ML17207A460

From kanterella
Revision as of 17:27, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Amend to Page 5.4 of Tech Specs for Design Features.Safety Evaluation Summaries for Spent Fuel Storage Rack,New Fuel Storage & Fuel Insp Elevator,Upender & Fuel Transfer Tube Encl
ML17207A460
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 10/04/1979
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17207A459 List:
References
NUDOCS 7910120249
Download: ML17207A460 (18)


Text

DESIGNFEATURES5.2.1.2SHIELDBUILDINGa.C.Minimumannularspace=4feet.Annulusnominalvolume=543,000cubiceet.Nominaloutsideheight(measured

=romtopoffoundation basetothetopofthedome)=230.5eet.<<std.Nominalinsidediameer=148feet.e.Cylinderwallminimumthickness

=3feet.Domeminimumthickness

=2.5feet.Domeinsideradius=112feet.DESIGNPRESSURE.ANDTEHPERATURE 5.2.2Thecontainment vesselisdesignedandshallbemaintained foramaximuminternalpressureof44psigandatemperature

.ofZ64'F.PENETRATION55.2.3Penetrations throughthecontainment structure aredesignedandshallbemaintained inaccordance withheoriginaldesignpro-visionscontained inSections3.8.2.1.10and6.2.4oftheFSARwithallowance

=ornormaldegradation pursuanttotheapplicable Surveillance Requirements.

5.3REACTORCOREFUELASSEHBLIES 5.3.1Thereactorcoreshallcontain217fuelassemblies witheach-;uelassemblycon.aining amaximumof176fuelrodscladwithZircoloy-4.

Eachfuelrodsha':1haveanominalactivefuel1ngthof136.7inchesandcontainamaxiimumtotalweightof2250gramsuranium.Thiniialcoreloadingshallhaveamaximumenrichment of2.83weightpercentU-235.Reloadfuelshallbesimilarinphvsicaldesignto.heinitialcoreloadingandshallhavemaximumenrihmentof3.7weightpercentU-Z35.ST.LUCIE-UNIT1V9~O~S0~~~!10/4/79 SAFETYEVALUATION Re:St.LucieUnitlDocketNo.50-335FuelAssemblEnrichment Attachment A:Spent.FuelStorageRack-Criticality Evaluation SummaryAttachment B:NewFuelStorage-Criticality Evaluation SummaryAttachment C:FuelInspection

Elevator, Upender,&FuelTransferTube-Criticality Evaluation Summary10/4/79 ATTACHMENT AFloridaPower8LightSpentFuelPoolStorageRackCriticality Evaluation SummaryI.PURPOSE8RESULTSThisreportpresentsasummaryofthecriticality evaluation ofthehighcapacity(HI-CAPT<')

fuelstoragerackdesignedtoacccnodate 728fuelassemblies infuelstoragelocations inthespentfvelpool,attheSt.LucieNuclearStation,Unit1Byvirtueoftheconservative assumptions employedinthecriticality evaluation, itisconcluded thatunder.normaloperating conditions andwithalimitingUOpfeedenrichment of3.7w/oU-235,themultiplication factorof'liefullyloadedrackinthefloodedspentfuelpooldoesnotexceedthelimitingmultiplication actorof0.95specified inA".lSI-i'(210-1976.

Thisconclusion isbasedontheresultsofanalyseswhichpredictamultiplication factorof0.947'ortherackwhenfullyloadedwithfreshfuelof.thelimitingenrichmntandimmersedinpurewaterat68oF,including allowances forcalculational uncertainties andbiases.Theseanalyseseci.ployarraysofstoragecellsthatareofinfiniteextentinboththelateralandaxialdirections, andincludetheeffectsofthemostadversecombination ofmechanical tolerances andfueldisplacement.

Increasing tnecoolanttemperature from68to225Fdecreases themultiplicationfactorby0.015.DISCUSSIOri Thisreportprovidesadescription ofthecriticality evalvation ofthehighcapacityfuelstorageracksdesignedandmanufactured byCombustion Engineering, Inc.forinstallation inthespenifuelpooloftheSt.LucielluclearStation,Unit.1.Thisrackdesignprovides728normalstoragelocations.

Eachstoragelocationisdesignedtoaccommodate onefuelassenblyconsisting of176fvelrods,and5controlrodguidetubesina14x14arraywithanominalpitchof0.580inches.Thefuelstoragelocations areoftheHI-CAPdesign>which,forthisTHapplication, consistsofatype304stainless steelboxstructure havingasquarecrosssectional geocetrywithanominalinternaldi-..ension of8.4835inches.,Theboxwallswhichcompletely enclosethefourverticalsidesofafuelassemblyhaveanominalthickness o0.250inches.Thenoninatcentertocenterspacingof12.53inchesforeachfuelstorag.box,andthenominalwatergapthickness of3.548inchesbetween.adjacentboxes,aremaintained withinspecified tolerances bystructural membersweldedtotheexteriorsurfacesoftheboxes.Subsequert sectionsofthisreportdiscussthedesignbasesandresultsofthcri.icalityevalvation.

10/4/79

\'Page2A2III.DESIGNBASESA.Hulti1icationFactorThefuelstoragerackisdesignedtomeetthesubcriti~ality marginspecified inSection5.1.12.1ofANSI-<<210-1976 whichstatesinpart-"5.1.'2.1-

"Thespentfuel'storageracksshallbedesionedtoassurethatakeffnotgreaterthan0,95ismaintained withtheracksfullyloadedwithfuelandfloodedwithunborated water.--Thedesignshallbe,basedonthemaximumenrich..ent.

andfissileisotopic.

contentoY'ueltobecycledintheplant.CLB.AssumtionsEmoloedinCriticalit Evaluation Thefollowing assumptions areemployedinthecriticality evaluation toassurethattheevaluation isconservative overtherangeoffuelassemblydesignvariables providedinthespecification and/oranticipated operational conditions affecting thecriticality marginofthespentfuelpool.1.Neutronleakageeffectsaretakentobethosecharacteristic

~ofaninfinitearrayoffullyloaded,spentfuelstoracelocations inthelateraldirections andinfinitely longfuelassemblies andstorageboxwallsinthaxialdirection.

Fortheanalysesofnormalspentfuellocations employing thereerence8.4835inchI.O.'stainless steelbox,aninfinitearrayofstoragecellshavinganominalsquaredimension of12.53inchesisemployed.

Intheseanalysesitisassumedthateachfuelstoragelocationcontainsafreshfuelassemblyofthelimitingenr.ichment (3.7w/oU-235).2.Parasitic neutroncapturecontributions inthefuelstoragerackstructural materialareconsirvatively represented byneglecting allstructural materials otherthanthestainless steelboxwalls.3.Thespentfuel'poolisassu...ed tobefloodedwithpure(unborate

')wateratatemperature of68oF.Elevatedcoolanttemperature offectsareassessedby'valuating thereac:ivity changebetweenisothermal latticecalcu-lationsat68and225F.10/4/79 Page30A-34.Eachfuelassemblyisassumedtobeloadedwithunirradiated UOghavinganenrichment of3.7w/oU-235.Noburnablepoisonpins,controlrods,orneutronsourcesareassumedtobepresentinthefuelassemblies.

'.,Parasitic neutroncapturecontributions ofstructural components inthefuelassemblyareconservatively represented byneglecting thezircaloyspacersleevesandgrids.A6.The,effectoffuelstoragerackmechanical tolerances andfuelassenklg;cfisplacement withinthefuel.assemblystorageboxiscalculated inaconservative fashionbyassumingtheltd'Wadverseconcurrent combination ofdimensional tolerances andasimultanedus diagonaldisplacement ofthefuelassemblies ineachclusteroffouradjacentstoragelocations suchthateachfuelassemblyisincontactwithtwosidewallsofeachboxandthespacingbetweeneachpairofthefourfuelassemblies isminimized.

Themostadverseconcurrent combination ofdimensional tolerances corresponds toaconfiguration whereintheCol'lowing conditions existineachcellofthestoragearray:(1)mimimumpitchbetweencenterlines ofadjacentfuelstorageboxes,(2)maximumstorageboxinternaldimensions, and(3)minimumboxwallthickness.

IV.HI-CAP.PACKANALYSESAgeneraldescription ofthefuelstoragerackinthespentfuelpoolisgiveninSectionIII.Thenominaldimensions2of henormalfuelstoragelocations, definedbyCEdrawingforthefinalreference design,areasfollows:I.D.of304stainless steelbox,in.'.4835Thickness of'teelbox,.in.Materchannel,in.Center-to-center distancein.0.253.54812.5312Thephysicalparameters forthefuelassemblysuchasfuelpinradiusanddensity,cellpitch,andccmposition oiguidetubesaregiveninTableI.,Thecalculated multiplication factorforaninfinitearrayofnormal,fuelstoragelocations, eachcontaining onefuelassemblycenteredwithinth~.stainless steelbox,is0.8984.10/4/79 Page4A-4Todetermine themostadverseeffectofmechanical tolerances onthemultiplication factor,theextremesintolerances areusedratherthanastatistical model.Thefollowing tolerances andrestraints applytothenominaldimensions ofthefinalreference design:I.D.ofsteelboxattopandbottom,in.Hinimumwaterchannel,in.Boxwallthickness, in.Boxwallbow,in.Center-to-center spacingattop'ndbottomfromcornerofrack,lne+0.06252/64-0.01.and+0.047+.250+0.125Toassesstheeffectofdisplacement offuelassemblies withinthestorageboxesonthemultiplication factor,eachfuelassemblyisassumedtobedisplaced diagonally againstthecornerofitsstorageboxinadirection suchthattheclosestdistanceofapproachisachievedwithineachclusteroffourstorageboxes.Rackdimensions areassumedtobethosecorresponding totheminimumboxwallcase~examinedabove.Thecalculated multiplication factorforthiscaseis0.9324.Todetermine thereactivity at150Fand225Ffortheseanalysesallmaterials anddimensions including thecsnter-to-csnter spacingwereexpandedandthermalkernelsat150Fand225Fweree.:.ployed in,thscrosssections.

Anadditional caseatnominaldimensions at68Fwiththemorenormal1720ppmofdissolved boronpresentwasalsorun.Thelasttwocasesareusedtodetermine theworthofthsteelboxforanisolatedfloodedassembly.

Thefollowing suttmarizes theresultsofthesevencasesdiscussed above.CaseBoxC-C~SacinBoxE.D.BoxMallThickness YefeNominalCondition 68F12.4375*8,4835Nominal68F,1720ppmboron12.43758.4835Isolated, withsteelbox32.98"8.48352HinimumOffsetCondition 1'2.0000**

8.66003Nominal150F12.44738.49024Nominal225F12.45638.49630.25"0.89830.24"0.93240.25006"0.89170.25011"Oe88360-25"0.67510.25"0.8075I7Isolated, nosteelbox32.98"<<Theanalyzedcenter-to-center nominalspacingisslightlysmallconstructed value.<<*Closest fuelassemblycenter-to-center spacingis11.46".0.00"0.8728erthanthe10/4/79

~Page5Thecalculational uncertainties usedinthisevaluation consistof(1)a0.0053akeffuncertainty derivedfromcomparisons ofcalculations foraseriesofVO~experirimts, (2)abiasof0.0019inoverpredicting criticality inthe~eexperiments, and(3)abiasinthecalculating steelboxwallworthinferredfromcalculations oftheJohnson-tiewlon experiments3 Themagnitude ofthelatterbiasisdeducedinthefollowing manner.Theworthofthesteelboxwallstructure whichisobtainedbysubtracting thkeffofcase6(0.8075)fromthatofcase7(0.8728)isfoundtobe0.0653akeff.Theanalysesofthe.Johnson-Newlon experimntimpliedthatfortheadditionofa0.54cmthickstainless steelshelltotheuranylfluoridesolutioncontainer, theworthofsteelwasoverestimat dbyafactorof0.0041dividedby0.0239or0.172.,Thisfactortimesthecalculated worthofsteelboxwalls(0.0653)inthestoragerackimpliesacalculational biasforthesteelof0.0112ak.Thereactivity balanceforthecriticality analysisofthenormalspentfuelstoragelocations issummarized asfollows:Hostadversecalculated Keff+95/95confidence levelcalculational uncertainty

+BiasV02(Experiment

-Calculation)

'+Stainless SteelCalculational Bias'.93240.0053-0.0019+0.01120.9470DesinConditions Hominall'.ostAdverseHultiplication FactorforSpen'tFuelStorageRackExcessHargin0.89830.037'10.94?00.003010/4/79

~~~Page6A-6-References AmricanNuclearSociety,Standards Conmittee horkingGroupANS-57.2, "DesignObjectives forLightlaterReactorSpentfuelStorageFacilities atNuclearPowerStations",

ANSI-N210-1976, approvedApril12,1976.2.CEDrawing-.=.E-3077-667-002 Rev.1,"SpentFuelRackllodule".,'ev.

l,April11,1977.3.,Clark,R.H.,etal,PhysicsVerification ProgramFinalReportBKM-3647-3(Narch1967).10/4/79 1~~~~~~IITABLE1FUELASSEftBLY PARAMETERS Fuelrodpitch.in.FuelrodarrayNumberoffuelrodsperassemblyFuelrodcladO.D.,in.FuelrodcladI.D.,in.FuelrodcladmaterialFuelpelletdiameter, incStackedfueldensity,gm/ccNumberofcontrolrod.guidetubesprassemblyGuidetubematerialGuidetubeO.D.,in.GuidetubeI.D.,in.0.5817604400.384Zircaloy-4

.0.376510.054Zircaloy-4 1.1151.035FuelAssemblyActiveFeiHeight(in.)136.710/4/79

~~~IATTACHiviEi)T 8FloridaPowerandLightNew5'uel.Storage-Criticality Evaluation Sulggary'URPOSE

&RESULTS'he purposeofthisdocumentistopresenttheresultsofacriticality evaluation madeinlg74insuppottofusingtheSt.Lucie-.lne~~i"elstoragerackf'r.fresh.

Up2fuels.with.-enrich;:eats.

upgo3.7yfgU235.Thenewfuelstorageracksconsistoftwoarraysof10x4spacesforfuelassemblies separated by'a42-inchwidespaceasshowninFigure1.Themaximumeffective neutronmultiplication factorunderconditions ofuniformwater(ofanydensity(1gm/cc)moderation inandbetweentheassemblies shouldmeettherequirements ofSection5.7.4.1ofANSN18.2whichstates:"Thedesignofspentfuelstorageracksandtransierequipment shallbesuchthattheeffective multiplication facto~willnotexceed0.95withnewfuelofthehighestanticipated enrichment inplaceassumingflooding~vithpure'water.

~Thedesignofnormaliy'dry newfuelstorageracksshallbesuchthattheeffective multiplication factorwillnotexceed0.98withfuelofthehighestanticipated enrichment inplaceassumingopiimummoderation (e.g.,auniformdensityaqueousfoamenvelopment astheresultof'irefighing).Creditmaybetakenfortheinherentneutronabs'orbing effectofr.aterials ofconstruction or,,iftherequirements ofCriterion 5.7.5.10aremet,foraddednuclearpoisons."

Typically,

.histypeo,arrayhasareactivity peakforfulldensitywateranda'econdary peakinthev.aterdensityringeof0.03to0.2gm/cc.Therack,althoughnormallydrywithakeffofabout0.70,canbeimmersedinvariouswaterdensities throuohirefighingfoams,floods,etc.Forfulldensitywaterthekeffis0.92,whichisvIellwithintherequirements ofamaximumkeffof0.95including Pnysicsuncertainties.

Thisstudyusesfour-'group transpo."t calculations forwaterdensities rangingbetwen0.02and0.075gm/ccforthe<<wfuelrack,indicatirg amaximumkefofabout0.89.10/4/79 B-2Pag2Thephysicsuncertainties aremuchlargerforthselo:~density>Iaterystemsthanforfloodedsystems,sincenoapplicable exprimentshavebeenperformer d.Thecalculated maximumkeff'soabout0.9mouldallowforanuncertainty of9.".tomeetthe0.98requirements ofAl)SN18.2.Thisisconsidered tabeadequate.

Conditions ReuiredforCriticalit SafetThcalculations performed indicatethattho.oposeddrystoragearrangements meetthecriticality safetyrequ'cerements ofNtSStandardHlS2,withamarginofabout9;linkeffforlo:Idensity<;atersideration conditions.Theproposedstoragearrangerentsare,therefore,"considered tobesafe,subjecttothfolio.~ing conditions:

l.Approvedstorageracksareused.2.3.leTheminimumsurface-to-surface spacingsbet:~eenassemblies impl":cit intheanalyses, areenforcedinthe'ackspcifi-cations(seefollowing section).

Criticality safetyWithplutonium recyclefuelhasnotbeenestablished.

Theenrichment oftheU02assemblies islimitedto3.70woU235.10/4/79 I,)~I~.8-3Page3DISCUSSTONInitsevaluation, CEhasadoptedtheapproachofassessing s'afetybasedontheminimumedge-to-edge spacingbetweenanytwoassemblies, takingintoaccountalldimensional tolerances andanticipated deformations duringearthquakes, etc.Onthisbasis,theminimumedge-to-edge spacingbetweenassemblies wouldbegreaterthan21.00-0.50(tolerance onpitch)-(815/16+1/16)=11.5inches,ratherthanthe21.00-8.2=12.8inchesimplicitintheanalyses.

Itisestimated, thatthereduction inspacingof1.3inchesduetotolerances, plusanallowance fordefor,.ation (totalspacingreduction estimated at1.5~inches)everywhere wouldincreasetliemaximumkefftoabout0.916,whichwoulddecreasethenarginforPhysicsuncertainties toabout6...However,theminimumspacinginonepositionwouldusuallyimplyalargerspacingelsewhere, andthusthekeffcouldincreasetoonly.901.Therackdesignis,there-.ore, judgedtoprovideadequatecriticality safetymarginsforconditions offogmoderation.

10/4/79

~~~~~~B-4s'+Irr~r+o~~lr~f~iL..I1a5~~~r~rIIIaQI~/IIllIlIIllIereerr~.I,tI.rIrIr/>g;eIgP+r.are,rcpa(r'y'gg(~~I10/4/79 ATTACH~if t<TCFloridaPower8LightFuelInspection Elevator.

Upender,FuelTransferTubeCriticality Evaluation SummaryPurose8ResultsThepurposeofthisdocumentistoprovideabasisforupdatingTechSpec5.3.1forSt.Lucie1fromanenrichment of.3.1w/oto3.7w/obypresenting resultsofcriticality analysesforthefuelinspection

elevator, theupender,andthefueltransfertube.Theapplicable standardAt<SI-H18.2 (Reference 1)section5.7.41statesinpart"Thedesignofspent-fuel storageracksandtransferequipment shallbesuchthattheeffective multi-plication factorwillnotexceed0.95withnewfuelofthehighestanticipated enrichment inplaceassumingfloodingwithpurewater,"Thehighestreactivity situation',

assumingatleastafourinchstandofftolimittheapproachofasecondassembly, is0.911,thusallowingamarginofmorethan0.03akbeyondtheallowance forcalculational.

uncertainties determined bythe.analysis ofawidevarietyofcriticalexperiments.

DesinInoutThefueldimensions anddensities forthe14x14pinasser,bly aretakenfromtheSt.Lucie1FSARusinga'3.7w/oU-235enrichment.

n,Thefuelelevatordimensions arebasedonProgrammed andRemoteSystemsCorp.Drawing-;.'-15699-0, Rev.8dated6/29/78oftheelevatorcarriage.

Standoffs appear.intheEbascodrawing8770-6841 Rev.1toatleastpartially preventasecondassemblyfromapproaching closerthanateninchedgetoedgeseparation.

Thesteelstructure viasignoredinthisanalyses.

10/4/79

+~~,<a%'

1~~~e'h~~sJ.e0C-2Theupenderdimensions arebasedonP.R.S.C.DrawinqPA-13594-D Rev.0of1971fortheFuelCarrierAssemblyandindicatethattheclosest'pproach, if,twoassemblies areinthecarrierassembly, is413/16inchesandalsothepresenceoffour2x2xl/8inchstainless steelfulllengthanqlesatthecornerofeachassembly.

Thefueltransfertubeinnerradiusof35.25incheswasobtainedfromP.R.S.C.Orawinq"-'l-13~99-0, Rev.Edated7-28-76qftheFuelTranserTubeRailassemblyInstallation.

Inallcasesnon-borated.

wateratroomtemperature wasassm~edalthoughnormallyafewthousandPPl1ofdisso1ved boronarepresent.Discussion andResultsInordertomoreaccurately predictthemultiplication factoro,theassembly.

arrays,reliablecalculations oftiespatialfluxdistribuion,.esoecially intheneutronabsorbing stelregions,areessential.

Forthisreason,atwodimensional transaort calculation mod1ofthetrans-.fersystemisemployedin>>hicheachcomponent ofthefueltransfersystemqeometryisexplicitly reoresented.

Thus,inthefuelupendercalculation, thefuelassemblies, thewaterchannelbet:.'een thefuel-assemblies, thesteelangles,andthewaterreflector arereoresented asseparateregions.Thefuelassemblyitsel=isrepresented asa1'.xl4arravoffuelassemblvcellscontaining moderator andeitherfuelpinsorguidetubes.Fourneutrongroupcrosssectionsaregenera~ed

~ore.chfuelassemblycellandf'reachcomponent ofthesystemwithspecialattention qiventotheeffectofadjoining regionsonthespatialt:".rmalspectrumandhencebroadgroupthermalcrosssectionsofeachseparateregion.'Themostreactivesituation ofthethreeconsidered wouldbeforthefuelelevatorwhenasecondfuelassemblyisassumed'o bealignedwiththeoneintheelevatorwithanedgetoedqespacirgof.fourinches,i'eresultina keffis0.911.-Fortheuoenderthemostreactivesituation

.".ouldbewhenathirdasse;..blJ aooroaches towithinourinches(edgetoedqe)of'hetwoasse-blies intheupendr;thekeffforthissituation is0.899.Thiskerfislessthanforth'etwoassemblies seoarated bysamedistanceintheelevatorbcausethesteelanqlesateachcornerofbothassemblies intheupenderwereinc1udedinthean'alyses.

Thereac.ivity ofthefuelarrayinthetransertubewillbeless-..'.an-.orthecaseo<theupender,i.e.akeffof(0.8'99.

ThereasonbeingcnlJtwofuelasserblies canbeinthetransf'er tubeandtheu~lismaintained inthesaveconfiquratioo asintheupender;athirdassemblycannota"proachthetwoassemblies whileinthetransfertube.10/4/79 C-3Theabovemultiplication factorsarevalidenvelopvaluesforaminimumseparation betweenathirdassemblyfortheupenderandasecondassemblyforthefuelelevatoroffourinchesorgreater.

Reference:

l.AmericanNationalStandards Institute "NuclearSafetyCriteriafortheDesignofStationandPressurized HaterReactorPlants,"ANSI-N18.2-1973, August6,1973.10/4/79 4y.t~4<~l