NRC-95-4514, Provides Results of AP600 LBLOCA Calculations Using Wcobra/Trac Computer Code

From kanterella
Jump to navigation Jump to search
Provides Results of AP600 LBLOCA Calculations Using Wcobra/Trac Computer Code
ML20086P472
Person / Time
Site: 05200003
Issue date: 07/20/1995
From: Liparulo N
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To: Quay T
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
NTD-NRC-95-4514, NUDOCS 9507270022
Download: ML20086P472 (75)


Text

- __________

f%

Westinghouse Energy Systems Box 355 Pittstergh Pennsylvania 15230-0355 Electric Corporation NTD-NRC-95-4514 DCP/NRC0367 Docket No.: STN-52-003 July 20,1995 Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555 1

ATTENTION:

MR. T. R. QUAY

SUBJECT:

AP600 WCOBRA/ TRAC LARGE BREAK LOCA CODE RESULTS

Dear Mr. Quay:

During a March 8,1995, meeting between Westinghouse, NRC staff and NRC contractors to discuss AP600 computer code modeling, a request was made for additional information on the results of AP600 LBLOCA calculations using the WCOBRA/ TRAC computer code. The information was requested to support activities being performed by INEL (Brent Boyack). Enclosed is the requested l

}

additional information for a DECLG break using a CD=0.8.

l.

Please contact Brian A. McIntyre on (412) 374-4334 if you have any questions concerning this l.

transmittal.

I I~

l

/C N. J. Liparulo, Manager l

Nuclear Safety Regulatory And Licensing Activities

/nja Enclosure t

cc:

K. Coyne, NRC (IEl)

B. Boyack, INEL (IEl)

B. A. McIntyre, Westinghouse (w/o Enclosures / Attachments) l I

e l

r7C008 0

0}

2"'^

9507270022 950720 PDR ADOCK 05200003 A

PDR 1,

Figure Ib. CD=0.8 DECIA Break Transient Top of Core Flows for Peripheral LP Channel FLM 24 15 0 L10 AXIAL MASS FLOW


FGM 24 15 0 VAP AXIAL MASS FLOW FEM 24 15 0 ENT AXlAL MASS FLOW 6000 i

4000 G

2000 a

A^d ^ ^

A 0

, v

-2000

-4000

-20 0

20 40 60 80 100 Time (Seconds)

Figure 2b. CD=0.8 DECID Break Transient Top of Core Flows for OH/SC channel FLM 25 15 0 LIO AXIAL MASS FLOW


FGM 25 15 0 VAP AXIAL MASS FLOW FEM 25 15 0 ENT AX1AL MASS FLOW 8000 me 6000 E 4000 E

[2000 2

b T'A g

0 p

_g-

-f

-2000

-4000

-20 0

20 40 60 80 100 Time (Seconds)

Figure 3b. CD=0.8 DECIE Break Transient Top of Core Flows for Guide Tube channel P

P FLM 26 15 0 L10 AXIAL MASS FLOW


FGM 26 15 0 VAP AXIAL MASS FLOW


FEM 26 15 0 ENT AXIAL MASS FLOW 10000 t

8000

\\_

6000 -

g M 4000 3

y h2000 E

~

$1 1

W 0

-2000

-4000

-20 0

20 40 60 80 100 Time (Seconds) i

F1gure 4b. CD=0.8 DECIA Break Transient Top of Core Flows for Hot Assembly channel P

P f

FLM 27 15 0 LIO AXIAL MASS FLOW


FGM 27 15 0 VAP AXIAL MASS FLOW FEM 27 15 0 ENT AXlAL MASS FLOW 150 4

e 100 sa

=

k

~

[^')

g 6

e 6

-50 i

e W

-100

-20 0

20 40 60 80 100 Time (Seconds)

f Figure 5b. CD=0.8 DECLG Break Transient Bottom of Core Flows for Peripheral LP Channel I

FLM 24 2

0 LIO AXIAL MASS FLOW


FGM 24 2

0 VAP AXIAL MASS FLOW FEM 24 2

0 ENT AX1AL MASS FLOW 6000 4000 G

N 2000 i

Q f

ff [A

,g h 3

r 0

w

}t

,J /yv Y_

~2000

~

l

-4000

-20 0

20 40 60 80 100 Time (Seconds)

Figure 6b. CD=0.8 DECIA Break Transient Bottom of Core Flows for OH/SC channel FLM 25 2

0 LIO AXlAL MASS FLOW


FGM 25 2

0 VAP AXtAL MASS FLOW FEM 25 2

0 ENT AXlAL MASS FLOW i

8000 6000 l

I 4000 6

N N

I l

8 2000 f

b l

0

- I A-AJ M 4 ' d,

- f~

'llt

/gV" v"

3 l

-2000 3

-4000 l

-6000 f

-20 0

20 40 60 60 100 Thne (Seconds)

{

Figure 7b. CD=0 8 DECIA Break Transient Bottom of Core Flows for Guide Tube channel i

i FLM 26 2

0 L10 AXIAL MASS FLOW FGM 26 2

0 VAP AXIAL MASS FLOW


FEM 26 2

0 ENT AXlAL MASS FLOW 10000 8000 6000 o

k4000 3

3

[2000 E

4W I Il l AL. iJ.M 0

in zu y-7 jqy-i l

-2000 y

-4000

~

-6000

-20 0

20 40 60 80 100 Time (Seconds) i

l i

Fjgure 8b. CD=0.8 DECLG Break Transient Bcttom of Core Flows for Hot Assembly channel FLM 27 2

0 LIO AXlAL MASS FLOW


FGM 27 2

0 VAP AXIAL MASS FLOW


TEM 27 2

0 ENT AXlAL MASS FLOW 150 e

O e

100 gi O

~

g 50 g

4r fk._aJ A/

,' - r

'u I m 0

3 I

\\

M

-50 e

6

-100

-20 0

20 40 60 80 100 Time (Seconds) i

Figura 9 CD=0.8 DECLG Break Transient Mass Flows From Upper Head Through Guide Tubes FLM 59 2

0 LIO AXIAL MASS FLOW


FGM 59 2

0 VAP AXIAL MASS FLOW


FEM 59 2

0 ENT AXlAL MASS FLOW i

500 0

4,. -

s u -500 k

2-S

[-1000 2

-1500 I

-2000 t

i

-2500 l

-20 0

20 40 60 80 100 Time (Seconds)

1 Figure 10 CD=0 8 DECLG Break Transient Mass Flow Through Upper Head Drain Holes 4

FLM 58 3

0 LIO AXIAL MASS FLOW i


FGM 58 3

0 VAP AXIAL MASS FLOW FEM 58 3

0 ENT AXlAL MASS FLOW i

500 0

s, y

g g -500 s

~

-1000

~

s

-1500 U

t

-2000

-20 0

20 40 60 80 100 Time (Seconds)

Figure 11. CD=0 8 DECLG Break Transient Mass Flow Through Downcomer Spray Cooling Holes FLM 74 1

0 LIO AXIAL MASS FLOW


FGM 74 1

0 VAP AXIAL MASS FLOW


FEM 74 1

0 ENT AXlAL MASS FLOW 300 e

4 4

200 4

4 l

E 100 i

5 0

/

-100 4

\\

-200

-300

-20 0

20 40 60 80 100 Time (Seconds)

Figure 12 CD=08 DECLG Break Transient Hot Rod Cladding Temperatures TCLAD 1

1 1 ELEV.

.00 FT.


TCLAD 1

27 1 ELEV.

3.95 FT.


TCLAD 1

54 1 ELEV.

8.05 FT.

' ---TCLAD 1

80 1 ELEV.

12 00 FT.

1600 1400 j\\

j

\\.

I i

1200 C

\\

l y

i 5

1 1000 llu s I

\\\\

l I

800 I

q-\\/1 I I!

-v~

i i

i l ill

/

i l

I 600 s

i J

'-i,-

I/t i

g-0

~~ \\ ' "

400 Y

' 'n

'I l f. -

\\ /

Il t/

b

=-~

200

-20 0

20 40 60 80 100 Time (Seconds) t P

b

r-1 Figure 13. CD=08 DEC14 Break Transient Hot Assembly Rod Cladding Temperatures j

e TCLAD 2

1 1 ELEV.

00 FT.


TCLAD 2

27 1 ELEV.

3.95 FT.


TCLAD 2

54 1 ELEV.

8.05 FT.

---TCLAD 2

80 1 ELEV.

12.00 FT.

1600 me 6

.e 1400

.i\\.

fs I

1200 E

i F

f I

1 1000 l800

! // l \\ !

l I!

l

l^

jf}',!-

. s.~ ~' '

1 j

g

'_2 j lI!

l

(/-

I y ' '(

600

./f'1f '\\y t l-7 V

' ^ -

400

/ _'_ L fI

~

i,,

200

-20 0

20 40 60 80 100 Time (Seconds)

I 1

.)

i t

Fipre 14 CD=0 8 DECLG Break Transient l

OH/SC Channel Puel Rod Cladding Temperatures TCLAD 3

1 1 ELEV.

00 FT.


TCLAD 3

27 1 ELEV.

3.95 FT.


TCLA0 3

54 1 ELEV.

8 05 FT.

---TCLAD 3

80 1 ELEV.

12.00 FT.

1000

^

. r.

800 I/j li l r

it i

y

~

['

llt g _ =.=

000 3*.,

4*

, 'yti

./

1

(\\

/

r\\

.s

/

/

/,#

\\

\\

M 400 r

m i

n/ 1 i

~

\\ s W <>

==

~~

m m. M _w-200

~

m m

e 0

-20 0

20 40 60 80 100 Time (Seconds) 2 1

1

Figure 15. CD=0.8 DECLG Break Transient Guide Tube Channel Fuel Rod Cladding Temperatures 1

TCLAD 4

1 1 ELEV.

00 FT.


TCLAD 4

27 1 ELEV.

3.95 FT.

- - -.- T C L A D 4

54 1 ELEV.

8.05 FT.

---TCLAD 4

80 1 ELEV.

12.00 FT.

i 1000 G

e 800

!i t-l \\

E I !

i.A!

y

-~~

g 600 i

.- t{ (1-

~

e-

/

/

l

\\

  • f 1

/A1 it u

\\

400 f

,p i

o

\\r I

N-P I

N r ~g % _ -. ~%_

~

l

~

n-l 200 l

0

-20 0

20 40 60 80 100 Time (Seconds) l l

i l

^

l

)

i l

1

l Fipura 16 CD=0.8 DECLG Break Transient Iow Power Channel Fuel Rod Cladding Temperatures i

P TCLAD 5

1 1 ELEV.

00 FT.


TCLAD 5

27 1 ELEV.

3.95 FT.

1

-.-.-.- T C L A D 5

54' 1 ELEV.

8.05 FT.

---TCLAD 5

80 1 ELEV.

12 00 FT.

800 e

700 F

e e

600 e.m.___

-=

5

~

~~

1 500 i

l300

( '/

)'

l

~

\\

- " /

.1l I

400

,.S

./

t t

%' 'm nk - '--"

~,_,

200

~

4

~

100

-20 0

20 40 60 80 100 Time (Seconds)

l Pipure 17. CD=0.8 DECLG Break Transient Peak Cladding Temperature Among All Fuel Rods PCT 0

0 0 PEAK CLAD TEMP.

1600 1400 e

1200 E

r i

1 1000 1

M I

/

000 q

i

\\

400 200

-20 0

20 40 60 80 100 Time (Seconds) l 1

Pigure 18 CD=0.8 DECLG Break Transient Peak Cladding Temperature location

- ~ ~

PCT-LOC 0

0 0 PEAK CLAD TEMP LOC 12 10 m

M t

J E

sc s!

4

~

1 2

P9p 0

-20 0

20 40 60 80 100 Time (Seconds)

Fipre 19 CD=0 8 DECLG Break Transient

~

Iow Power Channel Void Fractions AL 24 2

0 0.33 ft core elevati


AL 24 6

0 3.70 ft core elevati


AL 24 11 0 7.97 ft core elevati

---AL 24 15 0 11.47 ft core elevat (l

l ifl.

l I

A I I!

l k3 d\\

l l

I t

k. 5 f, I ' gi l[I Ih 'lb g/ f ' j HW i H ill,

j d'

6 i:

h l

l II i !

E P

llla il

[iyi I"

!I l

e i

i" R

4 i'

I i j ji I'

~

l g li ll

~

l l ll 'I

!II g

  • 2 i

l la ',6 sg I

i,i Isl ll i

gt i l l

1

,g g~~"'y, ',

fi il 1

I 7

0

-20 0

20 40 60 80 100 Time (Seconds)

Fip' ire 20 CD=0 8 DECLG Break Transient OH/SC Channel Void Fractions I

i i

i A L' 25 2

0 0.33 ft core elevoti


AL 25 6

0 3.70 ft core elevoti


AL 25 11 0 7.97 ft core elevati

---AL 25 15 0 11 47 ft core elevat 1

[

',,' I I.h M '

S

$a aY[iM t

'f '(W I.,.'j

' \\'

/

' ll l

l N

11, i

j Il lt i

ll l l i

no

.6 jf I

il ll II i 11 I;!

}

l U lI II.

I go

,4 Il

' If' I ll p !.

I

'i it

lg
  1. I..a l

i Il l ll (l

e ig

~

l llI i l

2 l

I ilIg

I I l

l il Ij gl

~

1[Li s

'l.

l

,,_a.

a

-20 0

20 40 60 80 100 Time (Seconds) i 1

Figure 21 CD=0 8 DECLG Break Transient Guide Tube Channel Void Fractions AL 26 2

0 0.33 ft core elevati


AL 26 6

0 3.70 ft core elevoti


AL 26 11 0 7.97 ft core elevati

---AL 26 15 0 11.47 ft core elevat 1

y

'{

t I'l h&

j V n

rlii/

i l0 lii h}d i

l Il en!

b n

V,a l

'/ (il llll 1

8 -lpjl. I riti n.

1 l

ll l ' t 'll k;

llll i!,!

i l'

I v

Il l i

1 jl i

'I '

I 5

.6 II Il l %

l. )i g

i ll l li k/

!ji i

2 ti I ii ti 9

~

I I 'l Ir.

i o

4

"i i

i ili vi i

/j

'll ii ll l I Jg 11 I il

'l p

'2 it l l1 I

11 l11 lli I li Il i11 l

I f gli ll

~-

^ ^ " ' '

0

-20 0

20 40 60 80 100 Time (Seconds) l l

Figure 22 CD=0.8 DECLG Break Transient Hot Assembly Channel Void Fractions AL 27 2

0 0.33 ft core elevati


AL 27 6

0 3.70 ft core elevati

-.-.--AL 27 11 0 7.97 ft core eIevati

--.AL 27 15 0 11.47 ft core elevat f

l

\\ $

\\

YP \\

f

\\

g 'l,;

j!

\\ b l\\-

I

^

l l

I 4j 1-r l

-Il in a M;Y,.

y\\/

l I I it' lIll 8

in ipwp s,

!f 11 1

't I

J

~

1 Lh ll I I.

v

l

'N E

.a

'ij!

ll!

e e llI

l. f ui S

~

III i

i g

4

i i

e ll!j Il II l

1 ll ' 'i 2

~

il ' gi l',i I

I l gl, I ;l

'I gin l I

I mai.,, A f; I

I lit I

il

,l

-20 0

20 40 60 80 100 Time (Seconds)

Figure 23 CD=0.8 DECLG Break Transient Iow Plenum Collapsed Liquid Invel

' ' ~

(relative to vessel bottom)

LO-LEVEL 1

0 2 COLLAPCED L10 LEVEL 7

1 6

e 5

C O

4 i

e b

5 3

y 3

2 m9 1

4 e

W 0

-20 0

20 40 60 80 100 Time (Seconds)

v.

Fip'ir.e 24 CD=0.8 DECLG Break Transient Iow Plenum Il d Fractions (elevations rel ye to vessel bottom) j I

Allo 1

2 0 0 93 ft elevotion


Allo 8

2 0 3.24 ft elevotion


Allo 8

3 0 5.19 ft elevation

- - - A L 10 16 2

0 6 31 ft elevation 1

,,.,,,, -g-g,,

l 0

h i

I i

)

8 i

I g

i l

g 6

s r

i 1

li 9

\\

in a

4 y.

l3 l

,1

,l l i

g III

~

I i

'2 i

ll -

\\

g

\\

p gn es 1

L' 0

-20 0

20 40 60 80 100 Time (Seconds)

l i

Figure 25. CD=0.8 DECLG Break Transient Upper Plenum Collapsed Ilquid Level (relative to upper core plate) i LO-LEVEL 8

0 2 COLLAPSED L10 LEVEL 8

l 6

e m

~

4 9

1 a3

~

2 Y

^

0

-20 0

20 40 60 80 100 Time (Seconds) l

i Figure 26 CD=0.8 DECLG Break Transient Upper Plenum Liquid Fractionr,

~~

(elevations relative to upper core plate) j 1

I I

AL10 50 2

0 0.710 ft elevation


All0 50 3

0 2 125 ft elevotion


Allo 50 4

0 3 417 ft elevation

- - - Al l 0 60 2

0 4.792 ft elevation Allo 60 3

0 6.654 ft elevotion 1

e e

.8 i

l A

s n

8 5

~

h j1 2

l 1

I 0

5 l.t i 4

er a

N Yl l

i l OI

',. 4

'2 l, 'l '

I

!I I

i s

$\\

l 1"

f.\\ bl\\

I I I,y,

' q'J4.f_s t

l'd d.

lg k

/

~

4 o

-20 0

20 40 60 80 100 Time (Seconds)

L i

Figure 27. CD=0.8 DECLG Break Transient Upper Head Collapsed Li d Invel (relative to upper suppo plate) l LO-LEVEL 7

0 2 COLLAPSED L10 LEVEL i

12 I

O 10 8

b J

6 5

&3 4

m 2

\\

(

0

-20 0

20 40 60 80 100 Time (Seconds) i f

r I

Figure 28. CD=0.8 DECLG Break Transient Upper Head Ilquid Fractions (elevations relative to upper support plate)

AL10 70 2

0 2.12 ft elevotion

- - - - A L 10 76 2

0 5.28 ft elevotion


Allo 77 2

0 8.21 ft elevation 1

y i

8

^

5 i,

it \\

E l'i 2

ii 5

!I ca

!I a

4 i

!i

!i

.2

!1 i t

\\ \\

\\ T

'\\'\\

0

-20 0

20 40 60 80 100 Time (Seconds)

Figure 29 CD=0.8 DECLG Break Transient Downcomer Collapsed IJquid Levels (relative to 1.875 ft above vessel bottom)

LO-LEVEL 10 0

2 Non-DVI Channels

- - - - L O-L E V E L 11 0

2 DVI Channeis 30

~

)

25

~

/

20 v

I l bl

/

-k l

/

1

  1. \\

I

/

I S

I l

l g

15 i

i I

I is g

d aa o A,'

10 w

v l\\'

\\

I

/

5

~

0

-20 0

20 40 60 80 100 Time (Seconds)

Fig 11re 30 CD=0 8 DECIA Break Transient Downcomer Liquid Fractions (elevations relative to core bottom)

All0 19 9

0 6.26 ft elevation


All0 30 2

0 12.60 ft elevation


Allo 42 3

0 15.32 ft elevation

---All0 54 2

0 18.00 ft elevation

---All0 54 3

0 19.85 ft elevation

---All0 66 2

0 22.54 ft elevation 1

I

!g l; }

l

(

8

/

l si h

j n

i l

l 4

o j

~

i

'-~

I,;

! ili i

5 o

k Il til l l ll l

i 2

~4 in li e

't HI ji l

i o

in ![r llll l

l I

I t.

Ill ! j I

[

!t t il ! i c

n!. t il I

i 3

hL

~

t

,', ' I 4.

f, g

-20 0

20 40 60 80 100 Time (Seconds)

= _

1 Fip~ re 31 CD=0.8 DECLG Break Transient Iow Power Channel Collapsed Liquid Level i

(relative to core bottom) l i

LO-LEVEL 2

0 2 COLLAPSED L10 LEVEL 14 9

se 12 6

m 10 9

I 8

a nD e

v l3 V

fV 0

-20 0

20 40 60 80 100 Time (Seconds) l l

Figlire 32a. CD=0.8 DECLG Break Transient Low Power Channel Liquid Fractions

- ' ~

(elevations relative to core bottom)

Allo 24 2

0 0.33 ft elevation


Allo 24 3

0 1 10 ft elevation


Allo 24 4

0 1.96 ft elevation

- - - Al l o 24 5

0 2.84 ft elevation

-- Allo 24 6

0 3.69 ft elevation

- - - Al l o 24 7

0 4.55 ft elevation

- - - Al l o 24 8

0 5.40 ft elevation 1

, li TA;;$

' ;,l " '

'l Li P' ]i

. l,i

/II,i f

.i 8

gg il i

I !)'l3 'dhl h

. :q I li A -

y l

L'!! j hi !.'!I' l'l;l gl s

I lif,i E

i. ut i Ift fj!

h h

1 a h,;

e l

5 l !!lil?/'fI!

i

!!Il, I

I 1

l i

1$

d

, hi l g

i r,

] n i e lk k^ $4 jN.i 'l Y!/

Il O

-20 0

20 40 60 80 100 Time (Seconds)

Figure 32b. CD=0 8 DECLG Break Transient low Power Channel Liquid Fractions (elevations relative to core bottom)

AL10 24 9

0 6.26 ft elevation


Allo 24 10 0 7.12 ft elevation


Allo 24 11 0 7.98 ft elevation

---ALl0 24 12 0 8.83 ft elevation


Allo 24 13 0 9.69 ft elevotion

---All0 24 14 0 10.54 ft elevation

---Allo 24 15 0 11.47 ft elevation 1

[

hl

,'.;, r

.8 i I!

l

!i I hlI.I l/

i 8

,,;>v/,i v,s f,i,n' 4

E u

s iillI b

iii

/i

j,

lq 6

P$

.,,6

~

'4 9$

\\

b,[?INEWN,f

/ iij ' '

I

'9

[

!I I

nii

~,

Q y, @..F 0

-20 0

20 40 60 80 100 Time (Seconds) l k

ha-&

+,L,

.i hAs-

.a 3

-A,-

Fip~tre 33 CD=0.8 DECLG Break Transient

~

OH/SC Channel Collapsed Liquid Level (relative to core bottom) 5 LO-LEVEL 3

0 2 COLLAPSED L10 LEVEL 14 4

me 12 r

4 10 C

7 8

5

~

nh V

s i,

a

~

v p

2 b

A o

2

[

\\

l N.J o

-20 0

20 40 60 80 100 Tirne (Seconds)

Figure 34a. CD=0.8 DECLG Break Transient OH/SC Channel Liquid Fractions

~-

(elevations relative to core bottom)

Allo 25 2

0 0.33 ft elevation


ALl0 25 3

0 1.10 ft elevation


Allo 25 4

0 1 96 ft elevation

- - - Al l o 25 5

0 2.84 ft elevation Allo 25 6

0 3.69 ft elevation

---Allo 25 7

0 4.55 ft elevation

- - - A L 10 25 8

0 5.40 ft eIevotion ll 1,4 i

D WW e

,ISIj;;.r'l

!11l llli 5

l !!!,%I s

l 4

.'l; 0 l blj

)

l

.U II,i A,I l['ilr{)}l l

i w,6}LA l

-20 0

20 40 60 80 100 Time (Seconds) l i

Figure 34b. CD=0.8 DECLG Break Transient OH/SC Channel liquid Fractions (elevations relative to core bottom)

Allo 25 9

0 6.26 ft elevation


Allo 25 10 0 7.12 ft elevation


Allo 25 11 0 7.98 ft elevation

- - - Al l o 25 12 0 8.83 ft elevation Allo 25 13 0 9.69 ft elevation

- - - Al l o 25 14 0 10.54 ft elevation

--- - A l l o 25 15 0 11.47 ft elevation

'ef" lli lil l

i lei

,g 0

I d

fi [

/

{

6 i g,,

f etg jijAl(',

si

'l i l

i.,

h

~

l i 3 k,,

li hl'. i l

gy lv

,1; \\ ', '

hj f

j' 3

~

jl lll i

\\ \\ i l I ' '-

2

/,

I $.I 5 f.

!Y f

  1. ^'

{/j l

\\

0

' ^

-20 0

20 40 60 80 100 Time (Seconds)

1 Figure 35. CD=0.8 DECLG Break Transient

- ~

Guide Tube Channel Collapsed Liquid Level (relative to core bottom)

LQ-LEVEL 4

0 2 COLLAPSED L10 LEVEL 14 we 4

12 e

,e 4

10 5

~

a i

o5 6

8 c

\\%

4 k

n

/ \\

/N

~

f I

0

-20 0

20 40 60 SO 100

)

Time (Seconds) i 1

Figure 36a. CD=0.8 DECLG Break Transient

~

Guide Tube Channel Liquid Fractions (elevations relative to core bottom)

All0 26 2

0 0.33 ft elevation


All0 26 3

0 1 10 ft elevation

- A l l o 26 4

0 1.96 ft elevation

- - - Al l o 26 5

0 2 84 ft elevation Allo 26 6

0 3.69 ft elevation

-Allo 26 7

0 4.55 ft elevation

- - - Al l o 26 8

0 5.40 ft elevation 1

I i

l mim.uol-

.:. i, E

fl i

ii s. i g

8 iijll,q,;;lil,!

nfis i

g I

Il

'4 llnva j g

i I

) it ;;';ll l -

i i

l

'I!;;;l'h

!IUlAll ;h'!y'

'2 i 5 ;.iil i

t i i

~

mjs!

i t

o o

-20 0

20 40 60 80 100 Time (Seconds)

I i

j Fipire 36b. CD=0 8 DECLG Break Transient

~

Guide Tube Channel Liquid Fractions 1

(elevations relative to core bottom) j i

AL10 26 9

0 6 26 ft elevation


All0 26 10 0 7.12 ft elevation

- - - - A L 10 26 11 0 7.98 ft eievation

---Allo 26 12 0 8.83 ft elevation

- - - A L 10 26 13 0 9.69 ft elevotion

---All0 26 14 0 10.54 ft elevation

---Allo 26 15 0 11.47 ft elevation J

eg' ll ll;

' l ' I;;

8 l

I ffQ ng" g

8

'i h g y

i 0

,, l 'a i

I,

,,,.. f, y,e l.>

6 6

,, u., :

I s

4 lf f

Yi r

'I Y '

@bj ll

/

i

-\\

'2 llYl,() 'dif \\

kKf lld y

^l

0

-20 0

20 40 60 80 100 Time (Seconds)

1 Fipre 37. CD=0 8 DECLG Break Transient Hot Assembly Channel Collapsed Liquid Invel (relative to core bottom)

LO-LEVEL 5

0 2 COLLAPSED L10 LEVEL 14 12 10 7

8 JV

~

g V

[\\

b

~

L ).

L.

0

-20 0

20 40 60 80 100 Time (Seconds) i i

l

Figure 38a. CD=0.8 DECIA Break Transient

^

Hot Assembly Channel Liquid Fractions (elevations relative to core bottom) t Allo 27 2

0 0.33 ft elevation


Allo 27 3

0 1.10 ft elevation

--- A L 10 27 4

0 1.96 ft eievotion

- - - Al l o 27 5

0 2 84 ft elevation All o 27 6

0 3 69 ft elevation

---Allo 27 7

0 4.55 ft elevation

- - - A L 10 27 8

0 5.40 ft elevation

?

T, ~ l.{ ' -

g r'c.' F

. ' A ij{

,, ', 24: 9 i

lil li fl$l!,I

.h.

',b.ff n

I i

e n

qll,l

,,, m ;., l,hj b

0 ll:lll4l.'sll II'l ;'

iii I

I L g

i OllE; 'I 5

l si. 7l', I, !

.ii i

,I il0 ' Il

~

2 L..

8l f l u

o

-20 0

20 40 60 80 100 Time (Seconds)

l Eigure 38b. CD=0.8 DECLG Break Transient Hot Assembly Channel Liquid Fractions (elevations relative to core bottom) t Allo 27 9

0 6.26 ft elevotion


Allo 27 10 0 7.12 ft elevation


Allo 27 11 0 7.98 ft elevation

- - - Al l o 27 12 0 8.83 ft elevation Allo 27 13 0 9 69 ft elevotion

- - - Al l 0 27 14 0 10.54 ft elevation

-- - A l l o 27 15 0 11.47 ft elevation i

J t' l

e 4 1 8

l

'i '

l' l

l 1

\\

l

'f,I lI\\ 1 g

6 g

. g I

1 3

i h

II':llhl, I Ii lI b I}

o 5

4-l k t, f

^

f l;

II

~

b I,, v]',' ?ol ",

g f

i fk

,' '.i I

I i

)

O

-20 0

20 40 60 80 100 Time (Seconds)

l i

Figure 39a; CD=0.8 DECIA Break Transient Upper PlenumPressure f

P 58 2

0 PRESSURE l

2500 m

2000 9

e p

W 6

1000 met M

500

\\

4

-20 0

20 40 60 80 100 Time (Seconds)

M.e 39b. CD=0.8 DECLG Break Transient Upper PlenumPressure P

58 2

0 PRESSURE 50 e

T k

1 1 t,

I l40 G

~

W 35 e

W

=

30 4

-20 0

20 40 60 80 100 m

Time (Seconds) 4

E l

Eigure 40 CD=0.8 DECLG Break Transient Pressurizer Pressure J

i e

PN 16 10 0 PRESSURE 2500 2000 f

me W

I 1000 mer 500 4

6 0

-20 0

20 40 60 80 100 Time (Seconds) t b

i h

6

Figure 41 CD=0.8 DECLG Break Transient i

Pressurizer Mass Flow

-RMVM~

21 6

0 MASS FLOWRATE O

g r

-2000 o

2

[-4000 2

E

~

-6000

-8000

-20 0

20 40 60 80 100 Time (Seconds)

l' l

Figure 42 CD=0 8 DECLG Break Transient Core Make-up Tank Mass Flows l

RMVM 32 2

0 CMT on broken CL sid


RMVM 72 4

0 CMT on intact CL sid i

50 l

40 l

l i

l' I

O l j 11

! I' '

30 2

f lifi 3

~

I, l l g

i s, l,i lll i

!q,ik I 2

'l 20 m

~

s11

\\\\,l'

\\

y i

B ll' I

10 ll l

I I

1 I

I 1

l i

i O

-20 0

20 40 60 80 100 Time (Seconds) l 1

Fip~are 43 CD=0.8 DECLG Break Transient CMT Ballance Ilnes Mass Flows RMVM 43 2

0 Broken CL Side


RMVM 83 2

0 Intact CL Side 300 W

6 6

200 e

mW e

U 100 0

'n I

5 Ilmu.

o n -- m p

y l

l

)

i

=

h-100 l

4

-200 4

4

-300

-20 0

20 40 60 80 100 Time (Seconds) l

r-i Figure 44 CD=0.8 DECLG Break Transient Accumulator Injection Flows RMVM 30 2

0 MASS FLOWRATE


RMVM 70 2

0 MASS FLOWRATE 1000 N

800 4

e

\\

in N

600 h

s N

g 400 m

200 M

use

-20 0

20 40 60 80 100 i

Time (Seconds) l r-

i Figure 45 CD=0.8 DECLG Break Transient

)

e '-

Vessel-side Break Mass Flow RMVM' 61 1

0 MASS FLOWRATE 30000 25000 N

e 4

@ 0000 g

s 3

3

[15000 2

e 10000 4

m 6

5000 2

es 0

-20 0

20 40 60 80 100 Time (Seconds)

I I

1

Figur,e 46. CD=0.8 DECLG Break Transient Vessel-side Break Integrated Mass Release MTH00003 61 1

0 MASS FLOWRATE 300000 250000 j

~

200000

~

F-

"150000 N

g 100000 i

50000 f

i t

0

-20 0

20 40 60 80 100 Time (Seconds) 1

Figure 47 CD=0 8 DECLG Break Transient

-r -

Vessel-side Break Exit Void Fraction ALPN 61 1

0 VOID FRACTION 1

v r

j e

}

.8 g

e h

.6 e

B

~

R 4

M 4

.2 W

0

-20 0

20 40 60 80 100 Time (Seconds)

Figure 48 CD=0.8 DECLG Break Transient Pump-side Break Mass Flow l

j RMVM 60 4

'O MASS FLOWRATE 20000 4

4 m

15000 m

[10000 2

5000

'6

-20 0

20 40 60 80 100 Time (Seconds) s

4 Figure 49 CD=0.8 DECLG Break Transient Pump-side Break Integrated Mass Release t

t i

f MTH00003 60 4

0 MASS FLOWRATE 140000 i

120000 i

g t

100000 80000 "5

i60000

~

40000 l

20000

~

0

-20 0

20 40 60 80 100 Time (Seconds) i i

l i

s i

i I

i

L.

Figure 50 CD=0 8 DECLG Break Transient Pump-side Break Exit Void Fraction ALPN 60 3

0 V010 FRACTION 1

4 m

.e--

7

=0 4

g 6

6 i!

S g

4 6

e 2

0

-20 0

20 40 60 80 100 Time (Seconds)

l-Mgure 51. CD=0 8 DECLG Break Transient

?

Vessel-side Break Muid Temperatures l

TLN 61 1

0 LIQUID TEMPERATURE


TVN 61 1

0 VAPOR TEMPERATURE i

1 700 600 1

E

'A v

g 500 400 mm i

l In iilly t i I 'l i

it A

t 300

\\

't

'I

%I I

\\ \\;

,e I*4y I

200

-20 0

20 40 60 80 100 Time (Seconds) 1

{

)

Figure 52 CD=0.8 DECLG Break Transient J

Pump-side Break Fluid Temperatures TLN 60 3

0 LIQUID TEMPERATURE


TVN EO 3

0 VAPOR TEMPERATURE 4

700 600 W

g O

500 m

e,. 3 !!

lll il li P l g '1 1

{

i III]ll r

g I

i,,,!,

II ll Nf 'r 'I

,ll il,,, i g iiii,, i,,i2 ii.,,, i, iji,; i

,, 'l

/ 11 !

~

ji i

i

,i l ll ll I,I I,I,II, ',l,'

~

,l', i l i Il il I

,, n.i..I ll I,ti iin...I,I I,,

400 i,,; i., ' i.

.i

, 'v,,,

i i ii,i ni,,i '

i n,,i li ii,,,n,,ni,i,i' li,,,i i i

i,i ' n i -

i i

ii i

=

i i

u i

i i

i 5, i i i, i,,, I, l 'l II,g glllli,g i

i

'I,,I ll, I ll l'g I

,I, k Ii ) 'l li I,1l ' g l' !' is i',# ' H ' l,' ! i n ' i ', I!

I lli

~

l l ili i i l i

~

1 Nl

'l l,' 'l '# ', ',i !' l lljlllj!jl[l lij',,'ij!0 l' W

200

-20 0

20 40 60 80 100 Time (Seconds) l

Figure 53 CD=0.8 DECLG Break Transient r' '

Cold Iag Mass Flows at Reactor Vessel Exit

~

(intact loop side)

RMVM 5

11 0 MASS FLOWRATE

---RMVM 6

11 0 MASS FLOWRATE 7000 6000

~

\\

5000 e

N s

5g 4000

'3000 l

t 2000 4

9 1000 w

~

0

-20 0

20 40 60 80 100 Time (Seconds)

I J

Figure 54a. CD=0.8 DECIA Break Transient Cold Img Fluid Temperatures at Vessel Inlet r-

(intact loop side)

TLN 5

10 0 L10VID TEMPERATURE


TVN 5

10 0 VAPOR TEMPERATURE 700 U

M M

M M

e 600

\\

~

\\

N Tm.

g 500

'-l i

- v,, g I

I i

i

~l g

i I

~

l i

I

~

i I

l I

i 400 I

I I

l t2 i

i l

I l

I

~

l i

I i

i 300 i

l l

I dm 1 --

1-200

-20 0

20 40 60 80 100 Time (Seconds) 1

Figure 54b. CD=0 8 DECIA Break Transient Cold Leg Fluid Temperatures at Vessel Inlet (intact loop side)

TLN 6

10 0 LIQUID TEMPERATURE


TVN 6

10 0 VAPOR TEMPERATURE 700

-m

- esup emm>

600

\\

~

\\

N N ---

g 500 l

I ' ' "Vu r-w I

l I

I

~

l i

J I

~

l l

I I

~

l l

l 400 m

2 l

i I

I I

l i

i i

~

i I

l l

l

~

i I

l l

l 300

_)

ll

~

i.

4 200

-20 0

20 40 60 80 100 Time (Seconds)

i Figure 55 CD=0.8 DECLG Break Transient Intact Cold Im Mass Flowat Vessel Inlet (this is on th intact loop side) 1 RMVM 62 6

0 MASS FLOWRATE 6000 c

5000 4000 G

g h

N A

2 3000 f1 g

b. 2000 1000 I

}

0

-1000

-20 0

20 40 60 80 100 Time (Seconds) 1

{

I Figure 56 CD=0.8 DECLG Break Transient I

Intact Cold Leg Fluid Temperatures at Vessel Inlet e ~' '

(this is on the intact loop side) i TLN 62 6

0 LIQUID TEMPERATURE


TVN 62 6

0 VAPOR TEMPERATURE 700 O M M

M M

m 600

\\

~

\\

\\

I-g 500 l

Ii 1

  • 1 i

r l

11 It i

il lII i

1

~

I I I

I II 1;

11 l l

[

gi fII i; ll ll 13 l

l gl t

400 ii i o -l y5 kI

- i I

Ill l til l

i i

't ll i, { h i l I'

! 'i U

i, d ill i i

l

,,,i

!!,, li ii,s,..;.ii i'i i,i i

, i,,,, i i i,i ! ! ! i,1 a,,i, i

i i

ii 3"

\\ y,,,0 o i,p gy y-m 200

-20 0

20 40 60 80 100 Time (Seconds)

Figure 57 CD=0.8 DECLG Break Transient Intact Cold leg Void Fractions at Vessel Inlet ALPN 5

10 0 VOID FRACTION


ALPN 6

10 0 VOID FRACTION ALPN 62 6

0 VOID FRACTICN 1

v

/

r/

/v /

.a I

I i

i

.6

,I 6

2 l

e y

4

.e l

.2 i

~

.I 1

0

-20 0

20 40 60 80 100 Time (Seconds) y l

Figure 58. CD=0 8 DECLG Break Transient e"

Hot Leg Mass Flows RMVM 22 1

0 MASS FLOWRATE


RMVM 23 1

0 MASS FLOWRATE 15000

\\

l I

i 10000 I

l l

N l

U

\\

N 5000

.3

~

\\

2 t

,r(;

i t ~'

0 r-

-5000

-10000

-20 0

20 40 60 80 100 Time (Seconds)

Figure 59a. CD=0.8 DECLG Break Transient Hot Leg Fluid Temperatures at Vessel Outlet

- ~ -

(this is the hot leg on the intact loop side)

TLN 22 1

0 L10VID TEMPERATURE


TVN 22 1

0 VAPOR TEMPERATURE 700 600 E

c g

500 w

400 m2 1

4 g1 I

nl ll lr \\

Il s g

gil li l'

I 'I 300 f

f V\\ 11 A ' '=~_

200

-20 0

20 40 60 80 100 Time (Seconds)

}

Figure 59b. CD=0.8 DECLG Break Transient Hot Leg Fluid Temperatures at Vessel Outlet (this is the hot leg on the broken loop side) l i

TLN 23 1

0 LIQUID TEMPERATURE


TVN 23 1

0 VAPOR TEMPERATURE 700 1

600 E

~

O

~

g 500 w

l400 l

m lEl N

11,'Il l \\

s st l t1 t n

,l f'

l I)it'll3 300 i:

l, ;

i

}

__,jj- >-' ' ' ^%.

~

200

-20 0

20 40 60 80 100 Time (Seconds)

i i

Figure 60 CD=0.8 DECLG Break Transient Hot Leg Void Fractions at Vessel Outlet i

i ALPN 22 1

0 Intact loop side


ALPN 23 1

0 Broken loop side 1

,-y I

~

j \\'; !

I 8

y I

I

.g

.8 g

i 2

l e

y 4

i I

l l

~

l 2

I I

0

-20 0

20 40 60 80 100 Time (Seconds) 1

Figure 61. CD=0.8 DECLG Break Transient Pump Speeds OMEGA 5

0 0 PUMP COMPONENT


OMEGA 6

0 0 PUMP COMPONENT


OMEGA 12 0

0 PUMP COMPONENT

- - - OMEG A 13 0

0 PUMP COMPONENT 500

^

+

/..\\

l i

~

j

'\\

I 400 I

i.

I I.

\\

l i

i

\\

300

'\\

j i

\\

l

\\

I

~\\

200

/

N g:

'g

'\\.

O

\\

~.

It:

N m

100

~~

e 6

0

-20 0

20 40 60 80 100 Time (Seconds)

I 4

Mg re 62 CD=0.8 DECIA Break Transient u

Pump Mass Mows RMVM 5

0 0 PUMP COMPONENT


RMVM 6

0 0 PUMP COMPONENT RMVM 12 0

0 PUMP COMPONENT RMVM 13 0

0 PUMP COMPONENT l

20000 15000 i

11 g

[g N

i 'l N10000

, i i 't I i

\\

@ 5000 1

-s 3

P s

\\

s

\\

\\.

0

\\/

i

-5000

-20 0

20 40 60 80 100 Time (Seconds) l k

i l

i

Figure 63. CD=0.8 DECLG Break Transient e *> '

Pump Void Fractions ALPN 5

0 0 PUMP COMPONENT ALPN 6

0 0 PUMP COMPONENT ALPN 12 0

0 PUMP COMPONENT

---ALPN 13 0

0 PUMP COMPONENT I

v

/

ll U

/

/

.6 l

i

! \\

I E

.a E

l l

l

~

I e

g 4

l l

i e l 2

f il\\

1 0

-20 0

20 40 60 80 100 Time (Seconds) i i-3 i

Figure 64 CD=0.8 DECLG Break Transient e *> '

Pump Heads HEAD 5

0 0 PUMP COMPONENT


HEAD 6

0 0 PUMP COMPONENT


HEAD 12 0

0 PUMP COMPONENT

---HEAD 13 0

0 PUMP COMPONENT 10000 0

~-

~

\\.

p

\\_

.j N/ s.

vs M-10000 D

I N../

-\\

i i

1 j

~

I, I'

-20000

.i i

i 1

j s

-30000

-40000

-20 0

20 40 60 80 100 Time (Seconds) i 1

Figure 65 CD=0 8 DECLG Break Transient e~'

Reactor Power P

0 0

0 REACTOR POWER 2000 4

e 4

1500 E

1000 9

4 500 6

-20 0

20 40 60 80 100 Thne (Seconds) r i

t-l l

I

Figure 66 CD=0.8 DECLG Break Transient Steam Generator Secondary Side Pressure PN 3

17 0 PRESSURE


PN 10 17 0 PRESSURE 1100

~

~

f s

~

l 1000

~

l d

5 900

\\

E w

j

\\

{

\\

\\

M h6 700 e

4 600

-20 0

20 40 60 80 100 Time (Seconds)

I 1

1 L

Figure 67 CD=0 8 DECLG Break Transient Steam Generator Secondary Side Liquid Temperatures (steam generator on the intact loop side)

TLN 3

12 0 LIQUID TEMPERATURE


TLN 3

13 0 LIQUID TEMPERATURE TLN 3

14 0 LIQUID TEMPERATURE TLN 3

15 0 LIQUID TEMPERATURE TLN 3

16 0 LIQUID TEMPERATURE TLN 3

17 0 LIQUID TEMPERATURE 600 e

I 4

550

-s C

sr~Q e,

/

h%

o z

..:*_ 9 + ae:_.

3 m_

__s.

-; =m

~~~

e y

450 M

6 400

-20 0

20 40 60 80 100 Time (Seconds) l f

Figpre 68 CD=0.8 DECLG Break Transient

- - ~ '

Steam Generator Secondary Side Liquid Temperatures (steam generator on the broken loop side) 1 TLN 10 12 0 L10VID TEMPERATURE TLN 10 13 0 LIQUID TEMPERATURE


TLN 10 14 0 L10U1D TEMPERATURE

---TLN 10 15 0 LIQUID TEMPERATURE TLN 10 16 0 LIQUID TEMPERATURE TLN 10 17 0 LIQUID TEMPERATURE 600 W

e I

550

[Q k

/

p

.-Qx_=_._

g m-500 450 W

M e

400

-20 0

20 40 60 80 100 Time (Seconds) 1 j

l 1

i