RNP-RA/04-0098, Request for Technical Specifications Change to Reactor Coolant System Pressure and Temperature Limits

From kanterella
Jump to navigation Jump to search
Request for Technical Specifications Change to Reactor Coolant System Pressure and Temperature Limits
ML042370055
Person / Time
Site: Robinson Duke Energy icon.png
Issue date: 08/19/2004
From: Lucas J
Progress Energy Carolinas
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
RNP-RA/04-0098
Download: ML042370055 (108)


Text

10 CFR 50.90 Progress Energy Serial: RNP-RA/04-0098 AUG 1.9 2004 United States Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-261/LICENSE NO. DPR-23 REQUEST FOR TECHNICAL SPECIFICATIONS CHANGE TO REACTOR COOLANT SYSTEM PRESSURE AND TEMPERATURE LIMITS Ladies and Gentlemen:

In accordance with the provisions of the Code of Federal Regulations, Title 10, Part 50.90, Progress Energy Carolinas, Inc., also known as Carolina Power and Light Company, is submitting a request for an amendment to the Technical Specifications (TS) contained in Appendix A of the Operating License for H. B. Robinson Steam Electric Plant (HBRSEP),

Unit No. 2.

The proposed amendment revises the reactor coolant system (RCS) pressure and temperature limits by replacing TS Section 3.4.3, "RCS Pressure and Temperature (PIT) Limits," Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 35 effective full power years (EFPY).

Attachment I provides an Affirmation as required by 10 CFR 50.30(b).

Attachment II provides a description of the current condition, a description and justification of the proposed changes, a No Significant Hazards Consideration Determination, and an Environmental Impact Consideration.

Attachment III provides a markup of the affected TS pages.

Attachment IV provides a retyped version of the affected TS pages.

Attachment V provides a non-proprietary version of the Westinghouse report, WCAP-15827, "H. B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation."

Progress Energy Carolinas. Inc.

Robinson Nuclear Plant 3581 West Entrance Road Hartsville, SC 29550

United States Nuclear Regulatory Commission Serial: RNP-RA/04-0098 Page 2 of 2 In accordance with 10 CFR 50.91(b), Progress Energy Carolinas, Inc., is providing the State of South Carolina with a copy of this license amendment request.

Nuclear Regulatory Commission approval of the proposed license amendment is requested by January 9, 2005, based on the expected expiration of the current limits in March 2005.

If you have any questions concerning this matter, please contact Mr. C. T. Baucom at (843) 857-1253.

Sincerely, M-oSS Manager - Support Services - Nuclear Attachments:

I. Affirmation II. Request for Technical Specifications Change to Reactor Coolant System Pressure and Temperature Limits III. Markup of Technical Specifications Pages IV. Retyped Technical Specifications Pages V. WCAP-15827, "H. B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation" CAC/cac c: Mr. T. P. O'Kelley, Director, Bureau of Radiological Health (SC)

Mr. H. J. Porter, Director, Division of Radioactive Waste Management (SC)

Dr. W. D. Travers, NRC, Region II Mr. C. P. Patel, NRC, NRR NRC Resident Inspector, HBRSEP Attorney General (SC)

United States Nuclear Regulatory Commission Attachment I to Serial: RNP-RA/04-0098 Page 1 of 1 AFFIRMATION The information contained in letter RNP-RA/04-0098 is true and correct to the best of my information, knowledge, and belief; and the sources of my information are officers, employees, contractors, and agents of Progress Energy Carolinas, Inc., also known as Carolina Power and Light Company. I declare under penalty of perjury that th oor Executed On: g/1Am, / j William G. Noll Director - Site Operations HBRSEP, Unit No. 2

United States Nuclear Regulatory Commission Attachment II to Serial: RNP-RA/04-0098 Page 1 of 4 H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 REQUEST FOR TECHNICAL SPECIFICATIONS CHANGE TO REACTOR COOLANT SYSTEM PRESSURE AND TEMPERATURE LIMITS Description of Current Condition Appendix A, Technical Specifications (TS), to Operating License (OL) No. DPR-23, for H. B.

Robinson Steam Electric Plant (HBRSEP), Unit No. 2, establishes the Limiting Condition for Operation (LCO) requirements for reactor coolant system (RCS) pressure and temperature (P/T) limits. Specifically, the LCO states that the RCS pressure, RCS temperature, and RCS heatup and cooldown rates shall be maintained within the limits specified in Figures 3.4.3-1 and 3.4.3-2.

Figures 3.4.3-1 and 3.4.3-2 contain P/T limit curves for heatup, cooldown, inservice leak and hydrostatic (ISLH) testing, and data for the maximum rate of change of reactor coolant temperature.

Each P/T limit curve defines an acceptable region for operation. The curves are used during heatup and cooldown maneuvering, by monitoring and comparing pressure and temperature indications to the applicable curve to ensure that operation is within the allowable region.

Description and Justification of the Proposed Changes The proposed changes replace TS Section 3.4.3, Figures 3.4.3-1 and 3.4.3-2, with updated curves (see the attached markup of TS pages and retyped TS pages) that are applicable up to 35 effective full power years (EFPY). This is necessary because the current Figures 3.4.3-1 and 3.4.3-2 are applicable to 23.96 EFPY, which is expected to be reached in March 2005. The technical basis for the proposed revision to the heatup and cooldown limits is provided in the attached Westinghouse report, WCAP-15827, "H. B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation." The fluence values used in these analyses were updated and documented in WCAP-15805, "Analysis of Capsule X from the Carolina Power and Light Company H. B. Robinson Unit 2 Reactor Vessel Radiation Surveillance Program," which was previously submitted to the NRC by letter dated April 25, 2002.

As explained in the attached WCAP-15827 report, the heatup and cooldown curves were generated using the most limiting material adjusted reference temperature (ART) values and the NRC-approved methodology documented in WCAP-14040-NP-A, Revision 2, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," with the exception of the following:

and are not the best estimate fluence values.

  • K1c (which is the material toughness property measured in terms of stress intensity factor, K1 ,

which will lead to nonductile crack propagation) is used in place of K13 (which is the critical value of the stress intensity factor, K1, for crack arrest as a function of temperature). This methodology is consistent with the approved ASME Code Case N-641.

United States Nuclear Regulatory Commission Attachment II to Serial: RNP-RA/04-0098 Page 2 of 4

  • The 1996 Version of Appendix G to ASME Section XI was used in lieu of the 1989 version.

Additionally, the proposed heatup and cooldown limits (as shown in WCAP-15827) were further adjusted by +10 0 F and -60 psig to account for instrument error, which is consistent with the current licensing basis.

The normal shift of the P/T limit curves as irradiation time increases is toward lower pressures for a given temperature. The pressure-temperature curves for 35 EFPY were developed using the "axial-flaw" methodology with the most limiting "axial-flaw" ARTs and the "circ-flaw" methodology (Code Case N-641) with the most limiting "circ-flaw" ARTs. This allows higher pressures at a given temperature, and the limit curves shift to lower temperatures and higher pressures upon first use of the methodology. This method has been accepted by the NRC in the past as an exemption to ASME Section XI, and in April 2004, the NRC published Regulatory Issue Summary 2004-04, "Use of Code Cases N-588, N-640, and N-641 in Developing Pressure-Temperature Operating Limits," which allows the use of the Code Case methodology with no need for an exemption application.

Review of the low temperature overpressure protection limits confirmed that no changes are required as a result of the revised reactor pressure vessel analyses and limits.

Since the proposed RCS P/T limits are based on applicable NRC-approved methodology, the proposed amendment will continue to maintain appropriate limits for the HBRSEP, Unit No. 2, reactor coolant system up to 35 EFPY.

No Significant Hazards Consideration Determination Progress Energy Carolinas, Inc., is proposing changes to Appendix A, Technical Specifications, of Facility Operating License No. DPR-23, for the H. B. Robinson Steam Electric Plant (HBRSEP),

Unit No. 2. The proposed changes revise the reactor coolant system (RCS) pressure and temperature limits by replacing Technical Specifications Section 3.4.3, "RCS Pressure and Temperature (P/T) Limits," Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 35 effective full power years (EFPY).

An evaluation of the proposed change has been performed in accordance with 10 CFR 50.91(a)(1) regarding no significant hazards considerations using the standards in 10 CFR 50.92(c). A discussion of these standards as they relate to this amendment request follows:

1. Do the proposed changes involve a significant increase in the probability or consequences of an accident previously evaluated?

The proposed RCS P/T limits are based on NRC-approved methodology and will continue to maintain appropriate limits for the HBRSEP, Unit No. 2, RCS up to 35 EFPY. These changes provide appropriate limits for pressure and temperature during heatup and cooldown of-the RCS, thus ensuring that the probability of RCS failure is maintained acceptably low. These limits are not directly related to the consequences of accidents.

United States Nuclear Regulatory Commission Attachment II to Serial: RNP-RA/04-0098 Page 3 of 4 Therefore, the proposed changes do not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Do the proposed changes create the possibility of a new or different kind of accident from any previously evaluated?

The proposed changes will continue to ensure that the RCS will be maintained within appropriate pressure and temperature limits during heatup and cooldown. No physical changes to the HBRSEP, Unit No. 2, systems, structures, or components are being implemented. There are no new or different accident initiators or sequences being created by the proposed Technical Specifications changes. Therefore, these changes do not create the possibility of a new or different kind of accident from any accident previously evaluated.

3. Do the proposed changes involve a significant reduction in the margin of safety?

The proposed changes ensure that the margin of safety for the fission product barriers protected by these functions will continue to be maintained. This conclusion is based on use of the applicable NRC-approved methodology for developing and establishing the proposed RCS P/T limits. Therefore, these changes do not involve a significant reduction in the margin of safety.

Based on the preceding discussion, the requested change does not involve a significant hazards consideration.

Environmental Impact Consideration 10 CFR 51.22(c)(9) provides criteria for identification of licensing and regulatory actions for categorical exclusion from performing an environmental assessment. A proposed change for an operating license for a facility requires no environmental assessment if operation of the facility in accordance with the proposed change would not (i) involve a significant hazards consideration; (ii) result in a significant change in the types or significant increases in the amounts of any effluents that may be released offsite; (iii) result in a significant increase in individual or cumulative occupational radiation exposure. Progress Energy Carolinas, Inc., has reviewed this request and determined that the proposed change meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment needs to be prepared in connection with the issuance of the amendment.

The basis for this determination is as follows:

Proposed Change Progress Energy Carolinas, Inc., is proposing changes to Appendix A, Technical Specifications, of Facility Operating License No. DPR-23, for the H. B. Robinson Steam Electric Plant (HBRSEP),

Unit No. 2. This change will revise the reactor coolant system (RCS) pressure and temperature limits by replacing Technical Specifications Section 3.4.3, "RCS Pressure and Temperature (P/T)

United States Nuclear Regulatory Commission Attachment II to Serial: RNP-RA/04-0098 Page 4 of 4 Limits," Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 35 effective full power years (EFPY).

Basis The proposed changes meet the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9) for the following reasons:

1. As demonstrated in the No Significant Hazards Consideration Determination, the proposed changes do not involve a significant hazards consideration.
2. The proposed changes revise the RCS pressure and temperature limits by replacing Technical Specifications Section 3.4.3, "RCS Pressure and Temperature (PIT) Limits,"

Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 35 effective full power years (EFPY). These changes do not affect the generation or control of effluents.

Therefore, the proposed changes will not result in a significant change in the types or significant increases in the amounts of any effluents that may be released offsite.

3. The proposed changes, as previously described, do not affect any parameters that would cause an increase in occupational radiation exposure. There are no proposed physical changes to the facility or any process changes that would result in additional radiation exposure. Therefore, the proposed changes will not result in a significant increase in individual or cumulative occupational radiation exposure.

United States Nuclear Regulatory Commission Attachment III to Serial: RNP-RA/04-0098 5 Pages (including cover page)

H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 REQUEST FOR TECHNICAL SPECIFICATIONS CHANGE TO REACTOR COOLANT SYSTEM PRESSURE AND TEMPERATURE LIMITS MARKUP OF TECHNICAL SPECIFICATIONS PAGES

RCS P/T Limits Replace with Insert A 3.4.3 1-Con

-MW mau Id

L~
OM WLZ Ckofoed VW Oxws up loWF/A

- for habu r .

wve parlod up t023.96EPY.

¢23.98 0: 2 hApds +10F and -0 PSO IMNrAf 23.96 OW:y, t 29.W coo a s fbr ksbumwlnton wnor.

mm l mnn l l l l l m mm l IrnTn l r . ' r l m a l mim l . [xmmmilim: mimxTnsmTl l l m nTm I nnm l . . nmummsc lmTmm 1 m ]

1 . Innlr  : nmumnmn nmml lil In IE I C . ' I . ImmmmlE mmm mm C m m I cm;m l l  : mmm mllT f m l ll l l l l nmumlllm 111111 [1 l 11 ECEE C . . . . nnTITnT Cl=EC EDl , C m l l 1 1 nimml nilmil ffi l Im E nTntr . l ; . mmmmilS IlTrlrrm CElDl i  : cm i

]  ; =

[n C lI UU ll  : u u mmn u  :

Im 13 rmTr ' nm . mmmIlam XnTnrn mTm l m m

= U  : 3  ; mmm l J s u r  : 1 . mlTrImllllu l j ms u ms l . . lTrnXTl n l 1 m lil ll lnm l_ T_ § _ _ m mnl f11 l lill m m mnr -- nn msm Wm l 1 m cm s nnTn l mm mmm l 1 m mn l ,ml 111fl11E w2 cm l CE1 1 X TmTn mm H R up mr SCEC mmm nnTr r 1 m m ll mm to ,fir ^

s^1lilil 111111:C enn milanT mm ]

l mlil cm l lmTn l T mT mEr C 1 m IUI s mwE I -zmmTr mun [ l 1111 ml l 111111 nmnlmnmmllll [111 n 1111 m l rsm l nTlmmmmUnTnn m ,r mar l l mIr 1500 Im I nnn] I Imnnnmammam TTIIT mnn r l R nn m T rillTIl I Ilill=TI TlilV=l llmil r l I 1111 g m cm.s I rUm l mnTmnmnnvr mm3 1 I Unmmmnnmmn mlmTn clEr m iE 1 13 13 c l I cm 11 1E 11 I I 1X nmlllllllllmlllllmlllmir nll mu u l l IIL Im 1 mllr I mnnmmnnr , _

[m 1 nann I mm_ _

ll lililil l Ililillmnimumimmzzill *11 - - E m l nmr ' ansm sn en mI 1 mlTr ; nnnnmrn rED 1000 nl [I mnr milunmn nE Im l lTmr . mamUnmmmnm W ^ r am l mnr  ; =_ fo( ew llzlt llll ll l Illtul IllllllllllllllllulnlllllUU[In *11 __ A ml l mm ' mc_ TsTV tp W vv-UU rwrx-ml n nrs mmunnnnrunmr I mmmn_

mn n mm ' mwmnmaur nmUl_

mm Cl mNr : _I _

1111 n mm 1 mlmmmmmluml Inllllllllllunmnullmllun mx cl nTnr , m _

ll 1111111 smullmnmn nrn_

C II Tnm  : msl_ 1 =

lll l Imll 7 Illllllmmnmmllllllllmll *mlllllllllnmmmlllllluln mm ll nmn l mm u Emm l m m m n mml mumilmummmmilmm Smmirnmm Im u ITITlTI I a m n mml l ImummnmimnilmilEn nEmmmumnnEn

= u Tnrn I nsmrmnn am 50 100 150 200 250 300 W0 400 480 500 INDICATED TEMPERATURE CT)

Figure 3.4.3-1 Reactor Coolant System Heatup Limits Applicable Up to 23.96 EFPY 3.4.7 Amendment No. 196 HBRSEP HBRSEP Unit No. 2 Unit No. 2 3.4-7 Amendment No. 196

RCS P/T Limits Insert A 3.4.3 MATERIALS PROPERTIES BASE Curves applicable for heatup rates up to 60°FlHr for CONTROLLING MATERIAL: Upper Shell Plate W1 0201 -1 service period up to 35 EFPY.

Umiting ART Values at 35 EFPY: 114T, 167°F Heatup Curves include +10°F and -60 psig allowance 314T, 147°F for instrumentation error.

2750 -

2500 2250 - 'h _

2000 [ LeakTestiitLi 1750 UnacceptableOpeation-

@f1500 - 1l1.li 1~l

, Ij!1 1Heatup Rate to 60°FlHr lt 1250 I' It 0 50 100 150 200 250 300 350 400 450 500 550 Indicated Temperature (IF)

Figure 3.4.3-1 Reactor Coolant System Heatup Limits Applicable Up to 35 EFPY

RCS P/T Limits Replace with Insert B

'I UkWMRS PROPE MSE Ccnbml~q Mobark  : Lower CkomnforenWl W41d Cuze qiIoA orX cooldown Copper ConWe*  : 0.20 WtX 4u to lT for the WI Ca=t  : pO UP to 23.96g.PY RTHWTk9d  : -Oud ,10T T; . POO RT~rgftMr'23.96 VW:yj4T 207 '~oam ft rbrmci m

rn l l l l .......... ........ .

l E .[E ,. ^ ..... [ ... ........ ..... .

m m

m ' r .

m ' r m ' r m ' r __

m , r _t m ' r ......... ...... u m ' r _llm m ,l ,.

Tm __ __

m . . ............................

nr . ^ n_

C, nD . .  : w=:m

= .  :  :

nr= , .

ITn l .  :

nn .  ::

nn .

nn . .

= . .  :

nn l 1 =

nn l 1 m 6 1500 , 141 nn

,, !^ 111

0. nn ,
i
:;

z P , l nn . ,,  :  :

r . l nm . . ,  :  :

r ,. Il FR rm ^

1_ 1 I5 1000 r , l nr ,

r . I ITI1 1!

a r r ' C rm l nn r, i ;;_ t

i. =

rsrr __

w . f :_n rnn = U:

500 a *Xs^1 omm sV r mmmm40m 1 w _n m

s_ _

M_rmn n 50 100 150 200 250 300 30 400 40500 INDICATED TEMPERATURE CF)

Figure 3.4.3-2 Reactor Coolant System Cooldown Limitations Applicable Up to 23.96 EFPY 3.4.8 Amendment No. 196 IIBRSEP HBRSEP Unit No. 2 Unit No. 2 3.4-8 Amendment No. 196

RCS P/T Limits Insert B 3.4.3 MATERIALS PROPERTIES BASE Curves applicable for cooldown rates up to 1000 Controlling Material: Upper Shell Plate W1 0201-1 & Girth Weld F/Hr for the service period up to 35 EFPY.10-273 Curves include +100 F and -60 PSIG allowance Umiting ART Values at 35 EFPY: 114T, 1670F & 2420F for instrumentation error.

314T, 1470F & 1720F 2750 2500 - .U

-00F/Hr 2250 20001 lUnacceptable Operation]

1750 I 'd 2~1500 li I IL C 1250T 0 50 100 150 200 250 300 350 400 450 500 550 Indicated Temperature (OF)

Figure 3.4.3-2 Reactor Coolant System Cooldown Limits Applicable Up to 35 EFPY

United States Nuclear Regulatory Commission Attachment IV to Serial: RNP-RA/04-0098 3 Pages (including cover page)

H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 REQUEST FOR TECHNICAL SPECIFICATIONS CHANGE TO REACTOR COOLANT SYSTEM PRESSURE AND TEMPERATURE LIMITS RETYPED TECHNICAL SPECIFICATIONS PAGES

RCS P/T Limits 3.4.3 MATERIALS PROPERTIES BASE Curves applicable for heatup rates up to 60°F/Hr for CONTROLLING MATERIAL: Upper Shell Plate W10201-1 service period up to 35 EFPY.

Limiting ART Values at 35 EFPY: 1/4T, 1670F Heatup Curves include +10°F and -60 psig allowance 3/4T, 147°F for instrumentation error.

2750 -

2500 2250 -- - IL.~

2000 Leak TestLimi l 1750 --

Unacceptable Operation jl a.

c1500 - IH l l Heatup Rate to rs 60°~~~OF/Hr .! 1 I 1U~000tX:

250 - J 1 IiK

0 0 50 100 150 200 250 300 350 400 450 500 550 Indicated Temperature (F)

Figure 3.4.3-1 Reactor Coolant System Heatup Limits Applicable Up to 35 EFPY HBRSEP Unit No. 2 3.4-7 Amendment No._

RCS P/T Limits 3.4.3 MATERIALS PROPERTIES BASE Curves applicable for cooldown rates up to 1000 Controlling Material: Upper Shell Plate W10201-1 & Girth Weld F/Hr for the service period up to 35 EFPY.10-273 Curves include +10F and -60 PSIG allowance Limiting ART Values at 35 EFPY: 114T, 167 0F & 2421F for instrumentation error.

3/4T, 1470F & 1720F 2750 -

225 j.lH~.

25003 -ii------ t1' TH-i OO0F/Hr I t--

2250 -

2000 i 1.~

Unacceptable Operation iI 1750 -ii~ I -.

1 001 X L 1250 -

1000 Cooldown Rates 750 j 500. 1K7WILL 250 H 1 L 0 50 100 150 200 250 300 350 400 450 500 550 0

Indicated Temperature ( F)

Figure 3.4.3-2 Reactor Coolant System Cooldown Limits Applicable Up to 35 EFPY HBRSEP Unit No. 2 3.4-8 Amendment No._

United States Nuclear Regulatory Commission Attachment V to Serial: RNP-RA/04-0098 93 Pages (including cover page)

H. B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 REQUEST FOR TECHNICAL SPECIFICATIONS CHANGE TO REACTOR COOLANT SYSTEM PRESSURE AND TEMPERATURE LIMITS WCAP-15827, "H. B. ROBINSON UNIT 2 HEATUP AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION"

I Westinghouse Non-Proprietary Class 3 WCAP-15827 March 2003 Revision 0 H.B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation

@)Westinghouse

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15827, Revision 0 H.B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation T. J. Laubbam Mtarch 2003 Prepared by the Westinghouse Electric Company LLC for the Carolina Power & light Co.

Approved: t LA. Gresham, Manager t,* Engineering and Materials Technology Westinghouse Electric Company LLC Energy Systems P.O. Box 355 Pittsburgh. PA 15230-0355 02003 Westinghousc Electric Company LLC All Rights Rcscrved

iii TABLE OF CONTENTS LIST OFTABLES .. ..................................................................................................................................... iv LIST OF FIGURES .........

,vi EXECUTIVE 1IS NTOF

SUMMARY

I URESO............................................................................................................................ ..........vii A.......................

1 TNTRODUCTION................................................................

2 FRACTURE TOUGHNESS PROPERTIES ........................................................ 2 3 CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS .................... 7 4 CALCULATION OFADJUSTED REFERENCETEMPERATURE . ..... 11 1.1.........................

5 HIEATUPAND COOLDOWN PRESSURE-TEIPERATURE LIMITCURVES ........................ 29 6 REFERENCES ...................................................... 56 APPENDIX A: PT CURVES WITHOUT FLANGE REQUIREMENT .. . A-APPENDIX B: VESSEL WALL (1/4T. 314T and T) TEMPERATURES . . . BO

iv LISTOFTABIIES Table I Summary of the Best Estimate Cu and Ni WVeight Percent and Initial RTNDT ValuW s for the }.B. Robinson Unit 2 Reactor Vessel Materials .................................... .3 Tablc 2 Calculated Integrated Neutron Exposure of the Surveillance Capsules @

H.B. Robinson Unit 2 ............. 4 Table 3 Calculation of Chemistry Factors using H1.B. Robinson Unit 2 Surveillance Capsule Data ........... S Table 4 Summary of the H.B. Robinson Unit 2 Reactor Vessel BIellinc Material Chemistry Factors ........... 6 Table 5 Calculated Neutron Fluence Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface (I 0'9 nrcm 2, E > 1.0 WeV) ................................................ 12 Table 6 Summary of the Vessel Surface, l/4T and 3/4T Fluence Values used for thc Generation of the 30,35,40,45 and 50 EFPY Heatup/Cooldown Curves....................... 14 Table 7 Summary of the Calculated Fluence Factors used for the Generation of the 30,35, 40,45 and 50 EFPY Ileatup and Cooldown Curves . .... 16 Table 8 Calculation of the ART Values for the I14T Location @ 30 EFPY ................................. 18 Table 9 Calculation of the ART Values for the 314T Location @ 30 EFPY .... 19 Table 10 Calculation of the ART Values for the 114T Location @ 35 EFPY .... 20 Table II Calculation or the ART Values for the 314T Location On35 EFPY ......... ........................ 21 Table 12 Calculation of the ART Values for the 114T Location @40 EFPY .................................22 Table 13 Calculation of the ART Values for the 3/4T Location @40 EFPY .... 23 Table 14 Calculation of the ART Values for the Il/4T Location @45 EFPY .... 24 Table 15 Calculation of the ART Values for the 3/4T Location @ 45 EFPY ........................... ......25 Table 16 Calculation of the ART Values for the I14T Location C S0 EFPY .... 26 Table 17 Calculation of the ART Values for the 314T Location @ 50 EFPY . .... 27

v LIST OFTABlIMS Table 18 Sumrnary of the Limiting ART Values Used in the Generation of the 1I.B. Robinson Unit 2 Heatup/Cooldown Curves ............................. 28 Table 19 30 EFPY Hieatup Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) .. ........................... 33 Table 20 30 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertaintics tor Instrumentation Errors) .. ........................... 35 Table 21 35 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) .. ........................... 38 Table 22 35 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumcntation Errors) .. ........................... 40 Table 23 40 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) ............................. 43 Table 24 40 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumcntation Errors) ............................. 45 Table 25 45 EFPY Heatup Curve Data Points Using 1996 App. G (without Unceraintics for Instrumentation Errors) ..... 48 Table 26 45 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertaintics for Instrumentation Errors) ............................. S0 Table 27 50 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccrtaintics ror Instrumentation Errors) ............................. 53 Table 28 50 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertaintics for Instrumentation Errors) ............................. 55

Ai LIST OF FIGURFS Figure I H1.B. Robinson Unit 2 Reactor Coolant System Fleatup Limitations (Jicalup Rates of 60 & IOO 0 F/hr) Applicable for the First 30 EFPY (Wtihout Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 31 Figure 2 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to I00°/hr) Applicable for the First 30 EFPY (Without Margins for Instrumcntation Errors) Using 1996 App. G Methodology ........... 32 Figure 3 I.B. Robinson Unit 2 Reactor Coolant System fleatup Limitations (Ileatup Rates of 60 & 10 0°F/hr) Applicable for the First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 36 Figure 4 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 37 Figure 5 11.13. Robinson Unit 2 Reactor Coolant System 1Hcatup Limitations (Heatup Rates of 60 & I 00F/hr) Applicablc for the First 40 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. 0 Methodology ........... 41 Figure 6 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to I OO1Fhr) Applicable for the First 40 EFPY (WVithout Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 42 Figure 7 I.B. Robinson Unit 2 Reactor Coolant System Ileatup Limitations (lcatup Rates of 60 & OO 0 FT/hr) Applicable for the First 45 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 46 Figure 8 I.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to I 0Flhr) 0 Applicable for the First 45 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 47 Figure 9 11.B. Robinson Unit 2 Reactor Coolant System Hleatup Limitations (Ileatup Rates of 60 & 100°Flhr) Applicable for the First 50 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 5 1 Figure 10 11.13. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°Flhr) Applicablc for the First 50 JEFPY (Without Margins for Instrumcntation Errors) Using 1996 App. G Methodology ........... 52

vii I EXECUTIVE SUMMAIARY Ths report provides the mcthodology and results of the generation of heatup and cooldown pressure tcmperature limit curves for normal operation of the H.B. Robinson Unit 2 reactor vessel. In addition, the vessel 8 all temperature data is documented hcrcin under thc Appendices.

Thc PT curves were generated based on the latest available reactor vessel information and fluences (WCAP-l5805)P, which were updated to rcflcct actual powcr realized from the R021 upratc. Thc new H.B. Robinson Unit 2 heatup and cooldoun prcssure-tcmperaturc limit curves wcrc generated using ASME Codc Case N-64 Inl (which allows the use of thc KI methodology and "Circ. Flaw" methodology) and thc axial flaw methodology of the 1995 ASME Code, Section Xi through the 1996 Addcndal3l.

It should be noted that H.B. Robinson was limited at the 114T and 3J4T locations by the upper to intermediate shell circumferential weld uith exception to the 3/4T location at 30 EFPY (Limited herc by the uppcr shcll plate W10201-t). Thc limiting axial matcrial sas the uppcr shell plate W10201-t. The pressure-temperature (PT) limit curves presented in Section S and Appendix A are developed using the "axial-flaw" methodology with the ost limitin, "axial-flaw" adiusted refcrence tcrneratures (ARTs), and the "Circ Flaw" Methodology (ASME Code Case N-641, formerly known as N-588041) with the rnos likiting 'Circ. Flaw" ART values. Thc "axial-flaw"ART values produce a more limiting PT curve overall with exception to theligher temperatures where at a certain point, depending on the EFP, the curve could switch from "axial-flaw" limited to a "circ-flaw" limited curve. When and where this occurs is noted within the data tables for each specific PT-limit curve.

[Note that the PT limit curves ofAppendix A are the same as those in Section 5. with exception of removing the flange requirement for potential future use.]

I I INTRODUCTION fleatup and cooldown limit curves are calculated using the adjusted RTNDT (reference nil-ductility temperature) corresponding to the limiting beltline region material of the reactor vessel. The adjusted RTur of the limiting material in the core region of the reactor vessel is determined by using the unirradiated reactor vessel material fracture toughness properties, estimating the radiation-induced ARTNDT and adding a rnargin. The unirradiated RTHDT is designated as the higher of either the drop weight nil-ductility transition temperature (NDTr) or the temperature at which the material exhibits at least 5o [t-lb or impact energy and 35-mil lateral expansion (normal to the major working direction) minus 60TF.

RTNI)T increases as the material is exposed to fast-neutron radiation. Therefore, to find the most limiting RTNDT at any time period in the reactor's life, ARTNDT due to the radiation exposure associated with that time period must be added to the unirradiated RT,4DT (IRTrnT). The extent of the shift in RTNDrT is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99, Revision 2. "Radiation Embrittlement of Reactor Vessel Materials."451 Regulatory Guide 1.99, Revision 2, is used for the calculation of Adjusted Reference Temperature (ART) values (1RTt + A&lNn + margins for uncertainties) at the 114T and 314T locations, where T is the thickness of the vessel at the beltline region measured from the clad/base metal interface.

The heatup and cooldown curves documented in this report were generated using the most limiting ART values and the NRC approved methodology documented in WCAP-14040-NP-A, Revision 2'6k, "hethodology Used lo Develop Cold Overpressure Mitigating System Setpoints and RCS Ileatup and Cooldown Limit Curves' with exception of the following: 1)The fluence values used In this report are calculated fluence values (i.e. comply with Reg. Guide 1.190), not the best estimate fluence values.

2) The Kk critical stress intensities are used in place of the Ku critical stress intensities. This methodology is taken from approved ASME Code Case N-64 112l. 3) The 1996 Version of Appendix G to Section X113l will be used rather than the 1989 version.

WCAP-1S827

2 2 FRACTURE TOUGHNESS PROPERTIES The fracture-toughness properties of the ferritic materials in the reactor coolant pressure boundary are determined in accordance with the NRC Standard Review Plant1 1. The beltline material properties of the JIB. Robinson Unit 2 reactor vessel is presented in Table 1.

Best estimate copper (Cu) and nickel (Ni) weight percent values used to calculate chemistry factors (CF) in accordance with Regulatory Guide 1.99. Revision 2, are provided in Table 1. Additionally, surveillance capsule data is available for four capsules (Capsules S. V,T and X) already removed from the H.B. Robinson Unit 2 reactor vessel. This surveillance capsule data was also used to calculate CF values per Position 2.1 of Regulatory Guide 1.99, Revision 2 in Table 4. These CF values are summarized in Table 5.

The Regulatory Guide 1.99, Revision 2 methodology used to develop the heatup and cooldown curves documented in this report is the same as that documented in WCAP-14O04, Revision 2.

Credibility Evaluation Robinson surveillance program contains surveillance material from all three intermediate shell plates and from weld material fabricated from weld wire heat number W52 14. which is the same heat as the upper to intermediate shell girth weld seam. In order to apply the surveillance data to such evaluations as developing ART values, you first have to evaluate whether or not the data is credible. The procedures for evaluating credibility are prescribed in Regulatory Guide 1.99, Rev. 2 and IOCFRS0.61, along with guidance provided by the NRC at an industry meeting on February 12" & 13", 1998. The credibility evaluation for the Robinson data has already been performed under the Capsule X report. VCAP-15805, and the results were as follows:

  • Surveillance plate materials from Intermediate Shell Plates W102014 and WV10201-6 were determined to be not credible.
  • Surveillance plate materials from Intermediate Shell Plate WI 0201-5 was determined to be credible.
  • Surveillance weld metal (Heat W52 14) from Robinson only was determined to be not credible. Note that there exists surveillance data of the same heat from Indian Point Units 2 and 3. If this data were integrated with Robinson, the surveillance weld data would then be credible. For conservatism.

however, the Indian Point surveillance data will not be used. Robinson data alone produces a slightly lower chemistry factor via Position 2.1, but this is offset by the higher margin because of the non-credible data.

Based on the results above, only intermediate shell plate W10201-5 may use a reduced margin when calculating ART via Position 2.1. All other surveillance data will use the full G,, in determining margin and ART.

WCAP. 15827

3 TABILE I Sumrnary of the Best Estirmale Cu and Ni %VcightPercent and Initial RTNOT Values for the JI.B. Robinson Unit 2 Reactor Vessel Materials Material Description Cu c)"'l Ni(%)"' l Initial RTNrrrd)

Closure elcad Flangc W 10208 0.70 60°F Vessel Flange W10209 . 0.67 60°F Inlet Nozzle 0.02 0.750.90 ur°F" Outlet Nozzle 0.15'6 0.71 60°Vt Upper Shell Platc W10201-1 0.13 0.11 69°F UpperShell Plate W10201-2 (.15 0.25 30°F UpperShell Plate W10201-3 0.11 0.08 36°F Intcrnediitc Shell Platc W102014 0.12 0.09 20°F Intermcdiatc Shell Plate W 10201.5 0.10 0.12 20°F Inicrnmdiate Shell Plate W10201.6 0.0) 0.09 4S°F Lower Shell PIatC W9807-3 0.12 0.10 504F Lower Shell Plate W9807-5 0.15 0.10 330 F Lower Shell Plate W9807-9 0.14 0.15 9°F Upper Shell Plate Longitudinal 0.22 0.051b) -56°F Weld Scams l-273A. D.C (Heat U86054B)

Intermcdiate Shell Plate Longitudinal 0.22 0 .0 5b' *56°F Weld Scams 2-273A. B. C (Heat # 86054 D)

Lowcr Shell Plate Longitudinal 0.22 °.°SbI -S6F Weld Scams 3-273A. 1. C (Heat U86054 B)

Upper to Intermediate Shell Plate Circumntcrcnial ().2 1 ' 1.01 -S6°F Weld Scam 10-273 (Fleat l WS214)

Initermdiate to Lower Shell Plate Circurnrcrcntial 1.19 0.98 *77°F Weld Scam 11-273 (Heat # 34D1009)

Nozzle Welds ... t -5 6 °Ve Surveillance Weld (Heat # WS214)c' 0..3 0.66 -

rNotes:

(a) Cu & Ni arc thc current docketed values for Robinson 2 (Ref8 for the plates and Ref. 9 for the Welds). The Inlet nozzle forgings (hcat XIS I56tXS3 163) were obtained per the Midvate-leppenstall CMTRs.

(b) Rounded to two decimal points per ASTM1 E29. using the "Rounding Mcthod' (c) Per WCAP-10304.

(d) Docketed values per Rcr. 8. All values are measured cxcept welds of heat numbers 860541 & W52 14.

(e) Assumed generic value per Standard Review Plan Branch Technical Position 1TEI3 5.2.

(f) No Copper Value available, however since the inlet nozzle was reported as 0.02 Cu it is conservative to assume that the outlet nozzle Cu value will tie no higher than the hiShcst vessel plate or nozzle Cu valuc.

() See Table 4.

WCAP-15827

4 The chemistry factors were calculated using Regulatory Guide 1.99 Revision 2. Positions 1.1 and 2.1.

Position 1.1 uses the Tables from the Reg. Guide along with the best estimate copper and nickel weight percents. Position 2.1 uses the surveillance capsule data from all capsules withdrawn to date. The fluence values used to dcterrmine the CFs in Table 4 arc the calculated nuence values at the surveillance capsule locations. The mcasured ARTNDT values for the weld data were adjusted for chemistry using the ratio procedure given in Position 2.1 of Regulatory Guide 1.99. Revision 2.

All calculated fluence values (capsule and projections) for 1I.B. Robinson Unit 2 were updated and documented in WCAP-15805 t 11. These fluences were calculated using the ENDF/B-VI scallering cross-section data set. Table 2 is a summary of the capsule flucnces from 1.13 Robinson Unit 2.

TABLE 2 Calculated Integrated Neutron Exposure of the Surveillance Capsules e FI.X. Robinson Unit 2 Capsule luence S 4.79 x IO"nkm', (E > 1.0 NIcV)

V 5.30 x 10" n/cmr. (E > 1.0 NV)

T 3.87 x ID19 ncm2, (E > 1.0 MMcV X 4A9x 10" WcmO. (EB> 1.0 WV)

WCAP-15827

5 TAIBLE3 Calculation or Chemistry Factors using HI.B. Robinson Unit 2 Surveillance Capsulc Data Mateeral Capsule Capsule 1r" FFVM }TrTNDT ' FF*ARTNDT FF2 Intcrmcdiate Shell S 0.479 0.795 32.51 25.85 0.632 Plitc W10201.4 X 4.49 1381 104.73 144.63 1.907 (Long.) SUMI: 170.48 2.539 CFw 1o'0 1j = D(IF

  • I( F1:) - (170.48) * (2.539) = 67.1OF Intcrmcdialc Shell S OA79 0.795 15.29 12.16 0.612 Plate W10201-5 V 0.530 0.823 47.01 38.69 0.677 (Long.) SUM: 50.85 1.309 CFW30201S = B(FF
  • RTNoT) *F 7( FF) = (30.85) (1.309) 38.8°F Intermediacc Shell S 0.479 0.795 l 13.8 10.97 0.632 Platc WI0201.6 T 3.87 1.349 [ 75.24 101.50 1.82(0 (Long.) SUM: 112.47 2.452 CFrwiO2moG
  • RTt;DT) *FI( FF2 ) = ( 112.47) (2.452) = 45.9'F Surveillance Weld V(H1R2) 0.530 0.823 221.88 (209.32) 182.61 0.677 Matcrial?' T(IIB3R2) 3.87 1.349 l3054 (288.15) 412.04 1.820 X(11BR2) 4.49 T 1381 281.89(265.93) 38929 1.907 SUM: 983.94 4A.4 CF s,. w,. = L(FF
  • RTtmT) @ I( FF2 ) = (983.94IF). (4.A04) = 223.4'F Notes:

(a) f= flucnce. See Tablc 2. (x 10" nlcm2 , E > 1.0 WeV).

(b) }:F= fluence factor= rS0.1 bn.

(c) ART"Tr values arc the measured 30 ftlb shirt values taken from the following documents:

- 13.B. Robinson Unit 2...WCAP-15 805ll (d) Ratio 11BR2 = 230.2 . 217.7 = 1.06 for the .1B. Robinson Unit 2 data.

(The prcandjusted values arc in parenthesis.)

WCAP-15827

6 TABLE4 Summary of the 11.B. Robinson Unit 2 Reactor Vessel Beltline Material Chemistry Factors Material Reg. Guide 1.99, Rev. 2 Reg. Guide 1.99, Rev. 2 Position 1.1 CF's Position 2.1 CF's Inlet Nozzle 20-r ...-

Outlet Nozzle 4 J~o Upper Shell Plate W1020V1.1 62.9 0F Upper Shell Plate W10201.2 84.81F . ..

Upper Shell Plate W10201-3 iI .8°F --

Intermcdiatc Shell Plate W10201.4 57.1°F 67.1'F Intermediatc Shell Plate W10201-5 51.20 F 38.8 0F Intermnediate Shcll Plate W10201-6 442 0F 45.9°F Lower Shell Plate W9807-3 5S.0°F ..

Lower Shell Plate W9807-5 70.5SF . ..

Lower Shell Place W9807.9 70.5°F UpperShell Plate Longitudinal 100.8°F Weld Scams 1-273A. B C (HIeat # 86054B)

Intermcdiace Shell Plate Longitudinal 100.80 F ...

Weld Seams 2-273A. D.C (Heat # 8605403)

Lower Shell Plate Lonsitudinal 100.80° ...

Weld Scams 3-273A. D.C (felat # 86054BD)

Upper to Intcrnediate Shell Plate 230.2VF 223A°F Circumferential Weld Scam 10-273 (float # W5S214)

Interediale to Lower Shell Plate 217.1f OF _

Circumrerential Weld Seam 11-273 (leat # 34B009)

Nozzle Wclds 2 30 .2Q"b ...

Surveillance Weld MHeat # WS214) 210.7°F INOtTE:

(a) See Table I for explanation or the copper and nickel values used to determine the chemistry factor.

(b) Since no copper or nickel content is available, it is conservatively assumed that the chemistry factor is equal to that or the highest weld on the vessel (i.e. Hleat #W5214).

WCAP.15827

7 3 CRITERIA FOR ALLOWABLE PRESSURE-TEMNPERATURE RELATIONSHIPS 3.1 Overall Approach The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifies that the total stress intensity factor, K,. for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity factor, Kk, for the metal temperature at that time. Kk is obtained from the reference fracture toughness curve, defined in Code Case N-640, 'Altemative Reference Fracture Toughncss for Development of PT Limit Curves for Section XlI-2l 'I of the ASME Appendix G to Section Xl. The Kk curve is given by the following equation:

Kk =31*2+20.7.14c 1002(T-t-TAtWt

where, Kk = reference stress intensity faclor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNrT This Kk curve is based on the lower bound of static critical KI values measured as a function of temperature on specimens of SA-533 Grade B Class], SA-508-1, SA-508-2, SA-508-3 steel.

32 hMethodology for Pressure-Temperature Limit Curve Development The governing equation for the heatup-cooldown analysis is defined in Appendix G of the ASME Codc as follows:

C Kim+ K, < Kk (2)

where, Klm = stress intensity factor caused by membrane (pressure) stress Kb = stress intensity factor caused by the thermal gradients Kj. = reference stress intensity factor as a function of temperature relative to the RTNDT of the material C = 2.0 for Level Aand Level B service limits C = 1.5 for hydrostatic and leakl test conditions during which the reactor core is not critical WCAP.1S827

S For membrane tension, the corresponding K, for the postulated defect is:

Kim Al.z x(PR.Ii) (3) where, Mm for an inside surface naw is given by:

h1. = 1.85 for - < 2, him = 0.926.11 for 2Sf753.464.

Mm = 3.21 for V > 3.464 Similarly. Mm for an outside surface flaw is given by:

mm = 1.77 for j < 2.

M1m = 0.893 '7 for 2*J7<3.464.

Mm = 3.09 for 1 > 3A64 and p = internal pressure. Ri = vessel inncr radius, and t = vessel wall thickness.

For bending stress, the corresponding KX for thc postulated defect is:

K,, = Nib

  • Maximum Stress, where Ni,, is two-thirds of M,.

The maximum K, produced by radial thermal gradient for the postulated inside surface defect of G-2 120 is Kk = 0.953x l x CR x 1t5 , where CR is the cooldown rate in °F/hr., or for a postulated outside surface defect. Kk = 0.753xlO3 x HIU x t5, where AU is the heatup rate in IF/hr.

The through-wall temperature difference associated with the naximum thermal K, can be determincd from Fig. G-2214-1. The temperature at any radial distance from thc vessel surface can be determined from Fig. G-2214-2 for the maximum thermal K .

(a) The maximum thermal XI relationship and ahe temperature relationship in Fig. G-22 14-1 are applicable only for the conditions given in G-2214.3(a)(1) and (2).

(b) Alternatively, the K, for radial thermal gradient can be calculated for any thermal stress distribution and at any specified time during cooldown for a 'A-thickness inside surface defect using the relationship:

Ki, = (1.0359Co+ 0.6322C + 0.4753C2+03855C3)*4 (4)

WCAP-15827

9 or similarly. Krr during heatup for a 'A4thickness outside surface defect using the relationship:

K&t = (l.043Co+0.630Ci+0.481C2 +40.IOC3) *%/ir (5) where the coefficients CN, C", C2 and C3 are determined from the thermal stress distribution at any specified time during the heatup or cooldown using the form:

a(X)= Co+ CI(x/a)+ C2(xla)2 + C(xIa)3 (6) and x is a variable that represents the radial distance from the appropriate (i.e., inside or outside) surface to any point on the crack front and a is the maximum crack depth.

Note, that equations 3,4 and 5 were implemented in the OPERLIM computer code, which is the program used to generate the pressure-lemperature (P-T) limit curves. No other changes were made lo the OPERLIM computer code with regard to P-T calculation methodology. Therefore, the P-T curve methodology is unchanged from that described in WCAP-14040. "Methodology used to Develop Cold Overpressure Mitigating System Setpoints and RCS Ileatup and Cooldown Limit Curves"t 61 Section 2.6 (equations 2.6.24 and 2.6.3-1) with the exceptions just described above.

Al any time during the heatup or cooldown transient, Ks, is determined by the metal temperature at the tip of apostulated flaw at the I14T and 314T location, the appropriate value for RTNDT, and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, Ki, for the reference flaw are computed. From Equation 2. the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated.

For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference flaw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates.

Allowable pressure-lemperature relations are generated for both steady-state and finite cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rate of interest.

The use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw. During cooldown, the 114T vessel location is at a higher temperature than the fluid adjacent to the vessel inner diameter. This condition. of course, is not true for the steady-state situation. It follows that, at any given reactor coolant temperature, the AT (temperature) developed during cooldown results in a higher value of Kk at the 114T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in K;, exceeds K,, the calculated allowable pressure during cooldown will be greater than the steady-state value.

WCAP-15827

l0 The above procedures are needed because there is no direct control on temperature at the 1/4T location and, therefore, allowable pressures may unknowingly be violated if the rate of cooling is decreased at various intervals along a cooldown ramp. The use of the composite curve eliminates this problem and ensures conservative operation of the system for the entire cooldown period.

Three separate calculations are required to determine the limit curves for finite heatup rates. As is done in the cooldown analysis, allowable prcssure-temperature relationships are developed for steady-state conditions as well as finite heatup rate conditions assuming the presence of a 114T defect at the inside of the wall. The heatup results in compressive stresses at the inside surface that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant temperature; therefore, the K;, for the 1/4T crack during heatup is lower than the Kk for the 114T crack during steady-state conditions at the same coolant temperature. During heatup. especially at the end of the transient, conditions may exist so that the effects of compressive thermal stresses and lower Kk values do not offset each other. and the pressure-temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the 114T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.

The second portion of the heatup analysis concerns the calculation of the pressure-temperature limitations for the case in which a 1/4T flaw located at the l14T location from the outside surface is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.

Following the generation of pressure-temperature curves for both the steady-state and finite heatup rate situations, the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the hcatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.

33 Closure lead/Vessel Flange Requirements 10 CFR Part 50, Appendix Gt"II addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material unirradiated RTNDT by at least 120TF for normal operation when the pressure exceeds 20 percent of the prescrvice hydrostatic test pressure (3106 psi), which is 621 psig for 11.B. Robinson Unit 2. The limiting unirradiated RTNVT of 60'F occurs in both the closure head and vessel flanges of the -1.8.

Robinson Unit 2 reactor vessel, so the minimum allowable temperature of this region is 1M80F at pressures greater than 621 psig. This limit is shown in Figures 5-l through 5.10 wherever applicable.

WCAP-15827

II 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guidc 1.99, Revision 2, the adjusted referencc temperaturc (ART) for each material in the beltline region is given by the following expression:

ART = Initial RTNDT + ARTpN,)T + Margin (7)

Initial RTt4Dr is the reference temperature for the unirradiated material as defined in paragraph NB-233 1 of Section Ill of the ASNIE Boiler and Pressure Vessel Code"" 3 . if measured values of initial RTPDr for the material in question are not available, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.

ARTmNT is thc mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows:

ARTNI)T = CF

  • S 0 &l ff n (8)

To calculate ARTpir at any depth (e.g., at 114T or 314T). the following formula must first be used to attenuate the fluence at the specific depth.

&&V.= f. *e 0 2 4 41 (9) where x inches (vessel beliline thickness is 9.313 inches) is the depth into the vessel wall measured from the vessel clad/base metal interface. Thc resultant fluence is then placed in Equation 8 to calculate the ARTNt" at the specific depth.

The Westinghouse Radiation Engineering and Analysis Group evaluated the vessel nluence projections in WCAP-15805, which were updated to reflect a total power uprate of 1.7% in 2339 Mw. They are presented in n condensed version in Table S of this report. The evaluation used the ENDFIB-VI scattering cross-section data set. This is consistent with methods presented in WCAP-14040-NP-A, "Methodology Used to Develop Cold Overpressure Mitigating System Sclpoints and RCS lcatup and Cooldown Limit Curves". Table 5 contains the calculated vessel surface nluences values at various azimuthal locations, and in some instances at various longitudinal locations. Tables 7 and 8 contain the l/4T and 3/4Tcalculated fluences and fluence factors, per the Regulatory Guide 1.99, Revision 2. used to calculate the ART values for alt beltline materials in the H1.B. Robinson Unit 2 reactor vessel.

WCAP- 15827

12 TABLE5 Calculated Neutron Fluence Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface (I0"'nlcm2 .E > 1.0 MeV)

Azimuthal Location EFPY 10° 200 30° 400 Peak Vessel Longitudinal Location (- 4 inches above Core 1%lidplane) 20.39 2.76x IO"' 2.0Sx IO"' .24x 10"' 9.69x IO"' 6.63x 10" 21.78 2.87 x 10"' 2.14 x 10"' 1.29 x 1O"' 1.02 x tO"' 7.01 x 10" 29 3.68 x 10"' 2.73 x IO"' 1.62 x 10" 1.27 x IO" 9.00 x 10" 30 3.79x Io'" 2.81 x 0"' 1.67 x 10" 1.30x 10" 9.27x 10" 35 4.35 x 10'9 3.2.1 x I 1.89 x I"0 I.8x l0" 1.06 x IO" 40 4.90x 10"' 3.64x Dt" 2.12x 1O"' l.65x I0" 1.20x 10"'

45 5.4S x 10" 4.05 s 10" 2.35 x 10t" 1.82 x o" 1.33 x 10" 50 6.01 x 10"' 4A6x 10" 2.8x IO"' 2.00x 10" 1.47x 10"'

Upper to Inter. Shell Circ. Weld 20.39 1.21 x 10"' - -

21.78 125 x Io," _ _

29 1.357x IO" - - _ _

30 1.62x 1O"' _ _

35 1.W40x "' - .

40 2.06x 101 . _

45 2.28x 101" _ _

50 250 x Io0" ' _ _

Inter. to Lower Shell CIrc. Weld 20.39 1.52 101" -_ - -

21.78 1.54x IO' - - -_

29 1.67 x IO" - - _

30 1.69x IO"' - - _

35 1.78x10"' -. _

40 1.87x IO"' - ,

4S 1.96 x10" -

S0 2.051x 10" WCAP-I5827

13 TABLE 5 - (Continued)

Calculated Neutron Fluence Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface (10" n/cm2 E > 1.0 WV)

Azimuthal LOCat;On E:FPY I'eak*

Inlet Nozzles S0 3.93 x 1017 Outlet Nozzles*

o- 2.53x 10"7

  • Only the 50 EFPY values are listed since the Noz.les will not be limiting materials due lo their low fluence valucs. This will bc dernonstrated in the ART calculations for St EFPY only. Values for thc Inlet and Outiclt Nozzles were taken fromTable 6-18 orWCAP- 150 (Vtsed the Nozzle Weld Flucnccs for conservatism).

WCAP-15827

14 TABLE 6 Summary of thc Vessel Surface, 114T and 314T Fluence Values used for the Gencration of the 30. 35, 40,45 and 50 EFPY Hcatup/Cooldown Curves Material Surface l 2

1I41' 1 3/4 C1 (rl lEm F>l.oIeVJ l .,.>1.0eV)

>nkm J_(nkm' .E>l.0hD e%)

30 EFP' Intermediate Shell Plates (Peak Fluence) 3.79 x IO"' 2.17 x 10"' 7.09 x 10" Upper to Inter. Shell Circ Weld. Upper Shell 1.62 x 10" 9.26 x 10"' 3.03 x Io0" Plates and Upper Shell Long. Welds"'

Inter. to Lower Circ. Weld, Lower Shell Plates 1.69 x 10"' 9.67 x 10"' 34.16 x 10"'

and Lower Shell Long. Welds Inter. Shell Long. Welds 2.81 x 10" 1.61 x 10" S.26 x 10"'

10, 20 or 40,)_b_

35 EFPI' Intcrmediate Shell Plates (Peak Fluence) 4.35 x 1o", 2.49 x 10"' 8.14 x 10" Upper to Inter. Shell Circ Weld, Upper Shell 1.84 x IO"' I1.5 x lo", 3.44 x 10"'

Plates and Upper Shell Long. Welds"'

Inter. to Lower Circ. Weld, Lower Shell Plates 1.78 x 10o" 1.02 x 10"' 3.33 x 10'"

and Lower Shell Long. Welds Inter. Shell Long. Welds 3.23 x 10"' 1.85 x 10"Y 6.04 x 10" (10. 20° or 4 0.)ib 40 EFPY Intermediate Shell Plates (Peak Fluence) 4.90 x 10"' 2.80 x 10"' 9.17 x 10" Upper to Inter. Shell Circ Weld. Upper Shell 2.06 x 10"' 1.1X x lO" 3.85 x 10" Plates and Upper Shell Long. Welds" Inter. to Lower Circ. Weld, LowerShell Platcs 1.87 x Io," 1.07 x lo" 3.50 X Io" and Lower Shell Long. Welds Intcr. Shell Long. Welds 3.64 x lo0" 2.08 x IO'9 6.80 x 10" (10-.20ror40)(b' __

45 EFPY Intermediate Shell Plates (Peak Fluence) 5.45 x 10"' 3.11 x lo", 1.02 x 10"'

Upperto Inter. Shell Circ Weld. UpperShell 2.28x 10"' I .Ox 10o" 4.26x 10"'

Plates and Upper Shell Long. WeldsP' Inter. lo Lower Circ. Weld. LowerShell Plates 1.96x 1O"' 1.12 x lo" 3.67 x IO" and Lower Shell Long. Welds Inter. Shell Long. Welds 4.0Sx 10"' 2.32 10"' 7.56x O" (10. 20 or4G*P' Notes on Next Page.

WCAP-15827

Is TABLE 6 (Continued)

Summary or the Vessel Surface, 1/4T and 314T Fluence Values used for the Generation of the 30,35.40,45 and 50 EFPY fHeatup/Cooldown Curves Mlaterial Surface 1I4rV' 3141V (nItm ,E > 1.0 hf eV) (nfcm'F.> 1.0 MeV) (ncm2 ,E> 1.0 NteV) 50 EFPY Intermcdiame Shcll Plates (Peak Fluence) 6.01E x 0PY 3A x 10"' 1.1210"'

Upper to Inter. Shell Circ Weld, UpperShell 2.S0 x 10"' IA3x 10'9 4.68 x 10"'

Plates and Upper Shell Long. Welds" Inter. to Lower Circ. Weld, Lower Shell Plates 2.05 x 10" 1.17X 10'9 3.83 x 10"'

and Lower Shell Long. Welds Inter. Shell Long. Welds 4.46 x 10" 2.55 x 10" 8.44 x 10' (10°, 200 or 40")'

Inl _Nozzle 3.93 x 10" 2.24 x 10" 735 x 10' Outlet Nozzle 2.53x 10" IA.5x 10" 4.73x 10'° (a) For conservatism the peak fluence was used even though long. welds ore not at the peak location (0°).

(b) The flucnce was taken from the peak azimuthal location from thC three provided.

(c) I/4T and 34T= is, fc 1-", 0 where x is the d.pth into the vessel wall (i.e. 9.31 30.25 or 0.75)

WCAP-I 5827

16 TABLE 7 Summary of the Calculated Fluence Factors used for the Gcncration of the 30, 35 40,45 and 50 EPPY Heatup and Cooldown Curves Material F4" l /INT FF l 34T 3/4T P"' 314T FF 30 EFP1Y Intcrmcdiate Shell Plates (Peak Fluence) 2.17 x 10 1.21 7.09 x ID"' 0.904 Upper lo Inter. Shell Circ Weld. Upper Shcel 9.26 x 10" 0.978 3.03 x 10" 0.672 Plates and Upper Shell Long. Welds&__

Inter. to Lower Circ. Weld. Lower Shell Plates 9.67 x JO" 0.99i 3.16 x I0" 0.684 and Lower Shell Long. Welds Inter. Shell Long. Welds (I 0.2cr or 40')"' 1.61 x 10'9 1.13 S.26 x 10" 0.821 35 EFPY Intermediate Shell Plates (PeAl Fluence) 2A9 x 10"' 1.25 8.14 x 10"' 0.942 Upper to Intcr. Shell Cire Weld. Upper Shell 1.05 x Io'9 1.01 3A4 x 10"' 0.706 Plates and Upper Shell Long. Welds_'

Inter. to Lower Circ. Weld. Lower Shell Plates 1.02 x 10'4 1.01 3.33 x 10" 0.697 and Lower Shell Long. Welds Inter. Shell Long. Welds (10 20,or40)"' 1.85 x 10'9 1.17 6.04 x 10" 0.858 40 EFPY Intermcdiatc Shell Plates (Peak Fluence) 2.80 x 10"' 1.27 9.17 x 10" 0.976 Upper to Inter. Shell Circ Weld. UpperShell 1.18 x 10'9 1.05 3.85 x 10" 0.736 Plates and Upper Shell Long. Welds"'_

Inter. to Lower Circ. Wcld. Lower Shell Plates 1.07 x 1"'o 1.02 3.Sox 10" 0.710 and Lower Shell Long. Welds Intcr. Shell Long. Wclds(ltr.20r or40)"' 2.08 x lol 1.20 6.80 x 10" 0.891 45 EFPY Intermndiate Shell Plates (Pcak Fluence) 3.11 x 10' 1.30 1.02 x 10' 1.01 Upper wo Intcr. Shell Circ Weld. Upper Shell 110 x 10" 1.07 4.26 x 10"' 0.763 Plates and Upper Shell Long. Welds&ba Inter. to Lower Circ. Weld. LowerShell Plates 1.12 x l0'i 1.03 3.67 x ID"' 0.723 and Lower Shell Long. Welds Inter. Shell Long. Wcldsi(Jt.20or40)'Q ' 232 x I 0' 1.23 7.56x IO 0.922 WCAP. 15827

17 TABLE 7 (Continued)

Calculation of the 114T and 314T Fluence Factor Values used for the Generation of (he 30,35,40,45 and 50 EFPY lcatup/Cooldown Curves Mterial IMT F4 ' 1I4TFF ).)314T I 34TFF SO EFPI' Inrcrncdiale Shell Pl1cs (Pcak Fluence) 3.44 x 10"' 1.32 1.12 x 10"' 1.03 Upper to Intcr. Shell Circ Wcel. Uppcr Shcll 1.43x 10'9 1.10 4.68 x 10" 0.788 Plates and Upper Shell Long. WVtdsfbJ Inter. to Lower Circ. Weld, LowerShel Platcs 1.17 x 1019 1.04 3.83 x 10" 0.734 and Lower Shell Long. Welds Inter.ShelI Long. Welds (10@.20oor404)" 2.55 x 10"' 1.25 834 x I0"' 0.949 Inlet Nozzle 2.24 x 10' 0.184 7.35 x IO" 0.089 Oullt Nozzle IAS x 10" 0.140 4.73 x 10"' .064 (a) (ntcm ,E > 1.0 McV)

(b) For conservatism thc peak Iluence Was used cvcn ihough long. wclds arc not *uIhc ak location (O0).

(c) 7he fluence was taken from the pc3k azimuthal location from the threc providcd.

Margin is calculated as, M = l1 a2 2. The standard deviation for the initial RTNvr rnargin term, is

,0°F when the initial RTjzDT is a measured value, and 17°F when a generic value is available. The standard deviation for the ARTNDT nmrgiin term, CE, is 17°F for plates or forgings, and 8.5°F for plates or forgings when surveillance data is used. For welds, au is equal to 28°F when surveillance capsule data is not used, and is 14°F (half the value) when credible surveillance capsule data is used. cy.%need not exceed 0.5 timfes the rmcan value of,&RTqDr-WCAP-15827

18 Contained in Tables 8 through 17 are the calculations of the 30, 35.40.45 and 50 EFPY ART valucs used for Gencration of the hcatup and cooldown curves.

TABLE 8 Calculation of the ART Values for the 11T Location @ 30 EFPY hlattrial Re. Guide CF" 'hTFF IRTtDT' ARTrnlT" hi A3RTc 1.99 Rev.2 (VF) (°F)

Method UpperShell Plate W10201.1 Position 1.1 62.9 0.978 69 61.5 34 165 Upper Shcll Plate W10201.2 Position 1.1 84.8 0.978 30 82.9 34 147 Upper Shell Plate W10201-3 Position 1.1 5 0.978 36 50.7 34 121 Inicrmcdi3te Shell Plate Position 1.1 57.1 1.21 20 69.1 34 123 W10201-4 Position 2.1 67.1 1.21 20 81.2 N34" 135 Intcrmcdiate Shell Plate Position 1.1 51.2 1.21 20 62.0 34 116 W10201-5 Position 2.1 38.8 1.21 20 46.9 17"' 84 Intermediate Shell Plate Position 1.1 44.2 1.21 45 53.4 34 132 W10201-6 Position 2.1 45.9 1.21 45 55.5 34"' 135 Lower Shell Plate W9807-3 Position 1.1 58.0 0.99! 50 57A 34 141 LowerShell Plate W9807-S Position 1.1 70.5 0.991 33 69.9 34 137 Lower Shell Plate W9807.9 Position 1.1 70.5 0.991 9 69.9 34 113 Upper. Inter. & Lower Shell Position 1.1 100.8 1.13 -56 113.9 65.5'n 123 Plate Long. Wceld Seamsdl 1-273A.B.C. 2-273A.B.C &

.3-273A.13.C (H}eat N86054B) .

Upper to Inter. Shell Plate Position 1.1 230.2 0.978 -56 225.1 635s' 235 Circumtcrcntial Weld Scam Position 2.1 223A 0.978 -56 218.5 65.5""n 228 10.273 (Hleat # WS214)

Inter. to Lower Shell Plate Position 1.1 217.1 0.991 *77 215.1 56 194 Circumf'ercntial Weld Scam 11-273 (eat #34B009) .

(a) Initial RTNir valucs are measured values.

(h) ARTmyTu CF *FF (c) ART I + ARTmTr NI (Ihis value was rounded per ASTNI E29. using the -Rounding Nlethrbd.)

(d) ActuaIlluence is lower on the upper and lower shell long. welds versus the Intermndiatc shell long. welds. but since they are the san)e heat s the inter. shell long welds ihenthe higher nluenres will be used.

(c) Robinson surveillance weld data* (stand alone) and Internediate shell plates W10201-4 and -6 are not credible.

Intermediate shell plate W10201-S is credible (Rer. WCAP.130S). ibc non-credible materials shal use a full C.

(f) Initial RTt, was generic. thus. a, Is equal to 7TF.

WVCAP-1S827

19 TABLE9 Calculation of the ART Values for the 3/4T Location @ 30 EFPY Material Reg. Guide CF" 'h T FF IRTmT &RTzbl Al ART '

1.99 Rev. 2 (0 F) (OF)

Mlethod UpperShell Platc W10201.1 Position 1.1 62.9 t).672 69 42.3 34 14S Upper Shell Platc W10201-2 Position 1.1 84.8 0.672 t() S7.0) 34 121 UpperShell Plate WI10201-3 Position 1.1 5 1.8 0.672 36 34.8 34 105 Intermcdiate Shell Plato Position 1.1 57.1 0.9W 20 51.6 34 106 W102014 Position 2.1 67.1 0.904 20 60.7 34",' 115 Intcrmnediatc Shell Plate Position 1.1 51.2 0.904 20 46.3 34 I00 W10201-5 Position 2.1 38.8 0.904 20 35.1 17"' 72 Intermediatc Shell Plate Position 1.1 44.2 0.90 45 40.0 34 119 W10201-6 Position 2.1 45.9 0.904 45 41.5 34"1 121 Lower Shell Plate W9807-3 Position 1.1 58.0 0.684 5n 39.7 34 124 Lower Shell Plate W9807-5 Position 1.1 70.5 0.684 33 48.2 M3 115 Lower Shell Platc W9807-9 Position 1.1 70.5 0.684 9 48.2 34 91 Upper. Inter. & Lower Shell Position 1.1 100.8 0.821 -56 82.8 ON" 92 Plate Long. Weld Scams'd' 1273A.B.C, 2-273A.B.C &

3-273A.B.C (Heat N86054B)

Upper to Intcr. Shell Plate Position I.1 230.2 0.672 -56 154.7 '

65 5 0 164 Circumfcrential Weld Seam Position 2.1 223.4 0.672 -56 150.1 65.5"f' 160 10-273 (Heat # WV5214) _ _ _

Inter. to Lower Shell Plate Position 1.1 217.1 0.684 -77 148.5 56 127 Circumferential Weld Scam 11-273 (Hreat #34B009)

NOES.

(a) Initial RT,;,T values are measured values.

(b) ARTmr CF

  • FF (c) ART = I + ART,.,rr + Nt (This value was rounded per AST?1 E29. using thc 'Rounding Nlethod.)

(d) Actual nuence is lower on thc upper and lowe shell long. weldscisus thc inicrTmdiate shell lon. wilds. but since they are the sarme heat as the inter. shell long welds thenthe higher fluences will be used.

(c) Robinson surveillance weld data (stand alone) and intermediate shell plates W10201.4 and -6 are not credible.

Intermediate shell plate W10201-5 Iscredible (Ref WCAP.l i805). 'The non-credible ffaterials shall use a rull a.

(0 Initia IRTgrr was generic. thus. Isequal to 17F.

WCAP-15827

20 TABLE 10 Calculation of the ART Values for the 114T Location @35 EPPY Mtatcrial Reg. Guide CF" 1h T FF IRTNtT"' hRTNDT"' hi ARIV`

1.99 Rev.2 (F) (OF)

Method UpperShell Plate W10201.1 Position 1.1 62.9 1.01 69 63.5 '4 167 Upper Shell Plate W10201.2 Position 1.1 84.8 1.01 30 85.6 w4 IS0 Upper Shell Plate W10201-3 Position 1.1 51.8 1.01 36 52.3 34 122 Intermediate Shell Plate Position 1.1 57.1 1.25 20 71.4 34 125 W10201.4 Position 2.1 67.1 1.25 20 83.9 J34"' 138 Intwrmediate Shell Plate Position 1.1 51.2 1.25 20 64.0 _ 118 W10201.5 Position 2.1 38.8 1.25 20 48.5 17" 86 InIcrmcdliatcShell Plate Position 1.1 44.2 1.25 45 55.3 34 1.34 W10201-6 Position 2.1 45.9 1.25 45 57A 34"' 136 Lower Shell Plate W9807-3 Position 1.1 58.0 1.01 50 58.6 34 143 Lower Shc1l Plate W9807-5 Position 1.1 705 1.01 33 71.2 34 138 Lower Shell Plate W9807-9 Position 1.1 70.5 1.01 9 71.2 34 114 Uprr. Inter. & Lower Shcll Position 1.1 100.8 1.17 .56 117.9 65-5'n 127 Plate Long. Weld Scams)d) 1-273A.BC. 2-273A.B.C &

3-273A.B.C (lleat U 8605413) _ _ _

Upper to Inter. Shell Platc Position 1.1 230.2 1.01 .56 232.5 65.5" 242 Circumferential Weld Scam Position 2.1 223.4 1.01 -56 225.6 6SN n 235 10.273 (Heat # WS214) _

Inter. to Lower Shell Plate Position 1.1 217.1 1.01 -77 219.3 56 198 Circumrcrential Weld Scam 11*273 (Heat # 3413009)

(a) initial RTNr values are measured values.

(b) ARTN,;r e CF

  • FF (c) ART.I ARTI T + NI (ThisvaluewasroundedperASThsM29. usingthe'Rounding etehod'.)

(d) Actual fluencc is lower on the upper and lower shell long. welds venus Ihe Internediate shell long. welds. but sincc they are the sarne heat as the Inter. shell long welds thenthc higher fluences will be used.

(c) Robinson surveillance weld data (stand alonc) and intermediate shell plates Wl02014 and -6 are not credible.

Intcrmnediate shell plate W10201 .5 is credible (Ref. WCAP-15805). The non-credible materiAls shall usc a full a.

(f) Initial RT4arr was gcncric. thus. a is equal lo 17F.

WCAP I5827

21 TABLE I I Calculation of the ART Values for the 314T Location @ 35 EFPY Material Reg. Guide CF 14 T FF 1RT,1T ARTxoT"b AM ART`

1.99 Rev. 2 (OF) (OF)

Method Upper Shell Plate W10201.1 Position 1.1 62.9 0.706 69 4.4 34 147 UppcrShell Plate W10201.2 Position 1.1 84.8 0.706 30 59.9 34 124 UppcrShell Plate W10201*3 Position 1.1 51.8 0.706 36 36.6 .4 107 Intermediate Shell Platc Position 1.1 57.1 0.942 20 53.8 34 108 W10201 4 Position 2.1 67.1 0.942 20 63.2 34X" 117 Intermediate Shell Plate Position 1.1 51.2 0.942 20 48.2 34 102 W10201*5 Position 2.1 38.8 0.942 20 36.5 17"' 74 Intermediate Shell Plate Position 1.1 44.2 0.942 45 41.6 34 121 W10201-6 Position 2.1 45.9 0.942 45 43.2 34".' 122 Lower Shell Plate W9807.3 Position 1.1 58.0 0.697 S0 40.4 .14 124 Lower Shell Plate W9807-5 Position 1.1 70.5 0.697 33 49.1 34 116 Lower Shell Plate W9807-9 Position 1.1 70.5 0.697 9 49.1 34 92 Upper. Inter. & Lower Shell Position 1.1 100.8 0.858 *56 86A 65.5"' 96 Plate Long. Weld Searns4' 1-273A.B.C, 2-273A.B.C 3-273A.B.C (ffeat# 86054B)

Upper to Inter. Shell Plate Position 1.1 230.2 0.106 -56 162.5 6SS' 172 Circumrcrential Weld Scam Position 2.1 223.4 0.706 -56 157.7 6S.5 167 10-273 (lHeatP W5214) _

Inter. to Lower Shell Plate Position 1.1 217.1 0.697 -77 1513 56 130 Circumrcrintial Weld Scam 11-273 (Htat J 3413009) _

Nm-s:

(a) Initial RT,).r valucs are mcasured values.

(b) ARTmyIT CF *FF (c) ART. I + &RTmwT +l'4 (This value was rounded per ASI E29. using rhc 'Rounding Method".)

(d) Actual flueince isloercn the upper and lower shell long. welds versus the intermediate shell long. welds but sincc they are the same heat as the Inter. shell longswelds 1henthe higher fluences will be used.

(e) Robinson surveillance weld data g(stand alonc) and intcrmediatc shell plates W10201-4 and -6 are not crcdiblc.

Interm-diaic shell plate W10201-5 iscredible (Ret. WCAP-1580S). 7he non-credibte naterials shall use a rull G.

(r) Initial RTm)T wss generic, thus. a is equal to 17'F.

WCAP-I5827

22 TABLE 12 Calculation of the ART Values ror the I/4T Location @ 40 EFPY Matruial Reg. Guide CF" IsT T FF IRT4DT11 ARTN?,b M1 ARr" 1.99 Rev. 2 (OF) (OF)

Method Upper Shell Plate W 10201.1 Position 1.1 62.9 1.05 69 66.0 34 169 Upper Shell Plate WI0201.2 Position 1.1 84.8 1.05 30 89.0 153 S4 UppcrShcll Plate W10201-3 Position 1.1 5.8 1.05 36 54A 34 124 Intermediatc Shell Plate Position 1.1 57.1 1.27 20 72.5 34 127 W10201-4 Position 2.1 67.1 1.27 20 85.2 34"' 139 Intermediate Shell Plate Position 1.1 51.2 1.27 20 65.0 34 119 W10201-5 Position 2.1 38.8 1.27 20 49.3 17"'1 86 Intcrmediatc Shell Plate Position 1.1 44.2 1.27 45 56.1 14 135 W10201-6 Position 2.1 45.9 1.27 45 58.3 .34' 137 Lower Shell Platc W9807-3 Position 1.1 58.0 1.02 S0 59.2 .34 143 LowerShell Plate W9807.5 Position 1.1 70.5 1.02 33 71.9 34 139 LowerShell Plate W9807-9 Position l.t 70.5 1.02 9 71.9 34 115 Upper, Inter.& Lower Shell Position 1.1 100.8 120 -56 121.0 65.5'n 131 Plate Long. Weld Scamsd')

1-273A.B.C. 2-273A.B.C &

3-273A.BC (Heat N86054B)

Upper to Inter. Shell Platc Position 1.1 230.2 1.05 .56 241.7 6S.5 ' 251 Circumferential Weld Seam Position 2.1 223.4 1.05 -56 234.6 6 S5 244 10-273 (leat 1 W5214)

Intcr. to LowerShell Plate Position 1.1 217.1 1.02 -77 221.4 56 200 Circumferential Weld Scam 11-273 (Heat J 34B009) .

(a) Initial RTpr values arc measurcd values.

(b) ARTIT = CF

  • FF (c) ART a 1+ ARTmy + NI (Iis value was rounded per ASTNI E29. using the 'Rounding Method.)

(d) Actual fluence Islower on Ihe upper and lower shell long. v'lds vmus the Intermediate shell long welds but since they are the same heat as the inter. shell long welds thenthe higher nlueners will be used.

(e) Robinson surveillance weld data (stand alone) and Intcrmvdiate shell plates W10201- and-6 re not credible.

Intcrmediate shell plate W10201.5 is credible (Ret. WCAP.151105). Thc Pon-credible materials shall use a full a,,.

(0 Initial RTy asegcneric, thus. cIs equal to 17F.

WCAP-15827

23 TABLE 13 Calculation of the ART Values for the 314T Location @40 EFPY Material Reg. Guide CF"  %/T FF IRTsofn' ART~nrb 1b1 ARr" 1.99 Rev. 2 (OF) (OF)

Method UpperShell Plate W10201-1 Position 1.1 62.9 0.736 69 46.3 "4 149 Upper Shell Plate WIO0201.2 Position 1.1 84.8 0.736 30 62.4 34 126 Upper Shell Plate W10201-3 Position 1.1 51.8 0.736 36 38.1 34 108 Intermediate Shell Plate Position 1.1 57.1 0.976 20 55.7 34 110 W102014 Position 2.1 67.1 0.976 20 65.5 344' 120 Intermediate Shell Plate Position 1.1 51.2 0.976 20 50.0 34 104 W 10201-5 Position 2.1 38.8 0.976 20 37.9 17'c 75 Intermediate Shell Plate Position 1.1 44.2 0.976 45 43.1 34 122 WI0t201-6 Position 2.1 45.9 0.976 45 44.8 $A4e 124 Lower Shell Plate W9807-3 Position 1.1 58.0 0.710 50 41.2 34 125 Lower Shell Plate W9807-5 Position 1.1 70.5 0.710 33 50.1 34 117 Lower Shell Plate W9807-9 Position 1.1 70.5 0.710 9 50.1 34 93 Upper. Inter. & Lower Shell Position 1.1 100.8 0.891 .56 89.8 6S.S"' 99 Platc Long. Weld Seams4' 1-273A.B.C. 2-273ABC &

3-273A.B.C (Hteat 860541)

Upper to Inter. Shell Plate Position 1.1 230.2 0.736 *56 169A 65.51' 179 Circumterential Weld Scam Position 2.1 223.4 0.736 -56 164.4 65.51 174 10-273 (l eat # W5214)

Inter. to Lower Shell Plate Position 1.1 217.1 0.710 -77 154.1 56 133 Circumrcrentiat Weld Scam 11-273 (Hreat N34B009)

(a) Initial RTmr values arc rmasured values.

(b) ARTm s Ct

  • FF (c) ART . I + RTcT<r + hI (lhis value was rounded per ASTMI E29. using the 'Rnunding Method'.)

(d) Actual flucnce is lower on the upper and lowcrshell long. welds versus thc intermcdiate shell long. welts. but since they are the samc heat as the inter. shell long welds thenthe higher fluences will be used.

(c) Robinson surveillancc weld data (stand alone) and internmdiate shell pljtes W10201-4 and -6 areno tcrediblc.

Inictrmediate shell plate W10201-5 Is credible (Rer. WCAi-1580S). The non-crcdible matcrials shall use a rull a,.

(f) Initial RTl,41)wasereneic. thus.,s equal to17F.

WCAP-1S827

24 TABLE 14 Calculation of thC ART Valucs ror the 114T Location @ 45 EFPY Material Reg. Guide CFP' 'hTFF IRTNDT ARTMDt' hi ART4 '

1.99 Rev. 2 (OF) (OF)

Method Upper Shcll Plate W10201.1 Position 1.1 62.9 1.07 69 673 34 170 Uppcr Shcll Plate W1020l-2 Position 1.1 84.8 1.07 30 90.7 34 155 UpperShell Plate W10201-3 Position 1.1 51.8 1.07 36 55.4 34 125 Intcrmcdiate Shell Plate Position 1.1 57.1 1.30 20 74.2 34 128 W10201-4 Position2.1 67.1 1.30 20 87.2 34"c' 141 Intcrmedimtc Shell Plate Position 1.1 51.2 1.30 20 66.6 34 121 W 10201-5 Position 2.1 38.8 1.30 20 50.4 17 87 Intermcdiate Shell Plaii Position 1.1 44.2 1.30 45 57.4 34 136 W10201-6 Position 2.1 45.9 1.30 45 59.7 34"' 139 Lower Shell Plate W9807.3 Position 1.1 58.0 1.03 50 59.7 34 144 Lower Shell Plate W9807-S Position 1.1 70.5 1.03 33 72.6 34 140 Lower Shell Plate W9807.9 Position 1.1 70.5 1.03 9 72.6 '4 116 Upper. Inter. &:Lower Shell Position 1.1 100.8 1.23 -56 124.0 6 5 5Nr, 134 Plate Long. Weld Scams'd) 1-273A.B.C. 2-273A3.DC &

31-273A.B.C (ticat N86054B)

Upper lo Intcr. Shell Plate Position 1.1 230.2 1.07 -56 246.3 65.5's' 256 Circumfercntial Weld Sc3m Position 2.1 223.4 1.07 -56 239.0 6SS'k- 249 10-273 (Ilcat J W52*14) .

Intcr. to Lower Shell Plate Position 1.1 217.1 1.03 -77 223.6 56 203 Circumtcrrntial Weld Scam 11-273(lWeat#34BO09)

(a) Initial RTMr values arc measured values.

(h) ARTHTn a CF FF (ci ARTm I.+ ARTmT +Nt (This value was founded per AStIt 29. using thC Rounding NIethod".)

(dMActual fluence Islower on the upper and lower shcll long. welds versus the intermediate shell long. %elds.but since they arc the same heat as the inter. shell long welds thenthe higher flucnces will be used.

(c) Robinson surveillance weld data (stand alonc) and inermediate shell plates W102014 and -6 are not credible.

Inicrntmdiate shell plate W10201.5 is credibic (Ref. WCAP.15805). The non-credible manerials shall usc 2 full a.,

trI Initial RT,.trr was gciicrie. thuS. v, is equal to 171'.

WCAP-15827

25 TABLE 15 Calculation of the ART Valucs for the 314T Location O 45 EFPY

]Material Reg. Guide CFJ'  %/4TFF IRT.%tvT' ART~r ' M j ARr '

1.99 Rev. 2 (OF) (OF)

Method UpperShell Plate W10201-1 Position 1.1 629 0763 69 48.0 34 IS!

Upper Shell Platc W10201*.2 Position 1.1 84.8 0.763 30 64.7 34 129 Upper Shell Platc WI0201.? Position 1.1 51.8 0.763 36 39.5 34 110 Intcrmcdialc Shell Plate Position 1.1 57.1 1.01 20 57.8 34 112 W10201-4 Position 2.1 67.1 1.01 20 67.8 34"' 122 nicrmetdiatc Shell Plate Position 1.1 51.2 1.01 20 51.7 34 106 W10201-5 Position 2.1 38.8 1.01 20 39.2 17e' 76 Iniermcdiatc Shell Plate Pitsition 1.1 44.2 1.01 4S 44.6 34 124 W10201*6 Position 2.1 45.9 1.01 45 46.4 34"' 125 Lower Shell Plate W9807-3 Position 1.1 58.0 0.723 50 41.9 34 126 Lower Shell Plate W9807-5 Position 1.1 70.5 0.723 33 51.0 34 118 Lower Shell Platc W9807-9 Position 1.1 70.5 0.723 9 51.0 34 94 Upper, Inter. & LowerShell Position 1.1 IOO.R 0.922 -56 92.9 65.5'r 102 Plate Long. Weld Scamx '

I -273A.13C. 2-273A.B.C &

3-273A.B.C (tHeat J 89605411)

Upper to Inter. Shell Plate Position 1.1 230.2 0.763 -56 175.6 6S.S"n 185 Circumferential Wcld Scam Position 2.1 223.4 0.763 -56 170.5 65.5k " 180 10-273 (Mlcat P W5214)

Intcr. to Lower Shell Plate Position I.1 217.1 0.723 -77 157.0 56 136 Circumrcrential Weld Scam I1-273 (Hcal t3413009)

!(ms-(a) Initial RTpalr valuCs are measured values.

(b) ARTK)T a CF F' i (c) ART- I + ARTmT + ('ITbis value was rounded per ASTM i29. using the 'Rounding hMcthod-.)

(d) Actual fluence Is lowcr on the upper and lower shell long. welds versus the Intcrmieditc shell long. welds but since they are the samne heat as the Inter. shell long welds thenthe higher fluences will be used.

(e) Robinson surveillance vcIl ddta (stand alonc) and intermdiatc shell platcs W10'0104 and -6 are no credible.

Intermediate shell plate W10201-5 Is credible (Ref. WCAP-15805). The non-crediblc rmaterials shall use a full aj.

(I) Initial RTrr was generic.thus.ois equal to I7F.

WCAP-I 5827

26 TABLE 16 Calculation or the ART Values for the I/4T Location @ 50 EFPY laterial Reg. Guide CCF"4 1 FF IRTyp1F' ARTIIRTND hi ART" 1.99 Re2v.(° F) (OF)

Mhethod Inle Nozzle P 1.1 osition 2 20 0.184 60 3.7 34.2'n 98 Outlt Nozzle Position 1.1 113 0.140 60 15.8 3 7.5' 113 Upper Shell Plate II W 0201 - Position 1.1 62.9 I .10 69 69.2 34 172 Upper Shell Plate W10201-2 Position 1.1 84.8 1.10 30 933 34 157 Upper Shell Plate W1 1 02.3 Position 1.1 51.8 1.10 36 57.0 34. 127 Intenrmedlat Shell Platc Position 1.1 57.1 1.32 2( 75.4 34 129 W102014 Position 2.1 67.1 1.32 20 88.6 34"' 143 Intcrmctliac Shell Plate Position 1.1 51.2 1.32 20 67.6 34 122 W10201-S Position 2.1 38.8 1.32 20 51.2 17"'t 88 Intermediate ShellPlate Position 1.1 44.2 1.32 45 58.3 34 137 W10201-6 Position 2.1 45.9 1.32 45 60.6 341"' 140 Lower Shell Plate W9807-3 Position 1.1 58.0 1.04 50 60.3 34 144 Lower Shell Plate W9807-5 Position 1.1 70.5 1.04 33 73.3 34 140 Lower Shell Plate W9807.9 Position 1.1 70.5 1.04 9 73.3 34 116 Upper,Intcr. & Lower Shell Position 1.1 100.8 1.25 -56 126.0 65.5' 136 Platc Long. Weldscam&

I -273A.A.C,2-273A.B.C &-

3.273A.B.C (HcaiN 86054B) . .

Upper to Inter. Shell Plate Position .1I 230.2 1.10 -56 253.2 S.5')

6 263 Circumferential Weld Scam Position 2.1 223A 1.10 -56 245.7 6S.5'n 255 10-273 (Fleat # W5214) _

lo Lower Shell Pla3c Intcr. Position 1.1 217.1 1.04 -77 225.8 56 205 Circumrrereni al Weld Scam 11.273(11cMa U 34SB009) _____

Nozzlc Welds Positionl.t 230.2 0.184 -56 42.4 543'n 41 (a) Inilial RTmTT valuesare neasured values.

(b) Mmm,^ CF OFF (c) ART. I ARTy + NI (Ihisvaluc was rounded per ASTM E29. using thc -Rounding hicthod.)

(d) Actual luenceis lower on thc upper and lower shelllong. welds versus thc interncdiate shell long welds. but since hey are the same beat as the Incr. shell long welds thenthe higher fluences will be used.

(e) Robinson surveillance weld data (stand alone) and internmdiate shell plates W10201.4 and -6 are ot credible.

Intermediate shell plate W10201-5 is credible (Ref. WCAP-158051. Thc non.crodibic materials shall use afull 0,.

(f) Initial RTal3r was gencric. thus.a is equ3a inI7F.

WCAP.15827

27 TABLE 17 Calculation of the ART Valucs for the 314T Location @ 50 EFPY Material Reg. Guide CF" 'AT FF IRTNDTl' &RTrnt" hi ARF" 1.99 Rev.2 (°F) l°F)

Method Inlet Nozzle Position 1.1 20 0.088 6 1.8 341r' 96 Outlet Nozzle Position 1.1 113 00(4 7.2 .3.8" 102 Upper Shell Plate W 10201 .1 Position 1.1 62.9 0.78X 69 49.6 3S4 I53?

Uppcr Shell Plate W 10201-2 Position 1.1 84.8 0.788 30 60.8 34 131 UpperShell Plate WIO2013 Position 1.1 51.8 0.788 36 40.8 .14 III Intermediate Shell Plate Position 1.1 57.1 1.03 20 58.8 34 113 W102014- Position 2.1 67.1 1.03 20 69.1 34" 123 Intcrmediatc Shell Plate Position 1.1 512 1.03 20 52.7 34 107 W10201-5 Position 2.1 38.8 1.03 20 4C.0 17`_ 77 Intermediate Shell Plate Position 1.1 44.2 1.03 45 45.5 34 125 W10201-6 Position 2.1 45.9 1.03 45 47.3 34"1 126 Lower Shell Plate W9807-3 Position 1.1 58.0 0.734 50 42.6 34 127 Lower Shell Plate W9807-5 Position 1.1 70.5 0.734 33 51.7 34 119 Lower Shell Plate W9807-9 Position 1.1 70.5 0.734 9 51.7 ,4 95 Upper, Inter. & Lower Shell Position 1.1 100.8 0.949 -56 95.7 6 5 .5ir 105 Plate Long. Weld Scams"d" 1-273A.B.C. 2-273A.B.C &:

3-273A.B.C (Heat # 86054 B) _

Upper to Intcr. Shell Plate Position 1.1 230.2 0.788 -56 I1RA 65.5"' 191 Circumnretntial Weld Scam Position 2.1 223.4 0.788 -56 176.0 65.5 " 186 10-273 (I[cat 1 W5214)

Inter. to Lowcr Shell Plate Position I.1 217.1 0.7.34 -77 159.4 56 138 Circumfcrential Weld Scam 11-273 (HIeat l .44l0009)

Nozzle Welds Position 1.1 230.2 0.09 -56 20.5 39.7?' 4 NinES:

(a) Initial RTMyr values cm measured values.

(b) ARTtir, - CF I FF (c) ART

  • I + ARTtIn + M (This value was rounded per ASMI E29. using the "Rounding Method".)

Cd) Actual fluence Islower on the upper and lower shell long.velds versus theIntermediate shell long. welds. but since they are the same heat as the Inter. shell long welds fhenthe higher flucnecs will be used.

Ic) Robinson surveillance weld data (stand alonc) and internediate shell plates W10201 .4 and -6 are not credible.

Intermediate shell platc W10201-5 Iscredible (Ref. WCAI1 15805). The nun-credible materials shall us afull c,^.

(f0 Initial RT,,rr was generic, thus. c, is equal to 17T.

WCAP-15827

28 The upper to intermediate shell plate girth weld has the highest overall ART. However, since Code Case N-641 allows for less restrictive methodology to be used when the highest ART comes from a girth weld.

then the highest non-girth weld ART must be identified. The upper shell plate W10201-1 has the highest non-girth weld ART for all EFPYs in question.

Contained in Table 18 is a summary or the limiting ARTs to be used in the generation of the IDB.

Robinson Unit 2 reactor vessel heatup and cooldown curves. The upper shell ART values were used in conjunction with the methodology from the 1996 ASME Code Section XI Appendix G(while the Upper to Intermediate Shell Plate Circ. Weld ART values were used with the methodology from ASME Code Case N-64 1(Circ. Flaw Methodology). A composite curve was created from the results of the two curve sets. The limiting composite curves will be presented in Section 5.

TABLE 18 Summary ofthe Limiting ART Values Used in the Generation of the H.B. Robinson Unit 2 Heatup/Cooldown Curves EFPY 1h4TLimitingART 3/44 T LimitingART Upper to Intermediate Sh~ell Plate Circumferential Weld (10.273)*

30 235 164 35 242 172 40 251 1 45 256 185 50 263 UpperShell Plate W10201-1 30 165 145 35 167 147 40 169 149 45 170 151 50 172 153 The Position 1.1 ART Values were selected since the Robinson weli dtda (Position 2.1) was deened non-crediblc.

WCAP-15827

29 5 HIEATUPAND COOLDOWN'N PRESSURE-TEMPERATURE LIMIT CURVES Pressure-temperature limit curves for normal heatup and cooldown of thc primary reactor coolant system have been calculated for the pressure and temperaturc in thc reactor vessel bcltlinc region using the methods discussed in Sections 3.0 and 4.0 of this report. This approved methodology is also presented in WCAP-14040.NP-A, Revision 2 with exception of those items discussed in Section I of this report.

Figures 1,3, 5, 7 and 9 present the limiting heatup curves without margins for possiblc instrumentation errors using heatup rates of 60 and IOO 0 F/hr applicable for the first 30, 35, 40, 45 and S0 EFPYs, respectively. Thesecurves were generated using thec1996 ASME Code Section Xl, Appendix G with thc limiting plate ARTs in combination with ASME Code Case N-588 and the limiting circ weld ARTs. The curves produced using the limiting plate ARTs are primarily bounding throughout the heatup curves, however there are instances that the cire weld becomes limiting at higher temperatures (See bolded values In the data tables).

Figures 2, 4, 6, 8 and 10 present the limiting cooldomn curves without margins for possible instrumentation errors using cooldown rates of 0, 20, 40, 60 and 100°F/hr applicable for 30, 35, 40, 45 and 50 EFPYs, respectively. Again, thcsc curves uere generated using thc1996 ASME Code Section Xl, Appendix G with the limiting plate ARTs in combination with ASME Code Case N-588 and the limiting cire w eld ARTs. Thc curves produced using the limiting plate ARTs are primarily bounding throughout the cooldown curves, however there are instances that the circ weld becomes limiting at higher temperatures (See bolded values in the data tables).

Allowablc combination of temperature and pressure for specific temperature change rates arc below and to the right of the limit lines shown in Figures 1 through 10. Ths is in addition to other criteria which must be met before the reactor is made critical, as discussed below in the following paragraphs.

The reactor must not be made critical until prcssure-temperaturc combinations arc to the right of the criticality limit line shown in Figures 1,3, 5, 7 and 9. Thc straight-line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inscrvicc hydrostatic test as required by Appendix G to 10 CFR Part 50. The governing equation for the hydrostatic test is defined in Code Case N-64012 (approved in February 1999) as follows:

1.5 Kt. < Ki.

where, K}, is the stress intensity factor covered by membrane (pressure) stress, K, -33.2 + 20.734 P2OO2Cr.Rt=)l T is the minimum permissible metal temperature, and RTt is the metal reference nil-ductility temperature.

lhe criticality limit curve specifies prcssure-tcmperature limits for core operation to provide additional margin during actual powcr production as specified in Reference 14. Tle pressure-tcmperaturc limits for WCAP-15827

,.,. 30 core operation (except for low power physics tests) arc that thc reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservicc hydrostatic test, and at least 407F highcr than thc minimum permissiblc tempcraturc in the corresponding pressure-tempcrature curve for heatup and cooldown calculated as dcscribcd in Section 3.0 of this report. For the heatup and cooldown curves %%ithoutmargins for instrumentation errors, the minimum temperatures for the in service hydrostatic leak tests for the H.B. Robinson Unit 2 reactor vesscl at 30,35,40,45 and SO EFPY arc 214@F, 216°F, 218°F, 2190 F and 22 1F, respectively. The vertical line drawn from these points on the pressure-temperature curve, intersecting a curve 40DF higher than the pressure-tcrnperaturc limit curve, constitutes the limit for core opcration for the reactor vessel.

Figurcs I through 10 definc all of the above limits for ensuring prevention of nonductile failure for the H.B.

Robinson Unit 2 reactor vessel for various EFPYs. 11c data points used for the heatup and cooldown pressure-ternperature limit curves shown in Figures I through 10 are presented in Tables 19 through 28.

Thc bolded values are those limited by the girth weld using the 'Circ-Flaw" Mcthodology. The non-bolded values are those limited by the Upper shell Plate using the standard "Axal-Flaw" Methodology from the 1996 version of the ASME Code Section XI, Appcndix a WCAP-15827

31 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE W10201-1 LIMITING ART VALUES AT30 EFPY: 114T, 1650 F 314T, 145?F 2500 2250 2000 1750 D.

0 1500 C)

C.

1000 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure I 11.1. Robinson Unit 2 Reactor Coolant System Ileatup Limitations (Ileatup Rates of 60 & 100'Fihr) Applicable for the First 30 EF PY (Without Margins for Instrumentation Errors) Using 1996 App.G blelhodology WCAP-15827

32 LATERIAL PROPERTY BASIS LIMITING MIATERIAL: UPPER SHELL PLATE W10201-1 & GIRTH WELD 10-273 LINI ITING ART VALUES AT 30 EFPY: I/4T, I 650 F &82350 F 3/4T. 145°F& 164 0F 2500 2250 2000 1750 tQ 1 500 b-3 in 2@1250 la Ca

's 1000

.U co 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 2 11.11. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100 0 F/hr) Applicable for the First 30 EFPY (Without Mlargins ror Instrumentation Errors) Using 1996 App.G 1Mlcthodology WCAP-15827 I/

- \33 TABLE 19 30 EFPY Hleatup Curve Data Points Using 1996 App. G (without Unceraintics for Instrumentation Effors) 50 IHeatupo T15 Critical U T 60 catup r 60 Critical Urnitl 100 Ileatup I100 Critical Limit T (QF3 P (Psig~) T (F) P(sj)I T (0 F) r psigj) T (0 F) P (psig) I T (OF) P (p1i) T (F) P psig).

60 0 214 (1 6N) 0 214 0 60 U 214 0 60 621 214 621 60 621 214 621 60 621 214 621 65 621 214 621 65 621 214 621 65 621 214 621 70 621 214 621 70 621 214 621 70 623 214 621 75 621 214 621 75 621 214 621 75 621 214 621 8O 621 214 621 X1) 621 214 621 80 621 214 621 85 621 214 621 85 621 214 621 85 621 214 621 90 621 214 621 90 621 214 621 90 621 214 621 95 621 214 623 95 621 214 621 95 621 214 621 100 621 214 621 100( 621 214 621 100 621 214 621 105 621 214 621 105 621 214 621 105 621 214 621 110 621 214 621 110 621 214 621 110 621 214 621 1I5 621 214 623 l15 621 214 621 115 621 214 621 120 621 214 621 120 621 214 621 120 621 214 621 125 621 214 621 125 621 214 621 125 621 214 621 130 621 214 621 130 621 214 621 130 621 214 623 135 621 214 621 135 621 214 621 135 621 214 621 140 621 214 621 340 621 214 621 140 621 214 621 145 621 214 621 145 621 214 621 145 621 214 621 150 621 214 621 15( 621 214 621 150 621 214 621 155 621 214 621 155 621 214 621 155 621 214 621 160 621 214 621 160 621 214 621 160 621 214 621 165 621 214 621 165 621 214 621 165 621 214 621 170 621 215 621 170 621 215 621 170 621 215 621 175 621 220 621 175 621 220 621 175 621 220 621 180 623 220 1081 380 621 220 1001 J80 623 220 768 180 225 1132 180 1003 225 1046 180 768 225 794 185 1132 2.0 1188 185 1046 230 1095 185 794 230 822 190 1188 235 1250 190 1095 235 1150 190 822 235 854 195 1250 240 1319 195 1150 240 1210 195 854 240 890 200 1319 245 1395 200 1210 245 1277 200 890 245 930 205 1395 250 1479 205 1277 250 1351 205 930 250 975 210 1479 255 1571 210 1351 255 1433 210 975 255 1024 215 1571 260 1673 215 1433 260 1523 235 1024 260 1078 220 167.3 265 1786 220 1523 _

265 1622 220 1078 265 l139

  • Shown by request orCP&:L. This rate is not shown on the plot.

WCAP-15827 V~

34 TABLE 19 - (Continued) 30 E}PY Hcatup Curve Data Points Using 1996 App. G (without Unccraintics for Instrumentation Errors) 50 1lcatup* S0 Critical Limit* 60 lleatup 60 Critical Limit 100 lleatup 100 Critical ULmit T (IF) P ipsg)T (IF) P (psin) T (IF) P (psig) T (°F) P (psig) T (VF) r (psig) T (OF) P (psi) 225 1786 270 1911 225 1622 270 1732 225 1139 270 1206 230 1911 275 2048 230 1732 275 1854 230 1206 275 1279 235 2048 280 2200 235 154 280 1987 235 1279 280 1361 240 2200 285 2367 240 1987 285 2135 240 1361 285 1451 245 2367 245 2135 290 2298 245 1451 290 1551 250 2298 295 2477 250 1551 295 1660 255 2477 255 1660 300 1782 260 1782 305 1915 265 1915 310 2062 270 2062 315 2224 27$ 2224 320 2403

._____280 2403 LeakTest Temp. 195 214 WmilP. 2000 2485 Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

35 TABLE 20 30 EFPY Cooldown Curve Data Points Using 1996 App. G (without Unccraintics for Instrumentation Errors)

Sleadz State 20'Fhr. 40°F/hr. I SO0 F/hr. I 60Thr. I 0°F/hr.

T (OF) I P psig) IT (OF) I P (psig) T (°F) I P (psig) T (OF) P (psi) T (OF) I P (psig) T (°F) i r (psig, 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 619 60 584 60 549 60 404 65 621 65 621 65 621 65 591 65 556 65 413 70 621 70 621 70 621 70 598 70 564 70 422 75 621 75 621 7S 621 75 607 75 572 75 621 804S3 445 80 80 621 80 621 80 616 80 582 80 85 621 85 621 85 621 85 621 85 593 8S 459 90 621 90 621 90 621 90 621 90 606 90 414 95 621 95 621 95 621 95 621 95 619 9S 492 100 621 100 621 100 621 100 621 100 621 100 155 205 621 10S 621 105 621 105 621 OS 621 105 S32 110 621 1h0 621 110 621 110 621 110 621 110 115 621 llS 621 115 621 llS 621 115 621 llS 1 83 120 621 120 621 120 621 120 621 120 621 120 613 125 621 125 621 125 621 125 621 125 621 12S 621 130 621 130 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 135 621 13S 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621. 145 621 145 621 145 621 145 621 150 621 150 621 150 621 lSO 621 lSO 621 lSO 621 155 621 155 621 155 621 155 621 155 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 16S 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 17S 621 180 621 180 621 180 621 180 621 180 621 180 21 180 621 180 1293 180 1287 180 1289 180 1289 180 1289 180 1127 185 1355 IRS 1355 18S 1355 t85 1355 185 1355 185 1185 190 1424 190 1424 190 1424 190 1424 190 1424 190 1249 195 1500 19S 1500 195 1500 195 1500 195 15() 195 1321 200 1584 200 1584 200 1584 200 1584 200 1584 200 1401 205 1677 205 1677 205 1677 205 1677 205 1657 205 1489 210 1779 210 1779 210 1779 210 1779 210 1732 210 IS88 215 1893 215 1893 215 1893 215 1855 215 1816 215 1697 220 2018 220 2018 !

220 1978 220 1942 220 1909 220 1819 225 2156 225 2138 225 2069 225 2039 225 2013 225 1953 230 2295 230 2226 230 2169 230 2146 230 2127 230 2103 235 2382 235 2325 235 2281 235 2265 235 2254 235 2269 21n 'In 2470 I ___________ 7A- A0 2404

---. I 240 2397 240 2395 240 2454

  • Shown by request or CP&L. This rate is not shown on the plot.
  • 0 Bolded Valucs are Limited by the Circ. WVeld ART using Codc Case N-588.

WCAP-15827

. - I: -- 36 MATERIAL PROPERTY BASIS LIM ITING MATERIAL: UPPER SIIELLPLATEW10201-1 LIMITING ART VALUES AT3S EFPY: 1/4T, 167°F 314T, 147°F 2500 lOpedmn V'seon:S.1 Run:784S Leak Test Limi I 2250 _ .- - -* .

2Unacceptablel Acceptable 2000 Operaton Operatlon 1750- .. . -- -I-_

/I _ l tCritical Llmit O[ 1 /11 l60 Deg. F/Hr O Healup Rate r CL 1500 60De9.F/Hr l  ;

100 Dog. F/Hr 2 1250 -* 100 De9.FlHrl------ * -- *

  • Q.

31 000 - .. {./ /-.

750***--r-. ...........-

500 . .. . . .... . .. . .

250 lOUl I_ ...... criclityCI% Limit based on Inservice hydroslallc lost

/ temperature (216 F) for the

$ /l .l I. t.................,service period up to 35 EFPYI 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 3 11.11. Robinson Unit 2 Reactor Coolant System }leatup Lsimitations (llcatup Rates of 60 & 100'F/hr) Applicable for the First 3S EMt' (W\ithout Miargins for Instrumentation Errors) Using 1996 App.G Mlethodolog WCAP-15827

37 MATERIAL PROPERTY BASIS LIMIITING MIATERIAL: UPPER SHELL PLATE WI 0201- I & GIRTHI WELD 10-273 LINIITING ART VALUES AT 35 EFPY: 114T. 1670 F& 2420 F 314T, 147OF& 1720 F 2500 2250 2000 1750 X. 1500 n'. 1250 0..

la (U

a 1000 C-750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 4 11.1B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.C Mlethodology WCAP-15827

- 38 TABLE21 35 EFPY tlcatup Curve Data Points Using 1996 App. G (without Uncertainties ror Instrumentation Errors) 50 llestupo fS0 Critical Limits 60 lI atup 60 Critical Limit 100 Ilentup I 100 Critical Umit T (OF) P (psi)l T (OF) P (psig) I T (IF) r (p~i) T (IF) P (Psig) T (°F) ' (psigj) T (OF) ' (psig) 60 0 216 0 60 0 216 62 60 0 216 0 60 621 216 621 60 621 216 621 60 621 216 621 65 621 216 621 65 621 216 621 65 621 216 621 70 621 216 621 70 621 216 621 70 621 216 621 75 621 216 621 75 621 216 621 75 621 216 621 80 621 216 621 80 622 216 621 80 621 216 621 85 621 216 621 8S 621 216 621 85 621 216 621 90 621 216 621 90 621 216 621 90 621 216 621 95 621 216 621 95 621 216 621 95 621 216 621 100 621 216 621 10( 621 216 621 100 621 216 621 10S 621 216 621 105 621 216 62! 105 621 216 621 110 621 216 621 110 621 216 621 110 621 216 621 llS 621 216 621 115 621 216 621 115 621 216 621 120 621 216 621 120 621 216 120 621 216 621 125 621 216 621 12S 621 216 62!

621 125 621 216 621 130 621 216 621 130 62! 216 621 130 621 216 621 135 621 216 621 135 621 216 621 135 621 216 621 140 621 216 621 140 621 216 621 140 621 216 621 145 621 216 621 14S 621 216 621 145 621 216 621 150 621 216 621 150 621 216 621 lSO 621 216 621 155 621 216 621 155 621 216 621 155 621 216 621 160 621 216 621 160 621 216 621 160 621 216 621 165 621 216 621 165 621 216 621 165 621 216 621 170 621 216 621 170 621 216 623 170 621 216 621 175 621 220 621 175 621 220 621 175 621 220 621 180 621 220 1061 ISO 621 220 983 ISO 621 220 756 180 1061 225 1110 180 983 225 1026 180 756 225 780 185 1110 230 1164 185 1026 230 1074 185 780 230 808 190 1164 235 1224 190 1074 235 1126 190 808 235 838 195 1224 240 1290 195 1126 240 1184 195 838 240 873 200 1290 245 1362 200 1184 245 1248 200 873 245 911 205 1362 250 J443 205 J248 250 1319 205 911 250 953 210 1443 255 1532 210 1319 255 1398 210 953 255 1001 215 1532 260 1630 215 1398 260 1484 215 1001 260 1053 220 1630 265 1739 220 14R4 265 1580_

220 I053 265 1111 Shown by request orCP&L This rate is not shown on the plot.

WCAP-15827

39 TABLE 21 - (Continued) 35 EFPY Ileatup Curve Data Points Using 1996 App. G (without Uncernintics for Instrumentation Errors) 50 Ileatup 50 Critical Limit 60 Ileatup 60 Critical Limit 100 Ileatup 100 Critical Limit T (OF) P (psig) T (OF) r Wig) T (OF) P Ipsig) T (OF) P (Psig) T VF) P (psig) T (OF) P (psig) 225 1739 270 1858 225 1580 270 1685 225 1III 270 1175 230 1858 275 1990 230 1685 275 1802 230 1175 275 1246 235 1990 280 2136 235 1802 280 1930 235 1246 280 1324 240 2136 285 2297 240 1930 285 2072 240 1324 285 1411 245 2297 290 2474 245 2072 290 2229 245 1411 290 1506 250 2474 250 2229 295 2401 250 1506 295 1612 255 2401 255 1612 300 1728 260 1728 305 1856 265 1856 310 1998 270 1998 315 2153 275 2153 320 2325 280 2325 LeakTest Limit Temp. 197 216 Press. 2000 24851 Shown by request orCP&L. This rate is not shown on the plot.

WCAP-15827

40 TABLE 22 35 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertaintics for Instrumentation Errors)

Steadn State 20°F/hr. I 40°F/hr. I SOOFihr.* 601Fjhr. I 100°Fhr.

T (0JF) I r (Psi) IT(OF) I P( .pig) T (I) I r (psi)I T (IF) I r (psig) T (F) I P (psig) TI(F) (OMA) 60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 616 60 581 60 546 60 400 65 621 65 621 65 621 65 588 65 553 65 409 70 621 70 621 70 621 70 595 70 560 70 418 75 621 75 621 75 621 75 603 75 568 75 428 80 621 80 621 80 621 80 612 80 578 80 440 85 621 85 621 85 621 85 621 85 588 85 453 90 621 90 621 90 621 90 621 90 600 90 468 95 621 95 621 95 621 95 621 95 613 95 484 100 621 100 621 100 621 100 621 100 621 100 502 105 621 105 621 105 621 10S 621 105 621 105 523 110 621 110 621 110 621 110 621 110 621 - 110 546 115 621 115 621 115 621 115 621 115 621 115 572 120 621 120 621 120 621 120 621 120 621 120 600 125 621 125 621 125 621 12S 621 125 621 125 621 130 621 130 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621 145 621 145 621 145 621 145 621 lSO 621 150 621 150 621 lSO 621 150 621 ISO 621 155 621 155 621 155 621 155 621 155 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 180 621 180 1270 180 1260 180 1260 180 1260 180 1260 ISO 1053 185 1330 185 1328 185 1330 185 1330 185 1330 185 1102 190 1396 190 1396 190 1396 190 1396 190 1396 190 1158 195 1469 195 1469 195 1469 195 1469 195 1449 '95 1220 200 1549 200 1549 200 1549 200 1549 200 1S02 200 1288 205 1638 205 1638 205 1638

- 205 1616 20S 1561 205 1365 210 1737 210 1737 210 1729 210 1677 210 1627 210 1450 215 1846 215 1846 215 1793 215 1745 21S 1699 215 1545 220 1966 220 1957 220 1864 220 1821 220 1780 220 1650 225 2099 225 2027 225 1943 225 1905 22S 1869 225 1767 230 2187 230 2104 230 2030 230 1998 230 1969 230 1897 235 2263 235 2189 235 2127 235 2101 235 2079 235 2041 240 2346 240 22W4 240 2234 240 2215 240 2201 240 2200 245 2439 245 2388 245 2353 245 2342 24S 2336 2WS 2336 250 2484 250 2482 250 2482 _250 2482 Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

41 MATERIALPROPFPRTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WV 10201-I LIMITING ART VALUES AT40 EFPY: 1/4T, 1690 F 3/4T, 149 0 F 2500 2250 2000 1750

0. 1500 0

b.

in (A

2. 1250 0-l) co C) 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure S 1l1.. Robinson Unit 2 Reactor Coolant System Ileatup Limitations (Imeatup Rates or 60 & IOD'F/hr) Applicable for the First 40 EF1PY (Ithout hMargins for Instrumentation Errors) Using 1996 App.G AMethodology WCAP-15827

42 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE W10201-1 & GIRTH WELD 10-273 LIMITING ART VALUES AT 40 EFPY: 1/4T. 169VF & 25 10F 3/4T, 1490 F& 179 0F 2500 2250 2000 1750 S

W X. 1500 0

a n
2. 1250 0.

la EU

= 1000D

.U EU O

750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 6 11.1B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable ror the First 40 EFrn (without MQargins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

43 TABLE 23 40 EFPY IHcatup Curve Data Points Using 1996 App. G (without Unccrtainuies for Instrumenlalion Errors) 50 Ileatup so Critical Limit' 60 fleatup 60 Critical LUiit I 00 leatup 100 Critical Lmnit T (°F) rsig)J T(°F) PNpsig) TVF) r(psig) TVF) P(psig) T(°F) P(r PSb T(F) Nmig)p' 60 0 216 0 60 0 216 0 60 0 216 0 60 621 218 621 60 621 218 621 60 621 218 621 65 621 218 621 65 621 218 621 65 621 218 621 70 621 218 621 70 621 218 621 70 621 218 621 75 621 218 621 75 621 218 621 75 621 218 621 80 621 218 621 g0 621 218 621 80 621 218 621 85 621 218 621 85 621 218 621 85 621 218 621 90 621 218 621 90 621 218 621 90 621 218 621 95 621 218 621 95 621 218 621 95 621 218 621 100 621 218 621 100 621 218 621 100 621 218 621 10S 621 218 621 105 621 218 621 105 621 218 621 110 621 218 621 110 621 218 621 110 621 218 621 115 621 218 621 llS 621 218 621 115 621 218 621 120 621 218 621 120 621 218 621 120 621 218 621 125 621 218 621 125 621 218 621 125 621 218 621 130 621 218 621 130 621 218 621 130 621 218 621 135 621 218 621 135' 621 218 621 135 621 218 621 140 621 218 621 140 621 218 621 140 621 218 621 145 621 218 621 145 621 218 621 145 621 218 621 150 621 218 621 150 621 218 621 ISO 621 218 621 155 621 218 621 155 621 218 621 355 621 218 621 160 621 218 621 160 621 218 621 160 621 218 621 165 621 218 621 165 621 218 621 165 621 218 621 170 621 218 621 170 621 218 621 170 621 218 621 175 621 220 621 175 621 220 621 175 621 220 621 180 621 220 1042 180 621 220 966 180 621 220 744 180 1042 225 1089 180 966 225 1007 180 744 225 767 185 1089 230 1141 185 1007 230 1053 185 767 230 794 190 1141 235 1198 190 1053 235 1103 190 794 235 823 195 1198 240 1261 195 1103 240 1159 195 823 240 856 200 1261 245 1331 200 1159 245 1221 200 856 245 893 205 1331 250 1409 205 1221 250 1289 205 893 250 933 210 1409 255 1494 210 1289 255 1364 210 933 255 979 215 1494 260 1589 215 1364 260 1447 215 979 260 1029 220 1589 265 1693 220 1447 265 1539 220 1029 265 1084 225 1693 270 1808 I 225 '539 270 1640 225 1084 270 1146 I

Shown by request orCP&L. This rate is inot shown on the plot.

WVCAP-15827

44 TABLE 23 - (Continued) 40 EFPY Hcatup Curve Data Points Using 1996 App. G (without Unccrtaintics for Instrumcntation Enors) 50 lleatup 50 Critical Llmitr 60 Ileatup 60 Critical Limit 100 Ileatup 100 Critical Limit T (IF) P (psig) T ('F) r (psig) T (OF) P (psig) T (OF) (pSig) T (OF) P (psig) T (°F) P WpSig) 230 1808 275 1934 230 1640 275 1752 230 1146 275 1214 235 1934 280 2074 235 1752 280 1876 235 1214 280 1289 240 2074 285 2229 240 1876 285 2012 240 1289 285 1372 245 2229 290 2364 245 2012 290 2162 245 1372 290 1464 250 2364 295 24S9 230 2162 295 2328 250 1464 295 1565 255 2459 255 2328 255 1565 300 1677 260 1677 305 1800 265 1800 310 1936 270 1936 315 2085 275 2085 320 2250 280 2250 325 2432 285 2432 LeakTest Unmit Temp. 199 218 Pres. 2000 2485 Shown by request of CP&L. This rate is not shown on Ihc plot.

' *Bolded Values are Limited by the Circ. Weld ART using Codc Case N-S88.

WCAP-15827

45 TABLE 24 40 EFPY Cooldown Curve Data Points Using 1996 App. G (without Unceraintics for Instrumcntation Errors)

Steadv State I 20°F/hr. 40'F/hr. 1ISOTFhr.

60°Flhr. I 100°Fhr.

T O)IP(sg T (OF) I P (psiT) T (OF) I'(psig) T( 0 F1 I 1 (psig) T (°F) I P (psig) IT (°FI r psiz) 60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 614 60 579 60 543 60 397 65 621 65 621 65 620 65 585 65 549 65 405 70 621 70 621 70 621 70 592 70 557 70 413 75 621 75 621 75 621 75 599 75 565 75 423 80 621 80 621 80 621 80 608 s0 574 80 434 B5 621 8S 621 85 621 85 618 85 584 85 447 90 621 90 621 90 621 90 621 90 595 90 461 95 621 95 621 95 621 95 621 95 607 95 477 100 621 100 621 100 621 100 621 100 621 100 494 105 621 105 621 105 621 105 621 105 621 105 514 110 621 110 621 110 621 110 621 110 621 110 536 1tS 621 115 621 115 621 llS 621 llS 621 215 560 120 621 120 621 120 621 120 621 120 621 120 588 125 621 125 621 125 621 125 621 125 621 125 618 130 621 130 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621 145 621 145 621 145 621 145 621 150 621 IS0 621 150 621 ISO 621 150 621 150 621 155 621 155 621 155 621 155 621 255 621 l55 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 ISO 621 180 621 280 621 180 621 180 1248 180 1235 180 1231 180 1231 180 1231 180 971 185 1305 185 1300 185 I 304 285 1304 185 1289 185 1012 190 1368 190 1368 190 1368 290 1368 190 1324 190 1058 195 1439 19S 1439 195 1439 19S 1430 195 1364 195 1109 200 1516 200 1516 200 116 200 1472 200 1408 200 1165 205 1602 205 1602 205 1579 205 1517 205 1457 205 1229 210 1696 210 1696 210 1627 210 1568 210 ]511 210 1299 215 1801 215 1795 215 1681 215 1625 215 1571 215 1378 220 1917 220 1847 220 1740 220 1688 220 1638 220 1465 225 2011 225 1905 225 1805 225 1758 225 1712 225 1562 230 2068 230 1970 230 1878 230 1835 230 1795 230 1670 235 2131 235 2041 235 1958 235 1921 235 1886 235 1790 240 2201 240 2120 240 2048 240 2016 240 1988 240 1923 245 2279 24S 2207 245 2146 245 2121 245 2101 245 2070 250 2364 250 2303 250 2256 250 2238 250 2225 250 2225 255 2459 255 2410 255 2377 I 255 2368 I 255 2364 255 2364

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Bolded Values are Limited by the Circ. WMld ART using Codc Case N-588.

WCAP-15827

46 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SIELLPLATEW10201-1 LIMITING ART VALUES AT 45 EFPY: 1/4T, 170°F 3/4T, 151°F 2500 250 l 4 ZOperlim Verson 5.1 Run:10551 Leak Test Liml 2250 _...

Unacceptable l IIAcceptable 2000 Opelration Operaion 6 0 D1o F/

Ileatup Rate 10 Dog.FlHr cn Critical 1lmrit cso 150*l/I60D.FHr o t~~~~ealupRlI1 h

_ 1250

-~~

/ * ~ ~ l ICIca[ L mIt 100 Dog.FlHr CL 1000De. _.r.

cioo C) 750 .. *t o01ttup 1 250 .. Temp. . .

  • Criticality Limit based on inservice hydrostatic test temperature (219 F) for the service period up to 45 EFPY 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 7 IIA.. Robinson Unit 2 Reactor Coolant System Ileatup Limitations (lleatup Rates or 60 & 1DOF/hr) Applicabic ror the First 45 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP.15827

47 NIATERIALPROPERTY BASIS LIM ITING MATERIAL: UPPER SIELLPLATE W10201-1& GIRTH WELD 10-273 LIM ITING ART VALUES AT 45 EFPY: I14TI700 F& 256 0 F 3/4T.151F& 1850 F 2500- lODwn:Ve.n:6 1 1UOSS10l 2250 2000 j iunacceptablel 2000 Operation 1750 Acceptable

_ 1500 //1 X 1250 0.o~

1w000o. d Q ~Rates Mrnl 750 500 250 0

0 50 100 150 200 250 30D 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 8 11.13. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°FOhr) Applicable for the First 45 EFPY (W\'ithout lM1argins [or Instrumentation Errors) Using 1996 App.G hI1ethodology WCAP-15827

48 TABLE 25 45 EFPY 1Icalup Curve Data Points Using 1996 App. G (without Unccnaintics for Instrumcnt3tion Errors) 50 Ileatup* SO Critical Limit' 60 llcatup 60 Critical Limit 100 Ileatup 100 Critical Limil T (F) r MAsO[T (F) P (psic) T (F) (ps1) T (°F) P (psig) T (IF) P (pSs;)T T(F) P (pstg) 60 0 219 0 60 0 219 0 60 0 219 0 60 621 219 621 60 621 219 621 60 621 219 621 65 621 219 621 65 621 219 621 65 621 219 621 70 621 219 621 7W 62) 219 621 70 621 219 621 75 621 219 621 75 621 219 621 75 621 219 621 80 621 219 621 80 621 219 621 80 621 219 621 85 621 219 621 S5 621 219 621 85 621 219 621 90 621 219 621 90 621 219 621 90 621 219 621 95 621 219 621 95 621 219 621 95 621 219 621 100 621 219 621 I10) 621 219 621 100 621 219 621 1OS 621 219 621 105 621 219 621 105 621 219 623 110 621 219 621 I1 621 219 621 110 621 219 621 115 621 219 621 15 621 219 621 115 621 219 621 120 621 219 621 120 621 219 621 120 621 219 621 125 621 219 621 125 621 219 621 123 621 219 621 130 621 219 621 130 621 219 621 130 621 219 621 135 621 219 621 135 621 219 621 135 621 219 621 140 621 219 621 240 621 219 621 140 621 219 621 145 621 219 621 145 621 219 621 145 621 219 621 IS0 621 219 621 IS0 621 219 621 150 621 219 621 155 621 219 621 155 621 219 621 155 621 219 621 160 621 219 621 160 621 219 621 160 621 219 621 165 621 219 621 165 621 219 621 165 621 219 621 170 621 219 621 170 621 239 621 170 621 219 621 175 621 220 621 175 621 220 621 175 621 220 621 180 621 220 1024 180 621 220 950 380 621 220 733 ISO 1024 225 1069 180 950 225 989 180 733 225 755 185 1069 230 1118 18S 989 230 1033 185 755 230 780 190 1118 235 1174 190 1033 235 1081 190 780 235 808 195 1174 240 1234 195 1081 240 1135 195 808 240 840 200 1234 245 1302 200 1135 245 1194 200 840 245 875 205 1302 250 1376 205 1194 250 1260 205 875 250 914 210 1376 255 1458 210 1260 255 1332 210 934 255 957 215 1458 260 1549 215 1332 260 1412 215 957 260 1005 220 2549 265 1649 220 1412 265 3500 220 1005 265 1059 225 1649 270 1759 225 1500 270 2597 225 1059 270 1118 Shown by request or CPL. This rate is not shown on the plot.

WCAP-15827

49 TABLE 25 - (Continued) 45 EFPY Hleatup Curve Data Points Using 1996 App. G (without Uncenaintics for Instrunmqntaqiin Errors) 50 Ileatup' 50 Critical UmLnt 60 Ilentup 60 Critical Limit 100 }leatup 100 Critical Limit T (IF) P (Psig) T (IF) P (psag) T (TF) P (psig) T (OF) ' (psig) T ('F) (psig) T (OF) P WPSg) 230 1759 275 1881 230 1597 275 1705 230 1118 275 1183 235 1881 280 2015 235 1705 280 1823 235 1183 280 1255 240 2015 285 2164 240 1823 285 1954 240 1255 285 1335 245 2164 290 2279 245 1954 290 2098 245 1335 290 1423 250 2279 295 2364 250 2098 295 2258 250 1423 295 1520 255 2364 300 2459 255 2258 30) 2433 255 1520 300 1627 260 2459 260 2433 260 1627 305 1746 265 1746 310 1876 270 1876 315 2020 275 2020 320 2178 280 2178 325 2353

_ 285 2353 Leak Test Umil [ IPress.

Temp. 200 2000 219 2485 Shown by request of CP&;L. This rate is not shown on the plot.

WCAP-15827

50 TABLE 26 45 EFPYCooldown Curve Data Points Using 1996 App. G (wiihout Unccrtainties for Instrumentation Errors)

Stend State 2 01F/hr. I 40'F/hr. I 50°F/hr.- I 60Fthr. 100°F/hr.

T (IF)1lIt(psi T(F)T

° P (psi) IT (IFO) I P Psig) l1 T (°F) P rpsir) I T 1°F) Il (rP*1 I T (IF) I r (psii 60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 613 60 577 60 542 60 395 65 621 65 621 65 618 65 583 65 548 65 403 10 621 70 621 70 621 70 590 70 555 70 411 75 621 75 621 75 621 75 598 75 563 75 421 80 621 80 621 80 621 80 606 I") 572 80 432 85 621 85 623 85 621 85 6I5 85 581 85 444 90 621 90 621 90 621 90 621 90 592 90 458 95 621 95 623 95 621 95 621 95 605 95 473 100 621 100 623 100 621 100 621 130 618 100 490 105 621 105 621 10S 621 luS 621 105 621 105 510 110 621 110 621 110 621 110 621 nO 621 110 531 lls 621 115 621 115 621 llS 621 llS 621 l15 555 120 621 120 621 120 621 120 621 120 621 120 582 125 621 125 621 125 621 125 621 125 621 125 612 130 621 130 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 335 621 133 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 .621 145 621 145 621 345 621 145 621 lSO 621 150 621 lSO 621 1SO 621 lSO 621 150 621 l55 621 155 621 I55 621 155 621 l55 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 I80 621 180 623 1%0 621 180 621 380 621 ISO 621 380 1237 180 1223 180 1217 180 1217 .80 1217 380 932 185 1293 185 1286 185 1289 185 1289 185 1255 185 968 190 1355 190 1355 190 1355 190 1355 190 1287 190 1009 195 1424 195 1424 195 1424 195 1391 195 1323 195 1055 200 1500 200 l500 : 200 1496 200 1429 200 1362 200 1106 205 1584 205 3584 205 1535 205 1470 205 1406 205 1163 210 1677 210 1677 210 1578 210 1516 210 1455 210 1227 215 1779 215 1747 215 1626 215 1567 215 1509 215 1297 22n 1893 .

220 1794 220 1679 220 1624 220 1570 220 1376 225 1959 225 1847 225 1739 225 1687 225 1637 225 1464 230 2011 230 1905 230 1804 230 1757 230 1711 230 1561 235 2068 235 1969 235 1877 235 1834 235 1794 235 1669 240 2131 240 2040 240 1958 240 1920 240 1885 240 1789 245 2201 245 2119 245 2047 245 201S 245 1987 245 1922 250 2279 250 2206 250 2146 250 2121 250 2100 250 2070 255 2364 255 2303 255 2255 255 2238 255 2225 255 2225 260 2459 260 2410 260 2377 260 2367 260 2363 260 2363 Shown by request of CP&L. This rate is not shown on the plot.

Bolded Values are Limiled by the Circ. Wehld ART using Code Case N-588.

WCAP.15827

SI MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE W10201-1 & GIRTH WELD 10-273 LIMITING ART VALUES AT 50 EFPY: I/4T, 172 0 F & 2630 F 3/4T, 153 0F& 191OF 2500 2250 2000 1750 cL 1500 4n

&G-1250 0.

'L la

)

'S 1000 0c,

'U1D 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 9 I1.B. Robinson Unit 2 Reactor Coolant System Jleatup Limitations (Ileatup Rates or 60 & 100IF/hr) Applicable for the First 50 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.C. Methodology WCAP-15827

52 MATERIAL PROPF.RTY BASIS LIMITING MATERIAL: UPPER SHELLPLATEW10201-I & GIRTI WELD ID-273 LIMITING ART VALUES AT 50 EFPY: 1/4T, 1720 F & 2630 F 3!4T, 153VF & 191 0F 2500 2250 2000 1750 (j,

c. 1500 0

in 96 1 250 rL

  • , 1 000 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 10 II.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable ror the First 50 EFPY (Without Miargins for Instrumentation Errors) Using 1996 App.G Mlethodology WCAP-15827

53 TABLE 27 SO EFPY Heatup Curve Data Points Using 1996 App. G (without Unccrtainties for InstrumcnIa3ion Errors) 50 Ileatup ISO Critical UrnitL 60 lleatup 60 Critical limit 100 Ileatup 1100 Critical Limit T (IF) r (pSWg) T (OF) P (psig) T (IF) P (psig)I T (°F) P (psi) 1T (°F) P (psig) T (°F) P (psig) 60 0 221 0 60 0 221 0 60 0 221 0 60 621 221 621 60 621 221 621 60 621 221 621 65 621 221 621 65 621 221 621 65 621 221 621 70 621 221 621 70 621 221 621 70 621 221 621 75 621 221 621 75 621 221 621 75 621 221 621 80 621 221 621 80 621 221 621 s0 621 221 622 85 621 221 621 85 621 221 621 85 621 221 621 90 621 221 621 90 621 221 621 90 621 221 621 95 621 221 621 95 621 221 621 95 621 221 621 100 621 221 621 100 621 221 621 100 621 221 621 105 621 221 621 105 621 221 621 10S 621 221 621 110 621 221 621 110 621 221 621 110 621 221 621 115 621 221 621 115 621 221 621 llS 621 221 621 120 621 221 621 120 621 221 622 120 621 221 621 125 621 221 621 125 621 221 622 125 621 221 621 130 621 221 621 130 621 221 621 130 621 221 621 135 621 221 621 135 621 221 621 135 622 221 621 140 621 221 621 140 621 221 621 140 621 221 62!

145 621 221 621 145 621 221 621 145 621 221 621 150 621 221 621 150 621 221 621 I50 621 221 621 155 621 221 621 255 621 221 621 155 621 221 621 160 621 221 621 160 621 221 62! 160 621 221 621 165 621 221 621 165 621 221 621 165 62! 221 621 170 621 221 621 170 621 221 621 170 621 221 621 175 621 221 1006 175 621 221 9.4 175 621 221 722 180 621 225 1049 180 621 225 972 180 621 225 743 180 1006 230 1097 180 934 230 1014 180 722 230 767 185 1049 235 1150 185 972 235 1060 185 743 235 794 190 1097 240 1208 190 1014 240 1112 190 767 240 824 195 1150 245 1273 195 1060 245 1169 195 794 245 858 200 1208 250 1344 200 1112 250 1231 200 824 250 895 205 1273 255 1423 205 1169 255 1301 205 858 255 937 210 1344 260 2510 210 1231 260 1378 210 895 260 983 215 1423 265 1606 215 1301 265 1462 215 937 265 10.34 220 1510 270 1712 220 1378 270 1556 220 983 270 1091 225 1606 275 1829 225 1462 275 1659 225 1034 275 1153 230 1712 280 1958 a 230 1556 a 2R0 1773 a 230 1091 280 1223 Shown by request or CP&L. This rate is not shown on the plot.

WCAP-15827

54 TABLE 27 - (Continued) 50 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertainties for Instrumcntation Effors) 50 Jleatup s0 Critical LUrmit* 60 Ileatup 60 Critical Limit 100 Ileatup 100 Critical Limit T ('F) I (psig) T (F) P (pSi) T CF) psi) T (OF) P (Psis) T (IF) P Wpsig) T (°F) P (psig) 235 1829 285 2101 235 1659 285 1898 235 1153 285 1299 240 1958 290 2173 240 1773 290 20317 240 1223 290 1384 245 2101 295 2247 245 1898 295 2190 245 1299 295 1477 250 2173 300 2329 250 2037 300 2329 250 1384 300 1580 255 2247 305 2420 255 2190 305 2420 255 1477 305 1693 260 2329 260 2329 260 1580 310 1819 265 2420 265 2420 265 1693 315 1957 270 1819 320 2109 275 19S7 325 2276 280 2109 330 2461 285 2276

. 290 2461_

Leak Test LUmit Temp. 202 221 I rL 2000 248 5 I Shown by request oFRCP&L. This rate is not shown on the plot.

Bolded Values are Limited by the Circ. Weld ART using Code Case N-588.

WCAP-15827

55 TABLE 28 50 EFPY Cooldown Curve Data Points Using 1996 App. G (wiihout Uncertintics for Instrumentalion Erfors) 2SOF/hr. I 40°Fflr. _ SO0°F/hr. I 60°Flhr. I 1000Flhr.

Steanci e T (F)I P (psig) T (°F) I P (psig) T RlTFFTlpsig) I T (F) Ir fpsio) T (F) IP (peiI) I T (0 R P (psig) 60 0 60 0 6 0 60 0 60 0 60 0 60 621 60 621 60 610 60 575 60 539 60 392 65 621 65 621 65 616 65 581 65 545 65 399 70 621 70 621 70 621 70 587 70 552 70 407 7S 621 75 621 75 621 75 594 75 559 75 416 80 621 80 621 R0 621 80 602 Rn 368 80 427 85 621 85 621 85 621 85 611 85 577 85 438 90 621 90 621 90 621 90 621 90 587 90 451 95 621 95 621 95 621 95 621 95 599 95 466 100 621 10() 621 100 621 100 621 10 612 100 483 105 621 105 621 105 621 105 621 10S 621 105 501 110 621 llS 621 110 621 110 621 110 621 Ito 522 125 621 621 llS 621 llS 621 lIS 621 110 545 120 621 120 621 120 621 120 621 120 621 120 570 125 621 125 621 125 621 125 621 125 621 125 599 130 621 130 621 130 621 130 621 130 621 l30 621 135 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621 145 621 145 621 145 621 145 621 150 621 lSO 621 ISO 621 150 621 150 621 150 621 155 621 155 621 '55 621 155 621 155 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 17S 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 180 621 180 1216 18n 1199 180 1191 ISO 1190 180 189 180 882 185 1270 185 1260 185 1260 185 126h 185 1213 185 914 190 1330 190 1328 190 1328 190 1315 190 1241 190 949 195 1396 195 1396 195 1396 195 1343 195 1271 195 988 200 1469 20 1469 200 1446 200 1376 200 1305 200 1032 205 1549 205 1549 205 1480 205 1411 205 1343 205 1082 210 1638 210 1638 210 1517 210 1451 210 1386 210 1136 215 1737 215 1687 215 1559 215 1495 215 1433 215 1197 220 1846 220 1728 220 1605 220 1544 220 1485 220 1265 225 1895 225 1774 225 1656 225 1599 225 1543 225 1341 230 1940 230 1824 230 1713 230 1659 230 1607 230 1425 235 1990 235 1880 235 1776 235 1726 235 1679 235 1519 240 2045 240 1942 240 1846 240 1801 240 1758 240 1623 245 2105 245 2010 245 1923 245 1883 245 1846 245 1738 250 2173 250 2086 250 2009 250 1975 250 1944 250 1866 255 2247 255 2170 255 2104 255 2076 255 2052 255 2008 260 2329 260 2263 260 2209 260 2188 260 2172 260 2166 265 2420 265 2365 265 2326 265 2313 265 2305 265 2305 270 2479 270 2455 -

270 2451 I 270 2451 I 270 2451

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Bolded Values are Limited by the Circ. WVeld ART using Code Casc N-588.

WVCAP- 1I827

56 6 REFERENCES

1. WCAP-1580S, "Analysis of Capsule X from Carolina Power and Light Company 1I.B. Robinson Unit 2 Reactor Vessel Radiation Surveillance Program", TJ. Laubbam, et.al., March 2002.
2. ASMIE Code Case N-64 1, 'Alternative Pressure-Temperature Relationship and Low Temperature Overpressure Protcction System Requiremenis Section Xl, Division 1". January 17, 2000.

[Sub

Reference:

ASHIE Code Cate N-640. Aftentarive Reference FractureToughnessfor Development of P-.Timit CurvetsorSectionXl. Diision I -. Felbruan 26. 1999.)

3. Section Xi of the ASME Boiler and Pressure Vessel Code. Appendix G."Fracture Toughness Criteria for Protection Against Failure:.' Dated December 1995, through 1996 Addendum.
4. ASMIE Boiler and Pressure Vessel Code. Case N-588. "Attenuation to Reference Flaw Orientation orAppendix G for Circumferential Welds in Reactor Vessels", Section Xl, Division 1,Approved December 12, 1997.
5. Regulatory Guide 1.99, Revision 2. "Radiation Embrittlement of Reactor Vessel Materials:' U.S.

Nuclear Regulatory Commission, May 1988.

6. WCAP-14040-NP-A, Revision 2, "Methodology used to Develop Cold Overpressure Mitigating system Setpoints and RCS Hleatup and Cooldown Limit Curves", J.D. Andrachek, et. at., January 1996.
7. "Fracture Toughness Requirements", Branch Technical Position MTEB 5-2, Chapter 53.2 in Standard Review Plan for the Review of Sarcty Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800. 1981.
8. CP&:L (Robinson) FVle No. 135101, Serial No. RNP-RAI95-0205, Docket No. 50-261/License No. DPR-23; Letter from CP&L to NRC on Vessel Integrity Data, Dated 1l/20195.
9. CP&L(Robinson) File No. 1351 01A. Scrial No. RNP-RA/98-0133, Docket No. 50-261lLicense No. DPR-23; Letter from CP&L to NRC on Vessel Integrity Data. Dated 7/23198.
10. CE Repon NPSD-1039, Revision 2. "Best Estimate Copper and Nickel Values in CE Fabricated Reactor Vessel Welds", CEOG Task 902, By the CE Owners Group. June 1997.

I1. Code of Federal Regulations, 10 CFR Part 50, Appendix G."Fracture Toughness Requirements."

U.S. Nuclear Regulatory Commission. Washington, D.C.. Federal Register, Volume 60, No. 243.

dated December 19, 199$.

12. 1989 Section Ill. Division I of the ASME Boiler and Pressure Vessel Code, Paragraph NB-233 1, "Material for Vessels."
13. WCAP-13892, "New Measurements of USE or Archival and Surveillance Plate Material Representative of the Hl.B. Robinson Unit No. 2 Reactor Vessel Beltline Plates". J.F. Williams, 1993.
14. WCAP-1 3587, Revision 1,"Reactor Vessel Upper Shelf Energy Bounding Evaluation For Westinghouse Pressurized Water Reactors". S. Tandon, et. al., September 1993.

WCAP-15827

A-I MATFRIAL PROPE RTYBASIS LIMIT[NG MATERIAL: UPPER SHELL PLATE W10201-I L!lrlTNG ART VALUES AT 30 EFPY: II1T, I650 F 3/4T, 1450 F 2500 2250 2000 1750 a

Q. 1500 62 in s2 1250 la

= 1000 U

750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure Al 111.. Robinson Unit 2 Reactor Coolant System Ileatup Limitations (Ileatup Rates or 60 & 00°F/hr) Applicabic for the First 30 EFPS' (Without Mlargins ror Instrumentation Errors) Using 1996 App.G Nfethodology WCAP-25827

A-2 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WV 0201-1 & GIRTH WELD 10-273 LIMITING ART VALUES AT 30 EFPY: 1/4T, 165*F & 2350 F 314T, 1450 F& 1640 F 2500 2250 2000 1750 0

on e 1250 D.

c Ba 1000 la 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A2 I.1. Robinson Unit 2 Reactor Coolant System Cooldown Umitations (Cooldown 0 Applicable ror the First 30 EFPY (Without Margins for Rates up to ID 0Fihr)

Instrumentation Errors) Using 1996 App.G Mlethodology WCAP- 15827

A-3 TABLEAl 30 EFPY Ileatup Curve Data Points Using 1996 App. G (without Unccnainties for Instrumentation Effors) 50 Ileatup* ISO Critical ULmdt 60 Ileatup 60 Critical Unit I 200 Ileatup 100 Critical Umiat T (PF) P (psig) T (IF) P (psi) T (F) (psig) T (F) P (psg) T (F) P(psig) T (OF) (psig) 60 0 214 0 60 0 214 0 60 214 0 0

60 720 214 720 60 704 214 704 60 644 214 644 65 720 214 720 65 704 214 706 65 644 214 644 70 720 214 722 70 704 214 706 70 644 214 645 75 720 214 723 75 704 214 710 75 644 214 645 80 720 214 727 80 704 214 710 80 644 214 649 8S 720 214 727 85 704 214 715 85 6S4 214 649 90 720 214 734 90 704 214 715 90 644 214 654 95 720 214 734 95 704 214 723 95 644 214 654 100 723 214 743 100 704 214 723 100 644 214 661 10S 727 214 754 105 706 214 733 105 644 214 661 110 734 214 754 110 710 214 733 110 644 214 670 lls 743 214 767 11S 715 214 745 115 644 214 670 120 754 214 767 120 723 214 745 120 644 214 680 125 767 214 782 125 733 214 758 125 644 214 680 130 782 214 799 130 745 214 774 130 645 214 693 135 799 214 818 135 758 214 774 135 649 214 693 140 818 214 840 140 774 214 793 140 654 214 708 145 840 214 864 145 793 214 813 145 661 214 708 150 864 214 892 lSO 813 214 837 1SO 670 214 726 155 892 214 922 155 837 214 863 155 680 214 726 160 922 214 956 160 863 214 892 160 693 214 726 165 956 214 993 165 892 214 925 165 708 214 726 170 993 215 1035 170 925 215 961 170 726 215 746 175 1035 220 1081 175 961 220 1001 175 746 220 768 180 lot 225 1132 180 1001 225 1046 180 768 225 794 185 1132 230 I188 185 1046 230 1095 185 794 230 822 190 1188 235 1250 190 1095 235 1150 190 822 235 854 195 1250 240 1319 195 115D 240 1210 195 854 240 890 200 1319 245 1395 200 1210 245 1277 200 890 245 930 205 1395 250 1479 205 1277 250 1351 205 930 250 975 210 1479 255 1571 210 1351 255 1433 210 975 255 1024 215 1571 260 1673 215 1433 260 1523 215 1024 260 1078 220 1673 265 1786 220 1523 26S 1622 220 1078 265 1139 Shown by request of CP&L This rate is not shown on the plot.

WCAP-15827

A-4 TABLE Al - (Continued) 30 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncenaintics for Instrumcnntaion Errors) 50 Ileatup 50 Critical 1mit* 60 Ileatup 60 Critical Umit 100 Ileatup 100 Critical Limit TV(F) PNpsig) T (F) P(psig) TW(F) P(psig) T (OF) P fpsig) T (F) P (psig) T (IF) P (psig) 225 1786 270 1911 225 1622 270 1732 225 1139 270 1206 230 1911 27S 2048 230 1732 275 1854 230 1206 275 1279 233 2048 280 2200 235 1854 280 1987 235 1279 280 1361 240 2200 285 2367 240 1987 285 2135 240 1361 285 1451 245 2367 245 2135 290 2298 243 1451 290 1551 250 2298 295 2477 250 1551 295 1660 255 2477 255 1660 300 1782 260 1782 305 1915 265 1915 310 2062 270 2062 315 2224 275 2224 320 2403 280 2403 LEakTest Temp. 1 195 234 UJmit pr 2000 2485 Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

A-5 TABLE A2 30 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertaintics for I nstrumcniiiion Errors)

S~ta Ste I 20°FPhr. 40'F/hr. S 0 Fjhr. _ 6I MFihr. I 100 0F/hr.

P(psig) IT(OF) IP pig)j TlFI rtpsig) I T(IF I pWig) I T(OF)

_o)I (F) I (psig)

P(psig) I T 60_

60 ( 0 6 0 6 60 60 60 0 60 0 6(

60 60 7SS 60 6R8 60 619 60 584 549 60 40 S5 60 7hl 66 694 6S 626 65 S91 556 6S 413 70 170 767 70 701 70 633 70 598 564 70 422 75 70 774 77 708 7S 641 75 607 75 572 7S 433 XO 7%2 80 716 80 650 80 61h XSo 582 R0 44 8S 79D 95 72S 8S 660 85 1627 593 RS 459 90 90 799 90 735 90 671 90 638 606 90 474 95 810 9S 99 747 9S 683 95 651 619 95 492 100 100 821 890 7S9 100 697 t00 666 634 100 Sll 10S too 8.2A 105 773 10S 712 10S 682 651 10S 532 110 1105 847 110 788 110 729 110 700 670 110 556 llS llS 863 818 805 llS 748 115 719 691 llS 583 I") 880 120 120 824 120 769 120 742 120 715 120 613 12S 898 125 RA5 12S 792 125 766 741 12S 646 125 130 919 130 868 130 818 130 793 770 130 683

[is 942 130 l3S 893 13S 846 135 R23. 802 135 724 140 135 967 140 921 140 878 140 857 837 140 770 145 140 995 145 9S2 14S 913 145 R94 877 14S 821 145 lSO 1026 081 Y87 lSO 951 ISO 935 920 ISO 877 ISO I55 10(o 505 102S lSS 994 l55 981 969 155 917 160 160 1098 160 1067 160 1042 160 1031 1023 160 951 W6 160 1140 164 1114 16S 1095 165 1087 1082 165 988 17() 165 1186 170 1166 170 1153 170 llSO 1148 170 1029 17S 1237 170 172 1223 17S 1218 175 1218 1218 175 1076 180 129 175 190 t293 127 1287 80 lSo 1287 180 2l710 1287 1287 180 1127 1SO lXS 13SS 185 13SS 18S 1355 185 1355 1.355 185 1185 190 190 1424 190 1424 190 1424 190 1424 1424 190 1249 190 19S 1S(o 195 lSOO 195 1500 195 1500 195o 1500 195 1321 200 15%4 200 1584 200 1584 200 1584 1584 200 1401 205. 1677 207 1677 20S 1677 205 1677 205 1657 205 1489 210 1779 210 1779 210 1779 210 1779 210 1732 210 1588 215 1893 211 1893 21S 1893 21S 1855 2IS 1816 215 1697 220 2018 220 2018 220 1978 220 1942 220 1909 220 1819 2'S 2156 225 2138 225 2069 22S 2039 22S 2013 225 1953 230 2295 230 2226 230 2169 230 2146 230 2127 230 2103 2735 2382 235 232S 235 228t 235 226S 22260 235 2254 2tS 2269 240 2479 2J0 2434 240 2404 240 2397 2395 240 2454

  • Shown by request of CP&L. 'This rate is not shown on the plot.

WCAP-15827

MAURIAL PROPERTY BASIS L[M1TING MATERIAL: UPPER SH1ELL PLATE I0201-1 L1MITJNG AYRT VALUES AT3S EPY; 114T. 1670 F 314T, 1470 F 2500 2250 2000 1750 a0 ;1 500 M 1250 D.

go

  • = 1 000 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A3 ll.1. Robinson Unit 2 Reactor Coolant System Ileatup Limitations (Ilcatup Rates or 60 & lOO 0 F/hr) Applicable ror [lie First 35 EFPY (Without hMargins for Instrumentation Errors) Using 1996 App.G Mlethodology WCAP-15827

- ffi A-7 MATERIAL PROPFRTY AS1S LIMnTG MATERIAL. UPPER SiELL PLATE W10201-1 & GIRT IWELD 10273 LIMITING ART VALUES AT35 EFPY: I/4T. 167°F & 242 0 F 3/4T. 1470 F& 172F 2500-2501op.is V..smon:S.t Run:7e45S 2250 .

2000 Operptaion [ceptable 1750 1i50

b. Cooldowo 04 E 1500 __ .-

750 _ *- ..

0 50 100 150 200 250 300 350 400 450 500 5;50 Moderator Temperature (Deg. F)

Figure A4 11$.BRobinson Unit 2Reactor Coolant System Cooldo n Limitations(tCooldown Rates up to I 00°F/lhr) Applicabxle ror thec First 35 IEFI'(W'('ithout Miargins for Instrumentation Errors) Using 1996 App.C Msethodology WCAP-1S827

A.8 TABLE A3 35 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertaintics ror Instrumeniation Errors) 50 leiatup ISO Critical UmIt 60 Ileatup j 60 Critical Limit 100 Ileatup I100 Critical Limit T VF) P (Ps15) T(F) P (psi) j T (F) I (psig) T (OF) ' (psig) T (OF) P (psig)1T (TF) (psic) 60 0 216 0 60 0 216 0 60 0 216 0 60 716 216 716 60 700 216 700 60 639 216 639 65 716 216 716 65 700 216 701 65 639 216 639 70 716 216 718 70 700 216 701 70 639 216 640 75 716 216 723 75 700 216 705 75 639 216 640 80 716 216 723 80 700 216 705 80 639 216 643 85 716 216 729 85 700 216 710 85 639 216 643 90 716 216 729 90 700 216 710 90 639 236 648 95 716 216 737 95 700 236 727 95 639 226 648 100 718 216 737 to1 700 216 727 t00 639 216 654 105 723 216 748 105 701 216 727 I05 639 216 654 110 729 216 748 120 705 216 738 310 639 216 662 235 737 216 760 115 710 216 738 II5 639 216 662 120 748 216 760 120 717 216 751 120 639 216 672 125 760 216 774 125 727 216 751 125 639 216 672 130 774 216 790 130 738 216 766 230 640 216 685 135 790 216 809 135 751 216 766 135 643 216 685 140 809 216 830 140 766 216 784 140 648 216 699 145 830 216 853 145 784 216 803 145 654 226 699 IS0 853 216 879 150 803 216 826 I50 662 216 715 155 879 216 908 155 826 216 851 155 672 216 715 160 908 216 943 260 851 216 879 160 685 216 734 165 941 226 977 165 879 216 910 265 699 216 734 170 977 216 1017 170 910 216 945 170 715 216 734 175 1017 220 1061 175 945 220 983 175 7.34 220 756 180 1061 225 3130 180 983 225 1026 180 756 225 780 185 1110 230 1164 185 1026 230 1074 185 780 230 80S 190 1164 235 1224 190 1074 235 1126 190 808 235 838 195 1224 240 1290 195 1126 240 1184 195 838 240 873 200 1290 245 1362 200 1184 245 1248 200 873 245 911 205 1362 250 1443 205 1248 250 1319 205 911 250 953 210 1443 255 1532 210 1319 255 1398 210 953 255 100]

215 1532 260 1630 215 1398 260 1484 215 300I 260 3053 220 1630 265 1739 220 1484 265 3580 220 1053 265 1211 Shown by requestorMCP&L This rate is not shown on the plot.

WCAP-15827

_A-9 TABLE A3 - (Continued) 35 EFPY Hcalup Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) 50 leatupo S0 Critical Lfil' 60 lieatup 60 Critical Limit 100 Ileatup 100 Critical Limit TV(F) P(psig) T(°F) P(psig) T(°F) P(psig) T (F) r (ps;g) T (IF) P (psig) T (OF) P (psig) 225 1739 270 1858 225 1580 270 1685 225 IIII 270 1175 230 1858 275 1990 230 1685 275 1802 230 1175 275 1246 235 1990 280 2136 235 1802 280 1930 235 1246 280 1324 240 2136 285 2297 240 1930 285 2072 240 1324 285 1411 245 2297 290 2474 245 2072 290 2229 245 1411 290 1506 250 2474 250 2229 295 2401 250 1506 295 1612 255 2401 255 1612 300 172X 260 1728 305 1856 265 1856 310 1998 270 1998 315 2153 275 2153 320 2325 280 2325 Lak Test Lim-it ITemp. 197 216 Pre 2000 2485 _

0 Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

A-10 TABLEA4 35 EFPY Cooldown Curve Data Points Using 1996 App. G (without Unccerainties for Instrumcniation Effors)

Stendz State I 20°F/hr. l 40F/hr. 5O0 F/hr.0 I 60°Fhr. I100F/hr.

T (IF) I P (psig) I I T (F) I P (psig) T (OF) I P (psig) l T (TF) l P (psiz) I P (psiP) 6o0 0 60 0 60 0 60 0 60 0 '60 0 60 753 60 685 60 616 60 581 60 546 60 400 65 758 65 691 65 623 65 588 65 553 65 409 70 764 70 698 70 629 70 595 70 560 70 418 75 771 75 705 7S 637 75 603 75 568 75 428 80 778 80 713 8( 646 80 612 80 578 80 440 85 787 85 721 85 655 85 622 85 588 85 453 90 795 90 731 90 666 90 633 90 600 90 468 95 805 95 742 95 678 95 646 95 613 95 484 100 816 100 754 100 691 100 659 100 628 100 502 105 828 105 767 105 706 I05 675 105 644 10S 523 110 842 110 782 110 722 110 692 110 662 110 546 llS 856 l15 798 I15 740 I15 711 l15 682 115 572 120 873 120 816 120 760 120 732 120 705 120 600 125 891 125 836 125 782 125 756 125 730 125 632 130 911 130 858 130 807 130 782 130 757 130 667 135 933 135 R82 235 8.34 135 811 135 788 135 707 140 957 140 910 140 864 140 843 140 822 140 751 145 984 145 939 145 898 145 879 145 860 145 800 lSO 1013 lSO 973 150 935 150 918 150 902 o50 847 l55 1046 155 1009 155 976 155 962 155 949 155 873 160 1082 160 1050 160 1022 160 1010 160 1000 160 901 165 1123 165 I095 165 1073 165 1064 165 2058 165 933 170 1167 170 1145 170 1129 170 1124 170 1121 170 968 175 1216 175 1200 175 1191 175 1190 175 1190 175 1008 ISO 1270 180 1260 180 1260 180 1260 280 1260 180 1053 185 1330 185 1328 185 1328 185 1328 185 1328 185 1102 190 1396 190 1396 190 1396 190 1396 190 1396 190 1158 195 1469 195 1469 195 1469 195 1469 195 1449 195 1220

20) 1549 200 1549 200 2549 200 1549 1 200 1502 200 1288 205 1638 205 1638 205 1638 205 1616 205 1561 205 1365 210 1737 210 1737 210 1729 210 1677 210 1627 210 1450 215 1846 215 1846 215 1793 215 1745 215 1699 215 1545 220 1966 220 1957 220 1864 220 1821 220 1780 220 1650 225 2099 -

225 2027 225 1943 225 1905 225 i869 225 1767 230 2187 230 2104 230 2030 230 1998 230 1969 230 1897 235 2263 235 2189 235 2127 235 2101 235 2079 235 2041 240 2346 240 2284 240 2234 240 2215 240 2201 240 2200 245 2439 24S 2388 245 2353 24S 2342 245 2336 245 2336 250 2484 _ _ 250 2482 250 2482 250 2482

  • Shown by request of CP&L. This rate is not shown on the plot.

Bolded Values are Limited by the Circ. Weld A1RT using Code Case N-588.

WCAP-15827

A-11 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELLPLATEW10201-1 LIMIrrNG ART VALUES AT40 EFPY: 114T. 169 0F 314T, 1490 F 2500 2250 2000 1750 t500 1s S..

0 U) b 1250 la B

s 1000 U

750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure AS 11.13. Robinson Unit 2 Reactor Coolant System 1lcatup Limitations (Ileatup Rates Of 60 & 100°F/hr) Applicablc for the First 40 EFP'Y (Without NMargins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

A 12 MATERIAL PROPERTY BASIS LIMlTING MIATERIAL: UPPER SHELL PLATE WV10201-1 & GIRTH! WELD 10-273 LIMITING ART VALUES AT 40 EFPY: I/4T. 169 0 F & 251 OF 314T. 1490 F& 179 0F 2500 2250 2000 1750 0.

I-a-

1500 0

n c 1250 CL

'U la 1000 750 50o 250 D

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figurc A6 11.11. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for thc First 60 EFPY (Without Mlargins for Instrumentation Errors) Using 1996 App.G Mlethodology WVCAP-1S827

A-13 TABLE A5 40 EFPYHeatup Curve Data Points Using 1996 App. G (without Uncertaintics for Instrumentation Errors) 50 Ileatup* ISO Critical lumit 60 Ileatup 60 Critical lUmit 1001 leatup I 100 Critical Limit T (F) P (psig)jT (F) P (psr) T (0F) P (psig) T (F) P (psiy) T(0 F) rNpS)I T (F) P (psig) 60 0 216 0 60 0 216 0 60 0 216 0 60 712 218 712 60 696 218 696 60 634 238 634 65 712 218 712 65 696 218 697 65 634 218 635 70 712 218 714 70 696 218 697 70 634 218 635 75 712 218 718 75 696 218 700 75 63.4 28 637 so 712 218 718 80 696 218 700 s0 634 218 637 85 712 218 724 85 696 218 705 85 634 218 637 90 712 218 724 90 696 218 712 90 6.34 28 642 95 712 218 732 95 696 218 712 95 634 238 642 100 714 218 732 100 696 218 720 100 634 218 648 I05 718 218 742 105 697 218 720 1 05 634 218 648 110 724 218 753 1t0 700 218 731 130 634 218 655 115 732 218 753 115 705 218 731 115 634 218 665 120 742 218 767 120 732 218 743 120 634 238 665 125 753 218 767 125 720 218 743 125 634 238 676 130 767 218 782 130 731 218 758 130 635 218 676 135 782 218 800 135 743 218 758 135 637 218 690 140 800 218 820 140 758 218 775 140 642 218 690 145 820 218 842 145 775 218 794 145 648 218 706 150 842 218 868 150 794 218 815 150 655 218 706 155 868 218 896 155 815 218 839 155 665 218 724 160 896 218 927 160 839 218 866 160 676 218 724 165 927 218 961 165 866 218 896 165 690 218 724 170 961 218 999 170 896 218 929 170 706 218 724 175 999 220 1042 175 929 220 966 175 724 220 744 380 1042 225 1089 180 966 225 1007 180 744 225 767 I85 1089 230 1141 185 1007 230 1053 185 767 230 794 190 1141 235 1198 190 1053 235 103 190 794 235 823 195 1198 240 1261 195 1103 240 1159 195 823 240 856 200 1261 245 1331 200 3159 245 1221 200 856 245 893 205 1331 250 1409 205 1221 250 1289 205 893 250 933 210 1409 255 1494 210 1289 255 1364 210 933 255 979 215 1494 260 1589 215 1364 260 1447 215 979 260 1029 220 3589 265 1693 220 1447 265 1539 220 1029 265 1084 225 1693 270 1808 225 1539 270 1640 225 1084 270 1146 Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

A-14 TABLE A5 - (Continued) 40 EFPY HIeamp Curve Data Points Using 1996 App. G (whhoui Unceraintics ror Instrumcntaion Errors) 50 lleatup* 50 Critical ULnit 60 Ileatup 60 Critical Umnil 100 Ileatup 100 Critical ULmit T (F) r (psl) T (°F) P (psig) T (IF) P (Psig) T (°F) P (psig) T (F) P (Psig) T (F) r (psW )

230 1808 275 1934 230 1640 275 1752 230 1146 275 1214 235 1934 280 2074 2.35 1752 280 1876 235 1214 280 1289 240 2074 285 2229 24fl 1876 285 2012 240 1289 285 1372 245 2229 290 2364 245 2012 290 2162 245 1372 290 1464 250 2364 29S 2459 250 2162 295 2328 250 1464 295 1565 255 2459 2S5 2.328 255 1565 300 1677 260 1677 305 1800 265 1800 310 1936 270 1936 315 2085 275 2085 320 2250 280 2250 325 2432

_ 285 2432 Leak Test Llnut ltmp. 199 218 Pr 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP.15827

A.15 TABLE A6 40 EFPY Cooldown Curve Data Points Using 1996 App. G (without Unccmaintics for Instrumcntation Errors)

Steadz State I 20 °F/hr. 4j0Flhr. I 0

°F/hr.0 6O°Flr. I IO0 F~hr.

T (.F) IPsi)I T (OF)I P (psi;) T (7F) l P fpsi) I.-i TF M I P' IPS;)I T (OF) I P (Psii) 0 0 60 60 0 60 0 60 0 60 60 0 60 751 60 683 60 614 60 579 60 543 60 397 65 756 65 689 65 620 65 585 65 549 65 405 70 762 70 695 70 626 70 592 70 557 70 413 75 768 75 702 75 634 75 599 75 565 75 423 80 775 80 709 80 642 gO 60x 80 574 80 434 85 783 85 718 85 651 85 618 85 584 85 447 90 792 90 727 90 661 90 628 90 595 90 461 95 801 95 737 95 673 95 640 95 607 95 477 100 812 100 749 100 685 100 6531 100 621 100 494 105 823 105 761 10S 699 I1S 668 105 637 105 514 110 836 110 776 110 715 IJI) 685 II) 654 110 536 115 850 115 791 115 732 115 703 ItS 674 115 560 120 866 120 808 120 751 120 723 120 695 120 588 125 883 125 828 125 773 125 746 125 719 125 618 130 902 130 849 130 796 IM3) 771 130 746 130 652 135 924 135 872 135 823 [3s 799 1.35 775 135 690 140

  • 947 140 898 140 852 140 829 140 808 140 732 145 973 145 927 145 884 145 145 844 145 779 1SO 1001 150 959 lSO 920 150 902 150 885 150 803 155 1033 155 994 155 959 155 944 155 929 155 824 160 1068 160 1033 160 1003 160 99(1 160 979 160 847 165 1106 165 1076 165 1052 165 165 1034 165 873 170 1149 170 1124 170 1 06 170 I09(~ 170 1095 170 902 175 1196 175 1177 175 1165 175 1163 175 1162 175 934 180 1248 180 1235 180 1231 180 1231 180 1231 180 971 185 1305 185 1300 185 13(X) 185 13X 185 1289 185 1012 190 1368 190 1368 190 1368 19( 1368 190 1324 190 1058 195 1439 195 1439 195 1439 195 1430 195 1364 195 1109 200 1516 200 1516 200 5I16 I 200 1472 200 1408 200 1165 205 1602 205 1602 205 1579 205 1517 20S 1457 205 1229 210 1696 210 -1696 210 1627 210 1568 210 1511 210 1299 215 1801 215 1795 215 1681 21S 1625 215 1571 215 1378 220 1917 220 1847 220 1740 220 1688 220 1638 220 1465 225 20X1 225 1905 225 8OS 225 1758 225 1712 225 1562 230 2068 230 1970 230 1878 230 1835 230 1795 230 1670 235 2131 235 2041 235 1958 235 1921 235 1886 235 1790 240 2201 240 2120 240 2048 240 2016 240 1988 240 1923 245 2279 245 2207 245 2146 245 2121 245 2101 245 2070 250 2364 250 2303 250 2256 250 2238 250 2225 250 2225 255 2459 255 2410 255 2377 255 2368 a 255 2364 a 255 2364 i

Shown by requesl orCP&L. This rate is not shown on the plot.

Bolded Values are Limited by the Circ. Weld ART using Code Casc N-588.

WCAP- 15827

A416 MATERIAL PROPERT? BASIS LIMIITiNG MATERIAL: UPPER SIIELL PLATE Wi10201.1 LIMITING ART VALUES AT4S EFPY: 114T, 170°F 314T. 151°F 2500 Verso.S.1 Opetkn Versio..

Aun:tOSSl 10pethim Pi ;W10551 lLeak Test Limit 2250-lUnaeceplabloll lle Acceptable 2000 Operation ]1 Operation 1

1750 Heatup Platoe a 60 Deg. F/Hr IL 1500 160Deg. Ftr 0 Hoatup FlatoI1 1 1 Critical Lmit IC 0 Deg. F/ler

  • I 1

& 1250 4 . I 1*100 ae Ftr C,

la 3 1000 I EU C.

750 -

500 -

Bomup 250 .. e.... . . Criticality Limit based on Inservice hydrostatic test

. temperature (219 F) for the service period up to 45 EFPY 0 -~ - - . . . . . - . . . . . . . . . . . . .

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A7 11.13. Robinson Unit 2 Reactor Coolant System Ileatup limitations (lleatup Rates of 60 & 1 00°F/hr) Applicable for the First 45 EFPY (W'ilhout lMargins for Instrumentation Errors) Using 1996 App.G Mlethodology WCAP- 15827

A-17 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE W1 0201 1 & GIRTH WELD 10-273 LIMITING ART VALUES AT 45 EFPY: 114T, 170 0F & 2560 F 314T. 151F&'1850 F 2500 2250 2000 1750 PL 1500 6o 0

2 1250 P.

= 1000 U

750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A8 I.lB. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100F1hr) Applicable for the First 45 EFPY (Without Margins ror Instrumentation Errors) Using 1996 App.G Methodology WCAP-25827

  • A-18 TABLE A7 45 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertaintics for Instrumcntation Errors) 50 lleatup ISO Critical Uimit' 1 60 Ileatup 60 Critical Limit 100 lleatup 100 Critical LUmit T(OF2 PF)

P (psg)j T (F) Ppsig)

P (psi) T P (psid) V(FF) P T (F) r (pSig) T (F) P (pSrg) 60 0 219 0 60 0 219 0 60 0 219 0 60 708 219 708 60 692 219 692 60 629 219 629 65 708 219 708 65 692 219 693 65 629 219 630 70 708 219 710 70 692 219 693 70 629 219 630 75 708 219 713 75 692 219 695 75 629 219 632 80 708 219 713 80 692 219 695 80 629 219 632 85 708 219 719 85 692 219 700 85 629 219 636 90 708 219 719 90 692 219 706 90 629 219 636 95 708 219 726 95 692 219 706 95 629 219 641 100 710 219 726 100 692 219 714 100 629 219 641 105 713 219 736 105 693 219 714 105 629 219 648 110 719 219 736 110 695 219 725 110 629 219 648 1I5 726 219 747 225 700 219 725 15 629 219 657 120 736 219 747 120 706 219 736 120 629 219 657 125 747 219 760 125 714 219 736 125 629 219 668 130 760 219 775 130 725 219 750 130 630 219 668 135 775 219 792 135 736 219 750 135 632 219 681 140 792 219 811 140 750 219 766 140 636 219 681 145 811 219 832 145 766 219 784 145 641 219 696 ISO 832 219 856 l50 784 219 805 150 648 219 696 l55 856 219 883 l55 805 219 828 255 657 219

  • 713 160 883 219 913 160 828 219 %54 160 668 219 713 165 923 219 946 165 854 219 882 165 681 219 713 170 946 219 983 170 882 219 914 170 696 219 713 175 983 220 1024 175 914 220 950 175 713 220 733.

180 1024 225 1069 180 950 225 989 180 733 225 755 185 1069 230 1118 185 989 230 1033 185 755 230 780 190 1118 235 1174 190 1033 235 1081 190 780 235 808 195 1174 240 12.2 195 1081 240 1135 195 808 240 840 200 1234 245 1302 200 2235 245 1194 200 840 245 875 205 1302 250 1376 205 1194 250 1260 205 875 250 914 210 1376 255 1458 210 1260 255 1332 21D 914 255 957 2I5 1458 260 1549 225 1332 260 1412 215 957 260 1005 220 1549 265 1649 220 1412 265 2500 220 1005 265 1059 225 1649 270 1759 225 1500 270 I597 225 1059 270 ill8

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

A19 TABLEA7 - (Continued) 45 EFPY Ileatup Curve Data Points Using 1996 App. G (without Unccrtaintics for Instrumcntation Enors)

SD Ileatup 50 Critical Linit 60 Ileatup 60 Critical Limit 100 lleatup 100 Critical Limit T (F) P (psiz) T ( 0F) P (Psig) T (°F) P (psig) T (F) P (Psig) T (CF) P (psig) T (°F) P (PS1j) 230 1759 275 1881 230 1597 275 1705 230 1118 275 1183 235 1881 280 2015 235 1705 280 1823 235 1183 280 1255 240 2015 285 2164 240 1823 285 1954 240 1255 285 1335 245 2164 290 2279 245 1954 29() 2098 245 1335 290 1423 250 2279 295 2364 250 2098 295 2258 250 1423 295 1520 255 2364 300 2459 255 2258 300 2433 255 1520 300 1627 260 2459 260 2433 260 1627 305 1746 265 1746 310 1876 270 1876 315 2020 275 2020 320 2178 280 2178 325 2353 285 2353 Leak Test Limit Temp. 1200 239 I Pr 1 2000 2485 _

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Bolded Values nre Limited by the Circ. WVeld ART using Codc Case N-588.

WCAP-I5827

A.20 TABLE A8 45 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors)

SlendyState 20Pibr. 40'F/hr. I SO0 Fhr.* 60°Fthr. I 100°Fhr.

T(°F) I NP W T( rF)

IPCpsig)l T F) r (psig) T lF)I P psig) T 1°F) I P(psi) , T (1F)I P psig) 60 0 60 0 60 0 60 6 0 60 0 60 750 60 682 60 613 60 577 60 542 60 39S 65 755 65 688 65 618 65 583 65 548 65 403 70 761 70 694 70 625 70 590 70 555 70 411 75 767 75 700 75 632 75 598 75 563 75 421 80 774 80 708 80 640 80 600 80 572 80 432 85 782 85 716 85 649 85 6h5 85 581 85 444 90 790 90 725 90 659 90 626 90 592 90 458 95 799 95 735 95 670 95 638 95 605 95 473 100 810 100 746 100 683 100 650 100 618 100 490 10S 821 105 759 105 696 10S 665 105 6.4 105 510 110 834 773 110 712 110 681 110 652 Ito 531 215 847 125 788 215 728 215 699 2l5 670 11S 555 120 863 120 805 120 747 120 719 120 691 120 582 125 880 125 824 125 768 125 741 125 714 125 612 130 898 130 844 130 791 130 765 130 740 130 645 1.35 919 133 867 135 817 135 793 135 769 135 682 140 942 140 893 140 846 140 823 140 801 140 723 145 967 145 922 145 877 145 856 145 837 145 766 150 995 150 952 SO 912 l50 894 150 876 150 782 155 1026 155 987 155 951 2SS 935 155 920 155 800 160 1060 160 1025 160 994 160 980 160 968 160 820 165 1098 165 1067 165 IW02 165 1031 165 1022 165 844 170 1140 170 1114 170 1094 170 1087 170 1082 170 870 175 1186 175 1166 175 1253 175 1149 175 1148 175 899 180 1237 180 12223 180 1217 180 1217 180 1217 180 932 185 i1293 185 1286 185 1289 185 1293 185 1255 185 968 190 1355 190 1355 190 1355 190 1355 190 1287 190 1009 195 1424 195 1424 195 1424 195 1391 195 1323 195 1055 200 1500 200 1500 200 1496 200 1429 200 1362 200 1106 205 1384 205 1584 205 1535 205 1470 205 1406 205 1163 210 1677 210 2677 210 1578 210 1516 210 1455 210 1227 215 1779 215 1747 215 1626 215 1567 215 1509 215 1297 220 1893 220 1794 220 1679 220 1624 220 1570 220 1376 225 1959 225 1847 225 1739 225 1687 225 1637 225 1464 230 2011 230 1905 230 1804 230 1757 230 1711 230 1561 235 2068 235 1969 235 1877 235 1834 235 1794 235 1669 240 2131 240 2040 240 1958 240 1920 240 1885 240 1789 245 2201 245 2119 245 2047 245 2015 245 1987 245 1922 250 2279 250 2206 250 2146 250 2121 250 2100 250 2070 255 236 255 2303 255 2255 255 2238 255 2225 255 2225 260 2459 260 2410 I. 260 2377 260 2367 260 2363 260 2363

  • Shown by request of CP&L. This rate is not shown on the plot.

Bolded Values tire Limited by the Circ. Weld ART using Code Case N-588.

WCAP-1 5827

A.21 MIATERIAL PROPERTY BASIS MlING MATERIAL: UPPER SHELL PLATE W10201-1 & GIRTH WELD 10-273 LIMIrTNG ART VALUES AT S0 EFPY: 1/4T, 1720 F & 2630F 314T. 153*F& 191 0F 2500 2250 2000 1750

a. 1500 I-

'hu 1250 n.

2 1 000 la 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A9 I1.B. Robinson Unit 2 Reactor Coolant System Ilcatup Limitations (Ilcatup Rates or 0

60 & 1 0F/hr) Applicable for the First 50 EFPY (Without Mlargins for Instrumentation Errors) Using 1996 App.C Mlethodology WCAP-15827

A-22 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE W 10201-1 & GIRTH WELD 10-273 LIMITING ART VALUES ATS0 EFPY: 1/4T. 172°F& 263°F 3/4T, 153*F& 191°F 2500 *1 jOp1i0m Vehrlonf:.S Runf:19517 l 2250 4 UnacCeptable .. _. . _

2000 Operation -

Acceptable 1750 Operatlon aIL 1500-Cooldows /

i

0. 1250 sIte.ad-sItate I rL

.201

.401 U 1000 .10 Q

750 500-250. - - ... ._ _ Boltup Temp.

I 0' I

.- - - I- - - - - I 1 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A10 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 50 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Mcthodology WCAP-15827

  • A-23 TABLE A9 50 EFPY Hcatup Curve Data Points Using 1996 App. G (without Uncertainlics ror Instrumcntation Erfors) 50 lelatup' 150 Critical LimitT 60 Ileatup 60 Critical ULit I 100 Ilealup I100 Critical Umit T (°F) P (psig) T (IF) P (psig) I T (OF) P (p(p I T (IF)

(p -I T (F) r P (psigd T (OF) P (pstg) 60 0 221 0 60 0 221 0 60 0 221 0 60 704 221 704 60 688 221 688 60 625 221 625 65 704 221 704 65 688 221 689 65 625 221 625 70 704 221 706 70 688 221 689 70 625 221 627 75 704 221 709 75 688 221 691 75 625 221 627 80 704 221 709 80 688 221 691 80 625 221 630 85 701

  • 221 714 85 688 221 695 85 625 221 630 90 704 221 714 90 688 221 701 90 625 221 635 95 704 221 721 95 688 221 701 95 625 221 635 100 706 221 721 100 688 221 70 100 625 221 642 105 709 221 730 105 689 221 709 105 625 221 642 110 714 221 741 110 691 221 718 110 625 221 650 l15 721 221 741 115 695 221 718 115 625 221 650 120 730 221 753 120 701 221 730 120 625 221 661 125 741 221 753 125 709 221 743 125 625 221 661 130 753 221 767 130 718 221 743 130 625 221 673 135 767 221 783 135 730 221 758 135 627 221 673 140 783 221 802 140 743 221 758 140 630 221 687 145 802 221 822 145 758 221 775 145 635 221 687 150 822 221 845 lSO 775 221 795 lSO 642 221 703 155 845 221 871 155 795 221 817 155 650 221 703 160 871 221 900 160 817 221 842 160 661 221 703 165 900 221 932 165 842 221 869 165 673 221 722 170 932 221 967 170 869 221 9(X 170 687 221 722 175 967 221 1006 175 900 221 9.4 175 70. 221 722 180 1006 225 1049 180 934 225 972 180 722 225 743 185 1049 230 1097 185 972 230 1014 185 743 230 767 190 1097 235 1150 190 1014 235 1060 190 767 235 794 195 115O 240 1208 195 1060 24D 1112 195 794 240 824 200 1208 245 1273 200 1112 245 1169 200 824 245 858 205 1273 250 1344 205 1169 250 1231 205 858 250 895 210 1344 255 1423 210 1231 255 1301 210 895 255 937 215 1423 260 1510 215 1301 260 1378 215 937 260 983 220 1510 265 1606 220 1378 265 1462 220 983 265 1W0 225 1606 270 1712 225 1462 270 1556 225 1034 270 1091 230 1712 275 1829 230 1556 275 1659 230 1091 275 1153 235 1829 280 1958 235 1659 280 1773 235 1153 I 280 1223 Shown by request of CP&L. This ratc is not shown on the plot.

WCAP-15827

I A-24 TABLE A9 - (Continued) 50 EFPY Hleatup Curve Data Points Using 1996 App. G (without Uncertaintits for Instrumentation Errors) 50 Ileatup' 50 Critical Linuit 60 Ileatup 60 Critical Limit 100 lecatup 100 Critical Limit T (0F) P (psig) T (IF) P (psig) T (OF) P (psig) T (IF) P (psir) T (OF) P ipsg) T (OF) P (psi?)

240 1958 285 2101 240 1773 285 1898 240 1223 285 1299 245 2101 290 2173 245 1898 290 2037 245 1299 290 1384 2S0 2173 295 2247 250 2037 295 2190 250 1384 295 1477 255 2247 30 2329 255 2190 300 2329 255 1477 3100 1580 260 2329 305 2420 260 2329 305 2420 260 1580 305 1693 265 2420 265 2420 265 1693 310 1819 270 1819 315 1957 275 1957 320 2109 280 2109 325 2276 285 2276 330 2461 290 2461

________________ 3/4

________________ ><'.4..MH , ,.. '.cfi-..-.It.. at,.. ajE... ..... ..

Leak Test Limit Temp. 202 221 Press. 2000 2485 ,

Shown by requcst of CP&L This rate is not shown on the plot.

"* Bolded Values are Limited by the Circ. Weld ART using Code Case N-588.

WCAP 15827

A-25 TABLEAIO 50 EFPY Cooldown Curve Data Points Using 1996 App. G (withoui Unccrtaintics for Instrumcntation Errors)

Stesdz State I 20°F/hr. 40°Fihr. 50IF/hr.* 60°F/hr. IDO0 Ffir.

T (°F) I r (psig) IT (F) (pstg ) I T rF(psg T (OF) I PW (pig) IT (IF) P (psig) T (OF) P (pig) 60 0 60 0 60 0 60 0 60 0 60 0 60 748 60 680 60 610 60 575 60 539 60 392 65 753 65 685 65 616 65 581 65 545 65 399 70 758 70 691 70 622 70 587 70 552 70 407 75 764 75 697 75 629 75 594 75 559 75 416 80 771 80 704 80 637 80 602 80 568 80 427 85 778 85 712 85 645 85 611 85 577 85 438 90 787 90 721 90 655 90 621 90 587 90 459 95 795 95 731 95 665 95 632 95 599 95 466 100 805 100 742 100 677 100 645 100 612 100 483 105 816 105 754 105 690 10S 659 105 627 105 501 110 828 110 767 110 705 110 674 110 643 110 522 115 842 115 781 'l5 721 115 691 llS 661 115 545 120 856 120 798 120 739 120 710 120 682 120 570 125 873 125 8916 125 759 125 732 125 704 125 599 130 891 130 836 130 782 130 755 130 729 130 631 135 911 135 858 135 806 135 781 135 757 135 666 140 933 140 882 140 8.34 140 810 140 787 140 706 145 957 145 909 145 864 145 842 *145 822 145 742 150 984 lSO 939 150 898 150 878 150 859 150 755 155 1013 155 972 155 935 155 918 l55 902 155 770 160 1046 160 1009 160 976 160 961 160 948 160 788 165 1082 165 1050 165 1022 165 1010 165 1000 165 807 170 1123 170 1095 170 1073 170 1064 170 1057 170 830 175 1167 175 1144 175 1129 175 1124 175 1121 175 854 180 1216 180 1199 180 1191 180 1190 180 1189 180 882 185 1270 185 1260 185 1260 185 1263 185 1213 185 914 190 1330 190 1328 190 1328 190 1315 190 1241 190 949 195 1396 195 1396 195 1396 195 1343 195 1271 195 988 200 1469 200 1469 200 1446 200 1376 200 1305 200 1032 205 1549 205 1549 205 1480 205 1411 205 1343 205 1082 210 1638 210 1638_ 210 1517 210 1451 210 1386 210 1136 215 1737 215 1687 215 1559 215 1495 215 1433 215 1197 220 1846 220 1728 220 1605 220 1544 220 1485 220 1265 225 1895 225 1774 225 1656 225 1599 225 1543 225 1341 230 1940 230 1824 230 1713 230 1659 230 1607 230 1425 235 1990 235 1880 235 1776 235 1726 235 1679 235 1519 240 2045 240 1942 240 1846 240 1801 240 1758 240 1623 245 2105 245 2010 245 1923 245 1883 245 1846 24S 1738 250 2173 250 2086 250 2009 250 1975 250 1944 250 1866 255 2247 255 2170 255 2104 255 2076 255 2052 255 2008 260 2329 260 2263 260 2209 260 2188 260 2172 260 2166 265 2420 265 2365 265 2326 265 2313 265 2305 265 2305 270 2479 270 2455 270 2451 270 2451 _ _

270 2451 Shown by request orCP&L This rate is not shown on the plot.

Bolded Values are Limited by the Circ. Weld ART using Code Case N-588.

WCAP- I5827

13-1 Table B I ti. B. Robinson Vessel Temperatures for Cooldown 50 'F/hr. Cooldown 100 1Thr. Cooldown inncr Wall 1/4T Wall 3t4T Wall Ouisidc Inner Wall 114T Wall 34T Wall Outside Temp. (F) Temp. (F) Temp. (OF) Wall Tcmp. Temp. (l) Temp. ('F) Temp. ('F) Wall Temp.

. _ _ (OF) (°F) 550.0 550.0 550.0 550.0 550.0 550.0 550.0 550.0 545.0 548.8 549.9 550.0 545.0 549.4 550.0 550.0 540.0 546.0 549.5 549.7 540.0 5474 549.9 550.0 535.0 542.7 548.6 549.1 535.0 544.7 549.6 549.9 530.0 539.2 547.1 547.8 530.0 541.9 549.1 549.5 525.0 535.5 545.1 546.1 525.0 538.7 548.2 549.0 520.0 531.6 542.7 543.9 520.0 5354A 547.1 548.2 515.0 527.5 539.9 541.3 515.0 531.9 545.7 547.0 510.0 523.4 536.8 538.4 510.0 528A 544.1 545.6 505.0 519.0 533A 535.1 505.0 524.7 542.2 544.0 500.0 514.6 529.8 531.6 500.0 520.9 540.1 542.1 495.0 510.1 526.0 527.9 495.0 517.0 537.7 540.0 490.0 505.6 522.1 524.0 490.0 513.1 535.2 537.7 485.0 500.9 517.9 520.0 485.0 509.0 532.5 535.1 480.0 496.2 513.7 515.8 480.0 504.9 529.6 532A 475.0 491.5 509.3 51IA4 475.0 500.7 526.6 529.5 470.0 486.7 504.8 507.0 470.0 496.5 523.4 526.5 465.0 481.9 500.2 502.5 465.0 492.2 520.1 523.3 460.0 477.0 495.6 497.8 460.0 487.8 516.6 520.0 455.0 472.1 490.8 493.2 455.0 483A 513.0 516.5 450.0 467.2 486.1 488.3 450.0 479.0 509.4 512.9 445.0 462.3 4813 483.6 445.0 474.5 5055 509.2 440.0 457A 476.4 478.8 440.0 469.9 501.6 505A 435.0 452A 471.5 473.9 435.0 465.3 497.6 501.5 430.0 447A 466.6 469.0 430.0 460.7 493.5 497.5 425.0 442A 461.7 464.0 425.0 456.0 489.4 493A 420.0 437A 456.7 459.1 420.0 451.4 4MA.1 489.2 415.0 432.4 451.7 454.1 415.0 446.6 4R0.8 485.0 410.0 427.4 446.7 449.0 410.0 441.9 476.5 480.6 405.0 422.4 441.7 444.0 405.0 437.1 472.0 476.3 400.0 417A 436.6 439.0 400.0 432.3 467.5 471.8 395.0 412A 431.6 433.9 395.0 427.5 463.0 467.3 390.0 407.3 426.5 428.9 390.0 422.7 458.4 462.8 3X85.0 4023 421A 423.8 385.0 417.8 453.7 458.1 380.0 3973 416A 418.7 380.0 412.9 449.1 453.5 375.0 392.2 411.3 413.6 375.0 408.0 444.4 448.8 370.0 387.2 406.2 408.5 370.0 403.1 439.6 444.0

.365.0 382.1 401.1 403A 365.0 398.2 434.8 439.3 360.0 377.1 396.0 398.3 360.0 393.3 430.0 434.5 355.0 372.0 390.9 393.2 355.0 388.3 425.1 429.7 350.0 367.0 385.8 388.1 350.0 383.4 420.3 424.8 345.0 361.9 380.7 383.0 145.0 378.4 415.3 420.0 340.0 356.9 375.6 1 377.9 3400 373.4 410.4 415.0 335.0 351.8 3705 372.8 335.0 36RA 405.5 410.0 330.0 346.8 365A ' 367.7 330.0 363.4 400.5 405.0 325.0 341.7 360.3 362.6 325.0 358.4 395.5 400.1 320.0 336.7 355.2 j 357.5 320.0 353.4 390.5 385.0 315.0 331.6 350.1 352.3 315.0 348.4 385.5 390.0 WCAP-15827

1-2 310.0 326.6 345.0 347.2 310.0 343.3 380.4 385.0 305.0 321.5 339.8 342.1 305.0 338.3 375.4 379.9 300.0 316.5 3.34.7 337.0 300.0 333.3 370.3 374.8 295.0 311.4 329.6 331.9 295.0 328.2 365.2 369.8 290.0 306A 324.5 326.7 290.0 323.2 360.1 364.7 285.0 301.3 319.4 321.6 285.0 318.1 355.0 359.5 280.0 296.3 314.3 316.5 280.0 313.1 349.9 354A 275.0 291.2 3092 311.4 275.0 308.0 344.7 349.3 270.0 286.2 304.1 306.3 270.0 302.9 339.6 344.2 265.0 281.1 299.0 301.4 265.0 297.9 334.5 339.0 260.0 276.1 293.8 296.0 260.0 292.8 329.3 333.9 255.0 271.0 288.7 290.9 255.0 287.7 324.2 328.7 250.0 266.0 283.6 285.8 250.0 282.6 319.0 323.5 245.0 260.9 278.5 280.7 245.0 277.6 313.9 318.3 240.0 255.9 273.4 275.6 240.0 272.5 308.7 313.2 235.0 250.8 2683 270.4 235.0 267A 303.5 308.0 230.0 245.7 263.2 265.3 230.0 262.3 298.3 302.8 225.0 240.7 258.1 260.2 225.0 257.2 293.2 297.6 220.0 235.6 253.0 255.1 220.0 252.1 288.0 292.4 215.0 230.6 247.8 250.0 215.0 247.0 282.8 287.2 210.0 225.5 242.7 244.8 210.0 241.9 277.6 282.0 205.0 220.5 237.6 239.7 205.0 236.8 272.4 276.8 200.0 215.4 232.5 2.34.6 200.0 231.8 267.2 271.6 195.0 . 210.4 227A 229.5 195.0 226.7 262.0 266.4 190.0 205.3 222.3 224.4 190.0 221.6 256.8 261.1 185.0 20X).3 217.2 219.3 185.0 216.5 251.6 255.9 180.0 195.2 212.1 234.2 180.0 2114A 246.4 250.7 175.0 190.2 207.0 209.0 175.0 206.3 241.2 245.5 170.0 185.1 201.9 203.9 170.0 201.2 236.0 240.3 165.0 180.1 196.7 198.8 165.0 196.1 230.7 235.0 360.0 175.0 191.6 193.7 160.0 191.0 225.5 229.8 355.0 170.0 1865 188.6 155.0 185.9 220.3 224.6 350.o 164.9 181.A 183.5 150.0 380.8 215.1 219A 145.0 159.9 176.3 178.3 145.0 175.7 210.0 214.1 140.0 154.8 171.2 173.2 140.0 170.6 204.7 208.9 135.0 149.8 166.1 168.1 135.0 165.5 199.5 203.7 130.0 144.7 161.0 163.0 130.0 160.4 194.3 198.4 125.0 139.7 155.9 157.9 125.0 155.3 189.0 193.2 120.0 134.6 150.8 152.8 120.0 150.2 183.8 188.0 115.0 129.6 145.7 147.7 115.0 145.1 178.6 182.7 310.0 124.5 140.6 142.5 110.0 140.0 173A 177.5 305.0 119.5 135.5 137.4 105.0 134.9 168.2 172.3 I(X).0 134.4 130A 132.3 100.0 329.8 162.9 167.1 95.0 109.4 1253 127.2 95.0 124.7 157.7 161.2 90.0 104.3 120.1 122.1 90.0 119.6 152.5 156.6 85.0 99.3 115.0 117.0 85.0 314.5 147.3 151.4 80.0 94.2 330.0 119.9 80.0 109.3 142.1 146.1 75.0 89.2 INW.8 106.8 75.0 104.2 136.9 140.9 70.0 84.1 99.7 101.6 70.0 99.1 131.6 135.7 65.0 79.1 94.6 96.5 65.0 94.0 126.4 130.4 60.0 74.0 89.5 91.A 60.0 88.9 121.2 125.2 WCAP-15827

B-3 Table B2 II. B. Robinson Vessel Temperatures for Heatup SD °Flh leutfup . 10 F/hr. Heatup Inner Wall 114T Wall 314T Wall Oulsidc Inner Wall 114T Wall 3/4T Wall Outside Temp. (IF) Temp. (IF) Temp. (IF) Wall Temp. Temp. (IF) Temp. (°F) Temp. (°F) Wall Temp.

__(O) (OF) 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 60.0 56.4 55.1 55.1 60.0 55.9 55.0 55.0 65.0 59.7 55.8 55.5 65.0 58.2 55.2 55.1 70.0 63.1 57.2 56.6 70.0 61.2 55.7 55A 75.0 66.9 59.3 58.5 75.0 64.3 56.6 56.0 80.0 70.9 62.0 61.0 80.0 67.7 57.9 57.0 85.0 75.0 65.0 63.9 85.0 71.2 59.5 58.4 90.0 79.3 68A 67.2 90.0 74.9 61.5 60.1 95.0 83.8 72.1 1 70.6 95.0 78.7 63.7 62.1 100.0 88.3 76.1 j 74.6 100.0 82.7 66.2 64.4 105.0 92.9 80.2 78.6 105.0 86.7 69.0 67.0 110.0 97.6 84A 82.8 110.0 90.8 71.9 69.8 115.0 102.3 88.8 87.2 115.0 95.0 75.1 72.8 120.0 107.1 93.3 91.6 120.0 99.2 78A 75.9 125.0 111.9 97.8 96.1 125.0 103.6 81.8 79.3 130.0 116.7 102.4 100.7 130.0 108.0 85A 82.8 135.0 121.6 107.1 105.3 135.0 112.4 89.1 86.4 140.0 126.4 111.8 110.0 140.0 116.9 . 92.9 90.1 145.0 1313 116.5 114.7 145.0 121.A 96.8 93.9 150.0 136.2 121.3 119.5 150.0 126.0 100.8 97.9 155.0 141.1 126.1 124.3 155.0 130.6 104.9 101.9 160.0 146.0 130.9 129.1 160.0 135.2 109.1 106.0 165.0 151.0 135.8 133.9 165.0 139.8 113.3 110.1 170.0 155.9 140.6 138.7 170.0 144.5 117.6 114.4 175.0 160.8 145.5 143.6 175.0 149.2 121.9 118.6 180.0 165.8 150.3 148A 180.0 153.9 126.3 123.0 185.0 170.7 155.2 - 153.3 185.0 158.7 130.7 127.3 190.0 175.6 160.1 158.2 190.0 163A 135.2 131.8 195.0 180.6 164.9 163.0 195.0 168.2 139.7 136.2 200.0 185.5 169.8 167.9 200.0 173.0 144.2 140.7 205.0 190.5 174.7 172.8 205.0 177.8 148.7 145.2 210.0 195A 179.6 177.7 210.0 182.6 153.3 149.8 215.0 200.4 184.5 182.6 215.0 187A 157.9 154.3 220.0 205.3 189.4 187.5 220.0 192.2 162.5 158.9 225.0 210.3 194.3 192.3 225.0 197.1 167.1 163.5 230.0 215.2 199.2 197.2 230.0 201.9 171.8 168.1 235.0 220.2 204.1 202.1 235.0 206.7 176.4 172.8 240.0 225.1 209.0 207.0 240.0 211.6 181.1 177A 245.0 230.1 213.9 211.9 245.0 216.5 185.8 182.1 250.0 235.0 218.8 216.8 250.0 221.3 190.5 186.8 255.0 240.0 223.7 221.7 255.0 226.2 195.2 191S5 260.0 244.9 228.6 226.6 260.0 231.1 199.9 196.2 265.0 249.9 233.5 231.5 265.0 235.9 204.7 200.9 270.0 254.8 238.4 236.3 270.0 240.8 209.4 205.6 275.0 259.8 243.3 241.2 275.0 24S _ 214.1 210.3 280.0 264.7 248.1 246.1 280.0 250.6 218.9 215.1 285.0 269.7 253.0 251.0 285.0 255A 223.6 219.8 290.0 274.6 257.9 255.9 290.0 260.3 228.4 224.5 295.0 279.6 262.8 260.8 295.0 265.2 233.2 229.3 WCAP-15827

14 300.0 284.5 267.7 265.7 300.0 270.1 237.9 234.0 305.0 289.5 272.6 270.6 305.0 275.0 242.7 238.8 310.0 294A 277.5 275.5 310.0 279.9 247.5 243.5 315.0 299.4 282.4 280.4 315.0 284.8 252.2 248.3 320.0 304.3 287.3 285.3 320.0 289.7 257.0 253.1 325.0 309.3 292.2 290.1 325.0 294.6 261.8 257.8 330.0 314.2 297.1 295.0 330.0 299.5 266.6 262.6 335.0 319.2 302.0 299.9 335.0 304.3 271.3 267.4 340.0 324.1 306.9 304.8 340.0 309.2 276.1 272.1 345.0 329.1 311.8 309.7 .345.0 314.1 280.9 276.9 350.0 334.0 316.7 314.6 350.0 319.0 285.7 281.7 355.0 339.0 321.6 319.5 355.0 323.9 290.5 286.4 360.0 343.9 326.5 324A 360.0 328.8 295.3 291.2 365.0 348.9 331 A 329.3 365.0 333.7 300.1 296.0 370.0 353.8 336.3 3.W.1 - 370.0 338.6 304.9 300.8 375.0 358.8 341.2 339.0 375.0 343.5 309.6 305.5 380.0 363.7 346.1 343.9 380.0 348.4 314A 310.3 385.0 368.7 351.0 .348.8 385.0 353.3 319.2 315.1 390.0 373.6 355.9 353.7 390.0 358.2 324.0 319.9 395.0 378.6 360.8 358.6 395.0 363.1 328.8 324.7 400.0 383.5 365.7 363.5 400.0 368.0 333.6 329.4 405.0 388.5 370.5 368A 405.0 372.9 33.A 334.2 410.0 393.4 375A 373.2 410.0 377.8 343.2 339.0 415.0 398A 380.3 378.1 415.0 382.7 348.0 343.8 420.0 403.3 385.2 383.0 420.0 387.6 352.8 348.5 425.0 408.3 390.1 387.9 425.0 392.5 357.6 3533 430.0 413.2 395.0 392.8 430.0 397.4 362A 358.1 435.0 418.2 399.9 397.7 435.0 402.3 367.1 362.9 440.0 423.1 404.8 402.6 440.0 407.2 371.9 367.7 445.0 428.1 409.7 407.5 445.0 412.1 376.7 372A 450.0 433.0 414.6 412.3 450.0 417.0 381.5 377.2 455.0 438.0 419.5 417.2 455.0 421.9 386.3 382.0 460.0 442.9 424A 422.1 460.0 426.8 391.1 386.8 465.0 447.9 429.3 427.0 465.0 431.7 395.9 391.6 470.0 452.8 434.1 431.9 470.0 436.6 400.7 3963 475.0 457.8 439.0 436.8 475.0 441.5 405.5 401.1 480.0 462.7 443.9 441.6 480.0 446.4 410.3 405.9 485.0 467.7 448.8 4465 485.0 4513 415.1 410.7 490.0 472.6 453.7 451A 490.0 456.2 419.9 415.5 495.0 477.6 458.6 456.3 495.0 461.1 424.6 420.2 500.0 482.5 463.5 461.2 500.0 466.0 429.4 425.0 505.0 487.5 468.4 466.1 505.0 470.9 434.2 429.8 510.0 492A 473.3 470.9 510.0 475.8 439.0 434.6 515.0 497.3 478.2 475.8 515.0 480.7 443.8 439.3 520.0 502.3 483.0 480.7 520.0 485.6 448.6 444.1 525.0 507.2 487.9 485.6 525.0 4903 453A 448.9 530.0 512.2 492.8 490.5 530.0 495A 4582 453.7 535.0 517.1 497.7 495A 535.0 500.3 463.0 458A 540.0 522.1 502.6 500.2 540.0 505.2 467.7 463.2 545.0 527.0 507.5 505.1 545.0 510.1 472.5 468.0 550.0 532.0 512A 510.0 550.0 515.0 4773 472.8 WCAP-15827