ML22223A116: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:
=Text=
=Text=
{{#Wiki_filter:Sources of Uncertainty in Probabilistic Flood Hazard Assessment (PFHA)
{{#Wiki_filter:Sources of Uncertainty in Probabilistic Flood Hazard Assessment (PFHA)
Joseph Kanney Fire and External Hazards Analysis Branch Division of Risk Analysis Office of Nuclear Regulatory Research OECD/NEA/CSNI/WGEV Workshop on Uncertainties in the Assessment of Natural Hazards April 19-21, 2022 1


Outline
Joseph Kanney Fire and External Hazards Analysis Branch Division of Risk Analysis Office of Nuclear Regulatory Research
 
OECD/NEA/CSNI/WGEV Workshop on Uncertainties in the Assessment of Natural Hazards April 19-21, 2022
 
1 Outline
* Probabilistic Flood Hazard and Risk Assessment Overview
* Probabilistic Flood Hazard and Risk Assessment Overview
* Dimensions of Uncertainty
* Dimensions of Uncertainty
* Flooding Scenarios
* Flooding Scenarios
  - Site-scale Flooding
- Site-scale Flooding
  - Riverine Flooding
- Riverine Flooding
  - Coastal Flooding
- Coastal Flooding
  - Combined Flooding
- Combined Flooding
* Summary 2
* Summary
 
2 1, 2,, 1 2  
 
Hazard Curves : Fragility Curves :
Quantitative Quantitative Reliability probabilistic of Passive and assessment Active Flood Protection of flood hazard(s) Features
 
Load Intensity
 
Magnitude


1 ,
Procedures Flood Protection Reliability of Procedures and Feature and Manual Actions Manual Actions Human Reliability Assessment (HRA) and Ye s Human Factors (HF) insights Protected? Impact of Environmental No Conditions on flood protection and/or mitigation procedures
2 ,
1        2 Hazard Curves :          Fragility Curves :
Quantitative          Quantitative Reliability probabilistic            of Passive and        Failure Probability assessment          Active Flood Protection of flood hazard(s)              Features Load Intensity Magnitude Procedures Reliability of Procedures                                             and Flood Protection                                                                                      Manual Actions and Feature Manual Actions Human Reliability Assessment (HRA) and Yes                                                                                                                  Human Factors (HF) insights Protected?
Impact of Environmental Conditions on flood No protection and/or mitigation procedures Mitigation No Impact No                Yes Success?                            Plant PRA Model                                            Impacts Impact                                                    No


4 PFHA Approaches
Mitigation
 
No Impact No Ye s Impacts Impact Success? Plant PRA Model No 4
PFHA Approaches
* Statistical Approach
* Statistical Approach
  - Fit probability distribution(s) to flood severity metric of interest
- Fit probability distribution(s) to flood severity metric of interest
* Flood frequency analysis
* Flood frequency analysis
* Precipitation frequency analysis
* Precipitation frequency analysis
* (Monte Carlo) Simulation Approach
* (Monte Carlo) Simulation Approach
  - (Mechanistic) simulation models to compute flood severity metric(s)
  - Probability distributions for model parameters, BCs, etc.
5


Key Challenges
- (Mechanistic) simulation models to compute flood severity metric(s)
- Probability distributions for model parameters, BCs, etc.
 
5 Key Challenges
* Hazard Estimation
* Hazard Estimation
  - Range of annual exceedance probabilities (AEPs)
- Range of annual exceedance probabilities (AEPs)
* Moderately rare to extreme floods
* Moderately rare to extreme floods
  - Multiple flooding mechanisms
- Multiple flooding mechanisms
* Coincident and correlated mechanisms
* Coincident and correlated mechanisms
  - Uncertainty characterization and estimation                             Magnitude
- Uncertainty characterization and estimation Magnitude
* Aleatory (e.g., storm recurrence rates)
* Aleatory (e.g., storm recurrence rates)
* Epistemic (e.g., model structure, parameters)
* Epistemic (e.g., model structure, parameters)
* Impacts
* Impacts
  - Cliff-edge effects, nonlinearity
- Cliff-edge effects, nonlinearity
  - Flood duration may be important
- Flood duration may be important
  - Sparse structure/component reliability             Failure Probability information
- Sparse structure/component reliability information
  - Sparse human reliability information Load Intensity 6


Dimensions of Uncertainty
- Sparse human reliability information
 
Load Intensity
 
6 Dimensions of Uncertainty
* Aleatory variability*
* Aleatory variability*
  - Natural randomness in a process
- Natural randomness in a process
  - Irreducible uncertainty
- Irreducible uncertainty
* Epistemic Uncertainty*
* Epistemic Uncertainty*
  - Scientific uncertainty in the model of the process
- Scientific uncertainty in the model of the process
  - Model structure
- Model structure
  - Model parameters
- Model parameters
  - Reducible uncertainty
- Reducible uncertainty
* *Characterization is a function of analytical approach
* *Characterization is a function of analytical approach
  - An addressed uncertainty may be aleatory in one model while in another model it may be epistemic
- An addressed uncertainty may be aleatory in one model while in another model it may be epistemic
  - These concepts only make unambiguous sense if they are defined within the confines of a model of analysis.
- These concepts only make unambiguous sense if they are defined within the confines of a model of analysis.
7
 
7 Riverine Discharge Example


Riverine Discharge Example
* (Statistical) Flood Frequency Model
* (Statistical) Flood Frequency Model
  - Aleatory variability reflected by the use of a probability distribution
- Aleatory variability reflected by the use of a probability distribution
* For a given set of data, sampling uncertainty is not reducible
* For a given set of data, sampling uncertainty is not reducible
  - Epistemic uncertainty in choice of distribution
- Epistemic uncertainty in choice of distribution
 
* (Simulation) Hydrologic Model
* (Simulation) Hydrologic Model
  - Future is stochastic (aleatory)
- Future is stochastic (aleatory)
* Timing and spatiotemporal distribution of precipitation
* Timing and spatiotemporal distribution of precipitation
* Changes in regulation, land use/land cover
* Changes in regulation, land use/land cover
  - Epistemic uncertainty in watershed model structure and parameters
- Epistemic uncertainty in watershed model structure and parameters
* Unit hydrograph, infiltration, routing 8
* Unit hydrograph, infiltration, routing


Site-scale Flooding (LIP)
8 Site-scale Flooding (LIP)
* Aleatory variability
* Aleatory variability
  - Precipitation: magnitude, duration, temporal distribution
- Precipitation: magnitude, duration, temporal distribution
* Precipitation frequency analysis (e.g., NOAA Atlas 14)
* Precipitation frequency analysis (e.g., NOAA Atlas 14)
* Stochastic weather generators
* Stochastic weather generators
* Numerical weather prediction models (e.g., WRF, HRRR)
* Numerical weather prediction models (e.g., WRF, HRRR)
  - Initial/antecedent conditions: soil moisture content, surface storage/ponding, initial stormwater drainage system state
- Initial/antecedent conditions: soil moisture content, surface storage/ponding, initial stormwater drainage system state
  - Long-term temporal trends (e.g., climate change):
- Long-term temporal trends (e.g., climate change):
can affect precipitation, temperature, initial conditions, and boundary conditions 9
can affect precipitation, temperature, initial conditions, and boundary conditions


Site-scale Flooding (Cont.)
9 Site-scale Flooding (Cont.)
* Epistemic Uncertainty:
* Epistemic Uncertainty:
  - Boundary conditions: upstream discharge, downstream water levels
- Boundary conditions: upstream discharge, downstream water levels
  - Process representation: runoff generation-related processes including infiltration and roof runoff; stormwater drainage; hydraulic routing (using one-,
 
- Process representation: runoff generationprocesses including infiltration and roof runoff; - related stormwater drainage; hydraulic routing (using one-,
two-, and three-dimensional [1-D, 2-D, and 3-D]
two-, and three-dimensional [1-D, 2-D, and 3-D]
models); flow transitions (supercritical to subcritical and vice versa); surface roughness effects in shallow, turbulent flows
models); flow transitions (supercritical to subcritical and vice versa); surface roughness effects in shallow, turbulent flows
  - Site configuration: aboveground features including buildings and vehicle barrier systems; status of temporary flood protection; blockage of roof drains; blockage of stormwater drains
- Site configuration: aboveground features including buildings and vehicle barrier systems; status of temporary flood protection; blockage of roof drains; blockage of stormwater drains
  - Model resolution: spatial and temporal 10
- Model resolution: spatial and temporal


Riverine Flooding
10 Riverine Flooding
* Flood Frequency Analysis Approach
* Flood Frequency Analysis Approach
  - Aleatory: Sampling uncertainty (e.g., limited data)
 
- Aleatory: Sampling uncertainty (e.g., limited data)
* Short records (often only a few decades or less)
* Short records (often only a few decades or less)
* Data gaps
* Data gaps
  - Epistemic: Uncertainty in choice of distribution
- Epistemic: Uncertainty in choice of distribution
* Extreme flooding not represented in the data
* Extreme flooding not represented in the data
* Possible mixed population
* Possible mixed population
* Nonstationarity (climate, regulation, land use/land cover) 11
* Nonstationarity (climate, regulation, land use/land cover)


Riverine Flooding (Cont.)
11 Riverine Flooding (Cont.)
* Simulation Approach
* Simulation Approach
  - Aleatory: Precipitation magnitude, duration, temporal and spatial distribution
- Aleatory: Precipitation magnitude, duration, temporal and spatial distribution
  - Discharge:
- Discharge:
* Aleatory: Initial/Antecedent conditions (e.g., soil moisture, flows)
* Aleatory: Initial/Antecedent conditions (e.g., soil moisture, flows)
* Epistemic: Hydrologic model structure and parameters
* Epistemic: Hydrologic model structure and parameters
          - e.g., infiltration, unit hydrographs, and hydrologic routing
 
- e.g., infiltration, unit hydrographs, and hydrologic routing
* Epistemic: Model resolution
* Epistemic: Model resolution
  - Stage and velocity:
- Stage and velocity:
* Epistemic: Hydraulic model structure and parameters
* Epistemic: Hydraulic model structure and parameters
          - 1D/2D, steady/unsteady
* Epistemic: Model resolution (e.g.,
channel/floodplain) 12


Coastal Flooding (TCs)
- 1D/2D, steady/unsteady
* Epistemic: Model resolution (e.g., channel/floodplain)
 
12 Coastal Flooding (TCs)
* Storm recurrence rate is key aleatory variability for tropical cyclones
* Storm recurrence rate is key aleatory variability for tropical cyclones
* Key epistemic uncertainties:
* Key epistemic uncertainties:
  - Distributions for storm parameters
- Distributions for storm parameters
* Track location
* Track location
* Heading direction
* Heading direction
Line 138: Line 156:
* Radius of maximum winds
* Radius of maximum winds
* Translational speed
* Translational speed
  - Hydrodynamic model structure and parameters
- Hydrodynamic model structure and parameters
* Bottom friction, wind stress
* Bottom friction, wind stress
  - Resolution of bathymetry, topography 13
- Resolution of bathymetry, topography


Combined Flooding
13 Combined Flooding
* Extreme flooding due to combined processes
* Extreme flooding due to combined processes
  - Associated effects (e.g., wave action)
- Associated effects (e.g., wave action)
  - Multi-mechanism flooding (e.g., rainfall w/ snowmelt, rainfall w/ dam failure) 14
- Multi-mechanism flooding (e.g., rainfall w/ snowmelt, rainfall w/ dam failure)


Combined Flooding (Cont.)
14 Combined Flooding (Cont.)
* Statistical Approach (Joint Probability)
* Statistical Approach (Joint Probability)
  - Direct Estimation of Joint Distributions
- Direct Estimation of Joint Distributions
* Assumed functional form for the joint distribution
* Assumed functional form for the joint distribution
  - Copula-Based Approaches
- Copula-Based Approaches
* Individual variables can have different distributions
* Individual variables can have different distributions
* Observations used to separately estimate
* Observations used to separately estimate
          - (1) the parameters of the marginal distributions and
- (1) the parameters of the marginal distributions and
          - (2) the parameters of the copulas, which are typically related to the correlation between the quantities, as estimated from data
- (2) the parameters of the copulas, which are typically related to the correlation between the quantities, as estimated from data
* Simulation Approach
* Simulation Approach
  - Fully- or semi-coupled simulation models
- Fully-or semi-coupled simulation models
* Coupled hydrologic, reservoir, and hydraulic models to simulate riverine flooding w/ dam failure
* Coupled hydrologic, reservoir, and hydraulic models to simulate riverine flooding w/ dam failure
* Coupled atmospheric boundary layer, hydrodynamic, and wave models to simulate coastal flooding
* Coupled atmospheric boundary layer, hydrodynamic, and wave models to simulate coastal flooding
  - Sparse data for calibrating models 15
- Sparse data for calibrating models


Summary
15 Summary
* Separating uncertainty into aleatory variability and epistemic uncertainty is a useful exercise, but these concepts are unambiguous only within a given analytical/modeling framework
* Separating uncertainty into aleatory variability and epistemic uncertainty is a useful exercise, but these concepts are unambiguous only within a given analytical/modeling framework
* Important sources of uncertainty vary with:
* Important sources of uncertainty vary with:
  - Scale and setting (e.g., site-scale, watershed-scale)
- Scale and setting (e.g., site-scale, watershed-scale)
  - Analysis approach (e.g., statistical vs simulation)
- Analysis approach (e.g., statistical vs simulation)
  - Flooding metric of interest
- Flooding metric of interest
* Interaction of multiple flooding mechanisms introduces complexity and additional uncertainty 16
* Interaction of multiple flooding mechanisms introduces complexity and additional uncertainty
 
16 References


References Der Kiureghian, A. & Ditlevsen, O. (2008). Aleatory or epistemic? Does it matter? Structural Safety 31(2), 105-112, https://doi.org/10.1016/j.strusafe.2008.06.020 Asquith, W.H., Kiang, J.E., and Cohn, T.A., 2017, Application of at-site peak-streamflow frequency analyses for very low annual exceedance probabilities: U.S. Geological Survey Scientific Investigations Report 2017-5038, 93 p. https://doi.org/10.3133/sir20175038 Ryberg, K.R., Kolars, K.A., Kiang, J.E., and Carr, M.L., (2020). Flood-frequency estimation for very low annual exceedance probabilities using historical, paleoflood, and regional information with consideration of nonstationarity: U.S. Geological Survey Scientific Investigations Report 2020-5065, 89 p., https://doi.org/10.3133/sir20205065 Bensi, Michelle, Mohammadi, Somayeh, Kao, Shih-Chieh, and DeNeale, Scott T. (2020). Multi-Mechanism Flood Hazard Assessment: Critical Review of Current Practice and Approaches.
Der Kiureghian, A. & Ditlevsen, O. (2008). Aleatory or epistemic? Does it matter? Structural Safety 31(2), 105-112, https://doi.org/10.1016/j.strusafe.2008.06.020 Asquith, W.H., Kiang, J.E., and Cohn, T.A., 2017, Application of at-site peak-streamflow frequency analyses for very low annual exceedance probabilities: U.S. Geological Survey Scientific Investigations Report 2017-5038, 93 p. https://doi.org/10.3133/sir20175038 Ryberg, K.R., Kolars, K.A., Kiang, J.E., and Carr, M.L., (2020). Flood-frequency estimation for very low annual exceedance probabilities using historical, paleoflood, and regional information with consideration of nonstationarity: U.S. Geological Survey Scientific Investigations Report 2020-5065, 89 p., https://doi.org/10.3133/sir20205065 Bensi, Michelle, Mohammadi, Somayeh, Kao, Shih-Chieh, and DeNeale, Scott T. (2020). Multi-Mechanism Flood Hazard Assessment: Critical Review of Current Practice and Approaches.
https://doi.org/10.2172/1637939 William Lehman,(2022). HEC-WAT As a Framework for PFHA, 7th Annual NRC PFHA Research Workshop, Feb 15-18, 2022, https://www.nrc.gov/docs/ML2106/ML21064A438.pdf Norberto C. Nadal-Caraballo, Jeffrey A. Melby, Victor M. Gonzalez, and Andrew T. Cox (2015).
https://doi.org/10.2172/1637939 William Lehman,(2022). HEC-WAT As a Framework for PFHA, 7th Annual NRC PFHA Research Workshop, Feb 15-18, 2022, https://www.nrc.gov/docs/ML2106/ML21064A438.pdf Norberto C. Nadal-Caraballo, Jeffrey A. Melby, Victor M. Gonzalez, and Andrew T. Cox (2015).
North Atlantic Coast Comprehensive Study (NACCS), Coastal Storm Hazards from Virginia to Maine, ERDC/CHL TR-15-5, https://www.nad.usace.army.mil/Portals/40/docs/ComprehensiveStudy/Coastal_Storm_Hazard s_from_Virginia_to_Maine.pdf 17
North Atlantic Coast Comprehensive Study (NACCS), Coastal Storm Hazards from Virginia to Maine, ERDC/CHL TR-15-5, https://www.nad.usace.army.mil/Portals/40/docs/ComprehensiveStudy/Coastal_Storm_Hazard s_from_Virginia_to_Maine.pdf
 
17 Questions?
 
Contact Information Joseph.Kanney@nrc.gov


Questions?
18}}
Contact Information Joseph.Kanney@nrc.gov 18}}

Latest revision as of 05:31, 16 November 2024

Sources of Uncertainty in Probabilistic Flood Hazard Assessment (PFHA)
ML22223A116
Person / Time
Issue date: 04/21/2022
From: Joseph Kanney
NRC/RES/DRA
To:
Kanney, Joseph 301 4155 1920
Shared Package
ML22223A112 List:
References
Download: ML22223A116 (18)


Text

Sources of Uncertainty in Probabilistic Flood Hazard Assessment (PFHA)

Joseph Kanney Fire and External Hazards Analysis Branch Division of Risk Analysis Office of Nuclear Regulatory Research

OECD/NEA/CSNI/WGEV Workshop on Uncertainties in the Assessment of Natural Hazards April 19-21, 2022

1 Outline

  • Probabilistic Flood Hazard and Risk Assessment Overview
  • Dimensions of Uncertainty
  • Flooding Scenarios

- Site-scale Flooding

- Riverine Flooding

- Coastal Flooding

- Combined Flooding

  • Summary

2 1, 2,, 1 2

Hazard Curves : Fragility Curves :

Quantitative Quantitative Reliability probabilistic of Passive and assessment Active Flood Protection of flood hazard(s) Features

Load Intensity

Magnitude

Procedures Flood Protection Reliability of Procedures and Feature and Manual Actions Manual Actions Human Reliability Assessment (HRA) and Ye s Human Factors (HF) insights Protected? Impact of Environmental No Conditions on flood protection and/or mitigation procedures

Mitigation

No Impact No Ye s Impacts Impact Success? Plant PRA Model No 4

PFHA Approaches

  • Statistical Approach

- Fit probability distribution(s) to flood severity metric of interest

  • Flood frequency analysis
  • Precipitation frequency analysis
  • (Monte Carlo) Simulation Approach

- (Mechanistic) simulation models to compute flood severity metric(s)

- Probability distributions for model parameters, BCs, etc.

5 Key Challenges

  • Hazard Estimation

- Range of annual exceedance probabilities (AEPs)

  • Moderately rare to extreme floods

- Multiple flooding mechanisms

  • Coincident and correlated mechanisms

- Uncertainty characterization and estimation Magnitude

  • Aleatory (e.g., storm recurrence rates)
  • Epistemic (e.g., model structure, parameters)
  • Impacts

- Cliff-edge effects, nonlinearity

- Flood duration may be important

- Sparse structure/component reliability information

- Sparse human reliability information

Load Intensity

6 Dimensions of Uncertainty

  • Aleatory variability*

- Natural randomness in a process

- Irreducible uncertainty

  • Epistemic Uncertainty*

- Scientific uncertainty in the model of the process

- Model structure

- Model parameters

- Reducible uncertainty

  • *Characterization is a function of analytical approach

- An addressed uncertainty may be aleatory in one model while in another model it may be epistemic

- These concepts only make unambiguous sense if they are defined within the confines of a model of analysis.

7 Riverine Discharge Example

  • (Statistical) Flood Frequency Model

- Aleatory variability reflected by the use of a probability distribution

  • For a given set of data, sampling uncertainty is not reducible

- Epistemic uncertainty in choice of distribution

  • (Simulation) Hydrologic Model

- Future is stochastic (aleatory)

  • Timing and spatiotemporal distribution of precipitation
  • Changes in regulation, land use/land cover

- Epistemic uncertainty in watershed model structure and parameters

  • Unit hydrograph, infiltration, routing

8 Site-scale Flooding (LIP)

  • Aleatory variability

- Precipitation: magnitude, duration, temporal distribution

  • Precipitation frequency analysis (e.g., NOAA Atlas 14)
  • Stochastic weather generators
  • Numerical weather prediction models (e.g., WRF, HRRR)

- Initial/antecedent conditions: soil moisture content, surface storage/ponding, initial stormwater drainage system state

- Long-term temporal trends (e.g., climate change):

can affect precipitation, temperature, initial conditions, and boundary conditions

9 Site-scale Flooding (Cont.)

  • Epistemic Uncertainty:

- Boundary conditions: upstream discharge, downstream water levels

- Process representation: runoff generationprocesses including infiltration and roof runoff; - related stormwater drainage; hydraulic routing (using one-,

two-, and three-dimensional [1-D, 2-D, and 3-D]

models); flow transitions (supercritical to subcritical and vice versa); surface roughness effects in shallow, turbulent flows

- Site configuration: aboveground features including buildings and vehicle barrier systems; status of temporary flood protection; blockage of roof drains; blockage of stormwater drains

- Model resolution: spatial and temporal

10 Riverine Flooding

  • Flood Frequency Analysis Approach

- Aleatory: Sampling uncertainty (e.g., limited data)

  • Short records (often only a few decades or less)
  • Data gaps

- Epistemic: Uncertainty in choice of distribution

  • Extreme flooding not represented in the data
  • Possible mixed population
  • Nonstationarity (climate, regulation, land use/land cover)

11 Riverine Flooding (Cont.)

  • Simulation Approach

- Aleatory: Precipitation magnitude, duration, temporal and spatial distribution

- Discharge:

  • Aleatory: Initial/Antecedent conditions (e.g., soil moisture, flows)
  • Epistemic: Hydrologic model structure and parameters

- e.g., infiltration, unit hydrographs, and hydrologic routing

  • Epistemic: Model resolution

- Stage and velocity:

  • Epistemic: Hydraulic model structure and parameters

- 1D/2D, steady/unsteady

  • Epistemic: Model resolution (e.g., channel/floodplain)

12 Coastal Flooding (TCs)

  • Storm recurrence rate is key aleatory variability for tropical cyclones
  • Key epistemic uncertainties:

- Distributions for storm parameters

  • Track location
  • Heading direction
  • Central pressure deficit
  • Radius of maximum winds
  • Translational speed

- Hydrodynamic model structure and parameters

  • Bottom friction, wind stress

- Resolution of bathymetry, topography

13 Combined Flooding

  • Extreme flooding due to combined processes

- Associated effects (e.g., wave action)

- Multi-mechanism flooding (e.g., rainfall w/ snowmelt, rainfall w/ dam failure)

14 Combined Flooding (Cont.)

  • Statistical Approach (Joint Probability)

- Direct Estimation of Joint Distributions

  • Assumed functional form for the joint distribution

- Copula-Based Approaches

  • Individual variables can have different distributions
  • Observations used to separately estimate

- (1) the parameters of the marginal distributions and

- (2) the parameters of the copulas, which are typically related to the correlation between the quantities, as estimated from data

  • Simulation Approach

- Fully-or semi-coupled simulation models

  • Coupled hydrologic, reservoir, and hydraulic models to simulate riverine flooding w/ dam failure
  • Coupled atmospheric boundary layer, hydrodynamic, and wave models to simulate coastal flooding

- Sparse data for calibrating models

15 Summary

  • Separating uncertainty into aleatory variability and epistemic uncertainty is a useful exercise, but these concepts are unambiguous only within a given analytical/modeling framework
  • Important sources of uncertainty vary with:

- Scale and setting (e.g., site-scale, watershed-scale)

- Analysis approach (e.g., statistical vs simulation)

- Flooding metric of interest

  • Interaction of multiple flooding mechanisms introduces complexity and additional uncertainty

16 References

Der Kiureghian, A. & Ditlevsen, O. (2008). Aleatory or epistemic? Does it matter? Structural Safety 31(2), 105-112, https://doi.org/10.1016/j.strusafe.2008.06.020 Asquith, W.H., Kiang, J.E., and Cohn, T.A., 2017, Application of at-site peak-streamflow frequency analyses for very low annual exceedance probabilities: U.S. Geological Survey Scientific Investigations Report 2017-5038, 93 p. https://doi.org/10.3133/sir20175038 Ryberg, K.R., Kolars, K.A., Kiang, J.E., and Carr, M.L., (2020). Flood-frequency estimation for very low annual exceedance probabilities using historical, paleoflood, and regional information with consideration of nonstationarity: U.S. Geological Survey Scientific Investigations Report 2020-5065, 89 p., https://doi.org/10.3133/sir20205065 Bensi, Michelle, Mohammadi, Somayeh, Kao, Shih-Chieh, and DeNeale, Scott T. (2020). Multi-Mechanism Flood Hazard Assessment: Critical Review of Current Practice and Approaches.

https://doi.org/10.2172/1637939 William Lehman,(2022). HEC-WAT As a Framework for PFHA, 7th Annual NRC PFHA Research Workshop, Feb 15-18, 2022, https://www.nrc.gov/docs/ML2106/ML21064A438.pdf Norberto C. Nadal-Caraballo, Jeffrey A. Melby, Victor M. Gonzalez, and Andrew T. Cox (2015).

North Atlantic Coast Comprehensive Study (NACCS), Coastal Storm Hazards from Virginia to Maine, ERDC/CHL TR-15-5, https://www.nad.usace.army.mil/Portals/40/docs/ComprehensiveStudy/Coastal_Storm_Hazard s_from_Virginia_to_Maine.pdf

17 Questions?

Contact Information Joseph.Kanney@nrc.gov

18