NRC-95-4514, Provides Results of AP600 LBLOCA Calculations Using Wcobra/Trac Computer Code
| ML20086P472 | |
| Person / Time | |
|---|---|
| Site: | 05200003 |
| Issue date: | 07/20/1995 |
| From: | Liparulo N WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | Quay T NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| References | |
| NTD-NRC-95-4514, NUDOCS 9507270022 | |
| Download: ML20086P472 (75) | |
Text
- __________
f%
Westinghouse Energy Systems Box 355 Pittstergh Pennsylvania 15230-0355 Electric Corporation NTD-NRC-95-4514 DCP/NRC0367 Docket No.: STN-52-003 July 20,1995 Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555 1
ATTENTION:
MR. T. R. QUAY
SUBJECT:
AP600 WCOBRA/ TRAC LARGE BREAK LOCA CODE RESULTS
Dear Mr. Quay:
During a March 8,1995, meeting between Westinghouse, NRC staff and NRC contractors to discuss AP600 computer code modeling, a request was made for additional information on the results of AP600 LBLOCA calculations using the WCOBRA/ TRAC computer code. The information was requested to support activities being performed by INEL (Brent Boyack). Enclosed is the requested l
}
additional information for a DECLG break using a CD=0.8.
l.
Please contact Brian A. McIntyre on (412) 374-4334 if you have any questions concerning this l.
transmittal.
I I~
l
/C N. J. Liparulo, Manager l
Nuclear Safety Regulatory And Licensing Activities
/nja Enclosure t
cc:
K. Coyne, NRC (IEl)
B. Boyack, INEL (IEl)
B. A. McIntyre, Westinghouse (w/o Enclosures / Attachments) l I
e l
r7C008 0
0}
2"'^
9507270022 950720 PDR ADOCK 05200003 A
PDR 1,
Figure Ib. CD=0.8 DECIA Break Transient Top of Core Flows for Peripheral LP Channel FLM 24 15 0 L10 AXIAL MASS FLOW
FGM 24 15 0 VAP AXIAL MASS FLOW FEM 24 15 0 ENT AXlAL MASS FLOW 6000 i
4000 G
2000 a
A^d ^ ^
A 0
, v
-2000
-4000
-20 0
20 40 60 80 100 Time (Seconds)
Figure 2b. CD=0.8 DECID Break Transient Top of Core Flows for OH/SC channel FLM 25 15 0 LIO AXIAL MASS FLOW
FGM 25 15 0 VAP AXIAL MASS FLOW FEM 25 15 0 ENT AX1AL MASS FLOW 8000 me 6000 E 4000 E
[2000 2
b T'A g
0 p
_g-
-f
-2000
-4000
-20 0
20 40 60 80 100 Time (Seconds)
Figure 3b. CD=0.8 DECIE Break Transient Top of Core Flows for Guide Tube channel P
P FLM 26 15 0 L10 AXIAL MASS FLOW
FGM 26 15 0 VAP AXIAL MASS FLOW
FEM 26 15 0 ENT AXIAL MASS FLOW 10000 t
8000
\\_
6000 -
g M 4000 3
y h2000 E
~
$1 1
W 0
-2000
-4000
-20 0
20 40 60 80 100 Time (Seconds) i
F1gure 4b. CD=0.8 DECIA Break Transient Top of Core Flows for Hot Assembly channel P
P f
FLM 27 15 0 LIO AXIAL MASS FLOW
FGM 27 15 0 VAP AXIAL MASS FLOW FEM 27 15 0 ENT AXlAL MASS FLOW 150 4
e 100 sa
=
k
~
[^')
g 6
e 6
-50 i
e W
-100
-20 0
20 40 60 80 100 Time (Seconds)
f Figure 5b. CD=0.8 DECLG Break Transient Bottom of Core Flows for Peripheral LP Channel I
FLM 24 2
0 LIO AXIAL MASS FLOW
FGM 24 2
0 VAP AXIAL MASS FLOW FEM 24 2
0 ENT AX1AL MASS FLOW 6000 4000 G
N 2000 i
Q f
ff [A
,g h 3
r 0
w
}t
,J /yv Y_
~2000
~
l
-4000
-20 0
20 40 60 80 100 Time (Seconds)
Figure 6b. CD=0.8 DECIA Break Transient Bottom of Core Flows for OH/SC channel FLM 25 2
0 LIO AXlAL MASS FLOW
FGM 25 2
0 VAP AXtAL MASS FLOW FEM 25 2
0 ENT AXlAL MASS FLOW i
8000 6000 l
I 4000 6
N N
I l
8 2000 f
b l
0
- I A-AJ M 4 ' d,
- f~
'llt
/gV" v"
3 l
-2000 3
-4000 l
-6000 f
-20 0
20 40 60 60 100 Thne (Seconds)
{
Figure 7b. CD=0 8 DECIA Break Transient Bottom of Core Flows for Guide Tube channel i
i FLM 26 2
0 L10 AXIAL MASS FLOW FGM 26 2
0 VAP AXIAL MASS FLOW
FEM 26 2
0 ENT AXlAL MASS FLOW 10000 8000 6000 o
k4000 3
3
[2000 E
4W I Il l AL. iJ.M 0
in zu y-7 jqy-i l
-2000 y
-4000
~
-6000
-20 0
20 40 60 80 100 Time (Seconds) i
l i
Fjgure 8b. CD=0.8 DECLG Break Transient Bcttom of Core Flows for Hot Assembly channel FLM 27 2
0 LIO AXlAL MASS FLOW
FGM 27 2
0 VAP AXIAL MASS FLOW
TEM 27 2
0 ENT AXlAL MASS FLOW 150 e
O e
100 gi O
~
g 50 g
4r fk._aJ A/
,' - r
'u I m 0
3 I
\\
M
-50 e
6
-100
-20 0
20 40 60 80 100 Time (Seconds) i
Figura 9 CD=0.8 DECLG Break Transient Mass Flows From Upper Head Through Guide Tubes FLM 59 2
0 LIO AXIAL MASS FLOW
FGM 59 2
0 VAP AXIAL MASS FLOW
FEM 59 2
0 ENT AXlAL MASS FLOW i
500 0
4,. -
s u -500 k
2-S
[-1000 2
-1500 I
-2000 t
i
-2500 l
-20 0
20 40 60 80 100 Time (Seconds)
1 Figure 10 CD=0 8 DECLG Break Transient Mass Flow Through Upper Head Drain Holes 4
FLM 58 3
0 LIO AXIAL MASS FLOW i
FGM 58 3
0 VAP AXIAL MASS FLOW FEM 58 3
0 ENT AXlAL MASS FLOW i
500 0
s, y
g g -500 s
~
-1000
~
- s
-1500 U
t
-2000
-20 0
20 40 60 80 100 Time (Seconds)
Figure 11. CD=0 8 DECLG Break Transient Mass Flow Through Downcomer Spray Cooling Holes FLM 74 1
0 LIO AXIAL MASS FLOW
FGM 74 1
0 VAP AXIAL MASS FLOW
FEM 74 1
0 ENT AXlAL MASS FLOW 300 e
4 4
200 4
4 l
E 100 i
5 0
/
-100 4
\\
-200
-300
-20 0
20 40 60 80 100 Time (Seconds)
Figure 12 CD=08 DECLG Break Transient Hot Rod Cladding Temperatures TCLAD 1
1 1 ELEV.
.00 FT.
TCLAD 1
27 1 ELEV.
3.95 FT.
TCLAD 1
54 1 ELEV.
8.05 FT.
' ---TCLAD 1
80 1 ELEV.
12 00 FT.
1600 1400 j\\
j
\\.
I i
1200 C
\\
l y
i 5
1 1000 llu s I
\\\\
l I
800 I
q-\\/1 I I!
-v~
i i
i l ill
/
i l
I 600 s
i J
'-i,-
I/t i
g-0
~~ \\ ' "
400 Y
' 'n
'I l f. -
\\ /
Il t/
b
=-~
200
-20 0
20 40 60 80 100 Time (Seconds) t P
b
r-1 Figure 13. CD=08 DEC14 Break Transient Hot Assembly Rod Cladding Temperatures j
e TCLAD 2
1 1 ELEV.
00 FT.
TCLAD 2
27 1 ELEV.
3.95 FT.
TCLAD 2
54 1 ELEV.
8.05 FT.
---TCLAD 2
80 1 ELEV.
12.00 FT.
1600 me 6
.e 1400
.i\\.
fs I
1200 E
i F
f I
1 1000 l800
! // l \\ !
l I!
l
- l^
jf}',!-
. s.~ ~' '
1 j
g
'_2 j lI!
l
(/-
I y ' '(
600
./f'1f '\\y t l-7 V
' ^ -
400
/ _'_ L fI
~
i,,
200
-20 0
20 40 60 80 100 Time (Seconds)
I 1
.)
i t
Fipre 14 CD=0 8 DECLG Break Transient l
OH/SC Channel Puel Rod Cladding Temperatures TCLAD 3
1 1 ELEV.
00 FT.
TCLAD 3
27 1 ELEV.
3.95 FT.
TCLA0 3
54 1 ELEV.
8 05 FT.
---TCLAD 3
80 1 ELEV.
12.00 FT.
1000
^
. r.
800 I/j li l r
it i
y
~
['
llt g _ =.=
000 3*.,
4*
, 'yti
./
1
(\\
/
r\\
.s
/
/
/,#
\\
\\
M 400 r
m i
n/ 1 i
~
\\ s W <>
==
~~
m m. M _w-200
~
m m
e 0
-20 0
20 40 60 80 100 Time (Seconds) 2 1
1
Figure 15. CD=0.8 DECLG Break Transient Guide Tube Channel Fuel Rod Cladding Temperatures 1
TCLAD 4
1 1 ELEV.
00 FT.
TCLAD 4
27 1 ELEV.
3.95 FT.
- - -.- T C L A D 4
54 1 ELEV.
8.05 FT.
---TCLAD 4
80 1 ELEV.
12.00 FT.
i 1000 G
e 800
!i t-l \\
E I !
i.A!
y
-~~
g 600 i
.- t{ (1-
~
e-
/
/
l
\\
- f 1
/A1 it u
\\
400 f
,p i
o
\\r I
N-P I
N r ~g % _ -. ~%_
~
l
~
n-l 200 l
0
-20 0
20 40 60 80 100 Time (Seconds) l l
i l
^
l
)
i l
1
l Fipura 16 CD=0.8 DECLG Break Transient Iow Power Channel Fuel Rod Cladding Temperatures i
P TCLAD 5
1 1 ELEV.
00 FT.
TCLAD 5
27 1 ELEV.
3.95 FT.
1
-.-.-.- T C L A D 5
54' 1 ELEV.
8.05 FT.
---TCLAD 5
80 1 ELEV.
12 00 FT.
800 e
700 F
e e
600 e.m.___
-=
5
~
~~
1 500 i
l300
( '/
)'
l
~
\\
- " /
.1l I
400
,.S
./
t t
%' 'm nk - '--"
~,_,
200
~
4
~
100
-20 0
20 40 60 80 100 Time (Seconds)
l Pipure 17. CD=0.8 DECLG Break Transient Peak Cladding Temperature Among All Fuel Rods PCT 0
0 0 PEAK CLAD TEMP.
1600 1400 e
1200 E
r i
1 1000 1
M I
/
000 q
i
\\
400 200
-20 0
20 40 60 80 100 Time (Seconds) l 1
Pigure 18 CD=0.8 DECLG Break Transient Peak Cladding Temperature location
- ~ ~
PCT-LOC 0
0 0 PEAK CLAD TEMP LOC 12 10 m
M t
J E
sc s!
4
~
1 2
P9p 0
-20 0
20 40 60 80 100 Time (Seconds)
Fipre 19 CD=0 8 DECLG Break Transient
~
Iow Power Channel Void Fractions AL 24 2
0 0.33 ft core elevati
AL 24 6
0 3.70 ft core elevati
AL 24 11 0 7.97 ft core elevati
---AL 24 15 0 11.47 ft core elevat (l
- l ifl.
l I
A I I!
l k3 d\\
l l
I t
- k. 5 f, I ' gi l[I Ih 'lb g/ f ' j HW i H ill,
j d'
6 i:
h l
l II i !
E P
llla il
[iyi I"
!I l
e i
i" R
4 i'
I i j ji I'
~
l g li ll
~
l l ll 'I
!II g
- 2 i
l la ',6 sg I
i,i Isl ll i
gt i l l
1
,g g~~"'y, ',
fi il 1
I 7
0
-20 0
20 40 60 80 100 Time (Seconds)
Fip' ire 20 CD=0 8 DECLG Break Transient OH/SC Channel Void Fractions I
i i
i A L' 25 2
0 0.33 ft core elevoti
AL 25 6
0 3.70 ft core elevoti
AL 25 11 0 7.97 ft core elevati
---AL 25 15 0 11 47 ft core elevat 1
[
',,' I I.h M '
S
$a aY[iM t
'f '(W I.,.'j
' \\'
/
' ll l
l N
11, i
j Il lt i
ll l l i
- no
.6 jf I
il ll II i 11 I;!
}
l U lI II.
I go
,4 Il
' If' I ll p !.
I
'i it
- lg
- I..a l
i Il l ll (l
e ig
~
l llI i l
2 l
I ilIg
- I I l
l il Ij gl
~
1[Li s
'l.
l
,,_a.
a
-20 0
20 40 60 80 100 Time (Seconds) i 1
Figure 21 CD=0 8 DECLG Break Transient Guide Tube Channel Void Fractions AL 26 2
0 0.33 ft core elevati
AL 26 6
0 3.70 ft core elevoti
AL 26 11 0 7.97 ft core elevati
---AL 26 15 0 11.47 ft core elevat 1
y
'{
t I'l h&
j V n
rlii/
i l0 lii h}d i
l Il en!
b n
V,a l
'/ (il llll 1
8 -lpjl. I riti n.
1 l
ll l ' t 'll k;
llll i!,!
i l'
I v
Il l i
1 jl i
'I '
I 5
.6 II Il l %
- l. )i g
i ll l li k/
!ji i
2 ti I ii ti 9
~
I I 'l Ir.
i o
4
- "i i
i ili vi i
/j
'll ii ll l I Jg 11 I il
'l p
'2 it l l1 I
11 l11 lli I li Il i11 l
I f gli ll
~-
^ ^ " ' '
0
-20 0
20 40 60 80 100 Time (Seconds) l l
Figure 22 CD=0.8 DECLG Break Transient Hot Assembly Channel Void Fractions AL 27 2
0 0.33 ft core elevati
AL 27 6
0 3.70 ft core elevati
-.-.--AL 27 11 0 7.97 ft core eIevati
--.AL 27 15 0 11.47 ft core elevat f
l
\\ $
\\
YP \\
f
\\
g 'l,;
j!
\\ b l\\-
I
^
l l
I 4j 1-r l
-Il in a M;Y,.
y\\/
l I I it' lIll 8
in ipwp s,
!f 11 1
't I
J
~
1 Lh ll I I.
v
l
'N E
.a
'ij!
ll!
e e llI
- l. f ui S
~
III i
i g
4
- i i
e ll!j Il II l
1 ll ' 'i 2
~
il ' gi l',i I
I l gl, I ;l
'I gin l I
I mai.,, A f; I
I lit I
il
,l
-20 0
20 40 60 80 100 Time (Seconds)
Figure 23 CD=0.8 DECLG Break Transient Iow Plenum Collapsed Liquid Invel
' ' ~
(relative to vessel bottom)
LO-LEVEL 1
0 2 COLLAPCED L10 LEVEL 7
1 6
e 5
C O
4 i
e b
5 3
y 3
2 m9 1
4 e
W 0
-20 0
20 40 60 80 100 Time (Seconds)
v.
Fip'ir.e 24 CD=0.8 DECLG Break Transient Iow Plenum Il d Fractions (elevations rel ye to vessel bottom) j I
Allo 1
2 0 0 93 ft elevotion
Allo 8
2 0 3.24 ft elevotion
Allo 8
3 0 5.19 ft elevation
- - - A L 10 16 2
0 6 31 ft elevation 1
,,.,,,, -g-g,,
l 0
h i
I i
)
8 i
I g
i l
g 6
s r
i 1
li 9
\\
in a
4 y.
l3 l
,1
,l l i
g III
~
I i
'2 i
ll -
\\
g
\\
p gn es 1
L' 0
-20 0
20 40 60 80 100 Time (Seconds)
l i
Figure 25. CD=0.8 DECLG Break Transient Upper Plenum Collapsed Ilquid Level (relative to upper core plate) i LO-LEVEL 8
0 2 COLLAPSED L10 LEVEL 8
l 6
e m
~
4 9
1 a3
~
2 Y
^
0
-20 0
20 40 60 80 100 Time (Seconds) l
i Figure 26 CD=0.8 DECLG Break Transient Upper Plenum Liquid Fractionr,
~~
(elevations relative to upper core plate) j 1
I I
AL10 50 2
0 0.710 ft elevation
All0 50 3
0 2 125 ft elevotion
Allo 50 4
0 3 417 ft elevation
- - - Al l 0 60 2
0 4.792 ft elevation Allo 60 3
0 6.654 ft elevotion 1
e e
.8 i
l A
s n
8 5
~
h j1 2
l 1
I 0
5 l.t i 4
er a
N Yl l
i l OI
',. 4
'2 l, 'l '
I
!I I
i s
$\\
l 1"
f.\\ bl\\
I I I,y,
' q'J4.f_s t
l'd d.
lg k
/
~
4 o
-20 0
20 40 60 80 100 Time (Seconds)
L i
Figure 27. CD=0.8 DECLG Break Transient Upper Head Collapsed Li d Invel (relative to upper suppo plate) l LO-LEVEL 7
0 2 COLLAPSED L10 LEVEL i
12 I
O 10 8
b J
6 5
&3 4
m 2
\\
(
0
-20 0
20 40 60 80 100 Time (Seconds) i f
r I
Figure 28. CD=0.8 DECLG Break Transient Upper Head Ilquid Fractions (elevations relative to upper support plate)
AL10 70 2
0 2.12 ft elevotion
- - - - A L 10 76 2
0 5.28 ft elevotion
Allo 77 2
0 8.21 ft elevation 1
y i
8
- ^
5 i,
it \\
E l'i 2
ii 5
!I ca
!I a
4 i
!i
!i
.2
!1 i t
\\ \\
\\ T
'\\'\\
0
-20 0
20 40 60 80 100 Time (Seconds)
Figure 29 CD=0.8 DECLG Break Transient Downcomer Collapsed IJquid Levels (relative to 1.875 ft above vessel bottom)
LO-LEVEL 10 0
2 Non-DVI Channels
- - - - L O-L E V E L 11 0
2 DVI Channeis 30
~
)
25
~
/
20 v
I l bl
/
-k l
/
1
- \\
I
/
I S
I l
l g
15 i
i I
I is g
d aa o A,'
10 w
v l\\'
\\
I
/
5
~
0
-20 0
20 40 60 80 100 Time (Seconds)
Fig 11re 30 CD=0 8 DECIA Break Transient Downcomer Liquid Fractions (elevations relative to core bottom)
All0 19 9
0 6.26 ft elevation
All0 30 2
0 12.60 ft elevation
Allo 42 3
0 15.32 ft elevation
---All0 54 2
0 18.00 ft elevation
---All0 54 3
0 19.85 ft elevation
---All0 66 2
0 22.54 ft elevation 1
I
!g l; }
l
(
8
/
l si h
j n
i l
l 4
o j
~
i
'-~
I,;
! ili i
5 o
k Il til l l ll l
i 2
~4 in li e
't HI ji l
i o
in ![r llll l
l I
I t.
Ill ! j I
[
!t t il ! i c
n!. t il I
i 3
hL
~
t
,', ' I 4.
f, g
-20 0
20 40 60 80 100 Time (Seconds)
= _
1 Fip~ re 31 CD=0.8 DECLG Break Transient Iow Power Channel Collapsed Liquid Level i
(relative to core bottom) l i
LO-LEVEL 2
0 2 COLLAPSED L10 LEVEL 14 9
se 12 6
m 10 9
I 8
a nD e
v l3 V
fV 0
-20 0
20 40 60 80 100 Time (Seconds) l l
Figlire 32a. CD=0.8 DECLG Break Transient Low Power Channel Liquid Fractions
- ' ~
(elevations relative to core bottom)
Allo 24 2
0 0.33 ft elevation
Allo 24 3
0 1 10 ft elevation
Allo 24 4
0 1.96 ft elevation
- - - Al l o 24 5
0 2.84 ft elevation
-- Allo 24 6
0 3.69 ft elevation
- - - Al l o 24 7
0 4.55 ft elevation
- - - Al l o 24 8
0 5.40 ft elevation 1
, li TA;;$
' ;,l " '
'l Li P' ]i
. l,i
/II,i f
.i 8
gg il i
I !)'l3 'dhl h
. :q I li A -
y l
L'!! j hi !.'!I' l'l;l gl s
I lif,i E
i. ut i Ift fj!
h h
1 a h,;
e l
5 l !!lil?/'fI!
i
!!Il, I
I 1
l i
1$
d
, hi l g
i r,
] n i e lk k^ $4 jN.i 'l Y!/
Il O
-20 0
20 40 60 80 100 Time (Seconds)
Figure 32b. CD=0 8 DECLG Break Transient low Power Channel Liquid Fractions (elevations relative to core bottom)
AL10 24 9
0 6.26 ft elevation
Allo 24 10 0 7.12 ft elevation
Allo 24 11 0 7.98 ft elevation
---ALl0 24 12 0 8.83 ft elevation
Allo 24 13 0 9.69 ft elevotion
---All0 24 14 0 10.54 ft elevation
---Allo 24 15 0 11.47 ft elevation 1
[
hl
,'.;, r
.8 i I!
l
!i I hlI.I l/
i 8
,,;>v/,i v,s f,i,n' 4
E u
s iillI b
iii
/i
j,
lq 6
P$
.,,6
~
'4 9$
\\
b,[?INEWN,f
/ iij ' '
I
'9
[
!I I
nii
~,
Q y, @..F 0
-20 0
20 40 60 80 100 Time (Seconds) l k
ha-&
+,L,
.i hAs-
.a 3
-A,-
Fip~tre 33 CD=0.8 DECLG Break Transient
~
OH/SC Channel Collapsed Liquid Level (relative to core bottom) 5 LO-LEVEL 3
0 2 COLLAPSED L10 LEVEL 14 4
me 12 r
4 10 C
7 8
5
~
nh V
- s i,
a
~
v p
2 b
A o
2
[
\\
l N.J o
-20 0
20 40 60 80 100 Tirne (Seconds)
Figure 34a. CD=0.8 DECLG Break Transient OH/SC Channel Liquid Fractions
~-
(elevations relative to core bottom)
Allo 25 2
0 0.33 ft elevation
ALl0 25 3
0 1.10 ft elevation
Allo 25 4
0 1 96 ft elevation
- - - Al l o 25 5
0 2.84 ft elevation Allo 25 6
0 3.69 ft elevation
---Allo 25 7
0 4.55 ft elevation
- - - A L 10 25 8
0 5.40 ft eIevotion ll 1,4 i
D WW e
,ISIj;;.r'l
!11l llli 5
l !!!,%I s
l 4
.'l; 0 l blj
)
l
.U II,i A,I l['ilr{)}l l
i w,6}LA l
-20 0
20 40 60 80 100 Time (Seconds) l i
Figure 34b. CD=0.8 DECLG Break Transient OH/SC Channel liquid Fractions (elevations relative to core bottom)
Allo 25 9
0 6.26 ft elevation
Allo 25 10 0 7.12 ft elevation
Allo 25 11 0 7.98 ft elevation
- - - Al l o 25 12 0 8.83 ft elevation Allo 25 13 0 9.69 ft elevation
- - - Al l o 25 14 0 10.54 ft elevation
--- - A l l o 25 15 0 11.47 ft elevation
'ef" lli lil l
i lei
,g 0
I d
fi [
/
{
6 i g,,
f etg jijAl(',
si
'l i l
i.,
h
~
l i 3 k,,
li hl'. i l
gy lv
,1; \\ ', '
hj f
j' 3
~
jl lll i
\\ \\ i l I ' '-
2
/,
I $.I 5 f.
!Y f
- ^'
{/j l
\\
0
' ^
-20 0
20 40 60 80 100 Time (Seconds)
1 Figure 35. CD=0.8 DECLG Break Transient
- ~
Guide Tube Channel Collapsed Liquid Level (relative to core bottom)
LQ-LEVEL 4
0 2 COLLAPSED L10 LEVEL 14 we 4
12 e
,e 4
10 5
~
a i
o5 6
8 c
\\%
4 k
n
/ \\
/N
~
f I
0
-20 0
20 40 60 SO 100
)
Time (Seconds) i 1
Figure 36a. CD=0.8 DECLG Break Transient
~
Guide Tube Channel Liquid Fractions (elevations relative to core bottom)
All0 26 2
0 0.33 ft elevation
All0 26 3
0 1 10 ft elevation
- A l l o 26 4
0 1.96 ft elevation
- - - Al l o 26 5
0 2 84 ft elevation Allo 26 6
0 3.69 ft elevation
-Allo 26 7
0 4.55 ft elevation
- - - Al l o 26 8
0 5.40 ft elevation 1
I i
l mim.uol-
.:. i, E
fl i
ii s. i g
8 iijll,q,;;lil,!
nfis i
g I
Il
'4 llnva j g
i I
) it ;;';ll l -
i i
l
'I!;;;l'h
!IUlAll ;h'!y'
'2 i 5 ;.iil i
t i i
~
mjs!
i t
o o
-20 0
20 40 60 80 100 Time (Seconds)
I i
j Fipire 36b. CD=0 8 DECLG Break Transient
~
Guide Tube Channel Liquid Fractions 1
(elevations relative to core bottom) j i
AL10 26 9
0 6 26 ft elevation
All0 26 10 0 7.12 ft elevation
- - - - A L 10 26 11 0 7.98 ft eievation
---Allo 26 12 0 8.83 ft elevation
- - - A L 10 26 13 0 9.69 ft elevotion
---All0 26 14 0 10.54 ft elevation
---Allo 26 15 0 11.47 ft elevation J
eg' ll ll;
' l ' I;;
8 l
I ffQ ng" g
8
'i h g y
i 0
,, l 'a i
I,
,,,.. f, y,e l.>
6 6
,, u., :
I s
4 lf f
Yi r
'I Y '
@bj ll
/
i
-\\
'2 llYl,() 'dif \\
kKf lld y
^l
0
-20 0
20 40 60 80 100 Time (Seconds)
1 Fipre 37. CD=0 8 DECLG Break Transient Hot Assembly Channel Collapsed Liquid Invel (relative to core bottom)
LO-LEVEL 5
0 2 COLLAPSED L10 LEVEL 14 12 10 7
8 JV
~
g V
[\\
b
~
L ).
L.
0
-20 0
20 40 60 80 100 Time (Seconds) i i
l
Figure 38a. CD=0.8 DECIA Break Transient
^
Hot Assembly Channel Liquid Fractions (elevations relative to core bottom) t Allo 27 2
0 0.33 ft elevation
Allo 27 3
0 1.10 ft elevation
--- A L 10 27 4
0 1.96 ft eievotion
- - - Al l o 27 5
0 2 84 ft elevation All o 27 6
0 3 69 ft elevation
---Allo 27 7
0 4.55 ft elevation
- - - A L 10 27 8
0 5.40 ft elevation
?
T, ~ l.{ ' -
g r'c.' F
- . ' A ij{
,, ', 24: 9 i
lil li fl$l!,I
.h.
',b.ff n
I i
e n
qll,l
,,, m ;., l,hj b
0 ll:lll4l.'sll II'l ;'
iii I
I L g
i OllE; 'I 5
l si. 7l', I, !
.ii i
,I il0 ' Il
~
2 L..
8l f l u
o
-20 0
20 40 60 80 100 Time (Seconds)
l Eigure 38b. CD=0.8 DECLG Break Transient Hot Assembly Channel Liquid Fractions (elevations relative to core bottom) t Allo 27 9
0 6.26 ft elevotion
Allo 27 10 0 7.12 ft elevation
Allo 27 11 0 7.98 ft elevation
- - - Al l o 27 12 0 8.83 ft elevation Allo 27 13 0 9 69 ft elevotion
- - - Al l 0 27 14 0 10.54 ft elevation
-- - A l l o 27 15 0 11.47 ft elevation i
J t' l
e 4 1 8
l
'i '
l' l
l 1
\\
l
'f,I lI\\ 1 g
6 g
. g I
1 3
i h
II':llhl, I Ii lI b I}
o 5
4-l k t, f
^
f l;
II
~
b I,, v]',' ?ol ",
g f
i fk
,' '.i I
I i
)
O
-20 0
20 40 60 80 100 Time (Seconds)
l i
Figure 39a; CD=0.8 DECIA Break Transient Upper PlenumPressure f
P 58 2
0 PRESSURE l
2500 m
2000 9
e p
W 6
1000 met M
500
\\
4
-20 0
20 40 60 80 100 Time (Seconds)
M.e 39b. CD=0.8 DECLG Break Transient Upper PlenumPressure P
58 2
0 PRESSURE 50 e
T k
1 1 t,
I l40 G
~
W 35 e
W
=
30 4
-20 0
20 40 60 80 100 m
Time (Seconds) 4
E l
Eigure 40 CD=0.8 DECLG Break Transient Pressurizer Pressure J
i e
PN 16 10 0 PRESSURE 2500 2000 f
me W
I 1000 mer 500 4
6 0
-20 0
20 40 60 80 100 Time (Seconds) t b
i h
6
Figure 41 CD=0.8 DECLG Break Transient i
Pressurizer Mass Flow
-RMVM~
21 6
0 MASS FLOWRATE O
g r
-2000 o
2
[-4000 2
E
~
-6000
-8000
-20 0
20 40 60 80 100 Time (Seconds)
l' l
Figure 42 CD=0 8 DECLG Break Transient Core Make-up Tank Mass Flows l
RMVM 32 2
0 CMT on broken CL sid
RMVM 72 4
0 CMT on intact CL sid i
50 l
40 l
l i
l' I
O l j 11
! I' '
30 2
f lifi 3
~
I, l l g
i s, l,i lll i
!q,ik I 2
'l 20 m
~
s11
\\\\,l'
\\
y i
B ll' I
10 ll l
I I
1 I
I 1
l i
i O
-20 0
20 40 60 80 100 Time (Seconds) l 1
Fip~are 43 CD=0.8 DECLG Break Transient CMT Ballance Ilnes Mass Flows RMVM 43 2
0 Broken CL Side
RMVM 83 2
0 Intact CL Side 300 W
6 6
200 e
mW e
U 100 0
'n I
5 Ilmu.
o n -- m p
y l
l
)
i
=
h-100 l
4
-200 4
4
-300
-20 0
20 40 60 80 100 Time (Seconds) l
r-i Figure 44 CD=0.8 DECLG Break Transient Accumulator Injection Flows RMVM 30 2
0 MASS FLOWRATE
RMVM 70 2
0 MASS FLOWRATE 1000 N
800 4
e
\\
in N
600 h
s N
g 400 m
200 M
use
-20 0
20 40 60 80 100 i
Time (Seconds) l r-
i Figure 45 CD=0.8 DECLG Break Transient
)
e '-
Vessel-side Break Mass Flow RMVM' 61 1
0 MASS FLOWRATE 30000 25000 N
e 4
@ 0000 g
s 3
3
[15000 2
e 10000 4
m 6
5000 2
es 0
-20 0
20 40 60 80 100 Time (Seconds)
I I
1
Figur,e 46. CD=0.8 DECLG Break Transient Vessel-side Break Integrated Mass Release MTH00003 61 1
0 MASS FLOWRATE 300000 250000 j
~
200000
~
F-
"150000 N
g 100000 i
50000 f
i t
0
-20 0
20 40 60 80 100 Time (Seconds) 1
Figure 47 CD=0 8 DECLG Break Transient
-r -
Vessel-side Break Exit Void Fraction ALPN 61 1
0 VOID FRACTION 1
v r
j e
}
.8 g
e h
.6 e
B
~
R 4
M 4
.2 W
0
-20 0
20 40 60 80 100 Time (Seconds)
Figure 48 CD=0.8 DECLG Break Transient Pump-side Break Mass Flow l
j RMVM 60 4
'O MASS FLOWRATE 20000 4
4 m
15000 m
[10000 2
5000
'6
-20 0
20 40 60 80 100 Time (Seconds) s
4 Figure 49 CD=0.8 DECLG Break Transient Pump-side Break Integrated Mass Release t
t i
f MTH00003 60 4
0 MASS FLOWRATE 140000 i
120000 i
g t
100000 80000 "5
i60000
~
40000 l
20000
~
0
-20 0
20 40 60 80 100 Time (Seconds) i i
l i
s i
i I
i
L.
Figure 50 CD=0 8 DECLG Break Transient Pump-side Break Exit Void Fraction ALPN 60 3
0 V010 FRACTION 1
4 m
.e--
7
=0 4
g 6
6 i!
S g
4 6
e 2
0
-20 0
20 40 60 80 100 Time (Seconds)
l-Mgure 51. CD=0 8 DECLG Break Transient
?
Vessel-side Break Muid Temperatures l
TLN 61 1
0 LIQUID TEMPERATURE
TVN 61 1
0 VAPOR TEMPERATURE i
1 700 600 1
E
'A v
g 500 400 mm i
l In iilly t i I 'l i
it A
t 300
\\
't
'I
%I I
\\ \\;
,e I*4y I
200
-20 0
20 40 60 80 100 Time (Seconds) 1
{
)
Figure 52 CD=0.8 DECLG Break Transient J
Pump-side Break Fluid Temperatures TLN 60 3
0 LIQUID TEMPERATURE
TVN EO 3
0 VAPOR TEMPERATURE 4
700 600 W
g O
500 m
e,. 3 !!
lll il li P l g '1 1
{
i III]ll r
g I
i,,,!,
II ll Nf 'r 'I
,ll il,,, i g iiii,, i,,i2 ii.,,, i, iji,; i
,, 'l
/ 11 !
~
ji i
i
,i l ll ll I,I I,I,II, ',l,'
~
,l', i l i Il il I
,, n.i..I ll I,ti iin...I,I I,,
400 i,,; i., ' i.
.i
, 'v,,,
i i ii,i ni,,i '
i n,,i li ii,,,n,,ni,i,i' li,,,i i i
i,i ' n i -
i i
ii i
=
i i
u i
i i
i 5, i i i, i,,, I, l 'l II,g glllli,g i
i
'I,,I ll, I ll l'g I
,I, k Ii ) 'l li I,1l ' g l' !' is i',# ' H ' l,' ! i n ' i ', I!
I lli
~
l l ili i i l i
~
1 Nl
'l l,' 'l '# ', ',i !' l lljlllj!jl[l lij',,'ij!0 l' W
200
-20 0
20 40 60 80 100 Time (Seconds) l
Figure 53 CD=0.8 DECLG Break Transient r' '
Cold Iag Mass Flows at Reactor Vessel Exit
~
(intact loop side)
RMVM 5
11 0 MASS FLOWRATE
---RMVM 6
11 0 MASS FLOWRATE 7000 6000
~
\\
5000 e
N s
5g 4000
'3000 l
t 2000 4
9 1000 w
~
0
-20 0
20 40 60 80 100 Time (Seconds)
I J
Figure 54a. CD=0.8 DECIA Break Transient Cold Img Fluid Temperatures at Vessel Inlet r-
(intact loop side)
TLN 5
10 0 L10VID TEMPERATURE
TVN 5
10 0 VAPOR TEMPERATURE 700 U
M M
M M
e 600
\\
~
\\
N Tm.
g 500
'-l i
- v,, g I
I i
i
~l g
i I
~
l i
I
~
i I
l I
i 400 I
I I
l t2 i
i l
I l
I
~
l i
I i
i 300 i
l l
I dm 1 --
1-200
-20 0
20 40 60 80 100 Time (Seconds) 1
Figure 54b. CD=0 8 DECIA Break Transient Cold Leg Fluid Temperatures at Vessel Inlet (intact loop side)
TLN 6
10 0 LIQUID TEMPERATURE
TVN 6
10 0 VAPOR TEMPERATURE 700
-m
- esup emm>
600
\\
~
\\
N N ---
g 500 l
I ' ' "Vu r-w I
l I
I
~
l i
J I
~
l l
I I
~
l l
l 400 m
2 l
i I
I I
l i
i i
~
i I
l l
l
~
i I
l l
l 300
_)
ll
~
i.
4 200
-20 0
20 40 60 80 100 Time (Seconds)
i Figure 55 CD=0.8 DECLG Break Transient Intact Cold Im Mass Flowat Vessel Inlet (this is on th intact loop side) 1 RMVM 62 6
0 MASS FLOWRATE 6000 c
5000 4000 G
g h
N A
2 3000 f1 g
- b. 2000 1000 I
}
0
-1000
-20 0
20 40 60 80 100 Time (Seconds) 1
{
I Figure 56 CD=0.8 DECLG Break Transient I
Intact Cold Leg Fluid Temperatures at Vessel Inlet e ~' '
(this is on the intact loop side) i TLN 62 6
0 LIQUID TEMPERATURE
TVN 62 6
0 VAPOR TEMPERATURE 700 O M M
M M
m 600
\\
~
\\
\\
I-g 500 l
Ii 1
- 1 i
r l
11 It i
il lII i
1
~
I I I
I II 1;
- 11 l l
[
gi fII i; ll ll 13 l
l gl t
400 ii i o -l y5 kI
- i I
Ill l til l
i i
't ll i, { h i l I'
! 'i U
i, d ill i i
l
,,,i
!!,, li ii,s,..;.ii i'i i,i i
, i,,,, i i i,i ! ! ! i,1 a,,i, i
i i
ii 3"
\\ y,,,0 o i,p gy y-m 200
-20 0
20 40 60 80 100 Time (Seconds)
Figure 57 CD=0.8 DECLG Break Transient Intact Cold leg Void Fractions at Vessel Inlet ALPN 5
10 0 VOID FRACTION
ALPN 6
10 0 VOID FRACTION ALPN 62 6
0 VOID FRACTICN 1
v
/
r/
/v /
.a I
I i
i
.6
,I 6
2 l
e y
4
.e l
.2 i
~
.I 1
0
-20 0
20 40 60 80 100 Time (Seconds) y l
Figure 58. CD=0 8 DECLG Break Transient e"
Hot Leg Mass Flows RMVM 22 1
0 MASS FLOWRATE
RMVM 23 1
0 MASS FLOWRATE 15000
\\
l I
i 10000 I
l l
N l
U
\\
N 5000
.3
~
\\
2 t
,r(;
i t ~'
0 r-
-5000
-10000
-20 0
20 40 60 80 100 Time (Seconds)
Figure 59a. CD=0.8 DECLG Break Transient Hot Leg Fluid Temperatures at Vessel Outlet
- ~ -
(this is the hot leg on the intact loop side)
TLN 22 1
0 L10VID TEMPERATURE
TVN 22 1
0 VAPOR TEMPERATURE 700 600 E
c g
500 w
400 m2 1
4 g1 I
nl ll lr \\
Il s g
gil li l'
I 'I 300 f
f V\\ 11 A ' '=~_
200
-20 0
20 40 60 80 100 Time (Seconds)
}
Figure 59b. CD=0.8 DECLG Break Transient Hot Leg Fluid Temperatures at Vessel Outlet (this is the hot leg on the broken loop side) l i
TLN 23 1
0 LIQUID TEMPERATURE
TVN 23 1
0 VAPOR TEMPERATURE 700 1
600 E
~
O
~
g 500 w
l400 l
m lEl N
11,'Il l \\
s st l t1 t n
,l f'
l I)it'll3 300 i:
- l, ;
i
}
__,jj- >-' ' ' ^%.
~
200
-20 0
20 40 60 80 100 Time (Seconds)
i i
Figure 60 CD=0.8 DECLG Break Transient Hot Leg Void Fractions at Vessel Outlet i
i ALPN 22 1
0 Intact loop side
ALPN 23 1
0 Broken loop side 1
,-y I
~
j \\'; !
I 8
y I
I
.g
.8 g
i 2
l e
y 4
i I
l l
~
l 2
I I
0
-20 0
20 40 60 80 100 Time (Seconds) 1
Figure 61. CD=0.8 DECLG Break Transient Pump Speeds OMEGA 5
0 0 PUMP COMPONENT
OMEGA 6
0 0 PUMP COMPONENT
OMEGA 12 0
0 PUMP COMPONENT
- - - OMEG A 13 0
0 PUMP COMPONENT 500
^
+
/..\\
l i
~
j
'\\
I 400 I
i.
I I.
\\
l i
i
\\
300
'\\
j i
\\
l
\\
I
~\\
200
/
N g:
'g
'\\.
O
\\
~.
It:
N m
100
~~
e 6
0
-20 0
20 40 60 80 100 Time (Seconds)
I 4
Mg re 62 CD=0.8 DECIA Break Transient u
Pump Mass Mows RMVM 5
0 0 PUMP COMPONENT
RMVM 6
0 0 PUMP COMPONENT RMVM 12 0
0 PUMP COMPONENT RMVM 13 0
0 PUMP COMPONENT l
20000 15000 i
11 g
[g N
i 'l N10000
, i i 't I i
\\
@ 5000 1
-s 3
P s
\\
s
\\
\\.
0
\\/
i
-5000
-20 0
20 40 60 80 100 Time (Seconds) l k
i l
i
Figure 63. CD=0.8 DECLG Break Transient e *> '
Pump Void Fractions ALPN 5
0 0 PUMP COMPONENT ALPN 6
0 0 PUMP COMPONENT ALPN 12 0
0 PUMP COMPONENT
---ALPN 13 0
0 PUMP COMPONENT I
v
/
ll U
/
/
.6 l
i
! \\
I E
.a E
l l
l
~
I e
g 4
l l
i e l 2
f il\\
1 0
-20 0
20 40 60 80 100 Time (Seconds) i i-3 i
Figure 64 CD=0.8 DECLG Break Transient e *> '
Pump Heads HEAD 5
0 0 PUMP COMPONENT
HEAD 6
0 0 PUMP COMPONENT
HEAD 12 0
0 PUMP COMPONENT
---HEAD 13 0
0 PUMP COMPONENT 10000 0
~-
~
\\.
p
\\_
.j N/ s.
vs M-10000 D
I N../
-\\
i i
1 j
~
I, I'
-20000
.i i
i 1
j s
-30000
-40000
-20 0
20 40 60 80 100 Time (Seconds) i 1
Figure 65 CD=0 8 DECLG Break Transient e~'
Reactor Power P
0 0
0 REACTOR POWER 2000 4
e 4
1500 E
1000 9
4 500 6
-20 0
20 40 60 80 100 Thne (Seconds) r i
t-l l
I
Figure 66 CD=0.8 DECLG Break Transient Steam Generator Secondary Side Pressure PN 3
17 0 PRESSURE
PN 10 17 0 PRESSURE 1100
~
~
f s
~
l 1000
~
l d
5 900
\\
E w
j
\\
{
\\
\\
M h6 700 e
4 600
-20 0
20 40 60 80 100 Time (Seconds)
I 1
1 L
Figure 67 CD=0 8 DECLG Break Transient Steam Generator Secondary Side Liquid Temperatures (steam generator on the intact loop side)
TLN 3
12 0 LIQUID TEMPERATURE
TLN 3
13 0 LIQUID TEMPERATURE TLN 3
14 0 LIQUID TEMPERATURE TLN 3
15 0 LIQUID TEMPERATURE TLN 3
16 0 LIQUID TEMPERATURE TLN 3
17 0 LIQUID TEMPERATURE 600 e
I 4
550
-s C
sr~Q e,
/
h%
o z
..:*_ 9 + ae:_.
3 m_
__s.
-; =m
~~~
e y
450 M
6 400
-20 0
20 40 60 80 100 Time (Seconds) l f
Figpre 68 CD=0.8 DECLG Break Transient
- - ~ '
Steam Generator Secondary Side Liquid Temperatures (steam generator on the broken loop side) 1 TLN 10 12 0 L10VID TEMPERATURE TLN 10 13 0 LIQUID TEMPERATURE
TLN 10 14 0 L10U1D TEMPERATURE
---TLN 10 15 0 LIQUID TEMPERATURE TLN 10 16 0 LIQUID TEMPERATURE TLN 10 17 0 LIQUID TEMPERATURE 600 W
e I
550
[Q k
/
p
.-Qx_=_._
g m-500 450 W
M e
400
-20 0
20 40 60 80 100 Time (Seconds) 1 j
l 1
i