ML18046B414

From kanterella
Jump to navigation Jump to search
To Design Assessment Rept
ML18046B414
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 06/30/1981
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML18046B415 List:
References
RTR-NUREG-0487, RTR-NUREG-487 NUDOCS 8107070403
Download: ML18046B414 (63)


Text

ENCLOSURE SEP TECHNICAL EVALUATION TOPIC VII-1.A Received wth ltr dtd 6/29/81

-N TICE -

THE ATTACHED FILES ARE OFFICIAL RECORDS QF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016.

PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT.FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

Doi;~<et # so - "Z....55 c,ontrnl #8 [01070<./-6'6 DEADLINE RETURN DATE Dalt h-Z-"l-6 frtf l)11r,1.1men

  • ~IJUTDRY DOC:KET fll..E RECORDS FACILITY BRANCH

EiICLEJSURE SEP* TECHNICAL-EVALUATION T0PIC*-VH.:..l.A TONR 27-81 5/18/81 "ELECTRICAL, INSTRUMENTATION AND CONTROL PORTIONS OF THE ISOLATION OF THE RPS FROM NON-SAFETY SYSTEMS, INCLUDING QUALIFICATION OF ISOLATION DEVICES"

_REGUlATO.RV DOCKET FILE COPY,

ENCLOSURE SEP TOPIC VII-1.A TABLE OF CONTENTS Descri"Otion

SUMMARY

OF THE SEP TECHNICAL EVALUATION THE ACTUAL RPS/NON-SAFETY INDICATING SYSTEM INTERCONNECTION CORRECTIONS TO THE SEP TECHNICAL EVALUATIONS Correction 1 Analog Input Isolation Devices Correction 2 - Computer Input Resistors Correction 3 - RPS Out"Out Signals Correction 4 - Neutron Flux Safety and Reactor Tri"O.

Signal Isolation Correction 5 - Operational Amnlifier Input Resistors NONCOMPLIAJ.'fCE JUSTIFICATION FOR NONCOMPLIAJ.'fCE ADDITIONAL INFORMATION FOR THE INTEGRATED DBE REVIEW Item #1 - Physical Location of Input Circuitry Item #2 - Adequacy of Resistor and Operational.Amplifier

SUMMARY

Resistive Isloation -Analog Innuts to Tennecomn Resistive Isolation - Digital In"Outs to Tennecoinn Operational Amplifier Isolation Isolation Between the RPS and the Plant Conrnuter Isolation Between the RPS and the Data Logger ATTACHMENT A - "RPS/Non-Safety Indicating System Interface",

Sketch #SK-VII-1.A ATTACID*IBilT B - References 1

l 2

2 2

2 3

4 4

5 5

~

5 6

0 7

7 9

9 9

Page 2 Pages

EM CLOSURE SEP TECIDHCAL EVALUATION TOPIC VII-1.A "ELECTRICAL, nTSTRUI'1ENTATION AND CONTROL PORTIONS OF THE ISOLATION OF THE RPS FROM NON SAFETY SYSTEMS, INCLUDING QUALIFICATION OF ISOLATION DEVICES"

SUMMARY

OF THE SEP TECHNICAL EVALUATION The objective of the SEP Technical Evaluation was to verii"J that the non-safety systems which are electrically connected to the reactor protection system (RPS) are properly isolated from the RPS.

In addition, the objective was to ensure that the isolating devices or techniques meet the current licensing criteria.

According to Section 2 of the SEP evaluation, the NRC utilized GDC-24 and IEEE 279-1971 as presented below for the current licensing criteria.

GDC 24, "Separation of Protection and Control Systems" The protection system shall be separated from control syste!llS to the extent that failure of any single control system component or channel, or failure or removal from service of any single protection system component or channel which is common to the control and protection systems leave intact a system that satisfies all reliability, redundancy, and independence re-quirements of the protection system.

Interconnection of the protection and control systems shall be limited so as to assure that safety is not significantly impaired.

IEEE 279""-197, "Criteria for Protection Systems for Nuclear Power Genera.ting Stations" The transmission of signals from protection system equipment for control system use shall be through isolation devices which shall be classified as part of the protection system and shall meet all the requirements of this document.

No credible fail~e a.t the output of an isolation device shall prevent the associated protection system channel from meeting the minimum performance requirements specified in the design bases.

Examples of credible failures include short circuits, open circuits, grounds, and the application of the maximum credible a-c or d-c potential.

A failure in an isolation device is evaluated in the same manner as a failure of other equipment in the protection system

  • 2 The NRC summarized its evaluation by stating that isolation devices are provided in the interconnections between the RPS and the computer and logging equipment as required by the current licensing criteria (as detailed above).

The URC noted two exceptions, however, in that the RPS steam generator pressure (Channel B) and primary coolant flow (Channel A) inputs *to the computer are not isolated from the computer.

In addition, the NRC stated that a determination must be made as to whether the resistor isolation and operational amplifier isolation are adequate to satisfy the current licensing criteria.

THE ACTUAL RPS/NON-SAFETY INDICATING SYSTEM INTERCONNECTION Prior to describing the necessary corrections to the subject SEP Technical Evaluation, an overaJ.:l description of the RPS/non-safety syst~m interconnection and isolation is presented.

The purpose of this description is to provide an accurate reference which enables the corrections to be described more clearly.

Attachment A schematically represents the RPS/non-safety system interconnection as it applies to signal indication.

Attachment A not only lists the signals that interconnect the two systems, but also provides drawing references which describ.e the types of circuit isolation utilized.

The actual isolation circuitry and its ability to provide adequate isolation is discussed in detail in the sections that follow.

CORRECTIONS TO THE SEP TECHNICAL EVALUATION Correction 1 - Analog Input Isolation Evaluation Section 5, Subsection l (Page 9) of the subject SEP Technical Evaluation describes the isolation between the RPS analog inputs (ie, steam generator pressure, primarJ coolant flow, steam generator water level, primary coolant outlet and inlet temperature and neutron flux safety) and the Tennecomp data logger as being l~ resistor isolation.

(NOTE:

The RPS analog inputs to the data logger are listed in Reference #1.)

In reality, the analog input isolation devices are positive temperature coef-ficient thermistors having a nominal resistance of lK ohms (see References 2 through 5).

For all input signal ranges below 10 volts full scale, the input thermistors (RlO through R20) exhibit a resistance of l.Kn.

Should the normal mode voltage on an input exceed 15 volts, however, zener diodes Dl and D2 will break dovn.allowing thermistor current to significantly increase.

This increasing current heats up the input thermistors and increases the ther:n.-

istor resistance well above lK..CI.. to limit the current to 6ma within 0.50 seconds.

Correction 2 - Computer Input Resistors Section 5, Subsection l (Page 9) of the subject SEP Technical Evaluation impiies that the isolation between certain RPS signals and the plant computer is achieved by lK.n. resistors.

In reality, the computer utilizes lOOn.resistors as input devices (see References #6 and #7).

The computer does not incorporate compon-ents for the specific purpose of input isolation.

3

  • Also implied in Subsection 1 is the fact that all of the RPS signals listed (ie, steam generator pressure, primary coolant flow, steam generator water level, primary coolant inlet and outlet temperature and neutron flux safety) input to the plant computer.

Only two of the listed RPS signals input to the computer; namely, steam generator pressure (Cha.~nel B) and primary coolant flow (Channel A) (see Reference #8).

A third signal from the RPS also inputs to the plant computer; namely, start-up rate. This signal not only utilizes the 100.ll. resistor at the input of the computer but also uses a buffer amplifier (operational amplifier) at the output of the nuclear measurements system for isolation purposes (see References #9 and

  1. 10).

Correction 3 - RPS Output Signals Section 5, Subsection 1 (Page 9) of the subject SEP Evaluation states that the following RPS output signals have the same.isolation device (namely, lK.n.resis-tors as stated regarding the RPS input signals) and input to the computer and the data logger.

This statement is incorrect for the following reasons:

3.a) The neutron flux safety signals do not input to the plant computer.

They input to the Tennecomp data logger only and input to positive temperature coefficient resistors as described in Correction l. It should be noted that the neutron flux safety signal is considered an RPS input (from the Nuclear Measurements System) and is not considered an RPS output.

3.b) The reactor trip signals do not input to the plant computer.

Reactor trip signals input to the Tenneco:mp data logger onl.y.

These signals are digital in nature in that a.

field contact closure inputs into the data logger. Digital inputs such as these input to voltage sense cards in the input conditioning circuits of the data logger (see Ref-erences #11 and #12)-.

The voltage sense cards employ 36K!1.,

3W resistors as input devices.

In addition, optical iso-lators are used for isolation purposes *.

3.c) The five reactor trip final outputs to the Tennecomp data logger all are contact closures from the control rod drive clutch power reley-s.

These outputs are:

a.) "Reactor Control Rod Drive Clutch Power Relay K-1 (De-energized)",

b) "Reactor Control Rod Drive Clutch Power Relay K-2 (De-energized)",

c) "Reactor Control Rod Drive Clutch Power Relay K-3 (De-energized)",

d) "Reactor Control Rod Drive Clutch Power Relay K-4 (De-energized)" and e) "Reactor Trip" (from power Relay K-3).

All of the above RPS outputs are the result of any one of the RPS inputs (as listed in Attachment A) which might be in such a condition as to represent an unacceptable plant parameter value (see References #13 and #14) *

  • 3.d) In addition to the five RPS contact closure final outputs listed in Item 3.c, other RPS contact closure outputs also feed into the Tennecomp data logger (see Reference
  1. 13 and Attachment A).

These additional RPS outuuts originate from RPS output bista.bles a.nd input to the Tennecomp voltage sense input circuitry as described in Item 3. b.

Correction 4 - Neutron Flux Safety and Reactor Trin Signal Isolation Section 5, Subsection 2 (Page 10) of the subject SEP Technical Evaluation states the following:

"Tennecomp Systems drawing number 161-002812 (Reference

  1. 5) shows that isolation is achieved by the optical isolator (4N35), thermistor and resistors.

The following RPS signals have this typ_e of isolation a.nd input to the computer and the data logger:

a) neutron flux safety channels (A through D),

b) reactor trip (Channels A through D from thermal margin, steam genera.tor pressure, steam genera.tor water level, reactor coolant flow, high flux, clutch power de-energized and pressurizer pressure-high)."

The *above Subsection 2 statement is incorrect for the reasons given below:

l) As described in Correction 3.a, the neutron flwe safety signals do not input to the com1Jtiter.

These signals input to the data logger only utilizing an isolation scheme as identified in Correction 1.

2) As described in Correction 3.b, the reactor trip signals do not input to the computer; they input to the data. logger only.
  • As described, they input to a voltage sense input isolation/conditioning circuit which utilizes 36KJ'l. resistors a.nd optical isolators for overload and isolation, respectively (see Reference 12).

The drawing referenced in the SEP evaluation (namely, 161-002812) is for resistance sensing input circuitry and does not ap~ly to the listed RPS signals.

As a result of the reasons stated above, the last paragraph of Subsection 2 does not apply.

This para.graph describes the current limit charact-eristics for the resistance sense input conditioning circuit in the status subsystem of the Tennecomp data. logger.

Of the tvo RPS signals identified (namely, neut~on nu:<: safety and reactor trip), only reactor trip is digital in nature and utilizes the voltage sense input condition-ing circuit.

Correction ; - Ooerational Amnlifier Input Resistors Section;, Subsection 3 (Page ll) of the subject SEP Technical Evaluation states that the power range safety signals that go to the recorder, remote meter and au:dlia.ry circuits are isolated by operational amplifiers with 10...n..resistors at the inverting and non-inverting inputs. In reality, these input resistors a.re of lOK..n.. (see Reference 9).

5 NONCOMPLIA.i.'l'CE Isolation devices are provided in the interconnections between the RPS and the Tennecomp data logger as required by the current licensing criteria as detailed in Section 2 of the subject SEP Technical Evaluation.

The only area of non-compliance is the interconnection between the RPS and the plant computer.

Although 100~ resistors are installed in each input of the Fischer & Porter computer, these resistors were not installed specifically for the purposes of isolation.

JUSTIFICATIO:N" FOR NONCOMPLIAfICE Although specific isolation devices were not installed between the RPS and the plant computer, calculations have shown that the postulated, most severe, credible failure in the computer has minimal effect in the RPS.

Reference #15 postulates the most severe, credible failure in the plant computer to be in the multiplexer such that two inputs would be "tied" together.

The analysis of the failed circuit, which is part of Reference #15, calculates the current through the RPS loop to be 9.97ma during the failed condition.

As the analysis indicates, the effect on the RPS is minimal since prior to the failure, the loop current was lOma.

The analysis states that the Darlington amplifier (located in the sensor transmitter) will quickly readjust to lOma since the 9.97ma current also passes through the amplifier's feedback coil. It should be noted that this analysis (ie, validity of input variables, failed circuit model and methods of calculation) was independently reviewed and determined acceptable.

Although the analysis of the most severe, credible accident reveals an insigni-ficant effect on the RPS, it is recommended that specific isolation devices and circuitry (perhaps similar to that employed in the Tennecomp data logger) be installed.

As in the case of the analog and digital signals to the data logger, this circuitry would prevent less credible accidents such as voltage surges and overloads from affecting the RPS.

ADDITIONAL INFORMATION FOR THE INTEGRATED DBE REVIEW' Item #1 - Physical Location of Input Circuitry According to Paragraph #1, Page 10 of the subject SEP Technical Evaluation, the physical location of the input isolation circuitry for the pla..~t computer and the data logger could not be determined from the documents listed as References #5 through #14 of the NRC report.

The following two paragraphs serve to identify the location of the input isolation circuitrJ for the computer and the data logger.

The input isolation circuitrJ for the Tennecomp data logger is located in the field remote station (FRS).

3oth analog and digital plant signals arrive at input conditioning cards located in the FRS intra-cabinet assembly (see rtef-erence #16).

T!le FRS is located in the plant's feedwater purity roan.

':'he input isolation circuitry for the Fischer & Porter plant computer is located in the computer's central cabinet logic card frame.

Reference #17 describes the plant signals entering the computer at input multiplexer circuit cards located in the central cabinet.

The central cabinet is located in the plant's control room.

6 Item #2 - Adequacy of Resistor and Operational-Amplifier Isolation According to the Summary section of the subject SEP evaluation (Section 6, Paragraph 2, Page 13), determination must be made as to whether the resistive isolation and operational amplifier isolation are adequate to satisfy the NRC criteria as given in Section 2 of the NRC report.

Although the SEP evaluation recommends that this subject be addressed in the integrated DBE review, it is presented below as part of this review.

Resistive Isolation - Analog Innuts to Tennecomn As described in Correction 1, the analog signals to the Tennecomp data logger input to positive temperature coefficient thermistors Rl and R2 each having a nominal resistance of 1x103 ohms (see References #2 through, #5).

These thermistors provide protection against high voltage surges and overloads.

For all input signal ranges below 10 volts full scale (all RPS analog inputs to the Tennecomp are within a range of 0-10 volts), the thermistors exhibit a resis-tance of lK Ohms.

Should the normal mode voltage on a.n input exceed 15 volts, zener diodes Dl and D2 (located on the data logger side of the input thermistors) will break down.

Upon zener break.down, the input current through the thermistors increases significantly.

This sharp increase in current magnitude rapidly heats the thermistors such that their resistance increases to limit innut current to 6ma within 0.50 seconds.

Since the RPS current loops normally c~rry currents up to 50ma, an additional load of 6ma in the failed condition would not appre-ciably load the RPS loop power supply.

The RPS loop power supply is typically rated at 6oma.

According to Reference #15, the postulated, most severe, credible failure of the data logger that could effect the RPS is a failure in the data logger's input multiplexer such that two or more inputs would be "tied" together.

This failure could occur when the machine samples an input and does not "release" prior to sampling another input which results in one input feeding into the other.

As the Reference #15 analysis shows, the current through the RPS loop becomes 11.lma during the failed condition.

Since this current is not signi-ficantly greater than the assumed lOma pre-failure loop current, the effect on the RPS is minimal.

T'nis current change is easily accounted for by the RPS transmitter's Darlington amplifier and output feedback coil since the loop fault current passes through the feedback network.

The Reference #18 analysis also considers a fault whereby a 0-120 volt analog innut is "tied" to a 0-lOV RPS analog input.

The analysis reveals that a current of-9.85ma flows through the RPS loop in this faulted condition.

According to the analysis, the effect on the RPS loop i~ minimal since this current is not significantly different from the assumed lOma pre-failure current.

The small difference is readily compensated for by the RPS transmitter's Darlington amplifier and feedback loop.

It should be noted that an independent review of the Reference #15 analysis was performed which checked the input variables to the analysis, the failed circuit model and the failed current comnutations.

The review indicated that the Reference #15 analysis was acceptable.

T Another feasible failure, although less credible than tying two inputs together at the data logger's multiplexer, would be a short in the input capacitor (eg, Capacitor Cl of input Channell; see reference #4).

This failure could result from a breakdown in the component's dielectric medium and would tie together input thermistors RlO and Rll.

T.i.e series combination of RlO and Rll would effectively be in parallel with the RPS loop dropping resistor.

Since the ohmic sum of RlO and Rll (lK ohms + lK o::ims; nominally) is at least twenty times greater than the ohmic value of the RPS dropping resistor (RRPs = 100 ohms),

the additional loads on the RPS loop would be insignificant.

Failure of the isolating devices themselves (ie, thermistors and zener diodes) such as opens, shorts or grounds is unlikely since they are placed on printed circuit cards located in the field remote station intra-cabinet assembly.

In addition, cardboard strips are placed between the thermistors and the circuit card to prevent excessive heat transfer to the card during overload conditions (see Reference #16).

Resistive Isolation - Digital Innuts to Tennecomn As described in Correction 3b, the digital inputs to the data logger arrive at voltage sense cards for signal conditioning a.nd isolation.

As is shown in References #11 and #12, the voltage sense circuitI"J consists of 36K Oh!!lS input resistors and optical isolators to provide protection from voltage surges and overloads.

As is described in the above references, the 36K ohm resistors are rated to handle overload conditions.

The optical isolator provides physical separation between the input conditioning circuitz-J and the data logging system microprocessor.

In addition, the lK ohm and the 1N4005 diode serve to protect the optical isolator input from excessive forward or reverse currents.

The effect of Tennecomp data logger failures on the RPS in considered practically nonexistent since two means of physical isolation exist between the data logger and the RPS.

As previously mentioned, an optical isolator is located in the data logger input circuitry to provide isolation.

In addition, all of the RPS digital inputs that feed into the data logger are contact-closure types of input.

Therefore, a second means of physical isolation is provided by the RPS output relay.

It should also be noted that the possibility of failures of the data logger input isolating devices (ie, 36K ohm input resistors and optical isolator) such as opens, shorts or grounds is considered remote since they are mounted on printed circuit cards.

These cards are located in the field remote station intra-cabinet assembly.

In addition, cardboard strips are placed between the resistors and the circuit cards to prevent excessive heat transfer to the card during overload conditions (see Reference #16).

Ouerational Amplifier Isolation As stated in the subject SEP eva.luation, the signals that originate from the power rate safety channel drawer assembly and go to the recorder, remote meter and auxiliary circuits are isolated by AT09C operational amplifiers.

This statement includes the neutron flux safety signals that enter the Tennecomp data logger (refer to Attachment A).

In addition, the start-up rate signals that go to the Fischer & Porter plant computer are also isolated by AT09C operational amplifiers.

These signals originate from the start-up and inter:ned-iate range logarithmic channels.

In the case of the neutron flux safety signals, the operational amplifiers perform a back-up isolating failure.

Once the signal passes through the amplifier, it is further isolated as previously described in the "Resistive Isolation - Analog Inputs to Tennecomp" section of this review.

3 The A709C operational amplifiers provide an adequate means of isolation for both the neutron safety signals to the Tennecomp data logger and the start-up rate signals to the plant computer.

This amplifier typically employs a lOK ohm resistor at the inverting and noninverting input (see References 18-21).

These resistors attenuate the incoming signal by 50% to ensure that the common mode voltage limit of the operational amplifier is not exceeded.

Diodes CRl and CR3 are connected across the two inputs to ensure that the maximum differential mode voltage could be only one diode's forward voltage drop of about 0.6 volts.

Diode CR2 and zener diode VRl ensure that the common mode voltage cannot exceed about 7.0 volts at either input to the operational am:plifier.

The feedback resistor network is composed of Rl and R6 (both of which are typ-ically lOK ohms).

These resistors set the amplifier gain such taht the 50%

attenuation at the input is exactly offset to provide overall unity gain.

Tne amplifier's ability to isolate becomes apparent when it is considered that a typical operational amplifier is characterized by an input resistance which approaches infinity.

In Figure #1 below, the Gulf General Atomic operational amplifier is shown.

Figure #2 reconstructs the circuit showing the A709C operational amplifier as an ideal device in accordance with Reference #22.

FIGURE 1 lOK.f"'..

lOK.n..

lOK.n.

Input FIGURE 2 lOK.t1.

1------1 Rout

~.n..

I lOK!l lOK.r:.. _____

R in = 00 f Input01-----'\\NVV-J Ideal Op I Amp Equiv l Ckt_1 O.lOa Output

'-4---r, Out-put

9 As can. be seen in Figure #2, effective isolation is provided by the amplifier's infinite input resistance and by the amplifier output diodes and 0.10 ampere fuse.

Normally, the output diodes are reversed biased and contribute negligible loading to the amplifier. If, however, an output fault tries to drive the amplifier output more than 15 volts from ground in either direction, one of the power diodes will turn on conducting sufficient current directly from the power supply lines to blow the ouput fuse and disconnect the faulted external circuit.

The 220J1. output resistor prevents amplifier damage due to an output ground.

SUNMARY Isolation Between the RPS and the Plant Comnuter Although analysis shows minimal effect on the RPS due to the postulated most severe credible failure of "tying" two inputs together at the multiplexer, additional isolation circuitrJ needs to be installed.

This circuitry should be similar to that utilized in the data logger to prevent less credible faults from affecting the RPS.

Isolation Between the RPS and the Data Logger The circuit isolation utilized meets the current licensing criteria in that the effects of both the postulated most severe, credible fault of "tying" together two RPS inputs and less credible faults (ie, opens, shorts or grounds) at the output of the isolating devices is limited so as to assure that safety is not significantly impaired.

DWG. NO. _______

f>nll'i t'l>~ IM I 111 I* 'O **

ENCl05LJC:£

...SEP TOPIC =-1.l'l

,;cJTT/ICHMEAJr A RP.S/ 11.laAI* S/iFETY INDICATINtS :5YSICM IIVTEE!fi'JCe

/:/SCHER f POli!TEIZ (l\\A'.JTe, n:J£ A.DESC£.IPT10N CJF RPS /AON-:5AFET'Y

.ZSQUlTIOAI ORC.U/Tli!Y REl'C.e 1ZJ RErE/!£,UCE.D.D.e4WIAl6S.)

A:AAIT CDA/IPUTeC s2,3)

(FD.I(

.STAETUF RATE (01.:J)

.ISOLllntJAJ

-AIU' SEE.D<\\G PRIMARY ROW (CHA)

STEAM bEIVB?YlrD/i? A PRESSUEE (CHI!>)- 5C 30-1.545)

C,TCAM 6EA1Cl!ATDli! JJ P£ESSURE (CHB)-

RPS r N16H RllTE iJF OlllA/6£ OF POWER Kl}

Nt6N rowe,e. LEU EL KZ RP.S FIAlllL LOW ll£AcrlJR UDLl/AIT FUJW(Af{)Tc 4)

K3 OUTPUTS K4-Nl6N PKE.fSUKUeR PRESSURE RPS TlteRIVIAL ~6/AI ll>IAI ffeESSUllE TRIP LOSS OF LOAD, TUllr.IAIE T!:IP INPUT'S STEAM 6EA/Eli/ATOI: A LOIV WAirli! LEVEL (DU6

.STEAM 6EAJEl:ATOll..ll LOW WATEf! LEUEL 29"'6-E-STERM 6ENERATOK A LOW PKESSLlllE li;PS T£AINECOMP INPUT JJESCRIPTllJAJS (.JJIMSi E*.53)

TE/VAJECDM P Zl!SO)

BISTABLE

.DATA L066Eli!

.STEAM 6EIVERAT'Ot: Ll UWJ Pif:ESSU/i!E.

OlffffJTS COAi TAIAJ/llEl.JT H/6H "1f.'E55URE.

J

-REllC!lJ,eCLWIWX. RLJDIJell/£ CW/ZN FrJWEK*RRAY Kt(DE.-EA6)-

.ST.ATU.S

.._AIANUAL Tia,.

-REAU/JI! (01.JTRDl mil.DRJVE aun:N Fr>IA/Ell J:ClAY l(Z(DE*El.K)-

(.D1GITAL)

-1.'EllCTOI! Ci>>JTJ'iJL LOJJ IJl!llJE CLUTCN IVUJEI! RetAY K.3(N6U5)-

Sl1B.SY.STC:M

-RBICTOR CLMJT#!OL £/JD :IJl()V£ CWTCN PO Na K4A Y K4(I!C ~)-

VOLTAt5E SEAJSE l?EACTO£ re1,.

INPUT PRC:55URIZER PJ('E5SIJ!i!£ N16H (CHA-D)

( R'.Jt!.ISDUITU:J AJ, REACTOR UX.E AIBHEON /'"LUX (CH A*.D)

-5.E. Du.6 REACTOR fll/U££ /?ATE CNAAJ6E. (UI A*D)

/fi,1-0QZBll- 000)

Tlri5i'MAL MAR&IAJ o.e Cx.t.AAIT P..a=s::soeE (cN /1-.D)-

S!CAM {5e,Ve,e,,11ro.e,;:i PL?ErnRt! (CH kLJ)

.VOTES srt:AM 6EAJEeATOli!.a l'll!EfSSUEE (CH A:ll)

I.)

FOR.BUFFER AMP STEAM 6EN&ATOI! A WATEE. LEUEL (C.H A*D)

CONNECTIOAJS, SEE

.STEAM 6CAIE£ATDI!..B WAT/!/!. LEUEL. (CHA-.IJ)-

2111165 E-fi, 3. ELJl4 7-PRIMA!i?Y COOlAAJT LOal' I Fi.OW (0/A*D)

OOICJ ~ ELJ/47-1121 REAC~ LOAD 711£.BINE TRIP ( Cll A OZ))

.?.) FOi:.lIUFFE"R AMP COIJMEC no.us.JEE IIW5S E-~t, £LJl.57*0DID

.STEAM iSENERATOI!.lS LOW /".cESSUNE tcLJ/#7-1/i?I 5TEAM GEA/ERATOll A LOW Pl:E:SSURE ANALOG

.3) BUFFE/i? AUPS AEE.A709C

...STEAM SeNEIUITD~.B LiXU lUATEli! LEUEL

.JUI!; SYSTEM

""41.COllLD Ol't!£AT/O.UAL sri!iAM 6eNEl:An:JIZ A LfJW WATER lEUEL (FDR ISOLATION, AMPl/FIE 2.5.

SEE.DWG:

111) TUF !5/V'ErY-RELATED UIAAJNEL PRIMARY COOIANT LOCJ,. I, e IIVl.ET TEMP 114 -002815 -tJOCJ) or Pl?CSSUR1zee Pl!E!>:illll.INPL1r.s PRIMARY CIJDLAAIT LOOI' I,.? OllTLET TELi~

7ZI RP.S, LUI.DE: t!All6E -P~U£/ZEli!.

REACTOR.

CDDLAAJT FLDIAJ Pl!ESSUl!.E. {tWN-5/IFETY).IAIPIJTS e.JrFF.R

( 5Ec l.JOTES I, 3)

NEUTRDAJ FLUX.:SAFETY (C.llAIVAJELS A-.D) 7ZJ.DllTR CL>66Ei!.

  • A~

PRESSUKIZE~ Pll~Ui!E~ SEE. AloTE 4

'>I.< I 10N Ul AD llAll Dk MCM

.5*14-~I CK KAT /)1:J,-'yl'

..S*/4-81 IHVl":.lllN Ill All CONSUMERS POWER CO.

...5K- 'Y/I-I.A-I Af'I' PAUSIWE5 PlAAJT UI,.AlllMI Nr ltl All u11... v.1h**

'-'11 1111 llHlh I IJll'""dlo..,

11... ll l>l.. Lllll'llU/'o APf' JACK~;ON. MICHIGAN NO SHEL l

Reference #

1.
2.
3.
4.
5.

I" o.

7,

8.
9.
10.
11.
12.
13.
14.

Page 1 of 2 ENCLOSURE SEP TOPIC VII-1.A ATTACHMENT B References Reference Descrintion Bechtel Drawing #E-53,Sheets 21 and 22 (attached).

Tennecomp Systems, Inc. Manual Number 201-000309, "Technical Information and Instruction Manual for the

  • Data Logger System", Volume II, Part 7, Pages 7-8 and 7-9 (attached).

Tennecamp Systems, Inc Drawing #161-002815-000, Sheet 1 (attached)

  • Tennecomp Systems, Inc Drawing #114-002815-000, Sheet 1 (attached)
  • Tennecomp Systems, Inc Drawing #141-002815-000, Sheet 1 (attached).

Fischer & Porter Co Instruction Manual for the Series 3000 Data System far Consumers Power Company F&P Serial Numbers 6804A5648P & 6804A5649P, Rev 2 dated 12/14/79.

Section 4.2.8 11MW.tiplexer" (attached).

Fischer & Porter Co Drawing #SC30-1545 (attached).

Bechtel Drawing #E-297 (attached).

Gulf General Atomic Drawings #ELJ157-0010 and ELJ147-1121 (attached).

Bechtel Drawing #E-61, Sneet 2 (attached).

Tennecomp Systems, Inc Manual Number 201-000309, "Technical Information and Instruction Manual for the Data Logger System", Vol II, Part 7, Pages T-4 and 7-5

( attached)

  • Tennecomp, Inc Drawing #161-002811-000, Sneet l (attached).

Bechtel Drawings #E**53, Sheets 1,4,7,10 and 13 (attached.).

Combustion Engineering Drawing #2966-E-2850 (attached).

}~eference #

15.
16.
17.

l8.

19.
20.

2l.

22.

Page 2 of 2 Reference Descri2tion Letter: RMMarusich to Dan MacDonald (USNRC) "Personal Correspondence SEP Topic VII-1.A", MA.RU 10-79 (attached).

For analog input to Tennecomp, see attached Tennecomp Syste!llS, Inc Drawings:

114-002815-000 l4l-002815-000 113-002815-001 104-002803-000 102-002803-000 For digital input to Tennecomp, see attached Tennecomp Systems, Inc Drawings:

161-002811-000 l4l-003023-0XX ll3-002811-003 l04-002803-000 102-002803-000 Fischer & Porter Co Instruction Manual for the Series 3000 Data System for Consumers Power Company F&P Serial Numbers 6804A5648P and 6804A5649P, Rev 2 dated 12/14/79, Pages 1-41, 42 and 43, Drawing MS 30-1082 (attached).

Gulf General Atomic, Inc Instruction Manual "Dual Linear Power Channel Model NP-6", Serial Number 102, 103, 104, 105, 106 and 107, Page 8 (attached).

Gulr General Atomic Drawing #KLJ 147-1121 (attached).

Gulr General Atomic Drawing #ELJ 147-0010.

Gulr General Atomic Drawing #ELJ 157-0010 (attached).

"Electronic Devices and Circuit Theory", Robert Boylestad and Louis Nashelsky, Copyright 1972 by Prentice Hall, Inc, Englewood Cliffs, NJ.

~~

ENCLOSURE
  • SEP TOPIC.VII-1.A Reference 1 (age 1 of 2 OLS CHAl~lEl HJ.

1-501 1-502 1-503 1-soi I-SOS l*SOo 1*501 1-soa 1-SO'J 1-510

.1*511 1-512 1-513 1-514 1-m 1-5" IZ *1:;; I

£S-3

~t'J.!"6Y:'~\\'JA~;;.~.::rT:J ~:-.!'-!H?ll 14 11\\111 CEr;rn.uoa VOlTACE REGULATOR OUTPUT ~1 OLS CllAIUIEL No. 1-501 cornmo~ No.

21

  • /

r mo REUJTE I r*,r**---~J.-------;*-------

~~~ ~~~~iER STATIOll llO. I t?S3 L. ------- -------

TABLE 9ELOI.

~~~L 0: ---*--... ------- -----.-;

I l

c2::i------

£ill tll 28A 280

© m'JOTE I f[RU. BLOCKS I f

roo can.

I l

r.1 Ptn.* Cl&

.ill.

FOR FORI(

SH ADAPTER OSCILOGRAPHI TAB!.£ euaw.

I BLOCK DIACRA~

.£!..!

SEE NOTE 3 EO,,!. ------ -,

llTl'UT SICllALS*flELD REl'lTE STATIO*i HO. I lfRO'I TEkiJ. BLC:r.s G'i Pill. Cl I FUR I

I "Tii;u.~R OSCILLUG*Afrl sft;"~ ICUS

~SEE NOTE 2.

OLS 11.?UT SICIUL AO~PTER TA~LE rmo F.arm: smrc:11:i.1 llilllAlll:~ SIGNAL FO~l.~R aw~n DESCRIPTlat L*l*I*

TERMINAL R<f. D~~*s OS~ ILLOG~APH CTOO PIH NO. SIRE NO.

tomra1 DEVICE HO.

~er."""

r1a11;c miux0.;.:.irnc N1.

U\\111 GFt::nun Vlll UGE VOL. RECU.

E-t03 21 D E K 2!A 2a9 EOI M

29 Ri:GULAlC.i OJl~UT

-roi---

SU.I SPARE Zt c e A SPARE ZI H J c SPARE 21 l u r

~~~m,mt~:a A (UPPER) 21 p Q X SA 5 B m:::ECTO~

PINS E-&2 E-615 5

COG-I AIUJ3 J*K SH.I s*rny Cll*~~3. B (UPPER) 21 R s Z G A te co*11:ECTOR PWS M2 E-615 N<UTRC:t FLUK COG-I e1.JJl H

SH. I S*mr Cll~l~:[l c (UPPER) co*:*::c1on PINS E-615

~EUIRO:t FLU(

21 v I o TA 1 B COG-I C~JJl H

E-'2 SH.I l

SlfETY CHAl~a D !UPPER) 21

~ 1 BA a B co*:::;;c10R PINS E-t2 HIS ft liOUIHOll FLUX.

COG-I O\\,lJ3 H

Sii.i StfETY CUAl~:El 'A !LOWER) co:i::EC!OR PINS E*&IS

~£Ul1IO:I FLUK ZI c u 11 'A u COG-I A~lJJ C*H E*'2 SH.I smn rnu::a e !t.owrn>

d IOA lcB m:::moR Pl!IS E*'2 E-m 10 liEUlilO:I FLUX 21.

I COG-I e;;JJJ G*H Sii.i StfETY CHAll:r::L C (LOWER) co*::::c10R PIHS E-tl5

~WTRO!I FLUX 21 I 9 '

llA 119 COG-I CICJJl G*H E-'2 SH.I II SA*ETY CllAl~!El D (LOWER)

CO:!!IECIDR PlllS E-&15 J;EilTROil FLUK ZI h I r l2A 12B COG-I Dt.JJl G-H E-62 SH. I 12 AUX. BLDG.-DA1ALOGGER'125V DC 21

  • I P4 G.

c 2iJ R1 E-9015 E-6J2 POSlllVE BUS VOLTAGE TO GROUND p

01007 SH. 3 AUX. BLOG -DAlALOGGEfl-125V 0C 21 I N4 G

C273

..!.8L E-9015 E-6J2 NEGATIVE BUS VOLTAGE 10 G'lOUND I

DlOC.7 SH. 3 FEEDIVAI Ell BlDG. 125V DC

'R1 E-9015 POSITIVE SUS VOLTAGE TO GROUND 21 '

  • q Pl G

c 271 DlUOG Sil. 3 E-632 FE.ED'liATEfl BLDG. 125V DC R2 E-9015 tJEGATIVE BUS VOLTAGE TO GROUllD 21 x s k NJ G

C271 D1006 SH. 3 E-632 4

I

  • 3 I

2 tDTES:

1.

ticlf G)1s A 1'!::"17 svPPL!fD PP.ort9. cntE 111H "ws*.co PAIRS 1>18 n;1 P111Jll~c'J WITH cow::crn AT 01:£ Et:J o*:~r. lilts cc£ 1s u:EQ D

ro~ DLS Cll/.':?as I-IOI ll!RU I-Sib 11:?:ll Sll!::.LS.

com:rc1rn 11D.

A:I~ Piii r:o,. FQil UCll OLS CillJ;i;EL LISTED Ill AO~PTER U9LE.

z *.11.L 111110111* SIGIJAlS FR[llf<ED TO Pll. ** Cl I FOil COll:l<CTIO!I TO fO~l.~R OSSILLOGRIPll AS PE?. S~!!'l'ATIC oi:u. E-m. FIELD TO 11:;11u Sims TffE Ttf?'lllAI.

BLOCKS Ori p;r._. ~11 >II~ J[R~llll!E TH<SE C<~lES roa IH!'UT TO DLS AS SHOoll 0:1 co:;:;£Cll0ll OIAGi<AU E*,54 su.1

3. SlllELDEO CABLE usro f01 llRll:~ PEll"OEll WIATlllG SIGN.-\\L?;.11:0 Piil. Cit roa OLS Ct:AJ*as 1-so; lllRU 1-512 D:l\\.Y.

c OLS:

01.f/J.OGCER SYSTEM fRS-1: rmo REUJIE STATIO!I tlO. I

~FEREt:CE ~~:

1. co:::10cnoH OUGRAUS FIELD C:l'.HE STATIO:I NO. I: E-m SH. 4, 6 TEPJUtt:.*_ CLGc*i 0:1 Pl:L.CI I ro~ re.;;~ OSCILLOGRl.PH:

E-G54 SH. 1

z. VIP 5?l5-9/Jl20*14.49.S0.5:.110 6

I I

& i':1n l 1ssUEO FOR RECORD d p?'

~*::::,"-j.,*:.t,_,, 7l

& *;;;~/.=~~;;:;'~~iYc~'.~';r;.[./1'1'~; t,~*i 1.~G ~~ 1 ~* ~:':. ! "'"'

& ~:*;,ii *~ryJ(O FOR 0::1srr.JCllCll Ir. r..::c CiMt'l

~1
**u,.-,!'..

~.Li~

.,.,,,.()..,

" t"*

r. ** v_=i.:',"'c:*.:,"'"

~~Oil£ 0111 ~'"' 0 S.S.

T:.~".-'.!t c......... S.S. lltt.. il B

CCG[T'C:t ANH ARBOR

~IClllGAH Pf,LJ!:;i~O:::S FLl'dlT cousur.11:11s PO\\'.'::fl cor.:rr,uv G\\'!O 7111 FECO\\~**r.1 en l

1 t1;~:.TY r.:Otitr-IC;\\11011

.\\

srn~::.\\flr. [iUt:.:11 DAHLOC!i~R ~YSIP*

1ur*111 SI P1~L s

  • r 1 u fl i:

1

  • u

~ 1 :..11r*1 ti!). 1 A

~1-:*~.J JO:J "o DAAWIHQ No.

rl[V.

(.

E-53 10512-016 2

.;1. /

S!I. 21 SCHEMtiflC Dl~GRAM D\\!.'G I

1

I kNCLOSURE

  • lSEP TOPIC VII-LA

.Reference 1 jPage 2 of 2 ll 'llS I c;-1

... PRES5UlllZ£R T-12 mu ll*DIDIA INFORMA'irlXON COPY

-4 l>L5 CHANNEL NO. 1*517 rtELD RElllTE I r---l!J'E:'i~T!J~!J~*--'IJ ********* j FOR tO!IT.

I

£ill.

m~IOll HD.I l_:!-~-----~~ _____ J ______.

i~~l:o~~:.

CD CvS" OVERALL -


------- *****,j SlllELD '- ------- ------- ****"

SEE llOTE I c ------ :-

I _ill_

C25l

~

}

cul" 131

. 26AA. 2698 -

IN.HM~~

© 11911 Cl!Alfl<L I*

TCRll. BlOO:S Ill PIL. Cll I j

Foo coo.

I £!!!.:!.

IFOR FffilER SEE ADAPTER OSCILOOIW'll I TABLE 8ElOI.

I BLOCK OUCIUJI Bi --*--- ~....

SEE OOU: 3 I - ----- J.

I I

STATION "°t I If 0'1 c11 Fo.1 DRl£R OS ICOS

~SUNOTE 2 OlS INPUT SIGNAL AOIPTER TABLE FIELD fiOIJIE Sllll!ll m.1 INJTIAHf:~ SIGNAL FOOi.ER Dl.S OSCJllOGIUPH Dl/Jlll!:l DWlll£l OESDllPllOH

u;;
I*

DEVICE lERMINAL P.£F. oi;*s cg;~~:~f~,JNG NO.

CIOO PIH NO. SIRE KO.

LOCATION KO.

~~tttl.::

~Ol~I.

~].

1-m, PRESSUaJZEll T-12 LEVn 22 0 E I 13A 138 CIZ Ll:filD.IA...

u

~jj~f.

rt~lO Ot':l.

12b" SH 2D 13 I-SIB PRESSURIZffi T-12 PRESSURE 22 G B A 10 148 Cl2 P.l:f.IDL t'bU

~~1 14 ll:jllllHl l.;9' 1*519 PRIMARY COOLING LOOP ONE 2t H J C ISA 158 tlZ lZ 15 O:JTLET TEMP.

PRIMARY COOLING LOOP ONE F l'A l'B CIZ

~..

E-9, 1-520 22 l M

' Sfl,,

11-:LET TEMP...

U:fi122H1 tg' 1*521 PRIMARY COOLING toOP TWO 22 p Q I Ill llB Cl2

  • 13l 11 OUTLET TEMP.

PRIMARY COOLING LOOP TWO 22 R 5 l JU 188 1-52.2 IMLET TEMP.

Cl2 "lfllZJ:

.ll

. 1*9' l*SU fi£ACTO.~ ttlOlllll rLOI 22 v

  • D 19A 198

~l:i' El:(lWZA.

' ~~i 19 fZl I

11:1i t.~J l-524 STEAM GENERATOR TOTAL 22 *

~ T 2DA 208 Cl2 Ell={llllL 20 fll STEAM FLOW 1*525 Sltl1l CEll!:Rl.TOR E-SOA PRESSURE 22

  • u II 21A ZIB Cl2

~fz~Ll E*U 21

~l52A E*U STfJ'I CEl:ERATllll E*S!ll 22 d I 2Zl 228 Cl2 2t 1-526 PRESSUilE ZI 1*527 f1Elll CENERATOll E*SOA EVEL 22 I s Y 23A 2l8

.Cl2 ll:f.TJ~L t~I

'2J 1-528 fTElU CEllERATOR E*S!ll Eva.

22 h I y 20 248 Cl2 LI:f1£r Iii~?. 2 24 1*529 SPARE 2t *, I 1*530 MAIN ?URBINE SPEED ISEE NOTE41 22 I '

1 '/.W 2,*

COi :

11ma. EH.

CD:llROl

~ARLO D\\tl.

12"0 SH 24 2,

C04.

.E_

S* '

E*ll pr.to or::;,

29 1-531 2400VAC BUS IC VDl.1ACE (SE'EN01E 41 22 '

I q 29A 298 IZGGO Sii 44 AIOOI

..!!L HARlO OJ.ll

  • 1-532 2400 YAC BUS ID VOi.TAC£ (SEE NOTr 4)
  • 22 *
  • k JOA JOB CD4R 5* '

E*ll EIZGGO SH 4' 30 AID0"1 4

.1

  • 3 I

2

!!!TES I

    • CA9lE ©IS A VEllOOR SUPPLIED PREFlq. CASLE II TH "TWISlED PAIRS 1°118 lfjl PilQVWO m11 COl~l!:CTOa AT m:: EllJ o::u.

THIS ml~

IS USED FOR OLS t1t11::;~LS l*SIT ll!i~ I *Sl2 D.

INPUT Sltlltl.S. co:i:::tTOa 110. e Piii llCS. FOi EACll DLS CHIJ~a LISTED IN AQ.l!'IER Tk~lE

z. All INITUTUr.; SIGN'.L5 EXCEPT FOR OLS CllM~a I *S'lO PREllRED TD PILtll FOR cetr.:m1011 TO FOR).(Jl OSCIUOGPlPll AS PER SCll[~.. ;llC m:;, E-m
  • FIELD TD 111$ llll STA 1ES lYPE TERUUi.ll BLOO:S Ill f'I,!.. Cll ml TEAliJHATE lHESE U5LES FOR INPUT 1D DlS AS SllOU Dll COIC.'!:CllM or~GRAll m*SH*l
3. SHIELDED CASLE USED FOO llRJllG 8ET~EH IHIATJNG SIGl~ALS AliD Plll...Cll FOO DLS atmas 1-511 tlll'.U 1-s2e ""o 1-sJo
1.

THtS£ 1>1.S CHANNELS P.EQUIR[ SIGNAL CONDITIOlllMG IN ~NL. (\\I /\\5 FEI\\ DLTAIL 'B' SHOWtl ON DWG [*53 Sll.23 c

IK.s:

Ol1All).;1;£jt STS1£11 fl\\S*t: rlElD l!Elll!E STAllOO NO. I P.ffEREHCE or.s:

I. wm:mioH OUCRlllS FIELD Rn!HE SllTIO~I ND. J: E-t54 SH. 4 5 6.

TERUllt:l E'.C:XS OJI Pl.t Cl I FOR F~9' OSCJLLDGill.fH: E*'54 Sii. l

2. YiP 59'5*'1JIZD*l4.49,SD.51.l ID l!/'111.

ISSUED FOR RECORD 11i~ !:;_:}--

,*~{*

  • .n. l*uJ9 1\\fDRAIVfl. f.DPW CH I* 530.

1': :o,

"/

~2-

.(,.

Y,~

& 173 ~3~{~~-b~t.ri1t,~~~;i ~~v.~;,.:.:G IJ,i

":)

7.f DE!i:Ofl1Pll*J:1s t..r:orES h..!j B

& '/.1;,,

ISSUED ID~ CDflSTRUCllDH

~I KfP (~*lit.'\\

~*o..'Jo s;*hp!'

...... h

,.,.,,,,o*t Cll'C '.

      • ,J... t*.*":u:i" r*;*

t111 scau ttO'n JOU*c;."'ro S.S.!""'*

0........ S.S. 11'.t-!:t CGGCJ"Cr.!t ANN ARBOR.

MICHIGAN Pf.Lt~f.DES PLAllT cotmur:.er:o rov:L:.n cor:.r>ANV

.I G\\'/O 7111 FEED\\'1'\\ TE ii l'Ui.iTY l.~:;01FICA TION

~

i1...~1::rrrlili:".,...

DAULoccrn STSTEU IWUT SICllALS

  • R<t.'JTE SWJO?I HD. I I\\

DllAWINO Mo, flf.V.

.;J~~

'OD M*

t*>>

c* -

10512*016 2

Sff, 22

. *->>J*

SCHEMf->JIC DIAGR/\\M rn1:G I

1

7.4 ANALOG SUBSYSTEM 7.4.l General ENCLOSURE SEP TOPIC VII~l.A Reference #2 Page 1 of 2 Analog inputs to the Field Remote Station are conditioned, converted to digital values, and compared with appropriate alarm limits by several pieces of equipment in the field remote station cabinet.

The input connectors are wired directly to terminals of signal con-*

ditioning cards in panels Fl~ and Fll.

T~e conditioning card provides protection against high voltage surges and overloads.

It also provides relays which disconnect the field input wires from the input to the analog-to-digital converter (ADC) and substitute a precis.ion

  • ADC calibration voltage.

Each analog inp~t signal leaves the con-ditioning card at the edge connector and is carried through a shielded twisted pajr to a relay multiplexer input card in the ADC chassis, panel F12.

The multiplexer card has a low pass RC filter for each input signal and relays to connect the signal to the commdn ADC input bus.

The ADC is controlled by the microcomputer system, panel F9, through an interface which permits the microcomputer to select an input signal for conversion and the amplifier gain to be used.

The microcomputer receives a digital value for the selected channel in binary code.

This value is compared in the microcomputer with binary limit values previously transmitted from the CCS.

If.the input value is out of limits, the FRS advises the CCS over the serial communication lines.

If the selected anal-0g input channel has been assigned to a PRE/POST history group; its binary value is stored in core memory by the microcomputer.

An analog input may have its binary value returned to the CCS over the serial communication lines if it is a member of a logging group or if a printout of its value has been requested.

7.4.2 Detailed Description 7.4.2.1. Signal Conditioning Signal conditioning cards for up to 60 customer channels are contained in panel Fll, drawing 113-002815-001.

The first card position is used to hold 4 channels required for thermocouple referencing and permanent calibration. See BRATION" section.

If more than 60 customer channels are requfred, a second conditioning crate is installed in panel FlO.

It is the purpose of the signal conditioning card to provide protection to the ADC from overloads which may be applied to input wiring.

A second function of the conditioning card is to provide signal sub-stitution calibration of eac:h ADC channel. The conditioning circuitry is best understood on Tennecomp drawing 161-002815-000.

For all input signal ranges below 10 volts full scale, Rl and R2 are lK (nominal) positive temperature coefficient thermistors.

R3 is not used.

The

.01 mf capacitor filters high frequency transients.

Dl and 02 are zener diodes which break down if the normal mode voltage an an input 7-8

~

JitJ*

ENCLOSURE..

SEP TOPIC _y~~~l.A Reference 2 Page 2 of 2 exceeds 1SV.

If the zeners breakdown, the input current through Rl and R2 becomes very high. This current heats the thermistors and within 1/2. second their resistance increases to 1 imit the current to 6 ma.

The ADC can accept common mode voltages of up to 200V.

common mode voltage exceed 200V, bipolar zener Zl will through Dl and/or D2, limiting the common mode seen by volts.

Rl and R2 again act to limit current.

Should the break down the ADC to 200 The relay shown is used to swtich the ADC input from the field input to a calibration voltage.

7.4.2.2 Detailed Conditioning Circuitry - 10 volts or less full scale Actual circuitry used on ali conditioning cards for lOV full scale or less is shown on schematic 114-002815-000.

Component 1 oca tion and values are shown on 141-002815-000.

The first sheet of logic shows input circuitry similar to 161-002815-000.

Rl2, RlS, Rl8, and R21 correspond to R3 and are omitted.

R6-R9 are omitted as these would be required only for sensing current inputs.

Sheet 2 of the logic diagram shows the elements required to support calibration and gain assignment. This logic is connected to the micro-computer through an analog conditioning interface (see information on panel F9).

The four channels connected to any one card must be of the same input range.

Rl through RS are 0.1% resistors selected to provide a voltage 90% of full scale when lOV is applied between CALSIG and CALCOM.

Jumpers 11P 11 are installed, as is W2.

W2 selects calibration for one analog panel at one time.

For additional details of. calibration see 11CALIBRATION 11 Jumpers W4-W7 are selectively installed (as shown on 141-002815-000) to provide the appropriate ADC gain code for the input signal range assigned to the card. The microcomputer reads this gain code through its analog conditioning interface and sends this code to the ADC through its inter-face. This technique permits input ranges to be changed for*any four-channel group on one conditioning card by replacing the conditioning card with one for the desired new range.

No changes in the microcomputer program are required ta accommodate the input range change.

7.4.2.3 Detailed Conditioning Circuitry - 120V input The voltage attenuator shown on 161-002815-000 for the 120-volt range was reconfigured to achieve proper operation with the ADC.

R2 was replaced with a fuse which opens on overloads applied to the 11low 11 input terminal.

Rl and R3 form a 100:1 divider. All other components.

perform as on the lower voltage boards.

Details of the 120V conditioning logic are shown on drawing 114-002856-000 and physical component location is shown on 141-002856-000. Sheet l of 141-002856-000 shows input circuitry.

RlO and Rll correspond to Rl on 161-002815-000, Rl2 corresponds to R3, and the network forms a 100:1 divider. This ratio requires an ADC range of 1.2 volts full scale, and the balance of the card is set up for that range.

R6 through R9 are not used.

7-9

A 8

0 I

.J l

j

---1 P\\.A"&l" U.ltCUIT I OL'i>

CDNO.TIONIN"'

I CAR.a I

I I

~.

I

.01 I

\\

I Ra ENCLOSURE SEP TOPIC VII-1.A Reference #3 DL!a IA.!.

COMO*T1QMtN4 t11CR.OP&OC.l.!t~

CAIU>

~! - -.. -*.... :.... - - *.

-=~~, 1: ~.

~t: *=- ;1;.

  • . *..... ***f*""' ~-..

'*>:.. -....... r... -. *.- -

.:...1.

~

1--1---il---l-------

1* "

.i'f--~'" _f...,........,

  • ~*.. -~ -

l:lU ~

f'F-fA,..~~...

~

..... t-<~~~~~~~-"V\\J".t\\r-~~~~.._~~~~~~~~>--~f---._~-~-t-~~~-(~1-()~~~~~-L-L TO MU**AOC Fo\\LD- -L TtR."11~A1..~

"'°fl A,,::P.....

I I

I I

L-- -S JUMPtll.

OPTIOW CAL {:S aus ___ __.

TOllf'AMCH t I.

Of:QMALS:

  • iii1 I * !

PMCnOoo&

mm

~!....,,

r* 11 HOUI !

h* I

  • l.N UI ltOTIO.....

Ohdl'IW1Sl CHICl(I -*'

CAuaRATt

~LAY INPUT NOT!:$!

t.fh CAIUNtT r.ffOukO

z. \\lt.llfttS.TAN0$ NORMAL..woe AWD (.Ct.49'1Ck M.=Ct (a.)ICee. 412-197* SUP¥ WAW(FCPt-4 (t...J 1e.ee. tl~**'S'-8... PJ1...EE-Tf~T{*!J.:w &:.:a... \\

(C.) '-iU "....., CR oc (G111T1N-Cl..!.Lt,... Fl..tCC

i.OW 1

t1

      • -~ I 2

I w,_,

I I"'"*

r

~

I I WIZI L_J J2 (COA/T. !INT.Z)

(CllAS51S) Z ~'----'

I l

s ENCLOSURE SEP TOPIC VII-1.A Reference #4

"*CAlSN*

nx.uwcn*..

~

  • JUI DAAW*

I. ** 1 II!!

CHICU h**!1 UllD OM!

r+7 H*Cl.sNtO q<N

[? :::

I I u:

I ct:

I RCYISIONS TCNIJECOMP SYSTEMS'*"

0ArA L~.e SY..su,.,.

ANAt.~.5Jti,,,,.

Co.vD1r10A1~e r*1t u*

h* I

~OOI

.. ~ Jnla C:-c,,cM.Jr(

'\\=-------

~--'r----L..----r---.[_:-_-+J.-----..,..-_:-_-_-.,...-....;"-L.-..,,.-_4_i.;j~)_4;..'=0~0:.,:2~8~1~5~-**\\.../" j.... n I "' 2 10

-..; I II

J 51!1! Di.Tll/LA (4 Pl.AC~)

Nori!$.;

u I. IAI! Nl!AT SINIC IVNl!I/..!i'Ol.~CllVfi T.N4.$.I!

~<<IS/ON Co.+IAl:Wl!NTS.

4 0

DETAIL A 5

RE.

S IC Vll-1.~

R ce U5 use CAAOO£)\\RD 10.9IW:l THERMIS"TORS N!O/f.

ino.RD SURFACE.

1t&.lllWICD DtQllUil.a:

-~~

l)J~IO I. ****

  • 1111 I ***1 Iii!

1'8*!1 r* 11 11i I Ill I

~-Jr~... ;-5.12

-~~'

~"'~'

-~oz I

I I

I I

I a

e I

I 4

I I

4 a

z

.z I

I z

z I

I I

I fZ 1.z z

z 4-4-

I I

I I

11i.r REF CtftCH

~I

'/4/eTS I

T *---

,.,.,.zo

-11~1 TSI owe,/1>.Aer ""*

oz,,ce1PT*ON

~e~1~AJ.li'T~

I

~IZ*1J.2~1J *11<1<1 PC IJo.JA"O 0 __

I

!)If>* 'Zwl,,~-

e~SISTtJe. /.. ~"-I"/~

jJllH<l<I

)14.J&, *;J.1'7.a ct

,,,..,,,,,,~

--~

~~.17.,

.c, j !'1-<,7J~'

z*.4..:.

~'-'~'*

.CZ jJZl'N

.J:L!1C, ! fl. I,,..

4

""O~N

).B'S<,-*';...

11!4 j?,>.1'4,_

!~ S;.:_

.I.~./ i.*

  • "4

~?,.3'~7,flf)1 Z'3.&'

'~**1.

.t*.'!

.. ~'<P'-1>'~'

,.e!.. I.,J.1 _;.:.

".e;

.~,22 !<I<>

l.j ;<.. 1z.1 /.

.e:;

I

~Z'?°"~

lR~~1:;*.,~.e. 4f;.,<._ *I.I/

0 q,,_,'Y>l5N.P r1Yte,.11~Tc.e IC/?1.C 21J /I I!'.'.J

~-

, 9*w-51h:z~<11 CAP.. zz~ r. 1:; vvc 4~~c t:'9 4

~IC.-,Ul~<IJ.

CJ'°.,.61,,,,..f -.u."-,:~e"'~'c Cl 1 '* +.

I

~1:... 51de;'~"~.

CAP., -'fi-'- 1b'4:. e.ac.

t:' 1;;

91f.* -;;1-1,(,,,,~

C"'1A,.Jll*f 1u11~~-fl"'l1C C? *.;. ;>;'6 916-, '~ '1'4~

p,,"~-,4~4.1~~,.,,, 14.:r;*ft. ~el -C~l:J

z.

!tit'.,,~~41;J~

t:ucu;~. 1.v41:*

.:.e:;

  • ~

I flt!J -"jZl4 !JIH IC, 741~

z 919-515:;.~1~,,

el!el uz '

I 9*9. ~lit>~'"'~

IC. e,e'<.//!>T'1~~

"~

I 9/IJ..,i~~-'

IC 74'1.:.

.,~

l.Z 9"1>*,:t9s4IH e.<<etw"r.fC"-~, e~-1 JI-.JIL 4

"'z -71s:.41SU

.eeu1~. ~PLJ7

.IC I*.11::.'./

.z

!J'l&*f;*9C.ll"'"'

~4LAf. CPaT

~*!> (;..

4

!>IG-f;!>ll-U4N

,~.. ~.t:eA.C.;<>wN tJl:>'I: *1 11*~.4 I

!f)Z./ - ;zz?H4$

Ju~tP~e. a.'* w1~e WI

~

W.l:

IV' I

..,4 w~

W7 w~

W!J*W.

WP 9Z4-?.U!>3,,¢'1 JVMPL!.e, fl.,. Wiii!./!

l'VS RCr LCC.1C.. 114-00ZS*::i:*O"...O iEVISIONS TCNJJCCOMP 5Y5T£M5"'

ICO *O.

'ATA LC<¥1.e:P.. SY5Tl!""1 ANAL.OC, S1Cj.vAL C::c-1<101r1c.we.e

,,, c::.

281" (

I

.)....

j I

4.2.8 Multiplexer ENCLOSURE SEP TOPIC VII-1.A Reference #6 The basic function of the Mu.ltiplexer is to program the p

.. ess variable input signals to the measuring system and to provide an iden:. ~cation for each inpu.t poin_t.

Reference:

Schematic SC30-1542 SC30- l 545 The Multiplexer circuit card consists of ten relay channels. One side of all relays are common and connected to the output of one Source Driver Switch. The other side of each individual relay is independently connected to the outpu~ of an individual Typer Driver Switch for the sink drive circuit.

The relays have been specially selected for low level multiplexing opera-tion and generate a maximum of 7 microvolts of offset for 100% duty cycle.

Diode CR!, across the relay coil serves as arc suppression while diode CRZ in the "source driver" side of the relay is used for steering.

The relays contain 2 sets of form A contacts. These contacts are used for the positive and negative side of the input signal thru a filter network.

The input data is connected from the input terminal strips to these data contacts. The output of the data contacts are combined in groups of ten and are routed to the Analog-to-Digital Converter.

Thus, via the means of upper and lower driver control, the indi-vidual relays are en_ergized sequentially or selectively as the need de-mands. The relay coil is rated to _operate at 14 VDC; contact ratings
  • are 0. 2 amperes.

SY f'\\. r'\\ _ ISV

<v ~

?v L--.!_~ __ J TYPER DRIVER

+

+

ov o-1)----[)-~

SOURCE DRIVER

+

+15

+ +IS

~

I

~.*...J FIGURE 4-13 MULTIPLEXING r-;:+INPUT

--A-l -

f 'L_

~+TO ADC 1-30

Sll-lK.

CR\\111!:

+ IW'U'T

.....,...., w.o.otw

-- 1s.wovi:..s NO"'T'E:

Sl>llC.

CllaW

+ IWPU'T

  • INP"l.IT RI SCURCI!

4<0 ENCLOSURE SEP TOPI~ VII-1.A Reference #7 ORIVIL

-.....,~__,.....,.....,..,.......,_.........,~_......,......,.___,.....,-1,_.,_.....,-1,....._.-

~II IC.I 2

CKT I

let

~

4 C:M.'T '

3 l!I 14 C1<1:

3 40 10 II

c11.'T.

4 21 rr cxr

!I 60 21 20 CM.T.

i:..

30

.2'9

.,. *1 O(T.

7 S'Z

n n

CKt a

11!

s 7

GICT.

<JI I~

23 24 CK!:

10 T'fP!!'Al.. CIRCUIT

~

CAR~USMISLD\\,* I *11

  • 11 1ll
  • 11 1ll 111 1ll

'It

'11

'II

+ Q.l'TJOU"T Q

- QIJT'>UT 41 6!SB~4"-l01 L041C DIAC;.RA.M LOW LE.VE.L MUX

-(.H~/:t) --

~-1.l'C<<T!llCQ.

~

.. ---... 11.....

.-...(;804A.SW.4.a?-r~ MO'-'C SC.'30-1542 IC SOuRCt!

4<0 ORIVIL 1114~'

R4 CR.I

.............. ~

4'llllLIN4~

l'IWr---,

A I

l<.I A.2 I

1004 I

'ftW I I

--~' :

i 10'0.n:~l-Y1w T'l'Pl!:.'l.. CIRCUIT

+ OU"l'PU"T <B I

- 0\\l'TPl.IT 4'I

.. _~ ~ _J

  • _ _J..__J *.__J,~-_J1*-_i MDJl.n I

i I

I c11.T.

CM.'T c:Kr CM.'T. I cxr CM.T.

O(T cKT i CICT.

cl([ 1 I

i 3

4 II i:,.

i 7 S

' <JI 10 I Ill 21 2

i I

'°-

  • ~

'~ i :I:-

a_

I z_

14 II n

20 2'9_

17_

'T 24

--~

-~

~NO-SMl!il:l..O oi..i PIN *roe OR.. SI.

110'.\\q~)1

..... -..-g--o-.,~

._ *H IS MOV "'9 a

LOC,.IC DIAC;.RA.M LOW\\...E.VE.L MUX (HC,... ~ R.'E.C.0)

~

llSOta.. l'Clftl.~

~.:':'**--.u6.

SC'30-IS4S 19

  • ,~

1-31

+

1~.* Ar T~.VAllNAl

~ lH-;2*

o*'

TBSfl CO**I I

r,.*:--r=-

/)~}

so I

LJ_L.J COf*I 4°1¥1#,

7D WATT TllANS~'-1,CllS 0, MAIN t#&.A/, t All¥11JAll/&$

!HI

,,_,.!'Ell.ENC~ DWG, 6-'I

u.

I I

.1 OUT~UT AND 0

GENERA TOil GROSS

+ *;

STATION NU H!CJR1(.Al OUTPUT

  • $(1 I

. ~

SCHEME N2 IG 10-_

I tFOll OTNU:. l'LANT INPUT:!S To llATA -

~

Pll-OC~SOJll 11.l:l'EJ! ro REC£/IANT llN6-I ss I

56, I

+

IW,UIJMCNr

- 14:-i r&-,

"*S

,P141l.E

~,A.c!.6 PIJ.:1:AUA.PJV.':

l'D*$1F T. ~C>I

  • NIOO'l

,ros1$

AC.OZ()!J l'Y*0701A

,,.*0104-1 PT-01'.S

'r-021~

N1'00:1 SPA.RE INPiJr DC$1t;J.J4T/Dll

~i:.c;:,u.fE ~"'

n.:.:sueF:stiZ PJ::JMAl!r' p,:,t$$V~E

~.t/.ttAJ!T 'l.OW T ~Vi'J!.4GE' UJ0P I 1 AVE'.e.qC:..f 1.00/' t 4r UJ:J'I *.

.llTtlJO/?I G~N. (,l!QSS 11:1r#C1r

~TA11"11 NrT oc:. ourPr" ON! r1Jr.'!ll ~IJ~4 NEUT. OIA4/A/£1.

ru1:a11t1E n.'!:lr.!I TAG~ 'JUs.Suu

.e Dt::.OAJ "ONC *

. ~T£AM,.U'JW St.I STEAM F'OW $6 Z CIJN/)0/$£1:. l... C.-l'.t:ISS/JllC OIAJ!GIN'i 'I.OW STA.er-up IZATC II.OD P.tOP TCST

';o ENCI.OSUHE SEP TOPIC VII-1.A Reference HB llCllJIL c:or.IPAHY PALISAD!S flAtlT CDNSUMEf.S POWE~ COMPANY

.-*~*. ~ I SCHEMA I IC OIAvRAM PRIMARY.DATA PP.OCE5SOP PLANT INPUT JO)....

1:v.

1935 E *2 97

-f Sc: />W<q..:n°4.7-1/.2l.d

-~-;-- *-

  • --~----*

ENCLOSURE

. SEP TOPIC VII-1.A Reference 119 Pag<? 1 of 2

n..

.-r I

©-

! :c

© i

i Wtl j

~*

~I I

  • 1 I

i I

f i I

~

i.

I I*

[.~*~~~~_.*~

.. *.:~*-~~-*.. **~h---~*--*~'-~-=*_\\_,~*~~~*~~-1~:--~~~!-*~*~**~*~*~~-~**.. *.*~*~-*~**~-~--'~**~~,~-~n~:~~;*1**:

~ti.*.*

~......

' :--...... ::. ?::..

~*~:

r&*

¥,

  • tet. '-

~ai..*.... ;;,;***1.*....

,..._~,.,.;;**iii**.,,~....... _..,.;i.......... ;..;._.;;***,......... -;,;*.,;.,*.:.;rii;.-+10t* *..;.**o;.*.;.**...,;..:_.._........, __...._,_ _______..._ ________ ~

J ENCLOSURE SEP TOPIC VII-1.A Reference 119 Pag~ 2 of 2

11

+

+

~

+

10 11ov.

PCEF'. A-G PIJL."Y'IO*

  • ~l?.. 1~

........... ~

coua..aT

l!AT'

~

l'lATa Oft CMAlJGE

~

Hr-;-----j-;---, T!.l'ZM. l!aliC.

1-r--t--1--t-< A.T eo-i-1 nv;;cAL)

To 110Y.

Pl:U=.A*'

,...,~.vio,

&Kll*I'

,......,,.~

CO~TU.JUED 1!"1!.0M 'Sl-llil.T 1 LU9 M(IO RATI 0...

CHA NC~

~

c :.:: )

SCHEME IN03 tJtl) ""'"'

.:.. )

~:

1.

PHY.51CAL !StPAl'AT10M eE.Qv11:£D O~L "1' IN PAJJ[l. C.06.

1.

5ruJ.1~L ro tv.M rc:ortsso~ oaa NOT NE'CD CUANIJfL !i'.EP'ARATIOM

  • ENC:!.OSURE SEP 'l'OPIC VII-1.A Heforence #1.0 tjlf7 JJ[l-:1 T

,.. P::JWEll

~r~~

llCHTIL COMPANY PALISADES PlANT CONSUMEr.S POWEi: COMPANY S~H~MATIC DIAC,f.Z,._1,,t..-i STA~T UP(! llJTEC?M:ODIATE i'?AtJC.E

.IJUCLEAP. ltJST~UMcl-JTA1101J ILY.

StU

7.3 STATUS SUBSYSTEM 7.3.1 General ENCLOSURE SEP TOPIC VII-1.A Reference #11

-;.~*

Page 1 of 2 Status inputs to the Field Remote Station are conditioned and co**

ted to logic levels which can be read by the microcomputer by two ty~ *.., of status conditioning cards.

Each type of card provides for signa:

substitution verification through. the input optical isolators. ;;rotec-tion from high voltage surges and overloads is provided as well. Optical isolators separate input circuit ground from microcomputer logic ground.

Drawings relating to the status subsystem are listed in genealogy 102-002811-000.

7.3.2 Detailed Description The circuitry used for voltage sense inputs is shown on Drawing 161-002811-000 *. The 36K, 3 watt resistors are rated to handle the indicated overload conditions. The.01 capacitor filters high frequency transients. The lK resistor and 1N4005 diode protect the isolator input diode from excessive forward or reverse currents. The calibrate relay switches the isolator input to the 48V status excitation bus, but this circuit is completed only when the calibrate 111 11 relay is energized as well, allowing calibration of both 110 11 and 111 11 input conditions.

Output of the isolator is converted to a logic signal using a hysteresis gate. Bounce of input signals is filtered digitally by the circuit described on 161-002814-000.

The next level of information is found on conditioning block diagram 136-003023-000 *.

External clocking of the bounce filter is used. Timing for status scanning is covered in the microcomputer controller section under the Real Time Clock.

The actual physical conditioning assembly and detailed logic are found fr.om drawing 105-003023-000. Variation -002 is used for voltage sense.

This variation calls for main board 141-003023-002, with corresponding logic 114-003023-000, and calibration board 141-003024-000, with corresponding logic 114-003024-000.

Careful study of sheets 1 and 2 of the main board logic and the calibration logic will verify the circuit snown on 161-002811-000 is repeated eight times. Sheet 3 of the main board logic diagram shows the address decoding circuitry used to selectively gate status information into the microcomputer.

Data drivers are shown on sheets l and 2. Address assignment is determined by wiring on the signal conditioning crate, reference 120-001124-000.

7-4

~

~

ENCLOSURE 7.3.3 Detailed Description - Resistance Sense SEP TOPIC VII-1.A Reference #11 il' Page 2 of 2 The circuitry used for resistance sense inputs is shown on Drawir 161-002812-000; The lK positive temperature coefficient thermis~

heat up within 1/2 second upon over.loads up to 1000 volts and l *L.

fault current to 6 ma.

The 3K, 3 watt resistors limit the sense current to 6 ma in normal operation.

The.01 capacitor filters 1igh frequency transients.

The 1N4005 protects the isolator input d1ude from reversed input polarity. Relays are used to disc.onnect the isolator input from field circuits and substitute current from the 48-volt excitation supply.

Following the isolator, the circuitry is identical to that used in voltage sense and the same description applies. Only circuit board designations vary.

The assembly variation of 105-003023-000 is -001, calling for main board 141-003023-001 (logic 114-003023-000) and calibration board 141-003025-000 with logic 114-003025-000.

7.3.4 Wiring Field connections are made using 16-channel cables shown on 131-002808-000 (see Analog Subsystem Section).

Internal wiring from the connectors to the conditioning cards is by cables 131-002810-000.

Cable assignment is tabulated below.

"FRSl J

Panel 1

F4 2

F4 3

F4 4

F4 5

F4 6

F4 7

F4 8

F4 9

F4 10 F4 FS 11 FS 12 FS 13 FS 14 FS 15 FS 16 FS 17 F5 18 F5 19 F5 F5 20 Cards 1;2 3,4 5

6~7 8,9 10 11, 12 13,14 15 16 1

2,3 4

5,6 7,8 9, 10 11, 12 13-14 15 16 7-5 Notes Cable channels 9-16 spare Cable channels 9-16 spare Cable channels 9-16 spare Cable channels 9-16 spare Cable channels 9-16 spare Cable channels 6-8 assigned to test and speciaL input Channels 9-16 spare Spare

  • -~
c.

&l.f.*

N.C. **A 1

CALIAftATI.,. Rev.v

_..{YYY\\

  • IV DLf>. CONOtTIOHINCf C4ltO ENCLOSURE SEP TOPIC VII-1.A Reference 1112

-OPE RAT MrH..

II,. l*DC) 0~ QINOITIOMI "'1 CU.0 FtLftR ABLE-cO<,*C,

MAI~

Mo~

z..,

I>

[

CALIARAfC' RILAl'r-----4-4*------...


ll~)l*j;.l.:.t:...:.:11:...ar.:.c::.;:"'_*~L-~..JULl>~llO~ll.c~l--;-s-t_e_"°_"I;'

1-r~Y>-~~-'\\lvv.....-~...--~-0~

1 0--..--.-~--J.~

I N __,

N

-,q.014 t.:.u" I

I lltll I ~UHl'lll

°""'*

sw1eLOL I

I I

~("1jcl*

ev

~...J * >',ux IN400j 44COMHON

( ~:

~~-

I......

-11*1 I "'*1 UH!

h* I NOTes:

I. SCI SPCC1PICATIOM t"t*Nllll**fff*

.a *.1. t.J)qlC POWert 5........... co.. HOH

':' (So"4LC CONNtCT10H ro CA&oweT 411Du"o)

~.,/i CADlllH (jllOUNO

4. WlfHSTAND$ NORMA~ MOO~ AND COM... QM Mooe (Cl) ltU.na-t!ll4 5UR(it W'IVtFORH (bl ltte ~J-t!l"IS... PuLU IC Sf (Ifft v PUI<)

{cJ"H VRM~ 01\\ oc. (ONfUn1ou~L'W' APP.,1to(1...... *8...., "')

,. THl LCXjlC LtvCL AT THI$ f'Ol"T COILR.~$PON01"~ TO

  • ALAR.M' 1:. otr1HCO (Pet CtU..... Nt.L} CY oPeutoa e... TIRY TO OL~ Tt412.0~H CPS TClt.Ml.. A.L.

iJ.H-..$"1tR.1'StS C1&CUIT CA\\6t~ L041C STATC TO IUMA*.. AT Pi.flJIOU6 LfVtL. u... TIL CONt:UT*O... s FCtil HCW 1o.C'ltL..

M.t..vc eiteH A.C.H&f"to. LOG*C.

cou.£.~PQHOt. TC FL*HT c11u:.u1T ~T.. Tv~ C.L0i5otD*

~OqlL "' COIZllf<:.PONC~ Tc Pl..A.HT C1RC.UIT

~TATU~ OPt.H

  • TENNECOMP SYSTEMS -

DATA LOGGER SYSTEM STATUS I NP1.o.* (0N01TIONIN(i VOLTAG[ (

)--$P((1F1CA

.. lcl-* i

/

  • I fllCLOSURE 9EP TOPIC VII-1.A J;!eference 1/13 rage 1 of 5 r~.:*:*.-g:** i-~~-; ~--------------------------------

1--:..* __;("'-"-:~

~LS Ct *:.a 1.J.

1*001 l-005 CVEtlTS REC0,1DER ER*OOOI n

PK.. Cll

!'---SE£ NOTE 2 I

I IA 1

l<~~

I L. _____________ J OLS lli?"JI SIGll~~ ADAl'IER Ti.:l~E nr.o r.z!*;;; sm1c: 1. 1.1 DW~IR DESCRIPTIOO i:( Piii llD.

~Jr.;: ~a.

uum1 s1m1 1...

I r.:1 :rol W.< 1:::urno:1 FlUX D E l I NI C"".J.

  • A (HIGH) ll!m.'.'.l l:.'-~Glll OR COOLANT PRESS.

C:!'~::1 - A (LOWl STEl'I CH~RATD.~ E-SOA PlicSSUP.E till::: ::L

U N4 NS LOCATI0.1 tc~

Co&

cm; Cot c°'

I *DJG Sl~~:'. c:r;;mo~ E509 PRLSSURE

[,....,~L

NS co; 1*001 1-CGl 1-011 1*013 r;.J!."'~Y cr:~~::T LOOP *I rLr. Ci!!" ':L A SlO::I G:.. :,: '.TCJ E-503 l~TER (LOW)

(LOW) tr:*'l C"':'" :L A (LOW)

F.EACTOFI LOAD(TURBINE TRIP) t111*;*:i.

  • A (LOST)

REJJ:TOR CONTROL ROD DRIVE CLUTCH

.\\P:>*.'.'F.~ R8-AY K-1 (D**ENERGtZEDl h"<lt.~""' s1:mu cr-.~111 TAl:X ru*** P*ll~

f,:1::*.~y SIST<::J DRAlll TAl:X r~*P-Jrn (STARTED)

(STARTED)

N7 COG.

Nil COG NO COG COG co::

EJl eos u:mm1:~ cr-:rm 021!C£ co::i~ct

~,F.Dl~"S

~J.

w:.1.

ca::* :cTcJ Pll:S MIS

.. *~ *: J~::

A*B Sil.I cc.:i:iG:1 Pll:S E*'15 1.1*1....

.*. D*E S!l.t

.... !*)

cc.iClC.l PU:S E-&IS r:.!::;;

z-a SH.I tt:::::c1oa PUIS MIS a*,.:J'"

  • -d SH.I co::::,c10a
  • PWS HIS A'. JJ(~

S-T SH. I co:**'cToR PlllS E*m l7J !2G v-w SH.I co:~::cTOR PINS E-"5

'~ :J~;

G-H SH.I co:::::ctc~

Pl!IS E-m A!.;J2~

k-l s~. t co::.=::c1oa PlllS E-GIS r.;J~:;

N*P SH.I co:: :c1m Pl!IS HIS AUJ2~

SH.I l-1 25*2' HIS Sii.i

.R:lli 11-12 E*2GO E*GOS S!l.Bl

.!Z;.8.l.l 11-12 E-2&0 MOB Sii.eli B!.OCl DU~RAll l"\\Llli5 i[C.fP.*DOOI cc.::s.

CHt::::L#

1-1 1-2 1-l H

1-s M

1-1 1-1 1*9 t-10 HI 1-12 t-13

['""5.

I' "c.'c-.:\\<O' I' Av:***... '""" I p*-c** C!""" l'l'I

'"-~* \\.V ;:.

hlSit:I) s:;u1r,:1 r:,ii.:> l::IS J.

) r.._:;:_j ljj'.!

CO"':~i;tc:: :.i o*:: £11 r1*~Y. l~:!:. C!~:.E 15 u:;:-~, fl'! CtS Cil:.::;:tS 1~c: li... ~ I<:... t'. : :ir

  • .~. C'.. ~::l ~ t:J.

I Piii NOS. FG1 E~Cll 01.S Cli,1?::.:L LISTED Ill lDIJ'IUl T,,;;lE.

1vm

._ 2*

l\\:.':'t.l_O~~~~ 11:~;;j SIG::".!: r~ c:-.*.t~:~.... t.':~:~s [X1~1U:~

Cll/.';;::Ls v; m1:1~ Ee:*.:::: E;*co;i 1.::,.., i:L TE IHlllAllNG cc.am; A.. c L.. o!;::;.;,i'l;;.:::_li..°'-'-"-"-"...;;s-;..;i;..

..:.."~r* '.:.'-....:.1_

0

  • _**-"-...;S;.;..;;..*...;';..'*-~_*_

.. -1 L:~~ [::~c~

Anti I~. C.1.

1:1tHIGAN F';.:..t..:.: :*.. F:..i.::1 COt!~Ui.::::r::- r '."'*""'::~ C:lt:PA!lY

,__*_i _______ c:_.. _*;_-.1 *;1:1 FffiJ.. \\li!: ru :ITY r:: ;;:m~TIO'I

  • I i-----~-----

C<O Lil~

E-261 E*m 1-14 ms

~t'hB' *~I l t Dll... :1...1 DAUlO~r,c:P, STSHr 1*014 ID!~lY i!.5TE D~Alll lll:X T-~o

~

"""' sw*: s - r!'*~ ~......, sr*11"* "'c..*.:..1 ______ /\\

.__. LE'IU (HIGH/LOW)

- "'.""'.::.~, J0;:::--1 1

DRA*:;tE:~-SNlo, I o:*:, I C<O LllX E*2G1 E*G" t-15 lTil 1*015 101m r.:.m on~rn Ti.::11-'° j

LEVU (HIGH/LOW)

(

2.

JtJ~l2*016 Sii. I s

I 2

I

  • EP TOPIC VII-1.A eference #13
NCLOSURE age 2 of 5 I

~SEE N31£ 2 I

I IA I

L--~~------j D E K I Ill DEVICE COG co*~::-c101 INITIATlllG CO:ITlCf cc::mr r:F. 0:1*s 1:J.

St;1;~~.:.

c~:.. 1.

PlllS MIS.

2*1 p* ::'c

  • A-9 SH.I 1_0, 1 1::*::c~ c:-::: 1:

.:?.~:* nux r. :L e (HIGH)

_.:;==--!--4---~-'--1-..;-----1-.!...:-'---l-_..::.-"--lr----+"--="--1----l 1*0'2,r.o*:;(.: CC.'.E fo.. :;; RATE CHANGE c!ol,, 2 N2

.__'._ ( :**

-~ B.

(HIGHl 1-D*:l

.~~~'A'a T-12 p;,mu;;E (HIGH)

N3 I 1*011 l:.::.:.:*.L 11*:::;n1 OR COOLANT PRESS.

'-'"' *::t 8 ILOWI 1*045 STt~'.! CE:;~1!.JC] E*50A Pn<S;uR<

c;::*:* '.L 8 (LOW) 1-~G. SE! c":;r..1ro.~ E-503 PRESSUrJ.

CH!!l::ol B (LOW) 1*041 r:;l:"':I CCGL!.::l ltlli' *I no1 c;::... :LB ILOW)

~:; 'CE:::;:.:JG.1 E*50A wmn lfVEL l*O!&

C*i" :LB (LOW) 1-049. Soi:~:: ca::RA10.q E-50ll IAIER lEVa 1--

~.:*::.. :L B (LOW) 1*0'0

~=:,~::TOR LOAD (TURBINE TRIP)

C""

~ 8 (LOST) 1*051 I R<:.t..::TUR CON fROL ROD DRIVE CWTO

..___ '.* O'l'FR P<'l.1-" K-2 CD:':*ENERGIZE) 1-052

~~~~;~:£1.!l JS(UTJC:I VALVE (CLOSED) 1*05l

~~'.~;~~U.:J ISC1.mo:1 VALVE

!CLOSED)

SIEt!I DU!'.' YIJ.\\'E CV*Ol!D 1-c;;

(NOT CLOS~D)

I!

N4 NS N6 N7 b IT NB c

U N9 o n 10 NIQ cm; co:::::cm1 r.- :::~

  • ca::::CTO]

e*.JJ:G COG co:::::c10.1 e:*:1Jz;;

C06 to:::;:CJOR Bi.;J?G co:::::CTO]

B'..JJ2G co*

co::::crna

. e:*:JJ1G co:::~r.ro~

B~ ~J~:;

co:c::c100 e::iJ:;;

COG co:::.:crn~

e:*.JJ2*

K-2 POS.SI.

-mor Pos.sw.

  • C310 P05.5'ol.
  • OSI I ros.s::.
  • 0710 PlllS E-SIS D-f S!l. I Z*Z PlllS MIS

' Z*o S!l.I 2-l PINS E*Sl5 C*~

SH.I 2-4 PINS MIS S*T SH.I z-s PINS E*"5 r-1 SH.I PINS HIS G*H SH.I 2-1 PlllS E-"5 H

SH.I.

PIUS MIS H*P SH.I PU:S MIS r-a SH. I 2-10 25*2' MIS SH.I Z*l I v

E-238 SH.I Z*IZ E-238 SH.I 2*11 E-75 2*14 E*2lS MIS Sii. i Sll-2!1 Z*IS IV5'1 SEE ~DIE I rr.:rs: © 1.-t~lE G 15 A 'IH!!'~~ s*irr.im pr;rA'\\. Cl.~'.E llTH

r.:~sito s:aact.., PA!:.; f::1A ** ~* r~~:1cco ~.iTH cr;~.<cm1 AT 11.; El:) c..:1. li'JS Clr'.E I> u;;o rt1 OLS QIA!'!':LS 1-0~I n:: J 1-0;; 11:--;r SW ;.LS. r~*.. '.c!C 1:~.

a Piii ~~;. ru E:.c.1 c:s c:::;... :~ us;EJ 111 1J::1r~ m:E.

2. O\\TIL!-** '!1. 11~_:11 SI'::"'~!""'- '}.i!;-:-1 !*~I~;s mp111G Cll:::.. ;lS Oc Eh.. TS r.r... : f *o ** : t.3: 1.L TH:

INJTIAlltiJ CO:/llCiS Af,c PliEWlf.to AS PtR SCHEU.\\TIC DIA&1UY E*29a SH. 4 a 5.

ill.S :

DATilOGGrn SYSTEM r~-1 : rmo Rct:JTE m11or1 No.

,!!ill.'g:~1

1. *cwt:;:mo:z OIACRA\\.!S

. flf.l.D fCl"lTE STATIO:I NO. I E*G54 S"* I

. ti<lil5 li<co:,;;rn ER-0002 E *&54 Sil. I 3;. y.p:sm-91J120-14.49.so.s1.110

', * * !5935*M201* 37 I

~i I

I J

I c

~

____,.11.;..";..;:;.E;..;~~~:*.:;:;;;;~;~:;:;;~T:~:.~.

1 I

'/1 l

.to:J 1oft1.

D:lA'ltlH:l No.

Rl:\\".

~

i 10512-016 386* p 7.4

[ *120 E-53 I I 3

CEU OIF.(Cf TRIP LCCr.ouT A(LAT1 r-os;. POIUAR'!'

(TRIP) t4\\

,._ _________.;...; ______ _. ___ I,

(

I 2

._----------------'"!""-------------------..--------------.._---~

SD'Cl:.'TIC 01.'S~l.:1 01!::n;;;

1 J

ENCLOSURE SEP TOPIC VII-1.A Reference #13 tge 3 or 5 I

I I I l

f '

I I '

_ 11..

mms RcCo:DER ER*OOJJ IT fll, Cll r----1;--------,

I I

r-(<-l!:JJ->*,,.---.

c: 3

~* IXI I I

er.*/,

I

--t I

8 ~ co:r1.

I

~I

.;:r:cum I ~ ~

~,.

lli

'1 Ill

., a!

CIJ I !§ J

~t----+------'

I.

L l--sr:r: 110TE 2 I

I ll I

L<~.

I

.L _____________...J ct.S*lll?'JT llG::~lS.IDl.!'TER TASlE NI DLS Cl'.':, :il.

11:mm1.; ~*;1i:T CIWf.1'1 DESCillPTIO:I uuq*1 sTm1 LOCATIO:I DEVICE 1r**-**, c*--u-urn-I FLUX EI r.I I

l*DSI

  • ~""'w**.J.;c I NI c::.*:: :L C (HIGH) co;;

cc:.. ::c1:.1 c*'*"~r.

1 0,2. Ir.:::::; CG~E po* *. ~it HATE CHANGE e!_i:_ N2 c.:*.o;: :L C (HIGH)

~

cc::*::c;c~

c:.~J:~

1-m r.~::; :.mR Hz p,;:i;~i:i J

N3 C~*'.;;*::L C (HIGH)

CO' cu:::zcTn c:.JJ~~

1*0!4 11::;:.:.~ U::.~lllOR COOLANT Fi1::Ss.

u M4 a*:*:*:,L C

!LOW) co*

co:;::mol C\\iJJ2G 1*015 Siit.' Go;ama E-SOA Pit£55U.'.E N5 cu:.::::L c

!LOW)

C1lC co:~::cTn c:.JJZG 1-ci' m;.:1 ca;;mo.~ E-m PR.mc:,r:

R 5 N6 c~u*t:.a c (LOW)

C1lC co:~:!CTO~

c1:1J2G l*Ool r.~l".'"! cc:LMIT LC~? *I FLOJ n

1!7 c:-*:**::t c (LOW) coc co:::::ctoo ctmc 1-0~S s :cl" w:ffu\\TO.l E-50A rm.R LEVEL NS C."."':t C (LOW) t11*

co:::::cTOl CtJJZG 1-C~' m:*: c;:::ri.1rn~ E*m mm ma N9

(:' -- c (LOW) co' co:::::c1c1 tr."'.:?~

1-0;0 P.U<'.:TOR LOAD (TURBINE TRIP)

~

  • ID "11D (ti~.*.:t c

!LOST)

CCC co::"'r.Tn t..~*JL; 1-0~1 REACTOR corJTR'.)L ROD o;ilVE CLUoCH

! T II NII 9 F(')'l!!'R RELAYK*J!DE-ENERGIZED)

C06 K-3 1*032 H.f. i~... li.< ~le? v1.1.v;:

h-12 Nl2 CV*05'9 (CLOSED) lOl 3l-SLU 104 1*033 H.P. l~:l3WE STO? VALVE C'/*Gill (CLOSED)

' p a IJ N13 T04

...n:fil-l"I Hn4 H.P. T~:m1;: iTO? VALVE 14 Li-cm ICLOS'~Dl I r I Nl4 105

...n:f.l lb 11.P. 1":.* IWi. ii~? VALVE IS tll5 I-OH CV*0515 (CLOSED) 105 l~-~!.l

--u;,-

1-0;; GEM. DIRECT TRIP LOCKOUT(\\

P,[LAY!eACKUPlCTfliPl Y. '

I 41 1~41 C04 386-B 3

cc::1m p,:-;. Di:J'!

fl:l.

~...:

c~:~r.

p111:;

E-'15 A*B SH.I Pll:l E*,15 D*E SH.I Piii$

. E*'15

!ii.I PINS

[*,15 rl m.t PIN$

MIS 5-T S!l.I PINS M15 V*W SH.I PIHi M15 0-H SH. I PIN$

MIS H

111.t Piil>

E-'15 H*P 5H. I Pllli E-615 511.I 25,2, MIS SH.I l*M

'£*114 E*,02 SH. I l*Y E-114 E-'02 SH.I l*M E-114 E-'02 SH.I l*Y E-114

£*602 s~.1 7, 8 E-120 I

llOCl DUOR.111

~C.ER*OJJl cc::.1:s.

CIW::a,:

3-1 H

H H

1-5 H

H H

H l*IO HI 3-12.

Hl "14 HS 2

CVS6l 5EE NUTE I tOlES :

.~:..E© l!i A VE~::'.:! !:*.,ruri P~:n~. Ctr:'_:' 'llH "1;*mw s:um:j p;1r.; 1*1a.1:;1r.'.:*:w:;1:;H co:.~:rcm AT()"' Et:) c*~Y. TP.IS cl~~E 15 u':~ Fn OLS t111.:::::~s 1-~-1 Ti:I 1-0:'. 11"*: s1~*::L~- er.. :m.11:0.

1 fW ~a,;. rc.1 rn::1 tl~ a:i.::.:L ll~*<o 111.10:.?1<'1 ur.L<.

t.

D~rnou;rn 11:~:1T 51C::~L~ "" C11.lllEO.l'.Rc.:; EXISTING Cl!Ali;i<LS o; EVcll!S ~:cc::*:a EC.-c;;1.:,:;,< '~L Tho 111num:~ cc::mis 1.1.< ff:arnoo.IS fca 5Ci:CIL\\TIC Dl.ICRAIJ E*m SH. ~ ! T.

.ru :

DAT.11.0GGZR 5YSTfU

' rRS-1 ; F IElD RElllTE m Tl Ill HO.

!!:'FEREllCE orus :

1. caci;:cm::I DUC~.l!IS FIELD R!).'JTE SlATIO't H3. I E-,51 Sil. 2 EVElllS RECOi<!l<R ER*OOOI E-'51 Sa. I z; VIP:5~35*9/Jl2D*t 4.49.SD.51, I IO 5935*M201-:i7

_I c

1

ENCLOSURE

  • SEP TOPIC VII-1.A lleference 1113 Pe.ge 4 of 5 i

)r 1

  • 1:!!5-m 111 En-c::;

CCllA'~:EL

  • 4*11 I

I FlnD RCl.'lTE sailt.1 t.J.I

£lli j--sEE NOTE Z I

~

I I L----------------J r---E:::JJ~'.. ~!:_J2 ___,

I.!\\

JI IV'

'y" VI

'-- *------- --------.* J

:::::::l:::::-
  • = :::::: :.-J HI FGl CC::T.

s:E A):mR U~-E L:lCJ.

1E~~.r.
~E Sl!Jt~; 1:J.I 11:mm:;; cc:nm Cl~

CH:.*. ::L 1;.1.

CIWl?l<l DESCR!PTICIH LOC'TIO:I ll'_r ~TATEi

.* 1Piii1:3. oii.; l:J.

DEVICE co: met F.;r. on*s H 21 IF.:c1u cc:_. 1><um:1 FLUX t:".:~ 0 llllG'll ID D E 1-122 c:n: CC.'.; pc;;<R RATE-CHANGE c;1;* :L D IHIC111 I

Tl..';.L l':.,cdlllORCOOLANT PRESS...

C!ll".. ZL 0

!LD:il

,.* 1*121 Ir.. ::

~' c~:Li.:H LOO? *I rto1 C;!~:::::L D iLDJI

. 1-128 1-129 Sim! c~::oRATOil E*SOA UTER LEVa CH~!~::L D lllllll

!LC11 ID C 6 10 10 It IQ P.D 10 R S 10 ID

  • 10
  • ii 1 INI Al 2
  • N3 l

NJ N4 NS N6 N7

'g NB N9

'HlO

~H~~~z~R LOAD!TUP.EllNE TRIP) (LOST) ID.. 10 NIO Hll H3Z 1-1;3 1;m 1-llS 1-n:

C0.1in..i. fi"J D:llVE D.UTCH POo<R R<tlT H

!OE-Et:ZRo!ZEOI fi<llEAT Sllii' VII.VE CY-0534 ca.mo1 fiEHUT 5TO? VALVE CV*OS44

!Cl.O'.ioOI Kmm 51C? Vll.VE cv-om

!C'.O~rnl r.<1;m 5To? Vll. v;;: cv-om ICl.D~IJll TUR&lllF DRIVEN r.uz. F.C.-:"....... ru*"." p.-*,,,,.,

4 10 10 10 10 10 10 II NII h I I 12 Nl2 I

p I

!3 Nl3 r I 14 Nl4 I

1 IS 1ll5 x '* l "

,;.j/

1:a.

SCiiC*...:.

Ct......

co; cu.... :::tm PU:i El5 c:.]:~;

A*B SH. I C!'.c.:CTO.l PJllS N15 o:.m; O*E

!II. I co:::::cron rm*

MIS o:.;m Z-o Ill. I CO' rc;:::mon PINS E*'15 Otlm IH. I cc::::ECTOR PINI E-U5 or;im M

!H. I co; co:~:moR.

Piii>

E-'15 o;:~J2~

. V**

SH. I co; co::;::cTM PINS MIS 0".JJlo G*H

!H. I co:::::c10n PJllS E-Cl5 0~.1J26 M

Ill. I co:::::crnn PIUS E-G15 o*. ~J2;;

N*P Sil. I co::::moa PlllS HIS o:.JJ2G

. 1-g SH. I k-4 2s.2; E*¢15 Sit. I filWla C-D E*ljl T04 151

.lli!.llL.

C-D HVJ lOl TS.Z

.lliZEI!

C-D E*lll TDl ruzm.

C*D Hll TD4 T54 COi.

PO$X*SZZB 1,7 F-Z,18,H.f 3

@1vm IEE HllTE I BtOCX DUGRAM EVENTS RECOilOER ER*C004 COilll!PC:;l)ING CllJJta=*"

4*1 4-2 4*3 4-4 M

H H

M H

HO HI 4-12 Hl 4-14 4-15 2

NOTES I l.CM:~t rs A va:~rJ ~*~*PUED Pr;ft~-

ci~*.E WITH IG 11.1s1EJ s:imo::i rm; 1u1s A.. 1 r.-:.1c:o mH cc:::*::;r~*:.tT c*.:: ELJ ci.:1. Tl\\15 c:::.~ is u~~o fG.; p Lo;:.:*..,LS 1-121 Tno,J 1-1: *.,,.* i Sh...'.'.S *

. c01:;;crc.1 ~3. 1::J Pill ~o;. ft.I EICH c~s CHAl*.il llSTEO Ill Allt?IER m~E.

z. OATAt.OGCER IN?'Jl SIC!!l.l s J~: o*.uu::~ ACROSS rnsrnm CH11~:as o; em11s Rocn:R ER-0004 1111rnz Ill r.1: 111111m::.; co*:m1' 1r.;:.

llEWJr.£0 AS PER scaa*.~TJC DIACRl!l E-29! Sil. I a 9.

ou:

OAUl.DCCER STSTiU fRS-11 F mo RElllTE 5T Ill 00 NO. I iicrm*icE om :

1. co:r:;mm OUCllA!.'S Flrco.ilfl.:'.llE STAT!C!I NO. I: E-~54 SH. 2 EVE-ll$ RitCROfR ER-ocm M54 SH. I
z. y,p:~~3S-9/Jl2D-l 4. 41.50.51.110 50J5-M2QJ.J7 p.. "

~*t/OtlE J'i.!.I..

r _f,LT

.i cousu:.:::::* r:.::r::::. co:.~PArlY

("I'"=' j!'I SCHH'AJIC Dllf..~ll ClllUi';'!:R SYS7!:'!.

ll"':*Y !\\tr"". Fl~'" r.:* *--"'Tl""',..,

I

,IOD llo.

I 0;'1.A.WINQ Ne.

I E-53 SCllE!.~\\TlC DI AG 0.:.:.: D~.\\'::i::G D

I J

I J

":::J.

I '

3 --i k) !

ENCI.OSURE SEP TOPIC VII-1.A Reference #13

],'age 5 of 5 i

El "it>

ts-l*BUS IA mov BKR. 2SZ*ID2 fR!rJ STUP. mn,~,

DLS OIAW:El i;o.

1-m 1-"2 1*1'3 1*1'4 1*"5 1-m 1*"1 J-1'9 Ht9 HlO 1-111 1-112 I-Ill 1-114 1-115 i-m DLS CllAl~IEI. No M6 I C01';<Clt~ NO.

13 rmo REl!ln: f_o _______ E _______ i _______ _

su110:1 NO. I I,..

FOii COllT.

SEE AOtPn:R TABLE BELDI.

C253

'-'L"-'-=r==~========<t I OV£iw.L -

SHIELD '- ------- -------

  • = :::~:: :

C25l Cij'21A Z1A1

  • = :::::: =*

Olllll!EI. DESCRIPTllll uuRu sum BUS IA mav BKR. m-102 FRO:J SllJP. XFl.'l. 1-1 Ufl:llElll BUS u mov BKR. m-101 FRO!! SIN. mn. H COPEllEOI BUS 18 mov B.~R. 2SM02 FRO?l SllJP. Xfl,,'l. 1*3 lllf'EllEDI m 1e mov em. 2sz-zo1 FRO:J STll. mn. 1-1 llfEllEDI eus IE 2400Y BKR. 15?-:lll]

rno:i SllJ?. XFU1. 1-2 llfEtlEDI Bl'S IE 2400Y em. I 52-l02 FRO~ Siil. Xfl,'J, 1-Z ClfEllEOI BUS IF 41'0V mm. 2S2-301 OR :IOZ

'llfEtlEOI BUS I c mov BKR. 252-401 Oii 402 llfEllEDI TURBll<E TRIP RELAY 'lOSR IEHERCIZ£01 SPARE SPARE 11JRa111E CYRIPPEOI REACTOR IA ITRIPPEOI

~-

fil!_S~ST TRANSFER __

-. (OPERATED GEl:ERAToa RA IE OF CHIJ:GE Of OIRRE!lT -.

~*-

(SEE NOTE 4)

(HIGO St;ITCHYAF.ll OSCILLOGRAPH (STAR1£D) 4 FOR COllT.

SEE.IDAPT£R TABLE BUOi.

DLS llil'UT SIC!l.11. AllAPn:R 1Al!LE flELD Ra:ITE STAllO:I t:l.I

~-**

  • CTII' PIN IUJ, llRE ND.

LOCATllll r.l.

13 o E I ZTA 2TAI A21 ll G B A 2TB 2101 l21 13 H J C ZlC ZICI A22 l y F 210 2101 m

p Q x 2lE 2m All 13 R S z 2lF Zlfl All 11 V I 0 21C 2161 A23 13 *

  • T 2111 21111 A24 11 c u N 3ZC l2CI C04 13 d **

11 r 9 1 11 h i r lll~ ma C04 11 i p I l3A ll8 ca*

11 I I I 3lzt ll2B C04 13

  • I q 7YA 7Y/'-l C04.Cl1 13 " s k l<A l<3 cso 3

DlA. :me, 2SI'

@1120 BlotK DUCR.W INITIAT11:; COllTACT

. co:mcr r:r. or.:*s DEVICE HD.

5Uii:~

COl~I.

lli:lD2...

THe

-~~?~ &

E*'OS b

SH. l ill.:.LOL Jl-11 E*lll MOS b

SH. I lli.:ZllZ..

ll-18 l~~-~.,2',

E*,DS b

SH. 11 ill:2llL MOS b

ll-ll E*lll SH. II

~ ll:ll J~H~I.\\

E*'OS b

SH. 'z

.ill:}J)t, lMe E*lll MOS b

SH. 'I

.Z2Z~ 'l-&4 E*m a

SH. I 8 Z E*BSZ

~

'l*&4 E*m*

a SH. I a2 E-952

~~

9-10 E*IZI

~~w,~~*

SH. I

~i/F 11-12 E-121

  • r:w.&a*

Sii. Z

  • srr. <<

n 31-32 MIS 00>2 SH. I 3&ciN 9-10 E-13' nf11.... u u.. 11 SH. 1,2 E-12&£0 c:~.

~C; "E:l~*~o*

W*RIC fJ:;5J&

E-9 sn. ~~

E-551 E-508 i

om.Y Fllft OLS J

CHANHEL 1-112 t~~~lr&13ruc 211 212 Zll Zl4 215 21' zn ztn lZl lll 331 332 m

115 2

llOTES I

1. CAELE G)is A VE11001 SIJ?PLIED mm. Cl.!!~[ llTH I' TllSlED PAIRS C*IB J\\'01 PROVlnED llTH CO!~:ECTP.'1 Al o::E [I;) o::..T. THIS CA~~[ IS USED.

FDR DLS CllA!~:<LS 1-1£1 lHRU l-llo lt!?UI SIG!l.ILS.

fi~~wm ~AP~~ ~!~,_~~s. FOR fACH DLS CHMl:iEL

2. All INl,IATIN:i COllTAC!S.EXCEPT FC!t r.mr.:Et 1*112,PREllRED TD l'li.. *tll Fll'1 ro~:ECTJO!I 10 FO"l:R os:1LLOCRAPH AS PER SCl!EILITIC D*** [*299. FlflD lO rr::.rm STATES TYPE TERMINAL BLOCKS ml Ph\\.. ti I Ali~ J[f.)!::llTE lHESE CABLES (OR JN?UT TO Dt 5 AS SllOl'.I 0:1 cOt;;;;moo DIAGRJ.ll*E-'51 Sil. l J SHIELDED CABLE USED FOR WIRltlG BE TWEEN INITIATING CONTACTS AND PNL. C 11. FOR DLS CHANlllEL 1-173 0!11.Y.
4. THIS OLS CHANNEL REQUIRES S'SNAL CONDITIONING IN PNl.. C11 AS PER DETf.ll 'A SHOWN ON DWG. E-53 SH. 2J I

DLS Ol1ULDCCEI! SYSlF.Y FRS-1 t'ELD RruJ![ sm1m1 110. I

~Dwt;S

1. comr::cnD11 DIAGR.lllS FIELD HEIDT£ STATIO!I 110. I* HS4 Sil. 3, 6 n:RUltlAL BLOCl:S Oil Pi:t Cl I FOR FORl.!:R OSCILLOGRAPH* [*&54 SH. I
z. WP 5~l5*9/Jl20*14.~1.50,Sl.llO tcr.u. NOHE S.S. U.lUR S.S.

lt.l*;.~

tr:c~C:T[I!.

INN ARBOR.

~IClllGIN PAllf./'.!lES FLf.l!T COtlSUl:.~r:r, PO\\'.'<:n COl.~PANY GV!O 7111 1-~~~~~~~~~

-~~~~--~~~~-1 Fl!!::O",;;,n::: pu;,;yy r.::j:clCf.TIOtl A

scim:.\\flt tiU.~fli.:t D

c B

DHllO:i~~R s1snie t-~~-:;'~~P1T11~s~1*r~*1~11~s--~r~11~tn~1~.c~n~11:...:.;s1~*1~1~c*1~H~0~.~1~~~-..~--l A JOI Na DRAWIHO No.

REY.


-*---------+---!

!0512-016 E*Sl

54. 13 SCHEMATIC DIAGRAM OWG

-~

2

ENCLOSURI!!

SEP TOPIC VII-1.A Referenc~ 114,.. r.. T!tt P:'.:1"4 rL**l'T """'"'b\\...l.~

(tr.CC l*ULi. l*TY?l'!'"l.*'JI c..... "IHi.L* *,e.~t.D)

I~') tt.Ji.NNEL 5

@C.HA.Nt-IL.LS.

/----* *--*--*--*'--*-*---------..

II G

E D

c

S~P Topic VII l.A TOI D.:i.n M.::i.cDon.'l.lcl, rmc/E:*:t 2~ti1li FROM:

R M Marusich, Consumers Power Company ENCLOSURE SEP TOPIC. VII-1.A Reference #15 Page l of 11 MARU 10-79 During the presentation to the NRC on March 6, 1978 concerning the isolation of RPS in!)ut siG?;nals from non-safety signals, additional information concerning the isola.tion cf the Reactor Protection System inputs from failures in the plant computer was requested.

The inforrnatior. requested and responses follow. was presented at the March 6 meeting and is attached here for background.

Not.e in the :following discussions the following definitions are used.

"Fischer Porter" - is the pla.nt ccmputer.

This machine samples and records various an~loz inputs for use in proc.::ss :pa.r:?.:neter :nonitoring.

Steam Generator Pressure Channel B ~.nd Reactor Coohnt Flow Chnn.."lcl A are thP. only RPS inputs to this system. Other inputs are Feedwater Temperature and Flew, Prima.z:r Pressure, Loop Temperatures and Delta-T~ Turbine Pressure, Steam Flow, Charging Flow, Neutron Power, Station Output and Incore Neutron Detectors.

"Tennecomp" - is the data logger.

This machine accepts analog and digita.J.

inputs. It is used ~s a post trip events recorder.

The RPS inputs to the da.ta logger are sho~m in Attachwent l and additional inputs a.re similar to the Fischer-Porter inputs.

Purity ?!:edifications.

It was recently installed as a part of the Feedwater It has several remote multiplex/ADC stations.

Only the one containing RPS inputs/outputs is.discussed here.

l.

How is the input to the Tennecomp physically seperated?

Response

The RPS input to the Tennccomp consists of digital. signals (output from th~ bi-st~ble trip ~~it~) from all channels of es.ch reactor trip and analog sir.;na.ls from c!:.annels A th!"oueh :l of neutron flux safety channels and reactor coolant flow channel A, steam generator pressure channel A, and primary coolu.nt inlet and outlet te~perature ch~nncl A.

2 ENCLOSURE SEP TOPIC vrr~1.A Reference #15 Page 2 of 11 The dieitnl input from channel A of the HPS trips, enters the Tennecomp through connector Jl.

Simile..r;L~ :the input from channel :a enters through connector JL~,

channel C through J7 and channel D throueh JlO.

These connectors are on the left side of the Tennecomp.

Fieure l (Drawing 105-002806) shows these connections.

Channels A throueh D of the neutron flux analog input enter through connector J21 and the other an.a.log input ~nters t~rough J22.

These connectors are shown en 105-0028o6 and are on the right hand side of the Tennecornp.

2.

What is the most severe failure with res-pect to its aff~ct on the RPS current loops which can occur in the Tennecomp and Fischer-Porter?

Response

The most severe credible failuxe unique to the computers would be a failure in the machine multiplexer such that 2 or more inputs would be "tied" together resulting in one input feeding into another input. *This could occur when the ma.chine samples an input and does not "release" prior to sampling another input (Hung Mux Relay).

3.

What is the effect on the RPS *inputs should this failure occur?

Response: F:!.scher-Porter _The i:iputs to the plant computer are described above.

All of these inputs are 850mv or less. Figure 2 (Fischer - Porter Drawing SC30-1545) shows a t'Y}?ica.l input circuit. The faiJ.ure described above could result in the configuration ~hown in Figure 3.

Figure 3 shows the configuration of the inputs should the failure described in Item 2 occur.

A description of the 3 sections follow.

'.!.'he top section shows the RPS current loop.

El is the power supply which supplies 80v.

R6 is an internal potentiometer which is adjusted so that the sum of the load resistances plus R6 = 600ohms.

RS is the dro-pping resistor for the Fischer - Porter or Tennecomp.

Next to it is the dropping resistor for the RPS trip units.

E4 and R5 are the major portions of the forced balance pressure transmitter.

E4 is a Zener diode which removes J.5v.

R5 is a variable resistor used to mock up the effect of the DarlinGton J\\mplifier in the transmitter. It attains a res~stance thit it forces the current output to be proportional to the deflection produced by the diar.hra:n.

The botto'!l secti.on shows ~ t:;:iicn.l prccc.:::3 purn.meter measurer.lent loop.

The description is the sume as for the RPS loop.

R1. throur:h R4 are the rc::>istors within the machine.

ZiICLOSURE SEP TOPIC VII-1.A Reference #15 Page 3 of 11 To analyze the effect of the failure the following assumptions are made:

l.

Plnnt ccnditi.c~s are such tho.t there is a lOma current within the RPS loop and 50ma in the process ~rameter loop.

2.

The failure occurs so that R4 and R3 are connected and Rl and R2 are connected.

The values of the :parameters are:

R8 =

16ohms R6 =

600 -

(16 + 100) = *.484ohms H5 achieves a resista.nce so that lOma. flows through loop

= 80 - 15

- 600 = 5900ohms O.Ol Rl through R4 = lOOolms R9 = 16ohms R7 =

600 - 16 = 584oh::iS R4 c.chieves a resistance so that 50ma flows throw;.'li loop

= 80 - 15

- 600 = 700ohms o.c:;;

The equations for this configuration are:

Sum of currents at A=O Il = I2 + I3 Sum of currents at B=O I

+ I 4 =I 3

5 Sum of voltage drops around top section = 0 80 - I R6 + I R8 + I 100 + I R5 - 15= 0 1

2 l

l Sum of voltage drops around midclle section = 0 L R4 + I R3 - r4R9 + I I\\2 + I Rl - I :18 =O

-i l

1 l

2 Sum of voltage drops around bottom section= O*

80 + r5R7 + I4

~9 + I 5

~4 - 15 = 0 These equo.ticns are.:olvcd ::or T (the current across the fU'S trip unit dro-p!linG

-1 resistor) which is found to be 9,97ma.

The effect of the failure is therefore minimal since prior to the failure the current was lOma and R5 (the DarlinGton) will quickly reo.djust it to 10.0ma. since the 9.97ma. would also be e;oing throush the fccdco.ck coil.

4 Tenni::comn -

An~lor: Inn*1ts ENCLOSURE SEP TOPIC VII-1. A Reference #15 :F' Page 4 of 11

'l'he analog inputs are described above. Ficrure l~ shows the analog input to the Tennecomp.

The failure described in Ite:n 2 could result in a configuration similar to the one shown in Figure 3.

The only differences is that the values of' some of' the resistors are different. Using the same assumptions as previously an:d the following data changes, the configuration can be analyzed to obtain the effect on current I 1

  • Data changes:

IU throush R4 = lOOOohms R8 = lOOoh.."!lS R9 = 200ohms (used to simulate a 0-lOv input)

The analysis shows that r1 = lLlma. a small change fror.i the i..'1.itia.l valve of lO:na and a change ~*hi ch can be easily made up in R5.

Figure 4 also shows how the 10-120v inputs are accepted.

It is possible to "tie" one of these inputs to a RPS current loop. The configuration after the failure which tied a l20v and RFS loop together*is shown in Figure 5. Analyzing this configuration to determine the change in :s_ shows that I1 = 9.85ma. after the failure vs lOma.

prior to the f~ilure. This is a minimal. effect and can easily be compensated by R5.

Tennecomu -

Di~ital Irrouts The digital inputs, whi-=h in the case of the RPS inputs come from bistable trip unit output, are isolated by optical isolators (shown in Figure 6, Tennecomp drawing 161.-002811) and by the bistable trip units within the. RPS.

Therefore there is no effect on the RPS from the failure described in item 2.

~--

Attachment l.

Ties To Com~uter Elf CLOSURE SEP TOPIC VII-1.A Reference #15 Page 5 of' 11 The following RPS input.signals a.lso input to the.Tennecomp Drawing Tennecomp lJ.4-002815, 141-C028l.5 shows that isolation is a.chieYed by resistors:

Steam Generator Pressure Primary Coolant Flow Steam Generator Water Level Prirea.ry Coolant Outlet Temp Primary Coolant Inlet Temp Channel A only Channel A only Channel A only Channel A only Channel.~ only

?feutron F1..ux S~fetv Cha.nI1els A throuah D The following RFS output signals a.re also input to the data logger:

Neutron Flux Safety Reactor Trip Channel A through D Channels A through D from:

Thermal Margin Stea~ Generator Pressure Steam Generator Water Level Primary Coolant Flow High Flux Clutch Power De-energized Pressurizer Pressure (Hi)

BPS out-put shown on dra"1in~ E615 and in detail en 2966-E-2858 and 2st6-D-3l98 (Bistable Output Terminals W, X, Y).

Tenne~omp drawing l61-0028J.2 zhcws that isolation is achieved by the optical isolator, thermistor and resistors.

The following RPS input signals also input to the. Fischer-Porter.

Steam Generator Pressure Reactor Coolant Flow Channel B only Channel A only

-~-

,- ~ f-F:GURE 1 FRONT, SIDE AfID TOP VIEWS OF THE TENNECOMP E~l'CLOSURE SEP ~-one VII-LA Reference #15 Page 6 of 11

(',

~Mer

~IL-i tu"M"....11._zz'-j P.4 11/.;.

J.Q

~l

~

.\\~ tc...'l'V'*".(!:2°0" 'S R,crk+

r:, (

~ l 5

..;:. l c. ~

71

~Jto*..-+-+-QI

'fl y~

\\

\\

\\ ' ' '......... _

MTC,. ~TA1.:c'

(~e.e si<r.z)

(.ol-)N 4 c.,{o V'S

. \\ l JU

,~.-*

.. ~ g ~ L

_j~~ ~:_:.. !~~a-~~Ob<O-~)

  • -.e.,:..--1 I (o;ee 5HT. 21 *c:.

,..TC,. 01!.T*I~

I I

---***I

/

/

/

/

see.. ore.*

t:o... "'F~... TC, CCTAIL.....

Cl [J Cl Cl er.: )

(SoeE SHT. 2) 0 0 0 Cl *

.,.,P. ea*~ ~.. o...

00000.

z.-j I

~.ir..*

I

-'~JZ*

I I

I

/

1"""r"'

FIGURE 2 INPUT TO THE FISCHER - PORTER Prcc.c~ ~

P<>"" " io:r (YI_,,,,-~*-...,.. * ~

\\.oop ENCLOSURE SEP TOPIC VII-1.A Reference* #15

  • Pa.ge 7 of 11 1-31

FIGURE 3 ENCLOSURE SEP TOPIC VII-1.A Reference #15 Page 8 of 11 EFFl!:CT OF THE FAILURE DESCRIBED IN ITEM 2 Rb

r, A

B

-~-

p(es.:.~ <c-T{~ ~-~ i-kA..

_ _,__ ______ ___, ( Fov-c P J Bo..\\o.,ta ) \\

(

R~ -'

~ ;r.J~:1

.,-,.,p u....t

~

11<)~

tooll-J.-.~-""1'.!,..;...~~'~'--~-------~"""".....,....Nv\\NV" J:"1...

RS


-b cJ.~.)~,_

L------ 11' Cl,,; lpr... l"-fteu

  • f)or+to1..>

a F t /..a ;w:*" £.c..., -e I/\\,) k...,.,.,,J l-o (Jaw<A_

s V..f'f' l'f

~.,

(;:;. -

p \\ (,'¥'--\\-

pc c~

~C.H C.."r'-1,. t*{.\\..

lc.iotS FIGURE 4 AiiALOG INPUTS TO.THE TENHECOMP

..L -

\\K To do.J-o-ff\\~ i pv..l"'-~(;......

!Ju r +..o r.J

/0 - I 2.0 :'tT i.'\\Jpu....{ S.

( *I I 0// *J E.i.'iCLOSURE SEP TOPIC VII-1.A Reference #15 Page 9 of 11

q't>~

~ 10!<.

. !'l\\c;;-., 1.

,.._ ___ /\\/'J'.A.-~_

1 --.,....,.-----

r r

l

.J "* K I O. d CA. i-0..

i )J\\ Ct. t.&-~,

I -+

  • r'<- """-....,_

r... "" "-."" p.._ ! u. (., o,.J

\\ i1X>\\:.:i


<<~>)-

_ yJorho~

t F°i.a-4 t:.

i.

l l

i

~

j.

i i

i l !*

FIGURE.5 CONFIGuRATION AFTER THE FAILURE DESCRIBED nT ITEM 1 TIED TO

  • 1 70 VOLT IUPUT TO Ai."f RPS LOOP T,

Rb S::: 4 uo raoD..

A J;r-2..--:R~g

. l ~

IK IK

.+o cl o-J_,...i..

l'\\"-ClA" \\ j) ()... ! 0.-~C.\\.*'\\.

- 110 *~~~

yJ I.Ct"'v~ r-Pl'Ot.C.~(j fJ ~I/ ~~I.e.,

lcro P

  • filiCLOSURE SEP TOPIC VII-1.A Reference #15 Page 10 of 11
  • I
  • ~

N 0LA"'t' C.**C.u*I'

  • 04.* CouCUT10.. u*q CA._O I
  • ~"""'"CWf*Olll

..,,.11..aL I

I I

... ~

iiii1

'Jl'd I

~ * *

    • 1 11 *. 1,
  1. uh ENCLOSURE SEP TOPIC VII-1.A Reference 1115 Page 11 of 11

-OPERATION 1oOlo".. I v.* **~"...

J,.. (-.o.c1..,

MJCa:

    • :i.rc ~IPCC.*f'*C***Gll '"'"""....

& *.L. LD<t*C PO.:ltll $"'"*1.* (.O**O<IC.O.

    • ~
    • -,~........ c Co'.llN.. t(r1~ IO C*D*" c;.-.Ow11c.J

~. rJ, C*£1.. f r c,.11;..i,.D 6.... 'UNj,fJo.. !lt.. CP..,.. 9'10'1 lo11Q (,)M"Q.. -..0"'

    • ,,.,.,~ -1'l111 r.*~**:.1.,.,..,,,o......

TABLE-

&0<.o(.*

"4 Ull t>*11u1oo ooulU **:.1 C*Ntlf _Plot (U 'ol<O V*... Cll 0C. C*:.. r1....1t:... i1.'..,._., *IO(l.....

  • o*._ a.)
  • ,. Ttot LCA'1*' 'I l'U, 1T '"'I> ~

..... CCA.l..t!.Po.. *0,.. 4 10

    • '-""""' *:.O ce**.. cD l"tit,.........,,, e* o-1u10*.111t'W 1() (k.~ ftt~OVI\\.. C~ 11:.. M1.. ~
  • _..,,~,***OI\\ C.*IU.u*T CAV'-l" a.OC.*C. !.***& rg ** "'.... *"

fftv1oua. \\.Clf'tL ""L co.. c.1**0-* *e-. "'""'.. 1:... 1...

wa,,t. e.itie" a.t*uf'illh. ~ur,.1c 1 COk*l~.-O*C* res.... ~

C*~" ~T.. lu~ c.. u!.&Do *O...*C.., (C.Mli.&'i.IO.. o* ~o

~

...., e,.u.... r t.***u": Ofl.14.

m:::fC!li'.:,a !iY5T£!!5....

(0"9j,'!"1!1t**._G

  • --".l'\\:f,1.110-..

1*~*1-*1* !

r i

,;..OW

,JOH S>ll~tD Ctt..A,,1.111ei 4

""'{'y/

.lDW

.Sl'll~LD f-.

~

I," r

~

~

I I w11, I

I u:

I 1-+1

~"

r? :::

I I u:

H-Cl.£Nto

,,.czs":,

H-CZCD.M i---===:t-~ ___ j.e~l~>>\\;.~~---..---~-----<~-..,.--.--A--~c>l_4'c_H._~_-~~:~~=-::~ori1"'-4-uz4----------y----~'L H-C,St~

c.e7 I

/!Ill l.c4'a A-C~C4.D-""".._t-~~=-~~-----!-------Jk'.'I N-C ~_COM

~---+-~----'\\i'V\\r----_.----t---.,_._ ___.._ ______

~-t-....a C4 I

I w121 ct:

H*C.'!SHl.0

.c."w/J

'J--.---i,---:...-~~--~~~~~-~-6--~~~----,-~---1--".S--Oz L_J

-ENCLOSURE I

J2 (CCMJ'I; SHT. Z)

(C>IASSIS) z I

,,_I-~

SEP TOPIC VII-1.A Reference /116 Page 1 of 10

'IOlllWICQ.

DeCIWM.I:.

I.,...

-J11 I llflAWfll I * '* 1 TCNl/ECOMP5Y5T£M5,.,

REVISIONS.

Ut ICO tlO.

UH:

CHICK!

  • -*q!'

....

  • 11 r* 11 u:.,TtD hi I

.IU I 0AT4 L~~e s,,STE"'1 ANA~Ol'~ £;r,.A1,,,.

CcN...J1r10AJ~.e.

Cc#:H..,,.

iJ4~0028lS**v--* *~1...... I "';

=-i.----L--------~-----.-----'._,,. _ _.__,_;; ___ -...'-,:IR:--

I.

_II

i I

l see U"ft41LA (4 PlAC~)

Nor1:s:

I. V.S~ Hl!AT SJN" WHl!.<I.SOl/le.f!IN<j THl!.SI!

~l!CISION caMAaAll!IJT.S.

0 0

ENCLOSUR*

SEP TOPIC

-1.A Reference #16 Page 2 of 10

~

AIOTI! 1(4 Pl.ACl!S)

USE CNl~D

'TO.5R'a.

CXTAILA "TtlE:RMIS'TORS. NICHE ro-.Ro.SUHf'ACE.

IOl 111.u.cU *

~MAL&:.

-.--~/i?TS L//5T

~-!IJ~,...~-5.u 1-1.1.r"

  • -1----------.-----------,------

- ¢...,

_,,,,, * -'1'.rJZ -(11;1 rs.r ow~/,,..,er ""*

~-*

1.

!l'"'iit.,t w-.:

~~.1.7,,

t----+---+---*---4--+---------'f---f----------~*--

? :..z.'-7);.);J Z~*'<

'*'~'..

.Cz 1----f.---+---f----J-lf---'--------+----f----------~~--

,,.. Zf 'N

,':>J'1.0::N 1---1----1-----1---t-1r-~---*--~
~-;1?4 'V-'

--1---~~r---

Z').,, : ~*'Y..

5 ~s""""'

1---1---1---~t.,---f-1t---'-----~--t----

~*:: :: : ';l ~:_

,..C!...

~.,;.1,:~

c; 1.5,c:., sS '/.

8 e

1----f----1----1---"'-~-q_1 ;i_--';._,,.,_1_5_w_* _.1> __

-+'-"_!_e_,._-~_T_"_"'_'_< __

P_1. _c ___ *+1"'... *rn~.Lrr..-r.~***-_'

I 91' _,,,z::..z:,11~

4 4

4

~*c,.-5..z.re.?~

'Jlf.- ~14t*....t<11 4

JN.-:Jl4}"t..l~t/J 8

ti S>l~-,,c1,,.. ~,

z z

z

!!*8*51j341;/...

91!> -~.llS!i/<fl IC, '7.J/rf, 1----f----+---t---*--------~-~----~------ f-*----

z z

z 91~- 515:;.~fil..

1 C,

?.r~I UL, '

I I

9f9 - ~,t.C,e.;1~<1 1c. r:;G':,/er3e-i:_i4 I

91IJ-5z~~1111 f(!

?.J!I:..

..,~

IZ IZ

/Z

~~--:-z~~JI""""

e-'CePT4Ct.~, e~-1 JI-JIL.

d 4

4

.~z *_?15';..J.SU

.t?Ct.A t/, J;P07

...;: I - -t. 4 z

z z

,;,~.,,94111""

+

4 4

't'/G-;,:,.o/-,ZJ-1-1

"'Z4 o 5zz;;'~~

.JU~fP~C, d. '*Wt./!~

WI W7 N!i*W WP AE.F REf RCVISIDNS TENJJECOMP 5Y5Tf U5""

ENCLOSURE

~

SEP TOPIC VII-1.A Reference #16 KEY CHART Page 3 of 10

~LCIJ

/:1-!1

!.~(j~I-I

,._ ~

z 6-:>

)

4

?

7 2

3 4

5 G

7 8

9 10 11 12 13 14 15 IG

~

~

'/

II Iii 8

9 i

~ t:..

i 14

£>...

5 II\\ I
  • ~ 8: Jt~

I >

~Ill oJ

'~

~~ !.'...

ID -

i

~'

iii~ mlll '° ~

1\\.1

  • I.

NII>

~

?6

. :st 1111(\\

'6

  • i' I

()I il ~ '61:>. 'Q'"S tJ ~

~, ~

I I 'f>

3 I

I

~ t

~

~

'l t

I O'I

~

~J z

£~"- Dwt,.*

~

0 I. IJ,AI.A **,.,,.,/!Lf

  • ~

~

¢

~

(\\I

..9

"'lflff; - "~".t"4*.Po>d u

~

1\\1

.9 & t al 1\\1

.9

¢ l/'\\ "'

..9 Z- /.j,N W1c1A1t>

V1A~AH

~

II\\

ii-

~ "' "'

Ii\\ "' "'

If\\

U\\

"N -<J,q11~7-4'qil>.

ii' I

re I

I I

If\\

I l

I w

I I

I I

th

~

.lf "'

~

0 I.I'

~

~

~

~

l(\\

IT

~ ot

~

l[\\

..J-II\\

ii' "'

(\\J

~ "'

If\\

0 l(\\

In a CRATE MODULE UTILIZATION 135-001325-000

~-

9-~-71

  • i

_J YOl Ut.UCU

  • I REVISIONS TENNCCOMP 5Y5Tf M5,.,.

DIC~M&l.I:

11 ii l>ISIGNiO bT~

/-tl* lO

11..!

DllA*N In..I-.

LU ICO 110.

,,_,o..

' I p

  • I CHlCUt:

DATA L.,avc,~.e Sysre,...,

~

.)

~=-

~us!

l***.!1 i.~10 ll~J 11111; 1-11* n F~S 1

,4,V.4LQ4 Cc,,vo1 nc,v1AJC7 IH!i1 UHO ON'.

~OOI IA~

.........,ILC.lAnr:1-,1r1...,--1 _,...--.Xt1"*'"% Ell

}-**.....

1ii°~~0078l 5-C'i'

....,'""' I "' I 1111

~;:)

I 1

.. I I

I

~

10 II

~.t~J--. _.,,..___ __________ **-...--l*

,..... llN I

a A -411---.......

(~~ SHT..Z 0

0 I

a w

a a

a 0

A ____ _.

,.,_ 0 0

F7 O l"B a FS Q 0

NOTES:

& llVSULATE. /!lt.DNEJI FRMI' t'llDM CA[jJNET CIV<S31!1 ENCLOSUHE SEP TOPIC VII-1.A Reference #16 Page 4*of 10 I

I I}~-*

d: __ _J

~~=J fT _J-~----:

T---,----

~

--i

- _J I

__ _J Oi!:TAIL :;.,*

~

... :;NT.~)

l/'}*PIJU*U*~ C'4~1A.1~T (i) 11.3-UUiJll*HI

~TA1J5 COl'll.:JIT1:.,.~e 11'4-.µ>.iB11~11<1.t.

!To4Tv~ ::.0111_;.-r;.. :.!e.

'4 11~-UJall* u ~

~TA:".. *S ::::.::...... >,-.:*!*

~!.

11.J-U..z&IJ-°"4

_!rA *_,,, ::,,;,.,,.,..',._.;:.*1:~

. I t--+--;:!_*S~l5*$d' "'.....,...;-.:/ c~... *:;.r1.:;...1!e ll!J-./<)~14111 *,,.,,,c;_

-!----------+------

  • J_,J*NllZV*./.!~. ~AJV.. ~:1.:*e £...,Pr'.... ~* ~--

1'1 -1~...!6-"':j*S JI AC YC.11/lof/&JA "1,).1./ eo~

£I

.1--.-,1---~

P.EF" A~F l~'l *Wt!JD),.)..,)..) AC. (JJ::,T"'. 1;... 1

  • _,,"

j(,.

'-8 '1.tlo*)1J'l'I *00

-1) FL.II) ('of'l.11J*

3 40

~'-

'12.J.

  • 510001 -00
  • Ill L[).j.. ~

.. \\j11C.R 4-ii'~A._r,. T

~

,~-1------1-------- -----

tw~D

.. nT

~*-2.:l11* ~:.R.;.n q

1--t--~------+--~'

r_c~A_T_.,_~-=-**~~

,J I/

14-EJ#-,1,(J;.ii,T (MT..J 1--i--+---'-----+-----.:__ __ - ---

!I

)

'12'>*5",UIW*(){) *TI:J<1... 1.~. ~..

ZO W

{Jl*OOZ8f(JU)U '.1t J.* 1.

(.. *,.

TEIJIJ!COMP 5Y5TEM5,.,

DATA Lo~_,.,,,_ SY:;r:A*

F/25 *£,-17,e,,,. c.. :.... a A~tMi'Lf.

  • ~

J I

(..:

I II FR51

  • ~o ooaeo'-000 rR~ a
  • !>O *002.604*000 n~;; JI FR5 +

FR'S 5

. FR::>,

O'\\"TA At:Qu1S1T*ON suesvsTE:Ms FIELD CABLE~

l}l *OOe&:lS*ooo ENCI.OSURE SEP TOPIC VII-1.A Reference #16 FIELD REMOTE STATION Page 5 of 10

-- flLOC.K DIAGRAM

  • ~"' *002.80,-ClO:)

HARDWARE DESCRIPTION ZD>. coeeo3 -o::o INTRA CABINET ASSEMBLY 10+ -ooaeo,-oou

[

MICROPAOCESSOR/CDNTROL.LER.

CRATE ASSEMBLY ll]-002.808-0CO C~E MEJ\\llOR't' AS5EMBLV 104 -C026'a1 -QO.)

/JC. POWER 0:: P.)w£R

  • A~JE.l"it~v 104 J..)2:£: 1 l - ;;...:..... 1 kSLMbL" 105 *0011~*L)..)J D<..

DC D1STR1euT1LlN

'}a. o.:>L:ie }* CU)

STATUS

{DIGITAL)

INPU"TS ANALOG INPUTS K. TERM1NATION 80)(

INTEANAL o.81-ES TERMINATION DRAWINC:.

131-00~1 l<lOO CABLE ASSEMBLY

/:Sl*CXJa81D-OOO CRATE ASSEl'<\\81-Y 11., *002.811. cco 5TA"TUS a:lNOITIONINC> GENEALOGY 1oa-ane11 -CPO RTP 1400/}2.A ADC fD'l.RO INSTALLATION 11}*002.604-COO INTERNAL CABU::S TERM1NAT10N DRAWING l;ll*C0281'j-COO ASSEMBLY 131 -OOZE 42. *000 SIGNAL C.ONOITIOMN<:.

CRATE ASSEMBLY 11}*ooaa1:1-a::o.

TOUAANCU*

'i*~

DIOl&ALI:

  • 11*1 DISIQttlD 11""':11
  • OAAWN

,~,._

IJHH CHICl.11

~!

        • !1 U/NMO 1111rn M.

r* 11 UllO Oto: "/I }O.J I HCN.11 !

h* I

.....,.. M.)JID lnh O'lli"MtlU:

I J

I 6*P41d Lil

' '2*1'1 I

~MBLV 104 -co~a<t -an AS~a

... v 104

  • coao2e
  • UO.>

Af. 01:;TA1SUT1;).,

1}'t

  • 002&::~
  • UO-J IEYISIONS ICO.. a.

I I

TCJINCCOMP 5Y5Tf M5.

CY\\TA LGGG£:R 5'!:'..T~VI ms GF"' *<= AL.0-JY bWG.:.. O..

J r*.~1-n I 1.)2.*002-2 I

I

i

.J

~

...... -****----*---~--**-*-** -

  • -.. ---*----------~.;....-.

c J'Q*0*.0 L..:.d*

I DLt. C0'4DITIONIN~ CAllD 1101 I ~UMl'&ll IM'.TION

~HICLDL

. I I

I

~'.c* 1~1

~-*~J 1

_..::;,u1 tSV 40 COHHQN

~

....aiootl

(

\\.. !

.I.::.ut..orta

\\ _,......

ENCLOSURE SEP TOPIC VII-1.A Reference #16 Page 6 of 10

-OP(RATI HIH.

"** CV'OC) 111J1 MAI.

ABLE-Lo~~

I. *i**....

I ***1........

Uli!

          • 1 r* 11 11i I IU I NDTeS:

ux;u~

DOUNCe flLTtR I,. (n.,.,. DC)

I.~

5tt ot0n

i---~ I I

I I. ~ec 5PeCll'ICATIDll 1*1-HZlll4*~*

z...L L041C POWCll SUPPL~ COM.. OH

... (5nq.e (DNNf;CTIDN TO CAfUNCT 41\\0uHq)

~.fl, CAlllMtT 41\\0IJNO

4. WHHSTANOS NORM..._ MOO~ AND COMJro\\OM Mooe (o.) lfU 02*1974 6111\\41' W4VCFO"H (lo! 1eee,,,,_,!i"O..... ULSl JCST (IN~ v Pt*->

{cJ'~ VRM:t Ofl oc (OMflNUOl.l~L."I' APPr..1to(r.........,..........,

,. Tut. L.Clq*G Lt"e.L AT TH*$ PQ.NT.coa..11..c!.F-OkD1M" 'TC

.. A.LAR.M' 1:, OeF1NtD (Pee. CHA.t.1Ht.L) er aPeuroa c.. Tra TO 0L5' THRO~H CPS TCR.M1t.1.. L.

6>.H'tS.,.tR.1=iits C1UU1T CAu~tS L~IC ST.ATC TO R..l;MA11rt. A.f PR.CVtOU:f.

LCVtL Ut.ITIL COHD1T10..,,,S FC~ HCw L..C.tJtL MA.ve:. e.ite.M "'-H*f"to. LOG1C. 1 CORRf.~Pow.ctt re F-1..A.HT C*RL.u1T tiiATu~ CLDSeo. l.041<. fl c.o~Rf:-SPOwo~ Tc Pl.A.HT CUlCUIT

~T.. TuS. oPt.N e TfNNECOMP SYSTEMS K DATA LOGGER SYSTEM COND1T1Q1<1NG

\\-SP((lfl(ATI*

._ } i:~:I-* 1..

--PAP.TS L1~r --

EIWLO SEP '1'0 VII-1.A QUA~JTIT'/

  1. 16

-~"3 -(>~t. -~~*

T!SI PAer "

0~-3C.e1PT,ON 0~5tC.,N,.Tr?v Reference I

I I

!>4r.

.,_r~11--~" PC "°""L'O Page 7 of 10 91~-:l"' '.P~

.ers15rol!.,,,....

./!I - A:O..e Zr..* e" ":.

I~ ?"'g>-

. ~-.c.,....,

e1-.ef:j, e~c.. e,3

?'"':;'~

TN~e,,..,.,,,!. TV.e, *.c PTC

£7. 4:'"** ~ ~' P.41 I

I I

?'.JtJ """

y;1~1$ro.e.. "e v

""'G-V

.-e I b

>'J.,lt.~o>,f) el"s., 1.p.c,'.;;'w.~P. c~~

,c1,.~IW, e:',.6-A!..al

':)IZfAIHJ ee~.. 1.c Y# W :;-P,CAl.e"-A-.

~'7*<'~. 4?4Z-.e>~.:>

0 I

JI I b

1r
;~ie~.e~~

... ~*1:.. V*w.:};-tAcM.-..er1-er-# e4t.*e-'":J v

0 w '5'~~&!.tU

~!..,It..:: >'4 r./ ;~C-4.r".,~.er1-er4 e"'" e~.,

I I

9/~ *p1rB'1H -i!l"S.,./. 7.< Nw,;l;'..:AC.

er-:,

~

';I'-;_ 'ZZtJI-"" ~... ~

... -1'1-;, ~--.,,.

.:*1 ""

. l tfl' -Cl,

~~~~~~~~~

I!>

e.
  • 11. - zro;.,,o C4r., *'1'-'* C."1\\IY c;; *C.G. C1J c17

~

e.

C';; *<::t!

~*J.('t7 I

?1*- "'"'~ CAP.,. tlvPU-~,,.=-,L.....,

C9 I

I I

'}11.-:;,t47i!'l<.V C'4P., "* z _ I. "' V. ea< r.

c rz

@iO~@~@~@i@~@!@~

I~

1,P I~

'.)tf.*?I-~ f';fP.,."t,.1:' IUl'C~~.

c.1B-ll1,C.Z!i-~~

B 6

e.
10-,
;1'-'1z :,..,..,.

CJ/(j()~ ~

IN4<,'~5

_*L~I -CR8

~@@~@~@~@~@~@~@~@

t>

e.

!115' * ?Z(., 79, N

.1.:5CILATOllZ C,& "'""'5 u., -u."

...... v-u1z

~

6

'54fZ~'f# 1,SOLAT..>.ci ~...,,,"'-.:.:;:zz... 1.1-ucl,.:A9*u1..e 4

4

':):ll/tJ~I~'/ ~.:.I,! ~~C

~11.*~,e, LJ~ 0-t:>.,._ N u.~. ~.,' '"'

q q~

~1~1/JJ

~I,1i:~.(..-".~NC.:"""

\\'*

I I

i 1 ~

z r

z

"~* 14

-..J

  • tii~klc!'1!¥ *Mi Ill :!¥1' ~

&1

~

~

}

.15r..9N/ -~ LJ.e.1v~~. Nt!>ee1A u ~ u1;....1.1~

I N

I I

I 919*:-* ;;t.t<N /.>VAL.t..-/1t;:"'r. A/,,.(.vfJ wt7 0

.JuMPe'~:S. Z~<,-4. ;,..1-5'.c ~~,.,,_., e* -"""'* "'""". ": ! ft_\\

+:>

~- ~~'~*#\\'-i" 0

I!>

JUHP~~~.

"1!1,.e,~,.lf!,~-~11*2.\\

&./'

  • nnndL1L1LILJ e

.)UMP,e<~ -

~9-.CtZ e:u en &

I I

1"'*~4#~

~

,-'I~ 4r*'y,..

-.vv~

JI g 8 i2 ~

I I

I

-/,,0-;,4r~ ~t~~~;~*l..cb., J'

{,i"
h;.:;r'*.~~ 7.:,,,.,__,.

I I

I

.v,.6 -?~!l"l.Z.MY.,..,,..,,,.

~.*,c-

~.,.-, 7 -

/_

J4 0 ~

c:"'.'.1@i:::::":'j2) 0

>'rt/* ~lt.41lf.J,r,r CjA. w1~c w/.st.er:-r.1Mi Wl*w-1,,,.-ilf..*W'!J I

I

~~

~@~

w;.

I z

w1J,.,,,

~i~q z

z

>V/r,w1.3 IZ(..S:-

~ rilLF

~P40<l/01,0Z. 8 CHANNtt.

INf\\JT VOt.lA:.C/~~J!"lAtQ 0 ~

0

~N"Si; lf1A1HC0-<<1"*~..0.:.£ p.....<.*u-.*ao,.::i.z.5-000

~

UT REF llEF

[)o.TA~!>~TE>-1 r n" - -

- ""ll~~

DH:.1T"L ~~U::><-Ll*l"""fJ!

~w.

  • t'tl*OOlelt*OOO IZU RU" fCi.J'"

t>>.7i>.lDt.-.::.fJl. ~TEH FR!. fi.TAll..l";ii (.Dt..lO~i1°""*a....1t..

AN... r,~;

OOJU~ t::Q,Jo.w1JJ,:;.

~"

14}-00Z611*000

1. srwce- #1-1:1!: ""'"""'~'"'-.e "'""°""',.,,,..~

(.,/~b41~

CAl:D,,~.t!I.) UNT'L =~eeD.

REF P-!:F Ri:F ---

TP404pt,02. BCJIAN~,

e. C£RT.lllN AW1D tH.lt/A"(JCX"-5.l"IAV£.JUMl'f:AS INi'\\.11 I0..1AC,/flC5<~1A

!<:**~ !.<..8 A:,::..c!:f(\\fl<.:(

IN5E.RT£D IN PU/Ci. DF THE: USl6/'Jl1T£D RES IS7DR.3.

0<.Vt05-0.:>W2.!.-000 1

3. Xt::Y A5 P£R MASTR X£."t/NG LIST I.

Tf JJNECDMP 5YST£M5 "

  • i** -

{)-H,U' 1;;,."f,.""fl.

IEYISIOUS DWG,,_ 145-CXJJCOJ-O<XJ

-JllJ -

,,.. {,

lit ICO..0.

I ***1

.1.1n-~

JI!!

c... c....,

H~ O-i-7'(

TP -404/<JI. ¢~

,... iH!I'

~~-~17~ 1t1-r->r a L.H"-'-.lwE.<..1..,;>...iT.*.xrruJR£5157A.~ Sd1::f l.J f

\\_

llllilue CM:

MAllJ ~;D1T10~ r

~oi>-~e~v i

~~

( -~

\\

,...... Uahl

. l 1-'ll*<X>!>DZ~*O>..__). ~

0 II I

il 9

.r--

I

I I

\\ I I

u.

2 3

l t

~ -

0 I)

'!}

l I

4 5

6 7

8

~

1l

~

~

~

i t

e

~ -

I)

~

Q

~

I

~ '

4l I

9 10 11 12 ENCLOSURE SEP TOPIC Vll-1.A Reference 1116 P(ige 8 of 10 13 14 15 16

~

~

i

~

- '6

~

I......

KEY (HART

~*-~*

!~--****

II-I~

//-/,!

  • --+-*--"----

. --- -* --t--+--*

  • ~

It.

!)-4 I~. 11

.e,.,.. Owr,:

I. 19,~ As.. ~IMISL ~

4'/~*.s-a11.r4-~

r.,.,,_,J '"'~*NC-,

£)1Ar.e4M

~ tZ(l,*~11~'-'-#VJ CRATE MODULE UTILIZAT O I N 135 -001.325-000 ft.

, *.z.,.77 llXlllU.NCU

  • I DtCU1U.U
Jjjj, O<llCJflO !If' II/

/ 1}*7' REVISIONS Tf JJIJECOMP 5Y5T£M5.,

I.. *!;

0.AWN fl r.f-....

e-1"'!>---

Ul ICO.. o.

rru.ctl()HI HIHI

~

CHIC111t o,,,.,.,,

L.ov",~...e

"=) V!.T~,,..f loltGtl*#o I* ** ! ( _,.,.. 1\\r.t tJ l:i t-11-1' res 1 Sr.4 rv::.

. r1.o.v1N<",

r* 11 LIMO O..:

l'fo&>v<~ I.v~rAlll

)

... u h*1

,001

-c--

,c_.c;_

LIWG.tw0.

. (

) j :J,-(VY)QJ I,-..,.,.,

1-1...... l -

I

-*1.-

~

J I

H

I w

.p.

A~-----'

  • i j

0 0

0,,

0 ol 0

0 I ol 0

0 0

F-1 F~

0 ol 0

I'~ 0 0

F7 O G

PB a G

F9 0 NlJT£5:

l l/V:iUtATE. /JI.ONER FRM" Fl'Dl'ot CA/JJNcT CWIS.S/3 ENCLOSURE SEP TOPIC VII-1.A Reference #16 Page 9 of 10

  • CHHHl Cl*

,o[itJl][]a

.DtJDOlt) rot IPUJl(°U 1 I*

DIOMALI:

. 11*1 DllAWN I ***1

....ctlOOll II!!

~!

  • q11 l )!~ fl *. 1, UHO o..:

'-a..:.;

J>:t4

,001 DL!r"" ;,i*

~":'>NT.~)

/l.J*~~'J*.JC:1 CU.VTEC.l.L:e.

"~-~I..:...c..:eo*/,dZ C:J*17~= ;_~: e.

.-~

_!__~ '.!...~.!...J..ibt7*H*t_ :..~.:,1c J:i..*.1:e ~o./,.;.,.;._1 _ _!_:J_* __

I I

'J4*$J~.. '7*1-St M,:"'1.;~1,:....,:;_,:...

F; 11.j-~.J..2.!115- ~:S' 4JJ.,/,.a_...x.,

cc~:::.111.;.,..;!c I--+--~------'-------'-

,.,~ -A..,.bl.J *.!./ '1-"-o_c. ________ _,__r_'_L __

'3:1.b- ;.;,;of#<&

B.f.;;.~.2..f'~1* _*_, _

1,/-J*ilJ.:.!,b/#*~U 1;,.;:LAT.::-.* ~(:"..:~~i#4t"C

~--+---+--------- ----------*--

  • .1p-~n.t.r-fl5 COAJ:J *..=t;....,*.!*.c ;_rr..,:-!,

.//l'J*j~;.!l:;.~:£7-./J.I AC Tc>t.'"11....,'r1vA.1 ~c,1t.

/\\Er R~F 1-:,'t-C.r.Jt.b:f~v..;...:; AC. [.i.-;,"f',....1,;,,1._,.,

40

z.

~~

a

~.:.

'-8

'i~*~'1'i,-1*W

"'tJFLAJ.--,,.11....1*

3 1--

..__(___ -'-* -------1---~-R/~_.._: ___ l-----

.)

)

)

)

12.

1a n..

fl.

12.
12.
12.

-'2..:f 2S 11..

'l'li. * -".::.'.::.',_..__*_._**_J_*_c)_i_.-.._u_T __

Z.

2,

.!.tt[LF If 1--+--- --------~---*--- ___ _,__

,Ol*C02S01~ P1-A1.1.,,.;;._

  • o
2.

.a 1Ci3.OOt.S.)1..>.iv p.._11 ':';.".,,... ~"';"' _;j t:J'h(J'" 7 -... _r.

2.

z tO'l*OVl!JH.x..;

1;;>,.,c_,..;;."T (MT,J I

II*

l+

2-J fJ ~J *.!"i...-.D.JI* 41 C/1:;... _ Ll..li" ~

zz-2:*-

~~--;_***.-*~.. *::~*r ~.---~;~,--,~~---

)

..,~""'*:. :.,.._,.. ~..

-=-* -;;z.a;6J;-:-~,. t "-:.

Z.0 W

/!ol*OOZ81U"(.LJ..'

JIJ.:..J1.. \\:~.

TIJINECDMP 5Y5T£M5 ""

D.. ir.. Le,)'",:<:. s~;r,,,,.,

F/25 IN1~".c,,,,.~!, 4;;.:,,,.,,,Lf

-P.o-..-rf

)._..__'"'-"~I _.. _3_..

10

I c

11\\lPuT W*1MAR1E5 FRS'

'~'-' coae.o'-000 n~fi a

.:;.o*ooa004*COO FAS 4-

FRS, DATA AC.Qu1S1T10N SU6SY!iTEMS f'1£L.D CASLES ENCLOSURE SEP TOPIC VII-1.A Reference #16 FIELD REMOTE STATION ge 10 of 10

-- &.OC.K DIAGRAM 1;c.. *ooaso,.oao HARDWARE. OESCRIPTION ZD> -cceeo;, -oa:>

INTRA CABINET ASSEMBLY 1oo+ -oaaeo, *=

1}1 *002808-000 1

MICROm.:JCES5.0R/CDl'llTR0LLEA.

CRATE ASSEMSLY l I '}-C02.BOS *o::Ja CCAE MEMOR.'{ ASSEMBLY' STATUS (DIGITAL)

INPUTS INTEANAL~S TERMINATION DRAWING 131*00~1 l-000 CABLE ASSEMBLY 1.31-00.:8/0-000 CRATE ASSEMBLY 11, *OOe.811 *CXO 104-C02B2., *0::0 ANAUX.

INPUTS RTP l480/)2A AOC EQll.RO IN!ffAUAT10N 11}*002604*000 INTERNAL CAeu::s TERM1NAT1a-.t DRAWING 131-ooaa15-=

ASSEM8LY

.!STATUS CDNDrTION1NC. OENEAL.01:.Y 102-a::rae11 -o:io l}l -OOZ842*000 SIGNAL CDNDITIO.... INC:.

CRAIE A5SEM6LV 11}-00281:;-ooo fOl..l.JU.Nc:ll.

I.

l>>lQMAL.a:

f A**

~

Dll&W*

I ***1 ill!!

~!

1... *I 1

/JC. FOWER 0::. P.:)wffi A::.:iEIV*c~"

104 ~~*l*..J.:>.)

c::ND1T1.JN1I*.:> A:H.U-s...,P<>_,.,::;

AS~EMB<-Y 10-+

  • OOa.628.J.J.l Af. 01!:.TR1Bu-;1;)..

I }'t

  • OOZcl<J} 'lJ:),J A..:.~C:f\\.1bl,_.,

105-~11t...:JA().J...)

DL 0C. D1STAll:!UT1uN l;B*CO~}*O.JU 5

..___u--------...------

i

i.

4 u

r**1 tc>UI !

h* I

  • La&.lll MOttO Jllh OOCJfff1U.

DA.TA LOC£ER SY:)TE:M 1---'-------~---FR_S_f'c;r.. r:: A_t.O_.;;~y~...---

.&.-r-----'ir----'..-----ir----i/>--L-,----1-.--L~"'"oa._z. *.,* ~,;__2-_~ "'-), I: I-" '

SECTION 5 - SYSTEM LAYOUT

5. 0 Introduction ENCLOSURE SEP TOPIC VII-1.A Reference 17 Page 1 of 3 The digital circuits described in previous sections are CC'

~ ;ned with certain analog circuits (amplifiers, scaling circuits, and A/~-

.~onverter) to implement the system logic. The amplifiers and scaling c ~ :-cuits form an entity which is calied the computer (cons is ting of the Varian equipment).

The output of this chassis feeds the A/D converter and its output in turn feeds the digital logic. The digital logic not only processes the data gene-rated by the A/D but also controls the sequence of operations in the entire system. Figure 1-1 shows the inter-relationship of the System Logics.

5.1 Logic Card Frame Layout Seven card racks are located within the Cabinet accessible by opening the front doors. One card rack is located within the Console accessible by opening the rear cover. The rows of cards are identified for convenience as Cabinet Bay 1 file A, B, C &: D, Cabinet Bay Z file A, B &: C, and Console file A. The files in Cabinet Bay 1 contain facilities for the insertion of tw~n ty printed circuit cards; the files in Cabinet Bay 2 and the Console contain facilities for the insertion of twenty-four printed circuit cards; the* rack slots are numbered from left to right. When removing or replacing cards, extreme care should be taken to avoid placing the card in the wrong slot.

Identification is in accordance with Engineering Drawing lvIS30- l 082 and 1073; copy as follows:

1-41

I J..

N I I I,.. I

.. y

~ r ~

->> i I

I

j.

I

~

<

  • I.

I I

I I,

I

! I LL lll1-I

~j I

i N

ml~

~

- c

~

f

~1~

~

.( 0 c

-l

~

r

~l-U*

(J) 0 I

'.:It:

I I ; t 0 I. E

. CD h

~

t,J

~ CI *a

~

j.)

no*

~:,i

~1:...

i r

Ill Lfa'.tPi~

a IN~T U30*1~~-

....... ~

03*201 10'-'<L<.

Dti-'l1"l P"Nlil.O~l'Jtlt 6C:J0*1~4~

T06GLri

  • 66.C"l>4UOZ

~ij"P1:T 0$-21z tii*ZOI PNiieii"1VcFt A**JUP-i'U>f 6C~o-.-..~f.

~!!.B!~

Dr.-a1~

a1a.1~

41MPUT D:t*ll'OI c~-20+

  • 11JPIJT DS.-201 C:..,(

~~tOf l~Vl"'TUll.

P~*t"'a~

o:.-ao*

TV~

ORIV'll!H.

i..O~*a OL.K*b*\\OT TOG.,,G,Lli Ca'\\-'ae~

o=-a*a I' **1

_RliGt,l~TU\\_ f-~ 3:0-

~-r.tia.

IJ 9£.

r-i ~~ -

-- ~

-"il~Pi.iT*-

DG-202 g~B R£C,.1't.Tti."

06*22~

~~

~R1uAAli:R

~l~_

SC.~-~I

'9&~ts*o11<..1uc.1

~~"

11'1~-

R£C.*liiER

-Otio-nr.o. -

.__L Dt;COOlf\\

--o~-01:41 t.:ii:1

'- :;g.~.,__ __

., * ;u

~ & ;i _

_o.. Nl.ATI.~

0

~

05*2~

.'O

~OURCE.

l'WR C"wii-.t

~;;f:..C,

_EA.1VER.

£<:,.30-1511 l0'-1,:A

~~e.:u1ua1

~cf,'L.

N I.!)

(J

~

(.D 0

(>

2*1~PUT Dat-201..

t-3 l'JPuT _

~-2oa..

r c-,.o 111>li:

~fl Ur-

~Wl""TEI!_

IJO~

P~-20'9 flll o~

t

'.. l

._g c_

)(

I

"?

-! l-

..j

~

.; i; I>

l..

0 LIU*.JC.AGE

~a l._,PUT_

AEe.15TAU::I Dtii.--2:01 fb!l.AV eJO.

=

5PECt,.,..,_

r SC!I0-1"'3"l 0

~

"'Ji:8.:S6117 r-g~i-3 INPUT D'5o-202 ii) m"r 0,.

"I.(

jj u~

>-gl'IJ-f\\l./Sl1WfATUl SC!O-~l

  • ADC c

<..8Sil24'1UOI Dl<OITAL PNR.Df\\1VER l

5C:J0-1'5d~

5.C.J'J**~2e. iii Ci)8-.,,e2"'_.,.,~

"'ei:.ezs4un:

ADC ii 6Jl.RRIER.

P-.li.Cit,1£>>1"~~

Dt.*?2c;..

SC. OO*l!i<l1

j GB:>e=oo1 JI.DC INVERl'liR Dfr"l0"9 iii ANl'.LDG SC.3<>*1""'<!

DECCOEf\\

a G8
5eZ3Z'l.OI

~-~""

~'j~~~K N c.e.~O-l"'1001 0 OtiEOTOr-c~-214 1501.ATIO*I ONERTER..

PWRO.VPPL'

!.l.C.~*15.."M

__ Pft-20.0

~9'iao1a.io1 1,1 CL(ic~~-p£~1S, f.o.:!:S0-1550 N

':J(,d~Sl:SUOI "

~---

r 0 g 0

OJ z:

I(

  • p

~

i

\\fl~

.'...11 T'iPER OAIVER -

~i a

'-- 6C30- l!:.'28 -

i;,e~B"23SUOI.i B

GA"fED SlORAG,E.

2 F"LI P - F"LOP!>

(ol

- os-z:ic..

p J

~

N r

0

.. l 0

~

"~ E-

l II~~

l>l f-~

~r -

oil' I

.. c

)

"f'<P~R DRIVe:~

lJI

~

5C30-IE.26

... 6!..023.:.;.101 "

Bl~R'( "TO DEC.

CO>JV DS-Z'l4 j(

~

__ !_ 1-6\\~5-0

..j

~'l~

11'-g~i:-

_o&>

II

~

I C.A lE.D Sl'ORACiiE.

FLIP- ~LOP!.

()

9 L--~~Z2~--

g I

"Jt'PE.R DR1ve:R 5C3.0- 1s'2e ID

<06SBZ35UOI I

BLANK.

0 r

CLOCt-1~:,7 1---'-

9c.:.e~a1oouo1 ii llJVERTER i\\i

-I

=

II-1--

I 0$-20<0 (ji j;i

°'

iii I l I I-

~

111 R-=:.

~~

F"LIP F"LOP -

~a

~j DS-Zl"3

~

JI I-I 0

4 '"PUT "IAt-JDC.A'l'l'. "

D!>-Z04 0

,_,~L a;

"'ur lllo~

fiii r

j I> I

-2.. ~-

?

to ii

-" ti


~

o bl 2SOVJ....HC..

GC30-1M~ 3 "8!:.C."M~l

(\\

"TIME DE.LA."<

a

... l.

1n~

D"--285

~

UI

'~~

CLOCK 4 RE"-IS"J'OF I-c cD

~

3:

&c.30-IS~

fTJ

~~~u~

I-ll

.~ ).

8 in 0 l~~E.;,r!-~1WER ~

\\)

C".2.5t:.~l.l7UOI

~

'E.

c wvr;R1=1:*r:.:--

Ill o)

... Jl

()

0$-, ~-,.~

..i 3:

~

I-

~

~ nn~n (fl

-~~=!

to>

ti)

J

.... c ti) 0 I

",..,.n=:.I*

I C<DCoe,

.. 0, :a 1111 O\\I 0 I I~

Joo-n,,.

"U

"'W;I', '1:10 lol O.og.... -*

ui

,..m~ n.,

  • n:a,

'~

n N

-.1>.oQOO&"

n

~i

  • IQ 0

0 A

I-

~ A*

u

~.
  • a

,. (; ~

.:a m ~

CD t-':l

~ 'U (")

CD t-l

'1 1-3 0 CD 0 m

~ 'U

~

o H CD

(")

I-' <:

-l H H

I

'I-'

i>
5. 2 Engineering Cross Reference F&:P BOARDS POWER DRIVER SC30-15 25 CONT ACT INPUT SC30-1527 TYPER DRIVER SC30-1528 CONTACT OUTPUT SC30-1540 SOURCE DRIVER SC30.,,1541 MULTIPLEXER.

SC3 0-1542 CONTACT OUTPUT SC30- l 543 MULTIPLEXER SC30-1545 CLOCK & RESISTOR SC30-1550 CLOCK & RESISTOR SC30-1556 CLOCK & RESISTOR SC30-1557 CLOCK & RESISTOR SC30-1558 ADC ANALOG SC30-1582 ADC DIGITAL SC30-1583 ADC POWER SUPPLY SC30-1584 ADC BARRIER SC30-1585 POWER INVERTER SC30-1601 LEAKAGE RESIST.~\\TCE SC30-1589 5 o 3 System Interconnections E1ICLOSURE SEP TOPIC VII-1.A Reference #17 Page 3 of 3 DATA SCAN BOARJ.

2-INPUT GATE DS201 3-INPUT GATE DS202 4-INPUT GATE DS204 INVERTER DS206 TOGGLE FLIP- ~-LOP DS212 R-S FLIP-FLOP DS213 ONE-SHOT DS214 GATED FLIP-FLOP DS226 B-D CONVERTER DS244 ONE-SHOT DS285 Refer to Diagram WD30-1248 for Customer Input Wiring Connections.

There are three logic cables used for the Computer - - Teletype, Interrupt and I/O Bus. The Teletype cable connects directly with the Teletype Unit.

The Interrupt and I/O Bus cables connect directly into the Cabinet Logic Frames A, Band C.

Each Logic Frame consists of 24 card slots numbered 1-24 from left to right. Each card slot has a forty-four pin connector; the pins are num-bered 1 thru 22 and A thru Z. A typical designation would be the following:

AS-7. This refers to Logic Frame A, Card 5, pin 7. As the logic draw-ings for the Console and Cabinet are separate and distinct, the same desig-nation applies in each case.

Note: All cables should be securely fastened without the use of tools (e.g., screwdrivers, pliers).

ll~2S~49 Field Contact connections are fed to the Data System via connector J24.

From there, the connections are internally wired to the Cabinet Logic Frame C. The Ser... sor in the multiplexer unit is connected to the Bridge and fed as a multiplexer input. Field multiplexer connections are fed to mounting brack-ets located in the multiplexer unit. Control logic for the multiplexer is fed from Cabinet Logic Frames A, B and C to the multiplexer units. The multi-plexed signal is fed directly from the multiplexer to the A/D.

1-43

. ~

©-

t:

Ill

  • --"'._£ I-'.J8~:t" f~,;l; **

A~:ya~.--~.,,.,,.~....

CA

".. ~.. *.IP)(

~t.

' Cl I

l t j I I

"'l:..

"'"fl. -

[....

~

... ~... **

.,, **--'~'"'-*,,,.

    • cc;, *.* r~
'"~

L:_*--~-~*J-*~~--***-* -~~--~**~~-~~--~~~*~-~*~:~~~;~~~*~**~*;~~*~-~~~~~*l~~:,_*~-*~****~*~**~**~11~~*~*~*-~*,.~,~~~~~-*~-~--~-**~--=-*l:".--J*.

1.,.,'

..r ***

t wu., *,;, d!:t' L.

)***:**'Hi<*.*.:;..~*

'**i+i* *.~;

  • ef.&.d.

'r*L ENCLOSURE SEP TOPIC VII-1.A Reference 19

-~-*-

4..-.----

__...:.__. I>

-~

-~

e ENCLOSURE SE!P TOPI

    • Ref.

C VII-1.A

.*.. er.ence 21

.... *:*