ML082890196

From kanterella
Revision as of 13:06, 14 November 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Cycle 20 Core Operating Limits Report
ML082890196
Person / Time
Site: North Anna Dominion icon.png
Issue date: 10/09/2008
From: Funderburk C
Dominion Resources Services, Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
08-0615
Download: ML082890196 (23)


Text

Dominion Resources Services, Inc.

5000 Dominion Boulevard, Glen Allen, VA 23060 'Dominion Web Address: www.dom.com October 9, 2008 U. S. Nuclear Regulatory Commission Serial No. 08-0615 Attention: Document Control Desk NLOS /ETS One White Flint North Docket No. 50-339 11555 Rockville Pike License No. NPF-7 Rockville, MD 20852-2738 VIRGINIA ELECTRIC AND POWER COMPANY NORTH ANNA POWER STATION UNIT 2 CYCLE 20 CORE OPERATING LIMITS REPORT Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Virginia Electric and Power Company Core Operating Limits Report for North Anna Unit 2 Cycle 20 Pattern SIX.

If you have any questions regarding this submittal, please contact Mr. Thomas Shaub at (804) 273-2763.

Sincerely, C. L. Funderburk, Director Nuclear Licensing and Operations Support Dominion Resources Services, Inc.

for Virginia Electric and Power Company

Attachment:

CORE OPERATING LIMITS REPORT, North Anna 2 Cycle 20 Pattern SIX Commitments made in this letter: None

Serial No. 08-0615 Docket No. 50-339 COLR, North Anna 2 Cycle 20 Page 2 of 2 cc: U.S. Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Suite 23T85 Atlanta, Georgia 30303 Mr. J. E. Reasor, Jr.

Old Dominion Electric Cooperative Innsbrook Corporate Center 4201 Dominion Blvd.

Suite 300 Glen Allen, Virginia 23060 NRC Senior Resident Inspector North Anna Power Station Ms. D. N. Wright NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 0-8 H4A 11555 Rockville Pike Rockville, Maryland 20852 Mr. J. F. Stang, Jr.

NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 0-8 G9A 11555 Rockville Pike Rockville, Maryland 20852

ATTACHMENT (Serial No. 08-0615)

CORE OPERATING LIMITS REPORT FOR NORTH ANNA UNIT 2 CYCLE 20 PATTERN SIX NORTH ANNA POWER STATION UNIT 2 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

Page 1 of 21

N2C20 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 2 Cycle 20 has been prepared in accordance with-North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:,

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (NAH)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRCand discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italicsis provided for information only.

COLR-N2C20, Revision 2 Page 2 of 21

REFERENCES

1. VEP-FRD-42 Rev 2.1-A, Reload Nuclear Design Methodology, August 2003.

(Methodology for TS 3.1.1 - Shutdown Margin, TS 3.1.3- Moderator Temperature Coefficient, TS 3.1.5 - Shutdown Bank Insertion Limit, TS 3.1.6 - Control Bank Insertion Limits, TS 3.2.1 -

Heat Flux Hot Channel Factor, TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.9.1- Boron Concentration)

2. VEP-NE-2-A, Statistical DNBR Evaluation Methodology, June 1987.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

3. VEP-NE Rev. 0.1-A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 - Axial Flux Difference)

4. WCAP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation)

5. WCAP-14483-A, Generic Methodology for Expanded Core Operating Limits Report, January 1999.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.1.1 - Shutdown Margin, TS 3.3.1 - Reactor Trip System Instrumentation, TS 3.4.1 - RCS Pressure, Temperature, and Flow DNB Limits and TS 3.9.1 - Boron Concentration)

6. BAW-10227P-A, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel."

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.2.1 - Heat Flux Hot Channel Factor)

7. EMF-2103 (P) (A), "Realistic Large Break LOCA Methodology for Pressurized Water Reactors."

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

8. EMF-96-029 (P) (A), "Reactor Analysis System for PWRs."

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

COLR-N2C20, Revision 2 Page 3 of 21

9. BAW-10168P-A, "RSG LOCA - BWNT Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants." Volume II only (SBLOCA models).

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

10. DOM-NAF-2-A, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code,"

including Appendix A, "Qualification of the F-ANP BWU CHF Correlations in the VIPRE-D Computer Code."

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

COLR-N2C20, Revision 2 Page 4 of 21

2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained < 5173°F, decreasing by 65*F per 10,000 MWD/MTU of bumup.

COLR-N2C20, Revision 2 Page 5 of 21

COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 660 655-2400 psia 650 -

645 640 635 630 625 620 U. 615 610 605 600 595 590 585 580 575 570 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 POWER (fraction of nominal)

COLR-N2C20, Revision 2 Page 6 of 21

3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be;> 1.77 % Ak/k.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit of MTC is +0.6 x 104 Ak/k/ 0 F, when < 70% RTP, and 0.0 Ak/k/*F when Ž 70%

RTP.

The BOC/ARO-MTC shall be < +0.6 x 10-4 Ak/k/0 F (upper limit), when < 70%

RTP, and

  • 0.0 A*k/°F when Ž 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 104 Ak/k/°F (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 104 Ak/k/OF [Note 2].

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 10-4 Ak/k/!F [Note 3].

SR 3.1.3.2 Verify MTC is within -5.0 x 104 A/k//F (lower limit).

Note 2: If the MTC is more negative than -4.0 x 104 Ak/k/OF, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 3: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of*- 60 ppm is less negative than -4.7 x 104 Ak/k/oF.

3.1.4 Rod Group Alignment Limits Required Action A. 1.1 Verify SDM to be >Ž1.77 % Ak/k.

Required Action B.1.1 Verify SDM to be > 1.77 % Ak/k.

Required Action D. 1.1 Verify SDM to be > 1.77 % Ak/k.

COLR-N2C20, Revision 2 Page 7 of 21

3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 229 steps.

Required Action A.1.1 VerifySDM to be >1.77 % Ak/k.

Required Action B. 1 Verify SDM to be > 1.77 % Ak/k.

SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 229 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 101 steps.

Required Action A. 1.1 Verify SDM to be > 1.77 % Ak/k.

Required Action B. 1.1 Verify SDM to be > 1.77 % Ak/k.

Required Action C.1 Verify SDM to be >1.77 % Ak/k.

SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is > 1.77 % Ak/k.

SR 3.1.9.4 Verify SDM to be > 1.77 % Ak/k.

COLR-N2C20, Revision 2 Page 8 of 21

COLR Figure 3.1-1 North Anna 2 Cycle 20 Control Rod Bank Insertion Limits 230 220 . (0.54, 229)

-__

210 C-BA1K _

200 190 (1.0.

1 Fully w/d posi ion = 22 steps _

170

.160 150 140

  • 130 D-AI

.2 120 ,118 a.

' 110 ....

a.100 ___

80 60 50 40 /

30 20 . ,,,

10 _._o 0 .1048,0)

(~ 0.__. 0_._. o__ 0.9 _.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction of Rated Thermal Power COLR-N2C20, Revision 2 Page 9 of 21

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

LCO 3.2.1 FQ(Z), as approximated by FQM(Z), shall be within the limits specified below.

The change in the FQ(Z) limit for coastdown operation is accommodated by defining a variable quantity, CFQ as indicated below. Then, the following expressions apply to both normal operation and Tavg coastdown regimes.

CFQ = 2.32 The Measured Heat Flux Hot Channel Factor, FQM(Z), shall be limited by the following relationships:

F*j(Z) < CFQ K(Z) for P>O.5 P N(Z)

FQA (Z) < CFQ K(Z) for P<0.5 0.5 N(Z) where: P - THERMAL POWER and RATED THERMAL P0 WER' K(Z) is provided in COLR Figure 3.2-1, N(Z) is a cycle-specific non-equilibrium multiplier on FQM(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the applicationofa cycle dependent non-equilibrium multiplier,N(Z), to the measuredpeakingfactor, FQM(Z), before comparingit to the limit. N(Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibriumFQ('Z) and is sensitive to the axialpower distribution,it is typically generatedfrom the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle. The cycle-specific N(Z)function is presentedin COLR Table 3.2-1.

COLR-N2C20, Revision 2 Page 10 of 21

COLR Table 3.2-1 N2C20 Normal Operation N(Z)

NODE HEIGHT 0 to 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 11000 (FEET) MWDIMTU MWDIMTU MWD/MTU MWDIMTU MWDIMTU MWDIMTU 10 10.2 1.090 1.113 1.113 1.140 1.143 1.143 11 10.0 1.092 1.111 1.111 1.139 1.142 1.142 12 9.8 1.096 1.114 1.114 1.136 1.140 1.140 13 9.6 1.101 1.119 1.119 1.135 1.139 1.139 14 9.4 1.103 1.121 1.121 1.132 1.137 1.137 15 9.2 1.106 1.125 1.125 1.134 1.139 1.139 16 9.0 1.114 1.137 1.137 1.144 1.146 1.144 17 8.8 1.122 1.148 1.148 1.155 1.155 1.151 18 8.6 1.125 1.152 1.152 1.160 1.159 1.155 19 8.4 1.127 1.152 1.152 1.162 1.162 1.158 20 8.2 1.129 1.153 1.153 1.167 1.167 1.165 21 8.0 1.130 1.152 1.152 1.169 1.169 1.169 22 7.8 1.130 .1.51 1.151 1.169 1.169 1.171 23 7.6 1.129 1.151 1.151 1.170 1.170 1.170 24 7.4 1.129 1.153 1.153 1.173 1.173 1.169 25 7.2 1.128 1.153 1.153 1.175 1.175 1.169 26 7.0 1.127 1.152 1.152 1.174 1.174 1.168 27 6.8 1.126 1.152 1.152 1.174 1.174 1.169 28 6.6 1.124 1.151 1.151 1.173 1.173 1.169 29 6.4 1.121 1.149 1.149 1.170 1.170 1.168 30 6.2 1.116 1.143 1.143 1.163 1.163 1.165 31 6.0 1.115 1.140 1,139 1.162 1.161 1.166 32 5.8 1.1`13 1.132 1.132 1.155 1.155 1.162 33 5.6 1.104 1.114 1.118 1.136 1.139 1.148 34 5.4 1.098 1.103 1.109 1.119 1.124 1.134 35 5.2 1.095 1.105 1.108 1.112 1.118 1.129 36 5.0 1.096 1.114 1.114 1.109 1.115 1.121 37 4.8 1.100 1.121 1.121 1.108 1.110 1.107 38 4.6 1.104 1.128 1.128 1.110 1.110 1.101 39 4.4 1.108 1.132 1.132 1.114 1.113 1.105 40 4.2 1.116 1.136 1.136 1.119 1.119 1.109 41 4.0 1.128 1.140 1.140 1.125 1.125 1.113 42 3.8 1.141 1.145 1.145 1.127 1.127 1.115 43 3.6 1.152 1.150 1.150 1.128 1.128 1.118 44 3.4 1.160 1.150 1.151 1.132 1.132 1.122 45 3.2 1.166 1.152 1.152 1.139 1.139 1.128 46 3.0 1.174 1.155 1.156 1.148 1.148 1,135 47 2.8 1.182 1.164 1.164 1.158 1.158 1.141 48 2.6 1.189 1.173 1.171 1.163 1.163 1.144 49 2.4 1.197 1.186 1.183 1.172 1.172 1.150 50 2.2 1.210 1.204 1.201 1.190 1.190 1.164 51 2.0 1.219 1.216 1.213 .1.202 1.202 1.173 52 1.8 1.221 1.219 1.215 1.204 1.204 1.174 COLR-N2C20, Revision 2 Page 11 of 21

COLR Table 3.2-1 (continued)

N2C20 Normal Operation N(Z)

NODE HEIGHT 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET) MWD/MTU MWDIMTU MWDIMTU MWDJMTU MWDIMTU 10 10.2 1.137 1.137 1.108 1.113 1.117 11 10.0 1.134 1.135 1.106 1.113 1.117 12 9.8 1.132 1.132 1.105 1.111 1.115 13 9.6 1.131 1.130 1.106 1.110 1.114 14 9.4 1.130 1.126 1.105 1.104 1.109 15 9.2 1.133 1.128 1.110 1.107 1.111 16 9.0 1.142 1.138 1.130 1.128 1.130 17 8.8 1.152 1.150 1.151 1.152 1.152 18 8.6 1.155 1.155 1.157 1.158 1.158 19 8.4 1.158 1.160 1.161 1.163 1.163 20 8.2 1.165 1.171 1.172 1.176 1.176 21 8.0 1.169 1.178 1.178 1.185 1.185 22 7.8 1.170 1.180 1.180 1.186 1.186 23 7.6 1.171 1.181 1.181 1.190 1.190 24 7.4 1.172 1.183 1.183 1.198 1.198 25 7.2 1.172 1.186 1.186 1.204 1.204 26 7.0 1.171 1.187 1.187 1.204 1.204 27 6.8 1.171 1.189 1.189 1.206 1.206 28 6.6 1.170 1.190 1.190 1.206 1.206 29 6.4 1.168 1.190 1.190 1.206 1.206 30 6.2 1.165 1.188 1.188 1.202 1.202 31 6.0 1.166 1.190 1.190 1.202 1.202 32 5.8 1.162 1.184 1.184 1.195 1.195 33 5.6 1.149 1.171 1.171 1.178 1.179 34 5.4 1.137 1.157 1.156 1.161 1.164 35 5.2 1.133 1.152 1.151 1.155 1.161 36 5.0 1.127 1.144 1.146 1.151 1.159 37 4.8 1.117 1.129 1.138 1.144 1.152 38 4.6 1,114 1.119 1.131 1.139 1.143 39 4.4 1.118 1.119 1.125 1.134 1.135 40 4.2 1.122 1.121 1.124 1.129 1.132 41 4.0 1.125 1.124 1.126 1.128 1.135 42 3.8 1.125 1.127 1.132 1.131 1.136 43 3.6 1.124 1.129 1.141 1.141 1.139 44 3.4 1.121 1.130 1.149 1.148 1.145 45 3.2 1.120 1.131 1.155 1.155 1.153 46 3.0 1.123 1.134 1.162 1.161 1.158 47 2.8 1.128 1.138 1.165 1.165 1.163 48 2.6 1.128 1.138 1.167 1.166 1.162 49 2.4 1.133 1.142 1.168 1.168 1.166 50 2.2 1.146 1.154 1.172 1.174 1.179 51 2.0 1.155 1.163 1.174 1.181 1.192 52 1.8 1.156 1.166 1.174 1.186 1.198 COLR-N2C20, Revision 2 Page 12 of 21

COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1 1.0 (6, 1.0 0.9 0.8 LL 0.7 w

0.6 0

z 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)

COLR-N2C20, Revision 2 Page 13 of 21

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNA)

LCO 3.2.2 FNAH shall be within the limits specified below.

F'AH < 1.587{1 + 0.3(1 - P)}

THERMAL POWER RATED THERMAL POWER SR 3.2.2.1 Verify FNAH is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3.2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

COLR-N2C20, Revision 2 Page 14 of 21

COLR Figure 3.2-2 North Anna 2 Cycle 20 Axial Flux Difference Limits 120-110-100-90 1.

80-a- 70-I- 60-

.4-

'U 50-0.

40-30--

20-10-0

-30 -20 -10 0 10 20 30 Percent Flux Difference (Delta-I)

COLR-N2C20, Revision 2 Page 15 of 21

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TSTable3.3.1-1 Note 1: OvertemperatureAT The Overtemperature AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

AT < ATo {K-K 2 jTs)[T-T']+K3 (P-P')-*f(AI)}

where: AT is measured RCS AT, IF.

ATO is the indicated AT at RTP, IF.

s is the Laplace transform operator, sec"1.

T is the measured RCS average temperature, IF.

T' is the nominal Tavg at RTP, < 586.8 IF.

P is the measured pressurizer pressure, psig.

P' is the nominal RCS operating pressure, ; 2235 psig.

K, -<1.2715 K 2 > 0.02172 /OF K3 - 0.001144 /psig rl, r2 = time constants utilized in the lead-lagcontrollerfor Tag ct 23.75 see 2 < 4.4 see (1 + -s)/(1 + r2s) = function generated by the lead-lagcontrollerfor Ta'g dynamic compensation f1 (AI) > 0.0165{-35 - (qt- qb)} when (qt- qb) < -35% RTP 0 when -35% RTP < (qt - qb) * +3% RTP 0.0198{(qt- qb)- 3} when (qt- qb) > +3% RTP Where qt and qb are percent RTP in the upper and lower halves of the core, respectively, and qt + qb is the total THERMAL POWER in percent RTP.

COLR-N2C20, Revision 2 Page 16 of 21

TS Table 3.3.1-1 Note 2: Overpower AT The Overpower AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

0 K4 K5 d~ 3 T-K [-T' ]-f 2 (Al)}

AT*T where: AT is measured RCS AT, °F.

ATo is the indicated AT at RTP, °F.

s is the Laplace transform operator, sec".

T is the measured RCS average temperature, °F.

T' is the nominal Tavg at RTP, < 586.8 IF.

K4: 1.0865 K5 > 0.0197 /IF for increasing Tayg K.6 > 0.00162 /OF when T > T' 0 /OF for decreasing Tavg 0 /F when T < T'

-r= time constant utilized in the rate lag controllerfor Tavg T3 > 9.5 sec

-rjs/(l+ r3s) = function generatedby the rate lag controllerfor T~g dynamic compensation f2(AI) = 0, for all Al.

COLR-N2C20, Revision 2 Page 17 of 21

3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 IF; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 IF.

SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.4 ------------------------------ NOTE ------------------------

Not required to be performed until 30 days after > 90% RTP.

Verify by precision heat balance that RCS total flow rate is > 295,000 gpm.

COLR-N2C20, Revision 2 Page 18 of 21

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to an SDM > 1.77 % Ak/k at 200 *F.

COLR-N2C20, Revision 2 Page 19 of 21

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained _ 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

COLR-N2C20, Revision 2 Page 20 of 21

NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating\

Required Action D.2 Borate to a SHUTDOWN MARGIN > 1.77 % Ak/k at 200 OF, after xenon decay.

COLR-N2C20, Revision 2 Page 21 of 21