L-94-074, Fracture Mechanics Analysis of Pressurizer Instrument Nozzle Flaws

From kanterella
Jump to navigation Jump to search
Fracture Mechanics Analysis of Pressurizer Instrument Nozzle Flaws
ML17228A506
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 03/25/1994
From: Cipolla R
AFFILIATION NOT ASSIGNED
To:
Shared Package
ML17228A504 List:
References
L-94-074, L-94-74, NUDOCS 9403300147
Download: ML17228A506 (84)


Text

'IS APPLIEDTECHNOLOGY March 25, 1994 Mr. John Hosmer Florida Power & Light Company St. Lucie Plant Post Office Box 128 Ft. Pierce, Florida 34954-0128

Dear Mr. Hosmer:

RE:

Flaw Evaluation Results for 'C'nstrument Nozzle Penetration in Unit 2 Pressurizer (APTECH Project AES 94032138-1Q)

We have completed a fracture mechanics analysis for evaluating the weld indications in

'C'nstrument nozzle. The documentation for this analysis is given inAptech Engineering Services, Inc.

(APTECH) Calculation AES-C-2138-1 and is enclosed with this summary letter.

INTRODUCTION The purpose of this calculation is to evaluate these indications according to ASME Section XIflaw evaluation procedures of IWB-3600. The overall objective is to evaluate the as-found indications to determine the potential for crack propagation during plant operation.

In performing this evaluation, the indications are conservatively evaluated as a crack oriented in the worst possible manner as discussed in the calculation.

The evaluated conditions addressed in this analysis are pressure (design and operating) and the heatup/cooldown transient.

The primary crack driving force for steady-state operation and cyclic fatigue willcome from these stress conditions.

The other normal conditions, including upset and test conditions, and the postulated accidents conditions for emergency and faulted conditions are not expected to contribute significantly to crack propagation for the following reasons:

1. The safety margins required for normal conditions are greater than accident conditions.

In general, the normaVupset condition willbe the limitingcondition for flaw acceptance.

2. The use of design pressure in this evaluation willbound the normal/upset pressure stress condition.

On a conservative basis, this evaluation is limited to one operating cycle.

9+03~00~+7 9+0 PDR ADOCK 05000389 P

PDR

'PTECH ENGINEERING SERVICES, INC.

1282 REAMWOOD AVENUEQ SUNNYVALEQ CA 94089 POST OFFICE BOX 3440 Q SUNNYVALEQ CA 94088-3440 Q (408) 745.7000 Q FAX (408) 734-0445 OFFICES Q UPPER MARLBORO, MDQ (301) 599.2301 Q HOUSTON. TXQ (713) 558-3200 CHATIANOOGA, TN Q (615) 499-3777 Q GASTONIA, NC Q (704) 865.6318

4 Florida Power & Light Company March 25, 1994 Page 2 ACCEPTANCE CRITERIA The analysis was performed followingASME Section XI, IWB-3600 guidelines for flaw evaluation offerriticcomponents.

The flawacceptance criteria for Service Level Aand B conditions were used:

a, < a,/10 or K, < K/~10 where, a, is the final crack depth at the end of the evaluation period, a, is the critical flaw depth, K, is the applied stress intensity factor, and Kr, is the lower bound crack arrest toughness.

FLAWMODEL The weld indication was modeled as a crack having a pure radial component relative to the nozzle head penetration and located at the corner of the bore hole on the inside surface (Figure 1). This orientation is the most conservative since the crack willbe perpendicular to the maximum principal stress direction. An initial "corner" crack is conservatively assumed with a depth of 1.0 inch. This depth is greater than the radial extent of linear and rounded indications detected in the J-groove weld and assumes a crack has completely penetrated the weld. This assumption willconservatively bound the observed indications in all four nozzle attachment welds as well as indications in the bore region of the Inconel nozzles.

CRITICALFLAWDEPTH The critical crack depth was calculated for design and operating pressure stress.

In calculating the hoop stress due to pressure, a stress concentration factor of 2.0 was assumed for the hole.

The analysis results for critical flaw depth, a indicate that the critical flaw for this material during normal steady-state operation is a through-wall crack with a total length exceeding 20 inches (Figures 2 and 3). In this analysis, an upper shelf fracture toughness value forKof200 ksi in"was used per ASME Section XI reference curve.

Figure 2 shows a corner crack will not exceed K unless a > t. Figure 3 shows a through-wall crack length must be very large before Kis reached.

This is highly supportive of a leak-before-break condition for this penetration.

An allowable flaw depth was determined from the applied K,for the corner crack. Based on a safety factor of F10 on Ka corner crack of 3.1 inches would be acceptable for a design pressure of

~

~

2500 psig (Figure 2). This allowable crack depth willbe used in the fatigue analysis as the crack depth to terminate the analysis.

Florida Power & Light Company March 25, 1994 Page 3 FATIGUE CRACK GROWTH ANALYSIS The final crack depth, awas calculated for a fatigue crack growth analysis starting with an initial crack depth of 1.0 inch. The fatigue crack growth analysis was performed for pressure and thermal transient conditions associated with plant heatup and cooldown.

The pressure cycle assumes a

pressure change from zero to 2500 psig back to zero which is conservative for normal operation.

The heatup transient assumes a 100'F/hr rate. A200'F/hr cooldown rate was assumed for shutdown.

In the thermal stress analysis, a high heat transfer coefficient was conservatively assumed. Astress concentration factor of 2.0 due to the presence of the hole was also applied to thermal stress.

The growth and shape change of the postulated 1-inch initial crack was calculated using ASME Section XIreference fatigue crack growth curves for primary reactor water environment. Ahigh R-ratio (mean stress) was conservatively assu'med.

The results from this analysis (Figure 4) show a significant fatigue propagation life. The calculated cycles for this postulated flaw to reach the allowable flaw depth of 3.1 inches exceeds 6000.

CONCLUSIONS

~

~

The critical flawsize in the region of the instrument nozzle penetration is very large and exceeds the wall thickness of the head (i.e., through-wall). Aflaw depth of 3.1 inches from the inside corner of the penetration willsatisfy the flaw evaluation acceptance criteria for ASME Section XI. For an initial crack depth of 1 inch, the number of startup/shutdowns to reach the allowable flaw depth exceeds 6000 cycles. This number of cycles is much larger than the design cycles for this transient condition. Therefore, for the detected indications in 'C'ozzle penetration weld, ASME Section XI safety margins for normal operation willbe satisfied for at least one operating cycle. In general, the safety margin for the normal condition willbe the limiting condition for ASME Section XI flaw acceptance.

RCC/web Enclosures Sincerely,

~d gA Russell C. Cipolla Project Manager cc:

R: Gavankar G. Pustover S. Khurana

SERVICES, INC PO57 clMIIO Coze/~E QPJQ(4 H 8i958PPEIHL d~o NOZZLE SHIM &

A68L RETAININGCLAMP WELD NOZZLE NOZZLE ATTACHMENTWELD I

I I

NOZZLE 1

SAFE END INCONEL-600 STAINLESS STEEL (316) 8UTTER WELD

~ CLADDING UPPER PRESSURIZER NOZZLEDETAIL Figure 1 Postulated Corner Crack at Penetration Inside Surface.

APTSCH CORNER CRACK MODEL PRESSURIZER INSTRUMENT NOZZLE 80 CD 70 M

~%

50 40 Ctl M33B CL1 K =2Xkeiin Q{$}~= 532 ksr h~

p = 2250 pslg p = 25 pslg 20 0.0 0.5 1.0 1.5 2.0 2.5 5.0 5.5 4.0 Crack Depth, a,

(inchesj Figure 2 Stress Intensity Factor Versus Crack Depth Corner Crack Model.

APTKCH 200 180 160

'~

140 120 100 80 CRITICAL FLAW ANALYSIS PRESSURIZER INSTRUMENT NOZZLE/HEAD M33EI CL 1

K> = 200ksiin~

p = 2500 psig p = 2250 psig 40 20 K /[I)'

92 ksi in'.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18,0 20.0 Half Thru-wall Crack length, a (inchesj Figure 3 Stress Intensity Factor Versus Crack Length Through-Wall Model.

FATIGUE CRACK GROWTH ANALYSIS 3.5 CORNER CRACK 3.0 C3o 2.0 CD 1.5 1.0 C$

0.5 0.0 0

GN 2000 3XN 4000 5XO 6000 7000 8000 9000 ONO Number of Stortup Cycles, N

Figure 4 Crack Growth Versus Number of Startup Cycles.

CALCULATIONCOVER SHEET Document No.: AES-C-2138-1

Title:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Client: Florida Power & Light Company eject No.: AES 94032138-1Q AFI'ECH Office: Sunnyvale Sheet NO.

1 of 33 purpose:

This calculation documents the flaw evaluation of surface weld indications detected in the attachment weld of 'C'ozzle to the pressurizer head.

The analysis bounds the indications by assuming a through-weld crack at the bore hole corner as the initial flaw condition. On a conservative basis, this evaluation is limited to one operating cycle.

Assumptions:

See Section 2.

Results: The allowable flawdepth for the instrument nozzle penetration area is calculated to be 3.1 inches for design pressure.

This allowable depth exceeds the size of the weld indications.

The number of heatup/cooldown cycles required to grow the observed flaws to the allowable size is calculated to be much greater than the design basis. Therefore, the indications in 'C'ozzle are acceptable for normal operating loads for one operating cycle.

Revision No.:

Prepare By:

Date:

~/4/p Checked By:

Date:miry.

Verified By:

Date Approve By:

Date:

Revision Description

~~ I~O/ ~5 (j' QAE17 REV. 9/88

ENGINEERING SERVICES, INC.

cument No.: AES-C-2138-1 ttle: One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Ma by:

Checked by:

Revision No.:

0 Date:

Cj Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

2 of 33 TABLEOF CONTENTS Section

~Pa e

1.0 INTRODUCTION

AND SCOPE 2.0 ASSUMPTIONS 3.0 EVALUATIONPROCEDURES 3.1 Overview 3.2 Flaw Acceptance Criteria 3.3 Calculation of End-of-Life Flaw Size (a,)

Calculation of Minimum Critical Flaw Size (a,)

Calculation of Stress Intensity Factor 4.

GEOMETRY 4.1 Head and Nozzle Geometry 4.2 Flaw Indication Geometry 4.3 Flaw Models 5.0 LOADINGCONDITIONS 6.0 MATERIALPROPERTIES 6.1 Strength 6.2 Fracture Toughness 6.3 Fatigue Crack Growth Rate 7.0 STRESS ANALYSIS 7.1 Pressure Stress 7.2 Thermal Stress 8.0 CALCULATIONOF CRITICALFLAWSIZE 8.1 Corner Crack From Bore Hole 8.2 Through-Wall Crack 9.0 FATIGUE CRACK GROWTH ANALYSIS

10.0 CONCLUSION

S

11.0 REFERENCES

APPENDIXAComputer Output From TACTICS APPENDIX B Computer Output From BIGIF 3

5 6

6 6

7 8

9 10 10 10 10 14 15 15 15 16 19 19 20 23 23 26 30 32 33 A1-A11 B1-B12 QAE17 REV. 9/88

APTECH ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 le:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Mad y:

Checked by:

<k.

Revision No.:

0 Date:

3 25 Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

3of33

1.0 INTRODUCTION

AND SCOPE Weld indications were detected in the attachment weld of 'C'nstrument nozzle (1). The instrument nozzle is one offour instrument nozzles that penetrate the pressurizer upper head. Anillustration of the upper head nozzle penetration is shown in Figure 1-1.

The nozzle penetration was leaking suggesting these surface indications are connected through to the bottom of the J-groove weld to form a leak path to the annulus region between the nozzle and bore hole.

The purpose of this calculation is to evaluate these indications according to ASME Section XIflawevaluation procedures of IWB-3600 (2). The overall objective is to evaluate the as-found indications to determine the potential for crack propagation during plant operation.

In performing this evaluation, the indications are rvatively evaluated as a crack oriented in the worst possible manner as discussed herein, The evaluated conditions addressed in this evaluation are pressure (design and operating) and the heatup/cooldown transient. The primary crack driving force for steady-state operation and cyclic fatigue will come from these stress conditions. The other normal conditions, including upset and test conditions, and the postulated accidents conditions for emergency and faulted conditions are not,.expected to contribute significantly to crack propagation for the following reasons:

1. The safety margins required for normal conditions are greater than accident conditions. In general, the normal/upset condition willbe the limitingcondition for flaw acceptance.
2. The use ofdesign pressure in this evaluation willbound the normal/upset pressure stress condition.

On a conservative basis, this evaluation is limited to one operating cycle.

QAE17 REV. 9/88

APTSCH ENGINEERING ERRVICKS, INC.

ument No.: AES-C-2138-1 ittle:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Ma eby:

Checked by:

K Revision No.:

Date 3

Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

4 of 33 Po~ru~m)

/MAES CAPO%.

iw BeszHcm9L

&PSS NOZZLE SHIM 6

~< RETAININGCLAMP WELD NOZZLE NOZZLE ATTACHMENT WELD 7

I I

I NOZZLE I

SAFE END INCONEL400 STAINLESS STEEL (316) 8UTTER WELD

~ CueOING UPPER PRESSURIZER NOZZLEDETAIL Figure 1-1 Upper Pressurizer Nozz]e Detail (Original Design).

QAE]7 REV. 9/88

APTSCH ENGINEERING SERVICES, NC.

ument No.: AES-C-2138-1 ttle:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Checked by:

gk Revision No.:

Date Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

5 of 33 2.0 ASSUMPTIONS The following general assumptions regarding methods and analysis parameters are made in this flaw evaluation:

1. Flaw evaluation procedure given under IWB-3610 and Appendix A of ASME Section XI are applicable.
2. Weld residual stresses and the effects of vessel cladding are neglected.
3. The hoop stresses in the head due to external pipe loads applied at the modified pad-weld attachment (outside surface of head) are assumed to be negligible.
4. Acceptance criteria for normal/upset conditions are assumed governing (i.e., requirements for emergency and faulted conditions are not evaluated).
5. Worst loading condition for bounding normal operation is assumed to be design pressure and startup/shutdown transient.
6. Weld indications are assumed to be crack-like.

The crack model is assumed to completely penetrate the Inconel weld and has entered the carbon steel head.

7. Crack growth rate for reactor water for an R > 0.65 is conservatively assumed.

In general, use of the above assumptions willresult in a conservative analysis ofthe flawfor normal operating conditions.

Conservative means any condition that will result in a smaller calculated critical flaw size or accelerated crack growth rates under normal operation.

QAE17 REV. 9/88

APTSCH ENG NEERING SERVICES, INC.

cument No.: AES-C-2138-1 tie:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made Checked by:

Revision No.:

Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

6 of 33 3.0 EVALUATIONPROCEDURES 3.1 Overview The evaluation procedures of ASME Section XI, Appendix A, are used to analyze the flaw indication. The flaw is evaluated as a sharp crack and normal to the maximum principal stress direction (hoop direction) pressurizer ofthe head. The evaluation procedure is described in Article A-5000 ofSection XI,Appendix A.

Both theoretical solutions and numerical methods are used to evaluate the flaw, given the flaw size and geometry data, material properties, and the transient stresses and temperatures at the penetration location.

The TACTICS (3) and BIGIF(4) computer programs are used in the stress analysis and fatigue tasks. These methods are used to calculate the following Section XI flaw parameters:

a, The maximum size to which the detected flaw is calculated to grow in a specified time period.

a, The minimum flaw critical size of the flaw under normal operating conditions.

The computer programs for this problem have been verified under APTECH's Quality Assurance Program.

3.2 Flaw Acceptance Criteria Flaw indications that which exceed the limitsofIWB-3500, are acceptable ifthe critical flawparameters satisfy the criteria of IWB-3611. These fiaw size acceptance criteria are ar < 0.1 a, (3-1) ar(03 a,.

(3-2) aaand a; are defined in Section 3.1. Equation 3-1 is the requirement for normal conditions and Eq. 3-2 governs emergency/faulted conditions.

QAE]7 REV. 9/88

APYSCH ENGINEERING SERVICES, NC.

cument No.: AES-C-2138-1 tie:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made y:

Checked by:

4' Revision No.:

Dat:

3 2W 0 Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

7 of 33 Alternatively, ifthe applied stress intensity factor and the flaw size a, satisfy the followingIWB-3612 criteria K,(K /~10 (3-3) r ( K~ I 4 (3A) then the flaw is acceptable based on load. For Eq. 3-3, Kr is the maximum applied stress intensity factor for the flaw size a< under normal conditions and Kis the available fracture toughness based on crack arrest for the corresponding crack tip temperature.

For Eq. 3-4, K1 is the maximum stress intensity factor for the flaw funder emergency and faulted conditions and Kis the available fracture toughness based on fracture tion for the corresponding crack tip temperature.

Satisfying either Eq. 3-1 for flaw size or Eq. 3-3 for applied load and checking that the appropriate primary stress limits are satisfied, wiH demonstrate acceptance of the flaw to ASME Section XIfor normal operating conditions. It is expected that the acceptance criteria for normal conditions willgovern the allowable flaw size.

3.3 Calculation of End-of-Life Flaw Size (a,)

The expected end-of-life flaw size (a<) is computed by a cumulative fatigue crack growth analysis for normal operating conditions for the remainder of the expected service life of the component, according to Article A-5200 of Section XI,Appendix A. Normal conditions include all transients expected to occur during testing and normal operation.

Included in normal operation are upset conditions which are anticipated to occur frequently enough as to warrant their consideration during design.

In this evaluation of normal operating ition, the principal transient for fatigue damage at the head penetration is assumed to be the p/shutdown transient.

QAE17 REV. 9/88

API'SCH ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Mad by:

Checked by:

Revision No.:

Date Date:

3 Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

8of33 The fatigue crack growth rate (da/dN) of the shell material is characterized by the followingrelation:

da/dN

= CQKi (3-5) where da/dN is crack growth rate (i.e., inches per cycle of loading), C. and n are material constants, and bKt is the range in stress intensity factor for the load cycle (dXt = K

- K

). The BIGIF program performs the fatigue crack growth analysis by integrating Eq. 3-5. The number of applied load cycles, N, for the design transients is calculated from (34) where a, is the starting crack depth and a, is the final crack depth.

3.4 Calculation of Minimum Critical Flaw Size (a,)

The procedure to compute the minimum critical flaw size for normal operation (a,) as speciTied by Article A-5200 of Section XI, Appendix A is outlined below:

1. Determine the maximum end-of-life irradiation level at the flaw location (embrittlement of the pressurizer shell due to neutron radiation is assumed to be negligible, i.e., 5 RTNDr = 0).

Using irradiated fracture toughness data, determine the crack-arrest fracture toughness (K) as a function of temperature.

3. Calculate stress intensity factors, Kfor various geometrically similar crack depths of the assumed flaw.
4. Compare the calculated stress intensity factors to the material fracture toughness (K) for the appropriate temperature to determine a, for the transient.

QAEi7 REV. 9/88

ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Checked by:

Ek Revision No.:

0 Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

9 of 33

5. Proceed to the next transient.

The calculated values for the stress intensity factor as a function of crack depth, K,(a), are utilized in the determination of a, from K, (aP

= K P'aP, RT~)

(3-7) where T is temperature at the crack tip and RTNDr is the nil ductility temperature for the shell material.

Equation 3-7, therefore, represents the intersection of the toughness distribution and the applied K, field.

mallest value of a, determined by the above procedure after all transients have been considered is the um critical flaw size for normal operation.

This minimum value of a, is checked against the flaw acceptability criteria of IWB-3600 (see Section 3.2).

3.5 Calculation of Stress Intensity Factor The stress intensity factor is defined as K, =aF ~ma/Q where cr is the applied stress, F is a function which accounts for flaw geometry and loading mode, "a" is the crack depth, and Q is the flaw shape parameter.

Details of the calculation of K, are provided later.

QAE17 REV. 9/88

ENGINEERING SERVICES, INC cument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made by:

Checked by:

Revision No.:

0 Date 3 2,y 4'$

Date 3

't'lient:

FPL Project No.:

AES 94032138-1Q Sheet No.:

10 of 33 4.0 GEOMETRY 4.1 Head and Nozzle Geometry The upper head geometry and the location of the 1-inch instrument nozzle penetrations are shown in Figure 4-1 (5). The dimensions of the head and nozzle are summarized below:

~ Inside radius of head:

R; = 48.4375 inches

~ Thickness of head:

t =

3.875 inches (min)

~ Mean radius:

R

= R; + t/2 = 48 4375 + (3.875/2) = 50.375 inches

~ Nozzle OD: d. =

1.33 inches

~

Nozzle ID: d; =

0.815 inch

~ Hole diameter penetration in head:

1.34 inches

= 2Rh 4.2 Flaw Indication Geometry The location of the weld indications in 'C'ozzle attachment weld is illustrated in Figures 1-1 and 4-2. The indications are both linear and rounded (1). The orientation is primarily circumferential with respect to the attachment weld with a small radial component observed at the ends. The overall circumferential length of the indication (combined) is approximately 7/8 inch. The "combined" indication included an isolated rounded indication. Allindividual indications are contained in an annulus that is between 1/4 to 3/4 inch from the nozzle bore surface.

4.3 Flaw Models nservatively model the weld indication, an indication is represented by a corner crack that is oriented r

ally with respect to the bore hole and located at the inside corner (see Figure 1-1). In addition to the QAE17 REV. 9/88

EKGIKEERIKGSERVICES, INC.

cumertt No.: AES-C-2138-1 le:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Mad by:

Checked by:

4/c f Revision No.:

0 Date:

3 Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

11 of 33

~ I'

~

. RETAINER ~.R.

AND: QA 5 KET

.. ~

~~,, r.,PI

~. gI, j4), I. NSTRUMDIT,:,NOZZLES"'~.

~g>,.p<"'. j+,WS MAKWAY I

>) 3.SAFETY VALVE

~

'NOZZLES i

.'.. SL EE VE' 1

'l ~ r

..: It SPRAY 'HEAD ASST.

~ ".

~ ', - ~

~

SPRAY KOZZLc, '

~ v.

~

~

~.',.

I

+ ~

I

~ ~, ~, ~.

~

~ +.I.RELIEF VALVE I ~

~ ': ". NOZZLE

','. (Z) UP.,ENDING LUtjS

, =-.875

'biIA AIM I

-:-; 3 NI IN

.~", '..~!-,"

III'AT

,'I

~

Figure 4-1 Pressurizer Upper Head.

QAE17 REV. 9+it

APYKCH ENGINEERING SERVICES, INC ocument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made Checked by:

+&7 Revision No.:

0 Zjzp/ey Date:

Client Project No.:

AES 94032138-1Q Sheet No.:

12 of 33 M ~/3wAv. I'I a. ~aaD kt '~mA UllKAA M /XhvlX /32 L~l4OEQ

&+I'%

uAEP4L lb'.'lit Rov~ocCO udge,ioIT "~aeD udsAT 'Ã5KctED vr45lxT tzEsE<~

v~ 'tzasEneD SAT t.pgkTH "tent EsI. At.~

p) qW

<< I)$'V Ij

~

0>>

3/yx<

, i'a.

8 yI>+i

~ > ~SI do~~ ~

, Ria an 3/

A I 7 'I'l ~ Iso IIrZs AldlllC I>>>>IO Mo S>>>>~.

~.D uF de~ Ot=.$ 1X SvPPu~ To G.C..

LJAEPCiL ~OEM)os mF~

Iti Fi?om KC) oi=

do-~ AT fHc.

PlEAQEZT RuilT.

1&iAL ~~LJ Lomb>a(M LEACT+t OF ~EAfKs'cW& IIIWo~ ~Qttjrnod5.IS 17 cEHcvA.

K TOP cxAZHL~ SN&wrTFtJ Figure 4-2 Attachment Weld Indications 'C'ozzle.

QAE17 REV. 9/88

APTKCH ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 M~ad Checked by:

gk:

Revision No.:

3 Zd'/II Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

13 of 33 cL)

Cogv84 CZg&C Morsel

/) T~~o~~~ W~d~ ed~dc -WO~~~

Figure 4-3 Flaw Model Geometry.

QAE17 REV. 9/88

APTSCH EAGlkEERlkG SBWICES. NC.

ument No.: AES-C-2138-1 le:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Mad by:

Checked by:

KP Revision No.:

0 3 zH/Fg Date:

3/ep C

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

14 of 33 5.0 LOADINGCONDITIONS The loading conditions for the pressurizer for heatup and cooldown are listed below (6 7):

~

Design pressure:

2500 psig

~ Design temperature:

700'F

~

Operating pressure:

2250 psig

~

Operating temperature:

653'F

~ Heatup rate:

100'F/hr (max)

~

Cooldown rate:

200'F/hr (max)

~ Heatup/cooldown cycles:

500 QAE17 REV. 9/88

APTSCH ENGINEERING SERVICES, INC cument No.: AES-C-2138-1 MPaab:

Dat:

3 ay/

Client:

FPL e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Checked by:

Date:

3 Revision No.:

Project No.:

AES 94032138-1Q Sheet No.:

15 of 33 6.0 MATERIALPROPERTIES 6.1 Strength The upper head was fabricated from ASME SA-533 Grade B Class 1 (SA533B-1) steel plate (6).

The specified mechanical properties are obtained from ASME Code (8):

Sr (ksi)

S. (ksi) 70'F 50 80 Temperature 650'F 43.5 80 700DF 43.1 80 Ref. 8 Table Y-1 Table U 6.

Fracture Toughness Definition of fracture toughness at the flaw location as a function of temperature was obtained from Article A-4000 of Appendix A to Section XI.Section XI defines lower-bound behavior for Kt, and K;, for SA533B-1, SA-503-2, and SA-508-3 steels and associated welds as shown in Figure 6-1.

The toughness parameter, Kt, is based on the lower bound of static initiation critical K, values measured from specimens tested at several temperatures.

Similarly, Kr, is based on the lower bound of crack-arrest toughness data.

It is assumed that the transition behavior of SA-533B-1 will be such that the normal operation of the pressurizer will be on the upper shelf during times when maximum pressure stresses are imposed.

The pressure-temperature operation of the RCS will be. controlled by the P-T limit curves for the RPV and, therefore, maximum operating stresses willnot be experienced by the pressurizer at low temperatures.

This assumption is justified on the fact that RTNDr of SA533B-1 willbe less than +20'F which is the mean plus two standard deviations bound reported in NUREG-0577 (9). A RTNDr = +20'F will cause the onset of upper shelf conditions at T - 120'F for initiation toughness.

For this condition, the upper shelf toughness is 200 ksi int~ as reflected in Figure 6-1.

QAE17 REV. 9II88

ENGINEERING SERVICES, INC cument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made by:

Checked by:

Revision No 0

S Zd/~g Date:

Client Project No.:

AES 94032138-1Q Sheet No.:

16 of 33 6.3 Fatigue Crack Growth Rate The reference curve for da/dN in reactor water environment is given in Figure A4300-2 ofASMESection XI, Appendix A and is shown in Figure 6-2 for two R-ratio regimes.

The crack growth behavior for the highest R-ratio range (0.65 ( R ( 1.0) is conservatively used in this evaluation.

The equation for crack growth is da/dN

=

1.20 x 10"'K'K( 12.04 ksi in~

da/dN

= 253 x 10'QV's dK ) 12.04 ksi in"'AE17 REV. 9188

ENGINEERING SERVICES, INC.

cument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Mad by:

Checked by:

/

Revision No.:

0 Date:

szq W Date:

a.5 Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

17 of 33

'3"

60 r.aC la 5

60 CIl ac 20

-:00

-50 50 (r-RT 0 '

100

~150 250 Figure 6-1 Lower Bound Fracture Toughness from Tests of SA533B-1, SA508-2, and SA508-3 Steel (Figure A-4200-1 from ASME Section XI, Appendix A).

QAE17 REV. 9/88

APTSCH ENGINEERING SERVICES, INC cument No.: AES-C-2138-1 le:

One Operating'Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Mad by:

Checked by:

Rk Revision No.:

Date Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

18 of 33 10 3 For other R ratios see subparagraph A.4300(b)izl R) 0.65 R (0.25 10 7 1oo 1ot I (k ~in.t Figure 6-2 Reference Fatigue Crack Growth Curves for Carbon and Low AlloyFerritic Steels Exposed to Water Environments (Figure A-4300-2 from Section XI, Appendix A).

QAE17 REV. 9/88

APTKCH ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made Checked by:

Revision No.:

0 Date32tg+

Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

19 of 33 7.0 STRESS ANALYSIS 7.1 Pressure Stress The hoop stress attenuation away from the hole surface due to internal pressure at the nozzle penetration was approximated from the solution for stress around a hole in a flat plate under uniaxial tension loading.

This stress variation from a hole in a plate is given by (10):

o,(x) 2 4

Rh 3

Rh R,.x '~ Z,.x GeI (7-1) w re, R, is the hole radius = 0.67 inch x is the distance from hole surface ere's the nominal hoop stress

= pRj2t K, is the stress concentration factor = 2.0 (for biaxial tension)

The above form for oe was selected because this stress equation is a program option in BIGIF.

The nominal hoop stresses for design pressures and operating are I

(50.375) (2500) 16 250

=

16,250 (2250 / 2500)

=

14,625 psi (operating) t of the hoop stress as a function of distance from the hole surface (Eq. 6-1) is illustrated in Figure 7-1.

QAE17 REV. 9/88

API'KCH ENGINEERING SERViCES, iNC.

cument No.: AES-C-2138-1 tie: One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Mad by:

Checked by:

Revision No.:

9 ~+F9 Date:

3 zy Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

20 of 33 HOOP STRESS AT PRESSLIRIZER INSTRUMENT NOZZLE Design Pressure 2500 psig 25 tD 20 15 0.0 0.5 1,0 1.5 2.0 2.5 5.0 5.5 4.0 Distance From Hole, x/Rh Figure 7-1 Estimated Hoop Stress in the Vicinityof the Head Penetration Due to Internal Pressure.

QAE17 REV. 9/88

ENGINEERING SERVICES, INC.

cument No.: AES-C-2138-1 tie:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Mad y:

Checked by:

Revision No.:

Z>ftf Date:

Client Project No.:

AES 94032138-1Q Sheet No.:

21 of 33 7.2 Thermal Stress The thermal stress in the vicinityof the nozzle due to heatup/cooldown was estimated by a one-dimensional radial heat transfer/thermal stress analysis of a cylinder whose radius and thickness is the same as the head.

Specifically, R;

=

48.4375 in t

=

3.875 in The following assumptions were made in the transient analysis:

1.

The maximum heatup/cooldown rate was used, as 100'F/hr and 200'F/hr, respectively.

2.

Avery high heat transfer coefficient was conservatively assumed at the inside surface of the head (h = 10,000 BTU/hr-ft'-'F).

3.

Material properties at 600'F were assumed for both transients.

The followingthermal and elastic properties (T = 600'F) for Mn-1/2Mo-1/2Niwere used in the analysis (8):

k d

E Thermal conductivity Thermal diffusivity Young's modulus Poisson's ratio Thermal expansion 23.0 BTU/hr-ft-'F 0.342 fthm/hr 25.2 x 10'si (Group B) 0.3 7.83 x 10~ in/in/'F (Group D)

The TACTICS program, which is a one-dimensional (radial) transient heat transfer and thermal stress algorithm a cylindrical geometry, was used to solve for the nominal hoop stress through the wall of the head.

The results of these analyses are given in Appendix Ato this calculation. The maximum hoop stresses versus distance for both heatup and cooldown transients are plotted in Figure 7-2.

QAE17 REV. 9188

APTSCH ENGINEERING SERVICES, INC.

cument No.: AES-C-2138-1 le:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made by:

Checked by:

Revision No.:

Date

$ 2QPQ Date:

3 Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

22 of 33 HOOP STRESS DUE TO HEATUP/COOLDOWN 6

czar 4

CD CD 0

-4

-6 00 0.1 02 0.3 04 05 0.6 07 0.8 0.9 10 Distance fram ID Surface, x/t Figure 7-2 Nominal Thermal Stress for Heatup/Cooldown.

QAE17 REV. 9188

APTSCH ENGINEERING SERVICES, INC cument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made b Checked by:

Revision No.:

0 Date:32 Date:

C Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

23 of 33 8.0 CALCULATIONOF CRITICALFLAWSIZE 8.1 Corner Crack From Bore Hole The solution for Kt for a corner crack as illustrated in Figure 4-3 was obtained from Newman and Raju (11).

For a single semicircular crack (a = c) under uniform pressure stress tr, the stress intensity factor at the deepest point (III = 90') is:

K,

=

(x F [tt a/Q]

(8-1) where, F = Fg'. The equations for the analytical parameters are given below:

Q

=

1 +1.464 (a/c)'s

= 2.464 F,

= tM, + M, (a/t)'

M, (a/t)'] g, g, g, f f M,

=

1.13 -0.09 (a/c)

=

1.04 Ma

= 4.54

+ ~

=

0.2017 M

= 0.5 -

+14 (1

)E4

= 4.1061 K6~+aTcj c

g,=f~=f=1 1

+ 0.358K,

+ 1.425k,'

1.578M

+ 2.156X4 1 + 0.13K~

QAE17 REV. 9/88

ENGINEERING SERVICES, INC.

cument No.: AES-C-2138-1 le:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Checked by:

A'(

Revision No.:

Date:

3 Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

24 of 33 g,

=

1.144 [0.85

+ 0.15 (a/t) I4]

F'

[C, / C,]'~

4 ac 4

a' ac 4

a't should be noted that the above solution is valid for 0.50( Rh/t(1.0.

For the head penetration, Rjt = 0.67/3.875 = 0.173. Although, this value is outside the solution range for Eq. 8-1, the results willbe conservative because the hoop stress distribution willgenerally be lower (attenuates more quickly) as hole size decreases.

This willresult in a lower value for K, as Rh m 0.

Adding the pressure on the crack face to the nominal hoop stress yields the following:

o'~.

=

16250

+ 2500

=

18,750 psi ty,.

=

14,625

+2250

=

16,875 psi The above pressure stresses are used in Eq. 8-1 for ty.

QAE17 REV. 9188

APTSCH ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made by:

Checked by:

Revision No.:

Date Date:

3 Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

25 of 33 For a bore hole radius of 1.34/2 = 0.67 inch = R the following results for K, are calculated:

a/t 0.00 gI 0.0000 1.00 1.0000 2.9743 F

F'esi nQ 1.1637 35997 1.0000 0.00 Kt

~Oe~r 0.00 0.10 0.20 0.30 0.40 0.50 0.60

. 0 0.90 0.3875 1.00 0.7750 1.00 1.1625 1.00 15500 1.00 1.9375 1.00 23250 1.00 2.7125 1.00 3.1000 1.00 3A875 1.00 0.8810 23993 1.2792 3.1981 0.9891 41.69 3752 0.7874 2.0579 13010 2.8056 0.9608 50.25 45.22 0.6493 1.6918 1.3270 2.4012 0.8886 56.24 50.62 05970 '5862 13364 2.2974 0.8568 58.01 52.21 0.5525 1.5076 1.3444 2.2273 0.8305 59.72 53.75 05141 1.4472 13515 2.1776 0.8093 61.46 5531 0.4807 13992 1.3579 2.1387 0.7924 63.18 0.4514 1.3604 13637 2.1033 0.7790 64.79 56.87 58.31 0.7117 1.8398 13157 25592 0.9246 54.02 48.62 The results for Kt versus crack depth are plotted in Figure 8-1. From these results, the applied K, willnot exceed K= 200 ksi in~ unless a > t.

For determining an allowable crack depth for the corner crack geometry K/ f10

= 200/ ~10

= 63.2 ksi iH'rom Figure 8-1, K, = 63.2 ksi in~ for a crack depth of 3.1 inches.

OAE17 REV. 9/88

ENGINEERING SERVICES, INC ument No.: AES-C-2138-1 K

e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made Checked by:

RK7 Revision No.:

Date:

3 ~y Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

26 of 33 8.2 Through-Wall Crack Since the corner crack results indicate a, > t, the critical flaw size for a crack which completely penetrates the head thickness was also evaluated.

The solution for two symmetrical cracks originating from a hole in a plate under biaxial tension (Figure 4-3b) was obtained Tada (12). For this crack geometry:

K

= o'F~ /ma (8-2) where a is the crack length for one crack and F~

=

1 +(1 -s) [0.5 +0.743 (1 -s)E]

The results from Eq. 8-2 are given below:

0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 6.00

~aR +a 0.0000 0.2717 0.4274 0.5282 0.5988 0.6912 0.7491 0.7886 0.8174 0.8565 0.8996 2.2430 1.6511 1.4259 1.3140 1.2486 1.1762 1.1372 1.1127 1.0958 1.0739 1.0510 K~De~si 0.00 27.44 33.51 37.82 41.49 47.88 53.45 58.47 63.08 71.38 85.56

~K~0 e~r 0.00 24.69 30.16 34.04 37.35 43.09 48.10 52.62 56.77 64.24 77.00 QAE]7 REV. 9/88

ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 ttle: One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Checked by:

/C Revision No.:

Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

27 of 33 8.00 10.00 15.00 20.00

~aR +a 0.9227 0.9372 0.9572 0.9676 1.0390 1.0316 1.0214 1.0162

~KD~esi +

97.66 108.41 131.47 151.04

~KO~er 87.90 97.57 118.32 135.93 The results for K, versus crack length are plotted in Figure 8-2. These results indicate that the critical flaw size where K, = K is in excess of 20 inches for the design pressure stress.

For determining an allowable through-wall length, K, = 63.2 ksi in~ for a crack length of approximately 3.0 inches.

This value is similar in magnitude to the corner crack result.

QAE17 REV. 9/88

APYSCH ENGINEERING SERVICES, INC.

cument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made y:

Checked by:

Revisi n No.:

s'~<rat Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

28 of 33 CORNER CRACK MODEL PRESSURIZER INSTRUMENT NOZZLE 80 70 SA52EI CL 1

K =200keiin

@[ad'=mt er p = 2500 pslg M

50 40 30 p = 2250 pslg 20 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Crack Depth, a,

Iinchesj Figure 8-1 K, Versus Crack Depth for a Corner Crack Due to Pressure Loading.

OAE17 REV. 9/88

APTSCH

~

ENGINEERLNG SERVICES, NC.

ument No.: AES-C-2138-1 itle: One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Checked by:

//v V Revision No.:

Date Date:

Client:

FPL Project No.:

AES 94032138'-1Q Sheet No.:

29 of 33 CRITICAL FLAW ANALYSIS PRESSURIZER INSTRUMENT NOZZLE/HEAD SA533B CL 1

K =200ksiin/

p = 2500 psg p = 2250 pslg 80 C/0 CL1 y[t0v'=mk

"~u'0 0.0 2.0 4.0 6.0 8,0 I.O 32.0 14.0 16.0

$.0 20.0 Half Thru-wall Crack length, a

{inchesj Figure 8-2 K, Versus Crack Length for a Through-Wall Crack Under Pressure Loading.

QAE17 REV. 9/88

APTKCH ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 ttle:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Checked by:

Revision No.:

Date Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

30 of 33 9.0 FATIGUE CRACK GROWTH ANALYSIS An initial "corner" crack is conservatively assumed with a depth of 1.0 inch. This depth is greater than the radial extent of linear and rounded indications detected in the J-groove weld and essentially assumes a crack has completely penetrated the weld. This assumption willconservatively bound the observed indications in all four nozzles attachment welds as well as indications in the bore region of the Inconel nozzles.

The final crack depth, awas calculated for a fatigue crack growth analysis starting with an initialcrack depth of 1.0 inch. The fatigue crack growth analysis was performed for pressure and thermal transient conditions associated with plant heatup and cooldown.

The pressure cycle assumes a pressure change from zero to 2500 psig back to zero which is conservative for normal operation. The heatup transient assumes a 100'F/hr A 200'F/hr cooldown rate was assumed for shutdown.

The stress results were discussed earlier in n 7.3. Astress concentration factor of 2.0 due to the presence of the hole was also applied to thermal stress.

The growth and shape change of the postulated 1-inch initial crack was calculated using ASME Section XI reference fatigue crack growth curves for primary reactor water environment. The stress data, flaw geometry, and crack growth rate equations were input to the BIGIF program. The corner crack model (IFI = 306) in BIGIF was selected for the fatigue analysis.

This model accounts for different K, values for each crack tip and which allows the crack to change shape as it grows by fatigue. The output from the BIGIF analysis is given in Appendix B. The results from this analysis (Figure 9-1) show a significant fatigue propagation life.

The calculated cycles for this postulated flaw to reach the allowable flaw depth of 3.1 inches exceeds 6000.

F QAE17 REV. 9/88

ENGINEERING SERVICES. INC.

cument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made by:

Checked by:

R Revision No.:

Date Date:

> is-Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

31 of 33 FATIGUE CRACK GROWTH ANALYSIS 4.0 3.5 CORNER CRACK 3.0 CD~

2.0 1.5 cj 1,0 0.5 0.0 0

1000 2000 3000 4000 5000 6000 7000 8000 S000 10000 Number of Stortup Cycles, N Figure 9-1 Crack Growth Versus Number of Startup Cycles.

QAE17 REV. 9/88

APTKCH ENGINEERING SERVICES, INC ocument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made y:

Checked by:

Revision No.:

Date Date:

Client Project No.:

AES 94032138-1Q Sheet No.:

32 of 33

10.0 CONCLUSION

S The following conclusions were drawn from this flaw evaluation:

1. The critical flaw size in the region of the instrument nozzle penetration is very large and exceeds the wall thickness of the head (i.e., through-wall).
2. Aflaw depth of 3.1 inches from the inside corner of the penetration willsatisfy the flaw evaluation acceptance criteria for ASME Section XI.
3. For an initial crack depth of 1 inch, the number of startup/shutdowns to reach the allowable flaw depth exceeds 6000 cycles.

This number of cycles is much larger than the design cycles (500) for this transient condition.

Based on the above results for the detected indications in 'C'ozzle penetration weld, ASME Section XI margins for normal operation willbe satisfied for at least one operating cycle for the plant.

QAE17 REV. 9/88

APTSCH ENGINEERING SERVICES, INC.

ument No.: AES-C-2138-1 e:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Checked by:

8'A'evision No.:

Dat 9 Zdg Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

33 of 33

11.0 REFERENCES

Quality Control Report MM94-598A, St. Lucie Plant (March 18, 1994) (ECD-2).

2.

ASMEBoiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components,"

1992 Edition.

3.

4.

Cipolla, R.C., J.M. Rice, and J.M. Thomas, "Some Important Aspects of Crack Initiation and Propagation in Feedwater Nozzles Under Pressure and Thermal Cyclic Conditions," (Contains method and user's manual for TACTICS Program), Report FAA-78-0301 (May 1979).

Cipolla, R.C., P.M. Besuner, and D.C. Peters, "BIGIFFracture Mechanics Code for Structures,"

EPRI NP-838 Key Phase Report (August 1978).

5.

Drawing 9417-C088-166, "General Arrangement, Florida Power & Light Company II, 96" ID Pressurizer," Revision 0, CE Chattanooga (October 12, 1988) (ECD-3).

"Transmittal of Data to Aptech Engineering Services, Inc. for Analysis of a Weld Indication in the C Pressurizer Nozzle Penetration," JPN-PSL-SEMS-94-007 (March 24, 1994) (ECD-1).

7.

"Structural and Fatigue Analysis of Instrumentation Nozzles, Relief and Safety Valve Nozzles, and Water Level Boundary," CE Calculation PRS-210 (January 17, 1977 (ECD4).

8.

ASME Boiler and Pressure Vessel Code,Section II, "Materials," Part D, 1992 Edition.

9.

"Potential for Low Fracture Toughness and Lamellar Tearing on PWR Steam Generator and Reactor Coolant Pump Supports," NUREG-0577, Appendix C (October 1979).

10.

Wang, C., Theo of Elastici McGraw-Hill (1953).

Newman, J.C. and I.S. Raju, "Stress-Intensity Factor Equations for Cracks inThree-Dimensional Finite Bodies," ASTMSTP 791, Volume 1Theory and Analysis, 14th Symposium on Fracture Mechanics (1983).

12.

Tada, H., "The Stress Analysis of Cracks Handbook," Del Research Corporation (1985), p. 19.1.

QAE]7 REV. 9/88

APTSCH ENGINEERING SERVlCES, INC ocument No.: AES-C-2138-1 tie:

One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Ma eby Checked by:

/c.

Revision No.:

Date Date:

Client:

FPL Project No.:

AES 94032138-1Q Sheet No.:

A1 of A11 Appendix A COMPUTER OUTPUT FROM TACTICS QAE17 REV. 9/88

ENGINEERING SERVICES, INC.

uter Printout Program:

TBCtlCS Document No.:

AES-C-2138-1 Sheet No.:

A2 of A11 FPL PZR NOZZLE ANALYSZS HEATUP (Haloooo)

THB NUMBER OF NODES

=

11 REFERENCE TEMP.

a

70. 0 INITIALTEMP.

ZD HEAT TRAN CQEFF, H =

.0192900 OD HEAT TRAN COEFF, H

.000000

'IHBRM COND OP CLAD=

.0005324 THERM COND OP BASE=

.0005324 INNER WALL H/Ka 36.2321563 OUTER WALL H/Ka

.0000000 SPACZAL ZNCREMENT =.388 TIME INCREMENT al. OO THERMAL DIFF.

OF (CLAD a

. 0136800 BASEa

. 0136800)

COEF.

OF EXPAN. (CLAD a

. 0000078 BASEa

.0000078)

YOUNG'S MOD (CLAD =

.2520000D+08 BASS=

.2520000D+08)

POISSON'S RATIO (CLAD a

.3000 BASEa.3000)

TEMPERATURE INPUT IN TABULAR FORMAT PERZODa22000.00

.00 70.00 20988.00 653.00 22000.00 653.00 TEMPERATURE INPUT ZN TABULAR FORMAT PERIODa22000.00

.00 70.00 20988.00 653.00 70.0 0

0 0

0 0

I 22000.00 653.00 THB INNER RADIUS a 48.44 OUTER RADZUS = 52.31 THZCKNESSa

. 000 200.00SEC.

ZD 75.

74.

73.

72.

400.00SBC.

ZD 81.

79.

77.

76.

600.00SEC.

ZD 86.

84.

81.

80.

800.00SEC.

ZD 92.

89.

86.

84.

1000.00SEC.

ZD RADZUS i TEMPER.i MAT.

LIMIT a 12 PLANE STRAIN ANALYSIS FLUID TEMP a 75.56 OD PLUID TEMP =

71.

71.

71.

70.

70.

70.

FLUID TEMP a 81.11 OD FLUID TEMP ss 74.

74.

73.

72.

72.

72.

FLUID TEMP a 86.67 OD FLUID TEMP a 78.

77.

76.

75.

75.

75.

FLUID TEMP a 92.22 QD FLUID TEMP a 82.

81.

80.

79.

78.

78.

FLUID TEMP =

97.78 OD FLUID TEMP a RADZAL S'INNESS I

HOOP S'INNESS I

75.56 70.

0.

81. 11 72.

0.

86.67 74.

0.

92.22 78.

0.

97.78 AKZAL STRESS 97.5

94. 1 91.3 88.9 86.9 85.4
84. 1 83.2 82.6 82.2
82. 1 OO.OOSEC 48 F 44 48.83 49.22 49.60 49.99 50.38 50.77
51. 15
51. 54
51. 93 52.32 12

( RADIUS

(

TEMPER.[

.00000008+00

-.20439798+02

- ~ 3319034E+02

- ~ 39897998+02

-. 41735668+02

-.39720578+02

-.34742238+02

-.27584718t02

-.1894452E+02

-.94452668+01

.3SO)S738+00 2

2 2

2 2

2 2

2 2

2 2 ID FLUID TEMP ss 103.3 MAT.

)

RADIAL STRESS

-.30339248+04

-. 2051131E+04

-. 12318808+04

-.55444968+03

-.16544238+01

.44044178+03

.78322848+03

.10360548+04

. 12065978+04

. 13011498+04

.13248338+04 OD FLUID TEMP HOOP STRESS

-.6343278E+04

-.53809258t04

-.45744258+04

-.39037028+04

-.33527448+04

-.29086338+04

-.2560868E+04

-.23008858+04

-. 2121702E+04

-. 20176508t04

-. 19841728t04 103.33 AXIALSTRESS 48.44 48.83 49.22 49.60

49. 99 50.38 50.77
51. 15
51. 54
51. 93 52.32 14 ZUS 103. 1
99. 5 96.4 93.9
91. 8
90. 1 88.8 87.8
87. 1 86.7 86.6 OO.OOSEC.

TAPER.[

2 2

2 2

2 2

2 2

2 2

2 ZD MAT.

.0000000E+00

-. 2176601E+02

-.35386658+02

-.42582388+02

- ~ 4458163E+02

- ~ 4245601E+02

- ~ 37148218+02

-.2949386E+02

-.2023907E+02

-. 1005477E+02

. 4515543E+00 PLUZD TEMP a 108. 89 RADIAL SIRESS

-.32269738+04

-. 21881458+04

-. 13187388+04

-. 59711648+03

-. 6191961E+01

. 46790118+03

.8365236E+03

. 11090468+04

. 1293229E+04

. 1395506E+04

. 1421206E+04 OD FLUID TEMP a HOOP STRESS

-.7494635E+04

-.64775738+04

-. 56217878+04

-. 49073618+04

-.43184358+04

-. 3842217Et04

-.34682878t04

-. 31881098+04

-.29946728+04

-. 28822108t04

-.28460048+04 108. 89 AKZAL STRESS 48

~ 44 108. 6 2

.00000008+00

.33640938+04

-.863 48.83 104.9 2

-.2270749E+02

-.22853328+04

-.75739528+04

49. 22 101. 7 2

-.3694464E+02

-. 13801828+04

-.6683039E+04

49. 60
99. 1 2

- F 44484718+02

-.6270687E+03

-.59374668t04

APTSCH ENGINEERING SERVlCES, INC.

m uter Printout Program:

TaCtiCS Document No.:

AES-C-2138-1 Sheet No.:

A4 of A11 I RADIUS I

TEMPER. I MAT' RADIAL STRESS HOOP STRESS AXIALSTRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54 51.93 52.32 0

28

)4). 9 2

137. 9 2

134.5 2

131. 6 2

129. 2 2

127.2 2

125. 7 2

124.5 2

123. 7 2

123.3 2

123. 1 2

OO.OOSBC.

RADIUS I TEMPER. ( MAT

.00000008+00

-.24687028+02

-.4020488E+02

-.4844008E+02

-.5074580E+02

-.4831605E+02

-. 4221299E+02

-. 3338816E+02

-.2269926E+02

-.1092354E+02

.1231223E+01 ID FLUID TEMP a 147.78 RADIAL STRESS

-. 3653416E+04

-.24886268t04

-. 1506477E+04

-.6855274E+03

-. 8906879E+01

.5370920E+03

.9637651E+03

. 1280534E+04

.149534)E+04

. 161494)E+04

.1645127E+04 OD FLUID TEMP m

Hoop sTaEss

.15289778+05

-. 14149668+05

-. 13183038+05

-. 12370328+05

-. 11696008+05

-. 1114757E+05

-. 10714808+05

-. 1038920E+05

- ~ 10163718+05

-.1003233E+05

-.9989990Et04 147.78 AXIALSTRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93
52. 32 0

30 147. 5 143. 4 140. 0 137. 1 134. 7 132. 7 131. 2 130. 0 129.2 128. 8 128.6 OO.OOSEC

( RADIUS I TEMPER.

(

2 2

2 2

2 2

2 2

2 2

2 MAT

.00000008+00

-. 2476319E+02

-.40327258+02

-.48583508+02

-.5088880E+02

-.4844077Et02

- ~ 423051)E+02

-.3343678E+02

-.22696778+02

-. 10865488+02

. 1346351E+01 D FLUID TEMP -"

153.33 RADIAL sTazss

-.3664749E+04

-. 24962418+04

-. 1510765E+04

-.68688498+03

-.77373568+01

.54038068+03

.96876298+03

. 12868338+04

.1502538E+04

. 1622642E+04

. 1652952E+04 OD FLUID TEMP a HOOP STRESS

. 1 389188+05

-. 1524544E+05

-. 14275528+05

-.13459908+05

-. 12783068+05

-. 12232498+05

-. 11797978+05

-. 1147104Et05

-. 11244598+05

-. 11)1266E+05

-. 11070138+05 153. 33 AXIALSTRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54 51.93 52.32 0

32 153. 0 149.0 145. 5 142. 6 140. 2 138. 3 136. 7 135. 6 134. 7 134.3 134. 1 OO.OOSEC RADIUS I TEMPER.

(

2 2

2

~

2 2

2 2

2 2

2 2

.00000008+00

-. 2481374E+02

-.40407138+02

-.48674868+02

-.50976428t02

-. 4851200E+02

-.4234982E+02

-.3344728E+02

-. 2266771E+02

-. 1079374 8+02

. 146176)E+01 ZD FLUID TEMP =

158.89 MAT.

(

RADZAL STRESS

-.3672359E+04

-. 2501204E+04

-. 151336)E+04

-.6873960E+03

-.6450902E+01

.5431739E+03

.97277118+03

. 1291765E+04

. 15081078+04

. 1628567E+04

. 16589638+04 OD FLUZD TEMP is HOOP STRESS

-. 17487538+05

-. 16341198+05

-. 15368948t05

-. 1455125E+05

-. 13872608+05

-. 13320518+05

-. 12884758t05

-. 12556868+05

-.12329748+05

-. 12197408+05

-. 12154758+05 158. 89 AXIALSTRESS 48.44

48. 83 49.22 49.60 49.99 50.38 50.77
51. 15
51. 54
51. 93 52.32 0

34 158. 6 154.5 151. 1 148. 2 145. 8 143. 8 142. 2 141. 1 140. 3 139. 8 139. 6 OO.OOSEC

( RADIUS I TEMPER.

(

2 2

2 2

2 2

2 2

2 2

2 MAT.

.0000000E+00

-.24846048+02

-.40456738+02

-.4872912E+02

~ 51024578+02

-. 48545118+02

-.42360758+02

-.33430618+02

-. 22619708+02

-. 10712268+02

. 1577371E+01 FLUID TEMP =

164.44 RADIAL S'IRESS

-. 36773)SB+04

-.25042798+04

-. 15147518+04

-.68730408+03

-. 50811118+01

. 54561438+03

.97607408+03

. 12957238+04

. 15125158+04

. 1633227E+04

. 166368)E+04 OD FLUID TEMP m

HOOP STRESS

. 18 85138+05

-. 17436948+05

~ 16463028+05

-. 15643848+05

-. 14963928+05

-. 1441074E+05

-.13974108+05

-. 13645528+05

-. 13417928+05

-. 13285308+05

-.13242558t05 164.44 AXIALSTRESS 164. 2 160. 1 156.6 153. 7 151. 3 149. 3 147. 8 146. 6 145. 8 145. 3 145. 2 OO.OOSEC

48. 83 49.22 49.60 49.99 50.38 50.77
51. 15 51.54 51.93 52.32 0

36 I RADIUS

(

TEMPER.

( MAT.

.00000008+00

-.24865338+02

-.40484748+02

-.48756938+02

-. S)044598+02

-. 48551058+02

-.4234759E+02

-.33394588+02

-.22558208+02

-.10623838+02

. 16931248+01 FIIJ 170. 0 ZD TEMP =

RADIAL STRESS

-. 368038 18+04

-.25060068+04

-. 15)52828+04

-.6867820E+03

-. 36519258+01

.54780328+03

.97887448+03

.12989878+04

.15160978+04

. 16369858+04

. 16674778+04 OD FLUID TEMP a HOOP STRESS

-. 19682188+05

-. 1853267E+05

-. 17S57578+05

-. 1673734E+05

-. 16056508+05

-.1550255E+05

~ 15065278+05

- ~ 14736218+05

-.14508268+05

-. 1437544E+05

-.1433263E+05 170. 00 AXZAL STRESS 48.44 48.83 49.22 49.60 49.99 50.38 69.7 165.6 162. 2 159. 3 156. 8 154.9

.00000008+00

-.24875358+02

-.4049737E+02

-.4876589E+02

-.5104456E+02

-.4853763E+02

-.3 820988+04

-.2506774E+04

-. 151520)E+04

-.6859535E+03

-. 2180409E+01

. 5498128E+03

-.2077885E+05

-. 196284 0E+05

-. 18652458+05

-. 17831478+05

-. 1714998E+05

-. 1659548E+05

APTSCH BKilNEERINGSERVICES, INC.

uter Printout Program:

TaCtiCS Document No.:

AES-C-2138-1 Sheet No.:

AS of A11 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 0

40 175.3 171. 2 167.7 164.8 162. 4 160. 4 158. 9 157. 7 156. 9 156.4 156.3 OO.OOSEC f RADIUS

/

TEMPER. [ MAT.

50.77 153.3 2

51. 15 152. 1 2

51.54 151.3 2

51. 93 150. 9 2

52.32 150.7 2

0 3800.00SEC

~

I RADIUS I TEMPER.I MAT. ID I

ZD I

- ~ 4231727Et02

-.3334475E+02

-.2248708E+02

-. 1053044E+02

. 1808979E+01 FLUID TEMP s 175.56 RADIAL STRESS

.0000000Et00

-.2487876E+02

-.4049903E+02

-.4876142E+02

-.5103024Et02

-.4851040B+02

-;4227472E+02

-.3328508E+02

-.2240910E+02

-.1043353E+02

. 1924906Et01 FLUID TEMP a 181.11 RADIAL STRESS

. 9813164E+03

. 1301757E+04

~ 1519090E+04

. 1640100E+04

. 1670617E+04 OD FLUZD TEMP =

HOOP S'TRESS I

-.36828SSE+04

-.2506857E+04

-. 1514683Et04

-.6849068Bt03

-. 6787231E+00

.5516946Et03

.9835032E+03

. 1304174E+04

. 1521663E+04

.1642757E+04 1673288E+04 OD FLUZD TEMP HOOP STRESS

-. 1615775E+05

-. 1582834E+05

-. 1560015E+05

-. 1546718E+05

-. 1542432E+05 175. 56 AXZAL STRESS

- ~ 2187524E+05

-. 20724 12E+05

-. 1974757E+05

-. 1892605E+05

-. 1824410E+05

-. 1768920E+05

- ~ 1725116E+05

-. 1692150E+05

-. 166 9313E+05

-. 1656006E+05

-. 1651717E+05 181. 11 AXIAL STRESS 180. 8 176. 7 173. 3 170.4 167. 9 166. 0 164. 4 163.2 162. 4 162. 0 161. 8 OO.OOSEC 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 42 ZVS

)

TEMPER.

)

I MAT.

'000000E+00

-.2487746E+02

-.4049288E+02

-.4874738E+02

-.5100574E+02

-.4847334E+02

-.4222345E+02

-. 3321840E+02

-.2232624E+02

-. 10334 10E+02

.2040886E+01 FLUID TEMP a 186.67 RADIAL STRESS

-.3682927E+04

-.2506453Et04

-. 1513854 E+04

-.6837044E+03

. 8444641E+00 5534853E+03

.9855080E+03

. 1306339E+04

. 1523937E+04

. 1645087E+04

. 1675626E+04 OD FLUID TEHP II HOOP STRESS

-.2297144E+05

-. 2181984E+05

-.2084286E+05

-.2002096B+05

-. 1933867E+05

-.1878350B+05

-.1834523E+05

-.1801539E+05

-. 1778690E+05

-. 1765376E+05

-. 1761085E+05 186. 67 AXIAL STRESS 186. 4 182.3 178. 8 175. 9 173. 5 171. 5 170. 0 168. 8 168. 0 167. 5 167. 4 OO.OOSEC 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 0

44

( RADIUS f TEMPER.

(

2 2

2 2

2 2

2 2

2 2

2 MAT

.0000000E+00

-.2487280E+02

-. 4048116Et02

-.4872652E+02

-.5097398E+02

-.4842927Et02

-. 4216597E+02

-. 3314673E+02

-.2223989E+02

-. 1023289B+02

. 2156902E+01 D FLUID TEMP ~

192.2 RADIAL STRESS

-. 36 825 11E+04

-.2505702E+04

-.1512803E+04

-. 6823910E+03

.2382976E+01

. 5552111E+03

. 9873831E+03

. 1308326E+04

. 1525998E+04

. 1647185E+04

. 1677726E+04 OD FLUID TEMP ss HOOP STRESS

-.2406750E+05

- ~ 2291556E+05

- - 2193827E+05

-. 2111610B+05

-.2043358B+05

-. 198 7820E+05

-. 1943977B+05

-. 1910981B+05

-. 1888123E+05

-.1874803E+05

-. 18705 10E+05 192. 22 AXIAL STRESS 191.9 187. 8 184.4 181. 5 179. 0 177. 1 175. 5 174. 3 173. 5 173. 1 172. 9 OO.OOSEC 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 0

46 I RADIUS J

TEMPER.

[ MAT.

D 0000000E+00

-.2486575E+02

-.4046547Et02

-.4870079E+02

-.5093705E+02

-.4838020E+02

- ~ 4210406E+02

-.3307149E+02

-. 2215106E+02

>>. 1013039E+02

.2272944Et01 197.7 FLUID TEMP RADZAL STRESS

-.3681747E+04

-.2504703E+04

-. 1511594E+04

-.6809986Et03

.3932409E+01

.5568907E+03

. 9891658E+03

. 1310184E+04

. 1S27906E+04

. 1649117Et04

.1679656E+04 OD FLUID TEMP HOOP STRESS

- ~ 2 16346E+05

-. 2401128B+05

-.2303377E+05

-. 2221141B+05

-. 21528 71E+05

-.2097320B+05

-.2053465Et05

-.2020460E+05

-. 1997595E+05

-. 1984272E+05

-. 1979978E+05 197. 78 AXIALSTRESS 197.5 193. 4 189. 9 187. 0 184.6 182. 6 181. 1 179. 9 179. 1 178.6 178.5 OO.OOSEC 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 0

48 MAT I RADIUS

] TEMPER.

)

.0000000E+00

-.2485700E+02

-.4044696Et02

-. 4867160Et02

-.5089643E+02

-.4832757E+02

-.4203900E+02

-.3299372E+02

-.2206046Et02

-. 1002698E+02

.2389005E+01 D FLUID TEMP a 203.3 RADZAL STRESS

-.3680736E+04

-.2503527E+04

-. 1510273E+04

-.6795499E+03

. 5489626E+01

.5585373E+03

.9908826E+03

. 1311952E+04

. 1529'706E+04

. 1650931E+04

. 1681466E+04 OD FLUID TEMP m

HOOP STRESS

-.2 25934E+05

- ~ 2510699B+05

-. 2412933B+05

-.2330683E+05

-. 2262401EtOS

-.2206840E+05

-. 2162976E+05

-. 212996SEt05

-.2107096E+05

-.2093770E+05

-.2089475E+05 203.33 AXIALSTRESS

APTSCH ENGINEERING SERVICES, INC om uter PIT'ntout Program:

TBCtlCS Document No.:

AES-C-2138-1 Sheet No.:

A6 of A11 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15 51.54 51.93 52.32 0

50 203.0 199. 0 195. 5 192. 6 190. 1 188.2 186. 6 185. 4 184. 6 184. 2 184.0 OO.OOSEC I RADIUS I TEMPER. I 2

2 2

2 2

2 2

2 2

2 2

ZD MAT.

.0000000E+00

-.2484703E+02

-.4042643E+02

-.4863993E+02

-. 5085318Et02

-.4827240E+02

-.4197168E+02

-. 3291414E+02

~ 2196860E+02

-.9922925E+01

.2505080B+01 FLUZD TEMP m

208.89 RADIAL sTaBss

-.3679548E+04

-.2502226E+04

-. 1508871Et04

-. 6780610B+03

.7052391E+01

. 5601604E+03

.9925524B+03

. 1313655E+04

. 1531429E+04

. 1652661E+04

. 1683190E+04 OD PLUZD TEMP r HOOF STRESS

-. 2735518E+05

-.2620271E+05

-.2522493E+05

-.2440233E+05

-. 2371943E+05

-. 2316375E+05

-.2272505E+05

-.2239489B+05

-. 2216617E+05

-.2203290E+05

-. 2198994E+05 208.89 AKIALsTREss 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93
52. 32 208. 6 204. 5 201. 0 198. 1 195. 7 193. 7 192. 2 191. 0 190. 2 189. 7 189. 6

.0000000E+00

-.2483620E+02

-.4040446E+02

-.4860651E+02

-.5080806B+02

-. 4821543E+02

-. 4190277E+02

-.3283327E+02

~ 2187584E+02

-. 9818407Etol

. 2621164Etol

-.3678234B+04

-.2500835B+04

-. 1507413B+04

-.6765435B+03

. 8619109B+01

. 5617668E+03

. 9941888E+03

. 1315312B+04

. 1533097E+04

. 1654330B+04

. 1684852B+04

-.2845098E+05

-.2729842E+05

-.2632057B+05

-.2549790E+05

-. 2481494E+05

-.2425920Et05

-.2382046E+05

-.2349027E+05

-. 2326153E+05

, -.2312824E+05

-.2308528E+05 FPL PZR NOZZLE ANALYSIS CQOLDQWN (H-"10000)

THE NUMBER OP NODES ~

11 REFERENCE TEMP.

=

70.0 INITIALTEMP.

~ 653.0 ZD HEAT TRAN COEFF, H ~

.0192900 OD HEAT TRAN CQEFF, H

aa

.0000000 COND OF CLAD=

.0005324 THERM COND OF BASBm

.0005324 WALL H/K=

36 ~ 2321563 OUTER WALL H/K=

. 0000000 ACZAL ZNCREMENT =.388 TIME INCREMENT =1. 00 TT(BR)4AL DIFF.

OF (CLAD m

. 0136800 BASEa

. 0136800)

COEF.

OF EXPAN. (CLAD =

. 0000078 BASE=

. 0000078)

YOUNG'S MOD (CLAD =

. 2520000D+08 BASEm

.2520000D+08)

POISSON'S RATIO (CLAD a.3000 BASE+.3000)

TEMPERATURE INPUT ZN TABULAR FORMAT PERIOD~12000.00

.00 653.00 10494.00 70.00 12000.00 70.00 TEMPERATURE INPUT IN TABUIAR FORMAT PERZODm12000. 00

.00 653.00 10494.00 70.00 12000.00 70.00 THE INNER RADIUS = 48.44 THE OUTER RADIUS a 52.31 CLAD THICKNESS=

.000 LZMZT m 12 PLANE STRAIN ANALYSIS 0

200.00SEC.

ID FLUID TEMP ~

641.89 OD FLUID TEMP a I RADzUs I

TEMPER. I MAT.

I RADIAL sTREss I

HOOP sTREss I

641. 89 AKZAL sTaESs 48.44 48.83 49.22 49.60 49.99

.50.38 50.77

51. 15
51. 54
51. 93 52.32 RADIUS 642. 1 645.0 647.2 648.9 650

~ 1 651. 0 651. 6 652.0 652.3 652.4 652.5 OO.OOSEC.

TEMPER.I 2

2 2

2 2

2 2

2 2

2 2

I MELT.

48.44 631. 1 2

.0000000E+00

.1553663E+02

.2480784E+02

.2962572E+02

. 3121507E+02

. 3051131E+02

.2822286E+02

.2488287E+02

.2089253E+02

. 165574 1E+02

. 1211825E+02 D FLUZD TEMP m

630.78 RADIAL STRESS

.0000000E+00

. 2352751Bt04

. 1510984B+04

.8776645E+03

. 4072701E+03

.6340457E+02

-. 1830150E+03

-.3549246E+03

-. 4700156E+03

-. 5414608E+03

-. 5785136E+03

-. 5870019E+03 OD FLUZD TEMP m

HOOP STRESS I

.3859902E+04

-. 11217 4E+06

-. 1130037Et06

-. 1136277E+06

-. 114 0933E+06

-. 1144356E+06

-. 1146827Et06

-. 1148569E+06

-. 114 9753E+06

-. 1150507E+06

-. 1150921Et06

-. 1151051Et06 630.78 AKIALsTaEss

-.1095544E+06

ENGINEERING SERVICES, INC.

uter Printout Program:

Tactics Document No.:

AES-C-2138-1 Sheet No.:

A7 of A11 48.83 49.22 49.60 49.99 50.38 50.77

51. 15 51.54 Sl. 93 52.32 0

i RADIUS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 0

i RADIUS 620.1 625.6 630. 1 633.8 636.8 639.2 641. 1 642.4 643.4 643.9 644. I.

800.00SEC.

i TEMPER.i 2

2 2

2 2

2 2

2 2

2 2

MAT.

635.5' 639. 1 2

642.0 2

644.2 2

646.0 2

647.3 2

648.3 2

648.9 2

649.3 2

649.4 2

600.00SEC.

I TEMPER.I MAT

. 2589017Et02

. 4195558Et02

. 5059317E+02

.5346862E+02

. 5194 919B+02

. 4716257E+02

.4004506E+02

. 3138172B+02

. 2184 030E+02

. 1200018E+02 ID FLUID TEMP =

619.67

)

RADIAL STRESS

.0000000E+00

.3326281E+02

.5417891E+02

.6555544E+02

.6936492E+02

.6727556B+02

.6070888E+02

. 5088612E+02

.3886648E+02

.2557895E+02

. 1184 924E+02 608.56 FLUID TEMP ~

RADZAL STRESS

.2580564Et04

. 1556200E+04

.7422992E+03

. 1032965E+03

-.3895401E+03

-.7593353E+03

-. 1024496E+04

-. 1199375Et04

-. 1294796E+04

-. 1318465E+04 OD FLUID TEMP =

HOOP STRESS

. 4932192E+04

. 3343164E+04

. 2041615E+04

. 9835111E+03

. 1338267E+03

-.5357860E+03

-.1048302E+04

-. 1422264B+04

-. 1672485Et04

-. 1810587B+04

-. 1845422E+04 OD PLUZD TEMP ~

HOOP STRESS

-. 1108079B+06

-. 1118162E+06

-. 1126214E+06

-. 1132576E+06

-. 1137519E+06

-. 114126 5E+06

-. 1143988E+06

-. 1145823E+06

-. 1146873Et06

-. 1147208E+06 619. 67 AXIALSTRESS

-. 1070556E+06

-. 1086113E+06

-. 1098920E+06

-. 1109387E+06

-. 1117846Et06

-. 1124563E+06

- ~ 1129754E+06

-. 1133591E+06

-. 1136214Et06

- ~ 1137728E+06

-. 1138213E+06 6O8.56 AXZAL STRESS 609.0 615.3 620.5 624.8 628.4 631.2 633. 4 635. 1 636.2 636.8 637.0 OO.OOSEC 48.44 48.83 49.22 49.60 49.99 50.38 50.77 SI.. 15

51. 54
51. 93 52.32 0

10 i RADIUS i TEMPER.i 2

2 2

2 2

2 2

2 2

2 2

MAT.

.0000000B+00

.3850987B+02

.6287621B+02

.7619826E+02

.8066707B+02

.7816520B+02

.7032345E+02

.5856608B+02

. 4414769E+02

.2818353E+02

. 1167495B+02 PLUZD TEMP a 597.44 RADIAL STRESS

.569 4 1B+04

. 3885771B+04

.2386711E+04

. 1154584E+04

.1547453B+03

-.6408749E+03

-. 1255138E+04

-. 1706677E+04

-.2010625E+04

-. 2179163E+04

-. 2221958E+04 OD FLUID TEMP ~

Hoop s'LREss

-. 1046450E+06

-.1064162B+06

-.1078909Et06

-. 1091097E+06

-. 1101051E+06

-. 1109032E+06

-. 1115253E+06

-. 1119886E+06

-. 1123070E+06

-. 1124915E+06

-. 1125508E+06 597.44 AXIALS'IRBSS

48. 44 48.83 49.22 49.60 49.99 50.38 50.77
51. 15
51. 54
51. 93 52.32 0

12 597.9 604.8 610.5 615.2 619. 1 622.3 624.8 626.6 627.9 628.6 628.9 OO.OOSEC i RADIUS i TEMPER.i MAT.

D

~ 0000000E+00

.4224200E+02

. 6906013E+02

. 8376173E+02

.8869358E+02

.8589100B+02

. 7713393B+02

. 6399135E+02

.4785708E+02

. 2997912E+02

. 1148401B+02 FLUID TEMP a 586.3 RADIAL STRESS

. 6238511E+04

. 4271563B+04

.2631744B+04

.1275597B+04

.1687496B+03

-.7166703B+03

-. 1403443B+04

-. 1910267E+04

-.2252499E+04

-.2442724E+04

-. 2491187B+04 3

OD FLUID TEMP HOOP STRESS I

-. 1022975Et06

-. 1042222E+06

-. 1058352E+06

-. 1071766E+06

-.1082785B+06

-. 1091668E+06

-. 1098623E+06

-. 1103823E+06

-. 11074 06E+06

-. 1109487Et06

-. 1110157E+06 586.33 AXIALSTRESS 48.44

48. 83 49.22 49.60
49. 99
50. 38 50.77
51. 15
51. 54 51.93 52.32 0

14 586.8 594. 1 600. 1 605.2 609.4 612.8 615.4 617.4 618.8 619. 6 619. 8 OO.OOSEC J

RADIUS

( TEMPER.i 2

2 2

2 2

2 2

2 2

2 2

MAT.

D

.0000000E+00

.4489445E+02

.7345276B+02

.8913052E+02

.9438550B+02

. 9136189E+02

. 8194591B+02

.6780965E+02

.5044619E+02

. 3119813E+02

. 1128122E+02 FLUID TEMP =

575.22 RADZAL STRESS 6624609B+04

. 4545591B+04

.2805460E+04

.1360930E+04

. 1778246B+03

-.7715890B+03

-. 1510034B+04

-.2056252E+04

-.2425764Et04

-.2631438Bt04

-.2683934B+04 OD FLUID TEMP =

HOOP STRESS

-.99994768+05

-. 1020289E+06

-. 10374 05E+ 0 6

-. 1051693E+06

-. 1063472E+06

-.1072996E+06

-. 1080475E+06

-. 1086078E+06

-. 1089947E+06

-. 1092196E+06

~ 1092920E+06 575.22 AXIALSTRESS

48. 44 48.83 49.22 49.60 49.99 50.38 50.77 51.15
51. 54 575.8 583.2 589.6 594.9 599.2 602.8 605.6 607.6 609. 1 00000008too

.4677739E+02

.7656873E+02

. 9293516E+02

.9841356E+02

.9522569B+02

.8533353E+02

.7048266E+02

.5223688Et02

.6898848E+04,

.4739964E+04

.2928347E+04

. 14 2083 SE+ 04

. 1833866E+03

".8116289E+03

- ~ 1586893B+04

-. 2161182Bt04

- ~ 2550130E+04

.9772402E+05

-. 9983613E+05

-. 1016180E+06

-. 1031091E+06

-. 1043411E+06

-. 1053393E+06

-. 1061244E+06

-. 1067136E+06

-. 1071208Et06

APTSCH ENGINEERiNG SERVICES, INC.

uter Printout Program:

TaCtiCS Document No.:

AES-C-2138-1 Sheet No.:

A8 of A11 0

I

52. 32 610. 2 1600.00SEC.

RADIUS I TEMPER.'(

2 2

MAT

.3200620E+02

. 1106997E+02 ID FLUID TEMP =

564.)

RADIAL STRESS

-. 2766810E+04 I

-. 1073577E+06

-. 2822174E+04 I

-. 1074340Et06 1

OD FLUID.TEMP a 564.11 HOOP STRESS I

AXIALSTRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54 Si. 93 52.32 18 564.7 572.3 578.8 584.3 588.8 592.5 595.3 597.5 599.0 599.9 600. 1 OO.OOSEC

(

RADIUS

(

TEMPER.

(

53.6 561.4 568.0 573.6 578.2 581. 9 584.9 587. 1 588.6 589.5 589.8 OO.OOSEC 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 20 4e.e3 49.22 49.60 49.99 50.38 50.77
51. 15
51. 54
51. 93 52.32 550.4 557.1 562.7 567.4 57).. 2 574. 2 576.5 578.0 578.9 579.2 OO.OOSEC 22

( RADIUS I

TEMPER. I

(

RADIUS I TEMPER.

(

2 2

2 2

2 2

2 2

2 2

2 MAT 2

2 2

2 2

2 2

2 2

2 2

MAT.

2 2

2 2

2 2

2 2

2 2

MAT D FLUID TEMP ca 541. 8 RADIAL STRESS

+

.4972066B+02

.8142788B+02

.9884950B+02

.1046476E+03

. 1011666B+03

.9048836E+02

.7447483E+02

. 5480167E+02

.3298559E+02

. 104065)E+02 D FLUID TEMP a 530.7 RADIAL STRESS

.0000000E+00

. 481119)B+02

.7877482E+02

.9562503E+02

. 1012558E+03

. 979441)B+02

. 877060)E+02

.7233942E+02

.5345852E+02

. 325214)E+02

. 1085270E+02 D FLUID TEMP ~

553. 00 RADIAL STRESS

(

0000000B+00

.4905557E+02

.8033244E+02

.9752039E+02

. 1032528B+03

.9984623B+02

.8935500E+02

. 7361443E+02

.5427462E+02

.3282788E+02

. 1063114E+02

.7093364E+04

~ 4877567E+04

. 30150)OE+04

. 1462616E+04

.1864448E+03

-.8410646E+03

-.1642564B+04

-.2236852Et04

-.2639645B+04

-. 2864163E+04

-. 2921565E+04 OD FLUID TEMP a HOOP STRESS I

. 7231062B+04

. 4974711B+04

.3075855E+04

. 149148)E+04

. 187718 5E+03

-.8629427E+03

-.1683133E+04

-.2291668E+04

-.2704324Bt04

-.2934420B+04

-.2993269E+04 OD FLUID TEMP a HOOP S'IRBSS

.7328266B+04

.5043018E+04

.3118300E+04

.151114)E+04

.1877204E+03

-.8794343E+03

-. 1712940Et04

-.2331622E+04

-. 2751300E+04

-.2985367B+04

-. 3 04524 1B+04 OD FLUID TEMP a HOOP STRESS I

-.9547607Et05

-.9764375Et05

-.9947565E+05

-. 10101)2E+06

-. 1022817E+06

-. 1033126E+06

-. 104 1243E+06

-. 104 7339E+06

~ 1051556E+06

-. 1054011E+06

-. 105480)E+06 553.00 AXIALSTRESS

-.9324435E+05

-. 9545165E+05

-.9731923E+05

-. 9888641E+05

-.1001844E+06

-. 1012385E+06

-.1020692E+06

-.1026935E+06

-. 103 1255E+06

-. 1033770E+06

-. 103458)Et06 541. 89 AXIAL S'IRESS 9102422E+05

-.9325974B+05

-. 9515275B+05

-.9674249B+05

-. 9806011E+05

-.9913075E+05

-.9997493E+05

-. 1006096E+06

-. 1010490E+06

-. 1013049E+06

-.1013873E+06 530.78 AXIALSTRESS 0

I 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 24 RADIUS 531.3 539. 3 546. 1 551.8 556.6 560.4 563.4 565.7 567.3 568.2 568.5 OO.OOSEC.

TEMPER.(

2 2

2 2

2 2

2 2

2 2

2 MAT

.0000000E+00

. 501872)E+02

. 8219394E+02

.9977505E+02

. 1056130E+03

. 1020722E+03

.9125422E+02

.7503974E+02

. 5512272E+02

.3303727E+02

. 101797)E+02 D FLUZD TEMP ~

519.67 RADIAL STRESS

. 7396608B+04

.5090774B+04

. 314763)E+04

. 1524239B+04

. 1868159E+03

-.8920871E+03

-.1735076B+04

-.2360984B+04

-.2785660E+04

-.3022550Et04

-.3083149E+04 OD FLUID TEMP HOOP STRESS

-.8881233E+0

-. 9106797E+05

-. 929791)Et05

-.9458492E+05

-. 959165)E+05

-.9699895E+05

-.9785276E+05

-.9849488E+05

-.9893947E+05

-. 991984 5B+05

. 9928190E+05 519. 67 AXIAL STRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 26 520.2 528.3 535. 1 540.9 545.6 549.5 552.5 554.8 556.4 557.4 557.7 OO.OOSEC ZVS

(

TEMPER.

(

48.44 509. 1 48.83 517.2

49. 22 524. 1 2

2 2

2 2

2 2

2 2

2 2

MAT

.0000000E+00

.5051226B+02

.8272524E+02

. 1004130B+03

. 1062724E+03

. 1026824E+03

. 9175817E+02

.7539405E+02

.5529696E+02

. 3301339E+02

. 9951349E+01 D FLUZD TEMP II 508.56 RADIAL STRESS

.0000000B+00

.5073646E+02

.8308923E+02

~ 7444382B+04

. 5123883B+04

~ 31676)SB+04

. 1532662E+04

. 1852654E+03

-.9020040E+03

-. 1751744E+04

-.2382796Et04

-. 2811028E+04

-.3049925E+04

-. 3111034 E+04 OD FLUID TEMP HOOP STRESS

.7477496E+04

. 5146552B+04

. 3180938E+04

-.8660632E+05

-.8887630E+05

-.9080036E+05

-. 9241762E+05

-.9375916E+05

-.9485002E+05

-. 9S71069Et05

-. 96358)OE+05

-.9680643E+05

- ~ 970676)E+05

-. 9715178E+05 508.56 AXZAL STRESS

-.8440450E+0

-. 866847)B+05

-. 8861797E+05

APTSCH ENGlkEERING SERVICES, INC.

uter Printout Program:

TaCtiCS Document No.:

AES-C-2138-1 Sheet No.:

A9 of A11

49. 60
49. 99 50.38 50.77
51. 15 51.54
51. 93 52.32 0

28 529.8 2

534.6 2

538.5 2

541. 6 2

543.9 2

545.5 2

546.4 2

546.7 2

OO.OOSEC.

RADIUS I TEMPER.I MAT

.1008459E+03

. 10671398+03

.1030820E+03

.92075458+02

.75598268+02

.55366568+02

.32935668+02

. 9721882E+01 ZD FLUID TEMP a 497.44 RADIAL STRESS

.1537752Et04

. 1832545E+03

-.90997098+03

-. 1764517E+04

-.23992288+04

-.2829988E+04

-.3070309Et04

-. 3131775E+04 OD FLUID TEMP m

HOOP STRESS

-.90243408+05

-. 91592038+05

-.92688888+05

-.93554448+05

-.94205628+05

-.94656628+05

-. 94919378+05

-.95004058+05 497.44 AXIAL STRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 0

30 498.0 506.1 513. 0 518. 8 523.6 527,. 5 530. 6 532.9 534.5 535.5 535.8 OO.OOSEC I RADIUS I TEMPER. I 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
l. 54 el. 93 52.32 0

32 486.9 495.0 501. 9 507.7 512. 6 516.5 519. 6 521. 9 523.5 524.4 524.8 OO.OOSBC I RADIUS I

TEMPER. I 2

2 2

2 2

2 2

2 2

2 2

MAT 2

2 2

2 2

22.

2 2

2 2

MAT.

.0000000E+00

.5088880E+02

.8333397E+02

. 1011328E+03

. 106 9999E+03

. 1033314E+03

.9225969E+02

.7569550E+02

. 5536158E+02

. 32819548+02

. 94916268+01 D FLUID TEMP a 486.3 RADIAL STRESS

.00000008+00

.50989908+02

.83493738+02

. 1013155E+03

. 1071751E+03

. 10347398+03

.92349128+02

.7571649E+02

.55303458+02

.3267607E+02

. 92608068+01 D FLUID TEMP =

475.2 RADZAL STRESS

. 75001628+04

. 51617828+04

. 3189514E+04

. 1S40467E+04

. 18091548+03

-. 91654818+03

-. 17745128+04

-. 24118258+04

-.28443808+04

-.30857108t04

-. 31474268+04 OD FLUID TEMP m

HOOP S'IRBSS I

. 7515381E+04

. 51717098+04

. 31947068+04

.15414898+04

. 17834258+03

- ~ 92213488+03

-. 17825298t04

-. 2421689E+04

'.28555188t04

-.30975608+04

-.31594478+04 OD FLUID TEMP =

HOOP STRESS

-.82205678+0

-. 84493168+05

-.86432988+05

-.8806423E+05

-.8941791E+05

-. 90519048+05

-. 91388088t05

-. 9204 196E+05

-.92494858+05

-.9275872E+05

-.92843768+05 486.33 AXZAL STRESS

.8000896E+05

-. 82301648+05

- ~ 84246148+05

- ~ 85881548+05

- ~ 87238838+05

- ~ 8834300E+05

- ~ 8921452E+05

-.8987032E+05

-.90324568+05

-.90589238+05

-.90674538+05 475.22 AXIAL STRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54 Sled 93 52.32 0

34 I RADIUS I

475. 8 483.9 490.9 496.7 501. 5 505.4 508.5 510. 9 512.5 513.4 513. 7 OO.OOSEC.

TEMPER.I 2

2 2

2 2

2 2

2 2

2 2

MAT

.00000008+00

. 51054508+02

.83592928+02

. 10142408+03

. 10727148+03

. 10354018+03

.9237097E+02

. 75683168+02

.5520745E+02

. 32513108+02

.90295868+01 D FLUZD TEMP a 464.1 RADZAL STRESS

.7S25294E+04

.51778588+04

.31974868+04

. 1541305E+04

. 17560298+03

-. 92701568+03

-. 17891358+04

-.24296058+04

-.28643368+04

-. 31068798t04

-. 3 168 883 8+04 OD FLUID TEMP a HOOP STRESS I

-. 77813778+05

-. 8011016E+05

-.8205799E+05

-.83696348+05

-. 8505619E+05

-. 86162548+05

-.8703S838+05

-.8769299E+05

-. 88148208+05

-.8841343E+05

-.88498928+05 464. 11 AXIAL STRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 0

36 464.7 472.8 479.8 485.6 490.4 494.3 497.5 499.8 501. 4 502.3 502.6 OO.OOSEC I

RADIUS I TEMPER. I 2

2 2

2 2

2 2

2 2

2 2

MAT

.00000008+00

. 5109308E+02

.8364894E+02

. 1014796E+03

. 10731148+03

. 1035520E+03

.9234466E+02

. 75611098+02

.5508444E+02

.32336248+02

. 8798080E+01 D FLUID TEMP a 453.00 RADIAL STRESS

. 75314248+04

. S1813138+04

.3198548E+04

. 15402618+04

.17274468+03

-. 93139338+03

-. 17947358+04

-. 24361348t04

-. 2871500E+04

-. 31143 958+04

-. 31764768+04 OD FLUID TEMP a HOOP STRESS

-. 75619678+05

-. 77918698+05

-.79868908+05

-. 8150935E+05

-.8287104E+05

-.8397893E+05

-.8485348E+05

-. 85511628+05

-. 85967518+05

-. 86233158+05

-.8631877E+05 453.00 AXZAL STRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 453.6 461. 7 468.7 474.5 479.3 483.3 486.4 488.7 490.3 491.3 491. 6

.00000008+00

. 5111312E+02

. 8367419E+02

. 10149758+03

. 1073114 E+03

. 10352518+03

.9228402E+02

. 75511438+02

.54942208+02

. 32149478+02

.8566370E+01

.75348 9E+04 51828488+04

.31983858+04

. 15386048+04

. 16980158+03

-. 93541248+03

-. 1799619E+04

-. 244 16728+04

-.2877486E+04

-. 31206258+04

-. 31827558+04

-.7342 33E+05

-.75727238+05

-. 77679138+05

-.79321098t05

-.80684088+05

-. 8179308E+05

-.82668538+05

-.83327358+05

-.83783748+05

-.8404967E+05

-. 8413538Et05

APTSCH ENGINEERING SERVICES, INC.

uter Printout Program:

TaCtiCS Document No.:

AES-C-2138-1 Sheet No.:

A10 of A11 0

I 3800.00SEC.

RADIUS I TEMPER.I MAT.

ZD FLUZD TEMP =

441.89 RADIAL STRBSS OD FLUID TEMP a 441.89 HOOP STRBSS I

AXIAL STRESS 48.44 48.83

49. 22
49. 60 49.99 50.38 50.77
51. 15 442.5 450. 6 457.6 463.4 468.2 472.2 475.3 477.6 479.2 480.2 480.5 OO.OOSEC
51. 54
51. 93 52.32 0

40 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15 51.54 51.93 431.4 439.5 446.5 452.3 457. 1 461.1 464.2 466.5 468.1 469.1 469.4 OO.OOSEC 52.32 42 I RADIUS I

TEMPER. I I RADIUS I TEMPER. I 2

2 2

2 2

2 2

2 2

2 2

MAT 2

2 2

2 2

2 2

2 2

2 2

MAT 0000000B+00

. 5111994 E+02

.8367752E+02

. 1014886E+03

. 1072827E+03

. 1034707E+03

.9219892E+02

.7539209E+02

.5478624E+02

.3195565E+02

.8334515E+01 D FLUID TB4P a

430.78 RADIAL sTazss

.0000000E+00

. 5111734E+02

.8366522E+02

. 1014605E+03

. 1072337E+03

~ 1033965E+03

.9209639E+02

.7525874E+02

. 5462051E+02

. 3175680E+02

. 8102557E+01 D PLUZD TEMP a 419.67 RADIAL STRESS

.7536372B+04

.5183015E+04

.3197349B+04

. 1536511E+04

. 1667982E+03

-. 939176 0E+03

-. 1803 993E+04

-.2446506E+04

-.2882632E+04

-.3125939E+04

-. 3188097Bt04 OD FLUID TEMP a HOOP STRESS

.7536516E+04

. 5182207E+04

.3195691E+04

.1534106E+04

. 1637518B+03

-.9427575E+03

-. 1808002B+04

-.2450837E+04

-. 2887179B+04

-. 313 0601B+04

-. 3192773B+04 OD FLUID TEMP =

HOOP STRESS I

-.71233 5E+0

-.7353578E+05

-.7548889B+05

-. 7713192E+05

-.7849584E+05

-.7960562E+05

-. 8048171E+05

-. 8114103E+05

-.8159776E+05

-. 8186390E+05

-. 8194968E+05 430.78 AXIAL STRESS

-. 690411SE+05

-. 7134434E+05

-. 7329831B+05

-.7494210E+05

-.7630668E+05,

-.7741703B+05

-.7829357E+05

-.7895325E+05

-.7941023E+05

-.7967651E+05

-.7976234E+05 419.67 AXIALSTRESS 0

I 48.44 48.83 49.22 49.60

49. 99 50.38
50. 77
51. 15
51. 54
51. 93 52.32 44 RADIUS 2

2 2

2 2

2 2

2 2

2 2

MAT

~420.2 428.4 435.4 441. 2 446.0 450. 0 453. 1 455. 4 457.0 458.0 458.3 OO.OOSEC.

TEMPER.I

.0000000E+00

. 5110803E+02

. 8364 178E+02

. 1014188E+03

. 1071702E+03

.1033084E+03

~ 9198142B+02

~ 7511539E+02 5444781E+02

~ 3155436E+02

~ 7870524E+01 D FLUID TEMP a 408. 56 RADIAL sTaEss

.7535685E+04

. 5180704E+04

. 3193590E+04

. 1531479E+04

.1606748E+03

-.9462092E+03

-. 1811753E+04

-. 2454810E+04

-.2891300E+04

-. 3134796B+04

-. 3196973Bt04 OD FLUID TEMP HOOP STRESS

-.6684904E+05

-. 6915291E+05

-. 7110749E+05

-. 7275182E+05

-. 7411687Et05

-.7522762E+05

-.7610449E+05

-. 7676441E+05

-. 7722157E+05

-.7748796Et05

-.7757382E+05 408.56 AXIALSIItESS 48.44 48.83 49.22 49.60 49.99 50.38 409. 1 417. 3 424.2 430.1 434.9 438.9 442.0 444.3 445.9 446.9 447.2 OO.OOSEC 50.77

51. 15

,51. 54 51.93 52.32 0

46 I RADIUS I TEMPER. I 2

2 2

2 2

2 2

2 2

2 2

MAT

.0000000E+00

. 5109393E+02

. 8361041E+02

. 1013673E+03

. 1070963E+03

. 1032103E+03

. 9185761E+02

.7496492E+02

. 5427015E+02

. 3134937E+02

.7638440E+01 D FLUID TEMP a 397.4 RADIAL STRESS

. 7534157B+04

. 5178706B+04

. 3191172E+04

. 1528694B+04

.1575759E+03

-.9495683E+03

-. 1815318E+04

-.24S8528E+04

-. 2895117E+04

-. 3138660E+04

-.3200834E+04 OD FLUID TEMP HOOP STRESS

-. 6465712E+05

-. 6696147E+05

-. 6891649E+05

-. 7056121E+05

-. 7192660E+05

-.7303763E+05

-.7391474E+05

-.7457484E+05

- ~ 7503212E+05

-.7529859E+05

-.7538447E+05 397.44 AXIAL STRESS 398.0 406.2 413. 1 419. 0 423.8 427.8 430.9 433.2 434.8 435.8 436. 1 OO.OOSEC 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52.32 48 ZUS I TEMPER I

.0000000E+00

. 510764 2E+02

.8357338E+02

. 1 013 089E+03

. 1070151E+03

. 1031050E+03

. 917274 8E+02

~ 7480938E+02

.54O8895E+O2

. 3114255E+02

. 7406317E+01 FLUID TEMP a RADIAL STRESS 386.33

. 7 32135E+04

. 5176355E+04

.3188530E+04

. 1525797E+04

. 1544 615B+03

-. 9528615B+03

-. 1818752E+04

-.2462064E+04

-. 2898717Bt04

-. 3142288E+04

-.3204454B+04 OD PLUZD TEMP HOOP STRESS

-.6246 34E+05

-.6477004E+05

-.6672537E+05

-.6837037E+05

-.6973600E+05

-.7084723E+05

-. 7172450E+05

-.7238473E+05

-. 7284210E+05

-. 7310862E+05

-. 7319452Et05 386.33 AXZAL STRESS 48.44 48.83 49.22 49.60 49.99 386.9 395. 1 402. 0 407.9 412.7

.0000000E+00

. 510564 9E+02

. 8353231E+02

. 1012456E+03

.1069286E+03

.7529758E+04

.5173753E+04

. 3185726E+04

. 1522819E+04

. 1513359E+03

-.6027367E+05

-.6257862E+05

-. 64534 17E+05

-. 6617936E+05

-. 6754516Et05

APTSCH ENGINEERING SERVICES, INC.

uter Printout Program:

Tactics Document No.:

AES-C-2138-1 Sheet No.:

AllofAll

50. 38 416. 7
50. 77 419. 8 51.15 422.1
51. 54 423. 7
51. 93 424. 7 52.32 425.0 0

5000.00SEC I

RADZUS I

TBMpBR. I 2

. 1029947E+03 2

.9159285B+02 2

.7465022B+02 2

.5390523E+02 2

.3093444E+02 2

. 7174 169E+01 ZD FLUZD TEMP m

375.2 MAT I

RADZAL STRESS I

-. 9561078E+03

-. 1822091E+04

-.2465470E+04

-.2902163E+04

-. 3 14 574 7E+04

-. 3207901E+04 OD FLUZD TEMP =

EOOP STRESS

-.6865654E+05

-.6953392E+05

-. 7019424B+05

-.7065168E+05

-.7091824E+05

-. 7100415E+05 375.22 AXIALSTRESS 48.44 48.83 49.22 49.60 49.99 50.38 50.77

51. 15
51. 54
51. 93 52'2 375.8 384.0 390.9 396.8 401. 6 405. 5 408.7 411. 0 412. 6 413.6 413. 9

.0000000E+00

. 5103482E+02

.8348837E+02

. 1011788E+03

. 1068384E+03

. 1028807B+03

. 9145501E+02

.7448848E+02

. 5371972B+02

.3072540B+02

.6942001E+01

.7527130E+04

. 5170971E+04

. 3182809B+04

. 1519784B+04

. 1482025E+03

-.9593205E+03

-. 1825364E+04

-.2468783E+04

-.2905499B+04

-. 3149086B+04

-. 3211226E+04

-.5808206E+05

-.6038719E+05

-.6234290E+05

-.6398823E+05

-. 6535415E+05

-.6646563E+05

- ~ 6734310E+05

-.6800349B+05

-.6846097E+05

- ~ 6872756B+05

- ~ 6881348E+05

EvilNEERNG SERVICES, NC.

cument No.: AES-C-2138-1 itic: One Operating Cycle Flaw Evaluation of Weld Indications in 'C'nstrument Nozzle Penetration of the Pressurizer at St. Lucie, Unit 2 Made by:

Checked by:

Revision No.:

te Date:

Client:

FPL Project No.:

AES 94032138-1Q

'heet No.:

B1 of B12 Appendix B COMPUTER OUTPUT FROM BIGIF QAE17 REV. 9/88

APTSCH ENGINEERING SERVICES, INC.

uter Printout Program BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B2 of B12 PZR NOZZLE FLAW EVALUATZON - SL LUCZE UNIT 2 BZGZFI BOUNDARY ZNTEGRAL EQUATION GENERATED INFLtrENcE FUNcTzoNs FOR USE ZN FRACTURE MECHANICS PROBLEMS ZBM PC VERSION REV.

0 - SEPTEMBER 23, 1985 ANALYSIS SELBCTZON (ZFAT) 1 FATIGUE ANALYSIS CRACK GEOMETRY MODEL ZNDEI( NUMBER (ZFZ) 306 2-DOF CORNER CRACK VARIABLE THICKNESS SPECIFICATION (NTH) 0 CONSTANT BODY THICKNESS CRACK GROWTH RATE RULB (ZDADN) 2 INPUT TABULAR DA/DN, DBLTA-K DATA INTEGRATION INCREMENT SCHEME (ZNUM)

SINGLE OR MULT INTEGRATION SCHEMES (ZNCL) 0 SZNGLE INct(EMEtrzs UsED To DGUBLE cRAcK szzE (NDUB)

USER SPECIFIED NDUB =

20 R~IZDUAL STRESS OPTION: NRES~0 (NO)

NRESm1 (YES)

NRBS m

0

APTSCH

~

ENGINEERING SERVICES, INC.

uter Printout Program:

BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B3 of B12 G~Y AND HATERZAL CRACK GROWII( ZNPUT NUHBER OP DEGREES OF FREEDQH

~

2 PZR NOZZLE FLAW EVALUATZON - SL LUCZE UNIT 2 ZNZTZAL A-VALUES FOR EACH DEGREE OF PREEDQH CRACK LENGTH AZ(1)

CRACK LENGTH AZ (2) 1.0000 1.0000 GEQHEIRY PACTQRS G (1)

G(2)

G (3)

G(4)

G (5)

G (6)

G(7)

G(8) 3.8750

.00000

.00000

.00000

.00000

.00000

.00000

.00000 BODY WZDTH X-CQQRD.

TQ CRACK CENTER (XC)

Y-COQRD.

TQ CRACK CENTER (YC)

CRACK ORZENTATZON ANGLE (PHZ, DEGREES)

DA/DN OPTZON SELECTED:

2 KZC ~

63.200 THERE ARE SETS OF ZNPUT DATA POR 1 R-RATZOS R-RATZO I

.65000 DELTA-K DA/DN 1.0000 1.20000E-11 12.040 3.23000E-OS 100.00 2.01000E-03

APTSCH ENGIKEERIKG SERVICES, INC.

uter Printout Program BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B4 of B12 LOAD TRANSZENTSI 3 TRANSIENT(S) IN PROBLEM EVALUATION - SL LUCZE UNIT 2 PZR NOZZLE FLAW NUMBER KAME ZWO NPX NPY NUMBER OF CYCLES PER BLOCK SPECZFIER AGLD ZPSRD ZPLD 1

PRESSURE CYCLE 0

0 0

1. 0000 1
1. 0000 0

3 COEFFZCIENTS OF EQUATION FOR UNCRACKED STRESS FIELD Q(1)

Q(2)

Q(3)

Q (5)

Q(7) 0 0

0

18. 750 2.0000

.67000

.00000 1.0000

.00000 3

0 2

HEATUP CYCLE 1

0 0

1.0000 1

1. 0000 0

0 0

0 3

BIVARZATE STRESS TABLE 2

1. 0000 2

5 SIGMA(X,Y)

.00000

.00000 7.3600

.00000 3.8750

-3.3600

.50000

.00000 3.6800

.53000

.87500

-1.6800

10. 000

.00000 3.6800

10. 000 3.8750

-1.6800 THE DATA FOR THE STRESS FIELD HAS BEEN READ CORRECTLY 3

COOLDOWN CYCLE 1

1 0

0

1. 0000 1
1. 0000 2
1. 0000 1

0 2

5 0

0 3

2 BZVARZATE STRESS TABLE

.00000

.00000

.50000

.50000

10. 000
10. 000

'LHE DATA

.00000 3.8750

.00000 3.8750

.00000 3.8750 FOR THE S'LRESS SIGMA(X,Y)

15. 080

-6.3800 7.5400

-3. 1900 7.5400

-3. 1900 FIELD HAS BEEN READ CORRECTLY

APTSCH ENGINEERING SERVICES. INC.

uter Printout Program BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B5 of B12 DETAZLED OUTPUT FOR ALL LOAD TRANSIENT(S)

AND CRACK DEGREE(S)

OF FREEDOM ZNTEGRATION BREAKUP

  • I1JtO4**%44 REFINED PZR NOZZLE FLAW EVALUATION - SL LUCZE UNIT 2 DOF TRANSZENT DEGREE OF CRACK NUMBER FREEDOM BLOCK)

SIZE CYCLES

/BLOCK N

TRANSTENT DA/DN DA/DN KMAX KMZN KMEAN DEL-K R-RAT (PER CYCLE)

(PER 1

1. 00 1

1.00 2

2 3

3 1.000

.00001.000

1. 000
1. 000
1. 000 1.000 28.85
32. 17 28.85
32. 17 38.54 42.32
24. 10
27. 19 28.85
32. 17 26.47 29.68 33.69 37.25 4.75 4.99 9.69
10. 14

.00 14.43 28.85

.00 16.09 32.17

.000 1.7775E-04

. 000

2. 1986E-04

.835 1.2827E-07

.845 1'.7043E-07

.749 8.8491E-06

. 760

1. 1656E-05 1.867E-04
2. 317E-04 1
1. 03 1
l. 04 2

2 3

1. 000 150. 8l. 000
1. 000 1.000
1. 000
1. 000
29. 22
32. 51 29.22 32.51 38.97 42.62

.00 14.61 29.22

.000 1.8219E-04

24. 43 27.53 29.22
32. 51 26.83 30.02 34.09 37.56 4.79 4.97 9.75
10. 11

. 836

1. 3331E-07

.847 1.672os-o7

.750 9.1875E-06

. 763 l.1424E-OS

. 00

16. 25 32.51

. 000

2. 2431E-04
1. 915E-04 2.359E-04 1
1. 06 1
1. 07 2

2 3

3 1

1. 09 1
1. 11 2

2 3

3 1

1. 12 1

a.lS 2

2 3

3 1.000 304.2a.ooo

1. 000
1. 000
1. 000
1. 000 1.000 460. 11. 000 1.000
1. 000
1. 000
1. 000
1. 000 618.4
1. 000
1. 000
1. 000
1. 000
1. 000 29.59 32.84
29. 59 32.84 39.40 42.91 29.97
33. 19 29.97
33. 19 39.84 43.23 30.35 33.55 30.35 33.55 40.30 43.56

.00 14.80 29.59

.00 16.42 32.84

24. 78 27.89 29.59 32.84
27. 18 30.37 34.49 37.88 4.81 4.95 9.80 10.07

.00 14.98 29.97

.00 16.60 33.19 25.13 28.26 29.97

33. 19
27. 55 30.73 34.91
38. 21 4.84
4. 93 9.87
10. 04 25.49 28.64 30.35 33.55 27.92
31. 09 35.33 38.55 4.87 4.90 9.95 10.02

.00 15.18 30.35

.00 16.77 33.55

.000 1.8675E-04

. 000

2. 2891E-04

. 837

1. 3819E-07

.849 1.6334E-07

.751 9.5141E-06

. 765

l. 1148E-OS

. 000

l. 9144E-04

.000 2.3365E-04

~ 838 1.4287E-07

.852 1.5883E-07

.752 9.9280E-06

.768 1.0965E-05 F 000 1.9627E-04

.000 2.3853E-04

.840 1.4730E-07

.854 1.5368E-07

.753 1.0385E-05

.770 1.0800E-OS 1.964E-04 2.402E-04

2. 015E-04 2.448E-04 2.068E-04 2.495E-04 a
1. 16 1
l. 19 2

2 3

3

1. 000 779.2
1. 000
1. 000 1.000 1.000
1. 000 30.75
33. 91 30.75
33. 91 40.77 43.89

.00 16.95 33.91

.000 2.4357E-04 25.85 29.03 30.75

33. 91 28.30 31.47 35.76 38.90
4. 90 4.88
10. 02 9.98

. 841

1. 5304E-07

.856 1.4983E-07

.7S4 1.0839E-OS

.773 1.0593E-OS

. 00 15.37

30. 75

. 000

2. 0124E-04
2. 122E-04 2.543E-04 1

19 1

1. 23 2

2 3

l. 000 942. 5l. 000
1. 000
1. 000
1. 000
31. 14 34.27
31. 14 34.27
41. 23
26. 21 29.41
31. 14 28.68 31.84
36. 19 4.93 4.86
10. 09

. 00

15. 57
31. 14

.00 17.14 34.27

.000 2.0636E-04

.000 2.4876E-04

.842 1.5937E-07

.858 1.4622E-07

. 755

1. 1288E-05
2. 178E-04 2.592E-04

APTSCH ENGINEERING SERVlCES, INC.

uter Printout Program:

BIGIF Document No.

AES-C-2138-1 Sheet No.:

B6 of B12 1.000 44.22 34.27 39.25 9.94

.775 1.03428-05 1

1.23 1

1. 27 2

2 3

3 1

1.27 1

1.32 2

2 3

3 1

1.30 1

1.37 2

2 3

3 1

1.35 1.41 2

2 3

3 1

1. 39 1

1.46 2

2 3

3 1

1.43 1

1. 52 2

2 3

3 1

1.48 1

1. 57 2

2 3

3 1

1. 53 1
1. 62 2

2 3

3 1

1. 58 1
1. 68 1

2

l. 000 1108.
1. 000
1. 000 1.000
1. 000
1. 000
1. 000 1277.
1. 000
l. 000
1. 000
1. OOO
1. 000
1. 000 1448.
1. 000
1. 000
1. 000 1.000
l. 000
1. 000 1621.
1. 000
1. 000 1.000 1.000 1.000
1. 000 1798.1.000
1. 000
1. 000
1. 000 1.000
1. 000 1976.
1. 000
1. 000
l. 000
l. 000
l. 000
l. 000 2158.
1. 000
l. 000
l. 000
l. 000
l. 000
l. 000 2342.l. 000
l. 000
l. 000
l. 000 1.000
1. 000 2528.
1. 000
31. 55
34. 65 31.55 34.65
41. 71 44.55 31.96 35.03
31. 96
35. 03
42. 18 44.87 32.39 35.43 32.39 35.43 42.66 45.20
32. 81 35.83 32.81 35.83
43. 14 45.52 33.25 36.24 33 'P 36.24 43.62 45.85 33.70 36.65
33. 70 36.65
44. 11
46. 17
34. 15 37.08
34. 15 37.08
44. 61 46.50 34.62 37.52 34.62 37.52
45. 13 46.86 35.09 37.96

. 00

15. 78
31. 55

.00 17.33 34.65 26.59

29. 81
31. 55
34. 65
29. 07 32.23 36.63 39.60 4.96 4.84
10. 15 9.89

. 00

15. 98
31. 96

.00 17'.52 35.03 26.97 30.23

31. 96 35.03 29.47 32.63 37.07 39.95 4.99
4. 81
10. 22 9.84

.00 16.19 32.39

. 00 17.71 35.43 27.36 30.65 32.39 35.43 29.87

33. 04 37.52 40.31 5.02 4.78
10. 27 9.77

.00 16.41 32.81

. 00

17. 91
35. 83
27. 77
31. 09 32.81 35.83 30.29 33.46 37.98 40.68 5.05 4.74
10. 32 9.70

.00 16.63 33.25

. 00

18. 12
36. 24
28. 18
31. 54
33. 25 36.24 30.72 33.89 38.44
41. 04 5.07 4.70 10.37 9.61

.00 16.85 33.70

.00 18.33 36.65 28.61 32.00 33.70 36.65

31. 15 34.33 38.90 41.41 5.09 4.65 10.41 9.52 29.04 32.48
34. 15 37.08
31. 60 34.78 39.38
41. 79 S. 11 4.60 10.46 9.42

.00 17.31 34.62

.00 18.76 37 '2

29. 49 32.98 34.62 37.52 32.05 35.25 39.87 42.19 S. 12 4.54
10. 52 9.35

.00 17.54 35.09

.00 18.98 37.96

. 00

17. 08
34. 15

.00 18.54 37.08

. 000

.000

. 843

.860

.757

.778

. 000

.000

.844

.863

.758

~ 781

.000

.000

. 845

.865

.759

.784

.000

.000

.846

.868

. 761

.787

.000

.000

. 848

. 870

.762

.790

.000

.000

.849

.873

.764

.794

.000

.000

. 850

.876

.766

.797

.000

.000

.852

.879

.767

.801

.000

.000

2. 1164E-04
2. 5411E-04 1.65578-07
1. 41998-07
1. 17268-05 1.00488-05 2.'7 098- 04 2.5963E-04
1. 7157E- 07
1. 37148-07 1.21518-05 9.71048-06 2.22708-04 2.65348-04 1.77328-07
1. 3172E-07 1.25588-05 9.3325E-06 2.2849E-04
2. 71228-04 1.8276E-07 1.2573E-07 1.2943E-05
8. 9146E-06 2.3447E-04 2.77298-04 1.87808-07
1. 19228-07
1. 33018-05 8.46068-06 2.4065E-04 2.8357E-04 1.9240E-07 1.12268-07 1.36278-05 7.9737E-06 2.47028-04 2.9004E-04 1.9648E-07 1.0489E-07
1. 39618-05 7.4995E-06
2. 53618-04 2.96738-04 1.9996E-07 9.72038-08 1.44428-05
7. 1523E-06
2. 60418-04 3.0363E-04 2.2358-04 2.643E-04 2.294E-04 2.695E-04 2.3548"04 2.7488-04
2. 4168-04 2.8038-04 2.4808-04 2.859E-04 2.5458-04
2. 917E-04
2. 6128-04 2.976E-04 2.6828-04 3.0408-04 2.755E-04
3. 105E-04

APTSCH ENGINEERING SERVICES, WC.

uter Mntout Program:

BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B7 of B12 1

2 2

1.000

1. 000
1. 000
1. 000 35.09 37.96 45.66 47.22 29.95 33.48 35.09 37.96 32.52
35. 72
40. 37 42.59 S. 14 4.48 10.57 9.26

.853

.882

.768

.804

2. 04108-07 9.0267E-08 1.48968-05 6.77168-06 1
1. 63 1
1. 74 2

2 3

3 1

1. 69 1
1. 80 2

2 3

3 1

1. 75 1

1.87 2'2 3

3 1

80 1

.93 2

2 3

3 1

1.87 1

2.00 2

2 3

3 1

1. 93 1

2.07 2

2 3

3 1

2.00 1

2. 14 2

2 3

3 1

2.07 1

22 2

2 3

3 1

2.

1 2

1.000 2717.

1. 000 1.000 1.000 1.000 1.000 1.000 2909.l. 000 1.000
l. 000 1.000 a.ooo a.ooo 3103.1.000
1. 000
l. 000 l.000
1. 000
1. 000 3299.
1. 000
1. 000
l. 000
1. 000
1. 000
1. 000 3498.
1. 000
1. 000 1.000
1. 000
1. 000
1. 000 3699.
1. 000
1. 000
1. 000
1. 000
1. 000
1. 000 3903.
1. 000
1. 000
1. 000
l. 000
1. 000
1. 000 4109.
1. 000 1.000
l. 000
1. 000
1. 000 35.57 38.42 35.57 38.42 46.19 47.58 36.06 38.88 36.06 38.88 46.73 47.93 36.57 39.35 36.57 39.35 47.27 48.29 37.08 39.84
37. 08 39.84
47. 81 48.64 37.60 40.33 37.60 40.33 48.36 48.98 38.13 40.84
38. 13 40.84 48.91 49.32 38.68 41.35 38.68 41.35 49.47 49.66 39.24
41. 88 39.24 41.88 50.03 49.99

.00 17.79 35.57

.00 19.21 38.42 30.41 33.98 35.57 38.42 32.99 36.20 40.88 43.00 5.16 4.43 10.62

9. 16

.00 18.03 36.06

.00 19.44 38.88 30.88 34.50 36.06 38.88 33.47 36.69 41.40 43.41

5. 18 4.38
10. 67 9.05

.00 18.28 36.57

.00 19.68 39.35 31.36

35. 04 36.57 39.35 33.96 37.20 41 ~ 92 43.82 5.20 4.31 10.70 8.93

.00 18.54 37.08

.00 19.92 39.84 31.86 35.59 37.08 39.84 34.47 37.72 42.45 44.24 5.22

4. 24
10. 74 8.80

.00 18.80 37.60

.00 20.17 40.33 32.37 36.16 37.60 40.33 34.99 38.25 42.98 44.66 5.23 4.17 10.76 8.65

.00 19.07 38.13

.00 20.42 40.84 32.90 36.75

38. 13 40.84
35. 52 38.80 43.52 45.08 5.23 4.09 10.78 8.48 33.44 37.36 38.68 41.35 36.06 39.36 44,07 45.51 5.24 3.99
10. 79 8.30

.00 19.62 39.24

. 00

20. 94
41. 88 34.00 37.98 39.24 41.88
36. 62
39. 93 44.63 45.93 5.24 3.89 10.79
8. 11

.00 19.34 38.68

. 00

20. 68
41. 35

.000

.000

.855

.885

.770

.807

.000

.000

.856

.887

.772

.811

.000

.000

.858

.890

.774

. 815

.000

.000

.859

.893

.775

. 819

.000

.000

.861

.897

.777

.823

.000

.000

.863

.900

.780

.828

.000

.000

.865

.903

.782

.833

.000

.000

.867

.907

.784

.838 2.67448-04

3. 1077E-04 2.0963E-07 8.4454E-08
1. 5319E-05 6.36098-06
2. 7471E-04
3. 18148-04
2. 14618-07 7.83138-08 1.57048-05 5.92438-06 2.82238-04 3.2576E-04
2. 18948-07
7. 1907E-08 1.6044E-05 5.4662E-06 2.90008-04 3.33638-04 2.22548-07 6.53268-08 1.63338-05 4.99278-06 2.98048-04
3. 41758-04 2.2S338-07 5.86548-08 1.65658-05 4.50988-06 3.06358-04
3. 50158-04
2. 27218-07 5.1994E-08 1.67338-05 4.02468-06
3. 14948-04 3.58828-04 2.28098-07 4.5437E-08 1.68308-05 3.54378-06 3.23848-04 3.67788-04 2.2793E-07
3. 9091E-08 1.68538-05 3.07488-06 2.8308-04
3. 1728-04 2.906E-04
3. 2418-04 2.9858-04 3.313E-04 3.0668-04 3.387E-04 3.1488-04 3.463E-04 3.233E-04 3.5428-04 3.320E-04 3.6248-04 3.4098-04'.7098-04

APTSCH ENGINEERING SERVICES. INC.

uter Printout Program:

BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B8 of B12 1

2. 14 1

2.30 2

2 3

3

1. 000 4318.
1. 000
1. 000
1. 000
1. 000
1. 000 39.80 42.42
39. 80 42.42 50.59
50. 31 34.57 38.63 39.80 42.42 37.19 40.52 4S.20 46.36 5.23 3.79
10. 79 7.90

.00 19.90 39.80

. 00

21. 21 42.42

.869

. 911

. 787

.843 2.2663E-07 3.3050E-08 1.6793E-05 2.6247E-06

.000 3.3304E-04

.000 3.7702E-04 3.501E-04 3.797E-04 1

2.21 1

2.38 2

2 3

3 1.000 4529.

1. 000
1. 000
1. 000
l. 000 1.000 40.38
42. 96 40.38 42.96
51. 15 50.63

.00 20.19 40.38

.000 3.4256E-04

35. 16 39.29 40.38 42.96 37.77
41. 13 45.77 46.80 5.22 3.67
10. 77 7.67

. 871

. 915

.789

.849 2.2416E-07 2.7404E-08 1.6650E-OS 2.2004E-06

.00 21.48 42.96

.000 3.8657E-04 3.594E-04 3.888E-04 1

2.29 1

2.46 2

2 3

3 1.000 4742.1.000

1. 000 1.000 1.000
1. 000
40. 97 43.52 40.97 43.52
51. 72 50.94 35.76 39.98 40.97 43.52 38.37
41. 75 46.35 47.23 5.21
3. 54
10. 75 7.42

.00 20.49 40.97

. 00

21. 76
43. 52

. 873

.919

.792

.854 2.2046E-07 2.2231E-08 1.6418E-OS 1.8077E-06

.000 3.5240E-04

.000 3.9643E-04 3.690E-04 3.983E-04 1

2.37 1

2.55 2

2 3

3

1. 000 4957.l.000 1.000 1.000 1.000 1.000
41. 58 44.09 41.58 44.09 52.29 51.24 36.39 40.68
41. 58 44.09 38.98 42.39 46.93 47.66 5.19 3.40
10. 71 7.15

. 00

20. 79
41. 58

.00 22.04 44.09

.000

.000

.875

.923

.795

.860 3.6259E-04 4.0661E-04

2. 1554E-07 1.7596E-08 1.6097E-05 1.4517E-06 3.789E-04 4.081E-04 1

2.46 1

2.64 2

2 3

3 1.000 5175.

1. 000 1.000
1. 000
1. 000
1. 000 42.19 44.67
42. 19 44.67 52.85 51.53 37.03
41. 41 42.19 44.67 39.61 43.04 47.52 48.10
5. 16
3. 26
10. 66 6.86

. 00

21. 10
42. 19

.00 22.33 44.67

. 878

.927

.798

.867 2.0937E-07

1. 3541E-08 1.5685E-05
1. 1363E-06

. 000

3. 7313E-04

. 000

4. 1711E-04 3.890E-04
4. 183E-04 1

2.54 1

2.73 2

2 3

3 1

2.63 1

2. 83 2

2 3

3 1

2.73 1

2.93 2

2 3

3 1

.82 1

3.03 2

2 l.000 5394.1.000 1.000 1.000 1.000

1. 000 1.000 5616.
1. 000
1. 000
1. 000
1. 000
1. 000
1. 000 5840.l. 000
1. 000
1. 000
1. 000
1. 000
1. 000 6066.
1. 000 1.000
l. 000 42.82 45.26
42. 82 45.26 53.43
51. 82 43.46 45.86 43.46 45.86 54.02
52. 12
44. 11 46.48
44. 11 46.48 54.62 52.42 44.78
47. 10 44.78 47.10

. 00 21.41

42. 82

. 000 3.8403E-04

.00 22.63 45.26

.000 4.2795E-04 37.69

42. 16 42.82 45.26
40. 25 43.71
48. 12
48. 54 S. 13 3.10
10. 61 6.56

.880

.931

.801

.873

2. 0198E-07 1.0090E-08 1.5210E-05
8. 6711E-07

.00 21.73 43.46

.00 22.93 45.86

. 000

3. 9531E-04

.000 4.3913E-04 38.36 42.93 43.46 45.86 40.91 44.40 48.74 48.99 5.09 2.93 10.57 6.26

.00 22.06 44.11

.883

.936

.804

.880

.000 1.9342E-07 7.2425E-09 1.4862E-OS 6.5920E-07 4.0698E-04 39.05 43.72

44. 11 46.48
41. 58
45. 10
49. 37 49.45 5.06 2.76
10. 51 5.94

. 885

. 941

. 808

.887 1.8507E-07 5.0473E-09

1. 4419E-05 4.8209E-07

.00 22.39 44.78

. 00

23. 55
47. 10

. 000

4. 1905E-04

.000 4.6260E-04 39.76 44.52 42.27 5.02

.888 45.81 2.58

.945 1.7720E-07 3.3984E-09

.00 23.24 46.48

.000 4.5069E-04 3.994E-04 4.288E-04

4. 104E-04 4.398E-04
4. 216E-04
4. 512E-04 4.331E-04 4.629E-04

APTSCH ENGINEERING SERVICES, INC.

uter Printout Program:

BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B9 of B12 1

2. 92 1
3. 14 2

2 3

3 1

3. 03 1

3.25 2

2 3

3 1

3. 13 1

3.36 2

2 3

3 1

3.24 1

48 2

2 3

3 1

3.36 1

3.61 2

2 3

3 1

3.48 1

3.73 2

2 3

3 1

3.60 1

3.86 2

2 3

3 1

3.73 1

4.00 2

2 3

3 1

3.86

1. 000
1. 000
l. 000 6294.l. 000
l. 000
1. 000
l. 000
1. 000
1. 000 6524.1.000
1. 000
l. 000
1. 000
l. 000
1. 000 6756.
1. 000
1. 000
1. 000
1. 000
1. 000
l. 000 6989.
1. 000
1. 000
1. 000
l. 000
1. 000 1.000 7225.
1. 000 1.000
1. 000 1.000
1. 000
l. 000 7463.1.000
1. 000
1. 000 1.000
1. 000
1. 000 7702.1.000 1.000 1.000
1. 000
l. 000
1. 000 7943.
1. 000 1.000
1. 000
1. 000
1. 000
1. 000 8186.

55.22 52.69 45.45 47.74 45.45

47. 74 55.82 52.96
46. 15 48.39
46. 15 48.39 56.42 53.20 46.85 49.05 46.85 49.05
57. 01 53.42
47. 57
49. 73
47. 57
49. 73 57.60 53.62
48. 31
50. 41

" 48.31 50.41

58. 18 53.80 49 F 05
51. 11 49.05
51. 11 58.76 53.95 49.82
51. 82 49.82
51. 82 59.34 54.08 50.59 52.55 50.59 52.55
59. 91
54. 18
51. 38 44.78
47. 10 50.00
49. 90 10.45 5 ~ 59

.00 22.73 45.45

.00 23.87 47.74 40.48 45.35 4S.4S 47.74 42.97 4.98 46.54

~

2.39 50.64 10.37 50.35 5.21

.00 23.07 46.15

.00 24.19 48.39

41. 22 46.21
46. 15 48.39 43.68 47.30
51. 28 50.79 4.92
2. 18
10. 27 4.81

.00 23.43 46.85

.00 24.53 49.05

41. 99
47. 09 46.85 49.05 44.42 48.07 51.93 51.24 4.86
l. 96
10. 16 4.37

.00 23.79 47.57

.00 24.86 49.73 42.78 48.01 47.57 49.73

45. 17
48. 87 52.59 51.67 4.80
1. 72
10. 03 3.90

. 00

.24

~ 15

48. 31

. 00 25.21 50.41 43.59 48.95 48.31 50.41

45. 95 49.68 53.24
52. 11 4.72 1.46 9.88 3.39 44.42
49. 93
49. 05
51. 11
46. 74
50. 52 53.91 52.53 4.63
1. 1,8
9. 71 2.84

.00 24.91 49.82

.00 25.91 51.82 45.28 50.93 49.82

51. 82 47.55
51. 38 54.58 52.95
4. 53

.89 9.52 2.26

.00 25.30 50.59

.00 26.27 52.55

46. 17
51. 98 50.59 52.55 48.38 52.26 55.25 53.36 4.43

.57

9. 31 1.63

.00 25.69 51.38

.00 24.53 49.05

.00 25.56 51.11

. 811

.894 000

.000

. 891

.950

.814

.902

.000

.000

.893

.955

. 818

. 910

.000

.000

.896

.960

.822

.918

.000

.000

.899

.965

'. 826

. 927

.000

.000

. 902

.971

.830

.937

.000

.000

.906

.977

.835

.947

.000

.000

.909

.983

.840

.958

. 000

.000

. 913

. 989

. 845

.970

.000 1.3880E-OS 3.3662E-07 4.3154E-04 4.7490E-04 1.6817E-07 2.1465E-09 1.3250E-05 2.2232E-07 4.4445E-04 4.8758E-04 1.5805E-07, 1.2515E-09 1.2533E-05 1.3709E-07 4.5781E-04 5.0067E-04 1.4699E-07 6.5861E-10

1. 1737E-OS 7.7566E-08
4. 7164E-04
5. 1418E-04
1. 3513E-07 3.0243E-10 1.0874E-OS 3.9246E-08 4.8592E-04
5. 2811E-04 1.2264E-07 1.1485E-10 9.9529E-06 1.7084E-08 5.0071B-04 5.4250E-04 1.0975E-07 3.2878E-11
8. 9917E-06 6.0091E-09 5.1600E-04 5.5734E-04 9.6690E-08 5.9004E-12 8.0053E-06 1.5246E-09 5.3182E-04 5.7266E-04 8.3707E-08
4. 2114E-13
7. 0124E-06 2.2009E-10 S. 4817E-04 4.450E-04
4. 751E-04 4.571E-04 4.877E-04 4.697E-04 5.008E-04 4.826E-04 S.142B-04 4.960E-04
5. 281E-04 5.098E-04 5.425E-04 S. 241E-04 5.573E-04 5.389E-04 5.727E-04 5.543E-04

APTSCH ENGINEERING SERVICES, INC.

uter Printout Program:

BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B10 of B12 1

4. 14 2

2 3

3 NOTE:

1. 000 53.28

.00 26.64 53.28

.000 5.8845E-04 5.885E-04 1

1. 000 51.38 47.08 49.23 4 ~ 31

.916 7.1055E-08 2

1. 000 53.28 53.06 53.17

.23

.996 1.8834E-15 1

1.000 60.46 51.38 55.92 9.08

.850 6.0320E-06 2

1. 000 54

~ 24

53. 28
53. 76

~ 96

~ 982

9. 4110E-12 CRACK SIZE OF 1ST DOF WILL EXCEED BODY WIDTH, Gtl),

ON NEXT ITERATION.

PROCESSING TERMINATED.

APTfCH ENGINEERING SERVICES, INC.

uter Printout Program:

BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B11 of B12 REFINED BREAKUP PZR NOZZLE FLAW EVALUATION - SL LUCZE UNIT 2 CRACK DIMENSION(S)

OF CYCLES OR BLOCKS TO CRACK FROM INITIALSIZE A(Z)

N N

FATIGUE CRACK GROWTH ANALYSIS

SUMMARY

MAXIMUMSTRESS ZNTENSZTY FACTOR(S)

TOTAL CRACK GROWTH FOR WORST INPUT LOAD TRANSZENT RATE(S)

DADN(I)

DADN1 DADN2 GROW 1.000

.0000

1. 028 150.8
1. 058 304. 2 1

~ 089 460. 1

1. 121 618.4l.155 779.2
1. 190 942.5 1.227 1108.
1. 265 7.

. 305

.346 1621.

1. 389 1798.1.434 1976.

1.481 2158.l.530 2342

~

1.580 2528.

1. 633 2717.

1.688 2909.

1. 745 3103.

1.805 3299.

1. 866 3498.l. 931 3699.

1.997 903.

2.067 109.

2. 139 318.

2.214 529.

2. 291 742.

2.372 7.

.455

.542 394.

2.632 616.

l. 000 1.035
1. 072
1. 110 1.149
1. 189 l.231 1.275
1. 320 1.366 l.414
1. 464
1. 516
1. 569 l.625 1.682
1. 741
1. 803
1. 866 1.932 2.000
2. 071
2. 144 2.219 2.297
38. 537
42. 317
38. 965
42. 616
39. 395
42. 914 39.844 43.233
40. 304
43. 561 40.768 43.889
41. 235
44. 217
41. 706
44. 545 42.180 44.872
42. 658
45. 199
43. 139
45. 525 43.623 45.849
44. 112
46. 171 44.609 46.500
45. 132
46. 861
45. 660
47. 221
46. 192
47. 578 46.729 47.934 47.269
47. 814 48.287 48.636
48. 363
48. 981
48. 915
49. 322 49.470 49.658 50.028 49.988 50.589 50.311 2.462 2.549 2.639 2.732 2.828
51. 718
50. 937 52.285 51.238 52.854 51.529 53.426 51.816 54.025 52.123
2. 378
51. 153
50. 628 1.8673E-04 2.3169E-04 1.9151E-04 2.3591E-04 1.9640E-04 2.4023E-04 2.015)E-04 2.4478E-04 2.0680E-04 2.4949E-04 2.1223E-04 2.5431E-04 2.1781E-04 2.5924E-04 2.2353E-04 2.6430E-04
2. 2941E-04
2. 6948E-04 2.3544E-04 2.7480E-04 2.4162E-04 2.8026E-04 2.4796E-04 2.8587E-04
2. 5446E-04
2. 9165E-04 2.6118E-04 2.9765E-04 2.6825E-04 3.0398E-04 2.7551E-04 3.1050E-04
2. 8297E-04
3. 1721E-04 2.9063E-04 3.2415E-04 2.9849E-04 3.3130E-04 3.0655E-04 3.3868E-04 3.1483E-04 3.4632E-04 3.2331E-04 3.5423E-04 3

~ 3200E-04 3 ~ 6241E-04 3.4092E-04 3.7089E-04 3.5006E-04 3.7968E-04 3.5943E-04 3.8880E-04 3.6904E-04 3.9826E-04 3.7891E-04 4.0808E-04 3.8903E-04 4.1826E-04 3.9945E-04 4.2883E-04 4.1037E-04 4.3980E-04

APYSCH ENGINEERING SERVICES, INC.

uter Printout Program:

BIGIF Document No.:

AES-C-2138-1 Sheet No.:

B12 of B12

2. 725 840.2.822 066.2.922 294.3.025 524.

3.133 756.

3.244 989.3.359 7225.3.479 7463.

3.603 7702.3.731 7943.3.863 8186.

2.928

3. 031
3. 138 3.249 3.364 3.482 3.605 3.732 4.000
4. 141
54. 624
52. 417 55.222 52.694 55.820 52.955
56. 416 53

~ 197 57.009 53.420 57.599 53.621

58. 184
53. 799 58.765 53.953 59.339 54.079 59.906 54.177 60.465 54.245 4.2159B-04 4.5117B-04 4.3311E-04 4.6294B-04 4.4496B-04 4.7512B-04 4.5714B-04 4.8772E-04 4.6970B-04 5.0075E-04 4.8264E-04 5.1422E-04 4.9600B-04 5.2813E-04 5.0981E-04 5.4251E-04 5.2410B-04 5.5734E-04 5 ~ 3891B-04 5.7266E-04 5.5427B-04 5.8845E-04