ML13303B522: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 14: | Line 14: | ||
| page count = 45 | | page count = 45 | ||
}} | }} | ||
=Text= | |||
{{#Wiki_filter:COLR Dresden 2 Revision 12Page 1 of 45CA" OprMtng LImit RsortForDrdn Unit 2 Cycle23Revision I | |||
COLR Dresden 2 Revision 12 Page 2 of 45Table of Contents1. Terms and Definitions | |||
................................................................... | |||
: 62. General Information | |||
....................................................................... | |||
: 73. Average Planar Linear Heat Generation Rate ............................... | |||
: 84. Operating Limit Minimum Critical Power Ratio ............................ | |||
294.1. Manual Flow Control MCPR Limits .................................................. | |||
294.1.1. Power-Dependent MCPR ........................................... | |||
..... 294.1.2. Flow-Dependent MCPR .......... | |||
............. | |||
.................... | |||
294.2. Automatic Flow Control MCPR Umits ............................ | |||
................. | |||
294.3. Scram Time ................ | |||
.................................................................... | |||
304.4. Recirculation Pump Motor Generator Settings | |||
................................ | |||
305. Linear Heat Generation Rate ....................................................... | |||
376. Rod Block Monitor ....................................................................... | |||
397. Stability Protection Setpoints | |||
....................................................... | |||
408. Modes of Operation | |||
............. | |||
.... ........ | |||
*......&.........................9........... | |||
419. Methodolog | |||
................................................................................ | |||
4310. References | |||
................................................................................ | |||
44 COLR Dresden 2 Revision 12Page 3 of 45Ust of TablesTable 3-1 MAPLHGR for bundle/lattice: | |||
Opt2-3.97-11G8.00.4GZB.00-3G6.00/Lamces 81 and 89Opt2.4.04-1007.00-2GZ7.00-2G6.00/Lattlces 81 and 89Op12-4.02-1 8GZB.00.14GZ6.50/Lates 81 and 89Opt2-4.03-160Z8.00-1 4GZS.50/LattWes 81 and 89Opt2-4.07-14G5.50-2GZS.50Latles 81 and 89Opt2-4.05-18GZ8.00-140Z8.50/Lattcs 81 and 89Opt2-4.05-16GZS.00-1 4GZ5.50Lattices 81 and 89Opt2-4.10-14GZ5.50-2GZS.SOiLatAis 81 and 89 ................................................ | |||
8Table 3-2 MAPLHGR for bund:lla"e Opl2-3.97-11G8.00-4GZ8.00-3G8.00/Lattices 82, 83, arid 84 ............................. | |||
8Table 3-3 MAPLHGR for bundle/laote: | |||
Opt2.3.97-1 IGS.O-4GZ8.00-3G0.00s.attices 85 end 87 ........................ | |||
9Table 3-4 MAPLHGR for bundlenlattic. | |||
Opt2-3.97-11G6.00-4GZB.00.306.00/Lafitce 88 ........................................................ | |||
9Table 3-5 MAPLAGR for bundmletlatce: | |||
Op2-4.04-10G7.O0-2GZ7.00-2G6.00Lattlces 90 and 91 ......................................... | |||
9Table 3-6 MAPLHGR for bundle/latfice: | |||
Opt2-4.04-10G7.00-2GZ.002G6.00lLattices 92 anrd 93 ..................... | |||
10Table 3-7 MAPLHGR for bundletlattice: | |||
Op12-4.04-10G7.00-2GZT.00-2G6.Q00/attce 94 ............................................ | |||
10Table 34 MAPLHGR for buncle/laete: | |||
Opt2-4.02-18GZM.00-t4GZ5.50/Latt 96 .................................................................... | |||
11Table 3-9 MAPLHGR for bundle/latfice: | |||
Opt2-4.02-ISGZ8.00-14GZS.S0/Lattice 96 ............................................................. | |||
11Table 3-10 MAPLHR for budle/latice: | |||
Opt2.4.02-1 8GZS.00-14MZ5.50/Latice 97 ............................................................. | |||
12Table 3-11 MAPLHGR for bunde/latce: | |||
Op12-4.02-18GZS.00-14GZS.50/Lattice 98 ............................................................. | |||
12Table 3-12 MAPIHGR for bundlelattice: | |||
Opt2-4.02-18GZ8.O0-I4GZS.50lLatticm99 | |||
.............. | |||
13Table 3-13 MAPLHGR for bundle/lattle. | |||
Opt24.02.18GSG.00.14GZ.50/Lattice 100Opt2-4.93-16GZS.00-14GZ5.S0/Laut i .................................... | |||
100......................... | |||
13Table 3-14 MAPLHGR for bufdlefatte: | |||
Op2-4.03-16GZ8.00-14GZ5.50/LattlC 10i ............................................................... | |||
14Table 3-15 MAPLHGR for bundle/lfattce: | |||
OpI2-4.03-16GZM.00-14G.5.5O/Lattice 102 ............................................................. | |||
14Table 3-16 MAPLHGR for :Opl2-4.03.160ZS.00-146Z5.50/Lattice 103 .................................................................. | |||
15Table 3-17 MAPLHGR for bundle/ilatte: | |||
Opt2-4.03-16GZ8.00-14GZ5.50/Lattk;e 104 ............................................................. | |||
15T"ble 3-18 MAPLHGR for bundle/lattce: | |||
Opt2-4.03-16GZS.00.14GZS.50/Lattice 105 ............................................................. | |||
16Table 3-19 MAPLHGR for bundle/lattice: | |||
Opt2-4.07.14G5.50-2(Z.50/La"os 106 ................................................................ | |||
16Table 3-20 MAPLHGR for bundlellatlce Opt2-4.07-14G5.50-2GZS.50Lattto 107 .............................. | |||
I7Tabe 3-21 MAPLHGR for bundlelatIce: | |||
Opt2-4.07-14GS.50-2GZ5.50/Lattice 108 ................................................................. | |||
17Table 3-22 MAPLHGR for bundle/latice: | |||
Op2-4.07-14G5.50-2GnZ.50/LatWc 109 ...................................................................... | |||
18Table 3-23 MAPLHGR for bundle/latlice: | |||
COLA Dresden 2 Revision 12Page 4 of 45OpM2-4.07-14G.50206.5O aa. tce 110 ................................................................. | |||
18Table 3-24 MAPLHGR for bundle/lattice: | |||
Opt2-4.07-14G5.50-2GZ5.50/Lattice 111 ............................................................... | |||
19Table 3-25 MAPL.IGR for bunde/ltwte: | |||
Op12-4.05-18GZS.00-14GZ5.50/lattlce 113 ............................................................. | |||
19Table 3-26 MAPLHGR for bundle/lattice: | |||
OpI2.4.05-18GZM.00.14GZ5.M0/Latice 114 ............................................................. | |||
20Table 3-27 MAPLHGR for bundle/lattic: | |||
Opt2-4.05-18GZ8.00-14GZ5.60/Latlice 115 ............................................................. | |||
20Table 3-28 MAPLHGR for bundle/lattice: | |||
Opt2-4.06-18GZS.00-14GZ6.50/LatUce 116 ............................................................ | |||
21Table 3-29 MAPLHGR for bundle/attice: | |||
Opt2-4.05-1SGZB.00-14GZM.S0/Lattice 117 ............................................................. | |||
21Table 3-30 MAPLHGR for bundle/lttice: | |||
Opt2-4.05-18GZ8.O0-14GZS.5OLatmtce 118 ............................................................. | |||
22Table 3.31 MAPItGR for bundle/lattice: | |||
Opt2-4.05-I6GZS.00M. | |||
4GZU.50/Lattice 119 ............................. | |||
22Table 3-32 MAPLHGR for bund;:attice. | |||
Opt2-4.05-16GZ8.00.14GZ5.60/atce 120 ............................................................. | |||
23Table 3-33 MAPLHGR for OpC2-4.05-I6GZS.00-14GZS.50/atce 121 ............................................................. | |||
23Table 3-34 MAPLHGR for bundle/latticm. | |||
Opt2-4.05-IOGZB.00-14GZ.5Latice 122 ............................................................. | |||
24Table 3-35 MAPLHGR for bundle/lattice: | |||
Opt2-4.05-16GZ8.00-14GZS.S50Lattice 123 ............................................................. | |||
24Table 3-36 MAPLHGR for bundle/lattice: | |||
Opt2-4.05-16GZ8.00.14GZ5.50/Latdce 124 ............................ | |||
28Table 3-37 MAPLHGR for bundle/lattice: | |||
OpM2-4.10-14GZS.50-2GZS.60/Lattice 126 ............................................................. | |||
25Table 3-38 MAPLHGR for bundleflattice: | |||
Opt2-4.10-14GZ5.50.2GZ5.M0/Lattkie 126 ............................................................. | |||
26Table 3-3M MAPLHGR for bundleattice. | |||
Opt2-4.10-14GZ&.50-2GZB.5Lattie 127 ......12....................................................... | |||
26Table 3-40 MAPUtGR for bundle/lattite: | |||
Opt2-4.10-14GZ.50-2GZ.50/Lattce 128 ............................................................ | |||
27Table 3-41 MAPUHIG for bundle/lattice: | |||
Opt2-4.10-14GZS.50-2GZ5.50/Lattice 129 ............................................................. | |||
27Table 3-42 MAPLHGR for bundlattice: | |||
Opt2-4.10-14GZ5.50.2GZ6.60/Lattice 130 ............................................................. | |||
28Table 3-43 MAPLIHGR Multipliers | |||
......................................................................... | |||
28Table 4-1 Scra Tirnes ........................................................................................ | |||
30Table 4-2 MCPR TSSS Based Operating illa -NFWT Al Fuel Types ......................... | |||
31Table 4-3 MCPR TSSS Based Operating Lnit -RFWT AD Fuel Types ........................ | |||
31Table 4.4 MCPR ISS Based Operating Umits -NFWT AN Fuel Types .......................... | |||
32Table 4-5 MCPR ISS Based Operating Limit -RFWT AlI Fuel Types ........................... | |||
32Table 4-6 MCPR NSS Basd Operating Limits -NFWT All Fuel Types ......................... | |||
33Table 4-7 MCPR NSS Based Operating Limits -RFWT AlN Fuel Types ......................... | |||
33Table 4-8 MCPR(P) for Westinghouse Fuel -NFWT AD Fuel Types .............................. | |||
34Table 4-9 MCPR(P) for Westinghouse Fuel -RFWT AN Fuel Types ................................... | |||
5Table 4-10 MCPR(F) for Westinghouse Fuel All Fuel Types ........................................ | |||
36Table 5.1: LHGR Umit for bundle/latice: | |||
COLR Dresden 2 Revision 12Page 5 of 45Opt2-3.97-1 1 G8.00-4GZB.00-3(6.00/AiI LatticesQpt2.4.04-10G7.00.2GZ7.OO-2G6.00/All LatticesOpt2-4.02-1 8GZ8.O-1 4GZ5.50/AII LatticesOpt2-4.03-16GZ&00.14GZ6.50/AJI LatticeOpt2-4.07-14G560-20Z5.501/Al LatticesOpt2-4.05-1BGZS.00-14GZ5.50/Lattice 81 and 89Opt2-4.O5-1 6GZ.OO-14GUZ.8O/Lattlce 81 and 89Opt2-4.10-14GZ6.5-20GZ8.50/Latfce 81 and 89 ............................................. | |||
37Table 5-2: LHGR Limit for bundleflattlce: | |||
Opt2,4.05-1 8GZ8.00.14GZ5.50/AH LatIces except 81 and 89Opt2-4.05.16-Z8.O0-14GZS.60/Afl Lattices except 81 and 89Opt2,4.1O-14WZ5.6O-2GZ5.50/AI Lattces except 81 and189 ............................. | |||
37Table 53 LHGRFAC(P) | |||
Mullipllers/Al Fuel Tyes ...................................................... | |||
38Table &4 LHGRFAC(F) | |||
MulPAtiAl Fuel Types ...................................................... | |||
38Table 64 Rod Block Monitor Upscale Insrmentation Setpotnts | |||
................................... | |||
39Table 7-1 OPRM PODA Trip Setifngs | |||
..................................................................... | |||
40Table 8-1 Core Thermal Power Rewtrc for TBVOOS ............................................ | |||
42Table 8-3 Core Thermal Power Restriclorl for One TCV/TSV Stuck CloWd withTBVs Credltl to Preent System Pmsurzaion | |||
.......................................... | |||
42 COLR Dresden 2 Revision 12Page 6 of 451. Terms and Oefln~ons OLOEFPDEFPHEOCEOOSFFTRFWHOOSICFISSUIGRLIHGRFAC(F) | |||
UWGRFAC(P) | |||
LPRMMAPLHGRMCPRMCPR(F)MCPR(P)MELLLAMSIVMWdIMTUNFWTNRCNSSOLMCPR00SOPRMPODAPLUOOSPCOOSRFWTRWCURWESERSLMCPRSLOTBVOOSTBVTCVTIPTMOLTSSSTSVDual loop operation Effective full power dayEffective full power hourEnd of cycleEquipment out of serviceFinal feedwater temperature reduction Feedwater heater out of serviceIncreased core flowIntermediate scram speedLinear heat genoration rateFlow dependent LHGR multiplier Power dependent LHOR multiplier Local power range monitorMaximum average planar linear heat generation rateMinimum crtical power ratoFlow dependent MCPRPower dependent MCPRMaximum extended load line limit analysisMain steam isolation valveMegawatt days per metric ton UraniumNominal feedwater temperature Nuclear Regulatory Commission Nominal scram speedOperating limit minimum critical power ratioOut Of serviceOscillation power range monitorPeriod bas detection algoithmPower load unbalance out of servicePressure controller out of serviceReduced feedwater temperature Reactor water clean-upRod withdrawal errorSafety evaluation reportSafety limit minimum critical power ratioSingle loop operation Turbine bypass valves out of serviceTurbine bypass valveTurbine control valveTraversing incom probeThermal mechanical opemtg limitTechnical Specification scram speedTurbine stop valve COLR Dresden 2 Revision 12Page 7 of 452. General Information Power and flow dependent limits are listed for various power and flow levels. Unear Interpolation Is to be used to find Intermediate values.Rated core flow Is 98 MIb/hr. Operation up to 108%/* rated flow (lCF) is fully evaluated for thiscycle, however, flow cannot exceed 103.4% rated flow due to unit specific limitations. | |||
Ucensedrated thermal power Is 2957 MWth. For allowed operating | |||
: regions, see applicable power/flow map.Coastdown Is defined as any cycle exposure beyond the full power, rated core flow, and ail rodsout condition with the plant power gradually reducing as available core reactivity diminishes. | |||
MCPR(P) and MCPR(F) values are independent of scram speed.LHGRFAC(P) and LHGRFAC(F) values are Independent of scram speed.All thermal limits are analyzed to NSS, ISS, and TSSS. Only MCPR operating limit. vary withscram speed.For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% ratedpower and the 100% core flow thermal limit values, respectively, can be used unless otherwise Indicated In the applicable table.Westinghouse methods used in slow and fast transient analyses as well as SLMCPR calculations are sufficient to cover the small effect of Vhe asymmetric feedwater temperature for all modes ofoperation as supported by the reload analysis. | |||
Therefore, all thermal limits for all fuel types withall flexibility and EOOS options remain valid with respect to the effect of the asymmetric feedwater temperature (Reference 13). | |||
COLR Dresden 2 Revision 12Page 8 of 453. Average Planar Linear Neat Generation RateFor natural uranium lattices, DLO and SLO MAPLHGR values are provided in Table 3-1. For allother lattices, lattice-specific MAPLHGR values for DLO are provided In Tables 3-2 through 3-42.During single loop operation, these limits are multiplied by the SLO multiplier listed In Table 3-43.Unlike previous cycles, the MAPLHGR limits for the top and bottom natural uranium lattices(lattices 81 and 89) are now set by their own limits in Table 3-1, and are no longer an aggregate based upon the most restrictive value at each exposure of all lattices. | |||
Table 3-2 uses theupdated limits provided In Reference 11, which supersede the limits provided In the odginal RLRdocumented In Reference 3.TaWie 3-1 MAPLHGR for uNid~stamw. | |||
GO-4 W. W.00Opl2-4.04-100?.004,0,M28,00 OpI2-4,02-11ZI.00-141ZM.50 Op1t24.03-1WMO.14GZ.6@ | |||
OpM2.4.7-14WG5.WW.M2Z.SO Op4AW4W.W14GZ$M Opt2-4.1O.0-14G1 | |||
.-Oj2 oL IN: 1 Sande4(RuIfemtsg 9, 11 15 Wnd 17)I, -,,AP0iGR07.5072000 7.50TOble 3-2 MAPLUIG 110 bun 0pt2-M- I .10.4Q1s.OO-306OOU., a"d U(Refnamm 11 and 15)AVerag Plane OLOExposure MAPL.HGI0 927600 9.0912500 9.0917500 FOR__ _ ___i24000 9.4858000 9.487000 73 COLR Dresden 2 Revision 12Page 9 of 45TO*4s "3 MAPL.HOR for bundbetftko: | |||
Opt2-3,f?- | |||
S.04=-.,04G6-.OO Latln8aend l(Ranfrances 3 and 15)17800 9.58._ 24000 ...7000. 7.34Tabl 3-4 MAPUA R fOr o' MOUaM(fAomm 3 wd 15)EXpom" MWUlIIIR0 10.13.10000 9.6820000 9.6824000 .....70000 7.38Table 4 M3APUIM for b Imd oO1W4.-107.O0-4QZ.00W 6.00(Pe~fwms 3 und 15)Avmsp Planar O"COEXPOS"r WAPUIGN10000 9.52S 8000 9..2.70000 7.31 COLR Dresden 2 Revision 12Page 10 of 45TOIM 3-4 MAPUt for %"undlI~tl | |||
. | |||
OQ.oMLLatUM2es Wnd W(Remfencm 3 and 15)EXiPMN*r MAPLNGR0 10.0310000 9.6051600O 9.6070000Z.32 TYAM 27 MAPUIM, for 1110M1M1c 1Op24rn60Lo04Wz.G&SOM0 (FslsMXces 3 md 15)0 10.64l000 9.91.7.9 COLR Oresden 2 Revision 12TAble S MAMMP OR for i.N -1101,Opt28u0a.II 00-1440R(PRfeas and 17)lipseu MAPLHGR0 8.69.2500 ... ....8.877500 9.07W10000, 9.11.0.00- 9.16M17000, .9.41.9.5822000 9.7224000 -9.79300M0 9.70.9.659.68B9.73MW -'l9.71o7200 9.93TOWl 34 MAWUIA to beIMiW!*o 8.722500 8.9066000 9g037500 9.12-_17__0000___ | |||
9.1.7.2000 .9241500 9.41.17000 961,2000 9.6822000 9.8324000 9.88300009.79 36000 .9.7450000 9.79e00.0 97472000 " 9.97Page 11 of 45 COLR Dresden 2 Revision 12Page 12 of 45Table 3-10 MAPLHGft for bundlellat:e: | |||
LawIe 97(PAem 18 ad 17)AvwspPl w DIJExposure sAPLH(l-W -a 1! ...0 8.702500 8.885000 9.02750.0 .9.1310000 9.1812000 9.2515000 9.4217000 9.5220000 9.7022000 9.8524000 9.8830000 N9.736000 9.7342000 9.7350000 9.7760000 9.7372M00 9.9TI"e 3-11 MAPUII for ndIl :O0t-4.012-O.O*140Q | |||
.1(PRf*Wmc 16 and 17)A- ags Plaw ... 0.0 8.825000 9.157500 92810000 9.32,-12000 9.4115o0 9.5917000 9.71200OO 10.0222000 10.0924000 100730000 993000 9.9450000 9.9160000 9.91.72000 10.24J COLR Dresden 2 Revision 12Page 13 of 45Table 312 MAPLUGR for U:ttlas00o24.Q2,4M.O.,140Z5r5o | |||
..LattIeso(Rueft.nma 16 *d 17)Avemage-Pla OLOEXPseur MAPUIGR0 882500 9.055000 9.1875OO 9.27.....1,0000 .. ..9.2712000 9.3415000 9.52217000 9.6820000 10.044(e 24000 10.0550m 9.66-_3___O _ 9.795000 9..2WE'0 9.8760000 9.78017000 1022192'000 .... .10.21T"bl 3-13 MAPH for wml- WWNW: | |||
24000 1tn 10.150000o: _:- -9.96:.000 9.0972000 10.321700DO 10.19*- 36000 .... ..10.02ME... 7oo' -10.32::: | |||
COLR Dresden 2 Revision 12Page 14 of 45Table 3-14 MAPLNGR for bund/ltce: | |||
OpW24.03-16GZL0@.14GZS.50 Lotclo 101(Rteemnces 16 and 17)Average Plow o..Exposure MAPLNGR(WI)0 8.972500 9.137600 9.2510000 9.2412000 9.2715000 9.3917000 9.4520000 9.5822000 9.7024000 9.8130000 9.7336000 9,68Wm______ | |||
9.6950000 9.7460000 9.7172000 9.93TWle 3-1. ?AP UIQR for mlohtmoe opt24.oWG-ZMWo o 8.6oLot"" 102(RefePmno 18 and 17)Average PWnr .O .Expoure MUAPU0 9.022500 9.175000 9.277500 9.3110000 9.3312000 9.3511500 9.4717000 9.6420000 9.6822000 9.8124000 9A.930000 9.823600 9.7842o00 9.78..=0000 9.78.. 0000 9.74720 9.9 8 COLR Dresden 2 Revision 12Table 3-1S MAPLWIA for bundiedAdnow OM-4.,3-1 | |||
.O.O-14=A.O LAM* 103(RPaeface. | |||
18 OaW 17)expoar. MAPLHOR0fL 9.02500 9.155000 9.287500 -9.3310o00 9.3415000 9.49170 2i.56 .....20000 9.6922000 9.63.24000 9.8930000 .9.8236000 9.7742000 9.77SOOO 9.7626000 9.93am -9.9ozTabis 347 MAPLHGR for h m ieftw:Liume I04(Refuo 10 amd 17)A~sae laow 01.*sure MAPLOI0WM 9.152500 9.325000 9.417500 9.4910000 9.4912000 9.5415000 9.6617000 9.7520000 10.0022000 10.103000 10.0336000 9.9642000 9.98m0m00 9.9060000 ..90-MN SOM72000 1-.,100 02Page 15 0145 COLR Dresden 2 Revision 12Tsb*e 3-IS1MPUIGR fo bwnWi- 1 :wa 105(RefeMnos 18 and 17)0 9.199500 9.355000 W.44m700 9.4710000 FA.R100 9.4817000 9-.20000, 10.01an'. 10-0624000 10.0630000 10.0242000 9.92im 9.68a0000 9.87720m00 1. .0.25OpM4.O.R | |||
..50hamu.ce W~ I(PAslumns 1e and 17)02500 9.120sow 9m.27500 9.3210000 9.34..12000 i 00 9.54.17000 9.7020000 9.8622000 9.902400 9.9930000 9.793800 974'4200W 9.745000 9.7960000 97. 872000 9.96MPage 16 of 45 COLR Dresden 2 Revision 12Twol 340 UAPlHtR for, .Wl .10?oP04.07-1405ARMsSO (RemMne lMand 17)Aw,,w IN OL- -X,Exposure lAP:,G(l, wvm'm .(kW/ft)0 9.002500 .9.165000 9.317500 9.3010000 9.4112000 9.46I__ ___ 9.6417000. ....... 9.8120W0 -220001012400030000 9.899.8342000 9.83S000 9.88600009.81 72000 ..pip...10.03 Irs~"VftGiw USop"4W-ldm. | |||
ULOW" I"(RPlekmnMe1 OWd 17)10o~o 9.42 .2500 9.15500 9.3010000 9.4212000 9.47-17000 .. 9.82A%92000 9.22000 10.0024000 9.983 0000 ... 9.8O636000 9.8242000 _ _872000 10.03Page 17 of45 COLR Dresden 2 Revision 12Table 3-22 AAPL4NGR for bundMedalm: | |||
Op2-4,07-14GU0@404MMS Wd"~i 101andU 7(P~iWrNcM 16aOW 17)p~xw -,wLrFqmWM IAAPLHGR0 9.18....200 9.315000 9.477500 9.6710000 9.6612000.. 9.661500M9917000 120000 10.2422000 10.2224000 10.2030000 10.113600 10.0442000 10.0450000 10.0260000 9.9872000 10.29TObl 3-23 MAPLNGR forOpt,4.OT.14GS.5O2OR56O Wpcs 110(RAshrn Is ad 17)-0_ -9.182500.375o00 9. g53-10000 9.5312000 9.0O1S000. 9.9517000 10.1620000 10.2222000 10.202400010.19 30000 10.09.. 000 10.0342000 110.0500009.97 60000 9.9672000 10.29Page 18 of 45 COLR Dresden 2 Revision 12Tabe 3-24 MAPLHJR for bundlbiceo: | |||
Opl2.4.07.14Q5.0.2GZ&J.5 La.ttm III.(Referencs 16mnN 17)M-Averae Plar O LEqxpose MAPLK~ft0 9.555000 9.767500 9.7510000 9.6815000 9.9617000 10.1520000 10.2322000 10.2224000 10.2030000 10.1136000 10.0442000 10.0450000 9.978000 9.9672000 10.30Tae 3-25 MAPLtIGR for bundl/afI 11t(Rfleenew Sand 11)Exporn WMO2600 8.865000 8,.977500 9.0410000 9.0712000 9.1115000 9.2617000 9.3620000 9.5422000 9.6924000. 9.75-30000 9.683600 9.6442000 9.6250000 9.6760000 9.66720.00 9.88Page 19 of 45 COLR Dresden 2 Revision 12Tab 3-26 PAPLHQR for bundlMattice: | |||
Opt2-4.0&-1$ZS.-1m4GZ.o LdUft 114(Rutgn 9 and 11)EN190u MAPU4GR08 5.702500 8.88500O 9.027500 9.0810000 9.1312000 9.1815000 9.3517000 9.479.8522000 9.8024000 9.83 9.7836000 9.7242000 9.705000 9.7060000 9.7072000 9.92T"ble 3-27 MAPUWGR foe b:LsWcm 115(Refwnms 9 and 11)AveagePlaer LOExpaure APLHGRt0.-- 8.682500 8.855000 9.017500 9.1010000 9.1412000 9.211500 9.3817000 .49A20000 9.6822000 9.8224000 9.8330000 9.7636000 9.7142M00 9.70500 9.68Im 9.6872000, 9.93Page 20 of 45 COLR Dresden 2 Revision 12TabW as MAPLUGR for bund- gtl. 1 :Opt2411951M | |||
.0M-Z50OLO~c. 116(Refrencesg 9d 11)Evmwss UW' OLO0 8.811 2500 9.005000 9.147500 9.2.9.289.3.9.1m.... 0000.9.99 22000 ... 10.0324000 10.0130000 ,_9.97..42000 9.90*60000 9.8572000 10.1.9Trol s-a. MWO lot bmiIMMWcs | |||
~AlM 117(RMe snw 9 and 11)0 6.855000 9.177600 9.2210000 9.2212000 9.2815000 9.469.6420000 10.0022000 10.0024000 10.0030000 995360009.89 50000 9.7960000 9.82Page 21 of 45 COLR Dresden 2 Revision 12Page 22 of 45TabMP 3-0 MJM for d :Ui a 11l(Refemcu 9 m4 11)rv~wS" PS -OLO.--xc~ MWPLHGR0 __ .6____2600 976S00 9.797500 9.7110000 9.6412000 9616000 9.9517000 10.1620o00 101722000 10.1624000 10.143000 10.0736000 10.0142000 _. _50000VA60000 9.9072000 10.26TO* 341 MAPUIQR for ......... | |||
OpW4.056-fI | |||
*W14UWONtl 119(RA rmncemand 11)wf --m ---0 _ 8.962500 9.117600 9.2110000 9.2112000 9.23i5s00 9.3317000 9.4120000 9.54.22000 9.6738000 9.88s000 9.678000 9.66 COLR Dresden 2 Revision 12Tabe 3-2 MAPIHGR for bundMetiloe: | |||
Op@4.0o.IZMMo.A140Wo Latim 1120(Rsferwics 9 end 11)Avr* pPlar 0LOEpoewi FAAPLIIOR 0 9.002500 9.156000 9.25ME0 9281 19o 9.2812000 9.30,15000 9.4117000 9.6020000 9.642Ow 9.7824000 9.8630000 9.813m00O 9.7842000 9.7560000 9.6972000 9.69T* 34M$MAPLHoBr for 6midip0PWS1240mU023*S4401 ow (PRbranow 9wd 11)0 8992500 9.12500 9.24750 9.2910000 9.281200 9.3215000 9.4217000 9.5220000 9.652200 9.7924000 9.883000 9.036000 9.7642000 9.7560000 9.67000 .9.6772000 9.93Page 23 of 45 COLR Dresden 2 Revision 12TAba 3-4 MAPUIGA for -.,dI 1i.a1 :CIP12405ISMASIOZUMI L.tM ' 122(References gand II)Avra- PO a O....ExpuMM MAPLNWUW I -1nl') .... .0 9.14--,4M500 9.4310000 9.4012000 .. .4815i00 9.6017000 9.7120000 9.9622000 10.0524000 10.0530000 10.0136000 99642000 9.8950000 9,8060000 9.8472000 10.19T~Wf $46 PAPLWIN lor dilmllifto Latili 1232500 9.33600 9.427500 9.4310000 9.3012000 9.421500 9.5417000 9.678oooo__ -_,_ 9.9722000 10.0324000 10.0330000 10.003800 9.M42000 9.8650000 9.77mmoo 9817M00~ 1020,Page 24 of 45 COLA Dresden 2 Revision 12Table 3-6 MWLNR for bundtgaiactrh Opt2-c ism.00-14G=50 Wds 124(Rewunces 9 w 11)0 9.662600 9.775000 9.797600 9.7110000.. 9.84116000 9.9517000 10.15.22000 10.1624000 10.1430000 10.0736000 10.0142000 9.9560000 990.... ...-.- -..... .. .----72000 .. ... 10.26o" 3w 111o.llm -." md -7Wle 9.26(Rindaunin Ba~nd it)0:2 -o:2: : 2 8.91 2 iiS_5000 9... ._...7500 9...,2810000 9.2812000 9.3116So000 9.4717000 9.A520000 9.8222000 9.87.000 ..9.889.79360009.73 42000. 9.715000 9.75jM~ 9Page 25 of 45 COLA Dresden 2 Revision 12TOIW 348 MAPLHGR for bundleAhatce: | |||
Lattice 126(Refmnroe 9Band 11)"Average aw ... OLOExpour MAPLHOR0 8.952500 9.115000 9.26.7500 .9.3210000 9.3412000 9.3915000- 9.5717000 9.7620000 9.9322000 9.97-400--"- -9.9530000 9.883600 9.8342000 9.8050000 9.7960000 9.7772000O 9.98Table 35 M MAPLHG o WnIUs25W 9.10504ZU 12000 12 40(Rfris and 11)220 8.9725000 9.1056000 9.82542DOIOI 9'"O.795700- _ 9.3710000++ _ _ _ ... .WE 9.3 .120,0094+ 20000 995emPage 26 of 45 COLR Dresden 2 Revision 12Tabt S40 MAPULW for bI mdM -lOPM24.10.14G5J0.20Z LUs126(Refenoes 9 and 11)JIPOdoT 0 9.102500 92m5000 9.427500 9,5210000 9.5212000n15000 9.8717000 10.102.o00 10.2022000 10.1924000 10.1730000 10.0936000 10.03W10.0150000 9.9260000 9.9372000 10.25Tble 241 VAPUGA for WNWdlslIl Op14.10,1 anM4025.6o Wmce 120(Rfealm 9Sd 11)sainsue WAPLNSRo 0NI 9.14 12500 9.317600 9.44700 ..9.4817000--..- | |||
9.111.20000 9531M700 -- 10-- 1.12,400 IO.1930000 .. 10.0835000 .10.0142000 9950000 A.688! 0000 9.91I 72000 10.25Page 27 of 45 COLR Dresden 2 Revision 12TAbW 342 MAPIHGR for bI~ Opl t4GZ5.5 4 .6O(Riegnces Band 1)Expmr MAPIHOR.....,dam'u ... km0 9.606000 9.717600 &10000 9.6112000 9..217000 10.0920000 10.2122000 10.1924000 10.183000 10.1036000 -10.0442000 0.9850000 9.8760000 9.90.72000 10.25Till ,4) IIUIBR Uidim(uFte~euflss 11#d IS)Page 28 of 457. ... ... .. 1.03 0. .8 COLR Dresden 2 Revision 12Page 29 of 454. Operating Limit Minimum Critical Power RatioThe Operating Limit Minimum Critical Power Ratios (OLMCPRe) for 02C23 were established toprotect the Safety Limit Minimum Criica Power Ratio (SLMCPR) for the abnormal operational occurrences. | |||
The SLMCPR values for DLO and SLO for 02C23 were determined to be 1.12 and1.14 (Reference 13), respectively, which are unchanged from the NRC-approved values for theprevious operating cycle (I.e., 02C22).In determining the SLMCPR values for D2C23, Westinghouse appled the methodologies fromCENPD-300-P.A, consistent with the manner specified in Limitations I through 6 and 8 of theNRC Safety Evaluation Report (SER) approving CENPD-300-P-A (References 12 and 14). The-pplication of these melthodologiles was previously approved by the NRC In license amendment 224 to Renewed Facility Operating License DPR-19 (Reference 18).4.1. Manual Flow Control MCPR LimitThe OLMCPR is determined for a given power and flow condition by evaluating thepower-dependent MCPR and the flow-dependent MCPR and selecting the greater of thetwo.4,1.1. Powiu Oopendent MCPRFor operation less than 38.5% core thermal power, the OLMCPR as a function ofcore thermal power Is shown in Tables 4-8 and 4-9. For operation at greaterthan 38.5% core thermal power, the OLMCPR as a function of core thermalpower is determined by multiplying the applicable rated condition OLMCPR limitshown In Tables 4-2 through 4-7 by the applicable MCPR muLtiler given InTables 448 and 49. For operation at exactly 38.5% core thermal power,MCPR(P) Is the highlr of either of the two methods evaluaaed at 38.5% corethermal power.4.1,2. FIow-Oependont McWfTable 4-10 gives the MCPR(F) limit as a functio of the flow basd on theapplicable plant condition. | |||
The MCPR(F) limit dtermmined from thIs table Ik theflow dependent OLMCPR.4,2. Automatc FlOw Cont"ol Cf LimitAutomatic Flow Control MCPR Limits are not provided. | |||
COLR Dresden 2 Revision 12Page 30 of 454.3. Scram Tim.TSSS, ISS, and NSS refer to scram speeds. TSSS Is the Technical Specification ScramSpeed, ISS Is the Intermediate Scram Speed, and NSS Is the Nominal Scram Speed.The scram time values are shown In Table 4-1.The NSS scram times am based on a conservative Interpretation of scram timesurveillance measurements. | |||
In the event that plant surveillance shows these scramInsertion times to be exceeded, the MCPR lmits are to default to the values whichcorrespond to the ISS scram time. The ISS times have been chosen to provide anIntermediate value between the NSS and TSSS, but Interpolation between these valuesis not supported by Westinghoose mehodology. | |||
In toe event 1hat the ISS t*ms areexceeded, MCPR lmits for the TSSS apply.Tiba 4-1 Soma Times(Rdsersnou 5 d 13)Control Rodhumlmn Frton IM (soonds) | |||
S (seonds) | |||
NSS (meconds) 5 0.48 0.360 632420 0.89 0.720 0.70050 1.98 1.580 1.510490 3.44 2.740 2.6354.4. Reclrcutatlon Pump MSr Guwetor SeWngsCycle 23 was analyzed with a maximum aors low runout of 1 10%; therefore therecirculation pump molar generatr scocf tube mechanical and electrical stops must beset to maintain core flow less than 110% (107.8 Mblbr) for aOl mnout events (Reference 8). This value is consistent wilh the analyses femnced In Reftrence | |||
: 13. | |||
COLR Dresden 2 Revision 12Page 31 of 45Tab" 42 MCPR TBS Bwiid Opifaing ULint -NFWTAl Fuel T"pe(Rmumne 13)EOOS Cwufnfblnon... | |||
MWOMTU dMBASE 1.63 1.74BASE SLO 1.66 1.78PLUoOS 1.70 1.81PLU. .SMO -1.74 1.85TIB1OOS 1.74 1.64TBVI9SSLO, 1.78 1.8TCV SLOW CLOSURE 1.73 1.86TCV SLOW CLOSURE SLO 1.77 1.89.TCVSIUCKGCOSED | |||
... 1j.74TCV STUCK CLOSLO .68 1.78TWOl 4-3 MMCP TMB 9MW Op1s!1g Umits -RFWtM RodTy "(Rbmce 13)! m 13600OSoblnssss mm-dUTU MWTUW1.63 1.74BASE SLO .1.6 .1.78PLUOOS 1.70 1.81PLUOOS SLO. 1.74 1.851.77 18TrBv owCOSU..0 1.61...... | |||
1.89 ..TCVSLOWCLOSURE 1.73 -1J.85TcVSLW OR RESLO 1.7TCV STUCK CLOSED 1.63 1.74TCV STUCK CLOSED SLO .1.66.1 !,78-COLR Dresden 2 Revision 12Page 32 of 46Table 4-4 $ leWd OpeMi Limits -NFWTAll Fuel Type(Refernce 13)E008 1oblhle Wd#MT MWdMITBASE 1.45 1.50BASE SLO .. .1.48 __ 1.53.... PLUOOS 1.61 1.67TBVOOS SLO~16BASE SLLO 1.54 1.65TCV SLOW CLOSURE L 1.54 1.2T~cvSTL osEs, 1.41 1.67TCVSTUCK CLOSED 9L0 1.48 1.53T"bt 4-5 MCPR IS leed O Limis -RFWTAll Fuel Tmye(ReWence 13)9 1360 :0 n136s oos cmm*BASE 1.61 1.53BASE SLO 1.54 -1.50PLUOOS 1.51 1.57P PLUOOS SLO 1.64 1.80TSVOOS 1.60 1.66TBVOOS SlO 1.63 1.69TCV SLOW CLOSURE 1.51 1.69TCV SLOW CLOSURE SIO .1.4 1.62TCV STUCK CLOSED 1.61 1.563TCV STUCK C OESLO, 1.64 1.58, COLR Dresden 2 Revision 12Page 33 of 45Table 4" CPH NSS Based OpnMtng Umlts -NFWTAll Fuel Types(Raefmne 13)EOON Com nn M VWdWU UWWMBASE 1.45 1.47..ASE SLO 1.48 1.50PLUOOS 1.49 1.. 4PLUOOS SLO 1.52 1.67TBVOOS -.53- 1.59TBVOOS SLO 1.50 1.62TCV.SLOW CLOSURE 149. 1.6TCV SLOW CLOSE SLO 1.52 1.59TCV STnUCK CLOSED 1.45 1.4TCV STUCK CLOSED SLO t.48 1.50Ta*4.7 IPRMW w B oil Opnin Umta -MW?A# Fuel TypO(Rsu n".. 13)BSE 1.50 1.52BASE SLO 1.53 1.55.MUoos -1.50 1.54f. P.LO : 1: .53 1.57 11T.VOOS 159 1,64T8VOOS SLO 1.62 1.67TCV SLOW CLOSURE SLO 1.53 1.69TCV STUCK CLOSED QTCVSTUCKCLOSEOSLO 1.53.. 1.55 COLR Dresden 2 Revision 12Page 34 of 45TablO 44 UCPfl( tot Woetlnghoue. | |||
Fuel -NFWTANFud TypO(ReGonco 13)-Corn Cor Poi eiMofMEOOSCombindlton Flow o F 3U -1______________Opmalng Lmimt MCPR OeaigLmtMPMlile s60 2.80 2.37 2.14R_ o e ----BasesW 2.88 2.36 2.39 1.33 1.21 1.15 1.06 1.00 t00Bs 2.80 2.37 2,4Bose SLO l 1.o 2.87 12.42 2.181.1.011100 | |||
__<os s 2.80 2.37 2.14 1.58 1.47 1.35 106 100 10>LO O P"-e : 288 2.39 ..1 .0PLUOOSSLO | |||
--2.87 42 1.58 1.47 1.35 1.06 1.00 1.00_ _00 0 2.93 2.81 2.44__eo 4.18 US0B 2.49 1.33 1.21 1.15 1.06 1.00 1.0T___ _ > W6o 3.0 3.17 2.78sO. 4.26 314 2.54TBVOOSSLO Peo 3.98 3.23 2.83 -.-TCVIOWimue | |||
.. .802.. .1 1.591 1.47 1.3511.07 1.0011.001 TCV Slow Closure -o 2.88 2.57 24 1..9_____w___r___ 2.87 2.56 2TCV Slow Clo6ure 1 >00 2.44 1.59 1.47 1.35 1.07 1.00 1.000 2.80 2.37 -2.14TCV... .. .... .1.33 1.21 1.15 1e 1.00o1.00 | |||
... 0 2.88 2.56 2.39 1.33TCVStuckCbosedSLO | |||
.O 287 2.42 2.18 1.33 1.21 1.15 1.08 1.00 1.00 COLI Dresden 2 Revision 12Page 35 of 45Table 4-4 MCPR(P) for WeeIMigho Fuel -RFWTAM Fuel TV"e(Refmnc 13)c... oeco wme P"" '0EOOSComblnlUon 0 25 -1.A 36.5 I g I 100 102fa OýPe Lle*9 CPR Opi -1 GLhaft UcPRoo, 2110 2.37 2.14ease .OD 2.88 .2.56 2 .39 "1.39 1.24 1.16 1.07 1.00 1.00Bae SLO So 2.88 2 .42 2.19 1.38 1.24 1.16 1.07 1.00 1.00> W0 2.87 2.6 2.18PLUOOS 2.80 2.61 2.44 l1. 47 1.35 1.07 1.00 1.00>,v OD1 .6 .6 =39++ zs+ -. -. --I '." ,.. ,., I.o +.oTBVOOS AOD 4.5. 3.26 2.. 1.39 1.24 1.18 1.07 1.00 1.00____________ | |||
=' 60 4.0 3.2 2 !.87 , I ,, m oTBVOOS SLO _180_ _4.06 1 3.3 2.93 1.39 1.24 1.16 1.07 1.00 1.00TCV Slow Closure 16 2 2.37 2.14 1.59 1.47 1.36 1.07 1.00 1.00> Slo Cou 0 1.5 1.47 1.35 1.07 1.00 1.00S2.w7 CPsu e- 4 2. 18 -- --.0-_<O .8 237 -2.14 ... .TCVStlowCkoeum OD 2.88 2.56 239 1.39 1.24 1.16 1.08 1.00 1.00:40o 2.88 9.562 .3, 9TCV StukClosedSLO So 2.87 2.42 2.1 1.39 1.24 1.16 1.08 .0 1._6O 2.93 61 2.44 -...0m- w- -,1 1,0 1,0 COLR Dresden 2 Revision 12Page 36 of 45Table 4-10 MACIR(P) | |||
Icr WginhusFuel (Rsfeeunc 13)Flw-Oiptd it MP fr er==es a"'__________E006 now(1 6 SVEA411 0~~uMCPRTTTT7IO0 1.98 2.021001.8141110,--0.8IA COLR Dresden 2 Revision 12Page 37 of 455. Unear Heat Generation RasThe thermal mechanical operating limit (TMOL) at rated conditions is established In terms of themaximum LHOR given in Table 5-1 and Table 5-2 as a function of rod nodal (pellet) exposure. | |||
The Table 5-1 limits apply to fresh Optlma2 bundle designs for the Cycle 21 and Cycle 22 reloadswhile the Table 5-2 limits apply to fresh Optima2 bundle designs for the Cycle 23 reload. Thelimits changed for the Cycle 23 fresh fuel due to the Increase In Uranium enrichment In theGadolinla rods, which meant that It was no longer guaranteed that all Gadolinla rods would staybelow their TMOL limit through monitoring of only the Uranium rods. Therefore, the TMOL of theGadolinla rods must be monitored explichly for Cycle 23 fresh fuel. The natural Uranium lattices81 and 89 are still monitored with the original UWi rod limits since they are not enriched(Reference 21).The linear heat generation rate (LHGR) limit is the product of fth exposure dependent LHGR limitfrom either Table 5-1 or Table 5-2 and the minimum of. the power dependent LHGR Factor,LHGRFAC(P), | |||
the flow dependent LHGR Factor, LHGRFAC(F); | |||
or the single loop operation (SLO) multiplication factor where applicable. | |||
The LHGRFAC(P) is determined from Table 6-3, asapplicable. | |||
The LHGRFAC(F) | |||
Is determined from Table 54.Tabie 5-1 IHR U.4M w fr bundLONeG" Opt24..1i'lGSk00MOZ5.t-:4.1)0MWR es0pt2-4.0-10(07A0-20*Z4,00WAa*iies Opl24.2-1SG1 | |||
.0140Z5.UWAit LatticsOpt2.A46Q- | |||
.,-14Q25JWAN LAIW sOpt2-4.07.1405.50402=.WAR LattlcOpt2-4.O5-ISGZ.OO-14MZ5.,WLuttkcs I1 and 69OpM2-4*WISGZS | |||
..14GZS A 1, Nao 81 6 MWOpW2.4.10-14GZ 2G2.SMis S 1I and W(i:temecs | |||
: 9. 15, 16, 17. Ond21)19d Nodal Izou UMR M~lfor MRd(G..... ) .. .. ..Wvf) I0.00 13.1114.00 13M172.00 6.48TOMl 5-2 LINO LIMA Wo bundlslctl A SUSS5140".6 LANUMIoMM SI and 40(Pf Wosn=ssO. | |||
13iWA 21) | |||
COLR Dresden 2 Revision 12Table 54 LHGRFAC(P) | |||
Multplken A Fuel Type(Reference 13)Page 38 of 45Corn Thernml Power (% of rated)EOOS Comblnemin | |||
-.-- -..--.0 25 3L5 .8 38.S 50 60 6o 100 IU2Base 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00BaseSLO 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00PLUOOS 0.49 0.62 0.69 0.79 0.72 0.81 0.87 1.00 1.00PLUOOS SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00TPvOOS 0.39 0.62 0.69 0.70 0.72 0.78 0.82 1.00 1.00TBVOOS _ _ 0.30 0.46 0.53 0.70 0.75 0.78 0.82 1.00 1.00TCV Slow Closure 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.001TCV Slow Closure SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00TCV Stulo Closed 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00TCV Stuck Ck SLO 0.49 0.62 0.69 1 0.73 0.80 0 0.87 1.00 1.00I 0.7 0.83 0.87 .Tabe 64 Ut CRFW(P No""All FUMl TWe(Refernce 13)EOU ,oR Flow (% of 0 MW r)0 as 40 60 SO 100 110Base Case and allEOC SCondftom 0.27 0.43 0.59 0.80 1.00 1.00 1.00 COLR Dresden 2 Revision 12Page 39 of 456. Rod BlOck MonitorThe Rod Block Monitor Upscale Instrmwentation Sepoints are determined from the relationships shown below:Tabl 6-1 Pod Bock Monitor bnam,., eon M etpolnt(FRefumw 6)UPSCALE TRI FUNCTlON AWILLOWANILE VALUETWO Recirculation LOWp 0.65 Wd + $5%Sing lecran Loo 0.65 Wd + 51%The selpoint may be Iowerohlglw and win still comply with the RWE analysis because AWE isanaled uwbloked (Reference 22).Wd -percent of recirculation loop ddve flow required to produce a ramed core flow of 98.0 Mibir. | |||
COLR Dresden 2 Revision 12Page 40 of 457. Stabifty Protection StpointTable 7.1 OPM MfiW A Tdp Setig(Reference 13)I OAU mltd sm M) Co*nolo Con (Np)1.15 16TRI PODA Is the only OPRM setting credited in the safety analysis a document In thelicensing basis for the OPRM system.The OPRM PBDA trip settings are based, in part on the cycle specific OLMCP and ft powerdependent MCPR limb. Any change to the OLMCPR values and"or the power dependent MCPRlimits should be evaluaed for potential impact on the OPRM PBOA trip stting.The OPRM PSDA trip settings are appliab when the QPRM system is declared | |||
: operable, and theassociated Technca Specification are kmplemnented COLR Dresden 2 Revision 12Pap 41 of 458. Modes of Operation The allowed modes of operation wit combinations of equipment outOf-rvlce are as described below.Base §BWe (DLI or &JO)P ] PLUOO6 (DLO orL§O)TBVOOS TBVOOS (OLO or SLO).. See Table 8-1 for powerresctions TCV Slow Closure TCV Slow Clowure (D.O or SLO)TCV Stuck Closed TCV Stuck Closed (PLO or SLO)> Not applica to combination of one TCVand one TOV Stuck Closed)o See Table S-2 for powe restrictionr TSV Suck Closed TCV Stuck Closed (PLO or SLO)> Not applicable to combination of one TCVand one TSV Stuck Closed> See Table 8-2 for pow restrictions PCOOS TCV Slow Closure (Q0O or 81O)ep0os and PLUOOS PLUOOS EDLO or S1O)PCOOS and TCV Slow Closure TCY Slow Closure (DLO or SLO).PCOOS and TCVrTSV Stuck Closed > Operation is only allowed at or belowthermal power as specified in Tableand> The more restrictive of the flow-dependent limits (established by one TCV1TSV StuckClosed) and power-dependent limits(establhd by one TCVitSV Closed, TCV Slow Closure and PLUOOSlimit) w ly. ...R isadVn p Operation Is only Sallowd at or belowtherm power as specified In Table 8-2end> The more resictive W the flow-dependent limits (established by one TCV/TSV StickClosed) and power.dependent limits(established by one TCVJTSV StuckClosed, TCV Slow Closure and PLUOOSCommon Notes -Applicable to both Base Case and all EOOS Combinations for OLO/5101. A modes mafowed for operation at MEWA, lCF (up ID 108% rated core low), andooestdown (full powr pertion up to a cycle epose of 16300 MMU+ 25 EFPP) uqectto restrictions In Tables 8-1 and 8-2. Addltionally, eber EOC must be reached or coastdown must begin prior to reaching 16300 MWdMT + 25 EFPP. The licensing analysis remains validdown to a coastdown power level of 70% given all bumup limils re satliied per Mefdology 7.Each OOS Option may be combined with ech of the following conditons provided therequirements of References 19 and 20 are met0 A maximtr of 18 TIP channels OOS (Up to 2 common TIP channels may beOOS, in combination with a maAmum of 18 TIP channels OOS in locations outside of the common TIP channel locIon of 32-33).* Up to 20 ELPFPM OOS0 An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH +.25%/) | |||
COLR Dresden 2 Revision 12Page 42 of 462. All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with theremaining 8 TBVs meeting the assumed opening profile In Reference | |||
: 7. The analyses alsosupport Turbine Bypass flow of 29.7% of vessel rated steam flow, equivalent to one TBVOOS (or partially closed TBVS equivalent to one closed TBV), If the assumed opening profile(Reference | |||
: 7) for the remaining TBV Is met. If the opening profile Is NOT met, or if the TBVsystem cannot pass an equivalent of 29.7% of vessel rated steam flow, utilize the TBVOOSconditon. | |||
: 3. For both Base and EOOS DLOISLO conditions, for operation at NFWT, the OLMCPR limit Isapplicable to a variation of +1 0°F1-30*F in feedwater temperature, and an operating steamdome pressure region bounded by the maximum value of 1020 psla and the minimumpressure curve in Reference | |||
: 8. For operation outslde of NFWT, RFWT of up to 120OF Is alsosupported for cycle operation through EOC subject to the restriction in Reference 4 forfeedwater temperature reductions of greater than 100 WF. The restriction is to maintain lessthan 100% rod ine. This includes, but is not limited to FWHOOS and FFTR. For a feedwater temperature reduction of between 300F and 1200F, fth RFWT limits should be applied.4. For all cases, equivalent of 2 of the first 3.5 Turbine Bypass Valves must be capable ofopening via the pressure control system while Turbine Bypass Valves #5-9 ae allowed to beout of service. | |||
For aN cases except TBVOOS, the equivalent of 8 of 9 Tu*ie Bypass Valves(as stated in Note 2 above) are required to trip open on Turbine Control Valve fast closure oron Turbine Stop Valve closure. | |||
The TBVOOS condition assumes that all of the TurbineBypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine StopValve closure.5. A single MSIV may be taken OOS (shut) under all OOS Options, as long as core thermalpower is maintained s 75% of 2957 MWth (Reference 13).TWble 1 *ar Thernm PmWr lNeeMotiM for TRYOWN(Pewwc 13)Cmt Trhma Pw!hrPRlOMM (% of Pi CtS f U (MW&UT Valvae AvaimNble S100 EntrCycle 9of 9S100 <18079 8 of 9S98 :'18079 Sof9Table 64 Cm Themail Pmwo fear fw One TCWSV Mtuc Ckoed with TSV'*OcNdedto Prevent lim Pnre uloCore Th* Mal Power N"umbrOT1ai Reeotlen | |||
(% of Rated feq*rd to PreventPower) Sysm pe<75 1.9<80 3.4£85 6.2S90 6.8 COLR Dresden 2 Revision 12Page 43 of 459. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documentr: | |||
: 1. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark ofCASMO/MICROBURN BWR Nuclear Design Methods,t Revision 0 and Supplements onNeutronics Licensing Analysis (Supplement | |||
: 1) and La Salle County Unit 2 benchmwtking (Supplement 2), December 1991, March 1992, and May 1992, respectively. | |||
: 2. NEDE-24011-P-A-15 (Revision 15), "General Electric StendWd Application for Reactor Fuel(GESTAR)," | |||
September 2005.3. NEDO-32465-A, "Reactor Stability Detect and Suppress Solutions Licensing BasisMethodology for Reload Applications," | |||
August 1998.4. We Report WCAP-15682-P-A, "Westinghouse OWR ECCS Evaluation ModelSuppment 2 to Code Description, Oualification and Application," | |||
April 2003.5. Westinghouse Report WCAP-16078-P.A, | |||
-Westinghous BWR ECCS Evaluation Model:Supplement 3 to Code Description, Qualification and Application to SVEA-96 OptImS2 Fuel,"November 2004.6. Westinghouse Report WCAP-16081-P-A, "1Ox10 SVEA Fuel Critical Power Experiments andCPR Correlation: | |||
SVEA-96 Optina2," | |||
March 2005.7. Westinghouse Topical Report CENPD-300-P.A, "Reference Safety Report for Boiling WaterReactor Reload Fuel," July 199e.8. Westinghouse Topical Report CENPO.390-A, "The Advanced PHOEIX and POLCACodes for Nucear Design of Bo"ng Water Rteac , December 2000.9. WestinghousTopical Report WCAP-15838-P-A, "Fuel Rod Design Meftho for BoilingWaler Reaeors -Supplenent 1." April 2000.10. Westinghouse Topical Report WCAP-15942.P-A, "Fuel Asswebly Mechanical DesignMelhodology for Boiling Water Reactors Supplement I to CENP-287.7 March 2006.11. Westinghouse Report WCAP-16081-P-A, Addendum 1-A, Revision 0, "SVEA-96 Optima2CPR Correlation (D4): High and Low Flow Applcations," | |||
March 2009.12. Westinghouse Report WCAP-16081-P-A, Addendum 2-A, Revision 0, "SVEA-96 Optina2CPR Correlation (D4): Modified R-factors for Part-Length Rods," February 2009. | |||
COLR Dresden 2 Revision 12Page 44 of 4510. References | |||
: 1. Exelon Generation | |||
: Company, LLC, Docket No. 60-237, Dresden Nuclear Power Station, Unit 2Renewed Facility Operating | |||
: License, License No. DPR-1 9.2. NRC Letter from 0. M. Crutdcfeld to All Power Reactor Licensees and Applicants, Generic Letter88.16; Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.3. Westinghouse Document NF-SEX-07-187 Rev. 3, "Dresden Nuclear Power Station Unit 2 Cycle21 Reload Licensing Report," | |||
June 2008 (TODI NF0700236 Rev. 2). (Attachment 13 of FCP388557)4. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad CitiesExtended Final Feedwater Temperature Reduction," | |||
Carlos de Is Hoz to Doug Wise and AlexMIsak, August 27,2002.5. Exelon Technical Speciications for Dresden 2 anW 3, Table 3.1.4-1, "Control Rod Scram Times."6. GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod BlockMonitor, Commonwealth Edison Company, Dresden 2 & 3," December 15,1999.7. Exelon TOOl OPS Ltr 11-17 Revision 1, "OPL-W Parameters for Dresden Unit 2 Cycle 23Transient Analysis,' | |||
May 4, 2011. (Attachment 14 to FCP 377654)S. Exelon TOOl ES1 100008, Revision 0, "Dresden Unit 2 Cycle 23 Licensing Generic InputsReport," | |||
May 3, 2011. (Attachment 15 to FCP 377654)9. Westinghouse Document NF-BEX-1 1-68, "Bundle Design Report for Dresden 2 Cycle 23," April19, 2011. (Attachment 11 to FCP 377654)10. WestinghouseDocument NF4B3EX-1 1-71, "FinalTask Report for Dresden Unit 2 Cycle 23 ReloadLicensing Analysis Plan," May 6,2011. (Attachment 13 to FCP 377654)11. Westinghouse Document NF-BEX-. | |||
1-101-NP, Rev. 0, "Dresden Nuclear Power Station Unit 2Cycle 23 MAPLHGR Report," | |||
August 2011. (Attachment IS to FCP 377664)12. Exelon Letter RS-05-078, "Request for Licensing Amendment Regarding Transition toWestinghouse Fuel," Patrick R. Simpson to U.S. Nuclear Regulatory Commission, June 15, 2005.(Avaiable In EDMS)13. Westinghouse Document NF-BEX-1 1.104, Rev. 0, "Dresden Nuclear Power Station Unit 2 Cycle23 Reload Licensing Repot" August 2011. (Attachment 17 to FCP 377654)14. Westinghouse Document NF-BEX-1 1-94, Rev. 0, "Transmittl of Safety Limit MCPR for DresdenUnit 2 Cycle 23," June 21, 2011. (Attachment 19 to FCP 377654)15. Westinghouse Document NF-SEX-07-62, "Final Report for Dresden 2 Cycle 21 Bundle Designs," | |||
4/10/07. | |||
(Attachment 4 to FCP 364026)16. Westinghouse Document NF-BEX.09-1 18 Rev. S, "Dresden Nuclear Power Staston Unit 2 Cyce22 Reload Licensing Report," | |||
June 2011 (TODI ES0900022 Rev. 3). (Attachment 38 to FCP378107)17. Westinghouse Document NF.BEX-09-64, "Bundle Design Report for Dresden 2 Cycle 22," April22, 2009. (Attachment 3 to FOP 373427)18. NRC Letter, "Dresden Nuclear Power Station, Units 2 and 3- Issuance of Amendments Regarding Safety Limit Minimum Critical Power Ratio (TAC Nos. MD6013 and MD6602)," | |||
Christopher Gratton (NRC) to Charles Pardee, November 6,2007. (Available In EOMS) | |||
COLR Dresden 2 Revision 12 Page 45 of 4519. Westinghouse Document BTD 09-0311, Revision 1, "Westinghouse CMS -Operation Guidelines for Dresden and Quad Cities Plants," | |||
July 20, 2009.20. Westinghouse Document BTD 09-0723, Revision 0, 'Westinghouse CMS -Core Monitoring Strategy for Dresden 3 Cycle 21,' July 3,2009.21. Westinghouse Document NF-BEX-1 1-147, Revision 0, "Dresden Unit 2 Cycle 23 ReloadUcensing Report Clarifkcaton," | |||
September 29,2011. | |||
(Attachment 20 to FCP 377654)22. Westinghouse Document NF-BEX-11-103, Revision 0, "Dresden Nuclear Power Station Unit 2Cycle 23 Reload Engineering Report," | |||
August 2011. (Attachment 16 of FCP 377654)}} |
Revision as of 18:14, 3 July 2018
ML13303B522 | |
Person / Time | |
---|---|
Site: | Dresden |
Issue date: | 10/22/2013 |
From: | Exelon Generation Co |
To: | Office of Nuclear Reactor Regulation |
References | |
SVPLTR: #13-0042 | |
Download: ML13303B522 (45) | |
Text
COLR Dresden 2 Revision 12Page 1 of 45CA" OprMtng LImit RsortForDrdn Unit 2 Cycle23Revision I
COLR Dresden 2 Revision 12 Page 2 of 45Table of Contents1. Terms and Definitions
...................................................................
- 62. General Information
.......................................................................
- 73. Average Planar Linear Heat Generation Rate ...............................
- 84. Operating Limit Minimum Critical Power Ratio ............................
294.1. Manual Flow Control MCPR Limits ..................................................
294.1.1. Power-Dependent MCPR ...........................................
..... 294.1.2. Flow-Dependent MCPR ..........
.............
....................
294.2. Automatic Flow Control MCPR Umits ............................
.................
294.3. Scram Time ................
....................................................................
304.4. Recirculation Pump Motor Generator Settings
................................
305. Linear Heat Generation Rate .......................................................
376. Rod Block Monitor .......................................................................
397. Stability Protection Setpoints
.......................................................
408. Modes of Operation
.............
.... ........
- ......&.........................9...........
419. Methodolog
................................................................................
4310. References
................................................................................
44 COLR Dresden 2 Revision 12Page 3 of 45Ust of TablesTable 3-1 MAPLHGR for bundle/lattice:
Opt2-3.97-11G8.00.4GZB.00-3G6.00/Lamces 81 and 89Opt2.4.04-1007.00-2GZ7.00-2G6.00/Lattlces 81 and 89Op12-4.02-1 8GZB.00.14GZ6.50/Lates 81 and 89Opt2-4.03-160Z8.00-1 4GZS.50/LattWes 81 and 89Opt2-4.07-14G5.50-2GZS.50Latles 81 and 89Opt2-4.05-18GZ8.00-140Z8.50/Lattcs 81 and 89Opt2-4.05-16GZS.00-1 4GZ5.50Lattices 81 and 89Opt2-4.10-14GZ5.50-2GZS.SOiLatAis 81 and 89 ................................................
8Table 3-2 MAPLHGR for bund:lla"e Opl2-3.97-11G8.00-4GZ8.00-3G8.00/Lattices 82, 83, arid 84 .............................
8Table 3-3 MAPLHGR for bundle/laote:
Opt2.3.97-1 IGS.O-4GZ8.00-3G0.00s.attices 85 end 87 ........................
9Table 3-4 MAPLHGR for bundlenlattic.
Opt2-3.97-11G6.00-4GZB.00.306.00/Lafitce 88 ........................................................
9Table 3-5 MAPLAGR for bundmletlatce:
Op2-4.04-10G7.O0-2GZ7.00-2G6.00Lattlces 90 and 91 .........................................
9Table 3-6 MAPLHGR for bundle/latfice:
Opt2-4.04-10G7.00-2GZ.002G6.00lLattices 92 anrd 93 .....................
10Table 3-7 MAPLHGR for bundletlattice:
Op12-4.04-10G7.00-2GZT.00-2G6.Q00/attce 94 ............................................
10Table 34 MAPLHGR for buncle/laete:
Opt2-4.02-18GZM.00-t4GZ5.50/Latt 96 ....................................................................
11Table 3-9 MAPLHGR for bundle/latfice:
Opt2-4.02-ISGZ8.00-14GZS.S0/Lattice 96 .............................................................
11Table 3-10 MAPLHR for budle/latice:
Opt2.4.02-1 8GZS.00-14MZ5.50/Latice 97 .............................................................
12Table 3-11 MAPLHGR for bunde/latce:
Op12-4.02-18GZS.00-14GZS.50/Lattice 98 .............................................................
12Table 3-12 MAPIHGR for bundlelattice:
Opt2-4.02-18GZ8.O0-I4GZS.50lLatticm99
..............
13Table 3-13 MAPLHGR for bundle/lattle.
Opt24.02.18GSG.00.14GZ.50/Lattice 100Opt2-4.93-16GZS.00-14GZ5.S0/Laut i ....................................
100.........................
13Table 3-14 MAPLHGR for bufdlefatte:
Op2-4.03-16GZ8.00-14GZ5.50/LattlC 10i ...............................................................
14Table 3-15 MAPLHGR for bundle/lfattce:
OpI2-4.03-16GZM.00-14G.5.5O/Lattice 102 .............................................................
14Table 3-16 MAPLHGR for :Opl2-4.03.160ZS.00-146Z5.50/Lattice 103 ..................................................................
15Table 3-17 MAPLHGR for bundle/ilatte:
Opt2-4.03-16GZ8.00-14GZ5.50/Lattk;e 104 .............................................................
15T"ble 3-18 MAPLHGR for bundle/lattce:
Opt2-4.03-16GZS.00.14GZS.50/Lattice 105 .............................................................
16Table 3-19 MAPLHGR for bundle/lattice:
Opt2-4.07.14G5.50-2(Z.50/La"os 106 ................................................................
16Table 3-20 MAPLHGR for bundlellatlce Opt2-4.07-14G5.50-2GZS.50Lattto 107 ..............................
I7Tabe 3-21 MAPLHGR for bundlelatIce:
Opt2-4.07-14GS.50-2GZ5.50/Lattice 108 .................................................................
17Table 3-22 MAPLHGR for bundle/latice:
Op2-4.07-14G5.50-2GnZ.50/LatWc 109 ......................................................................
18Table 3-23 MAPLHGR for bundle/latlice:
COLA Dresden 2 Revision 12Page 4 of 45OpM2-4.07-14G.50206.5O aa. tce 110 .................................................................
18Table 3-24 MAPLHGR for bundle/lattice:
Opt2-4.07-14G5.50-2GZ5.50/Lattice 111 ...............................................................
19Table 3-25 MAPL.IGR for bunde/ltwte:
Op12-4.05-18GZS.00-14GZ5.50/lattlce 113 .............................................................
19Table 3-26 MAPLHGR for bundle/lattice:
OpI2.4.05-18GZM.00.14GZ5.M0/Latice 114 .............................................................
20Table 3-27 MAPLHGR for bundle/lattic:
Opt2-4.05-18GZ8.00-14GZ5.60/Latlice 115 .............................................................
20Table 3-28 MAPLHGR for bundle/lattice:
Opt2-4.06-18GZS.00-14GZ6.50/LatUce 116 ............................................................
21Table 3-29 MAPLHGR for bundle/attice:
Opt2-4.05-1SGZB.00-14GZM.S0/Lattice 117 .............................................................
21Table 3-30 MAPLHGR for bundle/lttice:
Opt2-4.05-18GZ8.O0-14GZS.5OLatmtce 118 .............................................................
22Table 3.31 MAPItGR for bundle/lattice:
Opt2-4.05-I6GZS.00M.
4GZU.50/Lattice 119 .............................
22Table 3-32 MAPLHGR for bund;:attice.
Opt2-4.05-16GZ8.00.14GZ5.60/atce 120 .............................................................
23Table 3-33 MAPLHGR for OpC2-4.05-I6GZS.00-14GZS.50/atce 121 .............................................................
23Table 3-34 MAPLHGR for bundle/latticm.
Opt2-4.05-IOGZB.00-14GZ.5Latice 122 .............................................................
24Table 3-35 MAPLHGR for bundle/lattice:
Opt2-4.05-16GZ8.00-14GZS.S50Lattice 123 .............................................................
24Table 3-36 MAPLHGR for bundle/lattice:
Opt2-4.05-16GZ8.00.14GZ5.50/Latdce 124 ............................
28Table 3-37 MAPLHGR for bundle/lattice:
OpM2-4.10-14GZS.50-2GZS.60/Lattice 126 .............................................................
25Table 3-38 MAPLHGR for bundleflattice:
Opt2-4.10-14GZ5.50.2GZ5.M0/Lattkie 126 .............................................................
26Table 3-3M MAPLHGR for bundleattice.
Opt2-4.10-14GZ&.50-2GZB.5Lattie 127 ......12.......................................................
26Table 3-40 MAPUtGR for bundle/lattite:
Opt2-4.10-14GZ.50-2GZ.50/Lattce 128 ............................................................
27Table 3-41 MAPUHIG for bundle/lattice:
Opt2-4.10-14GZS.50-2GZ5.50/Lattice 129 .............................................................
27Table 3-42 MAPLHGR for bundlattice:
Opt2-4.10-14GZ5.50.2GZ6.60/Lattice 130 .............................................................
28Table 3-43 MAPLIHGR Multipliers
.........................................................................
28Table 4-1 Scra Tirnes ........................................................................................
30Table 4-2 MCPR TSSS Based Operating illa -NFWT Al Fuel Types .........................
31Table 4-3 MCPR TSSS Based Operating Lnit -RFWT AD Fuel Types ........................
31Table 4.4 MCPR ISS Based Operating Umits -NFWT AN Fuel Types ..........................
32Table 4-5 MCPR ISS Based Operating Limit -RFWT AlI Fuel Types ...........................
32Table 4-6 MCPR NSS Basd Operating Limits -NFWT All Fuel Types .........................
33Table 4-7 MCPR NSS Based Operating Limits -RFWT AlN Fuel Types .........................
33Table 4-8 MCPR(P) for Westinghouse Fuel -NFWT AD Fuel Types ..............................
34Table 4-9 MCPR(P) for Westinghouse Fuel -RFWT AN Fuel Types ...................................
5Table 4-10 MCPR(F) for Westinghouse Fuel All Fuel Types ........................................
36Table 5.1: LHGR Umit for bundle/latice:
COLR Dresden 2 Revision 12Page 5 of 45Opt2-3.97-1 1 G8.00-4GZB.00-3(6.00/AiI LatticesQpt2.4.04-10G7.00.2GZ7.OO-2G6.00/All LatticesOpt2-4.02-1 8GZ8.O-1 4GZ5.50/AII LatticesOpt2-4.03-16GZ&00.14GZ6.50/AJI LatticeOpt2-4.07-14G560-20Z5.501/Al LatticesOpt2-4.05-1BGZS.00-14GZ5.50/Lattice 81 and 89Opt2-4.O5-1 6GZ.OO-14GUZ.8O/Lattlce 81 and 89Opt2-4.10-14GZ6.5-20GZ8.50/Latfce 81 and 89 .............................................
37Table 5-2: LHGR Limit for bundleflattlce:
Opt2,4.05-1 8GZ8.00.14GZ5.50/AH LatIces except 81 and 89Opt2-4.05.16-Z8.O0-14GZS.60/Afl Lattices except 81 and 89Opt2,4.1O-14WZ5.6O-2GZ5.50/AI Lattces except 81 and189 .............................
37Table 53 LHGRFAC(P)
Mullipllers/Al Fuel Tyes ......................................................
38Table &4 LHGRFAC(F)
MulPAtiAl Fuel Types ......................................................
38Table 64 Rod Block Monitor Upscale Insrmentation Setpotnts
...................................
39Table 7-1 OPRM PODA Trip Setifngs
.....................................................................
40Table 8-1 Core Thermal Power Rewtrc for TBVOOS ............................................
42Table 8-3 Core Thermal Power Restriclorl for One TCV/TSV Stuck CloWd withTBVs Credltl to Preent System Pmsurzaion
..........................................
42 COLR Dresden 2 Revision 12Page 6 of 451. Terms and Oefln~ons OLOEFPDEFPHEOCEOOSFFTRFWHOOSICFISSUIGRLIHGRFAC(F)
UWGRFAC(P)
LPRMMAPLHGRMCPRMCPR(F)MCPR(P)MELLLAMSIVMWdIMTUNFWTNRCNSSOLMCPR00SOPRMPODAPLUOOSPCOOSRFWTRWCURWESERSLMCPRSLOTBVOOSTBVTCVTIPTMOLTSSSTSVDual loop operation Effective full power dayEffective full power hourEnd of cycleEquipment out of serviceFinal feedwater temperature reduction Feedwater heater out of serviceIncreased core flowIntermediate scram speedLinear heat genoration rateFlow dependent LHGR multiplier Power dependent LHOR multiplier Local power range monitorMaximum average planar linear heat generation rateMinimum crtical power ratoFlow dependent MCPRPower dependent MCPRMaximum extended load line limit analysisMain steam isolation valveMegawatt days per metric ton UraniumNominal feedwater temperature Nuclear Regulatory Commission Nominal scram speedOperating limit minimum critical power ratioOut Of serviceOscillation power range monitorPeriod bas detection algoithmPower load unbalance out of servicePressure controller out of serviceReduced feedwater temperature Reactor water clean-upRod withdrawal errorSafety evaluation reportSafety limit minimum critical power ratioSingle loop operation Turbine bypass valves out of serviceTurbine bypass valveTurbine control valveTraversing incom probeThermal mechanical opemtg limitTechnical Specification scram speedTurbine stop valve COLR Dresden 2 Revision 12Page 7 of 452. General Information Power and flow dependent limits are listed for various power and flow levels. Unear Interpolation Is to be used to find Intermediate values.Rated core flow Is 98 MIb/hr. Operation up to 108%/* rated flow (lCF) is fully evaluated for thiscycle, however, flow cannot exceed 103.4% rated flow due to unit specific limitations.
Ucensedrated thermal power Is 2957 MWth. For allowed operating
- regions, see applicable power/flow map.Coastdown Is defined as any cycle exposure beyond the full power, rated core flow, and ail rodsout condition with the plant power gradually reducing as available core reactivity diminishes.
MCPR(P) and MCPR(F) values are independent of scram speed.LHGRFAC(P) and LHGRFAC(F) values are Independent of scram speed.All thermal limits are analyzed to NSS, ISS, and TSSS. Only MCPR operating limit. vary withscram speed.For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% ratedpower and the 100% core flow thermal limit values, respectively, can be used unless otherwise Indicated In the applicable table.Westinghouse methods used in slow and fast transient analyses as well as SLMCPR calculations are sufficient to cover the small effect of Vhe asymmetric feedwater temperature for all modes ofoperation as supported by the reload analysis.
Therefore, all thermal limits for all fuel types withall flexibility and EOOS options remain valid with respect to the effect of the asymmetric feedwater temperature (Reference 13).
COLR Dresden 2 Revision 12Page 8 of 453. Average Planar Linear Neat Generation RateFor natural uranium lattices, DLO and SLO MAPLHGR values are provided in Table 3-1. For allother lattices, lattice-specific MAPLHGR values for DLO are provided In Tables 3-2 through 3-42.During single loop operation, these limits are multiplied by the SLO multiplier listed In Table 3-43.Unlike previous cycles, the MAPLHGR limits for the top and bottom natural uranium lattices(lattices 81 and 89) are now set by their own limits in Table 3-1, and are no longer an aggregate based upon the most restrictive value at each exposure of all lattices.
Table 3-2 uses theupdated limits provided In Reference 11, which supersede the limits provided In the odginal RLRdocumented In Reference 3.TaWie 3-1 MAPLHGR for uNid~stamw.
GO-4 W. W.00Opl2-4.04-100?.004,0,M28,00 OpI2-4,02-11ZI.00-141ZM.50 Op1t24.03-1WMO.14GZ.6@
OpM2.4.7-14WG5.WW.M2Z.SO Op4AW4W.W14GZ$M Opt2-4.1O.0-14G1
.-Oj2 oL IN: 1 Sande4(RuIfemtsg 9, 11 15 Wnd 17)I, -,,AP0iGR07.5072000 7.50TOble 3-2 MAPLUIG 110 bun 0pt2-M- I .10.4Q1s.OO-306OOU., a"d U(Refnamm 11 and 15)AVerag Plane OLOExposure MAPL.HGI0 927600 9.0912500 9.0917500 FOR__ _ ___i24000 9.4858000 9.487000 73 COLR Dresden 2 Revision 12Page 9 of 45TO*4s "3 MAPL.HOR for bundbetftko:
Opt2-3,f?-
S.04=-.,04G6-.OO Latln8aend l(Ranfrances 3 and 15)17800 9.58._ 24000 ...7000. 7.34Tabl 3-4 MAPUA R fOr o' MOUaM(fAomm 3 wd 15)EXpom" MWUlIIIR0 10.13.10000 9.6820000 9.6824000 .....70000 7.38Table 4 M3APUIM for b Imd oO1W4.-107.O0-4QZ.00W 6.00(Pe~fwms 3 und 15)Avmsp Planar O"COEXPOS"r WAPUIGN10000 9.52S 8000 9..2.70000 7.31 COLR Dresden 2 Revision 12Page 10 of 45TOIM 3-4 MAPUt for %"undlI~tl
.
OQ.oMLLatUM2es Wnd W(Remfencm 3 and 15)EXiPMN*r MAPLNGR0 10.0310000 9.6051600O 9.6070000Z.32 TYAM 27 MAPUIM, for 1110M1M1c 1Op24rn60Lo04Wz.G&SOM0 (FslsMXces 3 md 15)0 10.64l000 9.91.7.9 COLR Oresden 2 Revision 12TAble S MAMMP OR for i.N -1101,Opt28u0a.II 00-1440R(PRfeas and 17)lipseu MAPLHGR0 8.69.2500 ... ....8.877500 9.07W10000, 9.11.0.00- 9.16M17000, .9.41.9.5822000 9.7224000 -9.79300M0 9.70.9.659.68B9.73MW -'l9.71o7200 9.93TOWl 34 MAWUIA to beIMiW!*o 8.722500 8.9066000 9g037500 9.12-_17__0000___
9.1.7.2000 .9241500 9.41.17000 961,2000 9.6822000 9.8324000 9.88300009.79 36000 .9.7450000 9.79e00.0 97472000 " 9.97Page 11 of 45 COLR Dresden 2 Revision 12Page 12 of 45Table 3-10 MAPLHGft for bundlellat:e:
LawIe 97(PAem 18 ad 17)AvwspPl w DIJExposure sAPLH(l-W -a 1! ...0 8.702500 8.885000 9.02750.0 .9.1310000 9.1812000 9.2515000 9.4217000 9.5220000 9.7022000 9.8524000 9.8830000 N9.736000 9.7342000 9.7350000 9.7760000 9.7372M00 9.9TI"e 3-11 MAPUII for ndIl :O0t-4.012-O.O*140Q
.1(PRf*Wmc 16 and 17)A- ags Plaw ... 0.0 8.825000 9.157500 92810000 9.32,-12000 9.4115o0 9.5917000 9.71200OO 10.0222000 10.0924000 100730000 993000 9.9450000 9.9160000 9.91.72000 10.24J COLR Dresden 2 Revision 12Page 13 of 45Table 312 MAPLUGR for U:ttlas00o24.Q2,4M.O.,140Z5r5o
..LattIeso(Rueft.nma 16 *d 17)Avemage-Pla OLOEXPseur MAPUIGR0 882500 9.055000 9.1875OO 9.27.....1,0000 .. ..9.2712000 9.3415000 9.52217000 9.6820000 10.044(e 24000 10.0550m 9.66-_3___O _ 9.795000 9..2WE'0 9.8760000 9.78017000 1022192'000 .... .10.21T"bl 3-13 MAPH for wml- WWNW:
24000 1tn 10.150000o: _:- -9.96:.000 9.0972000 10.321700DO 10.19*- 36000 .... ..10.02ME... 7oo' -10.32:::
COLR Dresden 2 Revision 12Page 14 of 45Table 3-14 MAPLNGR for bund/ltce:
OpW24.03-16GZL0@.14GZS.50 Lotclo 101(Rteemnces 16 and 17)Average Plow o..Exposure MAPLNGR(WI)0 8.972500 9.137600 9.2510000 9.2412000 9.2715000 9.3917000 9.4520000 9.5822000 9.7024000 9.8130000 9.7336000 9,68Wm______
9.6950000 9.7460000 9.7172000 9.93TWle 3-1. ?AP UIQR for mlohtmoe opt24.oWG-ZMWo o 8.6oLot"" 102(RefePmno 18 and 17)Average PWnr .O .Expoure MUAPU0 9.022500 9.175000 9.277500 9.3110000 9.3312000 9.3511500 9.4717000 9.6420000 9.6822000 9.8124000 9A.930000 9.823600 9.7842o00 9.78..=0000 9.78.. 0000 9.74720 9.9 8 COLR Dresden 2 Revision 12Table 3-1S MAPLWIA for bundiedAdnow OM-4.,3-1
.O.O-14=A.O LAM* 103(RPaeface.
18 OaW 17)expoar. MAPLHOR0fL 9.02500 9.155000 9.287500 -9.3310o00 9.3415000 9.49170 2i.56 .....20000 9.6922000 9.63.24000 9.8930000 .9.8236000 9.7742000 9.77SOOO 9.7626000 9.93am -9.9ozTabis 347 MAPLHGR for h m ieftw:Liume I04(Refuo 10 amd 17)A~sae laow 01.*sure MAPLOI0WM 9.152500 9.325000 9.417500 9.4910000 9.4912000 9.5415000 9.6617000 9.7520000 10.0022000 10.103000 10.0336000 9.9642000 9.98m0m00 9.9060000 ..90-MN SOM72000 1-.,100 02Page 15 0145 COLR Dresden 2 Revision 12Tsb*e 3-IS1MPUIGR fo bwnWi- 1 :wa 105(RefeMnos 18 and 17)0 9.199500 9.355000 W.44m700 9.4710000 FA.R100 9.4817000 9-.20000, 10.01an'. 10-0624000 10.0630000 10.0242000 9.92im 9.68a0000 9.87720m00 1. .0.25OpM4.O.R
..50hamu.ce W~ I(PAslumns 1e and 17)02500 9.120sow 9m.27500 9.3210000 9.34..12000 i 00 9.54.17000 9.7020000 9.8622000 9.902400 9.9930000 9.793800 974'4200W 9.745000 9.7960000 97. 872000 9.96MPage 16 of 45 COLR Dresden 2 Revision 12Twol 340 UAPlHtR for, .Wl .10?oP04.07-1405ARMsSO (RemMne lMand 17)Aw,,w IN OL- -X,Exposure lAP:,G(l, wvm'm .(kW/ft)0 9.002500 .9.165000 9.317500 9.3010000 9.4112000 9.46I__ ___ 9.6417000. ....... 9.8120W0 -220001012400030000 9.899.8342000 9.83S000 9.88600009.81 72000 ..pip...10.03 Irs~"VftGiw USop"4W-ldm.
ULOW" I"(RPlekmnMe1 OWd 17)10o~o 9.42 .2500 9.15500 9.3010000 9.4212000 9.47-17000 .. 9.82A%92000 9.22000 10.0024000 9.983 0000 ... 9.8O636000 9.8242000 _ _872000 10.03Page 17 of45 COLR Dresden 2 Revision 12Table 3-22 AAPL4NGR for bundMedalm:
Op2-4,07-14GU0@404MMS Wd"~i 101andU 7(P~iWrNcM 16aOW 17)p~xw -,wLrFqmWM IAAPLHGR0 9.18....200 9.315000 9.477500 9.6710000 9.6612000.. 9.661500M9917000 120000 10.2422000 10.2224000 10.2030000 10.113600 10.0442000 10.0450000 10.0260000 9.9872000 10.29TObl 3-23 MAPLNGR forOpt,4.OT.14GS.5O2OR56O Wpcs 110(RAshrn Is ad 17)-0_ -9.182500.375o00 9. g53-10000 9.5312000 9.0O1S000. 9.9517000 10.1620000 10.2222000 10.202400010.19 30000 10.09.. 000 10.0342000 110.0500009.97 60000 9.9672000 10.29Page 18 of 45 COLR Dresden 2 Revision 12Tabe 3-24 MAPLHJR for bundlbiceo:
Opl2.4.07.14Q5.0.2GZ&J.5 La.ttm III.(Referencs 16mnN 17)M-Averae Plar O LEqxpose MAPLK~ft0 9.555000 9.767500 9.7510000 9.6815000 9.9617000 10.1520000 10.2322000 10.2224000 10.2030000 10.1136000 10.0442000 10.0450000 9.978000 9.9672000 10.30Tae 3-25 MAPLtIGR for bundl/afI 11t(Rfleenew Sand 11)Exporn WMO2600 8.865000 8,.977500 9.0410000 9.0712000 9.1115000 9.2617000 9.3620000 9.5422000 9.6924000. 9.75-30000 9.683600 9.6442000 9.6250000 9.6760000 9.66720.00 9.88Page 19 of 45 COLR Dresden 2 Revision 12Tab 3-26 PAPLHQR for bundlMattice:
Opt2-4.0&-1$ZS.-1m4GZ.o LdUft 114(Rutgn 9 and 11)EN190u MAPU4GR08 5.702500 8.88500O 9.027500 9.0810000 9.1312000 9.1815000 9.3517000 9.479.8522000 9.8024000 9.83 9.7836000 9.7242000 9.705000 9.7060000 9.7072000 9.92T"ble 3-27 MAPUWGR foe b:LsWcm 115(Refwnms 9 and 11)AveagePlaer LOExpaure APLHGRt0.-- 8.682500 8.855000 9.017500 9.1010000 9.1412000 9.211500 9.3817000 .49A20000 9.6822000 9.8224000 9.8330000 9.7636000 9.7142M00 9.70500 9.68Im 9.6872000, 9.93Page 20 of 45 COLR Dresden 2 Revision 12TabW as MAPLUGR for bund- gtl. 1 :Opt2411951M
.0M-Z50OLO~c. 116(Refrencesg 9d 11)Evmwss UW' OLO0 8.811 2500 9.005000 9.147500 9.2.9.289.3.9.1m.... 0000.9.99 22000 ... 10.0324000 10.0130000 ,_9.97..42000 9.90*60000 9.8572000 10.1.9Trol s-a. MWO lot bmiIMMWcs
~AlM 117(RMe snw 9 and 11)0 6.855000 9.177600 9.2210000 9.2212000 9.2815000 9.469.6420000 10.0022000 10.0024000 10.0030000 995360009.89 50000 9.7960000 9.82Page 21 of 45 COLR Dresden 2 Revision 12Page 22 of 45TabMP 3-0 MJM for d :Ui a 11l(Refemcu 9 m4 11)rv~wS" PS -OLO.--xc~ MWPLHGR0 __ .6____2600 976S00 9.797500 9.7110000 9.6412000 9616000 9.9517000 10.1620o00 101722000 10.1624000 10.143000 10.0736000 10.0142000 _. _50000VA60000 9.9072000 10.26TO* 341 MAPUIQR for .........
OpW4.056-fI
- W14UWONtl 119(RA rmncemand 11)wf --m ---0 _ 8.962500 9.117600 9.2110000 9.2112000 9.23i5s00 9.3317000 9.4120000 9.54.22000 9.6738000 9.88s000 9.678000 9.66 COLR Dresden 2 Revision 12Tabe 3-2 MAPIHGR for bundMetiloe:
Op@4.0o.IZMMo.A140Wo Latim 1120(Rsferwics 9 end 11)Avr* pPlar 0LOEpoewi FAAPLIIOR 0 9.002500 9.156000 9.25ME0 9281 19o 9.2812000 9.30,15000 9.4117000 9.6020000 9.642Ow 9.7824000 9.8630000 9.813m00O 9.7842000 9.7560000 9.6972000 9.69T* 34M$MAPLHoBr for 6midip0PWS1240mU023*S4401 ow (PRbranow 9wd 11)0 8992500 9.12500 9.24750 9.2910000 9.281200 9.3215000 9.4217000 9.5220000 9.652200 9.7924000 9.883000 9.036000 9.7642000 9.7560000 9.67000 .9.6772000 9.93Page 23 of 45 COLR Dresden 2 Revision 12TAba 3-4 MAPUIGA for -.,dI 1i.a1 :CIP12405ISMASIOZUMI L.tM ' 122(References gand II)Avra- PO a O....ExpuMM MAPLNWUW I -1nl') .... .0 9.14--,4M500 9.4310000 9.4012000 .. .4815i00 9.6017000 9.7120000 9.9622000 10.0524000 10.0530000 10.0136000 99642000 9.8950000 9,8060000 9.8472000 10.19T~Wf $46 PAPLWIN lor dilmllifto Latili 1232500 9.33600 9.427500 9.4310000 9.3012000 9.421500 9.5417000 9.678oooo__ -_,_ 9.9722000 10.0324000 10.0330000 10.003800 9.M42000 9.8650000 9.77mmoo 9817M00~ 1020,Page 24 of 45 COLA Dresden 2 Revision 12Table 3-6 MWLNR for bundtgaiactrh Opt2-c ism.00-14G=50 Wds 124(Rewunces 9 w 11)0 9.662600 9.775000 9.797600 9.7110000.. 9.84116000 9.9517000 10.15.22000 10.1624000 10.1430000 10.0736000 10.0142000 9.9560000 990.... ...-.- -..... .. .----72000 .. ... 10.26o" 3w 111o.llm -." md -7Wle 9.26(Rindaunin Ba~nd it)0:2 -o:2: : 2 8.91 2 iiS_5000 9... ._...7500 9...,2810000 9.2812000 9.3116So000 9.4717000 9.A520000 9.8222000 9.87.000 ..9.889.79360009.73 42000. 9.715000 9.75jM~ 9Page 25 of 45 COLA Dresden 2 Revision 12TOIW 348 MAPLHGR for bundleAhatce:
Lattice 126(Refmnroe 9Band 11)"Average aw ... OLOExpour MAPLHOR0 8.952500 9.115000 9.26.7500 .9.3210000 9.3412000 9.3915000- 9.5717000 9.7620000 9.9322000 9.97-400--"- -9.9530000 9.883600 9.8342000 9.8050000 9.7960000 9.7772000O 9.98Table 35 M MAPLHG o WnIUs25W 9.10504ZU 12000 12 40(Rfris and 11)220 8.9725000 9.1056000 9.82542DOIOI 9'"O.795700- _ 9.3710000++ _ _ _ ... .WE 9.3 .120,0094+ 20000 995emPage 26 of 45 COLR Dresden 2 Revision 12Tabt S40 MAPULW for bI mdM -lOPM24.10.14G5J0.20Z LUs126(Refenoes 9 and 11)JIPOdoT 0 9.102500 92m5000 9.427500 9,5210000 9.5212000n15000 9.8717000 10.102.o00 10.2022000 10.1924000 10.1730000 10.0936000 10.03W10.0150000 9.9260000 9.9372000 10.25Tble 241 VAPUGA for WNWdlslIl Op14.10,1 anM4025.6o Wmce 120(Rfealm 9Sd 11)sainsue WAPLNSRo 0NI 9.14 12500 9.317600 9.44700 ..9.4817000--..-
9.111.20000 9531M700 -- 10-- 1.12,400 IO.1930000 .. 10.0835000 .10.0142000 9950000 A.688! 0000 9.91I 72000 10.25Page 27 of 45 COLR Dresden 2 Revision 12TAbW 342 MAPIHGR for bI~ Opl t4GZ5.5 4 .6O(Riegnces Band 1)Expmr MAPIHOR.....,dam'u ... km0 9.606000 9.717600 &10000 9.6112000 9..217000 10.0920000 10.2122000 10.1924000 10.183000 10.1036000 -10.0442000 0.9850000 9.8760000 9.90.72000 10.25Till ,4) IIUIBR Uidim(uFte~euflss 11#d IS)Page 28 of 457. ... ... .. 1.03 0. .8 COLR Dresden 2 Revision 12Page 29 of 454. Operating Limit Minimum Critical Power RatioThe Operating Limit Minimum Critical Power Ratios (OLMCPRe) for 02C23 were established toprotect the Safety Limit Minimum Criica Power Ratio (SLMCPR) for the abnormal operational occurrences.
The SLMCPR values for DLO and SLO for 02C23 were determined to be 1.12 and1.14 (Reference 13), respectively, which are unchanged from the NRC-approved values for theprevious operating cycle (I.e., 02C22).In determining the SLMCPR values for D2C23, Westinghouse appled the methodologies fromCENPD-300-P.A, consistent with the manner specified in Limitations I through 6 and 8 of theNRC Safety Evaluation Report (SER) approving CENPD-300-P-A (References 12 and 14). The-pplication of these melthodologiles was previously approved by the NRC In license amendment 224 to Renewed Facility Operating License DPR-19 (Reference 18).4.1. Manual Flow Control MCPR LimitThe OLMCPR is determined for a given power and flow condition by evaluating thepower-dependent MCPR and the flow-dependent MCPR and selecting the greater of thetwo.4,1.1. Powiu Oopendent MCPRFor operation less than 38.5% core thermal power, the OLMCPR as a function ofcore thermal power Is shown in Tables 4-8 and 4-9. For operation at greaterthan 38.5% core thermal power, the OLMCPR as a function of core thermalpower is determined by multiplying the applicable rated condition OLMCPR limitshown In Tables 4-2 through 4-7 by the applicable MCPR muLtiler given InTables 448 and 49. For operation at exactly 38.5% core thermal power,MCPR(P) Is the highlr of either of the two methods evaluaaed at 38.5% corethermal power.4.1,2. FIow-Oependont McWfTable 4-10 gives the MCPR(F) limit as a functio of the flow basd on theapplicable plant condition.
The MCPR(F) limit dtermmined from thIs table Ik theflow dependent OLMCPR.4,2. Automatc FlOw Cont"ol Cf LimitAutomatic Flow Control MCPR Limits are not provided.
COLR Dresden 2 Revision 12Page 30 of 454.3. Scram Tim.TSSS, ISS, and NSS refer to scram speeds. TSSS Is the Technical Specification ScramSpeed, ISS Is the Intermediate Scram Speed, and NSS Is the Nominal Scram Speed.The scram time values are shown In Table 4-1.The NSS scram times am based on a conservative Interpretation of scram timesurveillance measurements.
In the event that plant surveillance shows these scramInsertion times to be exceeded, the MCPR lmits are to default to the values whichcorrespond to the ISS scram time. The ISS times have been chosen to provide anIntermediate value between the NSS and TSSS, but Interpolation between these valuesis not supported by Westinghoose mehodology.
In toe event 1hat the ISS t*ms areexceeded, MCPR lmits for the TSSS apply.Tiba 4-1 Soma Times(Rdsersnou 5 d 13)Control Rodhumlmn Frton IM (soonds)
S (seonds)
NSS (meconds) 5 0.48 0.360 632420 0.89 0.720 0.70050 1.98 1.580 1.510490 3.44 2.740 2.6354.4. Reclrcutatlon Pump MSr Guwetor SeWngsCycle 23 was analyzed with a maximum aors low runout of 1 10%; therefore therecirculation pump molar generatr scocf tube mechanical and electrical stops must beset to maintain core flow less than 110% (107.8 Mblbr) for aOl mnout events (Reference 8). This value is consistent wilh the analyses femnced In Reftrence
- 13.
COLR Dresden 2 Revision 12Page 31 of 45Tab" 42 MCPR TBS Bwiid Opifaing ULint -NFWTAl Fuel T"pe(Rmumne 13)EOOS Cwufnfblnon...
MWOMTU dMBASE 1.63 1.74BASE SLO 1.66 1.78PLUoOS 1.70 1.81PLU. .SMO -1.74 1.85TIB1OOS 1.74 1.64TBVI9SSLO, 1.78 1.8TCV SLOW CLOSURE 1.73 1.86TCV SLOW CLOSURE SLO 1.77 1.89.TCVSIUCKGCOSED
... 1j.74TCV STUCK CLOSLO .68 1.78TWOl 4-3 MMCP TMB 9MW Op1s!1g Umits -RFWtM RodTy "(Rbmce 13)! m 13600OSoblnssss mm-dUTU MWTUW1.63 1.74BASE SLO .1.6 .1.78PLUOOS 1.70 1.81PLUOOS SLO. 1.74 1.851.77 18TrBv owCOSU..0 1.61......
1.89 ..TCVSLOWCLOSURE 1.73 -1J.85TcVSLW OR RESLO 1.7TCV STUCK CLOSED 1.63 1.74TCV STUCK CLOSED SLO .1.66.1 !,78-COLR Dresden 2 Revision 12Page 32 of 46Table 4-4 $ leWd OpeMi Limits -NFWTAll Fuel Type(Refernce 13)E008 1oblhle Wd#MT MWdMITBASE 1.45 1.50BASE SLO .. .1.48 __ 1.53.... PLUOOS 1.61 1.67TBVOOS SLO~16BASE SLLO 1.54 1.65TCV SLOW CLOSURE L 1.54 1.2T~cvSTL osEs, 1.41 1.67TCVSTUCK CLOSED 9L0 1.48 1.53T"bt 4-5 MCPR IS leed O Limis -RFWTAll Fuel Tmye(ReWence 13)9 1360 :0 n136s oos cmm*BASE 1.61 1.53BASE SLO 1.54 -1.50PLUOOS 1.51 1.57P PLUOOS SLO 1.64 1.80TSVOOS 1.60 1.66TBVOOS SlO 1.63 1.69TCV SLOW CLOSURE 1.51 1.69TCV SLOW CLOSURE SIO .1.4 1.62TCV STUCK CLOSED 1.61 1.563TCV STUCK C OESLO, 1.64 1.58, COLR Dresden 2 Revision 12Page 33 of 45Table 4" CPH NSS Based OpnMtng Umlts -NFWTAll Fuel Types(Raefmne 13)EOON Com nn M VWdWU UWWMBASE 1.45 1.47..ASE SLO 1.48 1.50PLUOOS 1.49 1.. 4PLUOOS SLO 1.52 1.67TBVOOS -.53- 1.59TBVOOS SLO 1.50 1.62TCV.SLOW CLOSURE 149. 1.6TCV SLOW CLOSE SLO 1.52 1.59TCV STnUCK CLOSED 1.45 1.4TCV STUCK CLOSED SLO t.48 1.50Ta*4.7 IPRMW w B oil Opnin Umta -MW?A# Fuel TypO(Rsu n".. 13)BSE 1.50 1.52BASE SLO 1.53 1.55.MUoos -1.50 1.54f. P.LO : 1: .53 1.57 11T.VOOS 159 1,64T8VOOS SLO 1.62 1.67TCV SLOW CLOSURE SLO 1.53 1.69TCV STUCK CLOSED QTCVSTUCKCLOSEOSLO 1.53.. 1.55 COLR Dresden 2 Revision 12Page 34 of 45TablO 44 UCPfl( tot Woetlnghoue.
Fuel -NFWTANFud TypO(ReGonco 13)-Corn Cor Poi eiMofMEOOSCombindlton Flow o F 3U -1______________Opmalng Lmimt MCPR OeaigLmtMPMlile s60 2.80 2.37 2.14R_ o e ----BasesW 2.88 2.36 2.39 1.33 1.21 1.15 1.06 1.00 t00Bs 2.80 2.37 2,4Bose SLO l 1.o 2.87 12.42 2.181.1.011100
__<os s 2.80 2.37 2.14 1.58 1.47 1.35 106 100 10>LO O P"-e : 288 2.39 ..1 .0PLUOOSSLO
--2.87 42 1.58 1.47 1.35 1.06 1.00 1.00_ _00 0 2.93 2.81 2.44__eo 4.18 US0B 2.49 1.33 1.21 1.15 1.06 1.00 1.0T___ _ > W6o 3.0 3.17 2.78sO. 4.26 314 2.54TBVOOSSLO Peo 3.98 3.23 2.83 -.-TCVIOWimue
.. .802.. .1 1.591 1.47 1.3511.07 1.0011.001 TCV Slow Closure -o 2.88 2.57 24 1..9_____w___r___ 2.87 2.56 2TCV Slow Clo6ure 1 >00 2.44 1.59 1.47 1.35 1.07 1.00 1.000 2.80 2.37 -2.14TCV... .. .... .1.33 1.21 1.15 1e 1.00o1.00
... 0 2.88 2.56 2.39 1.33TCVStuckCbosedSLO
.O 287 2.42 2.18 1.33 1.21 1.15 1.08 1.00 1.00 COLI Dresden 2 Revision 12Page 35 of 45Table 4-4 MCPR(P) for WeeIMigho Fuel -RFWTAM Fuel TV"e(Refmnc 13)c... oeco wme P"" '0EOOSComblnlUon 0 25 -1.A 36.5 I g I 100 102fa OýPe Lle*9 CPR Opi -1 GLhaft UcPRoo, 2110 2.37 2.14ease .OD 2.88 .2.56 2 .39 "1.39 1.24 1.16 1.07 1.00 1.00Bae SLO So 2.88 2 .42 2.19 1.38 1.24 1.16 1.07 1.00 1.00> W0 2.87 2.6 2.18PLUOOS 2.80 2.61 2.44 l1. 47 1.35 1.07 1.00 1.00>,v OD1 .6 .6 =39++ zs+ -. -. --I '." ,.. ,., I.o +.oTBVOOS AOD 4.5. 3.26 2.. 1.39 1.24 1.18 1.07 1.00 1.00____________
=' 60 4.0 3.2 2 !.87 , I ,, m oTBVOOS SLO _180_ _4.06 1 3.3 2.93 1.39 1.24 1.16 1.07 1.00 1.00TCV Slow Closure 16 2 2.37 2.14 1.59 1.47 1.36 1.07 1.00 1.00> Slo Cou 0 1.5 1.47 1.35 1.07 1.00 1.00S2.w7 CPsu e- 4 2. 18 -- --.0-_<O .8 237 -2.14 ... .TCVStlowCkoeum OD 2.88 2.56 239 1.39 1.24 1.16 1.08 1.00 1.00:40o 2.88 9.562 .3, 9TCV StukClosedSLO So 2.87 2.42 2.1 1.39 1.24 1.16 1.08 .0 1._6O 2.93 61 2.44 -...0m- w- -,1 1,0 1,0 COLR Dresden 2 Revision 12Page 36 of 45Table 4-10 MACIR(P)
Icr WginhusFuel (Rsfeeunc 13)Flw-Oiptd it MP fr er==es a"'__________E006 now(1 6 SVEA411 0~~uMCPRTTTT7IO0 1.98 2.021001.8141110,--0.8IA COLR Dresden 2 Revision 12Page 37 of 455. Unear Heat Generation RasThe thermal mechanical operating limit (TMOL) at rated conditions is established In terms of themaximum LHOR given in Table 5-1 and Table 5-2 as a function of rod nodal (pellet) exposure.
The Table 5-1 limits apply to fresh Optlma2 bundle designs for the Cycle 21 and Cycle 22 reloadswhile the Table 5-2 limits apply to fresh Optima2 bundle designs for the Cycle 23 reload. Thelimits changed for the Cycle 23 fresh fuel due to the Increase In Uranium enrichment In theGadolinla rods, which meant that It was no longer guaranteed that all Gadolinla rods would staybelow their TMOL limit through monitoring of only the Uranium rods. Therefore, the TMOL of theGadolinla rods must be monitored explichly for Cycle 23 fresh fuel. The natural Uranium lattices81 and 89 are still monitored with the original UWi rod limits since they are not enriched(Reference 21).The linear heat generation rate (LHGR) limit is the product of fth exposure dependent LHGR limitfrom either Table 5-1 or Table 5-2 and the minimum of. the power dependent LHGR Factor,LHGRFAC(P),
the flow dependent LHGR Factor, LHGRFAC(F);
or the single loop operation (SLO) multiplication factor where applicable.
The LHGRFAC(P) is determined from Table 6-3, asapplicable.
The LHGRFAC(F)
Is determined from Table 54.Tabie 5-1 IHR U.4M w fr bundLONeG" Opt24..1i'lGSk00MOZ5.t-:4.1)0MWR es0pt2-4.0-10(07A0-20*Z4,00WAa*iies Opl24.2-1SG1
.0140Z5.UWAit LatticsOpt2.A46Q-
.,-14Q25JWAN LAIW sOpt2-4.07.1405.50402=.WAR LattlcOpt2-4.O5-ISGZ.OO-14MZ5.,WLuttkcs I1 and 69OpM2-4*WISGZS
..14GZS A 1, Nao 81 6 MWOpW2.4.10-14GZ 2G2.SMis S 1I and W(i:temecs
- 9. 15, 16, 17. Ond21)19d Nodal Izou UMR M~lfor MRd(G..... ) .. .. ..Wvf) I0.00 13.1114.00 13M172.00 6.48TOMl 5-2 LINO LIMA Wo bundlslctl A SUSS5140".6 LANUMIoMM SI and 40(Pf Wosn=ssO.
13iWA 21)
COLR Dresden 2 Revision 12Table 54 LHGRFAC(P)
Multplken A Fuel Type(Reference 13)Page 38 of 45Corn Thernml Power (% of rated)EOOS Comblnemin
-.-- -..--.0 25 3L5 .8 38.S 50 60 6o 100 IU2Base 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00BaseSLO 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00PLUOOS 0.49 0.62 0.69 0.79 0.72 0.81 0.87 1.00 1.00PLUOOS SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00TPvOOS 0.39 0.62 0.69 0.70 0.72 0.78 0.82 1.00 1.00TBVOOS _ _ 0.30 0.46 0.53 0.70 0.75 0.78 0.82 1.00 1.00TCV Slow Closure 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.001TCV Slow Closure SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00TCV Stulo Closed 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00TCV Stuck Ck SLO 0.49 0.62 0.69 1 0.73 0.80 0 0.87 1.00 1.00I 0.7 0.83 0.87 .Tabe 64 Ut CRFW(P No""All FUMl TWe(Refernce 13)EOU ,oR Flow (% of 0 MW r)0 as 40 60 SO 100 110Base Case and allEOC SCondftom 0.27 0.43 0.59 0.80 1.00 1.00 1.00 COLR Dresden 2 Revision 12Page 39 of 456. Rod BlOck MonitorThe Rod Block Monitor Upscale Instrmwentation Sepoints are determined from the relationships shown below:Tabl 6-1 Pod Bock Monitor bnam,., eon M etpolnt(FRefumw 6)UPSCALE TRI FUNCTlON AWILLOWANILE VALUETWO Recirculation LOWp 0.65 Wd + $5%Sing lecran Loo 0.65 Wd + 51%The selpoint may be Iowerohlglw and win still comply with the RWE analysis because AWE isanaled uwbloked (Reference 22).Wd -percent of recirculation loop ddve flow required to produce a ramed core flow of 98.0 Mibir.
COLR Dresden 2 Revision 12Page 40 of 457. Stabifty Protection StpointTable 7.1 OPM MfiW A Tdp Setig(Reference 13)I OAU mltd sm M) Co*nolo Con (Np)1.15 16TRI PODA Is the only OPRM setting credited in the safety analysis a document In thelicensing basis for the OPRM system.The OPRM PBDA trip settings are based, in part on the cycle specific OLMCP and ft powerdependent MCPR limb. Any change to the OLMCPR values and"or the power dependent MCPRlimits should be evaluaed for potential impact on the OPRM PBOA trip stting.The OPRM PSDA trip settings are appliab when the QPRM system is declared
- operable, and theassociated Technca Specification are kmplemnented COLR Dresden 2 Revision 12Pap 41 of 458. Modes of Operation The allowed modes of operation wit combinations of equipment outOf-rvlce are as described below.Base §BWe (DLI or &JO)P ] PLUOO6 (DLO orL§O)TBVOOS TBVOOS (OLO or SLO).. See Table 8-1 for powerresctions TCV Slow Closure TCV Slow Clowure (D.O or SLO)TCV Stuck Closed TCV Stuck Closed (PLO or SLO)> Not applica to combination of one TCVand one TOV Stuck Closed)o See Table S-2 for powe restrictionr TSV Suck Closed TCV Stuck Closed (PLO or SLO)> Not applicable to combination of one TCVand one TSV Stuck Closed> See Table 8-2 for pow restrictions PCOOS TCV Slow Closure (Q0O or 81O)ep0os and PLUOOS PLUOOS EDLO or S1O)PCOOS and TCV Slow Closure TCY Slow Closure (DLO or SLO).PCOOS and TCVrTSV Stuck Closed > Operation is only allowed at or belowthermal power as specified in Tableand> The more restrictive of the flow-dependent limits (established by one TCV1TSV StuckClosed) and power-dependent limits(establhd by one TCVitSV Closed, TCV Slow Closure and PLUOOSlimit) w ly. ...R isadVn p Operation Is only Sallowd at or belowtherm power as specified In Table 8-2end> The more resictive W the flow-dependent limits (established by one TCV/TSV StickClosed) and power.dependent limits(established by one TCVJTSV StuckClosed, TCV Slow Closure and PLUOOSCommon Notes -Applicable to both Base Case and all EOOS Combinations for OLO/5101. A modes mafowed for operation at MEWA, lCF (up ID 108% rated core low), andooestdown (full powr pertion up to a cycle epose of 16300 MMU+ 25 EFPP) uqectto restrictions In Tables 8-1 and 8-2. Addltionally, eber EOC must be reached or coastdown must begin prior to reaching 16300 MWdMT + 25 EFPP. The licensing analysis remains validdown to a coastdown power level of 70% given all bumup limils re satliied per Mefdology 7.Each OOS Option may be combined with ech of the following conditons provided therequirements of References 19 and 20 are met0 A maximtr of 18 TIP channels OOS (Up to 2 common TIP channels may beOOS, in combination with a maAmum of 18 TIP channels OOS in locations outside of the common TIP channel locIon of 32-33).* Up to 20 ELPFPM OOS0 An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH +.25%/)
COLR Dresden 2 Revision 12Page 42 of 462. All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with theremaining 8 TBVs meeting the assumed opening profile In Reference
- 7. The analyses alsosupport Turbine Bypass flow of 29.7% of vessel rated steam flow, equivalent to one TBVOOS (or partially closed TBVS equivalent to one closed TBV), If the assumed opening profile(Reference
- 7) for the remaining TBV Is met. If the opening profile Is NOT met, or if the TBVsystem cannot pass an equivalent of 29.7% of vessel rated steam flow, utilize the TBVOOSconditon.
- 3. For both Base and EOOS DLOISLO conditions, for operation at NFWT, the OLMCPR limit Isapplicable to a variation of +1 0°F1-30*F in feedwater temperature, and an operating steamdome pressure region bounded by the maximum value of 1020 psla and the minimumpressure curve in Reference
- 8. For operation outslde of NFWT, RFWT of up to 120OF Is alsosupported for cycle operation through EOC subject to the restriction in Reference 4 forfeedwater temperature reductions of greater than 100 WF. The restriction is to maintain lessthan 100% rod ine. This includes, but is not limited to FWHOOS and FFTR. For a feedwater temperature reduction of between 300F and 1200F, fth RFWT limits should be applied.4. For all cases, equivalent of 2 of the first 3.5 Turbine Bypass Valves must be capable ofopening via the pressure control system while Turbine Bypass Valves #5-9 ae allowed to beout of service.
For aN cases except TBVOOS, the equivalent of 8 of 9 Tu*ie Bypass Valves(as stated in Note 2 above) are required to trip open on Turbine Control Valve fast closure oron Turbine Stop Valve closure.
The TBVOOS condition assumes that all of the TurbineBypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine StopValve closure.5. A single MSIV may be taken OOS (shut) under all OOS Options, as long as core thermalpower is maintained s 75% of 2957 MWth (Reference 13).TWble 1 *ar Thernm PmWr lNeeMotiM for TRYOWN(Pewwc 13)Cmt Trhma Pw!hrPRlOMM (% of Pi CtS f U (MW&UT Valvae AvaimNble S100 EntrCycle 9of 9S100 <18079 8 of 9S98 :'18079 Sof9Table 64 Cm Themail Pmwo fear fw One TCWSV Mtuc Ckoed with TSV'*OcNdedto Prevent lim Pnre uloCore Th* Mal Power N"umbrOT1ai Reeotlen
(% of Rated feq*rd to PreventPower) Sysm pe<75 1.9<80 3.4£85 6.2S90 6.8 COLR Dresden 2 Revision 12Page 43 of 459. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documentr:
- 1. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark ofCASMO/MICROBURN BWR Nuclear Design Methods,t Revision 0 and Supplements onNeutronics Licensing Analysis (Supplement
- 1) and La Salle County Unit 2 benchmwtking (Supplement 2), December 1991, March 1992, and May 1992, respectively.
- 2. NEDE-24011-P-A-15 (Revision 15), "General Electric StendWd Application for Reactor Fuel(GESTAR),"
September 2005.3. NEDO-32465-A, "Reactor Stability Detect and Suppress Solutions Licensing BasisMethodology for Reload Applications,"
August 1998.4. We Report WCAP-15682-P-A, "Westinghouse OWR ECCS Evaluation ModelSuppment 2 to Code Description, Oualification and Application,"
April 2003.5. Westinghouse Report WCAP-16078-P.A,
-Westinghous BWR ECCS Evaluation Model:Supplement 3 to Code Description, Qualification and Application to SVEA-96 OptImS2 Fuel,"November 2004.6. Westinghouse Report WCAP-16081-P-A, "1Ox10 SVEA Fuel Critical Power Experiments andCPR Correlation:
SVEA-96 Optina2,"
March 2005.7. Westinghouse Topical Report CENPD-300-P.A, "Reference Safety Report for Boiling WaterReactor Reload Fuel," July 199e.8. Westinghouse Topical Report CENPO.390-A, "The Advanced PHOEIX and POLCACodes for Nucear Design of Bo"ng Water Rteac , December 2000.9. WestinghousTopical Report WCAP-15838-P-A, "Fuel Rod Design Meftho for BoilingWaler Reaeors -Supplenent 1." April 2000.10. Westinghouse Topical Report WCAP-15942.P-A, "Fuel Asswebly Mechanical DesignMelhodology for Boiling Water Reactors Supplement I to CENP-287.7 March 2006.11. Westinghouse Report WCAP-16081-P-A, Addendum 1-A, Revision 0, "SVEA-96 Optima2CPR Correlation (D4): High and Low Flow Applcations,"
March 2009.12. Westinghouse Report WCAP-16081-P-A, Addendum 2-A, Revision 0, "SVEA-96 Optina2CPR Correlation (D4): Modified R-factors for Part-Length Rods," February 2009.
COLR Dresden 2 Revision 12Page 44 of 4510. References
- 1. Exelon Generation
- License, License No. DPR-1 9.2. NRC Letter from 0. M. Crutdcfeld to All Power Reactor Licensees and Applicants, Generic Letter88.16; Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.3. Westinghouse Document NF-SEX-07-187 Rev. 3, "Dresden Nuclear Power Station Unit 2 Cycle21 Reload Licensing Report,"
June 2008 (TODI NF0700236 Rev. 2). (Attachment 13 of FCP388557)4. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad CitiesExtended Final Feedwater Temperature Reduction,"
Carlos de Is Hoz to Doug Wise and AlexMIsak, August 27,2002.5. Exelon Technical Speciications for Dresden 2 anW 3, Table 3.1.4-1, "Control Rod Scram Times."6. GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod BlockMonitor, Commonwealth Edison Company, Dresden 2 & 3," December 15,1999.7. Exelon TOOl OPS Ltr 11-17 Revision 1, "OPL-W Parameters for Dresden Unit 2 Cycle 23Transient Analysis,'
May 4, 2011. (Attachment 14 to FCP 377654)S. Exelon TOOl ES1 100008, Revision 0, "Dresden Unit 2 Cycle 23 Licensing Generic InputsReport,"
May 3, 2011. (Attachment 15 to FCP 377654)9. Westinghouse Document NF-BEX-1 1-68, "Bundle Design Report for Dresden 2 Cycle 23," April19, 2011. (Attachment 11 to FCP 377654)10. WestinghouseDocument NF4B3EX-1 1-71, "FinalTask Report for Dresden Unit 2 Cycle 23 ReloadLicensing Analysis Plan," May 6,2011. (Attachment 13 to FCP 377654)11. Westinghouse Document NF-BEX-.
1-101-NP, Rev. 0, "Dresden Nuclear Power Station Unit 2Cycle 23 MAPLHGR Report,"
August 2011. (Attachment IS to FCP 377664)12. Exelon Letter RS-05-078, "Request for Licensing Amendment Regarding Transition toWestinghouse Fuel," Patrick R. Simpson to U.S. Nuclear Regulatory Commission, June 15, 2005.(Avaiable In EDMS)13. Westinghouse Document NF-BEX-1 1.104, Rev. 0, "Dresden Nuclear Power Station Unit 2 Cycle23 Reload Licensing Repot" August 2011. (Attachment 17 to FCP 377654)14. Westinghouse Document NF-BEX-1 1-94, Rev. 0, "Transmittl of Safety Limit MCPR for DresdenUnit 2 Cycle 23," June 21, 2011. (Attachment 19 to FCP 377654)15. Westinghouse Document NF-SEX-07-62, "Final Report for Dresden 2 Cycle 21 Bundle Designs,"
4/10/07.
(Attachment 4 to FCP 364026)16. Westinghouse Document NF-BEX.09-1 18 Rev. S, "Dresden Nuclear Power Staston Unit 2 Cyce22 Reload Licensing Report,"
June 2011 (TODI ES0900022 Rev. 3). (Attachment 38 to FCP378107)17. Westinghouse Document NF.BEX-09-64, "Bundle Design Report for Dresden 2 Cycle 22," April22, 2009. (Attachment 3 to FOP 373427)18. NRC Letter, "Dresden Nuclear Power Station, Units 2 and 3- Issuance of Amendments Regarding Safety Limit Minimum Critical Power Ratio (TAC Nos. MD6013 and MD6602),"
Christopher Gratton (NRC) to Charles Pardee, November 6,2007. (Available In EOMS)
COLR Dresden 2 Revision 12 Page 45 of 4519. Westinghouse Document BTD 09-0311, Revision 1, "Westinghouse CMS -Operation Guidelines for Dresden and Quad Cities Plants,"
July 20, 2009.20. Westinghouse Document BTD 09-0723, Revision 0, 'Westinghouse CMS -Core Monitoring Strategy for Dresden 3 Cycle 21,' July 3,2009.21. Westinghouse Document NF-BEX-1 1-147, Revision 0, "Dresden Unit 2 Cycle 23 ReloadUcensing Report Clarifkcaton,"
September 29,2011.
(Attachment 20 to FCP 377654)22. Westinghouse Document NF-BEX-11-103, Revision 0, "Dresden Nuclear Power Station Unit 2Cycle 23 Reload Engineering Report,"
August 2011. (Attachment 16 of FCP 377654)