three major columns. The first provides the EPRI Accident Class. The second and third provide the results for the base case (ILRT frequency of three per 10 years) and the ILRT frequency of one per 15 years. Colunms 2 and 3 are further subdivided to provide the results for the base case and the sensitivity case. The base case is performed without the potential for age-related corrosion of noninspectable areas of the containment, while the sensitivity case accounts for such a potential. These two cases are identified in the table as "Without Corrosion" and "With Corrosion," respectively. Each table contains rows that provide the frequency results for EPRI Accident Classes 3a, 3b, and population dose rates. Additional rows provide the change in dose rates, total and change in CCFP, and change in LERF. On this table, all delta or changes in values are calculated from the base case of ILRT frequency of three per 10 years.

From inspection of the results for CNP, the maximum risk change is from the sensitivity case that considers the potential for age-related corrosion of non-inspectable areas of the containment. In this case, the change in CCFP is 0.32% and the population dose increase is 6.92E-3 person-rem/yr or 0.0 15% of the base. The maximum change in LERF for the internal events PRA model estimated using the methodology of Reference [8-9] includes potential effects of liner corrosion and is determined to 5.08E-8 per year. The change in LERF for external events is estimated more conservatively than for the internal events and on a plant-specific basis; for Unit I the value is 5.52E-7, while for Unit 2 the value is 5.11E-7. The sum of either of these two changes and the internal events LERF change represents the change in LERF over all events for the unit. For Unit I the total change in LERF due to ILRT interval extension to 15 years is 6.03E-7 per year. For Unit 2 the total change in LERF due to ILRT interval extension to 15 years is 5.62E-7 per year.

I I Calculation No. PRA-ILRT I Revision No. 2 1 Paae 43 of 158 1 Table 10 - Suinmaty of CNP ILRTInterval Extension Risk Metrics Base Case ILRT Frequency Proposed ILRT Frequency Risk Metric (3 per 10 years) (1 per 15 years)

Without Corrosion With Corrosion Without Corrosion With Corrosion Class 3a Frequency 4.509E-8 4.509E-8 2.254E-7 2.254E-7 (per year)

Class 3b 1.127E-8 5.635E-8 Frequency 1.380E-7(U1, EE) 1.136E-8 6.898E-7 (Ul, EE) 6.217E-8 (per year) 1.278E-7 (U2, EE) 6.391E-7 (U2, EE)

Population Dose Rate 46.217 46.217 46.223 46.224 (person-rem/yr)

Change in Dose Rate, NA 6.329E-03 6.920E-03 person-rem/yr (0.014%) (0.015%)

(% of Base Case)

CCFP 51.461% 51.463% 51.750% 51.787%

Delta CCFP NA 0.289% 0.324%

Delta LERF 4.508E-08 (per year) NA 5.518E-7 (Ul, EE) 5.081E-8 5.112E-7 (U2, EE)

7.2 CONCLUSION

S 7.2.1 COOK NUCLEAR PLANT RISK IMPACT Based on the results from Section 6, the following conclusions regarding the assessment of the plant risk are associated with extending the Type A ILRT test frequency to 15 years. These results apply to both Unit 1 and Unit 2.

  • RG 1.174 provides guidance for determining the risk impact of plant-specific changes to the licensing basis. RG 1.174 defines very small changes in risk as resulting in increases of CDF below 1.OE-06/yr and increases in LERF below 1.OE-07/yr. Since the ILRT extension has negligible impact on CDF for CNP, the relevant criterion is LERF. The increase in internal events LERF, which includes corrosion, resulting from a change in the Type A ILRT test frequency from three-per-ten years to one-per-fifteen years is estimated as 5.08E-08/yr using the EPRI guidance. As such, the estimated change in internal events LERF is determined to be "very small" using the acceptance guidelines of RG 1.174. The increase in LERF including both internal and external events is estimated as 6.03E-07/yr for Unit 1 and 5.62E-07/yr for Unit 2, which is considered a "small" change in LERF using the acceptance guidelines of RG 1.174.

Calculation No. PRA-ILRT I Revision No. 2 1Page 44 of 158

" RG 1.174 also states that when the calculated increase in LERF is in the range of 1.OE-06 per reactor year to 1.OE-07 per reactor year, applications will be considered only if it can be reasonably shown that the total LERF is less than 1.0E-05 per reactor year. Based on Inputs 2.1, 2.16 and 2.17, the total base LERF for Unit 1 internal and external events is approximately 4.006E-6 + 9.82E-7 + 4.01E-6, or 8.998E-06/yr (this value bounds Unit 2).

Given that the largest increase in LERF for the 15-year ILRT interval is 6.03E-07/yr for internal and external events, the total LERF for the 15-year interval can be estimated as 8.998E-06 + 6.03E-07, or 9.60E-06/yr. This result is below the RG 1.174 acceptance criteria for total LERF of 1.OE-05.

  • The change in dose risk for changing the Type A test frequency from three-per-ten years to one-per-i15 years, measured as an increase to the total integrated dose risk for all accident sequences, is 6.92E-03 person-rem/yr or 0.015% of the total population dose using the EPRI guidance with the base case corrosion case. EPRI TR-1018243 (Reference [8-9])

states that a very small increase in population dose is defined as an increase < 1.0 person-rem per year or < 1 % of the total population dose, whichever is less restrictive for the risk impact assessment of the extended ILRT intervals. The CNP result for increase in population dose meets this criterion for very small increase. Moreover, the risk impact when compared to other severe accident risks is negligible.

" The increase in the conditional containment failure frequency from the three-per-ten year frequency to one-per-fifteen year frequency is 0.32% using the base case corrosion case.

EPRI TR-1018243 (Reference [8-9]) states that a very small increase in CCFP is defined as an increase < 1.5 percentage points. The CNP result for increase in CCFP meets this criterion for very small increase.

The preceding considerations show that increasing the ILRT interval to 15 years for CNP represents a very small risk to the public and represents a small change to the CNP risk profile.

7.2.2 COMPARISON TO PREVIOUS ASSESSMENTS In NUREG-1493 (Reference [8-22], p. 10-2), the following conclusions regarding ILRT interval extension were presented:

1. Reducing the frequency of Type A tests (ILRTs) from three per 10 years to one per 20 years was found to lead to an imperceptible increase in risk. The estimated increase in risk is very small because ILRTs identify only a few potential containment leakage paths that cannot be identified by Type B and C testing, and the leaks that have been found by Type A tests have been only marginally above existing requirements.
2. Given the insensitivity of risk to containment leakage rate and the small fraction of leakage paths detected solely by Type A testing, increasing the interval between integrated leakage rate tests is possible with minimal impact on public risk. The impact of relaxing the ILRT frequency beyond one in 20 years has not been evaluated. Beyond

Calculation No. PRA-ILRT I Revision No. 2 1Page 45 of 158 testing the performance of containment penetrations, ILRTs also test the integrity of the containment structure.

The results for Cook Nuclear Plant confirm these general findings on a plant specific basis considering the severe accidents evaluated for CNP, the CNP containment failure modes, and the local population surrounding CNP within 50 miles.

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 46 of 158 1

8.0 REFERENCES

8-1 Federal Register, Volume 60, No. 186, page 49504, September 26, 1995.

8-2 NEI 94-01, "Industry Guideline for Implementing Performance-Based Option of 10 CFR Part 50, Appendix J," July 26, 1995, Revision 0.

8-3 AEP Letter AEP:NRC:2612, "Donald C. Cook Nuclear Plant Units 1 and 2 Docket Nos.

50-315 and 50-316 License Amendment Request for One-time Extension of Containment Integrated Leakage Rate Test Interval," dated April 11, 2002.

8-4 AEP Letter AEP:NRC:2612-01, "Donald C. Cook Nuclear Plant Units 1 and 2 Response to Nuclear Regulatory Commission Request for Additional Information Regarding License Amendment Request for One-Time Extension of Containment Integrated Leakage Rate Test Interval (TAC Nos. MB4837 and MB4838)," dated November 11, 2002.

8-5 NEI 94-01, "Industry Guideline for Implementing Performance-Based Option of 10 CFR Part 50, Appendix J," July 2012, Revision 3-A.

8-6 PRA-NUPRA-002, Revision 1, 2009 WinNUPRA PRA Model of Record.

8-7 PRA-L2-MODEL, Revision 0, PRA Level 2 Model.

8-8 U.S. Nuclear Regulatory Commission, Regulatory Guide 1.174, "An Approach tor Using Probabilistic Risk Assessment In Risk-Informed Decisions On Plant-Specific Changes To the Licensing Basis," Revision 2, May 2011.

8-9 EPRI Report 1018243, "Risk Impact Assessment of Extended Integrated Leak Rate Testing Intervals, Revision 2-A of 1009325" dated October 2008.

8-10 NTS 2003 009 REP, Revision 0," Cook Nuclear Plant Severe Accident Mitigation Alternatives Analysis," October 20, 2003.

8-11 "Donald C. Cook Nuclear Plant, Units 1 And 2 - Issuance Of Amendments Regarding Transition To A Risk-Informed, Performance-Based Fire Protection Program In Accordance with 10 CFR 50.48(c) (TAC NOS. ME6629 AND ME6630), U.S. Nuclear Regulatory Commission Letter to Indiana Michigan Power Co., Dated October 24, 2013.

8-12 www.censusviewer.com/county/.

8-13 "Calvert Cliffs Nuclear Power Plant Unit No. 1; Docket No. 50-317, Response to Request for Additional Information Concerning the License Amendment Request for a One-time Integrated Leakage Rate Test Extension," Constellation Nuclear letter to USNRC, March 27, 2002.

ICalculationNo. PRA-ILRT I RevisionNo. 2 Page 47 of 158 I 8-14 "Donald C. Cook Nuclear Plants Units. 1 & 2 Individual Plant Examination, Revision 1,"

Transmitted to the NRC by letter from E. E. Fitzpatrick, Indiana Michigan Power Company, to NRC Document Control Desk, October 26, 1995.

8-15 1-EHP-4030-134-202, "Integrated Leak Rate Test," Rev. 3.

8-16 2-EHP-4030-234-202, "Integrated Leak Rate Test," Rev. 9.

8-17 Design Information Transmittal (DIT) No. DIT-S-01135-00, "Inspectable Surface Area of the Containment Liner during Conduct of the Visual Examination required by ASME Section XI Subsection IWE and 10 CFR 50 Appendix J," September 27, 2002.

8-18 AEP:NRC: 1082K, "Donald C. Cook Nuclear Plants Units 1 & 2 Individual Plant Examination of External Events Response to NRC Audit Concerns And Request For Additional Information," I&M letter from W.G. Smith (for E. E. Fitzpatrick), Indiana Michigan Power Company, to NRC Document Control Desk, February 15, 1995.

8-19 PRA-FIRE-TM-00 1, Revision 0, "Resolution of Focused-Scope Peer Review Comment on Test & Maintenance in the Fire Probabilistic Risk Assessment Model."

8-20 EVAL-PA-02-04, "Total Core Damage Frequency and Large Early Release Frequency Estimates," Revision 0, 11/6/02.

8-21 DIT No. DIT-B-03469-00, "Total CDF and LERF Values for CNP Units 1 and 2," August 29, 2011.

8-22 NUREG-1493, "Performance-Based Containment Leak- Test Program," US NRC, July 1995.

8-23 PRA-IE-TM-001, Revision 0, "Resolution of Focused-Scope Peer Review Comment on Test & Maintenance in the Internal Events Probabilistic Risk Assessment Model."

8-24 PRA-L2-MODEL, Revision 1, PRA Level 2 Model.

8-25 PRA-L2-MODEL, Revision 2, PRA Level 2 Model.

I Calculation No. PRA-ILRT I Revision No. 2 I Page 48 of 158 I ATTACHMENT A FILE 201403034-CET-ENDPT.PRT WinNUCAP 1.2 Beta March 03, 2014 Licensed to Scientech C:\Users\jhawley\l cli\cook\rnodels\TM-L2-r2\20140303-CET-endpt..PRT Sequence Print Tables PLANT DAMAGE STATE (CET) 1, Frequency = 4.7807E-007 EndPoint Frequency Probability STC EP# 1 4.7568E-007 9.9500E-001 1 EP#113 2.3904E-009 5.0000E-003 1 PLANT DAMAGE STATE (CET) 2, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 2 0.OOOOE+000 5.9525E-003 9 EP# 3 0.OOOOE+000 1.3889E-002 10 EP# 5 0.0000E+000 3.7699E-001 6 EP# 8 0.0000E+000 9.3057E-003 9 EP# 9 0.OOOOE+000 2.1713E-002 10 EP# 14 0.OOOOE+000 6.3124E-003 9 EP# 15 0.OOOOE+000 1.4729E-002 10 EP# 17 0.OOOOE+000 5.0499E-001 6 EP# 20 0.OOOOE+000 1.1965E-002 9 EP# 21 0.OOOOE+000 2.7919E-002 10 EP# 23 0.OOOOE+000 1.2336E-003 6 EP# 114 0.OOOOE+000 2.9912E-005 17 EP#115 0.OOOOE+000 6.9794E-005 18 EP#1 16 0.OOOOE+000 i.8944E-003 14 EP#119 0.OOOOE+000 4.6763E-005 17 EP#120 0.OOOOE+000 1.0911E-004 18 EP#124 0.OOOOE+000 3.1720E-005 17 EP#125 0.OOOOE+000 7.4014E-005 18 EP#126 0.OOOOE+000 2.5376E-003 14 EP#129 0.OOOOE+000 6.0128E-005 17 EP#130 0.OOOOE+000 1.4030E-004 18 EP#131 0.OOOOE+000 6.1987E-006 14 PLANT DAMAGE STATE (CET) 3, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 2 0.OOOOE+000 5.9525E-003 9 EP# 3 0.OOOOE+000 1.3889E-002 10 EP# 6 0.OOOOE+000 2.6389E-001 7 EP# 7 0.OOOOE+000 1.1310E-001 8 EP# 8 0.OOOOE+000 9.3057E-003 9 EP# 9 0.OOOOE+000 2.1713E-002 10 EP# 14 0.OOOOE+000 6.3124E-003 9 EP# 15 0.OOOOE+000 1.4729E-002 10 EP# 18 0.OOOOE+000 3.5349E-001 7 EP# 19 0.OOOOE+000 1.5150E-001 8 EP# 20 0.OOOOE+000 1.1965E-002 9 EP# 21 0.OOOOE+000 2.7919E-002 10 EP# 24 0.OOOOE+000 8.6349E-004 7 EP# 25 0.OOOOE+000 3.7007E-004 8 EP#114 0.OOOOE+000 2.9912E-005 17

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 49 of 158 I EP#115 0.OOOOE+000 6.9794E-005 18 EP#1 17 0.OOOOE+000 1.3261E-003 15 EP#118 0.OOOOE+000 5.6833E-004 16 EP#119 0.OOOOE+000 4.6763E-005 17 EP#120 0.OOOOE+000 1.0911E-004 18 EP#124 0.0000E+000 3.1720E-005 17 EP#125 0.0000E+000 7.4014E-005 18 EP#127 0.OOOOE+000 1.7763E-003 15 EP#128 0.0000E+000 7.6129E-004 16 EP#129 0.OOOOE+000 6.0128E-005 17 EP#130 0.0000E+000 1.4030E-004 18 EP#132 0.0000E+000 4.3391E-006 15 EP#133 O.0000E+000 1.8596E-006 16 PLANT DAMAGE STATE (CET) 4, Fr equency = 0.OOOOE+000 En dPoint Frequency Probability STC EP## 2 0.OOOOE+000 5.9525E-003 9 EP## 3 0.OOOOE+000 1.3889E-002 10 EP## 6 0.OOOOE+000 2.6389E-001 7 EP## 7 0.OOOOE+000 1.1310E-001 8 EPI# 8 0.OOOOE+000 9.3057E-003 9 EP## 9 0.OOOOE+000 2.1713E-002 10 EP## 14 0.OOOOE+000 6.3124E-003 9 EP## 15 0.OOOOE+000 1.4729E-002 10 EP##18 0.OOOOE+000 3.5349E-001 7 EPI #19 0.OOOOE+000 1.5150E-001 8 EP##20 0.OOOOE+000 1.1965E-002 9 EP##21 0.OOOOE+000 2.7919E-002 10 EP¢# 24 0.OOOOE+000 8.6349E-004 7 EP## 25 0.OOOOE+000 3.7007E-004 8 EP##114 0.OOOOE+000 2.9912E-005 17 EP##115 0.OOOOE+000 6.9794E-005 18 EP##117 0.OOOOE+000 1.3261E-003 15 EP##118 0.OOOOE+000 5.6833E-004 16 EP##119 0.OOOOE+000 4.6763E-005 17 EP##120 0.0000E+000 1.0911E-004 18 EP##124 0.OOOOE+000 3.1720E-005 17 EP##125 0.OOOOE+000 7.4014E-005 18 EP##127 0.OOOOE+000 1.7763E-003 15 EPI #128 0.OOOOE+000 7.6129E-004 16 EP##129 0.OOOOE+000 6.0128E-005 17 EP##130 0.OOOOE+000 1.4030E-004 18 EP##132 0.OOOOE+000 4.3391E-006 15 EP##133 0.OOOOE+000 1.8596E-006 16 PLANT DAMAGE STATE (CET) 5,] Frequency = 5.1636E-008 En dPoint Frequency Probability STC EP## 2 3.0705E-010 5.9465E-003 9 EP## 3 7.1646E-010 1.3875E-002 10 EP## 6 1.3613E-008 2.6363E-001 7 EP## 7 5.8340E-009 1.1298E-001 8 EP## 8 4.8003E-010 9.2964E-003 9 EP## 9 1.1201E-009 2.1692E-002 10 EP## 14 3.2562E-010 6.3061E-003 9 EP## 15 7.5978E-010 1.4714E-002 10 EP## 18 1.8235E-008 3.5314E-001 7 EP## 19 7.8149E-009 1.5135E-001 8

I Calculation No. PRA-ILRT I Revision No. 2 T Page 50 of 158 EP# 20 6.1723E-010 1.1953E-002 9 EP# 21 1.4402E-009 2.7891E-002 10 EP# 24 4.4542E-01 1 8.6262E-004 7 EP# 25 1.9090E-01 1 3.6970E-004 8 EP# 27 2.9295E-014 5.6733E-007 12 EP# 28 6.8354E-014 1.3238E-006 13 EP# 29 7.8555E-014 1.5213E-006 9 EP# 30 1.8330E-013 3.5498E-006 10 EP# 33 3.4826E-012 6.7446E-005 7 EP# 34 1.4926E-012 2.8905E-005 8 EP# 35 1.2281E-013 2.3784E-006 9 EP# 36 2.8655E-013 5.5495E-006 10 EP# 42 7.8472E-013 1.5197E-005 12 EP# 43 1.83 1OE-012 3.5460E-005 13 EP# 44 1.9106E-013 3.7001 E-006 9 EP# 45 4.4580E-013 8.6335E-006 10 EP# 48 8.4701E-012 1.6404E-004 7 EP# 49 3.6301E-012 7.0301E-005 8 EP# 50 2.9869E-013 5.7844E-006 9 EP# 51 6.9693E-013 1.3497E-005 10 EP# 71 8.4746E-014 1.6412E-006 9 EP# 72 1.9774E-013 3.8295E-006 10 EP# 75 4.7458E-012 9.1908E-005 7 EP# 76 2.0339E-012 3.9389E-005 8 EP# 77 1.6064E-0 13 3.111OE-006 9 EP# 78 3.7483E-013 7.2590E-006 10 EP# 81 1. 1593E-014 2.2451 E-007 7 EP# 82 4.9683E-015 9.6217E-008 8 EP# 84 6.7614E-013 1.3094E-005 12 EP# 85 1.5777E-012 3.0554E-005 13 EP# 86 2.1612E-013 4.1854E-006 9 EP# 87 5.0427E-013 9.7658E-006 10 EP# 90 1.2102E-011 2.3438E-004 7 EP# 91 5.1868E-012 1.0045E-004 8 EP# 92 4.0966E-013 7.9336E-006 9 EP# 93 9.5587E-013 1.8512E-005 10 EP# 96 2.9563E-014 5.7253E-007 7 EP# 97 1.2670E-014 2.4537E-007 8 EP# 114 1.5430E-012 2.9882E-005 17 EP#115 3.6003E-012 6.9725E-005 18 EP# 117 6.8406E-0 I1 1.3248E-003 15 EP# 118 2.9317E-0 11 5.6776E-004 16 EP# 119 2.4122E-012 4.6716E-005 17 EP# 120 5.6285E-012 1.0900E-004 18 EP# 124 1.6363E-012 3.1689E-005 17 EP#125 3.8180E-012 7.3940E-005 18 EP# 127 9.1632E-0 11 1.7746E-003 15 EP# 128 3.9271E-011 7.6053E-004 16 EP#129 3.1017E-012 6.0068E-005 17 EP#130 7.2372E-012 1.4016E-004 18 EP# 132 2.2383E-013 4.3348E-006 15 EP#133 9.5928E-014 1.8578E-006 16 EP#135 1.4721E-016 2.8509E-009 20 EP#136 3.4349E-016 6.6521E-009 21 EP#137 3.9475E-016 7.6449E-009 17

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 51 of 158 1 EP#138 9.2109E-016 1.7838E-008 18 EP#140 1.7501E-014 3.3892E-007 15 EP#141 7.5003E-015 1.4525E-007 16 EP#142 6.1713E-016 1.1952E-008 17 EP#143 1.4400E-015 2.7887E-008 18 EP#148 3.9433E-015 7.6368E-008 20 EP#149 9.2011E-015 1.7819E-007 21 EP#150 9.6008E-016 1.8593E-008 17 EP#151 2.2402E-015 4.3384E-008 18 EP#153 4.2564E-014 8.2430E-007 15 EP#154 1.8242E-014 3.5327E-007 16 EP#155 1.5009E-015 2.9068E-008 17 EP#156 3.5022E-015 6.7824E-008 18 EP#173 4.2586E-016 8.2473E-009 17 EP# 174 9.9367E-016 1.9244E-008 18 EP#176 2.3848E-014 4.6185E-007 15 EP#177 1.0221E-014 1.9794E-007 16 EP#178 8.0724E-016 1.5633E-008 17 EP#179 1.8836E-015 3.6478E-008 18 EP#181 5.8254E-017 1.1282E-009 15 EP#182 2.4966E-017 4.8350E-010 16 EP#184 3.3977E-015 6.5801E-008 20 EP#185 7.9279E-015 1.5354E-007 21 EP#186 1.0860E-015 2.1032E-008 17 EP#187 2.5340E-015 4.9075E-008 18 EP#189 6.0816E-014 1.1778E-006 15 EP#190 2.6064E-014 5.0477E-007 16 EP#191 2.0586E-015 3.9867E-008 17 EP#192 4.8034E-015 9.3023E-008 18 EP#194 1.4856E-016 2.8770E-009 15 EP#195 6.3667E-017 1.2330E-009 16 PLANT DAMAGE STATE (CET) 6, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 27 0.0000E+000 1.3238E-003 12 EP# 28 0.0000E+000 5.6733E-004 13 EP# 29 0.OOOOE+000 2.8398E-003 9 EP# 30 0.0000E+000 1.2171E-003 10 EP# 32 0.0000E+000 9.7365E-002 6 EP# 35 0.OOOOE+000 2.7748E-004 9 EP# 36 0.0000E+000 1.1892E-004 10 EP# 38 0.0000E+000 7.5315E-003 6 EP# 42 0.0000E+000 3.5460E-002 12 EP# 43 0.OOOOE+000 1.5197E-002 13 EP# 44 0.OOOOE+000 6.9068E-003 9 EP# 45 0.0000E+000 2.9600E-003 10 EP# 47 0.OOOOE+000 2.3680E-001 6 EP# 50 0.OOOOE+000 6.7485E-004 9 EP# 51 0.0000E+000 2.8922E-004 10 EP# 53 0.0000E+000 1.8317E-002 6 EP# 71 0.OOOOE+000 3.8295E-003 9 EP# 72 0.OOOOE+000 1.6412E-003 10 EP# 74 0.OOOOE+000 1.3130E-001 6 EP# 77 0.OOOOE+000 3.7418E-004 9 EP# 78 0.OOOOE+000 1.6036E-004 10 EP# 80 0.OOOOE+000 1.0156E-002 6

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 52 of 158 EP# 84 0.0000E+000 3.0554E-002 12 EP# 85 0.OOOOE+000 1.3094E-002 13 EP# 86 0.0000E+000 9.7658E-003 9 EP# 87 0.0000E+000 4.1854E-003 10 EP# 89 0.OOOOE+000 3.3483E-001 6 EP# 92 0.0000E+000 9.5421 E-004 9 EP# 93 0.0000E+000 4.0895E-004 10 EP# 95 0.0000E+000 2.5900E-002 6 EP#135 0.0000E+000 6.6521 E-006 20 EP#136 0.OOOOE+000 2.8509E-006 21 EP#137 0.OOOOE+000 1.4270E-005 17 EP#138 0.OOOOE+000 6.1159E-006 18 EP#139 0.OOOOE+000 4.8927E-004 14 EP#142 0.OOOOE+000 1.3943E-006 17 EP#143 0.OOOOE+000 5.9758E-007 18 EP#144 0.0000E+000 3.7847E-005 14 EP#148 0.OOOOE+000 1.7819E-004 20 EP#149 0.0000E+000 7.6368E-005 21 EP#150 O.O000E+000 3.4707E-005 17 EP#151 0.0000E+000 1.4875E-005 18 EP#152 0.0000E+000 1.1900E-003 14 EP#155 0.0000E+000 3.3912E-006 17 EP#156 0.OOOOE+000 1.4534E-006 18 EP#157 0.OOOOE+000 9.2047E-005 14 EP#173 0.OOOOE+000 1.9244E-005 17 EP# 174 0.OOOOE+000 8.2473E-006 18 EP#175 0.0000E+000 6.5979E-004 14 EP#178 0.0000E+000 1.8803E-006 17 EP#179 0.0000E+000 8.0584E-007 18 EP#180 0.OOOOE+000 5.1036E-005 14 EP# 184 0.0000E+000 1.5354E-004 20 EP#185 0.0000E+000 6.5801 E-005 21 EP#186 0.OOOOE+000 4.9075E-005 17 EP#187 0.0000E+000 2.1032E-005 18 EP#188 0.0000E+000 1.6826E-003 14 EP#191 0.0000E+000 4.7950E-006 17 EP#192 0.OOOOE+000 2.0550E-006 18 EP#193 0.OOOOE+000 1.3015E-004 14 PLANT DAMAGE STATE (CET) 7, Frequency 1.7953E-007 EndPoint Frequency Probability STC EP# 27 1.0185E-010 5.6733E-004 12 EP# 28 2.3765E-010 1.3238E-003 13 EP# 29 2.7312E-010 1.5213E-003 9 EP# 30 6.3727E-010 3.5498E-003 10 EP# 31 1.7297E-008 9.6351E-002 2 EP# 35 4.2698E-010 2.3784E-003 9 EP# 36 9.9628E-010 5.5495E-003 10 EP#42 2.7283E-009 1.5197E-002 12 EP# 43 6.3660E-009 3.5460E-002 13 EP# 44 6.6425E-010 3.7001E-003 9 EP#45 1.5499E-009 8.6335E-003 10 EP# 46 4.2069E-008 2.3434E-001 2 EP# 50 1.0385E-009 5.7844E-003 9 EP# 51 2.4231E-009 1.3497E-002 10 EP# 71 2.9464E-010 1.6412E-003 9

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 53 of 158 EP# 72 6.8749E-0 10 3.8295E-003 10 EP# 73 2.3571 E-008 1.3130E-001 2 EP# 77 5.5851E-010 3.111 OE-003 9 EP# 78 1.3032E-009 7.2590E-003 10 EP# 79 5.7578E-01 1 3.2072E-004 2 EP# 84 2.3508E-009 1.3094E-002 12 EP# 85 5.485 1E-009 3.0554E-002 13 EP# 86 7.5138E-010 4.1854E-003 9 EP# 87 1.7532E-009 9.7658E-003 10 EP# 88 6.011OE-008 3.3483E-001 2 EP# 92 1.4243E-009 7.9336E-003 9 EP# 93 3.3233E-009 1.8512E-002 10 EP# 94 1.4683E-010 8.1789E-004 2 EP#135 5.1181E-013 2.8509E-006 20 EP#136 1. 1942E-0 12 6.6521 E-006 21 EP#137 1.3724E-012 7.6449E-006 17 EP#138 3.2024E-012 1.7838E-005 18 EP#139 8.6922E-0 I1 4.8418E-004 14 EP#142 2.1456E-012 1.1952E-005 17 EP#143 5.0064E-012 2.7887E-005 18 EP#148 1.3710E-011 7.6368E-005 20 EP#149 3.1990E-011 1.7819E-004 21 EP#150 3.3380E-012 1.8593E-005 17 EP#151 7.7886E-012 4.3384E-005 18 EP#152 2.1140E-010 1.1776E-003 14 EP#155 5.2184E-012 2.9068E-005 17 EP#156 1.2176E-011 6.7824E-005 18 EP#173 1.4806E-012 8.2473E-006 17 EP# 174 3.4547E-012 1.9244E-005 18 EP#175 1.1845E-010 6.5979E-004 14 EP# 178 2.8066E-012 1.5633E-005 17 EP# 179 6.5487E-012 3.6478E-005 18 EP#180 2.8934E-013 1.6117E-006 14 EP# 184 1.1813E-011 6.5801 E-005 20 EP#185 2.7563E-01 1 1.5354E-004 21 EP# 186 3.7758E-012 2.1032E-005 17 EP# 187 8.8101E-012 4.9075E-005 18 EP# 188 3.0206E-010 1.6826E-003 14 EP#191 7.1572E-012 3.9867E-005 17 EP# 192 1.6700E-0 11 9.3023E-005 18 EP# 193 7.3785E-013 4.1100E-006 14 PLANT DAMAGE STATE (CET) 8, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 5.6733E-004 12 EP# 28 0.OOOOE+000 1.3238E-003 13 EP# 29 0.OOOOE+000 1.5213E-003 9 EP# 30 0.OOOOE+000 3.5498E-003 10 EP# 32 0.OOOOE+000 9.6351E-002 6 EP# 35 0.OOOOE+000 2.3784E-003 9 EP# 36 0.OOOOE+000 5.5495E-003 10 EP#42 0.OOOOE+000 1.5197E-002 12 EP# 43 0.OOOOE+000 3.5460E-002 13 EP# 44 0.OOOOE+000 3.7001E-003 9 EP# 45 0.OOOOE+000 8.6335E-003 10 EP# 47 0.OOOOE+000 2.3434E-001 6

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 54 of 158 EP# 50 0.OOOOE+000 5.7844E-003 9 EP# 51 0.OOOOE+000 1.3497E-002 10 EP# 71 0.OOOOE+000 1.6412E-003 9 EP# 72 0.OOOOE+000 3.8295E-003 10 EP# 74 0.OOOOE+000 1.3130E-001 6 EP# 77 0.OOOOE+000 3.111 OE-003 9 EP# 78 0.OOOOE+000 7.2590E-003 10 EP# 80 0.0000E+000 3.2072E-004 6 EP# 84 0.OOOOE+000 1.3094E-002 12 EP# 85 0.OOOOE+000 3.0554E-002 13 EP# 86 0.OOOOE+000 4.1854E-003 9 EP# 87 0.OOOOE+000 9.7658E-003 10 EP# 89 0.OOOOE+000 3.3483E-001 6 EP# 92 0.OOOOE+000 7.9336E-003 9 EP# 93 0.OOOOE+000 1.8512E-002 10 EP# 95 0.OOOOE+000 8.1789E-004 6 EP#135 0.OOOOE+000 2.8509E-006 20 EP#136 0.OOOOE+000 6.652 1 E-006 21 EP#137 0.0000E+000 7.6449E-006 17 EP#138 0.OOOOE+000 1.7838E-005 18 EP#139 0.OOOOE+000 4.8418E-004 14 EP#142 0.OOOOE+000 1.1952E-005 17 EP# 143 0.OOOOE+000 2.7887E-005 18 EP#148 0.OOOOE+000 7.6368E-005 20 EP# 149 0.OOOOE+000 1.7819E-004 21 EP# 150 0.OOOOE+000 1.8593E-005 17 EP#151 O.OOOOE+O00 4.3384E-005 18 EP# 152 0.0000E+000 1.1776E-003 14 EP#155 0.OOOOE+000 2.9068E-005 17 EP#156 0.OOOOE+000 6.7824E-005 18 EP# 173 0.OOOOE+000 8.2473E-006 17 EP# 174 0.OOOOE+000 1.9244E-005 18 EP# 175 0.0000E+000 6.5979E-004 14 EP#178 0.OOOOE+000 1.5633E-005 17 EP#179 0.OOOOE+000 3.6478E-005 18 EP# 180 0.OOOOE+000 1.6117E-006 14 EP# 184 0.OOOOE+000 6.5801E-005 20 EP# 185 0.0000E+000 1.5354E-004 21 EP# 186 0.OOOOE+000 2.1032E-005 17 EP# 187 0.OOOOE+000 4.9075E-005 18 EP# 188 0.OOOOE+000 1.6826E-003 14 EP#191 0.OOOOE+000 3.9867E-005 17 EP# 192 0.OOOOE+000 9.3023E-005 18 EP#193 0.OOOOE+000 4.11 OOE-006 14 PLANT DAMAGE STATE (CET) 9, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 1.3238E-003 12 EP# 28 0.OOOOE+000 5.6733E-004 13 EP# 29 0.OOOOE+000 2.8398E-003 9 EP# 30 0.OOOOE+000 1.2171E-003 10 EP# 33 0.OOOOE+000 8.7629E-002 7 EP# 34 0.OOOOE+000 9.7365E-003 8 EP# 35 0.OOOOE+000 2.7748E-004 9 EP# 36 O.OOOOE+000 1.1892E-004 10 EP# 39 0.OOOOE+000 6.7783E-003 7

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 55 of 158 1 EP# 40 0.OOOOE+000 7.5315E-004 8 EP# 42 0.OOOOE+000 3.5460E-002 12 EP# 43 0.OOOOE+/-000 1.5197E-002 13 EP# 44 0.OOOOE+O000 6.9068E-003 9 EP# 45 0.OOOOE+000 2.9600E-003 10 EP# 48 0.OOOOE+000 2.1312E-001 7 EP# 49 0.OOOOE+/-000 2.3680E-002 8 EP# 50 0.OOOOE+O000 6.7485E-004 9 EP# 51 0.OOOOE+O000 2.8922E-004 10 EP# 54 0.OOOOE+/-000 1.6486E-002 7 EP# 55 0.OOOOE+000 1.8317E-003 8 EP# 71 0.OOOOE+O000 3.8295E-003 9 EP# 72 0.0000E+000 1.6412E-003 10 EP# 75 0.0000E+O00 1.1817E-001 7 EP# 76 0.OOOOE+000 1.3130E-002 8 EP# 77 0.OOOOE+/-000 3.7418E-004 9 EP# 78 0.OOOOE+000 1.6036E-004 10 EP# 81 0.OOOOE+000 9.1406E-003 7 EP# 82 0.OOOOE+O000 1.0156E-003 8 EP# 84 0.OOOOE+/-000 3.0554E-002 12 EP# 85 0.OOOOE+/-O000 1.3094E-002 13 EP# 86 0.OOOOE+000 9.7658E-003 9 EP# 87 0.OOOOE+000 4.1854E-003 10 EP# 90 0.OOOOE+000 3.0135E-001 7 EP# 91 0.0000E+000 3.3483E-002 8 EP# 92 0.OOOOE+/-000 9.5421 E-004 9 EP# 93 0.OOOOE+/-O000 4.0895E-004 10 EP# 96 0.OOOOE+/-000 2.331OE-002 7 EP# 97 0.OOOOE+000 2.5900E-003 8 EP#135 0.OOOOE+000 6.6521 E-006 20 EP#136 0.OOOOE+O000 2.8509E-006 21 EP#137 0.OOOOE+000 1.4270E-005 17 EP#138 0.OOOOE+000 6.1159E-006 18 EP#140 0.OOOOE+000 4.4034E-004 15 EP#141 0.OOOOE+/-O000 4.8927E-005 16 EP#142 0.OOOOE+/-000 1.3943E-006 17 EP# 143 0.OOOOE+/-000 5.9758E-007 18 EP#145 0.OOOOE+000 3.4062E-005 15 EP#146 0.OOOOE+000 3.7847E-006 16 EP#148 0.OOOOE+/-000 1.7819E-004 20 EP#149 0.OOOOE-I000 7.6368E-005 21 EP#150 0.OOOOE+000 3.4707E-005 17 EP#151 0.OOOOE+000 1.4875E-005 18 EP#153 0.OOOOE+/-O000 1.0710E-003 15 EP# 154 0.OOOOE+000 1.1900E-004 16 EP#155 0.OOOOE+000 3.3912E-006 17 EP#156 0.0000E+000 1.4534E-006 18 EP#158 0.OOOOE+/-000 8.2843E-005 15 EP#159 0.OOOOE+/-000 9.2047E-006 16 EP# 173 0.OOOOE+000 1.9244E-005 17 EP#174 0.OOOOE+/-000 8.2473E-006 18 EP# 176 0.OOOOE+000 5.9381E-004 15 EP# 177 0.OOOOE+/-O000 6.5979E-005 16 EP#178 0.OOOOE+000 1.8803E-006 17 EP#179 0.OOOOE+/-000 8.0584E-007 18

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 56 of 158 1 EP#181 0.0000E+000 4.5933E-005 15 EP#182 0.OOOOE+000 5.1036E-006 16 EP#184 0.0000E+000 1.5354E-004 20 EP#185 0.OOOOE+000 6.5801E-005 21 EP#186 0.OOOOE+000 4.9075E-005 17 EP#187 0.OOOOE+000 2.1032E-005 18 EP#189 0.OOOOE+000 1.5143E-003 15 EP#190 0.OOOOE+000 1.6826E-004 16 EP#191 0.OOOOE+000 4.7950E-006 17 EP#192 0.0000E+000 2.0550E-006 18 EP#194 O.OOOOE+000 1.1714E-004 15 EP#195 O.OOOOE+000 1.3015E-005 16 PLANT DAMAGE STATE (CET) 10, Frequency = 8.5022E-008 EndPoint Frequency Probability STC EP# 27 4.8235E-011 5.6733E-004 12 EP#28 1.1255E-010 1.3238E-003 13 EP# 29 1.2935E-010 1.5213E-003 9 EP#30 3.0181E-010 3.5498E-003 10 EP# 33 5.7343E-009 6.7446E-002 7 EP# 34 2.4576E-009 2.8905E-002 8 EP# 35 2.0221E-010 2.3784E-003 9 EP# 36 4.7183E-010 5.5495E-003 10 EP# 42 1.2921E-009 1.5197E-002 12 EP# 43 3.0149E-009 3.5460E-002 13 EP# 44 3.1458E-010 3.7001E-003 9 EP# 45 7.3403E-010 8.6335E-003 10 EP# 48 1.3947E-008 1.6404E-001 7 EP# 49 5.9771E-009 7.0301E-002 8 EP# 50 4.9180E-010 5.7844E-003 9 EP# 51 1.1475E-009 1.3497E-002 10 EP# 71 1.3954E-010 1.6412E-003 9 EP# 72 3.2559E-010 3.8295E-003 10 EP# 75 7.8142E-009 9.1908E-002 7 EP# 76 3.3489E-009 3.9389E-002 8 EP# 77 2.6450E-010 3.1110E-003 9 EP#78 6.1718E-010 7.2590E-003 10 EP# 81 1.9088E-011 2.2451E-004 7 EP# 82 8.1805E-012 9.6217E-005 8 EP#84 1.1133E-009 1.3094E-002 12 EP# 85 2.5977E-009 3.0554E-002 13 EP# 86 3.5585E-010 4.1854E-003 9 EP# 87 8.3031E-010 9.7658E-003 10 EP# 90 1.9927E-008 2.3438E-001 7 EP# 91 8.5403E-009 1.0045E-001 8 EP# 92 6.7452E-010 7.9336E-003 9 EP# 93 1.5739E-009 1.8512E-002 10 EP# 96 4.8677E-011 5.7253E-004 7 EP# 97 2.0862E-011 2.4537E-004 8 EP#135 2.4239E-013 2.8509E-006 20 EP#136 5.6557E-013 6.6521E-006 21 EP#137 6.4998E-013 7.6449E-006 17 EP#138 1.5166E-012 1.7838E-005 18 EP#140 2.8816E-011 3.3892E-004 15 EP#141 1.2350E-011 1.4525E-004 16 EP#142 1.0161E-012 1.1952E-005 17

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 57 of 158 EP#143 2.37 1OE-0 12 2.7887E-005 18 EP#148 6,4929E-0 12 7.6368E-005 20 EP#149 1,5150E-011 1.7819E-004 21 EP#150 1.5808E-012 1.8593E-005 17 EP# 151 3,6886E-012 4.3384E-005 18 EP#153 7,0083E-0 II 8.2430E-004 15 EP#154 3,0036E-0 II 3.5327E-004 16 EP#155 2,4714E-012 2.9068E-005 17 EP#156 5,7665E-012 6.7824E-005 18 EP#173 7,0120E-013 8.2473E-006 17 EP# 174 1,6361E-012 1.9244E-005 18 EP#176 3,9267E-01 1 4.6185E-004 15 EP#177 1,6829E-011 1.9794E-004 16 EP#178 1,3292E-012 1.5633E-005 17 EP#179 3.1014E-0 12 3.6478E-005 18 EP#181 9,5919E-014 1.1282E-006 15 EP#182 4,1108E-014 4.8350E-007 16 EP#184 5,5945E-012 6.5801E-005 20 EP#185 1,3054E-01 1 1.5354E-004 21 EP#186 1,7882E-012 2.1032E-005 17 EP#187 4,1724E-012 4.9075E-005 18 EP# 189 1.0014E-010 1.1778E-003 15 EP#190 4,2916E-011 5.0477E-004 16 EP# 191 3,3896E-012 3.9867E-005 17 EP#192 7,9090E-012 9.3023E-005 18 EP# 194 2,4461E-013 2.8770E-006 15 EP#195 1,0483E-013 1.2330E-006 16 PLANT DAMAGE STATE (CET) 11, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP#27 0.OOOOE+000 1.3238E-003 12 EP# 28 0.OOOOE+000 5.6733E-004 13 EP# 29 0.OOOOE+000 2.8398E-003 9 EP# 30 0.OOOOE+000 1.2171E-003 10 EP# 33 0.OOOOE+000 8.7629E-002 7 EP# 34 0.OOOOE+000 9.7365E-003 8 EP# 35 0.OOOOE+000 2.7748E-004 9 EP# 36 0.OOOOE+000 1.1892E-004 10 EP# 39 0.OOOOE+000 6.7783E-003 7 EP#40 0.OOOOE+000 7.5315E-004 8 EP# 42 0.0000E+000 3.5460E-002 12 EP#43 0.OOOOE+000 1.5197E-002 13 EP# 44 0.OOOOE+000 6.9068E-003 9 EP# 45 0.OOOOE+000 2.9600E-003 10 EP# 48 0.OOOOE+000 2.1312E-001 7 EP# 49 0.OOOOE+000 2.3680E-002 8 EP# 50 0.OOOOE+000 6.7485E-004 9 EP# 51 0.OOOOE+000 2.8922E-004 10 EP# 54 0.OOOOE+000 1.6486E-002 7 EP# 55 0.OOOOE+000 1.8317E-003 8 EP# 71 0.OOOOE+000 3.8295E-003 9 EP# 72 0.OOOOE+000 1.6412E-003 10 EP# 75 0.OOOOE+000 1.1817E-001 7 EP# 76 0.OOOOE+000 1.3130E-002 8 EP# 77 0.OOOOE+000 3.74 18E-004 9 EP# 78 0.OOOOE+000 1.6036E-004 10

I Calculation No. PRA-ILRT I Revision No. 2 T Page 58 of 158 EP# 81 0.OOOOE+/-O000 9.1406E-003 7 EP# 82 0.OOOOE+000 1.0156E-003 8 EP# 84 O.OOOOE+000 3.0554E-002 12 EP# 85 0.OOOOE+/-000 1.3094E-002 13 EP# 86 0.OOOOE+O000 9.7658E-003 9 EP# 87 0.0000E+000 4.1854E-003 10 EP# 90 O.OOOOE+000 3.0135E-001 7 EP# 91 O.OOOOE+000 3.3483E-002 8 EP# 92 0.OOOOE+/-000 9.5421 E-004 9 EP# 93 0.0000E+000 4.0895E-004 10 EP# 96 0.OOOOE+000 2.33 10E-002 7 EP# 97 0.0000E+000 2.5900E-003 8 EP#135 0.OOOOE-I000 6.6521E-006 20 EP#136 0.OOOOE+000 2.8509E-006 21 EP#137 0.0000E+000 1.4270E-005 17 EP#138 0.OOOOE+/-000 6.1159E-006 18 EP#140 0.OOOOE+O000 4.4034E-004 15 EP#141 0.0000E+/-000 4.8927E-005 16 EP#142 0.OOOOE+000 1.3943E-006 17 EP#143 O.OOOOE+000 5.9758E-007 18 EP#145 O.0000E+000 3.4062E-005 15 EP#146 0.OOOOE+/-000 3.7847E-006 16 EP#148 0.OOOOE+000 1.7819E-004 20 EP#149 0.OOOOE+/-000 7.6368E-005 21 EP#150 0.OOOOE+000 3.4707E-005 17 EP# 151 0.OOOOE+O000 1.4875E-005 18 EP#153 0.OOOOE+000 1.071 OE-003 15 EP#154 0.0000F+000 1.1900E-004 16 EP#155 0.OOOOE+O000 3.3912E-006 17 EP#156 0.OOOOE+/-O000 1.4534E-006 18 EP#158 0.OOOOE+/-000 8.2843E-005 15 EP#159 0.OOOOE+/-000 9.2047E-006 16 EP#173 0.OOOOE+/-000 1.9244E-005 17 EP# 174 0.OOOOE+000 8.2473E-006 18 EP#176 0.OOOOE+000 5.9381E-004 15 EP#177 0.OOOOE+/-000 6.5979E-005 16 EP#178 0.0000E+O00 1.8803E-006 17 EP#179 0.OOOOE+000 8.0584E-007 18 EP#181 0.OOOOE+000 4.5933E-005 15 EP#182 0.OOOOE+000 5.1036E-006 16 EP#184 0.OOOOE+/-000 1.5354E-004 20 EP#185 0.OOOOE+O000 6.5801E-005 21 EP#186 0.OOOOE+000 4.9075E-005 17 EP#187 0.OOOOE+000 2.1032E-005 18 EP#189 O.OOOOE+000 1.5143E-003 15 EP#190 0.OOOOE+000 1.6826E-004 16 EP# 191 0.OOOOE+000 4.7950E-006 17 EP#192 O.OOOOE+000 2.0550E-006 18 EP#194 O.OOOOE+O000 1.1714E-004 15 EP#195 O.0000E+O00 1.3015E-005 16 PLANT DAMAGE STATE (CET) 12, Frequency = 1.3848E-009 EndPoint Frequency Probability STC EP#27 1.8332E-012 1.3238E-003 12 EP#28 7.8565E-013 5.6733E-004 13 EP#29 4.9158E-012 3.5498E-003 9

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 59 of 158 EP# 30 2.1068E-012 1.5213E-003 10 EP# 33 1.2009E-0 10 8.6716E-002 7 EP# 34 1.3343E-011 9.6351E-003 8 EP# 35 7.6850E-012 5.5495E-003 9 EP# 36 3.2936E-012 2.3784E-003 10 EP# 42 4.9106E-0 I1 3.5460E-002 12 EP# 43 2.1045E-0 I1 1.5197E-002 13 EP# 44 1.1956E-0 11 8.6335E-003 9 EP# 45 5.1239E-012 3.7001 E-003 10 EP# 48 2.9206E-010 2.1090E-001 7 EP# 49 3.2451E-01 1 2.3434E-002 8 EP# 50 1.8691E-01 1 1.3497E-002 9 EP# 51 8.0104E-012 5.7844E-003 10 EP# 71 5.3032E-012 3.8295E-003 9 EP# 72 2.2728E-012 1.6412E-003 10 EP# 75 1.6364E-010 1.1817E-001 7 EP# 76 1.8182E-011 1.3130E-002 8 EP# 77 1.0052E-01 1 7.2590E-003 9 EP# 78 4.3082E-012 3.111OE-003 10 EP# 81 3.9973E-013 2.8865E-004 7 EP# 82 4.4414E-014 3.2072E-005 8 EP# 84 4.2311E-0 11 3.0554E-002 12 EP# 85 1.8133E-011 1.3094E-002 13 EP# 86 1.3524E-011 9.7658E-003 9 EP# 87 5.7959E-012 4.1854E-003 10 EP# 90 4.1731E-010 3.0135E-001 7 EP# 91 4.6368E-011 3.3483E-602 8 EP# 92 2.5635E-011 1.8512E-002 9 EP# 93 1.0987E-011 7.9336E-003 10 EP# 96 1.0194E-012 7.361OE-004 7 EP# 97 1.1326E-013 8.1789E-005 8 EP#135 9.2119E-015 6.6521E-006 20 EP#136 3.9480E-015 2.8509E-006 21 EP#137 2.4702E-0 14 1.7838E-005 17 EP#138 1.0587E-014 7.6449E-006 18 EP# 140 6.0344E-013 4.3576E-004 15 EP#141 6.7049E-0 14 4.8418E-005 16 EP# 142 3.8618E-014 2.7887E-005 17 EP#143 1.6551E-014 1.1952E-005 18 EP#148 2.4676E-013 1.7819E-004 20 EP# 149 1.0576E-013 7.6368E-005 21 EP#150 6.0079E-014 4.3384E-005 17 EP#151 2.5748E-014 1.8593E-005 18 EP# 153 1.4676E-012 1.0598E-003 15 EP#154 1.6307E-013 1.1776E-004 16 EP#155 9.3924E-014 6.7824E-005 17 EP#156 4.0253E-014 2.9068E-005 18 EP# 173 2.6649E-0 14 1.9244E-005 17 EP# 174 1.1421E-014 8.2473E-006 18 EP# 176 8.2231E-013 5.9381E-004 15 EP# 177 9.1368E-014 6.5979E-005 16 EP# 178 5.0515E-014 3.6478E-005 17 EP# 179 2.1649E-0 14 1.5633E-005 18 EP#181 2.0087E-015 1.4505E-006 15 EP# 182 2.2319E-016 1.6117E-007 16

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 60 of 158 1 EP# 184 2.1262E-013 1.5354E-004 20 EP#185 9.1122E-014 6.5801E-005 21 EP# 186 6.7959E-014 4.9075E-005 17 EP#187 2.9125E-014 2.1032E-005 18 EP#189 2.0970E-012 1.5143E-003 15 EP#190 2.3300E-013 1.6826E-004 16 EP# 191 1.2882E-013 9.3023E-005 17 EP#192 5.5209E-0 14 3.9867E-005 18 EP#194 5.1225E-015 3.6990E-006 15 EP# 195 5.6916E-016 4.11 OOE-007 16 PLANT DAMAGE STATE (CET) 13,1 Frequency = 1.8182E-008 En dPoint Frequency Probability STC EP# 27 1.0315E-011 5.6733E-004 12 EP# 28 2.4069E-011 1.3238E-003 13 EP# 29 2.7661E-011 1.5213E-003 9 EP# 30 6.4542E-011 3.5498E-003 10 EP# 33 1.2263E-009 6.7446E-002 4 EP# 34 5.2556E-010 2.8905E-002 5 EP# 35. 4.3244E-011 2.3784E-003 9 EP# 36 1.0090E-010 5.5495E-003 10 EP# 42 2.7632E-010 1.5197E-002 12 EP# 43 6.4474E-010 3.5460E-002 13 EP# 44 6.7275E-011 3.7001E-003 9 EP# 45 1.5697E-010 8.6335E-003 10 EP# 48 2.9825E-009 1.6404E-001 4 EP# 49 1.2782E-009 7.0301E-002 5 EP# 50 1.0517E-010 5.7844E-003 9 EP# 51 2.4540E-010 1.3497E-002 10 EP# 71 2.9841E-011 1.6412E-003 9 EP# 72 6.9629E-011 3.8295E-003 10 EP# 75 1.6711E-009 9.1908E-002 4 EP# 76 7.1618E-010 3.9389E-002 5 EP# 77 5.6565E-011 3.111OE-003 9 EP# 78 1.3198E-010 7.2590E-003 10 EP# 81 4.0820E-012 2.2451E-004 4 EP# 82 1.7494E-012 9.6217E-005 5 EP# 84 2.3808E-010 1.3094E-002 12 EP# 85 5.5553E-010 3.0554E-002 13 EP# 86 7.6099E-011 4.1854E-003 9 EP# 87 1.7756E-010 9.7658E-003 10 EP# 90 4.2615E-009 2.3438E-001 4 EP# 91 1.8264E-009 1.0045E-001 5 EP# 92 1.4425E-010 7.9336E-003 9 EP# 93 3.3658E-010 1.8512E-002 10 EP# 96 1.0410E-011 5.7253E-004 4 EP# 97 4.4613E-012 2.4537E-004 5 EP##135 5.1835E-014 2.8509E-006 20 EPA#136 1.2095E-013 6.6521E-006 21 EP##137 1.3900E-013 7.6449E-006 17 EP# 138 3.2433E-013 1.7838E-005 18 EP##140 6.1623E-012 3.3892E-004 15 EP##141 2.6410E-012 1.4525E-004 16 EP##142 2.1730E-013 1.1952E-005 17 EP##143 5.0704E-013 2.7887E-005 18 EP##148 1.3885E-012 7.6368E-005 20

ICalculation No. PRA-ILRT I Revision No. 2 1 Page 61 of 158-EP#149 3.2399E-012 1.7819E-004 21 EP#150 3.3806E-013 1.8593E-005 17 EP#151 7,8882E-013 4.3384E-005 18 EP#153 1.4988E-011 8.2430E-004 15 EP#154 6.4232E-012 3.5327E-004 16 EP#155 5.2851E-013 2.9068E-005 17 EP#156 1.2332E-012 6.7824E-005 18 EP#173 1.4995E-013 8.2473E-006 17 EP# 174 3,4989E-013 1.9244E-005 18 EP#176 8,3974E-012 4.6185E-004 15 EP#177 3.5989E-012 1.9794E-004 16 EP#178 2.8425E-013 1.5633E-005 17 EP#179 6,6324E-013 3.6478E-005 18 EP#181 2,0513E-014 1.1282E-006 15 EP#182 8&7911E-015 4.8350E-007 16 EP#184 1.1964E-012 6.5801E-005 20 EP#1 85 217916E-012 1.5354E-004 21 EP# 186 3.8241E-013 2.1032E-005 17 EP#187 8,9228E-013 4.9075E-005 18 EP#189 2.1415 E-0I1 1.1778E-003 15 EP#190 9.1777E-012 5.0477E-004 16 EP#191 7,2487E-0 13 3.9867E-005 17 EP#192 1,6914E-012 9.3023E-005 18 EP#194 5,23 1OE-014 2.8770E-006 15 EP#195 2.2419E-0 14 1.2330E-006 16 PLANT DAMAGE STATE (CET) 14, Frequency = 1.0934E-009 En dPoint Frequency Probability STC EP¢# 2 1.0228E-011 9.3540E-003 9 EP## 3 4.3833E-012 4.0089E-003 10 EP # 5 3.5067E-010 3.2071E-001 6 EP## 8 1.6183E-013 1.4801E-004 9 EP # 9 6.9357E-014 6.3431E-005 10 EP # 11 4.3926E-012 4.0173E-003 6 EP## 14 1.9854E-011 I1.8158E-002 9 EP## 15 8.5088E-012 7.7819E-003 10 EP##17 6.8071E-010 6.2255E-001 6 EP## 20 3.1414E-013 2.8731E-004 9 EP##21 1.3463E-013 1.2313E-004 10 EP## 23 8.5268E-012 7.7983E-003 6 EP##114 5,1396E-014 4.7005E-005 17 EP: #115 2,2027E-014 2.0145E-005 18 EP:#116 1,7621E-012 1.6116E-003 14 EP##119 8,1323E-016 7.4375E-007 17 EP##120 3,4853E-016 3.1875E-007 18 EP:#121 2,2073E-014 2.0187E-005 14 EP##124 9,9769E-014 9.1245E-005 17 EP #125 4,2758E-014 3.9105E-005 18 EP##126 3,4206E-012 3.1284E-003 14 EP##129 1,5786E-015 1.4438E-006 17 EP: #130 6,7655E-016 6.1875E-007 18 EP¢#131 4,2848E-014 3.9188E-005 14 PLANT DAMAGE STATE (CET) 15, Frequency = 5.3308E-007 EndPoint Frequency Probability STC EP# 2 '2.6713E-009 5.011IE-003 9 EP# 3 6.2331E-009 1.1692E-002 10

I Calculation No. PRA-ILRT I Revision No. 2 1Page 62 of 158 EP# 4 1.6918E-007 3.1737E-001 2 EP# 8 6.7628E-010 1.2686E-003 9 EP# 9 1.5780E-009 2.9601E-003 10 EP# 14 4.1484E-009 7.7819E-003 9 EP# 15 9.6796E-009 1.8158E-002 10 EP# 16 3.3187E-007 6.2255E-001 2 EP# 20 1.2734E-009 2.3887E-003 9 EP# 21 2.9713E-009 5.5737E-003 10 EP# 22 1.3128E-010 2.4626E-004 2 EP#1 14 1.3424E-011 2.518 1E-005 17 EP# 115 3.1322E-01 I 5.8756E-005 18 EP# 116 8.5017E-010 1.5948E-003 14 EP# 119 3.3984E-012 6.3750E-006 17 EP# 120 7.9296E-012 1.4875E-005 18 EP# 124 2.0846E-0 11 3.9105E-005 17 EP#125 4.8641E-0 II 9.1245E-005 18 EP# 126 1.6677E-009 3.1284E-003 14 EP#129 6.3990E-012 1.2004E-005 17 EP# 130 1.493 1E-0 11 2.8009E-005 18 EP#131 6.5969E-013 1.2375E-006 14 PLANT DAMAGE STATE (CET) 16, Frequency= 7.2453E-009 EndPoint Frequency Probability S'][C EP# 2 3.6307E-011 5.0111E-003 9 EP# 3 8.4716E-01I 1.1692E-002 10 EP# 5 2.2994E-009 3.1737E-001 6 EP# 8 9.1916E-012 1.2686E-003 9 EP# 9 2.1447E-011 2.9601E-003 10 EP# 14 5.6382E-011 7.7819E-003 9 EP# 15 1.3156E-010 1.8158E-002 10 EP# 17 4.5106E-009 6.2255E-001 6 EP# 20 1.7307E-011 2.3887E-003 9 EP# 21 4.0384E-0 I1 5.5737E-003 10 EP# 23 1.7843E-012 2.4626E-004 6 EP#114 1.8245E-013 2.5181E-005 17 EP#115 4.2571E-013 5.8756E-005 18 EP#116 1.1555E-011 1.5948E-003 14 EP#119 4.6189E-014 6.3750E-006 17 EP#120 1.0777E-013 1.4875E-005 18 EP#124 2.8333E-013 3.9105E-005 17 EP#125 6.6110E-013 9.1245E-005 18 EP#126 2.2666E-011 3.1284E-003 14 EP#129 8.6971E-014 1.2004E-005 17 EP#130 2.0293E-013 2.8009E-005 18 EP#131 8.9661E-015 1.2375E-006 14 PLANT DAMAGE STATE (CET) 17, Frequency = 0.OOOOE+000 En dPoint Frequency Probability STC EP # 2 0.OOOOE+000 9.3540E-003 9 EP## 3 0.OOOOE+000 4.0089E-003 10 EP## 6 0.OOOOE+000 2.8864E-001 7 EP t 7 0.OOOOE+000 3.2071E-002 8 EP## 8 0.OOOOE+000 1.4801E-004 9 EP#t 9 0.OOOOE+000 6.3431E-005 10 EP 1 12 0.OOOOE+000 3.6156E-003 7 EP#1 13 0.OOOOE+000 4.0173E-004 8 EP t 14 0.OOOOE+000 1.8158E-002 9

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 63 of 158 EP# 15 0.OOOOE+000 7.7819E-003 10 EP# 18 0.0000E+000 5.6030E-001 7 EP# 19 0.OOOOE+000 6.2255E-002 8 EP# 20 0.OOOOE+000 2.873 1E-004 9 EP# 21 0.OOOOE+000 1.2313E-004 10 EP# 24 0.OOOOE+000 7.0185E-003 7 EP# 25 0.OOOOE+000 7.7983E-004 8 EP# 114 0.0000E+000 4.7005E-005 17 EP#1 15 0.OOOOE+000 2.0145E-005 18 EP# 117 0.OOOOE+000 1.4504E-003 15 EP#1 18 0.0000E+000 1.6116E-004 16 EP# 119 0.OOOOE+000 7.4375E-007 17 EP#120 0.OOOOE+000 3.1875E-007 18 EP# 122 0.0000E+000 1.8169E-005 15 EP#123 0.OOOOE+000 2.0188E-006 16 EP# 124 0.OOOOE+000 9.1245E-005 17 EP#125 0.OOOOE+000 3.9105E-005 18 EP#127 0.OOOOE+000 2.8156E-003 15 EP#128 0.OOOOE+000 3.1284E-004 16 EP#129 0.OOOOE+000 1.4438E-006 17 EP#130 0.OOOOE+000 6.1875E-007 18 EP#132 0.OOOOE+000 3.5269E-005 15 EP#133 0.OOOOE+000 3.9188E-006 16 PLANT DAMAGE STATE (CET) 18, F~requency = 1.987 1E-007 En dPoint Frequency Probability STC EP## 2 9.9574E-010 5.0111E-003 9 EPi # 3 2.3234E-009 1.1692E-002 10 EP## 6 4.4145E-008 2.2216E-001 7 EP## 7 1.8919E-008 9.5210E-002 8 EP## 8 2.5209E-010 1.2686E-003 9 EPI # 9 5.8820E-010 2.9601E-003 10 EPI # 14 1.5463E-009 7.7819E-003 9 EP##15 3.6081E-009 1.8158E-002 10 EPI# 18 8.6595E-008 4.3579E-001 7 EPI # 19 3.7112E-008 1.8677E-001 8 EPI # 20 4.7467E-010 2.3887E-003 9 EP##21 1.1076E-009 5.5737E-003 10 EP##24 3.4254E-011 1.7238E-004 7 EPI # 25 1.4680E-011 7.3879E-005 8 EP##114 5.0037E-012 2.5181E-005 17 EPRt115 1.1675E-011 5.8756E-005 18 EPI 117 2.2183E-010 1.1164E-003 15 EPRt118 9.5071E-011 4.7844E-004 16 EPRfl19 1.2668E-012 6.3750E-006 17 EPRt120 2.9558E-012 1.4875E-005 18 EPRt124 7.7705E-012 3.9105E-005 17 EP#t125 1.8131E-011 9.1245E-005 18 EP#t127 4.3515E-010 2.1899E-003 15 EP#t128 1.8649E-010 9.3852E-004 16 EPR#129 2.3853E-012 1.2004E-005 17 EP##130 5.5656E-012 2.8009E-005 18 EPR#132 1.7213E-013 8.6625E-007 15 EPR#133 7.3771E-014 3.7125E-007 16 PLANT DAMAGE STATE (CET) 19, Frequency = 2.1319E-010 EndPoint Frequency Probability STC

Calculation No. PRA-ILRT Revision No. 2 Page 64 of 158 EP# 2 1.9942E-012 9.3540E-003 9 EP# 3 8.5467E-013 4.0089E-003 10 EP# 6 6.153 6E-0 11 2.8864E-001 7 EP# 7 6.8373E-012 3.2071E-002 8 EP# 8 3.1554E-014 1.4801E-004 9 EP# 9 1.3523E-014 6.3431 E-005 10 EP# 12 7.7082E-013 3.6156E-003 7 EP# 13 8.5647E-014 4.0173E-004 8 EP# 14 3.871 1E-012 1.8158E-002 9 EP# 15 1.6591E-012 7.7819E-003 10 EP# 18 1.1945E-010 5.6030E-001 7 EP# 19 1.3272E-01 I 6.2255E-002 8 EP# 20 6.1252E-014 2.8731E-004 9 EP# 21 2.625 1E-014 1.2313E-004 10 EP# 24 1.4963E-012 7.0185E-003 7 EP# 25 1.6626E-013 7.7983E-004 8 EP#1 14 1.0021E-014 4.7005E-005 17 EP#115 4.2948E-0 15 2.0145E-005 18 EP#1 17 3.0923E-013 1.4504E-003 15 EP#1 18 3.4358E-014 1.6116E-004 16 EP# 119 1.5856E-016 7.4375E-007 17 EP#120 6.7956E-017 3.1875E-007 18 EP#122 3.8735E-015 1.8169E-005 15 EP#123 4.3039E-016 2.0188E-006 16 EP# 124 1.9453E-014 9.1245 E-005 17 EP#125 8.3370E-015 3.9105E-005 18 EP#127 6.0026E-013 2.8156E-003 15 EP#128 6.6696E-014 3.1284E-004 16 EP#129 3.0780E-016 1.4438E-006 17 EP#130 1.3191E-016 6.1875E-007 18 EP#132 7.51 91E-015 3.5269E-005 15 EP#133 8.3546E-016 3.9188E-006 16 PLANT DAMAGE STATE (CET) 20, Frequency = 4.3250E-009 EndPoint Frequency Probability SpTC EP# 2 5.0570E-011 1.1692E-002 9 EP# 3 2.1673E-011 5.0111E-003 10 EP# 6 1.2354E-009 2.8563E-001 7 EP# 7 1.3726E-010 3.1737E-002 8 EP# 8 1.2803E-011 2.9601 E-003 9 EP# 9 5.4868E-012 1.2686E-003 10 EP# 14 7.8533E-011 1.8158E-002 9 EP# 15 3.3657E-011 7.7819E-003 10 EP# 18 2.4233E-009 5.6030E-001 7 EP# 19 2.6925E-010 6.2255E-002 8 EP# 20 2.4106E-011 5.5737E-003 9 EP#21 1.0331E-011 2.3887E-003 10 EP# 24 9.5858E-013 2.2164E-004 7 EP#25 1.0651E-013 2.4626E-005 8 EP#114 2.5412E-013 5.8756E-005 17 EP#115 1.0891E-013 2.5181E-005 18 EP#117 6.2078E-012 1.4353E-003 15 EP#1 18 6.8976E-013 1.5948E-004 16 EP#119 6.4335E-014 1.4875E-005 17 EP#120 2.7572E-014 6.3750E-006 18 EP#124 3.9464E-013 9.1245E-005 17

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 65 of 158 1 EP#125 1.6913E-013 3.9105E-005 18 EP#127 1.2177E-011 2.8156E-003 15 EP#128 1.3530E-012 3.1284E-004 16 EP#129 1.2114E-013 2.8009E-005 17 EP#130 5.1916E-014 1.2004E-005 18 EP#132 4.8170E-015 1.1137E-006 15 EP#133 5.3522E-016 1.2375E-007 16 PLANT DAMAGE STATE (CET) 21, Frequency= 1.8611 E-008 EndPoint Frequency Probability STC EP# 2 9.3261E-011 5.0111E-003 9 EP# 3 2.1761E-010 1.1692E-002 10 EP# 6 4.1346E-009 2.2216E-001 4 EP# 7 1.7720E-009 9.5210E-002 5 EP# 8 2.3610E-011 1.2686E-003 9 EP# 9 5.5091E-011 2.9601E-003 10 EP# 14 1.4483E-010 7.7819E-003 9 EP# 15 3.3793E-010 1.8158E-002 10 EP# 18 8.1104E-009 4.3579E-001 4 EP# 19 3.4759E-009 1.8677E-001 5 EP# 20 4.4457E-011 2.3887E-003 9 EP# 21 1.0373E-010 5.5737E-003 10 EP#24 3.2082E-012 1.7238E-004 4 EP# 25 1.3750E-012 7.3879E-005 5 EP#114 4.6865E-013 2.5181E-005 17 EP#115 1.0935E-012 5.8756E-005 18 EP#117 2.0777E-011 1.1164E-003 15 EP#118 8.9043E-012 4.7844E-004 16 EP#119 1.1865E-013 6.3750E-006 17 EP#120 2.7684E-013 1.4875E-005 18 EP#124 7.2778E-013 3.9105E-005 17 EP#125 1.6982E-012 9.1245E-005 18 EP#127 4.0756E-011 2.1899E-003 15 EP#128 1.7467E-011 9.3852E-004 16 EP#129 2.2340E-013 1.2004E-005 17 EP#130 5.2127E-013 2.8009E-005 18 EP#132 1.6122E-014 8.6625E-007 15 EP#133 6.9093E-015 3.7125E-007 16 PLANT DAMAGE STATE (CET) 22, Frequency = 1.0444E-010 EndPoint Frequency Probability STC EP# 14 2.8734E-012 2.7512E-002 9 EP# 15 1.2314E-012 1.1791E-002 10 EP# 17 9.8516E-011 9.4326E-001 6 EP# 20 4.5465E-014 4.3531E-004 9 EP# 21 1.9485E-014 1.8656E-004 10 EP# 23 1.2340E-012 1.1816E-002 6 EP#124 1.4439E-014 1.3825E-004 17 EP#125 6.1882E-015 5.9250E-005 18 EP#126 4.9506E-013 4.7400E-003 14 EP#129 2.2847E-016 2.1875E-006 17 EP#130 9.7914E-017 9.3750E-007 18 EP#131 6.2012E-015 5.9375E-005 14 PLANT DAMAGE STATE (CET) 23, Frequency = 3.5848E-008 EndPoint Frequency Probability STC EP# 14 4.2267E-010 1.1791E-002 9 EP# 15 9.8624E-010 2.7512E-002 10

I Calculation No. PRA-ILRT I Revision No. 2 I Page 66 of 158 I EP# 16 3.3814E-008 9.4326E-001 2 EP# 20 1.2974E-010 3.6193E-003 9 EP# 21 3.0274E-010 8.4451 E-003 10 EP# 22 1.3376E-01 I 3.7312E-004 2 EP# 124 2.1240E-012 5.9250E-005 17 EP#125 4.9560E-012 1.3825E-004 18 EP#126 1.6992E-010 4.7400E-003 14 EP# 129 6.5198E-013 1.8188E-005 17 EP#130 1.5213E-012 4.2438E-005 18 EP#131 6.7215E-0 14 1.8750E-006 14 PLANT DAMAGE STATE (CET) 24,1 -requency = 2.0888E-0 10 En dPoint Frequency Probability STC EP## 14 2.4629E-012 1.1791E-002 9 EP# 15 5.7468E-012 2.7512E-002 10 EP# 17 1.9703E-010 9.4326E-001 6 EP##20 7.5602E-013 3.6193E-003 9 EPt f21 1.7640E-012 8.4451E-003 10 EP##23 7.7940E-014 3.7312E-004 6 EP##124 1.2376E-014 5.9250E-005 17 EP##125 2.8878E-014 1.3825E-004 18 EP##126 9.9011E-013 4.7400E-003 14 EP##129 3.7991E-015 1.8188E-005 17 EP##130 8.8645E-015 4.2438E-005 18 EP##131 3.9166E-016 1.8750E-006 14 PLANT DAMAGE STATE (CET) 25, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 2.7512E-002 9 EP# 15 0.OOOOE+000 1.1791E-002 10 EP# 18 0.OOOOE+000 8.4893E-001 7 EP# 19 0.OOOOE+000 9.4326E-002 8 EP# 20 0.OOOOE+000 4.3531E-004 9 EP# 21 0.OOOOE+000 1.8656E-004 10 EP# 24 0.OOOOE+000 1.0634E-002 7 EP# 25 0.OOOOE+000 1.1816E-003 8 EP#124 0.OOOOE+000 1.3825E-004 17 EP#125 0.OOOOE+000 5.9250E-005 18 EP#127 0.OOOOE+000 4.2660E-003 15 EP#128 0.OOOOE+000 4.7400E-004 16 EP#129 0.OOOOE+000 2.1875E-006 17 EP#130 0.OOOOE+000 9.3750E-007 18 EP#132 0.OOOOE+000 5.3437E-005 15 EP#133 0.OOOOE+000 5.9375E-006 16 PLANT DAMAGE STATE (CET) 26,1 Frequency = 1.3943E-007 En dPoint Frequency Probability STC EP# 14 1.6440E-009 1.1791E-002 9 EP# 15 3.8360E-009 2.7512E-002 10 EPt 18 9.2064E-008 6.6028E-001 7 EP# 19 3.9456E-008 2.8298E-001 8 EP##20 5.0464E-010 3.6193E-003 9 EP##21 1.1775E-009 8.4451E-003 10 EPt #24 3.6418E-011 2.6119E-004 7 EP##25 1.5608E-011 1.1194E-004 8 EPt #124 8.2613E-012 5.9250E-005 17 EP##125 1.9276E-011 1.3825E-004 18 EP##127 4.6263E-010 3.3180E-003 15

I Calculation No. PRA-ILRT I Revision No. 2 I Page 67 of 158 I EP#128 1.9827E-010 1.4220E-003 16 EP#129 2.5359E-012 1.8188E-005 17 EP#130 5.9171E-012 4.2438E-005 18 EP#132 1.8300E-013 1.3125E-006 15 EP#133 7.8430E-014 5.6250E-007 16 PLANT DAMAGE STATE (CET) 27, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 14 0.0000E+000 2.7512E-002 9 EP# 15 0.OOOOE+000 1.1791E-002 10 EP# 18 O.0000E+000 8.4893E-001 7 EP# 19 O.OOOOE+000 9.4326E-002 8 EP# 20 0.0000E+000 4.353 1E-004 9 EP# 21 0.0000E+000 1.8656E-004 10 EP# 24 0.0000E+000 1.0634E-002 7 EP# 25 0.0000E+000 1.1816E-003 8 EP#124 0.0000E+000 1.3825E-004 17 EP#125 0.0000E+000 5.9250E-005 18 EP#127 0.0000E+000 4.2660E-003 15 EP#128 0.0000E+000 4.7400E-004 16 EP#129 0.0000E+000 2.1875E-006 17 EP#130 0.OOOOE+000 9.3750E-007 18 EP#132 0.0000E+000 5.3437E-005 15 EP#133 0.OOOOE+000 5.9375E-006 16 PLANT DAMAGE STATE (CET) 28, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 14 0.0000E+000 2.7512E-002 9 EP# 15 0.OOOOE+000 1.1791E-002 10 EP# 18 0.0000E+000 8.4893E-001 7 EP# 19 0.0000E+000 9.4326E-002 8 EP# 20 0.0000E+000 8.4451E-003 9 EP# 21 0.OOOOE+000 3.6193E-003 10 EP# 24 0.OOOOE+000 3.3581E-004 7 EP# 25 0.OOOOE+000 3.7313E-005 8 EP#124 0.0000E+000 1.3825E-004 17 EP#125 0.OOOOE+000 5.9250E-005 18 EP#127 0.0000E+000 4.2660E-003 15 EP#128 0.OOOOE+000 4.7400E-004 16 EP#129 0.OOOOE+000 4.2438E-005 17 EP#130 0.OOOOE+000 1.8188E-005 18 EP#132 0.OOOOE+000 1.6875E-006 15 EP#133 0.OOOOE+000 1.8750E-007 16 PLANT DAMAGE STATE (CET) 29, Frequency = 8.0384E-009 EndPoint Frequency Probability STC EP# 14 9.4778E-011 1.1791E-002 9 EP#15 2.2115E-010 2.7512E-002 10 EP# 18 5.3076E-009 6.6028E-001 4 EP# 19 2.2747E-009 2.8298E-001 5 EP# 20 2.9093E-011 3.6193E-003 9 EP# 21 6.7884E-011 8.4451E-003 10 EP# 24 2.0995E-012 2.6119E-004 4 EP# 25 8.9979E-013 1.1194E-004 5 EP#124 4.7627E-013 5.9250E-005 17 EP#125 1.1113E-012 1.3825E-004 18 EP#127 2.6671E-011 3.3180E-003 15 EP#128 1.1431E-011 1.4220E-003 16

I Calculation No. PRA-ILRT I Revision No. 2 T Page 68 of 158 EP#129 1.4620E-013 1.8188E-005 17 EP#130 3.4113E-013 4.2438E-005 18 EP#132 1.0550E-014 1.3125E-006 15 EP#133 4.5216E-015 5.6250E-007 16 PLANT DAMAGE STATE (CET) 30, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 2 0.0000E+000 9.3540E-003 9 EP# 3 0.0000E+000 4.0089E-003 10 EP# 5 0.0000E+000 3.2071E-001 6 EP# 8 0.0000E+000 1.4801E-004 9 EP# 9 0.0000E+000 6.3431E-005 10 EP# 11 0.OOOOE+000 4.0173E-003 6 EP# 14 0.0000E+000 1.8158E-002 9 EP# 15 0.0000E+000 7.7819E-003 10 EP# 17 0.OOOOE+000 6.2255E-001 6 EP# 20 0.0000E+000 2.8731 E-004 9 EP# 21 0.OOOOE+000 1.2313E-004 10 EP# 23 0.OOOOE+000 7.7983E-003 6 EP# 114 0.0000E+000 4.7005E-005 17 EP#115 0.OOOOE+000 2.0145E-005 18 EP#116 0.OOOOE+000 1.6116E-003 14 EP#119 0.0000E+000 7.4375E-007 17 EP#120 0.OOOOE+000 3.1875E-007 18 EP#121 0.OOOOE+000 2.0187E-005 14 EP#124 0.0000E+000 9.1245E-005 17 EP#125 0.OOOOE+000 3.9105E-005 18 EP#126 0.OOOOE+000 3.1284E-003 14 EP#129 0.OOOOE+000 1.4438E-006 17 EP#130 0.OOOOE+000 6.1875E-007 18 EP#131 0.OOOOE+000 3.9188E-005 14 PLANT DAMAGE STATE (CET) 31, Frequency = 2.6673E-007 EndPoint Frequency Probability STC EP# 2 1.3366E-009 5.0111E-003 9 EP# 3 3.1187E-009 1.1692E-002 10 EP# 4 8.4650E-008 3.1737E-001 2 EP# 8 3.3837E-010 1.2686E-003 9 EP# 9 7.8954E-010 2.9601E-003 10 EP# 14 2.0756E-009 7.7819E-003 9 EP# 15 4.8431E-009 1.8158E-002 10 EP# 16 1.6605E-007 6.2255E-001 2 EP# 20 6.3714E-010 2.3887E-003 9 EP#21 1.4867E-009 5.5737E-003 10 EP# 22 6.5685E-01 1 2.4626E-004 2 EP#114 6.7165E-012 2.5181E-005 17 EP#115 1.5672E-011 5.8756E-005 18 EP#116 4.2538E-010 1.5948E-003 14 EP#119 1.7004E-012 6.3750E-006 17 EP#120 3.9675E-012 1.4875E-005 18 EP#124 1.0430E-011 3.9105E-005 17 EP#125 2.4337E-011 9.1245E-005 18 EP#126 8.3442E-010 3.1284E-003 14 EP#129 3.2017E-012 1.2004E-005 17 EP#130 7.4707E-012 2.8009E-005 18 EP#131 3.3007E-013 1.2375E-006 14 PLANT DAMAGE STATE (CET) 32, Frequency = 3.4407E-009

I Calculation No. PRA-ILRT I Revision No. 2 1 Pagze 69 of 158 1 EndPoint Frequency Probability STC EP# 2 1.7242E-011 5.0111E-003 9 EP# 3 4.0230E-0I1 1.1692E-002 10 EP# 5 1.0920E-009 3.1737E-001 6 EP# 8 4.3649E-012 1.2686E-003 9 EP# 9 1.0185E-011 2.9601E-003 10 EP# 14 2.6775E-01I 7.7819E-003 9 EP# 15 6.2475E-01 1.8158E-002 10 EP# 17 2.1420E-009 6.2255E-001 6 EP# 20 8.2189E-012 2.3887E-003 9 EP#21 1.9177E-011 5.5737E-003 10 EP# 23 8.4731E-013 2.4626E-004 6 EP#114 8.6641E-014 2.518 1E-005 17 EP#115 2.0216E-013 5.8756E-005 18 EP#116 5.4872E-012 1.5948E-003 14 EP#119 2.1934E-014 6.3750E-006 17 EP#120 5.1180E-014 1.4875E-005 18 EP#124 1.3455E-013 3.9105E-005 17 EP#125 3.1395E-013 9.1245E-005 18 EP#126 1.0764E-011 3.1284E-003 14 EP#129 4.1301E-014 1.2004E-005 17 EP#130 9.6369E-014 2.8009E-005 18 EP#131 4.2578E-015 1.2375E-006 14 PLANT DAMAGE STATE (CET) 33, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 2 0.OOOOE+000 9.3540E-003 9 EP# 3 0.0000E+000 4.0089E-003 10 EP# 6 0.0000E+000 2.8864E-001 7 EP# 7 0.OOOOE+000 3.2071E-002 8 EP# 8 0.OOOOE+000 1.4801E-004 9 EP# 9 0.OOOOE+000 6.3431E-005 10 EP# 12 0.OOOOE+000 3.6156E-003 7 EP# 13 0.OOOOE+000 4.0173E-004 8 EP# 14 0.OOOOE+000 1.8158E-002 9 EP# 15 0.OOOOE+000 7.7819E-003 10 EP# 18 0.OOOOE+000 5.6030E-001 7 EP# 19 0.OOOOE+000 6.2255E-002 8 EP# 20 0.OOOOE+000 2.8731E-004 9 EP# 21 0.OOOOE+000 1.2313E-004 10 EP# 24 0.OOOOE+000 7.0185E-003 7 EP# 25 0.OOOOE+000 7.7983E-004 8 EP# 114 0.OOOOE+000 4.7005E-005 17 EP# 115 0.OOOOE+000 2.0145E-005 18 EP#1 17 0.OOOOE+000 1.4504E-003 15 EP#118 0.OOOOE+000 1.6116E-004 16 EP#119 0.OOOOE+000 7.4375E-007 17 EP#120 0.OOOOE+000 3.1875E-007 18 EP#122 0.OOOOE+000 1.8169E-005 15 EP#123 0.OOOOE+000 2.0188E-006 16 EP#124 0.OOOOE+000 9.1245E-005 17 EP#125 0.OOOOE+000 3.9105E-005 18 EP#127 0.OOOOE+000 2.8156E-003 15 EP#128 0.OOOOE+000 3.1284E-004 16 EP#129 0.OOOOE+000 1.4438E-006 17 EP#130 0.OOOOE+000 6.1875E-007 18

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 70 of 158 I EP#132 O.0000E+000 3.5269E-005 15 EP#133 0.OOOOE+000 3.9188E-006 16 PLANT DAMAGE STATE (CET) 34, Frequency = 1.5047E-009 EndPoint Frequency Probability STC EP# 2 7.5400E-012 5.0111E-003 9 EP# 3 1.7593E-011 1.1692E-002 10 EP# 6 3.3428E-010 2.2216E-001 7 EP# 7 1.4326E-010 9.5210E-002 8 EP# 8 1.9089E-012 1.2686E-003 9 EP# 9 4.4540E-012 2.9601E-003 10 EP# 14 1.1709E-011 7.7819E-003 9 EP# 15 2.7322E-011 1.8158E-002 10 EP# 18 6.5572E-010 4.3579E-001 7 EP# 19 2.8102E-010 1.8677E-001 8 EP# 20 3.5943E-012 2.3887E-003 9 EP# 21 8.3867E-012 5.5737E-003 10 EP# 24 2.5938E-013 1.7238E-004 7 EP#25 1.1116E-013 7.3879E-005 8 EP#114 3.7890E-014 2.5181E-005 17 EP#115 8.8409E-014 5.8756E-005 18 EP#117 1.6798E-012 1.1164E-003 15 EP#118 7.1990E-013 4.7844E-004 16 EP#119 9.5923E-015 6.3750E-006 17 EP#120 2.2382E-014 1.4875E-005 18 EP#124 5.8840E-014 3.9105E-005 17 EP#125 1.3729E-013 9.1245E-005 18 EP#127 3.2951E-012 2.1899E-003 15 EP#128 1.4122E-012 9.3852E-004 16 EP#129 1.8062E-014 1.2004E-005 17 EP#130 4.2144E-014 2.8009E-005 18 EP#132 1.3034E-015 8.6625E-007 15 EP#133 5.5861E-016 3.7125E-007 16 PLANT DAMAGE STATE (CET) 35, Frequency = 0.OOOOE+000 EndPoint Frequency Probability S' EP# 2 0.OOOOE+000 9.3540E-003 EP# 3 0.OOOOE+000 4.0089E-003 EP# 6 0.0000E+000 2.8864E-001 EP# 7 0.OOOOE+000 3.2071E-002 EP# 8 0.OOOOE+000 1.4801 E-004 EP# 9 0.OOOOE+000 6.3431 E-005 EP# 12 0.OOOOE+000 3.6156E-003 EP# 13 0.OOOOE+000 4.0173E-004 EP# 14 0.OOOOE+000 1.8158E-002 EP# 15 0.OOOOE+000 7.7819E-003 EP# 18 0.OOOOE+000 5.6030E-001 EP# 19 0.OOOOE+000 6.2255E-002 EP# 20 0.OOOOE+000 2.8731 E-004 EP# 21 0.OOOOE+000 1.2313E-004 EP# 24 0.OOOOE+000 7.0185E-003 EP# 25 0.OOOOE+000 7.7983E-004 EP# 114 0.OOOOE+000 4.7005E-005 17 EP# 115 0.OOOOE+000 2.0145E-005 18 EP# 117 0.OOOOE+000 1.4504E-003 15 EP#1 18 0.OOOOE+000 1.6116E-004 16 EP#1 19 0.OOOOE+000 7.4375E-007 17

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 71 of 158 1 EP# 120 0.0000E+000 3.1875E-007 18 EP#122 0.0000E+000 1.8169E-005 15 EP#123 0.OOOOE+000 2.0188E-006 16 EP# 124 0.00O0E+000 9.1245E-005 17 EP#125 0.OOOOE+000 3.9105E-005 18 EP#127 0.OOOOE+000 2.8156E-003 15 EP#128 0.0000E+000 3.1284E-004 16 EP#129 0.0000E+000 1.4438E-006 17 EP#130 0.0000E+000 6.1875E-007 18 EP#132 0.OOOOE+000 3.5269E-005 15 EP#133 0.0000E+000 3.9188E-006 16 PLANT DAMAGE STATE (CET) 36, F?requency = 0.OOOOE+000 En dPoint Frequency Probability STC EP# 2 0.0000E+000 1.1 692E-002 9 EP## 3 0.OOOOE+000 5.0111E-003 10 EP## 6 0.OOOOE+000 2.8563E-001 7 EP## 7 0.OOOOE+000 3.1737E-002 8 EP# 8 0.OOOOE+000 2.9601E-003 9 EP## 9 0.OOOOE+000 1.2686E-003 10 EP# 14 0.0000E+000 1.8158E-002 9 EP# 15 0.0000E+000 7.7819E-003 10 EP# 18 0.0000E+000 5.6030E-001 7 EP# 19 0.0000E+000 6.2255E-002 8 EP# 20 0.OOOOE+000 5.5737E-003 9 EP# 21 0.0000E+000 2.3887E-003 10 EP# 24 0.OOOOE+000 2.2164E-004 7 EP# 25 0.OOOOE+000 2.4626E-005 8 EP##114 0.OOOOE+000 5.8756E-005 17 EP#*115 0.OOOOE+000 2.5181E-005 18 EP##117 0.OOOOE+000 1.4353E-003 15 EP##118 0.OOOOE+000 1.5948E-004 16 EP##119 0.OOOOE+000 1.4875E-005 17 EP##120 0.OOOOE+000 6.3750E-006 18 EP##124 0.OOOOE+000 9.1245E-005 17 EPAf125 0.OOOOE+000 3.9105E-005 18 EP#f127 0.OOOOE+000 2.8156E-003 15 EP#f128 0.OOOOE+000 3.1284E-004 16 EP#f129 0.OOOOE+000 2.8009E-005 17 EP##130 0.OOOOE+000 1.2004E-005 18 EP#f132 0.OOOOE+000 1.1137E-006 15 EP#f133 0.OOOOE+000 1.2375E-007 16 PLANT DAMAGE STATE (CET) 37, Frequency = 2.1302E-007 En4dPoint Frequency Probability STC EP# 2 1.0675E-009 5.0111E-003 9 EP# 3 2.4908E-009 1.1692E-002 10 EP# 6 4.7325E-008 2.2216E-001 4 EP# 7 2.0282E-008 9.5210E-002 5 EP# 8 2.7025E-010 1.2686E-003 9 EP# 9 6.3057E-010 2.9601E-003 10 EP# 14 1.6577E-009 7.7819E-003 9 EP# 15 3.8680E-009 1.8158E-002 10 EP# 18 9.2832E-008 4.3579E-001 4 EP# 19 3.9785E-008 .1.8677E-001 5 EP# 20 5.0886E-010 2.3887E-003 9 EP# 21 1.1873E-009 5.5737E-003 10

Calculation No. PRA-ILRT I Revision No. 22 1I Paize Pae 72 7

of o

158 5

1 I

I Caclto o R-LTI ReiinN.

EP# 24 3.6722E-011 1.7238E-004 4 EP# 25 1.5738E-011 7.3879E-005 5 EP#114 5.3642E-012 2.5181E-005 17 EP#115 1.2516E-011 5.8756E-005 18 EP#117 2.3781E-010 1.1164E-003 15 EP#118 1.0192E-010 4.7844E-004 16 EP#119 1.3580E-012 6.3750E-006 17 EP#120 3.1687E-012 1.4875E-005 18 EP#124 8.3302E-012 3.9105E-005 17 EP#125 1.9437E-011 9.1245E-005 18 EP#127 4.6649E-010 2.1899E-003 15 EP#128 1.9993E-010 9.3852E-004 16 EP#129 2.5571E-012 1.2004E-005 17 EP#130 5.9665E-012 2.8009E-005 18 EP#132 1.8453E-013 8.6625E-007 15 EP#133 7.9085E-014 3.7125E-007 16 PLANT DAMAGE STATE (CET) 38, Frequency = 5.0660E-009 EndPoint Frequency Probability STC EP# 27 2.2725E-012 4.4859E-004 12 EP# 28 5.3025E-012 1.0467E-003 13 EP# 29 6.4881E-012 1.2807E-003 9 EP#30 1.5139E-011 2.9884E-003 10 EP#31 4.1091E-010 8.1113E-002 2 EP# 35 1.6426E-012 3.2424E-004 9 EP# 36 3.8326E-012 7.5655E-004 10 EP# 42 6.0875E-011 1.2016E-002 12 EP#43 1.4204E-010 2.8038E-002 13 EP#44 1.5780E-011 3.1149E-003 9 EP#45 3.6820E-011 7.2681E-003 10 EP# 46 9.9939E-010 1.9728E-001 2 EP# 50 3.9949E-012 7.8858E-004 9 EP# 51 9.3214E-012 1.8400E-003 10 EP# 71 1.0250E-011 2.0233E-003 9 EP#72 2.3916E-011 4.7210E-003 10 EP# 73 8.1999E-010 1.6186E-001 2 EP# 77 3.1463E-012 6.2107E-004 9 EP# 78 7.3415E-012 1.4492E-003 10 EP# 79 3.2436E-013 6.4028E-005 2 EP# 84 3.9439E-010 7.7850E-002 12 EP# 85 9.2024E-010 1.8165E-001 13 EP# 86 1.3595E-011 2.6835E-003 9 EP#87 3.1721E-011 6.2615E-003 10 EP# 88 1.0876E-009 2.1468E-001 2 EP# 92 4.1730E-012 8.2374E-004 9 EP# 93 9.7370E-012 1.9220E-003 10 EP# 94 4.3021E-013 8.4921E-005 2 EP#135 1.1420E-014 2.2542E-006 20 EP#136 2.6646E-014 5.2598E-006 21 EP#137 3.2604E-014 6.4358E-006 17 EP#138 7.6075E-014 1.5017E-005 18 EP#139 2.0649E-012 4.0760E-004 14 EP#142 8.2541E-015 1.6293E-006 17 EP#143 1.9260E-014 3.8018E-006 18 EP#148 3.0590E-013 6.0384E-005 20 EP#149 7.1377E-013 1.4090E-004 21

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 73 of 158 1 EP#150 7.9296E-014 1.5653E-005 17 EP# 151 1.8502E-013 3.6523E-005 18 EP#152 5.0221E-012 9.9134E-004 14 EP#155 2.0075E-014 3.9627E-006 17 EP#156 4.6841E-014 9.2463E-006 18 EP# 173 5.1507E-014 1.0167E-005 17 EP# 174 1.2018E-013 2.3724E-005 18 EP#175 4.1206E-012 8.1338E-004 14 EP#178 1.5811E-014 3.12 1OE-006 17 EP#179 3.6892E-014 7.2823E-006 18 EP#180 1.6300E-015 3.2175E-007 14 EP#184 1.9818E-012 3.9121E-004 20 EP#185 4.6243E-012 9.1282E-004 21 EP#186 6.8314E-014 1.3485E-005 17 EP#187 1.5940E-013 3.1465E-005 18 EP#188 5.4651E-012 1.0788E-003 14 EP#191 2.0970E-014 4.1394E-006 17 EP# 192 4.8930E-014 9.6585E-006 18 EP#193 2.1618E-015 4.2674E-007 14 PLANT DAMAGE STATE (CET) 39, Frequency 0.0000E+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 4.4859E-004 12 EP# 28 0.OOOOE+000 1.0467E-003 13 EP# 29 0.OOOOE+000 1.2807E-003 9 EP# 30 0.OOOOE+000 2.9884E-003 10 EP# 32 0.0000E+000 8.1113E-002 6 EP# 35 0.OOOOE+000 3.2424E-004 9 EP# 36 0.0000E+000 7.5655E-004 10 EP# 42 0.0000E+000 1.2016E-002 12 EP# 43 0.0000E+000 2.8038E-002 13 EP# 44 0.OOOOE+000 3.1149E-003 9 EP# 45 0.0000E+000 7.2681E-003 10 EP# 47 0.OOOOE+000 1.9728E-001 6 EP# 50 0.OOOOE+000 7.8858E-004 9 EP# 51 0.OOOOE+000 1.8400E-003 10 EP# 71 0.OOOOE+000 2.0233E-003 9 EP# 72 0.OOOOE+000 4.72 1OE-003 10 EP# 74 0.OOOOE+000 1.6186E-001 6 EP# 77 0.OOOOE+000 6.2107E-004 9 EP# 78 0.OOOOE+000 1.4492E-003 10 EP# 80 0.OOOOE+000 6.4028E-005 6 EP# 84 0.OOOOE+000 7.7850E-002 12 EP# 85 0.OOOOE+000 1.8165E-001 13 EP# 86 0.OOOOE+000 2.6835E-003 9 EP# 87 0.OOOOE+000 6.2615E-003 10 EP# 89 0.OOOOE+000 2.1468E-001 6 EP# 92 0.OOOOE+000 8.2374E-004 9 EP# 93 0.OOOOE+000 1.9220E-003 10 EP# 95 0.OOOOE+000 8.4921E-005 6 EP#135 0.OOOOE+000 2.2542E-006 20 EP#136 0.OOOOE+000 5.2598E-006 21 EP#137 0.OOOOE+000 6.4358E-006 17 EP#138 0.OOOOE+000 1.5017E-005 18 EP#139 0.OOOOE+000 4.0760E-004 14 EP# 142 0.OOOOE+000 1.6293E-006 17

I Calculation No. PRA-ILRT I Revision No. 2 I Page 74 of 158 I EP#143 0.OOOOE+000 3.8018E-006 18 EP#148 0.OOOOE+000 6.0384E-005 20 EP#149 0.0000E+000 1.4090E-004 21 EP#150 0.0000E+000 1.5653E-005 17 EP#151 0.OOOOE+000 3.6523E-005 18 EP#152 0.OOOOE+000 9.9134E-004 14 EP#155 0.0000E+000 3.9627E-006 17 EP#156 0.0000E+000 9.2463E-006 18 EP#173 0.0000E+000 1.0167E-005 17 EP#174 0.0000E+000 2.3724E-005 18 EP#175 0.0000E+000 8.1338E-004 14 EP#178 0.0000E+000 3.1210E-006 17 EP#179 0.0000E+000 7.2823E-006 18 EP#180 0.0000E+000 3.2175E-007 14 EP#184 0.OOOOE+000 3.9121E-004 20 EP#185 0.OOOOE+000 9.1282E-004 21 EP#186 0.OOOOE+000 1.3485E-005 17 EP#187 0.OOOOE+000 3.1465E-005 18 EP#188 0.0000E+000 1.0788E-003 14 EP#191 0.0000E+000 4.1394E-006 17 EP#192 0.OOOOE+000 9.6585E-006 18 EP#193 0.OOOOE+000 4.2674E-007 14 PLANT DAMAGE STATE (CET) 40, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 27 0.0000E+000 4.4859E-004 12 EP# 28 0.OOOOE+000 1.0467E-003 13 EP# 29 0.0000E+000 1.2807E-003 9 EP# 30 0.0000E+000 2.9884E-003 10 EP# 33 0.OOOOE+000 5.6779E-002 7 EP# 34 0.OOOOE+000 2.4334E-002 8 EP# 35 0.OOOOE+000 3.2424E-004 9 EP# 36 0.0000E+000 7.5655E-004 10 EP# 42 0.0000E+000 1.2016E-002 12 EP# 43 0.0000E+000 2.8038E-002 13 EP# 44 0.OOOOE+000 3.1149E-003 9 EP#45 0.OOOOE+000 7.2681E-003 10 EP# 48 0.OOOOE+000 1.3809E-001 7 EP# 49 0.OOOOE+000 5.9183E-002 8 EP# 50 0.OOOOE+000 7.8858E-004 9 EP# 51 0.OOOOE+000 1.8400E-003 10 EP# 71 0.OOOOE+000 2.0233E-003 9 EP# 72 0.OOOOE+000 4.7210E-003 10 EP# 75 0.OOOOE+000 1.1330E-001 7 EP# 76 0.OOOOE+000 4.8559E-002 8 EP# 77 0.OOOOE+000 6.2107E-004 9 EP# 78 0.OOOOE+000 1.4492E-003 10 EP# 81 0.OOOOE+000 4.4820E-005 7 EP# 82 0.OOOOE+000 1.9208E-005 8 EP# 84 0.OOOOE+000 7.7850E-002 12 EP# 85 0.OOOOE+000 1.8165E-001 13 EP# 86 0.OOOOE+000 2.6835E-003 9 EP# 87 0.OOOOE+000 6.2615E-003 10 EP# 90 0.OOOOE+000 1.5028E-001 7 EP# 91 0.OOOOE+000 6.4404E-002 8 EP# 92 0.OOOOE+000 8.2374E-004 9

I Calculation No. PRA-ILRT [ Revision No. 2 1 Page 75 of 158 EP# 93 0.OOOOE+000 1.9220E-003 10 EP# 96 0.OOOOE+000 5.9445E-005 7 EP# 97 0.OOOOE+000 2.5476E-005 8 EP#135 0.OOOOE+000 2.2542E-006 20 EP#136 0.OOOOE+000 5.2598E-006 21 EP#137 0.OOOOE+000 6.4358E-006 17 EP#138 0.OOOOE+000 1.5017E-005 18 EP#140 0.OOOOE+000 2.8532E-004 15 EP#141 0.OOOOE+000 1.2228E-004 16 EP#142 0.OOOOE+000 1.6293E-006 17 EP#143 0.OOOOE+000 3.8018E-006 18 EP#148 0.OOOOE+000 6.0384E-005 20 EP#149 0.OOOOE+000 1.4090E-004 21 EP#150 0.OOOOE+000 1.5653E-005 17 EP#151 0.OOOOE+000 3.6523E-005 18 EP#153 0.OOOOE+000 6.9393E-004 15 EP#154 0.OOOOE+000 2.9740E-004 16 EP#155 0.OOOOE+000 3.9627E-006 17 EP#156 0.OOOOE+000 9.2463E-006 18 EP# 173 0.OOOOE+000 1.0167E-005 17 EP# 174 0.OOOOE+000 2.3724E-005 18 EP#176 0.OOOOE+000 5.6937E-004 15 EP#177 0.OOOOE+000 2.4402E-004 16 EP#178 0.OOOOE+000 3.12 1OE-006 17 EP#179 0.OOOOE+000 7.2823E-006 18 EP# 181 0.OOOOE+000 2.2522E-007 15 EP#182 0.OOOOE+000 9.6525E-008 16 EP#184 0.OOOOE+000 3.9121E-004 20 EP#185 0.OOOOE+000 9.1282E-004 21 EP#186 0.OOOOE+000 1.3485E-005 17 EP#187 0.OOOOE+000 3.1465E-005 18 EP#189 0.OOOOE+000 7.5516E-004 15 EP#190 0.OOOOE+000 3.2364E-004 16 EP#191 0.OOOOE+000 4.1394E-006 17 EP#192 0.OOOOE+000 9.6585E-006 18 EP#194 0.OOOOE+000 2.9872E-007 15 EP#195 0.OOOOE+000 1.2802E-007 16 PLANT DAMAGE STATE (CET) 41, Frequency = 1.7118E-007 EndPoint Frequency Probability STC EP# 27 7.6788E-011 4.4859E-004 12 EP# 28 1.7917E-010 1.0467E-003 13 EP# 29 2.1923E-010 1.2807E-003 9 EP# 30 5.1154E-010 2.9884E-003 10 EP# 33 9.7194E-009 5.6779E-002 7 EP# 34 4.1654E-009 2.4334E-002 8 EP# 35 5.5502E-011 3.2424E-004 9 EP# 36 1.2951E-010 7.5655E-004 10 EP#42 2.0570E-009 1.2016E-002 12 EP# 43 4.7996E-009 2.8038E-002 13 EP#44 5.3320E-010 3.1149E-003 9 EP#45 1.2441E-009 7.2681E-003 10 EP#48 2.3639E-008 1.3809E-001 7 EP#49 1.0131E-008 5.9183E-002 8 EP# 50 1.3499E-010 7.8858E-004 9 EP# 51 3.1497E-010 1.8400E-003 10

Calculation No. PRA-ILRT Revision No. 2 Page 76 of 158 EP# 71 3.4634E-010 2.0233E-003 9 EP# 72 8.0814E-010 4.721 OE-003 10 EP# 75 1.9395E-008 1.1330E-001 7 EP# 76 8.3123E-009 4.8559E-002 8 EP# 77 1.0631E-010 6.2107E-004 9 EP# 78 2.4807E-010 1.4492E-003 10 EP# 81 7.6722E-012 4.4820E-005 7 EP# 82 3.2881E-012 1.9208E-005 8 EP# 84 1.3326E-008 7.7850E-002 12 EP# 85 3.1095E-008 1.8165E-001 13 EP# 86 4.5936E-010 2.6835E-003 9 EP# 87 1.0718E-009 6.2615E-003 10 EP# 90 2.5724E-008 1.5028E-001 7 EP# 91 1.1025E-008 6.4404E-002 8 EP# 92 1.4101E-010 8.2374E-004 9 EP# 93 3.2901E-010 1.9220E-003 10 EP# 96 1.0176E-011 5.9445E-005 7 EP# 97 4.361OE-012 2.5476E-005 8 EP#135 3.8587E-013 2.2542E-006 20 EP#136 9.0037E-013 5.2598E-006 21 EP#137 1.1017E-0 12 6.4358E-006 17 EP#138 2.5706E-012 1.5017E-005 18 EP# 140 4.8841E-011 2.8532E-004 15 EP#141 2.0932E-011 1.2228E-004 16 EP#142 2.7891E-013 1.6293E-006 17 EP#143 6.5078E-013 3.8018E-006 18 EP#148 1.0336E-011 6.0384E-005 20 EP# 149 2.4118E-011 1.4090E-004 21 EP#150 2.6794E-0 12 1.5653E-005 17 EP#151 6.2519E-012 3.6523E-005 18 EP#153 1.1879E-010 6.9393E-004 15 EP#154 5.0909E-011 2.9740E-004 16 EP#155 6.7833E-013 3.9627E-006 17 EP# 156 1.5828E-012 9.2463E-006 18 EP# 173 1.7404E-012 1.0167E-005 17 EP#174 4.061 OE-0 12 2.3724E-005 18 EP#176 9.7464E-011 5.6937E-004 15 EP#177 4.1770E-011 2.4402E-004 16 EP#178 5.3424E-013 3.12 1OE-006 17 EP#179 1.2466E-012 7.2823E-006 18 EP# 181 3.8554E-014 2.2522E-007 15 EP#182 1.6523E-014 9.6525E-008 16 EP#184 6.6967E-011 3.9121E-004 20 EP#185 1.5626E-010 9.1282E-004 21 EP#186 2.3083E-012 1.3485E-005 17 EP#187 5.3861E-012 3.1465E-005 18 EP#189 1.2927E-010 7.5516E-004 15 EP# 190 5.5400E-01 1 3.2364E-004 16 EP#191 7.0857E-013 4.1394E-006 17 EP#192 1.6533E-012 9.6585E-006 18 EP# 194 5.1134E-014 2.9872E-007 15 EP#195 2.1915E-014 1.2802E-007 16 PLANT DAMAGE STATE (CET) 42, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 8 0.OOOOE+000 1.1841 E-002 9

I Calculation No. PRA-ILRT I Revision No. 2 ]Page 77 of 158 I EP# 9 0.0000E+000 5.0745E-003 10 EP# 11 O.OOOOE+000 3.2139E-001 6 EP# 20 0.0000E+000 2.2985E-002 9 EP# 21 0.OOOOE+000 9.8505E-003 10 EP# 23 0.0000E+000 6.2387E-001 6 EP#119 0.OOOOE+000 5.9500E-005 17 EP#120 0.OOOOE+000 2.5500E-005 18 EP#121 0.OOOOE+000 1.6150E-003 14 EP#129 0.OOOOE+000 1.1550E-004 17 EP#130 0.OOOOE+000 4.9500E-005 18 EP#131 0.OOOOE+000 3.1350E-003 14 PLANT DAMAGE STATE (CET) 43, Frequency= 1.3262E-007 EndPoint Frequency Probability STC EP# 8 1.3459E-008 1.0149E-001 9 EP# 9 3.1405E-008 2.3681E-001 10 EP# 20 2.5343E-008 1.911OE-001 9 EP# 21 5.9134E-008 4.4590E-001 10 EP# 22 2.6127E-009 1.9701E-002 2 EP#119 6.7635E-011 5.1000E-004 17 EP#120 1.5781E-010 1.1900E-003 18 EP#129 1.2735E-010 9.6030E-004 17 EP#130 2.9716E-010 2.2407E-003 18 EP#131 1.3129E-011 9.9000E-005 14 PLANT DAMAGE STATE (CET) 44, Frequency 1.3985E-0 10 EndPoint Frequency Probability STC EP# 8 1.4193E-011 1.0149E-001 9 EP# 9 3.3117E-011 2.3681E-001 10 EP#20 2.6725E-011 1.9110E-001 9 EP# 21 6.2358E-011 4.4590E-001 10 EP#23 2.7551E-012 1.9701E-002 6 EP#119 7.1323E-014 5.1OOOE-004 17 EP#120 1.6642E-013 1.1900E-003 18 EP#129 1.3430E-013 9.6030E-004 17 EP#130 3.1336E-013 2.2407E-003 18 EP#131 1.3845E-014 9.9000E-005 14 PLANT DAMAGE STATE (CET) 45, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 8 0.OOOOE+000 1.1841E-002 9 EP# 9 0.OOOOE+000 5.0745E-003 10 EP# 12 0.OOOOE+000 2.8925E-001 7 EP# 13 0.OOOOE+000 3.2139E-002 8 EP# 20 0.OOOOE+000 2.2985E-002 9 EP# 21 0.OOOOE+000 9.8505E-003 10 EP# 24 0.OOOOE+000 5.6148E-001 7 EP# 25 0.OOOOE+000 6.2387E-002 8 EP#119 0.OOOOE+000 5.9500E-005 17 EP#120 0.OOOOE+000 2.5500E-005 18 EP#122 0.OOOOE+000 1.4535E-003 15 EP#123 0.OOOOE+000 1.6150E-004 16 EP#129 0.OOOOE+000 1.1550E-004 17 EP#130 0.OOOOE+000 4.9500E-005 18 EP#132 0.OOOOE+000 2.8215E-003 15 EP#133 0.OOOOE+000 3.1350E-004 16 PLANT DAMAGE STATE (CET) 46, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 78 of 158 1 EP# 8 0.OOOOE+/-000 1.0149E-001 9 EP# 9 0.OOOOE+000 2.3681 E-001 10 EP# 20 0.OOOOE+O0O 1.9110E-001 9 EP# 21 0.OOOOE+/-000 4.4590E-001 10 EP# 24 0.OOOOE+000 1.3791E-002 7 EP# 25 0.OOOOE+/-O000 5.9103E-003 8 EP# 119 0.OOOOE+000 5. 1000E-004 17 EP#120 0.OOOOE+/-000 1.1900E-003 18 EP# 129 0.OOOOE+000 9.6030E-004 17 EP#130 0.0000E+000 2.2407E-003 18 EP#132 0.OOOOE+/-000 6.9300E-005 15 EP# 133 0.OOOOE+O000 2.9700E-005 16 PLANT DAMAGE STATE (CET) 47, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 8 0.OOOOE+000 1.1841 E-002 9 EP# 9 0.OOOOE+000 5.0745E-003 10 EP# 12 0.OOOOE+000 2.8925E-001 7 EP# 13 0.OOOOE+000 3.2139E-002 8 EP# 20 0.OOOOE+000 2.2985E-002 9 EP# 21 0.OOOOE+000 9.8505E-003 10 EP# 24 0.OOOOE+000 5.6148E-001 7 EP# 25 0.OOOOE+000 6.2387E-002 8 EP#119 0.OOOOE+000 ) 5.9500E-005 17 EP#120 0.OOOOE+00CI 2.5500E-005 18 EP#122 0.OOOOE+OOC1 1.4535E-003 15 EP#123 0.OOOOE+OOC 1.6150E-004 16 EP#129 0.OOOOE+OOC 1.1550E-004 17 EP#130 0.OOOOE+OOC 4.9500E-005 18 EP#132 0.OOOOE+OOC 2.8215E-003 15 EP#133 0.OOOOE+OOC 3.1350E-004 16 PLANT DAMAGE STATE (CET) 48,1 Frequency = 1.2182E-009 En dPoint. Frequency Probability STC EP# 8 2.8848E-010 2.3681E-001 9 EPt 9 1.2363E-010 1.0149E-001 10 EP# 20 5.4319E-010 4.4590E-001 9 EP##21 2.3280E-010 1.9110E-001 10 EPt #24 2.1600E-011 1.7731E-002 7 EP##25 2.4000E-012 1.9701E-003 8 EPt #119 1.4496E-012 1.1900E-003 17 EP##120 6.2128E-013 5.1OOOE-004 18 EP##129 2.7296E-012 2.2407E-003 17 EPt #130 1.1698E-012 9.6030E-004 18 EP##132 1.0854E-013 8.9100E-005 15 EP##133 1.2060E-014 9.9000E-006 16 PLANT DAMAGE STATE (CET) 49, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 8 0.OOOOE+000 1.0149E-001 9 EP# 9 0.OOOOE+000 2.3681E-001 10 EP# 20 0.OOOOE+000 1.9110E-001 9 EP# 21 0.OOOOE+000 4.4590E-001 10 EP# 24 0.OOOOE+000 1.3791E-002 4 EP# 25 0.OOOOE+000 5.9103E-003 5 EP#1 19 O.OOOOE+000 5.1 OOOE-004 17 EP#120 O.OOOOE+O00 1.1900E-003 18 EP#129 O.OOOOE+000 9.6030E-004 17

I Calculation No. PRA-ILRT I Revision No. 2 1I Page 79 7

of o

158 5

1I I Caclto o R-LTI ReiinN. 2 Pae EP#130 0.OOOOE+000 2.2407E-003 18 EP#132 0.0000E+000 6.9300E-005 15 EP#133 0.0000E+000 2.9700E-005 16 PLANT DAMAGE STATE (CET) 50, Frequency = 3.9318E-008 EndPoint Frequency Probability STC EP# 8 3.9904E-009 1.0149E-001 9 EP# 9 9.3110E-009 2.3681E-001 10 EP# 20 7.5137E-009 1.9110E-001 9 EP# 21 1.7532E-008 4.4590E-001 10 EP# 24 5.4223E-010 1.3791E-002 7 EP# 25 2.3238E-010 5.9103E-003 8 EP#119 2.0052E-011 5.1000E-004 17 EP#120 4.6789E-011 1.1900E-003 18 EP#129 3.7757E-01I 9.6030E-004 17 EP#130 8.8101E-011 2.2407E-003 18 EP#132 2.7248E-012 6.9300E-005 15 EP#133 1.1678E-012 2.9700E-005 16 PLANT DAMAGE STATE (CET) 51, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 1.0467E-003 12 EP# 28 0.OOOOE+/-000 4.4859E-004 13 EP# 35 0.OOOOE+/-000 3.0262E-003 9 EP# 36 0.OOOOE+000 1.2969E-003 10 EP# 38 0.0000E+000 8.2140E-002 6 EP# 42 0.OOOOE+/-O000 2.8038E-002 12 EP# 43 0.OOOOE+O000 1.2016E-002 13 EP# 50 0.OOOOE+000 7.3601E-003 9 EP# 51 0.OOOOE+000 3.1543E-003 10 EP# 53 0.OOOOE+000 1.9977E-001 6 EP# 77 0.OOOOE+000 5.9760E-003 9 EP# 78 0.OOOOE+000 2.5611 E-003 10 EP# 80 0.OOOOE+000 1.6220E-001 6 EP# 84 0.OOOOE+000 1.8165E-001 12 EP# 85 0.OOOOE+000 7.7850E-002 13 EP# 92 0.OOOOE+000 7.9260E-003 9 EP# 93 0.OOOOE+000 3.3968E-003 10 EP# 95 0.OOOOE+000 2.1513E-001 6 EP#135 0.OOOOE+000 5.2598E-006 20 EP#136 0.OOOOE+000 2.2542E-006 21 EP# 142 0.0000E+/-000 1.5207E-005 17 EP# 143 0.OOOOE+000 6.5173E-006 18 EP#144 0.OOOOE+/-000 4.1276E-004 14 EP#148 0.OOOOE+000 1.4090E-004 20 EP#149 0.OOOOE+/-000 6.0384E-005 21 EP#155 0.OOOOE+000 3.6985E-005 17 EP#156 0.OOOOE+000 1.5851E-005 18 EP#157 0.OOOOE+000 1.0039E-003 14 EP# 178 0.OOOOE+000 3.0030E-005 17 EP#179 0.OOOOE+000 1.2870E-005 18 EP#180 0.OOOOE+000 8.15 1OE-004 14 EP# 184 0.OOOOE+/-000 9.1282E-004 20 EP#185 0.OOOOE+/-000 3.9121E-004 21 EP# 191 0.OOOOE+000 3.9829E-005 17 EP# 192 0.OOOOE+/-000 1.7070E-005 18 EP#193 0.OOOOE+000 1.0811E-003 14

Calculation No. PRA-ILRT I Revision No. 2 Page 80 of 158 PLANT DAMAGE STATE (CET) 52, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 O.OOOOE+000 4.4859E-004 12 EP# 28 0.0000E+000 1.0467E-003 13 EP# 35 0.OOOOE+000 2.5939E-002 9 EP# 36 0.0000E+000 6.0524E-002 10 EP# 42 0.OOOOE+000 1.2016E-002 12 EP# 43 O.OOOOE+000 2.8038E-002 13 EP# 50 0.OOOOE+000 6.3086E-002 9 EP# 51 0.0000E+000 1.4720E-001 10 EP# 77 0.0000E+000 4.9686E-002 9 EP# 78 0.OOOOE+000 1.1593E-001 10 EP# 79 0.OOOOE+000 5.1223E-003 2 EP# 84 0.OOOOE+000 7.7850E-002 12 EP# 85 0.OOOOE+000 1.8165E-001 13 EP# 92 0.OOOOE+000 6.5899E-002 9 EP# 93 0.OOOOE+000 1.5376E-001 10 EP# 94 0.0000E+000 6.7937E-003 2 EP#135 0.OOOOE+000 2.2542E-006 20 EP#136 0.OOOOE+000 5.2598E-006 21 EP#142 0.OOOOE+000 1.3035E-004 17 EP#143 0.OOOOE+000 3.0414E-004 18 EP#148 0.OOOOE+000 6.0384E-005 20 EP#149 0.OOOOE+000 1.4090E-004 21 EP#155 0.OOOOE+000 3.1702E-004 17 EP#156 0.OOOOE+000 7.3970E-004 18 EP#178 0.OOOOE+000 2.4968E-004 17 EP#179 0.OOOOE+000 5.8258E-004 18 EP#180 0.OOOOE+000 2.5740E-005 14 EP#184 0.OOOOE+000 3.9121E-004 20 EP#185 0.OOOOE+000 9.1282E-004 21 EP#191 0.OOOOE+000 3.3115E-004 17 EP#192 0.0000E+000 7.7268E-004 18 EP#193 0.OOOOE+000 3.4139E-005 14 PLANT DAMAGE STATE (CET) 53, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 4.4859E-004 12 EP# 28 0.OOOOE+000 1.0467E-003 13 EP# 35 0.OOOOE+000 2.5939E-002 9 EP# 36 0.OOOOE+000 6.0524E-002 10 EP# 42 0.OOOOE+000 1.2016E-002 12 EP# 43 0.OOOOE+000 2.8038E-002 13 EP# 50 0.OOOOE+000 6.3086E-002 9 EP# 51 0.OOOOE+000 1.4720E-001 10 EP# 77 0.OOOOE+000 4.9686E-002 9 EP# 78 0.OOOOE+000 1.1593E-001 10 EP# 80 0.OOOOE+000 5.1223E-003 6 EP# 84 0.OOOOE+000 7.7850E-002 12 EP# 85 0.OOOOE+000 1.8165E-001 13 EP# 92 0.OOOOE+000 6.5899E-002 9 EP# 93 0.OOOOE+000 1.5376E-001 10 EP# 95 0.OOOOE+000 6.7937E-003 6 EP#135 0.OOOOE+000 2.2542E-006 20 EP#136 0.OOOOE+000 5.2598E-006 21 EP#142 0.OOOOE+000 1.3035E-004 17

I Calculation No. PRA-ILRT I Revision No. 2 1 Page Pag 81 81 of o

158 5

1 I Caclto o R-LTI ReiinN.2I EP#143 0.OOOOE+000 3.0414E-004 18 EP#148 0.0000E+/-000 6.0384E-005 20 EP#149 0.OOOOE+000 1.4090E-004 21 EP#155 0.0000E+000 3.1702E-004 17 EP#156 0.OOOOE+000 7.3970E-004 18 EP#178 0.OOOOE+000 2.4968E-004 17 EP#179 0.OOOOE+000 5.8258E-004 18 EP#180 0.OOOOE+/-000 2.5740E-005 14 EP#184 0.OOOOE+000 3.9121E-004 20 EP#185 O.0000E+O000 9.1282E-004 21 EP# 191 0.OOOOE+000 3.3115E-004 17 EP#192 0.OOOOE+000 7.7268E-004 18 EP#193 0.OOOOE+000 3.4139E-005 14 PLANT DAMAGE STATE (CET) 54, Frequency= 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 1.0467E-003 12 EP# 28 0.OOOOE+000 4.4859E-004 13 EP# 35 0.OOOOE+000 3.0262E-003 9 EP# 36 0.OOOOE+000 1.2969E-003 10 EP# 39 0.0000E+000 7.3926E-002 7 EP# 40 0.0000E+000 8.2140E-003 8 EP# 42 0.OOOOE+000 2.8038E-002 12 EP# 43 0.OOOOE+000 1.2016E-002 13 EP# 50 0.OOOOE+000 7.3601E-003 9 EP# 51 0.OOOOE+000 3.1543E-003 10 EP# 54 0.OOOOE+000 1.7980E-001 7 EP# 55 0.OOOOE+000 1.9977E-002 8 EP# 77 0.OOOOE+000 5.9760E-003 9 EP# 78 0.OOOOE+000 2.5611E-003 10 EP# 81 0.OOOOE+000 1.4598E-001 7 EP# 82 0.OOOOE+000 1.6220E-002 8 EP# 84 0.OOOOE+000 1.8165E-001 12 EP# 85 0.OOOOE+000 7.7850E-002 13 EP# 92 0.OOOOE+000 7.9260E-003 9 EP# 93 0.OOOOE+000 3.3968E-003 10 EP# 96 0.OOOOE+000 1.9362E-001 7 EP# 97 0.OOOOE+000 2.1513E-002 8 EP#135 0.OOOOE+000 5.2598E-006 20 EP#136 0.OOOOE+000 2.2542E-006 21 EP#142 0.OOOOE+000 1.5207E-005 17 EP#143 0.OOOOE+000 6.5173E-006 18 EP#145 0.OOOOE+000 3.7149E-004 15 EP#146 0.OOOOE+000 4.1276E-005 16 EP#148 0.OOOOE+000 1.4090E-004 20 EP#149 0.OOOOE+000 6.0384E-005 21 EP#155 0.OOOOE+000 3.6985E-005 17 EP#156 0.OOOOE+000 1.5851E-005 18 EP#158 0.OOOOE+000 9.0350E-004 15 EP#159 0.OOOOE+000 1.0039E-004 16 EP#178 0.OOOOE+000 3.0030E-005 17 EP#179 0.OOOOE+000 1.2870E-005 18 EP#181 0.OOOOE+000 7.3359E-004 15 EP#182 0.OOOOE+000 8.1510E-005 16 EP#184 0.OOOOE+000 9.1282E-004 20 EP#185 0.OOOOE+000 3.9121E-004 21

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 82 of 158 1 EP#191 0.0000E+000 3.9829E-005 17 EP#192 0.OOOOE+000 1.7070E-005 18 EP#194 0.0000E+000 9.7297E-004 15 EP#195 0.0000E+000 1.0811E-004 16 PLANT DAMAGE STATE (CET) 55, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 4.4859E-004 12 EP# 28 0.OOOOE+000 1.0467E-003 13 EP# 35 0.0000E+000 2.5939E-002 9 EP# 36 0.OOOOE+000 6.0524E-002 10 EP# 42 0.OOOOE+000 1.2016E-002 12 EP# 43 0.OOOOE+000 2.8038E-002 13 EP# 50 O.OOOOE+000 6.3086E-002 9 EP# 51 0.OOOOE+000 1.4720E-001 10 EP# 77 0.OOOOE+000 4.9686E-002 9 EP# 78 0.OOOOE+000 1.1593E-001 10 EP# 81 0.OOOOE+000 3.5856E-003 7 EP# 82 0.OOOOE+000 1.5367E-003 8 EP# 84 0.OOOOE+000 7.7850E-002 12 EP# 85 0.OOOOE+000 1.8165E-001 13 EP# 92 O.OOOOE+000 6.5899E-002 9 EP# 93 0.OOOOE+000 1.5376E-001 10 EP# 96 O.O000E+000 4.7556E-003 7 EP# 97 O.OOOOE+O00 2.0381 E-003 8 EP#135 0.OOOOE+000 2.2542E-006 20 EP#136 O.OOOOE+O00 5.2598E-006 21 EP#142 O.OOOOE+000 1.3035E-004 17 EP# 143 0.OOOOE+000 3.0414E-004 18 EP#148 0.OOOOE+000 6.0384E-005 20 EP#149 O.OOOOE+O00 1.4090E-004 21 EP#155 O.0000E+000 3.1702E-004 17 EP#156 0.OOOOE+000 7.3970E-004 18 EP# 178 O.O000E+000 2.4968E-004 17 EP# 179 O.OOOOE+000 5.8258E-004 18 EP# 181 O.OOOOE+000 1.8018E-005 15 EP# 182 O.OOOOE+O00 7.7220E-006 16 EP# 184 O.OOOOE+O00 3.9121E-004 20 EP#185 0.OOOOE+000 9.1282E-004 21 EP# 191 O.OOOOE+000 3.3115E-004 17 EP# 192 0.OOOOE+000 7.7268E-004 18 EP# 194 O.OOOOE+000 2.3897E-005 15 EP#195 O.OOOOE+000 1.0242E-005 16 PLANT DAMAGE STATE (CET) 56, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.0000E+000 1.0467E-003 12 EP# 28 0.0000E+000 4.4859E-004 13 EP# 35 0.0000E+000 3.0262E-003 9 EP# 36 0.OOOOE+000 1.2969E-003 10 EP# 39 0.0000E+000 7.3926E-002 7 EP# 40 0.OOOOE+000 8.2140E-003 8 EP# 42 0.0000E+000 2.8038E-002 12 EP# 43 0.0000E+000 1.2016E-002 13 EP# 50 0.OOOOE+000 7.3601E-003 9 EP# 51 0.OOOOE+000 3.1543E-003 10 EP# 54 0.OOOOE+000 1.7980E-001 7

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 83 of 158 1 EP# 55 O.OOOOE+000 1.9977E-002 8 EP# 77 O.OOOOE+000 5.9760E-003 9 EP# 78 O.OOOOE+000 2.5611 E-003 10 EP# 81 O.OOOOE+000 1.4598E-001 7 EP# 82 O.OOOOE+000 1.6220E-002 8 EP# 84 O.OOOOE+000 1.8165E-001 12 EP# 85 O.OOOOE+000 7.7850E-002 13 EP# 92 0.OOOOE+000 7.9260E-003 9 EP# 93 0.OOOOE+000 3.3968E-003 10 EP# 96 0.OOOOE+000 1.9362E-001 7 EP# 97 0.OOOOE+000 2.1513E-002 8 EP#135 O.OOOOE+000 5.2598E-006 20 EP#136 0.OOOOE+000 2.2542E-006 21 EP# 142 0.OOOOE+000 1.5207E-005 17 EP#143 O.OOOOE+000 6.5173E-006 18 EP# 145 0.OOOOE+000 3.7149E-004 15 EP#146 0.OOOOE+000 4.1276E-005 16 EP#148 0.OOOOE+000 1.4090E-004 20 EP#149 0.OOOOE+000 6.0384E-005 21 EP#155 O.OOOOE+000 3.6985E-005 17 EP# 156 0.OOOOE+000 1.585 1E-005 18 EP#158 0.OOOOE+000 9.0350E-004 15 EP#159 0.OOOOE+000 1.0039E-004 16 EP#178 0.OOOOE+000 3.0030E-005 17 EP# 179 0.OOOOE+000 1.2870E-005 18 EP# 181 0.OOOOE+000 7.3359E-004 15 EP#182 0.OOOOE+000 8.15 10E-005 16 EP# 184 0.OOOOE+000 9.1282E-004 20 EP#185 0.OOOOE+000 3.9121E-004 21 EP#191 O.OOOOE+000 3.9829E-005 17 EP# 192 0.OOOOE+000 1.7070E-005 18 EP# 194 0.OOOOE+000 9.7297E-004 15 EP#195 0.OOOOE+000 1.0811E-004 16 PLANT DAMAGE STATE (CET) 57, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 1.0467E-003 12 EP# 28 0.OOOOE+000 4.4859E-004 13 EP# 35 0.OOOOE+000 6.0524E-002 9 EP# 36 0.0600E+000 2.5939E-002 10 EP# 42 0.OOOOE+000 2.8038E-002 12 EP# 43 0.OOOOE+000 1.2016E-002 13 EP# 50 0.OOOOE+000 1.4720E-001 9 EP# 51 0.OOOOE+000 6.3086E-002 10 EP# 77 0.OOOOE+000 1.1593E-001 9 EP# 78 0.OOOOE+000 4.9686E-002 10 EP# 81 0.OOOOE+000 4.6 100E-003 7 EP# 82 0.OOOOE+000 5.1223E-004 8 EP# 84 0.OOOOE+000 1.8165E-001 12 EP# 85 0.OOOOE+000 7.7850E-002 13 EP# 92 0.OOOOE+000 1.5376E-001 9 EP# 93 0.OOOOE+000 6.5899E-002 10 EP# 96 0.OOOOE+000 6.1143E-003 7 EP# 97 0.OOOOE+000 6.7937E-004 8 EP#135 0.OOOOE+000 5.2598E-006 20 EP#136 0.OOOOE+000 2.2542E-006 21

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 84 of 158 I EP#142 0.0000E+000 3.0414E-004 17 EP#143 0.0000E+000 1.3035E-004 18 EP#148 0.0000E+000 1.4090E-004 20 EP# 149 0.0000E+000 6.0384E-005 21 EP#155 0.0000E+000 7.3970E-004 17 EP#156 O.O000E+000 3.1702E-004 18 EP#178 O.O000E+000 5.8258E-004 17 EP#179 O.O000E+000 2.4968E-004 18 EP#181 O.O000E+000 2.3166E-005 15 EP#182 0.OOOOE+000 2.5740E-006 16 EP#184 0.0000E+000 9.1282E-004 20 EP#185 0.0000E+000 3.9121E-004 21 EP#191 O.OOOOE+000 7.7268E-004 17 EP#192 O.OOOOE+000 3.3115E-004 18 EP#194 O.OOOOE+000 3.0725E-005 15 EP#195 O.OOOOE+000 3.4139E-006 16 PLANT DAMAGE STATE (CET) 58, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 4.4859E-004 12 EP# 28 0.OOOOE+000 1.0467E-003 13 EP# 35 0.OOOOE+000 2.5939E-002 9 EP# 36 0.OOOOE+000 6.0524E-002 10 EP# 42 0.OOOOE+000 1.2016E-002 12 EP# 43 0.OOOOE+000 2.8038E-002 13 EP# 50 0.OOOOE+000 6.3086E-002 9 EP# 51 0.OOOOE+000 1.4720E-001 10 EP# 77 0.OOOOE+000 4.9686E-002 9 EP# 78 0.OOOOE+000 1.1593E-001 10 EP# 81 0.OOOOE+000 3.5856E-003 4 EP# 82 0.OOOOE+000 1.5367E-003 5 EP# 84 0.OOOOE+000 7.7850E-002 12 EP# 85 0.OOOOE+000 1.8165E-001 13 EP# 92 0.OOOOE+000 6.5899E-002 9 EP# 93 0.OOOOE+000 1.5376E-001 10 EP# 96 0.OOOOE+000 4.7556E-003 4 EP# 97 0.OOOOE+000 2.0381E-003 5 EP#135 0.OOOOE+00C) 2.2542E-006 20 EP#136 0.OOOOE+00C) 5.2598E-006 21 EP#142 0.OOOOE+000 ) 1.3035E-004 17 EP#143 0.OOOOE+00C) 3.0414E-004 18 EP#148 0.OOOOE+000 ) 6.0384E-005 20 EP#149 0.OOOOE+000 ) 1.4090E-004 21 EP#155 0.OOOOE+000 ) 3.1702E-004 17 EP#156 0.OOOOE+000 ) 7.3970E-004 18 EP#178 0.OOOOE+000 ) 2.4968E-004 17 EP#179 0.OOOOE+I00 ) 5.8258E-004 18 EP#181 0.OOOOE+00C 1.8018E-005 15 EP#182 0.OOOOE+OOC ) 7.7220E-006 16 EP#184 0.OOOOE+000 ) 3.9121E-004 20 EP#185 0.OOOOE+00C) 9.1282E-004 21 EP#191 0.OOOOE+000 ) 3.3115E-004 17 EP#192 0.OOOOE+000 ) 7.7268E-004 18 EP#194 0.OOOOE+000 ) 2.3897E-005 15 EP#195 0.OOOOE+000 ) 1.0242E-005 16 PLANT DAMAGE STATE (CET) 59, Frequency = 2.5479E-012

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 85 of 158 1 EndPoint Frequency Probability STC EP# 27 1.1430E-015 4.4859E-004 12 EP# 28 2.6669E-015 1.0467E-003 13 EP# 35 6.6090E-014 2.5939E-002 9 EP# 36 1.5421E-013 6.0524E-002 10 EP#42 3.0617E-014 1.2016E-002 12 EP#43 7.1439E-014 2.8038E-002 13 EP# 50 1.6074E-013 6.3086E-002 9 EP# 51 3.7506E-013 1.4720E-001 10 EP# 77 1.2660E-013 4.9686E-002 9 EP# 78 2.9539E-013 1.1593E-001 10 EP# 81 9.1357E-015 3.5856E-003 7 EP# 82 3.9153E-015 1.5367E-003 8 EP# 84 1.9836E-013 7.7850E-002 12 EP# 85 4.6283E-013 1.8165E-001 13 EP# 92 1.6790E-013 6.5899E-002 9 EP# 93 3.9178E-013 1.5376E-001 10 EP# 96 1.2117E-014 4.7556E-003 7 EP#97 5.1929E-015 2.0381E-003 8 EP#135 5.7435E-018 2.2542E-006 20 EP#136 1.3402E-017 5.2598E-006 21 EP#142 3.3211E-016 1.3035E-004 17 EP#143 7.7492E-016 3.0414E-004 18 EP#148 1.5385E-016 6.0384E-005 20 EP#149 3.5899E-016 1.4090E-004 21 EP#155 8.0773E-016 3.1702E-004 17 EP#156 1.8847E-015 7.3970E-004 18 EP#178 6.3616E-016 2.4968E-004 17 EP#179 1.4844E-015 5.8258E-004 18 EP#181 4.5908E-017 1.8018E-005 15 EP#182 1.9675E-017 7.7220E-006 16 EP#184 9.9676E-016 3.9121E-004 20 EP#185 2.3258E-015 9.1282E-004 21 EP#191 8.4374E-016 3.3115E-004 17 EP#192 1.9687E-015 7.7268E-004 18 EP#194 6.0888E-017 2.3897E-005 15 EP#195 2.6095E-017 1.0242E-005 16 PLANT DAMAGE STATE (CET) 60, Frequency = 7.5681E-008 EndPoint Frequency Probability STC EP# 8 7.6731E-009 1.0139E-001 9 EP# 9 1.7904E-008 2.3657E-001 10 EP# 20 1.4448E-008 1.9091E-001 9 EP# 21 3.3712E-008 4.4545E-001 10 EP# 22 1.4895E-009 1.9681E-002 2 EP# 27 3.3949E-014 4.4859E-007 12 EP# 28 7.9215E-014 1.0467E-006 13 EP# 35 1.9631E-012 2.5939E-005 9 EP# 36 4.5805E-012 6.0524E-005 10 EP#42 9.0941E-013 1.2016E-005 12 EP# 43 2.1220E-012 2.8038E-005 13 EP# 50 4.7744E-012 6.3086E-005 9 EP# 51 1.1140E-011 1.4720E-004 10 EP# 77 3.7603E-012 4.9686E-005 9 EP# 78 8.7739E-012 1.1593E-004 10 EP# 79 3.8766E-013 5.1223E-006 2

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 86 of 158 1 EP# 84 5.8918E-012 7.7850E-005 12 EP# 85 1.3747E-011 1.8165E-004 13 EP# 92 4.9873E-012 6.5899E-005 9 EP# 93 1.1637E-O11 1.5376E-004 10 EP# 94 5.1415E-013 6.7937E-006 2 EP#119 3.8559E-011 5.0949E-004 17 EP#120 8.9970E-011 1.1888E-003 18 EP#129 7.2603E-011 9.5934E-004 17 EP#130 1.6941E-010 2.2385E-003 18 EP#131 7.4849E-012 9.8901E-005 14 EP#135 1.7060E-016 2.2542E-009 20 EP#136 3.9806E-016 5.2598E-009 21 EP#142 9.8646E-015 1.3035E-007 17 EP#143 2.3018E-014 3.0414E-007 18 EP#148 4.5699E-015 6.0384E-008 20 EP#149 1.0663E-014 1.4090E-007 21 EP#155 2.3992E-014 3.1702E-007 17 EP#156 5.5981E-014 7.3970E-007 18 EP#178 1.8896E-014 2.4968E-007 17 EP#179 4.4090E-014 5.8258E-007 18 EP#180 1.9480E-015 2.5740E-008 14 EP#184 2.9607E-014 3.9121E-007 20 EP#185 6.9083E-014 9.1282E-007 21 EP#191 2.5062E-014 3.3115E-007 17 EP#192 5.8477E-014 7.7268E-007 18 EP#193 2.5837E-015 3.4139E-008 14 PLANT DAMAGE STATE (CET) 61, Frequency = 1.1828E-008 EndPoint Frequency Probability STC EP# 8 1.1993E-009 1.0139E-001 9 EP# 9 2.7983E-009 2.3657E-001 10 EP# 20 2.2581E-009 1.9091E-001 9 EP# 21 5.2690E-009 4.4545E-001 10 EP# 23 2.3280E-010 1.9681E-002 6 EP# 27 5.3060E-015 4.4859E-007 12 EP# 28 1.2381E-014 1.0467E-006 13 EP# 35 3.0681E-013 2.5939E-005 9 EP# 36 7.1590E-013 6.0524E-005 10 EP#42 1.4213E-013 1.2016E-005 12 EP#43 3.3165E-013 2.8038E-005 13 EP# 50 7.4621E-013 6.3086E-005 9 EP#51 1.7411E-012 1.4720E-004 10 EP# 77 5.8770E-013 4.9686E-005 9 EP# 78 1.3713E-012 1.1593E-004 10 EP# 80 6.0588E-014 5.1223E-006 6 EP# 84 9.2084E-013 7.7850E-005 12 EP# 85 2.1486E-012 1.8165E-004 13 EP# 92 7.7948E-013 6.5899E-005 9 EP# 93 1.8188E-012 1.5376E-004 10 EP# 95 8.0358E-014 6.7937E-006 6 EP#119 6.0264E-012 5.0949E-004 17 EP#120 1.4062E-011 1.1888E-003 18 EP#129 1.1347E-0I1 9.5934E-004 17 EP#130 2.6477E-011 2.2385E-003 18 EP#131 1.1698E-012 9.8901E-005 14 EP#135 2.6664E-017 2.2542E-009 20

II Calculation No. PRA-ILRT 1 Revision ReiinN.

No. 22 1I Pap-e P e 87 8

of o

158 5

1I Caclto o R-LTI EP#136 6.2215E-017 5.2598E-009 21 EP# 142 1.5418E-015 1.3035E-007 17 EP# 143 3.5975E-015 3.0414E-007 18 EP#148 7.1424E-0 16 6.0384E-008 20 EP#149 1.6666E-015 1.4090E-007 21 EP#155 3.7498E-015 3.1702E-007 17 EP#156 8.7495E-015 7.3970E-007 18 EP# 178 2.9533E-015 2.4968E-007 17 EP# 179 6.8910E-015 5.8258E-007 18 EP# 180 3.0446E-0 16 2.5740E-008 14 EP# 184 4.6274E-0 15 3.9121E-007 20 EP#185 1.0797E-014 9.1282E-007 21 EP#191 3.9170E-015 3.3115E-007 17 EP# 192 9.1396E-015 7.7268E-007 18 EP# 193 4.0381E-016 3.4139E-008 14 PLANT DAMAGE STATE (CET) 62, Frequency = O.OOOOE+000 En( dPoint Frequency Probability STC EP# 8 0.0000E+000 1.0139E-001 9 EP# 9 0.OOOOE+000 2.3657E-001 10 EP# 20 0.OOOOE+000 1.9091E-001 9 EP# 21 0.OOOOE+000 4.4545E-001 10 EP# 24 0.OOOOE+000 1.3777E-002 7 EP# 25 0.OOOOE+000 5.9044E-003 8 EP# 27 0.OOOOE+000 4.4859E-007 12 EP# 28 0.OOOOE+000 1.0467E-006 13 EP# 35 0.OOOOE+000 2.5939E-005 9 EP# 36 0.0000E+000 6.0524E-005 10 EP# 42 0.0000E+000 1.2016E-005 12 EP# 43 0.0000E+000 2.8038E-005 13 EP# 50 0.OOOOE+000 6.3086E-005 9 EP# 51 0.OOOOE+000 1.4720E-004 10 EP# 77 0.OOOOE+000 4.9686E-005 9 EP# 78 0.OOOOE+000 1.1593E-004 10 EP# 81 0.OOOOE+000 3.5856E-006 7 EP# 82 0.OOOOE+000 1.5367E-006 8 EP# 84 0.OOOOE+000 7.7850E-005 12 EP# 85 0.OOOOE+000 1.8165E-004 13 EP# 92 0.OOOOE+000 6.5899E-005 9 EP# 93 0.OOOOE+000 1.5376E-004 10 EP# 96 0.OOOOE+000 4.7556E-006 7 EP# 97 0.OOOOE+000 2.0381E-006 8 EP# 119 0.OOOOE+000 5.0949E-004 17 EP# 120 0.OOOOE+000 1.1888E-003 18 EP#:129 0.OOOOE+000 9.5934E-004 17 EP#:130 0.OOOOE+000 2.2385E-003 18 EP# 132 0.OOOOE+000 6.9231E-005 15 EP#:133 0.OOOOE+000 2.9670E-005 16 EP#:135 0.OOOOE+000 2.2542E-009 20 EP# 136 0.OOOOE+000 5.2598E-009 21 EP# 142 0.OOOOE+000 1.3035E-007 17 EP# :143 0.OOOOE+000 3.0414E-007 18 EP# :148 0.OOOOE+000 6.0384E-008 20 EP# :149 0.OOOOE+000 1.4090E-007 21 EP# :155 0.OOOOE+000 3.1702E-007 17 EP# :156 0.OOOOE+000 7.3970E-007 18

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 88 of 158 ]

EP#178 0.OOOOE+000 2.4968E-007 17 EP#179 0.OOOOE+000 5.8258E-007 18 EP#181 0.0000E+000 1.8018E-008 15 EP#182 0.0000E+000 7.7220E-009 16 EP#184 0.0000E+000 3.9121E-007 20 EP#185 0.OOOOE+000 9.1282E-007 21 EP#191 0.OOOOE+000 3.3115E-007 17 EP#192 O.OOOOE+000 7.7268E-007 18 EP#194 0.0000E+000 2.3897E-008 15 EP#195 0.0000E+000 1.0242E-008 16 PLANT DAMAGE STATE (CET) 63, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 8 0.0000E+000 1.0139E-001 9 EP# 9 0.0000E+000 2.3657E-001 10 EP# 20 0.0000E+000 1.9091E-001 9 EP# 21 0.0000E+000 4.4545E-001 10 EP# 24 0.0000E+000 1.3777E-002 7 EP# 25 0.OOOOE+000 5.9044E-003 8 EP# 27 0.OOOOE+000 4.4859E-007 12 EP# 28 0.0000E+000 1.0467E-006 13 EP# 35 0.OOOOE+000 2.5939E-005 9 EP# 36 0.OOOOE+000 6.0524E-005 10 EP# 42 0.OOOOE+000 1.2016E-005 12 EP#43 0.OOOOE+000 2.8038E-005 13 EP# 50 0.OOOOE+000 6.3086E-005 9 EP# 51 0.OOOOE+000 1.4720E-004 10 EP# 77 0.OOOOE+000 4.9686E-005 9 EP# 78 0.OOOOE+000 1.1593E-004 10 EP# 81 0.OOOOE+000 3.5856E-006 7 EP# 82 0.OOOOE+000 1.5367E-006 8 EP# 84 0.OOOOE+000 7.7850E-005 12 EP# 85 0.OOOOE+000 1.8165E-004 13 EP# 92 0.0000E+000 6.5899E-005 9 EP# 93 0.OOOOE+000 1.5376E-004 10 EP# 96 0.OOOOE+000 4.7556E-006 7 EP# 97 0.OOOOE+000 2.0381E-006 8 EP#119 0.OOOOE+000 5.0949E-004 17 EP#120 0.OOOOE+000 1.1888E-003 18 EP#129 0.OOOOE+000 9.5934E-004 17 EP#130 0.OOOOE+000 2.2385E-003 18 EP#132 0.OOOOE+000 6.9231E-005 15 EP#133 0.OOOOE+000 2.9670E-005 16 EP#135 0.OOOOE+000 2.2542E-009 20 EP#136 0.OOOOE+000 5.2598E-009 21 EP#142 0.OOOOE+000 1.3035E-007 17 EP#143 0.OOOOE+000 3.0414E-007 18 EP#148 0.OOOOE+000 6.0384E-008 20 EP#149 0.OOOOE+000 1.4090E-007 21 EP#155 0.OOOOE+000 3.1702E-007 17 EP#156 0.OOOOE+000 7.3970E-007 18 EP#178 0.OOOOE+000 2.4968E-007 17 EP#179 0.OOOOE+000 5.8258E-007 18 EP#181 0.OOOOE+000 1.8018E-008 15 EP#182 0.OOOOE+000 7.7220E-009 16 EP#184 0.OOOOE+000 3.9121E-007 20

[Calculation No. PRA-ILRT TI I Revision R2 No. 2 1I Page P 89 of 158 1I EP#185 0.OOOOE+000 9.1282E-007 21 EP#191 0.0000E+000 3.3115E-007 17 EP# 192 0.0000E+000 7.7268E-007 18 EP#194 0.0000E+000 2.3897E-008 15 EP#195 0.0000E+000 1.0242E-008 16 PLANT DAMAGE STATE (CET) 64, Frequency = 6.2182E-008 EndPoint Frequency Probability STC EP# 2 7.3561E-010 1.1830E-002 9 EP# 3 3.1526E-010 5.0700E-003 10 EP# 5 2.5221E-008 4.0560E-001 6 EP# 8 1.1639E-011 1.8718E-004 9 EP# 9 4.9883E-012 8.0222E-005 10 EP# 11 3.1593E-010 5.0807E-003 6 EP# 14 9.7511E-010 1.5682E-002 9 EP# 15 4.1791E-010 6.7207E-003 10 EP# 17 3.3433E-008 5.3766E-001 6 EP# 20 1.5429E-011 2.4813E-004 9 EP# 21 6.6124E-012 1.0634E-004 10 EP# 23 4.1879E-010 6.7349E-003 6 EP#114 3.6965E-012 5.9447E-005 17 EP#115 1.5842E-012 2.5478E-005 18 EP#116 1.2674E-010 2.0382E-003 14 EP#119 5.8490E-014 9.4063E-007 17 EP#120 2.5067E-014 4.0313E-007 18 EP#121 1.5876E-012 2.5531E-005 14 EP#124 4.9001E-012 7.8802E-005 17 EP#125 2.1000E-012 3.3772E-005 18 EP#126 1.6800E-010 2.7018E-003 14 EP#129 7.7533E-014 1.2469E-006 17 EP#130 3.3228E-014 5.3438E-007 18 EP#131 2.1045E-012 3.3844E-005 14 PLANT DAMAGE STATE (CET) 65, Frequency = 1.6466E-006 EndPoint Frequency Probability STC EP# 2 1.0436E-008 6.3375E-003 9 EP# 3 2.4350E-008 1.4788E-002 10 EP# 4 6.6092E-007 4.0138E-001 2 EP# 8 2.6419E-009 1.6044E-003 9 EP# 9 6.1645E-009 3.7437E-003 10 EP# 14 1.1067E-008 6.7207E-003 9 EP# 15 2.5822E-008 1.5682E-002 10 EP# 16 8.8533E-007 5.3766E-001 2 EP# 20 3.3970E-009 2.0630E-003 9 EP# 21 7.9264E-009 4.8137E-003 10 EP#22 3.5021E-010 2.1268E-004 2 EP#114 5.2440E-011 3.1847E-005 17 EP#115 1.2236E-010 7.4309E-005 18 EP#116 3.3212E-009 2.0170E-003 14 EP#119 1.3276E-011 8.0625E-006 17 EP#120 3.0977E-011 1.8812E-005 18 EP#124 5.5611E-011 3.3772E-005 17 EP#125 1.2976E-010 7.8802E-005 18 EP#126 4.4489E-009 2.7018E-003 14 EP#129 1.7070E-0 11 1.0367E-005 17 EP#130 3.9831E-011 2.4189E-005 18 EP#131 1.7598E-012 1.0687E-006 14

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 90 of 158 1 PLANT DAMAGE STATE (CET) 66, Frequency 9.7867E-009 EndPoint Frequency Probability STC EP# 2 6.2023E-011 6.3375E-003 9 EP# 3 1.4472E-010 1.4788E-002 10 EP# 5 3.9281E-009 4.0138E-001 6 EP# 8 1.5702E-011 1.6044E-003 9 EP# 9 3.6638E-011 3.7437E-003 10 EP# 14 6.5774E-011 6.7207E-003 9 EP# 15 1.5347E-010 1.5682E-002 10 EP# 17 5.2619E-009 5.3766E-001 6 EP# 20 2.0190E-011 2.0630E-003 9 EP#21 4.7110E-011 4.8137E-003 10 EP# 23 2.0814E-012 2.1268E-004 6 EP#114 3.1168E-013 3.1847E-005 17 EP#115 7.2724E-013 7.4309E-005 18 EP#116 1.9739E-011 2.0170E-003 14 EP#119 7.8905E-014 8.0625E-006 17 EP#120 1.8411E-013 1.8812E-005 18 EP#124 3.3052E-013 3.3772E-005 17 EP#125 7.7121E-013 7.8802E-005 18 EP#126 2.6442E-011 2.7018E-003 14 EP#129 1.0146E-013 1.0367E-005 17 EP#130 2.3673E-013 2.4189E-005 18 EP#131 1.0460E-014 1.0687E-006 14 PLANT DAMAGE STATE (CET) 67, Frequency 2.0236E-009 EndPoint Frequency Probability STC EP# 2 2.3940E-011 1.1830E-002 9 EP# 3 1.0260E-011 5.0700E-003 10 EP# 6 7.3871E-010 3.6504E-001 7 EP# 7 8.2079E-011 4.0560E-002 8 EP# 8 3.7879E-013 1.8718E-004 9 EP# 9 1.6234E-013 8.0222E-005 10 EP# 12 9.2534E-012 4.5726E-003 7 EP# 13 1.0282E-012 5.0807E-004 8 EP# 14 3.1734E-011 1.5682E-002 9 EP# 15 1.3600E-011 6.7207E-003 10 EP# 18 9.7922E-010 4.8389E-001 7 EP# 19 1.0880E-010 5.3766E-002 8 EP# 20 5.0212E-013 2.4813E-004 9 EP#21 2.1520E-013 1.0634E-004 10 EP# 24 1.2266E-011 6.0614E-003 7 EP# 25 1.3629E-012 6.7349E-004 8 EP#114 1.2030E-013 5.9447E-005 17 EP#115 5.1557E-014 2.5478E-005 18 EP#117 3.7121E-012 1.8344E-003 15 EP#118 4.1246E-013 2.0382E-004 16 EP#119 1.9035E-015 9.4063E-007 17 EP#120 8.1578E-016 4.0313E-007 18 EP#122 4.6499E-014 2.2978E-005 15 EP#123 5.1666E-015 2.5531E-006 16 EP#124 1.5947E-013 7.8802E-005 17 EP#125 6.8343E-014 3.3772E-005 18 EP#127 4.9207E-012 2.4316E-003 15 EP#128 5.4675E-013 2.7018E-004 16 EP#129 2.5232E-015 1.2469E-006 17

I Calculation No. PRA-ILRT I Revision No. 2 1 Pap-e I Pag 91 91 of o

158 5

1 I Caclto o R-LTI Rvso o. 2 EP#130 1.0814E-015 5.3438E-007 18 EP#132 6.1639E-014 3.0459E-005 15 EP#133 6,8488E-015 3.3844E-006 16 PLANT DAMAGE STATE (CET) 68,1 .-requency = 1.6687E-006 EndPoint Frequency Probability STC EP# 2 1.0575E-008 6.3375E-003 9 EP# 3 2.4676E-008 1.4788E-002 10 EP# 6 4.6884E-007 2.8096E-001 7 EP# 7 2.0093E-007 1.2041E-001 8 EP# 8 2.6773E-009 1.6044E-003 9 EP# 9 6.2471E-009 3.7437E-003 10 EP# 14 1.1215E-008 6.7207E-003 9 EP# 15 2.6168E-008 1.5682E-002 10 EP# 18 6.2803E-007 3.7636E-001 7 EP# 19 2.6916E-007 1.6130E-001 8 EP# 20 3.4425E-009 2.0630E-003 9 EP# 21 8.0326E-009 4.8137E-003 10 EP# 24 2.4843E-010 1.4888E-004 7 EP# 25 1.0647E-010 6.3804E-005 8 EP#114 5,3143E-011 3.1847E-005 17 EP#115 1.2400E-010 7.4309E-005 18 EP#117 2.3560E-009 1.4119E-003 15 EP#118 1.0097E-009 6.0509E-004 16 EP#119 1.3454E-011 8.0625E-006 17 EP#120 3,1392E-011 1.8812E-005 18 EP#124 5,6356E-011 3.3772E-005 17 EP#125 1,3150E-010 7.8802E-005 18 EP#127 3,1559E-009 1.8913E-003 15 EP#128 1,3525E-009 8.1054E-004 16 EP#129 1,7299E-011 1.0367E-005 17 EP#130 4,0365E-011 2.4189E-005 18 EP#132 1,2484E-012 7.4812E-007 15 EP#133 5,3503E-013 3.2062E-007 16 PLANT DAMAGE STATE (CET) 69,1 Frequency = 3.3358E-009 En dPoint Frequency Probability STC EP## 2 3.9463E-011 1.1830E-002 9 EP## 3 1.6913E-011 5.0700E-003 10 EP## 6 1.2177E-009 3.6504E-001 7 EP## 7 1.3530E-010 4.0560E-002 8 EP## 8 6.2441E-013 1.8718E-004 9 EP## 9 2.6760E-013 8.0222E-005 10 EP## 12 1.5253E-011 4.5726E-003 7 EP## 13 1.6948E-012 5.0807E-004 8 EP## 14 5.2311E-011 1.5682E-002 9 EP## 15 2.2419E-011 6.7207E-003 10 EP## 18 1.6142E-009 4.8389E-001 7 EP## 19 1.7935E-010 5.3766E-002 8 EP##20 8.2771E-013 2.4813E-004 9 EP##21 3.5473E-013 1.0634E-004 10 EP# 24 2.0220E-011 6.0614E-003 7 EP# 25 2.2466E-012 6.7349E-004 8 EP##114 1.9830E-013 5.9447E-005 17 EP##115 8.4988E-014 2.5478E-005 18 EP##117 6.1191E-012 1.8344E-003 15 EPI#118 6.7990E-013 2.0382E-004 16

Calculation No. PRA-ILRT I Revision No. 2 I Page 92 of 158 EP#119 3.1377E-015 9.4063E-007 17 EP#120 1.3447E-015 4.0313E-007 18 EP#122 7.6650E-014 2.2978E-005 15 EP#123 8.5167E-015 2.5531E-006 16 EP#124 2.6287E-013 7.8802E-005 17 EP#125 1.1266E-013 3.3772E-005 18 EP#127 8.1114E-012 2.4316E-003 15 EP#128 9.0127E-013 2.7018E-004 16 EP#129 4.1593E-015 1.2469E-006 17 EP#130 1.7826E-015 5.3438E-007 18 EP#132 1.0161E-013 3.0459E-005 15 EP#133 1.1290E-014 3.3844E-006 16 PLANT DAMAGE STATE (CET) 70, Frequency = 1.4500E-010 EndPoint Frequency Probability STC EP# 2 2.1442E-012 1.4788E-002 9 EP# 3 9.1894E-013. 6.3375E-003 10 EP# 6 5.2380E-011 3.6124E-001 7 EP# 7 5.8200E-012 4.0138E-002 8 EP# 8 5.4283E-013 3.7437E-003 9 EP# 9 2.3264E-013 1.6044E-003 10 EP# 14 2.2738E-012 1.5682E-002 9 EP# 15 9.7451E-013 6.7207E-003 10 EP# 18 7.0164E-011 4.8389E-001 7 EP# 19 7.7960E-012 5.3766E-002 8 EP# 20 6.9798E-013 4.8137E-003 9 EP# 21 2.9914E-013 2.0630E-003 10 EP#24 2.7755E-014 1.9141E-004 7 EP# 25 3.0839E-015 2.1268E-005 8 EP#114 1.0775E-014 7.4309E-005 17 EP#115 4.6178E-015 3.1847E-005 18 EP#117 2.6321E-013 1.8153E-003 15 EP#118 2.9246E-014 2.0170E-004 16 EP#119 2.7278E-015 1.8812E-005 17 EP#120 1.1691E-015 8.0625E-006 18 EP#124 1.1426E-014 7.8802E-005 17 EP#125 4.8970E-015 3.3772E-005 18 EP#127 3.5258E-013 2.4316E-003 15 EP#128 3.9176E-014 2.7018E-004 16 EP#129 3.5075E-015 2.4189E-005 17 EP#130 1.5032E-015 1.0367E-005 18 EP#132 1.3947E-016 9.6187E-007 15 EP#133 1.5497E-017 1.0687E-007 16 PLANT DAMAGE STATE (CET) 71, Frequency = 1.4196E-007 EndPoint Frequency Probability STC EP# 2 8.9969E-010 6.3375E-003 9 EP# 3 2.0993E-009 1.4788E-002 10 EP# 6 3.9886E-008 2.8096E-001 4 EP# 7 1.7094E-008 1.2041E-001 5 EP# 8 2.2777E-010 1.6044E-003 9 EP# 9 5.3146E-010 3.7437E-003 10 EP# 14 9.5409E-010 6.7207E-003 9 EP# 15 2.2262E-009 1.5682E-002 10 EP# 18 5.3429E-008 3.7636E-001 4 EP# 19 2.2898E-008 1.6130E-001 5 EP# 20 2.9287E-010 2.0630E-003 9

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 93 of 158 1 EP# 21 6.8336E-010 4.8137E-003 10 EP# 24 2.113 5E-0 11 1.4888E-004 4 EP# 25 9.0578E-012 6.3804E-005 5 EP# 114 4.5211E-012 3.1847E-005 17 EP#115 1.0549E-0 11 7.4309E-005 18 EP# 117 2.0043E-010 1.4119E-003 15 EP#118 8.5900E-01 1 6.0509E-004 16 EP# 119 1.1446E-0 12 8.0625E-006 17 EP# 120 2.6707E-012 1.8812E-005 18 EP# 124 4.7944E-0 12 3.3772E-005 17 EP# 125 1.1187E-011 7.8802E-005 18 EP#127 2.6849E-010 1.8913E-003 15 EP#128 1.1507E-010 8.1054E-004 16 EP#129 1.4717E-012 1.0367E-005 17 EP#130 3.4340E-012 2.4189E-005 18 EP#132 1.0621E-013 7.4812E-007 15 EP#133 4.5517E-014 3.2062E-007 16 PLANT DAMAGE STATE (CET) 72, Frequency = 4.2513E-007 En dPoint Frequency Probability STC EP# 14 1.1696E-008 2.7512E-002 9 EP## 15 5.0126E-009 1.1791E-002 10 EP## 17 4.0100E-007 9.4326E-001 6 EP#/20 1.8506E-010 4.3531E-004 9 EP##21 7.9313E-011 1.8656E-004 10 EP#/23 5.0231E-009 1.1816E-002 6 EP##124 5.8774E-011 1.3825E-004 17 EP##125 2.5189E-011 5.9250E-005 18 EP##126 2.0151E-009 4.7400E-003 14 EP##129 9.2996E-013 2.1875E-006 17 EP##130 3.9856E-013 9.3750E-007 18 EPR/131 2.5242E-011 5.9375E-005 14 PLANT DAMAGE STATE (CET) 73, Frequency = 1.7269E-008 En dPoint Frequency Probability STC EP#/14 2.0362E-010 1.1791E-002 9 EP## 15 4.7510E-010 2.7512E-002 10 EPt # 16 1.6289E-008 9.4326E-001 2 EPI /20 6.2502E-011 3.6193E-003 9 EPI /21 1.4584E-010 8.4451E-003 10 EP#/22 6.4435E-012 3.7312E-004 2 EP#/124 1.0232E-012 5.9250E-005 17 EPi /125 2.3874E-012 1.3825E-004 18 EPI /126 8.1855E-011 4.7400E-003 14 EP##129 3.1408E-013 1.8188E-005 17 EP#/130 7.3286E-013 4.2438E-005 18 EP##131 3.2379E-014 1.8750E-006 14 PLANT DAMAGE STATE (CET) 74, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1791E-002 9 EP# 15 0.OOOOE+000 2.7512E-002 10 EP# 17 0.OOOOE+000 9.4326E-001 6 EP# 20 0.OOOOE+000 3.6193E-003 9 EP# 21 0.OOOOE+000 8.4451E-003 10 EP# 23 0.OOOOE+000 3.7312E-004 6 EP#124 0.OOOOE+000 5.9250E-005 17 EP#125 0.OOOOE+000 1.3825E-004 18

I Calculation No. PRA-ILRT I Revision No. 2 I Page 94 of 158 1 EP#126 0.0000E+000 4.7400E-003 14 EP#129 0.OOOOE+000 1.8188E-005 17 EP#130 0.0000E+000 4.2438E-005 18 EP#131 0.0000E+000 1.8750E-006 14 PLANT DAMAGE STATE (CET) 75, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 14 0.0000E+000 2.7512E-002 9 EP# 15 0.OOOOE+000 1.1791E-002 10 EP# 18 0.0000E+000 8.4893E-001 7 EP# 19 0.OOOOE+000 9.4326E-002 8 EP# 20 0.0000E+000 4.3531E-004 9 EP# 21 0.OOOOE+000 1.8656E-004 10 EP# 24 0.OOOOE+000 1.0634E-002 7 EP# 25 0.0000E+000 1.1816E-003 8 EP#124 0.OOOOE+000 1.3825E-004 17 EP#125 0.OOOOE+000 5.9250E-005 18 EP#127 0.OOOOE+000 4.2660E-003 15 EP#128 0.OOOOE+000 4.7400E-004 16 EP#129 0.OOOOE+000 2.1875E-006 17 EP#130 0.OOOOE+000 9.3750E-007 18 EP#132 0.OOOOE+000 5.3437E-005 15 EP#133 0.OOOOE+000 5.9375E-006 16 PLANT DAMAGE STATE (CET) 76, Frequency = 4.2434E-007 EndPoint Frequency Probability STC EP# 14 5.0033E-009 1.1791E-002 9 EP# 15 1.1674E-008 2.7512E-002 10 EP# 18 2.8018E-007 6.6028E-001 7 EP# 19 1.2008E-007 2.8298E-001 8 EP# 20 1.5358E-009 3.6193E-003 9 EP# 21 3.5836E-009 8.4451E-003 10 EP# 24 1.1083E-010 2.6119E-004 7 EP#25 4.7500E-011 1.1194E-004 8 EP#124 2.5142E-011 5.9250E-005 17 EP#125 5.8665E-011 1.3825E-004 18 EP#127 1.4080E-009 3.3180E-003 15 EP#128 6.0341E-010 1.4220E-003 16 EP#129 7.7177E-012 1.8188E-005 17 EP#130 1.8008E-011 4.2438E-005 18 EP#132 5.5695E-013 1.3125E-006 15 EP#133 2.3869E-013 5.6250E-007 16 PLANT DAMAGE STATE (CET) 77, Frequency= 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 2.7512E-002 9 EP# 15 0.OOOOE+000 1.1791E-002 10 EP# 18 0.OOOOE+000 8.4893E-001 7 EP# 19 0.OOOOE+000 9.4326E-002 8 EP# 20 0.OOOOE+000 4.3531 E-004 9 EP# 21 0.OOOOE+000 1.8656E-004 10 EP# 24 0.OOOOE+000 1.0634E-002 7 EP# 25 0.OOOOE+000 1.1816E-003 8 EP#124 0.OOOOE+000 1.3825E-004 17 EP#125 0.OOOOE+000 5.9250E-005 18 EP#127 0.OOOOE+000 4.2660E-003 15 EP#128 0.OOOOE+000 4.7400E-004 16 EP#129 0.OOOOE+000 2.1875E-006 17

I II Revision No. 2 Page 95 of 158 I II Calculation No.

Calculation No. PRA-ILRT PRA-ILRT Revision No. 2 1 pap-e 95 of 158 1 EP#130 0.0000E+000 9.3750E-007 18 EP#132 0.0000E+000 5.3437E-005 15 EP#133 O.0000E+000 5.9375E-006 16 PLANT DAMAGE STATE (CET) 78, Frequency = 4.9063E-009 EndPoint Frequency Probability STC EP# 14 1.3498E-010 2.7512E-002 9 EP# 15 5.7849E-011 1.1791E-002 10 EP# 18 4.1651E-009 8.4893E-001 7 EP# 19 4.6279E-010 9.4326E-002 8 EP# 20 4.1434E-011 8.4451E-003 9 EP# 21 1.7757E-011 3.6193E-003 10 EP# 24 1.6476E-012 3.3581E-004 7 EP# 25 1.8307E-013 3.7313E-005 8 EP#124 6.7829E-013 1.3825E-004 17 EP#125 2.9070E-013 5.9250E-005 18 EP#127 2.0930E-011 4.2660E-003 15 EP#128 2.3256E-012 4.7400E-004 16 EP#129 2.0821E-013 4.2438E-005 17 EP#130 8.9233E-014 1.8188E-005 18 EP#132 8.2793E-015 1.6875E-006 15 EP#133 9.1993E-016 1.8750E-007 16 PLANT DAMAGE STATE (CET) 79, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1791E-002 9 EP# 15 0.0000E+000 2.7512E-002 10 EP# 18 O.OOOOE+000 6.6028E-001 4 EP# 19 O.0000E+000 2.8298E-001 5 EP# 20 0.0000E+000 3.6193E-003 9 EP# 21 0.0000E+000 8.4451E-003 10 EP# 24 0.0000E+000 2.6119E-004 4 EP# 25 0.0000E+000 1.1 194E-004 5 EP#124 0.0000E+000 5.9250E-005 17 EP#125 0.0000E+000 1.3825E-004 18 EP#127 0.0000E+000 3.3180E-003 15 EP#128 0.0000E+000 1.4220E-003 16 EP#129 0.OOOOE+000 1.8188E-005 17 EP#130 0.0000E+000 4.2438E-005 18 EP#132 0.0000E+000 1.3125E-006 15 EP#133 0.0000E+000 5.6250E-007 16 PLANT DAMAGE STATE (CET) 80, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP#27 0.0000E+000 1.3238E-003 12 EP# 28 0.OOOOE+000 5.6733E-004 13 EP# 29 0.OOOOE+000 3.0235E-003 9 EP# 30 0.0000E+000 1.2958E-003 10 EP# 32 0.OOOOE+000 1.0366E-001 6 EP# 35 0.0000E+000 4.7841E-005 9 EP# 36 0.OOOOE+000 2.0503E-005 10 EP# 38 0.OOOOE+000 1.2985E-003 6 EP# 42 0.OOOOE+000 3.5460E-002 12 EP#43 0.OOOOE+000 1.5197E-002 13 EP# 44 0.OOOOE+000 7.3536E-003 9 EP#45 0.OOOOE+000 3.1515E-003 10 EP# 47 0.OOOOE+000 2.5212E-001 6 EP# 50 0.OOOOE+000 1.1635E-004 9

Calculation No. PRA-ILRT Revision No. 2 1 Page 96 of 158 EP# 51 0.0000E+000 4.9866E-005 10 EP# 53 0.0000E+000 3.1582E-003 6 EP# 71 0.0000E+000 4.0772E-003 9 EP# 72 0.0000E+000 1.7474E-003 10 EP# 74 0.0000E+000 1.3979E-001 6 EP# 77 0.0000E+000 6.4513E-005 9 EP# 78 0.0000E+000 2.7649E-005 10 EP# 80 0.OOOOE+000 1.7511 E-003 6 EP# 84 0.0000E+000 3.0554E-002 12 EP# 85 0.OOOOE+000 1.3094E-002 13 EP# 86 0.OOOOE+000 1.0398E-002 9 EP# 87 0.0000E+000 4.4561E-003 10 EP# 89 0.OOOOE+000 3.5649E-001 6 EP# 92 0.OOOOE+000 1.6452E-004 9 EP# 93 0.OOOOE+000 7.0508E-005 10 EP# 95 0.0000E+000 4.4655E-003 6 EP#135 0.OOOOE+000 6.652 1E-006 20 EP#136 0.OOOOE+000 2.8509E-006 21 EP#137 0.OOOOE+000 1.5194E-005 17 EP#138 0.0000E+000 6.5115E-006 18 EP#139 0.0000E+000 5.2092E-004 14 EP#142 0.OOOOE+000 2.4040E-007 17 EP#143 0.OOOOE+000 1.0303E-007 18 EP# 144 0.OOOOE+000 6.5253E-006 14 EP# 148 0.OOOOE+000 1.7819E-004 20 EP#149 0.0000E+000 7.6368E-005 21 EP# 150 0.OOOOE+000 3.6953E-005 17 EP# 151 0.0000E+000 1.5837E-005 18 EP#152 0.OOOOE+000 1.2669E-003 14 EP#155 0.0000E+000 5.8469E-007 17 EP#156 O.OOOOE+000 2.5058E-007 18 EP#157 0.0000E+000 1.5870E-005 14 EP#173 0.0000E+000 2.0489E-005 17 EP# 174 0.OOOOE+000 8.7808E-006 18 EP# 175 0.OOOOE+000 7.0247E-004 14 EP#178 0.0000E+000 3.2419E-007 17 EP#179 0.0000E+000 1.3894E-007 18 EP#180 0.0000E+000 8.7994E-006 14 EP# 184 0.OOOOE+000 1.5354E-004 20 EP#185 0.OOOOE+000 6.580IE-005 21 EP# 186 0.0000E+000 5.2249E-005 17 EP#187 0.OOOOE+000 2.2393E-005 18 EP#188 0.OOOOE+000 1.7914E-003 14 EP#191 0.0000E+000 8.2673E-007 17 EP# 192 0.0000E+000 3.543 1E-007 18 EP# 193 0.0000E+000 2.2440E-005 14 PLANT DAMAGE STATE (CET) 81, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 5.6733E-004 12 EP# 28 0.OOOOE+000 1.3238E-003 13 EP# 29 0.OOOOE+000 1.6197E-003 9 EP# 30 0.OOOOE+000 3.7794E-003 10 EP# 31 0.OOOOE+000 1.0258E-001 2 EP# 35 0.OOOOE+000 4.1006E-004 9 EP# 36 0.OOOOE+000 9.5681E-004 10

Calculation No. PRA-ILRT [ Revision No. 2 1 Page 97 of 1587 EP# 42 0.OOOOE+/-O000 1.5197E-002 12 EP# 43 0.OOOOE+/-O000 3.5460E-002 13 EP# 44 0.OOOOE+000 3.9394E-003 9 EP# 45 0.OOOOE-4-000 9.1920E-003 10 EP# 46 0.OOOOE+000 2.4950E-001 2 EP# 50 0.OOOOE+/-O000 9.9732E-004 9 EP# 51 0.OOOOE+000 2.3271E-003 10 EP# 71 0.OOOOE+000 1.7474E-003 9 EP# 72 0.OOOOE+/-000 4.0772E-003 10 EP# 73 0.OOOOE+000 1.3979E-001 2 EP# 77 0.OOOOE-I000 5.3638E-004 9 EP# 78 0.OOOOE+000 1.2516E-003 10 EP# 79 0.OOOOE+000 5.5297E-005 2 EP# 84 0.OOOOE+000 1.3094E-002 12 EP# 85 0.OOOOE+000 3.0554E-002 13 EP# 86 0.OOOOE+000 4.4561E-003 9 EP# 87 0.OOOOE+000 1.0398E-002 10 EP# 88 0.OOOOE+000 3.5649E-001 2 EP# 92 0.OOOOE+000 1.3679E-003 9 EP# 93 0.OOOOE+O000 3.1917E-003 10 EP# 94 0.OOOOE+/-O000 1.4102E-004 2 EP#135 0.OOOOE+/-000 2.8509E-006 20 EP#136 0.OOOOE+O000 6.6521 E-006 21 EP#137 0.OOOOE+000 8.1394E-006 17 EP#138 0.OOOOE+/-O000 1.8992E-005 18 EP#139 0.OOOOE+000 5.1550E-004 14 EP#142 O.OOOOE+000 2.0606E-006 17 EP#143 0.OOOOE+000 4.808 1E-006 18 EP#148 O.OOOOE+000 7.6368E-005 20 EP#149 0.OOOOE+000 1.7819E-004 21 EP#150 0.OOOOE+000 1.9796E-005 17 EP# 151 0.OOOOE+000 4.6191E-005 18 EP# 152 0.OOOOE+000 1.2537E-003 14 EP#155 0.OOOOE+000 5.0117E-006 17 EP#156 0.OOOOE+000 1.1694E-005 18 EP#173 0.OOOOE+000 8.7808E-006 17 EP# 174 0.OOOOE+000 2.0489E-005 18 EP#175 0.OOOOE+000 7.0247E-004 14 EP#178 0.OOOOE+000 2.6954E-006 17 EP# 179 0.OOOOE+O000 6.2892E-006 18 EP# 180 0.OOOOE+O000 2.7787E-007 14 EP# 184 O.OOOOE+O000 6.5801E-005 20 EP# 185 0.OOOOE+000 1.5354E-004 21 EP#186 0.OOOOE+/-000 2.2393E-005 17 EP#187 0.OOOOE+000 5.2249E-005 18 EP#188 0.OOOOE+/-000 1.7914E-003 14 EP# 191 0.OOOOE+000 6.8737E-006 17 EP# 192 0.OOOOE+/-000 1.6039E-005 18 EP#193 0.OOOOE+000 7.0862E-007 14 PLANT DAMAGE STATE (CET) 82, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 5.6733E-004 12 EP# 28 0.OOOOE+000 1.3238E-003 13 EP#29 0.OOOOE+000 1.6197E-003 9 EP# 30 0.OOOOE+000 3.7794E-003 10

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 98 of 158 EP# 32 O.OOOOE+000 1.0258E-001 6 EP# 35 O.OOOOE+000 4.1006E-004 9 EP# 36 O.OOOOE+000 9.5681E-004 10 EP# 42 O.OOOOE+000 1.5197E-002 12 EP# 43 O.OOOOE+000 3.5460E-002 13 EP# 44 O.OOOOE+000 3.9394E-003 9 EP# 45 O.OOOOE+O00 9.1920E-003 10 EP# 47 0.OOOOE+000 2.4950E-00 I 6 EP# 50 O.OOOOE+000 9.9732E-004 9 EP# 51 O.OOOOE+000 2.3271E-003 10 EP# 71 O.OOOOE+000 1.7474E-003 9 EP# 72 O.OOOOE+000 4.0772E-003 10 EP# 74 O.OOOOE+000 1.3979E-001 6 EP# 77 O.OOOOE+000 5.3638E-004 9 EP# 78 O.OOOOE+000 1.2516E-003 10 EP# 80 O.OOOOE+000 5.5297E-005 6 EP# 84 O.OOOOE+000 1.3094E-002 12 EP# 85 O.OOOOE+000 3.0554E-002 13 EP# 86 O.OOOOE+000 4.4561 E-003 9 EP# 87 O.OOOOE+000 1.0398E-002 10 EP# 89 O.OOOOE+000 3.5649E-001 6 EP# 92 O.OOOOE+000 1.3679E-003 9 EP# 93 O.OOOOE+000 3.1917E-003 10 EP# 95 O.OOOOE+000 1.4102E-004 6 EP#135 O.OOOOE+000 2.8509E-006 20 EP#136 0.OOOOE+000 6.6521 E-006 21 EP#137 O.OOOOE+000 8.1394E-006 17 EP#138 O.OOOOE+000 1.8992E-005 18 EP# 139 0.OOOOE+000 5.1550E-004 14 EP#142 0.OOOOE+000 2.0606E-006 17 EP# 143 O.OOOOE+000 4.8081E-006 18 EP#148 0.OOOOE+000 7.6368E-005 20 EP#149 0.OOOOE+000 1.7819E-004 21 EP#150 0.OOOOE+000 1.9796E-005 17 EP#151 O.OOOOE+000 4.6191E-005 18 EP# 152 O.OOOOE+000 1.2537E-003 14 EP#155 O.OOOOE+000 5.0117E-006 17 EP# 156 O.OOOOE+000 1.1694E-005 18 EP# 173 O.OOOOE+000 8.7808E-006 17 EP# 174 O.OOOOE+000 2.0489E-005 18 EP#175 O.OOOOE+000 7.0247E-004 14 EP#178 O.OOOOE+000 2.6954E-006 17 EP#179 O.OOOOE+000 6.2892E-006 18 EP#180 0.OOOOE+000 2.7787E-007 14 EP# 184 O.OOOOE+000 6.5801E-005 20 EP# 185 0.OOOOE+000 1.5354E-004 21 EP#186 O.OOOOE+000 2.2393E-005 17 EP# 187 0.OOOOE+000 5.2249E-005 18 EP#188 O.OOOOE+000 1.7914E-003 14 EP# 191 O.OOOOE+000 6.8737E-006 17 EP#192 0.OOOOE+000 1.6039E-005 18 EP#193 O.OOOOE+000 7.0862E-007 14 PLANT DAMAGE STATE (CET) 83, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 1.3238E-003 12

ICalculation No. PRA-ILRT I Revision No. 2 1 Page 99 of 158 EP# 28 0.0000E+000 5.6733E-004 13 EP# 29 0.0000E+000 3.0235E-003 9 EP# 30 0.0000E+000 1.2958E-003 10 EP# 33 0.0000E+000 9.3297E-002 7 EP# 34 O.OOOOE+000 1.0366E-002 8 EP# 35 0.0000E+000 4.7841E-005 9 EP# 36 0.OOOOE+000 2.0503E-005 10 EP# 39 0.OOOOE+000 1.1687E-003 7 EP# 40 O.OOOOE+000 1.2985E-004 8 EP# 42 0.OOOOE+000 3.5460E-002 12 EP# 43 O.OOOOE+000 1.5197E-002 13 EP# 44 O.OOOOE+000 7.3536E-003 9 EP# 45 0.OOOOE+000 3.1515E-003 10 EP# 48 0.OOOOE+000 2.2691E-001 7 EP# 49 0.OOOOE+000 2.5212E-002 8 EP# 50 0.OOOOE+000 1.1635E-004 9 EP# 51 0.OOOOE+000 4.9866E-005 10 EP# 54 0.OOOOE+000 2.8424E-003 7 EP# 55 0.OOOOE+000 3.1582E-004 8 EP# 71 0.OOOOE+000 4.0772E-003 9 EP# 72 0.OOOOE+000 1.7474E-003 10 EP# 75 0.OOOOE+000 1.2581E-001 7 EP# 76 0.OOOOE+000 1.3979E-002 8 EP# 77 0.OOOOE+000 6.4513E-005 9 EP# 78 0.OOOOE+000 2.7649E-005 10 EP# 81 0.OOOOE+000 1.5760E-003 7 EP# 82 0.OOOOE+000 1.7511E-004 8 EP# 84 0.OOOOE+000 3.0554E-002 12 EP# 85 0.OOOOE+000 1.3094E-002 13 EP# 86 0.OOOOE+000 1.0398E-002 9 EP# 87 0.OOOOE+000 4.4561E-003 10 EP# 90 0.OOOOE+000 3.2084E-001 7 EP# 91 0.OOOOE+000 3.5649E-002 8 EP# 92 0.OOOOE+000 1.6452E-004 9 EP# 93 0.OOOOE+000 7.0508E-005 10 EP# 96 0.OOOOE+000 4.0190E-003 7 EP# 97 0.0000E+000 4.4655E-004 8 EP#135 0.0000E+000 6.6521 E-006 20 EP#136 0.OOOOE+000 2.8509E-006 21 EP#137 0.OOOOE+000 1.5194E-005 17 EP#138 0.OOOOE+000 6.5115E-006 18 EP#140 0.OOOOE+000 4.6883E-004 15 EP#141 0.OOOOE+000 5.2092E-005 16 EP#142 0.OOOOE+000 2.4040E-007 17 EP#143 0.OOOOE+000 1.0303E-007 18 EP#145 0.OOOOE+000 5.8727E-006 15 EP#146 0.0000E+000 6.5253E-007 16 EP#148 0.OOOOE+000 1.7819E-004 20 EP#149 0.OOOOE+000 7.6368E-005 21 EP#150 0.OOOOE+O00 3.6953E-005 17 EP#151 0.OOOOE+000 1.5837E-005 18 EP#153. 0.OOOOE+000 1.1403E-003 15 EP#154 0.OOOOE+000 1.2669E-004 16 EP#155 0.0000E+000 5.8469E-007 17 EP#156 0.OOOOE+000 2.5058E-007 18

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 100 of 158 EP#158 0.0000E+/-000 1.4283E-005 15 EP#159 0.0000E+/-000 1.5870E-006 16 EP#173 0.0000E+000 2.0489E-005 17 EP# 174 0.OOOOE+/-O000 8.7808E-006 18 EP# 176 0.OOOOE+000 6.3222E-004 15 EP#177 0.OOOOE+000 7.0247E-005 16 EP#178 0.0000E-I000 3.2419E-007 17 EP#179 0.0000E+000 1.3894E-007 18 EP#181 0.0000E+/-000 7.9194E-006 15 EP#182 0.0000E+000 8.7994E-007 16 EP# 184 0.OOOOE+000 1.5354E-004 20 EP#185 0.0000E+000 6.5801E-005 21 EP#186 0.OOOOE+000 5.2249E-005 17 EP#187 0.OOOOE+/-000 2.2393E-005 18 EP#189 0.0000E+000 1.6123E-003 15 EP#190 0.OOOOE+000 1.7914E-004 16 EP#191 0.0000E+000 8.2673E-007 17 EP# 192 0.0000E+000 3.543 1E-007 18 EP# 194 0.OOOOE+000 2.0196E-005 15 EP#195 0.OOOOE+000 2.2440E-006 16 PLANT DAMAGE STATE (CET) 84, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 27 0.OOOOE+000 5.6733E-004 EP# 28 0.OOOOE+000 1.3238E-003 EP# 29 0.OOOOE+000 1.6197E-003 EP# 30 0.OOOOE+000 3.7794E-003 EP# 33 0.OOOOE+000 7.1809E-002 EP# 34 0.OOOOE+000 3.0775E-002 EP# 35 0.OOOOE+000 4.1006E-004 EP# 36 0.OOOOE+000 9.5681E-004 EP# 42 0.OOOOE+000 1.5197E-002 EP# 43 0.OOOOE+000 3.5460E-002 EP# 44 0.OOOOE+000 3.9394E-003 EP# 45 0.OOOOE+000 9.1920E-003 EP# 48 0.OOOOE+000 1.7465E-001 EP# 49 0.OOOOE+000 7.4849E-002 EP# 50 0.OOOOE+000 9.9732E-004 EP# 51 0.OOOOE+000 2.3271E-003 EP# 71 0.OOOOE+000 1.7474E-003 EP# 72 0.OOOOE+000 4.0772E-003 EP# 75 0.OOOOE+000 9.7854E-002 EP# 76 0.OOOOE+000 4.1937E-002 EP# 77 0.OOOOE+000 5.3638E-004 EP# 78 0.OOOOE+000 1.2516E-003 EP# 81 0.OOOOE+000 3.8708E-005 EP# 82 0.OOOOE+000 1.6589E-005 EP# 84 0.OOOOE+000 1.3094E-002 EP# 85 0.OOOOE+000 3.0554E-002 EP# 86 0.OOOOE+000 4.4561 E-003 EP# 87 0.OOOOE+000 1.0398E-002 EP# 90 0.OOOOE+000 2.4954E-001 EP# 91 0.OOOOE+000 1.0695E-001 EP# 92 0.OOOOE+000 1.3679E-003 EP# 93 0.OOOOE+000 3.1917E-003 EP# 96 O.OOOOE+000 9.8711 E-005

I Calculation No. PRA-ILRT I RevisionNo. 2 - Page 101 of 158 1 EP#97 O.OOOOE+000 4.2305E-005 8 EP#135 0.OOOOE+000 2.8509E-006 20 EP#136 0.OOOOE+/-O000 6.6521 E-006 21 EP#137 O.OOOOE+000 8.1394E-006 17 EP#138 0.OOOOE+000 1.8992E-005 18 EP# 140 0.OOOOE+000 3.6085E-004 15 EP# 141 0.0000E+/-O000 1.5465E-004 16 EP#142 O.0000E+000 2.0606E-006 17 EP#143 0.OOOOE+000 4.8081E-006 18 EP#148 O.OOOOE+O000 7.6368E-005 20 EP#149 0.OOOOE+O000 1.7819E-004 21 EP#150 O.OOOOE+000 1.9796E-005 17 EP#151 0.OOOOE+O000 4.6191E-005 18 EP#153 0.OOOOE+000 8.7762E-004 15 EP#154 0.0000E+000 3.7612E-004 16 EP#155 0.OOOOE+/-000 5.0117E-006 17 EP#156 0.0000E+000 1.1694E-005 18 EP#173 0.0000E+000 8.7808E-006 17 EP# 174 0.OOOOE+000 2.0489E-005 18 EP#176 0.0000E+000 4.9173E-004 15 EP#177 0.OOOOE+000 2.1074E-004 16 EP#178 0.OOOOE+000 2.6954E-006 17 EP#179 O.OOOOE-4000 6.2892E-006 18 EP#181 0.0000E+000 1.9451 E-007 15 EP#182 0.0000E+000 8.3362E-008 16 EP#184 0.OOOOE+000 6.5801E-005 20 EP# 185 O.0000E+000 1.5354E-004 21 EP#186 O.OOOOE+000 2.2393E-005 17 EP#187 O.0000E+000 5.2249E-005 18 EP#189 O.0000E+O00 1.2540E-003 15 EP#190 0.0000E+/-000 5.3742E-004 16 EP# 191 0.OOOOE+/-O000 6.8737E-006 17 EP#192 O.OOOOE+000 1.6039E-005 18 EP# 194 0.OOOOE+000 4.9604E-007 15 EP# 195 0.OOOOE+/-O000 2.1259E-007 16 PLANT DAMAGE STATE (CET) 85, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP#27 0.OOOOE+000 1.3238E-003 12 EP# 28 0.OOOOE+000 5.6733E-004 13 EP# 29 0.OOOOE+000 3.0235E-003 9 EP# 30 0.OOOOE+000 1.2958E-003 10 EP# 33 0.OOOOE+000 9.3297E-002 7 EP# 34 0.OOOOE+000 1.0366E-002 8 EP# 35 0.OOOOE+000 4.7841E-005 9 EP# 36 0.OOOOE+000 2.0503E-005 10 EP# 39 0.OOOOE+000 1.1687E-003 7 EP# 40 0.OOOOE+000 1.2985E-004 8 EP# 42 0.OOOOE+000 3.5460E-002 12 EP#43 0.OOOOE+000 1.5197E-002 13 EP# 44 0.OOOOE+000 7.3536E-003 9 EP# 45 0.OOOOE+000 3.1515E-003 10 EP# 48 0.OOOOE+000 2.2691E-001 7 EP# 49 0.OOOOE+000 2.5212E-002 8 EP# 50 0.OOOOE+000 1.1635E-004 9 EP# 51 0.OOOOE+000 4.9866E-005 10

I Calculation No. PRA-ILRT I Revision No. 2 [Page 102 of 158 EP# 54 0.0000E+000 2.8424E-003 7 EP# 55 0.OOOOE+000 3.1582E-004 8 EP# 71 0.0000E+000 4.0772E-003 9 EP# 72 0.0000E+000 1.7474E-003 10 EP# 75 0.OOOOE+000 1.2581E-001 7 EP# 76 0.OOOOE+000 1.3979E-002 8 EP# 77 0.0000E+000 6.4513E-005 9 EP# 78 0.OOOOE+000 2.7649E-005 10 EP# 81 0.0000E+000 1.5760E-003 7 EP# 82 0.0000E+000 1.7511 E-004 8 EP# 84 0.0000E+000 3.0554E-002 12 EP# 85 0.0000E+000 1.3094E-002 13 EP# 86 0.0000E+000 1.0398E-002 9 EP# 87 0.0000E+000 4.4561 E-003 10 EP# 90 0.OOOOE+000 3.2084E-001 7 EP# 91 0.OOOOE+000 3.5649E-002 8 EP# 92 0.0000E+000 1.6452E-004 9 EP# 93 0.0000E+000 7.0508E-005 10 EP# 96 0.0000E+000 4.0190E-003 7 EP# 97 0.0000E+000 4.4655E-004 8 EP#135 0.OOOOE+000 6.6521 E-006 20 EP#136 0.0000E+000 2.8509E-006 21 EP#137 0.OOOOE+000 1.5194E-005 17 EP#138 0.0000E+000 6.5115E-006 18 EP#140 0.0000E+000 4.6883E-004 15 EP# 141 0.0000E+000 5.2092E-005 16 EP# 142 0.OOOOE+000 2.4040E-007 17 EP#143 0.0000E+000 1.0303E-007 18 EP#145 0.0000E+000 5.8727E-006 15 EP#146 0.0000E+000 6.5253E-007 16 EP#148 0.OOOOE+000 1.7819E-004 20 EP# 149 0.OOOOE+000 7.6368E-005 21 EP# 150 0.OOOOE+000 3.6953E-005 17 EP#151 0.0000E+000 1.5837E-005 18 EP#153 0.OOOOE+000 1.1403E-003 15 EP#154 0.OOOOE+000 1.2669E-004 16 EP#155 0.OOOOE+000 5.8469E-007 17 EP#156 0.0000E+000 2.5058E-007 18 EP#158 0.0000E+000 1.4283E-005 15 EP# 159 0.0000E+000 1.5870E-006 16 EP#173 0.0000E+000 2.0489E-005 17 EP# 174 0.0000E+000 8.7808E-006 18 EP#176 0.OOOOE+000 6.3222E-004 15 EP# 177 0.OOOOE+000 7.0247E-005 16 EP# 178 0.OOOOE+000 3.2419E-007 17 EP#179 0.OOOOE+000 1.3894E-007 18 EP# 181 0.0000E+000 7.9194E-006 15 EP# 182 0.0000E+000 8.7994E-007 16 EP# 184 0.OOOOE+000 1.5354E-004 20 EP#185 0.0000E+000 6.5801E-005 21 EP#186 0.0000E+000 5.2249E-005 17 EP#187 0.0000E+000 2.2393E-005 18 EP#189 0.0000E+000 1.6123E-003 15 EP# 190 0.0000E+000 1.7914E-004 16 EP#191 0.0000E+000 8.2673E-007 17

ICalculation No. PRA-ILRT I Revision No. 2 1 Page 103 of 158 EP#192 0.0000E+000 3.5431E-007 18 EP#194 0.0000E+000 2.0196E-005 15 EP#195 O.0000E+000 2.2440E-004 16 PLANT DAMAGE STATE (CET) 86, Frequency= 3.7651E-008 EndPoint Frequency Probability STC EP# 27 4.9841E-011 1.3238E-003 12 EP#28 2.1361E-011 5.6733E-004 13 EP# 29 1.4230E-010 3.7794E-003 9 EP# 30 6.0985E-011 1.6197E-003 10 EP# 33 3.4762E-009 9.2325E-002 7 EP# 34 3.8624E-010 1.0258E-002 8 EP# 35 3.6025E-011 9.5681E-004 9 EP# 36 1.5439E-011 4.1006E-004 10 EP# 42 1.3351 E-009 3.5460E-002 12 EP#43 5.7219E-010 1.5197E-002 13 EP# 44 3.4609E-010 9.1920E-003 9 EP# 45 1.4832E-010 3.9394E-003 10 EP# 48 8.4544E-009 2.2455E-001 7 EP# 49 9.3938E-010 2.4950E-002 8 EP#50 8.7617E-011 2.3271E-003 9 EP# 51 3.7550E-011 9.9732E-004 10 EP# 71 1.5351E-010 4.0772E-003 9 EP# 72 6.5791E-011 1.7474E-003 10 EP# 75 4.7370E-009 1.2581E-001 7 EP# 76 5.2633E-010 1.3979E-002 8 EP# 77 4.7123E-011 1.2516E-003 9 EP# 78 2.0195E-011 5.3638E-004 10 EP# 81 1.8738E-012 4.9767E-005 7 EP# 82 2.0820E-013 5.5297E-006 8 EP# 84 1.1504E-009 3.0554E-002 12 EP# 85 4.9302E-010 1.3094E-002 13 EP# 86 3.9148E-010 1.0398E-002 9 EP# 87 1.6778E-010 4.4561E-003 10 EP# 90 1.2080E-008 3.2084E-001 7 EP# 91 1.3422E-009 3.5649E-002 8 EP# 92 1.2017E-010 3.1917E-003 9 EP#93 5.1501E-011 1.3679E-003 10 EP# 96 4.7785E-012 1.2691E-004 7 EP# 97 5.3094E-013 1.4102E-005 8 EP#135 2.5046E-013 6.6521E-006 20 EP#136 1.0734E-013 2.8509E-006 21 EP#137 7.1507E-013 1.8992E-005 17 EP#138 3.0646E-013 8.1394E-006 18 EP#140 1.7468E-011 4.6395E-004 15 EP#141 1.9409E-012 5.1550E-005 16 EP#142 1.8103E-013 4.8081E-006 17 EP#143 7.7585E-014 2.0606E-006 18 EP#148 6.7091E-012 1.7819E-004 20 EP#149 2.8753E-012 7.6368E-005 21 EP#150 1.7391E-012 4.6191E-005 17 EP#151 7.4534E-013 1.9796E-005 18 EP#153 4.2485E-011 1.1284E-003 15 EP#154 4.7205E-012 1.2537E-004 16 EP#155 4.4029E-013 1.1694E-005 17 EP#156 1.8869E-013 5.0117E-006 18

I Calculation No. PRA-ILRT I Revision No. 2 I Page 104 of 158 I EP#173 7.7142E-013 2.0489E-005 17 EP#174 3.3061E-013 8.7808E-006 18 EP#176 2.3804E-011 6.3222E-004 15 EP#177 2.6449E-012 7.0247E-005 16 EP#178 2.3680E-013 6.2892E-006 17 EP#179 1.0148E-013 2.6954E-006 18 EP#181 9.4161E-015 2.5009E-007 15 EP#182 1.0462E-015 2.7787E-008 16 EP#184 5.7808E-012 1.5354E-004 20 EP#185 2.4775E-012 6.5801E-005 21 EP#186 1.9672E-012 5.2249E-005 17 EP#187 8.4311E-013 2.2393E-005 18 EP#189 6.0704E-011 1.6123E-003 15 EP#190 6.7448E-012 1.7914E-004 16 EP#191 6.0387E-013 1.6039E-005 17 EP#192 2.5880E-013 6.8737E-006 18 EP#194 2.4013E-014 6.3776E-007 15 EP#195 2.6681E-015 7.0862E-008 16 PLANT DAMAGE STATE (CET) 87, Frequency = 1.3750E-008 EndPoint Frequency Probability STC EP# 27 7.8008E-012 5.6733E-004 12 EP# 28 1.8202E-011 1.3238E-003 13 EP# 29 2.2272E-011 1.6197E-003 9 EP#30 5.1967E-011 3.7794E-003 10 EP# 33 9.8737E-010 7.1809E-002 4 EP# 34 4.2316E-010 3.0775E-002 5 EP# 35 5.6384E-012 4.1006E-004 9 EP#36 1.3156E-011 9.5681E-004 10 EP#42 2.0896E-010 1.5197E-002 12 EP# 43 4.8758E-010 3.5460E-002 13 EP#44 5.4167E-011 3.9394E-003 9 EP#45 1.2639E-010 9.1920E-003 10 EP#48 2.4014E-009 1.7465E-001 4 EP# 49 1.0292E-009 7.4849E-002 5 EP#50 1.3713E-011 9.9732E-004 9 EP#51 3.1997E-011 2.3271E-003 10 EP# 71 2.4027E-011 1.7474E-003 9 EP# 72 5.6062E-011 4.0772E-003 10 EP# 75 1.3455E-009 9.7854E-002 4 EP# 76 5.7664E-010 4.1937E-002 5 EP# 77 7.3753E-012 5.3638E-004 9 EP# 78 1.7209E-011 1.2516E-003 10 EP# 81 5.3223E-013 3.8708E-005 4 EP# 82 2.2810E-013 1.6589E-005 5 EP# 84 1.8005E-010 1.3094E-002 12 EP#85 4.2011E-010 3.0554E-002 13 EP# 86 6.1272E-01 1 4.4561E-003 9 EP# 87 1.4297E-010 1.0398E-002 10 EP# 90 3.4312E-009 2.4954E-001 4 EP# 91 1.4705E-009 1.0695E-001 5 EP# 92 1.8808E-011 1.3679E-003 9 EP#93 4.3885E-0l1 3.1917E-003 10 EP# 96 1.3573E-012 9.8711E-005 4 EP# 97 5.8169E-013 4.2305E-005 5 EP#135 3.9200E-014 2.8509E-006 20

ICalculation No. PRA-ILRT I Revision No. 2 1Page 105 of 158 1 EP#136 9.1466E-014 6.6521E-006 21 EP#137 1.1192E-013 8.1394E-006 17 EP#138 2.6114E-013 1.8992E-005 18 EP#140 4.9617E-0 12 3.6085E-004 15 EP#141 2.1264E-0 12 1.5465E-004 16 EP#142 2.8333E-014 2.0606E-006 17 EP# 143 6.6111E-014 4.8081 E-006 18 EP#148 1.0501E-012 7.6368E-005 20 EP#149 2.4501E-012 1.7819E-004 21 EP#150 2.7220E-013 1.9796E-005 17 EP# 151 6.3512E-013 4.6191E-005 18 EP#153 1.2067E-011 8.7762E-004 15 EP#154 5.1717E-012 3.7612E-004 16 EP#155 6.891 OE-0 14 5.0117E-006 17 EP#156 1.6079E-013 1.1694E-005 18 EP#173 1.2074E-013 8.7808E-006 17 EP# 174 2.8172E-013 2.0489E-005 18 EP#176 6.7613E-012 4.9173E-004 15 EP#177 2.8977E-012 2.1074E-004 16 EP#178 3.7062E-014 2.6954E-006 17 EP#179 8.6477E-014 6.2892E-006 18 EP#181 2.6745E-015 1.9451 E-007 15 EP#182 1. 1462E-0 15 8.3362E-008 16 EP# 184 9.0476E-013 6.5801E-005 20 EP#185 2.1111E-012 1.5354E-004 21 EP# 186 3.0790E-0 13 2.2393E-005 i7 EP#187 7.1843E-013 5.2249E-005 18 EP#189 1.7242E-011 1.2540E-003 15 EP# 190 7.3895E-012 5.3742E-004 16 EP#191 9.4513E-014 6.8737E-006 17 EP# 192 2.2053E-013 1.6039E-005 18 EP#194 6.8205E-015 4.9604E-007 15 EP#195 2.9231E-015 2.1259E-007 16 PLANT DAMAGE STATE (CET) 88, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.OOOOE+000 7.1531E-003 9 EP# 72 0.OOOOE+000 3.0656E-003 10 EP# 74 0.OOOOE+000 2.4525E-001 6 EP# 77 0.0000E+000 1.131 8E-004 9 EP# 78 0.0000E+000 4.8506E-005 10 EP# 80 0.OOOOE+000 3.0721E-003 6 EP# 84 0.OOOOE+000 5.3603E-002 12 EP# 85 0.OOOOE+000 2.2973E-002 13 EP# 86 0.0000E+000 1.8241E-002 9 EP# 87 0.OOOOE+000 7.8177E-003 10 EP# 89 0.OOOOE+000 6.2542E-001 6 EP# 92 0.OOOOE+000 2.8863E-004 9 EP# 93 0.OOOOE+000 1.2370E-004 10 EP# 95 0.OOOOE+000 7.8342E-003 6 EP#173 0.OOOOE+000 3.5945E-005 17 EP# 174 0.OOOOE+000 1.5405E-005 18 EP#175 0.OOOOE+000 1.2324E-003 14 EP#178 0.OOOOE+000 5.6875E-007 17 EP#179 0.OOOOE+000 2.4375E-007 18 EP#180 0.OOOOE+000 1.5437E-005 14

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 106 of 158 1 EP#184 0.OOOOE+000 2.6936E-004 20 EP#185 0.0000E+000 1.1544E-004 21 EP#186 0.OOOOE+000 9.1665E-005 17 EP#187 0.OOOOE+000 3.9285E-005 18 EP#188 0.OOOOE+000 3.1428E-003 14 EP#191 0.OOOOE+000 1.4504E-006 17 EP#192 O.OOOOE+000 6.2160E-007 18 EP#193 0.OOOOE+000 3.9368E-005 14 PLANT DAMAGE STATE (CET) 89, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.OOOOE+000 3.0656E-003 9 EP# 72 0.OOOOE+000 7.1531E-003 10 EP# 73 0.OOOOE+000 2.4525E-001 2 EP# 77 0.OOOOE+000 9.4102E-004 9 EP# 78 0.OOOOE+000 2.1957E-003 10 EP# 79 0.OOOOE+000 9.7012E-005 2 EP# 84 0.OOOOE+000 2.2973E-002 12 EP# 85 0.0000E+000 5.3603E-002 13 EP# 86 0.0000E+000 7.8177E-003 9 EP# 87 0.0000E+000 1.8241 E-002 10 EP# 88 0.0000E+000 6.2542E-001 2 EP# 92 0.0000E+000 2.3997E-003 9 EP# 93 0.0000E+000 5.5994E-003 10 EP# 94 0.0000E+000 2.4740E-004 2 EP#173 0.0000E+000 1.5405E-005 17 EP#174 0.0000E+000 3.5945E-005 18 EP#175 0.OOOOE+000 1.2324E-003 14 EP#178 0.OOOOE+000 4.7288E-006 17 EP#179 0.0000E+000 1.1034E-005 18 EP#180 0.0000E+000 4.8750E-007 14 EP# 184 0.OOOOE+000 1.1544E-004 20 EP#185 0.0000E+000 2.6936E-004 21 EP#186 0.OOOOE+000 3.9285E-005 17 EP#187 0.0000E+000 9.1665E-005 18 EP#188 0.OOOOE+000 3.1428E-003 14 EP#191 0.0000E+000 1.2059E-005 17 EP#192 0.0000E+000 2.8138E-005 18 EP#193 0.0000E+000 1.2432E-006 14 PLANT DAMAGE STATE (CET) 90, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.OOOOE+000 3.0656E-003 9 EP# 72 0.OOOOE+000 7.1531E-003 10 EP# 74 0.OOOOE+000 2.4525E-001 6 EP# 77 0.OOOOE+000 9.4102E-004 9 EP# 78 0.OOOOE+000 2.1957E-003 10 EP# 80 0.OOOOE+000 9.7012E-005 6 EP# 84 0.OOOOE+000 2.2973E-002 12 EP# 85 0.OOOOE+000 5.3603E-002 13 EP# 86 0.OOOOE+000 7.8177E-003 9 EP# 87 0.OOOOE+000 1.8241E-002 10 EP# 89 0.OOOOE+000 6.2542E-001 6 EP# 92 0.OOOOE+000 2.3997E-003 9 EP# 93 0.OOOOE+000 5.5994E-003 10 EP# 95 0.OOOOE+000 2.4740E-004 6 EP#173 0.OOOOE+000 1.5405E-005 17

I Calculation No. PRA-ILRT I Revision No. 2 I Page 107 of 158 I EP# 174 0.0000E+/-000 3.5945E-005 18 EP#175 0.OOOOE+000 1.2324E-003 14 EP#178 0.OOOOE+/-000 4.7288E-006 17 EP#179 0.OOOOE+000 1.1034E-005 18 EP#180 0.OOOOE+000 4.8750E-007 14 EP#184 0.OOOOE+/-000 1.1544E-004 20 EP#185 0.OOOOE+000 2.6936E-004 21 EP#186 0.OOOOE+000 3.9285E-005 17 EP#187 0.OOOoE+O000 9.1665E-005 18 EP#188 0.OOOOE+O000 3.1428E-003 14 EP#191 0.OOOOE+000 1.2059E-005 17 EP#192 0.OOOOE+000 2.8138E-005 18 EP#193 0.OOOOE+000 1.2432E-006 14 PLANT DAMAGE STATE (CET) 91, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.OOOOE+000 7.1531E-003 9 EP# 72 0.OOOOE+/-000 3.0656E-003 10 EP# 75 0.OOOOE+000 2.2072E-001 7 EP# 76 0.OOOOE+000 2.4525E-002 8 EP# 77 0.OOOOE+000 1.1318E-004 9 EP# 78 0.OOOOE+000 4.8506E-005 10 EP# 81 0.OOOOE+000 2.7649E-003 7 EP# 82 0.OOOOE+/-000 3.0721 E-004 8 EP# 84 0.OOOOE+/-000 5.3603E-002 12 EP# 85 0.OOOOE+000 2.2973E-002 13 EP# 86 0.OOOOE+000 1.8241E-002 9 EP# 87 0.OOOOE+000 7.8177E-003 10 EP# 90 0.OOOOE+000 5.6288E-001 7 EP# 91 0.OOOOE+/-000 6.2542E-002 8 EP# 92 0.OOOOE+/-000 2.8863E-004 9 EP# 93 0.OOOOE+000 1.2370E-004 10 EP# 96 0.OOOOE+000 7.0508E-003 7 EP# 97 0.OOOOE+000 7.8342E-004 8 EP#173 0.0000E+/-000 3.5945E-005 17 EP#174 0.OOOOE+000 1.5405E-005 18 EP#176 0.OOOOE+000 1.1092E-003 15 EP#177 0.OOOOE+000 1.2324E-004 16 EP#178 0.OOOOE+000 5.6875E-007 17 EP#179 0.OOOOE+000 2.4375E-007 18 EP# 181 0.OOOOE+000 1.3894E-005 15 EP#182 0.OOOOE+/-000 1.5437E-006 16 EP#184 0.0000E+000 2.6936E-004 20 EP#185 0.OOOOE+000 1.1544E-004 21 EP#186 0.OOOOE+000 9.1665E-005 17 EP#187 0.OOOOE+/-000 3.9285E-005 18 EP#189 0.OOOOE+000 2.8285E-003 15 EP#190 0.OOOOE+000 3.1428E-004 16 EP#191 0.OOOOE+000 1.4504E-006 17 EP# 192 0.OOOOE+/-000 6.2160E-007 18 EP# 194 0.OOOOE+000 3.543 1E-005 15 EP#195 0.0000E+000 3.9368E-006 16 PLANT DAMAGE STATE (CET) 92, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.OOOOE+000 3.0656E-003 9 EP#72 0.OOOOE+000 7.1531E-003 10

Calculation No. PRA-ILRT Revision No. 2 T Page 108 of 158 EP# 75 0.OOOOE+/-000 1.7167E-001 7 EP# 76 0.OOOOE+/-000 7.3574E-002 8 EP# 77 0.OOOOE+O000 9.4102E-004 9 EP# 78 0.0000E+000 2.1957E-003 10 EP# 81 0.OOOOE+/-000 6.7909E-005 7 EP# 82 0.OOOOE+000 2.9104E-005 8 EP# 84 0.OOOOE+000 2.2973E-002 12 EP# 85 0.OOOOE+O000 5.3603E-002 13 EP# 86 0.OOOOE+000 7.8177E-003 9 EP# 87 0.OOOOE+000 1.8241 E-002 10 EP# 90 0.OOOOE+000 4.3779E-001 7 EP# 91 0.OOOOE+O000 1.8763E-001 8 EP# 92 0.0000E+/-000 2.3997E-003 9 EP# 93 0.OOOOE+/-000 5.5994E-003 10 EP# 96 0.OOOOE+O000 1.7318E-004 7 EP# 97 0.OOOOE+000 7.4219E-005 8 EP#173 0.OOOOE+/-000 1.5405E-005 17 EP# 174 0.0000E+000 3.5945E-005 18 EP#176 0.0000E+000 8.6268E-004 15 EP#177 0.OOOOE+000 3.6972E-004 16 EP#178 0.OOOOE+000 4.7288E-006 17 EP# 179 0.OOOOE+/-000 1.1034E-005 18 EP#181 0.0000E+000 3.4125E-007 15 EP# 182 0.OOOOE+O000 1.4625E-007 16 EP# 184 0.OOOOE+000 1.1544E-004 20 EP# 185 0.OOOOE+/-000 2.6936E-004 21 EP#186 0.OOOOE+/-O000 3.9285E-005 17 EP#187 0.OOOOE+/-000 9.1665E-005 18 EP# 189 0.OOOOE+/-000 2.2000E-003 15 EP# 190 0.OOOOE+O000 9.4284E-004 16 EP# 191 0.OOOOE+/-000 1.2059E-005 17 EP#192 0.OOOOE+/-000 2.8138E-005 18 EP# 194 0.OOOOE+/-000 8.7024E-007 15 EP# 195 0.OOOOE+/-000 3.7296E-007 16 PLANT DAMAGE STATE (CET) 93, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.OOOOE+000 7.1531E-003 9 EP# 72 0.OOOOE+000 3.0656E-003 10 EP# 75 0.OOOOE+000 2.2072E-001 7 EP# 76 0.OOOOE+000 2.4525E-002 8 EP# 77 0.OOOOE+000 1.1318E-004 9 EP# 78 0.OOOOE+000 4.8506E-005 10 EP# 81 0.OOOOE+000 2.7649E-003 7 EP# 82 0.OOOOE+000 3.0721E-004 8 EP# 84 0.OOOOE+000 5.3603E-002 12 EP# 85 0.OOOOE+000 2.2973E-002 13 EP# 86 0.OOOOE+000 1.8241 E-002 9 EP# 87 0.OOOOE+000 7.8177E-003 10 EP# 90 0.OOOOE+000 5.6288E-001 7 EP# 91 0.OOOOE+000 6.2542E-002 8 EP# 92 0.OOOOE+000 2.8863E-004 9 EP# 93 0.OOOOE+000 1.2370E-004 10 EP# 96 0.OOOE+000 7.0508E-003 7 EP# 97 0.OOOOE+000 7.8342E-004 8 EP#173 0.OOOOE+000 3.5945E-005 17

I Calculation No. PRA-ILRT I Revision No. 22 1 Pap-e Pae 109 19 of o

158 5

1I I CluainN. PALRReiino I EP#174 0.0000E+000 1.5405E-005 18 EP#176 0.OOOOE+000 1.1092E-003 15 EP#177 0.0000E+000 1.2324E-004 16 EP#178 0.0000E+000 5.6875E-007 17 EP#179 0.0000E+000 2.4375E-007 18 EP#181 0.OOOOE+000 1.3894E-005 15 EP#182 O.OOOOE+000 1.5437E-006 16 EP#184 0.OOOOE+000 2.6936E-004 20 EP#185 0.0000E+000 1.1544E-004 21 EP#186 0.0000E+000 9.1665E-005 17 EP#187 0.0000E+000 3.9285E-005 18 EP#189 0.OOOOE+000 2.8285E-003 15 EP#190 0.OOOOE+000 3.1428E-004 16 EP#191 0.0000E+000 1.4504E-006 17 EP#192 O.0000E+000 6.2160E-007 18 EP#194 0.OOOOE+000 3.5431E-005 15 EP# 195 0.0000E+000 3.9368E-006 16 PLANT DAMAGE STATE (CET) 94, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.OOOOE+000 7.1531E-003 9 EP# 72 0.OOOOE+000 3.0656E-003 10 EP# 75 0.OOOOE+000 2.2072E-001 7 EP# 76 0.0000E+000 2.4525E-002 8 EP# 77 O.OOOOE+000 2.1957E-003 9 EP# 78 0.OOOOE+000 9.4102E-004 10 EP# 81 O.0000E+000 8.73 11E-005 7 EP# 82 0.OOOOE+000 9.7012E-006 8 EP# 84 0.OOOOE+000 5.3603E-002 12 EP# 85 0.OOOOE+000 2.2973E-002 13 EP# 86 0.OOOOE+000 1.8241E-002 9 EP# 87 0.0000E+000 7.8177E-003 10 EP# 90 0.OOOOE+000 5.6288E-001 7 EP# 91 0.OOOOE+000 6.2542E-002 8 EP# 92 0.OOOOE+000 5.5994E-003 9 EP# 93 0.0000E+000 2.3997E-003 10 EP# 96 0.0000E+000 2.2266E-004 7 EP# 97 0.OOOOE+000 2.4740E-005 8 EP#173 0.OOOOE+000 3.5945E-005 17 EP#174 0.OOOOE+000 1.5405E-005 18 EP#176 0.OOOOE+000 1.1092E-003 15 EP#177 0.OOOOE+000 1.2324E-004 16 EP#178 0.OOOOE+000 1.1034E-005 17 EP#179 0.OOOOE+000 4.7288E-006 18 EP#181 0.OOOOE+000 4.3875E-007 15 EP#182 0.OOOOE+000 4.8750E-008 16 EP#184 0.OOOOE+000 2.6936E-004 20 EP#185 0.OOOOE+000 1.1544E-004 21 EP#186 0.OOOOE+000 9.1665E-005 17 EP#187 0.OOOOE+000 3.9285E-005 18 EP#189 0.OOOOE+000 2.8285E-003 15 EP#190 0.OOOOE+000 3.1428E-004 16 EP#191 0.OOOOE+000 2.8138E-005 17 EP#192 0.OOOOE+000 1.2059E-005 18 EP#194 0.OOOOE+000 1.1189E-006 15 EP#195 0.OOOOE+000 1.2432E-007 16

R-IR Rvsono I ae 10 o 5 I CaclainNo Calculation No. PRA-ILRT I Revision No. 2 1 page 110 of 158 1 PLANT DAMAGE STATE (CET) 95, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.0000E+000 3.0656E-003 9 EP# 72 O.OOOOE+000 7.1531 E-003 10 EP# 75 0.OOOOE+000 1.7167E-001 4 EP# 76 0.0000E+000 7.3574E-002 5 EP# 77 0.0000E+000 9.4102E-004 9 EP# 78 0.0000E+000 2.1957E-003 10 EP# 81 0.0000E+000 6.7909E-005 4 EP# 82 0.OOOOE+000 2.9104E-005 5 EP# 84 0.0000E+000 2.2973E-002 12 EP# 85 0.OOOOE+000 5.3603E-002 13 EP# 86 0.OOOOE+000 7.8177E-003 9 EP# 87 0.0000E+000 1.8241E-002 10 EP# 90 0.0000E+000 4.3779E-001 4 EP# 91 0.OOOOE+000 1.8763E-001 5 EP# 92 0.0000E+000 2.3997E-003 9 EP# 93 0.OOOOE+000 5.5994E-003 10 EP# 96 0.OOOOE+000 1.7318E-004 4 EP# 97 0.0000E+000 7.4219E-005 5 EP#173 0.OOOOE+000 1.5405E-005 17 EP#174 0.OOOOE+000 3.5945E-005 18 EP#176 0.0000E+000 8.6268E-004 15 EP#177 0.OOOOE+000 3.6972E-004 16 EP#178 0.OOOOE+000 4.7288E-006 17 EP#179 0.0000E+000 1.1034E-005 18 EP#181 0.OOOOE+000 3.4125E-007 15 EP#182 0.OOOOE+000 1.4625E-007 16 EP#184 0.OOOOE+000 1.1544E-004 20 EP#185 0.OOOOE+000 2.6936E-004 21 EP#186 0.OOOOE+000 3.9285E-005 17 EP#187 0.OOOOE+000 9.1665E-005 18 EP#189 0.OOOOE+000 2.2000E-003 15 EP#190 0.OOOOE+000 9.4284E-004 16 EP#191 0.OOOOE+000 1.2059E-005 17 EP#192 0.OOOOE+000 2.8138E-005 18 EP#194 0.OOOOE+000 8.7024E-007 15 EP#195 0.OOOOE+000 3.7296E-007 16 PLANT DAMAGE STATE (CET) 96,1 Frequency = 1.1869E-007 En dPoint Frequency Probability STC EP# 14 1.3746E-009 1.1582E-002 9 EP# 15 3.2074E-009 2.7024E-002 10 EP# 16 1.0997E-007 9.2654E-001 2 EP# 20 1.0309E-009 8.6864E-003 9 EP#421 2.4055E-009 2.0268E-002 10 EP# 22 1.0628E-010 8.9550E-004 2 EP# 124 6.9075E-012 5.8200E-005 17 EP# 125 1.6117E-011 1.3580E-004 18 EP# 126 5.5260E-010 4.6560E-003 14 EP# 129 5.1806E-012 4.3650E-005 17 EP# 130 1.2088E-011 1.0185E-004 18 EP# 131 5.3408E-013 4.5000E-006 14 PLANT DAMAGE STATE (CET) 97, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1582E-002 9

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 111 of 158 1 EP# 15 0.0000E+000 2.7024E-002 10 EP# 17 0.0000E+000 9.2654E-001 6 EP# 20 0.0000E+000 8.6864E-003 9 EP# 21 0.OOOOE+000 2.0268E-002 10 EP# 23 0.OOOOE+000 8.9550E-004 6 EP#124 0.0000E+000 5.8200E-005 17 EP#125 0.0000E+000 1.3580E-004 18 EP#126 0.0000E+000 4.6560E-003 14 EP#129 0.0000E+000 4.3650E-005 17 EP#130 0.OOOOE+000 1.0185E-004 18 EP#131 0.OOOOE+000 4.5000E-006 14 PLANT DAMAGE STATE (CET) 98, Frequency= 1.6593E-010 EndPoint Frequency Probability STC EP# 14 1.9218E-012 1.1582E-002 9 EP# 15 4.4841E-012 2.7024E-002 10 EP# 18 1.0762E-010 6.4858E-001 7 EP# 19 4.6123E-011 2.7796E-001 8 EP# 20 1.4413E-012 8.6864E-003 9 EP# 21 3.3631E-012 2.0268E-002 10 EP# 24 1.0401E-013 6.2685E-004 7 EP# 25 4.4577E-014 2.6865E-004 8 EP#124 9.6572E-015 5.8200E-005 17 EP#125 2.2533E-014 1.3580E-004 18 EP#127 5.4080E-013 3.2592E-003 15 EP#128 2.3177E-013 1.3968E-003 16 EP#129 7.2429E-015 4.3650E-005 17 EP#130 1.6900E-014 1.0185E-004 18 EP#132 5.2268E-016 3.1500E-006 15 EP#133 2.2401E-016 1.3500E-006 16 PLANT DAMAGE STATE (CET) 99, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1582E-002 9 EP# 15 0.OOOOE+000 2.7024E-002 10 EP# 18 0.OOOOE+000 6.4858E-001 7 EP# 19 0.OOOOE+000 2.7796E-001 8 EP# 20 0.OOOOE+000 8.6864E-003 9 EP# 21 0.OOOOE+000 2.0268E-002 10 EP# 24 0.OOOOE+000 6.2685E-004 7 EP# 25 0.OOOOE+000 2.6865E-004 8 EP#124 0.OOOOE+000 5.8200E-005 17 EP#125 0.OOOOE+000 1.3580E-004 18 EP#127 0.OOOOE+000 3.2592E-003 15 EP#128 0.OOOOE+000 1.3968E-003 16 EP#129 0.0000E+000 4.3650E-005 17 EP#130 0.OOOOE+000 1.0185E-004 18 EP#132 0.OOOOE+000 3.1500E-006 15 EP#133 0.0000E+000 1.3500E-006 16 PLANT DAMAGE STATE (CET) 100, Frequency = 1.4080E-008 EndPoint Frequency Probability STC EP# 14 3.8698E-010 2.7484E-002 9 EP# 15 1.6585E-010 1.1779E-002 10 EP# 17 1.3268E-008 9.4232E-001 6 EP#20 6.1231E-012 4.3488E-004 9 EP# 21 2.6242E-012 1.8638E-004 10 EP# 23 1.6620E-010 1.1804E-002 6

ICalculation No. PRA-ILRT I RevisionNo. 2 1Page 112 of 158 EP# 71 1.0072E-013 7.1531E-006 9 EP# 72 4.3164E-014 3.0656E-006 10 EP# 74 3.4531E-012 2.4525E-004 6 EP# 77 1.5936E-015 1.1318E-007 9 EP# 78 6.8297E-016 4.8506E-008 10 EP# 80 4.3255E-014 3.0721 E-006 6 EP# 86 2.8665E-013 2.0359E-005 9 EP# 87 1.2285E-013 8.7252E-006 10 EP# 89 9.8280E-012 6.9801 E-004 6 EP# 92 4.5356E-015 3.2213 E-007 9 EP# 93 1.9438E-015 1.3806E-007 10 EP# 95 1.2311E-0 13 8.7436E-006 6 EP#124 1.9446E-012 1.3811E-004 17 EP#125 8.3341E-013 5.9191E-005 18 EP#126 6.6672E-0 I1 4.7353E-003 14 EP# 129 3.0769E-014 2.1853E-006 17 EP# 130 1.3187E-014 9.3656E-007 18 EP#131 8.3516E-013 5.9316E-005 14 EP#173 5.0611E-0 16 3.5945E-008 17 EP# 174 2.1690E-0 16 1.5405E-008 18 EP#175 1.7352E-014 1.2324E-006 14 EP# 178 8.0080E-018 5.6875E-010 17 EP#179 3.4320E-018 2.4375E-010 18 EP# 180 2.1736E-016 1.5437E-008 14 EP#186 1.4405E-0 15 1.0231E-007 17 EP#187 6.1734E-016 4.3845E-008 18 EP#188 4.9387E-014 3.5076E-006 14 EP# 191 2.2792E-017 1.6188E-009 17 EP# 192 9.7680E-0 18 6.9375E-010 18 EP# 193 6.1864E-016 4.3938E-008 14 PLANT DAMAGE STATE (CET) 101, Frequency = 8.5800E-008 EndPoint Frequency Probability STC EP# 14 1.0106E-009 1.1779E-002 9 EP# 15 2.3581E-009 2.7484E-002 10 EP# 16 8.0851E-008 9.4232E-001 2 EP# 20 3.1023E-010 3.6157E-003 9 EP# 21 7.2386E-010 8.4366E-003 10 EP#22 3.1982E-011 3.7275E-004 2 EP# 71 2.6303E-013 3.0656E-006 9 EP#72 6.1373E-013 7.1531E-006 10 EP# 73 2.1042E-011 2.4525E-004 2 EP# 77 8.0740E-014 9.4102E-007 9 EP# 78 1.8839E-013 2.1957E-006 10 EP# 79 8.3237E-015 9.7013E-008 2 EP# 86 7.4862E-013 8.7252E-006 9 EP# 87 1.7468E-012 2.0359E-005 10 EP# 88 5.9889E-011 6.9801E-004 2 EP# 92 2.2980E-013 2.6783E-006 9 EP# 93 5.3619E-013 6.2493E-006 10 EP# 94 2.3690E-014 2.7611E-007 2 EP#124 5.0786E-012 5.9191E-005 17 EP#125 1.1850E-011 1.3811E-004 18 EP#126 4.0629E-010 4.7353E-003 14 EP#129 1.5589E-012 1.8169E-005 17 EP#130 3.6375E-012 4.2395E-005 18

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 113 of 158 I EP#131 1.6071E-013 1.8731E-006 14 EP#173 1.3217E-015 1.5405E-008 17 EP#174 3.0841E-015 3.5945E-008 18 EP#175 1.0574E-013 1.2324E-006 14 EP#178 4.0573E-016 4.7288E-009 17 EP#179 9.4670E-016 1.1034E-008 18 EP#180 4.1827E-017 4.8750E-010 14 EP#186 3.7619E-015 4.3845E-008 17 EP#187 8.7778E-015 1.0231E-007 18 EP#188 3.0095E-013 3.5076E-006 14 EP#191 1.1548E-015 1.3459E-008 17 EP#192 2.6944E-015 3.1404E-008 18 EP#193 1.1905E-016 1.3875E-009 14 PLANT DAMAGE STATE (CET) 102, Frequency 0.0000E+000 EndPoint Frequency Probability STC EP# 14 O.0000E+000 1.1779E-002 9 EP# 15 0.0000E+000 2.7484E-002 10 EP# 17 0.0000E+000 9.4232E-001 6 EP# 20 0.0000E+000 3.6157E-003 9 EP# 21. 0.0000E+000 8.4366E-003 10 EP# 23 0.OOOOE+000 3.7275E-004 6 EP# 71 0.OOOOE+000 3.0656E-006 9 EP# 72 0.OOOOE+000 7.1531E-006 10 EP# 74 0.OOOOE+000 2.4525E-004 6 EP# 77 0.OOOOE+000 9.4102E-007 9 EP# 78 0.OOOOE+000 2.1957E-006 10 EP# 80 0.OOOOE+000 9.7013E-008 6 EP# 86 0.OOOOE+000 8.7252E-006 9 EP# 87 0.OOOOE+000 2.0359E-005 10 EP# 89 0.OOOOE+000 6.9801E-004 6 EP# 92 0.OOOOE+000 2.6783E-006 9 EP# 93 0.OOOOE+000 6.2493E-006 10 EP# 95 0.OOOOE+000 2.7611 E-007 6 EP#124 0.OOOOE+000 5.9191E-005 17 EP#125 0.OOOOE+000 1.3811E-004 18 EP#126 0.OOOOE+000 4.7353E-003 14 EP#129 0.OOOOE+000 1.8169E-005 17 EP#130 0.OOOOE+000 4.2395E-005 18 EP#131 0.OOOOE+000 1.8731E-006 14 EP#173 0.OOOOE+000 1.5405E-008 17 EP#174 0.OOOOE+000 3.5945E-008 18 EP#175 0.OOOOE+000 1.2324E-006 14 EP#178 0.OOOOE+000 4.7288E-009 17 EP#179 0.OOOOE+000 1.1034E-008 18 EP#180 0.OOOOE+000 4.8750E-010 14 EP#186 0.OOOOE+000 4.3845E-008 17 EP#187 0.OOOOE+000 1.0231E-007 18 EP#188 0.OOOOE+000 3.5076E-006 14 EP#191 0.OOOOE+000 1.3459E-008 17 EP#192 0.OOOOE+000 3.1404E-008 18 EP#193 0.OOOOE+000 1.3875E-009 14 PLANT DAMAGE STATE (CET) 103, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 2.7484E-002 9 EP# 15 0.OOOOE+000 1.1779E-002 10

ICalculation No. PRA-ILRT I RevisionNo. 2 TPage 114 of 158 EP# 18 0.OOOOE+000 8.4809E-001 7 EP# 19 0.OOOOE+000 9.4232E-002 8 EP# 20 0.OOOOE+000 4.3488E-004 9 EP# 21 0.OOOOE+000 1.8638E-004 10 EP# 24 0.OOOOE+000 1.0623E-002 7 EP# 25 0.OOOOE+000 1.1804E-003 8 EP# 71 0.OOOOE+000 7.1531 E-006 9 EP# 72 0.OOOOE+000 3.0656E-006 10 EP# 75 0.OOOOE+000 2.2072E-004 7 EP# 76 0.OOOOE+000 2.4525E-005 8 EP# 77 0 0000E+000 1.13 18E-007 9 EP# 78 0.OOOOE+000 4.8506E-008 10 EP# 81 0.OOOOE+000 2.7649E-006 7 EP# 82 0.OOOOE+000 3.0721 E-007 8 EP# 86 0.OOOOE+000 2.0359E-005 9 EP# 87 0.OOOOE+000 8.7252E-006 10 EP# 90 0.OOOOE+000 6.2821E-004 7 EP# 91 0.OOOOE+000 6.9801 E-005 8 EP# 92 0.OOOOE+000 3.2213E-007 9 EP# 93 0.OOOOE+000 1.3806E-007 10 EP# 96 0.OOOOE+000 7.8692E-006 7 EP# 97 0.OOOOE+000 8.7436E-007 8 EP# 124 0.OOOOE+000 1.3811E-004 17 EP#125 O.OOOOE+O00 5.9191E-005 18 EP#127 O.OOOOE+000 4.2617E-003 15 EP#128 O.OOOOE+000 4.7353E-004 16 EP# 129 O.OOOOE+000 2.1853E-006 17 EP#130 O.OOOOE+000 9.3656E-007 18 EP# 132 O.OOOOE+000 5.3384E-005 15 EP# 133 O.OOOOE+O00 5.9316E-006 16 EP#173 O.OOOOE+000 3.5945E-008 17 EP# 174 O.OOOOE+000 1.5405E-008 18 EP# 176 0.OOOOE+000 1.1092E-006 15 EP# 177 0.OOOOE+000 1.2324E-007 16 EP# 178 0.OOOOE+000 5.6875E-010 17 EP#179 0.OOOOE+000 2.4375E-010 18 EP# 181 0.OOOOE+000 1.3894E-008 15 EP# 182 0.OOOOE+000 1.5438E-009 16 EP#186 0.OOOOE+000 1.0231 E-007 17 EP#187 0.OOOOE+000 4.3845E-008 18 EP#189 0.OOOOE+000 3.1568E-006 15 EP# 190 0.OOOOE+000 3.5076E-007 16 EP#191 0.OOOOE+000 1.6188E-009 17 EP#192 O.OOOOE+000 6.9375E-010 18 EP# 194 O.OOOOE+000 3.9544E-008 15 EP# 195 O.OOOOE+000 4.3938E-009 16 PLANT DAMAGE STATE (CET) 104, Frequency = 1.7191E-008 EndPoint Frequency Probability STC EP# 14 2.0249E-010 1.1779E-002 9 EP# 15 4.7248E-010 2.7484E-002 10 EP# 18 1.1339E-008 6.5962E-001 7 EP# 19 4.8598E-009 2.8270E-001 8 EP# 20 6.2157E-011 3.6157E-003 9 EP# 21 1.4503E-010 8.4366E-003 10 EP# 24 4.4855E-012 2.6093E-004 7

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 115 of 158 EP# 25 1.9224E-012 1.1 183E-004 8 EP# 71 5.2700E-014 3.0656E-006 9 EP# 72 1.2297E-013 7.1531E-006 10 EP# 75 2.9512E-012 1.7167E-004 7 EP# 76 1.2648E-012 7.3574E-005 8 EP# 77 1.6177E-014 9.4102E-007 9 EP# 78 3.7746E-014 2.1957E-006 10 EP# 81 1.1674E-015 6.7909E-008 7 EP# 82 5.0032E-016 2.9104E-008 8 EP# 86 1.4999E-013 8.7252E-006 9 EP# 87 3.4998E-013 2.0359E-005 10 EP# 90 8.3996E-012 4.8861E-004 7 EP# 91 3.5998E-012 2.0940E-004 8 EP# 92 4.6042E-014 2.6783E-006 9 EP# 93 1.0743E-013 6.2493E-006 10 EP# 96 3.3226E-015 1.9328E-007 7 EP# 97 1.4240E-015 8.2834E-008 8 EP# 124 1.0175E-012 5.9191E-005 17 EP#125 2.3743E-012 1.3811 E-004 18 EP#127 5.6982E-0 11 3.3147E-003 15 EP#128 2.4421E-011 1.4206E-003 16 EP#129 3.1235E-013 1.8169E-005 17 EP#130 7.2880E-013 4.2395E-005 18 EP#132 2.2540E-014 1.3112E-006 15 EP#133 9.6602E-015 5.6194E-007 16 EP# 173 2.6482E-016 1.5405E-008 17 EP# 174 6.1792E-016 3.5945E-008 18 EP# 176 1.4830E-014 8.6268E-007 15 EP# 177 6.3558E-015 3.6972E-007 16 EP#178 8.1291E-0 17 4.7288E-009 17 EP#179 1.8968E-016 1.1034E-008 18 EP# 181 5.8664E-018 3.4125E-010 15 EP#182 2.5142E-018 1.4625E-010 16 EP# 186 7.5373E-016 4.3845E-008 17 EP#187 1.7587E-015 1.0231E-007 18 EP#189 4.2209E-014 2.4553E-006 15 EP# 190 1.8090E-014 1.0523E-006 16 EP#191 2.3137E-016 1.3459E-008 17 EP# 192 5.3986E-016 3.1404E-008 18 EP#194 1.6697E-017 9.7125E-010 15 EP# 195 7.1557E-018 4.1625E-010 16 PLANT DAMAGE STATE (CET) 105, Frequency = 1.3200E-009 EndPoint Frequency Probability STC EP# 14 1.5548E-011 1.1779E-002 9 EP# 15 3.6279E-011 2.7484E-002 10 EP# 16 1.2439E-009 9.4232E-001 2 EP# 20 4.7727E-012 3.6157E-003 9 EP#21 1.1136E-011 8.4366E-003 10 EP# 22 4.9203E-013 3.7275E-004 2 EP# 71 4.0466E-015 3.0656E-006 9 EP#72 9.4420E-015 7.1531E-006 10 EP# 73 3.2373E-013 2.4525E-004 2 EP# 77 1.2421E-015 9.4102E-007 9 EP# 78 2.8983E-015 2.1957E-006 10 EP# 79 1.2806E-016 9.7013E-008 2

I Calculation No. PRA-ILRT I RevisionNo. 2 1 Page 116 of 158 I EP# 86 1.1517E-014 8.7252E-006 9 EP# 87 2.6873E-014 2.0359E-005 10 EP# 88 9.2138E-013 6.9801E-004 2 EP# 92 3.5353E-015 2.6783E-006 9 EP# 93 8.2491E-015 6.2493E-006 10 EP# 94 3.6447E-016 2.7611E-007 2 EP#124 7.8132E-014 5.9191E-005 17 EP#125 1.8231E-013 1.3811E-004 18 EP#126 6.2505E-012 4.7353E-003 14 EP#129 2.3983E-014 1.8169E-005 17 EP#130 5.5961E-014 4.2395E-005 18 EP#131 2.4725E-015 1.8731E-006 14 EP#173 2.0335E-017 1.5405E-008 17 EP#174 4.7447E-017 3.5945E-008 18 EP#175 1.6268E-015 1.2324E-006 14 EP#178 6.2420E-018 4.7288E-009 17 EP#179 1.4565E-017 1.1034E-008 18 EP#180 6.4350E-019 4.8750E-010 14 EP#186 5.7875E-017 4.3845E-008 17 EP#187 1.3504E-016 1.0231E-007 18 EP#188 4.6300E-015 3.5076E-006 14 EP#191 1.7766E-017 1.3459E-008 17 EP#192 4.1453E-017 3.1404E-008 18 EP#193 1.8315E-018 1.3875E-009 14 PLANT DAMAGE STATE (CET) 106, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 O.OOOOE+000 1.1 779E-002 9 EP# 15 O.OOOOE+000 2.7484E-002 10 EP# 17 O.OOOOE+000 9.4232E-001 6 EP# 20 O.OOOOE+000 3.6157E-003 9 EP# 21 O.OOOOE+000 8.4366E-003 10 EP# 23 0.OOOOE+000 3.7275E-004 6 EP# 71 0.0000E+000 3.0656E-006 9 EP# 72 0.OOOOE+000 7.1531E-006 10 EP# 74 0.OOOOE+000 2.4525E-004 6 EP# 77 0.OOOOE+000 9.4102E-007 9 EP# 78 0.OOOOE+000 2.1957E-006 10 EP# 80 0.OOOOE+000 9.7013E-008 6 EP# 86 0.OOOOE+000 8.7252E-006 9 EP# 87 0.OOOOE+000 2.0359E-005 10 EP# 89 0.OOOOE+000 6.9801E-004 6 EP# 92 0.OOOOE+000 2.6783E-006 9 EP# 93 0.OOOOE+000 6.2493E-006 10 EP# 95 0.OOOOE+000 2.7611 E-007 6 EP# 124 0.OOOOE+000 5.9191E-005 17 EP#125 0.OOOOE+000 1.38 11E-004 18 EP# 126 0.OOOOE+000 4.7353E-003 14 EP# 129 0.OOOOE+000 1.8169E-005 17 EP# 130 0.OOOOE+000 4.2395E-005 18 EP#131 0.OOOOE+000 1.873 1E-006 14 EP# 173 0.OOOOE+000 1.5405E-008 17 EP# 174 0.OOOOE+000 3.5945E-008 18 EP# 175 0.OOOOE+000 1.2324E-006 14 EP#178 0.OOOOE+000 4.7288E-009 17 EP#179 0.OOOOE+000 1.1034E-008 18

I Calculation No. PRA-ILRT I RevisionNo. 2 I Page 117 of 158 I EP#180 0.OOOOE+000 4.8750E-010 14 EP#186 0.OOOOE+000 4.3845E-008 17 EP#187 0.OOOOE+000 1.023 1E-007 18 EP#188 0.OOOOE+000 3.5076E-006 14 EP#191 0.OOOOE+000 1.3459E-008 17 EP#192 0.00O0E+000 3.1404E-008 18 EP# 193 0.0000E+000 1.3875E-009 14 PLANT DAMAGE STATE (CET) 107, Frequency= 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1779E-002 9 EP# 15 0.OOOOE+000 2.7484E-002 10 EP# 18 0.OOOOE+000 6.5962E-001 7 EP# 19 0.OOOOE+000 2.8270E-001 8 EP# 20 0.OOOOE+000 3.6157E-003 9 EP# 21 0.OOOOE+000 8.4366E-003 10 EP# 24 0.OOOOE+000 2.6093E-004 7 EP# 25 0.OOOOE+000 1.1 183E-004 8 EP# 71 0.OOOOE+000 3.0656E-006 9 EP# 72 0.OOOOE+000 7.1531E-006 10 EP# 75 0.OOOOE+000 1.7167E-004 7 EP# 76 0.OOOOE+000 7.3574E-005 8 EP# 77 0.OOOOE+000 9.4102E-007 9 EP# 78 0.OOOOE+000 2.1957E-006 10 EP# 81 0.OOOOE+000 6.7909E-008 7 EP# 82 0.OOOOE+000 2.9104E-008 8 EP# 86 0.OOOOE+000 8.7252E-006 9 EP# 87 0.OOOOE+000 2.0359E-005 10 EP# 90 0.OOOOE+000 4.8861E-004 7 EP# 91 0.OOOOE+000 2.0940E-004 8 EP# 92 0.OOOOE+000 2.6783E-006 9 EP# 93 0.OOOOE+000 6.2493E-006 10 EP# 96 0.OOOOE+000 1.9328E-007 7 EP# 97 0.OOOOE+000 8.2834E-008 8 EP#124 0.OOOOE+000 5.9191E-005 17 EP#125 0.OOOOE+000 1.3811E-004 18 EP#127 0.OOOOE+000 3.3147E-003 15 EP#128 0.OOOOE+000 1.4206E-003 16 EP#129 0.OOOOE+000 1.8169E-005 17 EP#130 0.OOOOE+000 4.2395E-005 18 EP#132 0.OOOOE+000 1.3112E-006 15 EP#133 0.OOOOE+000 5.6194E-007 16 EP#173 0.OOOOE+000 1.5405E-008 17 EP#174 0.OOOOE+000 3.5945E-008 18 EP# 176 0.OOOOE+000 8.6268E-007 15 EP#177 0.OOOOE+000 3.6972E-007 16 EP#178 0.OOOOE+000 4.7288E-009 17 EP#179 0.OOOOE+000 1.1034E-008 18 EP#181 0.OOOOE+000 3.4125E-010 15 EP# 182 0.OOOOE+000 1.4625E-010 16 EP#186 0.OOOOE+000 4.3845E-008 17 EP#187 0.OOOOE+000 1.0231E-007 18 EP#189 0.OOOOE+000 2.4553E-006 15 EP#190 0.OOOOE+000 1.0523E-006 16 EP#191 0.OOOOE+000 1.3459E-008 17 EP#192 0.OOOOE+000 3.1404E-008 18

I Calculation No. PRA-ILRT I RevisionNo. 2 I Page 118 of 158 I EP#194 0.0000E+000 9.7125E-010 15 EP#195 0.0000E+000 4.1625E-010 16 PLANT DAMAGE STATE (CET) 108, Frequency = 2.3040E-008 EndPoint Frequency Probability STC EP# I 2.2925E-008 9.9500E-001 I EP#1l3 1.1520E-010 5.0000E-003 1 PLANT DAMAGE STATE (CET) 109, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 2.7484E-002 9 EP# 15 0.OOOOE+000 1.1779E-002 10 EP# 17 0.OOOOE+000 9.4232E-001 6 EP# 20 0.OOOOE+000 4.3488E-004 9 EP# 21 0.OOOOE+000 1.8638E-004 10 EP# 23 0.OOOOE+000 1.1 804E-002 6 EP# 71 0.0000E+000 7.1531E-006 9 EP# 72 0.OOOOE+000 3.0656E-006 10 EP# 74 0.OOOOE+000 2.4525E-004 6 EP# 77 0.OOOOE+000 1.1318E-007 9 EP# 78 0.OOOOE+000 4.8506E-008 10 EP# 80 0.OOOOE+000 3.0721E-006 6 EP# 86 0.OOOOE+000 2.0359E-005 9 EP# 87 0.OOOOE+000 8.7252E-006 10 EP# 89 0.OOOOE+000 6.9801E-004 6 EP# 92 0.OOOOE+000 3.2213E-007 9 EP# 93 0.OOOOE+000 1.3806E-007 10 EP# 95 0.OOOOE+000 8.7436E-006 6 EP#124 0.OOOOE+000 1.3811E-004 17 EP#125 0.OOOOE+000 5.9191E-005 18 EP#126 0.OOOOE+000 4.7353E-003 14 EP#129 0.OOOOE+000 2.1853E-006 17 EP#130 0.OOOOE+000 9.3656E-007 18 EP#131 0.OOOOE+000 5.9316E-005 14 EP#173 0.OOOOE+000 3.5945E-008 17 EP#174 0.OOOOE+000 1.5405E-008 18 EP#175 0.OOOOE+000 1.2324E-006 14 EP#178 0.OOOOE+000 5.6875E-010 17 EP#179 0.OOOOE+000 2.4375E-010 18 EP#180 0.OOOOE+000 1.5437E-008 14 EP#186 0.OOOOE+000 1.0231E-007 17 EP#187 0.OOOOE+000 4.3845E-008 18 EP#188 0.OOOOE+000 3.5076E-006 14 EP#191 0.OOOOE+000 1.6188E-009 17 EP#192 0.OOOOE+000 6.9375E-010 18 EP#193 0.OOOOE+000 4.3938E-008 14 PLANT DAMAGE STATE (CET) 110, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1779E-002 9 EP# 15 0.OOOOE+000 2.7484E-002 10 EP# 16 0.OOOOE+000 9.4232E-001 2 EP#20 0.OOOOE+000 3.6157E-003 9 EP# 21 0.OOOOE+000 8.4366E-003 10 EP# 22 0.OOOOE+000 3.7275E-004 2 EP# 71 0.OOOOE+000 3.0656E-006 9 EP# 72 0.OOOOE+000 7.1531E-006 10 EP# 73 0.OOOOE+000 2.4525E-004 2

ICalculation No. PRA-ILRT I RevisionNo. 2 T Page 119 of 158 EP# 77 O.OOOOE+000 9.4102E-007 9 EP# 78 0.0000E+000 2.1957E-006 10 EP# 79 0.0000E+000 9.7013E-008 2 EP# 86 0.0000E+000 8.7252E-006 9 EP# 87 0.0000E+000 2.0359E-005 10 EP# 88 0.0000E+000 6.9801 E-004 2 EP# 92 0.0000E+000 2.6783E-006 9 EP# 93 0.0000E+000 6.2493E-006 10 EP# 94 0.0000E+000 2.761 IE-007 2 EP#124 0.0000E+000 5.9191E-005 17 EP#125 0.0000E+000 1.3811E-004 18 EP#126 0.0000E+000 4.7353E-003 14 EP#129 0.0000E+000 1.8169E-005 17 EP#130 O.OOOOE+000 4.2395E-005 18 EP#131 O.O000E+000 1.873 1E-006 14 EP#173 O.O000E+000 1.5405E-008 17 EP# 174 O.O000E+000 3.5945E-008 18 EP# 175 O.O000E+000 1.2324E-006 14 EP#178 O.O000E+000 4.7288E-009 17 EP#179 O.O000E+000 1.1034E-008 18 EP# 180 0.0000E+000 4.8750E-010 14 EP# 186 0.0000E+000 4.3845E-008 17 EP#187 0.0000E+000 1.0231E-007 18 EP#188 0.0000E+000 3.5076E-006 14 EP# 191 O.0000E+000 1.3459E-008 17 EP# 192 0.OOOOE+000 3.1404E-008 18 EP#193 O.0000E+000 1.3875E-009 14 PLANT DAMAGE STATE (CET) 111, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1779E-002 9 EP# 15 0.OOOOE+000 2.7484E-002 10 EP# 17 0.OOOOE+000 9.4232E-001 6 EP# 20 0.OOOOE+000 3.6157E-003 9 EP# 21 0.OOOOE+000 8.4366E-003 10 EP# 23 0.OOOOE+000 3.7275E-004 6 EP# 71 0.OOOOE+000 3.0656E-006 9 EP# 72 0.OOOOE+000 7.1531 E-006 10 EP# 74 0.OOOOE+000 2.4525E-004 6 EP# 77 0.OOOOE+000 9.4102E-007 9 EP# 78 0.OOOOE+000 2.1957E-006 10 EP# 80 0.OOOOE+000 9.7013E-008 6 EP# 86 0.OOOOE+000 8.7252E-006 9 EP# 87 0.OOOOE+000 2.0359E-005 10 EP# 89 0.OOOOE+000 6.9801E-004 6 EP# 92 0.OOOOE+000 2.6783E-006 9 EP# 93 0.OOOOE+000 6.2493E-006 10 EP# 95 0.OOOOE+000 2.7611 E-007 6 EP#124 0.OOOOE+000 5.9191E-005 17 EP#125 0.OOOOE+000 1.3811E-004 18 EP#126 0.OOOOE+000 4.7353E-003 14 EP#129 0.OOOOE+000 1.8169E-005 17 EP#130 0.OOOOE+000 4.2395E-005 18 EP#131 0.OOOOE+000 1.8731E-006 14 EP#173 0.OOOOE+000 1.5405E-008 17 EP#174 0.OOOOE+000 3.5945E-008 18

I Calculation No. PRA-ILRT I RevisionNo. 2 I Page 120 of 158 I EP#175 0.0000E+000 1.2324E-006 14 EP#178 0.OOOOE+000 4.7288E-009 17 EP#179 0.OOOOE+000 1.1034E-008 18 EP#180 0.OOOOE+000 4.8750E-010 14 EP#186 0.0000E+000 4.3845E-008 17 EP#187 0.0000E+000 1.0231E-007 18 EP#188 0.OOOOE+000 3.5076E-006 14 EP#191 0.OOOOE+000 1.3459E-008 17 EP#192 O.0000E+000 3.1404E-008 18 EP#193 0.0000E+000 1.3875E-009 14 PLANT DAMAGE STATE (CET) 112, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+/-000 2.7484E-002 9 EP# 15 0.0000E+000 1.1 779E-002 10 EP# 18 0.OOOOE+000 8.4809E-001 7 EP# 19 0.OOOOE+000 9.4232E-002 8 EP# 20 0.OOOOE+000 4.3488E-004 9 EP# 21 0.OOOOE+000 1.8638E-004 10 EP# 24 0.OOOOE+000 1.0623E-002 7 EP# 25 0.0000E+000 1.1 804E-003 8 EP# 71 0.0000E+/-000 7.1531E-006 9 EP# 72 0.OOOOE+000 3.0656E-006 10 EP# 75 0.0000E+000 2.2072E-004 7 EP# 76 0.OOOOE+/-000 2.4525E-005 8 EP# 77 0.OOOOE+000 1.1318E-007 9 EP# 78 0.0000E+000 4.8506E-008 10 EP# 81 0.OOOOE+/-000 2.7649E-006 7 EP# 82 0.OOOOE+/-O000 3.0721E-007 8 EP# 86 0.0000E+000 2.0359E-005 9 EP# 87 0.OOOOE+000 8.7252E-006 10 EP# 90 0.0000E+000 6.2821 E-004 7 EP# 91 0.OOOOE+000 6.9801E-005 8 EP# 92 0.0000E+000 3.2213E-007 9 EP# 93 0.0000E+/-O000 1.3806E-007 10 EP# 96 0.OOOOE+000 7.8692E-006 7 EP# 97 0.OOOOE+000 8.7436E-007 8 EP# 124 0.OOOOE+000 1.3811 E-004 17 EP#125 0.OOOOE+000 5.9191E-005 18 EP#127 0.OOOOE+000 4.2617E-003 15 EP#128 0.OOOOE+000 4.7353E-004 16 EP# 129 0.OOOOE+000 2.1853E-006 17 EP#130 0.OOOOE+000 9.3656E-007 18 EP#132 0.OOOOE+000 5.3384E-005 15 EP#133 0.OOOOE+000 5.9316E-006 16 EP#173 0.0000E+000 3.5945E-008 17 EP#174 0.OOOOE+000 1.5405E-008 18 EP#176 0.0000E+000 1.1092E-006 15 EP#177 0.OOOOE+000 1.2324E-007 16 EP#178 0.OOOOE+000 5.6875E-010 17 EP#179 0.0000E+/-000 2.4375E-010 18 EP#181 0.0000E+/-000 1.3894E-008 15 EP#182 0.0000E+/-000 1.5438E-009 16 EP#186 0.0000E+000 1.023 1E-007 17 EP#187 0.0000E+000 4.3845E-008 18 EP#189 0.OOOOE+000 3.1568E-006 15

I Calculation No. PRA-ILRT I RevisionNo. 2 I Page 121 of 158 1 EP#190 0.OOOOE+000 3.5076E-007 16 EP#191 0.OOOOE+000 1.6188E-009 17 EP#192 0.0000E+000 6.9375E-010 18 EP#194 0.0000E+000 3.9544E-008 15 EP#195 0.0000E+000 4.3938E-009 16 PLANT DAMAGE STATE (CET) 113, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 14 0.0000E+000 1.1779E-002 9 EP# 15 0.0000E+000 2.7484E-002 10 EP# 18 0.OOOOE+000 6.5962E-001 7 EP# 19 0.OOOOE+000 2.8270E-001 8 EP# 20 0.0000E+000 3.6157E-003 9 EP# 21 0.0000E+000 8.4366E-003 10 EP# 24 0.OOOOE+000 2.6093E-004 7 EP# 25 0.0000E+000 1.1183E-004 8 EP# 71 0.0000E+000 3.0656E-006 9 EP# 72 0.0000E+000 7.1531E-006 10 EP# 75 0.0000E+000 1.7167E-004 7 EP# 76 0.OOOOE+000 7.3574E-005 8 EP# 77 0.0000E+000 9.4102E-007 9 EP# 78 0.OOOOE+000 2.1957E-006 10 EP# 81 0.OOOOE+000 6.7909E-008 7 EP# 82 0.0000E+000 2.9104E-008 8 EP# 86 0.OOOOE+000 8.7252E-006 9 EP# 87 0.0000E+000 2.0359E-005 10 EP# 90 0.0000E+000 4.8861E-004 7 EP# 91 0.OOOOE+000 2.0940E-004 8 EP# 92 0.OOOOE+000 2.6783E-006 9 EP# 93 0.OOOOE+000 6.2493E-006 10 EP# 96 0.OOOOE+000 1.9328E-007 7 EP# 97 0.OOOOE+000 8.2834E-008 8 EP#124 0.OOOOE+000 5.9191E-005 17 EP#125 0.OOOOE+000 1.3811E-004 18 EP#127 0.OOOOE+000 3.3147E-003 15 EP#128 0.OOOOE+000 1.4206E-003 16 EP#129 0.OOOOE+000 1.8169E-005 17 EP#130 0.OOOOE+000 4.2395E-005 18 EP#132 0.OOOOE+000 1.3112E-006 15 EP#133 0.OOOOE+000 5.6194E-007 16 EP#173 0.OOOOE+000 1.5405E-008 17 EP#174 0.OOOOE+000 3.5945E-008 18 EP#176 0.OOOOE+000 8.6268E-007 15 EP#177 0.OOOOE+000 3.6972E-007 16 EP#178 0.OOOOE+000 4.7288E-009 17 EP#179 0.OOOOE+000 1.1034E-008 18 EP#181 0.OOOOE+000 3.4125E-010 15 EP#182 0.OOOOE+000 1.4625E-010 16 EP#186 0.OOOOE+000 4.3845E-008 17 EP#187 0.OOOOE+000 1.0231E-007 18 EP#189 0.OOOOE+000 2.4553E-006 15 EP#190 0.OOOOE+000 1.0523E-006 16 EP#191 0.OOOOE+000 1.3459E-008 17 EP#192 0.OOOOE+000 3.1404E-008 18 EP#194 0.OOOOE+000 9.7125E-010 15 EP#195 0.OOOOE+000 4.1625E-010 16

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 122 of 158 PLANT DAMAGE STATE (CET) 114, Frequency = 3.OOOOE-007 EndPoint Frequency Probability STC EP# 14 3.4711E-009 1.1570E-002 9 EP# 15 8.0992E-009 2.6997E-002 10 EP# 16 2.7769E-007 9.2562E-001 2 EP# 20 2.6033E-009 8.6777E-003 9 EP# 21 6.0744E-009 2.0248E-002 10 EP# 22 2.6838E-010 8.9460E-004 2 EP#71 9.0338E-013 3.0113E-006 9 EP# 72 2.1079E-012 7.0263E-006 10 EP# 73 7.2270E-01 1 2.4090E-004 2 EP# 77 6.7754E-013 2.2585E-006 9 EP# 78 1.5809E-012 5.2697E-006 10 EP# 79 6.9849E-014 2.3283E-007 2 EP# 86 2.5712E-012 8.5705E-006 9 EP# 87 5.9994E-012 1.9998E-005 10 EP# 88 2.0569E-010 6.8564E-004 2 EP# 92 1.9284E-012 6.4279E-006 9 EP# 93 4.4995E-012 1.4998E-005 10 EP# 94 1.9880E-013 6.6267E-007 2 EP#124 1.7443E-011 5.8142E-005 17 EP#125 4.0699E-011 I1.3566E-004 18 EP#126 1.3954E-009 4.6513E-003 14 EP#129 1.3082E-011 4.3606E-005 17 EP#130 3.0524E-011 1.0175E-004 18 EP#131 1.3486E-012 4.4955E-006 14 EP#173 4.5396E-015 1.5132E-008 17 EP#174 1.0592E-014 3.5308E-008 18 EP#175 3.6317E-013 1.2106E-006 14 EP#178 3.4047E-015 1.1349E-008 17 EP#179 7.9443E-015 2.6481E-008 18 EP#180 3.5100E-016 1.1700E-009 14 EP#186 1.2920E-014 4.3068E-008 17 EP#187 3.0148E-014 1.0049E-007 18 EP#188 1.0336E-012 3.4454E-006 14 EP#191 9.6903E-015 3.2301E-008 17 EP#192 2.2611E-014 7.5369E-008 18 EP#193 9.9900E-016 3.3300E-009 14 PLANT DAMAGE STATE (CET) 115, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1570E-002 9 EP# 15 0.OOOOE+000 2.6997E-002 10 EP# 17 0.OOOOE+000 9.2562E-001 6 EP# 20 0.OOOOE+000 8.6777E-003 9 EP# 21 0.OOOOE+000 2.0248E-002 10 EP# 23 0.OOOOE+000 8.9460E-004 6 EP# 71 0.OOOOE+000 3.0113E-006 9 EP# 72 0.OOOOE+000 7.0263E-006 10 EP# 74 0.OOOOE+000 2.4090E-004 6 EP# 77 0.OOOOE+000 2.2585E-006 9 EP# 78 0.OOOOE+000 5.2697E-006 10 EP# 80 0.OOOOE+000 2.3283E-007 6 EP# 86 0.OOOOE+000 8.5705E-006 9 EP# 87 0.OOOOE+000 1.9998E-005 10 EP# 89 0.OOOOE+000 6.8564E-004 6

I Calculation No. PRA-ILRT I Revision No. 2 I Page 123 of 158 1 EP# 92 O.0000E+000 6.4279E-006 9 EP# 93 0.0000E+000 1.4998E-005 10 EP# 95 0.0000E+000 6.6267E-007 6 EP#124 0.0000E+000 5.8142E-005 17 EP#125 0.0000E+000 1.3566E-004 18 EP#126 0.0000E+000 4.6513E-003 14 EP#129 0.0000E+000 4.3606E-005 17 EP#130 0.OOOOE+000 1.0175E-004 18 EP#131 0.OOOOE+000 4.4955E-006 14 EP#173 0.OOOOE+000 1.5132E-008 17 EP#174 0.OOOOE+000 3.5308E-008 18 EP#175 O.OOOOE+000 1.2106E-006 14 EP#178 0.0000E+000 1.1349E-008 17 EP#179 O.OOOOE+000 2.6481E-008 18 EP#180 0.OOOOE+000 1.1700E-009 14 EP#186 0.0000E+000 4.3068E-008 17 EP#187 0.OOOOE+000 1.0049E-007 18 EP#188 0.OOOOE+000 3.4454E-006 14 EP#191 0.OOOOE+000 3.2301E-008 17 EP#192 0.0000E+000 7.5369E-008 18 EP#193 0.0000E+000 3.3300E-009 14 PLANT DAMAGE STATE (CET).116, Frequency 6.9900E-009 EndPoint Frequency Probability STC EP# 14 8.0876E-011 1.1570E-002 9 EP# 15 1.8871E-010 2.6997E-002 10 EP# 18 4.5290E-009 6.4793E-001 7 EP# 19 1.9410E-009 2.7769E-001 8 EP#20 6.0657E-011 8.6777E-003 9 EP#21 1.4153E-010 2.0248E-002 10 EP# 24 4.3773E-012 6.2622E-004 7 EP# 25 1.8760E-012 2.6838E-004 8 EP# 71 2.1049E-014 3.0113E-006 9 EP# 72 4.9114E-014 7.0263E-006 10 EP# 75 1.1787E-012 1.6863E-004 7 EP# 76 5.0517E-013 7.2270E-005 8 EP# 77 1.5787E-014 2.2585E-006 9 EP# 78 3.6835E-014 5.2697E-006 10 EP# 81 1.1392E-015 1.6298E-007 7 EP# 82 4.8824E-016 6.9849E-008 8 EP# 86 5.9908E-014 8.5705E-006 9 EP# 87 1.3979E-013 1.9998E-005 10 EP# 90 3.3548E-012 4.7995E-004 7 EP# 91 1.4378E-012 2.0569E-004 8 EP# 92 4.4931E-014 6.4279E-006 9 EP# 93 1.0484E-013 1.4998E-005 10 EP# 96 3.2424E-015 4.6387E-007 7 EP# 97 1.3896E-015 1.9880E-007 8 EP#124 4.0641E-013 5.8142E-005 17 EP#125 9.4829E-013 1.3566E-004 18 EP#127 2.2759E-011 3.2559E-003 15 EP#128 9.7539E-012 1.3954E-003 16 EP#129 3.0481E-013 4.3606E-005 17 EP#130 7.1122E-013 1.0175E-004 18 EP#132 2.1996E-014 3.1468E-006 15 EP#133 9.4271E-015 1.3486E-006 16

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 124 of 158 1 EP#173 1.0577E-016 1.5132E-008 17 EP# 174 2.4680E-016 3.5308E-008 18 EP# 176 5.9233E-015 8.4739E-007 15 EP#177 2.5385E-015 3.6317E-007 16 EP#178 7.9330E-017 1.1349E-008 17 EP#179 1.8510E-016 2.6481E-008 18 EP# 181 5.7248E-018 8.1900E-010 15 EP#182 2.4535E-018 3.5 100E-010 16 EP#186 3.0105E-016 4.3068E-008 17 EP#187 7.0244E-0 16 1.0049E-007 18 EP#189 1.6859E-014 2.4118E-006 15 EP# 190 7.225 1E-0 15 1.0336E-006 16 EP# 191 2.2578E-016 3.2301E-008 17 EP#192 5.2683E-016 7.5369E-008 18 EP# 194 1.6294E-017 2.33 1OE-009 15 EP#195 6.9830E-018 9.9900E-010 16 PLANT DAMAGE STATE (CET) 117, Frequency = 8.8000E-010 EndPoint Frequency Probability STC EP# 14 2.4186E-011 2.7484E-002 9 EP# 15 1.0365E-011 1.1779E-002 10 EP# 18 7.4631E-010 8.4809E-001 7 EP# 19 8.2924E-011 9.4232E-002 8 EP# 20 3.8269E-013 4.3488E-004 9 EP#21 1.6401E-013 1.8638E-004 10 EP# 24 9.3486E-012 1.0623E-002 7 EP# 25 1.0387E-012 1.1804E-003 8 EP# 71 6.2947E-015 7.1531E-006 9 EP# 72 2.6977E-015 3.0656E-006 10 EP# 75 1.9424E-013 2.2072E-004 7 EP# 76 2.1582E-014 2.4525E-005 8 EP# 77 9.9599E-017 1.1318E-007 9 EP# 78 4.2686E-017 4.8506E-008 10 EP# 81 2.4331E-015 2.7649E-006 7 EP# 82 2.7034E-016 3.0721E-007 8 EP# 86 1.7916E-014 2.0359E-005 9 EP# 87 7.6781E-015 8.7252E-006 10 EP# 90 5.5283E-013 6.2821E-004 7 EP# 91 6.1425E-014 6.9801E-005 8 EP# 92 2.8348E-016 3.2213E-007 9 EP# 93 1.2149E-016 1.3806E-007 10 EP# 96 6.9249E-015 7.8692E-006 7 EP# 97 7.6943E-016 8.7436E-007 8 EP#124 1.2154E-013 1.3811E-004 17 EP#125 5.2088E-014 5.9191E-005 18 EP#127 3.7503E-012 4.2617E-003 15 EP#128 4.1670E-013 4.7353E-004 16 EP#129 1.9231E-015 2.1853E-006 17 EP#130 8.2418E-016 9.3656E-007 18 EP#132 4.6978E-014 5.3384E-005 15 EP#133 5.2198E-015 5.9316E-006 16 EP#173 3.1632E-017 3.5945E-008 17 EP#174 1.3556E-017 1.5405E-008 18 EP#176 9.7606E-016 1.1092E-006 15 EP#177 1.0845E-016 1.2324E-007 16 EP#178 5.0050E-019 5.6875E-010 17

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 125 of 158 1 EP#179 2.1450E-019 2.4375E-010 18 EP#181 1.2226E-017 1.3894E-008 15 EP#182 1.3585E-018 1.5438E-009 16 EP#186 9.0028E-017 1.0231E-007 17 EP#187 3.8584E-017 4.3845E-008 18 EP#189 2.7780E-015 3.1568E-006 15 EP#190 3.0867E-016 3.5076E-007 16 EP#191 1.4245E-018 1.6188E-009 17 EP#192 6.1050E-019 6.9375E-010 18 EP#194 3.4798E-017 3.9544E-008 15 EP#195 3.8665E-018 4.3938E-009 16 PLANT DAMAGE STATE (CET) 118, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 14 0.0000E+000 2.7484E-002 9 EP# 15 0.0000E+000 1.1779E-002 10 EP# 18 O.OOOOE+000 8.4809E-001 7 EP# 19 O.0000E+000 9.4232E-002 8 EP# 20 0.0000E+000 8.4366E-003 9 EP# 21 0.OOOOE+000 3.6157E-003 10 EP# 24 0.0000E+000 3.3548E-004 7 EP# 25 O.OOOOE+000 3.7275E-005 8 EP# 71 O.OOOOE+000 7.1531E-006 9 EP# 72 0.0000E+000 3.0656E-006 10 EP# 75 0.OOOOE+000 2.2072E-004 7 EP# 76 0.OOOOE+000 2.4525E-005 8 EP# 77 0.OOOOE+000 2.1957E-006 9 EP# 78 0.OOOOE+000 9.4102E-007 10 EP# 81 0.OOOOE+000 8.7311E-008 7 EP# 82 0.OOOOE+000 9.7013E-009 8 EP# 86 0.0000E+000 2.0359E-005 9 EP# 87 0.OOOOE+000 8.7252E-006 10 EP# 90 0.OOOOE+000 6.2821E-004 7 EP# 91 0.OOOOE+000 6.9801E-005 8 EP# 92 0.OOOOE+000 6.2493E-006 9 EP# 93 0.OOOOE+000 2.6783E-006 10 EP# 96 0.OOOOE+000 2.4850E-007 7 EP# 97 0.OOOOE+000 2.7611E-008 8 EP#124 0.OOOOE+000 1.3811E-004 17 EP#125 0.OOOOE+000 5.9191E-005 18 EP#127 0.OOOOE+000 4.2617E-003 15 EP#128 0.OOOOE+000 4.7353E-004 16 EP#129 0.OOOOE+000 4.2395E-005 17 EP#130 0.OOOOE+000 1.8169E-005 18 EP#132 0.OOOOE+000 1.6858E-006 15 EP#133 0.OOOOE+000 1.8731E-007 16 EP#173 0.OOOOE+000 3.5945E-008 17 EP#174 0.OOOOE+000 1.5405E-008 18 EP#176 0.OOOOE+000 1.1092E-006 15 EP#177 0.OOOOE+000 1.2324E-007 16 EP#178 0.OOOOE+000 1.1034E-008 17 EP#179 0.OOOOE+000 4.7288E-009 18 EP#181 0.OOOOE+000 4.3875E-010 15 EP#182 0.OOOOE+000 4.8750E-011 16 EP#186 0.OOOOE+000 1.0231E-007 17 EP#187 0.OOOOE+000 4.3845E-008 18

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 126 of 158 I EP#189 0.0000E+000 3.1568E-006 15 EP#190 0.OOOOE+000 3.5076E-007 16 EP#191 0.OOOOE+000 3.1404E-008 17 EP#192 0.OOOOE+000 1.3459E-008 18 EP#194 0.OOOOE+000 1.2488E-009 15 EP#195 0.OOOOE+000 1.3875E-010 16 PLANT DAMAGE STATE (CET) 119, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.0000E+000 1.1779E-002 9 EP# 15 0.0000E+000 2.7484E-002 10 EP# 18 0.0000E+000 6.5962E-001 4 EP# 19 O.0000E+000 2.8270E-001 5 EP# 20 O.0000E+000 3.6157E-003 9 EP# 21 O.0000E+000 8.4366E-003 10 EP# 24 0.0000E+000 2.6093E-004 4 EP# 25 0.0000E+000 1.11 83E-004 5 EP# 71 O.0000E+000 3.0656E-006 9 EP# 72 0.0000E+000 7.1531E-006 10 EP# 75 0.OOOOE+000 1.7167E-004 4 EP# 76 0.0000E+000 7.3574E-005 5 EP# 77 0.OOOOE+000 9.4102E-007 9 EP# 78 0.OOOOE+000 2.1957E-006 10 EP# 81 0.OOOOE+000 6.7909E-008 4 EP# 82 0.0000E+000 2.9104E-008 5 EP# 86 0.0000E+000 8.7252E-006 9 EP# 87 0.OOOOE+000 2.0359E-005 10 EP# 90 0.0000E+000 4.8861E-004 4 EP# 91 0.OOOOE+000 2.0940E-004 5 EP# 92 0.OOOOE+000 2.6783E-006 9 EP# 93 0.OOOOE+000 6.2493E-006 10 EP# 96 0.OOOOE+000 1.9328E-007 4 EP# 97 0.OOOOE+000 8.2834E-008 5 EP#124 0.OOOOE+000 5.9191E-005 17 EP#125 0.OOOOE+000 1.3811E-004 18 EP#127 0.OOOOE+000 3.3147E-003 15 EP#128 0.OOOOE+000 1.4206E-003 16 EP#129 0.OOOOE+000 1.8169E-005 17 EP#130 0.OOOOE+000 4.2395E-005 18 EP#132 0.OOOOE+000 1.3112E-006 15 EP#133 0.OOOOE+000 5.6194E-007 16 EP#173 0.OOOOE+/--000 1.5405E-008 17 EP#174 0.OOOOE+000 3.5945E-008 18 EP#176 0.OOOOE+000 8.6268E-007 15 EP#177 0.OOOOE+000 3.6972E-007 16 EP#178 0.OOOOE+000 4.7288E-009 17 EP#179 0.OOOOE+000 1.1034E-008 18 EP#181 0.OOOOE+000 3.4125E-010 15 EP#182 0.OOOOE+000 1.4625E-010 16 EP#186 0.OOOOE+000 4.3845E-008 17 EP#187 0.OOOOE+000 1.0231E-007 18 EP#189 0.OOOOE+000 2.4553E-006 15 EP#190 0.OOOOE+000 1.0523E-006 16 EP#191 0.OOOOE+000 1.3459E-008 17 EP#192 0.OOOOE+000 3.1404E-008 18 EP#194 0.OOOOE+000 9.7125E-010 15

Calculation No. PRA-ILRT I Revision No. 2 I Page 127 of 158 EP#195 0.OOOOE+000 4.1625E-010 16 PLANT DAMAGE STATE (CET) 120, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.0000E+000 2.7484E-002 9 EP# 15 0.0000E+000 1.1779E-002 10 EP# 18 0.0000E+000 8.4809E-001 7 EP# 19 O.OOOOE+000 9.4232E-002 8 EP# 20 O.0000E+000 8.4366E-003 9 EP# 21 0.0000E+000 3.6157E-003 10 EP# 24 0.0000E+000 3.3548E-004 7 EP# 25 0.0000E+000 3.7275E-005 8 EP# 71 0.0000E+000 7.1531E-006 9 EP# 72 0.OOOOE+000 3.0656E-006 10 EP# 75 0.0000E+000 2.2072E-004 7 EP# 76 0.OOOOE+000 2.4525E-005 8 EP# 77 0.OOOOE+000 2.1957E-006 9 EP# 78 0.0000E+000 9.4102E-007 10 EP# 81 0.0000E+000 8.73 11E-008 7 EP# 82 0.0000E+000 9.7013E-009 8 EP# 86 0.OOOOE+000 2.0359E-005 9 EP# 87 0.OOOOE+000 8.7252E-006 10 EP# 90 0.OOOOE+000 6.2821E-004 7 EP# 91 0.OOOOE+000 6.9801E-005 8 EP# 92 0.OOOOE+000 6.2493E-006 9 EP# 93 0.OOOOE+000 2.6783E-006 10 EP# 96 0.OOOOE+000 2.4850E-007 7 EP# 97 0.OOOOE+000 2.7611 E-008 8 EP#124 0.OOOOE+000 1.3811E-004 17 EP#125 0.OOOOE+000 5.9191E-005 18 EP#127 0.OOOOE+000 4.2617E-003 15 EP#128 0.OOOOE+000 4.7353E-004 16 EP#129 0.OOOOE+000 4.2395E-005 17 EP#130 0.OOOOE+000 1.8169E-005 18 EP#132 0.OOOOE+000 1.6858E-006 15 EP#133 0.OOOOE+000 1.8731E-007 16 EP#173 0.OOOOE+000 3.5945E-008 17 EP#174 0.OOOOE+000 1.5405E-008 18 EP#176 0.OOOOE+000 1.1092E-006 15 EP#177 0.OOOOE+000 1.2324E-007 16 EP#178 0.OOOOE+000 1.1034E-008 17 EP#179 0.OOOOE+000 4.7288E-009 18 EP#181 0.OOOOE+000 4.3875E-010 15 EP#182 0.OOOOE+000 4.8750E-011 16 EP#186 0.OOOOE+000 1.0231E-007 17 EP#187 0.OOOOE+000 4.3845E-008 18 EP#189 0.OOOOE+000 3.1568E-006 15 EP#190 0.OOOOE+000 3.5076E-007 16 EP#191 0.OOOOE+000 3.1404E-008 17 EP#192 0.OOOOE+000 1.3459E-008 18 EP#194 0.OOOOE+000 1.2488E-009 . 15 EP#195 0.OOOOE+000 1.3875E-010 16 PLANT DAMAGE STATE (CET) 121, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP#20 0.OOOOE+000 2.8926E-001 9 EP# 21 0.OOOOE+000 6.7493E-001 10

I Calculation No. PRA-ILRT I Revision No. 2 I Page 128 of 158 1 EP# 24 0.OOOOE+000 2.0874E-002 4 EP# 25 0.OOOOE+000 8.9460E-003 5 EP# 77 0.OOOOE+000 7.5282E-005 9 EP# 78 0.OOOOE+000 1.7566E-004 10 EP# 81 0.OOOOE+000 5.4327E-006 4 EP# 82 0.OOOOE+000 2.3283E-006 5 EP# 92 0.OOOOE+000 2.1426E-004 9 EP# 93 0.OOOOE+000 4.9995E-004 10 EP# 96 0.OOOOE+000 1.5462E-005 4 EP# 97 O.OOOOE+000 6.6267E-006 5 EP# 129 0.OOOOE+000 1.4535E-003 17 EP# 130 O.OOOOE+000 3.3916E-003 18 EP#132 O.OOOOE+000 1.0489E-004 15 EP#133 O.OOOOE+000 4.4955E-005 16 EP# 178 O.OOOOE+000 3.7830E-007 17 EP# 179 0.OOOOE+000 8.8270E-007 18 EP# 181 0.OOOOE+000 2.7300E-008 15 EP# 182 0.OOOOE+000 1.1700E-008 16 EP# 191 0.OOOOE+000 1.0767E-006 17 EP# 192 0.OOOOE+000 2.5123E-006 18 EP# 194 0.OOOOE+000 7.7700E-008 15 EP# 195 O.OOOOE+000 3.3300E-008 16 PLANT DAMAGE STATE (CET) 122, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 14 0.OOOOE+000 1.1570E-002 9 EP# 15 0.0000E+000 2.6997E-002 10 EP# 18 0.OOOOE+000 6.4793E-001 7 EP# 19 0.OOOOE+000 2.7769E-001 8 EP# 20 0.OOOOE+000 8.6777E-003 9 EP# 21 0.0000E+000 2.0248E-002 10 EP# 24 0.OOOOE+000 6.2622E-004 7 EP# 25 0.0000E+000 2.6838E-004 8 EP# 71 0.0000E+000 3.0113E-006 9 EP# 72 0.OOOOE+000 7.0263E-006 10 EP# 75 0.0000E+000 1.6863E-004 7 EP# 76 0.0000E+000 7.2270E-005 8 EP# 77 0.OOOOE+000 2.2585E-006 9 EP# 78 0.OOOOE+000 5.2697E-006 10 EP# 81 0.OOOOE+000 1.6298E-007 7 EP# 82 0.OOOOE+000 6.9849E-008 8 EP# 86 0.OOOOE+000 8.5705E-006 9 EP# 87 0.OOOOE+000 1.9998E-005 10 EP# 90 0.OOOOE+000 4.7995E-004 7 EP# 91 0.OOOOE+000 2.0569E-004 8 EP# 92 0.OOOOE+000 6.4279E-006 9 EP# 93 0.OOOOE+000 1.4998E-005 10 EP# 96 0.OOOOE+000 4.6387E-007 7 EP# 97 0.OOOOE+000 1.9880E-007 8 EP#124 0.OOOOE+/-000 5.8142E-005 17 EP#125 0.OOOOE+/-000 1.3566E-004 18 EP#127 0.OOOOE+/-000 3.2559E-003 15 EP#128 0.OOOOE+000 1.3954E-003 16 EP#129 0.OOOOE-4000 4.3606E-005 17 EP#130 0.OOOOE+O000 1.0175E-004 18 EP#132 0.OOOOE-4-000 3.1468E-006 15

I Calculation No. PRA-ILRT I Revision No. 2 I Page 129 of 158 I EP#133 0.0000E+000 1.3486E-006 16 EP#173 0.0000E+000 1.5132E-008 17 EP#174 0.0000E+000 3.5308E-008 18 EP# 176 0.0000E+000 8.4739E-007 15 EP#177 0.0000E+000 3.6317E-007 16 EP#178 0.0000E+000 1.1 349E-008 17 EP#179 0.0000E+000 2.6481 E-008 18 EP# 181 0.0000E+/-000 8.1900E-010 15 EP#182 0.OOOOE+000 3.5100E-010 16 EP#186 0.0000E+000 4.3068E-008 17 EP#187 0.OOOOE+000 1.0049E-007 18 EP#189 0.OOOOE+000 2.4118E-006 15 EP#190 O.0000E+000 1.0336E-006 16 EP# 191 O.OOOOE+000 3.2301E-008 17 EP#192 O.OOOOE+000 7.5369E-008 18 EP#194 0.OOOOE-I000 2.33 1OE-009 15 EP#195 0.OOOOE+000 9.9900E-010 16 PLANT DAMAGE STATE (CET) 123, Frequency = 6.8260E-008 EndPoint Frequency Probability STC EP# 71 2.0555E-010 3.0113E-003 9 EP# 72 4.7962E-010 7.0263E-003 10 EP# 73 1.6444E-008 2.4090E-001 2 EP# 77 1.5416E-010 2.2585E-003 9 EP# 78 3.5971E-010 5.2697E-003 10 EP# 79 1.5893E-011 2.3283E-004 2 EP# 86 5.8503E-010 8.5705E-003 9 EP# 87 1.3651E-009 1.9998E-002 10 EP# 88 4.6802E-008 6.8564E-001 2 EP# 92 4.3877E-010 6.4279E-003 9 EP# 93 1.0238E-009 1.4998E-002 10 EP# 94 4.5234E-011 6.6267E-004 2 EP#173 1.0329E-012 1.5132E-005 17 EP#174 2.4101E-012 3.5308E-005 18 EP#175 8.2633E-01 1 1.2106E-003 14 EP#178 7.7469E-013 1.1349E-005 17 EP#179 1.8076E-012 2.6481E-005 18 EP#180 7.9865E-014 1.1700E-006 14 EP#186 2.9398E-012 4.3068E-005 17 EP#187 6.8596E-012 1.0049E-004 18 EP#188 2.3519E-010 3.4454E-003 14 EP#191 2.2049E-012 3.2301E-005 17 EP#192 5.1447E-012 7.5369E-005 18 EP#193 2.2731E-013 3.3300E-006 14 PLANT DAMAGE STATE (CET) 124, Frequency = 0.OOOOE+000 EndPoint Frequency Probability S' EP# 71 0.OOOOE+000 3.0113E-003 EP# 72 0.OOOOE+000 7.0263E-003 EP# 74 0.OOOOE+000 2.4090E-001 EP# 77 0.OOOOE+000 2.2585E-003 EP# 78 0.OOOOE+000 5.2697E-003 EP# 80 0.OOOOE+000 2.3283E-004 EP# 86 0.OOOOE+000 8.5705E-003 EP# 87 0.OOOOE+000 1.9998E-002 EP# 89 0.OOOOE+000 6.8564E-001 EP# 92 0.OOOOE+000 6.4279E-003

I Calculation No. PRA-ILRT I Revision No. 2 I Page 130 of 158 I EP# 93 O.OOOOE+000 1.4998E-002 10 EP# 95 0.0000E+000 6.6267E-004 6 EP#173 0.OOOOE+000 1.5132E-005 17 EP#174 0.OOOOE+/-000 3.5308E-005 18 EP#175 0.OOOOE+000 1.2106E-003 14 EP#178 0.0000E+000 1.1349E-005 17 EP#179 0.OOOOE+000 2.6481 E-005 18 EP#180 0.0000E+000 1.1700E-006 14 EP#186 0.OoOOE+000 4.3068E-005 17 EP#187 0.OOOOE+/-000 1.0049E-004 18 EP#188 0.OOOOE+000 3.4454E-003 14 EP#191 0.OOOOE+000 3.2301E-005 17 EP#192 0.OOOOE-4000 7.5369E-005 18 EP#193 O.OOOOE+/-000 3.3300E-006 14 PLANT DAMAGE STATE (CET) 125, Frequency= 1.6863E-0 10 EndPoint Frequency Probability STC EP# 71 5.0779E-013 3.0113E-003 9 EP# 72 1.1848E-012 7.0263E-003 10 EP# 75 2.8436E-011 1.6863E-001 7 EP# 76 1.2187E-011 7.2270E-002 8 EP# 77 3.8084E-013 2.2585E-003 9 EP# 78 8.8863E-013 5.2697E-003 10 EP# 81 2.7483E-014 1.6298E-004 7 EP# 82 1.1779E-014 6.9849E-005 8 EP# 86 1.4452E-012 8.5705E-003 9 EP# 87 3.3722E-012 1.9998E-002 10 EP# 90 8.0933E-01 I 4.7995E-001 7 EP# 91 3.4686E-011 2.0569E-001 8 EP# 92 1.0839E-012 6.4279E-003 9 EP# 93 2.5292E-012 1.4998E-002 10 EP# 96 7.8222E-014 4.6387E-004 7 EP# 97 3.3524E-014 1.9880E-004 8 EP#173 2.5517E-015 1.5132E-005 17 EP#174 5.9539E-015 3.5308E-005 18 EP#176 1.4289E-013 8.4739E-004 15 EP#177 6.1241E-014 3.6317E-004 16 EP#178 1.9138E-015 1.1349E-005 17 EP#179 4.4655E-015 2.6481E-005 18 EP#181 1.3811E-016 8.1900E-007 15 EP#182 5.9189E-017 3.5100E-007 16 EP#186 7.2625E-015 4.3068E-005 17 EP#187 1.6946E-014 1.0049E-004 18 EP#189 4.0670E-013 2.4118E-003 15 EP#190 1.7430E-013 1.0336E-003 16 EP#191 5.4469E-015 3.2301E-005 17 EP#192 1.2709E-014 7.5369E-005 18 EP#194 3.9307E-016 2.3310E-006 15 EP#195 1.6846E-016 9.9900E-007 16 PLANT DAMAGE STATE (CET) 126, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 71 0.OOOOE+000 3.0113E-003 9 EP# 72 0.OOOOE+000 7.0263E-003 10 EP# 75 0.OOOOE+000 1.6863E-001 7 EP# 76 0.OOOOE+000 7.2270E-002 8 EP# 77 0.OOOOE+000 2.2585E-003 9

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 131 of 158 EP# 78 0.OOOOE+/-O000 5.2697E-003 10 EP# 81 0.OOOOE+O000 1.6298E-004 7 EP# 82 0.OOOOE+O000 6.9849E-005 8 EP# 86 0.OOOOE+O000 8.5705E-003 9 EP# 87 0.OOOOE+/-000 1 .9998E-002 10 EP# 90 0.OOOOE+/-O000 4.7995E-001 7 EP# 91 O.OOOOE+O000 2.0569E-001 8 EP# 92 0.OOOOE+/-000 6.4279E-003 9 EP# 93 O.OOOOE+/-000 1.4998E-002 10 EP# 96 0.OOOOE+000 4.6387E-004 7 EP# 97 O.OOOOE+O000 1.9880E-004 8 EP#173 O.OOOOE+000 1.5132E-005 17 EP# 174 O.OOOOE+000 3.5308E-005 18 EP#176 0.OOOOE+000 8.4739E-004 15 EP#177 O.OOOOE+000 3.6317E-004 16 EP#178 0.OOOOE+O000 1.1 349E-005 17 EP#179 O.OOOOE+000 2.6481 E-005 18 EP#181 0.OOOOE+/-000 8.1900E-007 15 EP#182 O.OOOOE+000 3.5 100E-007 16 EP#186 0.OOOOE+000 4.3068E-005 17 EP#187 0.OOOOE+O000 1.0049E-004 18 EP# 189 0.OOOOE+/-000 2.4118E-003 15 EP#190 0.OOOOE+000 1.0336E-003 16 EP#191 0.OOOOE+/-000 3.2301E-005 17 EP# 192 0.OOOOE+000 7.5369E-005 18 EP#194 0.OOOOE+000 2.33 10E-006 15 EP# 195 0.OOOOE+/-000 9.9900E-007 16 PLANT DAMAGE STATE (CET) 127, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 2 0.OOOOE+000 1.0000E-002 9 EP# 3 0.OOOOE+000 4.2858E-003 10 EP# 5 0.OOOOE+000 3.4286E-001 6 EP# 8 0.OOOOE+000 9.77IOE-004 9 EP# 9 0.OOOOE+000 4.1876E-004 10 EP# 11 0.OOOOE+000 2.6521E-002 6 EP# 14 0.OOOOE+000 1.3256E-002 9 EP# 15 0.OOOOE+000 5.6811E-003 10 EP# 17 0.OOOOE+000 4.5449E-001 6 EP# 20 0.OOOOE+000 1.2952E-003 9 EP# 21 0.OOOOE+000 5.5510E-004 10 EP# 23 0.OOOOE+000 3.5156E-002 6 EP# 27 0.OOOOE+000 2.7799E-003 12 EP# 28 0.OOOOE+000 1.19 14E-003 13 EP# 29 0.OOOOE+000 1.8576E-004 9 EP# 30 0.OOOOE+000 7.9611E-005 10 EP# 32 0.OOOOE+000 6.3688E-003 6 EP# 35 0.OOOOE+000 1.8150E-005 9 EP# 36 0.OOOOE+000 7.7787E-006 10 EP# 38 0.OOOOE+000 4.9265E-004 6 EP#42 0.OOOOE+000 7.9121E-003 12 EP# 43 0.OOOOE+000 3.3909E-003 13 EP# 44 0.OOOOE+000 5.2870E-004 9 EP# 45 0.OOOOE+000 2.2658E-004 10 EP# 47 0.OOOOE+000 1.8127E-002 6 EP# 50 0.OOOOE+000 5.1658E-005 9

I Calculation No. PRA-ILRT I Revision No. 2 r Page 132 of 158 EP# 51 0.OOOOE+000 2.2139E-005 10 EP# 53 0.OOOOE+000 1.4022E-003 6 EP# 71 0.OOOOE+/-O000 3.8295E-004 9 EP# 72 0.OOOOE+000 1.6412E-004 10 EP# 74 0.OOOOE+/-000 1.3130E-002 6 EP# 77 0.0000E+/-O000 3.7418E-005 9 EP# 78 0.OOOOE+O000 1.6036E-005 10 EP# 80 0.OOOOE+/-000 1.0156E-003 6 EP# 84 0.OOOOE+000 7.6090E-003 12 EP# 85 0.0000E+000 3.261OE-003 13 EP# 86 0.OOOOE+000 8.0764E-004 9 EP# 87 0.0000E+O00 3.4613E-004 10 EP# 89 O.OOOOE+O000 2.7691 E-002 6 EP# 92 0.OOOOE+000 7.8914E-005 9 EP# 93 0.0000E+O00 3.3820E-005 10 EP# 95 0.0000E+000 2.1420E-003 6 EP#114 0.OOOOE+000 5.0252E-005 17 EP# 115 0.0000E+O00 2.1537E-005 18 EP# 116 0.OOOOE+000 1.7229E-003 14 EP# 119 0.0000E+O00 4.9101E-006 17 EP# 120 0.OOOOE+O000 2.1043E-006 18 EP# 121 0.0000E+000 1.3327E-004 14 EP# 124 O.OOOOE+O0O 6.6613E-005 17 EP#125 O.OOOOE+O000 2.8548E-005 18 EP# 126 O.0000E+000 2.2839E-003 14 EP# 129 0.OOOOE+000 6.5087E-006 17 EP# 130 0.OOOOE+000 2.7894E-006 18 EP#131 0.OOOOE-I000 1.7666E-004 14 EP#135 0.OOOOE+000 1.3969E-005 20 EP# 136 0.OOOOE+000 5.9869E-006 21 EP#137 0.OOOOE+000 9.3346E-007 17 EP#138 0.OOOOE+000 4.0005E-007 18 EP#139 0.OOOOE+O000 3.2004E-005 14 EP#142 0.OOOOE+000 9.1207E-008 17 EP# 143 0.OOOOE+000 3.9089E-008 18 EP# 144 0.OOOOE+O000 2.4756E-006 14 EP#148 0.OOOOE+000 3.9759E-005 20 EP# 149 0.OOOOE+/-000 1.7040E-005 21 EP#150 0.OOOOE+/-000 2.6568E-006 17 EP#151 0.OOOOE+/-000 1.1386E-006 18 EP#152 0.OOOOE+/-O000 9.1089E-005 14 EP#155 0.0000E+000 2.5959E-007 17 EP#156 0.0000E+/-000 1.1125E-007 18 EP#157 0.OOOOE+000 7.0460E-006 14 EP#173 0.OOOOE+/-000 1.9244E-006 17 EP# 174 0.0000E+/-O000 8.2473E-007 18 EP#175 0.OOOOE+/-000 6.5979E-005 14 EP# 178 0.0000E+O000 1.8803E-007 17 EP# 179 0.OOOOE+000 8.0584E-008 18 EP#180 0.OOOOE+000 5.1036E-006 14 EP#184 0.OOOOE+/-O000 3.8236E-005 20 EP#185 0.OOOOE+/-000 1.6387E-005 21 EP# 186 0.OOOOE+O000 4.0585E-006 17 EP# 187 0.0000E+O000 1.7394E-006 18 EP#188 0.0000E+000 1.3915E-004 14

I Calculation No. PRA-ILRT I Revision No. 2 2

1 PaRe I Pae 133 13 of o

158 5

1I I Caclto o -LTI ReiinN.

EP#191 0.OOOOE+000 3.9655E-007 17 EP#192 0.0000E+000 1.6995E-007 18 EP#193 0.OOOOE+000 1.0764E-005 14 PLANT DAMAGE STATE (CET) 128, Frequency = 1.7033E-006 EndPoint Frequency Probability STC EP# 2 9.1248E-009 5.3572E-003 9 EP# 3 2.1291E-008 1.2500E-002 10 EP# 4 5.7791E-007 3.3929E-001 2 EP# 8 1.4265E-008 8.3752E-003 9 EP# 9 3.3286E-008 1.9542E-002 10 EP# 14 9.6766E-009 5.6811E-003 9 EP# 15 2.2579E-008 1.3256E-002 10 EP# 16 7.7413E-007 4.5449E-001 2 EP# 20 1.8342E-008 1.0769E-002 9 EP# 21 4.2799E-008 2.5127E-002 10 EP# 22 1.8910E-009 1.1102E-003 2 EP# 27 2.0293E-009 1.1914E-003 12 EP# 28 4.7350E-009 2.7799E-003 13 EP# 29 1.6950E-010 9.9513E-005 9 EP# 30 3.9550E-010 2.3220E-004 10 EP# 31 1.0735E-008 6.3025E-003 2 EP# 35 2.6498E-010 1.5557E-004 9 EP# 36 6.1830E-010 3.6300E-004 10 EP# 42 5.7756E-009 3.3909E-003 12 EP# 43 1.3476E-008 7.9121E-003 13 EP#44 4.8242E-010 2.8323E-004 9 EP# 45 1.1256E-009 6.6087E-004 10 EP# 46 3.0553E-008 1.7938E-002 2 EP# 50 7.5419E-010 4.4279E-004 9 EP# 51 1.7598E-009 1.0332E-003 10 EP# 71 2.7955E-010 1.6412E-004 9 EP#72 6.5227E-010 3.8295E-004 10 EP# 73 2.2364E-008 1.3130E-002 2 EP# 77 5.2989E-010 3.1110E-004 9 EP# 78 1.2364E-009 7.2590E-004 10 EP# 79 5.4628E-011 3.2072E-005 2 EP# 84 5.5544E-009 3.2610E-003 12 EP# 85 1.2960E-008 7.6090E-003 13 EP# 86 5.8956E-010 3.4613E-004 9 EP# 87 1.3756E-009 8.0764E-004 10 EP# 88 4.7165E-008 2.7691E-002 2 EP# 92 1.1175E-009 6.5611E-004 9 EP# 93 2.6076E-009 1.5309E-003 10 EP#94 1.1521E-010 6.7641E-005 2 EP#114 4.5853E-011 2.6921E-005 17 EP#115 1.0699E-010 6.2815E-005 18 EP#116 2.9041E-009 1.7050E-003 14 EP#119 7.1685E-011 4.2086E-005 17 EP#120 1.6726E-010 9.8201E-005 18 EP#124 4.8626E-0 II 2.8548E-005 17 EP#125 1.1346E-010 6.6613E-005 18 EP#126 3.8901E-009 2.2839E-003 14 EP#129 9.2173E-011 5.4115E-005 17 EP#130 2.1507E-010 1.2627E-004 18 EP#131 9.5024E-012 5.5789E-006 14

ICalculation No. PRA-ILRT I Revision No. 2 1 Page 134 of 158 EP#135 1.0197E-011 5.9869E-006 20 EP#136 2.3794E-01 1 1.3969E-005 21 EP#137 8.5175E-013 5.0007E-007 17 EP#138 1.9874E-012 1.1 668E-006 18 EP#139 5.3944E-011 3.1671E-005 14 EP#142 1.3316E-012 7.8178E-007 17 EP#143 3.1070E-0 12 1.8241E-006 18 EP# 148 2.9023E-0 11 1.7040E-005 20 EP#149 6.772 1E-0 11 3.9759E-005 21 EP#150 2.4242E-012 1.4233E-006 17 EP#151 5.6565E-012 3.321OE-006 18 EP#152 1.5353E-010 9.0140E-005 14 EP#155 3.7899E-012 2.2251 E-006 17 EP#156 8.8431E-012 5.1918E-006 18 EP#173 1.4048E-012 8.2473E-007 17 EP# 174 3.2778E-012 1.9244E-006 18 EP#175 1. 123 8E-0 10 6.5979E-005 14 EP#178 2.6628E-012 1.5633E-006 17 EP#179 6.2132E-012 3.6478E-006 18 EP#180 2.7451E-013 1.6117E-007 14 EP#184 2.7912E-0 I1 1.6387E-005 20 EP#185 6.5127E-011 3.8236E-005 21 EP#186 2.9626E-0 12 1.7394E-006 17 EP#187 6.9128E-012 4.0585E-006 18 EP#188 2.3701E-010 1.3915E-004 14 EP#191 5.6158E-012 3.2971E-006 17 EP#192 1.3104E-011 7.6931 E-006 18 EP#193 5.7895E-013 3.3990E-007 14 PLANT DAMAGE STATE (CET) 129, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 2 0.OOOOE+000 5.3572E-003 9 EP# 3 0.OOOOE+000 1.2500E-002 10 EP# 5 0.OOOOE+000 3.3929E-001 6 EP# 8 0.OOOOE+000 8.3752E-003 9 EP# 9 0.OOOOE+000 1.9542E-002 10 EP# 14 0.OOOOE+000 5.6811E-003 9 EP# 15 0.OOOOE+000 1.3256E-002 10 EP# 17 0.OOOOE+000 4.5449E-001 6 EP# 20 0.OOOOE+000 1.0769E-002 9 EP# 21 0.OOOOE+000 2.5127E-002 10 EP# 23 0.OOOOE+000 1.11 02E-003 6 EP# 27 0.OOOOE+000 1.1914E-003 12 EP# 28 0.OOOOE+000 2.7799E-003 13 EP# 29 0.OOOOE+000 9.9513E-005 9 EP# 30 0.OOOOE+000 2.3220E-004 10 EP# 32 0.OOOOE+000 6.3025E-003 6 EP# 35 0.OOOOE+000 1.5557E-004 9 EP# 36 0.OOOOE+000 3.6300E-004 10 EP# 42 0.OOOOE+000 3.3909E-003 12 EP#43 0.OOOOE+000 7.9121E-003 13 EP# 44 0.OOOOE+000 2.8323E-004 9 EP# 45 0.OOOOE+000 6.6087E-004 10 EP# 47 0.OOOOE+000 1.7938E-002 6 EP# 50 0.OOOOE+000 4.4279E-004 9 EP# 51 0.OOOOE+000 1.0332E-003 10

ICalculation No. PRA-ILRT I Revision No. 2 1 Page 135 of 158 1 EP# 71 0.OOOOE+000 1.6412E-004 9 EP# 72 0.0000E+000 3.8295E-004 10 EP# 74 0.0000E+000 1.3130E-002 6 EP# 77 0.0000E-4000 3.111OE-004 9 EP# 78 0.OOOOE+/-000 7.2590E-004 10 EP# 80 0.0000E+O000 3.2072E-005 6 EP# 84 0.OOOOE+/-000 3.261OE-003 12 EP# 85 0.OOOOE-4-000 7.6090E-003 13 EP# 86 0.OOOOE+000 3.4613E-004 9 EP# 87 0.0000E+/-000 8.0764E-004 10 EP# 89 0.OOOOE+000 2.7691E-002 6 EP# 92 0.0000E+/-000 6.5611 E-004 9 EP# 93 0.0000E+/-000 1.5309E-003 10 EP# 95 0.OOOOE+000 6.7641E-005 6 EP#1 14 0.0000E+000 2.6921 E-005 17 EP#1 15 0.OOOOE+000 6.2815E-005 18 EP# 116 0.0000E-I000 1.7050E-003 14 EP#1 19 0.OOOOE+000 4.2086E-005 17 EP#120 0.OOOOE+000 9.8201 E-005 18 EP#124 0.0000E+000 2.8548E-005 17 EP#125 0.0000E+000 6.6613E-005 18 EP#126 0.0000E+000 2.2839E-003 14 EP#129 0.0000E+000 5.4115E-005 17 EP# 130 0.OOOOE+/-000 1.2627E-004 18 EP#131 0.0000E+000 5.5789E-006 14 EP#135 0.0000E+000 5.9869E-006 20 EP#136 0.0000E+000 1.3969E-005 21 EP#137 0.0000E+000 5.0007E-007 17 EP#138 0.0000E+000 1.1668E-006 18 EP#139 0.0000E+000 3.1671E-005 14 EP#142 0.OOOOE+000 7.8178E-007 17 EP#143 0.0000E-f000 1.8241E-006 18 EP#148 0.0000E+000 1.7040E-005 20 EP#149 0.0000E+000 3.9759E-005 21 EP# 150 0.OOOOE+000 1.4233E-006 17 EP#151 0.0000E+000 3.32IOE-006 18 EP# 152 0.0000E+000 9.0140E-005 14 EP#155 0.0000E+000 2.2251E-006 17 EP# 156 0.OOOOE+000 5.1918E-006 18 EP# 173 0.OOOOE+000 8.2473E-007 17 EP# 174 0.0000E-I000 1.9244E-006 18 EP#175 0.0000E+000 6.5979E-005 14 EP#178 0.0000E+000 1.5633E-006 17 EP# 179 0.0000E+000 3.6478E-006 18 EP# 180 0.0000E+/-000 1.6117E-007 14 EP# 184 0.OOOOE+000 1.6387E-005 20 EP# 185 0.OOOOE+000 3.8236E-005 21 EP#186 0.OOOOE+/-000 1.7394E-006 17 EP#187 0.OOOOE+000 4.0585E-006 18 EP#188 0.OOOOE+/-000 1.3915E-004 14 EP# 191 0.0000E+/-000 3.2971 E-006 17 EP# 192 0.OOOOE+000 7.6931 E-006 18 EP#193 0.0000E+000 3.3990E-007 14 PLANT DAMAGE STATE (CET) 130, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC

I Calculation No. PRA-ILRT I Revision No. 2 T Page 136 of 158 1 EP# 2 0.OOOOE+000 1.0000E-002 9 EP# 3 0.0000E+/-000 4.2858E-003 10 EP# 6 0.0000E+000 3.0858E-001 7 EP# 7 0.OOOOE+000 3.4286E-002 8 EP# 8 0.OOOOE+000 9.7710E-004 9 EP# 9 0.OOOOE+000 4.1876E-004 10 EP# 12 0.OOOOE+000 2.3869E-002 7 EP# 13 0.OOOOE+/-000 2.6521 E-003 8 EP# 14 0.OOOOE+O000 1.3256E-002 9 EP# 15 0.OOOOE+000 5.6811E-003 10 EP# 18 0.OOOOE+/-000 4.0904E-001 7 EP# 19 0.OOOOE+/-000 4.5449E-002 8 EP# 20 0.OOOOE+/-O000 1.2952E-003 9 EP# 21 0.OOOOE-4-000 5.551 OE-004 10 EP# 24 0.0000E+/-000 3.1641E-002 7 EP# 25 0.OOOOE+000 3.5156E-003 8 EP# 27 0.OOOOE+000 2.7799E-003 12 EP# 28 0.OOOOE-I000 1.19 14E-003 13 EP# 29 0.OOOOE+O000 1.8576E-004 9 EP# 30 0.OOOOE+000 7.9611 E-005 10 EP# 33 0.OOOOE+000 5.7320E-003 7 EP# 34 0.OOOOE+000 6.3688E-004 8 EP# 35 0.OOOOE+/-000 1.8150E-005 9 EP# 36 0.OOOOE+000 7.7787E-006 10 EP# 39 0.OOOOE+000 4.4338E-004 7 EP# 40 0.OOOOE+O000 4.9265E-005 8 EP# 42 0.OOOOE+000 7.912 1E-003 12 EP# 43 0.OOOOE+000 3.3909E-003 13 EP# 44 0.OOOOE+000 5.2870E-004 9 EP# 45 0.OOOOE+000 2.2658E-004 10 EP# 48 0.OOOOE+000 1.6314E-002 7 EP# 49 0.OOOOE+000 1.8127E-003 8 EP# 50 0.OOOOE+/-O000 5.1658E-005 9 EP# 51 0.OOOOE+000 2.2139E-005 10 EP# 54 0.OOOOE+000 1.2619E-003 7 EP# 55 0.OOOOE+000 1.4022E-004 8 EP# 71 0.OOOOE+000 3.8295E-004 9 EP# 72 0.OOOOE+000 1.6412E-004 10 EP# 75 0.OOOOE+/-000 1.18 17E-002 7 EP# 76 0.OOOOE+000 1.3130E-003 8 EP# 77 0.OOOOE+000 3.7418E-005 9 EP# 78 0.OOOOE+/-O000 1.6036E-005 10 EP# 81 0.OOOOE+000 9.1406E-004 7 EP# 82 0.OOOOE+O000 1.0 156E-004 8 EP# 84 0.OOOOE+000 7.6090E-003 12 EP# 85 0.OOOOE+O000 3.261OE-003 13 EP# 86 0.OOOOE+O000 8.0764E-004 9 EP# 87 0.OOOOE+/-000 3.4613 E-004 10 EP# 90 0.OOOOE+/-000 2.4922E-002 7 EP# 91 0.OOOOE+O000 2.7691 E-003 8 EP# 92 0.0000E+/-000 7.8914E-005 9 EP# 93 0.OOOOE+O000 3.3820E-005 10 EP# 96 0.OOOOE+/-000 1.9278E-003 .7 EP# 97 0.OOOOE+000 2.1420E-004 8 EP#114 0.OOOOE+000 5.0252E-005 17

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 137 of 158 EP#115 0.0000E+/-000 2.1537E-005 18 EP#117 0.0000E+000 1.5506E-003 15 EP#118 0.0000E+000 1.7229E-004 16 EP#119 0.0000E+000 4.9101E-006 17 EP#120 0.0000E+000 2.1043E-006 18 EP#122 0.OOOOE+/-000 1.1995E-004 15 EP#123 0.0000E+/-000 1.3327E-005 16 EP#124 0.OOOOE+000 6.6613E-005 17 EP#125 0.0000E+000 2.8548E-005 18 EP#127 0.0000E+000 2.0555E-003 15 EP#128 0.0000E+000 2.2839E-004 16 EP#129 0.0000E+/-000 6.5087E-006 17 EP#130 0.OOOOE+/-000 2.7894E-006 18 EP#132 0.OOOOE+000 1.5900E-004 15 EP#133 0.OOOOE+/-000 1.7666E-005 16 EP#135 0.OOOOE-I000 1.3969E-005 20 EP#136 0.OOOOE+/-000 5.9869E-006 21 EP#137 0.0000E+000 9.3346E-007 17 EP#138 0.0000E+000 4.0005E-007 18 EP#140 0.0000E+000 2.8804E-005 15 EP#141 0.0000E+000 3.2004E-006 16 EP# 142 0.OOOOE+000 9.1207E-008 17 EP#143 0.OOOOE+000 3.9089E-008 18 EP#145 0.0000E-4000 2.2281E-006 15 EP#146 0.0000E+/-O000 2.4756E-007 16 EP#148 0.OOOOE+O000 3.9759E-005 20 EP#149 O.OOOOE+O000 1.7040E-005 21 EP#150 0.OOOOE+000 2.6568E-006 17 EP#151 0.OOOOE+/-000 1.1386E-006 18 EP#153 0.0000E+000 8.1980E-005 15 EP#154 0.0000E+000 9.1089E-006 16 EP#155 0.OOOOE+000 2.5959E-007 17 EP#156 0.OOOOE+000 1.1 125E-007 18 EP#158 0.OOOOE+000 6.3414E-006 15 EP#159 0.OOOOE+000 7.0460E-007 16 EP#173 0.OOOOE+/-000 1.9244E-006 17 EP# 174 0.OOOOE+000 8.2473E-007 18 EP#176 0.0000E+000 5.93 8 1E-005 15 EP#177 0.0000E+000 6.5979E-006 16 EP#178 0.0000E+000 1.8803E-007 17 EP#179 0.OOOOE+000 8.0584E-008 18 EP# 181 0.0000E+000 4.5933E-006 15 EP#182 0.0000E+000 5.1036E-007 16 EP#184 0.0000E+000 3.8236E-005 20 EP#185 0.0000E+/-000 1.6387E-005 21 EP#186 0.0000E+000 4.0585E-006 17 EP#187 0.OOOOE+000 1.7394E-006 18 EP#189 0.OOOOE+/-000 1.2523E-004 15 EP#190 0.OOOOE+/-000 1.3915E-005 16 EP# 191 0.0000E+/-000 3.9655E-007 17 EP#192 0.OOOOE+000 1.6995E-007 18 EP#194 0.OOOOE+000 9.6872E-006 15 EP#195 0.0000E+/-000 1.0764E-006 16 PLANT DAMAGE STATE (CET) 131, Frequency = 8.5124E-007 EndPoint Frequency Probability STC

I Calculation No. PRA-ILRT Revision No. 2 1 Page 138 of 158 EP# 2 4.5603E-009 5.3572E-003 9 EP# 3 1.0641E-008 1.2500E-002 10 EP# 6 2.0217E-007 2.3750E-001 7 EP# 7 8.6645E-008 1.0179E-001 8 EP# 8 7.1293E-009 8.3752E-003 9 EP# 9 1.6635E-008 1.9542E-002 10 EP# 14 4.8360E-009 5.6811E-003 9 EP# 15 1.1284E-008 1.3256E-002 10 EP# 18 2.7082E-007 3.1814E-001 7 EP# 19 1.1606E-007 1.3635E-001 8 EP# 20 9.1669E-009 1.0769E-002 9 EP# 21 2.1390E-008 2.5127E-002 10 EP# 24 6.6153E-010 7.7714E-004 7 EP# 25 2.8351E-010 3.3306E-004 8 EP# 27 1.0142E-009 1.1914E-003 12 EP# 28 2.3664E-009 2.7799E-003 13 EP#29 8.4710E-011 9.9513E-005 9 EP# 30 1.9766E-010 2.3220E-004 10 EP# 33 3.7555E-009 4.4118E-003 7 EP# 34 1.6095E-009 1.8908E-003 8 EP# 35 1.3243E-010 1.5557E-004 9 EP# 36 3.0900E-010 3.6300E-004 10 EP# 42 2.8865E-009 3.3909E-003 12 EP#43 6.7351E-009 7.9121E-003 13 EP#44 2.4110E-010 2.8323E-004 9 EP# 45 5.6256E-010 6.6087E-004 10 EP# 48 1.0689E-008 1.2557E-002 7 EP# 49 4.5808E-009 5.3814E-003 8 EP# 50 3.7692E-010 4.4279E-004 9 EP# 51 8.7947E-010 1.0332E-003 10 EP# 71 1.3971E-010 1.6412E-004 9 EP# 72 3.2598E-010 3.8295E-004 10 EP# 75 7.8236E-009 9.1908E-003 7 EP# 76 3.3530E-009 3.9389E-003 8 EP# 77 2.6482E-010 3.111OE-004 9 EP# 78 6.1792E-010 7.2590E-004 10 EP#81 1.9111E-011 2.2451E-005 7 EP# 82 8.1904E-012 9.6217E-006 8 EP# 84 2.7759E-009 3.261OE-003 12 EP# 85 6.4771E-009 7.6090E-003 13 EP# 86 2.9464E-010 3.4613E-004 9 EP# 87 6.8750E-010 8.0764E-004 10 EP# 90 1.6500E-008 1.9383E-002 7 EP#91 7.0714E-009 8.3072E-003 8 EP#92 5.5851E-010 6.5611E-004 9 EP# 93 1.3032E-009 1.5309E-003 10 EP# 96 4.0305E-01 1 4.7348E-005 7 EP# 97 1.7274E-0 11 2.0292E-005 8 EP#114 2.2916E-011 2.6921E-005 17 EP#115 5.3471E-011 6.2815E-005 18 EP# 117 1.0159E-009 1.1935E-003 15 EP#118 4.3540E-010 5.1149E-004 16 EP#119 3.5826E-011 4.2086E-005 17 EP#120 8.3593E-011 9.8201E-005 18 EP#124 2.4302E-011 2.8548E-005 17

ICalculation No. PRA-ILRT I Revision No. 2 1 Page 139 of 158 EP#125 5.6704E-011 6.6613E-005 18 EP#127 1.3609E-009 1.5987E-003 15 EP#128 5.8324E-010 6.8516E-004 16 EP#129 4.6065E-0 I1 5.4115E-005 17 EP#130 1.0749E-010 1.2627E-004 18 EP#132 3.3243E-012 3.9052E-006 15 EP#133 1.4247E-012 1.6737E-006 16 EP#135 5.0963E-012 5.9869E-006 20 EP#136 1.1891E-011 1.3969E-005 21 EP#137 4.2568E-013 5.0007E-007 17 EP#138 9.9325E-013 1.1668E-006 18 EP#140 1.8872E-011 2.2170E-005 15 EP#141 8.0879E-012 9.5013E-006 16 EP#142 6.6548E-013 7.8178E-007 17 EP#143 1.5528E-012 1.8241E-006 18 EP#148 1.4505E-011 1.7040E-005 20 EP#149 3.3845E-01 1 3.9759E-005 21 EP#150 1.2115E-012 1.4233E-006 17 EP#151 2.8269E-012 3.321OE-006 18 EP#153 5.3712E-0 1I 6.3098E-005 15 EP#154 2.3019E-011 2.7042E-005 16 EP#155 1.8941E-012 2.2251 E-006 17 EP#156 4.4195E-012 5.1918E-006 18 EP#173 7.0205E-013 8.2473E-007 17 EP# 174 1.6381E-012 1.9244E-006 18 EP#176 3.9315E-011 4.6185E-005 15 EP#177 1.6849E-0 11 1.9794E-005 16 EP#178 1.3308E-012 1.5633E-006 17 EP#179 3.1051E-012 3.6478E-006 18 EP#181 9.6035E-014 1.1282E-007 15 EP# 182 4.1158E-014 4.8350E-008 16 EP#184 1.3949E-011 1.6387E-005 20 EP#185 3.2548E-01 1 3.8236E-005 21 EP#186 1.4806E-012 1.7394E-006 17 EP#187 3.4548E-012 4.0585E-006 18 EP#189 8.2915E-0 I1 9.7404E-005 15 EP#190 3.5535E-01 I 4.1745E-005 16 EP#191 2.8066E-0 12 3.2971 E-006 17 EP#192 6.5487E-012 7.693 1E-006 18 EP#194 2.0254E-013 2.3793E-007 15 EP#195 8.6802E-014 1.0197E-007 16 PLANT DAMAGE STATE (CET) 132, Frequency= 0.OOOOE+000 EndPoint Frequency Probability STC EP# 2 0.OOOOE+000 1.0000E-002 9 EP# 3 0.OOOOE+000 4.2858E-003 10 EP# 6 0.OOOOE+000 3.0858E-001 7 EP# 7 0.OOOOE+000 3.4286E-002 8 EP# 8 0.OOOOE+000 9.771OE-004 9 EP# 9 0.OOOOE+000 4.1876E-004 10 EP# 12 0.OOOOE+000 2.3869E-002 7 EP# 13 0.OOOOE+000 2.6521E-003 8 EP# 14 0.OOOOE+000 1.3256E-002 9 EP# 15 0.OOOOE+000 5.6811E-003 10 EP# 18 0.OOOOE+000 4.0904E-001 7 EP# 19 0.OOOOE+000 4.5449E-002 8

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 140 of 158 1 EP# 20 0.OOOOE+000 1.2952E-003 9 EP# 21 0.OOOOE+000 5.55IOE-004 10 EP# 24 0.OOOOE+000 3.1641E-002 7 EP# 25 0.OOOOE+000 3.5156E-003 8 EP# 27 0.OOOOE+000 2.7799E-003 12 EP# 28 0.OOOOE+000 1.19 14E-003 13 EP# 29 0.OOOOE+000 1.8576E-004 9 EP# 30 0.OOOOE+000 7.9611 E-005 10 EP# 33 0.OOOOE+000 5.7320E-003 7 EP# 34 0.OOOOE+000 6.3688E-004 8 EP# 35 0.OOOOE+000 1.8150E-005 9 EP# 36 0.OOOOE+000 7.7787E-006 10 EP# 39 0.OOOOE+000 4.4338E-004 7 EP# 40 0.OOOOE+000 4.9265E-005 8 EP# 42 O.OOOOE+000 7.9121E-003 12 EP# 43 O.OOOOE+000 3.3909E-003 13 EP# 44 O.OOOOE+000 5.2870E-004 9 EP# 45 O.OOOOE+O00 2.2658E-004 10 EP# 48 O.OOOOE+000 1.6314E-002 7 EP# 49 O.OOOOE+000 1.8127E-003 8 EP# 50 O.OOOOE+O00 5.1658E-005 9 EP# 51 0.OOOOE+000 2.2139E-005 10 EP# 54 0.OOOOE+000 1.2619E-003 7 EP# 55 0.OOOOE+000 1.4022E-004 8 EP# 71 O.OOOOE+000 3.8295E-004 9 EP# 72 O.O000E+O000 1.6412E-004 10 0.0000E+000 EP# 75 0.OOOOE+/-O000 1.18 17E-002 7 EP# 76 O.OOOOE+O00 1.3130E-003 8 EP# 77 0.OOOOE+000 3.7418E-005 9 EP# 78 0.OOOOE+000 1.6036E-005 10 EP# 81 0.OOOOE+000 9.1406E-004 7 EP# 82 0.OOOOE+000 1.0156E-004 8 EP# 84 0.OOOOE+000 7.6090E-003 12 EP# 85 0.OOOOE+000 3.261 OE-003 13 EP# 86 0.OOOOE+000 8.0764E-004 9 EP# 87 0.OOOOE+000 3.4613E-004 10 EP# 90 0.OOOOE+000 2.4922E-002 7 EP# 91 0.OOOOE+000 2.7691 E-003 8 EP# 92 0.OOOOE+000 7.8914E-005 9 EP# 93 0.OOOOE+000 3.3820E-005 10 EP# 96 0.OOOOE+000 1.9278E-003 7 EP# 97 0.OOOOE+000 2.1420E-004 8 EP#114 0.OOOOE+000 5.0252E-005 17 EP# 115 0.OOOOE+000 2.1537E-005 18 EP# 117 0.OOOOE+000 1.5506E-003 15 EP# 118 0.OOOOE+000 1.7229E-004 16 EP#119 0.OOOOE+000 4.9101E-006 17 EP# 120 0.OOOOE+000 2.1043E-006 18 EP# 122 0.OOOOE+000 1.1995E-004 15 EP#123 0.0000E+000 1.3327E-005 16 EP# 124 0.OOOOE+000 6.6613E-005 17 EP#125 0.OOOOE+000 2.8548E-005 18 EP#127 0.OOOOE+000 2.0555E-003 15 EP#128 0.OOOOE+000 2.2839E-004 16 EP#129 0.OOOOE+000 6.5087E-006 17

ICalculation No. PRA-ILRT I Revision No. 2 1Page 141 of 158 EP#130 0.0000E+000 2.7894E-006 18 EP#132 0.0000E+/-000 1.5900E-004 15 EP#133 0.0000E+000 1.7666E-005 16 EP#135 O.OOOOE+O000 1.3969E-005 20 EP#136 0.0000E+000 5.9869E-006 21 EP#137 0.0000E+000 9.3346E-007 17 EP#138 0.0000E+000 4.0005E-007 18 EP#140 0.0000E-I000 2.8804E-005 15 EP# 141 0.0000E+/-000 3.2004E-006 16 EP#142 0.0000E+000 9.1207E-008 17 EP#143 0.0000E+000 3.9089E-008 18 EP#145 0.0000E+000 2.2281 E-006 15 EP#146 0.OOOOE+000 2.4756E-007 16 EP#148 0.OOOOE+/-000 3.9759E-005 20 EP#149 0.OOOOE+000 1.7040E-005 21 EP#150 0.0000E+000 2.6568E-006 17 EP#151 0.OOOOE+/-000 1.1386E-006 18 EP#153 0.0000E+/-000 8.1980E-005 15 EP# 154 0.0000E+000 9.1089E-006 16 EP#155 O.0000E+/-000 2.5959E-007 17 EP# 156 0.0000E+/-000 1.1 125E-007 18 EP#158 O.OOOOE+O000 6.3414E-006 15 EP#159 0.0000E+000 7.0460E-007 16 EP#173 O.0000E+O00 1.9244E-006 17 EP#174 0.0000E+000 8.2473E-007 18 EP#176 0.0000E+000 5.9381E-005 15 EP#177 0.0000E+/-000 6.5979E-006 16 EP#178 0.0000E+000 1.8803E-007 17 EP#179 0.0000E+/-000 8.0584E-008 18 EP# 181 0.0000E+000 4.5933E-006 15 EP#182 0.OOOOE+000 5.1036E-007 16 EP# 184 0.OOOOE+/-000 3.8236E-005 20 EP#185 0.OOOOE+000 1.6387E-005 21 EP#186 0.0000E+000 4.0585E-006 17 EP#187 0.0000E+000 1.7394E-006 18 EP#189 0.0000E+000 1.2523E-004 15 EP# 190 0.0000E+000 1.3915E-005 16 EP#191 0.0000E+000 3.9655E-007 17 EP#192 0.0000E+000 1.6995E-007 18 EP#194 0.0000E+/-000 9.6872E-006 15 EP#195 0.0000E+000 1.0764E-006 16 PLANT DAMAGE STATE (CET) 133, Frequency= 2.2261E-007 EndPoint Frequency Probability STC EP# 2 2.7826E-009 1.2500E-002 9 EP# 3 1.1925E-009 5.3572E-003 10 EP# 6 6.7975E-008 3.0536E-001 7 EP# 7 7.5528E-009 3.3929E-002 8 EP# 8 4.3502E-009 1.9542E-002 9 EP# 9 1.8644E-009 8.3752E-003 10 EP# 14 2.9509E-009 1.3256E-002 9 EP# 15 1.2647E-009 5.6811E-003 10 EP# 18 9.1055E-008 4.0904E-001 7 EP# 19 1.0117E-008 4.5449E-002 8 EP# 20 5.5935E-009 2.5127E-002 9 EP# 21 2.3972E-009 1.0769E-002 10

ICalculation No. PRA-ILRT I Revision No. 2 TPage 142 of 158 EP# 24 2.2242E-010 9.9918E-004 7 EP# 25 2.4714E-011 1.1102E-004 8 EP# 27 6.1882E-010 2.7799E-003 12 EP# 28 2.6521E-010 1.1914E-003 13 EP#29 5.1689E-011 2.3220E-004 9 EP# 30 2.2152E-011 9.9513E-005 10 EP# 33 1.2627E-009 5.6723E-003 7 EP# 34 1.4030E-010 6.3025E-004 8 EP# 35 8.0807E-01I 3.6300E-004 9 EP# 36 3.4632E-011 1.5557E-004 10 EP#42 1.7613E-009 7.9121E-003 12 EP# 43 7.5483E-010 3.3909E-003 13 EP# 44 1.4711E-010 6.6087E-004 9 EP# 45 6.3049E-011 2.8323E-004 10 EP#48 3.5938E-009 1.6144E-002 7 EP#49 3.9931E-010 1.7938E-003 8 EP# 50 2.2999E-010 1.0332E-003 9 EP# 51 9.8567E-01 1 4.4279E-004 10 EP# 71 8.5247E-011 3.8295E-004 9 EP# 72 3.6534E-011 1.6412E-004 10 EP# 75 2.6305E-009 1.1817E-002 7 EP# 76 2.9228E-010 1.3130E-003 8 EP# 77 1.6159E-010 .7.2590E-004 9 EP#78 6.9253E-011 3.111OE-004 10 EP# 81 6.4255E-012 2.8865E-005 7 EP# 82 7.1395E-013 3.2072E-006 8 EP# 84 1.6938E-009 7.6090E-003 12 EP# 85 7.2592E-010 3.2610E-003 13 EP# 86 1.7979E-010 8.0764E-004 9 EP# 87 7.7051E-011 3.4613E-004 10 EP# 90 5.5477E-009 2.4922E-002 7 EP#91 6.1641E-010 2.7691E-003 8 EP# 92 3.4079E-010 1.5309E-003 9 EP# 93 1.4605E-010 6.5611E-004 10 EP#96 1.3551E-011 6.0876E-005 7 EP# 97 1.5057E-012 6.7641E-006 8 EP#114 1.3983E-011 6.2815E-005 17 EP#115 5.9927E-012 2.6921E-005 18 EP#117 3.4158E-010 1.5345E-003 15 EP#118 3.7954E-011 1.7050E-004 16 EP#119 2.1860E-011 9.8201E-005 17 EP#120 9.3686E-012 4.2086E-005 18 EP#124 1.4828E-011 6.6613E-005 17 EP#125 6.3551E-012 2.8548E-005 18 EP#127 4.5756E-010 2.0555E-003 15 EP#128 5.0840E-011 2.2839E-004 16 EP#129 2.8108E-011 1.2627E-004 17 EP#130 1.2046E-011 5.4115E-005 18 EP#132 1.1177E-012 5.0210E-006 15 EP#133 1.2419E-013 5.5789E-007 16 EP#135 3.1097E-012 1.3969E-005 20 EP#136 1.3327E-012 5.9869E-006 21 EP#137 2.5974E-013 1.1668E-006 17 EP#138 1.1132E-013 5.0007E-007 18 EP#140 6.3451E-012 2.8504E-005 15

ICalculation No. PRA-ILRT I Revision No. 2 1Page 143 of 158 EP#141 7.0501E-013 3.1671E-006 16 EP#142 4.0606E-0 13 1.8241E-006 17 EP#143 1.7403E-013 7.8178E-007 18 EP#148 8.8506E-012 3.9759E-005 20 EP#149 3.7931E-012 1.7040E-005 21 EP#150 7.3926E-013 3.3210E-006 17 EP# 151 3.1683E-013 1.4233E-006 18 EP#153 1.8059E-011 8.1126E-005 15 EP# 154 2.0066E-012 9.0140E-006 16 EP#155 1.1557E-012 5.1918E-006 17 EP#156 4.9531E-013 2.2251E-006 18 EP#173 4.2838E-013 1.9244E-006 17 EP#174 1.8359E-013 8.2473E-007 18 EP#176 1.3219E-011 5.9381E-005 15 EP#177 1.4687E-012 6.5979E-006 16 EP#178 8.1201E-0 13 3.6478E-006 17 EP#179 3.4801E-013 1.5633E-006 18 EP# 181 3.2289E-014 1.4505E-007 15 EP#182 3.5877E-015 1.6117E-008 16 EP#184 8.5116E-012 3.8236E-005 20 EP#185 3.6478E-012 1.6387E-005 21 EP#186 9.0345E-013 4.0585E-006 17 EP#187 3.8719E-013 1.7394E-006 18 EP#189 2.7878E-011 1.2523E-004 15 EP# 190 3.0975E-012 1.3915E-005 16 EP#191 1.7125E-012 7.6931 E-006 17 EP#192 7.3394E-013 3.2971E-006 18 EP#194 6.8098E-014 3.0591E-007 15 EP#195 7.5664E-015 3.3990E-008 16 PLANT DAMAGE STATE (CET) 134, Frequency = 2.3086E-007 EndPoint Frequency Probability S EP# 2 1.3728E-009 5.9465E-003 EP# 3 3.2032E-009 1.3875E-002 EP# 4 8.6945E-008 3.7661E-001 EP# 8 2.1462E-009 9.2964E-003 EP# 9 5.0077E-009 2.1692E-002 EP# 14 1.4558E-009 6.3061E-003 EP# 15 3.3969E-009 1.4714E-002 EP# 16 1.1647E-007 5.0449E-001 EP#.20 2.7596E-009 1.1953E-002 EP# 21 6.4390E-009 2.7891E-002 EP# 22 2.8449E-010 1.2323E-003 EP# 27 2.7504E-012 1.1914E-005 EP#28 6.4177E-012 2.7799E-005 EP# 29 2.2974E-013 9.9513E-007 EP# 30 5.3605E-013 2.3220E-006 EP# 31 1.4550E-01 1 6.3025E-005 EP# 35 3.5916E-013 1.5557E-006 EP# 36 8.3803E-013 3.6300E-006 EP#42 7.8282E-012 3.3909E-005 EP#43 1.8266E-011 7.9121E-005 EP#44 6.5386E-013 2.8323E-006 EP# 45 1.5257E-012 6.6087E-006 EP#46 4.1411E-011 1.7938E-004 EP# 50 1.0222E-012 4.4279E-006

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 144 of 158 EP# 51 2.3852E-012 1.0332E-005 10 EP# 71 3.7889E-013 1.6412E-006 9 EP# 72 8.8408E-013 3.8295E-006 10 EP#73 3.0311E-011 1.3130E-004 2 EP#77 7.1821E-013 3.111OE-006 9 EP# 78 1.6758E-012 7.2590E-006 10 EP# 79 7.4042E-014 3.2072E-007 2 EP# 84 7.5283E-012 3.2610E-005 12 EP# 85 1.7566E-011 7.6090E-005 13 EP# 86 7.9908E-013 3.4613E-006 9 EP# 87 1.8645E-012 8.0764E-006 10 EP# 88 6.3926E-011 2.7691E-004 2 EP#92 1.5147E-012 6.5611E-006 9 EP# 93 3.5343E-012 1.5309E-005 10 EP# 94 1.5615E-013 6.7641E-007 2 EP#114 6.8985E-012 2.9882E-005 17 EP#115 1.6097E-011 6.9725E-005 18 EP#116 4.3691E-010 1.8925E-003 14 EP#119 1.0785E-011 4.6716E-005 17 EP#120 2.5164E-011 1.0900E-004 18 EP#124 7.3157E-012 3.1689E-005 17 EP#125 1.7070E-011 7.3940E-005 18 EP#126 5.8525E-010 2.5351E-003 14 EP#129 1.3867E-011 6.0068E-005 17 EP#130 3.2357E-011 1.4016E-004 18 EP#131 1.4296E-012 6.1926E-006 14 EP#135 1.3821E-014 5.9869E-008 20 EP#136 3.2250E-014 1.3969E-007 21 EP#137 1.1545E-015 5.0007E-009 17 EP#138 2.6937E-015 1.1668E-008 18 EP#139 7.3115E-014 3.1671E-007 14 EP#142 1.8048E-015 7.8178E-009 17 EP#143 4.2112E-015 1.8241E-008 18 EP#148 3.9338E-014 1.7040E-007 20 EP#149 9.1788E-014 3.9759E-007 21 EP#150 3.2857E-015 1.4233E-008 17 EP#151 7.6667E-015 3.3210E-008 18 EP#152 2.0810E-013 9.0140E-007 14 EP#155 5.1367E-015 2.2251E-008 17 EP#156 1.1986E-014 5.1918E-008 18 EP#173 1.9040E-015. 8.2473E-009 17 EP#174 4.4426E-015 1.9244E-008 18 EP#175 1.5232E-013 6.5979E-007 14 EP#178 3.6091E-015 1.5633E-008 17 EP#179 8.4212E-015 3.6478E-008 18 EP#180 3.7207E-016 1.6117E-009 14 EP#184 3.7831E-014 1.6387E-007 20 EP#185 8.8272E-014 3.8236E-007 21 EP#186 4.0155E-015 1.7394E-008 17 EP#187 9.3695E-015 4.0585E-008 18 EP#188 3.2124E-013 1.3915E-006 14 EP#191 7.6116E-015 3.2971E-008 17 EP#192 1.7760E-014 7.6931E-008 18 EP#193 7.8470E-016 3.3990E-009 14 PLANT DAMAGE STATE (CET) 135, Frequency 3.2878E-009

ICalculation No. PRA-ILRT I Revision No. 2 [Page 145 of 158 EndPoint Frequency Probability STC EP# 2 1.9551E-011 5.9465E-003 9 EP# 3 4.5618E-01 1.3875E-002 10 EP# 5 1.2382E-009 3.7661E-001 6 EP# 8 3.0564E-011 9.2964E-003 9 EP# 9 7.1317E-011 2.1692E-002 10 EP# 14 2.0733E-011 6.3061E-003 9 EP# 15 4.8377E-011 1.4714E-002 10 EP# 17 1.6586E-009 5.0449E-001 6 EP# 20 3.9300E-011 1.1953E-002 9 EP# 21 9.1700E-011 2.7891E-002 10 EP# 23 4.0516E-012 1.2323E-003 6 EP# 27 3.9170E-014 1.1914E-005 12 EP# 28 9.1397E-014 2.7799E-005 13 EP# 29 3.2718E-015 9.9513E-007 9 EP# 30 7.6341E-015 2.3220E-006 10 EP# 32 2.0721E-013 6.3025E-005 6 EP#35 5.1149E-015 1.5557E-006 9 EP#36 1.1935E-014 3.6300E-006 10 EP#42 1.1148E-013 3.3909E-005 12 EP# 43 2.6013E-013 7.9121E-005 13 EP#44 9.3119E-015 2.8323E-006 9 EP# 45 2.1728E-014 6.6087E-006 10 EP# 47 5.8976E-013 1.7938E-004 6 EP# 50 1.4558E-014 4.4279E-006 9 EP# 51 3.3968E-014 1.0332E-005 10 EP# 71 5.3959E-015 1.6412E-006 9 EP#72 1.2591E-014 3.8295E-006 10 EP# 74 4.3167E-013 1.3130E-004 6 EP# 77 1.0228E-014 3.111OE-006 9 EP# 78 2.3866E-014 7.2590E-006 10 EP# 80 1.0545E-015 3.2072E-007 6 EP# 84 1.0721E-013 3.2610E-005 12 EP# 85 2.5017E-013 7.6090E-005 13 EP# 86 1.1380E-014 3.4613E-006 9 EP# 87 2.6553E-014 8.0764E-006 10 EP# 89 9.1040E-013 2.7691E-004 6 EP#92 2.1571E-014 6.5611E-006 9 EP# 93 5.0333E-014 1.5309E-005 10 EP# 95 2.2239E-015 6.7641E-007 6 EP#114 9.8245E-014 2.9882E-005 17 EP#115 2.2924E-013 6.9725E-005 18 EP# 116 6.2222E-012 1.8925E-003 14 EP#119 1.5359E-013 4.6716E-005 17 EP#120 3.5838E-013 1.0900E-004 18 EP#124 1.0419E-013 3.1689E-005 17 EP#125 2.4310E-013 7.3940E-005 18 EP#126 8.3348E-012 2.5351E-003 14 EP#129 1.9749E-013 6.0068E-005 17 EP#130 4.6081E-013 1.4016E-004 18 EP#131 2.0360E-014 6.1926E-006 14 EP#135 1.9683E-016 5.9869E-008 20 EP#136 4.5928E-016 1.3969E-007 21 EP#137 1.6441E-017 5.0007E-009 17 EP#138 3.8362E-017 1.1668E-008 18

ICalculation No. PRA-ILRT I Revision No. 2 T Page 146 of 1587 EP#139 1.0413E-015 3.1671E-007 14 EP#142 2.5703E-017 7.8178E-009 17 EP#143 5.9973E-017 1.8241E-008 18 EP#148 5.6022E-016 1.7040E-007 20 EP#149 1.3072E-015 3.9759E-007 21 EP#1 50 4.6794E-017 1.4233E-008 17 EP#151 1.0919E-016 3.3210E-008 18 EP#152 2.9636E-015 9.0140E-007 14 EP#155 7.3154E-017 2.2251 E-008 17 EP#156 1.7069E-016 5.1918E-008 18 EP# 173 2.7115E-017 8.2473E-009 17 EP# 174 6.3269E-017 1.9244E-008 18 EP#175 2.1692E-015 6.5979E-007 14 EP#178 5.1398E-017 1.5633E-008 17 EP# 179 1.1993E-016 3.6478E-008 18 EP#180 5.2988E-018 1.6117E-009 14 EP# 184 5.3876E-016 1.6387E-007 20 EP#185 1.2571E-015 3.8236E-007 21 EP#186 5.7186E-017 1.7394E-008 17 EP#187 1.3343E-016 4.0585E-008 18 EP#188 4.5749E-015 1.3915E-006 14 EP#191 1.0840E-016 3.2971E-008 17 EP#192 2.5293E-016 7.6931 E-008 18 EP#193 1.1175E-017 3.3990E-009 14 PLANT DAMAGE STATE (CET) 136, Frequency = 6.3840E-010 EndPoint Frequency Probability STC EP# 2 3.7963E-012 5.9465E-003 9 EP# 3 8.8579E-012 1.3875E-002 10 EP# 6 1.6830E-010 2.6363E-001 7 EP# 7 7.2129E-011 1.1298E-001 8 EP# 8 5.9348E-012 9.2964E-003 9 EP# 9 1.3848E-011 2.1692E-002 10 EP# 14 4.0258E-012 6.3061E-003 9 EP# 15 9.3935E-012 1.4714E-002 10 EP# 18 2.2544E-010 3.5314E-001 7 EP# 19 9.6619E-011 1.5135E-001 8 EP#20 7.6311E-012 1.1953E-002 9 EP# 21 1.7806E-011 2.7891E-002 10 EP# 24 5.5070E-013 8.6262E-004 7 EP# 25 2.3601E-013 3.6970E-004 8 EP# 27 7.6058E-015 1.1914E-005 12 EP# 28 1.7747E-014 2.7799E-005 13 EP# 29 6.3529E-016 9.9513E-007 9 EP# 30 1.4823E-015 2.3220E-006 10 EP# 33 2.8165E-014 4.4118E-005 7 EP# 34 1.2071E-014 1.8908E-005 8 EP# 35 9.9318E-016 1.5557E-006 9 EP# 36 2.3174E-015 3.6300E-006 10 EP# 42 2.1647E-014 3.3909E-005 12 EP#43 5.0511E-014 7.9121E-005 13 EP#44 1.8081E-015 2.8323E-006 9 EP# 45 4.2190E-015 6.6087E-006 10 EP# 48 8.0161E-014 1.2557E-004 7 EP# 49 3.4355E-014 5.3814E-005 8 EP# 50 2.8267E-015 4.4279E-006 9

ICalculation No. PRA-ILRT I Revision No. 2 T Page 147 of 158 EP# 51 6.5957E-015 1.0332E-005 10 EP# 71 1.0478E-015 1.6412E-006 9 EP# 72 2.4448E-015 3.8295E-006 10 EP# 75 5.8674E-014 9.1908E-005 7 EP# 76 2.5146E-014 3.9389E-005 8 EP#77 1.9861E-015 3.111OE-006 9 EP# 78 4.6342E-015 7.2590E-006 10 EP# 81 1.4332E-016 2.2451E-007 7 EP# 82 6.1425E-017 9.6217E-008 8 EP# 84 2.0818E-014 3.2610E-005 12 EP# 85 4.8576E-014 7.6090E-005 13 EP# 86 2.2097E-015 3.4613E-006 9 EP# 87 5.1560E-015 8.0764E-006 10 EP# 90 1.2374E-013 1.9383E-004 7 EP# 91 5.3033E-014 8.3072E-005 8 EP#92 4.1886E-015 6.5611E-006 9 EP# 93 9.7735E-015 1.5309E-005 10 EP# 96 3.0227E-016 4.7348E-007 7 EP# 97 1.2955E-016 2.0292E-007 8 EP#114 1.9077E-014 2.9882E-005 17 EP#115 4.4512E-014 6.9725E-005 18 EP#117 8.4573E-013 1.3248E-003 15 EP#118 3.6246E-013 5.6776E-004 16 EP#119 2.9823E-014 4.6716E-005 17 EP#120 6.9588E-014 1.0900E-004 18 EP#124 2.0230E-014 3.1689E-005 17 EP#125 4.7204E-014 7.3940E-005 18 EP#127 1.1329E-012 1.7746E-003 15 EP#128 4.8552E-013 7.6053E-004 16 EP#129 3.8347E-014 6.0068E-005 17 EP#130 8.9477E-014 1.4016E-004 18 EP#132 2.7673E-015 4.3348E-006 15 EP#133 1.1860E-015 1.8578E-006 16 EP#135 3.8220E-017 5.9869E-008 20 EP#136 8.9181E-017 1.3969E-007 21 EP#137 3.1924E-018 5.0007E-009 17 EP#138 7.4490E-018 1.1668E-008 18 EP#140 1.4153E-016 2.2170E-007 15 EP#141 6.0656E-017 9.5013E-008 16 EP#142 4.9909E-018 7.8178E-009 17 EP#143 1.1645E-017 1.8241E-008 18 EP#148 1.0878E-016 1.7040E-007 20 EP#149 2.5382E-016 3.9759E-007 21 EP#150 9.0861E-018 1.4233E-008 17 EP#151 2.1201E-017 3.3210E-008 18 EP#153 4.0282E-016 6.3098E-007 15 EP#154 1.7264E-016 2.7042E-007 16 EP#155 1.4205E-017 2.2251E-008 17 EP#156 3.3144E-017 5.1918E-008 18 EP#173 5.2651E-018 8.2473E-009 17 EP#174 1.2285E-017 1.9244E-008 18 EP#176 2.9485E-016 4.6185E-007 15 EP#177 1.2636E-016 1.9794E-007 16 EP#178 9.9803E-018 1.5633E-008 17 EP#179 2.3287E-017 3.6478E-008 18

II Calculation Caclto No.

o PRA-ILRT R- TI I Revision No.

ReiinN.

2 2

1I Paee Pag 148 14 off 158 18 i EP#181 7.2023E-019 1.1282E-009 15 EP#182 3.0867E-019 4.8350E-010 16 EP#184 1.0461E-016 1.6387E-007 20 EP#185 2.4410E-016 3.8236E-007 21 EP#186 1.1104E-017 1.7394E-008 17 EP#187 2.5910E-017 4.0585E-008 18 EP#189 6.2183E-016 9.7404E-007 15 EP#190 2.6650E-016 4.1745E-007 16 EP#191 2.1048E-017 3.2971E-008 17 EP#192 4.9113E-017 7.6931E-008 18 EP#194 1.5190E-018 2.3793E-009 15 EP#195 6.5098E-019 1.0197E-009 16 PLANT DAMAGE STATE (CET) 137, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 2 0.OOOOE+000 5.9465E-003 9 EP# 3 0.OOOOE+000 1.3875E-002 10 EP# 6 0.0000E+000 2.6363E-001 4 EP# 7 0.OOOOE+000 1.1298E-001 5 EP# 8 0.OOOOE+000 9.2964E-003 9 EP# 9 0.0000E+000 2.1692E-002 10 EP# 14 O.0000E+000 6.3061E-003 9 EP# 15 O.OOOOE+000 1.4714E-002 10 EP# 18 0.0000E+000 3.5314E-001 4 EP# 19 0.0000E+000 1.5135E-001 5 EP# 20 0.0000E+000 1.1953E-002 9 EP# 21 0.0000E+000 2.7891E-002 10 EP# 24 0.OOOOE+000 8.6262E-004 4 EP# 25 0.OOOOE+000 3.6970E-004 5 EP# 27 0.0000E+000 1.1914E-005 12 EP# 28 0.OOOOE+000 2.7799E-005 13 EP#29 0.OOOOE+000 9.9513E-007 9 EP# 30 0.0000E+000 2.3220E-006 10 EP# 33 0.0000E+000 4.4118E-005 4 EP# 34 0.OOOOE+000 1.8908E-005 5 EP# 35 0.OOOOE+000 1.5557E-006 9 EP# 36 0.0000E+000 3.6300E-006 10 EP# 42 0.OOOOE+000 3.3909E-005 12 EP# 43 0.OOOOE+000 7.9121E-005 13 EP# 44 0.OOOOE+000 2.8323E-006 9 EP# 45 0.OOOOE+000 6.6087E-006 10 EP# 48 0.OOOOE+000 1.2557E-004 4 EP# 49 0.OOOOE+000 5.3814E-005 5 EP# 50 0.OOOOE+000 4.4279E-006 9 EP# 51 0.OOOOE+000 1.0332E-005 10 EP# 71 0.OOOOE+000 1.6412E-006 9 EP# 72 0.OOOOE+000 3.8295E-006 10 EP# 75 0.OOOOE+000 9.1908E-005 4 EP# 76 0.OOOOE+000 3.9389E-005 5 EP# 77 0.OOOOE+000 3.111OE-006 9 EP# 78 0.OOOOE+000 7.2590E-006 10 EP# 81 0.OOOOE+000 2.2451E-007 4 EP# 82 0.OOOOE+000 9.6217E-008 5 EP# 84 0.OOOOE+000 3.261OE-005 12 EP# 85 0.OOOOE+000 7.6090E-005 13 EP# 86 0.OOOOE+000 3.4613E-006 9

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 149 of 158 1 EP# 87 0.OOOOE+/-000 8.0764E-006 10 EP# 90 0.OOOOE+000 1.9383E-004 4 EP# 91 0.OOOOE+000 8.3072E-005 5 EP# 92 0.OOOOE+000 6.561 IE-006 9 EP# 93 0.OOOOE+000 1.5309E-005 10 EP# 96 0.OOOOE+000 4.7348E-007 4 EP# 97 0.OOOOE+000 2.0292E-007 5 EP#114 0.OOOOE+000 2.9882E-005 17 EP#115 0.OOOOE+000 6.9725E-005 18 EP#1 17 O.OOOOE+000 1.3248E-003 15 EP#118 0.OOOOE+000 5.6776E-004 16 EP# 119 O.OOOOE+000 4.6716E-005 17 EP# 120 0.OOOOE+000 1.0900E-004 18 EP# 124 0.OOOOE+/-000 3.1689E-005 17 EP#125 0.OOOOE+/-000 7.3940E-005 18 EP#127 0.OOOOE+000 1.7746E-003 15 EP#128 0.OOOOE-I000 7.6053E-004 16 EP#129 0.OOOOE+000 6.0068E-005 17 EP#130 0.OOOOE+/-000 1.4016E-004 18 EP#132 0.OOOOE+000 4.3348E-006 15 EP#133 0.OOOOE+000 1.8578E-006 16 EP#135 0.OOOOE+000 5.9869E-008 20 EP#136 0.OOOOE+000 1.3969E-007 21 EP#137 0.OOOOE+/-000 5.0007E-009 17 EP#138 0.OOOOE+/-O000 1.1668E-008 18 EP#140 0.OOOOE+O000 2.2170E-007 15 EP#141 0.OOOOE+O000 9.5013E-008 16 EP#142 0.OOOOE+O000 7.8178E-009 17 EP#143 0.0000E+O00 1.8241E-008 18 EP# 148 0.OOOOE+/-000 1.7040E-007 20 EP#149 0.OOOOE+O000 3.9759E-007 21 EP# 150 0.OOOOE+000 1.4233E-008 17 EP# 151 0.OOOOE+O000 3.321OE-008 18 EP#153 O.OOOOE+000 6.3098E-007 15 EP#154 0.OOOOE-l-000 2.7042E-007 16 EP#155 0.OOOOE+/-000 2.2251E-008 17 EP#156 0.OOOOE+/-000 5.1918E-008 18 EP#173 0.OOOOE+O000 8.2473E-009 17 EP# 174 0.OOOOE+/-O000 1.9244E-008 18 EP#176 0.OOOOE+O000 4.6185E-007 15 EP#177 0.OOOOE+/-000 1.9794E-007 16 EP#178 0.OOOOE+000 1.5633E-008 17 EP#179 0.OOOOE+000 3.6478E-008 18 EP#181 0.OOOOE+/-000 1.1282E-009 15 EP#182 0.OOOOE+/-O000 4.8350E-010 16 EP# 184 0.OOOOE+O000 1.6387E-007 20 EP# 185 0.OOOOE+O000 3.8236E-007 21 EP#186 0.OOOOE+O000 1.7394E-008 17 EP#187 0.OOOOE+O000 4.0585E-008 18 EP# 189 0.OOOOE+/-O000 9.7404E-007 15 EP# 190 0.0000E+000 4.1745E-007 16 EP#191 0.OOOOE+000 3.2971 E-008 17 EP#192 0.OOOOE+O000 7.6931 E-008 18 EP#194 0.OOOOE+000 2.3793E-009 15 EP# 195 0.OOOOE+/-O000 1.0197E-009 16

PRA-ILRT I Revision No. 2 1 Page 150 of 158 5 1 i........................

II Calculation Caclto No.

o R- TI ReiinN. 2 I Pae 10 o PLANT DAMAGE STATE (CET) 138, Frequency = 2.5858E-006 EndPoint Frequency Probability STC EP# 2 8.8924E-008 3.4390E-002 9 EP# 3 3.8110E-008 1.4738E-002 10 EP# 4 2.4137E-006 9.3343E-001 2 EP# 8 2.2512E-008 8.7063E-003 9 EP# 9 9.6482E-009 3.7313E-003 10 EP#l 14 4.4685E-010 1.7281E-004 17 EP#115 1.9151E-010 7.4063E-005 18 EP#116 1.2129E-008 4.6906E-003 14 EP#119 1.1313E-010 4.3750E-005 17 EP#120 4.8483E-011 1.8750E-005 18 PLANT DAMAGE STATE (CET) 139, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 2 0.0000E+000 3.4390E-002 9 EP# 3 0.OOOOE+000 1.4738E-002 10 EP# 5 0.OOOOE+000 9.3343E-001 6 EP# 8 0.OOOOE+000 8.7063E-003 9 EP# 9 0.OOOOE+000 3.7313E-003 10 EP#114 0.OOOOE+000 1.7281E-004 17 EP#1 15 0.OOOOE+000 7.4063E-005 18 EP# 116 0.OOOOE+000 4.6906E-003 14 EP#119 0.OOOOE+000 4.3750E-005 17 EP#120 0.OOOOE+000 1.8750E-005 18 PLANT DAMAGE STATE (CET) 140, Frequency 0.OOOOE+000 EndPoint Frequency Probability STC EP# 2 0.OOOOE+000 2.7512E-002 9 EP# 3 0.OOOOE+000 1.1791E-002 10 EP# 6 0.OOOOE+000 8.4893E-001 7 EP# 7 0.OOOOE+000 9.4326E-002 8 EP# 8 0.OOOOE+000 4.3531E-004 9 EP# 9 0.OOOOE+000 1.8656E-004 10 EP# 12 0.OOOOE+000 1.0634E-002 7 EP# 13 0.OOOOE+000 1.1816E-003 8 EP#114 0.OOOOE+000 1.3825E-004 17 EP#115 0.OOOOE+000 5.9250E-005 18 EP#117 0.OOOOE+000 4.2660E-003 15 EP#118 0.OOOOE+000 4.7400E-004 16 EP#119 0.OOOOE+000 2.1875E-006 17 EP#120 0.OOOOE+000 9.3750E-007 18 EP#122 0.OOOOE+000 5.3437E-005 15 EP#123 0.OOOOE+000 5.9375E-006 16 PLANT DAMAGE STATE (CET) 141, Frequency = 1.0073E-008 EndPoint Frequency Probability S' EP# 2 3.4639E-010 3.4390E-002 9 EP# 3 1.4845E-010 1.4738E-002 10 EP# 6 8.4618E-009 8.4009E-001 7 EP# 7 9.4020E-010 9.3343E-002 8 EP# 8 8.7694E-011 8.7063E-003 9 EP# 9 3.7583E-011 3.7313E-003 10 EP#114 1.7407E-012 1.7281E-004 17 EP#115 7.4599E-013 7.4063E-005 18 EP#117 4.2522E-011 4.2216E&003 15 EP#1 18 4.7246E-012 4.6906E-004 16 EP#119 4.4067E-013 4.3750E-005 17

I Calculation No. PRA-ILRT I RevisionNo. 2 I Page 151 of 158 I EP#120 1.8886E-013 1.8750E-005 18 PLANT DAMAGE STATE (CET) 142, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 2 0.0000E+000 1.4738E-002 9 EP# 3 0.0000E+000 3.4390E-002 10 EP# 6 0.0000E+000 6.5340E-001 7 EP# 7 0.0000E+000 2.8003E-001 8 EP# 8 0.0000E+000 3.7313E-003 9 EP# 9 0.0000E+000 8.7063E-003 10 EP# 114 0.0000E+00C) 7.4063E-005 17 EP#1 15 0.0000E+00C 1.7281E-004 18 EP# 117 0.0000E+00C 3.2834E-003 15 EP#1 18 0.0000E+00C 1.4072E-003 16 EP#1 19 0.0000E+00C 1.8750E-005 17 EP#120 0.0000E+00( 4.3750E-005 18 PLANT DAMAGE STATE (CET) 143, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 29 O.OOOOE+000 7.1531 E-003 9 EP# 30 0.0000E+/-O000 3.0656E-003 10 EP# 32 0.0000E+000 2.4525E-001 6 EP# 35 0.OOOOE+/-000 1.1318E-004 9 EP# 36 0.OOOOE+/-000 4.8506E-005 10 EP# 38 0.0000E+000 3.0721 E-003 6 EP# 44 0.OOOOE+000 2.0359E-002 9 EP# 45 0.0000E+000 8.7252E-003 10 EP# 47 0.OOOOE+000 6.9801E-001 6 EP# 50 0.0000E+000 3.2213E-004 9 EP# 51 0.OOOOE+000 1.3806E-004 10 EP# 53 0.0000E+000 8.7436E-003 6 EP#137 0.0000E+000 3.5945E-005 17 EP#138 0.0000E+000 1.5405E-005 18 EP#139 0.OOOOE+000 1.2324E-003 14 EP#142 0.0000E+000 5.6875E-007 17 EP#143 0.OOOOE+000 2.4375E-007 18 EP#144 0.OOOOE-I000 1.5437E-005 14 EP#150 0.OOOOE+000 1.0230E-004 17 EP#151 0.0000E+/-000 4.3845E-005 18 EP#152 0.OOOOE+/-000 3.5076E-003 14 EP#155 0.OOOOE+000 1.6188E-006 17 EP# 156 0.OOOOE+O000 6.9375E-007 18 EP#157 0.OOOOE+/-O000 4.3937E-005 14 PLANT DAMAGE STATE (CET) 144, Frequency 0.OOOOE+000 EndPoint Frequency Probability S' EP# 29 0.OOOOE+000 8.9413E-003 EP# 30 0.OOOOE+000 3.8320E-003 EP# 31 0.OOOOE+000 2.4269E-001 EP# 35 0.OOOOE+000 2.2636E-003 EP# 36 0.OOOOE+000 9.7013E-004 EP# 44 0.OOOOE+000 2.5448E-002 EP# 45 0.OOOOE+000 1.0906E-002 EP# 46 0.OOOOE+000 6.9074E-001 EP# 50 0.OOOOE+000 6.4426E-003 EP# 51 0.OOOOE+000 2.7611 E-003 EP#137 0.OOOOE+000 4.4931E-005 17 EP#138 0.OOOOE+000 1.9256E-005 18

Calculation No. PRA-ILRT Revision No. 2 Page 152 of 158 EP#139 O.0000E+000 1.2196E-003 14 EP#142 0.0000E+000 1.1375E-005 17 EP#143 0.OOOOE+000 4.8750E-006 18 EP#150 0.0000E+000 1.2788E-004 17 EP#151 0.0000E+000 5.4806E-005 18 EP#152 0.OOOOE+000 3.4711E-003 14 EP#155 0.0000E+000 3.2375E-005 17 EP#156 0.0000E+000 1.3875E-005 18 PLANT DAMAGE STATE (CET) 145, Frequency = 0.0000E+000 EndPoint Frequency Probability STC EP# 29 0.0000E+000 8.9413E-003 9 EP# 30 0.0000E+000 3.8320E-003 10 EP# 32 0.0000E+000 2.4269E-001 6 EP# 35 0.0000E+000 2.2636E-003 9 EP# 36 0.OOOOE+000 9.7013E-004 10 EP# 44 0.0000E+000 2.5448E-002 9 EP# 45 0.0000E+000 1.0906E-002 10 EP# 47 O.OOOOE+000 6.9074E-001 6 EP# 50 0.0000E+000 6.4426E-003 9 EP# 51 0.OOOOE+000 2.7611 E-003 10 EP#137 0.0000E+000 4.4931E-005 17 EP#138 0.OOOOE+000 1.9256E-005 18 EP#139 0.OOOOE+000 1.2196E-003 14 EP#142 0.0000E+000 1.1375E-005 17 EP#143 0.0000E+000 4.8750E-006 18 EP#150 0.0000E+000 1.2788E-004 17 EP#151 0.OOOOE+000 5.4806E-005 18 EP#152 0.OOOOE+000 3.4711E-003 14 EP#155 0.OOOOE+000 3.2375E-005 17 EP#156 0.OOOOE+000 1.3875E-005 18 PLANT DAMAGE STATE (CET) 146, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 29 0.OOOOE+000 7.1531E-003 9 EP# 30 0.OOOOE+000 3.0656E-003 10 EP# 33 0.OOOOE+000 2.2072E-001 7 EP# 34 0.OOOOE+000 2.4525E-002 8 EP# 35 0.OOOOE+000 1.1318E-004 9 EP# 36 0.OOOOE+000 4.8506E-005 10 EP# 39 0.OOOOE+000 2.7649E-003 7 EP# 40 0.OOOOE+000 3.0721E-004 8 EP# 44 0.OOOOE+000 2.0359E-002 9 EP# 45 0.OOOOE+000 8.7252E-003 10 EP# 48 0.OOOOE+000 6.2821E-001 7 EP# 49 0.OOOOE+000 6.9801E-002 8 EP# 50 0.OOOOE+000 3.2213E-004 9 EP# 51 0.OOOOE+000 1.3806E-004 10 EP# 54 0.OOOOE+000 7.8692E-003 7 EP# 55 0.OOOOE+000 8.7436E-004 8 EP#137 0.OOOOE+000 3.5945E-005 17 EP#138 0.OOOOE+000 1.5405E-005 18 EP#140 0.OOOOE+000 1.1092E-003 15 EP#141 0.OOOOE+000 1.2324E-004 16 EP#142 0.OOOOE+000 5.6875E-007 17 EP#143 0.OOOOE+000 2.4375E-007 18 EP#145 0.OOOOE+000 1.3894E-005 15

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 153 of 158 EP#146 0.OOOOE+000 1.5437E-006 16 EP#150 0.0000E+000 1.0230E-004 17 EP#151 0.0000E+000 4.3845E-005 18 EP#153 0.0000E+000 3.1568E-003 15 EP#154 O.0000E+000 3.5076E-004 16 EP#155 0.0000E+000 1.6188E-006 17 EP#156 0.OOOOE+000 6.9375E-007 18 EP#158 0.0000E+000 3.9544E-005 15 EP#159 0.OOOOE+000 4.3938E-006 16 PLANT DAMAGE STATE (CET) 147, Frequency = 0.OOOOE+000 EndPoint Frequency Probability STC EP# 29 O.0000E+000 8.9413E-003 9 EP# 30 0.0000E+000 3.8320E-003 10 EP# 33 0.0000E+000 2.1842E-001 7 EP# 34 0.0000E+000 2.4269E-002 8 EP# 35 0.0000E+000 2.2636E-003 9 EP# 36 0.0000E+000 9.7013E-004 10 EP# 44 0.0000E+000 2.5448E-002 9 EP# 45 0.0000E+000 1.0906E-002 10 EP# 48 0.OOOOE+000 6.2167E-001 7 EP# 49 0.OOOOE+000 6.9074E-002 8 EP# 50 0.OOOOE+000 6.4426E-003 9 EP# 51 0.OOOOE+000 2.7611E-003 10 EP#137 0.0000E+000 4.4931E-005 17 EP#138 0.0000E+000 1.9256E-005 18 EP#140 0.OOOOE+000 1.0976E-003 15 EP#141 0.0000E+000 1.2196E-004 16 EP#142 0.0000E+000 1.1375E-005 17 EP#143 0.OOOOE+000 4.8750E-006 18 EP#150 0.OOOOE+000 1.2788E-004 17 EP#151 0.0000E+000 5.4806E-005 18 EP#153 0.OOOOE+000 3.1240E-003 15 EP#154 0.OOOOE+000 3.4711E-004 16 EP#155 0.OOOOE+000 3.2375E-005 17 EP#156 0.0000E+000 1.3875E-005 18 PLANT DAMAGE STATE (CET) 148, Frequency = 3.3000E-008 EndPoint Frequency Probability STC EP# 29 1.2646E-010 3.8320E-003 9 EP# 30 2.9506E-010 8.9413E-003 10 EP# 33 5.6062E-009 1.6989E-001 7 EP# 34 2.4027E-009 7.2808E-002 8 EP# 35 3.2014E-011 9.7013E-004 9 EP# 36 7.4700E-01 I 2.2636E-003 10 EP# 44 3.5991E-010 1.0906E-002 9 EP# 45 8.3980E-010 2.5448E-002 10 EP# 48 1.5956E-008 4.8352E-001 7 EP#49 6.8383E-009 2.0722E-001 8 EP#50 9.1117E-011 2.7611E-003 9 EP# 51 2.1261E-010 6.4426E-003 10 EP#137 6.3546E-013 1.9256E-005 17 EP#138 1.4827E-012 4.4931E-005 18 EP#140 2.8172E-011 8.5369E-004 15 EP#141 1.2074E-011 3.6587E-004 16 EP#142 1.6087E-013 4.8750E-006 17 EP#143 3.7537E-013 1.1375E-005 18

Calculation No. PRA-ILRT Revision No. 2 Page 154 of 158 EP#150 1.8086E-012 5.4806E-005 17 EP#151 4.2201E-012 1.2788E-004 18 EP#153 8.0182E-011 2.4297E-003 15 EP#154 3.4364E-011 1.0413E-003 16 EP#155 4.5788E-013 1.3875E-005 17 EP#156 1.0684E-012 3.2375E-005 18 PLANT DAMAGE STATE (CET) 149, Frequency = 1.5507E-006 EndPoint Frequency Probability STC EP#212 4.6521E-007 3.0000E-001 22 EP#213 1.0855E-006 7.OOOOE-001 23 PLANT DAMAGE STATE (CET) 150, Frequency = 7.0630E-007 EndPoint Frequency Probability STC EP#209 7.0630E-008 1.0000E-001 24 EP#210 1.9070E-007 2.7000E-001 25 EP#211 4.4497E-007 6.3000E-001 26

SUMMARY

CET END POINT DATA (for CETs > 4 branchs)

EndPoint #OCC>O Mean Prob Max Prob/PDS Summed F*Prob EP# 1 2 9.950E-001 0.9950000 @ 1 4.986E-007 EP# 2 44 1.015E-002 0.0343897 @138 1.365E-007 EP# 3 44 1.058E-002 0.0343897 @142 1.415E-007 EP# 4 6 4.476E-001 0.9334344 @138 3.993E-006 EP# 5 11 4.048E-001 0.9334344 @139 3.413E-008 EP# 6 27 3.366E-001 0.8489340 @140 9.004E-007 EP# 7 27 8.044E-002 0.2800303 @142 3.606E-007 EP# 8 57 2.395E-002 0.2368 100 @ 48 8.480E-008 EP# 9 57 4.478E-002 0.2368100 @ 50 1.459E-007 EP# 10 0 EP# 11 5 7.220E-002 0.3213850 @42 3.203E-010 EP# 12 11 6.004E-002 0.2892465 @ 45 2.528E-01 1 EP# 13 11 6.671E-003 0.0321385 @47 2.809E-012 EP# 14 80 1.419E-002 0.0275117 @ 22 7.918E-008 EP# 15 80 1.706E-002 0.0275117 @ 23 1.536E-007 EP# 16 12 7.756E-001 0.9432600 @ 23 2.794E-006 EP# 17 21 7.534E-001 0.9432600 @ 22 4.623E-007 EP# 18 47 5.921E-001 0.8489340 @ 25 1.654E-006 EP# 19 47 1.499E-001 0.2829780 @ 79 6.766E-007 EP# 20 94 3.084E-002 0.4458993 @ 48 1.034E-007 EP# 21 94 5.979E-002 0.6749294 @121 2.290E-007 EP#22 14 3.292E-003 0.0197010 @43 7.252E-009 EP# 23 24 3.233E-002 0.6238650 @ 42 5.862E-009 EP# 24 56 2.539E-002 0.5614785 @47 2.041E-009 EP#25 56 3.391E-003 0.0623865 @47 7.827E-010 EP# 26 0 EP# 27 45 8.466E-004 0.0027799 @133 3.964E-009 EP# 28 45 8.792E-004 0.0027799 @131 7.972E-009 EP#29 38 2.333E-003 0.0089413 @144 1.258E-009 EP# 30 38 2.094E-003 0.0089413 @148 2.556E-009 EP#31 6 8.818E-002 0.2426929 @144 2.846E-008 EP#32 10 9.818E-002 0.2452476 @143 2.072E-013 EP# 33 22 7.108E-002 0.2207228 @146 3.189E-008 EP# 34 22 1.607E-002 0.0728079 @148 1.213E-008 EP# 35 51 4.475E-003 0.0605239 @ 57 1.292E-009 EP# 36 51 7.284E-003 0.0605239 @ 52 2.777E-009 EP# 37 0

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 155 of 158 EP#38 5 1.891E-002 0.0821396 @51 0.OOOE+000 EP# 39 9 1.860E-002 0.0739256 @ 56 0.OOOE+000 EP# 40 9 2.067E-003 0.0082140 @54 0.OOOE+000 EP# 41 0 EP# 42 45 1.484E-002 0.0354602 @ 86 1.844E-008 EP# 43 45 1.652E-002 0.0354602 @ 87 3.704E-008 EP#44 38 6.176E-003 0.0254484 @147 3.239E-009 EP# 45 38 5.393E-003 0.0254484 @148 6.595E-009 EP#46 6 2.317E-001 0.6907414 @144 7.366E-008 EP# 47 10 2.595E-001 0.6980124 @143 5.898E-013 EP#48 22 1.847E-001 0.6282111 @146 8.196E-008 EP#49 22 4.145E-002 0.2072224 @148 3.121E-008 EP# 50 51 1.096E-002 0.1472011 @57 3.354E-009 EP# 51 51 1.777E-002 0.1472011 @59 7.185E-009 EP# 52 0 EP# 53 5 4.628E-002 0.1997729 @51 0.OOOE+000 EP# 54 9 4.540E-002 0.1797956 @54 0.OOOE+000 EP# 55 9 5.045E-003 0.0199773 @54 0.OOOE+000 EP# 56 0 EP# 57 0 EP# 58 0 EP# 59 0 EP# 60 9 EP# 61 0 EP# 62 0 EP# 63 0 EP# 64 0 EP# 65 0 EP# 66 0 EP# 67 0 EP# 68 0 EP# 69 0 EP# 70 0 EP#71 65 1.666E-003 0.0071531 @88 1.716E-009 EP# 72 65 2.077E-003 0.0071531 @89 3.539E-009 EP#73 11 8.485E-002 0.2452476 @ 89 6.332E-008 EP# 74 17 8.608E-002 0.2452476 @ 90 3.885E-012 EP# 75 37 7.373E-002 0.2207228 @ 94 4.562E-008 EP# 76 37 1.932E-002 0.0735743 @ 92 1.716E-008 EP# 77 79 5.400E-003 0.1159338 @57 2.171 E-009 EP# 78 79 9.054E-003 0.1159338 @52 4.648E-009 EP# 79 13 4.562E-004 0.0051223 @52 1.290E-010 EP# 80 20 9.207E-003 0.1622049 @51 1.049E-013 EP#81 46 7.341E-003 0.1459844 @54 5.924E-01 1 EP# 82 46 8.976E-004 0.0162205 @ 56 2.263E-011 EP# 83 0 EP# 84 53 4.006E-002 0.1816511 @57 2.884E-008 EP# 85 53 4.979E-002 0.1816511 @59 6.178E-008 EP# 86 65 4.139E-003 0.0182414 @94 3.778E-009 EP# 87 65 5.057E-003 0.0199979 @126 7.701E-009 EP#88 11 2.043E-001 0.6856426 @123 1.555E-007 EP#89 17 2.114E-001 0.6856426 @124 1.074E-0 11 EP#90 37 1.827E-001 0.5628772 @ 94 8.799E-008 EP#91 37 4.713E-002 0.2056928 @125 3.198E-008 EP#92 79 7.831E-003 0.1537639 @ 57 5.020E-009

I Calculation No. PRA-ILRT I Revision No. 2 T Page 156 of 158 EP# 93 79 1.319E-002 0.1537639 @59 1.079E-008 EP# 94 13 6.788E-004 0.0067937 @ 52 3.086E-010 EP# 95 20 1.322E-002 0.2151336 @51 2.057E-013 EP# 96 46 1.053E-002 0.1936202 @54 1.304E-010 EP# 97 46 1.287E-003 0.0215134 @56 4.974E-01 1 EP# 98 0 EP# 99 0 EP# 100 0 EP#101 0 EP# 102 0 EP#103 0 EP# 104 0 EP# 105 0 EP#106 0 EP#107 0 EP#108 0 EP# 109 0 EP#110 0 EP#1 11 0 EP#112 0 EP#1 13 2 5.OOOE-003 0.0050000 @ 1 2.506E-009 EP# 114 44 5.103E-005 0.0001728 @141 6.859E-010 EP# 115 44 5.316E-005 0.0001728 @142 7.112E-010 EP#1 16 17 2.11OE-003 0.0046906 @139 2.024E-008 EP#117 27 1.692E-003 0.0042660 @140 4.524E-009 EP#1 18 27 4.042E-004 0.0014072 @142 1.812E-009 EP# 119 57 1.204E-004 0.0011900 @48 4.261E-010 EP# 120 57 2.250E-004 0.0011900 @43 7.333E-010 EP# 121 5 3.628E-004 0.0016150@42 1.610E-012 EP#122 11 3.017E-004 0.0014535 @47 1.270E-013 EP# 123 11 3.352E-005 0.0001615@47 1.411E-014 EP# 124 80 7.129E-005 0.0001382 @ 78 3.979E-010 EP#125 80 8.575E-005 0.0001382@79 7.718E-010 EP# 126 33 3.826E-003 0.0047400 @ 74 1.636E-008 EP# 127 47 2.975E-003 0.0042660 @25 8.3 1OE-009 EP#128 47 7.533E-004 0.00 14220 @ 79 3.400E-009 EP#129 94 1.550E-004 0.0022407 @48 5.196E-010 EP#130 94 3.004E-004 0.0033916@121 1.151E-009 EP#131 38 1.087E-004 0.0031350 @ 42 6.590E-01 1 EP#132 56 1.276E-004 0.0028215 @45 1.026E-011 EP#133 56 1.704E-005 0.0003135 @47 3.933E-012 EP# 134 0 EP#135 45 4.254E-006 0.0000140 @127 1.992E-01 I EP#136 45 4.418E-006 0.0000140 @128 4.006E-0 I1 EP#137 38 1.172E-005 0.0000449 @147 6.322E-012 EP#138 38 1.052E-005 0.0000449 @148 1.285E-011 EP#139 16 4.745E-004 0.0012324 @143 1.430E-010 EP#140 22 3.572E-004 0.0011092 @146 1.603E-010 EP#141 22 8.077E-005 0.0003659 @148 6.093E-0 I1 EP#142 51 2.249E-005 0.0003041 @ 57 6.492E-0 12 EP# 143 51 3.66 1E-005 0.0003041 @52 1.396E-01 1 EP#144 5 9.501E-005 0.0004128 @51 0.OOOE+000 EP#145 9 9.347E-005 0.0003715 @56 0.OOOE+000 EP# 146 9 1.039E-005 0.0000413 @56 0.OOOE+000 EP# 147 0

I Calculation No. PRA-ILRT I Revision No. 2 1 Page 157 of 158 EP#148 45 7.455E-005 0.0001782@ 6 9.267E-011 EP#149 45 8.302E-005 0.0001782@ 7 1.861E-010 EP#150 38 3.104E-005 0.0001279@144 1.627E-011 EP#151 38 2.710E-005 0.0001279@148 3.314E-011 EP#152 16 1.252E-003 0.0035076 @143 3.702E-010 EP#153 22 9.283E-004 0.0031568@146 4.119E-010 EP#154 22 2.083E-004 0.0010413@148 1.568E-010 EP#155 51 5.505E-005 0.0007397@57 1.685E-011 EP#156 51 8.930E-005 0.0007397@59 3.610E-011 EP#157 5 2.326E-004 0.0010039 @51 0.OOOE+000 EP#158 9 2.282E-004 0.0009035 @56 0.OOOE+000 EP#159 9 2.535E-005 0.0001004 @56 0.OOOE+000 EP#160 0 EP#161 0 EP#162 0 EP#163 0 EP#164 0 EP#165 0 EP#166 0 EP#167 0 EP#168 0 EP#169 0 EP#170 0 EP#171 0 EP#172 0 EP#173 65 8.374E-006 0.0000359 @ 88 8.622E-012 EP#174 65 1.044E-005 0.0000359 @89 1.778E-01 1 EP#175 28 4.301E-004 0.0012324@88 3.182E-010 EP#176 37 3.705E-004 0.0011092@91 2.292E-010 EP#177 37 9.710E-005 0.0003697@95 8.623E-011 EP#178 79 2.714E-005 0.0005826@57 1.091E-011 EP#179 79 4.550E-005 0.0005826 @ 59 2.336E-01 1 EP#180 33 2.894E-005 0.0008151 @51 6.486E-013 EP#181 46 3.689E-005 0.0007336 @56 2.977E-013 EP#182 46 4.511E-006 0.0000815@54 1.137E-013 EP#183 0 EP#184 53 2.013E-004 0.0009128@51 1.449E-010 EP#185 53 2.502E-004 0.0009128@38 3.105E-010 EP#186 65 2.080E-005 0.0000917@94 1.898E-011 EP#187 65 2.541E-005 0.0001005@126 3.870E-011 EP#188 28 1.048E-003 0.0034454@124 7.814E-010 EP#189 37 9.181E-004 0.0028285@91 4.422E-010 EP#190 37 2.368E-004 0.0010336@125 1.607E-010 EP#191 79 3.935E-005 0.0007727@57 2.522E-011 EP# 192 79 6.628E-005 0.0007727 @ 52 5.420E-0 I1 EP#193 33 4.159E-005 0.0010811 @51 1.552E-012 EP#194 46 5.290E-005 0.0009730 @ 56 6.553E-013 EP#195 46 6.470E-006 0.0001081 @ 54 2.500E-013 EP#196 0 EP#197 0 EP#198 0 EP#199 0 EP#200 0 EP#201 0 EP#202 0

Calculation No. PRA-ILRT Revision No. 2 I Page 158 of 158 EP#203 0 EP#204 0 EP#205 0 EP#206 0 EP#207 0 EP#208 0 EP#209 1 1.000E-001 0.1000000 @150 7.063E-008 EP#210 I 2.700E-001 0.2700000 @150 1.907E-007 EP#211 I 6.300E-001 0.6300000 @150 4.450E-007 EP#212 1 3.000E-001 0.3000000 @149 4.652E-007 EP#213 I 7.OOOE-001 0.7000000 @149 1.085E-006 Number of CET End points with zero occurrence = 65 Number of CET End points with >0 occurrence =148

Enclosure 4 to AEP-NRC-2014-09 Donald C. Cook Nuclear Plant Unit 1 Technical Specification Pages Marked To Show Proposed Changes

Programs and Manuals 5.5 5.5 Programs and Manuals 5.5.14 Containment Leaka-ge Rate Testinq Program

a. A program shall establish the leakage rate testing of the containment as required by 10 CFR 50.54(o) and 10 CFR 50, Appendix J, Option B, as modified by approved NRC endorsement exemptiOR6. This program shall be in accordance rerrrmz~ice it~e the guidelines contained in '-M .....

with~urwiire~% t V~y~I -~U!1.

I September, 1995, as modified by the follWivng exGeption*:

INSERT A I

1. The T-vae A testi~n Frea'uenc- s6ecified inR NI 94 01. Re'vision 0.

"*;/ .... I ...... J -- I--

Jt a m i

  • X l l INSERT A Parairah w:' : asat lastonc ner1U earsflaed n aceetfli DaFaciFaný, 0 ') 1 as at least enGe peF 10 yeaFs based an aGGentaiqle NEI 94-01, Revision 3-A, "Industry Guidelines for based OR acceptable performance history." Thisc*hange applies only Implementing to the interval following the Type A test perforFmed in October 1992.

Performance-Based i r I I-*- I-Option of 10 CFR 50, 0 A one *ime e to Fenin 0e renuiremen; +o periorm etm iicin v..

I 7 ~Jt A* +pp4.irr.

Tamp L..insPL,, I c~ .-. IIavaarJ bar +ka pfp',w, tL.flAI I npnpr.~+rarc. ',rrJ .,pgpaj.,fprJ Appendix J," dated ra An +ý-,r ~ A-v fama+kp r r oram+- ra-,rriacar r pnanp n4 -hi. t.ed July 2012. CID V' ý Vý ' 1 3rmul cr r. W o ASME Sectionm XI leak testing will be usmed to verify the leak tightness ot the repaired or modified portions of the containment barrier. EnRtry into DEflS 3 ;;nd 4 following the extended ou~tane that GOMmnenced in 1997 may be made te perteFm tHlb tFVbt1H!_q.

b. The calculated peak containment internal pressure for the design basis loss of coolant accident, Pa, is 12 psig.
c. The maximum allowable containment leakage rate, La, at Pa, shall be 0.25%

of containment air weight per day.

d. Leakage rate acceptance criteria are:
1. Containment leakage rate acceptance criterion is 1.0 La. During the first unit startup following testing in accordance with this program, the leakage rate acceptance criteria are < 0.60 La for the Type B and C tests and < 0.75 La for Type A tests.
2. Air lock testing acceptance criterion is overall air lock leakage rate is

< 0.05 La when tested at > Pa.

e. The provisions of SR 3.0.3 are applicable to the Containment Leakage Rate Testing Program.

5.5-14 Amendment No. 2&~, 298, Cook Nuclear Nuclear Plant Unit 11 Plant Unit 5.5-14 Amendment No. 297, 2-N,

Enclosure 5 to AEP-NRC-2014-09 Donald C. Cook Nuclear Plant Unit 2 Technical Specification Pages Marked To Show Proposed Changes

Programs and Manuals 5.5 5.5 Programs and Manuals 5.5.14 Containment Leakage Rate Testinq Program

a. A program shall establish the leakage rate testing of the containment as required by 10 CFR 50.54(o) and 10 CFR 50, Appendix J, Option B, as modified by approved INRC endorsement exemption. This program shall be in accordance with the guidelines contained in,.egulatop; Guide 1.163, INSERT A "Pe*f*rmance Based Containment Leak Test Program," datd INSERT A:

NEI 94-01, Revision 3-A, September, 1.995, as mo.dified by the following exceptioRn:

"Industry Guidelines for 1. The Type A testing Frequency specified in NEI 94 01, Revision 0, Implementing ... .. e.....ccept.bl on Performance-Based Paragaph 9.2.3, as "at least once per 10 years b OPtino 0CR5erformanceBsdpfFane histor,"' is modified to be "at least once per 15 years Option of 10 CFR 50,Jlbased on acceptable performance histo.Y." This chan.ge applies On Appendix J," dated Ju to the i.terval following the Type A test perf.rmed in May 1992.

2012.

b. The calculated peak containment internal pressure for the design basis loss of coolant accident, Pa, is 12 psig.
c. The maximum allowable containment leakage rate, La, at Pa, shall be 0.25%

of containment air weight per day.

d. Leakage rate acceptance criteria are:
1. Containment leakage rate acceptance criterion is 1.0 La. During the first unit startup following testing in accordance with this program, the leakage rate acceptance criteria are < 0.60 La for the Type B and C tests and < 0.75 La for Type A tests.
2. Air lock testing acceptance criterion is overall air lock leakage rate is

< 0.05 La when tested at > Pa.

e. The provisions of SR 3.0.3 are applicable to the Containment Leakage Rate Testing Program.

5.5.15 Battery Monitoring and Maintenance Program This program provides for battery restoration and maintenance, based on the recommendations of IEEE Standard 450-1995, "IEEE Recommended Practice for Maintenance, Testing, and Replacement of Vented Lead-Acid Batteries for Stationary Applications," or of the battery manufacturer including the following:

a. Actions to restore battery cells with float voltage < 2.13 V; and
b. Actions to equalize and test battery cells that had been discovered with electrolyte level below the minimum established design limit 5.5-14 Amendment No. 26~, 29, Cook Nuclear Plant Unit 22 Plant Unit 5.5-14 Amendment No. 269, 2;*,

Enclosure 6 to AEP-NRC-2014-09 Probabilistic Risk Assessment Technical Adequacy

Enclosure 6 to AEP-NRC-2014-09 Donald C. Cook Nuclear Plant Probabilistic Risk Assessment Technical Adequacy Justification The Probabilistic Risk Assessment (PRA) model used to analyze the risk of extending the Donald C. Cook Nuclear Plant (CNP) Type A test interval to 15 years for CNP Unit 1 and 2 is a WinNUPRA event tree model with system fault trees. The current version is the PRA model of record (09MORW) model, with an effective date of February 20, 2009. CNP calculation PRA-NUPRA-002, 2009 WinNUPRA PRA Model of Record, Revision 1, documents quantification of this PRA model in combination with various system notebooks. This is the most recent evaluation of the CNP internal events at-power risk profile. The PRA model is maintained and updated under a PRA configuration control program in accordance with CNP procedures. Plant changes, including physical and procedural modifications and changes in performance data, are reviewed and the PRA model is updated to reflect such changes periodically by qualified personnel, with independent reviews and approvals. This PRA model is the same model on which the CNP National Fire Protection Association (NFPA)-805 Fire PRA model was based, and recently used to obtain approval to transition to NFPA-805.

Indiana Michigan Power Company (I&M) considers the CNP Internal Events PRA (IEPRA) as adequate to support the Type A integrated leak rate testing (ILRT) surveillance test interval extension. A Peer Review was conducted September 24th - 28th, 2001. That 2001 Peer Review noted a number of facts and observations (F&Os) based on sub-elements included in the then-current Nuclear Energy Institute guidance for conduct of peer reviews. The Pressurized Water Reactor Owner's Group issued a report containing the results of the CNP IEPRA Review at the end of December 2002. Summaries of these F&Os, the status of the disposition of the F&Os, and the impact of open F&Os are provided in Table 1.0. Following resolution of all significant F&Os (Class A & B) from the 2001 Peer Review, a Gap Assessment was performed in 2004 by an independent contractor. The Gap Assessment provided comments related to a number of the then-current American Society of Mechanical Engineers (ASME) PRA Standard supporting requirements.

Following several model and various system related updates, a Focused-Scope Peer Review was conducted in 2009. The Focused-Scope Peer Review identified a number of F&Os based on the supporting requirements in the-then current U.S. Nuclear Regulatory Commission (NRC)

Regulatory Guide (RG) 1.200, Revision 1. The detailed findings and comments from both the 2001 Peer Review and 2004 Gap Assessment have been previously submitted to NRC, and along with the 2009 Peer Review are available to NRC staff if additional detail is needed. In late 2012, an additional model gap analysis was conducted as part of responding to a request for additional information associated with the proposed NFPA-805 amendment. That Gap Assessment was conducted to RA-Sa-2009 and has been reviewed/evaluated for consideration of the impact on large early release frequency (LERF) metrics.

F&Os from the CNP 2001 PRA peer review were prioritized into four categories (A through D) based on importance to the completeness of the model. Category A and B F&Os are significant enough that the technical adequacy of the model may be impacted. Categories C and D are considered minor. Subsequent to the peer review, the model was updated to address all Category A, B, F&Os, several C & D F&Os were addressed as well, but not all were closed.

to AEP-NRC-2104-09 Page 2 Status of the various Peer Review F&Os are noted in Table 1.0, below:

RG 1.200, Revision 2 Compliance Summary The CNP IEPRA satisfies the applicable portions of the combined PRA Standard as implemented by RG 1.200, Revision 2 as described below. A Gap Assessment was conducted to evaluate differences between the CNP IEPRA and the Supporting Requirements (SRs) of ASME/ANS RA-Sa-2003 and the SRs of RA-Sa-2009 as endorsed by RG 1.200, Revision 2. In general, most model gaps were found to be in the form of documentation shortcomings with no significant impact on the PRA model and metrics used for the ILRT extension license amendment request (LAR). All PRA elements were reviewed and areas with potential gaps were identified in the current CNP IEPRA model. The potential gaps were further investigated and for those SRs with substantive differences, the IEPRA was reviewed to determine if the RA-Sa-2009 Capability Category (CC) II SRs were satisfied, or if there were actual gaps between the SRs and the IEPRA model.

A general discussion description of the gap analysis is provided below.

The Gap Assessment significant gaps were in LERF modeling, and the Level 2 PRA model was revised to address the applicable issues. A focused scope review on the Level 2 PRA model changes was completed. Following these PRA model changes, the focused scope reviewers judged the revised model as still unable to meet CC II because the current model remains conservative. This condition, while not optimal for a CC II Model, produces conservative results for the associated ILRT extension.

The 2012 gap assessment also found that Test and Maintenance (T&M) factors were applied differently in the model than standard industry practice. A focused scope peer review was conducted on this gap and confirmed the need to revise the PRA model to conform to industry practice for T&M treatment. The IEPRA and Fire PRA models were updated to change the T&M mission time treatment to conform to standard industry practice. The revised model (i.e., 09MORW + T&M corrections) was used to obtain the metrics associated with the ILRT extension that are provided in this document.

Gap Assessment Description The Gap Assessment identified 115 SRs with potential gaps in the IEPRA model due to the different standards' versions of the various SRs. For these 115 potential gaps, the IEPRA model was judged against the RA-Sa-2009 CC II requirements. For 47 SRs with potential gaps, the IEPRA model was judged to meet the RA-Sa-2009 CC II requirements; therefore, no actual gap existed. The remaining 68 SRs with potential gaps were determined to indicate actual gaps because they involved differences between the RA-Sa-2009 CC II SR and the IEPRA model.

Many of these actual gaps are related to documentation rather than technical concerns and may be resolved by enhancement of existing documentation or development of new documentation.

Resolution of these documentation related gaps is not expected to result in any impact to the IEPRA model or its associated metrics. Of the 68 identified actual gaps between the RA-Sa-2009 CC II SR and the IEPRA model, there are 53 gaps whose resolutions are expected to result in changes to the model, but these changes are not expected to be significant. For example, the IEPRA model was identified as having a gap with respect to SR AS-C2, whose to AEP-NRC-2104-09 Page 3 content was significantly different in the 2009 Standard. The IEPRA gap was identified as both documentation and a modeling deficiency. The documentation deficiency does not represent any IEPRA impact; however, the modeling deficiency involved not having fully incorporated the latest consensus reactor coolant pump (RCP) seal loss of coolant accident (LOCA) model i.e.,

the WOG2000 model developed by the Westinghouse Owners Group (WOG). Once properly incorporated, this IEPRA modeling gap is expected to have no impact on the IEPRA, or the results associated with the ILRT extension metric, beyond a small insignificant reduction in overall metrics. Other additional examples were six IEPRA model gaps related to uncertainty analysis. Gaps of this nature have no impact on the IEPRA model metrics.

The remaining 15 actual gaps are expected to involve resolutions impacting the PRA model and model associated documentation. All of these gaps are related to modeling or modeling related documentation associated with LERF. The gaps in many of the PRA Large Early Release (LER) SRs were determined to have no numerical impact on LERF. Sensitivity analyses were performed to bound the impact of gap resolution for the use of a NUREG/CR-6595 LERF model (SRs LE-B1, LE-B2, LE-C1, LE-C2, LE-C3, LE-C4, LE-C10, LE-C12, and LE-E2 and LE E3) and assumptions about Steam Generator Tube Rupture (SGTRs) induced by severe accident conditions (SR LE-D6). Revised Conditional Large Early Release Probability (CLERP) values were determined which account for increased containment bypass probabilities due to a severe-accident-induced SGTR, and the increased containment failure probabilities for ice condenser containments advocated by NUREG/CR-6595, Revision 1. To obtain timely, conservative estimates of the impacts of these model changes, the generic probability values provided by NUREG/CR-6595, Revision 1 were used without performing plant-specific analyses to obtain sequence progression insights that could provide a basis for changing the generic values. Using these revised CLERP values, the LERF for the IEPRA model was estimated to increase by about 36 percent (%) and the LERF-to-CDF ratio increased to 27.6%. The development of the Level 2 model as a basis for the LERF estimate used in this submittal indicates that the LERF-to-CDF ratio of 25.4% is a closer, albeit conservative estimate of the effect of addressing these gaps.

to AEP-NRC-2014-09 Page 4 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-01 The LOCA event tree (ET) discussion of Open The F&O represents a documentation issue for the IEPRA.

gross containment failure does not appear There is an inconsistency in the descriptions of the containment consistent with the stated assumption; in response following over-pressure failure between documents this instance the discrepancy probably written by the consultants that prepared the Level 2 analysis does not change the conclusion that core and the containment structural analysis for the Individual Plant damage occurs so late as to not qualify as Examination (IPE) submittal. The description from the latter part of LERF. (Significance Level C) has been used since its discovery in the late 1990s and is consistent with the current model.

AS-02 The medium LOCA ET discussion on long Closed The wording in the Medium LOCA ET discussion for long term term cooling states seems to indicate that heat removal (i.e., Appendix B of PRA-NB-AS) has been more heat removal is required than the revised to make it clear that the success criteria for certain success criterion. (Significance Level C) situations have been revised. Table B-I, which provides a listing of the success criteria, was revised to be consistent with the revised success criteria discussion. This was only a documentation issue and no PRA model change was required to address this F&O.

AS-03 The Main Steam Line Break Inside Open The numerical impact of this F&O on the IEPRA results is Containment (SLBI) ET discussion states judged to be a conservatively small increase in CDF. The that the Main Steam Line Break Outside proposed ILRT extension has no consequential effect on a Containment is covered by the SLBI tree, Main Steam Line Break (SLB) event or response. The SLB tree although the mitigation requirements of by having the break always within containment never credits these events are different with respect to Main Steam Isolation valve closure as successfully terminating isolation and containment systems. a SLB event early. In that the Main Steam Line Break CDF (Significance Level C) estimate is conservative, the effect on results associated with an evaluation for ILRT surveillance interval extension is judged as conservative.

to AEP-NRC-2014-09 Page 5 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-04 In the ET for Station Black-Out (SBO), Open This F&O identifies what appears to be an inconsistency existing logic for Auxiliary Feed Water affecting only the IEPRA model SBO Event Tree. This 2001 (AFW) functions asked successively does Peer Review F&O was issued as a Level C low significance not require correlation between success of item. It pertained to Turbine-Driven Auxiliary Feedwater Pump the prior branch and the failure of the latter (TDAFP) operation for four hours followed by the potential for branch. (Significance Level C) an additional two hours of operation in event of an SBO. It was directed at potentially requiring different TDAFP to SG valves to be opened and does not have much merit in that if the TDAFP is satisfactorily providing flow at four hours to all four SGs as would typically be done, or to any combination of the available four SGs, the probability that significant changes or equipment operation have to be made to system operation for it to continue for an additional two hours are judged to be small.

The subsequent WOG 2009 Peer review specifically assessed the SBO Event Tree and had no comments on this ET construction. As such, it is judged as not significant to overall model results and does not warrant revision.

AS-05 Although no inconsistencies in modeling of Open The ETs model the separate system failures explicitly, rather systems to meet the safety functions were than corresponding functional failures. This system-based identified, there is no discussion of approach reflects the Emergency Operating Procedures (EOP) functional failure criteria for the ETs. structure and plant, as well as the PRA software (Significance Level C) solver/software function to produce appropriate results. This is an IEPRA model documentation issue that has no effect on ILRT.

to AEP-NRC-2014-09 Page 6 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-06 The success criterion for feed and bleed is Open Given the abundant AFW availability at CNP, the numerical conservative compared to the criterion impact of this bleed and feed conservatism is judged very small used for some other 4-loop Westinghouse for the IEPRA model. The numerical effect of this conservatism plants. (Significance Level C) is to increase CDF for sequences that affect the systems used to perform bleed and feed. This additional conservatism would increase the risk estimated for ILRT change evaluations as well.

AS-07 Initiating event dependencies are not Closed Thirty-four new ETs were developed to explicitly consider retained by ET transfers. transfer from one ET to another given failure of a support (Significance Level A) system as shown below.

to AEP-NRC-2014-09 Page 7 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-07 Initiating Event with New Transfer Event Trees for Support mm System m

Failures Support System Failures Single unit loss of offsite power Anticipated transient without Dual unit loss of offsite power scram (ATWS) at reactor power greater than 40%

Loss of train A 250 VDC ATWS at reactor power less Loss of train B 250 VDC than 40%

Medium LOCA caused by a stuck open pressurizer safety valve Small LOCA caused by a stuck open pressurizer relief valve Loss of essential service water (ESW) to both units' component cooling water (CCW)

Loss of ESW to a single unit's CCW Loss of CCW Loss of train A 250 VDC Failure to trip the RCPs following loss of ESW to both Loss of train B 250 VDC units' CCW Failure to trip the RCPs following loss of ESW to a to AEP-NRC-2014-09 Page 8 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-07 single unit's CCW Failure to trip the RCPs following loss of CCW During a subsequent PRA model update, some simplifications were made to the support system failure ETs.

Specifically, ETs that had been developed to account for failure of reactor trip following events initiated by support system failure were deleted and the ET branches that had been transferred to the deleted ETs were assumed to lead directly to LERF.

Transfer ETs that had been developed to represent random failures of two entire support systems were deleted (e.g., loss of direct current (DC) followed by loss of ESW). This included ETs for single-unit losses of ESW following a single-unit or dual-unit losses of offsite power. Neither of these ETs contributed to the risk profile at a truncation limit of 1E-1 0.

The statements regarding deletion of ETs for single-unit ESW losses following offsite power loss was based on a review of the loss of offsite power ETs included in PRA-NUPRA-002, Revision 1 (09MORW) and review of sequence cutset equations (MGP files) for the 05SDGUPD model.

The Medium LOCA ETs representing stuck-open pressurizer safety valves were deleted since a new ET representing stuck-open pressurizer power operated relief valve (PORVs) following to AEP-NRC-2014-09 Page 9 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-07 transients and support system failure events was added.

ETs with transfers were retained when some part of the support system consequentially failed following a loss of offsite power or dual unit loss of offsite power. The remaining transfer ETs included:

" Loss of CCW following a loss of offsite power

" Loss of CCW following a dual-unit loss of offsite power

" Dual-unit loss of ESW following a loss of offsite power

" Dual-unit ESW following a dual-unit loss of offsite power Regarding a loss of DC following a loss of offsite power or a dual-unit loss of offsite power, a loss of a DC was allowed to occur in the loss of offsite power and dual-unit loss of offsite power ETs and was not transferred to a loss of DC ET AS-08 RCP Seal LOCA modeling in the loss of Closed An assumption underlying this F&O is that RCP seal service water ETs is different than in the degradation and failure progress similarly following an SBO and SBO ETs and needs to be made following failure to trip the RCPs after a loss of ESW or CCW.

consistent. (Significance Level B) For the latter situations, if the operator fails to trip the RCPs, then they will continue to run with lack of seal and motor cooling, leading more directly/at higher probability to RCP seal damage and potentially higher reactor coolant system (RCS) inventory loss rates. This is as opposed to an SBO event in which the RCPs stop running/trip immediately due to the initiating event. As a result, there would be different boundary conditions for the seal cavity water volume and seal behavior in the loss of ESW/CCW events than in the SBO event.

to AEP-NRC-2014-09 Page 10 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-08 Accordingly, application of the SBO models for RCP seal LOCAs to Loss of ESW and CCW initiated events is not justified (at this time).

Answers to the specific questions in the F&O are as follows.

1) Loss of RCP seal cooling is modeled from realistic initiators. In that CCW provides direct RCP seal cooling via the thermal barrier, or indirectly by supporting seal injection. Only those events that directly cause a loss of CCW will cause a loss of RCP seal cooling.
2) The CNP model does include top events for cool down and depressurization in case of failed ESW or CCW, but this question is only asked as part of the mitigation strategy following recovery of these systems. This is unlike the cool down questioned following an SBO initiator for which the probability of core uncovery depends on the success or failure of RCS cool down.
3) The seal LOCA model is based on the seal behavior that is assumed following an SBO initiator. As described above, this behavior is different for an SBO than would be expected following loss of ESW or CCW initiators. Accordingly, seal LOCA is not addressed in the CNP model by use of the SBO split fractions in the loss of CCW or loss of ESW ETs.

Instead, consideration is given to whether the seals should be considered failed if the RCPs are not stopped, or if cooling is otherwise interrupted. This is a realistically conservative to AEP-NRC-2014-09 Page 11 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-08 method of modeling these interactions, given that the existing seal LOCA models cannot differentiate between these initiators.

4) The timing requirements for OL2 and RR2 for loss of ESW and loss of CCW sequences were changed to include consideration of revised success criteria for small LOCAs.

AS-09 After recovery of Alternating Current (AC) Open The numerical impact of this F&O on the IEPRA results is power, after SBO, the PRA conservatively judged very small, as well as conservative. System/Pump requires recovery for alignment of Safety recovery failure in the IEPRA model SBO is dominated by Injection (SI), Charging and Volume operator actions. Restoring these functions following an SBO Control System (CVCS), Containment requires some manual actions based on CNP EOPs. This F&O Spray (CTS), and AFW; however, the was written implying that the manual actions are conservative systems may not be needed or may be and should be considered for removal, as it did not consider initiated automatically. such operator actions were warranted for inclusion. The (Significance Level C) numerical effect of this conservative reliance on manual action is to increase the CDF for SBO sequences. Removing this relatively small conservatism would decrease both the base case risk and estimated risk for the ILRT change evaluations, and is judged to be not a significant effect on the outcome/metrics.

to AEP-NRC-2014-09 Page 12 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-10 The ETs do not include a heading for Closed The F&O identifies the lack of Containment Isolation (CI) failure containment isolation (CI) failure, resulting top event in the various ETs as inconsistent with the LERF in improper assignment of LERF. modeling approach adopted by I&M (i.e., NUREG/CR-6595).

(Significance Level B) Rather than changing all ETs to include Cl, the LERF fault tree was modified to include Cl. Specifically, the Cl model was incorporated explicitly into the LERF analysis by including failure to isolate under an OR-gate for each of the LERF functional equations utilized in the ET. Appropriate use of house events accounted for initiator dependencies.

AS-1 1 Dependencies between the failures Closed The ISLOCA initiating event and ETs have been revised to causing Interfacing Systems Loss of follow the methodologies of NUREG/CR-5744 and Coolant Accidents (ISLOCA) in the NUREG/CR-5102. Four ISLOCA initiating events and ETs are individual ISLOCA scenarios and the now used to separate the effects of various initiators and systems mitigating ISLOCA are not scenario specific dependencies, including an event initiated in considered. (Significance Level B) the SI piping that precludes use of the SI pumps. The initiating events and their frequencies are developed in detail in a new ISLOCA notebook. The ET structure and the scenario specific dependencies are documented in the revised ET notebook. In addition, since an ISLOCA event is a containment bypass event, it is not impacted by changes to the probability of pre-existing containment leakage.

to AEP-NRC-2014-09 Page 13 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-12 The ISLOCA analysis assumes low Closed As indicated in the disposition to F&O AS-11, the ISLOCA pressure piping failure probability based analysis has been redone using the methodologies of solely on engineering judgment. NUREG/CR-5744 and NUREG/CR-5102. In addition, (Significance Level B) low-pressure piping failure probabilities have been reevaluated and appropriate values included in the model for each of the four separate initiating events. In addition, since ISLOCA events are containment bypass events, they are not impacted by changes to the probability of pre-existing containment leakage as a result of this ILRT extension.

AS-Al, AS-B1, The split fraction dependencies and Open This issue only impacts the IEPRA model documentation. The AS-B2, AS-B4, corresponding values (basis) are not well PRA model is developed and quantified using the fault-tree AS-B5, SY-Cl. documented or described in the report. linking quantification method featured by the WinNUPRA For example, top event "CSR" has 21 split software. Split fractions are not used. Rather, the file that fractions (each with a different value) contains instructions that direct the fault-tree linking operations identified in the CCW ETs. However, the performed during quantification assures that the appropriate only way to follow what the dependencies fault tree gate is included in the Boolean reduction of each are and how the different fraction values sequence equation.

are calculated, is to go to the WinNUPRA calculation files. Even using the WinNUPRA files, not all boundary conditions could be determined.

to AEP-NRC-2014-09 Page 14 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-Al, QU-C3 The number of considered transfers is too Closed This issue was addressed in a 2007 update that included large; even very unlikely transfer events simplifying the ET transfers. See the disposition discussion for are modeled (<1E-08/yr). For example, F&O AS-07 for additional detail.

the Initiating Event frequency for Medium LOCA, transferred from a loss of DC is 8E-9/yr. Even at this low frequency, this combined event is still modeled and there is an ET associated with it.

AS-A10, ISLOCA modeling should: (1) separate the Open This issue relates specifically to the IEPRA model for ISLOCA AS-B3, SC-A6 human reliability and hardware (valve) and the relatively simple treatment provided in all model reliability when modeling potential isolation ISLOCA ETs, and specifically that two of the ISLOCA ETs did of the appropriate breaks, (2) address not include ET manual, or system mitigating, actions. The valve shutoff delta-P capability for valves ISLOCA sequences modeled by these latter two ETs have credited for isolation, (3) valve failure rates historically been judged to be sufficiently low probability that indicative of functional degradation due to additional analytical development was not cost beneficial.

harsh environment for Residual Heat Removal (RHR) pump seal failure events, An ISLOCA event is a direct containment bypass event, does (4) operations procedures should address not depend on CI functions or failure probability for mitigation, remote manual isolation of ISLOCA and it is not impacted by changes to the probability of Cl failure.

events. Contributions from these events would be the same in the base and ILRT amendment case, and would have no net impact on ILRT amendment metrics.

to AEP-NRC-2014-09 Page 15 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-A10, Enhance AFW system modeling related to Open The numerical impact of this SR on the IEPRA results is judged SC-Al 2, Condensate Storage Tank (CST) refill by very small. The Gap assessment commented that the SC-Al 8, adding a discussion about CST refill approach used was reasonable given the supporting SY-A3, SY-A5, system boundaries, capacities and information available, but that providing additional system detail SY-A6, SY-A7, dependencies, and any potential common and separating the HEP and hardware would be a benefit to the SY-B1, SY-B16 cause failure (CCF) modes. Also, model model.

the human error probability (HEP) separate from the hardware.

AS-A2-01 The accident sequence notebook does not Open The ETs model the separate system failures explicitly, rather identify the safety functions necessary to than corresponding functional failures. This system-based reach a safe and stable state to prevent approach reflects the EOP structure and plant to produce core damage following the initiating appropriate results. This is an IEPRA model documentation events. (Finding) issue.

to AEP-NRC-2014-09 Page 16 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-A5 Consider a review and update of Modular Closed In support of Fire PRA model development, additional MAAP Accident Analysis Program (MAAP) analysis, in the form of a calculation, was performed to analyses for success criteria pertaining to establish revised Level 1 thermal-hydraulic success criteria for accident sequence development some specific instances. The calculation includes 92 new associated with SBO and RCP Seal MAAP runs performed using MAAP 4.0.5. The 92 new cases LOCA. include:

- 6 cases related to core uncovery timing if pressurizer PORVs stick-open.

- 41 success criteria cases involving plant response following a transient. Many of these cases include one or more stuck-open SG PORVs. If these cases yielded an unsuccessful outcome, then sequence timing information was determined.

- 45 success criteria cases involving RCP seal LOCA or various small LOCA sizes. If these cases yielded an unsuccessful outcome, then sequence timing information was determined.

The Fire PRA used the results of this new calculation as applicable.

With regard to the internal events model and analysis, in general the new MAAP analysis indicated that the old analysis results were conservative. Thus judgment is that the results will be conservative with respect to the ILRT amendment as well, and if new specific analysis were employed for the internal events model, it would provide improved metrics.

to AEP-NRC-2014-09 Page 17 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension AS-B3, LE-D1, Address if there are any phenomenological Open The extent of recently-occurring containment pressure relief LE-D6 interactions that should be considered as operation was reviewed and determined to be less than the potential failure modes of CI. In the Cl Technical Specification limit of 200 hours0.00231 days <br />0.0556 hours <br />3.306878e-4 weeks <br />7.61e-5 months <br /> per year, as allowed model, I&M should consider accounting for for containment purge isolation, and is not containment purge the possibility of up to 200 hours0.00231 days <br />0.0556 hours <br />3.306878e-4 weeks <br />7.61e-5 months <br /> per year operation. However, the latter value could be used as a (2.3E-02) containment purge operation reasonable upper-bound value for this operation. A model when purge valves could be open and impact assessment has been written and concludes that this could randomly fail to close on demand. model discrepancy can be included in the next model update based on its low probability of occurrence. In addition, this F&O has no effect on the ILRT evaluations because such scenarios fall into EPRI Class 2, which are not impacted by Appendix J testing requirements DA-01 The data collection notebook provides a Open The IEPRA model update in 2009 included revising failure data description of the criteria, in terms of for Mitigating Systems Performance Indicator (MSPI) pumps evidence, for performing a Bayesian and diesels, accounting for the latest plant-specific failure data.

update which is inconsistent with industry The 2009 calculation was performed in accordance with references, and the guidelines for common NUREG/CR-6823, including Bayesian updating. In addition, a cause failure data analysis seems to not CCF update was also performed consistent with the latest be in accordance with the cited reference. industry and NRC guidance. The only remaining issue from (Significance Level C) this F&O pertains to updating the notebook to discuss/reference the methodologies employed. This remaining documentation issue does not affect ILRT. It should be noted that the reviewers that provided this F&O indicated that "...the impact on CDF and LERF results due to the Bayesian updating criteria would not likely be significant in this case...." And "....that the CCF groupings are reasonable and consistent with industry practice."

to AEP-NRC-2014-09 Page 18 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DA-02 The method used to perform Bayesian Open The IEPRA model update in 2009 included revising failure data updates is often described as moment for MSPI pumps and diesels, accounting for the latest plant-matching, which in some cases may yield specific failure data. The 2009 calculation used generic data misleading results. (Significance Level C) distributions from NUREG/CR-6928, Bayesian updated per NUREG/CR-6823, and mapped the results to the natural conjugate. No moment matching was performed to obtain the prior distribution. The remaining issue is related to updating the documentation.

DA-03 General guidelines for test and Open The IEPRA model update in 2009 included revising failure data maintenance data collection are provided; for MSPI pumps and diesels, accounting for the latest plant-however, the boundaries of the specific failure data. The 2009 calculation identified the data to components and subsystems to be be collected and the sources for the data. The MSPI basis included in maintenance basic event were document identifies explicitly the component boundaries for not defined in the data collection sheets or each of the monitored types of components. The remaining in the data notebooks. issue is related to updating documentation.

(Significance Level C)

DA-04 MGL parameters from Table 5-11 of Closed NUREG/CR-5485 is no longer used. NUREG/CR-5485 was NUREG/CR-5485 were used to obtain previously used for MGL factors based on averages across all CCFs for some components in the CNP demand type modes and averages across all running type PRA. There are limitations on using such modes. Averages across all demand type modes and averages data, which I&M did not appear to observe, across all running type modes are also no longer used.

At least one of the reviewers felt that the Instead, the CCF Data Base, Version 3.4.0.5, which includes significance of this observation should be events between 1980 and 2003, was used. For most MGL "B," given the rationale above. American factors, a specific system, component, and failure mode were Electric Power (AEP) PRA personnel selectable. In the cases where the CCF Data Base did not indicated that: they understood the include a particular component, an average across a specific individual issues identified; that the issues failure mode was selected. Specifically, an average was regarding assumptions were primarily determined for each of the following failure modes: fail to start, to AEP-NRC-2014-09 Page 19 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DA-04 documentation rather than results impacts; fail to run, fail to close, and no voltage/amperage output.

and that the issue of which generic data source is appropriate is generic and, to In regards to selecting representative data for groupings and some extent, a matter of preference, and failure data, CNP proceeded as is indicated in the following that they are comfortable with the general example. For a particular check valve, the nearest approach they have used. The check valve in the CCF Data Base was selected for use.

significance "C" has been assigned on the Specifically, high pressure SI check valves were used for high basis of this understanding, but AEP is pressure safety injection check valves. AFW check valves were encouraged to consider the suggested used for AFW check valves and main feedwater check valves.

resolutions noted below. (Significance RHR check valves, i.e., lower-system-pressure check valves, Level C) were used for check valves in the following systems: RHR, plant air, condensate, non-essential service water, ESW, CCW, accumulator, CTS, and emergency diesel generator.

Non-staggered testing had been previously assumed for all MGL factors. However, staggered testing was applicable to most of the common cause component groups, including cases where an average across a specific failure mode was used. In general, staggered testing was applicable to safety-related components that were separated by trains and to components with one normally running and one normally in standby.

Accounting for staggered testing in MGL factors reduced significant over-conservatism in previous CCF probabilities DA-05 Plant specific screening of generic CCF Closed The F&O included two general observations related to: (1) the data is insufficient and component potentially generic nature of the CCF data source used, and (2) boundaries defined for common cause potential discrepancies between CCF data component modeling have not been verified, boundaries and the components included in the CCF groups in (Significance Level B) the model. However, both were based on initial model to AEP-NRC-2014-09 Page 20 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DA-05 application of NUREG/CR-5497 and its related system or component boundaries and the grouping examples cited have been corrected.

Common cause component groups have since been changed to be consistent with the WOG consensus-based WCAP-15674, Table 3-3, "Recommended List of Candidate Common Cause Basic Event Groups." Component boundaries defined for common cause modeling were checked against those defined in WCAP-15674 and NUREG/CR-5497 to minimize the effect of underestimating or overestimating common cause failure probabilities. Specifically, this included changes to common cause component groups and corresponding CCF probabilities related to the following boundaries: control room instrument distribution, CTS suction motor-operated valves, Emergency Diesel Generators (EDGs),

ESW pumps, steam generator stop valves, pressurizer PORVs, RHR-pump refueling-water-storage-tank suction motor operated valves.

DA-06 The 4160 and 600Volt (V)AC Electric Closed The EDG CCF groups are established per unit since the EDGs System Notebook lists the CCF group for are not shared and cannot be cross-tied between units. The the EDGs as being the Unit 1 EDGs, 4160 VAC and 600 VAC system notebook has been changed to however, all four EDGs belong to a single reflect this CCF grouping.

common cause group. (Significance Level D) to AEP-NRC-2014-09 Page 21 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DA-07 The data notebook does not indicate that a Open Refer to the response associated with DA-05, above. The systematic approach was used to identify IEPRA model update in 2009 included revising CCF groups and plant specific CCF groups. (Significance data. This effort systematically redefined the CCF groups in a Level C) manner consistent with industry guidance. The remaining issue from this F&O is related to updating the notebook to discuss/reference the methodologies employed.

to AEP-NRC-2014-09 Page 22 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DA-08 The degree of conservatism in the "unique Closed The F&O discusses use of generic, conservative core uncovery unavailabilities" is not in all cases best times, and also states that the treatment of PORV challenges estimate, but is known to be conservative, following an initiating event was not best estimate and the This is judged not to have a significant degree of conservatism is unknown. At the time that this F&O effect on the results at this time. was written, the PRA model included only one basic event to (Significance Level C) represent the probability that following an initiating event that the RCS pressure would increase sufficiently to cause a Pressurizer PORV to open.

The possible resolution suggested by the F&O was to change the value based on plant specific analyses or if new generic information becomes available. The response to the F&O was to create two values to represent the probability that RCS pressure will increase and cause a PORV to open following an initiator. The probability of a PORV challenge for a loss of offsite power or a loss of a DC bus transient was revised to the value used in the NUREG/CR-4550 analysis of Sequoyah of 0.1. The probability of a PORV challenge following other plant transients is based on plant data and involves Bayesian updating of the plant data with a non-informative prior distribution. Given lack of such events at CNP, this approach seems a reasonable attempt at a plant-specific best-estimate.

DA-09 Data notebook was not signed by the Closed The data notebook has been updated twice (once completely, reviewer indicated on its cover of in Revision 3, and once partially, in Revision 3 CS-1) and notebook, so it is not clear the document additional supporting calculations have been completed. All has actually been reviewed by the documents have been signed in accordance with applicable reviewer, and, the document has not been processes. No further disposition required for IEPRA model.

approved. (Significance Level C) to AEP-NRC-2014-09 Page 23 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DA-C1 In many cases there is no description for Open This issue relates to the fact that there is no single, complete the basic events or the description lacks list of basic events that includes long and short descriptions, sufficient detail to understand what the current point estimates and distribution parameters, and data basic event is modeling, source(s). All of the information just described; however, is contained in several controlled documents. A potential impact of not having a comprehensive list is that the list of modeled components and/or failure modes is incomplete. Given the PRA model historical development involving numerous different contractors as well as multiple peer reviews and gap assessments, it is considered unlikely that a significant component or failure mode has been omitted from the IEPRA model, and that overall, this is a documentation issue alone.

No similar issue was raised regarding the Fire PRA during its Peer Review.

DA-C1 Provide a clear description of the Open The data collection did consider established boundaries, but did boundaries that make up each basic event, not include references to the boundary definitions that were Such a description is provided only for the used. This is a documentation issue that has little, if any, EDGs and is not provided consistently for numerical impact on the IEPRA model. In the latest partial other basic events. scope data updates (limited to MSPI components), explicit component boundary figures are included in the documentation.

DA-C1 There is inconsistency in describing Open The PRA system notebooks have all been revised subsequent dominant basic events in the systems to identification of this issue. The specific documentation issue analyses. For example, the CCW system cited was corrected. The notebook update was performed in note book describes an important accordance with the engineering department's calculation contributor to system unavailability as heat procedure.

exchanger "rupture" but the basic event modeled is "tube plugging" to AEP-NRC-2014-09 Page 24 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DA-D4-01 A Bayesian update process was used to Open The Bayesian updated data have been reviewed and appear to combine industry-generic and plant- be reasonable. This issue impacts the IEPRA model specific data for pumps and EDGs. No documentation.

documentation or discussions with the utility demonstrated that the posterior distributions were checked for reasonableness. (Finding)

DA-D6-01 Review of the CCF Notebook shows that Open This F&O specifically relates to the EDG CCF component EDG CCFs for failure to start and failure to boundary. The issue stated is that the data source includes run were calculated separately from the EDG room fans within the CCF component boundary while the associated room cooling fans. These CCF IEPRA model does not (i.e., there are separate CCF basic values are based on NUREG/CR-5497 events (BEs) for the EDG room fans). This choice of CCF generic CCF parameters that include the component boundary was conscious (e.g., in the same EDG room fans within the boundary of the calculation, the EDG-to-T-Bus breaker CCF BEs were deleted EDG. The explicit modeling of the EDG because these breakers are within the EDG CCF component room cooling fans may lead to additional boundary in the data source). In the CCF data source, conservatism of EDG sub-components. NUREG/CR-5497, EDG room cooling is shown outside of the (Suggestion) EDG component boundary, although the report states that room cooling would be included within the boundary if the licensee reported a ventilation failure that affected EDG functional operability. Given this ambiguity, the EDG and EDG room cooling CCFs were maintained separate, which tends to over-predict CCF for the EDGs. Larger values for EDG CCF would increase the likelihood of SBO following initiating events that cause loss of offsite power. The increase in CDF attributable to this conservatism is judged to be small.

to AEP-NRC-2014-09 Page 25 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DA-E2-01 Error factor (characterization of Open This issue impacts only IEPRA model documentation. As uncertainty) discrepancies were identified discussed in the 2009 focused scope peer review, the error between supporting calculation reports. factors discrepancies were not identified as an issue affecting (Finding) model results just a discrepancy between documents, the primary issue was associated with CCF and related component boundaries (see next table entry).

DA-E2-01 There is evidence to suggest that Open The data collection did consider established boundaries but did established component boundaries were not include references to the boundary definitions that were considered in the data collection process, used. This is a documentation issue that has no numerical but the component boundary definitions impact on the IEPRA model.

that were used were not stated or referenced. Component boundary definitions should be developed and included or cited as reference. (Finding)

DA-E3-01 The sources of key uncertainty associated Open This suggestion represents a documentation issue with the with the data analysis were not clearly IEPRA that does not impact the PRA evaluation metrics.

documented. (Suggestion)

DE-01 A procedure which is less systematic than Closed CCF Guidelines were developed consistent with industry NUREG/CR-4780 was used to develop the guidance and included as an appendix in the data notebook.

component groups for common cause; The guidelines developed provide guidance for identifying however, the groupings used are component groups. These guidelines were used to review and reasonable. (Significance Level C) revise, as necessary, the CCF groups for all systems. The revised CCF methodology was included in the 2009 Focused-Scope Peer Review that was conducted.

to AEP-NRC-2014-09 Page 26 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension DE-02 CCF groupings appear to be inconsistent Closed CCF Guidelines were developed consistent with industry with respect to whether running and guidance and included as an Appendix in the data notebook.

standby components are grouped The guidelines developed provide guidance for grouping together. (Significance Level B) running and standby components. These guidelines were used to review and revise, as necessary, the CCF groups for all systems. ESW pump CCF groups were revised so that both standby and running pumps are included in CCF groups for fails-to-start and fails-to-run. The application of the revised CCF methodology was included in the 2009 Focused-Scope Peer Review conducted.

HR-01 Cause-Based Decision Tree Method Open Existing IEPRA model operator actions were recognized to be (CBDTM) was used for quantification of based on operator response to a reactor trip and/or SI as the post-accident cognitive errors, but use directed by the EOPs, or in response to support system of CBDTM alone may result in failures, as directed by alarm response procedures, abnormal conservative and non-plant specific HEP operating procedures or normal operating procedures, in values which may shadow actual important combination with the timing requirements associated with both risk contributors. (Significance Level C) executing the actions, when the actions have to be completed, and the dependency of actions. All of these operator actions were re-evaluated for use in the Fire PRA as well, based on the context of a fire scenario (or multiple fire scenarios). The development of these fire-response based operator actions were included in the 2009 Fire PRA Scope Peer Review that was conducted. Recognized human reliability analysis (HRA) methods, such as those contained in the EPRI HRA calculator, were used to produce both the internal events and fire PRA HEP values.

to AEP-NRC-2014-09 Page 27 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension HR-02 Miscalibration of instruments was not Closed Guidelines for the modeling of pre-initiator human errors, addressed. This may result in including miscalibration errors, are included in the Fault Tree underestimation of actual risk since Modeling Guidelines. These guidelines were implemented and miscalibration can affect multiple trains like the results are now specifically documented in Section 5.2 of a CCF. (Significance Level B) each system notebook. The evaluation of miscalibration HEPs is now included in the HRA notebook (Section 2).

HR-03 Use of bounding HEPs was identified. Use Closed of bounding HEPs will produce unrealistic The F&O is specifically referring to the use of bounding timing results and may shadow actual dominant for determining transfer to low pressure recirculation (LPR).

contributors to the risk. (Significance Level B) New LPR HEPs were developed and documented in Section 3.1 of the HRA notebook for cases where LPR is needed following medium and small LOCAs and loss of ESW and CCW. The new cases consider the timing of when recirculation will be required for the scenarios. These new cases also consider performance shaping factors that are needed to model the stress caused by high pressure injection failing as well as the work load added by the depressurization procedure. These new LPR cases have been added to the ETs and the ET notebook updated.

to AEP-NRC-2014-09 Page 28 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension HR-04 Table 1 in the HRA notebook is confusing Closed This F&O is a documentation issue regarding presentation of and there should be some additional information associated with HRA analysis. All existing IEPRA explanation provided about what the Table model operator actions were re-evaluated for use in the IE is presenting, to aid in understanding how PRA, and later, for the Fire PRA [based on the context of a fire the information is tied to the PRA model scenario (or multiple fire scenarios)]. Development of these and results. (Significance Level C) fire-response based operator actions were included in the 2009 Fire PRA Scope Peer Review that was conducted.

Calculations document development of the Internal Events and fire HEPs and include tables identifying the genesis of each action, its context and its quantification results.

HR-Cl F&O SY-9 stated that in part, "In a couple Open The F&O as written focuses on the manual refill of the CST of places in the SI and AFW system without mention of the SI item cited except in the statement models, hardware failures are not explicitly included in the summary to the left. No examples of basic modeled because they are dominated by events that combined an operator action and hardware (or operator action failures...." The thrust of ignored hardware) in the IEPRA SI system model were this F&O was on the AFW system as provided in the F&O, nor could any be identified. However, it is related to the modeling of CST refill, noted that in the PRA model prior to the 2003 F&O response However, there was no apparent update, RCP trip failure following loss of service water initiators disposition of the SI model for combining a only included HEPs. In this case, appropriate hardware failures human action with hardware failures into a were added into the fault tree as part of the 2003 F&O model single basic event. These single HEP update. The safety-related AFW supply source is the ESW basic events can sometimes mask system. Complete loss of ESW is considered as an initiating importance/success of the related event and precluded from occurring during the course of other hardware. initiating events in the IEPRA model since their inclusion would represent scenarios with multiple initiating events.

to AEP-NRC-2014-09 Page 29 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension HR-G6-01 There is no evidence that CNP checked Open This is a documentation issue only. Operator actions were the internal consistency of the HEPs either developed using consistent, recognized, HRA methods, such for the three Human Failure Events (HFEs) as those contained in the EPRI HRA calculator, to produce the covered by this review or their complete IEPRA HEP values in a consistent manner. These HEPs were set of HFEs, although there is no documented using the calculation process. One of these appearance of inconsistency. (Finding) calculations supported an LAR and the HEP was subject to NRC review. The other calculation included a discussion of why the revised HEP values were reasonable compared to the previous values.

IE-01 The sum of the mean values for the Closed This F&O was addressed by updating the error factors to be lognormal distributions that describe the more consistent with generic estimates and adding the source generic single and dual unit loss of offsite of the prior error factor to the initiating events notebook to allow power frequency derived are in the range reproduction of the results obtained.

of other generic estimates but their variance appears lower.

(Significance Level C) to AEP-NRC-2014-09 Page 30 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension IE-02 There are several cases where an initiating Closed The IE categories have been reviewed and revised.

event (IE) category with more severe Inadvertent Closure of all MSIVs, Loss of Condenser Vacuum, impact is subsumed by another category Turbine Bypass Unavailable, Loss of all Condensate Flow, and with less severe impact. This may have a Loss of Non-Safety-Related Cooling Water were removed from significant effect on the calculated CDF. Turbine Trip (or Transients with Power Conversion System (Significance Level B) Available) and added to Transients with Steam Conversion System Not Available. Subsumed events meet appropriate criteria, and these initiators frequencies were revised. Added more discussion of effects of loss of control air to clarify basis for conclusion that this event is grouped appropriately with Transients with Steam Conversion System Not Available.

Tables and text were made consistent which addressed the remaining issues.

IE-03 It appears that all initiator categories are Closed A table in the lEs notebook provides a listing of the initiator accounted for, but a cross reference categories and the NUREG/CR-5750 category from which they mapping categories to an acceptable originate. The appropriate text location was revised to cite this source would ensure completeness. table and the discussion of the cross-reference was enhanced.

(Significance Level C)

IE-04 Although the initiators retained for system Open This is only a documentation issue pertaining to the IEPRA as losses that lead to lEs seem reasonable, the reviewers also noted that the basis for excluding initiators the structured process used to obtain was documented and reasonable, and that retained systems these results was not discussed in the seemed reasonable. The consideration was to better document model documentation. defining and implementing a structured approach, or (Significance Level C) documenting how such an approach had been used.

to AEP-NRC-2014-09 Page 31 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension IE-05 A single value is used for the probability of Closed The probability of a PORV challenge following an initiator has pressurizer PORV or safety valve been provided separate values for transient initiators and for challenge following all transients, without Loss of Offisite Power or loss of DC power initiators. These any other considerations for how the values were determined in accordance with the methodology probability might depend on the transient. used in NUREG/CR-4550 for Sequoyah. BEs (Significance Level B) WBMV-NRVS CHALNG, and WXRV-SV-CHALNGD probabilities are determined in the Internal lEs Analysis Notebook.

IE-07 The Loss of DC IE was quantified by fault Closed The loss of DC IE fault tree model for each unit was revised to tree analysis and obtains results that are move the general failure of the distribution cabinets up in the not comparable result to other plants. fault tree so that this basic event by itself leads to a loss of DC (Significance Level B) IE.

In addition, it was determined that the basic event for the manual switches should be deleted. Upon reviewing the original analysis and data source it was concluded that the value used is inappropriate and the transfer open of this switch is properly included in the general failure event above.

The Loss of DC IE frequency from the revised model is 8.8E-04 per critical year. This compares favorably with 7E-4 per critical year from NUREG/CR-5750 (no applicable events).

to AEP-NRC-2014-09 Page 32 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension IE-C1 A good justification is lacking for why Open This comment from the 2004 AREVA self-assessment pertains earlier years of operational experience are only to the IE model. Documentation in the lEs notebook excluded (207 trips) in the plant trip provides a reasonable explanation as to why the most recent initiation frequency. Note, however, that data was used, namely elimination of many low power trips these trips are accounted for when during start-up and other manually initiated (planned) trips. An evaluating the PORV challenge frequency. allowable practice as noted by the reviewers. As a result, this F&O is judged to have no impact on PRA metrics for the ILRT extension.

IF-B3-01 Flood source flow rates and capacities Open This F&O was a suggestion to provide better specific were determined without considering documentation related to flood source flow assumptions. For source temperatures. It also appears that the floods considered, system flowrates for flooding were High Energy Line Break (HELB) was established based on system conditions and discussed in the excluded from the Internal Flood Analysis respective analysis for each section, including consideration of because it was performed separately. source temperature. For many systems these were subcooled (Suggestion) conditions, as noted in a general assumption in the associated calculation. Main Feedwater line break in the turbine building was treated in a separate calculation. A general treatment of HELB regarding main feed & steam lines breaks was already included in the IEPRA model. The review report concluded that "The internal flooding analysis was well documented and technically sound with no issues identified."

This is at most a documentation item for consideration and does not have any numerical impact on the IEPRA results.

to AEP-NRC-2014-09 Page 33 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension IF-C3-01 The Systems, Structures, and Open This is a suggestion to enhance the IEPRA model flood lEs Components (SSCs) affected by any given documentation. The suggested information addition is typically flood are listed in an Attachment of a PRA (but not always) provided in the detailed "Impacted SSCs" calculation. However, the list does not sub-section for each flood area. Since impacted SSCs are identify the specific flood-induced failure failed by a flood source without possibility of recovery, mechanism for these SSCs. (Suggestion) identifying the specific failure mechanism (submergence, spray, etc.) does not affect the calculated conditional core damage probability of the flood source. This issue does not affect ILRT calculations.

L2-01 Editorial Comment: Section 3.0 reference Open This F&O was an editorial comment regarding a reference, and to DG-1061 should be changed to is solely a documentation issue and has no numerical RG-1.174. (Significance Level D) implications for the IEPRA model. Accordingly, there is no effect from this F&O on the internal events model.

to AEP-NRC-2014-09 Page 34 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension L2-02 The impact of containment failure prior to Open Reviewer comments associated with this F&O that "The large core damage has been evaluated with LOCA IE is of such low frequency that no meaningful rise in the respect to LERF, assuming that offsite LERF would be expected. The current success criteria for the protective actions would have directed large LOCA may be conservative and more realistic modeling evacuation of the surrounding population may reveal that only one heat exchanger is required." These prior to core damage, and this may not be F&O comments are reasonable because the highest frequency reasonable for large LOCA initiated core damage cutsets in the sequence noted include success of sequences. (Significance Level C) one RHR pump and one CTS pump and heat exchanger.

Since either RHR or CTS heat exchanger is adequately sized to remove decay heat on its own, these cutsets would be expected to yield successful outcomes rather than core damage if the containment heat removal success criteria were updated. This supports the judgment that there is no significant effect of this F&O on internal events results.

Note that a newly developed Level 2 PRA model was used to estimate LERF (L2LERF) in support of the ILRT evaluations rather than the existing LERF (ExLERF) model that was the subject of these F&Os. However, conservatisms in the Level 1 modeling will have a similar effect on the L2LERF model.

to AEP-NRC-2014-09 Page 35 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension L2-03 At CNP, actions to depressurize the RCS, Open This issue identifies that the IEPRA model conservatively e.g., open PORVs, at the onset of core determines LERF because no credit is taken for opening damage have been moved from the EOPs PORVs (whether directed by EOPs or SAMGs) to lower RCS to the Severe Accident Mitigation pressure after the onset of core damage. Although this Guidelines (SAMGs), which may impact approach is consistent with the guidance provided for the the generic containment failure simplified LERF model used, the CC for this sub-element is I.

probabilities in the simplified LERF model, since they implicitly include the likelihood A similar over-estimate of RCS pressure applies to the L2LERF of such action. (Significance Level C) model used in support of the ILRT change evaluations; the effect of this conservatism is expected to be larger delta-LERF values than a more realistic model achieving a CC II.

to AEP-NRC-2014-09 Page 36 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension L2-04 The LERF calculation omitted Cl failure Closed The Cl notebook, fault tree model, and BE probabilities have from the LERF equation based on its low been updated, including pre-existing failures. The failure probability, but neglected the contribution probability of containment fluid penetrations considered as pre-due to "pre-existing failures." (Significance existing leaks was updated to 5.OE-03 per the value in Level B) NUREG/CR-4550, Volume 5, Revision 1, Part 1, "Analysis of Core Damage Frequency: Sequoyah, Unit 1 Internal Events."

The unavailability of the Cl, assuming all support systems are available, is now calculated to be 5.09E-03.

The Cl model was incorporated explicitly into the LERF analysis by including failure to isolate under an OR for each of the LERF functional equations utilized in the ET. Appropriate use of house events accounted for initiator dependencies.

This issue was addressed in the L2LERF model using the same Cl results. This change to the Cl failure probability affects only EPRI Class 2 sequences and has no effect on the ILRT change evaluations.

L2-05 Generic split fractions from the Closed In addition to the considerations identified in the F&O, it should NUREG/CR-6595 simplified LERF model be noted that the containment fragility curves are only one are assumed to apply without any specific element in the determination of the containment failure evaluation to support the assumption. probabilities cited in NUREG/CR-6595. Differences in other (Significance Level B) design features between CNP and Sequoyah could be significant factors related to the creation of the phenomenological challenge to the containment building. For example, CNP has instrument holes in the reactor cavity walls that allow sump water to flow to the reactor cavity compartment even at low sump water levels; this assures that there are no to AEP-NRC-2014-09 Page 37 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension L2-05 truly "dry cavity" sequences at CNP as there are at Sequoyah which does not have such holes. Since the method for determining the split fractions used in NUREG/CR-6595 has not been explicitly identified in the literature, the impacts and significance of any such differences are difficult to estimate.

In summary, development of plant-specific split fraction values for CNP ExLERF model is judged to not be required. This conclusion is based on the similarity between the CNP containment fragility curve and the aggregate Sequoyah curve, and the other significant uncertainties associated with determining LERF, both with characterizing the severe accident phenomena as well as inherent in the expert elicitation process.

Accordingly, the decision was made to proceed using the LERF split fractions provided in NUREG/CR-6595.

The CNP Level 2 model was developed to account for some of these plant-specific features; however, some generic split fractions were used in this model as well. To the extent that such split fractions are conservative, the effect would be for the L2LERF model to over-estimate the delta-LERF determined for extended test intervals used in the ILRT change evaluations.

to AEP-NRC-2014-09 Page 38 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension LE-Al, LE-B1, Use of NUREG/CR 6595 for containment Open This SR implies that the Internal Events containment modeling LE-C3, LE-C4, modeling is considered "conservative" and for LERF (i.e., the EXLERF model) is conservative. A Reviewer LE-D1, LE-El is considered by RG-1.200 to be Capability comment associated with the F&O, directly following the F&O Category I. summary statement, was that "AEP should consider documenting/discussing realistic attributes of the model as a basis to argue for a Capability Category I1."

Overall, the expected numerical effect of such conservatism would be to increase the predicted LERF. While it is not desirable to have a CC-I model for this aspect, it is conservative.

The L2LERF model may also be considered to use some NUREG/CR-6595 containment modeling elements. The effect of this conservatism would be that the L2LERF model over-estimates the delta-LERF determined for extended test intervals used in the ILRT change evaluations.

MU-01 Draft PRA Maintenance and Update Closed The PRA Maintenance and Update Procedure was finalized.

Procedure could be improved by focusing Specific direction for calculation preparers and reviewers to use the list of criteria on key items with specific guidance in the applicable standards is included. This actions or directions for analysts. procedure revision was performed to satisfy an F&O from the (Significance Level C) Fire PRA Peer Review. This is a documentation issue only for the ILRT.

to AEP-NRC-2014-09 Page 39 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension MU-02 There is not currently a formal procedure Closed The PRA model files are controlled by utilizing the Engineering or process for the control of the PRA Department Calculation procedure. In particular, model files models. (Significance Level B) are copied to a compact disk/electronic media which is included with the Quantification Evaluation submitted to CNP's Engineering Document Control Organization.

All notebooks and supporting documentation are similarly generated and also controlled in accordance with site procedures, utilizing the Nuclear Document Management system for controlled documents. PRA processes (i.e., system notebook preparation and quantification evaluation) require independent review and approval.

Software packages used for PRA purposes are controlled via the site software control procedure.

The PRA model files are maintained on the networked share drive. Access to this drive is limited to those individuals designated by the PRA group supervisor. The PRA model files stored on the PRA group share are write-protected and authorization to change file permissions is limited.

QU-02 A house event structure for Loss of DC Closed Fault tree logic was reviewed and previously omitted house has been incorrectly developed in fault events were added to the CCW initiator logic such that CCW trees developed for CCW and possibly pump starts were guaranteed failure for the applicable Loss of ESW. (Significance Level B) 250 V DC event.

to AEP-NRC-2014-09 Page 40 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension QU-03 The calculation of ISLOCA IE frequency Closed The methodology from NUREG/CR-5744 was adopted to does not consider correlated failures of calculate the ISLOCA initiating event frequencies taking into valves in series, i.e., RHR discharge and consideration the correlated data contribution for valves in suction (Significance Level B) series with the same data distributions. Since an ISLOCA event is a containment bypass event, it is not impacted by changes to the probability of pre-existing containment leakage.

QU-04 Some loss of CCW and ESW sequences Closed The observations and possible resolutions included in this F&O involving tripping the RCPs, depressurizing cover several issues. Each is discussed below.

the RCS, and restoring CCW or ESW, appear to be overly optimistic. 1. The time allowed for the operators to trip RCPs, following (Significance Level B) loss of CCW or ESW, has been revised to two minutes in all notebooks and this timing is used in the analysis. The ET Notebook and HRA Notebook have been revised to reflect this change and to be consistent with one another.

Failure of the RCP breakers to open has been added to the fault tree used for the RCP top event.

2. The accident progression in the ET Notebook was revised to reflect the use of FR-C.2 to initiate RCS cooldown with FR-C.1 as a backup. The timing of the cues that cause the operators to enter these procedures was confirmed with MAAP runs and this timing was incorporated into the HEPs that model the cooldown. The HRA notebook was also revised to reflect this timing.

The capability of two out of four SG PORVs to complete depressurization and allow accumulator and RHR injection was to AEP-NRC-2014-09 Page 41 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension QU-04 confirmed with MAAP runs. These MAAP runs also removed the requirement for pressurizer PORVs on depressurization.

3. Recovery of ESW and CCW is modeled with fault trees that consider the failure involved and these fault trees have been incorporated into the quantification process. Also, the MAAP runs mentioned above allow up to two hours to recover cooling to RHR pumps before core damage. Since the RHR pumps are limited to 90 minutes of operation without CCW cooling, the time available to recover cooling water was extended to 90 minutes.

QU-05 Multiple frequency truncation limits are Open Adequate convergence has been demonstrated by the latest used in the quantification for different IEPRA model results for cases with truncation levels at least 5 events. There is evidence that the model and 7 orders of magnitude below event probability (e.g., CDF results tend to converge as the truncation increase < 5%). Cases run for MSPI figures of merit is lowered; however, demonstration of demonstrate convergence within the 5% criteria. The results convergence could be enhanced. remaining issue from this F&O is related to documentation.

(Significance Level C)

QU-06 A formal search performed for unique or Open This observation also indicated that "However, each ET section unusual sources of uncertainty not present provides a discussion of at least potential conservatisms. No in the typical or generic plant analysis is sensitivity runs were made to gauge the effect of unusual not sufficiently documented. (Significance sources of uncertainty." and that "....it is expected that the Level C) effect of these uncertainties will not significantly alter results or insights from the baseline model..." The numerical impact of this F&O on the IEPRA results was judged very small and is primarily a documentation issue.

to AEP-NRC-2014-09 Page 42 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension QU-07 There are inconsistencies in the HRA Closed New cases were developed to model the dependency between modeling of dependency between RCS RCS depressurization following failure of high pressure cooldown and depressurization and injection and the switchover to recirculation for small and transfer to recirculation. (Significance medium LOCAs as well as consequential LOCAs such as those Level B) due to loss of CCW or ESW. The HEPs for these new cases are documented in the HRA notebook and consider the workload of the operators, the need to depressurize to allow low pressure injection, the procedure cues for initiating the depressurization and the timing of the switchover to recirculation. MAAP runs were performed to verify the timing of actions and events. The results of these runs were used in evaluating the HEPs and updating the ET structures for small and medium LOCAs as well as loss of ESW and CCW ETs.

The results of these MAAP runs resulted in relaxing the requirement for pressurizer PORVs on depressurization and confirmed that two of four SG PORVs provide adequate capacity to cooldown and depressurize the RCS, preventing core damage.

QU-F5 I&M should consider documenting the Open PRA model results are developed by utilizing/in conformance process used for independent review of with the Engineering Department Calculation procedure which computer code results as part of the PRA defines appropriate independent review criteria for computer general guidance document, code results and ensures that consistent results are obtained.

This F&O is a process control documentation concern that is addressed and did/does not affect the model or associated metrics.

to AEP-NRC-2014-09 Page 43 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SC-A2 Explain the potential impact on the model Open The effect of identifying a core damage condition when the and associated success criteria with highest core node temperature exceeds 1400 degrees regard to the conservative nature of MAAP Fahrenheit (°F) is that additional pump capability is required to analyses which assume a core damage mitigate the temperature transient. As a result, the numerical temperature threshold of 14000 F. effect is that the CDF is somewhat conservative since fewer equipment failures will result in core damage.

The actual impact of this core damage criterion is limited to a small number of scenarios. Only scenarios in which the credited inventory makeup results in mitigating the core temperature excursion after it exceeds 14000 F, but before it reaches a higher core damage criterion temperature (e.g.,

22000 F), would be conservatively identified as core damage because the application of the core damage criterion allows analyst judgment for the final determination of core damage in such cases.

The specific effects of reducing further conservatism in the core damage criterion has not been studied in detail. Such changes would be expected to allow operator actions to occur slightly later. Nominally lower HEP values would be expected as a result for a small number of operator actions. This would not be expected to significantly impact CDF.

ST-02 Erroneous screening criteria used for Closed This issue was in regard to the IPEEE IEPRA model flood lEs Internal Flooding (IF) Analysis causes model and documentation.

under-prediction of IF Risk. (Significance Level A) This F&O was dispositioned by performing an extensive, detailed, internal flooding update as follows.

to AEP-NRC-2014-09 Page 44 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension ST-02 A detailed series of analyses was performed to determine possible internal flood sources and plant responses to flood initiators. These analyses were performed with the specific purpose of satisfying the Capability Category II requirements.

The starting point was to review two hundred fire areas for possible flood impacts. Of these, 72 fire areas were qualitatively screened from further flood consideration. The remaining 128 fire areas were divided into eighty distinct flood areas.

Each flood area was assessed for possible sources of flooding, flood propagation paths, SSCs that could be impacted by floods in the area, the plant initiator(s) that would be caused by a flood in the area, mitigation features in the area, and how floods in the space could propagate to interfacing areas. This resulted in 329 flood groups (i.e., a flood group consisted of a unique flood source in a particular flood area).

The flood groups were qualitatively screened and/or quantitatively screened using criteria consistent with industry guidance. The purpose of the qualitative screening criteria was to identify those flood scenarios that challenged normal plant operation and required successful mitigation to prevent core damage. The purpose of the quantitative screening criteria was to identify those flood areas with a predicted CDF contribution above 1E-9/yr when bounding high values were used to represent the flood initiator frequency.

to AEP-NRC-2014-09 Page 45 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension ST-02 Following the screening efforts, sixty-five dominant flood groups were quantitatively assessed using flood growth ETs to determine more realistic estimates for CDF contribution. This resulted in sixteen flood groups with CDF contributions above 1E-9/yr. These flood groups were integrated into the IEPRA model.

SY-01 The calculation for Unfavorable Exposure Open This issue relates specifically to the IEPRA model. The Time (UET) for ATWS pressure relief recommended adjustment was developed for a standard generally follows the approach defined in Westinghouse 4-loop plant that has 2 pressurizer PORVs to WCAP-1 1992; however, the calculated supplement the pressurizer safety valves to relieve possible UETs are expressed as "fraction of cycle" pressure surges during an ATWS scenario. CNP plant has a without adjustment for use in annual CDF larger pressure relief capacity since there are three installed calculations, as specified in the WCAP. pressurizer PORVs. As a result, the required adjustment is not (Significance Level C) provided in the cited reference. A cycle-specific ATWS analysis performed for Unit 2 Cycle 12 (using 3411 MWt) showed that there is no period during the cycle when there is inadequate pressure relief during an ATWS if three pressurizer PORVs are available, whether or not manual rod insertion is successful. As a result, for Unit 2, the highest frequency ATWS cutset involving inadequate pressure relief is about 5.7E-10/yr.

Adjustment of cutsets on this order would be a very small impact on the ATWS risk results.

to AEP-NRC-2014-09 Page 46 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SY-02 Assumptions about PORV block Open The numerical impact of this F&O on the IEPRA results is availability in the PORV logic models judged very small if PORV block valve availability is increased.

appear to be overly-conservative and not The overly-conservative failure probability implies that well supported, while the basis for the air scenarios that induce other PORV failure are more likely to bottle capacity appears to be inadequately proceed to core damage. This over-estimate of PORV failure documented. (Significance Level C) implies that ILRT change evaluations will obtain more limiting delta-CDF values than a more realistic model.

PORV backup air bottle capacity calculations indicate bottle capacity [conservatively] sufficient for 130 valve open/close cycles. Since the air bottles and related tubing are reasonably leak-tite, air bottle pressure is surveilled every day per CNP's Technical Requirements Manual, and control room alarms exist in each unit for the air bottle pressure associated with Pressurizer PORVs that direct the bottles be replaced when pressure is low, the assumption about the air bottle capability to maintain the PORVs open following the initial open demand is judged to be reasonable. Documentation should be updated to reflect this reasoning.

SY-03 Editorial Comments for AFW Notebook Closed The editorial comments were addressed by making the Assumptions. (Significance Level D) identified corrections.

This was only a documentation issue and no PRA model change was required to address this F&O.

to AEP-NRC-2014-09 Page 47 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SY-04 In the SI system notebook, the success Closed The SI system notebook was enhanced to provide the criteria for the different combinations of requested information.

pumps required for success are listed without specifying the scenarios to which The sequence-specific success criteria were identified they apply. (Significance Level C) appropriately in the ET Notebook, which documents the ET development and determines the model results.

SY-05 Diversion flow paths that adversely affect Closed Fault Tree Modeling Guidelines were developed and success criteria or timing of events may implemented that include flow diversion considerations. A have been eliminated without sufficient review of flow diversion paths has been performed on those justification. (Significance Level B) systems included in the PRA model based on these guidelines and this review is documented in the revised PRA system notebooks. The specifics regarding inclusion and exclusion of potential system flow diversions are addressed in Section 5.1 of each of the system notebooks, "Assumptions and Boundary Conditions." The 10% of flow area criteria (or 1/3 diameter) included previously, as a general assumption in some of the system notebooks is no longer used for any of the system models.

SY-06 Although the high pressure injection fault Closed The IEPRA model update in 2009 included revising CCF tree includes individual failures of two groups and data. This effort added the identified CCF group series valves whose closure prevents flow and BEs to the model.

diversion, a small portion of the failure of this action is missed because CCF is neglected. (Significance Level C) to AEP-NRC-2014-09 Page 48 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SY-07 Although the PRA modeling approach for Open This is a documentation issue that has no numerical impact on systems with a normally running pump on the IEPRA model.

one train is reasonable, it is not explained in the SI Notebook where it is used for CVCS pumps. (Significance Level D)

SY-08 Although the model correctly accounts for Closed Description of how heat exchanger plugging is modeled has potential ESW and CTS fouling, been added to DGs, CTS heat exchangers, and CCW heat documentation could be improved, exchangers.

(Significance Level D)

This is a documentation issue that has no numerical impact on the IEPRA model.

SY-09 In a couple of system models, component Closed The CST inventory required to remove decay heat for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> hardware failures are not modeled has been determined and the fraction of time that a CST explicitly because they are dominated by contains less than this inventory has been determined to be operator action failures. (Significance 2.26%. The AFW fault trees have been modified so that Level B) makeup to the CSTs is not required except for when the CST inventory is less than that required to remove decay heat for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. A firmer basis has been added to the AFW notebook to justify not explicitly modeling the hardware needed to provide CST makeup and using a single human action to model the total failure to provide makeup. The value quantified for the original HEP was developed using standard, accepted HRA methodology and is considered acceptable for the AFW models.

to AEP-NRC-2014-09 Page 49 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SY-10 There seems to be inconsistency between Closed The ATWS pressure relief models (Gates GPOR500 and the success criteria and the GPOR800 of the pressure relief (PORVP) fault tree) have been implementation in the model for the redone to be based on total relief capacity required (in terms of pressure relief success criteria for ATWS. equivalent PORVs). The original success criteria provided only (Significance Level B) the Unfavorable Exposure Time for all safety relief valves (SRVs) available and various combinations of PORVs available. This has been expanded to allow one SRV to fail if two additional PORVs are available since the capacity of an SRV is twice that of a PORV. Section 5 of the PORV notebook (Item 2 of the revised Section 5.3.1) has been revised to include development of the combination of failures of SRV and PORV that lead to failure of pressure relief for an ATWS.

The second part of the observation compares the fault tree results in PORV notebook.for Unit 1 with the statements in the ET notebook for Unit 2. The two units have different PORV requirements. The results and the statements are both correct and consistent for each unit. Table L-1 of the ET notebook has been revised to include the success criteria for both units.

to AEP-NRC-2014-09 Page 50 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SY-1 1 Passive failure modeling in the loss of Closed Fault Tree Modeling Guidelines were developed that include service water system IE logic is passive failure considerations. Passive failures have been inadequate. (Significance Level A) addressed in accordance with these Guidelines for all system models. Specific modeling assumptions are included in Section 5 of each system notebook for which passive failures have been included.

In addition, heat exchanger ruptures, system leaks, and heat exchanger plugging have been addressed for the CCW and ESW systems in both their IE models and plugging has been added to their system response models. CCF of ESW system strainers is treated consistently for all initiators. CCW heat exchanger rupture has been removed, as it is considered an internal flood initiator.

SY-12 CCF modeling for 250V DC battery Closed CCF of battery chargers has been added to the DC power chargers was not included in the model. models.

(Significance Level C)

SY-13 The documentation provides a reasonable Open This is a documentation issue that has no numerical impact on basis for performing the system analysis the IEPRA model.

and, in general, maintains consistency with proven approaches, but does not include a discussion of the potential for lEs due to system faults, a discussion of spatial dependencies, or a table of both support systems and the effect on the component of the loss of the support system.

(Significance Level C) to AEP-NRC-2014-09 Page 51 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SY-14 The only guidance available for systems Open Fault Tree Modeling Guidelines have been developed and used analyses is the guidance from the IPE. to verify the updated fault trees.

(Significance Level C)

SY-15 The system notebook for the EDGs states Open This is a documentation issue that has no numerical impact on that the capacity of the EDG day tanks will the IEPRA model.

supply the EDGs for two hours, but the notebook does not explicitly identify that fuel oil is included in the fail-to-run probability. (Significance Level D)

SY-16 In the PORV fault tree for automatic Open The pressure sensors required to actuate to open the operation, the hardware required for pressurizer PORVs have been added to the system models.

pressure sensing and signal generation is not modeled. (Significance Level C)

SY-17 Cross-tie for AFW from Unit 2 does not Open The Fire PRA revised the AFW cross-tie model to explicitly consider the need for AFW at Unit 2, so account for the possibility that the non-fire-affected unit AFW the fault trees presume both motor driven was unavailable for use due its own AFW demand. This pumps at Unit 2 are available for supply to involved adding another failure mode for the AFW cross-tie that unit 1 in the event the three pumps at Unit consists of random failure or test and maintenance of the 1 fail. (Significance Level C) unaffected unit's turbine-driven AFW pump coincident with a random failure or test and maintenance of one of the two motor-driven AFW pumps at the unaffected unit. Since this failure mode involves two independent train failures, its likelihood is significantly less than the scoping value of 0.1 that is used for the HEP for cross-tying the AFW flow between units. As a result, this lack of model detail is judged to not have an appreciable impact on model results.

to AEP-NRC-2014-09 Page 52 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SY-18 The fault trees have limited modeling of Closed Extensive Fault Tree Modeling Guidelines addressing the passive failures, functional failures and issues raised in this F&O and based on criteria in "subtle interactions." (Significance Level B) NUREG/CR-4772 were developed and implemented.for each system included in the F&O resolution update.

SY-19 Recovery for ESW and CCW does not Closed Both the ESW and CCW fault trees were modified to consider the cause of failure; NSAC-161 specifically address the differing recovery probabilities for valve recovery factors are applied to all system and pump failures, while the ESW fault tree was modified to failures evenly. (Significance Level B) also consider recovery for strainer plugging. Recovery of pump or valve failure requires operator actions that would be performed outside the control room. As a result, recovery credit is limited to correction of only one of the potentially several recoverable valve or pump faults that may have resulted in failure of the system. Recovery of plugged strainers can be accomplished by automatic action to shift the on-line strainer to the standby strainer. Since recovery of a plugged strainer is an automatic action, it is credited in all applicable cutsets. System level recovery failures are no longer applied.

SY-20 The model correctly includes sump strainer Open This is a documentation issue that has no numerical impact on plugging, but the documentation is the IEPRA model.

incorrect. (Significance Level D) to AEP-NRC-2014-09 Page 53 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension SY-A15-01 The supplemental diesel generator (SDG) Open This issue only impacts the IEPRA model documentation.

model does not include pre-existing maintenance errors. Section 5.2 of the SDG notebook discusses pre-existing maintenance errors and the basis for excluding them. While the exclusion bases are appropriate, it is suggested that a tie to the screening criteria employed be included in the text. (Suggestion)

SY-A19-01 The SDG notebook does not identify the Open The SDG design did consider environmental factors since the environmental conditions such as SDGs are a backup for the EDGs.

excessive heat loads, excessive electrical loads or excessive humidity that might lead to SDG system failure. (Finding) This is a documentation issue that has no numerical impact on the IEPRA model.

TH-01 The medium LOCA ET analysis assumes Open The numerical impact of this F&O on the IEPRA results is that upon failure of AFW, feed and bleed is judged very small. Sequences on the Medium LOCA that required, but success of AFW should not include AFW failure make no contribution to CDF or LERF at a be required and feed and bleed should be truncation limit of 1E-12. The correct disposition is to change unnecessary. (Significance Level C) the break size representing the boundary between small and medium LOCAs so that AFW is not required for any size Medium LOCA.

to AEP-NRC-2014-09 Page 54 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension TH-02 MAAP runs evaluating containment Open This issue relates specifically to the IEPRA model overpressure timing for large LOCA documentation. Later calculations documenting MAAP runs obtained results that seemed overly include all MAAP output on CD-ROM.

conservative. The success criteria documentation would be improved by providing hard copies of some additional output (e.g., plots) of plant specific analyses (MAAP runs, etc.); this would also improve the ability to evaluate not only the correctness of the conclusion, but also the reasonableness of the overall results. (Significance Level C)

TH-03 There appears to be an inconsistency Open This is a documentation issue that has no numerical impact on between the current ETs and the success the IEPRA model. The ETs and fault trees correctly implement criteria notebook text. (Significance Level the success criteria but the success criteria notebook needs D) updating because it refers to a previous revision of the ETs.

TH-04 This is a suggestion for making the bases Open The bases for some of the HVAC requirements has been for Heating Ventilation Air Conditioning upgraded by design calculations. Specifically, calculations that (HVAC) dependency modeling decisions support the IPE HVAC requirements or relax them have been clearer and more traceable. (Significance prepared for the 4 kV switchgear, Auxiliary Building systems, Level C) ESW pumps and AFW pumps.

to AEP-NRC-2014-09 Page 55 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension TH-05 The Containment Equalization (CEQ) fans Open The F&O does not state that the technical basis for excluding are not included in the hydrogen control the CEQ fans is incorrect. The CEQ fans were removed from evaluation for LERF estimation. the IEPRA based on results of MAAP analyses of containment (Significance Level C) pressurization following a burn with the fans unavailable. Some additional discussion is required to address the particular phenomenological concern of the reviewer related to the potential for downward burn propagation through the ice condenser possibly leading to detonation.

If the CEQ fans were re-incorporated into the model, both CEQ fans would have to fail to fail the hydrogen mitigation function.

These fans receive an auto-start signal on high containment pressure and are safety-related components. The estimated failure rate for both fans failing is roughly E-4. The hydrogen igniters must be manually started. The sum of the HEP for cognition and execution for starting the hydrogen igniters following various initiators vary between roughly E-2 and 1.

This suggests that the possible effect of not including the CEQ fans would be a very small increase in the LERF estimate for scenarios in which hydrogen mitigation plays a role.

to AEP-NRC-2014-09 Page 56 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension TH-06 The basic success criteria based on MAAP Closed In response to this F&O, AEP performed a re-analysis of the analyses were developed in the 1991/1992 success criteria of RCS cooldown and depressurization for time frame. (Significance Level B) small and medium LOCAs. These cases were chosen because the F&O identified these as the most important success criteria.

The new analyses were performed to establish the timing for these success criteria based on a more modern version of MAAP (i.e., MAAP 4.0.5).

In support of Fire PRA model development, a calculation was performed to establish revised Level 1 thermal-hydraulic success criteria. The calculation includes 92 new MAAP runs performed using MAAP 4.0.5. The 92 new cases included 45 success criteria cases involving transients with stuck-open SG PORVs, RCP seal LOCAs, and various small LOCA sizes.

These cases yielded an unsuccessful outcome, then sequence timing information was determined. The IEPRA model has not yet been updated to account for these cases. Review of these cases show that the original IPE-based success criteria are conservative.

to AEP-NRC-2014-09 Page 57 Table 1.0 - Internal Events Probabilistic Risk Assessment Peer Review - Facts and Observations (F&Os)

F&O # F&O Summary Status F&O Disposition for ILRT Extension TH-08 Unable to establish basis for the time Closed In support of Fire PRA model development, a calculation has available to actuate bleed and feed for been performed to establish revised Level 1 thermal-hydraulic transients without steam conversion, success criteria. The calculation includes 92 new MAAP runs (Significance Level C) performed using MAAP 4.0.5. The 92 new cases include 12 transient cases that investigated sequence timing given a loss of AFW to determine the time available for initiating bleed and feed or the minimum equipment required to mitigate the scenario. Review of these scenarios confirmed that the time available to initiate bleed and feed for transients without steam conversion mentioned in the F&O are conservative.

The Fire PRA used the results of this calculation.

TH-09 There is a reference in the ET notebook to Open This is a documentation issue that has no numerical impact on NUREG-1335, and consideration should the IEPRA model.

be given to changing this to a more current reference such as RG 1.174. (Significance Level C)