ML19317F753: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (StriderTol Bot change) |
||
(One intermediate revision by the same user not shown) | |||
Line 18: | Line 18: | ||
=Text= | =Text= | ||
{{#Wiki_filter:-- | {{#Wiki_filter:-- | ||
m ,. | m ,. | ||
Attachment 1 to Toledo Edison Company letter Dated May 26, 1978; Serial No; 436 DETERMINATION OF TOTAL RC FLOWRATE AND IT,S ACCURACY FOR DAVIS-BESSE 1 s | |||
BY ROBERT W. WINKS PRINCIPAL ENGI? LEER BABC0CK & WILC0X COMPANY LYNCHfiURG, VIRGINI A l | |||
* MAY 25, 1978' j D**% ' | |||
Attachment 1 to Toledo Edison Company letter Dated May 26, 1978; Serial No; 436 DETERMINATION OF TOTAL RC FLOWRATE AND IT,S ACCURACY FOR DAVIS-BESSE 1 | |||
s | |||
BY ROBERT W. WINKS PRINCIPAL ENGI? LEER | |||
BABC0CK & WILC0X COMPANY LYNCHfiURG, VIRGINI A l | |||
MAY 25, 1978' j D**% ' | |||
i . o o 11 m ~ | i . o o 11 m ~ | ||
O '9'T | O '9'T | ||
Line 40: | Line 27: | ||
e 3 | e 3 | ||
f | f | ||
m , - . | m , - . | ||
~ | ~ | ||
DETERMINATION OF TOTAL RC FLOWRATE - | DETERMINATION OF TOTAL RC FLOWRATE - | ||
AND ITS ACCURACY FOR DAVIS-BESSE 1 | AND ITS ACCURACY FOR DAVIS-BESSE 1 TABLE OF CONTENTS , | ||
PAGE NUMBER Introduction 1 Sumary 1 Sensor A'ccuracy 2 Heat Balance Data '5 dalculatedTotalRCFlowrate 11 | |||
TABLE OF CONTENTS | . - r Error Analysis 15 9 | ||
PAGE NUMBER | |||
Introduction 1 Sumary 1 Sensor A'ccuracy 2 Heat Balance Data '5 dalculatedTotalRCFlowrate 11 | |||
. - r Error Analysis 15 | |||
9 | |||
e d | e d | ||
e 4 | e 4 | ||
s . | s . | ||
l i | |||
DETERMINATION OF TOTAL RC FLOWRATE AND ITS ACCURACY FOR DAVIS-BESSE 1 AT 100% | |||
l | |||
ITS ACCURACY FOR DAVIS-BESSE 1 AT 100% | |||
POWER LEVEL INTRODUCTION In a B&W nuclear power plant, Gentile flowmeters are used to measure ' Loop 1 and 2 reactor coolant flowrates. These primary loop flowmeters are not calibrated prior to installation. Loop 1 and 2 feedwater flowrates are measured with calibrated flow meters and B&W utilizes a plant heat balance to set the calibration of the primary loop flowmeters. | POWER LEVEL INTRODUCTION In a B&W nuclear power plant, Gentile flowmeters are used to measure ' Loop 1 and 2 reactor coolant flowrates. These primary loop flowmeters are not calibrated prior to installation. Loop 1 and 2 feedwater flowrates are measured with calibrated flow meters and B&W utilizes a plant heat balance to set the calibration of the primary loop flowmeters. | ||
An error analysis on the equations used to determine the total reactor core flowrate (Loop 1 plus Looo 2) has revealed that the errors in reactor coolant temperatures and feedwater flowmeter differential pressure are the most significant terms in calculating accurate values of total reactor core finwrata | An error analysis on the equations used to determine the total reactor core flowrate (Loop 1 plus Looo 2) has revealed that the errors in reactor coolant temperatures and feedwater flowmeter differential pressure are the most significant terms in calculating accurate values of total reactor core finwrata SLM!ARY The calculated RC flowrate for Davis-Besse 1 at 100% power is 113.2% times the design flowrate of 352,000 gpm. The accuracy is 2.2%. This was determined with RC temperature instrument string errors equal to 10.79F and feedwater flowmeter AP errors equal to 21.25% and steam temperature erros equal toi4.2F. | ||
SLM!ARY The calculated RC flowrate for Davis-Besse 1 at 100% power is 113.2% times the design flowrate of 352,000 gpm. The accuracy is 2.2%. This was determined with RC temperature instrument string errors equal to 10.79F and feedwater flowmeter AP errors equal to 21.25% and steam temperature erros equal toi4.2F. | |||
~ | ~ | ||
Reactor coolant system temperatures are measured with + 1/4% accurate pre-calibrated RTD's over a range of 520 to 620F. SimilarTy, the Bailey Meter Company differqntial pressure transmitters are calibrated to + 1/2% at time of installation. The tuo feedwater flowmeters,are calibrated to + 1/2% prior to installation. .< | Reactor coolant system temperatures are measured with + 1/4% accurate pre-calibrated RTD's over a range of 520 to 620F. SimilarTy, the Bailey Meter Company differqntial pressure transmitters are calibrated to + 1/2% at time of installation. The tuo feedwater flowmeters,are calibrated to + 1/2% prior to installation. .< | ||
For normal everyday conditions in the instrumentation area of the plant, B&W has determined the accuracy of all' input measurements used in this error analysis. (Refer to page 4.) | For normal everyday conditions in the instrumentation area of the plant, B&W has determined the accuracy of all' input measurements used in this error analysis. (Refer to page 4.) | ||
D 4 | |||
D | |||
4 | |||
:. m , | :. m , | ||
1 | 1 | ||
~ | ~ | ||
I ACCURACY 0F MAJOR INSTRUMENTATION USED FOR PLANT HEAT BALANCE CALCULATIONS O @ ' | |||
I ACCURACY 0F MAJOR INSTRUMENTATION USED FOR PLANT HEAT BALANCE CALCULATIONS | ' D G | ||
e . | |||
O @ ' | |||
' D | |||
: y. ze , | : y. ze , | ||
LOON LOOPi OT3G < | LOON LOOPi OT3G < | ||
f CORE } ; OTS6 | f CORE } ; OTS6 | ||
% ?, ' | % ?, ' | ||
e | e o/ l J : | ||
T D I r3 R*e o c i | |||
o/ l J : | |||
T D I r3 R*e o c | |||
i | |||
.._ l 0 | .._ l 0 | ||
The follcwing RTD's, each calibrated to + 1/4 F,and , | The follcwing RTD's, each calibrated to + 1/4 F,and , | ||
Line 143: | Line 71: | ||
RTD's 13,14,15 and 16 are wide range (50 to 650 F) sensors and were not used. | RTD's 13,14,15 and 16 are wide range (50 to 650 F) sensors and were not used. | ||
RTD's 2,4,8 and 10 are inputs to the RPS and were not used for heat balance. | RTD's 2,4,8 and 10 are inputs to the RPS and were not used for heat balance. | ||
q n ' | q n ' | ||
4 FEEDWATER FLOWRATE MEASUREMENT ACCURACY LOOPg LoGP E STEAM STEAM GENERATOR GENERATOR O O Nd N( | |||
a Q ' | |||
4 FEEDWATER FLOWRATE MEASUREMENT ACCURACY | |||
LOOPg LoGP E STEAM STEAM GENERATOR GENERATOR O O Nd N( | |||
a | |||
Q ' | |||
LDCP l FLOWMETER | LDCP l FLOWMETER | ||
- L LOCP a FLOWMETER m | - L LOCP a FLOWMETER m | ||
Jb | Jb | ||
= FROM FEED WATER HEATERS LOOPl LOOP E | = FROM FEED WATER HEATERS LOOPl LOOP E pw 7gMpERATURE FW TEMPERATURE Each feedwater flowmeter is calibrated with 455 F water (rated flow) and the flow coefficient for each set of taps (two on each flowmeter) is supplied by the vendor. | ||
pw 7gMpERATURE FW TEMPERATURE Each feedwater flowmeter is calibrated with 455 F water (rated flow) and the flow coefficient for each set of taps (two on each flowmeter) is supplied by the vendor | |||
The required accuracy is i 1/2%. | The required accuracy is i 1/2%. | ||
Each aP transmitter is calibrated to the range specified by the measured flow coefficient within an accuracy of i 0.25%. | Each aP transmitter is calibrated to the range specified by the measured flow coefficient within an accuracy of i 0.25%. | ||
The accuracies for the different. parameters are shown in the Table on the next page. The accuracy for each parameter was conservatively calculated by summing the string errors. The environmental errors from changes in temperature and the errors from the poraputer were included in the values shown in the Table. | The accuracies for the different. parameters are shown in the Table on the next page. The accuracy for each parameter was conservatively calculated by summing the string errors. The environmental errors from changes in temperature and the errors from the poraputer were included in the values shown in the Table. | ||
l | l l . | ||
l . | |||
m ' | m ' | ||
ACCURACY OF PRIMARY AND SECONDARY SIDE MEASUREMENTS USED FOR CALCULATION OF TOTAL RC FLOWRATE MEASUREMENT ACCURACY PARAMETER ACCURACY % SPAN UNITS RC hot leg temp. 1 0.79 520 to 620F 10.79 F RC cold leg temp. 1 0.79 , | |||
ACCURACY OF PRIMARY AND SECONDARY SIDE MEASUREMENTS USED FOR CALCULATION OF TOTAL RC FLOWRATE | |||
MEASUREMENT ACCURACY PARAMETER ACCURACY % SPAN UNITS RC hot leg temp. 1 0.79 520 to 620F 10.79 F | |||
RC cold leg temp. 1 0.79 , | |||
520 to 620F +0.79 F Steam temp. 1 0.60 0 to 700F 14.2 F Feedwater temp. -s i 1.13 O to 600F 16.8 F Feedwater pressure 11.0% 0 to 1500 psig 1 15 psi Steam pressure 11.89% 0 to 1200 psig i 23 psi RC pressure 1 0.77% 0 to 2500 psig i 19 psi Feedwater Flow * -+ 1.25% 0 to 960 inches + 12. inches (Std. H20) | 520 to 620F +0.79 F Steam temp. 1 0.60 0 to 700F 14.2 F Feedwater temp. -s i 1.13 O to 600F 16.8 F Feedwater pressure 11.0% 0 to 1500 psig 1 15 psi Steam pressure 11.89% 0 to 1200 psig i 23 psi RC pressure 1 0.77% 0 to 2500 psig i 19 psi Feedwater Flow * -+ 1.25% 0 to 960 inches + 12. inches (Std. H20) | ||
RC Flowrate + 1.046 | RC Flowrate + 1.046 | ||
- ^ | - ^ | ||
O to 910 inches - | O to 910 inches - | ||
+ 9.5 inches | + 9.5 inches | ||
. < (Std. H 2O) | . < (Std. H 2O) | ||
O e | O e | ||
d 3 | d 3 | ||
4 , | |||
,' m , | ,' m , | ||
COMPARISON OF' HOT LEG TEMPERATURES (Tg) | COMPARISON OF' HOT LEG TEMPERATURES (Tg) | ||
FOR DAVIS-BESSE 1 AT 100% POWER ON t . | FOR DAVIS-BESSE 1 AT 100% POWER ON t . | ||
: APRIL 5, 1978 | : APRIL 5, 1978 LOOP 1 LOOP LOOP 1 LOOP 1 l TIME T 720 ({F) T721 ( F) | ||
LOOP 1 LOOP LOOP 1 LOOP 1 l TIME T 720 ({F) T721 ( F) | |||
T 719 (OF) T722 (oF) | T 719 (OF) T722 (oF) | ||
! '14:39 605.6 605.8 605.9 606.1 | ! '14:39 605.6 605.8 605.9 606.1 14:44 606.0- 606.1 506.2 606.1 It 50 606.0 606.2 606.1 606.2 1<. 24 605.9 . 606.1 606.4 606.4 14.59 605.6 606.1 605.9 605.9 15:04 605.8 606.1 606.1 606.1 15:09 605.9 605.9 605.9 606.0 15:14 605.9 606.1 606.2 606.4 Midpoint 605.8 606.0 606.15 606.15 Span + 0.2 + 0.2 + 0.25 + 0.25 (during 35 s - | ||
14:44 606.0- 606.1 506.2 606.1 It 50 606.0 606.2 606.1 606.2 1<. 24 605.9 . 606.1 606.4 606.4 14.59 605.6 606.1 605.9 605.9 15:04 605.8 606.1 606.1 606.1 15:09 605.9 605.9 605.9 606.0 15:14 605.9 606.1 606.2 606.4 | |||
Midpoint 605.8 606.0 606.15 606.15 Span + 0.2 + 0.2 + 0.25 + 0.25 (during 35 s - | |||
minutes) | minutes) | ||
Average Ta = 606.03 F | Average Ta = 606.03 F LOOP 2 LOOP 2 LOOP 2 LOOP 2 TIME T729 ( F) T730 (oF) T728 ( F) T731 ( F) 14:39 604.9 605.1 604.3 604.9 14:44 605.3 605.3 604.8' 605.0 14:50 , 605.4 605.4 604.9. 605.2 14:54 605.1 605.3 ^ | ||
604.4 605.2 14:59 605.1 605.0< 604.6 604.8 15:04 605.1 605.1 604.4 604.8 15:09 605.0 604.9 604.6 604.7 15:14 605.2 605.4 604.7 605.2 Midpoinc 605.15 605.15 604.6 604.95 Span 1 0.25 1 0.25 + 0.3 1 0.25 (during 2 minutes) l' Average TH = 604.96 F d | |||
LOOP 2 LOOP 2 LOOP 2 LOOP 2 TIME T729 ( F) T730 (oF) T728 ( F) T731 ( F) 14:39 604.9 605.1 604.3 604.9 14:44 605.3 605.3 604.8' 605.0 14:50 , 605.4 605.4 604.9. 605.2 14:54 605.1 605.3 ^ | |||
604.4 605.2 14:59 605.1 605.0< 604.6 604.8 15:04 605.1 605.1 604.4 604.8 15:09 605.0 604.9 604.6 604.7 15:14 605.2 605.4 604.7 605.2 | |||
Midpoinc 605.15 605.15 604.6 604.95 Span 1 0.25 1 0.25 + 0.3 1 0.25 (during 2 minutes) l' Average TH = 604.96 F d | |||
s 5 | s 5 | ||
o 5- , | |||
o | |||
5- , | |||
L | L | ||
= | = | ||
COMPARISON OF COLD LEG TEMPERATURES (Tc) FOR DAVIS-BESSE I AT 100% F0WER ON APRIL 5, 1978 | COMPARISON OF COLD LEG TEMPERATURES (Tc) FOR DAVIS-BESSE I AT 100% F0WER ON APRIL 5, 1978 TIME RCP l-1 TEMP ( F) RCP l-2 TEMP ( F) 14:39 559.2 558.6 14:44 559.1 558.4 14:50 558.9 558.3 14:54 558.9 558.3 14:59 558.8 558.1 15:04 559.0 558.4 15:09 558.9 558.3 15:14 559.2 558.4 Midpoint 559.0 - | ||
TIME RCP l-1 TEMP ( F) RCP l-2 TEMP ( F) 14:39 559.2 558.6 14:44 559.1 558.4 14:50 558.9 558.3 14:54 558.9 558.3 14:59 558.8 558.1 15:04 559.0 558.4 15:09 558.9 558.3 15:14 559.2 558.4 Midpoint 559.0 - | |||
558.35 Span + 0.2 f; 0. 25 (during 35 minutes s L 60 p 1 Avg. Tc = 558.7 F TIME RCP 2-1 TEMP ( F) RCP 2-2 TEMP (otn 14:39 559.2 559.1 14:44 558.7 559.4 14:50 558.7 559.3 14:54 ' | 558.35 Span + 0.2 f; 0. 25 (during 35 minutes s L 60 p 1 Avg. Tc = 558.7 F TIME RCP 2-1 TEMP ( F) RCP 2-2 TEMP (otn 14:39 559.2 559.1 14:44 558.7 559.4 14:50 558.7 559.3 14:54 ' | ||
558.7 558.7 14:59 558.7 '' | 558.7 558.7 14:59 558.7 '' | ||
558.6 15:04 558.3 558.8 15:09' 558.4 558.8 15:14 559.1 558.9 Midpoint 558.75 559.'0 Span + 0.45 + 0.40 (during 35 mi'nutes) | 558.6 15:04 558.3 558.8 15:09' 558.4 558.8 15:14 559.1 558.9 Midpoint 558.75 559.'0 Span + 0.45 + 0.40 (during 35 mi'nutes) | ||
L o o p 2 Avg. Tc = 558.9 F d | L o o p 2 Avg. Tc = 558.9 F d | ||
e | e | ||
: l. , | : l. , | ||
1 | 1 | ||
3 . - | 3 . - | ||
COMPARISON OF STEAM TEMPERATURES (Ts) AND JRESSURES (Ps) | COMPARISON OF STEAM TEMPERATURES (Ts) AND JRESSURES (Ps) | ||
FOR DAVIS-BESSE 1 AT 100% POWER ON APRIL 5, 1978 LOOP 1 . LOOP 2 TIME STEAM TEMP ( F) STEAM TEMP ( F) 14:39 595.6 596.2 14:44 595.6 596.7 14:50 595.5 596.7 14:54 595.5 596.4 14:59 595.4 596.6 15:04 595.5 596.4 15:09 595.5 596.4 15:14 595.6 596.4 Midpoint 595.5 596.45 Span + 0.1 + 0.25 (during 35 minutes) | FOR DAVIS-BESSE 1 AT 100% POWER ON APRIL 5, 1978 LOOP 1 . LOOP 2 TIME STEAM TEMP ( F) STEAM TEMP ( F) 14:39 595.6 596.2 14:44 595.6 596.7 14:50 595.5 596.7 14:54 595.5 596.4 14:59 595.4 596.6 15:04 595.5 596.4 15:09 595.5 596.4 15:14 595.6 596.4 Midpoint 595.5 596.45 Span + 0.1 + 0.25 (during 35 minutes) s LOOP 1 LOOP 2 TIME STEAM PRESS (osid STEAM PRESS. Cosie) 14:39 905.8 881.2 14:44 907.8 879.4 14:50 905.2 882.0 14:54 . 905.4 881.1 14:59 906.1 885.9 15:04 905.1 .,e 881.1 15:09 903.7 879.9 15:14 905.1 884.7 Midpoint 905.75 882.65 Span + 2.05 + 3.25 (during 35 minutes) e 1 | ||
4 4 | |||
s LOOP 1 LOOP 2 TIME STEAM PRESS (osid STEAM PRESS. Cosie) 14:39 905.8 881.2 14:44 907.8 879.4 14:50 905.2 882.0 14:54 . 905.4 881.1 14:59 906.1 885.9 15:04 905.1 .,e 881.1 | J | ||
15:09 903.7 879.9 15:14 905.1 884.7 Midpoint 905.75 882.65 Span + 2.05 + 3.25 (during 35 minutes) | |||
e 1 | |||
4 | |||
.S s COMPARISON OF FEEDWATER TEMPERA 1URES (T F ) AND PRESSURES (PF ) FOR DAVIS-BESSE 1 AT 100% POWER ON APRIL 5,1978 LOOP 1 FEEDWATER LOOP 2 FEEDWATER TIME TEMP ( F) , | |||
TEMP ( F) 14:39 459.8 459.8 14:44 459.9 459.9 1.:50 460.1 460.2 14:54 459.8 460.1 14:59 460.2 460.2 15:04 459.9 459.9 15:09 460.0 459.9 15:14 459.9 460.0 Midpoint 460.0 460.0 Span 0.2 10.2 (during 35 minutes) | |||
Tg = 460.0 F for Loops 1 an4 2 LOOP 1 FEEDWATER LOOP 2 FEEDWATER TIME PRESSURE (psig) PRESSURE (psig) 14:39 . 942.4 955.9 14:44 942.8 956.1 14:50 944.6 957.2 14:54 943.2 956.7 14:59 944.9 958.8 15:04 943.2 956.1 15:09 943.2 956.7 ' | |||
.S s | |||
COMPARISON OF FEEDWATER TEMPERA 1URES (T F ) AND PRESSURES (PF ) FOR DAVIS-BESSE 1 AT 100% POWER ON APRIL 5,1978 LOOP 1 FEEDWATER LOOP 2 FEEDWATER TIME TEMP ( F) , | |||
TEMP ( F) 14:39 459.8 459.8 14:44 459.9 459.9 | |||
1.:50 460.1 460.2 14:54 459.8 460.1 14:59 460.2 460.2 15:04 459.9 459.9 15:09 460.0 459.9 15:14 459.9 460.0 Midpoint 460.0 460.0 | |||
Span 0.2 10.2 (during 35 minutes) | |||
Tg = 460.0 F for Loops 1 an4 2 LOOP 1 FEEDWATER LOOP 2 FEEDWATER TIME PRESSURE (psig) PRESSURE (psig) 14:39 . 942.4 955.9 14:44 942.8 956.1 14:50 944.6 957.2 14:54 | |||
943.2 956.7 14:59 944.9 958.8 15:04 943.2 956.1 15:09 943.2 956.7 ' | |||
; 15:14 943.2 957.0 Midpoint 943.65 957.35 l | ; 15:14 943.2 957.0 Midpoint 943.65 957.35 l | ||
Span 21.25 21.45 (during 35 minutes) | Span 21.25 21.45 (during 35 minutes) d b | ||
d | |||
b | |||
e 4 | e 4 | ||
5 , | 5 , | ||
COMPARISON OF MEASURED FEEDWATER FLOWRATES (WF ) | COMPARISON OF MEASURED FEEDWATER FLOWRATES (WF ) | ||
FOR DAVIf-BESSE 1 AT 100% POWER ON APRIL 5, 1978 | FOR DAVIf-BESSE 1 AT 100% POWER ON APRIL 5, 1978 LOOP l FEEDWATER FLOWRATE LOOP 2 FEEDWATER FLOWRATE TIME __ | ||
LOOP l FEEDWATER FLOWRATE LOOP 2 FEEDWATER FLOWRATE TIME __ | |||
(MP P H ) (MPPH) 14:39 5.806 5.784 14: 44 5.787 5.753 14:50 5.841 5.811 14:54 5.812 5.780 14:59 5.808 5.787 15:04 5.820 5.814 15:09 5.798 - | (MP P H ) (MPPH) 14:39 5.806 5.784 14: 44 5.787 5.753 14:50 5.841 5.811 14:54 5.812 5.780 14:59 5.808 5.787 15:04 5.820 5.814 15:09 5.798 - | ||
5.762 15:14 5.822 5.785 | 5.762 15:14 5.822 5.785 Average value: 5.812 5.785 Midpoint: 5.814 5.784 Span: + 0.027 + 0.030 (during 35 minutes) d | ||
.m V 8 | |||
Average value: 5.812 | e i | ||
b 4 | |||
5.785 Midpoint: 5.814 5.784 Span: + 0.027 + 0.030 (during 35 minutes) | |||
d | |||
.m V | |||
i | |||
b | |||
4 | |||
l l | l l | ||
.s PRIMARY SIDE ENTHALPY CALCULATION: | |||
.s | |||
PRIMARY SIDE ENTHALPY CALCULATION: | |||
NOMENCLATURE f | NOMENCLATURE f | ||
H H = Reactor Coolant hot leg enthalpy H C = Reactor Coolant cold leg enthal | H H = Reactor Coolant hot leg enthalpy H C = Reactor Coolant cold leg enthal i | ||
HS = Enthalpy of steam at steam geu 4 tor outlet HF = Enthalpy of feedwater to the steam generator | |||
! dh H = Change in enthalpy, an added subscript: 'pri' or 'sec' implies the primary and secondary loops respectively. | |||
! dh H = Change in enthalpy, an added subscript: 'pri' or 'sec' implies the | |||
primary and secondary loops respectively. | |||
LOOP 1: | LOOP 1: | ||
HH @ 606.0 F and 2159 psia = 622.41 Btu /lb HC @ 558.7 F and 2220 psia = 558.14 Btu /lb J8Hpri = 64.27 Btu /lb | HH @ 606.0 F and 2159 psia = 622.41 Btu /lb HC @ 558.7 F and 2220 psia = 558.14 Btu /lb J8Hpri = 64.27 Btu /lb LOOP 2: | ||
LOOP 2: | |||
H H @ 605.0 F and 2159 psia = 620.94 Btu /,1b HC @ 558.9 F and 2220 psia = 558.39 Beu/lb 4H pri = 62.55 Btu /lb SECONDARY SIDE ENTHALPY CALCULATION: | H H @ 605.0 F and 2159 psia = 620.94 Btu /,1b HC @ 558.9 F and 2220 psia = 558.39 Beu/lb 4H pri = 62.55 Btu /lb SECONDARY SIDE ENTHALPY CALCULATION: | ||
LOOP 1: | LOOP 1: | ||
HS @ 595.5 F and 920 psia = 1254.63 Btu /lb HF @ 460 F and 958 psia = 441.73 Btu /lb AHsec = 812.90 Btu /lb LOOP 2: | HS @ 595.5 F and 920 psia = 1254.63 Btu /lb HF @ 460 F and 958 psia = 441.73 Btu /lb AHsec = 812.90 Btu /lb LOOP 2: | ||
HS @ 596.5 F and 897 psia = 1258.03 Btu /lb HF @ 460 F and 972 psia = 441.74 Beu/lb | HS @ 596.5 F and 897 psia = 1258.03 Btu /lb HF @ 460 F and 972 psia = 441.74 Beu/lb i | ||
AHaec = 816.29 Btu /lb d | |||
g e | g e | ||
4 | 4 10 - | ||
10 - | |||
( - - - | ( - - - | ||
, ) .~ ~ | , ) .~ ~ | ||
CALcU LATED TOTAL RC FLO10 RATE | CALcU LATED TOTAL RC FLO10 RATE c r R LNCAll8 RATED PRIMARY LOOP PRE.%(URE FLOWMETE R O( 3 C c MOT LE6 TEMP. | ||
LocP2 . > Loop 1 D | |||
aa t J c | |||
c r R LNCAll8 RATED PRIMARY LOOP PRE.%(URE FLOWMETE R | |||
O( 3 C c MOT LE6 TEMP. | |||
LocP2 . > Loop 1 | |||
i | i | ||
,, ,, coLo LEG TEMP. | ,, ,, coLo LEG TEMP. | ||
PRI. MARY tooP~ ccMFifwRATION For +.he, .enii re- :rrimag - sec.cndog system , | |||
PRI. MARY tooP~ ccMFifwRATION | |||
For +.he, .enii re- :rrimag - sec.cndog system , | |||
the, M ' h gg- , | the, M ' h gg- , | ||
(NR ei(bHj) PRIMARY +Wc2.Nd R 4-Qn'- iq PS PE MARY | (NR ei(bHj) PRIMARY +Wc2.Nd R 4-Qn'- iq PS PE MARY | ||
: kSC + QqAgrAT.Iop LOS.S E.S | : kSC + QqAgrAT.Iop LOS.S E.S | ||
** Wge i = R-co.cor- cAvt FM Rate-p foop ( | ** Wge i = R-co.cor- cAvt FM Rate-p foop ( | ||
NWRt 2. = Reen - N6t Fbo Rec tc. p y 2 | NWRt 2. = Reen - N6t Fbo Rec tc. p y 2 Q ggg = Hext. %t h h (w.C eu Pg.s | ||
Q ggg = Hext. %t h h (w.C eu Pg.s | |||
* ~/5-3 y lo B m h v' . | * ~/5-3 y lo B m h v' . | ||
( | ( | ||
,_______'u__, i I | ,_______'u__, i I | ||
LOOP 1 '' | LOOP 1 '' | ||
Line 436: | Line 181: | ||
I | I | ||
> i-._ __ _ | > i-._ __ _ | ||
SECOND ARY L oop . CON FIG U R.ATION ' | SECOND ARY L oop . CON FIG U R.ATION ' | ||
Qss ::(lAlp A H sec )g9p +(W i = Misec) LocP 2 6 | Qss ::(lAlp A H sec )g9p +(W i = Misec) LocP 2 6 | ||
RADIATECW . . | RADIATECW . . | ||
Line 450: | Line 187: | ||
*c kbNsec)gpgb bH F 3cc) 7z + o 54 Xlo L wWRd Ibh)emg t + Wp(bHz) -(V Fhhsic) coon | *c kbNsec)gpgb bH F 3cc) 7z + o 54 Xlo L wWRd Ibh)emg t + Wp(bHz) -(V Fhhsic) coon | ||
. . 4(We A 0 toer, -14 uxiO'sk - | . . 4(We A 0 toer, -14 uxiO'sk - | ||
4 4 | 4 4 | ||
\1 | \1 | ||
~ | ~ | ||
~ , | ~ , | ||
6 RE1 i FRutAny F Oxc tooPi 2. | 6 RE1 i FRutAny F Oxc tooPi 2. | ||
t N N Rc2. PRIMARY =F V 5")tooe2 ~1 2_ b | t N N Rc2. PRIMARY =F V 5")tooe2 ~1 2_ b Solvine; Arv W g4 % A/ge2. l : | ||
Solvine; Arv W g4 % A/ge2. l : | |||
6- 8*' b | 6- 8*' b | ||
= (WF b h S <c)toopi - 37 3& Xio (A)pg.g | = (WF b h S <c)toopi - 37 3& Xio (A)pg.g | ||
(/1HT I / PRIMAgy | (/1HT I / PRIMAgy CLNL 6 Wg bF hHec),p 3 _373yx(039 k (AH2 >i PRIM A R-y F>ctru oo_cc io | ||
CLNL 6 Wg bF hHec),p 3 _373yx(039 k (AH2 >i PRIM A R-y F>ctru oo_cc io | |||
( | ( | ||
hN)fRII | hN)fRII b4'27 BUR Ib 1 O (bWsec)%p i = B12 30 Sh11b (6Hoecj t.coe 2. = 8161s BNib Mc b.',tu.Ti Ard. cocot% va. % w n.o rt, 4 N 6 | ||
b4'27 BUR Ib | |||
1 O (bWsec)%p i = B12 30 Sh11b (6Hoecj t.coe 2. = 8161s BNib Mc b.',tu.Ti Ard. cocot% va. % w n.o rt, 4 N 6 | |||
NF t_ cop 1 = f.'sl 2. X to IblW we ap2_ = 5 785 Xto6 % W l | NF t_ cop 1 = f.'sl 2. X to IblW we ap2_ = 5 785 Xto6 % W l | ||
. ) | . ) | ||
IS . | IS . | ||
: n. - - - _ . - - | : n. - - - _ . - - | ||
= | = | ||
6 | 6 gJ RU (5'8lulo )(9)a 9o ) - 3 7 38 Xio' aml6 (64 a7) | ||
= 6 l 93 X10 lb Iw N Re2 _ (5 785Xlo')(816 '29) --- 37 '3F XIO'b BE (sa ss) | |||
gJ RU (5'8lulo )(9)a 9o ) - 3 7 38 Xio' aml6 (64 a7) | |||
= 6 l 93 X10 lb Iw | |||
N Re2 _ (5 785Xlo')(816 '29) --- 37 '3F XIO'b BE (sa ss) | |||
= | = | ||
74 90 xto' 16 w l +-t h L R e 7 | 74 90 xto' 16 w l +-t h L R e 7 | ||
Line 496: | Line 211: | ||
= | = | ||
[47'83 Xto 6 | [47'83 Xto 6 | ||
\b W A , thea ne aA gm c. q u w n u | \b W A , thea ne aA gm c. q u w n u NRCT Nl hv) | ||
NRCT Nl hv) | |||
WRETQFm) 60 3-Qos X ?w % | WRETQFm) 60 3-Qos X ?w % | ||
C y =- 4 6 46 Ab l -t3 at Sgg , 3 . p a | |||
C | .2220 psia WRtTQ=)= 3.9 89 Xlo' f m q, ygpx neq+- = sxerooog g- =. 3 5 2, 0 00 ""' | ||
b fs M % D oua~ j pa e : li"o o l' ' | |||
y =- 4 6 46 Ab l -t3 at Sgg , 3 . p a | |||
.2220 psia | |||
WRtTQ=)= 3.9 89 Xlo' f m q, ygpx neq+- = sxerooog g- =. 3 5 2, 0 00 ""' | |||
b | |||
fs M % D oua~ j pa e : li"o o l' ' | |||
=\\3af 14 l | =\\3af 14 l | ||
L ) | L ) | ||
,s .-s | ,s .-s | ||
~ | ~ | ||
t ERROR ANALYSIS OF CALCULATED RC FLOWRATE The basic equation for Loop 1 or 2 RC flowrate is: | t ERROR ANALYSIS OF CALCULATED RC FLOWRATE The basic equation for Loop 1 or 2 RC flowrate is: | ||
wRC .wF.AM - | wRC .wF.AM - | ||
Line 529: | Line 230: | ||
For this small change we shall assume C is a constant and is 74.76 x 106 Btu /hr. | For this small change we shall assume C is a constant and is 74.76 x 106 Btu /hr. | ||
If it is in error, its influence on the final value is insignificant. | If it is in error, its influence on the final value is insignificant. | ||
e e | e e | ||
O d | O d | ||
1 3 | 1 3 | ||
e | e | ||
- i | - i m - | ||
m - | |||
m , | m , | ||
ERROR ANALYSIS OF CALCULATED RC FLOWS For either Loop A or B the eouation for RC flow is: | |||
ERROR ANALYSIS OF CALCULATED RC FLOWS | |||
For either Loop A or B the eouation for RC flow is: | |||
Wgc = WF (H.-ggl 3 i | Wgc = WF (H.-ggl 3 i | ||
Note: Introducing. a con- | Note: Introducing. a con- | ||
- Stent in the ex-( QH H e-) , oression will not T ' | - Stent in the ex-( QH H e-) , oression will not T ' | ||
change the follow-p ( T.3, 3 )- p T=, p gj T | change the follow-p ( T.3, 3 )- p T=, p gj T og | ||
og | |||
= c) - | = c) - | ||
i ing worw. | i ing worw. | ||
. . . f Nu, Pn)-p(Tc., Pm)} | . . . f Nu, Pn)-p(Tc., Pm)} | ||
{NRe, "NRc, + Whc Determinetheexpressionfortheerrorinb R for a normal distribution of sma11' errors in each of the beasured parameters. | {NRe, "NRc, + Whc Determinetheexpressionfortheerrorinb R for a normal distribution of sma11' errors in each of the beasured parameters. | ||
' ~ ~ " ' ~ | ' ~ ~ " ' ~ | ||
I Where[isafunctionofT and p P,; and b.f | I Where[isafunctionofT and p P,; and b.f | ||
~ ~ ' ' " | ~ ~ ' ' " | ||
E = {g/ " | E = {g/ " | ||
C, the flow coefficient is assumea to be a constant. | C, the flow coefficient is assumea to be a constant. | ||
.. d W g = D wg i (- Yz j | .. d W g = D wg i (- Yz j | ||
---._dp_6@)h,aP | ---._dp_6@)h,aP o -- | ||
o -- | |||
T.- | T.- | ||
~ ~ | ~ ~ | ||
. (A g .j AP j | . (A g .j AP j x | ||
x | |||
~" | ~" | ||
?" | ?" | ||
9 t= d Te + J Pp hdP;gs.;Le.h- g DP y | 9 t= d Te + J Pp hdP;gs.;Le.h- g DP y | ||
) We , | ) We , | ||
Line 598: | Line 263: | ||
AP' , | AP' , | ||
D V]p _~ e g | D V]p _~ e g | ||
_ , h_* ? h? | _ , h_* ? h? | ||
E AP . | E AP . | ||
f | f | ||
~ | ~ | ||
~ 16 | ~ 16 me--= < | ||
me--= < | |||
_ c - | _ c - | ||
m m ., | m m ., | ||
The value for each enthalpy in the first equation given on the previous page was determined from temperature and pressure measurements. The value of W wasobtainedfromthefeedwatertemperature,andfromfeedwaterdifferenti$1 pressure measurements. | The value for each enthalpy in the first equation given on the previous page was determined from temperature and pressure measurements. The value of W wasobtainedfromthefeedwatertemperature,andfromfeedwaterdifferenti$1 pressure measurements. | ||
In the first equation given on the previous page, the onif parameters that depend on a common measurement are pH and Wp . Specifically, F and W both depend on F | In the first equation given on the previous page, the onif parameters that depend on a common measurement are pH and Wp . Specifically, F and W both depend on F | ||
T.p Consequently, in the error analysis, a corrolatica term 15 developed to account | T.p Consequently, in the error analysis, a corrolatica term 15 developed to account for the dependence of Hp and Wp on T p. | ||
for the dependence of Hp and Wp on T p. | |||
The coriclation term is: - | The coriclation term is: - | ||
l | l | ||
Line 623: | Line 279: | ||
,=D. W . hd-. =Te:) 2 g,,.y;G}g--? | ,=D. W . hd-. =Te:) 2 g,,.y;G}g--? | ||
H -H | H -H | ||
. .. Ie--) | . .. Ie--) | ||
_- - - - -. - . d--. h)q. - . . . .. Hs- Mp'. \ | _- - - - -. - . d--. h)q. - . . . .. Hs- Mp'. \ | ||
Line 629: | Line 284: | ||
~~ | ~~ | ||
2 Wr ; {d. Wr Y d.frd | 2 Wr ; {d. Wr Y d.frd | ||
; .' c~ A P 'fd 9:- | ; .' c~ A P 'fd 9:- | ||
&Tr y J fkD4r~) | &Tr y J fkD4r~) | ||
9 ' t~)zD 'T,)- | 9 ' t~)zD 'T,)- | ||
8C _ ,, g' _ | 8C _ ,, g' _ | ||
y es-se ( | y es-se ( | ||
My-Mc SS ~ _ . _ | My-Mc SS ~ _ . _ | ||
YJ~ E .$, .. / )f | YJ~ E .$, .. / )f NH ~ WC = NM~ No I = | ||
NH ~ WC = NM~ No I = | |||
-d-T, 2-Hr)y-).Te__) yW_ g'L. _d .Tf ) | -d-T, 2-Hr)y-).Te__) yW_ g'L. _d .Tf ) | ||
The correlation tota becomes: | The correlation tota becomes: | ||
2.fMs ~HiYc s e Y )~P h (~p % ~t W D He ? . d 7,~."_. | 2.fMs ~HiYc s e Y )~P h (~p % ~t W D He ? . d 7,~."_. | ||
~ | ~ | ||
c)p'q.- '), | c)p'q.- '), | ||
-_.-i .Mu ..He f. h . C .n, .Q..!e)q.... . He-Ne.jq. | -_.-i .Mu ..He f. h . C .n, .Q..!e)q.... . He-Ne.jq. | ||
2 Te.) | 2 Te.) | ||
~ ' | ~ ' | ||
.t_....._.~_~..'._....._.. | .t_....._.~_~..'._....._.. | ||
.. .. m..c %..f.. _.(Hs-H.f.)(dPhdN\..}Tp F- . . . - - - . . . . | .. .. m..c %..f.. _.(Hs-H.f.)(dPhdN\..}Tp F- . . . - - - . . . . | ||
. --.. ... .. .. . .. _ . (pg---. | . --.. ... .. .. . .. _ . (pg---. | ||
ye a y -.9 7,.. ,,u>_ Te.. ..J - -.- .-- - _ - . = | ye a y -.9 7,.. ,,u>_ Te.. ..J - -.- .-- - _ - . = | ||
, - 17 - | , - 17 - | ||
e | e | ||
m ,, | m ,, | ||
1 | 1 | ||
,1 l | ,1 l | ||
For the Bailey Meter Company - supplied feedwater flowmeters which are calibrated prior to shipment to the site., we have the following typical equation: | For the Bailey Meter Company - supplied feedwater flowmeters which are calibrated prior to shipment to the site., we have the following typical equation: | ||
~ | ~ | ||
v | v N--* -- | ||
d*sl [ = _ k ... d W a. _ Q [ a | d*sl [ = _ k ... d W a. _ Q [ a | ||
$C $a. dhdj _ AY A = conversion factor C = approach factor (deoendent on the beta ratio) | $C $a. dhdj _ AY A = conversion factor C = approach factor (deoendent on the beta ratio) | ||
. Fa = effect of thermal expansion of flowmeter throat di3 meter d = measured throat diamter - inches o | . Fa = effect of thermal expansion of flowmeter throat di3 meter d = measured throat diamter - inches o | ||
and C d is the flow coefficient derived from the calibration | and C d is the flow coefficient derived from the calibration data for each set of pressure taps. | ||
data for each set of pressure taps. | |||
oy 1 Yp ^ | oy 1 Yp ^ | ||
0.f Ah + 02 . | 0.f Ah + 02 . | ||
A.k | A.k 2 | ||
2 | |||
* b , 4l, + Cd l A?.N 2 | * b , 4l, + Cd l A?.N 2 | ||
= | = | ||
o u Typically d 0 | o u Typically d 0 | ||
= 9.121 inches measured to + 0.001 inches thus 6do/do g 0.0ll%,wiiich is negligible | = 9.121 inches measured to + 0.001 inches thus 6do/do g 0.0ll%,wiiich is negligible Also, at or near full power flow, the test data values of C are d 0.9909, 0.9916, 0.9928 and 0.9878. The uncertainty it) the above values is negligible as compared to other uncertainties. | ||
Also, at or near full power flow, the test data values of C are d 0.9909, 0.9916, 0.9928 and 0.9878. The uncertainty it) the above values is negligible as compared to other uncertainties. | |||
Based on the above description, C will be assumed to be constant for this error analysis. | Based on the above description, C will be assumed to be constant for this error analysis. | ||
'Ihe expressio,n fordWymay then be written as: . ,, r s e j { Yi / L2 | 'Ihe expressio,n fordWymay then be written as: . ,, r s e j { Yi / L2 | ||
Line 713: | Line 329: | ||
{----- | {----- | ||
~ | ~ | ||
j Q~P; Z - | |||
AP j | AP j | ||
-y y .-l_c:-sP-)p-gh.._= L | |||
-y | |||
- g-f S .g.: ' ;;spY yt.--- | - g-f S .g.: ' ;;spY yt.--- | ||
F z y g y;- , | F z y g y;- , | ||
2- M -- - -- y Since T F determines feedwater enthalpy as well as feedwater flowrate, an error in T p can result in non-independent errors in H p a n d -Wp, | 2- M -- - -- y Since T F determines feedwater enthalpy as well as feedwater flowrate, an error in T p can result in non-independent errors in H p a n d -Wp, s | ||
s | |||
18 - , | 18 - , | ||
3 e C on ti n ui n g w i t h .t h e d e v e_1.o o me n t o f d_W RC i Yx = f- .lx ,. x. - _ | |||
3 e | |||
C on ti n ui n g w i t h .t h e d e v e_1.o o me n t o f d_W RC i | |||
Yx = f- .lx ,. x. - _ | |||
dJt, = 1:E0A_ d.d'lO16_sp - | dJt, = 1:E0A_ d.d'lO16_sp - | ||
D Tx > b p.pe o , ._ | D Tx > b p.pe o , ._ | ||
* YBC | * YBC | ||
~ | ~ | ||
Line 757: | Line 345: | ||
( gg//e_] developed for the accuracy of either Loop 1 or 2 RC 'flowrate | ( gg//e_] developed for the accuracy of either Loop 1 or 2 RC 'flowrate | ||
. - - - - . ]gc-= . Ac_ j ac --. | . - - - - . ]gc-= . Ac_ j ac --. | ||
) Up , -) - 9 H.s y- . fcb2 102q..Jll }- | ) Up , -) - 9 H.s y- . fcb2 102q..Jll }- | ||
L yz.--- p //p2.- | L yz.--- p //p2.- | ||
0AC . .4 Al_ } - | 0AC . .4 Al_ } - | ||
. p H, . . | . p H, . . | ||
. ) ..... g .ye .-. .. [- ~ | . ) ..... g .ye .-. .. [- ~ | ||
Line 773: | Line 356: | ||
* l AA lHN - | * l AA lHN - | ||
From Bailey Meter Co. Calibration sheets .l c_ 7 0 xto' tbs /hr # ' | From Bailey Meter Co. Calibration sheets .l c_ 7 0 xto' tbs /hr # ' | ||
0.3154 x /0 . | 0.3154 x /0 . | ||
'\, 51. 4 *) | '\, 51. 4 *) | ||
Line 780: | Line 362: | ||
/)F at 455 F and 1065 osia - 51.49 lbs/ft and AP (full scale) = 956.5 inches of standard water. | /)F at 455 F and 1065 osia - 51.49 lbs/ft and AP (full scale) = 956.5 inches of standard water. | ||
Calcu. late typical value of AP at full power: | Calcu. late typical value of AP at full power: | ||
'o.0336 0' ).N 3 | 'o.0336 0' ).N 3 | ||
gat 460Fand1050 psia =51.26lbs/ft | gat 460Fand1050 psia =51.26lbs/ft | ||
*e | *e | ||
. ,a - | . ,a - | ||
Calculate Hg -Hp: | Calculate Hg -Hp: | ||
(HHNC I Use Loop 2 values to obtain 816.29 = 0.2086. | (HHNC I Use Loop 2 values to obtain 816.29 = 0.2086. | ||
(62.55)2 Evaluate 39 for variation around 460 F: | (62.55)2 Evaluate 39 for variation around 460 F: | ||
3T p p at 457.4 F = 51.335 lbs/ft 3 g at 462.2 F = 51.099 lbs/ft 3 | 3T p p at 457.4 F = 51.335 lbs/ft 3 g at 462.2 F = 51.099 lbs/ft 3 | ||
_3f_ = 0.236 = - 0.0492 1h BT p -4.8 ft"-F Evaluate 3 He for variation around 460 F: | _3f_ = 0.236 = - 0.0492 1h BT p -4.8 ft"-F Evaluate 3 He for variation around 460 F: | ||
STp ' | STp ' | ||
hp at 462F = 443.99 Btu /lb hp at 458F = 439.48 Btu /lb 3H p = | hp at 462F = 443.99 Btu /lb hp at 458F = 439.48 Btu /lb 3H p = | ||
1.128 BTU /lb-F | 1.128 BTU /lb-F ST p Using the above values, the complete correlation tem (P) may be calculated as: , | ||
ST p | |||
Using the above values, the complete correlation tem (P) may be calculated as: , | |||
'- 8 3 I P = -(3.154)' x 10 x 0.662 x 10 x 0.2086 x (-4.92 x 10-2) l (dT ) (1.12}) | '- 8 3 I P = -(3.154)' x 10 x 0.662 x 10 x 0.2086 x (-4.92 x 10-2) l (dT ) (1.12}) | ||
f i | f i | ||
Or P = 7.624 x 10' x (dTf) 1 | Or P = 7.624 x 10' x (dTf) 1 | ||
- l | - l d | ||
d | |||
. - 20 - | . - 20 - | ||
G | G | ||
1 Evaluate the following terms: | 1 Evaluate the following terms: | ||
AN RC , | AN RC , | ||
Line 842: | Line 391: | ||
3W RC , | 3W RC , | ||
A N F (H g - Hp )' , Hg-HF - | A N F (H g - Hp )' , Hg-HF - | ||
A 3W p SW p i- H H-- H C HH-NC i | A 3W p SW p i- H H-- H C HH-NC i 2W RC I N F | ||
2W RC I N F | |||
N S | N S | ||
N F | N F | ||
Hp9 Wp | Hp9 Wp | ||
, , B 3H g 3H 3 , HH-NC - NH~NC 2W RC 3 NF Hg-Wp Hg - Wp _ | |||
, , B 3H g 3H 3 , HH-NC - NH~NC | |||
2W RC 3 NF Hg-Wp Hg - Wp _ | |||
2H p 2H p , | 2H p 2H p , | ||
HgsHC - | HgsHC - | ||
NH ~ "C 3W RC , 3 NF (Hg-H) p , | NH ~ "C 3W RC , 3 NF (Hg-H) p , | ||
-W p (H g -H} E = | -W p (H g -H} E = | ||
~N RC 2 - | ~N RC 2 - | ||
0 | 0 3H g 3H H INH-NC) J (H H ~N) C N | ||
3H g 3H H INH-NC) J (H H ~N) C N | |||
H | H | ||
-N C 3W RC 3 NF (Hg-H) p +W RC | -N C 3W RC 3 NF (Hg-H) p +W RC | ||
, , ED 3H C I"C . (NH-N) C ,< N H ~ "C | , , ED 3H C I"C . (NH-N) C ,< N H ~ "C | ||
# 9 3 | |||
e a | |||
# 9 | |||
a | |||
w | w | ||
-rm - | -rm - | ||
A = 812.90 + 816.29 64.27 62.55 = 12.85 2 | A = 812.90 + 816.29 64.27 62.55 = 12.85 2 | ||
2 B = 5.'812 X 106 + 5.785 X 100 = 9.146 X 10 4 lb 64.27 62.55 BTU-hr 2 | 2 B = 5.'812 X 106 + 5.785 X 100 = 9.146 X 10 4 lb 64.27 62.55 BTU-hr 2 | ||
D = 73.18 X 106 = 75.16 X 106 1.170 X 10 0 lb 2 | D = 73.18 X 106 = 75.16 X 106 1.170 X 10 0 lb 2 | ||
64.27 62.55 BTU-br | 64.27 62.55 BTU-br Rewriting the expression for d W RC 2 2 2 | ||
Rewriting the expression for d W RC 2 2 2 | |||
'b dW RC c A2 (d Wp )2+B (dH3 )2+B (dH p )2+D (dH H ) +D (dH c ) | 'b dW RC c A2 (d Wp )2+B (dH3 )2+B (dH p )2+D (dH H ) +D (dH c ) | ||
+P oA dW RC " dT p +A 2 daP p | +P oA dW RC " dT p +A 2 daP p | ||
+B 2 2 | +B 2 2 gg 2 '+ B2 f 2H 3 +B [3H- 2+B2[3H-dT dP dP BT 3 gp S F F 3 (3Tp (3P | ||
gg 2 '+ B2 f 2H 3 +B [3H- 2+B2[3H-dT dP dP BT 3 gp S F F 3 (3Tp (3P | |||
+D [3H H dT + D2 [ gg 2 H dP +D 2 /3H C dT +D 2 gg C dP +F. | +D [3H H dT + D2 [ gg 2 H dP +D 2 /3H C dT +D 2 gg C dP +F. | ||
I NyH H I H l qQ C , | I NyH H I H l qQ C , | ||
) | ) | ||
C | C | ||
- NgPH ) | - NgPH ) | ||
Where P is the correlation term developed on Page 16. | Where P is the correlation term developed on Page 16. | ||
i | i l | ||
l | |||
l l | l l | ||
1 | 1 l | ||
l | |||
* / l 3 | * / l 3 | ||
8 | 8 | ||
. m . | . m . | ||
l | l | ||
~ | ~ | ||
Evaluate all the remaining coefficients: | Evaluate all the remaining coefficients: | ||
b XI 1 | b XI 1 | ||
Line 933: | Line 437: | ||
662 x (- 0 02492.) ' | 662 x (- 0 02492.) ' | ||
/ )Tp 2. si. 2.6 | / )Tp 2. si. 2.6 | ||
= - 27 8g tbs /gr, _ .g s 15770 = g 3 gg Ibs/r.-indes sM mhr SH S (around596Fand,910osia) = 0.835 Beu/lb - F ST g 592F to 600F | = - 27 8g tbs /gr, _ .g s 15770 = g 3 gg Ibs/r.-indes sM mhr SH S (around596Fand,910osia) = 0.835 Beu/lb - F ST g 592F to 600F IN S (around 596F and 910 psia) = -0.112 Btu /lb - F 2P 890 to 930 psia 3 | ||
IN S (around 596F and 910 psia) = -0.112 Btu /lb - F 2P 890 to 930 psia 3 | |||
3H F (around 460F and 960 psia) = 1.126 Beu/lb - F ST p 453 to 467 F , | 3H F (around 460F and 960 psia) = 1.126 Beu/lb - F ST p 453 to 467 F , | ||
IN F (around 460F and 960 psia) = - 0.00042 Btu /lb - psi 2P p 900 to 1020 psia 2N H (around 605.5F and 2160 psia) = 1.47 Btu /lb - F BT H | IN F (around 460F and 960 psia) = - 0.00042 Btu /lb - psi 2P p 900 to 1020 psia 2N H (around 605.5F and 2160 psia) = 1.47 Btu /lb - F BT H | ||
604.5 to 606.5F | 604.5 to 606.5F 2N H (around605.5Fand2160 psia)= ' b.0 56 Btu /lb - psi 2P g 2140 to 2180 psia 3H (around 558.8F and 2220 psia) = 1.260 Beu/lb - F C | ||
2N H (around605.5Fand2160 psia)= ' b.0 56 Btu /lb - psi | |||
2P g 2140 to 2180 psia | |||
3H (around 558.8F and 2220 psia) = 1.260 Beu/lb - F C | |||
ST C 557.8 to 559.8 F 2N (around 558.8F and 2220 psia) = - 0.0020 ~ Bru/lb - psi C | ST C 557.8 to 559.8 F 2N (around 558.8F and 2220 psia) = - 0.0020 ~ Bru/lb - psi C | ||
3P 2200 to 2240 psia C | 3P 2200 to 2240 psia C | ||
Substituting each of the calculated coefficients into the equation for d WRC we obtain: | Substituting each of the calculated coefficients into the equation for d WRC we obtain: | ||
5 23 ~* | 5 23 ~* | ||
c | c dWRC = (12.85)2 (-2788)2 (dTp)2 + (12.85)2 (4388)2 (daP)2 , | ||
dWRC = (12.85)2 (-2788)2 (dTp)2 + (12.85)2 (4388)2 (daP)2 , | |||
(91460)2 (0.835)2 (dT3 )2 + (91460)2 (-0.112)2 (dPs)2 | (91460)2 (0.835)2 (dT3 )2 + (91460)2 (-0.112)2 (dPs)2 | ||
+ (91460)2 (1.126)2 (dTp)2 + (91460)2(.00042)2 (dPF) 6 6 | + (91460)2 (1.126)2 (dTp)2 + (91460)2(.00042)2 (dPF) 6 6 | ||
Line 970: | Line 458: | ||
+ 1.952 X 1010 (dTp )2 + 0.764 X 1010 (dT3)2 + 0. 429 X 108 (dPH) b | + 1.952 X 1010 (dTp )2 + 0.764 X 1010 (dT3)2 + 0. 429 X 108 (dPH) b | ||
+ 0.055 X 108(dP) C + 1.049 X 108 (dP 3)2 + .148 X 104 (dPp )2 (daP)2 = ( 12.) = 144. | + 0.055 X 108(dP) C + 1.049 X 108 (dP 3)2 + .148 X 104 (dPp )2 (daP)2 = ( 12.) = 144. | ||
(d Tg)2 = (0.79)2 = 0.62 s | (d Tg)2 = (0.79)2 = 0.62 s (d TC ) = (0.79)2 = 0.62 (d Tp )2 = (6.8)2 = 46. | ||
(d TC ) = (0.79)2 = 0.62 (d Tp )2 = (6.8)2 = 46. | |||
(d T3 )2 = (4.2)2 = 18. | (d T3 )2 = (4.2)2 = 18. | ||
(dP)H = (19) = 361 , | (dP)H = (19) = 361 , | ||
(d PC ) = (19) = 361 | (d PC ) = (19) = 361 (d P3 )2 = (23)2 = 529 ; | ||
(dP)2 p = (15 )2 = 225 dWRC = 4.578 X 10II + b for (daP) ' | |||
(d P3 )2 = (23)2 = 529 ; | |||
(dP)2 p = (15 )2 = 225 | |||
dWRC = 4.578 X 10II + b for (daP) ' | |||
I 1.834 X 1012 + gar (d Tg ), | I 1.834 X 1012 + gar (d Tg ), | ||
1.347 X 1012 + for(d TC) 0.898 X 1012 + go,(d Tp) 0.138 X 1012 + for(d T3) 1.549 X 1010'+ or (d Pg ) l 9 | 1.347 X 1012 + for(d TC) 0.898 X 1012 + go,(d Tp) 0.138 X 1012 + for(d T3) 1.549 X 1010'+ or (d Pg ) l 9 | ||
1.986 X 10 + for(d PC) 0.555 X 10II +, for(d P3) 0.333 X 106 - | 1.986 X 10 + for(d PC) 0.555 X 10II +, for(d P3) 0.333 X 106 - | ||
for(d Pp) s e > j | for(d Pp) s e > j 1 | ||
1 | |||
- 24 , | - 24 , | ||
, r. | , r. | ||
dk RC = 474.8 x 10 =j-2.18 x 10 lbs/ hour or 1.2.95% for either loop. | dk RC = 474.8 x 10 =j-2.18 x 10 lbs/ hour or 1.2.95% for either loop. | ||
Since the flowrates for the two RC loops were calculated from measurements taken with two completely different sets of sensors, the total RC flowrate percentage error from the heat balance measurements is: | Since the flowrates for the two RC loops were calculated from measurements taken with two completely different sets of sensors, the total RC flowrate percentage error from the heat balance measurements is: | ||
Line 1,005: | Line 479: | ||
The total RC flowrate is simply the sum- of both loop flowrates,but the extremes of erroneous signals will not occur simultaneously; therefore, we can say: that the percentage error in the total RC flowrate from the Centile flowrate measurements, as calibrated by the heat balance results,.is ( 3.1%) = 2.2%. | The total RC flowrate is simply the sum- of both loop flowrates,but the extremes of erroneous signals will not occur simultaneously; therefore, we can say: that the percentage error in the total RC flowrate from the Centile flowrate measurements, as calibrated by the heat balance results,.is ( 3.1%) = 2.2%. | ||
h , | h , | ||
t d | |||
a e | |||
t 4 | |||
t | |||
4 | |||
,a ~ | ,a ~ | ||
* -s ... | * -s ... | ||
, , ATTACHMENT 2 TO | , , ATTACHMENT 2 TO TOLEDO EDISON COMPANY LETTER . | ||
DATED May 26, 1978; Serial No. 436 SfATEMENT ADDRESSING FOREIGN MATERIAL AND DEPOSITS IN SECONDARY SYSTEM The OTSG Feedwater Chemistry control is designed to minimize the ingress of contaminants to the units. These contaminants include both suspended and dissolved solids. Chemistry control utilizes the all-valatile chemicals' ammonia and hydrazine which will not deposit or form insoluble solids which could deposit on critical surfaces.' The use of'these chemicals is designed to minimize the corrosion of feedwater train materials and thus the input of corrosion product oxides into the steam generators. | |||
TOLEDO EDISON COMPANY LETTER . | |||
The OTSG Feedwater Chemistry control is designed to minimize the ingress of contaminants to the units. These contaminants include both suspended and dissolved solids. Chemistry control utilizes the all-valatile chemicals' ammonia and hydrazine which will not deposit or form insoluble solids which could deposit on critical surfaces.' The use of'these chemicals is designed to minimize the corrosion of feedwater train materials and thus the input of corrosion product oxides into the steam generators. | |||
Water purity is further maintained through the use of full flow condensate polishers (powdered resin) which, in addition to re- | Water purity is further maintained through the use of full flow condensate polishers (powdered resin) which, in addition to re- | ||
' moving disso'1ved solids, also provide s excellent filters. These filters are located such that the) process all the water coming . | ' moving disso'1ved solids, also provide s excellent filters. These filters are located such that the) process all the water coming . | ||
from the condenser. As a result, damage to orifices in the feed- | from the condenser. As a result, damage to orifices in the feed-water train is highly improbable due to the aforementioned feed-water chemistry and purity control. . | ||
water train is highly improbable due to the aforementioned feed-water chemistry and purity control. . | |||
l Shot blasting for the feedwater piping was done in the shop before installation of the piping. Thus, no shot blasting was done with the feedwater flow elements I | l Shot blasting for the feedwater piping was done in the shop before installation of the piping. Thus, no shot blasting was done with the feedwater flow elements I | ||
installed. | installed. | ||
l l | l l | ||
c I}} | |||
c | |||
I}} |
Latest revision as of 16:51, 21 February 2020
ML19317F753 | |
Person / Time | |
---|---|
Site: | Davis Besse |
Issue date: | 05/25/1978 |
From: | Winks R BABCOCK & WILCOX CO. |
To: | |
Shared Package | |
ML19317F750 | List: |
References | |
NUDOCS 8001230657 | |
Download: ML19317F753 (28) | |
Text
--
m ,.
Attachment 1 to Toledo Edison Company letter Dated May 26, 1978; Serial No; 436 DETERMINATION OF TOTAL RC FLOWRATE AND IT,S ACCURACY FOR DAVIS-BESSE 1 s
BY ROBERT W. WINKS PRINCIPAL ENGI? LEER BABC0CK & WILC0X COMPANY LYNCHfiURG, VIRGINI A l
- MAY 25, 1978' j D**% '
i . o o 11 m ~
O '9'T
. v JU . s .A _a d
e 3
f
m , - .
~
DETERMINATION OF TOTAL RC FLOWRATE -
AND ITS ACCURACY FOR DAVIS-BESSE 1 TABLE OF CONTENTS ,
PAGE NUMBER Introduction 1 Sumary 1 Sensor A'ccuracy 2 Heat Balance Data '5 dalculatedTotalRCFlowrate 11
. - r Error Analysis 15 9
e d
e 4
s .
l i
DETERMINATION OF TOTAL RC FLOWRATE AND ITS ACCURACY FOR DAVIS-BESSE 1 AT 100%
POWER LEVEL INTRODUCTION In a B&W nuclear power plant, Gentile flowmeters are used to measure ' Loop 1 and 2 reactor coolant flowrates. These primary loop flowmeters are not calibrated prior to installation. Loop 1 and 2 feedwater flowrates are measured with calibrated flow meters and B&W utilizes a plant heat balance to set the calibration of the primary loop flowmeters.
An error analysis on the equations used to determine the total reactor core flowrate (Loop 1 plus Looo 2) has revealed that the errors in reactor coolant temperatures and feedwater flowmeter differential pressure are the most significant terms in calculating accurate values of total reactor core finwrata SLM!ARY The calculated RC flowrate for Davis-Besse 1 at 100% power is 113.2% times the design flowrate of 352,000 gpm. The accuracy is 2.2%. This was determined with RC temperature instrument string errors equal to 10.79F and feedwater flowmeter AP errors equal to 21.25% and steam temperature erros equal toi4.2F.
~
Reactor coolant system temperatures are measured with + 1/4% accurate pre-calibrated RTD's over a range of 520 to 620F. SimilarTy, the Bailey Meter Company differqntial pressure transmitters are calibrated to + 1/2% at time of installation. The tuo feedwater flowmeters,are calibrated to + 1/2% prior to installation. .<
For normal everyday conditions in the instrumentation area of the plant, B&W has determined the accuracy of all' input measurements used in this error analysis. (Refer to page 4.)
D 4
- . m ,
1
~
I ACCURACY 0F MAJOR INSTRUMENTATION USED FOR PLANT HEAT BALANCE CALCULATIONS O @ '
' D G
e .
- y. ze ,
LOON LOOPi OT3G <
f CORE } ; OTS6
% ?, '
e o/ l J :
T D I r3 R*e o c i
.._ l 0
The follcwing RTD's, each calibrated to + 1/4 F,and ,
tables prepared and sent with the sensor, were used for plant heat balance data for calculating total RC flowrate: ,
o .
N_o Descriotion 1 Loop 1 hot leg temp. Narrow Range, .520' to 620F. .
3 . _ Loop 1 hot leg temp. Narrow Range, 520 to 620F 7 Loop 2 hot leg temp. Narrow Range, 520 to 620F 9 Loop 2 Hot leg temp. Narrow Range, 520 to 620F .
l
! 5 Loop 1 cold leg temp. Narrow Range, 520 to 620 F
- l. 11 6 Loop 1 cold leg temo. Narrow Range, 520 to 620 F Loop 2 cold leg temo. Narrow Range, 520 to 620 F j
i 12 Loop 2 cold leg temp. Narrow Range, 520 to 620 F l
RTD's 13,14,15 and 16 are wide range (50 to 650 F) sensors and were not used.
RTD's 2,4,8 and 10 are inputs to the RPS and were not used for heat balance.
q n '
4 FEEDWATER FLOWRATE MEASUREMENT ACCURACY LOOPg LoGP E STEAM STEAM GENERATOR GENERATOR O O Nd N(
a Q '
LDCP l FLOWMETER
- L LOCP a FLOWMETER m
Jb
= FROM FEED WATER HEATERS LOOPl LOOP E pw 7gMpERATURE FW TEMPERATURE Each feedwater flowmeter is calibrated with 455 F water (rated flow) and the flow coefficient for each set of taps (two on each flowmeter) is supplied by the vendor.
The required accuracy is i 1/2%.
Each aP transmitter is calibrated to the range specified by the measured flow coefficient within an accuracy of i 0.25%.
The accuracies for the different. parameters are shown in the Table on the next page. The accuracy for each parameter was conservatively calculated by summing the string errors. The environmental errors from changes in temperature and the errors from the poraputer were included in the values shown in the Table.
l l .
m '
ACCURACY OF PRIMARY AND SECONDARY SIDE MEASUREMENTS USED FOR CALCULATION OF TOTAL RC FLOWRATE MEASUREMENT ACCURACY PARAMETER ACCURACY % SPAN UNITS RC hot leg temp. 1 0.79 520 to 620F 10.79 F RC cold leg temp. 1 0.79 ,
520 to 620F +0.79 F Steam temp. 1 0.60 0 to 700F 14.2 F Feedwater temp. -s i 1.13 O to 600F 16.8 F Feedwater pressure 11.0% 0 to 1500 psig 1 15 psi Steam pressure 11.89% 0 to 1200 psig i 23 psi RC pressure 1 0.77% 0 to 2500 psig i 19 psi Feedwater Flow * -+ 1.25% 0 to 960 inches + 12. inches (Std. H20)
RC Flowrate + 1.046
- ^
O to 910 inches -
+ 9.5 inches
. < (Std. H 2O)
O e
d 3
4 ,
,' m ,
COMPARISON OF' HOT LEG TEMPERATURES (Tg)
FOR DAVIS-BESSE 1 AT 100% POWER ON t .
T 719 (OF) T722 (oF)
! '14:39 605.6 605.8 605.9 606.1 14:44 606.0- 606.1 506.2 606.1 It 50 606.0 606.2 606.1 606.2 1<. 24 605.9 . 606.1 606.4 606.4 14.59 605.6 606.1 605.9 605.9 15:04 605.8 606.1 606.1 606.1 15:09 605.9 605.9 605.9 606.0 15:14 605.9 606.1 606.2 606.4 Midpoint 605.8 606.0 606.15 606.15 Span + 0.2 + 0.2 + 0.25 + 0.25 (during 35 s -
minutes)
Average Ta = 606.03 F LOOP 2 LOOP 2 LOOP 2 LOOP 2 TIME T729 ( F) T730 (oF) T728 ( F) T731 ( F) 14:39 604.9 605.1 604.3 604.9 14:44 605.3 605.3 604.8' 605.0 14:50 , 605.4 605.4 604.9. 605.2 14:54 605.1 605.3 ^
604.4 605.2 14:59 605.1 605.0< 604.6 604.8 15:04 605.1 605.1 604.4 604.8 15:09 605.0 604.9 604.6 604.7 15:14 605.2 605.4 604.7 605.2 Midpoinc 605.15 605.15 604.6 604.95 Span 1 0.25 1 0.25 + 0.3 1 0.25 (during 2 minutes) l' Average TH = 604.96 F d
s 5
o 5- ,
L
=
COMPARISON OF COLD LEG TEMPERATURES (Tc) FOR DAVIS-BESSE I AT 100% F0WER ON APRIL 5, 1978 TIME RCP l-1 TEMP ( F) RCP l-2 TEMP ( F) 14:39 559.2 558.6 14:44 559.1 558.4 14:50 558.9 558.3 14:54 558.9 558.3 14:59 558.8 558.1 15:04 559.0 558.4 15:09 558.9 558.3 15:14 559.2 558.4 Midpoint 559.0 -
558.35 Span + 0.2 f; 0. 25 (during 35 minutes s L 60 p 1 Avg. Tc = 558.7 F TIME RCP 2-1 TEMP ( F) RCP 2-2 TEMP (otn 14:39 559.2 559.1 14:44 558.7 559.4 14:50 558.7 559.3 14:54 '
558.7 558.7 14:59 558.7
558.6 15:04 558.3 558.8 15:09' 558.4 558.8 15:14 559.1 558.9 Midpoint 558.75 559.'0 Span + 0.45 + 0.40 (during 35 mi'nutes)
L o o p 2 Avg. Tc = 558.9 F d
e
- l. ,
1
3 . -
COMPARISON OF STEAM TEMPERATURES (Ts) AND JRESSURES (Ps)
FOR DAVIS-BESSE 1 AT 100% POWER ON APRIL 5, 1978 LOOP 1 . LOOP 2 TIME STEAM TEMP ( F) STEAM TEMP ( F) 14:39 595.6 596.2 14:44 595.6 596.7 14:50 595.5 596.7 14:54 595.5 596.4 14:59 595.4 596.6 15:04 595.5 596.4 15:09 595.5 596.4 15:14 595.6 596.4 Midpoint 595.5 596.45 Span + 0.1 + 0.25 (during 35 minutes) s LOOP 1 LOOP 2 TIME STEAM PRESS (osid STEAM PRESS. Cosie) 14:39 905.8 881.2 14:44 907.8 879.4 14:50 905.2 882.0 14:54 . 905.4 881.1 14:59 906.1 885.9 15:04 905.1 .,e 881.1 15:09 903.7 879.9 15:14 905.1 884.7 Midpoint 905.75 882.65 Span + 2.05 + 3.25 (during 35 minutes) e 1
4 4
J
.S s COMPARISON OF FEEDWATER TEMPERA 1URES (T F ) AND PRESSURES (PF ) FOR DAVIS-BESSE 1 AT 100% POWER ON APRIL 5,1978 LOOP 1 FEEDWATER LOOP 2 FEEDWATER TIME TEMP ( F) ,
TEMP ( F) 14:39 459.8 459.8 14:44 459.9 459.9 1.:50 460.1 460.2 14:54 459.8 460.1 14:59 460.2 460.2 15:04 459.9 459.9 15:09 460.0 459.9 15:14 459.9 460.0 Midpoint 460.0 460.0 Span 0.2 10.2 (during 35 minutes)
Tg = 460.0 F for Loops 1 an4 2 LOOP 1 FEEDWATER LOOP 2 FEEDWATER TIME PRESSURE (psig) PRESSURE (psig) 14:39 . 942.4 955.9 14:44 942.8 956.1 14:50 944.6 957.2 14:54 943.2 956.7 14:59 944.9 958.8 15:04 943.2 956.1 15:09 943.2 956.7 '
- 15
- 14 943.2 957.0 Midpoint 943.65 957.35 l
Span 21.25 21.45 (during 35 minutes) d b
e 4
5 ,
COMPARISON OF MEASURED FEEDWATER FLOWRATES (WF )
FOR DAVIf-BESSE 1 AT 100% POWER ON APRIL 5, 1978 LOOP l FEEDWATER FLOWRATE LOOP 2 FEEDWATER FLOWRATE TIME __
(MP P H ) (MPPH) 14:39 5.806 5.784 14: 44 5.787 5.753 14:50 5.841 5.811 14:54 5.812 5.780 14:59 5.808 5.787 15:04 5.820 5.814 15:09 5.798 -
5.762 15:14 5.822 5.785 Average value: 5.812 5.785 Midpoint: 5.814 5.784 Span: + 0.027 + 0.030 (during 35 minutes) d
.m V 8
e i
b 4
l l
.s PRIMARY SIDE ENTHALPY CALCULATION:
NOMENCLATURE f
H H = Reactor Coolant hot leg enthalpy H C = Reactor Coolant cold leg enthal i
HS = Enthalpy of steam at steam geu 4 tor outlet HF = Enthalpy of feedwater to the steam generator
! dh H = Change in enthalpy, an added subscript: 'pri' or 'sec' implies the primary and secondary loops respectively.
LOOP 1:
HH @ 606.0 F and 2159 psia = 622.41 Btu /lb HC @ 558.7 F and 2220 psia = 558.14 Btu /lb J8Hpri = 64.27 Btu /lb LOOP 2:
H H @ 605.0 F and 2159 psia = 620.94 Btu /,1b HC @ 558.9 F and 2220 psia = 558.39 Beu/lb 4H pri = 62.55 Btu /lb SECONDARY SIDE ENTHALPY CALCULATION:
LOOP 1:
HS @ 595.5 F and 920 psia = 1254.63 Btu /lb HF @ 460 F and 958 psia = 441.73 Btu /lb AHsec = 812.90 Btu /lb LOOP 2:
HS @ 596.5 F and 897 psia = 1258.03 Btu /lb HF @ 460 F and 972 psia = 441.74 Beu/lb i
AHaec = 816.29 Btu /lb d
g e
4 10 -
( - - -
, ) .~ ~
CALcU LATED TOTAL RC FLO10 RATE c r R LNCAll8 RATED PRIMARY LOOP PRE.%(URE FLOWMETE R O( 3 C c MOT LE6 TEMP.
LocP2 . > Loop 1 D
aa t J c
i
,, ,, coLo LEG TEMP.
PRI. MARY tooP~ ccMFifwRATION For +.he, .enii re- :rrimag - sec.cndog system ,
the, M ' h gg- ,
(NR ei(bHj) PRIMARY +Wc2.Nd R 4-Qn'- iq PS PE MARY
- kSC + QqAgrAT.Iop LOS.S E.S
- Wge i = R-co.cor- cAvt FM Rate-p foop (
NWRt 2. = Reen - N6t Fbo Rec tc. p y 2 Q ggg = Hext. %t h h (w.C eu Pg.s
- ~/5-3 y lo B m h v' .
(
,_______'u__, i I
LOOP 1
OTSG 0 tore .
l l
~
!___.-__q'_j I
I l
I
> i-._ __ _
SECOND ARY L oop . CON FIG U R.ATION '
Qss ::(lAlp A H sec )g9p +(W i = Misec) LocP 2 6
RADIATECW . .
O 54 xio BM M Lo sses SLtb sh'h. aim ARE oJbOut- bh 3d gM Wgeg (M I) pplM ARy+W Rc'2, h2)PplM ARy 475-3%I0 Bht
- c kbNsec)gpgb bH F 3cc) 7z + o 54 Xlo L wWRd Ibh)emg t + Wp(bHz) -(V Fhhsic) coon
. . 4(We A 0 toer, -14 uxiO'sk -
4 4
\1
~
~ ,
6 RE1 i FRutAny F Oxc tooPi 2.
t N N Rc2. PRIMARY =F V 5")tooe2 ~1 2_ b Solvine; Arv W g4 % A/ge2. l :
6- 8*' b
= (WF b h S <c)toopi - 37 3& Xio (A)pg.g
(/1HT I / PRIMAgy CLNL 6 Wg bF hHec),p 3 _373yx(039 k (AH2 >i PRIM A R-y F>ctru oo_cc io
(
hN)fRII b4'27 BUR Ib 1 O (bWsec)%p i = B12 30 Sh11b (6Hoecj t.coe 2. = 8161s BNib Mc b.',tu.Ti Ard. cocot% va. % w n.o rt, 4 N 6
NF t_ cop 1 = f.'sl 2. X to IblW we ap2_ = 5 785 Xto6 % W l
. )
IS .
- n. - - - _ . - -
=
6 gJ RU (5'8lulo )(9)a 9o ) - 3 7 38 Xio' aml6 (64 a7)
= 6 l 93 X10 lb Iw N Re2 _ (5 785Xlo')(816 '29) --- 37 '3F XIO'b BE (sa ss)
=
74 90 xto' 16 w l +-t h L R e 7
6 % = Nge 7. = b%cMRc_2
=
[47'83 Xto 6
\b W A , thea ne aA gm c. q u w n u NRCT Nl hv)
WRETQFm) 60 3-Qos X ?w %
C y =- 4 6 46 Ab l -t3 at Sgg , 3 . p a
.2220 psia WRtTQ=)= 3.9 89 Xlo' f m q, ygpx neq+- = sxerooog g- =. 3 5 2, 0 00 ""'
b fs M % D oua~ j pa e : li"o o l' '
=\\3af 14 l
L )
,s .-s
~
t ERROR ANALYSIS OF CALCULATED RC FLOWRATE The basic equation for Loop 1 or 2 RC flowrate is:
wRC .wF.AM -
C
- y-sec.
where C = Q b "p ,Np, )- Qrad. losses = 74.76 x 106 Btu /hr Ifoneassumesanextremecaseofa10%ergorinC,thenCwouldbeequalto 8.2236 x 107 Beu/hr rather than 74.76 x 10 Btu /hr.
Then total RC Flowrate would become:
W pet =- 5 311xlo6 gg;q. so - 3T32 xio'sklW_- y.goG G4 27 Ib 14w (Afg1 = 59 85 xlo' X 816 22 - 3 I'37Xlo Bhlk c 6Qss =Fi'(RXIO Ml4w h R e p w =.141 7 xto s .u, & a~t a Change in total RC flowrate is 0.08%.
For this small change we shall assume C is a constant and is 74.76 x 106 Btu /hr.
If it is in error, its influence on the final value is insignificant.
e e
O d
1 3
e
- i m -
m ,
ERROR ANALYSIS OF CALCULATED RC FLOWS For either Loop A or B the eouation for RC flow is:
Wgc = WF (H.-ggl 3 i
Note: Introducing. a con-
- Stent in the ex-( QH H e-) , oression will not T '
change the follow-p ( T.3, 3 )- p T=, p gj T og
= c) -
i ing worw.
. . . f Nu, Pn)-p(Tc., Pm)}
{NRe, "NRc, + Whc Determinetheexpressionfortheerrorinb R for a normal distribution of sma11' errors in each of the beasured parameters.
' ~ ~ " ' ~
I Where[isafunctionofT and p P,; and b.f
~ ~ ' ' "
E = {g/ "
C, the flow coefficient is assumea to be a constant.
.. d W g = D wg i (- Yz j
---._dp_6@)h,aP o --
T.-
~ ~
. (A g .j AP j x
~"
?"
9 t= d Te + J Pp hdP;gs.;Le.h- g DP y
) We ,
c_
AP' ,
D V]p _~ e g
_ , h_* ? h?
E AP .
f
~
~ 16 me--= <
_ c -
m m .,
The value for each enthalpy in the first equation given on the previous page was determined from temperature and pressure measurements. The value of W wasobtainedfromthefeedwatertemperature,andfromfeedwaterdifferenti$1 pressure measurements.
In the first equation given on the previous page, the onif parameters that depend on a common measurement are pH and Wp . Specifically, F and W both depend on F
T.p Consequently, in the error analysis, a corrolatica term 15 developed to account for the dependence of Hp and Wp on T p.
The coriclation term is: -
l
-dd IdecYJ M/F [d tec~- djg('_~{jg2- '
,=D. W . hd-. =Te:) 2 g,,.y;G}g--?
H -H
. .. Ie--)
_- - - - -. - . d--. h)q. - . . . .. Hs- Mp'. \
-Q 10, ---- N, ye )
~~
2 Wr ; {d. Wr Y d.frd
- .' c~ A P 'fd 9
- -
&Tr y J fkD4r~)
9 ' t~)zD 'T,)-
8C _ ,, g' _
y es-se (
My-Mc SS ~ _ . _
YJ~ E .$, .. / )f NH ~ WC = NM~ No I =
-d-T, 2-Hr)y-).Te__) yW_ g'L. _d .Tf )
The correlation tota becomes:
2.fMs ~HiYc s e Y )~P h (~p % ~t W D He ? . d 7,~."_.
~
c)p'q.- '),
-_.-i .Mu ..He f. h . C .n, .Q..!e)q.... . He-Ne.jq.
2 Te.)
~ '
.t_....._.~_~..'._....._..
.. .. m..c %..f.. _.(Hs-H.f.)(dPhdN\..}Tp F- . . . - - - . . . .
. --.. ... .. .. . .. _ . (pg---.
ye a y -.9 7,.. ,,u>_ Te.. ..J - -.- .-- - _ - . =
, - 17 -
e
m ,,
1
,1 l
For the Bailey Meter Company - supplied feedwater flowmeters which are calibrated prior to shipment to the site., we have the following typical equation:
~
v N--* --
d*sl [ = _ k ... d W a. _ Q [ a
$C $a. dhdj _ AY A = conversion factor C = approach factor (deoendent on the beta ratio)
. Fa = effect of thermal expansion of flowmeter throat di3 meter d = measured throat diamter - inches o
and C d is the flow coefficient derived from the calibration data for each set of pressure taps.
oy 1 Yp ^
0.f Ah + 02 .
A.k 2
- b , 4l, + Cd l A?.N 2
=
o u Typically d 0
= 9.121 inches measured to + 0.001 inches thus 6do/do g 0.0ll%,wiiich is negligible Also, at or near full power flow, the test data values of C are d 0.9909, 0.9916, 0.9928 and 0.9878. The uncertainty it) the above values is negligible as compared to other uncertainties.
Based on the above description, C will be assumed to be constant for this error analysis.
'Ihe expressio,n fordWymay then be written as: . ,, r s e j { Yi / L2
_ ? h ,P ?
2.
{-----
~
j Q~P; Z -
AP j
-y y .-l_c:-sP-)p-gh.._= L
- g-f S .g.: ' ;;spY yt.---
F z y g y;- ,
2- M -- - -- y Since T F determines feedwater enthalpy as well as feedwater flowrate, an error in T p can result in non-independent errors in H p a n d -Wp, s
18 - ,
3 e C on ti n ui n g w i t h .t h e d e v e_1.o o me n t o f d_W RC i Yx = f- .lx ,. x. - _
dJt, = 1:E0A_ d.d'lO16_sp -
D Tx > b p.pe o , ._
- YBC
~
WF -[IS. F a general expression is
( gg//e_] developed for the accuracy of either Loop 1 or 2 RC 'flowrate
. - - - - . ]gc-= . Ac_ j ac --.
) Up , -) - 9 H.s y- . fcb2 102q..Jll }-
L yz.--- p //p2.-
0AC . .4 Al_ } -
. p H, . .
. ) ..... g .ye .-. .. [- ~
g-
-2AE-.(//;-//p-)~~..e1~f d 17p' g.T,?--
(-Hg-Hi)'- XT, D Tr.-) 3 Calculate coefficient C for the feedwater flowmeter:
5 5 'kW
- l AA lHN -
From Bailey Meter Co. Calibration sheets .l c_ 7 0 xto' tbs /hr # '
0.3154 x /0 .
'\, 51. 4 *)
- 95G.5 -
3
/)F at 455 F and 1065 osia - 51.49 lbs/ft and AP (full scale) = 956.5 inches of standard water.
Calcu. late typical value of AP at full power:
'o.0336 0' ).N 3
gat 460Fand1050 psia =51.26lbs/ft
- e
. ,a -
Calculate Hg -Hp:
(HHNC I Use Loop 2 values to obtain 816.29 = 0.2086.
(62.55)2 Evaluate 39 for variation around 460 F:
3T p p at 457.4 F = 51.335 lbs/ft 3 g at 462.2 F = 51.099 lbs/ft 3
_3f_ = 0.236 = - 0.0492 1h BT p -4.8 ft"-F Evaluate 3 He for variation around 460 F:
STp '
hp at 462F = 443.99 Btu /lb hp at 458F = 439.48 Btu /lb 3H p =
1.128 BTU /lb-F ST p Using the above values, the complete correlation tem (P) may be calculated as: ,
'- 8 3 I P = -(3.154)' x 10 x 0.662 x 10 x 0.2086 x (-4.92 x 10-2) l (dT ) (1.12})
f i
Or P = 7.624 x 10' x (dTf) 1
- l d
. - 20 -
G
1 Evaluate the following terms:
AN RC ,
IW RC ,
IW RC ,
A RC ,
I RC 3W p 2H 3 2H p 2H N C
H l
3W RC ,
A N F (H g - Hp )' , Hg-HF -
A 3W p SW p i- H H-- H C HH-NC i 2W RC I N F
N S
N F
Hp9 Wp
, , B 3H g 3H 3 , HH-NC - NH~NC 2W RC 3 NF Hg-Wp Hg - Wp _
2H p 2H p ,
HgsHC -
NH ~ "C 3W RC , 3 NF (Hg-H) p ,
-W p (H g -H} E =
~N RC 2 -
0 3H g 3H H INH-NC) J (H H ~N) C N
H
-N C 3W RC 3 NF (Hg-H) p +W RC
, , ED 3H C I"C . (NH-N) C ,< N H ~ "C
- 9 3
e a
w
-rm -
A = 812.90 + 816.29 64.27 62.55 = 12.85 2
2 B = 5.'812 X 106 + 5.785 X 100 = 9.146 X 10 4 lb 64.27 62.55 BTU-hr 2
D = 73.18 X 106 = 75.16 X 106 1.170 X 10 0 lb 2
64.27 62.55 BTU-br Rewriting the expression for d W RC 2 2 2
'b dW RC c A2 (d Wp )2+B (dH3 )2+B (dH p )2+D (dH H ) +D (dH c )
+P oA dW RC " dT p +A 2 daP p
+B 2 2 gg 2 '+ B2 f 2H 3 +B [3H- 2+B2[3H-dT dP dP BT 3 gp S F F 3 (3Tp (3P
+D [3H H dT + D2 [ gg 2 H dP +D 2 /3H C dT +D 2 gg C dP +F.
I NyH H I H l qQ C ,
)
C
- NgPH )
Where P is the correlation term developed on Page 16.
i l
l l
1 l
- / l 3
8
. m .
l
~
Evaluate all the remaining coefficients:
b XI 1
_f =. '
662 x (- 0 02492.) '
/ )Tp 2. si. 2.6
= - 27 8g tbs /gr, _ .g s 15770 = g 3 gg Ibs/r.-indes sM mhr SH S (around596Fand,910osia) = 0.835 Beu/lb - F ST g 592F to 600F IN S (around 596F and 910 psia) = -0.112 Btu /lb - F 2P 890 to 930 psia 3
3H F (around 460F and 960 psia) = 1.126 Beu/lb - F ST p 453 to 467 F ,
IN F (around 460F and 960 psia) = - 0.00042 Btu /lb - psi 2P p 900 to 1020 psia 2N H (around 605.5F and 2160 psia) = 1.47 Btu /lb - F BT H
604.5 to 606.5F 2N H (around605.5Fand2160 psia)= ' b.0 56 Btu /lb - psi 2P g 2140 to 2180 psia 3H (around 558.8F and 2220 psia) = 1.260 Beu/lb - F C
ST C 557.8 to 559.8 F 2N (around 558.8F and 2220 psia) = - 0.0020 ~ Bru/lb - psi C
3P 2200 to 2240 psia C
Substituting each of the calculated coefficients into the equation for d WRC we obtain:
5 23 ~*
c dWRC = (12.85)2 (-2788)2 (dTp)2 + (12.85)2 (4388)2 (daP)2 ,
(91460)2 (0.835)2 (dT3 )2 + (91460)2 (-0.112)2 (dPs)2
+ (91460)2 (1.126)2 (dTp)2 + (91460)2(.00042)2 (dPF) 6 6
+ (1.170X10 )2 (),47)2(dT,;) + (1.170X10 )2(-0.0056)2(dPH )
6 6
+ (1.170.X10 )2(1.26)2(dTC ) +(1.170X10 )2(-0.0020)2(dP C )
h
+ 7.624 X 109 (dTp)2
~
dW 3.179 X 109 (daP)2 + 2.958 X 1012 (dT RC " _ H ) + 2.173 X 1012 (dTC )
+ 1.952 X 1010 (dTp )2 + 0.764 X 1010 (dT3)2 + 0. 429 X 108 (dPH) b
+ 0.055 X 108(dP) C + 1.049 X 108 (dP 3)2 + .148 X 104 (dPp )2 (daP)2 = ( 12.) = 144.
(d Tg)2 = (0.79)2 = 0.62 s (d TC ) = (0.79)2 = 0.62 (d Tp )2 = (6.8)2 = 46.
(d T3 )2 = (4.2)2 = 18.
(dP)H = (19) = 361 ,
(d PC ) = (19) = 361 (d P3 )2 = (23)2 = 529 ;
(dP)2 p = (15 )2 = 225 dWRC = 4.578 X 10II + b for (daP) '
I 1.834 X 1012 + gar (d Tg ),
1.347 X 1012 + for(d TC) 0.898 X 1012 + go,(d Tp) 0.138 X 1012 + for(d T3) 1.549 X 1010'+ or (d Pg ) l 9
1.986 X 10 + for(d PC) 0.555 X 10II +, for(d P3) 0.333 X 106 -
for(d Pp) s e > j 1
- 24 ,
, r.
dk RC = 474.8 x 10 =j-2.18 x 10 lbs/ hour or 1.2.95% for either loop.
Since the flowrates for the two RC loops were calculated from measurements taken with two completely different sets of sensors, the total RC flowrate percentage error from the heat balance measurements is:
2-0.707 (2.95) = 12.09%
As shown on p.4, the RC flowrate string error for the Centile flowrates is 1.046%.
After the RC flowmeterA P transmitters are calibrated against the results obtained from the heat balance determination, then the total fractional error in each loop flowrate will be:
m (.0295) + (.01046)2
= .000980 or =- 3.1 %
The total RC flowrate is simply the sum- of both loop flowrates,but the extremes of erroneous signals will not occur simultaneously; therefore, we can say: that the percentage error in the total RC flowrate from the Centile flowrate measurements, as calibrated by the heat balance results,.is ( 3.1%) = 2.2%.
h ,
t d
a e
t 4
,a ~
- -s ...
, , ATTACHMENT 2 TO TOLEDO EDISON COMPANY LETTER .
DATED May 26, 1978; Serial No. 436 SfATEMENT ADDRESSING FOREIGN MATERIAL AND DEPOSITS IN SECONDARY SYSTEM The OTSG Feedwater Chemistry control is designed to minimize the ingress of contaminants to the units. These contaminants include both suspended and dissolved solids. Chemistry control utilizes the all-valatile chemicals' ammonia and hydrazine which will not deposit or form insoluble solids which could deposit on critical surfaces.' The use of'these chemicals is designed to minimize the corrosion of feedwater train materials and thus the input of corrosion product oxides into the steam generators.
Water purity is further maintained through the use of full flow condensate polishers (powdered resin) which, in addition to re-
' moving disso'1ved solids, also provide s excellent filters. These filters are located such that the) process all the water coming .
from the condenser. As a result, damage to orifices in the feed-water train is highly improbable due to the aforementioned feed-water chemistry and purity control. .
l Shot blasting for the feedwater piping was done in the shop before installation of the piping. Thus, no shot blasting was done with the feedwater flow elements I
installed.
l l
c I