ML19322A752

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Dresden Unit 2 Cycle 27
ML19322A752
Person / Time
Site: Dresden Constellation icon.png
Issue date: 11/13/2019
From: Karaba P
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
19-0066
Download: ML19322A752 (72)


Text

-- - . - *-- -- - - - - -~ _..,___ ~- - - ---- ---- -- ----- --

~-~- - - *- - -*

~~

- - - ------ -- ~

-~ -

~ --~-----------~--

Dresden-Nuclear-f>ower Statton--~-

Exelorffieneratfon~ * , .6500 North Dresden Road Moms, IL 60450 SVPLTR # 19-0066 November 1*3, 2019 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC *20555-0001 Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License No. DPR-19 NRC Docket No. 50-237  :

Subject:

Core Operating L.imits Report for Dresden Unit 2 Cycle 27 The purpose of this letter is to transmit the Core Operating Limits Report (COLA) for Dresden Nuclear Powe~ Station (DNPS) Unit 2 operating cycle 27 (D2C27) in a9cordance wit.h T~chnical Specifications Section 5.6.5, "CORE OPER!'TING LIMITS REPORT (COLA)."

There are no regulatory commitments contained iri this submittal.

Should you have any questions concerning this letter, please contact Mr. Bruce Franzen, Regulatory Ass1.Jran'ce Manager, at (815) 416-2800. -

Respectfully,

  • Peter J. Karaba ~ , 1 ~ ~ ~:

Site Vice President ~"1 11 / 1 ~ ~  ::1)~-

'7:.. .J::.*

13 Dresden Nuclear Power Station I I- - 1q_

Attachment:

Core Operating Limits Report for Dresden u*nit 2, Revision 1-8

.Cc: Regional Administrator - NRC Region Ill NRC Senior Resident Inspector .....;. Dresden Nuclear Power Station

    • 'l.. -  :... --~ -_ -=---=-- __ ::-_*_ --=-~--=---------=- - -- ~-~ ...:. * - - _
  • _ : . - - - *- :........_! ___ _::::- __ -_ -~-- -_ ----: - _-_-_ - ::.. ** * .=-.-

____ J _ _ _ ':"--.- -

~

COLR Dresden 2 Revision 18

  • Core Operating Limits Report For "

) '

Dresden Unit 2 Cycle 27 Prepared By: ~ /JJ,Ar.. Date: 11 /8/19 Corle Glenn - Nuclear Fuels

~. ~.-/11,/. AO Reviewed By: _ _ _ _ _ _ _~_,;...__ _ _ __ Date: 11/8/19 Brandon de Graaf - Reactor Engineering 71,4 1 Simntons Date: 11 /8/19 Reviewed By: _ _ v_f-----------

John Simmons - Engineering Safety Analysis Inclependent Review By:

~(/J~. Date: 11/8119 Date: CO~ Nb\J 19 SQR By:

Page 1 of71

COLR Dresden 2 Revision 18 Table of Contents Page Record of Dresden 2 COLR Revisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. .. ..... . 3

1. Terms and Definitions.... ....... .... ......... .... ................ . .. . ........................................................ 6
2. General Information ..... .. . .... . ................... ......... . . . ........................ .. . ......... .. . .... ..... . 7
3. Average Planar Linear Heat Generation Rate...... . .... ..... ........... ... ............ ... .......... . . ... ...... 8
4. Operating Limit Minimum Cntical Power Ratio ................................. *************:* ............................... 29 4.1. Manual Flow Control MCPR Limits . . .. .. ..... ..... .......... .... ..... . ..... .... ... ....... ......... .. . . ....... .. ........ 29 41.1. Power-Dependent MCPR ........................ :.... .. ........ .t ........................................... 29 4.1 2. Flow-Dependent MCPR .. .. :-::.... .. .. .... . .. .. ....................... ........... .. .. ....................... 29 4.2. Scram Time................ ... . ...... ... .. ..... .. ...... .... . ... ..... ..... .. .. ...... ........................................ 30 4.3. Exposure Dependent MCPR Limits. .......... . ... .......... ..... .......... . ......... .......................... .. . ..... 31 4.4. Recirculation Pump ASD Settings....... .... ........ ................. . ................. .. . ................. 31
5. Linear Heat Generation Rate . . .. ... ... ... .......... ...... .. .. .... .......... . . . ..... .. .. ... .. .. ... . . ............ 55 6 Control Rod Block Setpoints ... ... . .......... .... .. .. .. .. ... ..... . .. . ..... ..... ..... . ... .. ... .. .... . ....... . ........... 62
7. Stability Protection Setpoints ................... . .. ........................ . .............................................. 63 8 Modes of Operation. ... .. . .. .................. :. ... . .. ... .. . . ............ .. . . . . .. ....... ...... . . . ................... 64
9. Methodology...................... ........... .... ... ..................... ... .... ................ .. ........................ . .......... 69
10. References .............................................................................................................................. 71 J

Page 2 of71

COLR Dresden 2 Revision 18 Record of Dresden 2 COLR Revisions Revision Description 18 Initial issuance for D2C27 17 Initial issuance for D2C26 16 Update to Section 5, Section 8 Note 1, and associated references for transition to POWERPLEX-XD on-line core monitoring system and revise the Table 5-13 LHGRFAC(P) values at 80% for PLUOOS and TCV Slow Closure to be no greater than the Base Case limits.

15 Initial issuance for D2C25 14 Revised to support implementation of TBV #8 and any one additional TBV OOS.

13 Initial issuance for D2C24 12 Updated to include the proper wording to allow for operational entry into the Increased Core Flow (ICF) region on the power to flow map.

11 Initial issuance for D3C23 10 Updated Table 4-7 with corrected values for TBVOOS and TBVOOS SLO for cases with flow >60% at O and 25% RTP. Also updated Tables 4-7, 4-8, and 5-3 to correct Westinghouse simulation time error for TTNBP calculations. Also updated References Section with revised Westinghouse D2C22 Reload Licensing Report.

9 Updated Section 4 OLMCPR to add text concerning the treatment of GE bundles under Westinghouse methodology. The associated references are included as References 12, 14, 18, 22, and 23 8 Initial issuance for D2C22 7 Updates to Section 8, MAPLHGR limrt table for Optima natural uranium lattices, adding WCMS labels for GNF fuel types, table reformatting, and addition of references for transition to Westinghouse Core Monitoring System (WCMS).

6 Removed ADSOOS penalty from ~HGR and APLHGR sections. Revised MAPLHGR limits for Optima2 fuel,' modified Modes of Operation section to match the new standard template for DR and QC, and updated and revised the References to include information regarding where to find documents in EDMS.

5 Initial issuance for D2C21 4 Included Note 10 in Modes of Operation, Section 8, to allow operation with a pressure regulator out of service (PROOS) and TCF Stuck Closed consistent with EOOS report (TOOi NFM0100091 Sequence 03).

3 Initial issuance for D2C20 2 Updated Table 2-3 MCPR(p) for TCF Slow Closure and PLUOOS cases; updated Table 3-7 LHGRFAC(p) for TCV Slow Closure and PLUOOS cases; added Reference 29 1 Edited footnote in COLR Section 5 and added EC #356168 as reference to support this change, removed indications of GNF proprietary information; editorial changes in various sections.

0 Initial issuance for D2C19 Page 3 of 71

COLR Dresden 2 ReVIsion 18 List of Tables Page Table 3-1: MAPLHGR SLO Multipliers............................. . ......... .. . . ... . . .. ....................... ... . ... 8 Table 3-2* MAPLHGR for OPTIMA2 Lattices 81 and 89 ................................................................. 8 Table 3-3* MAPLHGR for OPTIMA2 Lattice 149 ... ... ...... ...... . ... .... .. ......... ........... . . ............ 9 Table 3-4 MAPLHGR for OPTIMA2 Lattice 150 ....... . .. .. .. ... . . ... . . . . ........... ...... ..... .. . ... . ... 10 Table 3-5: MAPLHGR for OPTIMA2 Lattice 151 .. .. . . .. . . .. .. .............. .................. ........ . ......... 11 Table 3-6: MAPLHGR for OPTIMA2 Lattice 152 ................................................................ 12 Table 3-7: MAPLHGR for OPTIMA2 Lattice 153 ..... . .. .. . ..... ... .................... .... . ................. 13 Table 3-8: MAPLHGR for OPTIMA2 Lattice 154 .................................. ..... .. ........................ 14 Table 3-9: MAPLHGR for OPTIMA2 Lattice 155 ........ . ... . . ..... ... .................. ..... .. ... . 15 Table 3-10: MAPLHGR for OPTIMA2 Lattice 156 ................................ ........ ................................. 16 Table 3-11: MAPLHGR for OPTIMA2 Lattice 157 ... ........... ........... .. . ... . ... .... ................. . ...... 17 Table 3-12. MAPLHGR for OPTIMA2 Lattice 158 . ..... ... .......................... ... .... .... ... .................... 18 Table 3-13: MAPLHGR for OPTIMA2 Lattice 159 .. ................................... .. ..... ................................ 19 Table 3-14: MAPLHGR for OPTIMA2 Lattice 160 ....................................................................... 20 Table 3-15* MAPLHGR for OPTIMA2 Lattice 161 .. 1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

  • 21 Table 3-16* MAPLHGR for OPTIMA2 Lattice 162 .. . .. ..... ..... ....... ..................... . ........ 22 Table 3-17. MAPLHGR for OPTIMA2 Lattice 163 ..................................................................... 23 Table 3-18* MAPLHGR for OPTIMA2 Lattice 164 . .. . . .. ......... ..... ........... ...... . . ..... . ............. 24
  • Table 3-19* MAPLHGR for OPTIMA2 Lattice 165 .. .................................... . .... . ...................... 25 Table 3-20. MAPLHGR for OPTIMA2 Lattice 166 .......... ..... ......... ... .. ... .... ................................ 26 Table 3-21: MAPLHGR for OPTIMA2 Lattice 167 ..... .... . .. . .. . . .... ............................. .. .... .. .... 27 Table 3-22: MAPLHGR for ATRIUM 10XM .... ........ ........... ........ ................ .. ....................... 28 Table 4-1: Scram Times........................ ........... ... ....... ................. ........... .............................. 30 Table 4-2: Exposure Basis for Transient Analysis... ..... .. .. . . .. ....... ................. ....... . .. 31 Table 4-3: TLO MCPRp Limits (SLMCPR = 112), Base Case, NSS Insertion Times, Nominal FWT, BOC to EOFPLB (37,411 MWd/MTU CAVEX). .. .......... .. ................... ....... . . . .. ............ 32 Table 4-4: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, TSSS Insertion Times, Nominal FWT, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ............................................................................... 32 Tabl~ 4-5: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, TSSS Insertion Times, FHOOS, BOC to EOCLB (38, 198 MWd/MTU CAVEX) . ...... .. . . .. . ..... . . . . .. ... ... ..... .. .. .. . ..... . .. .. 32 Table 4-6* TLO MCPRp Limits (SLMCPR = 112), PLUOOS/TCV Slow Closure, NSS Insertion Times, FHOOS, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ................................................... 33 Table 4-7* TLO MCPRp Limrts (SLMCPR = 1.12}, TBVOOS, NSS Insertion Times, FHOOS, BOC to EOFPLB (37,411 MWd/MTU CAVEX) . .. ... .. .. . .. . . . . .... . . ....................... . ..... 33 Table 4-8. TLO MCPRp Limits (SLMCPR = 1.12), MSIVOOS, ISS Insertion Times, FHOOS, BOC to EOCLB (38, 198 MWd/MTU CAVEX)................................................. . . .. ...... ....... . ........... 33 Table 4-9. SLO MCPRp Limits (SLMCPR = 1.14), Base Case, NSS Insertion Times, Nominal FWT, All Exposures .. ...... .... .. ..... .... .. ... ...... ... ... . ... .. . .. . ........... ... ....... .......... ..... .. ... . .......... ... 34 Table 4-10: SLO MCPRp Limrts (SLMCPR = 1 14), MSIVOOS, ISS Insertion Times, FHOOS, All Exposures . .. . . .. .. . .... ..... .. . ... . . .... . . ... ... . . .. ..... .... ..... ... .... ... ..... ..... ........ .. ... 34 Table 4-11: ATRIUM 1OXM TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX).. .. ..... ... ..... ...... .. ... ...... .... . ........... .... . .. . .... . . ..... ... 35 Table 4-12: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1 08) for ISS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) .................................................................. 36 Table 4-13: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX). .... .. ........ ......................... ...... ....... .. .. ..... . .... 37 Table 4-14: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, EOFPLB to EOCLB (38,198 MWdftvITU CAVEX) .. .. . . .. .... .. .... .. ..... ........... .... .. ..... . . . .. . . .. 38 Table 4-15* ATRIUM 10XM TLO MCPRp Limrts (SLMCPR = 1.08) for ISS Insertion Times, EOFPLB to EOCLB (38, 198 MWd/MTU CAVEX)....... . ..... .... . ... .. ... ..... ... ..... .. ....... . .. . ... ....... .. ....... 39 Table 4-16. ATRIUM 1OXM TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX) ... . .. ... .. .... ... .. .. ... ... ..... .. . .... .. .. .. . . .. ................. 40 Page 4 of 71

COLR Dresden 2 Revision 18 Page Table 4-17* OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) .............................................................................................. 41 Table 4-18 OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ....... .... . .. ..... .. ....................................... 42 Table 4-19. OPTIMA2 TLO MCPRp Limits (SLMCPR = 1 08) for TSSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) .. .. .. .. ... .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. . .. .. ... .. .. .. . .. .. .. .. .. . .. ... 43 Table 4-20: OPTIMA2 TLO MCPRp Limrts (SLMCPR = 1 08) for NSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)........ ................. ...... .. ..... ...... .. .... .... .. ................... 44 Table 4-21: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX) ... ... . . ... .. . ... ..... . ... . .... . .. . . .................. 45 Table 4-22: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX).................... ..... .. .... .. .. .. .. . .... .. ................................... 46 Table 4-23: ATRIUM 1OXM SLO MCPRp Limits (SLM CPR= 1.10) for NSS Insertion Times, All Exposures

. ..... . ... . . .. . .. ... ... ..... . .. .... ..... ... . .. .. .............. ... ... .. ..... 47 Table 4-24* ATRIUM 10XM SLO MCPRp Limrts (SLMCPR = 1.10) for ISS Insertion Times, All Exposures

................ .................... .......... ... ..... . . ....... .......................................... ................... .... .48 Table 4-25* ATRIUM 10XM SLO MCPRp Limrts (SLMCPR = 1.10) for TSSS Insertion Times, All Exposures....... ............. ... ... ....................... ........ ..... .. . ... . ..... .. ...... ..... .. .................... 49 Table 4-26* OPTIMA2 SLO MCPRp Limits (SLMCPR = 1 10) for NSS Insertion Times, All Exposures . 50 Table 4-27: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1 10) for ISS Insertion Times, All Exposures ..... 51 Table 4-28. OPTIMA2 SLO MCPRp L1mrts (SLMCPR = 1.10) for TSSS Insertion Times, All Exposures . 52 Table 4-29* ATRfUM 10XM and OPTIMA2 MCPRt Limrts (TLO SLMCPR = 1 12 and SLO SLMCPR =

1.14) ......................................................................... .... .... ........................ ........ ................. .. 53 Table 4-30. ATRIUM 10XM and OPTIMA2 MCPRt Limits (TLO SLMCPR = 1.08 and SLO SLMCPR =

1 10). ............ .................... .. ...... ..... ...................... ... ............ .................................. ... ... 54 Table 5-1. LHGR L1m1ts for OPTIMA2 Lattices 156, 157, 158, 159, 163, 164, 165, 166, 167 .............. 56 Table 5-2: LHGR Limits for OPTIMA2 Lattices 154, 161 ......................................................................... 56 Table 5-3: LHGR Limits for OPTIMA2 Lattices 150, 151, 152, 155, 160, 162..... .............. . . ..... ... 57 Table 5-4: LHGR Limits for OPTIMA2 Lattices 149, 153 . ............... ................................... .. . ... . 57 Table 5-5* LHGR Limits for OPTIMA2 Lattices 81, 89 ....... .. ... . .. . ......... ... . .. . ........ 58 Table 5-6: LHGR Limits for ATRIUM 10XM .................................................................................... 58 Table 5-7: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, *All Exposures .... ... 59 Table 5-8: OPTIMA2 LHGRFACp Multipliers for All Scram Insertion Times, All Exposures .. . .. ...... 60 Table 5-9: ATRIUM 10XM LHGRFACt Multipliers for All Cycle 27 Exposures, All EOOS ................... 61 Table 5-10: OPTIMA2 LHGRFACr Multipliers for All Cycle 27 Exposures, All EOOS ............................ 61 Table 6-1 Rod Block Monitor Upscale Instrumentation Setpomts ... ..... . .. ........................................... 62 Table 7-1. OPRM PBDA Trip Settings............................................................................................... 63

- Table 8-1. Modes of Operation (TLO SLMCPR = 1.12 and SLO SLMCPR = 1.14) ........................... .. . 65 Table 8-2* Modes of Operation (TLO SLMCPR = 1 08 and SLO SLMCPR = 1 10) .. .... ...... .. . . 66 Table 8-3 Core Thermal Power Restriction for OOS Conditions.... ... ...... .. ... .. .... .... . .. .. 68 Page 5 of 71

COL:R Dresden 2 Revision 18

1. Terms and Definitions AOO Anticipated operational occurrence ASD AdJustable speed drive BOC Beginning of cycle CAVEX Core average exposure CPR Critical power ratio CRWE Control rod withdrawal error CTP Core thennal power EFPD Effective full power day EFPH
  • Effective full power hour EOC End of cycle EOCLB End of cycle licensing basis EOFPL End of full power life EOFPLB End of full power licensing basis EOOS Equipment out of servJce FHOOS Feedwater heater out of service FWT Feedwater temperature ICF Increased core flow ISS lntennediate scram speed LHGR Linear heat generation rate LHGRFACt Flow dependent linear heat generation rate multiplier LHGRFACp Power dependent linear heat generation rate multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum cntJcal power ratio MCPRt Flow dependent minimum cntJcal power ratio MCPRp Power dependent minimum critical power ratio MELLLA Maximum extended load line limit analysis MFLCPR Maximum fraction of limiting critical power ratio MSIVOOS Main steam isolation valve out of service MWd/MTU Megawatt days per metric ton Uranium NRC Nuclear Regulatory Commission NSS Nominal scram speed OLMCPR Operating limit minimum cnt1cal power ratio oos Out of service OPRM Osc1llat1on power range monitor PBDA Period based detection algorithm PCOOS Pressure controller out of service PLUOOS Power load unbalance out of service SLMCPR Safety limit minimum critical power ratio SLO Single loop operation TBV Turbine bypass valve TBVOOS Turbine bypass valves out of service TCV Turbine control valve TCVSLOWC TCF slow closure TIP Traversing in-core probe TLO Two loop operation TMOL Thennal mechanical operating limit TRM Technical Requirements Manual TSSS Technical Specification scram speed TSV Turbine stop valve
  • Page 6 of 71

COLR Dresden 2 Revision 18

2. General Information This report is prepared in accordance with Technical Specif1cat1on 5 6.5 The D2C27 reload is licensed by Framatome However, some legacy analyses by Westinghouse are still applicable for OPTIMA2 fuel as descnbed in Reference 9.

Licensed rated thennal power 1s 2957 MWth. Rated core flow is 98 Mlb/hr. Operation up to 108% rated core flow is licensed for this cycle; however, core flow cannot exceed 103.4% rated core flow due to unit specific limitations. For allowed operating regions, see applicable power/flow map.

The licensing analysis supports full power operation to EOCLB (38,198 MWcl/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The transient analysis limits are provided for operation *up to specific CAVEX exposures as defined in Section 4.3.

Coastdown 1s defined as operation beyond EOFPL (37,411 MWd/MTU CAVEX) with the plant power gradually reducing as available core reactivity diminishes The D2C27 reload analyses do not credit this reduced power during coastdown and the EOCLB limits remain valid for operation up to rated power. The minimum allowed coastdown power level is 40% rated CTP per Reference 1 Power and flow dependent limits are listed for various power and flow levels. Linear interpolation on power and flow (as applicable) is to be used to find intennediate values Linear interpolation is also to be used for table items intentionally left blank, as indicated by boxes which are grayed out.

Only MCPRp varies with scram speed All other thennal limits are analyzed to remain valid with NSS, ISS, and TSSS.

LHGRFACr is independent of feedwater temperature and .,EOOS conditions For thennal limit monitoring above 100% rated power or 108% rated core flow, the 100% rated power or the 108% core flow thennal limrt values, respectively, shall be used. Steady state operation 1s not allowed in this region Limits are provided for transient condrt1ons only.

OLMCPR values contained herein support operation with a TLO SLMCPR of 1.12 and a SLO SLMCPR of 1.14 through EOFPL. These safety limits are consistent with those contained in Technical Specrfication 2.1.1.2. Additionally, OLMCPR values contained herein support operation with a TLO SLCMPR of 1.08 and a SLO SLMCPR of 1 10 through EOCLB. These safety limits are consistent with those requested in Reference 13. The OLMCPR values corresponding to the safety limits requested in Reference 13 cannot be used for core monitonng until the amendment authorizing the use of these safety limits has been implemented by Dresden Station.

Page 7 of 71

COLR Dresden 2 Revision 18

3. Average Planar Linear Heat Generation Rate Technical Specrf1cat1ons Sections 3.2.1 and 3.4.1 Table 3-1 provides the MAPLHGR SLO multipliers for ATRIUM 10XM and OPTIMA2 fuel. For OPTIMA2 natural uranium lattices, TLO and SLO MAPLHGR values are provided in Table 3-2. For all other OPTIMA2 lattices, lattice-specific MAPLHGR values for.TLC are provided in Tables 3-3 through 3-21.

For ATRIUM 10XM fuel, the MAPLHGR values applicable for all lattices can be found in Table 3-22.

During SLO, the limits in Tables 3-3 through 3-22 are multiplied by the fuel-spec1f1c SLO multiplier listed in Table 3-1. The ATRIUM 10XM multiplier may be applied to OPTIMA2 for SLO conditions, as the ATRIUM 10XM multiplier is more limiting Table 3-1: MAPLHGR SLO Multipliers (References 7 and 9)

Fuel Type Multiplier ATRIUM 10XM 0 80 OPTIMA2 0 86 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89 (Reference 6 and 7)

All OPTIMA2 Bundles Lattices, 81: Opt2-B0.71 89: 0pt2-T0.71 Average Planar Exposure TLO and SLO MAPLHGR (MWd/MTU) (kW/ft) 0 7.65 75,000 7 65 Page 8 of 71

COLR Dresden 2 Revision 18 Table 3-3: MAPLHGR for OPTIMA2 Lattice 149 (References 6 and 7)

Bundle

'- Opt2-4.02-18GZ7 .60-14GZ5.60 Lattice 149: 0pt2-B4.31-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.51 2,500 9.85 5,000 9.92 7,500 9.84 10,000 10.09 12,000 10.18 15,000 10.32 17,000 10 37 '

20,000 10 43 22,000 10.39 24,000 10.41 30,000 10.24 36,000 10.12 42,000 9.99 50,900 9.89 75,000 9.89 Page 9 of 71

COLR Dresden 2 Revision 18 Table 3-4: MAPLHGR for OPTIMA2 Lattice 150 (References 6 and 7)

Bundle '

Opt2-4.02-18GZ7 .60-14GZ5.50 Lattice 150: 0pt2-B4.44-1SG7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.42 2,500 9.75

- 5,000 9.65 7,500 9 57 10,000 9.69 12,000 9.72 15,000 9.77 17,000 9.84 20,000 10.04 22,000 10 14 24,000 10 08 30,000 10.02 36,000 9.97 42,000 9 93 50,000 9 97 75,000 9.97 Page 10 of71

COLR Dresden 2 Revision 18 Table 3-5: MAPLHGR for OPTIMA2 Lattice 151 (References 6 and 7)

Bundle Opt2-4.02-1 BGZ7 .60-14GZ5.50 Lattice 151 : Oot2-BE4.54-18G7 .50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.55 2,500 9.83 5,000 - 9 72 7,500 9 62 10,000 9.75' 12,000 9.78 15,000 9 87 17,000 9.96 20,000 10.12 22,000 10.26 24,000 10 19 30,000 10 11 36,000 10 07 42,000 10.01 50,000 10.04 75,000 10.04 Page 11 of71

COLR Dresden 2 Revision 18 Table 3-6: MAPLHGR for OPTIMA2 Lattice 162 (References 6 and 7)

Bundle j Opt2-4.02-18GZ7 .50-14GZ5.60 Lattice 152: 0pt2-M4.54-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.54 2,500 9.84 5,000 9 79 7,500 9.62 10,000 9.75 12,000 9.82 15,000 9.90 17,000 9.98 20,000 10 20 22,000 10.24 24,000 10.17 30,000 10.10 36,000 10 06 42,000 10.00 50,000 10.02 75,000 10.02

\,- '

Page 12 of 71

COLR Dresden 2 Revision 18 Table 3-7: MAPLHGR for OPTIMA2 Lattice 153 (References 6 and 7)

Bundle Opt2-4.02-18GZ7 .50-14GZ5.50 Lattice 163: Oot2-ME4.50-18G7 .50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9 67 2,500 10.00 5,000 9.83 7,500 9 72 10,000 9.92 12,000 9.94 15,000 - 10 05 17,000 10.16 20,000 10.45 22,000 10.43 24,000 10.36 30,000 10 30 36,000 1.0.23 42,000 10 19 50,000 10.13 75,000 10.13 Page 13 of 71

COLR Dresden 2 Revision 18 Table 3-8: MAPLHGR for OPTIMA2 Lattice 164 (References 6 and 7)

Bundle Opt2-4.02-18GZ7 .50-14GZ5.50 Lattice 154: 0pt2-T4.56-18G7.50 Average Planar

\J TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9 70 2,500 9 98 5,000 9.77 7,500 9 64 10,000 9.75 12,000 9 93 15,000 10.00 17,000 10.16 20,000 10.43 22,000 10 40 24,000 10 35 39,000 10 30 36,000 , 10.23 42,000 10.19 50,000 10 09 75,000 10.09 Page 14 of 71

COLR Dresden 2 Revision 18 Table 3-9: MAPLHGR for OPTIMA2 Lattice 166 (References 6 and 7)

Bundle Opt2-4.02-18GZ7 -~-14GZ6.60 Lattice 155: Opt2-T4.52-14G5.60 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.40 2,500 10 71 5,000 10.55 7,500 10.25 10,000 10 30 12,000 10.32 15,000 10.45 17,000 - 10.52 20,000 10.51 22,000 10 52 24,000 10.47 30,000 10.41 36,000 10.35 42,000 10 27 50,000 10.16 75,000 10.16

\

)

Page 15 of 71

COLR Dresden 2 Revision 18 Table 3-10: MAPLHGR for OPTIMA2 Lattice 156 (References 6 and 7)

Bundle 0pt2-3.9S-16GZ7 .50-14GZ5.50 Lattice 156: 0pt2-B4.27-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.78 2,500 10 09 5,000 10 14 7,500 10 04 10,000 10.20 12,000 10.25 15,000 10.34 17,000 10 38 20,000 10.41

, 22,000 10.44 24,000 10 45 30,000 10 19 36,000 10.07 42,000 9.94 50,000 9 84 75,000 9 84 Page 16 of 71

COLR Dresden 2 Revision 18 Table 3-11: MAPLHGR for OPTIMA2 Lattice 167 (References 6 and 7)

Bundle Opt2-3.98-16GZ7 .60-14GZ5.60 Lattice 157: 0pt2-B4.41-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.69 2,500 9.99 5,000 9.88 7,500 9.76 10,000 9.83 12,000 9.76 15,000, 9.79 17,000 9 83 20,000 10 00 22,000 10 13 24,000 10.09 30,000 10.04 36,000 10.00 42,000 9 95 50,000 9.95 75,000 9 95

\

/

Page 17 of 71

COLR Dresden 2 Revision 18 Table 3-12: MAPLHGR for OPTIMA2 Lattice 158 (References 6 and 7)

Bundle Opt2-3.98-16GZ7 .50-14GZ6.60 Lattice 158: Oot2-BE4.51-16G7 .60 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.84 2,500 10 08 5,000 10.02 7,500 9.82 10,000 9.90

12,000 9.92 I 15,000 9.92 17,000 9.98 20,000 10.13 22,000 10 24 24,000 10.20 30,000 10.14 36,000 10.10 42,000 10.04 50,000 9.71 75,000 9.71 Paga 18 of 71

COLR Dresden 2 Revision 18 Table 3-13: MAPLHGR for OPTIMA2 Lattlce 169 (References 6 and T)

Bundle 0pt2-3.98-16GZ7.50-14GZ6.S0 Lattice 159: Opt2-M4.51-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.84 2,500 10 09 5,000 10.12 7,500 9.83 10,000 9 91 12,000 9.96 15,000 9.95 17,000 10.00 20,000 10.14 22,000 10.24 24,000 10.19_

30,000 10.13 36,000 10.10 42,000 10 03 50,000 9 93 75,000 9 93 Page 19 of 71

COLR Dresden 2 Revision 18 Table 3-14: MAPLHGR for OPTIMA2 Lattice 160 (References 6 and 7)

Bundle Opt2-3.98-16GZ7 .~14GZ6.60 Lattice 160: Oot2-ME4.46-16G7.S0 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.01 2,500 10 27 5,000 10.19 7,500 10.00 10,000 10.10 12,000( 10.11 15,000 10.11 17,000 10 17 20,000 10.42 22,000 10 42 24,000 10.39 30,000 10.33 36,000 10.27 42,000 10 19 50,000 10.08 75,000 10.08 Page 20 of 71

COLR Dresden 2 Revision 18 Table 3-15: MAPLHGR for OPTIMA2 Lattice 161 (References 6 and 7)

Bundle Opt2-3.98-16GZ7 .50-14GZ5.50 /I Lattice 161: Oot2-T4.46-16G7.60 Average Planar TLC Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10 03 2,500 10.26 5,000 10.09 7,500 9.97 10,000 10.04 12,000 10.05 15,000 10.06 17,000 10.18 20,000 10.40 22,000 1040 24,000 10.37 30,000 10.33 36,000' 10 26 42,000 10 15 50,000 10.00 75,000 10.00 Page 21 of 71

COLR Dresden 2 Revision 18 Table 3-16: MAPLHGR for OPTIMA2 Lattice 162 (References 6 and 7)

Bundle Opt2-3.98-16GZ7 .50-14GZ5.50 Lattice 162: 0pt2-T4.47-14G5.S0 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.41 2,500 10.69 5,000 10 54 7,500 10.28 10,000 10.20 12,000 10.32 15,000, 10.46 17,000 10.49 20,000 10 48 22,000 10.47 24,000 10.44 30,000 10.39 36,000 10.33 42,000 10.22 50,000 10.12 75,000 10.12 Page 22 of 71

COLR Dresden 2 Revision 18 Table 3-17: MAPLHGR for OPTIMA2 Lattice 163 (References 6 and 7)

Bundle Opt2-4.10-14G5.60-2GZ5.50 Lattice

163
Oot2-B4.50-16G5.S0 Average J::>lanar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9 47 2,500 9 81 5,000 9.71 7,500 9 58 10,000 9.68' 12,000 9 73 15,000 9.89 17,000 10.00 20,000 10.18 22,000 10 21 24,000 10 18 30,000 10.12 36,000 10.07 42,000 10 00 50,000 10.02 75,000 10 02

/

Page 23 of71

COLR Dresden 2 Revision 18 Table 3-18: MAPLHGR for OPTIMA2 Lattice 164 (References 6 and 7)

Bundle Opt2-4.10-14G5.60-2GZ5.50 Lattice 164: Oot2-BE4.60-16G5.60 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.53 2,500 9.89 5,000 9 85 7,500 9.83 10,000 9 76 12,000 9.82 15,000 10.01 17,000 10 16 20,000 10.33 22,000 10.34 24,000 10.31 30,000 10.23 36,000 10.18 42,000 10.14 50,000 10.09 75,000 10 09 Page 24 of 71

COLR Dresden 2 Revision 18 Table 3-19: MAPLHGR for OPTIMA2 Lattice 165 (References 6 and 7) -

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 165: 0pt2-M4.60-1SG6.60 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9 51 2,500 9.91 5,000 9 89 7,500 9 85 10,000 9.78

- \

12,000 9.85 15,000 10 02 17,000 10.18 20,000 10.36

~

22,000 10.36 24,000 10.31 30,000 10.23 36,000 10 18 42,000 10 14 50,000 10 09 75,000 10.09 Page 25 of 71

COLR Dresden 2 Revision 18 Table 3-20: MAPLHGR for OPTIMA2 Lattice 166 (References 6 and TJ Bundle Opt2-4.10-14G6.50-2GZ5.50 Lattice 166: Oot2-ME4.57-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.68 2,500 10 09 5,000 10.04 7,500 9.93 10,000 9 95 12,000 10 03 15,000 10.31 17,000 10 47 -

20,000 10.62 22,000 10 56 24,000 10 51 30,000 10.44 36,000 10.37 42,000 10 28 50,000 10.22 75,000 10 22 t

Page 26 of 71

COLR Dresden 2 Revision 18 Table 3-21: MAPLHGR for OPTIMA2 Lattice 167 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ6.50 Lattice 167: Oot2-T4.58-14G5.60 Average Planar TLO Exposure MAPLHGR (MWd/MTU) ' (kW/ft) 0 10.13 2,500 10.45 5,000 1044 7,500 10.17 10,000 10 08 12,000 10.10 15,000 10.29 '

17,000 1044 20,000 10 56 22,000 10.56 24,000 10.52 30,000 10.46 36,000 10.39 42,000 10.31 50,000 10.17 75,000 10.17 Page 27 of 71

COLR Dresden 2 Revision 18 Table 3-22: MAPLHGR for ATRIUM 10XM (Reference 9)

All ATRIUM 10XM Lattices Average Planar Exposure TLOMAPLHGR (MWd/MTU) (kW/ft) 0 12.20 20,000 12 20 67,000 773 Page 28 of71

COLR Dresden 2 Revision 18

4. Operating Limit Minimum Critical Power Ratio Technical Specification Sections 3.2 2, 3A1, and 3.7.7 The OLMCPRs for D2C27 were established so that less than 0.1 % of the fuel rods in the core are expected to experience boiling transrt1on dunng an AOO inrt1ated from rated or off-rated condrt1ons and are based on the Technical Specifications SLMCPR values (References 9 and 12).

Exelon submitted a license amendment request (Reference 13) to the NRC in December 2018 requesting that the TLO SLMCPR be reduced from 1 12 to 1.08 and that the SLO SLMCPR be reduced from 1 14 to 1.10. Therefore, OLMCPRs are included in this section to support both sets of SLM CPR values. In addition, Table 8-1 includes penalties that will allow the use of certain OLMCPRs corresponding to the new SLMCPR values as long as the MFLCPR limit is reduced from 1.0 by the amount indicated in Table 8-1 Tables 4-3 through 4-30 include MCPR limits for various specified SLMCPR values and EOOS conditions.

The EOOS conditions separated by "i in these tables represent single EOOS conditions and not any combination of conditions. Refer to Section 8 for a detailed explanation of allowable combined EOOS conditions.

4.1. Manual Flow Control MCPR Limits The OLMCPR 1s determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCPR The OLMCPR as a function of core thermal power (MCPRp) is shown in Tables 4-3 through 28 MCPRp limits are dependent on supported SLMCPR values, scram times as described in Section 4.2, exposure as described in Section 4.3, fuel type, FWT, and whether the plant is in TLO or SLO. TLO limits for ATRIUM 10XM fuel and OPTIMA2 fuel associated with a SLMCPR of 1.12 are given in Tables 4-3 through 4-8. SLO limits for ATRIUM 10XM fuel and OPTIMA2 fuel associated with a SLMCPR of 1 14 are given in Tables 4-9 and _4-10 TLO limits for ATRIUM 1OXM fuel associated with a SLMCPR of 1.08 are given in Tables 4-11 through 4-16. SLO limits for ATRIUM 10XM fuel associated with a SLMCPR of 1.10 are. given in Tables 4-23 through 4-25. TLO limits for OPTIMA2 fuel associated with a SLMCPR of 1 08 are given in Tables 4-17 through 4-22. SLO limits for OPTIMA2 fuel associated wrth a SLMCPR of 1 10 are given in Tables 4-26 through 4-28 4.1.2. Flow-Dependent MCPR Tables 4-29 and 4-30 give the OLMCPR limit as a function of the flow (MCPRt) based on the supported SLMCPR values and applicable plant cond1t1on. Limrts for a TLO SLMCPR of 1.12 and a SLO SLMCPR of 1.14 are given in Table 4-29. Limits for a TLO SLMCPR of 1.08 and a SLO SLMCPR of 1.10 are given in Table 4-30 These values are applicable to both ATRIUM 10XM and OPTIMA2 fuel.

Page 29 of 71

COLR Dresden 2 Revision 18 4.2. Scram Time TSSS, ISS, and NSS refer to scram speeds The scram time values associated with these speeds are shown in Table 4-1. The TSSS scram times shown in Table 4-1 are the same as those specified -

in the Technical Specrf1cat1ons (Reference 2)

To utilize the OLMCPR limits for NSS in Tables 4-3, 4-6, 4-7, 4-9, 4-11, 4-14, 4-17, 4-20, 4-23, and 4-26, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the NSS time shown in Table 4-1 below.

To utirize the OLMCPR limits for ISS in Tables 4-8, 4-10, 4-12, 4-15, 4-18, 4-21, 4-24, and 4-27, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the ISS time shown in Table 4-1 below.

The "Average Control Rod Insertion Time" is defined as the sum of the control rod insertion times of all operable control rods divided by the number of operable control rods. Conservative adjustments to the NSS and ISS scram speeds were made to the analysis inputs to appropriately account for the effects of 1 stuck control rod and one additional control rod that 1s assumed to fail to scram (Reference 9).

To utilize the OLMCPR limrts for TSSS in Tables 4-4, 4-5,'4-13, 4-16, 4-19, 4-22, 4-25, and 4-28, the control rod insertion time of each operable control rod at each control rod insertion fraction must be less than or equal to the TSSS time shown in Table 4-1 below. The Technical Specrf1cations allow operation with up to 12 "slow" and 1 stuck control rod One add1t1onal control rod is assumed to fail to scram for the system transient analyses performed to establish MCPRp limits (Reference 9) Conservative adJustments to the TSSS scram speeds were made to the analysis inputs to appropnately account for the effects of the slow and stuck rods on scram reactivity (Reference 9).

For cases below 38.5% power (Pt,ypass}, the results are relatively insensitive to scram speed, and only TSSS analyses ware performed (Reference 9).

Table 4-1: Scram Times (References 2 and 9)

Control Rod ',

Insertion NSS (seconds) ISS (seconds) TSSS (seconds)

Fraction (%)

I 5 0 324 0.36 0.48

~

20 0.700 0 72 0.89 50 1 510 1.58 1 98 90 2.635 2.74 3.44 Page 30 of 71

COLR Dresden 2 Revision 18 4.3. Exposure Dependent MCPR Limits Exposure-dependent MCPRp limits were established to support operation from BOC to EOFPLB (CAVEX of 37,411 MWd/MTU) and EOFPLB to EOCLB (CAVEX of 38,198 MWd/MTU) as defined by the CAVEX values listed in Table 4-2. Note that the thermal limits are based on CAVEX. The limits at a later exposure range can be used earlier in the cycle as they are the same or more conservative.

Table 4-2: Exposure Basis for Transient Analysis (Reference 9)

Core Average Exposure (CAVEX) Description (MWd/MTU)

Design basis rod patterns to EOFPL 37,411

+ 25 EFPD (EOFPLB)

EOCLB - Maximum licensing core 38,198 exoosure, includina coastdown 4.4. Recirculation Pump ASD Settings Technical Requirement Manual 2.1.a.1 Dresden 2 Cycle 27 was analyzed with a slow flow excursion event assuming a failure of the recirculation flow control system such that the core flow increases slowly to the maximum flow physically permitted by the equipment, assumed to be 110% of rated core flow (Reference 9),

therefore, the recirculation pump ASD must be set to maintain core flow less than 110%

(107.8 Mlb/hr) for all runout events Page 31 of 71

COLR Dresden 2 Revision 18 Table 4-3: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, NSS Insertion Times, Nominal FWT, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 12)

Nomlnal FWT Core Flow Core Power*(% rated)

Fuel Type

(% rated) 0 25 S38.5 > 38.5 75 100 s 60 2.62 262 2 23 .. - '

ATRIUM 10XM 1.97 :c;\ - - 1.46

> 60 2.67 2.67 2.33 ~.'

OPTIMA2 s 60 2.55 2.55 2.13 2 01 ' \""'

1.45

> 60 2.68 2.68 2 37  :,

Table 4-4: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, TSSS Insertion Times, Nominal FWT, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT Core Flow Core Power (% rated)

Fuel Type

(% rated) 0 25 S 38.5 >38.5 75 100 s 60 2.62 2.62 2.23 .* ff-~~ -

ATRIUM 10XM 2.05 - ,;' - -- 1.46

> 60 2 67 2.67 2.33  : '

T-,;+

s 60 2.55 2.55 2.13 ,'

OPTIMA2 2.06

  • 1.47

> 60 2.68 2.68 2.37 ,. "t T J.

Table 4-5: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, TSSS Insertion Times, FHOOS, BOC to EOCLB (38,198 MWd/MTU CAVEX)

(Reference 12)

FHOOS Core Flow Core Power (% rated)

Fuel'Type

(% rated) 0 25 S 38.5 > 38.5 75 100

~

S:60 2.83 2 83 2.34 ATRIUM 10XM 2.19 -..,",

1 46

> 60 2.86 2.86 2.34  : ,.'>' "

OPTIMA2 S60 2.71 2 71 2.27 .

2.24. *. *'

1.48

> 60 2.89 2.89 2.37 - ~'  :-

I_ Page 32 of 71

COLR Dresden 2 Revision 18 I

Table 4-6: TLO MCPRp Limits (5LMCPR = 1.12), PLUOOS/TCV Slow Closure, NSS Insertion Times, FH005, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 12)

FH005 Fuel Type TCV Slow Closure/PLUOOS/PCOOS and FHOOS limrts from Table 4-11 ATRIUM 10XM shall be used, with the applicable MFLCPR Penalty from Table 8-1 a lied.

TCV Slow Closure/PLUOOS/PCOOS and FHOOS limits from Table 4-17 OPTIMA2 shall be used, with the applicable MFLCPR Penalty from Table 8-1 a lied.

Table 4-7: TLO MCPRp Limits (SLMCPR = 1.12), TBV005, NSS Insertion Times, FHOOS, BOC to EOFPLB (37.411 MWd/MTU CAVEX)

(Reference 12)

FHOOS Fuel Type TBVOOS and FHOOS limits from Table 4-11 shall be used, with the ATRIUM 10XM applicable MFLCPR Penal from Table 8-1 ap hed TBVOOS and FHOOS limits from Table 4-17 shall be used, wrth the OPTIMA2 a licable MFLCPR Pena from Table 8-1 a heel Table 4-8: TLO MCPRp Umlts (SLMCPR = 1.12), M51V005, 155 _Insertion Times, FH005, BOC to EOCLB (38,198 MWd/MTU CAVEX)

(Reference 12)

FHOOS MSIVOOS and FHOOS limits from Table 4-15 shall be used, with the ATRIUM 10XM a licable MFLCPR Penal from Table 8-1 ap lied.

MSIVOOS and FHOOS limits from Table 4-21 shall be used, with the OPTIMA2

' a hcable MFLCPR Penal from Table 8-1 a

  • lied.

Page 33 of71

COLR Dresden 2 Revision 18 Table 4-9: SLO MCPRp Limits (SLMCPR = 1.14), Base Case, NSS Insertion Times, Nominal FWT, All Exposures (Reference 12)

Nomlnal FWT Fuel Type Base limits from Table 4-23 shall be used, wrth ATRIUM 10XM the applicable MFLCPR Penalty from Table 8-1 aoolied Base limrts from Table 4-26 shall be used, with OPTIMA2 the applicable MFLCPR Penalty from Table 8-1 aoolied.

Table 4-10: SLO MCPRp Limits (SLMCPR = 1.14), MSIVOOS, ISS Insertion Times, FHOOS, All Exposures (Reference 12)

FHOOS

... .~

.. ""!- ~- .'\ ~*T. . ., *~,*

..)...

..,~.

tf.1','-..

r:*"' ,.
  • ~*

0 i' ':..r: .:.',.... ....--~(_.

.....~*:*

Fuel Type *. ,. : ~- .;, r*,~;

~~

~ ,

J,.}.

  • .\.,,,.,.i'

> ,;:.., ;t. ~ ,\

  • ',/ { '- ,,.... "' >

Base and FHOOS limits from Table 4-24 shall ATRIUM 10XM be used, with the applicable MFLCPR Penalty from Table 8-1 annlied Base and FHOOS limits from Table 4-27 shall OPTIMA2 be used, with the applicable MFLCPR Penalty from Table 8-1 annlied Page 34 of 71

COLR Dresden 2 Revision 18 Table 4-11: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow ' Core Power(% rated)

EOOS Condition

(% rated) 0 25 S38.6 > 38.5 75 100 BasefTCV Stuck S60 2.58 2.58 2.19 +, :,~~: ~:::  :, -~

1.93 1.41 Closed/MSIVOOS > 60 2.63 2.63 2.29 "

S60 3.49 3.49 2 62 'l' TBVOOS 1.98 1.44

> 60 3.54 3.54 2.78 " . ,.

TCV Slow Closure/ S60 2 58 258 2.27 2.27 1.88 1.41 PLUOOS/PCOOS > 60 2.64 264 229 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 26 :S 38.6 > 38.5 75 100 Base/TCV Stuck S60 2 79 2 79 2.30 !1,: .. f:("

2.08 1.41 Closed/MSIVOOS >60 2.82 2.82 2.30 ,

TBVOOS S60 3.64 3.64 2.73 2.08

~~ ~

~-~ r-'~ ~~

t~~i:

1.44

>60 3.65 3.65 2.86 T TCV Slow Closure/ :560 2.79 2 79 2.30 2.27 1.88 1.41 PLUOOS/PCOOS >60 2.82 2.82 2.30 Page 35 of 71

COLR Dresden 2 Revision 18 Table 4-12: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 >38.5 75 100 Base/TCV Stuck s 60 2 58 2.58 2.19 .' '

,* ~

1.93 ., 1.41 Closed/MSIVOOS > 60 .2.63 2.63 2.29 TBVOOS s 60 3.49 349 2.62 1.98 .,.. -*......

~

.. 1 44

> 60 3.54 3 54 2.78 TCV Slow Closure/ S60 2.58 2 58 2.27 2.64~ 2 27 1.89 1 41 PLUOOS/PCOOS > 60 2.64 2 29 FHOOS Core Flow Core Power (% rated)

EOOS Condition 01

(% rated) 25 S 38.5 > 38.5 75 100 Base/TCV Stuck s 60 2.79 2.79 2.30 2.08 .. ,,....

(,

1.41 Closed/MSIVOOS > 60 2.82 2.82 2 30 TBVOOS s 60 3.64 3.64 2.73 2.08 :_._.,,._ .  :

1.44

> 60 3.65 3.65 2.86 . . . -*: ::-.;i,,,: -,

TCV Slow Closure/  :,; 60 2.79 2.79 2.30 2.27 1.89 1 41 PLUOOS/PCOOS > 60 2.82 2.82 2.30 Page 36 of 71

COLR Dresden 2 Revision 18 Table 4-13: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 > 38.5 75 100 Baserrcv Stuck s 60 2.58 2.58 2.19 . 2.01 1 41 Closed/MSIVOOS >60 2.63 2.63 2.29 TBVOOS s 60 3.49 3.49 2.62 2.01

'i

..* + 1.44

>60 3.54 3.54 2.78 > "~/-1.

TCV Slow Closure/ s 60 2.58 2.58 2.29 2.29 1.91 1.42 PLUOOS/PCOOS >60 2.64 2.64 229 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 > 38.5 75 100

~ >: .,:+ ..~,

Base/TCV Stuck :s; 60 2.79 2 79 2 30 h *":N**

2.15 1.42 Closed/MSIVOOS > 60 2.82 2.82 2.30 ,U s 60 3.64 3.64 2.73 . . - : .....

TBVOOS 2 15 < * *

~ 1.45

> 60 3.65 3.65 2 86 i-. ' '.

TCV Slow Closure/ :s; 60 2.79 2 79 2.30 2.29 1.91 1.42 PLUOOS/PCOOS > 60 2.82 2 82 - 2 30 Page 37 of 71

COLR Dresden 2 Revision 18 Table 4-14: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)

(Reference 9)

Nomlnal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 > 38.5 75 100 BasefTCV Stuck  ::; 60 2 58 2.58 2.19 " ..J.

1 93 I,. ', 1 41 Closed/MSIVOOS > 60 2.63 2.63 2.29 /'*

TBVOOS

60 3.49 3.49 2.62 1.98 I / ' '. * *
.:

~~ *, ..* 1 44

> 60 3.54 3.54 2.78 . -;-,.... :. /.

TCV Slow Closure/  ::; 60 2.58 2.58 2.27 2.27 1.88 1 41 PLUOOS/PCOOS >60 2.64 2.64 2.29 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 >38.5 75 100 Baserrcv Stuck s 60 2.79 2 79 2.30 '; ;;: ~'

Closed/MSIVOOS > 60 2.82 2 82 2.30 2.08 .. 1 41

60 364 3.64 2.73 ,. ,.

TBVOOS 2.08 "\.,.'. . . ~

1.44

>60 3.65 3.65 2.86 .. '

TCV Slow Closure/ S60 2.79 2.79 2.30 227 1 88 1.41 PLUOOS/PCOOS > 60 2.82 2 82 2.30 Page 38 of71

COLR Dresden 2 Revision 18 Table 4-15: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)

(Reference 9) _,-

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 > 38.5 75 100 Base/TCV Stuck  :;; 60 2.58 2 58 219 ~t~ ;'7;,

1.93 1.41 Closed/MSIVOOS > 60 2 63 2 63 2.29 .. . \ _...:1 .'.

~. +' .. '

60 3 49 349 2.62 . "
:'1\ *<

TBVOOS 1.98 ~: t.:* *\:: 1.44

> 60 3.54 354 2.78 ~~ ~1 -.) .

TCV Slow Closure/  ::; 60 2 58 258 2.27 2.27 1.89 1.41 PLUOOS/PCOOS > 60 2.64 264 2.29 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.6 > 38.6 76 100 Base/TCV Stuck  ::; 60 2 79 2.79 2.30 t... ~-., : ~:'H*.-

2.08 + t'L 1.41 Closed/MSIVOOS > 60 2 82 2 82 2.30  ?:)', '"':. t.i.

,*_ i

"-~ "

60 3.64 3.64 2 73 TBVOOS 2.08 .

r-~.:: 1.44

>_60 3.65 3.65 2.86 . "

TCV Slow Closure/  :::60 2 79 2.79 2.30 2.27 1.89 1.41 PLUOOS/PCOOS > 60 2.82 2.82 2.30

\

Page 39 of71

COLR Dresden 2 Revision 18 Table 4-16: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 >38.5 75 100 Base/TCV Stuck :s; 60 2.58 2 58 2 19 . : ....

2.01 ' 1.41 Closed/MSIVOOS > 60 2.63 263 2.29 ..

s; 60 3.49 349 2 62 .....'

TBVOOS 2.01 .. 1.44

> 60 3.54 3.54 2 78 ,;,. ,-

TCV Slow Closure/ :s; 60 2 58 2.58 2.29 2.29 1.91 1.42 PLUOOS/PCOOS > 60 2.64 2.64 2.29 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 > 38.5 75 100

~

Base/TCV Stuck :s; 60 2.79 2 79 2.30 2.15 f.,,*'*:*;;/ , ..

,. 1.42 Closed/MSIVOOS > 60 2.82 2 82 2 30 TBVOOS

s; 60

> 60 3.64 3.65 3.64 3.65 2.73 2.86 2 15 -~-

~~

~....-. ~

.' f 1.45 TCV Slow Closure/ :s; 60 2.79 2.79 2.30 2.29 1 91 1.42 PLUOOS/PCOOS > 60 2.82 2.82 2.30 Page 40 of 71

COLR Dresden 2 ReVJsion 18 Table 4-17: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT I

Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 26 S38.6 > 38.5 75 100

.-. ~;,: *~::

Base/TCV Stuck Closed/MSIVOOS s 60

> 60 2.51 264 2.51 2.64 2.09 2.33 1.97 .... ~

~

1.41 S60 3.27 3.27 2.48 TBVOOS 1.99 1.45

> 60 3.52 3.52 2.81 I"~ ' tr TCV Slow Closure/ s 60 2.51 2.51 2.31 2.31 1.92 1.43 PLUOOS/PCOOS > 60 2.64 2.64 2 33 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 26 S 38.6 > 38.6 75 100 s 60 2.67 2.67 2.23 ,, *"-

Base/TCV Stuck ~

~s.**.~

/ +

2.15 1.42 Closed/MSIVOOS > 60 2.85 2.85 2.33 '

S60 3.40 3.40 2.56  : ..! ~

~

_TBVOOS 2.15 1.46

> 60 3.66 366 2.90 ,

TCV Slow Closure/ S60 2.67 267 2.31 2.31 1.92 1.43 PLUOOS/PCOOS > 60 2.85 2 85 2.33 Page 41 of 71

COLR Dresden 2 Revision 18 Table 4-18: OPTIMA2 TLO MCPRp Limits (SU,CPR = 1.08) for ISS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power (% rated}

EOOS Condition

(% rated} 0 25 :S 38.5 > 38.5 75 100 Base/TCV Stuck  :,; 60 2 51 2.51 2.09 .~.

1.98 ' 1.41 Closed/MSIVOOS > 60 2.64 2.64 2.33 1..-**

TBVOOS

,; 60

> 60 3.27 3.52 3.27 3.52 2.48 2.81 1.99  : ' .... ;

  • , 1.45 TCV Slow Closure/  :,; 60 2.51 2 51 2.31 2 31 1 92 1.44 PLUOOS/PCOOS > 60 2.64 264 '2.33

' I FHOOS Core Flow Core Power (% rated}

EOOS Condition

(% rated) 0 25 S38.5 > 38.5 75 100 Base/TCV Stuck  :,; 60 2 67

  • 2.67 2.23 2.16 .. :.+ 1.42 Closed/MSIVOOS > 60
,; 60 2 85 3.40 2.85 3.40 2.33 2.56 .-~. - ; **' \.:*..

TBVOOS 2.16 .... ~., .. . ~

1 46

> 60 3.66 3.66 2.90 ) .

TCV Slow Closure/  :,; 60 2.67 2.67 2.31 2 31 1.92 1 44 PLUOOS/PCOOS > 60 2.85 2.85 2.33 Page 42 of 71

COLR Dresden 2 Revision 18 Table 4-19: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)

(Reference 9)

Nomlnal FWT Core Flow Core Power (% rated)

EOOS Condition

.(% rated) 0 25 S 38.6 > 38.6 76 100 Base/TCV Stuck  :;; 60 2.51 2 51 2.09 2.02

..r,. **r*r*

~

.+;

1.43 Closed/MSIVOOS > 60 264 264 2.33 ]::'. :;;.~:.r:;.

60 3 27 327 2.48 *"\., ..... ~

TBVOOS 2 03 ',', " 1.47

> 60 3 52 3 52 2.81 J~h i:

TCV Slow Closure/  :;; 60 2.51 2.51 2.33 2.33 1.95 1.49 PLUOOS/PCOOS > 60 2.64 2.64 2 33 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.6 > 38.6 75 100 Base/TCV Stuck  :;; 60 2 67 267 2.23  :::

Closed/MSIVOOS > 60 2 85 2 85 2.33 2 20 i;/

.I.

f "-!,/'.;.

,,.1 1.44 TBVOOS
60

> 60 3.40 3.66 3.40 3.66 2 56 2 90 2.20 ~I*"'

~

.. 7', .* -

. l':t.:,~

,t'*

1.48 TCV Slow Closure/  :,; 60 2.67 2.67 2.33 2 33 1.95 1.49 PLUOOS/PCOOS > 60 2.85 2 85 2.33 Page 43 of71

COLR Dresden 2 Revision 18 Table 4-20: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 > 38.5 75 100 Baserrcv Stuck s 60 2.51 2.51 2.09 ' . ..

l. . . . ./'!t 1.97 'I , ' .. 1.41 ,

Closed/MSIVOOS > 60 2.64 2.64 2.33 '~ ' .::

TBVOOS S60 3.27 3.27 2 48 1.99

~. .,

1.45

> 60 ' :!-~" '

3.52 3.52 2.81 ,t *. fill;.~

TCV Slow Closure/ s 60 2.51 2.51 2.31 2.31 1.92 1.44 PLUOOS/PCOOS > 60 2.64 2.64 2 33 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 > 38.5 75 100 Base/TCV Stuck s 60 2.67 2.67 2 23 .. '\ \; .. 1 42 2.15 *~'" ~,< *, ".

Closed/MSIVOOS > 60 2.85 2.85 2.33 S60 3.40 340 2.56 *,~.. ,;,.~"> .

TBVOOS 215 146

> 60 3.66 366 2 90 'to-_ .' ;.}~

TCV Slow Closure/ s 60 2.67 2.67 2 31 2.31 1.92 144 PLUOOS/PCOOS >'60 2 85 2.85 2'-33 Page 44 of 71

COLR Dresden 2 Revision 18 Table 4-21: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)

(Reference 9)

Nomlnal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 > 38.5 75 100 Base/TCV Stuck s 60 2 51 2 51 2 09 1.98

..* 1.41 Closed/MSIVOOS > 60 264 2.64 2 33 s 60 327 3.27 2 48 ,.-1.* .. ,

TBVOOS 1.99 1.45

> 60 3 52 3.52 2.81 TCV Slow Closure/ s 60 2 51 2.51 2.31 2 31 1.92 1.44 PLUOOS/PCOOS > 60 2 64 2.64 2.33 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 > 38.5 76 100 Base/TCV Stuck s 60 2.67 2 67 2.23 2.16 1.42 Closed/MSIVOOS > 60 2.85 2 85 2 33 s 60 3.40 340 2 56

~' i~'.,. -.:

TBVOOS 2.16 ':f!~*\t 1 46

> 60 3.66 3.66 2.90 TCV Slow Closure/ s 60 2.67 2.67 2.31 2.31 1.92 1.44 PLUOOS/PCOOS > 60 2.85 2.85 2.33 Page 45 of71

COLR Dresden 2 Revision 18 Table 4-22: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 > 38.5 75 100 Base/TCV Stuck  :;; 60 2 51 2.51 2.09 .c . .

2.02 /

1.44 Closed/MSIVOOS > 60 264 264 2.33

60 3 27 327 2.48 ~"'-**

TBVOOS 2 03 1.47

> 60 3.52 3 52 2.81 . ~ ,,_

,\~*.'.

~, . ' .

TCV Slow Closure/  :;; 60 2 51 2 51 2.33 2 33 1.95 1.50 PLUOOS/PCOOS > 60 264 264 2.33 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 > 38.5 75 100 Base/TCV Stuck  :;; 60 2 67 267 2.23 2.20 .. 1.44

. ..?: . .

Closed/MSIVOOS > 60 2 85 2.85 2.33 "

60 340 340 2.56 TBVOOS

> 60 3.66 3.66 2.90 2.20 t.'

. 1.48 TCV Slow Closure/ :s; 60 2.67 2.67 2.33 2.33 1.95 1.50 PLUOOS/PCOOS > 60 2.85 2.85 2.33 Page 46 of71

/

COLR Dresden 2 Revision 18 Table 4-23: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for NSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all Include SLO) 0 26 S38.5 > 38.6 60 BasefTCV Stuck 2.60 2 60 2 21 2.09 2 07 Closed/MSIVOOS TBVOOS 3.51 3.51 2.64 2.09 2 07 TCV Slow Closure/

2.60 2.60 2 29 2.29 217 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all Include SLO) 0 26 S 38.6 > 38.5 50 Base/TCV Stuck 2 81 2 81 2.32 2.10 2.07 Closed/MSIVOOS TBVOOS 366 3.66 2.75 210 2.07 TCV Slow Closure/

2.81 2.81 2.32 2 29 217 PLU09S/PC00S Page47 of71

COLR Dresden 2 Revision 18 Table 4-24: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for ISS Insertion Times, All Exposures (Reference 9)

Nomlnal FWT EOOS Condition Core Power(% rated)

(all include SLO) 0 25 S 38.5 > 38.5 50 Base/TCV Stuck 2.60 2.60 2 21 2.09 2.07 Closed/MSIVOOS TBVOOS 3.51 3.51 2.64 2 09 2.07 TCV Slow Closure/

2.60 2.60 2 29 2.29 2.17 PLUOOS/PCOOS FHOOS EOOS Condition C~re Power (% rated)

(all Include SLO) 0 25 S38.5 > 38.6 60 Base/TCV Stuck 2 81 2 81 2.32 2.10 2.07 Closed/MSIVOOS TBVOOS 3.66 3 66 2.75 2.10 2.07 TCV Slow Closure/

2.81 2.81 2.32 2.29 2.17 PLUOOS/PCOOS Page 48 of71

COLR Dresden 2 Revision 18

(

Table 4-26: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for TSSS Insertion Times, All Exposures (Reference 9)

Nomlnal FWT EOOS Condition Core Power (% rated)

(all Include SLO) 0 25 S 38.6 > 38.6 50 Base/TCV Stuck 2 60 2 60 2 21 2 09 2.07 Closed/MSIVOOS TBVOOS 3 51 3 51 2.64 2.09 2.07 TCV Slow Closure/

2.60 2.60 2 31 2' 31 2.20 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 26 S 38.6 > 38.5 60 Base/TCV Stuck 2 81 2.81 2 32 217 2.07 Closed/MSIVOOS TBVOOS 3.66 3.66 2.75 2.17 2 07 TCV Slow Closure/

2.81 2 81 2 32 2 31 2.20 PLUOOS/PCOOS Page 49 of71

COLR Dresden 2 Revision 18 Table 4-26: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for NSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all Include SLO) 0 26 S38.6 > 38.6 60 Base/TCV Stuck 2.53 2 53 2.11 '2.09 2 07 Closed/MSIVOOS TBVOOS 3.29 3 29 2.50 2 09 2 07 TCV Slow Closure/

2.53 2 53 2.33 2 33 2 21 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 :538.5 > 38.5 50 Base/TCV Stuck "'

2.69 2 69 2.25 2 17 2 07 Closed/MSIVOOS TBVOOS 342 3 42 2.58 217 2 07 TCV Slow Closure/

2.69 2.69 2 33 2.33 2.21 PLUOOS/PCOOS Page 50 of 71

COLR Dresden 2 ReV1sion 18 Table 4-27: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for ISS Insertion Times,

  • All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 :S 38.5 > 38.5 50 Base/TCV Stuck 2 53 2.53 2 11 2 09 2 07 Closed/MSIVOOS TBVOOS 3.29 3.29 / 2.50 2.09 2.07 TCV Slow Closure/

2.53 2.53 2 33 2 33 2.21 PLUOOS/PCOOS FHQOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.6 > 38.6 60 Base/TCV Stuck 2.69 2.69 2.25 2.18 2.07 Closed/MSIVOOS TBVOOS 3.42 342 2 58 2.18 2 07 TCV Slow Closure/

2.69 2.69 2.33 2.33 2.21 PLUOOS/PCOOS Page 51 of 71

COLR Dresden 2 Revision 18 Table 4-28: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for TSSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 :S 38.5 > 38.5 50 BasefTCV Stuck 2.53 2.53 2.11 2.09 2.07 Closed/MSIVOOS TBVOOS 3.29 3.29 2.50 2.09 2.07 TCV Slow Closure/

2 53 2 53 2 35 2.35 2.24 PLUOOS/PCOOS '

FHOOS

(

EOOS Condition Core Power (% rated)

(all Include SLO) 0 25 :S38.5 > 38.6 50 Base/TCV Stuck 2.69 2.69 2.25 2.22 2.07 Closed/MSIVOOS TBVOOS 3 42 3.42 2.58 2.22 2.07 TCV Slow Closure/

2.69 2.69 2.35 2.35 2.24 PLUOOS/PCOOS Page 52 of71

COLR Dresden 2 Revision 18 Table 4-29: ATRIUM 10XM and OPTIMA2 MCPR, Limits (TLO SLMCPR = 1.12 and SLO SLMCPR 111 1.14)

(Reference 12)

EOOS Condition* Core Flow (% rated) MCPR, Limit 0 1.70 Base Case / FHOOS / 1 TCV Stuck Closed 35 1.70 lnTLO 108 1.23

~

Base Case limits from Table 4-30 shall be Base Case In used, with the applicable MFLCPR Penalty SLO from Table 8-1 applied.

PCOOS I PLUOOS / TCV Slow Closure / Base Case limrts from Table 4-30 shall be PLUOOS + PCOOS in used, with the applicable MFLCPR Penalty TLO from Table 8-1 applied.

(

MSIVOOS limrts from Table 4-30 shall be used, One MSIVOOS In with the appli~ble MFLCPR Penalty from TLO and SLO Table 8-1 applied.

TBVOOS limits from Table 4-30 shall be used, TBVOOS In with the applicable MFLCPR Penalty from TLO Table 8-1 applied.

PLUOOS + 1 TCV/TSV Stuck Closed / Base Case limits from Table 4-30 shall be PCOOS + 1 TCV/TSV Stuck Closed In used, with the applicable MFLCPR Penalty TLO from Table 8-1 applied

  • See Section 8 for further operating restrictions Page 53 of71

COLR Dresden 2 Revision 18 Table 4-30: ATRIUM 10XM and OPTIMA2 MCPRr Limits (TLO SLMCPR = 1.08 and SLO SLMCPR = 1.10)

(Reference 9)

EOOS Condition* Core Flow (% rated) MCPRt Limit 0 1.66 Base Case / FHOOS / PCQOS / PLUOOS /

TCV Slow Closure/ PLUOOS + PCOOS in 35 1 66 TLO and SLO 108 1.19 0 1.84 Any Scenario** with One MSIVOOS 35 1.84 108 1 19 0 1.86 Any Scenario** with TBVOOS 35 1.86 -

108 1.35 0 1 66 Any Scenario** with 1 Stuck Closed 35 1.66 TCV/TSV 108 1.19

  • See Section 8 for further operating restnctions
      • Any Scenario" implies any other combination of allowable EOOS conditions that 1s not otherwise covered by this table .

Note that the MCPR, limits for any scenario with 1 stuck closed TCV/TSV are Identical to bas~ case MCPR, limits. This is reflected in the thennal limit sets presented In Tables 8-1 and 8-2.

Page 54 of71

COLR Dresden 2 Revision 18

5. Linear Heat Generation Rate Technical Specificatjon Sections 3,2 3, 3.4,1, and 3,7.7 The TMOL at rated conditions for the OPTIMA2 and ATRIUM 10XM fuel is established in terms of the maximum LHGR as a function of peak pellet (rod nodal) exposure. The LHGR limits for OPTIMA2 fuel are presented in Tables 5-1 through 5-5. The limits in Tables 5-1 and 5-5 apply to OPTIMA2 lattices that do not require Gadolm1a set down penalties. The limits in Tables 5-2 through 5-4 apply to OPTIMA2 lattices that do require Gadolinia set down penalties. The limits in Table 5-5 apply to the OPTIMA2 natural U blank~ts in lattices 81 and 89. The LHGR limrts for ATRIUM 1OXM fuel are _presented in Table 5-6.

The power- and flow-dependent LHGR multipliers (LHGRFACp and LHGRFACr) are applied directly to the LHGR limits to protect against fuel melting and overstraining of the cladding during an AOO (Reference 9).

In all conditions, the margin to the LHGR limits is determined by applying the lowest multiplier from the applicable LHGRFACp and LHGRFACt multipliers for the power/flow statepoint of interest to the steady state LHGR limit (Reference 9).

LHGRFACp and LHGRFACt multipliers were established to support base case and all EOOS conditions for all Cycle 27 exposures and scram speeds The LHGRFACp multipliers for ATRIUM '10XM and OPTIMA2 are presented in Table 5-7 and Table 5-8, respectively. The LHGRFACr multipliers for ATRIUM 10XM and OPTIMA2 are presented in Table 5-9 and Table 5-10, respectively

. )

r Page 55 of71

COLR Dresden 2 Revision 18 Table 5-1: LHGR Limits for OPTIMA2 Lattices 156, 157, 168, 169, 163, 164, 165, 166, 167 (References 6 and 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14,000 13.11 23,000 12.22 I 57,000 8.87 J

62,000 8.38

-75,000 3.43 Table 6-2: LHGR Limits for OPTIMA2 Lattices 164, 161 (References 6 and 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14,000 13.11 23,000 12.22 23,001 12 10 33,000 11.12 33,001 11.23 57,000 8.87 62,000 8.38 75,000 3.43 Page 56 of71

COLR Dresden 2 Revision 18 Table 5-3: LHGR Limits for OPTIMA2 Lattices 150, 151, 152, 166, 160, 162 (References 6 and 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) -

0 13.72 14,000 13.11 14,001 . 12.85 23,000 11.98 46,000 9.75 46,001 9.95 57,000 8.87 62,000 8.38 75,000 3.43 Table 5-4: LHGR Limits for OPTIMA2 Lattices 149, 153 (References 6 and 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13 72 14,000 13 11 15,000 13.01 15,001 12 62 23,000 11 85 33,000 10.90 33,001 11 23 57,000 8.87 62,000 8.38 75,000 3.43 Page 57 of71

COLR Dresden 2 ReV1s1on 18 Table 6-5: LHGR Limits for OPTIMA2 Lattices 81, 89 (References 6 and 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 11.96 14,000 11 43 23,000 10.66 57,000 8.87 62,000 8.38 75,000 3.43 Table 5-6: LHGR Limits for ATRIUM 10XM (Reference 9)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 14.1 18,900 14.1 74,400 7.4 Page 58 of71

COLR Dresden 2 Revision 18 Table 5-7: ATRIUM 10XM LHGRFACp Multlpllers for AJI Scram Insertion Times, All Exposures (Reference 9)

Nominal FWT Core Flow Core Power (%rated)

EOOS Condition

(% rated) 0 25 ~38.5 > 38.5 60 90 100 Base/TCV Stuc;:k S60 0.52 0.52 0.60 0 60 0.71 0.90 1.00" Closed/MSIVOOS > 60 0.52 0.52 0.58 s 60 0 40 0 40 0.54 TBVOOS 0.60 0.71 0.90 1.00

> 60 0.36 0.36 0.50 TCV Slow Closure/ S60 0.50 0 50 0.60 0.60 0.71 0.90 1.00 PLUOOS/PCOOS > 60 0-50 - 0 50 0.58 FHOOS Core Flow Core Power (%rated)

EOOS Condition

(% rated) 0 25 ~38.5 > 38.5 60 90 100 Base/TCV Stuck S60 0.48 0.48 0.56 0.60 0.71 0 90 1.00 Closed/MSIVOOS > 60 0.44 0.44 0.56 S60 036 036 0.52 TBVOOS 0.60 0.71 0 90 1 00

> 60 0.34 0.34 0.46 TCV Slow Closure/ S60 0 48 0.48 0.56 0.60 0 71 0.90 1.00 PLUOOS/PCOOS > 60 044 0.44 0.56 Page 59 of 71

COLR Dresden 2 Revision 18 Table 5-8: OPTIMA2 LHGRFACp Multipliers for All Scram Insertion Times, All Exposures

  • (Reference 9)

Nominal FWT Core Power (%rated)

EOOS Condition Core Flow L-----~-------~--..-----.-----.----11

(% rated) o 25 ~ 38.5 > 38.5 50 60 75 80 100 Baserrcv stuck L--_s_6_o_ __.__o_.5_8_,__o_.5_8---l_o_.6_5___.,

0.68 0.73 0 80 1.00 Closed/MSIVOOS > 60 0.57 0.57 0.64

=; 60 0.42 0 42 0 53 TBVOOS 0.68 0.73 0 78 . .~- : . 0 84 0.98

> 60 0.41 0.41 0.50 .r~...:..:. ,, \

ITCV Slow Closure/....___s_60_-1-_o_.5_8-1-_o_.5_8____,f--o_64_

0.64 0 67 0.70 0.88 1.00 PLUOOS/PCOOS > 60 0.57 0.57 0.64 FHOOS Core Power (%rated)

EOOS Condition Core Flow l - - ~ - - ~ - - - . - - - - - - - - . - - - - . - - - . - - - - - . - - - - 1 1

(% rated) O 26 ~ 38.6 > 38.5 50 60 75 80 100 Baserrcv Stuck ....___s_6_0_-J-_o_5_3-1-_o_.5_3____,_o_.6_1--11 0.63 0.70 0 99 Closed/MSIVOOS > 60 0.52 0.52 0.61 s 60 0.40 0 40 0.52 TBVOOS 063 0.70 0 97

> 60 0 40 0 40 0.49 TCV Slow Closu reJ.___:=;_6_0_ __.__0_5_3__,__0_5_3---1_0_6_1___.,

0.63 0 67 0.99 PLUOOS/PCOOS > 60 0.52 0.52 0.61 Page 60 of 71

COLR Dresden 2 Revision 18 I

Table 5-9: ATRIUM 10XM LHGRFACt Multipliers for All Cycle 27 Exposures, All EOOS (Reference 9)

Core Flow (% rated) LHGRFACt 0.0 0 57 35.0 0.57 80.0 1.00 J 108 0 1.00 Table 6-10: OPTIMA2 LHGRFACt Multlpllers for All Cycle 27 Exposures, All EOOS

' (Reference 9)

Core Flow (% rated) LHGRFACt 00 0.27 20 0 0.43 40 0 0.60 '

60.0 0.80 80 0 1.00 100.0 1.00 108.0 1.00 Page 61 of 71

COLR Dresden 2 Revision 18

6. Control Rod Block Setpoints Technical Specification Sections 3.3.2.1 and 3.4.1 The Rod Block Monitor Upscale Instrumentation Setpoints are detennined from the relationships shown in Table 6-1:

Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints (Reference 3) '

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop o.65 wd + 55%

Operation Single Recirculation Loop 065Wci+51%

Operation Wd - percent of recirculation loop I

drive flow required to produce a rated core flow of 98.0 Mlb/hr The setpoint may be lower/higher and will still comply with the CRWE analysis because CRWE is analyzed unblocked (Reference 9).

Page 62 of71

COLR Dresden 2 Revision 18

7. Stability Protection Setpoints Technical Specification Section 3.3.1.3 The OPRM PBDA Trip Settings are provided in Table 7-1 Table 7-1: OPRM PBDA Trip Settings (References 9 and 12)

Corresponding Maximum PBDA Trip Amplitude Setpolnt (Sp) Conflnnatlon Count Setpoint (Np) 110 13 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system (Methodology 2).

The OPRM PBDA trip settings are based, in part, on the cycle spec1f1c OLMCPR and the powerfflow dependent MCPR limits. Any change to the OLMCPR values and/or the power/flow dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable and the associated Technical Specifications are implemented J

Page 63 of 71

COLR Dresden 2 Revision 18

8. Modes of Operation The allowed modes of operation with combinations of EOOS are as described in Tables 8-1 and 8-2. The EOOS conditions separated by *r in these tables represent single EOOS conditions and not combinations of conditions.

Table 8-1 provides the EOOS options which have been analyzed for a TLO SLMCPR of 1.12 and a SLO SLMCPR of 1 14 and for which MCPR operating limits were calculated or evaluated. For some EOOS options, MCPR operating limits have not been explicrtly calculated for these SLMCPR values; instead, the MCPR operating limits that were calculated to correspond to a TLO SLMCPR of 1.08 and a SLO SLMCPR of 1 10 can be used if the MFCLPR limit of 1 0 1s reduced by the corresponding MFLCPR penalty shown in Table 8-1, creating an administrative MFLCPR hmrt of less than 1.0. Operation with the EOOS options which do not appear in Table 8-1 have not been analyzed for Cycle 27 for a TLO SLMCPR of 112 and a SLO MFLCPR of 1.14, so operation with these EOOS options is not allowed as long as these are the SLMCPR values reflected in the Technical Specifications.

Table 8-2 provides the EOOS options which have been analyzed for a TLO SLMPCR of 1.08 and a SLO SLMCPR of 1.10 and for which MCPR operating limits were calculated. Operation with the EOOS options shown in Table 8-2 is allowed and there are no MFLCPR penalties required if the Technical Specifications reflect a TLO SLCMPR of 1.08 and a SLO SLMCPR of 1.10.

Note that the following EOOS options have operational restrictions: all SLO, all EOOS options with 1 TCV/TSV stuck closed, and MSIVOOS. See Table 8-3 for specific restrictions.

Page 64 of71

COLR Dresden 2 Revision 18 Table 8-1: Modes of Operation (TLO SLMCPR = 1.12 and SLO SLMCPR = 1.14)

(References 12 and 14)

Corresponding EOQS Option Thennal Limit Set MFLCPR Penalty BASE CASE

};> SET24 TLO-BASE CASE-NSS-NOM FWT };> None Base Case };> SET25 TLO-BASE CASE-TSSS-NOM FWT };> None

};> SET26 TLO-BASE CASE-TSSS-FWTR };> None

};> SET11 SLO-BASE CASE-NSS-NOM FWT };> 0.02 TBVOOS TBVOOS };> SET19 TLO-TBVOOS-NSS-FWTR };> 0.04 BASE CASE

};> SET24 TLO-BASE CASE-NSS-NOM FWT };> None 1 TCV/TSV Stuck };> SET25 TLO-BASE CASE-TSSS-NOM FWT };> None Closed };> SET26 TLO-BASE CASE-TSSS-FWTR };> None

};> SET11 SLO-BASE CASE-NSS-NOM FWT };> 0.02 MSIVOOS OneMSIVOOS ), SET21 TLO-MSIVOOS-ISS-FWTR };> 0.04

), SET22 SLO-MISVOOS-ISS-FWTR };> 0 02 PLUOOS/TCV SLOW C TCV Slow Closure };> SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR };> 0 04 PLUOOS/TCV SLOW C PLUOOS };> SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR ), 0.04 PLUOOS/TCV SLOW C PCOOS ), SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR };> 0.04 PLUOOS and 1 PLUOOS/TCV SLOW C TCV/TSV Stuck Closed };> SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR };> 0.04 PLUOOS/TCV SLOW C PCOOS and PLUOOS ), SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR };> 0 04 PCOOS and 1 PLUOOS/TCV SLOW C TCV/TSV Stuck Closed ), SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR };> 0.04 Page 65 of71

COLR Dresden 2 Revision 18 Table 8-2: Modes of Operation (TLO SLMCPR = 1.08 and SLO SLM CPR = 1.10)

(Reference 9)

EOOS Option Thermal Limit Set BASE CASE -

Base Case >' TLO orSLO

>' Nominal FWT or FHOOS TBVOOS TBVOOS >' TLO or St.O

>' Nominal FWT or FHOOS BASE CASE 1 TCV/TSV Stuck Closed  ;,, TLO orSLO

,, Nominal FWT or FHOOS MSIVOOS One MSIVOOS  ;,, TLO orSLO
,, Nominal FWT or FHOOS PLUOOS/TCV SLOW C TCV Slow Closure  ;,, TLO orSLO

. ;,, Nominal FWT or FHOOS PLUOOS/TCV SLOW C PLUOOS  ;,, TLO orSLO

~ Nominal FWT or FHOOS PLUOOS/TCV SLOW C PCOOS >' TLO orSLO

>' Nominal FWT or FHOOS PLUOOS/TCV SLOW C PLUOOS and 1 TCV/TSV Stuck Closed >> TLO for Nominal FWT or FHOOS

,, SLO for Nominal FWT*

PLUOOS/TCV SLOW C PCOOS and PLUOOS ~ TLO for Nominal FWT or FHOOS

,, SLO for Nominal FWT*

PLUOOS!TCV SLOW C PCOOS and 1 TCV/TSV Stuck Closed >' TLO for Nominal FWT or FHOOS

,, SLO for Nominal FWT*
  • FHOOS cannot be applied to SLO for the cases of PLUOOS and 1 TCV/TSV Stuck Closed, for the case of PCOOS and PLUOOS, and for the case of PCOOS and 1 TCV/TSV Stuck Closed.

\

Page 66 of71

COLR Dresden 2 Revision 18 Common Notes.

1 All modes are allowed for operation at MELLLA, ICF (up to 108% r1ted core flow but subject to the restnct1ons in Section 2), and coastdown subject to the power restrictions in Table 8-3 (Reference 9)

The licensing analysis supports full power operation to EOCLB (38,198 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected The minimum allowed coastdown power level is 40% rated CTP per Reference 1 Each OOS Option may be combined with each of the following conditions (Reference 9):

a. Up to 40% of the TIP channels OOS or the equivalent number of TIP channels, using the guidance in Reference 4 for startup wrth TIP machines OOS
b. Up to 50% of the LPRMs OOS c An LPRM calibration frequency of up to 2500 EFPH
2. Nominal FWT results are valid for application within a +10°F/-30°F temperature band around the nominal FWT curve (Reference 9). For operation outside of nominal FWT, a FWT reduction of between 30°F and 120°F is supported for all FHOOS condrt1ons listed in Tables 8-1 and 8-2 for cycle operation through EOCLB (Reference 9). At lower power levels, the feedwater temperature reduction is less (Reference 9). Per Reference 5, there 1s a restriction which requires that for a FWT reduction greater than 1OG°F, operation needs to be restricted to less than the 100% rod line. For a feedwater temperature reduction of between 30°F and 120°F, the FHOOS limits should be applied.
3. The base case and EOOS limrts and multipliers support operation wrth 8 of 9 turbine bypass valves operational (1.e., one bypass valve out of service) with the exception of the TBVOOS condition in which all bypass valves are inoperable (Reference 9) Use of the response curve in TRM Appendix H supports operation with any single TBV OOS TRM Appendix H fac1lrtates analysis with one valve OOS in that the capacity at 0.5 seconds from start of TSV closure is equivalent to the total capacity wrth eight out of the nine valves in service (Reference 10). The analyses also support Turbine Bypass flow of 29.8% of vessel rated steam flow (Reference 10), equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), rf the assumed opening profile for the remaining TBVs is met If the opening profile is NOT met, or if the TBV system CANNOT pass an equivalent of 29.8% of vessel rated steam flow, utilize the TBVOOS condition
4. TBVOOS assumes that ALL the TBVs do n..Q! trip open on TCV fast closure or TSV closure and that ALL the TBVs are not capable of opening via the pressure control system (Reference 11) Steam relief capacity is defined in Reference 10.
5. Between 25% and 50% of rated thermal power, the PLUOOS/TCV Slow Closure thermal limit set ensures-that the AOO acceptance cnteria are met for a load reJection event if the 86 Device is OOS (Reference 9). Therefore, use the PLUOOS/TCV Slow Closure thermal limit set between 25% and 50% of rated thermal power if the 86 Device is OOS Page 67 of 71

\

COLR Dresden 2 Revision 18 Table 8-3: Core Thermal Power Restriction for OOS Conditions (References 9 and 12)

Core Flow (% of Core Thermal Power (%

EOOS Condition Rod Line(%)

Rated) of Rated Power) 1 TCV!TSV Stuck Closed PCOOS and 1 TCV!TSV NIA < 75 < 80 Stuck Closed PLUOOS and 1 I TCV!TSV Stuck Closed One MSIVOOS NIA < 75 NIA SLO < 51 < 50 NIA All requirements for all applicable conditions listed in Table 8-3 MUST be met.

Page 68 of71

COLR Dresden 2 Revision 18

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents*
1. GE Topical Report NEDE-24011-P-A, Revision 15, "General Electric Standard Application for Reactor Fuel (GESTAR)," September 2005.

2 GE Topical Report NED0-32465-A, Rev1s1on 0, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1996.

3 Westinghouse Topical Report CENPD-300-P-A, Revision 0, "Reference Safety Report for Boiling Water Reactor Reload Fuel,' July 1996.

4 Westinghouse Report WCAP-15682-P-A, Revision 0, "Westinghouse BWR ECCS Evaluation Model.

Supplement 2 to Code Description, Qualrficat1on and Application," April 2003 5 Westinghouse Report WCAP-16078-P-A, Revision 0, "Westinghouse BWR ECCS Evaluation Model.

Supplement 3 to Code Description, Qualrficat1on and Application to SVEA-96 Optima2 Fuel,'

November 2004.

6. Westinghouse Report WCAP-16865-P-A, Revision 1, "Westinghouse BWR ECCS Evaluation Model Updates: Supplement 4 to Code Description, Qualtfication and Application,' October 2011.

7 Westinghouse Report WCAP-16081-P-A, Revision 0, "10x10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2,' March 2005 8 Westinghouse Topical Report WCAP-15836-P-A, Revision O,*"Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1 ," April 2006

9. Westinghouse Topical Report WCAP-15942-P-A, Revision 0, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENPD-287,' March 2006.
10. Westinghouse\Topical Report CENPD-390-P-A, Revision 0, "The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors,* December 2000.

11 Exxon Nuclear Company Report XN-NF-81-58(P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model,' March 1984

12. Advanced Nuclear Fuels Corporation Report ANF-89-98(P)(A), Revision 1 and Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995
13. Siemens Power Corporation Report EMF-85-74(P), Revision O Supplement 1 (P)(A) and Supplement 2 (P)(A), "RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model,' February 1998.

14 AREVA NP Topical Report BAW-10247PA, Revision 0, "Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors," February 2008.

15 Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 1 Revision O and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis,' March 1983.

Page 69 of 71

COLR Dresden 2 Revision 18

16. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology for BWR Reloads,"

June 1986

17. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX. Thennal Limits Methodology Summary Description," January 1987. '
18. Siemens Power Corporation Topical Report EMF-2158(P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors. Evaluation and Validation of CASM0-4/MICROBURN-B2," October 1999.
19. Siemens Power Corporation Report EMF-2245(P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel," August 2000
20. AREVA NP Report EMF-2209(P)(A), Revision 3, "SPCB Critical Power Correlation,* September 2009.
21. AREVA Topical Report ANP-10298P-A, Revision 1 , "ACE/A TRI UM 1OXM Crrt1cal Power Correlation,*

March 2014.

22 AREVA NP Topical Report ANP-10307PA, Revision 0, "AREVA MCPR Safety Lim rt Methodology for Boiling Water Reactors,* June 2011.

23 Exxon Nuclear Company Report XN-NF-84-105(P)(A), Volume 1 Revision O and Volume 1 Supplements 1 and 2, "XCOBRA-T" A Computer Code for BWR Transient Thennal-Hydrauhc Core Analysis," February 1987.

24. Advanced Nuclear Fuels Corporation Report ANF-913(P)(A), Volume 1 Revision 1 and Volume 1 Supplements 2, 3, and 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses,* August 1990.
25. Framatome ANP Report EMF-2361 (P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model,"

May 2001.

26 Siemens Power Corporation Report EMF-2292(P)(A), Revision 0, "ATRIUM'-10 Appendix K Spray Heat Transfer Coefficients,* September 2000.

27. Framatome ANP Topical Report ANF-1358(P)(A), Revision 3, "The Loss of Feedwater Heating Transient in Boiling Water Reactors,* September 2005.
28. Siemens Power Corporation Topical Report EMF-CC-074(P)(A), Volume 4 Revision 0, "BWR Stab1lrty Analysis* Assessment of STAIF with Input from MICROBURN-)32," August 2000.

Page 70 of71

COLR Dresden 2 Revision 18

10. References
1. Exelon Generation Company, LLC, Docket No 50-237, Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License, License No. DPR-19.

2 Exelon Technical Specrt'1cations for Dresden 2 and 3, Table 3.1.4-1, "Control Rod Scram Times."

3 Exelon Design Analysis GE ORF C51-00217-01, "lnstrumer;it Setpoint Calculation Nuclear Instrumentation Rod Block Monitor," July 30, 2012.

4. FANP Letter, NJC.04:031/FAB04-496, "Startup with/TIP Equipment Out of Service," April 20, 2004 (Exelon EC 348897-000)
5. Exelon Letter, NF-MW.02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex M1sak, August 27, 2002.

(The GE Evaluation can be found in EDMS as GE-NE-A13-00487-00-01P.)

6. Westinghouse Document NF-BEX-15-72, Revision 0, "Bundle Design Report for Dresden 2 Cycle 25,"

April 17, 2015.

7. Westinghouse Document NF-BEX-15-101-NP, Revision 0, "Dresden Nuclear Power Station Unit 2 Cycle 25 MAPLHGR Report," September 2015.
8. Westinghouse Document NF-BEX-15-157, Revision 0, "Linear Heat Generation Rate Limits for Fresh Fuel Loaded in Dresden Unit 2 Cycle 25," October 28, 2015
9. Framatome Report ANP-3797P, Revision 0, "Dresden Unit 2 Cycle 27 Reload Safety Analysis," August 2019.
10. Exelon TOOi ES1900001, Revision 0, "Dresden Unit 2 Cycle 27 Plant Parameters Document,"

January 24, 2019

11. Exelon1"0DI ES1500011, Revision 0, "Equipment Out of Service Description for Transit10n to AREVA Fuel - Dresden," May 20, 2015.
12. Framatome Document FS1-0046356, Revision 1.0, "Supplemental lnfonnat1on for DRE2-27 Reload 1 Safety Analysis Report," October 11, 2019.
13. Exelon Letter, RS-18-134, "Request to Revise Technical Specifications 2.1.1 for Minimum Critical Power Ratio Safety L1m1ts - Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and 2," December 5, 2018.
14. Exelon TOOi NF194836, Revision 2, "Dresden Unrt 2 Cycle 27 (D2C27) Core Monitoring Software Input Specification," September 5, 2019:-'

Page 71 of 71