ML14149A089

From kanterella
Revision as of 05:37, 22 March 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search

2014/05/29 NRR E-mail Capture - STP-GSI-191 Presentation
ML14149A089
Person / Time
Site: South Texas  STP Nuclear Operating Company icon.png
Issue date: 05/21/2014
From: Harrison A W
South Texas
To: Singal B K
Division of Operating Reactor Licensing
References
STP-GSI-191, TAC MF2400, TAC MF2401
Download: ML14149A089 (46)


Text

{{#Wiki_filter:1NRR-PMDA-ECapture ResourceFrom:Harrison Albon <awharrison@STPEGS.COM>Sent:Wednesday, May 21, 2014 11:03 AMTo:Singal, BalwantCc:Kee, Ernie; Blossom, Steven; Murray, MichaelSubject:STP Sensitivity PresentationAttachments:STP-GSI-191 Presentation May 222014.pdfBalwant, Ourpresentationisattached.Also,AlionconfirmedtheSWRIpresentationhasnoproprietaryinformation.Wayne CASA Grande Sensitivity Studies

ooooo o oooooooooo !"#"$%&'()*$#*(+,-.,/0$#/1),*+$ John Hasenbein David Morton Jeremy Tejada Alex Zolan May 22, 2014 Sensitivity Studies ¥!Approach ¥!Boron fuel limit ¥!Fiber penetration function ¥!Head loss studies 10-Step Sensitivity Analysis Process ¥!Step 1: Define the Model ¥!Step 2: Select Outputs of Interest ¥!Step 3: Select Inputs of Interest ¥!Step 4: Choose Nominal Values and Ranges for Inputs ¥!Step 5: Estimate Model Outputs under Nominal Input Values ¥!Step 6: One-Way Sensitivity Analysis: Sensitivity Plots & Tornado Diagrams ¥!Step 7: One-Way Sensitivity Analysis: UQ Plots ¥!Step 8: One-Way Sensitivity Analysis: Spider Plots ¥!Step 9: Two-way Sensitivity Analysis: Two-way Sensitivity Plots ¥!Step 10: Metamodels & Design of Experiments Step 1: Define the Model ¥!We wont detail CASA Grande here (Volume 3) ¥!Use CASA Grande to estimate probability of sump failure and boron fiber limit failure, conditional on small, medium & large breaks ¥!Estimate change in core damage frequency (!CDF) in events/year due to GSI-191 issues using these failure probability estimates and corresponding frequencies ¥!All results here are conditional on all pumps working Step 2: Select Outputs of Interest ¥!Change in core damage frequency (!CDF) ¥!Sometimes, we report ratio of !CDF estimate for a scenario to !CDF estimate for baseline and call this the risk ratio ¥!Use stratified sampling on initiating frequency ¥!Use IID replications within each cell of stratification ¥!Use common random numbers across scenarios; i.e., use CRNs across specified changes in input parameters Step 2: Outputs: Estimating CDF IndicesandSets:i=1,...,Findexforcellsstratifyingfrequencyreplicationsk=1,...,NindexforsetofpumpstatesEvents: SL,ML,LLsmall,medium,largeLOCAPSkpumpsinstatekFiinitiatingfrequencyincelliSsumpfailureBboronberlimitfailureCDcoredamageParameters: fSL,fML,fLLfrequency(events/CY)ofasmall,medium,largeLOCAP(PSk)probabilitymassofPSkP(Fi)probabilitymassofFiP(SlLOCA,Fi,PSk)estimateofprobabilityofSgivenLOCA=SL,ML,orLL,Fi,PSkP(BlLOCA,Fi,PSk)estimateofprobabilityofBgivenLOCA=SL,ML,orLL,Fi,PSkRBASEnon-GSI-191coredamagefrequency(events/CY)RCDestimateofcoredamagefrequency(events/CY)1 Step 2: Outputs: Estimating CDF ¥!We report results with: -!fSL , fML , fLL from Volume 2s Table 4-1 -!P(all pumps working)=1 -!P(Fi ): Bounded Johnson fit to NUREG-1829 ¥!We form a variance estimate for the above estimator !CDF=RCD!RBASE=F!i=1N!k=1P(Fi)P(PSk)á"fSLáP(SlSL,Fi,PSk)+fSLáP(BlSL,Fi,PSk)+fMLáP(SlML,Fi,PSk)+fMLáP(BlML,Fi,PSk)+fLLáP(SlLL,Fi,PSk)+fLLáP(BlLL,Fi,PSk)#2 Step 3: Select Inputs of Interest ¥!Amount of Latent Fiber in Pool: Existing dust/dirt in containment, based on plant measurement. Assumed to be in the pool at start of recirculation, uniformly mixed. During fill up, latent debris available to penetrate sump screen. ¥!Boron Fiber Limit: Refers to threshold where boron precipitation occurs for cold leg breaks. Fiber limit comes from vendor testing that shows no pressure drop occurs with full chemical effects. Assume all fiber that penetrates sump screen deposits uniformly on core. ¥!Debris Transport Fractions in ZOI: Refers to debris transport fractions involving three-zone ZOI. Each insulation type has characteristic ZOI divided in three sections to account for type of damage within each zone. Step 3: Select Inputs of Interest ¥!Chemical Precipitation Temperature: CASA Grande assumes that, once a thin bed of fiber forms on strainer, chemical head loss factors apply when pool temperature reaches precipitation temperature. ¥!Total Failure Fraction for Debris Outside the ZOI: CASA Grande uses table of total failure fractions applied to transport logic trees. Fraction of each type (fiber, paint and coatings, etc.) that passes to the pool are used to understand what is in the pool as a function of time during recirculation. ¥!Chemical Head Loss Factor: Used as a multiplier on conventional head loss calculated in CASA Grande. Multiplier is applied if thin bed is formed and pool temperature is at or below precipitation temperature. Step 3: Select Inputs of Interest ¥!Fiber Penetration Function: Fraction of fiber that bypasses the ECCS sump screen as a function of the amount of fiber on the screen. ¥!Size of ZOI: ZOI defined as direct function (multiplier) of break size and nominal pipe diameter; e.g., for NUKON fiber, ZOI is 17 times break diameter. ZOI is spherical unless break is not DEGB, in which case it is hemispherical. Truncated by any concrete walls within the ZOI. ¥!Time to Turn Off One Spray Pump: If three spray pumps start, then by procedure one is secured. Time to secure the pump is governed by operator acting on the conditional action step in procedure. Step 3: Select Inputs of Interest ¥!Time to Hot Leg Injection: Similar to the spray pump turn off time, the time to switch one or more trains to hot leg injection operation is governed by procedure. ¥!Strainer Buckling Limit: Limit is the differential pressure across ECCS strainer at which strainer is assumed to fail mechanically. This limit is based on engineering calculations that incorporate safety factor. ¥!Water Volume in the Pool: Depending on break size, amount of water in pool, as opposed to amount in RCS and other areas in containment, varies. Smaller breaks tend to result in less pool volume than larger breaks. Step 3: Select Inputs of Interest ¥!Debris Densities: Depends on amount and type of debris that arrives in pool. These densities are used in head loss correlations to calculate, for example, debris volume. ¥!Time Dependent Temperature Profiles: Temperature of water in sump affects air release and vaporization during recirculation. Time-dependent temperature profile comes from coupled RELAP5-3D and MELCOR simulations depending on break size. ¥!Spray Failure Fraction for Debris Outside ZOI: CASA Grande uses a table of failure fractions applied to transport logic trees. Fractions of each type of debris that passes to pool are used to understand what is in pool as function of time during recirculation. The spray failure fraction is fraction of failed coatings that wash to pool during spray operation. Step 4: Nominal Values and Ranges for Inputs !"#$%&'()(*+%+)&,+-+.&/&,+-+.&0&,+-+.&1&,+-+.&2&2'/*(/$3,4*&$5678$9:;<$=;:<$:<$<>$?@&@($3,4*&$2,A,/$5BC3"8$D;<$E$9<$<>$F*4&,+$G&'(+H@&/$I(+,)*$JKI$?'+*$2@L$M,BN$$$O'/*&$P@Q1A*$,($R@@Q$?'+*$S9>T$U9>T$$$!N*A,V'Q$R&*V,H,/'-@($G*AH$5@38$9E>@$9=>@$$$$$G@/'Q$3',Q1&*$3&'V-@($K1/+,)*$JKI$?'+*$2@L$$$$$!N*A,V'Q$M*')$2@++$3'V/@&$?'+*$U<>T$$$$$3,4*&$R*(*/&'-@($31(V-@($?'+*$M,BN$$$$$JKI$#,W*$?'+*$S77T$$$$$G1&($@X$9$#H&'0$R1AH$5A,(;8$:>$9EE>$$$$$M@/$2*B$I(Y*V-@($5A,(;8$7E<$E<>$$$$$#/&',(*&$?1VZQ,(B$2,A,/$56;$M:K8$[;7<$[;=$$$$$F*4&,+$F*(+,/0$5Q4AC678$?'+*$U:<T$$$$$G*AH*&'/1&*$R&@\Q*+$5@38$?'+*$S<T$$$$$#H&'0$G&'(+H@&/$3&'V-@($=T$9:T$ Step 5: Estimate Outputs Under Nominal Values of Inputs 3&4+"567-6%8&9+(5$)+&:;#+<%+=&>6)+<7?"&9+("&!@>A&BCD&@!&E(.FGH6=%I&BCD&@!&,?J&,6*6%&BCD&@!&K##+)&,6*6%&@!&EH&D&?F&9+("&>$?'+*Q,(*$]@(*$9;^9D_S>^$9;[9E_S>[$9;=:=_S>^$:;>>[_S>^$9>;<7T$ Step 6: One-Way Sensitivity Analysis 3&4+"567-6%8&9+(5$)+&:;#+<%+=&>6)+<7?"&9+("&!@>A&LMBCG.+-+.&@!&EH&D&?F&9+("&>$?'+*Q,(*$]C"$9;^9D_S>^$9>;<7T$9$2'/*(/$3,4*&$2@L$5=;:<$6`78$F*V&*'+*$9;[><_S>^$9>;9:T$:$2'/*(/$3,4*&$M,BN$5:<$6`78$I(V&*'+*$9;==[_S>^$9>;=9T$7$2'/*(/$3,4*&$P*&0$M,BN$5<>$6`78$I(V&*'+*$7;7[E_S>^$E:;=7T$E$?@&@($2@L$5E;>$BC3"8$I(V&*'+*$9;=[>_S>=$=D;D[T$<$?@&@($P*&0$M,BN$5<>$BC3"8$F*V&*'+*$9;7>^_S>^$9>;^>T$=$?@&@($M,BN$59<$BC3"8$F*V&*'+*$9;7:[_S>^$9>;=<T$D$F*4&,+$G&'(+H@&/$I(+,)*$JKI$M,BN$I(V&*'+*$D;^[=_S>^$:^;<>T$^$F*4&,+$G&'(+H@&/$I(+,)*$JKI$2@L$F*V&*'+*$9;:E9_S>^$9:;>7T$[$!N*A,V'Q$G*AH$M,BN$I(V&*'+*$9;[><_S>^$9>;9DT$9>$F*4&,+$G&'(+H@&/$K1/+,)*$JKI$2@L$F*V&*'+*$9;DD>_S>^$9>;=9T$99$!N*A,V'Q$M*')$2@++$3'V/@&+$M,BN$I(V&*'+*$:;:^D_S>^$^;^<T$9:$R*(*/&'-@(a$2@L$_(.*Q@H*$@b$3,Q/&'-@($31(V-@($I(V&*'+*$9;<<:_S>D$9>;[7T$97$JKI$#,W*$#A'QQ$F*V&*'+*$=;D[<_S>[$9:;9^T$9E$G1&($KX$9$#H&'0$2@(B*&$F*V&*'+*$9;<=[_S>^$99;:7T$9<$M@/$2*B$I(Y*V-@($2@(B*&$I(V&*'+*$9;[=:_S>^$[;[=T$9=$#/&',(*&$2,A,/$M,BN*&$F*V&*'+*$9;=7[_S>^$9>;[[T$9D$O'/*&$P@Q1A*$2@L$I(V&*'+*$:;>>9_S>^$9>;97T$9^$O'/*&$P@Q1A*$M,BN$F*V&*'+*$9;=<<_S>^$9>;D7T$9[$F*4&,+$F*(+,/0$M,BN$I(V&*'+*$:;<=D_S>^$[;9DT$:>$G*AH*&'/1&*$R&@\Q*+$2@L$I(V&*'+*$9;[=7_S>^$9>;9ET$:9$F*4&,+$G&'(+H@&/$K1/+,)*$JKI$M,BN$I(V&*'+*$9;D[^_S>^$9>;=<T$ Step 6: One-Way Sensitivity Analysis >;9>$9;>>$9>;>>$9>>;>>$9c>>>;>>$?@&@($31*Q$2,A,/$5E;>$BC3"$S$<>$BC3"8$R*(*/&'-@($2@L$_(.*Q@H*$F*4&,+$G&'(+H@&/$I(+,)*$JKI$JKI$#,W*$#A'QQ$2'/*(/$3,4*&$5=;:<$6`7$S$<>$6`78$F*4&,+$F*(+,/0$M,BN$!N*A,V'Q$M*')$2@++$3'V/@&+$M,BN$O'/*&$P@Q1A*$G1&($KX$9$#H&'0$2@(B*&$#/&',(*&$2,A,/$M,BN*&$G*AH*&'/1&*$R&@\Q*+$2@L$M@/$2*B$I(Y*V-@($2@(B*&$!N*A,V'Q$G*AH$M,BN$G@/'Q$3',Q1&*$T$K1/+,)*$JKI$2@L$5^>T8$#H&'0$G&'(+H@&/$T$K1/+,)*$JKI$M,BN$59:T8$d'-@$@b$d,+Z$1()*&$/N*$#V*('&,@+$/@$d,+Z$1()*&$]@A,('Q$R'&'A*/*&$P'Q1*+$#V*('&,@$F*+V&,H-@(+$G@&(')@$F,'B&'Aa$G@/'Q$e!F3$F*V&*'+*)$R'&'A*/*&$P'Q1*+$I(V&*'+*)$R'&'A*/*&$P'Q1*+$!"<)+(56"N&O65P&>+<)+(56"N&O65P& Step 6: One-Way Sensitivity Analysis >;9$9;>$9>;>$9>>;>$9>>>;>$7;>$7;<$E;>$E;<$<;>$<;<$=;>$=;<$D;>$D;<$^;>$^;<$[;>$d,+Z$d'-@+$?@&@($31*Q$2,A,/$5BC3"8$e!F3$5G@/'Q8$f*'($d,+Z$?'+*Q,(*$!"<)+(56"N&O65P&>+<)+(56"N&O65P& Step 6: One-Way Sensitivity Analysis >;9$9;>$9>;>$9>>;>$9>>>;>$7;>$7;<$E;>$E;<$<;>$<;<$=;>$=;<$D;>$D;<$^;>$^;<$[;>$d,+Z$d'-@+$?@&@($31*Q$2,A,/$5BC3"8$e!F3$5P*++*Q8$f*'($d,+Z$?'+*Q,(*$!"<)+(56"N&O65P&>+<)+(56"N&O65P& Step 6: One-Way Sensitivity Analysis >;9$9;>$9>;>$7;>$7;<$E;>$E;<$<;>$<;<$=;>$=;<$D;>$D;<$^;>$^;<$[;>$d,+Z$d'-@+$?@&@($31*Q$2,A,/$5BC3"8$e!F3$5#1AH8$$$f*'($d,+Z$?'+*Q,(*$!"<)+(56"N&O65P&>+<)+(56"N&O65P& Step 6: One-Way Sensitivity Analysis !"##$!"%$!"%#$!"&$!"&#$!"'$!"'#$!"($!"(#$)$!$#!!$)!!!$)#!!$*!!!$*#!!$+!!!$+#!!$,!!!$!"#$%&'()*+$%&"),%*-&..*")*/%&0.*-./0$)1$+#+234$-./0$*1$+#+234$-./0$+1$+#+234$-./0$#1$+#'234$-./0$&1$**!234$560$733.8$9:;.<=3.$>=?.8$9:;.<=3.$Filtration Function Envelope Step 6: One-Way Sensitivity Analysis >;9$9;>$9>;>$9>>;>$>;>$>;9$>;:$>;7$>;E$>;<$>;=$>;D$>;^$>;[$9;>$d,+Z$d'-@+$3,4*&$_(.*Q@H*$5>S2@L*&c$9SgHH*&8$e!F3$5G@/'Q8$f*'($d,+Z$!"<)+(56"N&O65P&>+<)+(56"N&O65P& Step 6: One-Way Sensitivity Analysis >;9$9;>$9>;>$9>>;>$>;>$>;9$>;:$>;7$>;E$>;<$>;=$>;D$>;^$>;[$9;>$d,+Z$d'-@+$3,4*&$_(.*Q@H*$5>S2@L*&c$9SgHH*&8$e!F3$5P*++*Q8$f*'($d,+Z$?'+*Q,(*$!"<)+(56"N&O65P&>+<)+(56"N&O65P& Step 6: One-Way Sensitivity Analysis >;9$9;>$9>;>$>;>$>;9$>;:$>;7$>;E$>;<$>;=$>;D$>;^$>;[$9;>$d,+Z$d'-@+$3,4*&$_(.*Q@H*$5>S2@L*&c$9SgHH*&8$e!F3$5#1AH8$f*'($d,+Z$?'+*Q,(*$!"<)+(56"N&O65P&>+<)+(56"N&O65P& Step 6: One-Way Sensitivity Analysis ¥!Alternative distributions used for chemical head loss factor: 1.!No chemical head loss 2.!Factors constant at 1x mean (S=2.25/M=2.50/L=3.00) 3.!Factors constant at 2x mean (S=3.50/M=4.00/L=5.00) 4.!Factors constant at 3x mean (S=4.75/M=5.50/L=7.00) 5.!Truncated exponential (S=6/M=3.5/L=2.25) at tail probability of 1E-5 6.!Truncated exponential (S=3/M=2.5/L=2.25) at tail probability of 1E-5 7.!Truncated normal (Mean, St Dev = 3x Mean) Means have base case values of (S=2.25/M=2.50/L=3.00) Step 6: One-Way Sensitivity Analysis >;>$>;:$>;E$>;=$>;^$9;>$9;:$9;E$9;=$9;^$:;>$$d'-@$@b$G@/'Q$e!F3$/@$?'+*$!'+*$F,+/&,41-@($@b$!N*A,V'Q$M*')$2@++$3'V/@&$G@/'Q$e!F3$f,($G*AH$9E>$]@$f,(,A1A$G*AH$?'+*Q,(*$!"<)+(56"N&O65P&>+<)+(56"N&O65P& 9;>>>$>;<>>$>;777$>;9=D$>;>>>$9;_S>[$9;_S>^$9;_S>D$9;_S>=$9;_S><$9;_S>E$E;>$<;>$=;>$D;>$^;<$A6.%)(7?"&A$"<7?"&Q&@>A&A6R+)&'+"+%)(7?"&,6*6%&SNTAUV&!@>A&SW?%(.V&(5&(&A$"<7?"&?F&A6R+)&'+"+%)(7?"&,6*6%&("=&A6.%)(7?"&A$"<7?"&9;_S>[S9;_S>^$9;_S>^S9;_S>D$9;_S>DS9;_S>=$9;_S>=S9;_S><$9;_S><S9;_S>E$Step 9: Two-Way Sensitivity Analysis >$S$9;_S>^$ 9;>>>$>;<>>$ >;777$ >;9=D$ >;>>>$E;>$<;>$=;>$D;>$^;<$A6.%)(7?"&A$"<7?"&Q&@>A&A6R+)&'+"+%)(7?"&,6*6%&SNTAUV&Q@>A&SW?%(.V&(5&(&A$"<7?"&?F&A6R+)&'+"+%)(7?"&,6*6%&("=&A6.%)(7?"&A$"<7?"&9;_S>[S9;_S>^$9;_S>^S9;_S>D$9;_S>DS9;_S>=$9;_S>=S9;_S><$9;_S><S9;_S>E$>$S$9;_S>^$Step 9: Two-Way Sensitivity Analysis 9;>>>$>;<>>$ >;777$ >;9=D$ >;>>>$E;>$<;>$=;>$D;>$^;<$A6.%)(7?"&A$"<7?"&Q&@>A&A6R+)&'+"+%)(7?"&,6*6%&SNTAUV&Q@>A&SX+55+.V&(5&(&A$"<7?"&?F&A6R+)&'+"+%)(7?"&,6*6%&("=&A6.%)(7?"&A$"<7?"&9;_S>[S9;_S>^$9;_S>^S9;_S>D$9;_S>DS9;_S>=$9;_S>=S9;_S><$9;_S><S9;_S>E$>$S$9;_S>^$Step 9: Two-Way Sensitivity Analysis ExplainingSubtleModelingTrendsBruceLetellier-AlionScienceJeremyTejada-UniversityofTexasAustin NonintuitiveTrends*ExtensiveusageofCASAGrandeforparameterstudiesrevealsfour(4)subtlenonintuitivetrendsinquantitativerisk*TwoissueswereopenedasErrorReports.Twoissueswereinvestigatedduringparameterstudy.Alldispositionedusingcasestudyanalysis:-ER01-UnqualifiedCoatingsSprayFraction*IncreasingthefractionofUCtransportundersprayleadstoslightreductioninrisk-ER03-FiberInventoryMassConservation*Overtime,fibermassincreasesslightly-PS01-LatentFiberEffectatT0*Increasinglatentfiberslightlydecreasesrisk-PS02-TimeStepEffect*Decreasingtimestepcansignificantlydecreaserisk ER01 -Unqualified Coatings Spray Fraction*Parameterstudiesoftransportfractionsindicatethatincreasingthe6%spraywashdownfractionto12%forfailedepoxyslightlyreducesrisk(1%Reduction).*SpreadsheetcalculationsforassumedinventoryoffailedcoatingsshowsverydefinitereductioninSVforincreasedsprayfractionfrom6%to25%.*Holdsforbothlinearmassandvolumeweightingandforquadraticvolumeweighting.Simplycompetitionbetweenparticulateproperties.*SVistheamountofdragareaperunitsoliddebrisvolume.SVisindependentofporosity.MoredebrisdoesnotimplyhigheraverageSV.*Aproperformalismwouldusetotalsurfacearearatherthanaveragesurfacetovolumeratiosothatmoreofanythingalwaysaddsdrag. ER01-UnqualifiedCoatingsSprayFraction(example)SphericalDiamMaterialDensity(kg/m3)InitialMass(kg)Initial(m1)FinalMass(kg)Final(m1)1101490100100215019862530512,0001581VS*Surfacetovolumeratiocandecreasewhentheproportionoflargerparticlesincreases(volumeincreasesfasterthanarea)*TrueatSTPforsprayfractionsbecauselargeinventoryof10menamelhaszerosprayfraction(otherparticulatesincreaseinproportionandSVdecreases) ER03 -Fiber Inventory Mass Conservation*Parameterstudiesandcodeverificationexercisesshowthatfiberinventoryincreasesslightlyoverthe36hcalculation*Explicittimeforwardintegrationuses"leading"concentrationsforeachtimestep.Coarseresolutiondeliversartificialmassateachtimestepthataccumulatesaboveinitialinventory.*Smallertimestepsreducethiseffect. PS01 -Latent Fiber Effect at T0*Parameterstudiesoflatentfiberquantityshowthatincreasinglatentfiberslightlydecreasesrisk.*Fiberfiltrationandsheddingmodelaccountsforimprovedfiltrationwithincreasingdebrisload.*Morelatentfiberinitializesslightlyhigherfiltrationatbeginningofrecirculation*Useroptionaddedtoallowsomefractionoflatentfibertopassthroughthestrainer. PS01 -Latent Fiber Effect at T0 (cont)1.0E081.5E082.0E082.5E083.0E083.5E080.010.020.030.040.050.060.070.080.090.0100.0TotalCoreDamageFrequencyLatentFiber(ft3)SensitivityPlot:CommonRandomNumbersMeanRiskDecreasingRiskIncreasingRisk PS02 -Time-Step Effect*Reductionoftimestepfrom5minto1minfoundtoreducequantitativeriskbyafactorof1.5.*Explicttimeforwardintegrationintroducesnumericaldiffusionthatadvancesdebristothestrainerartificiallyrapidly.*NPSHrelatedfailuresoccurbeforereductionintemperatureregainsmargin.*Possiblenonconservatismmaybeintroducedbyimprovedfiltrationonthedebrisbedthatprotectscore.Nonumericalevidencethatthisdominates. PS02-TimeStepEffectTrend Summary:*Thefour"nonintuitive"observationsdiscussedherehavebeenexplainedatafundamentallevel*Changesinnumericalapproximationsandphysicaldescriptionscaneliminateundesiredbehavior*Subtletrendsrevealedinmodelinteractions*Essentialtoconfirmingorcorrectingengineeringintuition*SensitivitystudiescreateessentialQAopportunitiestoexercisephysicalmodelsoverfullparameterranges-Identifyinputerrors-Identifycodelevelerrors

}}