ML20028F372

From kanterella
Jump to navigation Jump to search
Verification Testing of Separation Between Class IE & Nonclass IE Power Cable in Raceways for Use in LaSalle Nuclear Generating Station - Units 1 & 2, Rev a
ML20028F372
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 01/20/1983
From: Hazeltine J, Faith Johnson, Stenson T
WYLE LABORATORIES
To:
Shared Package
ML20028F368 List:
References
46511, NUDOCS 8302010292
Download: ML20028F372 (18)


Text

TEST PROCEDURE TEST PROCEDURE NO. 46511 ENUFC SERVICES & SYSTEMS GROUP M sc: P. o. som icoe

  • Hetenne. Alabame 360o7 L.AeonAfones TWX401017262225 + TELEPHONE (205) 837441' DATE:

Decder M,1982 Revision A VERIFICATION TESTING OF SEPARATION BETWEEN CLASS lE AND NON-CLASS lE POWER CABLE IN RACEWAYS FOR COMMONWEALTH EDISON COMPANY FOR USE IN LaSALLE NUCLEAR GENERATING STATION - UNITS 1 AND 2 APPROVED BY: APPROVED BY FOR: PROJECT MANAGE &- o f 'Z -

APPROVED BY: APPROVED BY

/

T _A /) 7 FOR: QUALITY ENGINEER- f -

APPROVED BY: PREPARED BY *

'^

FOR: PROJECT ENGINEER: .

v /

REVISIONS .. ,0 ,R ,7.

REU.NO. DATE PAGES AFFECTED BY APP'L. DESCRIPTION OF CHANGES A 1/20/83 All M Revised per comments Sargent and W M'Lundy Letter dated January 13, 1983.

l 8302010292 830128 PDR ADOCK 05000373 p PDR COPYRIGHT 8Y WYLE LABORATORIES. THE R,GHT TO REPRODUCE, COPY, EXHIBIT, OR OTHERWISE UTILIZE ANY OF THE MATERIAL CONTAINED HEREIN WITHOUT THE EXPRESS PRIOR PERMISSION OF WYLE LABORATORIES IS PROHIBITED. THE ACCEPTANCE OF A PURCHASE ORDER IN CONNECTION WITH THE MA7ERIAL CONTAINED HEREIN SHALL BE EQUlVALENT TO EXPRESS PRIOR PERMIS$10N.

PAGE NO. 2 .

. TEST PROCEDURE NO. 46511 -

Revision A 1.0 Scope This document has been prepared by Wyle Laboratories for Commonwealth Edison Company (CECO) and encompasses the testing of power cables in l representative configurations found at the LaSalle Nuclear Power Station - Units 1 and 2.

1.1 Objectives The purpose of this procedure is to present the requirements, proce-dures and sequence to test cable trays and conduit as appropriate thermal barriers for Class lE Power Cables during electrical fault conditions in non-Class 1E electrical cables. This is a verification test of the separation distances used at LaSalle County Stationgnon-Class lE power tray and Class lE power tray and conduit. bdIW##"

1.2 Applicable Documents o Sargent & Lundy Engineering Electrical Separation Test Procedure for Tray-Mounted Power Cables Installed in LaSalle Nuclear Power Station, Punchlist Item 3.52,

Reference:

SER Section 8.4.6.1, dated September 22, 1982.

o Sargent & Lundy Engineers, " Basis for Current Values in Wyle Laboratories Test Procedure No. 46511", dated January 13, 1983.

o Wyle Laboratories' Quotation 543/8477/CP to Commonwealth Edison Company, dated October 22, 1982.

1.3 Equipment Description This test procedure encompasses testing of power cables as described e below:

Item No. Description 1.0 2 - Conductor, size 10 AWG, copper power cable.

2.0 3 - Conductor, nize 2 AWG, copper power cable.

3.0 3 - Conductor, size 1/0 AWG, copper power cable 4.0 3 - Conductor, size 350 MCM, copper power cable.

5.0 3 - Conductor, size 2 AWG, copper power cable.*

6.0 3 - Conductor, size 1/0 AWG, copper power cable.*

7.0 3 - Conductor, size 350 MCM, copper power cable.*

  • Cables to be electrically faulted during testing.

WYLE LABORATORIES FORM 1054 2 Rev. Oct 19 Huntsville Facihty

PAGE NO. 3 .

TEST PROCEDURE NO. 46511 Revision A 1.0 SCOPE (Continued) l.4 Test Sequence The test program shall be performed in the following sequence:

o Test Specimen Identification

_ o Baseline Functional Tests o Overcurrent Test o Functional Tests f o Post-Test Inspection 2.0 TEST REQUIREMENTS 2.1 Acceptance Criteria 5 2.1.1 Insulation Resistance Test 5 6 i Measured insulation resistance shall be greater than 1.6 x 10 ohms r with an applied potential of 500 VDC.

2.1.2 High Potential Test Measured leakage current shall be less than 3.0 x 10~ amperes when  !

2200 VAC is applied.

2.1.3 Overcurrent Test i

Control specimens (located in conduit and upper cable tray) shall carry di LaSalle County rated ampacity currents and be energized to normal opera-ting voltages, as specified in Table I, throughout the overcurrent test.

4

-g TABLE I A --

CONTa0L SPECIMENS d

Cable Size Conductcra Current Voltage 10 AWG 2/ copper 15A 480 VAC l 2 AWG 3/ copper 71A 480 VAC 1/0 TWG 3/ copper ll3A 480 VAC 350 MCM 3/ copper 318A 480 VAC d

WYLE LABORATORIES FORM 1054 2 Rev. Oct 79 2 Huntsvelle Facshty R. . . _ _ . . . _ _ _ _ _ _ _

, PAGE NO. 4 -

TEST PROCEDURE NO. 46511 Revision A 3.0 TEST PROGRAM 3.1 Test Specimen Identification An inspection shall be performed upon receipt of the test specimen components at Wyle Laboratories. This inspection will assure that the test specimens are as described in Paragraph 1.3. Applicabic manufacturer, model, part and serial numbers shall be verified and recorded. The test specimens shall be labeled to facilitate identi-fication throughout the test program.

3.2 Baseline Functional Tests 3.2.1 Test Specimen Preparation The test specimens shall be placed in the cable tray assembly as shown in Figures 1 and 2. This apparatus shall be assembled to the indicated dimensions by Wyle personnel using materials supplied by Commonwealth Edison Company. The following guidelines shall be observed with regard to the materials and construction of the cable tray assembly:

1. The cable trays shall be solid bottom 10-foot lengths 30-inch wide tray from LaSalle stock.
2. The trays and rigid steel conduit will be supported by unistrut-type seismic hangers.
3. The upper tray shall be filled to a design index of 1.25 with the control specimens and an assortment of unpowered specimens from LaSalle stock (see Tabl,e II and Table IV).
4. The lower tray shall be filled to a design index of 1.25 with an assortment of unpowered cables supplied by Commonwealth Edison Company and a fault cable placed in one of the three locations specified in Figure 1. All cables will be obtained '

from LaSalle stock (see Table III and Table IV).

5. In each of the six (6) test assemblies, both ends of the fault cable shall be wrapped with a single layer of Siltemp tape with a 50% overlap between wrappings. This will, in turn, be covered by a single layer of 3M No. 69 tape with a 50% overlap between wrappings. Both tapes shall be applied to the fault cable from i.he edge of the lower cable tray to the fault cable termination point. This wrapping shall be done to ensure that any cable fault occurs in the cable tray and not at the termina-tion points.

NOTE: Photographs of typical test assembly shall be taken prior to testing.

WYLE LABORATOR4ES NM 1054 2 Rev oct 79 Huntsville Facility i

)

PAGE MO. 5 .

TEST PROCEDURE NO. 46511 Revision A TABLE II UPPER CABLE TRAY CONTENTS Quantity Cable Size No. Conductors Voltage Rating Control 1 10 AWG 2 600 V Specimens 1 2 AWG 3 600 V 1 1/0 AWG 3 600 V 1 350 MCM 3 600 v Unpowered 1 1/0 AWG 3 8 KV Specimens 2 500 MCM 3 5 KV 1 250 MCM 3. 5 KV 1 500 MCM 3 600 V 3 4/0 AWG 3 600 V 2 1/0 AWG 4 600 V 1 1/0 AWG 3 600 V 1 1/0 AWG 1 600 V 2 2 AWG 3 600 V 3 6 AWG 3 600 V 3 10 AWG 3 600 V 4 14 AWG 3 600 V TABLE III LOWER CABLE TRAY CONTENTS Quantity Cable Size No. Conductors Voltage Rating Pault 1 2 AWG 3 600 V Specimens

  • NOTE: Only one of the 3 fault specimens will be energized during any single test. During the 6.5 times rated current portion of the over-current test, all 3 phases will be powered. Only 1 phase will be ener-gized during the 10,000 ampere portion of the overcurrent test.

WYLE LABORATORIES FORM 1054 2 Rev. Oct 19 Huntsvdle Facdity

PAGE NO. 6 TEST PROCEDURE N0. 46511 -

Revision A 3.0 TEST PROGRAM (Continued) 3.2.1 Test Specimen Preparation (Continued)

TABLE IV ,

CABLE TRAY AND CONDUIT TEST ASSEMBLIES Test Upper Trsy Conduit Contents Lower Tray Fault Cable No. (Control Specimel.s) (Control Specimens) (Fault Cable) Location *'

1 10 AWG, 2 conductor 2 AWG, 3 conductor 2 AWG, 3 conductor 3 2 AWG, 3 conductor 1/0 AWG, 3 conductor 350 MCM, 3 conductor 2 10 AWG, 2 conductor 2 AWG, 3 conductor 2 AWG, 3 conductor 3 2 AWG, 3 conductor 1/0 AWG, 3 conductor 350 MCM, 3 conductor 3 10 AWG, 2 conductor 2 AWG, 3 conductor 1/0 AWG, 3 conductor 1 2 AWG, 3 conductor 1/0 AWG, 3 conductor 350 MCM, 3 conductor 4 10 AWG, 2 conductor 2 AWG, 3 conductor 1/0 AWG, 3 conductor 1 2 AWG, 3 conductor 1/0 AWG, 3 conductor 350 MCM, 3 conductor 5 10 AWG, 2 conductor 2 AWG, 3 conductor 350 MCM, 3 conductor 2 2 AWG, 3 conductor 1/0 AWG, 3 conductor 350 MCM, 3 conductor 6 10 AWG, 2 conductor 2 AWG, 3 conductor 350 MCM, 3 conductor 2 2 AWG, 3 conductor 1/0 AWG, 3 conductor 350 MCM, 3 conductor

  • See Figure 1.

WYLE LABORATORIES F0'N 1054 7 8iew Oct 79 Huntsvalle Facility

PAGE NO. 7 TEST PROCEDURE NO. 46511 Revision A 3.0 TEST PROGRAM (Continued) 3.2 Test Specimen Preparation (Continued) 3.2.2 Insulation Resistance Test

l. Ensure leads to points 1 through 6 of Figure 3, 4 and 5, as applicable, are disconnected.
2. Using a megohmmeter, apply a potential of 500 VDC and record the minimum insulation resistance indicated over a period of 60 seconds between the test points specified t

below:

Phase to Phase Phase to Ground 3 Conductor Cables 1 to 2 1 to tray / conduit I 1 to 3 2 to tray / conduit 2 to 3 3 to tray / conduit 2 Conductor Cables 1 to 2 1 to tray l 2 to tray 3.2.3 High Potential Test The control test specimens shall be tested at a potential of 2200 VAC in accordance with the following procedure:

l I

1. Ensure leads to points 1 through 6 of Figures 3, 4, and 5, as applicable, are disconnected.
2. Using an AC Hi-Pot test assembly, apply a potential of 2200 VAC and record maximum leakage current observed over a period of 60 seconds between the test points specified below:

Phase to Phase Phase to Ground 3 Conductor Cables 1 to 2 1 to tray / conduit  !

1 to 3 2 to tray / conduit 2 to 3 3 to tray / conduit j 2 Conductor Cables 1 to 2 1 to tray 2 to tray l

3. Repeat steps 1 and 2 for the remaining control specimens.

WYLE LABORATORIES FORM 1054-2 Rev. Oct 79 Huntsville Facihty

PAGE NO. 8 TEST PROCEDURE NO. 46511 Revision A 3.0 TEST PROGRAM (Continued) 3.3. Overcurrent Test 3.3.1 Instrumentation Setup (See Figures 3 through 6)

The instrument transformers shall be fed into oscillographs (see Table V), which shall monitor phase-to-phase voltage from phase A to B, A to C and B to C and all currents for each cable (34 channels total). The oscillographs shall be operated at a 1-inch per second rate throughout the overcurrent test Steps 8, 9 and 12 and at a 0.1-inch per minute rate for Step 7 of the overcurrent test.

A digital multimeter shall be utilized to measure all phase-to-phase voltages and currents prior to, and at the completion of, the 100% rated,6.5 times rated current and 10,000-ampere portions of the overcurrent test. This data shall be recorded to provide accurate evidence of the control specimens capability to supply rated current and voltage throughout the overcurrent test.

TABLE V CABLE TRAY ASSEMBLY INSTRUMENTATION Oscillograph #1 Channels

1. Current Phase A - 350 MCM (upper tray)
2. Current Phase B - 350 MCM
3. Current Phase C - 350 MCM
4. Voltage Phase A-B - 350 MCM
5. Voltage Phase A-C - 350 MCM
6. Voltage Phase B-C - 350 MCM
7. Current Phase A - 1/0 AWG (upper tray)
8. Current Phase B - 1/0 AWG
9. Current Phase C - 1/0 AWG
10. Voltage Phase A-B - 1/0 AWG
11. Voltage Phase A-C - 1/0 AWG
12. Voltage Phase B-C - 1/0 AWG WYLE LABORATORIES FORM 1054 7 Rev. Oct 79 Huntsvitie Facility

PAGE NO. 9 -

TEST PROCEDURE NO. '46511 Revision A 3.0 TEST PROGRAM (Continued) 3.3.1 Instrumentation Setup (Continued)

TABLE V (Continued)

Oscillograph #2 Channels

1. Current Phase A - 2 AWG (upper tray)
2. Current Phase B - 2 AWG
3. Current Phase C - 2 AWG
4. Voltage Phase A-B - 2 AWG
5. Voltage Phase A-C - 2 AWG
6. Voltage Phase B-C - 2 AWG
7. Current - 10 AWG (upper tray)
8. Voltage - 10 AWG
9. Current - Fault Cable (current transducer)
10. Current - Fault Cable (hipotronics test set output)

Oscillograph #3 Channels

1. Current Phase A - 2 AWG (horizontal conduit)
2. Current Phase B - 2 AWG
3. Current Phase C - 2 AWG
4. Voltage Phase A-B - 2 AWG g
5. Voltage Phase A-C - 2 AWG
6. Voltz.ge Phase B-C - 2 AWG Oscillograph #4 Channels
1. Current Phase A - 2 AWG (vertical conduit /sealtite)
2. Current Phase B - 2 AWG
3. Current Phase C - 2 AWG
4. Voltage Phase A-B - 2 AWG
5. Voltage Phase A-C - 2 AWG
6. Voltage Phase B-C - 2 AWG 3.3.2 Overcurrent Test Procedure The specimens shall be subjected to overcurrent testing in accord-ance with the following procedure:
1. Connect power and instrumentation leads to the control specimens (upper tray or conduit) per Figures 3, 4, or 5, as applicable.  !

'/

2.

Connect power and instrumentation leads to the test specimens (lower tray) per Figure 6 l

WYLE i aminaTOltIES FORM 1054 7 Hev. Oct 19 Huntsville Facihty

PAGENO. 10 TEST PROCEDUHs NO. 46511 Revision A 3.0 TEST PROGRAM (Continued) 3.3.2 Overcurrent Test Procedure (Continued)

3. Energize the control specimens with 480 VAC per Figures 3, 4, or 5, as applicable.
4. Adjust current transformers or potentiometers to supply currents of Table I to the control specimens, as applicable.
5. Energize the cest specimen per Figure 6.
6. Adjust Hipotronics test set to supply currents of Table I, as applicable.
7. Allow the fault cable to carry currents of Table I for a period of 15 minutes.
8. Increase fault cable specimen current to six and one half (6.5) l times rated current (see Table VI).
9. Allow the specimen to conduct six and one half (6.5) times rated current until failure of the test cable occurs (i.e.,

fault cable open circuits).

10. De-energize all cables.
11. Replace all damaged cables and repeated Steps 1 through 7.
12. Increase fault cable current to 10,000 amperes until specimen failure (i.e., fault cable open circuits).
13. De-energize all cables.

TABLE VI FAULT CABLE CURRENT Test No. Fault Cable Size Conductors Current 1 2 AWG 3/ copper 462 A (6.5X) 2 2 AWG 3/ copper 10,000 A (short circuit) 3 1/0 AWG 3/ copper 735 A (6.5X) 4 1/0 AWG 3/ copper 10,000 A (short circuit) .

5 350 MCM 3/ copper 2067 A (6.5X) 6 350 MCM 3/ copper 10,000 A (short circuit)

'\

WYLE LABORATORIES * 'N k' *819 Huntsville Facility

PAGE NO 11

( TEST PROCEDURE NO. 46511 .

Revision A 3.0 TEST PROGRAM (Continued) 3.4 Functional Tests The Functional Tests of Paragraphs 3.2.2 and 3.2.3 shall be repeated.

The upper cable shall be sealed at each end and filled to the lip of the tray with tap water during the High Potential. Test (Pa agraph 3.2.3) performed after all overcurrent tests have been completed.

3.5 Post-Test Inspection Upon completion of the test program, the equipment shall be visually inspected and the condition of the equipment recorded.

Photographs shall be taken of the test setup and of any noticeable physical damage.

3.6 Quality Assurance All test equipment and instrumentation to be used in the performance of this test program will be calibrated in accordance with Wyle Lab-oratories' (Eastern Operations) Quality Assurance Policies and Pro-cedures Manual, which conforms to the applicable portions of ANSI N 45.2, 10 CFR 50, Appendix B, and Military Specification MIL-STD-45662. Standards used in performing all calibrations- are traceable to the National Bureau of Standards.

3.7 Report Ten (10) copies of the test report shall be issued, describing the test requirements, procedures, and results. The report shall be prepared in accordance with the requirements of Section 8, Documen-tation, of IEEE Std. 323-1974, as applicable.

I f

1

/

WYLE LABORATORIES FORM 1054 2 Rev. Oct 19 Huntswdle Facihty

i Ej z0.

NN NyO o zO $[ w$E e >

l "S

3 N

E

" M f 4 f I 2"

C E

1 P l

S s

L N' ,

\',

+~_.

i f

,I '

s__b n

i l

,i a~

1 Y

L

. . B M

- E S

S A

7 E E S T

= - T T I S R U Y O D A D R . P N T .. ..

I TP O

- . G UU C E

I RS /

L ,. "

YR A T E

L T

SY Y

A B

2 R" I B I A R A - T2U I NR T C

/D X UT E1 N E E R _. L - O L L E .

B1 C F B P A A P C E C U _

T R I F E T O W LT O AI M

- . J L EU L SD I N N V E " O M _ 2 C D I

C 3 E

P S

[

L

- 1 O E R R T . ,

U J

Ot T gs y s Q1D hQQQ q G l I C I ' '

F U

G D W J t

A O C l 2

L E

3- ,

E

~

~

T S

D I

G I

H 3

1 2

A ) 3 R R T E E .

L Y E S E L

)

B A ELNO )R L N R AN L B E B E B E ANY AN CO A

C LI 1

f CO Y

A I M COAI L OC I L TT2 O TT H aE TT1 LA . T T LAP LA UC E TP P NS UC .

P O AOOO UCO P O AOO T FLNB ( AD FI (T U C FLN (

lll!I l(l i1

i

]

mSco zO* eta *

~

e@" mU @ ache zO* souI s nd o - -

$ emeOu > g3 l- _

,3

?.

,* 3, t!. .3 n I 11IIll I '

E I1l I'l iI e E  ; * .

Y 0 .

3 I 1l1llll l

h )

1I1Illl a u

E W 3 V .

O ..

B .

A  %. -

M

- O R "'

?.

L F *

  • ,1 a_

E N ,

ED E y TE E ST S e N) T ,

n DUY I S ,

I OL U A GML D (

I (

A N .

R T O Y TN C "0 L ' .' .

" I O '

B 2UZ L 5 "0 M , w .. ,

/ DI E) "0 E .

1 NR ED '

'0 S

- OO TN 9 1 S , .'

lCI I SE A . . -

B . y D T ,

I' I ,

G0 U [

I9 D g y R( N -e O '

" C ' '

2 / _

Y A ', 4 I

R '[

T \'

E L '

- B _

A ,

1 C ,

t, 2 . ' .

Nl lIl l ll8 lllI 11 e

iI I

E j

R , .

_ U 64 .

G

'9 E

I -

^,.

F ,, .

[- .,

y 6

2 2

s, 3

lIllll

l o, z? ga .. ,_

z? ,c$s =$rmr@ >  %,

am$ o&

  • l r'

e

-.- _ ' 1 : .

l m ,

ar io .

tf ,, '

ns _,.

en , : .,.

t a or PT 4$5 - -

= $! . ,

T )

P -

r Y

A ... -

I R '

O T -

RE TL R . '

NB E -

h OA P .

p CC P - '

a U

( ' ,

r g N

  • o E 3 l M

T p

l i

c I

C .f h.

s 1 o 2 ,3 E 1 g.

,l

,l ' ld P

~ O S -

?  ?

o L

T O _

  • .
  • R ,

1 2 T ^ ,' _

T T l' N _

P P Fg lI O gl n"

  • n" l i C

. g ;;. .

~

I' gl I'

nv M -

II C "

M s" ) = ' ' 0 s f ~ .,,,  ;

5 3

s " '

f '.

R '

O t t t F ,}

A A A n n n  :

4 4  % e  % e  % e S .

/ / / 0 r 0 r 0 r N . f 1

C 4D 1

f C A1 1 0 1

r u

C 0

1 r

u C

0 1

r u

C r O

I T

A o o o e .

Vil- 1 A C - . _-

y t d td td m E flVf 0 0 t t e

tt e

tt e r o

N N -

y 8 8 e a ea ea f O ,.:, ' ,.

SR i

4 4 S R SR s C z n ,:

a

. L

- r A . . . '

- r T, I. ' ] . . I T C -

- 7 e ,

l ' i 1i I - < .g m t R ,

r n T .

e o e C s f r E .. . _ . .

a s r L  : ,

h n u E .

9Y a C .l !

< %kp _

r l 3dT m~ O m' O " O '

r 3 e

cm E

~

R

.~

ar U .

io .

rf G  :

L l l " g' as  %- q' , q ;; al

I F ,=

I '

l Vn ,

a  : -

0 r j x 1 T -

  • _- s.

r ce - +

' m i r C C C C C 0 ' ] ' .. _

r ro C af C C A " .-=.

( \' Vs n

A Vt A

Vt A

Vt ., j 9a u u u . .

c C C r 0 p 0 p 0 p .

A B C 3 T 8 n 8 n 8 n ..

4I 4 I 4 I l"

[

?

C $ .. .

A  ;

Vt u - '.

0 p .

l_ *- .

2 n 1 I y "

.. [

. 2 I l i- ll lIl z f,

2 a O Htn 5N0D>

ion

  • ;O ? g* $gP

)

5 h Y A

R T

R E

/ P P

U

(

S N

E M

I C

E P

S L

Q 2 R 8 T N

n Q l e C om ri G t c W ne A op 0 h

p CS /

h h 1 a p p r r t a a D j

( e r r N o m g g A l r o o l o l l G i

c f

s 2 l l W k -Q i i A s n c c O a s s 2 r O

= 1o i 0, o T f R r

e T t n

0 f T o l T

O F

m r

o v e m

S N

f gI u O s r I n t T a s C r n E T I N N

l O a C i

t L n A A A e A 4 4 C t 4 / / I o /

  • 1 . 1 R P 1 T Y C 0 E 3 L

' E o

l T

4 2 3 S 6 8 9 E T T T T T T R C C C C C C U G

I Y'i 44 L{ F c

a i 3 a l r  : .-

a V t C C

  • C L C A A Vt Vt u u 0 p 0 p 0 n 8 n 4 I 4 I

5 2E U s &*u@% .

5<;$ 5

)

T I

U D

N O

C D

N A

Y A

R T

R E

P I P

(

U E

L N B E A M C I

C G GE W WP A AS 0L 0 1

1 O R E ET Z ZN I I O S SC R

O T

C U

D N

O C

2 R

O F

S N

O I

I T P

M A I nf i

C E

N N

0 O 2 C L

A C

I R

T C

} E l

L E

f; N

E M

I C

E P

S L

O R

C l i

T A P N V A O R C c0 8 G O

4 L .

L S I

C E S R O U O G I

T

  • F l1l l I l;1 l

',.s

. mjo 2? n4 t

HmMf mMOOeOQm n u@$ ~ i mo:< r M ' o# lp --. .

% r " ..-

,l

  • gl ' ; '., _ '

+ .., ,

, i. , ,. '

l i

P <

A  ;'

R -

G -..',

- O N O

) ,

- L L EI T

Y A

r ,

I -

I I R C TA T

- S TI N -7 O R  ;

SM E  : ,

ER O ,

W

_ T TE O  ; ,'-

T T L ,

3..s

- NE

( " '

Ei l N

RT R O -

I Y - UT CA R

T A '

A R

T

_ _ EL E

T N . s O

V m. M .

E r U  : .

L B

_ EA HR R

T

. 8 TA A

C _ _ F P

S N

, ?

I R ON E

W

_ - R N I D N . -

O A OD A  ;

L B I E ~ .

TT RC R  ;. _ ,' ..

S E  ;;

U OE -

_ - B PN N

W O

P u.

R TO ' v

_ - E P

NC E

E L  ;*

P RE D  ; ).

RB

_ - O C U CL A

C .

L T y s "8 DI L

- /

3 EW T U A

.'r

_ - E -

AS RR F

~

I.

L O L " f.,*

_ - B A

C 4

/

ST EC MU A

C I

_ - I D ]

1 P T TN Y . ' -

L O T U

A 5. C ,' ' ,

F 6) .

3 6 E( .

S H E r TET R  ;

f EN U RRI G OI O I I

<z FTP F O ,

E

. T .

O r-N w .

.L i

~

r. w -

, 6

,: .~ ,

C I ,}

CNT LI OE ARRS .

RTT ECOT .y NEPS -

ELI E . -. ;

GEI T I

3, -

x  ; ,

llllll1' l1'