ML13303B522: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
| number = ML13303B522
| number = ML13303B522
| issue date = 10/22/2013
| issue date = 10/22/2013
| title = Dresden, Unit 2 - Core Operating Limits Report for Cycle 23, Revision 1
| title = Core Operating Limits Report for Cycle 23, Revision 1
| author name =  
| author name =  
| author affiliation = Exelon Generation Co, LLC
| author affiliation = Exelon Generation Co, LLC
Line 189: Line 189:
COLR Dresden 2 Revision 12 Page 30 of 45 4.3. Scram Tim.TSSS, ISS, and NSS refer to scram speeds. TSSS Is the Technical Specification Scram Speed, ISS Is the Intermediate Scram Speed, and NSS Is the Nominal Scram Speed.The scram time values are shown In Table 4-1.The NSS scram times am based on a conservative Interpretation of scram time surveillance measurements.
COLR Dresden 2 Revision 12 Page 30 of 45 4.3. Scram Tim.TSSS, ISS, and NSS refer to scram speeds. TSSS Is the Technical Specification Scram Speed, ISS Is the Intermediate Scram Speed, and NSS Is the Nominal Scram Speed.The scram time values are shown In Table 4-1.The NSS scram times am based on a conservative Interpretation of scram time surveillance measurements.
In the event that plant surveillance shows these scram Insertion times to be exceeded, the MCPR lmits are to default to the values which correspond to the ISS scram time. The ISS times have been chosen to provide an Intermediate value between the NSS and TSSS, but Interpolation between these values is not supported by Westinghoose mehodology.
In the event that plant surveillance shows these scram Insertion times to be exceeded, the MCPR lmits are to default to the values which correspond to the ISS scram time. The ISS times have been chosen to provide an Intermediate value between the NSS and TSSS, but Interpolation between these values is not supported by Westinghoose mehodology.
In toe event 1hat the ISS t*ms are exceeded, MCPR lmits for the TSSS apply.Tiba 4-1 Soma Times (Rdsersnou 5 d 13)Control Rod humlmn Frton IM (soonds) S (seonds) NSS (meconds)5 0.48 0.360 6324 20 0.89 0.720 0.700 50 1.98 1.580 1.5104 90 3.44 2.740 2.635 4.4. Reclrcutatlon Pump MSr Guwetor SeWngs Cycle 23 was analyzed with a maximum aors low runout of 1 10%; therefore the recirculation pump molar generatr scocf tube mechanical and electrical stops must be set to maintain core flow less than 110% (107.8 Mblbr) for aOl mnout events (Reference 8). This value is consistent wilh the analyses femnced In Reftrence  
In toe event 1hat the ISS t*ms are exceeded, MCPR lmits for the TSSS apply.Tiba 4-1 Soma Times (Rdsersnou 5 d 13)Control Rod humlmn Frton IM (soonds) S (seonds) NSS (meconds)5 0.48 0.360 6324 20 0.89 0.720 0.700 50 1.98 1.580 1.5104 90 3.44 2.740 2.635 4.4. Reclrcutatlon Pump MSr Guwetor SeWngs Cycle 23 was analyzed with a maximum aors low runout of 1 10%; therefore the recirculation pump molar generatr scocf tube mechanical and electrical stops must be set to maintain core flow less than 110% (107.8 Mblbr) for aOl mnout events (Reference 8). This value is consistent wilh the analyses femnced In Reftrence
: 13.
: 13.
COLR Dresden 2 Revision 12 Page 31 of 45 Tab" 42 MCPR TBS Bwiid Opifaing ULint -NFWT Al Fuel T"pe (Rmumne 13)EOOS Cwufnfblnon...
COLR Dresden 2 Revision 12 Page 31 of 45 Tab" 42 MCPR TBS Bwiid Opifaing ULint -NFWT Al Fuel T"pe (Rmumne 13)EOOS Cwufnfblnon...
Line 206: Line 206:
.0140Z5.UWAit Lattics Opt2.A46Q-  
.0140Z5.UWAit Lattics Opt2.A46Q-  
.,-14Q25JWAN LAIW s Opt2-4.07.1405.50402=.WAR Lattlc Opt2-4.O5-ISGZ.OO-14MZ5.,WLuttkcs I1 and 69 OpM2-4*WISGZS  
.,-14Q25JWAN LAIW s Opt2-4.07.1405.50402=.WAR Lattlc Opt2-4.O5-ISGZ.OO-14MZ5.,WLuttkcs I1 and 69 OpM2-4*WISGZS  
..14GZS A 1, Nao 81 6 MW OpW2.4.10-14GZ 2G2.SMis S 1I and W (i:temecs  
..14GZS A 1, Nao 81 6 MW OpW2.4.10-14GZ 2G2.SMis S 1I and W (i:temecs
: 9. 15, 16, 17. Ond21)19d Nodal Izou UMR M~lfor MRd (G..... ) .. .. ..Wvf) I 0.00 13.11 14.00 13M1 72.00 6.48 TOMl 5-2 LINO LIMA Wo bundlslctl A SUSS5140".6 LANUMIoMM SI and 40 (Pf Wosn=ssO.
: 9. 15, 16, 17. Ond21)19d Nodal Izou UMR M~lfor MRd (G..... ) .. .. ..Wvf) I 0.00 13.11 14.00 13M1 72.00 6.48 TOMl 5-2 LINO LIMA Wo bundlslctl A SUSS5140".6 LANUMIoMM SI and 40 (Pf Wosn=ssO.
13iWA 21)
13iWA 21)
Line 213: Line 213:
-.-- -..--.0 25 3L5 .8 38.S 50 60 6o 100 IU2 Base 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 BaseSLO 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 PLUOOS 0.49 0.62 0.69 0.79 0.72 0.81 0.87 1.00 1.00 PLUOOS SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00 TPvOOS 0.39 0.62 0.69 0.70 0.72 0.78 0.82 1.00 1.00 TBVOOS _ _ 0.30 0.46 0.53 0.70 0.75 0.78 0.82 1.00 1.00 TCV Slow Closure 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.001 TCV Slow Closure SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00 TCV Stulo Closed 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 TCV Stuck Ck SLO 0.49 0.62 0.69 1 0.73 0.80 0 0.87 1.00 1.00 I 0.7 0.83 0.87 .Tabe 64 Ut CRFW(P No"" All FUMl TWe (Refernce 13)EOU ,oR Flow (% of 0 MW r)0 as 40 60 SO 100 110 Base Case and allEOC SCondftom 0.27 0.43 0.59 0.80 1.00 1.00 1.00 COLR Dresden 2 Revision 12 Page 39 of 45 6. Rod BlOck Monitor The Rod Block Monitor Upscale Instrmwentation Sepoints are determined from the relationships shown below: Tabl 6-1 Pod Bock Monitor bnam,., eon M etpolnt (FRefumw 6)UPSCALE TRI FUNCTlON AWILLOWANILE VALUE TWO Recirculation LOWp 0.65 Wd + $5%Sing lecran Loo 0.65 Wd + 51%The selpoint may be Iowerohlglw and win still comply with the RWE analysis because AWE is analed uwbloked (Reference 22).Wd -percent of recirculation loop ddve flow required to produce a ramed core flow of 98.0 Mibir.
-.-- -..--.0 25 3L5 .8 38.S 50 60 6o 100 IU2 Base 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 BaseSLO 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 PLUOOS 0.49 0.62 0.69 0.79 0.72 0.81 0.87 1.00 1.00 PLUOOS SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00 TPvOOS 0.39 0.62 0.69 0.70 0.72 0.78 0.82 1.00 1.00 TBVOOS _ _ 0.30 0.46 0.53 0.70 0.75 0.78 0.82 1.00 1.00 TCV Slow Closure 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.001 TCV Slow Closure SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00 TCV Stulo Closed 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 TCV Stuck Ck SLO 0.49 0.62 0.69 1 0.73 0.80 0 0.87 1.00 1.00 I 0.7 0.83 0.87 .Tabe 64 Ut CRFW(P No"" All FUMl TWe (Refernce 13)EOU ,oR Flow (% of 0 MW r)0 as 40 60 SO 100 110 Base Case and allEOC SCondftom 0.27 0.43 0.59 0.80 1.00 1.00 1.00 COLR Dresden 2 Revision 12 Page 39 of 45 6. Rod BlOck Monitor The Rod Block Monitor Upscale Instrmwentation Sepoints are determined from the relationships shown below: Tabl 6-1 Pod Bock Monitor bnam,., eon M etpolnt (FRefumw 6)UPSCALE TRI FUNCTlON AWILLOWANILE VALUE TWO Recirculation LOWp 0.65 Wd + $5%Sing lecran Loo 0.65 Wd + 51%The selpoint may be Iowerohlglw and win still comply with the RWE analysis because AWE is analed uwbloked (Reference 22).Wd -percent of recirculation loop ddve flow required to produce a ramed core flow of 98.0 Mibir.
COLR Dresden 2 Revision 12 Page 40 of 45 7. Stabifty Protection Stpoint Table 7.1 OPM MfiW A Tdp Setig (Reference 13)I OAU mltd sm M) Co*nolo Con (Np)1.15 16 TRI PODA Is the only OPRM setting credited in the safety analysis a document In the licensing basis for the OPRM system.The OPRM PBDA trip settings are based, in part on the cycle specific OLMCP and ft power dependent MCPR limb. Any change to the OLMCPR values and"or the power dependent MCPR limits should be evaluaed for potential impact on the OPRM PBOA trip stting.The OPRM PSDA trip settings are appliab when the QPRM system is declared operable, and the associated Technca Specification are kmplemnented COLR Dresden 2 Revision 12 Pap 41 of 45 8. Modes of Operation The allowed modes of operation wit combinations of equipment outOf-rvlce are as described below.Base §BWe (DLI or &JO)P ] PLUOO6 (DLO orL§O)TBVOOS TBVOOS (OLO or SLO).. See Table 8-1 for powerresctions TCV Slow Closure TCV Slow Clowure (D.O or SLO)TCV Stuck Closed TCV Stuck Closed (PLO or SLO)> Not applica to combination of one TCV and one TOV Stuck Closed)o See Table S-2 for powe restrictionr TSV Suck Closed TCV Stuck Closed (PLO or SLO)> Not applicable to combination of one TCV and one TSV Stuck Closed> See Table 8-2 for pow restrictions PCOOS TCV Slow Closure (Q0O or 81O)ep0os and PLUOOS PLUOOS EDLO or S1O)PCOOS and TCV Slow Closure TCY Slow Closure (DLO or SLO).PCOOS and TCVrTSV Stuck Closed > Operation is only allowed at or below thermal power as specified in Table and> The more restrictive of the flow-dependent limits (established by one TCV1TSV Stuck Closed) and power-dependent limits (establhd by one TCVitSV  Closed, TCV Slow Closure and PLUOOS limit) w ly. ...R isadVn p Operation Is only Sallowd at or below therm power as specified In Table 8-2 end> The more resictive W the flow-dependent limits (established by one TCV/TSV Stick Closed) and power.dependent limits (established by one TCVJTSV Stuck Closed, TCV Slow Closure and PLUOOS Common Notes -Applicable to both Base Case and all EOOS Combinations for OLO/510 1. A modes mafowed for operation at MEWA, lCF (up ID 108% rated core low), and ooestdown (full powr pertion up to a cycle epose of 16300 MMU+ 25 EFPP) uqect to restrictions In Tables 8-1 and 8-2. Addltionally, eber EOC must be reached or coastdown must begin prior to reaching 16300 MWdMT + 25 EFPP. The licensing analysis remains valid down to a coastdown power level of 70% given all bumup limils re satliied per Mefdology 7.Each OOS Option may be combined with ech of the following conditons provided the requirements of References 19 and 20 are met 0 A maximtr of 18 TIP channels OOS (Up to 2 common TIP channels may be OOS, in combination with a maAmum of 18 TIP channels OOS in locations outside of the common TIP channel locIon of 32-33).* Up to 20 ELPFPM OOS 0 An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH +.25%/)
COLR Dresden 2 Revision 12 Page 40 of 45 7. Stabifty Protection Stpoint Table 7.1 OPM MfiW A Tdp Setig (Reference 13)I OAU mltd sm M) Co*nolo Con (Np)1.15 16 TRI PODA Is the only OPRM setting credited in the safety analysis a document In the licensing basis for the OPRM system.The OPRM PBDA trip settings are based, in part on the cycle specific OLMCP and ft power dependent MCPR limb. Any change to the OLMCPR values and"or the power dependent MCPR limits should be evaluaed for potential impact on the OPRM PBOA trip stting.The OPRM PSDA trip settings are appliab when the QPRM system is declared operable, and the associated Technca Specification are kmplemnented COLR Dresden 2 Revision 12 Pap 41 of 45 8. Modes of Operation The allowed modes of operation wit combinations of equipment outOf-rvlce are as described below.Base §BWe (DLI or &JO)P ] PLUOO6 (DLO orL§O)TBVOOS TBVOOS (OLO or SLO).. See Table 8-1 for powerresctions TCV Slow Closure TCV Slow Clowure (D.O or SLO)TCV Stuck Closed TCV Stuck Closed (PLO or SLO)> Not applica to combination of one TCV and one TOV Stuck Closed)o See Table S-2 for powe restrictionr TSV Suck Closed TCV Stuck Closed (PLO or SLO)> Not applicable to combination of one TCV and one TSV Stuck Closed> See Table 8-2 for pow restrictions PCOOS TCV Slow Closure (Q0O or 81O)ep0os and PLUOOS PLUOOS EDLO or S1O)PCOOS and TCV Slow Closure TCY Slow Closure (DLO or SLO).PCOOS and TCVrTSV Stuck Closed > Operation is only allowed at or below thermal power as specified in Table and> The more restrictive of the flow-dependent limits (established by one TCV1TSV Stuck Closed) and power-dependent limits (establhd by one TCVitSV  Closed, TCV Slow Closure and PLUOOS limit) w ly. ...R isadVn p Operation Is only Sallowd at or below therm power as specified In Table 8-2 end> The more resictive W the flow-dependent limits (established by one TCV/TSV Stick Closed) and power.dependent limits (established by one TCVJTSV Stuck Closed, TCV Slow Closure and PLUOOS Common Notes -Applicable to both Base Case and all EOOS Combinations for OLO/510 1. A modes mafowed for operation at MEWA, lCF (up ID 108% rated core low), and ooestdown (full powr pertion up to a cycle epose of 16300 MMU+ 25 EFPP) uqect to restrictions In Tables 8-1 and 8-2. Addltionally, eber EOC must be reached or coastdown must begin prior to reaching 16300 MWdMT + 25 EFPP. The licensing analysis remains valid down to a coastdown power level of 70% given all bumup limils re satliied per Mefdology 7.Each OOS Option may be combined with ech of the following conditons provided the requirements of References 19 and 20 are met 0 A maximtr of 18 TIP channels OOS (Up to 2 common TIP channels may be OOS, in combination with a maAmum of 18 TIP channels OOS in locations outside of the common TIP channel locIon of 32-33).* Up to 20 ELPFPM OOS 0 An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH +.25%/)
COLR Dresden 2 Revision 12 Page 42 of 46 2. All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 TBVs meeting the assumed opening profile In Reference  
COLR Dresden 2 Revision 12 Page 42 of 46 2. All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 TBVs meeting the assumed opening profile In Reference
: 7. The analyses also support Turbine Bypass flow of 29.7% of vessel rated steam flow, equivalent to one TBV OOS (or partially closed TBVS equivalent to one closed TBV), If the assumed opening profile (Reference  
: 7. The analyses also support Turbine Bypass flow of 29.7% of vessel rated steam flow, equivalent to one TBV OOS (or partially closed TBVS equivalent to one closed TBV), If the assumed opening profile (Reference
: 7) for the remaining TBV Is met. If the opening profile Is NOT met, or if the TBV system cannot pass an equivalent of 29.7% of vessel rated steam flow, utilize the TBVOOS conditon.3. For both Base and EOOS DLOISLO conditions, for operation at NFWT, the OLMCPR limit Is applicable to a variation of +1 0°F1-30*F in feedwater temperature, and an operating steam dome pressure region bounded by the maximum value of 1020 psla and the minimum pressure curve in Reference  
: 7) for the remaining TBV Is met. If the opening profile Is NOT met, or if the TBV system cannot pass an equivalent of 29.7% of vessel rated steam flow, utilize the TBVOOS conditon.3. For both Base and EOOS DLOISLO conditions, for operation at NFWT, the OLMCPR limit Is applicable to a variation of +1 0°F1-30*F in feedwater temperature, and an operating steam dome pressure region bounded by the maximum value of 1020 psla and the minimum pressure curve in Reference
: 8. For operation outslde of NFWT, RFWT of up to 120OF Is also supported for cycle operation through EOC subject to the restriction in Reference 4 for feedwater temperature reductions of greater than 100 WF. The restriction is to maintain less than 100% rod ine. This includes, but is not limited to FWHOOS and FFTR. For a feedwater temperature reduction of between 300F and 120 0 F, fth RFWT limits should be applied.4. For all cases, equivalent of 2 of the first 3.5 Turbine Bypass Valves must be capable of opening via the pressure control system while Turbine Bypass Valves #5-9 ae allowed to be out of service. For aN cases except TBVOOS, the equivalent of 8 of 9 Tu*ie Bypass Valves (as stated in Note 2 above) are required to trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure. The TBVOOS condition assumes that all of the Turbine Bypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure.5. A single MSIV may be taken OOS (shut) under all OOS Options, as long as core thermal power is maintained s 75% of 2957 MWth (Reference 13).TWble 1 *ar Thernm PmWr lNeeMotiM for TRYOWN (Pewwc 13)Cmt Trhma Pw!hr PRlOMM (% of Pi CtS f U (MW&UT Valvae AvaimNble S100 EntrCycle 9of 9 S100 <18079 8 of 9 S98 :'18079 Sof9 Table 64 Cm Themail Pmwo fear fw One TCWSV Mtuc Ckoed with TSV'*OcNdedto Prevent lim Pnre ulo Core Th* Mal Power N"umbrOT1ai Reeotlen (% of Rated feq*rd to Prevent Power) Sysm pe<75 1.9<80 3.4&#xa3;85 6.2 S90 6.8 COLR Dresden 2 Revision 12 Page 43 of 45 9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documentr:
: 8. For operation outslde of NFWT, RFWT of up to 120OF Is also supported for cycle operation through EOC subject to the restriction in Reference 4 for feedwater temperature reductions of greater than 100 WF. The restriction is to maintain less than 100% rod ine. This includes, but is not limited to FWHOOS and FFTR. For a feedwater temperature reduction of between 300F and 120 0 F, fth RFWT limits should be applied.4. For all cases, equivalent of 2 of the first 3.5 Turbine Bypass Valves must be capable of opening via the pressure control system while Turbine Bypass Valves #5-9 ae allowed to be out of service. For aN cases except TBVOOS, the equivalent of 8 of 9 Tu*ie Bypass Valves (as stated in Note 2 above) are required to trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure. The TBVOOS condition assumes that all of the Turbine Bypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure.5. A single MSIV may be taken OOS (shut) under all OOS Options, as long as core thermal power is maintained s 75% of 2957 MWth (Reference 13).TWble 1 *ar Thernm PmWr lNeeMotiM for TRYOWN (Pewwc 13)Cmt Trhma Pw!hr PRlOMM (% of Pi CtS f U (MW&UT Valvae AvaimNble S100 EntrCycle 9of 9 S100 <18079 8 of 9 S98 :'18079 Sof9 Table 64 Cm Themail Pmwo fear fw One TCWSV Mtuc Ckoed with TSV'*OcNdedto Prevent lim Pnre ulo Core Th* Mal Power N"umbrOT1ai Reeotlen (% of Rated feq*rd to Prevent Power) Sysm pe<75 1.9<80 3.4&#xa3;85 6.2 S90 6.8 COLR Dresden 2 Revision 12 Page 43 of 45 9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documentr:
: 1. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods, t Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement  
: 1. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods, t Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement
: 1) and La Salle County Unit 2 benchmwtking (Supplement 2), December 1991, March 1992, and May 1992, respectively.
: 1) and La Salle County Unit 2 benchmwtking (Supplement 2), December 1991, March 1992, and May 1992, respectively.
: 2. NEDE-24011-P-A-15 (Revision 15), "General Electric StendWd Application for Reactor Fuel (GESTAR)," September 2005.3. NEDO-32465-A, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1998.4. We Report WCAP-15682-P-A, "Westinghouse OWR ECCS Evaluation Model Suppment 2 to Code Description, Oualification and Application," April 2003.5. Westinghouse Report WCAP-16078-P.A, -Westinghous BWR ECCS Evaluation Model: Supplement 3 to Code Description, Qualification and Application to SVEA-96 OptImS2 Fuel," November 2004.6. Westinghouse Report WCAP-16081-P-A, "1Ox10 SVEA Fuel Critical Power Experiments and CPR Correlation:
: 2. NEDE-24011-P-A-15 (Revision 15), "General Electric StendWd Application for Reactor Fuel (GESTAR)," September 2005.3. NEDO-32465-A, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1998.4. We Report WCAP-15682-P-A, "Westinghouse OWR ECCS Evaluation Model Suppment 2 to Code Description, Oualification and Application," April 2003.5. Westinghouse Report WCAP-16078-P.A, -Westinghous BWR ECCS Evaluation Model: Supplement 3 to Code Description, Qualification and Application to SVEA-96 OptImS2 Fuel," November 2004.6. Westinghouse Report WCAP-16081-P-A, "1Ox10 SVEA Fuel Critical Power Experiments and CPR Correlation:

Latest revision as of 13:57, 28 April 2019

Core Operating Limits Report for Cycle 23, Revision 1
ML13303B522
Person / Time
Site: Dresden Constellation icon.png
Issue date: 10/22/2013
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
References
SVPLTR: #13-0042
Download: ML13303B522 (45)


Text

COLR Dresden 2 Revision 12 Page 1 of 45 CA" OprMtng LImit Rsort For Drdn Unit 2 Cycle23 Revision I COLR Dresden 2 Revision 12 Page 2 of 45 Table of Contents 1. Terms and Definitions

...................................................................

6 2. General Information

.......................................................................

7 3. Average Planar Linear Heat Generation Rate ...............................

8 4. Operating Limit Minimum Critical Power Ratio ............................

29 4.1. Manual Flow Control MCPR Limits ..................................................

29 4.1.1. Power-Dependent MCPR ...........................................

..... 29 4.1.2. Flow-Dependent MCPR ..........

.............

....................

29 4.2. Automatic Flow Control MCPR Umits ............................

.................

29 4.3. Scram Time ................

....................................................................

30 4.4. Recirculation Pump Motor Generator Settings ................................

30 5. Linear Heat Generation Rate .......................................................

37 6. Rod Block Monitor .......................................................................

39 7. Stability Protection Setpoints

.......................................................

40 8. Modes of Operation

.............

.... ........ *......&.........................9...........

41 9. Methodolog

................................................................................

43 10. References

................................................................................

44 COLR Dresden 2 Revision 12 Page 3 of 45 Ust of Tables Table 3-1 MAPLHGR for bundle/lattice:

Opt2-3.97-11G8.00.4GZB.00-3G6.00/Lamces 81 and 89 Opt2.4.04-1007.00-2GZ7.00-2G6.00/Lattlces 81 and 89 Op12-4.02-1 8GZB.00.14GZ6.50/Lates 81 and 89 Opt2-4.03-160Z8.00-1 4GZS.50/LattWes 81 and 89 Opt2-4.07-14G5.50-2GZS.50Latles 81 and 89 Opt2-4.05-18GZ8.00-140Z8.50/Lattcs 81 and 89 Opt2-4.05-16GZS.00-1 4GZ5.50Lattices 81 and 89 Opt2-4.10-14GZ5.50-2GZS.SOiLatAis 81 and 89 ................................................

8 Table 3-2 MAPLHGR for bund:lla"e Opl2-3.97-11G8.00-4GZ8.00-3G8.00/Lattices 82, 83, arid 84 .............................

8 Table 3-3 MAPLHGR for bundle/laote:

Opt2.3.97-1 IGS.O-4GZ8.00-3G0.00s.attices 85 end 87 ........................

9 Table 3-4 MAPLHGR for bundlenlattic.

Opt2-3.97-11G6.00-4GZB.00.306.00/Lafitce 88 ........................................................

9 Table 3-5 MAPLAGR for bundmletlatce:

Op2-4.04-10G7.O0-2GZ7.00-2G6.00Lattlces 90 and 91 .........................................

9 Table 3-6 MAPLHGR for bundle/latfice:

Opt2-4.04-10G7.00-2GZ.002G6.00lLattices 92 anrd 93 .....................

10 Table 3-7 MAPLHGR for bundletlattice:

Op12-4.04-10G7.00-2GZT.00-2G6.Q00/attce 94 ............................................

10 Table 34 MAPLHGR for buncle/laete:

Opt2-4.02-18GZM.00-t4GZ5.50/Latt 96 ....................................................................

11 Table 3-9 MAPLHGR for bundle/latfice:

Opt2-4.02-ISGZ8.00-14GZS.S0/Lattice 96 .............................................................

11 Table 3-10 MAPLHR for budle/latice:

Opt2.4.02-1 8GZS.00-14MZ5.50/Latice 97 .............................................................

12 Table 3-11 MAPLHGR for bunde/latce:

Op12-4.02-18GZS.00-14GZS.50/Lattice 98 .............................................................

12 Table 3-12 MAPIHGR for bundlelattice:

Opt2-4.02-18GZ8.O0-I4GZS.50lLatticm99

..............

13 Table 3-13 MAPLHGR for bundle/lattle.

Opt24.02.18GSG.00.14GZ.50/Lattice 100 Opt2-4.93-16GZS.00-14GZ5.S0/Laut i ....................................

100.........................

13 Table 3-14 MAPLHGR for bufdlefatte:

Op2-4.03-16GZ8.00-14GZ5.50/LattlC 10i ...............................................................

14 Table 3-15 MAPLHGR for bundle/lfattce:

OpI2-4.03-16GZM.00-14G.5.5O/Lattice 102 .............................................................

14 Table 3-16 MAPLHGR for : Opl2-4.03.160ZS.00-146Z5.50/Lattice 103 ..................................................................

15 Table 3-17 MAPLHGR for bundle/ilatte:

Opt2-4.03-16GZ8.00-14GZ5.50/Lattk;e 104 .............................................................

15 T"ble 3-18 MAPLHGR for bundle/lattce:

Opt2-4.03-16GZS.00.14GZS.50/Lattice 105 .............................................................

16 Table 3-19 MAPLHGR for bundle/lattice:

Opt2-4.07.14G5.50-2(Z.50/La"os 106 ................................................................

16 Table 3-20 MAPLHGR for bundlellatlce Opt2-4.07-14G5.50-2GZS.50Lattto 107 ..............................

I7 Tabe 3-21 MAPLHGR for bundlelatIce:

Opt2-4.07-14GS.50-2GZ5.50/Lattice 108 .................................................................

17 Table 3-22 MAPLHGR for bundle/latice:

Op2-4.07-14G5.50-2GnZ.50/LatWc 109 ......................................................................

18 Table 3-23 MAPLHGR for bundle/latlice:

COLA Dresden 2 Revision 12 Page 4 of 45 OpM2-4.07-14G.50206.5O aa. tce 110 .................................................................

18 Table 3-24 MAPLHGR for bundle/lattice:

Opt2-4.07-14G5.50-2GZ5.50/Lattice 111 ...............................................................

19 Table 3-25 MAPL.IGR for bunde/ltwte:

Op12-4.05-18GZS.00-14GZ5.50/lattlce 113 .............................................................

19 Table 3-26 MAPLHGR for bundle/lattice:

OpI2.4.05-18GZM.00.14GZ5.M0/Latice 114 .............................................................

20 Table 3-27 MAPLHGR for bundle/lattic:

Opt2-4.05-18GZ8.00-14GZ5.60/Latlice 115 .............................................................

20 Table 3-28 MAPLHGR for bundle/lattice:

Opt2-4.06-18GZS.00-14GZ6.50/LatUce 116 ............................................................

21 Table 3-29 MAPLHGR for bundle/attice:

Opt2-4.05-1SGZB.00-14GZM.S0/Lattice 117 .............................................................

21 Table 3-30 MAPLHGR for bundle/lttice:

Opt2-4.05-18GZ8.O0-14GZS.5OLatmtce 118 .............................................................

22 Table 3.31 MAPItGR for bundle/lattice:

Opt2-4.05-I6GZS.00M.

4GZU.50/Lattice 119 .............................

22 Table 3-32 MAPLHGR for bund;:attice.

Opt2-4.05-16GZ8.00.14GZ5.60/atce 120 .............................................................

23 Table 3-33 MAPLHGR for OpC2-4.05-I6GZS.00-14GZS.50/atce 121 .............................................................

23 Table 3-34 MAPLHGR for bundle/latticm.

Opt2-4.05-IOGZB.00-14GZ.5Latice 122 .............................................................

24 Table 3-35 MAPLHGR for bundle/lattice:

Opt2-4.05-16GZ8.00-14GZS.S50Lattice 123 .............................................................

24 Table 3-36 MAPLHGR for bundle/lattice:

Opt2-4.05-16GZ8.00.14GZ5.50/Latdce 124 ............................

28 Table 3-37 MAPLHGR for bundle/lattice:

OpM2-4.10-14GZS.50-2GZS.60/Lattice 126 .............................................................

25 Table 3-38 MAPLHGR for bundleflattice:

Opt2-4.10-14GZ5.50.2GZ5.M0/Lattkie 126 .............................................................

26 Table 3-3M MAPLHGR for bundleattice.

Opt2-4.10-14GZ&.50-2GZB.5Lattie 127 ......12.......................................................

26 Table 3-40 MAPUtGR for bundle/lattite:

Opt2-4.10-14GZ.50-2GZ.50/Lattce 128 ............................................................

27 Table 3-41 MAPUHIG for bundle/lattice:

Opt2-4.10-14GZS.50-2GZ5.50/Lattice 129 .............................................................

27 Table 3-42 MAPLHGR for bundlattice:

Opt2-4.10-14GZ5.50.2GZ6.60/Lattice 130 .............................................................

28 Table 3-43 MAPLIHGR Multipliers

.........................................................................

28 Table 4-1 Scra Tirnes ........................................................................................

30 Table 4-2 MCPR TSSS Based Operating illa -NFWT Al Fuel Types .........................

31 Table 4-3 MCPR TSSS Based Operating Lnit -RFWT AD Fuel Types ........................

31 Table 4.4 MCPR ISS Based Operating Umits -NFWT AN Fuel Types ..........................

32 Table 4-5 MCPR ISS Based Operating Limit -RFWT AlI Fuel Types ...........................

32 Table 4-6 MCPR NSS Basd Operating Limits -NFWT All Fuel Types .........................

33 Table 4-7 MCPR NSS Based Operating Limits -RFWT AlN Fuel Types .........................

33 Table 4-8 MCPR(P) for Westinghouse Fuel -NFWT AD Fuel Types ..............................

34 Table 4-9 MCPR(P) for Westinghouse Fuel -RFWT AN Fuel Types ...................................

5 Table 4-10 MCPR(F) for Westinghouse Fuel All Fuel Types ........................................

36 Table 5.1: LHGR Umit for bundle/latice:

COLR Dresden 2 Revision 12 Page 5 of 45 Opt2-3.97-1 1 G8.00-4GZB.00-3(6.00/AiI Lattices Qpt2.4.04-10G7.00.2GZ7.OO-2G6.00/All Lattices Opt2-4.02-1 8GZ8.O-1 4GZ5.50/AII Lattices Opt2-4.03-16GZ&00.14GZ6.50/AJI Lattice Opt2-4.07-14G560-20Z5.501/Al Lattices Opt2-4.05-1BGZS.00-14GZ5.50/Lattice 81 and 89 Opt2-4.O5-1 6GZ.OO-14GUZ.8O/Lattlce 81 and 89 Opt2-4.10-14GZ6.5-20GZ8.50/Latfce 81 and 89 .............................................

37 Table 5-2: LHGR Limit for bundleflattlce:

Opt2,4.05-1 8GZ8.00.14GZ5.50/AH LatIces except 81 and 89 Opt2-4.05.16-Z8.O0-14GZS.60/Afl Lattices except 81 and 89 Opt2,4.1O-14WZ5.6O-2GZ5.50/AI Lattces except 81 and189 .............................

37 Table 53 LHGRFAC(P)

Mullipllers/Al Fuel Tyes ......................................................

38 Table &4 LHGRFAC(F)

MulPAtiAl Fuel Types ......................................................

38 Table 64 Rod Block Monitor Upscale Insrmentation Setpotnts

...................................

39 Table 7-1 OPRM PODA Trip Setifngs .....................................................................

40 Table 8-1 Core Thermal Power Rewtrc for TBVOOS ............................................

42 Table 8-3 Core Thermal Power Restriclorl for One TCV/TSV Stuck CloWd with TBVs Credltl to Preent System Pmsurzaion

..........................................

42 COLR Dresden 2 Revision 12 Page 6 of 45 1. Terms and Oefln~ons OLO EFPD EFPH EOC EOOS FFTR FWHOOS ICF ISS UIGR LIHGRFAC(F)

UWGRFAC(P)

LPRM MAPLHGR MCPR MCPR(F)MCPR(P)MELLLA MSIV MWdIMTU NFWT NRC NSS OLMCPR 00S OPRM PODA PLUOOS PCOOS RFWT RWCU RWE SER SLMCPR SLO TBVOOS TBV TCV TIP TMOL TSSS TSV Dual loop operation Effective full power day Effective full power hour End of cycle Equipment out of service Final feedwater temperature reduction Feedwater heater out of service Increased core flow Intermediate scram speed Linear heat genoration rate Flow dependent LHGR multiplier Power dependent LHOR multiplier Local power range monitor Maximum average planar linear heat generation rate Minimum crtical power rato Flow dependent MCPR Power dependent MCPR Maximum extended load line limit analysis Main steam isolation valve Megawatt days per metric ton Uranium Nominal feedwater temperature Nuclear Regulatory Commission Nominal scram speed Operating limit minimum critical power ratio Out Of service Oscillation power range monitor Period bas detection algoithm Power load unbalance out of service Pressure controller out of service Reduced feedwater temperature Reactor water clean-up Rod withdrawal error Safety evaluation report Safety limit minimum critical power ratio Single loop operation Turbine bypass valves out of service Turbine bypass valve Turbine control valve Traversing incom probe Thermal mechanical opemtg limit Technical Specification scram speed Turbine stop valve COLR Dresden 2 Revision 12 Page 7 of 45 2. General Information Power and flow dependent limits are listed for various power and flow levels. Unear Interpolation Is to be used to find Intermediate values.Rated core flow Is 98 MIb/hr. Operation up to 108%/* rated flow (lCF) is fully evaluated for this cycle, however, flow cannot exceed 103.4% rated flow due to unit specific limitations.

Ucensed rated thermal power Is 2957 MWth. For allowed operating regions, see applicable power/flow map.Coastdown Is defined as any cycle exposure beyond the full power, rated core flow, and ail rods out condition with the plant power gradually reducing as available core reactivity diminishes.

MCPR(P) and MCPR(F) values are independent of scram speed.LHGRFAC(P) and LHGRFAC(F) values are Independent of scram speed.All thermal limits are analyzed to NSS, ISS, and TSSS. Only MCPR operating limit. vary with scram speed.For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow thermal limit values, respectively, can be used unless otherwise Indicated In the applicable table.Westinghouse methods used in slow and fast transient analyses as well as SLMCPR calculations are sufficient to cover the small effect of Vhe asymmetric feedwater temperature for all modes of operation as supported by the reload analysis.

Therefore, all thermal limits for all fuel types with all flexibility and EOOS options remain valid with respect to the effect of the asymmetric feedwater temperature (Reference 13).

COLR Dresden 2 Revision 12 Page 8 of 45 3. Average Planar Linear Neat Generation Rate For natural uranium lattices, DLO and SLO MAPLHGR values are provided in Table 3-1. For all other lattices, lattice-specific MAPLHGR values for DLO are provided In Tables 3-2 through 3-42.During single loop operation, these limits are multiplied by the SLO multiplier listed In Table 3-43.Unlike previous cycles, the MAPLHGR limits for the top and bottom natural uranium lattices (lattices 81 and 89) are now set by their own limits in Table 3-1, and are no longer an aggregate based upon the most restrictive value at each exposure of all lattices.

Table 3-2 uses the updated limits provided In Reference 11, which supersede the limits provided In the odginal RLR documented In Reference 3.TaWie 3-1 MAPLHGR for uNid~stamw.

GO-4 W. W.00 Opl2-4.04-100?.004,0,M28,00 OpI2-4,02-11ZI.00-141ZM.50 Op1t24.03-1WMO.14GZ.6@

OpM2.4.7-14WG5.WW.M2Z.SO Op4AW4W.W14GZ$M Opt2-4.1O.0-14G1

.-Oj2 o L IN: 1 Sande4 (RuIfemtsg 9, 11 15 Wnd 17)I, -,,AP0iGR 07.50 72000 7.50 TOble 3-2 MAPLUIG 110 bun 0pt2-M- I .10.4Q1s.OO-306OOU., a"d U (Refnamm 11 and 15)AVerag Plane OLO Exposure MAPL.HGI 0 92 7600 9.09 12500 9.09 17500 FOR__ _ ___i 24000 9.48 58000 9.48 7000 73 COLR Dresden 2 Revision 12 Page 9 of 45 TO*4s "3 MAPL.HOR for bundbetftko:

Opt2-3,f?-

S.04=-.,04G6-.OO Latln8aend l (Ranfrances 3 and 15)17800 9.58._ 24000 ...7000. 7.34 Tabl 3-4 MAPUA R fOr o' MOUaM (fAomm 3 wd 15)EXpom" MWUlIIIR 0 10.13.10000 9.68 20000 9.68 24000 .....70000 7.38 Table 4 M3APUIM for b Imd o O1W4.-107.O0-4QZ.00W 6.00 (Pe~fwms 3 und 15)Avmsp Planar O"CO EXPOS"r WAPUIGN 10000 9.52 S 8000 9..2.70000 7.31 COLR Dresden 2 Revision 12 Page 10 of 45 TOIM 3-4 MAPUt for %"undlI~tl

.

OQ.oML LatUM2es Wnd W (Remfencm 3 and 15)EXiPMN*r MAPLNGR 0 10.03 10000 9.60 51600O 9.60 70000Z.32 TYAM 27 MAPUIM, for 1110M1M1c 1 Op24rn60Lo04Wz.G&SOM0 (FslsMXces 3 md 15)0 10.64 l000 9.91.7.9 COLR Oresden 2 Revision 12 TAble S MAMMP OR for i.N -1101, Opt28u0a.II 00-1440R (PRfeas and 17)lipseu MAPLHGR 0 8.69.2500 ... ....8.87 7500 9.07 W10000, 9.11.0.00- 9.16 M17000, .9.41.9.58 22000 9.72 24000 -9.79 300M0 9.70.9.65 9.68B 9.73 MW -'l9.71o 7200 9.93 TOWl 34 MAWUIA to beIMi W!*o 8.72 2500 8.906 6000 9g03 7500 9.12-_17__0000___

9.1.7.2000 .924 1500 9.41.17000 961, 2000 9.68 22000 9.83 24000 9.88 300009.79 36000 .9.74 50000 9.79 e00.0 974 72000 " 9.97 Page 11 of 45 COLR Dresden 2 Revision 12 Page 12 of 45 Table 3-10 MAPLHGft for bundlellat:e:

LawIe 97 (PAem 18 ad 17)AvwspPl w DIJ Exposure sAPLH (l-W -a 1! ...0 8.70 2500 8.88 5000 9.02 750.0 .9.13 10000 9.18 12000 9.25 15000 9.42 17000 9.52 20000 9.70 22000 9.85 24000 9.88 30000 N9.7 36000 9.73 42000 9.73 50000 9.77 60000 9.73 72M00 9.9 TI"e 3-11 MAPUII for ndIl : O0t-4.012-O.O*140Q .1 (PRf*Wmc 16 and 17)A- ags Plaw ... 0.0 8.82 5000 9.15 7500 928 10000 9.32,-12000 9.41 15o0 9.59 17000 9.71 200OO 10.02 22000 10.09 24000 1007 30000 99 3000 9.94 50000 9.91 60000 9.91.72000 10.24J COLR Dresden 2 Revision 12 Page 13 of 45 Table 312 MAPLUGR for U:ttlas0 0o24.Q2,4M.O.,140Z5r5o

..LattIeso (Rueft.nma 16 *d 17)Avemage- Pla OLO EXPseur MAPUIGR 0 88 2500 9.05 5000 9.18 75OO 9.27.....1,0000 .. ..9.27 12000 9.34 15000 9.522 17000 9.68 20000 10.044 (e 24000 10.055 0m 9.66-_3___O _ 9.79 5000 9..2 WE'0 9.87 60000 9.780 17000 102219 2'000 .... .10.21 T"bl 3-13 MAPH for wml- WWNW:

24000 1tn 10.1 50000o: _:- -9.96:.000 9.09 72000 10.32 1700DO 10.19*- 36000 .... ..10.02 ME... 7oo' -10.32:::

COLR Dresden 2 Revision 12 Page 14 of 45 Table 3-14 MAPLNGR for bund/ltce:

OpW24.03-16GZL0@.14GZS.50 Lotclo 101 (Rteemnces 16 and 17)Average Plow o..Exposure MAPLNGR (WI)0 8.97 2500 9.13 7600 9.25 10000 9.24 12000 9.27 15000 9.39 17000 9.45 20000 9.58 22000 9.70 24000 9.81 30000 9.73 36000 9,68 Wm______ 9.69 50000 9.74 60000 9.71 72000 9.93 TWle 3-1. ?AP UIQR for mlohtmoe opt24.oWG-ZMWo o 8.6o Lot"" 102 (RefePmno 18 and 17)Average PWnr .O .Expoure MUAPU 0 9.02 2500 9.17 5000 9.27 7500 9.31 10000 9.33 12000 9.35 11500 9.47 17000 9.64 20000 9.68 22000 9.81 24000 9A.9 30000 9.82 3600 9.78 42o00 9.78..=0000 9.78.. 0000 9.74 720 9.9 8 COLR Dresden 2 Revision 12 Table 3-1S MAPLWIA for bundiedAdnow OM-4.,3-1

.O.O-14=A.O LAM* 103 (RPaeface.

18 OaW 17)expoar. MAPLHOR 0fL 9.0 2500 9.15 5000 9.28 7500 -9.33 10o00 9.34 15000 9.49 170 2i.56 .....20000 9.69 22000 9.63.24000 9.89 30000 .9.82 36000 9.77 42000 9.77 SOOO 9.76 26000 9.93 am -9.9oz Tabis 347 MAPLHGR for h m ieftw: Liume I04 (Refuo 10 amd 17)A~sae laow 01.*sure MAPLOI 0WM 9.15 2500 9.32 5000 9.41 7500 9.49 10000 9.49 12000 9.54 15000 9.66 17000 9.75 20000 10.00 22000 10.10 3000 10.03 36000 9.96 42000 9.98 m0m00 9.90 60000 ..90-MN SOM72000 1-.,100 02 Page 15 0145 COLR Dresden 2 Revision 12 Tsb*e 3-IS1MPUIGR fo bwnWi- 1 : wa 105 (RefeMnos 18 and 17)0 9.19 9500 9.35 5000 W.44 m700 9.47 10000 FA.R 100 9.48 17000 9-.20000, 10.01 an'. 10-06 24000 10.06 30000 10.02 42000 9.92 im 9.68 a0000 9.87 720m00 1. .0.25 OpM4.O.R ..50hamu.ce W~ I (PAslumns 1e and 17)0 2500 9.12 0sow 9m.2 7500 9.32 10000 9.34..12000 i 00 9.54.17000 9.70 20000 9.86 22000 9.90 2400 9.99 30000 9.79 3800 974'4200W 9.74 5000 9.79 60000 97. 8 72000 9.96M Page 16 of 45 COLR Dresden 2 Revision 12 Twol 340 UAPlHtR for, .Wl .10?oP04.07-1405ARMsSO (RemMne lMand 17)Aw,,w IN OL- -X, Exposure lAP:,G (l, wvm'm .(kW/ft)0 9.00 2500 .9.16 5000 9.31 7500 9.30 10000 9.41 12000 9.46 I__ ___ 9.64 17000. ....... 9.81 20W0 -22000101 24000 30000 9.899.83 42000 9.83 S000 9.88 600009.81 72000 ..pip...10.03 Irs~"VftGiw US op"4W-ldm.

ULOW" I" (RPlekmnMe1 OWd 17)10o~o 9.42 .2500 9.15 500 9.30 10000 9.42 12000 9.47-17000 .. 9.82 A%92000 9.22000 10.00 24000 9.98 3 0000 ... 9.8O6 36000 9.82 42000 _ _8 72000 10.03 Page 17 of45 COLR Dresden 2 Revision 12 Table 3-22 AAPL4NGR for bundMedalm:

Op2-4,07-14GU0@404MMS Wd"~i 101andU 7 (P~iWrNcM 16aOW 17)p~xw -,wLr FqmWM IAAPLHGR 0 9.18....200 9.31 5000 9.47 7500 9.67 10000 9.66 12000.. 9.66 1500M99 17000 1 20000 10.24 22000 10.22 24000 10.20 30000 10.11 3600 10.04 42000 10.04 50000 10.02 60000 9.98 72000 10.29 TObl 3-23 MAPLNGR for Opt,4.OT.14GS.5O2OR56O Wpcs 110 (RAshrn Is ad 17)-0_ -9.18 2500.3 75o00 9. g53-10000 9.53 12000 9.0O 1S000. 9.95 17000 10.16 20000 10.22 22000 10.20 2400010.19 30000 10.09.. 000 10.03 42000 110.0 500009.97 60000 9.96 72000 10.29 Page 18 of 45 COLR Dresden 2 Revision 12 Tabe 3-24 MAPLHJR for bundlbiceo:

Opl2.4.07.14Q5.0.2GZ&J.5 La.ttm III.(Referencs 16mnN 17)M-Averae Plar O L Eqxpose MAPLK~ft 0 9.55 5000 9.76 7500 9.75 10000 9.68 15000 9.96 17000 10.15 20000 10.23 22000 10.22 24000 10.20 30000 10.11 36000 10.04 42000 10.04 50000 9.97 8000 9.96 72000 10.30 Tae 3-25 MAPLtIGR for bundl/afI 11t (Rfleenew Sand 11)Exporn WMO 2600 8.86 5000 8,.97 7500 9.04 10000 9.07 12000 9.11 15000 9.26 17000 9.36 20000 9.54 22000 9.69 24000. 9.75-30000 9.68 3600 9.64 42000 9.62 50000 9.67 60000 9.66 720.00 9.88 Page 19 of 45 COLR Dresden 2 Revision 12 Tab 3-26 PAPLHQR for bundlMattice:

Opt2-4.0&-1$ZS.-1m4GZ.o LdUft 114 (Rutgn 9 and 11)EN190u MAPU4GR 08 5.70 2500 8.88 500O 9.02 7500 9.08 10000 9.13 12000 9.18 15000 9.35 17000 9.479.85 22000 9.80 24000 9.83 9.78 36000 9.72 42000 9.70 5000 9.70 60000 9.70 72000 9.92 T"ble 3-27 MAPUWGR foe b: LsWcm 115 (Refwnms 9 and 11)AveagePlaer LO Expaure APLHGRt 0.-- 8.68 2500 8.85 5000 9.01 7500 9.10 10000 9.14 12000 9.21 1500 9.38 17000 .49A 20000 9.68 22000 9.82 24000 9.83 30000 9.76 36000 9.71 42M00 9.70 500 9.68 Im 9.68 72000, 9.93 Page 20 of 45 COLR Dresden 2 Revision 12 TabW as MAPLUGR for bund- gtl. 1 : Opt2411951M

.0M-Z50O LO~c. 116 (Refrencesg 9d 11)Evmwss UW' OLO 0 8.81 1 2500 9.00 5000 9.14 7500 9.2.9.28 9.3.9.1m.... 0000.9.99 22000 ... 10.03 24000 10.0130000 ,_9.97..42000 9.90*60000 9.85 72000 10.1.9 Trol s-a. MWO lot bmiIMMWcs

~AlM 117 (RMe snw 9 and 11)0 6.85 5000 9.17 7600 9.22 10000 9.22 12000 9.28 15000 9.469.64 20000 10.00 22000 10.00 24000 10.00 30000 995 360009.89 50000 9.79 60000 9.82 Page 21 of 45 COLR Dresden 2 Revision 12 Page 22 of 45 TabMP 3-0 MJM for d : Ui a 11l (Refemcu 9 m4 11)rv~wS" PS -OLO.--xc~ MWPLHGR 0 __ .6____2600 97 6S00 9.79 7500 9.71 10000 9.64 12000 96 16000 9.95 17000 10.16 20o00 1017 22000 10.16 24000 10.14 3000 10.07 36000 10.01 42000 _. _50000VA 60000 9.90 72000 10.26 TO* 341 MAPUIQR for .........OpW4.056-fI

  • W14U WONtl 119 (RA rmncemand 11)wf --m ---0 _ 8.96 2500 9.11 7600 9.21 10000 9.21 12000 9.23 i5s00 9.33 17000 9.41 20000 9.54.22000 9.67 38000 9.88 s000 9.67 8000 9.66 COLR Dresden 2 Revision 12 Tabe 3-2 MAPIHGR for bundMetiloe:

Op@4.0o.IZMMo.A140Wo Latim 1120 (Rsferwics 9 end 11)Avr* pPlar 0LO Epoewi FAAPLIIOR 0 9.00 2500 9.15 6000 9.25 ME0 928 1 19o 9.28 12000 9.30, 15000 9.41 17000 9.60 20000 9.64 2Ow 9.78 24000 9.86 30000 9.81 3m00O 9.78 42000 9.75 60000 9.69 72000 9.69 T* 34M$MAPLHoBr for 6midip 0PWS1240mU023*S4401 ow (PRbranow 9wd 11)0 899 2500 9.12 500 9.24 750 9.29 10000 9.28 1200 9.32 15000 9.42 17000 9.52 20000 9.65 2200 9.79 24000 9.88 3000 9.0 36000 9.76 42000 9.75 60000 9.67 000 .9.67 72000 9.93 Page 23 of 45 COLR Dresden 2 Revision 12 TAba 3-4 MAPUIGA for -.,dI 1i.a1 : CIP12405ISMASIOZUMI L.tM ' 122 (References gand II)Avra- PO a O....ExpuMM MAPLNW UW I -1nl') .... .0 9.14--,4 M500 9.43 10000 9.40 12000 .. .48 15i00 9.60 17000 9.71 20000 9.96 22000 10.05 24000 10.05 30000 10.01 36000 996 42000 9.89 50000 9,80 60000 9.84 72000 10.19 T~Wf $46 PAPLWIN lor dilmllifto Latili 123 2500 9.33 600 9.42 7500 9.43 10000 9.30 12000 9.42 1500 9.54 17000 9.67 8oooo__ -_,_ 9.97 22000 10.03 24000 10.03 30000 10.00 3800 9.M 42000 9.86 50000 9.77 mmoo 981 7M00~ 1020, Page 24 of 45 COLA Dresden 2 Revision 12 Table 3-6 MWLNR for bundtgaiactrh Opt2-c ism.00-14G=50 Wds 124 (Rewunces 9 w 11)0 9.66 2600 9.77 5000 9.79 7600 9.71 10000.. 9.84 116000 9.95 17000 10.15.22000 10.16 24000 10.14 30000 10.07 36000 10.01 42000 9.95 60000 990.... ...-.- -..... .. .----72000 .. ... 10.26 o" 3w 111o.llm -." md -7Wle 9.26 (Rindaunin Ba~nd it)0:2 -o:2: : 2 8.91 2 ii S_5000 9... ._...7500 9...,28 10000 9.28 12000 9.31 16So000 9.47 17000 9.A5 20000 9.82 22000 9.87.000 ..9.88 9.79 360009.73 42000. 9.71 5000 9.75 jM~ 9 Page 25 of 45 COLA Dresden 2 Revision 12 TOIW 348 MAPLHGR for bundleAhatce:

Lattice 126 (Refmnroe 9Band 11)"Average aw ... OLO Expour MAPLHOR 0 8.95 2500 9.11 5000 9.26.7500 .9.32 10000 9.34 12000 9.39 15000- 9.57 17000 9.76 20000 9.93 22000 9.97-400--"- -9.95 30000 9.88 3600 9.83 42000 9.80 50000 9.79 60000 9.77 72000O 9.98 Table 35 M MAPLHG o WnIUs 25W 9.10504ZU 12000 12 40 (Rfris and 11)220 8.97 25000 9.10 56000 9.825 42DOIOI 9'"O.79 5700- _ 9.37 10000++ _ _ _ ... .WE 9.3 .120,0094+ 20000 995em Page 26 of 45 COLR Dresden 2 Revision 12 Tabt S40 MAPULW for bI mdM -l OPM24.10.14G5J0.20Z LUs126 (Refenoes 9 and 11)JIPOdoT 0 9.10 2500 92m 5000 9.42 7500 9,52 10000 9.52 12000n 15000 9.87 17000 10.10 2.o00 10.20 22000 10.19 24000 10.17 30000 10.09 36000 10.03 W10.01 50000 9.92 60000 9.93 72000 10.25 Tble 241 VAPUGA for WNWdlslIl Op14.10,1 anM4025.6o Wmce 120 (Rfealm 9Sd 11)sainsue WAPLNSR o 0NI 9.14 1 2500 9.31 7600 9.44 700 ..9.48 17000--..-

9.11 1.20000 953 1M700 -- 10-- 1.1 2,400 IO.19 30000 .. 10.08 35000 .10.01 42000 99 50000 A.688! 0000 9.91 I 72000 10.25 Page 27 of 45 COLR Dresden 2 Revision 12 TAbW 342 MAPIHGR for bI~ Opl t4GZ5.5 4 .6O (Riegnces Band 1)Expmr MAPIHOR.....,dam'u ... km 0 9.60 6000 9.71 7600 &10000 9.61 12000 9..2 17000 10.09 20000 10.21 22000 10.19 24000 10.18 3000 10.10 36000 -10.04 42000 0.98 50000 9.87 60000 9.90.72000 10.25 Till ,4) IIUIBR Uidim (uFte~euflss 11#d IS)Page 28 of 45 7. ... ... .. 1.03 0. .8 COLR Dresden 2 Revision 12 Page 29 of 45 4. Operating Limit Minimum Critical Power Ratio The Operating Limit Minimum Critical Power Ratios (OLMCPRe) for 02C23 were established to protect the Safety Limit Minimum Criica Power Ratio (SLMCPR) for the abnormal operational occurrences.

The SLMCPR values for DLO and SLO for 02C23 were determined to be 1.12 and 1.14 (Reference 13), respectively, which are unchanged from the NRC-approved values for the previous operating cycle (I.e., 02C22).In determining the SLMCPR values for D2C23, Westinghouse appled the methodologies from CENPD-300-P.A, consistent with the manner specified in Limitations I through 6 and 8 of the NRC Safety Evaluation Report (SER) approving CENPD-300-P-A (References 12 and 14). The-pplication of these melthodologiles was previously approved by the NRC In license amendment 224 to Renewed Facility Operating License DPR-19 (Reference 18).4.1. Manual Flow Control MCPR Limit The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.4,1.1. Powiu Oopendent MCPR For operation less than 38.5% core thermal power, the OLMCPR as a function of core thermal power Is shown in Tables 4-8 and 4-9. For operation at greater than 38.5% core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown In Tables 4-2 through 4-7 by the applicable MCPR muLtiler given In Tables 448 and 49. For operation at exactly 38.5% core thermal power, MCPR(P) Is the highlr of either of the two methods evaluaaed at 38.5% core thermal power.4.1,2. FIow-Oependont McWf Table 4-10 gives the MCPR(F) limit as a functio of the flow basd on the applicable plant condition.

The MCPR(F) limit dtermmined from thIs table Ik the flow dependent OLMCPR.4,2. Automatc FlOw Cont"ol Cf Limit Automatic Flow Control MCPR Limits are not provided.

COLR Dresden 2 Revision 12 Page 30 of 45 4.3. Scram Tim.TSSS, ISS, and NSS refer to scram speeds. TSSS Is the Technical Specification Scram Speed, ISS Is the Intermediate Scram Speed, and NSS Is the Nominal Scram Speed.The scram time values are shown In Table 4-1.The NSS scram times am based on a conservative Interpretation of scram time surveillance measurements.

In the event that plant surveillance shows these scram Insertion times to be exceeded, the MCPR lmits are to default to the values which correspond to the ISS scram time. The ISS times have been chosen to provide an Intermediate value between the NSS and TSSS, but Interpolation between these values is not supported by Westinghoose mehodology.

In toe event 1hat the ISS t*ms are exceeded, MCPR lmits for the TSSS apply.Tiba 4-1 Soma Times (Rdsersnou 5 d 13)Control Rod humlmn Frton IM (soonds) S (seonds) NSS (meconds)5 0.48 0.360 6324 20 0.89 0.720 0.700 50 1.98 1.580 1.5104 90 3.44 2.740 2.635 4.4. Reclrcutatlon Pump MSr Guwetor SeWngs Cycle 23 was analyzed with a maximum aors low runout of 1 10%; therefore the recirculation pump molar generatr scocf tube mechanical and electrical stops must be set to maintain core flow less than 110% (107.8 Mblbr) for aOl mnout events (Reference 8). This value is consistent wilh the analyses femnced In Reftrence

13.

COLR Dresden 2 Revision 12 Page 31 of 45 Tab" 42 MCPR TBS Bwiid Opifaing ULint -NFWT Al Fuel T"pe (Rmumne 13)EOOS Cwufnfblnon...

MWOMTU dM BASE 1.63 1.74 BASE SLO 1.66 1.78 PLUoOS 1.70 1.81 PLU. .SMO -1.74 1.85 TIB1OOS 1.74 1.64 TBVI9SSLO, 1.78 1.8 TCV SLOW CLOSURE 1.73 1.86 TCV SLOW CLOSURE SLO 1.77 1.89.TCVSIUCKGCOSED

... 1j.74 TCV STUCK CLOSLO .68 1.78 TWOl 4-3 MMCP TMB 9MW Op1s!1g Umits -RFWt M RodTy " (Rbmce 13)! m 13600 OSoblnssss mm-dUTU MWTUW 1.63 1.74 BASE SLO .1.6 .1.78 PLUOOS 1.70 1.81 PLUOOS SLO. 1.74 1.85 1.77 18 TrBv owCOSU..0 1.61......

1.89 ..TCVSLOWCLOSURE 1.73 -1J.85 TcVSLW OR RESLO 1.7 TCV STUCK CLOSED 1.63 1.74 TCV STUCK CLOSED SLO .1.66.1 !,78-COLR Dresden 2 Revision 12 Page 32 of 46 Table 4-4 $ leWd OpeMi Limits -NFWT All Fuel Type (Refernce 13)E008 1oblhle Wd#MT MWdMIT BASE 1.45 1.50 BASE SLO .. .1.48 __ 1.53.... PLUOOS 1.61 1.67 TBVOOS SLO~16 BASE SLLO 1.54 1.65 TCV SLOW CLOSURE L 1.54 1.2 T~cvSTL osEs, 1.41 1.67 TCVSTUCK CLOSED 9L0 1.48 1.53 T"bt 4-5 MCPR IS leed O Limis -RFWT All Fuel Tmye (ReWence 13)9 1360 :0 n136 s oos cmm*BASE 1.61 1.53 BASE SLO 1.54 -1.50 PLUOOS 1.51 1.57 P PLUOOS SLO 1.64 1.80 TSVOOS 1.60 1.66 TBVOOS SlO 1.63 1.69 TCV SLOW CLOSURE 1.51 1.69 TCV SLOW CLOSURE SIO .1.4 1.62 TCV STUCK CLOSED 1.61 1.563 TCV STUCK C OESLO, 1.64 1.58, COLR Dresden 2 Revision 12 Page 33 of 45 Table 4" CPH NSS Based OpnMtng Umlts -NFWT All Fuel Types (Raefmne 13)EOON Com nn M VWdWU UWWM BASE 1.45 1.47..ASE SLO 1.48 1.50 PLUOOS 1.49 1.. 4 PLUOOS SLO 1.52 1.67 TBVOOS -.53- 1.59 TBVOOS SLO 1.50 1.62 TCV.SLOW CLOSURE 149. 1.6 TCV SLOW CLOSE SLO 1.52 1.59 TCV STnUCK CLOSED 1.45 1.4 TCV STUCK CLOSED SLO t.48 1.50 Ta*4.7 IPRMW w B oil Opnin Umta -MW?A# Fuel TypO (Rsu n".. 13)BSE 1.50 1.52 BASE SLO 1.53 1.55.MUoos -1.50 1.54 f. P.LO : 1: .53 1.57 11 T.VOOS 159 1,64 T8VOOS SLO 1.62 1.67 TCV SLOW CLOSURE SLO 1.53 1.69 TCV STUCK CLOSED Q TCVSTUCKCLOSEOSLO 1.53.. 1.55 COLR Dresden 2 Revision 12 Page 34 of 45 TablO 44 UCPfl( tot Woetlnghoue.

Fuel -NFWT ANFud TypO (ReGonco 13)-Corn Cor Poi eiMofM EOOSCombindlton Flow o F 3U -1______________Opmalng Lmimt MCPR OeaigLmtMPMlile s60 2.80 2.37 2.14R_ o e ----BasesW 2.88 2.36 2.39 1.33 1.21 1.15 1.06 1.00 t00 Bs 2.80 2.37 2,4 Bose SLO l 1.o 2.87 12.42 2.181.1.011100

__<os s 2.80 2.37 2.14 1.58 1.47 1.35 106 100 10>LO O P"-e : 288 2.39 ..1 .0 PLUOOSSLO

--2.87 42 1.58 1.47 1.35 1.06 1.00 1.00_ _00 0 2.93 2.81 2.44__eo 4.18 US0B 2.49 1.33 1.21 1.15 1.06 1.00 1.0 T___ _ > W6o 3.0 3.17 2.78 sO. 4.26 314 2.54 TBVOOSSLO Peo 3.98 3.23 2.83 -.-TCVIOWimue

.. .802.. .1 1.591 1.47 1.3511.07 1.0011.001 TCV Slow Closure -o 2.88 2.57 24 1..9_____w___r___ 2.87 2.56 2 TCV Slow Clo6ure 1 >00 2.44 1.59 1.47 1.35 1.07 1.00 1.00 0 2.80 2.37 -2.14 TCV... .. .... .1.33 1.21 1.15 1e 1.00o1.00... 0 2.88 2.56 2.39 1.33 TCVStuckCbosedSLO .O 287 2.42 2.18 1.33 1.21 1.15 1.08 1.00 1.00 COLI Dresden 2 Revision 12 Page 35 of 45 Table 4-4 MCPR(P) for WeeIMigho Fuel -RFWT AM Fuel TV"e (Refmnc 13)c... oeco wme P"" '0 EOOSComblnlUon 0 25 -1.A 36.5 I g I 100 102 fa OýPe Lle*9 CPR Opi -1 GLhaft UcPR oo, 2110 2.37 2.14 ease .OD 2.88 .2.56 2 .39 "1.39 1.24 1.16 1.07 1.00 1.00 Bae SLO So 2.88 2 .42 2.19 1.38 1.24 1.16 1.07 1.00 1.00> W0 2.87 2.6 2.18 PLUOOS 2.80 2.61 2.44 l1. 47 1.35 1.07 1.00 1.00>,v OD1 .6 .6 =39++ zs+ -. -. --I '." ,.. ,., I.o +.o TBVOOS AOD 4.5. 3.26 2.. 1.39 1.24 1.18 1.07 1.00 1.00____________

=' 60 4.0 3.2 2 !.87 , I ,, m o TBVOOS SLO _180_ _4.06 1 3.3 2.93 1.39 1.24 1.16 1.07 1.00 1.00 TCV Slow Closure 16 2 2.37 2.14 1.59 1.47 1.36 1.07 1.00 1.00> Slo Cou 0 1.5 1.47 1.35 1.07 1.00 1.00S2.w7 CPsu e- 4 2. 18 -- --.0-_<O .8 237 -2.14 ... .TCVStlowCkoeum OD 2.88 2.56 239 1.39 1.24 1.16 1.08 1.00 1.00:40o 2.88 9.562 .3, 9 TCV StukClosedSLO So 2.87 2.42 2.1 1.39 1.24 1.16 1.08 .0 1._6O 2.93 61 2.44 -...0 m- w- -,1 1,0 1,0 COLR Dresden 2 Revision 12 Page 36 of 45 Table 4-10 MACIR(P) Icr WginhusFuel (Rsfeeunc 13)Flw-Oiptd it MP fr er==es a"'__________E006 now(1 6 SVEA411 0~~u MCPR TTTT7IO 0 1.98 2.02 1001.814 1110,--0.8IA COLR Dresden 2 Revision 12 Page 37 of 45 5. Unear Heat Generation Ras The thermal mechanical operating limit (TMOL) at rated conditions is established In terms of the maximum LHOR given in Table 5-1 and Table 5-2 as a function of rod nodal (pellet) exposure.The Table 5-1 limits apply to fresh Optlma2 bundle designs for the Cycle 21 and Cycle 22 reloads while the Table 5-2 limits apply to fresh Optima2 bundle designs for the Cycle 23 reload. The limits changed for the Cycle 23 fresh fuel due to the Increase In Uranium enrichment In the Gadolinla rods, which meant that It was no longer guaranteed that all Gadolinla rods would stay below their TMOL limit through monitoring of only the Uranium rods. Therefore, the TMOL of the Gadolinla rods must be monitored explichly for Cycle 23 fresh fuel. The natural Uranium lattices 81 and 89 are still monitored with the original UWi rod limits since they are not enriched (Reference 21).The linear heat generation rate (LHGR) limit is the product of fth exposure dependent LHGR limit from either Table 5-1 or Table 5-2 and the minimum of. the power dependent LHGR Factor, LHGRFAC(P), the flow dependent LHGR Factor, LHGRFAC(F);

or the single loop operation (SLO) multiplication factor where applicable.

The LHGRFAC(P) is determined from Table 6-3, as applicable.

The LHGRFAC(F)

Is determined from Table 54.Tabie 5-1 IHR U.4M w fr bundLONeG" Opt24..1i'lGSk00MOZ5.t-:4.1)0MWR es 0pt2-4.0-10(07A0-20*Z4,00WAa*iies Opl24.2-1SG1

.0140Z5.UWAit Lattics Opt2.A46Q-

.,-14Q25JWAN LAIW s Opt2-4.07.1405.50402=.WAR Lattlc Opt2-4.O5-ISGZ.OO-14MZ5.,WLuttkcs I1 and 69 OpM2-4*WISGZS

..14GZS A 1, Nao 81 6 MW OpW2.4.10-14GZ 2G2.SMis S 1I and W (i:temecs

9. 15, 16, 17. Ond21)19d Nodal Izou UMR M~lfor MRd (G..... ) .. .. ..Wvf) I 0.00 13.11 14.00 13M1 72.00 6.48 TOMl 5-2 LINO LIMA Wo bundlslctl A SUSS5140".6 LANUMIoMM SI and 40 (Pf Wosn=ssO.

13iWA 21)

COLR Dresden 2 Revision 12 Table 54 LHGRFAC(P)

Multplken A Fuel Type (Reference 13)Page 38 of 45 Corn Thernml Power (% of rated)EOOS Comblnemin

-.-- -..--.0 25 3L5 .8 38.S 50 60 6o 100 IU2 Base 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 BaseSLO 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 PLUOOS 0.49 0.62 0.69 0.79 0.72 0.81 0.87 1.00 1.00 PLUOOS SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00 TPvOOS 0.39 0.62 0.69 0.70 0.72 0.78 0.82 1.00 1.00 TBVOOS _ _ 0.30 0.46 0.53 0.70 0.75 0.78 0.82 1.00 1.00 TCV Slow Closure 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.001 TCV Slow Closure SLO 0.49 0.62 0.69 0.69 0.72 0.81 0.87 1.00 1.00 TCV Stulo Closed 0.49 0.62 0.69 0.73 0.80 0.83 0.87 1.00 1.00 TCV Stuck Ck SLO 0.49 0.62 0.69 1 0.73 0.80 0 0.87 1.00 1.00 I 0.7 0.83 0.87 .Tabe 64 Ut CRFW(P No"" All FUMl TWe (Refernce 13)EOU ,oR Flow (% of 0 MW r)0 as 40 60 SO 100 110 Base Case and allEOC SCondftom 0.27 0.43 0.59 0.80 1.00 1.00 1.00 COLR Dresden 2 Revision 12 Page 39 of 45 6. Rod BlOck Monitor The Rod Block Monitor Upscale Instrmwentation Sepoints are determined from the relationships shown below: Tabl 6-1 Pod Bock Monitor bnam,., eon M etpolnt (FRefumw 6)UPSCALE TRI FUNCTlON AWILLOWANILE VALUE TWO Recirculation LOWp 0.65 Wd + $5%Sing lecran Loo 0.65 Wd + 51%The selpoint may be Iowerohlglw and win still comply with the RWE analysis because AWE is analed uwbloked (Reference 22).Wd -percent of recirculation loop ddve flow required to produce a ramed core flow of 98.0 Mibir.

COLR Dresden 2 Revision 12 Page 40 of 45 7. Stabifty Protection Stpoint Table 7.1 OPM MfiW A Tdp Setig (Reference 13)I OAU mltd sm M) Co*nolo Con (Np)1.15 16 TRI PODA Is the only OPRM setting credited in the safety analysis a document In the licensing basis for the OPRM system.The OPRM PBDA trip settings are based, in part on the cycle specific OLMCP and ft power dependent MCPR limb. Any change to the OLMCPR values and"or the power dependent MCPR limits should be evaluaed for potential impact on the OPRM PBOA trip stting.The OPRM PSDA trip settings are appliab when the QPRM system is declared operable, and the associated Technca Specification are kmplemnented COLR Dresden 2 Revision 12 Pap 41 of 45 8. Modes of Operation The allowed modes of operation wit combinations of equipment outOf-rvlce are as described below.Base §BWe (DLI or &JO)P ] PLUOO6 (DLO orL§O)TBVOOS TBVOOS (OLO or SLO).. See Table 8-1 for powerresctions TCV Slow Closure TCV Slow Clowure (D.O or SLO)TCV Stuck Closed TCV Stuck Closed (PLO or SLO)> Not applica to combination of one TCV and one TOV Stuck Closed)o See Table S-2 for powe restrictionr TSV Suck Closed TCV Stuck Closed (PLO or SLO)> Not applicable to combination of one TCV and one TSV Stuck Closed> See Table 8-2 for pow restrictions PCOOS TCV Slow Closure (Q0O or 81O)ep0os and PLUOOS PLUOOS EDLO or S1O)PCOOS and TCV Slow Closure TCY Slow Closure (DLO or SLO).PCOOS and TCVrTSV Stuck Closed > Operation is only allowed at or below thermal power as specified in Table and> The more restrictive of the flow-dependent limits (established by one TCV1TSV Stuck Closed) and power-dependent limits (establhd by one TCVitSV Closed, TCV Slow Closure and PLUOOS limit) w ly. ...R isadVn p Operation Is only Sallowd at or below therm power as specified In Table 8-2 end> The more resictive W the flow-dependent limits (established by one TCV/TSV Stick Closed) and power.dependent limits (established by one TCVJTSV Stuck Closed, TCV Slow Closure and PLUOOS Common Notes -Applicable to both Base Case and all EOOS Combinations for OLO/510 1. A modes mafowed for operation at MEWA, lCF (up ID 108% rated core low), and ooestdown (full powr pertion up to a cycle epose of 16300 MMU+ 25 EFPP) uqect to restrictions In Tables 8-1 and 8-2. Addltionally, eber EOC must be reached or coastdown must begin prior to reaching 16300 MWdMT + 25 EFPP. The licensing analysis remains valid down to a coastdown power level of 70% given all bumup limils re satliied per Mefdology 7.Each OOS Option may be combined with ech of the following conditons provided the requirements of References 19 and 20 are met 0 A maximtr of 18 TIP channels OOS (Up to 2 common TIP channels may be OOS, in combination with a maAmum of 18 TIP channels OOS in locations outside of the common TIP channel locIon of 32-33).* Up to 20 ELPFPM OOS 0 An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH +.25%/)

COLR Dresden 2 Revision 12 Page 42 of 46 2. All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 TBVs meeting the assumed opening profile In Reference

7. The analyses also support Turbine Bypass flow of 29.7% of vessel rated steam flow, equivalent to one TBV OOS (or partially closed TBVS equivalent to one closed TBV), If the assumed opening profile (Reference
7) for the remaining TBV Is met. If the opening profile Is NOT met, or if the TBV system cannot pass an equivalent of 29.7% of vessel rated steam flow, utilize the TBVOOS conditon.3. For both Base and EOOS DLOISLO conditions, for operation at NFWT, the OLMCPR limit Is applicable to a variation of +1 0°F1-30*F in feedwater temperature, and an operating steam dome pressure region bounded by the maximum value of 1020 psla and the minimum pressure curve in Reference
8. For operation outslde of NFWT, RFWT of up to 120OF Is also supported for cycle operation through EOC subject to the restriction in Reference 4 for feedwater temperature reductions of greater than 100 WF. The restriction is to maintain less than 100% rod ine. This includes, but is not limited to FWHOOS and FFTR. For a feedwater temperature reduction of between 300F and 120 0 F, fth RFWT limits should be applied.4. For all cases, equivalent of 2 of the first 3.5 Turbine Bypass Valves must be capable of opening via the pressure control system while Turbine Bypass Valves #5-9 ae allowed to be out of service. For aN cases except TBVOOS, the equivalent of 8 of 9 Tu*ie Bypass Valves (as stated in Note 2 above) are required to trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure. The TBVOOS condition assumes that all of the Turbine Bypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure.5. A single MSIV may be taken OOS (shut) under all OOS Options, as long as core thermal power is maintained s 75% of 2957 MWth (Reference 13).TWble 1 *ar Thernm PmWr lNeeMotiM for TRYOWN (Pewwc 13)Cmt Trhma Pw!hr PRlOMM (% of Pi CtS f U (MW&UT Valvae AvaimNble S100 EntrCycle 9of 9 S100 <18079 8 of 9 S98 :'18079 Sof9 Table 64 Cm Themail Pmwo fear fw One TCWSV Mtuc Ckoed with TSV'*OcNdedto Prevent lim Pnre ulo Core Th* Mal Power N"umbrOT1ai Reeotlen (% of Rated feq*rd to Prevent Power) Sysm pe<75 1.9<80 3.4£85 6.2 S90 6.8 COLR Dresden 2 Revision 12 Page 43 of 45 9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documentr:
1. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods, t Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement
1) and La Salle County Unit 2 benchmwtking (Supplement 2), December 1991, March 1992, and May 1992, respectively.
2. NEDE-24011-P-A-15 (Revision 15), "General Electric StendWd Application for Reactor Fuel (GESTAR)," September 2005.3. NEDO-32465-A, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1998.4. We Report WCAP-15682-P-A, "Westinghouse OWR ECCS Evaluation Model Suppment 2 to Code Description, Oualification and Application," April 2003.5. Westinghouse Report WCAP-16078-P.A, -Westinghous BWR ECCS Evaluation Model: Supplement 3 to Code Description, Qualification and Application to SVEA-96 OptImS2 Fuel," November 2004.6. Westinghouse Report WCAP-16081-P-A, "1Ox10 SVEA Fuel Critical Power Experiments and CPR Correlation:

SVEA-96 Optina2," March 2005.7. Westinghouse Topical Report CENPD-300-P.A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 199e.8. Westinghouse Topical Report CENPO.390-A, "The Advanced PHOEIX and POLCA Codes for Nucear Design of Bo"ng Water Rteac , December 2000.9. WestinghousTopical Report WCAP-15838-P-A, "Fuel Rod Design Meftho for Boiling Waler Reaeors -Supplenent 1." April 2000.10. Westinghouse Topical Report WCAP-15942.P-A, "Fuel Asswebly Mechanical Design Melhodology for Boiling Water Reactors Supplement I to CENP-287.7 March 2006.11. Westinghouse Report WCAP-16081-P-A, Addendum 1-A, Revision 0, "SVEA-96 Optima2 CPR Correlation (D4): High and Low Flow Applcations," March 2009.12. Westinghouse Report WCAP-16081-P-A, Addendum 2-A, Revision 0, "SVEA-96 Optina2 CPR Correlation (D4): Modified R-factors for Part-Length Rods," February 2009.

COLR Dresden 2 Revision 12 Page 44 of 45 10. References

1. Exelon Generation Company, LLC, Docket No.60-237, Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License, License No. DPR-1 9.2. NRC Letter from 0. M. Crutdcfeld to All Power Reactor Licensees and Applicants, Generic Letter 88.16; Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.3. Westinghouse Document NF-SEX-07-187 Rev. 3, "Dresden Nuclear Power Station Unit 2 Cycle 21 Reload Licensing Report," June 2008 (TODI NF0700236 Rev. 2). (Attachment 13 of FCP 388557)4. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de Is Hoz to Doug Wise and Alex MIsak, August 27,2002.5. Exelon Technical Speciications for Dresden 2 anW 3, Table 3.1.4-1, "Control Rod Scram Times." 6. GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod Block Monitor, Commonwealth Edison Company, Dresden 2 & 3," December 15,1999.7. Exelon TOOl OPS Ltr 11-17 Revision 1, "OPL-W Parameters for Dresden Unit 2 Cycle 23 Transient Analysis,'

May 4, 2011. (Attachment 14 to FCP 377654)S. Exelon TOOl ES1 100008, Revision 0, "Dresden Unit 2 Cycle 23 Licensing Generic Inputs Report," May 3, 2011. (Attachment 15 to FCP 377654)9. Westinghouse Document NF-BEX-1 1-68, "Bundle Design Report for Dresden 2 Cycle 23," April 19, 2011. (Attachment 11 to FCP 377654)10. WestinghouseDocument NF4B3EX-1 1-71, "FinalTask Report for Dresden Unit 2 Cycle 23 Reload Licensing Analysis Plan," May 6,2011. (Attachment 13 to FCP 377654)11. Westinghouse Document NF-BEX-. 1-101-NP, Rev. 0, "Dresden Nuclear Power Station Unit 2 Cycle 23 MAPLHGR Report," August 2011. (Attachment IS to FCP 377664)12. Exelon Letter RS-05-078, "Request for Licensing Amendment Regarding Transition to Westinghouse Fuel," Patrick R. Simpson to U.S. Nuclear Regulatory Commission, June 15, 2005.(Avaiable In EDMS)13. Westinghouse Document NF-BEX-1 1.104, Rev. 0, "Dresden Nuclear Power Station Unit 2 Cycle 23 Reload Licensing Repot" August 2011. (Attachment 17 to FCP 377654)14. Westinghouse Document NF-BEX-1 1-94, Rev. 0, "Transmittl of Safety Limit MCPR for Dresden Unit 2 Cycle 23," June 21, 2011. (Attachment 19 to FCP 377654)15. Westinghouse Document NF-SEX-07-62, "Final Report for Dresden 2 Cycle 21 Bundle Designs," 4/10/07. (Attachment 4 to FCP 364026)16. Westinghouse Document NF-BEX.09-1 18 Rev. S, "Dresden Nuclear Power Staston Unit 2 Cyce 22 Reload Licensing Report," June 2011 (TODI ES0900022 Rev. 3). (Attachment 38 to FCP 378107)17. Westinghouse Document NF.BEX-09-64, "Bundle Design Report for Dresden 2 Cycle 22," April 22, 2009. (Attachment 3 to FOP 373427)18. NRC Letter, "Dresden Nuclear Power Station, Units 2 and 3- Issuance of Amendments Regarding Safety Limit Minimum Critical Power Ratio (TAC Nos. MD6013 and MD6602)," Christopher Gratton (NRC) to Charles Pardee, November 6,2007. (Available In EOMS)

COLR Dresden 2 Revision 12 Page 45 of 45 19. Westinghouse Document BTD 09-0311, Revision 1, "Westinghouse CMS -Operation Guidelines for Dresden and Quad Cities Plants," July 20, 2009.20. Westinghouse Document BTD 09-0723, Revision 0, 'Westinghouse CMS -Core Monitoring Strategy for Dresden 3 Cycle 21,' July 3,2009.21. Westinghouse Document NF-BEX-1 1-147, Revision 0, "Dresden Unit 2 Cycle 23 Reload Ucensing Report Clarifkcaton," September 29,2011. (Attachment 20 to FCP 377654)22. Westinghouse Document NF-BEX-11-103, Revision 0, "Dresden Nuclear Power Station Unit 2 Cycle 23 Reload Engineering Report," August 2011. (Attachment 16 of FCP 377654)