CP-200801523, Core Operating Limits Report

From kanterella
Revision as of 18:52, 12 March 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
Jump to navigation Jump to search
Core Operating Limits Report
ML083120427
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 10/28/2008
From: Blevins M
Luminant Power
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CP-200801523, Tech. Spec. 5.6.5, TXX-08137
Download: ML083120427 (24)


Text

Mike Blevins Luminant Power Lminant Executive Vice President

& Chief Nuclear Officer Mike.Blevins@Luminant.com P 0 Box 1002 6322 North FM 56 Glen Rose, TX 76043 T 254 897 5209 C 817 559 9085 F 254 897 6652 CP-200801523 Ref. # Tech. Spec. 5.6.5 Log # TXX-08137 October 28, 2008 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

SUBJECT:

COMANCHE PEAK STEAM ELECTRIC STATION DOCKET NO. 50-445 CORE OPERATING LIMITS REPORT

Dear Sir or Madam:

Pursuant to Technical Specification 5.6.5, Luminant Generation Company LLC (Luminant Power) hereby submits the Core Operating Limits Report for Comanche Peak Unit 1, Cycle 14.

This communication contains no new licensing basis commitments regarding Comanche Peak Unit 1.

Should you have any questions, please contact Mr. J. D. Seawright at (254) 897-0140.

Sincerely, Luminant Generation Company LLC Mike Blevins By: /& K'2L Fred W. Madden Director, Oversight & Regulatory Affairs Enclosure Unit 1, Cycle 14 Core Operating Limits Report (COLR) c- E. E. Collins, Region IV B. K. Singal, NRR Resident Inspectors, Comanche Peak A member of the STARS (Strategic Teaming and Resource Sharing) Alliance Callaway - Comanche Peak

  • Diablo Canyon - Palo Verde
  • San Onofre South Texas Project Wolf Creek

ERX-08-003, Rev. 0 CPNPP UNIT 1 CYCLE 14.

CORE OPERATING LIMITS REPORT September 2008 Prepared: Date: 6_.q-2Y

\Jon than M. Ralston

ýrncipal Engineer, Westinghouse Electric Co.

Reviewed: ______-___--_______ Date: 9/29/zc.

Daniel E. Brozake" Principal Engineer, Westinghouse Electric Co.

Reviewed: / c4 * 'Date: ql/il9 zxy evin N. Roland Principal Engineer, Westinghouse Electric Co.

Approved: _____ _____ ____ Date: 2*/z /2y Jamd' Boatwright, Manager Westinghouse Engineering Services - Texas

DISCLAIMER The information contained in this report was prepared for the specific requirement of Luminant Generation Company LLC and may not be appropriate for use in situations other than those for which it was specifically prepared. Luminant Generation Company LLC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, Luminant Generation Company LLC does not authorize its use by others, and any such use is forbidden except with the prior written approval of Luminant Generation Company LLC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall Luminant Generation Company LLC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

ii ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 TABLE OF CONTENTS DISCLAIMER ......................................... ii TABLE OF CONTENTS . .................................. iii LIST OF TABLES ....... ............. ..................... iv LIST OF FIGURES ...................................... V SECTION PAGE 1.0 CORE OPERATING LIMITS REPORT ...... .......... 1 2.0 OPERATING LIMITS ................... ......... 2 2.1 SAFETY LIMITS ........................... 2 2.2 SHUTDOWN MARGIN ......................... 2 2.3 MODERATOR TEMPERATURE COEFFICIENT ....... 2 2.4 ROD GROUP ALIGNMENT LIMITS .............. 3 2.5 SHUTDOWN BANK INSERTION LIMITS .... I....... 3 2.6 CONTROL BANK INSERTION LIMITS ............ 4 2.7 PHYSICS TESTS EXCEPTIONS MODE 2 ........ ............. 4 2.8 HEAT FLUX HOT CHANNEL FACTOR ............ 4 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR 5 2.10 AXIAL FLUX DIFFERENCE .................... 6 2.11 REACTOR TRIP SYSTEM INSTRUMENTATION ..... 6 2.12 'RCS PRESSURE, TEMPERATURE, AND FLOW DEPAR CURE FROM NUCLEATE BOILING LIMITS ................. 7 2.13 BORON CONCENTRATION ...................... 8

3.0 REFERENCES

.. ................ ........ . ........... 8 iii ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 LIST OF TABLES TABLE PAGE 1 FQ(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD 9..........9 iv. ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 LIST OF FIGURES FIGURE PAGE 1 REACTOR CORE SAFETY LIMITS .............................. 10 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER ........... 11 3 K(Z) - NORMALIZED FQ (Z),AS A FUNCTION OF CORE HEIGHT .. ........................... ................. 12

4. W(Z) AS A FUNCTION OF CORE HEIGHT -

(150 MWD/MTU) ........ .................................... 13 5 W(Z). AS A FUNCTION OF CORE HEIGHT -

(3000 MWD/MTU) . ........ .................................. 14 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

(10,000 MWD/MTU) ........................................ 15 7 W(Z) 'AS A FUNCTION OF CORE HEIGHT -

(14,000 MWD/MTU) ........................................... 16 8 W(Z) AS A FUNCTION OF CORE HEIGHT -

(20,000 MWD/MTU).. ........................................ 17 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER . .................................. 18 V ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPNPP UNIT 1 CYCLE 14 has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

SL 2.1 SAFETY LIMITS LCO 3.1.1 SHUTDOWN MARGIN LCO 3.1.3 MODERATOR TEMPERATURE COEFFICIENT LCO 3.1.4 ROD GROUP ALIGNMENT LIMITS LCO 3.1.5 SHUTDOWN BANK INSERTION LIMITS LCO 3.1.6 CONTROL BANK INSERTION LIMITS LCO 3.1.8 PHYSICS TESTS EXCEPTIONS - MODE 2 LCO 3.2.1.2 HEAT FLUX HOT CHANNEL FACTOR LCO 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR LCO 3.2.3.2 AXIAL FLUX DIFFERENCE LCO 3.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION LCO 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS LCO 3.9.1 BORON CONCENTRATION 1 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5b, Items 1, 2, 14, 16, 17, 18 and 21 through 29. These limits have been determined such that all applicable limits of the safety analysis are met.

2.1 SAFETY LIMITS (SL 2.1) 2.1.1 In MODES 1 and 2, the combination of thermal power, reactor coolant system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1.

2.2 SHUTDOWN MARGIN (SDM) (LCO 3.1.1) 2.2.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 with Kef, < 1.0, and in MODES 3, 4, and 5.

2.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) (LCO 3.1.3) 2.3.1 The MTC upper and lower limits, respectively, are:

The BOL/ARO/HZP-MTC shall be less positive than +5 pcm/°F.

The EOL/ARO/RTP-MTC shall be less negative than -40 pcm/*F.

2 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 2.3.2 SR 3.1.3.2 The MTC surveillance limit is:

The 300 ppm/ARO/RTP-MTC shall be less negative than or equal to -31 pcm/°F.

The 60 ppm/ARO/RTP-MTC shall be less negative than or equal to -38 pcm/°F.

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.4 ROD GROUP ALIGNMENT LIMITS (LCO 3.1.4) 2.4.1 The SDM shall be greater than or equal to 1;3% Ak/k in MODES 1 and 2.

2.5 SHUTDOWN BANK INSERTION LIMITS (LCO 3.1.5) 2.5.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

3 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 2.6 CONTROL BANK INSERTION LIMITS (LCO 3.1.6) 2.6.1 The control banks shall be limited in physical insertion as shown in Figure 2.

2.6.2 The control banks shall always be withdrawn and inserted in the prescribed sequence. For withdrawal, the sequence is control bank A, control bank B, control bank C, and C

control bank D. The insertion sequence is the reverse of the withdrawal sequence.

2.6.3 A 115 step Tip-to-Tip relationship between each sequential control bank shall be maintained.

2.7 PHYSICS TESTS EXCEPTIONS- MODE 2 (LCO 3.1.8) 2.7.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 during PHYSICS TESTS.

2.8 HEAT FLUX HOT CHANNEL FACTOR (F, (Z) (LCO 3.2.1.2)

FRTP FQ 2.8.1 FQ(Z) 5 _< [K(Z)] for P > 0.5 P

RTP FQ FQ (Z) - [K(Z)] for P S5 0.5

0.5 where

P = THERMAL POWER RATED THERMAL POWER 4 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 RTP 2.8.2 FQ = 2.50 2.8.3 K(Z) is provided in Figure 3.

2.8.4 Elevation and burnup dependent W(Z) values are provided in' Figures 4, 5, 6, 7 and 8. The burnup dependent values can be used to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup.

2.8.5 SR 3.2.1.2.2 If the two most recent FQ(Z) evaluations show an increase in the expression maximum over Z [ FQC(Z) / K(Z) I, the burnup dependent values in Table 1 shall be used instead of a constant 2% to increase FQw(Z) per Surveillance Requirement 3.2.1.2.2.a. A constant factor of 2% shall be used for all cycle burnups that are outside the range of Table 1.

2.9 NUCLEAR-ENTHALPY RISE HOT CHANNEL FACTOR (FNHI (LCO 3.2.2)

.2.9.1 FNAH 5 FRT PAH [1 + PFAH (l-P)]

where: P = THERMAL POWER RATED THERMAL POWER 2.9.2 T FRPAH = 1.35 for Region 13B Fuel Assemblies FRTPAH = 1.60 for all other Fuel Assembly Regions 2.9.3 PFAH = 0.3 5 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 2.10 AXIAL FLUX DIFFERENCE (AFD) (LCO 3.2.3.2) 2.10.1 The AFD Acceptable Operation Limits are provided in Figure 9.

2.11 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION (LCO 3.3.1) 2.11.1 The numerical values pertaining to the Overtemperature N-16 reactor trip setpoint are listed below; K1 = 1.15 K2 = 0.0139 /°F K3 = 0.00071 /psig Tc = indicated loop specific Tc at Rated Thermal Power, OF P' 2 2235 psig T,  : 10 sec T, 5 3 sec f,(Aq) = -2.78 {(q,-qb) + 18%) when (q,-qb) 5 -18% RTP

= 0% when -18% RTP < (qt-qb) < +10.0% RTP

= 2.34 {(q,-qb) - 10.0%) when (q,-qb) 2 +10.0% RTP 6 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING (DNB) LIMITS (LCO 3.4.1) 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average

/

temperature, and RCS total flow rate shall be within the surveillance limits specified below:

2.12.2 SR 3.4.1.1 Pressurizer pressure

  • 2220 psig (4 channels) 2222 psig (3 channels)

The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

2.12.3 SR 3.4.1.2 RCS average temperature 0 S 588 F (4 channels) 5 588 'F (3 channels)

The RCS average temperature limits correspond to the 0

analytical limit 'of 591.9 F which is bounded by that used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control-board indications and the number of available channels.

7 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 2.12.4 SR 3.4.1.3 The RCS total flow rate shall be ? 403,700 gpm.

C 2.12.5 SR 3.4.1.4 The RCS total flow rate based on precision heat balance shall be

  • 403,700 gpm.

The required RCS flow, based on an elbow tap differential pressure instrument measurement prior to MODE 1 after the refueling outage, shall be greater than 327,000 gpm.

2.13 BORON CONCENTRATION (LCO 3.9.1) 2.13.1 The required refueling boron concentration is 1854 ppm.

3.0 REFERENCES

Technical Specification 5.6.5.

8 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 Table 1 FQ(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD Cycle Maximum Decrease Burnup In F,(Z) MARGIN (MWD/MTU) (Percent) 9016 2.00 9232 2.22 9448 2.37 9665 2.53 9881 2.52 10097 2.46 10313 2.33 10530 2.19 10746 2.04 10962 2.00 Note: All Cycle burnups outside the range of the table shall use a constant 2% decrease in F0 (Z) margin for compliance with the 3.2.1.2.2.a Surveillance Requirements. Linear interpolation is acceptable to determine the FQ(Z) margin decrease for cycle burnups which fall between the specified burnups.

9 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 Figure 1 Reactor Core Safety Limits 680 660 640 4)

I( 620 4-60 (U

600 580 560 0 20 40 60 80 100 120 140 Percent of Rated Thermal Power 10 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 FIGURE '2 ROD BANK INSERTION LIMITS VERSUS*THERMAL POWER 240 (25.3,218) (79.6,218) - -

220 200

/4-- -- -++--

180

- (0,164) - - - -

4.) 160

.c

-rI

... ..- --- -- - - - (00 146)

  • 140

--

  • _/ _~ BAN K C - -- -

120 2 4N1 0

H m 100 0

. 80 -- - .--

.. - - - - - -D--- -- ---

0 60 40 (0 4 9 -- --

-+--------...... ..

20 31,0),

0 0 10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THERMAL POWER NOTES: 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn.

11 ERX-08-003, Rev. 0

COLR for CPSES Unit 1 Cycle 14 FIGURE 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.1 1.0 0.9 0.8 C 0.7 N 0.6 0z 0.5

- 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 .11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node K (Z) Node K(Z) Node K (Z) Node K (Z) 61 0.9250 53 0.9450 45 0. 9650 37 0.9850 60 0.9275 52 0.9475. 44 0.9675 - 36 0.9875 59 0.9300 51 0. 9500 .43' 0.9700 35 0.9900 58 0.9325 50 0. 9525 42 0. 9725 34 0.9925 57 0.9350 49 0. 9550 41 0. 9750 33 0.9950 56 0.9375 48 0.9575 40 0.9775 32 0.9975 55 0.9400 47 0. 9600 39 0. 9800 1 - 31 1.0000 54 0.9425 46 0. 9625 38 0. 9825 Core Height (ft) = (Node - 1)

  • 0.2 12 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD/MTU) 1.650 r -rz IffI 1.600 1.550 1.500 1.450 /-I I m S1.400

-t

-ý--l -/ I i 1.350 /-

1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1. 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.2070 30 1.1233 16 1.1836 57 1.5283 43 1.2062 29 1.1212 15 1.2038 56 1.5150 42 1.2032 28 1.1245 14 1.2312 55 1.4972 41 1.1996 27 1.1289 13 1.2576 54 1.4746 40 1.1969 26 1.1326 12 1.2842 53 1.4489 39 1.1934 25 1 .1352 11 1.3104 52 1.4225 38 1.1885 24 1 .1377 10 1. 3357 51 1.3923 37 1.1840 23 1.1405 9 1.3595 50 1.3592 36 1.1774 22 1.1431 8 1.3815 49 1.3245 35 1.1689 21 1.1491 7 1.4013 48 1.2878 34 1.1585 20 1.1562 6 1.4178 47 1.2502 33 1.1469 19 1.1620 5 1.4294 46 1.2198 32 1.1365 18' 1.1674 1 -4 45 1.2077 31 1.1291 17 1.1734 Core Height (ft) - (Node - 1)

  • 0.2 13 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (3,000 MWD/MTU) 1.650 J 1.600 1.550 1.500 1.450


7:T:

N 1.400 1.350 1.300 ýý It 1.250

ýý V

.1.200 1.150 Pol 1.100 1.050 4E 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node w (Z) Node w(Z) Node w(Z) 58 - 61 44 1.2164 30 1.1149 16 1.1924 57 1.4844 43 1.2150 29 1.1176 15 1.2171 56 1.4694 42 1.2081 28 1.1266 14 1.2466 55 1.4561 41 1.1992 27 1.1340 13 1.2758 54 1.4449 40 1.1864 26 1.1406 12 1.3051 53 1.4302 39 1.1759 25 1.1464 11 1.3342 52 1.4080 38 1.1707 24 1.1515 10 1.3623 51 1.3798 37 1.1637 23 1.1557 9 1.3889 50 1.3486 36 1.1552 22 1.1591 8 1.4134 49 1.3166 35 1.1453 21 1.1629 7 1.4355 48 1.2833 34 1.1346 20 1.1673 6 1.4545 47 1. 2498 33 1.1250 19 1.1714 5 1.4685 46 1.2314 32 1.1184 18 1.1747 1 - 4 45 1.2206 31 1.1150 17 1.1785 Core Height (ft) = (Node - 1)

  • 0.2 14 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (10,000 MWD/MTU) 1.650 1.600 t 1.550 1.500 1.450 N 1.400

- I


ii k-I 1.350 - . I I . I .

1.300 EIETEN 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 44 1.2066 30 1.1195 16 1.1908 57 1. 3897 43 1.2043 29 1.1196 15 1.2056 56 1.3829 42 1.2006 28 1.1285 14 1.2269 55 1.3730 41 1.1970 27 1.1360 13 1.2488 54 1 .3603 40 1.1949 26 1.1425 12 1.2707 53 1.3448ý 39 1.1924 25 1.1483 11 1.2921 52 1.3246 38 1.1886 24 1.1531 10 1.3128 51 1.3009 37 1.1855 23 1.1572 9 1.3321 50 1.2728 36 1.1801 22 1.1606 8 1.3498 49 1 .2502 35 1.1726 21 1.1633 7 1.3657 48 1.2371 34 1.1633 20 1.1657 6 1.3788 47 1.2250 33 1.1523 19 1.1694 5 1.3875 46 1.2120 32 1.1397 18 1.1756 1 - 4 45 1.2069 31 1.1258 17 1.1826 Core Height (ft) = (Node - 1)

  • 0.2 15 ERX-08-003, Rev. 0

COLR for CPNPP Unit'l Cycle 14 FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT (14,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N 1.400 1.350

= 1.300 S1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node w(Z) Node w (Z) Node w(Z) 58 - 61 44 1.1943 30 1.1526 16 1.1928 57 1.3500 43 1.1968 29 1.1542 15 1.2050 56 1.3469 42 1.1984 28 1.1598 14 1.2208 55 1.3362 41 1.1999 27 1.1664 13 1.2357 54 1.3261 40 1.2027 26 1.1718 12 1.2504 53 1.3197 39 1.2046 25 1.1758 11 1.2649 52 1.3093 38 1. 2050 24 1.1786 10 1.2787 51 1.2971 37 1.2053 23 1.1804 9 1.2916 50 1.2815 36 1.2032 22 1.1811 8 1.3034 49 1.2625 35 1.1986 21 1.1809 7 1.3139 48 1.2398 34 1.1916 20 1.1803 6 1.3223 47 1.2169 33 1.1826 19 1.1789 5 1.3267 46 1.2080 32 1.1717 18 1.1779 1 - 4 45 1.1984 31 1.1571 17 1.1842 Core Height (ft) = (Node - 1)

  • 0.2 16 ERX-08-003, Rev. 0

COLR for CPNPP Unit 1 Cycle 14 FIGURE 8 W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 MWD/MTU) 1.650 1.600 -I hHftTh1r II 1.550 1.500 1.450 _I _ __ _ _ _

N 1.400 -V-I 1.350 7-7 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8' 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node W(Z) Node w (Z) 58 - 61 44 1.2166 30 1. 2189 16 1.1785 57 1.3307 43 1.2232 29 1. 2127 15 1.1904 56 1.3334 42 1.2312 28 1.2124 14 1.2069 55 1.3326 41 1.2387 27 1.2163 13 1.2221 54 1.3273 40 1.2472 26 1.2186 12 1.2372 53 1.3195 39 1.2549 25 1.2186 11 1.2519 52 1.3085 38 1.2604 24 1.2169 10 1.2660 51 1.2937 37 1.2658 23 1.2133 9 1.2793 i50 1.2767 36 1.2680 22 1.2082 8 1.2917 49 1.2569 35 1.2669 21 1.2017 7 1.3029 48 1.2376 34 1.2627 20 1.1943 6 1.3121 47 1.2256 33 1.2555 19 1.1859 5 1.3171 46 1.2212 32 1.2454 18 1.1774 1 - 4 45 1.2171 31 1.2321 17 1.1754 Core Height (ft) = (Node - 1)

  • 0.2 17 ERX-08-003 Rev. 0

COLR for CPNPP Unit 1 Cycle 14 FIGURE 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 90 80 70 0

60 50 "40 0

U 30 N

20 10 0 I 30 -20 -10 10 20 30 40 AXIAL FLUX DIFFERENCE (%)

18 ERX-08-003, Rev. 0