ML20042F232

From kanterella
Jump to navigation Jump to search
Nonproprietary DCHF-1 Correlation for Predicting Critical Heat Flux in Mixing Vane Grid Fuel Assemblies.
ML20042F232
Person / Time
Site: Oconee, Mcguire, Catawba, McGuire  Duke energy icon.png
Issue date: 08/31/1989
From: Mitry A
DUKE POWER CO.
To:
Shared Package
ML16152A954 List:
References
DPC-NE-2000-A, NUDOCS 9005080023
Download: ML20042F232 (260)


Text

{{#Wiki_filter:. . - ..- - .- - - ..- - . . - -. -.. .. --.-- . - DPC-NE-2000 A-I I; DCHF-1! CORRELATION FOR PREDICTING CRITICAL HEAT FLUX

                                        'IN MIXING VANE GRID' FUEL ASSEMBLIES-I Original Report: September 1987 Approved Report: August 1989 lI

.I A. M. Mitry, Ph. D. l lI I I Duke Power Company , Design Engineering Department- ! Nuclear Engineering Section Charlotte, North Carolina i l I D

l. 9005080023 900302 PDR h :. f, DOCK 05000269 P PDC ,

1-

o I I ABSTRACT A new critical heat flux (CHF) correlation has been derived for use with the - EPRI VIPRE-01 computer code for predicting CHF in pressurized water reactor fuel assemblies with mixing vane spacer grids. This correlation, DCHF-l', is -

                                                              ~

based on-1004 CHF data points from 22 Westinghoesa test sections which include both 0.'422 inch and 0.374 inch rod 0.D., geometries. The correlation accounts for typical, cell and thimble cell effects, uniform and nonuniform heat flux profiles, variations in rod heated length and in grid spacing. . OCHF-1 predicted-CHF for the 1004 points with an average CHF ratio (measured-to predicted CHF) of 1.00 and a standard deviation of 0.0942. oThe~ design limiting value for

    - departure from nucleate boiling ratio for DCHF-1 for application to 15x15 and-
    '17x17 mixing vane grid designs is 1.194.

I I I I I I I I I a ii Il

                                                          *y            .

am - EE , M = r CONTENTS

     =                                                                                                '

Page

= _' .
1. I NT ROD U CT I O N .~ . . . :. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 1
2. SOURCES OF DATA..................................................... 2-1
3. C H F CO R R E LAT I ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

$5 4. IVERIFICATION....;.................................................... 4-1

                     ' 5. DESIGN               CRITERION.....................................................                                                   5-1

[] -6. APPLICATION............=.-............................................ 6-1

7. REFERENCES........................................................-...-7-1 .
]                         LAPPENDICES e

A.

     '}                                        SYSTEM THERMAL CONDITIONS FOR THE- DATA. . . . . . . . . . . . . . . . . . . . . . . . . . A-1 B.                LOCAL ~ THERMAL CONDITIONS FOR THE DATA. . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 C .-              APPLICATION OF THE DCHF-1 CORRELATION TO CHF IN B&W MARK-BW i
  ~~

FUEL ASSEMBLIES................................................. C-1 D. SAFETY EVALUATION REP 0RT........................................ D-1 E. RESPONSE TO REQUESTS FOR ADDITIONAL INFORMATION. . . . . . . . . . . . . . . . . E-I T" M as e v W

     =

m. I -= m iii s _ i i i

LIST OF FIGURES-g! E Figure. Title Page-17 ~4 by 4 Typical Cell' Test Section.................................. 2-5~ 2-2 4 by 4 Thimble Tuoe Test Section..................................-2-6 2-3 85 by 5 Typical Cell Test Section.'................................ 2-7 2-4 5 by 5 Thimble Tube Test Section..........................'....... 2 . 2-5 96 inch Heater Rods Nonuniform AxialzHeat Flu'x Distributions..... 2-9L ] i 2-6 168-inch Heater Rods Nonuniform Axial Heat Flux Distributions.....=2-10 4-1 Measured vs Predicted Critical Heat F1ux......................... 4-7. 4-2 Measured-to-Predicted Critical Heat Flux vs Local Quality. . . . . . . . 4-8' 1 4-3 Measured-to-Predicted Critical Heat Flux vs Local Mass Velocity. . 4-9 j 4-4 Measured-to-Predicted Critical Heat Flux vs Pressure............. 4-10 4-5 Measured-to-Predicted Critical Heat Flux vs Heated Length........ 4-11 4-6 Measured-to-Predicted Critical Heat Flux vs Grid Spacing......... 4-12 4-7 Measured-to-Predicted Critical' Heat. Flux vs Hydraulic Diameter... 4-13 4-8 Measured-to-Predicted Critical Heat Flux Frequency Distribution... :4-14 . Ei,

                                                                                                                      )

B,i c I I I iV q {!

                                                                                                                   .{

r-LIST OF TABLES V Table Title Page 2-1 Te s t Sec ti on Geomet ri e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 4-1 Error Stati stics broken down by Pres sure . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 Error Statistics broken down by Mass Velocity.................... 4-3 4-3 Error Statistics broken down by Heated Length.................... 4-4 4-4 Error Statistics broken down by Grid Spacing. . . . . . . . . . . . . . . . . . . . . 4-4 1 4-5 Error Statistics broken down by Equivalent Hydraulic Diameter.... 4-5 4-6 Error Statistics broken down by Wetted Perimeter / Heated Perimeter. 4 5 4-7 Error Statistics broken down by Test Section. . . . . . . . . . . . . . . . . . . . . 46 I i i l i 1 1 1 i V m _ . . . . _ _ _ _ _ _ _ . . _ . . . . . . . . . _ . . . . . . . . ..

r I. INTRODUCTION 1 Boiling crisis is characterized by a sudden drop in the heat transfer coefficient due to the change of hjat transfer mechanisms and is indicated by a temperature excursion of the fuel rod surface temperature. The heat fluu l just before the boiling crisis is called the Critical Heat Flux (CHF) or the point of Departure from Nucleate Boiling (DNB). The occurrence of CHF marks the transitien from nucleate boiling, a very effective heat transfer mode, to transition boiling, a relatively poor heat transfer mode. If transition boiling were to occur at typical reactor conditions, the fuel rod surface temperatAre would rise to levels which would cause rapid deterioration of the mechanical properties of the fuel cladding, and therefore it must be avoided. In order to maintain the fuel cladding temperature at a safe condition the design heat flux should be within the nucleate boiling heat tn nsfer region and sufficiently below CHF. Reactor power limits are generally set so that a prescribed safety margin below CHF is maintained. A Departure from Nucleate Bo' ling Ratio (DNBR), defined as the ratio of the predicted CHF to the actual heat flux at the same condition, is usually used in' design. The greater the DNBR (above 1.0) the greater the thermal margin. I 1 Since no satisfactory theory exists at' this time for predicting CHF in rod l bundles, the nuclear industry must rely on correlations based on experimental l data for specific fuel designs. For design purposes,. representative experi-ments are performed on large scale electrically heated models of specific types of fuel elements and empirical correlations are developed based on experimental I k

t < i 5 data for those specific type of bundles. This report describes the develop- l ment and verification of a new CHF correlation that is directly applicable l to fuel assemblies with mixing vane grids. Included are Westinghouse 15x15 fuel assemblies (both L-grid and R-grid), Westinghouse 17x17 fuel assemblies (both standard, or 0.374 inch diameter, and 0FA, or 0.360 inch dihmeter fuel assemblies) and the Babcock and Wilcox Mark-BW mixing vane grid assembly design *. The development of the correlation encompasses the following taske- g;l

                                                                                                              ~

4 i

1. Compilation of .xperimental CHF data obtained from full scale ,

electrically-heated rod bundle test sections. l

2. Reduction of this data to the local conditions form, using a subchannel j

thermal hydraulic computer code. j

3. Correlating CHF as a function of the local conditions as well as other
system parameters. This task includes:
                - optimizing the coefficients of the CHF correlation with'a nonlinear                                 l 1 east squares regression program.
                - using all data points to verify the optimized coefficients and-to                                   :

obtain statistics for the verification process. i

4. Calculation of a 95/95 design limit that is consistent with the specified acceptable fuel design limit of Standard Review Plan 4.4 (NUREG 0800),

t l I  : 1 - "See Appendix C which confirms the applicability of DCHF-1 to CHF in fuel assemblies with Zircaloy mixing vane grids (or B&W Mark-BW fuel

     .      assemblies). The data contained in this appendix is proprietary to                                3
 <          Babcock & Wilcox Company                                                                            - B-

'3: 1-2 l',

                                                                .........m...._ .
2. SOURCES OF DATA The Heat Transfer Research facility (HTRF) of Columbia University has per-formed CHF tests and collected over 11,000 data points from 230 different types of rod bundles. These data were obtained for Combustion Engineering Inc. , Westinghouse Electric Co. , Genera 1' Electric Co. , Exxon Nuclear Co. ,

Babcock and Wilcox' Co. , United Nuclear Corp. , and Idaho Hattonal Laboratories (LOFT program). In 1982, Columbia published the results-of 20 years of CHF testing in their HTRF[1]. Volume 1 of reference 1 describes the facilities that were used to obtain the CHF data, and volume 3 of the same reference provides a detailed description of the bundle geometries, power snapes, test sections, and CHF data. The CHF correlation discussed in this report, which was developed for applica-tion to PWR fuel assemblies with mixing vane spacer grids, is based upon the app'licable portion of that published data. The published data which supports the present work includes 70 tests performed in the HTFR for Westinghouse. Test sections that simulate Westinghouse 15x15 and 17x17 fuel assembly designs with mixing vane spacer grids were used as part of the data base. Test sections with non-mixing vane grids or high pressure drop grids, and tests perfomed specifically for determination of rod bow or flow blockage penalties were not used in the correlation data base. In addition, tests with fewer than 15 data points were not included. The final data set selected for the correlation in-clu6ed 22 test sections (1004 runs). A description of the C2 test sections geometries is given in Table 2.1. Ref uence 1, volume 3 contains a detailed description of these test sections, Mwever a brief summary of their pertinent characteristics is given below. 2-1

I

 -                                                                                               g All of the 22 test sections were either 96 or 168 inch in heated length. They simulated either a typical cell (all rods heated) or a thimble cell (i.e. one interior rod unheated, simulating a control. rod thimble tube). The. test sec-tions were all in the fom of rectangular array rod bundles; 5x5 for the 0.374 inch rod outside diameter test i:ections and '4x4 for the 0.422 inch rod outside diameter test sections. The test section configurations are shown in Figures-2-1 through 2-A. The axial heat flux profiles were either unifom or nonuni-         .

form. The four nonuniform axial heat flux shapes used in the testing are . shown in Figures 2-5 and 2-6, 1004 CHF data points from 22 test sections were used to develop the present correlation. This data covers the following . parameter ranges: 1 .! Pressure 1485 to- 2445 psia 0.85 to 3.63 M1bm/hr-fte Rev.1 Local Mass Velocity l Local Quality (equilibrium) -0.15 to 0.36 Heated Length 96 to 168 inches Grid Spacing 13 to 32 inches Equivalent llydraulic Diameter 0.37 to 0.51 inches , Equivalent Heated Hydraulic Diameter 0.46 to O'.58 inches Rev.1 Rod Outside Ciameter 0.374 to 0.422. inches )  ; 1 Il Ii I: Il B 2-2 la

m ]

]

a

       ~3gaea8 9
  • a a j a4 n n a i s. ,e a a w ; g . g ; s. -

I 8'* a 3 g i s. a, j a a.aa a E I..{g. g =s . ; s.

             ..                                  .g I      s     8'*sa 3 gas             lsazil.l,e.;;5
                                  . .aa i      w A'*s                       aEl.g s e n . a. j. a a. w a j e . ; g s. ,
 !     a#3   3ts        se,IaanlaII
                                  ; .aa.;g              =*a ea.

l g s 8 3!a '

  • s, a, , l e, s, aa s . l i, s. .;g.=;s g , i
               .-                                                           \

3 5 8 ' 3ga e n, j .a s a l i s. ..t a a . 3 e . = ;~m 1 l 1 u s};s.mjaamIII$,.5;5 3, .c . .._.3 4

     -   #    si;sa1.saaIi19.=.;m 3y         ..        a.aaa3y                       -
         =
         -    *3e   ,~ ; s.aa j aa.aa.3 a e n a .i g . = ; m-n     8^;sajaanass'e.=a;m 3g .e               aeaae a

j_l i 3 - ,4111 i _j_j_jjjJ{,g. 8 - g g 5 y

                       ~1
                                                      ]11         .

3 i

                                '3 8 j 1.ig}.ai 318111:1s
  • 8 8 3331II i
          --)

is 3 3 3- aaa: na . 1 j 2-3 o

gl e I,l , g d sg' *n asa.aaas I $ 1 5 R E I E. { gg.225 l, t . a' ik.a st i a. a e l a. .a aasa s .I j. ;.:i5 .. 3; s#*i88-18.8888ll-ii! sg . .a( 3"; a d I- .....aau agisesenssij*f;.:35 - l5 ilii!!!!!!!!il-:35 3: 4 Iy .4z age i.iiiiinali.iis <<was l: 3 d I* sg*ses.assillj..:i$ g' j a . aa  : 1 a 3jiEI.l888IIfl-525 N

                                                                                                                  ..                ..a-.                                                                                                      l.

1 .- 4 a 8 3gn '

  • e a, l a. n E aan,I. 3j l .iis gl i- .

d E I E g 3 3 .e .. msi i ! I a. 3g' *g , R, R, ,,aa4a U . gt

                                                                                                      .~                                                               ng 5    d'*UEREEEEEZ*$.))!                                                                                                                       E'
                                                                                                       !!8d d d d d d " d                                                                                                                      s, lj,i,s-1..
                                                                                                                                                                                          !  ! "2                                               l1l 3]_]!jlljl[Iljill a              -                     -

i ll d - 5-I 3}33.Igj: is._  !!g j i tili 3icle 3 31 !1111.lll-

                                                                                                                                                                           ,syrs 11           l ll I!!!I3133}'l2                                                l      iid=fi                            -

1 31 2-4

 - - - - - - - - -             _-u---a                  m     - _              m-e ge e Wd---r-e-          _u--+
  • _.-----,e
                                                                                                                         -                w-e er + w    *e_temmeege e      -.ay-cie  yvwa    7d-var,<eWh #pv,*W-( vg-g w + p ep%ptwwy, wage ww ,w y-

I I L E I Figure 2-1. 4 by 4 Typical Cell Test Section. I  :  :  :  :

                                                    ...q     1    f...j   2      H..L  3     F..q 4  k...

I VVVV :  :  :  :  : I- ...q 12 }...l 13 }.. q 14 r..q S h... l nnnn::  :  :

                                                    ...q    11    } ..I   18     j..a  15    r..q S  p...
                                                    ...q    18     ... 9       ..q  O     F..< 7  ....

I i  !  ! i Rod to Rod to  ! rod gap Rod 0.D. Pitch wall gap Shroud size 2- S y

                   ~

r-n . I I I l' Figure 2-2. 4 by 4 Thimble Cell Test Section

      ..{

A666 1 j...i 2 f .. .I 3 F..q 4 F.. I AAnn 12 p..q 13 p..I 14 l...i 5 }.. , Unheated i rod

      ...,    11      r..H    18      F..       15      ..< B  p.,                  1
       .1     1F       ... G       . . .I    B     f,.y 7   ...

Rod to Rod to rod gap Rod 0 D. Pitch wall gap Shroud size - - I I 3: 2-6 , B:

.I l 8 E I I ' Figure _2-3. 5 by 5 Typical Cell Test Section (1 }...j 2 3 4 5 I s . . .; p..a

   . .. . I                              F . . .{                                     F...
   ....       18      }...q      17     }...q      18    1...{      19   l ... l   8  j...,
    . . . .i AA 15      F . . .i   24      F..q      25        ..q on
                                                                   .20   p..a      7  p...

i

:  :  :  : i
   ...4       14       ...       2.      ,...,     22      ,..4     21   ,... ( . r....
     ...q
             ^13      s..q     ^12        ...,

n 11 ...

                                                                     ~

18 ., , A

                                                                                  -9   ....

I i i i i Rod to Rod to i rod gap Rod 0.D, Pitch wall gap 'l 2 Shroud size.

                                                                                                     -i 2-7

I ll I, l

                                                                                                                                                                                                                             .Il Figure 2-4.         5 by 5 Thimble cell Test Section I;.

A, .. A, ,... A, ,... A< ,... A. ,... VVVVV I;

                                                                                          '. 4D   2e    3 17    D  r 2

D. r... ieD ,...i . D ... 3; V i V i (J \/i * (J i unheat.d rod ~ h, ras r asm r m. n.5

                                                                                           ..<    is      ... a        r..                      ..<                             r...<             7          ...

b: V  :

                                                                                                                                                        \/V            :                               :                          4 I'

h14..,8. . 4hu n= >r...l o. r r... ,... V  : VVV  :  :  : I:

                                                                                            ..q   13     J...<    12        ...,

i 11 ...q 18 5. . .l 9 ..  ! VV  :  : V  : V - V. i Rod to Rod to

                                                                                                                        -          :                                                                                           g i

rod gap Rod 0.D. Pitch wall gap 3f Shroud site - L I, u . l ll ~ ll,

I ' I 2 E- 8 a

                                                                           ~

I i 7 . I jl 7 .. E - y I C 5

                                                                             =

I l

                                                                             ~

E

      ;                                                                      .         5 m
  • p 1 w .-

B E I o  ; 31; I t a

      !                                                  w E

a E = t m I i

      =

e t

                                                                              .         8
                                                                                       .3         i
                                                        /                               lll I
                                                      ~                       '
      $                                                                                 i
      &                                                                        '                   l x

I s e-vi 8 4 . E a - C  ! i e i i l i e i i l i i e i l i %-i i g )

             =              9
  • 9 9e o ,

u - ~  : oigny xntd 4t*H e6sasAy og trool-1 2-9 j 1

t i x E 0 0 1 s n i o t

  • u b

i r

  • t s

i D I 5 7 x , u l F ' t a e ' H l h a t

                                                                         '            g     .

i x n A e L m d e _ o t _ f i 0 a . n I e u 5 H n ' f o o N p ' - s n d E o o - N i R I ' t S c r a e y r . t ' F a e H h - c I n O 5 8 2 6 1 6 p 2 E ' N e r I S u g O C i F

                                                                    .               0
                 . . . .   -   .   -   - .  -      - - - - -      .                 0 5

0 5 0 0. O 1 1 0 2

                         $ a s C e*           ,?t4 3          8>-

N'.,

l

3. CHF CORRELAT, ION The DCHF-1 correlation was developed using local fluid conditions determined by the VIPRE-01 thermal hydraulic code [2] based on published Westinghouse l aixing vane grid rod bundle CHF data. The basic fom of the correlation is similar to the one adepted by Columbia University for the development of their generalized CHF correlation [1].

I - 9bHF,0N=(A-XCHF,1)/C I WhereqbHF,UN is the uniform critical heat flux (with a uniform axial flux shape),X CHF,2 is the local quality at the point of DNB and A and C are func-tions of pressure and mass velocity expressed as, { B2 (Bs'B,PR ) A=BP3 R0 B4 (Be+BsPR ) C=bP3R 0 i The basic A and C equations above were modified by adding bundle specific multipliers to account for the effects of grid apacing, test section heated length and test section geometry. The riodified A aind C forms are

                                                                                         'i a

3-1 l

I - g where B 3 through B are constants to W eva'suated with the use of the CHF data, I _ I The correlation was extended to the case of a nonuniform hent flux distribu-tion by applying the standard Tong F-factor to the uniform CHF equation as follows I 4bHF,NU "9bHF,0NII - whereqbHF,NU is the nonuniform critical heat flux, F is the standard Tong factor for nonuniform axial heat flux given by [3], 1

                                      -KL I

L HF - K( L CHF -z) F=[K/qbHF,20~' 33I o gqn g,)), dz

                                                                                                                                    -l HereqbHF,2 is the 1 cal nonunifora CHF, L CHF is the location of CHF measured                                               3:  !

from the inception of local boiling, and q" (z) is the nonuniform heat flu, at axial location z. The factor K is a function of the local quality at the l point of DNB, X and the bulk mass velocity Gr. The formulation of K is CHF,1 given in reference 3. The factor K must be evaluated utilizing the. test data. Comparison with nonuniform data, performed by Westinghouse [4] indicated that no modification to either the constant or the form of the F-factor was ' necessary for the present application. l I ' g 3-2 ll 'l

The final fem of the DCHF-1 correlation,'which accounts for typical cell and thimble cell effects, uniform and nonunifore heat flux profiles, variations in rod heated length, grid spacing and test section geometry, is I I I I Rev.1 where - qbHF = Critical heat flux, MBtu/hr-ft2 ' G

                              = Local mass velocity, M1ba/hr-fta for the coefficient C-equation p

lba/hr-ft8 for the Tono factor F-equation P = Pressure, psia X g = Local quality P c = Critical pressure, 3208.2 psia I CHF = Location of CHF measured from test section inlet, ft ' gj = Loesi heat flux, MBtu/hr-f t2 3-3

E , q"(z) = Heat flux at axial location 2, MBtu/hr-ft2 L = Location of CHF measured from the inception of local boiling, ft CHF I $ = Spacer grid spacing, inches i The coefficients B through Bar were optimized using a nonlinear least squares j regression' program developed by Columbia University [5). The program uses a  ! stepwise regression algorithm developed by Jennrich and Sampson (6). The E.

                                                                                                                                                                                                                                  .gy optimized values of the coefficients are:
                                                                                                                                                      ~

! E o

                                                        -                                                                                                                          -                                               =

l I I: I!. I: 5: l 3-4 ' I4 l .. u_.. _ _ . . , _ _ _ _ . . . . . - . - . _ _ _ _ . _ _ . . _ . . _ . _ . _ _ _ . . _ . . - _ . _ . , . . . _ . , . . _ . . _ . . . . _ _ _ . , . _ ~ . . _ - -

W l 4. VERIFICATION The experimental verification of the present CHF correlation was performed by comparing the measured CHF with the predicted CHF at the point of minimum predicted-to-measured critical heat flux ratio (CHFR), for each test point. A ratio of measured-to predicted CHF (R j ) was calculated for each test point at the point of minimum CHFR. These ratios, R4 , were then plotted against o ch independent variable appearing in the correlation.  ! Figure 4-1 shows measured CHF plotted against predicted CHF for all of the 1004 1 data points. Figures 4-2, 4-3, and 4-4 show measured-to predicted CHF ratio platted against fluid parameters of local quality, mass velocity, and pressure, respectively. The low scatter (o = 0.0942) in the data (1004 points) and the absence of any significant trend with the fluid parameters indicates that the DCPF-1 correlation a: counts quite well for the behavior of these fluid para-meters. Figures 4-5, 4-6, and 4-7 show measured-to predicted CHF ratio plotted against the rod bundle variables of length, grid spacing, and equivalent hydraulic diameter. The figures show that there is no bias in the correlation relative to these bundle variables. The accuracy of the DCHF-1 correlation in predicting the CHF data was determined by the following error statistics: n 2 = ( I Rj )/n i=1 o = [{ I (R j-R)2}/n)\ i ini 4-1

                                                                                                                  ]

I where I = Average ratio of measured-to predicted CHF. I R = Ratio of measured-to predicted CHF for ith data point. n = Number of data points. o = Standard deviation of the error from the near,. I The precision of the DCHF-1 correlation in predicting the source data set is i indicated by the following statistir.s: I Number cf test sections N = 22 Number of data points n = 1004 Average ratio of measured-to-predicted CHF R = 1.000 Standard deviation o e 9.42% Error statistics broken down by pressure, mass velocity, heated length, Orid I spacing, equivalent hydraulic diameter, wetted perimeter / heated perimeter, and test section are given in Tables 4-1 through 4-7. These tables clearly show that there is no bias with respect to any of these parameters. Figure 4-8 shows a histogram of.the measured-to predicted CHF ratios for the correlation and its data base. The figure demonstrates that the distribution for all data I' is normal. Thi4 justifies the treatment of the data as a normal distribution. The normality of 90 distribution was verified statistically with _the D prime i test. I I 4-2 I Y

w s A-

 )

Tablo 4-1. Error Statistics Brokgn Down By Pressure J P o (psia) n I (%) j 2400 283 1.003 9.55 2100 303 1.003 9.61

                                       -1800         186         0.983      9.94
                                        .1500        222         1.008      8.45 All Data 1004           1.000      9.42 I                     Table 4-2.        Error Statistics Broken Down By Mass Velocity G                                      o (M1bm/hr-f t2)               n           R        (%)
1. 0 52 1.036 9.13 1.5 124 1.013 9.13 1 2.0 252 0.971 9.91 2.E 218 0.994 9.01 3.0 168 1.002 S.82 3.5 177 1.024 8.99 All Data 1004 1.000 9.42 Nomenclature:

P = Pressure G = Mass velocity , n =' Number of data points R = Average measured-to predicted critical heat flux ratio-o = Standard deviation i

                                                            .4-3                        j l

m I g

  • Table 4-3. Error Statistics Broken Down By Heated Length L o (inches) n I (%)

96.0 482 1.011 9.00 l Rev.1 166.0 522 0.990 9.69 All Data 1004 1.000 9.42 - Table 4-4. Error Statistics Broken Down By Grid Spacing S o (inches) n R (%) 1 13.0 37 1.004 6.78 20.0 168 1.035 8.80 22.0 356 0.974 9.67 1 26.0 367 1.008 0.01 32.0 76 1.009 9.58 All Data 1004 9.42 I! I l Nomenclature: I L = Heated Length, inches i S = Grid spacing, inches n = Number of data points -! R = Average raeasured-to predicted critical heat flux ratio o = Standard deviation I Bu 4-4

                                                                                 .I

I , 3 Table 4-5. Error Statistics Broken Down By Equivalent Hydraulic Diameter D o- , (inc$es) n R (%) ~ .I 0.37 136 1.000 10.70 , 0.46 326 0.987 9.'75 0.51 542 1.008 8.79 I All Data 1004 1.000 9.42 Table 4-6. Error Statistics Broken Down By Wetted Perimeter / Heated Perimeter i o Pg/PH n R - (%) 1.00 747 0.999 9.30 1.43 257 1.004 9.78 All Data 1004 1.000 9.42 i Nomenclature: D = Equivalent hydraulic diameter, inches Pg/P' = Wetted perimeter / Heated perimeter

                                             = Nurnber of data points L                                          R = Average measured-to predicted critical heat flux ratio o = Standard deviation l

I 5 , I - I . 4-5 I , 4 , . , . - - -- ,,,-,....,..,a. ,, ,w -we,- , , , - , , , , . . - , ,,_,,,_,.,,,_,__ u-a .,,,,,.w-,

                                                                                                                                                                       ,-,,a- ,r--. - - , .w.v. &

I - g a Table 4-7. Error Statistics Broken Down By Test _Section Test Test Heated Heated Axial No. of Av. Measured Standa~r Section Section Rod 0.D. Length Heat Flux- Data to Predicted Deviatig ! No. Configuration (inches) (inches) Profile Points CHF Ratio (%) g 108 4x4 Typ. 0.422 96.0 p Sine p 29 0.997 7.00 114 4x4 Typ. 0.422 96.0 Cosine p 33 0.900 4.72 121 4x4 Typ. 0.422 96.0 Cosine p 37 1.025 6.84 122 4x4 Typ. 0.422 96.0 Cosine p 29 1.011 5.1 124 4x4 Typ. 0.422 96.0 Cosine p 34 1.023 5.86 125 4x4 Typ. 0.422 96.0 p Sino p 33 1.005 6.3 l 127 4x4 Typ. 0.422 96.0 p Stae p 37 0.980 7.19 131 4x4 Typ. 0.422 168.0 p Sine p 37 1.026 9.0 132 4x4 Typ. 0.422 168.0 p Sine p 35 1.115 11.42 133 4x4 Typ. 0.422 168.0 p Sine p 37 1.004 6.7 j 134 4x4 Typ. 0.422 168.0 p Sine p 38 0.996 9.32 i 138 4x4 Th. 0.422 168.0- p Sine p 37 0.965 7.8j 139 4x4 Th. 0.422 168.0 p Sine p 38 1.022 9.78-166 4x4 Th. 0.422 168.0 p Sine p 46 1.033 7.0 i 162 5x5 Th. 0.374 168.0 Cosine p 70 0.936 ' 7.0 Rev.1! 164 5x5 Typ. 0.374 168.0 Cosine p 73 0.930 7.7 Rev.1l 153 4x4 Typ. 0.422 168.0 Unifom 42 '1.009 8.9 l 157 5x5 Typ. 0.374 96.0 Unifom 77 0.997 7. ',0 158 5x5 Th. 0.374 96.0 Unifom 66 1.067 9.7 160 5x5 Typ. 0.374 96.0 Unifom 66 1.029 11.2 l 161 5x5 Typ. 0.374 168.0 Unifom 69 0.972 8.7 163 5x5 Typ. 0.374 96.0 Unifom 41 1.030 10.5 All Data 1004- 1.000 9.4 I - B 4-6 8

i Figure 4-1. 11easured vs Predicted Critical Heat Flux 14 l 13 1.2

                                                                                                                                        /

I _ ,. /- I _D D% ~

                        .h                                                                             % u         D 5

g 0.9 -

                                                                                                                %U               - --          -

3 l 5

. x OB - -------------

! 3 0 { 01 - u 1

  • O j
  • 0.6 -

? 3 ~ y 05 -

I o 0.4 -
!                       3 1                        5 03                                    -

l 02-i 0.1

                                              /

l Os . . . . . . . . . . . . . j 0.0 0.2 0.4 0.6 DE 1.0 1.2 1.4 i- Predicted Critical Heat Flux ( M tu/hr-fte} 4 i i__ _ _ _ _ . . __ _ .w _. - - __ , ~. ,

                                                                                                                         . . . . .         .,       _ ~ . . . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _
                                   ,,       - ,, '        mii.---i-----

I i e I O I w 0

     %                                         o                                       -
     $                 0
                        '3 E'      g        CD l

y 0 o b Pg a l 3 5 .aS 443

                      % yv $.g a
                                                                                         .~.

e g

      %                                         9f E

l b! I M x o m3  : I 3 @ t: c o a U Q0h j a U 3v otill $ C " [ C) I N  ; I 4 isiiinBL e ~g naar M)o

                                                                                                =

2 a c r-caho I L 609p 0o

        $                                                                                                g y                                          e f

f e 0 0 l

                                                                                                ~        I e

d d d d d e ,, n e u , .., t . ,, , 3 .,,,,. es... -~ g I

] ]  : 1 f C'i , o

                          #                                                  U ti
                                                                                                               ~

80 i 1 e 3 C L i  ! 34 Ns>

                                                                                                                    ^

i  : J i j 2;

                                           =  4l                       "

D

                                                                           ;                                        g
                                                                                                                ~

I _ Da 4 l h %Nl - g f -

                           $                                       D I                          :                                                                                    -

E l t LI , , a oI4ey xnld 4eaH le3I4IJ3 pago;padd-og-paanseaw 4-9

l O s E

     =
46. -

ao

                                                                   .         -!       g 2                                      3
     =                                                                       -
     =                                                                           o 2
     "                                               O C                     -?

W o a. CSEE [ . bu - l u U 3 e 3" 5 0 _ 8,

n e U S E C E -

e a. b O CD - E, " a E e W 5 ~, C O 856 - l I I I i 8 T i, O c v n N - O @ C N @ c y s 4 - a d d & O d 6 6 6 6 06220 xn[3 4tBH [23)2)J3 pB43)paJd=01-ptJnst9W 4-10 I

I I I 8 I

                                                                                                         ~

g F 3 l 1 I C

              =

l  !

             &                                                                                          o  O l

2 W 3 0 I l v I a g E t l G t o 2 4 0 A D 3 - l 4 E 3 _ I I a 4 -8 l - [ aammanummmmmmme,maco l 6 I

                *
  • 8 l -

t n m . o . . s e o ,. e e e e e e 064ey rnty geog (g3;gp3 P84DfP8Jd-og peansvag 4-11

h 1 R I 7 l 1 p - g =l: w gi CIEREMEBREIIDE -- E - g 3

                                                      =

a. e E- - -

                                                      -                                                                                         0    -

3 t - E u atarummumunumammusumaua  !. a p 3 -

                                                      .x                                                                                        #           1 m,                                                                                   .. ,

g EIDDEImmmREMEE23 -N 't w; E emnxummamamuunuse.- - 5m E m 6 E - E E

                                                          =

B

                                                          =

C -! 1g-' o E - - -- <--mi oa B-

                                                                                                                                    ~

g; o-e o e m N , o cn co N- e o e J J J J J J J d' d 6 6 6 6 . opey xnti 4esa troppo patoipeJd-04-Peanseaw - g-4-12 3

i Figure 4-7. Measeired-to-Predicted Critical ifeat Flux vs Hydraulic Diameter ^ s 1.6 C 1.5 o 1.4 e E 1.3 x

                                                                                               ' fs 1.2                          5 E'            %                                  l-2      1.1
                                                                                   ~
        ?          7.0                          ;
        ;   b.                                  I
                                                                               ' '                  ~

j 0.9 )l v v r T 0.8 g t

                                            =

g g > y 0.7 T s

            $     0.6 2

0.5 ^

                                                                                                                                ~!

0.4 , i i i i i e i e i e i e i O.30 D.34 0.38 0.42 0.46 ' O.50 - 0.54 0.58-Hydraulic Diameter (inches) w- --~"-~- " " ~ " - _~ . - - - -- - -----

                                                                                     -r         -       '-
                                                                                                            ..,. R f                                                                                                                               .

Figure 4-8. Measured-te Predicted Critical Heat Flux vs Frequency Distribution 2?D t n  % va , w xx x2 i" ' " 77 $ $ $ m -

7x Vx Vz Vx Vx
                                                                  % % Vz yz %
               ~
                   ]'

W W '4 W W eO

                                                           % % % % % % V%

40 m _ A

                                                                                                                                                       ~
                                                                                                                                                 ~

0 .,

                                                 . 2, 'A     i
                                                                  'A, 'A, 'A, YA, 'A,
                                                                                                                 'A, T 7,)    ,

0.75 0.80 0.85 O.90- 0.95 1.00 1.05 ' 1.10 - 1.15 1.20 : 1.25 ' 1.30 O.70 Measured-to-Predicted Critical Heat Flux Ratio -

 .. - - -            _______=_           - - =
                                                                      -       - - -        - -    - - - - - ~
                                                                                                                                 = -- -- -
                                                                                                                                                        --)
                                                                                                -q.

Jg.! e a i

                                                                                                  -- i i
5. DESIGN CRITERION '[

i In reactor core design analysis the design heat flux.should be within the.

                                                                                                  }

nucleate boiling region and sufficiently below the CHF to. avoid fuel burnout,

                                                           .                                             l' i

A Departure from Nucleate Boiling Ratio (DNBR), defined as the ratio of the 1 calculated CHF at a given location to' the actual heat flux at that 1ocation :

                                                                                ~
                                                                                                  ~I is usually used in desicn. The chosen design criterion for_the present                   -

analysis is that CHF will-not occur with a.95 percent' probability with a 95. ;l percent confidence level. In' order to meet this criterion, a design. Limiting - I . value for Departure from Nucleate Boiling Ratio (MDNBR) is determined by_the _ d method of Owen [7]. The NDNBR is the minimum DNBR.that can be -calculated (for any given core condition) on the . limiting pins _ in the reactor while still

                                                                             .                             i maintaining a 95 percent confidence that 95 percent'of these. limiting pins                      ;

are not in film boiling, j

                                                                                                       .j Using one-sided tolerance theory from Owen [7), we can write'the following.

expression for MDNBR, MDNBR = 1.0/(R - K p) o  ! where

                   .                                                                                    . 3, R'   = Average measured-to predicted CHF ratio for the correlation data:             il base o    = Standard deviation of the measured-to predicted CHF ratios of the-
                        ' data base
                                                                                                           -i 5-1                                                      l

_. J

a

       ,'s                                 j .,                                                       '               ~'

g '5. x l K Y'p = One-side.1 a confiden:e tolerance facter level-(y) and basedof portion onthe number of. data population points (n),- protected (P). . - g (Refererce 7 provides; tables which give values for K ,p) For the present correlation, R =.1.000, o = 0.0942, and'KO.95,0.95 = 1.727.

        -,.                                                                                                                                                               n g'

Therefore, MONER.= 1.194. u g

                                                           ' Based on this result a reactor core designed using the DCHF-1 correlation                                   !

could' operate with a minimum DNBR of.1.194 and satisfy the design criterion. a

8:

3 ll  ; I: 7: 1 g e i I  ; I! g,

                                                                                                                   .5-2                                                      ;

i I

s .,7 s . 4

6. APPLICATION The DCHF-1 correlation isilimited to fuel assemblies with mixing spacer 1

_J grids. ' Specific ~ applicability of the-correlation includes Westinghouse 15x15 1 fuel. assemblies-(both L-grid and R-grid), Westinghouse 17x17 fuel assemblies' W (both standard, or 0.374 inch: diameter,: and 0FA, ~or.0.360. inch diameter fuel. assemblies) and the Babcock and Wilcox Mark BW mixing vane grid fuel

assemblies.*

j

                                                                                                                        -i
        ,,                      The parameter ' ranges over which the DCHF-1 correlation ~is applicable are:         '

i Pressure 1485 to 2445 psia

          =

Local mass velocity 0.85 to . 3.63 M1bm/hr-f ta l Local quality -0.15 to. 0.36- j Rev. 1 ]

                                      . Heated length 2

96 to 168 inches <

             !                         Axial spacing.between spacing grids 13 -to -32 inches                1
                                                                                                                         ~1 j_                                   Equivalent hydraulic diameter-                0.37 to 0.51. inches ,

g Since the development of the correlation was based on local conditions deter-mined by-the VIPRE-01 thermal hydraulic computer code, the use of the DCHF-1 , correlation is limited to the VIPRE-01 code [2]. 1 2 l .

    'E
  • Appendix C justifies the application of the DCHF-1 correlation to the'B&W Mark BW fuel assemblies. This appendix contains data which is proprietary to
                              . Babcock & Wilcox Company.                                                                 q 6-1 4

-s j

[.

7. REFERENCES
)

L

1. - . C. F. Fighetti and D. G. Reddy, " Parametric Study of CHF ' Data," j EPRI-NP-2609, September 1982 (three volumes).- 1
2. - J. H. Cuta, et. al., "VIPRE-01:

A~ Tneraal-Hydraulic . code for Reactorf j Cores'," EPRI-NP-2511-CCM,. July 1985 (five: volumes).- j

                                                                                                                                       ~

i

3. L. S. . Tong,. " Boiling Crisis and Critical- Heat Flux," TID-25867, U.S. AEC, :j 1972. ,
4. F. E. Motley,4 et. al,' "New Westinghouse Correlation WRB-l' for predicting Critical- Heat Flux-in Rod Bundles eith Mixing 4 Vane Grids,": WCAP-8763-A, .i Westinghouse Electric Corporation,; July 1984. - (Nonproprietary) - <

l p,y,g l S. D. G. Reddy, S. R. _Sreepada, and A. N. Nahavandi, "Two-Phase Friction j Multiplier Cctrelation for High-Pressure Steam-Water Flow, EPRI-NP-2522 --! July 1982.  ; i

6. R. I. Jennrich and P. F. Sampson, " Application of Step-Wise Regression to i Nonlinear Estimation," Technometrics, Vol.10, No.1, Feb.1968. -

4

7. O. B. Owens, " Factors for One-Sided-Tolerance. Limits,"-Sandia- Corporation Monograph, 1963. l
                                                                                                                                                     \

o i l 3

                                                                                               '7-1 i
                                                                                                                                                       'l

k -' r i ': l _ .],

                                                                      =1 l
                                                                        +
                                                                        - [.

i

                                                                        .4,
                                            . APPENDIX-A          >

SYSTEM-THERMAL CONDITIONS FOR THE DCHF-liDATA BASE -!

                                                                        .i l

t'

\

1

                                                                             -l b
                                                                    .      Ij A-1                           .

I Table A-1. System Conditions - Test Section W108 Test Test System. Inlet Average Average Axial CHF ) Serial 10 Pressure Temperature Mass Velocity Heat Flux Location No. No. (psia) (*F) (M1bm/hr-ft2 ) (MBtu/hr-ft2 ) (inches) g 3]i 1 8 1515.0 520.0 2.500 .568 70.00  ! 2 9 1515.0 499.0 2.500 .624 70.00 3 10 2165.0 584.0 2.587 .510 70.00 4 11 2115.0 567.0 2.540 .557: 70.00 5 12' 2415.0 577.0 2.535 .550, 70.00-6 13 2415.0 559.0- 2.064 .517- 70.00-7 14 1515.0 560.0 3.429 .512 70.00 , 8 -15 1815.0 579.0 3.552 .545. 70.00 9 16 1825.0 500.0 1.907 .563 .?0.00- 1 10 17 1515.0- 545.0 3.604 .579 10.00 11 18 1515.0 482.0 2.480 .664 70.00- D 12 19 1545.0 466.0 1.970- .610 70.00 4 13 53 1515.0 558.0 3.571- .508 '70,00 14 54 1815.0 560.0 3.612 .605 70.00 15 55 1795.0 -481.5 2.029 .597- 70.00 j 16 56 2115.0 502.5 2.021 .571- 70.00 17 57 2115.0 517.5- 2.035 .550 70.00 18 58 2115.0- -541.5 2.026 .507 70.00 ' 19 59 2115.0 545.0 2.526 .584 70.00 20 60 2090.0 567.5 3.057 .608 70.00  ! 21 61 2125.0 581.0 3.068 .546 70.00 ~ 1 22 62 2095.0 601.5 3.040 .482. -70.00 ' i 23 63 2115.0 566.0 3.574 .689 76.00 l 24 64 2115.0 594.0 3.456 .548 70.00 l 25 65 2095.0 577.5 3.568 .618 70.00 26 66 2405.0 580.0 3.091 .597 76,00 1 27 67 2410.0 602.0 3.069 .521 76.00 .! 28 68 2415.0 623.0 3.047 .470 70.00 ) 29 69 2415.0 627.0 3.557 .502- 70.00 IL g I Il B; e A-2 g)

I -

                                                                                                    ~t it System Conditions - Test Section W114 I       Test   Test Table A-2.

System Inlet. Average 1 f

                                                                         ' Average    Axial CHF~

Serial ID Pressure Temperature Mass-Velocity Heat Flux Location No. No. (psia)- (*F) (M1bm/hr-f ts) - (M8tu/hr-ft2 ) (inches) D 1 217 1500.0- 517.1 2.545 .583 74.00- , 2 218 ~ 1505.0 496,9 2.558- .643 74.001  ; 3 219 1505.0 481.3 2.544 .690 81.00-4 220 1515.0 559.9- 3.592- .550- 58.00 5 221 1515.0- 539.5 3.587 .644 58.00 6- 222 1805.0 580.8 3.540 .545 58.00 -i 7 223 1805.0 560.3 3.674 .675 58.00 , 8 224 2095.0 - 583.1 2.558. .539 74.00 9 225 2100,0 565.5 2.550 .586~ 58.00-10 226 2115.0 546.3 2.570- .635 74.00 11 227 2115.0 590.0 3.095 .539 58.00 1 12. 13 228 2125.0 2135.0 583.7- 3.055 .606 58.00 229 559.6 3.101 .684 74.00 14 230 2115.0 600.3 3.572 .571 58.00 15 231 2135.0 585.3 3.582 .674 74.00 1 16 232 2125.0 566.4 3.563 .737 .74.00 17 233 2435.0 626.4 .2.537 .577 74.00 I 18 234 2435.0 602.6 3.609 .672 74.00 19 235 2425.0 583.7 3.587 .736' 74.00 20- 236 2445.0 624.5 3.026 .531 74.00 t 21 237 2435.0 602.3 .601-I 22 23 24 238 239 240 2425.0 2425.0 2425.0 580.4 579.5 553.8-3.063 3.086 2.574 2.564

                                                                             .673
                                                                             .587 74.00 74.00 74.00 l
                                                                             .654        74.00 I      25 26 27 241 242 243 2400.0
                      -2425.0 2405.0 537.2 558.7 541.1 2.560 2.089 2.058
                                                                             .684
                                                                             .551
                                                                             .585 74.00 74.00 74.00 1

I 28 29 244 245 2425.0 2125.0 514.8 537.A 2.067 2.035

                                                                             .641
                                                                             .582 74.00 74.00-I 30    246    2115.0           515.7           2.064-               .623        74.00'           i 31    247    2115.0           500.2           2.051                .655        74.00             '

32 248. 1805.0 500.2 2.108 .605 :81.00 l 33 249 1825.0 478.1 2.018 . 641 '- 81.00 j

                                                                                                            ,i
 =

A-3 1 1

I; Table A-3. System Conditions - Test Section W121 Test Test System Inlet Average. Average. Axial CHF-Serial ID Pressure - Temperature Mass Velocity Heat Flux Location i No. No. .(psia) (*F) (M1bm/hr-fts). (M8tu/hr-fts) (inches) 2 s 1 394 1535.0: 560.6- 3.589 .611 64.00' 2 395 1505.0 539,5- 3.648 .679 64.00 1 3 396 1795.0 585.0 3.643 .590 64.00-

       -4       397                                                       1775.0         559.3            3.584               .694         64,00                 ,
       -5      .398                                                       2085.0         603.9            3.511               .606         64.00     =

6 399 2065.0~ 578.2- 3.578 .735 64.00 l 7 400 2115.0 568.1 3.577 .813 64.00 m3 8 401 2115.0 607,2 3.037. .557 64,00 9 402 2115.0 580.4 3.090 .648 6/.00 2 g ;j 10 403 2115.0 562.2 3.116 .757 64.00 11 404 2400.0 624.8 3.583 .609 64.00 $j 12 405 2405.0 605.-2 3.631 .716 64.00 51 ' 13 406 2405.0 582.1 3.615 .822 64.00 14 a07 2415.0 628.7 3.045 .547 64,00 m! 15 408 2395.0 606.8 3.091- .633 64.00 g 'i 16 409 2385.0 584.4 3.077 .731 64.00 17 410 2415.0' 587.6 2.552 .627 64.00 18 411 2405.0 562.9 2.575 .717 -64.00 . E .; 19 412 2415.0 537.2 2.607 .797 64.00 -B 20 413 2095.0 582.7 2.590 -.570 64.00'

      -21        414                                                       2125.0         560.9            2.576-               .653       -64.00        a 22       415                                                       2105.0         542.1            2.594                .721        64.00        g<*

23 416 1495.0 521.3 2.617. .653 64.00 24 417 1505.0 503.1 2.590- .701 64.00 25 26 418 419 1505.0 2405.0 4P0.0 559.3 2.620 2.083

                                                                                                                                .769
                                                                                                                                .610 64.00 64.00 gi 27       420                                                       2405.0         543.7.           2.114                .652        64.00 28       421                                                       2405.0          530.7            2.045               .693        64,00        g.

29 422 2100.0 540.1 2.077 .615 64.00 g 30 423 2115.0 524.2. 2.049 .667 64.00 31 424 2095.0 500.8 2.075 .728- 64.00 , 32 425 1805.0 503.1 2.141 .687 64.00 Ei 33 426 1815.0 482.3 2.057 .724 64.00 E 34 427 1505.0 479.7 1.527 .552 64.00 i 35 428 1515.0 462.5 1.553 .604 64.00 m 36 429 1515.0 440.5 1.526 .658- 64.00 gi 301.7 0.962 .659 64.00 39 43E 2015.0 I g A-4 = g

y + , Table A-4. SystemConditions-jTestSectionW122 y i

 . Test      Test    System         Inlet         Average          Average     Axial CHF  '!

Serial: ID Pressure Temperature Mass Velocity Heat Flux Location No. No. (psla) (*F) (Mlba/hr-fts) (MBtu/hr-fts) (inches)

                                                                    ~
                                                                                           )

11- 434 1525.0 557.7 3.639 .601 64.00' L 2 435 1515.0 535.9 3.633 .690 64.00 3 -436. -1815.0 584.4 3.586 .588 64.00 4 437 1815.0 560.9 3.673 .693 64.00 -1 5 438' 2115.0 602.0 3.624' .600 66.00 i 6- 439 2105.0' 582.1 3.685 .693. M. 00 -l 7 440 2115.0 561.2 3.637 .779 64.00 8 441 2130.0 602,3 3.111' .558 64.00 9- 442 2115.0 '582.1 3.163 .643 64.00

                                                                                           }

10 443 1115.0 561.6 3.148~ .707 64.00 11 444 2395.0 627.4 3.614 .578 64.00 12 445 2425.0' .605.2 3.662 .699 64.00 13 446 2375.0 578.5 3.667 .783 78.00 14 447 2415.0 623.8 2.978 .519 64.00 15 448 2010.0 60L3 2.982 .595 64.00-16 449 2395.0 582.1 2.985 .662 78.00 17 450 2375.0 583 1- 2.502 .572 64.00 1 451 2415.0 565.2 2.515 638 74.00 2- 452. 2115.0 587.9 2.489 .527 64.00 3 453 2115.0~ 570.7- 2.532 .591 74.00 4 454 2115.0 550.8 2.491 .651 74.00 5 455- 1515.0 519.3- 2.535 .616 64.00. 6 456 1515.0 492.1 2.546 .705 64,00 7 457 1515.0 478.4 -2.525 .746 64.00 8 458 2125,0 536 G P.034 .582 74.00 9 459 2125.0 522.2 1.996 .622 74.00 ' 10 460 2095.0 500.2 2.056 .681 74.00 11 461 1815.0 500.5 1.998 .626 74.00 12 462 1815.0 479.7 2.031 .689 74.00 A-5

                                                                       .                                              .- 1 N

i Table A-5. -System Conditions - Test Section W124 l Test Test System Inlet Average Average Axial CHF  ! Serial ID Pressure Temperature Mass ~ Velocity Heat Flux Lo:ation E' No. No. -(psia) (*F) (M1ba/hr-fts)- (MBtu/hr-ftz) (inches): El i 1 475- 1565.0 565.2 3.493 .597 64.00 2- 476 1515.0 537,8 3.536 .688- 64.00

                        -3   477      1790.0                572. :5 --      3.712-            .621          64.00
                        .4   478      1790.0                559.9           3.764             .731          64.00      g-6  480      2115.0'.              580.,3          3.723             .770          64.00      gi 7  481      2115.0                599.3           3.149             .607          64.00           i
8. 482 2115.0 580.1 3.180 .699 64.00
                        -9 10 483 484 2115.0 2415.0 565.2 623.1 3.148 3.643-
                                                                                              .757
                                                                                              .541-64.00 64.00      lt   ,

11 485 2415.0 601.3 3.654 .755 64.90 i 12 .486 2415.0 619.9 3.015. .578 64.00 gi

                     = 13     487     2415.0 ~               598.4=          2.983             .646         74.00-     g

14 488 2415.0 584.7 2.910- .688 ;4.00 15 489 2415.0 577.5 2.501 .640 64.00 16 490 2415.0 562.2 2.483 .684 74.00 17 491 2415.0 547.6 2.472 .719 74.00 i 18 492 2115.0 585.7 2.438 .571 64.00 19 493 2165.0 574.6 2.454 .602 74.00 g 20 494 2115.0 543.1 2.508 .712- 74.00 g 21 495 2115.0 525.5 2.479 .745 74.00 , 22 496 1515.0 516.7 2.491 .663- 64.00 23 497 1515.0 502.4 2.511 .719 64.00 i 24 498 1515.0 481.3 2.505 .763 84.00 25 499 2415.0 561.9 1.997 .586 74.00 26 500 2415.0 539.2 ~1.991 .646 64.00 g-27 501 2415.0 516.1 '2.022 .697 74.00 g 28 502 2115.0 544.3 2.004 .594 64.00 29 503 2115.0 526.8 1.996 .646 74.00 30 504 2115.0 494.0 1.980 .719 64.00 1 i 31 505 1815.0 496.3 2.025 .660 84.00 32 506 1815.'0 488.2 1.947 .676 84.00 33 507 1515.0 475.2 1.536 .574 64.00 mi 34 508 1515.0 455.7 1.488 .588 84.00 g4 35 509 1515.0 440.8 1.491 .616 .84.00

                                                                                                                      .I I'

I . B. A-6 l

                                                         ~i m-im i e i n    ii i         i

I I o Table A-6. -System Conditions,- Test Section W125 i Test Test System Inlet- Average Average Axial CHF  ! Serial ID Pressure Temperature Mass Velocity -Heat Flux Location  ! _ No. No. (psia) .(*F) (M1bm/hr-ft2 ) (M8tu/hr-f tz) (inches) . 1

                                                                                        .I l

1 510 1515.0 554.7 3.537 .510. 8", , 00 2 511 1515.0 541.7 3.511 .587 37.00. !G 3 512' .1815.0 ~579.8 3.470 .542 70.00 4 513 1815.0 -558.0 3.568 .614 70.00 3

5. 514 2115.0- 600.0 '3.541 .533- 70.00 i 6 515 2115.0 584.4 3.499 .622 70.00 <

7 516- 2115.0 571.7 3.482 .658 87.00 8 517 2145.0 605.9 2.954 .463 70.00 i 9 518 2115.0 576.5 3.043 .573 70.00 j 10 519 2115.0 560.9- 3.019 .612 87.00 J 11 520 2415.0 619.9 3.537 .530 87.00 1 12 521 2415.0 599.7 3.536 . 610 87.00 j 13 522 .2415.0 583.1- 3.520 .665 87.00 1 14 523 2415.0 620.5 3.053- .466 87.00 15 524 2415.0 594.1 3.052 .568 87.00  ! 16 525 2415.0 582.1 3.004 .606 87.00-  ! 17 '526 2390.0 579.8 2.517 .515 70.00 18 527 2375.0. 560.6- 2.522 .547 76.00 19 528 2395.0 539.2 2.521 .600 76.00 , 20 529- 2135.0 581.1 2.515 .500 70.00~ 21 530 2100.0 561.9 2.514 .542 76.00  ! 22 531 2100.0 544.3 2.506 .577- 76.00 1 . 23 532 1535.0 518.7 2.528 .555 87.00 24 533 1525.0 498.5 2.507 .595 87.00 25 534 1525.0 483.9 2.482 .634 76.00 26 535 2400.0 556.4 .1.994 .475 76.00 27 536 2395.0 544.7 2.037 .537 76.00 28 537 2415.0 523.2 2.040 .584 76.00 29 538 2115.0 544.0 1.997 .508 70.00 30 539 2100.0 519.3 2.025 .560 76.00 31 540 2095.0 505.0 1.994 .581 80.00 32 541 1825.0 503.1 1.987 .560 70.00 33 542 1815.0 484.3 2.016 .608 -70.00 i A-7 I

t j Table A-7. System Conditions - Test Section W127  ! j e

    - Test     Test        System             Inlet            Average                   Average     Axial CHF-Serial       ID-    Pressure          Temperature        Mass Velocity         Heat Flux         Location No. -      No.       (psia)-            '(*F)          (M1bm/hr-fts)      (M8tu/hr-f ts)-

(inches)- l

        ~ 1. 550       1515.0                558.0              3.548                    .508          70.00 2'  551       1515.0                532.3              3.543                    .590          90.00            1 3   552        1815.0               572.6               3.549                   .528          70.00 4   553       1815.0                558.0               3.530                   .589          70.00   -E F   554        2115.0               600.7             -3.526                    .512          70.00       B 6   555        2115.0               587.6.              3.489                   .569          70.00 7   556        2115.0               562.6               3.533-                  .640          70.00 8   557     -2115.0                 594.8               3.046                   .484          70.00             !

9 558 2115.0 581.4 3.021 .524 70.00 i 10 559' - 2115.0 563.8 3.017 .576 70.00- , 11 560 2415.0 624.5 3.518 .499- 76.00 %i 3.521 .551 76.00  ;

       -12    561         2415.0             -604.9
        '13   562         2415.0-              585.7              3.506                    .605         76.00              t 14    563        2415.0               616.3              3.050                    .451          76.00 15    564        2415.0               605.2              3.006                       497       76.00 16    565        2415.0               582.4              3.034-                    .544         76.00 17    566        2365.0               583.1              2.502                     .479         76.00 18    567        2365.0               564.5             -2.484                     .523         76.00      E 19    568         2415.0              546.3               2.493                    .569'        70.00      5!

20 569 2115.0 584.4 -2.503 .445 70.00 21 570 2045.0 563.2 2.511 .491 70.00 - 4 22 571 2115.0 547.6 2.493 .543 70.00 23 572 1535.0 520.3 2.486 .540 70.00 24 573 1515.0 510.5 2.459 .575 70.00  ; 25 574 1515.0 487.5 2.506. .620 70.00 E' 26 575 1815.0 503.4 1.97C .541 76.00 5 27 576 1815.0 485.2 1.976 .577 76.00 l 28 577 2115.0 543.7 2.015 .487 70.00 . 29 578 2115.0 521.3 1.983 .520 70.00- ' 30 579 1815.0 503.1 1.979 .544 70.00'

31. 580 2115.0 499.8 2.006 .555 70.00-32 581 2415.0 564.2 2.001 .462 70.00 g 33 582 2415.0 545.7 1.997 .493 76.00 g 4 34 583 2415.0 521.6 1.998 .541 70.00 35 584 1515.0 475.8 1.747 .493 70.00 36 585 1515.0 464.5 1.467 .524 70.00 37 586 1515.0 444.0 1.480 .564 70.00 i I!

I A-8 ,

                                                                                 . Jireur

i ( Table A-8. System Conditions - Test Section W131 l Test Test System Inlet Average- Average Axial CHF 1' Serial ID Pressure Temperature Mass Velocity Heat Flux' Location 1 No. No. (psia) (*F) (M1be/hr-ft2 ) (M8tu/ht-ftz' (inches) ,

       .1    617      1505.0         559.6            3.427              .423        122.00 I       2    618      2095.0         603.9 604.2 3.448 3.450
                                                                         .402
                                                                         .455 122.00 122.00 3    619      2395.0 4    620      2395.0         601.3            3.007              .423         148.00            ,

3.005 .359 122.00 1 621 2115.0 592.2 1 5 6 622 2125.0 567.4 2.949 .443- 148.00- - 7 623 2125.0 566.1 2.422 .387 122.00- 'i 8 624 2395.0 563.2 2.442 .429 148.00 1 9 625 2405.0 575.6 3.413 .543 148.00' q 10 C26 2375.0 569.4 2.941 .479 148.00 1 11 627 2405.0 541.1 2.933 .546 148.00 12 2415.0 532.0 2.463 .478 148.00 1 13 628 629 2415.0 502.4 2.470 .538 148.00 l 1 14 630 2415.0 561.9 1.960 .360 122.00 15 '631 2405.0 525.2 1.952 .407 122.00 1 16 632 2100.0 561.2 1.969 .327 122.00 17 ~633 2095.0 524.8 1.949 .382 122.00 18 634 2405.0 492.1 1.964 .461 122.00\Rev.1 19 635 2115.0 474.5 1.997- .467 122.00 , 20 636 2125.0 487.2 2.468 .520 122.00 1 21 637 2095.0 503.4 2.495 .463 122.00 ]p 22 638 2115.0 556.4 3.448 .522 148.00 23 639 2085.0 528.7 2.972 .517 122.00 24 640 1815.0 555.4 3.486- .458 122.00 25 641 1795.0 532.7 3.463 .520 148.00 26 642 1800.0 520.6 3.494 .536 148.00  ! 27 643 1515.0 515.1- 3.528 .519- 122.00 i 28 644 1490.0 483.6 2.467 .456 122.00 29 645 1490.0 449.2 2.483 .501 122.00 30 646 1515.0 441.4 1.996 .447 121.00 31 647 1805.0 561.9 1.942 .284 122.00 32 648 1500.0 520.9 2.513 .426 122.00 33 649 1505.0 527.1 1.937- .359 148.00 34 650 1502.0 479.1 2.004 .409 122.00-35 651 1805.0 514.1 1.952 .352 122.00 36 652 1785.0 479.7 2.001 .408 122.00 37 653 2105.0 605.2 3.464 .412 122.00 2 i, A-9

r l ( o Ii l Table A-9. System Conditions - Test Section W132 Test Test System Inlet: Average Average Axial CHF serial ID Pressure Temperature Mass Velocity _ Heat Flux Location No. No. (psia) (*F) (M1bm/hr-fts) . (PBtu/ht-f ts) (inches). 1- 654 1515.0 563.2- 3.421 .475 152.00. 2 655 2095.0 607.2' 3.439 .427- 142.00  ! 3 656 2405.0 605.5 2.950 . 428 142.00 1 4 657 2205,0 601.3 2.978 .390-

                                                                       .461 142.00      $)

5- 658- 2105.0 567.7 2.942_ 142.00 5l 6- 659 1805.0 563.8 3.442 .470 142.00-7 660 2375.0 606.5 3.418 .476 142.00 1 8 661 2400.0 594.5 3.349 .514 142.00  ? 9 662 2400.0 576.5 3.395 .561 142.00  ! 10 663 2115.0 560.3 3.456 .566 142.00 11 664 2400.0 545.0 2.930 .575 142.00 31 12 665 2115.0 523.6 2.969 .580 142.00 5 14 667 1800.0 529.7 3.464 .573 142.00' 15 668 2100.0 484.6 2.470 .576 142.00 16 669 2385.0 502.4 2.493 .572 142.00: ' 17 670 2390.0 573.6 2.918 .508 142.00 18 671 2385.0- 563.2 2.438 . 4 57 ,- 142.00- , 19 672 2400.0 538.5 2.453 .510 142.00- 1 20 673 2400.0 560.3 1.947 .358 142.00 21 674- 2400.0 518.7 1.962 .461- 142.00 22 675 2405.0 482.0 1.937 .497 142.00 23 676 2095.0 482.6- 1.951 .480 142.00-24 677 2105.0 563.8 2.415 .413 142.00 25 678 2105.0 527.4 2.469 .492 142.00  : 26 679 2105.0 520.3 -1.946 .410 142.00 E! 27 680 2105.0 568.1 1.918 .329 142.00 5l 28 681 1800.0 525.2 1.932 .367 142.00  ! 29 682 1800.0 562.9 1.941 .331 142.00 l 30 683 1500.0 525.8 1.925 .403 152.00 ' 31 684 1495.0 522.2 2.511 .476 122.00 32 685 1800.0 486.2 1.984 .423 142.00 33 686 1500.0 488.2 2.444 .501 142.00 E< 34 687 1500.0 484.3 1.961- .444 142.00- 51 35 688 1500.0 442.1 2.010 .486 '142.00

36. 689 1500.0 464.1 2.452 .512 142.00 I

I A-10 I .

                                                                                             .i l

l Table A-10 System Conditions - Test Section W133

                                                                                             '{
    -Test'    Test'  System        Inlet         ' Average            Average     Axial CHF      l Serial'     ID: Pressure    Temperature-    Mass Velocity--      Heat Flux    Location-      .

No.. No. (psin) ('F)- (Mlbm/hr-ft8 ) '(M8tu/hr-ft2 ) (inches) i 1 690 1500.0 560.5 3.425 .501 122.00 'i 2 691 2100.0 607.0 2.955 .402 148.00 3 692 2100.0 606.0 3.407 .459 136.00 4 693 2400.0 609.0 2.960 .445 136.00 5 694 2105.0 '569.0 .2.971 .491 136.00-6 -695 2405.0' -568.0 1.959 .387 136.00 7- 696- 2405.0 509.0 1.997 . 463 142.00' 8 697 2105.0 478.0' 1.961 .494- 136.00-. , 9 698 2115.0 560.0 2.434 .449 '148.00 1 10 699 2105.0 519.0- 1.961 .437. 148.00- 1 11 700 2110.0 563.0 1.938 .370 _148.00  ; 12 701 2400.0 560.0 2.477. 4'1 142.00  ; 14 703- 1805.0 566.0 1.967 . n', 136.00 l 15 704 1500.0 523.0 1."17 .353 136.00 16 705 1500.0 527.5 2.518 .A70 136.001 17 706 1795.0 487.0 1.959 .4b6 148.00 , 18 707 1505.0 485.0 1.988 .454 136.00 1 19- 708 1500.0 447.0 2,008 .510 136.00 20 709 1830.0 536.0 3.445 .566 148.00. 21 710 1815.0 569.0 3.412 .497 148.00 22 711 2400.0 609.0 3.404 -.488 148.00 23 712 2400.0 586.0 3.392 .532 ~136.00 , 24 713 2400.0 576.0 3.408 .551 136.00 -l 25 714 2215.0 570.0 3.455 .540 136.00 26 715 2415.0 550.0 2.935 .548 136.00 27 716 2100.0 534.0 2.949 .558 136.00 28 717 1525.0 537.0 3.446 .563 136.00 1 29 718 2400.0 504.0 2.507 .562 136.00 l 30 719 2405.0 573.0 2.947 .509 136.00-31- 720 2400.0 541.0 2.468- .497 136.00 32 721 2100.0 527.0 2.499 .515 136.00 33 722 2100.0 493.0 2.463 .561 136.00 34 723 2405.0 477.0 1.992 505 142.00 a 35 724 1495.0 485.0 2.468 .533 136.00 35 725 1505.0 469.0 2.469 .554 136.00 37 726 1500.0 443.0 1.531 .415 148.00. . . 38 727 1505.0 489.0 1.463 .376 148.00 - A-11 I n l

I, , ( ' Table A-11. System Conditions - Test Section W134 I

      -Test    . Test   System         Inlet           Average           Average        Axial CHF--

Serial -ID- Pressure Temperature Mass Velocity Heat Flux -Location- . . , 2 No. No. (psia) (*F) (M1bs/ht-ft ) 2 (M8tu/hr-ft ) (inches) ,

                                                                                                            ?

I 728 1510.0: 561.2 3.393- .399 122.00 l Revg ; 2 729 1800.0 562.9 3.408 .423 152.00, g1 3 730- 2095.0 606.8- ~ 3.?S9 - .384 152.00  ; 4 731 2125.0 ,607.2 3.433 .393 '152.00 5 732 2405.0 603.3 3.437 .444 152.00 E;l ' 6- 733 2385.0 602.6 2.985 .410- 152.00 :B1 7 734 2115.0 600.0 2.895 .346 152.00 8 735 2100.0 559.9 2.942 .444- 152.00 lg1 9 736 2405.0 565.8 -2.927- .486 . 152.00' g: 10 737 2400.0 562.2 2.411 .418 152.00 11 738 2100.0 560.9 2.403 .378 152.00 12 739 2405.0 565.2 3.420- .557. 152.00 E 13 740 1490.0 442.7 2.444 .489 152.00 E 14 741 2385.0 482.6 2.477 .530 132.00- l 15 742 2100.0 481.0 2.443 .506: 152.00 g' 16 743 1500.0 483.6 3.538 .567 152.00-17 744 1500.0 -516.7 3.502 .496 152.00 g'l 18 745 1800.0 '519.7 3.494 .518 '152.00

        -19   .746     2405.0           521.9             2.930              .542           152.00-20     747    2405.0           525.8             2.949              .507          :152.00 21     748    2405.0           522.6             2.430              .470            152.00 22     749-   2105.0-          563.2            -3.249              .465-           152.00
        '23     750    2085.0           559,3             1.932              .318            152.00     g{

g-24 751 2385.0 557.7 1.952 ~327

                                                                             .               152.00 25    752.  '2410.0'           513.8            1.934              .4011           152.00.

26 753 1105.0 514.1 1.936 .378- 152.00- 'l 27 754 2105.0 517.7 2.452 .447 152.00 sl i 28 755 2090.0 475.5 1.965- .428 152.00 29 756 2425.0 478.1 1.949 .443 152.-00 g 1485.0 514.1 2.411 .399 152.00 ;l 30 757 g-31 758. 1505.0 481.0 2.450 .452 152.00 i 32 759 1505.0 520.0 1.934' .340 .152.00 33 760 1800.0 522.2 1.937 .335 152.00 $ , 34 761 1800.0 481.0 1.977 .393 152.00 5  : 35 762 1500.0 480.0 1.930 .377  ! 36 763 1500.0 440.0 1.938 .421 152.00 136.00 l Reg; 37 764 1800.0 561.9 1.890. .281' -152.00 g3 38 765 2105.0 562.6 3.398 .479 152.00 j IL A-12 . i l

~ . _ 1

                        ' Table A-12. System conditions : Test Section W138 I

Test Test System Inlet Average Average Axial CHF~ ,

    -Serial   ID    Pressure       Temperature     Mass Velocity        Heat Flux     Location'    !

No. No. (psia) (*F) (M1bm/hr-fts) (M8tu/hr-ft2)- (inches) l I 1 803 1495.0 434.6 2.004 .431 122.00 ' 2 804' ' t.00. 0 445.3 2.473 .482 122.00 3 805' h00.0 483.9 2.173= .397 148.00 4 806- 1500.0 483.0 2.481 .437 122.00 I 5 6

         -7 807 808-809 1795.0
                   -2100.0 2095.0 482.3 481.7 488.5 1.995 2.015 2.474
                                                                          .401
                                                                          .444-
                                                                          .501 122.00 148.00 148.00 a

f' 810 e 2395.0 482.0 1.965 .452 148.00 9 811 2405.0 502.4 2.435 .513 148.00 10 812 2405.0 519,3 - 1.946 .401 148.00 11 813 2395.0 521,9 2,456 .484' 148.00 12 814 2115.0' 518.7 1.964 .385- 148.00 13 815 2120.0 521.9 2.479 .445 148.00 14 816 2115.0 525.5 2.941 .498 148.00 15 817 1810.0 516.4 1.974 .343 148.00 , 16 818 1805.0 520.0 3.465 .505 122.00 l 17 819 1505.0 521.6 1.922 .325 148.00 18 820 1500.0 520.9 2.511 .378 122.00

19. 821 1515.0 516.4 3.498 .471 122.00 20 822 2415.0 536.6 2.893 .527 122.00 21 823 1510.0 557.7 3.435 .410 122.00' 22 824- 1805.0 -559.0 3.494 .433 -122.00 23 825' 1805.0- 553.1 1.991 .295 122.00
       .24    826-   2115.0           557.3             2.006              .329         122.00 25     827   2105.0           558.7             2.451              .379         122.00 26     828   2105.0           561.2             2.939              .426         122.00 27     829   2095.0           562.2             3.441              .482         122.00-28     830   2405.0           563.5             1.954              .349         148.00 29     831   2395.0           558.7             2.434              .422         148.00 30     832   2405.0           563.2             2.932              .485         148.00 31     833   2415.0            576.9            3.359              .512         148.00 32     834   2420.0           601.3             2.980              .413         122.00 33'    835   2415.0            605.5            3.406              .453         148.00 34     836   2095.0            599.7            3.006              .'349        148.00 35     837   2100.0            594.8            3.424              .412         148.00 36     838   2105.0            556.4            2.476              .394         122.00      .i 37     839   2100.0            520.0            2.522              .457         148.00 A-13 I

l

          +

Table A-13. System Conditions - Test-Section W139 Test Test- System Inlet- . Average. Average Axial'CHF; j Serial ID Pressure - Temperature: Mass' Velocity Heat' Flux Location

  • 2 No. No. - (psia) _ ("F)- (M1bm/hr-ft ) (M8tu/hr-fts) (inches) 1: 840 1495.0_ -478.9 1.924 .365 il52.'00  !
2. 841 1505.0- 439.8 2.403 .485- 152.00 I 3- 84? 1500.0 440.5 1~. 863 .401- 152.00-4 843 1495.0 485.0 2.403 .430- 152.00 j 5 -844 '1500,0 494.9: 3.466 .538 152;00 1 6 845 -1805.0 481.7 1.924 .381 152;00 7 846 -2095.0= '482.4. -1 929 . 413 .152.00-8 -847 -2095.0 '485.8' 2.380 .490l 152.00 9 848 2395.0 476.2 1.913' .450' 152.00' ,

10 849 2410.0 494.1- 2.422 .b2- 142.00 (Re . ' 11 850 1509.0 517.5= 1.880' .333: - 152.00; i 12 851; 1495,0 523.6 2.344 .376 152.00-13 852 1505.0 516.7- 3.474 .491, :148.00 1

                '14-     853     1805.0:           517.4             3.462             .531'        152.00' 15      854     1805.0            522.9             1.883             .325'        152.00;         g-16      855     2075.0            510.9             1.899             .370-        152.00          g' 17      856     2095.0~         '520.9              2.372             .436         152.00              l 18      857   l2105.0             521.9             2.886             .508         152.00-             !

19 858 2405.0 526.3 2.393: .470 152.00 l'; 20 859 2395.0 514.1' 1.890 .399= 152.00 e! 21 860 1800.0 563.0' 1.845. .271t 152.00.  ? 22 861 1815.0 560.9 3.359 .423 '152.00 mu 23 24 862 863 1505.0 2100.0 564.2~ 555.4

                                                                    -3.328-2.379
                                                                                        .388
                                                                                        .373:

148.00-152.00' gI 25 864 2100.0 563.1 ~2.934 .429' 152.00 - 0 26 865 2105.0 562.1 3.375- .484 :152.00. :31 27 866 2100.0 561.4 1.869' .297- 152.00' Wl 28- 867 2400.0 564.4 '1.895- .334 152.00 29 868 2405.0 565.9 2.356 .399 152.00 g 30 869 2405.0 566.3 2.880 .472 152.00' gi 31 870 '2405.0 603.9 2.918 '.400 -152.00 i 32 871 2405.0 601.1 :3.385' .449 136.00 l Re ' 33 872 2105.0 605.1 3.375' .390 152.00 , 34 873 2085.0 602.8 2.844 ~ .330 152.00' 35 874 2410.0 563.1 3.372 .550 152.00 A 36 875 2405.0 525.2 2.885 .550 152.00 g 37 876 1500.0 482.1 2.382 .429 136.00 g 38 877 2095.0 525.5 2.361 .425- 152.00-I g A-14

i R Table A-14.. System conditions - Test Section W153-l

         . Test  Test      System         Inlet       Average-           Average     -Axial:CHF Serial  -10     Pressure     Temperature   Mass Velocity       Heat Flux     Location I           No. . No.     .(psia)           (*F)    (M1bm/hr-ft2 )     (M8tu/hr-fts)  (inches)   l;l 1'                                                                                 d 13911  -1505.0         -565.8          2.990              .416~       154.00    -j I              2  1392    1800.0           572.6         2.981              .404         154.00      !
            '3   1393   '1805.0           580.1         2.716              .356         154.00      (

4 1394 1810.0 575.9 2.989 . 381 154.00' l l 5-6 1395 1396 2100.0 2100.0 606.5 582.7 2.962 2.531

                                                                           .369
                                                                          -. 339 -
154.00 154.00 -l 1397 2115.0- 552.2 2.493 7 .429 154.00 8 1398 2100.0 587.6 2.006 .292 154.00  ;

9 1399 2100,0 548.6 1.986 .368, 154.00- .l 10 1400 2400.0 607.2 2.960 .428 154.00 12 1402 2400.0 600,7 2.484- .377 154.00 -1 13 1403 2395.0 557.7 2.491 .456 168.00 d 14 1404 2400.0 .549.9 1.976 .395 168.00 15 1405 2105.0 559.3 '2.972 480 154.00 16 1406 1800.0 516.4 2.489 .446 154.00 . 17 1407 1805.0 525.5 2.968 .494' 154.00  ! 18 1408 2405.0 469.7 2.040 .455 168.00  ; 19 1409 2105.0 486.5 1.981 .454 154.00 I 20 1410 1500.0 -493.0 1.996- .415 154.00 1 21 1411 1500.0 494.3 2.495 .487 154.00 22 1412 2405.0 497.9 1.542 .385 154.00 i 23 1413 2100.0 486.9 1.530 .367 154.00 l 24 1414 2400.0 '435.6 1.533 .426 168.00 l 25 1415 2100.0 430.4 l'.478 .420- 154.00  ! 26 1416 2400.0 384.2 1.507 .451- 168.09 I 27 28 1417 1418 2100.0 1815.0 382.6 382.9 1.483 .448 168.00 1.486 .444- 154.00 4 29 . 1419 1500.0 373.8 1.501- .448" '154. 00 30 1420- 1795.0 418.1 1.471 .401 154.00 31 1421 1500.0 440.8 1.426 .383 154.00 32 1422 1800.0 460.3 1.447 .354 154.00 33 1423 1495.0 496.9 1.453 .348 154.00 34 1424 2095.0 552.5 1.450 .285 154.00-35 1425 2400.0 546.6 1.473 .318- 154.00-36 1426 2415.0 440.1 1.466 .404 168.00 2405.0'

 .)          37 38 1427 1428   -2425.0 548.6 494.3 2.980 2.465
                                                                             .532
                                                                             .554 168.00 168.00 39   1429    2405.0           496.6         2.979               .623-       168.00.

i 40 1430 2400.0 438.5 1.970 .526 168.00 1 41 1431 2400.0 448.2 2.458 .595 168.00 42 1432 2410.0 461.5 2.948 .657 168.00 43 1433 2410.0 '413.3 1.962 .535 168.00 l A-15 1 mt

I4  !' L

       #-                                                                                                             j        ,

o  ; Table A-15. System Conditions - Test Section W157 Test Test System Inlet Average- 'be age Axial CHF i Serial -ID Pressure Temperature Mass Velocity  :*4t Flux Location -  ! No. No. -(psia) ('F) (M1bs/hr-fta) (M8tu/hr-f ts) (inches)  : 1 1559 2100.0 -548.2 1.983 . 507 96.00 2 1560- 2125.0 545.0 2.500- .575 96.00 3 1561 2115.0 550.5 3.003 .627' 96.00 ' 4 1562 2115.0 554.4 3.439 .688 96.00 ' 5- 1563 2425.0 539.5 1.998 .523 96.00 - 6- 1564 2400.0 549.2 2.485 .597 96.00 7 1565 -2415.0 536.9 3.002 .740 90.00 ., 8 1566 2405.0 563.8 3.443 .730 96.00  ! 9 -1567 2400.0 621.8 1.958 .375 82.00 10 1568 2400.0 627.7 2.410: .429 82.00 11 1569 2405.0 617.6 2.916 .515 82.00 12 1570 2415.0 615.7 3.441- .595 96.00 13 1571 2100.0 608.5 2.037 .370 82.00 14 1572 2100.0 606.5 2.464- .426 82.00 15 1573 2105.0 608.8 2.961 .468 82.00 16 1574 2135.0 616.0 3.418 .501 82.00' 17 1575 2105.0 463.2 2.031 .662 96.00 18 -1576 2115.0 481.0 2.485 .731 96.00 19 1577 2100.0 515.7 2.918 .736- 96.00 l 20 .1573 2395.0 468.0 2.020 .692 96.00 l 21 1579 2400.0 -498.9 2.471 .734 96.00 22 1580 2405.0 534.3 2.893 .732 96.00 3 23 1581 2415.0 531.0 2.503 .636 96.00  ! 24 1582 2405.0 622.2 2.901 .499 96.00 25 1583 2415.0 466.7 1.047 .413 96.00 26 1584 2405.0 465.4 1.550 .568 96.00 27 1585 2105.0 619.6 3.408 .486 96.00 28 1586 2105.0 548.9 3.480 .718 96.00 29 , 1587 2115.0 544.7 1.033 .328 96.00 30 1588 2105.0 533.3 1.561 .455 96.00 31 1589 2100.0 465.8 1.046 .413 96.00 ' 32 1590 2105.0 467.1 1.512 .555 96.00 33 1591 2405.0 558.3 .974 .307 96.00 ' 34 1592 2405.0 558.3 1.490 . /8 96.00 35 1593 1505.0 455.7 2.032 .615 96.00-36 1594 1505.0 458.6 2.482 .696- 96.00 37 1595 1815.0 467.7 1.998 .618 96.00 38 1596 1815.0 472.9 2.498 .662 96.00 39 1597 1815.0 517.7 1.988 .523 96.00 . 40 1598 1800.0 516.7 2.514 .625 96.00 ' 41 1599- 1805.0 517.1 2.992 .705 96.00 42 1600 1500.0 513.2 2.015 .546 96.00 43 1601 1515.0 516.7 2.501 .588 96;00 44 1602 1500.0 515.4 2.989 .628 82.00 .- 45 1603 1515.0 514.8 3.492 .697 96.00

        .         46      1604    1505.0           576.2            2.017                 .434       82.00             'd A-16

1 r ,

!                                                                                                     ]I L

I

                                                              ~

Table A-15. System Conditions - Test Section W157 (Continued) Test Test System Inlet Average Average Axial CHF Serial .ID' Pressure Temperature Mass Velocity. Heat flux Location No. No. (psia) ('F) (Mlbm/hr-ftz) (M8tu/hr-ft2 ) (inches)- 4 47 1605 1505.0 566.8 2.481 .463 82.00. 48 1606 1505.0 564.5 3.010 .523 82.00 50 1608 1800.0 539.5 3.446 .702 96.00 51 1609 1520.0 582.7 3.443 .506 82.00L 53 1611 1795.0- 570.0 -1.531- .377 82.00 54 1612 1805.0 549.9 2.073 .471 96.00 I 55 56 57 1613 1614

1615 1805.0 1815.0 1805.O.

1805,0 563.8

                                             -574.6 561.9 2.515 2.063 3.514
                                                                                .503 542
                                                                                .608.

96.00 96.00 96.00' i 58 1616 517.1 1.067 .382' 96.00-  ! 1800,0 l 59 60 61 1617 1618 1495.0

                                             -516.1 495.3 1.517 1.036
                                                                                .468
                                                                                .416 96.00 82.00   1 1619     1505.0       513.0              1.462-         .444           82.00-   1 62         1620     1790.0       393.6              1.035          .445-          96.00 I;-         63         1621     1495.0       453.8              1.989          .617           96.00      !

64 1622 1805.0 417.5 1.507- .605 96.00 ,

  ,          65         1623     1800.0       427.9              1.957           .679          96.00    -;

66 1624 1510.0 387.7 1.051 .518- 96.00 i 67 1625 1505.0 402.9 1.526 .623 96.00 68 1626 1505.0 410.7 1.987 .719 96.00  ;

 -Ig         69         1627     1495.0       575.9              2.468'          .439          82.00   J l'         70 71 1628 1629 1805.0 1510.0 470.6 453.1 2.472 1.004
                                                                                 .722
                                                                                 .436 96.00 96.00       !

72 1630 1500.0 457.7 1.558 .551 96.00 73 1631 1805.0 455.7 1.518 .548 96.00 74 1632 1805.0 466.4 1.003 .404 96.00 75 1633 2105.0 396.8 1.057 .498 96.00 .i 76 1634 2425.0 392.3 1.049 .518 96.00 77 1635 2405.0 398.4 1.505 .653 96.00 78 1636 2115.0 400.7 1.498 .635 96.00 79 1637 2110.0 486.9 2.016 .640 96.00 l U l A-:17  ! 1

Table A-16. System Conditions - Test Section W158' -Test ' Test 5' stem Inlet Average Average Axial CHF 1 Serial ID Pru sure Temperature Mass Velocity- . Heat Flux 1.ocation i No. No. . (psia) (*F) (M1bm/ht-fta) (MBtu/hr-fts) (inches) 1 1638 2100.0 555.1 2.035 .517 96.00 E 'l 2 1639 2105.0 554.7 2.503 .571 96.00 ' B 3 "1640 2100.0 556.4 3.007 .647 82.00 l 4 1641 2105.0 556.4 3.496 .738 96.00 - l 5 1642 2395.0 552.2 2.048 .558- 96.00 6 1643 2425.0 547.6 2.524 .643- 96.00 7 1644 2395.0 558.0 2.996 29.i 96.00 8 1645 2435.0 562.9 3.446 ./67 82.00 gI 9 1646 2415.0 610.4' 2.033 .424 96.00 lRevWe 10 1647 2400.0 611.7 2.498 .444 96.00 i 11 1648 2405.0 613.7 2.971 .519 96.00 l 12 1649- 2410.0- 606.5 .3.507 .595 82.00 1 13 1650 2115.0- 618.9 1.973 .344 82.00 , 14 1651 2110.0 616.0 2.475 .401 96.00 . 15 1652 2105.0 617.3 2.944 .467 96.00 E';, 16 1653 2100,0 617.6 3.466 '484

                                                                       .           96.00           3, 17     1654     2115.0           521.6           2.994               .758        96.00 18     1655     2400.0           533.0            2.979              .756        96.00                   .

19 1656 2100.0 483.9 2.022 .667- 96.00 . 20 1657 2100.0 490.1 2.500 .737 96.00 , 21 1658 :2400.0 490.4 2.032 .651- 96.00 22 1659 2400.0 490.1 2.518 .764 96.00 -E. 23 1660 2415.0 484.9 1.508 .540 96.00 3j 24 1661 -2400.0 484.9 1.051 .425 96.00{Rev.: 25 1662 2095.0 484.3 1.010- .379 96.00 26 1663 2100.0 433.4 1.010 .435 96.00 l 27 1664 2105.0 419.1 1.515 .626 96.00 1 28 1665 2100.0 432.4 2.039 .746 96.00 ~ 1 29 1666 2100.0 484.9 1.523 .547 96.00 30 1667 2115.0 544.0 1.514 .445 96.00 I 31 1668 2395.0 552.2 1.523 .452 82.00 32 1669 1800.0- 572.3 1.504 .352 82.00 33 1670 1815.0 576.5 2.002 .418- 82.00 34 1671 1800.0 572.6 2.506~ .473 82.00 . 35 1672 1800.0 572.3 3.010 .536 82.00 l 36 1673 2100.0 556.4 2.998 .655 96.00 E 37 1674 1825.0 570.0 3.486 .651 82.00 g 38 1675 1500.0 563.5- 1.558 .380 82.00 39 1676 1515.0 567.7 2.040 .417 82.00 40 1677 1500.0 573.3 2.513 .492 82.001Re 41 1678 1515.0 569.4 3.014 .489 82.00 42 1679 1505.0 573.6 3.469 .510 82.00 43 1680 1800.0 514.4 1.556 .485 96.00 44 1681 1800.0 517.1 1.989 .559 96.00 Reg $ ' 45 1682 181!E.0 514.1 2.505 .648 96.00 A-18

                +O %h                                                                                            0
                             %M                  ,          IMAGE EVALUATION                          ///gf           [#4
                                                $>          TEST TARGET (MT-3)                                   g[,4     #g, 4)@gx9 4,,,, <[*

l.0 5mLa

                                                                            @ @ Es l-l      E r:

m illM 1.25 1.4 4 150mm > 4 6" y d*% .>,, p# , /A <>z, $ ;;<> A. O PHOTOGRAPHIC SCIENCES CORPORATION h4 770 BASKET ROAD P.O. BOX 338 pA\\ (t g WEBSTER, NEW YORK 14580 4 (716) 265 1600

                                                                            . . . - , , , , ,     . ' , , . ...e.--  - - - . . . - - - - . - . . . . . - , , . - - ,
;-                                         %h i                                53' t>                                                                                                           III/ho IMAGE EVALUATION

(([ d9 4 V* f/ TEST TARGET (MT-3)

                                                                                                             '*%,j[/@

j)s'(,,,/  :

 ?

b k I ( B ts

  !                                                         l.0      E Baa 12                                                                                                            t
  .                                                                  R E!!n gl 2.2            M
@ gg
h. l,l D hN
  -                                                                                           1.8

[ I.25 1.4 l 1.6 5 4 150mm >

                                            <                       6"                                                                                                 >

I L t i E i" hh

     +s%#A7/                      Y h
                                              %/////

PHOTOGRAPHIC SCIENCES CORPORATION 770 BASKET ROAD P.O. BOX 338 WEBSTER, NEW YORK 14580 lA4 A eNd g' h 4'% A

                                                                                                                                                                        !O 4,
                                                                                                                                                                      /]4d%(t (716) 265 1600

0 > 0 0 *s + IMAGE EVALUATION // \8 $//%!f/ Test TAnoer (ur.3)

                                                   $(f/#q9, f
  $$                                                 /q        //      b l.0      Wlls Na I-5 n*u !llE m

l,l D llllb l.8 j l.25 1.4 1.6 4 150mm > l 4 6" >

       %                                                  +

+?[ / zzzzf .

                                                   't ::h(    :          &

PHOTOGRAPHIC SCIENCES CORPORATION 4  % O 770 BASKET ROAD k' P.O. BOX 338 //f4, %, (t, WEBSTER, NEW YORK 14580 g'4 (716) 265 1600

I s E . _ Table'A-16. System Conditions - Test,Section W158 (Continued) Test Test System Inlet Average Average Axial CHF  ! Serial - ID _ Pressure Teisperature Mass Velocity Heat Flux Location  !

 .I-           No._     No.       (psia)        (*F)       (M1bm/hr-ft2 )   (PiBtu/ht-fts)  (inches)

I 46 47 48 1683 1684 1685 1815.0 1800.0 1500.0 513,2 534.6

                                             - 510.5 3.017.

3.534 1.513

                                                                               .726-
                                                                               .738
                                                                               .471-96.00
                                                                                              .96.00 82.00-i i

l 49 1686 1505.0 508.9- 2.021 .544 82.00 50 1687 1505.0 508.0 2.520 .612 82.00 l

51- 1688 1505.0 512,5 3.011- .682- 82.00 J
                .52   1689      1510.0         509.6           3.515           .712            82.00     i 53   1690      1805.0-        446.9           1.537           .579            96.00  .

54 1691 1800.0 454.1 2.023 .703 96.00

    ~

55 1692 =1805.0 457.7 2.497 780 ' 96.00 57 '1694 1500.0 453.4 2.002 .675' 82.00 58 1695' 1495.0 461.9 2.505 .737 82.00 60 .1697 2405.0_ 427.2 1.547 .634 96.00

61 1698 1500.0 467.4- 1.012- .422 96.00  ;

62 1699 1810.0 453.8 1.023 -.412 96.00 63 1700 1795.0 390.3 1.028 .481 96.00  ; 64 1701 1805.9 399.4 1.511 .641 96.00 ' , 65 1702 1505.0 374.5 1.029 .519 96.00- -!

 <               66    1703      1505.0        394.5           1.523            .639           96.00 67    1704      1505.0        403.9-          2.041            .769           96.00 68    1705      1815.0        397.4           2.009            .724           96.00 I

g l t xs q B I A-19

1

                       .                                                                                                           E-7                                                                                                                               31l
      .*-                          Table A-17. System Conditions - Test Section W160                                                    '

Test Test System Inlet Average Average Axial CHF h Serial ID Pressure Temperature. Mass Velocity Heat Flux. Location E No. No. (psia) (*F) '(M1bm/hr-f ta) . (M8tu/hr-fta) (inches) g 1 1720 1800.0 508.9 1.466 .468 E 2 1721. 1800.0 512.6 2.011 .554 85.00 85.00 .( R5 3 1722 1800.0 513.5 2.490 .637 85.00-4 1723 1800.0 510.9 2.995- .733 85.00 - 5 1724 2415.0 537,8 1.422 456 '96.00 6 1725 2400.0 539.8~ 2.511 .622 96.00 > 7 1726 2400.0 541.6 2.508 .675 96.00 8 1727- 2415.0 542.9 2.984 . 772- 96.00-9 1728 2115.0 539,S. 1.469 .436- 196.00 10 1729 2115.0 548.3- 2.005 .534 96.00 11 1730 2100.0 550.8- 2.498 .603 96.00 12 1731 2105.0 552.2 .2.982 .684 96.00 13 1732 2115.0 609.8 1.961 .378 85.00 - 14 1733 2105.0 482.2 1.495 .558 .96.00 15 1734 2100.0 473.5 2.005- .683 96.00 3 16 1735 2100.0 475.8 2.505 .799 96.00 5: 17 1736 2105.0 483.4 2.978 .899 96.00 18 1737 2415.0 469.3- 1,502 .585 9.6.00 19 1738 2405.0 465.3 2.015 .720 96.00 20 1739- 2415.0 470.3 2.526 .837 96.00 21 1740 1815.0 438.9- 1.510 .595 96.00-22 1741 1815.0 449.3 2.003 .700 96.00 23 1742 1815.0 452.9 2.496 .808- 85.00 24 1743 1815.0 466.5 3.003 .864 96.00 25 1744 1805.0 '409.3 1.475- .641 96.00 l 26 1745 1800.0 424.4 1.971- .725 96.00 i

                                                                                                                                          ~

L 27 1746 2095.0 405.2 .1.471 .651 96.00 28 1747 2400.0 410.4 1.489- .655 95.00 29 1748 1515.0 443.9 1.458 .563 96.00 ' 30 1749 1515.0 450.3 1.985 .642- 85.00 l 31 1750 '1500.0 453.9 2.495 .746 85.00 I

           '32           1751   1505.0           453.2                   2.991                   .840-            85.00 33           1752   1505.0           513.3                   1.470                   .465             85.00 34-          1753   1505.0          .515.9                   1.996                   .508-            85.00 35           1754   1515.0           508.5                   2.485                   .615.            85.00-36           1755   1525.0           511.9                   2.983                   . 679 . '        85.00                -

37 1756 1500.0 567.9 2.032 .429 85.00 38 1757 1515.0 567.3- 2.530 .443 85.00 39 1758 1500.0 561.8 3.031 .519 85.-00 40- 1759 2125.0 605.5 2.479 .428 85.00 - 41 1760 2100.0 604.2 . 3.020 .492 85.00 42 1761 2415.0 599.9 2.009 .438 85.00

  • 43 1762 2425.0 604.8 2.509 .525 85.00 44 1763 2415.0 604.9 3.011 .584 85.00 45 1764 2405.0 609.4 3.457 .653 96.00
    ,       46           1765   2115.0           608.6                   3.454                   .540             85.00                 .

A-20 l

l b a Table A-17.- System Conditions - Test Section W160 (Continued) Test Test System Inlet Average . Average Axial CHF  ; Serial ID Pressure Temperature Mass Velocity Heat Flux Location i No. No.- (psia) ('F) '(M1bm/hr-ft2 ) (MBtu/hr-f ts) (inches) l 47 1766 1800.0 570.3 1.490 .341 85.00 48 1767 1800.0 567.2 2.002 .431 85.00 1 49 1768 1815.0 567.2 2.513 .489 85.00- -i 50 1769' 1815,0 560.5 3.027 .580 85.00 j 51 1770 1815.0 568.5 3.509 .609 85.00 52 1771 1515.0 563.2 3.053 .555 85.00-53 1771 2115.0 563.5 3.448 .737 85.00 54 1772 2410.0 547.2 3.504 .856 96.00  ! 55' 1773 2400.0 543.3 2.492 .683 96.00  ; 56 1774 1515.0 512.6 3.461 .723 85.00 ' 57 1775 1815.0 510.9 3.489 .830 85.00 l 58 1776 1515.0 411.5 1.499 .609 85.00 1 59 1777 1510.0 407.8 1.990 .745 96.00-60 1778 1505.0 385.4 1.025 .529 -96.00 H 61 1779 1800.0 386.0 1.032 .506 96.00 62 1780 2100.0 390.3 1.016 .520 96.00 63 1781 2365.0 397.3 1.005 .508 96.00 2 64 1782 2415.0 463.4 1.002 .435 96.00-65 1783 2100.0 460.3 .998 .430 96.00 66 1784 1785.0 445.9 1.001 445 85.00 67 1785 1501.0 443.2 1.086 .464- 96.00-l  : j < l I 1 i l . I A-21

___-____.-_--_7 I J Table A-18. System Conditions - Test Section W161 .

            ' Test  Test. System        Inlet           Average                      Average      Axial CHF Serial-   ID  Pressure     Temperature      Mass Velocity                 Heat Flux     Location.              -

I 2 No. No. (psia) (*F) (M1bm/hr-ftz) (MBtu/hr-ft ) (inches). . 1 1796 2115.0 598.4 1.998 .269 157.00 2 1797 2400.0 600.3 2.019 .283 157.00  ! 3 1798 2400.0 541.9 '2.014 .367 157.00 4 1799 2100.0 543.9 1.983 .340 157.00-5 1800 2200.0 497.6 2.013 .398 157.00 t 6 1801 2415.0 493.5 1.982 .432 157.00 7 1802 2415.0 448.4 2.043 .506 168.00 ' 8 1803 2100.0 491.2 2.008 .400 157.00 9 1804 2100,0 602.8 2.474 .300 157.00 10 1805 2400.0 601.8 2.511 .329 157.00 11 1806 2100.0 597.9 2.998 .353 157.00 'E 12 1807 2400.0 ~604.2 2.998 .379 157.00L 3 13 1808 2100.0 539.5 1.482 .291 157.00 14 1809 2400.0 548.9 1.478 .290 157.00 15 1810 2400.0 552.4 2.504 .416 157.00 16 1811 2100.0 555.3 2.484 .378 157.00- , 17 1812 2100.0 485.4 1.507. .342 157.00 18 1813 2400.0' 499.9 1.449 .333 157.00 19 1814 2100.0 429.9 -1.499 . 392 157.00 20 1815 2400.0 425.2 1.514 .417. 168.00 21 1816 1500,0 440.9 1.486 .386 157.00  ; 22 1817 1500.0 445.2 2.018 .446 157.00  ; 23 1818 1800.0 453.2 1.476 .361 257.00 24 1819 1800,0 466.2 2.037 .430 157.00-

              . 25  1820  2410.0          497.4             2.487                         .519        157.00 26  1821  2410.0           554.0            2.980                         .492        157.00 27  1822  2405.0          627.3             3.501                         .376        157.00 28  1823  2400.0          603.9             3.524                         .446        157.00 29  1824   2100.0          602.4            3.472                         '387
                                                                                          .           157.00 30  1825   2100.0          572.8            2.922                         .397-       157.00              -

31 1826 2100.0 570.6 3.497 .466 157.00 . 32 1827 2100.0 543.3 2.941 .466 157.00 33 1828 2100.0 503.3 2.494 .463 157.00 34 1829 2105.0 476.9 .992 .265 157.00 35 1830 2415.0 484,8- .996 .269 157.00 . 36 1831 2100.0 459.8' 2.010 .456 168.00 37- 1832 2100.0 468.9 2.467 .517 157.00-

38. 1833 2085.0 437.3 .957 .286 157.00-l 39 1834 2415.0 433.9 .970 .300 157.00 <

40 1835 2100.0 436.8 2.038 .487 168.00 41 1836 2100.0 384.4 1.012 .331 168.00 . 43 1838 2100.0 404.9 1.589 .425 168.00 44 1839 2400.0 416.3 1.584 .452 168.00 l

 ;              45   1840   2405.0         526.8             2.505                         .471        157.00 46   1841   1805.0         521.4             1.456                         .303        168.00
       .        47   1842   1805.0         536.4             1.997                          .336       157.00             ;

A-22

I I Table A-18. System Conditions - Test Section W161 (Continued) i I Test Test System Inlet Average Average Axial CHF Serial ID Pressure Temperature Mass Velocity- Heat Flux Location-  ! No. No. (psia) (*F) (Mlbm/hr-fts) (MBtu/hr-fts) (inches) I '48 49 50 1843 1844 1845 1805.0 1805.0 1510.0 544.9 523.9 502.2 2.456 2.997 1.433

                                                                                    .380
                                                                                    .460
                                                                                    .322 157.00 157.00 157.00 51   1846    1505.0        502.6            2.002           .377           157.00 52   1847    1505.0        511.4            2.486           .420           157.00 1                        5?   1848    1505.0        502.2            2.992           .485           157.00 54   1849    1505.0        522.5            3.451           .500           157.00 55   1850    1805.0        524.8            4.458           .514           157.00     ,

1 56 57 - 1851 1852 1505.0 1805.0 437.4 458.8 1.016

                                                                     .981
                                                                                    .306
                                                                                    .282 157.00 157.00 1.

58 1853 1505.0 458.2 2.506 .499 157.00 I 59 1854 1800.0 484.3 2.500 .477 157.00 60 1855 1800.0 553.8 3.002 .419 157.00  !

61 1856 1800.0 551.4 3.493 .466 157.00 i I 62 63 64 1857 1858 1859 1500.0 1510.0 1500.0 552.9 556.4 397.5 3.540 3.032
                                                                      .981
                                                                                    .456
                                                                                    .422
                                                                                    .322 157.00 157.00 157.00 65   1860    1800.0        389.4              .960          .310           157.00 66   1861    1805.0        394.5            1.468           .408          -157.00 67   1862    1505.0        394.8            1.466           .423           157.00 68   1853    1805.0        420.2            1.989            .477          157.00 69   1864    1500.0.       417.0            1.974            .470          157.00

'I 70 71 1865 1856 2095.0 2105.0 543.8 500.3 1.991 2.014

                                                                                     .341
                                                                                     .408 157.00 157.00-i i                                                                                                             !

l

  )

A-23  ;

Table A-19. . System conditions - Test Section W162 I: Test Test System Inlet . Average Average Axial CHF ] Serial 10 Pressure Temperature . Mass Velocity Heat Flux Location . No. No. (psia) ('F)- (Mlba/hr-f ts) (M8tu/hr-ftz) (inches) 2100.0~ 504.3 1.962 .405 334.00 l' 1867

                                                                                   .443-     '101.50       g!    .

2 1868 2400.0 503.9 1.996 g' 3 1869 '2405.0- 508.5 2.480 .513 101.50' 4 1870 2100.0- 505.0 2.492 .481. 134.00 3 5 1871' 2100.0 548.9 2.508 .383 134.00 134.00-3 6' 1872- 2400.0 558.0- .2.474 .419 3 7 1873 2400.0 558.0 2.982 .493 134.00 8 1874 2105.0 548.0 2.972 .451 134.00 9 1875 2395.0 549.3 1.985 .353- 134.00 10 1876 2115.0 558.5 1.968 .316 134.00 - 11 1877. 2090.0 566.9 3.471 .464 134.00 12 1878 2100.0 605.4 1.990. .271 134.00 112.00 13 1879- 2410.0 600.9 1.992- .302 3 ' 14- 1880 2400.0 606.3 2.475 .319 134.00 112.00 15 1881 2100,0 600.7 2.481 .317 16 1882 2095.0 606.4 2.952 .338 112.00 < 17 1883 2400,0 608.9 2.996 .390 112.00 l Re . 18 1884 2395.0 609.3 3.457 .440 112.00 19 1885 2110.0 605.9 3.428 .374. 112.00 $1 20' 1886 1500.0 571.4 1.996 .305 112.00 E.' 21 1887 1805.0 585.9 1.986 .275 112.00 1 22 1888 1800,0 582.2 2.530 .313- 112.00-23 1889 1500.0 573.4 2.466 .339 112.00. 24 1890 1505.0 573.4 2.987 .356' 112.00 25 1891 1805.0 583.5 2.981 .343 112.00 , 26 1892 1800.0 581.9 3.503 .383 112.00 .gl 27 1893 1505.0 574.3 3.483 .387 112.00- 3 28 1894 1500.0 530.2 1.997 .344~ 112.00 29 1895 1800.0 532.9 2.003 .350 134.00  ; 30 1896 1800.0 533.9 2.476 .391. 112.00 i 31 1897 1500.0 534.8 2.462 .379 112.00 32 1898 1505.0 533.8 2.975 .416 112.00 33 1899 1805.0 532.5 3.007 .430 134.00 E 34 1900 2120.0 544.2 -2.934 .479 134.00. 3 35 1901 1795.0 534.9 3.499 .480 134.00 36 1902 2125.0 582.9 2.974 .382 134.00 , 37 1903. 2405.0 586.3 2.495 .358 134.00 l 38 1904 2100.0- 584.2 2.485 .346 112.00 39 1905 2425.0 589.9 2.977 .427 134.00 i 40 1906 2100.0 584.2 1.990 .284 134.00 E.! 41' 1907 2400.0 584.3 2.008. .316 112.00 .3 42 1908 2105.0 582.3 3.481 .420 134.00 43 1909 2410.0 585.4 3.502 .492 134.00  ; 44 1910 1500.0 530.3 3.545 438 112.00 . 45 1911 1500.0. 488.4 2.008 .411 112.00 46 1912 1800.0 491.4 2.008 .409 134.00 A-24 I ,

                                                                                                               ~

d l Table A-19. System Conditions - Test Section W162 (Continued) <

)       Test  Test      System      Inlet          Average          Average                      i Axial CHF a     Serial  ID      Pressure   Temperature    Mass Velocity     Heat Flux      Location l      No. No.      (psia)       (*F)        (M1bm/hr-ft2 )   (MBtu/hr-fts)   (inches)       ;

47 1913 1805.0 492.2  ? 490 .453 134.00 I 48 1914 1505.0 482.9  : 54 .468 112.00 i 49 1915 1505.0 496.0 1.s69 .478 112.00-50 1916 1810,0 510.4 2.999 .482- 134.00  ; 51 1917 1510.0 524.2 1.475 .297 112.00

        .52   1918     1805.0       529.2            1.488           .293           134.00        !

53 1919 2100.0 546.8 1.495 .295 112.00 l l 54 1920 2410.0 552 2 1.465 .309 134.00 j 55 1921 2400.0 509.4 1.474 .341 134.00 56 1922 2105.0 504.9 1.471 .350- 112.00 57 1923 1805.0 479.4 1.488 .354 134.00 58 1924' 1515.0 484.8 1 59 1925 2105.0 462.4 1.489

                                                    . 998
                                                                     .346
                                                                     .292 112.00 134.00 60   1926     2385.0       452.6            1.015           .307           134.00 61   1927     2105.0       452.5            1.488           .382           134.00 62   1928     2405.0       458.6            1.483           .411           134.00 63-  1929     2105.0       462.8            2.025           .470           134.00 64   1930     2405.0       478.2            2.008           .489           134.00 65   1931     1805.0       429.2            1.022           .311           134.00          ,

66 1932 1505.0 436.9 1.009 .316 112.00 67 1933 1505.0 434.3 1.485 .396

 ~

112.00 68 1934 1800.0 433.2 1.448 .399 134.00 69 1935 1795.0 442.9- 2.010 .468 134.00 70 1936- 1500.0 438.4 2.002 .476 112.00 IRev. i s 5 A-25

I

                                                    ~

l J A Table A-20. System Conditions - Test Section W163 g 3! Test Test System . Inlet Average Average Axial CHF. Serial ID Pressure Temperature Mass Velocity Heat Flux Location j 2 No. No. (psia) (*F) (Mibs /hr-ft ) (M8tu/hr-ft8) (inches) 1 1937 1805.0 505.6 1.478 .490 96.00-2 1938 1800.0 513.3 2.062 .569 '96.00 L 3 1939 1805.0 513.8 2.518 .632 85.00 l 4 1940 2405.0 528.4 1.433- .475 85.00 5 1941 2405.0 545.3 2.000 .576 85.00 6 1942 2410.0 542.4- 2.505 .678 96.00-7 1943 2115.0 542.5 1.549 '411-

                                                                                    .             96.00 8     1944      2100.0           548.6               2.056               .537          96.00 9     1945      2100.0           554.5               2.528               .581          85.00 10      1946      2115.0           553.2               2.993               .683          85.00          '

11 1947 2115.0 483.4 1.525 .564 96.00 12 1948 2100.0 478.1 2.065 .678 85.00~ 13 1949 2405.0 469.9 1.533 .597- 85.00 14 1950- 2405.0 472.4 2.063 .741 85.00 l 15 1951 1815.0 443.2 1.536 .592 96.00 16 1952 1810.0 444.0 2.064 .712 96.00 17 1953 1815.0 413.3 1.554 .640 96.00 18- 1954 1820.0 433.8 2.008 .724 96.00 - 19 1955 2100.0 413.3 1.534 .672 85.00 < 20 1956 2405.0 418.4 1.532 .684 .85.00 21 1957 1505.0 439.6 1.530 .589 85.00 22 1958 1505.0 452.9 2.033 .643 96.00 23 1959 1495.0 509.3 1.517 .483 85.00 24 1960 1505.0 515.3 2.040' .535 85.00' 25 1961 1515.0 509,2~ 2.521 .622 85.00 i E 26 1962 1505.0 512.4 3.009 .664 85.00 27 1963 2095.0 604.6 3.024 .510 85;00 l 28 1964 2395.0 598.3 2.084 .441 85.00 29 1965 2405.0 598.0 2.551 .525 85.00 ' 30 1966 2405.0 602.6 3.043 .590 85.00 31 1967 1805.0 562.2 2.054 '463

                                                                                      .            85.00 32      1968      3805.0           563.2               2.542                .514         85.00    $

l 33 1969 1815.0 562.0 3.025 .574 85.00^ g' I 34 1970 1505.0 558.0 3.068 .563 _85.00 35 1971 1495.0 572.2 2.549 .516 85.00 > 36 1972 1815.0 519.7 2.513 .666 85.00 37 1973 2100.0 549.5 1.509 .455 96.00 38 1974 1505.0 509.4 3.021 .667 85.00- 1 39 1975 1810.0 381.3 1.078 .506 96.00 40 1976 2100.0 390.2 1.076 .537 96.00 i 41 1977 2400.0 399.8 1.036 .525 85.00 I

     ~

I A-26  !

s J. Table A-21. ' System Conditions - Test Section W164 Test- Test System Inlet Average- Average Axial CHF-

        -Serial       ID  Pressure    Temperature    Mass Velocity        Heat Flux     Location    i No.              (psia)         ('F)       (Mlbm/hr-ft2 )     (M8tu/hr-ft2 )- (inches)

No. l I 1 2 1979 1980 2100.0 2105.0 492.6 503.8 1.454 1.968

                                                                            .339
                                                                            .402 134.00 134.00-i 3      1981  2100.0        502.1-            2.500             .486          134.00-    i 4       1982  2395.0        500.4             1.447-            .342 I           5-6 1983 1984-2415.0 2415.0 507.2:

510,6 1.928 2.490

                                                                            .435
                                                                            .518 134.00 134.00 134.00 7      1985  2400.0        553.1             1.446             .288          134.00"    ;

8 1986 2425.0 555.6 2.002- .363 134.00 1 9- 1987 2400.0 554.6 2.495 .423 134.00 10 1988 2405.0 556.0 2.980 .504 134.00 11 1989 2115.0 562.3 1.406 .280 134.00 i 1 12 13 1990 1991 2210.0 2105.0 551.0 549.0 2.043 . 328 134.00-2.499 .387 134.00 14 1992 2115.0 548.8 2.998 461 134.00 g 15 1993 2100.0 557.3 3.457- .486 134.00 1 16 1994 2395.0 578.5 3.464 .494 134.00 17 1995 2400.0 598.0 1.994 .284 134.00 18 1996 2405.0 606.0 2.456 .326 134.00 19 1997 2400.0 605.0 2.962 .373 134.00 20 1998 2395.0 604.4 3.507 .416 134.00

          -21       1999  2100.0         607.2            1.972              .259         112.00 22       2000  2095.0         597.4           -2.493              .320         134.00         !

23 2001 2110.0 605.3 2.973 .348 134.00 l 24 2002 2100.0 600.2 3.482 .385 134.00 25 2003 1795.0 581.3 1.983 .283 112.00 1 26 27 2004 2005 1805.0 1800.0 579.7 2.535 .322 112.00 582.2 2.970 .347 112.00 28 2006 1805.0 580.7 3.485 .394 112.00 l" 29 2007 1505.0 571.7 3.415 .377 112.00 1 30 2008 1500.0 569.4 1.987 .~307 112.00 e 31 2009 1500.0 570.6 2.491 .334 112.00 32 2010 1510.0 570.6 2.988 .363 112.00 33 2011 1505.0 533.5 1.427 .297 -112.00 34 2012 1500.0 531.3 2.007 .353 112.00 35 2013 1500.0 525.7 2.502 .404 112.00 36 2014 1505.0 528.8 2.969 .438- 112.00 37 2015 1510.0 531.8 3.534 .472 112.00 38 2016 1805.0 536.3 1.428 .288 134.00 .t 39 2017 1800.0 528.1 1.995 .364 134.00 I 40 41 2018 1800.0 529.5 2.498 .413 134.00 2019 1815.0 534.9 2.941 .432 134.00 42 2020 1805.0 533.6 3.471 .485 134.00 43 2021 2105.0 540.0 2.949 .455 134.00 t 44 2022 1800.0 512.2 3.001 .477 134.00 45 2023 1500.0 481.8 1.429 .340 112.00 46 2024 1510.0 482.2 1.919 .412 112.00

                                                                                                            ]

A-27

I. Table A-21. System conditions - Test Section W164 (Continued) Test Test System Inlet Average Average Axial CHF Serial ID Pressure Temperature Mass Velocity Heat Flux Location' E No. No. (psia) ('F) (M1bm/hr-f ts) (M8tu/hr-fts) (inches) 3 47 2025 1500.0 482.9 2.486 . 470 112.00 48 2025 1500.0 486.3 3.005. .520 112.00 49 2027 1802.0 483.2 1.445 .341 134.00 50 2028 1805.0 489.0 1.961 . 422 134.00 51 2029 1810.0 484.3 2.505 .475 134.00. 52 2030 1750.0 454.1 1.441 .379 134.00 -r 53 2031 1815.0 461.6 1.954 .467 134.00 . 54 2032 2405.0 442.1 1.463 .416 134.00- . 55 2033 2405.0 463.0 1.929 .501 134.00' - 56 2034 2405.0 451.6 .980 .297 134.00 ' 57 2035 2100.0 404.3 .991 .330 134.00 58 2036 2405.0 423.3 1.437 .431 -134.00 59- 2037 2205.0 419.5 1.436 .411 134.00 l' 60 2038 2090.0 452.2 .992 .291 134.00 61 2039 1805.0 420.6 .993 .302 134.00 62 2040 1505.0 429.0 .972 .311 134.00 63 2041 1800.0 432.2 1.424 .389 134.00~ 64 2042 1505.0 422.6 1.420 .396 134.00 65 2043 1800.0 438.9 1.947 .465 134.00. - 66 2044 1505.0 '436.0 1.913 .473 134.00 67 2045 1505.0 464.4 2.475- 501 112.00 68 2046 1800.0 386,8 .983 .323 134.00 t 69 2047 1505.0 384.4 .977- .341 134.00 71 2049 2110.0 530.0 2.956 .519 134.00 72 2050 2105.0 506.3- 2.023 .402 134.00 73 2051 2100.0 499.3 1.424 .340 .134.00-74 2052 2100.0 492.0 1.431 .347 134.00 It 11 I i A-28 Y

/ Table A-22. System Conditions - Test Section W166 , Test Test System Inlet Average Average Axial CHF j Serial ID Pressure Temperature Mass Velocity Heat Flux Location ' No. No. (psia) ('F) (Mlbm/ht-ft )2 I (MBtu/hr-fts) (inches)  ! 1 1 14 1500.0 565.6 3.442 .416 122.00 j 2 15- 1800.0 564.0 3.486 .440 -148.00 -l 3 16 2110.0 571.9 3.505 .476 136.00 4 17 2405.0 568.4 3.563 .553 136.00 .: a 6 19 2101.0 567.4 2.950 .445 122.00  ! g 7 20 2100.0 562.3 2.476 .380 136.00. 8 21 2400.0 556.4 2.470 .437 136.00 - 9 22 2400.0 563.0- 2.035- .371 136.00  ! 10 23 2405.0 594.5 2.997 .410 136.00

=I                   11    24        2100.0             603.3           2.944-              .349           148.00 12    25       2100.0              596.6           3.531-              .424           136.00 3                    13    26        2400.0             606.5-          3.486               .421-          136.00 g                   14    27        2400.0             517.4           2.016               .429           136.00 15    28        2100.0             524.9           2.024               .406           148.00              i 16    29        2095.0             519.5           2.544-              .496           136.00 17    30        2410.0             528.8           2.498               .479           148.00 18     31        1805.0            564.2           3.459               .446           148.00 19     32        1800.0            515.2           1.993               .370           148.00 20     33        1500.0            514.6           2.498-              .418-          148.00 21     34       1500,0             523.8           3,481               .493           148.00         -i 22     35        1500.0            473.8           2.061.                417-         148.00             ;

23 36 1805.0 478.3 2.031 .434 148.00 i 24 37 2100.0 473.8 1.544 .385 148.00 l 25 38 2100,0 485.3 2.018 .462 148.00 i 26 39 2405.0 487.9 1.998 .477 148.00 27 40 2405.0 468.5 1.483 .405 136.00 28 41 2405.0 443,4 1.511 .428 122.00 lRev. 29 42 2105.0 436.9 1.482 .427 122.00 30 43 2115.0 432.5 2.014 .540 148.00 ~] 31 44 1800.0 439.9 1.991 .486 148.00 J 32 45 1505.0 431.0 1.996 .460 148.00 33 45 1505.0 432.0 1.995 .461 148.00 34 46 1500.0 401.7 1.505 .420 148.00

                    '35     47          1505.0          433.1           1.500               .396           148.00 36     48          2110.0          403.1           1.494               .447           122.00 37     49          2395.0          404.7          .1.492                .466          136.00 1                  38     50          2405.0          552.1           3.007               .522           136.00 l                 39     51          2400.0          517.9           3.006               .605           136.00 40     52          2100.0          522.5           2.997               .535           136.00 j                 41     53          1805.0          515.8           3.498               .567           148.00 j                 42     54          1505.0          487.3           2.489               .451           148.00 i Rev.

43 55 2105,0 479.7 2,505 .525 122.00 44 56 2410.0 480.4 2.515 .531 122.00 1 Rev. l 45 57 2100.0 486.9 2.492 .539 136.00 4 46 58 1500.0 401.8 2.024 .516 148.00 47 59 2100.0 410.1 2.016 .525 148.00 1 A-29 1

q 1 j m L' i I - I l APPENDIX B ,; LOCAL THERMAL CONDITIONS AND DCHF-1 CORRELATION EVALUATIONS I I I I y I I  ; I I i l l B-1

i

                          .                                                                                                                                                                                            p    .

Table B-1. Local Conditions --Test Section W108-a Predicted Measured-to-Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical . Serial ID Pressure -Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux 'i 1 No. No .- (psia) (M1bs/hr-ft ) 2 Quality. ( M tu/hr-ft2 )- (Mtu/hr-ftz) (inches)' Ratio-01 8 1515. 2.3074 .0580 .8792 .8602 78. 1.0222 02 9 1515. 2.2385 .0391 .%58 .8870 78. 1.0888

03 10 2165. 2.4755 .0377 .7894 .7938 78. .9945 04 11 2115. -2.4116' .0285 .8621 .8067 78.- 1.0686
                       -05             12                          2415.               :2.4135                                         .0330             .8513-              .8659              78.       .9831 i                        06             13                          2415.                 1.9570                                        .0434             .8002               .8240~             78.       .9712 07             14                          1515.                 3.2191                                        .0696             .7455               .8245.             80.       .9042-                     1 08             15                          1815.                 3.4019                                        .0561             .7936               .8161              80.       .9724 09             16                          1825.                 1.7347.                                       .0212             .8714-              .8075              78.      1.0792 10            '17                        -1515.                  3.3%7 ~                                    . 0421-              .8%2                .9258            '78.         .9680                  ,
78. 1.1230 s

11 '18 1515. 2.2314. .0219 1.0277 . 9151 ! 12 19 1545. -1.7475 .0282 .9442 .8707- 78. 1.0843  ; 1 13 53 1515. 3.3956 .0563 .7397 .8525 80. - .8676

14 54 1815. 3.4419 .0177 .9364 .9289 78. 1.0081 15 55 1795. 1.8488 .0172 .9240 .8813 78. 1.0484 16 56 2115. 1.9197 - 0799
                                                                                                                                       -                 .9347               .9523-             76.       .9815 17             57                        --2115.                 1.9195                                        .0552             .9004               .9152              76.       .9838 18             58 .                        2115.                 1.8864                                        .0043-            .7847               .8032              78.       .9769 19             59                          2115.                 2.3774                                        .0202            . 9039               .8770            '78.-      1.0307 i                        20             60                          2090.                 2.8899                                        .0091             .9411               .8787              78.      1.0710 21             61                          2125.                 2.9298L                                      . 0126             .8451               .8728              78.       .9683-22 --          62                          2095.                 2.9310                                        .0643             .7018'              .7558'           . 80.       .9286 23             63                          2115.                 3.3867                                        .0105-         -1.0664                .9469     -
78. 1.1262 24 64 2115. ~3.3375 .0301 . 8482 .8770 78. .%72 25 65 2095. 3.3958 .0035- .9565 .9256 78. 1.0334.

. .26 66 2405. 2.9861 .0648 .9773 -1.0220 . 76. .9562' I 27 67 2410. 2.%06 .0136 .8064 .8958 78. .9002 - l 28 68 .2415. 2.9704 .0441 .7275. .8120 -78. .8959 29 69 -2415. 3.4971 .0457- .7309 .8119 80. .9003: . i 8-2 _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ ___ _Y__ __ ._ __ _ .. _L

W WT JU1 1.~ ?4 )] Table B-3. Local Conditions - Test Section W114 Predicted Measured-to Measured- Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrba Heat Flux Heat Flux Location Heat Flux No. No. (psia) (M1be/hr-ft2 ) Quality (MBtu/hr-ft2) (MBtu/hr-ft2 ) (inches) Ratio 01 217 1500. 2.4189 .0448 .6928 . 8127 72. .8525-02 218 1505. 2.4224 .0234 .7641 . 8539 72. .8948 03 219 1505. 2.3896 .0111 .8200 . 8775 72. . 9345 04 220 1515. 3.4629 .0612 .6536 .7956 72. .8215 05 221 1515. 3.4438 .C108 . 7653 . 8398 72. .9114 06 222 1805. 3.3948 .0518 .64/7 . 7794 72. .8311 07 223 1805. 3.5697 .0299 .8021 . 8300. 72. .9664 08 224 2095. 2.4856 .0632 .6125 . 6705 74. .9136 09 225 2100. 2.4760 .0275 .6964 . 7506 72. .9278 10 226 2115. 2.4665 .0102 .7546 . 8146 72. .9264 11 227 2115. 3.0228 .0611 .6125 . 6999 74. .8751 12 228- 2125. 2.9872 .0361 .7201 . 7650 72. .9414: 13 229 2135. 3.0077 .0115 .8128' . 8538 72. .9520 14 230 2115 3.5038 .0425 .6706 .7820 72. .8677 15 231 2135. 3.5140 .0252 .8010 .8144 - 72. .9836 16 232 2125. -3.4646 .0060 .8758 . 8733 72. 1.0029 17 233 2435. 3.4886 .0598 .6557 .7192 74. .9117 18 234 2435. 3.5266 .0068 .7986 .8662 72. .9219 19 235. 2425. :3.5177. .0457 .8746 . 9405 '72. 1929? 20 236 2445. 2.9718 .0729 .5745 . 6418 76. .8953 21 237 2435. 2.9964 .0069 .7142 . 8001 72.- .8926-22 238 2425. 3.0174 .0383 .7998 .8838 72. .9050 23 239 2425. 2.5071 -.0270 .6976 .8163 72. .8545-24 240 2425. 2.5081 .0945 . 8425 .9760 68. .8633 25 241 2400. 2.5157

                                                                 .1224                        .8812                      1.0300             68.                        .8555 26   242   2425.                  2.0329                .0466                        .6548                        . 7986           72.                        .8200 27   243  -2405.                  2.0080                .0675                       .6952                        .8321-            72.                        .8355 28   244-   2425.                 2.0439                .1439                        .8258                       . 9966           68.                        .8286 29   245   2125.                  1.9454.             .0133                         .6916                        .7315             72.                        .9455 3
                                                                                                                                            .-h  .-.._.m.,,,..m__.
                                                                               - ~ , . - .- _ -
                                                                                                     =._....m.m. mms-m         m  .w-
_.] - -

_.,,.m.:.

                                                          ,.4.#-.                          <

g__ _

c l - \ _

                                                                                                                                                     ..A
                                                                    .                                                                                o .:                 _q l                                           Table B-3.        Local Londitions - Test Section W114 (Continued) l l~                                                                                                                           Predicted Measured-to Measured        Predicted              Critical  -Predicted Heat Flux                                       'I Test       Test   System        -Local Mass               Local         Critical        Critical                            Critical Serial       ID   Pressure          . Velocity' Equilibrium        Heat Flux       Heat Flux              location     Heat Flux No.         No.   (psia)       (M1bs/hr-ft )    2        Quality      (MBtu/hr-ft2)   (Petu/hr-ft2)            (inches)       Ratio t'             30        246~   2115.              1.9706               .0252           .7404              .7986                72.           .9271'                         l 31        247    2115.              1. % 73              .0448           .7784              .8314                72.           .9361 32        248    1805.              1.9911               .0016           .7190              .8145                72.           .8827..

33 249 1825. 1.9146 .0234 .7617 .8436 72. .9029 i l 4 f 4 4 4 B-4 m~m-M g m m m _ m= a m

                                                                       ~

M M M M M m3

                                                                                                                          ~ '
g. g,
                                     . - -              ,~ -    .              . ,           ..  .    .,,.      . . . . . ~     -.     .    .... _            .     ,. .-

Table 8-3. Local Conditions - Test Section W121 Predicted Measured-to l Measured Predicted Critical -Predicted Test Test Syst.es local Mass Local Critical Critical Heat Flux Critical Serial 10 Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1bm/hr-f t2 ) Quality (MBtu/hr-f t2 ) (MBtu/hr-ft2 ) (inches) Ratio 01 394 1535. 3.4551 .0811 .7157 .7874 74. .9090 02 395 1505. 3.4558 .0514 .8317 .8834 72. .9415 03 396 1795. 3.5182 .0793 .6911 .7656 74. .9026 04 397 1775. 3.4328 .0473 .8501 .8544 72. .9951 05 398 2085. 3.4235 .0882 .6758 .7031 76. . %12 06 399 2065. 3.4707 .0509 .8610 .8005 74. 1.0757 07 400 2115. 3.4484 .0308 .9958 .8616 72. 1.1558 08 401 2115. 2.9668 .1063 .6212 .6521 76. .9527 09 402 2115. 2.9906 .0453 .7937 .8083 72. .9820 10 403 2115. 2.9945 .0337 .9273 .8291 72. 1.1185 11 404 2400. 3.5142 .0806 .6791 .7165 76. .9478 12 405 2405. 3.5432 .0322 .8770 .8564 72. 1.0241 13 406 2405. 3.4579 .0081 1.0069 .9244 72. 1.0892 14 407 2415. 2.9785 .1076 .6100 .6421 76. .9500 15 408 2395. 3.0233 .0589 .7415 .7471 74. .9926 16 409 2385. 2. % 70 .0217 .8954 .8314 72. 1.0771 17 410 2415. 2.4688 .0361 .7680 .7627 72. 1.0069 18 411 2405. 2.4341 .0010 .8783 .8178 72. 1.0740 19 412 2415. 2.4790 .0469 .9762 .9037 72. 1.0802 20 413 2095. 2.4916 .0765 .6677 .7028 74. .9501 21 414 2125. 2.4710 .0409 .7999 .7808 72. 1.0244 22 415 2105. 2.4655 .0236 .8832 .8122 72. 1.0874 ' Rev.I 23 416 1495. 2.4543 .0841 .7649 .7760 74. .9856 24 417 1505. 2.3904 .0662 .8211 .8068 74. 1.0178 25 418 1505. 2.4041 .0354 .9420 .8925 72. 1.0555  : 26 419 2405. 1.9708 .0113 .7472 .7533 72. .9920 27 420 2405. 1.9936 .0178 .7986 .8015 72. .9%3 28 421 2405. 1.9220 .0029 .8118 .7514 74. 1.0804 29 422 2100. 1.9733 .0427 .7533 .7434 72. 1.0132 B-5

                    "     I                         I        I                  m lil a        i                g         d l

l ' i Table 8-3. Local Conditions - Test Section W121 (Continued) . Predicted Measured-to Measured Predicted Critical -Predicted i Test Test System Local Mass Local Critical Critical Heat Flux Critical ! Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux , i No. No. (psia) (M1be/hr-f t2 ) Quality (letu/hr-f t 2) . (letu/hr-ft2) (inches) 'Aatio ! i 30 423 2115. 1.9342 .0331 .8170 .7534 72.- 1.0844 31 424 2095. 1.9226 .0083 .8917 .7953 72. 1.1211 . l 32 425 1805. 1.9972 .0482 .8415 .7857 72. -1.0711  : , pey,1 33 426- 1815. 1.8865 .0440 .8481 .7631 74.- 1.1113 34 427 1505. 1.3819 .1147 .6466 .7099 74. .9108 35 428 1515. 1.3957 .1071 .7075 .7181 74. .9853 i i 36 429 1515. 1.3567 .1177 .7338 .6798 76. 1.0795 < l 39 432 2015. .8506 .0159 .7349 .6527 76. 1.1260 , 1 i r f i 4 P s

                                                                                                                                                                                                                                                  }

i I 8-6

EE U ;l T U,

                                                                                                                                                      \

Table B-4. Local Conditions - Test Section W122 Predicted- Measured-to-Measured Predicted Critical -Predicted Test Test . System tocal Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux-No. No. (psia) (M1be/hr-f t2) Quality 2 (MBtu/hr-f t ) (MBtu/hr-f t2) . (inches) Ratio 01 434 1525. 3.4033 .0690 .7361 .7773 72. .9469 02 435 1515. 3.4485 .0454 .8451 .8295 72. 1.0188 03 436 1815. 3.4719 .0749 .6864 .7101 74. .9666 04 437 1815. 3.5375 .0371 .8488 .8128 72. 1.0444 05 438 2115. 3.5072 .0620 .7028 .7211 74. .9746 06 439 2105. 3.5733 .0257 .8488 .8179 72. 1.0377 07 440 2115. 3.4985 .0065 .9541 .8770 72. 1.0879 08 441 2130. 3.0183 .0770 .6536 .6715 74. .9733 09 442 2115. 3.0640 .0483 .7531 .7249 74. 1.0388 10 443 2115. 3.0103 .0087 .3659 .8175 72. 1.0592 11 444 2395. 3.5248 .0732 .6770 .6989 74. .9687 12 445 2425. 3.5732 .0163 .8561 .3272 72. 11.0350 13 446 2375. 3.5549 .0313 .9590 .91/2 72. 1.0457 14 447 2415. 2.8969 .0795 .5787 .6239 76. .9215 Rev.1 l15 448 2410. 2.9143 .0228 .7288 .7677 ~72. .9492 16 449 2395. 2.8822 .0133 .8108 .8284 72. .9787 17 450 2375. 2.3969 .0078 .7006 .7519 72. .9318 01 451 2415. 2.4184 .0316 .7814- .8164- 72. .9572. 02 452 2115. 2.3907 .0777 .6173 .6397 74. .9650 03 453 2115. 2.4417 .0533 .6922 .6823 74. 1.0146 04 454 2115. 2.3830 .0250 .7973 .7469- 72s 1.0675 05 455 1515. 2.3774 .0692 .7215 .7384 74. .9771 06 456 1515. 2.3301 .0424 .8635 .8118 72. 1.0638 07 457 1515. 2.2959- .0334 .9137 .8280 72. 1.1035 08 458 2125. 1.9210 .0144 .7128- . 7279 72. .9793 09 459~ 2125. 1.8738 .0076 .7618 .7345 72. 1.0371 10 460 2095. 1.9283 .0186 .8341 .7868 72. 1.0602 11 461 1815. 1.8781- .0311 .7667 .7491 '72. 1.0235 12 462 1815. 1.8704 .0141 .8439 .7775 72. '1.0854-B-7

                                -   x        -   :--                            --             .    . 2 -- -    -  -

3 Table 8-5. Local Conditions - Test Section W124 , Predicted Measured-to Measured Predicted' Critical- -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical

                                                                                                                                                                                                     ~'

l Serial 10- Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux-No. No. (psia) (M1be/hr-ft2 ) Quality - (MBtu/hr-f t2 ) (Istu/hr-ft 2) (inches) Ratio-

                                                                                                                                                                                    .9097 01      475     1565.         3.3870                                                                   .0856                    .7043          .7742        ' 74.

02 476 1515. 3.3313 .0543 .8487 .8730- 72. .9722 03 477 1790. 3.5769 .0480 .7661 .8574 .72. .8935 04 478 1790. 3.6171 .0451 . 9018 .8639 72. 1.0440 , 06 480 2115. 3.6310 .0469- .9084 .8137 74. 1.1163 07 481 2115. 3.0505- .0872 .7161 .7126 74. 1.0049 i 08 482 2115. 3.0784 .0619 .8246 .7580 74. 1.0879 09 483 2115. 3.0329. .0375 .9339 .8244 72. 1.1328 10 484 2415. 3.5746 .0775- .7199 .7T53 76. .9926 - 11 485 2415. 3.5613 .0266 .9314 .8678 72. L O732 i 12 486 2415. 2.9537 .0884 .6492 .6692 76. .9700 13 487 2415. 2.9040 .0303 .7%9 .8103 72. .9835 14 488 2415. 2.7924 .0097 .8487 .8358 72. 1.0155 15 489 2415. 2.3934 .0133 .7895 .7928 72. .9958 l 16 G- 2415. 2.3547- .0108. .8438 .8287.. 72. 1.0183

17 4M 2415. 2.3556 .0374- .8870. .8737 72. 1.0152 18 4W 2115. 2.3481 .1040 .6413 .6270 76.' 1.0229 l l 19 493 2165. 2.3708- .0663 .7102 .7052 74. 1.0072 20 494 2115. 2.3928 .0295 .8784 .7954. 72. L1043 21 495 2115. 2.3205 .0019 .9191' .8375 72. . 1.0975-  :

22 4% 1515. 2.3346- .0862 .7822 .7663 74. 1.0208 23 497 '1515. 2.3162 .0779 .8482 -.7816 74. 1.0852 l 24 498 1515. '2.3008 .0460- .9413 .8666 72. 1.0862 ' 25 499 2415. 1.8988 .0155 .7229 .7377 72... .9799 26 500 2415. .1.8729- .0144 .7%9 .7806 72. -1.0209 , 27 501 2415. 1.9219- .0587 .8598 .8571 72. . 1.0032  : 28 502 2115. 1.9101 .0491 .7328 .7261 72.- 1.0093 29 503 2115. L8933 .0355 .7%9 : .7461 72. -1.0680 30 504 2115. 1.8303 .0017 .8870 .7997 72. 1.1092

- B-8 E E
        ~ _. .

O E E_ M . W W W W . . _ W' M W W M M M M M

DO O .t . 1: Table B-5. Local Condition; - Test Section W124 (Continued) Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure _ Velocity Equilibrium ' Heat Flux Heat Flux . Location Heat Flux No. No. (psia) (M1bs/hr-ftz) Quality (Mtu/hr-ft2) (Mtu/hr-ftz) (inches) Ratio 31 505 1815. 1.8935 .0334 .8142 .8024 72. 1.0147 32 506 1815. 1.8084 .0487 .7975 .7509 74. 1.0620 33 507 1515. 1.3933 .1142 .6772 .7072 74. .9575 34 508 1515. 1.3427 .0973 .6937 .7324 74. .9472 35 509 1515. 1.3422 .0865 .7267 .7488 74. .9705 B-9

                           -.          .-        --     --      . . - _ = -            -.=   - -       . - . -     -                   .- -
                                                                                                                                                                                                                                        ,qir.

t W Table 8-6. Local Conditions - Test Section W125 , Predicted Measured-to Measured Predicted Critical -Predicted Critical ~ Test Test System Local Mass Local Critical- Critical Heat Flux Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat' Flux ,, No. No. (psia) 2 (M1bm/hr-f t ) - Quality ' (Mtu/hr-f t2) (Mtu/hr-f t2) (inches) Ratio t 01 510 1315. 3.3600 .0474 .8014 .9158 78. .8751 02 511 1515. 3.3301 .0468 .8677 .8680 80. .9997  !

03 512 1815. 3.3292 .0624 .8012 .8019 80. .9991 y

, 04 513 1815. 3.4090 .0186 .%46 .9254 :78. 1.0425 "i 05 514 2115. 3.4410 .0394 .8375 .8684 78. .9643  ! 06 515 2115. 3.3758- .0263 .9774 .8848 78. 1.1047 i 07 516 2115. 3.3029 .0025 1.0339 .9190 78. 1.1250 3 08 517 2145. 2.8888 .0644 .6844 .7505- 80. .9120 > I 09 518 2115. 2.9138 .0163 .9004 .8664 78. 1.0392 I 10 519 2115. 2.8604 .0112 . %17 .9064 78. 1.0610 11 520 2415. 3.4730 .0251 .8328- .8849 78. .9411 i 12 521 2415. '3.4248 .0188 .9585 '

                                                                                                                            .9483                   78.                                    1.0107 4                                   13    522      2415.          3.4040             .0544         1.0449                  1.0056                    78.                                   1.0391'                                               ~!
                                 -14     523      2415.          2.9986-            .0320          .7322                    .8322                   78.                                      .8798.

15 524 2415. 2.9488 .0185 .8925 .9020 78. .98952 16 525 2415. 2.8993 .0383' .9522 .9277 78. 1.0264. 17 526 2390. 2.4115 .0326 .8092 .8676 78. .9327-18 527 2375. 2.4466 .0843 .9091' .9894 76. .9188 , 19 528 2395. 2.4630 .1313 .9971 1.0642 76. .9369 ~ -: i 20 529 2135. 2.4153 .0392 .7857 .7897 78. .9950 21 530 2100. 2.3811 .0133- .8517- .8287 78. 1.0278 l l 22 531 2100. 2.3617 .0180 .9067 .8741' 78. 1.0373 , i 23 532 7535. 2.3486 .0433 .8721 .3804 78. .9906  ! 24 533 1525. 2.3145: .0212 .9349 .9184 78. 1.0179 25 534- '1525. 2.2652 .0099 .9%2 .9349 78. 1.0656 26 535 2400. -1.8979 .0409 .7894 .8467- 76.- .9323 27 .536 2395. 1.9420 .0739 .8924 .S000 76. .9916 28 537- 2415. 1. % 58 .1172 .9706- . %38 76. 1.0071

29 538 2115. 1.8684' .6099 .7982- .7774 78. 1.0267 i Rev.1 l

8-10 l t u M M W W W W W W W W W W W W W W W W W

                                                                                        -      -       . - - - .    - - _ -                   _ ~-.                  . ~ _ _                   ____       _ - -_

W W W W W W Table-B-6. Local Conditions - Test Section W125 (Continued) Predicted . Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux No. No. (psia) 2 (M1be/hr-ft ) Quality (MBtu/hr-ft2 ) (Petu/hr-ftz) (inches) Ratio 30 539 2100. 1.8918 .0252 .8799- .8366 78. 1.0518 31 540 2095. 1.8705 .0536 . %56 .9102 76. 1.0609 32 541 1825. 1.8268 .0123 .8799 .8282 78. 1.0624 33 542 1815. 1.8381 .0058 .9554 .8586' 78. 1.1128 B-11

                                                                                                                                                ~
                                                                             =     . - - - .
                                                                                                                  =         - -    - - = = . -

Table B-7. Local Conditions - Test Section W127  : Predicted Measured-to ~ Measured Predicted Critical. -Predicted a Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Eouilibrium Heat Flux -Heat Flux- Location Heat Flux- l Quality (Mtu/hr-ftz) (M tu/hr-ft ) 2 (inches)- Ratio l No. No. (psia) (M1bm/hr-ft2 )

                                                                                                                                                                                                                                             ~

01 550 1515. 3.4366 .0574 .7622 .8289 80. .9195' 551 1515. 3.3449 .0204 .9410 .9400 78. 1.0010 02 ' 03 552 1815. 3.4135 .0298 .8421 .8827 78. .9541 . 1815. 3.3692 .0126 .9394 .9110 78. 1.0312 " 04 553 554 2115. 3.4442 .0342 .8166 .8543 78. .9559 05 2115. 3.3642. .0169 .9975 .8771- 78. 1.0346 ' 06 555 07 556 2115. 3.3958 .0355 1.0207 .9688 78. 1.0536 08 557 2115. 2.9687 .0335 .7719 .8229 78. .9380 558 2115. 2.9215- .0109 .8357 .8540 78. .9786 I 09 10 559 2115. 2.8738 .0183 .9186 .8976 78. 1.0234' l 560 2415. 3.4585 .0316 .7958 .8508 78.' . 9354. 11 561 2415. 3.4263 .0237 .8788 .9341 78.~ .9407 12 i 13 562 2415. 3.4191 .0781 1.0205 1. % 91 76.  :.9545 563 2415. 2.9706 .0078 .7193 .8427- . 78. .8536 14 15 564 2415. 2.9037 .0085 .7926 .8606- 78. .9210 l

16 565 2415. 2.9587 .0798 . 9176 1.0204 76.- .8992-17 566 2365. 2.4023 .0408 .8080 .8978 .76. .8999 18 567 2365. 2.4054 .0766 .8822 .9524- -76. .9262.

3 19 568 2415. 2.4376 .1302. .9598- 1.0353 76. .9271 20 569 2115. 2.4101 .0264 .7097 .78% 78. .8989-21 570 2045. 2.3767 .0051 .7831 .8267 78. .9473 l 22 571 2115. 2.3784 .0383 .9159 . 9225 76. .9928 a 572 1535. -2.3089 .0447 .8612 .8529- 78. 1.0098 23 573 1515. 2.2696 .0462 .9170 .8539 78. 1.0739 24 1515. 2.2917 .0113' .9888 . 9131: 78. 1.0829 25 574 1815. 1.8122 .0059 .8628 .8180- 78. 1.0547 26 575 576' .1815. 1.8152 .0151 .9202 . 84% 78. 1.0831-27 577 2115. 1.8856 .0080- .7767 7889 78. .9845 28 . 29 578 2115. 1.87E9 .0537 .8771 .8870 ~ 76. .9889

                                                                                                                 -B-12                                                                                                                             _

E .. E E _ , E E - W .- W E M M .W _, W W W WW g

                                                                                                                                                                                                                              .W' g    ,          ..

W ~~ U U U i Table B-7. Local Conditions - Test Section W127 (Continued) Predicted ~ Measured-to-Measured Predicted _ Critical -Predicted Test Test System Local Mass Local Critical Critical- Heat Flux Critical. Serial ID Pressure Velocity Equilibrium Heat Flux . Heat Flux location . Heat Flux No. No. (psia) (M1be/hr-ftz) Quality (MBlu/hr-ft2 ) (PEtu/hr-ftz) (inches) Ratio 4-30 579 1815. 1.8178 . 0%5 .8676- .3176 78. 1.0612 31 580 2115. 1.9261 .0933 .9362 .9530 76. -9824 32 581 2415. 1.9254 .0656 .7793 .8634. 76. .9026-33 582 2415. 1.9346 .1041 .8316 .9199 76. .9040 34 583 2415. 1.9480 .1459 .9126 .9842 - 76. .9272 35 584 1515. 1.5911 .0246 .7863 .8541' 78. .9206 > 36 585 1515. 1.2829 .0984 .7862 .7037 80. 1.1172 37 586 1515. 1.3001 .0828 .8462 .7241 80. 1.1687 s. B-13

                                                                                      ; _ ;__     __; _                    _ 3

i s Table B-8. Local Conditions - Test Section W131 Predicted Measured-to-Measured Predicted Critical. -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location . Heat Flux

No. No. (psia) (M1bm/hr-ft2) Quality (MBtu/hr-ft2) (= t
:f,p ftz) (inches) Ratio 01 617 1505. 3.5033 .1529 .4%6 .4650 147. 1.0679
02 618 2095. 3.4620 .1522 .4482 .4323 150. 1.0368 i 03 619 2395. 3.4595 .1277 .5073 .4682 150. 1.0835 l 04 620 2395. 3.0159 .1423 .4716 .4338 '150. 1.0869 l 05 621 2115. 3.0175 .1371 .4002 .4445 150. .9004 l 06 622 2125. 2.94 % .1178 .4939 .4691' 150. 1.0530 1

07 623 2125. 2.4221 .1381 .4315 .4282 150. 1.0079 ! 08 624 2395. 2.4337 .1101 .4783 .4522- 150. 1.0578 09 .625 2405. 3.4013 .1013 .6054 .5031 150. 1.2033

10 626 2375. 2.9300 .0990 .5340 .4884 150. 1.0934 11 627 2405. 2.9131 .0657 .6087 .5332 150. 1.1417'
12 628 2415. 2.4489 .0569 .5329 .5214 150.~ 1.0221 13 629 2415. 2.4560 .0353 .5998 .5509 150. 1.0889 14 630 2415. 1.9548 .1239 .4014 .4118 150. .9748-15 631 2405. 1.9376 .0806 .4538 .4626 150. .9808L 16 632 2100. 1.9718 .1447 .3646 .4092 150. .8910L 17 633 2095. 1.9369- .1198- .4259 .4388 150. .9706 18 634- 2405. 1.9473 .0567 .5140 .4924~ 150. --1.0438:

19 635 2115. 1.9681 .0803 .5206 . 4879 150. L O671' 20 636 2125. 2.4380 .0514 .5797 .5462 150. 1.0614 21 637 2095. 2.4739' .0862 .5162- .5008 150. -1.0308 22 638 2115. 3.4336 .1013 .5820 .5053' 150.- '1.1517' 23 639 2085. 2.9461 0775 .5764 .5288 150. 1.0901-24 640 1815. 3.5472 .1057 .5494 .5253 - 147.- 1.0459

25 641 1795. 3.M43 .0880. .6105-. .5549. - 147.' 1.1002-
26 642 1800. 3.5143 .0587 .6592 .6210 144. 1.0614
27 643 1515. 3.5761 .0982- .6093 .5576. 147. 1.0927

, 28 644 1490. 2.5019 .1116 .5354- . 5403 147. .9909

'29 645 1490. 2.4746. .0687- .6162 .6247 144. .9864 B-14 i

W M _ _ M -_ , , _ M M mW

                                                                                                -s  .    .

W _ W W MM _ . - ~ _ . _ _ M M

                                                                                                                                                                  . ~ _ _

W __- M W _M _ _ W1 -

sum w us aus sus Table B-3. Local Conditions - Test-Section W131 (Continued) Predicted Measured-to. Measured Predicted Critical- -Predicted. Test Test System Local ~ Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux . Location _ - Heat Flux No. No. (psia) (Hibs/hr-ft2 ) Quality. (E tu/hr-ft 2) ( E tu/hr-ft2 ) (inches) Ratio ~- 30 646 1515. 2.0086 .0999 .5248 .5543 147. .9469. 31 647 1805. 1.9953 .1503 .3334 .4436 147. .7517 32 648 1500. 2.5151 ,1638 .4749 .4437 150. 1.0703 33- 649 1505. 1. % 62 .2141 .3754 .3685 153. 1.0188 34 650 1502. 2.0391 .1379 .4802 .5015 147. .9575 35 651 1805. 1.9818 .0999 .4329 .5226 144. .8284 36 652 1785. 2.0093 .0757: .5018 .5592 144. .8975 Rev.1 l 37 653 2105. 3.4781 .1604 .4593 .4212' 150. 1.0903 I Rev.I 8-15

        .                                                                                                                                                                                                    g Table B-9. Local Conditions - Test Section W132 i

i Predicted Measured-to l Measured Predicted Critical -Predicted. i Test . Test System Local Mass Local Critical Critical Heat Flux Critical , Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location . Heat Flux ~; No. No. (psia) (M1be/hr-ft2 ) Quality (Mtu/hr-f t2)' (Mtu/hr-ftz) (inches). Ratio  ; j 01 654 1515. 3.4351 .1998 .4%7 .4019 153. 1.2359 i 02 655 2095. 3.4577 .1872 .4465 .4087' 153. 1.0924 l 03 656 2405. 2.9606 .1759 .4475 .4125 153. 1.0850 04 657 2205. 3.0130. .1521 .4579 .4824 147. .9491 i 05 658 2105. 2.9618 .1327 -.5412 .5092 147. 1.0628

06 659 1805. 3.4709 .1348 .5518 .5267 147. 1.0477 07 660 2375. '3.4291 .1693 .4977 .4345 153. 1.1456 t
                                                                                                                                                                     .4433                       1.2124
                                                                                                                                                                                                                  ^

08 661 2400. 3.3529 .1609. .5374 153. l 09 662 2400. 3.3889 .1322 .5866 .4826 153. 1.2154 . . i 10 663 2115. 3.4498 .1405 .5918 .4715 153. -1.2550 -l Rev.1 l 11 664 2400. 2.9124 .1191 .6012 .4829 153. 1.2449 12 665 2115. 2.9469 .1192 .6064 .4908 153. 1.2355 l 14 667 1800. 3.4679 .1137 .6727 .5601 147. 1.2009 15 668 2100. 2.4404 .1177 .6023 A799 153. 1.2550-16 669 2385. 2.4652 . 08% .5981 .5033 153. 1.1884 17 670 2390. .2.9184 .1507 .5312 .4421 153. 1.2016

18 671. 2385. 2.4371 .1561- .4778 .4181 153. 1.1427i 19 672 '2400. 2.4388 .1328 .5333 .4461 153. 1.1955 i 20 673- 2400. 1.9581 .1137 .4203 . 4M9 '147.
                                                                                                                                                                                                 . 8932
21 674 2400. 1.9491 .1511 .4820 .4027 153. 1.1968 i 22 675 2405. 1.9134 .1043 .5197 .4551 153.- .1.1419 23 676 2095. 1.9354 .1464 .5019 .4290 153. 1.1699 24 677 2105. 2.4192 .1712 .4318 .4103 153. 1.0524' 25 678 2105. 2.4583 .1417 .. 5144 .4484- 153. 1.1473 26 679 2105. 1.9405 .1515 .4287 .4223 153. 1.0151

. 27 680 2105. 1.9268- .1847 .3440 .3835 -153. .8971' 28 681 1800. 1.9734 .'1635 . 4092 .4553 150. .8988 29 682 1800. 1.9545 .2201 .3461 .3698 153. .9360 30 683 1500. 1. % 93 .2735 .3650 .3060 '159. 1.1930 l B-16 E -E E E E E E E E W E E E E E E E E

                                                                                                            -www Table 8-9. Local Conditions - Test-Section W132 (Continued)                            ,

W Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical. Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location -Heat Flux No. No. (psia) (M1be/hr-ft2 ) Quality -(M tu/hr-ft2 ) (Mtu/hr-ftz) (inches) -Ratio 31 684 1495. 2.5332 .2200 .4644 .3720- 156. 1.2487. 32 685 1800. 1.9879 .1165 .4966 .5320 147. .9336 33 686 1500. -2.4843 .1663 .5585 .4869 150. 1.1471 34 687 1500. 1. % 27 .2085 .4642 .4189 153. 1.1083 35 688 1500. 2.0348 .1481 .5418 .5186 150. 1.0446 36 689 1500. 2.4439. .1182 .6011 .5775 147. 1.0408 B-17 . - . - . _ = . -- ---- - .-.-:--. .-. -.

i Table 8-10. Local Conditions - Test Section W133 Predicted Measured-to a Measured Predicted Critical -Predicted j Test Test System Local Mass Local Critical Critical Heat Flux Critical i Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux 2 Ratio No. No. (psia) 2 (M1bm/hr-ft ) Quality (Mtu/hr-ftz) ( Mtu/hr-ft ) (inches) . 01 690 1500. 3.4545 .2006 .5248 .4722 153. 1.1115 l 02 691 2100. 2.9565 .2074 .4490 .4730 150. .9494 03 692 2100. 3.4394 .2065 .4808 .4600 153. 1.0452 04 693 2400. 2.9546 .1949 .4970 .4842 150. 1.0265 05 694 2105. 2.9540 .1614 .5484 .5307 150. 1.0333 06 695 2405. 1.9464 .1832 .4322 .4494 150. .9617 i 07 696 2405. 1.9648 .0942 .5171 .5551 150. .9316 08 697' 2105. 1.9223 .1323 .5517 .5327 150. 1.0356-09 698 2115. 2.4262 .1812 .5015 .4893 150. 1.0250 10 699 2105. 1.9375 .1654 .4881 .4928 150. .9905 11 700 2110. 1.9309 .2068 .4132 .4446 150. .9294 12 701 2400. 2.4539 .1362 .5260 .5327 150. .9875 i 14 703 1805. 1.9680 .2198 .3764 .4622 150. .8143 15 704 1500. 1.9525 .2553 .3900 .4178 156. .9333 16 705 1500. 2.5392 .2157 .4923 .4766 153. 1.0328 l 17 706 1795. 1.9433 .1665 .5115 .5272 150. .9703 18 707 1505. 1.9998 .2095 .4755 .4938 153. .%29 19 708 1500. 1.9771 .1781 .56% .5600 150. 1.0172 20 709 1830. 3.4634 .1176 .6657 .6389 147. 1.0419 21 710 1815. 3.4007 .1694 .5551 .53e0 150. 1.0318 i- 22 711 2400. 3.3958 .1748 .5450 .5264 150. 1.0353 23 712 2400. 3.3703 .1290 .5942 .5866 150. 1.0129 , 24 713 2400. 3.3795 .1080 .6154 .6168 150. .9977 25 714 2115. 3.4340 .1400 .6031 .5738 150. 1.0511

26 715 2415. 2.9002 .0892 .6120' .6192 150. .9884
                                                                                                                                .5828                               1.0693

~ 27 716 2100. 2.9177 .1233 .6232 150. . 28 717 1525. 3.4686 .1855 .5897 .5039 153. 1.1703 I 29 718 2400. 2.4710 .0581 .6277 .6376 150. .9844 30 719 2405. 2.9239 .1284 .5685 .5666 150. 1.0035 i B-18 mM M M M M M M M M W W W W W W W W W

                                                                                       -                        - v -- u     ~

Table 8-10. Local Conditions - Test Section W133 (Continued) Predicted Mea;ured-to Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (Mibs /hr-ft2 ) Quality (Stu/hr-f tz) (Mtu/hr-ft2) (inches) Ratio 31 720 2400.~ 2.4361 .1068 .5551 .56% 150. .9745 32 721 2100, 2.4681 .1462 .5752 .5362 150. 1.0727 33 722 2100. 2.4148 .1111 .6266 .5818 150. 1.0771 34 723 2405. 1.9607 .0620 .5640 .5954 150. .9472 35 724 1495. 2.4772 .1883 .5583 .5158 153. 1.0825 36 725 1505. 2.4330 .1620 .6197 .5771 150. 1.0721 37 726 1500. 1.5189 .2040 .4635 .5335- 150. .8689 38 727 1505. 1.4957 .2828 .3675 .4005 156. .9176 b 8-19

o s Table B-11. Local Conditions - Test Section W134 Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial 10 Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1be/hr-ft2 ) Quality (Mtu/hr-ft2) (Mtu/hr-ft2) (inches) Ratio 'j 01 728 1510. 3.4727 .1463 .4455 .4227 150. 1.0539 02 729 1800. 3.4587 .1034 .4974 .4928- 147. 1.0092 1 03 730 2095. 3.4467 .1528 .4298 .3979 150. 1.0776 04 731 2125. -3.5089 .1490 .4388 .4042 150. 1.0855 05 732 2405. 3.4889 .1036 .5221 .4851- 147. 1.0762 06 733 2385. 3.0448 .1365 .4578 .4106 150. 1.1149 07 734 2115. 2.9524 .1348 .4068 .4281 147. .9502 08 735 2100. 2.9754 .0933 .5221 .4872 147. 1.0716 09 736 2405. 2. % 38 .0839 .5426 .4779 150. 1.1354 10 737 2400. 2.4428' .0944 .4667 .4422 150. 1.0554 11 738 2100. 2.4397 .1116 .4445 .4466 147. .9952 12 739 2405. 3.4527 .0642 .6549 .5407 147. 1.2112 13 740 1490. 2.4113 .0494 .6023 .6174 144. .9756 ' 14 741 2385. 2.4849 .0539 .6528 .6711 144. .9728 15 742 2100. 2.4303 .0093 .6233 .6012 144. 1.0367 16 743 1500. 3.5080 .0527 .6984 .6207 144. 1.1252 17 744 1500. 3.5327 .0915 .5832 .5332 147. 1.0937 18 745 1800. 3.4949 .0425 .6380 .6110 144. 1.0441 i 19 746 2405. 2.9310 .0231 .6676 .6574- 144. 1.0156 -l 20 747 .2405. 2.9645 .0579 .6512 .7248 141. .8984 . 21 748 2405. 2.4216 .0029 .5789 .5865 144. .9872 22 749 2105. 3.2802 .0826 .5468- ;5114 147. 1.0692 23 750 2085. 1.9659 .1277 .3739 .4130 147. .9053 24 751 2385. 1.9729 .0487 .4028 .4982 144. .8085 25 752 2410.' 1.9414 .0131 .4939 .5378 144. .9183 26 753 2105. 1.9380 .0652. ,4656 .4996 144. .9320 - i 27 754 2105. 2.4595 .0435 .5506 .5534- 144. .9950 28 755 2090. 1.9663 .0235 .5272 .5568 144. .9469 29 756 2425. 1.9481 .0439 .5457 .6082 144. .8972 B _ _ M - _ _ __ M M M M W W W W W M M M W W eamj

E E E Table B-11. Local Conditions - Test Section W134 (Continued) Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Velocity Equilibrium Heat Flux Heat Flux Lt, cation Heat Flux Serial ID Pressure No. No. (psia) (Mibs /hr-ftz) Quality (Mtu/hr-ftz) (Mtu/hr-ftz) (inches) Ratio 30 757 1485. 2.4508 .1352 .4691 .4684 147. 1.0015' 31 758 1505. 2.4633 .0998 .5315 .5200 147. 1.0221 32 759 1505. 1.9872 .1701 .3796 .4083 150. .9296 33 760 1800. 1.9536 .1012 .4126 .4871 144. .8471 34 761 1800. 1.9687 .0608 .4841 .5422 144 .8929 35 762 1500. 1.9516 .1198 .4433 .4925 147. .9000 36 763 1500. 1.9191 .0763 .5186 .5687 144. .9119 - 37 764 1800. 1.9333 .1538 .3304 .4067 147. .8124 38 765 2105. 3.4169 .0687 .5900 .5517 144. 1.0694-8-21

s e

Table 8-12. Local Conditions - Test Section W138 Predicted Measured-to Measured Predicted Critical -Predicted l ! Test Test System Local Hass Local Critical Critical Heat Flux Critical

Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux j No. No. (psia) (M1bm/hr-f t2 ) Quality (Mtu/hr-f tz) ( M tu/hr-ft2 ) (inches) Ratio 01 803 1495. 1.9534 .0374 .5600 .6411 141. .8735

! 02 804 1500. 2.4200 .0205 .6263 .6772 141. .9249

03 805 1500. 2.1512 .0833 .4947 .5595 144. .8841 i 04 806 1500. 2.4497 .0691 .5445 .5837 144. .9328 05 807 1795. 1.9678 .0534 .4996 .5528 144. .9038 06 808 2100. 2.0010 .02?7 .5532 .5585 144. .9905 07 809 2095. 2.4321 .0000 .6242 .6149 144. 1.0152 '

t 08 810 2395. 1.9465 .0386 .5632 .6039 144. .9326 < 09 811 2405. 2.4121 .0331. .6392 .6347 144. 1.0072 l 10 812 2405. 1.9283 .0063 .4996 .5453 144. .9163 11 813 2395. 2.4253 .0065 .6031 .5998 144. 1.0054 12 814 2115. 1.9484 .0590 .4797 .5068 144. .9466 {- 13 815 2120. 2.4731 .0279 .5545 .5751 144. .9642 i Rev.1 q

14 816 2115. 2.9139 .0070 .6471 .6411 141. 1.0094 l 15 817 1810. 1.9530 .0657 .4457 .5455 141. .8172 l 16 818 1805. 3.4420 .0187 .6562 .6659 141. .9854 I 17 819 1505. 1.9306 .1423 .3866 .4603 147. . 8398 18 820 1500. 2.5073 .1015 .4710 .5323 144. .8848 19 821 1515. 3.4638 .0540 .6120 .6319 141. .9685 i
20 822 2415. 2.8646 .0072 .6566 .6290 144. 1.0439 i i 21 823 1510. 3.4490- .1286 4877 .4680 147. 1.0420 j 22 824 1805. 3.4984 .0769 .5395 .5519 144. .9776 1805. 1.9955 .1115 .3676 .4735 144. .7763 23 825 24 826 2115. 2.0026' .0919 .4099 .4675 144. .8768 I 25 827 2105. 2.4435 .0763 .4722 .5067 144. .9319 26 828 2105.
2.9296 .0613 .5308 .5463 144. .9716 I

27 829 2095. 3.4310 .0553 .6006 .5731 144. 1.0480 28 830 2405. 1.9311 .0933 .3942 .4184 150. .9421 29 831 2395. 2.4059 .0654 .4766 .4779 150. .9972 i B-22 m em ses. . _ e . en e . as as e m m e sus aus eeeem

NW W W Wl i Table B-12. Local Conditions - Test Section W138 (Centinued) Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux No. No. (psia) (M1be/hr-ft2 ) Quality (MBtu/hr-ftz) (Petu/hr-ftz) (inches) Ratio 30 832 2405. 2.9351 .0471 .5769 .5418- 147. 1.0647 31 833 2415. 3.3279 .0630 .5783 .5219 150. 1.1000 32 ~834 2420. 2.9601 .1114 .4665 .4403 150. 1.05 % 33 835 2415. 3.3840 .1131 5117 .4527 150. 1.1301 34 836 2095. 3.0232 .1191 .4151 .4517 147. .9190 35 837 2100. 3.4391 .1124 .4900 .4706 147. 1.0412 36 838 2105. 2.4690 .0802 .4909 .5022 144. .9775 37 839 2100. 2.5117 .0317 .5694 .5727 144. .9942 8-23

l Table 8-13. Local Conditions - Test Section W139 r l- Predicted Measured-to I Measured Predicted Critical -P edicted Test Test System Local Mass Local Critical Critical Heat Flux Critical  : Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Scit Flux , No. No. (psia) (M1be/hr-ft2) Quality (Mtu/hr-ftz) (Mtu/hr-fts) (inches) Ratio ! til 840 1495. 1.9033 .0864 .4534 .5195 144. .8727 i 02 841 1505. 2.3511 .0206 .6283 .6374 141. .9858 ! 03 842 1500. 1.8211 .0560 .4982 .5617 144. .8870 I j 04 843 1495. 2.3806 .0792 .5342 .5321 144. 1.0040 3.4209 .0548 .6683 .5785 144. 1.1554 05 844 1500. i 06 845 1805. 1.8909 .0346 .4936 .5532 141. .8923 07 846 2095. 1.8939 .0002 .5350 .5617 141. .9525

08 847 2095. 2.33 % .0004 .6087 .5771 144. 1.0548 .;

09 848 2395. 1.8944 .0423 .5590 .5745 144. .9732 10 849 2410. 2.4005 .0431 .6534 .6158 144. 1.0610 ! 11 850. 1509. 1.8843 .1475 .3949 .4197 147. .9410 12 851 1495. 2.3485 .1319 .4459 .4383 147.' 1.0173 i 13 852 1505. 3.4532 .0741 .6100 .5427 144. 1.1238 ! 14 853 1805. 3.4334 .0343 .65% .58?4 144. 1.1229 i 15 854 1805. 1.8734 .0868 .4037 .4714 144. .8564 16 855 2075. 1.8847 .0446 .45% .4957 144. .9272

17 856 2095. 2.3569 .0410 .5416 .5209 144. 1.0397
18 857 2105. 2.8745 .0232 .6311 .5681 144. 1.1108

+ 19 858 2405. 2.3640 .0016 .5839 .5531 144. 1.0557 i 20 859 2395. 1.8709 .0064 .4957 .5126 144. .%70 21 860 1800. 1.8493 .1348 .3367 .4100 144. .8213 1 22 861 1815. 3.3540 .0835 .5255 .5030 144. 1.0449 23 862 1505. 3.3536 .1434 .4369 .3946 150. 1.1071 24 863 2100. 2.3702 .0726 .4634 .4777 144. .9700 25 864 2100. 2.9226 .0705 .5329 .4996 144. 1.0666 i 26 865 2105. 3.3677 .0665 .5740 .5051 147. 1.1365 27 866 2100. 1.8674 .0946 .3690 .4301 144. .8580

                                                                                                                                                                                                 .9574 28     867    2400.           1.8940                           .0817                         .3%1                           .4137          147.

3 1.0372

29 868 2405. 2.3537 .0665 .4732 . 4562 147.

8-24 - W~__ M . M M W W W W W W W W W W W W W m' W

UU U Table B-13. Local Conditions - Test Section W139 (Continued) P.edicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. (psia) (M1be/hr-ftz) Quality (MBtu/hr-ftz) (Mitu/hr-ftz) (inches) Ratio

                                   .No.

30 869 2405. 2.8801 .0529 .5597 .4996 147. 1.1203 31 870 2405. 2.9403 .1205 .4504 .3977 150. 1.1324 32 871 2405. 3.3929 .0909 .5324 .4669 147. 1.1404 33 872 2105. 3.3990 .1381 .4392 .3858 150. 1.1383 34 873 2085. '2.8619 .1308 .3913 .4005 147. .9769 35 874 2410. 3.3775 .0385 .6522 .5425 147. 1.2023 36 875 2405. 2.8551 .0175 .6833 .6112 144. 1.1179 37 876 1500. 2.3507 .0743 .5329 .5389 144. .9989 2 38 877 2095. 2.3448 .0445 .5280 .5155 144. 1.0241 s b O B-25

I o x t t I Table B-14. Local Conditions - Test Section W153 l l Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flur. l t- No. No. (psia) (M1be/hr-ftz) Quality (M tu/hr-ft )2 (Mtu/hr-ftz) (inches) Ratio I 01 1391 1505. 3.0792 .2259 .4604 .3980 168. 1.1567 02 1392 1800. 3.0749 .1856 .4471 .4494 168. .9949 03 1393 1805. 2.7932 .1942 .3940 .4360 168. .9036 04 1394 1810. 3.0703 .1732 .4217 .4685 168. .9001 } 05 1395 2100. 3.0434 .2049 .4084 .4140 168. .9866  ! 06 13 % 2100. 2.5998 .1548 .3752 .4752 168. .7896 07 1397 2115. 2.5515 .1656 .4748 .4586 168. 1.0353  :

08 1398 2100. 2.0681 .2012 .3232 .4014 168. .8051 09 1399 2100. 2.0395 .1941 .4073 .4094 168. .9950' l 10 1400 2400. 3.0344 .2085 .4737 .4110 168. 1.1524
_ 12 1402 2400. 2.54% ' .2064 .4172 .3979. 168. 1.0485 13 1403 2395. 2.5434 .1559 .5047 .4613 168. 1.0940 14 1404 2400. 2.0235 .1820 .4371 .4050 168. 1.0793 15 1405 2105. 3.0380 .1594 .5312 .4801 168. 1.1065 16 1406 1800. 2.5451 .1502 .4936 .4999 168. .9874 1 17 1407 1805. 3.0305 .1404 .5467 .5200' 168. 1.0514 18 1408 2405. 2.0680. .0089 .5035 .6052 168. .8320 19 1409 2105. 2.0206 .1470 .5024 .4653 168. 1.0798 t 20 1410 1500. 2.0539 .2159 .4604 .4442 168. 1.0364 21 1411 1500. 2.5633= .1901 .5390 .4706 168. 1.1454 l 22 1412 2405. 1.5800 .1760 .4261 .3865 168. 1.1024 l 23 1413 2100. 1.5677 .1774 .4062 .4130 168. .9835 24 1414 2400. 1.5563 .0873 .4715' .4749 168. .9928 25 1415 2100. 1.5070 .1586 .4648 .4303 168. 1.0801 26 1416 2400. 1.5197 .0133 .4991 .5456 168. .9148 27 1417 2100. 1.4%3 .0945 .4958 .4971 168. .9974 i 28 1418 1815. 1.5115 .1428 .4914 .4869 168. 1.0092

! 29 1419 1500. 1.5360 .1785 .4958 .5043 168. .9832 30 1420 1795. 1.5046 .1569 .4438 .4741 168. .9361 B-26

          ~

W W W E W W W W W W W W W W W W W W Wj

                                                                                                                             M    M       NO Table B-14. Local Conditions - Test Section W153 (Continued)

Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux No. No. (psia) (M1be/hr-ftz) Quality (PEtu/hr-ftz) (Petu/hr-ftz) (inches) Ratio 31 1421 1500. 1.4782 . 24% .4239 .4302 168. .9853 32 1422 1800. 1.4900 .1792 .3918 .4480 168. .8746 33 1423 1495. 1.5053 .2917 .3851 .3681 168. 1.0461 34 1424 2095. 1.4982 .2360 .3154 .3491 168. .9036. 35 1425 2400. 1.5153 .2215 .3519 .3375 168. 1.0428 36 1426 2415. 1.4904 .0884 .4471 .4664 168. .9586 37 1427 2405. 3.0368 .1094 .5888 .5460 168. 1.0783 38 1428 2425. 2.5014 .0816 .6131 .5509 168. 1.1130 39 1429 2405. 3.0295 .0444 .6895 .6340 168. 1.0875 . 40 1430 2400. 2.0005 .0611 .5821 .5404 168. 1.0772 41 1431 2400. 2.4818 .0098 .6585 .6401 168. 1.0288 42 1432 2410. 2. % 20 .0165 .7271 .7114 168. 1.0221 43 1433 2410. 1. % 91 .0060 .5921 .5987 168. .9889 k e B-27

                  ..- - .-._ ,.-            -       . _   -.   .   . . . . . . . . - . - ~

e .g Table B-15. Local Conditions - Test Section W157 Predicted Measured-to Measured Predicted Critical -Fredicted Test Test System Local Mass Local Critical Critical Heat Flux Critical ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux Serial. 2 2 Ratio No. No. (psia) (M1bm/hr-ft2) Quality (Mtu/hr-ft ) (M tu/hr-ft ) (inches) 01 1559 2100. 1.9809 .1423 .5634 .5651  %. .9969 02 1560 2125. 2.4842 .0818 .6389 .6840 96. .9341 03 1561 2115. 2.9902 .0618 .6%7 .7479 96. .9315 04 1562 2115. 3.4268 .0575 .7645 .7792 96. .9812 1563 2425. 1.9975 .0467 .5812 .6701 96.- .8673 05 06 1564 2400. 2.4868 .0417 .6634 .7262 96. .9135 07 1565 2415. 2.9645 .0101 .8223 .8176 96. 1.0057 08 1566 2405. 3.4498 .0308 .8112 .8212 96. .9878 09 1567 2400. 1.9895 .2018 .4167 .4565 96. .9128 10 1568 2400. 2.4497 .1984 .4767 .4842 96. .9844 11 1569 2405. 2.9493 .1536 .5723 .5795 96. .9875 12 1570 2415, 3.4735 .1358 .6612 .6364 96. 1.0390 13 1571 2100. 2.0756 .1932 .4111 .4931 96. .8336 14 1572 2100. 2.5025. .1715 .4734 .5402 96. .8764 15 1573 2105. 3.0040 .1520 .5200 .5886 96. .8835 16 1574 2105. 3.4702 .1559 .5567 .5943 96. .9367 17 .1575 2105. 1.9899 .0414 .7356 .7137- 96. 1.0306 18 1576 2115. 2.4365 .0274 .8123 .7699 96. 1.0551 15- 1577 2100. 2.8881 .0471 .8178 .7690 96. 1.0635 20 1578 2395. 1.9553 .0059. .7690 .7249 96. 1.0608 21 1579 2400. 2.4035 .0015 .8156 .7795 96. 1.0464 22 1580 2405. 2.8664 .0186 .8134 .7957 96. 1.0223 23 1581 2415. 2.4675 .0069 .7067 .7765 96. .9101 24 1582 2405. 2.9400~ .1624 .5545 .5645 96. .9822 1583 2415. 1.0438 .1015 .4589 4932 96. .9304 25 26 1584 2405. 1.5514 .0452 .6312- .6282 96. 1.0112 1585 2105. 3.4501 .1615 .5400 .5832 96. .9260 27 28 1586 2105. 3.4902 .0553 .7978 .7870 96. 1.0138 29 1587 2115. 1.0544 .2376 .3645 .3974 96. .9173 B-28

W E E E Table 8-15. Local Conditions - Test Section W157 (Contirmed) Predicted Measured-to Measured Predicted Critical -Predicted Test Test System local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1be/hr-ftz) Quality (Mtu/hr-ft 2) (Mtu/hr-ftz) (inches)- Ratio 30 1588 2105. 1.5703 .1627 .5056 .5152 96. .9814 31 1589 2100. 1.0503 .1706 .4589 .4733 96. .9696 32 1590 2105. 1.5020 .1248 .6167 .5602 96. 1.1006 33 1591 2405. .9906 .2239 .3411 .3633 96. . .9390 34 1592 2405. 1.5040 .1673 .4756 .4691 96. 1.0139 35 1593 1505. 2.0297 .1156 .6834 .7046 96. .%99 36 1594 1505. 2.4579 .0900 .7734 .7552 96. 1.0240 37 1595 1815. 1.9772 .0897 .6867 .6R37 96. 1.0043 38 15 % 1815. 2.4834 .0306 .7356 .8075 96. .9109 39 1597 1815. 1.9990 .1316 .5812 .6186 96. .9396 40 1598 1800. 2.5180 .1095 .6945 .6723 96. 1.0330 41 1599 1805. 2.9870 .0889 .7834 .7230 96. 1.0836 42 1600 1500. 2.0367 .1892 .6067 .5783 96. 1.0490 43 1601 1515. 2.5225 .1436 .6534 .6514 96. 1.0b31 44 1602 1500. 3.0041 .1083 .6978 .7234 96. .9646 45 1603 1515. 3.5125 .0890 .7745 .7654 96. 1.0119 46 1604 1505. 2.0585 .2522 .4823 .4673 96. 1.0322 47 1605 1505. 2.5230 .1893 .5145 .5653 96. .9101 48 1606 1505. 3.0549 .1659 .5812 .6013 96. .9666

  • 50 1608 1800. 3.4594 .0940 .7801 .7255 96. 1.0752 51 1609 1520. 3.4932 .1695 .5623 .5842 96. .9626 53 1611 1795. 1.5563 .2384 .4189 .4570 96. .9167 54 1612 1805. 2.0972 .1556 .5234 .5839 96. .8963 55 1613 1805. 2.5460 .1486 .5589 .6031 96. .9268 56 1614 1815. 3.0007 .1483 .6023 .6087 96. .9895 57 1615 1805. 3.5493 .1013 .6756- -.7121 96. .9488 58 1616 1805. 1.0879 .2796 .4245 .4075 96. 1.0416 59 -1617 1800. 1.5346 .2014 .5200 .5000 96. 1.0236 60 1618 1495. 1.0560 .3357 .4623 .4156 96. 1.1124 B-29
                                                                                                                                                     . ~ . . -            ~     . - - -   -
                                                                          . . . . . . = .     - . . . . -

i i Table B-15. Local Conditions - Test Section W157 (Continued) Predicted Measured-to j Measured _ Predicted Critical -Predicted > l Test Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux No. No. (psia) 2 (Mlbe/hr-ft ) Quality (letu/hr-ft ) 2 (fWtu/hr-ftz) (inches) Ratio l' 61 1619 1505. 1.4851 .2339 .4934 .5232  %. .9430 62 1620 1790. 1.0220 .1243 .4945 .5912 96. .8365 4 63 1621 1495. 1.9849 .1245 .6856 .6915. 96. .9915 i 64 1622 1805. 1.4829 .1286 .6723 .6066 96. 1.1083 ' ! 65 1623 1800. 1.9283 .0649 .7545 .7228 96. 1.0439 66 1624 1510. 1.0550 .2536 .5756 .5144 96. 1.1190 67 1625 1505. 1.5173 .1636 .6923 .6272  %. 1.1037 i 68 1626 1505. 1.9559 .1126 .7990 .7092 96. 1.1267 > 69 1627 1495. 2.5106 .2006 .4878 .5454  %. .8944 l , 70 1628 1805. 2.4469 .0709 .8023 .7369 96. 1.0888 71 1629 1510. 1.0162 .2967 .4845 .4632 96. 1.0459 72 1630 1500. 1.5487 .1989 .6123 .5748 96. 1.0652 , i 73 1631 1805. 1.5148 .1464 .6089 .5833 96. 1.0440 , 74 1632 1805. 1.0122 .2349 .4489 .4600 96. .9759. 75 1633 2105. 1.0453 .1394 .5534 .5061 96. . 1.0934

76 1634 2425. 1.0519 .0976 .5756 .4%9 96. 1.1585

77 1635 2405. 1.4564 .0032 .7256 .6710  %. 1.0814 78 1636 2115. 1.4824 .%23 .7056 .6375  %. 1.1067 - 79 1637 2110. 2.0035 .0856 .7112 .6489' 96. 1.0959 i 1 l i l 4 8-30

Table 8-16. Local Conditions - Test Section V158 '; Predicted Measured-to Measured Predicted Critical -Predicted Test Test' System . Local Mass Local Critical Critical Heat flux Critical Serial 10 Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1bm/hr-ftz) Quality (MBlu/hr-ftz) (MBlu/hr-f tz) (inches) Ratio 01 1638 2100. 2.0277 .1400 .5770 .5295 96. 1.0897 02 1639 2105. 2.4921 .0940 .6373 .6228 96. 1.0234 03 1640 2100. 2.9917 .0778 .7221 .6749 96. 1.0699 04 1641 2105. 3.4769 .0698 .8237 .7113 96. 1.1580 05 1642 2395. 2.0349 .0964 .6228 .5677 96. 1.0971 06 1643 2425. 2.5239 .0376 .7177 .6921 96. 1.0370 07 1644 2395. 3.0021 .0360 .7757 .7341 96. 1.0567 08 1645 2435. 3.4525 .0213 .8560 .7913 96. 1.0818 09 1646 2415. 2.0342 .1716 .4732 .4610 96. 1.0265 10 1647 2400. 2.4992 .1194 .4955 .5659 96. .8756 11 1648 2405. 2.9732 .1198 .5793 .5925 96. .9778 12 1649 2410. 3.5062 .0807 .6641 .6895 96. .9632 13 -1650 2115. 1.9792 .2007 .3839 .4368 96. .8788 14 1651 2110. 2.4792 .1707 .4476 .4968 96. .9010 15 1652 2105. 2.9503 .1704 .5212 .5090 96. 1.0240 16 1653 2100. 3.4723 .1404 .5402 .5766 96. .9369 17 1654 2115. 2.9811 .0422 .8460 .7367  %. 1.1484 18 1655 2400. 2.9518 .0036 ~ .8438 .7957 96. 1.0604 19 1656 2100. 1.9981 .0781 .7444 .6197 96. 1.2013 20 1657 2100. 2.4882 .0341 .8226 .7209 96. 1.1410 21 1658 2400. 1.9977 .0023 .7266 .7015 96. 1.0358 22 1659 2400. 2.4815 .0371 .8527 .8045 96. 1.0599 23 1660 2315. 1.4939 .0789 .6027 .5513 96. 1.0931 24 1661 2400. 1.0443 .1468 .4743 .4162 96. 1.1395 25 1662 2095. 1.0024 .1562 .4230 .4515 96. .9370 pey,g 26 1663 2100. .9976 .1236 .4855 .4850 96. 1.0011 27 1664 2105. 1.4974 .0589 .6987 .6068 96. 1.1515 28 1665 2100. 2.0029 .0116 .8326 .7184 96. 1.1590 29 1666 2100. 1.5041 .1304 .6105 .5155 96. 1.1843 8-31

l

l. e s I .

l l Table 8-16. Local Conditions - Test Section W158 (Continued) l Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) 2 (M1be/hr-ft ) Quality (M8tu/hr- f tz) (M8tu/hr-ft ) 2 (inches) Ratio 30 1667 2115. 1.5093 .1735 3 .4%7 4580  %. 1.0846 31 1668 2395. 1.5171 .1440 .5045 .4639 96. 1.0875 32 1669 1800. 1.5056 .2098 .3929 .4544 96. .8647 33 1670 1815. 2.0034 .1807 .4665 .4972  %. .9382

     -34   1671    1800.       2.5067               .1429              .5279          .5671             %.            .9308 35   1672    1800.       3.0090               .1260              .5982         .6052              %.            .9884           '

, 36 1673 2100. 2.9843 .0834 .7310 .6646  %. 1.0999 37 1674 1825. 3.4819 .1282 .7266 .6057 96. 1.1997 38 1675 1500. 1.5556 .2492 .4241 .4517 95. .9389 39 1676 1515. 2.0434 .2034 .4654 .5028  %. .9256 40 1677 1500. 2.5168 .2075 .5491 .4819 96. 1.1395 , 41 1678 1515. 3.0146 .1501 .5458 .5835 96. .9354 42 1679 1505. 3.4761 .1414 .5692 .5975  %. .9526 43 1680 1800. 1.5513 .1825 .5413 .4?27  %. 1.0986 4 44 1681 1800. 1.9188 .1428 .6239 .5587  %. 1.1167 45 1682 1815. 2.4875 .0992 .7232 .6419 96. 1.1267 46 1683 1815. 2.9893 . 06% . .8103 .7116 96. 1.1387 I 47 1684 1800. 3.5120 .0765 .8237 .7140 96. 1.1536 48 1685 1500. 1.5100 .2224 .5257 .4943  %. 1.0636 i 49 1686 1505. 2.0144 .1612 .6072 .5781  %. 1.0503 50 1687 1505. 2.50 % .1234 .6831 .6426  %. '1.0630 51 1688 1505. 2.9976 .1110 .7612 .6666 96. 1.1419 - 52 1689 1510. 3.4924 .0711 .7947 .7549  %. 1.0528

53 1690 1805. 1.5179 .1273 .6462 .5681  %. 1.1374 54 1691 1800. 1.9923 .1000 .7846 .6267  %. 1.2520 55 1692 1805. 2.4615 .0536 .8706 .7220  %. 1.2058 57 1694 1500. 1.9827 .1411 .7534 .6139  %. 1.2271 1 58 1695 1493. 2.4776 .1005 .8226 .6882  %. 1.1953 60 1697 2405. 1.5073 .0085 .7076 .6487  %. 1.0908 B-32
                                                                                        ~M       M     W      W Wl   1 Table B-16.      Local Conditions - Test Section W158 (Continued)

Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Eq>ilibrium Heat Flux Heat Flum location Heat Flux No. No. (psia) (M1 bin /hr-f tz) Quality (MBlu/hr-ftz) (MRtu/hr-ftz) (inches) Ratio 61 1698 1500. 1.0057 .2765 .4710 .4477  %. 1.0521 62 1699 1810. 1.0149 .1800 .4598 ~

                                                                              .4831        %.          .9518 63   1700  1795.       1.0128              .1458           .5368           .5257        %.         1.0211 64   1701  1805.       1.4799              .0976           .7154           .6074        %.         1.1777 65   1702  1505.       1.0176              .2160           .5793           .5200        %.         1.1140 66   1703  1505.       1.5034              .1385           .7132           .6185        96.        1.1530 67   1704  1505.       2.0000              .0981           .8583           .6865       %.          1.2502 68   1705  1815.       1.9512              .0064           .8081           .7888       %.          1.0244 l

B-33 d

Table B-17. Local Conditions - Test Section W160 Predicted Measured-to Measured Predicted Critical -Predicted Test Test System local Mass local Critical Critical Heat Flux Critical ' Serial 10 Pressure Velocity Equilibrium Heat Flux Heat ' Flux location Heat Flux No. No. (psia) (M1bm/hr-f tz) Quality (MBlu/hr-ft2 ) (MBlu/hr-ftt ) (inches) Ratio 01 1720 1800. 1.4764 .2001 .5172 .5441 96. .9506 02 1721 1800. 2.0178 .1407 .6123 .6438 96- .9510 03 1722 1800. 2.4856 .1122 .7040 .7050 ' 96. .9986 04 1723 1800. 2.3780 .0888 .8101 .7631 96. 1.0616 05 1724 2415. 1.4262 .1655 .5040 .4931 96. 1.0222 06 1725 2400. 2.5218 .0255 .6874 .7895 96. .8706 07 1726 2400. 2.5121 .0756 .7460 .7114 9G. 1.0486

,            08     1727     2415.      3.0018           .0539           .8532            .7852          96.       1.0866 L

09 1728 2115. 1.4802 .1867 .4819 .5096 96. .9456 10 1729 2115. 2.0147 .1568 .5902 .5783 96. 1.0206 11 1730 2100. 2.5035 .1221 .6654 .6577 96. 1.0132 12 1731 2105. 2.9837 .1047 .7560 .7101. 96. 1.0646 13 1732 2115. 1.9911 .2139 .4178 .4931 96. .847' 14 1733 2105. 1.4904 .1723 .6167 .5301 96. 1.1633 15 1734 2100. 1.9843 .0937 .7549 .6713 96. 1.1245 16 1735 2100. 2.4914 .0610 .8831 .7571 96. 1.1664 17 3736 2105. 2.9681 .0487 .9936 .8036 96. 1.2288 18 1737 2415. 1.4999 .0995 .6465 .5802 96. 1.1143 1!! l'i38 2405. 1.9943 .0245 .7957 .7352 96. 1.0823 20 1739 2415. 2.4771 .0182 .9251 .8507 96. 1.0F/4 21 1740 1815. 1.4977 .1589 .6576 .5983 96. 1.0992 22 1741 1815. 1.9736 .1113 .7736 .6863 96. A 1272 23 1747 1815. 2.4560 .0785 .8930 .7608 96. ~1.1738 ! 24 1743 1815. 2.9716 .0514 .9549 .8325 96. 1.1470 25 1744 1805. 1.4552 .1616 .7084 .5952 96. 1.1903 26 1745 1300. 1.9321 .0894 .8013 .7214 96. 1.1108 27 1746 2095. 1.4480 .1093 .7195 .6065 96. 1.1805 28 1747 2403. 1.4728 .0416 .7239 .6492 96. 1.1150 29 1748 1515. 1.4610 .2076 .6222 .5988 96. 1.0391 i B-34 W W W W W W W W W W W W W W W W W W

v t- L.___) t i t > Table B-17. Local Conditions - Test Section W160 (Continued) Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1bm/hr-f tz) Quality (MBlu/hr-ftz) (MBlu/hr-ft2 ) (inches) Ratio 30 1749 1515. 1.9766 .1315 .7095 .7147 96 .9927 31 1750 1500. 2.4680 .1070 .6245 .7653  %. 1.0774 32 1751 1505. 2.9411 .0788 .9284 .8256  %. 1.1245 33 1752 1505. 1.4881 .2513 .5139 .5359 96. .9589 34 1753 1505. 2.0133 .1700 .5614 .6510  %. .8623 35 1754 1515. 2.4943 .1427 .6797 .6943 96. .9789 36 1755 1525. 2.9879 .1200 .7504 .7371  %. 1.0180 37 1756 1500. 2.0643 .2265 .4741 .5529  %. .8574 38 1757 1515. 2.5604 .1720 .48% .6375  %. .7680 39 1758 1500. 3.0669 .1562 .5736 .6645 96. .8632 40 1759 2125. 2.5108 .1622 .4730 .5907 96. .8008 41 1760 2100. 3.0540 .1458 .5438 .6397  %. .8501 42 1761 2415. 2.0300 .1673 .4841 .5389  %. .8984 43 1762 2425. 2.5326 .1655 .5802 .5734 96. 1.0119 44 1763 3415. 3.0358 .1367 .6454 .6787  %. .9509 45 1764 2405. 3.4860 .1461 .7217 .6574  %. 1.0978 46 1765 2115. 3.4865 .1457 .5%8 .6538  %. .9128 48 1767 1800 2.0271 .1812 .4763 .5795  %. .8219 49 1768 1815. 2.5382 .1462 .5404 .6446  %. .8384 50 1769 1815. 3.0443 .1241 .6410 .6956 96. .9215 51 1770 1815. 3.5307 .1167 .6731 .7201 96. .9347 52 1771 1515. 3.0883 .1718 .6134 .6293 . 96. .9148 53 1771 2115. 3.4557 .1073 .8145 .7257 96. 1.1224 54 1772 2410. 3.5302 .0397 .9461 .8503 96. 1.1127 55 1773 2400. 2.4904 .0913 .7549 .6855 95. 1.1012 56 1774 1515. 3.4681 .0%8 .7991 .7904 96. 1.0110 57 1775 1815. 3.4634 .0748 .9173 .8047  %. 1.1400 SS 1776 1515. 1.4710 .1745 .6731 .6473 96. 1.0399 59 1777 1510. 1.9543 .1227 .8234 .7307  %. 1.1268 8-35

                                 '--                                                    M

Table B-17. Local Conditions.- Test Section W160 (Continued) Predicted Measured-to Measurr:; Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical , Serial 10 Pressure Velocity Equilibriur. Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1be/hr-ft2 ) Quality 2 (MBlu/hr-f t ) (MBtu/hr-f t2) (inches) Ratio 60 1778 1505. 1.0130 2820 .5847 .5199  %. 1.1246 61 1779 1800. 1.0253 .2003 .5592 .5337 96. 1.0479 62 1780 2100. 1.0047 .1952 .5747 .4723  %. 1.2168 i 63 1781 2365. .99D .1479 .5614 .4740  %. 1.1845 64 1782 2415. .9999 .1739 .4808 .4397  %. 1.0934 65 1783 2100. 1.0019 .2192 .4752 .4463 96. 1.0647 . 66 1784 1785. 1.0060 .2563 .4918 .4720  %. 1.0419 67 1785 1501. 1.0939 .2658 .5128 .5368  %. .9552 4 8 a E-36 E E _ _ - _ _ _ = _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ E E E M . _ _ . M M E . E -. E WW .. . - - W .- W W W W W

                                                                                                                                                                                    . a .: . ..

M M E E Table B-18. Local Conditions - Test Section W161 Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial 10- Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1bm/hr-ft2 ) Quality (MBtu/hr-ft2 ) (MBlu/hr-f t2 ) (inches) Ratio 01 17 % 2115. 2.0368 .2422 .2984 .3787 168. .7879 02 1797 2400. 2.0529 .2157 .3139 .3952 168. .7943 03 1798 2400. 2.0312 .1623 .4071 .4550 168. .8948 04 1799 2100 2.0081 .1934 .3771 .4379 168. .8612 05 '1800 2200. 2.0184 .1282 .4415 .5079 168. .8693 06 1801 2415. 1.9832 .1349 .4792 .4820 168. .9943 07 1802 2415. 2.0303 .1084 .5613 .5152 168. 1.08 % 08 1803 2100. 2.0145 .1368 .4437 .5063 168. .8764 09 1804 2100. 2.5219 .2187 .3328 .4177 168. .7967 10 1805 2400. 2.5482 .1895 .3649 .4483 168. .8139 11 18 % 2100. 3.0441 .1926 .3915 .4635 168. .8446 12 1807 2400. 3.0386 .1825 .4204 .4775 168. .8805 13 1808 2100. 1.5088 .2555 .3228 .3548 168. .9098 14 1809 2400. 1.5011 .2332 .3217 .3498 168. .9196 15 1810 2400. 2.5215 .1402 .4614 5090 168. .9066 16 1811 -2100. 2.5120 .1678 .4193 .4854 168. .8638 17 1812 2100. 1.5224 .2049 .3793 .4086 168. .9282 18 1813 2400. 1.4617 .1984 .3694 .3819 168. .%73 19 1814 2100. 1.5002 .1727 .4348 .4417 168. .9845 20 1815 2400. 1.5076 .1443 .4625 .4386 168. 1.0544 21 1816 1500. 1.5084 .2829 .4282 .4098 168. 1.0450 22 1817 1500. 2.0349 .1988 .4947 .5020 168. .9854 23 1818 1800. 1.4924 .2273 .4004 .4230 168. .9466 24 1819 1800. 2.0468 .1671 .4770 .5012 168. .9516 25 1820 2410. 2.4829 .1153 .5757 .5374 168. 1.0712-26 1821 2410. 2.9979 .1395 .5457 .5341 168. 1.0218 27 1822 2405. 3.5544 .2%2 .4171 .4617 168. .9034 28 1823 2400. 3.5666 .1820 .4947 .4973 168. .9948 29 1824 2100. 3.5227 .1883 .4293 .4784 168. .8973 8-37

                                                                                      -=       . _ _ .

t e Table B-18. Local Conditions - Test Section W161 (Continued) . Predicted Measured-to Measured Predicted Critical -Predicted Test Test System tocal Mass local Critical Critical Heat Flux Critical Serial 10 Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux ' No. 61 0 . (psia) (M1bm/hr-ftz) Quality (M8tu/hr-f tz) (MBlu/hr-ftz) (inches) P.atio 30 1825 2100. 2.9574 .1697 .4404 .4948 168. .8900 31 1826 2100. 3 5324 .1555 .5169 .5298 168. .9756 32 1827 2100. 2. % 32 .1530 .5169 .5190 168. .9959 33 1828 ~2100. 2.5021 .1273 .5136 .5391 168. .9527 34 1829 2105. 1.0100 .3027 .2939 .2985 168. .9845 l 35 1830 2419. 1.0113 .2913 .2984 .2694 168. 1.1078 36 1831 2100. 2.0110 .1413 .5058 .5007 168. 1.0102 37 1832 2100. 2.4566 .1119 .5735 .5576 168. 1.0285 38 1833 2085. .9713 .3033 .31/2 .3002 168. 1.0568 39 1834 2415. .9801 .2833 .3328 .2742 168. 1.2137-40 1835 2100. 2.0/47 .1217 .5402 .5250 168. 1.0290 41 1836 2100. 1.0191 .2617 .3671 .3355 168. 1.0943 43 1838 2100. 1.5775 .1313 .4714 .4899 168. .9623 44 1839 2400. 1.5752 .1548 .5014 .4332 168. 1.1574 4 45 1840 2405. . 2.5132 .1338 .5224 .5163 168. 1.0117 , 46 1841 1805. 1.4851 .2841 .3361- .3588 168. .9367 47 1842 1805. 2.0301 .2145 .3727 .4390 168. .8490 48 1843 1805. 2.4923 .1996 .4215 .4600 168. .9163 49 1844 1805. 3.0253 .1451 .5102 .5454 168. .9355 50 1845 1510. 1.4646 .3211 .3572 .3643 168. .9804 51 1846 1505. 2.0349 .2355 .4182 .44% 168. .9301 52 1847 1505. 2.5181 .2078 .4659 .4773 168. .9760 53 1848 1505. 3.0191 .1720 .5380 .5264 168. 1.0219 54 1849 1505. 3.4862 .1740 .5546 .5162 168. 1.0745 56 1851 1505. 1.0376 .3744 .3394 .3397 168. .9992 57 1852 1805. 1.0007 .3523 .3128 .3016 168. 1.0370 58 1853 1505. 2.5192 .1712 .5515 .5344 168. 1.0358 59 1854 1800. 2.5106 .1536 .5231 .5264 168. 1.0052 60 1855 1800. 3.0392 .1826 .4648 .4870 168. .9544 B-38

1 I l Table 8-18. Local Conditions - Test Section W161 (Continued) l Predicted Measured-to Measured Predicted Critical -Predicted Test Test System local Mass local Critical Criticci Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1bm/hr-ftz) Quality (MBlu/hr-ft2 ) (MBtu/hr-f t2 ) (inches) Ratio 61 1856 1800. 3.5296 .1602 .5169 .5255 168. . 9835 62 1857 1500. 3.5889 .2041 .5058' .4591 168. 1.1017 63 1858 1510. 3.0835 .2354 .4681 .4161 168. 1.1249 64 1859 1500. .9987 .3636 .3572 .3552 168. 1.0055 65 1860 1800. .9724 .3000 .3439 .3514 168. .9787 66 1861 1805. 1.4708 .1910 .4526 .4625 168. .9787 , 67 1862 1505. 1.4799 .2633 .4692 4338 168. 1.0817 68 1863 1805. 1.9815 .1436 .5291 .5297 168. .9989 69 1864 1500. 1.9826 .1854 .5213 .5217 168. .9992 70 1865 2095. 2.0162 .1935 .3782 .4384 168. . 8627. 71 1866 2105. 2.0259 .2694 .4526 .4670 168. . % 92 I 4 1 1 it B-33

                        '     't'A'W
                                             ~
                                                                                                            "9 %w   > - -    --*"w-        -m. --.-----a ._.u_

Table 8-19. Local Conditions - Test Section W162 Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical lleat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1be/hr-ft2 ) Quality (M8tu/hr-f t2 ) (H8tu/hr-ft2 ) (inches) Ratio 01 1867 2100. 1.9234 . 07% 4 63 .5245 123. .9271 02 1868 2400. 1. % 56 .0441 .5042 .5244 126. .%15 03 1869 2405. 2.4254 .0006 .6160 .6288 123. .9797 04 1870 2100. 2.4546 .0294 .6078 .6241 120. .9739 05 1871 2100. 2.4703 .0442 .5080 .6172 117. .3231 06 1872 2400. 2.4487 .0537 .5031 .5526 123. .9104 07 1873 2400. 2.9577 .0320 .6229 .6285 120. .9910 08 1874 2105. 2.9299 .0470 .5699 .6172 120. .9235 09 1875 2395. 1. % 45 .0392 .4450 .5543 120. .8047 10 1876 2115. 1.9411 .0957 .3993 .5024 120. .7948 11 1877 2090. 3.4298 .0622 .5863 .6109 120. .9597 12 18/8 2100. 1.9889 .2054- .2914 .3297 129. .8840 13 1879 2410. 1.9866 .1693 .3248 .3546 129. .9160 14 1880 2400. 2.4601 .1108 .3831 .4736 123. .8089 15 1881 2100. 2.4674 .1629 .3608 .4029 126. .8953 16 1882 2095. 2.9415 .1440 .4059 .4534 123. .8953 17 1883 2400. 2.9752 .1320 .4439 .4512 126. .9839 18 1884 2395. 3.4340 .1266 .5008 .4742 125. 1.0562 19 1885 2110. 3,4149 .3262 .4491 .4897 123. .9172 20 1886 1500. 1.9949 .2506 .3087 .3142 132. .9825 21 1887 1805. 1.9761 .1974 .3130 .3745 -126. .8357 22 1888 1800. 2.5198 .1504 .3759 .4535 123. .8289 23 1889 1500. 2.4645 .2241 .3431 .3331 132. 1.0300 24 1890 1505. 2.9721 .1771 .4052 .4196- 126. .%56 25 1891 1805. 2. % 50 .1289 .4334 .5055 120. .8573 26 1892 1800. 3.4805 .1136 .4839 .5361 120. .r026 27 1893 1505. 3.4673 .1633 .4404- .4344 126. 1.0139 28 1894 1500. 1.9779 .1834 .3915 .4289 126. .9129 29 1895 1800. 1.9807- .1335 .4203 .4721 123. .8904 B-40

m m an L__.J L 1 .t . 1 Table B-19. Local Conditions - Test Section W162 (Continued) Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial 10 Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) (M1bm/hr-ft2 ) Quality (MBtu/hr-f t ') (MBlu/hr-ftz) (inches) Ratio 30 1896 1800. 2.4399 .0923 .4940 .5551 120. .8900 31 1897 1500. 2.4438 .1513 .4551 .4834 12'4 .9415 32 1898 1505. 2.9447 .1149 .5256 .5555 120. .9462 33 1899 1805. 2.9551 .0490 .5703 .6551 117. .8?05 34 1900 2120. 2.8925 tiG90 .5752 .5642 123. 1.0195 35' 1901 1795. 3.4406 .0452 .6366 .6758 117. .9420 36 1902 2125. 2.9474 .0897 .4827 .5490 120. .8791 37 1903 2405. 2.4718 .0677 .4323 .5475 120. .8261 38 1904 2100. 2.4678 .1323 .4155 .4580 123. .9073 5 39 1905 2425. 2.9517 .0841 .5227 .5331 123. . %16 40 1906 2100, 1.9795 .1407 .3410 .4330 123. .7877 41 1907 2400. 1.9873 .1195 . 35% .4270 126. .8422 42 1908 2105. 3.4476 .0739 .5307 .5915 120. .8972 43 ,1909 2410. 3.4733 .0638 .5908 .5879 123. 1.0048 44 1910 1500. 3.4874 .0716 .5809 .6556 117. .8860 45 1911 1500. 1.9761 .1590 .4678 .4634 126. 1.0095

                    .46    191?      1800.       1. % 64            .0981          .4911           .5223      123.            .9402 47    1913      1805.       2.4312             .0336          .6008           .6645      117.            .9042 48    1914      1505.       2.4074             .1116          .5620           .5466      123.           1.0283 49    1915      1505.       2.9152            .0739           .6040           .6238      120.            .9605 50    1916      1810.       2.9423             .0311          .6393           .6856      117.            .9324 51    1917      1510.       1.4700            .2408           .3006-          .3420      132.            .8790 52    1918      1805.       1.4709            .1798           .3335           .3948      126.            .8448 53    1919     2100.        1.4811            .1827           .3172           .3457      129.            .9175 54    1920     2410.        1.4484            .1945           .2930           .2862      135.           1.0237 55   1921      2400.        1.4488            .1006           .3667           .4099      129.            .8946 56    1922     2105.        1.4493            .1915           .3318           .3136      135.           1.0579 57   1923      1805.        1.4643            .1640           .3807             4022     129.            .9466 58    1924     1515.        1.47 %            .2206           .3502           .3645      132.            .9608 B-41

l Table B-19. Local Conditions - Test Section W162 (Continued) - l

                                                                                                                           ~ Predicted       Measured-to Measured        Predicted     Critical         -Predicted Test  Test   System           Local Mass                local         Critical        Critical      Heat Flux         Critical Serial    ID   Pressure           Velocity             Equilibrium       Heat Flux       Heat Flux     location          Heat Flux 2       Quality                    2             i                          Ratio l

No. No. (psia) (M1bm/hr-ft ) (MBtu/hr-ft ) (MBlu/hr-f t ) (inches) 59 1925 2105. .9877 .2470 .2393 .2335 141. 1.0248 60 1926 2385. 1.0016 .2014 .2516 .2478 141. 1.0155 i 61 1927 2105. 1.4495 .0734 .4347 .4852 126. .8959 62 1928 2405. 1.4497 .1120 .3897 .3773 135. 1.0328 63 3929 2105. 1.9774 .0131 .5939 .6208 120. .9567 64 1930 2405. 1.9749 .0285 .5565 .5458 126. 1.01 % i 65 1931- 1805. 1. 0%7 .2356 .2749 .2916 138. .9429 66 1932 1505. 1.0045 .32S6 .2381 .2256 144. 1.0553 67 1933 1505. 1.4670 .1922 .4008 .4021 132. .9968 I 68 1934 1800. 1.4127 .1480 .4291 .4224 129. 1.0158 69 . 1935 1795. 1.9505 .0425 .5913 .6188 120. .9555 70 1936 1500. 1.9475 .1247 .5417 .5152 126. 1.0514 I i  ! - B-42

W W"E E i

                                                                                                                -1 l

Table B-20. Local Conditions - Test Section W163 Predicted Measured-to. Measured Predicted' Critical -Predicted Test Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux No. No. (psia) (M1bm/hr-ft2 ) Quality (MBtu/hr-f t2 ) (MBlu/hr-ft2 ) (inches) Ratio 01 1937 - 1805. 1.4880 .2107 .5415 .5287  %. 1.0242 02 1938 1800. 2.0690 .1429 .6289 .6417  %. .9801 03 1939 1805. 2.5116 .1041 .6985 .7194 96. .9709 04 1940 2405. 1.4347 .1599 .5250 .5017 96. 1.0464 05 1941 2405. 1.9991 .1247 .6366 .5966 96. 1.0671 06 1942 2410. 2.5085 .0783 .7493 .7064  %. 1.0608 07 1943 2115. 1.5580 .1382 .4542 .5774  % .' .7866 08 1944 2100. 2.0657 .1513 .5935 .5905  %. 1.0051 09 1945 2100. 2.5345 .1128 .6421 .6746  %. .9519 10 1946 2115. 2.9957 .1030 .7549 .7132 96. 1.0585 11 1947 2115. 1.5195 .1669 .6233 .5374 96. 1.1598 12 1948 2100. 2.0469 0831 .7493 .6915  %. 1.0836 13 1949 2405. 1.5287 .1035 .6598 .5797  %. 1.1382 14 1950 2405. 2.%08 .0487 .8190 .7087  %. 1.1557 15 1951 1815. 1.5238 .1542 .6543 .6057 96. 1.0803 16 1952 1810. 2.0291 .0933 .7869 .7180  %. 1.0960 17 1953 1815. 1.5276 .1319 .7073 .6368- 96. 1.1107 18 1954 1820. 1.9713 .0938 .8002 .7127  %. 1.1227 19 1955 2100. 1.5093 .1194 .7427 .6006  %. 1.2365 20 1956 2405. 1.5280 .0756 .7560 .6140  %. 1.2313 21 1957 1505. 1.5299 .1990 .6510 .6127 96. 1.0626 22 1958 1505. 2.0249 .1281 .7106' .7232  %. .9826 23 1959 1495. 1.5245. .2471 .5338- .5430  %. .9830 24 1960 1505. 2.0572 .1795 .5913 .6340 96. .9327 25 1961 1515. 2.5304 .1430 .6874 .6936  %. .9911 26 1%2 1505. 3.0144 .1149 .7339 .7510  %. .9772 27 1%3 2095. 3.0540 .1582 .5637.- .6176  %. .9128 28 1%4. 2395. 2.1048 .1527 .4874 .5660  %. .8611 29 1965 2405. 2.5717 .1374 .5802 .6200  %. .9359 8-43

i . s i Table 8-20. Local Conditions - Test Section W163 (Continued) Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass local Critical Critical Heat Fiux Critical , Serial ID Pressure -Velocity Equilibrium Heat Flux lieat Flux location Heat Flux No. No. (psia) (M1bm/hr-ftz) Quality (MBlu/hr-f tz) (MBtu/hr-ft2 ) (inches) Ratio 30 1%6 2405. 3.0668 .1302 .6521 .6623 '%. .9847 31 1%7 1805. 2.0775 .1830 .5117 .5765 96. .8876 ' 32 1%8 1805. 2.5632 .1495 .5681 .6802  %. .8873 33 1%9 1815. 3.0434 .1255 .6344 .6929  %. .9156 34 1970 1505. 3.1016 .1637 .6222 .6474  %. . %10 35 1971 1495. 2.5846 .2254 .5703 . 5363 96. 1.0633 36 1972 ' 1815. 2.5201 .1383 .7361 .6581  %. 1.1185 t 37 1973 2100. 1.5227 .2246 .5029 .4645  %. 1.0826 38 1974 1505. 3.0239 .1087 .7372 .7640  %. .9649

39 1975 1810. 1.0622 . 1554 .5592 .5849  %. .9560 40 1976 2100. 1.0615 .1721 .5935 .5019  %. 1.1826 41 1977 2400. 1.0287 .1489 .5802 .4711  %. 1.2315

[. n i

B-44

_=_ -__ ___ _ __ __ _ _ _ _ _-_ _ _ _ _ . ..

Table B-21. Local Conditions - Test Section W164 Predicted Measured-to Measured Predicted Critical -Predicted Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial 10 Pressure Velocity Equilibrium Heat Flux Heat Flux Location Heat Flux No. No. (psia) (M1bm/br-ft2 ) Quality (MBtu/hr-f t2 ) (MBlu/hr-ftz) (inches) Ratio 01 1979 2100. 1.4331 .1398 .3844 .4343 126. .8851 02 1980 2105. 1.9421 .0830 .4810 .5416 123. .8881 03 1981 2100. 2.4667 .0442 .6119 .6388 120. .9579 04 1982 2395. 1.4330 .1158 .3665 . 41% 129. .0735 05 1983 2415. 1.9067 .0988 .4661 .4671 129. .9978 06 1984 2415. 2.4665 .0435 .5874 .5888 126. .9976 07 1985 2400. 1.4481 .1661 .3086 .3632 129. .84% . 08 1986 2425. 1.9837 .1038 .4117 .4762 126. .8646 l 09 1987 2400. 2.4878 .0514 .5326 .6075 120. .8767 L 10 1988 2405. 2.9523 .0742 .5716 .5689 126. 1.0048 11 1989 2115. 1.4166 .2722 .2466 .2452 138. 1.0058 12 1990 2110. 2.0186 .0816 .4335 .5752 117. .7536 13 1991 2105. 2.4776 .0723 .4873 .5959 120. .8177 14 1992 2115. 2.9703 .0667 .5804 .6245 120. .9294 i '15 1993 2100. 3.4311 . 0619 .6119 .6505 120. ,9407 16 1994 2395. 3.4559 .0568 .6220 .6542 120. .9508 17 1995 2400. 1.9955 .1419 .3221 .4304 126. .7483 ! 18 19 % 2405. 2.4586 .1418 .3697- .4512 126.' .8195 19 1997 2400. 2.9669 .1038 . 46% .5581 120. .8414 20 1998 2395. 3.5103 .0820 .5238 .6168 120. .8492 21 1999 2100. 1.9862 2052 .2937 .3735 126. .7864 22 2000 2095. 2.5016 .1670 .3629 .4316 126. .8409 23 2001 2110. 2.9841 .1607 .3946 .4498 126. .8774 24 2002 2100. 3.4955 .1180 .4847 .5607 120. .8646 i 25 2003 1795. 1.9952 .2078 .3209 .3957 126. .8109 26 2004 1805. 2.5624 .16% .3853 .4751 123. .8109 27 2005 1800. 2.9996 .1456 .4152 .5012 123. .8284 28- 2006 1805. 3.4987 .1268 .4%1 .5537 120. .8966 29 2007 1505. 3.4530 .15% .4511. .4979 123. .9060 B 8 g u y , -

                                           ,         r                         e - ,   v.,             v ,,. ,    e   -> __ u   +.., . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ . . _ _ ________.
                                                                                                                                                                                    -        , v.

Table B-21. Local Conditions - Test Section W164 (Continued) . Predicted Measured-to _ Measured Predicted Critical -Predicted lest Test System Local Mass local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat. Flux Heat Flux location. Heat Flux No. No. (psia). (M1bm/hr-ftz) Quality (MBtu/hr-ft2) (MBtu/hr-ft2 ) (inches) Ratio-30 2008 1500. 2.0266 .2608 . 30% .3342 132. .9263 31 2009 1500. 2.5275 .2158 .3579 .3930 129. .9107- ' 32 2010 1510. 3.0027 .1833 .4117 .4468 126. .9214 33 2011 1505. 1.4425 .3043- .2616 .2786~ 138. .9389 34 2012 1500. 2.0236 .2130 .3783 .4082 129. .9268 35 2013 1500. 2.5135 .1585 .4834 .5098- 123. .9483 l 36 2014 1505. 2.9773 .1363 .5241 .5409 123. . %90 37 2015 1510. 3.5203 .1081 .5943. .6075 -120. .9783 38 2016 1805. 1.4539 .2407 .2905- .3313 132. .8769 39 2017 1800. 1.9836 .1623 .4128 .4534 126.' .9104 !. 40 2018 1800. 2.4900 .1194 .4942- .5356 :123. .9227 41 2019 1815. 2.9218 .1036 .5439 .5832 120. .9326. 42 2020 1805. 3.4139 .0572- .6410 .6941 117. . .9235-  ! 43 2021 2105. 2.9194 .0366 .6013 .6897 117.- .8719 44 2022 1800. 2.9387 .0479 .6304- . 6981. 117. .9029 - 45 2023 1500.' 1.4501 .2462 .3429- .3700 132. .9268 46 2024 1510. 1.9169 .1392 .4415. .4413 129. 1.0004 ,

                                                                                                                    .5655                     .9946 47  2025'   1500.             2.4642             .1243           .5624                        123.

. 48 2026 1500. 2.9522 . 0916 .6547 .6392- '120. 1.0243- J 49 2027 1802. 1.4418 .1891 .3654 .4033 129. .9061 50 2028 1805. 1.92 % .1450- .4786- -.4759 126. .1.0058 51 7029 1810. 2.4465 . 0567 .5981 .6494 120. .9211 52 2030 1790. 1.4470 .19% .3823 .3798 132. 1.0067 53 2031 1815. 1.9230 .1463 .5004- .4591 129. 1.0898 54 2032 2405. 1.4263- .1188 .3930 .3946 135. . 9%0 55 2033 2405. 1.9032 .0752- .5368 .4986 129. 1.0766 56 2034 2405. .9832' .2288 .2425 .2412- 141. 1.0054 57 2035 2100. .9917 .2472 .2695 .2560 141. 1.0529 .. 58 2036 '2405. 1.3976 .1155 .4072 .3%8' 135. 1.0263 B-46 W ~W W W W' W W W -W -W M M W.. W W W W W W

E'W WE E Table B-21. Local Conditions - Terst Section W164 (Continued)

                                                                                                                           . Predicted Measured-to Measured                     Predicted      Critical-  -Predicted.

Test Test System Local Mass Local' Critical Critical' Heat Flux Critical ~ Serial 10 Pressure Velocity Equilibrium Heat Flux- Heat' Flux location Heat Flux No. No. (psia) (M1bm/hr-f t2 ) Quality ~ (MBtu/hr-f t2 ) (MBlu/hr-ft2 ) (inches) Ratio 59 2037 2205. 1.3990 .0714 .4661 .5023- 126. .9280 60 .2038 2090. .9893 .2435' .2563- .2708 -138. .9463 61 2039 1805. .9781 .2322 .2853 .3330 >135. .8567-62 2040 1505. .9934 .3510 .2335 .2319 144. 1.0069' 63 2041 1800. 1.4024 .1644 .4168 .4336 129. .9613 64 2042 1505. 1.4269 .2163 .3994 .4060 132. .9837 65 2043 1800. 1.8879 .0783 .5564 .5855 -123. .9503 66 7044 1505. 1.8894 .1669 .5068 .4745 129. 1.0681 67 2045 .1505. 2.4303 .1132 .5995 .5835 123. 1.0276 68 '2046 1800. .9630 .2209 .3051 .3457 135. .8827 69 2047 1505. .9938 .3318 .2560 .2480 144. 1.0325 70 2048 2395. .9808 .2156 .2752 .2542- 141. 1.0826 71 2049 2110. 2.9254 .0794 .6210 .5864 123. 1.0591 Rev.1 72 2050 2105. 1.9909 .0646 .5061 .5839 120. .8668 74 2052- 2100. 1.4140 .1940 .3278 .3373 135. .9718 B-47 1

t Table 8-22. Local Conditions - Test Section W166 Predict w -Measured-to Measured Predicted Critieal Predicted - Local Mass Local Critical Critical Heat F Mc 2ritical Test Test System  ?! eat Flux Equilibrium Heat Flux Heat Flux . Location Serial ID Pressure Velocity Ratio No. No. (psia) 2 (M1bm/hr-ft ) Quality (MBtu/hr-ft ) 2 (MBlu/hr-ft2 ) (inches)

                                                  .1572           .4585             .4056        150.        1.1305 01      14     1500.       3.4460                                                                     1.0308
                                                  .1019           .5107             .4955        147.

02 15 1800. 3.5132 1.0530

                                                  .0780           .5525             .5247-       147.

03 16 2110. 3.5251 1.0975

                                                  .0386           .6419             .5848        147 04      17     2405.       3.5894                                                                     T.0919' 2.9382          .1090           .4905             .4492     -150.

06 19. 2101. 14?- .9352 2100. 2.4910 .0939 .4411 .4716 07 20 1%. -1.0124

                     .2400.       2.4560          .0687           .4817.            .4758.

08 21 1.0004 2.0248 .1057 .4089 .4087 150. 09 22 2400. .9527-3.0185 .0799 .4759 . 49% - 147. 10 23 2405. 150. ~.9521 2100. -2.9463 .1420 .3847- .4040 11 24 150. :1.06!1-25 2100. 3.5300 .1242 .4674 .43% 12 -147. .9454 26' 2400. 3.5160 .0820 .4887 .5169: 13 150. .9821

27. 2400. 2.0335' .0449 .4729 .4815-14 150. 1.0587' 28 2100. 2.0077 .1100 .4475 .4227' 15 150. 1.1523 29 2095. 2.5188 .0831 .5467 .4744 16 144. .9749-30 2410. 2.4900 .0021 .5824 '.5973-17 147. 1.0641 31 1805. 3.4822 .1071 .5177: .4865 18 147. .9157 1800. 2.0026 .1059 .4295 .4691 19 32 147. 1.0130 33 1500. 2.5148 .1263 .4352 .4790 20 147. 1. 0%0 '

1500. 3.4987 .0976 .5722 .5221 21 34 .9506 2.0662 .1077~ 4840; .5091- 147. 22 35 1500. .

                                                                                                               .9965 2.0257          .0789           .5038              .5056       147.

23 36 1805. -150. 1.0045 37 2100. 1.5237 .0950 .4244- ..4225 24 ~150. 1.0912 38 2100. '1.9920 .0749 .5092 . 4666' 25 .5014- '150. 1.0487 26 39 .2405. 1.9830 .0276 .5258 -

                                                  .0674-          .4464              .4192       150.         1.0649 27      40     2405.       1.4667                                                                      1.0057
                                                  .0242           .4718             .4691-       150.

28 41- 2405. 1.4940 -1.1294

                                                  .0%9            .4707             .4168        150.

29 42 2105. 1.4575 1.1520 1.9%5 .0353 .5952 .5166 150. 30 43 2115. 8-48 W W m' W. W W 'W - M W W. .' E W W W W W W M-

M I L__.]l U Table 8-22. Local Conditions - Test Sectica W166 (Continued) Predicted. Measured-to-Measured Predicted Critical -Predicted. Test Test System Local Mass Local Critical Critical Heat Flux Critical Serial ID Pressure Velocity Equilibrium Heat Flux Heat Flux location Heat Flux No. No. (psia) - (M1bm/hr-f t2 ) Quality (MBtu/hr-f t2 ) (MBlu/hr-f t2 ) (inches) Ratio 31 44 2800. 1.9727 .0594 .5641 .5317 147. 1.0609 32 45 1505. 1.9736 .0668 .5593 .5820 144. .9611 33 45 1505. 1.9731 .0699 .5606 .5773 144. .9711 34 46 1500. 1.4955 .1125 .4875 .5038 147. .9677 35 47 1505. 1.4831 .1522 .4355 .4394 150. .9935 36 48 2110. 1.4719 .0412 .4927 .4812 150. 1.0240 37 49 2395. 1.4597 .0015- .5136 .4924 -150. 1.0430 38 50 2405. 2.9924 .0438 .5754 .5354 150. 1.0747 Rev.1 39 -51 2400. 2.9994 .0041 .7022 .6077 147. 1.1555 40 52 2100. 3.0005- .0424 .6210 .5636 147. 1.1019 41 53 1805. 3.4911 .0502 .6895 .5969 144. 1.1552 42 54 1505. 2.4864 .0876' .5484 .5534 144. .9908 43 55 2105. 2.4869 .0068 .6384 .6269 144. 1.0184 44 56 2410. 2.5275 .1100 .6733. .7636 141.' .8817 45 57 2100. 2.4625- .0484 .5941- .5209 150. 1.1404 4ti 58 1500. 1.9963 .0668 .5989 .5697 147.- 1.0512 47 59 2100. 2.0115 .0712 .6657 .6970- 141. .9551 B-49

                                                                                                                 --      . - - - -               =       '

_ _ _ - ~ _ .-

-r Y     a ip

- i W- , i {: lj [ APPENDIX C-l APPLICATION'0F THE DCHF-1 CORRELATION TO CHF' . IN emf MARK BW FUEL ASSEMBLIES -  ! i I l I 1 j . . I l

,I                                                                '

C-1

           ;..u     . ,, ,                                                          'c           '
                                                                                                          - '                                          ~                                        '
I' ,

L l L Proprietary to Babcock & Wilcox-Company I q v y L.

                                 . Introduction
(I ,

1 l . 1

                                                                                                                                                                                       - lRev.

u1 ll l I I . Il I 1 1 I l s g O I . I I C-2 \

 ',--_r-__._ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ ._a-- u .-.n ,,. . . . , _ - _ _ - _ .    ._____m..<.__m..     .__m.__ - . ,___-m__-_ - - .e.,. ,,4,,,-,.   . , . . . * , . . . _ . . ..-            .I
                     . proprietary t0 Babc0CE g y Ocox CO*P""Y k

W- % ~~ 1 _ Result 5~ 4 i

                                                                   \

i.

                                                                   \
                                                                    \

j

                                                                 -i k

i s 1 c-3

r I Rev.1 Proprietary to Babcock & Wilcox Company s-FigureC-1. Radial Geometry and Power I. Distribution of Test'Section I"

                                                                , i:

h Il , 4 I' . 1 B. 4 I 1

              .                                               I I

I C.. I.

= - L 0 r 8 I t t E s c 8 5 4 A t-e.

       ?>
       ?.i       >

3 a e il C C-5

I Proprietary to Babcock & Wilcox Company Table'C-1. Axial' Heat Flux Distribution Fraction of Local-to-Average i Heated Length Heat' Flux

                                                                        'i I.         ,

l B: I. I1 Il I Il E . q l C-6

Proprietary to Babcock-& Wilcox Company- < l Table C-2. Spacer Grid and Thermocouple Locations l l Spacer - Type [1] Axial Position [2]- Thermocouple [3] i I ,

                                                                              -l l

l l , l 1 l l  : j I I C-7 l

I e g Proprietary to Babcock & Wilcox Company Table C-3. System. Conditions For Each Data Point-Test -Test System Inlet Average Average Axial CHF Serial ID Pressure' Temperature Mass Velocity . Heat Flux Location-No. No. (psia) .(*F) 2 2 (M1bm/hr-ft ) (MBtu/hr-ft ) (inches) I 1 I I: i I I 1 I  ; I I I . f

                                      ~C-8 I

It

I ~ Proprietary to Babcock 4 Wilcox Company-3 Table C-3. System conditions For Each Data Point'(Continued) Test Test System Inlet . Average I- Serial No, ID No. Pressure (psia) Temperature Mass Velocity (*F). 2 Average Heat Flux Axial.CHF Location (M1bm/hr-ft )- (MBtu/hr-fte) (inches)' I I , Rev.c ! I , I B I . I . IRev.1 I Rev.1 C-9

.; , , .. s -- I

                                                                                        ~

Proprietary to Babcock & Wilcox Company Table C-3. System Conditions For Each Data Point (Continued) I Test Test System Inlet Average Average ' Axial CHF Serial 10- Pressure Temperature Mass Velocity Heat Flux Location No. No. (psia) (*F)- 2

                                          '(M1bm/hr-ft  ) (MBtu/hr-ft2 ) (inches) i
                                                                                              'b I

l i 5 1 W I' I I I C-10 I I

i Proprietary to Babcock & Wilcox Company Table C-4 VIPRE-01/DCHF-1 Analysis Results 3 Test Test System . Local Local Measured- Predicted- CHF p CHFm / Serial ID Pressure Mass Velocity Equilibrium CHF, CHF Location- CHF p No. No. (psia) (Mlbm/hr-ft2) Quality (MBtu/hr-ft2 ) (MBtu/ht-ft 2) (inches) Ratiop  ! i I l 1  ! a l . I g 1 1  : I l l l l C-11  ;

- I, a Froprietary to Babcock & Wilcox Company Table C-4. VIPRE-01/DCHF-1 Analysis Results (Continued) I  ;

 ' Test Test  System     Local-          Local      Measured        Predicted       CHF     CHF,/   -j p

Serial ID Pressure Mass Velocity Equilibrium CHF, CHF p Location CHF, j No. No. (psia) (Mlbm/hr-ft2 ) Quality .(MBtu/hr-f t2 ) (MBtu/hr-f tt ) (inches) Ratio gl, 3l 1 I! I u 1 l I  : I I I , I C-12 I I M

                                                                                        . .. . .                ..~

I Rev.1 a Proprietary to Babcock & Wilcox Company Table C-4. VIPRE-01/DCHF-1 Analysis Results (Continued) Test Test' System Local Local Measured Predicted CHF CHF,/ -1, Serial ID -Pressure Mass Velocity Equilibrium p CHF, CHF Location -CHF p i p No. No. (psia) (Mlbm/hr-ft2 ) Quality - (H8tu/hr-f t ) (MBtu/hr-f t2 ) (inches) Ratio 2

        .-                                                                                                                                            .i l

4 l l I 1

  .                                                                                                                                                         l I

C-13

c.v - W i Proprietary to Bebcock.& Wilcox Company l1 I gy s u g i 1 O Q cza . I b 5 em . I hY m [sJ I h m I. l I I C-14 IL l

                                                                                                                                                                                                 -)

.I I Proprietary to Babcock & Wilcox Company . B I g y e o cr l N -l i $

I s

O , I s5 a= l 2b gu E I il. o I Cr3 CL I e e n C-15

                                                                                                  .-7 Figtire c-s.

MEASURED-to-PREDICTED CHF. RATIO vs. LOCAL MASS VELOCITY 4 4 G. 7 K

       ?                                                                      x 8.

99

                                                                             .r
                           .                                                  '=.

9 4.

                                                                            .w.

3 O

% .i s: Proprietary to Babcock & Wilcox Company

                                                       'l l
                                                          -1 o

e 2 ') I,  ! O

     .O %

o , 8

      --o N

Q re.1 M -1 a.

 )'     -l a

O i g -! x y , e C-17

1 APPENL1X D' SAFETY EVALUATION REPORT 1 a i

                                                  . l.

1 l l

                                                     )
                                                  -)

i l o i

                                                       )

D-1

1 5m arco =

/                                        UNITED STATES o

!' '. ,% NUCLEAR REGULATORY COMMISSION , g uswiucrow, p. c. nossa . g

  • August 8, 1989 5 g .

f , Mr. H. B. Tucker Duke Power Company P.O. Box 33189 Charlotte, NC 28242

Dear Mr. Tucker:

SUBJECT:

ACCEPTANCE FOR REFERENCING OF TOPICAL REPORT DPC-NE-2000 "DCHF-1 CORRELATION FOR PREDICTING CRITICAL hCAT FLUX IN ' MIXING YANE GRID FUEL ASSEMBLIES" SEPTEMBER 1Y87 The staff has completed its review of the topical report "DCHF-1 Correlation f or Predict 1ng Critical Heat Flux in Mixing Yane Grid fuel Assemblies" submitteo by the Duke Power , Company by letters dated October < 21,1987 and May - 9, 1989. Additional information was submitted on October 27, 1988.' This report (DPC-NE-2000) provides information anc justification for a new critical heat flux (CHF) correlation for pressurizec-water-reactor fuel assemblies with The data base for this correlation (designated E mixing) DCHF-1 vane spacer grids. 5 s consists of 1004 data points derived from 22 separate test ' The range of parameters in these test sections included: 96-inch or 168-inch heated lengths and 0.374-inch or 0.422-inch outside ciameter rods. In addition g to uniform, 4 nonuniform flux shapes were used, the pressure ranged from 1485 E to 2445 psia, the grid spacing covered 13 to 32 inches and the equivalent hydraulic diameter varied from 0.37 to 0.51-inch. For applications to 15x15 and 17x17 mixing vane grid designs, the design limit for the departure from nucleate boiling-ratio for DCHF-1 is 1.194. , We find the application of DPC-NE-2000 to be acceptable for referencing in license applicatiens to the extent specified, anc under the limitations delineated, in LFC-NE-2000 and the associatea.HRC technical evaluation. The evaluation defines the basis for acceptance of this topict.1 report. t We do not intend to repeat our review of the matters found-acceptable as described in DPC-NE-2000 when the report appears as .a reference in license applications, except to assure that the material presented is applicable to the specific plant involved. Our acceptance applies only tn the matters described in the. application of DPC-NE-2000. In accordance with procedures established in NUREG-0390, it is requested that I the Duke Power Company publish accepted versions of this topical report, g proprietary and non-proprietary, within three months of receipt of this letter. The eccepted versions shall include an -A (designating accepted)- following the report identification symbol. l Should our-criteria or regulations change so that our conclusions as to the acceptability of the report are invalidated, Duke Power Company and/or the i D-2 I

[]

E H. B. Tucker , August 8, 1989 l

'I i applicants referencing the topical' report will be expected to revise and resubmit their respective documentation, or submit justification for the continued effective applicability of the topical report without revision of

                                                                                                                                                                                       .I
their respective documentation.

i Sincerely, i b& 0./ ' ~ . Asho C.Tdani, AssDt Director-  ! -I for Systems Division of Engineering & Systems Technology l' -

Enclosure:

DPC-NE-2000 Evaluation lI ll r ,I a l 1 I 1 . \ 1 I . l l  : I i D-3 l L l.

m . , , I 3 i ENCLOSURE i

                     -SAFETY EVALUATION FOR THE TOPICAL REPORT DPC-NE-2000 "DCHF-1. CORRELATION FOR PREDICTING CRITICAL HEAT FLUX IN MIXING VANEsGRID FUEL' ASSEMBLIES" I

1.0 INTRODUCTION

i By letters dated October 21, 1987 and May 5,1989,'the Duke Power Company [

       . submitted topical report OPC-NE-2000 for NRC review (Ref. 1). Additional                  .!

information was submitted on October 27,~1988(Ref.-2). This topical report _j provides information and justification for a new critical heat flux (CHF), q correlation for pressurized-water-reactor-fuel assemblies with mixing vane , spacer grids. The data base'for this correlation (DCHF-1). consists of 1004 CHF data' points derived from 22 Westinghouse test sections which include both O.422-inch and 0.374-inch rod outside-diameter geometries. The correlation i accounts for typical cell and thimble cell effects, uniform and non-uniform beat flux profiles, and variation in rod heated length and in grid spacing, gj The design limiting value for departure from nucleate boiling ratio for DCHF-1 g! for application to 15x15 and 17x17 mixing vane grid designs .is 1.194. The following evaluation incorporates our consultants' Pacific Northwest and Brookhaven National Lab' oratories contribution.to this_ review. Restrictions'to p be observed in the application of this topical report are listed in Section 51 3.9.

                                                                                       ^

2.0

SUMMARY

OF T0pICAL REPORT $ The subject topical report first outlines the methodology and then describes

                                                                                                ~

the origin, data sources, and ranges of the variables. The values of the local  ; l independent variables are computed using the VIPRE-01 code (Ref. 3) while the test bundle global conditions are measured. Next, the form of the correlation ) is described, which essentially is the same as that of the Columbia University  :{ . D-4

     - - - - ~ -                       .           --

1 5 j generalized CHF correlation and published by EPRI (Ref. 4) with-an additional

             - explicit depecdence on heated length grid spacing and grid type.

, Next, the correlation's algebraic coefficients are determined and optimized. L The form is then verifiedt; the verification includes a statistical analysis of l the correlation performance as a function of the: independent variables , individually and two at a time. By such verification, the applicent attempts-

                                   -                                                                i
to identify the existence ' fo biases with respect to any; of the independent variables. This is done-(1) by visual inspection for possible trends in plots of the measured / predicted values and (2) numerically. The next section of the
= topical report includes a determination of the minimum departure from, nucleate-  ;

boiling ratio (MDNBR) using'the measured-to-predicted standard deviation for the DCHF-1 correlation and a 95/95 upper tolerance factor. determined using the  ! ethod described by Owens (Ref. 5). In this manner, the estimated MDNBR for. -! the DCHF-1 correlation is 1.194 In~the derivation of this value, all the~ i qbalified values in the data base were used in a siegle grouping. Appendix C of the topical report includes a confirmatory application of this correlation to the Mark-BW mixing vane grid assembly design, data. 3.0 EVALUATION 3.1 Data Base 1 i The data base for this CHF correlation is taken from the results of the i Columbia- University Heat Transfer Lab 0ratory experiments published by EPRI (Ref.4). To obtain an accurate CHF predictor for the. mixing vane grid - a I, designed for use in Westinghouse (W) reactors, 70 tests performed for W were  ;

  • considered. Tests performed for (1) non-mixing vane or high-pressure drop grids, (2) rod bowing, and (3) flow blockage, or tests which included fewer -

than 15 data points were not included. The 22 test sections selected for this 8 I D-5 B

Il

                                                                                                                                              ~
    ..                                                                                                                                        ~ll l\l correlation include a total of 1004 runs. The data cover the following parameter ranges *
           ' Pressure 1485 to 2445 psia.

Local Mass-Velocity 0.85 to 3.63 Mlbm/hr-ftt , Local-. Quality (Equilibrium) -0.15 to 0.36 96 to 168 inches-I Hested Length-13 to 32 inches-Grid Spacing _ g~ Equivalent Hydraulic Diameter 0.37 to 0.51 inches = l Equivalent Heated Hydraulic Diameter 0.46 to 0.58 inches g Rod Outside Diameter -0.374 to'O.422 inches 3; Data from the Columbia University Heat Transfer Laboratory were used as the l ' l basis for other correlations in the past. t 3.2 Data Analyses While the global (bundle) variables have known, measured values, the local conditions within the channel must be calculated. . These determinations, were made using.the VIPRE-01 code which requires.the geometric modeling.and the . measured experimental values for bundir. pressure, flow,. power, and inlet temperature for each data point (Ref. 3). Such determinations were made for l all data points and were the basis for the rejection.of 9 points for too high t I or too low measured / predicted ratio. (Another 6 points-.in this process were b erroneously deleted.) il 3.3 The CHF Correlation ' The analytical form chosen for this correlation is similar to the one adopted

                                                                          ~

l i by Columbia University for the development of the generalized CHF correlation-(Ref.4): D-6 ,

                                                                                                                                                  'i

L I I 9'CHF,UN " (A'ICHF,1-)/C where- q"CHF,VN = the uniform critical. heat flux A =0{xP2.G IES*0P) 0 7R X CHF,1

                            = local quality at the DNB point                               1
                            =B 3                         8R C

x-Pf4.G(06*0P) 1 P = reduced reactor pressure: j R G = local mass velocity Bi = correlation constants - i This basic equation was further modified by adding bundle-specific multipliers - to account for the effects of grid spacing,. test section heated length, and-- 4 test section geometry.

                                                                                           .i The coefficients in the final expression for q" were determined as an optimized fit using a non-linear 'least-squares regression ana' lysis method developed.at-
                                                                                           ]

Columbia University (Ref. 6) based on an algorithm by Jennrich and Sampson j (Ref. 7). 3.4 Verification ~i 1 Once the correlation has been established, the performance of the correlation is evaluated with respect to the independent variables to establish the possible

                                                                                            ~'

existence of any bias. These comparisons included visual and numerical checks of correlation statistics for the following variables: bundle geometry, spacer grid spacing, heated rod length, pressure, mass velocity, equivalent hydraulic diameter,.and the wetted-perimeter / heated-perimeter ratio. The visual D-7

__ ..~__ __,___ ___ .._ _._._ _ _ _ _ . _ _ _ _

7. _ _ .

Il p l verification consists of plotting the M/P (measured to predicted value) data on the ordinate of a two-dimensional graph with the independent variable as the abscissa. Any bias with respect.to these variables would be observed as a j ctviation frem M/P = 1.0. . The spread of.the individual M/P values about M/P = 1.0 gives a visual impression of the precision (or standard deviation) of the ) c;rrelation. In addition, a general indication of the normality of the M/P distribution can be determined from the distribution of the M/P data about l  ; 1 M/P = 1.0. Finally, a visual measure of any correlation bias with increasing CHF is obtained by plotting the measured and predicted CHF and observing lany deviation from the 45-degree line. The same search for biases, deviations, and normality was also performed numerically for each of the variables individually . and for the following pairs of variables: mass velocity and pressuM mass j velocity and quality, pressure and quality, mass velocity and grid spacing, and beated length and rod diameter, The range of each of the independent variables i was divided into high, medium, and low intervals, and the M/P data were tested g~ statistically in each of the resulting one- and two-dimensional subregions for 85 L (1) normality, (2) mean M/P, and (3) standard deviation. The results' indicated g that cn overwhelming majority of-the subregions p ssed the statistical tests. 5 i Consideration of these results showed that: (1) none of the parameter correlations shows any significant bias, (2) the overall average ratio of measured to predicted is 1.000, that is, there is no bias, (3) the distribution for all the points is normal as demonstrated in D', the statistical tests, and l (4) the overall standard deviation is 9.42%. 3.5 Connents on the Correlation and its Verification l' , The EPRI-NP-2609 data (Ref. 4) have been used as the bases of other DNBR correlations which have been approved by the staff. One noteworthy feature of gl these data is the use of the first DNB indication as the one experimentally 44 noted. The staff has found this practice to be conservative and acceptable. , in addition, the 2004 data points used are more than the number of points usually used in data bases for CHF correlations. t r D-8

  -     .--..-.---a._.--.                                                     -
.I                                                                                                            !

i 'I 4 il However, there are somewhat unusual features in this correlation and its data base: i I (1) the a priori rejection of bundle test sets with less than 15 data point each (with no justification), i (2) the unusually small number of rejections,- which is less than 1% of the > total compared to 4% or 51 in similar correlations, (3) the cata point rejection perfomed befors the determination of the correlation. * (4) the lack of a criterion on M/P ratio for the rejection process, and (5) no data rejection on the basis of the flow regime.  ; On the other hand, the correlation has a larger than usual numer of data I' points, the standard deviation is smaller than usual, the overall M/P ratio is 1.000, the number of rejections is very small,'and the proposed DNBR value is very close to the usual value,of 1.21. - l There were 22 sets with an average number of about 46 data points per set, j Usually sets with less than 15 points indicate an abbreviated experimental series which probably includes many outliers. Therefore, the preselection of I

 ^

sets with more than 15 points avoided questionable data points. The size of the data set, its normal distribution, the lack of bias, and the good standard deviation are indicative of a cualified and acceptable CHF correlation. i < 3.6 Design MONBR Value F The acceptable minimum departure from nucleate boiling ratio (MDNBR) value.on M' the limiting pins must maintain 95% confidence that 95% of the limiting pins

  • i ,

E D-9 Yl h

     ~.._,..;.._.

i i I will not experier.ce film boiling. Using the one sided tolerance theory by ) i Owens (Ref. 5), the following expression is used: . MDNBRa1.0/(RKG) p wherer R = average M/P ratio = 1.000 I:p = factor given in Reference 5 depending on number  ; ( of data points, confidence level, and portic,n of l proteccted population = 1.727 l G

  • standard deviation for M/P = 0.0942 gi L Thus, MDNBR = 1.194. 5 1 .

3.7 Validation f I Valioation in this report is perfomed through an application of the correlation to a set of 250 data points which have not been used in the development of thre correlation and are, therefore, "new data points." This g' cata set was also measured at Columbia University for Westinghouse. Using the 3 l VIPRE-01 computer code, the results show that the DCHF-1 correlation results in an accurate prediction of the data. The average M/P was found to be 1.007 and the standard deviation of the M/P data was found to be 0.078. These results provide an independent demonstration of the validity of tne DCHF-1 l correlation. 3.8 Application to Mark-BW Assemblies The applicability of the DCHF-1 correlation to the Mark-BW mixing vane grid  ; assembly design was demonstrated using a set of 99 test points obtained from a confimatory test performed by Columbia University for the Babcock-and Wilcox Corporation. Using the VIPRE-01 computer code, the rescits show that the - DCHF-1 correlatior results in a conservative prediction of the data. Of the 99 test points, 96 have M/P values greater than 1.0 and 3 points-have M/P values of 1.00 or less. The standard deviation of.this data set about the l' D-10 I ,

% h J i w average M/P is 0.0852. In addition, M/P values plotted against fluid mass velocity, pressure or local quality ineicate that there is no bias. Therefore, the staff concludes that the DCHF-1 correlation is conservatively applicable to I fuel assemblies with Zircaloy mixing vane spacer grids using the DNBR value of 1.194. I 3.9 Restrictions The following restrictions are-imposed on the OCHF-1 correlation: (1) The DhBR limit of 1.194 is applicable only to analyses using the VIPRE-01 code. (2) The correlation is applicable only to the range of operation comparable to the cata source ranges listed in Section 2 of DPC-NE-2000. g (3) The correlation is only applicable-to the following types of fuel y assemblies: Westinghouse ISx15, L-grid and R-grid, Westinghouse 17x17 , standard (0.374 inch), and 0FA (0.360 inch) and Babcock and Wilcox I Mark-BW mixing vane grid assemblies, d.0 $UMMARY AND CONCLUSIONS The staff reviewed the DPC-NE-2000 topical report and found thet:

  • The data used to determine DCHF-1 are based on the Columbia University Heat Transfer Laboratory results specifically produced for CHF correistions.
  • Outliers (6 out of 1010 cata points) were rejected.

The choice of the correlation form is similar to existing correlations and is acceptable, j l t D-11 q j

Ih

  • The coefficient optimization method is appropriate and acceptable, a
               '        Yerification of the correlation with "new data" provided adequate                                     l

[ demonstration of the validity of the correlation. ( The staff reviewed the infomation submitted by the Duke Power Company [

regarding the.DCHF-1 cormlation for predicting the critical heat flux in ,

mixing vane grid fuel assemblies. The staff finds the correlation acceptable  ? for referencing in future submittals, subject to the limitations of Section 3.9 g. 4 of this evaluation. . However, the licensee.must make the corrections noted in , the May 5, 1989 submittal (Ref. 1). 3i 5.0 REFERENE ' 4 4 1, Letters October 21, 1987 and May 5,1989 from H. B. Tucker, Duke Power , Company to USNRC, "DCHF-1, Correlation for Predicting Critical Heat Flux in Mixing Vane Grid Fud Assemblies," DPC-NE-2000.

2. Letter f rom H. B. Tucker. Duke Power Company to USNRC, " Responses to NRC j

Question on Topical Report DPC-NE-2000,* October 27, 1988. l,

3. EPRI-NP-2511-CCM,"VIPRE-01: A Themal Hydraulic Code for Reactor Cores" i (in five volumes), by J. M. Cuta et al., July 1985.

s 4 EPRI-NP.2609, " Parametric Study of CHF Data" (in three volumes), by C. F. , Fighetti and D. G. Reddy, September 1982. 1_

5.. Owens, O. B., " Factors for One Sided Tolerance Limits
  • Sandia Corporation
.                          Monograph, 1963.                                                                               3 v
6. EPRI.NP-2522, "Two-Phase Friction Multiplier Correlation.for High-Pressure Steam-Water Flow," by D. Reddy, S. Sreepada, and A. Nahayandi, July 1982.
7. Jennrich, R. I., and P. F. Sampson, " Application of Step-Wise Regression to Nonlinear Estimation," Technometrics, Vol.10 No.1, February 1968.

D-12

I 4 i I I APPENDIX E l 1 RESPONSES TO REQUESTS FOR ADDITIONAL. INFORMATION i i 1 I

R E-1

( ,. . .. I! 1 1, As a part of our review we would like to independentty settmate (va nonlinear least squares) , the coefficients B1-B12 in DCHF.1. To ensure that our calculations use the same information

                 .as was used in the onginal denvation, piesse prcmos us with the values of the independent               ;

and dependent vanables used for each of the 1004 data points in the DCHF.1 data base, i This information should be provided on magnetic tape or Aoppy diskette, in some logical format that contains the following information for each data point: - bundle ID, run number. P, G, X g ,2CHF' 'CHF, S, F, Fg, q'CHF' 4'l

                   ..e P = pressure                                                                                          !

G = local mass velocity *

                          = local quality                                                                                 l HF = location of CHF q = local heat Aux l

l q'CHF = predicted crtical heat Aux g gs t S = axial gnd specing - 1 F = axial neat Aux factor at ZCHF FG = ratio of wetted perimeter to heated penmeter kHF = location of CHF, relative to the inception of local boiling Note thet the local condtlions in the above data must refer to Conditions at the location for which the correlation was optimized (which we assume was the location of measured DNB). l MM The local conditions of the independent and dependent variebtes for all the data used in i, developing DCHF 1 correist6on are provided on a Soppy diskette and also attached in Appendix A'. The following variables are provided for each data point:

1. Test section number
2. Serial number
3. Run Number
4. Pressure (psia)
5. Local Mass Velocity (M. Ibs/hr/sqtt)
6. Local Quality
7. Location of CHF messitred from test section inlet (inches)
8. Spacer gnd spacing priches) '
9. Non unitorm F. factor
10. Ratio of wetted to heated perimeter I

e., g

                                                                                                              ~1 1
11. Measured local heat flux (M. btu /hr/sqft) ,
12. Predicted local heat flux (M. btu /hr/sqlt)

To facilRate the vertlication process non. uniform F factor calculated by the VIPRE 01 thermal hydraulic computer code is incl 0ded. J l The DCHF 1 correist6on was developed with the local conditions at the minimum M/P CHF ratio location. The local conditions at the location of measured DNB were initially used to optimize the correlation. This correlation was then used to predict M/P CHF ratio at ali loostions in the rod bundle for each data point. The local conditions at the minimum M/P CHF ratio were used to optimize the correlation during the second Iteration. The procedure was continued till the process converged; that is till the coefficients in the correlation and the minimum M/P CHF ratio locations did not change from Refation to Reration. The advantage of such a procedure is that the correlation coefficients are compatible wnh the method used in applying the correlation for the calculation of design limits, where minimum M/P CHF ratio is computed for gtven operating condhions. e i 1 5 i

   + el E-3
 .c,,. ,,                   ,          .

Il n:

2. We wil be performing audit calculations to independenty check the fit of the DCHF.1 correlatior) over ks range of applicabilty. It would gres#y teo83 ate 1 our verthostion effort if lI a

Duke Power provides us with the input decks for the CHF test bundles in the correlations data , base. including the Mark 8W test section desenhed in Appendk C.' PrtMdtng us wth this 3i information wel silminate diflorences between our reeuts and the Duke Power calculations that are due soiety to differonoes in the code input models if it is not poselbie to supply the g- ' input decks, we wtl need addhional information on the test sections, which is not included in the report, such as local loss coelholents for the spacers, frictiorbimotor correlations, and power profte tables (The graphical representation of the axial power distributions in the  ; report is not sulholent for the desired accuracy of the computatiort.)  : Also, provide a diagram indicating the location of aN expenmental measurement locations for meh of m. oonagurmonsiemed.

RESPONSE

The inputs to the VIPRE41 code for all the tests used in developing and ventying DCHF 1 > correlat6on are provided on a floppy diskette. A listing of these inputs are included in Appendix B  ; These inputs include all the information (such as geometry parameters and physical models) for running the VIPRE 01 code to generate the local constions of the independent and dependent l vanables for the DCHF.1 correlation data base. For all the tests used in developing and ver#ying DCHF 01 correlation, the figures indicating the location of all expenmental CHF locations are gtven in Reference 1 of the topical report DPC-NE-l I I. l l l' I

y L

3. How is the incept 6on of local boiling dehned for the L term in the CHF nonunWorm axisi heat flux factor, F7 memas L eht term in the non unitorm F4ector is defined in the topical report on page 34 as the loostion of CHF measured from the inception of local boting. inception of local bolling location is determmed by the VIPRE subchannel code based on the Jens Lettes hast tronaler correlation for nucleate boiling. Leg si intomally omiculated in the VIPRE code ao the et distance from the in6et to the k first boiling noce. The cooo uses this L eht to calculate and print out the non uniform F factor at
   +

oach axiallocation. i 4 l I 4 d E-5

.l
 -                                                                                                                   I; o                                                                                                                     !
4. Other evalust6ons of the data from the 22 test sections used to develop DCHF 1 have found
                   ' outlying
  • data representing annular now. Were any investigations or tests perfomed to l'

W identWy *outfymg* or

  • bad
  • data? If so, please ident#y these dets points. Were these data .i' ponts used in seismating the B1812 coethcients of DCHF 1, or were they omNted?

PIESPONSE in the deve6opment of DCHf 1 correlation, no attempt was made tc distinguish dMerent flow regimes. There is no relishie quanttative method of identNyin0 dWoront now regirtes. Even # an . attempt is made to some how qualitatively dWorentiste dMerent Row re;pimes, there is the prtbem . of now regime tmnation regions which are more dillicult to ident#y, [ The innial data points for the 22 test sections were 1019 points. Fmeen (15) out of the 1019 were  ; ommed from the correlation cata basei The fmean omNted data represent three high M /P outliers, six low M/P outliers, and six erroneous deletions, which were ' good' points as seen in the accompany 6ng table. It should be noted that only nine CHF data points were rejected as outliers (about 0.9% of the data basa). The residuals of some of these rejected data were so far away from the data base residuals that they were rejected as obvious outliers For the root of the g re}ected data, a comparison between them and the other data at simliar nomvel ccndklons g identified them as outliers. Although the effect of theers nine outliers was not significant on the j values of the optimtred coefficients. they were not eted in developing the correlation because they

              ,vould significantly influence the precision of the correlation.

I: I I > I: 1: I . l li E-6 >

E I I I Data not included in the DCHF 1 Data base Test Test Test System Mass Local Measured Prod 6cted M/P I No. Section Serial No. No. ID No. Pro are Velocky Qualty

                                 . (psia)     M.Ibtn hr sqtt CHF M. Btu hr.aqit CHF M. Btu br.sqtt CHF Ratio I     1 2

3 124 132 133 5 13 13 479 666 702 2114.7 1489.7 1804.7 3.5913 3.4841 1.5G58 0.0213 0.1714 0.0041 0.6611 0.5960 0.3627 0.9175 0.4453 0.7205 1.3384 0.8446 0.4294 4 153 11 1401 24*)4.7 2.0966 0.1001 0.3575 0.5029 0.7109 5 158 56 1693 1504.7 1.4912 0.2200 0.6429 0.4978 1.2915 6 158 59 1696 2394.7 1.0089 0.2266 0.5926 0.3321 1.7844 8-7 8 160 161 47 55 1766 1850 1799.7 1804.7 1.5145 4.4613 0.2102 0.0452 0.3769 0.5701 0.5309 0.7458 0.7099 0.7644 9 166 5 18 2404.7 3.0551 4.0774 0.5074 0.7693 0.6596 10 157 49 1607 I. 11 157 52 1610 1504.7 1504.7 3.5230 2.6149 0.1577 0.0929 0.6023 0.7745 0.6115 0.7517 0.9850 1.0303 12 161 42 1837 2414.7 1.0253 0.2238 0.3771 0.3267 1.1543 13 164 73 2051 2093.7 1.4095 0.2026 0.3212 0.3279 0.9796 14 164 75 2053 1499.7 2 4578 0.1165 0.5612 0.5788 0.9696 I 15 164 76 2054 1499.7 1.9420 0.1578 3.4993 0.4881 1.0229 Note: Data points 1 through 9 were excluded from the data base as outliers.

                - Data points 10 through 15 were deleted erroneously.
                                                                                              ?

E-7

L 5. One of the tactors that deterrmnes unconsinry in a fitted correlation such as DCHF.1 is the E 5 expenmental error (i.e.. unoonsinty) in the cata. It is imponen relateve to least souares estimation of the DCHF.1 coefficients ard to DNBR limit dete'mintilon to estimate the  ; experemortal error standard deviation throughout the independent vanable space. Replicate an ' or near replicate data can be used for this purpose g*i

o. ..
a. Other than the 7 repeat points identsled in Appensk C, are there other sets of repilante or near replicate data points? ff so, identify the data points in each replicate or near.

repitoste est, and tabulate the exportmental error standard deviation for each est. g* 3' 1 4

b. Discusa the constancy, or lack thereof, of the suportmental error standard deviation over the independent verleblo spoos For ausmple, thy standard deviation of the l, moeured CHF ve6ues for the 7 repeats in Appendk C is 0.0122. The standard deviation W.

of the M/P CHF ratios is 0.0348. Are these values much dilleront in other portions of the in $ependent venable space? Explain the basis of your cono6usions, espooinNy if there are limited repilante or near replicate data.  ;

                          . RESPONSE
a. Other than seven (7) repeat points identified in Appendk C there tre no other systematic group of (multiple) repeat points in the CHF data base. UsuaNy a CHF point is repeated to check the integrWy of the test bundle and the instrumentation. Fifteen (16) such pairs of repeat points are ,

( given here in the accompanying table. Since a CHF point was rapaatad either once or twice t is , not possible to tabulate the expenmental error standard deviation for each est.

b. As pointed out in the respones to part (A) of this question there is not enough lapilosto data to evaluate constancy of the expenmental error standard deviation over the independM vanable space. However examinat' ion of these 30 repeat points shows that there is no significant vanation in the repeatablilty of the CHF data at various pressure, qualty, and flow rate condtbns.

g Although it is not possible to calculate the experimental error standard deviation at d'fferent g independent variable values using those 30 points, t is possible to calculate the overall ) expenmental error standard deviation for the entire data base. The experimental error, that is the repeatability, was evaluated by comparing the data pairs for the best pamaNa match in the inlet i temperature for the same nominal values of the system pressure and mass velocity. . In practice it is impossible to match the inlet temperature and other flow condtions exactly. Therefore to eliminate the effect of such mismatches in flow conditions as far as possible, M/P CHF ratios were compared. The repeatabatty parameter defined as t*w difference between the CHF ratios of the g gl repeat points normalized by the average CHF ratio of the points was oseculated for each pair of reoeat points. The standard devotion of the repentabelty parameters, that is the experimental error standard deviation, was 6%. Considering that the standard deviation of the correlation is 9.4% and c I c l E-8 v

l 8 l8 e_ e_ e._ .. .. . , ~, ,, e. .. ,o - _ _ and the, tre corrwaim form noeontwy repreeenied ali inoepenoent vensbies. g , I I I . B Li l g I l I i I E-9

                                                                               .. m J

ll L I ll Repeat CHF cata points Test Test Test System Mass Local Measured Preacted M/P Section Senal ID Pressure Velocny Qualty CHF CHF CHF g No. No. No. No. (pssa) M. Ibm - M. Blu M. Blu Ratio 3 hr.satt hr.satt hr.satt 1 2 157 157 36 63 1593 1621 1504.7 1494.7 2.037 1.9849 0.1156 0.1245 0.6834 0.6856 0.7050 0.6918 0.9894 0.9910 l'* W 3 157 38 1596 1814.7 2.4834 0.0306 0.7356 0.8078 0.9106 , 4 157 70 1628 1804.7 2.4460 0.0709 0.8023 0.7371 1.0885 I 5 157 4 1562 2114.7 3.4268 0.0575 0.7645 0.7792 0.9811 6 157 28 1586 2104.7 3.4902 0.0553 0.7978 0.7870 1 0137 7 157 7 1565 2414.7 2.9645 0.0101 0.8223 0.8177 1.0056 8 157 22 1580 2404.7 2.8664 0.0186 0.594 0.7958 1.02?! t 9 158 3 1640 2099.7 2.9917 0.0778 0.7221 0.6750 1.0008 10 158 36 1673 2099.7 2.9843 0.0834 0.7310 0.0647 1.0007 11 162 8 1874 2104.7 2.9299 0.0470 0.5699 0.6171 0.9235 ' 12 162 34 1900 2119.7 2.8925 0.0890 0.5752 0.5641- 1.0197 13 164 1 1979 2099.7 1.4331 0.1398 0.3844 0.4345 0.8847 14 164 74 2052 2099.7 1.4140 0.1940 0.3278

  • 0.3375- 0.9713 i 15 164 2 1980 2104.7 't .9421 0.0830 0.4810 0.5417 0.8879 16 164 72 2050 2104.7 1.9009- 0.0646 - 0.5061 0.5835 0.8674 17 148 3 1179 2399.7 2.9559 0.0185 0.6555 0.6326 1.0362 18 148 70 1246 2404.7 2.8790 0.0695 0.5942 0.5263 1.1290 19 148 14 1190 2394.7 .

2.4528 0.0512 0.5372 0.5303 1.0130 . 20 148 71 1247 2399.7 2.4386 0.0635 0.5428' O.5129 1.0583

                                                                                                                                                                        ^

21 148 34 1210 1789.7 3.4780 0.0586 .0.6456 0.6212 1.0393 . 22 148 72 1248 1799.7 3.4486 0.0651 0.6542 0.0087 1.0747 23 152 2 1348 W 1500.0 1.5186 0.1421 0.4724 0.4868 0.9704 24 152 44 1390 1500.0 1.5456 0.1164 0.4790 0.5342 0.8967 < 25 152 32 1378 2405.0 3.3893 0.1092 0.5583 0.4908 1.1375 =* 26 152 34 1380 2400.0 3.3913- 0.1152 0.5693 0.4831 1.1784 27 152 21 1367 2400.0 1.5465 0.1311 0.3612 0.3830 0.9431 t 28 152 41 1387 2395'.0 1.5994 0.1307 0.3667 0.3868 0.9480 29 152 29 1375 2100.0 2.4732 0.1191 0.4328 0.4509 0.9493 30 ' 152 35 1381 2100.0 2.4525 0.1433 0.4460 0.4236 1.0529 I ' E-10 W y , .c , - -_ - -

                                                                  ,        e                   .,e- -        e-+--.-++e-.-                 - - * - -

E I 6. In the dehnetion of the A and C terms on the bottom of page 31, pienne explain why correction factors F t. Fg, and Fg were appiled to A but oNy F gwas applied to C. t i REEPONSE I A stepense regression analysis was performed in model building and aslooting tha correlation form of the DCHF 1 coms6ation. The two creerts of selecting the best regresson were to make the correlation accurately predict DNBR and keep the equation as simpie as possible. There is no i standard statistloal procedure avaliable to do this; a trial and error procedure and personal judgement were used in selecting the final form of the completion. The basic strategy of stepunes regression procedure is outlined boiow. The stepwise procedure starts with the basic correlat6on equation (q' = (A X)/C) and ente 9 into the regression the variabit most higNy correlated wth the dependent vanable. The partial F test value is omiculated for every vanable and the lowest panial F test value is compared with a preselected significanoe level. The vanable is dropped from consideration if its F value is non significant. The stepwise method now eclects the next vartable to enter regression, the one that hs most highly correlated with the dependent vartable. Again partle' F tests are computed and I, variable with the least F value la tested for significance and the process is continued tNI there are no variables left to enter the regromaion I This methodical procedure resulted in the final form chosen for the DCHF 1 correlation. The WRB-g 1 correlation (Reference 4 in the topical report DPC NE 2000), which is based on the same data B base adopting simuar correlation form (q' = A-BX), came to name conclusion. The first term (A) is a function of length, grid spacing, and geometry factors in addition to pressure and flow rate, - where as the second term (8) associated wth quedty is a function of length only, in addition to crossure and flow rate. I

                                                                                                                                      ,I

I. l 8.

7. The last sentence on page 3 2 states that no modinaation in the K constant or form (W 5e F- g' factor was necessary. Although the form of their constation is different than DCHF.1, 3;
hahanek and WNoor reoctimized tf a three coelholents of the K constant using largely the ,

j same data as that used to dowolop DCHF.1 and obtained noticeably different values for tu ., of the three coelhelents. This suggests that the coefRotones in the K constant of the F tector I may require reestimation for some correlations and dans eats. P.' ease explain your reasons for concluding that it was not necessary to reestimate the coefReients of the K constant. l' RESPONSE  ; L g The non-unNorm F factor to be applied to the non unliorm CHF data to bring them to unNorm level . depends (m the CHF data base and on the form of the consistion and vertables introduced in it. I An examination of the non-uniform and uniform CHF dat:: (Coe table d.2 in Appendix d) indiosted

  • j that no modification to the F factor was noossaary for DCHF.1 corroistion. Therefore non unNorm g
axal beat flux data were reduced using the non-unNorm F factor to the level of the uniform data 3, i and the coc*ficients in the data DCHF.1 correlation were optimized using the total data base. ,

l It should be noted that the WRB 1 correlation (Reference 4 in the topical report DPC NE4000, l which is based on the same data base, also usiimes the orW F 4 actor, it was observed that no g, l modiflestion to either the constants or the form of the F factor was noosemary to predict the non- 3 uniform data using the WRS 1 correlation. c I' i S: I 1 I, I: I: I4 I

I 1 8. The coelhcients 81812 of DCHF 1 woro estimated via a nonlinear least squares program developed at Columbia Urdvers#y (Ref. 5 in the submetal) based on an algorthm by Jennnch and Sampson (Ref. 6 in the submatah. We have reviewed these references, out some of the specifics of how the program was applied are not ghen in the submttal,

a. Was weighted or unweighted nonlinear least ecuares performed? If weighted, how were the weights determmed and what were their values? (Note: If weeghted least equeres was used, include these weeghts in the magnetc tape or diskene file requested in Question #1.) If unweighted, what was done to verWy the ' constant variance' assumption requesd for urnwgeghted least equares?
b. Was the usual *minimite the sum of squared errors
  • or
  • minimize the sum of weighted squared errors
  • least squares crtterion used, or was a criterion based on the M/P CHF ratio used?
c. Apparently the Columbia University nonlinear least equares program does not compute the approximate standard deviations of the estimated coefficients. Did you compute these to assess the signihoance of the estimated coefficients? If so, what were the results?

BE,$PONSE a. An unweighted nonlinear least squares regroseion was used. There are two reasons to 4 consider a weighted least squares technioue: Either some data is imown to be more reliable than other daia, or some region of the independent variable space is grossly under regresented. For this case, there was no reason to suspect that some data was superior to other data. Also, considenng that CHF experiments are designed to blanket the independent variable space, it was judged that no signihcant under representation was present. b. The M/P CHF ratio was used to minimize the residual sum of squares (RSS) and optimtre the coefficients. c. Since each coefficient in the correlation was evaluated based on the reduction in RSS - error, standard deviations of the estimated coefficients were considered not important and were not Calculated. See the response to question 6. E-13 i

  .  . .. .. . _ - - -                -.          - - -.- - . - .- . -                               - - . . - ~ . .   -    ..

I: ! 8i ;

9. Lasst squares regrenssion tectniques assume that the independent vanabios are known  ;

without error (uncertainty), or at lasst that the errors are small relative to the error in the dependem venable. Some of the DCHF 1 independent vanables are measured (and hence suW to measurement error), whereas others are computed via VIPRE 01 (and hence sutk to error propagalice and the poenible introduction of other random errors or biases). Please provide justihostion for the assumption that the errors (uncertainty) in the incoponeent ' vanables were small.

RESPONSE

A dotated error analysis of the measured independent variables of the DCHF 1 correlation is presented in chapter 5 of Reference 1 of the topical report. Typical error in inist temperature is g, about 2.20F. Average error in flow rate is about 1.3% for a 4X4 bundle and about 0.88% for a 5XS 5; bundle. The total error in pressure measuremera is + /. 6 psi and the error in heat flux is about 0.75%. Nominal inlet conditions were used to obtain local conditions usmg the VIPRE cooo and the Da-iW1 correlation was developed using these local conditions which admittedly contain , measurement errors. However ali these errors are built into the overall Residual Sum of Squares (RSS) and thus are renected in the standard deviation of the correlation. I I: I I i i! 3; I I u t-14 gI

10 The graphical and tabular 'verthcation* Cy r-i. of Section 4 of the submittal are all based on the same 1004 data points as used to ft (i.e., estimate the coeff6ciems of) DCHF.1. , it is widely recognized that a f.tted regression model such as DCHF 1 will tend to perform ( better for the data used to develop k than for " fresh' Gata not used to develop it. A realistic acessament of how well DCHF 1 performs (relemed to as

  • validation *) should be based on j

i data not used to settmate as coefficients. The best option for doing this is to use additional

  • fresh
  • data. Otherwise, data splating or crose validation techniques are otten used. Detc.

spiltting irwolves dMding the data into two sets (referred to as the ' estimation est* and the

  • validation set"), and then tehtting the correlation with the estimation est and validating it with I the validation est. Cross-validation involves spiliting the data into several sets (e.g., by test eeotions), with each est used in tum as the validaten set and t5e remaining sets used as the estimation est.

Although the results of a proper validation may show that the ' optimism

  • in using the same data to aseems performance of a fitted model (as was used to fit it) is small, it is still important to perform a proper validstion (since the optmem may not bs small). Did you perform o I proper validation using fresh data, data spiltting, or cross validation techniques? h so, please describe what you did and the results. If not, please do so and present the results. [In the latter case, certain data spitting principles should be followed and objective statistical J

l validat6on tests should be performed, in addition to subjective g'aphical and tabular investigations as in Section 4. Additional details concoming those comments can be [ provided on the phone or in wraing.) RESPOtiSE I Appendix C of the topied report DPC NE 2000 conhrms the applicablitty of DCHF 1 correlation to the fuel assemblies with Zirceloy mixing vano specor grids, specifloally the MARK 8W mixing vano grid assembly design. These data were obtained from a confirmatory test performed at Columbia University for Babcock and Wilcox. The DCHF.1 correlation conservatively predicted CHF in this test section with an average measured to-predicted ratio of 1.203 and standard deviation of 8.52% i g in addition to the above data 250 CHF data from seven tests performed by Westinghouse and J published in Reference 1 of the topical report were used in validating the correlation. Two CHF points were deleted due to suspected input errors. The DCHF 1 correlation predicts these 248 points with a maan of 1.007 and a standard deviation of 7.8% Considering that the validation data came from a variety of test sections and covered a wide range of parameters, the DCHF.1 correlation predicted the data remarkably well. The tables showing the test section geometry characteristics and one way groupings of means arO standard deviations are given in Appendix C$ E-15 _! l k

I1 ! i

11. In Table 4-2, mees velooty has a ciehr (stelhaisety si0nihoent) queWetic eneet on R = M/P.

yet this was not powned out in the discuselon of Section 4. The last that DCHF 1 is Ij,

- conservethe for G = 1,0 and 3.5 (the means are statistically signihneney greater than 1.0) is - .

of course no problem, but the statinhasty signincent noncontenettve behaver at G = 2.0 is a! hothersome Because the segnincent diflerences from 1.0 show up as a quadratic trend and are not randomly disetbuted among the levels of G, the indisselon is that DCHF.1 does have g* I both consonethe and nonconsensove biscae with toepoot to G. It is poseihie, however, that I- the obeened blemos are due, at leeN in part,40 the ellects of Other lectore (see the fchowing ll question). Please sileoues the stelladampy signutoont dNiersnoes ensi guethouc trend in Table W ' 4 2, and present your posaton as to whether the pseums are indleathe of real bienes in DCHF1, l 1 f 1 RESPONRE I.: DerMng en empertool correlation whose mean M/P rate equel to 1.0 will necoseertly yield some l test sections or cata groups whose mean is higher or lower then 1.0. However the mean of each test sectiots or data group should fall approstimately within the expenmemal error of 6.0%.  ! Additionally, deviations from a mean of 1.0 of a test section or a data group are accounted for in

the correlation MDNBR limit of 1,194, l

I: . II I I, I l I' Il L " I J

I b

12. The tabular pretersation of means afd standard demetons in Tables 41 to 44 are all for ore.

I vanable groupings of the data, and do not prtude for detooting interaction effects smong the correlation's independent vanabies It is well kruwn that the preconce of interactions can lead to *talee posatW or "fales negative

  • determnations reparthng the elloots of single venables Thus, the results of Tables 41 to 44 may be mieleeding if there are interact 6ots 8 amorg the vertatWes. Did you produce twMenable tabular groupings of means and standard deve. sons touch as groupings by mass veloolty at each pressure, or by prosaurs over the range al inist subcooling, for example), or perform corresponding Analyses of venance to irweetigets interoodona? If so, pieces petMde these tables and the results of the analyses of watanos, if you did not perform such irwoes4gotions, just#y your poetion as to the adequacy of your t O 1 .

I Several one way groupings and two way groupitegs of means of M/P retlos arW standard deviations were prepared and presented in Appendix DI The data were divided into several subgroups, in the case of one way analysis the data were divided into three groups based on low, medium, and high values of the parameter. In addR60n for two way aitalysis the data were OMood into nine groups. I The following one way groupings of means and standard dev%tions and the corresporWing - normalty tests T tests and F tests were performed.

                                                                                                                                       )

Pressure Mass Aux

                           , Localqualty Grid spacing
                    -        Length blameter Axialheat Aux profile
                                  ~

Cell type. The following two way groupir$3 of means and standard deviations were performed: Pressure and Mass Aux , Pressure and Localqualty Mass flux and Local quality

                                                                                                                                        \

Mass Aux and grid spacing E-17

I

                   -                 Length and Diameter,                                                                           g-5-

The following three statistical toets were portormed on each subgroup The Kolmogorov. Sm!.7xw test (K S Z test) was used to determine how well M/P ratios it normal distribution. It is basso on compenson of the sample cumulativo distribution function to the normal I!. cumulativo distribution function. The K S test gives Z value and PROS >Z, the probabelty of i obtakdng a Z value greater under the assumption that ttu; distribution is normal. s l 1 The usual T test statistic was used for testire the egnality of means of the particular subgroup and E-

the entire data base. The T test gives the 1 statistic, the degrees of troedom, and PROS >T, the probabelty of a greater absolute value of T vruser the null trn~;;- - _
that the two means are equal.

j The statistic used to test the hypothesis that the venances of the subgroup and the entire data g

base are equal is the F value, which is the retio of the larger sample vanance to the smaller. The F '5, test gives the F ratio and PROB > F, the probabilty of a greater F value under the hypothesis that the two venances are equal. If the observed PROB > F value was small, the hypothesis that the

! population venances are equal is rejected, and the separate venew T test for the means was used. On the other hand when the PROB > F value was high, pooled venance i test was used.

  • /

l The tables given in Appendb: D demonstrate that twerwhelming majortly of tt'd subgroups passed all the three tests: normality K-S test, T test for equality of means, arul F to',( tor equality of Variances. l

- 8, i

i I-I ? 4 I 1 8! e Ii 4 E-18

13. The value of performing two or throManatdo groupings (as discussed in the povtous 4ma%) la that it can lead to the dicoovery of subrogens of the independent vanable space j ..

where DCHF.1 rney not portorm as well as in other subregions. This is evidenced by the l resuas in Table 4-7, whch esem to indioste that DCHF.1 is nonconservettve for $x6 test dets with hosted rod O.D. = 0.374 and heated length = 108. The three test aeotions with these charactortstlos were #s 161,182. and 104, wNoh had mean M/P values of 0.972. 0.936, and 0.930. Please dieoues whether these renuam are indioseve of a nonconservettve bias in DCHF 1 for the stated conditions, or whether there were unueuel circumstances in the seesmg of thesesections.

RESPONSE

I I One way groupings of means and standard deviations by diameter of the rods and length of the rods are given in Appendix D$ These resuRs show tha*.there is no bios with roepect to either rod diameter (0.374* and 0.422*) or length (96* and 1867. Two way groupings by length and diameter show that the means for tests wth 0.374* diameter rods and 198* length are wthin the expenmental error of 6.0E Refer tc the response to question 11 for further dinoussions about tieviations from the mean and the applios2 ion of the enginee,ing design limit. I 1 I I I I i-E-19

I I i

14. Test esosions wth nodoestWy higher or lower mean M/P restos in Table 4 7 should be E irwestigated to estermine their enact on Nating the correission and their valitfiry for use.

SpoomanNy, test section #114 has a notionaldy low moon M/P value (0.000), while secuans g

                                                       #132 and #168 have nohoestWy high values (1.116 and 1.087).10ther secuans with                                             -

natiometdy low welues were menhoned in the preceding gusehen.) Please cincues whether

                                                   . the test reeuas for the noted seemons are considered to be e, and if so, what their enacts l                                                      are on the fitted correlation (note that this is part of a crose4elidation procedure by test                                .y esadon, and stettstical techniques autet for deelding whether the emed cosmoients otmained                              - ga wahout the data from a given test secuan are dWerent than those otteined wth it)-

E 1 RESPONSE ,

                                                                                                                                                                                    )

A detailed summinetton of one way groupings by test section show that au the eneens of M/P repos are within the repostability of CHF testirig, sucopt two test sections These are tests 114 and 132 wnh means of 0.900 and 1.115 respectively. The inclusion of these two test secuans in the development of the ocwrelation has litue edeot on the inted correlation cosmoients for two reasons. First, test sections 114 and 132 have 33 and 36 points roepeatively, which are a ammu fraction of the total date bees. Secondly, the mean of the ll test osanon 114 is 10% lower than the populadon mean and that of test emotion 132 is 11.6% { i higher. Thus their effects 'of over preciation and under prediction are nogesed and therefore the coefflaients optimited without these data would not have been signmoonely dilleront from the values obtained wth them. Further these data have been included by the or6ginal irwestigators (Westinghouse) in the WRB 1 correlation report. See Malerence 4 in the topical report. t I I. I I I L 5. e-rw,--.wra--e-+mm---e-- - - - , --- +re-, e-++r+-mwm<-c,e t-w,--e--+--" -w--e'er-+,v= ----- - - - -*- - -- - -=-- - - - -- - - - --

I j I 15. Along the lines of the premous question, p6eseo discues the results for S = 20 and 22 in Table

44. The DCHF.1 correistion seems to be tasted (statiettostly signihoart) conservatNeiy for S
                        = 20 and nonooneersatively for S = 22. The dellerences are not part of a trend, however, _

which row quest 6ons as to whether they are indicatNo of a real e#ect of grid spaeang, or if the results are due to some other reason [The twcHasy tables recommendert in Question

                       # 12 may help rescive this question.) Please dieoues the rrtetter and gNo your condusions RERPONSE                                                                                                                                              <

One way groupings of means and staMard deviations by grld spacing, given ln Appendix D$ of l DCHF.1 data basa, do not show any signl6 cart bias with respect to grid spacing Refer to the response to guestion 11 for further discusesons about deviations from the mean and the application of the engineering design limit. ' I I I

                                                                                                                                                                      ~

8 I  ; I E-21

il . i

16. Figure 4-2 seems to indioste that DCHF 1 is nonconservative for small values of local qualty and conservateve for laryc values. Please primde a table of means and standard dwintent, '

that would bener illustrate this and explain the trend.

RESPONSE

r One way groupmps by local quality, two way groupings by local quality & mass flux, and two way l groupings by pressure and local quality do not show any signihaant vertation of mean M/P with i e l respect to local qualty. See Appendix D. ' ' t {

l

I I I I. E' I'

l.  !,

i i I. I . I E-22 >

  .      .r-,                + ,  - . , - - . * ,   e ,   n.-.-       . . , , . ~ v . , _ ...i, ,       ,,.,,e.,-..                       ,           -, ..e., , - - - .~...r-..%.,- - , - . ,,-,,. . - . ...,..

B i I

17. The MDNBR limit development in Section 6 is tweemd on the assumption that DCHF.1 performs equally well over its whole range of apf***y Specinoaky, the development is based on the assumption that ea M/P values are a random sample from a common, normalb/4istributed popwatton The three parts of the assumpt60n (random temp 6e, common rap **m arus normany44eartbuted) are importera, since they are the beels for the normal tolerance interval theory used to develop the limit.
a. - JustNy the validity of the ' random semple
  • assumption. Are the data clustered in osaman portions of the independent vertable epson or are they overdy distributed over the space?

l I b. auswy th. veinny a the oommon popwedon eas,nedan and moeues wnsi vou es to check this. mame=a leest equares theory and preadeel emeertence suggest that a ls extremely unilhely that a fused rnodel such as DCHF.1 wIl perlorm equally well over a I large independent vertable space. For exemple, a fitted model wel tend to perform boner in sutwegions where there are more desa, and worse in regions where them am less data. Mao, performance tends to degrade as the diesence from the conter of the space increases. Address these leeues in your response An exploratory way to check the ' common population

  • assumption and simuhaneously look for subregions where the comestion does not perform as well, is to compute means and standard deviations for various one and two way groupings of the M/P I values (grouped by the independent or other vertables that may afloat DCHF.1 performance) and ese if the means and 9tandard deviations are relatively constant.

F { Previous questions have pointed out at seest a low potertial eutwegions where  ! I performance differs.) Also, it is preferable to do this with *velldation' data as web as wth the data used to fit the comdation. If the ' common population' oesumption can not be justlRed, then the limiting est of the mean and standard deviation derMed from the grouping analysis may have to be used for the MDNBR limit calculations. c. It is important to realize that the normal distribution assumption required for applying normal tolerance interval theory to the DNBR ellusabn is that the distribution of all . I possible values of DNBR for a given est of condtiona be normally dismbuted The assumption must be approximately true for every. net of condtions, but the normal distributions at the difletont condalons need not have the same mean and standard dovution. The fact that the distribution of DNBR values over all condtions irwestigstad i has an approdmate normal distribution (as you nots on page 4-2 and dispiey in Figure 4 8) may not be relevant if the indMdual DNBR values at dilleront conditions dorft come from a common popuistion. Please dieoues thsee issues relative to DCHF.1 and the data base used to fit k. I  ! l

RESPONSE

a. The distribution of the CHF data with respect to vertables effecting CHF r.:ch as pressure, mass Rux, quality, length, axial profile, grid spacing etc., can be seen in the one way and two way l groupings of means and standard devotions gNon in Appendix D$ From these tables and also l from the plots of M/P retto versus these variatWes presented in the topical report DPC NE P000, t can be seen that ths data are not clustered. , E-23

q. 1 e J

b. , The common population assumption is venhed by analysis of the data contained in .

o Appendix D. Of the 60 sample groups in these tables, the group M/P maan values were tested to j

                     - be not sigrdhcantly different than the population mean for:                                               j A.      35 groups at 5% level,                                                               q B, -    9 groups at 1% level, and ~                                                         d l

C. . ,12 groups at 0.1% level. Based upon above demonstrated agreement of the 'emmple M/P mean values, it is concluded that the data come from a common population. Sample groups with significantly different means are I 1 addressed in engineenng practice by usage of the de@ limit factor as discussed in the chapter C :

of the topical report.
c. The normal dist'nbution assumption is vertfied by analysis of the data contained in . .
Appenew DI Of the 60 sample groups in these tables. the normaisty hypothesis test was accepted  !

for all the groups at 5% level. Therefore from the demonstrated normality of the samp!e group M/P data, it can be concluded that the DNBR data come from a common population. L I .

                                                                                                       \

L g. i ! I L 81 h a [ is E-24 l l q

I - L h I

18. 'Your approach to computing an MDNBR limt may not provide the statec 95/95 protection for subregions of the claimed region of applicabuRy where DCHF 1 is nonconservative or where ks predictions have larger standard deviations. $1nce the design limit ctf.erton <

specifies that 95/95 protection is required for every set of conditions, et is important that the j, approach for obtaining the limit actually estisfy the orterion. The best way to do this is to i compute an MDNBR limit for many possible subregions, with the goal of investigating _ j subregions (sets of condition: that wul yisid larger MDNBR limits than the one obtained by ; j assuming (possibly incorrectly) a common papda*wn. The largest value of MDN8R obtained j wdl then provde 95/95 protection for all condtions within the region of applicabHRy. To Niustrate the above comments, consider the subregion defined cy all sets of conditions - having G = 2.0 Mibm/hr ft2, for which DCHF 1 has M/P mean a% standard deviation values j of 0.971 and 0.0991 respectively, based on 262 data poets (refer to Table 4.2). The 95/96 MON 8R limit for the subregion is I 1/(0.971 1.815*0.0991) = 1.264,' I which is somewhat larger than the value of 1.194 reported on onge 5 2. For this suoregion of the space, the 1.194 value only provides approximately 95/88 protection Se.,95% . conidence that MON 8R will be less than 1.194 88% of the time for a ;tven set of condtions - T l j I within the subregion), in this subregion,1.194 does not provde the desired 95/95 protocelon, the actual protection is somewhat less. In light of the above comments and Blustration, please discuss and lustify your claim that the MDN8R limit of 1,194 provdes 95/95 protection for any given core condition. On the other hand, if you concur with our assessment that 1 { 1.194 does not provide 95/95 protection for every set of conditions in the region of ; applicabHity, please state and justify your revised postion regarding a new value of the limit or a revised statement about the protection provded by the 1.194 limit. i RESPONSE ' I 1 A detailed residual analysis and one way and two way groupings of means and standard deviations presented in Appendix djustified t% assumptions of yardom sample, common populat' ion and normal distribution. See the responso to question 17 This conclusion is supported by the valicution data statistics given Appendix C( See the response to question to 10. Since ' common population" assumption is justine d, population statistics are used to compute i MDNBR limit rather than the limiting set of mean and standard devitalon.  ; E-25

      , - . - - - - . . .- =            -- -- - - . .                      ----- - .-      _ _ - _ _ _ - - - - . _ _ - - - _ - _ _ . . _ - _ - - _ - - - - .                       .

g: i

19. Please elaborate on the interpretation of the design lut.n crnerion given in the last sentonoe of . [

the first paragraph on page 51. Specifically, what do you mean by_11miting pins

  • and the phrase '... that 96 g,etcent of these limning pins are not in film boiling *? The 95% presumably  :

refers to the proportion of limning pins from some population, but it is not clear what the [ population is. Please explain what you mean by these two phrases. RESPOrGE . L The phrase " limning pins' is defined as the rod or rods where measured-to. predicted (M/P) CHF . ratio is mwwnum when DOHF 1 cottolation is applied This corvolation will be used in conjunction [ wnh a Duke core thermal hydraulic application melts %Giry to be deseni:ed in a topical report i submtted in October 1988. This thermal hydraulic inethod9ogy will meet GDC to and specifically - SRP 4.2 ofIJUREG 0800, Rev 1, July 1961. Ii I'

                                                                                                                                                                                .                            I I,

I', I r I L I.i t I; E-26 ,

                                             .._        ._.. . . ___ . _ _                       _a_,-                                                       . . . . . - . . , . _   _ . . . . . . , _ _
20. There is no discussion in Section 5 as to how other L.minties (e.g., in the DCHF 1 independent vanables, design parameteru, computer todos, etc.) are to be treated h applying the MDNBR limit. Please discuss this topic relative to application of DCHF 1,

RESPONSE

All types of uncertar#.ies relative to the application of DCHF 1 correlation to establish MDN8R design iim . be docu ed in a .pa,aie core tow hymawie methodoiogy toncar repori which Duke will submit to NRC in October 1988, j

                                                                                                   ;j l

i I i i

                                                                                                          )

e E-27 j l l

                                               -)

i Appendix A '1

 - Local Condttions of the DCHF 1 Data Base ~      j i

i l k b t t

             /

A-1

   .4           g I

s

        +

108 1 8 1514.7 2.3074 0.058 78 20 1.0004 1 0.8835 0.8792 108 2 9151 e. 7 2.2385 0.039178 201.096410.8873 0.9658 108 3 10 2164.7 2.4755 0.0377 78 20 1.0927 1 0.7939 0.)494 l 5 108 4 11 2114.7 2.4116 0.0285 78 20 1.0955 1 0.0000 0.8821 108 5 12 2414.7 2.4135 0.033 78 20 1.0993 1 0.8881 0.8513 3, 108 6 13 2414.7 1.957 0.0434 78 20 1.0978 1 0.8242 0.8002 108 7 14 1514.7 3.2191 0.0096 80 20 1.1251 1 0.8247 0.7455 g) 1 108 815 1814.7 3.4019 0.0561 80 20 1.1288 1 0.8162 0.7936 ll 108 9161824.71.7347 0.0212 78 to 1.1 10.8078 0.8714

          - 10810171514.7 3.3967 0.042t 78 201.08510.92610.8982              e 10811 18 1514.7 2.2314 0.0219 78 20 1.099 1 0.9155 1.0277.

108 12 19 1544.7 1.7475 0.0282 78 20 1.0999 1 0.8712 0.9442 3, 10813 531514.7 3.3966 0.0683 80 201.128710.8528 0.7397 z 108 14 54 1814.7 3.4419 0.0177 78 20 1.0914 1 0.9201 0.9364 g" 108 15 55 1794.7 1.8488 0.0172 78 20 1.0996 1 0.8817 0.924-

           .108 16 56 2114.7 1.9197 0.0799 76 20 1.0854 1 0.9526 0.9347 108 17 57 2114.7 1.9195 0.0552 76 20 1.006 1 0.9155 0.9004-l~i W
          - 108 18 58 2114.7 1.8864 0.0043 78 20 1.0908 1 0.8035 0.7847 108 19 59 2114.7 2.3774 0.0202 78 20 1.1 1 0.8772 0.9039         g 108 20 60 2089.7 2.8800 0.0091 78 20 1.0955 1 0.8789 0.9411-      gI 108 21 61 2124.7 2.9298 0.0126 78 20.1.0949 1 0.8729 0.8451 108 22 62 2094.7 2.931 0.0643 80 20 1.1284 1 0.7559 0.7018'           _I 108 23 63 2114.7 3.3867 0.0105 78 20 1.0909 1 0.947 1.0664 108 24 64 2114.7 3.3375 0.0301 78 20 1.0885 1 0.8771 0.8482-3 l:!
                                                                             -a 108 25 65 2004.7 3.3958 0.0035 78 20 1.0939 1 0.9257 0.9586 108 26 66 2404.7 2.9861 0.0648 76 20 1.0644 1 1.0222 0.9773       3 108 27 67 2409.7 2.9006 0.0136 78 20 1.0975 1 0.8969 0.8064 108 28 68 2414.7 2.9704 0.044178 201.08e310.812 0.7275 '

g 108 29 60 2414.7 3.4971 0.0467 80 20 1.1289 1 0.8119 0.7309 114 1 217 1499.7 2.4180 0.0448 72 26 1.1407 1 0.813 0.0928 - 114 2 218 1504.7 2.4224 0.0234 72 26 1.1367 1 0.8543 0.7641. l< W ' 114 3 219 1504.7 2.3896 0.0111 72 26 1.1338 1 0.8778 0.82 { 114 4 220 1514.7 3.4629 0.0612 72 26 1.1454 1 0.7958 0.8536 g ! 114 5 221 1514.7 3.4438 0.0408 72 26 1.145 1 0.84 0.7653 114 6 222 1804.7 3.3948 0.0518 72 26 1.1446.1 0.7795 0.6477 g4 114 7 223 1904.7 3.5697 0.0299 72 26 1.1441 1 0.8302 0.8021 114 8 224 2094.7 2.4856 0.0632 74 26 1.1678 1 0.6706 0.6125 114 9 225 2099.7 2.476 0.0275 72 26 1.1376 1 0.7508 0.6984 l W ' 114 10 226 2114.7 2.4865 0.0102 72 26 1.1287 1 0.8148 0.7546 114 11 227 2114.7 3.0228 0.0611 74 26 1.1715 1 0.7 0.6125 g 114 12 228 2124.7 2.9872 0.0361 72 26 1.1423 1 0.7651 0.7201 114 13 229 2134.7 3.0077-0.0115 72 26 1.1341 1 0.8539 0.8128 g 114 14 230 2114.7 3.5038 0.0425 72 26 1.1441 1 0.7821 0.6786 114 15 231 2134.7 3.514 0.0262 72 26 1.1433 1 0.8144 0.801 114 16 232 2124.7 3.4646 0 006 72 26 1.1384 1 0.8734 0.8758 la 91 4 114 17 233 2434.7 3.4886 0.0598 74 26 1.1724 1 0.7192 0.6557 114 18 234 2434.7 3.5266 0.0068 72 26 1.138 1 0.8663 0.7986 3 i 114 19 235 2424.7 3.5177 0.0457 72 26 1.1296 1 0.9406 0.8746-114 20 236 2444.7 2.9718 0.0729 76 26 1.2027 1 0.6418 0.5745 5 114 21 237 2434.7 2.9964 0.0009 72 26 1.1371 1 0.8002 0.7142 / 114 22 238 2424.7 3.0174-0.0383 72 26 1.127 1 0.8839 0.7998 114 23 239 2424.7 2.5071 0.027 72 26 1.1243 1 0.8165 0.6976 h

                                                                               =-       +

114 24 240 2424.7 2.5081 0.0945 68 26 1.0796 1 0.9762 0.8425 114 25 241 2399.7 2.5157-0.1224 68 26 1.0744 1 1.0303 0.8812 k-2

4

g. .

I 1 114 26 242 2424.7 2.0329 4.0406 72 261.111310.7988 0.6548 ~ 114 27 243 2404.7 2.008 0.0675 72 26 1.1043 1 0.8323 0.6962'- l 114 28 244 2424.7 2.0439 0.1439 68 26 1.0649 1 0.9980 0.8258 i 1 114 29 245 2124.7 1.9454 0.0133 72 26 1.1279 1 0.7318 0.0916'  ;

              -114 30 246 2114.7 1.9706 0.0252 72 26 1.117 1 0.7989 0.7404 1 '

114 31 247 2114.7 1.9673 0.0448 72 26 1.1108 1 0.8317 0.7784) 114 32 248 1804.7 1.9911 0.0016 72 26 1.1246 1 0.8149 0.719- i I 114 33 249 1824.7 1.9146 0.0234 72 26 1.1167 1 0.044 0.7617' l 121 1 394 1634.7 3.4551 0.0811 74 20 1.1746 1 0.7875 0.7167-121 2 395 1804.7 3.4558 0.0514 72 20 1.1482 1 0.8836 0.8317 121 3 398 1794.7 3.5182 0.0793 74 20 1.1728 1 0.7857 0.8911 121 4 397 1774.7 3.4328 0.0473 72 20 1.1457 1 0.8545 0.8501, 5 1215 398 2064.7 3.4235 0.0882 76 201.20710.70310.6758 J 121 6 399 2004.7 3.4707 0.0500 74 20 1.1723 1 0.8006 0.081

                                                                                 -i 1

l I 121 7 400 2114.7 3.4484 0.0308 72 20 1.1437 1 0.8817 0.9958 121 8 401 2114.7 2.9888 0.1083 76 20 1.2076 1 0.6522 0.6212 l 121 9 402 2114.7 2.9006 0.0453 72 20 1.1426 1 0.0064 0.7937 4 121 10 403 2114.7 2.9945 0.0337 72 20 1,1419 1 0.8292 0.9273' I ;121 11 404 2399.7 3.5142 0.0006 76 20 1.2063 3 0.7165 0.6791 121 12 405 2404.7 3.5432 0.0322 72 20 1.1432 1 0.8564 0.877 - 121 13 406 2404.7 3.4579 0.0081 72 20 1.1373 1 0.9245 1.0089

                                                                                  ]
i 121 14 407 2414.7 2.9785 0.1076 76 20 1.206 1 0 6421 0.61:

121 15 408 2394.7 3.0233 0.0589 74 20 1.1711 1 0.7472 0.7415 1 121 16 409 2384.7 2.967 0.0217 72 20.1.1397 1 0.8315 0.8954

              '121 17 410 2414.7 2.4688 0.0361 72 20 1.1387 1 0.7629 0.708           '

I 121 18 411 2404.7 2.4341 0.001 72 20 1,1309 1 0.818 0.8783 121 19 412 2414.7 2.479 0.0489 72 20 1.1183 1 0.9039 0.9762' 121 20 413 2094.7 2.4916 0.0765 74 20 1.1707 1 0.703 0.6677' i 12121414 2124.7 2.4710.0409 72 201.139710.7810.79W '+ 121 22 415 2104.7 2.4655 0.0236 72 20 1.1367 1 0.8124 0.8832 1 121 23 416 1494.7 2.4543 0.0841 74 20 1.173 1 0.7763 0.7649 '! 121 24 417 1504.7 2.3904 0.0862 74 20 1.1893 1 0.8071 0.8211 121 25 418 1504.7 2.4041 3.0354 72 20 1.1393 1 0.8928 0.942 1 1 121 26 419 2404.7 1.9708 0.0113 72 20 1.1275 1 0.7535 0.7472' 121 27 420 2404.7 1.9936 0.0178 72 20 1.1195 1 0.8018 0.7986 121 28 421 2404.7 1.922 0.0029 74 20 1.1394 1 0.7517 0.8118 1 121 29 422 2009.7 1.9733 0.0427 72 20 1.1356 1 0.7437 0.7533..

   .1           121 30 423 2114.7.1.9342 0.0331 72 20 1.1327 1 0.7536 0.817 121 31 424 2004.7 1.9226 0.0003 72 20 1.1261.1 0.7956 0.8917           '

121 32 425 1804.7 1.9972 0.0482 72 20 1.1371 1 0.786 0.8415 121 33 426 1814.7 1.8865 0.044 74 20 1.1557 1 0.7634 0.8481 121 34 427 1504.7 1.3819 0.1147 74 20 1.1667 1 0.7103 0.6466-  ; 12135 4281514.71.3957 0.1071 T4 201.165610.7185 0.7075 121 36 429 1514.7 1.3567 0.1177 76 20 1.1945 1 0.6802 0.7338 121 39 432 2014.7 0.8506 0.0159 76 20 1.1231 1 0.6552 0.7349 122 1 434 1524.7 3.4033 0.089 72 26 1.144 1 0.7775 0.7361' 122 2 435 1514.7 3.4485 0.0454 72 26 1.1455 1 0.8297 0.8451

  • 122 3 436 1814.7 3.4719 0.0749 74 26 1.174 1 0.7102 0.6864 122 4 437 1814.7 3.5375 0.0371 72 26 1.1449 1 0.8129 0.8488 3 122 5 438 2114.7 3.5072 0.062 74 26 1.1727 1 0.7212 0.7028 122 6 439 2104.7 3.5733 0.0257 72 26 1.1436 1 0.818 0.8488 122 7 440 2114.7 3.4986-0.0065 72 26 1.1385 1 0.8771 0.9541 122 8 441 2129.7 3.0183 0.077 74 26 1.1727 1 0.6716 0.6536 '

122 9 442 2114.7 3.064 0.0483 74 26 1.1693 1 0.725 0.7531 A-3 l

ll 5 12210 443 2114.7 3.0103 0.0087 72 261.13d210.8177 0.8659 122 11'444 2394.7 3.5248 0.0732 74 26 1.1724 1 0.8980 0.677 122 12 445 2424,7 3.5732 0.0163 72 26 1.1413 1 0.8272 0.8561 122 13 446 2374.7 3.5549 0.0313 72 26 1.1334 1 0.9171 0.959 122 14 447 2414.7 2.8980 0.0796 76 26 1.2024 1 0.628 0.5787 122 15 448 2409.7 2.9143 0.0228 72 26 1.1389 1 0.7676 0.7288, g g 122 16 449 2394.7 2.8822 0.0133 72 26 1.1321 1 0.8286 0.8108 122 17 450 2374.7 2.3980 0.0078 72 26 1.1318 1 0.752 0.7006 _ 122 1 451 2414.7 2.4184 0.0316 72 26 1.1218 1 0.8186 0.7814

     -122 2 452 2114.7 2.3907 0.0777 74 26 1.1701 1 0.8309 0.6173-    :                 i 122 3 453 2114.7 2.4417 0.0633 74 26 1.1868 1 0.8824 0.0022 122 4 AS4 2114.7 2.383 0.025 72 261.136210.74710.7973 -

122 5 455 1514.7 2.3774 0.0002 74 26 1.189 1 0.7306 0.7215' 122 6 456 1514.7 2.3301 0.0424 72 26 1.1394 1 0.8121 0.8635 122 7 457 1514.7 2.2969 0.0334 72 26 1.1377 1 0.8283 0.9137-122 8 458 2124.7 1.921 0.0144 72 26 1.1275 1 0.7281 0.7128 - 122 9 459 2124.7 1.8738 0.0076 72 26 1.1251 1 0.7348 0.7618 . i 122 10 460 2094.7 1.9283 0.0186 72 26 1.1183 1 0.787 0.8341 - 122 11 461 1814.7 1.8781 0.0311 72 26 1.1318.1 0.7494 0.7667 - j 122 12 462 1814.7 1.8704 0.0141 72 26 1.1289 1 0.7778 0.8439-  ! 124 1 475 1564.7 3.387 0.0856 74 20 1.1729 1 0.7744 0.7043 i 124 2 476 1514.7 3.3313 0.0543 72 20 1.1461 1 0.8732 0.8487 Li 124 3 477 1789.7 3.5789 0.048 72 20 1.1448 1 0.8575 0.7861 124 4 478 1789.7 3.6171 0.0451 72 20 1.146 1 0.864 0.9018 - 124 6 480 2114.7 3.631 0.0489 74 20.1.1724 1 0.8138 0.9084 124 7 481 2114.7 3.0605 0.0872 74 20 1.174 1 0.7127 0.7161 g 124 8 482 2114.7 3.0784 0.0619 74 20 1.172 1 0.7581 0.8246 g 124 9 483 2114.7 3.0329 0.0375 72 20 1.1427 1 0.8246 0.9339 s 124 10 484 2414.7 3.5746 0.0775 76 20 1.2061 1 0.7253 0.7199 e l' 124 11 485 2414.7 3.5613 0.0286 72 20 1.1426 1 0.8679 0.93*4- - 124 12 486 2414.7 2.9537 0.0884 76 20 1.206 1 0.0003 0.6492 - 124 13 487 2414.7 2.904 0.0303 72 20 1.1401 1 0.8104 0.7989 - 12414 488 2414.7 2.7924 0.0007 72 201.13C1 10.8359 0.8487 g'

      .12415 489 2414.7 2.3934 0.0133 72 201.1331 10l/93 0.7895               g 124 16 490 2414.7 2.3547 0.0108 72 20 1.1268 1 0.8280 0.8438 124 17 491 2414.7 2.3556 0.0374 72 20 1.1194 1 0.8739 0.887       -

124 18 492 2114.7 2.3481 0.104 76 20 1.2044 1 0.6271 0.6413 - 12419 493 2164.7 2.3708 0.uo63 74 201.168210.7054 0.7102 1 124 20 494 2114.7 2.3928 0.0295 72 20 1.1373 1 0.7966 0.8784-124 21 495 2114.7 2.3205 0.0019 72 20 1.1301 1 0.8377 0.9191 124 22 496 1514.7 2.3346 0.0862 74 20 1.1724 1 0.7686 0.7822  ; 124 23 497 1514.7 2.3162 0.0779 74 20 1.1704 1 0.7819 0.8482 124 24 498 151o.7 2.3008 0.046 72 20 1.1399 1 0.867 0.9413 ' 124 25 499 2414.7 1.8988 0.0155 72 20 1.1275 1 0.738 0.7229 124 26 500 2414.7 1.8729 4.0144 72 20 1,1184 1 0.7809 0.7969 124 27 501 2414.7 1.9219 0.0587 72 20 1.1055 1 0.8573 0.8598 124 28 502 2114.7 1.9101 0.0491 72 20 1.1363 1 0.7264 0.7328 g. 124 29 503 2114.7 1.8933 0.0355 72 20 1.1327 1 0.7464 0.7989- 'g 124 30 504 2114.7 1.8303 0.0017 72 20 1.1215 1 0.8 0.887

      '124 31 505 1814.7 1.8935 0.0334 72 20 1.1326 1 0.8028 0.8142 124 32 506 1814.7 1.8084 0.0487 74 20 1.1558 1 0.7513 0.7975                         l 124 33 507 1514.7 1.3933 0.1142 74 20 1.1676 1 0.7076 0.6772 121 34 508 1514.7 1.3427 0.0973 74 20 1.1613 1 0.7328 0.6937 124 35 509 1514.7 1.3422 0.0865 74 20 1.1582 1 0.7492 0.7267' u

g

1'25 1 510 1514.7 3.36 0.0474 78 20 1.082 1 0.9161 0.801,4 125 2 511 1514.7 3.3301 0.0488 80 20 1.1327 1 0.8882 0.8677-

                      -126 3 512 1814.7 3.3292 0.0624 80 20 1.126 1 0 8021 0.8012 125 4 513 1814.7 3.400 0.0186 78 20 1.0915 1 0.9256 0.9648           '

126 6 514 2114.7 3.441 0.0394 78 20 1.0834 1 0.8885 0.8375 i

                      -125 6 515 2114.7 3.3758 0.0283 78 20 1.0808 1 0.9849 0.9774          1 125 7 516 2114.7 3.3029 0.0025 78 20 1.0945 1 0.9191 1.0339 125 8 517 2144.7 2.8888 0.0844 80 20 1.1272.1 0.7506 0.8844-125 9 518 2114.7 2.9188 0.0183 78 20 1.0945 1 0.8888 0.9004 1                        125 10 5.19 2114.7 2.8804 0.0112 78 20 1.0984 1 0.9088 0.9617 0
                        -12511520 2414.7 3.473 0.026178 201.085210.085 0.8328 =

125 12 521 2414.7 3.4248 0.0188 78 20 1.0985 1 0.9464 0.9585 1 125 13 522 2414.7 3.404 0.0644 78 20 1.0003 1 1.0067 1.0449 125 14 523 2414.7 2.9986 0.032 78 20 1.0874 1 0.8323 0.7322 - 125 15 524 2414.7 2.9488 0.0185 78 20 1.0979 1 0.9021 0.8925 I .125 16 525 2414.7 2.8993 0.0383 78 20 1.0004 1 0.9278 0.9522 125 17 526 2389.7 2.4115 0.0326 78 20 1.0993 1 0.8678 0.8092 125 18 527 2374.7 2.4486 0.0843 76 20 1.086 1 0.9896 0.9091 125 19 528 2394.7 2.463 0.1313 76 20 1.0645 1 1.0645 0.9971-I 125 20 329 2134.7 2.4153 0.0392 78 20 1.0929 1 0.7800 0.7857 l 125 21 530 2099.7 2.3811 0.0133 78 20 1.0973 1 0.8200 0.8517 125 22 531 2099.7 2.3617 0.018 78 20 1.1 1 0.8743 0.9067 j i g 125 23 532 1534.7 2.3486 0.0433 78 20 1.0939 1 0.8808 0.8721 g 125 24 533 1524.7 2.3145 0.0212 78 20 1.0978 1 0.9187 0.9349 4 125 25 534 1524.7 2.2652 0.0099 78 20 1.0995 1 0.9352 0.9982 125 26 535 2399.71.6979 0.0409 76 201.085410.84dB 0.7894 125 27 536 2394.7 1.942 0.0739 76 20 1.0855 1 0.9003 0.8924 1 125 28 537 2414.7 1.9858 0.1172 76 20 1.0833 1 0.9641 0.9706? 125 29 538 2114.71.8884 0.0099 78 201.099410.7819 0.7982 t 125 30 539 2000.7 1.8918 0.0252 78 20 1.0989 1 0.8389 0.8799 125 31 540 2094.7 1.8705 0.0536 76 20 1.086 1 0.9105 0.9856 125 32 541 1824.7 1.8288 0.0123 78 20 1.1 1 0.8286 0.87991 125 33 542 1814.7 1.8381 0.0058.78 20 1.0007 1 0.8580 0.9554 , 127 1 550 1514.7 3.4386 0.0574 80 22 1.1263 1 0.8292 0.7622-127 2 551 1514.7 3.3449 0.0204 78 22 1.0932 1 0.9403 0.941-127 3 552 1814.7 3.4135 0.0298 78 22 1.0876 1 0.8828 0.8421 l 127 4 553 1814.7 3.3892 0.0126 78 22 1.0927 1 0.9112 0.9394 l 127 5 554 2114.7 3.4442 0.0342 78 22 1.0847 1 0.8544 0.8186'  : 127 6 555 2114.7 3.3642 0.0189 78 22 1.0905 1 0.8773 0.9075 127 7 556 2114.7 3.3958 0.0355 78 22 1.0005 1 0.989 1.0207

   ]3                    127 8 557 2114.7 2.9887 0.0335 78 22 1.0005 1 0.8231 0.7719 127 9 558 2114.7 2.9215 0.0109 78 22 1.0951 1 0.8541 0.8357 127 10 559 2114.7 2.8738 0.0183 78 22 1.0988 1 0.8978 0.9186            #

l 127 11 560 2414.7 3.4585 0.0316 78 22 1.0837 1 0.8508 0.7958 l 127 12 561 2414.7 3.4263 0.0237 78 22 1.097 1 0.9342 0.8788 i 127 13 562 2414.7 3.4191 0.0781 76 22 1.0643 1 1.0002 1.0205 127 14 563 2414.7 2.9706 0.0078 78 22 1.0942 1 0.8428 0.7193

                                                                                                 ?

P 127 15 564 2414.7 2.9037-0.0085 78 22 1.0973 1 0.8807 0.7926 i 127 16 565 2414.7 2.9587 0.0798 76 22 1.0653 1 1.0206 0.9176 - 12717 566 23C4.7 2.4023 0.0408 76 221.06410.898 0.808 17.7 18 567 2364.7 2.4054 0.0766 76 22 1.0658 1 0.9527 0.8822 127 19 568 2414.7 2.4376 0.1302 76 22 1.0644 1 1.0355 0.9598 127 20 569 2114.7 2.41010 'L'm4 78 221.094810.7898 0.7097 127 21570 2044.7 2.370 0.006 78 221.098710.8269 0.78~,;- A-5 I

                                                                                                                          . l:j 1

127 22 571 2114.7 2.3784 0.0383 76 22 1.0644 1 0.9228 0.9159-l .l

                                                                                                                                         ~

127 23 572 1534.7 2.3089 0.0447 78 22 1.094 1 0.8533 0.8612 127 24 5731514.7 2.256 0.0462 78 221.09410.8642 0.917 L 5 ) p 127 25 574 1514.7 2.2917 0.0113 78 22 1.0994 1 0.9134 0.9888 - i- 127 26 575 1814.7 1.8122 0,0059 78 22 1.0000 1 0.8184 0.8628 g! 127 27 573 1814.7 1.8152 0.0151 78 22 1.0006 1 0.86 0.9202 g< 127 28 577 2114.7 1.8856 0.008 78 22 1.0007 1 0.7802 0.7787 I 127 29 578 2114.7 1.8759 0.0637 76 22 1.066 1 0.8873 0.8771

                                                                                                                             '5l'i 127 30 579 1814.7 1.8178 0.0005 78 22 1.0000 1 0.8179 0.8676                                                       i e                         127 31 580 2114.7 1 4261 0.0833 76 22 1.0649 1 0.9634 0.9382 6                         127 32 581 2414.7 1.9254 0.0856 76 22 1.0867 1 0.8837 0.7793
                                                                                                                                   -l 127 33 582 2414.7 1.9346 0.1041 76 22 1.0642 1 0.9202 0.8316

!i 127 34 583 2414.7 1.948 0.1459 76 22 1.0006 1 0.9845 0.9126 ' 4 127 35 584 1514.7 1.5911 0.0246 78 22 1.1 1 0.8546 0.7883 l 127 36 586 1514.7 1.2829 0.0984 80 22 1.138 1 0.7041 0.7862. - 127 37 586 1514.7 1.3001 0.0828 80 22 1.1388 1 0.7245 0.84627 l; L 131 1 617 1504.7 3.5033 0.1529 147 26 1;1858 1 0.4051 0.4966: 3* 131 2 618 2094.7 3.462 0.1522 150 26 1.2016 1 0.4323 0.4482 -!

- 131 3 619 2394.7 3.4595 0.1277 150 26 1.1989 1 0.4682 0.5073( g; 131 4 620 2394.7 3.0159 0.1423 150 26 1.1973 1 0.4338 0.4716-131 5 621 2114.7 3.0175 0.1371 150 26 1.195 1 0.4445 0.4002 g

131 6 622 2124.7 2.9496 0.1178 150 26 1.1885 1 0.4601 0.4939 L 131 7 623 2124.7 2.4221 0.1381 150 26 1.1988 1 0.4282 0.4315 l;

131 8 624 2394.7 2.4337 0.1101 150 26 1.1774 1 0.4523 0.4783' W;
l. 131 9 625 2404.7 3.4013 0.1013 150 26 1.1875 1 0.5031 0.6054 131 10 626 2374.7 2.93 0.000 150 26 1.1805 1 0.4884 0.634 g

, 131 11 627 2404.7 2.9131 0.0657 150 26 1.1854 1 0.5332 0.8087 131 12 628 2414.7 2.4489 0.0589 150 26 1.1525 1 0.5215 0.5329 g, 131 13 629 2414.7 2.456 0.0353 150 26 1.1423 1 0.551 0.5998' 131 14 630 2414.7 1.9648 0.1239 150 26 1.1738 1 0.4119 0.4014 . 131 15 6312404.71.9376 0.0006150 261.152310.4628 0.4538 L '

                                                                                                                           - Wl l7 l                        131 15 632 2099.7 1.9718 0.1447 150 26 1.1835 1 0.4093 0.3646 L                        131 17 633 2004.7 1.9300 0.1198 150 26 1.1715 1 0.4389 0.4259-                                          g) 131 18 634 2404.7 1.9473 0.0567 150 26 1.1407 1 0.4925 0.514-131 19 635 2114.7 1.9681 0.0003 150 26 1.153 1 0.4881 0.5206 '
  • E 131 20 636 2124.7 2.438 0.0514 150 26 1.1497 1 0.5463 0.5797 -

131 21 637 2094.7 2.4739 0.0862 150 26 1.1672 1 0.5000 0.5162 l 131 22 638 2114.7 3.4336 0.1013 150 26 1.1882 1 0.5063 0.582 131 23 639 2084.7 2.9461 0.0775 150 26 1.1715 1 0.5289 0.5764-

                                                                                                                               -E      -

131 24 640 1814.7 3.5472 0.1057 147 26 1.1605 1 0.5254 0.5494 g

                       '131 25 641 1794.7 3.5143 0.088 147 26 1.1559 1 0.555 0.6105 131 26 642 1799.7 3.5143 0.0587 144 26 1.1235 1 0.6211 0.6592 g

l L 131 27 643 1S14.7 3.5761 0.0982 147 26 1.1593 1 0.5578 0.6093 [ 131 28 644 1489.7 2.5019 0.1116 147 26 1.1525 1 0.5405 0.5354 131 29 645 1489.7 2.4746 0.0687 144 26 1.1164 1 0.6249 0.6162' l~! Wl l ! 131 30 646 1514.7 2.0006 0.0999 147 26 1.1406 1 0.5545 0.5248 l 131 31 647 1804.7 1.9953 0.1503 147 26 1.1568 1 0.4437 0.3334 3'

j. 131 32 648 1499.7 2.5151 0.1638 150 26 1.1988 1 0.4438 0.4749 g' i 131 33 649 1504.7 1.9062 0.2141 153 26 1.2539 1 0.3687 0.3754 I

131 34 650 1501.7 2.0391 0.1379 147 26 1.1547 1 0.5018 0.4802' 131 35 651 1804.7 1.9818 0.0999 144 26 1.1187 1 0.5228 0.4329 131 36 652 1784.7 2.0093 0.0757 144 26.1.1119 1 0.5594 0.5018 131 37 653 2104.7 3.4781 0.1604 150 26 1.2028 1 0.4212 0.4593 " 132 1 654 1514.7 3.4351 0.1996 153 20 1.2571 1 0.402 0.4967 I-6 I-I

      .~    - - .                  - -    - -      -             _

I I 132 2 855 2004.7 3.4577 0.1872 153 20 1.2567 1 0.4087 0.4465 3 132 3 666 2404.7 2.9006 0,1759 153 20 1.2533 1 0.4125 0.4475 g 132 4 657 2204.7 3.013 0.1521 147 20 1.1652 1 0.4824 0.4579

132 5 658 2104.7 2.9ti18 0.1327147 201.162910.5093 0.5412  ;

132 6 659 1804.7 3.4700 0.1348 147 20 1.1654 1 0.5288 0.5518: =i 132 7 000 2374.7 3.4291 0.1893 153 20 1.2557 1 0.4344 0.4977 I 132 8 881 2399.7 3.3529 0.1809 153 20 1.2532 1 0.4432 0.5374' 132 9 882 2399.7 3.3800 0.1322 153 20 1.2422 1 0.4826 0.5806 '3 132 10 883 2114.7 3.4498 0.1405 153 20 1.2489 1 0.4717 0.5918 g 132 11 884 2399.7 2.9124 0.1191 153 20 1.2289 1 0.4829 0.8012 1 132 12 865 2114.7 2.9489 0.1192 153 20 1.2296 1 0.4909 0.0064 , 1 132 14 867 1799.7 3.4679 0.1137 147 20 1.1624 1 0.5002 0.6727 1 I 132 15 888 2000.7 2.4404 0.1177 153 20 1.2186 1 0.48 0.0023 132 16 000 2384.7 2.4862 0.0896 153 20 1.2024 1 0.5034 0.69811 132 17 670 2389.7 2.9184 0.1507 153 20 1.2443 1 0.4421 0.5312 -; 1 I 132 18 471 2384.7 2.4371 0.1561 153 20 1.2389 1 0.4182 0.4778 I 132 19 672 2399.7 2.4388 0.1328 153 20 1.2289 1 0.4461 0.5333 132 23 673 2399.7 1.9581 0.1137 147 20 1.1445 1 0.476 0.4203 j 132 P1674 2399.71.94910.1511 153 201.225410.4028 0.482 132 22 675 2404.7 1.9134 0.1043 153 20 1.1959 1 0.4552 0.5197-8 132 23 676 2094.7 1.9354 0.1464.153 20 1.2224 1 0.4291 0.5019 t 132 24 677 2104.7 2.4192 0.1712 153 20 1.2453 1 0.4104 0.4318 -I

                   -132 25 678 2104.7 2.4583 0.1417 153 20 1.2323 1 0.4485 0.5144 132 26 679 2104.7 1.9405 0.1515 153 20 1.2252 1 0.4224 0.4287' 132 27 680 2104.7 1.9268 0.1847 153 20 1.2418 1 0.3836 0.344

! 132 28 681 1799.7 1.9734 0.1635 150 20 1.1915 1 0.4555 0.4092

                  '132 29 682 1799.7 1.9545 0.2201 153 20 1.2547 1 0.37 0.3461 I                  132 30 683 1499.7 1.9003 0.2735 159 20 1.395 1 0.3061 0.365-I                     132 31 684 1494.7 2.5332 0.22 156 20 1.3192 1 0.3722 0.4644" is -                 132 32 685 1799.7 1.9879 0.1165 147 20 1.1463 1 0.5322 0.4966-
  • g- 132 33 686 1499.7 2.4843 0.1863 150 23 1.2006 1 0.487 0.5585-l 132 34 687 1499.7 1.9627 0.2085 153 20 1.2541 1 0.4191 0.4642  ;

132 35 6881499.7 2.0348 0.1481 150 20 1.187 1 0.5189 0.5418 8' 132 36 689 1499.7 2.4439 0.1182 147 20 1.1542 1 0.5778 0.6011 133 1 690 1499.7 3.4545 0.2006 153 13 1.2578 1 0.4723 0.5248 _ l 133 2 691 2099.7 2.9565 0.2074 150 13 1.2042 1 0.473 0.449' I l 133 3 692 2099.7 3.4394 0.2005 153 13 1.2584 1 0.4599 0.4808 133 4 693 2399.7 2.9546 0.1949 150 13 1.2000 1 0.4842 0.497 133 5 694 2104.7 2.954 0.1614 150 13 1.2026 1 0.5308 0.5484 133 6 695 2404.7 1.9464 0.1832 150 13 1.1982 1 0.4496 0.4322 I l 133 7 696 2404.7 1.9648 0.0942 150 13 1.1597 1 0.5553 0.5171 133 8 697 2104.7 1.9223 0.1323 150 13 1.1773 1 0.5329 0.5517 133 9 698 2114.7 2.4262 0.1812 150 13 1.2036 1 0.4894 0.5015 3 l I 133 10 699 2104.7 1.9375 0.1654 150 13 1.1919 1 0.493 0.4881-133 11 700 2109.7 1.9309 0.2068 150 13 1.2045 1 0.4448 0.4132 - l_ 133 12 701 2399.7 2.4539 0.1362 150 13 1.1887 1 0.5328 0.526 L 133 14 703 1804.7 1.968 0.2196 150 13 1.2047 1 0.4624 0.3764 133 15 704 1499.7 1.9525 0.2553 156 13 1.3232 1 0.418 0.39-q' 133 16 705 1499.7 2.5392 0.2157 153 13 1.2605 1I).4763 0.4923 133 17 706 1794.7 1.9433 0.1665 150 13 1.1925 1 0.5274 0.5115 133 18 707 1504.7 1.9998 0.2095 153 13 1.2552 1 0.494 0.4755 133 19 708 1499.7 1.9771 0.1781 150 13 1.1978 1 0.5602 0.5696 133 20 709 1829.7 3.4634 0.1176 147 13 1.1629 1 0.639 0.6657 L 133 21 710 1814.7 3.4007 0.1694 150 13 1.2051 1 0.5381 0.5551  : e' l A'. 7

6 e , ,.,,.;. }l ei. . e-133 22 711 2399.7 3.3955 0.1748 150 13 1.2006 1 0.5264 0.545 ' E; 133 23 712 2399.7 3.3703 0.129 150 13 1.1960 1 0.5886 0.5942 133 24 713 2399.7 3.3795 0.108 150 13 1.1890 1 0.6160 0.6154 3 133 25 714 2114.7 3.434 0.14 150 13 1.201 1 0.5738 0.9031 133 26 715 2414.7 2.9002 0.0002 150 13 1.1759 1 0.6193 0.612: -q 133 27 716 2099.7 2.9177 0.1233 150 13 1.1906 1 0.5829 0.6232 i 133 28 717 1524.7 3.4086 0.1855 153 13 1.2599 1 0.504 0.5807 i l 133 29 718 2399.7 2.471 0.0581 150 13 1.1536 1 0.6378 0.6277 gi

                                    - 133 30 719 2404.7 2.9239 0.1204150131.192410.5086 0.5G'i l-                                     ,133 31 720 2399.7 2.4361 0.1088 150 13 1.1759.1 0.5897 0.5551                           g'l l-133 32 721 2000.7 2.4681 0.1462 150 13 1.1933 1 0.5363 0.5752                                   l 133 33 722 2000.7 2.4148 0.1111 150 13 1.1779 1 0.5819 0.6286                              ')

133 34 723 2404.7 1.9007 0.082 150 13 1.1437 1 0.5955 0.564 l l 133 35 724 1494.7 2.4772 0.1883 153 13 1.2543 1 0.516 0.5583-

                                    ' 133 36 725 1504.7 2.433 0.162 150 13 1.1989 1 0.5774 0.6187 :                           g 133 37 726 1499.7 1.5180 0.204 150 13 1.1986 1 0.5338 0.4635                            g 133 38 727 1504.7 1.4957 0.2828 156 13 1.3289 1 0.4008 0.3675 134 1 728 1509.7 3.4727 0.1463 150 32 1.2004 1 0.4228 0.4455 -                                 q 134 2 729 1799.7 3.4587 0.1034 147 32 1.1589 1 0.4929 0.4974                                   l 134 3 730 2004.7 3.4467 0.1528 150 32 1.2012 1 0.3979 0.4288                                .

134 4 731 2124.7 3.5089 0.149 150 32 1.2012 1 0.4042 0.4388-134 5 732 2404.7 3.4889 0.1036 147 32 1.1592 1 0.4851 0,5221 g1 134 6 733 2384.7 3.0448 0.1385 150 32 1.1957 1 0.4106 0.4578 3:' 134 7 734 2114.7 2.9524 0.1348 147 32 1.1616 1 0.4281 0.4068 134 8 735 2099.7 2.9764 0.0933 147 32 1.1519 1 0.4873 0.5221 134 9 736 2404.7 2.9638 0.0839 150 32.1.1745 1 0.4779 0.5426-l, 134 10 737 2399.7 2.4428 0.0944 150 32 1.1703 1 0.4423 0.4667

  • 134 11 738 2000.7 2.4397 0.1116 147 32 1.1512 1 0.4467 0.4445 134 12 739 2404.7 3.4527 0.0642 147.32 1.1474 1 0.5407 0.6649- , g'
                                    . 134 13 740 1489.7 2.4113 0.0494 144 32 1.1097 1 0.6176 0.0023                            g
                                     '134 14 741 2384.7 2.4849 0.0539 144 32 1.0787 1 0.6713 0.6528 134 15 742 2099.7 2.4303 0.0003 144 32 1.0972 1 0.6014 0.6233 134 16 743 1499.7 3.508 0.0527 144 32 1.1221 1 0.6209 0.6984                                  i 134 17 744 1499.7 3.5327 0.0915 147 32 1.1569 1 0.5334 0.5832 134 18 745 1799.7 3.4949 0.0425 144 32 1.1191 1 0.6112 0.638-134 19 746 2404.7 2.931 0.0231 144 32 1.0937 1 0.6575 0.6676 134 20 747 2404.7 2.9645 0.0579 141 32 1.0717 1 0.725 0.6512 g

3, 134 21 748 2404.7 2.4216 0.0029 144 32 1.0951 1 0.5886 0.5789 134 22 749 2104.7 3.2802 0.0826 147 32 1.1516 1 0.5115 0.5468  ; L 134 23 750 2084.7 1.9659 0.1277 147 32 1.1495 1 0.4132 0.3739 5 134 24 751 2384.7 1.9729 0.0487 144 32 1.1026 1 0.4983 0.4028

l. 134 25 752 2409.7 1.9414 0.0131 144 32 1.0006 1 0.5379 0.4939 l" 134 26 753 2104.7 1.938 0.0652 144 32 1.1073 1 0.4908 0.4656- g1 134 27 754 2104.7 2.4595 0.0435 144 32 1.1084 1 0.5535 0.5506 3 134 28 755 2000.7 1.9863 0.0235 144 32 1.0944 1 0.557 0.3272
                                    -134 29 756 2424.7 1.9481 0.0439 144 32 1.0733 1 0.6084 0.5457
                                    - 134 30 757 1484.7 2.4508 0.1352 147 32 1.1586 1 0.4686 0.4691 134 31 758 1504.7 2.4633 0.0908 147 32 1.1479 1 0.5202 0.5315-134 32 759 1504.7 1.9872 0.1701 150 32 1.1937 1 0.4085 0.3796 g

134 33 760 1799.7 1.9536 0.1012 144 32 1.1185 1 0.4873 0.4126 134 34 761 1799.7 1.9687 0.0608 144 32 1.1065 1 0.5424 0.4841 3i 134 35 762 1499.7 1.9516 0.1198 147 32 1.1469 1 0.4927 0.4433 1 134 36 763 1499.7 1.9191 0.0763 144 32 1.1106 1 0.569 0.5186 134 37 764 1799.7 1 9333 0.1538 147 32 1.1568 1 0.4068 0.3304 a g

                ;v                                                                        sx   .
                                                                                                 }
            .         .                                                                            1 g;                   134 38 765 2104.7 3.4100 0.0887 144 32 1.1249 1 0.5518 0.59 -

138 1 803 1494.7 1.9534 0.0374 141 26 1.0838 1.430464 0.6413 0.56 138 2 804 1499.7 2.42 0.0205 141 26 1.0854 1.430454 0.6774 0.6263 { 138 3 805 1499.7 2.1512 0.0833 144 26 1.1163 1.430454 0.5597 0.4947 138 4 806 1499.7 2.4407 0.0891 144 26 1.1161 1.430464 0.5839 0.5445 138 6 807 1794.7 1.9678 0.0534 144 26 1.1041 1.430464 0.553 0.4996 1; 138 6 808 2000.7 2.001 0.0227 144 26 1.0047 1.430464 0.5686 0.5532 h

                   ,138 7 800 2004.7 2.4321 0 144 26 1.0943 1.430464 0.615 0.6242-138 8 810 2394.71.9485 0.0386144 261.07491.430 WA G.siO410.5632 1                  138 9 811 2494.7 2.4121 0.0331 144 26 1.0838 1.430464 0.6346 0.6302 138 10 812 2104.7 1.9283 0.0083 144 26 1.0882 1.430464 0.5464 0.4996 138 11 813 2394.7 2.4253 0.0086 144 26 1.0922 1.430464 0.6999 0.8031-          ^

l 138 12 814 2114.7 1.9484 0.069 144 26 1.1066 1.430464 0.5000 0.4797 - 138 13 815 2119.7 2.4731 0.0279 144 26 1.1037 1.430464 0.5748 0.5545 138 14 816 2114.7 2.9139 0.007 141 26 1.067 1.430464 0,6411 0.6471 3 138 15 817 1800.7 1.963 0.0867 141 26 1.0008 1.430464 0.5456 0.4457 l 138 16 818 1804.7 3.442 0.0187 141 26 1.094 1.430464 0.886 0.6562 s 138 17 819 1504.7 1.9306 0.1423 147 26 1.1537 1.430464 0.4806 0.3866. j 138 18 820 1499.7 2.5073 0.1015 144 26 1.1251 1.430454 0.3325 0.471 i 138 19 821 1514.7 3.4638 0.054 141 26 1.1012 1.430454 0.632 0.612' > 138 204122 2414.7 2.8646 0.0072 144 26 1.0978 1.430454 0.629 0.6666: 138 21 823 1509.7 3.449 0.1286 147 26 1.1631 1.430454 0.4881 0.4877

                                                                                                 -]

138 22 824 1804.7 3.4984 0.0789 144 26 1.1272 1.430454 0.5519 0.5396

                   ~ 138 23 8251804.71.9965 0.1115144 261.12171.430464 0.4736 0.3676 -

138 24 826 2114.7 2.0026 0.0919 144 26 1.1165 1.430454 0.4676 0.4099 ,

                   .138 25 827 2104.7 2.4435 0.0763 144 26 1.1178 1.430454 0.5088 0.4722 l

1 138 26 828 2104.7 2.9296 0.0613 144 26 1.1189 1.430464 0.5464 0.5308 - 138 27 829 2004.7 3.431 0.0553 144 26 1.1218 1.430454 0.5732 0.0006 138 28 830 2404.7 1.9311 0.0933 150 26 1.1584 1.430454 0.4185 0.3942 138 29 831 2394.7 2.4069 0.0864 150 26 1.1557 1.430464 0.478 0.4766 , 138 50 832 24c4.7 2.93510.0471 147 261.1351.430454 0.5419 0.5769 ' 138 31 833 2414,7 3.3279 0.063 150 26 1.1704 1.430464 0.5219 0.5783 i I 138 32 834 2419.7 2.9801 0.1114 150 26 1.1856 1.430464 0.4403 0.4865-I 138 33 835 2414.7 3.384 0.1131 150 26 1.1914 1.430454 0.4527 0.5117 138 34 836 2004.7 3.0232 0.1191 147 26 1.1587 1.430454 0.4517 0.4151 138 35 837 2000.7 3.4391 0.1124 147 26 1.1805 1.430464 0.4706 0.49 138 36 838 2104.7 2.489 0.0802 144 26 1.1193 1.430454 0,5023 0.4909 -i i 138 37 839 2099.7 2.5117 0.0317 144 26 1.1054 1.430464 0.5728 0.5694 139 1 840 1494.7 1.9033 0.0864 144 32 1.1134 1.430454 0.5197 0.4534- . 139 2 841 1504.7 2.3511 0.0206 141 32 1.0847 1.430454 0.6376 0.6283 ' 139 3 842 1499.7 1.8211 0.056 144 32 1.1023 1.430454 0.5619 0.4962 i 139 4 843 1494.7 2.3806 0.0792 144 32 1.1182 1.430454 0.5322 0.5342-139 5 844 1499.7 3.4209 0.0548 144 32 1.1219 1.430454 0.5786 0.6683-139 6 845 1804.7 1.8909 0.0346 141 32 1.0822 1.430454 0.5534 0.4936 l 139 7 846 2004.7 1.8939 0.0002 141 32 1.0734 1.430454 0.5619 0.535 139 8 847 2004.7 2.3396 0.0004 144 32 1.0931.1.430454 0.5772 0.6087 139 9 848 2394.7 1.8944 0.0423 144 32 1.0729 1.430454 0.5746 0.559 139 10 849 2409.7 2.4005 0.0431 144 32 1.0007 1.430454 0.6159 0.6534 'I 139 11 850 1508.7 1.8843 0.1475 147 32 1.1547 1.430454 0.4199 0.3949 139 12 851 1494.7 2.3485 0.1319 147 32 1.1564 1.430454 0.4384 0.4459 139 13 852 1504.7 3.4532 0.0741 144 32 1.1268 1.430454 0.5428 0.61 139 14 853 1804.7 3.4334 0.0343 144 32 1.1164 1.430454 0.5875 0.6596 133 15 854 1804.7 1.8724 0.0868 144 32 1.113 1.430454 0.4716 0.4037 13916 855 2074.71.8847 0.0446144 321.09981.430454 OA959 0.4596 A'- 9

I e 139 17 856 2094.7 2.3569 0.041 144 32 1.1062 1.430454 0,521 0.5416 139 18 857 2104.7 2.8745 0.0232 144 32 1.1073 1.430454 0.5682 0.6311' 139 19 858 2404.7 2.364 0.0016 144 32 1.0938 1.430464 0.5632 0.5839.  ! 139 20 859 2394.7 1.8709 0.0064 144 32 1.0872 1.430454 0.5127 0.4957 '[

     -139 21 000 1799.7 1.8493 0.1348 144 32 1.1255 1.430464 0.4102 0.3367        $

139 22 861 1814.7 3.354 0.0835 144 32 1.1276 1.430454 0.503 0.6255 5 139 23 832 1504.7 3.3536 0.1434 150 32 1.1986 1.430464 0.3947 0.4360 ' 139 24 883 2099.7 2.3702 0.0726 144 32 1.1150 1.430464 0.4778 0.4634 l! 139 25 884 2000.7 2.9226 0.0705 144 32 1.1214 1.430464 0.4997 0.5329 3 139 26 885 2104.7 3.3677 0.0005 147 32 1.1473 1.430464 0.5051 0.574 i 139 27 986 2000.7 i A674 0.0046144 321.1151 1.430464 0.4302 0.389

     -139 28 867 2399.7 1.804 0.0817 147 32 1.1308 1.430454 0.4138 0.3961 139 29 888 2404.7 2.3537 0.0885 147 32 1.1336 1.430464 0 4883 0.4732
                                                                                 -ll 3:

139 30 880 2404.7 2.88010.0529147 321.13851.430464 0.4996 0.5597 ~ 139 31 870 2404.7 2.9403 0.1205 150 32 1.1880 1.430464 0.3977 0.4504 139 32 871 2404.7 3.3929 0.0000 147 32 1.1549 1.430464 0.4888 0.5324 139 33 872 2104.7 3.399 0.1381 150 321.1981 1.430454 0.3958 0.4392 L 139 34 873 2084.7 2.8619 0.1308 147 32 1.1601 1.430454 0.4005 0.3913-139 35 874 2400.7 3.3775 0.0385 147 32 1.1374 1.430454 0.5425 0.6522 g1 139 36 875 2404.7 2.8551 0.0175 144 32 1.0944 1.430',54 0.6113 0.6833 I g! 139 37 876 1499.7 2.3507 0.0743 144 32 1.1163 1.430454 0.5391 0.5329 139 38 877 2094.7 2.3448 0.0445 144 32 1.1071 1.430454 0.5156 0.528 153 1 1391 1504.7 3.0792 0.2259 168 26 1 1 0.3981 0.4604 j 153 2 1392 1799.7 3.0749 0.1856 168 26 1 1 0.4494 0.4471 153 3 1393 1804.7 2.7932 0.1942 169 26 1 1 0.4361 0.394 1 153 4 1394 1800 7 3.0703 0.1732 168 26 1 1 0.4686 0.4217 153 5 1395 2099.7 3.0434 0.2049 168 26 1 1 0.414 0.4084

                                                                               ,  g 5'

153 6 1396 2000.7 2.5998 0.1548 168 26 1 1 0.4753 0.3752 153 7 1396 2114.7 2.5515 0.1656 168 20 1 1 0.4587 0.4748' 153 8 1398 2099.7 2.0881 0.2012 168 26 1:1 0.4016 0.3232 a! 153 9 1399 2099.7 2.0395 0.1941 168 26 1 1 0.4095 0.4073. g{._ 153 10 1400 2399.7 3.0344 0.2085 168 26 1 1 0.411 0.4737' 153 12 1402 2399.7 2.5496 0.2064 168 26 1 1 0.3979 0.4172 g3 '

      -153 13 1403 2394.7 2.5434 0.1559 168 26 1 1 0.4614 0.5047                    aj 153 14 1404 2399.7 2.0235 0.182 168 26 1.1 0.4051 0.4371                           '

153 15 1405 2104.7 3.038 0.1594 168 26 1 1 0.4801 0.5312  !

      -153 16 1406 1799.7 2.5451 0.1602 168 26 1'1 0.5 0.4936 15317140718M.7 3.0305 0.1404165 261 10.52010.5467 -

[g 153 18 1408 2404.7 2.068 0.0009 168 26 1 1 0.6053 0.5035 153 19 1409 2104.7 2.0206 0.147 168 26 1 1 0.4654 0.5024 153 20 1410 1499.7 2.0539 0.2159 168 26 1 1 0.4444 0.4604 5a 153 21 1411 1499.7 2.5633 0.1901 168 26 1 1 0.4707 0.5391  ! 153 22 1412 2404.7 1.58 0.176 168 26 1 1 0.3867 0.4261 g1 153 23 1413 2000.7 1.5677 0.1774 168 26 1.1 0.4132 0.4082 153 24 1414 2399.7 1.5563 0.0873 168 26 1 1 0.4751 0.4715 g l' 153 25 1415 2099.7 1.507 0.1586 168 26 1 1 0.4305 0.4648 153 26 1416 2399.7 1.5197 0.0133 168 26 1 1 0.5458 0.4991 153 271417 2090.71.4963 0.0945168 261 10.4973 0.4F58 l 5 4

 ,      153 28 1418 1814.7 1.5115 0.1428 168 26 1 1 0.4872 0.4914 153 29 1419 1499.7 1.536 0.1785 168 26 1-1 0.5046 0.4958'                   g 153 30 1420 1794.7 1.5046 0.1569 168 26 1 1 0.47 4 0.4438 153 31 1421 1499.7 1.4782 0.2406 168 26 1 1 0.4305 0.4239 g

153 32 1422 1799.7 1,49 0.1792 168 26 1 1 0.4482 0.3918 153 33 1423 1494.7 1.5053 0.2917 166 26 1 1 0.3684 0.3851 a g

          .gm m

a 8 I l 153 34 1424 2094.7 1.4982 0.236 168 26 1 1 0.3492 0.3154 . q I 153 35 1425 2399.7 1.5153 0.2215 168 26 1 1 0.3376 0.3519 153 36 1426 2414.7 1.4904 0.0884 168 26 1 1 0.4886 0.4471

         .153 371427 2404.7 3.0368 0.1094168 261 10.54610.588R '

I

        .153 38 1428 2424.7 2.5014 0.0016 188 26 1 1 04500 0.6131 153 39 1429 2404.7 3.0295 0.0444 188 26 1 1 0.6341 0.6895 153 40 1430 2399.7 2.0005 0.0611 188 26 1 1'O.5406 0.5821 153 41 1431 2399.7 2.4818 0.0006 168 26 1 1 0.6402 0.8585 I          153 42 1432 2400.7 2.962 0.0165.188 26 1 1 0.7115 0.7271 153 43 1433 2400.7 1.9801 0.006 188 26 1 1 0.5980 0.5921 157.1 1559 2000.7 1.9000 0.1423 96 26 1 1 0.5653 0.8634:

j 157 2 1580 2124.7 2.4842 0.0818 96 26 1 1 0.6842 0.6389 157 3 1561 2114.7 2.9902 0.0618 96 26 1 1 0.748 0.8967

I 157 4 1582 2114.7 3.4208 0.0575 96 26 1 1 0.7792 0.7645 q

157 5 1563 2424.7 1.9975 0.0467 96 26 1 1 0.6703 0.5812-I 157 6 1564 2399.7 2.4888 0.0417 96 26 1 1 0.7283 0.8634 157 7 1565 2414.7 2.9645 0.0101 96 26 1 1 0.8177 0.8223'

          .157 8 1566 2404.7 3.4498 0.0308 96 26 1 1 0.8213 0.8112 i

157 9 1567 2399.7 1.9895 0.2018 96 26.1 1 0.4566 0.4167 I [ 157 10 1568 2399.7 2.4497 0.1984 96 26 1 1 0.4843 0.4767 157 11.1589 2404.7 2.9493 0.1536 96 26 1 1 0.5795 0.5723 157121570 2414.7 3.4735 0.1358 96 261 10.6363 0.6612 < 3 i l I 157 13 1571 2099.7 2.0756 0.1932 96 26 1 1 0.4933 0.4111 157 14 1572 2000.7 2.5025 0.1715 96 26 1 1 0.5403 0.4734 157 15 1573 2104.7 3.004 0.152 96 26 1.1 0.5896 0.52 - 1 157 16 1574 2104.7 3.4702 0.1559 96 26 1 1 0.5943 0.5567 I 157 17 1575 2104.7 1.9899 0.0414 96 26 1 1 0.714 0.7356 - 157 18 1576 2114.7 2.4365 0.0274 96 26 1 1 0.7701 0.8123 157 19 1577 2099.7 2.8881 0.0471 96 26 1 1 0.7891 0.8178 157 20 1578 2394.7 1.9553 0.0059 96 26 1 1 0.7251 0.769 1 157 21 1579 2399.7 2.4035 0.0015 96 26 1 1 0.7796 0.8156 157 22 1580 2404.7 2.8864 0.0186 96 26 1 1 0.7958 0.8134 157 23 1581 2414.7 2.4675 0.0089 96 26 1 1 0.7706 0.7067 j 157 24 1582'2404.7 2.94 0.1624 96 26 1.1 0.5645 0.5545 y 157 25 1583 2414.7 1.0438 0.1015 96 26 1 1 0.4935 0.4S89

 .j 157 26 1584 2404.7 1.5514 0.0452 96 26 1 1 0.6245 0.6312 g       157 27 1585 2104.7 3.4501 0.1615 96 26 1 1 0.5832 0.54 l       157 28 1586 2104.7 3.4902 0.0553 96 26 1 1 0.787 0.7978 157 29 1587 2114.7 1.0544 0.2376 96 26 1 1 0.3976 0.3645 157 30 1588 2104.7 1.5743 0.1627 96 26 1 1 0.5154 0.5056 157 31 1589 2099.7 1.0503 0.1706 96 26 1 1 0.4736 0.4589 1       157 32 1590 2104.7 1.502 0.1248 96 26 1 1 0.5005 0.6167         .

157 33 1591 2404.7 0.9006 0.2239 96 26 1 1 0.3635 0.3411 ' 157 34 1592 2404.7 1.504 0.1673 96 26 1 1 0.4893 0.4756 157 35 1593 1504.7 2.0297 0.1156 96 26 1 1 0.705 0.6834 157 36 1594 1504.7 2.4579 0.09 96 26 1 1 0.755o 0.7734 157 37 1595 1814.7 1.9772 0.0807 96 26 1 1 0.684 0.6867 157 38 1596 1814.7 2.4834 0.0306 96 26 1 1 0.8078 0.7356 157 39 1597 1814.7 1.999 0.1316 96 26 1 1 0.6188 0.5812 157 40 1598 1799.7 2.518 0.1095 96 26 1 1 0.6725 0.6945

          .157 41 1590 1604.7 2.967 0.0889 96 26 1 1 0.7231 0.7834 157 42 1600 1499.7 2.0367 0.1892 96 26 1 1 0.5786 0.6067 157 43 1601 1514.7 2.5225 0.1436 96 26 1 1 0.6516 0.6534 157 44 1602 1499.7 3.0041 0.1083 96 26 1 1 0.7236 0.6978 A'- 11

Il l' ' 157 45 1803 1514.7 3.5125 0.089 96 26 1 1 0.7865 0.7745 I 157 4618041604.7 2.0585 0.2522 96 P61 10.4675 0.4823 l 157 47 1805 1504.7 2.523 0.1893 96 26 1 1 0.5855 0.5145 m' ' 157 48 1806 1504.7 3.0549 0.1859 96 26 1 1 0.0014 0.5812 , .157 50 1808 1799.7 3.4694 0.094 96 26 1 1 0.7256 0.7801., 3, ,- 157 51 18001519.7 3.4932 0.1995 96 261 10.5843 0.5623 l g-l 157 53 1611 1794.7 1.5563 0.2384 96 26 1 1 0.4572 0.4189 ' 157 54 1812 1804.7 2.0072 0.1556 96 26 1 1 0.5842 0.5234

157 55 1613 1804.7 2.546 0.1486 96 26 1 1 0.0032 0.5580 157 56 1814 1814.7 3.0007 0.1483 96 26 1'1 0.8088 0.0023 '

l[.

                                                                                                                                  ~W.{

157 57 1615 1804 3.5490 0.1013 96 26 1 1 0.7122 0.6756 4 157 58 1616 1804.7 1.0879 0.2796 96 26 1 1 0.4079 0.4245 g 157 59 1817 1790.7 1.5346 0.2014 96 26 1 1 0.6083 0.52 g' L 157 80 1618 1494.7 1.056 0.3357 96 26 1 1 0.4150 0.4623 L '157 61 1619 1504.7 1.4851 0.2339 96 26 1 1 0.5236 0.4934- ! 157 62 1620 1789.7 1.022 0.1243 96 26 1'1 0.5916 0.4945- lj l 157 63 1621 1494.7 1.9849 0.1245 96 26 1 1 0.8918 0.6856 ; e 157 64 1622 1804.7 1.4829 0.1286 96 26 1 1 0.8089 0.6723 - Wl ,. 157 65 1623 1799.7.1.9283 0.0649 96 26 1 1 0.723 0.7545 3 157 66 1624 1509.7 1.055 0.2536 96 26 1 1 0.5148 0.5756 gg' 157 67 1625 1604.7 1.5173 0.1636 96 26 1 1 0.6276 0.8923 157 68 1626 1504.7 1.9559 0.1126 96 26 1 1 0.7095 0.799 i 157 60 1627 1494.7 2.5106 0.2006 96 26 1 1 0.5456 0.4878 157 70 1628 1804.7 2.4489 0.0709 96 26 1 1 0.7371 0.8023 -

                                                                                                                                  .u!

l'l

157 71 16291609.71.0162 0.2967 96 261 10.4636 0.4845 J  ;

i 157 72 1830 1499.7 1.5487 0.1989 96 26 1 1 0.5752 0.6123 g> l 157 73 1631 1804.7 1.5148 0.1464 96 26 1 1 0,5836 0.0089 157 74 1632 1804.7 1.0122 0.2349 96 26 1 1 0.4803 0.4489s g 157 75 1633 2104.7 1.0453 0.1394 96 26 1 1 0.5086 0.5534 157 76 1834 2424.7 1.0519 0.0976 96 26.1 1 0.4972 0.5756- E-[

                                     " 'W 1635 2404.71.4584 0.0032 96 261 10.6713 0.7256 '                                         5 '

, t 57 781636 2114.71.4824 0.0623 96 261 10.6378 0.7056 ' .

157 79 1637 2109.7 2.0035 0.0856 96 26 1 1 0.6492 0.7112 g 158 1 1638 2000.7 2.0277 0.14 96 26 1 1.429643 0.5297 0.577 -

l 158 2 1639 2104.7 2.4921 0.094 96 26 1 1,429643 0.6229 0.6373 158 3 1640 2099.7 2.9917 0.0778 96 26 1 1.429643 0.675 0.7221 g] 158 4 1641 2104.7 3.4789 0.0008 96 26 1 1.429643 0.7114 0.8237 158 5 1642 2394.7 2.0349 0.0964 96 26 1 1.429643 0.5678 0.6228' l~ M ! 158 6 1643 2424.7 2.5239 0.0376 96 26 1 1.429643 0.0923 0.7177

158 7 1644 2394.7 3.0021 0.036 96 26 1 1.429643 0.7342 0,7757 0 4 3 158 8 1645 2434.7 3.4525 0.0213 96 26 1 1.429643 0.7913 0.856 gi l 158 9 1646 2414.7 2.0342 0.1716 96 26 1 1.429643 0.4611 0.4732-i 158 10 1647 2399.7 2.4992 0.1194 96 26 1 1.429643 0.566 0.4955 l 158 11 1648 2404.7 2.9732 0.1198 96 26 1 1.429643 0.5925 0.5793 l
l. 158 12 1649 2400.7 3.5062 0.0007 96 26 1 1.429643 0.8895 0.8641 5

! 158 13 1860 211.4.7 1.9792 0.2007 96 26 1 1.429643 0.437 0.3839 l 158 14 1851 2109.7 2.4792 0.1707 96 26 1 1.'429643 0.4969 0.4476 3 158 15'1652 2104.7 2.9503 0.1704 96 26 1 1.429643 0.5091 0.5212 158 16 1853 2099.7 3.4723 0.1404 96 26 1 1.429643 0.5786 0.5402

                                                                                                                                  'g i                                     158 17 1654 2114.7 2.9811 0.0422 96 26 1 1.429643 0.7388 0.846 L                                     158 18 1655 2399.7 2.9518 0.0036 96 26 1 1.429643 0.7958 0.8438

) 158191656 2099.71.99810.078196 261 1.429643 0.ti199 0.7444 l 158 20 1657 2099.7 2.4882 0.0341 96 26 1 1.429643 0.7211 0.8226 l 158 21 1658 2399.7 1.9977 0.0023 96 26 1 1.429643 0.7017 0.7266 3-i 5 l-12

I f- d 0 l . 158 22 1860 2399.7 2.4815 0.0371 96 26 1 1.420643 0.8047 0.8627

                    ' 158 23 1880 2314.7 1.4939 0.0789 96 26 1 1.429643 0.5516 0.0027__-

I. ' 158 2418612399.71.0443 0.1468 96 261 1 A29643 0.417 0.4743

                    ' 158 25 1862 2004.7 1.0024 0.1562 96 26 1 1.420643 0.4518 0.423 158 26 1983 2000.7 0.9976 0.1236 96 26 1 1.429643 0.4863 0.4865 0                       158 271864 2104.7 1.4974 0.0689 96 26 1 1.429643 0.8071 0.8987 158 28 1885 2009.7 2.0029 0.0116 96 26 1 1.429643 0.7186 0.8326       ,;

158 29 1886 2000.7 1.5041 0.1304 96 26 1 1.429643 0.5158 0.6105 158 30 1867 2114.7 1.5093 0.1735 96 26 1 1.428643 0.4682 0.4967-158 31 1988 2394.7 1.5171 0.144 96 26 1 1.429643 0.4841 0.5045 . 158 32 1880 1799.7 1.5056 0.2008 96 26 1 1.429643 0.4547 0.3929_ _j j, I 158 33 1870 1814.7 2.0034 0.1807 96 26 1 1.429643 0.4974 0.4885 : 158 34 1671 1799.7 2.5067 0.14 3 96 26 1 1.429643 0.5673 0.5279.

                     ' 158 35 1672 1799.7 3.000 0.126 96 26 1 1.429643 0.8053 0.5982 158 36 1873 2000.7 2.9843 0.0834 96 26 1 1.429643 0.8647 0.731 y

158 37 1874 1824.7 3.4819 0.1282 96 26 1 1.429643 0.8067 0.7266

                                                                                                 .l 8                      158 38 1675 1499.7 1.5556 0.2492 96 26 1 1.429643 0.452 0.4241 158 39 1676 1514.7 2.0434 0.2034 96 26 1 1.429643 0.5031 0.4854
1 158 40 1677 1499.7 2.5168 0.2075 96 26 1 1.429643 0.4821 0.5491-
                        -158 41 16781514.7 3.0146 0.150196 r$ 1 1.429643 0.5837 0.5458       ,

158 42 1679 1504.7 3.4761 0.1414 96 26 1 1,429643 0.5977 0.5882 158 43 1680 1799.7 1.5513 0.1825 96 26 1 1.429643 0.493 0.5413 . 'i 158 441681 1799.71.9788 0.1428 9ti 261 1.429643 0.559 0.6239 1

    =                 '  158 45 1882 1814.7 2.4875 0.0002 96 26 1 1.429643 0.6421 0.7232             '

158 46 1883 1814.7 2.9893 0.0896 96 26 1 1.429643 0.7118 0.8103 158 47 1684 1799.7 3.512 0.0785 96 26 1 1.429643 0.7142 0.8237 j 158 4816851499.71.510.2224 96 261 1.429643 0.4946 CJ>MT 3 158 4918861504.7 2.0144 0.1612 96 261 1.429843 0.$784 0.8072 158 5016871504.7 2.5096 0.1234 96 261 1.429643 0.6429 0.6C31 i 158 51 1888 1504.7 2.9976 0.111 96 26 1 1.429643 0.8888 0.7612 B 158 52 1880 1509.7 3.4924 0.0711 96 26 1 1.429640 0.7551 0.7947 158 53 1890 1804.7 1.5179 0.1273 96 26 1 1.429643 0.5684 0.6462 158 541891 1799J 1.9923 0.196 261 1.429643 0.627 0.7646 158 55 1892 1804.7 2.4615 0.0536 96 26 1 1.429643 0.7223 0.8706 1 158 5718941499.71.9827 0.141196 26 $ 1.429643 0.6143 0.7534 . 158 58 1896 1494.7 2.4776 0.1005 96 26 1 1.429643 0.6885 0.8226 158 601897 2404.71.5073 0.0065 96 26 t 1.429643 0.649 0.7076 - 1 158 61 1896 1499.7 1.0057 0.2765 96 26 1 1.429643 0.4481 0.471 158 62 1899 1809.7 1.0149 0.18 96 26 1 1.429643 0.4835 0.4598 158 63 1700 1794.7 1.0128 0.1458 96 26 1 1.429643 0.5261 0.5368

  • 158 64 1701 1804.7 1.4799 0.0976 96 26 1 1.429643 0.0078 0.7154
    -                    158 65 1702 1504.7 1.0176 0.216 96 26 1 1.429643 0.5205 0.5793 158 66 1703 1504.7 1.5034 0.1385 96 26 1 1.429643 0.6180 0.7132 158 67 1704 1504.7 2 0.0981 96 26 1 1.429643 0.6889 0.8583 158 68 1706 1814.7 1.9512 0.0064 96 26 1 1.429643 0.7892 0.8081 160 1 1720 1799.7 1.4764 0.2001 96 22 1 1 0.5444 0.5172 -

160 2 1721 1799.7 2.0178 0.1407 96 22 1 1 0.6441 0.6123 160 31Y221799.7 2.4856 0.1122 96 221.10.7052 0.704 - 160 4 1723 1799.7 2.978 0.0888 96 22 1 1 0.7633 0.8101 160 5 1724 2414.7 1.4262 0.1655 96 22 1 1 0.4933 0.504 160 6 1725 2399.7 2.5218 0.0255 96 22 1 1 0.7897 0.6874 160 7 1726 2399.7 2.5121 0.0756 96 22 1 1 0.7115 0.746 160 8 1727 2414.7 3.0018 0.0539 96 22 1 1 0.7853 0.8532 160 9 1728 2114.7 1.4802 0.1867 96 22 1 1 0.5098 0.4819 A'- 13 Il I I I

                                            ,-      __       . _ _ . _ _ _ _ ~

J' ,

                                                                                                                                                     -l L,                                                                                                                                                    <i l:                                                                                                                                                     Ll

[? ., [ , gl l= s- g E . 160 10 1729 2114.7 2.0147 0.1568 96 22 1 1 0.5785 0.5902 10011 1730 2000.7 2.5035 0.122196 221 10.6578 0.td864 q 180 12 1731 2104.7 2.9837 0.1047 96 22 1 1 0.7102 0.756' j

                     -160 13 1732 2114.7 1.9011 0.2139 96 22 1 1 0.4933 0.4178.

100 14 1733 2104.7 1.4904 0.1723 96 22 1 1 0.5304 0.6167 g 100151734 2000.71.9643 0 0037 96 221 10.6716 0.7549 J g 180 16 1735 2000.7 2.4914 0.061 96 22 1 1 0.7573 0.8831 I- 100 17 1736 2104.7 2.9881 0.0487 96 22 1 1 0.8088 0.9036' . l 100 18 1737 2414.7 1.4900 0.0006 96 22 1 1 0.5004 0.6406 100 19 1738 2404.7 1.9043 0.0245 96 22 1'1 0.7364 0.7967'

                                                                                                                                         ;lu I
                                                                                                                                          .             i 100 20 1730 2414.7 2.4771 0.0182 96 22 1 1 0.8800 0.0251 100 21 1740 1814.7 1.4977 0.1580 96 22 1 1 0.5086 0.6576                                                          - g-ISO 22 1741 1814.7 1.9736 0.1113 96 22 1 1 0.8886 0.7736                                                               5 100 2317421814.7 2.456 0.0786 96 221 10.7010.803 =

160 24 1743 1614.7 2.9716 0.0614 96 22 1 1 0.8327 0.9649

                    -160 25 1744 1804.7 1.4562 0.1616 96 22 1 1 0.5066 0.7084                                                            ^l i         -l
                     .160 26.1745 1790.7 1.9321 0.0004 96 22 1 1 0.7217 0.8013 .                                                              WJ 160 27 1746 2004.7 1.448 0.1093 96 22 1 1 0.0008 0.7195-                                                                         j 160 28 1747 2399.7 1.4728 0.0416 96 22 1 1 0.6496 0.7239                                                               g 160 29 1748 1514.7 1.461 0.2076 96 22 1'1 0.5991 0.6222 160 30 1749 1514.7 1.9766 0.1315 96 22 1 1 0.715 0.7095 g ll 160 31 1750 1490.7 2.468 0.107 96 22 1 1 0.7656 0.8245 .                                                                       -)

160 32 1751 1504.7 2.9411 0.0788 96 22 1 1 0.8258 0.9284 160 33 1752 1504.7 1.4881 0.2513 96 22 1 1 0.5363 0.5139

                    '160 34 1753 1504.7 2.0133 0.17 96 22 1 1 0.6513 0.56141                                                                         ~

160 35 1754 1514.7 2.4943 0.1427 96 22 1 1 0.8046 0.6797. g 100 36 1755 1524.7 2.9879 0.12 96 22 1 1 0.7373 0.7504 gn 160 37 1756 1499.7 2.0643 0.2286 96 22 1 1 0.5532 0.4741 ,l 160 38 1757 1514.7 2.5004 0.172 96 22 1 1 0.6377 0.4806 160 39 1758 1499.7 3.0000 0.1562 96 22 1 1 0.0646 0.5736-. 160 40 1759 2124.7 2.5108 0.1622 96 22 1 1 0.5908 0.473-k.I W i 160 41 1760 2000.7 3.054 0.1458 96 22 1 1 0.6398 0.5438 ISO 42 1761 2414.7 2.03 0.1673 96 22 1 1 0.539 0.4841. 3' 160 43 1762 2424.7 2.5326 0.1065 96 22 1 1 0.5735 0.5802 160 44 1763 3414.7 3.0358 0.1367 96 22 1'1 0.6786 0.6464 3 160 45 1764 2404.7 3.486 0.1431 96 22 1 1 0.6573 0.7217 l 160 46 1785 2114.7 3.4865 0.1457 96 22 1 1 0.6638 0.5968 'l l 160 48 1767 1799.7 2.0271 0.1812 96 22 1 1 0.5797 0.4763 l R 160 49 1768 1814.7 2.5382 0.1462 96 22 1 1 0.6447 0.5404 160 50 1789 1814.7 3.0443 0.1241 96 22 1 1 0.8957 0.641 gi 160 $1 17701814.7 3.5307 0.1167 96 221 10.7202 0.6731.- 160 52 1771 1514.7 3.0881 0.1718 96 22 1 1 0.6294 0.6134 g1 160 53 1771 2114.7 3.4557 0.1073 96 22 1 1 0.7257 0.8145 160 54 ?.772 2409.7 3.5302 0.0307 96 22 1 1 0.8503 0.9461 160 55 1773 2399.7 2.4904 0.0013 96 22 1 1 0.6856 0.7549" *1 160 56 1774 1514.7 3.4681 0.0006 96 22 1 1 0.7906 0.7991 160 57 1775 1814.7 3.4634 0.0748 96 22 1 1 0.8048 0.9173 160 58 1776 1514.7 1.471 0.1745 96 22 1 1 0.6476 0.6731 g g ,' 160 59 1777 1509.7 1.9543 0.1227 96 22 1. 1 0.7311 0.8234 180 60 1778 1504.7 1.013 0.282 96 22 1 1 0.5203 0.5847 160 61 1779 1799.7 1.0253 0.2003 96 22 1.1 0.534 0.5592 160 62 1780 2099.7 1.0047 0.1952 96 22 1 1 0.4726 0.5747 h

                                                                                                                                              =

160 63 1781 2364.7 0.9976 0.1479 96 22 1 1 0.4743 0.5814 L . 160 64 1782 2414.7 0.9999 0.1739 96 22 1 1 0.44 0.4808 i A-14

                                 - --          ,.              . _ . , _ , - . _ . . _ . _ ,      . _ _ .- . . . _ . ~ .   . ~ . . . . .   . . . _ ,
               '    100 65 1733 2000.7 1.0019 0.2192 96 22 1 1 0.4486 0.4752                                     -

100 861784 1784.7 1.006 0.2588 96 22 1 1 0.4724 0.4918-100 67 1785 1500.7 1.0939 0.2868 96 22 1 1 0.5372 0.5128 i l 161 1 1796 2114.7 2.0388 0.2422 188 22 1 1 0.3788 0.2984 161 2 1797 2399.7 2.0529 0.2157 168 22 1 1 0.3953 0.3139 161 3 1798 2399.7 2.0312 0.1623 168 22 1 1 0.4551 0.4071 161 4 1790 2000.7 2.0081 0.1934 168 22 1 1 0.438 0.3771 161 5 1800 2199.7 2.0184 0.1282 188 22 1 1 0.508 0.4415 161 6 1801 2414.7 1.9832 0.1349 188 22 1 1 0.4821 0.4792 161 7 1802 2414.7 2.0303 0.1084 168 22 1 1 0.5153 0.5613 161 8 1803 2000.7 2.0146 0.1388 188 22 1 1 0.5084 0.4437 161 9 1804 2000.7 2.5219 0.2187 168 22 1 1 0.4178 0.3328. 161 10 1806 2399.7 2.5482 0.1896 188 22 1 1 0.4484 0.3849 161 11 1808 2000,7 3.0441 0.1926 188 22 1 1 0.4838 0.3915-

                   = 161 121807 2399.7 3.0386 0.1825168 221 10.4774 0.4204 '

161 13 1808 2009.7 1.5088 0.2556 188 22 1 1 0.355 0.3228 161 14 1909 2399.7 1.5011 0.2332 168 22 1 1 0.35 0.3217-161 15 1810 2399.7 2.5215 0.1402 168 22 1 1 0 500 0.4614-  ! 161 16 1811 2099.7 2.512 0.1678 168 22 1 1 0.4865 0.4193  ! l -161 17 1812 2099.7 1.5224 0.2049 168 22 1 1 0.4088 0.3793 J 161 18 1813 2399.7 1.4617 0.1984 168 22 1 1 0.382 0.3894: 161 191814 2000.7 1.5002 0.1727 168 22 1 1 0.4419 0.4348  ! 161 20 1815 2399.7 1.5076 0.1443 168 22 1 1 0.4388 0.4625: , 161 21 1816 1499.7 1.5084 0.2829 168 22 1 1 0.41 0.4282 161 22 1817 1499.7 2.0349 0.1988 168 22 1 1 0.5023 0.4947 ,) 161 23 1818 1799.7 1.4924 0.2273 168 22 1'1 0.4232 0.4004 J l 161 24 1819 1799.7 2.0488 0.1671 168 22 1 1 0.5014 0.477 l i 161 25 1820 2400,7 2.4829 0.1153 168 22 1 1 0.5375 0.5757' 161 26 1821 2400.7 2.9979 0.1396 168 22 1 1 0.5341 0.5457  ! 161 27 1822 2404.7 3.5544 0.2062 168 22 1 1 0.4616 0.4171-161 28 1823 2399.7 3.5886 0.182 168 22 1 1 0.4972 0.4947

                   ~ 161291824 2099.7 3.5227 0.1883168 221 10.4784 0.4293 j

y 161 30 1825 2000.7 2.9574 0.1697 168 22 1 1 0.4949 0.4404 161 31 1826 2099.7 3.5324 0,1555 168 22 1 1 0.5298 0.5169 i

                   .161 32 1827 2099.7 2.9632 0.153 168 22 1 1 0.5191 0.5189 161 33 1828 2000.7 2.5021 0.1273 168 22 1 1 0.5392 0.5136-161 34 1829 2104.7 1.01 0.3027 168 22 1 1 0.2988 0.2939                                        ;

161 35 1830 2414.7 1.0113 0.2913 168 22 1 1 0.2696 0.2984  ! 161 36 1831 2099.7 2.011 0.1413 168 22 1 1 0.5000 0.5058 l 161 37 1832 2099.7 2.4666 0.1119 168 22 1 1 0.5577 0.5735 161 38 1833 2084.7 0.9713 0.3033 168 22 1 1 0.3004 0.3172 161 39 1834 2414.7 0.9801 0.2833 168 22 1 1 0.2744 0.3328 i 161 40 1835 2099.7 2.0247 0.1217 168 22 1 1 0.5251 0.5402 i 161 41 1836 2000.7 1.0191 0.2617 168 22 1 1 0.3357 0.3671 161 43 1838 2000.7 1.5775 0.1313 168 22 1 1 0.4901 0.4714 161 44 1839 2399.7 1.5752 0.1548 168 22 1 1 0.4334 0.5014 161 45 1840 2404.7 2.5132 0.1338 168 22 1 1 0.5164 0.5224

                    '161 46 1841 1804.7 1.4861 0.2841 168 22 1 1 0.359 0.3361                                         ;

161 47 1842.1804.7 2.0301 0.2145 168 22 1 1.0.4392 0.3727 4 161 48 1843 1804.7 2.4923 0.1996 168 22 1 1 0.4601 0.4215  ! 161 49 1844 1804.7 3.0253 0.1451 168 22 1 1 0.5455 0.5102 161 50 1845 1509.7 1.4646 0.3211 168 22 1 1 0.3646 0.3572 161 51 1846 1504.7 2.0349 0.2355 168 22 1 1 0.4498 0.4182 161 52 1847 1504.7 2.5181 0.2078 168 22 1 1 0.4775 0.4659 A'-15 l

It U si 161 53 1848 1504.7 3.0191 0.172 188 22 1 1 0.5286 0.538 - Ei L 161 54 1849 1504.7 3.4882 0.174 188 22 1 1 0.5163 0.3546 !' 161 56 1851 1604.7 1.0376 0.3744 168 22 1 1 0.34 0.3394 ' 5a i 161 57 1852 1804.7 1.0007 0.3523 168 22 1 1 0.3019 0.3128 L 161 58 1863 1804.7 2.5192 0.1712 168 22 1 1 0.5346 0.5535 lyU l- 161 59 1854 1799.7 2.5106 0.1536 188 22 1 1 0.8205 0.5291 W 161 00 1866 1799.7 3.0392 0.1826 ISS 22 1 1 0.4871 0.4648 16161 18861799.7 3.5206 0.1802188 2r 1 10.5256 0.5189 . 161 82 1867 1489.7 3.5000 0.2041 188 22 1 1 0.4882 0.5068 -

                                                                                                           )

l

                                                                                              ~
                   -161 63 1888 1800.7 3.0836 0.2364 188 22 1 1 0.4102 0.4681 161 64 1869 1499.7 0.8987 0.3836 108 22 1 1 0.3556 0.3572 161 66 1880 1799.7 0.9784 0.3 188 22 1 1 0.3517 0.3439 -                  -l l 161 86 1881 1804.7 1.4708 0.191 188 22 1 1 0.4627 0.4526
                   -161 67 1882 1504.7 1.4790 0.2833 188 22 1 1 0.434 0.4892                        5I 161 68 1883 1804.7 1.9815 0.1436 168 22 1 1 0.5200 0.5291-                      g 1618918841499.71.9828 0.18C4 ISS 221 10.5219 0.5213 -

161 70 1886 2004.7 2.0162 0.1935 168 22 1 1 0.4386 0.3782 g;) 161 71 1886 2104.7 2.0250 0.1894 168 22 1 1 0.4671 0.4526 l 162 1 1867 2000.7 1.9234 0.0706 123 22 1.1539 1.432246 0.5245 0.4863 g 'I 162 2 1888 2399.7 1.8866 0.0441 126 22 1.1561 1.432246 0.5244 0.5042 Wl 162 3 1889 2404.7 2.4254 0.0006 123 22 1.131 1.432246 0.6288 0.616 l 162 4 1870 2000.7 2.4546 0.0294 120 22 1.1298 1.432246 0.6241 0.6078 162 5 1871 2000.7 2.4703 0.0442 117 22 1.1178 1.432246 0.6172 0.508 - 162 6 1872 2399.7 2.4487 0.0537 123 22 1.168 1.432246 0.5526 0.5031-162 7 1873 2399.7 2.9677 0.032 120 22 1.1391 1.432246 0.6284 0.6229 - 162 8 1874 2104.7 2.9299 0.047 120 22 1.1447 1.432246 0.6171 0.5800 162 91875 2394.71.9845 0.0392120 221.12391.432246 0.5543 0.446 ~ g, g' 162 10 1876 2114.7 1.9411 0.0957 120 22 1.1468 1.432246 0.5024 0.3993- 1

               '    162 11 1877 2000.7 3.4298 0.0822 120 22 1.1564 1.432246 0.6108 0.5863                   l 162 12 1878 2000.7 1.9889 0.2064 129 22 1.2796 1.432246 0.3296 0.2914 162 13 1879 2409.7 1.9886 0.1893 129 22 1.2614 1.432246 0.3545 0.3248 l                                                                                                       _

162 14 1880 2300.7 2.4801 0.1108 123 22 1.1854 1.432246 0.4736 0.3831 i I 16215188120G9.7 2.4674 0.1629126 221.23541.432246 0.4029 0.3808 g! 162 16 1882 2004.7 2.9415 0.144 123 22 1.203 1:432246 0.4533 0.4059 g-i 162 17 1883 2399.7 2.9752 0.132 126 22 1.2307 1.432246 0.451 0.4439- -l 162 18 1884 2394.7 3.434 0.1286 126 22 1.2348 1.432246 0.474 0.5008 - I r '~ 162 19 1885 2109.7 3.4149 0.1262 123 22 1.2028 1.432246 0.4896 0.4491 162 20 1886 1499.7 1.9949 0.2506 132 22 1.3386 1.432246 0.3142 0.3087 - 162 21 1887 1804.7 1.9761 0.1974 126 22 1.2393 1.432246 0.3745 0.313 162 22 1888 1799,7 2.5108 0.1504 123 22 1.2003 1.432246 0.4535 0.3759

                   ~ 162 2318801499.7 2.4645 0.2241 132 221.33331.432246 0.33310.3431 li g

162 24 1890 1504.7 2.9721 0.1771 126 22 1.2421.1.432246 0.4196 0.4052 L 162 25 1891 1804.7 2.966 0.1289 120 22 1.1891 1.432246 0.5055 0.4334 g 162 26 1892 1799.7 3.4805 0.1136 120 22 1.1701 1.432246 0.536 0.4839 162 27 1893 1504.7 3.4673 0.1633 126 22 1.2422.1.432246 0.4343 0.4404 g L 162 28 1894 1499.7 1.9779 0.1834 126 22 1.2372 1.432246 0.4289 0.3915 l- 162 29 1896 1799.7 1.9807 0.1335 123 22 1.1880 1.432246 0.4721 0.4203 I- 162 30 1896 1799.7 2.4399 0.0923 120 22 1.1546 1.432246 0.5551 0.494-l W L , 162 31 1897 1499.7 2.4438 0.1513 123 22 1.2013 1.432246 0.4834 0.4551 162 32 1898 1504.7 2.9447 0.1149 120 22 1.1677 1.432246 0.5554 0.5256 162 33 1899 1804.7 2.9551 0.049 117 22 1.1204 1.432246 0.6551 0.5703 g(' 162 34 1900 2119.7 2.8925 0.089 123 22 1.1742 1.432246 0.5641 0.5752 162 35 1901 1794.7 3.4406 0.0452 117 22 1.1287 1.432246 0.6757 0.6366 162 36 1902 2124.7 2.9474 0.0897 120 22 1.1602 1.432246 0.549 0.4827 1 I-16

I 162 37 1903 2404.7 2.4718 0.0677 120 22 1.1455 1.432246 0.5474 0.4523 - h; .162 38 1904 2000.7 2.4679 0.1323 123 22 1.1949 1.432246 0.4579 0.4155 I 3 ~ 162 391905 2424.7 2.9617 0.0841 123 221.18221.432246 0.533 0.5127 < 162 40 1906 2000.7 1.9796 0.1407 123 22 1.1893 1.432246 0.433 0.341 162 41 1907 2300.7 1.0873 0.1196 126 22 1.2032 1.432246 0.427 0.3506 162 42 1908 2104.7 3.4476 0.0739 120 22 1.1802 1.432246 0.5914 0.5307 162 43 1900 2400.7 0.4733 0.0638 123 22 1.1806 1.432246 0.5878 0.5008 162 44 1910 1400.7 3.4874 0.0716 117 22 1.1350 1.432246 0.0566 0.8809: '! 162 45 1911 1400.7 1.9761 0.159 126 22 1.2263 1.432246 0.4836 0.4678. 162 46 1912 1799.7 1.9884 0.0981 123 22 1.1893 1.432246 0.5223 0.4911-162 47 1913 1804.7 2.4312 0.0336 117 22 1.1139 1.432246 0.6845 0.8006 162 48 1914 1804.7 2.4074 0.1116 123 22 1.1860 1.432246 0.5488 0.862; q 162 4919151804.7.2.9152 0.0739120 221.1561 1.432246 0.6289 0A04 i 162 50 1916 1800.7 2.9423 0.0311 117 22 1.1198 1.432246 0.6886 0.6393 162 51 1917 1800.7 1.47 0.2408 132 22 1 328 1.432246 0.3421 0.3006 j 162 52 1918 1804.7 1.4700 0.1798 126 22 1.2222 1.432246 0.3948 0.3335 1 l l 162 531919 2000.71.48110.1827129 221.25281.432246 0.3458 0.3172 t 162 541920 2400.7.1.4484 0.1945 T35 221.32591.432246 0.2883 0.293 - 162 55 1921 2390.7 1.4488 0.1006 129 22 1.189 1.432246 0.4000 0.3867 I 162 56 1922 2104.7 1.4493 0.1915 135 22 1.3229 1.432246 0.3137 0.3318-162 57 1923 1804.7 1.4643 0.164 129 22 1.2383 1.432246 0.4022 0.3807 162 58 1924 1514.7 1.4796 0.2206 132 22 1.3147 1.432246 0.3846 0.3502 - 162 59 1925 2104.7 0.9877 0.247 141 22 1.4343 1.432246 0.2336 0.2303-1 162 80 1926 2384.7 1.0016 0.2014 141 22 1.3656 1.432246 0.2479 0.2616 ' 162 61 1927 2104.7 1.4496 0.0734 126 22 1.1546 1.432246 0.4853 0.4347  ! 162 62 1928 2404.7 1.4497 0.112 135 22 1.2386 1.432246 0.3774 0.3 5 7 j 162 63 1929 2104.7 1.9774 0.0131 120 22 1.1133 1.432246 0.6209 0.5939' ' 162 64 1930 2404.7 1.9749 0.0285 126 22 1.1472 1.432246 0.5458 0.5566 i 162 66 1931 1804.7 1.0067 0.2356 138 22 1.3756 1.432246 0.2917 0.2749 I 162 86 1932 1504.7 1.0045 0.3286 144 22 1.6297 1.432246 0.2257 0.2381 162 67 1933 1504.7 1.467 0.1922 132 22 1.2906 1.432246 0.4022 0.4006 i 162 68 1934 1790.7 1.4127 0.148 129 22 1.2235 1.432246 0.4225 0.4291 162 SD 19361794.71.9605 0.0425120 221.1251.432246 0.6189 0.5913 - 1 162 70 1936 1490.7 1.9475 0.1247 126 22 1.2056 1.432246 0.6153 0.5417 1631 19371804.71.488 0.2107 96 221 10.529 0.5415 = 163 2 1938 1790.7 2.000 0.1429 96 22 1 1 0.6419 0.6289 l 163 3 1939 1804.7 2.5116 0.1041 96 22 1.1 0.7196 0.8086 ' f 163 4 1940 2404.7 1.4347 0.1599 96 22 1 1 0.5019 0.525 163 5 1941 2404.7 1.9001 0.1247 96 22 1 1 0.5967 0.6306

                  ,163 6194P 2409.7 2.5085 0.0783 96 221 10.7065 0.7493 163 7 1943 2114.7 1.558 0.1382 96 22 1 1 0.5777 0.4542
                 '163 8 1944 2000.7 2.0657 0.1513 96 22 1 1 0.5907 0.5935:

163 9 1945 2000.7 2.5345 0.1128 96 22 1 1 0.6747 0.6421 l3 163 10 1946 2114.7 2.9967 0.103 96 22 1 1 0.7133 0.7549 163 11 1947 2114.7 1.5196 0.1860 96 22 1 1 0.5377 0.6233 163 12 1948 2000.7 2.0480 0.0831 96 22 1 1 0.0917 0.7493 163 13 1949 2404.7 1.5287 0.1035 96 22 1 1 0.5799 0.6598 163 14 1960 2404.7 2.0008 0.0487 96 22 1 1 0.7089 0.819'  ; 163151S$1 1814.71.5238 0.1542 96'221 10.606 0.6543 163 16 1952 1809.7 2.0291 0.0933 96 22 1 1 0.7183 0.7869 163 17 1953 1814.7 1.5276 0.1319 96 22 1 1 0.6371 0.7073-163 18 1964 1819.7 1.9713 0.0938 96 22 1 1 0.713 0.8002 163 19 1965 2099.7 1.5093 0.1194 96 22 1 1 0.6009 0.7427 163 201956 24G4.71.528 0.0756 96 221 10.6142 0.756 A-17

, y- ,

m . I; y l - [ .  ! l 163 21 1967 1804.7 1.5299 0.100 96 22 1 1 0.613 0.861 l'a l 163 22 1968 1804.7 2.0240 0.1281 96 22 1 1 0.7236 0.7106 { 163 23 1960 1494.7 1.5246 0.2471 96 22 '. 1 0.5434 0.5338- W2 163 24 1900 1604.7 2.0672 0.1706 96 22 1 1 0.6342 0.6013 "163 25 1961 1514.7 2.5304 0.143 96 22 1 1 0.8936 0.0874 {g,

163 26 1982 1804.7 3.0144 0.1149 96 22 1 1 0.7512 0.7330.

g\ l 163 271983 2004.7 3.0M 0.1012 96 811 10.61780.8837 L 163 281984 2394.7 2.1048 0.1527 Dis 221 10.8832 0.4674 I 163 291906 2404.7 2.5717 0.t374 96 221 10.62 0.5002 163 30 1986 2404.7 3.0000 0.1302 96 22 1 1 0.0023 0.8621 l1 El

        -163 31 1967 1804.7 2.0775 0.183 96 22 1 1 0.5767 0.5117-183 32 1900 1804.7 2.8832 0.1406 96 22 1 1 0.6404 0.5081'
        ' 163 3319891814.7 3.0434 0.1286 98 221 10.58 OA344 ;

g. i g-l 163 34 1970 1904.7 3.1016 0.1837 96 22 1 1 0.6476 0.6222 ! 163 36 1971 1404.7 2.8846 0.2254 96 22 1 1 0.5306 0.5703 - l 163 36 1972 %814.7 2.5201 0.1303 96 22 1 1 0.8583 0.7361

         -163 37 1973 2000.7 1.5227 0.2246 96 22 1 1 0.4648 0.5029

! 163 38 1974 1504.7 3.0239 0.1087 96 22 1 1 0.7642 0.7372 ( 163 30 1975 1000.7 1.0622 0.1564 96 22 1 1 0.5853 0.5692- 3 l j 163 4019N 2000.71.0615 0.172196 221 10.5022 0.5935 ~ 163 41 1977 2390.71.0287 0.14W 96 221 10.4715 0.5802 5

                                                                                        ;q L          164 1 1979 2000.7 1.4331 0.1398 126 22 1.1964 1 0.4346 0.3844 164 2 1980 2104.7 1.9421 0.083 123 22 1.1608 1 0.5417 0.481.           l;
        '164 3 1981 2000.7 2.4067 0.0442 120 22 1.1382 1 0.6309 0.6119           m 164 4 1982 2394.7 1.433 0.1188 129 22 1.1997 1 0.4198 0.3066 -            .j    -

164 5 1983 2414.7.1.9007 0.0008 129 22 1.2002 1 0.4672 0.4061- g- l 164 6 1984 2414.7 2.4006 0.0436 126 22 1.1702 1 0.5000 0.5874: 164 7 1986 2390.7 1.4481 0.1861 129 22 1.2301 1 0.3034 0.3006'- g' 164 8 1986 2424.7 1.9037 0.1038 126 22 1.1986 1 0.4783 0.4117 164 9 1987 2300.7 2.4878 0.0614 120 22 1.1306 1 0.0076 0.5326' 164 10 1988 2404.7 2.9623 0.0742 126 22 1.2 1 0.5000 0.5716 l a 1C411 1900 2114.71.4106 0.2722138 221.449810.2463 0.2486 , 164 12 1990 2100.7 2.0188 0.0816 117 22 1.123 1 0.5754 0.4335 g 164 13 1991 2104.7 2.4776 0.0723 120 22 1.1476 1 0.596 0.4873. g .; 164 14 1992 2114.7 2.9703 0.0067 120 22 1.1528 1 0.8246 0.5004

       '164 15 1993 2000.7 3.4311 0.0619 120 22 1.1506 1 0.6506 0.6119-164 16 1994 2394.7 3.4560 0.0608 120 22 1.1547 1 0.6642 0.622 164 17 1996 2300.7 1.9066 0.1419 126 22 1.2162 1 0.4306 0.3221                    !

164 18 1996 2404.7 2.4606 0.1418 126 22 1.2271 1 0.4612 0.3097 . 164 19 1997 2390.7 2.9000 0.1038 120 22 1.1645 1 0.5581 0.46961 3 l 164 20 1998 2394.7 3.5103 0.002 120 22 1.163 1 0.6166 0.5238 164 21 1900 2000.7 1.9082 0.2062 126 22 1.2434 1 0.3736 0.2937 g 164 22 2000 2004.7 2.5016 0.167 126 22 1.2306 1 0.0 16 0.3629 - 164 23 2001 2100.7 2.9041 0.1007 126 22 1.2417 1 0.44*18 0.3946 164 24 2002 2000.7 3.4966 0.118 120 22 1.1712 1 0.6007 0.4847 l'

                                                                                 =          s 164 25 20021794.71.9062 0.2078126 221.244410.hl60 0.3209 164 26 2004 1804.7 2.8624 0.1006 123 22 1.204 1 0.4753 0.3853 -         3 164 27 20051790.7 2.9006 0.1456123 221.20410.801f3 0.4152 '             g 164 28 2006 1804.7 3.4987 0.1208 120 22 1.1731 1 0.5538 0.4961 164 29 2007 1504.7 3.463 0.1506 123 22 1.2006 1 0.498 0.4511-                    1 164 30 2006 1499.7 2.0266 0.2006 132 22 1.3402 1 0.3344 0.3096 164 31 2009 1490.7 2.5275 0.2158 129 22 1.2881 1 0.3931 0.3579        -

l 1 164 32 2010 1509.7 3.0027 0.1833 12S 22 1.2451 1 0.4460 0.4117 t l 164 33 2011 1504.7 1.4425 0.3043 133 22 1.4759 1 0.2788 0.2616 I-18 - r

m 1 164 34 2012 1490.7 2.0236 0.213 129 22 1.2887 1 0.4084 0.3783 164 35 2013 1490.7 2.5135 0.1586 123 22 1.2058 1 0.51 0.4834 164 30 2014 1504.7 2.9773 0.1363 123 22 1.2036 1 0.541 0.5241-164 37 2015 1809.7 3.5203 0.1081 120 22 1.1708 1 0.0076 0.5943 -! I 164 38 2016 1804.7 1.4539 0.2407 132 22 1.3283 1 0.3315 0.2905 164 39 2017 1790.7 1.9838 0.1823 126 22 1.2278 1 0.4636 0.4128 164 40 2018 1790.7 2.40 0.1194 123 22 1.19071 0.5367 0.4942 164 4? 2019 1814.7 2.9218 0.1036 120 22 1.1646 1 0.3 0 3 0.5430  ; 164 42 20201804.7 3.4130 0.0672117 221.131910.8M2 0.641 'i 164 43 2021 2104.7 2.9194 0.0386 117 22 I.1211 1 0.0008 0.8013 tot 44 20221790.7 2.9387 0.0479117 221.124010.8983 0.8304 1 164 46 2023 1400.7 1.4601 0.2482 132 22 1.3333 1 0.3702 0.3429' j 164 46 20241608t.71.9160 0.1892129 221.273710.4415 0.4415 g 164 47 2026 1490.7 2.4842 0.1243 123 22 1.1929 1 0.5867 0.8624 164 48 2026 1490.7 2.9622 0.0016 120 22 1.1618 1 0.8304 0.8647 - j 164 49 2027 1801.7 1.4418 0.1891 129 22 1.2561 1 0.4036 0.3864 ' 164 50 2028 1804.7 1.9296 0.145 126 22 1.2172 1 0.4781 0.4786 164 51 2029 1809.7 2.4466 0.0667 120 22 1.1411 1 0.6496 0.5961 164 52 2030 1780.7 1.447 0.1996 132 22 1.2983 1 0.38 0.3923 -4 164 53 2031 1814.7 1.923 0.1463 129 22 1.2443 1 0.4503 0.5004 l 164 54 2032 2404.71.4283 0.1188135 221.24410.3M7 0.393 l 164 55 2033 2404.7 1.9032 0.0752 129 22 1.1906 1 0.4987 0.5388 164 56 2034 2404.7 0.9832 0.2288 141 22 1.4054 1 0 2414 0.2425' 1 164 57 2035 2000.7 0.9017 0.2472 141 22 1.4348 1 0.2562 0.2896 164 58 2006 2404.7 1.3976 0.1155 135 22 1.2387 1 0.3989 0.4072 164 50 2037 2204.7 1.390 0.0714 126 22 1.151 1 0.6025 0.4661-

 }         164 80 2038 2000.7 0.9898 0.2436 138 22 1.3939 1 0.271 0.2563 .

J t04 6120391804.7 0.97810.2322136 221.329910.3332 0.2853 ' 104 62 2040 1504.7 0.9934 0.351 144 22 1.8606 1 0.2321 0.2335 . 164 83 2041 1790.7 1.4024 0.1644 129 22 1.2356 1 0.4338 0.4168 I 164 64 2042 1504.7 1.4200 0.2183 132 22 1.3096 1 0.4052 0.3904 164 66 2043 1799.7 1.8879 0.0783 123 22 1.1589 1 0.5857 0.5564-164 86 20441504.71.bb94 0.1880129 221.257910.4747 0.5068

   'lp     164 67 2045 1504.7 2.4303 0.1132 123 22 1.1871 1 0.5837 0.5996 164 68 2046 1799.7 0.963 0.2200 135 22 1.3158 1 0.3459 0.3051          R 164 80 2047 1804.7 0.9936 0.3318 144 22 1.6:39 1 0.2482 0.256 164 70 2048 2394.7 0.9808 0.2156 141 22 1.3844 1 0.2542 0.2752            i 164 71 2049 2100.7 2.9254 0.0794 123 22 1.1798 1 0.5882 0.621 164 72 2050 2104.7 1.9000 0.0646 120 22 1.1353 1 0.5835 0.5061            !

164 74 2062 2000.? 1.414 0.194 135 22 1.3233 . 0.3375 0.3278 e 166 1 14 1499.7 3.446 0.1572 150 26 1.2017 1.42975 0.4057 0.4585: 166 2 15 1799.7 3.5132 0.1019 147 26 1.1580 1.42975 0.4966 0.5107 186 3 16 2109.7 3.5251 0.078 147 26 1.1525 1.42975 0.5248 0.5525 l 166 4 17 2404.7 3.5894 0.0386 147 26 1.1398 1.42975 0.5849 0.6419 166 6 19 2100.7 2.9382 0.109 150 26 1.1847 1.42975 0.4493 0.4905 . 166 7 20 2099.7 2.491 0.0939 147 26 1,1461 1.42975 0.4718 0.4411 ' 166 8 21 2399.7 2.456 0.0007 150 26 1.1584 1.42975 0.4759 0.4817 166 9 22 2399.7 2.0248 0.1037 150 26 1.1668 1.42975 0.4089 0.4080 l , 166 10 23 2404.7 3.0185 0.0799 147 26 1.1479 1.42975 0.4996 0.4759 l 166 11 24 2000.7 2.9463 0.142 150 26 1.1966 1.42975 0.4041 0.3847 166 12 25 2099.7 3.53 0.1242 150 26 1.196 1.42975 0.4397 0.4674 166 13 26 2399.7 3.516 0.082 147 26 1.1533 1.42975 0.5169 0.4887 i 106 14 27 2399.7 2.0035 0.0449 150 26 1.1364 1.42975 0.4817 0.4729 166 15 28 2099.7 2.0077 0.11 150 26 1.1685 1.42975 0.4228 0.4475 A'-19

    .                                                                                   B 4-106 16 29 2004.7 2.5188 0.0831 160 26 1.1886 1.42975 0.4746 0.5467
                                                                                          ~

18617 30 ft400.7 2.49 0.0021 144 261.09451.42975 0.5975 0.5824 186 18 31 1804.7 3.4822 0.1071 147 26 1.16 1.42975 0.4886 0.5177 106 19 32 1799.7 2.0026 0.1069 147 26 1.1425 1.42975 0.4893 0.4296 186 20 33 1499.7 2.5148 0.1283 147 26 1.157 1.42975 0.4792 0.4862 ' 106 21 34 1499.7 3.4987 0.0976 147 26 1.1581 1.42975 0.5222 0.5722 : =l 106 22 361499.7 2.0882 0.1077147 261.14461.42975 0.6094 0.484 ~ 186 23 36 1804.7 2.0257 0.0709 147 26 1.1325 1.42975 0.8068 0.5038 106 24 37 2099.7 1.5237 0.096 150 26 1.1473 1.42975 0.4227 0.4244 g? g l 106 25 38 3099.7 1.902 0.0749 180 26 1.1500 1.42975 0.4888 0.5092 < 186 26 30 2404.7 1.983 0.0276 150 26 1.1276 1.42975 0.5015 0.5268 9 186 27 40 2404.7 1.4867 0.0674 180 26 1.1314 1.42975 0.4194 0.4464 ' 106 28 41 2404.7 1.494 0.0242 180 26 1.1117 1.42975 0.4696 0.4718 l 186 29 42 2104.7 1.4575 0.0000 150 16 1.146 1.42975 0.417 0.4707-186 30 43 2114.7 1.9886 0.0353 150 26 1.1313 1.42975 0.5108 0.6962- g 186 31 44 1799.7 1.9727 0.0004 147 26 1.1237 1.42975 0.5319 0.5641- g. 106 32 46 1804.7 1.9736 0.0888 144 26 1.1085 1.42975 0.5922 0.5593 186 33 45 1804.7 1.9731 0.0809 144 26 1.1096 1.42975 0.5776 0.5006-106 34 46 1499.7 1.4965 0.1125 147 26 1.1339 1.42975 0.50 0 0.4875 e 186 35 471504.71.48310.1522150 261.1751.42975 0.4306 0.4366 ~ 106 36 48 2100.7 1.4719 0.0412 150 26 1.1199 1.42975 0.4814 0.4927 166 37 49 2394.71.4597 0.0015150 261.10061.42975 0.4928 0.5136 = g 186 36 50 2404.7 2.9924 0.0438150 261.15831.42975 0.5354 0.5754 ~ g-106 39 51 2399.7 2.9994 0.0041 147 26 1.1196 1.42975 0.0078 0.7022 ' 106 40 52 2000.7 3.0006 0.0421147 26 1.1343 1.42975 0.5637 0.821-- j 106 41 53 1804.7 3.4911 0.0602 144 26 1.1212 1.42975 0.597 0.8996- i 186 42 54 1504.7 2.4884 0.0876 144 26 1.1217 1.42975 0.5637 0.5484 106 43 55 2104.7 2.4889 0.0088 144 26 1.003 1.42975 0.8271 0.8384 _. 186 44 56 2409.7 2.5275 0.11 141 26 1.0553 1.42975 0.7636 0.6733 g1 186 45 57 2009.7 2.4625 0.0484 150 26 1.1487 1.42975 0.5211 0.5941 g 186 46 58 1499.7 1.9963 0.0868 147 26 1.1272 1.42975 0.57 0.5989 186 47 59 2000.7 2.0115 0.0712 141 26 1.0577 1.42975 0.8972 0.8667 4 I , I . In al IL , g . no g

a

m. .

s- 'I i . I  : W y Appendix B I inputs to the VIPRE 01 Code i 1 -l 1 . l l l 1 . l a

c y a 3k tt !1 C.O, C0C FILE NAME: HH108 i

        ** VIPRE.la .
1. O, 0 --
        ** v! PRE.2                                                                                                                                                               p l                  HH10e

! ** GOEM.13 ' GEOM, 25. 25. 44. O, 0.. 0  :

    -** GEOM.2:
                  *6.00,         _0.0..             0.5                                                                                                                                  ;

( . ** GECH.4 i le .0975. -1.0594, .3314. 2. 2. .1530.* 4595, 6. .1530, .4095 . . 2.- .1321. -1.2179, .6629 2, 3. .1530., .5550,' 7 .1350, 4595 3e .1321, 1.2179 .6629e 2. 4 .1530, -.5550 8, .1330,- .4595 4 .1321. 1.2179, .6629, 2, Se .1530. 6795 9 .1330 4595 Se- 0975, 1.0594 .3314, le 10e .1530. .4895, 'O. .0000, .0000 - 6 .1321e 1.2179 .6629, 2e 7 .1330 . 4595, - 11, .1530, .5550-7e . 1642, 1.325se 1.3258, L,

2. 8, .1330 .5550, 12e .1330, .5550
                            .1682            1.3258, 1.3258,             to      9,    .1330.- .5550                          13,   .1330,      5550                           - t 9,      .1682,           1.3254      1.325s. 2..          10,      .1330.               4595              14,   .1330,. .5550 10        .1321,           1.2179        .u29          le 15.- .1530, .5550,                                 0,   .0000, .0000 11,       .1321. 1.2179,                 .6629,        2,   12. .1330,                    4595 ,           16e    .1530.     .5550 i
12. .1642, 1.3258, 1.3254, 2. 13e .1330,= .5550, 17. - .1330.. 5550 13e .1682 1.3254,'1.3258, 2. 14, .1330. .5550, 15 .1330,- .5550 14, .1642, 1.325a e a 1.3258, 2. 15e. .1330, .4595 19e .1330, .5550 i

15e .1321e 1.2179e . u 2 9, 1e '20,'.1530, .5550e 0. .0000e. .0000 t 16, .1321e -1.2179e. .6629, 2. 17 .1330, 4595,' 21. .1530," .4595 -i 17e 18,

                            .1642, 1.3258, 1.3258. 2s. 18e                             .1330. .5550,-                        22.    .1330,' 4595                                     1
                            .1642, 1.3258, 1.3254, 2,                         19,      .1330,             .5550               23.   .1330. '.4595 19e       .1682, 1.1258,.1.3254 - 2e 20e                             .1330. .4595                           24,   .1330.     .4595 5                                                                                                                                                                                ,

20,- .1321e 1.2179 . . 4 29, 1, 25, .1530, .4595, .0. .0000, .0000 1 21e .0975,' 1.0594, .3314, le 22, .1530, .4595, 't, .0000, .0000 - 22e 23,

                         .1321e 1.2179                     .6629        1,    23.      .2530.             .5560,               De   .0000,     .0000
                            .1321,           1.2179,       .6629,       le 24          .1530,             .5550,               0,   .0000.     .0000-24,       .1321e 1.2179                  .se29,       1,    25.      .1530.           .4595                  O.   .0000,     .0000                                 .
25. .0975. 1.0594, .3314. De De .0000, .0000, Os .0000, .0000
       ** RODS.1:

RODS, 1, 16e 0. 1, 0, 0. O. O, 0, De 0

       ** RODS.2 -                                                                                                                                                                       t
                  *6.00              0.0,          O,       O
       ** RODS.3 28
       ** RODS.43                                                                                                                                                                          '
                      .000              .358,         4.992,       .359           9.484                 400.            14.976,           .458                                             1 19.968,               .567,      24.960.         .683         30.064,               .833.             35.040,.          .992 40.032,             1.133,        45.024,       1.258,         47.520.           1.305.                50.016.'        1.350 52.512,             1.410,        55.008.       1.467.         57.534,           1.522,                60.000          1.592 62.496,             1.640,        M.992,        1.658,         67.448.           1. MO ,               69.984,-        1.583                                     -4 72.440,            1.510e        74.976,'      1.433.         79.968,           1.233.                84.960e            993                                  -L
              - 87.456 e                .815.~ 90.048              .633.        92.444e               .520e 96.000                        .367-
      ** RODS.9 1         1         9517           1,    le     .250s          to      .250,              6             .250      .'7,    .250 2e        le .9517e                le    2.     .250..         3,      .250,              7,            .250,      8,     .250                                         !

3, le .9517, le 3. .25n, 4, .250, Se- .250 9, .250 4, le 9517, le 4 .250. 5. .250, 9, .250, 10s .250 5. 1,. 9517.. le 9e .250 10e .250, 14 - .250, 15, .250 l

6. le .9517, . le 14, .250, 15, .250, 19, .250e 20e .250  !

7 le .9517.- 1, 19, .250, 20e .250, 2*e .250 25.' .250

8. 1, .9517, 1, 18e .250, 19e .250, 23, .250, 24, .250 9, le .9517, .250. -i 1, 17, 18, .250. 22. .250, 23, .250 10, le .9517 1, 16e .250, 17e .250, 21, .250. 22. .250-
                                                                                                                                                                                       'i 11,         1.        9517,          1,  11,      .250.        12,       .250              16,            .250,: 17         .250                      -
  ,              12.         1,      .9517,           le    6      .250,          7       .250,             11,            .250,     12,     .250
13. le 1.1449 le 7 .250, 8 .250 ~12e .250. 13e' .250 ~

14, le 1.1449 1. 8, .250e 9 .250,- 13, .250,, 14, .250

15. 1, 1.1449, 1e 13. .250, 14, .250e 18e .250e 19e .250 16e. 1. 1.1449e le 12. .250, 13e .250,- 17, .250, 18e. .250 o ,
      ** RODS 68:

1, OUNY, .4220e 0.0. 0

      ** OPER.1:

OPE R, l e 2, 0, 2. O, 29. O, 0. O

     ** OPER.2:
                -1.0         0.0. 0.0. 0.0
      ** OPER.3:

0 l

     ** OPER.5:

1514.700, $20.000, 2.500, .564, 0.0

  • 1 8 1514.700, 499.000 2.500, .624, 0.0
  • 2 9 21M.700, 584.000, 2.587 .510e 0.0
  • 3 10 2114.700, 567.000, 2.540 .557, 0.0
  • 4 11 2414.700, 577.000, t.235, .550, 0.0 F F 12 2414.700, 559.000, 2. 0% , .517, '0. 0
  • 6 13 1514.700. 560.000, 3.429 .512. 0.C
  • 7 14 1814.700. 579.000, 3.552. .545. 0.0 *: 8 15 1824.700, 500.000 1.907, .563, 0.0 *
  • 16 1514.700, 546.000, 3.604 .579. 0.0
  • 10 17 1514.700, 482.000, 2.480, .664, 0.0
  • 11 18 1544.700, 466.000.. 1.970. .610e 0.0 * - 12 '19 1514.700, 558.000. 3.571, .508, 0.0
  • 13 53 1814.700. 560.000, 3.612e .605, 0.0
  • 14 54 1794.700 481.500, 2.029, .597, 0.0
  • 15 55 2114.700, 502.500, 2.021, .571 0.0 a 16 56 2114.700, 517.500s. 2.035, .550, 0.0
  • 17 57 2114.700, 541.500, 2.026, .507, 0.0
  • 18 58 -

2114.700, 545.000. 2.526. .584, 0.0

  • 19 59 2089.700, 567.500, 3.057 .608, 0.0
  • 20 60 2124.700, .581.000, 3.068, .546, 0.0 *- 21 61
                                                                                               -2 1

I - _ . , , . _ _ _ . . _ . . . _ _ _ . - . _ . - -4

~'

                 '2004.700           -c01.500 . 3.040s    -.412               0    22    ~62 2114.700.         Ste.000s      3.574,     .o89     .- 0.0 0.0    0    ;3-      6 3 ..

2114.700, 5**.000,- 3.456 . 548. - 0.0

  • I4 - ' o* '
                 -2004.700,- :.577.500.             3.568. -   .e18.                                                      i
                     ;404.700 .       580.000,-

0.0 */ IS 65 3.091, .597. 0.0 e 26 66 2409.700 602.000s- 3.069 .521s. - 0. 0 e 27- of 2414.700, 623.000 3.047,- 470 - 2414.700, 627.000, 0.0 *- 29 68<

           .** OPER.12 '

3.557, .502. 0.0 e 29'- 60 ' De 0, 0,-De- Ce 0 i

             *e MINX.1                                                                                              '1
                 . N DO( e - Oei D e -:' 0

,. .-ee HIXX.2 l l . 0.C. 0.034 ' "N me ORAG.1 - - ORAGe 1e . De ,1 oo ORAG.23 s 0.156, =0.20, 0.0. 64.0 -1.0, 0.0 me DRAG.Es - 0.5. .555 - me ORIO.1: .s. GRIOe - 0 ,' 2  :

             ** GRIO. 2                                                                                             -)

s 1 200. .570 - se GRIO.4s

                    -1,      4 me GRIO.61                                                                  .
                 .10.75. 1.20.75,       2.30.75,'1,40.75     2.50.75, 1.60.75 2 70.75. 1,80.75. -1                  0
                    *0.75 le         .00, 0,    . 00, 0.
                                                           .00. O s . .00, 0,       .00e O.       .00. De .00s 0-
             *e CORR.13 CORR, le 1. O I           *me    EPRI. EPRI EPRI, NOME
  • CURR.3 O.2 oo CURR.6 s CORR.2:

~ e.' EPRI, THOMs THON. CE-1. CONos GS.7.  ! CORR.7

 -I                 0.0
             .e CORA.9 CE-1
                                                                                                                       .j I'

i

             ** CURR.12:                                                                                                       .

0.5074,-1 I l me CONT.1 CONT i

             *e CONT.2                                                                                                     J 0.0. De 20, 20e 2 Ze 0, 0 se CONT.5:

0 1 0.0001, 0.001. O. De 0, De 0.9 e CONT. 6 s I e*m. 1 1, O. O, le ce le 1. 0. D e 11.0.O CONT.7s 4000.0, 0, 0, O. Ce 0 j ee CONT.48 4 15 00 CONT,114 1 13

            == CONT.15:                                                                                             4
0. .0. O, O. 0 i me END OF INPUT DATA: l'
  'B               E NDO -

0 j l l l

 -i l                                                                                                                       l 4

a a i 1 if-3

              --       -                                        ..-                  . ~ .                               . . -

ll

   *O CDC F!ll NAME? HH114
    ** v! PRE.11'-                                                                                                                          .
        '1.      D. 0
    ** V! PRE.2 HM114
    ** GEDH.1:

OE DM e - 25 e 25. 44. De De 0 <

    ** GEDM.2
         *6.00,           0.0.        0.5
    ** Ct0H.48
1. .0975 1.0594 .3314,- to t. .1530, 4595. 6. .1530, 4595
2. .1321e 1.2179e- .662 9 ~ 2, 3- .1530, .5550, 7e .1330, 4595
3. .1321 - 1.2179 .6629, 2e 4 .1530. .5550s 8, .1330. .4595 i
w. .1321, 1.2179, .6629. Ze 5. .1530 ' .*595, 9 .1330. 4595 4 Se. .0975, 1.0594,
                  .1321,' 1.2179
                                              .3314,     le    10.        .1530.      .4595. 11,    O,   .0000,   .0000                            <

! 6 .6629, 2, 7, .1330 4595, . ' .1530. .5550 i 7e .2682, 1.3254. 1.3254, 2e se .1330 .5550, 12e .1330. .5550 i , 8. .1682 1.3254, 1.3254, 2. 9 e .1320, .5550, 13. .1330. .5550- -l

           *.     .1682.       1.3254,     1.3258. to          10.        .133(e      .4595. 14, .1330.           .5550                             1
10. .1321e 1.2179e .6629, 1, 15, .1530, .5550, 0, .0000, .0000 J
11. .1321, 1.2179 - .6629, 2, 12e .1330, 4595, 16, .1530. .5550
12. .1682, 1.3254. 1.3258, 2e 13, .1330 .5550, 17, .1330, .5550 13.-. 1682 - 1.3258 1.3254, 2, ' 14 .1330 .5550, 14. .1330, .5550 14 .1642, 1.3254, 1.3254. to 15e .1330, 4595, 19, 1330 .5550
15. .1321, 1.2179 -.6629 le 20 .1530 .5550. O, .0000, .0000 l 16e .1321, 1.2179, .6629, 2. 17, .1330,- 4595, 21. .1530 4595 i 17e .1642, -1.3258e 1.3254, to 18e .1330, .5550, 22. .1330s. 4595 "

18e .1642e 1.3258, 1.3254, 2. 19e .1330 - .5550e 23. .1330. 4595 - 19 .1682, 1.3254, 1.3258er 2. 20e .1330.- 4595, the .1330, .4595 20e .1321, 1.2179 .6629 le 25. .1530. .4595. O. .0000, .0000 21, .0975. 1.0594,; .3314 1, 22, .1530 4595, 0, .0000. .0000  :

22. .1321. 1.2179s .6629, le 23. .1530 .5550, 0, .0000, .0000
23. .1321. 1.2179, .6629 1. 24, .1530. .5550. O, .0000, .0000 24, .1321, 1.2179. .6629, le 25. .1530 4595, 0, .0000, .0000 i 25. .0975e 1.0594 .3714, D. O. .0000s .0000, 0, .0000s .0000
.   ** RCDS.11                                                                                                                                      1

! #UDS. le 16. O, le 0. De 0. O. O. O. .0  !

    ** RODS.2:                                                                                                                                     s
         *6.00e           0.0.      O,     0
    ** RUCS.3:

24 *

    ** RDOS.48
            .000.         .310.       4.992,        450,      9.984,           .610         14.976,      .780                          .

19.968, 920, 24.960, 1.080. 30.048, 1.200e 35.040e 1.320 ' J 40.032. 1.400, 45.024e 1.460 48.960, 1.480 50.016, 1.480 ' 55.008, 1.4 50, 57.964 -1.410, 60.000, 1.380, 64.032. '1.300 69.984, 1.160s 74.016, 1.040, 78.048 950, 79.968, .475 81.024, .640s 84.000e' .740, 90.048, .530, 96.000. .310

   ** RODS.9                                                                                                                                      >
1. le ,9643, '1. 1. .250 2, .250, 6. .250, 7 .250
2. le 9643. le 2, .250, 3. .250. 7. .250, 8. .250 3e le .9843, le 3. .250, 4.- .250, ne' .250. 9 .250 .

4, le 9843. le 4 .250, 5. .250, 9, .250, 10 .250

5. 1. 9643. 1, 9 .250. 10. .250. 14, .250, 15e .250 6 le .9843, le 14 .250, 15. .250,.19e .250 20, .250 7, 1. 9543, le 19e .250e 20. .250. 24, .250 - 25, .250-
8. 1. 9843, le 18 .250 19 .250, 23, .250, 24, .250 4
  • 1. .9643, le 17, .250, 18e .250, 22, .250e 23, .250 l 10. 1. 9643. le 16, .250, 17, .250, 21. .250, 22e .250 l 11. le .*F43, le 11, .250, 12e .250e 16e .250, 17e .250  :,

12e le 9843, le 6. .250, 7 .250s lle .250, 12e .250

13. 1, 1.0472. 1. 7 .250s 8, .250, 12e .250, 13e .250 -

1*. 1. 1.0472, le 8e .250, 9 .250, 13s .250, 14, .250

15. le 1.0472, is 13. .250, 14, .250. 18. .250, 19 .250
16. 1, 1.0472. 1, 12e .250, 13e .250. 17e .250,- 18, .250
   +* R00$.68:                                                                                                                       .

0 '

1. DUMYe .4220, 0.0. 0 De OptR.1:

UPER. le 2. O. 2. O, 33. De 0. 0 l , ce optR.g: l 1.0. 0.0, 0.0, 0.0 i ** OpfR.3: - O ^l l.- i ** OptR.5: ) 1499.700, 517.050, 2.545 .583 0.0

  • 1 217 l

1504.700s 496.920, 2.558e .643, 0.0

  • 2 218 1504.700, 481.344, 't.544: .6 90, 0.0
  • 3 219 .

1514.700, $59.950, 3.592, .550, 0.0

  • 4 220 -

1514.100, 539.475 3.587, 644, 0.0

  • 5 221 l 1804.700, 580.768, 3.540, .545 0.0
  • 6 222 d 1804.700, 560.275 3.674, .675, 0.0
  • 7 223 <

2094.700, 583.050, 2.558. .539 0.0

  • 8 224 l 2099.700 565.475e 2.550, .586, 0.0
  • 9 225 1 2114.700, 546.300, 2.570, .635 0.0
  • 10 226 I 2114.700, 599.024, 3.095. .539, 0.0
  • 11 227 2124.700. 583.702, 3.055. .606, 0.0
  • 12 228 .-

2154.700, 159.625, 3.101, 68+, 0. 0 -

  • 13 229-2114.700. 600.328e: 3.572, .571 0.0
  • 14 230 2134.700. 585.332, 3.582. 674 0.0
  • 15 231 2124.700, 566.450. 3.563, .737 0.0
  • 16 232 2434.700, 626.408, 3.537, .577, 0.0
  • 17 233 -l, 2434.700, 602.610, 3.609, .672, 0.0
  • 18 - 234  ;

2424.700.- 583.702. 3.587. 736, 0.0

  • 19 235 l 2444.700, 624.452, 3.026, .531 0.0
  • 20 236 2434.700. 602.284, 3.063, .601, 0.0
  • 21 237 .l 2424.700 580.442, 3.086. .673. 0.0
  • 22 238 1 j 2424.700. 579.464, 2.574, .587 0.0
  • 23 239 1

1 p B-4 j l11

N t6.7'0 $$$.775. .666, 0.0

  • I4 tto I"3*3.700 [ . SM e h $37. tup. . 660. .666.- 0.0 -* 25 261 154.660. {.006 .551. 0.0
  • 16 162 f.624.

6 % .700 7M. )*1.100, . 068. .585 u.0

  • 27 263 (4tt.700, 516.7?le {.067,- .6*1.

t',t4.700, 0.0

  • 28 164 I 617.850. . 015e .58 e 0.0
  • 79 245 t;,16.700, a15.760, 2.066 .62 0.0
  • 30. 266 i t;,16. 700 300.166. 2.061, .66 0.0
  • 31 267 10M . 700 300.166. t.106. . 6 0 6,. 0.0 = 32 the 1676.70D. 678.099, 2.018. .**1 0.0 a 33 249
      ** OPER.12:

0 O. De De 0. 0

      ** MIA.1:

M!xx. De De 0

     ** Mt m.ts 0.0. 0.034
     ** 9R48.1:
         -ORAS. le 0. 1
     ** 0#4s.2:

0.1M,.0.20e0.0 H.O. *1.0 0.0

     ** 0#64.5:

05 .388

     -** GRIO.1:

ORID. O. 2

     ** G410.28 1.t00.                        .570
     ** 0410.6
          *1.                      7
     ** OA10.6 g.78, le 19.78 to St.75: 1 46.75 t o 54.78, l e 71.75. 2. 86.75 e le .00. 0
      ** CORE.1:

CORRe 1, le 0

     ** CORR.2:

t>et. EPRIe [PRI. HONE

     ** CURR . 3 :                                                                       .

0.t  !

     ** CURR . 6                                                                         i t >RI . THthie 7HOM. Ct.1. COND, G$.7 o* CORR.7 0.0 OS CORA . 9 8 CE.1 CORR.12 0.50767, 1 1 ** cimit
     **     CONT.1:                                                                      3-
     ** CONT 2                                                                            4 0.0. D e 20 e 20. t o 2. O. 0                                                   I
     ** CCW7. 3                                                                          4 0.1 0.0001, 0.001. O, D e De 0, 0.*                                            1
     ** CEN7.6e
     , Qe f e D e 1. D e 1 1. D e D e l e 1. O, 0 De De O. De 0 CtB47. s e 1 ***  13
  • CCBff.

11 6000.0. 811

     ** CON 7.15:

D. O. O. O. 0

     *O END OF INPU7:

LH00 0 1 1 1 1 4

                                                                             /

B-5

    *e
    +e C0C FILt NAME mitt Ii   ,
    .e v1PRt.1:                                                                                                                            J
1. s- 0 i te v! Pet.2:

wit!

  • so Gt m.1:

Gt0Me 15. 15. 44. De De 0

    *e GEON.t
        *6.00.          0.0e        0.5 en GE CPt.4e le .0975 1,ts*4e .3314e to                          2.    .1530,      4595.       6      .1510e         4595 te .1321e ',.2179  .           .66t9       te       le    .4530.    .5550.        7e     .1330.         4695 Se .1121e 2179                 .6629, te           se    .1530,     .5550e        8e .3330e             4595 ee      .1121. L.tL79e .66t9e te                le   .1830.       6595,       *e     .1130          4p5                     ,

se .0975e;,.M*4, .3314 le 10e .3530 4595. De .0000, .0000 se . ;,321 e ; ,. J;,79, .66 to 2, 7e . 5330 4595, J,, .1530. .5550 7e .h64t e ;,.L,254 h.32 e te Se .a330, .5550, ne .1330, .5550 ' 8e .h68te 5.3254, ;,.32 e te *e .1330. .5550, 3 .1380. .55K

          *.      .1642. L.h156, 5.12 e to 10e                     .1330.       4595. 14e .1330,                  5550
10. .13tl e ,,.2;,79 .6629 le 15e . 530. .5550. De *0000.
                                                                                                   .             .0000                    '
11. .13ta e L.t;,79 e .66:9e te tre . 330, 6595. 16e .1530. .5550 ite .164te 1.3358e 1.12 iS te A. . 350. .5550, 17e . 330 .5550 18e . 130 13e .16er e 1.3tles 1,32 be e 2. ;4 .1330 .5550, .5550 14 .1250, it e  ;,5. .1330 6595. 19e . .0000, 310. .5550
15. ..1381 3 68 t e. 'L . 217 9. 1. 3t1 e.
                                         .ut9e          t   to.    .7.530,    .5550,       0,                    .0000
16. .1321e ' .2179 .6629 to 17e .1330, 4595 21e .1;40s .45 17 .3642, L. Me,1.3256, te 18e .

330. . 5550,e ete .1;L30, .45 ISe .164te 3. z 6e e 1. 3 tSt . 2. 19 . 330, .5550, 23, .1;L30. 45 19e .1662: 3. 25ae 1.3258, to toe . 330. 4595, 24, .1 ' L 30 e .

  • MI 20e .1321 1.2179 .6629, 1. 25, .3530, 4595, 0, .0000, .0000 21e .0975e 1.03*te .3314 le tre .1530, 4P95, De .0000. .0000
22. .1 21e 3.2179 .6629 e 23. .1530, .5$50, 0, .0000e .0000
23. .1 tie L.2179e .66tte e the .1530. .5550, ce 0000. 0000 24 .1 21e .2179:
                 .0975,',.0594,          .6629         e 2Ee       .1530,       4595.      Ce      .0000,       .0000
26. .3314e 0 0. .0000. .0000e De .0000. .0000 se RODS.1 8> 0DS . le 16, De le De O. De 0. De 0. 0 en R005.24
        **.00.          0.0,        De       0 to R005.3:

24 se R005.4:

            .000.         .310e        4.992,          .450,         9.*D4        .610,         14.976              780                   '

19.964, 920e 24.960, 1.000 30.048. h.200. 35.040. 1.320

  • e.0.032, 1.400s 45.024, i.460, 44.960, h.4 toe 50.016e 1.443 55.008, 1.450, 57.984, ,.410, 60.000s h.360, 64.05te 1.300 69.944e 1.160, 74.016e ,.060e 78 044e 4 950e 79.968e .875  ;

81.024 .D40s 84.000. .740, 90.044 .530 96.000, .310

   *e R005.9 le       1.      9437,       le      le      .250,      te      .ZW e      6e       .250.         Te      .250 te       le      9707,       le      te      .250.      3.      .250e      7e       .250.        Se       .250 3e       le      9460,       le      le      .250.      =e      .250,      8.       .250,         9e      . tM 4e       le      9667        le      4       .250       5       .250.      9e       .250,       10e       .250 Se       le      9717        1       9       .250,     10e      .250,    14e        .250        15.       .250 6e       le       990te      le   lhe        .250      15e      .250      19.       .250e 20e             .250 7        le      9667,       le   19e        .250,     tos      .250     24         .250,       25.       .250
  • U. le .9707e le 18 .250 19e .250 23, .250, 24 .250
          *e       le      9*02.       le   17e        .250,     loe      .250e 22e           .250,      13e        .250
10. le 9707 1. 16e .250, 17e .250, 21 .250s tre .250
11. 1. 9ette le 11e .250e lee .250e 16e .250. 17e .250 lie le 9092. le 6e .250. 7 .250, lie .250, ite .250
13. le 1.07*6 le 7 .250, se .250 Its .450, 13e .250
        !=.        le   1.0622.        le      8.      .250,      9e      .250,    13e        .250       the        .250                '

15, le 1.0683, le 13, .tso. 14e .250, lae .250s 19e .250 .

16. 1. 1.0646 le 12e .450. 13e ,c50s 17e .250 18e .250  ;

O se RODS.68: le DUMYe .4220, 0.0e 0 < ao CPtt.1: OPERe le to 0, te De 37. De De 0 se OPER.23

       -1.0e 0.0e 0.0e 0.0
   ** OPER.5:

0

   ** OptR.5:

1534.700, 560.600. 3.549e .611. 0.0 4 1 3 94 lb04.700. 539.475e 3.644. .679 0.0 e

  • 395 1794.700. 545.006, 3.643. .3 90. 0.0 m $ 196 1774.700, $$9.300s 3.544, .694 0.0 e 4 397 2004.700, 603.914e 3.511. .606. 0.0 e 5 39e 2064.700, 578.160e 3.578. .735. 0.0 e 6 399 2114.700, 564.075 - 3.577 .813e 0.0 e 7 400 2114.700, 607.174 3.037 .557 0.0 e 8 401 2114.700s 580.442. 3.090. .646 0.0 e 9 402 2114.700. b62.ttle 3.116e .757 0.0 # 10 403 23 W.700, 624.778e 3.563e .609, 0.0 e 11 604 2404.700. 605.218, 3.631, .716e 0.0 e 12 405 2404.700. 587.072. 3.615e .822. 0.0 e 13 406 .

l 2414.700. 626.690. 3.045. .547 0.0 e 14 407 23*4.700. 606.644, 3.091. .633. 0.0 e 15 406 2384.700. 584.354, 3.077, .731. 0.0 e 16 409 ( 2414.700s. 587.614e 2.552, .627 0.0 e 17 410 2404.700 562.875, 2.579 .717e 0.0 e 18 411 2414.700. 537.209. 2.607, .797 0.0 e 19 412 , 2094.700, 582.72=, 2.590. .570. 0.0 e 20 613 - 2124.700. 560.925e 2.576. .653, 0.0 m 21 414 , 2104.700. 542.075: 2.594 .721e 0.0 e 22- 415 1994.700, 521.275. 2.617e .653, 0.0 m 23 416 6

s. ISD4.700. .501.046e 2.5*0. .701e 0.0 o 23 617

  ,,            {&D6.700,        640.0++,          20e  .769    0.0    o  25 418 3                 04.700e      159.300. t.htse C.         .e10. ' O.0    e  it  *19 t:606.

e 700. 563.700, t.116e .oSt. 0.0

  • 27 6t0 I604.700. 510.700. 2.065. .o*1. 0.0 e it ett

~' t0'9.700. 560.125, 2.077, .615, 0.0 e 29 622 2114.700, 524.200e 2.069 .667e 0.0 e 20*4.700, 30 623 1804.700. 500.814 e 505.066,

                                              ' . 0 75. .728. 0.0    e  31  424 1814.700.                    '.161.    .667    0.0    e  32  625 64t.314e    ,'.        .726    0.0    e  Il  6t6 1504.700.       479.721e    i.057      .552. 0.0    e  36  427

_, 1514.700 *62.523e 1.527. 583. .*D*e c.0

  • 35 628 1 1114.700e 660.671e 1.526, .654, 0.0 e 16 mi9

' 2016 700e 301.666e 0.96te .659e 0.0 e' 39 632

           ** OPE R .1 t s D. O, De         0. De 0
            ** Mt MW.1 MIKx. De De 0
           ** HIxx.t 0.4. 0.038
            ** OR AG .1:

OR&Se le 0, 1

           ** DRas.t 0.166. *0.20. 0.0 64.0. *1.0. 0.0
            ** OR&6 58
                            .555 0.5.
            ** 0R10.1:

GRID. De t we GRib.28 1.700. .570

           ** GR10.48
                 *1.      9 em ORIO.6 6.75, 64.75.le'1.14.75. to 24.75 le 36.75. t o 64.75 le 54.75e t o 64.75. le 76.75. R
                               . 00, D e . 00, D e .00s 0. .00 De .00 De .00. De .00, 0 0
           ** C DRR .1 :

CURR. le 1. 0 63 CORR.ts IPRI, EPRIe EPR1e NONE se CURR.3 0.2

           ** CURR.6 IPRI. THON: THOMe CE *1 e COND e GS. 7
           *e COnR.7 0.0
           ** CORR . 9 s Ct=1
           *e CURR.12 0.50747 1
           *e CONT.14 CONT                                                                                4
           ** C ONT . 2 :                                                                           j 0.0 0,    CO 20. t o t e D e 0                                                      ,
           ** CONT.3:

0.1 0.0001 e 0.001, D e D e 0, De 0. 9

           ** C ONT . 6 :

1 1. D e De le 0 1 1. O. De l e 1. O . 0

           *e CDN7.7:

6000.0 D De De 0 O

           ** C DNT . 8 3 11
           *@ CONT.11:                                        '

11 es CONT.15:

0. O. O. O. O
           ** END OF INPUT DATA:

IN00 0 l I B-7 V

     ** CDU FILt N6ME: MN122 Il!  l
     ** v! Pat.1                                                                                                                   ,
1. De 0 1 26 v!PRt.g: 1 dwitt
     +#  CfDN.1 CfDM, 25.          25. 64          O. De 0
     ** Ct0M.ta                                                                                                                    1
          *6.00.         0.0,         0.5                                                                                          1
     ** GtDM.4: -

le

                  .0975,. 1.0594         .3314        2. 2.   .1530.      4595,           6     .1530.   .6595             .
                  .1321 1.2179             .6629        2. 3.   .1510e     .5650,           7       1330,  .*595               l I' e o   .1311, 1.2179            .6629        to     6    .1530.     .5550.           Se .1330        6595                i
            *,    .1321, 1.2179,           .6629        2. Se   .1530.      4595.           *.    .1330.   .*595              J Se    .0975. 1.05*4            .3314a z,    le 10e      .1        .4595.            De    .0000.   .0000               1 6     .1321 1.2179             .6629              .7    .1 }0.
30. .4595. 11. .1550. .5550 )

7e .1662. 1.1258 1.3258, te So .1 30. .5550. 12. .1330, .55 0

8. .1662. 1.3256, 1.3258, to *, .1330. .5550. lle .1330. .55 0 1 4 1682, 1.3258, 1.3258. to 10e 1130. 4595. 14e .1330. .55 0 los .11tle 1.2179 .66t9e le 15e .1530, .5550 De .0000. .0000  ;

lle' .13tle 1.2179 .66t9e to 12e .1330, 4595, 16e .1530 .5550 e 12e

                  .1688 1.3255, 1 1258,1.3258,to         1 3258.
                                                                    .1330.    .5550,          17e     .1130.   .5550
13. .168te 14 to 13e
                                                                    .1330.    .5550,          18e     .1330,   .5550             :

16 .3682: 1.3258, to 15e .1330. 4595 19e .1330 .5550 ' 15e .litle 1.2179. 1.3258e .6629 le to. .1530. .5550, 0, .0000 .0000 1 16e .1321, 1.2179e 6629 to 17e .1130 4595e 21, .1550. .*395 17 .1682,'.3258, 1.3258, to 18e .1130, .5550, 22e .1350. 18e 364te .3258, 1.3258. to 19 1330, .55s0, 23. .1330. . d} 75

                                                                                                               .4     95 19e .1642 a.ltSt. 1.3254, te 20e .1330,                             .4595.          24      .1330.   .~595 20s .1321, 1.2179                   66tte le 25e .1530,                4595.           De    .0000,   .0000
21. .0975 1.0594, .3314, le 22. .1530, 4595. O. .0000 .0000
22. .1321 1.2179 .66t9 le 23, .3530. .5550, 0, .0000, .0000 +
23. .1121. 1.2179, .6629 le 24, .1530. .5550, 0, .0000, .0000 24 eiltle 1 2179, .6629, le 25. .1530, 4595. De .0000. .0000
05. . 0915 e .1.05 94 .3314. De 0, .0000. .0000. De .0000. .0000
    ** RCDS.1s DDDS.          1.        16e        De      le        De      De    De            De       D.      De      0
    ** RDOS.ta
         *6.00,          0.0.         D. e 0
    ** RUDS.3:

24

     ** RODS.4t                                                                                                                  '
              .000         .310,        4.992,             450,      9.964          .610,          14.976,       .780 19.*64,             920       24.960,          1.080. 30.044.       1.200             35.040,     1.320 40.032e         1 1 400, 65.024,          1 460,     48.960,       1.440,            50.016,     1.640             ;

55.00s. 450 57.904, 1.410e 60.000 1.380. 64.032, 1.300 69.984e 1.160 74.016, 1.060, 78.044, .950, 79.968 .475 81.024,

     ** Rp0$.9
                           .640,       64.000s            .760s    90.044,          .530.          96.000        .310 le     le        9635,       le       le      .250,    2.     .250,          6        .250,     7.     .?$0          '

te le .9705, le 2e .250. Se .250, 7e 4250 Se .250 Se le 9890, le 3. .250 6 .260 8. .250 *. .250 4e le 9665. 1, 4 .250, 5 .250, 9 .250, 10. .250

5. le 9645, 3; 9 .250 10. .250, '14 e .250, 15e .250 6e le 9901, le 14e .250, 15e .250 19e .250, 20e .250 7 le 9705. le 19 .250, 30. .250 24, .250, 25: .250 8, le 9665. 1 )Se .250s 19e .250, 23e .250, 24, .250
  • 9 le .*890. 1 . 17, .250. 18e .250s tre .250s 23e .250 -

los le 9880. 1, 16e .250, 17. .250, 21, 4250 22. .250 11e le 9787 le 11e .:50. Its .250, 16. .250, 17. .250

12. 1. .*890. 1. 6. .250, 7 .250. 11e .250, are 250
13. le 1.0793. le fe .250, 8 .:50 1: e - .250, 13e .250 lee le 1.0621. 1. 8e .250, *. .250, 13e .250 14e .250
15. le 1.0601. 1. 13e .250 14 .250, 18e .:50, 19 .250
16. 1. 1.0645. le 12e .250. 13e .250, 17e .250, 18. .250 0
    ** RDDS.64 8
1. DUMYe .4220e 0.De 0
    ** OptR.1:

UPER le t o 0. to Oe 29. De De 0

    ** DPER.2
         *1.0, 0.0. 0.0, 0.0
    ** DPER.33 0
    *e OptR.5 1524.700,          $57.675.          3.639         .601. 0.0    =          1      434 1514.700,          $35.900,          3.633e        .690. 0.0    *          ;      435                               +

1814.700. 584.354 3.586, .586 0.0 e 3 436 i 1814.700, 560.9tSe 3.673. .693. 0.0

  • 4 437 2114.700, 601.958, 3.624e .600, 0.0
  • 5 438 2104.700. 582.072. 3.685. .693, 0.0
  • 6 439 2114.700, 561.250. 3.637 .779 0.0
  • 7 4*0 2129.700, 602.284: 3.113. .558 0.0
  • 6 441 2114.700. 582.072. 3.163e .643, 0.0
  • 9 442 2114.700 - 561.575. 3.148. 707 0.0
  • 10 643' 2394.700, 627.386, 3.614 .578. 0.0
  • 11 444 2424.700s 605.218, 3.662. .e99 0.0
  • 12 445 2374.700, 574.486. 1.667 .783. 0.0-
  • 13 446 2414.700, 623.400, 2.978. .519e 0.0
  • 14 447 2409.700, 602.284 2.982. .595. 0.0
  • 15 648 '

2394.700, 582.07te 2.985. .662. 0.0 e 16 46e . l 2374.700. 583.050, 2.502e .572 0.0

  • 17 650

, 2414.700, 565.150s 2.515e .638, 0.0

  • 1 451

[ '. 2114.700s 587.940, 2.489 .527 0.0

  • 2 452 j 2114.700. 570.675, 2.532. .591. 0.0 e 3 453 -

i 2114.700. 550.850, 2.491. .651. 0.0 *

  • 454
1514.700, . 519.325. 2.535e- .616e 0.0
  • 5 655 >

151%.700. *92.053, 2.546 .705. 0.0

  • 6 e56 l /

l B-8 i i

                                 - -                  ,                           -                                    - ~ ,

I 1513.700. *18.sts, 2.525, 766 0.0 *

                        ;324.700.         $16.560,                                     r. 467 1124.700.

t.014 .382. 0.0

  • 8 664
                        ;0We.700.
0. 1.**6 .ette 0.0 * * +69 Sit . 25.5.

600.1 2.056. .e41.

  • 10 5 1816.700.

1814.700.

                   *& Opte.12:
                                         -100.6*0.

479.721. 1.9*s. 0.011.

                                                                 .e26,
                                                                 . 89 0.0 0.0 0.0 e

11 12

                                                                                           **0 661
                                                                                           *62
0. O. O. De De 0 I ****MIXX. De 0.

tt!xx.1: MIXM.2 04.

                   ** ORAC.1:

0.038 CR&G. le De 1 0 I ** 0R4G.28g *1.20, 0.0, 66.0. 05.

                   ** GRID.1:

CR30, 0,

                                     .355 1

0.0*1.0 I ***'.200. GR10.ti.870 e Ga10.6 al.

                   *0 GRID.6 7

g.ias 1 19.78 2, 31.75e 1. 65. 78 2. 54.75 I

1. 71.78, to 44.75 l e .00, 0
                   ** t0#4,1.

e* (Cont.1: URR.t l e 0 (PR1e EPRI. EPR1, NDet

  • CORR.3:

I *#O 0.2 CURR.6 (PRI . THOM. THOM CE *1. Cole. C5.7

                   ## CURR.71 0.0 C CRR . 9 6

.-I **e*Ct=1 CORR.12: 0 50767 1

                   *o Ctati.1:

CO 47 1 co CONT.t

I 0 0. O, 20 20. t e t o 0, 0 00 CONT.1:

0001, 0.001, O. De De 0. 0.9 0, D e le le De 0 I ** CONT.8 g g eD.0.1. 6000.0, 15

                   ** C0tif.11:

13 De 0, D O. 0e 1. l e O. O. O. D. 0 1 ***

                    # END CONT.18:

OF 1HPVf DATA: t t@0  ! 0 1 I  : I I I I o B-9

  ** CDC FILE D66Mt: MN12)

I! ' j

  -e vipet.1:                                                                                                                                          ,
1. O. De  :
  ** v!Pkt.2:

wMite

  ** Ct0H.1:

Ot0M. 25, 25. 64. O, 0, 0

  ** Gt0M.2:

4.00e 0.0e 0.5 .!

  ** Gt 0M.4 8 le .0975. 1.0$*4,                .3316       te         te .1530              4595.             6   .1530.      .4595                    H te .1321e 1.2179                 .6629        2.         3.      .1530.      .5550.              7   .3330.      .*$95
3. .1321. 1.2179, .66tte to 4 .1530. .5550, se .1330, 4595 6 .1311, 1.2179, .66t9. te le .1530, .*$95, *. .1330. 6695
       .5,   .0975.        . 0 $ en .     .3314,      1.      10.        .1530,        6595.             O.  .0000e .0000 te                                                                 .5560 se   .1321.        .2179         .6629,                  7       .3330.        6595. 11.             .1839, 7     .166te      , .12 H e 1.3268,           te        8,       .1330,       .5550,           Ite   .1}30. .5550 8e    .1642,      ,.3258, 1.3264.             2,         9       .1330       .5560,            lle .. 30. .5560 se    .3644,       .3258, 1.3254,             to 10e             .1330.        6595,          14     .1250. .5550                          ,i
10. .1331. m.2179, .6629 1, 15e .1530 .5560, De .0000s .0000 j lle .1321, 1.2179. .66t9 2, 12e .1330, 4595, 16e .1:;50, .5&SO lie .16ste 1.3268e 1.It M , te 13, .1330 .5550. 17 .1J30, .5550 l 13e .1642 1.3254, 1.3254. to 14e .1330. .5550. 18, .1350. .5650 14 .1642 1.3254, 1.1264. to 15. .1330, 459te 19, .1330 .5860 e 15e .1321, 3.2179, .66t9 le 1e .3530, .5560 De .0000, .0000 '
       }6,   .1321. 5.2179                .66t9e      2.          F.     .1330       .*595.           the .1530,          4595 37     . 2 642 h . 3 268, 1. 3 250,            t,          Je    .1330.       .SSSO,           !!.    .1333,      .4598                          ,

18e .2662, 1.3268, 1.3254, to te .3330. .5550. 23, .1330. .4595 19e .1682. 11 3250, 1.3254, 2, .0; .1330. 4595, 24, .1330, 4595

20. .1321, .2179 .6629 le 25. .1530e .4595. O, .0000, .0000
21. .0976. .0594, .3314, le 22, .1530. 4595, De .0000, .0000 tte .1321. .2179 66t9, le 23, .3530, .5550, De .0000. .0000 23e .13tle .2179 .6629, le 24 .1530. .5550s 0, .0000, .0000 24 .1321. 1.2179 .6629 1. 25. .1530. .e595, D. .0000e .0000
25. .0915. 1.0594, .3314. O, De .0000. .0000, 0, .0000. .0000 ,
 ** RODS.la apose        le        16.        De      1.         De          De       De       Oe-            0. D.       O                            i,
 ** ROD 5.!:
       %.00,         0.0.          O,        0
 ** RODS.3:

ts ,

 ** RODS.4:
          .000,        . 310.        6.99t.         .460             9.984,          .610.           14.976          .7e0 19.968.          . 920       24.*60,         1.040,         30.04a.          1.200s            35.040,        1.320 40.032.        1.400,        45.024e         1.460,         4a.960           1.400,           50.016.         1.440 55.00s.        1.450,        57.944,         1.410,         60.000.          1.380,            66.032,        1.300 69.984         1 160,        74.016,         1.060           78.04a.             9soe          79.964,         .s75 81.024,         . e40,       64.000.          .740.         90.064             .530,           96.000,         .310
 ** R00s,9 le     le     9811.           le     1.     .250e            to      .2 50       6e           .250,       7     .250 te     le     9801,           le     te     .250.            3       .260,       7            .250,       8.    .250
3. le 9845. le 3e .250e 4e .2$0e 8, .250, 9 .250
        *,     le    .*85te           le     4      .250s            5,      .250,       se           .250, Ice         .250
5. 1. .9780 1, 9 .250. 10 .250, 14e .250, 15. .250
e. le 9822. 1. 14 .250, 15, .250, 19 .250. 20, .250 7e le .*822. le 19e .250. 20e .250e 24 .250, 25e .250 8 le 983te le 18, .250 19e .250, 23e .260, 24, .250
        *. le     4822e           1. 17e        .250.          18,       .250e 22e                 .250,   23.      .250
10. 1. 9832. 1. 16, .250. 17 .250. 21, .250s tre .250
11. le 983te 1. 11. .250, 12. .250. 16. .250 - 17e .250 lie 1. .*812. 1. 6e .250. 7e .250, 11. .250, 12e .250 t
13. le 1.0871, 1. 7 .250, 8. .250. Ire .250. 13e .250 14, le 1.0302, le 8 .250 '9e .250. 13e .250, 14 .250
15. le 1.0634, 1, 13e .250 14, .250. 18e .250. 19e .250
10. 1, 1.0291. 1, 12. .250. 13e .250, 17e .250, 18e .250 0

se RODS.68:

1. DUMY, 4220. 0.0. 0
 ** UPER.1:                                                                                                                                          t OPERe 1, t e 0, t e 0. 34                O. D e O
 ** CPER.t
      -1.0, 0.0.      0.0. 0.0                                                                                                                       >
 ** OPtR.11 0                                                                                                                                              '
 ** OpfR.5:

1564.700, 565.150 3.493, .597, 0.0

  • 1 475 1514.700, $17.850, 3.516, .644, 0.0 e t 476 1789.700, 572.625, 3.712, .621. 0.0 e 3 477 1789.700, 559.950, 3.764 .731. 0.0 e
  • 478 2114.700, 580.768, 3.723, .770 0.0 e 6 440 2114.700. 599.350. 3.149, .607 0.0 e 7 481 2114.700e 580.116, 3.180, .699 0.0
  • O 482 2114.700 565.150. 3.144, .757 0.0 e 9 483 2414.700, 623.148 3.643. .641. 0.0
  • 10 464 '

I414.700s 601.306. 3.654, .755. 0.0 e 11 485 2414.700. 619.648. 3.015, .578. 0.0 e 12 486 2414.700. 594.372, 2.983, .646. 0.0

  • 13 487 2414.700, 564.680. 2.910e .688. 0.0 e le 488 2414.700. 577.508, 2.501. .640s 0.0 e is 489 2414.700 562.225, 2.483. .644 0.0 e 16 4*0 2414.700. 547.600. 2.472 719 0.0 e 17 491 2114.700, 585.658, 2.454. .571. 0.0 e 18 49 2164.700, 574.575. 2.454, .602. 0.0 e 19 493 2114.700. 543.050, 2.508. .712, 0.0 e 20 404 2114.700. 525.500. 2.479 .745. 0.0
  • 21 495 1514.700. 516.725. 2.681. .663. 0.0 m 22 466 1514.700. 502.437, 2.511e 719e 0.0 e 23 497 1514.700 481.344, 2.505. .763, 0.0 e t4 498 r

B-10

p O.700e b61.400, 1.407. .546, 0.0 e IS 4** p 1%'i00 $19.1$0 - 1.001. . e: 6. 0.0 e C6 500 D.100 $16.076, t.Ctte .**7e :0.0

  • E7 y114.700 bee.160, $01 2.00s. 5%, 0.0 e CD S0t 134.700e 526.800. 1.9*6, ***ee 0.0
  • C9 $03 114,700. = %.000. 1.980. . 719 e 0.0 e 30 504 414.700, 446 271, t.025. .660, t.0 e 31 505 1914.700. 648.189, 1.947, .676e 0.0
  • Mt $06 s 1514.700. 475.17*e 1.536. .574 0.0 e 13 507 1$14.700, 466.708. 1.464. 584, 0. 0
  • M4 504 1514.700, 660.795, 1.491, .616. 0.0 a 35 $0*

ae OPER.12: r D. De De De ce 0

     ** MIMK.1

% H! * . De De 0

     ** N10.tt 0.6. 0.058
     *e 0148.1s DR&Se le De 1

( *O OR&S.23 0.146. *0.20, 0.0, M.D e 1.0 e 0.0

     *e OR&0.$s 0.5.         .f55
     *e OR10.1:

GRID. O, ( ** GRID.t: 1.200. I

                           .870
     *e 0410.48
          *1.         9
     ** GR10.61 f            *. 75 1,14.75, 2,24. 75. 1 34. 75, t e%. 75        1.$4. 75. R ep. 75. 1.74. 75. t e

( - 84.75e 0 le .00, c e . 00. O . .00, De .00 De .00e 0, .00. O. .00, 0

     ** CURR.11 Caltn e   le 1. 0
     *e CORR.ts (Pete EPR!. IPRI. NSit
     *O CORR.3:

0.2

     ** C ORR . 6 2 Pat , TH0He THON. Ct le CONO, G5.7
     *e CORR. 7 0.0
     *e CORR.91 Ct.1
     ** CURR.123 0.50747, 1
     ** CONT.11 C@R
     ** CONT.21 0.0. De 20 20. t o t e 0 0
     *e CONT.33 0.1      0.0001, 0.001e De De De De 0.9
     *e CONT.68 1
     ** CONT. 1.7D  e D e l e D e le le 0. De le le 0. 0 4000.0        0. De De De 0
     #G CONT.88 13
     ** CONT.11:

13

  • CONT.15:
0. D e O. D e 0
     ** Dio CF IP4PUT DATAt (N00 0

i

  'J a

h B-11

                           ..e        -.            -

I

*e CDC FILt N6Mt HH125
.e
+= v1 ppt.1
1. O. De 1
** v!PRt.23                                                                                                                       .

e*125 ea Ct3M.1 Gt0Me 25. 25. 44. De De 0

** Ot0M.2
    +6.00.         0.0.        0.5
** 01D1.4
      }.    .0975 1.05*4           .3314           to      te    .1530.       4595e        6.     .1530.      4595
      .e    .132 e 1.2179. .66t9e                  to      3.     .1530.     .5550,        7      .1330s    .=595
3. . Alt . 1.2179; .o6t9 te be .h530. .5550. 4. .1330. 4595 4 .132 . 5.2179, .6629, te le .m 530 6595, 9 .1350. 4595
5. .097 e ,.0594 .3314 le 10. .L530 4595. O, .0000. .0000
e. .1321 o.2179 .6629, to 7e .1330. 4595, 11e .1530, .5550 7e .1642 1.3258 1.3254, to 6. .13 0. .5550, 12. .1330. .5550
8. .168te 1.3254. 1.3254, to 9 .33}0.

3 .5550, 43. .1330. .5550

      *e    .1648, 1.3254, 1.3258,                 to 10. .1330              .*595e      14e      .1330.    .5550
10. .13tle 1.2179 .66t9, 1. 15e .1530. .5550, 0, .0000. .0000 lie .1321, 1.2179 .6629 te are .1330 4595, 16e .1530. .5550 ite 68te 1.3254, 1.3258. 2. 13e .1330. .5550, 17e .1330, .5550
13. .

1'642,1.3254 1.3254, to 14.- .13}0. .5550, see .1330. .5550 1*. .364te 1.3258, 1.3254, to 15. .1:30. .*S*se 19e .1330s .5550 15e .1121e 1.2179, .6629 le 20e 1b30. .S$50, 0. .0000e .0000 1 16e .1521e 1.2179 .6629 to 17e .1330s 4595, 21e .1530s 4595 17e .1688 1.3256, 1.3254. te lee .1330, .5550. 22, .1350. 4595 18e .1652, 1.3254, 1.3254 to 19e .5550s. 23e .1330. 4595 19e .166te 1.3254, 1.3254, to 20e .1J.30.

                                                                 .2 30.     .4595,      24        .1330       4595                               .

20e .13rle 1.2179e .66t9, le 25, .tf30. .*595. De- .0000e .0000  ! Ele .0915 1.0594 .3316 le tre 3530. .*595e 0, .0000. 0000 4

    !!e .1321e 1.2179e             .6629,          le 13e .1530s            .5550,        ce      .0000     .0000
23. .132.L. 1 2179 le 26 .3530, .5550 De .0000 .0000 1 the .1321 e 1.2179, . 6629 66 t 9 e. le 25. .1530, 4595. De .0000. .0000 l t$. .0971. 1.0594. .3314 C. Ce .0000. .0000e De .0000s .0000
+= ecd $.1:

9305, la 16e De 1. De 0. Os ce- De 0, 0

** R005.2
    *6.00.         0.0e        De        0
*e #005.3 28 et RUDS.48
        .000s        .358e      4.992,           .359,        4.964           400e 14.976                4 54 19.*68           .667,     24.960.           .683,       30.044         .833,      35.040,          .992 40.032,         1.133.      *$.024,         1.258,       67.520,        1.305.      AD.016,         1.350
    $2.512,        1.410e      55.004,         a.467.       57.504,        1.522,      60.000,         1.592                                  ]

62.446, 1.640s 64.992. 5.6 54, 67.468, 1.640, 69.994, 1.583 ' 72.480s 1.510 74.976, h.4lle 79.968. 1.233 64.960, 993 87.456, .815e *0.044, .633. 92.448 .520, 96.000. .367

    • ROOS.9 le to
             }.

se

                   .9502, 9502, le le le to
                                                 .250,
                                                 .250s 2.

3e

                                                                     .250,
                                                                     .250, 6.

7

                                                                                        .250.
                                                                                         .250s 7

8.

                                                                                                            .250
                                                                                                            .250 le      le      94f 9      le       3e      .250.        4      .250        Se      .250,       9e     .250                              1 6e      le     9441.       le       4       .250s        5.     .250        9       .250,      10.     .250
5. le .*492. le to .250, 10e .250, 14e .250, 15e .250 se le 9460e 1. 14 .250 15e .250, 19e .250, 20e .250 7e le 94t9e le 19e .250e 20e .250, 24, .250e 25, .250 8e le 4492e 1, 18e .250, 19 .250, 23e .250, 24, .250 4 le 449te le 17. .250, 18, .250, ite .250, 23. .250
10. le .**81, le 16. .250. 17 .250, 21e .250. 22. .250 11e le .***te le lle .250s 12e .250s 16e .250. 17e .250
12. le .*429 1. 6e .250. 7. .250. 11e .250, 12. .C50
13. le 1.16tle le 7e .250. So .250. It, .250, 13e .250 '

14, le 1.1591 1. 8. .230. 9 .250 13e 4 250 14e .250

15. le 1.1560s le 13. .250. the .250s 18 .250. 19e .250 16e le 1.1544, le lie .250e 13e .250, 17. .250. 18e .E50 0

se RDOS.68:

1. DUNY .4220e 0.0. 0 se DPER.1:

DPER 1e to 0 te De 33. O. De 0 ee OPER.2:

   -1.0. 0.0, D.De 0.0 se UPER.3 0

se OPER.5: 1514.700, 554.750e 3.537. .510 0.0 e 1 510 , 1514.700. 541.750. 3.511. .587, 0.0 e 2 511 > 1814.700. 579.790. 3.470 .54te 0.0 a 3 512 1814.700, 558.000, 3.568, .614 0.0 a 4 515 2114.700. 600.002, 3.541e .533. 0.0 e 5 534 2114.700. 584.354e 3.499 .622e 0.0 e 6 Els 2114.700. 571.650, 3.462 .658, 0.0 e 7- $16 2144.700. 605.870. 2.954 .463, 0.0 e 8 517 2114.700. 576.530, 3.043, 573e 0.0 e 9 518 2114.700s 560.925. 3.019 .612. 0.0 e 10 519 2414.700. 619.688e 3.537. .530 0.0 e 11 520 2414.700s 599.676, 3.536e .610. 0.0 e it 521 2414.700 583.050, 3.520e .665. 0.0 e 13 522 - 2414.700s 620.540, 3.053. 666 0.0 e 14 523 2414.700e 5** 134 3.052, 568. 0.0 e 15 524 . 2414.700, $82.072. 3.004e .606. 0.0 e 16 525 2389.700e '57* 790. 2.517e .515e 0.0 e 17 526

  • 2374.700, 560.600, 2.522. 547 0.0 e 18 527 23*4.700, 539.150, 2.521e .600. 0.0 e 19 528 g 2134.700. 581.0*4 2.515e .500. 0.0 e 20 529 20**.700. 561.900. 2.514e- .54t. 0.0 e 21 550 -

2099.700,- 544.350s 2.506. 577. 0.0 e 22 531 al2

j f 36. 700 e '$18.675. 2.528. 555 0.0

  • 13 fit
               .!!4.700e          **e.561.      s.507,        .$*5       0.0
  • tw $11 7 1826.700. *43.**0. 2.682. .434 0.0
  • 26 $14
            -23**.700.            1-*6.6 $0. 1. 9 % .      .*75       0.0    *           $15 2396.700,          5=*.676.      2.037         .517       0.0
  • tt 27 - $16 s 614.700.

114.700,

                                  $21.t!5.      2.040,         564,      0.0
  • 24 $37
                                  $*4.0tle      1.997,         505e      0.0
  • 29 534
  • 0**.700,
               ,044.700, 119.325e      2.0t$.         560       0.0
  • 30 S39.

505.013e 1. 9 % , .581 0.0

  • 31 540 1826.700, 601.086 1.987. .560 0.0
  • 2836.700. It $61
                                  *84.26*,      2.016.        .604       0.0    a   33      6*t

- ** OPER.12: D. De- De 0. De 0 q- ** Ml a.1: it!We 0. De 0

         ** H! *.2:

0.te 0.034 w DR&S.1: OR&G, le De 1

         ** DRAG.2:

0.166 0.20e 0.0 64.0, -1.0 0.0

         ** Omat.St 0 5.           .588
         ** GRID.1:

CR10e De 2

        ** GR10.2 0.*e0.          0.570
         ** OR10.4
  • al. 9
         *# GRID.6
              }0.75 1 20.75: 2 30.75, 1 60.7%, t 54.75 1.60.75, t 70.15, 1,80. 75. Z e 0.7&e le .00 De .00e 0,                 .00s De    .00s De    .00e 0,    .00e 0, .00e 0 0
        ** CORR.1:

CURR 1. 1. 0

         ** C W R.2:                                                      .

EPe!. (PRI (PRI. HONE

        ** CCRR.3 0.2
        ** CCRR.6 (PRI 7HOM. THOMe CE.1, Cme. G5.7
        ** CURR.7 0.0 CO CORR.9 Ct=1
        ** CORR.12:

0.60747 1

        ** CONT ,11 CONT
        ** CONT t 0.0. O. 20e 20 to te 0 0
        ** CON 7.1:

0 1 0.0001e 0.001. 0. D e D e D e 0.9

        ** CON 7.6e
1. l e. 70 . D e l e D e 1. 1, c e 0. l e 1. C e 0
        ** CetT                                                                                          .
             *000.0, 0. De De 0. 0
        ** C0t47.S 13
        ** CON 7.11:

13

        ** CONT.1$ s
0. O. O. O. 0
        ** EHO OF INPU7 D& tai LH00 0

l B-13 '

                                                                    ~

I! I

             ** CDC FILE NAME: NNit?                                                                                                                                                                  i
             .*                                                                                                                                                                                   J
             *e v! Pet.1:
1. O, 0, se v1 ppt.g:

i HH127

             ** OtDN.la                                                                                                                                                                               I Gt DM . 25, 25.         44,       0,           0,        O                                                                                                                           l
             ** OL DM . 2
                  **.00.         0.0.        0.5                                                                                                                                                      '
            ** GtDH.4,                                                                                                                                                                                 I le .0978 1.05*4               .3314,                   to            te     .3530.           4696.        6             .1$30.          .4595 to .1321 1.t179               .66tte                   to            3,     .1530,         .5550,          7            .1330,           4695
3. 1321, 1.2170s .6629 to 4 .1530. .6the, to .3330, 6696 6 .1321 1.2179, .66t9e 2, 6. .1830, 6696, 9 .1330, .4896 l S, .0975, ,.0544, .3314, le 10. .1530. .4698, 0, .0000. .0000 e, .1321. ' .t179 .6 29, 2. 7, .1350, 4698, 11e .1580, 5850 7 .16st, L.1268 L.32 , to 4 .3330. 5850, 12 .h330, .5860 to 8, .1682, h.3tS8, h.32 e 9 .1330 .5880, 13 ,, . h330, .5460
                    *e    .1642, 1.3t M , L.3                     ,        to           10.     . 330,           4595,       14,            .L330.         .5560
10. .13tl e 1.2179 .66t9, 1, 15, . 530, .5860e ce .0000. .0000
11. .1321, 1.2179 .6629, to are . 330, 4696, 16e .2830, .5990 12e .1642 1.3284, 1.3284e to 13, .1350, . 5Sbo e 17, .1330, .55 -

13e .168t e 1. 3258. 1. 32 54, to 14, .1330 .5560, 18e .1330. .55 0 14, .1682, 1.3284, 1.3254, to 15. .4330, 4695, 19, .1330, .5s 15e .1321. h.2179 .6629, le 20e .1530, .56S0, 0, .0000 .0000 16e .1321. .6629 2, 17, .1330, 4 48, 21, .1530. .48 17e .164t. h.3284,,.2179, 1.3268,to 14, .1390. . $. 40 St. .1380. 45 18, .1688. L.1268 1.32 M , 2, 19e .1330, .5. ib0. 23, .1310. 45 19e .1688 1.3264 1.3tu e 2, 20, .3330, 4895. 24, .1330, 48 20e .1321. 1.2179, .66fte 1, 25. .1830, .4598 0, .0000, .0000

21. .0976,1.05*4 .3314, le tre .1580 .*$96, 0, .0000 .0000
22. .1321e 1.2179 .6629 le 23, .1530, .5550, 0, .0000, .0000 23, .1381 1.2179, .66t9, 1, 24 .1530 .5850, 0, .0000 .0000 24, .1321, 1.2179, .6629, le 25, .1530, 45*5. G., .0000 .0000 '
25. .0975 1.05*4 .3314e 0, 0. 9000. .0000, De .0000, .0000 *
            ** #00$.1:                                                                                                                                                                             f R005.        le     16,       ce               le           0,              O.       O,           D e-      0.               0,         0                                          -

Se RDDS.2 *

                  *6.00,        0.0,        0.           0
,           ** RDD5 3 28                                                                                                                                                                               1 1
           ** RODS.44
                      .000.       .3 58. 4.992.                     .359,               9. 9t 4             400,       14.976                  .4 54 19.968           .567e     24.960.                    .6sle              30.068,             .833,        35.040s                    991 3

40.032, .133. 45.024, 1.254e 47.740, 1.305e 50.016, 1.350

$2.512e .410 55.008 1.467, 57.504, 1.522e 60.000, 1.592 62.496 ,,.640, 64.9*te 1.6 bee 67.448, 1.640, 69.904, 1.583 7 1.510, 74.476, 1.433, 79.964, 1.233, 64.960, .993 i

8[.480, 7.456e .815e 90.044. .633, 92.444. .520, 96.000. .367

           ** RDD5.98-le      }e     9447,      le          le            .250                 to      .250            6,      .250,               7e        .280 to      4e     9447       le          2.            .250e                3,      .250.           Fe      .250,               8         .280                                    t
3. 1. 4414 1, 3. .250, 4 .250e Se .250 9 .260 4, le .*466, 1, 4e .250s le .280, 9 .250 10e .250
5. 1. .*677, 9445, le *. .250. 10. .260, 14 .250, 15e .250 .

6, 1, h. 14e .250e 15, .250s 19e .250e los .250 7, 1, .*414, Le 19e .250, 20, .250, 24, .250, 25, .250 4 8e le 9477, h, 18, .250e 19, .t$0, 23, .250, the .250

                   *,      le .*477.         le 17.                    .250,              16,       .2bO.          22,      .250. 23:                     .250
10. 1. .**66e 1, 16e .250, 17 .250, 21. .250s tre .250
11. le 8477, 1. 11, .250, 12, .250, 16, .250 17e .250 12, le 4414, le se .250, 7 .250. 11e .250, its .250 13e le 1.1604, le 7 . 25* e 8. .250, 12. .250e 13e .250 1*. le 1.1571e 1. 8. .250, e, .250, 13e .250, lhe .250
15. 1. 1.1797, le 13. .250. 14, .250, 18e .250s 19e .250 16, 1, 1.1526, le 12. .250, 13e .250. 17, .t50, 18e .250 0 *
** RODS.68

, 1. DUMY, 4220. 0.0. 0 l me cPER.1 DPER, le te De t o 0, 37, De 0, o

           ## DPER.2:
                 +1. 0. 0.0. 0.0. 0.0

. ** DPER.3: 0

           *e OPER.5:

1514.700, $58.000, 3.544, .50s, 0.0

  • 1 550 1514.700, 511.325. 3.543. .5 90 0.0 e t 551  :

1814.700, 572.625, 3.549, .523, 0.0 m 3 552 1814.700 $58.000.' 3.530 .549, 0.0 e 4 553 2114.700, 600.664 3.526e .512e 0.0

  • 5 554 2114.700 E87.614e 3.489 .569, 0.0 a 6 555 "

2114.700. 562.550. 3.533. .640, 0.0

  • 7 556 2114.700 594.786, 3.046. .484 0.0
  • 8 557 2114.700, 541.420, 3.021, .524, 0.0 e 9 558 2114.700, 563.850. 3.017, 576 0.0
  • 10 '559 2414.700, 624.652. 3.018e .499 0.0
  • 11 560 2414.700, 604.892, 3.521, .551. 0.0
  • 12 561 2414.700, 585.654 3.500e . cob, 0.0
  • 13 562 2414.700, 616.302, 3.050, .451, 0.0
  • 14 563 2414.700, 605.218, 3.006. .497, 0.0
  • 15 564 2414.700, 582.398. 3.034, .544 0.0
  • 16 565

- 2364.700, 583.050, 2.502. .479 0.0 e 17 566 2364 700 564.500, 2.464, .523, 0.0 a 18 567 2414.700. 546.300. 2.4 93, .569, 0.0 e 19 568 2114.700s $84.354, 2.503. 45, 0.0 e 20 569

!.              2044.700:          561.200           2.511,                    .491.               0.0         m       21                570 2114.700.          547.600.          2.493,                        543.            0.0
  • 22 - $71
                                                                                                       /

B-14

                                                           --m4-    - - =         r---y                                         , - - -                          - - ,-er- w  -w-,1- -a - % *, e-

L 11 4 700. f20.300. {.666 .510. 0.0 e 23 572 151%.100,- $10.550. . 659, .575 0.0

  • 24 1$14.700. $75 647.510. 2.506 .*t0e 0.0
  • 25 $74
             '1814.700,        505.610,   1.974.     .541. 0.0
  • 1814.700, 26 $ 75 685.218. 1.976 .577 0.0 *. 27 576 211*.700, 548.700, t.015e 487, 0.0
  • 28 577 2114.700 521.275, 1.945. . .520, 0.0
  • 29 578 1814.700, 508.066, 1.979 .544, . 0.0
  • 10 2114.700. **9.641, 579

-s 2.006 .555, 0.0

  • 31 Sto 2414.700 564.175. 2.001, 668. 0.0
  • It $81 2414.700 b*5.660. 1.987 .**le 0.0 '
  • 11 Set 2414.700, 521.600. 1.946 .541, 0.0 e le 1514.700. $63
                               *75.428. 1.767     .**le    0.0
  • 15 566 1514.700. 6H.470, 1.467, .524, 0.0
  • 16 545 1514.700. ***.029. 1.440. .5H e 0.0 e I OPER.12 37 566 D.
          **   MI De
          ** MiW,       De 0.
                      *.1:

De -Oe 0 O, 0

         #3 M1W.2:

S.l. 0.054 ) I ** ORat.1: ORAS. te ORat.t

1. O, 1 0 146. -0.20e 0.0, 64.0. *1.0, 0.0 00 ORAG.5 0 5. .555 I *** GRIO.

GR10.1s

  • GRIO.ta 0 640.

oo 0410.4 De t 0.570

              -le       4 I     ** 3R10.6:

0.75, 1.11.75 2.22.75 1.33.76. 2.64.75

         *e CORR.1:

1.57.75, 2,70.75 1.64.75, 2 COW 4 11.O I se COnR.tr EPRt . (PRI, EPRI. NONE oo CORR.5: 02

         ** CORR.6s E PR1. THON. THON, CE*1. CONO. G5. 7 l

i

         ** CURR.7:                                                                            l 0.0
         ** CORR.9 CE=1
         ** COltR.12 0 50747, 1                                                                       j 1

i I CONT.la Ct3df

         ****. CON 7.t 0 0 De 20. 20e t e 2, 0, 0
         ** CON 7.1:

i 0 1 0.0001 0.001. O. C e D. J. 0. 9 I 00 CONT.68 1

         ** CON 7.7 1.0.0,1
             *000.0. O. O, 0. O. 0
         ** CONT . 8 0 1.le0,0 ele le De 0
  • 13 o CONT.11 1 13
         **e0. CONT.15:

O . O. O. 0

         *O END OF IMPUT DATA:

ENDO O 1 i i B-15 i i

   ** CDC FILt NAME: WH131 I:
  ** v1P>t.1:                                                                                                                                                                      i
1. O. 0
  *e v! pet.2:                                                                                                                                                                     ,

WH111 to Gt0M.1: GEGM. 25e 25. 56, De 0. 0

  ** Gt0M.2                                                                                                                                                                        ;

168.00. 0.0. 0.5 >

  ** Gt0M.*:
1. .0630, .*$74 .3314, 2. 2. .1020. 4340. 6. 1020. .4340 i to .1038e 1.2179 .6629e 2. 3. .1020. .5550, 73 .1330. 4340
3. .1034 1.2179, .6629 2. *e .1020, .5550, 8. .1130, .*l40 6 .1038, 1 2179, .6629e 2, 5. .1020e 4340, 4 .1330, 4340  ;
5. .0630. 9574 .3314.- le 10, .1020. 6340, 0, .0000, .0000 .

6e .1014, 1.2179 .6629, to 7 .1130. 4340, 11, .1020e .5550 7, .1682, 1.1254, 1.3258, 2e se .1330. .5550, 12, .1330. .5550 . 8, .itiet, 1.3258, 1.3258. 2. *. .1330. .5550, 13e .3330, .5550 9e .2682, 1.3054, 1.3258, 2, 10. .1330, 6340, 1*. .1330. .5450 i 10, .1038. 1.2179 .4619 le 14 1020. .55be, C# 0000. .0000 , 11e .1014 1.2179 .6629 2. Its .1330 .4340, 16e .1020, 45550 -

12. .2642, 1.3254. 1.3254. 2, 13e .1330. .5550, 17e .1330, .5550 13e .1642, 1.3254, 1.325s. to 24, .1330, .5550, 18e .1330. .5550 16 .1642e 1.3254, 1.3258. 2. 15. .1330. 6340, 19e .13*0- .5550 15e .1034e 1.2179, .6629 le 20. .1020e .5550, 0, .00c t . .0000 16e .1018 1.2179, .6629 2, 17. .1330, 6340, 21; . lott . 4340 17e .2642 1.3254, 1.3254, to 18e .1330 .5550, 22, .1330e .4540 .

18, .1682, 1.3258 1.3254, 2. 19e .1330 .5550 23, .1330 .4340  ; 19e .1642 3.3256, 1.3k&8. 2. 10e .1330. .4340. 24, .1330, .4340 ' 20e .3038. h.2179 .6629, le 25. .1020. .4340 O. .0000, .0000 t

21. .0630, .*$74 .3314, le 22e .1020. 4340, 0, .0000, .0000 h 22, .3038 1.2179 .6629 le 23 .1020e .5550, ce .0000 .0000 )
23. .1018. 1.2179 .6629 le 24 .1020. .5550. O. .0000. .0000 3 24 .3038 1.2179 .6629 le 05. .1020. 6340. De .0000. .0000 '
05. .0630. . *574, .3314. O. D. .0000. .0000e De .0000. .0000
  *# PODS.1:                                                                                                                                                                       '

RODS. le 16e 0, le 0. O, 0, 0, 0, De 0

  ** RODS.2 168.00.        0.0.       O,       O
  *e R00s.3:                                                                                                                                                                       '

22

  ** RODS.4s
            .000.     .540.      12.128,         .577,          23.419         .638,        35.759           .724 43.14*e       .798e      53.012e         .896.          61.034,          994,       69.040.         1.092 73.970,    1.153.       80.136,       1.221e           88.771,      1.300.          96,163         1.350 101.091, 1.374          107.260,        1.193.         110.961,       1.386.        117.120          1.374 125.278, 1.337          128.218.        1.268.        134.366. 1.215,               140.539          1.129 147.649      1.006. 164.000.          .549.            .000.        .000e            .000,        .000
 ** R005.9
1. 1. 9592. le 1. .250, 2. .250e 6. .250. 7 .250
2. le 9592. 1. 2. .250, 3. .250, 7 .250. So .250
3. 1. .9543, 1. 3, .250s 4 .250, 8 .250. 9 .250 6, le 9616, le 4 .250s 5. .250, e. .250. 10. .250 Se 1. 9600e 1. 9e .250. 10. .250. 34 .250e 15e .250 6, 1. 9604, 1, 14 .250. 15e .250. 19 .250s 20. .250
7. le 9583. le 19e .250. :De .250s the .250s 25. .250 i 8e 1. 9592. 1, 18. .250, 19e .250 23, .250s 24, .250
        *. le         9600,    le 17e          .250,       18e        .250s      22e       .250e 23e            .250
10. 1. 4600, le 16e . 50. 17e .250e 21. .250s 22. .250 1).

14e le le 9600. 1. 11.

                    .*600,     le      e.
                                               .250
                                               .250s 12e 7e
                                                                      .t50.
                                                                      .250, 16.

11,

                                                                                           .250. 17e
                                                                                           .250,       12e
                                                                                                                .:50
                                                                                                                .050 13,     le   1.1206. le      7e      . ISO.        8.       . 50       12.       .;50,       13.      .;50 1*. 1,   1.1217. 1,          8.      .I50.         *e       . 50,      13.       .250,       14.      .250                                                               *
15. le 1.1206e le 13e .;&O, 14 .;50. 18 .250, 19 .250 16, le 1.1206, le 12. .250s 13e .250, 17. .250, 18e .250 0
 ## RODS.68:
1. DUNY. 4220e 0.0. O <
 ** OPER.1:

OPER. le 2. D e to 0 37 O. De 0

 ** OPE R. 2 :
      -1.0. 0.0. 0.0. 0.0
 ** OPER.3:

0

 ** OPER.5:

1504.700. 559.625. 3.427, 4tle 0.0

  • 1 617 2094.700. 603.914e 3.444. . 4 0.' s 0.0
  • 2 618 2394.700, 604.240e 3.450. .455. 0.0 a 3 619 2394.700s 601.306, 3.007. .423 0.0
  • 4 620 2114.700, $98.300, 3.005. .359 0.0
  • 5 621-2124.700 567.425, 2.969 643 0.0
  • 6 622 2124.700, 566.125. 2.422, .387 0.0
  • 7 623 2394.700 563.200, 0.447. 429 0.0
  • 8 624 24n4.700 575.552, 3.413. .5*3. 0.0 *
  • 625 2374.700. 569.375., 2.941, .479 0.0 a 10 e26 2404.700, 541.100, 2.933. .546 0.0
  • 11 627 2414.700. 532.000. 2.463 .*78. 0.0
  • 12 628 2414.700, 502.437, 2.473. .538. 0.0
  • 13 629 2414.700. 561.900, 1.961 .360. 0.0
  • 14 630 2404.700. 525.175. 1.952. .407 0.0
  • L5 631 2099.700, 561.250, 1.969 .327 0.0
  • 16 632 2094.700 524.850, 1.949, .382. 0.0
  • 17 633 2404.700. 492.053. 1.964 .461. 0.0 a 18 634 2114.700. 476.529, 1.997, 467 0.0 e 19 e35 2124.700. 687.185. 2.468. .520e 0.0 * :D e36 20*4.700. 522.000. 2.495. .*63. 0.0 * :1 e37 C114.700. 560.000. 5.448. .522, 0.0 m tc e18 2004.700. 528.750, 2.972 .517e 0.0
  • 23 e39 o

B-16

1811.700, $$5.C00s 3.646, .e64, 0.0 e 24 c=0 3 i.7'*.700 ' 132.350. 3.

                     ? "* . 700 s350.625.          c^ 3 e -
3. 4 64
                                                               .fl0.
                                                               .516e 0.0 0.0
                                                                            *   {$
                                                                                .6 eel
st
                                   $15.100.     {.526.         .519e  0.0
  • 27 6*3 1'516.700.

669.700. *B1.616e . 407 .*56. 0.0

  • 28 6**

1*t9.700

                 .)$14.700,
                                   ***. tite    2.483,         .501,  0.0
  • 29 645 641.461, 1. 996 , .*47 0.0
  • 30 666 1904.700, 561.900, 1.*42. .2 64, 0.0 e 31 667 489.700s $20.950, 2.$11. .et6. 0.0 *  !! ' 644 -

504.700. 527.1t$. 1.937, .359 0.0

  • 13 669
                   .$01.700.       *79.073,     t 004          .*09   0.0
  • 16 e&O

' 18D4.700. 314.125. 1.952. .352. 0.0

  • 35 651 f64.700. 1, 2.001. 600. 0.0 e 36 652 s }104.700e 479.7{4e
                  .                *05.21       3.464,         .412e  0.0
  • 37 653
              ** OPER.12:
0. De De De De 0
              ** MIWt.1r MlMKe Qe Q. O I              ** MIKX.2:

(- 0.4. 0.074

              ** DRAG.1 DRase     1. O,    1
              ** DRa0.gis 0.166. -0. tc. 0.0, 64.0, ~1.0            0. 0
              ** OR&c.5:

0.5. .555

              ** GRID.lt GRIO. De           t
              #3 GRID.2:

1.*00. .570

              ** GPID.4 13
                  *1.
              ** GR10.6 e 00 2.19.00 1 32.00, t .45.00,1.53.00 0

110.00 2 123.0 1.136.0 2 149.0,1.162.0, t 2o71.00.1.84.00.00, ce s 2e??.90

                                                                                      .00 De .00, 1,

0

         '.   ** CDRR.1:

OCRR. 1. 1 0

              ** CURR      2(: EPR!e NCD4E IPRI, PR!s
              ** CDRR.3:

0.t

              +3 CURR.6 EPRI. TNm e THOM CE-le CONO, GS.7                                                   !
              *@ CORR.73                                                                              i 0                                                                                    ,
              ** CURR.9                                                                               1 Ctal
              ** CDRR.12t 0.5n747, 1
              ** CONT.1:

CONT

              ** CONT.23 0.0. 0 20 20 to to De 0
              ** CONT.3:

0.1 0.0001. 0.001, De 0, ce 0 0.9

              ** CONT,6s le 1. De De le De 1        3. De ce le le De O s2 CONT.78 4003.0. De De De De 0
              ** C04T.88 13
              +2 CDiff.11:

13

              *a CDNT.15:

D. De De De 0

              ** END OF INPUT DATA:

INDO O i 1 i L BI17

                        ~                               .-                                        .                  .    .      - .    ..

_l

   *3 ee CDC FILt MNEi NN132 I!

as ;-3 Pat.1: i

1. De 0  !
   ** v!PDE.ta                                                                                                                                     1 WM132                                                                                                                            *
   ** GtOH.1:                                                                                                                                     J GEONe 25e t$e $6e 0,                       De 0                                                                                               l em CEDH.t                                                                                                                                        i 168.00,             0.0.       0.5                                                                                                           '
   *e GEDM.4:

le 0630. .*374 .3314e to te .1020e .4340, 6. .3020. .4340 I

                 .1038. 1.2h79,          .6629          to        3.     .3020e .5550s                  to    .1333,        4340

{ $e .1038e 1.2h79 e .6629 to 4 1020, .5560, to .1330. 4360

        *. .1018 1.th79,                 .6629,         to        5,      .3020e        .4340,         to .1330.            4560                    l le .0630, .'574,                 .3314,         le      10.      .30f0e           4360.        De     .0000.      .0000                   J
o. .6629 to te .1330, .4360, 11e .1070. ..5s50 5)H 7e ..4647,
                    } 038, 1. 2179, 1. 32M e 1.3284,                    to       to      .1330.         .5860,        12e .1330                                   i Be .1688 1.3264e 1.32b8,                        to        9      .1130.         .5&&c. 13e .1330.                 .5650 i

10e

                 .1682, 1.32be 1.3268,                  te 10e           .1130,           4360.       14e     .1330,      .5560                   ;
                 .3038, 1.2179e          .6629,         le 18e           .3020.         .S$50.         De     .0D00.      .0000                     i 11e       .1038, 1.2179,         .6679           te are           .1330.           4360,       36.     .1040.      .5$60            .

Ite .368te 1.3264,

                .1642, 3.3254, 1.3268,                  to 13e           .1330. .5550.                37      .1330,     .5860                    '

13e 14, 1.32 be e 2, 14e .1330, .5560. 38. .1330. .5860 .

                 .1682 h.32be e 1.3268,                to     15e        .1330.           4340,       19e     .1330.      .5850                   '

1&e .1038, a.2179 .6629 le 20e .3020e .5&&D, De .0000, .0000 . 1*e .1038, 5.2179, .6629 to 17e .1330. .4660 21e .3020e 4360 e 17e . h68te h.3t M 1.3tSte te lee . 330. .5850. Et, .1330 4340 1 18e . h68t e 1.3tMe 1.3268. '. 19e . 330, .5Bace 23. .1330. 4340 19e .h682, 1.3268 1.3288, e 20e . 130. 4340. 24, .1330, 4340 20. gle

                 .1038. 1.2179
                 .0610
                                         .6629          le 25e           .10 toe          6340e        De     .0000,     .0000
                              .9574,     .3314,         le      22,      .1020e           4140         De     .0000.      .0000 tre .3038          1.2179         ,6629          le      23,      .1020.         .5560,         De     .0000.      .0000 i
23. .3038, 1.2179 .6629 le 24 .1020. .5560 De .0000e .0000 24 .1038. 1.2179, .6629 le 25. .1020, 434C, De .0000 .0000
25. .0630. 9574, .3314e D. De .0000. .0000. De .0000. .0000 se #UDS.1:

400Se le 16e 0. le 0. De De De. De 0. 0 ,

  ** RUCS.2 168.00.             0.0,      De         0
  ** RUDS.3:

22 em R005.4:

             .000s         .540e     12.3tte          .577,        23.419e            .638,         35.789,        .724 43.149,            .798      53.012e          . 8 96 , 61.034e                .***,         69.040, 1.092 73.970, 1 153,               80.136                        88.771            1.300.         *6.163, 3.350 101.091, 1.376, 107.260. 1.3E3,              1.221, 110.961, 1.386, 117.120. ; .376 121.278, 1.337, 128.218e 1.288 134.366ee 1.215, 140.639e L.129 147.949            1.006, 168.000.             .689.            .000,          .000.            .000.       .000
  ** RDOS.9:

le le 9592e le le .250, to .250e 6e .250, 7e .250 te le 9592. le te .I50, le .250s 7e .250, Se. .2$0

3. le 9583, le 3. .260. 6 .250. Se .250 e. .250 4, le 9616 le 4e .250, 5. .250. 9e .260, 10. .250 5, le 9600s le 9 .260 10e .250, 14e .250, 15e .250 es le 9608 le 14 .280, 15e .250, 19 .250, 20e .250

7, 9583, .250, 20e

                   }s                le 19e                                    .250, 24,e            .250,      25e     .250 8e         as      9692      le 18e           .260,        19          .250,       23.       .250,      the     .250
        *. le .*600s le 17e .t&O, 18e                                          .260,       tre       .250,      23.     .t&O
10. 1. .*600, le 16. .250, 17e .250, 21. .250, 22. .250 13e le 9600. le 11e .280s 12e .250 164 .250, 17e .250
12. le .*600e le to .250, 7 .250, 11, .250, 12e .t&O 13e le 1.1206, le 7 .250, 8e .t50s 12e .250, 13. .250 14e le 1.1217 le 8e .250, t o .EEO. 13e .250 14 .250
15. le 1.1206, le 13, .250. 14e .250. 18e .250, 19e .250 16e 0

le 1.1206, 1. 12e .250s 13e .250, 17e .250. 18. .250

  ** RODS.68:
1. DUMY 0.4220, 0.0 O se DPtR.1:

CPfRe le t o 0, 2. De 35. D e 0, o

  *e CPER.2:
      +1.De 0.0e 0.0e 0.0 a* DPER.3                                                                                                                                       i o
  == UPER.5:

1814.700. 563.200. 3.421. .475, 0.0 e 1 6 54 + 20*4.700, 607.174, 3.439, .627 0.0 e t 658 2404.700, 605.666, 2.950, .428. 0.0 e 3 656 > 2204.700. 601.306, 2.978. . 3 90 e 0.0 e 4 657 2104.700. 567.750, t . D4t e .461e 0.0 e 5 6 58 ' 1804.700, 563.850, 3.642. .470. 0.0 e 6 659 2376.700s 606.522, 3.418e .476. 0.0 e 7 660 2399.700. $*6.460, 3.349e .514e 0.0 e 8 661  !

,     2399.700s             $76.530.       3.395.            .561.            0.0        e      9         662                                   -l 2114.700.             560.275        3.456.            .566.            0.0        e     10         663                                        .

2399.700, 545.000. 2.930, .575. 0.0 e 11 664  ! 2114.700, 523.550, 2.969e .580. 0.0 e 12 665 'l 1799.700s 529.725, 3.464, .573. 0.0 e 14 667 i 2099.700, 684.589, 2.470, .576. 0.0 e 15 668  ! 2384.700. 502.437, 2.493. .572. 0.0 e 16 669 l 2389.700. 573.600. 2.918e .508, 0.0 e 17 670 l 2384.700s $63.200e 2.438, 457. 0.0 e 18 671 4 2399.700, $38.600. 2.453, .510e 0.0 e 19 672

.    '2399.700,             560.275        1.*47             .358,           0.0         e     20         673                        6 2399.700.             518.675.       1.962.              461,           0.0        e     21         674 i

2404.700, e81.993. 1.937. 497. 0.0 e 22 675 <* 20*4.700. 482.642, 1.951. 480, 0.0 e 23 676 2104.700. 563.850, 2.415e .413e 0.0 e 24 677 s i B-18 IIll

~ 21M.700. St7.450s 2.464 .4Ct. 0.0 e 25 678 2106.700s $20.300, 1.*66.

~'

2104.700. $68.075, 1.014.

                                                                . 10
                                                                .329 0.0 0.0
  • j6 079 I?*9.700 525.175.
                                                                                    *    .1       660 17*9.700,             $62,676 1.932.      .367        0.0     *' 28         eel 1.941.        331.      0.0     e    29       est 169*.700.             525.4t&.,      1.925e      .*03.       0.0     e    to       641 1644.700.             522.250,       2.511e      .
  • 76. 0.0 e 31 646 g 1799.700. 646 512. 1.904 .623e 0.0 e 32 eel 1699.700. 688.169 2.466 .501, 0.0 *- Il 666 1449.700 4h.264 1.961. .***e 0.0
  • 1694.700s 642.089 34 087 2.010. .*46, 0.0
  • 15 648 l-1444.700. **4.146, 2.452, .512e 0.0 e 36 089
        *e OptR.12:

O. O. O. De 0. 0

        *e MI*.1:

MI* e 0, De 0

        ** MI *.t 0.4. 0.034
        *e DR60,1 DRae, le De 1 Daae.t 0.146. -0. 20 e 0. 0. M. 0. -1.0. 0. 0 1    ****  0.5.

DRAG.5: 555 es CR10.1: GRIO. De  ! GRIO.t I 1.400,

       ****GR10.48
              -1,
        ** ORID.6. 7 1
                               .570 3.0 t e 13.0 1              23.0.r, 33.0 1. 63.0.2, $3.0.1 63.0.t. 73.0.1, 43.0     2. 93.0       1 103.0     2, 113.0 1 125.0.2e 133.0.1 143.0.23 I          163.0.t. ,0 0.

0

       *e C0pt.1:
                                                 .0.0,     .0.0         .0.0e      .0.0.      .0.0.

153.0 1,

                                                                                                         .0,0 CDRR. le 1. O eo CORR.t (Pal e tPRI, (PRI . HONE I   *e CORR.3:

0.t

       #9 CORR.63 EPRI. THOM. THOM. Ct=1 CONO C5.7 CORR. 7 I  ***e   O.0 CORR.93 CE-1
       *e CORR.1t 0.50767 1 CONT.1:

1 **e* CONT

             . CONT.t 0.0 O, 20e 20. t o t o 0 e 0
       *e cetT.3 0.1   0.0001, 0.001 e De 0. D e D e 0.9 e CONT.6
       *e     1. l e o 7 s 0, l e D e l e l e le CONT                                          0.1.DDee 0 1
  • 4000.0. De 0. O. De o co CtNT.8
 ^

13 oo CONT.11: 13 eo CONT.15: De 0. O . D. 0

       *e (ND OF INP17 DATA:

IN00 0 h B-19

ll i

    *2 CSC FILE N4M2s HH133                                                                                                                  i se
    ** v!PRt .1:
1. O. 0
   ** v! Pet .2:

em133

   ** GEDM.1:

GION, 25. 25. 56. De 0. O r

   ** CtDH.2                                                                                                                                 5 168.00s          0.0.       0.5
   ** GEDN.41
1. .0655. .*6 54 .3314 t, te .1060. 4360, 6e .

LO60 .=360 3060, 1.2179 .6629e 2. 3, .1060s .5550. 7 . 330. .4360

          $'. .1060 1 2179 e                           66 9         te         se     .1060.      .5550,       8,    .L3}0.       .4360
          *.    .1060s 1.2179,        .6629,         to         5.     .3060.      .6360.       e s   . L330.     .*160
5. .0655e .9614e 3314, le 10. .3060 .*160, O. .0000, .0000
6. .1060, 1.2179 .6629 to 7 .1330. 4560, 11e .1060. .5550
7. .1682: 1.3258 1.3258, to 8. .1330, .5550, 12, .1330. .5550
8. 3682e 1.3258 1.3258. te 9 .1330, .5550, 13e .1330. .5550 e s .168te 1.3258, 1.3258, .5550
t. 10. .3330, 6360, 14 .1330.

10e . 060s 1 2179 .6629e le h&e .3060. .5550, O. .0000e .0000 lie 3060. 1 2179 .6629 2. Lt. .3330. 4360, 16. .3060s .5550

12. .1682e 1.3258, 1 3258, te 13e .3330. .5550, 17, .1330, .5550 13e .168te 1 3258 1 3258, to 14 .3330 .5550. 18, .1330. .5550 1*. .1682, 1.3258 1.3258, t. 15, .1350. 4360 19e .1330. .5550 ,

15e .1060 1 2179, .66 9 1. *0. .1060. .5550e De .0000. .0000

16. .3060e 1.2179 .6629 2. 17e .3330. 4360e 21e .1060, .=360 17e .1688. 1.1258 1.3258 to 18, .1330, . 5550 e it. . 350. .4360
18. .168te 1.3258, 1 3258. to ate .1350, .5550, 23. . 1330, 4360 19e .1682 1 3258, 1.3t&8e 2. 20. .1330, 4360. 24 .5330. .=360
20. .1060 1.2179 .6e&4, le 25e .1060. 4360 O, .0000, .0000 21e .0655e 9654 .32;4, le ite .1060. 4360. D. .0000, .0000 4
22. .3060 1.2179 .6629 le 23. .1060, .5550. 0, .0000. .0000
23. .1060s 1.2179 .6 29, ,e 24, .3060. .5550. O. .0000. .0000
24. .1060 1 2174 .6629. .. 25, .1060, 4160, O. .0000 .0000
25. .0655. .9654 .3314. De 0. .0000. .0000. De .0000. .0000
   ** RCDS.1:

RUDS. le 16e . le 0. D. De 0 s- 0, 0, 0

   ** R003.2 168.00,          0.0       O,        0
   ** RDOS. 3 22
  ** RUDS.4                                                                                                                                  .
              .000,      .540,     12.328          .577            23.419e        .638,       35.759           .724 43.149          .798. 53.012e         .896.           61.034,           994,     69.04ne 1.092 73.970,      1.153,      80.136,        1.221,           88.771,      1.300.        *6.163, 1.350 101.091,       1.374      107.260s        1.393,         110.961,       1.386        117.120. 1.374 123.278        1.337,     128.21b.        1.288,         134.366        1.215,       140.539          1.129 147.949,       1.006,     168.000.         .589,              .000e       .000,          .000,         .000
  *e R DDS . 9 le       1. 9589      le      le      .250s           te      .250.       6.     .250e         7     .250 to       1. 9589,     le     2.       .250,           3.      .250        7      .250,        se     .250 3e       le     9581s     le     3.       .250,           4       .250,       8      .250          9     .250
         *,       1. 9614,     h,     4        .250            5,      .250,       9e     .250,       10      .250 Se       le     9597,     h.      9       .250,         10,       .t&D,      the     .250.. 15.          .250
6. le 9605. Le 14 ,t50, 15. .250, 19 .250e 20e .250 7, 1. 9581. le 19e .250e 20e .250, 24, .250, 25, .250 '

8. e.

                  ). 9589, 9397
1. 18, .250, 19 .250. 23, .250, 24, .250 2e le 17 .250 18e 4250. 22. .250. 23. .tED
10. le 9597 le 16. .250. 17e .250, 21e .250s 22. .250 +

11, le 9597, le 11. .t&O. Ito .250, 16e .250, 17 .250

12. 1. .*597. 1. e, .250. 7, .250. 11e .250. 12. .250
13. 1, 1.1203, 1. 7 250. 8. .250. Its .250e 13. .250 1*. le 1.1214 1. 8. .I50s 9 .250. 13e .250. 14 .250 15, 1. 1 1237e le 13. .250 Iwo .250. 18. .250. 19 250
16. le 1.1214. 1. 12. 250, 13e .250s 17e .250, 18. .250 0

se RDDS.68:

1. DUHYe 0.4220, 0.0s 0 en aptR.1:

OPER. le 2. De 2, De 38 . D. O, 0

  *e DPER.t
       +1.0. 0.0 0.0e 0.0
  *e DPER.3 0

se OptR,53 1499,700s $60.500, 3.425. .501, 0.0 e 1 690 2099.700, 607.000, t.955 402, 0.0 e 2 641 2099.700 606.000. 3.407 . 459, 0.0 e 3 692 2399.700, 609.000, t.960, 445, 0.0 e 4 693 l 2104.700. 569.000, t.971. .e91. 0.0 e 5 6 64 - 2404.700, 568.000. 1.959 .387. 0.0 e 6 695 2404.700. 509.000. 1.997 463. 0.0 e 7 696 2104.700. 478.000, 1.961e .4 94 , 0.0 e 8 697 2114.700, 560.000. 2.434 449e 0.0 m

  • 698 2104.700. 519.000 1.961. 437, 0.0 e 10 699 2109.700. 565.000. 1.938 .370. 0.0 e 11 700 2399.700. 560.000, 2.477 .471, 0.0 e 12 701 1804.700. 566.000. 1.967 .357. 0.0 e 14 703 1499.700. 523.000. 1.917 .199 0.0 e 15 704 1499.700, $27.500, t.518. 470. 0.0 e 16 705 l 17e4.700 487.000. 1.969, .458. 0.0 e 17 706 1504.700. *85.000. 1.988. .*54, 0.0 e 18 707 1499.700, 647.000. 2.008. .510, 0.0 e 19 708 l l' 1829.700. 536.000. 1.445. .566. 0.0 e 20 709 .1 i

1814.700. 569.000s 3.412e 497, 3.0 e 21 710 l 23*e.700. 609.000. 3.=04e 488. 0.0 e 22 711 1 2399.700. 586.000, 3.392. .532. 0.0 e 't3 712 l 2399.70C, 576.000. 3.408. .551, 0.0 e 2* 713 r l B-20 '

m a: 2113.700. 170.000, 3.466. .$to. 0.0 *- 25 714

           ;618.700.          180.000. I.435.     .$=4. 0.0
           ;0**.700,
  • to *15
                              $$*.000,   s.968      .318e   0.0
  • 27 *16
           }!!4.700.
           .3*9.700.
                              $17.000,
                              $06.000.

1.6*6, ,$61. 0.0

  • CB 717 2.507 562. 0.0
  • I* *15 p04.700, $73.000. 2.9mf. 509 0.0
  • 30 719 t399.700, 541.000. t.466. .6*f. 0.0
  • 31 7t0 m- *099.700. 527.000. 2.499 516. 0.0
  • 32 721 20*9.700, **3.000, 2 661, .$61. 0.0
  • 13 7tt 2404.700. 677.0$06 1.V92, .50$. 0.0
  • 14 725

-- 16**.700. =86.000, t.664. 531. 0.0

  • 35 *t4 1504.700. 669.000, t.66*. .554 0.0
  • 36 725 14*9.700e **l.000, 1.531, .61n. 0.0
  • 17 7'6
           >506.700.          *t9 000. 1.465.      376. 0.0
  • 18 727 I ****n.

HIMM.1: tit xx . O. OPER.12: O. O. De De 0 De 0

       ** MIXX.2 0.8.       0.038 OR&S.1:

1 **** ORaG, DRAG.2:1. O. 0 166. =0.20, 0.0 1 64.0, -1.0. 0.0

       ** ORAG.5:

0.5. .555 1 ****GRID.GR10.1 GRID.2: De 1 1.600e .000

       ** GR10.4 al.        13 I 1
       ** CRIO.6 0

6.0. 1 19.0 110.0. 1.123.0 11.137.0. 3 2.0.1.149.0

1. 45.0. 1.162.0,
1. 54.0. 1.

1.71.00. 1.64.00. 1.97.00 l e

                                                                    .00, O.  .00 D. .00. 0
       ** CORR.1:

CORR. le 10 ' CORR.2: 1 *+*3(PRt . LPRI . (PRI, NONE CORR. 3 : 0.2

       ** CORR.6:

EPRI. THOM. THOM, CE*1, CONO, 0$.7

       ** CORR.7:

0.0 e* C NR.9: Ct =1

       ****0.50767 CURR.12   1 1       CCMT.11 c0N7
       ** C ONT. 2 0.0. O, to, 20 2, t e 0, O CONT.3 1  o***0.1 0.0001, 0.001, O. O. O, O. 0.9 CON 7.6                                                                                      i 1    1.0 0 1.0 1 1.0.0 1.1.0.0                                                               i
       ** CONT . 7 6000.0. De O. Oi 0, O 13 I  e**CONT.11:

CONT.8 ' l' 13

       *o CONT.15:

D. O. O. D. 0 QO END OF INPUT DATA: (N00 0 5 4

           . I h                                   -

B-21

e@ CDC FILt N6Mit NH154 lli

    .*                                                                                                                                                                    i i
   ** v!P>t.1:                                                                                                                                                               l
1. O. O  ;

se v!PRt.23 ' ww13*

   *e GEDM.11                                                                                                                                                             I Gt0Me             25, 25.         56. O. O,               0                                                                                                  - /

eo ct.DM.t 1 8.00. 0.0. 0.5 1

                                                                                                                                                                          +
   ** GION.4                                                                                                                                                              t
1. .0655, . *6 54, .3314 2. te .3060e 4360e 6. .3060. .4360 J I',. 1060 1.2179e .66t9, te 3. .3060, .5550, 7 .1330. 4360 '

3060 1.2179 .e629 Ce 4 .3060, .3550, 8. .1530, 4360 g we .1060,

                       .0655. 1.2179,             .66tte          to        5.    .3060.          4360.              *,   .1330,       4360                               .

Se 96 54 .3314 le 10, .3060 .4360. De .0000. .0000

e. 2179
                       .3060 11.1254, 1.3t        .66t9 he          to        7e .1330              4360,           11,     .1060       .5550
7. .2682, to 4. .1330, .5550, 12. .1330 . 55H 8e ee
                       .1682, 1.3258, 1.3&54,                     2.        *.    .3330,       .5550.             13.     .1350.      .5550
                       .2682 1.1258, 1.3258,                      to       10. .3330,          .4360,             14,     .1330.      .5540
10. .1060s 1 .66t9 le 15e .3060e .5550, 0, .0000, .0000
11. .3060 1 .2179 2179 .66t9, to 12e .1130. 4360, 16e .3060, .5650 12e .1642, 1. 3254, 1. 3 2 M . Se 13. .1330. .5550s 17 .1330. .5560
  • 13e .1642, 1. 3 2 54. 1. S t M . to 14 .1330. .5550. les .1330, .5560 1*. .1682 1.3258e 1.3258, te 15e .1330, 4160. 19e .1330, .5550
15. 3060 1.2179 .6629 le to. .3060 .5550. O, .0000 .0000 10 .1060, 1.2179, .66t9 to 17, .1350,s .4560s 21. .3060. 4560 -

1 17, . 3 68t e 1. 3258. 1. 3 2M ,. to 18e .1130. .5550 22. .1330 4560 18e . 2 642, 1. 3 t H e 1. 3 2 M , to 19e .1350. .5550, 23. .1350. 4560 - 19 .1682 1.3tu,1.3258, le 20e .1330s .4360e 24 .1330 4560 ' 20e .1060, 1.2179 .6629 le 25e .3060. .4360, 0, .0000, .0000 '

21. .0655, 9654, .3314, 4e 22. .1060. 4360, 0, 0000e .0000 .
22. .1060, 1.2179 .66t9e le 23. .3060. .5550. De .0000 .0000 f3e .1060e 1.2179, .6629 le 24, .1060. .$550, O. 0000. .0000 J 26 .1060, 1.2179 .6629 le 25 .1060, 4360s ce .0000. .0000
25. .0655. .*654, .3314 O. O. .0000. .0000. O. .0000. .0000
   ** ROUS.la                                                                                                                                                             '

PUDS. le 16, v. 1.- 0. O. O. O. De De 0 se RUDS.2: 168.00, 0.0. O. 0 en RUDS.3 22

   ** RDOS.4                                 -
               .000            .540,        12.328               577.          23.419e         .638,            35.75#,           .724 43.14*e               .708e        53.012,            . 8 96 e        61.034,            9 04          69.040e 1.091 73.470.            1.153e         80.136           1.221.            88.771.      1.300,               *6.163,         1.350 101.091e             1.374,        107.260,          1.395.          110.961,       1.386.            117.120,           1.374 125.278. 1.337                     128.214, 1 284e                   134.366.       1.215.            140.539e 1.129 147.*49              1.006,        168.000s            .589               .000,       .000,                   .000,       .000
  ** RD05.9
1. le .*587, le 1. .250e te .250. 6e .250, 7 .250 te le .9595, le te .250e 3. .250, 7 .250 8e .250
3. le 9579 le 3. .250, 4 .250e 8 .250. 4 .250 43 le 9603. 1, 4, .250s 5e .250, 9 .250, los .250
5. le 9603. le 9 .250, lo, .250. 14, .250e 15, .250 to 1, .*603. 14, .250, 15, le .250, 19e .250, 20e .250 7, le .9595 1. 19e .250, 20e .250, 24, .250, 25. .250
8. le 954 7, le 18, .250, 19 .250, 23, .250, the .250
- le 9579 le 17e .250, 18e .250, tte .250. 23, .250 10, le .9587, le 16, .250. 17 .250, 21. .250, Ete .250
11. 1. 9595, le 11, .250e 12, .250. 16, .250 If, .250 i
12. le 95*5. 1. *, .250e 7 .250s 11e .250 Its .250 1 13. 1. 1.1212. 1. 7 .250, 8e .250 12. .250. 13, .250 1*. 1 1.1212, le 8 .250e 9 .250, 13, .250. 14, .250
15. le 1.1234, le 13. .250. 14e .250, 18, .250, 19e .250 16e le 1.1234 le 12e .250. 13, .150, 17e .tS0. 18e .250 1 0
  *e RUDS.68:
1. DUMY e 0.4tt0 e 0.0 0
  == OPER.1:                                                                                                                                                                 l OPE R. l e t o De 2. O, 38, De 0. 0

, ** UPER.2: . -1.0. 0.0 0.0 0.0

  *e DPER.3:                                                                                                                                                                !

0

  ** UPER.5:

1509.700e 561.250e 3.3 93 399 0.0 e 1 728 l , 1799.700, 562.875. 3.404, .423. 0.0 e 2 729 l 2094.700, 606.D44, 3.369 .384 0.0 e 3 730 1 2124.700, 607.174 3.433 393, 0.0 e 4 731 1 2404.700. 603.262: 3.437, .444 0.0 e 5 732 l 2384.700. 602.610. 2.986 .410, 0.0 e 6 733 1 2114.700, 600.002, 2.895, .346, 0.0 e 7 734 j 2099.700. 559.950, 2.942, .444, 0.0 e 8 735 2404.700. 565.800, 2.927 .486. 0.0 e 9 736 2399.700. 562.225, t.411. .418e 0.0 e 10 737 i 2099.700s. 560.925, 2.403, .378, D.C e 11 738 2404.700. 565.150, 3.420. 557 0.0 e 12 739 1489.700. 442.736, 2.444 .489, 0.0 e 13 740 1 2384.700, 482.642, 2.477 .530s 0.0 e 14 741 2099.700. 2.443. 481.020, .506. 0.0 e 15 742 1499.700. 483.616e 3.538. 567, 0.0 e 16 743 1494.700. 516,725, 3.502 .496. 0.0 e 17 744 l l 1789.700. 519.650. 3 . 4 ** . .518e 0.0 e 18 745 2404.700. 521.925e 2.930. 542. 0.0 e 19 766 2404.700,' 525.825. 2. 94 4 .507, 0.0 e to 74 7 2404.700. 522.575, 2.430s .470. 0.0 e 21 748 l 2104.700. 563.200. 3.249 .465 0.0 e 22 749 1 2004.700, 559.300, 1.932. 318, 0.0 e 23 750 '

                                                                                         /
                                                                                                                                                                      ^

B-22

s . 2364.700. f57.675. 1.952. .327. 0.0 e in 751 M0J.700. $13.800. 1.45b. .v01. 0.0 e 25 '52

          *104.700.       $16.125. 1.936.      .178. 0.0
  • I* 753 f104.700. 517.700. 2.452. .**/. 0.0 * !? 754
          *089.700.       *75.501      1. 96 5      428. 0.0
  • 25 755 s 2424.700.

1404.700, 478.0**. 1. 94 9 .*45. 0.0

  • 29 756 15D4.700, 514.125. t.411. .399 0.0
  • 10 757

' 681.020. 2.450. 452. 0.0

  • 11 758 1504.700 519.975, 1.934 340 0.0
  • 32 75*

17'*.700. 522.250, 1.*17 .335. 0.0 * !! 760 1749.700 681.020, 1.977 .393. 0.0

  • 34 761 e 2494.700 680.066, 1.930. .377 0.0
  • 35 762 1499.700e 640.613. 1.918. 621. 0.0 e 36 761 -

( 1799.700. $61.*00 1.890 .281 0.0 e 17- 766

       '2104.700.         561.550,     3.394.      .*79    0.0    a 34  765 00 ORER.12:

D. O. O. O. O. 0 oo M!xx.1: MIMX . O. O e. D.

   *e MIKX.2:

0.8. 0.034 62 DR&G.1 ORAG. 1, O. 1

   *e DRae.2:

0.166. *0. 20 0.0 64.0 e 1.0. 0.0 OS ORAG.5 0.5. .555

   *e GRIO.1:

ORIO. O. t

   *S GRID.ts 1.400.        .570
   *e GR10.4 al.      10
   ** GR10.6 11.0.t. 27.0 1. 41.0.t . 59.0.1. 75.0.t . 91. 0 1. 107.0.2. 123.0 1.

0 119.0 2 155.0 1. 00.0.0 00.0.0. 00.0 0. 00.0.0. 000.0.0 000.0.0

   *a CURR.1:

CORR. 1 1. 0 oo CURR.2 tPRI. EPRI. EPRI. HONE to CURR.3: 0.2 00 CORR.6 EPRI . THON. THON. Ct al. CONO. G5.7 65 CURR.7 0.0 ee CURR.9: Ct=1

   ** CORR .12 3 0.50747, 1 ee CONT.14 CONT pe CONT.2:

0.0. O 20 20. t. 2. O. 0-

   ** CONT.3:

0.1 0.0001, 0.001. O 0. O. O. 0.9

   *e CONT.6 1 1       0.O.1.D.1.1.O             0.1 1.O.0 00 CON 7. 7 s                                                                1 2000.0. O. O. O. D. 0                                                   l
   *# C Caff . 8 8                                                              l 13                                                                      -
   ** CONT,11:                                                                  !

13 i 00 CONT.15: ' D. O. O. O. O CO END OF INPtff DATA: EH00 0  ! O B-23

I: CDC FILE NAME: HH136

      ** v1PRt.1:                                                                                                                          i
1. O. 0 '

l

     ** v1 Pat.2:                                                                                                                ,

HH138

     ** GE OH.1:

GEOM. 25e 25. 56, 0, ce 0 eS CLOM.2: 3 108.00, 0.0. 0.5 , #4 Gt0M.4s

1. .0655. .*654 .3314, 2. 2, .1060. .4360, 6 .1060 .4360 to .1060, 1.2179e . 629 Ce 3. .3060. .5550. 7 .1330. .4160
3. .1060, 1.2179, .6et9 to 6 .1060, .5550, 8, .1330 4160 1
            *.       .3060, 1.2179          .66t9,          2.      5.     .1060.     .4360,             .1330,        4360 5e       .0665        6664,     .3314,          1. 10       .1060.     .4360.       O.    .0000.       .0000
            *.       .3060, 1.2179,          6629           to      7      .1330.     .4360,      11,    .1060.       .5550 7        .1682. 1.3254 1.3254,
                     .1682.                                 to      8      .1330.     .5550       12e    .1330.       .5550                i 8,                 1.3254 1.3254.               to      *, .2310e .5550e 13e                 .1330,       .5550 9        .2642 1.3254 1.3158                    to    10. .1330. .4360, 14, .1330,                        .5550
10. .1060s 1.2179e .6629 le 15. .3060. .5550 O. .0000. .0000 l 11e .3060s 1.217*e .6629 to 12. .1330, .4360. 16 .1060. .5550
12. .1662 e 1.3254 e 1.3258, to 13e .1330, .5550, 17e .1330. .5550 i 13, .1464, 1.42 23. 0. "el e 2. les .0715. .5550. Its .0715e .5550 i 1*, .1464 1 4223. 0.9*43. 2. 15, .1330, 4360, 19e .0715e .5550  ;

15, .1060, 1.2179, .6689, le 20e .3060. .5550, 0, .0000. .0000  : 16e *179

                     .3060,1.It&4.1.3254,   .6619e          to 17 - .1330.             4360e     21,     .3060.       .4360                1 4          17         .1682 1.                               2. It, .1330,            .5550,      22.     .1330       .*he               .
18. .144a. 1.4223 0.9*43, 2. 19e .0715e .5550. 23 .1330, .4360 l'. .1464 1.4 tile 0.9943, te 20e 1330. .4360 24 .1330, 4560 20e .3060s 1.2179, .6639 le 25. .1060, .4560, O. .0000, .0000 Cle .0655. .*654, .3314 le 22, .1060. .4360 De .0000, .0000 ite .3060 1.2179, .66te, le 23, .1060. .5550 O. .0000 .0000 '

23 .3060, 1.2179, .6629 1, 24 .3060. .5550. O. .0000. .0000 24, .1060 1.2179, .66t9 le 25. .3060 .4360s 0. .0000s .0000

25. .0655, .*6 54 .2314e De D. .0000. .0000. De .0000. .0000 ,
     ** RODS.li RODS.           le      15e      De          le       0,        De      0.        De       0.      D.        0 43 RODS.t:

188 00, 0.0. O. 0

     ** RODS.3:

tt

     ** R005.4t
                .000.        .560       12.328            .577         23.419        .e34,       Il.759           724 41.149,          .7*8       53.012e           .896,       ol.034           904,      69.040,       1.092 73.970s 1. 53,              80.136e 1.221,                86.77 e       1.300.       *6.163,       1.350 101.091. 1. 74               107 260.         1.393.       110.*6 e       1.346,      117.120.       1. 74 123.278, 1.337               128.218,         1.288.       134.166        1.215,      140.539        1. 79 147.*49,         1.006.      168.005.           ,589,           .000.      .000,           .000s       .000
     ** Rops.9, 1         le   .*659        le       1.       .250.        2.      .250,      6.     .250,       7       .250
1. 9659, le to .250. 3. .250. 7e .250s 8 .250 2' 1e e 1, .9659 le 3. .250, 4, .250, 8 .250. 9 .250 '

4 . 9659 1. 4 .250. 5. .250 9 .250, 10e .250 Se e 9659 1, e, .250, 10. .250s 14, .250, 15e .250

6, le .%59e le 14, .250, 15e .250. 19. .250, 20, ,250 7 le 9459, 1. 9 .thue to, 250, the .250, 25. .250 8 1. 9659 le 8 .250, 19e .250, 23. .250. 24 .250 m, 1, ,0659 le 7. .250s 18e .250e 22. .250. 23. .250 10, 1, .*659 1, 16e .250. 17. .250, 21e .250. . .250 11, le .9659 le 11e .250, 12e .250, 16. .250. . .250 12 1. .*659e le 6. .250, 7 .250. 11e .250. 12. .250 13e le 1.11,4 le 7 250. 8 .250, 12. .250. 13e .250 4

1*e le 1.136*e le 9. .250. *. .250. 13. .050. 1*. .250

15. le 1.136*. le it. .250, 13e .250. 17e .250s 18. .250 0
#5 RODS.68
,        1.       DUNY       0.4220e      0.0,       O i   ** OPER.1:

OPER, 1. to De to 0. 37. De De 0

    ** UPER.ti
         -1.0.         0.0,    0.0,     0.0 ee OPEk.3 0
    ** CPER.5:                                                                                                                         '

1404.700, 434.644, t.004 .431, 0.0

  • 1 803 1499.700, 465.325, 2.473, 482, 0.0
  • 2 804 1499.700, 683.940 2.173. .397, 0.0
  • 3 805 1499.700, 442.966, t.481, .437 0.0
  • 4 806 1744.700, 482.318e 1.995 .401, 0.0
  • 5 807 2099.700s 481.669e 2.0!$, . (.64 0.0
  • 6 808 20*4.700. 488.483, 2.474, .501, 0.0
  • 7 809 2394.700, 461.993s 1.965. 452. 0.0
  • 8 810 2404.700 502.437 2.435. .513, 0.0 *
  • 811 2404.700 519.325. 1.946, .*01. 0.0
  • 10 812 23*4.700 521.925. 2.456, 484 0.0
  • 11 813 2114.700 518.675, 1.964 .385. 0.0
  • 12 814 2119.700 521.925, t.479 445, 0.0
  • 13 815 2114.700s 525.500. 2.941. 498. 0.0
  • 14 816 2009.700. 516.400s 1.974 .343, 0.0
  • 15 817 1804.700. $19.975, 3.465. .505. 0.0
  • 16 818  !.

1504.700. 521.600, 1.922e .325. 0.0

  • 17 819 1***.700, 520.950e 2.511. .378. 0.0
  • 18 820 1514.700, 516.600. 3.498. 471 0.0
  • 19 821 2414.700. 536.550. 2.893, .527, 0.0
  • 20 822
  • e
       .1509.700,             357.675,        3.435.            410         0.0
  • 21 823 1804.700, 558.*75. 1. 4 *4 .*33. 0.0
  • 22 824 #

1804.700. 553.125. 1.9*1. .295. 0.0

  • 23 825 2114.700, 557.350, 2.006, .329 0.0
  • 24 826 8 24

a

             *1D4.700        354.650,    t.eSt.      .379     0.0    e     25 2104.700,       561.t$0                                              827 CO*4.700.

C.939 .426. 0.0 e 26 828 56t.20$. 3.4*4e . mat. 0.0 + 27 829 (4D4.700. 563.525. 1.954 .348 0.0 m (6 080 (3**.700. 556.660, t.434 .422. 0.0 e to 831

             !4D4.700.       Sol.200e    t.932.        685. 0.0    e     10     43t 2414.700s       $76.866     3.3&9       .512. 0.0    e 1419.700e       601.306,                                      11     411 2414.700s t.940.      .413. 0.0    e     it. 834 005.644,    3.406.      .663. 0.0    e     il     635 20*4.700.       $99.676. 3.006.      .349     0.0    e     le     836 2099.700.       594.766     3.424       .412. 0.0    e
             !!04.700.       $56.375,                                      35     837-2099.700.

t.476. .3*4.. 0.0 a 36 838 519.97$e 2.522. ( .=$7. 0.0 e 37 839

      ** DP(R.12:

O. O. De De De 0

      ** MIKK.1:

H1KK. De De 0

      ** MIKK.t 0.4. 0.034 03 DR60.1:

ORas. 1, D. 1 ce DRae.ta 0.186

      +3 Ohne.se =0.20          e 0.0 64 0. -1.0. 0.0 0.5.    - .555

[-

      ** GR10 13 -

GRID. Os t

      ** GR10.t 1.600.        .570.

to GR10.41 '

             -1. 13
      ** 0410.68 i

6.0.te 19.0 1 12.0.2. 46.0 1 58.0 2. 71.00.1. 64.00.2. 97.00 1. 0110.0.t. 123.0.1 136.0 2e 149.0.1 162.0.t. .00,0. .00.0. .00, 0

      ** CDRR.1 CCRR. 110
      +3 C09R . t e (PR!e (PRI. EPRI. NONE
      ** CDRR . 3 4 0.t
      ** C DW A . 6 IPRt . THOM. THOM. CE 1 COND. C5.7 se CDRR.7 0.0
      *e CORR.9 CE*1
      ** CORR.12:

0.40723 1

      *e CONT.1 CONT
      ** CONT. t 0.0* De 20. 20. te to 0. O C9 CONT.3:

0.1

      *e CONT .6 8 0.0001. 0.001 e 0 D e D e D. 0. 9 1    1.0,0       1.Ce 1 1.0.0.1.1.De0
      ** CONT . 7 :

4000.0. O O. O. O. 0

      ** CONT.0:

13

      ** CONT.11:

la

      ** CONT.15 :
0. O. O. D. O e5 END OF INPWT (H00 i 0

B-25 1 1

                                                                                                . J

I

     ** CCC FILE e4ANE: NH139
     *e                                                                                                                            o
     *e v19et.1:
1. 3. O se v1 pet.2:

wes t 3 9 . ao Ct0M.1, Of0Me 25, 25, 54. De De 0 '

     ** Ct0M.ts 168.00.              0.0.       0.5
     ** GECM.t
1. .0655. . *6 54 .3316, 2, to .1060. 4360, 6. .1060, 4360 C. .1060 1.2179 .e629, 2. 3. .3060. .5550. 7. .1330. .e360
3. .3060 1.2179 .6629e to 4 .1060, .5550e se .1330. 4160 +
            =.      .3060, 1.2179             .6619,       to       5.     .1060s       4360.        9e    .1330,         .4360
5. .0665e 9654 .3314e le 10 .1060. 4360. De .0000e ~.0000 4 e.
            *       .1060 1.2179             .66t9.        te       7     .1330,       .e360,       11e    .1060.         .5560
              . .1642 1.3254, 1.3254,                      2,       se    .1330.       .5550.       12.    .1330s      .5560
8. .16ste 1.325s 1.3256, t. 9 .1330, .5850, 13e .1330. .55$0 8 .1682. 1.3268 1.3264. 2. De .1330, 4360, 14e .1330. .5560 4
10. . 060 1.2179 .66tte le 5, .1060. .5550e De .0000, .0000 11e . 060, 1.2179 .6629 to ite .1330. 4360 16e .1060, .5560 12e .3642, 1.3284, 1.3258, 2. 13. .1330. .55$0, 17e .1330, .5580 13.
                    .1464,      1.4223, 0.9943,            te 14e .0715e .5560, 18, .0715e                                .5580 14,       .1444,      1.4223. 0.9943,            to 15, .1330                 4360e 19e .0715e                  .5560     ,

15e .1060e 1.2179e .6629 le 20. .3060,- .55$0, De .0000, .0000 16e .1060, 1.2179e .66t9 to 17, .1330, 4360, 21.- .1060. .*360 ' 17 .3682: 1.3284, 1.3258, to 18 .1330 .5550, 22. .1330. .4560 18e 1444e 1.4223. 0.9943, to 19e .0715e . 55 f.0, 23. .1330 .4360 1*e .1466, 1.4!'23e 0.9945, 2, 20, .1330. 4ho e 24, .1330, 6360

20. .106U, 1.2179e .66t9 le 25, .1060 . 4360, On .0D00 0000 21e .0655 9654e .3314, is tre 1060e 4360, De .0006,, .0000 Ote .1060s .2179: .6ft9 le 23e .1060s .5850, 0, .0000 .0000 23e .1060, .2179, .66r9e is 24, .1060. .5550s 0, .0000s .0000 26, .3060, 1.2179 .6629, le 25. .1060s 4360. Ce .0000, .0000
05. 0655, 9654, .3314e 0. O. .0000. .0000. De .0000. .0000 a RODS.1:

RODS. le 15, De 1, D. De D. O, 0. O. O a #003.2

 '       168.00s              0.0.       De         0
    ** RODS.3:

it  ;

    ** RODS.4
               .000,'         .540,       12.328.        .577         23.419e         .634         35.759         .724 43.149             .798,      $3.012          .896,        61.034            994,      69.040,       1.092 73.970.         1.153,       80.136e 1.221e               68.771.        1.300.        66.163.      $

101.091, 1.374, 107.260. 1.393, 110.961, 1.346, 117.120, [.350

                                                                                                                  .374 123.278, 1.337                128.218.        1.ths.        134.366,        1.215. 140.539         1.129 147.949,           1.006e 168.000               .549,           .000s        .000,            .000e      .000 63 R00$.98 le         1,    .9670s       1.       1.     .250s        te       .250,       6       .250.       7e       .250 2          le      9670.      le       2.     .250s        le       .250,       7,      .250       Se        .250 3e           e     9660e      le      3.      .250e        6e       .250        Se      .250s       9e       .250 he           . 9660e      le      4,      .250,        le       .250,       9       .250,     10,        .250 Se         le      9640,      le       9      .250,       10,       .250,      14e      .250,     15.        .250
e. 1, .*680. . 14e .250s 15e .250, 19e .250, 20e .250 7e le 9670s e 19e .250, 20e .250, the .250, 25e .250 '

! 8e . . % 70. le 18. .250e 19e .250e 23 .250, the .250 4 *e e . *MO e 1Ye .250, 18, .250s 22, .,250s 23e .250 De le .*670, e 16e .250. 17 .250, 21. .250, t, at 0 le 1. 9679e le 21 .250. 12e ,t50s 16, .250, 1 , .2 0

12. 1. . % 70, 1. 6e .250e 7 .250, 11e .250, 1. .250 ,
13. le .1300s e fe .250, 8 .250, 12e .250. 1e .250 1 le. le 3300. . 8e .250. 9 .250s 13. .250s 14, .250 1 l 15. le 1.1330, le 12e .250, 13e .tSD. 17e .250. 16e 250 l 0 1 I ez RODS.68: l
1. DUMYe 0.4220, 0.0, 0 a OptR.1: '

DPER. le to 0, 2. De 38 e De 0, 0 l

   ** OPER.t                                                                                                                          1
        -1.0.          0.0.      0.0. 0.0                                                                                            l
   *e OPER.3 0                                                                                                                             J 1
   ## OPER.5:                                                                                                                         '

14a*.700, 478.900 1.924, . 3 de , 0.0 e 1 640 1504.700, 439.800s 2.403e .484. 0.0 e t 441 1499.700, 440.500 1.463 .401. 0.0 e 3 842 1464.700e 485.000e 2.403, .430e 0.0 m 4 843 l 1499.700, 494.900s 3. 4H . .538. 3.0 e 5 666 l 1804.700, 441.700, 1.924 .381. J.O. e 6 445 , 2094.700, 442.400, 1.929e .413e 0.0 e 7 846 i 2094.700. 485.400e 2.380. .4 90. 0.0

  • 8 847
2394.700, 476.200s 1.913e .450. 0.0 e 9 848 0409.700. 494.100. 2.422, .526e 0.0 e 10 849 1508.700 517.500. 1.880. .333, 0.0 e 11 850
      -1494.700.               523.600.        2.344           .376.          0.0        e      12        851 1504.700s              $16.700,        3.474,           491e          0.0        e      13        852 l        1804.700               517.400,        3.462.          .531,          0.0        e      14        853 '

1804.700, $22.900. 1.883. .325. 0.0 e 15 85* 2074.700s 510.900 1.899 .37J. 0.0 e 16 855 1 2094.700, $20.900. 2.372. 4366 0.0 e 17 656 - 2104.700, 521.900. 2.886. .50s, 0.0 e 18 857 l 0404.700, 526.300s 2.393, 470, 0.0 e 19 854 2394.700. 514.100, 1.890s .399 0.0 e 20 859 1799.700, 563.000, 1.845, .271. 0.0 e 21 860 1814.700, 560.900. 3.359 623, 0.0 e 22 861 1504.700, 564.200. 3.328, .388. 0.0 o C3 862 0099.700. 555.400. 2.379, .373, 0.0 e 24 e63 o l

20**.700. 163.100. 2.536 .t29 0.0 e 75 404 106.700, 102.100. 3.375 *

                                                        .ete. 0.0          16   &$5

{0#9.700.

                .                f 1.*00,   1.869      .297       0.0
  • 27 Boo 23**.700. 36*.600, 1.895. .336 0.0
  • tt 667 4D4.700. $65.900. 2.356. .349 0.0
  • t* Be8

{404.700. 1

                                $66.300. 2.680s     .472.      0.0
  • 30 809 24D4.700, 603.900, 2.918, 600, 0.0
  • 31 670 L 2606.700, 601.100. 3.385e 649 0.0 e 32 B71 605.100. 3.375, .590 0.0
  • 31 8 72 (096.700s104.700e 6 602 000s 7.046, .330 0.0 * $6 373 2409.700e
                                 $63.100,   3.372.     .560,      0.0    =     35   87*

04.700, 325.200. 2.645e .1$24 e 0.0 16 87L I*4*9.700. 66t.100e 2.382: .429 0.0 a 37 876 20**.700. 125.500. 1.361. 4415. 0.C

  • 38 877
          ** DPER.124
0. O. De 0. De 0
           *e MtWX.1:

MIXXe De De 0

           ** MIXX.t 0.4. 0.034 ee ORAG.13 DRaGe    1. De 1
           *e OR&G.23 0 186. -0 20e 0.0. 64.0        1.0. 0.0
          *e OR&G.5:

0.5. 0.555

          ** GRID.1:

GR10e ce I b3 CRID.2: 1.600. 0.570

          *e GRIO.4
                +1.
        ~

10

          *e GRID.6 11.5 2. 27.37.1 139.4 2 185.60,1 e 63.37.2.
                                          .00.0.

59.37,1. 75.37.2. 91.37.t.107.4.t 123.6.1.

                                                   .00.0,     .00.0.    .00,0.    .0 0, 0                                                                         .0.0
          *e CORR.1:

c One . 1 1. 0

          #3 CORR.2:

EPR!e (PRI, (PRI. HONE

          #G CORR.3:                                                                            i 0.2
          #5 CORR.6

[PRI, THON. THOM, Ct.1, COHO, G5.7

          ** C ORR . 7 0.0
          ** CORR . 91 CE.1
          ** CORA.Its 0.40723e 1
          ** CONT . l a COW 7
          ** CONT.tt 0.0. De 20. 20, to te De 0 mm CONT.3 0 1 0.0001 0.001. De De 0. De 0.9 ee CON 7.68
1. 1.7.7De De 1. D e l e 1. De De le le De 0 se CON t000.0. O. Ce 0. C. O se CONT.as IS i
          *$ CONT.11:

13 m3 CONT.15: D. De 0. O. 0

          *e (HD OF INPUT DAT&t EN00 0

i. l B-27

ll: '

 += CDC FILE NAME: WH153
  .. v! PRE.1:
1. De 0 t
  ** v! ppt.t ww153                                                                                                                           .
  ** GE DN.1:

GEDM, 25e 25. 56. De De 0

  *e GEDH.2:

168.00, 0.0. 0.5

 +e GE DN.4 le .0630             9574         .3314e       2.      2.    .1020.          .4540.         6.    .1020e       4140        .I
2. 1038 1.2179 .e629 2. 3. .1020. .5550. 7 .1330. .=340 -
3. 1038, 1.2179 .66t9e 2. 4 .1020. .5550, 8e .1330. 4360 me .1038, 1.2179 .6629 Ze Se .3020e 4340. *e .1330, 4540 .

Se .0610 .*574e .3314, le 10e .1020e 4140, 0, .0000, .0000 to .1058e 1.2179 .6629 to 7e .1330, 4360 le .30to. .5550 7, .1682. 1.3254. 1.125te to 8 .133J. .5550, 2. .1330. .5550  ; 8e .1642, 1.3258. 1. 3254 e 2e *e .1330 .5550. . 3. .1330. .5550

         *e .1642         1 3254, 1.3254, to 10. .1330.                                 4540,       14     .1330.      .5550          ,

10e .3034, 1.2179 .66t9s le 15. .1020e .5550, 0, .0000 .0000 t als .3054, 1.2179 .66tte 2e 12e .3330. 4340. 16 .3020e .5550  :

12. .1642, 1.3254, 1.3258, to 13. .1330 .5550. 17, .1330. .5550 .
13. 1682, 1.3258, 1 1258e to 14e .1330. .5550, 18e .1330, .5550 '

14 3642, 1.1258. 1 3258, to 15e .1330. .4540, 19e .1330 .5550 15e .3034, 1.2179 .6629 le 20. .1020e .5550. De .0000e .0000 ' 16e .1014, 1.2179e .6629 to 17 .1330, 4540. Ele .3020e 4540 17e .3642, 1.3258, 1 3258e to 18e .1330 .5550, tre .1330. 4540 18e .1,42, 'L.3t&4. 1.3254, to 19e .1330 .5550, 23. .1350e 4540 19e .1682 .1258, 1.3258, to 20 .1310 .4540, 24 .1330, 4340 20e .1038 .2179 .6629, le 25. .1020. .4540, 0, .0000e .0000 Ele .0650 9574 .3314 le 22. .1020 .4540. De .0000. .0000

       *2e .1038, 1.2179                  .e629,        le 23e        .1020.         .5550.          De    .0000      .0000 Ele .1038e 1.2179e                 .6629         le the .1020e                 .5550,         0,    .0000.     .0000 24,    .1038,      1.2179,         .6629,        le 25, .1020e                   4540.        O.    .0000,     .0000 25,    .0630.        .*574           3314        De      0,    .0000.          .0000e         De    .0000.     .0000
 ** DUDS.1:

PODS. De 16e 0. le De 0, 0. De De De 0 _, se RCOS.24 168.00. 0.0. Os 0 ,

 ** RUDS.9:                                                                                                                           -

1, le 9620, le 1. .250. 2e .250, 6 .250s 7 .250 te le .*657 le 2. .250. 3e .250, 7 .250. Se .250 le le 9657, le 3. .250e he .250, 8, .250. 9 .250 4e le 9657 le 4 .250s 5. .250. 9e .250 10. .250 Se le 96tDe le 9 .250. 10e .250, 14 .250, 15e .250 6 le 9657e le lhe .250. 15e .250, 19e .250, 20e .250 'm 4 7e le 9657, le 19 .250. 20e .250. 24, .250e 25. .250 8e le 9657 le 18e .250, 19e .250s 23 .250, 24 . .250

         *e  le       9620. le 17e                .250. 18,     .250,     22.         .250e        23.   .250 10    le     .*6to,       le 16e           .250,     17e     .250. 21e         .250,        Et,    .250
11. 1. 9657 le 11e .250, 12e .250s 16. .250. 17e .250 12e le .*657, le 6e .250, 7 .250, 11e .250. 12. .250
13. le 1.1067e le 7e .250, 8 .250. 12e .250. 13. .250 14 le 1.1067 le 8, .250 e 9e .250s 11. .250 14e .250
15. le 1.1067, le 13e .250s 14e .250, 18. .250, 19e .250
16. 1. 1.1067. 1, 12e .250. 13. .250. 17e .250. 18e .250 0

se RUDS.68: le DUNY .4220e 0.0 O se OPER.1: U#fRe le 2. D e 2. C. 42, D e 0. 0

 ** OP(R.;
       -1.0e 0.0. 0.0, 0.0. 0
 ** OPER.3 O

so UPER.5 1504.700. 545.800, 2.990. .416e 0.0

  • 1 1391 '

1799.700, 572.625, 2.981. .404, 0.0

  • 2 1392 1804.700. 580.116e 2.716. .356. 0.0
  • 3 1393 1809.700. 575.878, 2.989 .381, 0.0 e 4 1394 2099.700. 606.Stte 2.962. .369 0.0 e 5 1395 l 2099.700. 582.724 2.531. .339 0.0
  • 6 1396 l 2114.700. 552.150, 2.493. .429 0.0
  • 7 1397 '"

i 2099.700, 587.614, 2.006 .292. 0.0

  • 8 1398 i 2099.700. 544.575 1.986. .368 0.0 e 9 1399 2399.700. 607.174, 2.960, 428, 0.0 e 10 1400 2199.700, 600.654e 2.4 84 .377 0.0
  • 12 1402 2394.700, $57.675. 2.491. .456, 0.0 - a 13 1403 2399.700s $49.87E. 1.976, .395 0.0
  • 14 1404 l 2104.700, 559.300. 2.972. 480, 0.0 e 15 1405 1799.700. 516.400, 2.489 446. 0.0 e 16 1406 1804.700, 525.500, 2.968. .4 64 , 0.0 e 17 1407 2404.700. 469.662, 2.040, 455. 0.0 e 18 1408 2104.700. 486.536, 1.981. .4 54. 0.0
  • 19 1409 '

l 1499.700. 493.026, 1.996. .416e 0.0

  • 20 1410 '

, 1499.700s 4*4.324, 2.495. .487 0.0

  • 21 1411 2404.700. 497.893 1.542. .385. 0.0
  • 22 1412 _

20**.700. 486.861, 1.530s .367 0.0

  • 23 1413 2399.700. 435.618, 1.533 426. 0.0
  • 24 1414

! 2099.700, 430.44te 1.478, 420e 0.0 e 25 1415 l 2399.700. 384.182 1.507, .651. 0.0 e 26 1416 0**.700.

      ;814.700e' 382.564,           1.483.           448.      0.0      e 27            1417 i      1                382.888.          1.486.            464       0.0      e 28            1418 t

1499.700. 373.810. 1.501. 448 0.0 e 29 1419 = ( 17*4.700. 418.149e 1.471. .401, 0.0

  • 10 1420 -

14**.700. 4=0.7'$e 1.426, .383, 0.0 e 31 1421 l 178*.700. *m0.251, 1.w*7 .354, 0.0 e 52 lett l 1494.700. 496.920. 1.453 .348, 0.0

  • 33 1423 o
                                        .             -           -               . - -           - ~,

I

               'Cet.700.       152.475,    1.450.       *05. 0.0   e 16   lets
               *303.700.       $=9 625. 1.*f5.     .$18e   0.0   a 35 - 1425 I
               ;414.700.       ==0.1=6. 1.***.     .=06. 0.0
  • 16 1426 2604.700, 144.575, 2.980. .Elle 0.0
  • 17 1627 2424.700. =*6.126 2.665, .354, 0.0
  • It 14tB 2604.700 **6.5*6, 2.974, .623e 0.0
  • 19 1429 23*9.700 *14.510. 1.973. .526, 0.0
  • 60 1410 2399.700, 6*4.245, 2.454. .5*5. 1431 I

0.0

  • 41 (409.700. 661.549, 2.*64. .e57 0.0
  • 62 1612 t409.700 =15.297. 1.96te 335. 0.0
  • 61 1433
          ** OPER.12:

O. De De De 0. O

          ** Mf W.1s Hiu e De 0.        O I      s*#  0.6.

e OR&G.1: 0.038 HIW.2 OmaGe le 0,

          *e DR&O.t 1

0.166. a 6.20 e 0.0, 64.0, =1.0, C.0 I

  • OR&G.5
          **#ORIO.1:

0.5. GRID. De *

          ** GRIO.2:
                          .555 1.250.       .570.

08 0R10.43 1. B M GRID.6e 12 12.0 to 25.0. le 38.0, to $1.0, le 64.0 to 77.Os le &c.0 116.0e 2 129.0, 1 142,0s 2 155.0e 1 2.105.0. le I O CURR.1

          ***# CORRe le le 0 CURR.2:

EPRIe EPRIe [PRIe NONE

          ** CURR.3:

0.2

          ** CC#R . 6 s l'          EPRI THOM. THOM Ct.1 CONO. 05.7 ~
          *e CORR.7 0.0
          ## CORR.9 Ct.1                                                                                 !

et CORR.12 i 0.50747. 0

          ** C NT.13 cmf
          ** CONT.t:

0.0. De 20e 20e 2

2. De 0
          ** C ONT . 3 0.1, 0.0001, 0.001, 0. De D De 0.9
          ** CONT .6 s ege De l e 0. l e l e 0. D e l e 1. O , O
               =000.0. De De De 0 0
    'I    ## CONT.83 13
          ## C NT.11:

13

          ***END
  • CONT.15:
0. O. O. O. 0
    --I        IH00 0

OF INPUT D&TA: i i i i

                                                                  /

B-29

ll1 I oo CDC FILt NhME: MM15PA  !

                             *e
                            +* v1 Pat.1:
1. O, O
                             *e V!PRt.t
  • WN157 i
                            ** GEOM.1:                                                                                                                                                   1 GEDM.        36,       36,        25.           De           De      0                                                                                ;
                             ** GE DM . 2 :                                                                                                                                            i
                                   *6.00e       0.0.        0.5                                                                                                                          J
                            ** GEDM.4t                                                                                                                                                 *
1. .0534. .4637 .2937 2. R. .0000. . ! *05. 7 .0*60 .3*05
. .0864, 1.0835. .5875, 2. 3. .0980. .4960. 8. .1220, .3905 1
3. .0664. 1.0435, .5475, 2. 4 .0*SO, .4960. *. .1220, .3005 )

me .0864 1.0835. .5475. 2. 5. .0*to. . 4 *60, 10. .1220, .3*05

5. .0464 1.0835, .5875. 2. 6e .0*ece .3*05, 11. .1220e .3905 ,

se .0554. .4637, .!*37. le 12, .0900. .3*05. De .0000, .0000 e 7.~ .0864 1.0435, .5875. to Se .1:20e .1905, 13e .0980, .4960  ; 8e .136te 1.1750, 1.1750, te *. .1220, . = *60 , 14, .1220e 4960

                                    *.    .1362. 1.1750,       1.1750,           te 10e .1220,                   4060.      15,     .1220e       4 *6G                              ,
10. .136te 1.1750, 1.1750e te li. .1220e .**60, 16, .1220, .4*60 .

11e .1362, 1.1750, 1.1750s to 12e .1220e .3905. 17, .1220e 4960  ! Its .0664, 1.0835. .5875. le 18e .0*80. 4*60. De .0000, .00D0 -?

13. .0664, 1.0435, .5875. 2. 14, .1220e .3905. 19, .0900, .4960 14 .136te 1.1750, 1.1750, 2, 15, .1220e .4660 20e .1220e .4960 15e .136te 1.1750, 1.1750s to 16e .1220e 4960, 21, .1220. 4*60 ,

16e .1362, 1.1750 1.1750, to 17, .1220e 4960, tre .1220, .4*60 17e .1362. 1.1750 1.1750, 2. 18, .1220. .3905. 23. .1230. 4960 18e .0864, 1.0835, .5875, le 24 .0980, 4 *60 e 0, .0000, .0000 {*e .3362, 1.0435.

                                          .0664,                    .5875,          to 20e .3220e                 .5905,      25,      .0900,      .4960 60s              1.1750,       1.1750            to 21, .1220e                  4960,      26.      .1220e      .4660
21. .1362. 1.1750. 1.1750s 2, 22e .1c20e .4060, 27 .1220. .4960 1
22. .1362. 1.1750, 1.1750, to 23. .1220e 4960, 28 .1220, .4960
23. .1362. 1.1750, 1.1750, to 24 .1220. .3*05. 29 .1220e 4060
                                   ;4     .0864,    1.0835,         .5875.         .1,       30,    .0980.         4*60.        O,     .0000.      .0000
25. .0864 1.0835. .5875. 2. 26. 1220e .3*05. 31. .0980, .3*05 to. .1362, 1.1750s 1.1750. 2, 27. .1220, . w 960 . 32. .1220, .3905
27. .1362, 1.1750, 1.1750. to 28e .1 20e .w*60, 13. .1220, .3905
                                   ;8.    .1362. 1.1750,       1.1750.          2,        29,    .1220e         4*60,      34       .1220e .3905 09     .3362. 1.1750        1.1750,          to 30           .1220e        .3905        35.      .1220,      .3*05 30     .0864,     1.0435,        .5475.          le 36           . 0 *e0       .3*05.         De     .0000,      .0000
                                 -31.    .0$03.       .6637,       .2937,          1,       see    .0000         .3905.         De     .0000.      .0000 32,    .0864,     1.0415e        .5875           le       33,     .0980,         4960s        0,     .0000e      .0000 33,    .0664,     1.0835         .5475,          1.       34,    .0980,        .4960          0,     .0000       .0000 34     .0864      1.0435.        .5875,          le       35,    .0980.          4960.        De     .0000       .0000 35,    .0864      1.0815e        .5875.          le       36,    .0940,        .3905.         De     .0000,      .0000
36. .0538. .8637, .2937. De 0, .0000, .0000, 0, .0000. .0000
                           ** RODS.1 RODS.        O,     25.      De       le       0.         O. De        0,      0.      C.
                           ** #0D5 2 46.00.        0.0e       0,. 0
                           ** ROOS.9 le 1,       .*40?,      le     le         .250,          to   .250,         7,     .250,        Se   .250
2. 1. .*407, 1, 2. .250s le .250, 8, .250, 9 .250 .
3. le .*407, 1, 3. .250 4 .250 *. .250, . 10. .250 m, le .*407. 1, 4, .250, 5. .:50, 10. .250, 11e .250 5, le .**07, le le .250. 6. .250s 11e .250, 12. .250 -
6. 1, .*407 le 11, .250, 12. .250, 17 .250, 14, .250 7 le .*407 1. 17. .250, 18, .250, 23,, .250, 24, .250
8. 1, .*407, 1, 23. .250, its .250. 29, .250, 3 0, - .250
                                    *e 1,         4607      1. 29e            .250.       30      .t50,       35.      .250,       36.    .250 10,    le     .*407,      le C8e            .250,       29      .250.       34       .250.       35,    .C50
11. le. .*407, 1, 27, .250, 28 .250, 33. .250, 34 .250
12. le. .**54, le 26. .250s 27. .250 32. .250, 33 .250
               -             ** 13 Y 1. '
                               .                  9407      le 25.            .250        26,     .250,       31,      .250,       32.    .:50 14e le        .*407       le 19             .250,       20e     .260,       25.      .050,       26     .250
                        -         15,   le        9360,     1. 13e            .250.       14      .250s       19,      .:50s to.          .250 e                  '16. 1.      .*407,      1,     7          .250.         4     .250,       11,      .250,       14,-   .250 I

4 ~' '

                                ' 17 - l e 1.1D47.          le     8.         .250s          9e   .250.       14e      .250,       15e    .250 q, >.              los le l'.1112e          le      9          .250,       10.     .250,       15e      .250.       16e    .250 19    le 1.1047,          le 10e            .250,       11e     .250,       16e      .250g       17e    .250                                  '

s 20e le 1.1047, le 16e .250, 17e .250, Et, .250, 23, .250 -

21. le 1.1047, le tre .250, 23. .250. 28, .250. 29, .250 Its 1, 1.1047 le 21. .250, tre .250 27, .t&Oe 28. .250 m;' 23. le 1.1047, le 20e .250s 21, .250. 26. .250, 27 .250 24, 1 ' 1.1047 le 14, .250 15. .250, 20e .250. 21. .250
25. le 1.1D47. le 15e .t50. 16e .250, 21, .E50, 22e .250 0
                           *e RDOS.68:                                                         '
1. DUMY, .3740. 0.0. 0 -

O* DPER.1 OptR. le te os 2. De 25. De 0, 0

                           ** UPER.2:
                                  -1.0. 0.0e 0.0. 0.0                                                                                                                                 i ou UPER.3:

O ce optR.$t 20**.700. 548.250, 1.983. .507, 0.0 e 1 1559 7124.700 545.000. 2.500, .575. 0.0

  • 2 1560 2114.700. 550.525, 3.003. .627 0.0 e 3 1561

, C114.700s 654.425. 3.439, .688e 1.0 e 4 1562 I 2424.700s $3 9.4 75, 1.998. .523. 0.0 e 5 1563 l 23**.700. 549.!!$. 2.485. .597 0.0 e 6 1566 2414.700, $36.875, 3.002. .740, 0.0

  • 7 1565 ,

2404.700s 563.850, 3.443. .730, 0.0

  • 8 1566 23**.700. 621.822. 1.*58. .375. 0.0 *
  • 1567' - t 2.410.
                                                                                                                                                                                      ~
                                *;39*.700.         627.712,                            429,        0.0
  • 10 1568 2404.700, 617.606, 0.916, .315, 0.0 e 11 1569 0414.700. 615.650. 3.441e .595. 0.0
  • 12 1570
                                                                                                            /

B-30

w J

          -{0**.700.
            .0".9.700.

404.e78, 606.522, t.037. .370. 0.0 e 13 1571 s 1104.700,

t. web. .wt6. 0.0 e 14 1472 e34.604, t.*61. 664. 0.0
  • 15 1573~
          'P104.700e                            61$.976. 3.414.    -501. 0.0     e 16 1574 J            [104.700.                           661.172. 2.031    .est. 0.0     e 17 1575
            +114.700.                           641.020,   2.445,    .731. 0.0     e 18 1576 20**.700.                           515.750,   2.918.    .756. 0.0-    e 19 1577 s            23*4.700.                           464.039e   2.020.   .nete  0.0     e to 1578 13 H.700.                           4 *t. 66 7 2.471,   .734   0.0     e 21 1579 1404.700. -534.275,                            t.8*3.   .732,  0.0     e 22 1580 4414.700.                           $11.025. 2.503,   .e56. 0.0     # 23 1581 F            2404.700.                           6tt.170s   2.901,     699 l

2414.700. 46e.742, 0.0 e 24 1582 1.047, .413e 0.0 e 25 1543

     ** UPER.12:

D. O. D. De De 0

     =e MIXX.1:

Mixx e 0. De 0

     ** M1xx.2:

0.4. 0.038

     ** Onas.1:

O R AG . - le De 1

     ** OR&G.2:

0.186. *0.20, 0.0e 64.0 1.0 0.0

     #5 OR&G.$s 0.5.                    .6 96
     ** GR10.1:

GRID. De t 43 GR10 24 1.250. .$70 I: #3 GR10.43 (- -1. 7 ee UR10.6 5.00 0 1 18.00 t e 31.00. le 44.00 2. 57.00 1 70.00s t o 43.00.1

     +5 CORR.1:

CURR. le le 0

    '** CcRR.2:

(PRI, EPRt. (PRI,PCNE

     #e COMR.3:

0.2

     ** CORR.6:

I PRI .THOM. TH0H e Ct al e CONO G5. 7

     ** CURR.7:                                                                                                                              I 0.0
     *e CURR. 9 CE*1
     #e CORR.lts 0.66366e 0                                                                                                                       i se CON 7.1:

CONT

     *e CONT.t                                                                                                                               j 0.0. De Ice 20, t o t o De 0 se CONT.3:                                                                                                                              i 0.1 0.000's 0.001. D e D e 0. 0, 0. 9
     #e CONT .6 :

1 1. O s D e le De le le 0, De l e 1. 0. O l

     ** CONT.7                                                                                                                             q 4000.0 O. O. D. Ce 0
    *e CONT.S e 16                                                                                                                                '
     *e CONT.11:                                                                                                                              l' 16
     +3 CONT.15:                                                                                              .

00000 .,%

    *egNOOFINPUTCaTA                                                                                                                    e.

o 4 pp*4;.j,p**  ;

                                                                                                                                       .?

Ag.l3 :

                                                                                                                     .% ka t 44
                                                                                                                     ~

s.J '

  • y?.s, P
                                                                                                 . . :. '                        $ 5 \f.
                                                                                              ,.4,S
                                                                                                  $y
                                                                                                   ,            gg. t.,              r
                                                                                              ,u
                                                                                                     . . . < < .p v.gjt.%l.yp4
                                                                                                        .a ..                 ,.       .-
  • l 1

B-31

E,I j es.

        . CDC FILE NAME: HN1578                                                                                                                                        ,

q

        .n v! PRE.13                                                                                                                                                         -

le 0, 0 4

        == VIPet.2:

HH157 $ so GEGM.1: GIGMe 36, 36e 48. De De 0 9

        ** Gt0M.2:                                                                                                                                                          ,
             *6.00           0.0e         0.5
       .e Gt0H.4:                                                                                                                                                            .

le .0$34. .8637, .2937. 2. 2. .0*80s .3405. to .0980, .3905  ; 2e .0864 1.0835, .5875, 2. 3e .0*80. 4960. 8. .1220e .3908 l 3e .0864 1.0835. .5875, to 6e .0980, .4*60. *e .1220e .3905 - 4e .0066 1.0835. .5875. Z. S. .0660, 4960, 10e .1220e .3005

5. .0464, 1.0835, .5875, te se .0 *80 .3005. 11e .1220e .3905 1
               *e    .0538 , .8657e                .2937,         le 12e              .0980          .3905.              De      .0000.    .0000                              1 7     .0864,       1.0855,          .5875e to                   8.     .1220e         .3905,             13e     .0640        4660                           1 So    .1362.       1.1750,        1.1750,        to             *e     .1220e          4660,             the    .2220e        4460                            .
               *e .1361. 1.1750. 1.1750, to 10.                                       .1220e        .4060. 15e                     1220e     4960                         J 10e     .1362,       1,1750.        1.1750s 2. 11e .1220e                                4*60,             16e     .1220.       4960 11e .136te 1. 750, 1.1750, te 12e .1220e .3005. 17                                                                              4*60
                                                                                                                                .1220e                                   ?

12e .0464, 1.}455e 9 .5475, le 18e .0980 4660. O, .0000, .0000 13e .0464e 1.0435, .5875. to 14e .1220e .3905e 19e .0980, . e *60 the .1362. 1 1750, 1. 750s to 15e .1220e 4960. 20. .1220e 4*60 . 4' 15e .336te 1 1750. 1. 750s to 16 .1220e .4960, 21. .1220, 4960 , 16e .1362: 1.1750. 1. 750s to 17e .1220e 4960, tre .1220. .4660 62 e, 1 1750. 1.1750s te ate .1220e 17e .3905, 23. .1220e 4*60 .

  • t 18e .13
                     .0464        1.0435.          .5875. le 24, .0980s                               4060.              O,     .0000s       0000 19e      .0864,       1.0835.          .5475,        to 20e .1220e .3905, 25,                                       .0940       4*60 20e .136te 1 1750, 1.1750s to 21e                                         .1220e          4*60e             26,     .1220e       4960                        3 21e      .1362,       1.1750,        1.1750, to 22e .2220e                                4*60, 27.                 .1220,       4960                         ,

, 22. .3362, 1.1750e 1.1750, to 23e .1220e 4960, 24, .1220e 4960 23e .1362, 1.1750, 1.1750e 2e' 24, .1220, .3905. 24 .1220, 4960 , 24, .0864e 1.0835 .5475. le 30. .0980, .**60. De .0000 .0000 - 25, .0864 1.0835, .3875. 2. 26 1220e .3905, 31. .0980s .3905

26. .1362. 1.1750, 1.1750s to 27 3220e 44 60. 12e .1220e .'905 27, 4362. 1.1750. 1.1750, 2. 28. 4220e 4960. 33, .1220e .5905 28 .1362. 1.1750, 1.1750, 2. 29 .1220, 4960e 34 .1220e .3905 ,

29 .3362, 1.1750s 1.1750, te 30. .1220e .3905. 35. .1220e .3905

30. .0864, 1.0835. .5875, le 36, .0980. .3905. De .0000. .0000 31, .0583. .4637, .2937, le 32. .0980s .3904. O. .0000. .0000 32, .0864, 1.0835, .5875: 1, 33. .0980 4*60, De .0000, .0000 Ile .0864, 1.0835, .5875. le 34, .0980, .4960. 0, .0300, .0000 34 .0864, 1.0835 .5475. le 35 .0040. 4960e De .0000 0000 >
35. .0864e 1.0835 .5875e le 36. .0980. .3905. O, .0000, .0000
36. .0538 .8637, .2937. 0. De .0000 .0000, Oe .0000. .0000
       *e #D05.1:                                                                                                                                                         ,

ROD 5e 0, 25. De le 0, De 0 O, ce 0.

       *e Rc05 2:                                                                                                                                                        >
            **.00.          0.0.         De       0
       ** R005.9 le le           4407e le            }.        .250,           2.     .250,          7      .250               Se       .250 to 1.         .*407,       le       ..        .250,           3e     .250s          8      .250               9e       .250 3,    le        4407.      le       3.        .250,           4      .250s          9      .250,            10.        .250 es le         .*407        le       6         .250s           5e      .250,      10e       .250,             lle       .250 5e    1.      .*407,       le       se        .250,           6e     .250,       11e       .250,            12e        .250

, 6. le 9407e le 11e .250, 12e .250s 17e .250, 18e .250 7e le .*407: le 17e .250, 18e .250e 23e .250, 24 .250

8. le .*407, le 23. .250. 24e .250, 29, .250, 30 .250 Se le .e407e le 2*e 30 .250

. .250, .250, 35. 36 .250 l 10. le .*407 le 28: .250e 29 .250, 34 .250, 35. .250 r 11. 1. .*407, 1, 27. .250e 28. .250s 33, .250 34, .250 ,

12. le *4 54 le 26. .250e 27. .250e 32. .250. 33. .250
13. 1. 6407e le 15e .250, 26 .250, 31, .250, 32. .250 14e le 9407 le 19e .25be 20e .250, 25, .250, 26. .250 15e 1. 9360. le lle .250s 14e .250s 19 .250, 20e .250 16, 1. .9407, le 7e .250, 8, .250s 13e .250. 14e .250 17e le 1.1047s le 8, .250, *e .250, lhe .250 15e .250 18e le 1.1112, le *e .250. 10. .250. 15e .250. 16e .250 l 19e le 1.1047, le 10e .250, 11e .250, 16e .250, 17e .250 l 20. le 1.1047, le 16e .250s 17e .250, .250, 23. .250 ,1 r 21. le 1. 047, le 22e .250, 23e .250, tr 28 e. .250, 29 .250
22. le 1. 047 le 21e .250. 22. .250, 27, .250, 28e .250 23e le 1. 047, le 20e .250, 21e .250, 26, .250e 27e .250 '

24 le 1.1047 le lhe .250, 15, .250, 20e .250, 21, .250 , 25. le 1.104?. le 17 . .250. 16e .250. 21. .250, 22. . c!.0 . 0 '

      ** R005.68s                                                                                                                                                             l

! 1. DUMYe 3740s 0.0, 9

*e OPER.1
1 OPERe le to De 2e De 52. De ce 0 {

ee OPER.2: .

          *1.0 0.0, 0.0. 0.0                                                                                                                                                  l en DPER.3:                                                                                                                                                             -

0 - se OPER.5 I 2404.700. 465.443, 1.550. .568. 0.0 e 26 1584 'l 2104.700, 619.562. 3.408. .486, 0.0

  • 27 1585 l 2104.700 548.900s 3.480. .718e 0.0 e 28 1586  !

2114.700. 544.675. 1.031. ,328. 0.0 m 29 1587 2104.700 533.300 1.561. 4t ie 0.0 m 30 1588 1 2099.700. 465.768, 1.046e 41I. 0.0 e 31 1589 i

  ,        2104.700s            467.066.          1.512.            .555e           0.0        e 32          1590                                                             (

24D4.700, 558.125. .974e .307, 0.0 e 33 1591 2404.700. 558.325. 1.490s .428. a0

  • 34 1592 1 1504.700. e55.709 2.032 .e35. 0.0 e 35 1593 1504.700 454.629, 2.48te . Ate. 0.0 e 36 1594 1814,700. 467.715, 1.998. .218e 0.0 e 37 15 95
                                                                                           !                                                                                 l' B-32 1

181$.700 472.407.- 2.4te s . .612. 0.0 o 34 1596 1814.700.- A17.700 = 1.986, .525. 0.0. o.59 1597 11799.700.-- 1804.700. , 516.725e 2.514 . .625, 0.0 . e 40 1598 517.050, .705. 1499.7so,~ 515.150, 2.9et. 0.0- 41 1599

                ;1514.700,                      2.015.-      .546,         0.0      e et    1600:-

516.725 2.501, .584e 0.0 . e 45.- 1601 1499.700,

                 -1514.700, 515.425e    2.989,       .628,-        0.0      e 44    1602 514.775,   =3.492.       .697.e        0.0      e 45    1605 '       i 1504.700s     '$76.204,~-2.017.          .454,         0.0      e 46    1604 -

4

                 '1504.700          566.775     2.481.         465        0.0     - m 47    1604          ,

1504.700, 564.500, 5.010, .525e

  • 44 1606 1 17*9.700. "$19.475, 5.446 . 702 e ,' -0.00.0- e 50 1608 1519.700 - 582.724 . 3.465, .506. 0.0-. * $1 1609 17*4.700 570.025. 1.551e! .377, 0. 0 - e 55 - 1611
                  '1804.700.      -549.875      2.075,         471. ' 0.0           e 54    1612 1804.700,       565.850     2.515.

1814.700, - 574.575,. -2.965.- ~.542, , 505. - 0.0 e 55 ~1615 l -1904.70C,4 e 561.900,- 3.514, 0. 0 - e 56 1614' 1804.700 - $17.050,

                                                             .604,        0.0       e 57    1615 1.067        .588.        0.0L e la         1616     C 1799.700,       516.075.1 1.517e- .464,               0.0 '
  • 59 - 1617 -4 145%.700.- 495.297,- 1.056. .416e . 0.0 e 60 1618 4

1804.700 - 515.000 1.462.- . 4 4* , 0.0 e 61

  • 1619 .;

1789.700s 195.563,-. 1.035, 445.

  • 62 1620  :)

1464.700 451.762, 1.989 .617e - 0.0 0.0 ~

  • 45 1621 1804.700s, 417.505 1.507 .605, 0.0
  • 64 1622 1799.700e: 427.654, 1.957. .679 0.0 -
  • 65 1625 1809.700e' 587. ?e - 1.051. .518 1 0.0 e 66 - 1624 Ifh+.700s - 40R . uw'. - 1.526. j
                                                                                                     ~
                                                            '. 6 2 5 ,,   0. 0 '
  • 67 - 1625 1Lts.700 410. w'. 1.997, - . 719 e 0. 0 -
  • 64 1626-1494.700 575 Sie 2.464. 459 h.C e 69 1627 1804.700 470.s66, - 2.4 72. . .72*r m .D e 70 ' 1628 l 1509.700ec 453.112, 1.002, 45aw 07 e 71 1629-1499.500, 457.655, 1.558. .551 ,

1804.700,- 455.708, $ ~s e 72 - 1650 i' 1.518.. .548, 4.0

  • 75 1631-1804.700e e66.417, 1.003. . e D4 e *. 0 e 74 1632 2104.700, 346.794 1.057.
                '2424.700           392.269 ' 1.04*e-
                                                             . 4 eS e . 0.0       e 75    1655          1
                                                             .518e        0.0       e 76    1634 2404.700s       598.416     1,505,-      .e55         0.0       e 77- 1655       - 1' 2214.700.       400.680 -   1.498.       .655.        0.0       e 78    1636 tit 9.700. 466.661.- 2.016e'          - t-Se          0.0
  • 79 1637 '

no DWJR.12: l 0.- 0. De '0. De 0 i se HIXX ): .

                - HIxX e 0. De 0                                                                           i
             ** HIXX.2:                                                                                    1 0.8. 0.038
             ** ORAG.1:

ORAGe 1 - De 1

             ** ORAG.2: '

0 186. -0 20, 0.0s.64.0.--1.0. 0.0-

             ** ORAG.5 0.5.       .4 96 se GRIO.1':                                                                                     1 GRIO,    De-     .2                                                                       !

y se GRIO.28 l 1.250.~ 570  :

             == GR10.43                                                                   '
                   -le      7 en GRIO.61
     "             5.00 1 16.00 2 31.00 1. 44.00 2. 57.00s 1. 70.00s.2. 85.00. 1 O                                                                               .
             *e CORR.2:

CORR.'1. le 0 ee CURR.2t

                . E PRI . EPRI e (PRI e NONE
             == CORR.5:

O.2

             ** CURR . 6 :

EPRI eTHON. THOM, C2-1. CODC GS.7 '

             == CURR.7 0.0 se CORR.9 CE-1                                                                                  ..
             *e CORR.12:                                                                             - !

0.46566,O

             == CONT.1:                                                                                       i COHT                                                                                       1
             ** CONT.21 0.0. Oe 20, 20, 2, 2        O, O
             *e CONT.5:                               -

0.1 0.0001. 0.001. De 0 De 0, 0.9 . as CONT.6 - 4'

                -1.le0 0,1.De 1. 1, 0. D e le le 0, 0
           , we CONT.7
         ,         e000.0, 0. D e 0. O. O en CONT.8                                                                                         {

16 '

           . *e CONT.11:                                                                                       '

It

             ** CONT.15:
0. O. O. O. 0
             == END OF INPUT DATA:                                        ,
                'EH00
                                                                                                                  ?

4 dI-.33

                                                    =~
                                                                                                                                                                                ?
           *e CDC FILE N64: NH154 Il                l
           ** vipRt.1 -

f ,; l= 1. 0,- 0 I < a VIPRE.2: $ 1 HH158 .

          -" OEON.1:
              ~DECH,         36.'      36.      44            O.        O.      0
           ** GEOM.2:
                *6.00,          0.0.          0.5
  • DEON.4 -
1. .0538. - .8637.- .2937, 2. 2. .0980. .3905. 7 .0980. .3905 1 2, .0864, 1.0415e .5875e 2. 3, .0980s 4960. Se .1220. .3905 3, .0864 1.0s35. .5875. 2, 4 .0980s .4960 - 9, .1220e .3905 '
                                                                                                                                                                                /

l k, . 04% , 1.0835, .5875, to 5. .0980, .4960, 10. .1220. .3905

               ' 5.       .08 M ,' 1.0815,              .5475, .2.              6,     .0980,         .3905. ,11e                 .1220,    .3905
                -6        .0534.        .8637,          .2937,          le 12e        .0980,          .3905,          0,         .0000,      .0000                                1 7        .0444,     1. 0M S ,          .5875.          Ze   ,  as    .1220,          .3905,       13,             0980,    .4960                                  l Si       .1362,     1.1750. 1.1750, to                         9e .3220e             .4960,       14            .1220.       4960                                <
                 *.      .1362,'1.1750,-'1.1750. 2. 10                                .3220.          .4960,       15$         .1220e         4960
10. .1362. 1.1750s 1.1750, 2e 11e .3220, .4960, 16, .1220, .4960
11. .136te 1.1750, 1.1750, 2, 12, .1220 .5905. 17, .1220e 4960 12e . 0M4 e 1.0435, 5475, le la, .0940, 4960. De .0000, .0000 13e . 0M4 , 1.0835, .5875, to 14e .1220, .3905. 19, .0980 4960 14 - .1162, 1.1750, 1.1750, 2. '15. .1220, 4960, 20e .1220e .4960 15, .1180, 1.2598. .4412, 2. 16, .0640.. 4960, 21, .0680, 4960
16. .3180 1.2598. .4812. 2, 17e .1220e 4960, .22.- .0640,- 4960 17, .1362e 1.1750,- 2e .18e .1220 . 3 905 e 25e .1220, '.4960 18e .0M4, - 1.1750 e 1.0835. .5875, 1 24, .0960, 4960, 0, .0000e. .0000 .

19 . 0M4, 1.0835, .5475, t e - 20e .1220 .5905, 25. .0980, .4960 -' 20e .1362, 1.1750, 1.1750 to 21. .1220e .4960.- 26, .1220, 4960' 21, .1180, 1.2598, .3412 2. 22. .0640 .4960, 27, .1220. 4960 22, .1180, 1.2594. .8412, 2. 23, .1220e .4960, 28 .1220e 4960 23e .1362e 1.1750e 1.1750, 2e 24 .1220e .3905e 29, .1220. .4960 > 24, .0864, 1.0835, .5875. le 30. .0980,- 4960. De .0000,: .0000

25. .0864 1.0835, .5875 to 26, .1220s .3905. 31, .0980. .3905 26e .1362e 1.1750, 1.1750, 2, 27. .1220,' .4960, 32: .1220. .!905 27, .1362: 1.1750, 1.1750. 2. 28, .1220e- .4960, 33, .1220, .3905
28. .1362, 1.1750, 1.1750. 29 .1220, .4960. 34, .1220, .3905 29 .1362e 1.1750. 1.1750, to
2. 30. .1220, .3905.- 35, .1220e .3905
30. .0864, 1.0835. .5875 1, 36, .0980, .3905, 0. .0000. .0000 31, .0538, .8637, .2937, le 32, .0940, .3905. O. 0000, .0000
              -32.       .0864,     1.0835.             .5875,          le 33,        .0980,           4960,         0,          .0000.     .0000
                                                        .5875 33       .0864,-    1.0835,                             le 34         .0980            4960,         0,          .0000      .0000-                              +

34, .0864. 1.C735, .5875. le 35, .0980 4960 De .0000 .0000 35, . 08M , 1 M35, .5875. 1. 36. .0980,- .3905. O,. .0000 .0000'

36. .0514e .8637, .2937. O, De .0000, .0000, 0, .0000s .0000
           ** R60s.1:

RODS. Os 24, De le De 0, De De 0, De 0

           " RODS.2 a6.00.          0.0.         De           0                                                                                                           -
           ** RODS.9
1. - 1. ~ 9444, le 1 .250e 2. .250s 7 .250, 8 .250
2. 1. 9448s le 2. .250, 3. .250, 8, 250, 9e .250
3. le .9448. le 3. .250.' 6 .250. 9 .250.' 10, .250 ~

4 le 9448, .le '4 .250s se .250. 10, .250, 11, .250 '

5. le 9448. le 5. .250, 6 .250. 11. .250 12e .250 -

6, le 9448 1, 11, .250 12, .250, 17, .250, 18.- .250 7, le . %48. 1, 17, .250, 18, .250. 23, .250 24, .250 8, le 9448 e le 23, 250, 24 .250. 29 .250, 30 250.

                 *. 1,        9448,      le 29             .250,        30.    .250s      35.        .250s            36,        .250
10. 1. .9448, 1. 28, .250, 29 .250, 34 .250, 35. .250 s

o 11, 1. 9448. le 27. .250, 28: .250, 33, .250, 34, .250 - l 12e 1. .9448. 1, 26, .250e 27e .250, 32e .250e 33. .250 13, le 9448. 1, 25. .250, 26. .250. 31. .250. 32, .250 14 le 9448, le 19e .250, 20. .250. 25. .250. 26. ~.250 15e 1. .948. 1e 13, .250e 14, .250e 19e .250e 20e .250 ,

16. le .9448. 1, 7 .250, 8. .250. 13. .250,- 14e .250
17. le 1.1096 le 8 .250, 9 .250, 14, .250. 15e .250
18. le 1.1161 1, 9, .250. 10. .250, 15 - .250. 16, .250
                                                                                   .250.

22,' . .250. 19 le 1.1096 le 10, .250 11e 16, 17, .250 20 le 1.1096 1, 16, .250 17, .250, 250. 23, .250 -

21. le 1.1096, le 22. .250, 23e .250e 25. .250. 29, .250 t
22. le 1.1096, 1. 21. .250. 22. .250. 27, .250, 28 .250
23. 1. 1.1096, le 20. .250, 21. .250, 26 .250. 27e .250 24 le 1.1096, 1, 14, .250, 15e .250, 20e .250, 21, . tSO l 0

(- ** RODS.68:

1. DUNY, .3740. 0.0, O
          ** OPER.1:

OPER, le 2, 0,~2 De 66. O. De 0 *

          ** OPER.2:
               -1.0. 0.0, 0.0, 0.0
  • CPER.3 1 0 -

i em OPER.5: . t 2099.700, 555.075, 2.035. .517e 0.0

  • 1 1638
- 2104.700, 554.750, 2.503, .571, 0.0
  • 2 1639 1 2099.700. 556.375 3.007, .647. 0.0
  • 3 1640 2104.700. 556.375. 3.496 .738. 0.0 *- 4 1641 2394.700, 552.150s 2.048: .558. 0.0
  • 5 1H2 2424.700, 547.600. 2.524, .643, 0.0
  • 6 1643 2394.700. 558.000 2.996. .695 0.0
  • 7 1644 i 2434.700, 562.875. 3.446- .767. 0.0
  • 8 1645 l-- 2414.700. 610.434 2.033. .424 0.C
  • 9 1646 l

2399.700. 611.738. 2.498. .444 0.0

  • 10 1647 l 2404.700, 613.694, 2.971. .519e 0.0
  • 11 1648 2409.700. 006.522. 3.507, .595, 0.0
  • 12 1649 -

2114.700. 1.973. 618.910, .344, 0.0

  • 13 1650
                                                                                            /

B-34

                                                                                                                                       .+

1

         - 2109.700s.            615.476,'           2.475.        .401.           0.0                                                             .

2104.700. *17.180. a .e'14. -1651

                                                                   . w 6 7 . --    0.0
  • 15 . 1652 2099.700. :.617.606 - $.944 466.
                                                                  ..*e4            0.0
  • 16' '1653 -

2114.700,: 521.600s- 2.9e4,- .758, 0.0

         '2399.700.
  • 17- 1e54 -

532.975. 483.940,- 2.97*.

                                                                   .756,           0.04       + 18              1655 2099.700.'                               2.022.-       .e67,           0. 0 - e 19                  1656 er 2099.700e-           490.106,            2.500,        .737            0.0       e to               1657
            &$99.700.            490.430,            2.032,        .651.           0.0       e 21               1658                          i 2399.700 - 490.106.                 .. 't.518.          .764,           0.0       = 22               1659 2314.700             4D4.914,            1.504.       . 540. -         0.0      -* 23               1660 2399.700s.           484.914 -           1.051.          425.          0.0                          1661'

? 2094.700,- 484.264 1.010. .379 0.0

  • 24
        '2099.700,               433.354
  • 25 16e2 1 5 1.010e .w35, '0.0
  • 2 6 -- 1665 1 2104.700 419.120. 1. 515, -- .626, e 27 2099.700, 432.384, 2.039 0.0 le64 746 - 0.0- = 28 1665:

2099.700s *84.914, 1.523, '.547, 0.0 e 29 1644 1114.700, .544.025. 1.514 .*45, 0. 0 . e 30- 1667 2394.700, 552.150. =1.523e 452, 1799.700, 572.300s- '1.5 04 0.0 -

  • 31 '1668-1814.700 .352.- 0.0 e 32 1669 z ;

576.530.- 2.002, 418.- 0.0 e II 1670 11 1799.700 572.625 - 2.506.' 473. 0.0 1799.700, 57t.300. 'e 34 1671 2 3.010 .536, 0.0 e 15 1672 .i 2099.700 -556.375, 2. 998

        '1824.700,-         570.025,;                3.486,
                                                                  .655.
                                                                   .651, 0.0.     -e 36               1673                                -}

1499.700, 563.526. 0.0 e 37' -1674

         -1514.700,-             567.750,.

1.558.- .380, 0.0' e 38 ' 1675 '

          '1499.700,                                 2.040s       .417,            3.0
  • 39 1676 573.275e 2.513,. .492, 0.0 e 40 167T -a 1514.700, 569.375, 3.014 - . 489 1504.700 0.0 e 41 - 1673 1799.700,.

573.600,2 3.469 .510 0.0 e 42- 1679 514.450, 1.556, '485, -. 0 . 0 1799.700 ' 517.050. 1.989. - e 43 1680 ,

                                                                  .5b9,           0.0        e 44              1681-1814.700,             514.125.            2.505,       .e48,           0.0        e 45              1642
        '1814.700s               $13.150.'     ' 3. 017. '        .726..          0.0        e 46 :            1683
         -1799.700,              534.600,            3.534,       .738.- 0. 0 1499.700.             510.550e'
                                                                                          . e 47               168*

2504.700,' 1.513e .471. 0.0 e 48 1685 y 508.927e 2.021. .544, 0.0 *49' 168 1 1504.700,- 507.*53. 2.520, . elt . - - 0. 0

  • 50 1687  !

1504.700, 512.500s 3.011.. 1509.700. .o82.' O.0 + 51 1688 1804.700, 509.576 - 3 .515 . ~ 446.*47,

                                                                  .712.- . 0. 0
  • 52 1689 1799.700 " 454.086, 1.537, .579 ' O. 0 *
                                                                                               ~

53 1690-1804.700, 2.0234 .703, 10.0 e 54 1691 i 457.655, 2.497 .780.' O.0 Iw 99. 700,- 453.437e

  • 55 1692  !

2.002. 675 0.0 e 57 ' 1694- 'j 1494.700 - 461.876e 2404.700,' 2.505. . 73 7, - 0.0-

  • 58 1695 427.208 1.547 . .634, 0,0 .
  • 60 - 1697-t i

1499.700 ,-467.391. 1.012,' 1809.700 453.762. 4 2 2 . .- 0.0 e 61 1698 1794.700,- 390.328, 1.023. '.412e 0.0 ' e 62 1699 ' i 1804.700,: 599.366, 1.028, .481. 0.0 e 63 1700-1.511 .641 0.0 e 64 ~ 1701 1504.700.- 374.*59, 1.029, ' ,519 , 0.0 e 65- 1702

         ~1504.700               394.534.            1.523e       .639            0.0      ..e 66 '

1504.700 403.915. 2.041, .76 9, 1703> 1814.700, -397.445,- 0.0 e 67 1704' 2.009 C# DPER.128 - - .724 0.0 e 68 1705 Ji 0, O. De '0. i De 0 ' se MIXx.1 MIXx. O, 0. 0 G5 MIxx.28 0.8. 0.038, he ORAG.lt .

        '0 RAG, le           0,       1
   '#O ORAG.21, 0.186. *0.20s 0.0. 64.0, -1.0. 0.0-                                                                                                             *
    *# 03AG.5:

{ , 0.5. ..496 l #e GR10.1 . GRIO. 0, 4 2- l m# GRID.28 1.250. .370

    #9 ORIO.4                                                                                                                                               '
           -1,        7 en GRIO.63 5.00,1,18.00 0                              2. 31.00. l e 44.00 t o 57.00.1. 70.00, t o 83.00 1                                                           -1 50 CORR.lt              .-                                                                                                                         -i CORR le le 0
    ## CORR.2:

EPRI.-EPRI, EPRI, NONE

    ** CURR.3                                                                                                                                        -        -
       -0.2-                                                                                                                                                 i
  'em CURR.6             -

2PRI. THOM. THOM. CE-le CONO, 05.7 d

    ## CURR.73 '
0. 0 - -)
    #5 CORR.93 CE-1                                                                                                                                          .]
    ** CORR.12                                                                                                                                              ]

0.37466, O 1 i

    #3 CONT. l t CONT                                                                                                                                                   l j

00 CONT.2 O.O. O. 20, 20 2 2, D. O  ! De CCHT.3 8 0.1 0.0001. 0.001, D e 0, C. O, 0. 9

    #s CONT.6:

1 1 0.0,le0 1.le De0,1,1.0,0

    ## CONT.74
         *000.0. O. De 0. O, O C# CONT.8
                                                                                         ?

B-35

 . _ _ . - _ .                          - .-- .-- - _ -.. . . . . _ . - -.                                           .. --. ._ .                .-.. . . .~            ,   -,  - . . . -, . ..
                                                                                                            ..._.7.-

p Ii

16
                             ==
                              . 1C O.NT .11 : ~

'i: .- ce CONT.15 s - .. . i

c. O. o. U. 0 1 ce END OF INPUT CATAt ., si ENDO i O -

i. I L' I-L i: i I I: I 3; I I' 11 e .

                                                                                                                                                                                                      &                        .'1 i
                                                                                                         /
                                                                                                        -B-36
                                                                                                                                                                                                                                 )
                                                                                                                                              ^

__.__m_____m__-__.m__m -._..m ..,L',.m., . .. .,. .i _ ,,_ e w - m ,. _- ,.2..,.,de. ..-.E...e,.e...,. ,,'m. . , . . - . , . , , - , - .

                - 2114. 700. - t 609.800,         1.981.         .378.-       0.0'     e 13          1732
                -2104.700.          =82.200.      1.445.         . 3 5'3 e    0.0      e 14*        -1733 2099.700e :e73.500s.            2.005.         . 83..     ' 0. 0 .
  • 15' 1734 2099.700, 475.800 : 2.305, ' .799, 0.0 2104.700. 481.400,' e 16 - 1735' 2414.700, 469.300, 2.978, .89ei 0.0 . e 17 1736 1.502 ' .585.- 0.0 e 18 1737 2404.700. 465.300e' 2.015, .720 - 0.0 e 19. 1738 2414.700.- 470.500, 2.526. .837 L 0.0 , a 20 1739 1814.700e 438.900 . 1.510e .595. 0.0- e 21 1740 1814.700, 449.300 2.005.. .700e' O.D.

1814.700.- 452.900.-

  • 22 1741 2 . 6 *6 , ' .808, 0.0 e 23 - 1742 1814.700, 466.470, 3.003. .864, 0.0
                -180s.700. - 409.300,             1.475,'

e 24 1743 1799.700, .e41e 0.0 e 25 1744 424.400, 1.971.. .725,'.O.0 e 26 1745-2094.700. 405.200 .1.471. .651. 0.0 e 27 1746. J 2399.700s, 410.400s 1.489,' .t&5e 0.0. a 28 1747 j 1514.700e '443.900, 1.458. .565, '0.0-.. e 29 1748' i 1514.700, 450.300 1.985 . e 30 1499.700e'

                                                                .642.        0.0-                 - 1749.                    !

453.900. '2.495 ~ .746, 0.0- e 31- .1750 v 1504.700e 453.200 g.991e .840, 0.0-

  • 12 1751 1504.700. .513.300, 1.470s 465. 0.0 '
  • 13= 1752 L1504.700. '515.900, 1. 9 *6, .508.- ' 0.0 a 34 1753-1514.700. 508.500.- 2.485. .615, 0.0
  • 35 1754 1524.700, $11.900, 2. 983 e - .679 m 36 1

14*9.700, 567.900, 0.0 1755 i 2.032. .429e 0.0 e 37 -1756

               *1514.700,-          567.500,      2.530           643,       0.0      a 38           1757-1499.700s= h61.800              3.031.        .519e        0.0      e 39 '        1758                     a 2124.700s       .605.500,'      2.479         ,428,        0.0      m 40          1759 2099.700,         404.200.

2414.700, 599.900 3.020e 2.009,-

                                                               . 492,-     'O.0-      e 41           1760 2424.700,         604.800
                                                               '.438,      '0.0       e 42          1761' 2414.700, 2.509,        .525.
                                                                .584,"       0.0      e 43 '        1762'                     ,
               .2404.700,,

604.900, 3.011.- 0.0 .a 44 1763 1 609.400. '3.457, .653. . 0. 0. '

  • 45 1764  :

2114.700, 608.600 3.4 54 , .540,= 1799.700, 567.200, 0.0 a 46 1765 3 1814.700,'- 2.002 . .431. 0.0- e 48 1767 1814.700, 567.100. 2.513e .489, 0.0 ' e 49 1768 j 560.500.- 3.027.. .580. 0.0

  • 50 1769 1814.700,t 5e8.500,~ 3.509 .e00, 1770 1514.700, 563.200, 3.055, .555,
0. 0 -
  • 51 0.0 1

2114.700, 563.500, m -52 1771' ' i' 2409.700, ' 547,200 1.448, .737 c3.0 e 53 1771

                                                 -3.504,        .856, 2399.700,         543.300 0.0-     e 54 ,        1772                      !
                                                . 2.492.        .683,        0.0      e 55'         1773 1514.700.       .512.600        3.461,'       .723,        0.0      e 56          1774 1814.700,         510.900       3.489,        .850,        0.0 m F7 1514.700.         411.500,                                                        1775 1.499         .609 -       0.0      e 58        '1776 1509.700          407.800,      1.990,        .745.        0.0 1504.700,         385.400,                                          a 59          1777                       4 1799.700,'                     :1.025.        .529.-       0.0      e 60-         1778 386.000e      1.032,        .506.        0.0      e 61          1779 2099.700.         390.300,      1.016e        .520e        0.0 - e 62 -           1780 12364.700.          397.300       1.005.        .508         0.0 2414.700.         463.400,                                         -e 63          1781 2099.700,                        1.002.        .435.-       0.0      e 64          1782                       ;

1784.700, 460.300s 998. .430. 0.0 e 65 1783 445.900, 1.001, .445 0.0 e 66 1500.700. 443.200, 1784 .~ 1.086. .464, 0.0 e 67 1785 em GPER.12: 1 O. 0 0. De De 0' ee HIXX. :- HIXX. De 0, 0 j me HIKK.2 . i 0,8. 0.038 { se ORAO.1: ORAG, le 0 1

            ** ORAG.24-0 186, =0.20         0.0, 64.0, -1.0. 0.0
            ** DRAG.53
               -0.5.       .496
            ** GRIO.lt                                                                                                          I ORio. De 2                                                                                                  1 en GRIO.2 1.250,=        .570
            ** ORIO.48
                 -1.       8
          -se GRID.63                                                                                                            ,

9.0, 2 20.0, le 31.0 0 2. 42.0.1. I3.0. Z e 64.0 le 75.0 2. 86.0, I 1 i

            ** CORR.1:                                                                                                           '

CORR, le 1. 0

         ^ ee CDRR 2:

EPRIs EPRIe EPRI, NONE' we CORR.3 i O.2 '

         . ** CORR.6 EPRI THWf, THtMe CE-le COPS, 05.7
            ** CORR. 7 :

0.0

            *e C ORR . 9 3 CE-1
          ' eHe CORR.12A 3 0.46366. O
            ** C097.1:

CONT

            ** CONT.28 0.0. O. 20, 20, 2, 2. D e 0
           ** CONT.3:

0 1 0.0001. 0.001e 0, De 0, 0, 0.9 *

           *e CONT.6:

1 1 0.0,le0,le 1.0.0,11.0.0

           ** CONT.7:

4000.0. De 0, 0, 0,4 l

                                                                                    /                                                i B-37
                                                        ' ~                                      ~~         '
  . .: +         .          *%...                                     .

l11

        ** CDC FILE NAME: NH160
        ** v! PRE.1's_

1.- 0, O

        *e V! PRE.2 HH160
        ** 0(OM.11 GEOM.         36,      36,     48       De          De        0                                                                                                           '
        ** GE DM.2
              *6.00,          0.0,        0.5
        ** GEON.4
1. .0549 0.8677. .2937 to 2. .1000, .3915, 7. .10CD, .3915 2, .0874 1.0835. .5875 2e 3. .1000, .4960, 8. .1220. .3915 l

le .0874, 1.0835, .5875. to 4 .3000, .4960, *, .1220, .3915 4 .0874, 1.0835, .5875, 2e 5. .3000, .4960, 10. .1220e .3915

5. .0874, 1.0435, .5875. .2, 6e .3000, .3915, 11, .1220, .3915 le 12, .0000. .0000 oo .8677, .2937, .1000, .3915, 0, 7 .0549, . 1.0835,
                     .0874,                      .5875,          2e       8.     .1220e           .3915,       13e       .3000          .4960
8. .1362, 1.1750,1.1750 2, 9, .1220, .4960, 14, .1220e 4960 1
                *e   .1362,        1.1750s 1.1750, to 10e                        .1220,           .4960,       15,      .1220,           4960                                         +

10, .1362, 1.1750 1.1750 . 2, 11e .1720, . 4960, 16, .1220e 4960 f

11. .1362, 1.1750, 1.1750, 2. Its .1140, .3915, 17e .1220, .4960 +
12. .0874, 1.0835, .5875. 1.- 18, .1000, 4960, . O, .0000, .0000 ,
13. .0874, 1.0835. .5875,- 2. 14e #1220e .3915, 19, .1000. . 4960  ;

i '14 .1362,- 1.1750. 1.1750, 2e 15. .1220, 4960. .20e .1220, 4960 '

                                                                                                                        .1220,- 4960 15,     .1362. 1.1750,            1.1750e          2,      16,      .1220,           .4960.z 21, 16,     .1362. 1.1750,            1.1750           2.      17,     .1220,            .4960. 22             .1220e . * *60 .                                       '

17e .1362: 1.1750, 1.1750 2. 18, .1220s .3*15, 23,e. .1220, 4960 # 18, .0874, 1.0435, .5875,. le 24, '.1000, ' .4960, 0, .0000, .0000 18, .0874, 1.0835. .5875, 2, 20 .2220e .3915,. 25, .1000e .4960

20. .1362, 1.1750, 1.1750, 2. 21, .1220, .4960, 26. -.1220, .4960
21. .1362. 1.1750s 1.1750, 2, 22. .1220e 4960, 27, .1220, . .4960
                     .1362.

22 1.1750.1 1.1750,'2. 23, .1220. .4960, 28, .1220,- 4960

  • 23, .1362 ~1.1750, 1.1750 2, 24, .1220e .3915, 29 .1220e 4960 - -

24, .0874, 1.0835. .5875. 1. 30, .1000, 4960, O, .0000 .0000 '

25. .0874, 1.0835, .5875, 2. 26, .1220s .3915e . 31. .1000, ,3*15 23, .1362, 1.1750. 1.1750, 2. 27, .1220, 4960. 32, .1220. .3915 27 .1362. 1.1750. 1.1750 2. 28 .1220, .4960s 33, .1220, .3915 4'

2 8. - .1362, 1.1750 , 1.1750, 2, 29 .1220e 4960, 34, .1220, .3915 29, .1362. 1.1750s 1.1750, 2. 30,' .1220, .3915e 35 .1220.' .3915

30. .0874,- 1.0835, .5875, 1, 36, .1000, .3915, 0, .0000. .0000 31.. .0549, .8677, .2937, 1, 32. .1000, .3915e 0, .0000, .0000 32, .0874, 1.0835, .5875, 1, 33. .1000 .4960, 0, .0000 .0000 13, .0874, 1.0835. .5875e le 34 .1000, .4960 O, .0000 34, .0874, 1.0835, .5875, 1, 35 .1000, 4960, 0, .0000,' .0000
                                                                                                                                       .0000 35 - .0874,          1.0836         .5873 - 1,             36      .1000,           .3915.         De      .0000,         .0000
36. .0549, .8677, .2937, 0 De- .0000, .0000, .De .0000. .0000
       ** RODS.1:

l RDDS, O. 25. O, le 0. O, De 0, 0, 0, 0 *

       ** RODS.2

! 96.00. 0.0 De O !. ** R005.9 le 1. 9411. 1, 1.. .250, to .250, 7, .250, 8, . 250 ( 2. le 9411, 1, 2e .250. 3, .250,' 8, .250 9, . 250

3. 1. .*411e 1,. 3. .250, 4, .250, 9, .250, 10, . 250  !

l 4, le .*411, le 4e .250. Se .250, 10. . .250 11e . 250 5, le 9411. 1, 5. .250e 6. .250, 11. . .250, 12 . 250  : e, 1.- .*411, le lle .250, 12e .250, 17, .250, 18, . 250 7, le .*411. le 17e .250, 18, .250, 23, .250s 24, . 250 8, 1. 9411, le 23. .250 ' 24, .250e 29e .250. 3 0,- . 250 9, 1, .*411e 1, 29 .250, 30, .250 35, .250, 36, . 250' ' 10, 1. .e411. 1, 28, .250. 29 .250 34, .250, 35, . 250 11e 1. .*411e 1. 27. .250, 28: .250 33, .250, 34, . 250

12. 1, .*411, le 26 .250, 27. .250, 32, .250, 33. . 250
13. le .*411e le 25. .250. 26, .250, 31, .250,' 32, .250
           '1*,     1,       .9411,      is 19e       .250,          20e      .250,     25,            .250,      26,        . 250 15e le           .9365,      1,   13,     .250,          14,      .250. 19e            .250,- 20,            . 250 16,     1,       .9411,      le     7e    .250,             8.    .250,     13e            .250,      14,        . 250 1            17. le     1.1052.'      1,     8,    .250,             9     .250,     14,            .250,      15e        . 250
18. 1, 1.1052, le *, .250s 10. .250s 15e .250, 16, . 250 19 1, 1.1052, le 10, .250s 11, .250 16 .250, 17, . 250
20. 1, 1.1052, le 16, .250. 17e .250, 22, .250, 23 . 250
1. 1.1052. le 21, 22, .250e 23, .250. 28, .250s 29, . 250 22, 1. 1.1052, le 21, .250, 22. .250, 27: .250, 28, . 250 2

23, 1, 1.1052, le 20, .250. 21e .250. 26 .250, 27, . 250 24 1, 1. J.05 2 , le 14, .250, 15e: .250. 20e .250, 21. . 250 25, le 1.1052, le 15, .250, 16. .250, 21e .250, 22, . 250 0 '

      ** RODS.68:
1. OUMYe .3740, 0.0, O
      ** UPER.1:

UpER, le 2. O, 2, 0, 66, 0, O 0

      ** OPER.2:
            -1.0, 0.0. 0.0. 0.0 em UPER.3:

0

      ** OPER.5:

1799.700. 508.900s 1.466, .468 0.0

  • 1 1720 1799.700. 512.600, 2.011, .554, 0.0 * '2 1721 1789.700. 513.500. 2.490s .637 0.0 a 3 1722 1799.700 510.900, 2.995. .733, 0.0
  • 4 1723 i 2414.700, 537.800. 1.422. .456. 0.0
  • 5 1724 2399.700, 539.800, 2.511. .622, 0.0
  • 6 1725 2399.700, 541.600, 2.508, .675, 0.0
  • 7 1726 2414.700. 542.900, 2.984, .772. 0.0
  • 8 1727
  • 2114.700 539.800, 1.469, 436, 0.0 *
  • 1728' 2114.700 548.300, 2.005. .534, 0.0
  • 10 1729 2099.700, 550.498, 2.498, .603. 0.0
  • 11 1730 2104.700, 552.200, 2.982. .684 '.0 0
  • 12 1731 e a; B-38 g;

i i. n < , - - , , , . - ,-- .n.-,-. - _ . . . . - - - - - ~ . -

n _u; e C.ENT.8s-

    • CE.tTT.118
  • C@tr.15 -

O.O.O.O.0

    • END OF INPUT DATA: ,

J ENDO . 0 1

                                  .i l

e f.

                                       ,1 A

a IT l i 1 i

                                   ~i
                                      .f 4
i m-s i
                                   'N .

h e

  • B-39

l11 , Me C0C r!LE NAME NH161

   ++ VIPRt.1:
1. O. 0
   ** VIPRE.2:                                                                                                                                                                         -l HH161                                                                                                                                                                             {
   ** GEDM.11 GEOM.       36.       36.. 56.        O,       0,     0                                                                                                                     )
   .e GEDM.21                                                                                                                                                                              '

168.00 0.0. 0.5

   ** GEDM.41
1. .0549 8477 .2937. 2. 2. .1000s .3915e 7 .3000. .3915 .
2. .R774, 1.0835. .5875 2. 3. .1000, .4960.. 8. .1220. .3915
3. .0874 I.0835, .5875. 2. 4 .1000, 4960.- *. .1220. .3915 >

4 .0874, 1.0835. =.5875. 2. 5. .1000. .4960, 10. .1220, .3915

5. .0874 1.0835.- .5875. 2. 6. .3000. .3915, 11. .1220.. .3915
6. .0549, .6677e .2937. 1. 12. .1000. .3915e 0. .0000. .0000 ,
7. .0874. 1.0835, .5875.= 2. 8. .1220, .3915, 13 . ' .1000. .4960
8. .1362: 1.1750. 1.1750, 2. 9 .1220. .4960, 14 .1220e .4960 9 .1362: 1.1750, 1.1750, 2, loe .1220. .4960, 15. .1200. 4960
10. ' .1362, 1.1750e 1.1750, 2. 11. .1220e .4960. 16, .1220. .4960
11. .1362.f 1.1750. 1.1750, 2. 12e .1220e .3915, 17. .1220. .4960
12. .0874.' 1.0835. .5875. 1. 18e. .1000. 4690. O. .0000. .0000 13.. .0874 1.0835, .E875, 2. 14, .1220 .3915. 19 .1000, .4960 14, .1362, 1.1750 1.1750. 2, 15. .1220, .4960. 20. .1220. .4960 1.1750. 1.1750.
15. .1362. 2, 16. .1220. 4960 21. .1220e: .4960 16, .1362. 1.1750, 1.1750. 2.- 17e .1220 4960 22. .1220, .4960
17. .1362. 1.1750, 1.1750, 2. 18e .1220, .3915. 23. .1220. .4960
18. .0874 1.0835. .5875. 1. 24 .1000. 4960. O. .0000. .0000 14 .0874 1.0835. .5875. 2 20, .1220e .3915, 25. .1000. .**60
20. .1362. 1.1750. 1.1750, 2. 21. .1220 .*960. 26, .1220. .4960 21, .1362. 1.1750. 1.1750. 2. '22. .1220. .4960. 27. .1220. .4960 l-
22. .1362. 1.1750. 1.1750. 2. 23.
                                                                                                                                                                                .g>
                                                                         .1220.        4960,    28,     .1220e    .4960
23. .1362. 1.1750. 1.1750. 2. 24, .1220. .3915.' 29 .1220, .4960 24, .0874, 1.0835. .5875. 1, 30, .1000. .4960s 0; .0000. .0000
25. .0874, 1.0835. .5875. 2. 26. .1220. .3915, 31. .1000 .3915 26 .1362. 1.1750, 1.1750, 2. 27. .1220. 4960,.32. .1220e .3915
27. .1362. 1.1750. 1.1750. 2. 28 .1220. .4960. 33. .1220. .3915 28 .1362. 1.1750. 1.1750. to 29 .1220e 4960. 34, .1220e .3915 29 .1362. 1.1750,- 1.1750, 2. 30. .1220. .3915. 35. .1220e .3915
30. .0874 1,0835. .5875. le 36. .1000 ' .3915. O, .0000. .0000
31. .0549 .8677. .2937. 1. 32. .1000 .3915e 0. .0000. .0000
32. .0874, 1.0835. .5875 - 1. 33. .1000 .4960, O. .0000. .0000
33. .0874 1.0835. .5875, 1. 34, .1000. .4960, O. .0000 .0009 34, .0874 1.0635. .5875. 1. 35. .1000. .4960. De .0000. .0000
35. .0874 1.0835. .5875. 1. 36. .1000. .3915. O. .0000. .0000
36. .0549, .8677, .2937. De De .0000 .0000. O. .0000e .0000 Em RODS.1:

ROOS.' O. 25. De 1. O, 0, O. O. O. O. O j

  ** RODS.2:

168.00.. 0.0. O. 0

  ** R003.91                                                                                                                                                                                l
1. 1. 9437 O. 1. .250. Ze .250. T. .250, 8. .250 l 2. 1. ,9290. O, 2. .250. 3. .250, as .250, 9 .250 i

3, 1, .*407 De 3. .250, 4 .250 9e .250, 10. .250' 4 le .*407. C. 4 .250, 5. .250. loe .250, 11. .250

5. 1. .9407. O. 5. .250, 6 .250, 11. .250. 12. .250 6, le .9407. O, 11. .250. 12. .250, 17. .250. 18 .250 7, 1. 9467. O. 17. .250, 18, .250s 23, .25 0. 24. .250
8. le 9467. O. 23, .250. 24, .250. 29, .250, 30, .250 l' l
o. 1. .9407. O. 29 .250. 30. .250, 35. .250, 36. .250 g

lo. 1. .a407 De 28 .250. 29 .250. 34, .250, 35. .250

11. le .*407 Os 27, .250. 28 .250e' 33, .250, 34, .250  ;
12. le: 4407 De 26. .250, 27, .250, 32. .250. 33. .250 1 13, 1, .9344. 0. 25, .250, 26, .250,.31. .250, 32. .250 14 1. .9378. Os 19 .250. 20. .250, 25. .250. 26. .250 1 15. 1. .9407. O. 13. .250. 14. .250. 19 .250. 120. .250 i 16. 1. 9407. O, 7. .250, Se .250, 13, .250, 14e .250
17. le 1.1092. O, 8, .250. 9 .250. 14e .250, 15. .250 '
18. 1, 1.1051. 0. 9 .250 10. .250, 15. .250. 16 .250
19. 1. 1.1010, D. 10. .250, 11. .250. 16. .250, 17. .250
20. 1. 1.1092. O. 16. .250, 17. .250. 22. .250s 23. .250
21. 1. 1.1051. De 22. .250, 23. .250. 28 .250. 29 .250
22. 1. 1.1051. O. Ele .250. 22. .250. 27. .250. 28. .250
     - 23. 1. 1.1051.        O,    20.      .250,      21.    .250,      26.     .250. 27.      .250
i. 24 le 1.1051. O, 14 .250. 15e .250, 20, .250, 21. .250 1
25. le 1.1092. O. 15. .250, 16. .250s 21. .250. 22. .250 l

9 ee RODS.68:

1. DUMY. .3740, 0.0. 0 B-40

h

      ** Op2R.1:=      .

OPER.'le 8. De to 0 00. De De 0

      *e OP2R.2 '

1.0, 0.0. 0.0. 0.0-

      *e Up2R.St                                                                                                       >

0=

      *# UD2R.5:              .

2114.700.= -598.400,' 1. 9 98 , .269,- 0.0- e.1 '1796 . 2399.700. 600.300. 2.019 .283. 0.0 m t 1797 2399.700. 1 541'.900.. 2.014e .367, 0.0 e 3- 1798 2099.790. - 543.900. 1.983. .340, 0.0 m 4 1799-2199.700 1 =97.600. 2.013. .3 98 0.0 o' 5: 1800: 2414.700. 493.500.. 1.982.- .432 0.0 m . 6. .1801. 2414.700,' 444.400. 2.043. .506 0.0 e 7 1802

        -2099.700.' ' 491.'200, - 2.008,                              .400,      0.0      .*    8-    1803 2099.700s.      602.400,           2.474,                 .300.      0.0       mi9        1804 2399.700,       601.800,                                  .329 2.511e                            0.0 -
  • 10- 1805 2099.700.' 597.900. 2.998, .353 00: e 11 1806 2399.700, 604.200s - 2.998. .379e. 0.0'.
  • 12--

1807' 2099.700. '539.500. 1.482,: .291.' - 0.0 ' e 13 1804 ' 2399.700, 548.900. 1.478 .290 0.0 e 14 1809 2399.700 552.400e . 2.504. - 416 0.0..* 15 1810 555.300, =2.404,' .378, 0.0 e 16 1811 2099.700e' ~ 485.400. 2099.700, 1.507, .342, 0.0- e 17 -. '1812' 2399.700. 499.900, 1.449, .333. 0.0 e 14 - 1813 2099.700,- 429.900.- 1.499 .392, 0.0 e 19 1814 . 2399.700. 425.200s 1.514e .417e 0.0

  • 20 1815 4' 1499.700. 440.900, 1.486. .386 .'O.0 e 21 1816 1499.700. ~ 445.200. 2.018, .446 0.0 m 22 '1817' j 1799.700, 453.200 1.476.-

1799.700,

                                                                     .361,     . 0. 0      e t1 -    1818 666.200.          2.037.                 i4 30 -     0.0       e 24       1819           -!

2409.700 497.400. 2.487 e : .519.- 0.0

  • 25 1820 2409.700. 554.000.- 2.980s .492 0.0'
  • 26 1821 2404.700, -627.300, 3.501. .376 0.0 2399.700.- 603.900, e 27 ' 1822
                                            '3.524                   .446        0.0       e 28     .1823 2099.700e-       602.400,          3.472,                 .387,       0.0       e 29      1824 2099.700 - 572.800, 2.922.'                .397        0.0       e 30      1825 2099.7D0,        570.600.          3.497                    466,      0.0 ~
  • 31 1826 2099.700s. 1543.300 2.941. 466 00 a 32 1827 ,

2099.700 503.300. 2.4 94 .463. 0.0 i e 33 ~ 1828 2104.700. 476.900. .992. .265, 0. 0 ' = 34 1829 2414.700. 484.800. .996. .269 00 e 35 1830 2099.700s. 459.800, 2.010e .456. 0.0 a 36 2099.700, . 464.900. 1831 2.467. .517. 0.0 a 37 1832 l 2004.700 437.300 .957, .286 0.0 m 34

         '2414.700,                                                                                  1833-433.900e             .970.               .300,       0.0
  • 39 - 1834 2099.700, 436.800 2.038, .*47, 0.0
  • 40 1835 ,

2099.700 384.400, 1.012. .331. 0.0 m 41 1836 2099.700. 404.900 1.589 .425, 0.0 a 43 2399.700. 1838 416.300. 1.584, .452, 0.0 a 44 1839 2404.700. 526.800, 2.505, .471 0.0

  • 45 1840.

1804.700. 521.400. 1.456. . 3 03. - 0.0 e 46 1804.700, 536.400, 1841-1.997. .336 0.0 m 47 1642 l 1804.700. 544.900. 2.456e.. .380, 0.0'

  • 48 1843 1804.700.' 523.900.' 2.997. .460. 0.0 m 49 ' 1844 li 1509.700 502.200. 1.433. .322. 0.0
  • 50 1845 1504.700. 502.600 2.002. .377. 0.0 m 51 1846 15D4.700 511.400. 2.486 , 420. 0.0 a 52 1847 1504.700. 502.200e 2.992. .485. 0.0 m 53 1848 1504.700. 522.500, 3.451. .500 0.0 m 54 > 1849 1504.700. 437.400. 1.016 .306 0.0
  • 56 1804.700, 1851 458.800. .981e .282. 0.0 e 57 1852
         '1504.700.        458.200.           .! . 506,                499       0.0       a 58 1799.700,       484.300                                                                   18531 U.500.                 .477        0.0
  • 59 1854 1799.700. 553.800. 3-.002. .419, 0.0
  • 60 'i 1855
        -1799.700.         551.400.           1.493.                 .466.       0.0
  • 61 1856 1499.700, 552.900. 3.540. .456. 0.0 a 62 1857 1509.700. 556.400. 3.032. .422. 0.0 m 63 1858 1499.700. ' 397.500. .981. .322. 0.0
  • 64 1859 ';

1799.700.- 389.400. .960. .210. 0.0 m 65 1860 1804.700. 394.500, 1.468. .408, 0.0

  • 66 1861 1504.700. 394.800. 1.466 .423. 0.0 e 67 1804.700 - 1862 420.200, 1.989 .477 0.0 1863

'Ji 1499.700. 417.000. 1.974 .470. 00

  • 68 m 69 2094.700, 1864 543.800, 1.991. .341. 0.0
  • 70 1865:

2104.700. 500.300e 2.014. .408. 0.0 a 71

   . ** OPER.12:                                                                                     1866
0. - 0. ~ 0. O. De 0
     ** HIXX.1:

HIXX, De Os 0 B-41

        ,       . ._ _                     . . _ . _ _ ~ . . _ _ _               _ _              _ . _ . . _ .             . _ . . . . . . . .                            . _ _                                    .,

I},

                    *1    HIXX.2
                        - 0. 8    0.054'-                                                                                                                                                                            k
                     ** ORAG.18'                                                                                                                                                                                     .

ORAG. le 0. h 1

                    ** ORAG.2                                                                                                                                                       *-

0.146. -0.20. 0.0, 64.0, -1.0. 0.0 [

                    ** DRAG.5: .                                                                                                                                                            _

9 0.5. .496'

                    ** ORIO.11                                                                                                                                                                                           ,

ORIO. < 0, [

                    ** GRID.Zio                   .

' 1.250eL .570'

         ,          ** ORIO.48
                          -1,     15 2                                                                                                                                                                               'l
                                                                                                                                                                                                                     *j
                    ** ORIO.64-                                  ,;   .
                                                                          ~

c 4.0 1, 15.0, ' 2, 26.0,' 1, 3 7. 0. 2. 44.0, 1, 5 9. 0. 2. 70.C. I .' 81.0, t . ' ~

                        " *2.0, 1,103.0, 2,114.0. 1.125.0, 2.136.0, 1,147.0, 2.154.0e 1
r. 3 i

01

** CORR.1 .

CORR , 1, 1. 0

                                                                                                                                                                                                              .. l 1-                   ## CORR . '. 4 i                          EPR; DRI, 2PRI. NSE                                                                                                                                                       -

M'

                    ?* CORR 4* * -

, 0.2

             - ** CURR.63                                                                                                                                                                                              ;

EPRI, THWie THEM,' CE-1, Com e GS.7 .i

                    ** CURR.7 0.0
                    ** CORR.91 C2-1                                                                                                                                                                                .
                    ** CURR.12i-                   ,

l

                     . 0.46366 0                                                                                                                                                                             '
                    *e CONT.14.
                        ~ CONT .-
. ## CONT.2 .

4 0.0. O. 20, 20 2, 2. O, 0

                   ** CONT.5 l                         0.1. 0.0001, 0.001, 0, O. D. De 0.9 l-            - ** CtMT.63 .                                                                                                                                                                                j 16 1, C. De 1e-0e 1. 1, O. O. 1. 1. O, o j'
                  ** CONT.7:

. 4000.0, 0. O, os 0, 0 i ' en CONT.8s '

                       .- 22                                                                                                                                                                                          i e:                 ## CONT.11                                                                                                                                                                                   a 22                                                                                                                                                                         .

i

              -## CONT.15:

O. O O. O, 0 . [- ** END OF INPUT DATA: [- EN00

0. y I

l-1; 'I I p e 9 B-42 c l, y ., , . - , - . . , . - ~ , -" ~ * - - W = ~ ~~ *

Ill l ** CDC FILE NAME: NH162 l  : l

          ** v! PRE.18-

{ 1. 0. 0

          ** VIPPE.2 WH162'
          ** DEDM.1:

I Ot0M. 36,

          ** OEDM.2 168.00,
         ~4e Ot0M,4 34, 0.0.

56, 0.5

0. O. 0 I 1.

2. 3. 4 5.

                             .0549e. .8677.
                             .0874
                             .0874, 1.0835
                             .0874 1.0835. .5875.
                                                     .2937.

1.0835.' .5875.

                                                     .5875, 2.

2. 2.' 2. 2. 3. 4

                                                                                  .1000.
                                                                                   .1000.
                                                                                  .1000. ' .4960
5. .3000.
                                                                                                 .3915,
                                                                                                 .4960,
                                                                                                 .4960 7

8.- 9 10.

                                                                                                                     .1000.
                                                                                                                     .1220.
                                                                                                                     .1220e
                                                                                                                    .1220
                                                                                                                                 .3915
                                                                                                                                 .3915
                                                                                                                                 .3915-
                                                                                                                                 .3915
                             .0874 1.0835. .5875.                   2.      6.- .1000.           .3915      lie     .1220.       .391?
6. .0549.- .8677.- .2937. 1. 12. .1000. .3915 d
                             .0874, 1.0835.                                                                  0 . 0000.        .000b I            '7.
8. -.1361 1.1750, 1.1750,
                                                     .5875.         2.

2,- 8 9

                                                                                  .1220,         .3915     13. - .1000.
                                                                                   .1220.- .4960,' 14e. .1220.

4960

                                                                                                                                 .4960
                 *, .1362e 1.1750 1.1750,                           2. 10      .1220. .4960. - 15. . 1220e .4960 10, .1162 1.1750, 1.1750,
2. 11. .1220e .4960 16. .1220. 4960
11. .1362, 1.1750 1.1750, 12. .1220
12. .0874 1.0835. .5875.

2.' .3915 17. .1220e .4960 13, le 18 .1000. .4960 O. .0000., .0000

                            .0874 1.0835e           .5875,          2. 14      .1220. .3915.- 19, .1000                      .4960
14. .1362 1.1750, 1.1750, 2. 'j
             .15.
15. .1220e . 4960, 20. .1220. .4960
                            .1174, 1.2621. 0.8412.-                 2. 16e    .0665.           4960     Ele .0665. .4960                 l
16. .1174 1.2621, 0.8412.

17. 2, 17e .1220. .4960 22. .0665, .4960 :l

                            .1362, 1.1750 1.1750.                   2. 18.       1220. .3915 23                                          !
18. .0874 1.0835. .5875, .1220. 4960 le 24 .1000. .4960 O. .0000. .0000 ,

1*. .0674 1.0835, 5875. 2. 20.

20. .1220. .3915, 25. .1000. 4960 -l
                            .1362'1.1750 1.1750.                    2. 21.     .1220          .4960      26. .1220. .4960                 -
21. .1174, 1.2621. 0.8812, 2. 22, .0665 1 22, .4960 27. .1220. 4960
                            .1174 1.2621 0.8812.                    2. 23.     .1220          .4960      28. .1220. .4960                 {
21. .1362, 1.1750 1.1750, 2, 24 24 .0874 1220e .3915, 29 .1220. .4960 ]

1.0835.. .5875. 1, 30, .1000 .4960 O. '0000. .0000 3

25. .0874. 1.0835 .5875. 2, 26,
26. .1220e .3915, 31. .1000.. .3915
                            .1362 1.1750. 1.1750                    2. 27      .'1220e       .4960      32.- .1220.
27. .1362, 1.1750 1.1750, 2. .3915
28. .1220e .4960 33, .1220. .3915 ,
28. .1362 1.1750, 1.1750, 2, 29, .1220. .4960 34
29. .1362, 1.1750 1 1750. .1220. .3915 30,
2. 30 , .1220. .3915, 35 .1220. .3915 j
                            .0874 1.0835. .5875.                    1,. 36,     .1000.        .3915       -O.     .0000,                 -,

31, .0549. .8677. .2917. 1. .0000 St. .1000. .3915, 0, .0000 .0000 32, .0874 1.0835. .5475. 1. 33. .1000, .4960. De .0000

33. .0874 1.0835. .5875.- .0000
34. .0874 1.0835.

le 34, .1000 .4960. O,- .0000. .0000

                                                    .5875,         1,    35.     .1000
35. 0874, 1.0835. .4960 O. .0000. .0000 5875. 1, 36, .1000 .3915.
36. .0549.. .8677 2937, De .0000e .0000
         *e ROOS.la O.      Ce .0000            .0000,       0,     .0000 - .0000 ROOS.                 1.      24         O.        1.       De        De         0,       0        O.        De       0 8 00.               0.0       O.         0
         ** RUDS.3:

27 .j

         ** RODS.48                                                                                                                          !
                     .000.            .390.       5.413,          .416.       10.824 21.650,               .619e     32.474            .819
                                                                                               .475,      16.237.          .543 59.536,                                                       43 294          1.048,      54.125. 1.250 1.353.       64. 949        1.440.        70.358.         1.505, 75.768. 1.544                   81 186, 1.548                                             72.526          1.527 e4.392.                                                       86.597.         1.544,      90.928          1.535 1.505.       97.423.        1.485,       102.831,                                                          '

129.562. .939 139.642. 1.418. '111.266. 1.287

                                                                  .743,      144.135,          .612. 152.628.          .525 -

158.038. .460. 162.372. .427 168.000.

         ** RODS.9                                                                             .416.           .000,       .000 i
1. 1. .9505. 1, 1. .250, 2.

2, .250. 7 .250 8. .250 j le .9500 1. 2 .250 3. .250 .250,

3. 1. .9505, 1.
8. 9 .250- t 3 .250, 4. .250, 9. .250, 10. .250 4, 1. .9505, 1, 4 .250 5. .250.  !

5, 1. .9505. 1. 10. .250, 11. .250

5. .250. 6. .250. 11. .250, 12.
6. 1. .9505. 1. 11. .250 .250 3 7
12. .250, .17. . .250, 18, .250 y
                          .le       .9505.      1. 17e       .250       18.       .250,        23,    .250,                             1 8,            1.     .9505,      1.                                                                    24      .250
23. .250. 24. .250 29 .250, 30 l

9 1. .9505, 1.. 29 .250, .250 30 .250. 35. .250, 36

10. 1. .9500, 1. 28. .250 11, .250. 29. .250, 34 .250 35. .250
1. .9505. 1. 27. .250, 28.
12. 1. .250. 33 .250. 34 .250 9500. le 26. .250. 27. .250, 32. .250, 33.

13 1. .9505, 1.- 25. .250 .250-14, -26 .250, 31. .250, 32, .250 l

1. .9500, 1, 19 .250 - 20
15. 1. .9500,
                                                                                      .250.        25.    .250,       26.     .250 le 13.           .250. 14.            .250.        19,    .250.       20.     .250 16 . '          1.     .9500,      1.       7.      .250,        8.

17.. 1. 1.0993. .250. 13, .250, 14 .250

1. ,8. .250. 9 .250. 14 18, 1, 1.0993. 1.
                                                                                                          .250,       15.     .250 9        .250.      10e       .250,       15e     .250,       16,     .250 o

B-43

4 t i

19. ' 1 1.0U3 e 1. 10. .250. 11. .:50. 16 . .250.- 17. . 250- 4
               - 20.        1e'1.09*3.       1. 16e          . 50 e '17 .              . 50.                It 1        .:50.           3.  . 50                                               *I
1e' '1e 1.09*3e 1. 22e .:50, 23.' .250. 08 e ' .:50. 09. . 250  :
2. 1. 1.0993, 1, 21. - .250.' 02. .:50.- 27 '. 50. 28. - . 250
23. 2, 1.09*3. le 20. .050. Ole . 50 26. .250.- 27. . 250 28 . le 1.0993. 1, 14e .250, 15. .250. 20.1 .250, 21e . 250 .;
         **             . t,8
1. Dt MY . . 0.3740. 0.0 - 0 7

M OPER.);

              - Opt i: . . 1.   :. ' O. to    0.        70. -   0.       D. 0
        -** OPER.2
                 -1.0.        0.0.E 0.0i    0.0                                                                                                                                           '
         ** OPER.3                                                                                                                                                                                            '
              , 0        .                                                                                                                                                                                    ,

a OPER.50 . L 2099.100, 504.300. 1.962. -.40 5 =

                                                                                       'O.0                    e          1           1867-'                                                        l-399.700.         503.900.      1.996.               .443.            0.0                   e          2           1868                                                            :

[ 2404.700 - 508.500. 2.480. .513.1 0.0 m. 3 1869 e 2099.700. 505.000. 2.492. 481. 0.0 e 4 1870  ;; 2099.700 -544.900, 2.508. .383 0.0 e 5 1871 558.000. 2.474.. .419 e . 0.0 e 6 1872  : l 2399.700. . 558.000.2.982. 2399.700,- .493, , 0.0 .

  • 7 '1873 -?

2104.700. 544.000. 2.972. .451. 0.0 e 8 r 1874 W

               . 2394.700.           549.350,      1.985.'             .353.            0.0                   m         :9            1875                                                            ;t 2114.700.'          558.500,      1.968,              .316             0.0                   e         10            1876 2089.700.           SM.900.       3.471.              . 4% .           0.0                   e         11       '.-1877                                                                      )

2099.700. '605.400 1.990. .271. 0.0 e 12-  : 1878 0409.700, 600.900. -1.992. .302. 0.0 e 13- 1879 0394.700, 606.300, 0.475. .319 0.0 e 14 1880' . l094.700 e . 400.700, 2.481. .317 0.0 ' e ~ 15 =1881 ' 0094.700.' 606.400. 2.952.- .338. 0.0- e- '16 1882 i' 2399.100. 608.870, 2.996. .390. 0.0 e 17 1883 23*4.700 ' 609.300.. 3.457. 440e 0.0 e 18 - 1884 ' 2109.700, 605.900s 3.428. .374 0.0 e. 19 s 1885 l 1499.700e: 571.400e 1. 996 . .305. 0.0- e 20 1886 - 1804.700 '585.900. 1.986 .275. 0.0 e 21 1887' " 1799.700,- 582.200. 2.530. .313. 0.0 -* 22 . 1848 1499.700 573.400i 2. 4H . .339 0.0' e 23 '1889 1504.700. 573.400e 2.987,. . 356. ' 0.0- e 24 1890 1804.700. 583.500 2.981. .343. . 0.0 o' 25 1891 > 1799.700. -581.900. 3.503. .383. 0.0 o' 26 18f2 15M.700. ' 574.300. 3.483. .387 10.0- *- 27 1893 1499.700 .J30.200. 1.997. . 3% e 0.0 m 28 1894 1799.700, =r 532.900, 2.003. .350.. , 0. 0 e 29  : 1895 - 1799.700. 533.900. 2.476. .391. 0.0 'e 30 1896 s 1499.700. 534.800 2.462. .379. 0.0 e 31 1897 + l-15%.700 533.800, 2.975. .416e 0.0 e. 32 1898

               '1804.700            532.500,-      3,007.              .430e            0.0                   m.        33           1899 s

l, 2119.700. 5 % .200. 2.934 .479 -0.0 e 34 1900 ;t l- 1794.700. 534.900. 3.499 .480. 0.0 e 35 1901  ? 2124.'700 582.900s 2.9 74 . .382. .0.0 e 36 1902 # l 2404.700. 586.300. 2.495. .358. 0.0-

  • 37 1903 l . 2099.700. SM.200, 2.485 . . 3% . 0.0 m 38 , 1904 2424.700s 589.900. 2.977 .427. 0.0 ~m 39 1905 2099.700. 584.200. 1.990 .284. 0.0 m 40 1906 2399.700e 584.300e' 2.004 .3166 0.0 m- 41 - 1907-104.700 582.300. 3.481. .420 0.0
  • 42 1908  ?

2409.700s 585.400. 3.502. .492. 0.0. e 43 - 1909 1499.700. 530.300.. 3.545. .438. 0.0 e' 44 1910 1499.700. 488.400. 2.008. .411. 0.0 e ' 45 ' 1911 1799.700, . 491.400. 2.008. .409 0.0 e 46 1912 18%.700e 492.200. 2.490 .453. 0.0 e 47-  : 1913 1504.700. 482.900 '2.454. 464. 0.0 -

  • 48 1914 1504.700. 496.000. 2.969. .478. 0.0 e 49 1915
              - 1809.700.           510.400.      2.999.              .482.             0.0                   e         50           1916 1509.700,           524.200.      1.475.              .297.             0.0
  • 51 1917  ;

1804.730. 529.200, 1.488.. .293. 0.0 e 52 1918 2099.700 546.800. 1.495. .295. 0.0

  • 53 1919 -

2 2409.700. 552.200, 1.465. .309 -0.0 e I^ 1920 2399.700 509.400. 1.474 .341. 0.0

  • 55 1921
              ' 2104.700,           504.900       1.471.              .350,             0.0                   m        .56           1922                                                     -

1804.700 479.400. 1.48Se .354. 0.0 m 57 1923 't

             . 1514.700             484.800.      1.489               .346.             0.0                   e         58          ~1924                                                                     .

2104.700i 462.400. .998 .292. 0.0 e 59 1925 2384.700. 452.600 1.015. .307 0.0 e 60 1926 2104.700. 452.500, 1.488, .382. 0.0 e 61 1927

4404.700. 458.600 1.483. .411. 0.0 e 62 1928
104.700. 662.800, 2.025, .470. 0.0 e 63 1929
  ,         ;  2404.700.            478.200.      2.008.              .489,             0.0
  • M 1930 o

B-44

    +     k ,                                  ,       -~.e.       -       --            ,- . - - - . , - .                  v,e          +n     -,-     n--ee.,.,,-e-     ,. . ,v- e--

_ _ _ _ _ _ _ _ _ _ - - _ , _ _ . - . . . .. . . _ - . - . , ~. - ., - " i 1804.700. 29.200. 1.022.~ .311. 0.0 e 65 1931! 1504.700, '636.870. - 1.009 .316. 0.0 e so 1504.700, 1932 e34.300. 1.485. .3 96. 0.0 e e7 1935 1799.700, 433.200.. 1.464. .399, 0.0 e 6 4 .- 1934 1794.700 .442.900, 2.010. .466 0.0 e 69 L 1499.700, 1935 438.400, 2.002.- .476,- 0.0 e 70 - 1936 ee OPER.12 ' O. O, 0' O. O. 0 ee MIXX.1:_- ) MIXX,. O.'O. 0  !

           ** MIXX.2:

0.8. 0.038

          .,ee ORAG.1 I                 ORAG.'1.l 0,                    1
           ** DRAG.2:
               ' O.146. -0.20, 0.0. 64.0.--1,0, 0.0
           *e DRAG.5 0.5.               4 96                                                                                           j
         '*e GRIO.1
                'GRIO.          0,            2 85 GRIO.2 1.250.               .570 M GR10.4
                   -1,        15
  • M GRIO.6 .

d 3.0 1. 14.0.2. 25.0 1 36.0.2. 47.0.1. 54.0 2e' 69.0.1, 80.0.2, 91.0 1 102.0.2 113.0.1. 124.0 2. 135.0.1. 146.0 2. 157.0.1.- .0.0 0

           *e CORR.1:                                                                                                           ' ,

CORR. 1 1. O t

           *e CORR.2:

l EPRI. EPRI. EPRI. NONE

           *o CORR.3:
                                                                                                                                     \

0.2 CORR.6: EPRIs THON, THCH. CE-1. CSND e GS.7 I **** 0.0 CORR.7

           ## CSOIR.9s CE-1                                                                                                                  ,
           ** CORR.12:                                                                                                              l 0.37208, 1
       ^en CCHT.1:

CONT . Ce CONT.2a 0.0, O. 20 20. 2 2. O, O. se CONT.3:  ! J 0.1. 0.0001, 0.001. O. O. Q. O. 0.9

          #5 CONT 6 s 1.1.0             0      1.0.1.1.0.0 1.1.0                         0 I
           *e CONT. 7 3                                                                                                                !

4000.0. O, 0, O. O. O se C(NT.8

              ' 16                                                                                                                     l*
           *e CONT.11:

16

          ** CONT.15:                                                                                                                  i
0. C e 0. O. O.
          ** E2 0F INPUT DATA:

EfGO O h B-45

                                                                                                                           .n
                                          -                --                        .     -                        -                      .      .      .. -    . .          - ~ - .- . . .-
                 "'..      . ,                   -t                      ,                              , _                                                         4 '

i tj

                            ** CDC FILE N6ME: NH163                                                                                                                                                          ,
                            ** v! PRE.1:

le 0, O ao v1 PRE.2  ; HH163 i ** GE DM.1: . . GtDM. 36, 36 48.- 0. 0 0,

                            ** Gt0M.2
                                  . *6.00,          0.0.          0.5                                                                                                                                   .i se Gt0M.43 le    .0549,        .4677.          .2917,       2,      2.     .1000,    .3915.            7       .1000.    .3915                                           .

l 2. .0874, 1.0835 .5875, 2, 3. .1000. .4960, se .1220. -.3915

3. .0874, 1.0835, .5875. Ze 4 .1000e .4960. 9 .1220.- .3915 4 .0874,' 1.0835, .5875. 2. 5, .1000, 4960, 10.- .1220e .3915

, 5. .0874 1.0835, .5875, 2, 6, .1000. .1915, 11, .1220. .3915 6,. .0549, . .8677, .2957, 1, 12, .1000, .3915, O. .0000. .0000 7,' .0874, 1.0835 .5475. 2, 8 . 1220, .3915. 13, .1000, .4960

8. .1362, 1.1/50, 1.1750, 2e 9 .1220,- 4960, 14e' .1220, 4960 i . *, .1362, 1.1780 1.1750, 2. , 10, .1220.: .4 960, 15e .1220, .6960 10, .1362, 1.1750, 1.1750, 2, 11. .1220, .4960. 16e .1223, 4960- -

' 11, .1362e 1.1750 1.1750, 2. 12 ' .1220e .3915, 17e .1220e 4960

12. .0874, 1.08$5,- .5875, le '18e .1000, 4960, 0, .0000, .000t i

II. .0874, 1.0835 .5875, 2, 14

                                                                                                   -.1220,      .3915e. 19e .1000.                    4960 14      .1362e' 1.1750             1.1750,.2, 18e .1220, .4960. T 20. .1220, .4960'                                                                                      ,

15, .1362 1.1750, 1.1750. to: 16.' .1220 - .4960s. 21, .1220, .4960 , 16e .1362, 1.1750.- 1.1750e' te 17, .1220e 4960 .'22. .1220e .4960 ! 17e .1362. 1.1150 1.1750. 2. 18, .1220. .3915e 23. .1220e .4960-

                                  -18,      .0874,       1.0835,         '. 5875, - 1, 24, '.1000,               4 960. _ ' o e .0000, .0000 i                                    19      .0874,       1.0835,         .5875,        2,    20,      .1220e .3915 25                     .1000. .4960                                          -

i 20, .1362. 1.1750, 1.1750, 2, 21. .1220, .,4960. 26,: .1220, .4960 .< 1.1750,.1.1750. 2. 22. 2.1220. .4960, 27, .1220, 21, .1362, 4960

22. .1362. 1.1750, 1.1750, 2. 23e .1220. . 4960.D 28, .1220e .4960
23. .1362. 1.1750, 1.1750, 2. 24 .1220e .3915.- 29.. .1220e ,4960 24 .0874 1.0835 .5875, le 30,. .1000.- .4960, . 0, .0000, .0000
25. .0474, '1.0835 .5875e 2. 26. .1220.- .3915, 31,. .1000, .3915 l

26, .1362. 1.1750, 1.1750, 2. 27.. 1220, . 4960. - 32 e .1220. .3915 27, .1362. 1.1750, 1.1750, 2, 28. .1220e .4960. 33. .2220. .3915 28, .1362, 1.1750 1.3750, 2. 29, .1220, .4960. 34, .1220, .3915 l 29. .1362. 1.1750., 1.1750. 2. 30, .1220 - .3915, 35, .1220, .3915 ' l 30s .0874, 1.0835. .5875, 1, 36,' .1000.- . 3 915. -- O. .0000. .0000

31. .0549. .8677. .2937. le 32, .1000. .3915. De- .0000, .0000 32.' .0874, 1.0835, .5875 1 le 33. .1000 .4960, 0, .0000. .0000
                                                                         .5875.        le    34, . .1000.                                 .0000.    .0000-
                                                                                                                                                                                                ~

i 33, .0874, 1.0835, .4960, O.

34. .0874, 1.0835, .5875, 1, 35e' .1000, .4960. De .0000e' .0000 35, .0874 1.0835. .5875. 1, 36, .1000. .3915. 0,- .0000. .0000 36, .0549, .8677, .2937, 0, De .0000 .0000. O, .0000, .0000
                           ** RODS.18                                                                                                                                                                       e ROOS,         0,         25,        0,        1,'       O.       O.       O,       De            0.         O,   O                                                       s
                           ** RODS.2:

86.00. 0.0, De O r

                           ** RODS.91 1,    le         9411. l e          le    .250.         2.   .250,       7.    .250.              8      .250                                                          '

l 2e le .9411. le' 2. .250, 3. .250,- 8, .250, 9. .250

3. 1. . 9411 e 1, 3, .250, 4 .250, 9e .250, 10. .250  :

4 1, .9411, le 4 .250, 5. .250. 10. .250,-11, .255

5. le 1.
                                                    .9411.               5.    .250,         6.   .250,'11e         .250.           12e      .250 6,   le          9411, le 11e             .250.       12,    .250,      17.    .250.           18,       .250 7,    le       .9411,        1,   17,     .250,       18.    .250,      23.    .250,c24,                 .250 8,   1.        .9411e le          23,     .250,       24.- .250,        29,    .250,           30.       .250 es    1.         9411, le         29,     .250.       30.    .250s. 35.        .250.           36,       .250 los le           .9411.        1,   28,     .250.       29     .250       34,    .250,           35,       .250 11,    1.        .9411,        1:   27,     .250,       28,    .250,      33e .250               34        .250                                                          1 12,    la        .9411,        1. 26,     .250.       27e    .250,      32 e'  .250e. 33 - .250                                                                     -l 13,    le        .9411,        le   25, ;.250,          26,    .250,      31.    .250            32,       .250                                                            l
                                  '14,    le        .9411,        le 19e       .250,       20,    .250,     .25.-   .250,           26        .250 15,    le.       .9365,        1,   13e     .250.       14,    .250,      19,    .250,           20,       .250                                                        j
16. le 9411, le 7. .250, 8. .250, 13, .250. 14e .250 l 17, 1. 1.1052, 1, 8e .250, 9 .250, 14. .250,'.15, .250 l
                                                                                                  .250       15.- .250, 16,                   .250-18,    1,     1.1052. le              9     .250,       10e 19,    le     1.1052,          le 10,       .250,       11e    .250       16,    .250,           17,       .250                                                            j L

l 20, 1, 1.1052, 1.- 16. .250, 17, .250, 22. '.250, 23. .250 1 l 21, le 1.1052.' le 22, .250, 23. .250. 28. .250. 29. .250 l l 22, le 1.1052, 1. Zie .250. 22, .250 27, .250. 28. .250 .I 23, 1, 1.1052, le 20, .250. Ele .250, 26, .250. 27. .250 I 24, le 1.1052, le 14, .250, 15.- .250, 20, .250, 21 .250 1

25. le 1.1052, 1, 15, .250,~16, .250. 21, .250, 22. .250 l 0 -  :
                           *# RUDS.68:

l 1, DUMY, .3740, 0.0, o f i B-46 J I 7, l

I

           *e SPER.1 OP2R le t o 0, t e D e 41. D e D e 0 i
           ** OPER.t s
                -1. 0. 0. 0. 0. 0      0. 0 '
         . ** WE R . 3 :

0 i

        . ** SPER.5:                                                                             \

18M . 700, 505.600, 1.478 0.0

                                                          . 4 92. -          # 1        1937-    !

1799.700e' 513.300. 2.062. .569. 0.0 m 2- 1938 I 1804.700e: 513.800..' 2.518.. .632. - 0.0 a 3 -- . 1939> i 24M .700,' $24.400, .i 1.433. .475.- 0.0 'e'4 -1940 I

                                                                                              ~i 24M.700. - 545.300               2.000    .576,      0.0     *5         1941 2409.700. . 542.400              2.505.   .674      -0.0
  • 6 1942 2114.700. 542.500, 1.549 .411. 0.0 e 7 1943 2099.700e >544.600e 2.056 .537e 0.0
  • 4: 1944 2099.700. 554.500. 2.528, .541. 0.0 a 9 1945 1 2114. 700 e ' 553.200, 2.993. .643.' O.0
  • 10 -1946 i 2114.700, 643.400,' 1.525. 0.0 -{
                                                          . 5M .
  • 11 1947 2099.700s 478.100, 2.065 .678. 0.0 # 12 1944 ',

24M.700. 469.900e 1.533e .597. 0.0 e 13-- 1949 1 I 24 M.700e1 '472.400e' 1814.700. 1809.700e 1814.700e 1819.700, 443.200,- 444.000e 413.300e 433.800 2.063. 1.5!6. 2.0M e 1.554e-

                                                          .741,
                                                         .592.

0.0-0.0

                                                          . 712 e - - 0.0
                                                          . Ho . 0.0
  • 14 e is e 16
  • 17 1950 1951.

1952 1953

                                                                                               -)

i 2.008. . 724. - 0.0 a la 1954 I - 2099.700e 24M.700, 1504.700. 1504.700, 1494.700, 413.300e 418.400, 439.600 452.900.- 1.534,' 1.532. 1.530. 2.033.

                                                          .672e
                                                          .644.-
                                                          .589e'
                                                          .M3 e 0.0 0.0 -
  • 0.0 0.0
  • 19 20 a 21
  • 22 1955 1956 1957.

1958-- 509.300 I 1.517. =483 ' O.0 -

  • 23 1959 1504.700s - $15.300. 2.040. .535e 0.0 e 24 1960 i 1514.700,- 509.200. 2.521.- .622e 15 M.700, 0. 0 .
  • 25 1961 512.400, 3.009.- .664 - 0.0 m 26 1962 2094.700. 604.600. ;3.024 .510 0.0 e 27 1963 2394.700.' 598.300. 2.084 .441e 0.0
  • 28 1964 2404.700, 598.000. 2.551, .525. 0.0 -i e 29 1 2404.700, 1804.700, 602.600.

562.200. 3.043e .5 90. 0.0 a 30 1965 1966 2.054 463. 0.0

  • 31 1967 1804.700, 563.200,. 2.542. .514 0.0 1814.700, e 32 1968 562.700, 3.025. .574 0.0
  • 33 1969 1504.700s 558.000, 3.064. .563. 0.0-
  • 34 -1970 1494.700e 572.200e 2.549 .516 0.0 m 35 1971 1814.700e- 519.700. 2.513. .666. 0.0' e 36 1972 2099.700, 549.500.- 1.509 .455 0.0 m 37 1973 15 M.700, 509.400. 3.021. .667 0.0 m 38 1974 1 1809.700, 2099.700, 381.280.

390.200e. 1.078. 1.076.

                                                         .506
                                                         .537.

0.0 0.0

  • 39 m 40 1975 1976 1

2399.700. 399.800. 1.036, .525e 0.0 e 41 1977 OPER.12

0. D. De De 0 1 **** MDO(.1: 0 MI* e De 0. O
          ** MI A.2:

0.8. 0.034

          **'ORAG.1
I ORAG. le 0, 1
          ** ORAG.2 0.186. -0.20e 0.0, 64.0e -1.0 0.0
         ** DRAG.5:                                                                              j 0.5.          .496                                                                     ;
         ** ORIO.1:

ORIO. De 1 '

  • GRIO.2:

1 250 .000 ' 1 *## -le ORIO.4 4  ! G# GRIO.63 20.00 le 42.00s le 4 .00 1. 86.00. 1 0

         ## CORR.1:

CORR le 1, O '

         ## CORR.2:

EPRI EPRI EPRI NONE

         ** CURR.3:

0.2

         ** CORR.68 EPRI. THOM TH0He CE-le COND. GS. 7
       .C# GORR.73 0.0 C# COG. 9 3 f

B-47

i l CE-1 ..

                 +e COltR.12:                                                                                                                                                                                          ;

0.8.e5H. 0 .; a Cmff.1 .

                    . CONT
  • u CONT.2:

0.0. De 20e20, 2, 2. De 0

                 " CONT.3:                                                                                                                                                                                     '

O.1. 0.0001 0.001, 0, 0. Os 0, 0. 9

                 *e Cm4T.6 s                                                                                                                                                                                            ;

1 1,0.0-1.O.1 1,0.0.le 1.0.0 ee CONT.7: 6000.0. O, 0, O. O. O se Cma,gg 22 > j ' u . Can.11 s .- , \ 22 l u CONT.15:

                                                                                                                                                                                                                     -l
                    .O. O. De Os 0 i                 se Ello 0F INPUT. DATA:                                                                                                                                                                          .

I , Et400 ' 0 ' ' t l i I" I' I . I I: I I I I;

                                                                                                      /

B-48

                                                                                                                                                                                                                     't

a

   *# CDC FILt NAME 'HH164 to
   *O VIPRE.13 1.- O. O eo ylpat,gg MM164
   ** GEOM.1:

020M. 36, 36, 56. O. O. 0

   ** GEOM. 2 :
g. 168.00, 0.0. 0.5
   ** GEOR.4 3
        -1. .0549            .8677.      .2937.       ' 2. 2.'
2. 1000. .3915. 7. '.1000. .3915  ;!
                 .0874 1.0835.           .5875.         2. 3.     .1000.        4960.      8.     .1220,             3915
3. .0674 1.0835. .5475. 2. 4 2

4 .1000. 4960. 9 .1220. ..'915

                 .0874 1.0835            .5475.         2      5     .1000.       .4960. 10.      .1220.                        ;
5. .0474, 1.0435. .3915
                                         .5475.         2      6.    .1000.       .3915.- 11.         .1220.

4 .0549 .6677 .2937. le

                                                                                                                       .3915       ]
7. 12. .1000. .3915. De .0000. .'0000
                .0674, 1.0835,           .5875.         2. 8       1220.                          .3000, = . 4 960
8. .1362 1.1750 1.1750, .3915. 13.
          *. .136t. 1.1750 1.1750.                      2. 9     .1220.        4960. 14.- .1220.= .4960                     9
2. 10 1220. 4960. 15. ~ .1220. .4960 - l
10. .1362 1.1750, 1.1750. 2.

11.. 11e .1220. 4960. 16 e . .1220. .4960 i 1362 1.1750, 1.1750, 2.

12. .0474.'1.0835 .5s75.
12. .1220. .3915. 17. .1220. .4960 )
13. 1. 15e .1000.: .4960, ce .0000. .0000  !
                .0874 1 0835             .5475.         2. 14      .1220        .1915.- 19,        .1000.            .4960 14      .1362 1 1750 1.1750.
15. 2. 15. .1220. 4960, 20. .1220e .4960 1
                .1362 1.1750, 1.1750.                   2. 16      .1220.

16 .1362 1.1750 1.1750. 4960. 21. .1220.- .4960

2. 17 .1220. 4960. 22. .1220. .4960 1 17 .1362 1.1750 1.1750, 2. 18. .1220. 1
18. .0674, 1.0835. .5475.
                                                                                 .3915,      23.     .1220.            .4960 19
1. 24 .1000. 4940.. O. .0000.- .0000  ;
                .0874 1.0835. .5875.                    2. 20.     .1220.      .3915. 25.          ,1000.                          1 20      .1362 1.'1750, 1.1750,                                                                                 . * *6 0
2. 21. .1220 .4960. 26. .1220. .4*60
21. .1362 1.1750 1.1750. te 22.
22. .1220. 4*60. -27. .1220e .4960
               .1362, 1.1750 1.1750,                    2. 23.    .1220.
23. .1362, 1.1750, 1.1750, ,4960. 28. - .1220 .4960  ;
2. 24 .1220. .3915. 29 .1210. .4960 to. .0874, 1.0835. .5475, 1. 30. .1000,
25. .0874 1.0435, .5675 .4960,, 0, .0000. .0000
2. 26. .1220 .3915. 31e- .1000. .3915
25. .1362 1.1750 1.1750. 27.

27 .1362 1.1750 1.1750, . 22. .1220e .4960 32.. .1220.' .3?15  ;

28. 1220 .4960. 33. .1210 .3915
23. .1362 1.1750 1.1750 2, 29.

i 29 .1220e .4960. 34 .2220.- .3915 i

               .1342 1.1750. 1.1750 .                  2. 30.     .1220, .3915. 35e. .1220.- .3915 30      .0874, 1.0635            .5875.         le   36      .1000e. .3915.                  .0000.. .0000
31. .0549 .8677 .2937. 1. 32. .1000, .3915.

De 32, .0874 1.0835. O. .0000.~ .0000

                                        .5875          1. 33.       .1000, .4960.             O. .0000. .-.0000
33. .0074, 1.0835. .5475. 1. 34 St. .0874, 1.0835. .1000 .4960 De .0000 .0000
                                        .5475.         1,   35      .1000..        4960.      D. .0000 35     .0674 1.0635.                                                                                          .0000
33. .0549
                                        .5475e         le   36.       1000      .3915.        O. .0000               .0000
                            .8677.      .2937          O,     0,    .0000,      .0C00.
  ** RODS.1:                                                                                 O.     .0000            .0000 RUDS.         le       25.      O.        1.        O.       O.
  ** RGDS.2:                                                                 O.        O.      O.        O.             0 168.00,           0.0.       O.         0
  ** RODS.3s 27 em ROgs.4:
            .000.        .3 90 .      5.413.         .416         10.824.       .475, 21.650.          .619,     32.474                                                  16.237.             . 54 3
                                                     .819        43.294        1.048       $4.125.

59.536. 1.353 64.949. 1.440 70 358 1.505

1. .~ 50 75.768. 1.544, 81.166 1.546, 72.526. 1.527 66 597, 1.544e 90.928, 1.535
        *4.392.        1.505.      97.423,        1.483.
     '129.562.            939 102.a33, 1.416. 111.266, 1.287 139.642.           .743,     146 135.         .612. 152.628.

158.038. .440, 162.372. .525

                                                    .427       168.000          .416.           .000.          .000
  *e ROBS.9 1,      1.                                                                                                                      {

9456. 1.- 1. .250, 2. .250,  ;

2. 1. 7 .250, 8. .250 9476 1. 2. .250, 3.
3. 1. 9466 .250. 8 .250 9 .250
1. 3. .250. 4 .250. 9 9 4 1. .9466. 1. 4
                                                                                           .250,        10.         .250 S.
                                                    .250.        5.      .250,      10     .250,       11,          .250
1. .9461. 1. 5. .250. 6.  ;
6. 1. .9461.
                                                                         .250,      11.    .250,        12.          .250 1,      11.      .250.      12.       .250.      17.    .250.                                         q 7       1.     .9487       1. 17.-      .250,
18. .250 8 18. .250. 23. .250. 24 .250
1. .*461, 1. 23. .250. 24 9 1. .250. 29. . .250, 30. .250
                      .9461.       1. 29.       .250.      30.       .250.      35.    .250, 10        1.    .*461.       1. 28.                                                          36           .250
                                                    .250       29        .250.      34,    .250.       35
11. 1. .946 1, 1.. 27. .250, .250  ;
12. 28. .250, 33. .250, 34 .250 i
1. 9466. 1. 26. .250. 27.
13. 1. . 9461.
                                                                         .250,      32.    .250.       33.          .250
1. 25. .250, 26. .250, 31.
14. 1. . 9461. le 19
                                                                                           .250,       32.          .250 15.
                                                    .250.      20.       .250,      25.    .250.       26.          .250
1. . 9456, 1. 13, .250. 14
1. .250. 19. .250. 20. .250 16.- .*481. 1. 7 .250. .250.
17. 1 1.0947 1.
8. 13, .250. 14 .250
8. .250. 9 .250, 14. .250.
12. 1. 1.0947, 1. 15. .250 9e .250e 10 .250. 15. .250. 16. .250
                                                                             /

B-49 im - -

Y t c

                 '.O : . 5 ' 1. u'4 7 ' 3. J10e :-                         .250, ' Aa,~          .250,         36,          350, 19,                  .250
              . CO ,    c 'l e 1.0954,1 l e .16,                           .250,--       17,     .250,' 22e                .250,        23.          ~250 1

l

le 1, 1. 0 954, i - 1 ~ 22. .250, 23. .250.- 28e - . 50, c9 .:50' -

2 2.1 .1, 1.0947, ~ 1, 21e' .250, 22. .250, 27. .250, 28. .250 ' 23.' 1. 1.0954, l 1, ^ 20 e .250, 21. .250. 26, 1250, 27, .250

             ,2he        1, 1.0954 .               1. '14,                .250,                                                                       .250 15e     .250,         20e        .250,         21.
              .25.       1, 1.0954,                1. 15e             .250,          16,     .250.         21.        .250,         22,           .250 s-0 .                                                                                                                                                                                        :
                                                                                                                                                                                                                  ~
         ** R005.68s                                                  .
1. :0UMY,'-0.3740.' O.O. 0 lf
         ** OPER.la OPERe     1.          2. 0. 2      De         73, ce               0,  o
         ** DPER.2
           . -1.0e        0.0,           0.0.= 0.0                                                                                                                                           . g 1
         ** OPER.3 0
         ** OPER.5:                                                                                                                                                                          :

'c - 2099.700 - 492.600e: 1.454,-- .339 0.0

  • 1 1979 1
              '2104.700,^              503.800,          1.968,                   402.          0.0         '*           2           1980 i

2099.700,: 502.100, 2.500. .486, 0.0

  • 3 1981 2394.700. '500.400, 1.447, .342. 0.0
  • 4 1982 '

2414.700,'- 507.200, 1.928, .435. 0.0

  • 5 1983
            ~ 2414.700e                510.600,          2.4 90 .                .518.          0.0           #-         6           1984                                                                   '

l' 2399.700, 553.100, ,1.446.. .288. . 0.0'

  • 7 1985 2424.700,E 555.600. . 2.002, .363, 0.0
  • 8 1986 J 2399.700, 554.600, 2.495, .423. 0.0
  • 9- 1987
            -2404.700. .--556.000.. - 2.980.                                     .504,          0.0
  • 10 1988 2114. 700 e : 562.340,: . 1.406. .280, 0.0
  • 11 1999 5

2109.700 .551.000, 2.043.- .328, 0.0 -* 12 - 1990 2104.700 1 549.000, ~ 2.499, .387 - 0.0

  • 13 1991 2114.700 . 548.800,'- 2.998 .461. 0.0 *' 14 19*2. .

2099.700.L 3.457.. 557.300,- . 484, . 0.0 * .15 .1993

t. 2394.700, .578.500, 3.464, .4 94 , '0.0
  • 16 1994 2399.700, 598.000. 1.994 .284, 0.0
  • 17 ~ . 1995 l

2404.700s. 606.000, 2.456, .326, 0.0 * '18 -1996 i 2399.700, 605.000 2.962. .373. 0.0  ;* 19 1997 f( 23 94.700, 604.600, 3.507e ' .416e 0.0 e to 1998-2099.700, 607.200, 1.972. .259, 0.0 * ' 21 1999 2094.700i- 597.400,n 2.493. .320, 0.0 ~* -22 2000 2109.700 t , m 605.300. 2.973, .348. 0.0 *. 23 2001 4 2099.700, 600.200,' 3.482, .385, 0.0

  • 24 2002

' 1794.700. 581.300, - 1.983 , .283, 0.0

  • 25 2005 1804.700,' 579.700, - 2.535, .322, 0.0
  • 26 2004-

, 1799. 700 e - 582.200, 2.970. .347, 0.0

  • 27 2005 1804.700, 580.700, 3.485. .3 94, 0. 0 .-
  • 4 28 2006 1504.700, '571.700, 3.415, .377,
  • 29 0.0 2007 -

, 1499.700 ' 569.400.- - 1.987, .307, 0.0

  • 30 2006 1499.700, 570.600,--2.491. .334, 0.0
  • 31 2009 l- g 1509.700. 570.600. 2.908.- .363. 0.0
  • 32 2010
. 1504.700, 533.500 - 1.427.- .297. 0.0 a 33 - 2011

!; 1499.700 531.300.. .2.007, .353, -) 0.0

  • 34 2012 -l l 1499.700, 525.700, 2.502. .404, 0.0
  • 35 2013 '

1504.700, 528.800, .i 2.96 9.- .438, 0.0

  • 36 2014 -

1509.700. '531.800, 3.534 .472. 0.0

  • 37 2015 1804.700, 536.300, 1.428.- .288. 0.0
  • 38 2016-1799.700, 528.100, 1.995, .364, 0.0
  • 39 2017 1799.700. 1 529.500, 2.6 98. .413. 0.0
  • 40 2018 j '. 1814.700 543.930. 2.941. .432, 0.0 e 41 2019 '
1804.700, 533.600,- 3.471. 485,
  • 42 0.0 2020

' 2104.700s 540.000, . 2.94 9, 455, 0.0

  • 43 2021 1799.700, a 512.200, - 3.001. .477. 0.0 -
  • 44 2022 1499.700, 481.800. 1.429, .340, 0.0
  • 45 2023 1509.700, 682.200 -- 1.919e 412. 0.0
  • 44 3 2024 1499.700, 482.900. ' 2.486, 470, 0.0
  • 47 2025 1499.700. 484.300. 3.005. .520, 0.0 ~* 48 2026
          '1801.700,             :    483.200,         1.445,                  .341,           0.0
  • 49 2027 1804.700 - 449.000, 1.961, 422, 0.0 '* 54 2028 1809.700, 484.300. ~ . 2.505. . .475,
  • 0.0 51 2029 i: 1789.700 454.100, . 1.441.. .379 0.0
  • 52 2030
          - 1814.704,                461.600 ~ 1.954,                          .467,           0.0
  • 53 2031-
          - 2404.700,                442.100. ~ 1.463,                        .416,            0.0
  • 54 2032
          - 2404.700.                463.000,          1.929,                 .501,            0.0
  • 55 2033 2404.700. .451.600. .980, .297: 0.0
  • 56 2034 2099.700, 404.300. .991, .330,
  • 0.0 57 2035
2404.700,= 423.300.- 1.437, .431. 0.0
  • 58 2036 2204.700s- 419.500, 1.436, .411. 0.0
  • 59 2037 l 2089.700, .452.200, .992. .291, 0.0
  • 60 2038 1804.700, 420.600. .993, .302 0.0
  • l1504.700, 61 2039 c 429.000, .972, .311. 0.0
  • 62 2040 i 1799.700, '432.200, 1.424, .389, 0.0
  • 63 2041' <

4' s 4 I

  • ' ') .
       ,    w                 ,,                 ,ww                              -wene,          _ - - ,,         ,            -a-,     e--- _ . -       e   a -w-n.          a  a e wwe-

r y E 1504.700, 422.600 1.420e .3t6 0. 0 I- e e4 2D42 1790.700. 438.t00 - 1. 94 7 . ' .*t5 0.0 e 65 15D4.700, 2045 436.000.- 1.913 - 4473, 0.0 -e 66 2044 i 1504.700,- 664.400.- 2.4 75 - .501. 0.0 -e .7 2045 l '1799.700 - 386.600 .?6le .323 0.0 e 64 -2046 j: 15D4. 700. ' 384.400, .977 .361. 0.0 e 69 2394.700, 2047 400.600. 905. .337 0.0 e 70 2048 l I 2109.700e? $30,000, 21D4.700 2099.700.

     ** DPER.12:

De 506.300 492.000s

0. 0 . De De 0-2.956.

2.023. 1.431.

                                                     .519e
                                                     .402
                                                     .347 0.0 0.0 0.0 e

e e 71 72 74 2049 2050 2052 00 HIXX.1 ' 'E MIXX.

     ** MIXK.2 O,   0,   0 0.8    0.058 50 ORAG.13-ORAG. =- l e 0-    1-
OS ORAG.23 0.186, =0.20e 0.0, 64.0 -1.0 0.0
     ** ORAG.5:'

0.5. 0.4 96 'I ** GRIO.1: GRIO. 'De

    ** ORIO.2 2

1.250s 0.570

     ** GRIO.4
          -1. 15
    ## ORIO.6                                                                                  i 3.0 1. 14.0.2. 25.0 1. 36.0.2. 47.0 1. 58.0 2. 69.0.1                               I 80.00.2.

91.0 0

1. 102.0.2. 113.0.1, 124.0.2 135.0 1. 146.0 2. 157.0.1, .00,0 j
    ** CORR.1:

CORR. le le 0

    *e CORR.2 EPRI EPRI. EPRI NONE                                                                   j
    ** CORR.3:                                                                                   i 0.2                                                                                   j
    ** CORR.6 EPRI THOM THSHe CE-le CONO. 05.7
    ** CORR.7:

0.0 , es CURR.9 i CE-1 1 o# CORR.12: 0.46366, 1 i am CONT.1: I C0hW

   *# CONT.23 0.0. Os 20e 20       2. to 0. 0                                                          1
   ** CONT.3:

0.1. 0.0001, 0.001. De De 0. De 0.9

   ** CONT.6 :
1. l e 0. O le ce 1. le De 0, le le 0, 0 co CONT.7: 3 4000.0, O. O. De De 0

{

   ** CONT.8                                                                                 '

i 16  !

   ** CONT.11:                                                                                     !

16 es CONT.15: De O De De 0

   ** ENO SF INPUT DATA:

ENDO 0

                                                                  /

B-51 4

  ** CDC FILE NAME: MH165
  ** VIPRE.1
1. O, 0
  • en v! PRE.2 NH166
  ** CEGM.1 GEDM,     25. 25e 56        O.       De 0 we GE0M.2t                                                                                                                                           -

168.00. 0.0. 0.5 s* GE0M.4

1. .0630 .e574, .3314 2. 2. .1020e 4340, 6 .1020. 4340
2. .3036, 1.2179 .6629 2. 3. .1020. .5550, 7 .1330. .*140
3. .1038, 1.2179, .6629, 2, 4 .3020e .5550, Se .1330 4340 4 .3038, 1.2179 .6629.- 2e 5e .1020, 4340, 9 .1330. 4340
5. .0630,- .9574, .3314 le ' 10 . .3020e 4340, De .0000, .0000
e. .1034, 1.2179 .6629e 2e 7 .1330 4340, 11e .1020. .5550 7, .2682 1.3254. 1.3254, 2. . 8, .1330 .5550, 12.- .1330. .5550 8, .1450, 1.4216, 0.9943, to 9e .0720, .5550s 13, .0720. .5550
        *,    .1450, 1.4216e 0.9943,                                   .1330.      .w340,               .0720e     .5550 2,      10e                              14, 10,    .1034 1.2179            .6629,           le      15,      .1020e     .5550.         De    .0000e      0000                             -

11, .3038e 1.2179 .6629, 2. 12, .1330, .*340, 16, .1020e .5550 12e .1642. 1.3254. 1.3258, 2, 13e .1330,. .5550. 17 -.1350, 5550 13, .1450, 1.4216, 0.9943, 2. 14e .0720e .5550s 14 .1330. 5550 14, .1450s 1.4216. 0.9943, 2. 15e .1330, 4340, 19e .1330, .5550 <

15. .1038, 1.2179 .6629 le 20. .3020, .5550 De .0000, .0000 16 .1054, 1.2179, .6629, 2, 17 .1330,. 4340, 21 .3020e 4340 17e .1682, 1.3258, 1.3258, 2, 18. .1330 .5550, 22 .1350, 4340' 18 - .1682, 1.3256. 1.3254, 2. 19, .1330 .5550, 23, .1330. 4340 19e .1682 1.3258 1.3258, 2, 20e .1330. 4340, 24 .1330 4340' 20e .3038 1.2179, .6629 le 25e .1020, .4340. O. .0000. 0000 21 .0630s 9574, .3314 le 22. .3020e 4340e 0, .0000, .0000 22e .3038e 1.2179 .6629 1, 23e .3020e .5550, De .0000, .0000 +

23 .3038, 1.2179, .6629s 1. - 24 .3020, .5550 O. .0000 .0000 24, .3018, 1.2179 6629 le 25. .1020. 4340. O. .0000. .0000

25. .0630. . *574 .3314 O, 0,- .0000, .0000, D. .0000, .0000 es ROOS.1: .

ROOS, le 15e 0, le De De De 0, 0, 0, 0 e# R005.2 - 168 00, 0.0, os 0

 ## R00S.3 22
 ## R00S.43
           .000s       .540       12.328.            .577.          23.419         .638.        35.759         .724 43.149         .798,      53.012.              896.         61.034,          994,       69.040.      1.092 73.970,      1.153,       80.136,         1.221e            88.771.      1.300,         96.163,      1.350 101.091.' 1.374            107.260.                         110.961.       1.386        117.120, 1.374 123.278e - 1.337.          128.218,-1.393,  1.288.          134.366,       1.215,       140.539,       1.129 147.949,       1.006.      166.000s            .589.             .000,       .000s             000,      .000
 ** R00s.9 le     le .9723e          1.      le         .250.          2.      .250.       6.      .250       -7,    .250 2e     le .9732,          le      2.         .250.          3.      .250,       7e      .250.      8,     .250                                        '

3e le .9723 le 3. .250, 4 .250 8, .250 9 .250 4, 1. .9732. le 4 .250, 5. .250s 9 .250. 10. .250

  • 5, 1. 9723. 1. 9 .250s 10, .250 14. .250, 15e .250 6e le 9732 le 14, .250s 15e .250.- 19, .250, 20. .250 7, le .9732. 1. 19e .250, 20. .250.- 24 .250, 25. .250 .

8, le 9723, le 18, .250, 19 .250, 23. .250, 24, .250 9e 1. 9732. le 17e .250, 18. .250, 22. .250, 23. .250 los le .9732, le 16, .250s 17 .250, 21. .250, 22, .250

11. le 9723. le 11e .250, 12e .250, 16, .250. 17e .250
12. le 9732. le 6. .250, 7 .250, 11, ,250, 12. .250 13, 1. 1.1079 le 7 .250, 8. .250. 12. .250, 13, .250 14, le 1.1090. le 13e .250. 14 .250. 18. .250, 19e .250
15. le 1.1090s le 12. .250, 13e .250, 17. .250. 18. .250 0 J
 ## R00S.68:                                                                                                                                                    '
1. DUMYe 0.4220s 0.0 0 i
 *# OPER.1                                                                                                                                                    J UPER,     le    2,     0,   2. De       46.      De      0,     0                                                                                      l
 ## OPER.2
      -1.0. 0.0,     0.0. 0.0
 *e OPER.3                                                                                                                                                'l i

0

 ## OPER.5:                                                                                                                                                     1 1499.700s          565.600,        3.442.               .416.         0.0        =        1       14 1799.700,          564.000,        3.486.               .440,         0.0
  • 2 15 2109.700, 571.900 3.505. 476e 0.0 m 3 16 l 2404.700 568.400, 3.563. .553. 0.0 m 4 17 l 2100.700, 567.400, 2.950. 445 0.0 a 6 19 l 2099.700, 562.300. 2.476. .380, 0.0 e 7 a0 1 2399.700, 556.400. 2.470. .437. 0.0 e 8 21  !

2399.700. 563.000. 2.035 .371, 0.0

  • 9 22 l 2404.700. 594.500, 2.997. .*10e 0.0 e 10 23 l 2099.700, 603.300, 2.944 .349e 0.0
  • 11 24 l 2099.700, 596.600, 3.531, .424 0.0
  • 12 25 2399.700, 606.500, 3.486, .421e 0.0 m 13 26 2399.700, 517.400. 2.016. .429 0.0
  • 14 27 2099.700 524.900 2.024. 406. 0.0 m 15 28' l .'094.700. 519.500. 2.54*, .496 0.0 e 16 29 l 2409.700. 528.800 2.498. .479 0.0 e 17 30 l 1804.700, 564.200. 3.459 446, 0.0 = 16 31 -l 1799.700 515.200 1.993. .370. 0.0
  • 19 32 '

) 1499.700. 514.600. 2.498. 418. 0.0 a ~20 33 ' I 1499.700. 523.800, 3.481. .493, 0.0

  • 21 34 1499.700, *73.800, 2.061, .*17. 0.0
  • 22 35 1804.700. 478.300. 2.031, .=34 0.0 = 23 16 l 2099.700, *73.800. 1.544 .385, 0.0 m 24 37 l
    '2099.700.          *85.300,        2.018.                462,         0.0
  • 25 38 1

\

                                                                                 /

l B-52  !

d' t'. M .700, 487.900e '1.4*6. .477

                   *t 04. 700        **S.500                                       0.0       0  p        3%

Q 2104.700,- 443.400 1.485.- .tose. 0.0 # .7 *0 0104.700,- 436.900, 1.511. .*26, 0.0 e ta *1 1.*62, .417 0.0

  • 29 C114 . 700. 432.500s t.014 .540. *
                                                                                                         *t.

1799.700, 439.900s 0.0 10 ' -*3 1504.100, 1.991e .4 0.0

  • 31 44 431.000 1,996,- 4.86.
0. 0.0 m 1504.700, 432.000, .1.9*5, .461,-
  • 32 : =45 1499. ?t 0 - 401.700.- 0.0 33 ' 45 1804.70). 1.505. .*20e 0.0 .* 34 46 433.100s 1.500 .3 96, 0.0
  • 15 67
                  $394.700,'*109.700.           403.100,   1.4**,            4*7. 0.0       *- 36 404.700,              1.492.          .466,-

44 37 1404.7003 f52.100, 0.0 # **- 1399.700 t 3.007. .522. 0.0

  • 38 50 517.e00. 3.006, .605, 0.0 *. 39 51 2099.700,- 522.500, 2.997, .535. e 1804.700, 515.800, 3.494 .567, 0.0 40 $2 1504.700,' wa7.300e 2.449 .451,.

0.0 a 41 51 2104.700 0.0 m- 42 54

                                    -479.700.              2.505 e -       .515. 0.0       e  43      55 2:09.700,          440.400 2099.700.          446.900, 2.515.          .531. 0.0    .*    44      56
1599.700, 2.492. . .539, 0.0 e 45 57 401.400. 2.024, .516, 0.0.
  • 46 54 -

2099.700, 410.100, 2.016, .525. 0.0

  • 47
             #* OPER.12:                                                                                59                                            i O. Oi    0, ~ 0.      De 0                                                                                                       '
             ## HIXX.1:

HIXK, De 0, 0

             ** HIXX.2:

0.8. 0.034 -

             ## ORAG.1 .

ORAG. 1, De 1

             ## ORAG.2 0.186 y0.20              0.0          '64,0,     =1.0. -0.0
             ** DR&3.5:                                                                                                                               i 0.5.-     0.585 -                                                                                                                   i
             ** 0410.1
                'GRIO,      0,         2
             ** GRIO.ta 1.t50.       0.570
             ** GRIO.43                                                                                                                               s al.      13                                                                                                                         1
             *e GR10.6:                                                                                                                               i 6.0.2. 19.0 1. 32.0.2. 45.0 1.                                                                                               I 110.0.2,123.0 ele 136.5 2 ,149.0 1.162.0 2.58.0.t , 71.00,1,           .00,0, 64.00,2. 9 7.00.1.

0 .00.0 .00.0

             #e CORR.1 D CORRe      1.      le 0
             ## CURR.23 EPRI, EPR1,' E9RI, NEDW
            ** CORR.5:-

0.2 me CURR.63 EPRI. TRiMe TH0He CE-1. COlo. G5.7

            ## CURR.7s                                -

0.0 me CORR.9 , CE-1 )

            ** CURR.128-0.40799, 1
            ## CSIT.1:

CONT-

        ~ ** CONT 2 0.0. D. 20e 20 2 2. De 0                                                                                                                i
            ** CONT.3s 0.1     0. 0001. 0. 001. O . O , O . D e 0.9
            ** CONT.63
1. 1. 0. 0 1. 0 1. 1. O. D e le le O. O
            ** C ONT . 7 3                                                                                                                                l 4000.0. O, 0 De De 0                                                                                                                     !
            *e CONT.83 13
            ** CONT.11 13 1

me CONT.18: '

0. O. De D. 0
            ## END OF I'4PUT DATA:

EH00 0 I 4 B-53

     ,- . . . .                           ..-              -     ..   ..     . . . ~ . . . . - .     . . . . , . . -    _ - -     -

E! l 1

                    ** CDC FILE MafEI I              :                                                                                                    ;a L.                                                                                                                  !
                    ** v2 PRE.18
                         -1        O. 0
                  ' ** v! PRE.24                          F                                  "

l l- 8 AND M CONFIRMATERY TESTI- ' .,I1- 'l' i

                    ** GEOM.1                                                                                                                             .

6 ee (M. t t 3- 0

                    .* pean...

L 81 ' .) I: Il

56 In>
                          ~

me RODS.1: o* .28~

                    ** R c           .58 3

C me .4 ~

  • e es , RODS.9 - ~;

WJ l I  ! 3

                         ~

ee RODS.68 e ' I: .-1 i C .] l

                    ** D ER.1:-

t ]

                    ** OPER.2:                                                                                                                                   .

1 1

                    ** OPER.3:
  • i l'
                      .t3
                    ** OPER.fi                                                                                                               -

(~ ) B-54 1 a a v < . < - -e.-ws+ ,-n.. -4 ' e ee w e w e aea-

m. J' . J B B i 1 l l .s ; i I , i I.  ! l I l l l 1 I

    # CPER.12:                                       -
    ** MIKK.1:         ]

B'- 55 ~l l i

g . 31 t .- lc t MINK.2 8 '* . 7 S DeAs.1 - ' L c

                     .e ,,,,,,,.                         3 DaAS.5
                   .'C
                     ** 0R10.18 3-                                                                             ~

C

  • GRID.2 3 >

ORID.68

                                                      ]                                                                                         ,

L *s GRID.6 *

  • CORR.15 CORR.2s
                                                      -]-                                                                         -i<

c

                     ** CURR.3 i                                     3                                                                         -

t-C <

                     ** CDR .6 E

l: C .78 C '

                    ** C             .9 C                                                                                                                           *
                    ** CDR 12                                                                                                                    ?

c

                - ** CONT.lai                    3' 9 -
                   ** ONT72 '                                                                                                  .

C ] -

                   ** CONT.14-
                 -[g, g                                                                       )
                                                                                                                                         't' CONT.78
                   **cCONT.88                                     J
                   ** CO .114
                - meCok,15:.

l-c se Ete OF IppWT ATA

                       -EWO
                       'O-I I

I. l I I4 , I I-r '

                                                                                                   /

B-56 - [.. ..'

F L -s I

i.

I l l  : I Appendix C I Validation Data Statistics  ! I I l , 1 - I I , I I , 1 4 C-1 i

                                                                                        'i
                                                                                        ~I

1 Il Io l El Il

                                 .' Table C$1 Test Section Geometry Parameters of the Validation Data-                                                                     !

Test No of No. of Pitch Heated Guide Heated Grid Axial Section Data - Heated Rod' Tube Length Spacing - Flux No. Points -Rods (in) OD (in) OD (in) (in) (in) ' Profile 113' -11 16 0.555 . 0.422 0 96 20 -CosineU - 123 12 16 0.555' O.422 0 96 - 20 Cosinou - 140 32 16 0.555 :0.422 0- 96' '32 ' USinU 144 38 16 0.555 0.422 0.545 168.- 26 . USinu  ; 145 41 =16 0.555 0.422 0 168- " 26' USinu . 148 72 16 - 0.555 0.422 0 168 26 USinu '! 152 44 16 0.555 0.422 'O 168 26 Usinu . I-I I

I:

I

 -:                                                                                                                                                                        1 l:                                                              C-2                                                                                                   g h

i 3i

                     ,                                                                                        1 B                                                                                                              '

I l Table C.2 ANALYSIS OF VARIANCE DCHF 1 CORRELATION VAUDATION (FRESH) DATA '! ONE WAY GROUPINGS BY TEST SECTION  ! GR. Test No. of M/P ' STD_ NORMAL 2 Tailed MEAN 2 Taued STD 2 Tailed NO. Section CASES MEAN DEV KS 2 Prob >Z T VALUE Prob >T F-RATIO Prob > F I 4. w"> ,, e. . - e.se e. , , .,s e.2,, ,. , ,_  ! l 2. 222 ,2 e - e.s,. mes. ,.,. e.2,4 , .e, ,,,,  : l e. - 22 - mes, m.s, o.,es ,,, e.es, ,.,, ,,,, y 4. - ee , , , _ me. - 4.7, e es s .2e - me,

e. -

i ,o2s oo,. e.ses e . , ,, ,.,, _

e. ~ ,e s. - - - _ o. 2 me,2 ,.., ,,,,

l

7. >s2 - s o,, - m ,,,
    ;                                                              es.,    . , ,  e.,s,      ,,,     ,.,,,

1 AR DATA 248 1.007 0.078 0.s63 0.,30 l . I J t C'- 3

a i l H

                                                                ,I 1,
                                                            -1   I i
                                                             =i i

e i Appendix D l o DCHF 1 Data Base Statistics .

                                                              .I a
                                                            -l u
                                                            .j 1
                                                               -i 1

a

                                                              .. i t
                                                             -: I i

f D-1 i l i w =-s

Ui , i I I I Ranges of tha irdependent venables i Pressure (psla) . Low Less then 1800 - Medium Between 1900 and 2300 High Greater than 2300  ; Mass Flux (Mlb/hr/sett) > Low Less than 1.80 Medium Between 1.8 and 2.8 - High Greater than 2.00 Local Qualty (%) I Low Less than 2.5 ' Medium Between 2.5 and 12.5 High Greater than 12.5' Grid spacing (in) Low Less than 15 e l Medium Between 15 and 25 High Greater than 25 I I, I l l I El s v 1

i f il Table d.1 ANALYSIS OF VARIANCE DCHF 1 CORPELATION DCHF 1 DAT A BASE ONE WAY GROUPINGS BY PRESSURE, MASS FLUX & LOCAL QUAUTY GR. No. of M/P STD NORMAL 2 Talled MEAN 2 Talied STD 2 taw NO. VARIABLE CASES MEAN DEV KS Z Prob >Z T VALUE Prob >T F AA,'10 Prob > F _ PRESSURE

1. Luw Pressure 409 0.906 0.002 0.545 0.928 ,0.78 0.436 1.04 0.621
2. Med. Pressure 309 1.003 0.096 0.589 0.879 0.39 0.697 1.04 0.000 s 3. High Pressure 286 1.004 0.095 0.472 ' O.979 4.56 0.577 1.02 0.802 <
=

FLOW RATE

4. Low Flow rate 179 1.021 0.091 0.686 0.734 2.74 0.006 1.07 0.502
5. Med. Flow rate 478 0.983 0.096 0.710 0.694 3.30 0.001 1.03 0.000 m 6. High Flow rate 347 1.013 0.090 1.021 0.248 2.27 0.023 1.10 0.200 LOCAL QUAUTY
 =
7. Low Quality 174 0.998 0.072 0.646 0.799 0.39 0.094 1.71 0.000
8. Med. Quality 440 1.010 0.095 0.669 0.762 1.76 0.070 1.03 0.747 l 9. High Quality 390 0.991 0.101 0.525 0.9'.6 1.54 0.102 1.14 0.117 i  !

l m A1A 14 ,. 0.094 0. 0. 64 1 1  ! 4 D'- 3

   - .. .              --      . - - -              .. -                 -. . . .                 - . _             . . -         ~           .-

I Tatste D$2 ANALYSIS OF VARIANCE DCHF 1 CORRELAT10N I i DCHF 1 DATA BASE ONE WAY GROUF1NG$ BY GRID SPACING. AXIAL FLUX, LENGTH. MOD DIAMETER AND CELLTYPE 4 GR, No. of M/P STD NORMAL 2 Tailed MEAN 2 Tailed STD 2 Talled l NO. VARIABLE CASES MEAN DEV K8 Z Prob >Z T.VALUE Prob >T F RATIO Prob > F GRID SPACING - l

1. Low Spacing 37 1.004 0.068 0.483 0.974 0.330 0.740 - 1.930 0.016
2. Med. Spacing 524 0.994 0.098 0 802 0.541 1.200 0.209 1.000 0.287
3. High Spacing 443 1.008 0.091 0.803 0.540 1.420 0.157 1.070 0.396 i i LENGTH
1. Length (8 ft) 482 1.011 0.090 0.706 0.702 2.150 0.032 1.100 0.240 j
2. Length (14 ft) 522 0.990 0.097 0.390 0.963~ 1.940 0.053 1.000 0.436 ROD DIAMETER l
1. Small OD (0.374*) 462 0.991 0.100 0.688 0.732 1.670 0.095 1.140 0.106
2. Large OD (0.422*) 542 1.000 0.088 0.530 0.941 1.640 0.101 1.150 0.071 AXIAL HEAT FLUX
1. Uniform AHF 361 1.016 0.099 0.651 0.790 2.620 0.000 1.100 0.282
2. Non Uniform AHF 643 0.991 0.091 0.505 0.961 1.890 0.058 1.000 0.289 CELLTYPE
1. Typical Cell 747 0.999 0.093 0.545 0.928 0.270 0.788 1.030 0.707-
2. Thimble Cell 257 1.004 0.098 0.587 0.881 0.520 0.602 1.000 0.441  :

ALL DATA 1004 1.000 0.094 0.600 0.864

                                                                          ~

I; DI4

              .-.            .                           . _ , . _ . .              , _      ,     .-,  ,_.g.    ,                         . . - , , . , .

s J ~ W' [ Table D$3 ANALYSIS OF VARIANCE DCHF 1 CORRELATION DCHF 1 DATA BASE TWO WAY GROUP!NGS BY PRESSURE & MASS FLUX GR. PRES FLOW No. of M/P STD NORMAL 2 Tailed MEAN 2 Talle;; STD 2 Tahed NO. SURE RATE CASES MEAN DEV KS 2 Prob >Z T VALUE Prob >T F RATIO Prob >F

1. Low P Low G 90 1 s4 0.081 0.863 0.771 4.390 0.697 1.340 0.083
2. Low P Med. G 1 '*, 0.907 0.098 0.593 0.873 1.750 0.081 1.080 0.456
3. Low P High G 121 1.005 0.089 0.880 0.421 0.530 0.596 1.110 0.466
4. Med. P Low G 46 1.030 0.102 0.648 0.795 1.950 0.057 1.170 0.422
5. Med. F Med. G 146 0.984 0.097 0.569 0.902 1.900 0.050 1.050 0.066
6. Med. P High G 117 1.015 0.068 0.825 0.504 1.740 0.085 1.140 0.300
7. High P Low G 43 1.048 0.093 0.438 0.991 3.230 0.001 1 030 0.945
8. h!gh P Med. G 134 0.976 0.091 0.704 0.705 2.830 0.005 1.070- 0.636
9. High P High G 109 1.021 0.091 0.640 0.808 2.170 0.030 1.000 0.009 ALL DATA 1004 1.000 0.094 0.600 0.864 D'- 5

i I: i II I! Table 054 ANALYSIS OF VARIANCE DCHF 1 CORRELATION f DCHF.1 DATA BASE TWO-WAY GROUPINGS BY PRESSURE & LOCALQUAUTY GR. PRES . LOCAL No. of M/P STD NORMAL 2.Talled MEAN 2.Teiled STD 2.Tated I:  ; NO. .SURE OUAUT CASES MEAN DEV K-S Z Prob >Z T.VALUE Prob >T F. RATIO Prob > F

1. Low P Low X 25 1.016 0.071 0.620 0.837 1.110 0.275 1.770 0.000 .
2. Low P Med. X 177 1.002 0.094 0.696 0.714 0.240 0.811 1.010 0.945 ,
3. Low P High X 207 -0.988 0.093 0.486 0.982 1.670 0.096 1.030 0.613 [

4 Med. P Low X 54 1.024 0.059 0.677 0.750 2.790 0.007 2.550 0.000

5. Med. P Med. X 143 1.018 0.095 -0.510 0.957 .2.090 0.037 1.020 0.835
6. Med. P High X 112 0.973 0.104 0.726 0.867 2.000 0.009 1.220 0.140 4

g,

7. High P Low X 95 0.978 0.073 0.770 0.593 2.775 0.007 1.640 0.003 g;
8. High P Med. X 120 1.011 0.098 0.519 0.951 1.240 0.216 1.080 0.539 "i
9. High P High X 71 1.025 0.109 0.673 0.756 1.800 0.064- 1.340 0.072 ALL DATA 1004 1.000 0.094 0.600 0.864 ,

I

 .                                                                                                           I I;

l D-6

s J N (. Table d.5 ANALYSIS OF VARIANCE DCHF 1 CORRELATION DCHF 1 DATA BASE 1WO WAY GROUPINGS SY MASS FLUX & LOCAL QUAUTY GR. FLOW LOCAL fJo. of M/P STD NORMAL 2 Tailed MEAN 2 Talled STD 2 Taled NO. RATE QUAUT CASES MEAN DEV K4 Z Prob >Z T VALUE Prob >T F RATIO Prob > F

1. Low G Low X 8 1.032 0.079 0.628 0.825 0.96 0.338 1.42 0.886
2. Low G Med. X 40 1.039 0.102 0.541 0.932 2.39 0.021 1.17 0.450
3. Low G High X 131 1.015 0.089 0.694 0.148 1.76 0.080 1.14 0.348
4. Med. G Low X 113 0.989 0.072 0.582 0.888 1.45 0.150 1.71 0.000
5. Med. G Med. X 206 0.998 0.096 0.491 0.989 0.26 0.799 1.05 0.647
6. Med. G High X 159 0.958 0.104 0.597 0.868 4.79 0.000 1.23 0.079
7. High G Low X 53 1.010 0.068 0.633. 0.817 1.01 0.315 1.89 0.005
8. High G Med. X 194 1.016 0.092 1.140 0.148 2.11 0.035 1.06 0.622
9. High G High X 100 1.010 0.096 0.802 0.541 1.03 0.303 1.04- 0.746 ALL DATA 1004 1.000 0.094 0.600 0.664 D-7

I. Ii l-- Table D.6 ANALYSIS OF VARIANCE DCHF 1 CORRELATION l DOHF 1 DATA BASE TWO WAY GROUPINGS BY MASS FLUX & GRID SPACING I; GR. FLOW GRID No. of M/P STD NORMAL 2 Tailed MEAN 2 Talled STO 2 Tabed NO. RATE ' SPACE CASES MEAN DEV KS 2 Prob >Z T VALUE Prob >T F RATIO - Prob >F i 1, Low G Low S 2 0.893, '0.034 0.368 0.999 1.610 0.107 7.510 0.570

2. Low G Med. S 109 1.018 0.096 0.703 0.706 1.900 0.058 1.040 0.735 j
3. Low G High S 68 1.029 0.081 0.713 0.600 2.830 0.006 1.350 0,118 I

Il l

4. Med. G Low S 20 0.990 0.065 0.561 0.912 0.600 0.495 2.000 0.068 j
5. Med. G Med. S 242 0.964 0.100 0.950 0.327 2.270 0.024 1.140 0.196
6. Med G High S 216 0.981' O.093 0.569 0.903 2.740 0.006 1.030 0.783 l

I

7. High G Low S 15 1.038 0.052 0.772 0.590 2.730' O.015 3.270 0.013
8. High G Med. S 173 0.992 0.094 1.1S5 0.121 1.110 0.266 1.010 0.950
                                                                                                                                         ~

t

9. High G High S 1.035 0.082 159 0.884 0.416 4 820 0.000 1.310 0.031 ALL 0ATA 1004 1.000 0.094 0.600 0.864 l

I L I g. D'-8

I l

                                             '~

1 I Table d.7 ANALYSIS OF VARIANCE DCHF 1 CORRELATION DCHF 1 DATA BASE TWO WAY GROUPINGS BY LENGTH & ROD DIAMETER GR. ROD No. of M/P STD NORMAL 2 Taued MEAN 2 Talled STD

'I    NO. Length OD         CASES    MEAN       DEV 2 Tabed KS Z Prob >Z T VALUE Prob >T F RATIO Ptob> F I   1. Shon     Small       250   1.029 0.100          0.669   0.763   -4.170  0.000     1.120  0.257
2. Short large 232 0.991 0.074 0.751 0.626 1.540 i

0.125 1.640 0.000

3. Long Small 212 0.946 0.081 0.594 0.872 8.640 0.000 1.360 0.006 I 4 Long Large 310 1.020 0.096 0.449 0.988 3.310 0.001 1.030 0.742  !

I i Short Rods 96* Long Rods 168* Small OD 0.374* l Large OD 0.422* I I ALL DATA 1004 1.000 0.094 0.600 0.864 I I 1 . D-9 _I}}