ML20151U243

From kanterella
Revision as of 19:15, 24 October 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Cycle 3 Startup Rept
ML20151U243
Person / Time
Site: Catawba Duke energy icon.png
Issue date: 04/07/1988
From: Tucker H
DUKE POWER CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
References
NUDOCS 8805020006
Download: ML20151U243 (55)


Text

$

o f

DUKE POWER COMPANY CATAWBA NUCLEAR STATION UNIT 1 CYCLE 3 STARTUP REPORT APRIL 7, 1988 l

i i

1 l

i 8805020006 880407 PDR

'/\

ADOCK 05000413 P DCD

4 O

.. TABLE OF CONTENTS Page List'of Tables ................................................. 11 List of Figures ................................................ iii i

1.0 Introduction .............................................. 1 2.0 1/M Approach to Criticality - PT/1/A/4150/19 .............. 3 2.1 Post-Refueling NIS Realignment - PT/1/A/4600/05E .... 6 3.0 Ze ro Power Physics Tes ting - (ZPPT) . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Boron Endpoint Measurement - PT/1/A/4150/10 ......... 12 l

3.2 Isothermal Temperature Coefficient of Reactivity Measurement - PT/1/A/4150/12A ....................... 13 3.3 Control Rod Wsrth Me.surement by Boration/ Dilution -

PT/1/A/4150/11A ..................................... 18 3.4 Control Rod Worth Measurement by Rod Swap -

PT/1/A/4150/11B ..................................... 21 4.0 Power Escalation Testing .................................. 23 4.1 Post Refueling: Incore and NIS Recalibration -

PT/1/A/4600/05F ..................................... 39 4.2 NSSS Thermal Outputs - PT/1/A/4?50/03 ............... 42 4.3 Reactivity Anomaly Calculation - PT/1/A/4150/04 ..... 44 4.4 Target Flux Difference Calculation - PT/1/A/4150/08 . 45 4.5 Core Power Distribution - PT/1/A/4150/05 ............ 46 i

7

d. h.

LIST OF TABLES >

IflSe

1. Source Range / Intermediate Range K13 Overlap Data 0
2. Nuclear Heat Determination 10
3. Reactivity Computer Checkout 11
4. Isothernal Teuperature Coefficient Measurement Results 14
5. Control Rod Worth Measurement by Rod Swap Data 22
6. Core Power Distribution Results, 30% Full Power 26
7. Core Power Distribution Results, 50% Full Power 30
8. Core Power Distribution Results, 80% Full Power 34
9. Intermediate Range / Power Range NIS Overlap Data 38
10. Quarter Core Flux Map Data For Post Refueling:

Incore and NIS Recalibration 40

~

11. NSS3 Thermal Output Results 43
12. Core Power Distribution Results, 100% Full Power 47 4

i P

ii

  • e

> LIST OF FIGURES Pagg

1. Core Loading Pattern, Catawba Unit 1 Cycle 2 2
2. 1/M Approach to Criticality - ICRR vs Control Bank Position 4
3. Assemblies Selected For Calculating NIS Preliminary Setpoints 7
4. Isothermal Temperature Coefficient of Reactivity Measurement Data 15
5. Shutdown Bank B Integral / Differential Rod Worth Curves, Measured by Dilution 19
6. Power Distribution Factors and Comparison to Tech Specs 27 forFf-30%F.P.
7. Measured Fuel Assembly Fg - 30% F.P. 28
8. Relative Errors in Assembly F g - 30% F.P. 29
9. Power Distribution Factors and Comparison to Tech Specs for Fq- 50% F.P. 31
10. Measured Fuel Assembly F g - 50% F.P. 32
11. Relative Errors in Assembly F g - 50% F.P. 33
12. Power Distribution Factors and Comparison to Tech Specs for F q- 80% F.P. 35
13. Measured Fuel Assembly Fg - 80% F.P. 36
14. Relative Errors in Assembly F g - 80% F.P. 37
15. RPECALIB Output - NIS Recalibration Data 41
16. Power Distribation Factors and Comparison to Tech Specs for F - 100% F.P. 48 9
17. Measured Fuel Assembly Fg - 100% F.P. 49
18. Relative Errors in Assembly F g - 100% F.P. 50 iii

N e

1.0 INTRODUCTION

Under the direction of PT/1/A/4150/22, Total Core Reloading, core loading for Catawba Unit 1, Cycle 3 commenced at 1310 hours0.0152 days <br />0.364 hours <br />0.00217 weeks <br />4.98455e-4 months <br /> on November 4, 1987, and concluded at 1434 hours0.0166 days <br />0.398 hours <br />0.00237 weeks <br />5.45637e-4 months <br /> on November 8, 1987. Criticality, Zero Power Physics, and Power Escalation Testing were performed under PT/1/A/4150/21, Post Refueling Controlling Procedure for Criticality, Zero Power Physics, and Power Escalation Testing, which was commenced on December 27, 1987.

Criticality w.is achieved at 0232 hours0.00269 days <br />0.0644 hours <br />3.835979e-4 weeks <br />8.8276e-5 months <br /> on December 29, 1987, and power escalation following completion of the ZPPT program commenced at 1950 hours0.0226 days <br />0.542 hours <br />0.00322 weeks <br />7.41975e-4 months <br /> on December 30, 1987. 100% F.P. was initially achieved at 0510 hours0.0059 days <br />0.142 hours <br />8.43254e-4 weeks <br />1.94055e-4 months <br /> on January 6 , 1988. . Power Escalation Testing requiring Hot Full Power equilibrium core conditions was completed on January 8, 1988. The Power Escalation Testing program was subsequently completed on January 21, 1988.

i 1

t 1, r.Or#4h

t $ I

  • FI(IU10E 1 ,

CORE LOADING PATTERN i CATAWBA UNIT 1 CYCLE 3 '

t

, . I  ? 4 = L r J 4 C F E  : C B 4

'540 'E06 '024 'E29 'Cl2 'E33 'CSI '

'LMt9PL!L90L44'L9tH !'LM!LN;!LM3wf A!LM*'. tE!LM!wp3' 1

!!!6tf !233ti !!96tf f41tf 1259ff !12tf !4ati 8

!D49 'Da2  !!!0 'S15 !E!2 'C10 'Et3 1026 tE63 '047 '041 ? i 2 'LM3HQ7'LMCuGC!LM0LP5'LP0HPRILM?LPP!LP00&J'LMSL41!LM W:0'LMLPtfL*tW:45LM09: ' ' '

!27CET TR01 8923t fBP26K !R04 !89291 !R15  !*?!5t '903 '27? T

....... ... ~ '..... '913. ~ ......... .. . - ..... .............'...'....... .

'022 f053 'E13 !C17 1057 !C49 !C49 !C!3 '?!0 'C56 tC43 'D!3 ':21 ' '

3 !LM:H;3!LMOW1U!LM3LN3?tM006B?LMSP:M!LMt:?P!L=3uqqilueS7gitugw2E!LM007 !L"*LM?'L*?u00't"*u0!' 1

?

f7ti  !!93rt .....................'204rf

!!!$11 !K12 'R34..............'t;217 '26:(?

........'26tti !*?!4t '943............................'t:2 .................. '!6r.'...'

!D3? 'Est 'C62 !E29 'C19 '!41 'C30 'E29 'C18 !E31 !C21 IE01 ' 00F '

4

'L90Rt!!tM*LNY'L* *72fLM2LP!'L" 069'L"*LPCILMCD72'LMSLYH'LMC 6A'LM*LP:!LM 062'LML*2'L*:w:"' 4

'it! f?P24K ?E?11t ???t? !!f!!! !R49 1994?t !!9ff '??$4". '226 ftP191 'ra? '

......'t22

'025 '!49 'C16 'E24 !!i4 TE15 'C20 'ES7 'C24 '!55 ! COB 'E47 'C43 'E48 '030  !

5 ' LM:Fi t ' L

  • 3'.N7 t t" 306C ' L* L 41' L M 007t ' tM SLN0 ' L M *:67tL**LPW'LMiD678LMSLor!LM006LtLM:LNt'LM3072'L* ter!L"!99Wt ! ,

.....................'9P!CI

.'246tf ?4"13t 'R34 '226tf '.?P29t '!9t!.............. fitti 'SP17K f3tf '6P45r G44 f4?!!( i!!T  ?

.............'85161 i 1EJ6 'S10 '061 'C02 'E42 'C59 !C14 'C39 ?305 't!! 'E54 'C12 '0$$ '316 'E18 '

6 'LM2'.27'LM2HDC'LM0H r'LF4365!LM:LP 9 ' LM *070 ' LM c HP 4 ' LM O:7 A ' LucFP r ' L

  • 007M 't "0L C 9 ' LP0074 ' L M ew21' L " 09P 6 ' L
  • Ct s;' &

4KT 122917 '3ri '8P33t f;06 !32rf 'R51 '190tf 1P07 !!P37t '24tT !!!5tf 'tal ???2tf !

.' ... . . ..' t il

'029 'ES9 !C29 !E12 !CC7 '044 'C34 'E30 !C!9 'Dl! '060 'E53 'CA4 '"36 331 f 7 'L"2FDYf LM0LPY'LM006ZILMDLNA'LM004M'LMQH14f LM) 73'L*SLEFitaC07FILMCWPl!L"00?!'LMOL;Y'LM*37; nsr."*fL=eur;p 7 .

42t '224 ISP43t !!:tf !!86tT 8276tf ' 33fT '2tf '27tT 'EP86X ':25 '53351 17tf '

.................................................'8:52t

.'214KT 88 ................................ ........ ............

'!!6 '013 !!59 'C55 'Eit !C14 'ti? !C03 'ES7 'C!O 'E66 '061 O!? 'C2? 'E!. '

t 'L":Lt9'LM*:6F!LM09J'L5: 0?H'L"*LPL'LM*C6E'L*2LP' J 'L*C:st'LM7Lh5'L"0074'LM0LPi'LM3033'L CW; 'L*CD6W L'*L3s' i

'?t! ' 59 '!;!ri 't!C '?p2JK '221 '9P2 t 't?? 'EP4tt 't)$ 'BD5 t 'R53 ' 3!rt 't!A '!?!?' t

' *9 'E21 'C26 'E!! "37 t002 !C43 !E22 1C09 '320 1C32 'E15 'C27 'E34 1 33 '

, 9 'LM*F; 'LM0LN1tl.M006 Tit"0LN9'L"3377'LMOHPJ'LM 07'J ' L M SLNR ' L * $t i r ' L M 4P 2 ? tM 007L t L" 0L P 3 ' L9 t! 6 t ' L" tLP 8 "."* w? N ' '

19:41F !!KT 8209tT ttP2:t !39t! '23tf 'Iti 13D34r 't23 '!?:it '?54ti '

............................'.......'207tf

.'283XT '9 30t 't27 ......................................................................

'I!6 '!46 'C16 't:7 'I!! 'C33 'S?7 'C39 't29 'C15 'E39 '023 'D51 '02? 'E60 '

. 10 'L"*LNE'LM 4:3'LPC4:T'LM*C7E'L"*Lil'LM:076'L"Ht!'L*:379'tM:HPI'L" "10!LP7LP!'t"*:4U'L"0HPUL50404'LPCL:H'10

'36tf '933 !!!!!T !t!8 !9:48K !!?ti !!!:IT 'P83 '??tt t

.'223ff 'R47..............'285tf !30TT..............'t:19t

...... 4 ...... ..... 1916 ....... . .. ............ ...................

'004 'E37 !C36 tE17 'C25 !E27 !C41 'E!: !C43 'E39 8C42 'E19 !:63 'E29 '013 I

!! 'LPf R*0'L"0LP6'LM3079!LM7LND'LMOD67!LMSLR'J'LM3D7B'LM3tN8tLP337CtLM*LNT!L"0D7W'L"0LNM'L5007t!L?tL4W"."0'99!!!

.....................'BP22r

.'263tf

!EP3SF 14t20t 't45 !225KT !8P27K f?6tf......... ........................'45tf ......... ...

.......'EP32X ..' .. .2023r

'21tf

!t174; 1 ? ! ' 2 : ? t !

!0!9 'E61 !C23 'Ett !C47 'E04 'C01 'E02 'C0! !E23 'Cta 'E65 'tST '

j 12 'L"CHP4'L*0LPt'LMO:70!LM0LRL 'LP0072'LP0LN!'L*:092'LFOLN3'L" 06DtLMcL1T'LP:C7JP.57LP0'LF:6P11 12

'210 '4916K '935 '!PS!K t33tf !!P?6K 't:37 'SP191 '2977 '9952t ';19 !AP2?t '911

  • i ................................................................. . ......................

' '*15 !C63 'E42 'C86 ':64 'C45 ' !4 !C06 't:a 'C35 '!!4 **12 '301 '

!? 'L'*4:11LM0HG5;LM3tPJ't"3D75'LMSP:L*LMOD77'L"3 Wit'L"0064't" w;V'LMOO75'LM*LtT'L*0P'4'L**w?!! 13

'247tT !266tf taPl!K 't?9  !!67tf ':31 '2552t 't32 '2??tt '844 ' 4:0't '236KT '!cr! '

l 'D37 'D51 'E24 fD?4 'E23 '012 'E44 '036 'E40 '0?) '083 '

14 'LM KPPILMcFit'L50Lkt'LM W25'LFOLN5' Lit:6"'LP*L54'L90H:;iLM*LPt'L*04L".M:kCP' 14

'!!:tf 'P23 '2010t 't!!  ??pa't 'R19  ??Pitt it109 !#f!!r 'P2? !6t'

'219 'E32 '003 'E!9  !"17 'E!5 '015 '

!! !LMOHP3'LM0Lt!'LM*HPHit"?tvw'L"*HPt'l**LM3't"0wo7' 15 l 4'tf '222tf '257tT '

.' .. ... . .'.......'252t!

4 3 t T '2*t?..............'231tT D 2 N M L I J H  : r E  : 0 4

i l

-__..-i I

l  ; Region Ref. #

2 lANSI #

i l l

i Insert I.D. # I

c. __

l

(

l

q a

l 2.0 1/H APPROACH TO CRITICALITY - PT/1/A/4150/19 On December 28, 1987, at 0400 hours0.00463 days <br />0.111 hours <br />6.613757e-4 weeks <br />1.522e-4 months <br /> boron samples of the Reactor Coolant 4

System,. Pressurizer, and Volume Control Tank were obtained by Chemistry personnel in preparation for initial approach to criticality on Cr.tawba 1, Cycle 3. The results of these samples were 1831 ppmB, 1792 ppmB, and 1821 ppmB, respectively. This data was used to predict the Reactor Coolant System dilution required to achieve criticality at the desired Control Bank D position. The required dilution was calculated to be 19,891 gallons of demin water yielding a desired Reactor Coolant System boron concentration of 1336 ppmB.

At 1625 hours0.0188 days <br />0.451 hours <br />0.00269 weeks <br />6.183125e-4 months <br /> on December 28, 1987, with all Control and Shutdown Banks inserted, a controlled Reactor Coolant System dilution of 2 77 gpm was commenced. Dilution was halted at 2135 hours0.0247 days <br />0.593 hours <br />0.00353 weeks <br />8.123675e-4 months <br /> on December 28, 1987 after the required 19,891 gallons of water had been added. The hourly NC System boron samples, commenced with the initiation of system dilution, were continued until it was noted that the NC System was sufficiently mixed at a concentration of 1333 ppmB at 0000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> on December 29, 1987.

Following the acquisition of baseline count rates from the Source Range NIS Channels, sequential withdrawal of the Shutdown Banks was commenced (with S/D Bank A starting at 0118 hours0.00137 days <br />0.0328 hours <br />1.951058e-4 weeks <br />4.4899e-5 months <br /> on December 29, 1987).

Withdrawal of the Shutdown Banks was completed at 0155 hours0.00179 days <br />0.0431 hours <br />2.562831e-4 weeks <br />5.89775e-5 months <br />, with S/D

! Bank E at 230 steps withdrawn, (230 steps being the new fully withdrawn position following axial repositioning analysis to mitigate rod wear).

An estimated critical rod position of 60 steps withdrawn on Control Bank D (based on measured NC System boron concentration of 1333 ppmB) had been  !

calculated per OP/0/A/6100/06, Reactivity Balance Calculation, at 0100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> on December 29, 1987. Control rod withdrawal resumed with the Control Banks in overlap. ICRR plots were maintained throughout rod withdrawal (see Figure 2) and criticality was achieved at 0232 hours0.00269 days <br />0.0644 hours <br />3.835979e-4 weeks <br />8.8276e-5 months <br /> with Control Bank D at 7 steps withdrawn.

3

FIGURE 2

, 1/M APPROACH TO CRITICALITY k

T ICRR VS CONTROL BANK POSITION I-i S/R CHANNEL N31

~

1 - "-- r_= En! 9h__:!! -

t

'.i:i- ~

- nn.g.33 1.0

+

i --- >

"_ ;__. .,: =___

.._.-.2

.: . y 7

s.

_$ n . . . . .

0.9

~

L HZP Rod - - - - . E,i. '

s -, _ _ ..

E -

Insertion Limit ___. .__ . r u: .. _

7  := r-a 0.8 . _ . . . . .__... .

t. . = .r : . ...

_. , ~~ i_ M. ~5. .

m 0.7 ._ _ _ . .... _ . .

__ =: : t= _ .

T p

e 0.6 3 . . _ ._. . _ _ _ . . _ . . .

'-e o :2- : . :_ . - ~. . . . . . .

NO 2 j '

=l&.::O t~ i':d U . . _,. ..

g- ........._Q..-.

=

w y s h

y -i s .

-- r n:J=. c;

w._

g .-- 0.4' .

- __ . : . . ._ n.

.:n}:n=

m , -

E - - - ~

- ._..L,__.--.

0.3 -

. . . . 4

[ ._

C.Eiw___I- -

'= 0.2_ .= = .._ ,_ .-

P 1~ _ _ . _ _ _ _ .

('_ c- _ _'- 5 :*; _y _-  :-

g 0.1 -

~.

u- : ,

R--~ ._ : = :!:'

- ~

N. ~

_. .: :  :)-=- s 0.0 . _ _ _ _ _ 1-__. 1 ,

, - . =. . 1_=.= _::

,, _-..g___.._ . _ _

e ,__m. ... . . . * . . . _ . .

c = d 145 . 14Q___2ssethk_. -=
~! =:

P N 4; p WJ~40'+4E mm: AT' .iii.!: KE. -i

=- . = .

a

r. a m_.* -:

-_y-, , .

mg. . p. -wr LL C -:::

- - - - --- m---

"Q _9 Lig- _;-- - t z -- ,

"4 U2:

_ f j "~~[934'tt !ic230 M -

- tiews--e- . i

- ~'~ W__

_. _. _ _ _ -  :- ' t CONTROL BANK POSITION, STEPS WITHDRAWN m

k

=

1 - _ _ _ _ M

FIGURE 2 1/M APPROACH TO CRITICALITY ICRR VS CONTPOL BANK POSITION S/R CHANNEL N32

__ : .- _ EEi 9_ii=.F

...p.. = i.u._

'**~ ~*:

%. ._.- ...."T_--~[.. .u.-..

1.0- -

. _. ..- : t. . : r .

==t : r:--- :

-~

__ e- r C.. . ..' . . _.**:-. ......

0.9 -

HZP Rod _ = .' 7:....2i-

. .- Insertion Limit -- , r - -

_ . ._: r : . -

0.8 . 2= .

=:-- :L. n.. .:..

.... 1

_. c _. . :

6 ..

O.7 _._. g.: ;. u ,

y 0.6 -

o ._. . - . .

u .-

s -

_ _ . . . _ _. . t.._:.

v*

0. 5 _ -  :-.E = G. .7 ce  : ..=r.._. . :

g ..x .r ..__.s..

- 0.4 =. -

___. L

=: . _ _ h =..

__ ._=

0,3 .

+

0.2 _.- =:

i. y  %.g 0.1
  • _ = =m"-

~- - -

=-msL -

M 7E} -i E 0.0 -.- --- -- --i . = : --. '

_. . . . A=__=_ =

=: ~

_ -:: rb___=: =

m -

. - -- = = :.:

n=x a0 1, 8 7 e +--hhik

~~

7bc

  1. o .r.,1 n
=F.u:u H M! # M +--+--o rm  : =-

} M.

'- "' I

.' g

)[_

m ,-E E s y -

M II

-'IIT-

,,_E--'EI T >=.=.e=4

. .* -2" p*

  • *_=** **

>y :

I&= l "3'" 'n

-- _ -O- .a.

,N,TE

---+- -v E.:;[.2$0 .

1

-- smu -- -:-. .

i CONTROL BANK POSITION, STEPS WITHDRAWN 1

1 1

I l

l l

2.1 Post-Refueling NIS Realignment - PT/1/A/4600/05E This test was performed on November 25, 1987, for the purpose of calculating preliminary calibration data for the Power Range and Intermediate Range NIS following refueling.

The Cycle 3 preliminary calibration data was determined by taking the NIS calibration data at the end of Cycle 2 and adjusting it by the ratio of the sum of the predicted assembly powers for Cycle 3 core loading (from Westinghouse predictions) to the sum of the measured assembly powers from the last Cycle 2 calibration. The

, core locations selected for the calculation of the ratios required to adjust the Power Range and Intermediate Range NIS are shown on Figure 3.

The Beginning of Cycle (BOC) 3 - to - End of Cycle (E0C) 2 ratios for the Intermediate Range NIS Channels were determined to be 0.931 and 0.918 for N35 and N36 respectively. The BOC 3 - to - EOC 2 ratios for the four Power Range NIS Channels were calculated to be 0.878, 0.855, 0.857, and 0.886 for N41 through N44 respectively.

These ratios were used to adjust the End-of-Cycle 2 Intermediate Range NIS Rod Stop (20%) and Low Power Trip (25%) setpoints and the Power Range NIS Full Power 0% offset calibration currents. NIS recalibration by I&E using the adjusted values determined under this procedure was performed on December 22, 1987.

6

e FIGURE 3 ASSEMBLIES SELECTED FOR CALCULATING NIS PRELIMINARY SETPOINTS R P N M L M J H 0 F E D C 5 A

@x x@ e x x 4

o S

6 7

8 9

10 Il 12 X X 's O"m X X ,,

  • 00000 Oe ,,

l z t e m :: =

7 0 ::::m:::.w-

~

4 3.0 ZEko POWER PHYSICS TESTING - (ZPPT)

Zero Power Physics Testing for Catawba 1 Cycle 3 commenced at 0300 hours0.00347 days <br />0.0833 hours <br />4.960317e-4 weeks <br />1.1415e-4 months <br /> on December 29, 1987, and concluded at 1725 on December 30, 1987. The output from Power Range Detector N43 was used as input to the Westinghouse Reactivity Computer and IBM 9000 Reactivity Computer, which were both used for making reactivity measurements during ZPPT, although the Westinghouse analog computer was the official data source. All acceptance criteria associated with ZPPT, which were supplied by Duke Power Nuclear Design, were satisfied.

The required minimum of one decade of overlap between the Source Range and Intermediate Range NIS was verified at 0415 on December 29, 1987.

Table 1 summarizes the results of this exercise.

) The point of nuclear heat addition was determined at 0445 on December 29, 1987. This determination was made by the observation of increasing Reactor Coolant System average temperature and Pressurizer Level in conjunction with a change in the reactivity trace during a slow positive startup rate. Table 2 summarizes the results of this exercise.

A checkout of the reactivity computers was completed at 0700 on December 29, 1987. This checkout was done as follows:

  • Control Bank D was withdrawn until a positive reactivity insertion
of 2 +25 pcm was indicated on the reactivity computer,
  • The time required for the flux level to double was measured.

i a

The measured Doubling Time (DT) was used 'to calculate the reactor period (period = DT + 0.693),

j -

From the calculated reactor period the associated Theoretical Reactivity was derived from prediction data.

The Theoretical Reactivity was then compared to the reactivity measured by the reactivity computer to ensure compliance with acceptance criteria.

This method was repeated for a positive reactivity insertion of 2 +50 pcm.

t I Control Bank D was also inserted to provide negative reactivity insertions of 2 -25 pcm and 2 -50 pcm to perform this checkout for negative reactivity insertions. The same methodology was employed for these measurements. Table 3 summarizes the satisfactory completion of this l checkout, l

l

,i I

P l 8 l

i l

t

e TABLE 1 SOURCE RANGE / INTERMEDIATE RANGE N1S OVERLAP DATA SOURCE RANGE INTERMEDIATE RANGE (CPS) (AMPS)

N31 N32 N35 N36

  • INITIAL DATA NIS Cabinet 5.000 x 102 1.750 x 102 1.000 x 10~11 1.000 x 10~11 OAC 4.935 x 102 1.778 x 102 1,400 x 10 11 1.125 x 10~11
  • FIRST DECADE NIS Cabinet 1.500 x 104 5.000 x 10 3 1.000 x 10~10 1.300 x 10~10 OAC 1.581 x 10 4 5.072 x 10 3 1.261 x 10~10 1.314 x 10~10
  • SECOND DECADE NIS Cabinet 8.000 x 104 2.100 x 10 4 6.000 x 10~10 7.000 x 10~10 OAC 7.935 x 10 4 2.355 x 104 6.054 x 10~10 6.339 x 10~10 t

4 9

im e -

TABLE'2 NUCLEAR HEAT DETERMINATION REACTI.VITY COMPUTER INTERMEDIATE RANGE (AMPS) (AMPS)

N43 N35_ N36

-6 -6 RUN #1 1.460 X 10 2.250 X 10 ~0 2.290 X 10

-6 RUN #2 1.300 x 10 1.136 x 10 -6 1.203 x 10 -6 AVERAGE 1.350 x 10 -6 1.639 x 10

-6 1.747 x 10

-6

~0 ~

2 PPT TEST BAND: 10 to 10 amps on N43 10

TABLE 3 REACTIVITY COMPUTER CHECKOUT WESTINGHOUSE REACTIVITY COMPUTER PERIOD DOUBLING TIME REACTIVITY COMPUTER THEORETICAL PERCENT (sec) (sec) AP 'pcm) REACTIVITY ERROR

  • ApDT (pcm)

-350.6 -243.0 -24.3 -24.0 1.25 277.1 192.0 24.0 24.1 0.41

-214.3 -148.5 -43.0 -42.8 0.47 132.8 92.0 45.7 45.6 0.22 AVERAGE PERCENT ERROR = 0.59 IBM 9000 REACTIVITY COMPUTER PERIOD DOUBLING TIME REACTIVITY COMPUTER TREORETICAL PERCENT (sec) (sec) AP (pem) REACTIVITY ERROR

  • ApDT (pem)

-350.6 -24*J.0 -24.4 -24.0 1,67 277.1 192.0 24.2 24.1 0.41

-214.3 -148.5 -42.0 -42.8 1.87 132.8 92.0 45.0 45.6 1.32 AVERAGE PERCENT ERROR = 1.32 i

ap -ApDT

  • PERCENT ERROR = apDT x 100 ACCEPTANCE CRITERIA: PERCENT ERROR < 4.0% or 1 pcm difference between ap and apDT, whichever is greater, i

i h

11 1

3.1 Baron Endpoint Measurement - PT/1/A/4150/10 This test was first performed on December 29, 1987, to measure the All Rods out Boron Endpoint. Control Bank D was initially at 221 steps withdrawn. The Reactor Coolant System boron concentration was 1441 ppmB.

Control Bank D was pulled to the All Rods Out (AR0) configuration and the resulting reactivity change was converted to equivalene boron using the differential boron worth. This was performed two times to ensure repeatability.

The results of these reactivity changes were added to the initial Reactor Coolant System boron concentration and the values averaged to give a Final ARO Boron Endpoint of 1441.39 ppmB. This met the acceptance criterion of 1411 150 ppmB for the ARO Boron Concentration.

This test was again performed on December 30, 1987 during Rod Worth Measurements to obtain the Boron Endpoint with the Reference Bank fully inserted. Following insertion of the Reference Bank (Shutdown Bank B), during its measurement by dilution, the Reactor Coolant boron concentration was determined to be 1351 ppmB with Shutdown Bank B at 21 steps withdrawn.

Insertion of Shutdown Bank B to its fully inserted position and adjustment of the critical boron concentration with the reactivity associated with this maneuver yielded a Reference Bank In Boron Endpoint of 1349.7 ppmB.

This measurement was used in conjunction with the AR0 Boron Endpoint to calculate the worth of the Reference Bank inferred by the predicted Differential Boron Worth, (see Section 3.4.).

12

.. j l

i 3:2 Isothermal Temperature Coefficient of Reactivity Heasurement 1 Ir - PT/1/A/4150/12A {

i

This test was performed on December 29, 1987, at 2025 hours0.0234 days <br />0.563 hours <br />0.00335 weeks <br />7.705125e-4 months <br />. The i a test measures the Isothermal Temperature Coefficient (ITC) by noting l indicated reactivity changes versus Average Reactor Coolant System Temperature changes. The Moderator Temperature Coefficient (MTC) is found using the relationship as follows

MTC (pcm/'F) = ITC - Doppler Temperature Coefficient The acceptance criteria on the ARO ITC was +1.35 1 3 pcm/*F. The predicted Doppler Temperature Coefficient was -1.32 pcm/'F. The average measured ARO ITC (for ?. heatups and 1 cooldown) was +1.33 ',

pcm/'F. The ARO MTC was therefore +2.65 pcm/*F. The MTC limit

, between C% and 70% RTP is +7 pcm/'F. The results of the tub heatups and two cooldowns are summarized on Table 4. The actual measurement I i traces are shown on Figure 4. The data obtained from the first cooldown was not used to obtain an average MTC due to difficulty in analyzing the X-Y Plotter Trace (created by a scaling problem).

Using data from this test, PT/1/A/4150/20, Determination of Rod i i Withdrawal Limits, was performed on December 30, 1987, to ensure  !

^

that the MTC was within the limits of Technical Specification  :

3.1.1.3 between 70 and 100% RTP. It was determined that the MTC

! was within the limits of Technical Specification 3.1.1.3, and that no rod withdrawal limits were required.

! I i

i I 1 l i

I 1

l

! 13 l l

i

, , - - _ . _ _ , . _ _ - . .,_--,___.___,,____m,_,,m,___ - , - _ . . _ _ _ _ _ _ , _ _ _ _ . _ , _ _ . _ _ , _ _ _ _ _ . . _ . . - , _ . _ , < - - - - - - ,

4:

l TABLE 4 l ISOTHERMAL TEMPERATURE COEFFICIENT MEASUREMENT RESULTS l

4, AT AP ITC MTC*

(*F) (pem) (pcm/*F) Qcm/*F)

+First Cooldown -3.0 -1.750 +0.58 +1.90 j First Heatup +3.0 +4.200 +1.40 +2.72 Second Cooldown -3.0 -3.882 +1.29 +2.61 Second Heatup +3.0 +3.900 +1.30 +2.62 AVERAGE: +2.65 pcm/'F l

i

  • NOTE: MTC = ITC - (BOL, HZP Doppler Coefficient) '

= ITC - (-1.32 pcm/'F)  !

i

+ NOTE: First cooldown measurement invalid due to improper scaling of X-Y Plotter. This measurement is not used in calculation of Average MTC. l 1

i i

l l

l l

I l

i l

i 14 l 1

l l

l

l l

l FIGURE 4 ISOTHERMAL TEMPERATURE COEFFICIENT OF REACTIVITY MEASUREMENT DATA FROM HEATUP #1 DECEMBER 29, 1987- 2025 HOURS

!j l lIli, .ll!I !l! >

l11lI  !!l iI i i I I,'l lll I4 i i

i 16 li i i l u .; . a ;.a '.l. a.

i I . i i

i. , ,
i I i i

-!I!

t i bw 4

j, i ; i .

li

... La. 'p .l .1 . o, , .1. , . 4 l..,. l. . ; _._.

_7.i . 1 i!;.. '

I 11.

ii i i i .  ;

i 3 6 i i I ,

i lf' l ji i

. 1_l I

l I i;1 a i i !

  1. i l

i,

'+

l i-l1 ii ,.

!I i

i l

I iI'

> i

,lIl i !ii  ;

t ili i,

'Ii, lli!,I i

  • r i

I 4 Ii  !

8.0 i

!!! il :l;l! l' lit i ll l li II I il !

ll l lll l i !ll '

! ll ullt.'- l.u.i,l. _ . !l . _! I._.

i il.! J-!

< II

!! ! ..1.-

4 j ,

j

.!.il!.

s l;

i J.l__.,.

4 .. . 2

.e . ._

J il 1 '4 I I , i jl l l 1 i' l ' i .I i i j i

{

!l i,!j

! i 1 lji. l!! II i ll I  !! l  !

l ll!l- !,j I

l ,-

I

'l ,  !

6.0 ~

l !i jI l l l' l  ! l i 1 g ,

l l ,'j <

. ..,it

. l. . .l .al .1 4.

l l

...l i

o. '- .! l l

, Ll l gl.'.

lll r i!

1  ! Il i l4 j Ij!'l j

, . 6 i i l ,

a ji'; i it i i 'l - -

i i i i

,I;j i[1 l,!l ili i,,

I  !

If

=

+ i j I,4 li j ,

ii i il;'

!!',i

. l . .

!:  ! rii  !

4.0 ', t t

!4 2

I;i , i .

4 ,

i, i

!,I llilt j

l!l

! , i i1 { i I ii i ,

I C ' 4 11 ' I t i I  ;,

I ill l il .ilii'

! I o

a n ,, 1'l I ii i i

.t L

,: .,_.',- .. ~ ._

a .. .

w e  !,[l, iI 4

l l i ifj;i i

ijl l-l-

,I ,,., 1ll I ! i i lli! ,

t t

,it i l l j j! ;j' ll.1 l ' '

i i

ll '! !  !  :  ! .:

2.0 i; , L i ,

i l ,

ti

,i ,i

.i i i I1 1  ; 1 9,;.

i,ii,l.. l,i

. .i; ,ii, ,

,'l1 ,i I

,;I4l

, i  ! ,

i 4 i

-l'11 m .i i i

_ _ . _- _r ./' a i i;i t

j i

-.i ii.

%l l

i i

_ ,. . g 2 L. ._.i_%. '

. .!.a.. i

}

l{i!  ; .A '4 ll i 1

!i i tj l * '

! i l 7,!!

..t

,4

.! , 6 . i ll l ,

! i a i 1

,i, i

i i , 1 , i,, ., ,

, , i ,

. i i g i

! l r

0.0 i

r- _

. i.

, , i,,

lji 4 i 1,:

, , 1 l

i 4 .,

,, i 3 ,

i i i l i,i{

,i ,

l,l

+

j gl .

, i t , ,

i

!)

.a _

4 j,. i

, i i i . ,

, _.__,. , ii. , t ,j; i4 ,

j 6

,. , i . , . .

1  : ,. i 550 551 552 553 554 555 556 AVG NC SYSTEM TEMPERATURE ('F) 15

FIGURE 4 ISOTHERMAL TEMPERATURE COEFFICIENT OF REACTIVITY MEASUREMENT DATA FROM C00LDOWN #1, DECEMBER 29, 1987 - 2120 HOURS

+5.0 ,

i Il l l' I li i l

' I I i lf l 4--

! t i

i i

j f If I  ! ,l __ -

k 0.0 l

~

!i l B j jj o  ; ~

=

h -5.0

'8

$ ,'p'U!erM Il i l l l j l l i

^ -

l ,

i f

l i

-10.0 552 553 554 555 556 557 V .C SYSTEM TEMPERATURE (OF) l l

t 16 I

I FIGURE 4 l

ISOTHERMAL TEMPERATURE COEFFICIENT OF REACTIVITY l l MEASUREMENT DATA FROM C00LDOWN #2 AND HEATUP (12 DECEMBER 29, 1987 - 2220/2300 HOURS i

,, i- i.,; i

'~ ~ '

.i i [j '] . - 7 +i"i i, ~~l ,e i i i 1 1 1. . .. lll l,l l. [ j l

,, il 0.0 , o j , ., . . ..

I;;j;  ;! -j ,

ll i p

)

'lif il!@ll f H li lil' illl l  ; ) g }

, . j. [j j

'lillllll 1 J l f .i l l

-2 o . . .' o Cooldown

,, u . q

.- 1 rj  ;: 4n 4 /- 8o

~ ~ ~

- [_ }

j l

f I l ,fl{l ll i. ill- ,,{114 ..b ,__L h

C 7 .L -

Il ll. l 1 Mill.IIbdIbI ij %F f

-8.0  : -

"fr 2.0 s j 9t ud i r lIll};;ill I lIll !!lI 0.0 .

I 551 552 553 554 555 536 557 AVG NC SYSTEM TEMPERATURE ('F) 17 w------- . - - - -_ - __ _ - - - . . _ .v-we,--=-m-

t

-t 3.3 Control Rod Werth Measurement Bv Boration/ Dilution - PT/1/A/4150/11A i

t On December 30, 1987 at 0120 hours0.00139 days <br />0.0333 hours <br />1.984127e-4 weeks <br />4.566e-5 months <br />, Shutdown Bank B was measured i using the dilution method. There were no other rods in the core at I the time. Shutdown Bank B was pred!cted to be the "heaviest" bank i and was measured using this method in order for it to serve as the .

Reference Bank for Control Rod Measurement By Rod Swap. l t

The performance of this procedure resulted in a measured worth r of Shutdown Bank B of 894.5 pcm. The predicted worth was 895 pcm. .i This represented an error of -0.5 pcm (-0.056%) and was within the S acesptance criteria of 895 1 90 pcm (t10%).

The measured integral and differential rod worths for Shutdown Bank B r are shown in Figure 5.

a I

f I

h r

I l

l 18 s

e .

FIGURE 5 e EHVfDOWN BANK B DIFFERENTIAL ROD WORTH CURVE MEASURED BY DILUTION o

n l l

/

/

/

f g N

z ktr

) O

= h

(

  • H 3:

tn tu H

E

!5 C

H in O

Q.

m M

O

= km

/ z

\  !

X i x

O, o

o a e N W D 7 M N " O w

(dags/uod) H18014 008 lVI1N3d3ddIO 19

FIGURE 5 SHUTDOWN PANK 8 INTEGRAL R00 WORTH CURVE

, , MEASURED BY DILUTION O

I  !

l

.. _ . . . .}'

. O

__ _. O

~

.' E

'. f.

/ . .

b g

g

, 11.

~~~

. l -

~

[ ._

[ "

H y

o (1,

. . . . . . . _ . ID r

/ *

  • o M g }

s .. . .

tn y

0 a

]

- _ _ __ _ .. .. O

' ~ ~

.. . f . ,

b O O O O O O O O O O O O O O O O O O O O O O O S S N O O 4 M N "

e (wad) H180M 00B WB031NI 20

m 3.4 Control Rod orth Measurement By Rod Swag - PT/1/A/4150/11B On December 30, 1987, the Rod Swap method of control rod worth measurement was performed. Shutdown Bank B was used as the reference bank and 103 worth was measured by the Boration/ Dilution method (see Section 3.3).

The Reference Bank worth obtained by the Boration/ Dilution measurement technique was checked against an inferred worth obtained using the results of the two Boron Endpoint Measurements and a predicted Reference Differential Boron Worth of -9.94 pcm/ppmB. Multiplying the difference between the Boron Endpoints by the Differential Boron Worth yielded an inferred worth of 911.4 pcm. This value deviated from the nicasured worth of 894.5 pcm by only 1.89%, well within the desired i 15%.

Starting with the reference bank deeply inserted, and the reactor just critical, each shutdown and control bank was swapped into tha core for the reference bank. The integral worth of each test bank was inferred from the critical position of the Reference Bank with the test bank fully inserted in the core. The measured worths were compared with predicted worths, and all the tesc acceptance criteria were satisfied.

The only anomalous aspect of the test was the fact that Control Bank B was measured to have a greater worth than the predicted Reference Bank (Shutdown Bank B). The Reactor Coolant System had to be diluted to fully insert Control Bank B since the Reference Bank had already been fully withdrawn during the swap with this bank. The additional dilution allowed the worth of Control Bank a to be determined to be 41 pcm greater than the predicted Referer:e Bank. This fact had no impact on the Acceptance Criteria.

The results from this test are shown on Table 5.

21

. r -

4.

o m

~

. ,e R

TABLE'5'

t. CONTROL R0D WORTH MEASUREMENT BY R0D SWAP DATA ,

Results-Using' Reference. Bank Worth From Dilution. >

Heasuredent on December 30, 198'

. ' Predicted' Worth' Measured Worth Percent Difference +.

Bank ID' , (pcm) (pfm) '

' Shutdown Bank B 895. 894.5* M' -0.06

'(Reference) .

Shutdown A 323 370.1. 14.60 Shutdown!C 436 453.3 4.00 '

Shutdown'D 436 453.3 '

4.00 Shutdown E 403 386.5 ' -4.10 Control A 255. 251.7. -1.30 Control B 866 , 935.5 -8.00 Control C 747 -

738.8 -1.10 Control D 538 561.0 4.30 Total-Rod Worth 4899 5044.7 -2.97++ ,.

  • -Measured by Boration/ Dilution - Dilution

+ Measured - Predicted x.100%

Predicted

++ Sum of Measured Worths - Sum of Predicted Worth x 100%

Sum of Predicted Worth s

' NOTE: This includes Reference Bank Worth, i

t

{

l l.+

l 22 t

e t ,

> y 4.0' POWER ESCALATION TESTING Catawba Unit 1, Cycle 3 Power Escalation Testing commenced at 1950 hours0.0226 days <br />0.542 hours <br />0.00322 weeks <br />7.41975e-4 months <br />

  • on December 30, 1987, and testing at Full Power, equilibrium conditions

, was completed on January 8, 1988.

1 Mode 1 was initially entered at 2205 on December 30, 1987. At 1621 on

. December 31, 1987, following approximately eight hours of Turbine Shell and Chest Warming at a power level of 10% F.P., the Turbine / Generator was c place on line. The Tubine Overspeed Test was performed by Operations at a power level-of 16% F.P. six hours later.

r

, The Turbine / Generator was placed on line 'at 0030 on January 1,1988, and power esc 41ation to full power was commenced. A deficient valve lineup on Steam Generators A and C prevented the establishment of sufficient Reverse Purge Flow to allow their Main Feedwater Nozzles to be placed in service. At'1847 on January 1,1988, since Power Escalation above 23%

F.P. was not possible without swapping to the Main Feedwater Nozzles, the unit was returned to zero power (but kept critical) to allow operator access to correct the valve misalignment. Mode 1 was subsequently reentered at 0005 on January 2, 1988, and the Turbine / Generator restored to service at 0301 on the same day. As Reactor Power was increased from 20% F.P. to 30% F.P. at 2.5%/ hour, the Intermediate Range NIS detector indications at 20% thermal power (to determine the Low Power Rod Stop setpoint) and at 25% thermal power (to determine the Low Power Reactor Trip.setpoint) were obtained with a digital voltmeter. This data was forwarded to I&E personnel for use in adjustment of these setpoints (an activity that was not performed until the next unit shutdown).

The 30% F.P. Testing Plateau was t'4e first place that exhaustive data acquisition of important NSSS ani Main Turbine parameters per PT/1/A/4150/16, Unit Load Steady State, was performed. Some baseline data at zero power and Turbine Impulsa Pressure readings at lower power

< 1evels had previously been obtained un.ler this procedure. In addition, baseline data from the Loose Parts Monitoring System was taped at 30%

F.P. These testing activities would be repeated at the 50%, 80% and 100%

Testing Plateaus. The most critical application of this data'would be the extrapolation of core delta temperature for each Reactor Coolant Loop. This allowed the solid state protection systems process cards to be adjusted as necessary to align full power indicated Delta Temperature with 100% Reactor Thermal Power.

A Full Core Flux Map was obtained at the 30% testing plateau per PT/1/A/4150/05, Core Power Distribution. This map demonstrated compliance with Tech Specs with respect to all core peaking factors, however, excessive incore power tilts were revealed. Westinghouse and Duke Power Core Designers were notified of upper and lower tilts in excess of 3%. They approved further power escalation but recommended an 3

additional Full Core Flux Hap at 50% F.P. to verify that the Incore Tilts were improving and not being aggravated at higher power levels. All acceptance criteria associated with PT/1/A/4150/05 were satisfied. 'Ihe results of this test are summarized on Table 6 and Figures 6, 7, and 8.

t 23 j ; c

r -

t, Other activities at this ' testing plateau were the performance of PT/1/A/4150/03A, NSSS Thermal Output, to qualify the operator Aid.

Computer Thermal Output programs and the validation of an acceptable Quarter Core Flux Map pattern per PT/0/A/4150/23, Quarter Core Flux Map Qualification, using the 30% Flux Map.

A false Quadrant Power Tilt Ratio of 2 6.5% was indicated by the Excore NIS at 30% F.P. This situation was anticipated due to changes in core characteristics created by the Cycle 3 core design relative to the Excore NIS Calibration (from the last Incore/NIS Cross Calibration of Cycle 2) which was only slightly altered by PT/1/A/4600/05E, Post-Refueling NIS Realignment, performed prior to criticality. In order to renormalize the Excore NIS and eliminate the artifici,11; high excore tilt PT/1/A/4600/05D,-Incore and Nuclear Instrumentation Systems Interim Recalibration was performed. T? purpose of this test being to further "correct" the existing NIS Calibration by adjusting its data with the F

axial offset determined by the 30% flux map and the Excore NIS Upper and Lower chamber currents obtained during the flux map.

After eight hours of testing at 30% F.P., power escalation was resumed at 2.5%/ hour at 2130 on January 2, 1988. As power was being increased to 50% F.P. I&E personnel recalibrated the Excore NIS based upon the results of the Interim Recalibration P.T. Power Escalation was suspended at 50%

F.P. at 0816 on January 3, 1988.

The Full Core Flux Map performed at 50% F.P. verified that Incore tilts had improved by = 0.5% over the 30% results, approval for continued power escalacion was therefore granted by Westinghouse. All acceptance criteria associated with the Core Power Distribution P.T. were satisfied.

The results of the 53% F.P. flux map are summarized on Table 7 and Figures 9, 10, and 11.

The NSSS Thermal Output procedure was satisfactorily completed at 50% F.P.

and the 50% plateau requirements of Unit Load Steady State were

~

subsequently satisfied at 1630 on January 3, 1988. With power operation above 50% F.P. permissible due to the recent renormalization of Excore Quadrant Power Tilt hatios (per the Interim Recalibration) and the improvement in the indicated Incore Tilts (per authorization by Westinghouse), power escalation at 2.5%/ hour was resumed at 1630 on January 3, 1988.

As Reactor Power was increased to 80% F.P., PT/1/A/4600/05F, Post Refueling Incore and NIS Recalibration, was performed (See Secticn 4.1 for a summary of this te-ting). 80% F.P. was reached at 0410 on January 4, 1988.

At the 80% Testing Plateau a number of activities were performed. A Full Core Flux Map was obtained per the Core Power Distribution Procedure to ensure continue compliance with Tech Spec limits and evaluate the extrapolated full power Nuclear Heat Flux peaking factors to verif3 trat operation in RAOC Mode on up to 100% F.P. was permissible.

24

---v _,

4

.o The results of this flux map indicated that all Tech' Specs at 80% F.P.

were satisfied and that power escalation to full power could be performed without invoking Base Load Mode,of operation. This map also showed-further. improvement of Incore-Tilts although one quadrant was still'in-excess of 2%. Westinghouse and Duke Design were once again notified and authorization for power escalation to full power was granted. The results of the.80% Flux Map are summarized on Table 8 and Figure.s 12, 13, and 14.

The Power Range NIS Calibration data obtained per the Post Refueling Incore and NIS Recalibration was incorporated by I&E to calibrate the Excore NIS at 2100 on January 4,1988. The NSSS Thermal Output procedure was repeated to further validate the OAC Heat Balance programs and ,ISI performed adjustments on the total power function of the Power Range NIS channels to match their indications with that of the OAC Thermal Power, .

4 Best Estimate. The data required by Unit Load State was also obtained at l the 80% Plateau.

Power Escalation was resumed at 2.5%/ hour at 0920 on January 5,1988.

~

Following delays of two hours, for I&E to zero out the mismatch between thermal power and NIS indications, and 7.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />, for Operations to place ,

the Moisture Separator Reheaters in service, 100% F.P. was achieved at 0510 on January 6, 1988. Following achievement of equilibrium core conditions at full power the testing described by Sections S.2 through 4.6 was performed. Table 9 summarizes the NIS Power Range and Intermediate' Range data obtained over the duration of power escalation.

Afterthreedaysat100%F.P.itbecamenecedsarytoreducepowerto<98%

, due to marginal Reactor Coolant Flow (as indicated by the Reactor Coolant piping elbow taps) at full power. Power was reduced to 97.5% F.P. at 1630 on January 9, 1988 and PT/1/A/4)SO/13B, Calorimetric Reactor Coolant Flow Measurement, was performed on January 12, 1988 to validate the flow indication of the elbow taps and the heat balance calculations of the OAC. This test revealed that the Reactor Coolant System flow at 97.5%

F.P. was only 100.07% of the required full power Tech Spec flow. This verified the fact that flow was indeed marginal at full power. A change to the Reactor Coolant flow Tech Spec was requested te reduceithe required flow at 100% F,P. from 396,100 GPM to 387,600 GPM to allow Unit One to operate at full power during cycle 3.

1 k-25

w- .u

+ ..

o.. 3 m, 3 s  %: ,*.

st c m-

  • w  ;
  • q g ,

't ' TABLE 6 -

CORE POWER DISTRIBUTI0h RESULTS '

,. 30% FULL POWER '

. w

, . ,,;, FLUX MAP FCM/1/03/001

+ <

Date/ Time of Map-> -

  • 01/02/88 at l354 Reactor Power Level -'

29.8% F.P.

Cycle'Burnup

NC System Boron. Conc. 1286 ppmB *

. Control Bank D Position 212 steps withdrawn. ,

Maximum Total F' ' 2.'1783 at Axial Loc. 44 N

"" Horiz. Loc. D-03

.' Maximum F g 1.3580 at~ Axial Loc. 44

' MaximumFf(unexcluded).

X 1.6703 at Axial Loc. 13 Horiz. Loc. E Maximum Total F /K(Z) 2.26/4 at Axial Loc. 48 9 'Horiz. Loc. D-13' Minimum Margin to F Limits 0 -42.7667 at Axial Loc._49 Maximum Reduction or AFD RAOC Wings 0%

. Maximum Pin F AH --

1.4720 at Horiz. Loc. C-12 '

Pin # 416

. ts Max.AssemblyErrorFAH(frmPredicted) 7.96% at Horiz. Loc. N-10 4

Maximum Calculated "R" -

0.8161 Reactor Coolant Flow (OAC Indicated) 399,636 GPM Required Tech Spec Flow for Full Power Operation 396,100 GPM Incore Axial Offsets: . .

Total Core +19.889%,

Quadrant 1 +20.318%

Quadrant 2 +18.837%

Quadrant 3 +19.749%

i Quadrant 4 +20.678% -

Incore Tilts:

[- Upper Core Lower Core Quadrant 1: +2.682% +1.768%

L Quadrant 2: +1.452% +3.694%

Quadrant 3: -3.003% -2.719%

Quadrant 4: -1.131% -2.743% ,

  • NOTE: Axial Loc. 1 is bottom of core, Axial Loc. 61 is top of core.

26 i

a i

-. , , , . _ , _ _ , , _ . ~

_-,__,___.,.,m-_r_. -. __,.__ ,,_.,-.,,_m.__,., .m, , _ . _ _ -

e pow t'p LISTRiHUTID* FACTCP$ AND CCMPANISCN TO Yt cet liC AL SFt.CiF iC ATICt:5 FOR f StJis G f 3r i

FUFL NCRP CORE TOTA T t:CH S Pt.C PP RChar? Viri CF tv] ANTAL ASM. HOR. AVG A PK. F ,( K 7) l(7) Limit r; g F F PSUPC

  • " kic 18a CYE-E -

Rihs"N J AL  ? ?" A, d$ho '

i.Sho Mn20 - t^f 8!"

5 18 in 5:!8  ::%! '.:lt?' 8:in!  !:Un  !:in?  ::1:1!!!

$ t.?

s 1:?, 8:11 o- o 8:Ut1 i.03n i: nil 8: Hit

..o n i:n88 1:%fn :t8,.:t'b?  !

m ss 3.

m a- o i.0 o .i .. n02.,2 0..i00

i. coco i.o000 . .. i n.s -s...o

-s u

=

11 lit 8:11 1:1182 1:311: 8:3:18 1:8888  ::;6;!

5 m :11:31.?

32 si m o-n-i i.2 m i.30u 1.no 0.n .. 23

...s00 i.i ss

i. m 2 3.33.

3 iis

p . .3.3 12 e 18 H2 8
1 1:Ht: 1:l:1% 8:3413 1:148 13144~  : l.:1til6.s -

, n i'! F:1! !i i:!!!I in :2!:11j! '

g; I tt til 8:81  !:l*l84 1:l  !:!l'li 1:lt1 - 8: tn 8:stt3 l'::31%1::t:Ud g M D! 8:81 i:Hfa i:!MI 8:342 1:121l'1:n8%

i:!!A :ll:Uti -

g i

! ilt 8:31 i:111% 0:1128 8:lii! 1:llt8 1:1149 :21:24 8 1% ll! 8:?) 1:!!! f:iN! 8:33n i:in! '::!!! :n:810-M 'll 5:8: 1:$'118 1:8Hf 8:3ll3 1:181: n:!!!t  ::::1f1:

n It  !!! S:fi i:1!!&  !:811 8:M08 i:!!n 9 n!! :n:!M1

.o m 11 212 S:ll 1:3311 f:8Hf 8:3118 1:192! 1:the

:18:114%

45 I? Mi i:i:  !:!4?! 1:3:!! i:nal 1:ltif 1:n!! :t*-

O MS

~~

18 UX E:l 1:ltt8 1:fut 1:n88 1:1111  ::819? :ll:t!N lt! -

G i? la  !:12 !81 i:?n? i:n88 i-lill 1:1f4? :ll:1'n e* ~

lt 1:1 M:12 li$'41 l 1:Ull 1:8 tit' filfft 1:fUf :t!:8!!! ~

s 11 In i:l  !:n?! i:ltu  !:n!8 1:3' 1:Z'!! :M: nil

~ ~ "

if HI E:12 8:1121 1:till 1:1998 't:3}N

g[t 1
29H
M
t8ff
g;gg..

M ?8 la F:i: 8:12g; g;;gg  ;;ggg , g;;og e "' 19 fu E:!! 8:lhu 1::lfs 1:n88 1:1141 1:stn :ll:111t ' ~ ~

m it 18 E:M 8: nl 1:1841 1:nn i:N!1 1:nti :n:1?H

>w"-

A O

~ ' ' 11 2 la.9 i:l t'- i .

8:1232 0.7093 1:1 i.i 7 8 1:8888 2.00 0 1:t'!l

i. 3 0:11n J.2800 :t*:l*1'

-6 94 t/) ii 3.8 3 E-i. 0.696. i.t 7 i.0000 i.47.. i.s470 -6...5 m

-- '8 Ut i:11 8:: t 1:8it i:8888 1:38H il: nit  :%1:tkTiil -

e .i In.

u i:!: 8:tji:

...o 8:U..n.

I:nn  !:nn  ::!!n.  :#:in!

-u . > o.u g

,,, y,__ _

s-i. i.oooo i.o0oo ..... ,

E i in F:li 0:Gli 8:l?il 1:nn i:Un 1: tin :N:!!n --

3  !

i ju36 Efj C-i 8:!n.7j

..i 8:i'jj 0.3 i:88n i.0000 i:nn

..o000

!n:

. 6400

Un

-9i.6i.)

1 m lwrrn,uACTCer -- '

' HI lMi"8" Sndnn%Ui'!: JEU 8 M8M"' l^!n"id fi"2*bli it'Mid'L88MS"I'" " -" ~ m WMW2!'M Ur%E*P2n3TfMP#rt;t'!81t% M zTi hi8"'*" ^* '" "^ ^"" "" "

lHi"8" Fin!"0LY",*E%"5'id.*n"d*d" '" " l

~.

l s

CATAWilA C1:TECTf'R ItU:4 (U;;IT 1 CYC1.E 3) - Ill0lWL '

CAT 1/03/001 NUCLEAR PEAK 1ftG FACTORS FOR ENTif ALl'Y RISE FCP, ASSEMt!L ACE S 1 *I THF I'd.n R :m!?P A1 17 A1 !s

[*-~ ~ ~ '01 02 03 04 05 06 07 08 09 10 11 12 13 11 IS

t. -

A U.524 0.902 0.804 u.R76 0.784 0.875 0.512 g

!- S 0.396 1.227 1.249 0.720 1.287 0.964 1.279 1.213 1.186 0.723 0.407 M

C 0.39A 0.902 1.293 1.111 1.355 1.062 si 1.204 1.066 1.323 1.090 1.318 0.925 0.408~

, ' f ty D 0.723 1.287 0.994 1.344 1.044- 1.270 0.940 1.272 1.023 1.337 1.021 m 1.314 c.773 ta E c.504 1.1HR 1.073 1.320 1.005 1.270 0.045 1.191 0.930 l'.256 i.011 1.356 1.117 1.726 n.529 gM F 0.866 1.201 1.315 1.009 ~ 1.232 0.891 1.061 0.913 1.050 0.899 1.245 0.974 1.324 1.260 0.909 in o y C 1.255 d$ 0.774 1.249' 1.052 0.902 1.046 0.938 1.148 0.904 1.052 0.900' 1.1R7 1.015 ~1.2R9 0.786 I bk-4 H 0.843 0.924 1.170 0.957 0.928 1.154

't.190 0.837 1.130 0.885 1.168 0.907 1.186 0.909 0.855 m

@$ J 0.757 1.230 1.039 1.269 1.051 0.898 0.942 1.116 0.859 0.984 0.906 1.253 1.024 1.196 0.748 K 0.035 1.149 1.207 1.259 0.986 0.064 1.032 0.888 1.005 0.840 1.198 0.996 1.272 1.139 0.823 o

    1. L 0.487 1.118 1.002 1.246 0.950 1.204 0.910 1.151 'O.900

,N 1.166 0.948 1.252 1.017 1.128 0.4R3 72 M 0.686 1.233 0.948 1.254 0.963

~

1.227 0.896 1.202 0.961 1.231 'O.934 1.212 (2.673 N 0.380 0.R63 1.245 1.024 1.237 1.004 1.124 0.980 1.200 1.061 1.241 0.R73 0.371

= F -

0.378 0.673 1.141 1.148 1.210 0.894 1.203 1.150 1.117 0.677 0.380 R 0.491 0.842 0.760 0.845 0.762 0.830 0.482

'h

-~.

e 1 M 9 . P= VA N 9 m

'4 , @ VA N O N m N

, m O O O O O O O en e e e a e o e C .O O O O O O t t l l

    • m N w ** ** m @ O O h e P. W @ @ M N O m N me es v O O O O O O O O O O O en e e e e e e e e e e e e O O C O O C C C C O O C p I I I I I at W

g e @ ** m @ CD @ P= @ ' @ CD ' :D r= P= r= P= N ** ed N ** ** O ** O N m O C O O O C O O O C C O O om en e e e O O e

C O e

O e

O e

O e

O e

O e

O e e e e n O O O le.

C 1 I I f f , I I O at e3 L C- A m @ 21 6 m ** A C* m e nr1 aC 1 .

@ h @ O N @ m ** O == N ** O > O I N O O O C O O O O O O O O O **

a == e e o e e e e e o e e e e V O O O O m i O' O O O O O O O O C' C J g 0 0 t i e U e @ O v fN O O M m m N e er O P W pa w F N O or er ** e re m N N m N m N > st

  • = C O O O O O O Q O O O O O O 'O U e we e e e e e e o e e e e e e o e ga @

W O O ' OI O O O O O O O O O O O- 'O at & 5 3 0 $ e i I I r=

C leJ O H tc 4 O tl5 CD m P= O @ @ 6 er O cD P= = e U N N N ee ** ** O w 6 W M w CD N N H O 3 et C O O O O O O O O O O r3 O O O O Q w == e e e e e e e e e e e e e e e g O O O O O O O O CA O O O O O O O C s .2 4 0 8 9 0 0 W 64 e O at

.F U ee we O m ** m N e4 er e e A P= .= & W D ** N N ** O ** O O m trl e e A P= 9 O O be P O O O O O O O O O O O O O O O O D w O e e e o e e e e e e e e e e e in p a O O O O O O O .O C C O O O O O mM C I $ 8 I C C ee w e Q 0: to e m N O *e w 4 M 4 W 6 @ O h O at aO be N m o O O O O #9 m N m , w r= 9 O E m% CD O O O O O O O O O O O O O O O mu O e e e e e e e e e e e e e e e x

.sJO t.e4 O O O O O O O O ' O O O O O O O 10 =

2 % re 8 0 I l K

Ued: P >e

>= Q O P= @ ** O r= m O @ ** m m ** * @ O >C Uve e w N O O O O O == 0 N M M @ M O eo at Mu

  • O O O O O O O O

e U .,a O O O O O O O re K O e e o e e e e o e a e e o e e at C O O O O O O O O O O O O O O be W re 1. 0 9 0 8 I I 4 >

    • C W to a c ri e e to e w N m m r= w r= Cn O N u 3 4 O @ w m N O *e O O C% N m er m e*

w @ U C O O O O O O O O O O O O O O e

.3 O e e e e e e *

  • e o e e e o e CE 4* kJ O O O O O O O O O O O O O O O st CP O F 1 l - t 1 I I 1 Q CD C; at m n N 3 os r= m @ *e m %e ee ** O @ *e S O at O ft 7 to @ 4 er m O or O O N N ** ** C ** Sd
  • O V O O O O O O O O O O O O O O O O O O P .J C e s e e e e o e e e e e o e e U 4 O O O O O O O O O O O O O O O W

'M V 6 9 0 I I I r C

H la il W = 4 4 CD m r= 0 @ N 4 *r CD o O O o e m M O ** *e o ee N O N ** O%

et er O O O O O O O O O O O O O CW 4 p C e e e e e e o e o e e e e at a T. eJ O O O O O O O O O C O O O e2 1 m B 0 0 0 t i I I et et C3 >

ce CD C m @ 4 N N @ . P= N N r= N w at C v e @ m ee O m .= N M ** O O OW U = m O O O O O O O O O O O O O O H M C e e e e e e * * *

  • e o e O D O O C O O O O C O O O O O e 3 6 4 9 I I I I I O O O

". I M N & N m

CD C or @ e tlP @ O me o o ee O O em N C'.

P O O at N O O 'O O O O O O O O O 11 4 O e e e e e e o e o e a b ct O O O O O O O O O O O t:

.J l 8 I 0 0 I 3 6 2 *J z & CD em P= 0 CD P= at [a, W ** es ee O ** ** N > Q e* O O O O O O O 6 O e e e e * * * *l:

a L'

> C O O O O O O at 4 en 9=

1 0 I WW E. 1 et 3 e laJ taJ W i et S O Q W b. O E +3 E 3 E se to I:r. om E 2 l

' fe b i b f

FIGURE 8 RELATIVE ERRORS IN ASSEMBLY Fg -

30% F.P.

29

a ,_ .4 i

+.

. TABLE 7 CORE POWER DISTRIBUTION RESULTS 50% FULL POWER FLUX MAP FCM/1/03/002 Date/ Time of Map 01/03/88 at 0934 Reactor Power Level 48.9% F.P.

Cycle Burnup> 0.72 EFPD NC System Boron Conc. 1203 ppmB Control Dank D Position _

217 steps withdrawn

, Maximum Total F 1.9588 at Axial Loc. 40 0 Horiz. Loc. D-03 Maximum F g ,

1.2616 at Axial Loc. 40 4

Maximum FXY (unexcluded) ,

1.5894 at Axial Loc. 13 Horiz. Loc. C-06 Maximum Total Fq /K(Z) 2.0145 at Axial Loc. 43 Horiz. Loc. D-03 Minimum Margin to Fn Limits -48.7712 at Axial Loc. 40 Maximum Reduction of AFD RAOC Wings 0%

Maximum Fin F AH 1. 314 at Horiz. Loc. C-06 Pin # 455 Max. Assembly Error FAH (fr m Predicted) 9.36% at Horiz. Loc J-10 Maximum Calculated "R" 0.8330 Reactor Coolant Flow (OAC Indicated) 398,869 GPM Required Tech Spec Flow for Full Power Operation 396,100 GPM Incore Axial Offsets:

Total Core +10.917%

Quadrant 1 +10.870%

Quadrant 2 +10.622%

Quadrant 3 +10.503%

Quadrant 4 _ ,

+11.684%

Incore Tilts:

Upper _ Core Lower Core Quadrant 1: +i.836% +1.932%

Quadrant 2: +1.670% +2.278%

Quadrant 3: -2.418% -1.597%

Quadrant 4: -1.089% -2.614%

  • NOTE: Axial Loc. 1 is bottom of core, Axial Loc. 61 is top of core.

30

9 rn P0hER OISTRIEb3 ION FACTOR 5 AND COMPARISON TO TECHNICAL $PECIFICATICN5 FOR F SUB i O ~~

f} .

! AEIAL FUEL A5M. MOR.

h0RM C0af AVG. Au!AL TOTAL Pa. FCT K(2) w(2)

TECM SPEC L!>!T PERCENT OIFF WIOL OF FiuSQ 70 LOC NO. LOC. PowfR DIST. P5USC PCT. FCT. F5080 MEAS-L LIPIT EU

. ' t#P" r 61 60 355 E-Oe 0.*7*2 0.5368 0.7881 0.9619 0.6500 0.6983 1.0000 3.0160 - 7 3. 8 7 0.IM 305 P-11 1.0000 3.2601 -70.9300

  • d 59 371 E-12 0.6692 1.1969 0.7*67 1.0000 3.*667 .5.5107 U3 ,**- 58 370 0.7591 1.3094 0.7950 1.0000 3 6888 -64 5041
  • 4 57 370 E-1)

E-3 0.8}55 1.4371 0.8633 1.0000 3.9129 -63.2716

)

70 56 3F0 E-12 0.9 66 1.4860 0.8917 1.0000 4.1375 -64.0855

>d . 55 370 E a! 0.9586 1.5637 0.9400 1.0000 4.3616 -64 6041 C3 UWVPF 7 54 370 t-12 1.0373 1.6534 0.9425 1.0000 4.3732 -62.1925

$ gi 53 370 E-12 1.0953 1.7283 0.9450 1.0000 6.3848 -60.5837 j 52 370 E-12 1.1347 1.7735 0.9475 1.1957 3.6768 -51.7670

>d 51 370 E-12 1.1663 1.8060 0.9500 1.1875 3.7120 -51.3469 C) pm*9r-* 3 50 422 0-05 1 1902 1.8385 0.9525 1.1801 3.7451 -50.9103 20 g 69 422 0-05 1.2092 1.8632 0.9550 1.1722 3.7802 . -50.7109 48 422 0-05 1.2197 1.8831 0.9575 1.1643 3.8159 -50.6514 M1 67 655 C-06 1.1955 1 8658 0.9600 1.1614 3.835 -51.35 3* EPwe'r 4g 439 D-8 1.1947 1.8302 0.9625 1.1616 3.84*7 - 52. 39 {a s}

(3 p 4> 4 38 D-0)J 1.23 1 1 8932 0.9650 1.160* 8587 -50.9 53 mi 44 438 D-0* 12 2 1.9376 0.9675 1.h614 .8653 -49. 8 }s t C) 43 63g 0-03 1.2 $ 1.9540 0.9700 1.1691 .4698 -49 43 30 stas-7' a - 44 43s PS3 '162 78 1 9507 0 9725 1.1759 3. D4 8 3 -48. 95 to g; 41 438 D-03 1 2602 1.9588 0.9750 1.1813 3.8247 -48. 526 y 40 438 0-03 1.2616 1.9588 0.9775 1.1862 3.8236 -48.7712

p. .

39 638 0-03 1.2650 1.9562 0.9800 1.1896 3.8225 -68.8770 di ,l**"' 11 36

'?!

455 8:81 C-06 i:ffft 1.2340 i::?11 1.1148 8:111:

0.9875 i:it?!

1.1932 1::11:

3.84014

ifit

-50.1379 r3 35 655 C- 1. 0.9900 1.1 3 75 C) ~3 i - - , - - , 34 55 C- .6 1.11.565 19339 931 .9925 1.1.89t 4 3 8615 8892 .-49.9183 5 .3 .- -

OC >* g 33 455 C- 6 1.2262 1.9230 0.9950 1.1768 3.9232 -50.9825 Lo

" c' '

If :11 E:31 i:iitt i::%f; f::all i:!t:1 2:38f! :11::11!

!!ll v3 ,!

P""""-"*'- '

It 28

11 438 E:::

g-03 i:itit g.1505 i:';;f

1. 980 i:3888 1.0000 i:ltll 1.1663
  • 81:!

3.9852

12:;f]

-56.8864 CD u) 27 455 -06 .15 7 1.8948 1.0000 1.1 60 .9189 -53.9672 ye i argga- + men 26 455 C-06 1.14 4 1.7v17 1.0009- 1 2 49 .8539 -53.5080 g 25 455 C-06 1.12 1 1.7745 1.0000 1.2 23 .7961 -53.2560 q 26 455 C-06 1.1163 1.7477 1.0000 1.2397 3.7428 -53.3051 C) 23 455 C-06 1.0991 7286 1.0000 1.2556 3.6956 -53.2298

! 'N' **ar1VM 22 455 C-06 1.0778 .7023 1 90006"?23.279e 3.6535 -53.4049

-4 3 21 655 C-06 1.0233 1 6312 1.0000 1.2829 3. a16 8 -54.9006 pq 20 490 8-09 1.0106 1.5704 1.0000 1.2938 3.5863 -56.2109 c3 19 455 C-06 1.0136 1.5832 1 00 0 1 3.5291 -55.5181

=c 1*WWenw*'"# 18 455 C-06 1.0014 1.5785 1 00 4 '1.s}037 131 3.5s34 -55.S947

  • g 17 455 C-06 0.9836 1.5478 1.00 0 1.3193 3.5170 -55.9919 to 16 455 C-06 0.9625 1.5111 1.0000 1.3309 3.4864 -56.6581
i. ,,a-e- 11 13 21 455 E
8

C-Oe 0.8h96 1::'ll 1.3 81 1:3838.

1.0000 i:ll:3 1.*157 1:1'?[

3.277

it:itil

-57.3460 c) g C-06 0.8294 1.300+ 1.0000 1.44 0 3.2111 -59.5036 12 455 179 3 1483 -59. 509 nn C) idPMW47 C ? gg 455 455 -g6e 0.g996

0. g2640 2451 1.0 00 1.0g80 15gg 14 3.0896 -59.g829 ~

pn g '

9 655 -06 0.7685 1.198a 1 0000 1.0000 4.6400- -76.1635 i 8 455 C-06 0.7330 1.1455 1.0000 1.0000 4.6400 -75.3120 7 455 C-Oe 0 6917 1.0866 1 0000 1.0000 4.6600 -76.6258

[ pep 7"*"N** %

s ______

4 455 C-06 0.6404 1.0148 1 0000 1.0000 4.6400

-78.1297 s

'# 5 455 C-06 0.5780 0.9130 1.0000 1.0000 6.6400 -80 3240 C) 3 . _ _ _ . _

6 655 C-06 0.5076 0.8217 1.0000 1.0000 4.6400 -82:2911

&# 3 325 F-03 0.4215 0.6997 1.0000 1.0000 4.6400 -8*.9146 N l 2 325 F-03 0.3295 0.5556 1.0000 1.0000 4.6400 -88.0303 "1

"O 3( 1 455 C-06 0.2095 0.4615___ 1.0000_ _1.0000__ _4.6400___ _ -90.0546 ___

. (,

.,_..m.-.,,,

g i hdcLEAR'7(lKIkG FACTORS lTMt max MUM CORE AVERAGE ANIAL POWER PEAsING FACT 05, P SUS 2. 15 1.2616 AT AngAL LOCATION 40 i TH E MAIla MUM HORIZONTAL P0wER PE AE ING F ACT OR.SUgXV. F 15 2.0363 AT AngAL LOCATION 1

, TJfTmmMf'n WA?"%'a'Ilf755t*xfN f:1pT ALf*fd*N2'! !"f t '!' "* " "' " '" "" * ""~'

MINIMUM PARGIN TO TE M SPEC LIMIT P SUSQ 15 -48.7712 40

[ MAXIMUM F5uS4 OvtR E OF 2 15 2.0145 AT AL 43 y .e r .s e e. . y - - = 4, n.ggw. p p ,a

1 o

e 4

CATAhSA DEiECTCR RLN (UNIT 1. CYCLE 3) 0150 -

CAT 1/03/002

, NUCLEAR PEAKING FACTORS FOR ENTHALPY dISE FOR A55EMSLAGE5 IPs THE power NORMALI2ATION 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 .

j A 0.~23 0.365 0.793 0.875 0.792 0 470 0.513 h

g 78 0.402 0.713 1.191 1.223 1.265 0.961 1.266 1.202 1.163 0.711 0.405

  • C 0.405 0 896 1.265 1.096 1.343 1.080 1.228 1 078 1 299 1.064 1.258 "0.8J5 0.405 C2 ~

M D 0.722 1.270 1.00s 1.323 1.054 1.294 0.973 1.271 1.033 1.307 1.005 1.255 0.70_7 h

E 0.504 1.156 1.066 1 305 1.006 1.252 0.958 1.204 0.930 1.248 1.008 1.318 1.079 1.170 0.515

" >M cn s g y C4 P' O.853 1.171 1.293 1.013 1.230 0.905 1 064 0 965 1.083 0.917 1.260 1.004 1.307 1.205 0.872 N Dt

$.o

-: - s G 0.767 1.216 1.038 1 228 0.923 1.058 0 932 1.188 0.9 1 1.082 0.944 1.240 1.047 1.247 0.774 M H 0.837 0.925 1.151 0.926 1.168 0.924 1.167 0.891 1 169 0.920 1.180 0.935 1.183 0.921 0.851 b g.,-

e J 0.753 1.208 1.028 1.221 0.930 1 060 0.923 1.173 0.908 1.018 0.923 1.238 1.038' 1 207 0.756 w

jj 'K- 0.828 1 142 1.270 0.981 1.125 0.881 1.060 0.928 1.051 0.876 1.202 0.185 1.252 1.142 0.834 M

L " 0 488 1.109 1.017 1.219 0.149 1.197 0.936 1.170 0.929 1 184 0.966 1.237 1.009 1.114 0.497 M,

M 0.660 1.187 0 953 1 245 0.990 1.236 0.930 1.223 0.974- 1.226 0.946 1.183 0 672 h 0 374 0 842 1.216 1.025 1.259 1.034 1.179 1 030 1.242 1.044 1.209 0.860 0.376 h P :- '1 0.379 0.663 1.115 1.152 1.216 0 918 1.209 1.125 1.092 0.673 0.384

R 0.495 0.848 0.766 0.845 0.761 0.814 0 481 r, n

e

(

, s- O O P > m >= m M

m m N e4 O O M <

O O O O O O O '

M e e e e e e e I b O O O O O O O \

l 1 1 i i 9 1 1 O Ce e O GA 4 e0 m N e4 4

@ 4 4 m N O O O O O e4 4 O O O O O O O O O O O M e e e e e e e e e e e e O O O O O O O O 3 O O M i 0 i l I i 4

W O P e 4 m e N > N E

9= O e4 O

@ m m in N O N N M re O N se N m O O O O O O O O O O O O - O

^

  • e4 e e O e e e o e e o e e e e e e O O O O O O O O O O O O W M i 4

i 9 l i I l 3 W e e e 4 m e P= P @ O P W O e4 4 E e M M 4 O N N N N M O N O > O 8 N O O O O O O O O O O O O O M e M e e e e e e e e e e e e e m i LJ O O O O O O O O O O O O O @ "I J l 1 B i l i M n

U 4 m O e P= O m e P= e @ P ce P P W e-V 4 4 4 m N m M m

  • e M M .4 N N ed M > 4 O O O O O O O O O O O O O O O O
  • *d e 4 e e e m O e e e e e e e o e e e@

O O O O O O O O O O O O O O 4 m E 1 1 8 1 1 1

  • 1 O us O k N P* O O M m @ 4 m O (D P= *4 GA @ I e U # 4 N N O e4 N W @ @ tA 4 N. ed M N O 4 O O O O O O O O O O O O O O O O E es e e e e e e e e e e e o e e e e O O O O O O O O O O O O O O O O O J l 0 8 1 1 E N e 4 U C @ M O P= m 4 4 N 4 e O m P= ce W

'D"e M e m N O 4 N N 4 4 m 4 4 N O e4 O M m O O- O O O O O O O O O O O O O P 3 M8 O e e e o e e e e e e e e e e e m >

N O O O O O O O O C O O O O O O MM O 4 8 1 i O 2 NW e O OE 4 c0 p= 4 4 og e p. e4 g 4 N 4 @ M O 4 Mok 4 m e4 e4 ,e O M m m M 4 m N O *4 E

% 80 O O O O O O O O O O O O O O O MQ O e e e e e e e e e e e e o e e E MOW O O O O O O O O O O O O O O O N D JNH l 0 0 1 0 0 E WMZ Z M

> 0 e4 a0 N 60 4 e4 4 4 4 m O se e4 O P Q M V>M e M N es e4 4 m 4 4 4 4 N N O M M 4

  • 4 W P= 0 O O O O O O O O O O O O O O > E MV3 O e e e e e a e e o e o e e e e 4 O O O O O O O O O O O O O O O M W W E 8 0 i l 1 > Z
  • 4 O W k e7 m m -m N e e p. N N O m ** m ce 4 m O 3 E @ @ m m o N m en to m 4 N M O N W @ O O O O O O O O O O O O O O O O e O O e e e e e e e e e e e e e e e 3 e7 W O O O O O O O O O O O O O O O el >=

3 P" I l i g i 1 0 0 m u 4 7 N J M 4 P= 4 4A 4 P. e en 4 4 M M N ** 4 C' T 3 @ @ @ 4 N e4 4A 4 4 4 m e4 O O e4 k e J W H O O O O O O O O O O O O O O O mO k J O e a e e e e e e o e o e e e o O 4 O O O O O O O O O O O O O O O E8 WU l 8 l 9 8 I I I E

> > N E ED M 4A M e4 P. @ N m tA M @ en D'J 8 IA @ in m O m m 4 m m O N M Om 4 4 O O O O O O O O O O O O O 2 u8 4 > O e e e e e e e e e o e e # 4 3 D J O O O O O O O O O O O O O J 1 W I I B B B 1 0 4 4 O >

  • m m m m 4 4 N O @ P= p e m 4 O O tA @ @ 4 og og 4 N O O O O O es u8 0 3 9 O O O O O O O O O O O O O O P=

m O e o e e e e a e e e o e e O 3 O O O O O O O O O O O O O e .J E I 1 1 0 0 1 OQ l m Z ee O e N O O *= N m es e e

    • @ *= m N O O O O O e4 e4 4 N O O O O O O O O O O O 3 m O e e e e e e e a e e e uJ K O O O O O O O O O O O uJ Z O 1 1 0 1 3 >

N .e

& @ @ O e4 N O M e 4 L W l N N N O O O O > O

'8 O O O O O O O ,

9+

W 'O e e e o e e e e. -

2 2'

> i O O O O O O O '; 4 4

" 1 I i 1 I WW P= ' ( E E 4 .

.4 . .

W d uk a

4 8 gJ < Q .W G. 43 - E (9 Id .J

  • C ,2 & Cf ,

bE E' L3>

P- -

_ w __ L L 1 *_ '

____2_ 3 FIGURE 11 RELATIVE ERRORS IN ASSEMBLY Fg -

50% F.P.

33

r

>4 0

TABLE 8 CORE POWER DISTRIBUTION RESULTS

., 80% FULL POWER FLUX HAP FCM/1/03/015

~

Date/ Time of Map 01/04/86 at 2022 Reactor Power Level 79.87% F.P.

Cycle Burnup 1.708 EFPD (70.92 MVD/MTU)

NC System Boron Conc. 1096 ppmB Control Bank D Position 174 steps withdrawn Maximum Total F 1.9274 at Axial Loc. 32 0 ~

Horiz. Loc. C-06' Maximum F Z

1.2555 at Axial Loc. 32 Maximum FXY (unexcluded) 1.6132 at Axial Loc. 51 Horiz. Loc. C-10 Maximum Total F /K(Z) 1.9351 at Axial Loc. 34 9 Horiz. Loc. C-06 Minimum Margin to Fg Limits -19.89% at Axial Loc. 22

. Maximum Reduction of AFD RAOC Wings 0%

Maximum Pin F0 "

1.4171 at Horiz. Loc. C-06 Pin # 455 Max. Assembly Error FAH (fr m Predicted) 6.92% at Horiz. Loc. M-12 Maximum Calculated "R" ~~

0.6967 lieactor Coolant Flow (OAC Indicated) 398,162 GPM Required Tech Spec Flow for Full Power Operation 396,100 GPM Incore Axial Offsets:

Total Core _

~

+0.540%

Quadrant 1 +0.590%

Quadrant 2 -0.257%

Quadrant 3 +0.580%

Quadrant 4 +1.276%

Incore Tilts:

Upper Core Lower Core Quadrant 1: +1.496% +1.396%

Quadrant 2: +1.220% +2.847%

Quadrant 3: -1.957% -2.033%

Quadrant 4: -0.759% -2.209%

  • NOTE: Axial Loc. 1 is bottom of core, Axial Loc. 61 is top of core.

34 i

t m g - -

O , rowrp r tsTpieUTIon F ACTCkS AND COrtPARI$f'N TO TFCHNICAL SFCCIFICATIO'fS rnp F Sup o h

  1. 3 1-

$ F Ui' L NChP COPE TOTAL TI:C*t SPE C FFRCENT ViCL CF A X i al. ASP. H t 'P . AVG AXIAL PE. FCT k(Z) 4(Z) LIMIT CIFF F5URO

' ~ ' * ' "

-e II 957 6 0 0 00 i 050 U^ENI" 4 '

s  !!! E:il 8:s!n 8:4H? 8:in? i:nn [:'e'U4 :g;;2;;;

2;2;,

5 1% it: S:18 8:!HI 1:?ll? 8:133 i:8n8 1:11?]

ll:}@

E tt 221 E:s? 8:?!3 i:lut 8::al  !:nn  !:iin :1!:8s66

1 O e 11 S2 454 F:18 C-io
Idf3 0.92i) 1:2812 i.5024 8:3:!!

0.9475 1:n88 i.i965 1:?!N9 2.30

!:1181

-34.7307

~ . ~ ~ , -

Z Si 454 C-i0 6.950i i.5456 0.9500 i.iBB2 2.324. -)).4902 m 18 14: S:18 i:lill 1:2118 8:31!! i:!Yi 1:1222 :ll:83t -

M '

8 82 S:n i:8t1 i:titi 8:Un 1:iti? 1:181  :!!:tu!

O it ill 8:n i:iti: i:%i83  :: 4 18 1:liji 1:iti :ll:18!f

=

  • 8 ni S:n i.!1;i i:0!! 8:038 1:!N4 2:*in :Is: ult u ni S:n 1:18t 1:liti 8:U13 1:!!H 1:1811 :31:!:42 18 n; S:8' i:!!!!  !::18 8:lin 1:!!!! ' HR :31:18?J n 1% nt 8:4! 1:18!1 1:llM 8:3133 i:13til a:H28 1: :11:1881 -

g1

  • R ni S:n i:?!n i:'il 8 433 i:lui F::iR  :[a:.8'8 m

mo 11 nt 8:82 i:H!: 1::$88 8:313 0.99,3 1:1918i. 6:lli i a g;H

, n 3.

4ss 4ss C-06 C-06 i.2sss i.234, i.,274 13 3

i.i .>

i.is 2.4 iG

6 :Ad21

-2

-t 3

m it ut 8:11 i:llit i.9!!4 1:! I.0000

8888 1:lill :l 3 l.slIO 49
f t:!>Il eC '

H nt 8:8' i:n!2 i::%:1 i:8n8 1:*n?  :[3:101 e it #2 F:fi i:1!;& i:Un 1:n88 i:l'in 1:ill 1:111 :61:D13 11 ut F:!! i:?84 i:n?! i:nn i:Idii  !:!!!! :18:81n M H in 8:ii 1:lli! 1:14N 1:8888 1:1831 1:1U3 :li:Hji 9 3

!8 :n 8:8% i:lin 1: 4 11 i:8n8 i:Ul? 3:Uji :1!:'

m if in R:n 1:14;1 1:4[; i:8n8 1:llis 3:llsj :ll:h'si l A >

lt in R:n i:nti  !:M91  !:n88  !:llii 1:In :lN2a 0 11 218 n:i1 i:888 i:ti?l 1:8888 1:81H :lli411 1:1[8 m *

!? '!! itil 8::18 i:Ut? i:8n8 i:>la  !::M? :li:'Mi e '8 in  !!:!J 8:H!! i:184 1:2888 1:in3 1:UU :ll:!!91 O

m

  • 6 21:

43h 3:11 u-i) 8:'?u 0.7586 i:nn t.2i70 i:nn i.0000

!:n88 i.0000 2;;gg 2.9068

gg;gg;

-Sa.i330 8 ,

ao O <

5 136 D-il 0.6945 i.i>96 i.0000 i.0000 2.9068 -64 4824

/

1 ilt 8:il 8:ti!! a:8H! i:nn  !:8n8 - 3 ini :H:lli!-

- - f in 8:H 8:!!!! 8:UU 1:8888 1:8888 1:3828

:4:413 -- - - - - -

aj r=usseene nanus neTen . ~

~ .v ~w-

'l I U Z D F U i(Y 2 63$ I AI A LO C 6M8W D33AP^p'n.'sSEUd',f .2['lill' .fi F 18Pr*23f'htF "uw %m"o voa uc. ;cg6,m_. _ .

> LH: : Fina"on 'h'"r'ffsi%;i '

Pd'd " 22

CATI.WDA Cl;TF:CTOR RH:J ( tlN I T 1 CYCLE 3) tit SO

-- car 1/03/015

--NUCLEAR PFAKir3G FACTORS FOR Er3TalA!PY RISE FCR ASSEMULACES Ir1 THE POWER flORM AI.IZ ATIO'8 01 02 03 01 05 06 07 08 09 10 11 12 13 14 15 A 0.513 0.874 0.798 0.889 0.800 0.876 0.514 m

B 0.391 0.696 1.162 1.203 1.270 C.981 1.279 1.207 1.159 0.704 0.399 C3 y C 0.389 0.853 1.197 1.053 1.323 1.083 1.234 1.087 1.294 1.040 1.212 0.869 0.399 h

t* D 0.691 1.192 0.905 1.275 1.044 1.300 0.187 1.298 1.025 1.269 0.922 1.733 0.6H1

>M

$$ l E 0.501 1.131 1.026 1.?57 0.994 1.268 0.990 1.251 0.988 1.268 0.998 1.282 1.050 1.145 0.508 8 Eg .

Do -

F 0.854 1.163 1.272 1.013 1.255 0.932 1.103 0.996 1.128 0.947 1.266 1.010 1.297 1.192 0.865 E-W m G 0.773 1.226 1.048 1.256 0.966 1.110 0.959 1.197 0.960 1.118 0.968 1.261 1.055 1.256 0.791 E 1.224 o.955 0.938 0.8H2 H 0.048 0.938 1.177 0.945 1.221 0.982 1.195 0.848 1.179 0.949 1.190

$ J 0.760 1.221 1.043 1.243 0.967 1.108 0.951 1.186 0.929 1.056 0.954 1.256 1.045 1.217 0.773 M ,

K 0.832 1.113 1.265 1.001 1.224 0.906 1.097 0.959 1.080 0.894 1.212 0.986 1.258 1.146 0.837 M

L 0.487 1.097 0.994 1.211 0.956 1.218 0.952 1.207 0.951 1.196 0.954 1.207 0.997 1.1(c/ 0.494 M 0.656 1.143 0.872 1.217 0.985 1.235 0.942 1.242 0.980 1.198 0.860 1.134 0.659 M 0.368 0.R15 1.158 1.004 1.248 1.034 1.180 1.029 1.230 1.009 1.141 0.813 0.370 P 0.372 0.662 1.112 1.148 1.221 0.926 1.215 1.144 1.099 0.658 0.373 a 0.497 0.848 0.772 0.857 0.770 0.831 0.488 ,

o V 0'

m f** ee M O T @

m M 9 w we o we m O O O O O O O e we e e e e a e e O O O O O O O B l 8 0 0 8 6 4

W @ S 9 9 @ P* et" m W O M ** N m N O O O O ee N W O O O O O O O O O O O

.= e e e e o e e e e e e e O O O O O O O O O O O W I I I I 9 1 at W e m O N n P= m N @ @ m m a g- m W m m ** O N es ce es N N *e

% O O C C C O O O O O O e m.

e e e e e e e e e e e O. O. e e o O O O O O O O O O O O O O Ina O I 6 4 0 0 D 4 e3

". ce @ N @ W @ m W CD @ C" 9 @ 4 E m M O N O == en se N m @ N == > N I N O O O O O O O O O O O O O **

e *= e e e e e o e e a e e e o m 3 .

L/ O O O O O O O O O O O O O e E a3 5 1 1 I ee 4

V W O N v == m ** trl r* *e T T EL m e taa te sa 9 T N ** N *e se O N m N w O se O > at em O O O O O O O O O O O O O O O O e ,e e e e o e e e e e e e e e a e a N M C O O O O O O O O O O O O "O O 4 e Cr. 8 O I 0 0 I @

w Inl O

>= 2 @ M ** @ N m -@ @ ** W M S @ T E e U T T == ee == ee O N O W W m M O O to O at .O O O O O O O O O O O O O O O O 6 == e e e e e a e e e o e e e o e g C O O O O O O O O O O O O O O O O .J I I B B f I 8 In. If A at

    • U ** N m @ O @ O @ m W 00 m N & W W D M A W N ** == ce O N m N N N m o se Q t= @ O O O O O O O O O O O O O O O @ D w O e e e e e e e e o e e o e e e m t Cr O O O O O O O O O O O O O O O N M C I I 5 I t i B C 2 0.w
  • O e== es e W we @ .4 N P= es @ @ @ ** h O O 4

^O ra m w we N ** m o e == O em N m o ce E mN c3 O O O O O O O O O O O O O O O M E.J O e e e e e e o e e o e e e e e E

.an o w O O O O O O O O O O O O O O O le D eJ N t= 4 1 8 8 8 I l E U we 3 2 M

>= U @ W @ h M @ es N @ N @ w r= w & OM U l= ee W m == == ee o o se c ** N m N O ee M 4 meC .a3 r= 0 0 C O O O O O O O O O O O O pe E ceU E O e e e e e e e e e o e e e o e 4 O- O O O O O O O O O O O O O O M CaJ

>= L 8 8 8 0 0 0 W, Z C > Lea t*

al u ut m e e @ ** w m @ op m e m N r= u O 6 9 9 m N == O O O O N N N N O **

w @ O O O O O O O O O O O O O o O Q e C C e e e e e e e o e o e e e o e g OW C O O O O O O O O O O O O O O as @

O >= 1 1 0 0 $ 1 0 1 Q **

it. at 2 N J N N @ P h M V e N ** N P* m ** ** at O C = W W m ** *e O ** O ** N N N s'a O .* $*

  • Q V e Q O O O O O O O O O O O O O O WO O e e e e o e e t= eJ e e e e e e e e U 4 O O O O O O O O O O O O O O O La:

U U l 0 8 I O I t Z H fa la

  • J

. ll* O W @ @ ** @ v O m m @ O O

&& v N em o o se N m *e m W == eo OW 4 -P O O O O O O O O O O O O O EW 4 to C e e e e e e e e e e e e e 4 3

= 3 O O O O O O O O O O O O O e4 3 6 4 9 I at

  • C C >

ta e @ ** O w c w @ O N O O c @

st C m N N ** O == m se ce N N N ** O Ca:

4 ::; m O O O O O O O O O O O C C O pe M C e e e e e e e e o e e e e O 3 O C O O O O O O O C O O O e w 6 6 I t. 8 O Q 8 M

.2 .e m r= 0 es @ W P= 9 cp 9 =

em m m ** ** O O C O es se N at N O O O O O O O O O O O ll 4 O e o e o e e *

  • e e e la3 l'E O O O O O O O O O O O fn3 3 C 0 0 0 0 4 4 3 la Cr. e3 CL O 9 @ d M N @ 4 6 W N N *= O o O O > Q ee O O O O O O O W O e e e e O

e O

e O

a R 2

> O O O O at =L M i 0 0 1 8 thl La3 H E E

. eg i e3 M tal

tal 4 80 U Q In3 la. U llt*, ') V. e3 E E Q. E E E D= to CE i

FIGURE 14 RELATIVE ERRORS IN ASSEMBLY Fg -

80% F.P.

37

a e

TABLE 9 INTERMEDIATE RANGE / POWER RANGE NIS OVERLAP DATA

- DATE TIME INTERMEDIATE RANGE (A!!PS) THERMAL POWER N35 N36 BEST ESTIMATE (OAC) 12/30/87 1820 9.260E-9 9.330E-9 0.0% F.P.

12/31/87 0014 4.500E-5 4.560E-5 10.0% F.P.

01/01/88 0258 8.350E-5 8.320E-5 20.35% F.P.

01/02/88 1040 9.820E-5 9.850E-5 25.07% F.P.

01/02/88 1325 1.198E-4 1.198E-4 29.68% F P.

01/03/88 1000 2.010E-4 2.010E-4 49.20% F.P.

01/05/88 0432 3.710E-4 3.700E-4 81.11% F.P.

01/06/88 0900 4.480E-4 4.480E-4 99.20% F.P.

t 38

'e '

4.1_ Post Refueling: Incore and NIS Recalibration - PT/1/A/4600/05F This test was conducted as Reactor Power was increased from 50%

F.P. to 80% F.P. Testing was initiated at 0935 on January 3, 1988, and was concluded with the recalibration of the NIS at 2100 on January 4, 1988.

The data acquisition portion of the test required flux' mapping (using a Quarter Core Flux Map pattern qualified per PT/0/A/4150/23)

~

coincident with the recording of Power Range NIS currents at various axial flux' differences during power escalation. The core axial offsets derived from the 50% Full Core Map, the eleven Quarter Core Flux Maps and the associated NIS data were used by the RPECALIB off-line program to generate calibration data for the Excore NIS.

The results of the flux maps are shown on Table 10.

The RPECALIB output (shown on Figure 15) was used by I&E personnel to set the NIS amplifier gains and the axial flux difference function F

of the Overpower AT setpoints in the SSPS. This correlated the excore axial offset indications to the "true" incore axial offsets.

Proper calibration of the affected instrumentation systems was verified per the test procedure and all acceptance criteria were met.

t 1

39

y ,

-o '

,o I ?- '

TABLE 10 t QUARTER CORE FLUX MAP DATA FOR, .

POST REFUELING: INCORE'AND NIS RECALIBRATION

~

MAP ID AVERAGE THERMAL POWER INCORE AXIAL 'JFFSET -

  • FCM/1/03/002 48.92%-F.P. +10.917%

QCM/1/03/003 52.97% F.P. +7.951%

~

QCM/1/03/004 55.62% F.P. +6.403%

QCM/1/03/005 56.80% F.P. +4.849%

QCM/1/03/006 60.91% F.P. +1.819% .

QCM/1/03/007 63.09% F.P. -0.856%

e QCM/1/03/008 64.77% F.P. -

-1.036%

- QCM/1/03/009 66.89% F.P. -3.394%

QCM/1/03/011 73.39% F.P. -5.431% .

QCM/1/03/012 74.50% F.P. -6.365%

- QCM/1/03/013 77.85% F.P. -7.247% ,

QCM/1/03/014 79.94% F.P. -8.102%

r o

r l

  • NOTE: Full Core Flux Map obtained at 50% F.P. to check Incore Tilt.  ;

l-

!. *NOTEi QCM/1/03/010 was not used due to bad Incore Detector Trace Data .

during one of its passes. ,

t j

i e

4

! l 4 l

k 40

. . - - , , , , _ , . , - - - - - , , - , , , , - - - , . - - - - - - . , , , _ .__.________s._-.,,_-m. - - . - - - , _ . - - - . _ , - - - - -

NIGURE15 RPECALIB OUTPUT - NIS RECALIBRATION DATA sll CAL!s9Af!> OATA WOtt14tf CATAWla UN!' Utit I

!wUT SATA WO LEAlt savastl Fif

~

,5 3-41 Cuiltyfl #-42 Ct;tituf 5 s-43 Ctservil u-44 Cuttlef$

nd PMt A0 TOP Lif sof L50 TOP L57 B3T L52 T38 i L$f 807 Ltt for Llf 42f de 1 48.92 19 917 152.0 154.5 133.9 137.7 145 7 147.9 111.7 134 1 139 8 142.1 128.0 tM 4 121.5 121 4 lie 3 !!! t

! St if 7.951 167.3 164.7 154.9 152.9 168.1 157.9 150 t 1491 153 7 131.5 144.7 144 9 131.6 111.7 133.7 132 2

, 3 55.62 6.44 3 172.4 171.5 164.3 162 6 163.3 144.5 1.'.4 150.7 158 4 157.7 115.9 154 2 138.1 117.1 142.3 148 7 4 56 80 4 449 173 9 173.7 169.3 168.2 164.0 164.6 165.3 164.3 168 I 159.7 168 5 159.5 139.1 IN t 144 3 145 7 5 el 91 8.819 182.5 183 2 164.1 164.8 173.3 174 9 Ill.1184 9 167 8 160 5 174.7 171.4 145.9 146.3 159.7 168 3 4 el it 854 187.9 187.0 194.6 191.5 194 6 179.7 199.4 191.7 173.1 171.9 164.7 105.4 150.2 149.1 149 8 169 I

. 64.77 t 934 191.6 191.7 291.4 291.0 183 9 184.4 197.8 197.1 174 2 174.3 191.3 194.8 152.9 til i 173.5 174 6 5 66 99 -1 M4 193 4 195 4 298 I til.4 164.4 198 9 194 5 897.5 177.9 179.7 197.7 294 8 154.1 151.9 191 t 1318 9 73 39 -3.431 213.4 til.9 237 2 233.5 til.6 294.1 233.6 231.5 196.4 194.9 225.4 til I 170.2 169 8 Ite.7195 t il 74 St -6 145 214.7 214 9 241.3 240.0 ft? 8 !$41 237.6 234 7 197 6 196 8 tit.5 tre 8 171.2 179 4 til I 219 7 11 77.85 -7 24T 221.9 222 4 22.32533 til 6 214.4 tot 12491 tot 8 294 6 239.8 246.7 176..t l'7.4 219 8 229 4

!! 71.94 -t 152 227.6 727.1 262 6 161.7 119 3 !!t.1 !!7.9 257.6 299.0 199.9 249.3 240.8 181.1 181.2 221.5 121.1 M $1FFtl[NCE II A!C10 MP1 IEMIN M !#UT CutatNfl AND M LEAlf tt0A8tl Flf ot01!Paf!0s It Al FOLL0v1:

E-41 b42 u-43 s-44 M8 700 001 Pop 80f 700 60f TOP 107 1 t3 -1. 7 -t 2 -1. 3 -2. 3 -2. 4 21 -21 I t.8 f.0 f.4 1. 7 Ii 1.8 19 1.3 3 1.1 t.9 .I 1. 7 .9 1. 7 89 10 4 .1 1.1 .2 10 .3 1.1 .3 .8

$ .7 .5 .7 -9 .7 -7 .4 .6 6 .9 9 .9 11 1.1 -9 .9 .?

7 .7 ..4 .5 .7 -1 .7 -! ..9 8 t.0 -3. 2 - 1. 4 -16 1.0 3.1 -t 4 -29 9 1.1 1. 7 1.5 2.1 1.1 14 1.2 1.7 10 .7 .5 .9 .9 .8 .7 .6 .3 11 1.4 -1. 0 -10 1.0 -1. 0 .9 -1. 3 t 12 .3 .9 .2 .3 .6 .7 .1 .4 C08tELAfl0N COL 7f!C!taf I F00 M NatnAltlit 700 Aug 80ff3n CUHCNil 91 M AI!AL OFFitt 15 Al F3LLM.

e-41 F42 e-43 R-44 708 80f TOP tof 709 P21 f00 301

.9691 .9826 9609 .9859 .9783 .9939 .972) .9843 B0ft: AAD,9Mt.AS, M0 M 100 AWD 007 Cutitwil FOR (ACM 804512T Mt M !PPUT tAtutt il TV!S Pt0Clu.

tnt L57 Aa0 LS8 CutetNil Act M Ltalf Stodtl FIT pect!uf t0a M PtocsM CALCULAftl F:t M Iput PMS Littl 20 AI!AL OFfitt M COMMI50s 0F M Lif A4 L58 Cettuft il M !wyf 70s As0 907 Cutitsfl AAt AN IMO!CAf!04 0F NOW UCLt M 990C825 9001. f!!1 M !*UT TA.

IOUT SATA 20 LEAlf 5KAttl FIT ACCtpftl tf filf C0000!sA100.. . " OAft . FT.

FULL PMI Mit:10e Cattuft (RICIS-A911 C0titiP040!st TO IMIM !sCW AI!AL OFF5til

!#C0tt liittfCf 4-41 OtttCf00 F42 littCTOR b43 MTICf00 u-44 At!AL CFF5tf f 9 I I T t i 9 Ht 347 5 233 4 334 0 823.4 319.5  !!! 7 279.9 til.1 29.0 338 9 tit 5 315.9 250 0 184 3 145 1 '

265 1 222 6 le i 114.3 til 7 301.1 276 1 299.1 168.7 F51.5 344 9

.9 297 8 147.8 fle i Hl.6 273 I 292 t 237 8 267.3 10 1 281.2 3 12 i  !?!.3 3f7 6 258 6 31$ .7 224 1 299.6 l -28 9 364 6 456 i F54 4 352.4 243.4 139.2 fl0 4 311.9

-10 9 det e sig 3 441.3 377.9 til 4 362 7 194.7 334 i n;tul!Zt3 NitCTIA 90LTAGtl (90LTD At taalm tuc0:t AI!AL Drr$ tis

!*CC8C ttitCf 00 P41 Itittf00 u-44 ttitCTCt 5 43 OtttCf04 u-44 A 114'.

Cf Flti  ? 9 T-3 7 8 T-3 7 t Tt i 0 Tt it 8 9 ft 6.37 1 35 9 61 6 !! 3 49 9 73 6 32 3 43 9 77 6 28 3 53 il l 9 26 7 12 2.24 9 ft 4 93 2 27 9.26 6 19 2 !? 9 F9 6 94 4 25 11 8 8 79 7 el 1 12 0 76 7.63 1 13 4 79 7 66 1 11 9 B1 7 63 1 11 9 8 33 8 31 .00 9 31 0 33 .03 8 13 9 33 ft 8 31 l 33 It 19 5 7 17 8 f t 1 12 7 99 9 83 -l 11 7 97 9 il l 13 7 Il 9 il -1 18 23 4 7 48 9 64 ! 24 7 46 9.71 2.2f 7 49 947 227 7.37 f.72 2 35 39 8 69413.29 331 7.88 18.44 -1 44 6941334 340 6.99 18 42 -3 13 AfD INC0tt'tICOtt raf t:$ F:t 30s; tut $ l-4 IUAO 4 taal i Icas I taa) 3 set not R43 444 A4:1 491 a2:1 det nie: 4?! m3 1 413 54't //4M

a A !*tr-[3 If .

eci it:!nt: o 7 A If :et //Y/#

41 L

4 0

4.2 NSSS Thermal Output - PT/1/A/4150/03A This test was used to verify that the Primary and Secondary Heat Balance Programs on the plant computer were consistent with Primary and Secondary Heat Balance Programs on an offline computer. This test was successfully performed at at po'.'er levels of 30%, 50%, 80%

and 100% full power.

The acceptance criteria of 10.1% for the deviation between offline and plant computer secondary heat balance indications was met for all four performances of this test. The acceptance criterion of i 0.5% for the deviation between of fline and plant computer primary heat balance indications was met for a11' performances except for the '

one at 100% F.P. The deviation was 0.5092% for this case. A discrepancy was noted with the plant computer's primary heat balance calculation, resolution of which is pending.

The results of this test are summarized on Table 11.

j l

42

a TABLE 11 NSS3 THERHAL OUTPUI RESULTS Data From 30% F.P. on January 2, 1988 Plant Computer Offline Computer

% F.P.  ;% F.P.

Primary Heat Balance 30.8401% 30.76%

Secondary Heat Balance 29.7297% 29.73%

Data From 50% F.P. on January 3,1988 Plant Computer Offline Computer

% F.P.  % F.P.

  • Primary Heat Balance 51.8481% 52.01%

Secondary Heat Balance 50.0044% 49.98%

Data From 80% F.P. on January 4, 1988 Plant Computer Offline Computer

% F.P.  % f.P.

Primary Heat Balance 82.1182% 81.97%

Secondary Heat Balance 80.3564% 80.37%

Data From 100% F P. on January 7, 1988 Plant Computer Offline Computer

% F.P.  % F.P.

Primary Heat Balance 100.9092% 100.40%

Secondary Heat Balance 99.4082% 99.44%

43

i 4.3 Reactivity Anomaly Calculation - PT/1/A/4150/04 This test was performed at 1100 hours0.0127 days <br />0.306 hours <br />0.00182 weeks <br />4.1855e-4 months <br /> on January 7, 1988 for the purpose of comparing actual core reactivity to design prediction.

The test method involved the correction of Reactor Coolant boron concentration (measured per Chemistry sample) for.the presence of control rods and off-equilibrium Xenon and Samarium worths so that it could be compared to the predicted Full Power, All Rods Out, Equilibrium Xenon / Samarium boron concentration provided by the core design parameters report. No adjustment for power level was required since the test was performed at full power.

The adjusted boron concentration obtained was 1002.6 ppmB. This translated to an error of +163.7 pcm when compared to the design value of 985.0 ppmB, well within the test acceptance criterion of 1000 pcm. Continued surveillance per this procedure will be performed to determine whether or not the design HFP Boron Letdown Curve will require renormalization prior to 60 EFPD per Tech Spec 4.1.1.1.2.

As required by the controlling procedure for Criticality, Zero Power Physics, and Power Escalation Testing, the above design value of 985.0 ppmB was adjusted by the error between the Measured and Theoretical HZP, ARO Critical Boron Concentrations obtained during Zero Power Physics Testing (see Section 3.1 - Boron Endpoint Measurement). Since this error was 30.39 ppmB, adjustment of the Theoretical HFP, ARO Critical Boron Concentration was performed by adding this value to 985.0 ppmB.

The adjusted value of 1015.39 ppmB was determined to be with the required i 50 ppmB of the measured HFP, AR0, Critical Boron Ccncentration of 1002.6 ppmB, the actual error being 12.79 ppmB.

44

4.4 Target Flux Difference Calculation - PT/1/A/4150/0,8 This test was performed an January 8,1988, for the purpose of establishing optimum operating targets fir core axial finx difference with Control Bank D in the dasired position for full power operation. With Control Bank D at 210 steps withdrawn the following AFDs were noted and incorporated as target values for continuing operation:

Quadrant 1 (N-43) -------

+3.22%

Quadrant 2 (N-42) -------

+3.84%

Quadrant 3 (N-44) -------

+3.42%

Quadrant 4 (N-41) -------

+3.31%

45

.. 4.5 Core Power Distribution - PT/1/A/4150/05

, A full core flux map was obtained under this test on January 6,1988, for the purpose of demonstrating compliance with all Power Distribution Tech Specs at full power operation. Table 12 and Figures 16, 17, and 18 cummarize the results of this test. All acceptance criteria were met and continued operation in Relaxed Axial Offset Control (RA0C) Mode was shown to be permissible from Fn analysis, with adequate margi, to the Tech Spec limit shown on Figure 16.

t i

l' l

l l

l t

46 i

t

r__ _- -

e o

TABLE 12 CORE POWER DISTRIBUTION RESULTS 100% FULL POWER FLUX MAP FCM/1/03/016 Date/ Time of Map 01/06/88 at 0929 Reactor Power Level 99.99 % F.P.

Cycle Burnup ,_, 3.12 EFPL (129.79 MWD /MTU)

NC System Boron Conc. 1042 ppmB Control Bank D Position 294 oteps withdrawn Maximum Total F 1.8452 at Axial Loc. 32 9 Horiz. Loc. C-06 Maximum F Z

1.7.169 at Axial Lo 32 Maximum FXi,(unexcluded) 1.5495 at Axial Loc. 13 Horiz. Loc. F-13 Maximum Total F9 /K(Z)_ 1.8515 at Axial Loc. 33 Horiz. Loc. C-06 Minimum Margin to Fn Limits -2.6232 at Axial Loc. 13 Maximum Reduction oY AFD RAOC Wings 0%

Maximum Pin F AH 1.3958 at Horiz. Loc. E-12 Pin # 370 Max. Assembly Error FAH (fr m predicted) ___ 5.90% at Horiz. Loc. C-14 Maximum Calculated "R" 0.9335 Reactor Coolant Flow (OAC Indicated) 396,960 GPM Required Tech Spec Flow for Full Power Operation 396,100 GPM Incore Axial Offsets:

Total Core +0.395%

Quadrant 1 +0.484%

Quadrant 2 +0.026%

Quadrant. 3 +0.433%

Quadrant 4 +0.646%

Incore Tilts:

Upper Core Lower Core Quadrant 1: +1.246% +1.064%

Quadrant 2: +1.735% +2.487%

Quadrant 3: -1.736% -1.811%

Quadrant 4: -1.245% -1.740%

  • NOTE: Axial Loc. 1 it bottom of core, Axial Loc. 61 is top of core.

47 m

e

' ~ ~~

frChEk OISTRIBUTION FACTCRS aufCOMPARISON~TO TECHNICAL'3PECIFICATIONS FOR'F SUS O

'U AEIAL HOR, L F T K(Z) W(2) T Q j y . . . HE ..& . _ % - .. .ISt&oiH ._ItE_ % _. h . .[t88. -. H^init '2"" ..

i x 28 lit E:&! 8:1131 8:3f28 8:91H 1:8888 1:HIf :ll:At:1 e t. 11 .141 . E:18 . 8:H81. ._ 1:H31 8:3111 .1: 2 8 . 134 % 4 211:1132 _ . . .

m , it Bf E:f3 8:1881 1:lill 8:814; i:8888 1:9324 :ll:Hil E! i 11 H3 E:ll 8:8982 1:lHa 8:3132 1:48 8 3:1134 :H:3&H _

if H8 E
ll f
3813 1:1191 2:3t38 1:1131 1:IMI :ll: Hit "i i' 18 US E:ll 1:8243 .1:lill 8:3432 i:lH2 1:H34 :il:H41 .

5 11 H8 i:ll 1:8lli 1:2!H 8:3238 1:1117 1:3H8 :12: tut lt 111 E:1! 1:fl18 1:11H 8:3213 1:1111 1:3131 :ll:3?lt s 21 ut 8:11 1:llis 1:?til 8:3?ll 1:!%!! 1:311: :ll::8M El il  !!! S:ll 1:1H3 1:H38 8:3333 1:1311 1:31H :1:llR e

18 lit 5:5! 1:llli 1:?fH 8:3!38 1:18f1 1:31H :1:till H  !!! S:ll 1:11H 1:llH 8:3113 1:13H 1:3H1 -28:1d21 B: It att 8:11 1:1313 1:8H1 8:3833 1:llil 1:3131  :!:llda ti 11 All 5:81 1:3113 1:1113 8:3333 1:1914 1:3436 :9:8218 9 il til 5:82 1:liti 1:8113 f:3333 1:1431 1:89H :3:litt is 5 18 lit S:82 i:llit 1:5412 1:8888 1:llid 3:8113 :ll:ZiSt

. j;c) 11 itt E:ll 1:1U1 1:1981 1:8888 1:1818 f:813L -28:1111

= ;;;5 it til E:8% 1:1311 .. 1:1312 1:288 1:1911 1:3H3 :t:3188 -

e ,_. 31 138 8:83 1:lili 1:8133 1:8888 1:3112 1: lit? :1:3118 y

e il 138 F:ft 1:1189 _ 1:1343 1:8888 1:llti 1:IHf :3:tHf o 18 138 11 : 8 3 1:1918 1:9111 1:8888 1:3312 1:.lli :2:lli!

il 132 9;ft 1
1111 1
llil 1
8888 1:llu 1:18i1 :1:lill g 12 11 F:ll 1:818: i:22H 1:8888 1:!!!! 1:lt?!  :::!?!!

m 11 111 E:11 1:86H 1:lill 1:8888 1:1111. 1:H18 :1:18si

g  !!  !!8  !,
6 8:3?H 1:11n 1:n88 1:1141 1:t311  :!:Hl!

n

  • , 28 ill S:81 8:3318 1:18t1 1:28 1:12 8 i:lati . ;I: lid 2
g .? 01 n

f:ii r-o n

1.:.2. . .f 1:H18 i.2e s 1:Un i.oaco 1:MU i.oooo 3:13 -

2.nr. :N.:i.?.H

-4 .2 x

5 4% C-06 0.7 % .3021 i.0000 i.000. 2.347s .M 261 1 lit 5:11 8:llii ,:!!93 1:8888 1:8888 1:lili :1?dtti

_; f I lit E:18 8:lill 8:lili 1:88 8 1:888 1:1118 :H:IdEZ 3 NUCLEAR PEAKING FACTORS Mb bZ t UA hWiLS Finb!? I^fPn'.~ H"&ll it2 1;?At'oUind"i"" 22

? In MWLIFth f!a9&4'N 59W r3W#.2i.ir!PfM - " "

LWz"Ft3Hi' '"' "' ^* '"c '2 Ara . u . uc. C-n

l"l:U: lir,W.,LYME%'i!;d s97 -Jsu2"

4 CATAW'3A CCTECTOP 1:1r! (11r.1 T 1 CYCLE 3) J150

'~~

~ilUCLF AR PEAKING FAC70HS FOR ENTHALPY RISE FCR ASS LAGW THE POtfEH UDPM ALIZ A710:1 01 02 03 04 05 06 07 C8 09 to 11 12 13 14 15 A 0.500 0.847 0.776 0.864 0.777 0.857 0.510 M 0.399 1.185 B 0.703 1.17C 1.245 0.960 1.251 1.183 1.155 0.709 0.404 y ,_ , ,. .,

o C 0.392 0.866 1.217 1.057 1.304 1.070 1.225 1.080 1.300 1.056 1.241 0.887 0.404

% D 0.682 1.193 0.952 1.295 1.039 1.294 0.984 1.295 1.033 1.29F 0.975 1.233 0.684 e

> E 0.489 1.112 1.019 1.272 1.006 1.272 0.994 14252 0.982 1.272 1.011 1.307 1.056 1.135 0.999

$2 3 $0 F 0.829 1.138 1.257 1.010 1.260 0.935 1.109 1.012. 1.142 0.953 1.266 1.009 .1.283 1.172 0.848

< l C 0.751 1.204 1.034 1.252 0.968 1.117 0.977 1.240 0.992 1.134 0.961 1.247 1.039 1.227 0.767

,e  ! .-

$ jH 0.829 0.926 1.154 0.951 1.226 0.991 1.234 0.922 1.226 0.960. 1.216 0.943 1.168 0.913 0.851 lJ 0.738 1.195 1.030 1.243 0.974 1.121 0.976 1.228 0.953 1.071 0.958 1.298 1.031 1.199 4.7 94 a ,

E 0.811 1.119 1.243 1.003 1.233 0.917 1.110 0.969 1.086 0.897 1.224 1.007. 1.258 1.129 0.826 y L C.478 1.083 0.991 1.240 0.968 1.226 0.952 1.202 0.943 1.186 0.970 1.240 1.001 1.105 0.492

, ,. . . .y -

M 0.673 1.172 0.923 1.235 0.983 1.230 0.934 1.231 0.977 1.225 0.919 1.161 0.666 18 0.350 n.834 1.168 1.001 1.232 1.022 1.166 1.019~ 't.226' 14466 1.17e -9;999' 4.376

~

P 0.377 0.664 1.099 1.125 1.194 0.906 1.191 1.132 .1.096 0.664 0.377 R 0.487 0.826 0.749 0.831 0.74R O.820 0.484

e e

$ N m Q @ w *P O N N ** ** O O O O O O O O O O O se e a e e a e e C O O O O O C D I I I I e @ == N 6 se e 4 4 cp C

( .O4 N N C se N M C * **

== 0 0 O O O O O O O O O

- e e e e e o e e e e e e o O O O C D C O O O O g I e 0 $ 1 4

a P N N w 6 (E @ O m @ N O e r e e e m O == m N ** == *e se O

% m o O O O O O C C C O

- we O

e C

e O

e O

e O

e O

e O

e C

e C. .. O. C. e e e O O O O O hl t '. 1 I I 4 I D 4 ."2

N P= CD @ w se se N A @ O we N +', 4 E o w N m O N N ee O ce m we e4 p w I N O O O O O O O O O O O O O  !. **

e se e o e e e e o e e o e e e ye i U O O O O O O O O O O O O O O U

== 0 0 1 I se

(, tre @ m @ O O O CD F Os ** 'm F p M M w m M M N m og ee o se e4 e4 N O e4 e4 4

    • O O O O O O O O O O O O O O O e me e e o e o e e e e e e e e *
  • O W O O O O O O O O O O O O 9 O O 4 05 m i 1 1 0 I 1 5 p

G -

  • O l= N og s O O n @ m @ P= *e @ S N N e Q m M N's N N N *e ** m m o m m ** ** O 4 O O O O O O O O O O O O O O O g O.
e. e e e e e e e e e e e L e e e o O O C O O O O O O O O O O O O C e.) I 1 l B I 1 i N O a: .

== Q *P P* N P= W m @ 4 ** O m e P N tz In:

3 se N N N ** O N N O ** N m M m N O Q la e C O O O O O O O O O O O O O O St D w o e e e e e e e e e e e e e o e sol 6e tc C O O O O O O O O O O O O O O Os me O l B B I I I I I O E Ow -e U

-e A ** 4 w *P w P* @ *e 6C W @ CO W N ED G et a O pe m m ee N N w N O == c == N m N O E P% CD O O O O O O O O O O O O O O O m&c o e e e e e e o e e o e e e e e E

.a Ow O O O O O O O O O O O O O O O g O

=e % B* I $ 1 1 0 1 1 I I l E U *e = ese

>= U @ N m P= 0 *e w N m N m W W O 4 >C U be en N N ** =1 N O ** ** ** O N m M N O tes et

  • 46 P= O O O O C O O O O O O O O O O De K me u ys O e e o e e e e e e e o e e o e e O O O O O O O O O O O O O O O MW be 1. I e I I I I 1 8 I l P E
  • C m la

.: ss se og m W O us w & a e P= u w cm w a3 la. N N N N N O O se O e4 ** m m we O ew @ O O O O O O O O O O O O O O O 9 e C O e e e e e e e e e e e e e e e 3

W Q O O n C O O O O O O O O O O es @

O >= I O l i I l i I I O@

C; 4 8 n=e oJ O to w 6 @ O CP O ** N m ** O m @ et O

%O N N M N N e4 O O C ** *e N N ==e O De e e b en O O O O O O O O O O O O O O O E O to J o e e e e o e e e e e e e e o e U et WU C

1 O

1 O

1 O

0 O

I O

1 O O O O O O O O O W E

P.

.J = W eD d S N P= N e O @ 4 N N

> u u w N O O O ** ** N ** ee N ** ** S W3 og =P Q O O O O O O O O O O O O 3 W at ti O e e e e e e e e e e e e o et p 7 m3 O O O O O O O O O O O O O e.3

.4 6 I I I 1 4 s; Q >

ta co e O *e e N CD @ d @ P= D m W 4 e a N wie O e4 N we N N N O O O OW V m O O C O O O O O D C O O O O >*

W o e e e e e e e o e e e e e O p C C O O O O C C C O O O O e eJ 6 8 1 i O C 1 VJ P O en O & N 3 @

  • 4 ad O :D ee m ** O O ** O ** N N O O 4 N O O O O O O O O O O O N W O e e o e e o e e e o e W ft; O O O O O O O O O O O hl Z O I I B e"'l >*
  • T. .3 2 N O O O O N @ 4 im W O O O ** N N N P Q
    • O O O C C C O W O e e e e e e e B 2

> C O O O O O O E 4

. me g W

. De E E et e.3 lea W 4 CQ U Q lel le. U Z *) M m2 K R Q. E E 3

8E N e*

FIGURE 18 RELATIVE ERRORS IN ASSEMBLY F g -

100% F.P.

50

- - ~ ' ' ~ ~ ~ '

Q.

. DUKE POWER GOMPANY

' P.O. BOX 33189 l CHAM 14YrfE, N.C. 98949 - ,,

r.  !

HALB. TUCKER. a retarssows . . ,

' ' was peanimeus (704) 3FMS31 winasa roosse

-April 15, 1988

.s U. S. Nuclear Regulatory Commission At;tention: . Document Control Desk -

Washington, D. C. 20555

Subject:

Catawba Nus' ear Station, Unit I <

Docket No. 50 413 Cycle 3 Startup Report Gentlemen:

In accordance with Section 6.9.1. of the Catawba Nuclear Station Technical Specifications, please find attached the Unit 1 Cycle 3 Startup Report. This report is being submitted due to the installation of Wet Annular Burnable l Absorber (WABA) rods for Unit 1, Cycle 3. Further information regarding WABA

  • rods is provided in WCAP-10021 (Revision 1), Westinghouse Wet Annular Burnable Absorber Evaluation Report.

-Very truly yours,

< # i

/ ' ./ 44

,fygG- f

! Hal B. Tucker l

JGT/10022/sbn r Attachment I xc: be. J. Nelson Grace, Regional Adainistrator _

U. S. Nuclear Regulatory Comission l Rett on II 101.Marietta Street, NW, Suite 2900 3 Atlanta, Georgia 30323 e

Mr. P. K. Van Doorn  :

! NRC Resident Inspector Catawba Nuclear Station t i

+

[

, . . - - - - _ . . - . . . -, - - , , . - , . - - , _ - , - - . - - , _ , ._ - . , . . . - . . .