ML20210D256
ML20210D256 | |
Person / Time | |
---|---|
Site: | Surry |
Issue date: | 08/31/1986 |
From: | Pierce N, Reitler E VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
To: | Harold Denton, Rubenstein L Office of Nuclear Reactor Regulation |
References | |
86-587, NUDOCS 8609190089 | |
Download: ML20210D256 (61) | |
Text
{{#Wiki_filter:' I khh VP-NOS-29 yss.h3, N. - aN%%t41-4 e3
'e\ x xs \ ~ h>A \ nQ va ; p)& % V^A, N \sW NA %aA w;#.Wh 'qifg NL\ % g % '" A \ c4 l V2) % %
g\$ 1)k'e 9
%3 4% % N.a 5
ke t A y% %d %*)
'A b g %%g i\ ,
g
%si l ,
Suny Unit 1, Cycle 9 Startup Physics Tests Report I Nuclear Operations Departnient I I I I I I I I g O
p 'dr
? .:,
4 'w '
;yr .h I
W a I
'b
- s. 4 -
h sh
-n -
[ L
.w .
b ,l u y y s 1 i.
.g- f L.S
+$ ; fi;: .
\
p, r, k ' e
~
J ? J, i:y z ; - ?
., Q k$ # J 'A g -] W .' g+
3 1 - {ik b g -; w. Qqi a fy
.v . .'s 1r +% ;[py v f . + ?, h ~, i j, f, "^
i 4; Q # .. p g .f w' 3et. .,. ,%q1 . E,- [s < a
.d' $ ga i
ghh k 'f* i
'wem %+ ) tapv%
k * " n
%i f*
[ 4 B a-.q*hg 6 4.- A 1- . e , weg ige C: s
~ ) @L .
i I Q B $s W qN!q: ? - ; pg4 %pq$ , s 'j' 11 - - ' h~ @d .y y h gw~ T .
'% ^ L 5 q , b6 j x s u o l'3 e_
Eg-(A e Ao gg 7 4 h > 7Nhf$m$ hyttr&d. $ h O4At f_ g
~ .o ? = $b A = *&a id!
3j$W 'i - P 1 .Qh n a GN%yyyM gijj (f>x%iML u v4 vfm%g; Jk yg y: :l Q,a c gg} w#; qe % QW' ye ^ % s t , % %i]$]k 4 h a y apag ,a e
'h pu y n
g spy .un w#w fMg@w%g 1 e m 3%x yyu j ,p :: y y y a qu, qqwsm ~p
~
h9pf nwwg w Ws h 'i g h e m e.Ams , g u aggen d(npapa s m u e y,h ~.awww'Nhl W3J h.:;D j fh %r n h
~ ~, $kffagana,h,u " , , N- khj.0 MW M $w;hf W x n 2h werrr:nmen 5
wswayw );7
. .t WrRW. pL ewns W &- -. 2, ma$p?"b"h&g&s&,Ql%M& wn ch.k:
3 ] w{l Q ,McV3L M gl qM f.m n n .. wg4yN gfgG% %e ag m%;;;;$, i;&nWQ tn iisnestnenn
?;. P0ameWQQ MRNK?d71%gwpq:p?gkk T :
e L @~pwe;pp J 7p m a ,g 3eyp +p m., m 1gg g gA gwa p pyggj@g%ma m%gg$igjd$.m$ide
- - . we g hg G w M WFE24W y ew %g s qMedernE p$ u gy;@g g
i I ! VEP-NOS-29 I , I SURRY UNIT 1, CYCLE 9 STARTUP PHYSICS TESTS REPORT by ' N. S. Pierce and E. C. Reitler i I i I , Reviewed By: Approved By:
/. ~ . b T. A. Brookmire, Associate Engineer C. A w C. T. Snow, Supervisor Nuclear Fuel Operation Nuclear Fuel Operation Operations and Maintenance Support Subsection Nuclear Operations Department I Virginia Electric and Power Company Richmond, Va.
I ~ August, 1986 I : i
l,' 5. CLASSIFICATION / DISCLAIMER l l
\
Tne dsta, technignes, information, and concit:sfons in this report have { i been prepared solely for use by Virginia Electric and Power Company , 1 (the Company), and they may not be appropriate for use in situations l other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsceve.r, express or implied, as te their accuracy, usefulness, or appilcability. In particolar, THE COMPANY MhKES NO h*ARRANIT OF MERCHANTABILITY OR FITNESS FOR A PARTILVIAR ' FURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEf. LING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusien? in it. By making this report aya21able, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the.
~Ccmpany. Any such written approcal shall litelf be deemed to incorporate the disclaimers of liability and disclaimers of v3rrantias prutdea herein. In no event shall the Compt.ny be liabic, u @ r any legal theory l- whatsoever (whet.her contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out ,
of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it. [ _ _ _ _ _ _ . _ . _ _ _ . . _ _ _ _ . _ _ _ _ _ _ _ . _ __.m.-___ _ _ _ _ . . _ _ _ . _ _. _ _ _ _ . . _ _ _ _
>I I . I TABLE OF CONTENTS SECT!ON TITLE PAGE NO. Class ification/ Disclaimer. . . . . . . . . . . . . . . . . . i List of Tab 1es............................. iii List of Figures..... .............. .... iv Prefece.................................... v 1 Introduction and Summary.................., 1 2 Control RM Drop Tiec Measurements. .. . . . . . 10 3 Control Rod Bank Worth Measurements........ 15 4 Boron Endpoint and Worth Measurements...... 20 5 Temperature Coefficient Measurements....... 24 I 6 Power Distribution Measurements............ 27 7 References................................. 34 APPE.tlX Startup Physics Tests Results and I 35 Evaluation Sheets.......................... I I I I
.I di I
LIST OF TABLES TABLE TITLE PAGE NO. 1, 1.1 Chronology of Tests................................ 4 l l 2.1 Hot Rod Drop Time Summary........................., 12 ) i 3.1 Control Rod Bank Worth Summary..................... 17 {. 4.1 Boron Endpoints Summary.................... ....... 22 5.1 Isothermal Temperature Coefficient Summary......... 25 6.1 Incore Flux Map Summary............................ 29 6.2 Comparison of Measured Power Distribution Para-meters With Their Technical Specifications Limits... 30 1 k ( iii
I I l I LIST OF FIGURES g- ; FIGURE TITLE PAGE NO. I 1.1 Core Loading Map......................................... 5 1.2 Beginning of Cycle Fuel Assembly Burnups................. 6 1.3 Incore Instrumentation Locations............ ............ 7 1 1.4 Eurnable Poison and Source Assembly Locations............ 8 1.5 Control Rod Locations........................ ........... 9 2.1 Typical Rod Drop Trace................................... 13 2.2 Rod Drop Time - Hot Full Flow Conditions................. 14 3.1 Bank B Integral Red Worth - HZP.......................... 18 3.2 Bank B Differential Rod Worth - HZP....................... 19 4.1 Boron Worth Coefficient.................................. 23 5.1 Isothermal Temperature Coefficient - HZP, AR0............ 26 6.1 Assemblywise Power Distribution - 30% Power.............. 31 6.2 Assemblywise Power Distribution - 50% Power.............. 32 6.3 Assemblywise Power Distribution - HFP, Eq. Xenon......... 33 I I I E I iv I
I I PREFACE The purpose of this report is to present the analysis and evaluation of the physics tests which were performed to verify that the Surry 1, Cycle 9 core could be operated safely, and to make an initial evaluation of the performance of the core. It is not the intent of this report to discuss , the particular methods of testing or to present the detailed data taken. Standard test techniques and methods of data analysis were used. The test data, results and evaluations, together with the detailed startup procedures, are on file at the Surry Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparision of the test results with design predictions, and an evaluation of the results. The Surry 1, Cycle 9 Startup Physics Tests Results and Evaluation Sheets have been included as an appendix to provide additional information on the startup test results. Each data sheet provides the following information: 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values of the measured parameters were completed I prior to the startup physics testing. The entries for the design values I were based on the calculations performed by Virginia Electric and Power Company's Nuclear Fuel Engineering Group". During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occuring during the tests. The Appendix to this report contains the final completed and approved version of the Startup Physics Tests Results and Evaluation Sheets. v I
I I SECTION 1 INTRODUCTION AND
SUMMARY
l On May 10, 1986 Unit No. 1 of the Surry Power Station was shutdown for its eighth refueling. During this shutdown, 56 of the 157 fuel assec:blies in the core were replaced with fresh fuel assemblies. The ninth cycle core consists of 15 sub-batches of fuel: five once-burned sub-batches, four from Cycle 7 and one from Cycle 8 (sub-batches 9A3, 9A7, 9AS, 9B2, and 10A, respectively), eight twice-burned sub-batches, one frcm Cycles 6 and 7, one from Cycles 6 and 8, one from Cycles 6 and 7 of I Unit 2, and five from Cycles 7 and 8 (sub-batches 8B3, 8B5, S2/8A, 9A2, 9A4, 9B1, 9B3 and S2/9B, respectively), and two fresh sub-batches (sub-batches 11A and 11B). The core loading pattern and the design parameters for each batch are .shown in Figure 1.1. Fuel assembly burnups are given in Figure 1.2. The incore instrumentation locations are identified in Figure 1.3. Figure 1.4 identifies the location and number of burnable poison rods and source assemblies for Cycle 9, and Figure 1.5 identifies the location and number of control rods in the Cycle 9 core. On July 12, 1986 at 2332, the ninth cycle core achieved initial criticality. Following criticality, startup physics tests were performed as outlined in Table 1.1. A summary of the results of these tests follows:
- 1. The drop time of each control rod was confirmed to be within the 1.8 second limit of the Surry Technical Specifications 8 .
- 2. Individual control rod bank worths for all control rod banks were I measured using the rod swap technique8 and were found to be within 1
1 ;
B I i 8.2% of the design predictions. The sum of the individual control rod bank worths was measured to be within 3.4% of the design prediction. These results are within the design tolerance of 15% i for individual bank worths ( 10% for the rod swap reference bank worth) and the design tolerance of 10% for the sum of_the 1 l individual control rod bank worths. I l
- 3. Critical boron concentrations for two control bank configurations were measured to be within 24 ppm of the design predictions.
l These results were within the design tolerances and also met the accident analysis acceptance criterion. l 8 4. The boron worth coefficient was measured to be within 1.3% of the l t design prediction, which is within the design tolerance of i10% and met the accident analysis criterion. l
- 5. The isothermal temperature coefficient for the all-rods-out configuration was measured to be within 0.2 pcm/'F of the design prediction. This result is within the design tolerance of 3 pcm/'F and also meets the accident analysis acceptance criterion.
- 6. core power distributions for at power conditions were all within established design tolerances. Generally, the measured core power distribution was within 5.0% of the predicted power distribution. All measured parameters were within the limits of the Technical Specifications and met their respective accident analysis acceptance criteria.
I 2 5
l 5 I , In summary, the startup physics test results were acceptable. l Detailed results, .ogether with specific design tolerances and acceptance criteria for each measurement, are presented in the appropriate sections of this report.
- I 4
I il l I I I I I I I I I s I
Table _1.1 SURRY 1 - CYCLE 9 STARTUP PHYSICS TESTS CHRONOLOGY OF TESTS l Reference Test Date Time Power Procedure Hot Rod Drop Timing Test 7/12/86 0105 HSD 1-PT-7.2 Zero Power Testing Range 7/13/86 0032 HZP PT28.11 [ Reactivity Computer Checkout 7/13/86 0112 HZP PT28.11(B) Boron Endpoint-ARO 7/13/86 0300 HZP PT28.11(C) Temperature Coefficient-ARO 7/13/86 0332 HZP PT28.11(D) Bank B Worth 7/13/86 0510 HZP PT28.11(E) Boron Endpoint-B In 7/13/86 0856 HZP PT28.11(C) Bank D Worth - Rod Swap 7/13/86 0859 HZP PT28.11(F) Bank C Worth - Rod Swap 7/13/86 0943 HZP PT28.11(F) Bank A Worth - Rod Swap 7/13/86 1024 HZP PT28.11(F) Bank SB Worth - Rod Swap 7/13/86 1053 HZP PT28.11(F) Bank SA Worth - Rod Swap 7/13/86 1130 HZP PT28.11(F) Flux Map - Power Distribution 7/18/86 0955 30% OP-57, Measurement PT28.2 Flux Map - Delta I Target 7/20/86 0312 50% OP-57, PT28.2 Flux Map - I/E Calibration 7/20/86 2046 70% OP-57, PT28.2 Flux Map - I/E Calibration 7/20/86 2245 70% OP-57, PT28.2 ) Flux Map - I/E Calibration 7/21/86 0102 70% OP-57, [ Flux Map - HFP, Eq. Xenon 7/29/86 0901 100% PT28.2 OP-57, PT28.2
t h f Figure 1.1 1 SURRY UNIT 1 - CYCLE 9 CORE LOADING MAP Q P N M L K J H G F E D C 8 A 9A 9B 8B
, 3D6 503 2C4 1 9A 98 118 10A 118 9B 9B 2D8 402 5FS 3E5 2F9 4D6 5D9 2 98 11A 118 10A 118 10A 118 11A 98 6DO OF6 4F5 1E9 SF1 4E7 tri IF3 SD7 3 !: 9A 9A ile 10A 11A 9A 11A 10A 118 9A 98 , 3D1 2D9 3F5 3E1 2F2 DDI 1F8 3E7 3F3 200 4D5 4 NF 11A 118 10A 10A 10A 11A 10A 10A 10A 118 11A 9A 3 MD 1F7 3F8 4E1 2E1 3E2 0F1 OE6 OE2 1E7 4F7 0F8 3D2 5 9A 118 10A 10A 10A 11A 9A 11A 10A 10A 10A 118 9A 2D5 SF4 OE4 OE7 IE3 IFO 107 2F6 3E0 SE5 1E6 3F7 103 6 94 118 10A ~C 1 10A 11A 10A 10A 10A 11A 10A 11A 10A 118 9A 104 3F2 4E9 2F3 4E2 IF9 IES 1EO OE3 IF4 4E0 O FI. OE8 4F3 1D9 7 15 - 10A 118 9A IIA 9A 10A 9A 10A 9A 11A 9A 11B 10A 8B 505 SE1 4F4 108 2F8 009 4E6 3D5 SE6 102 2F1 005 SF3 IE4 Ic6 8 lI TF 10A 11A 10A~ IIA 10A 10A 10A 11A ~ 10A 11A 10A 118 9A 3DO SFO PE3 1F5 3E3 0F2 3E4 4E4 SEO OF5 4E3 2F4 2E5 4F9 2D3 9 '9B TE~ 10A 10A 10A 11A 9A 11A 10A 10A 10A 11B '9B 4RO SF6 4E5 IE1 2E4 2FO 2D7 0F9 1E8 2E6 2[9 3F1 3R2 10 #98 11A 11B 10A 10A 10A 11A 10A 10A 10A 118 11A *9B 1R2 IF1 3F4 3E6 SE4 OE1 2F7 OES 3E9 SE3 3F6 0F3 1R4 11 98 98 11B 10A 11A 9A 11A 10A 118 98 9A 4D3 500 3F9 2E7 1F6 OD6 2FS 2E8 4F2 SD4 1D6 12 9B 11A 118 10A 11B 10A 118 11A 98 r 401 0F7 4F8 OE9 3F0 4E8 4F6 1F2 502 13 98 9A 118 10A 118 9A '8A L 308 OD4 4F0 2E2 SF2 304 3P2 '14 9A 98 9A ==> BA1CH 2D4 408 202 15 --> ASSEMBLY ID FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH S2/8A 8B 9A 9B S2/99 10A 11A 118 INITIAL ENRICHMENT (W/0 U237) 3.61 3.40 3.59 3.61 3.59 3.60 3.60 3.80 BURNUP AT BOC 9 (MWO/MTU) 31047 26443 25243 28261 28093 17004 0 0 ASSEMBLY TYPE 15x15 15X15 15x15 l 15X15 15x15 15x15 15x15 15x15 NUMBER OF ASSEMBLIES 2 2 26 15 4 52 28 28 FUEL ROOS PER ASEMBLY 204 204 204 204 204 204 204 204
l 5 Figure 1.2 i SURRY UNIT 1 - CYCLE 9 BEGINNING OF CYCLE FUEL ASSEMBLY BURUNUPS I R P N M L K J H 0 F E D C B A 36 I 29567
! J3 28222 2C4 27950 1 ~ED8 4D2 SFS 3E5 2F9 406 5D9 31017 23731 0 15802 0 24882 31331 2 8 600 33256 0F6 0
W 0 W 17966 SF) 0 4E7 17912 4F1 0 1F3 0 SD7 32988 3 3D1 33025 2D9 15423 3F5 0 3El 18407 2F2 0 001 26502 1F8 0 3E7 18329 W 0 200 15618 4D5 j 327941 4 i 3PO W 0 3F8 0 4E1 TI 3E2 17646 OF) 0 OE6 17730 OE2 1E7 17072 4F7 JF8 0 3D2 32156 31252 15852 15276 15664 0 ') 2D5 24745 SF4 0 OE4 18407 OE7 15614 lE3 17179 1F0 0 107 18076 W 0 3E0 17191 SES 15543 W 18149 W 0 1D3 24268 6 5 ~ID4 29581 W 0 T.T 17899 W 0 4E2 17236 1F9 0 IES 17782 1[0 15339 OE3 17851 IF4 0 4E0 17448 0F4 0 Oft 17197 4F3 0 W 29981 7 SDS SEl - 4F4 0 1D8 2F8 OD9 4E6 3D5 $E6 ~lDT W 005 W W IC6 28134 15161 26790 0 18199 15789 13035 15624 17771 0 26428 0 15363 24937 8 I 300 29576 W 0 W 17915 W 0 3E3 17820 0F2 0 3E4 17218 4E4 15595 SEO 17828 OF5 0 4E3 17675 2i4 0 TET 18086 4F9 0 2D3 28566 9 4RO 24343 W 0 4E5 18315 1El 15420 2E4 17011 8FO 3 207 17858 0F9 0 1E6 17124 2L6 14999
;E9 18149 3F1 0
3R2 24212 10 1 1R2 32187 W 0 3F4 0 3E6 SE4 OE1 2F7 0 OES 3E9 W W W 1R4 16970 15232 17594 17472 15191 17245 0 0 31619 11 4D3 5D0 3F9 2E7 1F6 0D6 2FS 2E8 4F2 504 106 I 33004 14667 401 32729
~677~
3D8 0 0 18203 4F8 004 0 OE9 0 17494 4F0 26779 3F0 2E2 0 4E8 0 18053 W 18244 4F6 3D4 0 1F2 3P2 0 0 15022 502 33230 33217 12 13 31426 24635 0 15361 0 24926 30843 14 I. ==> ASSEMBLY ID 204 29047 4D8 28308 202 29348 15
==> AS$[MBLY BURNUP 5
I i I I e
I l 1 I I Figure 1.3 l j SURRY UNIT 1 - CYCLE 9 INCORE INSTRUMENTATION LOCATIONS I R P N M L M J H C F E D C B A MD TC 1 MD TC 2 MD MD MD MD I TC TC TC TC 3 MD MD TC TC MD 4 MD MD MD MD MD TC TC MD TC TC TC 5 i -- MD TC MD TC MD TC 6 MD MD MD MD MD TC TC TC TC TC 7
-~
MD I MD TC TC MD TC MD TC MD TC MD TC 8 MD MD MD MD TC TC TC TC 9 MD MD I TC TC MD TC MD TC 10
. MD MD MD MD TC TC TC TC 11 i '1 MD TC MD TC MD MD TC MD TC i i
12 MD TC 13 I MD = Movabla Detector TC - Thermocoupse MD TC MD MD TC 14 TC 15 I I I I I 7 _ _ _ _ .
I .I i giSnJe L y I SnuBA ONll L - 3A313 6 BnMNY873 dOISON YNG SOnM33 VSS3WGlf l OOY1lONS I W d N M 1 M P H 0 4 3 0 3 9 V iB L 9de ede a l 4d L2d L9d L2d 4d t t Ltd 19d L94 Ltd 4 I 4d tid 4d L94 4d Ltd 94 G ' W 42d 4d 304 20 4 4d L2d 9 9 de L9d 204 %4 204 194 9 de SSL 2
" 694 L94 t de ed tde L94 19d 9 SSE 9de L94 204 tde 304 L94 9 de SSL 6 12d te 204 304 4d LEJ 10 4d ttd ed L94 4d Ltd 4d LL ttd L94 L94 ttd LZ l
ed 13d 494 L34 ed Lt 9 de 94e L% LG 4 d == % SAWNVG13 401 SON W00 31nt43W ed == 9 SAWNv813 JOISON 400 3laS13W 12 d == LZ 9nuNV913 401 SON 400 31nS13W 694 == 69 endNV013 dOiSON W00 31nS13W 304 == 20 9PUNV913 dOISON W00 31nS13W t t d == t t GAWNV813 dOlSON WOO 3laS11W )WSAM31W13( tde == 4 03413130 904W4913 4OiSON WOO 31nS13W 9de == 9 03d73130 enuN,913 4OiSON WOO 31nS13W SSX == S3OONOWWA SOnM33 8 5
r Figure 1.5 , SURRY UNIT 1 - CYCLE 9 L CONTROL ROD LOCATIONS R P N M L K J H C F E D C B A 180' Loop C Loop B 1 g' Outlet inlet l A D A 2 l N-41 SA SA N-43 3 C B B C 4 SB SP SP SB 5 A B D C D B A 6 Loop C Loop B. Inle SA SP SB SB SP SA Outlet 7 90'- 0 C C D - 270* 8 SA SP SB SB SP SA 9 A B D C D B A 10 SB SP SP SB 11 C B B C 12 SA SA 13 N-44 N-42 A D A 14 nt '\ 15 Abso rbe r Loop A Loop A Ma te ri a l Outlet inlet Ag-In-Cd I O, Function Number of Clusters Control Bank D 8 Control Bank C 8 Control Bank B 8 Control Bank A 8 Shutdown Bank SB 8 Shutdown Bank SA 8 SP (Spare Rod Locations) 8
- 9 ,
5 I I 1 SECTION 2 l CONTROL ROD DROP TIME MEASUREMENTS The drop time of each control rod was measured at hot full-fica RCS conditions in order to confirm satisfactory operation and to verify that the rod drop times were less than the maximum allowed by the Technical l Specifications. The hot control rod drop time measurements were run with the RCS at hot, full flow conditions ( 547 'F, 2235 psig) and are described below. I The rod drop time measurements were performed by first withdrawing a rod bank to its fully withdrawn position, and then removing the movable l gripper coil fuse and stationary gripper coil fuse for the test rod. This allows the rod to drop into the core as it would in a normal plant trip. The data recorded during this test are the stationary gripper coil voltage, the LVDT (Linear Variable Differential Transformer) primary coil voltage, and a 60 Hz timing trace which are recorded via a visicorder. The rod drop time to the dashpot entry and to the bottom of the dashpot are determined from this data. Figure 2.1 provides an example of the data that is recorded during a rod drop time measurement. As shown in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary coil fuse is removed. A voltage is then induced in the LVDT primary coil as the rod drops. The magnitude of this voltage is a function of the rod velocity. When the rod enters the dashpot section of its guide tube, the velocity slows causing a voltage decrease in the LVDT coil. The LVDT voltage then reaches a minimum as the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by the rod i 10 5
I I bouncing. This procedure was repeated for each control rod. The measured drop times for each control rod are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.12.C.1 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 1.8 seconds with the RCS at hot, full flow conditions. The test results met this limit. I I I I B B I I B I 'l i 11 5
Table 2.1 SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS HOT ROD DROP TIME
SUMMARY
L ROD DROP TIME TO DASHPOT ENTRY f SLOWEST ROD FASTEST R0D AVERAGE TIME C-9,G-9,F-14 1.23 sec. G-3, K-14 1.13 sec. 1.18 sec. ) ROD DROP TIME TO BOTTOM OF DASHPOT SLOWEST R0D FASTEST R0D AVERAGE TIME F-2, 1.83 sec, K-14, 1.68 sec. 1.76 sec. 12
lI ll l l l\ J 1 ! D E S . O SE P D MO I t R N E . P C. U A w ~ f n R i-t v S e g 1 v R U ~ iE R GGA D D l I I O YT l R L R11 l l M 1 AO l l l NV [ L oL t I { { A T O N l YG T D T AC T S l I Rl As O P l
)
MTU I H ( RP S A l PT A U D l TO D E D l Vl O F C A LoC T R t _T E < 1 P O f f M e R D T l T m O u U2 i e r u g D O R L P H 6 P O R 6 o F A C I P A D D m O Y T T N I Y R s o T N E 4 i m E P. l m T= - M O T T o s D .e O 9 R , o T O O T T H T S O F A i D H F S A M O D= M C O , T " l T fi ', _ O . B _ 1lll
f H ~ Figure 2.2 SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS ROD DROP TIME - HOT FULL FLOW CONDITIONS R P N M L K J H C F E D C 8 A L 1 1.15 1.75 W 1.75 1.19 1.83 2 1.18 1.13 1.80 1.70 3 W1.75 W 1.72 1.17 1.20 1.75 1.77 4 W 1.77 W 1.82 5 l 4.15 ~7 1 1.18 1.15 1.20 1.18 1.18 1.77 1.74 1.76 1.72 1.75 1.72 1.71 6 E' 1.15 1.16 1.21 1 1.74 1.75 1.78 1.79 7 W 1.80 1.18 W W 1.71 1.77 1.80 8 1.22 1.20 1.23 1.23 - 1.80 1.78 1.80 1.81 9 1.15 1.73 W1.75 1.18 1.75 1.18 1.75 1.17 1.75 W 1.77 W 1.79 to W 1.82 1.18 1.80 11 W1.70 W W W 1.75 1.77 1.80 12 1.18 1.18 1.78 1.75 13 W 1.68 W 1.75 W 1.75 14 h 15
==R00 DROP TIME TO DASHPOT ENTRY (SEC.) == ROD DROP TIME TO 80TTOM OF DASHPOT (SEC.)
e a 14
h SECTION 3 k 1 CONTROL ROD BANK WORTH MEASUREMENTS P L i Control rod bank worth measurements were obtained for all control and shutdown banks using the rod swap technique. The first step in the rod swap procedure was to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer" and were used to determine the dif ferential and integral worth of the reference bank (Control Bank B). At the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron s concentration were stabilized such that the reactor was critical with the reference bank near full insertion. Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position and recording the core reactivity and moderator temperature. At this point, a rod swap maneuver was performed by withdrawing the reference bank while one of the other control rod banks (i.e., a test bank) was inserted. The core was kept nominally critical g throughout this rod swap and the maneuver was continued until the test bank was fully inserted and the reference bank was at the position at which the core was just critical. This measured critical position (MCP) of the reference bank with the test bank fully inserted is the major parameter of interest and was used to determine the integral reactivity worth of the test bank. Statepoint data (core reactivity, moderator temperature, and the differential worth of the reference bank) were 15
r 5 s recorded with the reference bank at the MCP. The rod swap maneuver was then performed in reverse order such that the reference bank once again was near full insertion and the test bank was once again fully withdrawn from the core. The rod swap process was then repeated for all of the other control rod banks (control and shutdown). L A summary of the results for these tests is given in Table 3.1. As shown by'this table and the Startup Physics Tests Results and Evaluation L Sheets given in the Appendix, the individual measured bank worths for the control and shutdown banks were within the design tolerance ( 10% for the reference bank and il5% for the test banks). The sum of the individual rod bank worths was measured to be within 3.4% of the design prediction. This is well within the design tolerance of 110% for the sum of the individual control rod bank worths. The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2, respectively. The design predictions and the measured data are plotted together in order to illustrate their agreement. In summary, the measured rod worth values were satisfactory. [ C 1e g
i k r r Table 3.1 L SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS f CONTROL ROD BANK WORTH
SUMMARY
) L f MEASURED PREDICTED PERCENT DIFFERENCE L WORTH WORTH BANK (PCM) (PCM) (M-P)/P X 100 i s ' B-Reference Bank D 1314 1141 1291 1098 1.8 3.9 C 966 893 8.2 A 282 273 3.3 (9 pcm) SB 1212 1135 6.8 SA 926 957 -3.2 Total Worth 5841 5647 3.4 [ f , e : L [ 17
FIGURE 3.1 SURRY UNIT 1 - CYCLE 9 BOL PHYSICS TEST 5 BANK B INTEGRAL ROD WORTH - HZP BANK B WITH ALL OTHER RODS OUT
-- PREDICTED M MERSURED I
L i 8 A I i
~
L 8 n b + ,, ro UC , 0-g g . r =m. QO 's: ~ 3 K ' _; . s - cr x-; c, ( e C.D I.1J o Kms ' Hv w Z* (s' s, s N s S w, t N N. [ ' x, w^ q . hm _. 0 40 80 120 160 200 228 BANK POSITION (STEPS) { 18 1 1
+ 3 FIGURE 3.2 ~ SURRY UNIT 1 - CYCLE 9 BOL PHYSICS TEST J H BANK B DIFFERENTIAL ROD WORTH - BANK B WITH RLL OTHER RODS OUT
-- PREDICTED ,
E MEASURED e o I 9 N I l o o c_ - l W m I H m , , (n a _ -i. so . s m l r9 e / s _ Um ' Q_ E w /
. u ~ \
r ' a ,, in r Wo I * '
~
go ,, j
=
l Om a i I 5 3: l
) a I CC , gi, c, .
i Ho I I Z* r l w
- 2 i
oc , \ . LLJ W ; b- o i . ma m ' I Oy , MA ! lONji i ORf11 1
.l - -- f ' T =;;-- --- n , / \ N-C ' -- ---__ i o i ,
9 . -
- i. .
0 40 80 120 160 200 228 BANK POSITION (STEPS) I 19 immi .
r r L SECTION 4 F L BORON ENDPOINT AND WORTH MEASUREMENTS I n Boron Endpoint l With the reactor cricical at hot zero power, reactor. coolant system boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each measurement, the RCS conditions were stabilized l with the control banks at or very near a selccted endpoint position. The critical boron concentration was then measured. If necessary, an adjustment to the measured critical boron concentration was made to l account for off-nominal core conditions, that is, for rod position and moderator temperature. l The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Tests Results and Evaluation Sheets given in the Appendix, the measured critical boron endpoint values were within their respective design tolerances. All measured values met I the accident analysis acceptance criterion. In summary, the boron endpoint results were satisfactory. l Boron Worth Coefficient The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient was determined. A plot of the boron concentration as a function of integrated reactivity can be constructed by relating each endpoint concentration to the integrated rod worth present in the core at the time of the endpoint measurement. The value of the boron coefficient, over the range of boron endpoint 20
4 I I concentrations, is obtained directly from this plot. The baron worth plot is shown in Figure 4.1. As indicated in this figure and in the Appendix, the boron worth coefficient of reactivity was I measured to be -7.97 pcm/ ppm. The measured boron worth coefficient is within 1.8% of the predicted value of -7.83 pcm/ ppm and is well within the l design tolerance of 10%. The measurement result also met the accident analysis acceptance criterion. In summary, the measured boron worth was satisfactory. I I I I I I I I I I I 21 I
( ( Table 4.1 SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS BORON ENDPOINT 9
SUMMARY
i Measured Predicted Difference Control Rod Endpoint Endpoint M-P Cor. figuration ( (ppm) (ppm) (ppm) ARO 1713 1689 24 i B Bank In 1548 1547* 1
~
l
)
- The predicted esdpoint for tne B Bank in contiguration has been f adjusted for the difference between the measured and predicted
( values of the endpoir.t taken at the ARO configuration as shown in I the boron endpoint Startup Physics Test Results and Evaluation Sheets in the Appendix. l 4 C ( ( ( : ( ( 22 f .
- - - -_ J
E E E E E E E E E E E E E E E E E E FIGURE 4-1 SURRY UNIT 1 - CYCLE 9 BOL PHYSICS TEST BORON WORTH COEFFICIENT O ENDPOINT #1ERSURENENTS 2400 __ _ _ AD - - 7.97 pcm/ ppa I _. _ _ . .._._. B 2000
\ ._. \ .__ ___ __ __ - N g 1600 y a \ -_. - \
N C N 1200 N
\ ___
__ \ u
" N tu N tr 800 \ \ _ _ \ _ _ _
s 400 \
\ __ _ .__.. \ _ _ . _ _ . _ _ .. _ _ .. _ - _
g 1480 1520 1560 1600 1640 1680 3 1720 1760 1800 BORON CONCENTRATION (PPM)
C E SECTION 5 TEMPERATURE COEFF3CIENT NEASUREMENTS The isothermal t emperature coefficient measurenents were accomplished by controlling the RCS heat gains / losses with the steaan dump valves to the condenser .and/or s.teso generator blowdown establishing a ( constant. and uniform heatup/cooldewn rate, and then :ronitoring the resulting reactivity ' changes en the reactivity computer. These ( measurements were performed at very low power levels in order to minimize the effects of non-uniform nuclear heating, thus, the mcderator and fuel ( were approximately at the same terrperature (batveen 546-549 'F) during these measurements. To eliminate the boron reactivity effect of cetflow from the pressurizer, the presst.rfrer level was maintained constant or slightly increasira during these reaturements. An i.sothermal temperature coefficient n.easuremen.: was performed at the all-rods-cut configu ition. Reactivity meeru-* aracs were t a.'.en curing both RCE httar.sp cd cooldown ramps during whien the RCS temperature varied approximately 3'F. Reactivity was determined using the reactivity computer and uns plotted against the ECS temperature on an x-y recorder. The tetape rature coef!icient cas then determined fr:xn the slope of the plotted lines. The x-y reccrder plots of reactivity changes iersus RCS tmtperature for nach meescurement are shown in Figures 5.1. The predicted std n.usured isothermal temperature coefficient values j are conpared in Table 5.1. As can be seen from this suntary and from the Startup Physics Test Results and Evaltaction Sheets given in the Appendix, ( the nes ured isothermal tetrpe:ature c.oefficient valte was within the I design tolerance of 13 pen / F and eet the accident analysis acceptance ( criterion. In surrr ry., the .eensured terperature coefficient was j satisfactory. 24 f _-_ - _ -- - - _ _ - - - -
C Table 5.1 C SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS
. ISOTHERMAL TEMPERATURE COEFFICIENT
SUMMARY
1 1 ISOTifERMALTEMPERATURECGEFFICIEN[ { BANK POSITION TEMPERA 1LTE RANGE BORON CONCENTRATION (ECM/*F) l (*F) (ppm) COOL DIFFER. 1 HEATUP DOWN AVER. PRED. (M-P) [ ! ALL 546.0 RODS to 1711 -1.60 -1.61 -1.61 -1.7B 0.17 ( OUT 549.1 [ E C 4 25
k Figure 5.1 SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT HZP, ARO l L
.[. . x. = l =. ._. = _ . = . . = . . _ - ~ - - - - + - =..=.=__=..=_+t=__..=_=_ = . .._ . .
f.R % -~jpE ju = -{~ M . . _ - - - - _ , ,---j -^ - -
.i~~~_'~.~; -= }'nc;=..
rt- r = }== ==i= n == = t=r=: rr* - ____.a.
. .c i--
rI . __. _.n. . . t =m-I._ r_ T._ . L. = == ..- -_ p__.._ . .
-- == =- . _ rrI = __39 =- A _1 ~+---~ .:._ - . m . r. - : xn =t __t .--. _* ---: r- . ._r {.. - -
c.: . t. _ . . _ . .
. .:2. = - t = =.. = _r = ---t-- -- . r .!-' j .. . t==( _. . z _
- r-
; cr== l r m _ _l= n._ _. .______..i=---+---
t ===4__ . . _ g: . _: . J . _.:_ . =r = --- = ._... Tn n :1=.
- =:=tp!r -M= x;=:=~=r= ! h f=
^ -- g -
n-". - - . . . . _ _ . .
= r : : r t =f- - u-.=_. [ =--- @ . _ p= .. _ =ge_.._ p . ._.7___1-- p- g =---. _ _ _ _3-~=gg:- : . . . _ . ..____..;_...rp"=
v c.
--- --{: = x -l= =n =
g ._.=
. =-
- ..---==_==....=._=_..=..t---.
.1 - F--E@. == WcEnm_ _ . .ma==_ _ . _ _ _ _ _=sa _ . ===
D : }= ._==t== + t--- - H U
.._=.4= rt:x. - =- ._..r: =- . _:- .___ f ===r=n ------ :-- - :12, = = = p- :r - - - - .: == r . .. ... 3. ._ . : j __.. _ .
_ .: = - + . --
=__:__. _:_=_._=_.= . _ ==__ _= =. . .=._ t n -.~n ____, ~n,,p..__.____.c_=...
54 . . . . . . --. x= = =1gr- 52. . - - _ _ . - .;=t~
= . _ . . . - .__ ._ _. ,__.p .z_.' e . , . _ . . _ . - 1=pi~%, _ - - + - -
- ==
. . .__ . , ___arr ..r.._._.. =- .; _ .:a. .;r:t a - ._ --
n g;r: :=> . - . . - r=
. _ . . __= =:
- r. . =
= n- . i .,. .., , g hpL. !.t ==:p-- _
r __ _- - - - _ . . . _ _ _ ._ _ . _ _ _ 3. _M. . . _. !~ die 23 : !=I __ E _Ji22rl_:$r9E'i=.._ ____. :== Ei~2E _ . _ . . . . _ ._ _ . . . _ .~~M C
- - rn.
y =. ::.:. . r. .. = ...= j:r:= r r t2-= .- =---
= =: =.__u.-=,==':- .+ . - - m { n_._ . - - - --'..-t-... .
_. ,.-.i._. .._ ... _.. .....
.. g ,, . .........f.__... . . . _ _ . . . _ _ . . . .. _ . . * ~ ~ ' ....____-t_._ . ._I__... . _ _ _ . . _ _ . . . ' _ _ ._.~ . . . ~ . . - . . . . . . . _ __ p___ . - t- +--- - ---- -- - - - -
3 ~;=:EIErr:t- 4-- - e- 4' ----- :-
= n-- n - + - - - -
i --51 n . . _ HORIZONTAL SCALE 1 F/ inch Eri
-.E~-*Z-__E--L__ _ j _=riE VERTICAL SCALE 10.0 pcm/ inch -- ' ---%g___._:- - - . _ . . . . _ _ _ . _ - . . _ . _ . - _ _ . , _ .__=_. _:
___.-._-.____t.__..._
-: TEMPERATURE ( F) 26 s
I
'I I SECTION 6 I POWER DISTRIBUTION MEASUREMENTS I The core power distributions were measured using the incore movable detector flux mapping system. This system consists of five fission detectors which traverse fuel assembly instrumentation thimbles in 50 core locations (see Figure 1.3). For each traverse, the detector output is continuously monitored on a strip chart recorder. The output is also scanned for 61 discrete axial points by the PRODAC P-25^ ,srocess computer. I Full core, three-dimensional power distributions are then determined by analyzing this data using the Westinghouse computer program, INCORE'.
INCORE couples the measured flux map data with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core. I A list of all the full-core flux maps taken during the test program together with a list of the measured values of the important power distribution parameters is given in Table 6.1. The measured power distribution parameter values are compared with their Technical Specifications limits in Table 6.2. Flux Map 1 was taken at slightly less than 30% power. Previous startup physics tests programs required a low power map to be taken at approximately 5% power. However, according to , the American National Standards Institute standard on power reactor startup physics testing (ANSI /ANS-19.6.1-1985), only one map is needed at less than 30% power to verify radial power distribution. Figure 6.1 shows the resulting radial power distribution associated with this flux map. In order to measure hot channel factors, the Surry Technical Specifications require a flux map to have data obtained from a minimum of 38 thimbles. Data from 35 thimbles were obtained for this map, therefore hot channel 27
[ [ factors could not be verified. However, sufficient data were obtained to verify that the quadrant power tilt was within the Technical Specifications limits. Flux maps 2 through 6 were taken over a wide range of power levels l and control rod configurations. These flux maps were taken to check the at power design predictions and to measure core power distributions at various operating conditions. These maps also provide a cross- calibration {- between the incore and excore nuclear instrumentation systems. The radial h power distributions for these maps are given in Figures 6.2 and 6.3. These figures show that the measured relative assembly power values are generally (1 within 5% of the predicted values, and that the quadrant power tilt ratio decreased during power ascension. In conclusion, the power ' distribution measurement results were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the Technical Specification limits. It is therefore anticipated that the core will continue to operate safely throughout Cycle 9. E [ [ [ 28
m m m_ m O_ m O. O R R m O fm l'~~y m_ Iw m , m r-~- TABLE 6.1 SURRY 1 - CYCLE 9 STARTUP PHYSICS. TESTS INCORE FLUX MAP
SUMMARY
l i I I i 1 2 l l l i l i BURN l F-Q(T) HOT F-DH(M) HOT CORE F(Z) '4l ll :l l l UP i BANK I CHANNEL FACTOR CHNL. FACTOR MAX. 3 -QPTR I AXlAL NO. ll MAP ,MAPI DATE I MWD /I PWR D F( XY) OFF 'OF DESCRIPTION .NO.1 i MTU (%) STEPS I I AXI AL. AXlAL MAX . SET. THIM i 1 i IASSY PIN POINT F-Q(T) ASSY PIN F-DH(N) POINT F(Z) MAX . LOC ~(%) BLES l_I I _ POWER DISTRIBUTION.I l l MEASUREMENT (5) H 1 07-18-86 71 30 168 N/A N/Al N/A N/A N/A N/A N/A N/A N/A N/A 11.010 SW +6.67 35
'I .
I DELTA I TARGET 2 07-20-861 14 50. 168 i L13 LM 32 2.068 M11 Hil 1.544 32 11.295 1.471 1.008 SW -0.97 39 I l . l HFP, EQ. XENON (6)l 6' 07-29-86 240 100 220 M11 HI 33 1.823 L4 IHI 1.476 33 1.204 1.405 1.006 SW -0.44 .39 I l_Il _ _I _I _ U$ NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY CIVING ASSEMBLY LOCATIONS (E.C. H-8 IS THE CENTER-OF-CORE ASSEMBLY), FOLLOWED BY THE PIN LOCATION DENOTED BY THE "Y" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS LETTERED A THROUGH R AND THE {X" COORDINATE DESIGNATED IN A SIMILAR MANNER). IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.
- 1. F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF 1.08
- 2. F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04
- 3. F(XY) IS EVALUATED AT THE MIDPLANE OF THE CORE, l 4. QPTR - QUADRANT POWER TILT RATIO.
- 5. FLUX MAP 1 DID NOT HAVE ENOUGH THIMBLES TO VERIFY F-Q(T), F-DH(N), F(Z), OR F(XY).
- 6. FLUX MAPS 3 THROUGH 5 WERE QUARTER-CORE MAPS TAKEN FOR INCORE/EXCORE DETECTOR CALIBRATION AT 70% POWER.
I l I l Table 6.2 l SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS I l COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS l WITH THEIR TECHNICAL SPECIFICATION LIMITS l 1 l F-Q(T) HOT F-DH(N) HOT CHANNEL FACTOR
- CHANNEL FACTOR +
MAP NO. MEAS LIMIT MARGIN MEAS LIMIT MARGIN l (%) (%) 2 2.07 4.34 52.3 1.54 1.78 13.5 6 1.82 2.18 16.5 1.48 1.55 4.5 l l I l
- The Technical Specification's limit for the heat flux hot channel factor, F-Q(T) is a function of core height. The value for F-Q(T) listed above is the maximum value of F-Q(T) in the core. The Technical Specification's limit listed above is evaluated at the I
l plane of maximum F-Q(T). The minimum margin values listed above are the minimum percent difference between the measured values of F-Q(T) and the Technical Specification's limit for each map. All measured F-Q(T) hot channel factors include 8% total uncertainty. l I + The measured values for the enthalpy rise hot channel factor, F-dH(N) include 4% measurement uncertainty. l l 30
r W 4 Figure 6.1 SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION - 30% POWER R P N M L h J H C F E O C 8 A
. PREDICIED . . 0.26 . 0.31 . 0.26 . . PREDICTED . . MEA 50REO . . 0.27 . 0.31 . 0. 2 7 . . MEASURED . 1 .PC7 OlFTERENCE. . 0.2 . 0.1 . 0.2 . . PCT DIFFERENCE. ~ . 0.32 . 0.57 1.02 . 0.85 . 1.03 . 0.57 . 0.31 . 2 . 1.6 . -1.0 . =1.6 . -1.9 . =1.2 . -0.0 . -0.1 . . 0.36 . 1.04 . 1.24 1.22 1.24 . 1.22 . 1.24 . 1.04 . 0.36 . . 0.37 1.05 . 1.22 1.20 . 1.19 . 1.19 . 1.24 . 1.04 . 0.36 . 3
~
. 1.6 . 1.6 . -1.1 . =1.5 . =4.1 . =2.8 . -0.1 . =0.1 . =1.7 . . 0.36 . 0.89 1.30 . 1.27 , 1.29 . 1.06 . 1.29 . 1.27 . 1.30 . 0.89 . 0.36 .
- . 0.36 . 0.89 . 1.32 . 1.27 . 1.25 . 1.03 . 1.23 . 1.28 . 1.30 . 0.88 . 0.37 . 4
. 0.6 . 1.0 . 1.2 . =0.0 . -2.4 . =3.2 . -4.6 . 0.6 . =0.3 . =0.8 . 1.5 . . 0.30 . 1.04 . 1.31 . 1.27 . 1.22 1.27 . 1.26 . 1.27 . 1.22 . 1.27 . 1.31 . 1.04 . 0.30 .
F . 0.30 . 1.04 1.31 . 1.28 . 1.23 . 1.28 . 1.20 . 1.32 . 1.24 . 1.28 . 1.29 . 1.05 . 0.31 . S ' j . 0.1 . 0.0 . 0.6 . 0.9 . 0.8 . 0.7 . -4.6 . 3.9 . 2.2 . 0.6 . =1.3 . 1.5 . 4.6 . L ............................................................................................
. 0.57 . 1.23 . 1.27 1.22 . 1.17 . 1.18 . 1.22 . 1.18 . 1.17 . 1.22 . 1.27 . 1.23 . 0.57 . . 0.57 . 1.24 . 1.28 . 1.22 . 1.18 . 1.19 . 1.23 . 1.21 . 1.20 . 1.23 . 1.26 . 1.24 . 0.58 .
- 0. 7 . 2.0 .
6
. 0.2 . 0.1 . 0.5 . 0.6 . 0.4 0.6 . 1.0 . 2.4 . 2.0 . 1.3 . =0.8 . . 0.26 . 1.04 . 1.22 . 1.28 . 1.27 . 1.18 1.27 . 1.26 . 1.27 . 1.18 . 1.27 . 1.28 . l.22 . 1.04 . 0.26 . . 0.26 . 1.02 . 1.22 . 1.27 1.27 . 1.18 . 1.27 . 1.28 . 1.28 . 1.20 . 1.31 . 1.26 . 1.21 . 1.03 . 0.26 . 7 0.2 . =1.1 . -0.4 . =0.7 . -0.3 . 0.0 . 0.6 . 1.0 . 1.5 . 2.1 . 2.7 . =2.1 . -0.8 . =0.5 . 0.1 . . 0.31 . 0.87 1.24 . 1.06 . 1.26 . 1.21 . 1.26 . 1.22 . 1.26 . 1.21 . 1.26 . 1.06 . 1.24 . 0.87 . 0.31 . . 0.30 . 0.85 . 1.21 . 1.0S . 1.25 . 1.21 . 1.27 . 1.23 . 1.28 . 1.23 . 1.27 . 1.04 . 1.22 . 0.87 . 0.32 . 8 . -3.1 . =1.8 . =2.7 . -1.0 . =0.7 . 0.0 . 0.7 . 1.3 . 1.5 . 1.S . 1.4 . =2.1 . -1,6 . 0.2 . 1.3 . . 0.26 1.04 . 1.22 . 1.28 1.27 . 1.18 1.27 . 1.26 1.27 . 1.18 . 1.27 . 1.28 . 1.22 . 1.04 . 0.26 . . 0.26 . 1.01 . 1.19 . 1.27 . 1.28 . 1.18 1.27 . 1.28 . 1.29 . 1.20 . 1.28 . 1.27 . 1.21 . 1.04 . 0.27 . 9 . -1.0 . =2.1 . =2.1 . -0.8 . 0.8 . 0.2 . 0.6 . 1.3 . 1.7 . 1.S . 0.8 . -0.7 . -0.5 . 0.9 . 2.5 . . 0.57 . 1.23 . 1.27 . 1.22 1.17 . 1.18 . 1.22 . 1.18 . 1.17 . 1.22 1.27 . 1.23 . 0.S7 . . 0.$6 . 1.22 . 1.27 1.23 . 1.18 . 1.19 . 1.22 . 1.19 . 1.19 . 1.22 . 1.28 . 1.24 . 0.58 . 10 . =1.2 . =1.2 . =0.2 . 1.0 . 0.5 . 0.4 . 0.2 . 0.5 . 1.0 . 0.S . 0.2 . 0.2 . 2.7 . . 0.30 . 1.04 1.31 . 1.27 . 1.22 . 1.27 . 1.26 . 1.27 . 1.22 . 1.27 . 1.31 . 1.04 . 0.30 . . 0.31 . 1.05 . 1.33 1.29 . 1.22 . 1.27 . 1.2S . 1.26 . 1.22 . 1.28 . 1.32 . 1.04 . 0.30 . 11 . 1.8 . 1.8 . 1.8 1.2 . 0.6 . -0.3 . =0.9 . =1.1 . 0.7 . 0.7 . 0.8 . 0.8 . 0.7 . . O.36 . 0.89 . 1. .* 0 . 1.27 1.29 . 1.06 . 1.29 . 1.27 . 1.30 . 0.89 . 0.36 . . 0.38 . 0.93 . 1.35 . 1.32 . 1.27 . 1.05 . 1.25 . 1.25 . 1.30 . 0.90 . 0.36 . 12 4.9 . 4.9 . 3.9 . 3.9 . -1.1 . =1.1 . =2.S . =2.1 . =0.0 . 0.8 . . 0.36 1.04 . 1.24 1.22 . 1.24 . 1.22 . 1.24
- 3. 5 .
1.04 . 0.36 . [ . 0.38 . 1.08
. 4.3 . 3.8 .
1.29 . 1.27 . 1.20 . 1.17 . 1.19 . 1.02 . 0.37 . 3.9 . 4. 0 . - 3. 9 . - 3. 9 . - 3. 9 .
- 1. 7 . 1.3 .
13
. 0.31 . 0.57 1.04 . 0.87 . 1.04 . 0.57 . 0.31 . 14 . 0.33 . 0.59 . .84 . 1.00 . 0.55 . 0.30 . . 3.8 . 4.0 . 1.08 4.2 .. 0.3.1 . =3.8 . =4.0 . -3.9 .
[ ................
. STANDARD . . O.26 . 0.31 . 0.26 . . AVERACE .PC7 DIFFERENCE. . DEVIAtt04 . . 0.28 . 0.30 . 0.26 . ' . *1.318 . . 4.3 . =3.4 . -3.6 . . = 1.6 .
SUMMARY
MAP NO: St-9= 1 DATE: 07/18/86 POWER: 30% CONTROL ROD POSIT 10NS: F-Q(T) = N/A QPTR: D BANK AT 168 STEPS F-DH(N) = N/A NW 0.9931 NE 1.0010 F(Z) = N/A SW 1.0099 SE 0.9960 { F ('XY ) = N/A . BURNUP = 7 MWD /MTU A.O = +6.67(%) 31
[ Figure 6.2 . SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION r L 50% POWER R P N M L M J H C F E O C 8 A
***kibiCitb P
MEASURED
'6$ii**6ii 6$ii*
- Pktbl6fEb " .
. . . 0.28 . 0.33 . 0.28 . MCASURED , 1 . PCT 01FFERENCE. . 2.6 . 2.3 . 1.9 . .PC7 DIFFERENCE.
~
...g.g...g.gg.. ................ . 0.33 . 0.57 1.04 . 0.88 . 1.04 . 0.58 . 0.32 . 2 . 3.9 . 0.0 . -0.2 . -0.4 . 0.1 . 0.8 . 0.8 . . 0.36 . 1.03 . 1.23 . 1.22 . 1.24 . 1.22 1.23 . 1.03 . 0.36 . . 0.38 1.07 1.23 1.21 1.20 . 1.20 . 1.24 1.04 0.36 . 3
, . 3.9 . 3.9 . -0.0 . -0.5 . -3.1 . -2.0 0.8 . 0.8 . -1.3 .
- '6:ii':*6:ii':'i:ii':*i:ii':'i:ii':'i:64*:'i:ii':*i:ii':*i:ii':'6:ii':'6:ii':
. 0.37 . 0.90 . 1.32 . 1.27 1.26 . 1.04 . 1.23 . 1.29 . 1.30 . 0.88 . 0.37 4 . 1.4 . 2.0 . 2.2 . 0.6 . -1.5 . =2.3 . -3.8 . 1.5 . 0.4 . -0.2 . 2.3 .
- '6:;6 * : ' i:6i' :
- i:ii': ' i:ii' :
- i:ii' : ' i:ii' : ' i:ii' :
- i :ii' :
- i:ii' :
- i:ii' : ' i :i6' : ' i :6i' : '6:16 * :
. 0.30 . 1.03 . 1.30 . 1.28 . 1.23 . 1.28 . 1.21 1.30 1.24 1.28 . 1.28 . 1.05 . 0.32 . . S . -0.2 . -0.2 . 0.5 . 1.1 . 0.9 . 0.6 . -3.8 . 1.9 . 1.7 . 1.2 . -0.8 . 2.4 . 6.0 . . 0.57 1.23 . 1.27 1.22 1.19 1.19 . 1.22 . 1.19 . 1.19 . 1.22 1.27 1.23 . 0.57 . . 0.57 . 1.22 . 1.27 . 1.22 1.20 . 1.19 . 1.23 . 1.21 . 1.20 . 1.23 . 1.27 . 1.24 . 0.59 . 6 . *0.6 . -0.7 . 0.1 . 0.5 . 0.6 . 0.5 . 1.3 . 1.8 . 0.8 . 1.0 . =0.1 . 1.4 . 2.7 . . 0.27 1.04 1.22 . 1.28 . 1.27 . 1.18 , 1.27 . l.27 . 1.27 1.18 . 1.27 . 1.28 . 1.22 . 1.04 . 0.27 .
^ . 0.27 . 1.02 1.20 . 1.25 . 1.25 . 1.18 1.28 . 1.28 . 1.30 . 1.21 . 1.30 . 1.23 . 1.20 1.03 . 0.27 . 7
. -1.1 .
- 2. 3 . - 1. 6 . = 1. 9 . - 1. 2 . = 0. 5 . 0.5 . 1.3 . 2.1 2.0 . 2.1 . -3.7 . =1.7 . -0.8 . -0.4
. 0.32 . 0.88 . 1.24 . 1.06 . 1.25 . 1.21 s
0.38 . 0.86 . 1.19 . 1.03 . 1.22 . 1.20
. 1.26 . 1.22 . 1.26 1.21 1.25 . 1.06 . 1.24 . 0.88 . 0.32 . . 1.27 1.23 . 1.28 1.23 . 1.26 . 1.02 . 1.20 . 0.88 . 0.32 . 8 . -4.1 . -2.8 . -3.8 . -2.4 . *2.4 . -1.1 . 0.6 . 1.1 . 1.2 . 1.7 . 0.9 . -3.7 . -3.0 . -0.7 . 1.0 . . 0.27 . 1.04 1.22 . 1.28 . 1.27 . 1.18 . 1.27 0.27 . 1.02 1.27 . 1.27 1.18 1.27 . 1.28 . 1.22 . 1.04 . 0.27 .
1.19 . 1.25 . 1.26 . 1.17 1.26 . 1.27 . 1.27
-0.6 . -2.5 . =2.6 . -1.8 . -0.6 . -1,2 . =0.9 . -0.0 . 0.5 . *0.7 . -0.1 . -1.8 . -1.8 . 0.3 . 3.0 .
1.17 . 1.27 1.25 . 1.20 . 1.04 . 0.28 . 9
. 0.57 . 1.23 . 1.27 1.22 . 1.19 1.19 . 1.22 . 1.19 , 1.19 . 1.22 . 1.27 . 1.23 . 0.57 . . 0.57 . 1.22 . 1.27 1.23 . 1.19 . 1.17 . 1.20 . 1.18 1.19 . 1.22 . 1.26 . 1.22 . 0 59 . 10 . -0.9 . -1.0 . 0.2 . 1.0 . *0.1 . -1.1 . =1.1 . -0.7 . 0.1 . 0.2 . -0.3 . -0.6 . 3.5 .
0.30 . 1.03 . 1.29 . 1.27 . 1.22 1.27 1.26 . 1.27 . 1.22 . 1.27 1.29 . 1.03 . 0.30 .
. 0.31 . 1.06 . 1.33 . I 10 . 1.22 . 3.0 .
1.25 . 1.23 . 1.26 . 1.22 . 1.29 . 1.32 . 1.05 . 0.31 . 3.0 a 2.8 . 2.4 . 0.2 . -I.7 . -2.2 . -1.3 . 0.2 . 1.8 . 1.8 . 2.2.. 3.6 . 11
. 0.36 . 0.88 . l.29 . 1.27 , 1.28 . 1.06 . 1.28 . 1.27 1.29 . 0.88 . 0.36 . 0.39 . 0.93 . 1.32 . 1.26 1.2% . 1.04 . 1.25 . 1.26 . 1.30 . 0.91 . 0.38 . 12 . 6.9 . S.2 . 2.4 . *0.2 . =1.9 . -2.1 . -2.1 . *0.9 . 0.7 . 2.8 . 3.5 . . 0.36 . 1.03 . 0.39 . l. 0 . 1.23 1.26 . 1.22 . 1.24 . 1.22 . 1.23 . 1.03 . 0.36 1.20 . 1.22 . 1.19 . 1.19 . 1.02 0.38 13 . 6.8 . 6.8 . 2.5 . -1.8 . -1.8 . -2.7 -3.5 . -1.2 . 3.1 . ' " " " :
- 6:li' : '6:ii' :
- i :64* : *6:ii' : ' i :64 * : '6:ii' : *6: ii' : " " ' "
. 0.34 . 0.61 1.12 . 0.87 . 1.02 . 0.56 . 0.30 . 14 . 6.8 . 6.8 . 7.0 . -1.3 . -1.8 . -2.8 . -3.7 . . STANDARD . . 0.27 . 0.32 . 0.27 . AVERAct . . OLvlA1104 . . 0.29 . 0 31 . 0.27 . PCT Ol F F ERENCE. . al.588 . . 7.0 . -1.4 . -1.6 . . e 1.8 .
SUMMARY
NAP NO: SI 2 DATE: 07/20/86 POWER: 50% CONTROL ROD POSITIONS: F-Q(T) = 2.068 QPTR: D BANN AT 168 STEPS F-DH( N ) = 1.544 NW 0.9947 NE 1.0062 F(Z) = 1.295 SW 1.0076 SE 0.9915 F(XY) = 1.471
. BURNUP = 14 MWD /MTU A.0 = -0.97(%)
32
r L r Figure 6.3 SURRY UNIT 1 - CYCLE 9 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION e HFP, EQUILIBRIUNi XENON R P N M L K J H 0 F E D C 8 A
. PREDicitD . . 0.31 . 0.37'. 0.31 . PRtoicitD , . MEASURED . . 0.30 . 0.36 . 0.30 . MEAsuREO . 1 .PC7 OlFFERENCE. . -2.6 . =2.6 . =1.5 . .PC7 DIFFERENCE. . Q.33 . 0.60 . 1.08 . 0.98 . 1.08 . 0.60 . 0.33 .
c 0.34 . 0.59 . 1.05 . 0.95 . 1.06 . 0.60 . 0.33 . 2 j . 3.6 . -0.5 . -2.4 . -3.0 . -2.0 . 0.3 0.3 .
. 0.38 1.01 . 1.20 . 1.21 1.24 1.21 . 1.20 1.01 . 0.38 . . 0.39 . 1.05 . 1.19 . 1.19 . 1.19 . 1.17 . 1.20 1.02 . 0.37 . 3 . 3.6 . 3.6 . -0.5 . -1.2 . -4.3.. =2.9 . 0.3 . 0.3 . -1.5 .
0.38 . 0.88 1.24 1.23 . 1.25 . 1.06 . 1.25 . 1.23 . 1.24 . 0.88 . 0.38
. 0.38 . 0.90 2.1 1.28 , 1.24 1.22 1.02 1.18 . 1.25 . 1.25 . 0.87 . 0.38 4 1.6 . 2.6 . 2.9 . 1.0 . =2.3 . -3.2 . -4.9 . 0.4 . -0.3 . 0.9 . . 0.32 . 1.01 . 1.25 1.24 1.22 . 1.2C . 1.23 . 1.26 . 1.22 1.24 . 1.25 . 1.01 . 0.32 , . 0.32 1.02 . 1.27 . 1.27 . 1.24 1.7 . 1.17 . 1.27 . 1.23 . 1.26 . 1.23 . 1.02 . 0.33 . S . 1.1 . 1.1 . 1.6 . 2.3 . 2.0 . 2.2 . -4.9 . 0.7 . 1.2 . 1.1 . -1.1 . 0.9 . 3.3 . . 0.59 . 1.19 . 1.23 . 1.22 . 1.27 . 1.19 . 1.21 . 1.19 . 1.27 . 1.22 1.23 . 1.19 . 0.59 . . 0. 59 . 1.19 . 1.24 . 1.23 . 1.29 . 1.22 1.24 1.21 1.28 1.22 1.23 . 1.19 . 0.59 . 6 . -0.0 . -0.0 . 0.9 . 1.3 . 1.8 . 2.2 2.5 . 1.8 . 1.0 . 0.S . =0.3 . -0.S . -0.0 .
~
. 0.31 . 1.08 1.21 . 1.25 . 1.26 . 1.19 . 1.26 . 1.26 . 1.26 . 1.19 . 1.26 . 1.25 . 1.21 . 1.08 . 0.31 . . 0.30 . 1.05 . 1.19 . 1.23 . 1.26 . 1.20 . 1.29 . 1.29 . 1.30 1.21 . 1.28 1.20 . 1.16 . 1.04 . 0.29 . 7 . -1.2 . =2.4 . -1.6 . -1.2 0.3 . 1.1 . 2.2 . 2.5 . 2.7 . 2.2 . 1.9 . -3.8 . -3.9 . -3.6 . -3.9 . . 0.37 . 0.98 . 1.24 1.05 . 1.23 . 1.21 1.25 . 1.21 . 1.25 . 1.21 1.23 . 1.05 . 1.24 . 0.98 . 0.37 . " . 0.36 . 0.95 . 1.19 . 1.04 1.23 . 1.21 . 1.28 1.24 . 1.28 1.24 . 1.25 . 1.01 . 1.19 . 0.94 . O.36 . 8 . -4.3 . -3.1 . -3.8 . =1.S . -0.3 . 0.7 . 2.2 . 2.6 . 2.4 . 2.7 . 2.0 . -3.8 . -3.9 . -4.2 . -3.3 .
- . 0.31 . 1.08 . 1.21 . 1.25 . 1.26 . 1.19 . 1.26 1.26 . 1.26 . 1.19 . l.26 . 1.2S . 1.21 1.08 . 0.31 .
. 0.30 1.04 1.17 . 1.23 . 1.27 . 1.19 . 1.27 1.28 . 1.30 . 1.20 1.27 . 1.24 . 1.17 . 1.04 . O.30 . 9 . 2.2 . 3.3 . 3.3 . 1.2 . 0.9 . 0.6 . 0.8 . 2.0 . 2.5 . 1.0 1.3 . 0.8 . 2.7 3.4 . 2.1 .
- ...............................................................................=...........................
. 0.59 . 1.19 . 1.23 . 1.22 . 1.27 . 1.19 . 1.21 . 1.19 . 1.27 . 1.22 . 1.23 . 1.19 . 0.59 . . 0.58 . 1.17 . l.23 . 1.24 1.28 . 1.20 1.22 . 1.20 . 1.29 . 1.23 . 1.25 . 1.21 . 0.58 . 10 . -2.3 . -2.3 . 0.1 2.0 . 1.5 . 0.7 . 0.7 . 1.2 . 1.6 1.3 . 1.3 . 1.2 . -1.8 . . 0.32 . 1.01 1.25 . 1.24 . 1.22 . 1.26 . 1.23 . 1.26 . 1.22 1.24 . 1.25 . 1.01 . O.32 . . 0.32 . 1.02 1.27 . 1.28 . 1.23 . 1.26 1.23 . 1.26 . 1.24 1.3 . 1.3 . 2.0 . 2.9 . 1.3 . =0.2 . *0.5 . 0.5 . 1.7 . 1.8 . 1.7 . 1.
1.27 . 1.27 . 1.03 . 0.33 . 11
.................................................................................4 . 0.38 . 0.88 1.24 1.23 . 1.25 . 1.06 1.25 . 1.23 . 1.24 . 0.88 . 0.38 2.3 . . 0.40 . 0.91 . 1.28 . 1.24 1.24 1.05 . 1.24 1.23 . 1.25 . 0.89 . 0.39 . 12 . 4.8 . 4.1 . 2.9 . 0.7 . *0.8 . -0.7 . -0.9 . =0.3 . 0.7 . 1.7 . 2.2 . . 0.38 1.01 1.20 . 1.21 1.24 . 1.21 . 1.20 1.01 . 0.38 . . 0.39 1.05 . 1.21 1.20 1.28 1.16 . 1.15 . 1.00 . 0.38 . 13 . 4.3 . 3.7 . 1.5 . -0.8 . 2.6 . -4.0 . -3.7 . -1.5 . 1.9 . * * * *" *:*6:ii':*6:46*:'i:66* *6:46*;* i:64*:'6:46': *6:ii':"* * * * * . 0.34 . 0.62 1.12 . 0.94 1.03 . 0.57 . 0.32 . 14 . 3.7 . 3.7 . 3.7 . -4.4 . ~4.3 . -4.0 . -3.6 . . STANDARD OtVfAfl0N . . 0.31 . 0.37 . 0.31 . . AvtRACE . =1.279 . . G.32 . 0.36 . 0.29 . .PC7 OlffERENCE. . . . 3,7 . -4.4 . -4.4 . . = 2.0 .
[ .
$UMMARY MAP NO: 51 6 DATE: 07/29/86 POWER: 100%
CONTROL ROD POSITIONS: F-Q(T) = 1.823 QPTR: D BANK AT 220 STEPS F-DH(N) = 1.476 NW 1.0025 I NE 0.9965 F(Z) = 1.204 SW 1.0064 l SE 0.9946 F(XY) = 1.405
- BURNUP = 240 >%4D/MTU A.O = -0.44(%)
3 3 __ __ __ __ _ _
[
~
k SECTION 7 REFERENCES f
- 1. A. H. Nicholson, M. E. Paul, "Surry Unit 1, Cycle 9 Design Report," NE Technical Report No. 518, Virginia Electric and Power Company, June, 1986.
- 2. Surry Power Station Technical Specifications, Sections 3.12.C.1 and 3.12.B.1.
- 3. T. K. Ross, W. C. Beck, " Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December,1980.
- 4. " Technical Manual for Westinghouse Solid State Reactivity Computer,"
Westinghouse Electric Corporation. [
- 5. W. Leggott and L. Eisenhart, "The INCORE Code," WCAP-7149, December, 1967.
x l '
i p L r u H t u l l B L APPENDIX STARTUP PHYSICS TESTS RESULTS I l AND EVALUATION SHEETS I l l l I 1 l 1 I l
1-PT-28.11 Attachment 1 g gg Page 1 of 20 SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Reactivity Computer Checkout Reference , Proc No /Section: 1-PT-28.11 Sequence Step No: 3 II Bank Positions (Steps) RCS Temperature ('F): 547 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): (Design) CB: 228 CC: 228 CD:
- Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): 547.0 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):
(Actual) CB: 228 CC: 228 CD: 201 Below Nuclear Heating Date/ Time Test Performed: 07/13/86 @ 0112 , Measured Parameter pc= Meas. Reactivty using p-computer IV (Description) pg = Inferred React from react period pc = +61 pcm -52 pcm [ Measured Value pg= +62 pcm -53 pcm Test %D = -1.61% -1.89% , Results ' Design Value (Actual Conditions) %D = [(pe pg)/p ] gx 10 % $ 4.0% Design Value (Design Conditions) %D = [(p "P )/P ] x 10 % 5 4.R c t t , j Reference WCAP 7905, Rev. 1, Table 3.6 V FSAR/ Tech Spec Not Applicable F Acceptance L Criteria Reference Not Applicable [ Design Tolerance is met : XL_YES NO VI Acceptance Criteria is met : XX_.YES NO Comments ('
- At The Just Critical Position Allowable Range = -+61 pcm, -52 pcm Completed By .b. Evaluated By: m jTestEngineer .
a y : C. hTO Engineer A.1 m
I l-PT-26.11 Attachment 1 Page 2 of 20 All 1 N I SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Critical Boron Concentration - ARO
, Reference Proc No /Section: 1-PT-28.11 Sequence Step No: 4 II Bank Positions (Steps) RCS Temperature (*F): 547 l Test Power Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):
(Design) CB: 228 CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature ('F): 547.0 Test Power Level (% F.P.): O I Conditions (Actual) SDA: 228 SDB: 228 CA: 228 CB: 228 CC: 228 CD: 228 Other (Specify): Below Nuclear Heating Date/ Time Test Performed: 07/13/86 0 0300 Meas Parameter IV (Description) (CB)AR0; ri ical Boron Conc - MO Measured Value (CB ) 1713 ppm 0" Test l Results Design Value 1 (Actual Cond) CB" 1689 i 50 ppm 'E Design Value j (Design Cond) CB =1689 i 50 ppm Reference NE Technical Report No 518 .I ~ l V TSAR / Tech Spec a xC B5 15,115 pcm C Acceptance Criteria Reference UFSAR Section 14.2.5 Design Tolerance is met X YES NO lI Acceptance Criteria is met
- X YES NO VI Comments a C
-7.83 pcm/ ppm for preliminary analysis B
a C
-7.97 pcm/ ppm for final analysis B
i
! Completed B - k ra aluated By: -nrI ~ \
Test Engineer Recommended for Approval By : C-li hTO Engineer A.2
b l-PT-28.11 Attachment 1 Page 3 of 20 SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Isothermal Temperature Coefficient - ARO Reference Proc No /Section: 1-PT-28.11 Sequence Step No: 5 II Bank Positions (Steps) RCS Temperature ('F): 547 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): - (Design) CB: 228 CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): 547.2 Test ( Conditions SDA: 228 SDB: 228 CA: 228 Power Level (% F.P.): O Other (Specify): (Actual) CB: 228 CC: 228 CD: 216 Below Nuclear Heating Date/ Time Test Performed: 07/13/86 @ 0332 Meas Parameter IV (Description) (a ISO)ARO Isothermal Temp Coeff - ARO Test Measured Value (a ISO)ARO = -1.61 pcm/'F (CB = 1711 ppm) e Results Design Value (Actual Cond) (a ISO)ARO = -1.7813.0pcm/'F (CB " 1711 ppm) I" ISO 3 T ARO = -2.00 1 3.0 pcm/'F Design Value (Design Cond) (CB = 1689 ppm) Reference NE Technical Report No 518 V FSAR/ Tech Spec a lSO 5 0.82*pcm/'F a Dop = -1.68 pcm/*F F Acceptance L Criteria Reference TS 3.1, NE Technical Report No 518 Design Tolerance is met : X_YES _ NO VI Acceptance Criteria is met : .x_YES NO Comments
- Uncertainty on a T = 0.5 pcm/*F (
Reference:
memorandum g from C. T. Snow to E. J. Lozito dated June 27, 1980). Completed By: . _ Evaluated By: I Aer A Test Engineer Recommended for Approval By : C- - hTO Engineer A.3
1-PT-28.11 Attachment 1 ( Page 4 of 20 Al- 1 55 . SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET - I Test
Description:
Cnti Bank B Worth Hess., Rod Swap Ref. Bank Reference Proc No /Section: 1-PT-28.11 Sequence Step No: 6 , II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): (Design) CB: Moving CC: 228 CD: 228 Below Nuclear Heating r III Bank Positions (Steps) 7.CS Temperature ('F): 545.5 L Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): (Actual) CB: Moving CC: 228 CD: 223 Below Nuclear Heating Date/ Time Test Performed: 07/13/86 0 0510 Measured Parameter I ; Integral Worth of Cnti Bank B, (Description) All Other Rods Out IV Test Measured Value IREF = 1314 pcm Results
- Design Value (Actual Conditions) IR F .12911129 pcm Design Value (Design Conditions) 1 = 1291 1 129 pcm Reference NE Technical Report No 518 -
If Design Tolerance is exceeded, SNSOC
, shall evaluate impact of test result FSAR/ Tech Spec on safety analysis. SNSOC cay specify
( V Acceptance that additional testing be performed. L Criteria Reference VEP-FRD-36A Design Tolerance is met : .X__YE S NO VI Acceptance Criteria is met : .x__YES NO Comments , Completed By b% est Engineer Evaluated By: ,A M Recom:nended for Approval By : C. - ud hTO Engineer
. A.4
1-PT-28.11 ( Attachment 1 JUL gW Page 5 of 20 SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Critical Boron Concentration - B Bank In Reference Proc No /Section: 1-PT-28.11 Sequence Step No: 7 II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): (Design) CB: O CC: 228 CD: 228 Below Nuclear Heating Bank Positions (Steps) RCS Temperature (*F): 546,0 ( III Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): p (Actual) CB: O CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed: 07/13/86 @ 0856 r Meas Parameter IV (Description) (CB ) Critical Boron Conc - B Bank In [ Measured Value (CB )D = 1548 ppm f Test Results Design Value (Actual Cond) CB = 1547126 ppm Design Value (Design Cond) ' f(10 + 129.1/la C CB = 1524 + ACB B Reference NE Technical Report 518 - V FSAR/ Tech Spec a xC B5 15.115 pcm C B Acceptance [ Criteria Reference UFSAR Section 14.2.5 Design Tolerance is met : .X_.YES ___NO ( Acceptance Criteria is met : .X_.YES __NO VI Comments a C B AC B = (C IB A 0 - 1689 a C " ~7'97 EC"/PP" I # II""I """I Y "I" 3 Completed By '
\ Test Engineer Evaluated By:- /eN -D Recommended for Approval By : CI WL hTO Engineer A.5
1-PT-28.11 e Attachment 1 L Page 7 of 20 El 2 586 SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Cnt! Bank D Worth Measurement-Rod Swap Reference Proc No /Section: 1-PT-28.11 Sequence Step No: 9 II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): (Design) CB: Moving CC: 228 CD: Moving Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): 545.3 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): (Actual) CB: Moving CC: 228 CD: Moving Below Nuclear Heating Date/ Time Test Performed: 07/13/86 0 0859 Meas Parameter {
] (Description) I RS; Int Worth of Cntl Bank D-Rod Swap f IV (Adj. Meas. Crit. Ref Bank Test Measured Value 1141 pcm Position = 189 steps)
I{S r Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond) ifs = 1098 + 165 Position = 189 steps) e Design Value IhS=1098i165pcm(CriticalRefBank (Design Cond) Position = 191 steps) Reference NE Technical Report No 518 VEP-FRD-36A, - hTO-TI-2. 2 A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V FSAR/ Tech Spec safety analysis. SNSOC may specify that Acceptance additional testing be performed. Criteria Reference VEP-FRD-36A [ VI Design Tolerance is met : .X___YES NO Acceptance Criteria is met : 2_.YES NO Comments Completed By: bi Evaluated By: e for tw U T. st Engineer i Recommended for Approval By :- b C hTO Engineer A.6
i-PT-28.ll - I.itachment 1 [ Page 8 of 20 Jill 1 1l186 [ SURRY POWER STATION UNIT 1 CYCLE 9 h STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Cut 1 Bank C Worth Measurement-Rod Swap Reference Proc No /Section: 1-PT-28.11 Sequence Step No: 20 II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): (Design) CB: Moving CC: Moving CD: 228 Below Nuclear Heating F III Bank Positions (Steps) RCS Temperature ('F): 545.3 L Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): , (Actual) CB: Moving CC: Moving CD: 228 Below Nuclear Heating Date/ Time Test Performed: 07/13/86 0 0943 Meas Parameter (Description) I RS; Int Worth of Cnti Bank C-Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Heasured Value IRS = 966 pcm Position = 162 steps) Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond) Ih8= 893 + 134 pcm Position = 162 steps) Design Value IRS = 891 i 134 pcm (Critical Ref Bank (Design Cond) Position = 164 steps) Reference NE Technical Report No 518 VEP-TRD-36A,
- r hTO-TI-2. 2 A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V FSAR/ Tech Spec safety analysis. SNSOC may specify that Acceptance additional testing be performed.
Criteria Reference VEP-TRD-36A Design Tolerance is met : X.YES __NO VI Acceptance Criteria is met : X.YES NO Comments Completed By: b Evaluated By: 1I A +t^\-
'est Engineer Recommended for Approval By : C jf4 W hTO Engineer A.7
i 1-PT-28.11 Attachment 1 Pege 9 c,f 20 { N 1% SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Cntl Bank A Worth Measurement-Rod Swap Reference Proc No /Section: 1-PT-28.11 Sequence Step No:ll II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: Moving other (specify): (Design) CB: Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature ('F): 545.0 l ( Test Power Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: Moving Other (Specify): (Actual) CB: Moving CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed: 07/13/86 0 1024 Mess Parameter - (Description) I RS; Int Worth of Cntl Bank A - Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Measured Value IRS = 282 pcm Position = 75 steps) Results^ Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond) IRS = 273 + 100 pcm Position = 75 steps) Design Value IRS = 286 1 100 pcm (Critical Ref Bank (Design Cond) Position = 85 steps) Reference NE Technical Report No 518, VEP-TRD-36A, - NFO-TI-2.2A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V FSAR/ Tech Spec safety analysis. SNSOC may specify that ' ( Acceptance additional testing be performed. Criteria Reference VEP-FRD-36A ( VI Design Tolerance is met Acceptance criteria is met
- .X_YES
- .x YES NO NO Comments Completed By Evaluated By: w#
festEngineer oa y: C-hTO Engineer A.8
f 1-PT-28.11 Attar'nent 1 Pagt 10 of 20 JUL yg SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Shutdown Bank B Worth Hess. - Rod Swap Reference Proc No /Section: 1-PT-28.11 Sequence Step No: 12 II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): O Conditions SDA: 228 SDB:Hoving CA: 228 Other (specify): (Design) CB:Hoving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): 545.3 Test Power Level (% F.P.): O Conditions SDA: 228 SDB:Hoving CA: 228 Other (Specify): (Actual) CB:Hoving CC: 228 CD: 228 Below Nuclear Heating I l Date/ Time Test Performed: 07/13/86 0 1053 Heas Parameter (Description) Ih; Int Worth of Shutdown Bank B-Rod Swap 1 IV (Adj. Meas. Crit. Ref Bank Test Heasured Value Ih=1212pcm Position = 199 steps) l Results Design Value (Adj. Meas. Crit. Ref Bank B (Actual Cond) Ih= 1135 + 170pcm Position = 199 steps) Design Value Ih=1130i170pcm(CriticalRefBank (Design Cond) Position = 195 steps) Reference NE Technical Report No $18, VEP-FRD-36A, ~ l NFO-TI-2.2A I J V FSAR/ Tech Spec If Design Tolerance is exceeded. SNSCC shall evaluate impact of test result on safety analysis. SNSOC may specify that Acceptance additional testing be performed. I 1 Criteria Reference VEP-FRD-36A I ' V1 Comments Design Tolerance is met Acceptance Criteria is met
- _l_YES
- _) LYES
_NO N0 Completed By e Evaluated By: 1 M
'est Engineer rova y: C- ,
hTO Engineer A.9
1-PT-28.11 Attach ent 1 Page 11 of 20 gg, g F SURAY POWER STATION UNIT 1 CYCLE 9 ( STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Shutdown Bank A Worth Meas. - Rod Swap Reference Proc No /Section: 1-PT-28.11 Sequence Step No: II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): O Conditions SDA: Moving SDB: 228 CA: 228 Other (specify): (Design) CB: Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): 546.4 Test - Power Level (% F.P.): O Conditions SDA: Moving SDB: 228 CA: 228 Other (Specify): (Actual) CB: Moving CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed: 07/13/86 0 1130 Meas Parameter (Description) I ; Int Worth of Shutdown Bank A-Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Measured Value I =926 pcm Position = 156 steps) Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond) I = 9571 144 pcm Position = 156 steps) Design Value Ih=958i144pcm(CriticalRefBank (Design Cond) Position = 173 steps) Reference NE Technical Report No 518 VEP-FRD-36A, - hTO-TI-2. 2A If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V FSAR/ Tech Spec safety analysis. SNSOC may specify that [ Acceptance Criteria additional testing be performed. Reference VEP-FRD-36A Design Tolerance is met : X._.YES _ N0 VI Acceptance Criteria is met : .X YES _NO Comments Completed By. _.. est Engineer Evaluated By As b Recommended for [ Approval By :- C- W hTO Engineer [ A.10 s
1-PT-28,11 p Attachment 1 JUL 1 1980 L Page 12 of 20 h SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
Total Rod Worth - Rod Swap Reference Proc No /Section: 1-PT-28.11 Sequence Step No: , II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): 0 % Conditions SDA: Moving SDB: Moving CA: Moving Other (specify): (Design) CB: Moving CC: Moving CD: Moving Below Nuclear Heating I III Bank Positions (Steps) RCS Temperature ('F): 545.5 L Test Power Level (% F.P.): O Conditions SDA: Moving SDB: Moving CA: Moving Other (Specify): (Actual) CB: Moving CC: Moving CD: Moving Below Nuclear Heating Date/ Time Test Performed: 07/13/86 0 0510 ( Meas Parameter (Description) ITotal; Int V rth f All Banks - Rod Swap IV ( Test Measured Value ITotal
- 5841 pcm Results Design Value (Actual Cond) ITotal = 5647 i 565 pcm Design Value ITotal = 5654 i 565 pcm (Design Cond)
Reference NE Technical Report No 518, VEP-FRD-36A, hTO-TI-2.2A r If Design Tolerance is exceeded, SNSOC ( ' V FSAR/ Tech Spec shall evaluate impact of test result on safety analysis. SNSOC may specify that Acceptance additional testing be performed. I Criteria L Reference VEP-FRD-36A Design Tolerance is met : - X YES ___NO VI Acceptance Criteria is met : .X_YES N0 ( Comments [ r ( Completed By. D* i - f st Engine %er Evaluated By: - AM /4J )_M Recommended for Approval By : gj % NFO Engineer [ A.11 ii
l-PT-28.11 JUL ( Attachment 1 Page 13 of 20 1 1966 r SURRY POWER STATION UNIT 1 CYCLE 9 L STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test
Description:
HZP Boron Worth Coefficent Hessurement Reference Proc No /Section: 1-PT-28.11 Sequence Step No: , II Bank Positions (Steps) RCS Temperature ('F): 547 c Test Power Level (% F.P.): O L Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): (Design) CB: Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): 547.0 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): p (Actual) CB: Moving CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed: 07/13/86 0 0300 Measured Parameter ( IV (Description) a Boron Worth Coefficient CB' Hessured Value a C B
-7 97 pcm/ ppm Test Results Design Value (Actual Conditions) a C = -7.83 1 0.78 pcm/ ppm Design Value (Design Conditions) a C
B Reference NE Technical Report No 518 - FSAR/ Tech Spec a xC B5 15,115 pcm C B V [ Acceptance Criteria Reference UFSAR Section 14.2.5 Design Tolerance is met : X_.YES NO VI Acceptance Criteria is met : 1._YES NO Comments E Cortpleted B Dh'h s_4N 1 est Engineer Evaluated By: /N _/ h M _ [ Recommended for bp Approval By: . J NFO Engineer A.12
1-PT-2R.11 g ( Attachment 1 Page 14 of 20 JUL 1W [ SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description : M/D Flux Map - Low power Reference Proc No / Section: 1-PT-28.2,1-OP-57 Sequence Step No: 41 II Bank Positions (Steps) lRCSTemperature(*F): TREF *1 Test Power Level (% F.P.): <30 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify) (Design) CB : 228 CC : 228 CD:
- Must have 2 38 thimbles III Bank Positions (Steps) RCS Temperature (*F): 555 F Test Power Level (% F.P.): 30.0%
Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): (Actual) CB : 228 CC : 228 CD: 168 { Obtained 35 thimbles, therefore hot channel factor cannot be verified Date/ Time Test: but quadrant power tilt may be Performed: 07/18/86 0 0955 m,n t i, * ,. a . MAX. REL NUC ENTHAL TOTAL HEAT QUADRANT IV Mess Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT f (Description) % DIFF CHAN FACT CHAN FACT RATIO L (M-P)/P F-dH(N) F-Q(T) QPTR 4.1 % fo r-Measured Value g NA NA 1.0099 Results Design Value (Design Conds) lO5l'll se, . a v.; *- NA NA { $ 1.023 ** WCAP-7905 WCAP-7905 Reference REV.1 NONE NONE REV.1 V FSAR/ Tech Spec NONE d"'" " " 'h'''"' NA , Acceptance Criteria Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met : X_YES NO Acceptance Criteria is met : _.x_YES NO i VI ' Cor.nont s
- As Required
**The design value of QPTR is the sum of the 1.003 design prediction tilt and the 1.02 uncertainty
( identified in WCAP-7905. ( CompletedBy.b gineer
> Evaluated By: ImIb est Recommended for f Approval By : C _ _ ,7- and
[ NFO Engineer [ .
- A.13
( 1-PT-28.ll Attachment 1 JUL yg Page 15 of 20 r SURRY POWER STATION UNIT 1 CYCLE 9 L STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description :M/D Flux Hap-At Power Reference Proc No / Section: 1-PT-28.2, 1-OP-57 Sequence Step No: 43 II Bank Positions (Steps) lRCSTemperature('F): TREF *1 Test Power Level (% F.P.): ~ 50 [ $ Conditions SDA: 228 SDB: 228 CA: 228 Other (specify) (Design) CB : 228 CC : 228 CD:
- Must have 2 38 thimbles Bank Positions (Steps) RCS Temperature ('F):
( III Test Power Level (% F.P.): 50.2% 561 F Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): (Actual) CB : 228 CC : 228 CD: 168 Obtained 39 thimbles Date/ Time Test: Performed: 07/.10/86 0 0312 MAX. REL NUC ENTHAL TOTAL HEAT QUADRANT IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT (Description) % DIFF CHAN FACT CHAN FACT RATIO [ (M-P)/P F-dH(N) F-Q(T) QPTR 7.o 7. F~o e Measured Value 6 m 2 c.9 1.544 2.068 1.0076 f Test 7 p (*i q L Results Design Value
,.,.,. .,, ,l.'
(Design Conds) .l NA NA 5 1.02 WCAP-7905 WCAP-7905 Reference REV.1 NONE NONE REV.1
,;,,si inn. m.en 'o'"N f ,',Ns'**'"
V FSAR/ Tech Spec NONE j "' " NA . Acceptance Criteria Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met : .X YES NO Acceptance Criteria is met : v YES NO VI ( Comments
- As Required Completed By N 4 Evaluated By: Ym M 4e
' rest E neer 'a y :_d.
NFO Engineer ( . A.14
{ 1-PT-28.11 Attachment 1 JUL 1 E Page 16 of 20 { SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description :M/D Flux Map-At Power,NI Calibration Reference Proc No / Section: 1-PT-28.2,1-OP-57 Sequence Step No: 4 5 II Bank Positions (Steps) lRCSTemperature(*F):T 11 REF Test Power Level (% F.P.): ~ 70 [ Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): * (Design) CB : 228 CC : 228 CD: ** III Bank Positions (Steps) RCS Temperature (*F): 566 F Test Power Level (% F.P.): 70% Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): (Actual) CB : 228 CC : 228 CD: 176 Quarter-core Map - 21 thimbles Obtained I Date/ Time Test: Performed: 07/20/86 0'2046 MAX. REL NUC ENTHAL TOTAL HEAT QUADRANT IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT (Description) *. DIFF CHAN FACT CHAN FACT RATIO ( (M-P)/P F-dH(N) F-Q(T) QPTR
-K/ % Ar-Heasured Value ' 3 E O' 9 NA NA NA
{ Test $Pg[y Results - Design Value '((llj (Design Conds') . .....e i NA NA 5 1.02 WCAP-7f35 WCAP-7905 Reference REV.1 NONE NONE REV.1 V FSAR/ Tech Spec NONE ' b ' "' ** ' * * ' NA . Acceptance f Criteria Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met : .X_YES . _ N0 Acceptance Criteria is met : X_YES NO Comments
- Must have at least 38 thimbles for a full-core flux cap, or at least 16 thimbles for a quarter-core flux m p.
** As Required Completed By: M. Evaluated Ey: z*r /[ der 'e est@gineer s Recomm hced fe,r Approval By : C- - e ,J NFO Enhinter A 15
3-PT-28.11
.ichment 1 g Page 17 of 20 Ig I
SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description :M/D Flux Map-At Power,NI Calibration Reference I II Proc No / Section: 1-PT-28.2, 1-0P-57 Sequence Step No: 46 Bank Positions (Steps) lRCSTemperature('F): TREF *1 Test Power Level (% F.P.): - 70 I Conditions (Design) SDA: 228 SDB: 228 CA: 228 CB : 228 CC : 228 CD: ** Other (specify):
- Bank Positions (Steps)
I III Test Conditions (Actual) SDA: 228 SDB: 228 CA: 228 CB : 228 CC : 228 CD: 166 RCS Temperature ('F): 566 F Power Level (*. F.P. ): 70% Other (Specify): Quarter-core map - 21 Thimbles Date/ Time Test: Obtained Performed: 07/20/86 0 2245 I IV Meas Parame.ter (Description) HAX. REL ASSY PWR
*. DIFF NUC ENTHAL TOTAL HEAT QUADRANT RISE HOT FLUX HOT POWER TILT CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N) F-Q(T) QPTR -3.t % fe t~
Hessured Value b8 E 8* 9 NA NA NA Test T3 *# I Results Design Value p
' C lll ,q (Design Conds) s e . ..., . w. i NA NA 5 1.02 WCAP-7905 VCAP-7905 Reference REV.1 NONE NONE REV.1 V FSAR/ Tech Spec NONE "" # * 'b" " **" NA Acceptance Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met : .X_YES NO Acceptance Criteria is met : .X._YES NO VI I Comments
- Must have at least 38 thimbles for a full-core flux map, or at least 16 thimbles for a quarter-core flux map.
** As Required I Completed By:
st gineer ( Evaluated By: m I- N rova y: C. NFO Engineer A.16
1 - M - 2 8.11 Attachment 1 Page 18 of 20 JUL 1 W86 L SURRY POWF.R STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description :M/D Flux Map-At Power NI Calibration Reference Proc No / Section: 1-PT-28.2, 1-OP-57 Sequence Step No: , , - II Bank Positions (Steps) lRCSTemperature(*F):T 11 " REF Test Conditions Power Level (% F.P.): ~ 70 SDA: 228 SDB: 228 CA: 228 Other (specify): * (Design) CB : 228 CC : 228 CD: ** III Bank Positions (Steps) RCS Temperature (*F): 566 F Test e Conditions Power Lsvel (% F.P.): 70% SDA: 228 SDB: 228 CA: 228 Other (Specify): ( (Actual) CB : 228 CC : 228 CD: 186 Quarter-core map - 21 Thimbles Date/ Time Test: Obtained Performed: 07/21/86 0 0102 MAX. REL NUC ESTHAL TOTAL HEAT QUADRANT IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT { (Description) *. DIFF (M-P)/P CHAN FACT CHAN FACT F-dH(N) F-Q(T) RATIO QPTR
- 4'. 2 7, F.v-Heasured Value 8 A C* 9 NA NA NA Test T* 4 T* I' "
Results O # ** 9 r Design Value L (Desian Conds) ,'. . C . . '.
. . ,'.l..l NA NA $ 1.02 WCAP-7905 WCAP-7905 Reference
{ REY.1 NONE NONE REV.1 V FSAR/ Tech Spec NONE
"" " 'b " ** ' "* ' ~
NA Acceptance Criteria Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met : .X_YES _NO Acceptance Criteria is met : .1_YES _ NO VI Comments
- Must have at least 38 thimbles for a full-core flux map, or at least 16 thimbles for a quarter-core flux map.
** As Required Completed By est gineer Evaluated Sly: mI w * ' c:h to y:C-hTO Engineer A.17
1-PT-26.'. g ( Attachment 1 Psge 19 of 20 r SURRY POWER STATION UNIT 1 CYCLE 9 L STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description : M/D Flux Map - HFP, ARO, Eq. Xe Reference Proc No / Section: 1-PT-28.2, 1-OP-57 Sequence Step No: 78 { II Bank Positions (Steps) lRCSTemperature(*F):TREI il Test Power Level (% F.P.):95 i 5 { Conditions SDA: 228 SDB: 228 CA: 228 Other (specify): Eq. Xe. (Design) CB : 228 CC : 228 CD:
- Must have 2 38 thimbles
{ III Bank Positions (Steps) RCS Temperature ('F): 574 F Test Power Level (% F.P.): 100% Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): (Actual) CB : 228 CC : 228 CD: 220 39 Thimbles obtained Date/ Time Test: Performed: 07/29/86 @ 0901 MAX. REL NUC ENTHAL TOTAL HEAT QUADRANT IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT (Description) % DIFF CHAN FACT CHAN FACT RATIO { (M-P)/P
- 4.7 % 6 e F-dH(N) F-Q(T) QPTR Measured Value f4#2o9 1.476 1.823 1.0064
( Test-Results g., [-4 Design Value , , , , , , ,,,,, e (Design Conds) s e, . . . e- NA NA 5 1.02 1 WCAP-7905 - WCAP-7905 Reference REV.1 NONE NONE REV.1 V FSAR/ Tech Spec NONE NA . Acceptance Criteria Reference NONE TS 3.12 TS 3.12 TS 3.12 Design Tolerance is met : X_.YES NO Acceptance Criteria is met : Y YES NO VI ( Comments
- As Required
[ Completed By: h Evaluated By: #
- J T t 'igineer Recommended for gf Approval By : C,./ Q v d hTO Engineer A.18
p V1HOINIA ELucTN1C ann PownN ComiwNY H ICllMON1), VI HG INI A 2 U 2 6 I W.L.STHWAMT vir = P = = = = == == Ni;rtsas OPERATIONS September 12, 1986 Mr. Harold R. Denton, Director Serial No. 86-587 Office of Nuclear Reactor Regulation NOD / TAB:dof Attn: Mr. Lester S. Rubenstein, Director Docket No. 50-280 PWR Project Directorate No. 2 License No. DPR-32 Division of PWR Licensing-A U.S. Nuclear Regulatory Commission Washington, D.C. 20555 Gentlemen: VIRCINIA ELECTRIC AND POWER CGEPANY SURRY POWER STATION UNIT 1 CYCLE 9 STARTUP PHYSICS TESTS REPORT For your information, enclosed are five copies of the Virginia Electric and Power Company Topical Report VP-NOS-29, "Surry Unit 1, Cycle 9 Startup Physics Tests Report". Should you have any questions, please contact us. Very truly yours,
's W. L. Stewart Enclosures cc: Dr. J. Nelson Grace Regional Administrator NRC t(egion II Mr. William E. Holland '
NRC Senior Resident Inspector Surry Power Station Mr. Albert F. Gibson, Acting Director Division of Reactor Projects NRC Region II Mr. Chandu P. Patel NRC Surry Project Manager 7 0 PWR Project Directorate No. 2 -6 y Division of PWR Licensing-A <M p}}