ML20203A169

From kanterella
Revision as of 07:12, 1 January 2021 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Evaluation of Eddy Current Probe for Once-Through Steam Generator Sleeve Exams
ML20203A169
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 08/02/1985
From:
BABCOCK & WILCOX CO.
To:
Shared Package
ML19292F311 List:
References
A3081, NUDOCS 8604160247
Download: ML20203A169 (25)


Text

-

r

, - THE RASCOCK & WILCIX COMPANY Pown opsEATION OROUP nevisicms ==-

'::" '.m 1

1 8%-

DI.

, 1 I

r.!=[

2t i!l ei*i ea5

. *C

  • 1 i R

e t.a j; EVALUATION OF THE EDDY CURRENT r PROBE FOR OTSG SLEEVE EXAMINATIONS ii 1.

ni r

n!

ei 8.

>I 13i t2i o

U,t 9

8..:.!

i i .r > '

og? '

I ri 81E X!!

3.e o (3 .I>

Bl5 on hs8 t I .,

s8 isi -

e au I 8 8604160247 860401 3 lIX PDR ADOCK 0500

=no P

!.I?

A3081 gcs_ u _ ' Page 1 c--s r 09/52/75 gg[u e--

2 ~d W_UATIO*. 7 T-E E: "a' * "= m -

r

_=_:- e

.z . . . - . ___

~

~'

THE EABCOCK & WILCCX COMPANY Powa ca4 RADON ORCW navisecms  ;'y

, .m .e. n .

88: i i l

~

$E I

1.0 INTRODUCTION

gEI  !

fli An earlier study of different probe types indicated the II probe 33* exhibited the best flaw detection capabilities in the expansion {

transition and end of sleeve areas (Reference 1). This report documents 1

P!i the inspection capabilities of a field deployable -  ; robe and j!? inspection system.

ejt

31 2.0

SUMMARY

I*

" 3} The best inspection procedure for OTSG sleeve examinations is a I& combination of the bobbin coil an-II eddy current system. The diameter bobbin coil should be used for 1

I ti the inspection of the sleeved mid span regions and the unsleeved portion l

[3 of the tube. The ;il should be used for the inspection of the sleeve expansion transition areas and at the sleeve end. Using this '

)

!* combination, ASME size flaws in the sleeving of 20% TW or greater can be

!! detected and quantified in the sleeve mid span. ASME size flaws in the et parent tubing of 20% TW or greater can be cetected and semi-ouantified in  !'

,;. the unsleeveo tube and sleeved mid span. ASME size flaws 20% throegh the

'*i sleeve or parent tube can be detected but are unquantifiable at thc-

!!3i exphnsion transitions. An ASME size flaw 40% througn the parent tube can

I!! be detected but not quantified at tne sleeve end.

'8iI 3.0

j{ , EVALUATION PROGRAM

'UEe 1 i!! The evaluation program was a continuation of the earlier probe study I a;! (Reference 7.1).

ni*

8i:

8

'<i.?

  • i ;.

ig 3 Tne sleeve tubino standard used in this evaluatien are shown in Figure 1, 2 and 3.

i; Several dif ferent mixes were tried to further suppress the g sleeve end and expansion signals.

12 fE Sleeves with dif ferent tapered ends were evaluated to determine any

[!lr8 increased in detectability of flaws at the sleeve end.

, i85 4.0 RESULTS eja

[g The previous OTSG sleeve inspection technique employs the bobbin coil and i 3g (Reference 7.2). Multifrequency mixing is used to 1,3 suppress the expansion transition signals.

A3081 Page 2 h ,a : . .

c-a,

._...A.._.... _ ._ ....: .- _ . ...

~

THE BABCOCK & WILCCX COMPANY Pown oENERADON OROUP nevisio ns "g

  • 'J"

. == . . - .

11e Rcl fl .

L lII I.!II

5*

iji l t

er 3 i:2 l

!! Figures 4 and'5 show signals from a 60% and 40% flaw in the parent tube if using the bobbin coil Figures 6 and 7 show much " cleaner" 8i signals from the same f1aws'using the bobbin coil a lE settings. All further evaluations were perfomed using the

  • i

!* saturation.

5 Figures 8 and 9 show the 60% and 40% flaws in the parent tube mid span

4 using the lj distortion to the signals. The distortion is due to ID variations Note the by the sleeving technique. The caused probe is much more sensitive f!}

v)I to this noise than the bobbin coil. It was noted, however, that

j[

expansion suppression mixes would also suppress this noise using the prob e.

5t! Several two and thre'e frequency combinations were evaluated for expansion e;j suppression mixes.

proved to be best for detectig us, flaws at the expansion transitions (highest signal to noise ratio). The lI

< ! ', mix was repeatable in that it could always detect ASME size holes of 20%

or greater in the sleeve or parent tube at expansion transitions.

[ij. repeatable mix could not be generated which resulted in phase separation A

gga between the signals from flaws of varying depths. Therefore, the f1aws g=i could be detected but not quantified as to how deep they were.

!jEl .12 Figure 10 shows the residual expansion signal using the expansion

. suppression mix. Figure 11 shows a 40% ASME size hole through the sleeve

'E8 at an expansion transition. Figure 12 shows a 40% flaw through the itso parent tube at an expansion transition. These flaws are readily a"I detectable using the

  • The phase infomation indicates g,j .

whether the flaw is in the sleeve or parent tube.

!!V i48 A3081 Page 3 k .T,gr.T' % te "'" ***'-

,,,, ,. ,, t . ..

aE

.y.

Er

'. -_j

_. ,.. ~ . _ -

1 THE BABCOCK & WILCGX COMPANY '

POWR GINRADCW OROUP navisio NS "g* l

".: " m. ... . l

. l 33 .;

ggi Several two and three frequency mixes to suppress the response to the lrj sleeve end were evaluated. proved to give the best g

2[g*i signal to noise relatively low. ratio, although the signal to ncise ratio was still I- ( Approximately 1 for the 40% ASME size hole).

e2y by comparing the resultant signal of a 40% ASME size hole at the sleeveHowever, end to a defect free sleeve end signal, the 40% flaw can be detected.

eI!

li

.!!s bI 15 3m r

e8 lif

!.Ei

. a u;9,5r n!!

.II gi:

Xi!

0 1' 7l5 Note the signal shapes are somewhat different between eine

'ig shape of the resultant mix signal was not necessarily repeatable, 8

g; however, each mix generated, exhibited distinct differences between the

" clean" sleeve end and flawed sleeve end signals.

I5 lg" U

su Several different tapered sleeve end designs were evaluated to determine iy 3 ifsleeve usingend.

tapered sleeve ends would enhance the detection of flaws at the

,.. Figures 30 through 33 show the residual sleeve end signal

= from a non-tapered sleeve end, a 1/4 inch long OD tapered sleeve end, a i 1/4 inch long ID tapered sleeve end and a 1 1/2 inch long, 00 tapered jg,gl sleeve end, respectively. All of the residual signals give the same

- general shape. The long tapered sleeve signal drif ted somewhat while the

! ! ,,! probe was in the taper, then gave the same sharp transition at the sleeve A3081 Page 4

'-' ** <-e l EVAten:3 cf

,,,,, . . . , , .x

~

THE RABCOCK & WILCOX COMPANY PoWR OENRADON GeOUP nmios. =-

  • '.*" .m 8i i gg i _-

3 =

end as exhibited by the other sleeve end designs. No significant lg ;j increase in signal to noise ratios were observed from one sleeve end i} .

design to another.

33*i 5.0

!!l

}!

_ CONCLUSIONS

.5:; Table of the 1 summarizes the sleeve inspection capabilities using a combinati 2l5

. oe.

sIl 5.1

,g*

3 offers increased

=

I!

ys rent tube flaws in the t} 5.2 j5 The bobbin coil gives the best examination for detection and

=; sizing flaws expansions andinsleeve the sleeve end. and parent tube at all areas except the I* '

al 5.3 The

g flaws at the expansions and at the sleeve end. probe gives the b ~

! 5.4 The j$3 probe

  • 2s examina tion.

,  !;e:j 5.5 The ggg or parent tube at expansion transitions. probe can detect 20% ASM 3in i!! 5.6. The nj

.g parent tube at the sleeve end. probe can detect a 40% ASME size hole in 8II 5.7

{!! 3 Different tapers at the sleeve end do not significantly improve the detectability of flaws at the sleeve end.

jg';i 6.0 RECOMMENDATIONS 8

g 6.1 ig Inspect OTSG probe. sleeved tubing with both a bobbin coil probe and a 12.g L

s8 6.2 Use the' Igj and with for the bobbin coil exam, below ,for the i Jjust

' probe exam.

l lf n. 6.3

[ jgl Compare inspection results to previous data whenever possible.

. Present and previous dati must be compared using the same mix.

! !n!

A3081 Page 5 e.e EVA

, ,, ,, ...LUAT! M ^: Te

- 4;

._- ~

i s

THE BABCOCK & WILCOX COMPANY Pown oevaADON OROUP navisions "R=-

"."." .c..m .

8Is

? 6.4 li[

t I Mix on installed sleeve expansions and sleeve ends to evaluate data from other installed sleeves in the same generator.

8 *=

aI

7.0 REFERENCES

3 88 i 7.1 B&W technical document entitled " Interim Report of the Evaluation of EC Probes for OTSG Sleeve Examinations", Dwg. No. 1157587, ei:! dated 6/28/85.

maj i- g 7.2 B&W technical document entitled, " Baseline Inspection of OTSG 2l. Sleeved Tubes", Dwg. No. 1154552, dated 11/26/84.

t.E e

t*

2,

!a!

e E!:

U* l Gi! i YfC s5g . -

e2 I

xi 8II V

a!! g e Eb II

,82 ll8 E

r8 e

.i In e oa I 8

!rg 135

!.!7 A3081 Page 6

  • ~ ~ - c--

l ;q .gi m, y  :

I u .. o. .

.. ...~.. . -

THE BABCOCK & WILCOX COMPANY pown oENRADON OROUP ncvisio n "g-

".". .m . .

88e 3gl TABLE 1 1rj -

'h!!

ej st-

'khs St*MMARY OF INSFECTION CAPABILITIES tGK L3

-I g*2 g

iE g,

SLEEVE ID A

B C D "E ) E F C lG

/ -

- X E 1

' ai i

- e 1.

9

  • *0
  • E$ . n B E CD

$f

>a

u,r l*

E!

S8.

j1I

~I e7-I ni 8II X ARIA Expansion E ,I2 ! A B C D E F G Confin.at t en I

  1. 9
  • ar FROBE zee
  • I ,.

g*z FREQi.' ENC)

.II DETECTION 202 20Z 20: 2CZ 20% 20%

t:u8 40 -

SIZING Best Best h**5 F;

-u Iffort Iffort Yes No Best No No 1.5 mils Effort 37 Isi jo 3m Ia8

!!W L68 iI?

A3081 Page 7

.. .. e... l: j . . .:- . ,., e

-* * "  ! _ . L ._ - ,. . . . . ...

  • a l

s THE RABCOCK & WiLCOX COMPANY POWR OmRADON OROUP l l

l navisions =-

=== .c. .

i l

" 88~ l t

Ra e X .

l I!"!

a x!

yj t*

i t

t y =.,

t.g$

a It ij I .

l 3

t*

.' .I E.8 e8 ii.

i*>

o,.

u9,

.:2 Oa3

33. '

ji 1 V I

ag-n;r 8I3 X!!

3.e n:!

g=r 5 :8 .8 f I a.yu o .

U !8

.Ig3d ,

i j'

a

!I X

!eM I(3 Figure 1: Sleeved GTSG Tubing Standard A egn*

.' w s-A3081 Page 8 r-- .- e...

~ ,....:-,.

.~~

l.:... . . . , , ,

.en-==-- . _ eee * . e . A

4 i

i THE BABCOCK & WILCOX COMPANY .

POWR GENBunON 040UP navassoMS T*

  • . ~. .m . , _ .

8ti 225 y~I.

III ..I st*

22{

s4-a..

,it I*

.cI i.*t

E Ei A6 I I

I l t' s  !

.3 .I

.S I i

o i ei ii, a . ..

E&5 I.]

o I u ,9 ,

-:2 Oaa u, I a ii! -

e 7 .g

,ir g!

M!!

8ge

. t.

r g*2 8

[t'~

n.8 "s8 lEl e oa f 8 3sy I8 g Figure 2: Sleeved OTSG Tubing Standard B 157

.o>

A3081 Page 9

- - - <-e l , .c u - ,, . . se a: = a '-- -

r

, , , , , , i.  : -:

~ .- -

THE RABCOCK & WILCOX COMPANY l POWBt OENRADON OROUP 1

uvimo= .--

m.

. l

. == . .m . ,

l l

l 81-80.t gt.

I r .s,y I 35a

!!f 44-

  • i e;s =

tiI

.g*

2.8 ,

i.t l

il

$j t's

  • I
  • i eI (

Id j l

.f -

s! l

!2r '

"5.,f u

a i..

S1.

i17i ,

e3-

=ir 8?I 8!e 8ge

=f n= 3

,82 a5 r3 9 28g

  • su i

Is*

t 0 w

I 8

.!!X ..

Figure 3: Sleeved 0TSG Tubing Standard C

  • 2l

,I

.r . .r A3081 Page 10

  • - ' * - e- - lEc - ;r.T;rn, cp

_- .e... .... ,, .

. - L - . _ .. .. .. . . L , ; . . . . ._ , '

l.CH 1 VERT .l. CH I HOS2 .l M. Nu -- 1 ID # 1108 3CL

-i n 1l W DISPUW 8 con -

m^ _-

race

_ . . .a . ,

. sem l

I q- -

y-- 1. EFT STRI o oma -

- rare

,,,, g . ,

sem ROTATION -

Q' l 9F p prowr sTRr 1 - ona -

JL 8' F1tEG u sem 1 e.c ws:s T1.Ef +4.9 me oEs ca a smRT10w -

L. '

fg sysTe c:wicmarrow

_I t___

1

} m - DEFRA.T

' . ,, on,. 4 g

3:25:% SWt JfMMYIIW

[..

- i d I r' - j -L 2 m T

, W q_ .

l ) -

l g -

Figure 4 - 6G; TW fl&w in and parent tube mid span using boDbin coli 2

l_Ch 1 6 ' .l_ Ch 1660.! On+E2. HD - 2

  • llD A st0W 3 C:L i o 8

i } i w m.v I '

094 -

y. *- . .

FEQ SP4 t

..=k=

.f. . 5074T15 -

t '

____.e y -

i t y; l

l t I F1tEG R E T STs on. -

b SP544

, D it0TATIOH -

==

7P 4 h

'I t l

2 i

i -

RJ.GHT one -

STR dL L

}. FitEQ M SPm 4 f ' ttEE e.63 7.L75 g DEG M.

It0TATION -

I

+4.&

? 2

/ SYSTEN cDF ,mrION a

l

.. .' i M-

, ,, og,. 4 DEFALLT

. g 3:25:56 Sin 1

JsHLswy 1 Im _

. _ ._....) . . . . . _

g; .. ..

y. . _

y 1s

. .f . . . .. . .

l <l 4- t f f'l i Figure 5 - 40% TW flaw in parent tube mid span using bobbin coil and

l l

I 5 . CH I VERT ,j. Q* 1 H(EIZ .l C4MEL W - 1 ID 8 ROW 1 l ) { o peel 1 l

we i j "

_-_.p _-5_-- -

srm c-g s

3 , acnnTItm 090EL 2 i

.::4h A d h l, ROTRTION Op6EL 3 f e

SPM Mf 7 ROTATION

_$ M l OpeEL 4 j -- 1

  • 2.43 VOLT 5 BE DEG 68 %

T11C 6,a SPM -

l It0TATION MIX 1 (5)

& D O4ELs u .

m-

~P

~

I

->acTATION l nix 2 (s) w m ,! I onens A l  ! sPm -

1  ! .

} t } stoTATim Figure 6 - 60" TW flaw in parent tube mid span using bobbin coil and

. 1 I

,_ 04 1YERT .j D- 1rEE C , 00+C. @ - 1 $D 4 End e CIL ej f d i J De#EL 1 I

L_._

_k _ - _ _ _ _

i lC_____ -

3 p { noTailm j

^

7_ ej OG#n 2 i

- _== ,

l N i fl "

=

4  : -

g i stCTETION l i De*EL 3 i m l

f see M- F ItOTATION M

  • M OD4EL 4 I t 1 2.31 YOL T5 EE DEG M m TUEE +4,e SPW l ROTRTION W

u

?

. , H 1

q RIX 1 (5) oaens ym P 4

%) - )IIDTRTION

_ RIX 2 (6)

_3 r -

omens

__:u sPm 1 g , flDTRTim Figure 7 - 40 Ta' flaw in parent tube mid span using bobbin coil and

. os tet .1_ m a c 2: . mt wo - 2 pp eem o ca. cj l

lo9 EEL 1

- me -

- n sPm -

4-.  ;

I C"Jh aDmTim omen a FRED -

p/ a% -~ -

ROTmION Open 3 rREc -

sem -

HUTRTItet open 4 l 1. 5C VCt. T S M [EG 60 %

Tust +e.O ~

, sPm -

j EDTATICH g

k -

nix : (s)

-'onens sw -

j acTRT: m 7- l ,

nix 2 (s)

- caens l sem

--T- l A .

} l RermIm - a.s; .

Figure B - 60% TW flaw in parent tube mid span using probe and

.cxIvoT .;_ m a mRI: .; on+o. m - po e am * -'

l l 1 fo neEL 1 NG -

-- - {

e f' 4 acTmIm .

OC

% onec 2 j FREQ srm

( ROTATIDH -

On#E 3 FREQ  !

I i armn0H -

t ODOE 4 E.22 vrtT5 m DED 40 %

TUtE +e.e sPm l kOTATIDH -

NIX 1 (5)

a. w -

g on#Es sem

- RDTRTION -

r MIX 2 (6) omens sem

% , y ROTATIDH -

Figure 9 - 40% TW flaw in parent tube mid span using probe and

1 l CH !VGT . l. Di ! KSI l Op+G HD - 5 jrD 910e

= _ - -

l ll =

l OpeE2. 1

, l FREQ  :

1 T spy RDTAT194 De6E. 2 FREQ ll 9 sPm i O l

. RUTRTION 3

0900.3 re - i sm - i I i RtrfATION , ,

De+EL 4 '

~

8.14 VOLTi 49 DEG e4

,, CLEm EX +0.0 N-l ROTATI(N l

j g MIX 1 (5)  ;

- g ,

g , a D O+Els l

l L i"~

ROTATICh l p

h gMIX2(6) i l i 1 - on+ns g I l li s sm -

! I i l ROTAT134 Figure 10 - Residual " clean" expansion transition using mix i ;_ o4 IvsT .L cx : H0cI 1 on+c Mrs - s ha e RS .e ca J --. M~

F lO69EL1

  • Ci i FREC J e SPm
  • i '

RDTATICH -

U 09+n 2 if.__ lI T

fl rm

' j ROTATION -

w-

) OAin 3 FE g-2m ROTETICN -

_ OD+n 4

! l 1.14 Yr,t TS M DEG *e %

S:.V. TRW +e.p SPm r RoTAT!0w .

MIX 1 (5)

__ onens

- \ ROTATION -

MIX 2 (6',

i - opens se y ROTATICH - ,

Figure 11 - 40". TW flaw through sleeve at expansion transition using mix

. s

. CH 1 VEN oi. Os 1 McEIO ., ML NO - 5 'ID eW 8r

,__ L i -

4 OneC.1

[ HIED l f SPm p- Il0TRTICD8 -

L OpeEL 2 1- i

( N

-- h C "

IICTRTION .

! O peel 3 no I . SPD  ;

itDTNTit>I -

Oe#EL 4

~

1.03 VOLTS filed g .'5 DEG 40 %

__T_LEIC TPJP+ +e.0 SPm w -

l ROTRTION -

5 l 3 _] ,

mix 1 (5)

I

~ ~5 ._ 8 {

Op+ELS l__  ! l SPD

- - ROTATION j l nix 2 <s) r-l De.as sPm

( , 7 '___  :

)  ; RcTATIm - .

Figure 12 - 40% flaw through parent tube at expansion transitior using

.' . O- i s . . . o< c>u+(. m - :

1

, .a l z , so e =c t I

j ii iOpeEL 1 2 j .

IFREG l .

i ' I l SPm i eciav!c>.

I

! l -

i \ 00+C. 2 I  ; I P i l:l  ! L; -

l'i -eTcT:m AtEG

i s

[

y j

r-3

\ o net _ s l

!! ( l NG

!' 'l  !

+

4 4

! \e3 sw acT~ rim li $ I IC AttL 4 i

!l i

i.s ws sm :c. - s i=rt ntt -e.e i" SP*

l'

\

t

[

i i **' *

{MIa1(5'

, ca+c.s g

l . I i; sPm

' poTmm t --

!, '. pix 2cs) t i pi s

t l

\ w ca+e 5

sPm i ! y i .

f 1

, i ROTATIcma Figure 13 - 40% flaw through parent tube mid span using .ube end suppression mix

'. Os IVERT ,l_ CH 1 HOE!I ,e ODE MJ - 5 $K, S Row .

3 OpeEL 1 m

f l

-= No

%l SPM gnoTaTIGH g _

Op+EL 2

- r -

FnEn i "

g noTnTION Op4EL 3 l I F4EE i m acTATIDH I,ODeEL 4 i.31 n rs ss a o 4e x

' N8 stv. o o +e.e sPm t

/ l l .EDTATIGH nix <s)

W , - Op+ELS l

I j  : sPm -

-  : kCTATION l

. l , pix e <s)

._ Opens

. I m-i f l } RainTION -

Figure 14 - 40% TW flaw at sleeve end at "

. D4 1YERT ,l_ 04 1 POEI2,l Do+EL HD - 5 gic Rtad i I h

1 .

[ODen i

_= -Ik, w g p  ! "m -

a w g

y ') my l@TATION

[ e

'FEQ -

I s.8 sem -

W ROTATION CN 3 me -

SFTe4 -

, ROTATION lOp+EL 4

~

1.10 WJL!! Bd MG 46 %

' SLV. E.T 4.9 ,_

SPM -

l ROTATIDH MIX 1 (5)

{

ODeELS j sPm -

ROTATION

MIX 2 (6)

_ Owens j l sem -

l l  ; ROTAT!G4 Figure 15 - 40% TW flaw at sleeve end at

_ CH IST . }. CH I HORIZ ,l o&+G MD - 5 $G e Row I t j open i rue -

J, JE. '

s= -

90TATICH oD*EI. 2 FREQ -

i SP5W -

l ROTATION onen s FRED -

SPEN -

ROTATION Me

~

1.59 YOLTS 46 CE6 6 Oc j i stv. no +e.e orcW -

I r ROTATIo-

!y } j ex I (::

I -

oa+as i sFm -

- ' RDTATIO>

g l cx <s:

, 4 _-I_ , 9 - opens lY i spaw -

RorATIc*

Figure 16 ~

showing

." clean" sleeve end signal,  !

CH I si .i_ o4 : c::,; an.n wo __ 3 pc, , ,

oO*C 1 FREG SPm RDTATICH 3 -

! 0DeEL 2

  • l j FRED

' l SN l ROTATICH -

, i I ~ - -

ROTRTI(> -

oM4

1. 3 R TS 0

, , uv. oe 4. . Em EG 4e % ,

l i ROTATIDH -

e l PflX I <5) l -

omens l 1 SPcw l l-- -- ROTnTIt> -

l mix a <s) l , -

__.owecs

(, i

RoTnTIcN -

Figure 17 - 40% TW flaw at sleeve ent

i  !

. CH I VDtT g. Q4 1MORIZ.I O**Ei HD - 3 E '*

Op*EL 1 F1tEQ 2 -

SPm f ROTATICH -

Op4EL 2 F1tED

\ 5"

- y RDTATIDH =

, O p eel. 3 FREQ d SFM l' ROTRTIDH -

i OpeEL 4 i

i e,e9 wtTS 235 DEG de % ram SLV. DO +0.9 g 1

kO1ATIDH -

p I -

MIX 1 (5)

} l O PEELS 1,

,SPG*

_ ROTA110H -

[ MIX 2 (D ,

' O neELs D in ~' (~l . 1 "SPm "Ic"

  • Figure 18 - 40% TW flaw at sleeve en.d at

. Co 1 VET <T ,J. Cu ! HCr *: ,. C;CidC H0 - 5 SG B kOW OOeEL 1

~

( l -

FFfG

' SFm p ROTATICH -

/ 045*EL 2 A I J _

RCTATION -

Q@ EEL 3 FE1EG um --

EDTATICH -

O n#EL 4 1.08 90LT5 FT1Q

_g v. o o +e.e 84 DEG 46 %

srm

ROTATIDH -

l MIX 1 (5)

Dams l sPm

- ROTATION -

MIX 2 (O Dams um f , ROTATION -

Figure 19 - 40% W flaw at sleeve end

_ Q1 1 VERT ,I. Cu 1 H0RIZ .l l

DOeEL60 - S P 0 ROW F

) 090EL 1

/

FREQ ~

3 b A- SPN ROTATION -

Op*EI. 2 i

N p

a s ROTRTICM -

1 O G4EL 3 FRED-

  • SPFed i

3 ROTATION -

1 1 0 00EL 4

  • 1 FREQ 1.69 v0LTS 238 DEG 46 %

C st,v, p o +e e Srw I

ROTATION -

M 1

_ n!X 1 (5) io***S

, SFm

$L 3- ROTATION -

flX 2 (6) s

-- Oaecs gm l.. i ROTATIDH Figure 20 - 40% flaw at sleeve end .

I j_ ex : vE:- .l a. 2 aIz . on+c.m - 5 pc eo e ca ai i ,

i Oa.a i n-q FREQ SPm j

== -

ROTRTIDH -

O pe(L 2 FREU

~

SPm

'[ F ROTRTIChe -

! OD*E 3 F~EQ i

i SPm ROTATICpt -

O pett 4

6. % vr.A.T 5 19 DEG 84 j stv. oo .a sF*

l ROTATION -

l 9 mix : <s)

Onens f I. Sesp RomT!ow -

; nix 2 <s)
_ l opens SPm l y RDTATICH ,DEGl Figure 21 -

shows " clean" sleeve end,

_ m : ,or .i_ m i nI: .! N *-5 N**

opeEL 1 i 1  % me 2 . #

,7 sem RoTRTICD4 - i

)

onut 2 l T '

i me -- i l

e noTmio* - \

open a g,

1 a

  1. _C 7

M' FG sem ROTATION -

\

1 OWM14 1.32 vntTS 233 DEG 89 % me stv. ee +e.e y stoTATION -

,m mix 1 (5's onens sem

- 'st0TATION -

l cx a <s:-

. Da*Et l ROTDTICD+

l Figure 22 - 40% TW flaw at sleeve end

_ m ivt-; .i. m i KsI: .' "M NCe - 5 %9h J, __

e <

W'No -

% *.- )

sem -

acTmICn.

1-

. onen a j FRETe

4. sem -

!  ; noTerm i 094R 3

&- MQ )

ls l sem - \

e l l l aarmsm

, opea 4 \

1 ma i

l sv.1.83 eom.:s+e.ssus DE3 40 % SPW

  • t i normim l nix 1 <st opens sem

' _._ noTmzow -

J mx a (6)

J I

on ns vee

[ j

[ q nurmion -

Figure 23 - 40% TW flaw at sleeve end

r l

1 2 1YDT ,l. 04 1 HOEIZ ,l OD*El HD - 5 BG eIDs 05HEL 1 FREG - i l m -- \

2;;

4=- ROTRTION O peel 2

% i FREG -

q m-ROTATION i I

O ptEl 8 '

4' FiEU -

R . sem -

RUTRTIDH opeEL 4 1.71 WL TS 44 N G 9%

-> SLV. DO +0.0 SPN -

l k,.

ROTATION I

l l MIX I (5) i Do+as

( ,SPm -

ROTATIDH NIX 2 (6)

$ pi >

O p4ELS sem -

l ROTC?lth Figure 24 -

" clean" sleeve end, ,i

_ Oi 1 YDtT ,! 04 1 HOE 12 ,l OD+G 2 - 5 6 Ca. GI

. K P R0W DO*EL 1 l FREQ sPCN

- - - ROTMION c -

094EL 2

] '

MG r  % .

sem ROTATION 0 9 EEL 3

. gg ma SPAN l

i RUTATION Op4EL 4 I 1. 2f YUL Tf., 25e M G 4e A stv. oo +e.e sPm

{ '

.ROTAT10H l L_ _IMIX 1 (5) i  ! On+ns  ;

M s 7 sem  !

~ ROTATIG4 u _a l l MIX 2 (6) f

' Quecs l!

i

/ 7 r--

l

[

--- J m -- -

f it0TATION OEG !

Figure 25 - 40% TW flaw at sleeve end - 4

)

i 4

l

. CN 1VEPT .l. D4 3 OI:,l C""- <1 NO - 5 l  % e Row e Ca el 1 OMeE1. 1 s _$  %&

rREe - ,'

l I sm -

l 4 ROTATICH -

OWeEI. 2 FRED -

SF%N -

l ROTATIDF -

C f onen s l F3lE3 .

srm f '

ROTATjCN -

De+EL 4 l 1.74 VOL f5 4 '

51 MG 46 P.

A v. oc .e.e sP5m Y '

l ROTATICH -

- HIX I (5) l acaens i*

S

- 90TRTION -

HIX 2 (6) g Opens C  !

__. saw l l POTRTICH -

Figure 26 - 40% TW flaw at sleeve end ~

tW i O' ,!. CH 3 HCEIZ ,l C";;CL HJ *.*

' E6 A DCh Op+C. 1 FREG EMN-3 c _

ROTETION -

g 1 i O@eE 2

~- FREQ spsw -

ROTETICH -

7 OD#El. 3 i

! L i --

N SPAN -

ROTRTION -

On4EI. 4 l l y a l_SLV. 8.83DO VLLli

+e,OEHL DEG 40 :c SF9f l M l l ROTATICh -

MIX 1 (5)

~

J

_ g 4r-~ '

I i -

O PEELS sp,w __._

, -- RGTATION -

- 3

_ MIX 2 (6) a  !

I owens Il t I N

smatw -

Figure 27 - 40% TW flaw at sleeve end

C ,

. CH 1YERT ,.

CH I HDEcIZ . ) Que(1 @ - 5 W e stok g 05aeE1.1

~

p f -f _ FRED SP5N -

Q ROTRTION -

, open 2

'h <

~

FitES N

) __ i' sm -

g J,

==>=-

OpeE 3

,FRES -

- SN -

ItCTRTION -

O p*EL 4

1. % VOL T f. 40 %

' stv. 90 +a. , 54 E G CA -

l } ItCTDTION -

_ mx: <s,

('

onens

sm 320TATICN
  • MIX 2 (6) y ouses m _

l ,

! j t. ROTETION -

Figure 28 - 400 TW flaw at sleeve end l__ 1,. Ch 1 Wrt .j, p. 3 gs j; ,j nc,m-$ pG e g3.

l

. l joO+E 1 s FitEG

' ~

SN ROTm:0N -

~

o CM*C 2 N #

30TATION -

j i OG+C. 3 r i ,FREQ -

4 1-sm amm::= -

l NE4 6.L5 vot.TL 74 EG G% ~

LstV. EO +* to SN i

~ k ROTRTIO4 -

R MIX 1 (5)

_ 1 e

_ oa.as L.-

s. -

f I '

_ IlmATION -

O' _

fflX 2 (6) g i  !  ! wsN -

! 1

!  ! ammIm -

Figure 29 -

shows " clean" sleeve end, 1

, o. .

.__ 2 m' ... > ; G . O'e c_ @ - apre ?

l r 7 ,ID e sta.

== -

C_~'l

om

.' I 4

I

}W-

201ATICes ll [

t t

I i '

Il g l 4 L"5

- 1 I con-1 I I g F"tEO -

-j l

\

g  ; sw -

. MWh l

l RIGA.51 oun-FRrr., -

6.54 vta. TS 56 MG 6% su -

RCTATION

}  ! ') ) pm j l t r i g aat - >

__ e or on.

' i L 2:4h

__I_ _.) .u-se i I_

L u,

k ! , .

? <

Figure 30 .

" Clean" non-tapered sleeve end

.>-- e...- : s.

i xnc s - -:n e  ::, e% +ca e

== >

a I

one -

'  ! i !IO. -

j KTG Ices

, .  ; g , ,

i '* *

- . i Le r

j t' T.

\

I w-1 O \m -

i .

e .44. -

i , RST;.T:Ca.

l.

.i .

I

' Ei E _ .

3

! I

  • l r .s
  • m x_o - n f:

t g

s.M RS "2 M 5 s4 3 e

MTATIM i I s

]

i

  • f

-- l2TI'P.'E*.

- ,ur - >

3 l i 3

j  ;-  % l e of 00+

g g 1: F:.

i I

l  !

w. = = . e.a. . I e

( ,I i i. L- r I-I f

s

! i t

Figure 31

" Clean" 1/4 inch long OD tapered sleeve end u .

..  :- 2 .p . ,  : .< _ . ., s. _, ,,3, ., ,

' , g. ,

7 i- . cw

b. !one i

$J %l l

SPQH -

RotaT!a l

l i L I i L l  !

l un_:

__ i

! on.e l 4 i nra -

,L w f I sm -

8 g j{ i

~

j emIm

i

) }a l

I #!G" !

1 On.e

i i ms -

il*5 i

I: av.rm

e. s va.is,

.e., e oco . - ..

sm - .

l Rcm!m.

I "

  • ' %. ~

1 i

.L. tg l I l in

_ne_s e of CW 1

i l l

  • l.

l I

! }  ! /

a

!'! i L? I h

l i j l  ; i~

Figure 32

" Clean" 1/4 inch long ID tapered sleeve end

! f

  • 8 *7 ,

! m i HmI: .i  :> m a .o _ 6 g,, ,, ,

l . .

IDD+E. 2 l I i IFREG -

. f SP$N ----

801AT10, f

8 I

i On+C. 2 ,

i i ma -

E }

(

\ g l m-I p 4 l tjy no urlm On+E. 3 l ., N --

q a SPSH ~

! ,RUTRTIDH I l

~ On+0. 4 l i I me 1

g j N34' W 4. O l sP5N l

ROTRTIDH j

i

, ,f, s ,

d MIX ! (5) 1 4 i oo+us 1

s I

~

sw l --

J ,

>RDTRTION MIX 2 (&)

(

, I. on+o.s sm

- i4 + ,- -

era,I, .

Figure 33

" Clean" 11/2 inch long OD tapered sleeve end l l