ML22091A307

From kanterella
Jump to navigation Jump to search
Independent Spent Fuel Storage Installation (Isfsi), Evacuation Time Estimate Study
ML22091A307
Person / Time
Site: Palo Verde  Arizona Public Service icon.png
Issue date: 04/01/2022
From: Bernat S
Arizona Public Service Co
To:
Document Control Desk, Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation
References
102-08421-JF/SMB
Download: ML22091A307 (367)


Text

10 CFR 50, Appendix E 102-08421-JF/SMB Palo Verde April 1, 2022 Nuclear Generating Station 5871 S. Wintersburg Road Tonopah, AZ 85354 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Subject:

Palo Verde Nuclear Generation Station (PVNGS)

Units 1, 2, and 3 and Independent Spent Fuel Storage Installation (ISFSI)

Docket Nos. 50-528, 50-529, 50-530 and 72-44 License Nos. NPF-41, NPF-51 and NPF-74 PVNGS Evacuation Time Estimate Study Pursuant to Part 50, Appendix E of Title 10 of the Code of Federal Regulations (10 CFR) Arizona Public Service Company (APS) hereby submits the Evacuation Time Estimate (ETE) study report for the Palo Verde Nuclear Generating Station (PVNGS) and ISFSI.

The ETE study was completed as required by Section IV of Appendix E to 10 CFR Part 50. The guidance of NUREG CR-7002, Criteria for Development of Evacuation Time Estimate Studies, was used in developing the report. Appendix N of the APS ETE report provides a checklist corresponding to the evaluation criteria in Appendix B of NUREG CR-7002. Each of the NUREG CR-7002, Appendix B, criteria is addressed and cross-references provided to the sections of the report for each applicable criterion.

In accordance with 10 CFR 50.4(b), copies of this report are being forwarded to the NRC Region IV Administrator and the resident inspector. No commitments are being made to the NRC by this letter.

Should you have any questions or if additional information is needed regarding this Submittal, please contact Mr. Shaun M. Bernat, Emergency Preparedness Manager, at 623-393-2588.

Sincerely, Bernat, Shaun Digitally signed by Bernat, Shaun M(Z06433)

M(Z06433) Date: 2022.04.01 13:52:45 -07'00' Shaun M. Bernat Manager, Emergency Preparedness

Enclosure:

Palo Verde Nuclear Generation Station Evacuation Time Estimate Study S. A. Morris NRC Region IV Regional Administrator S. P. Lingam NRC NRR Project Manager for PVNGS L. N. Merker NRC Senior Resident Inspector for PVNGS A member of the STARS Alliance LLC Callaway

  • Diablo Canyon
  • Palo Verde
  • Wolf Creek

Enclosure Palo Verde Nuclear Generation Station Evacuation Time Estimate Study

PaloVerdeNuclearGeneratingStation

DevelopmentofEvacuationTimeEstimates





WorkperformedforArizonaPublicService,by:

KLDEngineering,P.C.

1601VeteransMemorialHighway,Suite340

Islandia,NY11749

Email:kweinisch@kldcompanies.com

February24,2022 FinalReport,Rev.0 KLDTR-1226

TableofContents

1 INTRODUCTION............................................................................................................................... ...11

1.1 OverviewoftheETEProcess......................................................................................................11

1.2 ThePaloVerdeNuclearGeneratingStationLocation...............................................................13

1.3 PreliminaryActivities.................................................................................................................13

1.4 ComparisonwithPriorETEStudy..............................................................................................16

2 STUDYESTIMATESANDASSUMPTIONS.............................................................................................21

2.1 DataEstimateAssumptions.......................................................................................................21

2.2 MethodologicalAssumptions....................................................................................................22

2.3 AssumptionsonMobilizationTimes..........................................................................................23

2.4 TransitDependentAssumptions................................................................................................24

2.5 TrafficandAccessControlAssumptions....................................................................................25

2.6 ScenariosandRegions...............................................................................................................26

3 DEMANDESTIMATION....................................................................................................................... 31

3.1 PermanentResidents.................................................................................................................31

3.2 ShadowPopulation....................................................................................................................32

3.3 TransientPopulation..................................................................................................................33

3.4 Employees............................................................................................................................... ...33

3.5 TransitDependentPopulation...................................................................................................34

3.6 SchoolPopulationDemand........................................................................................................36

3.7 SpecialEvent.............................................................................................................................. 37

3.8 Accessand/orFunctionalNeedsPopulation.............................................................................37

3.9 ExternalTraffic........................................................................................................................... 37

3.10 BackgroundTraffic.....................................................................................................................38

3.11 SummaryofDemand.................................................................................................................38

4 ESTIMATIONOFHIGHWAYCAPACITY................................................................................................41

4.1 CapacityEstimationsonApproachestoIntersections..............................................................42

4.2 CapacityEstimationalongSectionsofHighway........................................................................44

4.3 ApplicationtothePVNGSStudyArea........................................................................................46

4.3.1 TwoLaneRoads............................................................................................................................. 46

4.3.2 MultilaneHighway......................................................................................................................... 46

4.3.3 Freeways............................................................................................................................... .........47

4.3.4 Intersections............................................................................................................................... ...48

4.4 SimulationandCapacityEstimation..........................................................................................48

4.5 BoundaryConditions..................................................................................................................49

5 ESTIMATIONOFTRIPGENERATIONTIME..........................................................................................51

5.1 Background............................................................................................................................... .51

5.2 FundamentalConsiderations.....................................................................................................52

5.3 EstimatedTimeDistributionsofActivitiesPrecedingEvent5...................................................54

5.4 CalculationofTripGenerationTimeDistribution......................................................................55

5.4.1 StatisticalOutliers.......................................................................................................................... 55

5.4.2 StagedEvacuationTripGeneration...............................................................................................57



PaloVerdeNuclearGeneratingStation i KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



5.4.3 TripGenerationforRecreationalAreas.........................................................................................59

6 EVACUATIONCASES........................................................................................................................... 61

7 GENERALPOPULATIONEVACUATIONTIMEESTIMATES(ETE)..........................................................71

7.1 VoluntaryEvacuationandShadowEvacuation.........................................................................71

7.2 StagedEvacuation...................................................................................................................... 72

7.3 PatternsofTrafficCongestionduringEvacuation.....................................................................72

7.4 EvacuationRates........................................................................................................................ 74

7.5 EvacuationTimeEstimateResults.............................................................................................74

7.6 StagedEvacuationResults.........................................................................................................76

7.7 GuidanceonUsingETETables...................................................................................................76

8 TRANSITDEPENDENTANDSPECIALFACILITYEVACUATIONTIMEESTIMATES.................................81

8.1 ETEsforTransitDependentPeople...........................................................................................82

8.2 ETEsforAccessand/orFunctionalNeedsPopulation...............................................................88

9 TRAFFICMANAGEMENTSTRATEGY..................................................................................................91

9.1 Assumptions............................................................................................................................... 92

9.2 AdditionalConsiderations..........................................................................................................92

10 EVACUATIONROUTESANDRECEPTIONCENTERS...........................................................................101

10.1 EvacuationRoutes....................................................................................................................101

10.2 ReceptionandCareCenters....................................................................................................102

A. GLOSSARYOFTRAFFICENGINEERINGTERMS..................................................................................A1

APPENDIXB............................................................................................................................... .................B0

B. DYNAMICTRAFFICASSIGNMENTANDDISTRIBUTIONMODEL.........................................................B1

B.1 OverviewofIntegratedDistributionandAssignmentModel....................................................B1

B.2 InterfacingtheDYNEVSimulationModelwithDTRAD..............................................................B2

B.2.1 DTRADDescription......................................................................................................................... B2

B.2.2 NetworkEquilibrium...................................................................................................................... B4

C. DYNEVTRAFFICSIMULATIONMODEL...............................................................................................C1

C.1 Methodology.............................................................................................................................. C2

C.1.1 TheFundamentalDiagram.............................................................................................................C2

C.1.2 TheSimulationModel....................................................................................................................C2

C.1.3 LaneAssignment............................................................................................................................ C6

C.2 Implementation......................................................................................................................... C6

C.2.1 ComputationalProcedure..............................................................................................................C6

C.2.2 InterfacingwithDynamicTrafficAssignment(DTRAD).................................................................C7

D. DETAILEDDESCRIPTIONOFSTUDYPROCEDURE..............................................................................D1

E. FACILITYDATA............................................................................................................................... .....E1

F. DEMOGRAPHICSURVEY.....................................................................................................................F1

F.1 Introduction............................................................................................................................... F1

F.2 SurveyInstrumentandSamplingPlan.......................................................................................F1



PaloVerdeNuclearGeneratingStation ii KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



F.3 SurveyResults............................................................................................................................ F2

F.3.1HouseholdDemographicResults.......................................................................................................F2

F.3.2EvacuationResponse......................................................................................................................... F3

F.3.3TimeDistributionResults...................................................................................................................F4

G. TRAFFICMANAGEMENTPLAN..........................................................................................................G1

G.1 Roadblocks............................................................................................................................... .G1

G.2 AnalysisofKeyRoadblockLocations........................................................................................G1

H EVACUATIONREGIONS.....................................................................................................................H1

J. REPRESENTATIVEINPUTSTOANDOUTPUTSFROMTHEDYNEVIISYSTEM.....................................J1

K. EVACUATIONROADWAYNETWORK..................................................................................................K1

L. SECTORBOUNDARIES........................................................................................................................ L1

M. EVACUATIONSENSITIVITYSTUDIES.................................................................................................M1

M.1 EffectofChangesinTripGenerationTimes............................................................................M1

M.2 EffectofChangesintheNumberofPeopleintheShadowRegionWhoRelocate.................M1

M.3 EffectofChangesinEPZResidentPopulation.........................................................................M2

N. ETECRITERIACHECKLIST...................................................................................................................N1



Note:AppendixIintentionallyskipped 



PaloVerdeNuclearGeneratingStation iii KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



ListofFigures

Figure11.PaloVerdeNuclearGeneratingStationLocation.................................................................111

Figure12.PVNGSLinkNodeAnalysisNetwork.....................................................................................112

Figure21.VoluntaryEvacuationMethodology.......................................................................................28

Figure31.SectorsComprisingthePVNGSEPZ......................................................................................316

Figure32.PermanentResidentPopulationbySector...........................................................................317

Figure33.PermanentResidentVehiclesbySector...............................................................................318

Figure34.ShadowPopulationbySector...............................................................................................319

Figure35.ShadowVehiclesbySector...................................................................................................320

Figure36.TransientPopulationbySector.............................................................................................321

Figure37.TransientVehiclesbySector.................................................................................................322

Figure38.EmployeePopulationbySector.............................................................................................323

Figure39.EmployeeVehiclesbySector.................................................................................................324

Figure41.FundamentalDiagrams..........................................................................................................410

Figure51.EventsandActivitiesPrecedingtheEvacuationTrip............................................................515

Figure52.TimeDistributionsforEvacuationMobilizationActivities....................................................516

Figure53.ComparisonofDataDistributionandNormalDistribution.......................................................517

Figure54.ComparisonofTripGenerationDistributions.......................................................................518

Figure55.ComparisonofStagedandUnStagedTripGenerationDistributionsinthe2to5MileRegion

............................................................................................................................... ..................................519

Figure61.PVNGSEPZSectors..................................................................................................................68

Figure71.VoluntaryEvacuationMethodology.....................................................................................721

Figure72.PaloVerdeShadowRegion...................................................................................................722

Figure73.CongestionPatternsat30MinutesaftertheAdvisorytoEvacuate....................................723

Figure74.CongestionPatternsat1HouraftertheAdvisorytoEvacuate............................................724

Figure75.CongestionPatternsat1Hourand45MinutesaftertheAdvisorytoEvacuate..................725

Figure76.CongestionPatternsat2Hoursand15MinutesaftertheAdvisorytoEvacuate................726

Figure77.CongestionPatternsat2Hoursand55MinutesaftertheAdvisorytoEvacuate................727

Figure78.EvacuationTimeEstimatesScenario1forRegionR03......................................................728

Figure79.EvacuationTimeEstimatesScenario2forRegionR03......................................................728

Figure710.EvacuationTimeEstimatesScenario3forRegionR03....................................................729

Figure711.EvacuationTimeEstimatesScenario4forRegionR03....................................................729

Figure712.EvacuationTimeEstimatesScenario5forRegionR03....................................................730

Figure713.EvacuationTimeEstimatesScenario6forRegionR03....................................................730

Figure714.EvacuationTimeEstimatesScenario7forRegionR03....................................................731

Figure715.EvacuationTimeEstimatesScenario8forRegionR03....................................................731

Figure716.EvacuationTimeEstimatesScenario9forRegionR03....................................................732

Figure717.EvacuationTimeEstimatesScenario10forRegionR03..................................................732

Figure718.EvacuationTimeEstimatesScenario11forRegionR03..................................................733

Figure719.EvacuationTimeEstimatesScenario12forRegionR03..................................................733

Figure81.ChronologyofTransitEvacuationOperations......................................................................814

Figure101.EvacuationRoute................................................................................................................104

Figure102.TransitDependentBusRoutes...........................................................................................105

Figure103.ReceptionandCareCenters................................................................................................106

FigureB1.FlowDiagramofSimulationDTRADInterface........................................................................B5

FigureC1.RepresentativeAnalysisNetwork.........................................................................................C12



PaloVerdeNuclearGeneratingStation iv KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureC2.FundamentalDiagrams.........................................................................................................C13

FigureC3.AUNITProblemConfigurationwitht1>0............................................................................C13

FigureC4.FlowofSimulationProcessing(SeeGlossary:TableC3)....................................................C14

FigureD1.FlowDiagramofActivities.....................................................................................................D5

FigureE1.Schools,LodgingFacilitiesandMajorEmployerswithintheStudyArea...............................E4

FigureF1.HouseholdSizeintheEPZ.......................................................................................................F5

FigureF2.VehicleAvailability..................................................................................................................F6

FigureF3.VehicleAvailability1to5PersonHouseholds......................................................................F6

FigureF4.VehicleAvailability6to9+PersonHouseholds....................................................................F7

FigureF5.HouseholdRidesharingPreference.........................................................................................F7

FigureF6.CommutersinHouseholdsintheEPZ.....................................................................................F8

FigureF7.ModesofTravelintheEPZ.....................................................................................................F8

FigureF8.CommutersImpactedbyCOVID19........................................................................................F9

FigureF9.NumberofVehiclesUsedforEvacuation...............................................................................F9

FigureF10.PercentofHouseholdsthatAwaitReturningCommuterBeforeLeaving..........................F10

FigureF11.ShelterinPlaceCharacteristics..........................................................................................F10

FigureF12.ShelterthenEvacuateCharacteristics................................................................................F11

FigureF13.TimeRequiredtoPreparetoLeaveWork/College.............................................................F11

FigureF14.Work/CollegetoHomeTravelTime....................................................................................F12

FigureF15.TimetoPrepareHomeforEvacuation................................................................................F12

FigureG1.RoadblocksforthePVNGSSite.............................................................................................G4

FigureH1.RegionR01............................................................................................................................. H4

FigureH2.RegionR02............................................................................................................................. H5

FigureH3.RegionR03............................................................................................................................. H6

FigureH4.RegionR04............................................................................................................................. H7

FigureH5.RegionR05............................................................................................................................. H8

FigureH6.RegionR06............................................................................................................................. H9

FigureH7.RegionR07........................................................................................................................... H10

FigureH8.RegionR08........................................................................................................................... H11

FigureH9.RegionR09........................................................................................................................... H12

FigureH10.RegionR10......................................................................................................................... H13

FigureH11.RegionR11......................................................................................................................... H14

FigureH12.RegionR12......................................................................................................................... H15

FigureH13.RegionR13......................................................................................................................... H16

FigureH14.RegionR14......................................................................................................................... H17

FigureH15.RegionR15......................................................................................................................... H18

FigureH16.RegionR16......................................................................................................................... H19

FigureH17.RegionR17......................................................................................................................... H20

FigureH18.RegionR18......................................................................................................................... H21

FigureH19.RegionR19......................................................................................................................... H22

FigureH20.RegionR20......................................................................................................................... H23

FigureH21.RegionR21......................................................................................................................... H24

FigureH22.RegionR22......................................................................................................................... H25

FigureH23.RegionR23......................................................................................................................... H26

FigureH24.RegionR24......................................................................................................................... H27

FigureH25.RegionR25......................................................................................................................... H28

FigureH26.RegionR26......................................................................................................................... H29



PaloVerdeNuclearGeneratingStation v KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH27.RegionR27......................................................................................................................... H30

FigureH28.RegionR28......................................................................................................................... H31

FigureH29.RegionR29......................................................................................................................... H32

FigureH30.RegionR30......................................................................................................................... H33

FigureH31.RegionR31......................................................................................................................... H34

FigureH32.RegionR32......................................................................................................................... H35

FigureH33.RegionR33......................................................................................................................... H36

FigureH34.RegionR34......................................................................................................................... H37

FigureH35.RegionR35......................................................................................................................... H38

FigureH36.RegionR36......................................................................................................................... H39

FigureH37.RegionR37......................................................................................................................... H40

FigureH38.RegionR38......................................................................................................................... H41

FigureH39.RegionR39......................................................................................................................... H42

FigureH40.RegionR40......................................................................................................................... H43

FigureH41.RegionR41......................................................................................................................... H44

FigureH42.RegionR42......................................................................................................................... H45

FigureH43.RegionR43......................................................................................................................... H46

FigureH44.RegionR44......................................................................................................................... H47

FigureH45.RegionR45......................................................................................................................... H48

FigureH46.RegionR46......................................................................................................................... H49

FigureH47.RegionR47......................................................................................................................... H50

FigureH48.RegionR48......................................................................................................................... H51

FigureH49.RegionR49......................................................................................................................... H52

FigureH50.RegionR50......................................................................................................................... H53

FigureH51.RegionR51......................................................................................................................... H54

FigureH52.RegionR52......................................................................................................................... H55

FigureJ1.NetworkSources/Origins..........................................................................................................J4

FigureJ2.ETEandTripGeneration:Summer,Midweek,Midday,GoodWeather(Scenario1)..............J5

FigureJ3.ETEandTripGeneration:Summer,Weekend,Midday,Rain(Scenario2)..............................J5

FigureJ4.ETEandTripGeneration:Summer,Weekend,Midday,GoodWeather(Scenario3)..............J6

FigureJ5.ETEandTripGeneration:Summer,Midweek,Midday,Rain(Scenario4)...............................J6

FigureJ6.ETEandTripGeneration:Summer,Midweek,Weekend,Evening,GoodWeather(Scenario5)

............................................................................................................................... ....................................J7

FigureJ7.ETEandTripGeneration:Winter,Midweek,Midday,GoodWeather(Scenario6)................J7

FigureJ8.ETEandTripGeneration:Winter,Midweek,Midday,Rain(Scenario7).................................J8

FigureJ9.ETEandTripGeneration:Winter,Weekend,Midday,GoodWeather(Scenario8)................J8

FigureJ10.ETEandTripGeneration:Winter,Weekend,Midday,Rain(Scenario9)...............................J9

FigureJ11.ETEandTripGeneration:Winter,Midweek,Weekend,Evening,GoodWeather(Scenario

10)............................................................................................................................... ...............................J9

FigureJ12.ETEandTripGeneration:Winter,Midweek,Midday,GoodWeather,SpecialEvent(Scenario

11)............................................................................................................................... .............................J10

FigureJ13.ETEandTripGeneration:Summer,Midweek,Midday,GoodWeather,RoadwayImpact

(Scenario12)............................................................................................................................... .............J10

FigureK1.PVNGSLinkNodeAnalysisNetwork.......................................................................................K2

FigureK2.LinkNodeAnalysisNetwork-Grid1.....................................................................................K3

FigureK3.LinkNodeAnalysisNetwork-Grid2.....................................................................................K4

FigureK4.LinkNodeAnalysisNetwork-Grid3.....................................................................................K5



PaloVerdeNuclearGeneratingStation vi KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK5.LinkNodeAnalysisNetwork-Grid4.....................................................................................K6

FigureK6.LinkNodeAnalysisNetwork-Grid5.....................................................................................K7

FigureK7.LinkNodeAnalysisNetwork-Grid6.....................................................................................K8

FigureK8.LinkNodeAnalysisNetwork-Grid7.....................................................................................K9

FigureK9.LinkNodeAnalysisNetwork-Grid8...................................................................................K10

FigureK10.LinkNodeAnalysisNetwork-Grid9.................................................................................K11

FigureK11.LinkNodeAnalysisNetwork-Grid10...............................................................................K12

FigureK12.LinkNodeAnalysisNetwork-Grid11...............................................................................K13

FigureK13.LinkNodeAnalysisNetwork-Grid12...............................................................................K14

FigureK14.LinkNodeAnalysisNetwork-Grid13...............................................................................K15

FigureK15.LinkNodeAnalysisNetwork-Grid14...............................................................................K16

FigureK16.LinkNodeAnalysisNetwork-Grid15...............................................................................K17

FigureK17.LinkNodeAnalysisNetwork-Grid16...............................................................................K18

FigureK18.LinkNodeAnalysisNetwork-Grid17...............................................................................K19

FigureK19.LinkNodeAnalysisNetwork-Grid18...............................................................................K20

FigureK20.LinkNodeAnalysisNetwork-Grid19...............................................................................K21

FigureK21.LinkNodeAnalysisNetwork-Grid20...............................................................................K22

FigureK22.LinkNodeAnalysisNetwork-Grid21...............................................................................K23

FigureK23.LinkNodeAnalysisNetwork-Grid22...............................................................................K24

FigureK24.LinkNodeAnalysisNetwork-Grid23...............................................................................K25

FigureK25.LinkNodeAnalysisNetwork-Grid24...............................................................................K26

FigureK26.LinkNodeAnalysisNetwork-Grid25...............................................................................K27

FigureK27.LinkNodeAnalysisNetwork-Grid26...............................................................................K28

FigureK28.LinkNodeAnalysisNetwork-Grid27...............................................................................K29

FigureK29.LinkNodeAnalysisNetwork-Grid28...............................................................................K30

FigureK30.LinkNodeAnalysisNetwork-Grid29...............................................................................K31

FigureK31.LinkNodeAnalysisNetwork-Grid30...............................................................................K32

FigureL1.PVNGSSectors......................................................................................................................... L2





 



PaloVerdeNuclearGeneratingStation vii KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



ListofTables

Table11.StakeholderInteraction...........................................................................................................17

Table12.HighwayCharacteristics...........................................................................................................17

Table13.ETEStudyComparisons............................................................................................................18

Table21.EvacuationScenarioDefinitions...............................................................................................27

Table22.ModelAdjustmentforAdverseWeather.................................................................................27

Table31.EPZPermanentResidentPopulation.......................................................................................39

Table32.PermanentResidentPopulationandVehiclesbySector.......................................................310

Table33.ShadowPopulationGrowthRate...........................................................................................310

Table34.ShadowPopulationandVehiclesbySector...........................................................................311

Table35.SummaryofTransientsandTransientVehicles.....................................................................311

Table36.SummaryofEmployeesandEmployeeVehiclesCommutingintotheEPZ............................312

Table37.TransitDependentPopulationEstimates...............................................................................312

Table38.SchoolPopulationDemandEstimates....................................................................................313

Table39.Accessand/orFunctionalNeedsDemandSummary..............................................................313

Table310.PVNGSEPZExternalTraffic...................................................................................................313

Table311.SummaryofPopulationDemand.........................................................................................314

Table312.SummaryofVehicleDemand................................................................................................315

Table51.EventSequenceforEvacuationActivities..............................................................................510

Table52.TimeDistributionforNotifyingthePublic.............................................................................510

Table53.TimeDistributionforEmployeestoPreparetoLeaveWork.................................................511

Table54.TimeDistributionforCommuterstoTravelHome................................................................511

Table55.TimeDistributionforPopulationtoPreparetoLeaveHome................................................512

Table56.MappingDistributionstoEvents............................................................................................512

Table57.DescriptionoftheDistributions.............................................................................................512

Table58.TripGenerationHistogramsfortheEPZPopulationforUnStagedEvacuation....................513

Table59.TripGenerationHistogramsfortheEPZPopulationforStagedEvacuation.........................514

Table61.DescriptionofEvacuationRegions...........................................................................................63

Table62.EvacuationScenarioDefinitions...............................................................................................65

Table63.PercentofPopulationGroupsEvacuatingforVariousScenarios............................................66

Table64.VehicleEstimatesbyScenario..................................................................................................67

Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation...........................79

Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation.......................712

Table73.TimetoClear90Percentofthe2MileRegionwithintheIndicatedRegion........................715

Table74.TimetoClear100Percentofthe2MileRegionwithintheIndicatedRegion......................717

Table75.DescriptionofEvacuationRegions.........................................................................................719

Table81.SummaryofTransportationResource....................................................................................810

Table82.SchoolEvacuationTimeEstimatesGoodWeather...............................................................811

Table83.SchoolEvacuationTimeEstimatesRain...............................................................................811

Table84.TransitDependentEvacuationTimeEstimatesGoodWeather...........................................812

Table85.TransitDependentEvacuationTimeEstimatesRain............................................................812

Table86.Accessand/orFunctionalNeedsPopulationEvacuationTimeEstimates..............................813

Table87.Accessand/orFunctionalNeedsPopulationEvacuationTimeEstimates-SecondWavefor

BusesandParatransitVehicles................................................................................................................813

Table101.SummaryofTransitDependentBusRoutes.........................................................................103

Table102.BusRouteDescriptions.........................................................................................................103



PaloVerdeNuclearGeneratingStation viii KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Table103.SchoolReceptionandCareCenters......................................................................................103

TableA1.GlossaryofTrafficEngineeringTerms....................................................................................A1

TableC1.SelectedMeasuresofEffectivenessOutputbyDYNEVII........................................................C8

TableC2.InputRequirementsfortheDYNEVIIModel...........................................................................C9

TableC3.Glossary............................................................................................................................... ...C10

TableE1.SchoolswithintheStudyArea.................................................................................................E2

TableE2.MajorEmployerswithintheEPZ..............................................................................................E2

TableE3.LodgingFacilitieswithintheEPZ..............................................................................................E3

TableF1.PVNGSDemographicSurveySamplingPlan.............................................................................F5

TableG1.ListofKeyRoadblockLocations...............................................................................................G3

TableH1.PercentofSectorPopulationEvacuatingforEachRegion.....................................................H2

TableJ1.SampleSimulationModelInput................................................................................................J2

TableJ2.SelectedModelOutputsfortheEvacuationoftheEntireEPZ(RegionR03)............................J2

TableJ3.AverageSpeed(mph)andTravelTime(min)forMajorEvacuationRoutes(RegionR03,

Scenario1)............................................................................................................................... ..................J3

TableJ4.SimulationModelOutputsatNetworkExitLinksforRegionR03,Scenario1..........................J3

TableK1.SummaryofNodesbytheTypeofControl...............................................................................K1

TableM1.EvacuationTimeEstimatesforTripGenerationSensitivityStudy.......................................M4

TableM2.EvacuationTimeEstimatesforShadowSensitivityStudy....................................................M4

TableM3.EvacuationTimeEstimatesforVariationwithPopulationChange......................................M4

TableN1.ETEReviewCriteriaChecklist.................................................................................................N1











PaloVerdeNuclearGeneratingStation ix KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



ACRONYMLIST

Table1.AcronymList

ACRONYM DEFINITION

AADT AverageAnnualDailyTraffic

ACP AccessControlPoint

ADEMA ArizonaDepartmentofEmergency&MilitaryAffairs

ANS AlertandNotificationSystem

APS ArizonaPublicService

ASLB AtomicSafetyandLicensingBoard

ATE AdvisorytoEvacuate

ATIS AutomatedTravelerInformationSystems

AZDOT ArizonaDepartmentofTransportation

BFFS BaseFreeFlowSpeed

CR CountyRoad

COVID19 CoronavirusDisease2019

D Destination

DDHV DirectionalDesignHourlyVolume

DHV DesignHourVolume

DMS DynamicMessageSign

DTA DynamicTrafficAssignment

DTRAD DynamicTrafficAssignmentandDistribution

DYNEV DynamicNetworkEvacuation

EAS EmergencyAlertSystem

EOC EmergencyOperationsCenter

EPZ EmergencyPlanningZone

EPFAQ EmergencyPlanningFrequentlyAskedQuestion

ETE EvacuationTimeEstimate

EVAN EvacuationAnimator

EMA EmergencyManagementAgency

FEMA FederalEmergencyManagementAgency

FFS FreeFlowSpeed

FHWA FederalHighwayAdministration

GIS GeographicInformationSystem

HAR HighwayAdvisoryRadio

HCM HighwayCapacityManual

HH Household

HPMS HighwayPerformanceMonitoringSystem

I Interstate

ITS IntelligentTransportationSystems



PaloVerdeNuclearGeneratingStation AL1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ACRONYM DEFINITION

LOS LevelofService

MCDEM MaricopaCountyDepartmentEmergency

MOE MeasuresofEffectiveness

mi miles

min minutes

mph MilesPerHour

MUTCD ManualofUniformTrafficControlDevices

MTC ManualTrafficControl

NB Northbound

NOAA TheNationalOceanicandAtmosphericAdministration

NRC UnitedStatesNuclearRegulatoryCommission

O Origin

OD OriginDestination

ORO OffsiteResponseOrganization

PAR ProtectiveActionRecommendation

pce PassengerCarEquivalent

pcphpl passengercarperhourperlane

PSL PathSizeLogit

PVNGS PaloVerdeNuclearGeneratingStation

QDF QueueDischargeFlow

RCC ReceptionandCareCenter

RS RelocationSchool

SH StateHighway

SR StateRoute

SV ServiceVolume

TA TrafficAssignment

TCP TrafficControlPoint

TD TripDistribution

TI TimeInterval

TMP TrafficManagementPlan

UNITES UnifiedTransportationEngineeringSystem

USDOT UnitedStatesDepartmentofTransportation

vph VehiclesPerHour

vpm VehiclesPerMinute





PaloVerdeNuclearGeneratingStation AL2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EXECUTIVE

SUMMARY



Thisreportdescribestheanalysesundertakenandtheresultsobtainedbyastudytodevelop

EvacuationTimeEstimates(ETE)forthePaloVerdeNuclearGeneratingStation(PVNGS)located

inMaricopaCounty,Arizona.ETEarepartoftherequiredplanningbasisandprovideArizona

Public Service Company (APS) and state and local governments with sitespecific information

neededforProtectiveActiondecisionmaking.

In the performance of this effort, guidance is provided by documents published by Federal

Governmentalagencies.Mostimportantoftheseare:

x Title 10, Code of Federal Regulations, Appendix E to Part 50 (10CFR50), Emergency

PlanningandPreparednessforProductionandUtilizationFacilities,NRC,2011.

x Emergency Planning and Preparedness for Production and Utilization Facilities,

10CFR50,AppendixE.

x Revision 1 of the Criteria for Development of Evacuation Time Estimate Studies,

NUREG/CR7002,February2021.

x FEMA Radiological Emergency Preparedness Program Manual (FEMA P1028),

December2019 

x DevelopmentofEvacuationTimeEstimatesforNuclearPowerPlants,NUREG/CR6863,

January2005.

ProjectActivities

This project began in October 2020 and extended over a period of 15 months. The major

activitiesperformedarebrieflydescribedinchronologicalsequence:

x ConductedavirtualkickoffmeetingwithAPSpersonnelandemergencymanagement

personnelrepresentingstateandcountygovernments.

x AccessedtheU.S.CensusBureaudatafilesfortheyear2020projectedto2021aswell

asthe2021populationdatacollectedbyMaricopaCounty.

x ObtainedtheestimatesofemployeeswhoresideoutsidetheEPZandcommutetowork

withintheEPZfromAPS.

x Studied Geographic Information Systems (GIS) maps of the area in the vicinity of the

PVNGS,thenconductedadetailedfieldsurveyofthehighwaynetworktoobserveany

roadwaychangesrelativetothepreviousETEstudydonein2011.

x Updatedtheanalysisnetworkrepresentingthehighwaysystemtopologyandcapacities

within the Emergency Planning Zone (EPZ), plus a Shadow Region covering the region

betweentheEPZboundaryand15milesradiallyfromtheplant.



PaloVerdeNuclearGeneratingStation ES1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

x ConductedarandomsampleonlinedemographicsurveyofresidentswithintheEPZto

gather focused data needed for this ETE study that were not contained within the

censusdatabase.Thesurveyinstrumentwasreviewedandmodifiedbythelicenseeand

offsiteresponseorganization(ORO)personnelpriortothesurvey.

x A data needs matrix was provided to APS and the offsite agencies at the kickoff

meeting. Available data was provided for major employers, transients, and schools in

MaricopaCountybyAPSandMaricopaCountyDepartmentofEmergencyManagement

(MCDEM).

x The traffic demand and tripgeneration rates of evacuating vehicles were estimated

fromthegathereddata.Thetripgenerationratesreflectedtheestimatedmobilization

time(i.e.,thetimerequiredbyevacueestopreparefortheevacuationtrip)computed

usingtheresultsofthedemographicsurveyoftheEPZresidents.

x Following federal guidelines, the existing 145 Sectors within the EPZ were grouped

withincircularareasorkeyholeconfigurations(circlesplusradialsectors)thatdefinea

totalof52EvacuationRegions(numberedR01throughR52).

x ThetimevaryingexternalcircumstancesarerepresentedasEvacuationScenarios,each

described in terms of the following factors: (1) Season (Summer, Winter); (2) Day of

Week(Midweek,Weekend);(3)TimeofDay(Midday,Evening);and(4)Weather(Good,

Rain).OnespecialeventscenarioinvolvinganOutageatthePlantwasconsidered.One

roadwayimpactscenariowasconsideredwhereinasinglelanewasclosedonInterstate

(I)10eastbound(fromSWintersburgRd(Exit98)totheinterchangewithStateHighway

85(Exit112))forthedurationoftheevacuation.

x Staged evacuation was considered for those Regions wherein the 2Mile Region and

Sectorsdownwindto5milesareevacuated.

x AsperNUREG/CR7002,Rev1,thePlanningBasisforthecalculationofETEis:

A rapidly escalating accident at the plant that quickly assumes the status of a

general emergency wherein evacuation is ordered promptly and no early

protective actions have been implemented such that the Advisory to Evacuate

(ATE)isvirtuallycoincidentwiththesirenalert.

Whileanunlikelyaccidentscenario,thisplanningbasiswillyieldETE,measured

astheelapsedtimefromtheATEuntilthestatedpercentageofthepopulation

exits the impacted Region, that represent upper bound estimates. This

conservativePlanningBasisisapplicableforallinitiatingevents.

x If the emergency occurs while schools are in session, the ETE study assumes that the

children will be evacuated by bus directly to the reception and care centers located

outside the EPZ. Parents, relatives, and neighbors are advised to not pick up their

childrenatschoolpriortothearrivalofthebusesdispatchedforthatpurpose.TheETE

forschoolchildrenarecalculatedseparately.



PaloVerdeNuclearGeneratingStation ES2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

x Evacuees who do not have access to a private vehicle will either rideshare with

relatives, friends or neighbors, or be evacuated by buses provided as specified in the

county evacuation plan. Separate ETE are calculated for the transitdependent

evacuees,andforaccessand/orfunctionalneedspopulation.

ComputationofETE

Atotalof624ETEwerecomputedfortheevacuationofthegeneralpublic.EachETEquantifies

the aggregate evacuation time estimated for the population within one of the 52 Evacuation

Regions to evacuate from that Region, under the circumstances defined for one of the 12

Evacuation Scenarios (52 x 12 = 624). Separate ETE are calculated for transitdependent

evacuees,includingschoolchildrenforapplicablescenarios.

ExceptforRegionR03,whichistheevacuationoftheentireEPZ,onlyaportionofthepeople

within the EPZ would be advised to evacuate. That is, the ATE applies only to those people

occupyingthespecifiedimpactedregion.Itisassumedthat100percentofthepeoplewithin

theimpactedregionwillevacuateinresponsetotheATE.Thepeopleoccupyingtheremainder

oftheEPZoutsidetheimpactedregionmaybeadvisedtotakeshelter.

The computation of ETE assumes that 20% of the population within the EPZ but outside the

impactedregion,willelecttovoluntarilyevacuate.Inaddition,20%ofthepopulationinthe

ShadowRegionwillalsoelecttoevacuate.Thesevoluntaryevacueescouldimpedethosewho

are evacuating from within the impacted region. The impedance that could be caused by

voluntaryevacueesisconsideredinthecomputationofETEfortheimpactedregion.

Staged evacuation is considered wherein those people within the 2Mile Region evacuate

immediately,whilethosebeyond2miles,butwithintheEPZ,shelterinplace.Once90%ofthe

2Mile Region is evacuated, those people beyond 2 miles begin to evacuate. As per federal

guidance,20%ofpeoplebeyond2mileswillevacuate(noncompliance)eventhoughtheyare

advisedtoshelterinplaceduringastagedevacuation.

Thecomputationalprocedureisoutlinedasfollows:

x A linknode representation of the highway network is coded. Each link represents a

unidirectionallengthofhighway;eachnodeusuallyrepresentsanintersectionormerge

point.Thecapacityofeachlinkisestimatedbasedonthefieldsurveyobservationsand

onestablishedtrafficengineeringprocedures.

x Theevacuationtripsaregeneratedatlocationscalledzonalcentroidslocatedwithin

the EPZ and Shadow Region. The trip generation rates vary over time reflecting the

mobilization process, and from one location (centroid) to another depending on

populationdensityandonwhetheracentroidiswithin,oroutside,theimpactedarea.

x The evacuation model computes the routing patterns for evacuating vehicles that are

compliantwithfederalguidelines(outboundrelativetothelocationoftheplant),and

thensimulatethetrafficflowmovementsoverspaceandtime.Thissimulationprocess

estimatestheratethattrafficflowexitstheimpactedregion.







PaloVerdeNuclearGeneratingStation ES3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TheETEstatisticsprovidetheelapsedtimesfor90%and100%,respectively,ofthepopulation

withintheimpactedregion,toevacuatefromwithintheimpactedregion.Thesestatisticsare

presentedintabularandgraphicalformats.The90thpercentileETEhavebeenidentifiedasthe

values that should be considered when making protective action decisions because the 100th

percentileETEareprolongedbythoserelativelyfewpeoplewhotakelongertomobilize.Thisis

referredtoastheevacuationtailinSection4.0ofNUREG/CR7002,Rev.1.

TrafficManagement

This study reviewed and analyzed the comprehensive existing traffic management plan

provided by Maricopa County. Due to the location of traffic congestion within the EPZ, the

implementationofRoadblocksdidnotimpactthe90thor100thpercentileETE.Thus,thisstudy

didnotmodeltheRoadblockswithintheEPZ,exceptforthoselocatedonI10astheyserveto

discouragetheexternalexternaltrafficfromenteringI10.RefertoSection9andAppendixG.

SelectedResults

A compilation of selected information is presented on the following pages in the form of

FiguresandTablesextractedfromthebodyofthereport;thesearedescribedbelow.

x Table31presentstheestimatesofpermanentresidentpopulationineachSectorbased

on2021populationdataprovidedbyMCDEM.

x Table61defineseachofthe52EvacuationRegionsintermsoftheirrespectivegroups

ofSectors.

x Table62definestheEvacuationScenarios.

x Tables71and72arecompilationsofETE.Thesedataarethetimesneededtoclearthe

indicated regions of 90 and 100 percent of the population occupying these regions,

respectively. These computed ETE include consideration of mobilization time and of

estimated voluntary evacuations from other regions within the EPZ and from the

ShadowRegion.

x Tables 73 and 74 present ETE for the 2Mile Region, when evacuating additional

Sectors downwind to 5 miles for unstaged and staged evacuations for the 90th and

100thpercentiles,respectively.

x Table82presentsETEfortheschoolchildreningoodweather.

x Table84presentsETEforthetransitdependentpopulationingoodweather.

x Figure61displaysamapofthePVNGSEPZshowingthelayoutofthe145Sectorsthat

comprise,inaggregate,theEPZ.

x FigureH8presentsanexampleofanEvacuationRegion(RegionR08)tobeevacuated

under the circumstances defined in Table 61. Maps of all Regions are provided in

AppendixH.





PaloVerdeNuclearGeneratingStation ES4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Conclusions

x General population ETE were computed for 624 unique cases - a combination of 52

uniqueEvacuationRegionsand12uniqueEvacuationScenarios.Table71andTable72

document these ETE for the 90th and 100th percentiles. The 90th percentile ETE range

from2:05(hr:min)to3:10.The100thpercentileETErangefrom5:45to5:55.

x ThecomparisonofTable71andTable72indicatesthattheETEforthe100thpercentile

are significantly longer than those for the 90th percentile. This is the result of the

congestion within PVNGS and those accessing I10 within the EPZ. When the system

becomes congested traffic exist the EPZ at rates somewhat below capacity until some

evacuation routes have cleared. As more route clear, and the last of the permanent

residentsmobilize,theaggregaterateofegressslowssincemanyvehicleshavealready

left the EPZ. Towards the end of the process, relatively few evacuation routes service

the remaining demand. Congestion clears, however, before the completion of thetrip

generationtime.Asaresult,the100thpercentileETEisdictatedbythetimeneededto

mobilize.SeeSections7.3through7.5andSeeFigures73through719.

x Traffic congestion exists within PVNGS and those trying to access I10 on S 399th

AvenueandSSalomeHighway(eastoftheplant).AllcongestionwithintheEPZclears

by2hourand55minutesaftertheATE.SeeSection7.3andFigures73through77.

x Inspection of Table 73 and Table 74 indicates that a staged evacuation provides no

benefitstoevacueesfromwithinthe2MileRegion(compareRegionsR02,R04through

R19withRegionsR36throughR52,respectively,inTables71and72).SeeSection7.6

foradditionaldiscussion.

x The comparison of Scenarios 6 (winter, midweek, midday) and 11 (winter, midweek,

midday)inTable71andTable72indicatesthatthespecialevent(outageatPVNGS)

has a significant impact on the 90th percentile ETE for the 2Mile Region (Region R01)

and keyhole regions with wind from the north, west and southwest. The additional

employee vehicles increase the 90th percentile ETE by up to 40 minutes and has no

impacttothe100thpercentileETE.SeeSection7.5foradditionaldiscussion.

x ComparisonofScenarios1and12inTable71indicatesthattheroadwayclosure-one

lane eastbound on I10 from the interchange with S Wintersburg Rd (Exit 98) to the

interchangewithStateHighway85(Exit112)hasnoimpactonthe90thpercentileETE

for all Regions except for Region R03. During an evacuation of the full EPZ, the 90th

percentileETEincreasesby25minutes.Thereisnoimpacttothe100thpercentileETE,

asthetripgeneration(plusthetraveltimetotheEPZboundary)dictatestheETE.See

Section7.5foradditionaldiscussion.

x SeparateETEwerecomputedforschools,transitdependentpersonsandaccessand/or

functional needs persons. The average singlewave ETE for schools is 2 hours and 5

minuteslessthanthegeneralpopulation90thpercentileETE;theaveragesinglewave

ETE for the transitdependent and access and/or functional needs people are longer

thanthegeneralpopulationETEatthe90thpercentileby50minutesand2hoursand30

minutes,respectively.SeeSection8.



PaloVerdeNuclearGeneratingStation ES5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

x Table81indicatesthattherearenotenoughbusesandparatransitvehiclesavailableto

evacuate the transitdependent and access and/or functional needs population within

theEPZinasinglewave.Asecondwaveisnecessaryforschools,transitdependentand

accessand/orfunctionalneedspopulation.SeeSection8.

x A reduction in the base trip generation time of 4 hours and 45 minute reduces the

generalpopulationETEatthe90thpercentileby30minutes.Anincreaseinmobilization

timeby1hourincreasethe90thpercentileETEby1hour.Thegeneralpopulation100th

percentileETEreducesby1hourandincreasesby1hourwhenthetripmobilizationis

reducedandincreased,respectively.SeeAppendixMandTableM1.

x ThegeneralpopulationETEisinsensitivetothevoluntaryevacuationofvehiclesinthe

ShadowRegion(Eliminatingtheshadowevacuation(0%)hasnoimpacttothe90thand

100th percentile ETEs. Tripling the shadow evacuation percentage (60%) increase the

90th percentile ETE by 5 minutes and has no impact to the 100th percentile ETE). See

AppendixMandTableM2.

x An increase in permanent resident population (EPZ plus Shadow Region) of 143% or

greaterresultsinanincreaseinthelongest90thpercentileETEof30minutes,forthefull

EPZ(RegionR03),whichmeetsthefederalcriterionforperformingafullyupdatedETE

studybetweendecennialCensuses.SeeAppendixMandTableM3.







PaloVerdeNuclearGeneratingStation ES6 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table31.EPZPermanentResidentPopulation

Sector 2011Population1 2021Population2

1MileRing 41 24

3 1,714 1,951

A

B 1,566 1,398

C 1,493 1,324

D 2,939 1,490

E 1,120 893

F 923 585

G 475 420

H 157 68

J 30 0

K 7 6

L 60 35

M 94 99

N 21 4

P 0 0

Q 590 384

R 1,244 1,031

EPZTOTAL 12,474 9,712

EPZPopulationGrowth(2011-2021): 22.14%







1 Maricopa County Palo Verde Population Survey - Residents, December 2011 2

Maricopa County Palo Verde Population Survey - Residents, September 2021 3

Stage Stop RV Park is located in Sector A. The population at this facility is assumed to be included with the permanent resident population due to the large population reported within Sector A between 2 and 3 miles of the plant and presence of electrical hook-ups at the facility.



PaloVerdeNuclearGeneratingStation ES7 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table61.DescriptionofEvacuationRegions

RadialRegions Sector 2Mile A B C D E F G H J K L M N P Q R PVNGS Region Description Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R01 2MileRegion X X R02 5MileRegion X X X X X X X X X X X X X X X X X X R03 FullEPZ X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Evacuate2MileRegionandDownwindto5Miles Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R04 S X X X X X R05 SSW X X X X X R06 SW X X X X X R07 WSW X X X X X R08 W X X X X X R09 WNW X X X X X R10 NW X X X X X R11 NNW X X X X X R12 N X X X X X R13 NNE X X X X X R14 NE X X X X X R15 ENE X X X X X R16 E X X X X X X X R17 ESE X X X X X X X R18 SE X X X X X X X R19 SSE X X X X X Sector(s)Evacuate Sector(s)ShelterinPlace 



PaloVerdeNuclearGeneratingStation ES8 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Evacuate2MileRegionandDownwindtoEPZBoundary Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R20 S X X X X X X X X R21 SSW X X X X X X X X R22 SW X X X X X X X X R23 WSW X X X X X X X X R24 W X X X X X X X X R25 WNW X X X X X X X X R26 NW X X X X X X X X R27 NNW X X X X X X X X R28 N X X X X X X X X R29 NNE X X X X X X X X R30 NE X X X X X X X X R31 ENE X X X X X X X X R32 E X X X X X X X X X X X X R33 ESE X X X X X X X X X X X X R34 SE X X X X X X X X X X X X R35 SSE X X X X X X X X StagedEvacuation2MileRegionEvacuates,thenEvacuateDownwindto5Miles Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R36 5MileRegion X X X X X X X X X X X X X X X X X X R37 S X X X X X R38 SSW X X X X X R39 SW X X X X X R40 WSW X X X X X R41 W X X X X X R42 WNW X X X X X R43 NW X X X X X R44 NNW X X X X X R45 N X X X X X R46 NNE X X X X X R47 NE X X X X X R48 ENE X X X X X R49 E X X X X X X X R50 ESE X X X X X X X R51 SE X X X X X X X R52 SSE X X X X X Sector(s)Evacuate Sector(s)ShelterinPlace Sector(s)ShelterinPlaceuntil90%ETEforR01,thenEvacuate 





PaloVerdeNuclearGeneratingStation ES9 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table62.EvacuationScenarioDefinitions

Scenarios Season4 DayofWeek TimeofDay Weather Special

1 Summer Midweek Midday Good None

2 Summer Midweek Midday Rain None

3 Summer Weekend Midday Good None

4 Summer Weekend Midday Rain None

Midweek,

5 Summer Evening Good None

Weekend

6 Winter Midweek Midday Good None

7 Winter Midweek Midday Rain None

8 Winter Weekend Midday Good None

9 Winter Weekend Midday Rain None

Midweek,

10 Winter Evening Good None

Weekend

11 Winter Midweek Midday Good SpecialEvent:

OutageatPVNGS

RoadwayImpact:

12 Summer Midweek Midday Good LaneClosureon

I10Eastbound







4 Winter means that school is in session, at normal enrollment levels (also applies to spring and autumn). Summer means that school is in session at summer school enrollment levels (lower than normal enrollment).



PaloVerdeNuclearGeneratingStation ES10 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R02 2:45 2:45 2:50 2:50 2:50 2:45 2:45 2:50 2:50 2:50 3:00 2:45

R03 2:45 2:45 2:40 2:40 2:50 2:45 2:45 2:40 2:40 2:50 2:55 3:10

2MileRegionandKeyholeto5Miles

R04 2:35 2:35 2:50 2:50 2:50 2:35 2:35 2:50 2:50 2:50 2:55 2:35

R05 2:40 2:40 2:50 2:50 2:50 2:40 2:40 2:50 2:50 2:50 2:55 2:40

R06 2:20 2:20 2:45 2:45 2:45 2:20 2:20 2:45 2:45 2:45 2:50 2:20

R07 2:15 2:15 2:40 2:40 2:40 2:20 2:20 2:40 2:40 2:40 2:50 2:15

R08 2:15 2:15 2:40 2:40 2:40 2:15 2:15 2:40 2:40 2:40 2:50 2:15

R09 2:10 2:10 2:40 2:40 2:40 2:15 2:15 2:40 2:40 2:40 2:50 2:10

R10 2:10 2:10 2:35 2:40 2:35 2:10 2:10 2:35 2:40 2:35 2:45 2:10

R11 2:05 2:05 2:25 2:25 2:25 2:10 2:10 2:25 2:25 2:25 2:45 2:05

R12 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R13 2:05 2:05 2:20 2:20 2:20 2:10 2:10 2:20 2:20 2:20 2:45 2:05

R14 2:05 2:05 2:25 2:25 2:25 2:10 2:10 2:25 2:25 2:25 2:45 2:05

R15 2:05 2:05 2:20 2:20 2:20 2:10 2:10 2:20 2:20 2:20 2:45 2:05

R16 2:05 2:05 2:20 2:20 2:20 2:10 2:10 2:20 2:20 2:20 2:45 2:05

R17 2:10 2:10 2:35 2:40 2:35 2:10 2:10 2:35 2:40 2:35 2:45 2:10

R18 2:20 2:25 2:45 2:45 2:45 2:20 2:20 2:45 2:45 2:45 2:50 2:20

R19 2:25 2:25 2:45 2:45 2:45 2:25 2:25 2:45 2:45 2:45 2:50 2:25









PaloVerdeNuclearGeneratingStation ES11 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

2MileRegionandKeyholetoEPZBoundary

R20 2:25 2:25 2:25 2:25 2:40 2:25 2:25 2:25 2:25 2:40 2:45 2:25

R21 2:30 2:30 2:25 2:25 2:45 2:30 2:30 2:25 2:25 2:45 2:45 2:30

R22 2:20 2:20 2:25 2:25 2:40 2:20 2:20 2:25 2:25 2:40 2:45 2:20

R23 2:30 2:30 2:35 2:35 2:45 2:30 2:30 2:35 2:35 2:45 2:50 2:30

R24 2:30 2:30 2:35 2:35 2:45 2:30 2:30 2:35 2:35 2:45 2:55 2:30

R25 2:25 2:25 2:45 2:45 2:45 2:25 2:25 2:45 2:45 2:45 2:55 2:25

R26 2:15 2:15 2:45 2:45 2:45 2:15 2:15 2:45 2:45 2:45 2:50 2:15

R27 2:05 2:05 2:35 2:35 2:35 2:10 2:10 2:35 2:35 2:35 2:45 2:05

R28 2:05 2:05 2:20 2:20 2:20 2:05 2:05 2:20 2:20 2:20 2:45 2:05

R29 2:05 2:05 2:20 2:20 2:20 2:10 2:10 2:20 2:20 2:20 2:45 2:05

R30 2:05 2:05 2:25 2:25 2:25 2:10 2:10 2:25 2:25 2:25 2:45 2:05

R31 2:05 2:05 2:25 2:25 2:25 2:10 2:10 2:25 2:25 2:25 2:45 2:05

R32 2:10 2:10 2:40 2:40 2:40 2:15 2:15 2:40 2:40 2:40 2:50 2:10

R33 2:05 2:05 1:50 1:50 2:30 2:10 2:10 1:50 1:50 2:30 2:35 2:05

R34 2:15 2:15 2:10 2:10 2:40 2:20 2:20 2:10 2:10 2:40 2:40 2:15

R35 2:20 2:25 2:20 2:20 2:40 2:20 2:20 2:20 2:20 2:40 2:40 2:20



 



PaloVerdeNuclearGeneratingStation ES12 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

StagedEvacuation-5MileRegion,2MileRegionandKeyholeto5Miles

R36 2:55 2:55 3:00 3:00 3:00 2:55 2:55 3:00 3:00 3:00 3:00 2:55

R37 2:50 2:50 2:55 2:55 2:55 2:50 2:50 2:55 2:55 2:55 2:55 2:50

R38 2:50 2:50 2:55 2:55 2:55 2:50 2:50 2:55 2:55 2:55 2:55 2:50

R39 2:45 2:45 2:55 2:55 2:55 2:45 2:45 2:55 2:55 2:55 2:50 2:45

R40 2:40 2:40 2:50 2:50 2:50 2:35 2:40 2:50 2:50 2:50 2:50 2:40

R41 2:35 2:35 2:45 2:45 2:45 2:30 2:35 2:45 2:45 2:45 2:50 2:35

R42 2:25 2:30 2:45 2:45 2:45 2:25 2:25 2:45 2:45 2:45 2:50 2:25

R43 2:25 2:25 2:45 2:45 2:45 2:25 2:25 2:45 2:45 2:45 2:45 2:25

R44 2:05 2:05 2:40 2:40 2:40 2:10 2:10 2:40 2:40 2:40 2:45 2:05

R45 2:05 2:05 2:20 2:20 2:20 2:05 2:05 2:20 2:20 2:20 2:45 2:05

R46 2:05 2:05 2:30 2:30 2:30 2:10 2:10 2:30 2:30 2:30 2:45 2:05

R47 2:05 2:05 2:35 2:35 2:35 2:10 2:10 2:35 2:35 2:35 2:45 2:05

R48 2:05 2:05 2:35 2:35 2:35 2:10 2:10 2:35 2:35 2:35 2:45 2:05

R49 2:05 2:05 2:35 2:35 2:35 2:10 2:10 2:35 2:35 2:35 2:45 2:05

R50 2:20 2:20 2:45 2:45 2:45 2:20 2:20 2:45 2:45 2:45 2:50 2:20

R51 2:45 2:45 2:50 2:50 2:50 2:40 2:45 2:50 2:50 2:50 2:50 2:45

R52 2:45 2:45 2:50 2:50 2:50 2:40 2:45 2:50 2:50 2:50 2:50 2:45



 



PaloVerdeNuclearGeneratingStation ES13 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R02 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R03 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

2MileRegionandKeyholeto5Miles

R04 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R05 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R06 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R07 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R08 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R09 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R10 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R11 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R12 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R13 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R14 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R15 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R16 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R17 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R18 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R19 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50



 



PaloVerdeNuclearGeneratingStation ES14 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

2MileRegionandKeyholetoEPZBoundary

R20 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R21 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R22 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R23 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R24 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R25 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R26 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R27 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R28 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R29 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R30 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R31 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R32 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R33 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R34 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R35 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55



 



PaloVerdeNuclearGeneratingStation ES15 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

StagedEvacuation-5MileRegion,2MileRegionandKeyholeto5Miles

R36 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R37 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R38 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R39 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R40 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R41 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R42 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R43 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R44 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R45 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R46 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R47 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R48 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R49 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R51 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R52 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

 



PaloVerdeNuclearGeneratingStation ES16 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table73.TimetoClear90Percentofthe2MileRegionwithintheIndicatedRegion

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

UnstagedEvacuation-2MileRegionand5MileRegion

R01 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R02 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

UnstagedEvacuation2MileRegionandKeyholeto5Miles

R04 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R05 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R06 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R07 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R08 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R09 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R10 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R11 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R12 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R13 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R14 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R15 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R16 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R17 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R18 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R19 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05



 



PaloVerdeNuclearGeneratingStation ES17 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

StagedEvacuation-5MileRegion,2MileRegionandKeyholeto5Miles

R36 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R37 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R38 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R39 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R40 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R41 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R42 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R43 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R44 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R45 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R46 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R47 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R48 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R49 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R50 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R51 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R52 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05



 



PaloVerdeNuclearGeneratingStation ES18 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table74.TimetoClear100Percentofthe2MileRegionwithintheIndicatedRegion

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

UnstagedEvacuation-2MileRegionand5MileRegion

R01 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R02 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

UnstagedEvacuation2MileRegionandKeyholeto5Miles

R04 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R05 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R06 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R07 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R08 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R09 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R10 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R11 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R12 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R13 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R14 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R15 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R16 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R17 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R18 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R19 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45



 



PaloVerdeNuclearGeneratingStation ES19 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

StagedEvacuation-5MileRegion,2MileRegionandKeyholeto5Miles

R36 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R37 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R38 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R39 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R40 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R41 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R42 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R43 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R44 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R46 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R47 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R48 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R49 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R50 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R51 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R52 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45



 



PaloVerdeNuclearGeneratingStation ES20 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table82.SchoolEvacuationTimeEstimates-GoodWeather

Travel TravelTime

Driver Loading Dist.To Average Timeto Dist.EPZ fromEPZ ETAto

Mobilization Time EPZBdry Speed EPZBdry ETE Bdryto BdrytoRCC RCC

School Time(min) (min) (mi) (mph) (min) (hr:min) RCC(mi.) (min) (hr:min)

MARICOPACOUNTYSCHOOLS

CrossroadsAcademy 10 8 12.4 62.7 12 0:30 19.0 18 0:50

RuthFisherElementarySchool 10 15 13.2 61.2 13 0:40 19.0 18 1:00

TonopahValleyHighSchool 10 15 13.2 61.2 13 0:40 19.0 18 1:00

WintersWellElementarySchool 20 15 9.8 61.3 10 0:45 8.4 8 0:55

ArlingtonElementarySchool 10 15 8.4 50.9 10 0:35 8.4 8 0:45

PaloVerdeElementarySchool 10 15  0.0 0 0:25 10.8 10 0:35

MaximumforEPZ: 0:45 Maximum: 1:00

AverageforEPZ: 0:40 Average: 0:50





Table84.TransitDependentEvacuationTimeEstimates-GoodWeather

OneWave  TwoWave

Route Travel Route

Number Route Travel Pickup Distance Timeto Driver Travel Pickup

Route of Mobilization Length Speed Time Time ETE toRCC RCC Unload Rest Time Time ETE

Number Buses (min) (miles) (mph) (min) (min) (hr:min) (miles) (min) (min) (min) (min) (min) (hr:min)

4 1 165 22.5 63.3 21 30 3:40 29.8 28 5 10 71 30 6:05

5 12 165 12.4 61.0 12 30 3:30 36.7 34 5 10 58 30 5:50

6 1 165 13.8 53.0 16 30 3:35 38.0 35 5 10 63 30 6:00

MaximumETE: 3:40 MaximumETE: 6:05

AverageETE: 3:35 AverageETE: 6:00





PaloVerdeNuclearGeneratingStation ES21 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure61.PVNGSEPZSectors



PaloVerdeNuclearGeneratingStation ES22 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH8.RegionR08



PaloVerdeNuclearGeneratingStation ES23 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

1 INTRODUCTION

Thisreportdescribestheanalysesundertakenandtheresultsobtainedbyastudytodevelop

Evacuation Time Estimates (ETE) for the Palo Verde Nuclear Generating Station (PVNGS),

locatedinMaricopaCounty,Arizona.ThisETEstudyprovidesArizonaPublicService(APS),state

and local governments with sitespecific information needed for Protective Action decision making.

In the performance of this effort, guidance is provided by documents published by Federal

Governmentalagencies.Mostimportantoftheseare:

  • Title10,CodeofFederalRegulations,AppendixEtoPart50(10CFR50),Emergency

PlanningandPreparednessforProductionandUtilizationFacilities,NRC,2011.

  • Emergency Planning and Preparedness for Production and Utilization Facilities,

10CFR50,AppendixE.

  • Revision 1 of the Criteria for Development of Evacuation Time Estimate Studies,

NUREG/CR7002,February2021.

  • FEMA Radiological Emergency Preparedness Program Manual (FEMA P1028),

December2019 

  • Development of Evacuation Time Estimates for Nuclear Power Plants, NUREG/CR 6863,January2005.

The work effort reported herein was supported and guided by local stakeholders who

contributedsuggestions,critiques,andthelocalknowledgebaserequired.Table11presentsa

summaryofstakeholdersandinteractions.

1.1 OverviewoftheETEProcess

Thefollowingoutlinepresentsabriefdescriptionoftheworkeffortinchronologicalsequence:

1. InformationGathering:
a. DefinedthescopeofworkindiscussionswithrepresentativesfromAPS.
b. Attended meetings with emergency planners from Arizona Department of

Emergency & Military Affairs (ADEMA) and Maricopa County Department

Emergency (MCDEM) to discuss methodology, project assumptions and

resourcesavailable.

c. Conducted a detailed field survey of the highway system and of area traffic

conditionswithintheEmergencyPlanningZone(EPZ)andShadowRegion.

d. ObtaineddemographicEPZdatafromMCDEMandShadowRegiondatafromthe

2020Census,projectedtotheyear2021(seeSection3.1andSection3.2).

e. ConductedarandomsampledemographicsurveyofEPZresidents.



PaloVerdeNuclearGeneratingStation 11 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

f. Conducted a data collection effort to identify and describe schools, motels,

majoremployers,transportationproviders,andotherimportantinformation.

2. Estimated distributions of Trip Generation times representing the time required by

variouspopulationgroups(permanentresidents,employees,andtransients)toprepare

(mobilize)fortheevacuationtrip.Theseestimatesareprimarilybasedupontherandom

sampledemographicsurvey.

3. Defined Evacuation Scenarios. These scenarios reflect the variation in demand, in trip

generationdistributionandinhighwaycapacities,associatedwithdifferentseasons,day

ofweek,timeofdayandweatherconditions.

4. Reviewed the existing traffic management plan to be implemented by local and state

policeintheeventofanincidentattheplant.Trafficcontrolwasreviewedatspecified

TrafficControlPointsandAccessControlPoints(Roadblocks)locatedwithintheEPZand

roadblocksstoppingexternaltrafficwasonlyconsidered.

5. Used existing Sectors to define Evacuation Regions. The EPZ is partitioned into 145

sectorsbycompassdirectionandradialdistancefromtheplant.Regionsaregroupsof

contiguous Sectors for which ETE are calculated. The configurations of these Regions

reflect wind direction and the radial extent of the impacted area. Each Region, other

thanthosethatapproximatecircularareas,approximatesakeyholesectionwithinthe

EPZasrecommendedbyNUREG/CR7002,Rev.1.

6. Estimateddemandfortransitservicesforchildrenatschoolsandfortransitdependent

personsathome.

7. PreparedtheinputstreamsfortheDYNEVII.
a. Estimated the evacuation traffic demand, based on the available information

derivedfromCensusdata,andfromdataprovidedbylocalandstateagencies,

APSandfromthedemographicsurvey.

b. Updatedthelinknoderepresentationoftheevacuationnetwork,whichisused

asthebasisforthecomputeranalysisthatcalculatestheETE.

c. Appliedtheproceduresspecifiedinthe2016HighwayCapacityManual(HCM2)

to the data acquired during the field survey, to estimate the capacity of all

highwaysegmentscomprisingtheevacuationroutes.

d. CalculatedtheevacuatingtrafficdemandforeachRegionandforeachScenario.
e. Specified selected candidate destinations for each origin (location of each

source where evacuation trips are generated over the mobilization time) to

support evacuation travel consistent with outbound movement relative to the

locationofthePVNGS.



2 Highway Capacity Manual (HCM 2016), Transportation Research Board, National Research Council, 2016.



PaloVerdeNuclearGeneratingStation 12 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

8. Executed the DYNEV II system to determine optimal evacuation routing and compute

ETE for all residents, transients and employees (general population) with access to

private vehicles. Generated a complete set of ETE for all specified Regions and

Scenarios.

9. DocumentedETEinformatsinaccordancewithNUREG/CR7002,Rev.1.
10. Calculated the ETE for all transit activities including those for schools, for the transit dependentpopulationandfortheaccessand/orfunctionalneedspopulation.

1.2 ThePaloVerdeNuclearGeneratingStationLocation

ThePVNGSislocatedinTonopah,MaricopaCounty,Arizona.Thesiteisapproximately55miles

west of Phoenix, Arizona. The EPZ is entirely within Maricopa County. Figure 11 shows the

locationofthePVNGSrelativetoPhoenix.Thismapalsoidentifiesthecommunitiesinthearea

andthemajorroads.

1.3 PreliminaryActivities

Theseactivitiesaredescribedbelow.

FieldSurveysoftheHighwayNetwork

In2020,KLDpersonneldrovetheentirehighwaysystemwithintheEPZandtheShadowRegion

whichconsistsoftheareabetweentheEPZboundaryandapproximately15milesradiallyfrom

theplant.Thecharacteristicsofeachsectionofhighwaywererecorded.Thesecharacteristics

areshowninTable12.

Videoandaudiorecordingequipmentwereusedtocaptureapermanentrecordofthehighway

infrastructure. No attempt was made to meticulously measure such attributes as lane width

and shoulder width; estimates of these measures based on visual observation and recorded

images were considered appropriate for the purpose of estimating the capacity of highway

sections. For example, Exhibit 157 in the HCM 2016 indicates that a reduction in lane width

from12feet(thebasevalue)to10feetcanreducefreeflowspeed(FFS)by1.1mph-nota

material difference - for twolane highways. Exhibit 1546 in the HCM 2016 shows little

sensitivityfortheestimatesofServiceVolumesatLevelofService(LOS)E(nearcapacity),with

respecttoFFS,fortwolanehighways.

The data from the audio and video recordings were used to create detailed geographic

information systems (GIS) shapefiles and databases of theroadway characteristics and of the

trafficcontroldevicesobservedduringtheroadsurvey;thisinformationwasreferencedwhile

preparing the input stream for the DYNEV II. Roadway types were assigned based on the

followingcriteria:

x Freeway:  limited access highway, 2 or more lanes in each direction, high free flow

speeds

x Freewayramp:rampontooroffofalimitedaccesshighway

x Majorarterial:3ormorelanesineachdirection



PaloVerdeNuclearGeneratingStation 13 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

x Minorarterial:2ormorelanesineachdirection

x Collector:singlelaneineachdirection

x Localroadway:singlelaneineachdirection,localroadwithlowfreeflowspeeds

As documented on page 156 of the HCM 2016, the capacity of a twolane highway is 1,700

passenger cars per hour in one direction. For freeway sections, a value of 2,250 vehicles per

hourperlaneisassigned,asperExhibit127oftheHCM2016.Theroadsurveyhasidentified

severalsegmentswhicharecharacterizedbyadversegeometricsontwolanehighwayswhich

are reflected in reduced values for both capacity and speed. These estimates are consistent

with the service volumes for LOS E presented in HCM 2016 Exhibit 1546. Link capacity is an

inputtoDYNEVIIwhichcomputestheETE.Furtherdiscussionofroadwaycapacityisprovided

inSection4ofthisreport.

Trafficsignalsareeitherpretimed(signaltimingsarefixedovertimeanddonotchangewith

the traffic volume on competing approaches) or are actuated (signal timings vary over time

based on the changing traffic volumes on competing approaches). Actuated signals require

detectorstoprovidethetrafficdatausedbythesignalcontrollertoadjustthesignaltimings.

Thesedetectorsaretypicallymagneticloopsintheroadway,orvideocamerasmountedonthe

signal masts and pointed toward the intersection approaches. If detectors were observed on

theapproachestoasignalizedintersectionduringtheroadsurvey,detailedsignaltimingswere

notcollectedasthetimingsvarywithtrafficvolume.Roadblocks,ifmodeled,atlocationswhich

havecontroldevicesarerepresentedasactuatedsignalsintheDYNEVII.

Ifnodetectorswereobserved,thesignalcontrolattheintersectionwasconsideredpretimed,

and detailed signal timings were gathered for several signal cycles. These signal timings were

inputtotheDYNEVIIusedtocomputeETE,asperNUREG/CR7002,Rev.1guidance.

Figure 12 presents the linknode analysis network that was constructed to model the

evacuationroadwaynetworkintheEPZandShadowRegion.Thedirectionalarrowsonthelinks

andthenodenumbershavebeenremovedfromFigure12toclarifythefigure.Thedetailed

figuresprovidedinAppendixKdepicttheanalysisnetworkwithdirectionalarrowsshownand

nodenumbersprovided.Theobservationsmadeduringthefieldsurveywereusedtocalibrate

theanalysisnetwork.

The2012linknodeanalysisnetworkwasupdatedtoincludetheconstructedroundaboutand

parking lots along W Baseline Road within PVNGS. Aerial imagery and the road survey were

usedtoupdatethenetwork.

DemographicSurvey

Anonlinedemographicsurveywasperformedin2020togatherinformationneededfortheETE

study.AppendixFpresentsthesurveyinstrument,theproceduresusedandtabulationsofdata

compiledfromthesurveyreturnsalongwithdiscussionvalidatingtheuseofthesurveyresults

inthisstudy.

Thesedatawereutilizedtodevelopestimatesofvehicleoccupancytoestimatethenumberof

evacuatingvehiclesduringanevacuationandtoestimateelementsofthemobilizationprocess.

Thisdatabasewasalsoreferencedtoestimatethenumberoftransitdependentresidents.



PaloVerdeNuclearGeneratingStation 14 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ComputingtheEvacuationTimeEstimates

TheoverallstudyprocedureisoutlinedinAppendixD.Demographicdatawereobtainedfrom

severalsources,asdetailedlaterinthisreport.Thesedatawereanalyzedandconvertedinto

vehicle demand data. The vehicle demand was loaded onto appropriate source links of the

analysisnetworkusingGISmappingsoftware.TheDYNEVIIwasthenusedtocomputeETEfor

allRegionsandScenarios.

AnalyticalTools

The DYNEV II that was employed for this study is comprised of several integrated computer

models. One of these is the DYNEV (DYnamic Network EVacuation) macroscopic simulation

model,anewversionoftheIDYNEVmodelthatwasdevelopedbyKLDundercontractwiththe

FederalEmergencyManagementAgency(FEMA).

DYNEVIIconsistsoffoursubmodels:

x Amacroscopictrafficsimulationmodel(fordetails,seeAppendixC).

x ATripDistribution(TD),modelthatassignsasetofcandidatedestination(D)nodesfor

each origin (O) located within the analysis network, where evacuation trips are

generatedovertime.ThisestablishesasetofODtables.

x A Dynamic Traffic Assignment (DTA), model which assigns trips to paths of travel

(routes)whichsatisfytheODtables,overtime.TheTDandDTAmodelsareintegrated

toformtheDTRAD(DynamicTrafficAssignmentandDistribution)model,asdescribedin

AppendixB.

x AMyopicTrafficDiversionmodelwhichdivertstraffictoavoidintense,localcongestion,

ifpossible.

Another software product developed by KLD, named UNITES (UNIfied Transportation

EngineeringSystem)wasusedtoexpeditedataentryandtoautomatetheproductionofoutput

tables.

The dynamics of traffic flow over the network are graphically animated using the software

product, EVAN (EVacuation ANimator), developed by KLD. EVAN is GIS based, and displays

statisticssuchasLOS,vehiclesdischarged,averagespeed,andpercentofvehiclesevacuated,

outputbytheDYNEVII.TheuseofaGISframeworkenablestheusertozoominonareasof

congestionandqueryroadname,townnameandothergeographicalinformation.

TheprocedureforapplyingtheDYNEVIIwithintheframeworkofdevelopingETEisoutlinedin

AppendixD.AppendixAisaglossaryofterms.

For the reader interested in an evaluation of the original model, IDYNEV, the following

referencesaresuggested:

x NUREG/CR4873 - Benchmark Study of the IDYNEV Evacuation Time Estimate

ComputerCode

x NUREG/CR4874 - The Sensitivity of Evacuation Time Estimates to Changes in Input

ParametersfortheIDYNEVComputerCode



PaloVerdeNuclearGeneratingStation 15 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Theevacuationanalysisproceduresarebasedupontheneedto:

x Route traffic along paths of travel that will expedite their travel from their respective

pointsoforigintopointsoutsidetheEPZ.

x Restrict movement toward the plant to the extent practicable and disperse traffic

demandsoastoavoidfocusingdemandonalimitednumberofhighways.

x Move traffic in directions that are generally outbound, relative to the location of the

plant.

DYNEVIIprovidesadetaileddescriptionoftrafficoperationsontheevacuationnetwork.This

description enables the analyst to identify bottlenecks and to develop countermeasures that

are designed to represent the behavioral responses of evacuees. The effects of these

countermeasuresmaythenbetestedwiththemodel.

1.4 ComparisonwithPriorETEStudy

Table13presentsacomparisonofthepresentETEstudywiththe2012ETEstudy(KLDTR513,

dated December 2012, Rev. 1). The 90th percentile ETE for the full EPZ (Region R03) in this

study,increasesbyasmuchas40minutes(1hourforroadwayimpact)forsummer,midweek,

middayscenariowhencomparedwiththe2012study.The100thpercentileETEforthefullEPZ

increasesbyasmuchas45minutes.Themajorfactorscontributingtothedifferencesbetween

theETEvaluesobtainedinthisstudyandthoseofthepreviousstudyare:

x The permanent resident population in the EPZ decreased by 9.2%, resulting in less

evacuatingvehicles,whichcanreduceETE.

x The permanent resident population in the Shadow Region was projected to 2021 and

grew by 44%. This population increase results in more vehicles evacuating in the

ShadowRegion,whichreducestheavailableroadwaycapacityforEPZevacueesandcan

increaseETE.

x ThenumberofemployeescommutingintotheEPZincreasedby49.8%,whichresultsin

anincreaseinvehiculardemandthatcandecreasethe90thpercentileETE,asitwilltake

quickertoreachanevacuationof90%ofthepopulation.

x Thecompletionofaroundabout,parkinglots,andasecondentrance/exitatPVNGSwas

includedinthisstudy.Theroundaboutdecreasestheroadwaycapacityandspeedwhile

PVNGS employees evacuate, increasing the congestion within the 2Mile Region and

prolongingthe90thpercentileETE.

x Externaltrafficonmajorroadway,I10,increasesthenumberofvehiclestraversingthe

EPZ by approximately 34.2%. The increase in external traffic on I10 reduces the

available capacity to evacuees and increases delays at ramps as evacuees try to gain

access to I10. Ultimately, this increase in traffic, increases congestion within the EPZ

andprolongsETE.



PaloVerdeNuclearGeneratingStation 16 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

x Trip generation times increased by at most 45 minutes for permanent residents and

reducedbyatmost15minutesforemployees/transientsbasedondatacollectedfrom

thedemographicsurvey.Asaresult,vehiclesaregeneratedoveralongerperiodoftime

whichcanreduceoverallcongestionbutisdirectlycorrelatedwiththeincreaseofthe

100th percentile ETE for this site. Since all congestion clears prior to the end of trip

generation time, the 100th percentile ETE is dictated by the time needed to mobilize

(plusa10minutetraveltimetotheEPZboundary).



The various factors, discussed above, that can increase ETE outweigh those that can reduce

ETE,therebyexplainingwhythe90thand100thpercentileETEhavesignificantlyincreasedinthis

studyrelativetothe2012ETEstudy.





Table11.StakeholderInteraction

Stakeholder NatureofStakeholderInteraction

ArizonaPublicService(APS) Attendedmeetingstodefinemethodologyanddata

requirements.Setupcontactswithlocalgovernment

agencies.ProvidedrecentPVNGSemployeedata.

Reviewedandapprovedallprojectassumptions.

EngagedintheETEdevelopmentandwereinformed

ofthestudyresults.

MaricopaCountyDepartmentof Mettodiscussprojectmethodology,keyproject

EmergencyManagement(MCDEM) assumptionsandtodefinedataneeds.Provided

countyemergencyplans,specialfacilitydataand

existingtrafficmanagementplans.Reviewedand

approvedallprojectassumptions.EngagedintheETE

developmentandwereinformedofthestudyresults..

ArizonaDepartmentofEmergency& Obtainstateemergencyplan.

MilitaryAffairs(DEMA)

Table12.HighwayCharacteristics

x Numberoflanes x Postedspeed

x Lanewidth x Actualfreespeed

x Shouldertype&width x Abuttinglanduse

x Interchangegeometries x Controldevices

x Lanechannelization&queuing x Intersectionconfiguration(including

capacity(includingturnbays/lanes) roundaboutswhereapplicable)

x Geometrics:curves,grades(>4%) x Trafficsignaltype

x Unusualcharacteristics:Narrowbridges,sharpcurves,poorpavement,floodwarningsigns,

inadequatedelineations,tollbooths,etc.





PaloVerdeNuclearGeneratingStation 17 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table13.ETEStudyComparisons

Topic PreviousETEStudy CurrentETEStudy

UseddatasuppliedbyMaricopa UseddatasuppliedbyMaricopa

Resident County; County;

PopulationBasis Population=12,474 Population=9,712

Vehicles=6,289 Vehicles=5,712

Resident 2.90persons/household,1.46 2.65persons/household,1.56

Population evacuatingvehicles/household evacuatingvehicles/household

Vehicle yielding:1.99persons/vehicle. yielding:1.70persons/vehicle.

Occupancy

Employeeestimatesbasedon Employeeestimatesbasedon

informationprovidedaboutmajor informationprovidedaboutmajor

employersinEPZ.1.08employeesper employersinEPZ.1.18employeesper

Employee vehiclebasedontelephonesurvey vehiclebasedondemographicsurvey

Population results. results.

Employees=2,715 Employees=3,035

Vehicles=1,607 Vehicles=2,408

Estimatesbasedupondataprovidedby

EstimatesbaseduponU.S.Censusdata

MCDEMandtheresultsofthe

andtheresultsofthetelephone

demographicsurvey.Atotalof59

survey.Atotalof455peoplewhodo

peoplewhodonothaveaccesstoa

Transit nothaveaccesstoavehicle,requiring

vehicle,4buseswereusedbut2buses

Dependent 16busestoevacuate.Anadditional

wererequiredtoevacuate.An

Population 627accessand/orfunctionalneeds

additional354accessand/orfunctional

personsneedingspecialtransportation

needspersonsneedspecial

toevacuate(525requireabus,102

transportationtoevacuate(284require

requireaparatransitvehicle).

abus,70requireaparatransitvehicle).

Transientestimatesbasedupon Transientestimatesbasedupon

informationprovidedabouttransient informationprovidedabouttransient

Transient attractionsinEPZ.

attractionsinEPZ.

Population

Transients=1,061 Transients=23

TransientVehicles=708 TransientVehicles=8

Therearecurrentlynospecialfacilities Therearecurrentlynospecialfacilities

SpecialFacilities otherthanschools(seebelow)located otherthanschools(seebelow)located

Population withinthe10mileEPZ. withinthe10mileEPZ.

Schoolpopulationbasedon Schoolpopulationbasedon

informationprovidedbyMCDEM informationprovidedbyMCDEM

SchoolPopulation withintheEPZandShadowRegion. withintheEPZandShadowRegion.

Schoolenrollment=1,410 Schoolenrollment=2,746

Buses=25 Buses=51



PaloVerdeNuclearGeneratingStation 18 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Topic PreviousETEStudy CurrentETEStudy

ArcGISsoftwareusing2010USCensus ArcGISsoftwareusing2020USCensus

blocksandprojectingoutto2011using blocksandprojectingoutto2021using

thecompoundgrowthrateof2000 thecompoundgrowthrateof2010

Shadow Censusand2010censusdata;area Censusand2020censusdata;area

Population ratiomethodused. ratiomethodused.

Population=9,546 Population=11,911

Vehicles=4,841 Vehicles=6,973

Voluntary

evacuationfrom

20% of the population within the EPZ, 20% of the population within the EPZ,

withinEPZin

but not within the Evacuation Region but not within the Evacuation Region

areasoutside

(seeFigure21) (seeFigure21)

regiontobe

evacuated

20%ofpeopleoutsideoftheEPZ 20%ofpeopleoutsideoftheEPZ

Shadow withintheShadowRegion withintheShadowRegion

Evacuation (seeFigure72) (seeFigure72)

NetworkSize 272links;194nodes 402links;297nodes

FieldsurveysconductedinOctober

2020.Roadsandintersectionswere

FieldsurveysconductedinFebruary videoarchived.

Roadway 2012.Roadsandintersectionswere

videoarchived. Aerialimageryusedforadditional

GeometricData

roadwayswhichwerenotincludedin

Roadcapacitiesbasedon2010HCM. thefieldsurveys.

RoadcapacitiesbasedonHCM2016.

Directevacuationtodesignated Directevacuationtodesignated

SchoolEvacuation

ReceptionandCareCenter. ReceptionandCareCenter.

50percentoftransitdependent 72percentoftransitdependent

Ridesharing personswillevacuatewithaneighbor personswillevacuatewithaneighbor

orfriend. orfriend.

Basedonresidentialtelephonesurvey Basedonresidentialdemographic

ofspecificpretripmobilization surveyofspecificpretripmobilization

activities: activities:

Residentswithcommutersreturning Residentswithcommutersreturning

leavebetween30and300minutes. leavebetween30and345minutes.

TripGeneration Residentswithoutcommuters Residentswithoutcommuters

forEvacuation returningleavebetween15and240 returningleavebetween15and285

minutes. minutes.

Employeesandtransientsleave Employeesandtransientsleave

between15and120minutes. between15and105minutes.

AlltimesmeasuredfromtheAdvisory AlltimesmeasuredfromtheAdvisory

toEvacuate. toEvacuate.



PaloVerdeNuclearGeneratingStation 19 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Topic PreviousETEStudy CurrentETEStudy

NormalorRain.Thecapacityandfree NormalorRain.Thecapacityandfree

Weather flowspeedofalllinksinthenetwork flowspeedofalllinksinthenetwork

arereducedby10%intheeventofrain arereducedby10%intheeventofrain

Modeling DYNEVIISystem-Version4.0.8.0 DYNEVIISystem-Version4.0.20.0

OutageatPVNGS OutageatPVNGS

SpecialEvents SpecialEventPopulation=1,560 SpecialEventPopulation=1,304

additionalemployees additionalemployees

52Regions(centralsectorwind 52Regions(centralsectorwind

directionandeachadjacentsector directionandeachadjacentsector

EvacuationCases

techniqueused)and12Scenarios techniqueused)and12Scenarios

producing624uniquecases. producing624uniquecases.

EvacuationTime ETEreportedfor90thand100th ETEreportedfor90thand100th

Estimates percentilepopulation.Results percentilepopulation.Results

Reporting presentedbyRegionandScenario. presentedbyRegionandScenario.

Winter,Midweek,Midday, Winter,Midweek,Midday,

EvacuationTime GoodWeather:2:10 GoodWeather:2:45

Estimatesforthe Rain:2:10 Rain:2:45

entireEPZ,90th Summer,Weekend,Midday, Summer,Weekend,Midday,

percentile GoodWeather:2:10 GoodWeather:2:45

Rain:2:15 Rain:2:45

Winter,Midweek,Midday, Winter,Midweek,Midday,

EvacuationTime GoodWeather:5:10 GoodWeather:5:55

Estimatesforthe Rain:5:10 Rain:5:55

entireEPZ,100th Summer,Weekend,Midday, Summer,Weekend,Midday,

percentile GoodWeather:5:10 GoodWeather:5:55

Rain:5:10 Rain:5:55





PaloVerdeNuclearGeneratingStation 110 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure11.PaloVerdeNuclearGeneratingStationLocation



PaloVerdeNuclearGeneratingStation 111 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure12.PVNGSLinkNodeAnalysisNetwork



PaloVerdeNuclearGeneratingStation 112 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

2 STUDYESTIMATESANDASSUMPTIONS

This section presents the estimates and assumptions utilized in the development of the

evacuationtimeestimates(ETEs).

2.1 DataEstimateAssumptions

1. Thepermanentresidentpopulationarebasedonthe2020U.S.Censuspopulationfrom

the Census Bureau website1 within the Shadow Region and the 2021 population data

providedbyMaricopaCountywithintheEmergencyPlanningZone(EPZ).(SeeSection

3.1.)

2. EstimatesofemployeeswhoresideoutsidetheEPZandcommutetoworkwithintheEPZ,

alongwiththepopulationestimatesattransientandspecialfacilitiesarebasedupondata

providedbyMaricopaCountyandArizonaPublicService(APS).(SeeSections3.3,3.4,and

3.7.)

3. The relationship between permanent resident population and evacuating vehicles is

basedonCensusdataandtheresultsofthedemographicsurvey(seeAppendixF).Values

of2.65personsperhousehold(FigureF1)and1.56evacuatingvehiclesperhousehold

(FigureF9)areusedforthepermanentresidentpopulation.

4. Employeevehicleoccupanciesarebasedontheresultsofthedemographicsurvey.For

thisstudy,1.18employeespervehicleisused.Inaddition,itisassumedtherearetwo

peoplepercarpool,onaverage.(SeeFigureF7.)

5. There are 210 inmates from Arizona State Prison working at Hickmans Farms. It is

assumedtheyarelocatedatthe32911WardRoad,Buckeyelocationandareincludedin

thenumberoftotalemployeesprovided.Theywillevacuateinbuses.

6. Onaverage,therelationshipbetweenpersonsandvehiclesfortransientsandthespecial

eventisasfollows:

a. Transient Population at Saguaro Mineral Wells Motel (See Section 3.3 and

AppendixE):2.88peoplepervehicle(basedondataprovided)

b. SpecialEvent(SeeSection3.7.):1.18peoplepervehicle(basedontheemployee

vehicleoccupancies)

c. Wheredatawasnotprovided,theaveragehouseholdsizeisassumedtobethe

vehicleoccupancyratefortransientfacilitiesandthespecialevent.

7. ThemaximumbusspeedassumedwithintheEPZis65milesperhour(mph)basedon

ArizonaDepartmentofPublicSafetylaws2forbusesandaveragepostedspeedlimitson

roadwayswithintheEPZ.





1 www.census.gov 2

https://www.azdps.gov/sites/default/files/media/arizona-minimum-standards-for-school-buses-and-school-bus-drivers.pdf



PaloVerdeNuclearGeneratingStation 21 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

8. Roadwaycapacityestimatesarebasedonfieldsurveysperformedin2020(verifiedby

aerial imagery), and the application of the Highway Capacity Manual 2016. Based on

discussionswithAPSandMaricopaCounty,noroadwayconstructionprojects(affecting

roadwaycapacityestimates)willbeconsideredforthisstudy.

2.2 MethodologicalAssumptions

1. ThePlanningBasisAssumptionforthecalculationofETEisarapidlyescalatingaccident

thatrequiresevacuation,andincludesthefollowing3(asperNRCguidance):

a. Advisory to Evacuate (ATE) notification is announced coincident with the siren

alerting.

b. Mobilization of the general population will commence within 15 minutes after

sirenalerting.

c. TheETEaremeasuredrelativetotheATE.
2. ThecenterpointoftheplantislocatedatthecenteroftheUnit2containmentbuilding

33°2313.92N,112°5152.2W.

3. TheDYNEVII4systemisusedtocomputeETEinthisstudy.
4. Evacueeswilldrivesafely,travelradiallyawayfromtheplanttotheextentpracticable

given the highway network, and obey all control devices and traffic guides. All major

evacuationroutesareusedintheanalysis.

5. TheexistingEPZandSectorboundariesareused.SeeFigure31.
6. TheShadowRegionextendsto15milesradiallyfromtheplantorapproximately5miles

radiallyfromtheEPZboundary,asperNRCguidance.SeeFigure72.

7. Onehundredpercent(100%)ofthepeoplewithintheimpactedkeyholewillevacuate.

Twentypercent(20%)ofthepopulationwithintheShadowRegionandwithinSectorsof

theEPZnotadvisedtoevacuatewillvoluntarilyevacuate,asshowninFigure21,asper

NRCguidance.SensitivitystudiesexploretheeffectonETEofincreasingthepercentage

ofvoluntaryevacueesintheShadowRegion(seeAppendixM).

8. Shadowpopulationcharacteristics(householdsize,evacuatingvehiclesperhousehold,

and mobilization time) is assumed to be the same as that of the permanent resident

populationwithintheEPZ.





3 We emphasize that the adoption of this planning basis is not a representation that these events will occur within the indicated time frame. Rather, these assumptions are necessary in order to:

1. Establish a temporal framework for estimating the Trip Generation distribution in the format recommended in Section 2.13 of NUREG/CR-6863.
2. Identify temporal points of reference that uniquely define "Clear Time" and ETE.

It is likely that a longer time will elapse between the various stages of an emergency. See Section 5.1 for more detail.

4 The models of the I-DYNEV System were recognized as state of the art by the Atomic Safety & Licensing Board (ASLB) in past hearings. (Sources: Atomic Safety & Licensing Board Hearings on Seabrook and Shoreham; Urbanik). The models have continuously been refined and extended since those hearings and were independently validated by a consultant retained by the NRC. The new DYNEV II model incorporates the latest technology in traffic simulation and in dynamic traffic assignment.



PaloVerdeNuclearGeneratingStation 22 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

9. TheETEarepresentedatthe90thand100thpercentiles,aswellasingraphicalandtabular

format,asperNRCguidance.ThepercentileETEisdefinedastheelapsedtimefromthe

ATEissuedtoaspecificRegionoftheEPZ,tothetimethatRegionisclearoftheindicated

percentileofevacuees.

10. Thisstudydoesnotassumethatroadwaysareemptyatthestartofthefirsttimeperiod.

Rather,thereisa30minuteinitializationperiod(oftenreferredtoasfilltimeintraffic

simulation) wherein the traffic volumes from the first time period are loaded onto

roadwaysinthestudyarea.Theamountofinitialization/filltrafficthatisontheroadways

inthestudyareaatthestartofthefirsttimeperioddependsonthescenarioandthe

regionbeingevacuated.SeeSection3.10.

11. Toaccountforboundaryconditionsbeyondthestudyarea,thisstudywillassumea25%

reductionincapacityontwolaneroadsandmultilanehighwaysforroadwaysthathave

trafficsignalsdownstream.The25%reductionincapacityisbasedontheprevalenceof

actuatedtrafficsignalsinthestudyareaandthefactthattheevacuatingtrafficvolume

willbemoresignificantthanthecompetingtrafficvolumeatanydownstreamsignalized

intersections,therebywarrantingamoresignificantpercentage(75%inthiscase)ofthe

signal green time. There is no reduction in capacity for freeways due to boundary

conditions.

12. TheETEalsoincludesconsiderationofthrough(ExternalExternal)tripsduringthetime

that such traffic is permitted to enter the evacuated Region. Normal traffic flow is

assumedtobepresentwithintheEPZatthestartoftheemergency.SeeSection3.9and

3.10.

2.3 AssumptionsonMobilizationTimes

1. Tripgenerationtime(alsoknownasmobilizationtime,orthetimerequiredbyevacuees

topreparefortheevacuation)arebasedupontheresultsofthedemographicsurvey(See

Section5andAppendixF).Itisassumedthatstatedeventstakeplaceinsequencesuch

thatallprecedingeventsmustbecompletedbeforethecurrenteventcanoccur.

2. Onehundredpercent(100%)oftheEPZpopulationcanbenotifiedwithin45minutes,in

accordancewiththe2019FederalEmergencyManagementAgency(FEMA)Radiological

EmergencyPreparednessProgramManual.

3. Commuterpercentages(andpercentageofresidentsawaitingthereturnofacommuter)

are based on the results of the demographic survey. According to the survey results,

49.1% of the households in the EPZ have at least 1 commuter (see Section F.3.1.);

approximately 49.86% of those households with commuters will await the return of a

commuter before beginning their evacuation trip (see Section F.3.2.). Therefore,

approximately24%(49.1%x49.86%=24.48%)ofEPZhouseholdswillawaitthereturnof

acommuter,priortobeginningtheirevacuationtrip.



PaloVerdeNuclearGeneratingStation 23 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

2.4 TransitDependentAssumptions

1. Thepercentageoftransitdependentpeoplewhowillridesharewithaneighbororfriend

arebasedontheresultsofthedemographicsurvey.Accordingtothesurveyresults,72%

ofthetransitdependentpopulationwillrideshare.

2. Transitvehiclesareusedtotransportthosewithoutaccesstoprivatevehicles:
a. Schoolsandchildcarecenters
i. If schools are in session, buses or passenger car/vans will evacuate

studentsdirectlytothedesignatedreceptionandcarecenters.

ii. Fortheschoolsthatareevacuatedviabuses/vans/cars,itisassumedno

schoolchildrenwillbepickedupbytheirparentspriortothearrivalofthe

buses.

iii. Schoolchildren,ifschoolisinsession,aregivenpriorityinassigningtransit

vehicles.

b. Transitdependentpermanentresidents:
i. Transitdependentgeneralpopulationareevacuatedtoreceptionandcare

centers. Discussions with the County of Maricopa stated no buses are

availableforthetransitdependentgeneralpopulation.

ii. Accessand/orfunctionalneedspopulationmayrequirecountyassistance

(ambulance,busorwheelchairtransport)toevacuate.Thisisconsidered

separately from the general population ETE, as per NRC guidance.

DiscussionswiththeCountyofMaricopastatedthatindividualswhoneed

access and/or functional assistance will need to call 911 and request

emergencyassistance,andMaricopaCountySheriffsOfficewillhandleas

resourcesallow.

iii. Householdswith3ormorevehicleswereassumedtohavenoneedfor

transitvehicles.

c. HickmanFarms
i. The210inmatesfromArizonaStatePrisonevacuatesusingbuses.

ii. Thebusesareincludedwithintheemployeetotalvehicles.(SeeSection

3.4.)

d. Analysis of the number of required roundtrips (waves) of evacuating transit

vehiclesispresented.

e. Transport of transitdependent evacuees from reception centers to congregate

carecentersisnotconsideredinthisstudy.

3. Transitvehiclecapacities:
a. Schoolbuses=70studentsperbusforprimaryschoolsand50studentsperbus

formiddle/highschools

b. CrossroadsAcademyPassengerVans=15studentspervan
c. CrossroadsAcademyPassengerCars=4studentsand1adultpercar
d. TransitdependentbusesandbusesusedfortheInmatesatHickmansFarm=30

personsperbus



PaloVerdeNuclearGeneratingStation 24 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

e. Ambulatorytransitdependentpersons=30personsperbus
f. ParatransitVehicles:
i. Ambulances = 2 bedridden persons (includes advanced and basic life

support)

ii. Wheelchairvans=4wheelchairboundpersons

iii. Wheelchairbuses=15wheelchairboundpersons

4. Transitvehiclesmobilizationtimes:
a. CrossroadsAcademypassengervans/carsandArlingtonSchool,TonopahValley

HighSchoolandRuthFisherSchoolbusesarealreadyattheschoolandcanbe

mobilizedwithin10minutesoftheATE.WintersWellElementarySchoolbuses

willarriveattheschoolwithin20minutes.

b. Transitdependentbusesaremobilizedwhenapproximately90%ofresidentswith

nocommutershavecompletedtheirmobilizationat165minutesoftheATE.(See

Section5.)

5. TransitVehicleloadingtimes:
a. Schoolbusesareloadedin15minutes.
b. CrossroadsAcademyPassengerVansandCarsareloadedin8minutes.
c. TransitDependentbusesrequire1minuteofloadingtimeperpassenger.
d. Busesforambulatorypatientsrequire1minuteofloadingtimeperambulatory

passenger.

e. Wheelchairtransportorparatransitvehiclesrequire5minutesofloadingtimeper

passenger.

f. Ambulancesareloadedin15minutesperbedriddenpassenger.
6. ItisassumedthatdriversforalltransitvehiclesidentifiedinTable81areavailable.

2.5 TrafficandAccessControlAssumptions

1. TrafficControlPointsandAccessControlPoints(Roadblocks)asdefinedintheapproved

county and state emergency plans were considered in the ETE analysis, as per NRC

guidance.EvacuationsimulationsindicatedthatimplementingtheTCPsandroadblocks

didnotsignificantlyimpacttheETE.Basedonthesimulationresults,theonlyTCPsand

roadblocksconsideredintheETEresultsdocumentedinthisreportarethoselocatedon

I10 to stop the flow of traffic into the area. While Roadblocks are not necessary to

evacuatetheEPZexpediently,staffingtheselocationsdoesstillprovidevalueduringan

evacuationsuchasguidingthoseevacueeswhoarenotfamiliarwiththeareaandserving

asfixedpointsurveillanceifthereisanincidentononeofthemajorevacuationroutes.

SeeSection9andAppendixGforadditionalinformation.

2. Theroadblocks(onI10andatI10ramps)areassumedtobestaffedapproximately45

minutes and 20 minutes after the ATE, as per Maricopa County and the Arizona

DepartmentofPublicSafety,respectively.Forthisstudy,itisassumedthatnothrough

trafficwillentertheEPZonI10afterthis45minutetimeperiod.Earlieractivationof

roadblocklocationscoulddelayreturningcommuters.



PaloVerdeNuclearGeneratingStation 25 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

3. ItisassumedthatalltransitvehiclesandotherrespondersenteringtheEPZtosupport

theevacuationareunhinderedbypersonnelmanningtheI10roadblocks.

2.6 ScenariosandRegions

1. Atotalof12Scenariosrepresentingdifferenttemporalvariations(season,timeofday,

day of week) and weather conditions are considered. Scenarios to be considered are

definedinTable21:

a. AnoutageatPVNGSwillbeconsideredasthespecialevent(singleormultiday

eventthatattractsasignificantpopulationintotheEPZ;recommendedbyNRC

guidance)forScenario11.

b. AsperNRCguidance,onesegmentofoneofthehighestvolumeroadwayswillbe

outofserviceoronelaneoutboundonafreewaymustbeclosedforaroadway

impactscenario.ThisstudywillconsidertheclosureofonelaneonInterstate10

(I10)Eastbound,fromtheinterchangewithNWintersburgRd(Exit98)toMiller

Rd(Exit114)fortheroadwayimpactscenario-Scenario12.

2. Onetypeofadverseweatherscenarioisconsidered.Rainmayoccurforeitherwinteror

summerscenarios.Itisassumedthattherainbeginsearlierorataboutthesametime

the evacuation advisory is issued. No weatherrelated reduction in the number of

transientswhomaybepresentintheEPZisassumed.

3. Adverseweatherscenariosaffectroadwaycapacityandthefreeflowhighwayspeeds.

The capacity and free flow speed are reduced by 10% for rain, based on recent

transportationengineeringresearch.ThefactorsareshowninTable22.

4. Itisassumedthatemploymentisreducedslightlyinthesummerforvacations.
5. It is also assumed that mobilization and loading times for transit vehicles are slightly

longerinadverseweather.Itisassumedthatmobilizationtimesare10minuteslongerin

rain.Itisassumedthatloadingtimesare5minuteslongerinrain.RefertoTable22.

6. Regionsaredefinedbytheunderlyingkeyholeorcircularconfigurationsasspecifiedin

Section 1.4 of NUREG/CR7002, Rev 1. All 16 cardinal and intercardinal wind direction

keyholeconfigurationsareconsidered.RegionstobeconsideredaredefinedinTable6 1.ItisassumedthateveryonewithinthegroupofSectorsformingaRegionthatisissued

anATEwill,infact,respondandevacuateingeneralaccordwiththeplannedroutes.

7. Staged evacuation is considered as defined in NUREG/CR7002, Rev. 1 - those people

between2and5mileswillshelterinplaceuntil90%ofthe2MileRegionhasevacuated,

thentheywillevacuate.SeeRegionsR36throughR52inTable61.

 



PaloVerdeNuclearGeneratingStation 26 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table21.EvacuationScenarioDefinitions

Scenario Season5 DayofWeek TimeofDay Weather Special

1 Summer Midweek Midday Good None

2 Summer Midweek Midday Rain None

3 Summer Weekend Midday Good None

4 Summer Weekend Midday Rain None

Midweek,

5 Summer Evening Good None

Weekend

6 Winter Midweek Midday Good None

7 Winter Midweek Midday Rain None

8 Winter Weekend Midday Good None

9 Winter Weekend Midday Rain None

Midweek,

10 Winter Evening Good None

Weekend

SpecialEvent:Outage

11 Winter Midweek Midday Good

atPVNGS

RoadwayImpact:

12 Summer Midweek Midday Good SingleLaneClosureon

I10Eastbound

Table22.ModelAdjustmentforAdverseWeather

Free MobilizationTime MobilizationTime LoadingTime

Highway Flow forGeneral forSchools/Transit forSchools/

Scenario Capacity* Speed* Population Vehicles TransitVehicles

5minute

Rain 90% 90% NoEffect 10minuteincrease increase/10 minuteincrease

  • Adverse weather capacity and speed values are given as a percentage of good weather

conditions.Roadsareassumedtobepassable.



5 Winter means that school is in session, at normal enrollment levels (also applies to spring and autumn). Summer means that school is in session at summer school enrollment levels (lower than normal enrollment).



PaloVerdeNuclearGeneratingStation 27 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure21.VoluntaryEvacuationMethodology



PaloVerdeNuclearGeneratingStation 28 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

3 DEMANDESTIMATION

The estimates of demand, expressed in terms of people and vehicles, constitute a critical

elementindevelopinganevacuationplan.Theseestimatesconsistofthreecomponents:

1. An estimate of population within the EPZ, stratified into groups (e.g., resident,

employee,transient,specialfacilities,etc.).

2. Anestimate,foreachpopulationgroup,ofmeanoccupancyperevacuatingvehicle.This

estimateisusedtodeterminethenumberofevacuatingvehicles.

3. Anestimateofpotentialdoublecountingofvehicles.

Appendix E presents much of the source material for the population estimates. Our primary

source of population data, the 2021 data collected by Maricopa County, is not adequate for

directlyestimatingsometransientgroups.

Throughout the year, vacationers and tourists enter the EPZ. These nonresidents may dwell

withintheEPZforashortperiod(e.g.,afewdaysoroneortwoweeks)ormayenterandleave

within one day. Estimates of the size of these population components must be obtained, so

thattheassociatednumberofevacuatingvehiclescanbeascertained.

The potential for doublecounting people and vehicles must be addressed. For example, a

residentwhoworkswithintheEPZcouldbecountedasaresidentandagainasanemployee.

Furthermore,thenumberofvehiclesatalocationdependsontimeofday.Forexample,motel

parking lots may be full at dawn and empty at noon. Estimating counts of vehicles by simply

adding up the capacities of different types of parking facilities will tend to overestimate the

numberoftransientsandcanleadtoETEthataretooconservative.

AnalysisofthepopulationcharacteristicsofthePVNGSEPZindicatestheneedtoidentifythree

distinctgroups:

x PermanentresidentspeoplewhoareyearroundresidentsoftheEPZ.

x Transients  people who reside outside of the EPZ who enter the area for a specific

purposeandthenleavethearea.

x EmployeespeoplewhoresideoutsideoftheEPZandcommutetoworkwithintheEPZ

onadailybasis.

Estimates of the population and number of evacuating vehicles for each of the population

groupsarepresentedforeachSectorandbypolarcoordinaterepresentation(populationrose).

The PVNGS EPZ is subdivided into 145 Sectors. The Sectors comprising the EPZ are shown in

Figure31.

3.1 PermanentResidents

Thepermanentresidentpopulationestimatesarebasedupon2021datacollectedbyMaricopa

County.TheMaricopaCountyDepartmentofEmergencyManagement(MCDEM)compilesand

updates the 10mile EPZ population demographics annually. This information is derived from



PaloVerdeNuclearGeneratingStation 31 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

electricutilityconnects/disconnects,specialsurveysandinformationprovidedfromthecounty

planning department.MCDEM geocodes the addresseswhich summarizes population byEPZ

Sector.ThiscompiledinformationisprovidedtoPVNGSwhothenrevisestheonsiteEmergency

Planannuallytoincludetheupdateddemographics.

Table31providesthepermanentresidentpopulationwithintheEPZ,bySector,for2011and

2021basedonthedataprovidedbyMCDEM.

Toestimatethenumberofvehicles,the2021permanentresidentpopulationisdividedbythe

averagehouseholdsizeandthenmultipliedbytheaveragenumberofevacuatingvehiclesper

household.Theaveragehouseholdsize(2.65persons/household)wasestimatedusingthe2021

demographic survey results (see Appendix F, Subsection F.3.1). The number of evacuating

vehicles per household (1.56 vehicles/household - See Appendix F, Subsection F.3.2) was

adaptedfromthedemographicsurveyresults.

PermanentresidentpopulationandvehicleestimatesarepresentedinTable32.Figure32and

Figure 33 present the permanent resident population and permanent resident vehicle

estimates by Sector and distance from PVNGS. This population rose was constructed using

GISsoftware.

Itcanbearguedthatthisestimateofpermanentresidentsoverstates,somewhat,thenumber

of evacuating vehicles, especially during the summer. It is certainly reasonable to assert that

some portion of the population would be on vacation during the summer and would travel

elsewhere.Aroughestimateofthisreductioncanbeobtainedasfollows:

x Assume50percentofallhouseholdsvacationforaperiodoverthesummer.

x Assume these vacations, in aggregate, are uniformly dispersed over 10 weeks, i.e., 10

percentofthepopulationisonvacationduringeachtwoweekinterval.

x Assumehalfofthesevacationersleavethearea.

Onthisbasis,thepermanentresidentpopulationwouldbereducedby5percentinthesummer

andbyalesseramountintheoffseason.Giventheuncertaintyinthisestimate,weelectedto

applynoreductionsinpermanentresidentpopulationforthesummerscenariostoaccountfor

residentswhomaybeoutofthearea.

3.2 ShadowPopulation

A portion of the population living outside the evacuation area extending to 15 miles radially

fromPVNGSmayelecttoevacuatewithouthavingbeeninstructedtodoso.Thisareaiscalled

the Shadow Region. Based upon NUREG/CR7002, Rev. 1 guidance, it is assumed that 20

percent of the permanent resident population, based on U.S. Census Bureau data, in the

ShadowRegionwillelecttoevacuate.

TheshadowpopulationestimatesarebasedupontheU.S.2020Censusdatawithanavailability

dateofSeptember16,2021.Theshadowpopulationisestimatedbycuttingthecensusblock

polygonsbytheShadowRegionboundary.Aratiooftheoriginalareaofeachcensusblockand

theupdatedarea(aftercutting)ismultipliedbythetotalblockpopulationtoestimatewhatthe



PaloVerdeNuclearGeneratingStation 32 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

population is within the Shadow Region. This methodology (referred to as the area ratio

method) assumes that the population is evenly distributed across a census block. The 2020

Census data was then extrapolated to September 2021 using the compound growth formula.

The compound growth rate was computed by comparing the 2010 Census and 2020 Census

data,outlinedinTable33.

Shadow population characteristics (household size, evacuating vehicles per household,

mobilization time) are assumed to be the same as those for the EPZ permanent resident

population.

Table34,Figure34andFigure35presentestimatesoftheshadowpopulationandvehicles,

by Sector. Note, the 2020 Census includes residents living in group quarters, such as skilled

nursing facilities, group homes, etc. These people are transit dependent (will not evacuate in

personal vehicles). To avoid double counting vehicles, the vehicle estimates for these people

have been removed. The resident vehicles in Table 34 and Figure 35 have been adjusted

accordingly.

3.3 TransientPopulation

Transient population groups are defined as those people (who are not permanent residents,

norcommutingemployees)whoentertheEPZforaspecificpurpose(lodging).Transientsmay

spend less than one day or stay overnight at motels. The PVNGS EPZ has one facility that

attractstransients,theSaguaroMineralWellsMotel.

Thenumberofrooms,percentageofoccupiedroomsatpeaktimes,andthenumberofpeople

and vehicles per room for Saguaro Mineral Wells Motel was confirmed by Arizona Public

Service(APS).Thisdatawasusedtoestimatethenumberoftransientsandevacuatingvehicles

atthismotel.

AppendixEsummarizesthetransientdatathatwasestimatedfortheEPZ.TableE3presents

the number of transients at Saguaro Mineral Wells Motel. Table 35 presents transient

populationandtransientvehicleestimatesbySector.Figure36andFigure37presentthese

databySectoranddistancefromtheplant.Atotalof23transientsevacuatingin8vehicles(an

averagevehicleoccupancyof2.88transientspervehicle)areintheEPZ.

3.4 Employees

EmployeeswhoworkwithintheEPZfallintotwocategories:

x ThosewholiveandworkintheEPZ

x ThosewholiveoutsideoftheEPZandcommutetojobswithintheEPZ.

Thoseofthefirstcategoryarealreadycountedaspartofthepermanentresidentpopulation.

Toavoiddoublecounting,wefocusonlyonthoseemployeescommutingfromoutsidetheEPZ

whowillevacuatealongwiththepermanentresidentpopulation.

DataprovidedbyAPSandMCDEMwereusedtoestimatethenumberofemployeescommuting

intotheEPZ.SincenotallemployeesareworkingatfacilitieswithintheEPZatonetime,the



PaloVerdeNuclearGeneratingStation 33 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

maximumshiftnumberwasused.TableE2inAppendixEpresentstheemployees(MaxShift)

andemployeeswhoarenotresidentsoftheEPZ.Avehicleoccupancyof1.18employeesper

vehicleobtainedfromthedemographicsurvey(SeeAppendixF,SubsectionF.3.1,Commuter

Travel Modes) was used to determine the number of evacuating employee vehicles for all

majoremployers.

BasedonthedataprovidedbyAPS,thereare2,611employeesatPVNGS;approximately95%

oftheemployeestravelfromoutsideoftheEPZ.Assuch,thereare2,480(2,611x95%=2,480)

employees commuting into the EPZ. Applying the vehicle occupancy of 1.18 employees per

vehiclediscussedabove,resultingin2,102(2,480÷1.18=2,102)employeevehicles.

AccordingtoHickmansFamilyFarms,inmatesfromtheArizonaStatePrisonaretransportedto

thefarm(locatedinSectorE6).Duringamaxshift,thereare210inmatesworkingatHickmans

FamilyFarms.Theseinmateswouldevacuateonbuses.Assumingacapacityof30peopleper

bus, 7 buses (14 vehicles) were considered at this facility. For this reason, the number of

vehiclesusedinthisstudyatthisfacilityreflectsthenumberofemployeescommutingintothe

EPZplusthe14busesneededfortheinmates.

Table 36 presents the employee and employee vehicles commuting into the EPZ by Sector.

Figure38andFigure39presentthesedatabySector.

3.5 TransitDependentPopulation

The2020demographicsurvey(seeAppendixF)resultswereusedtoestimatetheportionofthe

populationrequiringtransitservice,including:

  • Thosepersonsinhouseholdsthatdonothaveavehicleavailable.
  • Thosepersonsinhouseholdsthatdohavevehicle(s)thatwouldnotbeavailableat

thetimetheevacuationisadvised.

Inthelattergroup,thevehicle(s)maybeusedbyacommuter(s)whodoesnotreturn(orisnot

expectedtoreturn)hometoevacuatethehousehold.

Table37presentstheestimatedcalculationsoftransitdependentpeople.Notethefollowing:

  • Estimates of persons requiring transit vehicles include schoolchildren. For those

evacuation scenarios where children are at school when an evacuation is ordered,

separate transportation is provided for the schoolchildren. The actual need for

transit vehicles by residents is thereby less than the given estimates. However,

estimatesoftransitvehiclesarenotreducedwhenschoolsareinsession.

  • It is reasonable and appropriate to consider that many transitdependent persons

willevacuatebyridesharingwithneighbors,friendsorfamily.Forexample,nearly

80percentofthosewhoevacuatedfromMississauga,Ontariowhodidnotusetheir

own cars, shared a ride with neighbors or friends. Other documents report that

approximately 70 percent of transit dependent persons were evacuated via ride

sharing. Based on the results of the demographic survey, 72% of the transit dependentpopulationwillrideshare.



PaloVerdeNuclearGeneratingStation 34 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Theestimatednumberofbustripsneededtoservicetransitdependentpersonsisbasedonan

estimateofanaveragebusoccupancyof30personsattheconclusionofthebusrun.Transit

vehicleseatingcapacitiestypicallyequalorexceed60childrenonaverage(roughlyequivalent

to40adults).Iftransitvehicleevacueesaretwothirdsadultsandonethirdchildren,thenthe

numberofadultseatstakenby30personsis20+(2/3x10)=27.Onthisbasis,theaverage

load factor anticipated is (27/40) x 100 = 68 percent. Thus, if the actual demand for service

exceeds the estimates of Table 37 by 50 percent, the demand for service can still be

accommodatedbytheavailablebusseatingcapacity.

2 20 10 40 1.5 1.00

3 Table37indicatesthattransportationmustbeprovidedfor59people.Therefore,atotalof2

bus runs are required to transport this population to reception and care centers. In order to

serviceallofthetransitdependentpopulationandhaveatleastonebusdrivethrougheachof

the Sectors picking up transitdependent people, 4 bus runs are used in the ETE calculations

(even though only 2 buses are needed from a capacity standpoint). These buses are

representedastwovehiclesintheETEsimulationsduetotheirlargersizeandmoresluggish

operatingcharacteristics.

Toillustratethisestimationprocedure,wecalculatethenumberofpersons,P,requiringpublic

transitorrideshare,andthenumberofbuses,B,requiredforthePVNGSEPZ:

.  % 

Where,

A=Percentofhouseholdswithcommuters

C=Percentofhouseholdswhowillnotawaitthereturnofacommuter

3,665 0.00 0.225 1.72 1 0.491 0.509 0.491 2.56 2 0.491 0.509 211

1 0.72 30 0.28 211 30 2

Thesecalculations,basedonthe2020demographicsurveyresults,areexplainedasfollows:

  • There were no households (HH) with no vehicles available, so the term 0.00

representsthosewhodonothaveaccesstoavehicle.

  • The members of HH with one (1) vehicle away (22.5%), who are at home equals

(1.721).ThenumberofHHwherethecommuterwillnotreturnhomeisequalto

(3,665x0.225x0.72x0.491x0.509),as49.1%ofEPZhouseholdshaveacommuter,

50.9%ofwhichwouldnotreturnhomeintheeventofanemergency.Thenumber

ofpersonswhowillevacuatebypublictransitorrideshareisequaltotheproduct

ofthesetwoterms.



PaloVerdeNuclearGeneratingStation 35 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

  • ThemembersofHHwithtwo(2)vehiclesthatareaway(49.1%),whoareathome,

equals (2.562). The number of HH where neither commuter will return home is

equal to 3,665 x 0.491 x 0.56 x (0.491 x 0.509)2. The number of persons who will

evacuatebypublictransitorrideshareisequaltotheproductofthesetwoterms

(the last term is squared to represent the probability that neither commuter will

return).

  • Households with 3 or more vehicles are assumed to have no need for transit

vehicles.

  • ThetotalnumberofpersonsrequiringpublictransitisthesumofsuchpeopleinHH

withnovehicles,orwith1or2vehiclesthatareawayfromhome.

The estimate of transitdependent population in Table 37 is far less than the number of

registered transitdependent persons in the EPZ as provided by MCDEM (discussed below in

Section3.8.

3.6 SchoolPopulationDemand

Table 38 presents the school population and transportation requirements for the direct

evacuationofallschoolswithinthestudyareaforthe20202021schoolyear.Thisinformation

wasprovidedbyMCDEM.ThecolumninTable38entitledBuses/PassengerVansRequired

specifiesthenumberofbuses/passengervansrequiredforeachschoolunderthefollowingset

ofassumptionsandestimates:

  • Nostudentswillbepickedupbytheirparentspriortothearrivalofthebuses.
  • Whilemanyhighschoolstudentscommutetoschoolusingprivateautomobiles(as

discussedinSection2.4ofNUREG/CR7002,Rev.1),theestimateofbusesrequired

forschoolevacuationdoesnotconsidertheuseoftheseprivatevehicles.

  • Buscapacity,expressedinstudentsperbus,issetto70forprimaryschoolsand50

formiddleandhighschools.

  • CrossroadsAcademyPassengerVansandPassengerCars=15studentspervanand

4studentsand1adult,respectively.

  • Those staff members who do not accompany the students will evacuate in their

privatevehicles.

  • Noallowanceismadeforstudentabsenteeism,typically3percentdaily.
  • Palo Verde Elementary School will be evacuated (even though it is in the Shadow

Region)intheeventofanemergencyatthePVNGSaccordingtoMCDEM.

Implementation of a process to confirm individual school transportation needs prior to bus

dispatch may improve bus utilization. In this way, the number of buses dispatched to the

schools will reflect the actual number needed. The need for buses would be reduced by any

high school students who have evacuated using private automobiles (if permitted by school

authorities). Those buses originally allocated to evacuate schoolchildren that are not needed

due to children being picked up by their parents, can be gainfully assigned to service other

facilitiesorthosepersonswhodonothaveaccesstoprivatevehiclesortoridesharing.





PaloVerdeNuclearGeneratingStation 36 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

School buses/passenger vans are represented as two vehicles in the ETE simulations due to

theirlargersizeandmoresluggishoperatingcharacteristics.

3.7 SpecialEvent

Duringthekickoffmeeting,anoutageattheplantwasdeterminedtodrawthemostpeople

intotheEPZ,asperNRCGuidance.Assuch,anoutageattheplantisconsideredasthespecial

event(Scenario11)fortheETEstudy.TheplantoutagesoccurduringtheweekdaysinMarch

andOctober.Thiseventisconsideredamultidayevent.

DataobtainedfromAPSpersonnelindicatethereare826additionalworkersduringanoutage

at peak times. Additionally, there are approximately 478 special projects support contractors

thatareonsiteduringanoutage,ofwhich71%workduringthedayand29%workatnight.

During max shift, there are a total of 1,304 additional employees at the PVNGS site. Using a

vehicle occupancy factor of 1.18 obtained from the demographic survey, there are a total of

1,105additionalvehiclesattheplantduringanoutage.Thesevehicleswereincorporatedatthe

PVNGSparkinglotsonWBaselineRoad.

Publictransportationisnotprovidedforthiseventandwasnotconsideredinthespecialevent

analysis. The special event vehicle trips were generated utilizing the same mobilization

distributionsasemployees.

3.8 Accessand/orFunctionalNeedsPopulation

The MCDEM has a registration for transitdependent and access and/or functional needs

persons.Basedonthetypeoftransportationrequired(dataprovidedbyMCDEM)thereare354

accessand/orfunctionalneedspeople(284busesand70paratransit)1withintheEPZ,asshown

in Table 39. Buses and paratransit buses needed to evacuate the access and/or functional

needspopulationarerepresentedastwovehiclesintheETEsimulationsduetotheirlargersize

andmoresluggishoperatingcharacteristics.

3.9 ExternalTraffic

VehicleswillbetravelingthroughtheEPZ(externalexternaltrips)atthetimeofanemergency

event.AftertheAdvisorytoEvacuate(ATE)isannounced,thesepassthroughtravelerswillalso

evacuate.ThesethroughvehiclesareassumedtotravelonthemajorroutetraversingtheEPZ-

Interstate(I)10.Itisassumedthatthistrafficwillcontinuetoenterthestudyareaduringthe

first45minutesfollowingtheATE.(SeeSection9andAppendixGforfurtherdiscussion.)

Average Annual Daily Traffic (AADT) data was obtained from the Arizona Department of

Transportation (AZDOT) to estimate the number of vehicles per hour on I10. The AADT was

multipliedbytheKFactor,whichistheproportionoftheAADTonaroadwaysegmentorlink

duringthedesignhour,resultinginthedesignhourvolume(DHV).Thedesignhourisusually

the30thhighesthourlytrafficvolumeoftheyear,measuredinvehiclesperhour(vph).TheDHV



1 Breakdown of the access and/or functional needs population provided directly by MCDEM.



PaloVerdeNuclearGeneratingStation 37 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

is then multiplied by the DFactor, which is the proportion of the DHV occurring in the peak

directionoftravel(alsoknownasthedirectionalsplit).Theresultingvaluesarethedirectional

design hourly volumes (DDHV) and are presented in Table 310, for each of the routes

considered. The DDHV is then multiplied by 0.75 hours (Roadblocks are assumed to be

activated at 45 minutes - 0.75 hours - after the ATE based upon information provided by

MCDEM and APS) to estimate the total number of external vehicles loaded on the analysis

network.Asindicated,thereare3,070vehiclesenteringtheEPZasexternalexternaltripsprior

totheactivationoftheRoadblockandthediversionofthistraffic.Thisnumberisreducedby

60%foreveningscenarios(Scenarios5and10)asdiscussedinSection6.

3.10 BackgroundTraffic

Section 5 discusses the time needed for the people in the EPZ to mobilize and begin their

evacuationtrips.AsshowninTable58,thereare14timeperiodsduringwhichtrafficisloaded

on to roadways in the study areato model the mobilization time ofpeople in the EPZ. Note,

thereisnotrafficgeneratedduringthe15thtimeperiod,asthistimeperiodisintendedtoallow

trafficthathasalreadybegunevacuatingtoclearthestudyareaboundaries.

This study does not assume that roadways are empty at the start of Time Period 1. Rather,

there is a 30minute initialization time period (often referred to as fill time in traffic

simulation) wherein the traffic volumes from Time Period 1 are loaded onto roadways in the

studyarea.Theamountofinitialization/filltrafficthatisontheroadwaysinthestudyareaat

thestartofTimePeriod1dependsonthescenarioandtheregionbeingevacuated(seeSection

6). There are 1,829 vehicles on the roadways in the study area at the end of fill time for an

evacuationoftheentireEPZ(RegionR03)underScenario1(summer,midweek,midday,with

goodweather)conditions.

3.11 SummaryofDemand

A summary of population and vehicle demand is provided in Table 310 and Table 312,

respectively.Thissummaryincludesallpopulationgroupsdescribedinthissection.Atotalof

19,260peopleand13,808vehiclesareconsideredinthisstudy.



PaloVerdeNuclearGeneratingStation 38 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table31.EPZPermanentResidentPopulation

Sector 2011Population2 2021Population3

1MileRing 41 24

4 1,714 1,951

A

B 1,566 1,398

C 1,493 1,324

D 2,939 1,490

E 1,120 893

F 923 585

G 475 420

H 157 68

J 30 0

K 7 6

L 60 35

M 94 99

N 21 4

P 0 0

Q 590 384

R 1,244 1,031

EPZTOTAL 12,474 9,712

EPZPopulationGrowth(2011-2021): 22.14%

 



2 Maricopa County Palo Verde Population Survey - Residents, December 2011 3

Maricopa County Palo Verde Population Survey - Residents, September 2021 4

Stage Stop RV Park is located in Sector A. The population at this facility is assumed to be included with the permanent resident population due to the large population reported within Sector A between 2 and 3 miles of the plant and presence of electrical hook-ups at the facility.



PaloVerdeNuclearGeneratingStation 39 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table32.PermanentResidentPopulationandVehiclesbySector

Sector 2021Population 2021ResidentVehicles

1MileRing 24 14

A5 1,951 1,149

B 1,398 821

C 1,324 780

D 1,490 877

E 893 525

F 585 344

G 420 247

H 68 40

J 0 0

K 6 4

L 35 20

M 99 58

N 4 2

P 0 0

Q 384 225

R 1,031 606

EPZTOTAL 9,712 5,712



Table33.ShadowPopulationGrowthRate

Year Population

2010 6,180

2020 11,143

GrowthRate**: 6.1%



PopulationGrowthRate= 1

2021Population=2020Populationx(1+PopulationGrowthRate)

    • Growthrateusedexclusivelyforextrapolatingshadowpopulation

 



5 Stage Stop RV Park is located in Sector A. The population at this facility is assumed to be included with the permanent resident population due to the large population reported within Sector A between 2 and 3 miles of the plant and presence of electrical hook-ups at the facility.



PaloVerdeNuclearGeneratingStation 310 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table34.ShadowPopulationandVehiclesbySector

Sector 2021Population EvacuatingVehicles

N 344 200

NNE 32 19

NE 6,002 3,531

ENE 2,919 1,703

E 1,992 1,157

ESE 200 117

SE 2 2

SSE 23 14

S 0 0

SSW 0 0

SW 0 0

WSW 0 0

W 0 0

WNW 51 30

NW 106 62

NNW 240 138

TOTAL 11,911 6,973



Table35.SummaryofTransientsandTransientVehicles

Sector Transients TransientVehicles

1MileRing 0 0

A 0 0

B 0 0

C 0 0

D 0 0

E 0 0

F 0 0

G 0 0

H 0 0

J 0 0

K 0 0

L 0 0

M 0 0

N 0 0

P 0 0

Q 0 0

R 23 8

TOTAL 23 8



PaloVerdeNuclearGeneratingStation 311 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table36.SummaryofEmployeesandEmployeeVehiclesCommutingintotheEPZ

Sector Employees EmployeeVehicles

1MileRing 2,480 2,102

A 0 0

B 0 0

C 0 0

D 57 48

E 221 23

F 0 0

G 0 0

H 243 206

J 0 0

K 0 0

L 0 0

M 0 0

N 0 0

P 0 0

Q 0 0

R 34 29

TOTAL 3,035 2,408

Table37.TransitDependentPopulationEstimates

SurveyAverage Survey Percent

HHSize Estimated SurveyPercentHH Survey PercentHH Total People Population

2021 withIndicated No. withIndicatedNo.of PercentHH withNon People Estimated Requiring Requiring

EPZ No.ofVehicles of Vehicles with Returning Requiring Ridesharing Public Public

Population 0 1 2 Households 0 1 2 Commuters Commuters Transport Percentage Transit Transit

9,712 0.00 1.72 2.56 3,665 0.0% 22.5% 49.1% 49.1% 50.9% 211 72% 59 0.6%



PaloVerdeNuclearGeneratingStation 312 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table38.SchoolPopulationDemandEstimates

Buses/Passenger

Sector SchoolName Enrollment VansRequired

A TonopahValleyHighSchool 810 17

A RuthFisherMiddleSchool 731 15

A CrossroadsAcademy 15 1

C WintersWellElementarySchool 460 7

F ArlingtonElementarySchool 280 4

6 ShadowRegion PaloVerdeElementarySchool  450 7

STUDYAREATOTAL: 2,746 51

Table39.Accessand/orFunctionalNeedsDemandSummary

PopulationGroup Population Vehiclesdeployed

Ambulatory 284 10

WheelchairBound 70 7

EPZTOTAL: 354 17

Table310.PVNGSEPZExternalTraffic

Upstream Downstream AZDOT Hourly External

RoadName Direction KFactor8 DFactor8

Node Node AADT7 Volume Traffic

8023 137 I10 Eastbound 38,266 0.107 0.5 2,047 1,535

8021 20 I10 Westbound 38,266 0.107 0.5 2,047 1,535

TOTAL: 3,070

 



6 Palo Verde Elementary School is located in the Shadow Region. MCDEM indicated these schools would evacuate in the event of an emergency at the PVNGS.

7 https://azdot.gov/sites/default/files/media/2021/09/2020-AADT-Interstate.pdf 8

HCM 2016



PaloVerdeNuclearGeneratingStation 313 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table311.SummaryofPopulationDemand9

Permanent Transit Special Shadow External

Sector Transients Employees Schools Total

Residents Dependent Event Population10 Traffic

1MileRing 24 0 0 2,480 0 1,304 0 0 3,808

A 1,951 12 0 0 1,556 0 0 0 3,519

B 1,398 9 0 0 0 0 0 0 1,407

C 1,324 8 0 0 460 0 0 0 1,792

D 1,490 9 0 57 0 0 0 0 1,556

E 893 5 0 221 0 0 0 0 1,119

F 585 4 0 0 280 0 0 0 869

G 420 3 0 0 0 0 0 0 423

H 68 0 0 243 0 0 0 0 311

J 0 0 0 0 0 0 0 0 0

K 6 0 0 0 0 0 0 0 6

L 35 0 0 0 0 0 0 0 35

M 99 1 0 0 0 0 0 0 100

N 4 0 0 0 0 0 0 0 4

P 0 0 0 0 0 0 0 0 0

Q 384 2 0 0 0 0 0 0 386

R 1,031 6 23 34 0 0 0 0 1,094

ShadowRegion 0 0 0 0 45011 0 2,382 0 2,832

Total 9,712 59 23 3,035 2,746 1,304 2,382 0 19,261

 



9 The MCDEM provided the access and/or functional needs population by transportation breakdown directly, no spatial distribution of the transportation was provided. As such, they are not included in this table.

10 Shadow Population has been reduced to 20%. Refer to Figure 2-1 for additional information.

11 According to MCDEM, Palo Verde Elementary School evacuates even though it is located in the Shadow Region.



PaloVerdeNuclearGeneratingStation 314 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table312.SummaryofVehicleDemand12

Permanent Transit Special Shadow External

Sector Transients Employees Schools13 Total

Residents Dependent Event Population14 Traffic

1MileRing 14 0 0 2,102 0 1,105 0 0 3,221

A 1,149 2 0 0 66 0 0 0 1,217

B 821 2 0 0 0 0 0 0 823

C 780 2 0 0 14 0 0 0 796

D 877 0 0 48 0 0 0 0 925

E 525 0 0 23 0 0 0 0 548

F 344 0 0 0 8 0 0 0 352

G 247 2 0 0 0 0 0 0 249

H 40 0 0 206 0 0 0 0 246

J 0 0 0 0 0 0 0 0 0

K 4 0 0 0 0 0 0 0 4

L 20 0 0 0 0 0 0 0 20

M 58 0 0 0 0 0 0 0 58

N 2 0 0 0 0 0 0 0 2

P 0 0 0 0 0 0 0 0 0

Q 225 0 0 0 0 0 0 0 225

R 606 0 8 29 0 0 0 0 643

ShadowRegion 0 0 0 0 1415 0 1,395 3,070 4,479

Total 5,712 8 8 2,408 102 1,105 1,395 3,070 13,808



12 The MCDEM provided the access and/or functional needs population by transportation breakdown directly, no spatial distribution of the transportation was provided. As such, they are not included in this table.

13 Buses and Passenger Vans evacuating children from schools are represented as two passenger vehicles. Refer to Section 3.6 and Section 8 for additional information.

14 Shadow Population has been reduced to 20%. Refer to Figure 2-1 for additional information.

15 According to MCDEM, Palo Verde Elementary School evacuates even though it is located in the Shadow Region.



PaloVerdeNuclearGeneratingStation 315 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure31.SectorsComprisingthePVNGSEPZ



PaloVerdeNuclearGeneratingStation 316 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure32.PermanentResidentPopulationbySector



PaloVerdeNuclearGeneratingStation 317 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure33.PermanentResidentVehiclesbySector 



PaloVerdeNuclearGeneratingStation 318 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure34.ShadowPopulationbySector



PaloVerdeNuclearGeneratingStation 319 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure35.ShadowVehiclesbySector



PaloVerdeNuclearGeneratingStation 320 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure36.TransientPopulationbySector 



PaloVerdeNuclearGeneratingStation 321 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure37.TransientVehiclesbySector 



PaloVerdeNuclearGeneratingStation 322 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure38.EmployeePopulationbySector 



PaloVerdeNuclearGeneratingStation 323 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure39.EmployeeVehiclesbySector



PaloVerdeNuclearGeneratingStation 324 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

4 ESTIMATIONOFHIGHWAYCAPACITY

Theabilityoftheroadnetworktoservicevehicledemandisamajorfactorindetermininghow

rapidly an evacuation can be completed. The capacity of a road is defined as the maximum

hourly rate at which persons or vehicles can reasonably be expected to traverse a point or

uniform section of a lane of roadway during a given time period under prevailing roadway,

trafficandcontrolconditions,asstatedinthe2016HighwayCapacityManual(HCM2016).This

sectiondiscusseshowthecapacityoftheroadwaynetworkwasestimated.

In discussing capacity, different operating conditions have been assigned alphabetical

designations, A through F, to reflect the range of traffic operational characteristics. These

designations have been termed "Levels of Service" (LOS). For example, LOS A connotes

freeflowandhighspeedoperatingconditions;LOSFrepresentsaforcedflowcondition.LOSE

describestrafficoperatingatornearcapacity.

Anotherconcept,closelyassociatedwithcapacity,isServiceVolume.Servicevolume(SV)is

definedasThemaximumhourlyrateatwhichvehicles,bicyclesorpersonsreasonablycanbe

expected to traverse a point or uniform section of a roadway during an hour under specific

assumedconditionswhilemaintainingadesignatedlevelofservice.Thisdefinitionissimilarto

thatforcapacity.ThemajordistinctionisthatvaluesofSVvaryfromoneLOStoanother,while

capacityistheSVattheupperboundofLOSE,only.

Thus,insimpleterms,SVisthemaximumtrafficthatcantravelonaroadandstillmaintaina

certain perceived level of quality to a driver based on the A, B, C, rating system (LOS). Any

additionalvehiclesabovetheSVwoulddroptheratingtoalowerlettergrade.

ThisdistinctionisillustratedinExhibit1237oftheHCM2016.Asindicatedthere,theSVvaries

with Free Flow Speed (FFS), and LOS. The SV is calculated by the DYNEV II simulation model,

basedonthespecifiedlinkattributes,FFS,capacity,controldeviceandtrafficdemand.

Otherfactorsalsoinfluencecapacity.Theseinclude,butarenotlimitedto:

x Lanewidth

x Shoulderwidth

x Pavementcondition

x Horizontalandverticalalignment(curvatureandgrade)

x Percenttrucktraffic

x Controldevice(andtiming,ifitisasignal)

x Weatherconditions(rain,windspeed)

These factors are considered during the road survey and in the capacity estimation process;

somefactorshavegreaterinfluenceoncapacitythanothers.Forexample,laneandshoulder

widthhaveonlyalimitedinfluenceonBaseFreeFlowSpeed(BFFS1)accordingtoExhibit157

of the HCM 2016. Consequently, lane and shoulder widths at the narrowest points were

observed during the road survey and these observations were recorded, but no detailed



1 A very rough estimate of BFFS might be taken as the posted speed limit plus 10 mph (HCM 2016 Page 15-15).



PaloVerdeNuclearGeneratingStation 41 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

measurements of lane or shoulder width were taken. Horizontal and vertical alignment can

influencebothFFSandcapacity.TheestimatedFFSweremeasuredusingthesurveyvehicles

speedometerandobservinglocaltraffic,underfreeflowconditions.Freeflowspeedsranged

from20to75mph.CapacityisestimatedfromtheproceduresoftheHCM2016.Forexample,

HCM 2016 Exhibit 71(b) shows the sensitivity of SV at the upper bound of LOS D to grade

(capacityistheSVattheupperboundofLOSE).

Theamountoftrafficthatcanflowonaroadwayiseffectivelygovernedbyvehiclespeedand

spacing.Thefasterthatvehiclescantravelwhencloselyspaced,thehighertheamountofflow.

AsdiscussedinSection2.6,itisnecessarytoadjustcapacityfigurestorepresenttheprevailing

conditions.Adverseconditionslikeinclementweather,construction,andotherincidentstend

toslowtrafficdownandoften,alsoincreasevehicletovehiclesseparation,thusdecreasingthe

amountoftrafficflow.Basedonlimitedempiricaldata,weatherconditionssuchasrainreduce

thevaluesoffreeflowspeedandofhighwaycapacitybyapproximately10percent.Overthe

lastdecadenewstudieshavebeenmadeontheeffectsofrainontrafficcapacity.Thesestudies

indicate a range of effects between 5 and 20 percent depending on wind speed and

precipitation rates. As indicated in Section 2.6, we employ a reduction in free speed and in

highwaycapacityof10percentforrain.

Since congestion arising from evacuation may be significant, estimates of roadway capacity

mustbedeterminedwithgreatcare.Becauseofitsimportance,abriefdiscussionofthemajor

factorsthatinfluencehighwaycapacityispresentedinthissection.

Rural highways generally consist of: (1) one or more uniform sections with limited access

(driveways, parking areas) characterized by uninterrupted flow; and (2) approaches to at grade intersections where flow can be interrupted by a control device or by turning or

crossing traffic at the intersection. Due to these differences, separate estimates of capacity

must be made for each section. Often, the approach to the intersection is widened by the

additionofoneormorelanes(turnpocketsorturnbays),tocompensateforthelowercapacity

oftheapproachduetothefactorstherethatcaninterrupttheflowoftraffic.Theseadditional

lanesarerecordedduringthefieldsurveyandlaterenteredasinputtotheDYNEVIIsystem.

4.1 CapacityEstimationsonApproachestoIntersections

Atgradeintersectionsareapttobecomethefirstbottlenecklocationsunderlocalheavytraffic

volumeconditions.Thischaracteristicreflectstheneedtoallocateaccesstimetotherespective

competing traffic streams by exerting some form of control. During evacuation, control at

critical intersections will often be provided by traffic control personnel assigned for that

purpose, whose directions may supersede traffic control devices. See Appendix G for more

information.

 



PaloVerdeNuclearGeneratingStation 42 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

The perlane capacity of an approach to a signalized intersection can be expressed

(simplistically)inthefollowingform:



3600 3600

, 



where:

Qcap,m = Capacity of a single lane of traffic on an approach, which executes

movement,m,uponenteringtheintersection;vehiclesperhour(vph)

hm = Meanqueuedischargeheadwayofvehiclesonthislanethatareexecuting

movement,m;secondspervehicle

G = Mean duration of GREEN time servicing vehicles that are executing

movement,m,foreachsignalcycle;seconds

L = Mean"losttime"foreachsignalphaseservicingmovement,m;seconds

C = Durationofeachsignalcycle;seconds

Pm = ProportionofGREENtimeallocatedforvehiclesexecutingmovement,m,

fromthislane.Thisvalueisspecifiedaspartofthecontroltreatment.

m = The movement executed by vehicles after they enter the

intersection:through,leftturn,rightturn,anddiagonal.



The turnmovementspecific mean discharge headway hm, depends in a complex way upon

manyfactors:roadwaygeometrics,turnpercentages,theextentofconflictingtrafficstreams,

thecontroltreatment,andothers.Aprimaryfactoristhevalueof"saturationqueuedischarge

headway", hsat, which applies to through vehicles that are not impeded by other conflicting

traffic streams.This value, itself, depends upon many factors including motorist behavior.

Formally,wecanwrite,



, , , 

where:

hsat = Saturationdischargeheadwayforthroughvehicles;secondspervehicle

F1,F2 = Thevariousknownfactorsinfluencinghm

fm() = Complexfunctionrelatinghmtotheknown(orestimated)valuesofhsat,

F1,F2,









PaloVerdeNuclearGeneratingStation 43 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Theestimationofhmforspecifiedvaluesofhsat,F1,F2,...isundertakenwithintheDYNEVII

simulation model by a mathematical model2. The resulting values for hm always satisfy the

condition:



That is, the turnmovementspecific discharge headways are always greater than, or equal to

the saturation discharge headway for through vehicles. These headways (or its inverse

equivalent,saturationflowrate),maybedeterminedbyobservationorusingtheprocedures

oftheHCM2016.

TheabovediscussionisnecessarilybriefgiventhescopeofthisEvacuationTimeEstimate(ETE)

reportandthecomplexityofthesubjectofintersectioncapacity.Infact,Chapters19,20and21

intheHCM2016addressthistopic.Thefactors,F1,F2,,influencingsaturationflowrateare

identifiedinequation(198)oftheHCM2016.

ThetrafficsignalswithintheEPZandShadowRegionaremodeledusingrepresentativephasing

plansandphasedurationsobtainedaspartofthefielddatacollection.Trafficresponsivesignal

installations allow the proportion of green time allocated (Pm) for each approach to each

intersection to be determined by the expected traffic volumes on each approach during

evacuationcircumstances.Theamountofgreentime(G)allocatedissubjecttomaximumand

minimum phase duration constraints; 2 seconds of yellow time are indicated for each signal

phaseand1secondofallredtimeisassignedbetweensignalphases,typically.Ifasignalispre timed,theyellowandallredtimesobservedduringtheroadsurveyareused.Alosttime(L)of

2.0secondsisusedforeachsignalphaseintheanalysis.

4.2 CapacityEstimationalongSectionsofHighway

Thecapacityofhighwaysectionsasdistinctfromapproachestointersectionsisafunction

ofroadwaygeometrics,trafficcomposition(e.g.,percentheavytrucksandbusesinthetraffic

stream)and,ofcourse,motoristbehavior.ThereisafundamentalrelationshipwhichrelatesSV

(i.e.,thenumberofvehiclesservicedwithinauniformhighwaysectioninagiventimeperiod)

totrafficdensity.ThetopcurveinFigure41illustratesthisrelationship.

Asindicated,therearetwoflowregimes:(1)FreeFlow(leftsideofcurve);and(2)ForcedFlow

(right side). In the Free Flow regime, the traffic demand is fully serviced; the SV increases as

demand volume and density increase, until the SV attains its maximum value, which is the

capacityofthehighwaysection.Astrafficdemandandtheresultinghighwaydensityincrease

beyondthis"critical"value,therateatwhichtrafficcanbeserviced(i.e.,theSV)canactually

decline below capacity (capacity drop). Therefore, in order to realistically represent traffic

performanceduringcongestedconditions(i.e.,whendemandexceedscapacity),itisnecessary

toestimatetheservicevolume,VF,undercongestedconditions.



2 Lieberman, E., "Determining Lateral Deployment of Traffic on an Approach to an Intersection", McShane, W. & Lieberman, E.,

"Service Rates of Mixed Traffic on the Far Left Lane of an Approach". Both papers appear in Transportation Research Record 772, 1980. Lieberman, E., Xin, W., Macroscopic Traffic Modeling for Large-Scale Evacuation Planning, presented at the TRB 2012 Annual Meeting, January 22-26, 2012.



PaloVerdeNuclearGeneratingStation 44 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ThevalueofVFcanbeexpressedas:



where:

R = Reductionfactorwhichislessthanunity

We have employed a value of R=0.90.The advisability of such a capacity reduction factor is

baseduponempiricalstudiesthatidentifiedafalloffintheserviceflowratewhencongestion

occursatbottlenecksorchokepointsonafreewaysystem.ZhangandLevinson3describea

research program that collected data from a computerbased surveillance system (loop

detectors)installedontheInterstateHighwaySystem,at27activebottlenecksinthetwincities

metro area in Minnesota over a 7week period. When flow breakdown occurs, queues are

formed which discharge at lower flow rates than the maximum capacity prior to observed

breakdown. These queue discharge flow (QDF) rates vary from one location to the next and

vary by day of week and time of day based upon local circumstances. The cited reference

presentsameanQDFof2,016passengercarsperhourperlane(pcphpl).Thisfigurecompares

with the nominal capacity estimate of 2,250 pcphpl estimated for the ETE and indicated in

AppendixKforfreewaylinks.Theratioofthesetwonumbersis0.896whichtranslatesintoa

capacityreductionfactorof0.90.

SincetheprincipalobjectiveofETEanalysesistodeveloparealisticestimateofevacuation

times,useoftherepresentativevalueforthiscapacityreductionfactor(R=0.90)isjustified.This

factorisappliedonlywhenflowbreaksdown,asdeterminedbythesimulationmodel.

Rural roads, like freeways, are classified as uninterrupted flow facilities. (This is in contrast

withurbanstreetsystemswhichhavecloselyspacedsignalizedintersectionsandareclassified

asinterruptedflowfacilities.)As such,trafficflowalong ruralroadsissubjecttothesame

effects as freeways in the event traffic demand exceeds the nominal capacity, resulting in

queuingandlowerQDFrates.Asapracticalmatter,ruralroadsrarelybreakdownatlocations

away from intersections. Any breakdowns on rural roads are generally experienced at

intersections where other model logic applies, or at lane drops which reduce capacity there.

Therefore,theapplicationofafactorof0.90isappropriateonruralroads,butrarely,ifever,

activated.

The estimated value of capacity is based primarily upon the type of facility and on roadway

geometrics.Sectionsofroadwaywithadversegeometricsarecharacterizedbylowerfreeflow

speedsandlanecapacity.Exhibit1546intheHCM2016wasreferencedtoestimatesaturation

flowrates.Theimpactofnarrowlanesandshouldersonfreeflowspeedandoncapacityisnot

material, particularly when flow is predominantly in one direction as is the case during an

evacuation.

Theprocedureusedherewastoestimate"section"capacity,VE,basedonobservationsmade

traveling over each section of theevacuation network, based on the posted speed limits and

travelbehaviorofothermotoristsandbyreferencetotheHCM2016.TheDYNEVIIsimulation



3 Lei Zhang and David Levinson, Some Properties of Flows at Freeway Bottlenecks, Transportation Research Record 1883, 2004.



PaloVerdeNuclearGeneratingStation 45 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

model determines for each highway section, represented as a network link, whether its

capacity would be limited by the "sectionspecific" service volume, VE, or by the

intersectionspecificcapacity.Foreachlink,themodelselectsthelowervalueofcapacity.

4.3 ApplicationtothePVNGSStudyArea

Aspartofthedevelopmentofthelinknodeanalysisnetworkforthestudyarea,anestimateof

roadwaycapacityisrequired.Thesourcematerialforthecapacityestimatespresentedherein

iscontainedin:

2016HighwayCapacityManual(HCM2016)

TransportationResearchBoard

NationalResearchCouncil

Washington,D.C.

The highway system in the study area consists primarily of three categories of roads and, of

course,intersections:

x TwoLaneroads:Local,State

x MultilaneHighways(atgrade)

x Freeways

Eachoftheseclassificationswillbediscussed.

4.3.1 TwoLaneRoads

Ref:HCM2016Chapter15

Twolaneroadscomprisethemajorityofhighwayswithinthestudyarea.Theperlanecapacity

of a twolane highway is estimated at 1,700 passenger cars per hour (pc/h). This estimate is

essentially independent of the directional distribution of traffic volume except that, for

extended distances, the twoway capacity will not exceed 3,200 pc/h. The HCM 2016

procedures then estimate LOS and Average Travel Speed. The DYNEV II simulation model

accepts the specified value of capacity as input and computes average speed based on the

timevaryingdemand:capacityrelations.

Based on the field survey and on expected traffic operations associated with evacuation

scenarios:

x Most sections of twolane roads within the study area are classified as Class I, with

"levelterrain";somearerollingterrain.

x ClassIIhighwaysaremostlythosewithinurbanandsuburbancenters.

4.3.2 MultilaneHighway

Ref:HCM2016Chapter12

Exhibit128oftheHCM2016presentsasetofcurvesthatindicateaperlanecapacityranging

fromapproximately1,900to2,300pc/h,forfreespeedsof45to70mph,respectively.Based



PaloVerdeNuclearGeneratingStation 46 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

on observation, the multilane highways outside of urban areas within the study area, service

traffic with freespeeds in this range. The actual timevarying speeds computed by the

simulation model reflect the demand and capacity relationship and the impact of control at

intersections. A conservative estimate of perlane capacity of 1,900 pc/h is adopted for this

studyformultilanehighwaysoutsideofurbanareas,asshowninAppendixK.

4.3.3 Freeways

Ref:HCM2016Chapters10,12,13,14

Chapter 10 of the HCM 2016 describes a procedure for integrating the results obtained in

Chapters12,13and14,whichcomputecapacityandLOSforfreewaycomponents.Chapter10

alsopresentsadiscussionofsimulationmodels.TheDYNEVIIsimulationmodelautomatically

performsthisintegrationprocess.

Chapter 12 of the HCM 2016 presents procedures for estimating capacity and LOS for Basic

FreewaySegments".Exhibit1237oftheHCM2016presentscapacityvs.freespeedestimates,

whichareprovidedbelow.



FreeSpeed(mph): 55 60 65 70+

PerLaneCapacity(pc/h): 2,250 2,300 2,350 2,400



Theinputstothesimulationmodelarehighwaygeometrics,freespeedsandcapacitybasedon

fieldobservations.Thesimulationlogiccalculatesactualtimevaryingspeedsbasedondemand:

capacityrelationships.Aconservativeestimateofperlanecapacityof2,250pc/hisadoptedfor

thisstudyforfreeways,asshowninAppendixK.

Chapter13oftheHCM2016presentsproceduresforestimatingcapacity,speed,densityand

LOS for freeway weaving sections. The simulation model contains logic that relates speed to

demand volume: capacity ratio. The value of capacity obtained from the computational

procedures detailed in Chapter 13 depends on the "Type" and geometrics of the weaving

segmentandonthe"VolumeRatio"(ratioofweavingvolumetototalvolume).

Chapter 14 of the HCM 2016 presents procedures for estimating capacities of ramps and of

"merge"areas.Therearethreesignificantfactorstothedeterminationofcapacityofaramp freeway junction: The capacity of the freeway immediately downstream of an onramp or

immediately upstream of an offramp; the capacity of the ramp roadway; and the maximum

flow rate entering the ramp influence area. In most cases, the freeway capacity is the

controllingfactor.ValuesofthismergeareacapacityarepresentedinExhibit1410oftheHCM

2016 and depend on the number of freeway lanes and on the freeway free speed. Ramp

capacityispresentedinExhibit1412andisafunctionoftherampFFS.TheDYNEVIIsimulation

model logic simulates the merging operations of the ramp and freeway traffic in accord with

theproceduresinChapter14oftheHCM2016.Ifcongestionresultsfromanexcessofdemand



PaloVerdeNuclearGeneratingStation 47 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

relativetocapacity,thenthemodelallocatesserviceappropriatelytothetwoenteringtraffic

streamsandproducesLOSFconditions(TheHCM2016doesnotaddressLOSFexplicitly).

4.3.4 Intersections

Ref:HCM2016Chapters19,20,21,22

Procedures for estimating capacity and LOS for approaches to intersections are presented in

Chapter19(signalizedintersections),Chapters20,21(unsignalizedintersections)andChapter

22(roundabouts).Thecomplexityofthesecomputationsisindicatedbytheaggregatelengthof

thesechapters.TheDYNEVIIsimulationlogicislikewisecomplex.

Thesimulationmodelexplicitlymodelsintersections:Stop/yieldcontrolledintersections(both

2way and allway) and traffic signal controlled intersections. Where intersections are

controlled by fixed time controllers, traffic signal timings are set to reflect average (non evacuation) traffic conditions. Actuated traffic signal settings respond to the timevarying

demands of evacuation traffic to adjust the relative capacities of the competing intersection

approaches.

The model is also capable of modeling the presence of manned traffic control. At specific

locationswhereitisadvisableorwhereexistingplanscallforoverridingexistingtrafficcontrol

to implement manned control, the model will use actuated signal timings that reflect the

presenceoftrafficguides.Atlocationswhereaspecialtrafficcontrolstrategy(continuousleft turns, contraflow lanes) is used, the strategy is modeled explicitly. Where applicable, the

locationandtypeoftrafficcontrolfornodesintheevacuationnetworkarenotedinAppendix

K.

4.4 SimulationandCapacityEstimation

Chapter 6 of the HCM 2016 is entitled, HCM and Alternative Analysis Tools. The chapter

discussestheuseofalternativetoolssuchassimulationmodelingtoevaluatetheoperational

performance of highway networks. Among the reasons cited in Chapter 6 to consider using

simulationasanalternativeanalysistoolis:

The system under study involves a group of different facilities or travel modes with

mutualinteractionsinvolvingseveralHCMchapters.Alternativetoolsareabletoanalyze

thesefacilitiesasasinglesystem.

Thisstatementsuccinctlydescribestheanalysesrequiredtodeterminetrafficoperationsacross

an area encompassing an EPZ operating under evacuation conditions. The model utilized for

this study, DYNEV II, is further described in Appendix C. It is essential to recognize that

simulationmodelsdonotreplicatethemethodologyandproceduresoftheHCM2016-they

replacetheseproceduresbydescribingthecomplexinteractionsoftrafficflowandcomputing

MeasuresofEffectiveness(MOE)detailingtheoperationalperformanceoftrafficovertimeand

bylocation.TheDYNEVIIsimulationmodelincludessomeHCM2016proceduresonlyforthe

purposeofestimatingcapacity.



PaloVerdeNuclearGeneratingStation 48 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

All simulation models must be calibrated properly with field observations that quantify the

performance parameters applicable to the analysis network. Two of the most important of

these are: (1) FFS; and (2) saturation headway, hsat. The first of these is estimated by direct

observation during the road survey; the second is estimated using the concepts of the HCM

2016,asdescribedearlier.TheseparametersarelistedinAppendixK,foreachnetworklink.

Itisimportanttonotethatsimulationisamathematicalrepresentationofanassumedsetof

conditionsusingthebestavailableknowledgeandunderstandingoftrafficflowandavailable

inputs. Simulation should not be assumed to be a prediction of what will happen under any

event because a real evacuation can be impacted by an infinite number of things - many of

whichwilldifferfromthesetestcases-andmanyotherscannotbetakenintoaccountwiththe

toolsavailable.

4.5 BoundaryConditions

AsillustratedinFigure12andinAppendixK,thelinknodeanalysisnetworkusedforthisstudy

isfinite.Theanalysisnetworkdoesextendwellbeyondthe15mileradialstudyareainsome

locationsinordertomodelintersectionswithothermajorevacuationroutesbeyondthestudy

area. However, the network does have an end at the destination (exit) nodes asdiscussed in

Appendix C. Beyond these destination nodes, there may be signalized intersections or merge

points that impact the capacity of the evacuation routes leaving the study area. Rather than

neglecttheseboundaryconditions,thisstudyassumesa25%reductionincapacityontwo lane roads (Section 4.3.1 above) and multilane highways (Section 4.3.2 above). There is no

reductionincapacityforfreewaysduetoboundaryconditions.The25%reductionincapacityis

based on the prevalence of actuated traffic signals in the study area and the fact that the

evacuating traffic volume will be more significant than the competing traffic volume at any

downstreamsignalizedintersections,therebywarrantingamoresignificantpercentage(75%in

thiscase)ofthesignalgreentime.



PaloVerdeNuclearGeneratingStation 49 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

 Volume, vph Capacity Drop Qmax R Qmax Qs Density, vpm Flow Regimes Speed, mph Free Forced vf R vc Density, vpm kf kopt kj ks



Figure41.FundamentalDiagrams



PaloVerdeNuclearGeneratingStation 410 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

5 ESTIMATIONOFTRIPGENERATIONTIME

Federal guidance (see NUREG CR7002, Rev. 1) specify that the planner estimate the

distributionsofelapsedtimesassociatedwithmobilizationactivitiesundertakenbythepublic

to prepare for the evacuation trip. The elapsed time associated with each activity is

representedasastatisticaldistributionreflectingdifferencesbetweenmembersofthepublic.

The quantification of these activitybased distributions relies largely on the results of the

demographic survey. We define the sum of these distributions of elapsed times as the Trip

GenerationTimeDistribution.

5.1 Background

In general, an accident at a nuclear power plant is characterized by the following Emergency

ClassificationLevels(seeSectionCofPartIVofAppendixEof10CFR50fordetails):

1. UnusualEvent
2. Alert
3. SiteAreaEmergency
4. GeneralEmergency

Ateachlevel,theFederalguidelinesspecifyasetofActionstobeundertakenbythelicensee,

and by the state and local offsite agencies. As a Planning Basis, we will adopt a conservative

posture, in accordance with Section 1.2 of NUREG/CR7002, Rev. 1, that a rapidly escalating

accidentattheplantwhereinevacuationisorderedpromptlyandnoearlyprotectiveactionshave

beenimplementedwillbeconsideredincalculatingtheTripGenerationtime.Wewillassume:

1. TheAdvisorytoEvacuate(ATE)willbeannouncedcoincidentwiththesirennotification.
2. Mobilizationofthegeneralpopulationwillcommencewithin15minutesafterthesiren

notification.

3. TheETEaremeasuredrelativetotheATE.

Weemphasizethattheadoptionofthisplanningbasisisnotarepresentationthattheseevents

willoccurwithintheindicatedtimeframe.Rather,theseassumptionsarenecessaryinorderto:

1. Establish a temporal framework for estimating the Trip Generation distribution in the

formatrecommendedinSection2.13ofNUREG/CR6863.

2. Identifytemporalpointsofreferencethatuniquelydefine"ClearTime"andETE.

Itislikelythatalongertimewillelapsebetweenthevariousclassesofanemergency.

For example, suppose one hour elapses from the siren alert to the ATE. In this case, it is

reasonable to expect some degree of spontaneous evacuation by the public during this one hourperiod.Asaresult,thepopulationwithintheEmergencyPlanningZone(EPZ)willbelower

whentheATEisannounced,thanatthetimeofthesirenalert.Inaddition,manywillengagein

preparation activities to evacuate, in anticipation that an Advisory will be broadcasted. Thus,

thetimeneededtocompletethemobilizationactivitiesandthenumberofpeopleremainingto

evacuatetheEPZaftertheATE,willbothbesomewhatlessthantheestimatespresentedinthis



PaloVerdeNuclearGeneratingStation 51 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

report. Consequently, the ETE presented in this report are higher than the actual evacuation

time,ifthishypotheticalsituationweretotakeplace.

Thenotificationprocessconsistsoftwoevents:

1. Transmittinginformationusingthealertandnotificationsystems(ANS)availablewithin

theEPZ(e.g.,sirens,telephone,doortodoorcontact,loudspeakers).

2. Receivingandcorrectlyinterpretingtheinformationthatistransmitted.

ThepopulationwithintheEPZisdispersedoveranareaofapproximately315squaremilesand

is engaged in a wide variety of activities. It must be anticipated that some time will elapse

betweenthetransmissionandreceiptoftheinformationadvisingthepublicofanaccident.

Theamountofelapsedtimewillvaryfromoneindividualtothenextdependingonwherethat

personis,whatthatpersonisdoing,andrelatedfactors.Furthermore,somepersonswhowill

be directly involved with the evacuation process may be outside the EPZ at the time the

emergency is declared. These people may be commuters, shoppers and other travelers who

residewithintheEPZandwhowillreturntojointheotherhouseholdmembersuponreceiving

notificationofanemergency.

AsindicatedinSection2.13ofNUREG/CR6863,theestimatedelapsedtimesforthereceiptof

notification can be expressed as a distribution reflecting the different notification times for

differentpeoplewithin,andoutside,theEPZ.Byusingtimedistributions,itisalsopossibleto

distinguish between different population groups and different dayofweek and timeofday

scenarios,sothataccurateETEmaybecomputed.

Forexample,peopleathomeoratworkwithintheEPZwillbenotifiedbysiren,and/ortone

alertand/orradio(ifavailable).ThosewelloutsidetheEPZwillbenotifiedbytelephone,radio,

TVandwordofmouth,withpotentiallylongertimelags.Furthermore,thespatialdistribution

oftheEPZpopulationwilldifferwithtimeofdayfamilieswillbeunitedintheevenings,but

dispersedduringtheday.Inthisrespect,weekendswilldifferfromweekdays.

AsindicatedinSection4.1ofNUREG/CR7002,Rev.1,theinformationrequiredtocomputetrip

generation times is typically obtained from a demographic survey of EPZ residents. Such a

surveywasconductedinsupportofthisETEstudyforthissite.AppendixFdiscussesthesurvey

samplingplan,documentsthesurveyinstrumentutilized,andprovidesthesurveyresults.Itis

importanttonotethattheshapeanddurationoftheevacuationtripmobilizationdistributionis

importantatsiteswheretrafficcongestionisnotexpectedtocausetheETEtoextendbeyond

thetripgenerationtimeperiod.Theremainingdiscussionwillfocusontheapplicationofthe

trip generation data obtained from the demographic survey to the development of the ETE

documentedinthisreport.

5.2 FundamentalConsiderations

Theenvironmentleadinguptothetimethatpeoplebegintheirevacuationtripsconsistsofa

sequenceofeventsandactivities.Eachevent(otherthanthefirst)occursataninstantintime

andistheoutcomeofanactivity.



PaloVerdeNuclearGeneratingStation 52 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Activitiesareundertakenoveraperiodoftime.Activitiesmaybeinseries(i.e.,toundertake

anactivityimpliesthecompletionofallprecedingevents)ormaybeinparallel(twoormore

activities may take place over the same period of time). Activities conducted in series are

functionallydependentonthecompletionofprioractivities;activitiesconductedinparallelare

functionally independent of one another. The relevant events associated with the publics

preparationforevacuationare:



EventNumber EventDescription

1 Notification

2 AwarenessofSituation

3 DepartWork

4 ArriveHome

5 DepartonEvacuationTrip



Associatedwitheachsequenceofeventsareoneormoreactivities,asoutlinedinTable51.

TheserelationshipsareshowngraphicallyinFigure51.

x AnEventisastatethatexistsatapointintime(e.g.,departwork,arrivehome)

x AnActivityisaprocessthattakesplaceoversomeelapsedtime(e.g.,preparetoleave

work,travelhome)

Assuch,acompletedActivitychangesthestateofanindividual(i.e.,theactivity,travelhome

changesthestatefromdepartworktoarrivehome).Therefore,anActivitycanbedescribedas

anEventSequence;theelapsedtimestoperformaneventsequencevaryfromonepersontothe

nextandaredescribedasstatisticaldistributionsonthefollowingpages.

An employee who lives outside the EPZ will follow sequence (c) of Figure 51. A household

within the EPZ that has one or more commuters at work and will await their return before

beginningtheevacuationtripwillfollowthefirstsequenceofFigure51(a).Ahouseholdwithin

theEPZthathasnocommutersatwork,orthatwillnotawaitthereturnofanycommuters,will

followthesecondsequenceofFigure51(a),regardlessofdayofweekortimeofday.

Households with no commuters on weekends or in the evening/nighttime, will follow the

applicable sequence in Figure 51(b). Transients will always follow one of the sequences of

Figure51(b).Sometransientsawayfromtheirresidencecouldelecttoevacuateimmediately

withoutreturningtotheresidence,asindicatedinthesecondsequence.

ItisseenfromFigure51,thattheTripGenerationtime(i.e.,thetotalelapsedtimefromEvent

1 to Event 5) depends on the scenario and will vary from one household to the next.

Furthermore,Event5depends,inacomplicatedway,onthetimedistributionsofallactivities

preceding that event. That is, to estimate the time distribution of Event 5, we must obtain

estimates of the time distributions of all preceding events. For this study, we adopt the

conservativeposturethatallactivitieswilloccurinsequence.





PaloVerdeNuclearGeneratingStation 53 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

In some cases, assuming certain events occur strictly sequential (for instance, commuter

returninghomebeforebeginningpreparationtoleave)canresultinratherconservative(thatis,

longer) estimates ofmobilization times. It is reasonable to expect that at least some parts of

theseeventswilloverlapformanyhouseholds,butthatassumptionisnotmadeinthisstudy.

5.3 EstimatedTimeDistributionsofActivitiesPrecedingEvent5

Thetimedistributionofaneventisobtainedbysummingthetimedistributionsofallprior

contributingactivities.(Thissummingprocessisquitedifferentthananalgebraicsumsinceit

isperformedondistributions-notscalarnumbers).

TimeDistributionNo.1,NotificationProcess:Activity1o2

Federal regulations (10CFR50 Appendix E, Item IV.D.3) stipulate, [t]he design objective of the

promptpublicalertandnotificationsystemshallbetohavethecapabilitytoessentiallycomplete

theinitialalertingandinitiatenotificationofthepublicwithintheplumeexposurepathwayEPZ

within about 15 minutes. Furthermore, the 2019 Federal Emergency Management (FEMA)

RadiologicalEmergencyPreparedness(REP)ProgramManualPartVSectionB.1Bullet3statesthat

Notification methods will be established to ensure coverage within 45 minutes of essentially

100%ofthepopulation.

Giventhefederalregulationsandguidance,andtheassumedpresenceofsirenswithintheEPZ,it

isassumedthat100percentofthepopulationintheEPZcanbenotifiedwithin45minutes.The

assumeddistributionfornotifyingtheEPZpopulationisprovidedinTable52.Thedistributionis

plottedinFigure52.

DistributionNo.2,PreparetoLeaveWork:Activity2o3

ItisreasonabletoexpectthatthevastmajorityofbusinessenterpriseswithintheEPZwillelect

toshutdownfollowingnotificationandmostemployeeswouldleaveworkquickly.Commuters,

whoworkoutsidetheEPZcould,inallprobability,alsoleavequicklysincefacilitiesoutsidethe

EPZwouldremainopenandotherpersonnelwouldremain.Personnelorfarmersresponsible

forequipment/livestockwouldrequireadditionaltimetosecuretheirfacility.Thedistribution

of Activity 2  3 shown in Table 53 reflects data obtained by the demographic survey for

employees working inside or outside of the EPZ who returns home prior to evacuating. This

distributionisalsoapplicableforresidentstoleavestores,restaurants,parks,andotherlocations

withintheEPZ.ThisdistributionisplottedinFigure52.

DistributionNo.3,TravelHome:Activity3o4

These data are provided directly by those households which responded to the demographic

survey.ThisdistributionplottedinFigure52andlistedinTable54.

DistributionNo.4,PreparetoLeaveHome:Activity2,4o5

These data are provided directly by those households which responded to the demographic

survey.ThisdistributionisplottedinFigure52andlistedinTable55.





PaloVerdeNuclearGeneratingStation 54 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

5.4 CalculationofTripGenerationTimeDistribution

The time distributions for each of the mobilization activities presented herein must be

combinedtoformtheappropriateTripGenerationDistributions.Asdiscussedabove,thisstudy

assumesthatthestatedeventstakeplaceinsequencesuchthatallprecedingeventsmustbe

completedbeforethecurrenteventcanoccur.Forexample,ifahouseholdawaitsthereturnof

acommuter,theworktohometrip(Activity3o4)mustprecedeActivity4o5.

Tocalculatethetimedistributionofaneventthatisdependentontwosequentialactivities,itis

necessary to sum the distributions associated with these prior activities. The distribution

summingalgorithmisappliedrepeatedlytoformtherequireddistribution.Asanoutcomeof

this procedure, new time distributions are formed; we assign letter designations to these

intermediatedistributionstodescribetheprocedure.Table56presentsthesummingprocedure

toarriveateachdesignateddistribution.

Table57presentsadescriptionofeachofthefinaltripgenerationdistributionsachievedafterthe

summingprocessiscompleted.

5.4.1 StatisticalOutliers

As already mentioned, some portion of the survey respondents answer dont know to some

questionsorchoosetonotrespondtoaquestion.Themobilizationactivitydistributionsarebased

upon actual responses. But, it is the nature of surveys that a few numeric responses are

inconsistent with the overall pattern of results. An example would be a case in which for 500

responses, almost all of them estimate less than two hours for a given answer, but 3 say four

hoursand4saysixormorehours.

Theseoutliersmustbeconsidered:aretheyvalidresponses,orsoatypicalthattheyshouldbe

droppedfromthesample?

Inassessingoutliers,therearethreealternativestoconsider:

1) Some responses with very long times may be valid, but reflect the reality that the

respondent really needs to be classified in a different population subgroup, based upon

accessand/orfunctionalneeds;

2)Otherresponsesmaybeunrealistic(6hourstoreturnhomefromcommutingdistance,

or2daystopreparethehomefordeparture);

3)Somehighvaluesarerepresentativeandplausible,andonemustnotcutthemaspartof

theconsiderationofoutliers.

Theissueofcourseishowtomakethedecisionthatagivenresponseorsetofresponsesaretobe

consideredoutliers for thecomponentmobilizationactivities, usinga methodthatobjectively

quantifiestheprocess.

Thereisconsiderablestatisticalliteratureontheidentificationandtreatmentofoutlierssinglyor

ingroups,muchofwhichassumesthedataisnormallydistributedandsomeofwhichusesnon



PaloVerdeNuclearGeneratingStation 55 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

parametric methods to avoid that assumption. The literature cites that limited work has been

donedirectlyonoutliersinsamplesurveyresponses.

Inestablishingtheoverallmobilizationtime/tripgenerationdistributions,thefollowingprinciples

areused:

1) It is recognized that the overall trip generation distributions are conservative estimates,

becausetheyassumeahouseholdwilldothemobilizationactivitiessequentially,withno

overlapofactivities;

2) Theindividualmobilizationactivities(preparetoleavework,travelhome,preparehome)

are reviewed for outliers, and then the overall trip generation distributions are created

(seeFigure51,Table56,Table57);

3) Outlierscanbeeliminatedeitherbecausetheresponsereflectsaspecialpopulation(e.g.,

accessand/orfunctionalneeds,transitdependent)orlackofrealism,becausethepurpose

istoestimatetripgenerationpatternsforpersonalvehicles;

4) Toeliminateoutliers,

a) themeanandstandarddeviationofthespecificactivityareestimatedfromthe

responses,

b) themedianofthesamedataisestimated,withitspositionrelativetothemean

noted,

c) thehistogramofthedataisinspected,and

d) allvaluesgreaterthan3.5standarddeviationsareflaggedforattention,taking

special note of whether there are gaps (categories with zero entries) in the

histogramdisplay.

Ingeneral,onlyflaggedvaluesmorethan4standarddeviationsfromthemeanareallowed

tobeconsideredoutliers,withgapsinthehistogramexpected.

Whenflaggedvaluesareclassifiedasoutliersanddropped,stepsatodarerepeated.

5) Asapracticalmatter,evenwithoutlierseliminatedbytheabove,theresultanthistogram,

viewed as a cumulative distribution, is not a normal distribution. A typical situation that

resultsisshownbelowinFigure53.

6) In particular, the cumulative distribution differs from the normal distribution in two key

aspects,bothveryimportantinloadinganetworktoestimateevacuationtimes:

a) Most of the real data is to the left of the normal curve above, indicating that the

networkloadsfasterforthefirst8085%ofthevehicles,potentiallycausingmore(and

earlier)congestionthanotherwisemodeled;

b) Thelast1015%oftherealdatatailsoffslowerthanthecomparablenormalcurve,

indicatingthatthereissignificanttrafficstillloadingatlatertimes.

Becausethesetwofeaturesareimportanttopreserve,itisthehistogramofthedatathat

is used to describe the mobilization activities, not a normal curve fit to the data. One

could consider other distributions, but using the shape of the actual data curve is

unambiguousandpreservestheseimportantfeatures;



PaloVerdeNuclearGeneratingStation 56 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

7) WiththemobilizationactivitieseachmodeledaccordingtoSteps16,includingpreserving

thefeaturescitedinStep6,theoverall(ortotal)mobilizationtimesareconstructed.

This is done by using the data sets and distributions under different scenarios (e.g., commuter

returning,nocommuterreturning).Ingeneral,theseareadditive,usingweightingbaseduponthe

probability distributions of each element; Figure 54 presents the combined trip generation

distributionsforeachpopulationgroupconsidered.Thesedistributionsarepresentedonthesame

timescale.(Asdiscussedearlier,theuseofstrictlyadditiveactivitiesisaconservativeapproach,

because it makes all activities sequential - travel home from work follows preparation to leave

work,preparationfordeparturefollowsthereturnofthecommuter,andsoforth.Inpractice,itis

reasonablethatsomeoftheseactivitiesaredoneinparallel,atleasttosomeextent-forinstance,

preparationtodepartbeginsbyahouseholdmemberathomewhilethecommuterisstillonthe

road.)

The mobilization distribution results are used in their tabular/graphical form as direct inputs to

latercomputationsthatleadtotheETE.

TheDYNEVIIsimulationmodelisdesignedtoacceptvaryingratesofvehicletripgenerationfor

each origin centroid, expressed in the form of histograms. These histograms, which represent

DistributionsA,C,andD,properlydisplacedwithrespecttooneanother,aretabulatedinTable

58(DistributionB,ArriveHome,omittedforclarity).

The final time period (15) is 600 minutes long. This time period is added to allow the analysis

network to clear, in the event congestion persists beyond the trip generation period. Note that

therearenotripsgeneratedduringthisfinaltimeperiod.

5.4.2 StagedEvacuationTripGeneration

AsdefinedinNUREG/CR7002,Rev.1,stagedevacuationconsistsofthefollowing:

1. Sectorscomprisingthe2MileRegionareadvisedtoevacuateimmediately.
2. Sectorscomprisingregionsextendingfrom2to5milesdownwindareadvisedtoshelter

inplacewhilethe2MileRegioniscleared.

3. Asvehiclesevacuatethe2MileRegion,shelteredpeoplefrom2to5milesdownwind

continuepreparationforevacuation.

4. Thepopulationshelteringinthe2to5MileRegionareadvisedtobeginevacuating

whenapproximately90%ofthoseoriginallywithinthe2MileRegionevacuateacross

the2MileRegionboundary.

5. Noncompliancewiththeshelterrecommendationisthesameastheshadow

evacuationpercentageof20%.

Assumptions

1. TheEPZpopulationinSectorsbeyond5mileswillreactasdoesthepopulationinthe2

to5MileRegion;thatis,theywillfirstshelter,thenevacuateafterthe90thpercentile

ETEforthe2MileRegion,withtheexceptionofthe20%noncompliance.



PaloVerdeNuclearGeneratingStation 57 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

2. ThepopulationintheShadowRegionbeyondtheEPZboundary,extendingto15miles

radiallyfromtheplant,willreactastheydoforallnonstagedevacuationscenarios.

Thatis20%ofthesehouseholdswillelecttoevacuatewithnoshelterdelay.

3. Thetransientpopulationwillnotbeexpectedtostagetheirevacuationbecauseofthe

limitedshelteringoptionsavailabletopeoplewhomaybeatparks,onabeach,orat

othervenues.Also,notifyingthetransientpopulationofastagedevacuationwould

provedifficult.

4. Employeeswillalsobeassumedtoevacuatewithoutfirstsheltering.

Procedure

1. Tripgenerationforpopulationgroupsinthe2MileRegionwillbeascomputedbased

upontheresultsofthedemographicsurveyandanalysis.

2. Tripgenerationforthepopulationsubjecttostagedevacuationwillbeformulatedas

follows:

a. Identifythe90thpercentileevacuationtimefortheSectorscomprisingthe2Mile

Region.Thisvalue,TScen*,isobtainedfromsimulationresults.Itwillbecomethe

timeatwhichtheregionbeingshelteredwillbetoldtoevacuateforeach

scenario.

b. Theresultanttripgenerationcurvesforstagingarethenformedasfollows:
i. Thenonsheltertripgenerationcurveisfolloweduntilamaximumof20%

ofthetotaltripsaregenerated(toaccountforshelternoncompliance).

ii. NoadditionaltripsaregenerateduntiltimeTScen*

iii. FollowingtimeTScen*,thebalanceoftripsaregenerated:

1. bysteppingupandthenfollowingthenonsheltertripgeneration

curve(ifTScen*is<maxtripgenerationtime)or

2. bysteppingupto100%(ifTScen*is>maxtripgenerationtime)
c. Note:Thisprocedureimpliesthattheremaybedifferentstagedtripgeneration

distributionsfordifferentscenarios,however,thatwasnotthecaseforthissite

NUREG/CR7002,Rev.1,usesthestatementapproximately90thpercentileas

thetimetoendstagingandbeginevacuating.ThevalueofTScen*isabout2:15

(hrs:mins)forallscenariosonaverage(2:45minutesforthespecialevent

scenario)(seeRegionR01inTable71).

d. Note:Sinceapproximately92percentofthe2MileRegioniscomprisedof

employees,theTScen*valueof2:15isdictatedbythetripgenerationofthese

populationgroupsasopposedtothetripgenerationofthepermanentresidents.

3. Stagedtripgenerationdistributionsarecreatedforthefollowingpopulationgroups:
a. Residentswithreturningcommuters
b. Residentswithoutreturningcommuters

 



PaloVerdeNuclearGeneratingStation 58 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Figure55andTable59presentthestagedtripgenerationdistributionsforbothresidentswith

and without returning commuters and employees. At TScen*, 20 percent of the permanent

resident population (who normally would have completed their mobilization activities for an

unstagedevacuation)advisedtoshelterhasneverthelessdepartedthearea.Thesepeopledo

not comply with the shelter advisory. Also included on the plot are the trip generation

distributionsforthesegroupsasappliedtotheregionsadvisedtoevacuateimmediately.

Since the 90th percentile evacuation time occurs before the end of the trip generation time,

aftertheshelteredregionisadvisedtoevacuate,thesheltertripgenerationdistributionrisesto

meet the balance of the nonstaged trip generation distribution. Following time TScen*, the

balanceofstagedevacuationtripsthatarereadytodepartarereleasedwithin15minutes.After

TScen*+15,theremainderofevacuationtripsaregeneratedinaccordancewiththeunstagedtrip

generationdistribution.

Figure55andTable59providesthetripgenerationhistogramsforstagedevacuation.

5.4.3 TripGenerationforRecreationalAreas

The State of Arizona/Maricopa County Offsite Emergency Response Plan for Palo Verde

GeneratingStation(November2017)establishedthebasicnotificationprocessofnotifyingthe

public when an incident is occurring or has occurred at the Palo Verde Nuclear Generating

Station.Transientswillbenotifiedbysirenalertingsystemsignalsandotheralertingmethods.

MaricopaCountyisresponsibleforactivatingthealterandwarningsysteminthe10mileEPZ.

If siren system fails, telephone, doortodoor contact or loudspeakers mounted on patrol

vehicleswillbeused.

As discussed in Section 2.3, this study assumes a rapidly escalating general emergency. As

indicatedinTable52,thisstudyassumes100%notificationin45minutes.Table58indicates

that all transients will have mobilized within 1 hour 45 minutes. It is assumed that this

timeframe is sufficient time for transients to return to their vehicles or lodging facilities and

begintheirevacuationtrip.





PaloVerdeNuclearGeneratingStation 59 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table51.EventSequenceforEvacuationActivities

EventSequence Activity Distribution

12 ReceiveNotification 1

23 PreparetoLeaveWork 2

2,34 TravelHome 3

2,45 PreparetoLeavetoEvacuate 4

Table52.TimeDistributionforNotifyingthePublic

ElapsedTime Percentof

(Minutes) PopulationNotified

0 0.0%

5 7.1%

10 13.3%

15 26.5%

20 46.9%

25 66.3%

30 86.7%

35 91.8%

40 96.9%

45 100.0%



 



PaloVerdeNuclearGeneratingStation 510 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table53.TimeDistributionforEmployeestoPreparetoLeaveWork

CumulativePercent CumulativePercent

EmployeesLeaving ElapsedTime EmployeesLeaving

ElapsedTime(Minutes) Work (Minutes) Work

0 0.0% 40 88.9%

5 25.5% 45 93.1%

10 41.5% 50 95.4%

15 55.6% 55 96.4%

20 64.7% 60 99.7%

25 67.6% 65 99.8%

30 81.0% 70 99.9%

35 85.6% 75 100.0%

NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response.Thatis,thesample

wasreducedinsizetoincludeonlythosehouseholdswhorespondedtothisquestion.Theunderlying

assumptionisthatthedistributionofthisactivityfortheDontknowresponders,iftheeventtakes

place,wouldbethesameasthoseresponderswhoprovidedestimates.

Table54.TimeDistributionforCommuterstoTravelHome

Cumulative Cumulative

ElapsedTime Percent ElapsedTime Percent

(Minutes) ReturningHome (Minutes) ReturningHome

0 0.0% 55 86.5%

5 2.9% 60 93.9%

10 12.5% 65 95.0%

15 21.1% 70 95.6%

20 29.4% 75 96.5%

25 37.4% 80 97.3%

30 47.0% 85 98.2%

35 55.3% 90 99.0%

40 68.7% 95 99.4%

45 77.0% 100 99.7%

50 83.4% 105 100.0%

NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response





PaloVerdeNuclearGeneratingStation 511 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table55.TimeDistributionforPopulationtoPreparetoLeaveHome

Cumulative Cumulative

ElapsedTime Percent ElapsedTime Percent

(Minutes) ReturningHome (Minutes) ReturningHome

0 0.0% 135 89.8%

15 3.5% 150 91.4%

30 19.9% 165 91.7%

45 32.3% 180 93.8%

60 53.8% 195 96.2%

75 66.9% 210 97.6%

90 71.5% 225 97.8%

105 72.8% 240 98.7%

120 79.6% 255 100.0%

NOTE:Thesurveydatawasnormalizedtodistributethe"Don'tknow"response

Table56.MappingDistributionstoEvents

ApplySummingAlgorithmTo: DistributionObtained EventDefined

Distributions1and2 DistributionA Event3

DistributionsAand3 DistributionB Event4

DistributionsBand4 DistributionC Event5

Distributions1and4 DistributionD Event5

Table57.DescriptionoftheDistributions

Distribution Description

Timedistributionofcommutersdepartingplaceofwork(Event3).Alsoapplies

A to employees who work within the EPZ who live outside, and to Transients

withintheEPZ.

B Timedistributionofcommutersarrivinghome(Event4).

Timedistributionofresidentswithcommuterswhoreturnhome,leavinghome

C

tobegintheevacuationtrip(Event5).

Timedistributionofresidentswithoutcommutersreturninghome,leavinghome

D

tobegintheevacuationtrip(Event5).



 



PaloVerdeNuclearGeneratingStation 512 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table58.TripGenerationHistogramsfortheEPZPopulationforUnStagedEvacuation

PercentofTotalTripsGeneratedWithinIndicatedTimePeriod

Residents

Residentswith Without

Time Duration Employees Transients Commuters Commuters

Period (Min) (DistributionA) (DistributionA) (DistributionC) (DistributionD)

1 15 5% 5% 0% 0%

2 15 25% 25% 0% 3%

3 15 33% 33% 0% 9%

4 15 22% 22% 1% 14%

5 15 10% 10% 4% 16%

6 30 5% 5% 16% 26%

7 30 0% 0% 25% 9%

8 30 0% 0% 19% 13%

9 30 0% 0% 14% 3%

10 30 0% 0% 9% 4%

11 30 0% 0% 5% 1%

12 30 0% 0% 3% 2%

13 30 0% 0% 2% 0%

14 30 0% 0% 2% 0%

15 600 0% 0% 0% 0%

NOTE:

x Shadowvehiclesareloadedontotheanalysisnetwork(Figure12)usingDistributionsC.

x SpecialeventvehiclesareloadedusingDistributionA.

 



PaloVerdeNuclearGeneratingStation 513 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table59.TripGenerationHistogramsfortheEPZPopulationforStagedEvacuation

PercentofTotalTripsGeneratedWithinIndicatedTimePeriod1

Time Duration ResidentswithCommuters ResidentsWithoutCommuters

Period (Min) (DistributionC) (DistributionD)

1 15 0% 0%

2 15 0% 1%

3 15 0% 1%

4 15 0% 3%

5 15 1% 3%

6 30 3% 6%

7 30 5% 1%

8 30 56% 75%

9 30 14% 3%

10 30 9% 4%

11 30 5% 1%

12 30 3% 2%

13 30 2% 0%

14 30 2% 0%

15 600 0% 0%



1 Trip Generation for Employees and Transients (see Table 5-8) is the same for Un-Staged and Staged Evacuation.



PaloVerdeNuclearGeneratingStation 514 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



1 2 3 4 5

Residents Households wait 1

for Commuters Households without Residents 1 2 5 Commuters and households who do not wait for Commuters (a) Accident occurs during midweek, at midday; year round Residents, Transients 1 2 4 5

Return to residence, away from then evacuate Residence Residents, 1 2 5 Residents at home; Transients at transients evacuate directly Residence (b) Accident occurs during weekend or during the evening2 1 2 3,5

(c) Employees who live outside the EPZ ACTIVITIES EVENTS 1 2 Receive Notification 1. Notification 2 3 Prepare to Leave Work 2. Aware of situation 2, 3 4 Travel Home 3. Depart work 2, 4 5 Prepare to Leave to Evacuate 4. Arrive home

5. Depart on evacuation trip Activities Consume Time 1

Applies for evening and weekends also if commuters are at work.

2 Applies throughout the year for transients.



Figure51.EventsandActivitiesPrecedingtheEvacuationTrip





PaloVerdeNuclearGeneratingStation 515 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

MobilizationActivities Notification PreparetoLeaveWork TravelHome PrepareHome 100%

80%

60%

40%

20%

PercentofPopulationCompletingMobilizationActivity 0%

0 30 60 90 120 150 180 210 240 270 ElapsedTimefromStartofMobilizationActivity(min)



Figure52.TimeDistributionsforEvacuationMobilizationActivities



PaloVerdeNuclearGeneratingStation 516 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

100.0%

90.0%

80.0%

70.0%

60.0%

50.0%

40.0%

CumulativePercentage(%)

30.0%

20.0%

10.0%

0.0%

2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 67.5 82.5 97.5 112.5 CenterofInterval(minutes)

CumulativeData CumulativeNormal



Figure53.ComparisonofDataDistributionandNormalDistribution



PaloVerdeNuclearGeneratingStation 517 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TripGenerationDistributions Employees/Transients ResidentswithCommuters ResidentswithnoCommuters 100 80 60 40 PercentofPopulationBeginningEvacuationTrip 20 0

0 60 120 180 240 300 360 420 ElapsedTimefromEvacuationAdvisory(min)



Figure54.ComparisonofTripGenerationDistributions



PaloVerdeNuclearGeneratingStation 518 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

StagedandUnStagedEvacuationTripGeneration Employees/Transients ResidentswithCommuters ResidentswithnoCommuters StagedResidentswithCommuters StagedResidentswithnoCommuters 100 80 60 40 20 PercentofPopulationBeginningEvacuationTrip 0

0 30 60 90 120 150 180 210 240 270 300 330 360 390 ElapsedTimefromEvacuationAdvisory(min)



Figure55.ComparisonofStagedandUnStagedTripGenerationDistributionsinthe2to5MileRegion



PaloVerdeNuclearGeneratingStation 519 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

6 EVACUATIONCASES

AnevacuationcasedefinesacombinationofEvacuationRegionandEvacuationScenario.The

definitionsofRegionandScenarioareasfollows:

Region A grouping of contiguous evacuating Sectors that forms either a keyhole

sectorbasedarea,oracircularareawithintheEPZ,thatmustbeevacuatedin

responsetoaradiologicalemergency.

Scenario A combination of circumstances, including time of day, day of week, season,

andweatherconditions.Scenariosdefinethenumberofpeopleineachofthe

affectedpopulationgroupsandtheirrespectivemobilizationtimedistributions.

Atotalof52RegionsweredefinedwhichencompassallthegroupingsofSectorsconsidered.

TheseRegionsaredefinedinTable61.TheSectorconfigurationsareidentifiedinFigure61.

Each keyhole sectorbased area consists of a central circle centered at the power plant, and

threeadjoiningsectors,eachwithacentralangleof22.5degrees,asperNUREG/CR7002,Rev.

1 guidance. The central sector coincides with the wind direction. These sectors extend to 5

miles fromthe plant (Regions R04through Region R19) orto theEPZboundary(Regions R20

throughR35).RegionsR01,R02andR03representevacuationsofcircularareaswithradiiof2,

5and10miles,respectively.RegionsR36throughR52areidenticaltoRegionsR02,R04through

R19,respectively;however,thosesectorsbetween2milesand5milesarestageduntil90%of

the2MileRegion(RegionR01)hasevacuated.ForRegions,wherethewindisblowingfromthe

east, eastsoutheast or southeast, two sectors on either side of the central sector (5 sectors

total)areconsideredduetotheswirlingeffectofthewindinthemountainrangetothewestof

theplant.

Atotalof12ScenarioswereevaluatedforallRegions.Thus,thereareatotalof52x12=624

evacuationcases.Table62providesadescriptionofallScenarios.

Each combination of region and scenario implies a specific population to be evacuated. The

population group and the vehicle estimates presented in Section 3 and Appendix E are peak

values. These peak values are adjusted depending on the Scenario and Region being

considered,usingScenarioandRegionspecificpercentages;suchthattheaveragepopulationis

considered for each evacuation case. The Scenario percentages are presented in Table 63,

whiletheRegionpercentagesareprovidedinTableH1.Table64presentsthevehiclecounts

for each scenario for an evacuation of Region R03 - the entire EPZ, based on the scenario

percentagesinTable63.ThepercentagespresentedinTable63weredeterminedasfollows:

The number of residents with commuters during the week (when workforce is at its peak) is

equal to 24.48% (round down to 24%), which is the product of 49.1% (the number of

households with at least one commuter - see Figure F6) and 49.86% (the number of

householdswithacommuterthatwouldawaitthereturnofthecommuterpriortoevacuating

-seeFigureF10).Seeassumption3inSection2.3.Itisestimatedforweekendandevening



PaloVerdeNuclearGeneratingStation 61 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



scenariosthat2%ofthosehouseholdswithreturningcommuterswillhaveacommuteratwork

duringthosetimes.

Employmentisassumedtobeatitspeak(100%)duringthewinter,midweek,middayscenarios.

Employmentisreducedslightly(96%)forsummer,midweek,middayscenarios.Thisisbasedon

the estimation that 50% of the employees commuting into the EPZ will be on vacation for a

week during the approximate 12 weeks of summer. It is further estimated that those taking

vacation will be uniformly dispersed throughout the summer with approximately 4% of

employeesvacationingeachweek.Itisassumedthatonly10%oftheemployeesareworkingin

theeveningsandduringtheweekends.

Based on the previous study, APS stated that transient activity is estimated to be at its peak

(100%)duringwintereveningsandless(75%)duringwinterdays,40%duringsummerevenings

and 30% during summer days. During an outage at the plant (Scenario 11), most of the

transientattractionsareoccupiedbyoutageworkerswhoarealreadycountedasspecialevent

population.Thus,thetransientpercentageissignificantlyless-10%forthisscenario.

AsnotedintheshadowfootnotetoTable63,theshadowpercentagesarecomputedusinga

base of 20% (see assumption 7 in Section 2.2); to include the employees within the Shadow

Region who may choose to evacuate, the voluntary evacuation is multiplied by a scenario specificproportionofemployeestopermanentresidentsintheShadowRegion.Forexample,

usingthevaluesprovidedinTable64forScenario1,theshadowpercentageiscomputedas

follows:

2,312 20% 1 28.1%

1,397 4,315 Onespecialevent-anoutageattheplant-wasconsideredasScenario11.Thus,thespecial

event traffic is 100% evacuated for Scenario 11, and 0% for all other scenarios. As discussed

above,sincemostoftheadditionaloutageworkersstayatthetransientfacilityintheEPZ,the

percentageoftransientswasreducedto10%forthisscenario.

Allschoolsinthestudyarea(includingPaloVerdeElementarySchool)isestimatedthatsummer

school enrollment is approximately 10% of enrollment during the regular school year for

summer,midweek,middayscenarios.Schoolisnotinsessionduringweekendsandevenings,

thusnobuses(nopassengervansatCrossroadsAcademy)forschoolchildrenareneededunder

thosecircumstances.AsdiscussedinSection7,schoolsareinsessionduringthewinterseason,

midweek,middayand100%ofbuseswillbeneededunderthosecircumstances.

Transit buses for the transitdependent population are set to 100% for all scenarios as it is

assumedthatthetransitdependentpopulationispresentintheEPZforallscenarios.

Externaltrafficisestimatedtobereducedby60%duringeveningscenariosandis100%forall

otherscenarios.



PaloVerdeNuclearGeneratingStation 62 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Table61.DescriptionofEvacuationRegions

RadialRegions Sector 2Mile A B C D E F G H J K L M N P Q R PVNGS Region Description Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R01 2MileRegion X X R02 5MileRegion X X X X X X X X X X X X X X X X X X R03 FullEPZ X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Evacuate2MileRegionandDownwindto5Miles Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R04 S X X X X X R05 SSW X X X X X R06 SW X X X X X R07 WSW X X X X X R08 W X X X X X R09 WNW X X X X X R10 NW X X X X X R11 NNW X X X X X R12 N X X X X X R13 NNE X X X X X R14 NE X X X X X R15 ENE X X X X X R16 E X X X X X X X R17 ESE X X X X X X X R18 SE X X X X X X X R19 SSE X X X X X Sector(s)Evacuate Sector(s)ShelterinPlace 



PaloVerdeNuclearGeneratingStation 63 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Evacuate2MileRegionandDownwindtoEPZBoundary Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R20 S X X X X X X X X R21 SSW X X X X X X X X R22 SW X X X X X X X X R23 WSW X X X X X X X X R24 W X X X X X X X X R25 WNW X X X X X X X X R26 NW X X X X X X X X R27 NNW X X X X X X X X R28 N X X X X X X X X R29 NNE X X X X X X X X R30 NE X X X X X X X X R31 ENE X X X X X X X X R32 E X X X X X X X X X X X X R33 ESE X X X X X X X X X X X X R34 SE X X X X X X X X X X X X R35 SSE X X X X X X X X StagedEvacuation2MileRegionEvacuates,thenEvacuateDownwindto5Miles Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R36 5MileRegion X X X X X X X X X X X X X X X X X X R37 S X X X X X R38 SSW X X X X X R39 SW X X X X X R40 WSW X X X X X R41 W X X X X X R42 WNW X X X X X R43 NW X X X X X R44 NNW X X X X X R45 N X X X X X R46 NNE X X X X X R47 NE X X X X X R48 ENE X X X X X R49 E X X X X X X X R50 ESE X X X X X X X R51 SE X X X X X X X R52 SSE X X X X X Sector(s)Evacuate Sector(s)ShelterinPlace Sector(s)ShelterinPlaceuntil90%ETEforR01,thenEvacuate 



PaloVerdeNuclearGeneratingStation 64 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Table62.EvacuationScenarioDefinitions

Scenarios Season1 DayofWeek TimeofDay Weather Special

1 Summer Midweek Midday Good None

2 Summer Midweek Midday Rain None

3 Summer Weekend Midday Good None

4 Summer Weekend Midday Rain None

Midweek,

5 Summer Evening Good None

Weekend

6 Winter Midweek Midday Good None

7 Winter Midweek Midday Rain None

8 Winter Weekend Midday Good None

9 Winter Weekend Midday Rain None

Midweek,

10 Winter Evening Good None

Weekend

11 Winter Midweek Midday Good SpecialEvent:

OutageatPVNGS

RoadwayImpact:

12 Summer Midweek Midday Good LaneClosureon

I10Eastbound



1 Winter means that school is in session, at normal enrollment levels (also applies to spring and autumn). Summer means that school is in session at summer school enrollment levels (lower than normal enrollment).



PaloVerdeNuclearGeneratingStation 65 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Table63.PercentofPopulationGroupsEvacuatingforVariousScenarios

Households Households

With Without School External

Returning Returning Special Buses/Passenger Transit Through

Scenario Commuters Commuters Employees Transients Shadow Events Vans Buses Traffic

1 24% 76% 96% 30% 28% 0% 10% 100% 100%

2 24% 76% 96% 30% 28% 0% 10% 100% 100%

3 2% 98% 10% 30% 21% 0% 0% 100% 100%

4 2% 98% 10% 30% 21% 0% 0% 100% 100%

5 2% 98% 10% 40% 21% 0% 0% 100% 40%

6 24% 76% 100% 75% 28% 0% 100% 100% 100%

7 24% 76% 100% 75% 28% 0% 100% 100% 100%

8 2% 98% 10% 75% 21% 0% 0% 100% 100%

9 2% 98% 10% 75% 21% 0% 0% 100% 100%

10 2% 98% 10% 100% 21% 0% 0% 100% 40%

11 24% 76% 100% 10% 28% 100% 100% 100% 100%

12 24% 76% 96% 30% 28% 0% 10% 100% 100%



ResidentHouseholdswithCommuters.......HouseholdsofEPZresidentswhoawaitthereturnofcommuterspriortobeginningtheevacuationtrip.

ResidentHouseholdswithNoCommuters..HouseholdsofEPZresidentswhodonothavecommutersorwillnotawaitthereturnofcommuterspriortobeginningtheevacuationtrip.

Employees.................................................EPZemployeeswholiveoutsidetheEPZ

Transients..................................................PeoplewhoareintheEPZatthetimeofanaccidentforrecreationalorother(nonemployment)purposes.

Shadow......................................................ResidentsandemployeesintheShadowRegion(outsideoftheEPZ)whowillspontaneouslydecidetorelocateduringtheevacuation.Thebasisfor

thevaluesshownisa20%relocationofshadowresidentsalongwithaproportionalpercentageofshadowemployees.

SpecialEvent..............................................AdditionalvehiclesintheEPZduetotheidentifiedspecialevent.

SchoolandTransitBuses............................Vehicleequivalentspresentontheroadduringevacuationservicingschoolsandtransitdependentpeople(1bus/passengervanisequivalentto2

passengervehicles).

ExternalThroughTraffic.............................TrafficpassingthroughtheEPZoninterstates/freewaysandmajorarterialroadsatthestartoftheevacuation.Thistrafficisstoppedbybarricades

(onI10)45minutesaftertheevacuationbegins.



PaloVerdeNuclearGeneratingStation 66 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Table64.VehicleEstimates2byScenario

Households Households

With Without School External Total

Returning Returning Special Buses/Passenger Transit Through Scenario

Scenario Commuters Commuters Employees Transients Shadow Events Vans3 Buses Traffic Vehicles

1 1,397 4,315 2,312 2 1,959 0 10 12 3,070 13,077

2 1,397 4,315 2,312 2 1,959 0 10 12 3,070 13,077

3 140 5,572 241 2 1,453 0 0 12 3,070 10,490

4 140 5,572 241 2 1,453 0 0 12 3,070 10,490

5 140 5,572 241 3 1,453 0 0 12 1,228 8,649

6 1,397 4,315 2,408 6 1,983 0 102 12 3,070 13,293

7 1,397 4,315 2,408 6 1,983 0 102 12 3,070 13,293

8 140 5,572 241 6 1,453 0 0 12 3,070 10,494

9 140 5,572 241 6 1,453 0 0 12 3,070 10,494

10 140 5,572 241 8 1,453 0 0 12 1,228 8,654

11 1,397 4,315 2,408 1 1,983 1,105 102 12 3,070 14,393

12 1,397 4,315 2,312 2 1,959 0 10 12 3,070 13,077



2 Vehicle estimates are for an evacuation of the entire EPZ (Region R03) 3 The school bus/passenger vans include the 14 vehicles (7 buses) from Palo Verde Elementary School, as the school evacuates even though the school is outside of the EPZ.



PaloVerdeNuclearGeneratingStation 67 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0





Figure61.PVNGSEPZSectors



PaloVerdeNuclearGeneratingStation 68 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



7 GENERALPOPULATIONEVACUATIONTIMEESTIMATES(ETE)

This section presents the ETE results of the computer analyses using the DYNEV II System

described in Appendices B, C and D. These results cover 52 Evacuation Regions within the

PVNGSEmergencyPlanningZone(EPZ)andthe12EvacuationScenariosdiscussedinSection6.

TheETEforallEvacuationCasesarepresentedinTable71andTable72.Thesetablespresent

theestimatedtimestocleartheindicatedpopulationpercentagesfromtheEvacuationRegions

forallEvacuationScenarios.TheETEofthe2MileRegioninbothstagedandunstagedregions

arepresentedinTable73andTable74.Table75definestheEvacuationRegionsconsidered.

The tabulated values of ETE are obtained from the DYNEV II System outputs which are

generatedat5minuteintervals.

7.1 VoluntaryEvacuationandShadowEvacuation

VoluntaryevacueesarepermanentresidentswithintheEPZinSectorsforwhichanAdvisory

toEvacuate(ATE)hasnotbeenissued,yetwhoelecttoevacuate.ShadowEvacuationisthe

voluntaryoutwardmovementofsomepermanentresidentsfromtheShadowRegion(outside

theEPZ)forwhomnoprotectiveactionrecommendationhasbeenissued.Bothvoluntaryand

shadow evacuations are assumed to take place over the same time frame as the evacuation

fromwithintheimpactedEvacuationRegion.

TheETEforthePVNGSEPZaddressestheissueofvoluntaryevacueesinthemannershownin

Figure71.WithintheEPZ,20percentofpermanentresidentslocatedinSectorsoutsideofthe

Evacuation Region who are not advised to evacuate, are assumed to elect to evacuate.

Similarly,itisassumedthat20percentofthosepermanentresidentsintheShadowRegionwill

choosetoleavethearea.

Figure72presentstheareaidentifiedastheShadowRegion.Thisregionextendsradiallyfrom

the plant to cover a region between the EPZ boundary and 15 miles. The population and

number of evacuating vehicles in the Shadow Region were estimated using the 2020 U.S.

Census data from the Census Bureau website1 projected to September 2021. As discussed in

Section 3.2, it is estimated that a total of 11,911 permanent residents reside in the Shadow

Region; 20 percent of them would evacuate. See Table 64 for the number of evacuating

vehiclesfromtheShadowRegion.

TrafficgeneratedwithinthisShadowRegion(includingexternalexternaltraffic),travelingaway

from the plant location, has the potential for impeding evacuating vehicles from within the

EvacuationRegion.AllETEcalculationsincludethisshadowtrafficmovement.





1 www.census.gov



PaloVerdeNuclearGeneratingStation 71 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

7.2 StagedEvacuation

AsdefinedinNUREG/CR7002,Rev.1,stagedevacuationconsistsofthefollowing:

1. Sectorscomprisingthe2MileRegionareadvisedtoevacuateimmediately.
2. Sectorscomprisingregionsextendingfrom2to5milesdownwindareadvisedtoshelter

inplacewhilethe2MileRegioniscleared.

3. As vehicles evacuate the 2Mile Region, people from 2 to 5 miles downwind continue

preparationforevacuationwhiletheyshelter.

4. Thepopulationshelteringinthe2to5MileRegionisadvisedtobeginevacuatingwhen

approximately90%ofthoseoriginallywithinthe2MileRegionevacuateacrossthe2 MileRegionboundary.

5. Noncompliance with the shelter recommendation is the same as the shadow

evacuationpercentageof20%.

SeeSection5.4.2foradditionalinformationonstagedevacuation.

7.3 PatternsofTrafficCongestionduringEvacuation

Figure 73 through Figure 77.  Congestion Patterns at 2 Hours and 55 Minutes after the

AdvisorytoEvacuatillustratethepatternsoftrafficcongestionthatariseforthecasewhenthe

entire EPZ (Region R03) is advised to evacuate during the summer, midweek, midday period

undergoodweatherconditions(Scenario1).

Traffic congestion, as the term is used here, is defined as Level of Service (LOS) F. LOS F is

definedasfollows(HCM2016):

TheHCMusesLOSFtodefineoperationsthathaveeitherbrokendown(i.e.,demand

exceeds capacity) or have reached a point that most users would consider

unsatisfactory, as described by a specified service measure value (or combination of

servicemeasurevalues).However,analystsmaybeinterestedinknowingjusthowbad

theLOSFconditionis,particularlyforplanningapplicationswheredifferentalternatives

may be compared. Several measures are available for describing individually, or in

combination,theseverityofaLOSFcondition:

  •  Demandtocapacity ratios describe the extent to which demand exceeds

capacityduringtheanalysisperiod(e.g.,by1%,15%.).

  • DurationofLOSFdescribeshowlongtheconditionpersists(e.g.,15min,1h,

3h).

  • SpatialextentmeasuresdescribetheareasaffectedbyLOSFconditions.They

includemeasuressuchasthebackofqueue,andtheidentificationofthespecific

intersectionapproachesorsystemelementsexperiencingLOSFconditions.





PaloVerdeNuclearGeneratingStation 72 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Allhighway"links"whichexperienceLOSFaredelineatedintheseFiguresbyathickredline;all

othersarelightlyindicated.

At30minutesaftertheATE,Figure73displayscongestiononWBaselineRoadcausedbythe

PVNGS employee vehicles evacuating from the major parking lots along W Baseline Road. A

roundabout, constructed on W Baseline Road between S Wintersburg Road and the plants

parkinglots,delaytheplantemployeeevacueesduetothereducedcapacityandspeedofthe

roundabout.Atthistime,30%ofemployeesandtransientshavebeguntheirevacuationtrip,

while only 3% of permanent residents (without commuters) have mobilized. Minimal traffic

congestion (LOS B) exists on S Wintersburg Road and W Salome Highway eastbound as plant

employeesareevacuatingtowardBuckeye,locatedeastoftheplant.Minimaltrafficcongestion

(LOSB)existsonI10eastboundandwestboundasexternaltrafficcontinuesonI10beforethe

Roadblocksareestablished.

At1houraftertheATE,Figure74displaysminimaltoheavylevelsoftrafficcongestion(LOSB,

CandD)withintheEPZ.WBaselineRoad,eastoftheroundabout,attheplantsite,stillexhibits

a LOS F. At this time, approximately 85% of employees have mobilized. Congestion (LOS D)

exists on I10 eastbound, as a large number of vehicles evacuating on I10 eastbound merge

withthetrafficonI10withintheShadowRegion.ThiscongestiononI10propagatesthetraffic

tothesinglelaneonrampandeventuallycausingcongestion(LOSC)atS339thAvenuewhich

then delays vehicles from W Van Buren Street.  This delay also causes moderate congestion

(LOSC)onWVanBurenStreet.

At1hourand45minutesaftertheATE,Figure75displayscongestionpersistingonWBaseline

Roadattheplant,includingtheroundaboutwhereplantemployeesfromtheparkinglotsare

evacuating. At this point, all (100%) employees and transients have mobilized and 24% of

permanent residents have begun their evacuation trip. S 339th Avenue is showing increased

congestion (LOS D) due to vehiclesaccessing I10 from a singlelane onramp which acts as a

bottleneckandmeterstheflowoftraffic.Duetothismeteringoftrafficflow,congestionhas

increasedtoLOSFonWVanBurenStreet,asvehiclesaretryingtomakealeftontoS339th

Avenue.

At 2 hours and 15 minutes, Figure 76 displays the plant and the 2Mile Region are clear of

congestion. Moderate levels of traffic congestion (LOS B and C) exist on I10 eastbound, W

Salome Highway and W Baseline Road located east of the plant and within Buckeye. At this

point, approximately 70% of permanent residents have mobilized and 81% have successfully

evacuatedtheEPZ.

At2 hours and55minutesaftertheATE,Figure77. showsthattheEPZandstudyareaare

now clear of congestion. Therefore, any evacuees who depart after this time encounters no

trafficcongestionordelay.Atthistime,approximately90%ofthepopulationhavemobilized

and approximately 92% have successfully evacuated the EPZ. This indicates that the trip

generation plus the time to travel to EPZ boundary (5 hours and 55 minutes) is dictating the

100thpercentileETE.ThelastofthevisiblecongestionislocatedoutsideofthestudyareaonI 10eastboundeastofMillerRoad,whichclears5minuteslaterat3hoursaftertheATE.



PaloVerdeNuclearGeneratingStation 73 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

7.4 EvacuationRates

Evacuationisacontinuousprocess,asimpliedbyFigure78throughFigure719.Thesefigures

displaytherateatwhichtrafficflowsoutoftheindicatedareasforthecaseofanevacuationof

the full EPZ (Region R03) under the indicated conditions. One figure is presented for each

scenarioconsidered.

As indicated in Figure 78 through Figure 719, there is typically a long "tail" to these

distributionsduetomobilizationandnotcongestion(lowpopulationdemand).Vehiclesbegin

toevacuateanareaslowlyatfirst,aspeoplerespondtotheATEatdifferentrates.Thentraffic

demandbuildsrapidly(slopesofcurvesincrease).Whenthesystembecomescongested,traffic

exitstheEPZatratessomewhatbelowcapacityuntilsomeevacuationrouteshavecleared.As

moreroutesclear,theaggregaterateofegressslowssincemanyvehicleshavealreadyleftthe

EPZ. Towards the end of the process, relatively few evacuation routes service the remaining

demand.

Thisdeclineinaggregateflowrate,towardstheendoftheprocess,ischaracterizedbythese

curves flattening and gradually becoming horizontal. Ideally, it would be desirable to fully

saturateallevacuationroutesequallysothatallwillservicetrafficnearcapacitylevelsandall

willclearatthesametime.Forthisidealsituation,allcurveswouldretainthesameslopeuntil

theendofmobilizationtime-thusminimizingevacuationtime.Inreality,thisidealisgenerally

unattainable reflecting the spatial variation in population density, mobilization rates and in

highwaycapacityovertheEPZ.

7.5 EvacuationTimeEstimateResults

Table 71 through Table 72 present the ETE values for all 52 Evacuation Regions and all 12

EvacuationScenarios.Table73throughTable74presenttheETEvaluesforthe2MileRegion

forbothstagedandunstagedkeyholeregionsdownwindto5miles.Thetablesareorganized

asfollows:

Table Contents

The ETE represents the elapsed time required for 90% of the population within a

71 Region,toevacuatefromthatRegion.AllScenariosareconsidered,aswellasStaged

Evacuationscenarios.

The ETE represents the elapsed time required for 100% of the population within a

72 Region,toevacuatefromthatRegion.AllScenariosareconsidered,aswellasStaged

Evacuationscenarios.

TheETErepresentstheelapsedtimerequiredfor90%ofthepopulationwithinthe2 73 Mile Region, to evacuate from the 2Mile Region with both Concurrent and Staged

EvacuationsofadditionalSectorsdownwindinthekeyholeRegion.

TheETErepresentstheelapsedtimerequiredfor100%ofthepopulationwithinthe2 74 Mile Region, to evacuate from the 2Mile Region with both Concurrent and Staged

EvacuationsofadditionalSectorsdownwindinthekeyholeRegion.





PaloVerdeNuclearGeneratingStation 74 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TheanimationsnapshotsdescribedinSection7.3,reflecttheETEstatisticsfortheconcurrent

(unstaged)evacuationscenariosandregions,whicharedisplayedinFigure73throughFigure

77.ThereisminimaltrafficcongestionwiththeEPZ,whichresultsinETEvalueswhichparallel

mobilizationtime;thisisreflectedintheETEstatistics:

x The2MileRegion(R01)consistsofmostlyplantemployees.Thecongestionwithinthis

region,ismostlybasedontheplantemployeesexitingthesitetoaccessSWintersburg

Road.Assuch,the90thpercentileETEforthisregionisbetween2:05(hr:min)and2:15

for all scenarios (excluding the special event) which mimics the rapidly mobilizing

employees and congestion within PVNGS. As shown in Figure 54, employees fully

mobilize in 1 hours and 45 minutes. The additional 30 minutes is the result of the

congestionaccessingtheroundaboutslightlywestoftheplantparkinglots,asdiscussed

inSection7.3.

x The5MileRegion(R02)ismostlyclearofcongestionexceptforWSalomeHighwayeast

oftheplant.R02hasmorepermanentresidentvehiclesthanR01,whichincreasesthe

mobilizationtime(seeFigure54-mobilizationtimeislongerforpermanentresidents

thanforemployees/transients).Asaresult,the90th percentileETEfortheR02ranges

between2:45and2:50(excludingthespecialevent).

x The 90th percentile ETE for the full EPZ (Region R03) ranges between 2:40 and 2:55

(excluding the roadway impact). This is comparable or 10 minutes shorter (during

weekendmiddayscenarios)whencomparedtoR02.Duringtheweekend,thenumber

ofemployeeswithinthe5MileRegionisless.Assuch,thecongestionduetoemployees

isconsiderablyreducedwithinthe2Mileand5MileRegionallowingR03toreachthe

90thpercentileETEmorequicklythaninR02.

x The100thpercentileETEforallRegionsandforallScenariosparallelmobilizationtime,

as congestion within the EPZ dissipates, so no speed and capacity reductions exist, as

displayedinFigure77.The100thpercentileETErangesfrom5hoursand45minutesto

5hoursand55minutes(mobilizationtimeplus10minutestotraveloutoftheEPZ).

ComparisonofScenarios6and11inTable71indicatesthattheSpecialEvent-anoutageat

theplant-hasasignificantimpactontheETEforthe90thpercentileandnoimpacttothe100th

percentileETE.AsdiscussedinSection3.6,anadditional1,105vehiclesarepresentattheplant

duringanoutage.TheadditionalvehiclesincreasethecongestiononWBaselineRoadwithin

theplantsite,extendingtheETEforthe2MileRegion(R01)by40minutes.Forthosekeyhole

regions with wind from the north, west and southwest, the ETE is largely dictated by plant

employeesandthecongestiononWSalomeHighwayduetotheadditionalvehicles;therefore

the90thpercentileETEfortheseregionsarealsosignificantlyimpactedbytheadditionaloutage

employees(withincreasesofupto40minutes).Evenwiththeadditionalvehiclespresentfor

thespecialevent,trafficcongestionwithintheEPZstillclearsbeforethemobilizationtime.Asa

result,the100thpercentileETEarenotimpactedbythespecialevent.

ComparisonofScenarios1and12inTable71indicatesthattheroadwayclosure-singlelane

eastboundonI10fromtheinterchangewithSWintersburgRoad(Exit98)totheinterchange

with State Highway 85 (Exit 112) - has no impact on the 90th percentile ETE for all Regions

exceptforRegionR03.DuringanevacuationofthefullEPZ,the90thpercentileETEincreasesby



PaloVerdeNuclearGeneratingStation 75 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

25 minutes. Congestion is visible on I10 eastbound or from roads accessing I10 eastbound,

outsideofthe5MileRegion.Assuch,theclosureofasinglelanereducestheroadwaycapacity,

prolonging traffic congestion and ETE. For all other Regions, the interstate never experiences

sustained traffic congestion (LOS F), as shown in Figure 73 through Figure 77.  Congestion

Patternsat2Hoursand55MinutesaftertheAdvisorytoEvacuate,whichmeansithasexcess

capacity to service the evacuating traffic demand. The ramps to access the interstate are

bottlenecks,notthemainlineoftheinterstate.Thereisnoimpacttothe100thpercentileETE,

asthetripgeneration(plusthetraveltimetotheEPZboundary)dictatestheETE.

7.6 StagedEvacuationResults

Table 73 and Table 74 present a comparison of the ETE compiled for the concurrent (un staged) and staged evacuation studies. Note that Regions R36 through R52 are the same

geographicareasasRegionsR02,R04throughR19,respectively.ThetimesshowninTable73

andTable74arewhenthe2MileRegionis90%clearand100%clear,respectively.

The objective of a staged evacuation is to show that the ETE for the 2Mile Region can be

significantlyreduced(30minutesor25%,whicheverisless)withoutsignificantlyimpactingthe

regionbetween2milesand5miles.Inallcases,asshowninTable73andTable74,the90th

and 100th percentile ETE for the 2Mile Region is unchanged when a staged evacuation is

implemented for all scenarios. As discussed in Section 7.3 and shown in Figure 73 through

Figure77,thereislittletonocongestionbeyond2milesofthePVNGS.

Todeterminetheeffectofstagedevacuationonresidentsbeyondthe2MileRegion,theETE

forRegionsR02,R04throughR19arecomparedtoR36throughR52,respectively,inTable71

andTable72.AcomparisonofETEbetweenthesesimilarregionsrevealsthatstagingincreases

theETEforthoseinthe2to5mileareabyatmost25minutesforthe90thpercentileandhas

no impact on the 100th percentile. The increase in the 90th percentile ETE is due to the

evacuating vehicles, beyond the 2Mile Region, sheltering and delaying the start of their

evacuation.AsshowninFigure55,stagingtheevacuationcausesasignificantspike(sharp

increase)inmobilization(tripgenerationrate)orevacuatingvehicles.Thisspikeoversaturates

evacuationroutes,whichincreasestrafficcongestionandprolongsETE.

Insummary,stagingevacuationprovidesnobenefitstoevacueeswithinthe2MileRegionand

adverselyimpactsevacueeslocatedbeyondthe2milesfromtheplant.

7.7 GuidanceonUsingETETables

The user first determines the percentile of population for which the ETE is sought (The NRC

guidancecallsforthe90thpercentile).TheapplicablevalueofETEwithinthechosentablemay

thenbeidentifiedusingthefollowingprocedure:

1. IdentifytheapplicableScenario(Step1):
  • Season 

Summer

Winter(alsoAutumnandSpring)



PaloVerdeNuclearGeneratingStation 76 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

  • DayofWeek

Midweek

Weekend

  • TimeofDay

Midday

Evening

  • WeatherCondition

GoodWeather

Rain

  • SpecialEvent-AnOutageatPVNGS
  • RoadwayImpact-SingleLaneClosureonI20Eastbound
  • EvacuationStaging

No,StagedEvacuationisnotconsidered

Yes,StagedEvacuationisconsidered

WhiletheseScenariosaredesigned,inaggregate,torepresentconditionsthroughouttheyear,

somefurtherclarificationiswarranted:

  • Theconditionsofasummerevening(eithermidweekorweekend)andrainarenot

explicitlyidentifiedintheTables.Fortheseconditions,Scenarios(2)and(4)apply.

  • The conditions of a winter evening (either midweek or weekend) and rain are not

explicitlyidentifiedintheTables.Fortheseconditions,Scenarios(7)and(9)forrain

apply.

  • Theseasonsaredefinedasfollows:

Summerassumespublicschoolisinsessionatsummerschoolenrollmentlevels

(lowerthannormalenrollment).

Winter(includesSpringandAutumn)considersthatpublicschoolsareinsession

atnormalenrollmentlevels.

  • Time of Day: Midday implies the time over which most commuters are at work or

aretravellingto/fromwork.

2. WiththedesiredpercentileETEandScenarioidentified,nowidentifytheEvacuationRegion

(Step2):

  • Determinetheprojectedazimuthdirectionoftheplume(coincidentwiththewind

direction).Thisdirectionisexpressedintermsofcompassorientation:fromS,SSW,

SW,

  • Determine the distance that the Evacuation Region will extend from the nuclear

power plant. The applicable distances and their associated candidate Regions are

givenbelow:

2Miles(RegionR01)

To5Miles(RegionR02,R04throughR19)

ToEPZboundary(to10Miles)(RegionsR03,R20throughR35)



PaloVerdeNuclearGeneratingStation 77 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EnterTable75andidentifytheapplicablegroupofcandidateRegionsbasedon

the distance that the selected Region extends from the plant. Select the

EvacuationRegionidentifierinthatrow,basedontheazimuthdirectionofthe

plume,fromthefirstcolumnoftheTable.

3. Determine the ETE Table based on the percentile selected. Then, for the Scenario

identifiedinStep1andtheEvacuationRegionidentifiedinStep2,proceedasfollows:

  • ThecolumnsofTable71arelabeledwiththeScenarionumbers.Identifytheproper

columnintheselectedTableusingtheScenarionumberdefinedinStep1.

  • Identify the row in this table that provides ETE values for the Region identified in

Step2.

  • The unique data cell defined by the column and row so determined contains the

desiredvalueofETEexpressedinHours:Minutes.

Example

ItisdesiredtoidentifytheETEforthefollowingconditions:

  • Sunday,August10that4:00AM.
  • Itisraining.
  • Winddirectionisfromthenortheast(NE).
  • Windspeedissuchthatthedistancetobeevacuatedisjudgedtobea2mileradius

anddownwindto10miles(toEPZboundary).

  • The desired ETE is that value needed to evacuate 90th percent of the population

fromwithintheimpactedRegion.

  • Astagedevacuationisnotdesired.

Table71isapplicablebecausethe90thpercentileETEisdesired.Proceedasfollows:

1. IdentifytheScenarioassummer,weekend,eveningandraining.EnteringTable71,itis

seenthatthereisnomatchforthesedescriptors.However,theclarificationgivenabove

assignsthiscombinationofcircumstancestoScenario4.

2. Enter Table 75 and locate the Region described as Evacuate 2Mile Region and

DownwindtoEPZBoundaryforwinddirectionfromtheNEandreadRegionR30inthe

firstcolumnofthatrow.

3. Enter Table 71 to locate the data cell containing the value of ETE for Scenario 4 and

RegionR30.Thisdatacellisincolumn(4)andintherowforRegionR30;itcontainsthe

ETEvalueof2:25.



PaloVerdeNuclearGeneratingStation 78 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table71.TimetoCleartheIndicatedAreaof90PercentoftheAffectedPopulation

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R02 2:45 2:45 2:50 2:50 2:50 2:45 2:45 2:50 2:50 2:50 3:00 2:45

R03 2:45 2:45 2:40 2:40 2:50 2:45 2:45 2:40 2:40 2:50 2:55 3:10

2MileRegionandKeyholeto5Miles

R04 2:35 2:35 2:50 2:50 2:50 2:35 2:35 2:50 2:50 2:50 2:55 2:35

R05 2:40 2:40 2:50 2:50 2:50 2:40 2:40 2:50 2:50 2:50 2:55 2:40

R06 2:20 2:20 2:45 2:45 2:45 2:20 2:20 2:45 2:45 2:45 2:50 2:20

R07 2:15 2:15 2:40 2:40 2:40 2:20 2:20 2:40 2:40 2:40 2:50 2:15

R08 2:15 2:15 2:40 2:40 2:40 2:15 2:15 2:40 2:40 2:40 2:50 2:15

R09 2:10 2:10 2:40 2:40 2:40 2:15 2:15 2:40 2:40 2:40 2:50 2:10

R10 2:10 2:10 2:35 2:40 2:35 2:10 2:10 2:35 2:40 2:35 2:45 2:10

R11 2:05 2:05 2:25 2:25 2:25 2:10 2:10 2:25 2:25 2:25 2:45 2:05

R12 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R13 2:05 2:05 2:20 2:20 2:20 2:10 2:10 2:20 2:20 2:20 2:45 2:05

R14 2:05 2:05 2:25 2:25 2:25 2:10 2:10 2:25 2:25 2:25 2:45 2:05

R15 2:05 2:05 2:20 2:20 2:20 2:10 2:10 2:20 2:20 2:20 2:45 2:05

R16 2:05 2:05 2:20 2:20 2:20 2:10 2:10 2:20 2:20 2:20 2:45 2:05

R17 2:10 2:10 2:35 2:40 2:35 2:10 2:10 2:35 2:40 2:35 2:45 2:10

R18 2:20 2:25 2:45 2:45 2:45 2:20 2:20 2:45 2:45 2:45 2:50 2:20

R19 2:25 2:25 2:45 2:45 2:45 2:25 2:25 2:45 2:45 2:45 2:50 2:25



 



PaloVerdeNuclearGeneratingStation 79 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

2MileRegionandKeyholetoEPZBoundary

R20 2:25 2:25 2:25 2:25 2:40 2:25 2:25 2:25 2:25 2:40 2:45 2:25

R21 2:30 2:30 2:25 2:25 2:45 2:30 2:30 2:25 2:25 2:45 2:45 2:30

R22 2:20 2:20 2:25 2:25 2:40 2:20 2:20 2:25 2:25 2:40 2:45 2:20

R23 2:30 2:30 2:35 2:35 2:45 2:30 2:30 2:35 2:35 2:45 2:50 2:30

R24 2:30 2:30 2:35 2:35 2:45 2:30 2:30 2:35 2:35 2:45 2:55 2:30

R25 2:25 2:25 2:45 2:45 2:45 2:25 2:25 2:45 2:45 2:45 2:55 2:25

R26 2:15 2:15 2:45 2:45 2:45 2:15 2:15 2:45 2:45 2:45 2:50 2:15

R27 2:05 2:05 2:35 2:35 2:35 2:10 2:10 2:35 2:35 2:35 2:45 2:05

R28 2:05 2:05 2:20 2:20 2:20 2:05 2:05 2:20 2:20 2:20 2:45 2:05

R29 2:05 2:05 2:20 2:20 2:20 2:10 2:10 2:20 2:20 2:20 2:45 2:05

R30 2:05 2:05 2:25 2:25 2:25 2:10 2:10 2:25 2:25 2:25 2:45 2:05

R31 2:05 2:05 2:25 2:25 2:25 2:10 2:10 2:25 2:25 2:25 2:45 2:05

R32 2:10 2:10 2:40 2:40 2:40 2:15 2:15 2:40 2:40 2:40 2:50 2:10

R33 2:05 2:05 1:50 1:50 2:30 2:10 2:10 1:50 1:50 2:30 2:35 2:05

R34 2:15 2:15 2:10 2:10 2:40 2:20 2:20 2:10 2:10 2:40 2:40 2:15

R35 2:20 2:25 2:20 2:20 2:40 2:20 2:20 2:20 2:20 2:40 2:40 2:20

 



PaloVerdeNuclearGeneratingStation 710 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

StagedEvacuation-5MileRegion,2MileRegionandKeyholeto5Miles

R36 2:55 2:55 3:00 3:00 3:00 2:55 2:55 3:00 3:00 3:00 3:00 2:55

R37 2:50 2:50 2:55 2:55 2:55 2:50 2:50 2:55 2:55 2:55 2:55 2:50

R38 2:50 2:50 2:55 2:55 2:55 2:50 2:50 2:55 2:55 2:55 2:55 2:50

R39 2:45 2:45 2:55 2:55 2:55 2:45 2:45 2:55 2:55 2:55 2:50 2:45

R40 2:40 2:40 2:50 2:50 2:50 2:35 2:40 2:50 2:50 2:50 2:50 2:40

R41 2:35 2:35 2:45 2:45 2:45 2:30 2:35 2:45 2:45 2:45 2:50 2:35

R42 2:25 2:30 2:45 2:45 2:45 2:25 2:25 2:45 2:45 2:45 2:50 2:25

R43 2:25 2:25 2:45 2:45 2:45 2:25 2:25 2:45 2:45 2:45 2:45 2:25

R44 2:05 2:05 2:40 2:40 2:40 2:10 2:10 2:40 2:40 2:40 2:45 2:05

R45 2:05 2:05 2:20 2:20 2:20 2:05 2:05 2:20 2:20 2:20 2:45 2:05

R46 2:05 2:05 2:30 2:30 2:30 2:10 2:10 2:30 2:30 2:30 2:45 2:05

R47 2:05 2:05 2:35 2:35 2:35 2:10 2:10 2:35 2:35 2:35 2:45 2:05

R48 2:05 2:05 2:35 2:35 2:35 2:10 2:10 2:35 2:35 2:35 2:45 2:05

R49 2:05 2:05 2:35 2:35 2:35 2:10 2:10 2:35 2:35 2:35 2:45 2:05

R50 2:20 2:20 2:45 2:45 2:45 2:20 2:20 2:45 2:45 2:45 2:50 2:20

R51 2:45 2:45 2:50 2:50 2:50 2:40 2:45 2:50 2:50 2:50 2:50 2:45

R52 2:45 2:45 2:50 2:50 2:50 2:40 2:45 2:50 2:50 2:50 2:50 2:45





 



PaloVerdeNuclearGeneratingStation 711 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table72.TimetoCleartheIndicatedAreaof100PercentoftheAffectedPopulation

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

Entire2MileRegion,5MileRegion,andEPZ

R01 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R02 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R03 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

2MileRegionandKeyholeto5Miles

R04 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R05 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R06 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R07 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R08 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R09 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R10 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R11 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R12 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R13 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R14 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R15 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R16 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R17 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R18 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R19 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

 



PaloVerdeNuclearGeneratingStation 712 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

2MileRegionandKeyholetoEPZBoundary

R20 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R21 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R22 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R23 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R24 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R25 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R26 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R27 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R28 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R29 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R30 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R31 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R32 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R33 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R34 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55

R35 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55 5:55



 



PaloVerdeNuclearGeneratingStation 713 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

StagedEvacuation-5MileRegion,2MileRegionandKeyholeto5Miles

R36 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R37 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R38 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R39 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R40 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R41 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R42 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R43 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R44 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R45 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R46 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R47 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R48 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R49 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R51 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50

R52 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50 5:50



 



PaloVerdeNuclearGeneratingStation 714 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table73.TimetoClear90Percentofthe2MileRegionwithintheIndicatedRegion

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

UnstagedEvacuation-2MileRegionand5MileRegion

R01 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R02 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

UnstagedEvacuation2MileRegionandKeyholeto5Miles

R04 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R05 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R06 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R07 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R08 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R09 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R10 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R11 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R12 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R13 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R14 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R15 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R16 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R17 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R18 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R19 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05



 



PaloVerdeNuclearGeneratingStation 715 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

StagedEvacuation-5MileRegion,2MileRegionandKeyholeto5Miles

R36 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R37 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R38 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R39 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R40 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R41 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R42 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R43 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R44 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R45 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R46 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R47 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R48 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R49 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R50 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R51 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05

R52 2:05 2:05 2:15 2:15 2:15 2:05 2:05 2:15 2:15 2:15 2:45 2:05



 



PaloVerdeNuclearGeneratingStation 716 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table74.TimetoClear100Percentofthe2MileRegionwithintheIndicatedRegion

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

UnstagedEvacuation-2MileRegionand5MileRegion

R01 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R02 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

UnstagedEvacuation2MileRegionandKeyholeto5Miles

R04 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R05 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R06 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R07 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R08 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R09 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R10 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R11 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R12 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R13 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R14 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R15 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R16 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R17 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R18 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R19 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45



 



PaloVerdeNuclearGeneratingStation 717 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Summer Summer Summer Winter Winter Winter Winter Summer

 Midweek Midweek

Midweek Weekend Midweek Weekend Midweek Midweek

Weekend Weekend

Scenario: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Midday Midday Evening Midday Midday Evening Midday Midday

Region Good Good Good Good Good Good Special Roadway

Rain Rain Rain Rain

Weather Weather Weather Weather Weather Weather Event Impact

StagedEvacuation-5MileRegion,2MileRegionandKeyholeto5Miles

R36 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R37 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R38 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R39 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R40 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R41 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R42 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R43 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R44 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R46 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R47 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R48 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R49 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R50 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R51 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45

R52 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45 5:45





 



PaloVerdeNuclearGeneratingStation 718 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table75.DescriptionofEvacuationRegions

RadialRegions Sector 2Mile A B C D E F G H J K L M N P Q R PVNGS Region Description Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R01 2MileRegion X X R02 5MileRegion X X X X X X X X X X X X X X X X X X R03 FullEPZ X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Evacuate2MileRegionandDownwindto5Miles Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R04 S X X X X X R05 SSW X X X X X R06 SW X X X X X R07 WSW X X X X X R08 W X X X X X R09 WNW X X X X X R10 NW X X X X X R11 NNW X X X X X R12 N X X X X X R13 NNE X X X X X R14 NE X X X X X R15 ENE X X X X X R16 E X X X X X X X R17 ESE X X X X X X X R18 SE X X X X X X X R19 SSE X X X X X Sector(s)Evacuate Sector(s)ShelterinPlace 



PaloVerdeNuclearGeneratingStation 719 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Evacuate2MileRegionandDownwindtoEPZBoundary Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R20 S X X X X X X X X R21 SSW X X X X X X X X R22 SW X X X X X X X X R23 WSW X X X X X X X X R24 W X X X X X X X X R25 WNW X X X X X X X X R26 NW X X X X X X X X R27 NNW X X X X X X X X R28 N X X X X X X X X R29 NNE X X X X X X X X R30 NE X X X X X X X X R31 ENE X X X X X X X X R32 E X X X X X X X X X X X X R33 ESE X X X X X X X X X X X X R34 SE X X X X X X X X X X X X R35 SSE X X X X X X X X StagedEvacuation2MileRegionEvacuates,thenEvacuateDownwindto5Miles Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R36 5MileRegion X X X X X X X X X X X X X X X X X X R37 S X X X X X R38 SSW X X X X X R39 SW X X X X X R40 WSW X X X X X R41 W X X X X X R42 WNW X X X X X R43 NW X X X X X R44 NNW X X X X X R45 N X X X X X R46 NNE X X X X X R47 NE X X X X X R48 ENE X X X X X R49 E X X X X X X X R50 ESE X X X X X X X R51 SE X X X X X X X R52 SSE X X X X X Sector(s)Evacuate Sector(s)ShelterinPlace Sector(s)ShelterinPlaceuntil90%ETEforR01,thenEvacuate 





PaloVerdeNuclearGeneratingStation 720 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure71.VoluntaryEvacuationMethodology



PaloVerdeNuclearGeneratingStation 721 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure72.PaloVerdeShadowRegion 



PaloVerdeNuclearGeneratingStation 722 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure73.CongestionPatternsat30MinutesaftertheAdvisorytoEvacuate



PaloVerdeNuclearGeneratingStation 723 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure74.CongestionPatternsat1HouraftertheAdvisorytoEvacuate



PaloVerdeNuclearGeneratingStation 724 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure75.CongestionPatternsat1Hourand45MinutesaftertheAdvisorytoEvacuate



PaloVerdeNuclearGeneratingStation 725 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure76.CongestionPatternsat2Hoursand15MinutesaftertheAdvisorytoEvacuate



PaloVerdeNuclearGeneratingStation 726 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure77.CongestionPatternsat2Hoursand55MinutesaftertheAdvisorytoEvacuate



PaloVerdeNuclearGeneratingStation 727 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EvacuationTimeEstimates

Summer,Midweek,Midday,GoodWeather(Scenario1) 2MileRegion 5MileRegion EntireEPZ 90% 100%

16 14 12 VehiclesEvacuating 10 8

(Thousands) 6 4

2 0

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure78.EvacuationTimeEstimatesScenario1forRegionR03

EvacuationTimeEstimates

Summer,Midweek,Midday,Rain(Scenario2) 2MileRegion 5MileRegion EntireEPZ 90% 100%

16 14 12 VehiclesEvacuating 10 8

(Thousands) 6 4

2 0

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure79.EvacuationTimeEstimatesScenario2forRegionR03



PaloVerdeNuclearGeneratingStation 728 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EvacuationTimeEstimates

Summer,Weekend,Midday,GoodWeather(Scenario3) 2MileRegion 5MileRegion EntireEPZ 90% 100%

12 10 VehiclesEvacuating 8

6 (Thousands) 4 2

0 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure710.EvacuationTimeEstimatesScenario3forRegionR03

EvacuationTimeEstimates

Summer,Weekend,Midday,Rain(Scenario4) 2MileRegion 5MileRegion EntireEPZ 90% 100%

12 10 8

VehiclesEvacuating 6 (Thousands) 4 2

0 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 2

ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure711.EvacuationTimeEstimatesScenario4forRegionR03



PaloVerdeNuclearGeneratingStation 729 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EvacuationTimeEstimates

Summer,Midweek,Weekend,Evening,GoodWeather

(Scenario5) 2MileRegion 5MileRegion EntireEPZ 90% 100%

9 8

7 VehiclesEvacuating 6

5 4

(Thousands) 3 2

1 0

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure712.EvacuationTimeEstimatesScenario5forRegionR03

EvacuationTimeEstimates

Winter,Midweek,Midday,GoodWeather(Scenario6) 2MileRegion 5MileRegion EntireEPZ 90% 100%

16 14 12 VehiclesEvacuating 10 8

(Thousands) 6 4

2 0

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure713.EvacuationTimeEstimatesScenario6forRegionR03



PaloVerdeNuclearGeneratingStation 730 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EvacuationTimeEstimates

Winter,Midweek,Midday,Rain(Scenario7) 2MileRegion 5MileRegion EntireEPZ 90% 100%

16 14 12 VehiclesEvacuating 10 8

(Thousands) 6 4

2 0

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure714.EvacuationTimeEstimatesScenario7forRegionR03

EvacuationTimeEstimates

Winter,Weekend,Midday,GoodWeather(Scenario8) 2MileRegion 5MileRegion EntireEPZ 90% 100%

12 10 VehiclesEvacuating 8

6 (Thousands) 4 2

0 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure715.EvacuationTimeEstimatesScenario8forRegionR03



PaloVerdeNuclearGeneratingStation 731 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EvacuationTimeEstimates

Winter,Weekend,Midday,Rain(Scenario9) 2MileRegion 5MileRegion EntireEPZ 90% 100%

12 10 8

VehiclesEvacuating 6 (Thousands) 4 2

0 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 2

ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure716.EvacuationTimeEstimatesScenario9forRegionR03

EvacuationTimeEstimates

Winter,Midweek,Weekend,Evening,GoodWeather

(Scenario10) 2MileRegion 5MileRegion EntireEPZ 90% 100%

9 8

7 VehiclesEvacuating 6

5 4

(Thousands) 3 2

1 0

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure717.EvacuationTimeEstimatesScenario10forRegionR03



PaloVerdeNuclearGeneratingStation 732 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EvacuationTimeEstimates

Winter,Midweek,Midday,GoodWeather,SpecialEvent

(Scenario11) 2MileRegion 5MileRegion EntireEPZ 90% 100%

16 14 12 VehiclesEvacuating 10 8

(Thousands) 6 4

2 0

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure718.EvacuationTimeEstimatesScenario11forRegionR03

EvacuationTimeEstimates

Summer,Midweek,Midday,GoodWeather,RoadwayImpact

(Scenario12) 2MileRegion 5MileRegion EntireEPZ 90% 100%

14 12 VehiclesEvacuating 10 8

(Thousands) 6 4

2 0

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTimeAfterEvacuationRecommendation(h:mm)



Figure719.EvacuationTimeEstimatesScenario12forRegionR03



PaloVerdeNuclearGeneratingStation 733 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

8 TRANSITDEPENDENTANDSPECIALFACILITYEVACUATIONTIMEESTIMATES

Thissectiondetailstheanalysesappliedandtheresultsobtainedintheformofevacuationtime

estimates (ETE) for transit vehicles (buses, passenger vans, and paratransit vehicles). The

demandfortransitservicereflectstheneedsofthreepopulationgroups:

x residentswithnovehiclesavailable,

x residentsofspecialfacilitiessuchasschools,and

x accessand/orfunctionalneedspopulation.

These transit vehicles mix with the general evacuation traffic that is comprised mostly of

passengercars(pcs).Thepresenceofeachtransitvehicleintheevacuatingtrafficstreamis

representedwithinthemodelingparadigmdescribedinAppendixDasequivalenttotwopcs.

Thisequivalencefactorrepresentsthelongersizeandmoresluggishoperatingcharacteristics

ofatransitvehicle,relativetothoseofapc.

Transit vehicles must be mobilized in preparation for their respective evacuation missions.

Specifically:

  • Busdriversmustbealerted
  • Theymusttraveltothebusdepot
  • Theymustbebriefedthereandassignedtoarouteorfacility

These activities consume time. Based on discussion with the offsite agencies, it is estimated

that bus mobilization time is 10 minutes of the Advisory to Evacuate (ATE) at Crossroads

Academy,ArlingtonSchool,TonopahValleyHighSchoolandRuthFisherSchool,asbusesand

drivers remain at the schools throughout theday. Winters Well ElementarySchool buses will

arrive at the school within 20 minutes extending from the ATE to the time when buses first

arriveattheschooltobeevacuated.

During this mobilization period, other mobilization activities are taking place. One of these is

the action taken by parents, neighbors, relatives and friends to pick up children from school

prior to the arrival of buses, so that they may join their families. Virtually all studies of

evacuations have concluded that this bonding process of uniting families is universally

prevalent during emergenciesand should be anticipated in the planning process.The current

public information disseminated to residents of the Palo Verde Nuclear Generating Station

(PVNGS)EPZindicatesthatschoolchildrenwillbeevacuatedtoreceptionandcarecenters(RCC)

priortotheevacuationofthegeneralpublic,andparentsshouldpickschoolchildrenupatthe

RCC.

As discussed in Section 2, this study assumes a rapidly escalating event at the plant wherein

evacuation is ordered promptly and no early protective actions have been implemented.

Therefore,childrenareevacuatedtotheRCC.Thisreportprovidesestimatesofbusesunderthe

assumptionthatnochildrenwillbepickedupbytheirparents(inaccordancewithNUREG/CR 7002, Rev. 1) to present an upper bound estimate of buses required. Picking up children at

school could add to traffic congestion at the schools, delaying the departure of the buses



PaloVerdeNuclearGeneratingStation 81 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

evacuating schoolchildren, which may have to return in a subsequent wave to the EPZ to

evacuatethetransitdependentpopulation.

TheprocedureforcomputingtransitdependentETEisto:

  • Estimatedemandfortransitservice(discussedinSection3)
  • Estimatetimetoperformalltransitfunctions
  • EstimateroutetraveltimestotheEPZboundaryandtotheRCC

8.1 ETEsforTransitDependentPeople

EPZ bus resources are assigned to evacuating schoolchildren (if schools are in session at the

time of the ATE) as the first priority in the event of an emergency. In the event that the

allocationofbusesdispatchedfromthedepotstothevariousfacilitiesandtothebusroutesis

somewhatinefficient,orifthereisashortfallofavailabledrivers,thentheremaybeaneed

forsomebusestoreturntotheEPZfromtheRCCaftercompletingtheirfirstevacuationtrip,to

completeasecondwaveofprovidingtransportationservicetoevacuees.Forthisreason,the

ETE for the transitdependent population will be calculated for both a singlewave transit

evacuationandfortwowaves.Ofcourse,iftheimpactedEvacuationRegionisotherthanR03

(the entire EPZ), then there will likely be ample transit resources relative to demand in the

impacted Region and this discussion of a secondwave would likely not apply. A list of the

available transportation resources was provided by the County of Maricopa and is shown in

Table81.Itisassumedthatthereareenoughdriversavailabletomanallresourceslistedin

Table81.

When school evacuation needs are satisfied, subsequent assignments of buses to service the

transitdependentshouldbesensitivetotheirmobilizationtime.Clearly,thebusesshouldbe

dispatched after people have completed their mobilization activities and are in a position to

boardthebuseswhentheyarriveatthevariousroutesshowngraphicallyinFigure102.

The ETEs for transit trips were developed using both good weather and adverse weather

conditions. Figure 81 presents the chronology of events relevant to transit operations. The

elapsedtimeforeachactivitywillnowbediscussedwithreferencetoFigure81.

Activity:MobilizeDrivers(ABC)

MobilizationtimeistheelapsedtimefromtheATEuntilthetimethebusesarriveattheschool

tobeevacuatedortotheirdesignatedroute.BasedondiscussionswiththeCountyofMaricopa

and discussed above, for a rapidly escalating radiological emergency with no observable

indication before the fact, drivers would require 10 minutes to mobilize at the Crossroads

Academy,ArlingtonSchool,TonopahValleyHighSchoolandtheRuthFisherSchoolbecausethe

passengervans/busesanddriversremainonsiteduringtheschoolday.Driverswouldrequire

20 minutes to be contacted, to travel to the depot, be briefed and to travel to Winters Well

Elementary School, as buses are not onsite. Mobilization time is slightly longer in adverse

weather-20minutes(30minutesforWintersWellElementarySchool)whenraining.



PaloVerdeNuclearGeneratingStation 82 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

The buses dispatched from the depots to service the transitdependent evacuees will be

scheduledsothattheyarriveattheirrespectiveroutesaftertheirpassengershavecompleted

theirmobilization.AsshowninFigure54(ResidentswithnoCommuters),90%oftheevacuees

will complete their mobilization when the buses will begin their routes, approximately 165

minutesaftertheATE.Twogroupsofbuseswillbedispatched.Mobilizationtimeis10minutes

longerinraintoaccountforslowertravelspeedsandreducedroadwaycapacity.

Activity:BoardPassengers(CD)

As discussed in Section 2.4, a loading time of 15 minutes (20 minutes for rain) for all school

buses,exceptfortheCrossroadsAcademypassengervans,wheretheloadingtimeis8minutes

(13minutesforrain).

For multiple stops along a pickup route (transitdependent bus routes) estimation of travel

timemustallowforthedelayassociatedwithstoppingandstartingateachpickuppoint.The

time,t,requiredforabustodecelerateatarate,a,expressedinft/sec/sec,fromaspeed,

v, expressed in ft/sec, to a stop, is t = v/a. Assuming the same acceleration rate and final

speedfollowingthestopyieldsatotaltime,T,toserviceboardingpassengers:

2 ,

WhereB=Dwelltimetoservicepassengers.Thetotaldistance,sinfeet,travelledduringthe

deceleration and acceleration activities is: s = v2/a. If the bus had not stopped to service

passengers,but had continued to travel at speed, v, then its travel time over thedistance, s,

wouldbe:s/v=v/a.Thenthetotaldelay(i.e.,pickuptime,P)toservicepassengersis:

 

Assigningreasonableestimates:

  • B=50seconds:agenerousvalueforasinglepassenger,carryingpersonalitems,to

boardperstop

  • v=25mph=37ft/sec
  • a=4ft/sec/sec,amoderateaveragerate

Then,P1minuteperstop.Allowing30minutespickuptimeperbusrunimplies30stopsper

run, for good weather. It is assumed that bus acceleration and speed will be less in rain;

resultingin40minutesofpickuptimeperbus.

Activity:TraveltoEPZBoundary(DE)

The transportation resources available were provided by Maricopa County. Table 81

summarizestheavailablecapacityoftransportationresourcesandthetransportationresource

capacity needed to evacuate schools, transitdependent population, and access and/or

functional needs (discussed below in Section 8.2). These numbers indicate there arent

sufficient resources available to evacuate all the schools, transitdependent population, and

accessand/orfunctionalneedspopulationinasinglewave.





PaloVerdeNuclearGeneratingStation 83 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EvacuationofSchools

The buses servicing Arlington Elementary School, Tonopah Valley High School, Ruth Fisher

School and Palo Verde Elementary School are ready to begin their evacuation trips at 25

minutes(35minutesforWintersWellElementarySchoolbusesand18minutesforCrossroads

Academy passenger vans) after the ATE - a 10minute mobilization time (20 minutes for

WintersWellElementarySchoolbuses)plusa15minuteloadingtime(8minutesforCrossroads

Academypassengervans)-ingoodweather.

The UNITES software discussed in Section 1.3 was used to define bus routes along the most

likely path from a school being evacuated to the EPZ boundary, traveling toward the

appropriateRCC.ThisisdoneinUNITESbyinteractivelyselectingtheseriesofnodesfromthe

schooltotheEPZboundary.Eachbusrouteisgivenanidentificationnumberandiswrittento

theDYNEVIIinputstream.DYNEVcomputestheroutelengthandoutputstheaveragespeed

for each 5 minute interval, for each bus route. The specified bus routes are documented in

Section10inTable102(refertothemapsofthelinknodeanalysisnetworkinAppendixKfor

nodelocations).DataprovidedbyDYNEVduringtheappropriatetimeframedependingonthe

mobilization and loading times (i.e., 18 to 35 minutes after the ATE for good weather) were

usedtocomputetheaveragespeedforeachroute,asfollows:

60 .

1 . 

. 60 .

1 .

Theaveragespeedcomputed(usingthismethodology)forthebusesservicingtheEPZisshown

inTable82andTable83forschoolevacuation,andinTable84andTable85forthetransit dependent persons, which are discussed later. The travel time to the EPZ boundary was

computed for each bus using the computed average speed and the distance to the EPZ

boundaryalongthemostlikelyrouteoutoftheEPZ.ThetraveltimefromtheEPZboundaryto

theRCCwascomputedassuminganaveragespeedof65mphand60mph(10%less)forgood

weather and rain, respectively. Speeds were reduced in Table 82, Table 83, Table 84 and

Table85to65mph(60mphforrain-10%decrease)forthosecalculatedbusspeedswhich

exceed65mph,astheschoolbusspeedlimitforstateroutesinArizonais65mph.

Table82(goodweather)andTable83(rain)presenttheETEs(roundeduptothenearest5

minutes)forschoolsintheEPZ:

1. TheelapsedtimefromtheATEuntilthebusexitstheEPZ;and
2. TheelapsedtimeuntilthebusreachestheSchoolRCC.



PaloVerdeNuclearGeneratingStation 84 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

The evacuation time out of the EPZ can be computed as the sum of times associated with

Activities ABC, CD, and DE (For example: 10 min. + 15 + 13 = 0:40 for Ruth Fisher

ElementarySchool,withgoodweather).TheaveragesinglewaveETE(40minutes),forschools,

issignificantlyless(2hoursand5minutes)thanthe90thpercentileETEforevacuationofthe

generalpopulationintheentireEPZ(RegionR03)underwinter,midweek,midday,withgood

weather(Scenario6)conditionsandwillnotimpactprotectiveactiondecisionmaking.

The evacuation time to the School RCC is determined by adding the time associated with

ActivityEF(discussedbelow),tothisEPZevacuaonme.

AsshowninTable81,thereisashortfallofschoolbusesforevacuationofchildreninasingle

wave, if the entire EPZ is evacuated at once (a highly unlikely event) at Ruth Fisher Middle

School, Tonopah Valley High School and Winters Well Elementary School. As these three

schools use the same bus transportation resources, the following representative ETE is

provided to estimate the additional time needed for a secondwave evacuation of these

schools.

The travel time from the RCC back to the EPZ boundary and then back to the school was

computedassuminganaveragespeedof65mph(goodweather)and60mph(rain)asbuses

willbetravelingcountertoevacuatingtraffic.Timesanddistancesarebasedonaveragesfor

RuthFisherMiddleSchool,TonopahValleyHighSchoolandWintersWellElementarySchoolin

theEPZforgoodweather:

a. SchoolbusesarriveattheRCC:1:00onaverage(theaverageETAofRuthFisherMiddle

School,TonopahValleyHighSchoolandWintersWellElementarySchool(1:00+1:00+

0:55)/3,seeTable82)

b. Busunloadstudents(5minutes)anddrivertakes10minuterest:15minutes.
c. Busreturnstoschools:25minutes(averagedistancefromEPZboundarytoRCC15.5

miles plus the average distance to EPZ boundary  12.0 miles  traveling at 65 mph in

goodweather)

d. LoadingTime:15minutes
e. Buscompletesecondwaveofservicealongroute:14minutes(averagedistancetoEPZ

boundary12.0miles-atnetworkwideaveragespeedat1:55of53mph)

f. Bus exits EPZ at time: 1:00 + 0:15 + 0:25 + 0:15 + 0:14 = 2:10 (rounded to nearest 5

minutes)aftertheATE.

Given the average singlewave ETE for schools is 0:55 (see Table 82); a secondwave would

requireanadditionalhourand15minutes,onaverage.TheaveragesecondwaveETE(2hours

and 5 minutes), of Ruth Fisher Middle School, Tonopah Valley High School and Winters Well

ElementarySchoolisconsiderablyless(40minutes)thanthe90thpercentileETEforevacuation

ofthegeneralpopulationintheentireEPZ(RegionR03)underwinter,midweek,midday,with

good weather (Scenario 6) conditions and also will not impact protective action decision

making.







PaloVerdeNuclearGeneratingStation 85 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

EvacuationofTransitDependentPopulation

Discussions with the County of Maricopa stated no buses are available for the transit dependentgeneralpopulation,assuch,fixedbusrouteswouldnotbeusedfortheevacuation

oftransitdependentpeoplewithinthePVNGSEPZ.KLDdevelopedasetoftransitroutesthat

wouldencompassthemostpopulatedareasoftheEPZ.Busesservicingthetransitdependent

evacueeswillfirsttravelalongtheseroutes,thenproceedoutoftheEPZ.Buseswilltravelalong

the major routes in the EPZ as described in Table 101 and shown graphically in Figure 102.

TheseroutesareonlyusedinthisstudyforthepurposeofcomputingETE.Nopreestablished

transitdependentbusroutesexistinthecountyemergencyplans.OnpagePP7oftheStateof

Arizona-MaricopaCountyOffsiteEmergencyResponsePlans,itstatesthatMaricopaCounty

Department of Emergency Management will respond to the requests for transportation from

thoseresidentsofthePlumeExposurePathwayEPZ.

As discussed in Section 3.6, four (4) buses are needed to service the transitdependent

population, as shown in Table 101, which ensures there is one bus service for each Sector

withintheEPZ.

Table 84 and Table 85 present the transitdependent population ETEs for each bus route

calculated using the above procedures (as discussed under School Evacuation) for good

weatherandrain,respectively.

As previously discussed, a pickup time of 30 minutes (good weather) is estimated for 30

individualstopstopickuppassengers,withanaverageofoneminuteofdelayassociatedwith

eachstop.Longerpickuptimesof40minutesareusedforrain.

The travel distance along the respective pickup routes within the EPZ is estimated using the

UNITES software. Bus travel times within the EPZ are computed using average speeds

computed by DYNEV, using the aforementioned methodology that was used for school

evacuation.

For example, the ETE for the Transit Dependent Bus Route 4, servicing the 1Mile Ring, and

Sectors A, Q and R, is computed as 165 + 21 + 30 = 3:40 for good weather (rounded up to

nearest5minutes).Here,21minutesisthetimetotravel22.5milesat63.3mph,theaverage

speedoutputbythemodelforthisroutestartingat165minutes.TheaveragesinglewaveETE

(3hoursand35minutes)fortransitdependentpeopleis50minuteslongerthanthegeneral

population90thpercentileETE(2hoursand45minutes)fortheevacuationoftheentireEPZfor

Scenario6conditionsandcouldimpacttheprotectiveactiondecisionmaking.

The ETE for a secondwave (discussed below) is presented in the event there is a shortfall of

availablebusesorbusdrivers,aspreviouslydiscussedandshowninTable81.

Activity:TraveltoRCCs(EF)

ThedistancesfromtheEPZboundarytotheRCCsaremeasuredusingGISsoftwarealongthe

mostlikelyroutefromtheEPZexitpointtotheRCC.TheRCCsaremappedinFigure103.Fora

singlewave evacuation, this travel time outside the EPZ does not contribute to the ETE.



PaloVerdeNuclearGeneratingStation 86 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Assumed bus speeds of 65 mph and 60 mph for good weather and rain, respectively, will be

appliedforthisactivityforbusesservicingschoolsandthetransitdependentpopulation.

Forasecondwaveevacuation,theETEforbusesmustbeconsideredseparately,sinceitcould

exceedtheETEforthegeneralpopulation.

Activity:PassengersLeaveBus(FG)

Abuscanemptywithin5minutes.Thedrivertakesa10minutebreak.

Activity:BusReturnstoRouteforSecondWaveEvacuation(GC)

The buses assigned to return to the EPZ to perform a secondwave evacuation of transit dependentevacueeswillbethosethathavealreadyevacuatedtransitdependentpeoplewho

mobilized more quickly. The first wave of transitdependent people departs the bus, and the

bus then returns to the EPZ, travels to its route and proceeds to pick up more transit dependentevacueesalongtheroute.ThetraveltimebacktotheEPZisequaltothetraveltime

totheRCC.BustraveltimeswithintheEPZarecomputedusingaveragespeedscomputedby

DYNEV,usingtheaforementionedmethodologythatwasusedforschoolevacuation.

ThesecondwaveETEfortheTransitDependentBusRoute4iscomputedasfollowsforgood

weather:

  • BusarrivesatRCCat4:08ingoodweather(3:40toexitEPZ+28minutestraveltime

toRCC).

  • Bus discharges passengers (5 minutes) and driver takes a 10minute rest: 15

minutes.

  • Bus returns to EPZ and completes secondwave of evacuation along the route: 28

minutes (bus returns to EPZ boundary, equal to travel time to RCC) + 21 minutes

(busreturnstostartoftheroutetravelingcountertoevacuationtraffic,22.5miles

@65mph)+21minutes(buscompletessecondwaveservicealongroute,22.5miles

@61.4mph-averagespeedalongrouteoutputbyDYNEVat5hoursand5minutes

whenthebusbeginssecondwaveevacuationalongroute))=71minutes

  • Buscompletespickupsalongroute:30minutes.
  • BusexitsEPZattime3:40+0:28+0:15+1:18+0:30=6:05(roundedtonearest5

minutes)aftertheATE.

The ETE for the completion of the secondwave for all transitdependent bus routes are

providedinTable84andTable85.

TheaverageETE(6hours)forasecondwaveevacuationoftransitdependentpeopleis3hours

and 15 minutes longer than the ETE for the general population at the 90th percentile for an

evacuation of the entire EPZ (Region R03) under winter, midweek, midday, good weather

conditions(Scenario6)andcouldimpacttheprotectiveactiondecisionmaking.

TherelocationoftransitdependentevacueesfromtheRCCstocongregatecarecenters,ifthe

countydecidestodoso,isnotconsideredinthisstudy.



PaloVerdeNuclearGeneratingStation 87 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

8.2 ETEsforAccessand/orFunctionalNeedsPopulation

Theaccessand/orfunctionalneedspopulationregisteredwithintheEPZwasprovidedbythe

CountyofMaricopaandisfurtherdiscussedinSection3.9.Table86summarizestheETEfor

accessand/orfunctionalneedspeople.Thetableiscategorizedbytypeofvehiclerequiredand

thenbrokendownbyweathercondition.Thetabletakesintoconsiderationthedeploymentof

multiplevehicles(notfilledtocapacity)toreducethenumberofstopspervehicle.Duetothe

limitations on driving for access and/or functional needs persons, it is assumed they will be

picked up from their homes. Furthermore, it is conservatively assumed that households that

haveambulatoryandwheelchairboundandbedriddenpeoplehouseholdsarespaced3miles

apart. Paratransit vehicles and bus speeds approximate 40 mph between households in good

weather(10%slowerinrain).Amobilizationtimeof165minuteswereused(175minutesfor

rain). Loading time of 1 minute per person are assumed for ambulatory and 5 minutes per

person for wheelchair bound and bedridden people. The last household is assumed to be 5

milesfromtheEPZboundary,andthenetworkwideaveragespeed,cappedat65mph(60mph

forrain),afterthelastpickupisusedtocomputetraveltime.

ETE is computed by summing mobilization time, loading time at first household, travel to

subsequent households, loading time at subsequent households, and travel time to EPZ

boundary.AllETEareroundedtothenearest5minutes.

Forexample,assumingnomorethanoneaccessand/orfunctionalneedspersonperhousehold

implies that 284 ambulatory households need to be serviced. While only 10 buses for

ambulatory patients are needed from a capacity perspective, if 21 buses are deployed to

servicethesehouseholds,theneachwouldrequireabout14stops.Thefollowingoutlinesthe

ETEcalculationsforabus:

1. Assume 21 buses are deployed, each with about 14 stops, to service a total of 284

households.

2. TheETEiscalculatedasfollows:
a. Busesarriveatthefirstpickuplocation:165minutes
b. Loadhouseholdmembersatfirstpickup:1minute
c. Traveltosubsequentpickuplocations:13@5minutes(3miles@40mph)=59

minutes

d. Loadhouseholdmembersatsubsequentpickuplocations:13@1minute=13

minutes

e. TraveltoEPZboundary:5minutes(5miles@58.5mph-blendednetworkwide

averagespeedat238minutes).

ETE:165+1+59+13+5=4:05(roundeduptothenearest5minutes)

TheaverageETE(4hoursand5minutes)ofalltheaccessand/orfunctionalneedspopulation

withintheEPZislonger(2hoursand30minutes)thanthe90thpercentileETEforevacuationof

the general population in the entire EPZ (Region R03) under winter, midweek, midday, with

good weather (Scenario 6) conditions. Therefore, the evacuation of access and/or functional

needspopulationwillimpacttheprotectiveactiondecisionmaking.



PaloVerdeNuclearGeneratingStation 88 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

A secondwave ETE, for the access and/or functional needs population needing buses and

paratransitvehicles,isneeded.ThefollowingoutlinestheETEcalculationsifasecondwaveETE

iscomputedforbusesasfollowsforgoodweather:

a. SchoolbusesarriveatRCC(averagevaluefromTable82):50minutes.
b. UnloadstudentsatRCC(5minutes)anddrivertakesa10minuterest:15minutes
c. Travel time back to EPZ: 13 minutes (average time of Travel Time from EPZ bdry to

RCCfromTable82andTable83)

d. Bustravelstoallstops:14stops@5minutes=63minutes
e. Loadingtimeatallstops:14stops@1minutes=14minutes
f. TraveltimetoEPZboundary::6minutes(5miles@53.7mph-blendednetworkwide

averagespeedat240minutes)

ETE:0:50+0:15+0:13+0:63+0:14+0:06=2:45(roundeduptothenearest5minutes)

The average ETE (3 hours) for a secondwave evacuation of access and/or functional needs

populationwithintheEPZis15minuteslongerthantheETEforthegeneralpopulationatthe

90th percentile for an evacuation of the entire EPZ (Region R03) under winter, midweek,

midday, with good weather conditions (Scenario 6) and could impact the protective action

decisionmaking.





PaloVerdeNuclearGeneratingStation 89 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table81.SummaryofTransportationResource

Transportation Passenger Paratransit

Resource Buses Vans Vehicles

ResourcesAvailable

RuthFisherElementary/TonopahValley

30 0 0

HighSchool/WintersWellElementarySchool

ArlingtonElementarySchool 7 0 0

PaloVerdeElementarySchool1 8 0 0

CrossroadsAcademy 0 2 0

TOTAL: 45 2 0

ResourcesNeeded

Schools(Table38): 50 1 0

TransitDependentPopulation(Table312): 4 0 0

Accessand/orFunctionalNeedsPopulation

10 0 7

(Table39):

TOTALTRANSPORTATIONNEEDS: 64 1 7







1 Palo Verde Elementary School is located in the Shadow Region. MCDEM indicated these schools would evacuate in the event of an emergency at the PVNGS.



PaloVerdeNuclearGeneratingStation 810 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table82.SchoolEvacuationTimeEstimatesGoodWeather

Travel TravelTime

Driver Loading Dist.To Average Timeto Dist.EPZ fromEPZ ETAto

Mobilization Time EPZBdry Speed EPZBdry ETE Bdryto BdrytoRCC RCC

School Time(min) (min) (mi) (mph) (min) (hr:min) RCC(mi.) (min) (hr:min)

MARICOPACOUNTYSCHOOLS

CrossroadsAcademy 10 8 12.4 62.7 12 0:30 19.0 18 0:50

RuthFisherElementarySchool 10 15 13.2 61.2 13 0:40 19.0 18 1:00

TonopahValleyHighSchool 10 15 13.2 61.2 13 0:40 19.0 18 1:00

WintersWellElementarySchool 20 15 9.8 61.3 10 0:45 8.4 8 0:55

ArlingtonElementarySchool 10 15 8.4 50.9 10 0:35 8.4 8 0:45

PaloVerdeElementarySchool2 10 15 0.0 0.0 0 0:25 10.8 10 0:35

MaximumforEPZ: 0:45 Maximum: 1:00

AverageforEPZ: 0:40 Average: 0:50



Table83.SchoolEvacuationTimeEstimatesRain

Travel TravelTime

Driver Loading Dist.To Average Timeto Dist.EPZ fromEPZ ETAto

Mobilization Time EPZBdry Speed EPZBdry ETE Bdryto BdrytoRCC RCC

School Time(min) (min) (mi) (mph) (min) (hr:min) RCC(mi.) (min) (hr:min)

MARICOPACOUNTYSCHOOLS

CrossroadsAcademy 20 13 12.4 54.8 14 0:50 19.0 19 1:10

RuthFisherElementarySchool 20 20 13.2 54.5 14 0:55 19.0 19 1:15

TonopahValleyHighSchool 20 20 13.2 54.5 14 0:55 19.0 19 1:15

WintersWellElementarySchool 30 20 9.8 48.2 12 1:05 8.4 8 1:15

ArlingtonElementarySchool 20 20 8.4 45.4 11 0:55 8.4 8 1:05

PaloVerdeElementarySchool2 20 20 0.0 0.0 0 0:40 10.8 11 0:55

MaximumforEPZ: 1:05 Maximum: 1:15

AverageforEPZ: 1:00 Average: 1:10





2 Palo Verde Elementary School is located in the Shadow Region. MCDEM indicated that this school would evacuate in the event of an emergency at the PVNGS.



PaloVerdeNuclearGeneratingStation 811 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Table84.TransitDependentEvacuationTimeEstimatesGoodWeather

OneWave  SecondWave

Route Travel Route

Number Route Travel Pickup Distance Timeto Driver Travel Pickup

Route of Mobilization Length Speed Time Time ETE toRCC RCC Unload Rest Time Time ETE

Number Buses (min) (miles) (mph) (min) (min) (hr:min) (miles) (min) (min) (min) (min) (min) (hr:min)

4 1 165 22.5 63.3 21 30 3:40 29.8 28 5 10 71 30 6:05

5 12 165 12.4 61.0 12 30 3:30 36.7 34 5 10 58 30 5:50

6 1 165 13.8 53.0 16 30 3:35 38.0 35 5 10 63 30 6:00

MaximumETE: 3:40 MaximumETE: 6:05

AverageETE: 3:35 AverageETE: 6:00





Table85.TransitDependentEvacuationTimeEstimatesRain

OneWave  SecondWave

Route Travel Route

Route Travel Pickup Distance Timeto Driver Travel Pickup

Route Number Mobilization Length Speed Time Time ETE toRCC RCC Unload Rest Time Time ETE

Number ofBuses (min) (miles) (mph) (min) (min) (hr:min) (miles) (min) (min) (min) (min) (min) (hr:min)

4 1 175 22.5 58.1 23 40 4:00 29.8 30 5 10 73 40 6:40

5 12 175 12.4 56.1 13 40 3:50 36.7 37 5 10 61 40 6:25

6 1 175 13.8 48.6 17 40 3:55 38.0 38 5 10 67 40 6:35

MaximumETE: 4:00 MaximumETE: 6:40

AverageETE: 3:55 AverageETE: 6:35



 



PaloVerdeNuclearGeneratingStation 812 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table86.Accessand/orFunctionalNeedsPopulationEvacuationTimeEstimates

Travel

TotalLoading Timeto

People Loading Travelto Timeat EPZ

Requiring Vehicles Weather Mobilization Timeat1st Subsequent Subsequent Boundary ETE

VehicleType Vehicle deployed Stops Conditions Time(min) Stop(min) Stops(min) Stops(min) (min) (hr:min)

Good 165 59 5 4:05

Buses 284 21 14 1 13

Rain 175 65 5 4:20

Paratransit Good 165 41 5 4:25

70 7 10 5 45

Vehicles Rain 175 45 5 4:35

MaximumETE: 4:35

AverageETE: 4:25



Table87.Accessand/orFunctionalNeedsPopulationEvacuationTimeEstimates-SecondWaveforBusesandParatransitVehicles

Total

Loading Travel

One Travel Travel Timeat Timeto

People Wave Unload Driver TimeBack toAll All EPZ

Requiring Vehicles Weather ETE3 Passengers Rest toEPZ4 Stops Stops Boundary ETE

VehicleType Vehicle deployed Stops Conditions (hr:min) (min) (min) (min) (min) (min) (min) (hr:min)

Good 0:50 5 10 13 63 6 2:45

Buses 284 21 14 14

Rain 1:10 5 10 14 70 6 3:10

Paratransit Good 0:50 5 10 13 45 6 2:25

70 7 10 10

Vehicles Rain 1:10 5 10 14 50 6 2:50

MaximumETE: 3:10

AverageETE: 3:00









3 Average ETA to the RCC from Table 8-2 and Table 8-3, respectively.

4 Average of travel time from EPZ boundary to the RCC from Table 8-2 and Table 8-3, respectively.



PaloVerdeNuclearGeneratingStation 813 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

(SubsequentWave)

A B C D E F G Time



Event

A AdvisorytoEvacuate

B BusDispatchedfromDepot

C BusArrivesatFacility/PickupRoute

D BusDepartsforReceptionandCareCenter

E BusExitsRegion

F BusArrivesatReceptionandCareCenter

G BusAvailableforSecondWaveEvacuationService

Activity

AoB DriverMobilization

BoC TraveltoFacilityortoPickupRoute

CoD PassengersBoardtheBus

DoE BusTravelsTowardsRegionBoundary

EoF BusTravelsTowardsReceptionandCareCenterOutsidetheEPZ

FoG PassengersLeaveBus;DriverTakesaBreak



Figure81.ChronologyofTransitEvacuationOperations



PaloVerdeNuclearGeneratingStation 814 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

9 TRAFFICMANAGEMENTSTRATEGY

This section discusses the suggested Traffic Management Plan (TMP) that is designed to

expedite the movement of evacuating traffic. The resources required to implement the TMP

include:

  • Personnel with the capabilities of performing the planned control functions of traffic

guides(preferably,notnecessarily,lawenforcementofficers).

  • The Manual on Uniform Traffic Control Devices (MUTCD) published by the Federal

HighwayAdministration(FHWA)oftheU.S.D.O.T.providesguidanceforTrafficControl

Devicestoassistthesepersonnelintheperformanceoftheirtasks.Allstateandmost

county transportation agencies have access to the MUTCD, which is available online:

http://mutcd.fhwa.dot.govwhichprovidesaccesstotheofficialPDFversion.

  • A written plan that defines all Traffic Control Points and Access Control Points

(Roadblocks)locations,providesnecessarydetailsandisdocumentedinaformatthatis

readilyunderstoodbythoseassignedtoperformtrafficcontrol.

Thefunctionstobeperformedinthefieldare:

1. FacilitateevacuatingtrafficmovementsthatsafelyexpeditetraveloutoftheEPZ.
2. Discouragetrafficmovementsthatmoveevacuatingvehiclesinadirectionwhichtakes

themsignificantlyclosertothepowerplant,orwhichinterfereswiththeefficientflow

ofotherevacuees.

Theterms"facilitate"and"discourage"areemployedratherthan"enforce"and"prohibit"to

indicate the need for flexibility in performing the traffic control function. There are always

legitimatereasonsforadrivertopreferadirectionotherthanthatindicated.

Forexample:

  • Adrivermaybetravelinghomefromworkorfromanotherlocation,tojoinotherfamily

memberspriortoevacuating.

  • Anevacuatingdrivermaybetravellingtopickuparelative,orotherevacuees.
  • Thedrivermaybeanemergencyworkerenteringtheareabeingevacuatedtoperform

animportantemergencyservice.

The implementation of a TMP must also be flexible enough for the application of sound

judgmentbythetrafficguide.

TheTMPistheoutcomeofthefollowingprocess:

1. The PVNGS 10Mile Emergency Planning Zone with Roadblocks Figure, provided by

Maricopa County and discussed in the Maricopa County Emergency Operations Plan,

serve as the basis of the traffic management plan, as per NUREG/CR7002, Rev. 1.

Initially,theETEanalysistreatedallcontrolledintersectionsthatareexistingRoadblock

locations as being controlled by actuated signals. The Roadblocks were then removed

exceptforthoselocatedonI10(tostopexternalexternaltraffic),asdiscussedbelow.



PaloVerdeNuclearGeneratingStation 91 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Appendix K identifies the number of intersections that were ultimately modeled as

Roadblocks.

2. Evacuation simulations were run using DYNEV II with the TMP and then run again

incorporating only the Roadblocks on I10, to predict traffic congestion during

evacuation.TheevacuationsimulationsusingRoadblocksonI10iswhatisdiscussedin

Section7.3andasseeninFigures73through77.Thesesimulationshelptoidentifythe

best routing and critical intersections that experience pronounced congestion during

evacuation. Any critical intersections that would benefit from traffic or access control

whicharenotalreadyidentifiedonI10areexamined.NoadditionalRoadblockswere

identifiedaspartofthisstudy.

3. PrioritizationofRoadblocks(SeeAppendixGformoredetail.):
a. Application of traffic and access control at some Roadblocks will have a more

pronounced influence on expediting traffic movements than at other

Roadblocks.Forexample,Roadblockscontrollingtrafficoriginatingfromareasin

close proximity to the power plant could have a more beneficial effect on

minimizing potential exposure to radioactivity than those located far from the

power plant. Key locations for manual traffic control (MTC) was analyzed and

theirimpacttoETEwasquantified,asperNUREG/CR7002,Rev.1.

b. ThisanalysisdeterminedthattheTMPwerenotbeneficialduringtheevacuation

andsimulationswererunusingonlytheRoadblocksonI10.

Appendix G documents the existing TMP and list of priority Roadblocks using the process

enumeratedabove.

9.1 Assumptions

TheETEcalculationsdocumentedinSections7and8assumethattheTMPisnotimplemented

(exceptonI10)duringevacuation.

TheETEcalculationsreflecttheassumptionthatallexternalexternaltripsareinterdictedand

divertedafter45minuteshaveelapsedfromtheAdvisorytoEvacuate(ATE).

All transit vehicles and other responders entering the EPZ to support the evacuation are

assumedtobeunhinderedbypersonnelmanningRoadblocks.

StudyAssumptions1,2,and3inSection2.5discusstheRoadblocksoperations.

9.2 AdditionalConsiderations

TheuseofIntelligentTransportationSystems(ITS)technologiescanreducethemanpowerand

equipmentneeds,whilestillfacilitatingtheevacuationprocess.DynamicMessageSigns(DMS)

can also be placed within the EPZ to provide information to travelers regarding traffic

conditions,routeselection,andreceptioncenterinformation.TheDMSplacedoutsideofthe

EPZwillwarnmotoriststoavoidusingroutesthatmayconflictwiththeflowofevacueesaway

fromthepowerplant.HighwayAdvisoryRadio(HAR)canbeusedtobroadcastinformationto



PaloVerdeNuclearGeneratingStation 92 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

evacueesduringegressthroughtheirvehiclesstereosystems.AutomatedTravelerInformation

Systems (ATIS) can also be used to provide evacuees with information. Internet websites can

providetrafficandevacuationrouteinformationbeforetheevacueebeginstheirtrip,whilethe

onboardnavigationsystems(GPSunits),andsmartphonescanbeusedtoprovideinformation

duringtheevacuationtrip.

These areonly severalexamples of how ITS technologies can benefit the evacuation process.

Consideration should be given that ITS technologies can be used to facilitate the evacuation

process,andanyadditionalsignageplacedshouldconsiderevacuationneeds.



PaloVerdeNuclearGeneratingStation 93 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

10 EVACUATIONROUTESANDRECEPTIONCENTERS

10.1 EvacuationRoutes

Evacuationroutesarecomprisedoftwodistinctcomponents:

  • Routing from Sectors being evacuated to the boundary of the Evacuation Region and

thenceoutoftheEmergencyPlanningZone(EPZ).

  • Routingoftransitdependentevacuees(schoolsandresidents,employeesortransients

whodonotownorhaveaccesstoaprivatevehicle)fromtheEPZboundarytoreception

andcarecenters.

EvacueeswillselectrouteswithintheEPZinsuchawayastominimizetheirexposuretorisk.

This expectation is met by the DYNEV II model, routing traffic away from the location of the

plant to the extent practical. The DTRAD model satisfies this behavior by routing traffic to

balance traffic demand relative to the available highway capacity to the extent possible. See

Appendices B through D for further discussion. The major evacuation routes for the EPZ are

presented in Figure 101. These routes will be used by the general population evacuating in

private vehicles and by the transitdependent population evacuating in buses. Transit dependentevacueeswillberoutedtoreceptioncenters.Generalpopulationmayevacuatetoa

reception center or some alternate destination (e.g., lodging facility, relatives home,

campground)outsidetheEPZ.

The routing of transitdependent evacuees from the EPZ boundary to reception and care

centersisdesignedtominimizetheamountoftraveloutsidetheEPZ,fromthepointswhere

theseroutescrosstheEPZboundary.ThethreebusroutesshowngraphicallyinFigure102and

described in Table 101 were designed by KLD, as no preestablished transitdependent bus

routes exist within the county emergency plans. The routes were designed to service the

transitdependentpopulationwithineachSector.Thisdoesnotimplythattheseexactroutes

would be used in an emergency. It is assumed that residents will walk to the nearest major

evacuationrouteandflagdownapassingbus,andthattheycanarriveattheroadwaywithin

the165minutebusmobilizationtime(goodweather).Theseroutesareonlyusedinthisstudy

forthepurposeofcomputingETE.

Schools were routed along the most likely path from the school being evacuated to the EPZ

boundary,travelingtowardthenearestreceptionandcarecenter.

ThespecifiedbusroutesforallthetransitdependentpopulationaredocumentedinTable102

(refer to the maps of the linknode analysis network in Appendix K for node locations). This

studydoesnotconsiderthetransportofevacueesfromreceptioncenterstocongregatecare

centersifthecountydoesmakethedecisiontorelocateevacuees.

 



PaloVerdeNuclearGeneratingStation 101 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

10.2 ReceptionandCareCenters

AccordingtocurrentpublicinformationissuedtoEPZresidents,evacueeslivingwithintheEPZ

will be directed to the appropriate reception and care center location. The current public

information lists the reception and care centers. It is assumed that the transitdependent

evacueeswillberoutedtothenearestreceptionandcarecenters.Figure103presentsamap

showingthereceptionandcarecentersforevacuees.Table103presentsalistofthereception

andcarecentersforeachevacuatingschoolintheEPZ.Itisassumedthatallschoolevacuees

will be taken to the closest reception and care center and will be subsequently picked up by

parentsorguardians.Noschoolevacueeswillbepickedupbyparentspriortothearrivalofthe

buses.



PaloVerdeNuclearGeneratingStation 102 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Table101.SummaryofTransitDependentBusRoutes

No.of Length

Route Buses RouteDescription Sector(s)Serviced (mi.)

4 1 TransitDependentBusRoute2 1MileRing,A,QandR 22.5

5 2 TransitDependentBusRoute1 B,C,D,EandF 12.4

6 1 TransitDependentBusRoute3 G,H,J,K,L,M,NandP 13.8

Total: 4

Table102.BusRouteDescriptions

BusRoute

Number Description NodesTraversedfromRouteStarttoEPZBoundary

1 ArlingtonElementarySchool 147,79,82,80,130,45,46,47,187,151

RuthFisherElementary

2 86,153,126,87,134,67,11,12

School/TonopahValleyHighSchool

3 WintersWellElementarySchool 149,148,113,67,11,12

4 TransitDependentBusRoute2 25,26,189,193,27,38,30,117,136,7,8,9,10,11,12

TransitDependentBusRoute1/

5 25,186,185,184,116,83,44,157,45,46,47,187,151

CrossroadsAcademy

6 TransitDependentBusRoute3 238,100,174,81,147,79,82,80,130,45,46,47,187,151

Table103.SchoolReceptionandCareCenters

School ReceptionandCareCenter

ArlingtonElementarySchool BuckeyeYoungkerHighSchool

PaloVerdeElementarySchool1 BuckeyeYoungkerHighSchool

TonopahValleyHighSchool

GoodyearDesertEdgeHighSchool

RuthFisherMiddleSchool

WintersWellElementarySchool BuckeyeYoungkerHighSchool

CrossroadsAcademy GoodyearDesertEdgeHighSchool





1 Palo Verde Elementary School is outside of the study area. Maricopa County Radiological Emergency Preparedness Plan indicates that this school would evacuate in the event of an emergency at the PVNGS.



PaloVerdeNuclearGeneratingStation 103 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure101.EvacuationRoute 



PaloVerdeNuclearGeneratingStation 104 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure102.TransitDependentBusRoutes



PaloVerdeNuclearGeneratingStation 105 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Figure103.ReceptionandCareCenters



PaloVerdeNuclearGeneratingStation 106 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXA

GlossaryofTrafficEngineeringTerms

A. GLOSSARYOFTRAFFICENGINEERINGTERMS

TableA1.GlossaryofTrafficEngineeringTerms

Term Definition

AnalysisNetwork Agraphicalrepresentationofthegeometrictopologyofaphysical

roadway system, which is comprised of directional links and

nodes.

Link A network link represents a specific, onedirectional section of

roadway. A link has both physical (length, number of lanes,

topology, etc.) and operational (turn movement percentages,

servicerate,freeflowspeed)characteristics.

MeasuresofEffectiveness Statisticsdescribingtrafficoperationsonaroadwaynetwork.

Node A network node generally represents an intersection of network

links. A node has control characteristics, i.e., the allocation of

servicetimetoeachapproachlink.

Origin A location attached to a network link, within the EPZ or Shadow

Region, where trips are generated at a specified rate in vehicles

perhour(vph).Thesetripsentertheroadwaysystemtotravelto

theirrespectivedestinations.

PrevailingRoadwayand Relates to the physical features of the roadway, the nature (e.g.,

TrafficConditions composition)oftrafficontheroadwayandtheambientconditions

(weather,visibility,pavementconditions,etc.).

ServiceRate Maximum rate at which vehicles, executing a specific turn

maneuver, can be discharged from a section of roadway at the

prevailing conditions, expressed in vehicles per second (vps) or

vehiclesperhour(vph).

ServiceVolume Maximum number of vehicles which can pass over a section of

roadway in one direction during a specified time period with

operating conditions at a specified Level of Service (The Service

VolumeattheupperboundofLevelofService,E,equalsCapacity).

ServiceVolumeisusuallyexpressedasvehiclesperhour(vph).

SignalCycleLength Thetotalelapsedtimetodisplayallsignalindications,insequence.

Thecyclelengthisexpressedinseconds.

SignalInterval Asinglecombinationofsignalindications.Theintervaldurationis

expressedinseconds.Asignalphaseiscomprisedofasequenceof

signalintervals,usuallygreen,yellow,red.



PaloVerdeNuclearGeneratingStation A1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Term Definition

SignalPhase A set of signal indications (and intervals) which services a

particular combination of traffic movements on selected

approachestotheintersection.Thephasedurationisexpressedin

seconds.

Traffic(Trip)Assignment Aprocessofassigningtraffictopathsoftravelinsuchawayasto

satisfy all trip objectives (i.e., the desire of each vehicle to travel

from a specified origin in the network to a specified destination)

and to optimize some stated objective or combination of

objectives. In general, the objective is stated in terms of

minimizing a generalized "cost". For example, "cost" may be

expressedintermsoftraveltime.

TrafficDensity Thenumberofvehiclesthatoccupyonelaneofaroadwaysection

of specified length at a point in time, expressed as vehicles per

mile(vpm).

Traffic(Trip)Distribution Aprocessfordeterminingthedestinationsofalltrafficgenerated

at the origins. The result often takes the form of a Trip Table,

whichisamatrixoforigindestinationtrafficvolumes.

TrafficSimulation Acomputermodeldesignedtoreplicatetherealworldoperation

of vehicles on a roadway network, so as to provide statistics

describing traffic performance. These statistics are called

MeasuresofEffectiveness(MOE).

TrafficVolume Thenumberofvehiclesthatpassoverasectionofroadwayinone

direction,expressedinvehiclesperhour(vph).Whereapplicable,

trafficvolumemaybestratifiedbyturnmovement.

TravelMode Distinguishes between private auto, bus, rail, pedestrian and air

travelmodes.

TripTableorOrigin A rectangular matrix or table, whose entries contain the number

DestinationMatrix oftripsgeneratedateachspecifiedorigin,duringaspecifiedtime

period, that are attracted to (and travel toward) each of its

specifieddestinations.Thesevaluesareexpressedinvehiclesper

hour(vph)orinvehicles.

TurningCapacity Thecapacityassociatedwiththatcomponentofthetrafficstream

whichexecutesaspecifiedturnmaneuverfromanapproachatan

intersection.





PaloVerdeNuclearGeneratingStation A2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXB

DTRAD:DynamicTrafficAssignmentandDistributionModel

B. DYNAMICTRAFFICASSIGNMENTANDDISTRIBUTIONMODEL

Thisappendixdescribestheintegrateddynamictripassignmentanddistributionmodelnamed

DTRAD (Dynamic TRaffic Assignment and Distribution) that is expressly designed for use in

analyzingevacuationscenarios.DTRADemployslogitbasedpathchoiceprinciplesandisoneof

themodelsoftheDYNEVIISystem.TheDTRADmoduleimplementspathbasedDynamicTraffic

Assignment(DTA)sothattimedependentOriginDestination(OD)tripsareassignedtoroutes

overthenetworkbasedonprevailingtrafficconditions.

To apply the DYNEV II System, the analyst must specify the highway network, link capacity

information,thetimevaryingvolumeoftrafficgeneratedatallorigincentroidsand,optionally,

a set of accessible candidate destination nodes on the periphery of the Emergency Planning

Zone(EPZ)forselectedorigins.DTRADcalculatestheoptimaldynamictripdistribution(i.e.,trip

destinations) and the optimal dynamic trip assignment (i.e., trip routing) of the traffic

generated at each origin node traveling to its set of candidate destination nodes, so as to

minimizeevacueetravelcost.

B.1 OverviewofIntegratedDistributionandAssignmentModel

Theunderlyingpremiseisthattheselectionofdestinationsandroutesisintrinsicallycoupledin

anevacuationscenario.Thatis,peopleinvehiclesseektotraveloutofanareaofpotentialrisk

as rapidly as possible by selecting the best routes. The model is designed to identify these

bestroutesinamannerthatrealisticallydistributesvehiclesfromoriginstodestinationsand

routesthemoverthehighwaynetwork,inaconsistentandoptimalmanner,reflectingevacuee

behavior.

Foreachorigin,asetofcandidatedestinationnodesisselectedbythesoftwarelogicandby

theanalysttoreflectthedesirebyevacueestotravelawayfromthepowerplantandtoaccess

majorhighways.Thespecificdestinationnodeswithinthissetthatareselectedbytravelersand

the selection of the connecting paths of travel, are both determined by DTRAD. This

determinationismadebyalogitbasedpathchoicemodelinDTRAD,soastominimizethetrip

cost,asdiscussedlater.

Thetrafficloadingonthenetworkandtheconsequentoperationaltrafficenvironmentofthe

network(density,speed,throughputoneachlink)varyovertimeastheevacuationtakesplace.

TheDTRADmodel,whichisinterfacedwiththeDYNEVsimulationmodel,executesasuccession

of sessions wherein it computes the optimal routing and selection of destination nodes for

theconditionsthatexistatthattime.

 



PaloVerdeNuclearGeneratingStation B1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

B.2 InterfacingtheDYNEVSimulationModelwithDTRAD

The DYNEV II system reflects NRC guidance that evacuees will seek to travel in a general

direction away from the location of the hazardous event. An algorithm was developed to

support the DTRAD model in dynamically varying the Trip Table (OD matrix) over time from

one DTRAD session to the next. Another algorithm executes a mapping from the specified

geometricnetwork(linknodeanalysisnetwork)thatrepresentsthephysicalhighwaysystem,

to a path network that represents the vehicle [turn] movements. DTRAD computations are

performedonthepathnetwork:DYNEVsimulationmodel,onthegeometricnetwork.

B.2.1 DTRADDescription

DTRADistheDTAmodulefortheDYNEVIISystem.

When the road network under study is large, multiple routing options are usually available

betweentriporiginsanddestinations.Theproblemofloadingtrafficdemandsandpropagating

them over the network links is called Network Loading and is addressed by DYNEV II using

macroscopic traffic simulation modeling. Traffic assignment deals with computing the

distributionofthetrafficovertheroadnetworkforgivenODdemandsandisamodelofthe

route choice of the drivers. Travel demand changes significantly over time, and the road

networkmayhavetimedependentcharacteristics,e.g.,timevaryingsignaltimingorreduced

road capacity because of lane closure, or traffic congestion. To consider these time

dependencies,DTAproceduresarerequired.

The DTRAD DTA module represents the dynamic route choice behavior of drivers, using the

specificationofdynamicorigindestinationmatricesasflowinput.Driverschoosetheirroutes

throughthenetworkbasedonthetravelcosttheyexperience(asdeterminedbythesimulation

model).Thisallowstraffictobedistributedoverthenetworkaccordingtothetimedependent

conditions.ThemodelingprinciplesofDTRADinclude:

x Itisassumedthatdriversnotonlyselectthebestroute(i.e.,lowestcostpath)butsome

alsoselectlessattractiveroutes.ThealgorithmimplementedbyDTRADarchivesseveral

efficientroutesforeachODpairfromwhichthedriverschoose.

x Thechoiceofonerouteoutofasetofpossibleroutesisanoutcomeofdiscretechoice

modeling.Givenasetofroutesandtheirgeneralizedcosts,thepercentagesofdrivers

that choose each route is computed. The most prevalent model for discrete choice

modeling is the logit model. DTRAD uses a variant of PathSizeLogit model (PSL). PSL

overcomesthedrawbackofthetraditionalmultinomiallogitmodelbyincorporatingan

additional deterministic path size correction term to address path overlapping in the

randomutilityexpression.

 



PaloVerdeNuclearGeneratingStation B2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

x DTRAD executes the traffic assignment (TA) algorithm on an abstract network

representation called "the path network" which is built from the actual physical link nodeanalysisnetwork.Thisexecutioncontinuesuntilastablesituationisreached:the

volumesandtraveltimesontheedgesofthepathnetworkdonotchangesignificantly

fromoneiterationtothenext.Thecriteriaforthisconvergencearedefinedbytheuser.

x Travel cost plays a crucial role in route choice. In DTRAD, path cost is a linear

summationofthegeneralizedcostofeachlinkthatcomprisesthepath.Thegeneralized

costforalink,a,isexpressedas

 , 

Where isthegeneralizedcostforlinkand, ,and,arecostcoefficientsforlink

travel time, distance, and supplemental cost, respectively. Distance and supplemental

costs are defined as invariant properties of the network model, while travel time is a

dynamicpropertydictatedbyprevailingtrafficconditions.TheDYNEVsimulationmodel

computestraveltimesonalledgesinthenetworkandDTRADusesthatinformationto

constantly update the costs of paths. The route choice decision model in the next

simulationiterationusestheseupdatedvaluestoadjusttheroutechoicebehavior.This

way,trafficdemandsaredynamicallyreassignedbasedontimedependentconditions.

TheinteractionbetweentheDTRADtrafficassignmentandDYNEVIIsimulationmodels

isdepictedinFigureB1.EachroundofinteractioniscalledaTrafficAssignmentSession

(TAsession).ATAsessioniscomposedofmultipleiterations,markedasloopBinthe

figure.

x The supplemental cost is based on the survival distribution (a variation of the

exponential distribution). The Inverse Survival Function is a cost term in DTRAD to

representthepotentialriskoftraveltowardtheplant:



sa=ln(p),0pl;0



p= 



dn=Distanceofnode,n,fromtheplant

d0=Distancefromtheplantwherethereiszerorisk

=Scalingfactor



Thevalueofdo =10miles,theouterdistanceoftheEPZ.Notethatthesupplemental

cost,sa, oflink,a,is(high,low),ifitsdownstreamnode,n,is(near,farfrom)thepower

plant.

 



PaloVerdeNuclearGeneratingStation B3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

B.2.2 NetworkEquilibrium

In1952,JohnWardropwrote:

Underequilibriumconditionstrafficarrangesitselfincongestednetworksinsuchaway

thatnoindividualtripmakercanreducehispathcostsbyswitchingroutes.

TheabovestatementdescribestheUserEquilibriumdefinition,alsocalledtheSelfishDriver

Equilibrium.Itisahypothesisthatrepresentsa[hopeful]conditionthatevolvesovertimeas

drivers search out alternative routes to identify those routes that minimize their respective

costs.Ithasbeenfoundthatthisequilibriumobjectivetominimizecostsislargelyrealized

bymostdriverswhoroutinelytakethesametripoverthesamenetworkatthesametime(i.e.,

commuters).Effectively,suchdriverslearnwhichroutesarebestforthemovertime.Thus,

thetrafficenvironmentsettlesdowntoanearequilibriumstate.

Clearly,sinceanemergencyevacuationisasudden,uniqueevent,itdoesnotconstitutealong term learning experience which can achieve an equilibrium state. Consequently, DTRAD was

not designed as an equilibrium solution, but to represent drivers in a new and unfamiliar

situation, who respond in a flexible manner to realtime information (either broadcast or

observed)insuchawayastominimizetheirrespectivecostsoftravel.

 



PaloVerdeNuclearGeneratingStation B4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

 StartofnextDTRADSession

A

Set T0 Clocktime.

ArchiveSystemStateat T0 

DefinelatestLinkTurn

Percentages

ExecuteSimulationModelfrom

B time, T0 to T1 (burntime)

ProvideDTRADwithlinkMOEat

time, T1 

ExecuteDTRADiteration;

GetnewTurnPercentages

RetrieveSystemStateat T0 ;

ApplynewLinkTurnPercents

DTRADiterationconverges?

No Yes

Nextiteration Simulatefrom T0 to T2 

(DTAsessionduration)

SetClockto T2 

B A



FigureB1.FlowDiagramofSimulationDTRADInterface



PaloVerdeNuclearGeneratingStation B5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXC

DYNEVTrafficSimulationModel

C. DYNEVTRAFFICSIMULATIONMODEL

This appendix describes the DYNEV traffic simulation model. The DYNEV traffic simulation

modelisamacroscopicmodelthatdescribestheoperationsoftrafficflowintermsofaggregate

variables:  vehicles, flow rate, mean speed, volume, density, queue length, on each link, for

each turn movement, during each Time Interval (simulation time step). The model generates

trips from sources and from Entry Links and introduces them onto the analysis network at

ratesspecifiedbytheanalystbasedonthemobilizationtimedistributions.Themodelsimulates

the movements of all vehicles on all network links over time until the network is empty. At

intervals,themodeloutputsMeasuresofEffectiveness(MOE)suchasthoselistedinTableC1.

ModelFeaturesInclude:

x Explicitconsiderationistakenofthevariationindensityoverthetimestep;aniterative

procedureisemployedtocalculateanaveragedensityoverthesimulationtimestepfor

thepurposeofcomputingameanspeedformovingvehicles.

x Multipleturnmovementscanbeservicedononelink;aseparatealgorithmisusedto

estimatethenumberof(fractional)lanesassignedtothevehiclesperformingeachturn

movement,based,inpart,ontheturnpercentagesprovidedbytheDTRADmodel.

x Atanypointintime,trafficflowonalinkissubdividedintotwoclassifications:queued

andmovingvehicles.Thenumberofvehiclesineachclassificationiscomputed.Vehicle

spillback,stratifiedbyturnmovementforeachnetworklink,isexplicitlyconsideredand

quantified.Thepropagationofstoppingwavesfromlinktolinkiscomputedwithineach

timestepofthesimulation.Thereisnoverticalstackingofqueuesonalink.

x Any link can accommodate source flow from zones via side streets and parking

facilities that are not explicitly represented. This flow represents the evacuating trips

thataregeneratedatthesource.

x Therelationbetweenthenumberofvehiclesoccupyingthelinkanditsstoragecapacity

ismonitoredeverytimestepforeverylinkandforeveryturnmovement.Iftheavailable

storage capacity on a link is exceeded by the demand for service, then the simulator

applies a metering rate to the entering traffic from both the upstream feeders and

sourcenodetoensurethattheavailablestoragecapacityisnotexceeded.

x A path network that represents the specified traffic movements from each network

linkisconstructedbythemodel;thispathnetworkisutilizedbytheDTRADmodel.

x AtwowayinterfacewithDTRAD:(1)provideslinktraveltimes;(2)receivesdatathat

translatesintolinkturnpercentages.

x ProvidesMOEtoanimationsoftware,EVAN

x CalculatesETEstatistics

All traffic simulation models are dataintensive. Table C2 outlines the necessary input data

elements.





PaloVerdeNuclearGeneratingStation C1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

To provide an efficient framework for defining these specifications, the physical highway

environment is represented as a network. The unidirectional links of the network represent

roadway sections: rural, multilane, urban streets or freeways. The nodes of the network

generallyrepresentintersectionsorpointsalongasectionwhereageometricpropertychanges

(e.g.,alanedrop,changeingradeorfreeflowspeed).

Figure C1 is an example of a small network representation. The freeway is defined by the

sequenceoflinks,(20,21),(21,22),and(22,23).Links(8001,19)and(3,8011)areEntryandExit

links,respectively.Anarterialextendsfromnode3tonode19andispartiallysubsumedwithin

agridnetwork.Notethatlinks(21,22)and(17,19)aregradeseparated.

C.1 Methodology

C.1.1 TheFundamentalDiagram

It is necessary to define the fundamental diagram describing flowdensity and speeddensity

relationships. Rather than settling for a triangular representation, a more realistic

representation that includes a capacity drop, (IR)Qmax, at the critical density when flow

conditions enter the forced flow regime, is developed and calibrated for each link. This

representation,showninFigureC2,assertsaconstantfreespeeduptoadensity, k ,andthen

alinearreductioninspeedintherange, k k k 45 vpm, thedensityatcapacity.Inthe

flowdensityplane,aquadraticrelationshipisprescribedintherange, k k 95 vpm 

whichroughlyrepresentsthestopandgoconditionofseverecongestion.Thevalueofflow

rate, Q ,  corresponding to k , is approximated at 0.7 RQ . A linear relationship

between k and k completesthediagramshowninFigureC2.TableC3isaglossaryofterms.

The fundamental diagram is applied to moving traffic on every link. The specified calibration

values for each link are: (1) Free speed, v ; (2) Capacity, Q  ; (3) Critical density, k 45 vpm ; (4)CapacityDropFactor,R=0.9;(5)Jamdensity, k . Then, v , k k

. Setting k k k , then Q RQ k for 0 k k 50 . Itcanbe

shownthatQ 0.98 0.0056 k RQ for k k k , where k 50 and k 175. 

C.1.2 TheSimulationModel

Thesimulationmodelsolvesasequenceofunitproblems.Eachunitproblemcomputesthe

movementoftrafficonalink,foreachspecifiedturnmovement,overaspecifiedtimeinterval

(TI)whichservesasthesimulationtimestepforalllinks.FigureC3isarepresentationofthe

unitprobleminthetimedistanceplane.TableC3isaglossaryoftermsthatarereferencedin

thefollowingdescriptionoftheunitproblemprocedure.

The formulation and the associated logic presented below are designed to solve the unit

problemforeachsweepoverthenetwork(discussedbelow),foreachturnmovementserviced

oneachlinkthatcomprisestheevacuationnetwork,andforeachTIoverthedurationofthe

evacuation.



PaloVerdeNuclearGeneratingStation C2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Given Q , M , L , TI , E , LN , GC , h , L , R , L , E , M

Compute O , Q , M 

Define O O O O ; E E E

1. Forthefirstsweep,s=1,ofthisTI,getinitialestimatesofmeandensity, k ,theR-factor,

R andenteringtraffic, E , usingthevaluescomputedforthefinalsweepofthepriorTI.

Foreachsubsequentsweep, s 1 , calculate E P O S where P , O arethe

relevantturnpercentagesfromfeederlink,i,anditstotaloutflow(possiblymetered)over

thisTI;Sisthetotalsourceflow(possiblymetered)duringthecurrentTI.

Setiterationcounter,n=0, k k , and E E .



2. Calculate v k such that k 130 usingtheanalyticalrepresentationsofthe

fundamentaldiagram.

Q TI G Calculate Cap C LN , in vehicles, this value may be reduced 

3600 due to metering

Set R 1.0 if GC 1 or if k k  ; Set R 0.9 only if GC 1 and k k 

L Calculate queue length, L Q 

LN



3. Calculate t TI . If t 0 , set t E O 0 ; Else, E E . 



4. Then E E E ; t TI t 



5. If Q Cap , then

O Cap , O O 0

If t 0 , then

Q Q M E Cap

Else

Q Q Cap

Endif

Calculate Q and M using Algorithm A below



6. Else Q Cap

O Q , RCap Cap O 



7.  If M RCap , then 



8. If t 0 , O M , O min RCap M , 0

      Q E O 

 If Q 0 , then



PaloVerdeNuclearGeneratingStation C3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

  Calculate Q , M with Algorithm A

 Else

 Q 0 , M E 

 End if

 Else t 0

  O M and O 0

  M M O E ; Q 0

 End if



9.  Else M 

   O 0

  If t 0 , then

 O RCap , Q M O E 

    Calculate Q and M using Algorithm A



10.  Else t 0

   M M 

   If M , 

O RCap

  Q M O 

  Apply Algorithm A to calculate Q and M 

  Else

O M 

  M M O E and Q 0

  End if

  Endif

Endif

Endif



11. Calculate a new estimate of average density, k k 2 k k ,

where k =densityatthebeginningoftheTI

k =densityattheendoftheTI

k =densityatthemidpointoftheTI

Allvaluesofdensityapplyonlytothemovingvehicles.



If k k and n N

where N max number of iterations, and is a convergence criterion, then



12. set n n 1 , and return to step 2 to perform iteration, n, using k k .

Endif





PaloVerdeNuclearGeneratingStation C4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Computation of unit problem is now complete. Check for excessive inflow causing

spillback.



13. If Q M , then

The number of excess vehicles that cause spillback is:  SB Q M , 

where W is the width of the upstream intersection. To prevent spillback, meter the

outflowfromthefeederapproachesandfromthesourceflow,S,duringthisTIbythe

amount,SB.Thatis,set

SB M1 0 , where M is the metering factor over all movements.

E S Thismeteringfactorisassignedappropriatelytoallfeederlinksandtothesourceflow,tobe

appliedduringthenextnetworksweep,discussedlater.

AlgorithmA

This analysis addresses the flow environment over a TI during which moving vehicles can

join a standing or discharging queue. For the case

Qb v Q  shown, Q Cap, with t 0 and a queue of

Q Qe length, Q ,formedbythatportionof M and E that

reaches the stopbar within the TI, but could not

v discharge due to inadequate capacity. That is, Q Mb M E . Thisqueuelength, Q Q M v L3 E Cap canbeextendedto Q bytrafficentering

the approach during the current TI, traveling at

t1 t3 speed, v, and reaching the rear of the queue within

T theTI.Aportionoftheenteringvehicles, E E , 

will likely join the queue. This analysis calculates

t , Q and M fortheinputvaluesofL,TI,v,E,t,L ,LN,Q .



When t 0 and Q Cap:

L L Define: L Q . From the sketch, L vTI t t L Q E .

LN LN Substituting E E yields: vt E L vTI t L .Recognizingthat

thefirsttwotermsontherighthandsidecancel,solvefor t toobtain:



L t such that 0 t TI t 

E L v

TI LN



Ifthedenominator,v 0, set t TI t .



PaloVerdeNuclearGeneratingStation C5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

t t t Then, Q Q E , M E 1 

TI TI The complete Algorithm A considers all flow scenarios; space limitation precludes its

inclusion,here.

C.1.3 LaneAssignment

Theunitproblemissolvedforeachturnmovementoneachlink.Thereforeitisnecessaryto

calculateavalue, LN , ofallocatedlanesforeachmovement,x.Ifinfactalllanesarespecified

by,say,arrowspaintedonthepavement,eitherasfulllanesoraslaneswithinaturnbay,then

theproblemisfullydefined.Ifhoweverthereremainunchannelizedlanesonalink,thenan

analysis is undertaken to subdivide the number of these physical lanes into turn movement

specificvirtuallanes,LNx.

C.2 Implementation

C.2.1 ComputationalProcedure

ThecomputationalprocedureforthismodelisshownintheformofaflowdiagramasFigure

C4. As discussed earlier, the simulation model processes traffic flow for each link

independentlyoverTIthattheanalystspecifies;itisusually60secondsorlonger.Thefirststep

istoexecuteanalgorithmtodefinethesequenceinwhichthenetworklinksareprocessedso

thatasmanylinksaspossibleareprocessedaftertheirfeederlinksareprocessed,withinthe

samenetworksweep.Sinceageneralnetworkwillhavemanyclosedloops,itisnotpossibleto

guaranteethateverylinkprocessedwillhaveallofitsfeederlinksprocessedearlier.

Theprocessingthencontinuesasasuccessionoftimestepsofduration,TI,untilthesimulation

is completed. Within each time step, the processing performs a series of sweeps over all

network links; this is necessary to ensure that the traffic flow is synchronous over the entire

network.Specifically,thesweepensurescontinuityofflowamongallthenetworklinks;inthe

contextofthismodel,thismeansthatthevaluesofE,M,andSarealldefinedforeachlinksuch

thattheyrepresentthesynchronousmovementoftrafficfromeachlinktoallofitsoutbound

links.Thesesweepsalsoservetocomputethemeteringratesthatcontrolspillback.

Withineachsweep,processingsolvestheunitproblemforeachturnmovementoneachlink.

WiththeturnmovementpercentagesforeachlinkprovidedbytheDTRADmodel,analgorithm

allocatesthenumberoflanestoeachmovementservicedoneachlink.Thetimingatasignal,if

any,appliedatthedownstreamendofthelink,isexpressedasaG/Cratio,thesignaltiming

needed to define this ratio is an input requirement for the model. The model also has the

capabilityofrepresenting,withmacroscopicfidelity,theactionsofactuatedsignalsresponding

tothetimevaryingcompetingdemandsontheapproachestotheintersection.

Thesolutionoftheunitproblemyieldsthevaluesofthenumberofvehicles,O,thatdischarge

fromthelinkoverthetimeintervalandthenumberofvehiclesthatremainonthelinkatthe

end of the time interval as stratified by queued and moving vehicles: Q and M . The



PaloVerdeNuclearGeneratingStation C6 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

procedure considers each movement separately (multipiping). After all network links are

processed for a given network sweep, the updated consistent values of entering flows, E;

meteringrates,M;andsourceflows,Saredefinedsoastosatisfythenospillbackcondition.

The procedure then performs the unit problem solutions for all network links during the

followingsweep.

Experiencehasshownthatthesystemconverges(i.e.thevaluesofE,MandSsettledownfor

allnetworklinks)injusttwosweepsifthenetworkisentirelyundersaturatedorinfoursweeps

in the presence of extensive congestion with link spillback. (The initial sweep over each link

usesthefinalvaluesofEandM,ofthepriorTI).AtthecompletionofthefinalsweepforaTI,

the procedure computes and stores all measures of effectiveness for each link and turn

movementforoutputpurposes.Itthenpreparesforthefollowingtimeintervalbydefiningthe

valuesof Q and M forthestartofthenextTIasbeingthosevaluesof Q and M attheend

ofthepriorTI.Inthismanner,thesimulationmodelprocessesthetrafficflowovertimeuntil

the end of the run. Note that there is no spacediscretization other than the specification of

networklinks.

C.2.2 InterfacingwithDynamicTrafficAssignment(DTRAD)

The DYNEV II system reflects NRC guidance that evacuees will seek to travel in a general

directionawayfromthelocationofthehazardousevent.Thus,analgorithmwasdevelopedto

identifyanappropriatesetofdestinationnodesforeachoriginbasedonitslocationandonthe

expected direction of travel. This algorithm also supports the DTRAD model in dynamically

varyingtheTripTable(ODmatrix)overtimefromoneDTRADsessiontothenext. 

FigureB1depictstheinteractionofthesimulationmodelwiththeDTRADmodelintheDYNEV

IIsystem.Asindicated,DYNEVIIperformsasuccessionofDTRADsessions;eachsuchsession

computestheturnlinkpercentagesforeachlinkthatremainconstantforthesessionduration,

T , T , specifiedbytheanalyst.Theendproductistheassignmentoftrafficvolumesfrom

each origin to paths connecting it with its destinations in such a way as to minimize the

networkwide cost function. The output of the DTRAD model is a set of updated link turn

percentageswhichrepresentthisassignmentoftraffic.

As indicated in Figure B1, the simulation model supports the DTRAD session by providing it

with operational link MOE that are needed by the path choice model and included in the

DTRAD cost function. These MOE represent the operational state of the network at a time,

T T ,  which lies within the session duration, T , T . This burn time, T T ,  is

selectedbytheanalyst.ForeachDTRADiteration,thesimulationmodelcomputesthechange

in network operations over this burn time using the latest set of link turn percentages

computed by the DTRAD model. Upon convergence of the DTRAD iterative procedure, the

simulation model accepts the latest turn percentages provided by the Dynamic Traffic

Assignment(DTA)model,returnstotheorigintime, T ,andexecutesuntilitarrivesattheend

oftheDTRADsessiondurationattime, T .AtthistimethenextDTAsessionislaunchedand

thewholeprocessrepeatsuntiltheendoftheDYNEVIIrun.

AdditionaldetailsarepresentedinAppendixB. 



PaloVerdeNuclearGeneratingStation C7 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableC1.SelectedMeasuresofEffectivenessOutputbyDYNEVII

Measure Units AppliesTo

VehiclesDischarged Vehicles Link,Network,ExitLink

Speed Miles/Hours(mph) Link,Network

Density Vehicles/Mile/Lane Link

LevelofService LOS Link

Content Vehicles Network

TravelTime Vehiclehours Network

EvacuatedVehicles Vehicles Network,ExitLink

TripTravelTime Vehicleminutes/trip Network

CapacityUtilization Percent ExitLink

Attraction Percentoftotalevacuatingvehicles ExitLink

MaxQueue Vehicles Node,Approach

TimeofMaxQueue Hours:minutes Node,Approach

Length (mi); Mean Speed (mph); Travel

RouteStatistics Route

Time(min)

MeanTravelTime Minutes EvacuationTrips;Network

 



PaloVerdeNuclearGeneratingStation C8 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableC2.InputRequirementsfortheDYNEVIIModel

HIGHWAYNETWORK

x Linksdefinedbyupstreamanddownstreamnodenumbers

x Linklengths

x Numberoflanes(upto9)andchannelization

x Turnbays(1to3lanes)

x Destination(exit)nodes

x Networktopologydefinedintermsofdownstreamnodesforeachreceivinglink

x NodeCoordinates(X,Y)

x NuclearPowerPlantCoordinates(X,Y)

GENERATEDTRAFFICVOLUMES

x Onallentrylinksandsourcenodes(origins),byTimePeriod

TRAFFICCONTROLSPECIFICATIONS

x Trafficsignals:linkspecific,turnmovementspecific

x Signalcontroltreatedasfixedtimeoractuated

x Locationoftrafficcontrolpoints(thesearerepresentedasactuatedsignals)

x StopandYieldsigns

x Rightturnonred(RTOR)

x Routediversionspecifications

x Turnrestrictions

x Lanecontrol(e.g.,laneclosure,movementspecific)

DRIVERSANDOPERATIONALCHARACTERISTICS

x Drivers(vehiclespecific)responsemechanisms:freeflowspeed,dischargeheadway

x Busroutedesignation.

DYNAMICTRAFFICASSIGNMENT

x Candidatedestinationnodesforeachorigin(optional)

x DurationofDTAsessions

x Durationofsimulationburntime

x Desirednumberofdestinationnodesperorigin

INCIDENTS

x IdentifyandScheduleofclosedlanes

x IdentifyandScheduleofclosedlinks



 



PaloVerdeNuclearGeneratingStation C9 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableC3.Glossary

Themaximumnumberofvehicles,ofaparticularmovement,thatcandischarge

Cap

fromalinkwithinatimeinterval.

The number of vehicles, of a particular movement, that enter the link over the

E

timeinterval.Theportion,ETI,canreachthestopbarwithintheTI.

The green time: cycle time ratio that services the vehicles of a particular turn

G/C

movementonalink.

h Themeanqueuedischargeheadway,seconds.

k Densityinvehiclesperlanepermile.

TheaveragedensityofmovingvehiclesofaparticularmovementoveraTI,ona

k 

link.

L Thelengthofthelinkinfeet.

Thequeuelengthinfeetofaparticularmovement,atthe[beginning,end]ofa

L , L 

timeinterval.

Thenumberoflanes,expressedasafloatingpointnumber,allocatedtoservicea

LN

particularmovementonalink.

L  Themeaneffectivelengthofaqueuedvehicleincludingthevehiclespacing,feet.

M Meteringfactor(Multiplier):1.

The number of moving vehicles on the link, of a particular movement, that are

M , M  movingatthe[beginning,end]ofthetimeinterval.Thesevehiclesareassumed

tobeofequalspacing,overthelengthoflinkupstreamofthequeue.

Thetotalnumberofvehiclesofaparticularmovementthataredischargedfroma

O

linkoveratimeinterval.

The components of the vehicles of a particular movement that are discharged

fromalinkwithinatimeinterval:vehiclesthatwereQueuedatthebeginningof

O , O , O 

the TI; vehicles that were Moving within the link at the beginning of the TI;

vehiclesthatEnteredthelinkduringtheTI.

The percentage, expressed as a fraction, of the total flow on the link that

P 

executesaparticularturnmovement,x.

 



PaloVerdeNuclearGeneratingStation C10 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



Thenumberofqueuedvehiclesonthelink,ofaparticularturnmovement,atthe

Q , Q 

[beginning,end]ofthetimeinterval.

Themaximumflowratethatcanbeservicedbyalinkforaparticularmovement

Q  intheabsenceofacontroldevice.Itisspecifiedbytheanalystasanestimateof

linkcapacity,baseduponafieldsurvey,withreferencetotheHCM2016.

R The factor that is applied to the capacity of a link to represent the capacity

drop when the flow condition moves into the forced flow regime. The lower

capacityatthatpointisequalto RQ .

RCap The remaining capacity available to service vehicles of a particular movement

afterthatqueuehasbeencompletelyserviced,withinatimeinterval,expressed

asvehicles.

S  Servicerateformovementx,vehiclesperhour(vph).

t  Vehiclesofaparticularturnmovementthatenteralinkoverthefirst t seconds

of a time interval, can reach the stopbar (in the absence of a queue down stream)withinthesametimeinterval.

TI Thetimeinterval,inseconds,whichisusedasthesimulationtimestep.

v The mean speed of travel, in feet per second (fps) or miles per hour (mph), of

movingvehiclesonthelink.

v  Themeanspeedofthelastvehicleinaqueuethatdischargesfromthelinkwithin

theTI.Thisspeeddiffersfromthemeanspeedofmovingvehicles,v.

W The width of the intersection in feet. This is the difference between the link

lengthwhichextendsfromstopbartostopbarandtheblocklength.



 



PaloVerdeNuclearGeneratingStation C11 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

8011 8009 2 3 8104 8107 6 5 8008 8010 8 9 10 8007 8012 12 11 8006 8005 13 14 8014 15 25 8004 16 24 8024 17 8003 23 22 21 20 8002 Entry,ExitNodesare 19 numbered8xxx

8001



FigureC1.RepresentativeAnalysisNetwork





PaloVerdeNuclearGeneratingStation C12 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

 Volume, vph Capacity Drop Qmax R Qmax Qs Density, vpm Flow Regimes Speed, mph Free Forced vf R vc Density, vpm kf kc kj ks



FigureC2.FundamentalDiagrams



 Distance

OQ OM OE Down

Qb vQ Qe v

v L

Mb Me Up

t1 t2 Time

E1 E2 TI





FigureC3.AUNITProblemConfigurationwitht1>0



PaloVerdeNuclearGeneratingStation C13 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

SequenceNetworkLinks

NextTimestep,ofduration,TI

A

Nextsweep;DefineE,M,Sforall

B

Links

C NextLink

D NextTurnMovement,x

Getlanes,LNx 

ServiceRate,Sx ;G/Cx 

GetinputstoUnitProblem:

Q b , Mb ,E

SolveUnitProblem:Q e , Me , O

No D

LastMovement?

Yes

No

LastLink? C

Yes

No B

LastSweep?

Yes

Calc.,storeallLinkMOE

SetupnextTI:

No A

LastTime-step?

Yes

DONE



FigureC4.FlowofSimulationProcessing(SeeGlossary:TableC3)





PaloVerdeNuclearGeneratingStation C14 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXD

DetailedDescriptionofStudyProcedure

D. DETAILEDDESCRIPTIONOFSTUDYPROCEDURE

This appendix describes the activities that were performed to compute Evacuation Time

Estimates(ETE).TheindividualstepsofthiseffortarerepresentedasaflowdiagraminFigure

D1.Eachnumberedstepinthedescriptionthatfollowscorrespondstothenumberedelement

intheflowdiagram.

Step1

The first activity was to verify the Emergency Planning Zone (EPZ) boundary information and

create a geographical information system (GIS) base map. The base map extends beyond the

ShadowRegionwhichextends15miles(radially)fromthepowerplantlocation.Thebasemap

incorporates the local roadway topology, a suitable topographic background and the EPZ

boundary.

Step2

The 2021 EPZ residential population was obtained from the Maricopa County Department of

Emergency Management (MCDEM). The 2020 Census block population information was

obtainedinGISformatandwasextrapolatedto2021usingthecompoundgrowthformulain

ordertoestimatethepermanentresidentpopulationwithintheShadowRegionandtodefine

the spatial distribution and demographic characteristics of the population within the study

area.EmployeeandtransientdatawereobtainedfromMCDEMandemergencymanagement

personnelatAPS.InformationconcerningschoolswithintheEPZwasobtainedfromMaricopa

County.

Step3

A kickoff meeting was conducted with major stakeholders (state and county local emergency

managers, onsite and offsite APS personnel). The purpose of the kickoff meeting was to

present an overview of the work effort, identify key agency personnel, and indicate the data

requirements for the study. Specific requests for information were presented to, state and

county emergencyofficials and APS utility managers. Unique featuresof the study area were

discussedtoidentifythelocalconcernsthatshouldbeaddressedbytheETEstudy.

Step4

Next,aphysicalsurveyoftheroadwaysysteminthestudyareawasconductedtodetermine

any changes to the roadway network since the previous study. This survey included

considerationofthegeometricpropertiesofthehighwaysections,thechannelizationoflanes

on each section of roadway, whether there are any turn restrictions or special treatment of

traffic at intersections, the type and functioning of traffic control devices, gathering signal

timings for pretimed traffic signals (if any exist within the study area), and to make the

necessary observations needed to estimate realistic values of roadway capacity. Roadway

characteristicswerealsoverifiedusingaerialimagery.

 



PaloVerdeNuclearGeneratingStation D1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Step5

A demographic survey of households within the EPZ was conducted to identify household

dynamics, trip generation characteristics, and evacuationrelated demographic information of

theEPZpopulation.Thisinformationwasusedtodetermineimportantstudyfactorsincluding

theaveragenumberofevacuatingvehiclesusedbyeachhousehold,andthetimerequiredto

performpreevacuationmobilizationactivities.

Step6

A computerized representation of the physical roadway system, called a linknode analysis

network,wasupdatedusingthemostrecentUNITESsoftware(seeSection1.3)developedby

KLD.Oncetheupdatedgeometryofthenetworkwascompleted,thenetworkwascalibrated

usingtheinformationgatheredduringtheroadsurvey(Step4)andinformationobtainedfrom

aerialimagery.Estimatesofhighwaycapacityforeachlinkandotherlinkspecificcharacteristics

wereintroducedtothenetworkdescription.Trafficsignaltimingswereinputaccordingly.The

linknode analysis network was imported into a GIS map. The 2021 permanent resident

populationdata(Step2)wereoverlaidinthemap,andorigincentroidswheretripswouldbe

generatedduringtheevacuationprocesswereassignedtoappropriatelinks.

Step7

TheEPZissubdividedinto145Sectors.Basedonwinddirectionandspeed,Regions(groupings

ofSectorsthatmaybeadvisedtoevacuate,)weredeveloped.

The need for evacuation can occur over a range of timeofday, dayofweek, seasonal and

weatherrelated conditions. Scenarios were developed to capture the variation in evacuation

demand, highway capacity and mobilization time, for different time of day, day of the week,

timeofyear,andweatherconditions.

Step8

TheinputstreamfortheDYNEVIImodel,whichintegratesthedynamictrafficassignmentand

distributionmodel,DTRAD,withtheevacuationsimulationmodel,wascreatedforaprototype

evacuationcase-theevacuationoftheentireEPZforarepresentativescenario.

Step9

After creating this input stream, the DYNEV II System was executed on the prototype

evacuationcasetocomputeevacuatingtrafficroutingpatternsconsistentwiththeappropriate

NRC guidelines. DYNEV II contains an extensive suite of data diagnostics which check the

completenessandconsistencyoftheinputdataspecified.Theanalystreviewsallwarningand

error messages produced by the model and then corrects the database to create an input

streamthatproperlyexecutestocompletion.

The model assigns destinations to all origin centroids consistent with a (general) radial

evacuation of the EPZ and Shadow Region. The analyst may optionally supplement and/or

replacethesemodelassigneddestinations,basedonprofessionaljudgment,afterstudyingthe

topology of the analysis highway network. The model produces link and networkwide

measuresofeffectivenessaswellasestimatesofevacuationtime.



PaloVerdeNuclearGeneratingStation D2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Step10

The results generated by the prototype evacuation case are critically examined. The

examinationincludesobservingtheanimatedgraphics(usingtheEVANsoftware-seeSection

1.3)andreviewingthestatisticsoutputbythemodel.Thisisalaborintensiveactivity,requiring

thedirectparticipationofskilledengineerswhopossessthenecessarypracticalexperienceto

interprettheresultsandtodeterminethecausesofanyproblemsreflectedintheresults.

Essentially, the approach is to identify those bottlenecks in the network that represent

locations where congested conditions are pronounced and to identify the cause of this

congestion.Thiscausecantakemanyforms,eitherasexcessdemandduetohighratesoftrip

generation, improper routing, a shortfall of capacity, or as a quantitative flaw in the way the

physical system was represented in the input stream. This examination leads to one of two

conclusions:

x Theresultsaresatisfactory;or

x Theinputstreammustbemodifiedaccordingly.

Thisdecisionrequires,ofcourse,theapplicationoftheuser'sjudgmentandexperiencebased

upontheresultsobtainedinpreviousapplicationsofthemodelandacomparisonoftheresults

of the latest prototype evacuation case iteration with the previous ones. If the results are

satisfactory in the opinion of the user, then the process continues with Step 13. Otherwise,

proceedtoStep11.

Step11

There are many "treatments" available to the user in resolving apparent problems. These

treatments range from decisions to reroute the traffic by assigning additional evacuation

destinations for one or more sources, imposing turn restrictions where they can produce

significantimprovementsincapacity,changingthecontroltreatmentatcriticalintersectionsso

as to provide improved service for one or more movements, adding minor routes (which are

pavedandtraversable)thatwerenotpreviouslymodelledbutmayassistinanevacuationand

increase the available roadway network capacity, or in prescribing specific treatments for

channelizingtheflowsoastoexpeditethemovementoftrafficalongmajorroadwaysystems.

Such "treatments" take the form of modifications to the original prototype evacuation case

input stream. All treatments are designed to improve the representation of evacuation

behavior.

Step12

As noted above, the changes to the input stream must be implemented to reflect the

modificationsundertakeninStep11.Atthecompletionofthisactivity,theprocessreturnsto

Step9wheretheDYNEVIISystemisagainexecuted.

 



PaloVerdeNuclearGeneratingStation D3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Step13

Evacuationoftransitdependentevacueesandspecialfacilitiesareincludedintheevacuation

analysis. Fixed routing for transit buses, school buses, ambulatory buses, and paratransit

vehiclesareintroducedintothefinalprototypeevacuationcasedataset.DYNEVIIgenerates

routespecific speeds over time for use in the estimation of evacuation times for the transit

dependentandspecialfacilitypopulationgroups.

Step14

The prototype evacuation case was used as the basis for generating all region and scenario specificevacuationcasestobesimulated.ThisprocesswasautomatedthroughtheUNITESuser

interface. For each specific case, the population to be evacuated, the trip generation

distributions, the highway capacity and speeds, and other factors are adjusted to produce a

customizedcasespecificdataset.

Step15

AllevacuationcasesareexecutedusingtheDYNEVIISystemtocomputeETE.Onceresultsare

available, quality control procedures are used to assure the results are consistent, dynamic

routingisreasonable,andtrafficcongestion/bottlenecksareaddressedproperly.

Step16

Once vehicular evacuation results are accepted, average travel speeds for transit and special

facilityroutesareusedtocomputeETEfortransitdependentpermanentresidents,schoolsand

accessand/orfunctionalneedspopulation.

Step17

The simulation results are analyzed, tabulated and graphed. Traffic management plans are

analyzed,andtrafficcontrolpointsareprioritized,ifapplicable.Additionalanalysisisconducted

toidentifythesensitivityoftheETEtochangesinsomebaseevacuationconditionsandmodel

assumptions.Theresultsarethendocumented,asrequiredbyNUREG/CR7002,Rev.1.

Step18

Followingthecompletionofdocumentationactivities,theETEcriteriachecklist(seeAppendix

N)iscompleted.Anappropriatereportreferenceisprovidedforeachcriterionprovidedinthe

checklist.



PaloVerdeNuclearGeneratingStation D4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



A Step1 Step10 CreateGISBaseMap ExaminePrototypeEvacuationCaseusingEVAN

and

DYNEVIIOutput Step2 GatherCensusBlockandDemographicDatafor ResultsSatisfactory StudyArea Step11 Step3 ModifyEvacuationDestinationsand/orDevelop

ConductKickoffMeetingwithStakeholders TrafficControlTreatments Step4 Step12 FieldSurveyofRoadwayswithinStudyArea ModifyDatabasetoReflectChangestoPrototype

EvacuationCase Step5 ConductandAnalyzeDemographicSurveyand

DevelopTripGenerationCharacteristics B

Step13 Step6 EstablishTransitandSpecialFacilityEvacuation

CreateandCalibrateLinkNodeAnalysisNetwork RoutesandUpdateDYNEVIIDatabase

Step14 Step7 GenerateDYNEVIIInputStreamsforAll

EvacuationCases DevelopEvacuationRegionsandScenarios Step15 Step8 ExecuteDYNEVIItoComputeETEforAll

CreateandDebugDYNEVIIInputStream EvacuationCases Step16 Step9 UseDYNEVIIAverageSpeedOutputtoCompute

ETEforTransitandSpecialFacilityRoutes B ExecuteDYNEVIIforPrototypeEvacuationCase Step17 Documentation A Step18 CompleteETECriteriaChecklist









FigureD1.FlowDiagramofActivities



PaloVerdeNuclearGeneratingStation D5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXE

FacilityData

E. FACILITYDATA

The following tables list population information, as of November 2021, for special facilities,

transientfacilitiesandmajoremployersthatarelocatedwithinthePVNGSEPZ.Specialfacilities

aredefinedasschools,medicalfacilitiesandcorrectionalfacilities.Note,howeverthatthere

arenomedicalfacilitiesorcorrectionalfacilitiesinthePVNGSEPZ.Thus,specialfacilitieswithin

the EPZ consist of schools only. Employment data is summarized in the table for major

employers.Transientpopulationdataisincludedinthetableforlodgingfacilities.

Thelocationofthefacilityisdefinedbyitsstraightlinedistance(miles)anddirection(magnetic

bearing)fromthecenterpointoftheplant.Mapsofeachschool,majoremployer,andlodging

facilityarealsoprovided.





PaloVerdeNuclearGeneratingStation  E1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableE1.SchoolswithintheStudyArea

Distance Dire Enroll

Sector (miles) ction SchoolName StreetAddress Municipality ment

MARICOPACOUNTY,AZ

A3 2.6 N CrossroadsAcademy 38013WSalomeHwy Tonopah 15

A8 7.2 N TonopahValleyHighSchool 38201WIndianSchoolRd Tonopah 810

A8 7.3 N RuthFisherMiddleSchool 36201WIndianSchoolRd Tonopah 731

C5 4.7 NE WintersWellElementarySchool 35220WBuckeyeRd Tonopah 460

F4 3.3 ESE ArlingtonElementarySchool 9410S355thAve Arlington 280

S.R. 11.1 ESE PaloVerdeElementarySchool1 10700SPaloVerdeRd PaloVerde 450

MaricopaCountySubtotal: 2,746

EPZTOTAL: 2,746



TableE2.MajorEmployerswithintheEPZ

Employee

%Employees Employees Vehicles

Distance Dire Employees Commuting Commuting Commuting

Sector (miles) ction FacilityName StreetAddress Municipality (MaxShift) intotheEPZ intotheEPZ intotheEPZ

MARICOPACOUNTY,AZ

PVNGS   PVNGS 5801SWintersburgRd Tonopah 2,611 95% 2,480 2,102

D7 6.7 ENE Hickman'sFamilyFarms2 1909S331stAve Tonopah 96 59% 57 48

E6 6.0 E Hickman'sFamilyFarms2,3 32911WardRd Buckeye 239 92% 221 23

H4 3.7 SSE SunStreams2 11801S363rdAve Arlington 250 97% 243 206

R9 8.8 NNW Hickman'sFamilyFarms2 41717WIndianSchoolRd Tonopah 112 30% 34 29

MaricopaCountySubtotal: 3,308  3,035 2,408

EPZTOTAL: 3,308  3,035 2,408







1 According to Maricopa County Emergency Plans, Palo Verde Elementary School would evacuate even though it is located in the Shadow Region.

2 Hickmans Family Farms has multiple locations in the EPZ with a total of 447 employees per single shift.

3 According to Hickmans Family Farms, there are 210 inmates from the Arizona State Prison currently working at Hickmans Family Farm. Based on the data provided, these inmates are included in the 239 employees (Max Shift) at 32911 Ward Rd. Of the remaining 29 employees (239 - 210 = 29), approximately 11 people reside outside of the EPZ. Assuming a capacity of 30 people per bus, 7 buses (14 vehicles) will be needed to transport the 210 inmates plus 9 vehicles for the remaining 11 employees (11 non-inmate employees ÷ 1.18 employee vehicle occupancy rate), which results in a total of 23 employee vehicles.



PaloVerdeNuclearGeneratingStation  E2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableE3.LodgingFacilitieswithintheEPZ

Distance Dire

Sector (miles) ction FacilityName StreetAddress Municipality Transients Vehicles

MARICOPACOUNTY,AZ

R9 8.2 NNW SaguaroMineralWellsMotel 3847N411thAve Tonopah 23 8

MaricopaCountySubtotal: 23 8

EPZTOTAL: 23 8



















PaloVerdeNuclearGeneratingStation  E3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureE1.Schools,LodgingFacilitiesandMajorEmployerswithintheStudyArea



PaloVerdeNuclearGeneratingStation  E4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXF

DemographicSurvey

F. DEMOGRAPHICSURVEY

F.1 Introduction

The development of evacuation time estimates (ETEs) for the Palo Verde Nuclear Generating

Station(PVNGS)EmergencyPlanningZone(EPZ)requirestheidentificationoftravelpatterns,car

ownershipandhouseholdsizeofthepopulationwithintheEPZ.Demographicinformationcan

be obtained from Census data. The use of this data has several limitations when applied to

emergencyplanning.First,theCensusdatadonotencompasstherangeofinformationneeded

toidentifythetimerequiredforpreliminaryactivities(mobilization)thatmustbeundertaken

priortoevacuatingthearea.Secondly,Censusdatadonotcontainattitudinalresponsesneeded

fromthepopulationoftheEPZandconsequentlymaynotaccuratelyrepresenttheanticipated

behavioralcharacteristicsoftheevacuatingpopulace.

Theseconcernsareaddressedbyconductingademographicsurveyofarepresentativesample

oftheEPZpopulation.Thesurveyisdesignedtoelicitinformationfromthepublicconcerning

familydemographicsandestimatesofresponsetimestowelldefinedevents.Thedesignofthe

surveyincludesalimitednumberofquestionsoftheformWhatwouldyoudoif?andother

questionsregardingactivitieswithwhichtherespondentisfamiliar(Howlongdoesittakeyou

to?).

F.2 SurveyInstrumentandSamplingPlan

AttachmentApresentsthefinalsurveyinstrumentusedforthedemographicsurvey.Adraftof

theinstrumentwassubmittedtostakeholdersforcomment.Commentswerereceivedandthe

surveyinstrumentwasmodifiedaccordingly,priortoconductingthesurvey.

Following the completion of the instrument, a sampling plan was developed. Since the

demographicsurveydiscussedhereinwasperformedinOctober2020andthe2020Censusdata

hadnotbeenreleased,2010Censusdatawasusedtodevelopthesamplingplan.

Asamplesizeofapproximately370completedsurveyformsyieldsresultswithasamplingerror

of+/-5%atthe95%confidencelevel.ThesamplemustbedrawnfromtheEPZpopulation.Alistof

zipcodesintheEPZwasdevelopedusinggeographicinformationsystem(GIS)software.Thislist

isshowninTableF1.Alongwitheachzipcode,anestimateofthepopulationandnumberof

householdsineachareawasdeterminedbyoverlaying2010CensusdataandtheEPZboundary,

againusingGISsoftware.Theproportionalnumberofdesiredcompletedsurveyinterviewsfor

eachareawasidentified,asshowninTableF1.Notethattheaveragehouseholdsizecomputed

inTableF1wasanestimateforsamplingpurposesandwasnotusedintheETEstudy.

Theresultsofthesurveyexceededthesamplingplan.Atotalof392completedsampleswere

obtainedcorrespondingtoasamplingerrorof+/-4.5%atthe95%confidencelevelbasedonthe

2010Censusdata.TableF1alsoshowsthenumberofsamplesobtainedwithineachzipcode.



PaloVerdeNuclearGeneratingStation F1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

F.3 SurveyResults

Theresultsofthesurveyfallintotwocategories.First,thehouseholddemographicsofthearea

canbeidentified.Demographicinformationincludessuchfactorsashouseholdsize,automobile

ownership, and automobile availability. The distributions of the time to perform certain pre evacuation activities are the second category of survey results. These data are processed to

developthetripgenerationdistributionsusedintheevacuationmodelingeffort,asdiscussedin

Section5.

AreviewofthesurveyinstrumentrevealsthatseveralquestionshaveaDontknoworDecline

toStateentryforaresponse.Itisacceptedpracticeinconductingsurveysofthistypetoaccept

the answers of a respondent who offers a Dont know or who declines to answer a few

questions. To address the issue of occasional Dont know/declined responses from a large

sample, the practice is to assume that the distribution of these responses is the same as the

underlyingdistributionofthepositiveresponses.Ineffect,theDontknow/declinedresponses

areignoredandthedistributionsarebaseduponthepositivedatathatisacquired.

F.3.1 HouseholdDemographicResults

HouseholdSize

FigureF1presentsthedistributionofhouseholdsizewithintheEPZ,basedontheresponsesto

thedemographicsurvey.Theaveragehouseholdcontains2.65people.Accordingtothe2020

Censusdatatheaveragehouseholdsizeis3.15peopleperhousehold,whichis18.9%higherthan

the value obtained from the demographic survey. This falls outside of the sampling error of

+/-4.5%.However,eachyear,MaricopaCountyundertakesapopulationanalysiswithinthePVNGS

EPZ based on electrical hookup information. The data gathered by the county indicates an

averagehouseholdsizeof2.75people.Thedifferencebetweenthecountydataandsurveydata

is3.8%,whichdoesnotexceedthesamplingerrorof4.5%.Itwasdeterminedthatthevalue

obtained from the demographic survey (2.65 people) will be used for this study. The close

agreementbetweentheaveragehouseholdsizeobtainedfromthesurveyandfromthecounty

dataisanindicationofthereliabilityofthesurvey.

AutomobileOwnership

TheaveragenumberofautomobilesavailableperhouseholdintheEPZis2.30.Itshouldbenoted

thatallhouseholdswithintheEPZhaveaccesstoanautomobileaccordingtothedemographic

survey.ThedistributionofautomobileownershipispresentedinFigureF2.FigureF3andFigure

F4presenttheautomobileavailabilitybyhouseholdsize.

Ridesharing

Themajority(72%)ofthehouseholdssurveyedrespondedthattheywouldsharearidewitha

neighbor,relative,orfriendifacarwasnotavailabletothemwhenadvisedtoevacuateinthe

eventofanemergency,asshowninFigureF5.





PaloVerdeNuclearGeneratingStation F2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Commuters

FigureF6presentsthedistributionofthenumberofcommutersineachhousehold.Commuters

aredefinedashouseholdmemberswhotraveltoworkorcollegeonadailybasis.Thedatashows

anaverageof0.81commutersperhouseholdintheEPZ,andapproximately49.1%ofhouseholds

haveatleastonecommuter.

CommuterTravelModes

FigureF7presentsthemodeoftravelthatcommutersuseonadailybasis.Thevastmajority

(82%)ofcommutersusetheirprivateautomobilestotraveltoworkorcollege.Thedatashows

anaverageof1.18commuterspervehicle,assuming2 peoplepervehicle-onaverage-for

carpools.

ImpactofCOVID19onCommuters

FigureF8presentsthedistributionofthenumberofcommutersineachhouseholdthatwere

temporarilyimpactedbytheCOVID19pandemic.Thedatashowsanaverageof0.54commuters

per household were affected by the COVID19 pandemic. Approximately 69% of households

indicated that no commuter in their household had a work and/or school commute that was

temporarilyimpactedbytheCOVID19pandemic.Approximately31%ofhouseholdsindicated

someoneintheirhouseholdwasimpacted.

F.3.2 EvacuationResponse

Questions were asked to gauge the populations response to an emergency. These are now

discussed:

Howmanyvehicleswouldyourhouseholduseduringanevacuation?Theresponseisshown

inFigureF9.Onaverage,evacuatinghouseholdswoulduse1.56vehicles.

Wouldyourfamilyawaitthereturnofotherfamilymemberspriortoevacuatingthearea?

Of the survey participants who responded, 49.86% said they would await the return ofother

familymembersbeforeevacuatingand50.14%indicatedthattheywouldnotawaitthereturnof

otherfamilymembers,asshowninFigureF10.

Emergencyofficialsadviseyoutoshelterinplaceinanemergencybecauseyouarenotinthe

areaofrisk.Wouldyou?Thisquestionisdesignedtoelicitinformationregardingcompliance

withinstructionstoshelterinplace.Theresults,asshowninFigureF11,indicatethat90%of

householdswhoareadvisedtoshelterinplacewoulddoso;theremaining10%wouldchoose

toevacuatethearea.

NotethebaselineETEstudyassumes20%ofhouseholdswillnotcomplywiththeshelteradvisory,

asperSection2.5.2ofNUREG/CR7002,Rev.1.Thus,thedataobtainedaboveisconsiderably

lowerthanthefederalguidancerecommendation.Asensitivitystudywasconductedtoestimate

theimpactofshadowevacuationnoncomplianceofshelteradvisoryonETE-seeAppendixM.

 



PaloVerdeNuclearGeneratingStation F3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Emergencyofficialsadviseyoutoshelterinplaceinanemergencyandpossiblyevacuatelater

whilepeopleinotherareasareadvisedtoevacuatenow.Wouldyou?Thisquestionisdesigned

toelicitinformationspecificallyrelatedtothepossibilityofastagedevacuation.Thatis,askinga

populationtoshelterinplacenowandthentoevacuateafteraspecifiedperiodoftime.

Results indicate that 71.6% of households would follow instructions and delay the start of

evacuation until so advised, while the balance of 28.4% would choose to begin evacuating

immediately,asshowninFigureF12.

F.3.3 TimeDistributionResults

Thesurveyaskedseveralquestionsabouttheamountoftimeittakestoperformcertainpre evacuationactivities.Theseactivitiesinvolveactionstakenbyresidentsduringthecourseoftheir

daytodaylives.Thus,theanswersfallwithintherealmoftherespondersexperience.

The mobilization distributions provided below are the result of having applied the analysis

describedinSection5.4.1onthecomponentactivitiesofthemobilization.

As discussed in Section F.3.1 and shown in Figure F8, the majority (69.3%) of respondents

indicatednocommuterswereimpactedbytheCOVID19pandemic;thereforetheresultsforthe

timedistributionofcommuters(timetopreparetoleavework/collegeandtimetotravelhome

fromwork/college)wereusedasisinthisstudy.

Howlongdoesittakethecommutertocompletepreparationforleavingwork?FigureF13

presentsthecumulativedistribution;inallcases,theactivityiscompletedbyabout75minutes.

Eightyonepercent(81%)canleavewithin30minutes.

Howlongwouldittakethecommutertotravelhome?FigureF14presentstheworktohome

traveltimefortheEPZ.Seventysevenpercent(77%)ofcommuterscanarrivehomewithin45

minutesofleavingwork;allwithin105minutes.

Howlongwouldittakethefamilytopackclothing,securethehouse,andloadthecar?Figure

F15presentsthetimerequiredtoprepareforleavingonanevacuationtrip.Inmanywaysthis

activitymimicsafamilyspreparationforashortholidayorweekendawayfromhome.Hence,

theresponsesrepresenttheexperienceoftheresponderinperformingsimilaractivities.

ThedistributionshowninFigureF15hasalongtail.Approximately91%ofhouseholdscanbe

readytoleavehomewithin2hoursand30minutes;theremaininghouseholdsrequireuptoan

additional1hourand45minutes.

 



PaloVerdeNuclearGeneratingStation F4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableF1.PVNGSDemographicSurveySamplingPlan

EPZHouseholds

EPZPopulations withinZipCode Required Samples

ZipCode (2010) (2010) Samples Obtained

85322 675 223 36 13

85326 522 156 25 126

85343 48 12 2 3

85354 5,601 1,845 293 124

85396 277 86 14 126

Total 7,123 2,322 370 392

AverageHouseholdSize: 3.07







HouseholdSize 60%

50%

Percent ofHouseholds 40%

30%

20%

10%

0%

1 2 3 4 5 6+

HouseholdSize



FigureF1.HouseholdSizeintheEPZ







PaloVerdeNuclearGeneratingStation F5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

VehicleAvailability 60%

49%

50%

Percent ofHouseholds 40%

30%

22%

20% 17%

6%

10% 6%

0%

0%

0 1 2 3 4 5+

Vehicles



FigureF2.VehicleAvailability

DistributionofVehiclesbyHHSize 15PersonHouseholds 1Person 2People 3People 4People 5People 100%

80%

Percent ofHouseholds 60%

40%

20%

0%

1 2 3 4 5+

Vehicles



FigureF3.VehicleAvailability1to5PersonHouseholds



PaloVerdeNuclearGeneratingStation F6 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

DistributionofVehiclesbyHHSize 69+PersonHouseholds 6People 7People 8People 9+People 100%

80%

Percent ofHouseholds 60%

40%

20%

0%

2 3 4 5+

Vehicles



FigureF4.VehicleAvailability6to9+PersonHouseholds

RidesharewithNeighbor/Friend 100%

80%

72%

Percent ofHouseholds 60%

40%

28%

20%

0%

Yes No



FigureF5.HouseholdRidesharingPreference



PaloVerdeNuclearGeneratingStation F7 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

CommutersPerHousehold 60%

50.90%

50%

Percent ofHouseholds 40%

30% 27.37%

20%

14.83%

10%

3.32% 3.58%

0%

0 1 2 3 4+

Commuters



FigureF6.CommutersinHouseholdsintheEPZ

TravelModetoWork 100%

81.94%

80%

PercentofCommuters 60%

40%

17.74%

20%

0.32%

0%

Walk/Bike DriveAlone Carpool(2+)

ModeofTravel



FigureF7.ModesofTravelintheEPZ



PaloVerdeNuclearGeneratingStation F8 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

COVID19PandemicImpact 80%

70%

Percent ofHouseholds 60%

50%

40%

30%

20%

10%

0%

0 1 2 3 4+

Commuters



FigureF8.CommutersImpactedbyCOVID19

EvacuatingVehiclesPerHousehold 100%

80%

PercentofHouseholds 58.46%

60%

32.56%

40%

20%

8.72%

0.26%

0%

0 1 2 3+

Vehicles



FigureF9.NumberofVehiclesUsedforEvacuation



PaloVerdeNuclearGeneratingStation F9 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

AwaitReturningCommuterBeforeLeaving 100%

80%

Percent ofHouseholds 60%

49.86% 50.14%

40%

20%

0%

Yes,wouldawaitreturn No,wouldevacuate



FigureF10.PercentofHouseholdsthatAwaitReturningCommuterBeforeLeaving

ShelterInPlaceCharacteristics 100%

90.2%

80%

Percent ofHouseholds 60%

40%

20%

9.8%

0%

Shelter Evacuate



FigureF11.ShelterinPlaceCharacteristics



PaloVerdeNuclearGeneratingStation F10 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ShelterthenEvacuateCharacteristics 100%

80% 71.6%

Percent ofHouseholds 60%

40%

28.4%

20%

0%

Shelter,thenEvacuate EvacuateImmediately



FigureF12.ShelterthenEvacuateCharacteristics

TimetoPreparetoLeaveWork/College 100%

80%

PercentofCommuters 60%

40%

20%

0%

0 10 20 30 40 50 60 70 80 PreparationTime(min)



FigureF13.TimeRequiredtoPreparetoLeaveWork/College



PaloVerdeNuclearGeneratingStation F11 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TimetoCommuteHomefromWork/College 100%

80%

Percent ofCommuters 60%

40%

20%

0%

0 10 20 30 40 50 60 70 80 90 100 110 TravelTime(min)



FigureF14.Work/CollegetoHomeTravelTime

TimetoPreparetoLeaveHome 100%

80%

Percent ofHouseholds 60%

40%

20%

0%

0 25 50 75 100 125 150 175 200 225 250 275 PreparationTime(min)



FigureF15.TimetoPrepareHomeforEvacuation



PaloVerdeNuclearGeneratingStation F12 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0





























ATTACHMENTA





DemographicSurveyInstrument



PaloVerdeNuclearGeneratingStation F13 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

j 79j9"k<9 8" 9

lÿUmnopqmr 0123456 789 98 9998  9997898998 99898 ! "99# $ 989999

9 9  9% 9 99 9999 9 99&'()*(+,'-.+/0'(1(+,(*234(-0(35+2*(5+'6&'()*(5)4(15(5()6+715(5+2*(5+'689:-()3*+3+'6(3;

.+/0'(1(15(*234(-< 9 9  9=89 9>998? 9 99

@A st8 89  9uv BA wx=8 = 89 9899 9898 98u CDEFÿHIJKÿHILÿHMDJN OPQ RSO RTUQQ VOWU VXYQ ZX[

ZQYQP QX\TR PXPQÿOUÿ^OUQ

_QUOÿPOPQa bQcdXPQÿROÿZReRQ fA yx999=  9 9 899898  9u CDEFÿHIJKÿHILÿHMDJN gQZ PO bQcdXPQÿROÿZReRQ hA z{989  8 98 9 9 u CDEFÿHIJKÿHILÿHMDJN OPQ RSO RTUQQ VOWU VXYQ ZX[

ZQYQP QX\TR PXPQÿOUÿ^OUQ

_QUOÿPOPQa XÿSOWdbÿQYecWeRQÿigÿiXcgcdQ XÿSOWdbÿQYecWeRQÿigÿiWZ bQcdXPQÿROÿZReRQ

01 LMDN4OD5GPQDR84RI8D6:6GIIQDISH8DSPD7TS:DT46:8T4ICU 2345ÿ789ÿ78ÿ739





































ÿÿ

 ÿÿ!

"5#$ÿ%7ÿ&' (%#78ÿ)

  • +,-./01 21 VMDN4OD5GPQDR84RI8DSPDQ469DT46:8T4ICDTGH8DGDO49WDGPCX49D:YT44IDY455678D7TG7DTG:DZ88PD785R49G9SIQDS5RGY78CDC68D74D7T8D*+,-./01DRGPC85SYU 2345ÿ789ÿ78ÿ739 3







ÿÿ

 ÿÿ!

  • 4556789:
1 [MDN4OD5GPQDR84RI8DSPD7T8DT46
8T4ICDY455678D74DGD\4Z]D49D74DY4II8^8D4PDGDCGSIQDZG:S:UD_

2345ÿ789ÿ78ÿ739 3 "5#$ÿ%7ÿ&' (%#78ÿ<=

 "5#$ÿ%7ÿ&' (%#78ÿ>

 "5#$ÿ%7ÿ&' (%#78ÿ?

 "5#$ÿ%7ÿ&' (%#78ÿ@A

ÿÿ "5#$ÿ%7ÿ&' (%#78ÿ@@

 ÿÿ! "5#$ÿ%7ÿ&' (%#78ÿ<=

B4C8D4EDF9GH8I J1 `MDFTSPWSP^DGZ467D8GYTDY4556789]DT4ODC48:D8GYTDR89:4PD6:6GIIQD79GH8ID74DO49WD49DY4II8^8U 2345ÿ789ÿ78 ÿ739ÿ$ 4ÿ47K

abcdefghgbi jfkiÿ!blmi ajnllbopÿljÿqljiÿnilnbi lmrsÿcmlt lqqusijÿv "5#$ÿ%7ÿ&' (%#78ÿ@=

0123415467893 HI46JKL+KL.48M1NO438PJ4P1((NO37Q4J1R4213S438PJ4T37S1L4NSN8U4O78934O14R17+4174P13.3V

ÿÿÿÿÿ

EWXYZC[\]\X^ F_[`^ÿDXab^ GW_caaX=/ÿa_ÿda_^ÿc^acX^ FabefÿYbag Gaddhf^_ÿ#

Gaddhf^_ÿ/

ÿÿÿ!"

0123415467893

  1. $ HI46JKL+KL.48M1NO438PJ4P1((NO37Q4J1R4213S438PJ4T37S1L4NSN8U4O78934O14R17+4174P13.3V

ÿÿÿÿÿ

EWXYZC[\]\X^ F_[`^ÿDXab^ GW_caaX=/ÿa_ÿda_^ÿc^acX^ FabefÿYbag Gaddhf^_ÿ#

Gaddhf^_ÿ/

Gaddhf^_ÿ>

ÿÿÿ!%

0123415467893

    1. HI46JKL+KL.48M1NO438PJ4P1((NO37Q4J1R4213S438PJ4T37S1L4NSN8U4O78934O14R17+4174P13.3V

ÿÿÿÿÿ

EWXYZC[\]\X^ F_[`^ÿDXab^ GW_caaX=/ÿa_ÿda_^ÿc^acX^ FabefÿYbag Gaddhf^_ÿ#

Gaddhf^_ÿ/

Gaddhf^_ÿ>

Gaddhf^_ÿ?

ÿÿÿ&"

678934'1(34)71(4*17+,-13.3

  1. / ijkI4'1R4(NPJ4OK(341L489378.3Q4R1N24KO4O8+34-1((NO374lk4O14O78934J1(34571(4R17+4174P13.3V

ÿÿÿ

0ÿ2345678ÿ9:ÿ;788

<=#$ÿ2345678

    1. =#0ÿ2345678
  1. <=/$ÿ2345678

/#=/0ÿ2345678

/<=>$ÿ2345678

>#=>0ÿ2345678

><=?$ÿ2345678

?#=?0ÿ2345678

?<=0$ÿ2345678 0#=00ÿ2345678 0<ÿ=ÿ#ÿ@95:

9A7:ÿ#ÿ@95:BÿC56ÿ;788ÿ6@D4ÿ#ÿ@95:ÿ#0ÿ2345678 C76E774ÿ#ÿ@95:ÿ#<ÿ2345678ÿD4Fÿ#ÿ@95:ÿ>$ÿ2345678 C76E774ÿ#ÿ@95:ÿ>#ÿ2345678ÿD4Fÿ#ÿ@95:ÿ?0ÿ2345678 C76E774ÿ#ÿ@95:ÿ?<ÿ2345678ÿD4Fÿ/ÿ@95:8 9A7:ÿ/ÿ@95:8 F7G;347ÿ69ÿ86D67

012 ABCDEFBGEFHIJKLMNOPQIBR

STUVTÿWSUXYÿZ[ÿ\]^_ÿUX`aT_ÿ[]_ÿb^T`cZ]Xÿd60;ÿZÿ^XeT_ÿ8ÿf]^_`2 3456ÿ89ÿ 859ÿ

 

0!2 KLMghEQiHIJ NhEjIHHEHkMHHiBhQ l

"#$4ÿ9%&ÿ9ÿ9'#%(

)ÿ+,-./01ÿ23ÿ4011 5607ÿ+,-./01 0060)ÿ+,-./01 05687ÿ+,-./01 8068)ÿ+,-./01 85617ÿ+,-./01 1061)ÿ+,-./01 156!7ÿ+,-./01

!06!)ÿ+,-./01

!56)7ÿ+,-./01

)06))ÿ+,-./01

)5ÿ6ÿ0ÿ92.3 2:03ÿ0ÿ92.3;ÿ<./ÿ4011ÿ/9=-ÿ0ÿ92.3ÿ0)ÿ+,-./01

<0/>00-ÿ0ÿ92.3ÿ05ÿ+,-./01ÿ=-?ÿ0ÿ92.3ÿ17ÿ+,-./01

<0/>00-ÿ0ÿ92.3ÿ10ÿ+,-./01ÿ=-?ÿ0ÿ92.3ÿ!)ÿ+,-./01

<0/>00-ÿ0ÿ92.3ÿ!5ÿ+,-./01ÿ=-?ÿ8ÿ92.31 2:03ÿ8ÿ92.31

?0@4,-0ÿ/2ÿ1/=/0 0)2 ABCDEFBGEFHIJKLMNOPQIBR

STUVTÿWSUXYÿZ[ÿ\]^_ÿUX`aT_ÿ[]_ÿb^T`cZ]Xÿd60ÿ;ÿZÿ^XeT_ÿ8ÿf]^_`2 052 KLDghEQiHIJ NhEjIHHEHkDHHiBhQ l

"#$4ÿ9%&ÿ9ÿ9'#%(

)ÿ+,-./01ÿ23ÿ4011 5607ÿ+,-./01 0060)ÿ+,-./01 05687ÿ+,-./01 8068)ÿ+,-./01 85617ÿ+,-./01 1061)ÿ+,-./01 156!7ÿ+,-./01

!06!)ÿ+,-./01

!56)7ÿ+,-./01

)06))ÿ+,-./01

)5ÿ6ÿ0ÿ92.3 2:03ÿ0ÿ92.3;ÿ<./ÿ4011ÿ/9=-ÿ0ÿ92.3ÿ0)ÿ+,-./01

<0/>00-ÿ0ÿ92.3ÿ05ÿ+,-./01ÿ=-?ÿ0ÿ92.3ÿ17ÿ+,-./01

<0/>00-ÿ0ÿ92.3ÿ10ÿ+,-./01ÿ=-?ÿ0ÿ92.3ÿ!)ÿ+,-./01

<0/>00-ÿ0ÿ92.3ÿ!5ÿ+,-./01ÿ=-?ÿ8ÿ92.31 2:03ÿ8ÿ92.31

?0@4,-0ÿ/2ÿ1/=/0

012 DEFGHIEJHIKLMNOGPQRSLET

UVWXVÿYUWZ[ÿ\]ÿ^_`aÿWZbcVaÿ]_aÿd`Vbe\_ZÿC68=ÿ\bÿZfVaÿ8ÿg_`ab2 3456ÿ89ÿ 859ÿ

 

0!2 NOhijHSkKLM PjHlLKKHKmhKKkEjS n

"#$4ÿ9%&ÿ9ÿ9'#%(

)ÿ+,-./01ÿ23ÿ4011 5607ÿ+,-./01 0060)ÿ+,-./01 05687ÿ+,-./01 8068)ÿ+,-./01 85697ÿ+,-./01 9069)ÿ+,-./01 956:7ÿ+,-./01

06:)ÿ+,-./01
56)7ÿ+,-./01

)06))ÿ+,-./01

)5ÿ6ÿ0ÿ;2.3 2<03ÿ0ÿ;2.3=ÿ>./ÿ4011ÿ/;?-ÿ0ÿ;2.3ÿ0)ÿ+,-./01

>0/@00-ÿ0ÿ;2.3ÿ05ÿ+,-./01ÿ?-Aÿ0ÿ;2.3ÿ97ÿ+,-./01

>0/@00-ÿ0ÿ;2.3ÿ90ÿ+,-./01ÿ?-Aÿ0ÿ;2.3ÿ:)ÿ+,-./01

>0/@00-ÿ0ÿ;2.3ÿ:5ÿ+,-./01ÿ?-Aÿ8ÿ;2.31 2<03ÿ8ÿ;2.31 A0B4,-0ÿ/2ÿ1/?/0 0C2 DEFGHIEJHIKLMNOhPQRSLET

UVWXVÿYUWZ[ÿ\]ÿ^_`aÿWZbcVaÿ]_aÿd`Vbe\_ZÿC60=ÿ\bÿZfVaÿ8ÿg_`ab2 872 NOGijHSkKLM PjHlLKKHKmGKKkEjS n

"#$4ÿ9%&ÿ9ÿ9'#%(

)ÿ+,-./01ÿ23ÿ4011 5607ÿ+,-./01 0060)ÿ+,-./01 05687ÿ+,-./01 8068)ÿ+,-./01 85697ÿ+,-./01 9069)ÿ+,-./01 956:7ÿ+,-./01

06:)ÿ+,-./01
56)7ÿ+,-./01

)06))ÿ+,-./01

)5ÿ6ÿ0ÿ;2.3 2<03ÿ0ÿ;2.3=ÿ>./ÿ4011ÿ/;?-ÿ0ÿ;2.3ÿ0)ÿ+,-./01

>0/@00-ÿ0ÿ;2.3ÿ05ÿ+,-./01ÿ?-Aÿ0ÿ;2.3ÿ97ÿ+,-./01

>0/@00-ÿ0ÿ;2.3ÿ90ÿ+,-./01ÿ?-Aÿ0ÿ;2.3ÿ:)ÿ+,-./01

>0/@00-ÿ0ÿ;2.3ÿ:5ÿ+,-./01ÿ?-Aÿ8ÿ;2.31 2<03ÿ8ÿ;2.31 A0B4,-0ÿ/2ÿ1/?/0

012 AB7C4527D789E2F7B927GE5FHI9J7KLDM7NO5PIBQ78525 RSTUSÿVRTWXÿYZÿ[\]^ÿTW_`S^ÿZ\^ÿa]S_bY\Wÿc0"ÿY_ÿ]WdS^ÿ0ÿe\]^_2 002 KLfg789h7:EPi7HI:579J734523@5M7h9E6j7IH7H3=57?9::EH527kf7H97H234567i9:57B29:7h92=7927P9665@5l 3456ÿ89 ÿ89ÿ84

ÿÿÿ

1ÿ

111ÿ

10ÿ

010ÿ

0ÿ

1ÿ

ÿ

1ÿ

ÿ

1ÿ

ÿÿ1ÿ

!ÿ1ÿ"ÿ#ÿÿ $ÿ1ÿÿ1ÿ

  1. %ÿ1ÿÿ1ÿÿ$&ÿ1ÿÿÿ
  1. %ÿ1ÿÿ1ÿÿ$&ÿ1ÿÿÿ
  1. %ÿ1ÿÿÿÿ$&ÿ0ÿ

!ÿ0ÿ

&'ÿÿ$

02 AB7C4527D789E2F7B927GE5FHI9J7KLfM7NO5PIBQ78525 RSTUSÿVRTWXÿYZÿ[\]^ÿTW_`S^ÿZ\^ÿa]S_bY\Wÿc"ÿY_ÿ]WdS^ÿ0ÿe\]^_2 (6)*ÿ+8ÿ,- .+)89ÿ/0 123456789:57;29:7<92=>?9665@5 02 KLmg789h7:EPi7HI:579J734523@5M7h9E6j7IH7H3=57?9::EH527km7H97H234567i9:57B29:7h92=7927P9665@5l 3456ÿ89 ÿ89ÿ84

ÿÿÿ

1ÿ

111ÿ

10ÿ

010ÿ

0ÿ

1ÿ

ÿ

1ÿ

ÿ

1ÿ

ÿÿ1ÿ

!ÿ1ÿ"ÿ#ÿÿ $ÿ1ÿÿ1ÿ

  1. %ÿ1ÿÿ1ÿÿ$&ÿ1ÿÿÿ
  1. %ÿ1ÿÿ1ÿÿ$&ÿ1ÿÿÿ
  1. %ÿ1ÿÿÿÿ$&ÿ0ÿ

!ÿ0ÿ

&'ÿÿ$

012 +,-./01-2-34516-,41-7506894:-;<=>-?@0A9,B-3010 CDEFDÿGCEHIÿJKÿLMNOÿEHPQDOÿKMOÿRNDPSJMHÿ*"ÿJPÿNHTDOÿ0ÿUMNOP2 032 ;<2V-34W-X5AY-89X0-4:-Z/01Z[0>-W45\]-98-8Z^0-_4XX5801-2-84-81Z/0\-Y4X0-,14X-W41^-41-A4\\0[0a 4567ÿ9 ÿ9 ÿ95

1ÿÿÿ

3ÿ

1ÿ

30ÿ

001ÿ

03ÿ

1ÿ

3ÿ

1ÿ

31ÿ

111ÿ

13ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿ1ÿ

  1. %ÿÿÿ3ÿÿ$&ÿÿÿÿ
  1. %ÿÿÿÿÿ$&ÿÿÿ1ÿ
  1. %ÿÿÿ3ÿÿ$&ÿ0ÿ

!ÿ0ÿ

&'ÿÿ$

0(2 +,-./01-2-34516-,41-7506894:-;<2>-?@0A9,B-3010 CDEFDÿGCEHIÿJKÿLMNOÿEHPQDOÿKMOÿRNDPSJMHÿ*0"ÿJPÿNHTDOÿ0ÿUMNOP2 0)2 ;<bV-34W-X5AY-89X0-4:-Z/01Z[0>-W45\]-98-8Z^0-_4XX5801-b-84-81Z/0\-Y4X0-,14X-W41^-41-A4\\0[0a 4567ÿ9 ÿ9 ÿ95

1ÿÿÿ

3ÿ

1ÿ

30ÿ

001ÿ

03ÿ

1ÿ

3ÿ

1ÿ

31ÿ

111ÿ

13ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿ1ÿ

  1. %ÿÿÿ3ÿÿ$&ÿÿÿÿ
  1. %ÿÿÿÿÿ$&ÿÿÿ1ÿ
  1. %ÿÿÿ3ÿÿ$&ÿ0ÿ

!ÿ0ÿ

&'ÿÿ$

0*2 +,-./01-2-34516-,41-7506894:-;-?@0A9,B-3010 CDEFDÿGCEHIÿJKÿLMNOÿEHPQDOÿKMOÿRNDPSJMHÿ*"ÿJPÿNHTDOÿ0ÿUMNOP2

012 CDEF9G7H9IJKL956I297894;214@2M9H7J:N965954=29?7IIJ5219OE9579514;2:9L7I29P17I9H71=9719K7::2@2Q 3456ÿ89 ÿ89ÿ84

ÿÿÿ

1ÿ

ÿ

1ÿ

ÿ

01ÿ

00ÿ

01ÿ

ÿ

1ÿ

ÿ

ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿÿ

  1. %ÿÿÿÿÿ$&ÿÿÿ01ÿ
  1. %ÿÿÿ0ÿÿ$&ÿÿÿÿ
  1. %ÿÿÿÿÿ$&ÿÿ

!ÿÿ

&'ÿÿ$

02 RP9S;219T9G7J1U9P719VJ2U56789CDEM9W32K6PX9G212 YZ[\Zÿ]Y[^_ÿaÿbcdeÿ[^fgZeÿaceÿhdZfic^ÿj"ÿfÿd^kZeÿÿlcdef2 (6)*ÿ+8ÿ,- .+)89ÿ//

012341456789579:24;29<71=>?7::2@2 02 mnDmF9o3317p6I452:X9L7H9IJKL956I29H7J:N965954=29?7IIJ5219Om9579K7I3:2529312341456789P719:24;68@9H71=9719K7::2@29316719579U541568@95L2951639L7I2Q 3456ÿ89 ÿ89ÿ84

ÿÿÿ

1ÿ

ÿ

1ÿ

ÿ

01ÿ

00ÿ

01ÿ

ÿ

1ÿ

ÿ

ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿÿ

  1. %ÿÿÿÿÿ$&ÿÿÿ01ÿ
  1. %ÿÿÿ0ÿÿ$&ÿÿÿÿ
  1. %ÿÿÿÿÿ$&ÿÿ

!ÿÿ

&'ÿÿ$

002 RP9S;219T9G7J1U9P719VJ2U56789mnDmM9W32K6PX9G212 YZ[\Zÿ]Y[^_ÿaÿbcdeÿ[^fgZeÿaceÿhdZfic^ÿ1"ÿfÿd^kZeÿÿlcdef2 (6)*ÿ+8ÿ,- .+)89ÿAB 012341456789579:24;29<71=>?7::2@2

012 CDECF;G5539H8I674<J;K9L;IMNK;78I4;L9M<O;87;76?4;A9IIM743;PC;79;N9I5<474;5345636789:;Q93;<46=8:B;L93?;93;N9<<4B4;53893;79;R76378:B;7K4;7385;K9I4S 3456ÿ89 ÿ89ÿ84

ÿÿÿ

ÿ

ÿ

ÿ

ÿ

0ÿ

00ÿ

01ÿ

11ÿ

1ÿ

ÿ

ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿÿ

  1. %ÿÿÿÿÿ$&ÿÿÿ0ÿ
  1. %ÿÿÿ0ÿÿ$&ÿÿÿ1ÿ
  1. %ÿÿÿ1ÿÿ$&ÿÿ

!ÿÿ

&'ÿÿ$

02 TQ;U=43;V;W9M3R;Q93;XM4R789:;CDECY;Z54N8QJ;W434

[\]^\ÿ_[]`aÿbcÿdefgÿ]`hi\gÿcegÿjf\hkbe`ÿ"ÿbhÿf`l\gÿÿmefgh2 02 CDEVF;G5539H8I674<J;K9L;IMNK;78I4;L9M<O;87;76?4;A9IIM743;PV;79;N9I5<474;5345636789:;Q93;<46=8:B;L93?;93;N9<<4B4;53893;79;R76378:B;7K4;7385;K9I4S 3456ÿ89 ÿ89ÿ84

ÿÿÿ

ÿ

ÿ

ÿ

ÿ

0ÿ

00ÿ

01ÿ

11ÿ

1ÿ

ÿ

ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿÿ

  1. %ÿÿÿÿÿ$&ÿÿÿ0ÿ
  1. %ÿÿÿ0ÿÿ$&ÿÿÿ1ÿ
  1. %ÿÿÿ1ÿÿ$&ÿÿ

!ÿÿ

&'ÿÿ$

0(2 TQ;U=43;V;W9M3R;Q93;XM4R789:;CDEVY;Z54N8QJ;W434

[\]^\ÿ_[]`aÿbcÿdefgÿ]`hi\gÿcegÿjf\hkbe`ÿ"ÿbhÿf`l\gÿÿmefgh2

)6*+ÿ,8ÿ-. /,*89ÿ01 2345636789:;79;<46=4;>93?@A9<<4B4

012 *+,*-./00123456789:.;2<.5=>;.7458.<2=9?.47.76@8.A255=781.B*.72.>2509878.0180616742C.D21.986E4CF.<21@.21.>2998F8.01421.72.G76174CF.7;8.7140.;258H 3456ÿ89 ÿ89ÿ84

ÿÿÿ

ÿ

ÿ

ÿ

ÿ

0ÿ

00ÿ

0ÿ

ÿ

ÿ

ÿ

ÿÿÿ!

"ÿÿ!#ÿ$ÿÿ!%ÿÿ!ÿÿ

$&ÿÿ!ÿÿÿ%'ÿÿ!ÿ0ÿ

$&ÿÿ!ÿ0ÿÿ%'ÿÿ!ÿÿ

$&ÿÿ!ÿÿÿ%'ÿÿ!

"ÿÿ!

'(ÿÿ%

0)2 ID.JE81.K.L2=1G.D21.M=8G742C.*+,*N.O08>4D:.L818 PQRSQÿTPRUVÿWXÿYZ[\ÿRU]^Q\ÿXZ\ÿ_[Q]`WZUÿ#ÿW]ÿ[UaQ\ÿÿbZ[\]2

2 *+,K-./00123456789:.;2<.5=>;.7458.<2=9?.47.76@8.A255=781.BK.72.>2509878.0180616742C.D21.986E4CF.<21@.21.>2998F8.01421.72.G76174CF.7;8.7140.;258H 3456ÿ89 ÿ89ÿ84

ÿÿÿ

ÿ

ÿ

ÿ

ÿ

0ÿ

00ÿ

0ÿ

ÿ

ÿ

ÿ

ÿÿÿ!

"ÿÿ!#ÿ$ÿÿ!%ÿÿ!ÿÿ

$&ÿÿ!ÿÿÿ%'ÿÿ!ÿ0ÿ

$&ÿÿ!ÿ0ÿÿ%'ÿÿ!ÿÿ

$&ÿÿ!ÿÿÿ%'ÿÿ!

"ÿÿ!

'(ÿÿ%

2 ID.JE81.K.L2=1G.D21.M=8G742C.*+,KN.O08>4D:.L818 PQRSQÿTPRUVÿWXÿYZ[\ÿRU]^Q\ÿXZ\ÿ_[Q]`WZUÿ#ÿW]ÿ[UaQ\ÿÿbZ[\]2

012 BCDEF:G4428H7I563;J:K8L:IMNK:67I3:L8M;O:76:65>3:@8IIM632:PE:68:N8I4;363:42345256789:Q82:;35<79A:L82>:82:N8;;3A3:42782:68:R652679A:6K3:6274:K8I3S 3456ÿ89 ÿ89ÿ84

ÿÿÿ

ÿ

ÿ

1ÿ

11ÿ

1ÿ

ÿ

0ÿ

00ÿ

0ÿ

ÿ

ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿÿ

  1. %ÿÿÿÿÿ$&ÿÿÿÿ
  1. %ÿÿÿÿÿ$&ÿÿÿ0ÿ
  1. %ÿÿÿ0ÿÿ$&ÿ1ÿ

!ÿ1ÿ

&'ÿÿ$

02 TQ:U<32:V:W8M2R:Q82:XM3R6789:BCDEY:Z43N7QJ:W323

[\]^\ÿ_[]`aÿbcÿdefgÿ]`hi\gÿcegÿjf\hkbe`ÿ"ÿbhÿf`l\gÿ1ÿmefgh2 (6)*ÿ+8ÿ,- .+)89ÿ/0 12345256789:68:;35<3:=82>?@8;;3A3 002 BCDBF:G4428H7I563;J:K8L:IMNK:67I3:L8M;O:76:65>3:@8IIM632:PB:68:N8I4;363:42345256789:Q82:;35<79A:L82>:82:N8;;3A3:42782:68:R652679A:6K3:6274:K8I3S 3456ÿ89 ÿ89ÿ84

ÿÿÿ

ÿ

ÿ

1ÿ

11ÿ

1ÿ

ÿ

0ÿ

00ÿ

0ÿ

ÿ

ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿÿ

  1. %ÿÿÿÿÿ$&ÿÿÿÿ
  1. %ÿÿÿÿÿ$&ÿÿÿ0ÿ
  1. %ÿÿÿ0ÿÿ$&ÿ1ÿ

!ÿ1ÿ

&'ÿÿ$

02 TQ:U<32:V:W8M2R:Q82:XM3R6789:BCDBY:Z43N7QJ:W323

[\]^\ÿ_[]`aÿbcÿdefgÿ]`hi\gÿcegÿjf\hkbe`ÿ"ÿbhÿf`l\gÿ1ÿmefgh2

012 +,-./01223456789:;<0=4>07?@=0967:0>4?;A069098B:0C477?9:30D.0940@472;:9:023:2838964E0F430;:8G6EH0>43B0430@4;;:H:0236430940I98396EH09=:093620=47:J 3456ÿ89 ÿ89ÿ84

ÿÿÿ

1ÿ

ÿ

1ÿ

ÿ

1ÿ

ÿ

10ÿ

00ÿ

01ÿ

ÿ

1ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿÿ

  1. %ÿÿÿ1ÿÿ$&ÿÿÿÿ
  1. %ÿÿÿÿÿ$&ÿÿÿ0ÿ
  1. %ÿÿÿ01ÿÿ$&ÿÿ

!ÿÿ

&'ÿÿ$

0(2 KF0LG:30.0M4?3I0F430N?:I964E0+,-.O0P2:@6F<0M:3:

QRSTRÿUQSVWÿXYÿZ[\]ÿSV^_R]ÿY[]ÿ\R^aX[Vÿ"ÿX^ÿ\VbR]ÿÿc[\]^2 0)2 +,-d/01223456789:;<0=4>07?@=0967:0>4?;A069098B:0C477?9:30Dd0940@472;:9:023:2838964E0F430;:8G6EH0>43B0430@4;;:H:0236430940I98396EH09=:093620=47:J 3456ÿ89 ÿ89ÿ84

ÿÿÿ

1ÿ

ÿ

1ÿ

ÿ

1ÿ

ÿ

10ÿ

00ÿ

01ÿ

ÿ

1ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿÿ

  1. %ÿÿÿ1ÿÿ$&ÿÿÿÿ
  1. %ÿÿÿÿÿ$&ÿÿÿ0ÿ
  1. %ÿÿÿ01ÿÿ$&ÿÿ

!ÿÿ

&'ÿÿ$

0*2 KF0LG:30.0M4?3I0F430N?:I964E0+,-dO0P2:@6F<0M:3:

QRSTRÿUQSVWÿXYÿZ[\]ÿSV^_R]ÿY[]ÿ\R^aX[Vÿ"ÿX^ÿ\VbR]ÿÿc[\]^2

012 >?@AB91CCD5E3F74<8G9H5I9F;JH943F<9I5;82934947K<9L5FF;4<D9MA9459J5FC8<4<9CD<C7D743569N5D98<7O36P9I5DK95D9J588<P<9CD35D9459=47D436P94H<94D3C9H5F<Q 3456ÿ89 ÿ89ÿ84

0ÿÿÿ

1ÿ

0ÿ

1ÿ

0ÿ

1ÿ

0ÿ

1ÿ

0ÿ

01ÿ

000ÿ

0ÿÿÿ

!ÿÿ"ÿ#ÿÿ $ÿÿÿ0ÿ

  1. %ÿÿÿÿÿ$&ÿÿÿ1ÿ
  1. %ÿÿÿÿÿ$&ÿÿÿ0ÿ
  1. %ÿÿÿÿÿ$&ÿÿ

!ÿÿ

&'ÿÿ$

02 RN9SO<D9T9U5;D=9N5D9:;<=43569>?@AV9WC<J3NG9U<D<

XYZ[Yÿ\XZ]^ÿ_`ÿabcdÿZ]efYdÿbdÿgcYeh_b]ÿ1"ÿ_eÿc]iYdÿÿjbcde2 (6)*ÿ+8ÿ,- .+)89ÿ/0 12234356789:;<=4356=

02 >>B9RN9G5;9I<D<972O3=<29kG985J7897;4H5D343<=9459<O7J;74<V9H5I9F;JH943F<9I5;82934947K<94H<9H5;=<H5829459C7JK9J854H36PV9F<23J74356=V9=<J;D<94H<9H5;=<V9857294H<9J7DV 7629J5FC8<4<9CD<C7D74356=9CD35D9459<O7J;7436P94H<97D<7Q 3456ÿ89 ÿ89ÿ84

ÿ $ÿ0ÿ

01ÿ

0ÿ

ÿÿÿÿ

ÿÿÿÿÿ0ÿ

ÿÿÿÿÿÿÿ1ÿ

ÿÿÿÿÿÿÿ0ÿ

ÿÿÿÿÿÿ

ÿÿÿÿÿ0ÿ

ÿÿÿÿÿÿÿ1ÿ

ÿÿÿÿÿÿÿ0ÿ

ÿÿÿÿÿÿ

ÿÿÿÿÿ0ÿ

ÿÿÿÿÿÿÿ1ÿ

ÿÿÿÿÿÿÿ0ÿ

ÿÿÿÿÿÿ

ÿÿÿÿÿ0ÿ

ÿÿÿÿÿÿÿ1ÿ

ÿÿÿÿÿÿÿ0ÿ

ÿÿÿÿÿ0ÿ

0ÿÿÿ0ÿÿ1ÿ

0ÿÿÿÿÿÿ

!ÿÿ

%ÿÿ!$'$

&'ÿÿ$

012 789:;<=9>9?@A=B98@=9CA<BDE@F9GGH9IJ<KE8L9?<=<

"ÿ!Mÿÿ&ÿÿÿNÿOOPÿÿÿ6ÿ2 032 GQR9ST<UB<9KV@@B<9@F<9@89DV<98@TT@WEFXY 4567ÿ9 ÿ9 ÿ95

ÿÿÿÿÿÿÿ  !ÿÿ"#ÿ$2

ÿÿ"#ÿ%&ÿÿ ÿÿÿ  !ÿ2

'#ÿÿ(

002 GZR9[\<=X<FKL9@88EKEUTB9U];EB<9L@A9D@9BV<TD<=^EF^JTUK<9EF9UF9<\<=X<FKL9_<KUAB<9L@A9U=<9F@D9EF9DV<9U=<U9@89=EB`R9a@AT]9L@AY 4567ÿ9 ÿ9 ÿ95

()*+,*-./.0+12*

  • 31241,*

'*2+/*ÿ,5ÿ(,1,*

062 GbR9[\<=X<FKL9@88EKEUTB9U];EB<9L@A9D@9BV<TD<=^EF^JTUK<9F@W9EF9UF9<\<=X<FKL9UF]9J@BBE_TL9<;UKAUD<9TUD<=9WVET<9J<@JT<9EF9@DV<=9U=<UB9U=<9U];EB<]9D@9<;UKAUD<9F@WR a@AT]9L@AY 4567ÿ9 ÿ9 ÿ95

()*+,*-./.0+12*

  • 31241,*

'*2+/*ÿ,5ÿ(,1,*

APPENDIXG

TrafficManagementPlan

G. TRAFFICMANAGEMENTPLAN

NUREG/CR7002, Rev.1 indicates that the existing traffic control points and access control

points (Roadblocks) identified by the offsite agencies should be used in the evacuation

simulationmodeling.TheRoadblocklocationmapfortheEmergencyPlanningZone(EPZ)was

providedbytheCountyofMaricopa.

This traffic management plan (TMP) was reviewed and the Roadblocks were modeled

accordingly. An analysis of the Roadblock locations was performed and it was determined to

model the ETE simulations with no Roadblocks, except those located on Interstate (I)10, as

discussedinSectionG.2.

G.1 Roadblocks

AsdiscussedinSection9,Roadblocks(mannedbytheCountyofMaricopa)thatarewithinthe

EPZ at intersections (which are controlled) were initially modeled as actuated signals. If an

intersectionhasapretimedsignal,stop,oryieldcontrol,andtheintersectionisidentifiedasa

Roadblock, the control type was changed to an actuated signal in the DYNEV II system, in

accordancewithSection3.3ofNUREG/CR7002,Rev.1.Roadblocksatexistingactuatedtraffic

signalizedintersectionswereessentiallyleftalone.TheseRoadblocks,asshownintheCounty

ofMaricopaMap,aremappedasbluedotsinFigureG1.Theselocationswereultimatelynot

consideredinthisstudy.(SeeSectionG.2.)

ItisassumedthattheRoadblocks(mannedbytheStateofArizona)onI10willbeestablished

within45minutesoftheadvisorytoevacuate(ATE)todiscouragethroughtravelersfromusing

majorthroughrouteswhichtraversetheEPZ.AsdiscussedinSection3.9,externaltrafficwas

onlyconsideredonI10inthisanalysis.Thegenerationoftheseexternaltrips(3,070vehicles

duringdayconditions,1,228vehiclesineveningconditions)ceasedat45minutesaftertheATE

inthesimulation.TheseRoadblocks,asshownintheCountyofMaricopaMap,aremappedas

redsquaresinFigureG1.

G.2 AnalysisofKeyRoadblockLocations

As discussed in Section 5.2 of NUREG/CR7002, Rev. 1, manual traffic control (MTC) at

intersections could benefit from ETE analysis. The Roadblocks locations contained within the

TMPwereanalyzedtodeterminekeylocationswhereMTCwouldbemostusefulandcanbe

readily implemented. As previously mentioned, signalized intersections that were actuated

basedonfielddatacollectionwereessentiallyleftasactuatedtrafficsignalsinthemodel,with

modifications to green time allocation as needed. Other controlled intersections (pretimed

signals, stop signs and yield signs) were changed to actuated traffic signals to represent the

MTCthatwouldbeimplementedaccordingtotheTMP.

TableG1showsalistofthecontrolledintersectionsthatwereidentifiedasRoadblocksinthe

TMP that were not previously actuated signals, including the type of control that currently

exists at each location. To determine the impact of MTC at these locations, a summer,



PaloVerdeNuclearGeneratingStation G1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

midweek, midday, good weather scenario (Scenario 1) evacuation of the entire EPZ (Region

R03)wassimulatedwhereintheseintersectionsweretreatedasRoadblocks(withMTC).These

results were compared to the results presented in Section 7 (where these intersections were

nottreatedasRoadblocks).TheETEhadnochangeinthe90thand100thpercentileETEwhen

MTCwaspresentattheseintersections.

As shown in Figure 73 through Figure 77, the southern and western portion of the EPZ

experience very little traffic congestion during an evacuation of the EPZ. As such, the

RoadblocksinthesouthernandwesternportionoftheEPZdonothelptheETE.Thenorthern

andeasternportionoftheEPZexperiencestrafficcongestion,asheavytrafficflowsexistwithin

PVNGS and on both the north (on S 339th Avenue) and east (on W Van Buren Street and W

Salome Highway) direction, as vehicles evacuate PVNGS and the area. When heavy traffic

persists in competing directions, MTC provides no benefit since both approaches need equal

amountsofgreentime.Asaresult,theRoadblocksinthenorthernandeasternportionofthe

Study Area do not help the ETE as well. In addition, traffic congestion clears prior to the

completionoftripgeneration.The100thpercentileETEisdictatedbytripgeneration(plus10

minutetraveltimetoEPZboundary).Assuch,thereisnoimpacttothe100thpercentileETE.

Therefore,theimplementationofRoadblockshasnoimpactstoETE.Thus,wedidnotconsider

theRoadblocks(mappedasbluedotsinFigureG1)forthisstudy,exceptforthoselocatedonI 10 (mapped as red squares in Figure G1) as they serve to discourage the externalexternal

trafficfromenteringI10.WhileRoadblocksarenotnecessarytoevacuatetheEPZexpediently,

staffing these locations does still provide value during an evacuation such as guiding those

evacueeswhoarenotfamiliarwiththeareaandservingasfixedpointsurveillanceifthereisan

incidentononeofthemajorevacuationroutes.

TableK1providesthenumberofnodeswitheachcontroltype.IftheexistingcontrolonI10

waschangedduetobeingaRoadblock,thecontroltypeisindicatedasRoadblockinTableK 1.







PaloVerdeNuclearGeneratingStation G2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableG1.ListofKeyRoadblockLocations

Roadblock UNITESNode# PreviousControl Roadblock UNITESNode# PreviousControl

A1 150 StopControl 152 StopControl

E17

A3 112 StopControl 50 StopControl

B5 135 StopControl E18 77 StopControl

A8 154 StopControl F1 82 NoControl

ADOT1 59 NoControl F2 130 NoControl

AJ2 100 StopControl F3 45 StopControl

B2 173 StopControl F6 47 StopControl

B7 126 StopControl F11 49 NoControl

C2 149 StopControl G1 81 StopControl

C3 148 StopControl G3 159 StopControl

C4 113 StopControl G4 160 NoControl

C6 114 StopControl G5 68 StopControl

C7 67 StopControl H3 70 NoControl

C8 134 StopControl M2 101 NoControl

C9 87 StopControl N1 105 NoControl

D1 116 NoControl P1 32 NoControl

D7 196 NoControl Q1 38 NoControl

D10 197 StopControl Q3 190 NoControl

D12 90 StopControl Q4 39 StopControl

E1 83 StopControl R2 26 NoControl

E2 44 NoControl R5 117 NoControl

E3 157 NoControl R7 222 StopControl



PaloVerdeNuclearGeneratingStation G3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureG1.RoadblocksforthePVNGSSite



PaloVerdeNuclearGeneratingStation G4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXH

EvacuationRegions

H EVACUATIONREGIONS

ThisappendixpresentstheevacuationpercentagesforeachEvacuationRegion(TableH1)and

mapsofallEvacuationRegions(FigureH1throughFigureH52).Thepercentagespresentedin

TableH1arebasedonthemethodologydiscussedinassumption7ofSection2.2andshownin

Figure21.

NotethebaselineETEstudyassumes20percentofhouseholdswillnotcomplywiththeshelter

advisory,asperSection2.5.2ofNUREG/CR7002,Rev.1.





PaloVerdeNuclearGeneratingStation  H1  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableH1.PercentofSectorPopulationEvacuatingforEachRegion

RadialRegions Sector 2Mile A B C D E F G H J K L M N P Q R PVNGS Region Description Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R01 2MileRegion X X R02 5MileRegion X X X X X X X X X X X X X X X X X X R03 FullEPZ X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Evacuate2MileRegionandDownwindto5Miles Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R04 S X X X X X R05 SSW X X X X X R06 SW X X X X X R07 WSW X X X X X R08 W X X X X X R09 WNW X X X X X R10 NW X X X X X R11 NNW X X X X X R12 N X X X X X R13 NNE X X X X X R14 NE X X X X X R15 ENE X X X X X R16 E X X X X X X X R17 ESE X X X X X X X R18 SE X X X X X X X R19 SSE X X X X X Sector(s)Evacuate Sector(s)ShelterinPlace 



 



PaloVerdeNuclearGeneratingStation  H2  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Evacuate2MileRegionandDownwindtoEPZBoundary Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R20 S X X X X X X X X R21 SSW X X X X X X X X R22 SW X X X X X X X X R23 WSW X X X X X X X X R24 W X X X X X X X X R25 WNW X X X X X X X X R26 NW X X X X X X X X R27 NNW X X X X X X X X R28 N X X X X X X X X R29 NNE X X X X X X X X R30 NE X X X X X X X X R31 ENE X X X X X X X X R32 E X X X X X X X X X X X X R33 ESE X X X X X X X X X X X X R34 SE X X X X X X X X X X X X R35 SSE X X X X X X X X StagedEvacuation2MileRegionEvacuates,thenEvacuateDownwindto5Miles Sector WindDirection 2Mile A B C D E F G H J K L M N P Q R PVNGS Region From: Radius 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 25 510 R36 5MileRegion X X X X X X X X X X X X X X X X X X R37 S X X X X X R38 SSW X X X X X R39 SW X X X X X R40 WSW X X X X X R41 W X X X X X R42 WNW X X X X X R43 NW X X X X X R44 NNW X X X X X R45 N X X X X X R46 NNE X X X X X R47 NE X X X X X R48 ENE X X X X X R49 E X X X X X X X R50 ESE X X X X X X X R51 SE X X X X X X X R52 SSE X X X X X Sector(s)Evacuate Sector(s)ShelterinPlace Sector(s)ShelterinPlaceuntil90%ETEforR01,thenEvacuate 





PaloVerdeNuclearGeneratingStation  H3  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH1.RegionR01



PaloVerdeNuclearGeneratingStation  H4  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH2.RegionR02



PaloVerdeNuclearGeneratingStation  H5  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH3.RegionR03



PaloVerdeNuclearGeneratingStation  H6  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH4.RegionR04



PaloVerdeNuclearGeneratingStation  H7  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH5.RegionR05



PaloVerdeNuclearGeneratingStation  H8  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH6.RegionR06



PaloVerdeNuclearGeneratingStation  H9  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH7.RegionR07



PaloVerdeNuclearGeneratingStation  H10  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH8.RegionR08



PaloVerdeNuclearGeneratingStation  H11  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH9.RegionR09



PaloVerdeNuclearGeneratingStation  H12  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH10.RegionR10



PaloVerdeNuclearGeneratingStation  H13  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH11.RegionR11



PaloVerdeNuclearGeneratingStation  H14  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH12.RegionR12



PaloVerdeNuclearGeneratingStation  H15  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH13.RegionR13



PaloVerdeNuclearGeneratingStation  H16  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH14.RegionR14



PaloVerdeNuclearGeneratingStation  H17  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH15.RegionR15



PaloVerdeNuclearGeneratingStation  H18  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH16.RegionR16



PaloVerdeNuclearGeneratingStation  H19  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH17.RegionR17



PaloVerdeNuclearGeneratingStation  H20  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH18.RegionR18



PaloVerdeNuclearGeneratingStation  H21  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH19.RegionR19



PaloVerdeNuclearGeneratingStation  H22  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH20.RegionR20



PaloVerdeNuclearGeneratingStation  H23  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH21.RegionR21



PaloVerdeNuclearGeneratingStation  H24  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH22.RegionR22



PaloVerdeNuclearGeneratingStation  H25  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH23.RegionR23



PaloVerdeNuclearGeneratingStation  H26  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH24.RegionR24



PaloVerdeNuclearGeneratingStation  H27  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH25.RegionR25



PaloVerdeNuclearGeneratingStation  H28  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH26.RegionR26



PaloVerdeNuclearGeneratingStation  H29  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH27.RegionR27



PaloVerdeNuclearGeneratingStation  H30  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH28.RegionR28



PaloVerdeNuclearGeneratingStation  H31  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH29.RegionR29



PaloVerdeNuclearGeneratingStation  H32  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH30.RegionR30



PaloVerdeNuclearGeneratingStation  H33  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH31.RegionR31



PaloVerdeNuclearGeneratingStation  H34  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH32.RegionR32



PaloVerdeNuclearGeneratingStation  H35  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH33.RegionR33



PaloVerdeNuclearGeneratingStation  H36  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH34.RegionR34



PaloVerdeNuclearGeneratingStation  H37  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH35.RegionR35



PaloVerdeNuclearGeneratingStation  H38  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH36.RegionR36



PaloVerdeNuclearGeneratingStation  H39  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH37.RegionR37



PaloVerdeNuclearGeneratingStation  H40  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH38.RegionR38



PaloVerdeNuclearGeneratingStation  H41  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH39.RegionR39



PaloVerdeNuclearGeneratingStation  H42  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH40.RegionR40



PaloVerdeNuclearGeneratingStation  H43  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH41.RegionR41



PaloVerdeNuclearGeneratingStation  H44  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH42.RegionR42



PaloVerdeNuclearGeneratingStation  H45  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH43.RegionR43



PaloVerdeNuclearGeneratingStation  H46  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH44.RegionR44



PaloVerdeNuclearGeneratingStation  H47  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH45.RegionR45



PaloVerdeNuclearGeneratingStation  H48  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH46.RegionR46



PaloVerdeNuclearGeneratingStation  H49  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH47.RegionR47



PaloVerdeNuclearGeneratingStation  H50  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH48.RegionR48



PaloVerdeNuclearGeneratingStation  H51  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH49.RegionR49



PaloVerdeNuclearGeneratingStation  H52  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH50.RegionR50



PaloVerdeNuclearGeneratingStation  H53  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH51.RegionR51



PaloVerdeNuclearGeneratingStation  H54  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureH52.RegionR52



PaloVerdeNuclearGeneratingStation  H55  KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXJ

RepresentativeInputstoandOutputsfromtheDYNEVIISystem

J. REPRESENTATIVEINPUTSTOANDOUTPUTSFROMTHEDYNEVIISYSTEM

ThisappendixpresentsdatainputtoandoutputfromtheDYNEVIISystem.

Table J1 provides source (vehicle loading) and destination information for several roadway

segments(links)intheanalysisnetwork.Intotal,thereareatotalof97sourcelinks(origins)in

the model The source links are shown as centroid points in Figure J1. On average, evacuees

travelastraightlinedistanceof9.9milestoexitthenetwork.

Table J2 provides network-wide statistics (average travel time, average delay time1 average

speed and number of vehicles) for an evacuation of the entire EPZ (Region R03) for each

scenario.Rainscenarios(Scenarios2,4,7and9)exhibitsloweraveragespeeds,higherdelays

andlongeraveragetraveltimesthangoodweatherscenarios.Scenario12(singlelaneclosed

onInterstate(I)10eastbound)exhibitstheslowestaveragespeed,highestdelaysandlongest

traveltimeduetothecombinationofthereducedcapacityofI10.

TableJ3providesstatistics(averagespeedandtraveltime)forthemajorevacuationroute,I 10,foranevacuationoftheentireEPZ(RegionR03)underScenario1conditions.Asdiscussed

throughout the report roadblocks on I10 is established 45 minutes after the advisory to

evacuate(ATE).Assuch,theaveragespeedsareslowerandtraveltimesarelongerduringthe

firsthouroftheevacuationwhenexternaltripsarestilltravelingalongI10.

Table J4 provides the number of vehicles discharged and the cumulative percent of total

vehicles discharged foreach link exiting the analysis network, for anevacuationof the entire

EPZ (Region R03) under Scenario 1 conditions. Refer to the figures in Appendix K for a map

showingthegeographiclocationofeachlink.

FigureJ2throughFigureJ13plotthetripgenerationtimeversustheETEforeachofthe12

Scenarios considered. The distance between the trip generation and ETE curves is the travel

time.PlotsoftripgenerationversusETEareindicativeoftheleveloftrafficcongestionduring

evacuation. For low population density sites, the curves are close together, indicating short

traveltimesandminimaltrafficcongestion.Forhigherpopulationdensitysites,thecurvesare

fartherapartindicatinglongertraveltimesandthepresenceoftrafficcongestion.Eventhough

the site is sparsely populated, the large number of employees at the PVNGS site causes

congestion over the first 2 hours and 15 minutes following the ATE. As seen in Figure J2

throughFigureJ13,thecurvesarespatiallyseparatedforabout2hoursand30minutesduring

midweek,middayscenarios,duetotheemployeesevacuatingtheEPZandthenbecomecloser

together as a result of the minimal traffic congestion in the EPZ after this time, which was

discussedindetailinSection7.3.Duringweekendandeveningscenarios,therearelessPVNGS

employees,sothecurvesforthosescenariosareclosetogether.

 



1 Computed as the difference of the average travel time and the average ideal travel time under free flow condition.



PaloVerdeNuclearGeneratingStation J1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableJ1.SampleSimulationModelInput

VehiclesEntering

Link Upstream Downstream Network Directional Destination Destination

Number Node Node onthisLink Preference Nodes Capacity

8021 4,500

303 226 225 113 N

8198 1,275

258 183 149 92 NE 8021 4,500

8062 3,800

121 81 147 53 SE 8198 1,275

8021 4,500

8021 4,500

219 154 86 225 N

8198 1,275

160 114 113 216 NE 8021 4,500

8062 3,800

105 68 180 52 SE 8198 1,275

8021 4,500

8021 4,500

175 124 125 20 N

8198 1,275

116 77 191 20 E 8021 4,500

280 203 277 13 E 8198 1,275

TableJ2.SelectedModelOutputsfortheEvacuationoftheEntireEPZ(RegionR03)

Scenario 1 2 3 4 5 6

NetworkWideAverage

1.0 1.1 1.0 1.0 1.0 1.0

TravelTime(Min/VehMi)

NetworkWideAverage

0.0 0.1 0.0 0.0 0.0 0.0

DelayTime(Min/VehMi)

NetworkWideAverage

60.0 53.7 60.0 57.5 60.0 60.0

Speed(mph)

TotalVehicles

15,250 15,346 12,566 12,660 9,591 15,477

ExitingNetwork

Scenario 7 8 9 10 11 12

NetworkWideAverage

1.1 1.0 1.0 1.0 1.0 1.6

TravelTime(Min/VehMi)

NetworkWideAverage

0.1 0.0 0.0 0.0 0.0 0.5

DelayTime(Min/VehMi)

NetworkWideAverage

53.5 60.0 57.5 60.0 58.7 38.2

Speed(mph)

TotalVehiclesExiting

15,576 12,568 12,666 9,607 16,641 15,250

Network



PaloVerdeNuclearGeneratingStation J2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableJ3.AverageSpeed(mph)andTravelTime(min)forMajorEvacuationRoutes(RegionR03,Scenario1)

ElapsedTime(hours)

  1 2 3 4 5 6

Travel

Length Speed Time Travel Travel Travel Travel Travel

RouteName (miles) (mph) (min) Speed Time Speed Time Speed Time Speed Time Speed Time

I10Eastbound 34.9 56.2 37.3 72.6 28.9 70.4 29.8 69.0 30.4 66.3 31.6 64.3 32.6

I10Westbound 34.9 56.5 37.1 75.0 27.9 74.2 28.2 73.5 28.5 72.2 29.0 75.0 27.9

TableJ4.SimulationModelOutputsatNetworkExitLinksforRegionR03,Scenario1

ElapsedTime(hours)

Network Upstream Downstream 1 2 3 4 5 6

ExitLink Node Node CumulativeVehiclesDischargedbytheIndicatedTime

CumulativePercentofVehiclesDischargedbytheIndicatedTime

35 109 154 167 171 172

114 75 76

0.7% 1.0% 1.1% 1.1% 1.1% 1.1%

11 246 575 737 795 821

141 99 205

0.2% 2.4% 4.2% 5.0% 5.3% 5.4%

87 308 403 431 440 441

279 202 52

1.7% 3.0% 3.0% 2.9% 2.9% 2.9%

9 51 84 98 104 105

282 206 200

0.2% 0.5% 0.6% 0.7% 0.7% 0.7%

1,966 2,538 2,636 2,690 2,710 2,714

290 213 137

39.0% 24.6% 19.5% 18.3% 17.9% 17.8%

224 819 1,201 1,278 1,305 1,310

388 302 198

4.5% 7.9% 8.9% 8.7% 8.6% 8.6%

2,704 6,261 8,493 9,311 9,607 9,687

390 303 20

53.7% 60.6% 62.7% 63.3% 63.5% 63.5%





PaloVerdeNuclearGeneratingStation J3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureJ1.NetworkSources/Origins



PaloVerdeNuclearGeneratingStation J4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ETEandTripGeneration

Summer,Midweek,Midday,GoodWeather (Scenario1)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ2.ETEandTripGeneration:Summer,Midweek,Midday,GoodWeather(Scenario1)

ETEandTripGeneration

Summer,Midweek,Midday,Rain (Scenario2)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ3.ETEandTripGeneration:Summer,Weekend,Midday,Rain(Scenario2)



PaloVerdeNuclearGeneratingStation J5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ETEandTripGeneration

Summer,Weekend,Midday,GoodWeather (Scenario3)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ4.ETEandTripGeneration:Summer,Weekend,Midday,GoodWeather(Scenario3)

ETEandTripGeneration

Summer,Weekend,Midday,Rain (Scenario4)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ5.ETEandTripGeneration:Summer,Midweek,Midday,Rain(Scenario4)



PaloVerdeNuclearGeneratingStation J6 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ETEandTripGeneration

Summer,Midweek,Weekend,Evening,GoodWeather (Scenario5)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ6.ETEandTripGeneration:Summer,Midweek,Weekend,Evening,GoodWeather(Scenario5)

ETEandTripGeneration

Winter,Midweek,Midday,GoodWeather (Scenario6)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ7.ETEandTripGeneration:Winter,Midweek,Midday,GoodWeather(Scenario6)



PaloVerdeNuclearGeneratingStation J7 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ETEandTripGeneration

Winter,Midweek,Midday,Rain (Scenario7)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ8.ETEandTripGeneration:Winter,Midweek,Midday,Rain(Scenario7)

ETEandTripGeneration

Winter,Weekend,Midday,GoodWeather (Scenario8)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ9.ETEandTripGeneration:Winter,Weekend,Midday,GoodWeather(Scenario8)



PaloVerdeNuclearGeneratingStation J8 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ETEandTripGeneration

Winter,Weekend,Midday,Rain (Scenario9)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ10.ETEandTripGeneration:Winter,Weekend,Midday,Rain(Scenario9)

ETEandTripGeneration

Winter,Midweek,Weekend,Evening,GoodWeather (Scenario10)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ11.ETEandTripGeneration:Winter,Midweek,Weekend,Evening,GoodWeather(Scenario10)



PaloVerdeNuclearGeneratingStation J9 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

ETEandTripGeneration

Winter,Midweek,Midday,GoodWeather,SpecialEvent (Scenario11)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ12.ETEandTripGeneration:Winter,Midweek,Midday,GoodWeather,SpecialEvent(Scenario11)

ETEandTripGeneration

Summer,Midweek,Midday,GoodWeather,RoadwayImpact (Scenario12)

TripGeneration ETE 100%

PercentofTotalVehicles 80%

60%

40%

20%

0%

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 ElapsedTime(h:mm)



FigureJ13.ETEandTripGeneration:Summer,Midweek,Midday,GoodWeather,RoadwayImpact(Scenario12)



PaloVerdeNuclearGeneratingStation J10 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXK

EvacuationRoadwayNetwork

K. EVACUATIONROADWAYNETWORK

AsdiscussedinSection1.3,alinknodeanalysisnetworkwasconstructedtomodeltheroadway

network within the study area. Figure K1 provides an overview of the linknode analysis

network. The figure has been divided up into 30 more detailed figures (Figure K2 through

FigureK31)whichshoweachofthelinksandnodesinthenetwork.

The analysis network was calibrated using the observations made during the field surveys

conductedinOctober2020.

Table K1 summarizes the number of nodes by the type of control (stop sign, yield sign, pre timedsignal,actuatedsignal,roadblocks,uncontrolled).



TableK1.SummaryofNodesbytheTypeofControl

Numberof

ControlType

Nodes

Uncontrolled 224

Pretimed 0

Actuated 12

Stop 52

Roadblocks 3

Yield 6

Total: 297









PaloVerdeNuclearGeneratingStation K1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK1.PVNGSLinkNodeAnalysisNetwork



PaloVerdeNuclearGeneratingStation K2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK2.LinkNodeAnalysisNetwork-Grid1



PaloVerdeNuclearGeneratingStation K3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK3.LinkNodeAnalysisNetwork-Grid2



PaloVerdeNuclearGeneratingStation K4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK4.LinkNodeAnalysisNetwork-Grid3



PaloVerdeNuclearGeneratingStation K5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK5.LinkNodeAnalysisNetwork-Grid4



PaloVerdeNuclearGeneratingStation K6 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK6.LinkNodeAnalysisNetwork-Grid5



PaloVerdeNuclearGeneratingStation K7 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK7.LinkNodeAnalysisNetwork-Grid6



PaloVerdeNuclearGeneratingStation K8 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK8.LinkNodeAnalysisNetwork-Grid7



PaloVerdeNuclearGeneratingStation K9 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK9.LinkNodeAnalysisNetwork-Grid8



PaloVerdeNuclearGeneratingStation K10 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK10.LinkNodeAnalysisNetwork-Grid9



PaloVerdeNuclearGeneratingStation K11 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK11.LinkNodeAnalysisNetwork-Grid10



PaloVerdeNuclearGeneratingStation K12 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK12.LinkNodeAnalysisNetwork-Grid11



PaloVerdeNuclearGeneratingStation K13 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK13.LinkNodeAnalysisNetwork-Grid12



PaloVerdeNuclearGeneratingStation K14 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK14.LinkNodeAnalysisNetwork-Grid13



PaloVerdeNuclearGeneratingStation K15 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK15.LinkNodeAnalysisNetwork-Grid14



PaloVerdeNuclearGeneratingStation K16 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK16.LinkNodeAnalysisNetwork-Grid15



PaloVerdeNuclearGeneratingStation K17 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK17.LinkNodeAnalysisNetwork-Grid16



PaloVerdeNuclearGeneratingStation K18 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK18.LinkNodeAnalysisNetwork-Grid17



PaloVerdeNuclearGeneratingStation K19 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK19.LinkNodeAnalysisNetwork-Grid18



PaloVerdeNuclearGeneratingStation K20 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK20.LinkNodeAnalysisNetwork-Grid19



PaloVerdeNuclearGeneratingStation K21 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK21.LinkNodeAnalysisNetwork-Grid20



PaloVerdeNuclearGeneratingStation K22 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK22.LinkNodeAnalysisNetwork-Grid21



PaloVerdeNuclearGeneratingStation K23 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK23.LinkNodeAnalysisNetwork-Grid22



PaloVerdeNuclearGeneratingStation K24 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK24.LinkNodeAnalysisNetwork-Grid23



PaloVerdeNuclearGeneratingStation K25 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK25.LinkNodeAnalysisNetwork-Grid24



PaloVerdeNuclearGeneratingStation K26 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK26.LinkNodeAnalysisNetwork-Grid25



PaloVerdeNuclearGeneratingStation K27 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK27.LinkNodeAnalysisNetwork-Grid26



PaloVerdeNuclearGeneratingStation K28 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK28.LinkNodeAnalysisNetwork-Grid27



PaloVerdeNuclearGeneratingStation K29 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK29.LinkNodeAnalysisNetwork-Grid28



PaloVerdeNuclearGeneratingStation K30 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK30.LinkNodeAnalysisNetwork-Grid29



PaloVerdeNuclearGeneratingStation K31 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureK31.LinkNodeAnalysisNetwork-Grid30



PaloVerdeNuclearGeneratingStation K32 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXL

SectorBoundaries

L. SECTORBOUNDARIES

TheemergencyplansforthePaloVerdeNuclearGeneratingStation(PVNGS)indicatetheuseof

asectorapproachinsteadofemergencyresponseplanningareas.TheSectorsarebrokenupby

compassdirection(22.5°each)andradialdistance(1mileincrements)fromtheplant.Theone

mile region consists of primarily the plant site. There are a total of 145 Sectors as shown in

FigureL1.

According to the latest public information brochure, permanent residents are instructed to

determinetheirSectorletterandmileringclosesttowheretheirhomeislocatedandtorecord

itforfuturereference.





PaloVerdeNuclearGeneratingStation L1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0



FigureL1.PVNGSSectors



PaloVerdeNuclearGeneratingStation L2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXM

EvacuationSensitivityStudies

M. EVACUATIONSENSITIVITYSTUDIES

This appendix presents the results of a series of sensitivity analyses. These analyses are

designedtoidentifythesensitivityoftheEvacuationTimeEstimates(ETE)tochangesinsome

baseevacuationconditions.

M.1 EffectofChangesinTripGenerationTimes

A sensitivity study was performed to determine whether changes in the estimated trip

generation time have an effect on the ETE for the entire Emergency Planning Zone (EPZ).

Specifically, if the tail of the mobilization distribution were truncated (i.e., if those who

respondedmostslowlytotheAdvisorytoEvacuate(ATE),couldbepersuadedtorespondmuch

morerapidly)orifthetailwereelongated(i.e.,spreadingoutthedepartureofevacueestolimit

the demand during peak times), how would the ETE be affected? The case considered was

Scenario1,Region3;asummer,midweek,midday,withgoodweatherevacuationoftheentire

EPZ.TableM1presentstheresultsofthisstudy.

If evacueesmobilize one hour quicker, the 90th percentile ETE is reduced by 30 minutes, and

the100thpercentileETEisreducedby1hour-asignificantchange.Anincreaseinmobilization

timeby1hourincreasesthe90thand100thpercentileETEby1hour.

AsindicatedinSection7.3,trafficcongestionwithintheEPZclearsat2hoursand55minutes

aftertheATE,wellbeforethecompletionoftripgenerationtime.Assuch,congestiondictates

the100thpercentileuntil2hoursand55minutesaftertheATE.Afterthistime,tripgeneration

(plusa10minutetraveltimetotheEPZboundary),dictatesthe100thpercentileETE.

M.2 EffectofChangesintheNumberofPeopleintheShadowRegionWhoRelocate

A sensitivity study was conducted to determine the effect on ETE due to changes in the

percentage of people who decide to relocate from the Shadow Region. The case considered

wasScenario1,Region3;asummer,midweek,midday,withgoodweatherevacuationforthe

entireEPZ.ThemovementofpeopleintheShadowRegionhasthepotentialtoimpedevehicles

evacuating from an Evacuation Region within the EPZ. Refer to Sections 3.2 and 7.1 for

additionalinformationonpopulationwithintheShadowRegion.

TableM2presentstheETEforeachofthecasesconsidered.Theresultsshowthateliminatingthe

shadowevacuation(0%)hasnoimpacttothe90thand100thpercentileETEs.Triplingtheshadow

percentage(60%)increasesthe90thpercentileETEby5minutesandhasnoimpacttothe100th

percentile ETE. Full evacuation (100%) of the Shadow Region increases the 90th and 100th

percentileETEby5minutes-minimalimpact.

Note,thedemographicsurveyresultspresentedinAppendixFindicatethatapproximately10%of

households would elect to evacuate if advised to shelter, which differs from the assumption of

20% noncompliance suggested in NUREG/CR7002, Rev 1. A sensitivity study was considered

usingthe10%shadowevacuationandthe90thand100thpercentileETEswerenotimpacted.



PaloVerdeNuclearGeneratingStation M1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TheShadowRegionforPVNGSissparselypopulatedexceptnearBuckeye,outsideofSectorsC,D,

E,FandG.AsshowninFigures73through77,thereissomecongestionintheShadowRegionto

gainaccesstoI10butdoesnotpropagateintotheEPZ(after2hoursand55minutes),suchthat

the EPZ evacuees would be delayed. Therefore, any additional shadow residents that decide to

voluntarily evacuate are accommodated by the excess capacity available in the study area such

that ETE are not significantly impacted. In addition, the trip generation (plus a 10minute travel

timetotheEPZboundary),dictatesthe100thpercentileETE.

M.3 EffectofChangesinEPZResidentPopulation

A sensitivity study was conducted to determine the effect on ETE due to changes in the

permanentresidentpopulationwithinthestudyarea(EPZplusShadowRegion).Aspopulation

in the study area changes over time, the time required to evacuate the public may increase,

decrease,orremainthesame.SincetheETEisrelatedtothedemandtocapacityratiopresent

within the study area, changes in population will cause the demand side of the equation to

changeandcouldimpactETE.

As per the NRCs response to the Emergency Planning Frequently Asked Question (EPFAQ)

2013001, the ETE population sensitivity study must be conducted to determine what

percentageincreaseinpermanentresidentpopulationcausesanincreaseinthe90thpercentile

ETEof25%or30minutes,whicheverisless.Thesensitivitystudymustusethescenariowith

the longest90th percentile ETE(excluding the roadway impact scenario and the special event

scenarioifitisaonedayperyearspecialevent).

Thus,thesensitivitystudywasconductedusingthefollowingplanningassumptions:

1. Thepercentchangeinpopulationwithinthestudyareawasincreasedbyupto143%.

Changes in population were applied to permanent residents only (as per federal

guidance),inboththeEPZandtheShadowRegion.

2. The transportation infrastructure remained fixed (as presented in Appendix K); the

presenceoffutureproposedroadwaychangesand/orhighwaycapacityimprovements

werenotconsidered.

3. Thestudywasperformedforthe2MileRegion(R01),the5MileRegion(R02)andthe

entireEPZ(R03).

4. Thescenario(excludingroadwayimpact)whichyieldedthelongest90thpercentileETE

valueswasselectedasthecasetobeconsideredinthesensitivitystudy(Scenario11

Winter, Midweek, Midday, with Good Weather, Special Event). The Special Event

consideredisarefuelingoutageattheplant,whichisjustifiedduetothedurationofthe

outage,whichcouldlastmorethanamonth.

TableM3presentstheresultsofthesensitivitystudy.SectionIVofAppendixEto10CFRPart

50, and NUREG/CR7002, Rev 1, Section 5.4, require licensees to provide an updated ETE

analysis to the NRC when a population increase within the EPZ causes the longest 90th

percentileETEvalues(forthe2MileRegion,5MileRegionorentireEPZ)toincreaseby25%or

30minutes,whicheverisless.AllbaseETEvaluesaregreaterthan2hours;25percentofthese

baseETEisalwaysgreaterthan30minutes.Therefore,thecriterionforupdatingis30minutes.



PaloVerdeNuclearGeneratingStation M2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Those percent population changes which result in the longest 90th percentile ETE change

greater than or equal to 30 minutes are highlighted in red in Table M3 - a 143% or greater

increase in the full EPZ population. APS will have to estimate the full EPZ population on an

annualbasis.IfthefullEPZpopulationincreasesby143%ormore,anupdatedETEanalysiswill

beneeded.

 



PaloVerdeNuclearGeneratingStation M3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

TableM1.EvacuationTimeEstimatesforTripGenerationSensitivityStudy

Trip EvacuationTimeEstimateforEntireEPZ

Generation

Time 90thPercentile 100thPercentile

4Hours45Minutes 2:15 4:55

5Hours45Minutes(Base) 2:45 5:55

6Hours45Minutes 3:45 6:55

TableM2.EvacuationTimeEstimatesforShadowSensitivityStudy

Evacuating EvacuationTimeEstimateforEntireEPZ

PercentShadow

Shadow

Evacuation 90thPercentile 100thPercentile

Vehicles1

0 0 2:45 5:55

10 980 2:45 5:55

20(Base) 1,959 2:45 5:55

40 3,918 2:50 5:55

60 5,877 2:50 5:55

80 7,836 2:50 5:55

100 9,795 2:50 6:00

TableM3.EvacuationTimeEstimatesforVariationwithPopulationChange

EPZand20% PopulationChange

ShadowPermanent Base 141% 142% 143%

Resident

Population 12,094 29,147 29,268 29,389

th ETEforthe90 Percentile

PopulationChange

Region Base 141% 142% 143%

2MILE 2:45 2:45 2:45 2:45

5MILE 3:00 3:05 3:05 3:05

FULLEPZ 2:55 3:20 3:20 3:25

th ETEforthe100 Percentile

PopulationChange

Region Base 141% 142% 143%

2MILE 5:45 5:45 5:45 5:45

5MILE 5:50 5:50 5:50 5:50

FULLEPZ 5:55 6:00 6:00 6:00





1 The Evacuating Shadow Vehicles, in Table M-2, represent the residents and employees who will spontaneously decide to relocate during the evacuation. The basis, for the base values shown, is a 20% relocation of shadow residents along with a proportional percentage of shadow employees. See Section 6 for further discussion.



PaloVerdeNuclearGeneratingStation M4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

APPENDIXN

ETECriteriaChecklist

N. ETECRITERIACHECKLIST

TableN1.ETEReviewCriteriaChecklist

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

1.0Introduction

a. Theemergencyplanningzone(EPZ)andsurroundingareais Yes Section1

described.

b. Amapisincludedthatidentifiesprimaryfeaturesofthesite Yes Figures11,31,61

includingmajorroadways,significanttopographicalfeatures,

boundariesofcounties,andpopulationcenterswithintheEPZ.

c. AcomparisonofthecurrentandpreviousETEisprovided Yes Table13

includinginformationsimilartothatidentifiedinTable11,

ETEComparison.

1.1Approach

a. Thegeneralapproachisdescribedinthereportasoutlinedin Yes Section1.1,Section1.3,AppendixD,

Section1.1,Approach. Table11,

1.2Assumptions

a. AssumptionsconsistentwithTable12,GeneralAssumptions, Yes Section2

ofNUREG/CR7002areprovidedandincludethebasisto

supportuse.

1.3ScenarioDevelopment

a. ThescenariosinTable13,EvacuationScenarios,are Yes Table21,Section6,Table62

developedfortheETEanalysis.Areasonisprovidedforuseof

otherscenariosorfornotevaluatingspecificscenarios.



PaloVerdeNuclearGeneratingStation N1 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

1.4EvacuationPlanningAreas

a. AmapoftheEPZwithemergencyresponseplanningareas Yes Figure31,Figure61

(ERPAs)isincluded.

1.4.1KeyholeEvacuation

a. AtablesimilartoTable14EvacuationAreasforaKeyhole Yes Table61,Table75,TableH1

Evacuation,isprovidedidentifyingtheERPAsconsideredfor

eachETEcalculationbydownwinddirection.

1.4.2StagedEvacuation

a. Theapproachusedindevelopmentofastagedevacuationis Yes Section7.2

discussed.

b. AtablesimilartoTable15,EvacuationAreasforaStaged Yes Table73,Table74

Evacuation,isprovidedforstagedevacuationsidentifyingthe

ERPAsconsideredforeachETEcalculationbydownwind

direction.

2.0DemandEstimation

a. Demandestimationisdevelopedforthefourpopulationgroups Yes Section3

(permanentresidentsoftheEPZ,transients,specialfacilities,

andschools).

2.1PermanentResidentsandTransientPopulation

a. TheU.S.Censusisthesourceofthepopulationvalues,or Yes Section3.1,2021PopulationData

anothercrediblesourceisprovided. providedbyMCDEM(withinEPZ)and

2020U.S.CensusDataextrapolatedto

2021(withinShadowRegion)

b. Theavailabilitydateofthecensusdataisprovided. Yes Section3.2



PaloVerdeNuclearGeneratingStation N2 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

c. Populationvaluesareadjustedasnecessaryforgrowthto Yes Section3.1,Section3.2

reflectpopulationestimatestotheyearoftheETE.

d. Asectordiagram,similartoFigure21,PopulationbySector, Yes Figure32

isincludedshowingthepopulationdistributionforpermanent

residents.

2.1.1PermanentResidentswithVehicles

a. Thepersonspervehiclevalueisbetween1and3orjustification Yes Section3.1.AppendixF

isprovidedforothervalues.

2.1.2TransientPopulation

a. Alistoffacilitiesthatattracttransientpopulationsisincluded, Yes Section3.3,TableE3

andpeakandaverageattendanceforthesefacilitiesislisted.

Thesourceofinformationusedtodevelopattendancevaluesis

provided.

b. Majoremployersarelisted. Yes Section3.4,TableE2
c. Theaveragepopulationduringtheseasonisused,itemizedand Yes Table35,Table36andAppendixE

totaledforeachscenario. itemizethetransientpopulationand

employeeestimates.Theseestimates

aremultipliedbythescenariospecific

percentagesprovidedinTable63to

estimatetransientpopulationby

scenario-seeTable64.

d. Thepercentageofpermanentresidentsassumedtobeat Yes Section3.3andSection3.4

facilitiesisestimated.



PaloVerdeNuclearGeneratingStation N3 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

e. Thenumberofpeoplepervehicleisprovided.Numbersmay Yes Section3.3andSection3.4

varybyscenario,andifso,reasonsforthevariationare

discussed.

f. Asectordiagramisincluded,similartoFigure21,Population Yes Figure36(transients)andFigure38

bySector,isincludedshowingthepopulationdistributionfor (employees)

thetransientpopulation.

2.2TransitDependentPermanentResidents

a. Themethodology(e.g.,surveys,registrationprograms)usedto Yes Section3.5

determinethenumberoftransitdependentresidentsis

discussed.

b. TheStateandlocalevacuationplansfortransitdependent Yes Section8.1

residentsareusedintheanalysis.

c. Themethodologyusedtodeterminethenumberofpeoplewith Yes Section3.9

disabilitiesandthosewithaccessandfunctionalneedswho

mayneedassistanceanddonotresideinspecialfacilitiesis

provided.Datafromlocal/countyregistrationprogramsare

usedintheestimate.

d. Capacitiesareprovidedforalltypesoftransportation Yes Item3ofSection2.4

resources.Busseatingcapacityof50percentisusedor

justificationisprovidedforhighervalues.

e. Anestimateofthetransitdependentpopulationisprovided. Yes Section3.5,Table37,Table39



PaloVerdeNuclearGeneratingStation N4 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

f. Asummarytableshowingthetotalnumberofbuses, Yes Table39,Table81

ambulances,orothertransportassumedavailabletosupport

evacuationisprovided.Thequantificationofresourcesis

detailedenoughtoensurethatdoublecountinghasnot

occurred.

2.3SpecialFacilityResidents

a. Specialfacilities,includingthetypeoffacility,location,and N/A

averagepopulation,arelisted.Specialfacilitystaffisincluded

inthetotalspecialfacilitypopulation.

b. Themethodofobtainingspecialfacilitydataisdiscussed. N/A Nospecialfacilities(otherthanschools
c. Anestimateofthenumberandcapacityofvehiclesassumed N/A whicharediscussedbelow)existwithin

availabletosupporttheevacuationofthefacilityisprovided. theEPZ.

d. Thelogisticsformobilizingspeciallytrainedstaff(e.g.,medical N/A

supportorsecuritysupportforprisons,jails,andother

correctionalfacilities)arediscussedwhenappropriate.

2.4Schools

a. Alistofschoolsincludingname,location,studentpopulation, Yes Table38,TableE1,Section3.6

andtransportationresourcesrequiredtosupportthe

evacuation,isprovided.Thesourceofthisinformationshould

beidentified.

b. Transportationresourcesforelementaryandmiddleschools Yes Section3.6

arebasedon100percentoftheschoolcapacity.



PaloVerdeNuclearGeneratingStation N5 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

c. Theestimateofhighschoolstudentswhowillusepersonal Yes Section3.6

vehicletoevacuateisprovidedandabasisforthevaluesusedis

given.

d. Theneedforreturntripsisidentified. Yes Section8.1

2.5OtherDemandEstimateConsiderations

2.5.1SpecialEvents

a. Acompletelistofspecialeventsisprovidedincluding Yes Section3.7

informationonthepopulation,estimatedduration,andseason

oftheevent.

b. Thespecialeventthatencompassesthepeaktransient Yes Section3.7

populationisanalyzedintheETE.

c. Thepercentageofpermanentresidentsattendingtheeventis Yes Section3.7

estimated.

2.5.2ShadowEvacuation

a. Ashadowevacuationof20percentisincludedconsistentwith Yes Item7ofSection2.2,Figure21and

theapproachoutlinedinSection2.5.2,ShadowEvacuation. Figure71,Section3.2

b. Populationestimatesfortheshadowevacuationintheshadow Yes Section3.2,Table34,Figure34

regionbeyondtheEPZareprovidedbysector.

c. Theloadingoftheshadowevacuationontotheroadway Yes Section5-Table58(footnote)

networkisconsistentwiththetripgenerationtimegenerated

forthepermanentresidentpopulation.



PaloVerdeNuclearGeneratingStation N6 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

2.5.3BackgroundandPassThroughTraffic

a. Thevolumeofbackgroundtrafficandpassthroughtrafficis Yes Section3.9andSection3.10

basedontheaveragedaytimetraffic.Valuesmaybereduced

fornighttimescenarios.

b. Themethodofreducingbackgroundandpassthroughtrafficis Yes Section2.2-Assumptions11and12

described. Section2.5

Section3.9andSection3.10

Table63-ExternalThroughTraffic

footnote

c. Passthroughtrafficisassumedtohavestoppedenteringthe Yes 45minuteswasused.Section2.5,

EPZabouttwo(2)hoursaftertheinitialnotification. Section3.9

2.6SummaryofDemandEstimation

a. Asummarytableisprovidedthatidentifiesthetotal Yes Table311,Table312,andTable64

populationsandtotalvehiclesusedintheanalysisfor

permanentresidents,transients,transitdependentresidents,

specialfacilities,schools,shadowpopulation,andpassthrough

demandineachscenario.

3.0RoadwayCapacity

a. Themethod(s)usedtoassessroadwaycapacityisdiscussed. Yes Section4

3.1RoadwayCharacteristics

a. Theprocessforgatheringroadwaycharacteristicdatais Yes Section1.3,AppendixD

describedincludingthetypesofinformationgatheredandhow

itisusedintheanalysis.



PaloVerdeNuclearGeneratingStation N7 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

b. Legiblemapsareprovidedthatidentifynodesandlinksofthe Yes AppendixK

modeledroadwaynetworksimilartoFigureA1,Roadway

NetworkIdentifyingNodesandLinks,andFigureA2,Grid

MapShowingDetailedNodesandLinks.

3.2ModelApproach

a. Theapproachusedtocalculatetheroadwaycapacityforthe Yes Section4

transportationnetworkisdescribedindetail,andthe

descriptionidentifiesfactorsthatareexpresslyusedinthe

modeling.

b. Routeassignmentfollowsexpectedevacuationroutesand Yes AppendixBandAppendixC

trafficvolumes.

c. Abasisisprovidedforstaticroutechoicesifusedtoassign N/A Staticroutechoicesarenotusedto

evacuationroutes. assignevacuationroutes.Dynamic

trafficassignmentisused.

d. Dynamictrafficassignmentmodelsaredescribedincluding Yes AppendixBandAppendixC

calibrationoftherouteassignment.

3.3IntersectionControl

a. Alistthatincludesthetotalnumbersofintersectionsmodeled Yes TableK1

thatareunsignalized,signalized,ormannedbyresponse

personnelisprovided.

b. Theuseofsignalcycletiming,includingadjustmentsfor Yes Section4,AppendixG

mannedtrafficcontrol,isdiscussed.

3.4AdverseWeather

a. Theadverseweatherconditionsareidentified. Yes Assumption2and3ofSection2.6



PaloVerdeNuclearGeneratingStation N8 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

b. ThespeedandcapacityreductionfactorsidentifiedinTable31, Yes Table22

WeatherCapacityFactors,areusedorabasisisprovidedfor

othervalues,asapplicabletothemodel.

c. Thecalibrationandadjustmentofdriverbehaviormodelsfor N/A Driverbehaviorisnotadjustedfor

adverseweatherconditionsaredescribed,ifapplicable. adverseweatherconditions.

d. Theeffectofadverseweatheronmobilizationisconsideredand N/A Snowisnotconsideredforthissite.

assumptionsforsnowremovalonstreetsanddrivewaysare

identified,whenapplicable.

4.0DevelopmentofEvacuationTimes

4.1TrafficSimulationModels

a. Generalinformationaboutthetrafficsimulationmodelusedin Yes Section1.3,Table13,AppendixB,

theanalysisisprovided. AppendixC

b. IfatrafficsimulationmodelisnotusedtoperformtheETE N/A Notapplicablesinceatrafficsimulation

calculation,sufficientdetailisprovidedtovalidatethe modelwasused.

analyticalapproachused.

4.2TrafficSimulationModelInput

a. Trafficsimulationmodelassumptionsandarepresentativeset Yes Section2,AppendixJ

ofmodelinputsareprovided.

b. Thenumberoforiginnodesandmethodfordistributing Yes AppendixJ,AppendixC

vehiclesamongtheoriginnodesaredescribed.

c. Aglossaryoftermsisprovidedforthekeyperformance Yes AppendixA,TableC1andTableC3

measuresandparametersusedintheanalysis.



PaloVerdeNuclearGeneratingStation N9 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

4.3TripGenerationTime

a. Theprocessusedtodeveloptripgenerationtimesisidentified. Yes Section5
b. Whensurveysareused,thescopeofthesurvey,areaofthe Yes AppendixF

survey,numberofparticipants,andstatisticalrelevanceare

provided.

c. Datausedtodeveloptripgenerationtimesaresummarized. Yes AppendixF,Section5
d. Thetripgenerationtimeforeachpopulationgroupis Yes Section5

developedfromsitespecificinformation.

e. Themethodsusedtoreduceuncertaintywhendevelopingtrip Yes N/A

generationtimesarediscussed,ifapplicable.

4.3.1PermanentResidentsandTransientPopulation

a. Permanentresidentsareassumedtoevacuatefromtheir Yes Section5discussestripgenerationfor

homesbutarenotassumedtobeathomeatalltimes.Trip householdswithandwithoutreturning

generationtimeincludestheassumptionthatapercentageof commuters.

residentswillneedtoreturnhomebeforeevacuating. Table63presentsthepercentageof

householdswithreturningcommuters

andthepercentageofhouseholdseither

withoutreturningcommutersorwithno

commuters.

AppendixFpresentsthepercent

householdswhowillawaitthereturnof

commuters.Section2.3,Assumption3



PaloVerdeNuclearGeneratingStation N10 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

b. Thetripgenerationtimeaccountsforthetimeandmethodto Yes Section5

notifytransientsatvariouslocations.

c. Thetripgenerationtimeaccountsfortransientspotentially Yes Section5,Figure51

returningtohotelsbeforeevacuating.

d. Theeffectofpublictransportationresourcesusedduring Yes Section3.7

specialeventswherealargenumberoftransientsareexpected

isconsidered.

4.3.2TransitDependentPermanentResidents

a. Ifavailable,existingandapprovedplansandbusroutesare N/A Establishedbusroutesdonotexist.Basic

usedintheETEanalysis. busroutesweredevelopedfortheETE

analysis.

Section8.1underEvacuationofTransit DependentPopulation,Section20

b. Themeansofevacuatingambulatoryandnonambulatory Yes Section8.2

residentsarediscussed.

c. Logisticaldetails,suchasthetimetoobtainbuses,briefdrivers Yes Section8.1,Figure81

andinitiatethebusrouteareusedintheanalysis.

d. Theestimatedtimefortransitdependentresidentstoprepare Yes Section8.1underEvacuationofTransit andthentraveltoabuspickuppoint,includingtheexpected DependentPopulation

meansoftraveltothepickuppoint,isdescribed.

e. Thenumberofbusstopsandtimeneededtoloadpassengers Yes Section8.1,Table86andTable87

arediscussed.

f. Amapofbusroutesisincluded. Yes Figure102



PaloVerdeNuclearGeneratingStation N11 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

g. Thetripgenerationtimefornonambulatorypersonsincluding Yes Section8.2

thetimetomobilizeambulancesorspecialvehicles,timeto

drivetothehomeofresidents,timetoload,andtimetodrive

outoftheEPZ,isprovided.

h. Informationisprovidedtosupportanalysisofreturntrips,if Yes Section8.1and8.2

necessary.

4.3.3SpecialFacilities

a. Informationonevacuationlogisticsandmobilizationtimesis N/A

provided.

b. Thelogisticsofevacuatingwheelchairandbedboundresidents N/A

arediscussed.

c. Timeforloadingofresidentsisprovided. N/A

Nospecialfacilities(otherthanschools

d. Informationisprovidedthatindicateswhethertheevacuation N/A

whicharediscussedbelow)existwithin

canbecompletedinasingletriporifadditionaltripsare

theEPZ.

needed.

e. Discussionisprovidedonwhetherspecialfacilityresidentsare N/A 

expectedtopassthroughthereceptioncenterbeforebeing

evacuatedtotheirfinaldestination.

f. Supportinginformationisprovidedtoquantifythetime N/A

elementsforeachtrip,includingdestinationsifreturntripsare

needed.

4.3.4Schools

a. Informationonevacuationlogisticsandmobilizationtimesis Yes Section2.4,Section8.1,Table82and

provided. Table83



PaloVerdeNuclearGeneratingStation N12 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

b. Timeforloadingofstudentsisprovided. Yes Section2.4,Section8.1,Table82and

Table83

c. Informationisprovidedthatindicateswhethertheevacuation Yes Section8.1

canbecompletedinasingletriporifadditionaltripsare

needed.

d. Ifused,receptioncentersshouldbeidentified.Adiscussionis Yes Section8.1,Table103

providedonwhetherstudentsareexpectedtopassthroughthe

receptioncenterbeforebeingevacuatedtotheirfinal

destination.

e. Supportinginformationisprovidedtoquantifythetime Yes Section8.1,Table82andTable83

elementsforeachtrip,includingdestinationsifreturntripsare

needed.

4.4StochasticModelRuns

a. Thenumberofsimulationrunsneededtoproduceaverage N/A DYNEVdoesnotrelyonsimulation

resultsisdiscussed. averagesorrandomseedsforstatistical

b. IfonerunofasinglerandomseedisusedtoproduceeachETE N/A confidence.ForDYNEV/DTRAD,itisa

result,thereportincludesasensitivitystudyonthe90percent mesoscopicsimulationanduses

and100percentETEusing10differentrandomseedsfor dynamictrafficassignmentmodelto

evacuationofthefullEPZunderSummer,Midweek,Daytime, obtainthe"average"(stable)network

NormalWeatherconditions. workflowdistribution.Thisisdifferent

frommicroscopicsimulation,whichis

montecarlorandomsamplingbynature

relyingondifferentseedstoestablish

statisticalconfidence.RefertoAppendix

Bformoredetails.



PaloVerdeNuclearGeneratingStation N13 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

4.5ModelBoundaries

a. Themethodusedtoestablishthesimulationmodelboundaries Yes Section4.5

isdiscussed.

b. Significantcapacityreductionsorpopulationcentersthatmay Yes Section4.5

influencetheETEandthatarelocatedbeyondtheevacuation

areaorshadowregionareidentifiedandincludedinthemodel,

ifneeded.

4.6TrafficSimulationModelOutput

a. Adiscussionofwhetherthetrafficsimulationmodelusedmust Yes AppendixB

beinequilibrationpriortocalculatingtheETEisprovided.

b. Theminimumfollowingmodeloutputsforevacuationofthe Yes 1. AppendixJ,TableJ2

entireEPZareprovidedtosupportreview: 2. TableJ2

1. Evacueeaveragetraveldistanceandtime. 3. TableJ4
2. Evacueeaveragedelaytime. 4. Noneand0%.100percentETEis
3. Numberofvehiclesarrivingateachdestinationnode. basedonthetimethelastvehicle
4. Totalnumberandpercentageofevacueevehiclesnot exitstheevacuationarea

exitingtheEPZ. 5. FiguresJ2throughJ13(oneplot

5. Aplotthatprovidesboththemobilizationcurveand foreachscenarioconsidered)

evacuationcurveidentifyingthecumulativepercentageof 6. TableJ3

evacueeswhohavemobilizedandexitedtheEPZ.

6. Averagespeedforeachmajorevacuationroutethatexits

theEPZ.

c. Colorcodedroadwaymapsareprovidedforvarioustimes(e.g., Yes Figure73throughFigure77

at2,4,6hrs.)duringafullEPZevacuationscenario,identifying

areaswherecongestionexists.



PaloVerdeNuclearGeneratingStation N14 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

4.7EvacuationTimeEstimatesfortheGeneralPublic

a. TheETEincludesthetimetoevacuate90percentand100 Yes Table71andTable72

percentofthetotalpermanentresidentandtransient

population.

b. Terminationcriteriaforthe100percentETEarediscussed,if N/A 100percentETEisbasedonthetimethe

notbasedonthetimethelastvehicleexitstheevacuation lastvehicleexitstheevacuationzone.

zone.

c. TheETEfor100percentofthegeneralpublicincludesall Yes Section5.4.1-truncatingsurveydatato

membersofthegeneralpublic.Anyreductionsortruncated eliminatestatisticaloutliers

dataisexplained. Table72-100thpercentileETEfor

generalpopulation

d. Tablesareprovidedforthe90and100percentETEssimilarto Yes Table73andTable74

Table43,ETEsforaStagedEvacuation,andTable44,ETEs

foraKeyholeEvacuation.

e. ETEsareprovidedforthe100percentevacuationofspecial Yes Section8

facilities,transitdependent,andschoolpopulations.

5.0OtherConsiderations

5.1DevelopmentofTrafficControlPlans

a. Informationthatresponsibleauthoritieshaveapprovedthe Yes Section9,AppendixG

trafficcontrolplanusedintheanalysisarediscussed.

b. Adjustmentsoradditionstothetrafficcontrolplanthataffect Yes Section9,AppendixG

theETEisprovided.



PaloVerdeNuclearGeneratingStation N15 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0

Addressedin

NRCReviewCriteria ETEAnalysis Comments

(Yes/No/NA)

5.2EnhancementsinEvacuationTime

a. Theresultsofassessmentsforenhancingevacuationsare Yes AppendixM

provided.

5.3StateandLocalReview

a. Alistofagenciescontactedisprovidedandtheextentof Yes Table11

interactionwiththeseagenciesisdiscussed.

b. Informationisprovidedonanyunresolvedissuesthatmay Yes ResultsoftheETEstudywereformally

affecttheETE. presentedtostateandlocalagenciesat

thefinalprojectmeeting.Commentson

thedraftreportwereprovidedandwere

addressedinthefinalreport.Thereare

nounresolvedissues.

5.4ReviewsandUpdates

a. ThecriteriaforwhenanupdatedETEanalysisisrequiredtobe Yes AppendixM,SectionM.3

performedandsubmittedtotheNRCisdiscussed.

5.4.1ExtremeConditions

a. TheupdatedETEanalysisreflectstheimpactofEPZconditions N/A ThisETEisbeingupdatedasaresultof

notadequatelyreflectedinthescenariovariations. theavailabilityofUSCensusBureau

decennialcensusdata.

5.5ReceptionCentersandCongregateCareCenter

a. Amapofcongregatecarecentersandreceptioncentersis Yes Figure103

provided.





PaloVerdeNuclearGeneratingStation N16 KLDEngineering,P.C.

EvacuationTimeEstimate Rev.0