ML20095F538

From kanterella
Jump to navigation Jump to search
Rev 3 to Cycle 18,COLR
ML20095F538
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 12/11/1995
From:
VERMONT YANKEE NUCLEAR POWER CORP.
To:
Shared Package
ML20095F532 List:
References
NUDOCS 9512190080
Download: ML20095F538 (21)


Text

- -. . - ... ... .-

l l

Vermont Yankee Nuclear Power Station Cycle 18 Core Operating Limits Report Revision 3 l l

l Preparer

/

h!7/C VY Nuclear Da'te I Engineering Coordinator Approved 6d 4 tb ///7 $

~

@ ear inserincf ' Date l Departm Director l Approved D I b // r/pr Reactor & Computer Date Engineering Manager Reviewed Plfd[ 9f-(BZ, #2/f/9f Plant OperationsU Date Review Committee Approved /MI/96' ynt Manage (/(/ Date Approved ( l2!ll 3 Vice President Date' Operations Controlled Copy No.

~ 9512190000 951214 PDR ADOCK 05000271 P PDR

1 4

REVISION RECORD Cycle Revision Date DescriDtion 14 0 10/89 Initial printing. Reviewed by PORC and I approved by management.

l 15 0 9/90 Cycle 15 revisions. Reviewed by PORC and approved by management. I 15 1 11/91 Incorporate new MCPR limits to allow operation within the exposure window. '

Reviewed by PORC and approved by management.  !

16 0 3/92 Cycle 16 revisions. Reviewed by PORC and approved by management. 1 17 0 7/93 Cycle 17 revisions. Reviewed by PORC and approved by management.

18 0 4/95 Cycle 18 revisions. Reviewed by PORC and approved by management.

18 1 8/95 Incorporate new MAPLHGR limits to account for Loss of Stator Cooling Event. Reviewed by PORC and approved by management. l 18 2 8/95 Incorporate the thermal-hydraulic stability '

exclusion region. Reviewed by PORC and approved by management.

l 18 3 11/95 Revise the thermal-hydraulic stability exclusion region to more accurately represent the exclusion region boundary equation.

Revise the MCPR limits to allow SRV and SV setpoint tolerance relaxation. Reviewed by PORC and approved by management.

I ABSTRACT This report presents the cycle-specific operating limits for the operation of Cycle 18 of the Vermont Yankee Nuclear Power Station. The limits are the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion region.

l l

l l

e l

l l

I 1

l l

l I

l I

.i 1

l

-iii-

I l

1

. 1 TABLE OF CONTENTS  ;

I Page

)

i REVISION RECORD . ......................... ii i I

ABSTRACT ............................. iii  !

l LIST OF TABLES .......................... v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1.0 INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 CORE OPERATING LIMITS . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 ' Maximum Average Planar Linear Heat Generation Rate Limits .. 2 2.2 Minimum Critical Power Ratio Limits ............. 3 2.3 Maximum Linear Heat Generation Rate Limits . . . . . . . . . . 3 l 2.4 Thermal-Hydraulic Stability Exclusion Region . . . . . . . . . 3

3.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 l

-iv-

. ~ _ . .-_ _ _ . _ _ _ _ . _ _ . _ . - . _ . . . _ _ _ _ _ . _ _ _ _ _ . .

i

~

j LIST OF TABLES Number Title Pace Table 2.1-1 MAPLHGR Versus Average Planar Exposure for BP80WB311-10GZ Fuel 5 Table 2.1-2 MAPLHGR Versus Average Planar Exposure for BP8DWB311-11GZ Fuel 6 Table 2.1-3 MAPLHGR Versus Average Planar Exposure for BP80WB335-10GZ Fuel 7, Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel 8 Table 2.2-1 Minimum Critical Power Ratio Operating Limits 9 Table 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits 10 t

j d

M f

4

, *V-

~

LIST OF FIGURES Number Title Page 2.2-1 Kf Versus Percent of Rated Core Flow Rate 11 2.4-1 Stability Power and Flow Exclusion Region 12 i

l

)

i i

l

-vi-

1 i

1.0 INTRODUCTION

l l

This report provides the cycle-specific limits for operation of the i Vermont Yankee Nuclear Power Station in Cycle 18. It includes the limits f w

.the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability .

exclusion region. If any of these limits are exceeded, action will be taken as defined in the Technical Specifications.

This report has been prepared in accordance with the requirements of Technical Specification 6.7.A.4. The core operating limits have been developed using the NRC-approved methodologies listed in References 1 through 29, 34 through 36, and in Technical Specification 6.7.A.4. The bases for l these limits are in References 20, 21, 30 through 35, and 37.

l l

4

-. - - -- , ,~- -. - . , . . ,m- , r ~--- -,. ,

- - - . - . - - . ~ . - . - - - . ~ - . . ~ . . _ - . - . . - . - -. - .. - _ -_ . - - . - . . . - . - -

2 . 0' CORE OPERATING LIMITS l

The Cycle 18 operating limits have been defined using NRC-approved methodologies. Cycle 18 must be operated within the bounds of these limits and all others specified in the Technical Specifications, i 2.1 Maximum Average Planar Linear Heat Generation Rate limits

~

During steady-state power operation, the Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) for ecch fuel type, as a function of the average planar exposure, shall not exceed the limiting values shown in Tables 2.1-1 through 2.1-4. For single recirculation loop operation, the limiting values shall be the values from these Tables listed under the heading

" Single Loop Operation." These values are obtained by multiplying the values for two loop operation by 0.83. The source of these values is identified on each table. These tables only list the limits for fuel types in Cycle 18.

The MA.".HGR values are usual v the most l'.miting composite of the fuel mechanical design analysis MAPLHGRs 7.nd tco Lt -of-Coolant Accident (LOCA)

MAPLHGRs. The fuel mechanical design L. 's'., using the methods in Reference 21, demonstrates that all fuel rods '.. n i6.dce, operating at the bounding power history, meet the fuel design limits specified in Reference 21. The Vermont Yankee LOCA analysis, performed in accordance with 10CFR50, Appendix K, demonstrates that the LOCA analysis MAPLHGR values are bounded at all exposure points by the mechanical design analysis MAPLHGR values.

The MAPLHGR actually varies axially, depending upon the specific combination of enriched uranium and gadolinia that comprises a fuel bundle cross section at a particular axial node. Each particular combination of enriched uranium and gadolinia is called a lattice type. Each lattice type has a set of MAPLHGR values that vary with fuel burnup. The process computer i 1

1 s I wi11 verify that these lattice MAPLHGR limits are not violated. Tables 2.1-1 l

through 2.1-4 provide a limiting composite of MAPLHGR values for each fuel  :

type, which envelope the lattice MAPLHGR values employed by the process I computer. When hand calculations are required, these MAPLHGR values are used for all lattices in the bundle.

2.2 Minimum Critical Power Ratio limits During steady-state power operation, the Minimum Critical Power Ratio (MCPR) shall be equal to, or greater than, the limits shown in Table 2.2 1.

The MCPR limits are also valid during coastdown beyond 10644 mwd /St.

l For single recirculation loop operation, the MCPR limits at rated flow shall be the values from Table 2.2-1 listed under the heading, " Single Loop Operation." The single loop values are obtained by adding 0.01 to the two loop operation values. For core flows other than the rated condition, the MCPR limit shall be the appropriate value from Table 2.2-1 multiplied by Kf, where K g is given in Figure 2.2-1 as a function of the flow control method in use. These limits are only valid for the fuel types in Cycle 18.

2.3 Maximum Linear Heat Generation Rate Limits l

During steady-state power operation, the Linear Heat Generation Rate (LHGR) of any rod in any fuel bundle at any axial l'ocation shall not exceed the maximum allowable LHGR limits in Table 2.3-1. This table only lists the limits for fuel types in Cycle 18.

2.4 Thermal-Hydraulic Stability Exclusion Region Normal plant operation is not allowed inside the bounds of the exclusion region defined in Figure 2.4-1. These power and flow limits are applicable

- ,- - . ey,..-.

i foh' Cycle 18. Operation inside of the exclusion region may result in a

l. thermal hydraulic oscillation. Operation within the buffer region is allowed.

l when using.the Stability Monitor . Otherwise, the buffer region is considered l part of the exclusion region.

I I

i l

Table 2.1-1 MAPLHGR Versus Average Planar Exposure for BP80WB311-10GZ Fuel Plant: Vermont Yankee Fuel Type: BP80WB311-10GZ MAPLHGR (kW/ft)

Average Planar Exposure (mwd /ST) Two Loop Operation Single Loop Operation.

0.0 10.93 9.07 200.00 11.00 9.13 1,000.00 11.13 9.24 2,000.00 11.32 9.40 3,000.00 11.52 9.56 4,000.00 11.64 9.66 5,000.00 11.77 9.77 6,000.00 11.92 9.89 7,000.00 12.11 10.05 8,000.00 12.34 10.24 9,000.00 12.59 10.45 10,000.00 12.83 10.65 12,500.00 13.00 10.79 15,000.00 12.81 10.G3 20,000.00 12.24 10.16 25,000.00 11.55 9.59 35,000.00 10.24 8.50 45,000.00 8.76 ,

7.27 '

50,735.00 5.91 4.91

, Source: Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station Single Looo Operation, NE00-30060, Reference 30: Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

Technical Specification ~

References:

3.6.G.la and 3.11.A.

  • MAPLHGR for sin le loop ration is obtained by multiplying MAPLHGR for two loop operat on by 0.

.s.

1 Table 2.1-2 MAPLHGR Versus Average Planar Exposure for JPRDW9?ll-11GZ Fuel Plant: Vermont Yankee Fuel Type: BP80WB311-11GZ MAPLHGR (kW/ft)

Average Planar Exposure (HWd/ST) Two looo Operation Single looo Operation, 0.00 10.93 9.07 200.00 11.00 9.13 1,000.00 11.13 9.24 2,000.00 11.32 9.40 3.000.00 11.52 9.56 4.000.00 11.64 9.66 5,000.00 11.77 9.77 6,000.00 11.92 9.89 7,000.00 12.11 10.05 8,000.00 12.34 10.24 9,000.00 12.59 10.45 10,000.00 12.83 10.65 12,500.00 13.00 10.79 15,000.00 12.81 10.63 20,000.00 12.24 10.16 25,000.00 11.55 9.59 35,000.00 10.24 8.50 45,000.00 8.76 7.27 50,735.00 5.01 4.91' Source: Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station Single Loco Operation, NE00-30060, Reference 30: Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33. -

Technical Specification Refer ences: 3.6.G.la and 3.11.A.

  • MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.

Table 2.1-3 MAPLHGR Versus Average Planar Exposure for 8P80WB335-10GZ Fuel l

Plant: Vermont Yankee Fuel. Type: BP80WB335-10GZ MAPLHGR (kW/ft)

Average Planar Exposure (mwd /ST) Two Loop Operation Sinole loop Operation, 0.00 11.29 9.37 200.00 11.34 9.41 1,000.00 11.48 9.53 2,000.00 11.69 9.70 l 3,000.00 11.92 9.89 4,000.00 12.17 10.10 5,000.00 12.43 10.32 j 6,000.00 12.68 10.52 7,000.00 12.87 10.68 l 8,000.00 13.06 10.84 1 9,000.00 13.24 10.99 10,000.00 12.99 10.78 l

12,500.00 12.84 10.66 l 15,000.00 12.65 10.50 20,000.00 11.93 9.90 25,000.00 11.26 9.35 35,000.00 9.88 8.20 45,000.00 8.38 6.96 50,593.00 5.65 4.69 Source: Vermont Yankee Cycle 18 Core Performance Analysi's Report, YAEC-1908 Reference 31: Vermont Yankee Nuclear Power Station Sinole Loop Operation, NE00-30000, Reference 30: Letter.

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

Technical Specification

References:

3.6.G.la and 3.11.A.

  • MAPLHGR for sin le loop eration is obtained by multiplying MAPLHGR for two loop operat on by O.

7-

Table 2.1-4 f MAPLHGR Versus Average Planar Exoosure for BP80WB335-11GZ Fuel Plant: Vermont Yankee Fuel Type: BP80W8335-11GZ MAPLHGR (kW/ft) I Average Planar Exposure  !

(mwd /ST) Two looo Operation Single looo Operation

  • 0.00 11.28 9.36 200.00 11.33 9.40 1,000.00 11.43 9.49 2,000.00 11.60 9.63 3,000.00 11.80 9.79 )

4,000.00 12.04 9.99 5,000.00 12.30 10.21 6,000.00 12.53 10.40 7,000.00 12.73 10.57 8,000.00 12.94 10.74 9,000.00 13.13 10.90 10,000.00 12.99 10.78 12,500.00 12.84 10.66 15,000.00 12.65 10.50 20,000.00 11.93 9.90 25,000.00 11.26 9.35 35,000.00 9.88 8.20 45,000.00 8.38 6.96 50,593.00 5.65 4.69 Source: Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908 Reference 31: Vermont Yankee Nuclear Power Station Sinale loop Operation, NED0 30060 Reference 30: Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

Technical Specification

References:

3.6.G.la and 3.11.A.

  • MAPLHGR for single loop ooeration is obtained by multiplying MAPLHGR for two loop operation by 0.83.

8-

Table.2.2-1 1

Minimum Critical Power Ratio Operatina Limits

.' MCPR Operating Limits Value of "N" Single in RBM Average Control Cycle Exposure Two Loop Loop Ecuation (A)I Rod Scram Time Ranoe Operation ODeration 2 I 42% Equal to or 0.0 to 4000 mwd /St 1.39 1.40 l better than 4000 to 5500 mwd /St 1.35 1.36  !

L.C.0. 5500 to 10644 mwd /St 1.33 1.34 l 3.3.C.1.1 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 l better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0. 5500 to 9035 mwd /St 1.33 1.34 l 3.3.C.1.2 9035 to 10644 mwd /St 1.36 1.37 41% Equal to or. 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0. 5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.1 6500 to 9035 mwd /St 1.27 1.28 l 9035 to 10644 mwd /St 1.34 1.35 Equal to or 0.0 to 4000 mwd /St 1,39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 I L.C.0. 5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.2 6500 to 8035 mwd /St 1.27 1.28 l 8035 to 9035 mwd /St 1.32 1.33-  ;

j 9035 to 10644 mwd /St 1.36 1.37  ;

140% Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0, 5500 to 6500 mwd /St 1,29 1.30 l 3.3.C.1.1 6500 to 8035 mwd /St 1.25 1.26 8035 to 9035 mwd /St 1.29 1.30 9035 to 10644 mwd /St 1.34 1.35 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0. 5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.2 6500 to 8035 mwd /St 1.25 1.26 8035 to 9035 mwd /St 1.32 1.33 9035 to 10644 mwd /St 1.36 1.37 Sources: Vermont Yankee Cycle 18 Core Performance Analysis ReDort.

YAEC-1908. Reference 31: End of Full-Power-Life Sensitivity Study l for the Revised BWR Licensino Methodoloay. YAEC-1822 Reference 32: Vermont Yankee Nuclear Power Stetion Sinale Loon Operatiqa, NE00 30060 Reference 30: and Safety Analysis of Safety / Relief Valve Setooint Tolerance Relaxation for the Vermont l Yankee Nuclear Fewer Station. YAEC-1910. Reference 37.

Technical Specification

References:

3.6.G.la and 3.11.C.

IN$wkknT!be3"b!$oh!eheckn!baSbpecihibakko!s"." "

2 MCPR Operating Limits are increased by 0.01 for sing 1,e loop operation.

9

I Table 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits l

l Maximum Allowable Linear Fuel Type Heat Generation Rate (kW/ft) l SP80WB311-10GZ 14.4 l 1

BP8DWB311-11GZ 14.4 l BP80WB335-10GZ 14.4 BP80WB335 11GZ 14.4 Source: NEDE-24011 P-A. Reference 21.

Technical Specification

References:

2.1.A.la. 2.1.B.1, and 3.11.B.

l l

l l

l

\

l

_ . ~ _ . - _

l 4

l l

Kf 1.4 . . .

EQUATIONS for Ki Curves

Kf 2 1.0

& . 1 Kf(WT>40%) = A 0.441(WT/100%) )

. . . . j

. . Kf(WT<40%) = j 1.3 .,- .

  • " **v o *****(** * *

. l Where A(102.5%) = 1.3308 A(104.5 %) = 1.3406 ,

A(107.0%) = 1.3528 l

A(ll2.0%) = 1.3793

[ l l A(117.0%) = 1.4035 j,Q -......*..- . . . ..... ..l.................... .....

[ AUTOMA11C FLOW CONIROL

. . . . . . . j j,j -

~

. . . . . . . . 1

[ MANUAL ILOW CONIROL jl Scoop Tabe Set Polet Calibration . . . ... ..-..... l positioned such that: * *

~

Flowmas = 102.5%/

)

= 104.5% . l l

[  ;  ;  ;

= 107.0%/

= !!2.0% . . . .

,- 117.0 % . . . )

l 0.9 ~ ....... . ......... ......... ......... ...... .. ... ..... .... .... .........

20 30 40 50 60 70 80 90 100 Core Flow (%) (WT)

Fiqure 2.2-1 f,f Versus Percent of Rated Core Flow Rate (Technical Specification Reference 3.11.C)

_ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ _ - _ _ _ _ _ . _ _ _ - ~- e

_ =_

b 120 v n:At +enu*t:.4.

n,n.m= . . m any..

s+:ae:.: ,rp,:,m,u ; :."u..n@7 n  :,m;-ipn...;. ,.:ns. . , . m t a n.;T::r :t g...;,n: m aan ut!

tn.  ;.! I g,ir
t ' :: 1: itt I;:1:t  : :tti n: -.cm. jr: tty.unk:;I e ,

m.

u a:nm  : aum *};nr:itn un

: in: n:n! m  :  :
r ::t :::t n;*t d; t ..tht:t; *t 21:* .-t

+;*r 1t mw m .!  :..n::t 4::

110- :. h:u .-

nur:n nur

n:n n r m er n :"Eh;n. ur n n - nr n ;muti:

. :f ::ur4;;r enn:7 :2:tnm li nt*-- }; Tl:?+r:r+ +

t 4?..
: :pn
t. i4nft m

1}

tut it t ti

{ru 4-lf .itt! !4t?! ld' 4" ~t T.4!!

t:4+ 'll frr1**r';M;tlli?yeJh1'f itigin!

l'

.i 4 !' i ?nti !C . ,n' :tlF * * ,

r. : =.n...uu..einn..

-r .{n...nn:

,oo . . s-.. .n a }a.. s..a.run. 4.us. g.t ..rn a _. t:

n...nan. .-. r. ..+ . .g -

j.u;.;hi 4.;idi.q +ijjg ji iigj gj"f[ j.g jt { { j.*.4;g
ma
: -um 3+n n ~fun{n::.g unaj(( ,, +

u in gjg:a j :n g h3,  ; ,.pa

p4fn H g,;,!; gh i-
t CmCULAhoNUNE

,ufp::;t. g;j;;'aumn r m "jf E n:/ A lin4:: I'* +0 : ' T!**,

,,, ll jf. NE titt:n?

g -tppu .n ..qau..F :ttn: .n: gg n ee .'c.ijj[Ljjf:

.:.t:q:

[t ! .i{ t.itl{itt.i tit nEGON ;j g m s z.g 5 fjjgygj.g;jgg(f

, .4n

/ u .~

jj u jL;.t .g.n,;

g

n n '::ttr"* t 2 t excwsaoN  :: gtF i "7. *. <;. 12 +

u  : Inti:t'l it6"7 :.: ]c::i;: :: w.,_::th i.:::l.i :: :::EE1

+  : 4 . :~ + ,itu th u

; .+.: i.:4. ,nsoscNn., x-n . ," " - ,. o m. . ::

. + f.,r: :

.z ..o u . .or

. . + m, . .r.e - g

. , . .- . .. u .

. ...u , .

4.. . .

f ;tt; tin Itt:

t t f:tt[:

~

tt:: n .r; .[ji ! j.f "'r- Y .. : it+'pt4f ittt i

.l'"II.t " 1;. 4d : i 4??l:ii 11!.gu 4;;iin!
tf.:in.ftil s$$ :ti;t 4

'T #..+f:. +::tr  : tt::" *n.:.  :.:.at!:: +xp:n..t'h  :

... :.n tt. :. 4, 3 t.r. p u..t.

tt it : n ::tH*: tfjg:tt-

':::n ;; :H.:::...dn:, :t : ::: g> : ;h.l.. 1tt +unf. 4

t d-
  • ::

..st: :tt : u. :5:: a.

.+g.5::t fb f55- :55+ thai::. :::tir : $55:rt 55:p:+;i:

4;. t.i: 3g 4 nAttonoouME t ? .rM rr "r a .

- + +

j@p:.

+

.h}. ti- 3:*n, tL tt :*i , ; +i t !!pi

??*t 4"4:u t

g  :::t o it 41st In: tai p p: t:M.: tt!* n *** t r it::4

.- .::::+ : +::rt: :tt: Wtrats trunu+ u.u4u* ; ;;.,_ I Itcin:
it:: .

j60 r. g.y:J:;tre :mt;ptgun w:

y tt loh,e.g g ..;gi44;g ;, .;g , .

n  :. t : atto :..t un

.jg. ,;. t t: ::nnm

+E:nu un; .a:n;.: lns:ut.m x m: n.tg:

y  :  : "I  :

. s& ;! I+ l03: . t nn:g

t tI

-.2{.th:. .

  • _t.+};!};:::t:1

..{+ - - -

ti?;;

tr.2 . ? .nx : 1"3 i :ct.g1:

[:':pfitti?

tf n n: %dant :- +4t? tad [a 1 4}?!

re d::t *t!.p l i

60 . -++ - y 111[;;:0 titti t: :I' ((;j thi ii

}; {

&W;k:{.;; ut

;tttii tt i ;t :t gt: (
: una w puup 1 tty:[:[: < 11:.
.c
::.- NFF.+:g IIIg{I t.g2:: nit: :'

I h "..It  :[ tttj 2u{[t I liI IIId3* T24II 2' II"24!I

1 seasouns 1

't 40 N#

...: it it:+thh:t::: . _ f $ U:::::::t ?:t :jt +tt:f+;r.j: .  :?;t i+:: ::: ::r.ti:t'Ig* tria

t :tfh.: :J 4t jd;?: tit e.:dit M Wajyv. lit htii Itt}.}#. i#A?; i 4ttit!1turJni tn#unt mr *i.i' n~n Tt1 m: : :" m r: unun
3
ur:m i ~ :

e :EE = l

:: 1+t ,tg. gr.-:."n. r,,i u+:[d. .:. ;.'tgjpy 1.;.;[~ag +:g@ji. 4 .g.~. t. @gy .t. ~r 1];;

- * : I

- . tr r .,

'in:ri:1 .** unt::: $ht: {n td4+:;ri. ::iN;n *F 4 :r.tj": :ri itn1 i
~nn .,at:fl+it '

EI .::::n t n; LE?; [ t3 EErxt:

ti tjp4 ::t r 7: ::+I  :;[+*::+t t

r In T l nt t ntt it j ;+ttiii tit?

1:  : +:

t :p tp ttt :: . +i ti+i::t ttti hat :n

4j
12 it f:::t:}::  ::
1  :
k, ,,itu.t n .-d.:.,. :c.t+-.t, t

. +E' Fitt

.u +i 1u::.:~:u:

122 ou-- :m*i i.r~:u:.:1,?+ ++ : t:{i+:o: B, ,' :.:o::r4::+:+

0))+t ,.

4 .

u e 44 n + j

d4*:+ 4nitg1
4nH': 12:nt..Yn$ 4 tt; :=an $2nt: t[$ thin :p*i:4tt

~

;:+nigt: ++ :
: :: : :1:  : :: ? TEM t :) ?; :*t .:  : :r::::: pp +n: .

t i

?t  :

"l xatic

jh;!
1. 8:p}+1 E  : J +
b-i:t !N"*i:! 4::! 1 :j injj;:u f:;' E
t 334
  • - ""t p' *. *r ~ u.jif.t .

run c*r a{Jy;*f:

  • :]:f"ur::

an:"2n: .[td3f'l:- * '

n 4"u'u " m np w*

a;i:i

{:in "3 }r 3:ti3:.! :t to
  • HH H ++H ."i w"."i + o '. .

i Hh e r ~a m"a~ . "+ Hurne +-

i+ ,+".'e

+

t . . + .eu -i h +

~ "*'ri 24 H4d Ho ni tgu n u c.:h 4gg 44+ 4u c4u 4 wI::

u

n :t:m::t ui

+h ,t: . : it ajg: ut:t 24: d::::. +yEhw:ui.:t:

  • 1. ,:. it' 1 ;t;jtt 4 : .t,tr 1 tt
t.  : .  :  :

+ + +

+ tph

+

T. . :utc.4i.*,.

t  ::

4"t.r., ,1. .-

- t.. e. .u 4e,.,:. u.4.:, t4.e. T L t.{::.,.r ;e *t.!nm,.:, .~ .*";t . + :~.t.it.:1.tr. , y. .+-~ ---

+

-. ..t .+.m. u +.4:++t.ot

. t ++. .o.,.,.

i,.+t,. e .-,u u .u--- .u.u.

. u.

.- u .

4 .

we 0- -- --

i.

0 10 20 30 40 50 60 70 80 90 100 Total Core Flow Pt.)

Exclusion Region Boundary Eauation For Flow 230%

POWER - 133.7831 - 6.61 (FLOW - 0.5) t 0.113 (FLOW - 0.5)2 For Flow 226% and <30%

POWER - 37.1 Fiqure 2.4 1 Stability Power and Flow Exclusion Region (Technical Specification Reference 3.6.J)

3.0 REFERENCES

1. Report A. A. F. Ansari, Methods for the Analysis of Boilina Water Reactors: Steady-State Core Flow Distribution Code (FIBWR), YAEC-1234, December 1980.
2. Report A. A. F. Ansari and J. T. Cronin, Methods for the Analysis of Boiling Wrter Reactors: A System Transient Analysis Model (RETRAN),

YAEC-1233, April 1981.

3. Report, A. A. F. Ansari, K. J. Burns and D. K. Beller, Methods for the Analysis of Boilino Water Reactors: Transient Critical Power Ratio Analysis (RETRAN-TCPYA01), YAEC-1299P, March 1982.
4. Report, A. S. DiGiovine, et al., CASM0-3G Validation, YAEC-1363-A, April 1988.
5. Report, A. S. DiGiovine, J. P. Gorski, and M. A. Tremblay, SlHULATE-3 Validation and Verification, YAEC 1659 A, September 1988.
6. Report, R. A. Woehlke, et al., MICBURN 3/CASMO-3/ TABLES-3/ SIMULATE-3

_ Benchmarking of Vermont Yankee Cycles 9 through 13, YAEC-1683-A, March 1989.

7. Report, J. T. Cronin, Method for Generation of One-Dimensional Kinetics Data for RETRAN-02, YAEC-1694-A, June 1989.
8. Report V. Chandola, M. P. LeFrancois and J. D. Robichaud, ADolication of One-Dimensional Kinetics to Boilino 'fater Reactor Transient Analysis Methods, YAEC-1693-A, Revision 1. November 1989,
9. Report, RELAPSYA. A Comouter Program for Licht-Water Reactor System Thermal-Hydraulic Analysis YAEC-1300P-A, Revision 0, October 1982:

Revision 1, July 1993,

10. Report, Vermont Yanket 8WR loss of-Coolant Accident Licensing Analysis Method, YAEC-1547P-A, July 1993.
11. Letter from R. W. Capstick (VYNPC) to USNRC, HUXY Computer Code Information for the Vermont Yankee BWR LOCA Licensina Analysis Method, FVY 87-63, dated June 4, 1987,
12. Letter from R. W. Capstick (VYNPC) to USNRC, Vermont Yankee LOCA Analysis Method FROSSTEY fuel Performance Code (FROSSTEY-2), FVf 87-116, dated December 16, 1987.

1

13. Letter from R. W. Capstick (VYNPC) to USNRC, Response to NRC Reauest for Additional Information on the FROSSTEY-2 Fuel Performance Code, BVY 89-65, dated July 14, 1989.

l l

14. Letter from R. W. Capstick (VYNPC) to USNRC, Sucolemental Information on the FROSSTEY-2 Fuel Performance Code, BVY 89-74, dated August 4, 1989.
15. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Request for Additional Information on FROSSTEY-2 Fuel Performance Code, BVY 90-045, dated April 19, 1990.
16. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Supplemental Information to VYNPC April 19. 1990 Response Recardino FROSSTEY 2 Fuel

, Performance Code, BVY 90 054, dated May 10, 1990.

17. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Request for Additional information on FROSSTEY-2 Fuel Performance Code, BVY 91 024, dated March 6, 1991.
18. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, LOCA-Related Responses to Open Issues on FROSSTEY 2 Fuel Performance Code, BVY 92-39, dated March 27, 1992.
19. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, FROSSTEY-2 Fuel Performance Code - Vermont Yankee' Response to Remainino Concerns, BVY 92-54, dated May 15, 1992.
20. Report, L. Schor, et al., Vermont Yankee loss-of Coolant Accident Analysis, YAEC-1772, June 1993.
21. Report, General Electric Standard Acolication for Reactor Fuel (GESTARil), NEDE-24011-P-A 10, GE Company Proprietary, February 1991, as amended.
22. Letter, USNRC to VYNPC, SER, November 27, 1981.
23. Letter, USNRC to VYNPC, SER, NVY 82-157, September 15, 1982.

24 Letter, USNRC to VYNPC, SER, NVY 85-205, September ?7, 1985.

25. Letter, USNRC to VYNPC, SER, November 30, 1977,
26. Letter, USNRC to VYNPC, SER, NVY 87 136, Au9ust 25, 1987.
27. Letter, USNRC to VYNPC, SER, NVY 91 26, February 27, 1991.
28. Letter, USNRC to VYNPC, SER, NVY 92 192, October 21, 1992.
29. Letter, USNRC to VYNPC, SER, NVY 92-178, September 24, 1992.
30. Report, Vermont Yankee Nuclear Power Station Sinole Loop Operation, NE00 30060 February 1983.

14-

31.' Report, M. A. Stronen, Vermont Yankee Cycle 18 Core Performance Analysis l Report, YAEC-1908. Revision 1. November 1995.

32. Report, B. Y. Hubbard, et al., End-of-Full Power-Life Sensitivity Study for the Revised BWR Licensino Methodology, YAEC-1822, October 1991.
33. Letter, P. J. Savoia to R. T. Yee, " Transmittal of Modified Thermal Mechanical MAPLHGR Lijnits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event," PJS 95106, July 25, 1995.
34. Report, General Electric Nuclear Energy, BWR Owners' Group Long-Term Solutions Licensino Methodology, NED0 31960 June 1991,
35. Report General Electric Nuclear Energy, BWR Owners' Group Long-Term Solutions Licensino Methodology, NE00-31960, Supplement 1 March 1992.
36. Letter, USNRC to VYNPC, SER, August 9, 1995,
37. Report, Safety Analysis of Safety / Relief Valve Setooint Tolerance Relaxation for the Vermont Yankee Nuclear Power Station, YAEC-1910.

March 1995.