ML19294C269
ML19294C269 | |
Person / Time | |
---|---|
Site: | Midland |
Issue date: | 01/25/1980 |
From: | TELEDYNE ENGINEERING SERVICES |
To: | |
Shared Package | |
ML19294C268 | List: |
References | |
TR-3887-1, NUDOCS 8003070397 | |
Download: ML19294C269 (65) | |
Text
{{#Wiki_filter:. _ . . . . . mx . . _ y,,.m . .m . . . , , , , , . . . . . . . . . , . - _ . . _ . _ . - . ME D P"G . %.. $. ,%.y 'W.%f@&~WM"i-WF.iMM:qb[h.,,,,4Y..MWh@$@@h_Mk.T*Fb
$s' h. -. W$2. won?N,,.s, t 'R .s.g;&$B$$. ' q.,. p .m, ,r%.;, %,. 4 .u qy ,,,,,,,. s. m. p;.,,, . +,
f aw
- r. w i y, y y 3 9 y,,
ty g , u- M g% - M* q.s.--,4,w,;- . c.p. _-W. ;9.gA . p u.q&,n-;.'w.4 .- *P.-.p-~ w m..r ..* O_..;e,p.m
, am~
J-.* ?.'T..~*.
- r m.p. u.: J >w\ man
- n '
.5.'
w -r:i
'.Ql:+, R- W. i. s A .= e.;W [..ih5'&*.Lkj$ ![r?.D'N,' c[a .h? **& ':S m
um w r:.;a p r. w -,ya .e. .'. yo.v. .+,t.n,,: nsaim . ,q,r-,.s.'
- w ~; n: ~m, -." .w. n, r-. . . , .. ;. .. =- . , . - . . . ,m. . p . ..., .n. ,a,w s. a ;,: .- :--%- gym . ." n . x-. w u , .-- ; - m . s ,.. .....-e m. -..m . v..; 4 g;,, ; ,- .-._..w mn.. .-. .. .' n.,3 .,. .s,. , .: u, p- m ,.m- - .g. .w~.: ..s,,.g , . ~ - - .- . . . - - - .ms. . .. _.3 .-. . , ~ 1
_ ,, , f q f y ..y, .3 $ .p +
.._m. ; - . , ,,, , .77
(
. :. v -.a,r> ..a. ~. ._ _.. ,.,..._r.;.. ; y_ , ~ ._ ,. x _ .. ,+ v. .., ;;g;, . ; v . ,. , _ . _ -...s_.. .. . .w, .1 r. ,4 .u - -
y
~ .. ;. . ,p. . .
g , _
.c u.
1
. . . . y. . , ,sm. . . 3 o.' . ,,; . ,...w.:...- >,e.;....,,g.--....,,t..c.,,y..,,..... . . . . ,. . . . .. .;~..-
f t . . , x,,._
. 9
- a. .. . .
. ;., - . 3, 2, ... . . - -~ ., ;w ~. ~..-; , =. y . . .f . .. - ... _ - .
m.,".,#3,,,y.g ,,,w, -
., *e . .,.,. . . w n; .g. . . . .,,,.q,4. . , -p. 4. , ' 's, . 7 c/. 4 ' . ,r ," . 5% ,
_p..
. _ . , ., ,, __3 , . ,,, .. ,. -. , ,, .,
s,s a -
> g.Q, ; ,.,.,'r. .r , . , , , , m. ,.
x .
,. . ~,. , , , s o . = . -y - . e . .m ., . * ~ .,- . " .T-~,;.z; , . ,..a, .'. . , - ..: ; ~ , : ... m c .. w ~ . . - ...~n :y . . . p.'.,
p,;..~
.w. .m#Jg, y+W.G,.c . ;Q'"; ., %j3 f r, ,.
4 .
.y p M ,- ,J1.M'.; y..ge.'2.s, .qr.
yM; .;p t,A , Q S k:o.% g' y g c. g..~.m.a<,,s,.=gv e c.m,m
.* . .-. . >.m y :
1 gs ,-e. -
.%.; n..vm w'.r% ;. %e.'~..r,0 n,. w. g .t: c .. P e-; t.,...,.a. -
es q,y g .-~.v . , y , . !, . .-
- s. ,. u,. -
, r .5t r c. c..< -
v -,. . , -
<.: a -
J ' M,. ;' , t ' 'Ywm
. . . , . 3; - .s . 9 ,. j .
r -
~ 'f 6 'T' - $m? ? ,'- 'N.- ~.m -
1-
., ,.- V : . .- .. , . . - . u. _ . .+e ..t. ,;..- .., .,_ . ,c r-5 a
- r. _
,r r4 . v.
s
. _- ..-,. - m, ia-. . .( ,; ,< .n._.
n., , .. .
.q . ,- . . ,. . , s.--. '---%: t*4t%rt.n 's -
t n", J ,"W~ ^, o ,. ...o. . 1, a..4,y,..,*jI
*t s J .C 0 twre x .} " T* \.*'~. , s *:% i,.;!. a?.s. 1 30 .N ,.?., . - ees * . G. 'i% . . > <.,w ? T*? f%. : . - mR W' b i x. -xv= 4 , w.
a, h -c <. w2 :a s_-.e e smm .t., _4
- . t. ;- _ . , ,9 . . . e. . , , . u .; .x < u . ,-a,,. < ,.., . . . .,- . . d,i m, , ,, '.g.h . a . e 's . 3.-h: . . c. : g. ,<. g.s .. ,~ y* . , . - . c, :. . , * - . . - . w, . - - 4 y,e te . .g-.
a
- 4. _.. .:*.. . .t-A w. . . . .p ,
U ,.,. th Q.O'M i
- y?wr.s y i- d. p~ ,~'t. .g.r { pn
; ..,vw, L.Wm9 c.?[w# . .e .y w , , <,' Q ,.Q. . 4 . ~ . tJ . ' % ', -C - ; ?
y 7
'b m .. w z: ,y:n g :.2 3 9 y c Q .. ~
x sy .. m. 4 n . .e c 's -). , ,' *w'- y Q v J7 y ,, ., l:. .Wl~eh
,. ,.e . m.. g- ' f',f,w.
f i'f ,' .t
?m,%',e, . ,h=';s'.f g, k .NY ..w-@hff. M.:y,. %.v.,.l-f, ; 1,m.,,.. -, u.....Yh._ w. % !? '
- o. -
+ - ..~ ., ,m . .w. a. .,e.
2.c.o, s.n- -- -
- v. . ..
r-
. . . .. ~ .-. 4t~ , .n. , ..-c,*. .,.s. r .v a .
7 . [ T [NVESkiG T!ON OF FAE3EMICE FAILURE ' q
.: ' - '- , . .r.? OF,MIDLANDL RPONCHOR STUDS ' - <-.. 'we . -n..
c.
.. , y5a.c, *. n.w . t.,,.?. . h, :. . , ** .,.'N,..- .'
g*Q $'ff.3- 9@$ - . -,y " <,
< . i . , . .s- s ..
I
'%';< , , g '- e. . .."'r.. <. ,c ~ , ' + ,.r. . ,; ., ' .,p.,.-
_ (W .s. .' ~s o 7
,,1 . a. .r . .' .3 L Fc- -
c; y .'. _56+ , . . .L , $* ' *' ** t"J .i grq- ., , , ' a. w . . eCY se ,q m .
- fw ~ c.,,- h_l.'i-
. s .a
- y. ,. y f %._,
. - 4 . g. ... T . . !?c; -
r q a .-
. J . _.8 - . , , ,
A. . . , ...N:-
, F - C ,
- g. , ;, ' *. m.a,n,.y,.
., g.
4 . .,,,; ,, s %, . g
. , . eg g'. ~ %,* 17- .~- .. y g4
- i , wai e.% pr a e s s.,e. h * .. .-
4 -i ; g. g.p* ~yw,., r -.u 3,,.;:-3 7 #.~p;f
.4 . . ,C 'v - _t . , a ;- *5<, .7w ;w, .
4 se
,r T.-:,Je; c-.e q -:).' V 1 _* r y: . .-g b;,.- ,i:
- w. ?;.a;t[ .ai .' My,
~.* . i-,g.;.
- 1. 2 ; - . m : .- ,
r'}- l';- p ,.-.S,g--*w Q .
,. f. . ; , .* . ,, *
- T ,, ' y'.Ma*
.'I i .h . . A '. W .- -
w , . ~~. Labn.m. N .*C
+-*E-m,. .i..m. e a ~+,:v->.,=..+.g.wmc. e-
- N2s 2-3'2' NI [*[*b E -
r
.w n .~. ... <n . ~ .. .,.. ~- .-rw.. <mr . .a h.c. .. .c- Yir" f we .U$i~ W 3ks, $s -3,;$-
IRED'd- =4 ae%=ebre,e',. . - $4.$kW... y .*f*M V>.~ WxiDS $$~,&h Ys. .?' .
.*.a T.4 @ &'J* % . - 'y- ~4 . . . . . . .me. g * . **.. ..
8
.g . g
- e% '. 3 4t*, gg, _y .. p. p. i r
,, .Q q "*'w,f W f
BECHTEL ASSOCIATES PROFESSIONAL CORPORATION 777 EAST EISENHOWLR PARKWAY ANN ARBOR, MICHIGAN TR-3387 - 1 INVESTIGATION OF PRESERVICE FAILURE OF MIDLAND RPV ANCHOR STUDS JANUARY PS, 19P,0 FOR INFORMATION ONLY c q a p o cgo-g-I
*mEDWE ENGNERfC SEMACES 303 BEAR HILL ROAD WALTH AM, MASSACHUSETTS 02154 e 617-890 3350 . . _ . _ . _ . . ~ _ _ . ._
_ _ _ _ _ . . _ . . _ , . _ _ _ _ . . _ - . .,.s.. . - _ . . . . _ . _ . . . _ _ _ . .
T Technical Report TR-3887-1 N N S E E ES . TABLE OF CONTENTS Page
1.0 INTRODUCTION
1
2.0 BACKGROUND
1 2.1 Anchor Stud Description 1 2.2 History of Stud Failure 2 3.0 TEST PROGRAM 2 3.1 Visual and Non-Destructive Examination 3 3.2 Stud Disection 3 3.3 Tensile Tests 4 3.4 Charpy V-Notch Specirrens 4 3.5 Plane Strain Fracture Toughness Specimens 4 3.6 Hardness Tests 5 3.7 Chemical Composition 6 3.8 Microstructure Analysis 6 3.9 Fractography 4.0 RESULTS 7 4.1 Visual Examination 7 4.2 Non-Destructive Examination 7 4.3 Tensile Tests 8 4.4 Charpy V-Notch Impact Tests 8 4.5 K Plane Strain Fracture Toughness Tests 8 IC 4.6 Hardness 8 4.7 Chemical Composition 9 4.8 Microstructure Analysis 9 4.9 Fractography 10 4.10 Calculated K IC II
n, j I TM Technical Report TR-3887-1
1.0 INTRODUCTION
Teledyne Engineering Services (TES), under contract with Bechtel Pro-fessional Associates Corp. has conducted an investigation of the preservice failure of two reactor vessel anchor studs at the Consumers Power Co., Midland Plant, Unit 1. This report describes the f ailure analysis program conducted by TES, and results obtained.
2.0 BACKGROUND
2.1 Anchor Stud Description The anchor studs unc+r consideratior are each 2 1/2" dia. 7'-4" long, threaded for approximately 141/2" on one end and 51/2" on the other end. There are a total of 96 studs in each unit, arranged in a double circular pattern with the studs spaced every 7.5 , 48 studs in the inner circle and 48 studs in the outer circle, as shown in figure 1. All studs were purchased to ASTM-A354-BD standards. The studs in unit I are nominally AISI 4140 ano 4145 while the studs in unit 2 are nominally AISI 4340. Each stud has a nominal pre-load of 75ksi in the unthreaded section. In the reduced section of threads the nominal stress is 92ksi. These numbers do not consider relaxation of the preload, which could be as high as 20Kii according to information supplied by Bechtel. All studs are embedded vertically in corcrete, with approximately 15 inches of one end remaining above the upper surf ace of the concrete (figure 2); it is to this exposed end cf the stud that the reactor vessel skirt is bolted.
, ,g -me i 4e * * " ' ' - *
- c s i T Technical Report BGNEERNG SERVICES TR-3887-1 2.2 History of Stud Failure The anchor studs in unit I were embedded in concrete in April 1977. In the last week in July, 1979 the studs were tensioned. Sometime af ter tensioning, anchor stud 3 (see figure 1) f ailed at about the level of the concrete (figure 2). The precise date of failure is not known but is estimated to have been in the week prior to discovery of the missing stud, which was September 14, 1979. On September 18 1979, the failed end of the stud was recovered.
TES was first contacted regarding the possibility of conducting an investigation of this failure Oct. 1, 1979. TES took delivery of the failed end of the stud Oct. 19, 1979, and a T ifure analysis investigation was initiated Nov. 9, 1979. During the course of this investigation, a second stud (36 outside, unit 1) failed, apparently during the night of Dec. 19-20. TES took delivery of the failed end of the second stud Dec. ?l, 1979 and included results of tests on the second stud as part of this investigation. This second stud failed at the first engaged thread of the anchor stud nut (figure 2). 3.0 TEST PROGRAM The TES failure analysis was concerned with the following questions:
- 1) What were characteristics of the fractures?
- 2) What are the material properties in the failed studs and how do they compare with:a) the material specified; b) the material described in the material certificatian documents?
- 3) What are the properties of the remaining studs in Units 1 and 2 rela;
- to those that failed?
n / s Y ENGNEERING SEFMCES Technical Report TR-3887-1 The tests and inspections conducted by TES on the first failed stud were:
- 1) Visual and non-destructive examination, including dye pene-trant, magnetic particle, and ultrasonic techniques
- 2) Tensile tests for ultimate and yield strengtn, reduction in area, elongation, modulus of elasticity
- 3) Charpy V Notch impact energy & lateral expansion
- 4) Plane strain fracture toughness (K IC}
- 5) Hardness
- 6) Chemical composition
- 7) Microstructure analysis
- 8) Fractography The tests from the above list conducted on the second failed stud were 1, 5, 7 and 8.
3.1 Visual and Non-Destructive Examination Visual and Non-Destructive examination were made on both f ailed stud ends. The non-destructive techniques used for Stud 3 were dye pene-trant, ultrasonic, and magnetic particle (dry powder). On stud 36 only magnetic particle techniques were used: both dry powder and wet flourescent. 3.2 Stud Disection The broken end of Stud 3 was about 14 1/4" long and, therefore, provided sufficient material to carry out the above test program. Charpy, compact tension, and tensile specimens were sectioned from the stud as shown in TES drawing 0-5120 in appendix A. The fracture surface was cut from the end af the stud for detailed examination. A section of the stud from behind the fracture was also cut frcm the stud for chenical analysis, hardness and metallography, thus providing material as close to the frac-ture as practical in order to characterize the material in the vicinity of the fracture.
/ t ENGNEERING SERVCES Technical Report TR-3887-1 Stud 36 was only 41/4" long, and thus did not provide enough material for a tesit program as extensive as for stod 3. Stud 36 was disected as shown in TES drawing A-5209 also in appendix A. 3.3 Tensile Tests Six tensile specimens wera taken from the mid-radius of stud 3. The tensile specimens were machined to dimensions specified in ASTM A370. 3.4 Charpy V-Notch Specimens A total of 14 standard Charpy specimens were cut from Stud 3. Two specimens were taken from the center o' the stud, since specimens for material certification were also taken frem the centt . This provided a comparison between the charpy impact values in the material certification documents and this stud. Six additional specimens were cut from the mid-radius position, and six frcm outside the mid-radius. ASTM specifications for this material require the Charpy specimens be cut from the center or mid-radius, thus the latter six specimens cannat be strictly used to compare properties of this stud with previous material certification tests. 3.5 Plane Strain Fracture Toughness Specimens Three 0.8 compact tension plane strain fracture toughness speci-mens were cut from. stud 3. The specimens were dimensioned in accordance with ASTM E-399. The thickness of the specimens (0.8") was selected on the basis of the following ASTM relation provided in E-399 in order to assure th6c a valid value of K lC would be obtained:
?
Technical Report TR-3887-1 812.5 (K k / #p s) where B = thickness Cy.s. = yield strength K IC = Plane strain fracture toughness K IC was estimate.d to be at least 62 Ksi [III based on maximum Charpy values reported in the material certification. The yield strength was estimated at 130 ksi, based on minimum values specified for this material. Solving the above equation gives a value of 8 of about 0.6". The dimension for B was arbitrarily increased to 0.8", the largest specimen which could be cut from the stud to assure a valid test in the event the mechanical properties of the stud differed substantially from the expected. 3.6 Hardness Tests Rockwell hardness tests (HRC) were performed on material immed-iately behind the fracture surf ace and on the ends of both studs, a well as along the length of stud 3. Vickers Microhardness tests were performed on metallographic specimens from stud 3. Field hardness tests were performed on the ends of studs remain-ing in Unit I and 2 using a portable hardness tester
- with hardness results on the "Leeb" scale, which were then converted to HRC.
Portable hardness test results are repeatable within 12 HRC according to the manufacturer. In f act, TES's trials with this particular tester found the repeatability to be within 1 1 HRC over the range of
*Equo-Tip Portable Tester, made by Procea of Switzerland, with a type D indenter.
r T ENGNEERNG SERVICES Technical Report TR-3887-1 hardness from 30-50 HRC. when testing Rockwell calibration blocks. This repeatability is as good as can be produced with a conventional Rockwell tester. Figure 11 plots a hardness gradient, using both the Rockwell and portable testers and illustrates the agreement between the two types of tests. 3.7 Chemical Composition Samples for chemical composition were removed from both studs. In addition to quantitative analysis for elements required to meet specif-ications, a qualitative analysis was performed to determine the presence and quantity of any trace elements. 3.8 Microstructure analysis Samples for metallography were taken from Stud 3 at the surf ace and mid-radius in longitudinal transverse and radial orientations. In addition to normal etchants for micrcitructure, at the specific request of Consumers Power Co., TES used a special etchant to reveal temper embrittle-ment.* An extraction replica was prepared of the microstructure and examined by Transmission Electron Microscopy. 3.9 Fractography The fracture surfaces from both studs were examined in the scann-ing electron microscope to determine the fracture surface characteristics. Due to the deteriorated condition of the fracture surf ace of Stud 3, replicas taken from the fracture surface of the embedded end were also
*"A Metallographic Etchant to Reveal Temper Brittleness in Steel" J. B.
Cohen, A. Hurlich, M. Jacobsen Trans. of the A.S.M. Vol 39, 1947 page 109-138.
c , l TN Technical Report TR-3887-1 enmi ned. Calibration of magnification of the scanning electron microscope was accomplished by distributing small latex spheres (5.7 um diameter) on the fracture surface. The spheres provide a convenient refer-ence dimension from which magnification can be calculated. 4.0 RESULTS 4.1 Visual Examination Stud 3 is shown before disection in figures 3 through 6. The fracture surface was essentially flat, with the fracture apparently orig-inating from a single point at a thread root. There was no visible indication of a pre-existing crack or defect at the er; gin. No visible evidence could be found for additonal cracking anywhere else on the stud. Grout was present in the threads as can be seen in figure 3 and 4 and also apparently on the fracture surface (Figure 5). Stud 36 is shown in figures 7, 8 and 9. Note that while stud 3 broke at or in the concrete, stud 36 broke at the first engaged thread of the nut. Stud 36 also apparently had a single origin but unlike stud 3, stud 36 had a thumbnail shaped region about 5mm on a side and 2mm deep of different texture at the origin. This region did not show up in any photographs. 4.2 Non-Destructive Examination None of the non-destructive examination methods used revealed any additional crack indications in either stud.
c- r g Technical Report TR-3887-1 M MES 4.3 Tensile Tests Tensile test results for three tensile tests on stud 3 are shown in Table I, along with values reported both in material certification documents and from literature for this material and specified heat treat-ment. 4.4 Charpy V-Notch Impact Tests Charpy V-Notch impact test results are shown in Table II, along with values reported in material certification documents. Only eight tests were conducted: five at 40 F and three at 70 F. It was decided based on these results that additional tests at other temperatures would not provide useful information. 4.5 K Plane Strain Fracture Toughness Tests IC Values of K IC determined from testing are shown in Table III. These results are valid according to requirements of E-399. 4.6 Hardness Rockwell hardness tests on stud 3 revealed no hardness gradient across the diameter, or along the length of the stud. Av rage hardness was between 46 and 47 HRC, Stud 36 had a clearly defined hardness gradient across the diameter when test 0d by both the Rockwell and Proceq testers. The surface hardness was between 46 and 47 HRC with a core hardness of 37 HRC, shown graphically in figure 10. The hardness traverse results for both studs are tabulated
~
in Tables IV and V.
; WTELED(NE Report SEMCES Microhardness traverse results for stud 3 are tabulated in Table VI, from the bottom of a thread root throug1 mid-radius. The converted micro-hardness results average about i HRC h.qher than the conventional Rockwell tests, probably as a result of errors inherent in conversion. The micro-hardness test also did not show any gradient in stud 3.
Field hardness testing results of the anchor studs in units I and 2 are summarized in tables VII and VIII. Figures 11 through 17 plot the distribution of the outer diameter end hardness for the five heats of material involved. Note that some studs did not exhibit a hcedness gradient, similar to stud 3, while the remaining studs did have a gradient. No correlation was observed between heat numba.- and the prescence of a gradient. Only in studs in unit I was a gradient observed. 4.7 Chemical Composition Reiults of the chemical composition analysis for both studs are presented in table IX along with specified limits for this material, and results reported in the materi'l _ertification documents. 4.8 Microstructure Analysis Examples of the microstructure of stud 3 are shown in figures 18 through 23. TEM Micrographs are shown in Figures 24, 25 and 26. The microstructure consists primarily of tempered martensite and some free ferrite and bainite. The exact quantity of bainite and ferrite can only be estimated, and is less than 20%. There were no apparent defects or unusual features in the microstructure.
; TN Technical Report TR-3887-1 .
There was no indication of decarburization of surf aces or microcrack-ing at the surface. The structure at the surf ace was the same at the mid-radius. Note that while the microstructure for stud 36 was not examined, the prescence of a hardness gradient suggests the microstructure would be different at mid-radius compared to the surface. The etchant referred to in section 3.8 did not give any indication of temper embrittlement. 4.9 Fractography e Because of the deteriorated condition of the fracture most of the fracture surface detail and especially the size of the origin for stud 3 was determined by examination of the replicas from the embedded end of the stud. Because stud 35 was recovered and preserved immediately after failure, it was possible to conduct the examination on the actual fracture. Fractographs of studs 3 and 36 are shown in figures 27 through 39. The characteristics of both fractures are the same: a thumbnail shaped region of intergranular fracture at the origin with a clearly defined transition to transgranular cleavage. Outside the origin the entire frac-ture surface consists of transgranular cleavage. There was no evidence of other potential origins. The intergranular fracture region was continuous over its entire area. No features were seen in the thread root that might have acted as initiation sites for the fracture. While the fracture surface of stud 36 was in the Scanning Electron
- Microscope an x-ray flourescence analysis of fracture surface composition was performed, using the electron beam microprobe. The results are presented in figures 40 and 41, comparing the intergranular fracture with the transgranular cleavage fracture. No differences were observed. ~ .=+e. e - --g,-
; WTELEEh'NE c al Report
_n_ S&MCES The dimensions of the origins are shown in Figure 42. 4.10 Calculated K IC While the plane strain f racture toughness was determined experim-entally, it is also possible to calculate K IC based on the flaw size observed on the fracture and known loading conditions. This serves as a check on the experimental techniques used. Here the flaw was assumed to be the region of intergranular fracture. Note that stud 36 had a much smaller flaw size than stod 3. Assuming both studs had the same preload, one would assume that stud 36 had a lower toughness. However, in order to make the calculations, the stress distribution across the diameter must be uniform. Stud 36 f ailed at the first engaged thread of the nut a region where the stress state is not uniform and thus it is not possible to accurately determine the stress intensity factor for this case. Stud 3 failed remote from the nuts and probably saw a more uniform stress distribution. TES was unable to find or derive a specific stress intensity factor correlation for this flaw and part geometry. Hcwever if we assume the flaw size to be small relative to the stud dimensions, the stud outside diameter curvature has a negligible effect and the presence of a thread root does not change the stress distribution, then the correlation shown in fiaure 43 can be applied. The correlation is for a thumbnail shaped crack in a semi-infinite material subjected to a uniform stress distribution. The calculated value of K IC is 42 Ksi (iii. This compares favorably with a K IC of 43 Ksi /Tii determined experimentally. Of course it rust be recognized that errors are introduced in the original assumptions but that the errors so introduced are competitive. In other words, errors introduced by presence of a thread root, surf ace curvature and stress dis-
Technical Report NO TR-3887-1 .- tribution would increase K IC while errors resulting from relaxation of preload would reduce K IC. The excellent agreement between the calculated and experimental determinations of K IC is probably fortuitous, but does serve to indicate plane strain conditions existed at the time of failure.
-9 W hh M@ h 4@geT6sGT@hO g @ OUTSIDE
@O g g@
O exieeo gg g,g iN Side @g @
@ 'O et +
t seac10a Ssiar se 4ig FAILED Q g@@ @@ g@@'@ h@h sg INSIDE SO O b k@@@@@@b OUTSIDE ghg - FIGURE I. POSITION AND NUMBERING OF STU DS IN UNITS I AND 2.
9 eta.EMNE ENGNEERNG SEmACES _ R 7 '- 4E4 SEMI FIN HEAW
~
H EX JAM NUT CL REACTOR -HEAVY HEX NUT SKI RT PLAIN WASHE R CHARDENED1 WASHE R I" T H K 10.. 5 2 f"% I D X 5" OD r,w ; - g h
)
5
- ^
r
/3 a , 25N 7 !! 0\ MY l e AN u N' : : /
k a! y s'\'\x4 x L' _
!! !___....__ j ~ ~
1 . / I_ _ _ _ _ .. n i b l y-
'A '
p .__ N - STUD 3 INSIDE STUD 36 OUTSIDE b b FAILED HERE FAILED HERE z z - V U U _ v - I _\Nv '
& 3 '/gX 17 -[3 N
N ?-? % r fe 3 1 5I _ ( HEAVY HEX NUT S EM I FIN H EAVY HEX JAM N UT FIGURE 2. ANCHOR STUD INSTALLATION
SeTELEIANE ENGINEERING SERVICED s .. g
. ;w
{h$
% l M
Y . 3, ' 1 1 -? 5 6 3"WA W (%..
, y IJ # ~ Ult?(Q i:y; P $$$4 3 , ;;k -
S n.h .-
$+,,c5b g ~,WE., ,wr k . .a ! . __ _ t@!= 5 -- = I b it ? !
Figure 3 Broken end of Stud 3 Inside as received by TES. Fracture surface is at the top.
~ N:
5f'arygQ n ewrssw-y4;5ff r u. --. kR,.. hL.' ' _. . V.*' ..-) ! , . . I; .. i ' . f.{.':,,y *f '
.. ' ' , .m**:'gg ~; s' \
G;;;w?: . c.
~ , ,' .' .. . ,
M
'.'.i4.:, + + c ~,.- . . ' , , f_< -. , ~ 7.IJ f j.'
Figure 4 End of Stud 3 opposite tracture surface showing heat number indicating this stud belonged to heat O. tb
'~ ~~ .1 22
'seTELEDYNE ENGNEERNG SERVICES
([^ L*;
)l, - ,g ,}l::
a , bbsb- - " f$5d' hi (k Ei f$h%. -
- ,.e i$'-
$d - 5 Figure 5 Overall view of the fracture surface on Stud 3. The origin is near the six o' clock position. A spot of grout can be seen on the edge at the two o' clock position.
o- an errv= _ . _ t 4 v
$\ ? ,i f. . tjs. / -
t
) ;{'
- s.
- _ ;Y :l
d , j' Figure 6 A closer view of the origin on Stud 3. Note there is no discernable nucleating defect or flaw. The origin appears to start at a single coint.
o
. WTELE:NNE ENGINEERING SEMCES L .Q .
y :,rx;- ~. .. ; *, y, ; , . .. y.%@. .< 5
.,y&;;- i y VNd[. W.- c 4. . n =. t , -J ~es2x%..s...9 . .g w,.r.., . . .. . .~- . ~'& *^ ' ~ . . . . , p n ~ . . q.. - . , Pf ., ?;.-,y, . . s g g v.; s; ,e. 4n .: ,; a f,. a. .e s . Er.S f.M;).s l .vg 8[ *'%Msg, ... @4.k qh .,,0, .< e 't.s;.;.,a y v.,~u & 3 , .. 4 '
g
' ' ,.. ..' 8 N ,1 6. - .Qs.hy?$h'4w$x.,,o. <- en~c m ~fc +4.L.- + . ~ .t... . , . l. - ' .;5 s ; N "^ l6,W.:v<Sf';'N y >;k ,4 h(.yk;...l.., .q ~ . Y. h.
Y
- 8 e/[- .4[h*y$
.a ,. 1. pin s .n. , . .g?. . s. 'v9 . -r #4. .T yy, . . .,. .i . . . . .- . m,ygg-g,e, gg+ .v.. s. ~ . .w Figure 7 Stud 36 Outside as received by TES. Fracture surface is at the top.
9e_ - _ ,.. . ..
.p ...-.7..__ ~
w a - -- wny,gu . 7c.,.sh 04ey.ng:., sh .
~~ . yjM5J . fgte.y ' ggg --:. < ..g p%. 5 .g .#pb; n xld+f4 4 ,,. . ,u $f g.fjlf&k?QY$:,,,,gg ?l f.
yg y; , ,' .
, .. . ,r . (m. , ;..t . 4. , 3 y v, .; . .>::: .-.y.mf
- ? -3.;, .
,.- :.. 4
[ 1 ;+ o - _, - :- s ;- W .4
.? , .: i e '- ' ; ,; f ., j q.
- t
,4 e.. '
e x_ '(
, -g c . '. d*'
3d'~ e,Q :)Q3.4 y g f;5,-a.7...n,,;;g l *2. W: 4? $.;A y W &y .
. n. . ; + : ,r. ,.c rt ; y g, . .; . :g.~; .fq q '- , y f;?; ;; _
Figure 8 End of stud 36 opoosite the fracture show heat number 0 as well as letters S 50 Y; b$ $$0$a!N d7
"#PTELEDYNE ENGHERNG SIUMCES s
[j,h y' k
. .; .8 .
lx , . . ,k% . s;
- J. 4 [^)b?$.dv%V.' v':1,, d y y' @"'.1
'N,3v sf k'
3, i Mf F -
.,.s a,a m.
- y.
- YighM.
- 1. ~ ~ h ,, .a ,:ug W,Wy
- r. (Qfj s
..f;{,:'[aI% mhW ,svR*5 .f~.tL-jap '. s'or e"J.44 $ff
- N ih51.:
y r
T L 9:ftC:5;
,,1 *%?T*J" ~
i ' . :W INM9W,,*'">v1b A p A*-4
. ' e 4 :~ %A, .<WS b \' e . h ,4 cae . > % ,
I: ,, ['t I,, y up 4'" 117". y..c . flT. k, , ,I
'7- :m7, h,y &",i :in% .
t, .;m:.q ,x. . b Vs,.Jphsh G::;Ff
-xy NMhApy/dgs 3 _m..
5 Q Figure 9 Closer view of fracture surface on stud 36. While there is in this picture no visible indication of a flaw or defect, the unaided eye under proper lighting can detect a small thumbnail shaped region at the origin.
TTELEWNE ENGNEERNG SERVICES 50 - n tg - 0 I X X v - gO O Q 45 - g O O v - x g XX 40 - Od o
'X O O $ g X o O X ~
1 - G00 X y 35 - z - o - a _ C" STUD
<t I
30 ' ' ' ' ' ' I'' ' '
' l.OI ' ' ' ' .5 O O O.5 1.0 INCHES O- ROCKW ELL TESTER X- EOUO-TIP TESTER (LEEB SCALE CotWERTE D TO HRC)
FIGURE 10. HARDNESS TRAVERSE, STUD 36
i 3
~
2 0 '- Figure 11
~
I Distribution of Measured Hardnesses in Unit 1 RPV Anchor Studs, Heat 0 15-- .i tI b
//
8l0 - ('f 3 m a :, 3' O .
/ .4 y// /
ct -
/e, I/
f, -
/ i' us '
i' m / A >' /
'E 3
5' f7
/
i/ b i
; ', J' ,- 'k :',1 '- l 2 ,wh 'h ? 'l ' I i
y ifb -
/,
f V 'A (' , .'/,'
-! 6 ,
7 r7 i. o .
/.- ./
Z6 ,.
.! <A '.c ',- +
32 35 40 45 50
! SU RFAC E HA RD NESS RC w m HNNE i BKENEBH3 SERVCES
20-- . Figure 12 Distribution of Measured Hardnesses in
~~
Unit 1 RPV Anchor Studs, Heat 00 15- . . M ' J O m jo. . u. O --
- r. -
a - f tu CD E .. D 5- -
,-h:
n 7 /
- V / ,'& h, . &, , n , , , 'e- i i i e t i e e
e i O s 32 35 40 45 50 SU RFAC E HA RD NESS RC
*TaHME ENG3EERNGSGMCES
) . i l 20-- . Figure 13 Distribution of Measured Hardnesses in
~~
I Unit 1 RPV Anchor Studs, Heat 000 i 15-- m F-
.J
, o go-- co LL. O _- x -- ta (D -- 1 n' a 5-- 7 - z , // L r s r/ ,
,i V/; .. ./,f/ ,- o % ,,7' 7., ,9 ,
Q /
' ' ' ' ' ' ' ^' '
O : 32 35 40 45 50 I SU R FAC E HA RDNESS RC SeTaEDtNE ENGNEERNGSOMCES
9
~
20- - Figure 14 Distribution of Measured Hardnesses in _ . Unit 1 RPV Anchor Studs, All Heats I5-
~ ~ / -.
m
/ /
m k,e >~ ~~ a o C7) V' 7,? ;'/' j'/
/
w IO --
~/ ,.7 7 ,, ' ,; y ,,
w
;9 /> /,/ ) (' h/
l/ o ..
' /,
r/
~ / ,';{ f,'.l' ,d t'; '
g) / O 1 $ '/ 7 h // ',k',' I - x & /, l.h
/
1 / ,/
// y/,
o 5- /- / / 7 I'/1 L.e-j/ / .
// . ?
yf i.
~
I's / l / .Y$ 'I
/ /, ,-' // l, / . ,' i. y, / b ' ,- /I l . 9; .
F # 9 % ? 9 G ly,/ 9 o .
- , ;4, &.?
+ '/. /. 9 6. 6. 1 6 2
- u. .
32 35 40 45 50 SU RFAC E HA RD NESS RC w1aHWNE ENCk1NEBWGSGMCES
s > I . 20- - Figure 15 Distribution of Measured Hardnesses in Unit 2 RPV Anchor Studs Heat X 15-e t-J O co 10 -
~
LL O .- cc --
'/i -
w in ..
/> /,/ i7 ,/ l Q '
D 5- f,'/ z ,
, ',/ - /j j j >
V h b, ,/
,7/ / /
f, z c.
/ ,, / > g .
7. O
- /. .
O.
/)/ u .t..
i ,. 32 35 40 45 50 SU RFAC E HA RD NESS RC WTEIIUtNE BCNBedGSGMCES
i 20-
~ Figure 16 Distribution of Measured Hardnesses in // Unit 2 RPV Anchor Studs, Heat XX /-
l5- -
'/4 / .4 r'n I.'$'} /. m ,.
m 'X p,. p. r --
.1
_.J 's g
'/.l o i0 --
i .i in ,
</ i W.J
( >d w ' r O -- EX . r// <, ct 77 , .
,N as / /- ' /. //
O
/- '
2 5--
/. -
t '
- !- 'Ii/
t J z U YL1 ,' l l '
?I ' '/,k ,)f,-, - i / V t f, ,j< ' ,/ * */,
- f
./ < /.' (' (/
l o
}, //. .- l .'/ ; . ,,..
O T t 4- '4 1 : I
'1 : : : :
32 35 40 45 50 SU RFAC E HARDNESS RC winEnnE D K ii G 3 5 4 G S G M C E S
20-- 7 . I - Figure 17 Distribution of Measured Hardnesses in
;, Unit 2 RPV Anchor Studs, Both Heats f
l 5-( er 0*6
/ / ih & I.~
3 k , p>
~
Bo
=i #e $ $
u. 4-d 0 a e ;
/7 /
yf,p/'/>p,.'. a p j e 9f# t g g$s f M3n$z; ame g r $ $ '$ 4 k?d 9 O 32
/
f d. d. d s @?i 35 r sid a 40 45 50 SU RFAC E HA RD NESS R C WTB. EDGE BGEERNGSBMCES
WTELEDME ENGNEERNGSERVICES t
.m n wecexv(9@T/M,wn:d.m:nym@mn-Uti,h8'd EM5",.B ".t dWM' ~pp*. .
m
- w. m . :,m.
%m.w_sw.. . . . . :~. .
W h.g@, ..,..i,'... , .u.. M... q..,r' m . .n.n
. .:.v... ..... m, .p o,:, y.wgu4- .?f. w,+ , - . W .' ...v.t ..
- u
. . . . . . g .e ..,~.....-...,%.
- N . y ... a ,..L... .? w < . .. . r . s.:... . .'. y.(. , . . . ~. ..
.4.. .. .. s, . t., s , . . , .e . _ , , .. .. . .L...... * .. , o .#*; s , , .., s . .,-. m .,4 .* .3 .e .x , . . . .. . c .. - .
W. ;W. . v -. ;-.o%M at . :P, . . 4C. " r:.1 . yy,.. ..Q.r. -
,w. .,.w Q. r ..4...2,. . . M q,
m., v:,. ,c a. .#+., s. r.~ ,. ; . , . .m.- ,o.
~ .O. .w. ;, .~;..n < ...., %. .. ,.. ^ qy-f ..a.'e*.n- e y .a . s . v', ~. +
- c. &. . .. -*. w ., ..
%..u.. .. . g.v s ..
i,;,~c..,
....e.... , . .:., , . .w. 2...o . . . . ,t . ..m.. . w, ,.. .... d. .. ~,. e, . > . . .;; ... . . -.
- e. . v , L..y r3e. .
.: . J.
n, p,[. r. E.(.'i.P.'N'<%w,'%.;.y~ s -
~.N ,' J l ; y,.V.$ e ' 4I o " "~i a . . . . . s. . .- > . s . u : , . - . . ' . - -+:*..
a,- . 1x.2, ,.:
.. m. ; .. v. . . .4...
v.
-- ,; *,n, ,,a .. .- .,
p . , g
, f. :.,rs- .. n. ., ,.,. ,- . w .;... a ; . ..< , . ;. - .. e,. . . .-c. > .a. . . r .a.,>. . t e . .e .,s.. . . . . .. . :.a. e . .. .v. >. , r . y '
Picral Etch 100X Fig. 18. Microstructure of Stud 3 at mid-radius, using a different etchant.
. 1.. . .- x , - ,. o . .,,.. s- ,u;. . - . , . . . .i . , - ee - r .
u .,. ._ .. . . s > e,,;
- a. , -
i;.w .y. .. .
, ., . ~- . ,. . .,. +: .
W. ., ., x ,-, ;. - ,
... ,_ . a., ..\.,..
s. 4 .
.5..,* ,..a <
6 . . ' .- + . , a
. . J..'.' ':,.-
s
. . , . . .- . _ ... . e y '. ,=%., r,,: .: ;9,. ,, o c..n....~*~..% .:. . -' , ' ?- - *. %. ,a.'.*. ,' . , , , ; .- x:a' -e.. ,s c . . ';~,4 : -. ,
g ;. ;vo:%. . : e gc .m1 A
.. . .-..; w ,.. . .-a . n. ,. , . . ,w :. e - . ~ i." . ; + W. . .' . . ' ; 1~.,+ ...< l~.<.s .~ c. , .% .. . . a. 2, . ... .., .s ....-.,~.,.,.c..;
a , p.:..... . s,
*.-, ,,.; a,g gp-4..: , , . " .
- r 5* y, ,. f n.~
,,...,,.,j,],
o- ,
'."... . +..
h 1
. . . . '0 ..s . a *g v& .~" *.e - . ?*"*:. .me 4 .M Vilellas Etch 100X Fig. 19. Microstructure of Stud 3 at the mid-radius.
MIMD.U.Mn uad)hIlbhd JL o
'MTELED(NE ENGNEERING SEFMCES i
k*h'?.VE% STAW,EIW5kW
- ;f;,Wa mcwaid %4.Wr-nN lAe.6.O a 4 ?m W ;"
- 4? ws.u ni
- y. .t n ,-o .
h'[$$e..ypfe-fSf@??l$,.?.SOgb21WQ{ -.SVm.ghy,*f. gnm%$*v]Y^W1 Y.t.+V4ifft;.i'Q H&k tf &fkp?4%ME :,y>m,.i:Qjn?? mWB?& W.S9;,piiLA,.dcuw( T,,: %M IJ 6 :.43,< ..-
,;,.,A ,. ..v,,a. u w., ,'..v pf3 'w.c ,m , ,, 4 g .ay..c~M,q: ;y*,% "fG s,- Q u;., %.. .u. ,-.m ' ?"4 + t %:L 9 L !%.JGr,*?:'M1 b.%NWyPfi%R;M.YIA:(b..b,ipfA'dJDG. "hf$%.!.M2P ~
k - f*E& llg$' lbhl?k!y;wv?Pqu$cxo.h:h& $$$?4.r&c w 4y.a. sv.m$'.d.. 9 d ,A 4,'OS .kJ.:2hv
'\ -n ,;. %..s. y.. ,, ,;p.4,8@n.@&,,. 'O.gc, e -
y,w yi o f ' tc 'm. , u,Y;,$ ms n .. .,nj... ~':~ ? NI bb4
&y, y%; .m pp:q EW,&%?'r s ' ;.! ^ ep. ,. .$lJ'? . . , ' ~^
- y GTn
* ?*
Picral Etchant 100X Fig. 20. Microstructure of Stud 3 at a thread root. White outer layer is chromium plate added for edge retention. Ilote: Slight pitting and oxidation of stud surface. i E,4V"4 9a rf dAq.gT.i*'^ ;d 3 w P.l'c."f%,
,s 2 ' W' w ,,4 *d* % ga"p4&V,73MuAM9E %l$e,, n' gpI'f*Ce ^
N, "'j , m 7 3 4N d IDt9, i 1A
%7hf,,
k'ik, j.y, h{M.,81@S&t
.$$ft q .;%~.-Q'R*'&'sh W.:.f.2.: ^
3"a r... q+ kt'bs.i t, 'bft%g(thCWr.qpt%gggpp977usWir
% . .g 16 $I , h Picral Etchant 500X Fig. 21. Microstructure at mid-radius, Stud 3, higher magnification. . _. o
WTELEDYNE ENG!NEERNG SENICES
$.y - g 5' 't , q ^'.- 'k, s a r u ._ ..
E.4
, s . '%
2 .. . - i . . l
- b. Y-
.. ' N jv re.]
1
.: ._' e& ,t., <. j
- " .<Q
. ' f ,;
Q~yyfT 4 3 v. A-(Tg db, . . f' Figure 22 Vilellas Etchant 500X Same region and magnification as figure 21, with a different etchant. At this magnification the microstructure appearc to consist primarily of martensite and although some bainite and free ferrite may be present, they are not resolvable.
~~~ . u M^~.M T ?52",? ;- [ .QRiP W'?s.wBC} , ggg.~ .(.#.#f?r .J.' t*' WyshnL- ,. , .y Q%, <- ~.-w yAkAsak % .p. .. ~ > drWh$.$ f ;q.- $?5Nl?$b t,C , y s.tyyC 4 " W: "E[hy: 'k".@e,d!t,
- n. .
f4I
% d, ?%%;Cef -a.
3;.h. .:.*?[: +hN.;"hq,hd k t
^3., ?
d[,9
. ;7 tMkL'i tNb?+b, y7 mad ~* e IgrtihS9dgl,.
W e e it '; ?:$ 4< d ? ~ ^ f ;1.v. faith
* ~
hi!S//$k'AM.dl.kYha~I d W I'b.4 $c $ 0 f f @ $[ $ $ F .3 v. .. k-g , - _ ,. n _ = _ ;r.- %' Figure 23 V11ellas Etchant 3000X A scanning electron micrograph of a region similar to figure 23, Note that regions of bainite can be resolved. Y};F % h,,Ihf){
. WTELED(NE ENGNEERING SERVICES "1
mqqnMM4.W42,q;W -rg wa. , f/;'*g 4I,<'!,;m W >~W;R*k b .:W: =:.,p.'s; i M -R, s
. *pM~C v, s.pg.c,b^ > . r,0~'.,', ~ ~ <t 'A -
- y'
. .wT .D)" v i,.;4;s.*y . ** 5 w",,s..M ,:,.ga,, * %' . :.* ~, . . . w.. . w.
6.yM..
.c .s V.qf:w*vf.f&s&w -
e..;;,$n::.%.s.%:0&v WYTK ~:2 .'," *,':':;k ? ~ ?' :.:,: .,4 ' *i A 4
- FV;n,e;.-r: fvi Y.]v '#.;;. ,; :t m. . . . .
.Ia ,$ .' . . , . , y p&= Y .; s; W: ;y .-< *, . '
v5 s L* [,J. - 'f a T, 't.'t j///
. ;cse., * . 4s- *.
- p'. j *.,s.'[,: ,f'J
- 4 '.
-/a ;*. yf ,,. ..,t n,3:(f?e?~ ,f
- y. Apl.';.R ,;< .
,;pe* y <:,..'z.> p*y, ,e a-3 ;.'(; . s
- y.. .:s[4 v A .:'s '. m ,. .; u ; x .i f,' p * :
- c. -
.. ..e6% y ;< , - , %' ' Y .: '.y2a** .. e - -i . .i;;.,, e, - .v ' <#- .: *. 9 Y:.a * ; r, ..,.,; -
t - ;'o N r.;.t. .,;p..
, i .. ~ -'- .
t,. ? ,;, .,,t. . , ' ;.y . -
$;:,u.;.. ^ .., ... . . 7.. . 7 , .:m- ..A.;,,.*-...%.
v .
.w .
- 7. . .r.4.;
&*. ;n 'w e * .v t y, ~
q',, L' , .1 .; r M. tw " - . . .. -2? :. ;f:" ;' r, .s :.:4 . L;. : . -
.aypf..m y ,5 e ,,.?
i,w 3p ; .3,.3f:p'
.y n;v , r.y">:'4,m-':<..x. s ';.c*?.~y-:.*h.
y*- . s~ . - . :,5~ , , s9?;?: g +;>.?..;Q .w $ ;
. i .r .y c .g - - rm,.:$%,g 2:: . . m . c;y@. @, ..,t., f%hp*i.wp :.m;,.a 9 +- - ..
e%y h.r#.,q'f:;\. .
,u. n.':;.'.;.;;W.. ,m m, t
a:. .%. s -:,1 ;?r;,;m..cm, 4w4., ' ". . ..
.L..a'",r e z .. e. os n ;.3. y s? .;g 2 , .y.e;.j . 3 ,3.. .'., ;1 p. e<Wl~?'fM 54. !"4, yd..E.,Q,6* :
a, .,e'n . 7
; v.' %.v.f cdm.v ~s y.v ss, -
M,>,. :,3 *# ( cy
/ ~
i*
;.~.n %;.Q. . =< .'b,?.a.P .p * . m.s..?ev -.s.,( .3.i.,',ly t.. 'J.4, z, A . % ~ .u w.s,a.~. s ' >? , .';~-9*.f..:
q;hp. , Figure 24 Vilellas Etchant 2500X Transmission electron micrograph of stud 3 microstructure. Figures 24, 25 and 26 were made from a two stage carbon extraction replica. 9-*' 7,
- ..3 . .
i W E ',' am . T *; M t.
.. G %,~ g- %%..,et .'i' .
y .'.$.':
. b,}y .~,;r a.4 %E.4.M ? V' DM*. 'n: n%W .'h,. : -:: MY.m.If.T{y#A@w ?,, .
s
, .y. .,Q.:gl. G ., $.bM*J N*,A Ms>.. . . ,u,:t ~ .- n. - A.w. . 4<<, y . > :. , v ,w; . f, .1. es- ..:. .t ' ..;P.n.<g ve . -s. .. a c .. .e.sl: np..r r a, -W ~n n- ~ .t W,'P,> # 3 0 d.> h ..b '. ( ) ., 'NkM E %vi.N a . %,C;D'W.h.W, ..a~ f Q Q y1l4,Y Y . .' n s.h &.w CG' f *-x. -i,~C' yc . M M k.I]!
i/,y,.e - S. .+'(~s . .m .S # ' ...~ .' -. ~ ...<q, ,,r . r. k. s../:x,'d'$..@ Xu,., aw
.m: :.v.w - J. .
N .'Ws,*, Y:. tu:;* . o x $ *,l*$p s. ;; ~
, y tf. d!p? f';.Mh,.,Wl-[ >. -;&. -P .'.;:s : e. J.t 2 . %.l.'h* M"F?NM*k . ~
a n
.M.4.r, .. s,. ..,. .> .
ajk,(k ,-m.,.s w . q.a. r. .v. .,. ;m.Ajj .Y4%i -W4.Erp. Tj.My. peq Wf 6' N).f;K$$Wk' & ? ?.,'.5hi N'*%4)p.0Q. .~.,& lh $t;*.*. w-f Y ->. .*4 Y,ji,*y . yl R hR :
- 6 -% 'r' ?h.d.?i ? dp;, e Im :&W:K N G_4d.p
- f. w. f. W G a2.5iakl &pr4 h t E:r? "5 & d.s+*tW Y' N w.& iabhMM%'Q.
Figure 25 5000X Same region as figure 24, higher magnification. L u m M d. L y.ng![sL Y fn[
*TaEamE EErmrG SEmACES Y
oy. ..j,:*.e
),:%YGGQP:7 : % &.t9.h*3 $
4::k -2S;iv.
,,,, ( f *2fj.
5 < r*. g~
- . &a s-7.*g , 3:-y,., 9. ; u
<* r J j,94V: 3 %.b "
GM'.,,' 3 y$;fp . S t. ,;. fe.. ? h .;.:?:-O.
,, p.
b
.a..~~ '% .1w.W.s-i >:.P. .l k.Og, ,. ,dW-s,.;,
s ';, pmW . *~ 'm .,. ,,:,, s :. w . sL.
- Q#p.
E .. ~$. e'
- .h',h's,' 7?%,
Q Wj'n, % s' ~ ts): 1
)jN)iM,.
li c
,-s.,('h',?sn, d:NE . g N 'e mxawa % NM heQM + Aa 9 3 %u $; A."
Figure 26 10,000X Same region as figure 24 Rounded carbides typical for a ten pered martensite structure as well as elongated carbides typical of a bainitic structure are apparent. e W'f?f ' W Q .-v;vyr,p , dC $[ , s It[h h ' il??Te%IrAf$fEh255fWTQi f,Q ML V?**Nk
- f[Yp:ma%q:956Mi~
g. M y n n:. w ir p 3A
~ z: %v . yA w3,.'+, ,~ . ~.. ; .e .
4 ; ., y * . % ,- ,33
**#. ' .. r) e- '** '. <'Oll: k ~.
f 5
~ 4.;
Ther' *tp . .",
~ Fue 1 ~ ., ' ' ' ; .- . (fA.%* -
3
$ W & &nlbf '#f;b ,
f . . g .t . o 4 J s .
, . - ..% y -,a <.,- d 's c. . . , ; ., . - '
A p.
-, , , p' - ..
f 3g3 Tf$wN
*.?
g, >: ,. 'y . . . Figure 27 600X Typical fracture surface appearance fnr Stud 3. This micro-graph was taken in the vicinity of the origin. While oxidation obscures the fracture details there is some evidence of intergrahular fracture near the center of the picture. FB '- - m , ,y A
,- WTELED(NE ENGNEERNG SERVICES 1
Ps .. = .w M 1 r il Figure 28 600X Fracture sur, e of Stud 3, at about mid-radius. As in figure 27, oxidation c,bscures much of the fracture detail. Nonetheless the fracture surface near the center of the picture appears to be cleavage. 7 . NJ p?T?F%7 1 "T.*QMN pii me,, wam
)%cg[Lf:y_grgg{qc}aa m yl ~gg a ff g ; .y: ?- '- ~
y yQ P*gy$@Why i < 4-t +A ";* "'~ ; M,t s , Q ..,,.m bN2b?j c c n - s M u M 14 Figure 29 Replica from field fracture surface of stud 3, in a region near the mid-radius, showing cleavage type fracture.
'l a
.' WTELEDYNE ENGNEERNGSERVICES Q / ~. . . , .
e . ,[h I
' dr.;c ' '~ -s < .T w ;= . ;^ h $ h ' Y,s "gk.e <. ^ , .s , s .y. _ Q ' j, ' *. d
_ $* T;. ~ .$ le a .,
N * $,_,3 k p.o ~ . s T ".
M, l J hi'% $. . 1000X Figure 30 Micrograph of region near origin, stud 3, showing intergranular type fracture.
--n;. & f:C&T h Rl 9 8 1 $ i 9 5 % E , . . ~~^
41' % % % % % E C R 6 t dsd.Z.
$W' TOfCi ^
I??2%
'W. }r y
car
><y~~ p --
e-r~. 1"*.t G.74gg *
; we a
e
.. So '*
wl 1000X Tigure 31 Region at origin in replica of field fracture surface, stud 3, showing intergranular fracture. (=
O
- kky
\ ~
lh*i a *t. w
$ 3 W . ;f c-a .f '
lM J iI, L e
. j J) ' gg .
s m 1 '
~' -
ry;r, .
. ffr
- ?? { '.
0
. kkg c- ' .3 ~' ~ $'4 5 . qg Y h m ,> s INTERGgANUL R CLE AVAG E %Ng g"% SQg
WTELEIME ENGNEERNG SERNACES
.m, -
g '# / -
~ 's '4. . s< f ;2 %. . f: C'ly . lq J.h ~
y , *ew . ,.7 _. y a yk , ht'.
.. y ; . 4. . Y.. g ~ )
p , e .
,[. k .- - ) ,.
[[- (' '. [
' 5 .g . . .n .. 'f p. . %.. ,,,.;Si,. . p : ,,
2000X Figure 33 Origin of fracture on Stud 36 showing intergranular fracture. Spheres in picture are 5.7 ym in diameter. E'l w' % k:~. - IMD,. Yh'~kY-
^**y *L gA V 'ed hp -[- '^ 'Eb sg VM (P*?
Li t 1000X Figure 34 Same region as Figure 33 at lower magnification. i I b
\\\~ - ' li IL _,
,' 'A'TELEDYNE ENGINEERING SERVICES .~. ; - -.7. . g . - . _ . , -.
7,,.,- s* ,
, s .:-,
[' w ~'~ b 9e
. .NM . ./
w 3
. . . ._,a 8s,' '
fk N ,. f . . f h -iM1 y - - y t~p.p, .,
., : y, m n .. . a' -&y. W" $M[h V J,
vi : g, A g . f <- - - n;i Nf , 5 . . E# ~ a
,f j * ,,
w s Asse" Figure 35 200X Same region as figure 33 showing intergranular fracture characteristic of origin right out to bottom of thread root (across top of picture). X 3 ,5Q* % 9*'.W: y: m W e4t7 ' ' 54 %? w;p.3:~,w ph y573Ma" ret ,hh [TT'*d.Mig .
#y'py'% Qi N'" U M 't :. W'..x E% ~-r 4 ;.h.$5 @SfS1 4 )12$$' Q #dEryp ;*]? f h h ' ~
T
^ Oi'te " C 5
e,' M' ( E'A **d %l raeFv; gg swee, 0% Y.$ n hk eey?%fpWe/'M'^~d, [# N k' v ,3 gpfgf@r ,; .
-p<f .W"' )lI
- 2
'w': a; m.s. 1. - L. EIf 1 -
Figure 36 Region at mid-radius showing cleavage type fracture. Sphere in lower left is 5.7 ym in diameter.
])!1 D 'Y DLI~b[D u l j@l$ m@L
.' WTELED(NE ENGINEERNG SERVICES s., 'I ~
N ? h*. 5. * . g- .. 3 m % $. ' 1000X Figure 37 Same region as figure 36, lower magnification.
.i , t .- ~ (;' ~ ,$ =a; ~
y J.. . f . L ? yf(k ,(
'* s.
Figure 38 Same region as figure 36 lower magnifica n. Put mEEE
>Y FoD y, . >s Figure 39 500X
- O g n c a ag n St d S e 5 iri d a t .br.
w e> W bh RlGIN CLEAVAGE INTERGRANULAR L
~
9t . 4
~? -1 kN c.- - ' ' Q>ff v' - e f; ~
J ye
~
m
. g g '*MEDneamm
. SeTELED/NE ENGNEERINGSERVCES e -
i
%., an.i ~ ~
1.
,. .- .. m-
Det.24 us2.EES li3. a.*2Et# 1. '
..r "MIM I ..
c y. C- Q ,. .
. p ., . m .. , ..~.,
gf f J asas .
. Ak N. . i' &;II. b I b$i{Ibb 334 ' ETjn;l f' pN e 1MNd e.s.rre' ms./M.seitettd@hMb-Figure 40 Electron beam microprobe, x-ray flourescence pattern for Stud 30 at mid-radius showing only Al, Si, Cr, Mn, and Fe to be present in detectable quantities.
[6f4ff~:9Xl$. ' ,
.l $5 . 10 %6s&s ~
f Wg[yg 1- p 93t .. . :c:,*'
...s. . n,M '
- . (g .. a .
;
- l, .
[Shj@ . ,
._ 'Ql,, [ 'y. .
Figure 41 Electron beam microprebe results at origin showing same results as in Figure 10 D Y fd
'7 g 1' ,n i
b a ;1.M U 3
TTELED(NE ENGNEERING SERVICES
-C-- ,
t A STUD AMM (IN) C- MM (IN) 3 3 (0.118) 9 (0.354) 36 I5 (0.059) 4.8 (O.IB9) FIGURE 42 OBSERVED SIZE OF INTERGRANULAR FRACTURE ZONES ON FAILED STUDS 2C ~ i W
~ ~
A $ j (, p~ '
-- - p ~
A = CRACK DE PTH K.g 3 TT A g 2C = C RACK W I DT H P = LO AD 0*f(^/2C,#/r.s.) y FIGURE 43 ASSUMED PART/ FLAW GEOMET RY FOR CALCULATION OF K : SEMI INFINITE SOLID WITH THUMBNAll SHAPED SURFACE CRACK, SUBJECTED TO UNIFORMLY DISTRIBUTED L7AD
TABLE I Tensile Properties , Stud 3 Specimen Material Certification AISI 4140 Report Heat 0 Nominal Average
- Averages ** 850 F Temper
- Property TEl TE2 TH Ultimate (psi) 224550 220000 224183 168500 170000 Strength 228000 Yield
(psi) 183873 189830 134400 155000 Strength 194000 191616 Modulus of 6 6 6 6 29.8X10 Elasticity (psi) 30.3X10 29.9X10 29.2X10 , Reduction in 45.7% 42.8s 48.5 4 5.75: 56.2% 53% Area (%) Elongation (%) 12.3% 12.2% 12.1% 12.2% 10t 15%
- 0.251" Dia Specimens
** 0.505" Dia Specimens + Source Book on Industrial Alloy and Engineering Data page 36 ASM Bookshelf Series 1PTR FD(FE ENGREERNG SEFMCES
; TM ENGNEERING SERVICES TABLE II Charpy V Netch Impact Test Results Temperature Energy Absorbed Lateral Percent (F) Specimen (Ft-lbs) Expansion Shear 40 F CD5 5.5 0 0 CD1 5.5 0 0 CE2 6.5 0 0 CD3 7.0 0 0 CD4 6.0 0 0 Average 6.3 0 0 70 F CEl 8.0 0 0 CD2 7.0 0 0 CE3 8.0 0 0 Average 7.7 0 0 Material Certification Test Results Heat 0 40 F 1 11.5 0.0055 100 2 10.0 0.0045 100 3 16.0 0.0085 100 4 15.0 0.0075 100 5 15.0 0.0055 100 6 14.5 0.0060 100 Average 13.7 0.0063 100
TN ENGNEERING SE%' ICES TABLE III_ Plane Strain Fracture Toughness (KIC) for Stud 3 Specimen K IESI ) IC FCl 43.20 FBI 42.85 Test Temparature: 70 F Tests valid in accordance with criteria of ASTM E - 399
i TN ENGNEERNG SERVCES TABLE IV HARDNESS TRAVERSE, STUD 3 AND 36 HRC Location From Edge Stud 3* Stud 36** 1/8 46.0 45.5 1/4 45.5 46.0 3/8 45.0 44.5 1/2 45.0 44.0 5/8 45.5 40.] 3/4 46.5 40.0 7/8 45.5 39.0 1 47.0 37.0 1 1/8 47.0 37.0 1 1/4 46.5 37.0 1 3/8 46.0 38.5 1 1/2 49.5 39.5 1 5/8 50.0 39.0 1 3/4 46.0 46.0 1 7/8 46.5 45.0 2 45.0 46.0 21/8 46.5 48.0
- Calibration Block: 45.5, 45.0 (should be 45.0 + 1.0)
** Calibration Block: 44.5, 45.5 (should be 45.0 + 1.0)
s TN ENGNEERNG SERMCES TABLE V SURFACC HARDNESS TRAVERSE LENGTH OF STUD 3* HPC Specimen ** Location *** 4AA_ 4BB 4CC 400 1/8 50.3 46.2 47.5 47.9 1/4 49.0 49.5 51.9 48.8 3/8 48.4 44.9 48.3 48.1 1/2 46.8 46.2 47.5 48.0 5/8 47.3 46.2 49.2 48.0 3/4 46.8 46.8 52.5 47.7 7/8 50.9 46.2 49.0 49.2 1 47.9 48.8 49.3 48.2 1 1/8 49.5 47.0 49.1 48.5 1 1/4 47.3 47.5 49.1 50.9 1 3/8 47.2 47.2 47.5 48.7 1 1/2 47.2 46.5 50.0 47.8 1 1/8 49.2 46.5 48.1 48.0 1 3/4 48.4 47.2 48.8 50.9 1 7/8 46.5 48.0 49.0 44.1 2 48.1 47.5 50.4 2 1/8 48.1 46.7 50.1 2 1/4 46.9 49.0 47.8
- Hardness measurements 1/16" below thread root 1st 45.5, 46.0 (should be 45.0 + 1.0)
Calibration Block: 2nd 63.5 63.4 (should be 63.010.5)
** Refer to Drawing 0-5120, 4ppendix A showing location on stud from which specimens were taken. ***" Location" is distance from marked end of specimen, see Drawing 0-5120
. TM ENGNEEFE'G SERVICES TABLE V_I Microhardness Traverse - Surface to Mid-radius 500 gram mass Location
- Hardness ** Location
- Hardness **
0.025 51 0.400 49 0.050 49 0.425 46.5 0.075 50.5 0.450 46 0.100 46 0.475 51.5 0.125 47 0.500 49 0.150 46 0.525 51.5 0.175 49 0.550 48 0.200 50.5 0.575 45 0.225 52 0.600 49 0.250 44.5 0.625 41 0.275 44 0.650 46.5 0.300 48 0.675 46 0.325 47 0.700 51 0.350 46.5 0.725 43 0.375 46.5 0.750 46 Calibration Block = 920, 930 (should be 933 I 33)
- Depth below Surface from Root of Thread
** Converted to Rc from Vickers #*NN - - -9.he-E s e w we 4 m . ,
A TAB._E VII Field Har oness Survey Re>alts Unit 1 Hardness Readings Unit ! Inside Stad Avg. Surface Location Heat L L, HRC HRC 1 a Number Number Edge L 'l' L Center '
. Ave Converted Converted 2 .a 1 0 704 705 683 657 656 6E' 43.9 46.7 2 0 667 690 614 674 668 65! 43.9 44.7 0 Failed 46.4 4 000 677 632 675 603 644 66E 42.4 43.4 5 681 654 651 641 C.D. 657 40.9 43.9 h 0 677 675 664 659 650 665 42.0 43.4 7 00 625 636 648 f36 633 636 38.2 36.9 8 000 707 704 702 636 692 CD 69E 46.1 47.3
- 1 0 717 703 694 671 tS4 625 44.8 25.3 10 0C 640 626 604 SF7 CD 615 35.6 38.8 11 0 644 642 640 641 CD 642 39.0 39.2 le 000 675 673 673 67: 678 674 43.1 43.2 13 000 705 694 6H2 5'1 685 659 45.0 46.9 14 0 686 696 t 96 59' 689 692 45.2 44.5 WTELEDGE ENGdMEE% W
)
15 00 640, 619 641 636 63/ 628, 624 63a 39.0 38.8 16 0 709 711 106 688 675 699 46.2 47.3 17 0 705 697 627 676 670 687 44.6 46.9 , 18 0 713 706 700 689 692 700 46.3 47.9 19 CO 643 639 634 635 631 636 38.2 39.1 20 0: 638 624 624 622 627 627 37.1 38.4 21 0 687 672 634 634 616 645 39.8 44.7 22 0 683 676 674 664 CD 669 42.5 44.1 23 00 639 637 631 629 CD 634 38.0 38.7 l 24 000 674 669 659 660 651 663 41.7 43.1
~
25 0 665 657 647 659 CD 657 40.9 42.0 l 26 0 723 716 714 712 703 714 48.0 49.0 1 27 n-:: 683 679 656 650 645 663 41.7 44.1 28 66S 669 6f? 6/0 644 66: 41.0 42.4 29 : 675 676 663 692 651 672 42.F 43.2 30 C SS9 691 653 676 679 682 44.0 45.0 31 0 680, 672 686 683 679 672 679 43.7 43.S 32 000 708 707 695 660 643 683 44.2 47.3 33 0 703, 701 698, 698 672, 679 645, 656 627, 632 669, 673 42.5, 43.0 46.6 34 OC 640 637 629 619 612 627 37.1 38.8 35 OC 645 633 640 640 651 642 39.0 39.4 36 0 701 686 671 651 646 671 42.7 46.4 37 00 624 627 624 610 604 618 36.0 36.7 38 000 638 698 691 68/ 690 691 45.2 42.4 39 692 693 678 669 663 679 43.7 a5.3 40 646 641 638 640 CD 641 38.9 39.6 ENGNERNGSERVICES
41 OC 638 635 630 624 615 625 37.3 24.0 42 0 697 696 6Ea 660 CD 659 45.0 46.6 . 43 0 696 679 661 629 ',4 7 666 42.1 41.5 44 ? 675 67a 656 600 f. 3 E 657 40.9 45.3 45 GG 643 642 642 641 646 643 39.2 a6.1 46 6 689 635 694 675 654 677 42.8 44.2 47 0 682 688 690 699 CD 6S7 44.7 46.2 48 00 635 638 640, 695 622 638 639 38.7 45.7 J
Unit 1 Outside Avg. Surface. Stud L HRC MRC Location Heat L j 5 Number Edge L L Center . Iss Corverted Crnvertec i Number 3 4 1 0 691, 690 682 66?. 672. 652. 657 645. 651 664, 670 41.9, 42.6 45.1 683 693 691 637 682 63- 44.7 44.1 2 0 622 629 616 611 602 616 35.8 36.5 3 00 4 000 691, 697 698, 702 626, 691 675, 680 669, 663 6S4, 687 44.3, 44.7 45.6 712 709 699 704 CD 7C6 47.0 47.8 5 ? 0 677 c66 663 (6 f: 641 663 41.9 43.4 6 7 0 667, 649 677, 678 679, 691 675, 668 671, 666 674, 670 43.1, 42.6 42.3 8 900 683, 677 667, 671 645. 653 633, 636 645, 656 555, 659 40.7, 41.2 43.f. 9 000 715, 710 710, 711 703, 699 679, 687 652, 645 692, 690 45.3. 45.1 47.8 10 0 677, 681 67E, 677 663, 661 649. 648 641, 645 662, 662 41.6 43.7 11 0 712 696 671 f58 CD 684 44.3 47.8 12 000 697 695 696 C76 671 6S7 44.7 45.9 13 3C0 671 A73 673 631 673 6'4 43.1 42.7 14 ? 714 724 716 69S CD 713 47.9 48.0 15 00 643 649 649 66S, 670 CD 654 40.6 39.8 16 0 715 717 714 696 CD 711 47.6 4S.1 17 0 668 673 670 672 680 673 43.0 4 .9 18 0 657 655 623 627 625 637 38.4 40.7 19 000 703 699 698 691 692 697 45.? 46.7 20 0 706 707 699 (99 685 699 46.2 47.0 TlE.ED(ME BCNEERNG SSN1CES
21 C 712 794 696 673 CD 699 46.2 47.8 . t 22 0 66S 677 675 66S CD f?2 d2.S 42.4 23 0 690 683 674 672 CD EE0 33.S 4E.1 24 G00 702 690 666 669 CD E52 44.0 46.6 25 0 699 704 699 697 693 695 46.1 46.2 26 0 713 712 703 701 695 705 46.9 47.9 27 0 701 696 681 672 659 532 44.0 46.4 28 ? 720, 695 709 706 705 694 737 47.1 47.3 29 000 689 683 678 672 679 650 43.8 45.0 30 000 671 673 664, 690 65? 645 665 42.0 42.7 31 0 696 699 696 682 676 590 45.1 46.3 32 0 660 670 666 657 648 660 41.3 41.3 33 0 670 694 694 704 691 E91 45.2 42.6 34 C 668 671 659 647 644 650 41.1 42.4 35 t' . d 626 f50 6/0 680 662 676 4?.3 44.5 36 C Failed 46.0 37 0 695 693 694 699 694 695 45.7 45.7 38 0 661 680 691 673 6S4 676 43.3 41.4 39 00 623, 645 640 616 610 597 619 36.1 39.4 40 0 716 701 695 665 655 6S6 44.5 48.2 41 000 682 683 684 713, 713 690 590 45.1 38.4 42 000 702 709 712 709 710 708 47.3 45.9 43 0 661 675 685 634, 623 CD 664 39.9 45.8 44 0 692 692 681 653 657 675 43.2 43.2 45 0 698 694 694 692 681 592 45.3 39.3 46 000 684 678 671 665 CD 675 43.2 45.0 47 0 699 696 692, 700 694 633 695 45.7 44.0 48 3 695 696 6/6 671 656 679 43.7 38.1 WlE.fDiftE BGEERNGN
TABLE VIII . Fiele Heranats Survey Results Unit 2 H3rdness Results Ur.it 2 Inside Stud Avg. Surface Location Heat Lj L " " 5 Nur.ber Edge Center ' Ave Converted Converted Number L 2 '3 '4 . 1 / 631 625 629 636 633 631 37.6 37.6 2 < 627 627 637 642 659, 668 639 33.7 37.1 3 ' 638 632 626 631 CD 632 37.7 38.5 4 i' 629 634 627 638 634 632 37.7 37.4 5 A 62S 635 643 640 CD 637 32.4 37.3 6 ( 633 632 626 637 CD 632 37.7 37.9 7 xx 629, 612 635 648 638 641 637 38.4 36.3 8 xv 625 635 642 638 CD 635 38.1 36.9 ') O 626 630 633 651 672, 662 641 33.9 37.0 10 u 641 640 633 646 CD 640 39.8 38.9 11 XX 634 629 634 638 635 634 38.0 38.0 12 .t r 632 64? 655 653 654 647 39.7 37.7 13 1. X 627 641 640 644 633 637 38.4 37.1 14 - 596 596 (01 696 602 600 33.6 33.0 15 ' 630 634 637 6E3 CD 639 38.7 37.5 16 ) 628 629 628 6:?9 CD 628 37.3 37.3 WTH FIWPE ENGNEERNG N
17 X 647 640 634 600 CD 640 38.8 39.7 18 X 623 639 633 641 CD 634 38.0 36.6 . 19 X 643 629 620 633 CD 631 37.6 29.2 20 X 608 638 633 6?6 CD 629 37.4 3*.6 21 A 649 637 636 637 CD 640 35.8 a!.O 22 xx 611 607 613 614 611 611 35.0 35.0 23 XX 612 603 603 507 597 606 34.3 35.2 24 )x 610 613 629 628 631 622 36.5 33.9 25 XX 608, 616 604, 604 613, 611 E20, 622 623, 648 614, 620 35.5, 36.2 35.2 26 x 639, 624 645 645 Af2 CD 644 39.3 38.G 27 x 646 635 639 635 CD 639 38.7 39.5 28 x 659 647 640 606, 629 CD 646 39.5 41.2 29 x 632 648 648 651 CD 645 39.4 37.7 30 x 643, 627 645 637 645 CD 641 38.9 36.1 31 0 625 627 632 E?i 630 629 37.4 36.9 32 'a 619 626 630 635 633 629 37.4 36.1 33 Ex 631 634 639 641 658 641 38.9 37.6 34 X) 627 632 631 635 637 632 37.7 37.1 35 7 639 633 627 632 CD 633 37.9 33.7 36 XX 608 605 t:02 605 601 604 34.1 34.6 37 XX 614 610 606 607 618 611 35.0 35.5 38 X 614, 607 635 635 646 CD 632 37.7 35.2 39 XX 608 610 605 610 625 612 35.2 34.6 40 XX 608 597 608 605 600, 595 603 34.0 34.6 41 XX 602 601 608 617 635 613 35.3 33.8 42 *h 593 597 603 597 636, 617 603 34.0 32.7 43 X .t 596 599 616 609 601, 622 606 34.3 33.0 44 XX 610 606 623 638 632 622 36.5 34.9 WTELED/PE EPGNEERNG SERVCES
45 D 625 635 630 650, 651 641, 658 63E 37.3 36.9 46 y) 604 593 597 614 616 605 34.2 34.1 - 47 x/ 619 600 603 610 615 609 34.S 36.0 48 )* 60S 615 r07 605 611 609 34.5 34.6 i
. = .
Ur i' ' l'u t s m e . Stud Ave. Surface . Location Feat L y Lq hRC PRC Nun ber Norcer E d g +. L, L_ L, a Center . Ase Cor certed Convertec 1 x 638 642 6c? 640 CD 640 38.8 38.5 2 X 659 642 (42 644 CD 647 39.7 41.2 3 i 647, 674 632, 634 636, 636 677, 653 CD 64F, 649 39.5, 40.0 41.6 4 XX 604 602 609 620 642, 660 617 35.8 33.8 5 .) 634 626 6:o 63s 632 633 37.9 33.0 6 x 637 647 649 655 CD 647 39.7 38.4 7 xx 623 632 646 650 674 645 39.4 36.6 '
- 8 xx 637 640 343 644 651 643 39.2 38.4 9 >> 637 637 nJ9 649 650 642 39.0 38.4 10 >> 626 633 e45 '9, 677 671 649 40.0 37.3 f
11 /r 630 635 6a2 6' 648 639 38.7 37.5 12 f .': 635 631 637 642, 636 n56, 649 639 33.7 3S.1 13 i. V 611, 6C9 600 606 FIS 607 60S 34.6 34.9 14 x 642 646 643 6a1 CD 641 3S.9 40.0 15 ) 652 648 640 642 CD 646 39.5 40.3 1 16 V 629 633 6so 6?2 CD 632 37.7 37.6 17 i 641 633 63a 649 CD 639 38.7 39.9 18 X 645 640 645 655 CD 646 39.5 39.4 19 X 639 637 642 647 CD 614 35.5 3S.7 20 x 649 631 621 627 CD 632 37.7 40.0 WTELEINtE ENGNEERNGSEMCES
~,
t 653 fA l 634 633 CD 64 39.C 40.5 *
>< 612 619 622 61E 621 61S 36.0 35.2 '.
22 23 12 587, 597 597 619 613 611, 622 f:S 3'.6 32.5 ii 613 6C6 610 633 616 3'6 35.7 35.3 24 2E i' 619 611 610 641 649, 642 f^5 36.9 36.1 ex 604 601 619 r?6 647, 641 619 36.1 34.1 26 27 <r 631 636 63E 640 648 637 39.6 37.6 28 => 593 601 6C6 604 607 603 34.0 33.3 29 xx 618 615 630 610 628 620 36.2 36.0 30 i) 595 604 61? 613 643 617 35.E 32.9 31 y= 602 E ' 506 619 605, 616 64 34.1 33.8 23 er 617 604 fil 611 616 312 35.2 35.8 3? i' 616, 616 640 6 37 f43 6E4 635 38.5 25.7 34 610 611 612 624 F36 619 36.1 34.9 _i 591, 670 "4 c19 624 624 d'C 33.9 32.3 x - 60c E99 607 624 634 6:- 35.5 34.6 37 609 6n0 602 608 617, 611 f/~ 34.5 34.6 3E i 659 651 673 653 CD 660 41.3 41.2 40 xi 610 61? 616 616 628 616 35.7 34.9 40 X3 610 610 59S 633 613 505 34.6 34.9 11 3) 626 633 f45 656 663 6'5 39.4 37.0 av '$ 597 597 f06 614 611 605 34._ 33.2 43 i' 629 671 6 31 6?8 639 634 3S.O 37.4 da it 634 637 638 6'3 655, 656 641 38.9 38.0 WTELED(iE ENGREERNG SEMCES
e
/
4 1 W tri.
^1 C.D t
M N *J M rq M M e5 wa M Ul t" ) (J s
. <Z. *L .o .
al.
) ,, ,
5F *
,.1, m W <<a egs s., e e -) r r e et, -t- it . 'o O' .'J rn Q m N c; ~
D i D t0 ie SD O.-
. .9 .. ~ 'G G 'O 51>
il k *t Cr s st n m th - iG 'O t r, LL - J) .' J S ** r,', e, cn C 64 WWW O O D O O m O -
@@W@
W s y, W. W *( M .e( u) (O N G)
'"I *T C M
t ENGNEERING SERVCES TABLE IX Composition of failed Anchor Studs Compared with Specification and Material Certification AlSi Material 4140 Certification Element Stud 3 Stud 36 Nominal
- Report, Heat 0 C 0.434 0.420, 0.418 9.38 - 0.43 0.40 Mn 0.969 0.930 0.75 - 1.00 0.90 P 0.012 0.014 0.035 Max. 0.10 S 0.015 0.015 0.040 Max. 0.18 Si 0.240 0.240 0.15 - 0.30 0.25 Cr 0.970 0.990 0.80 - 1.10 0.94 Ni 0.027 0.022 - -
Mo 0.184 0.180 0.15 - 0. 5 0.18 Cu 0.021 0.023 - - A1 0.027 0.037 - - Ca 0.005 0.011 - - 3 0.001 0.001 - -
*From Metals Handbook Vol.1, 9th Edition, page 127
; W TELED(NE ENGNEERING SERVICES APPENDIX A -q g 4+ - .aga s
- n (b' . y e m
= ,,wLu%+x s T .,
4 ,' 5 Lu s ___ _ _ . _ _. _..._.-
' S t3 't " ~
e-c Q - N
- - ~ - - ... s . .
N f 's q [ e r- % '%, B-4 i s s- J .J.j s, u i ,,- , . '
~ $
Y $ ! '. m, x '$< & $. s.s s d)
./ '
g, =
$ w ]\.
4 ._ _ ., ( .,, i
<~
w x y s. 0. e.~- -
- n. s
( , 4
- t 5 R 1 .' s' u . LU Q' s MS _, o y ll 12'dli3 !O
-f]3
( ') D T
,\
d, j ,
,7 mm s4 N v) ai 7 / ' ret =
4~a .__ _ ___. _ ___ _ . .---
-s 1 4, i ~
f m S Qgg f4 _w- . --. -.-_
- Lij e
gj ,- - -4 ? i b as ^ ' '
, Fr- ;2 ,'{ 3 c=a __. . _ _ _ .. . '~ ,i lD g -~ ,. t, - , ,
_m g lr i 3 _ . _ _ _ _ _ . _ . _ _ _ . . j lEl? ^3 j ,p i
^;$}ll l ri 4
M
~
O I$'h !n, 1 avl,1: l (FP)
!= ; &
a . cp
- c. - . _ -
- s. g i
, F i
7,- i p-
-j ;i g , a i j .
I i L9_L3 n
,- . ,-r !,. : _. . _ _ . . . _ . , . - .i- -
- 3.. g
__-._..,..______._______,7 x l I 1
,- i e; yl- .
i s . I
. __ .__c I . :
i
'; . _ _ f, ,
s . ,
- -- . _ . _ _ . . _ _ . _ . . ., <uir s ,
w e . a : z
, i l g, <- 4 q a lg _
oe
}~ ..
w Ie1 3 4 f ; g
. . _ _ . . . . _ --- - -- - - - . _ _ z ._ Ng y s ,z g 4- ,s f 'v <6 U ;
s w z mh
. - = I .1 s :. , : -
Q , 5 9% c N . I.
' +_' _ -s - 3 . g' q >~,I , - . , s' - < e er z s i g m -- .y, , . -
m e9 ::.
. _ .. N. j0 N ( 0 s -
T' N'3 ; 6 - , .\ s
, 2 bh2 j- a - - - - ~ '--- - ^4 u 't k d e '+ f 2
4; q~. 5 / 1 s'} s
\['
s
- s. ,
, 3x i 'i, 3 /. l ' '\/- ,
i ,
\\
E k, FON AdOO70 Q A803nSSI I
') , , ,
N I
;s Jaf S$C-gf A8 3SA 803 }
i , s s J, t .t ;e i O
- e
{ ts n
" K'*' 099 M NYP \l \ v\ l /
I t %y
-~ - r ;
s 1 ~ N
\ ' ./ ~~' / -g \* J 1111d N0ilDj30INI O= C 0t _ . m. .x. s6.um}}