ML20071G835

From kanterella
Jump to navigation Jump to search
Forwards Rept, Microscopic & Other Examinations of Nuclear Steam Generator Tubing Removed in Mar 1980. Corrosion on Steam Generator Tubing Is Confined to Tube Sheet Crevice area.Re-evaluation Results & Capability Discussions Encl
ML20071G835
Person / Time
Site: Point Beach NextEra Energy icon.png
Issue date: 05/02/1980
From: Fay C
WISCONSIN ELECTRIC POWER CO.
To: Clark R, Harold Denton
Office of Nuclear Reactor Regulation
Shared Package
ML20071G838 List:
References
NUDOCS 8005060189
Download: ML20071G835 (2)


Text

{{#Wiki_filter:8005060) l a Wisconsin Electnc eamcoumr 231 W. MICHIGAN, P.O. BOX 2046. MILWAUKEE, WI 53201 May 2, 1980 E Mr. H. R. Denton, Director '2 I~ Office of Nuclear Reactor Regulation p$ -;) U. S. NUCLEAR REGULATORY COMMISSION a E: Washington, D. C. 20555 [] [ P1 N, ,g Attention: Mr. Robert A. Clark, Chief O() Operating Reactors Branch #3 qb- } Gentlemen e o DOCKETNO(._50-266 L) FINAL REPORT OF STEAM GENERAT6R4 E INSPECTION POINT BEACH NUCLEAR PLANT UNIT 1 On March 28, 1980 we transmitted the results of the March 1980 eddy current inspection of the Point Beach Nuclear Plant Unit 1 steam generators. As a result of the eddy current inspection, we had agreed to remove three tubes from the "B" steam generator to perform additional metallurgical examinations of the defects identified in those tubes. The preliminary results of the evaluation of these tube samples were provided to members of your staff during a meeting in Pittsburgh at the Westinghouse Forest Hills Laboratory on March 28. A detailed p df6 port on the metallographic and laboratory examinations performed ( -on the removed tubes to date is provided herewith as Attachment 1. ( The results of the tube examinations performed in October 1979 confirmed that corrosion of the steam generator tubing is confined to the tube sheet crevice region. The present examinations also verify that this corrosion attack is similarly restricted to the ) tube sheet crevice area. In addition to this detailed report, we committed in our March 28 letter to provide two items of additional information. The first of these is a detailed re-evaluation of all previous eddy current tapes for tubes Ri9C37, R30C41, R26C53, R30C44, R28C38, R32C42, R22C46, and R30C57. This re-evaluation is provided as. The second item was a discussion of the capability of re-evaluating 400 KHZ single frequency eddy current signals by mixing with a pseudo tube sheet or tube support plate signal. This discussion is provided in Attachment 3. We have concluded that this mixing technique produces unreliable results and is not an effective re-evaluation method. / col i S )( [f00$dC0/EIf

3. R ~,. S, : 3. Mr. H. R. Denton May 2, 1980 We have also committed to provide the NRC, or your independent consultant, a section or sections of the removed tubes if requested. It is our understanding from our March 28 meeting that you presently have no need for any tube sections.- Should you require a tube section or sections in the future, please. notify us. We believe this letter and the attached material satisfy our commitments to you regarding the Point Beach Unit 1 steam generator inspections. If you have any questions regarding this material, please contact us. ~ l Very truly yours, f(,c I y C. W. Fay, Dfrector Nuclear Power Department Attachments I Copies to C. F. Riederer - PSCW i Peter Anderson - WED i Joan Estes - LSCFSE I i l i i

8005060 6g a .m ' 6 n: -ATTACHMENT 1 APRIL 25,1980 O MICROSCOPIC AND OTHER EXAMINATIONS OF NUCLEAR STEAM GENERATOR TUBING REMOVED FROM POINT BEACH NO.1 IN MARCH 1980 F. W. Pement Materials Science Division Westinghouse R & D Center Pittsburgh, PA 15235 O E. P. Morgan Nuclear Technology Division Westinghouse Nuclear Energy Systems Pittsburgh, PA 15230 J

e. =. ) i A8STRACT. l Tubes B(26-53), B(30-41), and B(19-37) from the hot leg regions of the Point Beach 1 steam generators were removed in March 1980 and were examined by i NDE and microscopy. General intergranular corrosion was absent above the tube sheet on the tube 00 surfaces. Shallow intergranular involvement was absent or was limited to 0.002 in maximum depth on cross sections at or above the top of the b tube sheet. Deeper intergranular corrosion within the tube sheet region was o. - served to depths of 40% of the wall thickness on B(19-37), 65% on B(30-41) and 80% ) on B(26-53). The results were based on extensive optical metallography and SEM - .fractography, and they confirm that the corrosion-producing e'nvironment was con-fined to within the tube sheet crevice region.

o 4

l I t i I 9 e n---- -e-r ,-m-eee-- -~a- -,.--rw ~ ew-w =rw--w


~m


,v------

w--- g- ~~ ~ w--a r -, ~. e >-s ,e-

s 's. SUf5ARY-i i Three hot leg tubing sections from the "B" nuclear steam generator of Point Beach 1 were examined in detail by optical metallography and scanning election microscope-fractography. Intergranular corrosion was shown to exist within the tube sheet region with maximum depths of 40% on Tube B(19-37), 65% on Tube B(30-41) and 80% ) enTubeB(26-53). At the top of the tube sheet and immediately above the tube { sheet, general intergranular corrosion tended to be absent or, if present, was microscopic, of the order of one or two grains in depth not e'xceeding 0.002 in. The examinations therefore confirm earlier examinations on tubes removed in October 1979, that the corrosion of the Inconel 600 tubing developed in the confines of the annulus between the tubes and the tube holes within the tube sheet. Corrosion above the tube sheet was shown in the present examination to be absent The presence of 0.002 in. of grain boundary involvement such as O or superficial. observed at the top of the tube sheet in the present examination, is not considered j atypical. 4 l i i 1

4 ~ i ,,e } INTRODUCTION Three tube samples were removed from the "S" nuclear steam generator of Point 3 i Beach Unit 1 in March,1980. The samples were hot-leg sections of (1) Row 26 - Column 53 [B(26-53)], (2) B(30-41), and (3) B(19-37). Tube B(26-53) had a re-l ported in-plant eddy current (EC) indication of 86% wall thickness at an elevation l of 18 in. above the primary face of the 221/4 - in. - thick tube sheet. Tube l B(30-41) had a reported EC indication of 47% at 21 in above the primary face, l and Tula B(19-37) had an EC indication of 58% at 22 3/4 in. above the primary face. 1 j The lengths of the cuts made at the Point Beach site and the forces used to j extract the tubes from the generator were reported to be as follows: j Cut Length above primary Face of tube sheet Extraction Forces (in.) (1b.) B(26-53) 70 21.000 Break away 8000-9000 Pulling ) } B(30-41) 65 24,000 Break away 21,000 Pulling l B(19-37) 70 22,000 Breakaway 4000-8000 Pulling The tube sections were examined by techniques of nondestructive evaluation (NDE) l and by microscopy on selected, inlet-end sections. Both optical metallography ) and scanning electron microscope (SEM) fractography were used for the microscopic examinations. This report sumarizes the results of the UDE and presents the i details of the microscopic examinations. i i f 1

NON LSTRUCTIVE EVALUATION (NDE) The NDE work was conducted at Westinghouse Forest Hills. All as-received tube sections were photographed, measured, radiographed, and re-tested by eddy current.

j i4easurements included overall lengths and salient features on the outer diameter

) (00) surfaces. Figures 1 - 4 are photographs of the inlet-end sections of the as-received tubes. Figures 4A, B and C provide in plant comparison of E.C. signals 4 and E.C. findings in the laboratory. Dimensions appear on drawings in figures associated with the microscopic examinations of the individual tubes and are des-cribed later. All sections were double-wall radiographed using a Siemens X-ray machine and the following parameters: Type M Film, Double Pack j 200 KV - 5 mA Exposure 60-in. Film-to-Sample Distance 110-sec. Exposure Four rotations (0*, 45*, 90*, and 135') were used for each tube section. The 0* O mark was made at the plant site on the area of each tube section which faced the i divider plate in the steam generator. Reference to the orientation of all tube, j sections over the entire removed length was based on these O' marks. The rotations to 45*, 90*, etc. were counterclockwise when the tube was viewed axially in the l direction of the internal primary flow. Selected prints of inlet-end areas of ) Tube B(25-53) are given in Figure 5 and are representative of the observations l from radiography in the tube sheet region of all tubes. ) \\ l i

4 f a ~ f MICROSCOPIC EXAMINATIONS _ Tube B(26-53) l The as-received tube lengths, the locations of sections for a icroscopic exam-inations, and a conspectus of the metallography and fractography appear schematically in Figure 6. Two axial cross sections, numbered 1 and 2 in Figure 6, were made through a circumferential. OD " ring" mark which appeared at an elevation O on the tube which corresponded with the top of the tube sheet. This ring and adjacent tubing surfaces are shown at 4 rotations in Figure 7. Sectioning of one of the axial sections at the tubesheet ring is depicted in Figure 8, together with a photomacrograph of the resultant section and photo-Similar micrographs of the 0D edge at an elevation imediately below the ring. photomicrographs at elevations of the ring and imediately above it appear in Figure 9. Very shallow grain boundary involvement (< 0.002 in. long) was detected below the ring over the entire 0.08 in, axial length shown in Figure 8. Isolated 0.002 in. max. indications were found in a short zone (0.02 in. long) above the ring, as shown in Area 3 of Figure 9. Figures 10 and 11 correspond to Figures 8 and 9 for the second axial cross section through the ring at 180* from the preceding section. Photomicrographs show the same shallow (4.002 in.) grain boundary involvement (Figure 10), except that a deeper, opened network of inter-granular corrosion 1/2 to 5/8 in belcw the ring was also present (Figure 11). The remaining four samples for micrographic examination are shown as-cut in Figure 12. Two of these (numbered 3 and 6 in Figure 6) contained fractures that occurred on tube removal. These were studied with the SEM to map the depth of intergranular corrosion and the width of unaffected metal as evidenced by ductile shear. The other samples were examined metallographically. Sample 4 (of Figure 6) was first bent to open the intergranular networks to their maximum depth. Sample 5 The was a transverse cross section at a region of distortion by the tube pulling. results of these examinations appear as SEM fractographs in Figures 13 - 15 for the l 1 l m

] , higher elevation (Sample 3), optical photomicrographs for the next, lower samples in Figures 16 and 17 (Samples 4 and 5), and as SEM fractographs for the lower fracture (Sample 6) in Figures 18 - 20. Study of the 24 fractographs (taken every 30 degrees) from the sum of both fractures reveals a shear lip at every point examined, indicating that the inter-granular corrosion was not through wall and confiming that the fractures were the result of pulling the tube apart in the removal operations. The depth of intergranular corrosion as determined by the fractography, varied with circum-ferential location but was usually 50 to 80% through-wall at both elevations. The bent cross sections shown in Figure 16 contained about 0.010 in. of deformed metal near the inside surface after the intergrunular corrosion was opened up. This value, *20% of the tube wall thickness, was consistent with the fractography with respect to the depth of intergranular corror ton in this area of the tube, i TUBE B(30-41) This tube contained a ring, located at an elevation which was consistent with the i. top of the tube sheet and through which an axial cross section was prepared and examined metal'lographically. Above the ring, there was a bright-appearing, relatively deposit-free zone about 2 in. long. Figure 21 locates the ring, the axial cross section, and the bright zone. This figure also contains the as-received I length measurements and the locations and orientations of two additional metallographic cross sections from within the tube sheet region. Sectioning of the region con-taining the ring and 4 views of ring at 4 rotations are shown in Figure 22. The results of the metallography through the tube sheet ring appear in Figures 23 and 24. Very shallow grain boundary involvement to a maximum of 2 grains (0.002 in.) vas detected below the ring (Figure 23), and even more shallow involvement, less than 1 grain deep (<_0.001 in.),was observed at and above the ring (Figure 24). The axial cross section taken 1-1/4 to 2-1/4 in, below the ring and shown in Figures 25 and 26 cc,tained intergranular corrosion to 65% of the wall thickness, ~

T f and the transverse cross section just below this axial section had intergranular corrosion to 55 - 60% of the wall (Figures 27 and 28). TUBE B(19-37) A clear visual indication of the top of the tube sheet was not present in the tube sections. Therefore, a special, (oversized) 2-in. long axial cross section was prepared to span.an elevation which, from tube dimensions and reconstruction of site dimensions, corresponded to the top of the tube sheet. This section was examined and then ground and polished 0.006 in, for a second examination. It was then broken out of its mount and shortened into 3 sections which were subsequently bent to open up any weakened grain boundaries. The bends were examined with the SEM. These operations, and the location of this and 3 other metallographic sections are summarized, together with the as-received tube section dimensions, in Figure 29. Figure 30 shows 4 views of the zone from which the 2-in.-long I micro was cut, and Figure 31 provides higher magnification views of the area, the location of the sample and the resultant section. The results of the metallographic examination of the special 2-in.-long micro are collected in Figures 32 through 36. A maximum depth of 0.0185 in. of inter- } granular involvement was detected at the mid-elevation of this section (Figures 33 and36). Above this point, two areas studied had only extremely shallow lp V (1 0008 in.), isolated indications (Figure 34). The cut and bent sections from 0 3 elevations on this section are shown in Figures 37 and 38. The uppennost bend sample (Figure 37) contained the shallowest, opened intergranular involvement which, from the scanning electron micrographs, were superficial. i A number of photomicrographs from 3 additional samples within the tube sheet are collected in Figures 39-42. These show intergranular corrosion of up.to 40% i through the wall (1 020 in. depth). 0

... f -... n.

1. -

m=, m,r. - n o# y - \\.a. t: ; sc5'- i '*N ww

r 4

>;..,.._.. g:q { e g-Q w, ,n1 _Q l35.... : h& +, _ n

m.,
.; y.
% --

W g-Z - "., -/. :*-g' pg .; hf _, ' ' i 'p ---__ n D, @w L. I % =J. u& i:l l ;.. M1 ?? R:5~

u-K at.
.

i w . cas.

,-- ~

Q '.. t 2 w.:3 EiiE*:... j '. { ;,. e...,*3 c ;. ,c. 6 q (' [: R G l a= + r@S w?l . ;. -u ~t &e 4-e= '}; * (,$. f. @-. d .c[: [.J 6: $G:[ f p Y... e. p$ a, [ [L ::j T TM l WJ. .: i. g g Y4 Er k b.. i g.a +. * ..).g;..,...' (- l. j m 4 + M }: d.s s X J "(, Q MGJ O Ws i '$) J

3! ',

I.'. taw. ##.0 t it. WC:L. F' .T. l lQ 4-- ..WW [

(

$;ij 90 yj3 Md. Y Yh [ gj'.?, P..< W mm,,, i ( FIGURE 1. Tube B(26-53), Hot leg Inlet Sections, As-Received. Left-to-right = increasing elevation from piece nearest primary face of tube sheet (far left). Ruler insets, used in bench-top photographing, are of slightly different magnifications than accompanying tube sections and provide only relative guides to the individual magnification. Primary flow direction is upward. J

i I l t o W EO b - X -; = =a j i E-E ". ~ W -as-* if @"s.,I M. l i M, Pg rYp-f ~. $N 2- ~l3 R 'i

==. 1, p ear 2 $2:__f F.1 ~ 40' i575 + $n',5 k. i 11.5 M. 4 m E'.m _. 5 I h K_ i y, l W e. .se, 1 E M. ( + $1 w. M * ?,.. Q.. I I ' l.. s~ 'i'; E5i Q: E':'I M[b? f E1 .4 g.. e =4. Mi .. i.?. - El' se =.. lH

, 'i;.

n;t ? '. g' $.>1-E.: y-l cm J r. EE i w.ye. 1 _.s n.,:,

==-m.v X-l I FIG'JRE 2. Tube B(26-53), Additional As-Received Section adjoining and above the j topmost section of Figure 1. The + denotes the tube sheet ring, F (shown at 2 magnifications). X-X are match lines of the montage of the pair at right. Primary flow is upward. (A higher section of this tube was also received and photographed but is not shown.) k 1

1 l l i~ F~ -X-f E-[et W 4 E':~f 1 7 1 l . { ff s- '1 ai 3.:= n. .k 0 l .j ~. ~ 7 ? f t i l -!i - tl, M. =A. s

.1 gg^

i. 5 El. t L'.O .s W.4 l ~ 3 W.

gg-

. 3 g-0 as=- t= c

c-3

@.-i -.4 ? n*' f .-xi-E: t- ~s..? l i &{ FIGURE 3. TubeB(30-41),As-receivedInlet-EndSection. X-X denotes match lines in the pair at left, and the + mark locates the tube sheet ring, shown in 2 magnifications and 4 rotaticns at the right. l Primary flow is upward and the 4 pictures are arranged with O' = top left, 90' = top right,180' = lower left, and 270* = lower right. Ruler insets provide only relative magnifications. (A second section above this section was also photographed and is not shown.)

k l., Y h s .~- W.l. L' !;E _{. i

?

p g! ? j -{ .!i

  • d N2.<

i O E m b-i t= 7 \\ N.- ~ [ N \\O b $e i 1 j E-I- t I E I FIGURE 4. Tube B(19-37), As-received Inlet-End Sections. Section nearer the primary face of tube sheet is left, with X-X denoting match lines. Adjoining higher section is at right, with match lines at Y-Y. Primary flow is upward.

o o I l ^ Nnt jg-M % i E.C. ggy" "TT.S. ZlR/ 0ol /enall i l*a V

i Location of plant E.C.

~ / i ~ ~i~g G" 84' 31-z34~ 3 ^ "" Y l-Sh-x-Raf 5%) Lab ,,7,,,, ,,4,,, ,7,,, l

3~(pg)

E.C. u ~ h. Zi'I -S

125lc, i

Tole-2G-53 Tolal La.6 Lengt%

74 ?fs" Len

= 70 ? [k[G" 70 [ 4 [ [/'t[C fleelc4[&ve Tl 3 i FIGURE 4A. Comparison of plant 3.7 % l hi c3S"'rinlif*J'i"' i .Sleel.c4 /nside,Ceihe' 25% i tu,aaratory. .L I

._i 0 0

[. '.

~ / l g c I - 22fz" Plarat 47W 11 ~ g,gjfag E. C. 65,. ~57~ 33if" Wi ~~ 2 t x-Ray gg.. Lab U 1 17",_gg" Tale. 30-4/ \\ Tdal Lad k &l 5,,, j naq Ec. Indcabeg 74/4/%elkg, N l i U E' f jgg* .strelc4 h e T f =3.7% ^ f g4pj .fh. etch /nride Owce = /9% l I FIGURE 48. Comparison of plant i E.C. signal locations i and E.C. findings in I ] the laboratory.

i O O t r t I l L 4 l 22 f" "T T S-Plad g3y6 nse% T,fa/ c,f /,n,ff, E. C. .g. i ~ }~) y ~ j" 23-g2yg-yn hany . r-mcracks X-Ilat ll - i Lab tianY yf I E.C. yy, I 24f"z l l 49.3" M feh-E.C. otr. 5/.5, Tabe 7Ma/ 71de Len/9 -37 Y 74 8 64 FIGURE 4C. Coniparison of plant b efo " o d! d!L 6 and E ind ng n l the laboratory. dPd[dk hVd b 37* i J%dc4 InsdeOerde: /2.5%

l : :'.. i l i

O

~ j i l !o FIGURE 5. Tube B(26-53), Radiograph Prints of Selected Areas. Left = Tube sheet region with breaks at each end due to pulling, O' view. Right pair = Lower end of next higher piece, exiting tube sheet. Left = 0*, Right = 45*.

\\ I \\ pCIRll:gg vg _i itAtW6 N!AA ,,,,,,. K 4 j L lllllllllllll::l:/

  1. '- AKr#4 g

Nrtr4 sic 6MA$NV, 8'k / e -t y mmm.- i ' I I L L / L O O 180* /10 *- M t/AL MtvntiedJANY Sy9 3/ R 24 SfM FRAl'IeMJNY E'73,h j.j I I fI I ' I U l t g L t' M Wenst BEN D R 90' Mifnes e2 dept /y i ANl i gj e i -4 g O /' h, ' - "? l TReutvfRIC y A& MrrestondepHf a s, T } $EM Freer 0MAPn/- i I m W 4f d t J l g 3/s wer p D/MfMsteNJ 4Rf In tMff i Pa PLANT RfM9 VAL CWf NW i 4 yz y Fe PLANT REM 4Wdt FRACTVRC 1 f J.

  • L A S * / M f 0 A Y C W r 9* POL /fMfD l$' CL' p

i i l FIGURE 6. WEP B(26-53) - Laboratory Samples for Microscopic Examinations. l

1 4 l. I I i I I f i .-= = h-r l"~ ~ .~ ~ p i ._ 6 s j 5 =1 i = = l l l e i l 1 -r T e ? 5 l i 7 -n ~n -n i l =i- =_- C r

g 3

_u 5- ) 27 T p .J J. - =. = _ ~ [,,, M s% 2 i >;i E: C. ' r-i

Q.l 5-I E-3 "e

. g

==~ 1

i

-: 1 -I

r.i

=- i ? z =. =, I I i 1 l FIGURE 7. Tube B(26-53). Additional views of area containing ring at top of tube sheet, after preliminary sectioning prior to metallographic l l sampling. Left-to-right: 0*, 90', 180*, 270'. Primary flow is upward. i

t-I 89 _g E' l = f 5@ l y E5 ' i E 2 b E N 2" l 0.1" O r ~E 1 EC-i El 1 //y I 'g ] T j., 4 s . ~, ),. %p,Y ? i ('. j 3 3 37 h,f j D51A13-' O l 0.020" l.

RO t

OM5" l t.3, g j fl l O.5 m m 3 127 pm a-v- ft 1 s r i -( r, ,'0 .t i ,, y y 'f. L.m. ~ s >p l 1 . ~ Qcp s'p nv. j N [. 2 FIGURE 8. B(26-53), Metallography through Ring at Top'of Tubesheet. Upper left = sectioning. Upper right = photomacrograph of polished and etched longitudinal cross section with CD on left. Lower pair = photomicrographs of OD area 1 below ring. Etchant = bromine in methanol. p (Primary flow is upward.)

i.. ~ _.. . G ' :.l. p' Rh,.. s _s. 7 j i 1. .]. , o. /.u'*u';

  • y n..

l W.'CE. !, 'r ^ ~' ) :-...e. l 0.002" l l 0.020" ll ,,V 51 pm 2- [f. ,0.5mm 6 ..,, [:.'.. ..s .: s. .i j y;..~.e '.n(4.m i, lO J. 'y - % l.i p ',y. >.f , @I n W / '\\ 'j,- 's hM,1re ^ e' /( \\ s. )III . (Uh[p" h ~ .f '.. : j'.,. f i. ' Y ' 'Q.y ' i . '.N.- .'e'. /) _ d' ( w .f .c L.- 3_ ;:lp)l[ L h.<. A,. l 0.005" l ? C' l,i 127 pm e' s,1 0.020" l' .g.p, * { 0.5 mm y j, W,i R (; ;. t..,1 . q b.Qo;;z. g. s y-4.- y k ' -. geg ,r ,c y '. f$ k hh; C' :f .h , $. sj,lkhk',;' et,.iv?'"'N,i-k,Ijf[,Ey FIGURE 9. R(26-53), Etched Photomicrographs of Longitudinal Section through Tube Sheet Ring. Area 2 = near ring; Area 3 = above ring. Areas are located in Figure 7. OD is at left; primary flow is upward. l t

i l \\ .1.

g.....

n

e..

.r i m ' ;E " (.. e '* J,,.',s,,- ,,.[.,. 4 b y. ' >.;g>. a., *p.-:' . j 4 - d ( _f > 3 _.5 ' ^ - g }; '; y;;,3., [:_ t 2 g_ .s. t: .y;g L {,, O j ,.[,- [o f > . 5.1 .e.. e < '.: 4,.. j, "* l.. ^ .g jl,: . w:.. ..k ' '.,&l.' # -f .lM h.:W#.? . L. ';; &^ ,A. a-c ' 8b , y. J' - ,.c _.y> - ;44,s... r. ..~ iy.7 -.c --f ' O.5" 8

  • y-4.

..._\\ '3;;. ; '. u- ;;,.( _j,.J.? > .. +..:.n$+K

k. -_

.n 4 0.S" k. .x... - v. e ^ '. - J [ ] [3 { :. ' ' _ l -.y :- (.

  • .x 7

.> u N . N[Q.;g}':. ' ; .hj,lN'A f'.l '. $f l,

p# :~ '

.-. M % . ;. } ym _ ;;.f.. ? f.f* ]_. ? .k. I, g ...h. '-q, _,u 'N. {..K

5.,.;.. up..e_

.,.y.-~...,.. n. rg.- m &s ...i......,' 4.... 4y L-y. z-s -..u (: ;.. _ ;.;., ;._. m Y- ,y Q m ~w. .. ;>; C*y:.. y . _.,.3. :

p%.

+

/.,;. :..

r a 's .. '. ; af. s g, f; 2g. 3' ;n. -' q m

.~

L.3 x...sw- .t

-a..._

a: ,.,i w, gr.:>r .s- ,.. y 3j, e.... 7. M &'~ f,..i[j ' q ..,: 3 g, s. y_ M hp. ' = . Y...) V W9'

.*q j

'~ f.,;

E1 A

ftr ll 4;. : y* r.l. pM.. 2,3

  1. +

%.) h2OM'.w 6 1.j*.: Y* .( 4 Pf,...g.. Au 8 .s <s.(.bjh ~ 7. .: j ~ l ,..? . :. s 2: ki ${ -z.;. " '- 1 {' %.4 t r ~ am ._g 1 .Q-

9 -

. r/ / 2

f,n.

R. l .g' q; f g.M. O h..-- . z \\, [ }z 'm ' u,. 'g .Qh ',.,1: 1/3.y ') s/'. i 2, P.M.

.?:

-.h lu . t. O c..:.% y.; . c

- >W L r....v (.. t p.

u.

j..

.. f ; .r 9% ' ~ }.:

j d*-

q, x ::.. Q;. f,.. L g c

s, 4.;

-;. 5 s.

  • %.. *j, 1:.

r._% g l__q },, ?: D', - 9

j j.);j.

l y s. l h, -(b;-

  1. n.,YJ l

0.002" l r _, ')l 0.002" -=g i. N. n s hJ. ' 1 /J. 51 m 3 t si m

.9. 3 -.

) 4 - ----e FIGURE 10. B(26-53), Longitudinal Cross Section No. 2 through Tube Sheet Ring. Opposite side of tube from section shown in Figures 8 and 9. Upper pair shows sectioning and resultant section. Lower left is a _photomacrograph of as-polished cross section. OD creas 1 and 2 are shown in high-magnification etched photomicrographs at bottom. Primary flow is up. .,,n ,,,m, y

i ?5 l(~ ;$ " i' ' f , ! g 4 %. V,- 1., g y ,.u , 7.. l i -.' 9e' 9 r'T ~ m.% " ..c ' '. c . I ' '- .g 8 "r I} "' 3,. .,-l ~ 1 '. ,L j h (..* [c [ ',. [,5. ' '/\\ { s e, a-- O a s.a j f l +' ^ .,~i 4 esu l e. 3' l ., ', a I .. - a <: ' '4 D '" '"[ o.010" l v f c ~ I 2 254 pm p .i ( ,k e,wm .%ng , ".- h l 1 ~${ -e . ? ~ 0.010" l { I 4' '- /

s.

k{/ f . $If[Mik 3 -Q l"

t.,

..~ .g_. '4 p.m

g t

a' 3 x> ..d $ N ,b j-N s [ M dS M 2 At.. r. FIGURE 11. B(26-53), Longitudinal Cross Section No. 2, below Tut,e Sheet Ring, Area 3 of Figure 10. OD is left; primary ' flow is up.

i 1 l.: ...s l 1 l ] O .amme ! L*r e b %. (g l I3 h %7l 3 l l l i f: t H Y 4 .sesse s w. f v i vag:s l ' anum uss

I 1

FIGURE 12. B(26-53), Additional Microscopic Samples from within Tube Shaet. l Top = Sample 3 (Figure 6): SEM fractography Top Middle = Sample 4: Bend transverse metallography ) Lower Middle = Sample 5: Transverse metallography Bottom = Sample 6: SEM fractography.

-[ j%,ag.,y [ ;. 2 - ? ,a. l:l_ s ',~g-k ),;. }: 7 .- J f.~, '. '. ' Q -:. :.. j.. y*h' ~ ?..- ;, ,/ ~* W .,{. O.050"]- '.i l 0.020" l_ .c -/ 0.5 m m ' e,. % '. f i;.: u t' "nh'G4\\e;..:.r.n-Eh; t. ',:. f Q p.?,* 'a . -'W A .~,%.. r. ?f,+:?%)l $6f gg.; Q

L

,r ?l,, ff jk[. z

.krs.

l 0.020" l .i,, li. W .p l

b -r'/

, ':. 7yyk l*.f: 5 . '& - ::....L,

  • o:

r ?.g..'.i 0.050"_.L "y

g.

g.; P:.;-y g;p?uz:tj l 0.020" l .j. g 1.,4'L t h$.~gg ?W.. 4.,.f.]ff*ln$.. s 's 3 *. . ; f ;. ',g. 9. y 6 ...:5. ;,u. a .:.. ; q.. s, h) ^ .; ' '1 '.. ',T..', 9 N .k..;,A %. 4_f. v,,.. e.',,,;, '...x i $ /# h. * ' D M f j@e' @- Qj N:D e 4;c..p

r. t...y i

5,. ; { t;a f,:.. r

f. t.:

S u'3 .g 5-AY 1 050"i

  • l' $$

' f 0 % <( l ,a .ys ,4 s, ,f,f R. t, y, r 1* % a'{f y a' ~ l?*};k .. 0 ~A W, f ,f

g..

.p,,,. FIGURE 13. B(26-53), Sample 3, Fracture Face within Tube Sheet. SEM's taken at 30 intervals beginning at 0 (top) to 90* (bottom). Magnifications vary from point to point within each SEM because of specimen tilt. I

i -,....,,,s N . ' a my.:9..; f }..gs; :,,geggly, ~' ~ . Yr,l.Sl.: **. q ;yp;w\\'y n:,e y 'l i- -T ?.' b l.'. l l..' '. ~_-{: -.A '. '.. k* _. ', t.. ; v. + [ l f r . o. ~ ',; q.

.. [_. ;.. -.,.)..

+ . ;c E

  • ?

.. Y. 4 .,.? V, b y. '..,.l ~, - j -[-X y..' l l O. -} :V. &.,' f,'. 1.4 ( I b Y j,,!$ s,

/

ervar o. ~."

i,,. p. K.y (-
.c h,.zY... v". i...-

.....,o,, ' - R j.*.-[._* /. /F , 1't;f, \\ '.,V lt, .% ~,[h..g_gif;,%'k,,nf.,.;/qg TC* l l - @ f j?l l 0 0 i I 0. ' < v.2 @ l

  • $Q*.,, f N. t.;q'y' s.h '

.+ sc 4 0* T ~ ~ ' ...; g. 3-K r,%. h': 'W W... 7,, i ._ ^;p.- .~ e . f :.

  • V V... :r _z..*. ;3.,
. Y,.3,.r t.
-

.c j % f d,.^ .tj ' ] - - _ -g 4-h, '.~y, s,v. m.i. > - '.' ;( '.,4.h ' l 4 ' (, ?..s l f,.y ;.. c' %?.

n.,
y
_e.3 j., ; ((

,3*,- - *.y. .+ g. .p.:. _f p._ an-- ~ n ~ "9 lg Qg@ 0.1 " i p. l 0.020" l i i 2.5 mm 0.5 mm ..., 3. n.., t. w. - J L' G 7 g@l} 0.050" l l 0.020" i g :;t y.

  • ;p4.

a 0.5 mm \\ t . [ '%l 5,..h:, ? -:..,....-!.]y3 u .~

l

-J' ?< : Q.y ;,- ( g.. -g q.y 9 g g l ~. l-if FIGURE 14. B(26-53), Sample 3. SEM fractographs of preceding series. Top = 120*, Bottom = 200', sequentially arranged in 30' intervals. Magnifications vary because of sample tilt.

"< 5 .... ;...,p#,... yp. y' "TL' . 3: m7,,q M@., 1 't ?, 4 MhfA o 1 0.050" i .i.$;tj1;.9.;'*-3 . 9

,l. ' _.l. J,' ;.&;W/.,R.,;, v ;
> 4

..~',.-$;;.f y,4 u.,'0 '; ~. .. A. e' .g'* .gk. ', - f5 ' ' t. ' 'E'>W .M O - ) %,g .).X., ?l.3 .. y; T '%_&pf;l.;y ,b. },,,,. e j r; -,j o. r I j _3 h!'-l:' t f. "^ .,., p.. j g,. p(.L.'('g!?q~'O.020"i i 0.050" i c ~ .u _ m. i 0.020"ll i.l. 9 j; " f. ~'.;f:; I, ,k .x:: 2- .9:...:..~ s- ?v:zm ? p.. y...

w..

n. ^ t 0.020"i V- ' ~.ag.*. \\ l 'I 0.050" i r ._ b'l s $n c' 9 i FIGURE 15. B(25-53), Sample 3. Conclusion of SEM fractography of Figures 13 and 14. Top = 240, Bottom = 330, with 30 intervals in order. Variable magnifications due to tilt of sample.

i l l l I n '! ? =.. . @ - v.:..': .. ' '.' *g -.;, ; -

0. 2 in

.n , ? e 6 *.;. ;..y 3 .....w-..:.- .r. .. t... Y h.'. '. '..*' ...l 0.020" l.i.; s-

  • l O.5 mm

/: ~.i..;,'.'.'.'~~~."-

. h, * '

"l 0.020" l ?,*s *- '.','. ' T '< l%' 0.5 mm.. .,, Y...' ", i ' '- e.." '2 ~ .'{'.*- _ W,- .S. ,.. y....,'; p,, I ..,.... gl, -. M %..'9.,'. c.,,o:, i-.... ,, I'd:*. f,. '-l.f.. .:{klh ' .. rr 7.4. 'f,ff 4 Wi, xj;,JI' ig;q- - $$h

s 3

L 'iL.y4 C IA. d ., g. q, .g ~ z, 4.i..':.; ya 7..g M +.25p3,, 'P,. e q; ; T y., t 0.020" l t, 0.5 mm ~ lb = hi' f ~,.{ 7 I.. i y

,l 0.010" l

t 4 l e'. y s. $4h t: y,.I',') . j Y n w1. - FIGURE 16. B(26-53), Transverse Half-Ring Cross Section within Tube Sheet (Sample 4 of Figure 5). Sample was first bent on itself to open up OD intergranular involvement. Inset at top shcws OD at outer edges, ID surfaces touching in middle, and remaining ligament at bottom. Lower 2 photomicrographs show the intergranular invalve-ment edge-on (horizontal orientation) and ligament area.

l, l.- [ /lYW-r s r %.. l 31./ (: ~ A .t 7 l . ' ~ gy l e l l l l g { gl t,. 4.,'4, a * - - 4 " f. ?-s ' ~. i n. 7 ..y s.. l ) ' g,,- -.l 0.010" l., l y__w4n -.;: ~ :C l i c-a N, ) s 2 n - +. = .c. .i l ,\\ } s. v. ...l 0.010" l. ..s 254 pm ,g ,y i .. A,,. .,.x....1..,.c.. . ; g. . 9e M,.,- !/q.h' s. l 0010" l %<.vt i . Ni *, O 254 pm

  1. l 0.010" l

,s ..,.........w-a'- ) fif'- l A"f.., ' *iW ?,Wli $.:.,. y' f&....

  • Q...-

i. J. k. . t.s ? - ~- ..... - :... e l Y,,(& %.Aj-m, E? k*5 $..?.. *? E $-% ,.a. > . ^ ~ ..'.A. *:l-fh, ',l, '.

  • l l

0.010" -[ b {.5-[ij 0,010".h,?j'G ';i M.'. l; i g' 254.m 5}.. T!' b & 9$ }$[02Qfd 'F.p *..;d M8 l P i l 0.010" l;g..a. . /p.' l. Ih Y; h - &,',N " $ W :%:' fQ* 'IPcE'h r 254um ~l ^- &;W.:' W. 254. Ym LL. b .? T-..L Y " *; ?> FIGURE 17. B(26-53), Transverse Full-Ring Cross Section within Tube Sheet at Point of Distortion due to Tube Pulling. Upper left = photomacrograph of etched octagonal-shaped (distorted) transverse sample (No. 5 of Figure 6). Photomicrographs are of OD areas.

i ? i ,, f tf y. J' t } (;~-r f.i?) Q*WiQ , j, p T q+ ' ^ a le ~J> '; G, T eqf d~ ) p'/ V og.; 4 'y; - r Q' k A ;.F(.'y ,z f

s -

..;(A 3 ff / } e l l 9 x ' /_', .f-~ f [ Q "C.N,gSq. fg ,I , J. - 5... I.'. " '"j'~Qm 2,<j ~' O.5 mm O ~ '? $4, My.IN.d,, s' ?.,%. VJ M qi kh(Y ,.[f',a. y 0.050" i ~ ~ l' } O FIGURE 18. B(26-53), Sample 6 of Figure 7. Fracture surface nearer to primary face of tube sheet than similar sample of Figures 13 - 15. SEM's at 30' intervals from 0* (top) to 90 (bottom). Magnifi-cations vary with location within each SEM due to specimen tilt. --y,e' v --v-- -we-e e -- --,.--------v ---.-vw-- v-er -w -y--

\\ 4.- smatar-m _ i o.o20~ i l 1 0.050" [ J.- l ~ic] c ' ,.,.o;s mm,i t,, A[ l ' }4l.' d

s. :

l . Q.- t h i l ? i

  • ).

n j . Eh ;M O ?..,. x u.. ~ _ ..k.. ':. 2., s ? ,_3 y.c w.. _ :- y-' . '{' { ),s,. }s ?. n . j;, " ', J V.f {,-[ E- - -.;. h 0 0 *" I. mm i i -rse :. x.*. g

-- ~ ~

e l ,4 l 0.050"l I .o20~ ii j . f/yf;'. x o.5 m m ,i <>. ' T e. b .},. N ' V.,,p. '( .x ..} 'y ' glI? #i1 S. .S 'i [',,5 g , 0 e- >~d J L,,g s. 1 4.< ?' 3 K i. e., q.

...dx.

' 2 f. g 7 'g' " "0'. M i' j ~3 ~ if RM < rW .p I I 1 o.020" l o.5 mm FIGURE 19. B(26-53), Sample 6. Additional SEM fractographs at 30' intervals from 120' (top) to 200* (bottom). Variable magnifications due to specimen tilt. j - i

} I if hh

  • A

/ ' el h, f =gA. 'n, N f. a 'l l j, _. ~ _ ,,.,q. f. A ' Ry T [ e-

y y,

~g -k: 3 Mk r ( r 0.050"_i j l {*y-I/g 1 g*WNy )$g. ~ l 0.020" ~ o.s,, ($ ? ?.{.'t?$$ .( j b'. h 6 f i o qquy I

0. 050" i

.pm n - e-yl

0. 050" i I

o.020" l p..,e g i . YQh.' ' 0.S m m w f, I lp. - L'" o E. 5 ^ t] ' . i . ). e[M7h Si i FIGURE 20. B(26-53), Sample 6. Concluding SEM fractographs at 30 intervals from 240 (top) to 330' (bottom). Magnifications vary within each photomicrograph due to specimen tilt on the stage of the SEM.

s P l l J b DrowfMs tent' arf tNe ers y Q P

  • PLANT MMovnt. <Wr A* LARGA/T*MY te r*

i f bk g /0 O I f Q .s}s L / g Z=62 2 l t*wsoresinsi n a SONS is j/d 3' ,w. 1' L 4h R/M6 L / 4 h 2ll t

O pm.;7,q

~ L4 &oMe tr ustW$4,. tis; p u wQ S A b TRANNfAl( ) g (g,g g A k i f i f1 f 1 f I I J k / FIGURE 21. WEP B(30-41) - Laboratory Samples for Microscopic Examinations.

____e. ,s ~ O O ~ ~ ~ - d 0 i 8 ?! l ~ Y M 4 m m o I 4I 6 C S o ... 1 2 3 4 -., > -, n = a.e E a c o IlfillijllIll{ljilllWIlllilupjiii Ipi i i + W ilupj$jipju1 pjipiiniup ll i A*9ri 2 3 4 5 6 g- , fl'ljl',1{ 'l l l l'l lhlfi/k'ltifl'lflTititgr0l*l*l@*IIE Il iIi i unshosese @ o o ll}l } ll!} ! !!!! III IIII ! !!! III!!I ! II!!II IilI !!!.b! !l l o

  • O$l$U E

ip lp ip in Ip ip ip IllIs'IV IV lli n W IV lil 1,1IV 10til IpllliIV 111W s....I 2 '3 4 5 6 l {$a " E O. O. 1 I l l

) l C i l l B llO l 0.1" ? A 5 W kl .f '( 6 ) , Q '(z// g. .x s -'J % :.e y. ). Y., f f = 4 + l0 $ " $ g~ l p s.'> Q g I $ ' h. _a 'y .v 1 i f.:. ". '~c

  • l f

~ j ~ l 0.020" l i f j 0.5 mm (- ( 4 .. 3 ~ .s[, .h','.,, y Jr.t.. s+ . gc g ' ',i . ') ' " ~ ~ 3 .6=fr. M ?i: .A si i l FIGURE 23. B(30-41), Longitudinal Section through Tube Sheet Ring. Upper picture: etched photomacrograph of mounted section with OD at left and primary flow upward. Lower pair of photomicrographs: Area A below the ring, OD on left. (Bromine - methanol etchant.) Sample 1 of Figure 21.

-.6 7v. g,.i N. - .p fM 1. A-I ?'l),y' ?y '. ' Q 1 T. % f 4 , J': l 0.005" l7.g .,,.,n u. ; a ' h 127 pm t. l t 4 ' '. - l 0.020" l -? .'; g 0.5 mm .u.. a ~ .y g' l ^ - g < ',,. w 3 3 O I l. 5 ,'i " 4 i .5... W." l.i.- .g ~ k l* ' h,.D. !h,$1 l

t. (h

.M ' 'iS'.!. il@p'~s.5p.{ ., f. *: %*fg.. ..f y. t .~' .: g n. m.U;p

s..w u n

- r' '-$k: .f' l 0.005" l .k. YAM ' 127 gm ff*~f'd _f 3 h. ~ 'Q - '?g 1 j T), -) M. 1-[. h ' g n,l 0.020" lT F ~ ' '.M 0.6 m m i , 1/v %,,,,. c'. p. g . W -e_ 4 ,..:K;k - '[ Q ' i ~ S ) . ~. .j j z l , - [ y Q-l .hp o:, M,,.. ~ - l ',\\ . 'h% ' u a i FIGURE 24. B(30-41), Longitudinal Cross Section through Tube Sheet Ring. f Area B (near r'ing) and Area C (above ring) of Figure 23. The OD is at the left. i i

j... m i 7 pc l +A :. .a 'I f =. %-'.. I'.,. l . _ c. :

  • g.

h .fi jd [ --g i jdsf:M0(.)!';ikk j l

Wj ~ li.'

%!p:: l 9:5 =;.

96..

p%g)+3a to y' pm V. ;,;

0. 5 in 0 2. in

-:c-: L. y& a.i * %'f -.. l .,)i.-.s. i. l l \\

g l

L'; ?,.. O g g ). % i g y 4. j. 7. * *L ~. n y,.y h.. +. >'Ag \\ _ 'r - ~34. - . m,.. ~ } . 7 A..

  • $.i( $,qsj.;j.'

'4 ~1 77.} -,. c .. Q q:.

  • C,s a

f l . j'1 hh., g:P1 s L-b '1 d# L , f. .. c .r-p e-3h 5 -f M~ I l O '.(-l$. ' 5 U. g v.4 2.e g ..;E V. > )... . e, h... g..<. (5%. gl A .s s . 4.;- 1 0.010" I: I r 254 gm .9}h'id). I '~ 5.7,.

G9':

s 5 't - t C^ ') J,."9'T,. ' MT ~ ' ;t,h,.[;MW.* t '..'2k.D d.. l 0.010" g l$ b,h.OI e 4 sho,... 2, y,,.,gw J FIGURE 25. B(30-41). Microscopic samples from within the tube. Upper left shows longitudinal sample (No. 2 of Figure 21) and lower ring transverse section (No. 3 of Figure 21). Upper right = photomacrograph of mounted longitudinal section, OD at left. Lower 2 = Longitudinal Areas 1 and 2, with OD at left. Primary flow = upward. I

i 4 l,'- l *a'.? f,0 > )? ' 'k?' - i,p[ s:. s - r ez; ; pl'^ $';,

  • *: ' {,:

l y :. 2 g. 'I nW e. ?: p. E, vid.,gg> (.... [,y",' ) s i e, ' ' % I ) ~2,iTs f } f,. s 'e f(

  • 2 i

. MJ, e, esp J3 , yms.. \\ ; y..,. 8 J O l l l I l 0.010" l ,MSL-FIGURE 26. B(30-41), Longitudinal Cross Section within Tube Sheet (Sample 2 of-Figure 21). Areas 3 and 4 of Figure 25. OD is at left.

g D. y., e " %.y a.' i 1 . *,g ',.c'.<f.. p. ' t. \\ l'c ,3 g, J.'F :.l 0.010" 254 pm ? . c4n ' - (Q. " V' r:t'L,. C.e 4,is* .. ?: i .'. ;, %..'. '*u. ).' 3

  • 1*---- '-:

' t :- ..,pw.,. $,_..r. .t; g ~ :. - 41 li. ;.M.;a* '[.t. fk-N:~ ' %s '[Nw . m. hs._ $.h*-?r dJ. 1 f l ~.s.;ce' .'y. ' ^/... :.. f.* W' ?'..'..'.. IE , ;.c Ve t,.4.r.... ~.y:. s f"p,. ' ti. :/ y M,;.. MAS

f. ;s 0

- 3,)wk &... @Yh'>'- - m -h ~. ^ I ' O.010" l i. 254 um ~..h .. r./ l ff.y s j

q r

S., ,u n ? T.. ... i..*@ i .c j;,4

  • '5*l.

. *. ~-&.. y**Q.,>,.j .; 1,#'.....] C f,;.;g.,9;t ;,**J

s. -.~.

a. s .,, "a . &y 1-q'. e.s.* -: :,;.: y 5:<'* 13' 1. 4,... -..,A.)." p.;- ..~ t.. .,.e t vt .. w> p. .sg s- .s. - ' a. .;. w .s - ,c . e. ~ p %- ,,, u.s, c l p' ~ . I ~r :c.- l wr. .vu .'-.Q. , e...

  • .1 s

^ 's'8:."-N!!.$';$ l'$ %. h ':. giyR,h l f,. m

.i

,9 1 I f. ~

'./ y -W
....W.s. s.

T T'.g,.e. 3 ?... [ y 5; ~s ".;YM.R@Mr.'".F.,..,;. ..;p '. .,l <,.$. f,' l l y. --.-4. .73. f. q.;..;" d,.. .. y. t ... n .u. ..<-(4 ;;:,J.,, x; - l 0.010" l:.. e. d ;.,!. s.. i t'.:,.hl..C$..,?- 254 ym * $Y-:.h % ;,I' f % * ,.%l '.. ' 'o - ' ~.

5;.. 3
; e. :g~ d

.] ) et.1. j;.. % d;;. u k.*.c ,.'. 9,;,. :. ~n ~.: r. j

  • '(,C..*, vjg, S',;.:l 4 'c <.. 3 -..

..e~

-l.
a... f..

a..i- . 3,. r. s. .~.., l i i t FIGURE 27. B(30-41), Transverse Cross Section within Tube Sheet, Sample 3 of Figure 2I. Photomicrographs are of OD edges at identified l locations. i

1 t N' .l 0.010" ...".', 4 ;..

i. r.. -

I l blb:h. k k ~kk t 6. - 12 y - =.9., - - 4 ~y. + '. py. y

  • m.

c l 0.010" l: n ...u - .. n 6*-1 < &' :l. ' - 254 gm .:,, ?l0.: ?. ec ?.'KC,{Q -y'.hQK,': 1 . :e ..y-l}( q }< %"

' f f - ;.t, ',

l # ' t- ' cc&g&a..gy*;;.- b % '.,',~ y. .T1. e f.% .,s _.q. K;; j, 3 42.'...gg &. I-. ?'.U.l.f.?,.p.

5 V

i ?'.y..- ,...:. 6.J ~,., . + ] st.y ,v,<

' t,.

r. s1 . *,M4' :: ~ <.s * - '. ' i- . G. : %,'

y. y'

.}.. ~.: ~~.... ?.e. 3:~ \\ .$m.l,%. i g~f;6-' ' c; 5m u... ng, ;,i. .c-' 5 Ty - . :. g,2_ ~~ - V6. *.3:{i..r

  • k ' ~ ; 'L-. ;

j .s t r . c.~ \\. gQ. f. s j j y*, *. L.a. i ... ; p o. ....., ' s';. : .o; r l ~. '. :.. k g. -:, ort;:4. y, 2.A e. -.n..- ' %,w d- $? n.. ..:p,Z ",.:-'

4
:&. 4 *.d D

r.n.?f,.g,$'.s:. l C .g :., l do'1 cia .y > L. . ;,..,..t. ( ...( 6.2 2d .$^d k., 9 ..'.W Mo.' ;M hhcy[f:'; f k.;. E ~

....;c.;r. f,.- v e.c

.- p :.:.,,Ap- ., % y; y c q 1 P 4 1 l FIGURE 28 B(30-41), Transverse Cross Section with Tube Sheet. Continuation 1 l of OD photomicrographs at location shown in Figure 27.

  • h

} ) BEtVD CD IN TfMited -y 7--- T' i W 'p q= m hMh S E M *" h' N, , }i

  • M k F

i n e

  • mn R

N O n a, ~Y / ll 4 3 r } 12 .se6 >=ui s% d axint nxine r+ i =tERB -2 T I l N rnourvrest O 4 m a} p -8 / '; y, L t A Alft$L l=k i l V o t l D M fMlleM $ AA f IM tML1 TAggggffff ( Fs fL$MY S[MWAL inf' J, e s Apogeroity ear 9*)*06ttMf9 FACf i FIGURE 29. WEP B(19-37) - Laboratory Samples for Microscopic Examinations.

'l l l lllllli lllli I 4 t, ( l F I GU RE 3 0 ( s t B i: ,l F h o ( E E,3 = zE..==5 ;=s = _ f _ = E = ^g E 5 = _ ~: _ z = E _ - 3 i o 1

== g w t 9 N n- ~ m m u n h - r e 3 1* e i 7 n t ) 3 o 1 F p ) i g o S w u f e a r c s e t t h i p 2 e o ,9 n r __=E E ~ E z _ E_ = r_ z "z t e e m._u s =Z Z __ - p u d a f b d m s e i v r r e p e o i , l; h c w e e h e c t. i o c h n t a T a h i rZ=.= E _C_ 2 2 i n z - =- EZ 5 - E _.=" - s i = m_- = i n i g A,- a- .n s . Ia3 t l t h o h e n e g e 5 l l - e o 3 v n / a g 4 t i - i ~E _ E _E 9 _ m .

  • rE E-t i o

= EE n = E u .n m_5 d e i - c -gi. n l o a o r l n r g e m s ip p c i o r e n o c d ,e in g f !!IIi lit: !i!tl,l 'l} t\\!; -[l.lli,! ii; i i?

j_ R g'y.'. Q Q; g-.'_' t.q' ; f fy. ?[lA}-}.<kd[ l _n j h,.I, ..,' N., , h [ y g; Q' ';g. m..,; y,;;. ...:+.. m.. -...h .f f.:..f.j.i [ je..[- 5 ;. 'g, j .( 5 . %m; L(,

  • : 7. :,;h., ;;

/ 5. V.*

b ?k'.}.

v

f. '.:..

\\; ~ L.m '.J:f;*. J.. . J ..y; ? z;,,..; X:" 4 :. i ,? A 4;: ,+ 1: i j J, n ;1 w ^5

es
7 _
.., f. _;.. s {,' :._.;

p.. .y l .- '"l _ ' ; -f..,. -\\- .; w k. lm. -..g. c. . ~. \\ . '. j l,7

  • q

, g, e.... / 4.). .....%y.y- ,., (; "M.. ya .._....;'; :".?. ..., e + c =. .. n... 7 ^ ? ?.; "% v

b. 1. t,_.f..

. ~ ,G g f,

}y
.

.,J, ,.. ;[.,. 'y ' _.,';..,,._k I'. 2 (. .u, ~ z g' ".4. A g,.n. ^.. ?,,...

c..

a 7 ;,flg.,;f hhg. /.r.. ~ -M

f.-
Y u*

3 '-d " %. ! y .? a 4:1 ?.:s. f.o i b M:f s' .c. I f i (. ;a ? 5 /. $.;/if.n o : . ;r ~ ouj 57 W e t ,f. O yy. ;:;3 p ;n;-

4 s % '-
r;-

~ SQ .y- -.,. ; ?r.; 7 a A .g Q f fG%:%.ha. ,a 9: . (j W'; ?

k. s. ;

j. 1 d i ( i \\ E l ( I I h D n 1 i l s 1 l g I l 1-31/32 4 J -C l k, h (, 1-25/32 f v -B 1-7/16 n 1/8 15/16 f( 19/32 y A l y C y y U -g __ ..r-o FIGURE 31. B(19-37). Top of Tube sheet Region. Sectioning for special 2-in.-long longitudinal micro. Upper pair shows cut lines and zone through which micro was made (arrows). The symbol > denotes the polished face. Lower picture is a photomacrograph of the resultant cross section (OD on left) with locations (A-E) of high-magnification photomicrographs (Figures 32-35). Primary flow is upwsed. (Sample 1 of Figure 29.) __.w., .,,.,..,.s.___., ..c

,y t i.;.. - - ,.. g ' g'g. / [ i t' # d- ', ' 'l 0.005" l l l t h 127 pm l "\\ bjkif[ ^ .k.[Ij. (. l !Y. l. 4. 'i 7; ; .e y 2 ?j 2' 0 'l v-1. ,L, 4 f,.p'.1;., .t b . u.r. .s a a l ',e.'f ". _ t 4,j h Y ] } ( ?.. q j .l 0.005" I g 127 pm l i L n ,f. r i ~ l I $f ,4 7 'j j .....[ l l FIGURE 32. B(19-37), Top of Tube Sheet, 2-in.-long Axial Micro. Areas A and B of Figure 31, lower. OD edges are at right; primary flow is unward. Etched with bromine in methanol.

j '? 1 [ 's s l l 0.005" l l . l.]. I 0.020" l 127 pm l 0.5 m m l .' ' c -

  • l l

i .y-9 d -3 A

f. wove 3ne:s i

I l 0.020" l l 0.005" l 0.5 m m 127 pm 7 F ! ?, j FIGURE 33. B(19-37), Axial Section at Top of Tube Sheet, Area C of Figure 21. OD is at left; primary flow is upward. ~ ~

k 1 l,. ' ,?, i $ k M [' M I' .h, -M[j,. p[.?>; i. q ' p.3yg *.- / (,- .. { l ti l sy,d g l ) . K%.f'Cn~;f l j. 'O6%.'O['g]

3. f k.3.

~ Y' ' " [ b[ru.)(g.g$ig 'y. h.~.Y .. n 4 ,9 . k [.N l 0.002" l l $;- ~ Q (' 51 pm j n-v. i 3 g E' j .p.

f. ~. g'. '

E e i.;., '- ' ' l ~ (I N .,...,, f h. -).Q f ,g 3,k.n.g'h.$ '.',.] 4 M* ' W l

+.

QVl ~c h.., 'Y -t lg e - ? '..! v .e I .,g' hl 0.002" J l ~ h'N .'f d. 61 Mm

t. ',

.\\ =. "';t. i 2' .n . f[Q,6 s 5 A J. -,, ,? '- j,nac' +%.. 7-gll}'?,.-f?"; '....( Eqfi. ; l , $Ql ' t- ) \\ 'V 2 W..

r g.
s. :.

t ..e J "j.'y 6:,m.:. Np,,yy;j{ ' '.?:5 . f 'g j f{ hi?k{l. - .f.;;g'.k.Og ' "U ri... f jf'f' p. N$.\\' m,... $'! ' - [yl T ~.?, ' -L2 h ( lN %A$?lV :h?; I L, A ft f$ e.r.:.. FIGURE 34. B(19-37,, Axial Section at Top of Tube Sheet, Areas D and E of Figure 31. OD edges are to the right and primary flow is upward. ~

T ,.-{ - e '.1 j. .s.- SN E 4 l, 7, aj ..} x k' ,'4,.,,'y l 0.00h" l 8 [ s 2) R; t., g,,,,.4 Ih I, f4,'l,.*, )Y,'ff 'S '4' [ "1 j' f i h, U.'005"'l'[h'..,k"'e L,.L .,.s s & 127 pm s W y >7': y 1 t y. j ..o ' J, l l' ; .kN L- . f44,. C  ! ' s* sp e q. s I ' NEk .. be ' ( J 1 I FIGURE 35. B(19-37), Axial Section at Top of Tube Sheet, Area A of Figure 31. Photomicrographs of ID edge (upper) and midwall region (lower). l 1

= i .[ l L

L t M-l

.Ifd I h, vt W,t )n l ')

i..

f

&.p.f4 k.i
  • W).

tn 4 g.i.. * ? f .% 7. ( hl. M kN: [2 b. 6, k % l &; ~. p: p]Yk E t b A y s 5..

a

':.,Y y.% eq.c w

."5s

.f O.. Y d.. $ c s h %.. quf 'l 1 Is.t.a 0.020" l1' [ N 1', $,f:k:f?;+ F ;[f.~j G.y,' p-}M'AKg 0.5 m m 3 T. 4P e ".5"'s.P ' _ O't i .il[f f +- $!. $f(g'g:hi J'

  • d s.9-0 u.

) ~p:$#6M..I.'.[8,A.A@}- E .m E o.. n*' (. #,se % a.. [ @r & E ^,. ~ _-

hi..,,.%4, j1;,W, s a$;, * -

v, y : . 4 [q'*'.;"%4H.-%y.a.gw;;Wyh*hpW%.c '5 ~ fu j ?b y v~%Hm.v. Q y ..

  • C4

.Y 4 SQ!. it T % sr.. e'.. ;.:.?'. .b. X'hi .s WM" A Ql'f {D'fi. 4, ;p r.e.'s..w%32.f<.Nf.~}h):. 7 .u Y-h., ( .c.. t. 2'. e *Q,WL,W1. y s x: u m.~ q v.. u.6., q s l 5 '. I' f . : *;P ,1W ' Q.g/.s 'g:..:d:'. n.,syy,f. !'.t.7s "'.*.t. d!;- ,, t. ? /*.g's '; i - * . - p *.si; e f*. - }*$,4.f :.*,f, ' d2 * *; ..'* t ,N. 1 A %' '

  • [. >,; 9dh.,* *J J st **Q**.he{l'y ;.1rq, e. ','+, --i

-:...>.Q w:. p. :.,:. b '.} e ,.,)Qe-I%.'l.:.},.Q, ':. v. . % U.,;g. w.t. h ye

  • 1~W k..,..y
    .:..x.., -

c ny 3.M gf -g.e.,. 5'h!N,k%INIf!!?N'.Nk}.i;['k gEk.' i i

  • .~. R. '; %:y'>.~h} ' l 0.010" lQ:

-f.)*:.( ( .. g..:.7. 254 pm d. ,k E

s
c$-

'G* g. < c's. %f}:}g t ; @ 9 *\\r.,.li ' q % r .(1P.$.;r;??#(,th ', ', g, - iX:k*.'.%c.k,.s.? :.d;.. 2y,. @'~c'),p. T.C %q .s rv,. s_,.x ;9?;3. a i. u *.a Ye::: W, s b FIGURE 36. B(19-37). Axial Cross Section at Top of Tube Sheet (Sample 1 of Figure 29), Reground 0.006 in. deeper than plane of Figures 31 ,35. Upper left = photomacrograph of repolished sample. Photomicrographs are at Area C of Figures 31 and 33. The OD is at right and primary flow is upward. .m

~ N l j 8

0. 5 in.

1 l 1 I l g .,j i ~l:,l- ~ h -(* ',_ } }'. r,',O I. '. -? Y. f. i k' ~.; 7 _ fi,"Q;., - ~ l.

t.,y a*

Y i,- ) g h ,. h ' If $s. \\ \\- ?.J.".,f,.k'.>.s* { j '. ~'b-t

.i

?y l .f. l,' i - l l . L. ;. " e i FIGURE 37. B(19-37), Axial Cross Section at Top of Tube Sheet. Broken out of mount, cut in thirds, and bent to expose OD and open the intergranular involvement. Upper photograph shows samples A, B, C (Keyed to Figure 29). Lcwer pair of SEM's is of ~ topmost samp1e, A.

1 i i F. 3.f 2." fO U'Q r -! 8; I I ' ",yj .,,,. }l' _ lie ? - l:. = p ^~

  • f*y..

~ h,'; ',,j j-. 4,-. [.' ~ 'Q '- I,; y l ~ ,e . y. :,. ( .. [.b,.. ' ',[4, ,'. } N" - \\ .<,;. e. 3 - r. 5' - _ f i .g., ..)l* ', il _ _s?'a.

    • % ' s,., ' _ l -

?' 1 .~ s . 'm 3,y,,,:rb

{,'..

, F_. l j w s .y x

yt,, +

.:.. y N% Q, es y).% s x. y,+, a. ,,s t' ' ' ~ ~..;- . r L _.., :~ m ' 1 +w i e ns f> 'l~ jyi. mt .f., /g!I Q. .s.. .. 3 E3 ) J' s e...- p q ,%. L, T &'?)- QQ.f.'.;,..;_,... s +- ' ) :' +.,: ~... .. j j t j -Q1?fs %? '}-Q.;,l&,. , %l :g Q" f y

i. q v

h,,,,;f. W, {- W .b . 'ff f \\ .y,,.-

p

.c ( I 's -,g, 3 ( '(,.'.- ^ ~ j l FIGURE 38. B(19-37), Axial Section at Top of Tube Sheet. Bent sections B and C of Figures 29 and 37, SEM's. 1 I i -n.-,

i l .s.~ y );

u. -

l' 2 d j ,7,g 5: e - 1 sidil..% 3 4 ~4 i ~ fdOTNs, 3 W - H,, ~ ' ~ YN. k.. ,c j% %iMM: l rAM 3 ~ .::li'"'ON. y; M l v. 127 m g l r i l ,1 j ~ -. >xm w-r. !O i -e ~ . 4 l 0.005" l l t!. 127 pm l l G.010" .f. ? 2M gm 4 ,g h'L m,.:i.,r. y k. 1 .s l ~ 0.010~ l

l 0.005" l

i _. 127 m. I FIGURE 39. B(19-37), Transverse Cross Section below and adjacent to the 2-in.-long micro at top of tube sheet. This is sample 2 of Figure 29. Photomicrographs are of OD edges. ~

l t h-J =

  • 7, w. '

l i. g. aum j I .s l[ I 1 ~ .J:.41 c q c} -r s = . j# =h; Mjd .r E O. 5 in,__m w! ng y lk6 [3f b j '. O.1" 0 ,[?i M k ' Y h ;k 'i e B 4 e'. ~.; N L* ,5 ' ' 'g .g, s_ .c 1 e.T es sy s \\ l q; F '*f-l l 0.010" l [ 7 N8 o y) t. 1 .s O j 'M2 ~~ :

  1. t 4:

N. ~ 'l 0.010" l. g 1 0.010" l r.. E m v :!1 254 '$$?.?h, i

  • A$

h-s.$lBb: G FIGURE 40. B(19-37), Longitudinal Cross Section from within the Tube Sheet. (Sample 3 of Figure 29.) Upper pair shows sectioning and resultant polished and etched sample..The series of photomi-crographs at OD areas A - J was taken to detennine the localized extent of tube stretching during removal by measure-ments of openings of the grains. The OD is at the left in the cross sections and the primary flow was upward. _ j

-~ 0.d10# ~ll$ C .F e,-7 . g . c. I ', P;', ;. i -? ?.g. 4 O,d_, d i,.' j W 'e c th $[jyyj l 0.010" 7 'kd 254 pm p i a ., v, i 0.010" l-s-r y. i _,r.r.y y a .s sn. p ^'-

y. 0F9.

.:.g. 4 (

  • 'f.{'

..p n

Q

.o s 2: 'N,8

2. : # i (7 p

J. '%F-i se M i. -9 l 0.010" li ~.i i N.N. .i $ m c 3 - .u. ._'(,. <s <.j, ,l',f.?giC.[is .'..g. 4.: t.. e u.v.t':q;, 9,. .,,, 3, 4 i:. 5 L ].'".p'~'3;[l.<..le*%t ,'? '.7y ' t 7.;... _., ._ '

  • p ? _.,

i._? .- ' *s : tz- .gi. '. 2. K,, j d..j.;.i,) pc

p g

?A - d[.. . k'. ' 3 r7[.? ' ; ~ * -['d A s )'.r l 0.010" l-L 254 pm f.: '.-l ~.r $%(4* ~~ ~ b{.3 ..: A '?.. e,. l'i. ' 'g'. '- :J.;.s l':g. . s; t '.g ^. l l 0.010" l %, . e. j

    • y.g ~ '. *g

,e "g 254 pm Y4' te. . ',T i '5 .shi.b..v-.y...V . tyv:3*i,.; .Q, d1 - ' =*^: ~ 0.010" l,. g .,y,:,, p; ; m>? R wt l 1 Ib'N.h: % Y540k - 5 FIGURE 41. B(19-37), Longitudinal Section within Tube Sheet. Continuation of Figure 40;.0D Areas D - J.

t 1 I .( t ~ . g- .~.a. l m,, l .4 .o. .., b,..s:L. g..;;,. .p.j --- ~ 1 r~ ....2- %., .i..... -<..s, v.n... 4 2 . e. '. s. T- ,0.i +'.. ..eT,'. t.. m- + ,,...-)- >: s, ., :s.. s.v-.. y. ,., d ::J.,.. x-c. ' ;..i,'.:.. ;... ',-v, g.;.%... g;.:>:. c.. q u, 1.. r-s J. Am :. e. 4: ^ ;" ;.. *.- Q..r :;. - ..t:..,; ?... p. .-l ?.l~x.@ 4}\\.%. % n~. ".. : ; '; ;.4; %;.Ll%li%lJlhlh' h 1 - w L. D 6 '. W :,. ;.9. a.y@. n:.. -: s.t. 2,. $.c g' : 9 2 . <., tr'.&. :., N. l %.,:'. +,.., ' l '?l 0.010" .y:,.+or ': es t j:

v. -

5,aN > p.i[ (-t. a..v, *.mw.". %'g~ a ss,,,,. .,p. g.s-.."I-s *. 't. sh. e I., .g= 9 .,;. * : * ** ra., .e.......,~..,., 3 n- ,..f.. : 7. y.5 :...' - . ~. t, ' ,s;.s . sy.s.

  • nr

..x ..g 9 81 e., a c. 4

s. *Tr,,s :/..

i t* T z. ,M . i. 6 .x.. ?:. r.. , 7.*

.r

.>.r .w.. '$s,,. .s .%.. h.h ..*1 e' ..*g,, r. L 's. s -e

g.~..m, Wn-s.,,u M*z,f
a o

. f,;.. [Q.~  ;.*.,. ',)n

  • g, =. c,.

~ r. 6C(. .' - 7. v r e s. 'p,.. m;.- . '.' d. : ",..,. . %.s, ,/. l..*'4,75 G.d hS fss g r. W,,-j;. d p r 'M,,.i.~t -ne-s:. ;n% .9 p .,f i

  1. f--

. 'e s. W e.g<-.h. 4 M.':.;; f-I .~. ::. (l..,.., ~t.~.: ; .r.': r-- s r.a.) w ze. - :. ,~. I ~=.W %*

*.%q.g. u,yf-?*;,..v-p csf.-#s (

0.010" l.; ~J~. i. '.;a -i

r. ;

-z2*Vf .a

  • ***-=' h -.:. 1

., pVy d' 'k'k,' i -{- 0*$k' ENh4~h.'%..~ ..l

, ~.

Qg 6 .3 254 pm...-..:s

g p.-

. h:.R-:,. 4 :;;-l 0,020" l ;m* *s'~) ?.' i ? '.a., '-;...- 1 .) d '~.i f h.:. h D,7 w,. v,.s.w. n.?. $.t.*.d.h. cr' - m..x e D g,. e.- ur E 0.5 m m DQ.c;~.M,,,1,[,N,L, c.~. ~, :. s. .',M. L -l *. ~ ~ *. . n. 5. i .. ~.... -. .. h. ~ 8*, b o *- y. . - 6* 4 ** b. \\ ' ' ?>,* 3 J.

  • =E, s.u" Qa A' 2.;
  • ?> '

.i '>: c...t, . ce v. - ee M -;.,.M .,pa.*:_ p.. ':*$ g. - G ' k~,Q*. ..n,., > Q^ f '... $~. &99 y,M,..'T ';: %~+;

y.M;,g,4 e

-y yl-<,-

. ~ "..-

,4'*-j%*rM'd'ip: >~. ' ~ ' T s$'-Q*. %.l'E'.2:'.'J I'& '? c..s ; '. - :' - M . e i,, Q:n,. p? m,,4 t',.O.wr*,.W -. Q,a 1.- p;p..,. wp( l.p:rw s s , gg ig..;_. w. , c.: % l yg+,;.,g4 &. TE..-:h-u; l 0.010" n ' Y. c *.k- {..;$.4ch.., %b?>-int M

  • g$7+ 5 0 0.l\\;.

1 ~ 254 pm s .x J l 0.020" l +" :*r4 JM.

;..,* y.;m
2,.:--v,.
-;p,.yy,:g.c.;..s.

4-f.., ;4.. n..":;.~

      • . >.?* *.&w4~.t.s*w~

".'w .p a !;

.y
.,.~.Z4 .'k'

~( &:.T22-

..+~ Q.; 7 *,

g"f?;;;1,q?C:$@f.g5'QU.&.g': . - ;. b = 0.5 mm

+. mc.x

.~n W.. ,o. ~ .,..?d;#...is . v ;i... y.

- y.

&.,..w ....s.,,

v ... k 1 n s *-:* v' N... v.

e.. s . : :,,.. c ~w. y FIGURE 42. B(19-37), Transverse Cross Section from within the Tube Sheet. Sample 4 of Figure 29. The higher magnification pictures show OD edges. I i l l t

. ~
  • l ATTACHMENT 2 RE-EVALUATION OF EDDY CURRENT TAPES FOR TUBES R19C37, R30C41, R26C53, R30C44, R28C38, R32C42, R22C46, AND R30C57 The eddy current tapes from the various inspections of the tubes noted above'have been re-evaluated for signature comparisons.

4 Pictorial presentations are included as Figures 1 through 8 and a more detailed discussion of each tube is presented below. Rough estimates of the volume (equivalent diameter) of each of the indications have been compiled in Table I. These calculations were made using the formula D =VD 7 7 V3 Equivalent diameter of the indication. where D = 7 Diameter of the flat-bottom hole in the eddy D = g current standard that has the depth-of-wall penetration closest to that of the indication. 4 Peak-to-peak voltage of the indication. V = 7 Peak-to-peak voltage displayed by the flat-bottom V = g hole described by D. g Rough estimates of the lengths of the indications have been / calculated from high speed strip charts. These are presented individually in Figures 9 through 16 and compiled in Table I. Row 19 Column 37 (Figure 1) This indication is small volume, 1/2" above the tube sheet, and was probably masked during previous on-site evaluations by probe motion (wobble) and the inability of being able to slow down the playback speed. Using slow playback speeds and low-pass filtering techniques, we have been able to track this indication back to March 1975. The phase angle and amplitude of the indication have remained approximately the same since that time which is indicative i of no change. Equivalent hole diameter is 0.047 inches and the length <0.15 inches. Row 30 Column 41 (Figure 2) 4 Another'small volume indication, 1/2" below the top-of the tube sheet, which has also been traced back to March 1975 has remained essentially'the same. The equivalent hole diameter l is 0.080 inches and the length <0.10 inches..

, a Row 26 Column 53 (Figure 3) i This tube indication has become apparent since December 1979 and is typical of tube cracking in the crevice. The equivalent hole diameter is 0.052 inches and the length is <0.58 inches. Row 30 Column 44 (Figure 4) 1 } This indication is located at the tube / tube sheet interface and has been masked by the tube sheet entry signal. Uce of multiple frequency techniques make the indication quite visible. Progression of this indication cannot be traced other than to note distortion (~5g of the tube sheet signal back to December 1975. The equivalent j (,/ hole diameter is 0.055 inches and the length is <0.68 inches. 1 Row 28 Column 38 (Figure 5) The same as R30C44 above. The equivalent hole diameter is 0.108 inches and the length is <0.20 inches. i l Row 32 Column 42 (Figure 6) l The same as R19C37 above with traceability to March 1975 and remaining essentially the same since then. The equivalent hole diameter is 0.061 inches and the length is <0.29 inches. Row 22 Column 46 (Figure 7) The same as R30C44 above. The equivalent hole diameter is 0.083 j inches and the length is <0.29 inches. 1 l Row 30 Column 57 (Figure 8) The same as R30C44 above. The equivalent hole diameter is 0.058 inches and the length is <0.53 inches. I

O O ~ ~~ TABLE I ~~ VOLTS STD. VOLTS DIA. OF R-C S/G LOCATION % DEPTH P-P P-P - EQUIV. HOLE LENGTH READ FROM 19-37 8 1/2"tTTS 58 0.72 3.82 0.047 < 0.15 400 / l 30-41 B 1/2"4TTS 47 0.60 3.26 0.080 (0.10 400 26-53 B In Tubesheet 86 1.63 3.68 0.052 (0.58 400 30-44 B TTS 83 1.61 3.29 0.055 (0.68 MIX 28-38 B TTS 45 0.94 2.85 0.108 (0.20 MIX 32-42 B 1/2'tTTS 61 1,91 2.94 0.061 (0.29 400 22-46 A TTS 55 1.70 2.94 0.083 (0.29 MIX 30-57 A TTS 80 1.60 2.94 0.058 (0.53 MIX l-I

t - l i i l WEP - POINT BEACH NO. 1 S/G B INLET R19C37 - 1/2" ABOVE TOP 0F TUBESHEET 3/75 - 400 kHz 10/76 = 400 kHz so - ,l [ a .J: ~ ~ ,1 . '.f, .. ; }.1.,_, f *- 3,: 4 s 'q;t.s.). %, w,9,,, i dV,,.4 Q f ;,{ a /';,'.~:.-~T'-9 '. ~ y .'c h [ , 't ,.g h 5,C M; >.1 . ; y !- .l: -fs ~.M, M;L k,",.5.- :%,y, - '

  • r.~y;,ax

.4. 3. L,.3q

c. '9.-s *

. ^';. n s .i.;. 43. :9..,r g;.. .. {&, '. ' D i.. -.. .&.. M[cN, d '. '.Y '.... I fA ...'.9.-EM.T' d, d %..h d. ~ - G E '

..; m

.w..:. t e,- .. n. ,g.s 2 * '. >.y'*Q].. 'f.@.,

5 a g

Q, .y:,' IJ,:.'.45 . 4 % a.

4..

l. -u - 1 ~-+ sign.,, m _. A &.,,v, gy,. ~ v;, . - Q: o a . ; pt n ~ ', w, ?,. e. '. a.T. y, ~. q ',,. .tY .5 ,+ g

    • % f R. * *:...'.

2.-, ,y.. . ': i '.. - i., t . - { $,.5:Q. *: ' '}'_

[

~m .a a.. :;. g p,_k, 7_, '. ~o .s .z . ;.:n.. - Q., a.-- :-- 10/77 = 400 kHz 8/79 = 400 kHz L. '. A...; e c. ..., 4 } .:L _..,p s a' 'cp .. : 49;.. .f,. w.~, <-: * ^: n ' ; ;.? 2, +k., f' -: - c y - r ** - L'.* g:,f> . ; -; f:x$:; x 'g%[l,G% f:,. - '6 "t y. f ' ): (.i. .f,L l - s. 4'?. y y_ w < D, $n ~ ,.t J e ..,,f j,ap.,...g ... :.t,y' y-.g+.f,g 'c ' 1.s@ QNg@@,.m...fbXOkV';. A f5 3

-Y
.\\ a v.

%*W%:ga ' 49 - gv ..,e , y m.,;% M Shy'it;;$ N;@q. c-m u.Wsp;.' $ &J&, O I J W n Y.. M w %.mg+ s.' 5 "'.' T f *'A N O. ~ p'$5, n w.c .%.;..x A ; A . m., r~n,. A :.J. % s.x.g s m n lQ A b g. S,Fk M .,M. 3 1MM $2 h t'L. . r. 4., ,,3 ' 12/79 = 400 kHz 3/80 = 400 kHz F%wena mannamba mmun mmme r _m. man.w m _y s yd~$gwqvu.@e,g;A k .w s m m- ,s m T g'ggggg myggLy y e 28Mi?i31iE@hg NM8?Qba b J. )

WEP DOINT BEACH NO. 1 S/G B INLET R30 Cal - 1/2" SELOW TCP OF TUEESHEET 3/75 200 kE: 10/76 - 400 kP: WI I ' y, by m,.. g 97; i qn.& W gg;wg ;.6... 5 s % 1...f i &g' &. g p >r m g[ ; :._ :S. *y, :. ( .....? ~ L 1; m'w p;$,6 -[. y, %%f'k p ~/ .N.'-[iK.50b j, . 5 g a.m ~. ji s. v_f;. $bb '.. r t .. _- -m s, ,7 + m ,t 3 3'*,w~' h }cir! t! h . n -: w- %* ' bg ..,g: a m,. y .v ,2..:l ? - NL * *. x;,,. ; ' n A irs Q g ' *,e,jg. w[jiE D ,j .v. + M74 D [4 U " sp,e x, $3m

pg%.

4 =! ' vn 'w ..x y.- 4gx;; <.pw /d - m< -- M g t K

,1 g

, r~ 1'~

w.

m n;:.e-V i t. mm lk k ? !g$ %Y . $.f h.[:e y ih}i_. 4 - be;lcTefl.sry; g;.;,.w, g j. ', i A j n%& v g. ... - ~ h,, ;,, y gm rp 9/73 = ACC kM: 8/79 = aC0 kHz f kkh'd. .hsr - ~j <k i Ykww-f.8 s-Jh, v faikkk'h'i-I: IN MA@h[h-h hif ! S f I d3 f f -c l@ NM~5ffe@df$$y 2{$E@s5$$3dl@@S%iM WW$$9ff45$ $MfMEs%W $$$ %%Q.: %@ IOg fjl{ p E '##r i d'; 1

  1. A

~ e$Y&g!.aGibf ~ >R ~ j%:dNpk n 4 kn $3 ,t w: +m f 1 I't iTA" N !RMP7 u __ __I bg@ p 12/79 - 400 kHz 3/80 = 400 kP: ., 7,7 - Zh ga/DeJ*w; ene . p: wp ' e*'

  • W m. u. X',,. *4;gg
1.. ##~f * -;4,7,.

m W..-.'-( + a *i.n a Io 1 ~, %' * ? T C- _-[ ' g V;, J-%_%1y%,%. ^f ;Y Yi y[ -'> (f: %s aid -, J. t ; cl, a y* L. t f -.. a a fj. -d -Q vt '[ 25' 'I., l ,, c%~[*L) 'O i G -1 = q ,,y a ..a. e - m ~a;.r. mr- ',b *UNI, d.Ny,a !(.Ql Mi'M l ~ 47F&rO-@ e #1*'M E-- E - -?y;yf;*1 . m g - f:v... e ih r + m r.~n *2 u n M 9p%* ?q.~f9;iV+ 3tgg,,fNh1h(?i';hN$$k[ g$m$fhhikh_iNNNkkh$b N: y/w r, 4 m.4 nng5kk:E}}pu,GM$$$$t.h IP$dQObe?fMR$wLf f n l w w ww yy r..e n,p. p.> w,. wy 4 9: -u .s ts m w w1 - ~ - q qg u.,3 w t yue wgg a Q,n.g., s,g, .g.;m.jg g3 y m m-g ? .a. l

i WEP - POTNT BEACH NO. 1 S/G B INLET l l R26C53 - IN TtJBESHEET t l l i l j 9/78 - 400 kHz 8/79 - 400 kHz i , i ,.e-e. [. A ,i' i ?d.4?.I ~ ? ', I _ *.2 ;.,,: n j':[y ys.:4 .s . M %' 4 ' M v.. V[

7. '.$ ]9 i ? --

?.- ~. ' i. 'k ~. " '. . ',3

-;f-w, ', g *

' ~ .a s e.,.. m. i l c e

i 4-2 e

i t ,.;^.:.. .7. .. t. y g '. - i . y t'. 4 l_ g ,e 12/79 - 400 kHz 3/89 = 400 kHz i 1 i ] .. ~ . n.. h g.

. 2, '..

t .,y 2 ~,' t....t ..,,) $k j,2,y c '., [ N'.T k%# 3 ?N ^ 7 n, .. mas s,a ~. .~.. s m h h . Tbi )IS N f "; i . <t

  • b '.,

L ~ ~, ~ lK.' * -[ ' [.'. = ;y* ' Q. 'i '*y.'f'. g y f; g _ $ hf,.t *' VW.1 u}, ( . @..;$;t;. *,8 c. - "..n ,;- M ... 7.. - gg, wppm y,9.; ; wepg rpyir. 3, c., ' ~,' yf..., f. y.,';. Q.,' j . y..;.;, .j e . f. o.'... ., ^. ev s ^ ..b.

  • k.'
  • o! V.rW ri:Q%,ry...

,"a. A. ~'s p :. 1. 2 4 :, :. ...t - r s.. - y.:.. s

' g.

-.,,p.. j {. - r p ,.,f cf. y, 4 J i.r FIG. 3

O. WEP - P0 INT BEACH NO. 1 S/G B INLET R30C44 = TUBESHEET 12/75 = 400 kHz 9/78 = 400 kHz ,6, s ). ; _. 6.7 my,_ l .pe; v ... ;.. q' ;. % ,y, ;_;;3 p r- ! - wy7,.- z-w ? t :, a < ..~ . -.. 3, %.. N., . ;.r, g.. %.,.p... _.g .? _;. 7 i f.i w J ;. 'l.i J., _ 1 i .m. .n. s g.- ...i '>. %,.,

o..,.. m

- ~. e n. .u., 7,,....... a. .x. n .. - :L. l .. :.g-q w :.... . r.::. % i ..';.'. q. m.. g &. u n......- +... . n. L.:Jn' j. q q.e._ ;.; ;. :.::. ' :.y. gp1q:%, ...g,.a w a. y~.. .w.

.. p.,

c .s, 8/79 = 400 kH: l i ....,.. a...y A

f.. --

, y .-(. k. 4 ' - s e h,*-5 ' /- .l t4 j-f t 4 z g.. .. k '*=.. ,,g... .g.<-,t t a#. * *,. ' .s, ,.m.x ( ibk I t %, 4 &, g.g. M.s..a 5. s p r r um. 3rmy M,,x..{j: - ".: - i MMN24. %W,Dd$. k i j ...;;A %.: y,'4 - .a .? e rt V.l:'qf76 e i y. e., t v.. g. ,.( .( >.., n1... :1. 1 9 1 n,, r.y..~.(. . x.g .; 1..de,',y. #3d...d:#,s.vp,.'d.;rk.+ TG A. :;s.. _r y. 'D'- ..1 ..c

u...

,s ....t. .u. n- \\ i 10/79 l s. i 9 s Tcp Left = 400 kHz Top Right = 100 kH: .gY g~. .a..-' e., y, g &..L .tn.'.e$ :.,lh j l r. sr. " ~

r;. p785

+6-4 h

  • L 2

[ M

g t

s <.t .o s Bottom " MIX I k +c 932 1 a + Tcp of Tubesheet l \\ e h' l l l I C *L Q. & P r l 4 l

i l WE? - POINT BEACH NO. 1 S/G B INLET R28C38 = TUBESHEET 12/75 = L00 kH: 10/77 = 600 kH: 1 1 x ] ..y f' $N 5 f-} hp jf.g s.;"fWyk 's. f p f.,,p p % M :^ffiftY 7 *' j>' 7) d M..~ y#'S 'T : h; I v 4, t --. M*f(, e w m..k... 7 & -:~N i; : L ; .a p ~ p e ' D'.

M k6'4.3 A

'3 w m.:Ov-w t .A p, ' :.. X . h.*?!!- df6W> k hbi. 8:tr ~ lj p p J-x5,;;.JTi4.tn;?S.iQ*.*.,

  • h,l ^

ht , -; f r % 5 ' .;)J.g. i,Qfy~ N j; w'W i' 4 c'g.{,jl "'.y,y lj?..: .' f i; ! W i*i 9 4 '4 O hfM N FN,. QA,W)# ,fY#-d.. ., s.., 1 8/79 - 400 kHz '.N k , 5, ; I. 3 ,, - -' t.'r

2;i.'s. ~ (;:n

' L 43. \\D a E r.v..; ,1.' i 717 ' C8 I. '? t .if..[IN ) ,) -v r. n 4 ) ,i i m.n m'awp'xa{m,. u s...f.4...- N.x.e- $r l.? ,., ~p"w -a_.,,.,&j ,f.54%.*T.',;f g,Jr'g}:

  • e % ;%
  • /

T ~4*'..,. Q... y 7 74gf..](g i 10/79 Top Left = 400 kH l(# Tcp Right = 100 kH: 3 thd I z11$ 3@@t r pj &[h .' E i < . 7"[*jkh.5w.' hi J w* =,Mgw y s zi m

+

z ...,_TS { l%.i,,w4.,.J n Q' -Hwg 3Ot!CO = M.iX

  • f

' gG' [6,ll est ~ Mn').;k 2 y h:. I AN448) I

  1. 3 Tec c Tubesreet g.yp bb _*

.@n. 1 I ( u,: ~ { 'i F!G. 5

i \\ WEP - POItiT BEACH NO. 1 S/G B INLET R32C42 - TUSESHEET 3/75 = 400 kH 10/76 = a00 kH: .. y ! .y ~ -W. ..e r< tyv w.. s. u l _ v 4. _

4. '

'}t w qd. f., --r k ..*d >, % -, j ~

-Q

>w ;, : .;l.2%. f.:'i- ,g, . -', *:f l L._ te ,y ...j a..

g g Jg..

f - 1., q .s ,.g y : .r.v 1 -..,. 1. p $, _..n ... pg y' n... l ._;. z A 9.. J a -, , _ ' _&., ' E ,~:,,'r,~ ; ': :.'.. '

y _ ;,
'

, 'i --. b(4- ?. W 'f-. _,'~ f. g, a. 1 ... -- t ,,.i. y .. y .,y. --..,j=.,.. ,F >I h* j .s .,3-IS.' y .m- .y W : p:%@. 7 < , t.- - .., i ' 4... :'.f ; > <g.C !:_m; sb., .1: ', g t;': c 1 i '. i '.:.' ;> x a _ : q.97 m - ? M: l 3y .],a.. I I l 8/79 = 100 kH 10/79 = 400 kH: i d s.n u-- - f&r 4 e ~b ?'. i 9; m. _$,?NY,tt,S.*:& y 1 n $ e$ $ $$5N!5 Ct$,s: .n WS MA w&gg'w -- w,yr;'-- iw spjg.qga _P M= 1{i. J(.. 2 r.

@ h m p w w yh @P n 1

w way earb g [A- [. = n jMf %) Tdf j /h dbW. 3ori,s y a. 2.w'. m y.s.w. kg c g-P 4.?} M,.7,g#ES [ ~ MMhuppd i TCP LEFT - aC0 kH: TCP RIGHT - 100 kF: 60TTCM - f1IX 6 H=1/2" AE0VE TUSESHEET

!G. 6

.l

l I WEP - POINT BEACH NO. 1 1 S/G A INLET R22C46 = TUBESHEET l I' l l i 11/75 = 400 kHz 9/78 = 400 kHz i + j. j,. h( ti,$ ?,. b. p ,, [' W. ?.,lp'. y&p >gY T.'is :p& 1 .f g 3 $;.Q'! ? : - ' ':' f_ ; ; .. z v.\\ - ~ - l D 'i-

.'...... ?,-

^ ... 4 ,j l ^ ~ . s) ; -.,..e 3 ... > 7.3... f,. s ) l , r' ....q.. j s ...w.. ' ' L. , - g '. ; g.~ f... i s s. sk' .s N'. j s %g,,.. ...v .~ .' <' 1 ..s s , '....o rt ~ t. N , q. s-

~
  • g.'Q '. i.

>.3 i Mg g o... y.,W f., '; .t <4 c. .t- .'l... j L; s , g _ gr. M '., \\ j. ? %,. ; ,s ~.'.','t r ..g 1 i a i i j l-10/79 I 1 i s -4 i 'k j t l u.. .f 4, . r., I. \\ ..s. i Top Left = 400 kHz ..b thI 2' Top Right = 100 kHz . *e! - 79 l s v . ' s.n. ..>.s. er --,.- e,, -. r

  • -v,

~ w,, , A,.. : :.,',.: '7

  • a.

,.)< ,J. % r

3., -,

..r .g 4.. l .. - p,,' : M,1 *,3y '.., l. f. - F

1) g. ' 14 ',
  • i

/'A~. j,, n - y. ;.'.. /,'... Bottem = Mix t -l z. d '. '( : ' 6. .-li'- 55% l f*L, ,., A.a '. e. c ~' Top of Tubesheet - ",.. P ,e ...sq ces4-.g C... ',. ':, -,' ',. ,1 }, ' i s., .c .;. J.. /gr.T ',L'* 8 g' s,". .y. l L l FIG. 7 r

I WEP - POINT BEACH NO. 1 S/G A INLET R30C57 = TUBESHEET 11/7,c = 400 kHz 10/77 = 400 kHz ~ l A }.. N ' N$ i y . d F.%k #

r,e go

.n, .,s' ~.y M AR ~;R.0 1 y.} ph' ;j ~t.-,;_', l.; i M' a. *r. W 99,. _ - Qp*^'a Q j. l ~ QMSAdy$. ~.% MJ C i '. ' ? Mi ~

4. UK._ w1... $[w@._

h RO M' K$$.t 3; v Q g % ~ v-% % K @t M q'4[.x1 M.P.,ff j - 7 :: 4 %'.6.D. -2 ; @[N @h, ', E t.y 'j f. %.;;y ; j i Q..g. 7[ u !. m., c. . ~.

  • N~ Q {.[:. ; ;

n"[g,.y 4 2 g. &~ _ _ y.,V.. m... f. v' ;f ~... .w.~ .a..m -u.n jv - - -.x4, m};"-*g. m,- ?,, car.y s;. - i. J ~;.::4.: y %. ;..~ ,g - ;m -.z e,, ; " 6, (

  • g7,f sa ;.]

... (.y. t erg d. ; .c-7 mr a

1. 3; ;

5 1, a....., s ..-gei g# 1. w w., y yf. :;. +.L,.....-1 '. r y ; V,',7 l -A s '. r t te- ' A.3 J se k ',? 4 ~- ~ 9/78 = 400 kHz 8/79 = 400 kHz -c..- . e, p .s, e. .- 7;7. 1. y

w..;. ;q 3 q.. n i f'

y 4 Nh [ c.; j: N .'p& bX%w;&,x%- +4.: 4.r;%=p ys _ _y,'.p, ? ' i % c%w~,, ; n a dh' * :**r p "Qg ', '; k .w eM a ~.

  • y < ),,%. t pT 1

..% ult : s 2 y,'A .e' u ; dr W .s :\\ ~ 1 )-., 4% -A c.p.cf @e A, f ^ ~ gg% g*. 9* ,E.,- o 7q g;Q f-

.-;,p, y

'/,.; 4 :.,y + 8 Jq % ~ &; fyn sq g *, '.- Q. r f~ % :.. ~,r m zy-r s ;- ,p .? s.- f.p. 4"% -

7. '

&-,~ &1 2, I?"I'A; Q N z; ;Q q. %:l% 7.:4.~s.W. M l d ~ n g .;m e* +g p .n q tt' 4: p>c

m

~ [pg, C .s-

k.,.

',[ $ [% .h .[ .. :n &%j[% ,? ji- - l Q; V,.,y

  1. j.-

,v.- y ~,5 p

e. - -

rIk k.s (....%,Q : '1 .g ;, .K.... _ f. ;. }',%. Y, /, .,,.. u,- {n -e 1 y, x $F ( hY.l 3... W W kY Y'G ':f 'k f .;;._.q,$', g < 4.

.F*b p -r. ~a f,g

.w t p'_. ... ~ ,....s.. =. s.- . (i. ,e. (- sf ..,,.;.,<A .. o g ; 3.p,l.g;,,c:. w x./ n w'9 w 4: 't t 10/79 Top Lef = 400 kHz ?- -[ ; 4.... Top Ri gh t = 100 kHz ~,.~ .!,. j 2b -m. h}. r, s... ?,. 't 4' s h* .y s, ..e,.-%. , w '....4 ..s t. 2.- t$ . "*' ns */ T M.- e"r E s .h,,-[4,... fhh..+ -.L, R.} h$ 4T.%. 'd.ak -- ~ ~ w.,b[,.: i s

4. -..

. y : ar. e. ~ dg,.;g Y[.

h..;Ne[

i yh d h totten = nix .4.s % _ m, s, c,.. mu - ,q.4 wy; 4,, g 4g _ ;,4.: Top Of Tucesbeet = 3 ...a

c. 9;

- + ,,4 .m; y. ~. y Q ,. -' ;, : ;L.l [,.. J'} f g [ Q _, m,,; _, g

a:;~ ;. p3. ~.,33..,.yl

.a p m.e Q m3 ...4 4. , as.T % &.4.e&. b,r y? '. Jy,n - 4 .r,,re.. ... ;.E. y 4 3 .}}