ML20059B529

From kanterella
Jump to navigation Jump to search
Forwards Updated Fracture Mechanics Analysis of Hpi/Makeup Nozzle,Per 900510 Meeting W/Nrc.Util Believes That Addl Analysis to Assess Structural Integrity of Nozzle Using More Conservative Fracture Model Supports Previous Analysis
ML20059B529
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 08/23/1990
From: Shelton D
TOLEDO EDISON CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
1839, NUDOCS 9008290135
Download: ML20059B529 (18)


Text

(i y

y 4 ,

TOLEDO 7

e %me EDISON a can, e-w em -

ll DONALD C. SHELTON'  !

Docket Number 50-346- vemm e  !

'(419)&49 P300

. License Number NPF-3 Serial Number 1839 August 23,.1990 United States Nuclear Regulatory Commission Document Control Desk

-Vashington, D. C. 20555 1 i L Subj ec t s - High Pressure Injection / Makeup Nozzle  ;

Updated Fracture Mechanics Analysis

  • Gentlement The Toledo Edison Company's (TE) letter to the NRC dated Hay'25, 1990, (Serial 1

Number 1808) documented a May 10, 1990 meeting with the NRC Staff regarding -j l- the status of the High Pressure Injection (HPI)/ Makeup Nozzle and Thermal. -

Sleeve Program at the Davis-Besse Nuclear Power Station Unit 1 (DBNPS).

i Toledo Edison undertook-this program of comprehensive actions to address the 'l implications of the discovery of the failed HPI/ Makeup nozzle thermal sleeve j l during the fifth refueling outage. Toledo Edison's May 3, 1990 letter to the  !

NRC (Serial Number 1802) summarized the background and previous TE/NRC l cor'respondence relating to this subject. As part of the program actions,

~

Toledo' Edison presented in letter Serial Number 1802.a fracture mechanics analysis to demonstrate the acceptability of the affected nozzle for 40 years of'HPI-only service (the normal makeup flow path was re-routed to an alternate HPI nozzle.during the sixth refueling outage), conservatively assuming the  ;

existence of an undetected flav penetrating 0.125 inches into the base metal, j This flav depth is consistent with the detection capabilities of the enhanced -i ultrasonic testing system which was developed as part of the program.

i During the May 10, 1990 meeting, the NRC Staff questioned the degree of coniervatism afforded by the pc-CRACK frccture mechanics models used for the evaluation. The NRC Staff suggested augmenting the analysis by more  ;

-conservatively modeling the nozzle configuration using a crack emanating -l radially from a bole in an infinite plate. Although, Toledo Edison believes that the pc-CRACK flav models which were used are appropriately conservative and most-accurately represented the nozzle configuration, Toledo Edison agreed in Serial Number 1808 to perform an additional analysis to assess the sensitivity of the conclusions to the suggested more conservative model. This additional analysis is now complete.

l 9008290135 900823 [gOk PDR ADOCK 0500(g6 P g THE TOLEDO EDISON COMPANY EDISON PLAZA 3s0 MADISON AVENUE TOLEDO, OHIO 43652

'Dockot Nu:ber,50-346

-Lic:nsa Nu:ber NPF-3 l

  • Sirl;l Nu;b;r 1839 q Page 2 i s

?

The enclosed letter from Structural Integrity Associates (SI) to Toledo Edison ,

dated July 25, 1990, (EXT 90-05083) documents the results of the analysis.

The additional analysis using the more conservative fracture mechanics model '

suggested oy the NRC Staff continues to demonstrate the acceptability of the nozzle'for 40 years of HPI-only service, conservatively assuming the existence i of an undetected flav penetrating 0.125 inch into the base metal. The peak stress intensity at the loe approximately 56 ksi-(inch)gtionBased of maximum stress was on this result, calculated the allovable to depth flav be for brittle fracture prevention-is through vall because the stress intensity does not exceed the ASME Code factored fracture toughness of 63.2 ksi-(inch)g for the nozzle material. This same conclusion was supported by the previous analysis results.

Fatigue flav growth was also projected using the more conservative model. The resultant flav growth at the most structurally limiting location was projected  !

to be less than 25 mils for an additional 40 years of HPI-only service. This result compares favorably with the le=s than 20 mils flav growth presented in letter Serial Number 1802 and does not represent a significant increase.

Therefore, Toledo Edison believes that the additional analysis to assess the structural integrity of the nozzle using a more conservative fracture-mechanics model supports the earlier conclusion that the nozzle is acceptable for continued service as discussed ~in letter Serial Number 1802.

If you have any questions regarding the information provided by this letter, I- please contact Mr. R. V. Schrauder, Manager - Nuclear Licensing, at (419) l 249-2366.

Very truly yours,

, / 4~

PVS/mmb I

( .- Enclosure cc P. M. Byron, DB-1 NRC Senior Resident Inspector A. B. Davis, Regional Administrator, NRC Region III M. D. Lynch, DB-1 NRC. Senior Project Manager Utility Radiological Safety Board of Ohio l

I

m i >" '

l ASSOCIATES,INC. E X T-9n"n""5 C 8 3 3150 Almaden Expressway Tossil Plant Operations Suite 226 July 25, 1990 66 South Miller Road San Jose, CA 9511B PCR-90-068 Suite 10 Akron, Ohio 44313 l

(408) 978 8200 SIR-90-047, .O l rAx (WE) M89(>4 (2}6) 864 8886 j rAxtus> stausi a

Mr. John Nevshemal F NfYgg Design Staff Engineer  ;[ k g/

Toledo Edison Company  ?

Davis-Besse Nuclear Station 5501 North Street, Route 2 che, Oak Harbor, OH 43449-9760 %9 l

l

Subject:

Updated Fracture Mechanics Analysis of Davis-Besse HPI l Nozzlo In Response to NRC Request

References:

1. Report No. SIR-90-032, Rev. O, " Fracture Mechanics Evaluation of Davis-Besse HPI Nozzle Considering Increased Clad Thickness and a Sharp Blend Radius Corner" .
2. ASME Paper 78-PVP-91, " Fracture Mechanics Analysis of JAERI Model Pressure Vessel Test", Presented at 1978 Pressure Vessels and Piping Conference,
Montreal, Canada June 25-30, 1978.

l

Dear John:

This letter provides a summary of updated fracture mechanics analysis performed by Structural Integrity Associates (SI) regarding the Davis-Desse HPI nozzle in response to a request made by the Nuclear Regulatory Commission (NRC) during the Toledo Edison Company presentation to the NRC on May 10.

Backaround In the Reference 1 report, fracture mechanics evaluations were performed by SI to justify continued operation of the HPI nozzle in the presence of a flaw. The evaluations were based on a revised geometry of the HPI nozzle provided to SI by Toledo Edison. Two critical sections (Sections AA and BB in Figures 1 and 2) were used in the evaluations. Separate fracture mechanics models from the pc-CRACK computer software library were used for each section. For Section AA, the model used was a semi-circular crack in half space. A nozzle corner flaw model was used for Section BB. These models, together with the analyses performed in the Reference 1 report, demonstrated that the allowable flaw for brittle fracture considerations is effectively through-wall.

  • ~

j 3?  :

L .

Page 2_ 25 July, 1990 PCR-90-068 SIR-90-047, Rev, O Therefore, ductile failure considerations prevail, resulting in a Section XI allowable flaw size of-1.6 inches. The analysis also demonstrated that a flaw through the cladding and 1/8 inch into the base metal will grow less than . 20 mils for an additional 10-year design life.

During the May 10, 1990, NRC presentation, a question was raised regarding the validity of the models used in these fracture mechanics evalrations. -The NRC noted that even though the models are representative of the HPI nozzle configuration, and have been validated with respect to an experimental crack growth study in Reference 2, they are not as conservative as a second model presented in Reference 2. In this model the nozzle is considered as an infinite plate with a hole in the middle and a crack emanating from this hole. This letter report provides an update of the referenced analyses, considering this second, more conservative model, and compares the results with the previous models.

The results of this new analysis demonstrate that with this new model, the conclusions of the referenced report are essentially unchanged. The allowable flaw size based on brittle fracture considerations is still through-wall and the 40-year crack growth is less than 25 mils. Details of the analysis are provided below.

Stress Analysis ,

The finite element model of the HPI nozzle has been described in the Reference 1 report. Details of the critical region of the model are shown in Figures 1 and 2. This model was used to determine through-wall stresses due to internal pressure and the HPI initiation thermal transient. Stresses for the most critical sections (Sections AA and BB) previously provided in Tables 2-1 and 2-2 of the Reference 1 report were used to perform a fracture mechanics evaluation to determine critical flaw size and crack growth during a 40-year period.

Fracture Mechanics Analysis The fracture mechanics analyses were performed using the linear-elastic option of the pc-CRACK computer program. The through-wall stresses at the two critical sections from the referenced report were curve-fit utilizing a third order polynomial to account for the variation along the through-wall thickness. The curve-fit of the stresses are shown in Figures 3 through 6. For the present study, a model consisting of a hole in an infinite plate with crack emanating from the side of the STRUCTURAL DITEGHTY ASSOCWESINC

=

b d .-

4 p.' Page 3- 25 July, 1990 i PCR-90-068 SIR-90-047, Rev. O hole was chosen from the pc-CRACK library and used to develop the stress intensity versus flaw depth curves for both Sections AA nd

BB. These curves are shown in Figures 7 and 8. Also shown on these figures is the factored material fracture toughness I determined previously in the Reference 1 report. The intersection of the total applied stress intensity factor curve (pressure plus thermal; curve 3) and- the factored fracture >

L toughness value (curve 4) results in the ASME Section XI L allowable flaw for brittle fracture prevention. This yields an allowab'a flaw depth which is through-wall at both sections. For comp >1ricen purposes, the stress intensity curves from the j' previous calyses in the Reference 1 report are shown in Figures 9 and 10. It can be seen that the shape of the curves are essentially the same, even though this present analysis provides slightly higher stress intensity factors. Nevertheless, both I models demonstrate that the code allowable flaw depth for brittle fracture considerations is through-wall.

Crack Growth Analyses Similar to the Reference 1 report, crack growth analyses were l performed at the two critical sections to determine crack growth-I for a 40 year period. The bilinear law in Section XI of the ASME l Code was used. Initial crack sizes of 0.325 and 1.0 inch were l used for Gections AA and BB respectively. These values represent the thickness of the cladding plus 1/8 inch of the underlying base metal and are unchanged from the initial flaw depths uced in l the original analysis. A total of 240 startup/ shutdown cycles and 80 HPI cycles, as used in Reference 1 were considered in these analyses. In the analys.s of Reference 1, various combinations of the startup/ shutdown and the HPI transients were investigated in the crack growth analyses,- all resulting in essentially the same crack growth. Hence in this evaluation only -

one of the combinations was considered. This combination assumes l the events to be uniformly distributed throughout the 40-year i evaluation period (six startup/ shutdown and two HPI transients per year) . The results of the crack growth analyses are shown in Figures 13 and 12. It can be seen that the maximum crack growth is less than 25 mils compared to 20 mils in the Reference 1 report.

.C.QDE.lE12D The fracture mechanics evaluations of the Davis-Besse HPI nozzle utilizing . a fracture mechanics model consisting of an infinite plate with a hole in the middle and a crack emanating from the side of the hole have shown that the critical flaw size is through-wall, including the ASME Code margin. The analyser. have STRUCTURAI.

INTEGRITY ASSOCIATESINC

,1 .

.j Page 4- 25 July, 1990 PCR-90-068 SIR-90-047,;Rev. O r

also.shown that utilizing this model, a flaw through the cladding inch of base metal: will' grow less than 25. mils for a1 and-40-year 1/8~ evaluation period. These ~ results ' are only- slightly '

different than those reported in Reference 1 ahd produce'the same~ ',

_ general conclusions as-in that report.-

- Structural . Integrity appreciates the opportunity of being of .

. service to' Toledo dison Company. If you.have any questions or co nt t esitate to call.

. ) =-

er t y ur f Y P. C. Riccardella . A. J. Giannuzzi Associate Associate sa Enclosures cc: TECO-01Q-102 1 L i L i i '

f sTaucTaum DfTEGRITY ASSOCWESINC L. . . c .

l- . .

~

I 42  ?? .

~

A? 44 45

  • gg . o in 5 .o A

5 g 9 y-l

/ ama an, ,

l

}. l 1 E DK 2 2 2. 2. 2 29 kMn h52 l l I B 'N 8 9 g

\ 7 9 4 ER '516 9 9 A

g . g 7 /

\ 4 61 7 9 4 6 7 99 gg 4 y 6 e nn _ l

' 5 4' G 9

~

5 E

4, g 8Q96 5 'S 6 2L e . '

5 5 as yn 1,7;

-- ", - 6

>pf ,w' 7C E #

^

nn swa&c I I

,,, ,,.6c, . .

sd i n sea &ccNT

'n na ,,, Bea %,,  %=="'c dim 9 4

f4Q41 -

ny 243 bny h72hnyhab4r7 **'- 9 sq 26 228 14x &nn h7e hsaohn=\**m\*'*\ 94 18 0' ne ><dage %,a %n,%%,,%\ gna gg ,' '  ?

ann van >na nn >na man <2a <nn e

>M1 34K ,,,261. 27G 2n1 RaC 121 MMR %K1 N&_ MR1 96 o kB

\

\ A g E4 B yC. .,

tf j;-

4 i!

ll Figure 1.- Finite Element Model - Node Numbers oI u ~. , .,.-w~ ~.

..7 a,m 9.g.. >n ,

' b5.-

D ..

56 55 55 .

'55 o 2 g . 58 55 456 56 56 B 1 % 21 61 3 4 g /'

N 1 1 1g /

A k7 f s

.g 1 g 1 11 qq q: e I  !

\

I g g 3 3 7  ; g i 1%  !

l 175$ @ ph '

1 g 1S _

, f g8 l

l 3;g 4 @ st 1 qI d5 T @ 133 @ p4 OI I g

f_ q7f .f qg*I f

55 -

1: 6 90

. 51 95 05 52 3 0 f5L 1595 34 -5 5 5q 5 / 2 g #

51 5 51p 51p 5,5 89 5 1

~5E 5 50s 50r[ 5g 5 4 ,f 5

~29 7 2cp 2y 50p 5g 5 ,g g gQ 29 1 29p 29j 232% % 2k_2

~ 29' , . llE9p 29j 29y 2Sy % % I 1 7 l

W N l

9 2 72. 275 27q 273 27g 23 g1 3 m  ?

[ . 2 " S j _; 2 !. 1 E H P n ; 2 0 H M(.. 1 h ,

N A 3 jg

  • y -

L ll Figure 2. Finite Element Model - Element Numbers

_w.gs ,-, ,:_--- --

y.. w _.4 _ _ _ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , , _, _ _ _ _ _ _ _

A L

.. ~-

.'Mb"

'* a' INPUT Fu FIT ' "*~

ie -

e oa I

18 -

r--------- . O

-1 T----------1  % .

I i l' I . I '-

16 -

r------- r--------- T--------- 1

_ l I. I - .

I I l --

14 ---


t-----------+-----------t 1

I I i  ! 1

  • 12 ------

I-----------+------------I I

  • ~ I I l i I 10 ---------

-L----------4----------4 I I

~

I l i I 8 -----------'L-- - - - - - - - 1--------- J l I

~ i I 1 l 6 ---------- L---------- --------- d I I

. I 2 I I tn I y= .

4 . 1 . I . *F - I 0 -T 1 2 3 Ou 8 Ut O

. b l4

~X ac LEAST SQUARE CURVE FIT (POLY DEG -3). w

- e* - '

- IIFigure3.

Curve-fit of Through-wall Pressure Stresses for Section AA

- <H

- 00 W

.-r , - . . . ,-upm.,,-y , -- m -<w m - , .%,. ,e,-3 -w-.% , e. , , , , . +-w+..., m-, ... , y

i+ l l Page 8 25 Julyi.1990 PCR-90-068' SIR-90-047, Rev. 0 r- - l - - , - T - r - -l - T - -

m I I I I l' l I I i l i I I l l_ .I I i 1. I l-1 I I I i 1 l @

l I l l l I 1

  • 4 .

I I I I I I l $ $

I I I I i l l 8

p.

I l- l l 'l l l

  • O m I I I I I I I o y.

I I I I I I I ,3 3

F _ _ i _ _ y _ _ + _ _ r _ _i _ _ q _ _ f._e m _ __

g g I- 1 I I I I I . 6 g i I I I i l 1 h I .I l l l l l [ c I I I I I I I

u. .S l- l- I l- l

=X W  %

l l l l- 1 I I I l $ $

I I I I I l l 3 'c I I I I i i 1 l I I P. l l 1 E E-1 I I I I I I e $

s L _ _ i _ _ i _ _ A _ _ u _ _i _ _ a _ _ .l _ ._ _ g a g i i 1 i i i I , g j l 'l I I I I I u) i

= l- I l- 1 I I I J

p to 1 l I l- l l -- o 1 I I I I l l c i i l l g l *l

[I oc b 1 l l l 1 l l h l I I l- Ie I u3

  • I I I I l- I ds

- 1 I I l l l EE

  • - P. I i I . l . l . I , 1 , ,

C du Co b O Lf) T (T) N - O w UW l

SN3.1. E A B a

t STRUCTURAL UfTEGBHY ASSOCIATESINC

.;; c . -  : =:: . .  ;; .;; -

.  :,w_ -

.il k

- 1 Page.9 25 July, 1990

-PCR-90-068 .l SIR-90-047, Rev. 0 l

-] 4 1

q l

1

( - ._ _ 3 _

~~m j I I I

.- _ ._ - Il- ._ ._ ~ T ~ ~ *'tt  ;

I y 1- 1 I 1 I l l I I I 1 I 1. I 1: I 'm ,

I I I- 1- I

~

I I I -1 1 $

1 E ,

I i  ! I i Y  !

l

  • Ll l

I' l

I I

I 1

I Q

o "

O l' I I l I . >. o p _ _ + _ _ _ _{ _ _ _ _ l. - - - - t- -

  • N d ,

1: 1 I I I

" 6 $-

'8 l l I- 1 I I I I I I b h.  ;

I- 1 I I I I I I I I

  • W > e l- I I l 1 E W=

a o .i l l- 1 l l u E I i i I e

,1 w I I I I E A l i I I I o H M

O L_ _ J. .- _. _J ._ ._ _ _ i_ _ ._

  • L____ ~ m g.

% l i i l I- g 1  ;

k I i l I i m

< 5a '

.- 1 l l 1 I w -o --;

J~

k 1

I I I

I i

i* l 1

~

I I i I I o a i l l ,i i v.

k* i I I I I d t I

1 1 I

I

  • I I [

I I &

  • I i _ i I . I i l i g 8 o Ln o in o in (T) N N - - .

to e

W A o w

t STRUCTURAL DrrEGRifY in90CIATESINC

_ _ _ . _ _ m-_m-____ _ _ _ _ . - - - - _ - . _ _ _ _ _ _ _ - - - _ _ . _ _ _ . - _ _ _u---- - - _ _ _ _ _ ='-___r - N w

=..w.

.e j,'

=

wm s .-

  • s INPUT Fs FIT om-we - -

ie e

oH

o 8------- T- -----i------- o r------ , =

. I i 1. I I I I '

I 6 --------

l - - - - - - - t- - - - - - - - I

_ .l . l I ~ 1- <

l I I

4 ----

- - - -t - - - - - - - - l - - - - - - - t- - - - - - - - i

_ l 1. I I I  !

I I I 2 --


4--------l-------

l

--&--- ---a

>- - i I I -~

1 I I I O l  ! ^

I I I

~

I -l l i I

  • I

-2 --------2-------l--------l---

I


J i I I I 1 1 I I

-4

- - - - - - - l - - - - - - -

I I- - - - - - -

I lI - - - - - - .F I I 1 I I I "

H

. l I N N I

.- I i O 1 2 3 4 h,ou, o

b4 X uc

~w LEAST SQUARE CURVE FIT (POLY DEG -3) 2 5 e

ll

<w-

  • tD tf ff e Figure 6. oo Curve-fit of Through-wall HPI Initiation' Transient Stressses for Section BB

, .a . _ . . _ .

,. 1

. . n. - :

1sTHERMAL1 2: PRESS 1 Su TOTAL-SF 4 K1C W Me .

.s e or 7----------r---------T---------7 .E" ,

_ i i i e- ,

i i 4' I B -----------t-----------t'-----------I *

. I I I I I I 5 - -----

---t-----------+-----------i  :

I I I 1 I I m 4 #


+-----------I M i I i x$r ~

l -3i I 3 -------

--b----------+----------4 I I I ,

1 I I  !'

2 ---------- ' l J y'---------

N l 11 I +o l 1

- -------- L--------- 1----------I '4 I I I m ,

l 1 I I y 0

. 1 . I . I 4 ou O 1 2 3 su i .o 4 ac

~w CRACK SIZE . w ',< <

CRITICAL CRACK SIZE EVALUATION *

.e.

.e -

ll 3 oo.

i i Figure 7. Applied Versus Allowable Stress Intensity for Section AA -

. Crack Emanating from a Hole in'an Infinite Plate.Model -i s

---%,- . w , a.-., _ _ _ . . _ . - , - ___.i,.__f - $ __m ___ _ _ ____.___.____u _ _ . _ _ _ _ _ - _

l  !! : .

! i+l1 :Ii

+'

y

- . 9ye Y" u" uce? eWwo h.eO5ee eHwI*o $e,a '

we<* o I I I 7I JiI 4I I 7I I I I JI I ; I l 3

B

- - - - - B l

- - - - - - ne

- od

- - io 4- tM

- - - c

- - N

- - - D ee I St

- - - - - T a C - rl 1 - -

A oP

- - - - J f K -

l l e

,4 e

l I I1 l liI - tI i

TI I I i AI I ; I i 2 A yt

- - - L V ti 2 E in

- - E si F ZE nf S - - - - - - I Z en tI

- - - - - - SI n L S In A - .- - - - K a T -

- - CK s O - - - - - - AC sn T RA ei r

e - - - - - - CR te S - - - - C Sl o

- - - - - L eH A l

- - - - - - C ba M- I a 2

S r1 I I I Ll 1 tI T1 I I l L I ; 1 I 1 T wm oo S - - - - - -

I R

lr lf E - .- - - C A g R - - -

P - - - - - - - sn a ui 2 - - - - - - - st

. ra

- - - - - - - en a

2 - - - - - - -

%m L dE A - - - - - - - e M - - - -

ik R - - lc pa E - - - - - - pr H AC T - - - - - - -

e l - - - - - _ - - - - - ~ . - .

O 8 7 B 5 4 g 2 1 O 1

- e r

u g

Egs i x F l

l b

l

I

y3  ; ,t { ;i!!j i ,i ,.' r . ,![

m}'

, y .

' ~

. t Eg w#t 4,SgeoI g "nU 4 S 5 wee 0 mH=

  • ef Ob'0 we<. 0 -

W

,l Tiii_'l 4_ I I I_

i 1_

1 1 I 1 ii 4

- 4 - - - - - -

A'

- - - - - - - A

- - - - n o

- N i 7l itI- I i

- 'l 4I I 4iil

- 3 ,2

. i 1

2. i .

3 O

I t

c

- T e C -

A .S 1

K - '- - - - U r L o' s - '- - - - A f~

4 V E y

- - - - - E . t F ZE il se S - - - - - - I Z nd

- SI eo L - - - - - - S A K tM

- - - - - - n T I i l i I : ' l : iI : I i' . I l I I i 2 CK Ie O- - - - - - - - AC c T RA sa sp u - - - - - - - CR S C eS

- - - - - - r .

tf

- - - - - L Sl 1 .

A a L- - - - - - C eH I l A - - - T bn M I ai R - - - - - - - R w E C ok H

T

- - - - - - - lc r1 i tl I t- tl I 4 il 1 li1 i 1 la

- - - - - - Ar n

2 - C

- - - - - s u 'r sa E - - - - - - -

rl eu R Vc U - - - - - - - .

r S di S - - - - - - - eC E - - - - i-R li pm P - - - - - - pe s

i - - - _ - ~ - _ - - - - - AS 0

. 7 6 5 4 3 2 1 g 9

mzWn e y r u

g i

F l

l __

l

. s M *6 -

h isPRESSURE 2 THERNAL2 3e TOTAL-SF 4r K1C QS

e e

OH

7 - - - - - - l - - - - - - T - - - - - ^

T- - - - - - l- - - - - 7 o e

1 I I I I a i i i i 4 6' I I I I I i 1 I I I I 5 - - - - - - I - - - - - - I - - - - - 1- - - - - - l- - - - - J l i I I I F I I I I I I i 4 - - - - - - -I - - - - - - -t - - - - - - t- - - - - - - l- - - - - - --I

_ l i I I I x 3 -------l---- T------ -- ------

i r f 3

I I I I '

I I "

2 ___ _

1 I I I I I I =

1 i

I I I I I 1 - - - - - -l - - - - - - l - - - - - l- - - - - - - l- - - - - - J i I -42 I I I I I I 0

l i i i l . I I I I I sn I i i i 1 -

0 1 2 3 4 5 . .

O PJ em l

O i b l.q '

CRACK SIZE ve

~ ~

CRITICAL C9ACK SIZE EVALUATION- w

'~

e l- <v

. e OO y Figure 10. Applied versus Allowable Stress Intensity for Section BB -

O Corner Crack Model Nozzle i

__%-_ _ ____._._______._______m__._m_____m_ . _ _ _ _

__t___m._._____ -_ _ _ . _a -______.-m_ ..- _.___.2 _ _ . _ _ . . ._____. _.m.___ ._=_.s_ _ ,m_m-

i k '

)

.Page 15 25 July, 1990 [

PCR-90-068 SIR-90-047, Rev. O i i

4 1

p ._ _ q ._ _ _ 7 _g ._ T - '"* ~~ l"- - *- ~ CD I i i i i I ,

I I I I I I I I I I I I '

I I I I I l I I I I I l .

I u. I I I I I $ ,

I I I I I I I I I I I l 5 l 1 1 I I I p .

I I I I I u p_ q 4. l + g m W I I I I I I I l i I I I w  ;

I I I I I I d I

1 I

I I

I I

I I

I hN

>E l I I I I I u m g .

I 1 I I I I g i i 1 1 I I j 1- 1 I I I I l i I I l .

L. _. ._ 1 1. _ .L _ l._ ._ ~ ,

I i l i i I g g I I I I I l > #

1 1 I l I l I $ ,

I I I I I I .

I I I I I e l l i l I I

u l

l 1 l I I I W

, I I I I I I d

  • I I I I I I ,

E I I I I I I &

Q l I . I i I . l . .

g y (O

H10NVSn0H.l. d azIs xavaa '

g C

STRUCTURAL INTEGRITY ASSOCIATESINC l._. _ . _ _ . _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FuFatigue - w e

e -

e ,

e '

1 02 r - - - - - - - - - T - - - - - - - - - ,  ?%

o I I i

  • I =

i 1 I I I I I I l

. I I I I I F I ,

I I I w I I I d6 I I I m@ I I' y a: 101 ----------

r. ------

--T----------I I l t

i MO I I I

$5 I I I  ;

I I I  !

I I '

I I I i I I I I I I l i i I I I l 100 O

- I - I -

l "

1 2 3 7

= i HUNDREDS ?U i CYCLE 2u DAVIS-BESSE HPI N0ZZLE - SECTTON BB 6 i x

I i

w- i e '

<w ,

g ..

, t yll OO Figure 12. Fatigue Crack Growth for Section BB l

' I i

t I

, . , _ ._ .. ~_ . . , . .__ . ~ . . _ _ .-. . . _ . _ . . . ...__. ~ .._ .._.,,,._.

w '

FuFatigue .

, Mg: ..

~

Me .

ee-e '

1 02 r - - - - - - - - - 7 - - - - - - - - - , *:

I o

I I *

=

I i 1 l 1 I I i

r i  ! I

. I I I I i F l 1 I I w I I i l s i I I

. [@7 m

x m 101 I, I I


T------- --

T-~~~------I yO I I I i

ES u I I I I I I i i I I I I  !

! I I I I I .

I I l I .

I i 1 i 100

" " 1 " 1 m w

0 1 2 3 7  :

HUNDREDS ?U CYCLE bwc DAVIS-BESSE HPI NOZZLE - SECTION B0 --

w W-e ll

+e w

oo g Figure 12. Fatigue Crack Growth for Section BB . ,

() i e

i'

. , . . .-- e .- ~, .-< <w., .. -,r> + - - - - - - - . . ~ ..--w- 4 , -.,,- ......-v- - --- . < - . . . - -

. . . - . -